2011-06-22 Pedro Alves <pedro@codesourcery.com>
[binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger. Copyright (C)
2
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007, 2008,
4 2009 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21
22 #include "defs.h"
23 #include <stdio.h>
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include <stdarg.h>
27 #include "demangle.h"
28 #include "gdb_regex.h"
29 #include "frame.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "gdbcmd.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35 #include "language.h"
36 #include "c-lang.h"
37 #include "inferior.h"
38 #include "symfile.h"
39 #include "objfiles.h"
40 #include "breakpoint.h"
41 #include "gdbcore.h"
42 #include "hashtab.h"
43 #include "gdb_obstack.h"
44 #include "ada-lang.h"
45 #include "completer.h"
46 #include "gdb_stat.h"
47 #ifdef UI_OUT
48 #include "ui-out.h"
49 #endif
50 #include "block.h"
51 #include "infcall.h"
52 #include "dictionary.h"
53 #include "exceptions.h"
54 #include "annotate.h"
55 #include "valprint.h"
56 #include "source.h"
57 #include "observer.h"
58 #include "vec.h"
59 #include "stack.h"
60
61 #include "psymtab.h"
62 #include "value.h"
63 #include "mi/mi-common.h"
64 #include "arch-utils.h"
65
66 /* Define whether or not the C operator '/' truncates towards zero for
67 differently signed operands (truncation direction is undefined in C).
68 Copied from valarith.c. */
69
70 #ifndef TRUNCATION_TOWARDS_ZERO
71 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
72 #endif
73
74 static struct type *desc_base_type (struct type *);
75
76 static struct type *desc_bounds_type (struct type *);
77
78 static struct value *desc_bounds (struct value *);
79
80 static int fat_pntr_bounds_bitpos (struct type *);
81
82 static int fat_pntr_bounds_bitsize (struct type *);
83
84 static struct type *desc_data_target_type (struct type *);
85
86 static struct value *desc_data (struct value *);
87
88 static int fat_pntr_data_bitpos (struct type *);
89
90 static int fat_pntr_data_bitsize (struct type *);
91
92 static struct value *desc_one_bound (struct value *, int, int);
93
94 static int desc_bound_bitpos (struct type *, int, int);
95
96 static int desc_bound_bitsize (struct type *, int, int);
97
98 static struct type *desc_index_type (struct type *, int);
99
100 static int desc_arity (struct type *);
101
102 static int ada_type_match (struct type *, struct type *, int);
103
104 static int ada_args_match (struct symbol *, struct value **, int);
105
106 static int full_match (const char *, const char *);
107
108 static struct value *make_array_descriptor (struct type *, struct value *);
109
110 static void ada_add_block_symbols (struct obstack *,
111 struct block *, const char *,
112 domain_enum, struct objfile *, int);
113
114 static int is_nonfunction (struct ada_symbol_info *, int);
115
116 static void add_defn_to_vec (struct obstack *, struct symbol *,
117 struct block *);
118
119 static int num_defns_collected (struct obstack *);
120
121 static struct ada_symbol_info *defns_collected (struct obstack *, int);
122
123 static struct value *resolve_subexp (struct expression **, int *, int,
124 struct type *);
125
126 static void replace_operator_with_call (struct expression **, int, int, int,
127 struct symbol *, struct block *);
128
129 static int possible_user_operator_p (enum exp_opcode, struct value **);
130
131 static char *ada_op_name (enum exp_opcode);
132
133 static const char *ada_decoded_op_name (enum exp_opcode);
134
135 static int numeric_type_p (struct type *);
136
137 static int integer_type_p (struct type *);
138
139 static int scalar_type_p (struct type *);
140
141 static int discrete_type_p (struct type *);
142
143 static enum ada_renaming_category parse_old_style_renaming (struct type *,
144 const char **,
145 int *,
146 const char **);
147
148 static struct symbol *find_old_style_renaming_symbol (const char *,
149 struct block *);
150
151 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
152 int, int, int *);
153
154 static struct value *evaluate_subexp_type (struct expression *, int *);
155
156 static struct type *ada_find_parallel_type_with_name (struct type *,
157 const char *);
158
159 static int is_dynamic_field (struct type *, int);
160
161 static struct type *to_fixed_variant_branch_type (struct type *,
162 const gdb_byte *,
163 CORE_ADDR, struct value *);
164
165 static struct type *to_fixed_array_type (struct type *, struct value *, int);
166
167 static struct type *to_fixed_range_type (struct type *, struct value *);
168
169 static struct type *to_static_fixed_type (struct type *);
170 static struct type *static_unwrap_type (struct type *type);
171
172 static struct value *unwrap_value (struct value *);
173
174 static struct type *constrained_packed_array_type (struct type *, long *);
175
176 static struct type *decode_constrained_packed_array_type (struct type *);
177
178 static long decode_packed_array_bitsize (struct type *);
179
180 static struct value *decode_constrained_packed_array (struct value *);
181
182 static int ada_is_packed_array_type (struct type *);
183
184 static int ada_is_unconstrained_packed_array_type (struct type *);
185
186 static struct value *value_subscript_packed (struct value *, int,
187 struct value **);
188
189 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
190
191 static struct value *coerce_unspec_val_to_type (struct value *,
192 struct type *);
193
194 static struct value *get_var_value (char *, char *);
195
196 static int lesseq_defined_than (struct symbol *, struct symbol *);
197
198 static int equiv_types (struct type *, struct type *);
199
200 static int is_name_suffix (const char *);
201
202 static int advance_wild_match (const char **, const char *, int);
203
204 static int wild_match (const char *, const char *);
205
206 static struct value *ada_coerce_ref (struct value *);
207
208 static LONGEST pos_atr (struct value *);
209
210 static struct value *value_pos_atr (struct type *, struct value *);
211
212 static struct value *value_val_atr (struct type *, struct value *);
213
214 static struct symbol *standard_lookup (const char *, const struct block *,
215 domain_enum);
216
217 static struct value *ada_search_struct_field (char *, struct value *, int,
218 struct type *);
219
220 static struct value *ada_value_primitive_field (struct value *, int, int,
221 struct type *);
222
223 static int find_struct_field (char *, struct type *, int,
224 struct type **, int *, int *, int *, int *);
225
226 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
227 struct value *);
228
229 static int ada_resolve_function (struct ada_symbol_info *, int,
230 struct value **, int, const char *,
231 struct type *);
232
233 static int ada_is_direct_array_type (struct type *);
234
235 static void ada_language_arch_info (struct gdbarch *,
236 struct language_arch_info *);
237
238 static void check_size (const struct type *);
239
240 static struct value *ada_index_struct_field (int, struct value *, int,
241 struct type *);
242
243 static struct value *assign_aggregate (struct value *, struct value *,
244 struct expression *,
245 int *, enum noside);
246
247 static void aggregate_assign_from_choices (struct value *, struct value *,
248 struct expression *,
249 int *, LONGEST *, int *,
250 int, LONGEST, LONGEST);
251
252 static void aggregate_assign_positional (struct value *, struct value *,
253 struct expression *,
254 int *, LONGEST *, int *, int,
255 LONGEST, LONGEST);
256
257
258 static void aggregate_assign_others (struct value *, struct value *,
259 struct expression *,
260 int *, LONGEST *, int, LONGEST, LONGEST);
261
262
263 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
264
265
266 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
267 int *, enum noside);
268
269 static void ada_forward_operator_length (struct expression *, int, int *,
270 int *);
271 \f
272
273
274 /* Maximum-sized dynamic type. */
275 static unsigned int varsize_limit;
276
277 /* FIXME: brobecker/2003-09-17: No longer a const because it is
278 returned by a function that does not return a const char *. */
279 static char *ada_completer_word_break_characters =
280 #ifdef VMS
281 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
282 #else
283 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
284 #endif
285
286 /* The name of the symbol to use to get the name of the main subprogram. */
287 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
288 = "__gnat_ada_main_program_name";
289
290 /* Limit on the number of warnings to raise per expression evaluation. */
291 static int warning_limit = 2;
292
293 /* Number of warning messages issued; reset to 0 by cleanups after
294 expression evaluation. */
295 static int warnings_issued = 0;
296
297 static const char *known_runtime_file_name_patterns[] = {
298 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
299 };
300
301 static const char *known_auxiliary_function_name_patterns[] = {
302 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
303 };
304
305 /* Space for allocating results of ada_lookup_symbol_list. */
306 static struct obstack symbol_list_obstack;
307
308 /* Inferior-specific data. */
309
310 /* Per-inferior data for this module. */
311
312 struct ada_inferior_data
313 {
314 /* The ada__tags__type_specific_data type, which is used when decoding
315 tagged types. With older versions of GNAT, this type was directly
316 accessible through a component ("tsd") in the object tag. But this
317 is no longer the case, so we cache it for each inferior. */
318 struct type *tsd_type;
319 };
320
321 /* Our key to this module's inferior data. */
322 static const struct inferior_data *ada_inferior_data;
323
324 /* A cleanup routine for our inferior data. */
325 static void
326 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
327 {
328 struct ada_inferior_data *data;
329
330 data = inferior_data (inf, ada_inferior_data);
331 if (data != NULL)
332 xfree (data);
333 }
334
335 /* Return our inferior data for the given inferior (INF).
336
337 This function always returns a valid pointer to an allocated
338 ada_inferior_data structure. If INF's inferior data has not
339 been previously set, this functions creates a new one with all
340 fields set to zero, sets INF's inferior to it, and then returns
341 a pointer to that newly allocated ada_inferior_data. */
342
343 static struct ada_inferior_data *
344 get_ada_inferior_data (struct inferior *inf)
345 {
346 struct ada_inferior_data *data;
347
348 data = inferior_data (inf, ada_inferior_data);
349 if (data == NULL)
350 {
351 data = XZALLOC (struct ada_inferior_data);
352 set_inferior_data (inf, ada_inferior_data, data);
353 }
354
355 return data;
356 }
357
358 /* Perform all necessary cleanups regarding our module's inferior data
359 that is required after the inferior INF just exited. */
360
361 static void
362 ada_inferior_exit (struct inferior *inf)
363 {
364 ada_inferior_data_cleanup (inf, NULL);
365 set_inferior_data (inf, ada_inferior_data, NULL);
366 }
367
368 /* Utilities */
369
370 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
371 all typedef layers have been peeled. Otherwise, return TYPE.
372
373 Normally, we really expect a typedef type to only have 1 typedef layer.
374 In other words, we really expect the target type of a typedef type to be
375 a non-typedef type. This is particularly true for Ada units, because
376 the language does not have a typedef vs not-typedef distinction.
377 In that respect, the Ada compiler has been trying to eliminate as many
378 typedef definitions in the debugging information, since they generally
379 do not bring any extra information (we still use typedef under certain
380 circumstances related mostly to the GNAT encoding).
381
382 Unfortunately, we have seen situations where the debugging information
383 generated by the compiler leads to such multiple typedef layers. For
384 instance, consider the following example with stabs:
385
386 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
387 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
388
389 This is an error in the debugging information which causes type
390 pck__float_array___XUP to be defined twice, and the second time,
391 it is defined as a typedef of a typedef.
392
393 This is on the fringe of legality as far as debugging information is
394 concerned, and certainly unexpected. But it is easy to handle these
395 situations correctly, so we can afford to be lenient in this case. */
396
397 static struct type *
398 ada_typedef_target_type (struct type *type)
399 {
400 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
401 type = TYPE_TARGET_TYPE (type);
402 return type;
403 }
404
405 /* Given DECODED_NAME a string holding a symbol name in its
406 decoded form (ie using the Ada dotted notation), returns
407 its unqualified name. */
408
409 static const char *
410 ada_unqualified_name (const char *decoded_name)
411 {
412 const char *result = strrchr (decoded_name, '.');
413
414 if (result != NULL)
415 result++; /* Skip the dot... */
416 else
417 result = decoded_name;
418
419 return result;
420 }
421
422 /* Return a string starting with '<', followed by STR, and '>'.
423 The result is good until the next call. */
424
425 static char *
426 add_angle_brackets (const char *str)
427 {
428 static char *result = NULL;
429
430 xfree (result);
431 result = xstrprintf ("<%s>", str);
432 return result;
433 }
434
435 static char *
436 ada_get_gdb_completer_word_break_characters (void)
437 {
438 return ada_completer_word_break_characters;
439 }
440
441 /* Print an array element index using the Ada syntax. */
442
443 static void
444 ada_print_array_index (struct value *index_value, struct ui_file *stream,
445 const struct value_print_options *options)
446 {
447 LA_VALUE_PRINT (index_value, stream, options);
448 fprintf_filtered (stream, " => ");
449 }
450
451 /* Assuming VECT points to an array of *SIZE objects of size
452 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
453 updating *SIZE as necessary and returning the (new) array. */
454
455 void *
456 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
457 {
458 if (*size < min_size)
459 {
460 *size *= 2;
461 if (*size < min_size)
462 *size = min_size;
463 vect = xrealloc (vect, *size * element_size);
464 }
465 return vect;
466 }
467
468 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
469 suffix of FIELD_NAME beginning "___". */
470
471 static int
472 field_name_match (const char *field_name, const char *target)
473 {
474 int len = strlen (target);
475
476 return
477 (strncmp (field_name, target, len) == 0
478 && (field_name[len] == '\0'
479 || (strncmp (field_name + len, "___", 3) == 0
480 && strcmp (field_name + strlen (field_name) - 6,
481 "___XVN") != 0)));
482 }
483
484
485 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
486 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
487 and return its index. This function also handles fields whose name
488 have ___ suffixes because the compiler sometimes alters their name
489 by adding such a suffix to represent fields with certain constraints.
490 If the field could not be found, return a negative number if
491 MAYBE_MISSING is set. Otherwise raise an error. */
492
493 int
494 ada_get_field_index (const struct type *type, const char *field_name,
495 int maybe_missing)
496 {
497 int fieldno;
498 struct type *struct_type = check_typedef ((struct type *) type);
499
500 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
501 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
502 return fieldno;
503
504 if (!maybe_missing)
505 error (_("Unable to find field %s in struct %s. Aborting"),
506 field_name, TYPE_NAME (struct_type));
507
508 return -1;
509 }
510
511 /* The length of the prefix of NAME prior to any "___" suffix. */
512
513 int
514 ada_name_prefix_len (const char *name)
515 {
516 if (name == NULL)
517 return 0;
518 else
519 {
520 const char *p = strstr (name, "___");
521
522 if (p == NULL)
523 return strlen (name);
524 else
525 return p - name;
526 }
527 }
528
529 /* Return non-zero if SUFFIX is a suffix of STR.
530 Return zero if STR is null. */
531
532 static int
533 is_suffix (const char *str, const char *suffix)
534 {
535 int len1, len2;
536
537 if (str == NULL)
538 return 0;
539 len1 = strlen (str);
540 len2 = strlen (suffix);
541 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
542 }
543
544 /* The contents of value VAL, treated as a value of type TYPE. The
545 result is an lval in memory if VAL is. */
546
547 static struct value *
548 coerce_unspec_val_to_type (struct value *val, struct type *type)
549 {
550 type = ada_check_typedef (type);
551 if (value_type (val) == type)
552 return val;
553 else
554 {
555 struct value *result;
556
557 /* Make sure that the object size is not unreasonable before
558 trying to allocate some memory for it. */
559 check_size (type);
560
561 if (value_lazy (val)
562 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
563 result = allocate_value_lazy (type);
564 else
565 {
566 result = allocate_value (type);
567 memcpy (value_contents_raw (result), value_contents (val),
568 TYPE_LENGTH (type));
569 }
570 set_value_component_location (result, val);
571 set_value_bitsize (result, value_bitsize (val));
572 set_value_bitpos (result, value_bitpos (val));
573 set_value_address (result, value_address (val));
574 return result;
575 }
576 }
577
578 static const gdb_byte *
579 cond_offset_host (const gdb_byte *valaddr, long offset)
580 {
581 if (valaddr == NULL)
582 return NULL;
583 else
584 return valaddr + offset;
585 }
586
587 static CORE_ADDR
588 cond_offset_target (CORE_ADDR address, long offset)
589 {
590 if (address == 0)
591 return 0;
592 else
593 return address + offset;
594 }
595
596 /* Issue a warning (as for the definition of warning in utils.c, but
597 with exactly one argument rather than ...), unless the limit on the
598 number of warnings has passed during the evaluation of the current
599 expression. */
600
601 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
602 provided by "complaint". */
603 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
604
605 static void
606 lim_warning (const char *format, ...)
607 {
608 va_list args;
609
610 va_start (args, format);
611 warnings_issued += 1;
612 if (warnings_issued <= warning_limit)
613 vwarning (format, args);
614
615 va_end (args);
616 }
617
618 /* Issue an error if the size of an object of type T is unreasonable,
619 i.e. if it would be a bad idea to allocate a value of this type in
620 GDB. */
621
622 static void
623 check_size (const struct type *type)
624 {
625 if (TYPE_LENGTH (type) > varsize_limit)
626 error (_("object size is larger than varsize-limit"));
627 }
628
629 /* Maximum value of a SIZE-byte signed integer type. */
630 static LONGEST
631 max_of_size (int size)
632 {
633 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
634
635 return top_bit | (top_bit - 1);
636 }
637
638 /* Minimum value of a SIZE-byte signed integer type. */
639 static LONGEST
640 min_of_size (int size)
641 {
642 return -max_of_size (size) - 1;
643 }
644
645 /* Maximum value of a SIZE-byte unsigned integer type. */
646 static ULONGEST
647 umax_of_size (int size)
648 {
649 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
650
651 return top_bit | (top_bit - 1);
652 }
653
654 /* Maximum value of integral type T, as a signed quantity. */
655 static LONGEST
656 max_of_type (struct type *t)
657 {
658 if (TYPE_UNSIGNED (t))
659 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
660 else
661 return max_of_size (TYPE_LENGTH (t));
662 }
663
664 /* Minimum value of integral type T, as a signed quantity. */
665 static LONGEST
666 min_of_type (struct type *t)
667 {
668 if (TYPE_UNSIGNED (t))
669 return 0;
670 else
671 return min_of_size (TYPE_LENGTH (t));
672 }
673
674 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
675 LONGEST
676 ada_discrete_type_high_bound (struct type *type)
677 {
678 switch (TYPE_CODE (type))
679 {
680 case TYPE_CODE_RANGE:
681 return TYPE_HIGH_BOUND (type);
682 case TYPE_CODE_ENUM:
683 return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1);
684 case TYPE_CODE_BOOL:
685 return 1;
686 case TYPE_CODE_CHAR:
687 case TYPE_CODE_INT:
688 return max_of_type (type);
689 default:
690 error (_("Unexpected type in ada_discrete_type_high_bound."));
691 }
692 }
693
694 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
695 LONGEST
696 ada_discrete_type_low_bound (struct type *type)
697 {
698 switch (TYPE_CODE (type))
699 {
700 case TYPE_CODE_RANGE:
701 return TYPE_LOW_BOUND (type);
702 case TYPE_CODE_ENUM:
703 return TYPE_FIELD_BITPOS (type, 0);
704 case TYPE_CODE_BOOL:
705 return 0;
706 case TYPE_CODE_CHAR:
707 case TYPE_CODE_INT:
708 return min_of_type (type);
709 default:
710 error (_("Unexpected type in ada_discrete_type_low_bound."));
711 }
712 }
713
714 /* The identity on non-range types. For range types, the underlying
715 non-range scalar type. */
716
717 static struct type *
718 base_type (struct type *type)
719 {
720 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
721 {
722 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
723 return type;
724 type = TYPE_TARGET_TYPE (type);
725 }
726 return type;
727 }
728 \f
729
730 /* Language Selection */
731
732 /* If the main program is in Ada, return language_ada, otherwise return LANG
733 (the main program is in Ada iif the adainit symbol is found). */
734
735 enum language
736 ada_update_initial_language (enum language lang)
737 {
738 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
739 (struct objfile *) NULL) != NULL)
740 return language_ada;
741
742 return lang;
743 }
744
745 /* If the main procedure is written in Ada, then return its name.
746 The result is good until the next call. Return NULL if the main
747 procedure doesn't appear to be in Ada. */
748
749 char *
750 ada_main_name (void)
751 {
752 struct minimal_symbol *msym;
753 static char *main_program_name = NULL;
754
755 /* For Ada, the name of the main procedure is stored in a specific
756 string constant, generated by the binder. Look for that symbol,
757 extract its address, and then read that string. If we didn't find
758 that string, then most probably the main procedure is not written
759 in Ada. */
760 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
761
762 if (msym != NULL)
763 {
764 CORE_ADDR main_program_name_addr;
765 int err_code;
766
767 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
768 if (main_program_name_addr == 0)
769 error (_("Invalid address for Ada main program name."));
770
771 xfree (main_program_name);
772 target_read_string (main_program_name_addr, &main_program_name,
773 1024, &err_code);
774
775 if (err_code != 0)
776 return NULL;
777 return main_program_name;
778 }
779
780 /* The main procedure doesn't seem to be in Ada. */
781 return NULL;
782 }
783 \f
784 /* Symbols */
785
786 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
787 of NULLs. */
788
789 const struct ada_opname_map ada_opname_table[] = {
790 {"Oadd", "\"+\"", BINOP_ADD},
791 {"Osubtract", "\"-\"", BINOP_SUB},
792 {"Omultiply", "\"*\"", BINOP_MUL},
793 {"Odivide", "\"/\"", BINOP_DIV},
794 {"Omod", "\"mod\"", BINOP_MOD},
795 {"Orem", "\"rem\"", BINOP_REM},
796 {"Oexpon", "\"**\"", BINOP_EXP},
797 {"Olt", "\"<\"", BINOP_LESS},
798 {"Ole", "\"<=\"", BINOP_LEQ},
799 {"Ogt", "\">\"", BINOP_GTR},
800 {"Oge", "\">=\"", BINOP_GEQ},
801 {"Oeq", "\"=\"", BINOP_EQUAL},
802 {"One", "\"/=\"", BINOP_NOTEQUAL},
803 {"Oand", "\"and\"", BINOP_BITWISE_AND},
804 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
805 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
806 {"Oconcat", "\"&\"", BINOP_CONCAT},
807 {"Oabs", "\"abs\"", UNOP_ABS},
808 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
809 {"Oadd", "\"+\"", UNOP_PLUS},
810 {"Osubtract", "\"-\"", UNOP_NEG},
811 {NULL, NULL}
812 };
813
814 /* The "encoded" form of DECODED, according to GNAT conventions.
815 The result is valid until the next call to ada_encode. */
816
817 char *
818 ada_encode (const char *decoded)
819 {
820 static char *encoding_buffer = NULL;
821 static size_t encoding_buffer_size = 0;
822 const char *p;
823 int k;
824
825 if (decoded == NULL)
826 return NULL;
827
828 GROW_VECT (encoding_buffer, encoding_buffer_size,
829 2 * strlen (decoded) + 10);
830
831 k = 0;
832 for (p = decoded; *p != '\0'; p += 1)
833 {
834 if (*p == '.')
835 {
836 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
837 k += 2;
838 }
839 else if (*p == '"')
840 {
841 const struct ada_opname_map *mapping;
842
843 for (mapping = ada_opname_table;
844 mapping->encoded != NULL
845 && strncmp (mapping->decoded, p,
846 strlen (mapping->decoded)) != 0; mapping += 1)
847 ;
848 if (mapping->encoded == NULL)
849 error (_("invalid Ada operator name: %s"), p);
850 strcpy (encoding_buffer + k, mapping->encoded);
851 k += strlen (mapping->encoded);
852 break;
853 }
854 else
855 {
856 encoding_buffer[k] = *p;
857 k += 1;
858 }
859 }
860
861 encoding_buffer[k] = '\0';
862 return encoding_buffer;
863 }
864
865 /* Return NAME folded to lower case, or, if surrounded by single
866 quotes, unfolded, but with the quotes stripped away. Result good
867 to next call. */
868
869 char *
870 ada_fold_name (const char *name)
871 {
872 static char *fold_buffer = NULL;
873 static size_t fold_buffer_size = 0;
874
875 int len = strlen (name);
876 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
877
878 if (name[0] == '\'')
879 {
880 strncpy (fold_buffer, name + 1, len - 2);
881 fold_buffer[len - 2] = '\000';
882 }
883 else
884 {
885 int i;
886
887 for (i = 0; i <= len; i += 1)
888 fold_buffer[i] = tolower (name[i]);
889 }
890
891 return fold_buffer;
892 }
893
894 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
895
896 static int
897 is_lower_alphanum (const char c)
898 {
899 return (isdigit (c) || (isalpha (c) && islower (c)));
900 }
901
902 /* Remove either of these suffixes:
903 . .{DIGIT}+
904 . ${DIGIT}+
905 . ___{DIGIT}+
906 . __{DIGIT}+.
907 These are suffixes introduced by the compiler for entities such as
908 nested subprogram for instance, in order to avoid name clashes.
909 They do not serve any purpose for the debugger. */
910
911 static void
912 ada_remove_trailing_digits (const char *encoded, int *len)
913 {
914 if (*len > 1 && isdigit (encoded[*len - 1]))
915 {
916 int i = *len - 2;
917
918 while (i > 0 && isdigit (encoded[i]))
919 i--;
920 if (i >= 0 && encoded[i] == '.')
921 *len = i;
922 else if (i >= 0 && encoded[i] == '$')
923 *len = i;
924 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
925 *len = i - 2;
926 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
927 *len = i - 1;
928 }
929 }
930
931 /* Remove the suffix introduced by the compiler for protected object
932 subprograms. */
933
934 static void
935 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
936 {
937 /* Remove trailing N. */
938
939 /* Protected entry subprograms are broken into two
940 separate subprograms: The first one is unprotected, and has
941 a 'N' suffix; the second is the protected version, and has
942 the 'P' suffix. The second calls the first one after handling
943 the protection. Since the P subprograms are internally generated,
944 we leave these names undecoded, giving the user a clue that this
945 entity is internal. */
946
947 if (*len > 1
948 && encoded[*len - 1] == 'N'
949 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
950 *len = *len - 1;
951 }
952
953 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
954
955 static void
956 ada_remove_Xbn_suffix (const char *encoded, int *len)
957 {
958 int i = *len - 1;
959
960 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
961 i--;
962
963 if (encoded[i] != 'X')
964 return;
965
966 if (i == 0)
967 return;
968
969 if (isalnum (encoded[i-1]))
970 *len = i;
971 }
972
973 /* If ENCODED follows the GNAT entity encoding conventions, then return
974 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
975 replaced by ENCODED.
976
977 The resulting string is valid until the next call of ada_decode.
978 If the string is unchanged by decoding, the original string pointer
979 is returned. */
980
981 const char *
982 ada_decode (const char *encoded)
983 {
984 int i, j;
985 int len0;
986 const char *p;
987 char *decoded;
988 int at_start_name;
989 static char *decoding_buffer = NULL;
990 static size_t decoding_buffer_size = 0;
991
992 /* The name of the Ada main procedure starts with "_ada_".
993 This prefix is not part of the decoded name, so skip this part
994 if we see this prefix. */
995 if (strncmp (encoded, "_ada_", 5) == 0)
996 encoded += 5;
997
998 /* If the name starts with '_', then it is not a properly encoded
999 name, so do not attempt to decode it. Similarly, if the name
1000 starts with '<', the name should not be decoded. */
1001 if (encoded[0] == '_' || encoded[0] == '<')
1002 goto Suppress;
1003
1004 len0 = strlen (encoded);
1005
1006 ada_remove_trailing_digits (encoded, &len0);
1007 ada_remove_po_subprogram_suffix (encoded, &len0);
1008
1009 /* Remove the ___X.* suffix if present. Do not forget to verify that
1010 the suffix is located before the current "end" of ENCODED. We want
1011 to avoid re-matching parts of ENCODED that have previously been
1012 marked as discarded (by decrementing LEN0). */
1013 p = strstr (encoded, "___");
1014 if (p != NULL && p - encoded < len0 - 3)
1015 {
1016 if (p[3] == 'X')
1017 len0 = p - encoded;
1018 else
1019 goto Suppress;
1020 }
1021
1022 /* Remove any trailing TKB suffix. It tells us that this symbol
1023 is for the body of a task, but that information does not actually
1024 appear in the decoded name. */
1025
1026 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
1027 len0 -= 3;
1028
1029 /* Remove any trailing TB suffix. The TB suffix is slightly different
1030 from the TKB suffix because it is used for non-anonymous task
1031 bodies. */
1032
1033 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
1034 len0 -= 2;
1035
1036 /* Remove trailing "B" suffixes. */
1037 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1038
1039 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
1040 len0 -= 1;
1041
1042 /* Make decoded big enough for possible expansion by operator name. */
1043
1044 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1045 decoded = decoding_buffer;
1046
1047 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1048
1049 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1050 {
1051 i = len0 - 2;
1052 while ((i >= 0 && isdigit (encoded[i]))
1053 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1054 i -= 1;
1055 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1056 len0 = i - 1;
1057 else if (encoded[i] == '$')
1058 len0 = i;
1059 }
1060
1061 /* The first few characters that are not alphabetic are not part
1062 of any encoding we use, so we can copy them over verbatim. */
1063
1064 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1065 decoded[j] = encoded[i];
1066
1067 at_start_name = 1;
1068 while (i < len0)
1069 {
1070 /* Is this a symbol function? */
1071 if (at_start_name && encoded[i] == 'O')
1072 {
1073 int k;
1074
1075 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1076 {
1077 int op_len = strlen (ada_opname_table[k].encoded);
1078 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1079 op_len - 1) == 0)
1080 && !isalnum (encoded[i + op_len]))
1081 {
1082 strcpy (decoded + j, ada_opname_table[k].decoded);
1083 at_start_name = 0;
1084 i += op_len;
1085 j += strlen (ada_opname_table[k].decoded);
1086 break;
1087 }
1088 }
1089 if (ada_opname_table[k].encoded != NULL)
1090 continue;
1091 }
1092 at_start_name = 0;
1093
1094 /* Replace "TK__" with "__", which will eventually be translated
1095 into "." (just below). */
1096
1097 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1098 i += 2;
1099
1100 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1101 be translated into "." (just below). These are internal names
1102 generated for anonymous blocks inside which our symbol is nested. */
1103
1104 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1105 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1106 && isdigit (encoded [i+4]))
1107 {
1108 int k = i + 5;
1109
1110 while (k < len0 && isdigit (encoded[k]))
1111 k++; /* Skip any extra digit. */
1112
1113 /* Double-check that the "__B_{DIGITS}+" sequence we found
1114 is indeed followed by "__". */
1115 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1116 i = k;
1117 }
1118
1119 /* Remove _E{DIGITS}+[sb] */
1120
1121 /* Just as for protected object subprograms, there are 2 categories
1122 of subprograms created by the compiler for each entry. The first
1123 one implements the actual entry code, and has a suffix following
1124 the convention above; the second one implements the barrier and
1125 uses the same convention as above, except that the 'E' is replaced
1126 by a 'B'.
1127
1128 Just as above, we do not decode the name of barrier functions
1129 to give the user a clue that the code he is debugging has been
1130 internally generated. */
1131
1132 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1133 && isdigit (encoded[i+2]))
1134 {
1135 int k = i + 3;
1136
1137 while (k < len0 && isdigit (encoded[k]))
1138 k++;
1139
1140 if (k < len0
1141 && (encoded[k] == 'b' || encoded[k] == 's'))
1142 {
1143 k++;
1144 /* Just as an extra precaution, make sure that if this
1145 suffix is followed by anything else, it is a '_'.
1146 Otherwise, we matched this sequence by accident. */
1147 if (k == len0
1148 || (k < len0 && encoded[k] == '_'))
1149 i = k;
1150 }
1151 }
1152
1153 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1154 the GNAT front-end in protected object subprograms. */
1155
1156 if (i < len0 + 3
1157 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1158 {
1159 /* Backtrack a bit up until we reach either the begining of
1160 the encoded name, or "__". Make sure that we only find
1161 digits or lowercase characters. */
1162 const char *ptr = encoded + i - 1;
1163
1164 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1165 ptr--;
1166 if (ptr < encoded
1167 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1168 i++;
1169 }
1170
1171 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1172 {
1173 /* This is a X[bn]* sequence not separated from the previous
1174 part of the name with a non-alpha-numeric character (in other
1175 words, immediately following an alpha-numeric character), then
1176 verify that it is placed at the end of the encoded name. If
1177 not, then the encoding is not valid and we should abort the
1178 decoding. Otherwise, just skip it, it is used in body-nested
1179 package names. */
1180 do
1181 i += 1;
1182 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1183 if (i < len0)
1184 goto Suppress;
1185 }
1186 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1187 {
1188 /* Replace '__' by '.'. */
1189 decoded[j] = '.';
1190 at_start_name = 1;
1191 i += 2;
1192 j += 1;
1193 }
1194 else
1195 {
1196 /* It's a character part of the decoded name, so just copy it
1197 over. */
1198 decoded[j] = encoded[i];
1199 i += 1;
1200 j += 1;
1201 }
1202 }
1203 decoded[j] = '\000';
1204
1205 /* Decoded names should never contain any uppercase character.
1206 Double-check this, and abort the decoding if we find one. */
1207
1208 for (i = 0; decoded[i] != '\0'; i += 1)
1209 if (isupper (decoded[i]) || decoded[i] == ' ')
1210 goto Suppress;
1211
1212 if (strcmp (decoded, encoded) == 0)
1213 return encoded;
1214 else
1215 return decoded;
1216
1217 Suppress:
1218 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1219 decoded = decoding_buffer;
1220 if (encoded[0] == '<')
1221 strcpy (decoded, encoded);
1222 else
1223 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1224 return decoded;
1225
1226 }
1227
1228 /* Table for keeping permanent unique copies of decoded names. Once
1229 allocated, names in this table are never released. While this is a
1230 storage leak, it should not be significant unless there are massive
1231 changes in the set of decoded names in successive versions of a
1232 symbol table loaded during a single session. */
1233 static struct htab *decoded_names_store;
1234
1235 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1236 in the language-specific part of GSYMBOL, if it has not been
1237 previously computed. Tries to save the decoded name in the same
1238 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1239 in any case, the decoded symbol has a lifetime at least that of
1240 GSYMBOL).
1241 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1242 const, but nevertheless modified to a semantically equivalent form
1243 when a decoded name is cached in it. */
1244
1245 char *
1246 ada_decode_symbol (const struct general_symbol_info *gsymbol)
1247 {
1248 char **resultp =
1249 (char **) &gsymbol->language_specific.mangled_lang.demangled_name;
1250
1251 if (*resultp == NULL)
1252 {
1253 const char *decoded = ada_decode (gsymbol->name);
1254
1255 if (gsymbol->obj_section != NULL)
1256 {
1257 struct objfile *objf = gsymbol->obj_section->objfile;
1258
1259 *resultp = obsavestring (decoded, strlen (decoded),
1260 &objf->objfile_obstack);
1261 }
1262 /* Sometimes, we can't find a corresponding objfile, in which
1263 case, we put the result on the heap. Since we only decode
1264 when needed, we hope this usually does not cause a
1265 significant memory leak (FIXME). */
1266 if (*resultp == NULL)
1267 {
1268 char **slot = (char **) htab_find_slot (decoded_names_store,
1269 decoded, INSERT);
1270
1271 if (*slot == NULL)
1272 *slot = xstrdup (decoded);
1273 *resultp = *slot;
1274 }
1275 }
1276
1277 return *resultp;
1278 }
1279
1280 static char *
1281 ada_la_decode (const char *encoded, int options)
1282 {
1283 return xstrdup (ada_decode (encoded));
1284 }
1285
1286 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1287 suffixes that encode debugging information or leading _ada_ on
1288 SYM_NAME (see is_name_suffix commentary for the debugging
1289 information that is ignored). If WILD, then NAME need only match a
1290 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1291 either argument is NULL. */
1292
1293 static int
1294 match_name (const char *sym_name, const char *name, int wild)
1295 {
1296 if (sym_name == NULL || name == NULL)
1297 return 0;
1298 else if (wild)
1299 return wild_match (sym_name, name) == 0;
1300 else
1301 {
1302 int len_name = strlen (name);
1303
1304 return (strncmp (sym_name, name, len_name) == 0
1305 && is_name_suffix (sym_name + len_name))
1306 || (strncmp (sym_name, "_ada_", 5) == 0
1307 && strncmp (sym_name + 5, name, len_name) == 0
1308 && is_name_suffix (sym_name + len_name + 5));
1309 }
1310 }
1311 \f
1312
1313 /* Arrays */
1314
1315 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1316 generated by the GNAT compiler to describe the index type used
1317 for each dimension of an array, check whether it follows the latest
1318 known encoding. If not, fix it up to conform to the latest encoding.
1319 Otherwise, do nothing. This function also does nothing if
1320 INDEX_DESC_TYPE is NULL.
1321
1322 The GNAT encoding used to describle the array index type evolved a bit.
1323 Initially, the information would be provided through the name of each
1324 field of the structure type only, while the type of these fields was
1325 described as unspecified and irrelevant. The debugger was then expected
1326 to perform a global type lookup using the name of that field in order
1327 to get access to the full index type description. Because these global
1328 lookups can be very expensive, the encoding was later enhanced to make
1329 the global lookup unnecessary by defining the field type as being
1330 the full index type description.
1331
1332 The purpose of this routine is to allow us to support older versions
1333 of the compiler by detecting the use of the older encoding, and by
1334 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1335 we essentially replace each field's meaningless type by the associated
1336 index subtype). */
1337
1338 void
1339 ada_fixup_array_indexes_type (struct type *index_desc_type)
1340 {
1341 int i;
1342
1343 if (index_desc_type == NULL)
1344 return;
1345 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1346
1347 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1348 to check one field only, no need to check them all). If not, return
1349 now.
1350
1351 If our INDEX_DESC_TYPE was generated using the older encoding,
1352 the field type should be a meaningless integer type whose name
1353 is not equal to the field name. */
1354 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1355 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1356 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1357 return;
1358
1359 /* Fixup each field of INDEX_DESC_TYPE. */
1360 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1361 {
1362 char *name = TYPE_FIELD_NAME (index_desc_type, i);
1363 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1364
1365 if (raw_type)
1366 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1367 }
1368 }
1369
1370 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1371
1372 static char *bound_name[] = {
1373 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1374 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1375 };
1376
1377 /* Maximum number of array dimensions we are prepared to handle. */
1378
1379 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1380
1381
1382 /* The desc_* routines return primitive portions of array descriptors
1383 (fat pointers). */
1384
1385 /* The descriptor or array type, if any, indicated by TYPE; removes
1386 level of indirection, if needed. */
1387
1388 static struct type *
1389 desc_base_type (struct type *type)
1390 {
1391 if (type == NULL)
1392 return NULL;
1393 type = ada_check_typedef (type);
1394 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1395 type = ada_typedef_target_type (type);
1396
1397 if (type != NULL
1398 && (TYPE_CODE (type) == TYPE_CODE_PTR
1399 || TYPE_CODE (type) == TYPE_CODE_REF))
1400 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1401 else
1402 return type;
1403 }
1404
1405 /* True iff TYPE indicates a "thin" array pointer type. */
1406
1407 static int
1408 is_thin_pntr (struct type *type)
1409 {
1410 return
1411 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1412 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1413 }
1414
1415 /* The descriptor type for thin pointer type TYPE. */
1416
1417 static struct type *
1418 thin_descriptor_type (struct type *type)
1419 {
1420 struct type *base_type = desc_base_type (type);
1421
1422 if (base_type == NULL)
1423 return NULL;
1424 if (is_suffix (ada_type_name (base_type), "___XVE"))
1425 return base_type;
1426 else
1427 {
1428 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1429
1430 if (alt_type == NULL)
1431 return base_type;
1432 else
1433 return alt_type;
1434 }
1435 }
1436
1437 /* A pointer to the array data for thin-pointer value VAL. */
1438
1439 static struct value *
1440 thin_data_pntr (struct value *val)
1441 {
1442 struct type *type = value_type (val);
1443 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1444
1445 data_type = lookup_pointer_type (data_type);
1446
1447 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1448 return value_cast (data_type, value_copy (val));
1449 else
1450 return value_from_longest (data_type, value_address (val));
1451 }
1452
1453 /* True iff TYPE indicates a "thick" array pointer type. */
1454
1455 static int
1456 is_thick_pntr (struct type *type)
1457 {
1458 type = desc_base_type (type);
1459 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1460 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1461 }
1462
1463 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1464 pointer to one, the type of its bounds data; otherwise, NULL. */
1465
1466 static struct type *
1467 desc_bounds_type (struct type *type)
1468 {
1469 struct type *r;
1470
1471 type = desc_base_type (type);
1472
1473 if (type == NULL)
1474 return NULL;
1475 else if (is_thin_pntr (type))
1476 {
1477 type = thin_descriptor_type (type);
1478 if (type == NULL)
1479 return NULL;
1480 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1481 if (r != NULL)
1482 return ada_check_typedef (r);
1483 }
1484 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1485 {
1486 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1487 if (r != NULL)
1488 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1489 }
1490 return NULL;
1491 }
1492
1493 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1494 one, a pointer to its bounds data. Otherwise NULL. */
1495
1496 static struct value *
1497 desc_bounds (struct value *arr)
1498 {
1499 struct type *type = ada_check_typedef (value_type (arr));
1500
1501 if (is_thin_pntr (type))
1502 {
1503 struct type *bounds_type =
1504 desc_bounds_type (thin_descriptor_type (type));
1505 LONGEST addr;
1506
1507 if (bounds_type == NULL)
1508 error (_("Bad GNAT array descriptor"));
1509
1510 /* NOTE: The following calculation is not really kosher, but
1511 since desc_type is an XVE-encoded type (and shouldn't be),
1512 the correct calculation is a real pain. FIXME (and fix GCC). */
1513 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1514 addr = value_as_long (arr);
1515 else
1516 addr = value_address (arr);
1517
1518 return
1519 value_from_longest (lookup_pointer_type (bounds_type),
1520 addr - TYPE_LENGTH (bounds_type));
1521 }
1522
1523 else if (is_thick_pntr (type))
1524 {
1525 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1526 _("Bad GNAT array descriptor"));
1527 struct type *p_bounds_type = value_type (p_bounds);
1528
1529 if (p_bounds_type
1530 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1531 {
1532 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1533
1534 if (TYPE_STUB (target_type))
1535 p_bounds = value_cast (lookup_pointer_type
1536 (ada_check_typedef (target_type)),
1537 p_bounds);
1538 }
1539 else
1540 error (_("Bad GNAT array descriptor"));
1541
1542 return p_bounds;
1543 }
1544 else
1545 return NULL;
1546 }
1547
1548 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1549 position of the field containing the address of the bounds data. */
1550
1551 static int
1552 fat_pntr_bounds_bitpos (struct type *type)
1553 {
1554 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1555 }
1556
1557 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1558 size of the field containing the address of the bounds data. */
1559
1560 static int
1561 fat_pntr_bounds_bitsize (struct type *type)
1562 {
1563 type = desc_base_type (type);
1564
1565 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1566 return TYPE_FIELD_BITSIZE (type, 1);
1567 else
1568 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1569 }
1570
1571 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1572 pointer to one, the type of its array data (a array-with-no-bounds type);
1573 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1574 data. */
1575
1576 static struct type *
1577 desc_data_target_type (struct type *type)
1578 {
1579 type = desc_base_type (type);
1580
1581 /* NOTE: The following is bogus; see comment in desc_bounds. */
1582 if (is_thin_pntr (type))
1583 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1584 else if (is_thick_pntr (type))
1585 {
1586 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1587
1588 if (data_type
1589 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1590 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1591 }
1592
1593 return NULL;
1594 }
1595
1596 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1597 its array data. */
1598
1599 static struct value *
1600 desc_data (struct value *arr)
1601 {
1602 struct type *type = value_type (arr);
1603
1604 if (is_thin_pntr (type))
1605 return thin_data_pntr (arr);
1606 else if (is_thick_pntr (type))
1607 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1608 _("Bad GNAT array descriptor"));
1609 else
1610 return NULL;
1611 }
1612
1613
1614 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1615 position of the field containing the address of the data. */
1616
1617 static int
1618 fat_pntr_data_bitpos (struct type *type)
1619 {
1620 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1621 }
1622
1623 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1624 size of the field containing the address of the data. */
1625
1626 static int
1627 fat_pntr_data_bitsize (struct type *type)
1628 {
1629 type = desc_base_type (type);
1630
1631 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1632 return TYPE_FIELD_BITSIZE (type, 0);
1633 else
1634 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1635 }
1636
1637 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1638 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1639 bound, if WHICH is 1. The first bound is I=1. */
1640
1641 static struct value *
1642 desc_one_bound (struct value *bounds, int i, int which)
1643 {
1644 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1645 _("Bad GNAT array descriptor bounds"));
1646 }
1647
1648 /* If BOUNDS is an array-bounds structure type, return the bit position
1649 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1650 bound, if WHICH is 1. The first bound is I=1. */
1651
1652 static int
1653 desc_bound_bitpos (struct type *type, int i, int which)
1654 {
1655 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1656 }
1657
1658 /* If BOUNDS is an array-bounds structure type, return the bit field size
1659 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1660 bound, if WHICH is 1. The first bound is I=1. */
1661
1662 static int
1663 desc_bound_bitsize (struct type *type, int i, int which)
1664 {
1665 type = desc_base_type (type);
1666
1667 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1668 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1669 else
1670 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1671 }
1672
1673 /* If TYPE is the type of an array-bounds structure, the type of its
1674 Ith bound (numbering from 1). Otherwise, NULL. */
1675
1676 static struct type *
1677 desc_index_type (struct type *type, int i)
1678 {
1679 type = desc_base_type (type);
1680
1681 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1682 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1683 else
1684 return NULL;
1685 }
1686
1687 /* The number of index positions in the array-bounds type TYPE.
1688 Return 0 if TYPE is NULL. */
1689
1690 static int
1691 desc_arity (struct type *type)
1692 {
1693 type = desc_base_type (type);
1694
1695 if (type != NULL)
1696 return TYPE_NFIELDS (type) / 2;
1697 return 0;
1698 }
1699
1700 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1701 an array descriptor type (representing an unconstrained array
1702 type). */
1703
1704 static int
1705 ada_is_direct_array_type (struct type *type)
1706 {
1707 if (type == NULL)
1708 return 0;
1709 type = ada_check_typedef (type);
1710 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1711 || ada_is_array_descriptor_type (type));
1712 }
1713
1714 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1715 * to one. */
1716
1717 static int
1718 ada_is_array_type (struct type *type)
1719 {
1720 while (type != NULL
1721 && (TYPE_CODE (type) == TYPE_CODE_PTR
1722 || TYPE_CODE (type) == TYPE_CODE_REF))
1723 type = TYPE_TARGET_TYPE (type);
1724 return ada_is_direct_array_type (type);
1725 }
1726
1727 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1728
1729 int
1730 ada_is_simple_array_type (struct type *type)
1731 {
1732 if (type == NULL)
1733 return 0;
1734 type = ada_check_typedef (type);
1735 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1736 || (TYPE_CODE (type) == TYPE_CODE_PTR
1737 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1738 == TYPE_CODE_ARRAY));
1739 }
1740
1741 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1742
1743 int
1744 ada_is_array_descriptor_type (struct type *type)
1745 {
1746 struct type *data_type = desc_data_target_type (type);
1747
1748 if (type == NULL)
1749 return 0;
1750 type = ada_check_typedef (type);
1751 return (data_type != NULL
1752 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1753 && desc_arity (desc_bounds_type (type)) > 0);
1754 }
1755
1756 /* Non-zero iff type is a partially mal-formed GNAT array
1757 descriptor. FIXME: This is to compensate for some problems with
1758 debugging output from GNAT. Re-examine periodically to see if it
1759 is still needed. */
1760
1761 int
1762 ada_is_bogus_array_descriptor (struct type *type)
1763 {
1764 return
1765 type != NULL
1766 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1767 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1768 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1769 && !ada_is_array_descriptor_type (type);
1770 }
1771
1772
1773 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1774 (fat pointer) returns the type of the array data described---specifically,
1775 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1776 in from the descriptor; otherwise, they are left unspecified. If
1777 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1778 returns NULL. The result is simply the type of ARR if ARR is not
1779 a descriptor. */
1780 struct type *
1781 ada_type_of_array (struct value *arr, int bounds)
1782 {
1783 if (ada_is_constrained_packed_array_type (value_type (arr)))
1784 return decode_constrained_packed_array_type (value_type (arr));
1785
1786 if (!ada_is_array_descriptor_type (value_type (arr)))
1787 return value_type (arr);
1788
1789 if (!bounds)
1790 {
1791 struct type *array_type =
1792 ada_check_typedef (desc_data_target_type (value_type (arr)));
1793
1794 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1795 TYPE_FIELD_BITSIZE (array_type, 0) =
1796 decode_packed_array_bitsize (value_type (arr));
1797
1798 return array_type;
1799 }
1800 else
1801 {
1802 struct type *elt_type;
1803 int arity;
1804 struct value *descriptor;
1805
1806 elt_type = ada_array_element_type (value_type (arr), -1);
1807 arity = ada_array_arity (value_type (arr));
1808
1809 if (elt_type == NULL || arity == 0)
1810 return ada_check_typedef (value_type (arr));
1811
1812 descriptor = desc_bounds (arr);
1813 if (value_as_long (descriptor) == 0)
1814 return NULL;
1815 while (arity > 0)
1816 {
1817 struct type *range_type = alloc_type_copy (value_type (arr));
1818 struct type *array_type = alloc_type_copy (value_type (arr));
1819 struct value *low = desc_one_bound (descriptor, arity, 0);
1820 struct value *high = desc_one_bound (descriptor, arity, 1);
1821
1822 arity -= 1;
1823 create_range_type (range_type, value_type (low),
1824 longest_to_int (value_as_long (low)),
1825 longest_to_int (value_as_long (high)));
1826 elt_type = create_array_type (array_type, elt_type, range_type);
1827
1828 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1829 {
1830 /* We need to store the element packed bitsize, as well as
1831 recompute the array size, because it was previously
1832 computed based on the unpacked element size. */
1833 LONGEST lo = value_as_long (low);
1834 LONGEST hi = value_as_long (high);
1835
1836 TYPE_FIELD_BITSIZE (elt_type, 0) =
1837 decode_packed_array_bitsize (value_type (arr));
1838 /* If the array has no element, then the size is already
1839 zero, and does not need to be recomputed. */
1840 if (lo < hi)
1841 {
1842 int array_bitsize =
1843 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1844
1845 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1846 }
1847 }
1848 }
1849
1850 return lookup_pointer_type (elt_type);
1851 }
1852 }
1853
1854 /* If ARR does not represent an array, returns ARR unchanged.
1855 Otherwise, returns either a standard GDB array with bounds set
1856 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1857 GDB array. Returns NULL if ARR is a null fat pointer. */
1858
1859 struct value *
1860 ada_coerce_to_simple_array_ptr (struct value *arr)
1861 {
1862 if (ada_is_array_descriptor_type (value_type (arr)))
1863 {
1864 struct type *arrType = ada_type_of_array (arr, 1);
1865
1866 if (arrType == NULL)
1867 return NULL;
1868 return value_cast (arrType, value_copy (desc_data (arr)));
1869 }
1870 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1871 return decode_constrained_packed_array (arr);
1872 else
1873 return arr;
1874 }
1875
1876 /* If ARR does not represent an array, returns ARR unchanged.
1877 Otherwise, returns a standard GDB array describing ARR (which may
1878 be ARR itself if it already is in the proper form). */
1879
1880 struct value *
1881 ada_coerce_to_simple_array (struct value *arr)
1882 {
1883 if (ada_is_array_descriptor_type (value_type (arr)))
1884 {
1885 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1886
1887 if (arrVal == NULL)
1888 error (_("Bounds unavailable for null array pointer."));
1889 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1890 return value_ind (arrVal);
1891 }
1892 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1893 return decode_constrained_packed_array (arr);
1894 else
1895 return arr;
1896 }
1897
1898 /* If TYPE represents a GNAT array type, return it translated to an
1899 ordinary GDB array type (possibly with BITSIZE fields indicating
1900 packing). For other types, is the identity. */
1901
1902 struct type *
1903 ada_coerce_to_simple_array_type (struct type *type)
1904 {
1905 if (ada_is_constrained_packed_array_type (type))
1906 return decode_constrained_packed_array_type (type);
1907
1908 if (ada_is_array_descriptor_type (type))
1909 return ada_check_typedef (desc_data_target_type (type));
1910
1911 return type;
1912 }
1913
1914 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1915
1916 static int
1917 ada_is_packed_array_type (struct type *type)
1918 {
1919 if (type == NULL)
1920 return 0;
1921 type = desc_base_type (type);
1922 type = ada_check_typedef (type);
1923 return
1924 ada_type_name (type) != NULL
1925 && strstr (ada_type_name (type), "___XP") != NULL;
1926 }
1927
1928 /* Non-zero iff TYPE represents a standard GNAT constrained
1929 packed-array type. */
1930
1931 int
1932 ada_is_constrained_packed_array_type (struct type *type)
1933 {
1934 return ada_is_packed_array_type (type)
1935 && !ada_is_array_descriptor_type (type);
1936 }
1937
1938 /* Non-zero iff TYPE represents an array descriptor for a
1939 unconstrained packed-array type. */
1940
1941 static int
1942 ada_is_unconstrained_packed_array_type (struct type *type)
1943 {
1944 return ada_is_packed_array_type (type)
1945 && ada_is_array_descriptor_type (type);
1946 }
1947
1948 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
1949 return the size of its elements in bits. */
1950
1951 static long
1952 decode_packed_array_bitsize (struct type *type)
1953 {
1954 char *raw_name;
1955 char *tail;
1956 long bits;
1957
1958 /* Access to arrays implemented as fat pointers are encoded as a typedef
1959 of the fat pointer type. We need the name of the fat pointer type
1960 to do the decoding, so strip the typedef layer. */
1961 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1962 type = ada_typedef_target_type (type);
1963
1964 raw_name = ada_type_name (ada_check_typedef (type));
1965 if (!raw_name)
1966 raw_name = ada_type_name (desc_base_type (type));
1967
1968 if (!raw_name)
1969 return 0;
1970
1971 tail = strstr (raw_name, "___XP");
1972 gdb_assert (tail != NULL);
1973
1974 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1975 {
1976 lim_warning
1977 (_("could not understand bit size information on packed array"));
1978 return 0;
1979 }
1980
1981 return bits;
1982 }
1983
1984 /* Given that TYPE is a standard GDB array type with all bounds filled
1985 in, and that the element size of its ultimate scalar constituents
1986 (that is, either its elements, or, if it is an array of arrays, its
1987 elements' elements, etc.) is *ELT_BITS, return an identical type,
1988 but with the bit sizes of its elements (and those of any
1989 constituent arrays) recorded in the BITSIZE components of its
1990 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1991 in bits. */
1992
1993 static struct type *
1994 constrained_packed_array_type (struct type *type, long *elt_bits)
1995 {
1996 struct type *new_elt_type;
1997 struct type *new_type;
1998 LONGEST low_bound, high_bound;
1999
2000 type = ada_check_typedef (type);
2001 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2002 return type;
2003
2004 new_type = alloc_type_copy (type);
2005 new_elt_type =
2006 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2007 elt_bits);
2008 create_array_type (new_type, new_elt_type, TYPE_INDEX_TYPE (type));
2009 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2010 TYPE_NAME (new_type) = ada_type_name (type);
2011
2012 if (get_discrete_bounds (TYPE_INDEX_TYPE (type),
2013 &low_bound, &high_bound) < 0)
2014 low_bound = high_bound = 0;
2015 if (high_bound < low_bound)
2016 *elt_bits = TYPE_LENGTH (new_type) = 0;
2017 else
2018 {
2019 *elt_bits *= (high_bound - low_bound + 1);
2020 TYPE_LENGTH (new_type) =
2021 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2022 }
2023
2024 TYPE_FIXED_INSTANCE (new_type) = 1;
2025 return new_type;
2026 }
2027
2028 /* The array type encoded by TYPE, where
2029 ada_is_constrained_packed_array_type (TYPE). */
2030
2031 static struct type *
2032 decode_constrained_packed_array_type (struct type *type)
2033 {
2034 char *raw_name = ada_type_name (ada_check_typedef (type));
2035 char *name;
2036 char *tail;
2037 struct type *shadow_type;
2038 long bits;
2039
2040 if (!raw_name)
2041 raw_name = ada_type_name (desc_base_type (type));
2042
2043 if (!raw_name)
2044 return NULL;
2045
2046 name = (char *) alloca (strlen (raw_name) + 1);
2047 tail = strstr (raw_name, "___XP");
2048 type = desc_base_type (type);
2049
2050 memcpy (name, raw_name, tail - raw_name);
2051 name[tail - raw_name] = '\000';
2052
2053 shadow_type = ada_find_parallel_type_with_name (type, name);
2054
2055 if (shadow_type == NULL)
2056 {
2057 lim_warning (_("could not find bounds information on packed array"));
2058 return NULL;
2059 }
2060 CHECK_TYPEDEF (shadow_type);
2061
2062 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2063 {
2064 lim_warning (_("could not understand bounds "
2065 "information on packed array"));
2066 return NULL;
2067 }
2068
2069 bits = decode_packed_array_bitsize (type);
2070 return constrained_packed_array_type (shadow_type, &bits);
2071 }
2072
2073 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2074 array, returns a simple array that denotes that array. Its type is a
2075 standard GDB array type except that the BITSIZEs of the array
2076 target types are set to the number of bits in each element, and the
2077 type length is set appropriately. */
2078
2079 static struct value *
2080 decode_constrained_packed_array (struct value *arr)
2081 {
2082 struct type *type;
2083
2084 arr = ada_coerce_ref (arr);
2085
2086 /* If our value is a pointer, then dererence it. Make sure that
2087 this operation does not cause the target type to be fixed, as
2088 this would indirectly cause this array to be decoded. The rest
2089 of the routine assumes that the array hasn't been decoded yet,
2090 so we use the basic "value_ind" routine to perform the dereferencing,
2091 as opposed to using "ada_value_ind". */
2092 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
2093 arr = value_ind (arr);
2094
2095 type = decode_constrained_packed_array_type (value_type (arr));
2096 if (type == NULL)
2097 {
2098 error (_("can't unpack array"));
2099 return NULL;
2100 }
2101
2102 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2103 && ada_is_modular_type (value_type (arr)))
2104 {
2105 /* This is a (right-justified) modular type representing a packed
2106 array with no wrapper. In order to interpret the value through
2107 the (left-justified) packed array type we just built, we must
2108 first left-justify it. */
2109 int bit_size, bit_pos;
2110 ULONGEST mod;
2111
2112 mod = ada_modulus (value_type (arr)) - 1;
2113 bit_size = 0;
2114 while (mod > 0)
2115 {
2116 bit_size += 1;
2117 mod >>= 1;
2118 }
2119 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2120 arr = ada_value_primitive_packed_val (arr, NULL,
2121 bit_pos / HOST_CHAR_BIT,
2122 bit_pos % HOST_CHAR_BIT,
2123 bit_size,
2124 type);
2125 }
2126
2127 return coerce_unspec_val_to_type (arr, type);
2128 }
2129
2130
2131 /* The value of the element of packed array ARR at the ARITY indices
2132 given in IND. ARR must be a simple array. */
2133
2134 static struct value *
2135 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2136 {
2137 int i;
2138 int bits, elt_off, bit_off;
2139 long elt_total_bit_offset;
2140 struct type *elt_type;
2141 struct value *v;
2142
2143 bits = 0;
2144 elt_total_bit_offset = 0;
2145 elt_type = ada_check_typedef (value_type (arr));
2146 for (i = 0; i < arity; i += 1)
2147 {
2148 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2149 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2150 error
2151 (_("attempt to do packed indexing of "
2152 "something other than a packed array"));
2153 else
2154 {
2155 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2156 LONGEST lowerbound, upperbound;
2157 LONGEST idx;
2158
2159 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2160 {
2161 lim_warning (_("don't know bounds of array"));
2162 lowerbound = upperbound = 0;
2163 }
2164
2165 idx = pos_atr (ind[i]);
2166 if (idx < lowerbound || idx > upperbound)
2167 lim_warning (_("packed array index %ld out of bounds"),
2168 (long) idx);
2169 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2170 elt_total_bit_offset += (idx - lowerbound) * bits;
2171 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2172 }
2173 }
2174 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2175 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2176
2177 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2178 bits, elt_type);
2179 return v;
2180 }
2181
2182 /* Non-zero iff TYPE includes negative integer values. */
2183
2184 static int
2185 has_negatives (struct type *type)
2186 {
2187 switch (TYPE_CODE (type))
2188 {
2189 default:
2190 return 0;
2191 case TYPE_CODE_INT:
2192 return !TYPE_UNSIGNED (type);
2193 case TYPE_CODE_RANGE:
2194 return TYPE_LOW_BOUND (type) < 0;
2195 }
2196 }
2197
2198
2199 /* Create a new value of type TYPE from the contents of OBJ starting
2200 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2201 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2202 assigning through the result will set the field fetched from.
2203 VALADDR is ignored unless OBJ is NULL, in which case,
2204 VALADDR+OFFSET must address the start of storage containing the
2205 packed value. The value returned in this case is never an lval.
2206 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2207
2208 struct value *
2209 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2210 long offset, int bit_offset, int bit_size,
2211 struct type *type)
2212 {
2213 struct value *v;
2214 int src, /* Index into the source area */
2215 targ, /* Index into the target area */
2216 srcBitsLeft, /* Number of source bits left to move */
2217 nsrc, ntarg, /* Number of source and target bytes */
2218 unusedLS, /* Number of bits in next significant
2219 byte of source that are unused */
2220 accumSize; /* Number of meaningful bits in accum */
2221 unsigned char *bytes; /* First byte containing data to unpack */
2222 unsigned char *unpacked;
2223 unsigned long accum; /* Staging area for bits being transferred */
2224 unsigned char sign;
2225 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2226 /* Transmit bytes from least to most significant; delta is the direction
2227 the indices move. */
2228 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
2229
2230 type = ada_check_typedef (type);
2231
2232 if (obj == NULL)
2233 {
2234 v = allocate_value (type);
2235 bytes = (unsigned char *) (valaddr + offset);
2236 }
2237 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2238 {
2239 v = value_at (type,
2240 value_address (obj) + offset);
2241 bytes = (unsigned char *) alloca (len);
2242 read_memory (value_address (v), bytes, len);
2243 }
2244 else
2245 {
2246 v = allocate_value (type);
2247 bytes = (unsigned char *) value_contents (obj) + offset;
2248 }
2249
2250 if (obj != NULL)
2251 {
2252 CORE_ADDR new_addr;
2253
2254 set_value_component_location (v, obj);
2255 new_addr = value_address (obj) + offset;
2256 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2257 set_value_bitsize (v, bit_size);
2258 if (value_bitpos (v) >= HOST_CHAR_BIT)
2259 {
2260 ++new_addr;
2261 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2262 }
2263 set_value_address (v, new_addr);
2264 }
2265 else
2266 set_value_bitsize (v, bit_size);
2267 unpacked = (unsigned char *) value_contents (v);
2268
2269 srcBitsLeft = bit_size;
2270 nsrc = len;
2271 ntarg = TYPE_LENGTH (type);
2272 sign = 0;
2273 if (bit_size == 0)
2274 {
2275 memset (unpacked, 0, TYPE_LENGTH (type));
2276 return v;
2277 }
2278 else if (gdbarch_bits_big_endian (get_type_arch (type)))
2279 {
2280 src = len - 1;
2281 if (has_negatives (type)
2282 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2283 sign = ~0;
2284
2285 unusedLS =
2286 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2287 % HOST_CHAR_BIT;
2288
2289 switch (TYPE_CODE (type))
2290 {
2291 case TYPE_CODE_ARRAY:
2292 case TYPE_CODE_UNION:
2293 case TYPE_CODE_STRUCT:
2294 /* Non-scalar values must be aligned at a byte boundary... */
2295 accumSize =
2296 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2297 /* ... And are placed at the beginning (most-significant) bytes
2298 of the target. */
2299 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2300 ntarg = targ + 1;
2301 break;
2302 default:
2303 accumSize = 0;
2304 targ = TYPE_LENGTH (type) - 1;
2305 break;
2306 }
2307 }
2308 else
2309 {
2310 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2311
2312 src = targ = 0;
2313 unusedLS = bit_offset;
2314 accumSize = 0;
2315
2316 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2317 sign = ~0;
2318 }
2319
2320 accum = 0;
2321 while (nsrc > 0)
2322 {
2323 /* Mask for removing bits of the next source byte that are not
2324 part of the value. */
2325 unsigned int unusedMSMask =
2326 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2327 1;
2328 /* Sign-extend bits for this byte. */
2329 unsigned int signMask = sign & ~unusedMSMask;
2330
2331 accum |=
2332 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2333 accumSize += HOST_CHAR_BIT - unusedLS;
2334 if (accumSize >= HOST_CHAR_BIT)
2335 {
2336 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2337 accumSize -= HOST_CHAR_BIT;
2338 accum >>= HOST_CHAR_BIT;
2339 ntarg -= 1;
2340 targ += delta;
2341 }
2342 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2343 unusedLS = 0;
2344 nsrc -= 1;
2345 src += delta;
2346 }
2347 while (ntarg > 0)
2348 {
2349 accum |= sign << accumSize;
2350 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2351 accumSize -= HOST_CHAR_BIT;
2352 accum >>= HOST_CHAR_BIT;
2353 ntarg -= 1;
2354 targ += delta;
2355 }
2356
2357 return v;
2358 }
2359
2360 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2361 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2362 not overlap. */
2363 static void
2364 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2365 int src_offset, int n, int bits_big_endian_p)
2366 {
2367 unsigned int accum, mask;
2368 int accum_bits, chunk_size;
2369
2370 target += targ_offset / HOST_CHAR_BIT;
2371 targ_offset %= HOST_CHAR_BIT;
2372 source += src_offset / HOST_CHAR_BIT;
2373 src_offset %= HOST_CHAR_BIT;
2374 if (bits_big_endian_p)
2375 {
2376 accum = (unsigned char) *source;
2377 source += 1;
2378 accum_bits = HOST_CHAR_BIT - src_offset;
2379
2380 while (n > 0)
2381 {
2382 int unused_right;
2383
2384 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2385 accum_bits += HOST_CHAR_BIT;
2386 source += 1;
2387 chunk_size = HOST_CHAR_BIT - targ_offset;
2388 if (chunk_size > n)
2389 chunk_size = n;
2390 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2391 mask = ((1 << chunk_size) - 1) << unused_right;
2392 *target =
2393 (*target & ~mask)
2394 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2395 n -= chunk_size;
2396 accum_bits -= chunk_size;
2397 target += 1;
2398 targ_offset = 0;
2399 }
2400 }
2401 else
2402 {
2403 accum = (unsigned char) *source >> src_offset;
2404 source += 1;
2405 accum_bits = HOST_CHAR_BIT - src_offset;
2406
2407 while (n > 0)
2408 {
2409 accum = accum + ((unsigned char) *source << accum_bits);
2410 accum_bits += HOST_CHAR_BIT;
2411 source += 1;
2412 chunk_size = HOST_CHAR_BIT - targ_offset;
2413 if (chunk_size > n)
2414 chunk_size = n;
2415 mask = ((1 << chunk_size) - 1) << targ_offset;
2416 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2417 n -= chunk_size;
2418 accum_bits -= chunk_size;
2419 accum >>= chunk_size;
2420 target += 1;
2421 targ_offset = 0;
2422 }
2423 }
2424 }
2425
2426 /* Store the contents of FROMVAL into the location of TOVAL.
2427 Return a new value with the location of TOVAL and contents of
2428 FROMVAL. Handles assignment into packed fields that have
2429 floating-point or non-scalar types. */
2430
2431 static struct value *
2432 ada_value_assign (struct value *toval, struct value *fromval)
2433 {
2434 struct type *type = value_type (toval);
2435 int bits = value_bitsize (toval);
2436
2437 toval = ada_coerce_ref (toval);
2438 fromval = ada_coerce_ref (fromval);
2439
2440 if (ada_is_direct_array_type (value_type (toval)))
2441 toval = ada_coerce_to_simple_array (toval);
2442 if (ada_is_direct_array_type (value_type (fromval)))
2443 fromval = ada_coerce_to_simple_array (fromval);
2444
2445 if (!deprecated_value_modifiable (toval))
2446 error (_("Left operand of assignment is not a modifiable lvalue."));
2447
2448 if (VALUE_LVAL (toval) == lval_memory
2449 && bits > 0
2450 && (TYPE_CODE (type) == TYPE_CODE_FLT
2451 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2452 {
2453 int len = (value_bitpos (toval)
2454 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2455 int from_size;
2456 char *buffer = (char *) alloca (len);
2457 struct value *val;
2458 CORE_ADDR to_addr = value_address (toval);
2459
2460 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2461 fromval = value_cast (type, fromval);
2462
2463 read_memory (to_addr, buffer, len);
2464 from_size = value_bitsize (fromval);
2465 if (from_size == 0)
2466 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2467 if (gdbarch_bits_big_endian (get_type_arch (type)))
2468 move_bits (buffer, value_bitpos (toval),
2469 value_contents (fromval), from_size - bits, bits, 1);
2470 else
2471 move_bits (buffer, value_bitpos (toval),
2472 value_contents (fromval), 0, bits, 0);
2473 write_memory (to_addr, buffer, len);
2474 observer_notify_memory_changed (to_addr, len, buffer);
2475
2476 val = value_copy (toval);
2477 memcpy (value_contents_raw (val), value_contents (fromval),
2478 TYPE_LENGTH (type));
2479 deprecated_set_value_type (val, type);
2480
2481 return val;
2482 }
2483
2484 return value_assign (toval, fromval);
2485 }
2486
2487
2488 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2489 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2490 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2491 * COMPONENT, and not the inferior's memory. The current contents
2492 * of COMPONENT are ignored. */
2493 static void
2494 value_assign_to_component (struct value *container, struct value *component,
2495 struct value *val)
2496 {
2497 LONGEST offset_in_container =
2498 (LONGEST) (value_address (component) - value_address (container));
2499 int bit_offset_in_container =
2500 value_bitpos (component) - value_bitpos (container);
2501 int bits;
2502
2503 val = value_cast (value_type (component), val);
2504
2505 if (value_bitsize (component) == 0)
2506 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2507 else
2508 bits = value_bitsize (component);
2509
2510 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2511 move_bits (value_contents_writeable (container) + offset_in_container,
2512 value_bitpos (container) + bit_offset_in_container,
2513 value_contents (val),
2514 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2515 bits, 1);
2516 else
2517 move_bits (value_contents_writeable (container) + offset_in_container,
2518 value_bitpos (container) + bit_offset_in_container,
2519 value_contents (val), 0, bits, 0);
2520 }
2521
2522 /* The value of the element of array ARR at the ARITY indices given in IND.
2523 ARR may be either a simple array, GNAT array descriptor, or pointer
2524 thereto. */
2525
2526 struct value *
2527 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2528 {
2529 int k;
2530 struct value *elt;
2531 struct type *elt_type;
2532
2533 elt = ada_coerce_to_simple_array (arr);
2534
2535 elt_type = ada_check_typedef (value_type (elt));
2536 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2537 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2538 return value_subscript_packed (elt, arity, ind);
2539
2540 for (k = 0; k < arity; k += 1)
2541 {
2542 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2543 error (_("too many subscripts (%d expected)"), k);
2544 elt = value_subscript (elt, pos_atr (ind[k]));
2545 }
2546 return elt;
2547 }
2548
2549 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2550 value of the element of *ARR at the ARITY indices given in
2551 IND. Does not read the entire array into memory. */
2552
2553 static struct value *
2554 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2555 struct value **ind)
2556 {
2557 int k;
2558
2559 for (k = 0; k < arity; k += 1)
2560 {
2561 LONGEST lwb, upb;
2562
2563 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2564 error (_("too many subscripts (%d expected)"), k);
2565 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2566 value_copy (arr));
2567 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2568 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2569 type = TYPE_TARGET_TYPE (type);
2570 }
2571
2572 return value_ind (arr);
2573 }
2574
2575 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2576 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2577 elements starting at index LOW. The lower bound of this array is LOW, as
2578 per Ada rules. */
2579 static struct value *
2580 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2581 int low, int high)
2582 {
2583 struct type *type0 = ada_check_typedef (type);
2584 CORE_ADDR base = value_as_address (array_ptr)
2585 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)))
2586 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2587 struct type *index_type =
2588 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)),
2589 low, high);
2590 struct type *slice_type =
2591 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
2592
2593 return value_at_lazy (slice_type, base);
2594 }
2595
2596
2597 static struct value *
2598 ada_value_slice (struct value *array, int low, int high)
2599 {
2600 struct type *type = ada_check_typedef (value_type (array));
2601 struct type *index_type =
2602 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2603 struct type *slice_type =
2604 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2605
2606 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2607 }
2608
2609 /* If type is a record type in the form of a standard GNAT array
2610 descriptor, returns the number of dimensions for type. If arr is a
2611 simple array, returns the number of "array of"s that prefix its
2612 type designation. Otherwise, returns 0. */
2613
2614 int
2615 ada_array_arity (struct type *type)
2616 {
2617 int arity;
2618
2619 if (type == NULL)
2620 return 0;
2621
2622 type = desc_base_type (type);
2623
2624 arity = 0;
2625 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2626 return desc_arity (desc_bounds_type (type));
2627 else
2628 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2629 {
2630 arity += 1;
2631 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2632 }
2633
2634 return arity;
2635 }
2636
2637 /* If TYPE is a record type in the form of a standard GNAT array
2638 descriptor or a simple array type, returns the element type for
2639 TYPE after indexing by NINDICES indices, or by all indices if
2640 NINDICES is -1. Otherwise, returns NULL. */
2641
2642 struct type *
2643 ada_array_element_type (struct type *type, int nindices)
2644 {
2645 type = desc_base_type (type);
2646
2647 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2648 {
2649 int k;
2650 struct type *p_array_type;
2651
2652 p_array_type = desc_data_target_type (type);
2653
2654 k = ada_array_arity (type);
2655 if (k == 0)
2656 return NULL;
2657
2658 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2659 if (nindices >= 0 && k > nindices)
2660 k = nindices;
2661 while (k > 0 && p_array_type != NULL)
2662 {
2663 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2664 k -= 1;
2665 }
2666 return p_array_type;
2667 }
2668 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2669 {
2670 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2671 {
2672 type = TYPE_TARGET_TYPE (type);
2673 nindices -= 1;
2674 }
2675 return type;
2676 }
2677
2678 return NULL;
2679 }
2680
2681 /* The type of nth index in arrays of given type (n numbering from 1).
2682 Does not examine memory. Throws an error if N is invalid or TYPE
2683 is not an array type. NAME is the name of the Ada attribute being
2684 evaluated ('range, 'first, 'last, or 'length); it is used in building
2685 the error message. */
2686
2687 static struct type *
2688 ada_index_type (struct type *type, int n, const char *name)
2689 {
2690 struct type *result_type;
2691
2692 type = desc_base_type (type);
2693
2694 if (n < 0 || n > ada_array_arity (type))
2695 error (_("invalid dimension number to '%s"), name);
2696
2697 if (ada_is_simple_array_type (type))
2698 {
2699 int i;
2700
2701 for (i = 1; i < n; i += 1)
2702 type = TYPE_TARGET_TYPE (type);
2703 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2704 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2705 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2706 perhaps stabsread.c would make more sense. */
2707 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2708 result_type = NULL;
2709 }
2710 else
2711 {
2712 result_type = desc_index_type (desc_bounds_type (type), n);
2713 if (result_type == NULL)
2714 error (_("attempt to take bound of something that is not an array"));
2715 }
2716
2717 return result_type;
2718 }
2719
2720 /* Given that arr is an array type, returns the lower bound of the
2721 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2722 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2723 array-descriptor type. It works for other arrays with bounds supplied
2724 by run-time quantities other than discriminants. */
2725
2726 static LONGEST
2727 ada_array_bound_from_type (struct type * arr_type, int n, int which)
2728 {
2729 struct type *type, *elt_type, *index_type_desc, *index_type;
2730 int i;
2731
2732 gdb_assert (which == 0 || which == 1);
2733
2734 if (ada_is_constrained_packed_array_type (arr_type))
2735 arr_type = decode_constrained_packed_array_type (arr_type);
2736
2737 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2738 return (LONGEST) - which;
2739
2740 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2741 type = TYPE_TARGET_TYPE (arr_type);
2742 else
2743 type = arr_type;
2744
2745 elt_type = type;
2746 for (i = n; i > 1; i--)
2747 elt_type = TYPE_TARGET_TYPE (type);
2748
2749 index_type_desc = ada_find_parallel_type (type, "___XA");
2750 ada_fixup_array_indexes_type (index_type_desc);
2751 if (index_type_desc != NULL)
2752 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2753 NULL);
2754 else
2755 index_type = TYPE_INDEX_TYPE (elt_type);
2756
2757 return
2758 (LONGEST) (which == 0
2759 ? ada_discrete_type_low_bound (index_type)
2760 : ada_discrete_type_high_bound (index_type));
2761 }
2762
2763 /* Given that arr is an array value, returns the lower bound of the
2764 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2765 WHICH is 1. This routine will also work for arrays with bounds
2766 supplied by run-time quantities other than discriminants. */
2767
2768 static LONGEST
2769 ada_array_bound (struct value *arr, int n, int which)
2770 {
2771 struct type *arr_type = value_type (arr);
2772
2773 if (ada_is_constrained_packed_array_type (arr_type))
2774 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
2775 else if (ada_is_simple_array_type (arr_type))
2776 return ada_array_bound_from_type (arr_type, n, which);
2777 else
2778 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2779 }
2780
2781 /* Given that arr is an array value, returns the length of the
2782 nth index. This routine will also work for arrays with bounds
2783 supplied by run-time quantities other than discriminants.
2784 Does not work for arrays indexed by enumeration types with representation
2785 clauses at the moment. */
2786
2787 static LONGEST
2788 ada_array_length (struct value *arr, int n)
2789 {
2790 struct type *arr_type = ada_check_typedef (value_type (arr));
2791
2792 if (ada_is_constrained_packed_array_type (arr_type))
2793 return ada_array_length (decode_constrained_packed_array (arr), n);
2794
2795 if (ada_is_simple_array_type (arr_type))
2796 return (ada_array_bound_from_type (arr_type, n, 1)
2797 - ada_array_bound_from_type (arr_type, n, 0) + 1);
2798 else
2799 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2800 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
2801 }
2802
2803 /* An empty array whose type is that of ARR_TYPE (an array type),
2804 with bounds LOW to LOW-1. */
2805
2806 static struct value *
2807 empty_array (struct type *arr_type, int low)
2808 {
2809 struct type *arr_type0 = ada_check_typedef (arr_type);
2810 struct type *index_type =
2811 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)),
2812 low, low - 1);
2813 struct type *elt_type = ada_array_element_type (arr_type0, 1);
2814
2815 return allocate_value (create_array_type (NULL, elt_type, index_type));
2816 }
2817 \f
2818
2819 /* Name resolution */
2820
2821 /* The "decoded" name for the user-definable Ada operator corresponding
2822 to OP. */
2823
2824 static const char *
2825 ada_decoded_op_name (enum exp_opcode op)
2826 {
2827 int i;
2828
2829 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2830 {
2831 if (ada_opname_table[i].op == op)
2832 return ada_opname_table[i].decoded;
2833 }
2834 error (_("Could not find operator name for opcode"));
2835 }
2836
2837
2838 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2839 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2840 undefined namespace) and converts operators that are
2841 user-defined into appropriate function calls. If CONTEXT_TYPE is
2842 non-null, it provides a preferred result type [at the moment, only
2843 type void has any effect---causing procedures to be preferred over
2844 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2845 return type is preferred. May change (expand) *EXP. */
2846
2847 static void
2848 resolve (struct expression **expp, int void_context_p)
2849 {
2850 struct type *context_type = NULL;
2851 int pc = 0;
2852
2853 if (void_context_p)
2854 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2855
2856 resolve_subexp (expp, &pc, 1, context_type);
2857 }
2858
2859 /* Resolve the operator of the subexpression beginning at
2860 position *POS of *EXPP. "Resolving" consists of replacing
2861 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2862 with their resolutions, replacing built-in operators with
2863 function calls to user-defined operators, where appropriate, and,
2864 when DEPROCEDURE_P is non-zero, converting function-valued variables
2865 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2866 are as in ada_resolve, above. */
2867
2868 static struct value *
2869 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2870 struct type *context_type)
2871 {
2872 int pc = *pos;
2873 int i;
2874 struct expression *exp; /* Convenience: == *expp. */
2875 enum exp_opcode op = (*expp)->elts[pc].opcode;
2876 struct value **argvec; /* Vector of operand types (alloca'ed). */
2877 int nargs; /* Number of operands. */
2878 int oplen;
2879
2880 argvec = NULL;
2881 nargs = 0;
2882 exp = *expp;
2883
2884 /* Pass one: resolve operands, saving their types and updating *pos,
2885 if needed. */
2886 switch (op)
2887 {
2888 case OP_FUNCALL:
2889 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2890 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2891 *pos += 7;
2892 else
2893 {
2894 *pos += 3;
2895 resolve_subexp (expp, pos, 0, NULL);
2896 }
2897 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2898 break;
2899
2900 case UNOP_ADDR:
2901 *pos += 1;
2902 resolve_subexp (expp, pos, 0, NULL);
2903 break;
2904
2905 case UNOP_QUAL:
2906 *pos += 3;
2907 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
2908 break;
2909
2910 case OP_ATR_MODULUS:
2911 case OP_ATR_SIZE:
2912 case OP_ATR_TAG:
2913 case OP_ATR_FIRST:
2914 case OP_ATR_LAST:
2915 case OP_ATR_LENGTH:
2916 case OP_ATR_POS:
2917 case OP_ATR_VAL:
2918 case OP_ATR_MIN:
2919 case OP_ATR_MAX:
2920 case TERNOP_IN_RANGE:
2921 case BINOP_IN_BOUNDS:
2922 case UNOP_IN_RANGE:
2923 case OP_AGGREGATE:
2924 case OP_OTHERS:
2925 case OP_CHOICES:
2926 case OP_POSITIONAL:
2927 case OP_DISCRETE_RANGE:
2928 case OP_NAME:
2929 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2930 *pos += oplen;
2931 break;
2932
2933 case BINOP_ASSIGN:
2934 {
2935 struct value *arg1;
2936
2937 *pos += 1;
2938 arg1 = resolve_subexp (expp, pos, 0, NULL);
2939 if (arg1 == NULL)
2940 resolve_subexp (expp, pos, 1, NULL);
2941 else
2942 resolve_subexp (expp, pos, 1, value_type (arg1));
2943 break;
2944 }
2945
2946 case UNOP_CAST:
2947 *pos += 3;
2948 nargs = 1;
2949 break;
2950
2951 case BINOP_ADD:
2952 case BINOP_SUB:
2953 case BINOP_MUL:
2954 case BINOP_DIV:
2955 case BINOP_REM:
2956 case BINOP_MOD:
2957 case BINOP_EXP:
2958 case BINOP_CONCAT:
2959 case BINOP_LOGICAL_AND:
2960 case BINOP_LOGICAL_OR:
2961 case BINOP_BITWISE_AND:
2962 case BINOP_BITWISE_IOR:
2963 case BINOP_BITWISE_XOR:
2964
2965 case BINOP_EQUAL:
2966 case BINOP_NOTEQUAL:
2967 case BINOP_LESS:
2968 case BINOP_GTR:
2969 case BINOP_LEQ:
2970 case BINOP_GEQ:
2971
2972 case BINOP_REPEAT:
2973 case BINOP_SUBSCRIPT:
2974 case BINOP_COMMA:
2975 *pos += 1;
2976 nargs = 2;
2977 break;
2978
2979 case UNOP_NEG:
2980 case UNOP_PLUS:
2981 case UNOP_LOGICAL_NOT:
2982 case UNOP_ABS:
2983 case UNOP_IND:
2984 *pos += 1;
2985 nargs = 1;
2986 break;
2987
2988 case OP_LONG:
2989 case OP_DOUBLE:
2990 case OP_VAR_VALUE:
2991 *pos += 4;
2992 break;
2993
2994 case OP_TYPE:
2995 case OP_BOOL:
2996 case OP_LAST:
2997 case OP_INTERNALVAR:
2998 *pos += 3;
2999 break;
3000
3001 case UNOP_MEMVAL:
3002 *pos += 3;
3003 nargs = 1;
3004 break;
3005
3006 case OP_REGISTER:
3007 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3008 break;
3009
3010 case STRUCTOP_STRUCT:
3011 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3012 nargs = 1;
3013 break;
3014
3015 case TERNOP_SLICE:
3016 *pos += 1;
3017 nargs = 3;
3018 break;
3019
3020 case OP_STRING:
3021 break;
3022
3023 default:
3024 error (_("Unexpected operator during name resolution"));
3025 }
3026
3027 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
3028 for (i = 0; i < nargs; i += 1)
3029 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3030 argvec[i] = NULL;
3031 exp = *expp;
3032
3033 /* Pass two: perform any resolution on principal operator. */
3034 switch (op)
3035 {
3036 default:
3037 break;
3038
3039 case OP_VAR_VALUE:
3040 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3041 {
3042 struct ada_symbol_info *candidates;
3043 int n_candidates;
3044
3045 n_candidates =
3046 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3047 (exp->elts[pc + 2].symbol),
3048 exp->elts[pc + 1].block, VAR_DOMAIN,
3049 &candidates);
3050
3051 if (n_candidates > 1)
3052 {
3053 /* Types tend to get re-introduced locally, so if there
3054 are any local symbols that are not types, first filter
3055 out all types. */
3056 int j;
3057 for (j = 0; j < n_candidates; j += 1)
3058 switch (SYMBOL_CLASS (candidates[j].sym))
3059 {
3060 case LOC_REGISTER:
3061 case LOC_ARG:
3062 case LOC_REF_ARG:
3063 case LOC_REGPARM_ADDR:
3064 case LOC_LOCAL:
3065 case LOC_COMPUTED:
3066 goto FoundNonType;
3067 default:
3068 break;
3069 }
3070 FoundNonType:
3071 if (j < n_candidates)
3072 {
3073 j = 0;
3074 while (j < n_candidates)
3075 {
3076 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3077 {
3078 candidates[j] = candidates[n_candidates - 1];
3079 n_candidates -= 1;
3080 }
3081 else
3082 j += 1;
3083 }
3084 }
3085 }
3086
3087 if (n_candidates == 0)
3088 error (_("No definition found for %s"),
3089 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3090 else if (n_candidates == 1)
3091 i = 0;
3092 else if (deprocedure_p
3093 && !is_nonfunction (candidates, n_candidates))
3094 {
3095 i = ada_resolve_function
3096 (candidates, n_candidates, NULL, 0,
3097 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3098 context_type);
3099 if (i < 0)
3100 error (_("Could not find a match for %s"),
3101 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3102 }
3103 else
3104 {
3105 printf_filtered (_("Multiple matches for %s\n"),
3106 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3107 user_select_syms (candidates, n_candidates, 1);
3108 i = 0;
3109 }
3110
3111 exp->elts[pc + 1].block = candidates[i].block;
3112 exp->elts[pc + 2].symbol = candidates[i].sym;
3113 if (innermost_block == NULL
3114 || contained_in (candidates[i].block, innermost_block))
3115 innermost_block = candidates[i].block;
3116 }
3117
3118 if (deprocedure_p
3119 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3120 == TYPE_CODE_FUNC))
3121 {
3122 replace_operator_with_call (expp, pc, 0, 0,
3123 exp->elts[pc + 2].symbol,
3124 exp->elts[pc + 1].block);
3125 exp = *expp;
3126 }
3127 break;
3128
3129 case OP_FUNCALL:
3130 {
3131 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3132 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3133 {
3134 struct ada_symbol_info *candidates;
3135 int n_candidates;
3136
3137 n_candidates =
3138 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3139 (exp->elts[pc + 5].symbol),
3140 exp->elts[pc + 4].block, VAR_DOMAIN,
3141 &candidates);
3142 if (n_candidates == 1)
3143 i = 0;
3144 else
3145 {
3146 i = ada_resolve_function
3147 (candidates, n_candidates,
3148 argvec, nargs,
3149 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3150 context_type);
3151 if (i < 0)
3152 error (_("Could not find a match for %s"),
3153 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3154 }
3155
3156 exp->elts[pc + 4].block = candidates[i].block;
3157 exp->elts[pc + 5].symbol = candidates[i].sym;
3158 if (innermost_block == NULL
3159 || contained_in (candidates[i].block, innermost_block))
3160 innermost_block = candidates[i].block;
3161 }
3162 }
3163 break;
3164 case BINOP_ADD:
3165 case BINOP_SUB:
3166 case BINOP_MUL:
3167 case BINOP_DIV:
3168 case BINOP_REM:
3169 case BINOP_MOD:
3170 case BINOP_CONCAT:
3171 case BINOP_BITWISE_AND:
3172 case BINOP_BITWISE_IOR:
3173 case BINOP_BITWISE_XOR:
3174 case BINOP_EQUAL:
3175 case BINOP_NOTEQUAL:
3176 case BINOP_LESS:
3177 case BINOP_GTR:
3178 case BINOP_LEQ:
3179 case BINOP_GEQ:
3180 case BINOP_EXP:
3181 case UNOP_NEG:
3182 case UNOP_PLUS:
3183 case UNOP_LOGICAL_NOT:
3184 case UNOP_ABS:
3185 if (possible_user_operator_p (op, argvec))
3186 {
3187 struct ada_symbol_info *candidates;
3188 int n_candidates;
3189
3190 n_candidates =
3191 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3192 (struct block *) NULL, VAR_DOMAIN,
3193 &candidates);
3194 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3195 ada_decoded_op_name (op), NULL);
3196 if (i < 0)
3197 break;
3198
3199 replace_operator_with_call (expp, pc, nargs, 1,
3200 candidates[i].sym, candidates[i].block);
3201 exp = *expp;
3202 }
3203 break;
3204
3205 case OP_TYPE:
3206 case OP_REGISTER:
3207 return NULL;
3208 }
3209
3210 *pos = pc;
3211 return evaluate_subexp_type (exp, pos);
3212 }
3213
3214 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3215 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3216 a non-pointer. */
3217 /* The term "match" here is rather loose. The match is heuristic and
3218 liberal. */
3219
3220 static int
3221 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3222 {
3223 ftype = ada_check_typedef (ftype);
3224 atype = ada_check_typedef (atype);
3225
3226 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3227 ftype = TYPE_TARGET_TYPE (ftype);
3228 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3229 atype = TYPE_TARGET_TYPE (atype);
3230
3231 switch (TYPE_CODE (ftype))
3232 {
3233 default:
3234 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3235 case TYPE_CODE_PTR:
3236 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3237 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3238 TYPE_TARGET_TYPE (atype), 0);
3239 else
3240 return (may_deref
3241 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3242 case TYPE_CODE_INT:
3243 case TYPE_CODE_ENUM:
3244 case TYPE_CODE_RANGE:
3245 switch (TYPE_CODE (atype))
3246 {
3247 case TYPE_CODE_INT:
3248 case TYPE_CODE_ENUM:
3249 case TYPE_CODE_RANGE:
3250 return 1;
3251 default:
3252 return 0;
3253 }
3254
3255 case TYPE_CODE_ARRAY:
3256 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3257 || ada_is_array_descriptor_type (atype));
3258
3259 case TYPE_CODE_STRUCT:
3260 if (ada_is_array_descriptor_type (ftype))
3261 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3262 || ada_is_array_descriptor_type (atype));
3263 else
3264 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3265 && !ada_is_array_descriptor_type (atype));
3266
3267 case TYPE_CODE_UNION:
3268 case TYPE_CODE_FLT:
3269 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3270 }
3271 }
3272
3273 /* Return non-zero if the formals of FUNC "sufficiently match" the
3274 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3275 may also be an enumeral, in which case it is treated as a 0-
3276 argument function. */
3277
3278 static int
3279 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3280 {
3281 int i;
3282 struct type *func_type = SYMBOL_TYPE (func);
3283
3284 if (SYMBOL_CLASS (func) == LOC_CONST
3285 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3286 return (n_actuals == 0);
3287 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3288 return 0;
3289
3290 if (TYPE_NFIELDS (func_type) != n_actuals)
3291 return 0;
3292
3293 for (i = 0; i < n_actuals; i += 1)
3294 {
3295 if (actuals[i] == NULL)
3296 return 0;
3297 else
3298 {
3299 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3300 i));
3301 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3302
3303 if (!ada_type_match (ftype, atype, 1))
3304 return 0;
3305 }
3306 }
3307 return 1;
3308 }
3309
3310 /* False iff function type FUNC_TYPE definitely does not produce a value
3311 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3312 FUNC_TYPE is not a valid function type with a non-null return type
3313 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3314
3315 static int
3316 return_match (struct type *func_type, struct type *context_type)
3317 {
3318 struct type *return_type;
3319
3320 if (func_type == NULL)
3321 return 1;
3322
3323 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3324 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3325 else
3326 return_type = base_type (func_type);
3327 if (return_type == NULL)
3328 return 1;
3329
3330 context_type = base_type (context_type);
3331
3332 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3333 return context_type == NULL || return_type == context_type;
3334 else if (context_type == NULL)
3335 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3336 else
3337 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3338 }
3339
3340
3341 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3342 function (if any) that matches the types of the NARGS arguments in
3343 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3344 that returns that type, then eliminate matches that don't. If
3345 CONTEXT_TYPE is void and there is at least one match that does not
3346 return void, eliminate all matches that do.
3347
3348 Asks the user if there is more than one match remaining. Returns -1
3349 if there is no such symbol or none is selected. NAME is used
3350 solely for messages. May re-arrange and modify SYMS in
3351 the process; the index returned is for the modified vector. */
3352
3353 static int
3354 ada_resolve_function (struct ada_symbol_info syms[],
3355 int nsyms, struct value **args, int nargs,
3356 const char *name, struct type *context_type)
3357 {
3358 int fallback;
3359 int k;
3360 int m; /* Number of hits */
3361
3362 m = 0;
3363 /* In the first pass of the loop, we only accept functions matching
3364 context_type. If none are found, we add a second pass of the loop
3365 where every function is accepted. */
3366 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3367 {
3368 for (k = 0; k < nsyms; k += 1)
3369 {
3370 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3371
3372 if (ada_args_match (syms[k].sym, args, nargs)
3373 && (fallback || return_match (type, context_type)))
3374 {
3375 syms[m] = syms[k];
3376 m += 1;
3377 }
3378 }
3379 }
3380
3381 if (m == 0)
3382 return -1;
3383 else if (m > 1)
3384 {
3385 printf_filtered (_("Multiple matches for %s\n"), name);
3386 user_select_syms (syms, m, 1);
3387 return 0;
3388 }
3389 return 0;
3390 }
3391
3392 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3393 in a listing of choices during disambiguation (see sort_choices, below).
3394 The idea is that overloadings of a subprogram name from the
3395 same package should sort in their source order. We settle for ordering
3396 such symbols by their trailing number (__N or $N). */
3397
3398 static int
3399 encoded_ordered_before (char *N0, char *N1)
3400 {
3401 if (N1 == NULL)
3402 return 0;
3403 else if (N0 == NULL)
3404 return 1;
3405 else
3406 {
3407 int k0, k1;
3408
3409 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3410 ;
3411 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3412 ;
3413 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3414 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3415 {
3416 int n0, n1;
3417
3418 n0 = k0;
3419 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3420 n0 -= 1;
3421 n1 = k1;
3422 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3423 n1 -= 1;
3424 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3425 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3426 }
3427 return (strcmp (N0, N1) < 0);
3428 }
3429 }
3430
3431 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3432 encoded names. */
3433
3434 static void
3435 sort_choices (struct ada_symbol_info syms[], int nsyms)
3436 {
3437 int i;
3438
3439 for (i = 1; i < nsyms; i += 1)
3440 {
3441 struct ada_symbol_info sym = syms[i];
3442 int j;
3443
3444 for (j = i - 1; j >= 0; j -= 1)
3445 {
3446 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3447 SYMBOL_LINKAGE_NAME (sym.sym)))
3448 break;
3449 syms[j + 1] = syms[j];
3450 }
3451 syms[j + 1] = sym;
3452 }
3453 }
3454
3455 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3456 by asking the user (if necessary), returning the number selected,
3457 and setting the first elements of SYMS items. Error if no symbols
3458 selected. */
3459
3460 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3461 to be re-integrated one of these days. */
3462
3463 int
3464 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3465 {
3466 int i;
3467 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3468 int n_chosen;
3469 int first_choice = (max_results == 1) ? 1 : 2;
3470 const char *select_mode = multiple_symbols_select_mode ();
3471
3472 if (max_results < 1)
3473 error (_("Request to select 0 symbols!"));
3474 if (nsyms <= 1)
3475 return nsyms;
3476
3477 if (select_mode == multiple_symbols_cancel)
3478 error (_("\
3479 canceled because the command is ambiguous\n\
3480 See set/show multiple-symbol."));
3481
3482 /* If select_mode is "all", then return all possible symbols.
3483 Only do that if more than one symbol can be selected, of course.
3484 Otherwise, display the menu as usual. */
3485 if (select_mode == multiple_symbols_all && max_results > 1)
3486 return nsyms;
3487
3488 printf_unfiltered (_("[0] cancel\n"));
3489 if (max_results > 1)
3490 printf_unfiltered (_("[1] all\n"));
3491
3492 sort_choices (syms, nsyms);
3493
3494 for (i = 0; i < nsyms; i += 1)
3495 {
3496 if (syms[i].sym == NULL)
3497 continue;
3498
3499 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3500 {
3501 struct symtab_and_line sal =
3502 find_function_start_sal (syms[i].sym, 1);
3503
3504 if (sal.symtab == NULL)
3505 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3506 i + first_choice,
3507 SYMBOL_PRINT_NAME (syms[i].sym),
3508 sal.line);
3509 else
3510 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3511 SYMBOL_PRINT_NAME (syms[i].sym),
3512 sal.symtab->filename, sal.line);
3513 continue;
3514 }
3515 else
3516 {
3517 int is_enumeral =
3518 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3519 && SYMBOL_TYPE (syms[i].sym) != NULL
3520 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3521 struct symtab *symtab = syms[i].sym->symtab;
3522
3523 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3524 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3525 i + first_choice,
3526 SYMBOL_PRINT_NAME (syms[i].sym),
3527 symtab->filename, SYMBOL_LINE (syms[i].sym));
3528 else if (is_enumeral
3529 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3530 {
3531 printf_unfiltered (("[%d] "), i + first_choice);
3532 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3533 gdb_stdout, -1, 0);
3534 printf_unfiltered (_("'(%s) (enumeral)\n"),
3535 SYMBOL_PRINT_NAME (syms[i].sym));
3536 }
3537 else if (symtab != NULL)
3538 printf_unfiltered (is_enumeral
3539 ? _("[%d] %s in %s (enumeral)\n")
3540 : _("[%d] %s at %s:?\n"),
3541 i + first_choice,
3542 SYMBOL_PRINT_NAME (syms[i].sym),
3543 symtab->filename);
3544 else
3545 printf_unfiltered (is_enumeral
3546 ? _("[%d] %s (enumeral)\n")
3547 : _("[%d] %s at ?\n"),
3548 i + first_choice,
3549 SYMBOL_PRINT_NAME (syms[i].sym));
3550 }
3551 }
3552
3553 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3554 "overload-choice");
3555
3556 for (i = 0; i < n_chosen; i += 1)
3557 syms[i] = syms[chosen[i]];
3558
3559 return n_chosen;
3560 }
3561
3562 /* Read and validate a set of numeric choices from the user in the
3563 range 0 .. N_CHOICES-1. Place the results in increasing
3564 order in CHOICES[0 .. N-1], and return N.
3565
3566 The user types choices as a sequence of numbers on one line
3567 separated by blanks, encoding them as follows:
3568
3569 + A choice of 0 means to cancel the selection, throwing an error.
3570 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3571 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3572
3573 The user is not allowed to choose more than MAX_RESULTS values.
3574
3575 ANNOTATION_SUFFIX, if present, is used to annotate the input
3576 prompts (for use with the -f switch). */
3577
3578 int
3579 get_selections (int *choices, int n_choices, int max_results,
3580 int is_all_choice, char *annotation_suffix)
3581 {
3582 char *args;
3583 char *prompt;
3584 int n_chosen;
3585 int first_choice = is_all_choice ? 2 : 1;
3586
3587 prompt = getenv ("PS2");
3588 if (prompt == NULL)
3589 prompt = "> ";
3590
3591 args = command_line_input (prompt, 0, annotation_suffix);
3592
3593 if (args == NULL)
3594 error_no_arg (_("one or more choice numbers"));
3595
3596 n_chosen = 0;
3597
3598 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3599 order, as given in args. Choices are validated. */
3600 while (1)
3601 {
3602 char *args2;
3603 int choice, j;
3604
3605 while (isspace (*args))
3606 args += 1;
3607 if (*args == '\0' && n_chosen == 0)
3608 error_no_arg (_("one or more choice numbers"));
3609 else if (*args == '\0')
3610 break;
3611
3612 choice = strtol (args, &args2, 10);
3613 if (args == args2 || choice < 0
3614 || choice > n_choices + first_choice - 1)
3615 error (_("Argument must be choice number"));
3616 args = args2;
3617
3618 if (choice == 0)
3619 error (_("cancelled"));
3620
3621 if (choice < first_choice)
3622 {
3623 n_chosen = n_choices;
3624 for (j = 0; j < n_choices; j += 1)
3625 choices[j] = j;
3626 break;
3627 }
3628 choice -= first_choice;
3629
3630 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3631 {
3632 }
3633
3634 if (j < 0 || choice != choices[j])
3635 {
3636 int k;
3637
3638 for (k = n_chosen - 1; k > j; k -= 1)
3639 choices[k + 1] = choices[k];
3640 choices[j + 1] = choice;
3641 n_chosen += 1;
3642 }
3643 }
3644
3645 if (n_chosen > max_results)
3646 error (_("Select no more than %d of the above"), max_results);
3647
3648 return n_chosen;
3649 }
3650
3651 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3652 on the function identified by SYM and BLOCK, and taking NARGS
3653 arguments. Update *EXPP as needed to hold more space. */
3654
3655 static void
3656 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3657 int oplen, struct symbol *sym,
3658 struct block *block)
3659 {
3660 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3661 symbol, -oplen for operator being replaced). */
3662 struct expression *newexp = (struct expression *)
3663 xzalloc (sizeof (struct expression)
3664 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3665 struct expression *exp = *expp;
3666
3667 newexp->nelts = exp->nelts + 7 - oplen;
3668 newexp->language_defn = exp->language_defn;
3669 newexp->gdbarch = exp->gdbarch;
3670 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3671 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3672 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3673
3674 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3675 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3676
3677 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3678 newexp->elts[pc + 4].block = block;
3679 newexp->elts[pc + 5].symbol = sym;
3680
3681 *expp = newexp;
3682 xfree (exp);
3683 }
3684
3685 /* Type-class predicates */
3686
3687 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3688 or FLOAT). */
3689
3690 static int
3691 numeric_type_p (struct type *type)
3692 {
3693 if (type == NULL)
3694 return 0;
3695 else
3696 {
3697 switch (TYPE_CODE (type))
3698 {
3699 case TYPE_CODE_INT:
3700 case TYPE_CODE_FLT:
3701 return 1;
3702 case TYPE_CODE_RANGE:
3703 return (type == TYPE_TARGET_TYPE (type)
3704 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3705 default:
3706 return 0;
3707 }
3708 }
3709 }
3710
3711 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3712
3713 static int
3714 integer_type_p (struct type *type)
3715 {
3716 if (type == NULL)
3717 return 0;
3718 else
3719 {
3720 switch (TYPE_CODE (type))
3721 {
3722 case TYPE_CODE_INT:
3723 return 1;
3724 case TYPE_CODE_RANGE:
3725 return (type == TYPE_TARGET_TYPE (type)
3726 || integer_type_p (TYPE_TARGET_TYPE (type)));
3727 default:
3728 return 0;
3729 }
3730 }
3731 }
3732
3733 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3734
3735 static int
3736 scalar_type_p (struct type *type)
3737 {
3738 if (type == NULL)
3739 return 0;
3740 else
3741 {
3742 switch (TYPE_CODE (type))
3743 {
3744 case TYPE_CODE_INT:
3745 case TYPE_CODE_RANGE:
3746 case TYPE_CODE_ENUM:
3747 case TYPE_CODE_FLT:
3748 return 1;
3749 default:
3750 return 0;
3751 }
3752 }
3753 }
3754
3755 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3756
3757 static int
3758 discrete_type_p (struct type *type)
3759 {
3760 if (type == NULL)
3761 return 0;
3762 else
3763 {
3764 switch (TYPE_CODE (type))
3765 {
3766 case TYPE_CODE_INT:
3767 case TYPE_CODE_RANGE:
3768 case TYPE_CODE_ENUM:
3769 case TYPE_CODE_BOOL:
3770 return 1;
3771 default:
3772 return 0;
3773 }
3774 }
3775 }
3776
3777 /* Returns non-zero if OP with operands in the vector ARGS could be
3778 a user-defined function. Errs on the side of pre-defined operators
3779 (i.e., result 0). */
3780
3781 static int
3782 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3783 {
3784 struct type *type0 =
3785 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3786 struct type *type1 =
3787 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3788
3789 if (type0 == NULL)
3790 return 0;
3791
3792 switch (op)
3793 {
3794 default:
3795 return 0;
3796
3797 case BINOP_ADD:
3798 case BINOP_SUB:
3799 case BINOP_MUL:
3800 case BINOP_DIV:
3801 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3802
3803 case BINOP_REM:
3804 case BINOP_MOD:
3805 case BINOP_BITWISE_AND:
3806 case BINOP_BITWISE_IOR:
3807 case BINOP_BITWISE_XOR:
3808 return (!(integer_type_p (type0) && integer_type_p (type1)));
3809
3810 case BINOP_EQUAL:
3811 case BINOP_NOTEQUAL:
3812 case BINOP_LESS:
3813 case BINOP_GTR:
3814 case BINOP_LEQ:
3815 case BINOP_GEQ:
3816 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3817
3818 case BINOP_CONCAT:
3819 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3820
3821 case BINOP_EXP:
3822 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3823
3824 case UNOP_NEG:
3825 case UNOP_PLUS:
3826 case UNOP_LOGICAL_NOT:
3827 case UNOP_ABS:
3828 return (!numeric_type_p (type0));
3829
3830 }
3831 }
3832 \f
3833 /* Renaming */
3834
3835 /* NOTES:
3836
3837 1. In the following, we assume that a renaming type's name may
3838 have an ___XD suffix. It would be nice if this went away at some
3839 point.
3840 2. We handle both the (old) purely type-based representation of
3841 renamings and the (new) variable-based encoding. At some point,
3842 it is devoutly to be hoped that the former goes away
3843 (FIXME: hilfinger-2007-07-09).
3844 3. Subprogram renamings are not implemented, although the XRS
3845 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3846
3847 /* If SYM encodes a renaming,
3848
3849 <renaming> renames <renamed entity>,
3850
3851 sets *LEN to the length of the renamed entity's name,
3852 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3853 the string describing the subcomponent selected from the renamed
3854 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3855 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3856 are undefined). Otherwise, returns a value indicating the category
3857 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3858 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3859 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3860 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3861 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3862 may be NULL, in which case they are not assigned.
3863
3864 [Currently, however, GCC does not generate subprogram renamings.] */
3865
3866 enum ada_renaming_category
3867 ada_parse_renaming (struct symbol *sym,
3868 const char **renamed_entity, int *len,
3869 const char **renaming_expr)
3870 {
3871 enum ada_renaming_category kind;
3872 const char *info;
3873 const char *suffix;
3874
3875 if (sym == NULL)
3876 return ADA_NOT_RENAMING;
3877 switch (SYMBOL_CLASS (sym))
3878 {
3879 default:
3880 return ADA_NOT_RENAMING;
3881 case LOC_TYPEDEF:
3882 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3883 renamed_entity, len, renaming_expr);
3884 case LOC_LOCAL:
3885 case LOC_STATIC:
3886 case LOC_COMPUTED:
3887 case LOC_OPTIMIZED_OUT:
3888 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3889 if (info == NULL)
3890 return ADA_NOT_RENAMING;
3891 switch (info[5])
3892 {
3893 case '_':
3894 kind = ADA_OBJECT_RENAMING;
3895 info += 6;
3896 break;
3897 case 'E':
3898 kind = ADA_EXCEPTION_RENAMING;
3899 info += 7;
3900 break;
3901 case 'P':
3902 kind = ADA_PACKAGE_RENAMING;
3903 info += 7;
3904 break;
3905 case 'S':
3906 kind = ADA_SUBPROGRAM_RENAMING;
3907 info += 7;
3908 break;
3909 default:
3910 return ADA_NOT_RENAMING;
3911 }
3912 }
3913
3914 if (renamed_entity != NULL)
3915 *renamed_entity = info;
3916 suffix = strstr (info, "___XE");
3917 if (suffix == NULL || suffix == info)
3918 return ADA_NOT_RENAMING;
3919 if (len != NULL)
3920 *len = strlen (info) - strlen (suffix);
3921 suffix += 5;
3922 if (renaming_expr != NULL)
3923 *renaming_expr = suffix;
3924 return kind;
3925 }
3926
3927 /* Assuming TYPE encodes a renaming according to the old encoding in
3928 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3929 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3930 ADA_NOT_RENAMING otherwise. */
3931 static enum ada_renaming_category
3932 parse_old_style_renaming (struct type *type,
3933 const char **renamed_entity, int *len,
3934 const char **renaming_expr)
3935 {
3936 enum ada_renaming_category kind;
3937 const char *name;
3938 const char *info;
3939 const char *suffix;
3940
3941 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
3942 || TYPE_NFIELDS (type) != 1)
3943 return ADA_NOT_RENAMING;
3944
3945 name = type_name_no_tag (type);
3946 if (name == NULL)
3947 return ADA_NOT_RENAMING;
3948
3949 name = strstr (name, "___XR");
3950 if (name == NULL)
3951 return ADA_NOT_RENAMING;
3952 switch (name[5])
3953 {
3954 case '\0':
3955 case '_':
3956 kind = ADA_OBJECT_RENAMING;
3957 break;
3958 case 'E':
3959 kind = ADA_EXCEPTION_RENAMING;
3960 break;
3961 case 'P':
3962 kind = ADA_PACKAGE_RENAMING;
3963 break;
3964 case 'S':
3965 kind = ADA_SUBPROGRAM_RENAMING;
3966 break;
3967 default:
3968 return ADA_NOT_RENAMING;
3969 }
3970
3971 info = TYPE_FIELD_NAME (type, 0);
3972 if (info == NULL)
3973 return ADA_NOT_RENAMING;
3974 if (renamed_entity != NULL)
3975 *renamed_entity = info;
3976 suffix = strstr (info, "___XE");
3977 if (renaming_expr != NULL)
3978 *renaming_expr = suffix + 5;
3979 if (suffix == NULL || suffix == info)
3980 return ADA_NOT_RENAMING;
3981 if (len != NULL)
3982 *len = suffix - info;
3983 return kind;
3984 }
3985
3986 \f
3987
3988 /* Evaluation: Function Calls */
3989
3990 /* Return an lvalue containing the value VAL. This is the identity on
3991 lvalues, and otherwise has the side-effect of allocating memory
3992 in the inferior where a copy of the value contents is copied. */
3993
3994 static struct value *
3995 ensure_lval (struct value *val)
3996 {
3997 if (VALUE_LVAL (val) == not_lval
3998 || VALUE_LVAL (val) == lval_internalvar)
3999 {
4000 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4001 const CORE_ADDR addr =
4002 value_as_long (value_allocate_space_in_inferior (len));
4003
4004 set_value_address (val, addr);
4005 VALUE_LVAL (val) = lval_memory;
4006 write_memory (addr, value_contents (val), len);
4007 }
4008
4009 return val;
4010 }
4011
4012 /* Return the value ACTUAL, converted to be an appropriate value for a
4013 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4014 allocating any necessary descriptors (fat pointers), or copies of
4015 values not residing in memory, updating it as needed. */
4016
4017 struct value *
4018 ada_convert_actual (struct value *actual, struct type *formal_type0)
4019 {
4020 struct type *actual_type = ada_check_typedef (value_type (actual));
4021 struct type *formal_type = ada_check_typedef (formal_type0);
4022 struct type *formal_target =
4023 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4024 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4025 struct type *actual_target =
4026 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4027 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4028
4029 if (ada_is_array_descriptor_type (formal_target)
4030 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4031 return make_array_descriptor (formal_type, actual);
4032 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4033 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4034 {
4035 struct value *result;
4036
4037 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4038 && ada_is_array_descriptor_type (actual_target))
4039 result = desc_data (actual);
4040 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4041 {
4042 if (VALUE_LVAL (actual) != lval_memory)
4043 {
4044 struct value *val;
4045
4046 actual_type = ada_check_typedef (value_type (actual));
4047 val = allocate_value (actual_type);
4048 memcpy ((char *) value_contents_raw (val),
4049 (char *) value_contents (actual),
4050 TYPE_LENGTH (actual_type));
4051 actual = ensure_lval (val);
4052 }
4053 result = value_addr (actual);
4054 }
4055 else
4056 return actual;
4057 return value_cast_pointers (formal_type, result);
4058 }
4059 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4060 return ada_value_ind (actual);
4061
4062 return actual;
4063 }
4064
4065 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4066 type TYPE. This is usually an inefficient no-op except on some targets
4067 (such as AVR) where the representation of a pointer and an address
4068 differs. */
4069
4070 static CORE_ADDR
4071 value_pointer (struct value *value, struct type *type)
4072 {
4073 struct gdbarch *gdbarch = get_type_arch (type);
4074 unsigned len = TYPE_LENGTH (type);
4075 gdb_byte *buf = alloca (len);
4076 CORE_ADDR addr;
4077
4078 addr = value_address (value);
4079 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4080 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4081 return addr;
4082 }
4083
4084
4085 /* Push a descriptor of type TYPE for array value ARR on the stack at
4086 *SP, updating *SP to reflect the new descriptor. Return either
4087 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4088 to-descriptor type rather than a descriptor type), a struct value *
4089 representing a pointer to this descriptor. */
4090
4091 static struct value *
4092 make_array_descriptor (struct type *type, struct value *arr)
4093 {
4094 struct type *bounds_type = desc_bounds_type (type);
4095 struct type *desc_type = desc_base_type (type);
4096 struct value *descriptor = allocate_value (desc_type);
4097 struct value *bounds = allocate_value (bounds_type);
4098 int i;
4099
4100 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4101 i > 0; i -= 1)
4102 {
4103 modify_field (value_type (bounds), value_contents_writeable (bounds),
4104 ada_array_bound (arr, i, 0),
4105 desc_bound_bitpos (bounds_type, i, 0),
4106 desc_bound_bitsize (bounds_type, i, 0));
4107 modify_field (value_type (bounds), value_contents_writeable (bounds),
4108 ada_array_bound (arr, i, 1),
4109 desc_bound_bitpos (bounds_type, i, 1),
4110 desc_bound_bitsize (bounds_type, i, 1));
4111 }
4112
4113 bounds = ensure_lval (bounds);
4114
4115 modify_field (value_type (descriptor),
4116 value_contents_writeable (descriptor),
4117 value_pointer (ensure_lval (arr),
4118 TYPE_FIELD_TYPE (desc_type, 0)),
4119 fat_pntr_data_bitpos (desc_type),
4120 fat_pntr_data_bitsize (desc_type));
4121
4122 modify_field (value_type (descriptor),
4123 value_contents_writeable (descriptor),
4124 value_pointer (bounds,
4125 TYPE_FIELD_TYPE (desc_type, 1)),
4126 fat_pntr_bounds_bitpos (desc_type),
4127 fat_pntr_bounds_bitsize (desc_type));
4128
4129 descriptor = ensure_lval (descriptor);
4130
4131 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4132 return value_addr (descriptor);
4133 else
4134 return descriptor;
4135 }
4136 \f
4137 /* Dummy definitions for an experimental caching module that is not
4138 * used in the public sources. */
4139
4140 static int
4141 lookup_cached_symbol (const char *name, domain_enum namespace,
4142 struct symbol **sym, struct block **block)
4143 {
4144 return 0;
4145 }
4146
4147 static void
4148 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
4149 struct block *block)
4150 {
4151 }
4152 \f
4153 /* Symbol Lookup */
4154
4155 /* Return the result of a standard (literal, C-like) lookup of NAME in
4156 given DOMAIN, visible from lexical block BLOCK. */
4157
4158 static struct symbol *
4159 standard_lookup (const char *name, const struct block *block,
4160 domain_enum domain)
4161 {
4162 struct symbol *sym;
4163
4164 if (lookup_cached_symbol (name, domain, &sym, NULL))
4165 return sym;
4166 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4167 cache_symbol (name, domain, sym, block_found);
4168 return sym;
4169 }
4170
4171
4172 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4173 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4174 since they contend in overloading in the same way. */
4175 static int
4176 is_nonfunction (struct ada_symbol_info syms[], int n)
4177 {
4178 int i;
4179
4180 for (i = 0; i < n; i += 1)
4181 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4182 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4183 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
4184 return 1;
4185
4186 return 0;
4187 }
4188
4189 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4190 struct types. Otherwise, they may not. */
4191
4192 static int
4193 equiv_types (struct type *type0, struct type *type1)
4194 {
4195 if (type0 == type1)
4196 return 1;
4197 if (type0 == NULL || type1 == NULL
4198 || TYPE_CODE (type0) != TYPE_CODE (type1))
4199 return 0;
4200 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4201 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4202 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4203 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4204 return 1;
4205
4206 return 0;
4207 }
4208
4209 /* True iff SYM0 represents the same entity as SYM1, or one that is
4210 no more defined than that of SYM1. */
4211
4212 static int
4213 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4214 {
4215 if (sym0 == sym1)
4216 return 1;
4217 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4218 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4219 return 0;
4220
4221 switch (SYMBOL_CLASS (sym0))
4222 {
4223 case LOC_UNDEF:
4224 return 1;
4225 case LOC_TYPEDEF:
4226 {
4227 struct type *type0 = SYMBOL_TYPE (sym0);
4228 struct type *type1 = SYMBOL_TYPE (sym1);
4229 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4230 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4231 int len0 = strlen (name0);
4232
4233 return
4234 TYPE_CODE (type0) == TYPE_CODE (type1)
4235 && (equiv_types (type0, type1)
4236 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4237 && strncmp (name1 + len0, "___XV", 5) == 0));
4238 }
4239 case LOC_CONST:
4240 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4241 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4242 default:
4243 return 0;
4244 }
4245 }
4246
4247 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4248 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4249
4250 static void
4251 add_defn_to_vec (struct obstack *obstackp,
4252 struct symbol *sym,
4253 struct block *block)
4254 {
4255 int i;
4256 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4257
4258 /* Do not try to complete stub types, as the debugger is probably
4259 already scanning all symbols matching a certain name at the
4260 time when this function is called. Trying to replace the stub
4261 type by its associated full type will cause us to restart a scan
4262 which may lead to an infinite recursion. Instead, the client
4263 collecting the matching symbols will end up collecting several
4264 matches, with at least one of them complete. It can then filter
4265 out the stub ones if needed. */
4266
4267 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4268 {
4269 if (lesseq_defined_than (sym, prevDefns[i].sym))
4270 return;
4271 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4272 {
4273 prevDefns[i].sym = sym;
4274 prevDefns[i].block = block;
4275 return;
4276 }
4277 }
4278
4279 {
4280 struct ada_symbol_info info;
4281
4282 info.sym = sym;
4283 info.block = block;
4284 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4285 }
4286 }
4287
4288 /* Number of ada_symbol_info structures currently collected in
4289 current vector in *OBSTACKP. */
4290
4291 static int
4292 num_defns_collected (struct obstack *obstackp)
4293 {
4294 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4295 }
4296
4297 /* Vector of ada_symbol_info structures currently collected in current
4298 vector in *OBSTACKP. If FINISH, close off the vector and return
4299 its final address. */
4300
4301 static struct ada_symbol_info *
4302 defns_collected (struct obstack *obstackp, int finish)
4303 {
4304 if (finish)
4305 return obstack_finish (obstackp);
4306 else
4307 return (struct ada_symbol_info *) obstack_base (obstackp);
4308 }
4309
4310 /* Return a minimal symbol matching NAME according to Ada decoding
4311 rules. Returns NULL if there is no such minimal symbol. Names
4312 prefixed with "standard__" are handled specially: "standard__" is
4313 first stripped off, and only static and global symbols are searched. */
4314
4315 struct minimal_symbol *
4316 ada_lookup_simple_minsym (const char *name)
4317 {
4318 struct objfile *objfile;
4319 struct minimal_symbol *msymbol;
4320 int wild_match;
4321
4322 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4323 {
4324 name += sizeof ("standard__") - 1;
4325 wild_match = 0;
4326 }
4327 else
4328 wild_match = (strstr (name, "__") == NULL);
4329
4330 ALL_MSYMBOLS (objfile, msymbol)
4331 {
4332 if (match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4333 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4334 return msymbol;
4335 }
4336
4337 return NULL;
4338 }
4339
4340 /* For all subprograms that statically enclose the subprogram of the
4341 selected frame, add symbols matching identifier NAME in DOMAIN
4342 and their blocks to the list of data in OBSTACKP, as for
4343 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4344 wildcard prefix. */
4345
4346 static void
4347 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4348 const char *name, domain_enum namespace,
4349 int wild_match)
4350 {
4351 }
4352
4353 /* True if TYPE is definitely an artificial type supplied to a symbol
4354 for which no debugging information was given in the symbol file. */
4355
4356 static int
4357 is_nondebugging_type (struct type *type)
4358 {
4359 char *name = ada_type_name (type);
4360
4361 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4362 }
4363
4364 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4365 duplicate other symbols in the list (The only case I know of where
4366 this happens is when object files containing stabs-in-ecoff are
4367 linked with files containing ordinary ecoff debugging symbols (or no
4368 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4369 Returns the number of items in the modified list. */
4370
4371 static int
4372 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4373 {
4374 int i, j;
4375
4376 i = 0;
4377 while (i < nsyms)
4378 {
4379 int remove = 0;
4380
4381 /* If two symbols have the same name and one of them is a stub type,
4382 the get rid of the stub. */
4383
4384 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4385 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4386 {
4387 for (j = 0; j < nsyms; j++)
4388 {
4389 if (j != i
4390 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4391 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4392 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4393 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4394 remove = 1;
4395 }
4396 }
4397
4398 /* Two symbols with the same name, same class and same address
4399 should be identical. */
4400
4401 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4402 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4403 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4404 {
4405 for (j = 0; j < nsyms; j += 1)
4406 {
4407 if (i != j
4408 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4409 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4410 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4411 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4412 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4413 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4414 remove = 1;
4415 }
4416 }
4417
4418 if (remove)
4419 {
4420 for (j = i + 1; j < nsyms; j += 1)
4421 syms[j - 1] = syms[j];
4422 nsyms -= 1;
4423 }
4424
4425 i += 1;
4426 }
4427 return nsyms;
4428 }
4429
4430 /* Given a type that corresponds to a renaming entity, use the type name
4431 to extract the scope (package name or function name, fully qualified,
4432 and following the GNAT encoding convention) where this renaming has been
4433 defined. The string returned needs to be deallocated after use. */
4434
4435 static char *
4436 xget_renaming_scope (struct type *renaming_type)
4437 {
4438 /* The renaming types adhere to the following convention:
4439 <scope>__<rename>___<XR extension>.
4440 So, to extract the scope, we search for the "___XR" extension,
4441 and then backtrack until we find the first "__". */
4442
4443 const char *name = type_name_no_tag (renaming_type);
4444 char *suffix = strstr (name, "___XR");
4445 char *last;
4446 int scope_len;
4447 char *scope;
4448
4449 /* Now, backtrack a bit until we find the first "__". Start looking
4450 at suffix - 3, as the <rename> part is at least one character long. */
4451
4452 for (last = suffix - 3; last > name; last--)
4453 if (last[0] == '_' && last[1] == '_')
4454 break;
4455
4456 /* Make a copy of scope and return it. */
4457
4458 scope_len = last - name;
4459 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4460
4461 strncpy (scope, name, scope_len);
4462 scope[scope_len] = '\0';
4463
4464 return scope;
4465 }
4466
4467 /* Return nonzero if NAME corresponds to a package name. */
4468
4469 static int
4470 is_package_name (const char *name)
4471 {
4472 /* Here, We take advantage of the fact that no symbols are generated
4473 for packages, while symbols are generated for each function.
4474 So the condition for NAME represent a package becomes equivalent
4475 to NAME not existing in our list of symbols. There is only one
4476 small complication with library-level functions (see below). */
4477
4478 char *fun_name;
4479
4480 /* If it is a function that has not been defined at library level,
4481 then we should be able to look it up in the symbols. */
4482 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4483 return 0;
4484
4485 /* Library-level function names start with "_ada_". See if function
4486 "_ada_" followed by NAME can be found. */
4487
4488 /* Do a quick check that NAME does not contain "__", since library-level
4489 functions names cannot contain "__" in them. */
4490 if (strstr (name, "__") != NULL)
4491 return 0;
4492
4493 fun_name = xstrprintf ("_ada_%s", name);
4494
4495 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4496 }
4497
4498 /* Return nonzero if SYM corresponds to a renaming entity that is
4499 not visible from FUNCTION_NAME. */
4500
4501 static int
4502 old_renaming_is_invisible (const struct symbol *sym, char *function_name)
4503 {
4504 char *scope;
4505
4506 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4507 return 0;
4508
4509 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4510
4511 make_cleanup (xfree, scope);
4512
4513 /* If the rename has been defined in a package, then it is visible. */
4514 if (is_package_name (scope))
4515 return 0;
4516
4517 /* Check that the rename is in the current function scope by checking
4518 that its name starts with SCOPE. */
4519
4520 /* If the function name starts with "_ada_", it means that it is
4521 a library-level function. Strip this prefix before doing the
4522 comparison, as the encoding for the renaming does not contain
4523 this prefix. */
4524 if (strncmp (function_name, "_ada_", 5) == 0)
4525 function_name += 5;
4526
4527 return (strncmp (function_name, scope, strlen (scope)) != 0);
4528 }
4529
4530 /* Remove entries from SYMS that corresponds to a renaming entity that
4531 is not visible from the function associated with CURRENT_BLOCK or
4532 that is superfluous due to the presence of more specific renaming
4533 information. Places surviving symbols in the initial entries of
4534 SYMS and returns the number of surviving symbols.
4535
4536 Rationale:
4537 First, in cases where an object renaming is implemented as a
4538 reference variable, GNAT may produce both the actual reference
4539 variable and the renaming encoding. In this case, we discard the
4540 latter.
4541
4542 Second, GNAT emits a type following a specified encoding for each renaming
4543 entity. Unfortunately, STABS currently does not support the definition
4544 of types that are local to a given lexical block, so all renamings types
4545 are emitted at library level. As a consequence, if an application
4546 contains two renaming entities using the same name, and a user tries to
4547 print the value of one of these entities, the result of the ada symbol
4548 lookup will also contain the wrong renaming type.
4549
4550 This function partially covers for this limitation by attempting to
4551 remove from the SYMS list renaming symbols that should be visible
4552 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4553 method with the current information available. The implementation
4554 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4555
4556 - When the user tries to print a rename in a function while there
4557 is another rename entity defined in a package: Normally, the
4558 rename in the function has precedence over the rename in the
4559 package, so the latter should be removed from the list. This is
4560 currently not the case.
4561
4562 - This function will incorrectly remove valid renames if
4563 the CURRENT_BLOCK corresponds to a function which symbol name
4564 has been changed by an "Export" pragma. As a consequence,
4565 the user will be unable to print such rename entities. */
4566
4567 static int
4568 remove_irrelevant_renamings (struct ada_symbol_info *syms,
4569 int nsyms, const struct block *current_block)
4570 {
4571 struct symbol *current_function;
4572 char *current_function_name;
4573 int i;
4574 int is_new_style_renaming;
4575
4576 /* If there is both a renaming foo___XR... encoded as a variable and
4577 a simple variable foo in the same block, discard the latter.
4578 First, zero out such symbols, then compress. */
4579 is_new_style_renaming = 0;
4580 for (i = 0; i < nsyms; i += 1)
4581 {
4582 struct symbol *sym = syms[i].sym;
4583 struct block *block = syms[i].block;
4584 const char *name;
4585 const char *suffix;
4586
4587 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4588 continue;
4589 name = SYMBOL_LINKAGE_NAME (sym);
4590 suffix = strstr (name, "___XR");
4591
4592 if (suffix != NULL)
4593 {
4594 int name_len = suffix - name;
4595 int j;
4596
4597 is_new_style_renaming = 1;
4598 for (j = 0; j < nsyms; j += 1)
4599 if (i != j && syms[j].sym != NULL
4600 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4601 name_len) == 0
4602 && block == syms[j].block)
4603 syms[j].sym = NULL;
4604 }
4605 }
4606 if (is_new_style_renaming)
4607 {
4608 int j, k;
4609
4610 for (j = k = 0; j < nsyms; j += 1)
4611 if (syms[j].sym != NULL)
4612 {
4613 syms[k] = syms[j];
4614 k += 1;
4615 }
4616 return k;
4617 }
4618
4619 /* Extract the function name associated to CURRENT_BLOCK.
4620 Abort if unable to do so. */
4621
4622 if (current_block == NULL)
4623 return nsyms;
4624
4625 current_function = block_linkage_function (current_block);
4626 if (current_function == NULL)
4627 return nsyms;
4628
4629 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4630 if (current_function_name == NULL)
4631 return nsyms;
4632
4633 /* Check each of the symbols, and remove it from the list if it is
4634 a type corresponding to a renaming that is out of the scope of
4635 the current block. */
4636
4637 i = 0;
4638 while (i < nsyms)
4639 {
4640 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4641 == ADA_OBJECT_RENAMING
4642 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4643 {
4644 int j;
4645
4646 for (j = i + 1; j < nsyms; j += 1)
4647 syms[j - 1] = syms[j];
4648 nsyms -= 1;
4649 }
4650 else
4651 i += 1;
4652 }
4653
4654 return nsyms;
4655 }
4656
4657 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4658 whose name and domain match NAME and DOMAIN respectively.
4659 If no match was found, then extend the search to "enclosing"
4660 routines (in other words, if we're inside a nested function,
4661 search the symbols defined inside the enclosing functions).
4662
4663 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4664
4665 static void
4666 ada_add_local_symbols (struct obstack *obstackp, const char *name,
4667 struct block *block, domain_enum domain,
4668 int wild_match)
4669 {
4670 int block_depth = 0;
4671
4672 while (block != NULL)
4673 {
4674 block_depth += 1;
4675 ada_add_block_symbols (obstackp, block, name, domain, NULL, wild_match);
4676
4677 /* If we found a non-function match, assume that's the one. */
4678 if (is_nonfunction (defns_collected (obstackp, 0),
4679 num_defns_collected (obstackp)))
4680 return;
4681
4682 block = BLOCK_SUPERBLOCK (block);
4683 }
4684
4685 /* If no luck so far, try to find NAME as a local symbol in some lexically
4686 enclosing subprogram. */
4687 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4688 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match);
4689 }
4690
4691 /* An object of this type is used as the user_data argument when
4692 calling the map_matching_symbols method. */
4693
4694 struct match_data
4695 {
4696 struct objfile *objfile;
4697 struct obstack *obstackp;
4698 struct symbol *arg_sym;
4699 int found_sym;
4700 };
4701
4702 /* A callback for add_matching_symbols that adds SYM, found in BLOCK,
4703 to a list of symbols. DATA0 is a pointer to a struct match_data *
4704 containing the obstack that collects the symbol list, the file that SYM
4705 must come from, a flag indicating whether a non-argument symbol has
4706 been found in the current block, and the last argument symbol
4707 passed in SYM within the current block (if any). When SYM is null,
4708 marking the end of a block, the argument symbol is added if no
4709 other has been found. */
4710
4711 static int
4712 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
4713 {
4714 struct match_data *data = (struct match_data *) data0;
4715
4716 if (sym == NULL)
4717 {
4718 if (!data->found_sym && data->arg_sym != NULL)
4719 add_defn_to_vec (data->obstackp,
4720 fixup_symbol_section (data->arg_sym, data->objfile),
4721 block);
4722 data->found_sym = 0;
4723 data->arg_sym = NULL;
4724 }
4725 else
4726 {
4727 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4728 return 0;
4729 else if (SYMBOL_IS_ARGUMENT (sym))
4730 data->arg_sym = sym;
4731 else
4732 {
4733 data->found_sym = 1;
4734 add_defn_to_vec (data->obstackp,
4735 fixup_symbol_section (sym, data->objfile),
4736 block);
4737 }
4738 }
4739 return 0;
4740 }
4741
4742 /* Compare STRING1 to STRING2, with results as for strcmp.
4743 Compatible with strcmp_iw in that strcmp_iw (STRING1, STRING2) <= 0
4744 implies compare_names (STRING1, STRING2) (they may differ as to
4745 what symbols compare equal). */
4746
4747 static int
4748 compare_names (const char *string1, const char *string2)
4749 {
4750 while (*string1 != '\0' && *string2 != '\0')
4751 {
4752 if (isspace (*string1) || isspace (*string2))
4753 return strcmp_iw_ordered (string1, string2);
4754 if (*string1 != *string2)
4755 break;
4756 string1 += 1;
4757 string2 += 1;
4758 }
4759 switch (*string1)
4760 {
4761 case '(':
4762 return strcmp_iw_ordered (string1, string2);
4763 case '_':
4764 if (*string2 == '\0')
4765 {
4766 if (is_name_suffix (string1))
4767 return 0;
4768 else
4769 return -1;
4770 }
4771 /* FALLTHROUGH */
4772 default:
4773 if (*string2 == '(')
4774 return strcmp_iw_ordered (string1, string2);
4775 else
4776 return *string1 - *string2;
4777 }
4778 }
4779
4780 /* Add to OBSTACKP all non-local symbols whose name and domain match
4781 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
4782 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
4783
4784 static void
4785 add_nonlocal_symbols (struct obstack *obstackp, const char *name,
4786 domain_enum domain, int global,
4787 int is_wild_match)
4788 {
4789 struct objfile *objfile;
4790 struct match_data data;
4791
4792 data.obstackp = obstackp;
4793 data.arg_sym = NULL;
4794
4795 ALL_OBJFILES (objfile)
4796 {
4797 data.objfile = objfile;
4798
4799 if (is_wild_match)
4800 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
4801 aux_add_nonlocal_symbols, &data,
4802 wild_match, NULL);
4803 else
4804 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
4805 aux_add_nonlocal_symbols, &data,
4806 full_match, compare_names);
4807 }
4808
4809 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
4810 {
4811 ALL_OBJFILES (objfile)
4812 {
4813 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
4814 strcpy (name1, "_ada_");
4815 strcpy (name1 + sizeof ("_ada_") - 1, name);
4816 data.objfile = objfile;
4817 objfile->sf->qf->map_matching_symbols (name1, domain,
4818 objfile, global,
4819 aux_add_nonlocal_symbols,
4820 &data,
4821 full_match, compare_names);
4822 }
4823 }
4824 }
4825
4826 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4827 scope and in global scopes, returning the number of matches. Sets
4828 *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4829 indicating the symbols found and the blocks and symbol tables (if
4830 any) in which they were found. This vector are transient---good only to
4831 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4832 symbol match within the nest of blocks whose innermost member is BLOCK0,
4833 is the one match returned (no other matches in that or
4834 enclosing blocks is returned). If there are any matches in or
4835 surrounding BLOCK0, then these alone are returned. Otherwise, the
4836 search extends to global and file-scope (static) symbol tables.
4837 Names prefixed with "standard__" are handled specially: "standard__"
4838 is first stripped off, and only static and global symbols are searched. */
4839
4840 int
4841 ada_lookup_symbol_list (const char *name0, const struct block *block0,
4842 domain_enum namespace,
4843 struct ada_symbol_info **results)
4844 {
4845 struct symbol *sym;
4846 struct block *block;
4847 const char *name;
4848 int wild_match;
4849 int cacheIfUnique;
4850 int ndefns;
4851
4852 obstack_free (&symbol_list_obstack, NULL);
4853 obstack_init (&symbol_list_obstack);
4854
4855 cacheIfUnique = 0;
4856
4857 /* Search specified block and its superiors. */
4858
4859 wild_match = (strstr (name0, "__") == NULL);
4860 name = name0;
4861 block = (struct block *) block0; /* FIXME: No cast ought to be
4862 needed, but adding const will
4863 have a cascade effect. */
4864
4865 /* Special case: If the user specifies a symbol name inside package
4866 Standard, do a non-wild matching of the symbol name without
4867 the "standard__" prefix. This was primarily introduced in order
4868 to allow the user to specifically access the standard exceptions
4869 using, for instance, Standard.Constraint_Error when Constraint_Error
4870 is ambiguous (due to the user defining its own Constraint_Error
4871 entity inside its program). */
4872 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4873 {
4874 wild_match = 0;
4875 block = NULL;
4876 name = name0 + sizeof ("standard__") - 1;
4877 }
4878
4879 /* Check the non-global symbols. If we have ANY match, then we're done. */
4880
4881 ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
4882 wild_match);
4883 if (num_defns_collected (&symbol_list_obstack) > 0)
4884 goto done;
4885
4886 /* No non-global symbols found. Check our cache to see if we have
4887 already performed this search before. If we have, then return
4888 the same result. */
4889
4890 cacheIfUnique = 1;
4891 if (lookup_cached_symbol (name0, namespace, &sym, &block))
4892 {
4893 if (sym != NULL)
4894 add_defn_to_vec (&symbol_list_obstack, sym, block);
4895 goto done;
4896 }
4897
4898 /* Search symbols from all global blocks. */
4899
4900 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
4901 wild_match);
4902
4903 /* Now add symbols from all per-file blocks if we've gotten no hits
4904 (not strictly correct, but perhaps better than an error). */
4905
4906 if (num_defns_collected (&symbol_list_obstack) == 0)
4907 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
4908 wild_match);
4909
4910 done:
4911 ndefns = num_defns_collected (&symbol_list_obstack);
4912 *results = defns_collected (&symbol_list_obstack, 1);
4913
4914 ndefns = remove_extra_symbols (*results, ndefns);
4915
4916 if (ndefns == 0)
4917 cache_symbol (name0, namespace, NULL, NULL);
4918
4919 if (ndefns == 1 && cacheIfUnique)
4920 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
4921
4922 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
4923
4924 return ndefns;
4925 }
4926
4927 struct symbol *
4928 ada_lookup_encoded_symbol (const char *name, const struct block *block0,
4929 domain_enum namespace, struct block **block_found)
4930 {
4931 struct ada_symbol_info *candidates;
4932 int n_candidates;
4933
4934 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates);
4935
4936 if (n_candidates == 0)
4937 return NULL;
4938
4939 if (block_found != NULL)
4940 *block_found = candidates[0].block;
4941
4942 return fixup_symbol_section (candidates[0].sym, NULL);
4943 }
4944
4945 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4946 scope and in global scopes, or NULL if none. NAME is folded and
4947 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4948 choosing the first symbol if there are multiple choices.
4949 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4950 table in which the symbol was found (in both cases, these
4951 assignments occur only if the pointers are non-null). */
4952 struct symbol *
4953 ada_lookup_symbol (const char *name, const struct block *block0,
4954 domain_enum namespace, int *is_a_field_of_this)
4955 {
4956 if (is_a_field_of_this != NULL)
4957 *is_a_field_of_this = 0;
4958
4959 return
4960 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
4961 block0, namespace, NULL);
4962 }
4963
4964 static struct symbol *
4965 ada_lookup_symbol_nonlocal (const char *name,
4966 const struct block *block,
4967 const domain_enum domain)
4968 {
4969 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
4970 }
4971
4972
4973 /* True iff STR is a possible encoded suffix of a normal Ada name
4974 that is to be ignored for matching purposes. Suffixes of parallel
4975 names (e.g., XVE) are not included here. Currently, the possible suffixes
4976 are given by any of the regular expressions:
4977
4978 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
4979 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4980 _E[0-9]+[bs]$ [protected object entry suffixes]
4981 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
4982
4983 Also, any leading "__[0-9]+" sequence is skipped before the suffix
4984 match is performed. This sequence is used to differentiate homonyms,
4985 is an optional part of a valid name suffix. */
4986
4987 static int
4988 is_name_suffix (const char *str)
4989 {
4990 int k;
4991 const char *matching;
4992 const int len = strlen (str);
4993
4994 /* Skip optional leading __[0-9]+. */
4995
4996 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4997 {
4998 str += 3;
4999 while (isdigit (str[0]))
5000 str += 1;
5001 }
5002
5003 /* [.$][0-9]+ */
5004
5005 if (str[0] == '.' || str[0] == '$')
5006 {
5007 matching = str + 1;
5008 while (isdigit (matching[0]))
5009 matching += 1;
5010 if (matching[0] == '\0')
5011 return 1;
5012 }
5013
5014 /* ___[0-9]+ */
5015
5016 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5017 {
5018 matching = str + 3;
5019 while (isdigit (matching[0]))
5020 matching += 1;
5021 if (matching[0] == '\0')
5022 return 1;
5023 }
5024
5025 #if 0
5026 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5027 with a N at the end. Unfortunately, the compiler uses the same
5028 convention for other internal types it creates. So treating
5029 all entity names that end with an "N" as a name suffix causes
5030 some regressions. For instance, consider the case of an enumerated
5031 type. To support the 'Image attribute, it creates an array whose
5032 name ends with N.
5033 Having a single character like this as a suffix carrying some
5034 information is a bit risky. Perhaps we should change the encoding
5035 to be something like "_N" instead. In the meantime, do not do
5036 the following check. */
5037 /* Protected Object Subprograms */
5038 if (len == 1 && str [0] == 'N')
5039 return 1;
5040 #endif
5041
5042 /* _E[0-9]+[bs]$ */
5043 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5044 {
5045 matching = str + 3;
5046 while (isdigit (matching[0]))
5047 matching += 1;
5048 if ((matching[0] == 'b' || matching[0] == 's')
5049 && matching [1] == '\0')
5050 return 1;
5051 }
5052
5053 /* ??? We should not modify STR directly, as we are doing below. This
5054 is fine in this case, but may become problematic later if we find
5055 that this alternative did not work, and want to try matching
5056 another one from the begining of STR. Since we modified it, we
5057 won't be able to find the begining of the string anymore! */
5058 if (str[0] == 'X')
5059 {
5060 str += 1;
5061 while (str[0] != '_' && str[0] != '\0')
5062 {
5063 if (str[0] != 'n' && str[0] != 'b')
5064 return 0;
5065 str += 1;
5066 }
5067 }
5068
5069 if (str[0] == '\000')
5070 return 1;
5071
5072 if (str[0] == '_')
5073 {
5074 if (str[1] != '_' || str[2] == '\000')
5075 return 0;
5076 if (str[2] == '_')
5077 {
5078 if (strcmp (str + 3, "JM") == 0)
5079 return 1;
5080 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5081 the LJM suffix in favor of the JM one. But we will
5082 still accept LJM as a valid suffix for a reasonable
5083 amount of time, just to allow ourselves to debug programs
5084 compiled using an older version of GNAT. */
5085 if (strcmp (str + 3, "LJM") == 0)
5086 return 1;
5087 if (str[3] != 'X')
5088 return 0;
5089 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5090 || str[4] == 'U' || str[4] == 'P')
5091 return 1;
5092 if (str[4] == 'R' && str[5] != 'T')
5093 return 1;
5094 return 0;
5095 }
5096 if (!isdigit (str[2]))
5097 return 0;
5098 for (k = 3; str[k] != '\0'; k += 1)
5099 if (!isdigit (str[k]) && str[k] != '_')
5100 return 0;
5101 return 1;
5102 }
5103 if (str[0] == '$' && isdigit (str[1]))
5104 {
5105 for (k = 2; str[k] != '\0'; k += 1)
5106 if (!isdigit (str[k]) && str[k] != '_')
5107 return 0;
5108 return 1;
5109 }
5110 return 0;
5111 }
5112
5113 /* Return non-zero if the string starting at NAME and ending before
5114 NAME_END contains no capital letters. */
5115
5116 static int
5117 is_valid_name_for_wild_match (const char *name0)
5118 {
5119 const char *decoded_name = ada_decode (name0);
5120 int i;
5121
5122 /* If the decoded name starts with an angle bracket, it means that
5123 NAME0 does not follow the GNAT encoding format. It should then
5124 not be allowed as a possible wild match. */
5125 if (decoded_name[0] == '<')
5126 return 0;
5127
5128 for (i=0; decoded_name[i] != '\0'; i++)
5129 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5130 return 0;
5131
5132 return 1;
5133 }
5134
5135 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5136 that could start a simple name. Assumes that *NAMEP points into
5137 the string beginning at NAME0. */
5138
5139 static int
5140 advance_wild_match (const char **namep, const char *name0, int target0)
5141 {
5142 const char *name = *namep;
5143
5144 while (1)
5145 {
5146 int t0, t1;
5147
5148 t0 = *name;
5149 if (t0 == '_')
5150 {
5151 t1 = name[1];
5152 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5153 {
5154 name += 1;
5155 if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5156 break;
5157 else
5158 name += 1;
5159 }
5160 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5161 || name[2] == target0))
5162 {
5163 name += 2;
5164 break;
5165 }
5166 else
5167 return 0;
5168 }
5169 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5170 name += 1;
5171 else
5172 return 0;
5173 }
5174
5175 *namep = name;
5176 return 1;
5177 }
5178
5179 /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5180 informational suffixes of NAME (i.e., for which is_name_suffix is
5181 true). Assumes that PATN is a lower-cased Ada simple name. */
5182
5183 static int
5184 wild_match (const char *name, const char *patn)
5185 {
5186 const char *p, *n;
5187 const char *name0 = name;
5188
5189 while (1)
5190 {
5191 const char *match = name;
5192
5193 if (*name == *patn)
5194 {
5195 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5196 if (*p != *name)
5197 break;
5198 if (*p == '\0' && is_name_suffix (name))
5199 return match != name0 && !is_valid_name_for_wild_match (name0);
5200
5201 if (name[-1] == '_')
5202 name -= 1;
5203 }
5204 if (!advance_wild_match (&name, name0, *patn))
5205 return 1;
5206 }
5207 }
5208
5209 /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5210 informational suffix. */
5211
5212 static int
5213 full_match (const char *sym_name, const char *search_name)
5214 {
5215 return !match_name (sym_name, search_name, 0);
5216 }
5217
5218
5219 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5220 vector *defn_symbols, updating the list of symbols in OBSTACKP
5221 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5222 OBJFILE is the section containing BLOCK.
5223 SYMTAB is recorded with each symbol added. */
5224
5225 static void
5226 ada_add_block_symbols (struct obstack *obstackp,
5227 struct block *block, const char *name,
5228 domain_enum domain, struct objfile *objfile,
5229 int wild)
5230 {
5231 struct dict_iterator iter;
5232 int name_len = strlen (name);
5233 /* A matching argument symbol, if any. */
5234 struct symbol *arg_sym;
5235 /* Set true when we find a matching non-argument symbol. */
5236 int found_sym;
5237 struct symbol *sym;
5238
5239 arg_sym = NULL;
5240 found_sym = 0;
5241 if (wild)
5242 {
5243 for (sym = dict_iter_match_first (BLOCK_DICT (block), name,
5244 wild_match, &iter);
5245 sym != NULL; sym = dict_iter_match_next (name, wild_match, &iter))
5246 {
5247 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5248 SYMBOL_DOMAIN (sym), domain)
5249 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
5250 {
5251 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5252 continue;
5253 else if (SYMBOL_IS_ARGUMENT (sym))
5254 arg_sym = sym;
5255 else
5256 {
5257 found_sym = 1;
5258 add_defn_to_vec (obstackp,
5259 fixup_symbol_section (sym, objfile),
5260 block);
5261 }
5262 }
5263 }
5264 }
5265 else
5266 {
5267 for (sym = dict_iter_match_first (BLOCK_DICT (block), name,
5268 full_match, &iter);
5269 sym != NULL; sym = dict_iter_match_next (name, full_match, &iter))
5270 {
5271 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5272 SYMBOL_DOMAIN (sym), domain))
5273 {
5274 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5275 {
5276 if (SYMBOL_IS_ARGUMENT (sym))
5277 arg_sym = sym;
5278 else
5279 {
5280 found_sym = 1;
5281 add_defn_to_vec (obstackp,
5282 fixup_symbol_section (sym, objfile),
5283 block);
5284 }
5285 }
5286 }
5287 }
5288 }
5289
5290 if (!found_sym && arg_sym != NULL)
5291 {
5292 add_defn_to_vec (obstackp,
5293 fixup_symbol_section (arg_sym, objfile),
5294 block);
5295 }
5296
5297 if (!wild)
5298 {
5299 arg_sym = NULL;
5300 found_sym = 0;
5301
5302 ALL_BLOCK_SYMBOLS (block, iter, sym)
5303 {
5304 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5305 SYMBOL_DOMAIN (sym), domain))
5306 {
5307 int cmp;
5308
5309 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5310 if (cmp == 0)
5311 {
5312 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5313 if (cmp == 0)
5314 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5315 name_len);
5316 }
5317
5318 if (cmp == 0
5319 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5320 {
5321 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5322 {
5323 if (SYMBOL_IS_ARGUMENT (sym))
5324 arg_sym = sym;
5325 else
5326 {
5327 found_sym = 1;
5328 add_defn_to_vec (obstackp,
5329 fixup_symbol_section (sym, objfile),
5330 block);
5331 }
5332 }
5333 }
5334 }
5335 }
5336
5337 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5338 They aren't parameters, right? */
5339 if (!found_sym && arg_sym != NULL)
5340 {
5341 add_defn_to_vec (obstackp,
5342 fixup_symbol_section (arg_sym, objfile),
5343 block);
5344 }
5345 }
5346 }
5347 \f
5348
5349 /* Symbol Completion */
5350
5351 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
5352 name in a form that's appropriate for the completion. The result
5353 does not need to be deallocated, but is only good until the next call.
5354
5355 TEXT_LEN is equal to the length of TEXT.
5356 Perform a wild match if WILD_MATCH is set.
5357 ENCODED should be set if TEXT represents the start of a symbol name
5358 in its encoded form. */
5359
5360 static const char *
5361 symbol_completion_match (const char *sym_name,
5362 const char *text, int text_len,
5363 int wild_match, int encoded)
5364 {
5365 const int verbatim_match = (text[0] == '<');
5366 int match = 0;
5367
5368 if (verbatim_match)
5369 {
5370 /* Strip the leading angle bracket. */
5371 text = text + 1;
5372 text_len--;
5373 }
5374
5375 /* First, test against the fully qualified name of the symbol. */
5376
5377 if (strncmp (sym_name, text, text_len) == 0)
5378 match = 1;
5379
5380 if (match && !encoded)
5381 {
5382 /* One needed check before declaring a positive match is to verify
5383 that iff we are doing a verbatim match, the decoded version
5384 of the symbol name starts with '<'. Otherwise, this symbol name
5385 is not a suitable completion. */
5386 const char *sym_name_copy = sym_name;
5387 int has_angle_bracket;
5388
5389 sym_name = ada_decode (sym_name);
5390 has_angle_bracket = (sym_name[0] == '<');
5391 match = (has_angle_bracket == verbatim_match);
5392 sym_name = sym_name_copy;
5393 }
5394
5395 if (match && !verbatim_match)
5396 {
5397 /* When doing non-verbatim match, another check that needs to
5398 be done is to verify that the potentially matching symbol name
5399 does not include capital letters, because the ada-mode would
5400 not be able to understand these symbol names without the
5401 angle bracket notation. */
5402 const char *tmp;
5403
5404 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5405 if (*tmp != '\0')
5406 match = 0;
5407 }
5408
5409 /* Second: Try wild matching... */
5410
5411 if (!match && wild_match)
5412 {
5413 /* Since we are doing wild matching, this means that TEXT
5414 may represent an unqualified symbol name. We therefore must
5415 also compare TEXT against the unqualified name of the symbol. */
5416 sym_name = ada_unqualified_name (ada_decode (sym_name));
5417
5418 if (strncmp (sym_name, text, text_len) == 0)
5419 match = 1;
5420 }
5421
5422 /* Finally: If we found a mach, prepare the result to return. */
5423
5424 if (!match)
5425 return NULL;
5426
5427 if (verbatim_match)
5428 sym_name = add_angle_brackets (sym_name);
5429
5430 if (!encoded)
5431 sym_name = ada_decode (sym_name);
5432
5433 return sym_name;
5434 }
5435
5436 DEF_VEC_P (char_ptr);
5437
5438 /* A companion function to ada_make_symbol_completion_list().
5439 Check if SYM_NAME represents a symbol which name would be suitable
5440 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5441 it is appended at the end of the given string vector SV.
5442
5443 ORIG_TEXT is the string original string from the user command
5444 that needs to be completed. WORD is the entire command on which
5445 completion should be performed. These two parameters are used to
5446 determine which part of the symbol name should be added to the
5447 completion vector.
5448 if WILD_MATCH is set, then wild matching is performed.
5449 ENCODED should be set if TEXT represents a symbol name in its
5450 encoded formed (in which case the completion should also be
5451 encoded). */
5452
5453 static void
5454 symbol_completion_add (VEC(char_ptr) **sv,
5455 const char *sym_name,
5456 const char *text, int text_len,
5457 const char *orig_text, const char *word,
5458 int wild_match, int encoded)
5459 {
5460 const char *match = symbol_completion_match (sym_name, text, text_len,
5461 wild_match, encoded);
5462 char *completion;
5463
5464 if (match == NULL)
5465 return;
5466
5467 /* We found a match, so add the appropriate completion to the given
5468 string vector. */
5469
5470 if (word == orig_text)
5471 {
5472 completion = xmalloc (strlen (match) + 5);
5473 strcpy (completion, match);
5474 }
5475 else if (word > orig_text)
5476 {
5477 /* Return some portion of sym_name. */
5478 completion = xmalloc (strlen (match) + 5);
5479 strcpy (completion, match + (word - orig_text));
5480 }
5481 else
5482 {
5483 /* Return some of ORIG_TEXT plus sym_name. */
5484 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5485 strncpy (completion, word, orig_text - word);
5486 completion[orig_text - word] = '\0';
5487 strcat (completion, match);
5488 }
5489
5490 VEC_safe_push (char_ptr, *sv, completion);
5491 }
5492
5493 /* An object of this type is passed as the user_data argument to the
5494 expand_partial_symbol_names method. */
5495 struct add_partial_datum
5496 {
5497 VEC(char_ptr) **completions;
5498 char *text;
5499 int text_len;
5500 char *text0;
5501 char *word;
5502 int wild_match;
5503 int encoded;
5504 };
5505
5506 /* A callback for expand_partial_symbol_names. */
5507 static int
5508 ada_expand_partial_symbol_name (const char *name, void *user_data)
5509 {
5510 struct add_partial_datum *data = user_data;
5511
5512 return symbol_completion_match (name, data->text, data->text_len,
5513 data->wild_match, data->encoded) != NULL;
5514 }
5515
5516 /* Return a list of possible symbol names completing TEXT0. The list
5517 is NULL terminated. WORD is the entire command on which completion
5518 is made. */
5519
5520 static char **
5521 ada_make_symbol_completion_list (char *text0, char *word)
5522 {
5523 char *text;
5524 int text_len;
5525 int wild_match;
5526 int encoded;
5527 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
5528 struct symbol *sym;
5529 struct symtab *s;
5530 struct minimal_symbol *msymbol;
5531 struct objfile *objfile;
5532 struct block *b, *surrounding_static_block = 0;
5533 int i;
5534 struct dict_iterator iter;
5535
5536 if (text0[0] == '<')
5537 {
5538 text = xstrdup (text0);
5539 make_cleanup (xfree, text);
5540 text_len = strlen (text);
5541 wild_match = 0;
5542 encoded = 1;
5543 }
5544 else
5545 {
5546 text = xstrdup (ada_encode (text0));
5547 make_cleanup (xfree, text);
5548 text_len = strlen (text);
5549 for (i = 0; i < text_len; i++)
5550 text[i] = tolower (text[i]);
5551
5552 encoded = (strstr (text0, "__") != NULL);
5553 /* If the name contains a ".", then the user is entering a fully
5554 qualified entity name, and the match must not be done in wild
5555 mode. Similarly, if the user wants to complete what looks like
5556 an encoded name, the match must not be done in wild mode. */
5557 wild_match = (strchr (text0, '.') == NULL && !encoded);
5558 }
5559
5560 /* First, look at the partial symtab symbols. */
5561 {
5562 struct add_partial_datum data;
5563
5564 data.completions = &completions;
5565 data.text = text;
5566 data.text_len = text_len;
5567 data.text0 = text0;
5568 data.word = word;
5569 data.wild_match = wild_match;
5570 data.encoded = encoded;
5571 expand_partial_symbol_names (ada_expand_partial_symbol_name, &data);
5572 }
5573
5574 /* At this point scan through the misc symbol vectors and add each
5575 symbol you find to the list. Eventually we want to ignore
5576 anything that isn't a text symbol (everything else will be
5577 handled by the psymtab code above). */
5578
5579 ALL_MSYMBOLS (objfile, msymbol)
5580 {
5581 QUIT;
5582 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
5583 text, text_len, text0, word, wild_match, encoded);
5584 }
5585
5586 /* Search upwards from currently selected frame (so that we can
5587 complete on local vars. */
5588
5589 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5590 {
5591 if (!BLOCK_SUPERBLOCK (b))
5592 surrounding_static_block = b; /* For elmin of dups */
5593
5594 ALL_BLOCK_SYMBOLS (b, iter, sym)
5595 {
5596 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5597 text, text_len, text0, word,
5598 wild_match, encoded);
5599 }
5600 }
5601
5602 /* Go through the symtabs and check the externs and statics for
5603 symbols which match. */
5604
5605 ALL_SYMTABS (objfile, s)
5606 {
5607 QUIT;
5608 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5609 ALL_BLOCK_SYMBOLS (b, iter, sym)
5610 {
5611 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5612 text, text_len, text0, word,
5613 wild_match, encoded);
5614 }
5615 }
5616
5617 ALL_SYMTABS (objfile, s)
5618 {
5619 QUIT;
5620 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5621 /* Don't do this block twice. */
5622 if (b == surrounding_static_block)
5623 continue;
5624 ALL_BLOCK_SYMBOLS (b, iter, sym)
5625 {
5626 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5627 text, text_len, text0, word,
5628 wild_match, encoded);
5629 }
5630 }
5631
5632 /* Append the closing NULL entry. */
5633 VEC_safe_push (char_ptr, completions, NULL);
5634
5635 /* Make a copy of the COMPLETIONS VEC before we free it, and then
5636 return the copy. It's unfortunate that we have to make a copy
5637 of an array that we're about to destroy, but there is nothing much
5638 we can do about it. Fortunately, it's typically not a very large
5639 array. */
5640 {
5641 const size_t completions_size =
5642 VEC_length (char_ptr, completions) * sizeof (char *);
5643 char **result = xmalloc (completions_size);
5644
5645 memcpy (result, VEC_address (char_ptr, completions), completions_size);
5646
5647 VEC_free (char_ptr, completions);
5648 return result;
5649 }
5650 }
5651
5652 /* Field Access */
5653
5654 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5655 for tagged types. */
5656
5657 static int
5658 ada_is_dispatch_table_ptr_type (struct type *type)
5659 {
5660 char *name;
5661
5662 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5663 return 0;
5664
5665 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5666 if (name == NULL)
5667 return 0;
5668
5669 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5670 }
5671
5672 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5673 to be invisible to users. */
5674
5675 int
5676 ada_is_ignored_field (struct type *type, int field_num)
5677 {
5678 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5679 return 1;
5680
5681 /* Check the name of that field. */
5682 {
5683 const char *name = TYPE_FIELD_NAME (type, field_num);
5684
5685 /* Anonymous field names should not be printed.
5686 brobecker/2007-02-20: I don't think this can actually happen
5687 but we don't want to print the value of annonymous fields anyway. */
5688 if (name == NULL)
5689 return 1;
5690
5691 /* A field named "_parent" is internally generated by GNAT for
5692 tagged types, and should not be printed either. */
5693 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5694 return 1;
5695 }
5696
5697 /* If this is the dispatch table of a tagged type, then ignore. */
5698 if (ada_is_tagged_type (type, 1)
5699 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5700 return 1;
5701
5702 /* Not a special field, so it should not be ignored. */
5703 return 0;
5704 }
5705
5706 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5707 pointer or reference type whose ultimate target has a tag field. */
5708
5709 int
5710 ada_is_tagged_type (struct type *type, int refok)
5711 {
5712 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5713 }
5714
5715 /* True iff TYPE represents the type of X'Tag */
5716
5717 int
5718 ada_is_tag_type (struct type *type)
5719 {
5720 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5721 return 0;
5722 else
5723 {
5724 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5725
5726 return (name != NULL
5727 && strcmp (name, "ada__tags__dispatch_table") == 0);
5728 }
5729 }
5730
5731 /* The type of the tag on VAL. */
5732
5733 struct type *
5734 ada_tag_type (struct value *val)
5735 {
5736 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
5737 }
5738
5739 /* The value of the tag on VAL. */
5740
5741 struct value *
5742 ada_value_tag (struct value *val)
5743 {
5744 return ada_value_struct_elt (val, "_tag", 0);
5745 }
5746
5747 /* The value of the tag on the object of type TYPE whose contents are
5748 saved at VALADDR, if it is non-null, or is at memory address
5749 ADDRESS. */
5750
5751 static struct value *
5752 value_tag_from_contents_and_address (struct type *type,
5753 const gdb_byte *valaddr,
5754 CORE_ADDR address)
5755 {
5756 int tag_byte_offset;
5757 struct type *tag_type;
5758
5759 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
5760 NULL, NULL, NULL))
5761 {
5762 const gdb_byte *valaddr1 = ((valaddr == NULL)
5763 ? NULL
5764 : valaddr + tag_byte_offset);
5765 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
5766
5767 return value_from_contents_and_address (tag_type, valaddr1, address1);
5768 }
5769 return NULL;
5770 }
5771
5772 static struct type *
5773 type_from_tag (struct value *tag)
5774 {
5775 const char *type_name = ada_tag_name (tag);
5776
5777 if (type_name != NULL)
5778 return ada_find_any_type (ada_encode (type_name));
5779 return NULL;
5780 }
5781
5782 struct tag_args
5783 {
5784 struct value *tag;
5785 char *name;
5786 };
5787
5788
5789 static int ada_tag_name_1 (void *);
5790 static int ada_tag_name_2 (struct tag_args *);
5791
5792 /* Wrapper function used by ada_tag_name. Given a struct tag_args*
5793 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5794 The value stored in ARGS->name is valid until the next call to
5795 ada_tag_name_1. */
5796
5797 static int
5798 ada_tag_name_1 (void *args0)
5799 {
5800 struct tag_args *args = (struct tag_args *) args0;
5801 static char name[1024];
5802 char *p;
5803 struct value *val;
5804
5805 args->name = NULL;
5806 val = ada_value_struct_elt (args->tag, "tsd", 1);
5807 if (val == NULL)
5808 return ada_tag_name_2 (args);
5809 val = ada_value_struct_elt (val, "expanded_name", 1);
5810 if (val == NULL)
5811 return 0;
5812 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5813 for (p = name; *p != '\0'; p += 1)
5814 if (isalpha (*p))
5815 *p = tolower (*p);
5816 args->name = name;
5817 return 0;
5818 }
5819
5820 /* Return the "ada__tags__type_specific_data" type. */
5821
5822 static struct type *
5823 ada_get_tsd_type (struct inferior *inf)
5824 {
5825 struct ada_inferior_data *data = get_ada_inferior_data (inf);
5826
5827 if (data->tsd_type == 0)
5828 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
5829 return data->tsd_type;
5830 }
5831
5832 /* Utility function for ada_tag_name_1 that tries the second
5833 representation for the dispatch table (in which there is no
5834 explicit 'tsd' field in the referent of the tag pointer, and instead
5835 the tsd pointer is stored just before the dispatch table. */
5836
5837 static int
5838 ada_tag_name_2 (struct tag_args *args)
5839 {
5840 struct type *info_type;
5841 static char name[1024];
5842 char *p;
5843 struct value *val, *valp;
5844
5845 args->name = NULL;
5846 info_type = ada_get_tsd_type (current_inferior());
5847 if (info_type == NULL)
5848 return 0;
5849 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5850 valp = value_cast (info_type, args->tag);
5851 if (valp == NULL)
5852 return 0;
5853 val = value_ind (value_ptradd (valp, -1));
5854 if (val == NULL)
5855 return 0;
5856 val = ada_value_struct_elt (val, "expanded_name", 1);
5857 if (val == NULL)
5858 return 0;
5859 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5860 for (p = name; *p != '\0'; p += 1)
5861 if (isalpha (*p))
5862 *p = tolower (*p);
5863 args->name = name;
5864 return 0;
5865 }
5866
5867 /* The type name of the dynamic type denoted by the 'tag value TAG, as
5868 a C string. */
5869
5870 const char *
5871 ada_tag_name (struct value *tag)
5872 {
5873 struct tag_args args;
5874
5875 if (!ada_is_tag_type (value_type (tag)))
5876 return NULL;
5877 args.tag = tag;
5878 args.name = NULL;
5879 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5880 return args.name;
5881 }
5882
5883 /* The parent type of TYPE, or NULL if none. */
5884
5885 struct type *
5886 ada_parent_type (struct type *type)
5887 {
5888 int i;
5889
5890 type = ada_check_typedef (type);
5891
5892 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5893 return NULL;
5894
5895 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5896 if (ada_is_parent_field (type, i))
5897 {
5898 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
5899
5900 /* If the _parent field is a pointer, then dereference it. */
5901 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
5902 parent_type = TYPE_TARGET_TYPE (parent_type);
5903 /* If there is a parallel XVS type, get the actual base type. */
5904 parent_type = ada_get_base_type (parent_type);
5905
5906 return ada_check_typedef (parent_type);
5907 }
5908
5909 return NULL;
5910 }
5911
5912 /* True iff field number FIELD_NUM of structure type TYPE contains the
5913 parent-type (inherited) fields of a derived type. Assumes TYPE is
5914 a structure type with at least FIELD_NUM+1 fields. */
5915
5916 int
5917 ada_is_parent_field (struct type *type, int field_num)
5918 {
5919 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5920
5921 return (name != NULL
5922 && (strncmp (name, "PARENT", 6) == 0
5923 || strncmp (name, "_parent", 7) == 0));
5924 }
5925
5926 /* True iff field number FIELD_NUM of structure type TYPE is a
5927 transparent wrapper field (which should be silently traversed when doing
5928 field selection and flattened when printing). Assumes TYPE is a
5929 structure type with at least FIELD_NUM+1 fields. Such fields are always
5930 structures. */
5931
5932 int
5933 ada_is_wrapper_field (struct type *type, int field_num)
5934 {
5935 const char *name = TYPE_FIELD_NAME (type, field_num);
5936
5937 return (name != NULL
5938 && (strncmp (name, "PARENT", 6) == 0
5939 || strcmp (name, "REP") == 0
5940 || strncmp (name, "_parent", 7) == 0
5941 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
5942 }
5943
5944 /* True iff field number FIELD_NUM of structure or union type TYPE
5945 is a variant wrapper. Assumes TYPE is a structure type with at least
5946 FIELD_NUM+1 fields. */
5947
5948 int
5949 ada_is_variant_part (struct type *type, int field_num)
5950 {
5951 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5952
5953 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
5954 || (is_dynamic_field (type, field_num)
5955 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5956 == TYPE_CODE_UNION)));
5957 }
5958
5959 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
5960 whose discriminants are contained in the record type OUTER_TYPE,
5961 returns the type of the controlling discriminant for the variant.
5962 May return NULL if the type could not be found. */
5963
5964 struct type *
5965 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
5966 {
5967 char *name = ada_variant_discrim_name (var_type);
5968
5969 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
5970 }
5971
5972 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
5973 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
5974 represents a 'when others' clause; otherwise 0. */
5975
5976 int
5977 ada_is_others_clause (struct type *type, int field_num)
5978 {
5979 const char *name = TYPE_FIELD_NAME (type, field_num);
5980
5981 return (name != NULL && name[0] == 'O');
5982 }
5983
5984 /* Assuming that TYPE0 is the type of the variant part of a record,
5985 returns the name of the discriminant controlling the variant.
5986 The value is valid until the next call to ada_variant_discrim_name. */
5987
5988 char *
5989 ada_variant_discrim_name (struct type *type0)
5990 {
5991 static char *result = NULL;
5992 static size_t result_len = 0;
5993 struct type *type;
5994 const char *name;
5995 const char *discrim_end;
5996 const char *discrim_start;
5997
5998 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5999 type = TYPE_TARGET_TYPE (type0);
6000 else
6001 type = type0;
6002
6003 name = ada_type_name (type);
6004
6005 if (name == NULL || name[0] == '\000')
6006 return "";
6007
6008 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6009 discrim_end -= 1)
6010 {
6011 if (strncmp (discrim_end, "___XVN", 6) == 0)
6012 break;
6013 }
6014 if (discrim_end == name)
6015 return "";
6016
6017 for (discrim_start = discrim_end; discrim_start != name + 3;
6018 discrim_start -= 1)
6019 {
6020 if (discrim_start == name + 1)
6021 return "";
6022 if ((discrim_start > name + 3
6023 && strncmp (discrim_start - 3, "___", 3) == 0)
6024 || discrim_start[-1] == '.')
6025 break;
6026 }
6027
6028 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6029 strncpy (result, discrim_start, discrim_end - discrim_start);
6030 result[discrim_end - discrim_start] = '\0';
6031 return result;
6032 }
6033
6034 /* Scan STR for a subtype-encoded number, beginning at position K.
6035 Put the position of the character just past the number scanned in
6036 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6037 Return 1 if there was a valid number at the given position, and 0
6038 otherwise. A "subtype-encoded" number consists of the absolute value
6039 in decimal, followed by the letter 'm' to indicate a negative number.
6040 Assumes 0m does not occur. */
6041
6042 int
6043 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6044 {
6045 ULONGEST RU;
6046
6047 if (!isdigit (str[k]))
6048 return 0;
6049
6050 /* Do it the hard way so as not to make any assumption about
6051 the relationship of unsigned long (%lu scan format code) and
6052 LONGEST. */
6053 RU = 0;
6054 while (isdigit (str[k]))
6055 {
6056 RU = RU * 10 + (str[k] - '0');
6057 k += 1;
6058 }
6059
6060 if (str[k] == 'm')
6061 {
6062 if (R != NULL)
6063 *R = (-(LONGEST) (RU - 1)) - 1;
6064 k += 1;
6065 }
6066 else if (R != NULL)
6067 *R = (LONGEST) RU;
6068
6069 /* NOTE on the above: Technically, C does not say what the results of
6070 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6071 number representable as a LONGEST (although either would probably work
6072 in most implementations). When RU>0, the locution in the then branch
6073 above is always equivalent to the negative of RU. */
6074
6075 if (new_k != NULL)
6076 *new_k = k;
6077 return 1;
6078 }
6079
6080 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6081 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6082 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6083
6084 int
6085 ada_in_variant (LONGEST val, struct type *type, int field_num)
6086 {
6087 const char *name = TYPE_FIELD_NAME (type, field_num);
6088 int p;
6089
6090 p = 0;
6091 while (1)
6092 {
6093 switch (name[p])
6094 {
6095 case '\0':
6096 return 0;
6097 case 'S':
6098 {
6099 LONGEST W;
6100
6101 if (!ada_scan_number (name, p + 1, &W, &p))
6102 return 0;
6103 if (val == W)
6104 return 1;
6105 break;
6106 }
6107 case 'R':
6108 {
6109 LONGEST L, U;
6110
6111 if (!ada_scan_number (name, p + 1, &L, &p)
6112 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6113 return 0;
6114 if (val >= L && val <= U)
6115 return 1;
6116 break;
6117 }
6118 case 'O':
6119 return 1;
6120 default:
6121 return 0;
6122 }
6123 }
6124 }
6125
6126 /* FIXME: Lots of redundancy below. Try to consolidate. */
6127
6128 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6129 ARG_TYPE, extract and return the value of one of its (non-static)
6130 fields. FIELDNO says which field. Differs from value_primitive_field
6131 only in that it can handle packed values of arbitrary type. */
6132
6133 static struct value *
6134 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6135 struct type *arg_type)
6136 {
6137 struct type *type;
6138
6139 arg_type = ada_check_typedef (arg_type);
6140 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6141
6142 /* Handle packed fields. */
6143
6144 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6145 {
6146 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6147 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6148
6149 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
6150 offset + bit_pos / 8,
6151 bit_pos % 8, bit_size, type);
6152 }
6153 else
6154 return value_primitive_field (arg1, offset, fieldno, arg_type);
6155 }
6156
6157 /* Find field with name NAME in object of type TYPE. If found,
6158 set the following for each argument that is non-null:
6159 - *FIELD_TYPE_P to the field's type;
6160 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6161 an object of that type;
6162 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6163 - *BIT_SIZE_P to its size in bits if the field is packed, and
6164 0 otherwise;
6165 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6166 fields up to but not including the desired field, or by the total
6167 number of fields if not found. A NULL value of NAME never
6168 matches; the function just counts visible fields in this case.
6169
6170 Returns 1 if found, 0 otherwise. */
6171
6172 static int
6173 find_struct_field (char *name, struct type *type, int offset,
6174 struct type **field_type_p,
6175 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6176 int *index_p)
6177 {
6178 int i;
6179
6180 type = ada_check_typedef (type);
6181
6182 if (field_type_p != NULL)
6183 *field_type_p = NULL;
6184 if (byte_offset_p != NULL)
6185 *byte_offset_p = 0;
6186 if (bit_offset_p != NULL)
6187 *bit_offset_p = 0;
6188 if (bit_size_p != NULL)
6189 *bit_size_p = 0;
6190
6191 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6192 {
6193 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6194 int fld_offset = offset + bit_pos / 8;
6195 char *t_field_name = TYPE_FIELD_NAME (type, i);
6196
6197 if (t_field_name == NULL)
6198 continue;
6199
6200 else if (name != NULL && field_name_match (t_field_name, name))
6201 {
6202 int bit_size = TYPE_FIELD_BITSIZE (type, i);
6203
6204 if (field_type_p != NULL)
6205 *field_type_p = TYPE_FIELD_TYPE (type, i);
6206 if (byte_offset_p != NULL)
6207 *byte_offset_p = fld_offset;
6208 if (bit_offset_p != NULL)
6209 *bit_offset_p = bit_pos % 8;
6210 if (bit_size_p != NULL)
6211 *bit_size_p = bit_size;
6212 return 1;
6213 }
6214 else if (ada_is_wrapper_field (type, i))
6215 {
6216 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6217 field_type_p, byte_offset_p, bit_offset_p,
6218 bit_size_p, index_p))
6219 return 1;
6220 }
6221 else if (ada_is_variant_part (type, i))
6222 {
6223 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6224 fixed type?? */
6225 int j;
6226 struct type *field_type
6227 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6228
6229 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6230 {
6231 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6232 fld_offset
6233 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6234 field_type_p, byte_offset_p,
6235 bit_offset_p, bit_size_p, index_p))
6236 return 1;
6237 }
6238 }
6239 else if (index_p != NULL)
6240 *index_p += 1;
6241 }
6242 return 0;
6243 }
6244
6245 /* Number of user-visible fields in record type TYPE. */
6246
6247 static int
6248 num_visible_fields (struct type *type)
6249 {
6250 int n;
6251
6252 n = 0;
6253 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6254 return n;
6255 }
6256
6257 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
6258 and search in it assuming it has (class) type TYPE.
6259 If found, return value, else return NULL.
6260
6261 Searches recursively through wrapper fields (e.g., '_parent'). */
6262
6263 static struct value *
6264 ada_search_struct_field (char *name, struct value *arg, int offset,
6265 struct type *type)
6266 {
6267 int i;
6268
6269 type = ada_check_typedef (type);
6270 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6271 {
6272 char *t_field_name = TYPE_FIELD_NAME (type, i);
6273
6274 if (t_field_name == NULL)
6275 continue;
6276
6277 else if (field_name_match (t_field_name, name))
6278 return ada_value_primitive_field (arg, offset, i, type);
6279
6280 else if (ada_is_wrapper_field (type, i))
6281 {
6282 struct value *v = /* Do not let indent join lines here. */
6283 ada_search_struct_field (name, arg,
6284 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6285 TYPE_FIELD_TYPE (type, i));
6286
6287 if (v != NULL)
6288 return v;
6289 }
6290
6291 else if (ada_is_variant_part (type, i))
6292 {
6293 /* PNH: Do we ever get here? See find_struct_field. */
6294 int j;
6295 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6296 i));
6297 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6298
6299 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6300 {
6301 struct value *v = ada_search_struct_field /* Force line
6302 break. */
6303 (name, arg,
6304 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6305 TYPE_FIELD_TYPE (field_type, j));
6306
6307 if (v != NULL)
6308 return v;
6309 }
6310 }
6311 }
6312 return NULL;
6313 }
6314
6315 static struct value *ada_index_struct_field_1 (int *, struct value *,
6316 int, struct type *);
6317
6318
6319 /* Return field #INDEX in ARG, where the index is that returned by
6320 * find_struct_field through its INDEX_P argument. Adjust the address
6321 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6322 * If found, return value, else return NULL. */
6323
6324 static struct value *
6325 ada_index_struct_field (int index, struct value *arg, int offset,
6326 struct type *type)
6327 {
6328 return ada_index_struct_field_1 (&index, arg, offset, type);
6329 }
6330
6331
6332 /* Auxiliary function for ada_index_struct_field. Like
6333 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6334 * *INDEX_P. */
6335
6336 static struct value *
6337 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6338 struct type *type)
6339 {
6340 int i;
6341 type = ada_check_typedef (type);
6342
6343 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6344 {
6345 if (TYPE_FIELD_NAME (type, i) == NULL)
6346 continue;
6347 else if (ada_is_wrapper_field (type, i))
6348 {
6349 struct value *v = /* Do not let indent join lines here. */
6350 ada_index_struct_field_1 (index_p, arg,
6351 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6352 TYPE_FIELD_TYPE (type, i));
6353
6354 if (v != NULL)
6355 return v;
6356 }
6357
6358 else if (ada_is_variant_part (type, i))
6359 {
6360 /* PNH: Do we ever get here? See ada_search_struct_field,
6361 find_struct_field. */
6362 error (_("Cannot assign this kind of variant record"));
6363 }
6364 else if (*index_p == 0)
6365 return ada_value_primitive_field (arg, offset, i, type);
6366 else
6367 *index_p -= 1;
6368 }
6369 return NULL;
6370 }
6371
6372 /* Given ARG, a value of type (pointer or reference to a)*
6373 structure/union, extract the component named NAME from the ultimate
6374 target structure/union and return it as a value with its
6375 appropriate type.
6376
6377 The routine searches for NAME among all members of the structure itself
6378 and (recursively) among all members of any wrapper members
6379 (e.g., '_parent').
6380
6381 If NO_ERR, then simply return NULL in case of error, rather than
6382 calling error. */
6383
6384 struct value *
6385 ada_value_struct_elt (struct value *arg, char *name, int no_err)
6386 {
6387 struct type *t, *t1;
6388 struct value *v;
6389
6390 v = NULL;
6391 t1 = t = ada_check_typedef (value_type (arg));
6392 if (TYPE_CODE (t) == TYPE_CODE_REF)
6393 {
6394 t1 = TYPE_TARGET_TYPE (t);
6395 if (t1 == NULL)
6396 goto BadValue;
6397 t1 = ada_check_typedef (t1);
6398 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6399 {
6400 arg = coerce_ref (arg);
6401 t = t1;
6402 }
6403 }
6404
6405 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6406 {
6407 t1 = TYPE_TARGET_TYPE (t);
6408 if (t1 == NULL)
6409 goto BadValue;
6410 t1 = ada_check_typedef (t1);
6411 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6412 {
6413 arg = value_ind (arg);
6414 t = t1;
6415 }
6416 else
6417 break;
6418 }
6419
6420 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
6421 goto BadValue;
6422
6423 if (t1 == t)
6424 v = ada_search_struct_field (name, arg, 0, t);
6425 else
6426 {
6427 int bit_offset, bit_size, byte_offset;
6428 struct type *field_type;
6429 CORE_ADDR address;
6430
6431 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6432 address = value_as_address (arg);
6433 else
6434 address = unpack_pointer (t, value_contents (arg));
6435
6436 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
6437 if (find_struct_field (name, t1, 0,
6438 &field_type, &byte_offset, &bit_offset,
6439 &bit_size, NULL))
6440 {
6441 if (bit_size != 0)
6442 {
6443 if (TYPE_CODE (t) == TYPE_CODE_REF)
6444 arg = ada_coerce_ref (arg);
6445 else
6446 arg = ada_value_ind (arg);
6447 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6448 bit_offset, bit_size,
6449 field_type);
6450 }
6451 else
6452 v = value_at_lazy (field_type, address + byte_offset);
6453 }
6454 }
6455
6456 if (v != NULL || no_err)
6457 return v;
6458 else
6459 error (_("There is no member named %s."), name);
6460
6461 BadValue:
6462 if (no_err)
6463 return NULL;
6464 else
6465 error (_("Attempt to extract a component of "
6466 "a value that is not a record."));
6467 }
6468
6469 /* Given a type TYPE, look up the type of the component of type named NAME.
6470 If DISPP is non-null, add its byte displacement from the beginning of a
6471 structure (pointed to by a value) of type TYPE to *DISPP (does not
6472 work for packed fields).
6473
6474 Matches any field whose name has NAME as a prefix, possibly
6475 followed by "___".
6476
6477 TYPE can be either a struct or union. If REFOK, TYPE may also
6478 be a (pointer or reference)+ to a struct or union, and the
6479 ultimate target type will be searched.
6480
6481 Looks recursively into variant clauses and parent types.
6482
6483 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6484 TYPE is not a type of the right kind. */
6485
6486 static struct type *
6487 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6488 int noerr, int *dispp)
6489 {
6490 int i;
6491
6492 if (name == NULL)
6493 goto BadName;
6494
6495 if (refok && type != NULL)
6496 while (1)
6497 {
6498 type = ada_check_typedef (type);
6499 if (TYPE_CODE (type) != TYPE_CODE_PTR
6500 && TYPE_CODE (type) != TYPE_CODE_REF)
6501 break;
6502 type = TYPE_TARGET_TYPE (type);
6503 }
6504
6505 if (type == NULL
6506 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6507 && TYPE_CODE (type) != TYPE_CODE_UNION))
6508 {
6509 if (noerr)
6510 return NULL;
6511 else
6512 {
6513 target_terminal_ours ();
6514 gdb_flush (gdb_stdout);
6515 if (type == NULL)
6516 error (_("Type (null) is not a structure or union type"));
6517 else
6518 {
6519 /* XXX: type_sprint */
6520 fprintf_unfiltered (gdb_stderr, _("Type "));
6521 type_print (type, "", gdb_stderr, -1);
6522 error (_(" is not a structure or union type"));
6523 }
6524 }
6525 }
6526
6527 type = to_static_fixed_type (type);
6528
6529 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6530 {
6531 char *t_field_name = TYPE_FIELD_NAME (type, i);
6532 struct type *t;
6533 int disp;
6534
6535 if (t_field_name == NULL)
6536 continue;
6537
6538 else if (field_name_match (t_field_name, name))
6539 {
6540 if (dispp != NULL)
6541 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
6542 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6543 }
6544
6545 else if (ada_is_wrapper_field (type, i))
6546 {
6547 disp = 0;
6548 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6549 0, 1, &disp);
6550 if (t != NULL)
6551 {
6552 if (dispp != NULL)
6553 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6554 return t;
6555 }
6556 }
6557
6558 else if (ada_is_variant_part (type, i))
6559 {
6560 int j;
6561 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6562 i));
6563
6564 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6565 {
6566 /* FIXME pnh 2008/01/26: We check for a field that is
6567 NOT wrapped in a struct, since the compiler sometimes
6568 generates these for unchecked variant types. Revisit
6569 if the compiler changes this practice. */
6570 char *v_field_name = TYPE_FIELD_NAME (field_type, j);
6571 disp = 0;
6572 if (v_field_name != NULL
6573 && field_name_match (v_field_name, name))
6574 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6575 else
6576 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
6577 j),
6578 name, 0, 1, &disp);
6579
6580 if (t != NULL)
6581 {
6582 if (dispp != NULL)
6583 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6584 return t;
6585 }
6586 }
6587 }
6588
6589 }
6590
6591 BadName:
6592 if (!noerr)
6593 {
6594 target_terminal_ours ();
6595 gdb_flush (gdb_stdout);
6596 if (name == NULL)
6597 {
6598 /* XXX: type_sprint */
6599 fprintf_unfiltered (gdb_stderr, _("Type "));
6600 type_print (type, "", gdb_stderr, -1);
6601 error (_(" has no component named <null>"));
6602 }
6603 else
6604 {
6605 /* XXX: type_sprint */
6606 fprintf_unfiltered (gdb_stderr, _("Type "));
6607 type_print (type, "", gdb_stderr, -1);
6608 error (_(" has no component named %s"), name);
6609 }
6610 }
6611
6612 return NULL;
6613 }
6614
6615 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6616 within a value of type OUTER_TYPE, return true iff VAR_TYPE
6617 represents an unchecked union (that is, the variant part of a
6618 record that is named in an Unchecked_Union pragma). */
6619
6620 static int
6621 is_unchecked_variant (struct type *var_type, struct type *outer_type)
6622 {
6623 char *discrim_name = ada_variant_discrim_name (var_type);
6624
6625 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
6626 == NULL);
6627 }
6628
6629
6630 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6631 within a value of type OUTER_TYPE that is stored in GDB at
6632 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6633 numbering from 0) is applicable. Returns -1 if none are. */
6634
6635 int
6636 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
6637 const gdb_byte *outer_valaddr)
6638 {
6639 int others_clause;
6640 int i;
6641 char *discrim_name = ada_variant_discrim_name (var_type);
6642 struct value *outer;
6643 struct value *discrim;
6644 LONGEST discrim_val;
6645
6646 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6647 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6648 if (discrim == NULL)
6649 return -1;
6650 discrim_val = value_as_long (discrim);
6651
6652 others_clause = -1;
6653 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6654 {
6655 if (ada_is_others_clause (var_type, i))
6656 others_clause = i;
6657 else if (ada_in_variant (discrim_val, var_type, i))
6658 return i;
6659 }
6660
6661 return others_clause;
6662 }
6663 \f
6664
6665
6666 /* Dynamic-Sized Records */
6667
6668 /* Strategy: The type ostensibly attached to a value with dynamic size
6669 (i.e., a size that is not statically recorded in the debugging
6670 data) does not accurately reflect the size or layout of the value.
6671 Our strategy is to convert these values to values with accurate,
6672 conventional types that are constructed on the fly. */
6673
6674 /* There is a subtle and tricky problem here. In general, we cannot
6675 determine the size of dynamic records without its data. However,
6676 the 'struct value' data structure, which GDB uses to represent
6677 quantities in the inferior process (the target), requires the size
6678 of the type at the time of its allocation in order to reserve space
6679 for GDB's internal copy of the data. That's why the
6680 'to_fixed_xxx_type' routines take (target) addresses as parameters,
6681 rather than struct value*s.
6682
6683 However, GDB's internal history variables ($1, $2, etc.) are
6684 struct value*s containing internal copies of the data that are not, in
6685 general, the same as the data at their corresponding addresses in
6686 the target. Fortunately, the types we give to these values are all
6687 conventional, fixed-size types (as per the strategy described
6688 above), so that we don't usually have to perform the
6689 'to_fixed_xxx_type' conversions to look at their values.
6690 Unfortunately, there is one exception: if one of the internal
6691 history variables is an array whose elements are unconstrained
6692 records, then we will need to create distinct fixed types for each
6693 element selected. */
6694
6695 /* The upshot of all of this is that many routines take a (type, host
6696 address, target address) triple as arguments to represent a value.
6697 The host address, if non-null, is supposed to contain an internal
6698 copy of the relevant data; otherwise, the program is to consult the
6699 target at the target address. */
6700
6701 /* Assuming that VAL0 represents a pointer value, the result of
6702 dereferencing it. Differs from value_ind in its treatment of
6703 dynamic-sized types. */
6704
6705 struct value *
6706 ada_value_ind (struct value *val0)
6707 {
6708 struct value *val = unwrap_value (value_ind (val0));
6709
6710 return ada_to_fixed_value (val);
6711 }
6712
6713 /* The value resulting from dereferencing any "reference to"
6714 qualifiers on VAL0. */
6715
6716 static struct value *
6717 ada_coerce_ref (struct value *val0)
6718 {
6719 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
6720 {
6721 struct value *val = val0;
6722
6723 val = coerce_ref (val);
6724 val = unwrap_value (val);
6725 return ada_to_fixed_value (val);
6726 }
6727 else
6728 return val0;
6729 }
6730
6731 /* Return OFF rounded upward if necessary to a multiple of
6732 ALIGNMENT (a power of 2). */
6733
6734 static unsigned int
6735 align_value (unsigned int off, unsigned int alignment)
6736 {
6737 return (off + alignment - 1) & ~(alignment - 1);
6738 }
6739
6740 /* Return the bit alignment required for field #F of template type TYPE. */
6741
6742 static unsigned int
6743 field_alignment (struct type *type, int f)
6744 {
6745 const char *name = TYPE_FIELD_NAME (type, f);
6746 int len;
6747 int align_offset;
6748
6749 /* The field name should never be null, unless the debugging information
6750 is somehow malformed. In this case, we assume the field does not
6751 require any alignment. */
6752 if (name == NULL)
6753 return 1;
6754
6755 len = strlen (name);
6756
6757 if (!isdigit (name[len - 1]))
6758 return 1;
6759
6760 if (isdigit (name[len - 2]))
6761 align_offset = len - 2;
6762 else
6763 align_offset = len - 1;
6764
6765 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
6766 return TARGET_CHAR_BIT;
6767
6768 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6769 }
6770
6771 /* Find a symbol named NAME. Ignores ambiguity. */
6772
6773 struct symbol *
6774 ada_find_any_symbol (const char *name)
6775 {
6776 struct symbol *sym;
6777
6778 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6779 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6780 return sym;
6781
6782 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6783 return sym;
6784 }
6785
6786 /* Find a type named NAME. Ignores ambiguity. This routine will look
6787 solely for types defined by debug info, it will not search the GDB
6788 primitive types. */
6789
6790 struct type *
6791 ada_find_any_type (const char *name)
6792 {
6793 struct symbol *sym = ada_find_any_symbol (name);
6794
6795 if (sym != NULL)
6796 return SYMBOL_TYPE (sym);
6797
6798 return NULL;
6799 }
6800
6801 /* Given NAME and an associated BLOCK, search all symbols for
6802 NAME suffixed with "___XR", which is the ``renaming'' symbol
6803 associated to NAME. Return this symbol if found, return
6804 NULL otherwise. */
6805
6806 struct symbol *
6807 ada_find_renaming_symbol (const char *name, struct block *block)
6808 {
6809 struct symbol *sym;
6810
6811 sym = find_old_style_renaming_symbol (name, block);
6812
6813 if (sym != NULL)
6814 return sym;
6815
6816 /* Not right yet. FIXME pnh 7/20/2007. */
6817 sym = ada_find_any_symbol (name);
6818 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
6819 return sym;
6820 else
6821 return NULL;
6822 }
6823
6824 static struct symbol *
6825 find_old_style_renaming_symbol (const char *name, struct block *block)
6826 {
6827 const struct symbol *function_sym = block_linkage_function (block);
6828 char *rename;
6829
6830 if (function_sym != NULL)
6831 {
6832 /* If the symbol is defined inside a function, NAME is not fully
6833 qualified. This means we need to prepend the function name
6834 as well as adding the ``___XR'' suffix to build the name of
6835 the associated renaming symbol. */
6836 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
6837 /* Function names sometimes contain suffixes used
6838 for instance to qualify nested subprograms. When building
6839 the XR type name, we need to make sure that this suffix is
6840 not included. So do not include any suffix in the function
6841 name length below. */
6842 int function_name_len = ada_name_prefix_len (function_name);
6843 const int rename_len = function_name_len + 2 /* "__" */
6844 + strlen (name) + 6 /* "___XR\0" */ ;
6845
6846 /* Strip the suffix if necessary. */
6847 ada_remove_trailing_digits (function_name, &function_name_len);
6848 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
6849 ada_remove_Xbn_suffix (function_name, &function_name_len);
6850
6851 /* Library-level functions are a special case, as GNAT adds
6852 a ``_ada_'' prefix to the function name to avoid namespace
6853 pollution. However, the renaming symbols themselves do not
6854 have this prefix, so we need to skip this prefix if present. */
6855 if (function_name_len > 5 /* "_ada_" */
6856 && strstr (function_name, "_ada_") == function_name)
6857 {
6858 function_name += 5;
6859 function_name_len -= 5;
6860 }
6861
6862 rename = (char *) alloca (rename_len * sizeof (char));
6863 strncpy (rename, function_name, function_name_len);
6864 xsnprintf (rename + function_name_len, rename_len - function_name_len,
6865 "__%s___XR", name);
6866 }
6867 else
6868 {
6869 const int rename_len = strlen (name) + 6;
6870
6871 rename = (char *) alloca (rename_len * sizeof (char));
6872 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
6873 }
6874
6875 return ada_find_any_symbol (rename);
6876 }
6877
6878 /* Because of GNAT encoding conventions, several GDB symbols may match a
6879 given type name. If the type denoted by TYPE0 is to be preferred to
6880 that of TYPE1 for purposes of type printing, return non-zero;
6881 otherwise return 0. */
6882
6883 int
6884 ada_prefer_type (struct type *type0, struct type *type1)
6885 {
6886 if (type1 == NULL)
6887 return 1;
6888 else if (type0 == NULL)
6889 return 0;
6890 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6891 return 1;
6892 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6893 return 0;
6894 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6895 return 1;
6896 else if (ada_is_constrained_packed_array_type (type0))
6897 return 1;
6898 else if (ada_is_array_descriptor_type (type0)
6899 && !ada_is_array_descriptor_type (type1))
6900 return 1;
6901 else
6902 {
6903 const char *type0_name = type_name_no_tag (type0);
6904 const char *type1_name = type_name_no_tag (type1);
6905
6906 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
6907 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
6908 return 1;
6909 }
6910 return 0;
6911 }
6912
6913 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
6914 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6915
6916 char *
6917 ada_type_name (struct type *type)
6918 {
6919 if (type == NULL)
6920 return NULL;
6921 else if (TYPE_NAME (type) != NULL)
6922 return TYPE_NAME (type);
6923 else
6924 return TYPE_TAG_NAME (type);
6925 }
6926
6927 /* Search the list of "descriptive" types associated to TYPE for a type
6928 whose name is NAME. */
6929
6930 static struct type *
6931 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
6932 {
6933 struct type *result;
6934
6935 /* If there no descriptive-type info, then there is no parallel type
6936 to be found. */
6937 if (!HAVE_GNAT_AUX_INFO (type))
6938 return NULL;
6939
6940 result = TYPE_DESCRIPTIVE_TYPE (type);
6941 while (result != NULL)
6942 {
6943 char *result_name = ada_type_name (result);
6944
6945 if (result_name == NULL)
6946 {
6947 warning (_("unexpected null name on descriptive type"));
6948 return NULL;
6949 }
6950
6951 /* If the names match, stop. */
6952 if (strcmp (result_name, name) == 0)
6953 break;
6954
6955 /* Otherwise, look at the next item on the list, if any. */
6956 if (HAVE_GNAT_AUX_INFO (result))
6957 result = TYPE_DESCRIPTIVE_TYPE (result);
6958 else
6959 result = NULL;
6960 }
6961
6962 /* If we didn't find a match, see whether this is a packed array. With
6963 older compilers, the descriptive type information is either absent or
6964 irrelevant when it comes to packed arrays so the above lookup fails.
6965 Fall back to using a parallel lookup by name in this case. */
6966 if (result == NULL && ada_is_constrained_packed_array_type (type))
6967 return ada_find_any_type (name);
6968
6969 return result;
6970 }
6971
6972 /* Find a parallel type to TYPE with the specified NAME, using the
6973 descriptive type taken from the debugging information, if available,
6974 and otherwise using the (slower) name-based method. */
6975
6976 static struct type *
6977 ada_find_parallel_type_with_name (struct type *type, const char *name)
6978 {
6979 struct type *result = NULL;
6980
6981 if (HAVE_GNAT_AUX_INFO (type))
6982 result = find_parallel_type_by_descriptive_type (type, name);
6983 else
6984 result = ada_find_any_type (name);
6985
6986 return result;
6987 }
6988
6989 /* Same as above, but specify the name of the parallel type by appending
6990 SUFFIX to the name of TYPE. */
6991
6992 struct type *
6993 ada_find_parallel_type (struct type *type, const char *suffix)
6994 {
6995 char *name, *typename = ada_type_name (type);
6996 int len;
6997
6998 if (typename == NULL)
6999 return NULL;
7000
7001 len = strlen (typename);
7002
7003 name = (char *) alloca (len + strlen (suffix) + 1);
7004
7005 strcpy (name, typename);
7006 strcpy (name + len, suffix);
7007
7008 return ada_find_parallel_type_with_name (type, name);
7009 }
7010
7011 /* If TYPE is a variable-size record type, return the corresponding template
7012 type describing its fields. Otherwise, return NULL. */
7013
7014 static struct type *
7015 dynamic_template_type (struct type *type)
7016 {
7017 type = ada_check_typedef (type);
7018
7019 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
7020 || ada_type_name (type) == NULL)
7021 return NULL;
7022 else
7023 {
7024 int len = strlen (ada_type_name (type));
7025
7026 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7027 return type;
7028 else
7029 return ada_find_parallel_type (type, "___XVE");
7030 }
7031 }
7032
7033 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7034 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7035
7036 static int
7037 is_dynamic_field (struct type *templ_type, int field_num)
7038 {
7039 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
7040
7041 return name != NULL
7042 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7043 && strstr (name, "___XVL") != NULL;
7044 }
7045
7046 /* The index of the variant field of TYPE, or -1 if TYPE does not
7047 represent a variant record type. */
7048
7049 static int
7050 variant_field_index (struct type *type)
7051 {
7052 int f;
7053
7054 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7055 return -1;
7056
7057 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7058 {
7059 if (ada_is_variant_part (type, f))
7060 return f;
7061 }
7062 return -1;
7063 }
7064
7065 /* A record type with no fields. */
7066
7067 static struct type *
7068 empty_record (struct type *template)
7069 {
7070 struct type *type = alloc_type_copy (template);
7071
7072 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7073 TYPE_NFIELDS (type) = 0;
7074 TYPE_FIELDS (type) = NULL;
7075 INIT_CPLUS_SPECIFIC (type);
7076 TYPE_NAME (type) = "<empty>";
7077 TYPE_TAG_NAME (type) = NULL;
7078 TYPE_LENGTH (type) = 0;
7079 return type;
7080 }
7081
7082 /* An ordinary record type (with fixed-length fields) that describes
7083 the value of type TYPE at VALADDR or ADDRESS (see comments at
7084 the beginning of this section) VAL according to GNAT conventions.
7085 DVAL0 should describe the (portion of a) record that contains any
7086 necessary discriminants. It should be NULL if value_type (VAL) is
7087 an outer-level type (i.e., as opposed to a branch of a variant.) A
7088 variant field (unless unchecked) is replaced by a particular branch
7089 of the variant.
7090
7091 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7092 length are not statically known are discarded. As a consequence,
7093 VALADDR, ADDRESS and DVAL0 are ignored.
7094
7095 NOTE: Limitations: For now, we assume that dynamic fields and
7096 variants occupy whole numbers of bytes. However, they need not be
7097 byte-aligned. */
7098
7099 struct type *
7100 ada_template_to_fixed_record_type_1 (struct type *type,
7101 const gdb_byte *valaddr,
7102 CORE_ADDR address, struct value *dval0,
7103 int keep_dynamic_fields)
7104 {
7105 struct value *mark = value_mark ();
7106 struct value *dval;
7107 struct type *rtype;
7108 int nfields, bit_len;
7109 int variant_field;
7110 long off;
7111 int fld_bit_len;
7112 int f;
7113
7114 /* Compute the number of fields in this record type that are going
7115 to be processed: unless keep_dynamic_fields, this includes only
7116 fields whose position and length are static will be processed. */
7117 if (keep_dynamic_fields)
7118 nfields = TYPE_NFIELDS (type);
7119 else
7120 {
7121 nfields = 0;
7122 while (nfields < TYPE_NFIELDS (type)
7123 && !ada_is_variant_part (type, nfields)
7124 && !is_dynamic_field (type, nfields))
7125 nfields++;
7126 }
7127
7128 rtype = alloc_type_copy (type);
7129 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7130 INIT_CPLUS_SPECIFIC (rtype);
7131 TYPE_NFIELDS (rtype) = nfields;
7132 TYPE_FIELDS (rtype) = (struct field *)
7133 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7134 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7135 TYPE_NAME (rtype) = ada_type_name (type);
7136 TYPE_TAG_NAME (rtype) = NULL;
7137 TYPE_FIXED_INSTANCE (rtype) = 1;
7138
7139 off = 0;
7140 bit_len = 0;
7141 variant_field = -1;
7142
7143 for (f = 0; f < nfields; f += 1)
7144 {
7145 off = align_value (off, field_alignment (type, f))
7146 + TYPE_FIELD_BITPOS (type, f);
7147 TYPE_FIELD_BITPOS (rtype, f) = off;
7148 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7149
7150 if (ada_is_variant_part (type, f))
7151 {
7152 variant_field = f;
7153 fld_bit_len = 0;
7154 }
7155 else if (is_dynamic_field (type, f))
7156 {
7157 const gdb_byte *field_valaddr = valaddr;
7158 CORE_ADDR field_address = address;
7159 struct type *field_type =
7160 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7161
7162 if (dval0 == NULL)
7163 {
7164 /* rtype's length is computed based on the run-time
7165 value of discriminants. If the discriminants are not
7166 initialized, the type size may be completely bogus and
7167 GDB may fail to allocate a value for it. So check the
7168 size first before creating the value. */
7169 check_size (rtype);
7170 dval = value_from_contents_and_address (rtype, valaddr, address);
7171 }
7172 else
7173 dval = dval0;
7174
7175 /* If the type referenced by this field is an aligner type, we need
7176 to unwrap that aligner type, because its size might not be set.
7177 Keeping the aligner type would cause us to compute the wrong
7178 size for this field, impacting the offset of the all the fields
7179 that follow this one. */
7180 if (ada_is_aligner_type (field_type))
7181 {
7182 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7183
7184 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7185 field_address = cond_offset_target (field_address, field_offset);
7186 field_type = ada_aligned_type (field_type);
7187 }
7188
7189 field_valaddr = cond_offset_host (field_valaddr,
7190 off / TARGET_CHAR_BIT);
7191 field_address = cond_offset_target (field_address,
7192 off / TARGET_CHAR_BIT);
7193
7194 /* Get the fixed type of the field. Note that, in this case,
7195 we do not want to get the real type out of the tag: if
7196 the current field is the parent part of a tagged record,
7197 we will get the tag of the object. Clearly wrong: the real
7198 type of the parent is not the real type of the child. We
7199 would end up in an infinite loop. */
7200 field_type = ada_get_base_type (field_type);
7201 field_type = ada_to_fixed_type (field_type, field_valaddr,
7202 field_address, dval, 0);
7203 /* If the field size is already larger than the maximum
7204 object size, then the record itself will necessarily
7205 be larger than the maximum object size. We need to make
7206 this check now, because the size might be so ridiculously
7207 large (due to an uninitialized variable in the inferior)
7208 that it would cause an overflow when adding it to the
7209 record size. */
7210 check_size (field_type);
7211
7212 TYPE_FIELD_TYPE (rtype, f) = field_type;
7213 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7214 /* The multiplication can potentially overflow. But because
7215 the field length has been size-checked just above, and
7216 assuming that the maximum size is a reasonable value,
7217 an overflow should not happen in practice. So rather than
7218 adding overflow recovery code to this already complex code,
7219 we just assume that it's not going to happen. */
7220 fld_bit_len =
7221 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7222 }
7223 else
7224 {
7225 struct type *field_type = TYPE_FIELD_TYPE (type, f);
7226
7227 /* If our field is a typedef type (most likely a typedef of
7228 a fat pointer, encoding an array access), then we need to
7229 look at its target type to determine its characteristics.
7230 In particular, we would miscompute the field size if we took
7231 the size of the typedef (zero), instead of the size of
7232 the target type. */
7233 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
7234 field_type = ada_typedef_target_type (field_type);
7235
7236 TYPE_FIELD_TYPE (rtype, f) = field_type;
7237 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7238 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7239 fld_bit_len =
7240 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7241 else
7242 fld_bit_len =
7243 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7244 }
7245 if (off + fld_bit_len > bit_len)
7246 bit_len = off + fld_bit_len;
7247 off += fld_bit_len;
7248 TYPE_LENGTH (rtype) =
7249 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7250 }
7251
7252 /* We handle the variant part, if any, at the end because of certain
7253 odd cases in which it is re-ordered so as NOT to be the last field of
7254 the record. This can happen in the presence of representation
7255 clauses. */
7256 if (variant_field >= 0)
7257 {
7258 struct type *branch_type;
7259
7260 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7261
7262 if (dval0 == NULL)
7263 dval = value_from_contents_and_address (rtype, valaddr, address);
7264 else
7265 dval = dval0;
7266
7267 branch_type =
7268 to_fixed_variant_branch_type
7269 (TYPE_FIELD_TYPE (type, variant_field),
7270 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7271 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7272 if (branch_type == NULL)
7273 {
7274 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
7275 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7276 TYPE_NFIELDS (rtype) -= 1;
7277 }
7278 else
7279 {
7280 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7281 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7282 fld_bit_len =
7283 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
7284 TARGET_CHAR_BIT;
7285 if (off + fld_bit_len > bit_len)
7286 bit_len = off + fld_bit_len;
7287 TYPE_LENGTH (rtype) =
7288 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7289 }
7290 }
7291
7292 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7293 should contain the alignment of that record, which should be a strictly
7294 positive value. If null or negative, then something is wrong, most
7295 probably in the debug info. In that case, we don't round up the size
7296 of the resulting type. If this record is not part of another structure,
7297 the current RTYPE length might be good enough for our purposes. */
7298 if (TYPE_LENGTH (type) <= 0)
7299 {
7300 if (TYPE_NAME (rtype))
7301 warning (_("Invalid type size for `%s' detected: %d."),
7302 TYPE_NAME (rtype), TYPE_LENGTH (type));
7303 else
7304 warning (_("Invalid type size for <unnamed> detected: %d."),
7305 TYPE_LENGTH (type));
7306 }
7307 else
7308 {
7309 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
7310 TYPE_LENGTH (type));
7311 }
7312
7313 value_free_to_mark (mark);
7314 if (TYPE_LENGTH (rtype) > varsize_limit)
7315 error (_("record type with dynamic size is larger than varsize-limit"));
7316 return rtype;
7317 }
7318
7319 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7320 of 1. */
7321
7322 static struct type *
7323 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
7324 CORE_ADDR address, struct value *dval0)
7325 {
7326 return ada_template_to_fixed_record_type_1 (type, valaddr,
7327 address, dval0, 1);
7328 }
7329
7330 /* An ordinary record type in which ___XVL-convention fields and
7331 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7332 static approximations, containing all possible fields. Uses
7333 no runtime values. Useless for use in values, but that's OK,
7334 since the results are used only for type determinations. Works on both
7335 structs and unions. Representation note: to save space, we memorize
7336 the result of this function in the TYPE_TARGET_TYPE of the
7337 template type. */
7338
7339 static struct type *
7340 template_to_static_fixed_type (struct type *type0)
7341 {
7342 struct type *type;
7343 int nfields;
7344 int f;
7345
7346 if (TYPE_TARGET_TYPE (type0) != NULL)
7347 return TYPE_TARGET_TYPE (type0);
7348
7349 nfields = TYPE_NFIELDS (type0);
7350 type = type0;
7351
7352 for (f = 0; f < nfields; f += 1)
7353 {
7354 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
7355 struct type *new_type;
7356
7357 if (is_dynamic_field (type0, f))
7358 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
7359 else
7360 new_type = static_unwrap_type (field_type);
7361 if (type == type0 && new_type != field_type)
7362 {
7363 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
7364 TYPE_CODE (type) = TYPE_CODE (type0);
7365 INIT_CPLUS_SPECIFIC (type);
7366 TYPE_NFIELDS (type) = nfields;
7367 TYPE_FIELDS (type) = (struct field *)
7368 TYPE_ALLOC (type, nfields * sizeof (struct field));
7369 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7370 sizeof (struct field) * nfields);
7371 TYPE_NAME (type) = ada_type_name (type0);
7372 TYPE_TAG_NAME (type) = NULL;
7373 TYPE_FIXED_INSTANCE (type) = 1;
7374 TYPE_LENGTH (type) = 0;
7375 }
7376 TYPE_FIELD_TYPE (type, f) = new_type;
7377 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
7378 }
7379 return type;
7380 }
7381
7382 /* Given an object of type TYPE whose contents are at VALADDR and
7383 whose address in memory is ADDRESS, returns a revision of TYPE,
7384 which should be a non-dynamic-sized record, in which the variant
7385 part, if any, is replaced with the appropriate branch. Looks
7386 for discriminant values in DVAL0, which can be NULL if the record
7387 contains the necessary discriminant values. */
7388
7389 static struct type *
7390 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
7391 CORE_ADDR address, struct value *dval0)
7392 {
7393 struct value *mark = value_mark ();
7394 struct value *dval;
7395 struct type *rtype;
7396 struct type *branch_type;
7397 int nfields = TYPE_NFIELDS (type);
7398 int variant_field = variant_field_index (type);
7399
7400 if (variant_field == -1)
7401 return type;
7402
7403 if (dval0 == NULL)
7404 dval = value_from_contents_and_address (type, valaddr, address);
7405 else
7406 dval = dval0;
7407
7408 rtype = alloc_type_copy (type);
7409 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7410 INIT_CPLUS_SPECIFIC (rtype);
7411 TYPE_NFIELDS (rtype) = nfields;
7412 TYPE_FIELDS (rtype) =
7413 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7414 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
7415 sizeof (struct field) * nfields);
7416 TYPE_NAME (rtype) = ada_type_name (type);
7417 TYPE_TAG_NAME (rtype) = NULL;
7418 TYPE_FIXED_INSTANCE (rtype) = 1;
7419 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7420
7421 branch_type = to_fixed_variant_branch_type
7422 (TYPE_FIELD_TYPE (type, variant_field),
7423 cond_offset_host (valaddr,
7424 TYPE_FIELD_BITPOS (type, variant_field)
7425 / TARGET_CHAR_BIT),
7426 cond_offset_target (address,
7427 TYPE_FIELD_BITPOS (type, variant_field)
7428 / TARGET_CHAR_BIT), dval);
7429 if (branch_type == NULL)
7430 {
7431 int f;
7432
7433 for (f = variant_field + 1; f < nfields; f += 1)
7434 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7435 TYPE_NFIELDS (rtype) -= 1;
7436 }
7437 else
7438 {
7439 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7440 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7441 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7442 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7443 }
7444 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
7445
7446 value_free_to_mark (mark);
7447 return rtype;
7448 }
7449
7450 /* An ordinary record type (with fixed-length fields) that describes
7451 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7452 beginning of this section]. Any necessary discriminants' values
7453 should be in DVAL, a record value; it may be NULL if the object
7454 at ADDR itself contains any necessary discriminant values.
7455 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7456 values from the record are needed. Except in the case that DVAL,
7457 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7458 unchecked) is replaced by a particular branch of the variant.
7459
7460 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7461 is questionable and may be removed. It can arise during the
7462 processing of an unconstrained-array-of-record type where all the
7463 variant branches have exactly the same size. This is because in
7464 such cases, the compiler does not bother to use the XVS convention
7465 when encoding the record. I am currently dubious of this
7466 shortcut and suspect the compiler should be altered. FIXME. */
7467
7468 static struct type *
7469 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7470 CORE_ADDR address, struct value *dval)
7471 {
7472 struct type *templ_type;
7473
7474 if (TYPE_FIXED_INSTANCE (type0))
7475 return type0;
7476
7477 templ_type = dynamic_template_type (type0);
7478
7479 if (templ_type != NULL)
7480 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7481 else if (variant_field_index (type0) >= 0)
7482 {
7483 if (dval == NULL && valaddr == NULL && address == 0)
7484 return type0;
7485 return to_record_with_fixed_variant_part (type0, valaddr, address,
7486 dval);
7487 }
7488 else
7489 {
7490 TYPE_FIXED_INSTANCE (type0) = 1;
7491 return type0;
7492 }
7493
7494 }
7495
7496 /* An ordinary record type (with fixed-length fields) that describes
7497 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7498 union type. Any necessary discriminants' values should be in DVAL,
7499 a record value. That is, this routine selects the appropriate
7500 branch of the union at ADDR according to the discriminant value
7501 indicated in the union's type name. Returns VAR_TYPE0 itself if
7502 it represents a variant subject to a pragma Unchecked_Union. */
7503
7504 static struct type *
7505 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7506 CORE_ADDR address, struct value *dval)
7507 {
7508 int which;
7509 struct type *templ_type;
7510 struct type *var_type;
7511
7512 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7513 var_type = TYPE_TARGET_TYPE (var_type0);
7514 else
7515 var_type = var_type0;
7516
7517 templ_type = ada_find_parallel_type (var_type, "___XVU");
7518
7519 if (templ_type != NULL)
7520 var_type = templ_type;
7521
7522 if (is_unchecked_variant (var_type, value_type (dval)))
7523 return var_type0;
7524 which =
7525 ada_which_variant_applies (var_type,
7526 value_type (dval), value_contents (dval));
7527
7528 if (which < 0)
7529 return empty_record (var_type);
7530 else if (is_dynamic_field (var_type, which))
7531 return to_fixed_record_type
7532 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7533 valaddr, address, dval);
7534 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
7535 return
7536 to_fixed_record_type
7537 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
7538 else
7539 return TYPE_FIELD_TYPE (var_type, which);
7540 }
7541
7542 /* Assuming that TYPE0 is an array type describing the type of a value
7543 at ADDR, and that DVAL describes a record containing any
7544 discriminants used in TYPE0, returns a type for the value that
7545 contains no dynamic components (that is, no components whose sizes
7546 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7547 true, gives an error message if the resulting type's size is over
7548 varsize_limit. */
7549
7550 static struct type *
7551 to_fixed_array_type (struct type *type0, struct value *dval,
7552 int ignore_too_big)
7553 {
7554 struct type *index_type_desc;
7555 struct type *result;
7556 int constrained_packed_array_p;
7557
7558 type0 = ada_check_typedef (type0);
7559 if (TYPE_FIXED_INSTANCE (type0))
7560 return type0;
7561
7562 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
7563 if (constrained_packed_array_p)
7564 type0 = decode_constrained_packed_array_type (type0);
7565
7566 index_type_desc = ada_find_parallel_type (type0, "___XA");
7567 ada_fixup_array_indexes_type (index_type_desc);
7568 if (index_type_desc == NULL)
7569 {
7570 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
7571
7572 /* NOTE: elt_type---the fixed version of elt_type0---should never
7573 depend on the contents of the array in properly constructed
7574 debugging data. */
7575 /* Create a fixed version of the array element type.
7576 We're not providing the address of an element here,
7577 and thus the actual object value cannot be inspected to do
7578 the conversion. This should not be a problem, since arrays of
7579 unconstrained objects are not allowed. In particular, all
7580 the elements of an array of a tagged type should all be of
7581 the same type specified in the debugging info. No need to
7582 consult the object tag. */
7583 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
7584
7585 /* Make sure we always create a new array type when dealing with
7586 packed array types, since we're going to fix-up the array
7587 type length and element bitsize a little further down. */
7588 if (elt_type0 == elt_type && !constrained_packed_array_p)
7589 result = type0;
7590 else
7591 result = create_array_type (alloc_type_copy (type0),
7592 elt_type, TYPE_INDEX_TYPE (type0));
7593 }
7594 else
7595 {
7596 int i;
7597 struct type *elt_type0;
7598
7599 elt_type0 = type0;
7600 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
7601 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7602
7603 /* NOTE: result---the fixed version of elt_type0---should never
7604 depend on the contents of the array in properly constructed
7605 debugging data. */
7606 /* Create a fixed version of the array element type.
7607 We're not providing the address of an element here,
7608 and thus the actual object value cannot be inspected to do
7609 the conversion. This should not be a problem, since arrays of
7610 unconstrained objects are not allowed. In particular, all
7611 the elements of an array of a tagged type should all be of
7612 the same type specified in the debugging info. No need to
7613 consult the object tag. */
7614 result =
7615 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
7616
7617 elt_type0 = type0;
7618 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
7619 {
7620 struct type *range_type =
7621 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
7622
7623 result = create_array_type (alloc_type_copy (elt_type0),
7624 result, range_type);
7625 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7626 }
7627 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
7628 error (_("array type with dynamic size is larger than varsize-limit"));
7629 }
7630
7631 if (constrained_packed_array_p)
7632 {
7633 /* So far, the resulting type has been created as if the original
7634 type was a regular (non-packed) array type. As a result, the
7635 bitsize of the array elements needs to be set again, and the array
7636 length needs to be recomputed based on that bitsize. */
7637 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
7638 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
7639
7640 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
7641 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
7642 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
7643 TYPE_LENGTH (result)++;
7644 }
7645
7646 TYPE_FIXED_INSTANCE (result) = 1;
7647 return result;
7648 }
7649
7650
7651 /* A standard type (containing no dynamically sized components)
7652 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7653 DVAL describes a record containing any discriminants used in TYPE0,
7654 and may be NULL if there are none, or if the object of type TYPE at
7655 ADDRESS or in VALADDR contains these discriminants.
7656
7657 If CHECK_TAG is not null, in the case of tagged types, this function
7658 attempts to locate the object's tag and use it to compute the actual
7659 type. However, when ADDRESS is null, we cannot use it to determine the
7660 location of the tag, and therefore compute the tagged type's actual type.
7661 So we return the tagged type without consulting the tag. */
7662
7663 static struct type *
7664 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
7665 CORE_ADDR address, struct value *dval, int check_tag)
7666 {
7667 type = ada_check_typedef (type);
7668 switch (TYPE_CODE (type))
7669 {
7670 default:
7671 return type;
7672 case TYPE_CODE_STRUCT:
7673 {
7674 struct type *static_type = to_static_fixed_type (type);
7675 struct type *fixed_record_type =
7676 to_fixed_record_type (type, valaddr, address, NULL);
7677
7678 /* If STATIC_TYPE is a tagged type and we know the object's address,
7679 then we can determine its tag, and compute the object's actual
7680 type from there. Note that we have to use the fixed record
7681 type (the parent part of the record may have dynamic fields
7682 and the way the location of _tag is expressed may depend on
7683 them). */
7684
7685 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
7686 {
7687 struct type *real_type =
7688 type_from_tag (value_tag_from_contents_and_address
7689 (fixed_record_type,
7690 valaddr,
7691 address));
7692
7693 if (real_type != NULL)
7694 return to_fixed_record_type (real_type, valaddr, address, NULL);
7695 }
7696
7697 /* Check to see if there is a parallel ___XVZ variable.
7698 If there is, then it provides the actual size of our type. */
7699 else if (ada_type_name (fixed_record_type) != NULL)
7700 {
7701 char *name = ada_type_name (fixed_record_type);
7702 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
7703 int xvz_found = 0;
7704 LONGEST size;
7705
7706 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
7707 size = get_int_var_value (xvz_name, &xvz_found);
7708 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
7709 {
7710 fixed_record_type = copy_type (fixed_record_type);
7711 TYPE_LENGTH (fixed_record_type) = size;
7712
7713 /* The FIXED_RECORD_TYPE may have be a stub. We have
7714 observed this when the debugging info is STABS, and
7715 apparently it is something that is hard to fix.
7716
7717 In practice, we don't need the actual type definition
7718 at all, because the presence of the XVZ variable allows us
7719 to assume that there must be a XVS type as well, which we
7720 should be able to use later, when we need the actual type
7721 definition.
7722
7723 In the meantime, pretend that the "fixed" type we are
7724 returning is NOT a stub, because this can cause trouble
7725 when using this type to create new types targeting it.
7726 Indeed, the associated creation routines often check
7727 whether the target type is a stub and will try to replace
7728 it, thus using a type with the wrong size. This, in turn,
7729 might cause the new type to have the wrong size too.
7730 Consider the case of an array, for instance, where the size
7731 of the array is computed from the number of elements in
7732 our array multiplied by the size of its element. */
7733 TYPE_STUB (fixed_record_type) = 0;
7734 }
7735 }
7736 return fixed_record_type;
7737 }
7738 case TYPE_CODE_ARRAY:
7739 return to_fixed_array_type (type, dval, 1);
7740 case TYPE_CODE_UNION:
7741 if (dval == NULL)
7742 return type;
7743 else
7744 return to_fixed_variant_branch_type (type, valaddr, address, dval);
7745 }
7746 }
7747
7748 /* The same as ada_to_fixed_type_1, except that it preserves the type
7749 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
7750
7751 The typedef layer needs be preserved in order to differentiate between
7752 arrays and array pointers when both types are implemented using the same
7753 fat pointer. In the array pointer case, the pointer is encoded as
7754 a typedef of the pointer type. For instance, considering:
7755
7756 type String_Access is access String;
7757 S1 : String_Access := null;
7758
7759 To the debugger, S1 is defined as a typedef of type String. But
7760 to the user, it is a pointer. So if the user tries to print S1,
7761 we should not dereference the array, but print the array address
7762 instead.
7763
7764 If we didn't preserve the typedef layer, we would lose the fact that
7765 the type is to be presented as a pointer (needs de-reference before
7766 being printed). And we would also use the source-level type name. */
7767
7768 struct type *
7769 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
7770 CORE_ADDR address, struct value *dval, int check_tag)
7771
7772 {
7773 struct type *fixed_type =
7774 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
7775
7776 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
7777 then preserve the typedef layer.
7778
7779 Implementation note: We can only check the main-type portion of
7780 the TYPE and FIXED_TYPE, because eliminating the typedef layer
7781 from TYPE now returns a type that has the same instance flags
7782 as TYPE. For instance, if TYPE is a "typedef const", and its
7783 target type is a "struct", then the typedef elimination will return
7784 a "const" version of the target type. See check_typedef for more
7785 details about how the typedef layer elimination is done.
7786
7787 brobecker/2010-11-19: It seems to me that the only case where it is
7788 useful to preserve the typedef layer is when dealing with fat pointers.
7789 Perhaps, we could add a check for that and preserve the typedef layer
7790 only in that situation. But this seems unecessary so far, probably
7791 because we call check_typedef/ada_check_typedef pretty much everywhere.
7792 */
7793 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
7794 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
7795 == TYPE_MAIN_TYPE (fixed_type)))
7796 return type;
7797
7798 return fixed_type;
7799 }
7800
7801 /* A standard (static-sized) type corresponding as well as possible to
7802 TYPE0, but based on no runtime data. */
7803
7804 static struct type *
7805 to_static_fixed_type (struct type *type0)
7806 {
7807 struct type *type;
7808
7809 if (type0 == NULL)
7810 return NULL;
7811
7812 if (TYPE_FIXED_INSTANCE (type0))
7813 return type0;
7814
7815 type0 = ada_check_typedef (type0);
7816
7817 switch (TYPE_CODE (type0))
7818 {
7819 default:
7820 return type0;
7821 case TYPE_CODE_STRUCT:
7822 type = dynamic_template_type (type0);
7823 if (type != NULL)
7824 return template_to_static_fixed_type (type);
7825 else
7826 return template_to_static_fixed_type (type0);
7827 case TYPE_CODE_UNION:
7828 type = ada_find_parallel_type (type0, "___XVU");
7829 if (type != NULL)
7830 return template_to_static_fixed_type (type);
7831 else
7832 return template_to_static_fixed_type (type0);
7833 }
7834 }
7835
7836 /* A static approximation of TYPE with all type wrappers removed. */
7837
7838 static struct type *
7839 static_unwrap_type (struct type *type)
7840 {
7841 if (ada_is_aligner_type (type))
7842 {
7843 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
7844 if (ada_type_name (type1) == NULL)
7845 TYPE_NAME (type1) = ada_type_name (type);
7846
7847 return static_unwrap_type (type1);
7848 }
7849 else
7850 {
7851 struct type *raw_real_type = ada_get_base_type (type);
7852
7853 if (raw_real_type == type)
7854 return type;
7855 else
7856 return to_static_fixed_type (raw_real_type);
7857 }
7858 }
7859
7860 /* In some cases, incomplete and private types require
7861 cross-references that are not resolved as records (for example,
7862 type Foo;
7863 type FooP is access Foo;
7864 V: FooP;
7865 type Foo is array ...;
7866 ). In these cases, since there is no mechanism for producing
7867 cross-references to such types, we instead substitute for FooP a
7868 stub enumeration type that is nowhere resolved, and whose tag is
7869 the name of the actual type. Call these types "non-record stubs". */
7870
7871 /* A type equivalent to TYPE that is not a non-record stub, if one
7872 exists, otherwise TYPE. */
7873
7874 struct type *
7875 ada_check_typedef (struct type *type)
7876 {
7877 if (type == NULL)
7878 return NULL;
7879
7880 /* If our type is a typedef type of a fat pointer, then we're done.
7881 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
7882 what allows us to distinguish between fat pointers that represent
7883 array types, and fat pointers that represent array access types
7884 (in both cases, the compiler implements them as fat pointers). */
7885 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
7886 && is_thick_pntr (ada_typedef_target_type (type)))
7887 return type;
7888
7889 CHECK_TYPEDEF (type);
7890 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
7891 || !TYPE_STUB (type)
7892 || TYPE_TAG_NAME (type) == NULL)
7893 return type;
7894 else
7895 {
7896 char *name = TYPE_TAG_NAME (type);
7897 struct type *type1 = ada_find_any_type (name);
7898
7899 if (type1 == NULL)
7900 return type;
7901
7902 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
7903 stubs pointing to arrays, as we don't create symbols for array
7904 types, only for the typedef-to-array types). If that's the case,
7905 strip the typedef layer. */
7906 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
7907 type1 = ada_check_typedef (type1);
7908
7909 return type1;
7910 }
7911 }
7912
7913 /* A value representing the data at VALADDR/ADDRESS as described by
7914 type TYPE0, but with a standard (static-sized) type that correctly
7915 describes it. If VAL0 is not NULL and TYPE0 already is a standard
7916 type, then return VAL0 [this feature is simply to avoid redundant
7917 creation of struct values]. */
7918
7919 static struct value *
7920 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
7921 struct value *val0)
7922 {
7923 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
7924
7925 if (type == type0 && val0 != NULL)
7926 return val0;
7927 else
7928 return value_from_contents_and_address (type, 0, address);
7929 }
7930
7931 /* A value representing VAL, but with a standard (static-sized) type
7932 that correctly describes it. Does not necessarily create a new
7933 value. */
7934
7935 struct value *
7936 ada_to_fixed_value (struct value *val)
7937 {
7938 return ada_to_fixed_value_create (value_type (val),
7939 value_address (val),
7940 val);
7941 }
7942 \f
7943
7944 /* Attributes */
7945
7946 /* Table mapping attribute numbers to names.
7947 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
7948
7949 static const char *attribute_names[] = {
7950 "<?>",
7951
7952 "first",
7953 "last",
7954 "length",
7955 "image",
7956 "max",
7957 "min",
7958 "modulus",
7959 "pos",
7960 "size",
7961 "tag",
7962 "val",
7963 0
7964 };
7965
7966 const char *
7967 ada_attribute_name (enum exp_opcode n)
7968 {
7969 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7970 return attribute_names[n - OP_ATR_FIRST + 1];
7971 else
7972 return attribute_names[0];
7973 }
7974
7975 /* Evaluate the 'POS attribute applied to ARG. */
7976
7977 static LONGEST
7978 pos_atr (struct value *arg)
7979 {
7980 struct value *val = coerce_ref (arg);
7981 struct type *type = value_type (val);
7982
7983 if (!discrete_type_p (type))
7984 error (_("'POS only defined on discrete types"));
7985
7986 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7987 {
7988 int i;
7989 LONGEST v = value_as_long (val);
7990
7991 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7992 {
7993 if (v == TYPE_FIELD_BITPOS (type, i))
7994 return i;
7995 }
7996 error (_("enumeration value is invalid: can't find 'POS"));
7997 }
7998 else
7999 return value_as_long (val);
8000 }
8001
8002 static struct value *
8003 value_pos_atr (struct type *type, struct value *arg)
8004 {
8005 return value_from_longest (type, pos_atr (arg));
8006 }
8007
8008 /* Evaluate the TYPE'VAL attribute applied to ARG. */
8009
8010 static struct value *
8011 value_val_atr (struct type *type, struct value *arg)
8012 {
8013 if (!discrete_type_p (type))
8014 error (_("'VAL only defined on discrete types"));
8015 if (!integer_type_p (value_type (arg)))
8016 error (_("'VAL requires integral argument"));
8017
8018 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8019 {
8020 long pos = value_as_long (arg);
8021
8022 if (pos < 0 || pos >= TYPE_NFIELDS (type))
8023 error (_("argument to 'VAL out of range"));
8024 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
8025 }
8026 else
8027 return value_from_longest (type, value_as_long (arg));
8028 }
8029 \f
8030
8031 /* Evaluation */
8032
8033 /* True if TYPE appears to be an Ada character type.
8034 [At the moment, this is true only for Character and Wide_Character;
8035 It is a heuristic test that could stand improvement]. */
8036
8037 int
8038 ada_is_character_type (struct type *type)
8039 {
8040 const char *name;
8041
8042 /* If the type code says it's a character, then assume it really is,
8043 and don't check any further. */
8044 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
8045 return 1;
8046
8047 /* Otherwise, assume it's a character type iff it is a discrete type
8048 with a known character type name. */
8049 name = ada_type_name (type);
8050 return (name != NULL
8051 && (TYPE_CODE (type) == TYPE_CODE_INT
8052 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8053 && (strcmp (name, "character") == 0
8054 || strcmp (name, "wide_character") == 0
8055 || strcmp (name, "wide_wide_character") == 0
8056 || strcmp (name, "unsigned char") == 0));
8057 }
8058
8059 /* True if TYPE appears to be an Ada string type. */
8060
8061 int
8062 ada_is_string_type (struct type *type)
8063 {
8064 type = ada_check_typedef (type);
8065 if (type != NULL
8066 && TYPE_CODE (type) != TYPE_CODE_PTR
8067 && (ada_is_simple_array_type (type)
8068 || ada_is_array_descriptor_type (type))
8069 && ada_array_arity (type) == 1)
8070 {
8071 struct type *elttype = ada_array_element_type (type, 1);
8072
8073 return ada_is_character_type (elttype);
8074 }
8075 else
8076 return 0;
8077 }
8078
8079 /* The compiler sometimes provides a parallel XVS type for a given
8080 PAD type. Normally, it is safe to follow the PAD type directly,
8081 but older versions of the compiler have a bug that causes the offset
8082 of its "F" field to be wrong. Following that field in that case
8083 would lead to incorrect results, but this can be worked around
8084 by ignoring the PAD type and using the associated XVS type instead.
8085
8086 Set to True if the debugger should trust the contents of PAD types.
8087 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8088 static int trust_pad_over_xvs = 1;
8089
8090 /* True if TYPE is a struct type introduced by the compiler to force the
8091 alignment of a value. Such types have a single field with a
8092 distinctive name. */
8093
8094 int
8095 ada_is_aligner_type (struct type *type)
8096 {
8097 type = ada_check_typedef (type);
8098
8099 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
8100 return 0;
8101
8102 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
8103 && TYPE_NFIELDS (type) == 1
8104 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
8105 }
8106
8107 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
8108 the parallel type. */
8109
8110 struct type *
8111 ada_get_base_type (struct type *raw_type)
8112 {
8113 struct type *real_type_namer;
8114 struct type *raw_real_type;
8115
8116 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
8117 return raw_type;
8118
8119 if (ada_is_aligner_type (raw_type))
8120 /* The encoding specifies that we should always use the aligner type.
8121 So, even if this aligner type has an associated XVS type, we should
8122 simply ignore it.
8123
8124 According to the compiler gurus, an XVS type parallel to an aligner
8125 type may exist because of a stabs limitation. In stabs, aligner
8126 types are empty because the field has a variable-sized type, and
8127 thus cannot actually be used as an aligner type. As a result,
8128 we need the associated parallel XVS type to decode the type.
8129 Since the policy in the compiler is to not change the internal
8130 representation based on the debugging info format, we sometimes
8131 end up having a redundant XVS type parallel to the aligner type. */
8132 return raw_type;
8133
8134 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
8135 if (real_type_namer == NULL
8136 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
8137 || TYPE_NFIELDS (real_type_namer) != 1)
8138 return raw_type;
8139
8140 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
8141 {
8142 /* This is an older encoding form where the base type needs to be
8143 looked up by name. We prefer the newer enconding because it is
8144 more efficient. */
8145 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8146 if (raw_real_type == NULL)
8147 return raw_type;
8148 else
8149 return raw_real_type;
8150 }
8151
8152 /* The field in our XVS type is a reference to the base type. */
8153 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
8154 }
8155
8156 /* The type of value designated by TYPE, with all aligners removed. */
8157
8158 struct type *
8159 ada_aligned_type (struct type *type)
8160 {
8161 if (ada_is_aligner_type (type))
8162 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
8163 else
8164 return ada_get_base_type (type);
8165 }
8166
8167
8168 /* The address of the aligned value in an object at address VALADDR
8169 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
8170
8171 const gdb_byte *
8172 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
8173 {
8174 if (ada_is_aligner_type (type))
8175 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
8176 valaddr +
8177 TYPE_FIELD_BITPOS (type,
8178 0) / TARGET_CHAR_BIT);
8179 else
8180 return valaddr;
8181 }
8182
8183
8184
8185 /* The printed representation of an enumeration literal with encoded
8186 name NAME. The value is good to the next call of ada_enum_name. */
8187 const char *
8188 ada_enum_name (const char *name)
8189 {
8190 static char *result;
8191 static size_t result_len = 0;
8192 char *tmp;
8193
8194 /* First, unqualify the enumeration name:
8195 1. Search for the last '.' character. If we find one, then skip
8196 all the preceeding characters, the unqualified name starts
8197 right after that dot.
8198 2. Otherwise, we may be debugging on a target where the compiler
8199 translates dots into "__". Search forward for double underscores,
8200 but stop searching when we hit an overloading suffix, which is
8201 of the form "__" followed by digits. */
8202
8203 tmp = strrchr (name, '.');
8204 if (tmp != NULL)
8205 name = tmp + 1;
8206 else
8207 {
8208 while ((tmp = strstr (name, "__")) != NULL)
8209 {
8210 if (isdigit (tmp[2]))
8211 break;
8212 else
8213 name = tmp + 2;
8214 }
8215 }
8216
8217 if (name[0] == 'Q')
8218 {
8219 int v;
8220
8221 if (name[1] == 'U' || name[1] == 'W')
8222 {
8223 if (sscanf (name + 2, "%x", &v) != 1)
8224 return name;
8225 }
8226 else
8227 return name;
8228
8229 GROW_VECT (result, result_len, 16);
8230 if (isascii (v) && isprint (v))
8231 xsnprintf (result, result_len, "'%c'", v);
8232 else if (name[1] == 'U')
8233 xsnprintf (result, result_len, "[\"%02x\"]", v);
8234 else
8235 xsnprintf (result, result_len, "[\"%04x\"]", v);
8236
8237 return result;
8238 }
8239 else
8240 {
8241 tmp = strstr (name, "__");
8242 if (tmp == NULL)
8243 tmp = strstr (name, "$");
8244 if (tmp != NULL)
8245 {
8246 GROW_VECT (result, result_len, tmp - name + 1);
8247 strncpy (result, name, tmp - name);
8248 result[tmp - name] = '\0';
8249 return result;
8250 }
8251
8252 return name;
8253 }
8254 }
8255
8256 /* Evaluate the subexpression of EXP starting at *POS as for
8257 evaluate_type, updating *POS to point just past the evaluated
8258 expression. */
8259
8260 static struct value *
8261 evaluate_subexp_type (struct expression *exp, int *pos)
8262 {
8263 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8264 }
8265
8266 /* If VAL is wrapped in an aligner or subtype wrapper, return the
8267 value it wraps. */
8268
8269 static struct value *
8270 unwrap_value (struct value *val)
8271 {
8272 struct type *type = ada_check_typedef (value_type (val));
8273
8274 if (ada_is_aligner_type (type))
8275 {
8276 struct value *v = ada_value_struct_elt (val, "F", 0);
8277 struct type *val_type = ada_check_typedef (value_type (v));
8278
8279 if (ada_type_name (val_type) == NULL)
8280 TYPE_NAME (val_type) = ada_type_name (type);
8281
8282 return unwrap_value (v);
8283 }
8284 else
8285 {
8286 struct type *raw_real_type =
8287 ada_check_typedef (ada_get_base_type (type));
8288
8289 /* If there is no parallel XVS or XVE type, then the value is
8290 already unwrapped. Return it without further modification. */
8291 if ((type == raw_real_type)
8292 && ada_find_parallel_type (type, "___XVE") == NULL)
8293 return val;
8294
8295 return
8296 coerce_unspec_val_to_type
8297 (val, ada_to_fixed_type (raw_real_type, 0,
8298 value_address (val),
8299 NULL, 1));
8300 }
8301 }
8302
8303 static struct value *
8304 cast_to_fixed (struct type *type, struct value *arg)
8305 {
8306 LONGEST val;
8307
8308 if (type == value_type (arg))
8309 return arg;
8310 else if (ada_is_fixed_point_type (value_type (arg)))
8311 val = ada_float_to_fixed (type,
8312 ada_fixed_to_float (value_type (arg),
8313 value_as_long (arg)));
8314 else
8315 {
8316 DOUBLEST argd = value_as_double (arg);
8317
8318 val = ada_float_to_fixed (type, argd);
8319 }
8320
8321 return value_from_longest (type, val);
8322 }
8323
8324 static struct value *
8325 cast_from_fixed (struct type *type, struct value *arg)
8326 {
8327 DOUBLEST val = ada_fixed_to_float (value_type (arg),
8328 value_as_long (arg));
8329
8330 return value_from_double (type, val);
8331 }
8332
8333 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8334 return the converted value. */
8335
8336 static struct value *
8337 coerce_for_assign (struct type *type, struct value *val)
8338 {
8339 struct type *type2 = value_type (val);
8340
8341 if (type == type2)
8342 return val;
8343
8344 type2 = ada_check_typedef (type2);
8345 type = ada_check_typedef (type);
8346
8347 if (TYPE_CODE (type2) == TYPE_CODE_PTR
8348 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8349 {
8350 val = ada_value_ind (val);
8351 type2 = value_type (val);
8352 }
8353
8354 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
8355 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8356 {
8357 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
8358 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8359 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
8360 error (_("Incompatible types in assignment"));
8361 deprecated_set_value_type (val, type);
8362 }
8363 return val;
8364 }
8365
8366 static struct value *
8367 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8368 {
8369 struct value *val;
8370 struct type *type1, *type2;
8371 LONGEST v, v1, v2;
8372
8373 arg1 = coerce_ref (arg1);
8374 arg2 = coerce_ref (arg2);
8375 type1 = base_type (ada_check_typedef (value_type (arg1)));
8376 type2 = base_type (ada_check_typedef (value_type (arg2)));
8377
8378 if (TYPE_CODE (type1) != TYPE_CODE_INT
8379 || TYPE_CODE (type2) != TYPE_CODE_INT)
8380 return value_binop (arg1, arg2, op);
8381
8382 switch (op)
8383 {
8384 case BINOP_MOD:
8385 case BINOP_DIV:
8386 case BINOP_REM:
8387 break;
8388 default:
8389 return value_binop (arg1, arg2, op);
8390 }
8391
8392 v2 = value_as_long (arg2);
8393 if (v2 == 0)
8394 error (_("second operand of %s must not be zero."), op_string (op));
8395
8396 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
8397 return value_binop (arg1, arg2, op);
8398
8399 v1 = value_as_long (arg1);
8400 switch (op)
8401 {
8402 case BINOP_DIV:
8403 v = v1 / v2;
8404 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8405 v += v > 0 ? -1 : 1;
8406 break;
8407 case BINOP_REM:
8408 v = v1 % v2;
8409 if (v * v1 < 0)
8410 v -= v2;
8411 break;
8412 default:
8413 /* Should not reach this point. */
8414 v = 0;
8415 }
8416
8417 val = allocate_value (type1);
8418 store_unsigned_integer (value_contents_raw (val),
8419 TYPE_LENGTH (value_type (val)),
8420 gdbarch_byte_order (get_type_arch (type1)), v);
8421 return val;
8422 }
8423
8424 static int
8425 ada_value_equal (struct value *arg1, struct value *arg2)
8426 {
8427 if (ada_is_direct_array_type (value_type (arg1))
8428 || ada_is_direct_array_type (value_type (arg2)))
8429 {
8430 /* Automatically dereference any array reference before
8431 we attempt to perform the comparison. */
8432 arg1 = ada_coerce_ref (arg1);
8433 arg2 = ada_coerce_ref (arg2);
8434
8435 arg1 = ada_coerce_to_simple_array (arg1);
8436 arg2 = ada_coerce_to_simple_array (arg2);
8437 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
8438 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
8439 error (_("Attempt to compare array with non-array"));
8440 /* FIXME: The following works only for types whose
8441 representations use all bits (no padding or undefined bits)
8442 and do not have user-defined equality. */
8443 return
8444 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
8445 && memcmp (value_contents (arg1), value_contents (arg2),
8446 TYPE_LENGTH (value_type (arg1))) == 0;
8447 }
8448 return value_equal (arg1, arg2);
8449 }
8450
8451 /* Total number of component associations in the aggregate starting at
8452 index PC in EXP. Assumes that index PC is the start of an
8453 OP_AGGREGATE. */
8454
8455 static int
8456 num_component_specs (struct expression *exp, int pc)
8457 {
8458 int n, m, i;
8459
8460 m = exp->elts[pc + 1].longconst;
8461 pc += 3;
8462 n = 0;
8463 for (i = 0; i < m; i += 1)
8464 {
8465 switch (exp->elts[pc].opcode)
8466 {
8467 default:
8468 n += 1;
8469 break;
8470 case OP_CHOICES:
8471 n += exp->elts[pc + 1].longconst;
8472 break;
8473 }
8474 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
8475 }
8476 return n;
8477 }
8478
8479 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
8480 component of LHS (a simple array or a record), updating *POS past
8481 the expression, assuming that LHS is contained in CONTAINER. Does
8482 not modify the inferior's memory, nor does it modify LHS (unless
8483 LHS == CONTAINER). */
8484
8485 static void
8486 assign_component (struct value *container, struct value *lhs, LONGEST index,
8487 struct expression *exp, int *pos)
8488 {
8489 struct value *mark = value_mark ();
8490 struct value *elt;
8491
8492 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8493 {
8494 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
8495 struct value *index_val = value_from_longest (index_type, index);
8496
8497 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8498 }
8499 else
8500 {
8501 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
8502 elt = ada_to_fixed_value (unwrap_value (elt));
8503 }
8504
8505 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8506 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8507 else
8508 value_assign_to_component (container, elt,
8509 ada_evaluate_subexp (NULL, exp, pos,
8510 EVAL_NORMAL));
8511
8512 value_free_to_mark (mark);
8513 }
8514
8515 /* Assuming that LHS represents an lvalue having a record or array
8516 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8517 of that aggregate's value to LHS, advancing *POS past the
8518 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8519 lvalue containing LHS (possibly LHS itself). Does not modify
8520 the inferior's memory, nor does it modify the contents of
8521 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
8522
8523 static struct value *
8524 assign_aggregate (struct value *container,
8525 struct value *lhs, struct expression *exp,
8526 int *pos, enum noside noside)
8527 {
8528 struct type *lhs_type;
8529 int n = exp->elts[*pos+1].longconst;
8530 LONGEST low_index, high_index;
8531 int num_specs;
8532 LONGEST *indices;
8533 int max_indices, num_indices;
8534 int is_array_aggregate;
8535 int i;
8536
8537 *pos += 3;
8538 if (noside != EVAL_NORMAL)
8539 {
8540 int i;
8541
8542 for (i = 0; i < n; i += 1)
8543 ada_evaluate_subexp (NULL, exp, pos, noside);
8544 return container;
8545 }
8546
8547 container = ada_coerce_ref (container);
8548 if (ada_is_direct_array_type (value_type (container)))
8549 container = ada_coerce_to_simple_array (container);
8550 lhs = ada_coerce_ref (lhs);
8551 if (!deprecated_value_modifiable (lhs))
8552 error (_("Left operand of assignment is not a modifiable lvalue."));
8553
8554 lhs_type = value_type (lhs);
8555 if (ada_is_direct_array_type (lhs_type))
8556 {
8557 lhs = ada_coerce_to_simple_array (lhs);
8558 lhs_type = value_type (lhs);
8559 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8560 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8561 is_array_aggregate = 1;
8562 }
8563 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8564 {
8565 low_index = 0;
8566 high_index = num_visible_fields (lhs_type) - 1;
8567 is_array_aggregate = 0;
8568 }
8569 else
8570 error (_("Left-hand side must be array or record."));
8571
8572 num_specs = num_component_specs (exp, *pos - 3);
8573 max_indices = 4 * num_specs + 4;
8574 indices = alloca (max_indices * sizeof (indices[0]));
8575 indices[0] = indices[1] = low_index - 1;
8576 indices[2] = indices[3] = high_index + 1;
8577 num_indices = 4;
8578
8579 for (i = 0; i < n; i += 1)
8580 {
8581 switch (exp->elts[*pos].opcode)
8582 {
8583 case OP_CHOICES:
8584 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8585 &num_indices, max_indices,
8586 low_index, high_index);
8587 break;
8588 case OP_POSITIONAL:
8589 aggregate_assign_positional (container, lhs, exp, pos, indices,
8590 &num_indices, max_indices,
8591 low_index, high_index);
8592 break;
8593 case OP_OTHERS:
8594 if (i != n-1)
8595 error (_("Misplaced 'others' clause"));
8596 aggregate_assign_others (container, lhs, exp, pos, indices,
8597 num_indices, low_index, high_index);
8598 break;
8599 default:
8600 error (_("Internal error: bad aggregate clause"));
8601 }
8602 }
8603
8604 return container;
8605 }
8606
8607 /* Assign into the component of LHS indexed by the OP_POSITIONAL
8608 construct at *POS, updating *POS past the construct, given that
8609 the positions are relative to lower bound LOW, where HIGH is the
8610 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8611 updating *NUM_INDICES as needed. CONTAINER is as for
8612 assign_aggregate. */
8613 static void
8614 aggregate_assign_positional (struct value *container,
8615 struct value *lhs, struct expression *exp,
8616 int *pos, LONGEST *indices, int *num_indices,
8617 int max_indices, LONGEST low, LONGEST high)
8618 {
8619 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8620
8621 if (ind - 1 == high)
8622 warning (_("Extra components in aggregate ignored."));
8623 if (ind <= high)
8624 {
8625 add_component_interval (ind, ind, indices, num_indices, max_indices);
8626 *pos += 3;
8627 assign_component (container, lhs, ind, exp, pos);
8628 }
8629 else
8630 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8631 }
8632
8633 /* Assign into the components of LHS indexed by the OP_CHOICES
8634 construct at *POS, updating *POS past the construct, given that
8635 the allowable indices are LOW..HIGH. Record the indices assigned
8636 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
8637 needed. CONTAINER is as for assign_aggregate. */
8638 static void
8639 aggregate_assign_from_choices (struct value *container,
8640 struct value *lhs, struct expression *exp,
8641 int *pos, LONGEST *indices, int *num_indices,
8642 int max_indices, LONGEST low, LONGEST high)
8643 {
8644 int j;
8645 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8646 int choice_pos, expr_pc;
8647 int is_array = ada_is_direct_array_type (value_type (lhs));
8648
8649 choice_pos = *pos += 3;
8650
8651 for (j = 0; j < n_choices; j += 1)
8652 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8653 expr_pc = *pos;
8654 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8655
8656 for (j = 0; j < n_choices; j += 1)
8657 {
8658 LONGEST lower, upper;
8659 enum exp_opcode op = exp->elts[choice_pos].opcode;
8660
8661 if (op == OP_DISCRETE_RANGE)
8662 {
8663 choice_pos += 1;
8664 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8665 EVAL_NORMAL));
8666 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8667 EVAL_NORMAL));
8668 }
8669 else if (is_array)
8670 {
8671 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8672 EVAL_NORMAL));
8673 upper = lower;
8674 }
8675 else
8676 {
8677 int ind;
8678 char *name;
8679
8680 switch (op)
8681 {
8682 case OP_NAME:
8683 name = &exp->elts[choice_pos + 2].string;
8684 break;
8685 case OP_VAR_VALUE:
8686 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8687 break;
8688 default:
8689 error (_("Invalid record component association."));
8690 }
8691 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8692 ind = 0;
8693 if (! find_struct_field (name, value_type (lhs), 0,
8694 NULL, NULL, NULL, NULL, &ind))
8695 error (_("Unknown component name: %s."), name);
8696 lower = upper = ind;
8697 }
8698
8699 if (lower <= upper && (lower < low || upper > high))
8700 error (_("Index in component association out of bounds."));
8701
8702 add_component_interval (lower, upper, indices, num_indices,
8703 max_indices);
8704 while (lower <= upper)
8705 {
8706 int pos1;
8707
8708 pos1 = expr_pc;
8709 assign_component (container, lhs, lower, exp, &pos1);
8710 lower += 1;
8711 }
8712 }
8713 }
8714
8715 /* Assign the value of the expression in the OP_OTHERS construct in
8716 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8717 have not been previously assigned. The index intervals already assigned
8718 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
8719 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
8720 static void
8721 aggregate_assign_others (struct value *container,
8722 struct value *lhs, struct expression *exp,
8723 int *pos, LONGEST *indices, int num_indices,
8724 LONGEST low, LONGEST high)
8725 {
8726 int i;
8727 int expr_pc = *pos + 1;
8728
8729 for (i = 0; i < num_indices - 2; i += 2)
8730 {
8731 LONGEST ind;
8732
8733 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
8734 {
8735 int localpos;
8736
8737 localpos = expr_pc;
8738 assign_component (container, lhs, ind, exp, &localpos);
8739 }
8740 }
8741 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8742 }
8743
8744 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
8745 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
8746 modifying *SIZE as needed. It is an error if *SIZE exceeds
8747 MAX_SIZE. The resulting intervals do not overlap. */
8748 static void
8749 add_component_interval (LONGEST low, LONGEST high,
8750 LONGEST* indices, int *size, int max_size)
8751 {
8752 int i, j;
8753
8754 for (i = 0; i < *size; i += 2) {
8755 if (high >= indices[i] && low <= indices[i + 1])
8756 {
8757 int kh;
8758
8759 for (kh = i + 2; kh < *size; kh += 2)
8760 if (high < indices[kh])
8761 break;
8762 if (low < indices[i])
8763 indices[i] = low;
8764 indices[i + 1] = indices[kh - 1];
8765 if (high > indices[i + 1])
8766 indices[i + 1] = high;
8767 memcpy (indices + i + 2, indices + kh, *size - kh);
8768 *size -= kh - i - 2;
8769 return;
8770 }
8771 else if (high < indices[i])
8772 break;
8773 }
8774
8775 if (*size == max_size)
8776 error (_("Internal error: miscounted aggregate components."));
8777 *size += 2;
8778 for (j = *size-1; j >= i+2; j -= 1)
8779 indices[j] = indices[j - 2];
8780 indices[i] = low;
8781 indices[i + 1] = high;
8782 }
8783
8784 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
8785 is different. */
8786
8787 static struct value *
8788 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
8789 {
8790 if (type == ada_check_typedef (value_type (arg2)))
8791 return arg2;
8792
8793 if (ada_is_fixed_point_type (type))
8794 return (cast_to_fixed (type, arg2));
8795
8796 if (ada_is_fixed_point_type (value_type (arg2)))
8797 return cast_from_fixed (type, arg2);
8798
8799 return value_cast (type, arg2);
8800 }
8801
8802 /* Evaluating Ada expressions, and printing their result.
8803 ------------------------------------------------------
8804
8805 1. Introduction:
8806 ----------------
8807
8808 We usually evaluate an Ada expression in order to print its value.
8809 We also evaluate an expression in order to print its type, which
8810 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
8811 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
8812 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
8813 the evaluation compared to the EVAL_NORMAL, but is otherwise very
8814 similar.
8815
8816 Evaluating expressions is a little more complicated for Ada entities
8817 than it is for entities in languages such as C. The main reason for
8818 this is that Ada provides types whose definition might be dynamic.
8819 One example of such types is variant records. Or another example
8820 would be an array whose bounds can only be known at run time.
8821
8822 The following description is a general guide as to what should be
8823 done (and what should NOT be done) in order to evaluate an expression
8824 involving such types, and when. This does not cover how the semantic
8825 information is encoded by GNAT as this is covered separatly. For the
8826 document used as the reference for the GNAT encoding, see exp_dbug.ads
8827 in the GNAT sources.
8828
8829 Ideally, we should embed each part of this description next to its
8830 associated code. Unfortunately, the amount of code is so vast right
8831 now that it's hard to see whether the code handling a particular
8832 situation might be duplicated or not. One day, when the code is
8833 cleaned up, this guide might become redundant with the comments
8834 inserted in the code, and we might want to remove it.
8835
8836 2. ``Fixing'' an Entity, the Simple Case:
8837 -----------------------------------------
8838
8839 When evaluating Ada expressions, the tricky issue is that they may
8840 reference entities whose type contents and size are not statically
8841 known. Consider for instance a variant record:
8842
8843 type Rec (Empty : Boolean := True) is record
8844 case Empty is
8845 when True => null;
8846 when False => Value : Integer;
8847 end case;
8848 end record;
8849 Yes : Rec := (Empty => False, Value => 1);
8850 No : Rec := (empty => True);
8851
8852 The size and contents of that record depends on the value of the
8853 descriminant (Rec.Empty). At this point, neither the debugging
8854 information nor the associated type structure in GDB are able to
8855 express such dynamic types. So what the debugger does is to create
8856 "fixed" versions of the type that applies to the specific object.
8857 We also informally refer to this opperation as "fixing" an object,
8858 which means creating its associated fixed type.
8859
8860 Example: when printing the value of variable "Yes" above, its fixed
8861 type would look like this:
8862
8863 type Rec is record
8864 Empty : Boolean;
8865 Value : Integer;
8866 end record;
8867
8868 On the other hand, if we printed the value of "No", its fixed type
8869 would become:
8870
8871 type Rec is record
8872 Empty : Boolean;
8873 end record;
8874
8875 Things become a little more complicated when trying to fix an entity
8876 with a dynamic type that directly contains another dynamic type,
8877 such as an array of variant records, for instance. There are
8878 two possible cases: Arrays, and records.
8879
8880 3. ``Fixing'' Arrays:
8881 ---------------------
8882
8883 The type structure in GDB describes an array in terms of its bounds,
8884 and the type of its elements. By design, all elements in the array
8885 have the same type and we cannot represent an array of variant elements
8886 using the current type structure in GDB. When fixing an array,
8887 we cannot fix the array element, as we would potentially need one
8888 fixed type per element of the array. As a result, the best we can do
8889 when fixing an array is to produce an array whose bounds and size
8890 are correct (allowing us to read it from memory), but without having
8891 touched its element type. Fixing each element will be done later,
8892 when (if) necessary.
8893
8894 Arrays are a little simpler to handle than records, because the same
8895 amount of memory is allocated for each element of the array, even if
8896 the amount of space actually used by each element differs from element
8897 to element. Consider for instance the following array of type Rec:
8898
8899 type Rec_Array is array (1 .. 2) of Rec;
8900
8901 The actual amount of memory occupied by each element might be different
8902 from element to element, depending on the value of their discriminant.
8903 But the amount of space reserved for each element in the array remains
8904 fixed regardless. So we simply need to compute that size using
8905 the debugging information available, from which we can then determine
8906 the array size (we multiply the number of elements of the array by
8907 the size of each element).
8908
8909 The simplest case is when we have an array of a constrained element
8910 type. For instance, consider the following type declarations:
8911
8912 type Bounded_String (Max_Size : Integer) is
8913 Length : Integer;
8914 Buffer : String (1 .. Max_Size);
8915 end record;
8916 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
8917
8918 In this case, the compiler describes the array as an array of
8919 variable-size elements (identified by its XVS suffix) for which
8920 the size can be read in the parallel XVZ variable.
8921
8922 In the case of an array of an unconstrained element type, the compiler
8923 wraps the array element inside a private PAD type. This type should not
8924 be shown to the user, and must be "unwrap"'ed before printing. Note
8925 that we also use the adjective "aligner" in our code to designate
8926 these wrapper types.
8927
8928 In some cases, the size allocated for each element is statically
8929 known. In that case, the PAD type already has the correct size,
8930 and the array element should remain unfixed.
8931
8932 But there are cases when this size is not statically known.
8933 For instance, assuming that "Five" is an integer variable:
8934
8935 type Dynamic is array (1 .. Five) of Integer;
8936 type Wrapper (Has_Length : Boolean := False) is record
8937 Data : Dynamic;
8938 case Has_Length is
8939 when True => Length : Integer;
8940 when False => null;
8941 end case;
8942 end record;
8943 type Wrapper_Array is array (1 .. 2) of Wrapper;
8944
8945 Hello : Wrapper_Array := (others => (Has_Length => True,
8946 Data => (others => 17),
8947 Length => 1));
8948
8949
8950 The debugging info would describe variable Hello as being an
8951 array of a PAD type. The size of that PAD type is not statically
8952 known, but can be determined using a parallel XVZ variable.
8953 In that case, a copy of the PAD type with the correct size should
8954 be used for the fixed array.
8955
8956 3. ``Fixing'' record type objects:
8957 ----------------------------------
8958
8959 Things are slightly different from arrays in the case of dynamic
8960 record types. In this case, in order to compute the associated
8961 fixed type, we need to determine the size and offset of each of
8962 its components. This, in turn, requires us to compute the fixed
8963 type of each of these components.
8964
8965 Consider for instance the example:
8966
8967 type Bounded_String (Max_Size : Natural) is record
8968 Str : String (1 .. Max_Size);
8969 Length : Natural;
8970 end record;
8971 My_String : Bounded_String (Max_Size => 10);
8972
8973 In that case, the position of field "Length" depends on the size
8974 of field Str, which itself depends on the value of the Max_Size
8975 discriminant. In order to fix the type of variable My_String,
8976 we need to fix the type of field Str. Therefore, fixing a variant
8977 record requires us to fix each of its components.
8978
8979 However, if a component does not have a dynamic size, the component
8980 should not be fixed. In particular, fields that use a PAD type
8981 should not fixed. Here is an example where this might happen
8982 (assuming type Rec above):
8983
8984 type Container (Big : Boolean) is record
8985 First : Rec;
8986 After : Integer;
8987 case Big is
8988 when True => Another : Integer;
8989 when False => null;
8990 end case;
8991 end record;
8992 My_Container : Container := (Big => False,
8993 First => (Empty => True),
8994 After => 42);
8995
8996 In that example, the compiler creates a PAD type for component First,
8997 whose size is constant, and then positions the component After just
8998 right after it. The offset of component After is therefore constant
8999 in this case.
9000
9001 The debugger computes the position of each field based on an algorithm
9002 that uses, among other things, the actual position and size of the field
9003 preceding it. Let's now imagine that the user is trying to print
9004 the value of My_Container. If the type fixing was recursive, we would
9005 end up computing the offset of field After based on the size of the
9006 fixed version of field First. And since in our example First has
9007 only one actual field, the size of the fixed type is actually smaller
9008 than the amount of space allocated to that field, and thus we would
9009 compute the wrong offset of field After.
9010
9011 To make things more complicated, we need to watch out for dynamic
9012 components of variant records (identified by the ___XVL suffix in
9013 the component name). Even if the target type is a PAD type, the size
9014 of that type might not be statically known. So the PAD type needs
9015 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9016 we might end up with the wrong size for our component. This can be
9017 observed with the following type declarations:
9018
9019 type Octal is new Integer range 0 .. 7;
9020 type Octal_Array is array (Positive range <>) of Octal;
9021 pragma Pack (Octal_Array);
9022
9023 type Octal_Buffer (Size : Positive) is record
9024 Buffer : Octal_Array (1 .. Size);
9025 Length : Integer;
9026 end record;
9027
9028 In that case, Buffer is a PAD type whose size is unset and needs
9029 to be computed by fixing the unwrapped type.
9030
9031 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9032 ----------------------------------------------------------
9033
9034 Lastly, when should the sub-elements of an entity that remained unfixed
9035 thus far, be actually fixed?
9036
9037 The answer is: Only when referencing that element. For instance
9038 when selecting one component of a record, this specific component
9039 should be fixed at that point in time. Or when printing the value
9040 of a record, each component should be fixed before its value gets
9041 printed. Similarly for arrays, the element of the array should be
9042 fixed when printing each element of the array, or when extracting
9043 one element out of that array. On the other hand, fixing should
9044 not be performed on the elements when taking a slice of an array!
9045
9046 Note that one of the side-effects of miscomputing the offset and
9047 size of each field is that we end up also miscomputing the size
9048 of the containing type. This can have adverse results when computing
9049 the value of an entity. GDB fetches the value of an entity based
9050 on the size of its type, and thus a wrong size causes GDB to fetch
9051 the wrong amount of memory. In the case where the computed size is
9052 too small, GDB fetches too little data to print the value of our
9053 entiry. Results in this case as unpredicatble, as we usually read
9054 past the buffer containing the data =:-o. */
9055
9056 /* Implement the evaluate_exp routine in the exp_descriptor structure
9057 for the Ada language. */
9058
9059 static struct value *
9060 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
9061 int *pos, enum noside noside)
9062 {
9063 enum exp_opcode op;
9064 int tem;
9065 int pc;
9066 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
9067 struct type *type;
9068 int nargs, oplen;
9069 struct value **argvec;
9070
9071 pc = *pos;
9072 *pos += 1;
9073 op = exp->elts[pc].opcode;
9074
9075 switch (op)
9076 {
9077 default:
9078 *pos -= 1;
9079 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9080 arg1 = unwrap_value (arg1);
9081
9082 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
9083 then we need to perform the conversion manually, because
9084 evaluate_subexp_standard doesn't do it. This conversion is
9085 necessary in Ada because the different kinds of float/fixed
9086 types in Ada have different representations.
9087
9088 Similarly, we need to perform the conversion from OP_LONG
9089 ourselves. */
9090 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
9091 arg1 = ada_value_cast (expect_type, arg1, noside);
9092
9093 return arg1;
9094
9095 case OP_STRING:
9096 {
9097 struct value *result;
9098
9099 *pos -= 1;
9100 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
9101 /* The result type will have code OP_STRING, bashed there from
9102 OP_ARRAY. Bash it back. */
9103 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
9104 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
9105 return result;
9106 }
9107
9108 case UNOP_CAST:
9109 (*pos) += 2;
9110 type = exp->elts[pc + 1].type;
9111 arg1 = evaluate_subexp (type, exp, pos, noside);
9112 if (noside == EVAL_SKIP)
9113 goto nosideret;
9114 arg1 = ada_value_cast (type, arg1, noside);
9115 return arg1;
9116
9117 case UNOP_QUAL:
9118 (*pos) += 2;
9119 type = exp->elts[pc + 1].type;
9120 return ada_evaluate_subexp (type, exp, pos, noside);
9121
9122 case BINOP_ASSIGN:
9123 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9124 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9125 {
9126 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
9127 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9128 return arg1;
9129 return ada_value_assign (arg1, arg1);
9130 }
9131 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9132 except if the lhs of our assignment is a convenience variable.
9133 In the case of assigning to a convenience variable, the lhs
9134 should be exactly the result of the evaluation of the rhs. */
9135 type = value_type (arg1);
9136 if (VALUE_LVAL (arg1) == lval_internalvar)
9137 type = NULL;
9138 arg2 = evaluate_subexp (type, exp, pos, noside);
9139 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9140 return arg1;
9141 if (ada_is_fixed_point_type (value_type (arg1)))
9142 arg2 = cast_to_fixed (value_type (arg1), arg2);
9143 else if (ada_is_fixed_point_type (value_type (arg2)))
9144 error
9145 (_("Fixed-point values must be assigned to fixed-point variables"));
9146 else
9147 arg2 = coerce_for_assign (value_type (arg1), arg2);
9148 return ada_value_assign (arg1, arg2);
9149
9150 case BINOP_ADD:
9151 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9152 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9153 if (noside == EVAL_SKIP)
9154 goto nosideret;
9155 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9156 return (value_from_longest
9157 (value_type (arg1),
9158 value_as_long (arg1) + value_as_long (arg2)));
9159 if ((ada_is_fixed_point_type (value_type (arg1))
9160 || ada_is_fixed_point_type (value_type (arg2)))
9161 && value_type (arg1) != value_type (arg2))
9162 error (_("Operands of fixed-point addition must have the same type"));
9163 /* Do the addition, and cast the result to the type of the first
9164 argument. We cannot cast the result to a reference type, so if
9165 ARG1 is a reference type, find its underlying type. */
9166 type = value_type (arg1);
9167 while (TYPE_CODE (type) == TYPE_CODE_REF)
9168 type = TYPE_TARGET_TYPE (type);
9169 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9170 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
9171
9172 case BINOP_SUB:
9173 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9174 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9175 if (noside == EVAL_SKIP)
9176 goto nosideret;
9177 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9178 return (value_from_longest
9179 (value_type (arg1),
9180 value_as_long (arg1) - value_as_long (arg2)));
9181 if ((ada_is_fixed_point_type (value_type (arg1))
9182 || ada_is_fixed_point_type (value_type (arg2)))
9183 && value_type (arg1) != value_type (arg2))
9184 error (_("Operands of fixed-point subtraction "
9185 "must have the same type"));
9186 /* Do the substraction, and cast the result to the type of the first
9187 argument. We cannot cast the result to a reference type, so if
9188 ARG1 is a reference type, find its underlying type. */
9189 type = value_type (arg1);
9190 while (TYPE_CODE (type) == TYPE_CODE_REF)
9191 type = TYPE_TARGET_TYPE (type);
9192 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9193 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
9194
9195 case BINOP_MUL:
9196 case BINOP_DIV:
9197 case BINOP_REM:
9198 case BINOP_MOD:
9199 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9200 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9201 if (noside == EVAL_SKIP)
9202 goto nosideret;
9203 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9204 {
9205 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9206 return value_zero (value_type (arg1), not_lval);
9207 }
9208 else
9209 {
9210 type = builtin_type (exp->gdbarch)->builtin_double;
9211 if (ada_is_fixed_point_type (value_type (arg1)))
9212 arg1 = cast_from_fixed (type, arg1);
9213 if (ada_is_fixed_point_type (value_type (arg2)))
9214 arg2 = cast_from_fixed (type, arg2);
9215 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9216 return ada_value_binop (arg1, arg2, op);
9217 }
9218
9219 case BINOP_EQUAL:
9220 case BINOP_NOTEQUAL:
9221 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9222 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
9223 if (noside == EVAL_SKIP)
9224 goto nosideret;
9225 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9226 tem = 0;
9227 else
9228 {
9229 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9230 tem = ada_value_equal (arg1, arg2);
9231 }
9232 if (op == BINOP_NOTEQUAL)
9233 tem = !tem;
9234 type = language_bool_type (exp->language_defn, exp->gdbarch);
9235 return value_from_longest (type, (LONGEST) tem);
9236
9237 case UNOP_NEG:
9238 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9239 if (noside == EVAL_SKIP)
9240 goto nosideret;
9241 else if (ada_is_fixed_point_type (value_type (arg1)))
9242 return value_cast (value_type (arg1), value_neg (arg1));
9243 else
9244 {
9245 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9246 return value_neg (arg1);
9247 }
9248
9249 case BINOP_LOGICAL_AND:
9250 case BINOP_LOGICAL_OR:
9251 case UNOP_LOGICAL_NOT:
9252 {
9253 struct value *val;
9254
9255 *pos -= 1;
9256 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9257 type = language_bool_type (exp->language_defn, exp->gdbarch);
9258 return value_cast (type, val);
9259 }
9260
9261 case BINOP_BITWISE_AND:
9262 case BINOP_BITWISE_IOR:
9263 case BINOP_BITWISE_XOR:
9264 {
9265 struct value *val;
9266
9267 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9268 *pos = pc;
9269 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9270
9271 return value_cast (value_type (arg1), val);
9272 }
9273
9274 case OP_VAR_VALUE:
9275 *pos -= 1;
9276
9277 if (noside == EVAL_SKIP)
9278 {
9279 *pos += 4;
9280 goto nosideret;
9281 }
9282 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
9283 /* Only encountered when an unresolved symbol occurs in a
9284 context other than a function call, in which case, it is
9285 invalid. */
9286 error (_("Unexpected unresolved symbol, %s, during evaluation"),
9287 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
9288 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9289 {
9290 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
9291 /* Check to see if this is a tagged type. We also need to handle
9292 the case where the type is a reference to a tagged type, but
9293 we have to be careful to exclude pointers to tagged types.
9294 The latter should be shown as usual (as a pointer), whereas
9295 a reference should mostly be transparent to the user. */
9296 if (ada_is_tagged_type (type, 0)
9297 || (TYPE_CODE(type) == TYPE_CODE_REF
9298 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
9299 {
9300 /* Tagged types are a little special in the fact that the real
9301 type is dynamic and can only be determined by inspecting the
9302 object's tag. This means that we need to get the object's
9303 value first (EVAL_NORMAL) and then extract the actual object
9304 type from its tag.
9305
9306 Note that we cannot skip the final step where we extract
9307 the object type from its tag, because the EVAL_NORMAL phase
9308 results in dynamic components being resolved into fixed ones.
9309 This can cause problems when trying to print the type
9310 description of tagged types whose parent has a dynamic size:
9311 We use the type name of the "_parent" component in order
9312 to print the name of the ancestor type in the type description.
9313 If that component had a dynamic size, the resolution into
9314 a fixed type would result in the loss of that type name,
9315 thus preventing us from printing the name of the ancestor
9316 type in the type description. */
9317 struct type *actual_type;
9318
9319 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
9320 actual_type = type_from_tag (ada_value_tag (arg1));
9321 if (actual_type == NULL)
9322 /* If, for some reason, we were unable to determine
9323 the actual type from the tag, then use the static
9324 approximation that we just computed as a fallback.
9325 This can happen if the debugging information is
9326 incomplete, for instance. */
9327 actual_type = type;
9328
9329 return value_zero (actual_type, not_lval);
9330 }
9331
9332 *pos += 4;
9333 return value_zero
9334 (to_static_fixed_type
9335 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
9336 not_lval);
9337 }
9338 else
9339 {
9340 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9341 arg1 = unwrap_value (arg1);
9342 return ada_to_fixed_value (arg1);
9343 }
9344
9345 case OP_FUNCALL:
9346 (*pos) += 2;
9347
9348 /* Allocate arg vector, including space for the function to be
9349 called in argvec[0] and a terminating NULL. */
9350 nargs = longest_to_int (exp->elts[pc + 1].longconst);
9351 argvec =
9352 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
9353
9354 if (exp->elts[*pos].opcode == OP_VAR_VALUE
9355 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
9356 error (_("Unexpected unresolved symbol, %s, during evaluation"),
9357 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
9358 else
9359 {
9360 for (tem = 0; tem <= nargs; tem += 1)
9361 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9362 argvec[tem] = 0;
9363
9364 if (noside == EVAL_SKIP)
9365 goto nosideret;
9366 }
9367
9368 if (ada_is_constrained_packed_array_type
9369 (desc_base_type (value_type (argvec[0]))))
9370 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
9371 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9372 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
9373 /* This is a packed array that has already been fixed, and
9374 therefore already coerced to a simple array. Nothing further
9375 to do. */
9376 ;
9377 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
9378 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9379 && VALUE_LVAL (argvec[0]) == lval_memory))
9380 argvec[0] = value_addr (argvec[0]);
9381
9382 type = ada_check_typedef (value_type (argvec[0]));
9383
9384 /* Ada allows us to implicitly dereference arrays when subscripting
9385 them. So, if this is an typedef (encoding use for array access
9386 types encoded as fat pointers), strip it now. */
9387 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
9388 type = ada_typedef_target_type (type);
9389
9390 if (TYPE_CODE (type) == TYPE_CODE_PTR)
9391 {
9392 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
9393 {
9394 case TYPE_CODE_FUNC:
9395 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9396 break;
9397 case TYPE_CODE_ARRAY:
9398 break;
9399 case TYPE_CODE_STRUCT:
9400 if (noside != EVAL_AVOID_SIDE_EFFECTS)
9401 argvec[0] = ada_value_ind (argvec[0]);
9402 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9403 break;
9404 default:
9405 error (_("cannot subscript or call something of type `%s'"),
9406 ada_type_name (value_type (argvec[0])));
9407 break;
9408 }
9409 }
9410
9411 switch (TYPE_CODE (type))
9412 {
9413 case TYPE_CODE_FUNC:
9414 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9415 return allocate_value (TYPE_TARGET_TYPE (type));
9416 return call_function_by_hand (argvec[0], nargs, argvec + 1);
9417 case TYPE_CODE_STRUCT:
9418 {
9419 int arity;
9420
9421 arity = ada_array_arity (type);
9422 type = ada_array_element_type (type, nargs);
9423 if (type == NULL)
9424 error (_("cannot subscript or call a record"));
9425 if (arity != nargs)
9426 error (_("wrong number of subscripts; expecting %d"), arity);
9427 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9428 return value_zero (ada_aligned_type (type), lval_memory);
9429 return
9430 unwrap_value (ada_value_subscript
9431 (argvec[0], nargs, argvec + 1));
9432 }
9433 case TYPE_CODE_ARRAY:
9434 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9435 {
9436 type = ada_array_element_type (type, nargs);
9437 if (type == NULL)
9438 error (_("element type of array unknown"));
9439 else
9440 return value_zero (ada_aligned_type (type), lval_memory);
9441 }
9442 return
9443 unwrap_value (ada_value_subscript
9444 (ada_coerce_to_simple_array (argvec[0]),
9445 nargs, argvec + 1));
9446 case TYPE_CODE_PTR: /* Pointer to array */
9447 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
9448 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9449 {
9450 type = ada_array_element_type (type, nargs);
9451 if (type == NULL)
9452 error (_("element type of array unknown"));
9453 else
9454 return value_zero (ada_aligned_type (type), lval_memory);
9455 }
9456 return
9457 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
9458 nargs, argvec + 1));
9459
9460 default:
9461 error (_("Attempt to index or call something other than an "
9462 "array or function"));
9463 }
9464
9465 case TERNOP_SLICE:
9466 {
9467 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9468 struct value *low_bound_val =
9469 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9470 struct value *high_bound_val =
9471 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9472 LONGEST low_bound;
9473 LONGEST high_bound;
9474
9475 low_bound_val = coerce_ref (low_bound_val);
9476 high_bound_val = coerce_ref (high_bound_val);
9477 low_bound = pos_atr (low_bound_val);
9478 high_bound = pos_atr (high_bound_val);
9479
9480 if (noside == EVAL_SKIP)
9481 goto nosideret;
9482
9483 /* If this is a reference to an aligner type, then remove all
9484 the aligners. */
9485 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9486 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
9487 TYPE_TARGET_TYPE (value_type (array)) =
9488 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
9489
9490 if (ada_is_constrained_packed_array_type (value_type (array)))
9491 error (_("cannot slice a packed array"));
9492
9493 /* If this is a reference to an array or an array lvalue,
9494 convert to a pointer. */
9495 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9496 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
9497 && VALUE_LVAL (array) == lval_memory))
9498 array = value_addr (array);
9499
9500 if (noside == EVAL_AVOID_SIDE_EFFECTS
9501 && ada_is_array_descriptor_type (ada_check_typedef
9502 (value_type (array))))
9503 return empty_array (ada_type_of_array (array, 0), low_bound);
9504
9505 array = ada_coerce_to_simple_array_ptr (array);
9506
9507 /* If we have more than one level of pointer indirection,
9508 dereference the value until we get only one level. */
9509 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
9510 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
9511 == TYPE_CODE_PTR))
9512 array = value_ind (array);
9513
9514 /* Make sure we really do have an array type before going further,
9515 to avoid a SEGV when trying to get the index type or the target
9516 type later down the road if the debug info generated by
9517 the compiler is incorrect or incomplete. */
9518 if (!ada_is_simple_array_type (value_type (array)))
9519 error (_("cannot take slice of non-array"));
9520
9521 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
9522 {
9523 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
9524 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
9525 low_bound);
9526 else
9527 {
9528 struct type *arr_type0 =
9529 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
9530 NULL, 1);
9531
9532 return ada_value_slice_from_ptr (array, arr_type0,
9533 longest_to_int (low_bound),
9534 longest_to_int (high_bound));
9535 }
9536 }
9537 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9538 return array;
9539 else if (high_bound < low_bound)
9540 return empty_array (value_type (array), low_bound);
9541 else
9542 return ada_value_slice (array, longest_to_int (low_bound),
9543 longest_to_int (high_bound));
9544 }
9545
9546 case UNOP_IN_RANGE:
9547 (*pos) += 2;
9548 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9549 type = check_typedef (exp->elts[pc + 1].type);
9550
9551 if (noside == EVAL_SKIP)
9552 goto nosideret;
9553
9554 switch (TYPE_CODE (type))
9555 {
9556 default:
9557 lim_warning (_("Membership test incompletely implemented; "
9558 "always returns true"));
9559 type = language_bool_type (exp->language_defn, exp->gdbarch);
9560 return value_from_longest (type, (LONGEST) 1);
9561
9562 case TYPE_CODE_RANGE:
9563 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
9564 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
9565 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9566 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9567 type = language_bool_type (exp->language_defn, exp->gdbarch);
9568 return
9569 value_from_longest (type,
9570 (value_less (arg1, arg3)
9571 || value_equal (arg1, arg3))
9572 && (value_less (arg2, arg1)
9573 || value_equal (arg2, arg1)));
9574 }
9575
9576 case BINOP_IN_BOUNDS:
9577 (*pos) += 2;
9578 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9579 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9580
9581 if (noside == EVAL_SKIP)
9582 goto nosideret;
9583
9584 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9585 {
9586 type = language_bool_type (exp->language_defn, exp->gdbarch);
9587 return value_zero (type, not_lval);
9588 }
9589
9590 tem = longest_to_int (exp->elts[pc + 1].longconst);
9591
9592 type = ada_index_type (value_type (arg2), tem, "range");
9593 if (!type)
9594 type = value_type (arg1);
9595
9596 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
9597 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
9598
9599 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9600 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9601 type = language_bool_type (exp->language_defn, exp->gdbarch);
9602 return
9603 value_from_longest (type,
9604 (value_less (arg1, arg3)
9605 || value_equal (arg1, arg3))
9606 && (value_less (arg2, arg1)
9607 || value_equal (arg2, arg1)));
9608
9609 case TERNOP_IN_RANGE:
9610 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9611 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9612 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9613
9614 if (noside == EVAL_SKIP)
9615 goto nosideret;
9616
9617 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9618 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9619 type = language_bool_type (exp->language_defn, exp->gdbarch);
9620 return
9621 value_from_longest (type,
9622 (value_less (arg1, arg3)
9623 || value_equal (arg1, arg3))
9624 && (value_less (arg2, arg1)
9625 || value_equal (arg2, arg1)));
9626
9627 case OP_ATR_FIRST:
9628 case OP_ATR_LAST:
9629 case OP_ATR_LENGTH:
9630 {
9631 struct type *type_arg;
9632
9633 if (exp->elts[*pos].opcode == OP_TYPE)
9634 {
9635 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9636 arg1 = NULL;
9637 type_arg = check_typedef (exp->elts[pc + 2].type);
9638 }
9639 else
9640 {
9641 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9642 type_arg = NULL;
9643 }
9644
9645 if (exp->elts[*pos].opcode != OP_LONG)
9646 error (_("Invalid operand to '%s"), ada_attribute_name (op));
9647 tem = longest_to_int (exp->elts[*pos + 2].longconst);
9648 *pos += 4;
9649
9650 if (noside == EVAL_SKIP)
9651 goto nosideret;
9652
9653 if (type_arg == NULL)
9654 {
9655 arg1 = ada_coerce_ref (arg1);
9656
9657 if (ada_is_constrained_packed_array_type (value_type (arg1)))
9658 arg1 = ada_coerce_to_simple_array (arg1);
9659
9660 type = ada_index_type (value_type (arg1), tem,
9661 ada_attribute_name (op));
9662 if (type == NULL)
9663 type = builtin_type (exp->gdbarch)->builtin_int;
9664
9665 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9666 return allocate_value (type);
9667
9668 switch (op)
9669 {
9670 default: /* Should never happen. */
9671 error (_("unexpected attribute encountered"));
9672 case OP_ATR_FIRST:
9673 return value_from_longest
9674 (type, ada_array_bound (arg1, tem, 0));
9675 case OP_ATR_LAST:
9676 return value_from_longest
9677 (type, ada_array_bound (arg1, tem, 1));
9678 case OP_ATR_LENGTH:
9679 return value_from_longest
9680 (type, ada_array_length (arg1, tem));
9681 }
9682 }
9683 else if (discrete_type_p (type_arg))
9684 {
9685 struct type *range_type;
9686 char *name = ada_type_name (type_arg);
9687
9688 range_type = NULL;
9689 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
9690 range_type = to_fixed_range_type (type_arg, NULL);
9691 if (range_type == NULL)
9692 range_type = type_arg;
9693 switch (op)
9694 {
9695 default:
9696 error (_("unexpected attribute encountered"));
9697 case OP_ATR_FIRST:
9698 return value_from_longest
9699 (range_type, ada_discrete_type_low_bound (range_type));
9700 case OP_ATR_LAST:
9701 return value_from_longest
9702 (range_type, ada_discrete_type_high_bound (range_type));
9703 case OP_ATR_LENGTH:
9704 error (_("the 'length attribute applies only to array types"));
9705 }
9706 }
9707 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
9708 error (_("unimplemented type attribute"));
9709 else
9710 {
9711 LONGEST low, high;
9712
9713 if (ada_is_constrained_packed_array_type (type_arg))
9714 type_arg = decode_constrained_packed_array_type (type_arg);
9715
9716 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
9717 if (type == NULL)
9718 type = builtin_type (exp->gdbarch)->builtin_int;
9719
9720 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9721 return allocate_value (type);
9722
9723 switch (op)
9724 {
9725 default:
9726 error (_("unexpected attribute encountered"));
9727 case OP_ATR_FIRST:
9728 low = ada_array_bound_from_type (type_arg, tem, 0);
9729 return value_from_longest (type, low);
9730 case OP_ATR_LAST:
9731 high = ada_array_bound_from_type (type_arg, tem, 1);
9732 return value_from_longest (type, high);
9733 case OP_ATR_LENGTH:
9734 low = ada_array_bound_from_type (type_arg, tem, 0);
9735 high = ada_array_bound_from_type (type_arg, tem, 1);
9736 return value_from_longest (type, high - low + 1);
9737 }
9738 }
9739 }
9740
9741 case OP_ATR_TAG:
9742 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9743 if (noside == EVAL_SKIP)
9744 goto nosideret;
9745
9746 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9747 return value_zero (ada_tag_type (arg1), not_lval);
9748
9749 return ada_value_tag (arg1);
9750
9751 case OP_ATR_MIN:
9752 case OP_ATR_MAX:
9753 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9754 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9755 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9756 if (noside == EVAL_SKIP)
9757 goto nosideret;
9758 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9759 return value_zero (value_type (arg1), not_lval);
9760 else
9761 {
9762 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9763 return value_binop (arg1, arg2,
9764 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
9765 }
9766
9767 case OP_ATR_MODULUS:
9768 {
9769 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
9770
9771 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9772 if (noside == EVAL_SKIP)
9773 goto nosideret;
9774
9775 if (!ada_is_modular_type (type_arg))
9776 error (_("'modulus must be applied to modular type"));
9777
9778 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
9779 ada_modulus (type_arg));
9780 }
9781
9782
9783 case OP_ATR_POS:
9784 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9785 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9786 if (noside == EVAL_SKIP)
9787 goto nosideret;
9788 type = builtin_type (exp->gdbarch)->builtin_int;
9789 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9790 return value_zero (type, not_lval);
9791 else
9792 return value_pos_atr (type, arg1);
9793
9794 case OP_ATR_SIZE:
9795 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9796 type = value_type (arg1);
9797
9798 /* If the argument is a reference, then dereference its type, since
9799 the user is really asking for the size of the actual object,
9800 not the size of the pointer. */
9801 if (TYPE_CODE (type) == TYPE_CODE_REF)
9802 type = TYPE_TARGET_TYPE (type);
9803
9804 if (noside == EVAL_SKIP)
9805 goto nosideret;
9806 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9807 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
9808 else
9809 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
9810 TARGET_CHAR_BIT * TYPE_LENGTH (type));
9811
9812 case OP_ATR_VAL:
9813 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9814 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9815 type = exp->elts[pc + 2].type;
9816 if (noside == EVAL_SKIP)
9817 goto nosideret;
9818 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9819 return value_zero (type, not_lval);
9820 else
9821 return value_val_atr (type, arg1);
9822
9823 case BINOP_EXP:
9824 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9825 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9826 if (noside == EVAL_SKIP)
9827 goto nosideret;
9828 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9829 return value_zero (value_type (arg1), not_lval);
9830 else
9831 {
9832 /* For integer exponentiation operations,
9833 only promote the first argument. */
9834 if (is_integral_type (value_type (arg2)))
9835 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9836 else
9837 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9838
9839 return value_binop (arg1, arg2, op);
9840 }
9841
9842 case UNOP_PLUS:
9843 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9844 if (noside == EVAL_SKIP)
9845 goto nosideret;
9846 else
9847 return arg1;
9848
9849 case UNOP_ABS:
9850 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9851 if (noside == EVAL_SKIP)
9852 goto nosideret;
9853 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9854 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
9855 return value_neg (arg1);
9856 else
9857 return arg1;
9858
9859 case UNOP_IND:
9860 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9861 if (noside == EVAL_SKIP)
9862 goto nosideret;
9863 type = ada_check_typedef (value_type (arg1));
9864 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9865 {
9866 if (ada_is_array_descriptor_type (type))
9867 /* GDB allows dereferencing GNAT array descriptors. */
9868 {
9869 struct type *arrType = ada_type_of_array (arg1, 0);
9870
9871 if (arrType == NULL)
9872 error (_("Attempt to dereference null array pointer."));
9873 return value_at_lazy (arrType, 0);
9874 }
9875 else if (TYPE_CODE (type) == TYPE_CODE_PTR
9876 || TYPE_CODE (type) == TYPE_CODE_REF
9877 /* In C you can dereference an array to get the 1st elt. */
9878 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
9879 {
9880 type = to_static_fixed_type
9881 (ada_aligned_type
9882 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
9883 check_size (type);
9884 return value_zero (type, lval_memory);
9885 }
9886 else if (TYPE_CODE (type) == TYPE_CODE_INT)
9887 {
9888 /* GDB allows dereferencing an int. */
9889 if (expect_type == NULL)
9890 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
9891 lval_memory);
9892 else
9893 {
9894 expect_type =
9895 to_static_fixed_type (ada_aligned_type (expect_type));
9896 return value_zero (expect_type, lval_memory);
9897 }
9898 }
9899 else
9900 error (_("Attempt to take contents of a non-pointer value."));
9901 }
9902 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
9903 type = ada_check_typedef (value_type (arg1));
9904
9905 if (TYPE_CODE (type) == TYPE_CODE_INT)
9906 /* GDB allows dereferencing an int. If we were given
9907 the expect_type, then use that as the target type.
9908 Otherwise, assume that the target type is an int. */
9909 {
9910 if (expect_type != NULL)
9911 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
9912 arg1));
9913 else
9914 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
9915 (CORE_ADDR) value_as_address (arg1));
9916 }
9917
9918 if (ada_is_array_descriptor_type (type))
9919 /* GDB allows dereferencing GNAT array descriptors. */
9920 return ada_coerce_to_simple_array (arg1);
9921 else
9922 return ada_value_ind (arg1);
9923
9924 case STRUCTOP_STRUCT:
9925 tem = longest_to_int (exp->elts[pc + 1].longconst);
9926 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
9927 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9928 if (noside == EVAL_SKIP)
9929 goto nosideret;
9930 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9931 {
9932 struct type *type1 = value_type (arg1);
9933
9934 if (ada_is_tagged_type (type1, 1))
9935 {
9936 type = ada_lookup_struct_elt_type (type1,
9937 &exp->elts[pc + 2].string,
9938 1, 1, NULL);
9939 if (type == NULL)
9940 /* In this case, we assume that the field COULD exist
9941 in some extension of the type. Return an object of
9942 "type" void, which will match any formal
9943 (see ada_type_match). */
9944 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
9945 lval_memory);
9946 }
9947 else
9948 type =
9949 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
9950 0, NULL);
9951
9952 return value_zero (ada_aligned_type (type), lval_memory);
9953 }
9954 else
9955 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
9956 arg1 = unwrap_value (arg1);
9957 return ada_to_fixed_value (arg1);
9958
9959 case OP_TYPE:
9960 /* The value is not supposed to be used. This is here to make it
9961 easier to accommodate expressions that contain types. */
9962 (*pos) += 2;
9963 if (noside == EVAL_SKIP)
9964 goto nosideret;
9965 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9966 return allocate_value (exp->elts[pc + 1].type);
9967 else
9968 error (_("Attempt to use a type name as an expression"));
9969
9970 case OP_AGGREGATE:
9971 case OP_CHOICES:
9972 case OP_OTHERS:
9973 case OP_DISCRETE_RANGE:
9974 case OP_POSITIONAL:
9975 case OP_NAME:
9976 if (noside == EVAL_NORMAL)
9977 switch (op)
9978 {
9979 case OP_NAME:
9980 error (_("Undefined name, ambiguous name, or renaming used in "
9981 "component association: %s."), &exp->elts[pc+2].string);
9982 case OP_AGGREGATE:
9983 error (_("Aggregates only allowed on the right of an assignment"));
9984 default:
9985 internal_error (__FILE__, __LINE__,
9986 _("aggregate apparently mangled"));
9987 }
9988
9989 ada_forward_operator_length (exp, pc, &oplen, &nargs);
9990 *pos += oplen - 1;
9991 for (tem = 0; tem < nargs; tem += 1)
9992 ada_evaluate_subexp (NULL, exp, pos, noside);
9993 goto nosideret;
9994 }
9995
9996 nosideret:
9997 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
9998 }
9999 \f
10000
10001 /* Fixed point */
10002
10003 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
10004 type name that encodes the 'small and 'delta information.
10005 Otherwise, return NULL. */
10006
10007 static const char *
10008 fixed_type_info (struct type *type)
10009 {
10010 const char *name = ada_type_name (type);
10011 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
10012
10013 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
10014 {
10015 const char *tail = strstr (name, "___XF_");
10016
10017 if (tail == NULL)
10018 return NULL;
10019 else
10020 return tail + 5;
10021 }
10022 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
10023 return fixed_type_info (TYPE_TARGET_TYPE (type));
10024 else
10025 return NULL;
10026 }
10027
10028 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
10029
10030 int
10031 ada_is_fixed_point_type (struct type *type)
10032 {
10033 return fixed_type_info (type) != NULL;
10034 }
10035
10036 /* Return non-zero iff TYPE represents a System.Address type. */
10037
10038 int
10039 ada_is_system_address_type (struct type *type)
10040 {
10041 return (TYPE_NAME (type)
10042 && strcmp (TYPE_NAME (type), "system__address") == 0);
10043 }
10044
10045 /* Assuming that TYPE is the representation of an Ada fixed-point
10046 type, return its delta, or -1 if the type is malformed and the
10047 delta cannot be determined. */
10048
10049 DOUBLEST
10050 ada_delta (struct type *type)
10051 {
10052 const char *encoding = fixed_type_info (type);
10053 DOUBLEST num, den;
10054
10055 /* Strictly speaking, num and den are encoded as integer. However,
10056 they may not fit into a long, and they will have to be converted
10057 to DOUBLEST anyway. So scan them as DOUBLEST. */
10058 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10059 &num, &den) < 2)
10060 return -1.0;
10061 else
10062 return num / den;
10063 }
10064
10065 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
10066 factor ('SMALL value) associated with the type. */
10067
10068 static DOUBLEST
10069 scaling_factor (struct type *type)
10070 {
10071 const char *encoding = fixed_type_info (type);
10072 DOUBLEST num0, den0, num1, den1;
10073 int n;
10074
10075 /* Strictly speaking, num's and den's are encoded as integer. However,
10076 they may not fit into a long, and they will have to be converted
10077 to DOUBLEST anyway. So scan them as DOUBLEST. */
10078 n = sscanf (encoding,
10079 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
10080 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10081 &num0, &den0, &num1, &den1);
10082
10083 if (n < 2)
10084 return 1.0;
10085 else if (n == 4)
10086 return num1 / den1;
10087 else
10088 return num0 / den0;
10089 }
10090
10091
10092 /* Assuming that X is the representation of a value of fixed-point
10093 type TYPE, return its floating-point equivalent. */
10094
10095 DOUBLEST
10096 ada_fixed_to_float (struct type *type, LONGEST x)
10097 {
10098 return (DOUBLEST) x *scaling_factor (type);
10099 }
10100
10101 /* The representation of a fixed-point value of type TYPE
10102 corresponding to the value X. */
10103
10104 LONGEST
10105 ada_float_to_fixed (struct type *type, DOUBLEST x)
10106 {
10107 return (LONGEST) (x / scaling_factor (type) + 0.5);
10108 }
10109
10110 \f
10111
10112 /* Range types */
10113
10114 /* Scan STR beginning at position K for a discriminant name, and
10115 return the value of that discriminant field of DVAL in *PX. If
10116 PNEW_K is not null, put the position of the character beyond the
10117 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
10118 not alter *PX and *PNEW_K if unsuccessful. */
10119
10120 static int
10121 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
10122 int *pnew_k)
10123 {
10124 static char *bound_buffer = NULL;
10125 static size_t bound_buffer_len = 0;
10126 char *bound;
10127 char *pend;
10128 struct value *bound_val;
10129
10130 if (dval == NULL || str == NULL || str[k] == '\0')
10131 return 0;
10132
10133 pend = strstr (str + k, "__");
10134 if (pend == NULL)
10135 {
10136 bound = str + k;
10137 k += strlen (bound);
10138 }
10139 else
10140 {
10141 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
10142 bound = bound_buffer;
10143 strncpy (bound_buffer, str + k, pend - (str + k));
10144 bound[pend - (str + k)] = '\0';
10145 k = pend - str;
10146 }
10147
10148 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
10149 if (bound_val == NULL)
10150 return 0;
10151
10152 *px = value_as_long (bound_val);
10153 if (pnew_k != NULL)
10154 *pnew_k = k;
10155 return 1;
10156 }
10157
10158 /* Value of variable named NAME in the current environment. If
10159 no such variable found, then if ERR_MSG is null, returns 0, and
10160 otherwise causes an error with message ERR_MSG. */
10161
10162 static struct value *
10163 get_var_value (char *name, char *err_msg)
10164 {
10165 struct ada_symbol_info *syms;
10166 int nsyms;
10167
10168 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
10169 &syms);
10170
10171 if (nsyms != 1)
10172 {
10173 if (err_msg == NULL)
10174 return 0;
10175 else
10176 error (("%s"), err_msg);
10177 }
10178
10179 return value_of_variable (syms[0].sym, syms[0].block);
10180 }
10181
10182 /* Value of integer variable named NAME in the current environment. If
10183 no such variable found, returns 0, and sets *FLAG to 0. If
10184 successful, sets *FLAG to 1. */
10185
10186 LONGEST
10187 get_int_var_value (char *name, int *flag)
10188 {
10189 struct value *var_val = get_var_value (name, 0);
10190
10191 if (var_val == 0)
10192 {
10193 if (flag != NULL)
10194 *flag = 0;
10195 return 0;
10196 }
10197 else
10198 {
10199 if (flag != NULL)
10200 *flag = 1;
10201 return value_as_long (var_val);
10202 }
10203 }
10204
10205
10206 /* Return a range type whose base type is that of the range type named
10207 NAME in the current environment, and whose bounds are calculated
10208 from NAME according to the GNAT range encoding conventions.
10209 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
10210 corresponding range type from debug information; fall back to using it
10211 if symbol lookup fails. If a new type must be created, allocate it
10212 like ORIG_TYPE was. The bounds information, in general, is encoded
10213 in NAME, the base type given in the named range type. */
10214
10215 static struct type *
10216 to_fixed_range_type (struct type *raw_type, struct value *dval)
10217 {
10218 char *name;
10219 struct type *base_type;
10220 char *subtype_info;
10221
10222 gdb_assert (raw_type != NULL);
10223 gdb_assert (TYPE_NAME (raw_type) != NULL);
10224
10225 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
10226 base_type = TYPE_TARGET_TYPE (raw_type);
10227 else
10228 base_type = raw_type;
10229
10230 name = TYPE_NAME (raw_type);
10231 subtype_info = strstr (name, "___XD");
10232 if (subtype_info == NULL)
10233 {
10234 LONGEST L = ada_discrete_type_low_bound (raw_type);
10235 LONGEST U = ada_discrete_type_high_bound (raw_type);
10236
10237 if (L < INT_MIN || U > INT_MAX)
10238 return raw_type;
10239 else
10240 return create_range_type (alloc_type_copy (raw_type), raw_type,
10241 ada_discrete_type_low_bound (raw_type),
10242 ada_discrete_type_high_bound (raw_type));
10243 }
10244 else
10245 {
10246 static char *name_buf = NULL;
10247 static size_t name_len = 0;
10248 int prefix_len = subtype_info - name;
10249 LONGEST L, U;
10250 struct type *type;
10251 char *bounds_str;
10252 int n;
10253
10254 GROW_VECT (name_buf, name_len, prefix_len + 5);
10255 strncpy (name_buf, name, prefix_len);
10256 name_buf[prefix_len] = '\0';
10257
10258 subtype_info += 5;
10259 bounds_str = strchr (subtype_info, '_');
10260 n = 1;
10261
10262 if (*subtype_info == 'L')
10263 {
10264 if (!ada_scan_number (bounds_str, n, &L, &n)
10265 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
10266 return raw_type;
10267 if (bounds_str[n] == '_')
10268 n += 2;
10269 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
10270 n += 1;
10271 subtype_info += 1;
10272 }
10273 else
10274 {
10275 int ok;
10276
10277 strcpy (name_buf + prefix_len, "___L");
10278 L = get_int_var_value (name_buf, &ok);
10279 if (!ok)
10280 {
10281 lim_warning (_("Unknown lower bound, using 1."));
10282 L = 1;
10283 }
10284 }
10285
10286 if (*subtype_info == 'U')
10287 {
10288 if (!ada_scan_number (bounds_str, n, &U, &n)
10289 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
10290 return raw_type;
10291 }
10292 else
10293 {
10294 int ok;
10295
10296 strcpy (name_buf + prefix_len, "___U");
10297 U = get_int_var_value (name_buf, &ok);
10298 if (!ok)
10299 {
10300 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
10301 U = L;
10302 }
10303 }
10304
10305 type = create_range_type (alloc_type_copy (raw_type), base_type, L, U);
10306 TYPE_NAME (type) = name;
10307 return type;
10308 }
10309 }
10310
10311 /* True iff NAME is the name of a range type. */
10312
10313 int
10314 ada_is_range_type_name (const char *name)
10315 {
10316 return (name != NULL && strstr (name, "___XD"));
10317 }
10318 \f
10319
10320 /* Modular types */
10321
10322 /* True iff TYPE is an Ada modular type. */
10323
10324 int
10325 ada_is_modular_type (struct type *type)
10326 {
10327 struct type *subranged_type = base_type (type);
10328
10329 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
10330 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
10331 && TYPE_UNSIGNED (subranged_type));
10332 }
10333
10334 /* Try to determine the lower and upper bounds of the given modular type
10335 using the type name only. Return non-zero and set L and U as the lower
10336 and upper bounds (respectively) if successful. */
10337
10338 int
10339 ada_modulus_from_name (struct type *type, ULONGEST *modulus)
10340 {
10341 char *name = ada_type_name (type);
10342 char *suffix;
10343 int k;
10344 LONGEST U;
10345
10346 if (name == NULL)
10347 return 0;
10348
10349 /* Discrete type bounds are encoded using an __XD suffix. In our case,
10350 we are looking for static bounds, which means an __XDLU suffix.
10351 Moreover, we know that the lower bound of modular types is always
10352 zero, so the actual suffix should start with "__XDLU_0__", and
10353 then be followed by the upper bound value. */
10354 suffix = strstr (name, "__XDLU_0__");
10355 if (suffix == NULL)
10356 return 0;
10357 k = 10;
10358 if (!ada_scan_number (suffix, k, &U, NULL))
10359 return 0;
10360
10361 *modulus = (ULONGEST) U + 1;
10362 return 1;
10363 }
10364
10365 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
10366
10367 ULONGEST
10368 ada_modulus (struct type *type)
10369 {
10370 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
10371 }
10372 \f
10373
10374 /* Ada exception catchpoint support:
10375 ---------------------------------
10376
10377 We support 3 kinds of exception catchpoints:
10378 . catchpoints on Ada exceptions
10379 . catchpoints on unhandled Ada exceptions
10380 . catchpoints on failed assertions
10381
10382 Exceptions raised during failed assertions, or unhandled exceptions
10383 could perfectly be caught with the general catchpoint on Ada exceptions.
10384 However, we can easily differentiate these two special cases, and having
10385 the option to distinguish these two cases from the rest can be useful
10386 to zero-in on certain situations.
10387
10388 Exception catchpoints are a specialized form of breakpoint,
10389 since they rely on inserting breakpoints inside known routines
10390 of the GNAT runtime. The implementation therefore uses a standard
10391 breakpoint structure of the BP_BREAKPOINT type, but with its own set
10392 of breakpoint_ops.
10393
10394 Support in the runtime for exception catchpoints have been changed
10395 a few times already, and these changes affect the implementation
10396 of these catchpoints. In order to be able to support several
10397 variants of the runtime, we use a sniffer that will determine
10398 the runtime variant used by the program being debugged.
10399
10400 At this time, we do not support the use of conditions on Ada exception
10401 catchpoints. The COND and COND_STRING fields are therefore set
10402 to NULL (most of the time, see below).
10403
10404 Conditions where EXP_STRING, COND, and COND_STRING are used:
10405
10406 When a user specifies the name of a specific exception in the case
10407 of catchpoints on Ada exceptions, we store the name of that exception
10408 in the EXP_STRING. We then translate this request into an actual
10409 condition stored in COND_STRING, and then parse it into an expression
10410 stored in COND. */
10411
10412 /* The different types of catchpoints that we introduced for catching
10413 Ada exceptions. */
10414
10415 enum exception_catchpoint_kind
10416 {
10417 ex_catch_exception,
10418 ex_catch_exception_unhandled,
10419 ex_catch_assert
10420 };
10421
10422 /* Ada's standard exceptions. */
10423
10424 static char *standard_exc[] = {
10425 "constraint_error",
10426 "program_error",
10427 "storage_error",
10428 "tasking_error"
10429 };
10430
10431 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
10432
10433 /* A structure that describes how to support exception catchpoints
10434 for a given executable. */
10435
10436 struct exception_support_info
10437 {
10438 /* The name of the symbol to break on in order to insert
10439 a catchpoint on exceptions. */
10440 const char *catch_exception_sym;
10441
10442 /* The name of the symbol to break on in order to insert
10443 a catchpoint on unhandled exceptions. */
10444 const char *catch_exception_unhandled_sym;
10445
10446 /* The name of the symbol to break on in order to insert
10447 a catchpoint on failed assertions. */
10448 const char *catch_assert_sym;
10449
10450 /* Assuming that the inferior just triggered an unhandled exception
10451 catchpoint, this function is responsible for returning the address
10452 in inferior memory where the name of that exception is stored.
10453 Return zero if the address could not be computed. */
10454 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
10455 };
10456
10457 static CORE_ADDR ada_unhandled_exception_name_addr (void);
10458 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
10459
10460 /* The following exception support info structure describes how to
10461 implement exception catchpoints with the latest version of the
10462 Ada runtime (as of 2007-03-06). */
10463
10464 static const struct exception_support_info default_exception_support_info =
10465 {
10466 "__gnat_debug_raise_exception", /* catch_exception_sym */
10467 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10468 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
10469 ada_unhandled_exception_name_addr
10470 };
10471
10472 /* The following exception support info structure describes how to
10473 implement exception catchpoints with a slightly older version
10474 of the Ada runtime. */
10475
10476 static const struct exception_support_info exception_support_info_fallback =
10477 {
10478 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
10479 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10480 "system__assertions__raise_assert_failure", /* catch_assert_sym */
10481 ada_unhandled_exception_name_addr_from_raise
10482 };
10483
10484 /* For each executable, we sniff which exception info structure to use
10485 and cache it in the following global variable. */
10486
10487 static const struct exception_support_info *exception_info = NULL;
10488
10489 /* Inspect the Ada runtime and determine which exception info structure
10490 should be used to provide support for exception catchpoints.
10491
10492 This function will always set exception_info, or raise an error. */
10493
10494 static void
10495 ada_exception_support_info_sniffer (void)
10496 {
10497 struct symbol *sym;
10498
10499 /* If the exception info is already known, then no need to recompute it. */
10500 if (exception_info != NULL)
10501 return;
10502
10503 /* Check the latest (default) exception support info. */
10504 sym = standard_lookup (default_exception_support_info.catch_exception_sym,
10505 NULL, VAR_DOMAIN);
10506 if (sym != NULL)
10507 {
10508 exception_info = &default_exception_support_info;
10509 return;
10510 }
10511
10512 /* Try our fallback exception suport info. */
10513 sym = standard_lookup (exception_support_info_fallback.catch_exception_sym,
10514 NULL, VAR_DOMAIN);
10515 if (sym != NULL)
10516 {
10517 exception_info = &exception_support_info_fallback;
10518 return;
10519 }
10520
10521 /* Sometimes, it is normal for us to not be able to find the routine
10522 we are looking for. This happens when the program is linked with
10523 the shared version of the GNAT runtime, and the program has not been
10524 started yet. Inform the user of these two possible causes if
10525 applicable. */
10526
10527 if (ada_update_initial_language (language_unknown) != language_ada)
10528 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
10529
10530 /* If the symbol does not exist, then check that the program is
10531 already started, to make sure that shared libraries have been
10532 loaded. If it is not started, this may mean that the symbol is
10533 in a shared library. */
10534
10535 if (ptid_get_pid (inferior_ptid) == 0)
10536 error (_("Unable to insert catchpoint. Try to start the program first."));
10537
10538 /* At this point, we know that we are debugging an Ada program and
10539 that the inferior has been started, but we still are not able to
10540 find the run-time symbols. That can mean that we are in
10541 configurable run time mode, or that a-except as been optimized
10542 out by the linker... In any case, at this point it is not worth
10543 supporting this feature. */
10544
10545 error (_("Cannot insert catchpoints in this configuration."));
10546 }
10547
10548 /* An observer of "executable_changed" events.
10549 Its role is to clear certain cached values that need to be recomputed
10550 each time a new executable is loaded by GDB. */
10551
10552 static void
10553 ada_executable_changed_observer (void)
10554 {
10555 /* If the executable changed, then it is possible that the Ada runtime
10556 is different. So we need to invalidate the exception support info
10557 cache. */
10558 exception_info = NULL;
10559 }
10560
10561 /* True iff FRAME is very likely to be that of a function that is
10562 part of the runtime system. This is all very heuristic, but is
10563 intended to be used as advice as to what frames are uninteresting
10564 to most users. */
10565
10566 static int
10567 is_known_support_routine (struct frame_info *frame)
10568 {
10569 struct symtab_and_line sal;
10570 char *func_name;
10571 enum language func_lang;
10572 int i;
10573
10574 /* If this code does not have any debugging information (no symtab),
10575 This cannot be any user code. */
10576
10577 find_frame_sal (frame, &sal);
10578 if (sal.symtab == NULL)
10579 return 1;
10580
10581 /* If there is a symtab, but the associated source file cannot be
10582 located, then assume this is not user code: Selecting a frame
10583 for which we cannot display the code would not be very helpful
10584 for the user. This should also take care of case such as VxWorks
10585 where the kernel has some debugging info provided for a few units. */
10586
10587 if (symtab_to_fullname (sal.symtab) == NULL)
10588 return 1;
10589
10590 /* Check the unit filename againt the Ada runtime file naming.
10591 We also check the name of the objfile against the name of some
10592 known system libraries that sometimes come with debugging info
10593 too. */
10594
10595 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
10596 {
10597 re_comp (known_runtime_file_name_patterns[i]);
10598 if (re_exec (sal.symtab->filename))
10599 return 1;
10600 if (sal.symtab->objfile != NULL
10601 && re_exec (sal.symtab->objfile->name))
10602 return 1;
10603 }
10604
10605 /* Check whether the function is a GNAT-generated entity. */
10606
10607 find_frame_funname (frame, &func_name, &func_lang, NULL);
10608 if (func_name == NULL)
10609 return 1;
10610
10611 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
10612 {
10613 re_comp (known_auxiliary_function_name_patterns[i]);
10614 if (re_exec (func_name))
10615 return 1;
10616 }
10617
10618 return 0;
10619 }
10620
10621 /* Find the first frame that contains debugging information and that is not
10622 part of the Ada run-time, starting from FI and moving upward. */
10623
10624 void
10625 ada_find_printable_frame (struct frame_info *fi)
10626 {
10627 for (; fi != NULL; fi = get_prev_frame (fi))
10628 {
10629 if (!is_known_support_routine (fi))
10630 {
10631 select_frame (fi);
10632 break;
10633 }
10634 }
10635
10636 }
10637
10638 /* Assuming that the inferior just triggered an unhandled exception
10639 catchpoint, return the address in inferior memory where the name
10640 of the exception is stored.
10641
10642 Return zero if the address could not be computed. */
10643
10644 static CORE_ADDR
10645 ada_unhandled_exception_name_addr (void)
10646 {
10647 return parse_and_eval_address ("e.full_name");
10648 }
10649
10650 /* Same as ada_unhandled_exception_name_addr, except that this function
10651 should be used when the inferior uses an older version of the runtime,
10652 where the exception name needs to be extracted from a specific frame
10653 several frames up in the callstack. */
10654
10655 static CORE_ADDR
10656 ada_unhandled_exception_name_addr_from_raise (void)
10657 {
10658 int frame_level;
10659 struct frame_info *fi;
10660
10661 /* To determine the name of this exception, we need to select
10662 the frame corresponding to RAISE_SYM_NAME. This frame is
10663 at least 3 levels up, so we simply skip the first 3 frames
10664 without checking the name of their associated function. */
10665 fi = get_current_frame ();
10666 for (frame_level = 0; frame_level < 3; frame_level += 1)
10667 if (fi != NULL)
10668 fi = get_prev_frame (fi);
10669
10670 while (fi != NULL)
10671 {
10672 char *func_name;
10673 enum language func_lang;
10674
10675 find_frame_funname (fi, &func_name, &func_lang, NULL);
10676 if (func_name != NULL
10677 && strcmp (func_name, exception_info->catch_exception_sym) == 0)
10678 break; /* We found the frame we were looking for... */
10679 fi = get_prev_frame (fi);
10680 }
10681
10682 if (fi == NULL)
10683 return 0;
10684
10685 select_frame (fi);
10686 return parse_and_eval_address ("id.full_name");
10687 }
10688
10689 /* Assuming the inferior just triggered an Ada exception catchpoint
10690 (of any type), return the address in inferior memory where the name
10691 of the exception is stored, if applicable.
10692
10693 Return zero if the address could not be computed, or if not relevant. */
10694
10695 static CORE_ADDR
10696 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
10697 struct breakpoint *b)
10698 {
10699 switch (ex)
10700 {
10701 case ex_catch_exception:
10702 return (parse_and_eval_address ("e.full_name"));
10703 break;
10704
10705 case ex_catch_exception_unhandled:
10706 return exception_info->unhandled_exception_name_addr ();
10707 break;
10708
10709 case ex_catch_assert:
10710 return 0; /* Exception name is not relevant in this case. */
10711 break;
10712
10713 default:
10714 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10715 break;
10716 }
10717
10718 return 0; /* Should never be reached. */
10719 }
10720
10721 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
10722 any error that ada_exception_name_addr_1 might cause to be thrown.
10723 When an error is intercepted, a warning with the error message is printed,
10724 and zero is returned. */
10725
10726 static CORE_ADDR
10727 ada_exception_name_addr (enum exception_catchpoint_kind ex,
10728 struct breakpoint *b)
10729 {
10730 struct gdb_exception e;
10731 CORE_ADDR result = 0;
10732
10733 TRY_CATCH (e, RETURN_MASK_ERROR)
10734 {
10735 result = ada_exception_name_addr_1 (ex, b);
10736 }
10737
10738 if (e.reason < 0)
10739 {
10740 warning (_("failed to get exception name: %s"), e.message);
10741 return 0;
10742 }
10743
10744 return result;
10745 }
10746
10747 /* Implement the PRINT_IT method in the breakpoint_ops structure
10748 for all exception catchpoint kinds. */
10749
10750 static enum print_stop_action
10751 print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
10752 {
10753 annotate_catchpoint (b->number);
10754
10755 if (ui_out_is_mi_like_p (uiout))
10756 {
10757 ui_out_field_string (uiout, "reason",
10758 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
10759 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
10760 }
10761
10762 ui_out_text (uiout, "\nCatchpoint ");
10763 ui_out_field_int (uiout, "bkptno", b->number);
10764 ui_out_text (uiout, ", ");
10765
10766 switch (ex)
10767 {
10768 case ex_catch_exception:
10769 case ex_catch_exception_unhandled:
10770 {
10771 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
10772 char exception_name[256];
10773
10774 if (addr != 0)
10775 {
10776 read_memory (addr, exception_name, sizeof (exception_name) - 1);
10777 exception_name [sizeof (exception_name) - 1] = '\0';
10778 }
10779 else
10780 {
10781 /* For some reason, we were unable to read the exception
10782 name. This could happen if the Runtime was compiled
10783 without debugging info, for instance. In that case,
10784 just replace the exception name by the generic string
10785 "exception" - it will read as "an exception" in the
10786 notification we are about to print. */
10787 memcpy (exception_name, "exception", sizeof ("exception"));
10788 }
10789 /* In the case of unhandled exception breakpoints, we print
10790 the exception name as "unhandled EXCEPTION_NAME", to make
10791 it clearer to the user which kind of catchpoint just got
10792 hit. We used ui_out_text to make sure that this extra
10793 info does not pollute the exception name in the MI case. */
10794 if (ex == ex_catch_exception_unhandled)
10795 ui_out_text (uiout, "unhandled ");
10796 ui_out_field_string (uiout, "exception-name", exception_name);
10797 }
10798 break;
10799 case ex_catch_assert:
10800 /* In this case, the name of the exception is not really
10801 important. Just print "failed assertion" to make it clearer
10802 that his program just hit an assertion-failure catchpoint.
10803 We used ui_out_text because this info does not belong in
10804 the MI output. */
10805 ui_out_text (uiout, "failed assertion");
10806 break;
10807 }
10808 ui_out_text (uiout, " at ");
10809 ada_find_printable_frame (get_current_frame ());
10810
10811 return PRINT_SRC_AND_LOC;
10812 }
10813
10814 /* Implement the PRINT_ONE method in the breakpoint_ops structure
10815 for all exception catchpoint kinds. */
10816
10817 static void
10818 print_one_exception (enum exception_catchpoint_kind ex,
10819 struct breakpoint *b, struct bp_location **last_loc)
10820 {
10821 struct value_print_options opts;
10822
10823 get_user_print_options (&opts);
10824 if (opts.addressprint)
10825 {
10826 annotate_field (4);
10827 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
10828 }
10829
10830 annotate_field (5);
10831 *last_loc = b->loc;
10832 switch (ex)
10833 {
10834 case ex_catch_exception:
10835 if (b->exp_string != NULL)
10836 {
10837 char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
10838
10839 ui_out_field_string (uiout, "what", msg);
10840 xfree (msg);
10841 }
10842 else
10843 ui_out_field_string (uiout, "what", "all Ada exceptions");
10844
10845 break;
10846
10847 case ex_catch_exception_unhandled:
10848 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
10849 break;
10850
10851 case ex_catch_assert:
10852 ui_out_field_string (uiout, "what", "failed Ada assertions");
10853 break;
10854
10855 default:
10856 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10857 break;
10858 }
10859 }
10860
10861 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
10862 for all exception catchpoint kinds. */
10863
10864 static void
10865 print_mention_exception (enum exception_catchpoint_kind ex,
10866 struct breakpoint *b)
10867 {
10868 switch (ex)
10869 {
10870 case ex_catch_exception:
10871 if (b->exp_string != NULL)
10872 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
10873 b->number, b->exp_string);
10874 else
10875 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
10876
10877 break;
10878
10879 case ex_catch_exception_unhandled:
10880 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
10881 b->number);
10882 break;
10883
10884 case ex_catch_assert:
10885 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
10886 break;
10887
10888 default:
10889 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10890 break;
10891 }
10892 }
10893
10894 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
10895 for all exception catchpoint kinds. */
10896
10897 static void
10898 print_recreate_exception (enum exception_catchpoint_kind ex,
10899 struct breakpoint *b, struct ui_file *fp)
10900 {
10901 switch (ex)
10902 {
10903 case ex_catch_exception:
10904 fprintf_filtered (fp, "catch exception");
10905 if (b->exp_string != NULL)
10906 fprintf_filtered (fp, " %s", b->exp_string);
10907 break;
10908
10909 case ex_catch_exception_unhandled:
10910 fprintf_filtered (fp, "catch exception unhandled");
10911 break;
10912
10913 case ex_catch_assert:
10914 fprintf_filtered (fp, "catch assert");
10915 break;
10916
10917 default:
10918 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10919 }
10920 }
10921
10922 /* Virtual table for "catch exception" breakpoints. */
10923
10924 static enum print_stop_action
10925 print_it_catch_exception (struct breakpoint *b)
10926 {
10927 return print_it_exception (ex_catch_exception, b);
10928 }
10929
10930 static void
10931 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
10932 {
10933 print_one_exception (ex_catch_exception, b, last_loc);
10934 }
10935
10936 static void
10937 print_mention_catch_exception (struct breakpoint *b)
10938 {
10939 print_mention_exception (ex_catch_exception, b);
10940 }
10941
10942 static void
10943 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
10944 {
10945 print_recreate_exception (ex_catch_exception, b, fp);
10946 }
10947
10948 static struct breakpoint_ops catch_exception_breakpoint_ops =
10949 {
10950 NULL, /* dtor */
10951 NULL, /* insert */
10952 NULL, /* remove */
10953 NULL, /* breakpoint_hit */
10954 NULL, /* resources_needed */
10955 NULL, /* works_in_software_mode */
10956 print_it_catch_exception,
10957 print_one_catch_exception,
10958 NULL, /* print_one_detail */
10959 print_mention_catch_exception,
10960 print_recreate_catch_exception
10961 };
10962
10963 /* Virtual table for "catch exception unhandled" breakpoints. */
10964
10965 static enum print_stop_action
10966 print_it_catch_exception_unhandled (struct breakpoint *b)
10967 {
10968 return print_it_exception (ex_catch_exception_unhandled, b);
10969 }
10970
10971 static void
10972 print_one_catch_exception_unhandled (struct breakpoint *b,
10973 struct bp_location **last_loc)
10974 {
10975 print_one_exception (ex_catch_exception_unhandled, b, last_loc);
10976 }
10977
10978 static void
10979 print_mention_catch_exception_unhandled (struct breakpoint *b)
10980 {
10981 print_mention_exception (ex_catch_exception_unhandled, b);
10982 }
10983
10984 static void
10985 print_recreate_catch_exception_unhandled (struct breakpoint *b,
10986 struct ui_file *fp)
10987 {
10988 print_recreate_exception (ex_catch_exception_unhandled, b, fp);
10989 }
10990
10991 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
10992 NULL, /* dtor */
10993 NULL, /* insert */
10994 NULL, /* remove */
10995 NULL, /* breakpoint_hit */
10996 NULL, /* resources_needed */
10997 NULL, /* works_in_software_mode */
10998 print_it_catch_exception_unhandled,
10999 print_one_catch_exception_unhandled,
11000 NULL, /* print_one_detail */
11001 print_mention_catch_exception_unhandled,
11002 print_recreate_catch_exception_unhandled
11003 };
11004
11005 /* Virtual table for "catch assert" breakpoints. */
11006
11007 static enum print_stop_action
11008 print_it_catch_assert (struct breakpoint *b)
11009 {
11010 return print_it_exception (ex_catch_assert, b);
11011 }
11012
11013 static void
11014 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
11015 {
11016 print_one_exception (ex_catch_assert, b, last_loc);
11017 }
11018
11019 static void
11020 print_mention_catch_assert (struct breakpoint *b)
11021 {
11022 print_mention_exception (ex_catch_assert, b);
11023 }
11024
11025 static void
11026 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
11027 {
11028 print_recreate_exception (ex_catch_assert, b, fp);
11029 }
11030
11031 static struct breakpoint_ops catch_assert_breakpoint_ops = {
11032 NULL, /* dtor */
11033 NULL, /* insert */
11034 NULL, /* remove */
11035 NULL, /* breakpoint_hit */
11036 NULL, /* resources_needed */
11037 NULL, /* works_in_software_mode */
11038 print_it_catch_assert,
11039 print_one_catch_assert,
11040 NULL, /* print_one_detail */
11041 print_mention_catch_assert,
11042 print_recreate_catch_assert
11043 };
11044
11045 /* Return non-zero if B is an Ada exception catchpoint. */
11046
11047 int
11048 ada_exception_catchpoint_p (struct breakpoint *b)
11049 {
11050 return (b->ops == &catch_exception_breakpoint_ops
11051 || b->ops == &catch_exception_unhandled_breakpoint_ops
11052 || b->ops == &catch_assert_breakpoint_ops);
11053 }
11054
11055 /* Return a newly allocated copy of the first space-separated token
11056 in ARGSP, and then adjust ARGSP to point immediately after that
11057 token.
11058
11059 Return NULL if ARGPS does not contain any more tokens. */
11060
11061 static char *
11062 ada_get_next_arg (char **argsp)
11063 {
11064 char *args = *argsp;
11065 char *end;
11066 char *result;
11067
11068 /* Skip any leading white space. */
11069
11070 while (isspace (*args))
11071 args++;
11072
11073 if (args[0] == '\0')
11074 return NULL; /* No more arguments. */
11075
11076 /* Find the end of the current argument. */
11077
11078 end = args;
11079 while (*end != '\0' && !isspace (*end))
11080 end++;
11081
11082 /* Adjust ARGSP to point to the start of the next argument. */
11083
11084 *argsp = end;
11085
11086 /* Make a copy of the current argument and return it. */
11087
11088 result = xmalloc (end - args + 1);
11089 strncpy (result, args, end - args);
11090 result[end - args] = '\0';
11091
11092 return result;
11093 }
11094
11095 /* Split the arguments specified in a "catch exception" command.
11096 Set EX to the appropriate catchpoint type.
11097 Set EXP_STRING to the name of the specific exception if
11098 specified by the user. */
11099
11100 static void
11101 catch_ada_exception_command_split (char *args,
11102 enum exception_catchpoint_kind *ex,
11103 char **exp_string)
11104 {
11105 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
11106 char *exception_name;
11107
11108 exception_name = ada_get_next_arg (&args);
11109 make_cleanup (xfree, exception_name);
11110
11111 /* Check that we do not have any more arguments. Anything else
11112 is unexpected. */
11113
11114 while (isspace (*args))
11115 args++;
11116
11117 if (args[0] != '\0')
11118 error (_("Junk at end of expression"));
11119
11120 discard_cleanups (old_chain);
11121
11122 if (exception_name == NULL)
11123 {
11124 /* Catch all exceptions. */
11125 *ex = ex_catch_exception;
11126 *exp_string = NULL;
11127 }
11128 else if (strcmp (exception_name, "unhandled") == 0)
11129 {
11130 /* Catch unhandled exceptions. */
11131 *ex = ex_catch_exception_unhandled;
11132 *exp_string = NULL;
11133 }
11134 else
11135 {
11136 /* Catch a specific exception. */
11137 *ex = ex_catch_exception;
11138 *exp_string = exception_name;
11139 }
11140 }
11141
11142 /* Return the name of the symbol on which we should break in order to
11143 implement a catchpoint of the EX kind. */
11144
11145 static const char *
11146 ada_exception_sym_name (enum exception_catchpoint_kind ex)
11147 {
11148 gdb_assert (exception_info != NULL);
11149
11150 switch (ex)
11151 {
11152 case ex_catch_exception:
11153 return (exception_info->catch_exception_sym);
11154 break;
11155 case ex_catch_exception_unhandled:
11156 return (exception_info->catch_exception_unhandled_sym);
11157 break;
11158 case ex_catch_assert:
11159 return (exception_info->catch_assert_sym);
11160 break;
11161 default:
11162 internal_error (__FILE__, __LINE__,
11163 _("unexpected catchpoint kind (%d)"), ex);
11164 }
11165 }
11166
11167 /* Return the breakpoint ops "virtual table" used for catchpoints
11168 of the EX kind. */
11169
11170 static struct breakpoint_ops *
11171 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
11172 {
11173 switch (ex)
11174 {
11175 case ex_catch_exception:
11176 return (&catch_exception_breakpoint_ops);
11177 break;
11178 case ex_catch_exception_unhandled:
11179 return (&catch_exception_unhandled_breakpoint_ops);
11180 break;
11181 case ex_catch_assert:
11182 return (&catch_assert_breakpoint_ops);
11183 break;
11184 default:
11185 internal_error (__FILE__, __LINE__,
11186 _("unexpected catchpoint kind (%d)"), ex);
11187 }
11188 }
11189
11190 /* Return the condition that will be used to match the current exception
11191 being raised with the exception that the user wants to catch. This
11192 assumes that this condition is used when the inferior just triggered
11193 an exception catchpoint.
11194
11195 The string returned is a newly allocated string that needs to be
11196 deallocated later. */
11197
11198 static char *
11199 ada_exception_catchpoint_cond_string (const char *exp_string)
11200 {
11201 int i;
11202
11203 /* The standard exceptions are a special case. They are defined in
11204 runtime units that have been compiled without debugging info; if
11205 EXP_STRING is the not-fully-qualified name of a standard
11206 exception (e.g. "constraint_error") then, during the evaluation
11207 of the condition expression, the symbol lookup on this name would
11208 *not* return this standard exception. The catchpoint condition
11209 may then be set only on user-defined exceptions which have the
11210 same not-fully-qualified name (e.g. my_package.constraint_error).
11211
11212 To avoid this unexcepted behavior, these standard exceptions are
11213 systematically prefixed by "standard". This means that "catch
11214 exception constraint_error" is rewritten into "catch exception
11215 standard.constraint_error".
11216
11217 If an exception named contraint_error is defined in another package of
11218 the inferior program, then the only way to specify this exception as a
11219 breakpoint condition is to use its fully-qualified named:
11220 e.g. my_package.constraint_error. */
11221
11222 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
11223 {
11224 if (strcmp (standard_exc [i], exp_string) == 0)
11225 {
11226 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
11227 exp_string);
11228 }
11229 }
11230 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
11231 }
11232
11233 /* Return the expression corresponding to COND_STRING evaluated at SAL. */
11234
11235 static struct expression *
11236 ada_parse_catchpoint_condition (char *cond_string,
11237 struct symtab_and_line sal)
11238 {
11239 return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
11240 }
11241
11242 /* Return the symtab_and_line that should be used to insert an exception
11243 catchpoint of the TYPE kind.
11244
11245 EX_STRING should contain the name of a specific exception
11246 that the catchpoint should catch, or NULL otherwise.
11247
11248 The idea behind all the remaining parameters is that their names match
11249 the name of certain fields in the breakpoint structure that are used to
11250 handle exception catchpoints. This function returns the value to which
11251 these fields should be set, depending on the type of catchpoint we need
11252 to create.
11253
11254 If COND and COND_STRING are both non-NULL, any value they might
11255 hold will be free'ed, and then replaced by newly allocated ones.
11256 These parameters are left untouched otherwise. */
11257
11258 static struct symtab_and_line
11259 ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
11260 char **addr_string, char **cond_string,
11261 struct expression **cond, struct breakpoint_ops **ops)
11262 {
11263 const char *sym_name;
11264 struct symbol *sym;
11265 struct symtab_and_line sal;
11266
11267 /* First, find out which exception support info to use. */
11268 ada_exception_support_info_sniffer ();
11269
11270 /* Then lookup the function on which we will break in order to catch
11271 the Ada exceptions requested by the user. */
11272
11273 sym_name = ada_exception_sym_name (ex);
11274 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
11275
11276 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11277 that should be compiled with debugging information. As a result, we
11278 expect to find that symbol in the symtabs. If we don't find it, then
11279 the target most likely does not support Ada exceptions, or we cannot
11280 insert exception breakpoints yet, because the GNAT runtime hasn't been
11281 loaded yet. */
11282
11283 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
11284 in such a way that no debugging information is produced for the symbol
11285 we are looking for. In this case, we could search the minimal symbols
11286 as a fall-back mechanism. This would still be operating in degraded
11287 mode, however, as we would still be missing the debugging information
11288 that is needed in order to extract the name of the exception being
11289 raised (this name is printed in the catchpoint message, and is also
11290 used when trying to catch a specific exception). We do not handle
11291 this case for now. */
11292
11293 if (sym == NULL)
11294 error (_("Unable to break on '%s' in this configuration."), sym_name);
11295
11296 /* Make sure that the symbol we found corresponds to a function. */
11297 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11298 error (_("Symbol \"%s\" is not a function (class = %d)"),
11299 sym_name, SYMBOL_CLASS (sym));
11300
11301 sal = find_function_start_sal (sym, 1);
11302
11303 /* Set ADDR_STRING. */
11304
11305 *addr_string = xstrdup (sym_name);
11306
11307 /* Set the COND and COND_STRING (if not NULL). */
11308
11309 if (cond_string != NULL && cond != NULL)
11310 {
11311 if (*cond_string != NULL)
11312 {
11313 xfree (*cond_string);
11314 *cond_string = NULL;
11315 }
11316 if (*cond != NULL)
11317 {
11318 xfree (*cond);
11319 *cond = NULL;
11320 }
11321 if (exp_string != NULL)
11322 {
11323 *cond_string = ada_exception_catchpoint_cond_string (exp_string);
11324 *cond = ada_parse_catchpoint_condition (*cond_string, sal);
11325 }
11326 }
11327
11328 /* Set OPS. */
11329 *ops = ada_exception_breakpoint_ops (ex);
11330
11331 return sal;
11332 }
11333
11334 /* Parse the arguments (ARGS) of the "catch exception" command.
11335
11336 Set TYPE to the appropriate exception catchpoint type.
11337 If the user asked the catchpoint to catch only a specific
11338 exception, then save the exception name in ADDR_STRING.
11339
11340 See ada_exception_sal for a description of all the remaining
11341 function arguments of this function. */
11342
11343 static struct symtab_and_line
11344 ada_decode_exception_location (char *args, char **addr_string,
11345 char **exp_string, char **cond_string,
11346 struct expression **cond,
11347 struct breakpoint_ops **ops)
11348 {
11349 enum exception_catchpoint_kind ex;
11350
11351 catch_ada_exception_command_split (args, &ex, exp_string);
11352 return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
11353 cond, ops);
11354 }
11355
11356 /* Implement the "catch exception" command. */
11357
11358 static void
11359 catch_ada_exception_command (char *arg, int from_tty,
11360 struct cmd_list_element *command)
11361 {
11362 struct gdbarch *gdbarch = get_current_arch ();
11363 int tempflag;
11364 struct symtab_and_line sal;
11365 char *addr_string = NULL;
11366 char *exp_string = NULL;
11367 char *cond_string = NULL;
11368 struct expression *cond = NULL;
11369 struct breakpoint_ops *ops = NULL;
11370
11371 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11372
11373 if (!arg)
11374 arg = "";
11375 sal = ada_decode_exception_location (arg, &addr_string, &exp_string,
11376 &cond_string, &cond, &ops);
11377 create_ada_exception_breakpoint (gdbarch, sal, addr_string, exp_string,
11378 cond_string, cond, ops, tempflag,
11379 from_tty);
11380 }
11381
11382 static struct symtab_and_line
11383 ada_decode_assert_location (char *args, char **addr_string,
11384 struct breakpoint_ops **ops)
11385 {
11386 /* Check that no argument where provided at the end of the command. */
11387
11388 if (args != NULL)
11389 {
11390 while (isspace (*args))
11391 args++;
11392 if (*args != '\0')
11393 error (_("Junk at end of arguments."));
11394 }
11395
11396 return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
11397 ops);
11398 }
11399
11400 /* Implement the "catch assert" command. */
11401
11402 static void
11403 catch_assert_command (char *arg, int from_tty,
11404 struct cmd_list_element *command)
11405 {
11406 struct gdbarch *gdbarch = get_current_arch ();
11407 int tempflag;
11408 struct symtab_and_line sal;
11409 char *addr_string = NULL;
11410 struct breakpoint_ops *ops = NULL;
11411
11412 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11413
11414 if (!arg)
11415 arg = "";
11416 sal = ada_decode_assert_location (arg, &addr_string, &ops);
11417 create_ada_exception_breakpoint (gdbarch, sal, addr_string, NULL, NULL, NULL,
11418 ops, tempflag, from_tty);
11419 }
11420 /* Operators */
11421 /* Information about operators given special treatment in functions
11422 below. */
11423 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
11424
11425 #define ADA_OPERATORS \
11426 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
11427 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
11428 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
11429 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
11430 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
11431 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
11432 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
11433 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
11434 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
11435 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
11436 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
11437 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
11438 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
11439 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
11440 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
11441 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
11442 OP_DEFN (OP_OTHERS, 1, 1, 0) \
11443 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
11444 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
11445
11446 static void
11447 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
11448 int *argsp)
11449 {
11450 switch (exp->elts[pc - 1].opcode)
11451 {
11452 default:
11453 operator_length_standard (exp, pc, oplenp, argsp);
11454 break;
11455
11456 #define OP_DEFN(op, len, args, binop) \
11457 case op: *oplenp = len; *argsp = args; break;
11458 ADA_OPERATORS;
11459 #undef OP_DEFN
11460
11461 case OP_AGGREGATE:
11462 *oplenp = 3;
11463 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
11464 break;
11465
11466 case OP_CHOICES:
11467 *oplenp = 3;
11468 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
11469 break;
11470 }
11471 }
11472
11473 /* Implementation of the exp_descriptor method operator_check. */
11474
11475 static int
11476 ada_operator_check (struct expression *exp, int pos,
11477 int (*objfile_func) (struct objfile *objfile, void *data),
11478 void *data)
11479 {
11480 const union exp_element *const elts = exp->elts;
11481 struct type *type = NULL;
11482
11483 switch (elts[pos].opcode)
11484 {
11485 case UNOP_IN_RANGE:
11486 case UNOP_QUAL:
11487 type = elts[pos + 1].type;
11488 break;
11489
11490 default:
11491 return operator_check_standard (exp, pos, objfile_func, data);
11492 }
11493
11494 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
11495
11496 if (type && TYPE_OBJFILE (type)
11497 && (*objfile_func) (TYPE_OBJFILE (type), data))
11498 return 1;
11499
11500 return 0;
11501 }
11502
11503 static char *
11504 ada_op_name (enum exp_opcode opcode)
11505 {
11506 switch (opcode)
11507 {
11508 default:
11509 return op_name_standard (opcode);
11510
11511 #define OP_DEFN(op, len, args, binop) case op: return #op;
11512 ADA_OPERATORS;
11513 #undef OP_DEFN
11514
11515 case OP_AGGREGATE:
11516 return "OP_AGGREGATE";
11517 case OP_CHOICES:
11518 return "OP_CHOICES";
11519 case OP_NAME:
11520 return "OP_NAME";
11521 }
11522 }
11523
11524 /* As for operator_length, but assumes PC is pointing at the first
11525 element of the operator, and gives meaningful results only for the
11526 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
11527
11528 static void
11529 ada_forward_operator_length (struct expression *exp, int pc,
11530 int *oplenp, int *argsp)
11531 {
11532 switch (exp->elts[pc].opcode)
11533 {
11534 default:
11535 *oplenp = *argsp = 0;
11536 break;
11537
11538 #define OP_DEFN(op, len, args, binop) \
11539 case op: *oplenp = len; *argsp = args; break;
11540 ADA_OPERATORS;
11541 #undef OP_DEFN
11542
11543 case OP_AGGREGATE:
11544 *oplenp = 3;
11545 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
11546 break;
11547
11548 case OP_CHOICES:
11549 *oplenp = 3;
11550 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
11551 break;
11552
11553 case OP_STRING:
11554 case OP_NAME:
11555 {
11556 int len = longest_to_int (exp->elts[pc + 1].longconst);
11557
11558 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
11559 *argsp = 0;
11560 break;
11561 }
11562 }
11563 }
11564
11565 static int
11566 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
11567 {
11568 enum exp_opcode op = exp->elts[elt].opcode;
11569 int oplen, nargs;
11570 int pc = elt;
11571 int i;
11572
11573 ada_forward_operator_length (exp, elt, &oplen, &nargs);
11574
11575 switch (op)
11576 {
11577 /* Ada attributes ('Foo). */
11578 case OP_ATR_FIRST:
11579 case OP_ATR_LAST:
11580 case OP_ATR_LENGTH:
11581 case OP_ATR_IMAGE:
11582 case OP_ATR_MAX:
11583 case OP_ATR_MIN:
11584 case OP_ATR_MODULUS:
11585 case OP_ATR_POS:
11586 case OP_ATR_SIZE:
11587 case OP_ATR_TAG:
11588 case OP_ATR_VAL:
11589 break;
11590
11591 case UNOP_IN_RANGE:
11592 case UNOP_QUAL:
11593 /* XXX: gdb_sprint_host_address, type_sprint */
11594 fprintf_filtered (stream, _("Type @"));
11595 gdb_print_host_address (exp->elts[pc + 1].type, stream);
11596 fprintf_filtered (stream, " (");
11597 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
11598 fprintf_filtered (stream, ")");
11599 break;
11600 case BINOP_IN_BOUNDS:
11601 fprintf_filtered (stream, " (%d)",
11602 longest_to_int (exp->elts[pc + 2].longconst));
11603 break;
11604 case TERNOP_IN_RANGE:
11605 break;
11606
11607 case OP_AGGREGATE:
11608 case OP_OTHERS:
11609 case OP_DISCRETE_RANGE:
11610 case OP_POSITIONAL:
11611 case OP_CHOICES:
11612 break;
11613
11614 case OP_NAME:
11615 case OP_STRING:
11616 {
11617 char *name = &exp->elts[elt + 2].string;
11618 int len = longest_to_int (exp->elts[elt + 1].longconst);
11619
11620 fprintf_filtered (stream, "Text: `%.*s'", len, name);
11621 break;
11622 }
11623
11624 default:
11625 return dump_subexp_body_standard (exp, stream, elt);
11626 }
11627
11628 elt += oplen;
11629 for (i = 0; i < nargs; i += 1)
11630 elt = dump_subexp (exp, stream, elt);
11631
11632 return elt;
11633 }
11634
11635 /* The Ada extension of print_subexp (q.v.). */
11636
11637 static void
11638 ada_print_subexp (struct expression *exp, int *pos,
11639 struct ui_file *stream, enum precedence prec)
11640 {
11641 int oplen, nargs, i;
11642 int pc = *pos;
11643 enum exp_opcode op = exp->elts[pc].opcode;
11644
11645 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11646
11647 *pos += oplen;
11648 switch (op)
11649 {
11650 default:
11651 *pos -= oplen;
11652 print_subexp_standard (exp, pos, stream, prec);
11653 return;
11654
11655 case OP_VAR_VALUE:
11656 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
11657 return;
11658
11659 case BINOP_IN_BOUNDS:
11660 /* XXX: sprint_subexp */
11661 print_subexp (exp, pos, stream, PREC_SUFFIX);
11662 fputs_filtered (" in ", stream);
11663 print_subexp (exp, pos, stream, PREC_SUFFIX);
11664 fputs_filtered ("'range", stream);
11665 if (exp->elts[pc + 1].longconst > 1)
11666 fprintf_filtered (stream, "(%ld)",
11667 (long) exp->elts[pc + 1].longconst);
11668 return;
11669
11670 case TERNOP_IN_RANGE:
11671 if (prec >= PREC_EQUAL)
11672 fputs_filtered ("(", stream);
11673 /* XXX: sprint_subexp */
11674 print_subexp (exp, pos, stream, PREC_SUFFIX);
11675 fputs_filtered (" in ", stream);
11676 print_subexp (exp, pos, stream, PREC_EQUAL);
11677 fputs_filtered (" .. ", stream);
11678 print_subexp (exp, pos, stream, PREC_EQUAL);
11679 if (prec >= PREC_EQUAL)
11680 fputs_filtered (")", stream);
11681 return;
11682
11683 case OP_ATR_FIRST:
11684 case OP_ATR_LAST:
11685 case OP_ATR_LENGTH:
11686 case OP_ATR_IMAGE:
11687 case OP_ATR_MAX:
11688 case OP_ATR_MIN:
11689 case OP_ATR_MODULUS:
11690 case OP_ATR_POS:
11691 case OP_ATR_SIZE:
11692 case OP_ATR_TAG:
11693 case OP_ATR_VAL:
11694 if (exp->elts[*pos].opcode == OP_TYPE)
11695 {
11696 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
11697 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
11698 *pos += 3;
11699 }
11700 else
11701 print_subexp (exp, pos, stream, PREC_SUFFIX);
11702 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
11703 if (nargs > 1)
11704 {
11705 int tem;
11706
11707 for (tem = 1; tem < nargs; tem += 1)
11708 {
11709 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
11710 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
11711 }
11712 fputs_filtered (")", stream);
11713 }
11714 return;
11715
11716 case UNOP_QUAL:
11717 type_print (exp->elts[pc + 1].type, "", stream, 0);
11718 fputs_filtered ("'(", stream);
11719 print_subexp (exp, pos, stream, PREC_PREFIX);
11720 fputs_filtered (")", stream);
11721 return;
11722
11723 case UNOP_IN_RANGE:
11724 /* XXX: sprint_subexp */
11725 print_subexp (exp, pos, stream, PREC_SUFFIX);
11726 fputs_filtered (" in ", stream);
11727 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
11728 return;
11729
11730 case OP_DISCRETE_RANGE:
11731 print_subexp (exp, pos, stream, PREC_SUFFIX);
11732 fputs_filtered ("..", stream);
11733 print_subexp (exp, pos, stream, PREC_SUFFIX);
11734 return;
11735
11736 case OP_OTHERS:
11737 fputs_filtered ("others => ", stream);
11738 print_subexp (exp, pos, stream, PREC_SUFFIX);
11739 return;
11740
11741 case OP_CHOICES:
11742 for (i = 0; i < nargs-1; i += 1)
11743 {
11744 if (i > 0)
11745 fputs_filtered ("|", stream);
11746 print_subexp (exp, pos, stream, PREC_SUFFIX);
11747 }
11748 fputs_filtered (" => ", stream);
11749 print_subexp (exp, pos, stream, PREC_SUFFIX);
11750 return;
11751
11752 case OP_POSITIONAL:
11753 print_subexp (exp, pos, stream, PREC_SUFFIX);
11754 return;
11755
11756 case OP_AGGREGATE:
11757 fputs_filtered ("(", stream);
11758 for (i = 0; i < nargs; i += 1)
11759 {
11760 if (i > 0)
11761 fputs_filtered (", ", stream);
11762 print_subexp (exp, pos, stream, PREC_SUFFIX);
11763 }
11764 fputs_filtered (")", stream);
11765 return;
11766 }
11767 }
11768
11769 /* Table mapping opcodes into strings for printing operators
11770 and precedences of the operators. */
11771
11772 static const struct op_print ada_op_print_tab[] = {
11773 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
11774 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
11775 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
11776 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
11777 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
11778 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
11779 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
11780 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
11781 {"<=", BINOP_LEQ, PREC_ORDER, 0},
11782 {">=", BINOP_GEQ, PREC_ORDER, 0},
11783 {">", BINOP_GTR, PREC_ORDER, 0},
11784 {"<", BINOP_LESS, PREC_ORDER, 0},
11785 {">>", BINOP_RSH, PREC_SHIFT, 0},
11786 {"<<", BINOP_LSH, PREC_SHIFT, 0},
11787 {"+", BINOP_ADD, PREC_ADD, 0},
11788 {"-", BINOP_SUB, PREC_ADD, 0},
11789 {"&", BINOP_CONCAT, PREC_ADD, 0},
11790 {"*", BINOP_MUL, PREC_MUL, 0},
11791 {"/", BINOP_DIV, PREC_MUL, 0},
11792 {"rem", BINOP_REM, PREC_MUL, 0},
11793 {"mod", BINOP_MOD, PREC_MUL, 0},
11794 {"**", BINOP_EXP, PREC_REPEAT, 0},
11795 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
11796 {"-", UNOP_NEG, PREC_PREFIX, 0},
11797 {"+", UNOP_PLUS, PREC_PREFIX, 0},
11798 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
11799 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
11800 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
11801 {".all", UNOP_IND, PREC_SUFFIX, 1},
11802 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
11803 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
11804 {NULL, 0, 0, 0}
11805 };
11806 \f
11807 enum ada_primitive_types {
11808 ada_primitive_type_int,
11809 ada_primitive_type_long,
11810 ada_primitive_type_short,
11811 ada_primitive_type_char,
11812 ada_primitive_type_float,
11813 ada_primitive_type_double,
11814 ada_primitive_type_void,
11815 ada_primitive_type_long_long,
11816 ada_primitive_type_long_double,
11817 ada_primitive_type_natural,
11818 ada_primitive_type_positive,
11819 ada_primitive_type_system_address,
11820 nr_ada_primitive_types
11821 };
11822
11823 static void
11824 ada_language_arch_info (struct gdbarch *gdbarch,
11825 struct language_arch_info *lai)
11826 {
11827 const struct builtin_type *builtin = builtin_type (gdbarch);
11828
11829 lai->primitive_type_vector
11830 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
11831 struct type *);
11832
11833 lai->primitive_type_vector [ada_primitive_type_int]
11834 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11835 0, "integer");
11836 lai->primitive_type_vector [ada_primitive_type_long]
11837 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
11838 0, "long_integer");
11839 lai->primitive_type_vector [ada_primitive_type_short]
11840 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
11841 0, "short_integer");
11842 lai->string_char_type
11843 = lai->primitive_type_vector [ada_primitive_type_char]
11844 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
11845 lai->primitive_type_vector [ada_primitive_type_float]
11846 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
11847 "float", NULL);
11848 lai->primitive_type_vector [ada_primitive_type_double]
11849 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
11850 "long_float", NULL);
11851 lai->primitive_type_vector [ada_primitive_type_long_long]
11852 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
11853 0, "long_long_integer");
11854 lai->primitive_type_vector [ada_primitive_type_long_double]
11855 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
11856 "long_long_float", NULL);
11857 lai->primitive_type_vector [ada_primitive_type_natural]
11858 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11859 0, "natural");
11860 lai->primitive_type_vector [ada_primitive_type_positive]
11861 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11862 0, "positive");
11863 lai->primitive_type_vector [ada_primitive_type_void]
11864 = builtin->builtin_void;
11865
11866 lai->primitive_type_vector [ada_primitive_type_system_address]
11867 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
11868 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
11869 = "system__address";
11870
11871 lai->bool_type_symbol = NULL;
11872 lai->bool_type_default = builtin->builtin_bool;
11873 }
11874 \f
11875 /* Language vector */
11876
11877 /* Not really used, but needed in the ada_language_defn. */
11878
11879 static void
11880 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
11881 {
11882 ada_emit_char (c, type, stream, quoter, 1);
11883 }
11884
11885 static int
11886 parse (void)
11887 {
11888 warnings_issued = 0;
11889 return ada_parse ();
11890 }
11891
11892 static const struct exp_descriptor ada_exp_descriptor = {
11893 ada_print_subexp,
11894 ada_operator_length,
11895 ada_operator_check,
11896 ada_op_name,
11897 ada_dump_subexp_body,
11898 ada_evaluate_subexp
11899 };
11900
11901 const struct language_defn ada_language_defn = {
11902 "ada", /* Language name */
11903 language_ada,
11904 range_check_off,
11905 type_check_off,
11906 case_sensitive_on, /* Yes, Ada is case-insensitive, but
11907 that's not quite what this means. */
11908 array_row_major,
11909 macro_expansion_no,
11910 &ada_exp_descriptor,
11911 parse,
11912 ada_error,
11913 resolve,
11914 ada_printchar, /* Print a character constant */
11915 ada_printstr, /* Function to print string constant */
11916 emit_char, /* Function to print single char (not used) */
11917 ada_print_type, /* Print a type using appropriate syntax */
11918 ada_print_typedef, /* Print a typedef using appropriate syntax */
11919 ada_val_print, /* Print a value using appropriate syntax */
11920 ada_value_print, /* Print a top-level value */
11921 NULL, /* Language specific skip_trampoline */
11922 NULL, /* name_of_this */
11923 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
11924 basic_lookup_transparent_type, /* lookup_transparent_type */
11925 ada_la_decode, /* Language specific symbol demangler */
11926 NULL, /* Language specific
11927 class_name_from_physname */
11928 ada_op_print_tab, /* expression operators for printing */
11929 0, /* c-style arrays */
11930 1, /* String lower bound */
11931 ada_get_gdb_completer_word_break_characters,
11932 ada_make_symbol_completion_list,
11933 ada_language_arch_info,
11934 ada_print_array_index,
11935 default_pass_by_reference,
11936 c_get_string,
11937 LANG_MAGIC
11938 };
11939
11940 /* Provide a prototype to silence -Wmissing-prototypes. */
11941 extern initialize_file_ftype _initialize_ada_language;
11942
11943 /* Command-list for the "set/show ada" prefix command. */
11944 static struct cmd_list_element *set_ada_list;
11945 static struct cmd_list_element *show_ada_list;
11946
11947 /* Implement the "set ada" prefix command. */
11948
11949 static void
11950 set_ada_command (char *arg, int from_tty)
11951 {
11952 printf_unfiltered (_(\
11953 "\"set ada\" must be followed by the name of a setting.\n"));
11954 help_list (set_ada_list, "set ada ", -1, gdb_stdout);
11955 }
11956
11957 /* Implement the "show ada" prefix command. */
11958
11959 static void
11960 show_ada_command (char *args, int from_tty)
11961 {
11962 cmd_show_list (show_ada_list, from_tty, "");
11963 }
11964
11965 void
11966 _initialize_ada_language (void)
11967 {
11968 add_language (&ada_language_defn);
11969
11970 add_prefix_cmd ("ada", no_class, set_ada_command,
11971 _("Prefix command for changing Ada-specfic settings"),
11972 &set_ada_list, "set ada ", 0, &setlist);
11973
11974 add_prefix_cmd ("ada", no_class, show_ada_command,
11975 _("Generic command for showing Ada-specific settings."),
11976 &show_ada_list, "show ada ", 0, &showlist);
11977
11978 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
11979 &trust_pad_over_xvs, _("\
11980 Enable or disable an optimization trusting PAD types over XVS types"), _("\
11981 Show whether an optimization trusting PAD types over XVS types is activated"),
11982 _("\
11983 This is related to the encoding used by the GNAT compiler. The debugger\n\
11984 should normally trust the contents of PAD types, but certain older versions\n\
11985 of GNAT have a bug that sometimes causes the information in the PAD type\n\
11986 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
11987 work around this bug. It is always safe to turn this option \"off\", but\n\
11988 this incurs a slight performance penalty, so it is recommended to NOT change\n\
11989 this option to \"off\" unless necessary."),
11990 NULL, NULL, &set_ada_list, &show_ada_list);
11991
11992 add_catch_command ("exception", _("\
11993 Catch Ada exceptions, when raised.\n\
11994 With an argument, catch only exceptions with the given name."),
11995 catch_ada_exception_command,
11996 NULL,
11997 CATCH_PERMANENT,
11998 CATCH_TEMPORARY);
11999 add_catch_command ("assert", _("\
12000 Catch failed Ada assertions, when raised.\n\
12001 With an argument, catch only exceptions with the given name."),
12002 catch_assert_command,
12003 NULL,
12004 CATCH_PERMANENT,
12005 CATCH_TEMPORARY);
12006
12007 varsize_limit = 65536;
12008
12009 obstack_init (&symbol_list_obstack);
12010
12011 decoded_names_store = htab_create_alloc
12012 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
12013 NULL, xcalloc, xfree);
12014
12015 observer_attach_executable_changed (ada_executable_changed_observer);
12016
12017 /* Setup per-inferior data. */
12018 observer_attach_inferior_exit (ada_inferior_exit);
12019 ada_inferior_data
12020 = register_inferior_data_with_cleanup (ada_inferior_data_cleanup);
12021 }