gdb: make some variables static
[binutils-gdb.git] / gdb / aarch64-tdep.c
1 /* Common target dependent code for GDB on AArch64 systems.
2
3 Copyright (C) 2009-2021 Free Software Foundation, Inc.
4 Contributed by ARM Ltd.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22
23 #include "frame.h"
24 #include "gdbcmd.h"
25 #include "gdbcore.h"
26 #include "dis-asm.h"
27 #include "regcache.h"
28 #include "reggroups.h"
29 #include "value.h"
30 #include "arch-utils.h"
31 #include "osabi.h"
32 #include "frame-unwind.h"
33 #include "frame-base.h"
34 #include "trad-frame.h"
35 #include "objfiles.h"
36 #include "dwarf2.h"
37 #include "dwarf2/frame.h"
38 #include "gdbtypes.h"
39 #include "prologue-value.h"
40 #include "target-descriptions.h"
41 #include "user-regs.h"
42 #include "ax-gdb.h"
43 #include "gdbsupport/selftest.h"
44
45 #include "aarch64-tdep.h"
46 #include "aarch64-ravenscar-thread.h"
47
48 #include "record.h"
49 #include "record-full.h"
50 #include "arch/aarch64-insn.h"
51 #include "gdbarch.h"
52
53 #include "opcode/aarch64.h"
54 #include <algorithm>
55
56 /* A Homogeneous Floating-Point or Short-Vector Aggregate may have at most
57 four members. */
58 #define HA_MAX_NUM_FLDS 4
59
60 /* All possible aarch64 target descriptors. */
61 static target_desc *tdesc_aarch64_list[AARCH64_MAX_SVE_VQ + 1][2/*pauth*/];
62
63 /* The standard register names, and all the valid aliases for them. */
64 static const struct
65 {
66 const char *const name;
67 int regnum;
68 } aarch64_register_aliases[] =
69 {
70 /* 64-bit register names. */
71 {"fp", AARCH64_FP_REGNUM},
72 {"lr", AARCH64_LR_REGNUM},
73 {"sp", AARCH64_SP_REGNUM},
74
75 /* 32-bit register names. */
76 {"w0", AARCH64_X0_REGNUM + 0},
77 {"w1", AARCH64_X0_REGNUM + 1},
78 {"w2", AARCH64_X0_REGNUM + 2},
79 {"w3", AARCH64_X0_REGNUM + 3},
80 {"w4", AARCH64_X0_REGNUM + 4},
81 {"w5", AARCH64_X0_REGNUM + 5},
82 {"w6", AARCH64_X0_REGNUM + 6},
83 {"w7", AARCH64_X0_REGNUM + 7},
84 {"w8", AARCH64_X0_REGNUM + 8},
85 {"w9", AARCH64_X0_REGNUM + 9},
86 {"w10", AARCH64_X0_REGNUM + 10},
87 {"w11", AARCH64_X0_REGNUM + 11},
88 {"w12", AARCH64_X0_REGNUM + 12},
89 {"w13", AARCH64_X0_REGNUM + 13},
90 {"w14", AARCH64_X0_REGNUM + 14},
91 {"w15", AARCH64_X0_REGNUM + 15},
92 {"w16", AARCH64_X0_REGNUM + 16},
93 {"w17", AARCH64_X0_REGNUM + 17},
94 {"w18", AARCH64_X0_REGNUM + 18},
95 {"w19", AARCH64_X0_REGNUM + 19},
96 {"w20", AARCH64_X0_REGNUM + 20},
97 {"w21", AARCH64_X0_REGNUM + 21},
98 {"w22", AARCH64_X0_REGNUM + 22},
99 {"w23", AARCH64_X0_REGNUM + 23},
100 {"w24", AARCH64_X0_REGNUM + 24},
101 {"w25", AARCH64_X0_REGNUM + 25},
102 {"w26", AARCH64_X0_REGNUM + 26},
103 {"w27", AARCH64_X0_REGNUM + 27},
104 {"w28", AARCH64_X0_REGNUM + 28},
105 {"w29", AARCH64_X0_REGNUM + 29},
106 {"w30", AARCH64_X0_REGNUM + 30},
107
108 /* specials */
109 {"ip0", AARCH64_X0_REGNUM + 16},
110 {"ip1", AARCH64_X0_REGNUM + 17}
111 };
112
113 /* The required core 'R' registers. */
114 static const char *const aarch64_r_register_names[] =
115 {
116 /* These registers must appear in consecutive RAW register number
117 order and they must begin with AARCH64_X0_REGNUM! */
118 "x0", "x1", "x2", "x3",
119 "x4", "x5", "x6", "x7",
120 "x8", "x9", "x10", "x11",
121 "x12", "x13", "x14", "x15",
122 "x16", "x17", "x18", "x19",
123 "x20", "x21", "x22", "x23",
124 "x24", "x25", "x26", "x27",
125 "x28", "x29", "x30", "sp",
126 "pc", "cpsr"
127 };
128
129 /* The FP/SIMD 'V' registers. */
130 static const char *const aarch64_v_register_names[] =
131 {
132 /* These registers must appear in consecutive RAW register number
133 order and they must begin with AARCH64_V0_REGNUM! */
134 "v0", "v1", "v2", "v3",
135 "v4", "v5", "v6", "v7",
136 "v8", "v9", "v10", "v11",
137 "v12", "v13", "v14", "v15",
138 "v16", "v17", "v18", "v19",
139 "v20", "v21", "v22", "v23",
140 "v24", "v25", "v26", "v27",
141 "v28", "v29", "v30", "v31",
142 "fpsr",
143 "fpcr"
144 };
145
146 /* The SVE 'Z' and 'P' registers. */
147 static const char *const aarch64_sve_register_names[] =
148 {
149 /* These registers must appear in consecutive RAW register number
150 order and they must begin with AARCH64_SVE_Z0_REGNUM! */
151 "z0", "z1", "z2", "z3",
152 "z4", "z5", "z6", "z7",
153 "z8", "z9", "z10", "z11",
154 "z12", "z13", "z14", "z15",
155 "z16", "z17", "z18", "z19",
156 "z20", "z21", "z22", "z23",
157 "z24", "z25", "z26", "z27",
158 "z28", "z29", "z30", "z31",
159 "fpsr", "fpcr",
160 "p0", "p1", "p2", "p3",
161 "p4", "p5", "p6", "p7",
162 "p8", "p9", "p10", "p11",
163 "p12", "p13", "p14", "p15",
164 "ffr", "vg"
165 };
166
167 static const char *const aarch64_pauth_register_names[] =
168 {
169 /* Authentication mask for data pointer. */
170 "pauth_dmask",
171 /* Authentication mask for code pointer. */
172 "pauth_cmask"
173 };
174
175 /* AArch64 prologue cache structure. */
176 struct aarch64_prologue_cache
177 {
178 /* The program counter at the start of the function. It is used to
179 identify this frame as a prologue frame. */
180 CORE_ADDR func;
181
182 /* The program counter at the time this frame was created; i.e. where
183 this function was called from. It is used to identify this frame as a
184 stub frame. */
185 CORE_ADDR prev_pc;
186
187 /* The stack pointer at the time this frame was created; i.e. the
188 caller's stack pointer when this function was called. It is used
189 to identify this frame. */
190 CORE_ADDR prev_sp;
191
192 /* Is the target available to read from? */
193 int available_p;
194
195 /* The frame base for this frame is just prev_sp - frame size.
196 FRAMESIZE is the distance from the frame pointer to the
197 initial stack pointer. */
198 int framesize;
199
200 /* The register used to hold the frame pointer for this frame. */
201 int framereg;
202
203 /* Saved register offsets. */
204 trad_frame_saved_reg *saved_regs;
205 };
206
207 static void
208 show_aarch64_debug (struct ui_file *file, int from_tty,
209 struct cmd_list_element *c, const char *value)
210 {
211 fprintf_filtered (file, _("AArch64 debugging is %s.\n"), value);
212 }
213
214 namespace {
215
216 /* Abstract instruction reader. */
217
218 class abstract_instruction_reader
219 {
220 public:
221 /* Read in one instruction. */
222 virtual ULONGEST read (CORE_ADDR memaddr, int len,
223 enum bfd_endian byte_order) = 0;
224 };
225
226 /* Instruction reader from real target. */
227
228 class instruction_reader : public abstract_instruction_reader
229 {
230 public:
231 ULONGEST read (CORE_ADDR memaddr, int len, enum bfd_endian byte_order)
232 override
233 {
234 return read_code_unsigned_integer (memaddr, len, byte_order);
235 }
236 };
237
238 } // namespace
239
240 /* If address signing is enabled, mask off the signature bits from the link
241 register, which is passed by value in ADDR, using the register values in
242 THIS_FRAME. */
243
244 static CORE_ADDR
245 aarch64_frame_unmask_lr (struct gdbarch_tdep *tdep,
246 struct frame_info *this_frame, CORE_ADDR addr)
247 {
248 if (tdep->has_pauth ()
249 && frame_unwind_register_unsigned (this_frame,
250 tdep->pauth_ra_state_regnum))
251 {
252 int cmask_num = AARCH64_PAUTH_CMASK_REGNUM (tdep->pauth_reg_base);
253 CORE_ADDR cmask = frame_unwind_register_unsigned (this_frame, cmask_num);
254 addr = addr & ~cmask;
255
256 /* Record in the frame that the link register required unmasking. */
257 set_frame_previous_pc_masked (this_frame);
258 }
259
260 return addr;
261 }
262
263 /* Implement the "get_pc_address_flags" gdbarch method. */
264
265 static std::string
266 aarch64_get_pc_address_flags (frame_info *frame, CORE_ADDR pc)
267 {
268 if (pc != 0 && get_frame_pc_masked (frame))
269 return "PAC";
270
271 return "";
272 }
273
274 /* Analyze a prologue, looking for a recognizable stack frame
275 and frame pointer. Scan until we encounter a store that could
276 clobber the stack frame unexpectedly, or an unknown instruction. */
277
278 static CORE_ADDR
279 aarch64_analyze_prologue (struct gdbarch *gdbarch,
280 CORE_ADDR start, CORE_ADDR limit,
281 struct aarch64_prologue_cache *cache,
282 abstract_instruction_reader& reader)
283 {
284 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
285 int i;
286
287 /* Whether the stack has been set. This should be true when we notice a SP
288 to FP move or if we are using the SP as the base register for storing
289 data, in case the FP is ommitted. */
290 bool seen_stack_set = false;
291
292 /* Track X registers and D registers in prologue. */
293 pv_t regs[AARCH64_X_REGISTER_COUNT + AARCH64_D_REGISTER_COUNT];
294
295 for (i = 0; i < AARCH64_X_REGISTER_COUNT + AARCH64_D_REGISTER_COUNT; i++)
296 regs[i] = pv_register (i, 0);
297 pv_area stack (AARCH64_SP_REGNUM, gdbarch_addr_bit (gdbarch));
298
299 for (; start < limit; start += 4)
300 {
301 uint32_t insn;
302 aarch64_inst inst;
303
304 insn = reader.read (start, 4, byte_order_for_code);
305
306 if (aarch64_decode_insn (insn, &inst, 1, NULL) != 0)
307 break;
308
309 if (inst.opcode->iclass == addsub_imm
310 && (inst.opcode->op == OP_ADD
311 || strcmp ("sub", inst.opcode->name) == 0))
312 {
313 unsigned rd = inst.operands[0].reg.regno;
314 unsigned rn = inst.operands[1].reg.regno;
315
316 gdb_assert (aarch64_num_of_operands (inst.opcode) == 3);
317 gdb_assert (inst.operands[0].type == AARCH64_OPND_Rd_SP);
318 gdb_assert (inst.operands[1].type == AARCH64_OPND_Rn_SP);
319 gdb_assert (inst.operands[2].type == AARCH64_OPND_AIMM);
320
321 if (inst.opcode->op == OP_ADD)
322 {
323 regs[rd] = pv_add_constant (regs[rn],
324 inst.operands[2].imm.value);
325 }
326 else
327 {
328 regs[rd] = pv_add_constant (regs[rn],
329 -inst.operands[2].imm.value);
330 }
331
332 /* Did we move SP to FP? */
333 if (rn == AARCH64_SP_REGNUM && rd == AARCH64_FP_REGNUM)
334 seen_stack_set = true;
335 }
336 else if (inst.opcode->iclass == pcreladdr
337 && inst.operands[1].type == AARCH64_OPND_ADDR_ADRP)
338 {
339 gdb_assert (aarch64_num_of_operands (inst.opcode) == 2);
340 gdb_assert (inst.operands[0].type == AARCH64_OPND_Rd);
341
342 regs[inst.operands[0].reg.regno] = pv_unknown ();
343 }
344 else if (inst.opcode->iclass == branch_imm)
345 {
346 /* Stop analysis on branch. */
347 break;
348 }
349 else if (inst.opcode->iclass == condbranch)
350 {
351 /* Stop analysis on branch. */
352 break;
353 }
354 else if (inst.opcode->iclass == branch_reg)
355 {
356 /* Stop analysis on branch. */
357 break;
358 }
359 else if (inst.opcode->iclass == compbranch)
360 {
361 /* Stop analysis on branch. */
362 break;
363 }
364 else if (inst.opcode->op == OP_MOVZ)
365 {
366 gdb_assert (inst.operands[0].type == AARCH64_OPND_Rd);
367
368 /* If this shows up before we set the stack, keep going. Otherwise
369 stop the analysis. */
370 if (seen_stack_set)
371 break;
372
373 regs[inst.operands[0].reg.regno] = pv_unknown ();
374 }
375 else if (inst.opcode->iclass == log_shift
376 && strcmp (inst.opcode->name, "orr") == 0)
377 {
378 unsigned rd = inst.operands[0].reg.regno;
379 unsigned rn = inst.operands[1].reg.regno;
380 unsigned rm = inst.operands[2].reg.regno;
381
382 gdb_assert (inst.operands[0].type == AARCH64_OPND_Rd);
383 gdb_assert (inst.operands[1].type == AARCH64_OPND_Rn);
384 gdb_assert (inst.operands[2].type == AARCH64_OPND_Rm_SFT);
385
386 if (inst.operands[2].shifter.amount == 0
387 && rn == AARCH64_SP_REGNUM)
388 regs[rd] = regs[rm];
389 else
390 {
391 aarch64_debug_printf ("prologue analysis gave up "
392 "addr=%s opcode=0x%x (orr x register)",
393 core_addr_to_string_nz (start), insn);
394
395 break;
396 }
397 }
398 else if (inst.opcode->op == OP_STUR)
399 {
400 unsigned rt = inst.operands[0].reg.regno;
401 unsigned rn = inst.operands[1].addr.base_regno;
402 int size = aarch64_get_qualifier_esize (inst.operands[0].qualifier);
403
404 gdb_assert (aarch64_num_of_operands (inst.opcode) == 2);
405 gdb_assert (inst.operands[0].type == AARCH64_OPND_Rt);
406 gdb_assert (inst.operands[1].type == AARCH64_OPND_ADDR_SIMM9);
407 gdb_assert (!inst.operands[1].addr.offset.is_reg);
408
409 stack.store
410 (pv_add_constant (regs[rn], inst.operands[1].addr.offset.imm),
411 size, regs[rt]);
412
413 /* Are we storing with SP as a base? */
414 if (rn == AARCH64_SP_REGNUM)
415 seen_stack_set = true;
416 }
417 else if ((inst.opcode->iclass == ldstpair_off
418 || (inst.opcode->iclass == ldstpair_indexed
419 && inst.operands[2].addr.preind))
420 && strcmp ("stp", inst.opcode->name) == 0)
421 {
422 /* STP with addressing mode Pre-indexed and Base register. */
423 unsigned rt1;
424 unsigned rt2;
425 unsigned rn = inst.operands[2].addr.base_regno;
426 int32_t imm = inst.operands[2].addr.offset.imm;
427 int size = aarch64_get_qualifier_esize (inst.operands[0].qualifier);
428
429 gdb_assert (inst.operands[0].type == AARCH64_OPND_Rt
430 || inst.operands[0].type == AARCH64_OPND_Ft);
431 gdb_assert (inst.operands[1].type == AARCH64_OPND_Rt2
432 || inst.operands[1].type == AARCH64_OPND_Ft2);
433 gdb_assert (inst.operands[2].type == AARCH64_OPND_ADDR_SIMM7);
434 gdb_assert (!inst.operands[2].addr.offset.is_reg);
435
436 /* If recording this store would invalidate the store area
437 (perhaps because rn is not known) then we should abandon
438 further prologue analysis. */
439 if (stack.store_would_trash (pv_add_constant (regs[rn], imm)))
440 break;
441
442 if (stack.store_would_trash (pv_add_constant (regs[rn], imm + 8)))
443 break;
444
445 rt1 = inst.operands[0].reg.regno;
446 rt2 = inst.operands[1].reg.regno;
447 if (inst.operands[0].type == AARCH64_OPND_Ft)
448 {
449 rt1 += AARCH64_X_REGISTER_COUNT;
450 rt2 += AARCH64_X_REGISTER_COUNT;
451 }
452
453 stack.store (pv_add_constant (regs[rn], imm), size, regs[rt1]);
454 stack.store (pv_add_constant (regs[rn], imm + size), size, regs[rt2]);
455
456 if (inst.operands[2].addr.writeback)
457 regs[rn] = pv_add_constant (regs[rn], imm);
458
459 /* Ignore the instruction that allocates stack space and sets
460 the SP. */
461 if (rn == AARCH64_SP_REGNUM && !inst.operands[2].addr.writeback)
462 seen_stack_set = true;
463 }
464 else if ((inst.opcode->iclass == ldst_imm9 /* Signed immediate. */
465 || (inst.opcode->iclass == ldst_pos /* Unsigned immediate. */
466 && (inst.opcode->op == OP_STR_POS
467 || inst.opcode->op == OP_STRF_POS)))
468 && inst.operands[1].addr.base_regno == AARCH64_SP_REGNUM
469 && strcmp ("str", inst.opcode->name) == 0)
470 {
471 /* STR (immediate) */
472 unsigned int rt = inst.operands[0].reg.regno;
473 int32_t imm = inst.operands[1].addr.offset.imm;
474 unsigned int rn = inst.operands[1].addr.base_regno;
475 int size = aarch64_get_qualifier_esize (inst.operands[0].qualifier);
476 gdb_assert (inst.operands[0].type == AARCH64_OPND_Rt
477 || inst.operands[0].type == AARCH64_OPND_Ft);
478
479 if (inst.operands[0].type == AARCH64_OPND_Ft)
480 rt += AARCH64_X_REGISTER_COUNT;
481
482 stack.store (pv_add_constant (regs[rn], imm), size, regs[rt]);
483 if (inst.operands[1].addr.writeback)
484 regs[rn] = pv_add_constant (regs[rn], imm);
485
486 /* Are we storing with SP as a base? */
487 if (rn == AARCH64_SP_REGNUM)
488 seen_stack_set = true;
489 }
490 else if (inst.opcode->iclass == testbranch)
491 {
492 /* Stop analysis on branch. */
493 break;
494 }
495 else if (inst.opcode->iclass == ic_system)
496 {
497 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
498 int ra_state_val = 0;
499
500 if (insn == 0xd503233f /* paciasp. */
501 || insn == 0xd503237f /* pacibsp. */)
502 {
503 /* Return addresses are mangled. */
504 ra_state_val = 1;
505 }
506 else if (insn == 0xd50323bf /* autiasp. */
507 || insn == 0xd50323ff /* autibsp. */)
508 {
509 /* Return addresses are not mangled. */
510 ra_state_val = 0;
511 }
512 else
513 {
514 aarch64_debug_printf ("prologue analysis gave up addr=%s"
515 " opcode=0x%x (iclass)",
516 core_addr_to_string_nz (start), insn);
517 break;
518 }
519
520 if (tdep->has_pauth () && cache != nullptr)
521 {
522 int regnum = tdep->pauth_ra_state_regnum;
523 cache->saved_regs[regnum].set_value (ra_state_val);
524 }
525 }
526 else
527 {
528 aarch64_debug_printf ("prologue analysis gave up addr=%s"
529 " opcode=0x%x",
530 core_addr_to_string_nz (start), insn);
531
532 break;
533 }
534 }
535
536 if (cache == NULL)
537 return start;
538
539 if (pv_is_register (regs[AARCH64_FP_REGNUM], AARCH64_SP_REGNUM))
540 {
541 /* Frame pointer is fp. Frame size is constant. */
542 cache->framereg = AARCH64_FP_REGNUM;
543 cache->framesize = -regs[AARCH64_FP_REGNUM].k;
544 }
545 else if (pv_is_register (regs[AARCH64_SP_REGNUM], AARCH64_SP_REGNUM))
546 {
547 /* Try the stack pointer. */
548 cache->framesize = -regs[AARCH64_SP_REGNUM].k;
549 cache->framereg = AARCH64_SP_REGNUM;
550 }
551 else
552 {
553 /* We're just out of luck. We don't know where the frame is. */
554 cache->framereg = -1;
555 cache->framesize = 0;
556 }
557
558 for (i = 0; i < AARCH64_X_REGISTER_COUNT; i++)
559 {
560 CORE_ADDR offset;
561
562 if (stack.find_reg (gdbarch, i, &offset))
563 cache->saved_regs[i].set_addr (offset);
564 }
565
566 for (i = 0; i < AARCH64_D_REGISTER_COUNT; i++)
567 {
568 int regnum = gdbarch_num_regs (gdbarch);
569 CORE_ADDR offset;
570
571 if (stack.find_reg (gdbarch, i + AARCH64_X_REGISTER_COUNT,
572 &offset))
573 cache->saved_regs[i + regnum + AARCH64_D0_REGNUM].set_addr (offset);
574 }
575
576 return start;
577 }
578
579 static CORE_ADDR
580 aarch64_analyze_prologue (struct gdbarch *gdbarch,
581 CORE_ADDR start, CORE_ADDR limit,
582 struct aarch64_prologue_cache *cache)
583 {
584 instruction_reader reader;
585
586 return aarch64_analyze_prologue (gdbarch, start, limit, cache,
587 reader);
588 }
589
590 #if GDB_SELF_TEST
591
592 namespace selftests {
593
594 /* Instruction reader from manually cooked instruction sequences. */
595
596 class instruction_reader_test : public abstract_instruction_reader
597 {
598 public:
599 template<size_t SIZE>
600 explicit instruction_reader_test (const uint32_t (&insns)[SIZE])
601 : m_insns (insns), m_insns_size (SIZE)
602 {}
603
604 ULONGEST read (CORE_ADDR memaddr, int len, enum bfd_endian byte_order)
605 override
606 {
607 SELF_CHECK (len == 4);
608 SELF_CHECK (memaddr % 4 == 0);
609 SELF_CHECK (memaddr / 4 < m_insns_size);
610
611 return m_insns[memaddr / 4];
612 }
613
614 private:
615 const uint32_t *m_insns;
616 size_t m_insns_size;
617 };
618
619 static void
620 aarch64_analyze_prologue_test (void)
621 {
622 struct gdbarch_info info;
623
624 gdbarch_info_init (&info);
625 info.bfd_arch_info = bfd_scan_arch ("aarch64");
626
627 struct gdbarch *gdbarch = gdbarch_find_by_info (info);
628 SELF_CHECK (gdbarch != NULL);
629
630 struct aarch64_prologue_cache cache;
631 cache.saved_regs = trad_frame_alloc_saved_regs (gdbarch);
632
633 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
634
635 /* Test the simple prologue in which frame pointer is used. */
636 {
637 static const uint32_t insns[] = {
638 0xa9af7bfd, /* stp x29, x30, [sp,#-272]! */
639 0x910003fd, /* mov x29, sp */
640 0x97ffffe6, /* bl 0x400580 */
641 };
642 instruction_reader_test reader (insns);
643
644 CORE_ADDR end = aarch64_analyze_prologue (gdbarch, 0, 128, &cache, reader);
645 SELF_CHECK (end == 4 * 2);
646
647 SELF_CHECK (cache.framereg == AARCH64_FP_REGNUM);
648 SELF_CHECK (cache.framesize == 272);
649
650 for (int i = 0; i < AARCH64_X_REGISTER_COUNT; i++)
651 {
652 if (i == AARCH64_FP_REGNUM)
653 SELF_CHECK (cache.saved_regs[i].addr () == -272);
654 else if (i == AARCH64_LR_REGNUM)
655 SELF_CHECK (cache.saved_regs[i].addr () == -264);
656 else
657 SELF_CHECK (cache.saved_regs[i].is_realreg ()
658 && cache.saved_regs[i].realreg () == i);
659 }
660
661 for (int i = 0; i < AARCH64_D_REGISTER_COUNT; i++)
662 {
663 int num_regs = gdbarch_num_regs (gdbarch);
664 int regnum = i + num_regs + AARCH64_D0_REGNUM;
665
666 SELF_CHECK (cache.saved_regs[regnum].is_realreg ()
667 && cache.saved_regs[regnum].realreg () == regnum);
668 }
669 }
670
671 /* Test a prologue in which STR is used and frame pointer is not
672 used. */
673 {
674 static const uint32_t insns[] = {
675 0xf81d0ff3, /* str x19, [sp, #-48]! */
676 0xb9002fe0, /* str w0, [sp, #44] */
677 0xf90013e1, /* str x1, [sp, #32]*/
678 0xfd000fe0, /* str d0, [sp, #24] */
679 0xaa0203f3, /* mov x19, x2 */
680 0xf94013e0, /* ldr x0, [sp, #32] */
681 };
682 instruction_reader_test reader (insns);
683
684 trad_frame_reset_saved_regs (gdbarch, cache.saved_regs);
685 CORE_ADDR end = aarch64_analyze_prologue (gdbarch, 0, 128, &cache, reader);
686
687 SELF_CHECK (end == 4 * 5);
688
689 SELF_CHECK (cache.framereg == AARCH64_SP_REGNUM);
690 SELF_CHECK (cache.framesize == 48);
691
692 for (int i = 0; i < AARCH64_X_REGISTER_COUNT; i++)
693 {
694 if (i == 1)
695 SELF_CHECK (cache.saved_regs[i].addr () == -16);
696 else if (i == 19)
697 SELF_CHECK (cache.saved_regs[i].addr () == -48);
698 else
699 SELF_CHECK (cache.saved_regs[i].is_realreg ()
700 && cache.saved_regs[i].realreg () == i);
701 }
702
703 for (int i = 0; i < AARCH64_D_REGISTER_COUNT; i++)
704 {
705 int num_regs = gdbarch_num_regs (gdbarch);
706 int regnum = i + num_regs + AARCH64_D0_REGNUM;
707
708
709 if (i == 0)
710 SELF_CHECK (cache.saved_regs[regnum].addr () == -24);
711 else
712 SELF_CHECK (cache.saved_regs[regnum].is_realreg ()
713 && cache.saved_regs[regnum].realreg () == regnum);
714 }
715 }
716
717 /* Test handling of movz before setting the frame pointer. */
718 {
719 static const uint32_t insns[] = {
720 0xa9bf7bfd, /* stp x29, x30, [sp, #-16]! */
721 0x52800020, /* mov w0, #0x1 */
722 0x910003fd, /* mov x29, sp */
723 0x528000a2, /* mov w2, #0x5 */
724 0x97fffff8, /* bl 6e4 */
725 };
726
727 instruction_reader_test reader (insns);
728
729 trad_frame_reset_saved_regs (gdbarch, cache.saved_regs);
730 CORE_ADDR end = aarch64_analyze_prologue (gdbarch, 0, 128, &cache, reader);
731
732 /* We should stop at the 4th instruction. */
733 SELF_CHECK (end == (4 - 1) * 4);
734 SELF_CHECK (cache.framereg == AARCH64_FP_REGNUM);
735 SELF_CHECK (cache.framesize == 16);
736 }
737
738 /* Test handling of movz/stp when using the stack pointer as frame
739 pointer. */
740 {
741 static const uint32_t insns[] = {
742 0xa9bc7bfd, /* stp x29, x30, [sp, #-64]! */
743 0x52800020, /* mov w0, #0x1 */
744 0x290207e0, /* stp w0, w1, [sp, #16] */
745 0xa9018fe2, /* stp x2, x3, [sp, #24] */
746 0x528000a2, /* mov w2, #0x5 */
747 0x97fffff8, /* bl 6e4 */
748 };
749
750 instruction_reader_test reader (insns);
751
752 trad_frame_reset_saved_regs (gdbarch, cache.saved_regs);
753 CORE_ADDR end = aarch64_analyze_prologue (gdbarch, 0, 128, &cache, reader);
754
755 /* We should stop at the 5th instruction. */
756 SELF_CHECK (end == (5 - 1) * 4);
757 SELF_CHECK (cache.framereg == AARCH64_SP_REGNUM);
758 SELF_CHECK (cache.framesize == 64);
759 }
760
761 /* Test handling of movz/str when using the stack pointer as frame
762 pointer */
763 {
764 static const uint32_t insns[] = {
765 0xa9bc7bfd, /* stp x29, x30, [sp, #-64]! */
766 0x52800020, /* mov w0, #0x1 */
767 0xb9002be4, /* str w4, [sp, #40] */
768 0xf9001be5, /* str x5, [sp, #48] */
769 0x528000a2, /* mov w2, #0x5 */
770 0x97fffff8, /* bl 6e4 */
771 };
772
773 instruction_reader_test reader (insns);
774
775 trad_frame_reset_saved_regs (gdbarch, cache.saved_regs);
776 CORE_ADDR end = aarch64_analyze_prologue (gdbarch, 0, 128, &cache, reader);
777
778 /* We should stop at the 5th instruction. */
779 SELF_CHECK (end == (5 - 1) * 4);
780 SELF_CHECK (cache.framereg == AARCH64_SP_REGNUM);
781 SELF_CHECK (cache.framesize == 64);
782 }
783
784 /* Test handling of movz/stur when using the stack pointer as frame
785 pointer. */
786 {
787 static const uint32_t insns[] = {
788 0xa9bc7bfd, /* stp x29, x30, [sp, #-64]! */
789 0x52800020, /* mov w0, #0x1 */
790 0xb80343e6, /* stur w6, [sp, #52] */
791 0xf80383e7, /* stur x7, [sp, #56] */
792 0x528000a2, /* mov w2, #0x5 */
793 0x97fffff8, /* bl 6e4 */
794 };
795
796 instruction_reader_test reader (insns);
797
798 trad_frame_reset_saved_regs (gdbarch, cache.saved_regs);
799 CORE_ADDR end = aarch64_analyze_prologue (gdbarch, 0, 128, &cache, reader);
800
801 /* We should stop at the 5th instruction. */
802 SELF_CHECK (end == (5 - 1) * 4);
803 SELF_CHECK (cache.framereg == AARCH64_SP_REGNUM);
804 SELF_CHECK (cache.framesize == 64);
805 }
806
807 /* Test handling of movz when there is no frame pointer set or no stack
808 pointer used. */
809 {
810 static const uint32_t insns[] = {
811 0xa9bf7bfd, /* stp x29, x30, [sp, #-16]! */
812 0x52800020, /* mov w0, #0x1 */
813 0x528000a2, /* mov w2, #0x5 */
814 0x97fffff8, /* bl 6e4 */
815 };
816
817 instruction_reader_test reader (insns);
818
819 trad_frame_reset_saved_regs (gdbarch, cache.saved_regs);
820 CORE_ADDR end = aarch64_analyze_prologue (gdbarch, 0, 128, &cache, reader);
821
822 /* We should stop at the 4th instruction. */
823 SELF_CHECK (end == (4 - 1) * 4);
824 SELF_CHECK (cache.framereg == AARCH64_SP_REGNUM);
825 SELF_CHECK (cache.framesize == 16);
826 }
827
828 /* Test a prologue in which there is a return address signing instruction. */
829 if (tdep->has_pauth ())
830 {
831 static const uint32_t insns[] = {
832 0xd503233f, /* paciasp */
833 0xa9bd7bfd, /* stp x29, x30, [sp, #-48]! */
834 0x910003fd, /* mov x29, sp */
835 0xf801c3f3, /* str x19, [sp, #28] */
836 0xb9401fa0, /* ldr x19, [x29, #28] */
837 };
838 instruction_reader_test reader (insns);
839
840 trad_frame_reset_saved_regs (gdbarch, cache.saved_regs);
841 CORE_ADDR end = aarch64_analyze_prologue (gdbarch, 0, 128, &cache,
842 reader);
843
844 SELF_CHECK (end == 4 * 4);
845 SELF_CHECK (cache.framereg == AARCH64_FP_REGNUM);
846 SELF_CHECK (cache.framesize == 48);
847
848 for (int i = 0; i < AARCH64_X_REGISTER_COUNT; i++)
849 {
850 if (i == 19)
851 SELF_CHECK (cache.saved_regs[i].addr () == -20);
852 else if (i == AARCH64_FP_REGNUM)
853 SELF_CHECK (cache.saved_regs[i].addr () == -48);
854 else if (i == AARCH64_LR_REGNUM)
855 SELF_CHECK (cache.saved_regs[i].addr () == -40);
856 else
857 SELF_CHECK (cache.saved_regs[i].is_realreg ()
858 && cache.saved_regs[i].realreg () == i);
859 }
860
861 if (tdep->has_pauth ())
862 {
863 int regnum = tdep->pauth_ra_state_regnum;
864 SELF_CHECK (cache.saved_regs[regnum].is_value ());
865 }
866 }
867 }
868 } // namespace selftests
869 #endif /* GDB_SELF_TEST */
870
871 /* Implement the "skip_prologue" gdbarch method. */
872
873 static CORE_ADDR
874 aarch64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
875 {
876 CORE_ADDR func_addr, limit_pc;
877
878 /* See if we can determine the end of the prologue via the symbol
879 table. If so, then return either PC, or the PC after the
880 prologue, whichever is greater. */
881 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
882 {
883 CORE_ADDR post_prologue_pc
884 = skip_prologue_using_sal (gdbarch, func_addr);
885
886 if (post_prologue_pc != 0)
887 return std::max (pc, post_prologue_pc);
888 }
889
890 /* Can't determine prologue from the symbol table, need to examine
891 instructions. */
892
893 /* Find an upper limit on the function prologue using the debug
894 information. If the debug information could not be used to
895 provide that bound, then use an arbitrary large number as the
896 upper bound. */
897 limit_pc = skip_prologue_using_sal (gdbarch, pc);
898 if (limit_pc == 0)
899 limit_pc = pc + 128; /* Magic. */
900
901 /* Try disassembling prologue. */
902 return aarch64_analyze_prologue (gdbarch, pc, limit_pc, NULL);
903 }
904
905 /* Scan the function prologue for THIS_FRAME and populate the prologue
906 cache CACHE. */
907
908 static void
909 aarch64_scan_prologue (struct frame_info *this_frame,
910 struct aarch64_prologue_cache *cache)
911 {
912 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
913 CORE_ADDR prologue_start;
914 CORE_ADDR prologue_end;
915 CORE_ADDR prev_pc = get_frame_pc (this_frame);
916 struct gdbarch *gdbarch = get_frame_arch (this_frame);
917
918 cache->prev_pc = prev_pc;
919
920 /* Assume we do not find a frame. */
921 cache->framereg = -1;
922 cache->framesize = 0;
923
924 if (find_pc_partial_function (block_addr, NULL, &prologue_start,
925 &prologue_end))
926 {
927 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
928
929 if (sal.line == 0)
930 {
931 /* No line info so use the current PC. */
932 prologue_end = prev_pc;
933 }
934 else if (sal.end < prologue_end)
935 {
936 /* The next line begins after the function end. */
937 prologue_end = sal.end;
938 }
939
940 prologue_end = std::min (prologue_end, prev_pc);
941 aarch64_analyze_prologue (gdbarch, prologue_start, prologue_end, cache);
942 }
943 else
944 {
945 CORE_ADDR frame_loc;
946
947 frame_loc = get_frame_register_unsigned (this_frame, AARCH64_FP_REGNUM);
948 if (frame_loc == 0)
949 return;
950
951 cache->framereg = AARCH64_FP_REGNUM;
952 cache->framesize = 16;
953 cache->saved_regs[29].set_addr (0);
954 cache->saved_regs[30].set_addr (8);
955 }
956 }
957
958 /* Fill in *CACHE with information about the prologue of *THIS_FRAME. This
959 function may throw an exception if the inferior's registers or memory is
960 not available. */
961
962 static void
963 aarch64_make_prologue_cache_1 (struct frame_info *this_frame,
964 struct aarch64_prologue_cache *cache)
965 {
966 CORE_ADDR unwound_fp;
967 int reg;
968
969 aarch64_scan_prologue (this_frame, cache);
970
971 if (cache->framereg == -1)
972 return;
973
974 unwound_fp = get_frame_register_unsigned (this_frame, cache->framereg);
975 if (unwound_fp == 0)
976 return;
977
978 cache->prev_sp = unwound_fp + cache->framesize;
979
980 /* Calculate actual addresses of saved registers using offsets
981 determined by aarch64_analyze_prologue. */
982 for (reg = 0; reg < gdbarch_num_regs (get_frame_arch (this_frame)); reg++)
983 if (cache->saved_regs[reg].is_addr ())
984 cache->saved_regs[reg].set_addr (cache->saved_regs[reg].addr ()
985 + cache->prev_sp);
986
987 cache->func = get_frame_func (this_frame);
988
989 cache->available_p = 1;
990 }
991
992 /* Allocate and fill in *THIS_CACHE with information about the prologue of
993 *THIS_FRAME. Do not do this is if *THIS_CACHE was already allocated.
994 Return a pointer to the current aarch64_prologue_cache in
995 *THIS_CACHE. */
996
997 static struct aarch64_prologue_cache *
998 aarch64_make_prologue_cache (struct frame_info *this_frame, void **this_cache)
999 {
1000 struct aarch64_prologue_cache *cache;
1001
1002 if (*this_cache != NULL)
1003 return (struct aarch64_prologue_cache *) *this_cache;
1004
1005 cache = FRAME_OBSTACK_ZALLOC (struct aarch64_prologue_cache);
1006 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1007 *this_cache = cache;
1008
1009 try
1010 {
1011 aarch64_make_prologue_cache_1 (this_frame, cache);
1012 }
1013 catch (const gdb_exception_error &ex)
1014 {
1015 if (ex.error != NOT_AVAILABLE_ERROR)
1016 throw;
1017 }
1018
1019 return cache;
1020 }
1021
1022 /* Implement the "stop_reason" frame_unwind method. */
1023
1024 static enum unwind_stop_reason
1025 aarch64_prologue_frame_unwind_stop_reason (struct frame_info *this_frame,
1026 void **this_cache)
1027 {
1028 struct aarch64_prologue_cache *cache
1029 = aarch64_make_prologue_cache (this_frame, this_cache);
1030
1031 if (!cache->available_p)
1032 return UNWIND_UNAVAILABLE;
1033
1034 /* Halt the backtrace at "_start". */
1035 if (cache->prev_pc <= gdbarch_tdep (get_frame_arch (this_frame))->lowest_pc)
1036 return UNWIND_OUTERMOST;
1037
1038 /* We've hit a wall, stop. */
1039 if (cache->prev_sp == 0)
1040 return UNWIND_OUTERMOST;
1041
1042 return UNWIND_NO_REASON;
1043 }
1044
1045 /* Our frame ID for a normal frame is the current function's starting
1046 PC and the caller's SP when we were called. */
1047
1048 static void
1049 aarch64_prologue_this_id (struct frame_info *this_frame,
1050 void **this_cache, struct frame_id *this_id)
1051 {
1052 struct aarch64_prologue_cache *cache
1053 = aarch64_make_prologue_cache (this_frame, this_cache);
1054
1055 if (!cache->available_p)
1056 *this_id = frame_id_build_unavailable_stack (cache->func);
1057 else
1058 *this_id = frame_id_build (cache->prev_sp, cache->func);
1059 }
1060
1061 /* Implement the "prev_register" frame_unwind method. */
1062
1063 static struct value *
1064 aarch64_prologue_prev_register (struct frame_info *this_frame,
1065 void **this_cache, int prev_regnum)
1066 {
1067 struct aarch64_prologue_cache *cache
1068 = aarch64_make_prologue_cache (this_frame, this_cache);
1069
1070 /* If we are asked to unwind the PC, then we need to return the LR
1071 instead. The prologue may save PC, but it will point into this
1072 frame's prologue, not the next frame's resume location. */
1073 if (prev_regnum == AARCH64_PC_REGNUM)
1074 {
1075 CORE_ADDR lr;
1076 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1077 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1078
1079 lr = frame_unwind_register_unsigned (this_frame, AARCH64_LR_REGNUM);
1080
1081 if (tdep->has_pauth ()
1082 && cache->saved_regs[tdep->pauth_ra_state_regnum].is_value ())
1083 lr = aarch64_frame_unmask_lr (tdep, this_frame, lr);
1084
1085 return frame_unwind_got_constant (this_frame, prev_regnum, lr);
1086 }
1087
1088 /* SP is generally not saved to the stack, but this frame is
1089 identified by the next frame's stack pointer at the time of the
1090 call. The value was already reconstructed into PREV_SP. */
1091 /*
1092 +----------+ ^
1093 | saved lr | |
1094 +->| saved fp |--+
1095 | | |
1096 | | | <- Previous SP
1097 | +----------+
1098 | | saved lr |
1099 +--| saved fp |<- FP
1100 | |
1101 | |<- SP
1102 +----------+ */
1103 if (prev_regnum == AARCH64_SP_REGNUM)
1104 return frame_unwind_got_constant (this_frame, prev_regnum,
1105 cache->prev_sp);
1106
1107 return trad_frame_get_prev_register (this_frame, cache->saved_regs,
1108 prev_regnum);
1109 }
1110
1111 /* AArch64 prologue unwinder. */
1112 static frame_unwind aarch64_prologue_unwind =
1113 {
1114 NORMAL_FRAME,
1115 aarch64_prologue_frame_unwind_stop_reason,
1116 aarch64_prologue_this_id,
1117 aarch64_prologue_prev_register,
1118 NULL,
1119 default_frame_sniffer
1120 };
1121
1122 /* Allocate and fill in *THIS_CACHE with information about the prologue of
1123 *THIS_FRAME. Do not do this is if *THIS_CACHE was already allocated.
1124 Return a pointer to the current aarch64_prologue_cache in
1125 *THIS_CACHE. */
1126
1127 static struct aarch64_prologue_cache *
1128 aarch64_make_stub_cache (struct frame_info *this_frame, void **this_cache)
1129 {
1130 struct aarch64_prologue_cache *cache;
1131
1132 if (*this_cache != NULL)
1133 return (struct aarch64_prologue_cache *) *this_cache;
1134
1135 cache = FRAME_OBSTACK_ZALLOC (struct aarch64_prologue_cache);
1136 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1137 *this_cache = cache;
1138
1139 try
1140 {
1141 cache->prev_sp = get_frame_register_unsigned (this_frame,
1142 AARCH64_SP_REGNUM);
1143 cache->prev_pc = get_frame_pc (this_frame);
1144 cache->available_p = 1;
1145 }
1146 catch (const gdb_exception_error &ex)
1147 {
1148 if (ex.error != NOT_AVAILABLE_ERROR)
1149 throw;
1150 }
1151
1152 return cache;
1153 }
1154
1155 /* Implement the "stop_reason" frame_unwind method. */
1156
1157 static enum unwind_stop_reason
1158 aarch64_stub_frame_unwind_stop_reason (struct frame_info *this_frame,
1159 void **this_cache)
1160 {
1161 struct aarch64_prologue_cache *cache
1162 = aarch64_make_stub_cache (this_frame, this_cache);
1163
1164 if (!cache->available_p)
1165 return UNWIND_UNAVAILABLE;
1166
1167 return UNWIND_NO_REASON;
1168 }
1169
1170 /* Our frame ID for a stub frame is the current SP and LR. */
1171
1172 static void
1173 aarch64_stub_this_id (struct frame_info *this_frame,
1174 void **this_cache, struct frame_id *this_id)
1175 {
1176 struct aarch64_prologue_cache *cache
1177 = aarch64_make_stub_cache (this_frame, this_cache);
1178
1179 if (cache->available_p)
1180 *this_id = frame_id_build (cache->prev_sp, cache->prev_pc);
1181 else
1182 *this_id = frame_id_build_unavailable_stack (cache->prev_pc);
1183 }
1184
1185 /* Implement the "sniffer" frame_unwind method. */
1186
1187 static int
1188 aarch64_stub_unwind_sniffer (const struct frame_unwind *self,
1189 struct frame_info *this_frame,
1190 void **this_prologue_cache)
1191 {
1192 CORE_ADDR addr_in_block;
1193 gdb_byte dummy[4];
1194
1195 addr_in_block = get_frame_address_in_block (this_frame);
1196 if (in_plt_section (addr_in_block)
1197 /* We also use the stub winder if the target memory is unreadable
1198 to avoid having the prologue unwinder trying to read it. */
1199 || target_read_memory (get_frame_pc (this_frame), dummy, 4) != 0)
1200 return 1;
1201
1202 return 0;
1203 }
1204
1205 /* AArch64 stub unwinder. */
1206 static frame_unwind aarch64_stub_unwind =
1207 {
1208 NORMAL_FRAME,
1209 aarch64_stub_frame_unwind_stop_reason,
1210 aarch64_stub_this_id,
1211 aarch64_prologue_prev_register,
1212 NULL,
1213 aarch64_stub_unwind_sniffer
1214 };
1215
1216 /* Return the frame base address of *THIS_FRAME. */
1217
1218 static CORE_ADDR
1219 aarch64_normal_frame_base (struct frame_info *this_frame, void **this_cache)
1220 {
1221 struct aarch64_prologue_cache *cache
1222 = aarch64_make_prologue_cache (this_frame, this_cache);
1223
1224 return cache->prev_sp - cache->framesize;
1225 }
1226
1227 /* AArch64 default frame base information. */
1228 static frame_base aarch64_normal_base =
1229 {
1230 &aarch64_prologue_unwind,
1231 aarch64_normal_frame_base,
1232 aarch64_normal_frame_base,
1233 aarch64_normal_frame_base
1234 };
1235
1236 /* Return the value of the REGNUM register in the previous frame of
1237 *THIS_FRAME. */
1238
1239 static struct value *
1240 aarch64_dwarf2_prev_register (struct frame_info *this_frame,
1241 void **this_cache, int regnum)
1242 {
1243 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
1244 CORE_ADDR lr;
1245
1246 switch (regnum)
1247 {
1248 case AARCH64_PC_REGNUM:
1249 lr = frame_unwind_register_unsigned (this_frame, AARCH64_LR_REGNUM);
1250 lr = aarch64_frame_unmask_lr (tdep, this_frame, lr);
1251 return frame_unwind_got_constant (this_frame, regnum, lr);
1252
1253 default:
1254 internal_error (__FILE__, __LINE__,
1255 _("Unexpected register %d"), regnum);
1256 }
1257 }
1258
1259 static const unsigned char op_lit0 = DW_OP_lit0;
1260 static const unsigned char op_lit1 = DW_OP_lit1;
1261
1262 /* Implement the "init_reg" dwarf2_frame_ops method. */
1263
1264 static void
1265 aarch64_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
1266 struct dwarf2_frame_state_reg *reg,
1267 struct frame_info *this_frame)
1268 {
1269 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1270
1271 switch (regnum)
1272 {
1273 case AARCH64_PC_REGNUM:
1274 reg->how = DWARF2_FRAME_REG_FN;
1275 reg->loc.fn = aarch64_dwarf2_prev_register;
1276 return;
1277
1278 case AARCH64_SP_REGNUM:
1279 reg->how = DWARF2_FRAME_REG_CFA;
1280 return;
1281 }
1282
1283 /* Init pauth registers. */
1284 if (tdep->has_pauth ())
1285 {
1286 if (regnum == tdep->pauth_ra_state_regnum)
1287 {
1288 /* Initialize RA_STATE to zero. */
1289 reg->how = DWARF2_FRAME_REG_SAVED_VAL_EXP;
1290 reg->loc.exp.start = &op_lit0;
1291 reg->loc.exp.len = 1;
1292 return;
1293 }
1294 else if (regnum == AARCH64_PAUTH_DMASK_REGNUM (tdep->pauth_reg_base)
1295 || regnum == AARCH64_PAUTH_CMASK_REGNUM (tdep->pauth_reg_base))
1296 {
1297 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
1298 return;
1299 }
1300 }
1301 }
1302
1303 /* Implement the execute_dwarf_cfa_vendor_op method. */
1304
1305 static bool
1306 aarch64_execute_dwarf_cfa_vendor_op (struct gdbarch *gdbarch, gdb_byte op,
1307 struct dwarf2_frame_state *fs)
1308 {
1309 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1310 struct dwarf2_frame_state_reg *ra_state;
1311
1312 if (op == DW_CFA_AARCH64_negate_ra_state)
1313 {
1314 /* On systems without pauth, treat as a nop. */
1315 if (!tdep->has_pauth ())
1316 return true;
1317
1318 /* Allocate RA_STATE column if it's not allocated yet. */
1319 fs->regs.alloc_regs (AARCH64_DWARF_PAUTH_RA_STATE + 1);
1320
1321 /* Toggle the status of RA_STATE between 0 and 1. */
1322 ra_state = &(fs->regs.reg[AARCH64_DWARF_PAUTH_RA_STATE]);
1323 ra_state->how = DWARF2_FRAME_REG_SAVED_VAL_EXP;
1324
1325 if (ra_state->loc.exp.start == nullptr
1326 || ra_state->loc.exp.start == &op_lit0)
1327 ra_state->loc.exp.start = &op_lit1;
1328 else
1329 ra_state->loc.exp.start = &op_lit0;
1330
1331 ra_state->loc.exp.len = 1;
1332
1333 return true;
1334 }
1335
1336 return false;
1337 }
1338
1339 /* Used for matching BRK instructions for AArch64. */
1340 static constexpr uint32_t BRK_INSN_MASK = 0xffe0001f;
1341 static constexpr uint32_t BRK_INSN_BASE = 0xd4200000;
1342
1343 /* Implementation of gdbarch_program_breakpoint_here_p for aarch64. */
1344
1345 static bool
1346 aarch64_program_breakpoint_here_p (gdbarch *gdbarch, CORE_ADDR address)
1347 {
1348 const uint32_t insn_len = 4;
1349 gdb_byte target_mem[4];
1350
1351 /* Enable the automatic memory restoration from breakpoints while
1352 we read the memory. Otherwise we may find temporary breakpoints, ones
1353 inserted by GDB, and flag them as permanent breakpoints. */
1354 scoped_restore restore_memory
1355 = make_scoped_restore_show_memory_breakpoints (0);
1356
1357 if (target_read_memory (address, target_mem, insn_len) == 0)
1358 {
1359 uint32_t insn =
1360 (uint32_t) extract_unsigned_integer (target_mem, insn_len,
1361 gdbarch_byte_order_for_code (gdbarch));
1362
1363 /* Check if INSN is a BRK instruction pattern. There are multiple choices
1364 of such instructions with different immediate values. Different OS'
1365 may use a different variation, but they have the same outcome. */
1366 return ((insn & BRK_INSN_MASK) == BRK_INSN_BASE);
1367 }
1368
1369 return false;
1370 }
1371
1372 /* When arguments must be pushed onto the stack, they go on in reverse
1373 order. The code below implements a FILO (stack) to do this. */
1374
1375 struct stack_item_t
1376 {
1377 /* Value to pass on stack. It can be NULL if this item is for stack
1378 padding. */
1379 const gdb_byte *data;
1380
1381 /* Size in bytes of value to pass on stack. */
1382 int len;
1383 };
1384
1385 /* Implement the gdbarch type alignment method, overrides the generic
1386 alignment algorithm for anything that is aarch64 specific. */
1387
1388 static ULONGEST
1389 aarch64_type_align (gdbarch *gdbarch, struct type *t)
1390 {
1391 t = check_typedef (t);
1392 if (t->code () == TYPE_CODE_ARRAY && t->is_vector ())
1393 {
1394 /* Use the natural alignment for vector types (the same for
1395 scalar type), but the maximum alignment is 128-bit. */
1396 if (TYPE_LENGTH (t) > 16)
1397 return 16;
1398 else
1399 return TYPE_LENGTH (t);
1400 }
1401
1402 /* Allow the common code to calculate the alignment. */
1403 return 0;
1404 }
1405
1406 /* Worker function for aapcs_is_vfp_call_or_return_candidate.
1407
1408 Return the number of register required, or -1 on failure.
1409
1410 When encountering a base element, if FUNDAMENTAL_TYPE is not set then set it
1411 to the element, else fail if the type of this element does not match the
1412 existing value. */
1413
1414 static int
1415 aapcs_is_vfp_call_or_return_candidate_1 (struct type *type,
1416 struct type **fundamental_type)
1417 {
1418 if (type == nullptr)
1419 return -1;
1420
1421 switch (type->code ())
1422 {
1423 case TYPE_CODE_FLT:
1424 if (TYPE_LENGTH (type) > 16)
1425 return -1;
1426
1427 if (*fundamental_type == nullptr)
1428 *fundamental_type = type;
1429 else if (TYPE_LENGTH (type) != TYPE_LENGTH (*fundamental_type)
1430 || type->code () != (*fundamental_type)->code ())
1431 return -1;
1432
1433 return 1;
1434
1435 case TYPE_CODE_COMPLEX:
1436 {
1437 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1438 if (TYPE_LENGTH (target_type) > 16)
1439 return -1;
1440
1441 if (*fundamental_type == nullptr)
1442 *fundamental_type = target_type;
1443 else if (TYPE_LENGTH (target_type) != TYPE_LENGTH (*fundamental_type)
1444 || target_type->code () != (*fundamental_type)->code ())
1445 return -1;
1446
1447 return 2;
1448 }
1449
1450 case TYPE_CODE_ARRAY:
1451 {
1452 if (type->is_vector ())
1453 {
1454 if (TYPE_LENGTH (type) != 8 && TYPE_LENGTH (type) != 16)
1455 return -1;
1456
1457 if (*fundamental_type == nullptr)
1458 *fundamental_type = type;
1459 else if (TYPE_LENGTH (type) != TYPE_LENGTH (*fundamental_type)
1460 || type->code () != (*fundamental_type)->code ())
1461 return -1;
1462
1463 return 1;
1464 }
1465 else
1466 {
1467 struct type *target_type = TYPE_TARGET_TYPE (type);
1468 int count = aapcs_is_vfp_call_or_return_candidate_1
1469 (target_type, fundamental_type);
1470
1471 if (count == -1)
1472 return count;
1473
1474 count *= (TYPE_LENGTH (type) / TYPE_LENGTH (target_type));
1475 return count;
1476 }
1477 }
1478
1479 case TYPE_CODE_STRUCT:
1480 case TYPE_CODE_UNION:
1481 {
1482 int count = 0;
1483
1484 for (int i = 0; i < type->num_fields (); i++)
1485 {
1486 /* Ignore any static fields. */
1487 if (field_is_static (&type->field (i)))
1488 continue;
1489
1490 struct type *member = check_typedef (type->field (i).type ());
1491
1492 int sub_count = aapcs_is_vfp_call_or_return_candidate_1
1493 (member, fundamental_type);
1494 if (sub_count == -1)
1495 return -1;
1496 count += sub_count;
1497 }
1498
1499 /* Ensure there is no padding between the fields (allowing for empty
1500 zero length structs) */
1501 int ftype_length = (*fundamental_type == nullptr)
1502 ? 0 : TYPE_LENGTH (*fundamental_type);
1503 if (count * ftype_length != TYPE_LENGTH (type))
1504 return -1;
1505
1506 return count;
1507 }
1508
1509 default:
1510 break;
1511 }
1512
1513 return -1;
1514 }
1515
1516 /* Return true if an argument, whose type is described by TYPE, can be passed or
1517 returned in simd/fp registers, providing enough parameter passing registers
1518 are available. This is as described in the AAPCS64.
1519
1520 Upon successful return, *COUNT returns the number of needed registers,
1521 *FUNDAMENTAL_TYPE contains the type of those registers.
1522
1523 Candidate as per the AAPCS64 5.4.2.C is either a:
1524 - float.
1525 - short-vector.
1526 - HFA (Homogeneous Floating-point Aggregate, 4.3.5.1). A Composite type where
1527 all the members are floats and has at most 4 members.
1528 - HVA (Homogeneous Short-vector Aggregate, 4.3.5.2). A Composite type where
1529 all the members are short vectors and has at most 4 members.
1530 - Complex (7.1.1)
1531
1532 Note that HFAs and HVAs can include nested structures and arrays. */
1533
1534 static bool
1535 aapcs_is_vfp_call_or_return_candidate (struct type *type, int *count,
1536 struct type **fundamental_type)
1537 {
1538 if (type == nullptr)
1539 return false;
1540
1541 *fundamental_type = nullptr;
1542
1543 int ag_count = aapcs_is_vfp_call_or_return_candidate_1 (type,
1544 fundamental_type);
1545
1546 if (ag_count > 0 && ag_count <= HA_MAX_NUM_FLDS)
1547 {
1548 *count = ag_count;
1549 return true;
1550 }
1551 else
1552 return false;
1553 }
1554
1555 /* AArch64 function call information structure. */
1556 struct aarch64_call_info
1557 {
1558 /* the current argument number. */
1559 unsigned argnum = 0;
1560
1561 /* The next general purpose register number, equivalent to NGRN as
1562 described in the AArch64 Procedure Call Standard. */
1563 unsigned ngrn = 0;
1564
1565 /* The next SIMD and floating point register number, equivalent to
1566 NSRN as described in the AArch64 Procedure Call Standard. */
1567 unsigned nsrn = 0;
1568
1569 /* The next stacked argument address, equivalent to NSAA as
1570 described in the AArch64 Procedure Call Standard. */
1571 unsigned nsaa = 0;
1572
1573 /* Stack item vector. */
1574 std::vector<stack_item_t> si;
1575 };
1576
1577 /* Pass a value in a sequence of consecutive X registers. The caller
1578 is responsible for ensuring sufficient registers are available. */
1579
1580 static void
1581 pass_in_x (struct gdbarch *gdbarch, struct regcache *regcache,
1582 struct aarch64_call_info *info, struct type *type,
1583 struct value *arg)
1584 {
1585 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1586 int len = TYPE_LENGTH (type);
1587 enum type_code typecode = type->code ();
1588 int regnum = AARCH64_X0_REGNUM + info->ngrn;
1589 const bfd_byte *buf = value_contents (arg);
1590
1591 info->argnum++;
1592
1593 while (len > 0)
1594 {
1595 int partial_len = len < X_REGISTER_SIZE ? len : X_REGISTER_SIZE;
1596 CORE_ADDR regval = extract_unsigned_integer (buf, partial_len,
1597 byte_order);
1598
1599
1600 /* Adjust sub-word struct/union args when big-endian. */
1601 if (byte_order == BFD_ENDIAN_BIG
1602 && partial_len < X_REGISTER_SIZE
1603 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
1604 regval <<= ((X_REGISTER_SIZE - partial_len) * TARGET_CHAR_BIT);
1605
1606 aarch64_debug_printf ("arg %d in %s = 0x%s", info->argnum,
1607 gdbarch_register_name (gdbarch, regnum),
1608 phex (regval, X_REGISTER_SIZE));
1609
1610 regcache_cooked_write_unsigned (regcache, regnum, regval);
1611 len -= partial_len;
1612 buf += partial_len;
1613 regnum++;
1614 }
1615 }
1616
1617 /* Attempt to marshall a value in a V register. Return 1 if
1618 successful, or 0 if insufficient registers are available. This
1619 function, unlike the equivalent pass_in_x() function does not
1620 handle arguments spread across multiple registers. */
1621
1622 static int
1623 pass_in_v (struct gdbarch *gdbarch,
1624 struct regcache *regcache,
1625 struct aarch64_call_info *info,
1626 int len, const bfd_byte *buf)
1627 {
1628 if (info->nsrn < 8)
1629 {
1630 int regnum = AARCH64_V0_REGNUM + info->nsrn;
1631 /* Enough space for a full vector register. */
1632 gdb_byte reg[register_size (gdbarch, regnum)];
1633 gdb_assert (len <= sizeof (reg));
1634
1635 info->argnum++;
1636 info->nsrn++;
1637
1638 memset (reg, 0, sizeof (reg));
1639 /* PCS C.1, the argument is allocated to the least significant
1640 bits of V register. */
1641 memcpy (reg, buf, len);
1642 regcache->cooked_write (regnum, reg);
1643
1644 aarch64_debug_printf ("arg %d in %s", info->argnum,
1645 gdbarch_register_name (gdbarch, regnum));
1646
1647 return 1;
1648 }
1649 info->nsrn = 8;
1650 return 0;
1651 }
1652
1653 /* Marshall an argument onto the stack. */
1654
1655 static void
1656 pass_on_stack (struct aarch64_call_info *info, struct type *type,
1657 struct value *arg)
1658 {
1659 const bfd_byte *buf = value_contents (arg);
1660 int len = TYPE_LENGTH (type);
1661 int align;
1662 stack_item_t item;
1663
1664 info->argnum++;
1665
1666 align = type_align (type);
1667
1668 /* PCS C.17 Stack should be aligned to the larger of 8 bytes or the
1669 Natural alignment of the argument's type. */
1670 align = align_up (align, 8);
1671
1672 /* The AArch64 PCS requires at most doubleword alignment. */
1673 if (align > 16)
1674 align = 16;
1675
1676 aarch64_debug_printf ("arg %d len=%d @ sp + %d\n", info->argnum, len,
1677 info->nsaa);
1678
1679 item.len = len;
1680 item.data = buf;
1681 info->si.push_back (item);
1682
1683 info->nsaa += len;
1684 if (info->nsaa & (align - 1))
1685 {
1686 /* Push stack alignment padding. */
1687 int pad = align - (info->nsaa & (align - 1));
1688
1689 item.len = pad;
1690 item.data = NULL;
1691
1692 info->si.push_back (item);
1693 info->nsaa += pad;
1694 }
1695 }
1696
1697 /* Marshall an argument into a sequence of one or more consecutive X
1698 registers or, if insufficient X registers are available then onto
1699 the stack. */
1700
1701 static void
1702 pass_in_x_or_stack (struct gdbarch *gdbarch, struct regcache *regcache,
1703 struct aarch64_call_info *info, struct type *type,
1704 struct value *arg)
1705 {
1706 int len = TYPE_LENGTH (type);
1707 int nregs = (len + X_REGISTER_SIZE - 1) / X_REGISTER_SIZE;
1708
1709 /* PCS C.13 - Pass in registers if we have enough spare */
1710 if (info->ngrn + nregs <= 8)
1711 {
1712 pass_in_x (gdbarch, regcache, info, type, arg);
1713 info->ngrn += nregs;
1714 }
1715 else
1716 {
1717 info->ngrn = 8;
1718 pass_on_stack (info, type, arg);
1719 }
1720 }
1721
1722 /* Pass a value, which is of type arg_type, in a V register. Assumes value is a
1723 aapcs_is_vfp_call_or_return_candidate and there are enough spare V
1724 registers. A return value of false is an error state as the value will have
1725 been partially passed to the stack. */
1726 static bool
1727 pass_in_v_vfp_candidate (struct gdbarch *gdbarch, struct regcache *regcache,
1728 struct aarch64_call_info *info, struct type *arg_type,
1729 struct value *arg)
1730 {
1731 switch (arg_type->code ())
1732 {
1733 case TYPE_CODE_FLT:
1734 return pass_in_v (gdbarch, regcache, info, TYPE_LENGTH (arg_type),
1735 value_contents (arg));
1736 break;
1737
1738 case TYPE_CODE_COMPLEX:
1739 {
1740 const bfd_byte *buf = value_contents (arg);
1741 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (arg_type));
1742
1743 if (!pass_in_v (gdbarch, regcache, info, TYPE_LENGTH (target_type),
1744 buf))
1745 return false;
1746
1747 return pass_in_v (gdbarch, regcache, info, TYPE_LENGTH (target_type),
1748 buf + TYPE_LENGTH (target_type));
1749 }
1750
1751 case TYPE_CODE_ARRAY:
1752 if (arg_type->is_vector ())
1753 return pass_in_v (gdbarch, regcache, info, TYPE_LENGTH (arg_type),
1754 value_contents (arg));
1755 /* fall through. */
1756
1757 case TYPE_CODE_STRUCT:
1758 case TYPE_CODE_UNION:
1759 for (int i = 0; i < arg_type->num_fields (); i++)
1760 {
1761 /* Don't include static fields. */
1762 if (field_is_static (&arg_type->field (i)))
1763 continue;
1764
1765 struct value *field = value_primitive_field (arg, 0, i, arg_type);
1766 struct type *field_type = check_typedef (value_type (field));
1767
1768 if (!pass_in_v_vfp_candidate (gdbarch, regcache, info, field_type,
1769 field))
1770 return false;
1771 }
1772 return true;
1773
1774 default:
1775 return false;
1776 }
1777 }
1778
1779 /* Implement the "push_dummy_call" gdbarch method. */
1780
1781 static CORE_ADDR
1782 aarch64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1783 struct regcache *regcache, CORE_ADDR bp_addr,
1784 int nargs,
1785 struct value **args, CORE_ADDR sp,
1786 function_call_return_method return_method,
1787 CORE_ADDR struct_addr)
1788 {
1789 int argnum;
1790 struct aarch64_call_info info;
1791
1792 /* We need to know what the type of the called function is in order
1793 to determine the number of named/anonymous arguments for the
1794 actual argument placement, and the return type in order to handle
1795 return value correctly.
1796
1797 The generic code above us views the decision of return in memory
1798 or return in registers as a two stage processes. The language
1799 handler is consulted first and may decide to return in memory (eg
1800 class with copy constructor returned by value), this will cause
1801 the generic code to allocate space AND insert an initial leading
1802 argument.
1803
1804 If the language code does not decide to pass in memory then the
1805 target code is consulted.
1806
1807 If the language code decides to pass in memory we want to move
1808 the pointer inserted as the initial argument from the argument
1809 list and into X8, the conventional AArch64 struct return pointer
1810 register. */
1811
1812 /* Set the return address. For the AArch64, the return breakpoint
1813 is always at BP_ADDR. */
1814 regcache_cooked_write_unsigned (regcache, AARCH64_LR_REGNUM, bp_addr);
1815
1816 /* If we were given an initial argument for the return slot, lose it. */
1817 if (return_method == return_method_hidden_param)
1818 {
1819 args++;
1820 nargs--;
1821 }
1822
1823 /* The struct_return pointer occupies X8. */
1824 if (return_method != return_method_normal)
1825 {
1826 aarch64_debug_printf ("struct return in %s = 0x%s",
1827 gdbarch_register_name
1828 (gdbarch, AARCH64_STRUCT_RETURN_REGNUM),
1829 paddress (gdbarch, struct_addr));
1830
1831 regcache_cooked_write_unsigned (regcache, AARCH64_STRUCT_RETURN_REGNUM,
1832 struct_addr);
1833 }
1834
1835 for (argnum = 0; argnum < nargs; argnum++)
1836 {
1837 struct value *arg = args[argnum];
1838 struct type *arg_type, *fundamental_type;
1839 int len, elements;
1840
1841 arg_type = check_typedef (value_type (arg));
1842 len = TYPE_LENGTH (arg_type);
1843
1844 /* If arg can be passed in v registers as per the AAPCS64, then do so if
1845 if there are enough spare registers. */
1846 if (aapcs_is_vfp_call_or_return_candidate (arg_type, &elements,
1847 &fundamental_type))
1848 {
1849 if (info.nsrn + elements <= 8)
1850 {
1851 /* We know that we have sufficient registers available therefore
1852 this will never need to fallback to the stack. */
1853 if (!pass_in_v_vfp_candidate (gdbarch, regcache, &info, arg_type,
1854 arg))
1855 gdb_assert_not_reached ("Failed to push args");
1856 }
1857 else
1858 {
1859 info.nsrn = 8;
1860 pass_on_stack (&info, arg_type, arg);
1861 }
1862 continue;
1863 }
1864
1865 switch (arg_type->code ())
1866 {
1867 case TYPE_CODE_INT:
1868 case TYPE_CODE_BOOL:
1869 case TYPE_CODE_CHAR:
1870 case TYPE_CODE_RANGE:
1871 case TYPE_CODE_ENUM:
1872 if (len < 4)
1873 {
1874 /* Promote to 32 bit integer. */
1875 if (arg_type->is_unsigned ())
1876 arg_type = builtin_type (gdbarch)->builtin_uint32;
1877 else
1878 arg_type = builtin_type (gdbarch)->builtin_int32;
1879 arg = value_cast (arg_type, arg);
1880 }
1881 pass_in_x_or_stack (gdbarch, regcache, &info, arg_type, arg);
1882 break;
1883
1884 case TYPE_CODE_STRUCT:
1885 case TYPE_CODE_ARRAY:
1886 case TYPE_CODE_UNION:
1887 if (len > 16)
1888 {
1889 /* PCS B.7 Aggregates larger than 16 bytes are passed by
1890 invisible reference. */
1891
1892 /* Allocate aligned storage. */
1893 sp = align_down (sp - len, 16);
1894
1895 /* Write the real data into the stack. */
1896 write_memory (sp, value_contents (arg), len);
1897
1898 /* Construct the indirection. */
1899 arg_type = lookup_pointer_type (arg_type);
1900 arg = value_from_pointer (arg_type, sp);
1901 pass_in_x_or_stack (gdbarch, regcache, &info, arg_type, arg);
1902 }
1903 else
1904 /* PCS C.15 / C.18 multiple values pass. */
1905 pass_in_x_or_stack (gdbarch, regcache, &info, arg_type, arg);
1906 break;
1907
1908 default:
1909 pass_in_x_or_stack (gdbarch, regcache, &info, arg_type, arg);
1910 break;
1911 }
1912 }
1913
1914 /* Make sure stack retains 16 byte alignment. */
1915 if (info.nsaa & 15)
1916 sp -= 16 - (info.nsaa & 15);
1917
1918 while (!info.si.empty ())
1919 {
1920 const stack_item_t &si = info.si.back ();
1921
1922 sp -= si.len;
1923 if (si.data != NULL)
1924 write_memory (sp, si.data, si.len);
1925 info.si.pop_back ();
1926 }
1927
1928 /* Finally, update the SP register. */
1929 regcache_cooked_write_unsigned (regcache, AARCH64_SP_REGNUM, sp);
1930
1931 return sp;
1932 }
1933
1934 /* Implement the "frame_align" gdbarch method. */
1935
1936 static CORE_ADDR
1937 aarch64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1938 {
1939 /* Align the stack to sixteen bytes. */
1940 return sp & ~(CORE_ADDR) 15;
1941 }
1942
1943 /* Return the type for an AdvSISD Q register. */
1944
1945 static struct type *
1946 aarch64_vnq_type (struct gdbarch *gdbarch)
1947 {
1948 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1949
1950 if (tdep->vnq_type == NULL)
1951 {
1952 struct type *t;
1953 struct type *elem;
1954
1955 t = arch_composite_type (gdbarch, "__gdb_builtin_type_vnq",
1956 TYPE_CODE_UNION);
1957
1958 elem = builtin_type (gdbarch)->builtin_uint128;
1959 append_composite_type_field (t, "u", elem);
1960
1961 elem = builtin_type (gdbarch)->builtin_int128;
1962 append_composite_type_field (t, "s", elem);
1963
1964 tdep->vnq_type = t;
1965 }
1966
1967 return tdep->vnq_type;
1968 }
1969
1970 /* Return the type for an AdvSISD D register. */
1971
1972 static struct type *
1973 aarch64_vnd_type (struct gdbarch *gdbarch)
1974 {
1975 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1976
1977 if (tdep->vnd_type == NULL)
1978 {
1979 struct type *t;
1980 struct type *elem;
1981
1982 t = arch_composite_type (gdbarch, "__gdb_builtin_type_vnd",
1983 TYPE_CODE_UNION);
1984
1985 elem = builtin_type (gdbarch)->builtin_double;
1986 append_composite_type_field (t, "f", elem);
1987
1988 elem = builtin_type (gdbarch)->builtin_uint64;
1989 append_composite_type_field (t, "u", elem);
1990
1991 elem = builtin_type (gdbarch)->builtin_int64;
1992 append_composite_type_field (t, "s", elem);
1993
1994 tdep->vnd_type = t;
1995 }
1996
1997 return tdep->vnd_type;
1998 }
1999
2000 /* Return the type for an AdvSISD S register. */
2001
2002 static struct type *
2003 aarch64_vns_type (struct gdbarch *gdbarch)
2004 {
2005 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2006
2007 if (tdep->vns_type == NULL)
2008 {
2009 struct type *t;
2010 struct type *elem;
2011
2012 t = arch_composite_type (gdbarch, "__gdb_builtin_type_vns",
2013 TYPE_CODE_UNION);
2014
2015 elem = builtin_type (gdbarch)->builtin_float;
2016 append_composite_type_field (t, "f", elem);
2017
2018 elem = builtin_type (gdbarch)->builtin_uint32;
2019 append_composite_type_field (t, "u", elem);
2020
2021 elem = builtin_type (gdbarch)->builtin_int32;
2022 append_composite_type_field (t, "s", elem);
2023
2024 tdep->vns_type = t;
2025 }
2026
2027 return tdep->vns_type;
2028 }
2029
2030 /* Return the type for an AdvSISD H register. */
2031
2032 static struct type *
2033 aarch64_vnh_type (struct gdbarch *gdbarch)
2034 {
2035 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2036
2037 if (tdep->vnh_type == NULL)
2038 {
2039 struct type *t;
2040 struct type *elem;
2041
2042 t = arch_composite_type (gdbarch, "__gdb_builtin_type_vnh",
2043 TYPE_CODE_UNION);
2044
2045 elem = builtin_type (gdbarch)->builtin_bfloat16;
2046 append_composite_type_field (t, "bf", elem);
2047
2048 elem = builtin_type (gdbarch)->builtin_half;
2049 append_composite_type_field (t, "f", elem);
2050
2051 elem = builtin_type (gdbarch)->builtin_uint16;
2052 append_composite_type_field (t, "u", elem);
2053
2054 elem = builtin_type (gdbarch)->builtin_int16;
2055 append_composite_type_field (t, "s", elem);
2056
2057 tdep->vnh_type = t;
2058 }
2059
2060 return tdep->vnh_type;
2061 }
2062
2063 /* Return the type for an AdvSISD B register. */
2064
2065 static struct type *
2066 aarch64_vnb_type (struct gdbarch *gdbarch)
2067 {
2068 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2069
2070 if (tdep->vnb_type == NULL)
2071 {
2072 struct type *t;
2073 struct type *elem;
2074
2075 t = arch_composite_type (gdbarch, "__gdb_builtin_type_vnb",
2076 TYPE_CODE_UNION);
2077
2078 elem = builtin_type (gdbarch)->builtin_uint8;
2079 append_composite_type_field (t, "u", elem);
2080
2081 elem = builtin_type (gdbarch)->builtin_int8;
2082 append_composite_type_field (t, "s", elem);
2083
2084 tdep->vnb_type = t;
2085 }
2086
2087 return tdep->vnb_type;
2088 }
2089
2090 /* Return the type for an AdvSISD V register. */
2091
2092 static struct type *
2093 aarch64_vnv_type (struct gdbarch *gdbarch)
2094 {
2095 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2096
2097 if (tdep->vnv_type == NULL)
2098 {
2099 /* The other AArch64 pseudo registers (Q,D,H,S,B) refer to a single value
2100 slice from the non-pseudo vector registers. However NEON V registers
2101 are always vector registers, and need constructing as such. */
2102 const struct builtin_type *bt = builtin_type (gdbarch);
2103
2104 struct type *t = arch_composite_type (gdbarch, "__gdb_builtin_type_vnv",
2105 TYPE_CODE_UNION);
2106
2107 struct type *sub = arch_composite_type (gdbarch, "__gdb_builtin_type_vnd",
2108 TYPE_CODE_UNION);
2109 append_composite_type_field (sub, "f",
2110 init_vector_type (bt->builtin_double, 2));
2111 append_composite_type_field (sub, "u",
2112 init_vector_type (bt->builtin_uint64, 2));
2113 append_composite_type_field (sub, "s",
2114 init_vector_type (bt->builtin_int64, 2));
2115 append_composite_type_field (t, "d", sub);
2116
2117 sub = arch_composite_type (gdbarch, "__gdb_builtin_type_vns",
2118 TYPE_CODE_UNION);
2119 append_composite_type_field (sub, "f",
2120 init_vector_type (bt->builtin_float, 4));
2121 append_composite_type_field (sub, "u",
2122 init_vector_type (bt->builtin_uint32, 4));
2123 append_composite_type_field (sub, "s",
2124 init_vector_type (bt->builtin_int32, 4));
2125 append_composite_type_field (t, "s", sub);
2126
2127 sub = arch_composite_type (gdbarch, "__gdb_builtin_type_vnh",
2128 TYPE_CODE_UNION);
2129 append_composite_type_field (sub, "bf",
2130 init_vector_type (bt->builtin_bfloat16, 8));
2131 append_composite_type_field (sub, "f",
2132 init_vector_type (bt->builtin_half, 8));
2133 append_composite_type_field (sub, "u",
2134 init_vector_type (bt->builtin_uint16, 8));
2135 append_composite_type_field (sub, "s",
2136 init_vector_type (bt->builtin_int16, 8));
2137 append_composite_type_field (t, "h", sub);
2138
2139 sub = arch_composite_type (gdbarch, "__gdb_builtin_type_vnb",
2140 TYPE_CODE_UNION);
2141 append_composite_type_field (sub, "u",
2142 init_vector_type (bt->builtin_uint8, 16));
2143 append_composite_type_field (sub, "s",
2144 init_vector_type (bt->builtin_int8, 16));
2145 append_composite_type_field (t, "b", sub);
2146
2147 sub = arch_composite_type (gdbarch, "__gdb_builtin_type_vnq",
2148 TYPE_CODE_UNION);
2149 append_composite_type_field (sub, "u",
2150 init_vector_type (bt->builtin_uint128, 1));
2151 append_composite_type_field (sub, "s",
2152 init_vector_type (bt->builtin_int128, 1));
2153 append_composite_type_field (t, "q", sub);
2154
2155 tdep->vnv_type = t;
2156 }
2157
2158 return tdep->vnv_type;
2159 }
2160
2161 /* Implement the "dwarf2_reg_to_regnum" gdbarch method. */
2162
2163 static int
2164 aarch64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
2165 {
2166 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2167
2168 if (reg >= AARCH64_DWARF_X0 && reg <= AARCH64_DWARF_X0 + 30)
2169 return AARCH64_X0_REGNUM + reg - AARCH64_DWARF_X0;
2170
2171 if (reg == AARCH64_DWARF_SP)
2172 return AARCH64_SP_REGNUM;
2173
2174 if (reg >= AARCH64_DWARF_V0 && reg <= AARCH64_DWARF_V0 + 31)
2175 return AARCH64_V0_REGNUM + reg - AARCH64_DWARF_V0;
2176
2177 if (reg == AARCH64_DWARF_SVE_VG)
2178 return AARCH64_SVE_VG_REGNUM;
2179
2180 if (reg == AARCH64_DWARF_SVE_FFR)
2181 return AARCH64_SVE_FFR_REGNUM;
2182
2183 if (reg >= AARCH64_DWARF_SVE_P0 && reg <= AARCH64_DWARF_SVE_P0 + 15)
2184 return AARCH64_SVE_P0_REGNUM + reg - AARCH64_DWARF_SVE_P0;
2185
2186 if (reg >= AARCH64_DWARF_SVE_Z0 && reg <= AARCH64_DWARF_SVE_Z0 + 15)
2187 return AARCH64_SVE_Z0_REGNUM + reg - AARCH64_DWARF_SVE_Z0;
2188
2189 if (tdep->has_pauth ())
2190 {
2191 if (reg >= AARCH64_DWARF_PAUTH_DMASK && reg <= AARCH64_DWARF_PAUTH_CMASK)
2192 return tdep->pauth_reg_base + reg - AARCH64_DWARF_PAUTH_DMASK;
2193
2194 if (reg == AARCH64_DWARF_PAUTH_RA_STATE)
2195 return tdep->pauth_ra_state_regnum;
2196 }
2197
2198 return -1;
2199 }
2200
2201 /* Implement the "print_insn" gdbarch method. */
2202
2203 static int
2204 aarch64_gdb_print_insn (bfd_vma memaddr, disassemble_info *info)
2205 {
2206 info->symbols = NULL;
2207 return default_print_insn (memaddr, info);
2208 }
2209
2210 /* AArch64 BRK software debug mode instruction.
2211 Note that AArch64 code is always little-endian.
2212 1101.0100.0010.0000.0000.0000.0000.0000 = 0xd4200000. */
2213 constexpr gdb_byte aarch64_default_breakpoint[] = {0x00, 0x00, 0x20, 0xd4};
2214
2215 typedef BP_MANIPULATION (aarch64_default_breakpoint) aarch64_breakpoint;
2216
2217 /* Extract from an array REGS containing the (raw) register state a
2218 function return value of type TYPE, and copy that, in virtual
2219 format, into VALBUF. */
2220
2221 static void
2222 aarch64_extract_return_value (struct type *type, struct regcache *regs,
2223 gdb_byte *valbuf)
2224 {
2225 struct gdbarch *gdbarch = regs->arch ();
2226 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2227 int elements;
2228 struct type *fundamental_type;
2229
2230 if (aapcs_is_vfp_call_or_return_candidate (type, &elements,
2231 &fundamental_type))
2232 {
2233 int len = TYPE_LENGTH (fundamental_type);
2234
2235 for (int i = 0; i < elements; i++)
2236 {
2237 int regno = AARCH64_V0_REGNUM + i;
2238 /* Enough space for a full vector register. */
2239 gdb_byte buf[register_size (gdbarch, regno)];
2240 gdb_assert (len <= sizeof (buf));
2241
2242 aarch64_debug_printf
2243 ("read HFA or HVA return value element %d from %s",
2244 i + 1, gdbarch_register_name (gdbarch, regno));
2245
2246 regs->cooked_read (regno, buf);
2247
2248 memcpy (valbuf, buf, len);
2249 valbuf += len;
2250 }
2251 }
2252 else if (type->code () == TYPE_CODE_INT
2253 || type->code () == TYPE_CODE_CHAR
2254 || type->code () == TYPE_CODE_BOOL
2255 || type->code () == TYPE_CODE_PTR
2256 || TYPE_IS_REFERENCE (type)
2257 || type->code () == TYPE_CODE_ENUM)
2258 {
2259 /* If the type is a plain integer, then the access is
2260 straight-forward. Otherwise we have to play around a bit
2261 more. */
2262 int len = TYPE_LENGTH (type);
2263 int regno = AARCH64_X0_REGNUM;
2264 ULONGEST tmp;
2265
2266 while (len > 0)
2267 {
2268 /* By using store_unsigned_integer we avoid having to do
2269 anything special for small big-endian values. */
2270 regcache_cooked_read_unsigned (regs, regno++, &tmp);
2271 store_unsigned_integer (valbuf,
2272 (len > X_REGISTER_SIZE
2273 ? X_REGISTER_SIZE : len), byte_order, tmp);
2274 len -= X_REGISTER_SIZE;
2275 valbuf += X_REGISTER_SIZE;
2276 }
2277 }
2278 else
2279 {
2280 /* For a structure or union the behaviour is as if the value had
2281 been stored to word-aligned memory and then loaded into
2282 registers with 64-bit load instruction(s). */
2283 int len = TYPE_LENGTH (type);
2284 int regno = AARCH64_X0_REGNUM;
2285 bfd_byte buf[X_REGISTER_SIZE];
2286
2287 while (len > 0)
2288 {
2289 regs->cooked_read (regno++, buf);
2290 memcpy (valbuf, buf, len > X_REGISTER_SIZE ? X_REGISTER_SIZE : len);
2291 len -= X_REGISTER_SIZE;
2292 valbuf += X_REGISTER_SIZE;
2293 }
2294 }
2295 }
2296
2297
2298 /* Will a function return an aggregate type in memory or in a
2299 register? Return 0 if an aggregate type can be returned in a
2300 register, 1 if it must be returned in memory. */
2301
2302 static int
2303 aarch64_return_in_memory (struct gdbarch *gdbarch, struct type *type)
2304 {
2305 type = check_typedef (type);
2306 int elements;
2307 struct type *fundamental_type;
2308
2309 if (aapcs_is_vfp_call_or_return_candidate (type, &elements,
2310 &fundamental_type))
2311 {
2312 /* v0-v7 are used to return values and one register is allocated
2313 for one member. However, HFA or HVA has at most four members. */
2314 return 0;
2315 }
2316
2317 if (TYPE_LENGTH (type) > 16)
2318 {
2319 /* PCS B.6 Aggregates larger than 16 bytes are passed by
2320 invisible reference. */
2321
2322 return 1;
2323 }
2324
2325 return 0;
2326 }
2327
2328 /* Write into appropriate registers a function return value of type
2329 TYPE, given in virtual format. */
2330
2331 static void
2332 aarch64_store_return_value (struct type *type, struct regcache *regs,
2333 const gdb_byte *valbuf)
2334 {
2335 struct gdbarch *gdbarch = regs->arch ();
2336 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2337 int elements;
2338 struct type *fundamental_type;
2339
2340 if (aapcs_is_vfp_call_or_return_candidate (type, &elements,
2341 &fundamental_type))
2342 {
2343 int len = TYPE_LENGTH (fundamental_type);
2344
2345 for (int i = 0; i < elements; i++)
2346 {
2347 int regno = AARCH64_V0_REGNUM + i;
2348 /* Enough space for a full vector register. */
2349 gdb_byte tmpbuf[register_size (gdbarch, regno)];
2350 gdb_assert (len <= sizeof (tmpbuf));
2351
2352 aarch64_debug_printf
2353 ("write HFA or HVA return value element %d to %s",
2354 i + 1, gdbarch_register_name (gdbarch, regno));
2355
2356 memcpy (tmpbuf, valbuf,
2357 len > V_REGISTER_SIZE ? V_REGISTER_SIZE : len);
2358 regs->cooked_write (regno, tmpbuf);
2359 valbuf += len;
2360 }
2361 }
2362 else if (type->code () == TYPE_CODE_INT
2363 || type->code () == TYPE_CODE_CHAR
2364 || type->code () == TYPE_CODE_BOOL
2365 || type->code () == TYPE_CODE_PTR
2366 || TYPE_IS_REFERENCE (type)
2367 || type->code () == TYPE_CODE_ENUM)
2368 {
2369 if (TYPE_LENGTH (type) <= X_REGISTER_SIZE)
2370 {
2371 /* Values of one word or less are zero/sign-extended and
2372 returned in r0. */
2373 bfd_byte tmpbuf[X_REGISTER_SIZE];
2374 LONGEST val = unpack_long (type, valbuf);
2375
2376 store_signed_integer (tmpbuf, X_REGISTER_SIZE, byte_order, val);
2377 regs->cooked_write (AARCH64_X0_REGNUM, tmpbuf);
2378 }
2379 else
2380 {
2381 /* Integral values greater than one word are stored in
2382 consecutive registers starting with r0. This will always
2383 be a multiple of the regiser size. */
2384 int len = TYPE_LENGTH (type);
2385 int regno = AARCH64_X0_REGNUM;
2386
2387 while (len > 0)
2388 {
2389 regs->cooked_write (regno++, valbuf);
2390 len -= X_REGISTER_SIZE;
2391 valbuf += X_REGISTER_SIZE;
2392 }
2393 }
2394 }
2395 else
2396 {
2397 /* For a structure or union the behaviour is as if the value had
2398 been stored to word-aligned memory and then loaded into
2399 registers with 64-bit load instruction(s). */
2400 int len = TYPE_LENGTH (type);
2401 int regno = AARCH64_X0_REGNUM;
2402 bfd_byte tmpbuf[X_REGISTER_SIZE];
2403
2404 while (len > 0)
2405 {
2406 memcpy (tmpbuf, valbuf,
2407 len > X_REGISTER_SIZE ? X_REGISTER_SIZE : len);
2408 regs->cooked_write (regno++, tmpbuf);
2409 len -= X_REGISTER_SIZE;
2410 valbuf += X_REGISTER_SIZE;
2411 }
2412 }
2413 }
2414
2415 /* Implement the "return_value" gdbarch method. */
2416
2417 static enum return_value_convention
2418 aarch64_return_value (struct gdbarch *gdbarch, struct value *func_value,
2419 struct type *valtype, struct regcache *regcache,
2420 gdb_byte *readbuf, const gdb_byte *writebuf)
2421 {
2422
2423 if (valtype->code () == TYPE_CODE_STRUCT
2424 || valtype->code () == TYPE_CODE_UNION
2425 || valtype->code () == TYPE_CODE_ARRAY)
2426 {
2427 if (aarch64_return_in_memory (gdbarch, valtype))
2428 {
2429 aarch64_debug_printf ("return value in memory");
2430 return RETURN_VALUE_STRUCT_CONVENTION;
2431 }
2432 }
2433
2434 if (writebuf)
2435 aarch64_store_return_value (valtype, regcache, writebuf);
2436
2437 if (readbuf)
2438 aarch64_extract_return_value (valtype, regcache, readbuf);
2439
2440 aarch64_debug_printf ("return value in registers");
2441
2442 return RETURN_VALUE_REGISTER_CONVENTION;
2443 }
2444
2445 /* Implement the "get_longjmp_target" gdbarch method. */
2446
2447 static int
2448 aarch64_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2449 {
2450 CORE_ADDR jb_addr;
2451 gdb_byte buf[X_REGISTER_SIZE];
2452 struct gdbarch *gdbarch = get_frame_arch (frame);
2453 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2454 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2455
2456 jb_addr = get_frame_register_unsigned (frame, AARCH64_X0_REGNUM);
2457
2458 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
2459 X_REGISTER_SIZE))
2460 return 0;
2461
2462 *pc = extract_unsigned_integer (buf, X_REGISTER_SIZE, byte_order);
2463 return 1;
2464 }
2465
2466 /* Implement the "gen_return_address" gdbarch method. */
2467
2468 static void
2469 aarch64_gen_return_address (struct gdbarch *gdbarch,
2470 struct agent_expr *ax, struct axs_value *value,
2471 CORE_ADDR scope)
2472 {
2473 value->type = register_type (gdbarch, AARCH64_LR_REGNUM);
2474 value->kind = axs_lvalue_register;
2475 value->u.reg = AARCH64_LR_REGNUM;
2476 }
2477 \f
2478
2479 /* Return the pseudo register name corresponding to register regnum. */
2480
2481 static const char *
2482 aarch64_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
2483 {
2484 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2485
2486 static const char *const q_name[] =
2487 {
2488 "q0", "q1", "q2", "q3",
2489 "q4", "q5", "q6", "q7",
2490 "q8", "q9", "q10", "q11",
2491 "q12", "q13", "q14", "q15",
2492 "q16", "q17", "q18", "q19",
2493 "q20", "q21", "q22", "q23",
2494 "q24", "q25", "q26", "q27",
2495 "q28", "q29", "q30", "q31",
2496 };
2497
2498 static const char *const d_name[] =
2499 {
2500 "d0", "d1", "d2", "d3",
2501 "d4", "d5", "d6", "d7",
2502 "d8", "d9", "d10", "d11",
2503 "d12", "d13", "d14", "d15",
2504 "d16", "d17", "d18", "d19",
2505 "d20", "d21", "d22", "d23",
2506 "d24", "d25", "d26", "d27",
2507 "d28", "d29", "d30", "d31",
2508 };
2509
2510 static const char *const s_name[] =
2511 {
2512 "s0", "s1", "s2", "s3",
2513 "s4", "s5", "s6", "s7",
2514 "s8", "s9", "s10", "s11",
2515 "s12", "s13", "s14", "s15",
2516 "s16", "s17", "s18", "s19",
2517 "s20", "s21", "s22", "s23",
2518 "s24", "s25", "s26", "s27",
2519 "s28", "s29", "s30", "s31",
2520 };
2521
2522 static const char *const h_name[] =
2523 {
2524 "h0", "h1", "h2", "h3",
2525 "h4", "h5", "h6", "h7",
2526 "h8", "h9", "h10", "h11",
2527 "h12", "h13", "h14", "h15",
2528 "h16", "h17", "h18", "h19",
2529 "h20", "h21", "h22", "h23",
2530 "h24", "h25", "h26", "h27",
2531 "h28", "h29", "h30", "h31",
2532 };
2533
2534 static const char *const b_name[] =
2535 {
2536 "b0", "b1", "b2", "b3",
2537 "b4", "b5", "b6", "b7",
2538 "b8", "b9", "b10", "b11",
2539 "b12", "b13", "b14", "b15",
2540 "b16", "b17", "b18", "b19",
2541 "b20", "b21", "b22", "b23",
2542 "b24", "b25", "b26", "b27",
2543 "b28", "b29", "b30", "b31",
2544 };
2545
2546 int p_regnum = regnum - gdbarch_num_regs (gdbarch);
2547
2548 if (p_regnum >= AARCH64_Q0_REGNUM && p_regnum < AARCH64_Q0_REGNUM + 32)
2549 return q_name[p_regnum - AARCH64_Q0_REGNUM];
2550
2551 if (p_regnum >= AARCH64_D0_REGNUM && p_regnum < AARCH64_D0_REGNUM + 32)
2552 return d_name[p_regnum - AARCH64_D0_REGNUM];
2553
2554 if (p_regnum >= AARCH64_S0_REGNUM && p_regnum < AARCH64_S0_REGNUM + 32)
2555 return s_name[p_regnum - AARCH64_S0_REGNUM];
2556
2557 if (p_regnum >= AARCH64_H0_REGNUM && p_regnum < AARCH64_H0_REGNUM + 32)
2558 return h_name[p_regnum - AARCH64_H0_REGNUM];
2559
2560 if (p_regnum >= AARCH64_B0_REGNUM && p_regnum < AARCH64_B0_REGNUM + 32)
2561 return b_name[p_regnum - AARCH64_B0_REGNUM];
2562
2563 if (tdep->has_sve ())
2564 {
2565 static const char *const sve_v_name[] =
2566 {
2567 "v0", "v1", "v2", "v3",
2568 "v4", "v5", "v6", "v7",
2569 "v8", "v9", "v10", "v11",
2570 "v12", "v13", "v14", "v15",
2571 "v16", "v17", "v18", "v19",
2572 "v20", "v21", "v22", "v23",
2573 "v24", "v25", "v26", "v27",
2574 "v28", "v29", "v30", "v31",
2575 };
2576
2577 if (p_regnum >= AARCH64_SVE_V0_REGNUM
2578 && p_regnum < AARCH64_SVE_V0_REGNUM + AARCH64_V_REGS_NUM)
2579 return sve_v_name[p_regnum - AARCH64_SVE_V0_REGNUM];
2580 }
2581
2582 /* RA_STATE is used for unwinding only. Do not assign it a name - this
2583 prevents it from being read by methods such as
2584 mi_cmd_trace_frame_collected. */
2585 if (tdep->has_pauth () && regnum == tdep->pauth_ra_state_regnum)
2586 return "";
2587
2588 internal_error (__FILE__, __LINE__,
2589 _("aarch64_pseudo_register_name: bad register number %d"),
2590 p_regnum);
2591 }
2592
2593 /* Implement the "pseudo_register_type" tdesc_arch_data method. */
2594
2595 static struct type *
2596 aarch64_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
2597 {
2598 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2599
2600 int p_regnum = regnum - gdbarch_num_regs (gdbarch);
2601
2602 if (p_regnum >= AARCH64_Q0_REGNUM && p_regnum < AARCH64_Q0_REGNUM + 32)
2603 return aarch64_vnq_type (gdbarch);
2604
2605 if (p_regnum >= AARCH64_D0_REGNUM && p_regnum < AARCH64_D0_REGNUM + 32)
2606 return aarch64_vnd_type (gdbarch);
2607
2608 if (p_regnum >= AARCH64_S0_REGNUM && p_regnum < AARCH64_S0_REGNUM + 32)
2609 return aarch64_vns_type (gdbarch);
2610
2611 if (p_regnum >= AARCH64_H0_REGNUM && p_regnum < AARCH64_H0_REGNUM + 32)
2612 return aarch64_vnh_type (gdbarch);
2613
2614 if (p_regnum >= AARCH64_B0_REGNUM && p_regnum < AARCH64_B0_REGNUM + 32)
2615 return aarch64_vnb_type (gdbarch);
2616
2617 if (tdep->has_sve () && p_regnum >= AARCH64_SVE_V0_REGNUM
2618 && p_regnum < AARCH64_SVE_V0_REGNUM + AARCH64_V_REGS_NUM)
2619 return aarch64_vnv_type (gdbarch);
2620
2621 if (tdep->has_pauth () && regnum == tdep->pauth_ra_state_regnum)
2622 return builtin_type (gdbarch)->builtin_uint64;
2623
2624 internal_error (__FILE__, __LINE__,
2625 _("aarch64_pseudo_register_type: bad register number %d"),
2626 p_regnum);
2627 }
2628
2629 /* Implement the "pseudo_register_reggroup_p" tdesc_arch_data method. */
2630
2631 static int
2632 aarch64_pseudo_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2633 struct reggroup *group)
2634 {
2635 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2636
2637 int p_regnum = regnum - gdbarch_num_regs (gdbarch);
2638
2639 if (p_regnum >= AARCH64_Q0_REGNUM && p_regnum < AARCH64_Q0_REGNUM + 32)
2640 return group == all_reggroup || group == vector_reggroup;
2641 else if (p_regnum >= AARCH64_D0_REGNUM && p_regnum < AARCH64_D0_REGNUM + 32)
2642 return (group == all_reggroup || group == vector_reggroup
2643 || group == float_reggroup);
2644 else if (p_regnum >= AARCH64_S0_REGNUM && p_regnum < AARCH64_S0_REGNUM + 32)
2645 return (group == all_reggroup || group == vector_reggroup
2646 || group == float_reggroup);
2647 else if (p_regnum >= AARCH64_H0_REGNUM && p_regnum < AARCH64_H0_REGNUM + 32)
2648 return group == all_reggroup || group == vector_reggroup;
2649 else if (p_regnum >= AARCH64_B0_REGNUM && p_regnum < AARCH64_B0_REGNUM + 32)
2650 return group == all_reggroup || group == vector_reggroup;
2651 else if (tdep->has_sve () && p_regnum >= AARCH64_SVE_V0_REGNUM
2652 && p_regnum < AARCH64_SVE_V0_REGNUM + AARCH64_V_REGS_NUM)
2653 return group == all_reggroup || group == vector_reggroup;
2654 /* RA_STATE is used for unwinding only. Do not assign it to any groups. */
2655 if (tdep->has_pauth () && regnum == tdep->pauth_ra_state_regnum)
2656 return 0;
2657
2658 return group == all_reggroup;
2659 }
2660
2661 /* Helper for aarch64_pseudo_read_value. */
2662
2663 static struct value *
2664 aarch64_pseudo_read_value_1 (struct gdbarch *gdbarch,
2665 readable_regcache *regcache, int regnum_offset,
2666 int regsize, struct value *result_value)
2667 {
2668 unsigned v_regnum = AARCH64_V0_REGNUM + regnum_offset;
2669
2670 /* Enough space for a full vector register. */
2671 gdb_byte reg_buf[register_size (gdbarch, AARCH64_V0_REGNUM)];
2672 gdb_static_assert (AARCH64_V0_REGNUM == AARCH64_SVE_Z0_REGNUM);
2673
2674 if (regcache->raw_read (v_regnum, reg_buf) != REG_VALID)
2675 mark_value_bytes_unavailable (result_value, 0,
2676 TYPE_LENGTH (value_type (result_value)));
2677 else
2678 memcpy (value_contents_raw (result_value), reg_buf, regsize);
2679
2680 return result_value;
2681 }
2682
2683 /* Implement the "pseudo_register_read_value" gdbarch method. */
2684
2685 static struct value *
2686 aarch64_pseudo_read_value (struct gdbarch *gdbarch, readable_regcache *regcache,
2687 int regnum)
2688 {
2689 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2690 struct value *result_value = allocate_value (register_type (gdbarch, regnum));
2691
2692 VALUE_LVAL (result_value) = lval_register;
2693 VALUE_REGNUM (result_value) = regnum;
2694
2695 regnum -= gdbarch_num_regs (gdbarch);
2696
2697 if (regnum >= AARCH64_Q0_REGNUM && regnum < AARCH64_Q0_REGNUM + 32)
2698 return aarch64_pseudo_read_value_1 (gdbarch, regcache,
2699 regnum - AARCH64_Q0_REGNUM,
2700 Q_REGISTER_SIZE, result_value);
2701
2702 if (regnum >= AARCH64_D0_REGNUM && regnum < AARCH64_D0_REGNUM + 32)
2703 return aarch64_pseudo_read_value_1 (gdbarch, regcache,
2704 regnum - AARCH64_D0_REGNUM,
2705 D_REGISTER_SIZE, result_value);
2706
2707 if (regnum >= AARCH64_S0_REGNUM && regnum < AARCH64_S0_REGNUM + 32)
2708 return aarch64_pseudo_read_value_1 (gdbarch, regcache,
2709 regnum - AARCH64_S0_REGNUM,
2710 S_REGISTER_SIZE, result_value);
2711
2712 if (regnum >= AARCH64_H0_REGNUM && regnum < AARCH64_H0_REGNUM + 32)
2713 return aarch64_pseudo_read_value_1 (gdbarch, regcache,
2714 regnum - AARCH64_H0_REGNUM,
2715 H_REGISTER_SIZE, result_value);
2716
2717 if (regnum >= AARCH64_B0_REGNUM && regnum < AARCH64_B0_REGNUM + 32)
2718 return aarch64_pseudo_read_value_1 (gdbarch, regcache,
2719 regnum - AARCH64_B0_REGNUM,
2720 B_REGISTER_SIZE, result_value);
2721
2722 if (tdep->has_sve () && regnum >= AARCH64_SVE_V0_REGNUM
2723 && regnum < AARCH64_SVE_V0_REGNUM + 32)
2724 return aarch64_pseudo_read_value_1 (gdbarch, regcache,
2725 regnum - AARCH64_SVE_V0_REGNUM,
2726 V_REGISTER_SIZE, result_value);
2727
2728 gdb_assert_not_reached ("regnum out of bound");
2729 }
2730
2731 /* Helper for aarch64_pseudo_write. */
2732
2733 static void
2734 aarch64_pseudo_write_1 (struct gdbarch *gdbarch, struct regcache *regcache,
2735 int regnum_offset, int regsize, const gdb_byte *buf)
2736 {
2737 unsigned v_regnum = AARCH64_V0_REGNUM + regnum_offset;
2738
2739 /* Enough space for a full vector register. */
2740 gdb_byte reg_buf[register_size (gdbarch, AARCH64_V0_REGNUM)];
2741 gdb_static_assert (AARCH64_V0_REGNUM == AARCH64_SVE_Z0_REGNUM);
2742
2743 /* Ensure the register buffer is zero, we want gdb writes of the
2744 various 'scalar' pseudo registers to behavior like architectural
2745 writes, register width bytes are written the remainder are set to
2746 zero. */
2747 memset (reg_buf, 0, register_size (gdbarch, AARCH64_V0_REGNUM));
2748
2749 memcpy (reg_buf, buf, regsize);
2750 regcache->raw_write (v_regnum, reg_buf);
2751 }
2752
2753 /* Implement the "pseudo_register_write" gdbarch method. */
2754
2755 static void
2756 aarch64_pseudo_write (struct gdbarch *gdbarch, struct regcache *regcache,
2757 int regnum, const gdb_byte *buf)
2758 {
2759 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2760 regnum -= gdbarch_num_regs (gdbarch);
2761
2762 if (regnum >= AARCH64_Q0_REGNUM && regnum < AARCH64_Q0_REGNUM + 32)
2763 return aarch64_pseudo_write_1 (gdbarch, regcache,
2764 regnum - AARCH64_Q0_REGNUM, Q_REGISTER_SIZE,
2765 buf);
2766
2767 if (regnum >= AARCH64_D0_REGNUM && regnum < AARCH64_D0_REGNUM + 32)
2768 return aarch64_pseudo_write_1 (gdbarch, regcache,
2769 regnum - AARCH64_D0_REGNUM, D_REGISTER_SIZE,
2770 buf);
2771
2772 if (regnum >= AARCH64_S0_REGNUM && regnum < AARCH64_S0_REGNUM + 32)
2773 return aarch64_pseudo_write_1 (gdbarch, regcache,
2774 regnum - AARCH64_S0_REGNUM, S_REGISTER_SIZE,
2775 buf);
2776
2777 if (regnum >= AARCH64_H0_REGNUM && regnum < AARCH64_H0_REGNUM + 32)
2778 return aarch64_pseudo_write_1 (gdbarch, regcache,
2779 regnum - AARCH64_H0_REGNUM, H_REGISTER_SIZE,
2780 buf);
2781
2782 if (regnum >= AARCH64_B0_REGNUM && regnum < AARCH64_B0_REGNUM + 32)
2783 return aarch64_pseudo_write_1 (gdbarch, regcache,
2784 regnum - AARCH64_B0_REGNUM, B_REGISTER_SIZE,
2785 buf);
2786
2787 if (tdep->has_sve () && regnum >= AARCH64_SVE_V0_REGNUM
2788 && regnum < AARCH64_SVE_V0_REGNUM + 32)
2789 return aarch64_pseudo_write_1 (gdbarch, regcache,
2790 regnum - AARCH64_SVE_V0_REGNUM,
2791 V_REGISTER_SIZE, buf);
2792
2793 gdb_assert_not_reached ("regnum out of bound");
2794 }
2795
2796 /* Callback function for user_reg_add. */
2797
2798 static struct value *
2799 value_of_aarch64_user_reg (struct frame_info *frame, const void *baton)
2800 {
2801 const int *reg_p = (const int *) baton;
2802
2803 return value_of_register (*reg_p, frame);
2804 }
2805 \f
2806
2807 /* Implement the "software_single_step" gdbarch method, needed to
2808 single step through atomic sequences on AArch64. */
2809
2810 static std::vector<CORE_ADDR>
2811 aarch64_software_single_step (struct regcache *regcache)
2812 {
2813 struct gdbarch *gdbarch = regcache->arch ();
2814 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
2815 const int insn_size = 4;
2816 const int atomic_sequence_length = 16; /* Instruction sequence length. */
2817 CORE_ADDR pc = regcache_read_pc (regcache);
2818 CORE_ADDR breaks[2] = { CORE_ADDR_MAX, CORE_ADDR_MAX };
2819 CORE_ADDR loc = pc;
2820 CORE_ADDR closing_insn = 0;
2821 uint32_t insn = read_memory_unsigned_integer (loc, insn_size,
2822 byte_order_for_code);
2823 int index;
2824 int insn_count;
2825 int bc_insn_count = 0; /* Conditional branch instruction count. */
2826 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
2827 aarch64_inst inst;
2828
2829 if (aarch64_decode_insn (insn, &inst, 1, NULL) != 0)
2830 return {};
2831
2832 /* Look for a Load Exclusive instruction which begins the sequence. */
2833 if (inst.opcode->iclass != ldstexcl || bit (insn, 22) == 0)
2834 return {};
2835
2836 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
2837 {
2838 loc += insn_size;
2839 insn = read_memory_unsigned_integer (loc, insn_size,
2840 byte_order_for_code);
2841
2842 if (aarch64_decode_insn (insn, &inst, 1, NULL) != 0)
2843 return {};
2844 /* Check if the instruction is a conditional branch. */
2845 if (inst.opcode->iclass == condbranch)
2846 {
2847 gdb_assert (inst.operands[0].type == AARCH64_OPND_ADDR_PCREL19);
2848
2849 if (bc_insn_count >= 1)
2850 return {};
2851
2852 /* It is, so we'll try to set a breakpoint at the destination. */
2853 breaks[1] = loc + inst.operands[0].imm.value;
2854
2855 bc_insn_count++;
2856 last_breakpoint++;
2857 }
2858
2859 /* Look for the Store Exclusive which closes the atomic sequence. */
2860 if (inst.opcode->iclass == ldstexcl && bit (insn, 22) == 0)
2861 {
2862 closing_insn = loc;
2863 break;
2864 }
2865 }
2866
2867 /* We didn't find a closing Store Exclusive instruction, fall back. */
2868 if (!closing_insn)
2869 return {};
2870
2871 /* Insert breakpoint after the end of the atomic sequence. */
2872 breaks[0] = loc + insn_size;
2873
2874 /* Check for duplicated breakpoints, and also check that the second
2875 breakpoint is not within the atomic sequence. */
2876 if (last_breakpoint
2877 && (breaks[1] == breaks[0]
2878 || (breaks[1] >= pc && breaks[1] <= closing_insn)))
2879 last_breakpoint = 0;
2880
2881 std::vector<CORE_ADDR> next_pcs;
2882
2883 /* Insert the breakpoint at the end of the sequence, and one at the
2884 destination of the conditional branch, if it exists. */
2885 for (index = 0; index <= last_breakpoint; index++)
2886 next_pcs.push_back (breaks[index]);
2887
2888 return next_pcs;
2889 }
2890
2891 struct aarch64_displaced_step_copy_insn_closure
2892 : public displaced_step_copy_insn_closure
2893 {
2894 /* It is true when condition instruction, such as B.CON, TBZ, etc,
2895 is being displaced stepping. */
2896 bool cond = false;
2897
2898 /* PC adjustment offset after displaced stepping. If 0, then we don't
2899 write the PC back, assuming the PC is already the right address. */
2900 int32_t pc_adjust = 0;
2901 };
2902
2903 /* Data when visiting instructions for displaced stepping. */
2904
2905 struct aarch64_displaced_step_data
2906 {
2907 struct aarch64_insn_data base;
2908
2909 /* The address where the instruction will be executed at. */
2910 CORE_ADDR new_addr;
2911 /* Buffer of instructions to be copied to NEW_ADDR to execute. */
2912 uint32_t insn_buf[AARCH64_DISPLACED_MODIFIED_INSNS];
2913 /* Number of instructions in INSN_BUF. */
2914 unsigned insn_count;
2915 /* Registers when doing displaced stepping. */
2916 struct regcache *regs;
2917
2918 aarch64_displaced_step_copy_insn_closure *dsc;
2919 };
2920
2921 /* Implementation of aarch64_insn_visitor method "b". */
2922
2923 static void
2924 aarch64_displaced_step_b (const int is_bl, const int32_t offset,
2925 struct aarch64_insn_data *data)
2926 {
2927 struct aarch64_displaced_step_data *dsd
2928 = (struct aarch64_displaced_step_data *) data;
2929 int64_t new_offset = data->insn_addr - dsd->new_addr + offset;
2930
2931 if (can_encode_int32 (new_offset, 28))
2932 {
2933 /* Emit B rather than BL, because executing BL on a new address
2934 will get the wrong address into LR. In order to avoid this,
2935 we emit B, and update LR if the instruction is BL. */
2936 emit_b (dsd->insn_buf, 0, new_offset);
2937 dsd->insn_count++;
2938 }
2939 else
2940 {
2941 /* Write NOP. */
2942 emit_nop (dsd->insn_buf);
2943 dsd->insn_count++;
2944 dsd->dsc->pc_adjust = offset;
2945 }
2946
2947 if (is_bl)
2948 {
2949 /* Update LR. */
2950 regcache_cooked_write_unsigned (dsd->regs, AARCH64_LR_REGNUM,
2951 data->insn_addr + 4);
2952 }
2953 }
2954
2955 /* Implementation of aarch64_insn_visitor method "b_cond". */
2956
2957 static void
2958 aarch64_displaced_step_b_cond (const unsigned cond, const int32_t offset,
2959 struct aarch64_insn_data *data)
2960 {
2961 struct aarch64_displaced_step_data *dsd
2962 = (struct aarch64_displaced_step_data *) data;
2963
2964 /* GDB has to fix up PC after displaced step this instruction
2965 differently according to the condition is true or false. Instead
2966 of checking COND against conditional flags, we can use
2967 the following instructions, and GDB can tell how to fix up PC
2968 according to the PC value.
2969
2970 B.COND TAKEN ; If cond is true, then jump to TAKEN.
2971 INSN1 ;
2972 TAKEN:
2973 INSN2
2974 */
2975
2976 emit_bcond (dsd->insn_buf, cond, 8);
2977 dsd->dsc->cond = true;
2978 dsd->dsc->pc_adjust = offset;
2979 dsd->insn_count = 1;
2980 }
2981
2982 /* Dynamically allocate a new register. If we know the register
2983 statically, we should make it a global as above instead of using this
2984 helper function. */
2985
2986 static struct aarch64_register
2987 aarch64_register (unsigned num, int is64)
2988 {
2989 return (struct aarch64_register) { num, is64 };
2990 }
2991
2992 /* Implementation of aarch64_insn_visitor method "cb". */
2993
2994 static void
2995 aarch64_displaced_step_cb (const int32_t offset, const int is_cbnz,
2996 const unsigned rn, int is64,
2997 struct aarch64_insn_data *data)
2998 {
2999 struct aarch64_displaced_step_data *dsd
3000 = (struct aarch64_displaced_step_data *) data;
3001
3002 /* The offset is out of range for a compare and branch
3003 instruction. We can use the following instructions instead:
3004
3005 CBZ xn, TAKEN ; xn == 0, then jump to TAKEN.
3006 INSN1 ;
3007 TAKEN:
3008 INSN2
3009 */
3010 emit_cb (dsd->insn_buf, is_cbnz, aarch64_register (rn, is64), 8);
3011 dsd->insn_count = 1;
3012 dsd->dsc->cond = true;
3013 dsd->dsc->pc_adjust = offset;
3014 }
3015
3016 /* Implementation of aarch64_insn_visitor method "tb". */
3017
3018 static void
3019 aarch64_displaced_step_tb (const int32_t offset, int is_tbnz,
3020 const unsigned rt, unsigned bit,
3021 struct aarch64_insn_data *data)
3022 {
3023 struct aarch64_displaced_step_data *dsd
3024 = (struct aarch64_displaced_step_data *) data;
3025
3026 /* The offset is out of range for a test bit and branch
3027 instruction We can use the following instructions instead:
3028
3029 TBZ xn, #bit, TAKEN ; xn[bit] == 0, then jump to TAKEN.
3030 INSN1 ;
3031 TAKEN:
3032 INSN2
3033
3034 */
3035 emit_tb (dsd->insn_buf, is_tbnz, bit, aarch64_register (rt, 1), 8);
3036 dsd->insn_count = 1;
3037 dsd->dsc->cond = true;
3038 dsd->dsc->pc_adjust = offset;
3039 }
3040
3041 /* Implementation of aarch64_insn_visitor method "adr". */
3042
3043 static void
3044 aarch64_displaced_step_adr (const int32_t offset, const unsigned rd,
3045 const int is_adrp, struct aarch64_insn_data *data)
3046 {
3047 struct aarch64_displaced_step_data *dsd
3048 = (struct aarch64_displaced_step_data *) data;
3049 /* We know exactly the address the ADR{P,} instruction will compute.
3050 We can just write it to the destination register. */
3051 CORE_ADDR address = data->insn_addr + offset;
3052
3053 if (is_adrp)
3054 {
3055 /* Clear the lower 12 bits of the offset to get the 4K page. */
3056 regcache_cooked_write_unsigned (dsd->regs, AARCH64_X0_REGNUM + rd,
3057 address & ~0xfff);
3058 }
3059 else
3060 regcache_cooked_write_unsigned (dsd->regs, AARCH64_X0_REGNUM + rd,
3061 address);
3062
3063 dsd->dsc->pc_adjust = 4;
3064 emit_nop (dsd->insn_buf);
3065 dsd->insn_count = 1;
3066 }
3067
3068 /* Implementation of aarch64_insn_visitor method "ldr_literal". */
3069
3070 static void
3071 aarch64_displaced_step_ldr_literal (const int32_t offset, const int is_sw,
3072 const unsigned rt, const int is64,
3073 struct aarch64_insn_data *data)
3074 {
3075 struct aarch64_displaced_step_data *dsd
3076 = (struct aarch64_displaced_step_data *) data;
3077 CORE_ADDR address = data->insn_addr + offset;
3078 struct aarch64_memory_operand zero = { MEMORY_OPERAND_OFFSET, 0 };
3079
3080 regcache_cooked_write_unsigned (dsd->regs, AARCH64_X0_REGNUM + rt,
3081 address);
3082
3083 if (is_sw)
3084 dsd->insn_count = emit_ldrsw (dsd->insn_buf, aarch64_register (rt, 1),
3085 aarch64_register (rt, 1), zero);
3086 else
3087 dsd->insn_count = emit_ldr (dsd->insn_buf, aarch64_register (rt, is64),
3088 aarch64_register (rt, 1), zero);
3089
3090 dsd->dsc->pc_adjust = 4;
3091 }
3092
3093 /* Implementation of aarch64_insn_visitor method "others". */
3094
3095 static void
3096 aarch64_displaced_step_others (const uint32_t insn,
3097 struct aarch64_insn_data *data)
3098 {
3099 struct aarch64_displaced_step_data *dsd
3100 = (struct aarch64_displaced_step_data *) data;
3101
3102 aarch64_emit_insn (dsd->insn_buf, insn);
3103 dsd->insn_count = 1;
3104
3105 if ((insn & 0xfffffc1f) == 0xd65f0000)
3106 {
3107 /* RET */
3108 dsd->dsc->pc_adjust = 0;
3109 }
3110 else
3111 dsd->dsc->pc_adjust = 4;
3112 }
3113
3114 static const struct aarch64_insn_visitor visitor =
3115 {
3116 aarch64_displaced_step_b,
3117 aarch64_displaced_step_b_cond,
3118 aarch64_displaced_step_cb,
3119 aarch64_displaced_step_tb,
3120 aarch64_displaced_step_adr,
3121 aarch64_displaced_step_ldr_literal,
3122 aarch64_displaced_step_others,
3123 };
3124
3125 /* Implement the "displaced_step_copy_insn" gdbarch method. */
3126
3127 displaced_step_copy_insn_closure_up
3128 aarch64_displaced_step_copy_insn (struct gdbarch *gdbarch,
3129 CORE_ADDR from, CORE_ADDR to,
3130 struct regcache *regs)
3131 {
3132 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
3133 uint32_t insn = read_memory_unsigned_integer (from, 4, byte_order_for_code);
3134 struct aarch64_displaced_step_data dsd;
3135 aarch64_inst inst;
3136
3137 if (aarch64_decode_insn (insn, &inst, 1, NULL) != 0)
3138 return NULL;
3139
3140 /* Look for a Load Exclusive instruction which begins the sequence. */
3141 if (inst.opcode->iclass == ldstexcl && bit (insn, 22))
3142 {
3143 /* We can't displaced step atomic sequences. */
3144 return NULL;
3145 }
3146
3147 std::unique_ptr<aarch64_displaced_step_copy_insn_closure> dsc
3148 (new aarch64_displaced_step_copy_insn_closure);
3149 dsd.base.insn_addr = from;
3150 dsd.new_addr = to;
3151 dsd.regs = regs;
3152 dsd.dsc = dsc.get ();
3153 dsd.insn_count = 0;
3154 aarch64_relocate_instruction (insn, &visitor,
3155 (struct aarch64_insn_data *) &dsd);
3156 gdb_assert (dsd.insn_count <= AARCH64_DISPLACED_MODIFIED_INSNS);
3157
3158 if (dsd.insn_count != 0)
3159 {
3160 int i;
3161
3162 /* Instruction can be relocated to scratch pad. Copy
3163 relocated instruction(s) there. */
3164 for (i = 0; i < dsd.insn_count; i++)
3165 {
3166 displaced_debug_printf ("writing insn %.8x at %s",
3167 dsd.insn_buf[i],
3168 paddress (gdbarch, to + i * 4));
3169
3170 write_memory_unsigned_integer (to + i * 4, 4, byte_order_for_code,
3171 (ULONGEST) dsd.insn_buf[i]);
3172 }
3173 }
3174 else
3175 {
3176 dsc = NULL;
3177 }
3178
3179 /* This is a work around for a problem with g++ 4.8. */
3180 return displaced_step_copy_insn_closure_up (dsc.release ());
3181 }
3182
3183 /* Implement the "displaced_step_fixup" gdbarch method. */
3184
3185 void
3186 aarch64_displaced_step_fixup (struct gdbarch *gdbarch,
3187 struct displaced_step_copy_insn_closure *dsc_,
3188 CORE_ADDR from, CORE_ADDR to,
3189 struct regcache *regs)
3190 {
3191 aarch64_displaced_step_copy_insn_closure *dsc
3192 = (aarch64_displaced_step_copy_insn_closure *) dsc_;
3193
3194 ULONGEST pc;
3195
3196 regcache_cooked_read_unsigned (regs, AARCH64_PC_REGNUM, &pc);
3197
3198 displaced_debug_printf ("PC after stepping: %s (was %s).",
3199 paddress (gdbarch, pc), paddress (gdbarch, to));
3200
3201 if (dsc->cond)
3202 {
3203 displaced_debug_printf ("[Conditional] pc_adjust before: %d",
3204 dsc->pc_adjust);
3205
3206 if (pc - to == 8)
3207 {
3208 /* Condition is true. */
3209 }
3210 else if (pc - to == 4)
3211 {
3212 /* Condition is false. */
3213 dsc->pc_adjust = 4;
3214 }
3215 else
3216 gdb_assert_not_reached ("Unexpected PC value after displaced stepping");
3217
3218 displaced_debug_printf ("[Conditional] pc_adjust after: %d",
3219 dsc->pc_adjust);
3220 }
3221
3222 displaced_debug_printf ("%s PC by %d",
3223 dsc->pc_adjust ? "adjusting" : "not adjusting",
3224 dsc->pc_adjust);
3225
3226 if (dsc->pc_adjust != 0)
3227 {
3228 /* Make sure the previous instruction was executed (that is, the PC
3229 has changed). If the PC didn't change, then discard the adjustment
3230 offset. Otherwise we may skip an instruction before its execution
3231 took place. */
3232 if ((pc - to) == 0)
3233 {
3234 displaced_debug_printf ("PC did not move. Discarding PC adjustment.");
3235 dsc->pc_adjust = 0;
3236 }
3237
3238 displaced_debug_printf ("fixup: set PC to %s:%d",
3239 paddress (gdbarch, from), dsc->pc_adjust);
3240
3241 regcache_cooked_write_unsigned (regs, AARCH64_PC_REGNUM,
3242 from + dsc->pc_adjust);
3243 }
3244 }
3245
3246 /* Implement the "displaced_step_hw_singlestep" gdbarch method. */
3247
3248 bool
3249 aarch64_displaced_step_hw_singlestep (struct gdbarch *gdbarch)
3250 {
3251 return true;
3252 }
3253
3254 /* Get the correct target description for the given VQ value.
3255 If VQ is zero then it is assumed SVE is not supported.
3256 (It is not possible to set VQ to zero on an SVE system). */
3257
3258 const target_desc *
3259 aarch64_read_description (uint64_t vq, bool pauth_p)
3260 {
3261 if (vq > AARCH64_MAX_SVE_VQ)
3262 error (_("VQ is %" PRIu64 ", maximum supported value is %d"), vq,
3263 AARCH64_MAX_SVE_VQ);
3264
3265 struct target_desc *tdesc = tdesc_aarch64_list[vq][pauth_p];
3266
3267 if (tdesc == NULL)
3268 {
3269 tdesc = aarch64_create_target_description (vq, pauth_p);
3270 tdesc_aarch64_list[vq][pauth_p] = tdesc;
3271 }
3272
3273 return tdesc;
3274 }
3275
3276 /* Return the VQ used when creating the target description TDESC. */
3277
3278 static uint64_t
3279 aarch64_get_tdesc_vq (const struct target_desc *tdesc)
3280 {
3281 const struct tdesc_feature *feature_sve;
3282
3283 if (!tdesc_has_registers (tdesc))
3284 return 0;
3285
3286 feature_sve = tdesc_find_feature (tdesc, "org.gnu.gdb.aarch64.sve");
3287
3288 if (feature_sve == nullptr)
3289 return 0;
3290
3291 uint64_t vl = tdesc_register_bitsize (feature_sve,
3292 aarch64_sve_register_names[0]) / 8;
3293 return sve_vq_from_vl (vl);
3294 }
3295
3296 /* Add all the expected register sets into GDBARCH. */
3297
3298 static void
3299 aarch64_add_reggroups (struct gdbarch *gdbarch)
3300 {
3301 reggroup_add (gdbarch, general_reggroup);
3302 reggroup_add (gdbarch, float_reggroup);
3303 reggroup_add (gdbarch, system_reggroup);
3304 reggroup_add (gdbarch, vector_reggroup);
3305 reggroup_add (gdbarch, all_reggroup);
3306 reggroup_add (gdbarch, save_reggroup);
3307 reggroup_add (gdbarch, restore_reggroup);
3308 }
3309
3310 /* Implement the "cannot_store_register" gdbarch method. */
3311
3312 static int
3313 aarch64_cannot_store_register (struct gdbarch *gdbarch, int regnum)
3314 {
3315 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3316
3317 if (!tdep->has_pauth ())
3318 return 0;
3319
3320 /* Pointer authentication registers are read-only. */
3321 return (regnum == AARCH64_PAUTH_DMASK_REGNUM (tdep->pauth_reg_base)
3322 || regnum == AARCH64_PAUTH_CMASK_REGNUM (tdep->pauth_reg_base));
3323 }
3324
3325 /* Initialize the current architecture based on INFO. If possible,
3326 re-use an architecture from ARCHES, which is a list of
3327 architectures already created during this debugging session.
3328
3329 Called e.g. at program startup, when reading a core file, and when
3330 reading a binary file. */
3331
3332 static struct gdbarch *
3333 aarch64_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3334 {
3335 const struct tdesc_feature *feature_core, *feature_fpu, *feature_sve;
3336 const struct tdesc_feature *feature_pauth;
3337 bool valid_p = true;
3338 int i, num_regs = 0, num_pseudo_regs = 0;
3339 int first_pauth_regnum = -1, pauth_ra_state_offset = -1;
3340
3341 /* Use the vector length passed via the target info. Here -1 is used for no
3342 SVE, and 0 is unset. If unset then use the vector length from the existing
3343 tdesc. */
3344 uint64_t vq = 0;
3345 if (info.id == (int *) -1)
3346 vq = 0;
3347 else if (info.id != 0)
3348 vq = (uint64_t) info.id;
3349 else
3350 vq = aarch64_get_tdesc_vq (info.target_desc);
3351
3352 if (vq > AARCH64_MAX_SVE_VQ)
3353 internal_error (__FILE__, __LINE__, _("VQ out of bounds: %s (max %d)"),
3354 pulongest (vq), AARCH64_MAX_SVE_VQ);
3355
3356 /* If there is already a candidate, use it. */
3357 for (gdbarch_list *best_arch = gdbarch_list_lookup_by_info (arches, &info);
3358 best_arch != nullptr;
3359 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
3360 {
3361 struct gdbarch_tdep *tdep = gdbarch_tdep (best_arch->gdbarch);
3362 if (tdep && tdep->vq == vq)
3363 return best_arch->gdbarch;
3364 }
3365
3366 /* Ensure we always have a target descriptor, and that it is for the given VQ
3367 value. */
3368 const struct target_desc *tdesc = info.target_desc;
3369 if (!tdesc_has_registers (tdesc) || vq != aarch64_get_tdesc_vq (tdesc))
3370 tdesc = aarch64_read_description (vq, false);
3371 gdb_assert (tdesc);
3372
3373 feature_core = tdesc_find_feature (tdesc,"org.gnu.gdb.aarch64.core");
3374 feature_fpu = tdesc_find_feature (tdesc, "org.gnu.gdb.aarch64.fpu");
3375 feature_sve = tdesc_find_feature (tdesc, "org.gnu.gdb.aarch64.sve");
3376 feature_pauth = tdesc_find_feature (tdesc, "org.gnu.gdb.aarch64.pauth");
3377
3378 if (feature_core == nullptr)
3379 return nullptr;
3380
3381 tdesc_arch_data_up tdesc_data = tdesc_data_alloc ();
3382
3383 /* Validate the description provides the mandatory core R registers
3384 and allocate their numbers. */
3385 for (i = 0; i < ARRAY_SIZE (aarch64_r_register_names); i++)
3386 valid_p &= tdesc_numbered_register (feature_core, tdesc_data.get (),
3387 AARCH64_X0_REGNUM + i,
3388 aarch64_r_register_names[i]);
3389
3390 num_regs = AARCH64_X0_REGNUM + i;
3391
3392 /* Add the V registers. */
3393 if (feature_fpu != nullptr)
3394 {
3395 if (feature_sve != nullptr)
3396 error (_("Program contains both fpu and SVE features."));
3397
3398 /* Validate the description provides the mandatory V registers
3399 and allocate their numbers. */
3400 for (i = 0; i < ARRAY_SIZE (aarch64_v_register_names); i++)
3401 valid_p &= tdesc_numbered_register (feature_fpu, tdesc_data.get (),
3402 AARCH64_V0_REGNUM + i,
3403 aarch64_v_register_names[i]);
3404
3405 num_regs = AARCH64_V0_REGNUM + i;
3406 }
3407
3408 /* Add the SVE registers. */
3409 if (feature_sve != nullptr)
3410 {
3411 /* Validate the description provides the mandatory SVE registers
3412 and allocate their numbers. */
3413 for (i = 0; i < ARRAY_SIZE (aarch64_sve_register_names); i++)
3414 valid_p &= tdesc_numbered_register (feature_sve, tdesc_data.get (),
3415 AARCH64_SVE_Z0_REGNUM + i,
3416 aarch64_sve_register_names[i]);
3417
3418 num_regs = AARCH64_SVE_Z0_REGNUM + i;
3419 num_pseudo_regs += 32; /* add the Vn register pseudos. */
3420 }
3421
3422 if (feature_fpu != nullptr || feature_sve != nullptr)
3423 {
3424 num_pseudo_regs += 32; /* add the Qn scalar register pseudos */
3425 num_pseudo_regs += 32; /* add the Dn scalar register pseudos */
3426 num_pseudo_regs += 32; /* add the Sn scalar register pseudos */
3427 num_pseudo_regs += 32; /* add the Hn scalar register pseudos */
3428 num_pseudo_regs += 32; /* add the Bn scalar register pseudos */
3429 }
3430
3431 /* Add the pauth registers. */
3432 if (feature_pauth != NULL)
3433 {
3434 first_pauth_regnum = num_regs;
3435 pauth_ra_state_offset = num_pseudo_regs;
3436 /* Validate the descriptor provides the mandatory PAUTH registers and
3437 allocate their numbers. */
3438 for (i = 0; i < ARRAY_SIZE (aarch64_pauth_register_names); i++)
3439 valid_p &= tdesc_numbered_register (feature_pauth, tdesc_data.get (),
3440 first_pauth_regnum + i,
3441 aarch64_pauth_register_names[i]);
3442
3443 num_regs += i;
3444 num_pseudo_regs += 1; /* Count RA_STATE pseudo register. */
3445 }
3446
3447 if (!valid_p)
3448 return nullptr;
3449
3450 /* AArch64 code is always little-endian. */
3451 info.byte_order_for_code = BFD_ENDIAN_LITTLE;
3452
3453 struct gdbarch_tdep *tdep = XCNEW (struct gdbarch_tdep);
3454 struct gdbarch *gdbarch = gdbarch_alloc (&info, tdep);
3455
3456 /* This should be low enough for everything. */
3457 tdep->lowest_pc = 0x20;
3458 tdep->jb_pc = -1; /* Longjump support not enabled by default. */
3459 tdep->jb_elt_size = 8;
3460 tdep->vq = vq;
3461 tdep->pauth_reg_base = first_pauth_regnum;
3462 tdep->pauth_ra_state_regnum = (feature_pauth == NULL) ? -1
3463 : pauth_ra_state_offset + num_regs;
3464
3465 set_gdbarch_push_dummy_call (gdbarch, aarch64_push_dummy_call);
3466 set_gdbarch_frame_align (gdbarch, aarch64_frame_align);
3467
3468 /* Advance PC across function entry code. */
3469 set_gdbarch_skip_prologue (gdbarch, aarch64_skip_prologue);
3470
3471 /* The stack grows downward. */
3472 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
3473
3474 /* Breakpoint manipulation. */
3475 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
3476 aarch64_breakpoint::kind_from_pc);
3477 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
3478 aarch64_breakpoint::bp_from_kind);
3479 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
3480 set_gdbarch_software_single_step (gdbarch, aarch64_software_single_step);
3481
3482 /* Information about registers, etc. */
3483 set_gdbarch_sp_regnum (gdbarch, AARCH64_SP_REGNUM);
3484 set_gdbarch_pc_regnum (gdbarch, AARCH64_PC_REGNUM);
3485 set_gdbarch_num_regs (gdbarch, num_regs);
3486
3487 set_gdbarch_num_pseudo_regs (gdbarch, num_pseudo_regs);
3488 set_gdbarch_pseudo_register_read_value (gdbarch, aarch64_pseudo_read_value);
3489 set_gdbarch_pseudo_register_write (gdbarch, aarch64_pseudo_write);
3490 set_tdesc_pseudo_register_name (gdbarch, aarch64_pseudo_register_name);
3491 set_tdesc_pseudo_register_type (gdbarch, aarch64_pseudo_register_type);
3492 set_tdesc_pseudo_register_reggroup_p (gdbarch,
3493 aarch64_pseudo_register_reggroup_p);
3494 set_gdbarch_cannot_store_register (gdbarch, aarch64_cannot_store_register);
3495
3496 /* ABI */
3497 set_gdbarch_short_bit (gdbarch, 16);
3498 set_gdbarch_int_bit (gdbarch, 32);
3499 set_gdbarch_float_bit (gdbarch, 32);
3500 set_gdbarch_double_bit (gdbarch, 64);
3501 set_gdbarch_long_double_bit (gdbarch, 128);
3502 set_gdbarch_long_bit (gdbarch, 64);
3503 set_gdbarch_long_long_bit (gdbarch, 64);
3504 set_gdbarch_ptr_bit (gdbarch, 64);
3505 set_gdbarch_char_signed (gdbarch, 0);
3506 set_gdbarch_wchar_signed (gdbarch, 0);
3507 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
3508 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
3509 set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
3510 set_gdbarch_type_align (gdbarch, aarch64_type_align);
3511
3512 /* Internal <-> external register number maps. */
3513 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, aarch64_dwarf_reg_to_regnum);
3514
3515 /* Returning results. */
3516 set_gdbarch_return_value (gdbarch, aarch64_return_value);
3517
3518 /* Disassembly. */
3519 set_gdbarch_print_insn (gdbarch, aarch64_gdb_print_insn);
3520
3521 /* Virtual tables. */
3522 set_gdbarch_vbit_in_delta (gdbarch, 1);
3523
3524 /* Register architecture. */
3525 aarch64_add_reggroups (gdbarch);
3526
3527 /* Hook in the ABI-specific overrides, if they have been registered. */
3528 info.target_desc = tdesc;
3529 info.tdesc_data = tdesc_data.get ();
3530 gdbarch_init_osabi (info, gdbarch);
3531
3532 dwarf2_frame_set_init_reg (gdbarch, aarch64_dwarf2_frame_init_reg);
3533 /* Register DWARF CFA vendor handler. */
3534 set_gdbarch_execute_dwarf_cfa_vendor_op (gdbarch,
3535 aarch64_execute_dwarf_cfa_vendor_op);
3536
3537 /* Permanent/Program breakpoint handling. */
3538 set_gdbarch_program_breakpoint_here_p (gdbarch,
3539 aarch64_program_breakpoint_here_p);
3540
3541 /* Add some default predicates. */
3542 frame_unwind_append_unwinder (gdbarch, &aarch64_stub_unwind);
3543 dwarf2_append_unwinders (gdbarch);
3544 frame_unwind_append_unwinder (gdbarch, &aarch64_prologue_unwind);
3545
3546 frame_base_set_default (gdbarch, &aarch64_normal_base);
3547
3548 /* Now we have tuned the configuration, set a few final things,
3549 based on what the OS ABI has told us. */
3550
3551 if (tdep->jb_pc >= 0)
3552 set_gdbarch_get_longjmp_target (gdbarch, aarch64_get_longjmp_target);
3553
3554 set_gdbarch_gen_return_address (gdbarch, aarch64_gen_return_address);
3555
3556 set_gdbarch_get_pc_address_flags (gdbarch, aarch64_get_pc_address_flags);
3557
3558 tdesc_use_registers (gdbarch, tdesc, std::move (tdesc_data));
3559
3560 /* Add standard register aliases. */
3561 for (i = 0; i < ARRAY_SIZE (aarch64_register_aliases); i++)
3562 user_reg_add (gdbarch, aarch64_register_aliases[i].name,
3563 value_of_aarch64_user_reg,
3564 &aarch64_register_aliases[i].regnum);
3565
3566 register_aarch64_ravenscar_ops (gdbarch);
3567
3568 return gdbarch;
3569 }
3570
3571 static void
3572 aarch64_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
3573 {
3574 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3575
3576 if (tdep == NULL)
3577 return;
3578
3579 fprintf_unfiltered (file, _("aarch64_dump_tdep: Lowest pc = 0x%s"),
3580 paddress (gdbarch, tdep->lowest_pc));
3581 }
3582
3583 #if GDB_SELF_TEST
3584 namespace selftests
3585 {
3586 static void aarch64_process_record_test (void);
3587 }
3588 #endif
3589
3590 void _initialize_aarch64_tdep ();
3591 void
3592 _initialize_aarch64_tdep ()
3593 {
3594 gdbarch_register (bfd_arch_aarch64, aarch64_gdbarch_init,
3595 aarch64_dump_tdep);
3596
3597 /* Debug this file's internals. */
3598 add_setshow_boolean_cmd ("aarch64", class_maintenance, &aarch64_debug, _("\
3599 Set AArch64 debugging."), _("\
3600 Show AArch64 debugging."), _("\
3601 When on, AArch64 specific debugging is enabled."),
3602 NULL,
3603 show_aarch64_debug,
3604 &setdebuglist, &showdebuglist);
3605
3606 #if GDB_SELF_TEST
3607 selftests::register_test ("aarch64-analyze-prologue",
3608 selftests::aarch64_analyze_prologue_test);
3609 selftests::register_test ("aarch64-process-record",
3610 selftests::aarch64_process_record_test);
3611 #endif
3612 }
3613
3614 /* AArch64 process record-replay related structures, defines etc. */
3615
3616 #define REG_ALLOC(REGS, LENGTH, RECORD_BUF) \
3617 do \
3618 { \
3619 unsigned int reg_len = LENGTH; \
3620 if (reg_len) \
3621 { \
3622 REGS = XNEWVEC (uint32_t, reg_len); \
3623 memcpy(&REGS[0], &RECORD_BUF[0], sizeof(uint32_t)*LENGTH); \
3624 } \
3625 } \
3626 while (0)
3627
3628 #define MEM_ALLOC(MEMS, LENGTH, RECORD_BUF) \
3629 do \
3630 { \
3631 unsigned int mem_len = LENGTH; \
3632 if (mem_len) \
3633 { \
3634 MEMS = XNEWVEC (struct aarch64_mem_r, mem_len); \
3635 memcpy(&MEMS->len, &RECORD_BUF[0], \
3636 sizeof(struct aarch64_mem_r) * LENGTH); \
3637 } \
3638 } \
3639 while (0)
3640
3641 /* AArch64 record/replay structures and enumerations. */
3642
3643 struct aarch64_mem_r
3644 {
3645 uint64_t len; /* Record length. */
3646 uint64_t addr; /* Memory address. */
3647 };
3648
3649 enum aarch64_record_result
3650 {
3651 AARCH64_RECORD_SUCCESS,
3652 AARCH64_RECORD_UNSUPPORTED,
3653 AARCH64_RECORD_UNKNOWN
3654 };
3655
3656 typedef struct insn_decode_record_t
3657 {
3658 struct gdbarch *gdbarch;
3659 struct regcache *regcache;
3660 CORE_ADDR this_addr; /* Address of insn to be recorded. */
3661 uint32_t aarch64_insn; /* Insn to be recorded. */
3662 uint32_t mem_rec_count; /* Count of memory records. */
3663 uint32_t reg_rec_count; /* Count of register records. */
3664 uint32_t *aarch64_regs; /* Registers to be recorded. */
3665 struct aarch64_mem_r *aarch64_mems; /* Memory locations to be recorded. */
3666 } insn_decode_record;
3667
3668 /* Record handler for data processing - register instructions. */
3669
3670 static unsigned int
3671 aarch64_record_data_proc_reg (insn_decode_record *aarch64_insn_r)
3672 {
3673 uint8_t reg_rd, insn_bits24_27, insn_bits21_23;
3674 uint32_t record_buf[4];
3675
3676 reg_rd = bits (aarch64_insn_r->aarch64_insn, 0, 4);
3677 insn_bits24_27 = bits (aarch64_insn_r->aarch64_insn, 24, 27);
3678 insn_bits21_23 = bits (aarch64_insn_r->aarch64_insn, 21, 23);
3679
3680 if (!bit (aarch64_insn_r->aarch64_insn, 28))
3681 {
3682 uint8_t setflags;
3683
3684 /* Logical (shifted register). */
3685 if (insn_bits24_27 == 0x0a)
3686 setflags = (bits (aarch64_insn_r->aarch64_insn, 29, 30) == 0x03);
3687 /* Add/subtract. */
3688 else if (insn_bits24_27 == 0x0b)
3689 setflags = bit (aarch64_insn_r->aarch64_insn, 29);
3690 else
3691 return AARCH64_RECORD_UNKNOWN;
3692
3693 record_buf[0] = reg_rd;
3694 aarch64_insn_r->reg_rec_count = 1;
3695 if (setflags)
3696 record_buf[aarch64_insn_r->reg_rec_count++] = AARCH64_CPSR_REGNUM;
3697 }
3698 else
3699 {
3700 if (insn_bits24_27 == 0x0b)
3701 {
3702 /* Data-processing (3 source). */
3703 record_buf[0] = reg_rd;
3704 aarch64_insn_r->reg_rec_count = 1;
3705 }
3706 else if (insn_bits24_27 == 0x0a)
3707 {
3708 if (insn_bits21_23 == 0x00)
3709 {
3710 /* Add/subtract (with carry). */
3711 record_buf[0] = reg_rd;
3712 aarch64_insn_r->reg_rec_count = 1;
3713 if (bit (aarch64_insn_r->aarch64_insn, 29))
3714 {
3715 record_buf[1] = AARCH64_CPSR_REGNUM;
3716 aarch64_insn_r->reg_rec_count = 2;
3717 }
3718 }
3719 else if (insn_bits21_23 == 0x02)
3720 {
3721 /* Conditional compare (register) and conditional compare
3722 (immediate) instructions. */
3723 record_buf[0] = AARCH64_CPSR_REGNUM;
3724 aarch64_insn_r->reg_rec_count = 1;
3725 }
3726 else if (insn_bits21_23 == 0x04 || insn_bits21_23 == 0x06)
3727 {
3728 /* Conditional select. */
3729 /* Data-processing (2 source). */
3730 /* Data-processing (1 source). */
3731 record_buf[0] = reg_rd;
3732 aarch64_insn_r->reg_rec_count = 1;
3733 }
3734 else
3735 return AARCH64_RECORD_UNKNOWN;
3736 }
3737 }
3738
3739 REG_ALLOC (aarch64_insn_r->aarch64_regs, aarch64_insn_r->reg_rec_count,
3740 record_buf);
3741 return AARCH64_RECORD_SUCCESS;
3742 }
3743
3744 /* Record handler for data processing - immediate instructions. */
3745
3746 static unsigned int
3747 aarch64_record_data_proc_imm (insn_decode_record *aarch64_insn_r)
3748 {
3749 uint8_t reg_rd, insn_bit23, insn_bits24_27, setflags;
3750 uint32_t record_buf[4];
3751
3752 reg_rd = bits (aarch64_insn_r->aarch64_insn, 0, 4);
3753 insn_bit23 = bit (aarch64_insn_r->aarch64_insn, 23);
3754 insn_bits24_27 = bits (aarch64_insn_r->aarch64_insn, 24, 27);
3755
3756 if (insn_bits24_27 == 0x00 /* PC rel addressing. */
3757 || insn_bits24_27 == 0x03 /* Bitfield and Extract. */
3758 || (insn_bits24_27 == 0x02 && insn_bit23)) /* Move wide (immediate). */
3759 {
3760 record_buf[0] = reg_rd;
3761 aarch64_insn_r->reg_rec_count = 1;
3762 }
3763 else if (insn_bits24_27 == 0x01)
3764 {
3765 /* Add/Subtract (immediate). */
3766 setflags = bit (aarch64_insn_r->aarch64_insn, 29);
3767 record_buf[0] = reg_rd;
3768 aarch64_insn_r->reg_rec_count = 1;
3769 if (setflags)
3770 record_buf[aarch64_insn_r->reg_rec_count++] = AARCH64_CPSR_REGNUM;
3771 }
3772 else if (insn_bits24_27 == 0x02 && !insn_bit23)
3773 {
3774 /* Logical (immediate). */
3775 setflags = bits (aarch64_insn_r->aarch64_insn, 29, 30) == 0x03;
3776 record_buf[0] = reg_rd;
3777 aarch64_insn_r->reg_rec_count = 1;
3778 if (setflags)
3779 record_buf[aarch64_insn_r->reg_rec_count++] = AARCH64_CPSR_REGNUM;
3780 }
3781 else
3782 return AARCH64_RECORD_UNKNOWN;
3783
3784 REG_ALLOC (aarch64_insn_r->aarch64_regs, aarch64_insn_r->reg_rec_count,
3785 record_buf);
3786 return AARCH64_RECORD_SUCCESS;
3787 }
3788
3789 /* Record handler for branch, exception generation and system instructions. */
3790
3791 static unsigned int
3792 aarch64_record_branch_except_sys (insn_decode_record *aarch64_insn_r)
3793 {
3794 struct gdbarch_tdep *tdep = gdbarch_tdep (aarch64_insn_r->gdbarch);
3795 uint8_t insn_bits24_27, insn_bits28_31, insn_bits22_23;
3796 uint32_t record_buf[4];
3797
3798 insn_bits24_27 = bits (aarch64_insn_r->aarch64_insn, 24, 27);
3799 insn_bits28_31 = bits (aarch64_insn_r->aarch64_insn, 28, 31);
3800 insn_bits22_23 = bits (aarch64_insn_r->aarch64_insn, 22, 23);
3801
3802 if (insn_bits28_31 == 0x0d)
3803 {
3804 /* Exception generation instructions. */
3805 if (insn_bits24_27 == 0x04)
3806 {
3807 if (!bits (aarch64_insn_r->aarch64_insn, 2, 4)
3808 && !bits (aarch64_insn_r->aarch64_insn, 21, 23)
3809 && bits (aarch64_insn_r->aarch64_insn, 0, 1) == 0x01)
3810 {
3811 ULONGEST svc_number;
3812
3813 regcache_raw_read_unsigned (aarch64_insn_r->regcache, 8,
3814 &svc_number);
3815 return tdep->aarch64_syscall_record (aarch64_insn_r->regcache,
3816 svc_number);
3817 }
3818 else
3819 return AARCH64_RECORD_UNSUPPORTED;
3820 }
3821 /* System instructions. */
3822 else if (insn_bits24_27 == 0x05 && insn_bits22_23 == 0x00)
3823 {
3824 uint32_t reg_rt, reg_crn;
3825
3826 reg_rt = bits (aarch64_insn_r->aarch64_insn, 0, 4);
3827 reg_crn = bits (aarch64_insn_r->aarch64_insn, 12, 15);
3828
3829 /* Record rt in case of sysl and mrs instructions. */
3830 if (bit (aarch64_insn_r->aarch64_insn, 21))
3831 {
3832 record_buf[0] = reg_rt;
3833 aarch64_insn_r->reg_rec_count = 1;
3834 }
3835 /* Record cpsr for hint and msr(immediate) instructions. */
3836 else if (reg_crn == 0x02 || reg_crn == 0x04)
3837 {
3838 record_buf[0] = AARCH64_CPSR_REGNUM;
3839 aarch64_insn_r->reg_rec_count = 1;
3840 }
3841 }
3842 /* Unconditional branch (register). */
3843 else if((insn_bits24_27 & 0x0e) == 0x06)
3844 {
3845 record_buf[aarch64_insn_r->reg_rec_count++] = AARCH64_PC_REGNUM;
3846 if (bits (aarch64_insn_r->aarch64_insn, 21, 22) == 0x01)
3847 record_buf[aarch64_insn_r->reg_rec_count++] = AARCH64_LR_REGNUM;
3848 }
3849 else
3850 return AARCH64_RECORD_UNKNOWN;
3851 }
3852 /* Unconditional branch (immediate). */
3853 else if ((insn_bits28_31 & 0x07) == 0x01 && (insn_bits24_27 & 0x0c) == 0x04)
3854 {
3855 record_buf[aarch64_insn_r->reg_rec_count++] = AARCH64_PC_REGNUM;
3856 if (bit (aarch64_insn_r->aarch64_insn, 31))
3857 record_buf[aarch64_insn_r->reg_rec_count++] = AARCH64_LR_REGNUM;
3858 }
3859 else
3860 /* Compare & branch (immediate), Test & branch (immediate) and
3861 Conditional branch (immediate). */
3862 record_buf[aarch64_insn_r->reg_rec_count++] = AARCH64_PC_REGNUM;
3863
3864 REG_ALLOC (aarch64_insn_r->aarch64_regs, aarch64_insn_r->reg_rec_count,
3865 record_buf);
3866 return AARCH64_RECORD_SUCCESS;
3867 }
3868
3869 /* Record handler for advanced SIMD load and store instructions. */
3870
3871 static unsigned int
3872 aarch64_record_asimd_load_store (insn_decode_record *aarch64_insn_r)
3873 {
3874 CORE_ADDR address;
3875 uint64_t addr_offset = 0;
3876 uint32_t record_buf[24];
3877 uint64_t record_buf_mem[24];
3878 uint32_t reg_rn, reg_rt;
3879 uint32_t reg_index = 0, mem_index = 0;
3880 uint8_t opcode_bits, size_bits;
3881
3882 reg_rt = bits (aarch64_insn_r->aarch64_insn, 0, 4);
3883 reg_rn = bits (aarch64_insn_r->aarch64_insn, 5, 9);
3884 size_bits = bits (aarch64_insn_r->aarch64_insn, 10, 11);
3885 opcode_bits = bits (aarch64_insn_r->aarch64_insn, 12, 15);
3886 regcache_raw_read_unsigned (aarch64_insn_r->regcache, reg_rn, &address);
3887
3888 if (record_debug)
3889 debug_printf ("Process record: Advanced SIMD load/store\n");
3890
3891 /* Load/store single structure. */
3892 if (bit (aarch64_insn_r->aarch64_insn, 24))
3893 {
3894 uint8_t sindex, scale, selem, esize, replicate = 0;
3895 scale = opcode_bits >> 2;
3896 selem = ((opcode_bits & 0x02) |
3897 bit (aarch64_insn_r->aarch64_insn, 21)) + 1;
3898 switch (scale)
3899 {
3900 case 1:
3901 if (size_bits & 0x01)
3902 return AARCH64_RECORD_UNKNOWN;
3903 break;
3904 case 2:
3905 if ((size_bits >> 1) & 0x01)
3906 return AARCH64_RECORD_UNKNOWN;
3907 if (size_bits & 0x01)
3908 {
3909 if (!((opcode_bits >> 1) & 0x01))
3910 scale = 3;
3911 else
3912 return AARCH64_RECORD_UNKNOWN;
3913 }
3914 break;
3915 case 3:
3916 if (bit (aarch64_insn_r->aarch64_insn, 22) && !(opcode_bits & 0x01))
3917 {
3918 scale = size_bits;
3919 replicate = 1;
3920 break;
3921 }
3922 else
3923 return AARCH64_RECORD_UNKNOWN;
3924 default:
3925 break;
3926 }
3927 esize = 8 << scale;
3928 if (replicate)
3929 for (sindex = 0; sindex < selem; sindex++)
3930 {
3931 record_buf[reg_index++] = reg_rt + AARCH64_V0_REGNUM;
3932 reg_rt = (reg_rt + 1) % 32;
3933 }
3934 else
3935 {
3936 for (sindex = 0; sindex < selem; sindex++)
3937 {
3938 if (bit (aarch64_insn_r->aarch64_insn, 22))
3939 record_buf[reg_index++] = reg_rt + AARCH64_V0_REGNUM;
3940 else
3941 {
3942 record_buf_mem[mem_index++] = esize / 8;
3943 record_buf_mem[mem_index++] = address + addr_offset;
3944 }
3945 addr_offset = addr_offset + (esize / 8);
3946 reg_rt = (reg_rt + 1) % 32;
3947 }
3948 }
3949 }
3950 /* Load/store multiple structure. */
3951 else
3952 {
3953 uint8_t selem, esize, rpt, elements;
3954 uint8_t eindex, rindex;
3955
3956 esize = 8 << size_bits;
3957 if (bit (aarch64_insn_r->aarch64_insn, 30))
3958 elements = 128 / esize;
3959 else
3960 elements = 64 / esize;
3961
3962 switch (opcode_bits)
3963 {
3964 /*LD/ST4 (4 Registers). */
3965 case 0:
3966 rpt = 1;
3967 selem = 4;
3968 break;
3969 /*LD/ST1 (4 Registers). */
3970 case 2:
3971 rpt = 4;
3972 selem = 1;
3973 break;
3974 /*LD/ST3 (3 Registers). */
3975 case 4:
3976 rpt = 1;
3977 selem = 3;
3978 break;
3979 /*LD/ST1 (3 Registers). */
3980 case 6:
3981 rpt = 3;
3982 selem = 1;
3983 break;
3984 /*LD/ST1 (1 Register). */
3985 case 7:
3986 rpt = 1;
3987 selem = 1;
3988 break;
3989 /*LD/ST2 (2 Registers). */
3990 case 8:
3991 rpt = 1;
3992 selem = 2;
3993 break;
3994 /*LD/ST1 (2 Registers). */
3995 case 10:
3996 rpt = 2;
3997 selem = 1;
3998 break;
3999 default:
4000 return AARCH64_RECORD_UNSUPPORTED;
4001 break;
4002 }
4003 for (rindex = 0; rindex < rpt; rindex++)
4004 for (eindex = 0; eindex < elements; eindex++)
4005 {
4006 uint8_t reg_tt, sindex;
4007 reg_tt = (reg_rt + rindex) % 32;
4008 for (sindex = 0; sindex < selem; sindex++)
4009 {
4010 if (bit (aarch64_insn_r->aarch64_insn, 22))
4011 record_buf[reg_index++] = reg_tt + AARCH64_V0_REGNUM;
4012 else
4013 {
4014 record_buf_mem[mem_index++] = esize / 8;
4015 record_buf_mem[mem_index++] = address + addr_offset;
4016 }
4017 addr_offset = addr_offset + (esize / 8);
4018 reg_tt = (reg_tt + 1) % 32;
4019 }
4020 }
4021 }
4022
4023 if (bit (aarch64_insn_r->aarch64_insn, 23))
4024 record_buf[reg_index++] = reg_rn;
4025
4026 aarch64_insn_r->reg_rec_count = reg_index;
4027 aarch64_insn_r->mem_rec_count = mem_index / 2;
4028 MEM_ALLOC (aarch64_insn_r->aarch64_mems, aarch64_insn_r->mem_rec_count,
4029 record_buf_mem);
4030 REG_ALLOC (aarch64_insn_r->aarch64_regs, aarch64_insn_r->reg_rec_count,
4031 record_buf);
4032 return AARCH64_RECORD_SUCCESS;
4033 }
4034
4035 /* Record handler for load and store instructions. */
4036
4037 static unsigned int
4038 aarch64_record_load_store (insn_decode_record *aarch64_insn_r)
4039 {
4040 uint8_t insn_bits24_27, insn_bits28_29, insn_bits10_11;
4041 uint8_t insn_bit23, insn_bit21;
4042 uint8_t opc, size_bits, ld_flag, vector_flag;
4043 uint32_t reg_rn, reg_rt, reg_rt2;
4044 uint64_t datasize, offset;
4045 uint32_t record_buf[8];
4046 uint64_t record_buf_mem[8];
4047 CORE_ADDR address;
4048
4049 insn_bits10_11 = bits (aarch64_insn_r->aarch64_insn, 10, 11);
4050 insn_bits24_27 = bits (aarch64_insn_r->aarch64_insn, 24, 27);
4051 insn_bits28_29 = bits (aarch64_insn_r->aarch64_insn, 28, 29);
4052 insn_bit21 = bit (aarch64_insn_r->aarch64_insn, 21);
4053 insn_bit23 = bit (aarch64_insn_r->aarch64_insn, 23);
4054 ld_flag = bit (aarch64_insn_r->aarch64_insn, 22);
4055 vector_flag = bit (aarch64_insn_r->aarch64_insn, 26);
4056 reg_rt = bits (aarch64_insn_r->aarch64_insn, 0, 4);
4057 reg_rn = bits (aarch64_insn_r->aarch64_insn, 5, 9);
4058 reg_rt2 = bits (aarch64_insn_r->aarch64_insn, 10, 14);
4059 size_bits = bits (aarch64_insn_r->aarch64_insn, 30, 31);
4060
4061 /* Load/store exclusive. */
4062 if (insn_bits24_27 == 0x08 && insn_bits28_29 == 0x00)
4063 {
4064 if (record_debug)
4065 debug_printf ("Process record: load/store exclusive\n");
4066
4067 if (ld_flag)
4068 {
4069 record_buf[0] = reg_rt;
4070 aarch64_insn_r->reg_rec_count = 1;
4071 if (insn_bit21)
4072 {
4073 record_buf[1] = reg_rt2;
4074 aarch64_insn_r->reg_rec_count = 2;
4075 }
4076 }
4077 else
4078 {
4079 if (insn_bit21)
4080 datasize = (8 << size_bits) * 2;
4081 else
4082 datasize = (8 << size_bits);
4083 regcache_raw_read_unsigned (aarch64_insn_r->regcache, reg_rn,
4084 &address);
4085 record_buf_mem[0] = datasize / 8;
4086 record_buf_mem[1] = address;
4087 aarch64_insn_r->mem_rec_count = 1;
4088 if (!insn_bit23)
4089 {
4090 /* Save register rs. */
4091 record_buf[0] = bits (aarch64_insn_r->aarch64_insn, 16, 20);
4092 aarch64_insn_r->reg_rec_count = 1;
4093 }
4094 }
4095 }
4096 /* Load register (literal) instructions decoding. */
4097 else if ((insn_bits24_27 & 0x0b) == 0x08 && insn_bits28_29 == 0x01)
4098 {
4099 if (record_debug)
4100 debug_printf ("Process record: load register (literal)\n");
4101 if (vector_flag)
4102 record_buf[0] = reg_rt + AARCH64_V0_REGNUM;
4103 else
4104 record_buf[0] = reg_rt;
4105 aarch64_insn_r->reg_rec_count = 1;
4106 }
4107 /* All types of load/store pair instructions decoding. */
4108 else if ((insn_bits24_27 & 0x0a) == 0x08 && insn_bits28_29 == 0x02)
4109 {
4110 if (record_debug)
4111 debug_printf ("Process record: load/store pair\n");
4112
4113 if (ld_flag)
4114 {
4115 if (vector_flag)
4116 {
4117 record_buf[0] = reg_rt + AARCH64_V0_REGNUM;
4118 record_buf[1] = reg_rt2 + AARCH64_V0_REGNUM;
4119 }
4120 else
4121 {
4122 record_buf[0] = reg_rt;
4123 record_buf[1] = reg_rt2;
4124 }
4125 aarch64_insn_r->reg_rec_count = 2;
4126 }
4127 else
4128 {
4129 uint16_t imm7_off;
4130 imm7_off = bits (aarch64_insn_r->aarch64_insn, 15, 21);
4131 if (!vector_flag)
4132 size_bits = size_bits >> 1;
4133 datasize = 8 << (2 + size_bits);
4134 offset = (imm7_off & 0x40) ? (~imm7_off & 0x007f) + 1 : imm7_off;
4135 offset = offset << (2 + size_bits);
4136 regcache_raw_read_unsigned (aarch64_insn_r->regcache, reg_rn,
4137 &address);
4138 if (!((insn_bits24_27 & 0x0b) == 0x08 && insn_bit23))
4139 {
4140 if (imm7_off & 0x40)
4141 address = address - offset;
4142 else
4143 address = address + offset;
4144 }
4145
4146 record_buf_mem[0] = datasize / 8;
4147 record_buf_mem[1] = address;
4148 record_buf_mem[2] = datasize / 8;
4149 record_buf_mem[3] = address + (datasize / 8);
4150 aarch64_insn_r->mem_rec_count = 2;
4151 }
4152 if (bit (aarch64_insn_r->aarch64_insn, 23))
4153 record_buf[aarch64_insn_r->reg_rec_count++] = reg_rn;
4154 }
4155 /* Load/store register (unsigned immediate) instructions. */
4156 else if ((insn_bits24_27 & 0x0b) == 0x09 && insn_bits28_29 == 0x03)
4157 {
4158 opc = bits (aarch64_insn_r->aarch64_insn, 22, 23);
4159 if (!(opc >> 1))
4160 {
4161 if (opc & 0x01)
4162 ld_flag = 0x01;
4163 else
4164 ld_flag = 0x0;
4165 }
4166 else
4167 {
4168 if (size_bits == 0x3 && vector_flag == 0x0 && opc == 0x2)
4169 {
4170 /* PRFM (immediate) */
4171 return AARCH64_RECORD_SUCCESS;
4172 }
4173 else if (size_bits == 0x2 && vector_flag == 0x0 && opc == 0x2)
4174 {
4175 /* LDRSW (immediate) */
4176 ld_flag = 0x1;
4177 }
4178 else
4179 {
4180 if (opc & 0x01)
4181 ld_flag = 0x01;
4182 else
4183 ld_flag = 0x0;
4184 }
4185 }
4186
4187 if (record_debug)
4188 {
4189 debug_printf ("Process record: load/store (unsigned immediate):"
4190 " size %x V %d opc %x\n", size_bits, vector_flag,
4191 opc);
4192 }
4193
4194 if (!ld_flag)
4195 {
4196 offset = bits (aarch64_insn_r->aarch64_insn, 10, 21);
4197 datasize = 8 << size_bits;
4198 regcache_raw_read_unsigned (aarch64_insn_r->regcache, reg_rn,
4199 &address);
4200 offset = offset << size_bits;
4201 address = address + offset;
4202
4203 record_buf_mem[0] = datasize >> 3;
4204 record_buf_mem[1] = address;
4205 aarch64_insn_r->mem_rec_count = 1;
4206 }
4207 else
4208 {
4209 if (vector_flag)
4210 record_buf[0] = reg_rt + AARCH64_V0_REGNUM;
4211 else
4212 record_buf[0] = reg_rt;
4213 aarch64_insn_r->reg_rec_count = 1;
4214 }
4215 }
4216 /* Load/store register (register offset) instructions. */
4217 else if ((insn_bits24_27 & 0x0b) == 0x08 && insn_bits28_29 == 0x03
4218 && insn_bits10_11 == 0x02 && insn_bit21)
4219 {
4220 if (record_debug)
4221 debug_printf ("Process record: load/store (register offset)\n");
4222 opc = bits (aarch64_insn_r->aarch64_insn, 22, 23);
4223 if (!(opc >> 1))
4224 if (opc & 0x01)
4225 ld_flag = 0x01;
4226 else
4227 ld_flag = 0x0;
4228 else
4229 if (size_bits != 0x03)
4230 ld_flag = 0x01;
4231 else
4232 return AARCH64_RECORD_UNKNOWN;
4233
4234 if (!ld_flag)
4235 {
4236 ULONGEST reg_rm_val;
4237
4238 regcache_raw_read_unsigned (aarch64_insn_r->regcache,
4239 bits (aarch64_insn_r->aarch64_insn, 16, 20), &reg_rm_val);
4240 if (bit (aarch64_insn_r->aarch64_insn, 12))
4241 offset = reg_rm_val << size_bits;
4242 else
4243 offset = reg_rm_val;
4244 datasize = 8 << size_bits;
4245 regcache_raw_read_unsigned (aarch64_insn_r->regcache, reg_rn,
4246 &address);
4247 address = address + offset;
4248 record_buf_mem[0] = datasize >> 3;
4249 record_buf_mem[1] = address;
4250 aarch64_insn_r->mem_rec_count = 1;
4251 }
4252 else
4253 {
4254 if (vector_flag)
4255 record_buf[0] = reg_rt + AARCH64_V0_REGNUM;
4256 else
4257 record_buf[0] = reg_rt;
4258 aarch64_insn_r->reg_rec_count = 1;
4259 }
4260 }
4261 /* Load/store register (immediate and unprivileged) instructions. */
4262 else if ((insn_bits24_27 & 0x0b) == 0x08 && insn_bits28_29 == 0x03
4263 && !insn_bit21)
4264 {
4265 if (record_debug)
4266 {
4267 debug_printf ("Process record: load/store "
4268 "(immediate and unprivileged)\n");
4269 }
4270 opc = bits (aarch64_insn_r->aarch64_insn, 22, 23);
4271 if (!(opc >> 1))
4272 if (opc & 0x01)
4273 ld_flag = 0x01;
4274 else
4275 ld_flag = 0x0;
4276 else
4277 if (size_bits != 0x03)
4278 ld_flag = 0x01;
4279 else
4280 return AARCH64_RECORD_UNKNOWN;
4281
4282 if (!ld_flag)
4283 {
4284 uint16_t imm9_off;
4285 imm9_off = bits (aarch64_insn_r->aarch64_insn, 12, 20);
4286 offset = (imm9_off & 0x0100) ? (((~imm9_off) & 0x01ff) + 1) : imm9_off;
4287 datasize = 8 << size_bits;
4288 regcache_raw_read_unsigned (aarch64_insn_r->regcache, reg_rn,
4289 &address);
4290 if (insn_bits10_11 != 0x01)
4291 {
4292 if (imm9_off & 0x0100)
4293 address = address - offset;
4294 else
4295 address = address + offset;
4296 }
4297 record_buf_mem[0] = datasize >> 3;
4298 record_buf_mem[1] = address;
4299 aarch64_insn_r->mem_rec_count = 1;
4300 }
4301 else
4302 {
4303 if (vector_flag)
4304 record_buf[0] = reg_rt + AARCH64_V0_REGNUM;
4305 else
4306 record_buf[0] = reg_rt;
4307 aarch64_insn_r->reg_rec_count = 1;
4308 }
4309 if (insn_bits10_11 == 0x01 || insn_bits10_11 == 0x03)
4310 record_buf[aarch64_insn_r->reg_rec_count++] = reg_rn;
4311 }
4312 /* Advanced SIMD load/store instructions. */
4313 else
4314 return aarch64_record_asimd_load_store (aarch64_insn_r);
4315
4316 MEM_ALLOC (aarch64_insn_r->aarch64_mems, aarch64_insn_r->mem_rec_count,
4317 record_buf_mem);
4318 REG_ALLOC (aarch64_insn_r->aarch64_regs, aarch64_insn_r->reg_rec_count,
4319 record_buf);
4320 return AARCH64_RECORD_SUCCESS;
4321 }
4322
4323 /* Record handler for data processing SIMD and floating point instructions. */
4324
4325 static unsigned int
4326 aarch64_record_data_proc_simd_fp (insn_decode_record *aarch64_insn_r)
4327 {
4328 uint8_t insn_bit21, opcode, rmode, reg_rd;
4329 uint8_t insn_bits24_27, insn_bits28_31, insn_bits10_11, insn_bits12_15;
4330 uint8_t insn_bits11_14;
4331 uint32_t record_buf[2];
4332
4333 insn_bits24_27 = bits (aarch64_insn_r->aarch64_insn, 24, 27);
4334 insn_bits28_31 = bits (aarch64_insn_r->aarch64_insn, 28, 31);
4335 insn_bits10_11 = bits (aarch64_insn_r->aarch64_insn, 10, 11);
4336 insn_bits12_15 = bits (aarch64_insn_r->aarch64_insn, 12, 15);
4337 insn_bits11_14 = bits (aarch64_insn_r->aarch64_insn, 11, 14);
4338 opcode = bits (aarch64_insn_r->aarch64_insn, 16, 18);
4339 rmode = bits (aarch64_insn_r->aarch64_insn, 19, 20);
4340 reg_rd = bits (aarch64_insn_r->aarch64_insn, 0, 4);
4341 insn_bit21 = bit (aarch64_insn_r->aarch64_insn, 21);
4342
4343 if (record_debug)
4344 debug_printf ("Process record: data processing SIMD/FP: ");
4345
4346 if ((insn_bits28_31 & 0x05) == 0x01 && insn_bits24_27 == 0x0e)
4347 {
4348 /* Floating point - fixed point conversion instructions. */
4349 if (!insn_bit21)
4350 {
4351 if (record_debug)
4352 debug_printf ("FP - fixed point conversion");
4353
4354 if ((opcode >> 1) == 0x0 && rmode == 0x03)
4355 record_buf[0] = reg_rd;
4356 else
4357 record_buf[0] = reg_rd + AARCH64_V0_REGNUM;
4358 }
4359 /* Floating point - conditional compare instructions. */
4360 else if (insn_bits10_11 == 0x01)
4361 {
4362 if (record_debug)
4363 debug_printf ("FP - conditional compare");
4364
4365 record_buf[0] = AARCH64_CPSR_REGNUM;
4366 }
4367 /* Floating point - data processing (2-source) and
4368 conditional select instructions. */
4369 else if (insn_bits10_11 == 0x02 || insn_bits10_11 == 0x03)
4370 {
4371 if (record_debug)
4372 debug_printf ("FP - DP (2-source)");
4373
4374 record_buf[0] = reg_rd + AARCH64_V0_REGNUM;
4375 }
4376 else if (insn_bits10_11 == 0x00)
4377 {
4378 /* Floating point - immediate instructions. */
4379 if ((insn_bits12_15 & 0x01) == 0x01
4380 || (insn_bits12_15 & 0x07) == 0x04)
4381 {
4382 if (record_debug)
4383 debug_printf ("FP - immediate");
4384 record_buf[0] = reg_rd + AARCH64_V0_REGNUM;
4385 }
4386 /* Floating point - compare instructions. */
4387 else if ((insn_bits12_15 & 0x03) == 0x02)
4388 {
4389 if (record_debug)
4390 debug_printf ("FP - immediate");
4391 record_buf[0] = AARCH64_CPSR_REGNUM;
4392 }
4393 /* Floating point - integer conversions instructions. */
4394 else if (insn_bits12_15 == 0x00)
4395 {
4396 /* Convert float to integer instruction. */
4397 if (!(opcode >> 1) || ((opcode >> 1) == 0x02 && !rmode))
4398 {
4399 if (record_debug)
4400 debug_printf ("float to int conversion");
4401
4402 record_buf[0] = reg_rd + AARCH64_X0_REGNUM;
4403 }
4404 /* Convert integer to float instruction. */
4405 else if ((opcode >> 1) == 0x01 && !rmode)
4406 {
4407 if (record_debug)
4408 debug_printf ("int to float conversion");
4409
4410 record_buf[0] = reg_rd + AARCH64_V0_REGNUM;
4411 }
4412 /* Move float to integer instruction. */
4413 else if ((opcode >> 1) == 0x03)
4414 {
4415 if (record_debug)
4416 debug_printf ("move float to int");
4417
4418 if (!(opcode & 0x01))
4419 record_buf[0] = reg_rd + AARCH64_X0_REGNUM;
4420 else
4421 record_buf[0] = reg_rd + AARCH64_V0_REGNUM;
4422 }
4423 else
4424 return AARCH64_RECORD_UNKNOWN;
4425 }
4426 else
4427 return AARCH64_RECORD_UNKNOWN;
4428 }
4429 else
4430 return AARCH64_RECORD_UNKNOWN;
4431 }
4432 else if ((insn_bits28_31 & 0x09) == 0x00 && insn_bits24_27 == 0x0e)
4433 {
4434 if (record_debug)
4435 debug_printf ("SIMD copy");
4436
4437 /* Advanced SIMD copy instructions. */
4438 if (!bits (aarch64_insn_r->aarch64_insn, 21, 23)
4439 && !bit (aarch64_insn_r->aarch64_insn, 15)
4440 && bit (aarch64_insn_r->aarch64_insn, 10))
4441 {
4442 if (insn_bits11_14 == 0x05 || insn_bits11_14 == 0x07)
4443 record_buf[0] = reg_rd + AARCH64_X0_REGNUM;
4444 else
4445 record_buf[0] = reg_rd + AARCH64_V0_REGNUM;
4446 }
4447 else
4448 record_buf[0] = reg_rd + AARCH64_V0_REGNUM;
4449 }
4450 /* All remaining floating point or advanced SIMD instructions. */
4451 else
4452 {
4453 if (record_debug)
4454 debug_printf ("all remain");
4455
4456 record_buf[0] = reg_rd + AARCH64_V0_REGNUM;
4457 }
4458
4459 if (record_debug)
4460 debug_printf ("\n");
4461
4462 /* Record the V/X register. */
4463 aarch64_insn_r->reg_rec_count++;
4464
4465 /* Some of these instructions may set bits in the FPSR, so record it
4466 too. */
4467 record_buf[1] = AARCH64_FPSR_REGNUM;
4468 aarch64_insn_r->reg_rec_count++;
4469
4470 gdb_assert (aarch64_insn_r->reg_rec_count == 2);
4471 REG_ALLOC (aarch64_insn_r->aarch64_regs, aarch64_insn_r->reg_rec_count,
4472 record_buf);
4473 return AARCH64_RECORD_SUCCESS;
4474 }
4475
4476 /* Decodes insns type and invokes its record handler. */
4477
4478 static unsigned int
4479 aarch64_record_decode_insn_handler (insn_decode_record *aarch64_insn_r)
4480 {
4481 uint32_t ins_bit25, ins_bit26, ins_bit27, ins_bit28;
4482
4483 ins_bit25 = bit (aarch64_insn_r->aarch64_insn, 25);
4484 ins_bit26 = bit (aarch64_insn_r->aarch64_insn, 26);
4485 ins_bit27 = bit (aarch64_insn_r->aarch64_insn, 27);
4486 ins_bit28 = bit (aarch64_insn_r->aarch64_insn, 28);
4487
4488 /* Data processing - immediate instructions. */
4489 if (!ins_bit26 && !ins_bit27 && ins_bit28)
4490 return aarch64_record_data_proc_imm (aarch64_insn_r);
4491
4492 /* Branch, exception generation and system instructions. */
4493 if (ins_bit26 && !ins_bit27 && ins_bit28)
4494 return aarch64_record_branch_except_sys (aarch64_insn_r);
4495
4496 /* Load and store instructions. */
4497 if (!ins_bit25 && ins_bit27)
4498 return aarch64_record_load_store (aarch64_insn_r);
4499
4500 /* Data processing - register instructions. */
4501 if (ins_bit25 && !ins_bit26 && ins_bit27)
4502 return aarch64_record_data_proc_reg (aarch64_insn_r);
4503
4504 /* Data processing - SIMD and floating point instructions. */
4505 if (ins_bit25 && ins_bit26 && ins_bit27)
4506 return aarch64_record_data_proc_simd_fp (aarch64_insn_r);
4507
4508 return AARCH64_RECORD_UNSUPPORTED;
4509 }
4510
4511 /* Cleans up local record registers and memory allocations. */
4512
4513 static void
4514 deallocate_reg_mem (insn_decode_record *record)
4515 {
4516 xfree (record->aarch64_regs);
4517 xfree (record->aarch64_mems);
4518 }
4519
4520 #if GDB_SELF_TEST
4521 namespace selftests {
4522
4523 static void
4524 aarch64_process_record_test (void)
4525 {
4526 struct gdbarch_info info;
4527 uint32_t ret;
4528
4529 gdbarch_info_init (&info);
4530 info.bfd_arch_info = bfd_scan_arch ("aarch64");
4531
4532 struct gdbarch *gdbarch = gdbarch_find_by_info (info);
4533 SELF_CHECK (gdbarch != NULL);
4534
4535 insn_decode_record aarch64_record;
4536
4537 memset (&aarch64_record, 0, sizeof (insn_decode_record));
4538 aarch64_record.regcache = NULL;
4539 aarch64_record.this_addr = 0;
4540 aarch64_record.gdbarch = gdbarch;
4541
4542 /* 20 00 80 f9 prfm pldl1keep, [x1] */
4543 aarch64_record.aarch64_insn = 0xf9800020;
4544 ret = aarch64_record_decode_insn_handler (&aarch64_record);
4545 SELF_CHECK (ret == AARCH64_RECORD_SUCCESS);
4546 SELF_CHECK (aarch64_record.reg_rec_count == 0);
4547 SELF_CHECK (aarch64_record.mem_rec_count == 0);
4548
4549 deallocate_reg_mem (&aarch64_record);
4550 }
4551
4552 } // namespace selftests
4553 #endif /* GDB_SELF_TEST */
4554
4555 /* Parse the current instruction and record the values of the registers and
4556 memory that will be changed in current instruction to record_arch_list
4557 return -1 if something is wrong. */
4558
4559 int
4560 aarch64_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
4561 CORE_ADDR insn_addr)
4562 {
4563 uint32_t rec_no = 0;
4564 uint8_t insn_size = 4;
4565 uint32_t ret = 0;
4566 gdb_byte buf[insn_size];
4567 insn_decode_record aarch64_record;
4568
4569 memset (&buf[0], 0, insn_size);
4570 memset (&aarch64_record, 0, sizeof (insn_decode_record));
4571 target_read_memory (insn_addr, &buf[0], insn_size);
4572 aarch64_record.aarch64_insn
4573 = (uint32_t) extract_unsigned_integer (&buf[0],
4574 insn_size,
4575 gdbarch_byte_order (gdbarch));
4576 aarch64_record.regcache = regcache;
4577 aarch64_record.this_addr = insn_addr;
4578 aarch64_record.gdbarch = gdbarch;
4579
4580 ret = aarch64_record_decode_insn_handler (&aarch64_record);
4581 if (ret == AARCH64_RECORD_UNSUPPORTED)
4582 {
4583 printf_unfiltered (_("Process record does not support instruction "
4584 "0x%0x at address %s.\n"),
4585 aarch64_record.aarch64_insn,
4586 paddress (gdbarch, insn_addr));
4587 ret = -1;
4588 }
4589
4590 if (0 == ret)
4591 {
4592 /* Record registers. */
4593 record_full_arch_list_add_reg (aarch64_record.regcache,
4594 AARCH64_PC_REGNUM);
4595 /* Always record register CPSR. */
4596 record_full_arch_list_add_reg (aarch64_record.regcache,
4597 AARCH64_CPSR_REGNUM);
4598 if (aarch64_record.aarch64_regs)
4599 for (rec_no = 0; rec_no < aarch64_record.reg_rec_count; rec_no++)
4600 if (record_full_arch_list_add_reg (aarch64_record.regcache,
4601 aarch64_record.aarch64_regs[rec_no]))
4602 ret = -1;
4603
4604 /* Record memories. */
4605 if (aarch64_record.aarch64_mems)
4606 for (rec_no = 0; rec_no < aarch64_record.mem_rec_count; rec_no++)
4607 if (record_full_arch_list_add_mem
4608 ((CORE_ADDR)aarch64_record.aarch64_mems[rec_no].addr,
4609 aarch64_record.aarch64_mems[rec_no].len))
4610 ret = -1;
4611
4612 if (record_full_arch_list_add_end ())
4613 ret = -1;
4614 }
4615
4616 deallocate_reg_mem (&aarch64_record);
4617 return ret;
4618 }