1ef955d142ba111cdfb30da93d22adb1086e7f72
[binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2022 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <ctype.h>
23 #include "gdbsupport/gdb_regex.h"
24 #include "frame.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcmd.h"
28 #include "expression.h"
29 #include "parser-defs.h"
30 #include "language.h"
31 #include "varobj.h"
32 #include "inferior.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "breakpoint.h"
36 #include "gdbcore.h"
37 #include "hashtab.h"
38 #include "gdbsupport/gdb_obstack.h"
39 #include "ada-lang.h"
40 #include "completer.h"
41 #include "ui-out.h"
42 #include "block.h"
43 #include "infcall.h"
44 #include "annotate.h"
45 #include "valprint.h"
46 #include "source.h"
47 #include "observable.h"
48 #include "stack.h"
49 #include "typeprint.h"
50 #include "namespace.h"
51 #include "cli/cli-style.h"
52 #include "cli/cli-decode.h"
53
54 #include "value.h"
55 #include "mi/mi-common.h"
56 #include "arch-utils.h"
57 #include "cli/cli-utils.h"
58 #include "gdbsupport/function-view.h"
59 #include "gdbsupport/byte-vector.h"
60 #include <algorithm>
61 #include "ada-exp.h"
62 #include "charset.h"
63
64 /* Define whether or not the C operator '/' truncates towards zero for
65 differently signed operands (truncation direction is undefined in C).
66 Copied from valarith.c. */
67
68 #ifndef TRUNCATION_TOWARDS_ZERO
69 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
70 #endif
71
72 static struct type *desc_base_type (struct type *);
73
74 static struct type *desc_bounds_type (struct type *);
75
76 static struct value *desc_bounds (struct value *);
77
78 static int fat_pntr_bounds_bitpos (struct type *);
79
80 static int fat_pntr_bounds_bitsize (struct type *);
81
82 static struct type *desc_data_target_type (struct type *);
83
84 static struct value *desc_data (struct value *);
85
86 static int fat_pntr_data_bitpos (struct type *);
87
88 static int fat_pntr_data_bitsize (struct type *);
89
90 static struct value *desc_one_bound (struct value *, int, int);
91
92 static int desc_bound_bitpos (struct type *, int, int);
93
94 static int desc_bound_bitsize (struct type *, int, int);
95
96 static struct type *desc_index_type (struct type *, int);
97
98 static int desc_arity (struct type *);
99
100 static int ada_args_match (struct symbol *, struct value **, int);
101
102 static struct value *make_array_descriptor (struct type *, struct value *);
103
104 static void ada_add_block_symbols (std::vector<struct block_symbol> &,
105 const struct block *,
106 const lookup_name_info &lookup_name,
107 domain_enum, struct objfile *);
108
109 static void ada_add_all_symbols (std::vector<struct block_symbol> &,
110 const struct block *,
111 const lookup_name_info &lookup_name,
112 domain_enum, int, int *);
113
114 static int is_nonfunction (const std::vector<struct block_symbol> &);
115
116 static void add_defn_to_vec (std::vector<struct block_symbol> &,
117 struct symbol *,
118 const struct block *);
119
120 static int possible_user_operator_p (enum exp_opcode, struct value **);
121
122 static const char *ada_decoded_op_name (enum exp_opcode);
123
124 static int numeric_type_p (struct type *);
125
126 static int integer_type_p (struct type *);
127
128 static int scalar_type_p (struct type *);
129
130 static int discrete_type_p (struct type *);
131
132 static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
133 int, int);
134
135 static struct type *ada_find_parallel_type_with_name (struct type *,
136 const char *);
137
138 static int is_dynamic_field (struct type *, int);
139
140 static struct type *to_fixed_variant_branch_type (struct type *,
141 const gdb_byte *,
142 CORE_ADDR, struct value *);
143
144 static struct type *to_fixed_array_type (struct type *, struct value *, int);
145
146 static struct type *to_fixed_range_type (struct type *, struct value *);
147
148 static struct type *to_static_fixed_type (struct type *);
149 static struct type *static_unwrap_type (struct type *type);
150
151 static struct value *unwrap_value (struct value *);
152
153 static struct type *constrained_packed_array_type (struct type *, long *);
154
155 static struct type *decode_constrained_packed_array_type (struct type *);
156
157 static long decode_packed_array_bitsize (struct type *);
158
159 static struct value *decode_constrained_packed_array (struct value *);
160
161 static int ada_is_unconstrained_packed_array_type (struct type *);
162
163 static struct value *value_subscript_packed (struct value *, int,
164 struct value **);
165
166 static struct value *coerce_unspec_val_to_type (struct value *,
167 struct type *);
168
169 static int lesseq_defined_than (struct symbol *, struct symbol *);
170
171 static int equiv_types (struct type *, struct type *);
172
173 static int is_name_suffix (const char *);
174
175 static int advance_wild_match (const char **, const char *, char);
176
177 static bool wild_match (const char *name, const char *patn);
178
179 static struct value *ada_coerce_ref (struct value *);
180
181 static LONGEST pos_atr (struct value *);
182
183 static struct value *val_atr (struct type *, LONGEST);
184
185 static struct symbol *standard_lookup (const char *, const struct block *,
186 domain_enum);
187
188 static struct value *ada_search_struct_field (const char *, struct value *, int,
189 struct type *);
190
191 static int find_struct_field (const char *, struct type *, int,
192 struct type **, int *, int *, int *, int *);
193
194 static int ada_resolve_function (std::vector<struct block_symbol> &,
195 struct value **, int, const char *,
196 struct type *, bool);
197
198 static int ada_is_direct_array_type (struct type *);
199
200 static struct value *ada_index_struct_field (int, struct value *, int,
201 struct type *);
202
203 static void add_component_interval (LONGEST, LONGEST, std::vector<LONGEST> &);
204
205
206 static struct type *ada_find_any_type (const char *name);
207
208 static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
209 (const lookup_name_info &lookup_name);
210
211 \f
212
213 /* The character set used for source files. */
214 static const char *ada_source_charset;
215
216 /* The string "UTF-8". This is here so we can check for the UTF-8
217 charset using == rather than strcmp. */
218 static const char ada_utf8[] = "UTF-8";
219
220 /* Each entry in the UTF-32 case-folding table is of this form. */
221 struct utf8_entry
222 {
223 /* The start and end, inclusive, of this range of codepoints. */
224 uint32_t start, end;
225 /* The delta to apply to get the upper-case form. 0 if this is
226 already upper-case. */
227 int upper_delta;
228 /* The delta to apply to get the lower-case form. 0 if this is
229 already lower-case. */
230 int lower_delta;
231
232 bool operator< (uint32_t val) const
233 {
234 return end < val;
235 }
236 };
237
238 static const utf8_entry ada_case_fold[] =
239 {
240 #include "ada-casefold.h"
241 };
242
243 \f
244
245 /* The result of a symbol lookup to be stored in our symbol cache. */
246
247 struct cache_entry
248 {
249 /* The name used to perform the lookup. */
250 const char *name;
251 /* The namespace used during the lookup. */
252 domain_enum domain;
253 /* The symbol returned by the lookup, or NULL if no matching symbol
254 was found. */
255 struct symbol *sym;
256 /* The block where the symbol was found, or NULL if no matching
257 symbol was found. */
258 const struct block *block;
259 /* A pointer to the next entry with the same hash. */
260 struct cache_entry *next;
261 };
262
263 /* The Ada symbol cache, used to store the result of Ada-mode symbol
264 lookups in the course of executing the user's commands.
265
266 The cache is implemented using a simple, fixed-sized hash.
267 The size is fixed on the grounds that there are not likely to be
268 all that many symbols looked up during any given session, regardless
269 of the size of the symbol table. If we decide to go to a resizable
270 table, let's just use the stuff from libiberty instead. */
271
272 #define HASH_SIZE 1009
273
274 struct ada_symbol_cache
275 {
276 /* An obstack used to store the entries in our cache. */
277 struct auto_obstack cache_space;
278
279 /* The root of the hash table used to implement our symbol cache. */
280 struct cache_entry *root[HASH_SIZE] {};
281 };
282
283 static const char ada_completer_word_break_characters[] =
284 #ifdef VMS
285 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
286 #else
287 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
288 #endif
289
290 /* The name of the symbol to use to get the name of the main subprogram. */
291 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
292 = "__gnat_ada_main_program_name";
293
294 /* Limit on the number of warnings to raise per expression evaluation. */
295 static int warning_limit = 2;
296
297 /* Number of warning messages issued; reset to 0 by cleanups after
298 expression evaluation. */
299 static int warnings_issued = 0;
300
301 static const char * const known_runtime_file_name_patterns[] = {
302 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
303 };
304
305 static const char * const known_auxiliary_function_name_patterns[] = {
306 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
307 };
308
309 /* Maintenance-related settings for this module. */
310
311 static struct cmd_list_element *maint_set_ada_cmdlist;
312 static struct cmd_list_element *maint_show_ada_cmdlist;
313
314 /* The "maintenance ada set/show ignore-descriptive-type" value. */
315
316 static bool ada_ignore_descriptive_types_p = false;
317
318 /* Inferior-specific data. */
319
320 /* Per-inferior data for this module. */
321
322 struct ada_inferior_data
323 {
324 /* The ada__tags__type_specific_data type, which is used when decoding
325 tagged types. With older versions of GNAT, this type was directly
326 accessible through a component ("tsd") in the object tag. But this
327 is no longer the case, so we cache it for each inferior. */
328 struct type *tsd_type = nullptr;
329
330 /* The exception_support_info data. This data is used to determine
331 how to implement support for Ada exception catchpoints in a given
332 inferior. */
333 const struct exception_support_info *exception_info = nullptr;
334 };
335
336 /* Our key to this module's inferior data. */
337 static const struct inferior_key<ada_inferior_data> ada_inferior_data;
338
339 /* Return our inferior data for the given inferior (INF).
340
341 This function always returns a valid pointer to an allocated
342 ada_inferior_data structure. If INF's inferior data has not
343 been previously set, this functions creates a new one with all
344 fields set to zero, sets INF's inferior to it, and then returns
345 a pointer to that newly allocated ada_inferior_data. */
346
347 static struct ada_inferior_data *
348 get_ada_inferior_data (struct inferior *inf)
349 {
350 struct ada_inferior_data *data;
351
352 data = ada_inferior_data.get (inf);
353 if (data == NULL)
354 data = ada_inferior_data.emplace (inf);
355
356 return data;
357 }
358
359 /* Perform all necessary cleanups regarding our module's inferior data
360 that is required after the inferior INF just exited. */
361
362 static void
363 ada_inferior_exit (struct inferior *inf)
364 {
365 ada_inferior_data.clear (inf);
366 }
367
368
369 /* program-space-specific data. */
370
371 /* This module's per-program-space data. */
372 struct ada_pspace_data
373 {
374 /* The Ada symbol cache. */
375 std::unique_ptr<ada_symbol_cache> sym_cache;
376 };
377
378 /* Key to our per-program-space data. */
379 static const struct program_space_key<ada_pspace_data> ada_pspace_data_handle;
380
381 /* Return this module's data for the given program space (PSPACE).
382 If not is found, add a zero'ed one now.
383
384 This function always returns a valid object. */
385
386 static struct ada_pspace_data *
387 get_ada_pspace_data (struct program_space *pspace)
388 {
389 struct ada_pspace_data *data;
390
391 data = ada_pspace_data_handle.get (pspace);
392 if (data == NULL)
393 data = ada_pspace_data_handle.emplace (pspace);
394
395 return data;
396 }
397
398 /* Utilities */
399
400 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
401 all typedef layers have been peeled. Otherwise, return TYPE.
402
403 Normally, we really expect a typedef type to only have 1 typedef layer.
404 In other words, we really expect the target type of a typedef type to be
405 a non-typedef type. This is particularly true for Ada units, because
406 the language does not have a typedef vs not-typedef distinction.
407 In that respect, the Ada compiler has been trying to eliminate as many
408 typedef definitions in the debugging information, since they generally
409 do not bring any extra information (we still use typedef under certain
410 circumstances related mostly to the GNAT encoding).
411
412 Unfortunately, we have seen situations where the debugging information
413 generated by the compiler leads to such multiple typedef layers. For
414 instance, consider the following example with stabs:
415
416 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
417 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
418
419 This is an error in the debugging information which causes type
420 pck__float_array___XUP to be defined twice, and the second time,
421 it is defined as a typedef of a typedef.
422
423 This is on the fringe of legality as far as debugging information is
424 concerned, and certainly unexpected. But it is easy to handle these
425 situations correctly, so we can afford to be lenient in this case. */
426
427 static struct type *
428 ada_typedef_target_type (struct type *type)
429 {
430 while (type->code () == TYPE_CODE_TYPEDEF)
431 type = TYPE_TARGET_TYPE (type);
432 return type;
433 }
434
435 /* Given DECODED_NAME a string holding a symbol name in its
436 decoded form (ie using the Ada dotted notation), returns
437 its unqualified name. */
438
439 static const char *
440 ada_unqualified_name (const char *decoded_name)
441 {
442 const char *result;
443
444 /* If the decoded name starts with '<', it means that the encoded
445 name does not follow standard naming conventions, and thus that
446 it is not your typical Ada symbol name. Trying to unqualify it
447 is therefore pointless and possibly erroneous. */
448 if (decoded_name[0] == '<')
449 return decoded_name;
450
451 result = strrchr (decoded_name, '.');
452 if (result != NULL)
453 result++; /* Skip the dot... */
454 else
455 result = decoded_name;
456
457 return result;
458 }
459
460 /* Return a string starting with '<', followed by STR, and '>'. */
461
462 static std::string
463 add_angle_brackets (const char *str)
464 {
465 return string_printf ("<%s>", str);
466 }
467
468 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
469 suffix of FIELD_NAME beginning "___". */
470
471 static int
472 field_name_match (const char *field_name, const char *target)
473 {
474 int len = strlen (target);
475
476 return
477 (strncmp (field_name, target, len) == 0
478 && (field_name[len] == '\0'
479 || (startswith (field_name + len, "___")
480 && strcmp (field_name + strlen (field_name) - 6,
481 "___XVN") != 0)));
482 }
483
484
485 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
486 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
487 and return its index. This function also handles fields whose name
488 have ___ suffixes because the compiler sometimes alters their name
489 by adding such a suffix to represent fields with certain constraints.
490 If the field could not be found, return a negative number if
491 MAYBE_MISSING is set. Otherwise raise an error. */
492
493 int
494 ada_get_field_index (const struct type *type, const char *field_name,
495 int maybe_missing)
496 {
497 int fieldno;
498 struct type *struct_type = check_typedef ((struct type *) type);
499
500 for (fieldno = 0; fieldno < struct_type->num_fields (); fieldno++)
501 if (field_name_match (struct_type->field (fieldno).name (), field_name))
502 return fieldno;
503
504 if (!maybe_missing)
505 error (_("Unable to find field %s in struct %s. Aborting"),
506 field_name, struct_type->name ());
507
508 return -1;
509 }
510
511 /* The length of the prefix of NAME prior to any "___" suffix. */
512
513 int
514 ada_name_prefix_len (const char *name)
515 {
516 if (name == NULL)
517 return 0;
518 else
519 {
520 const char *p = strstr (name, "___");
521
522 if (p == NULL)
523 return strlen (name);
524 else
525 return p - name;
526 }
527 }
528
529 /* Return non-zero if SUFFIX is a suffix of STR.
530 Return zero if STR is null. */
531
532 static int
533 is_suffix (const char *str, const char *suffix)
534 {
535 int len1, len2;
536
537 if (str == NULL)
538 return 0;
539 len1 = strlen (str);
540 len2 = strlen (suffix);
541 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
542 }
543
544 /* The contents of value VAL, treated as a value of type TYPE. The
545 result is an lval in memory if VAL is. */
546
547 static struct value *
548 coerce_unspec_val_to_type (struct value *val, struct type *type)
549 {
550 type = ada_check_typedef (type);
551 if (value_type (val) == type)
552 return val;
553 else
554 {
555 struct value *result;
556
557 if (value_optimized_out (val))
558 result = allocate_optimized_out_value (type);
559 else if (value_lazy (val)
560 /* Be careful not to make a lazy not_lval value. */
561 || (VALUE_LVAL (val) != not_lval
562 && TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val))))
563 result = allocate_value_lazy (type);
564 else
565 {
566 result = allocate_value (type);
567 value_contents_copy (result, 0, val, 0, TYPE_LENGTH (type));
568 }
569 set_value_component_location (result, val);
570 set_value_bitsize (result, value_bitsize (val));
571 set_value_bitpos (result, value_bitpos (val));
572 if (VALUE_LVAL (result) == lval_memory)
573 set_value_address (result, value_address (val));
574 return result;
575 }
576 }
577
578 static const gdb_byte *
579 cond_offset_host (const gdb_byte *valaddr, long offset)
580 {
581 if (valaddr == NULL)
582 return NULL;
583 else
584 return valaddr + offset;
585 }
586
587 static CORE_ADDR
588 cond_offset_target (CORE_ADDR address, long offset)
589 {
590 if (address == 0)
591 return 0;
592 else
593 return address + offset;
594 }
595
596 /* Issue a warning (as for the definition of warning in utils.c, but
597 with exactly one argument rather than ...), unless the limit on the
598 number of warnings has passed during the evaluation of the current
599 expression. */
600
601 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
602 provided by "complaint". */
603 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
604
605 static void
606 lim_warning (const char *format, ...)
607 {
608 va_list args;
609
610 va_start (args, format);
611 warnings_issued += 1;
612 if (warnings_issued <= warning_limit)
613 vwarning (format, args);
614
615 va_end (args);
616 }
617
618 /* Maximum value of a SIZE-byte signed integer type. */
619 static LONGEST
620 max_of_size (int size)
621 {
622 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
623
624 return top_bit | (top_bit - 1);
625 }
626
627 /* Minimum value of a SIZE-byte signed integer type. */
628 static LONGEST
629 min_of_size (int size)
630 {
631 return -max_of_size (size) - 1;
632 }
633
634 /* Maximum value of a SIZE-byte unsigned integer type. */
635 static ULONGEST
636 umax_of_size (int size)
637 {
638 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
639
640 return top_bit | (top_bit - 1);
641 }
642
643 /* Maximum value of integral type T, as a signed quantity. */
644 static LONGEST
645 max_of_type (struct type *t)
646 {
647 if (t->is_unsigned ())
648 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
649 else
650 return max_of_size (TYPE_LENGTH (t));
651 }
652
653 /* Minimum value of integral type T, as a signed quantity. */
654 static LONGEST
655 min_of_type (struct type *t)
656 {
657 if (t->is_unsigned ())
658 return 0;
659 else
660 return min_of_size (TYPE_LENGTH (t));
661 }
662
663 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
664 LONGEST
665 ada_discrete_type_high_bound (struct type *type)
666 {
667 type = resolve_dynamic_type (type, {}, 0);
668 switch (type->code ())
669 {
670 case TYPE_CODE_RANGE:
671 {
672 const dynamic_prop &high = type->bounds ()->high;
673
674 if (high.kind () == PROP_CONST)
675 return high.const_val ();
676 else
677 {
678 gdb_assert (high.kind () == PROP_UNDEFINED);
679
680 /* This happens when trying to evaluate a type's dynamic bound
681 without a live target. There is nothing relevant for us to
682 return here, so return 0. */
683 return 0;
684 }
685 }
686 case TYPE_CODE_ENUM:
687 return type->field (type->num_fields () - 1).loc_enumval ();
688 case TYPE_CODE_BOOL:
689 return 1;
690 case TYPE_CODE_CHAR:
691 case TYPE_CODE_INT:
692 return max_of_type (type);
693 default:
694 error (_("Unexpected type in ada_discrete_type_high_bound."));
695 }
696 }
697
698 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
699 LONGEST
700 ada_discrete_type_low_bound (struct type *type)
701 {
702 type = resolve_dynamic_type (type, {}, 0);
703 switch (type->code ())
704 {
705 case TYPE_CODE_RANGE:
706 {
707 const dynamic_prop &low = type->bounds ()->low;
708
709 if (low.kind () == PROP_CONST)
710 return low.const_val ();
711 else
712 {
713 gdb_assert (low.kind () == PROP_UNDEFINED);
714
715 /* This happens when trying to evaluate a type's dynamic bound
716 without a live target. There is nothing relevant for us to
717 return here, so return 0. */
718 return 0;
719 }
720 }
721 case TYPE_CODE_ENUM:
722 return type->field (0).loc_enumval ();
723 case TYPE_CODE_BOOL:
724 return 0;
725 case TYPE_CODE_CHAR:
726 case TYPE_CODE_INT:
727 return min_of_type (type);
728 default:
729 error (_("Unexpected type in ada_discrete_type_low_bound."));
730 }
731 }
732
733 /* The identity on non-range types. For range types, the underlying
734 non-range scalar type. */
735
736 static struct type *
737 get_base_type (struct type *type)
738 {
739 while (type != NULL && type->code () == TYPE_CODE_RANGE)
740 {
741 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
742 return type;
743 type = TYPE_TARGET_TYPE (type);
744 }
745 return type;
746 }
747
748 /* Return a decoded version of the given VALUE. This means returning
749 a value whose type is obtained by applying all the GNAT-specific
750 encodings, making the resulting type a static but standard description
751 of the initial type. */
752
753 struct value *
754 ada_get_decoded_value (struct value *value)
755 {
756 struct type *type = ada_check_typedef (value_type (value));
757
758 if (ada_is_array_descriptor_type (type)
759 || (ada_is_constrained_packed_array_type (type)
760 && type->code () != TYPE_CODE_PTR))
761 {
762 if (type->code () == TYPE_CODE_TYPEDEF) /* array access type. */
763 value = ada_coerce_to_simple_array_ptr (value);
764 else
765 value = ada_coerce_to_simple_array (value);
766 }
767 else
768 value = ada_to_fixed_value (value);
769
770 return value;
771 }
772
773 /* Same as ada_get_decoded_value, but with the given TYPE.
774 Because there is no associated actual value for this type,
775 the resulting type might be a best-effort approximation in
776 the case of dynamic types. */
777
778 struct type *
779 ada_get_decoded_type (struct type *type)
780 {
781 type = to_static_fixed_type (type);
782 if (ada_is_constrained_packed_array_type (type))
783 type = ada_coerce_to_simple_array_type (type);
784 return type;
785 }
786
787 \f
788
789 /* Language Selection */
790
791 /* If the main program is in Ada, return language_ada, otherwise return LANG
792 (the main program is in Ada iif the adainit symbol is found). */
793
794 static enum language
795 ada_update_initial_language (enum language lang)
796 {
797 if (lookup_minimal_symbol ("adainit", NULL, NULL).minsym != NULL)
798 return language_ada;
799
800 return lang;
801 }
802
803 /* If the main procedure is written in Ada, then return its name.
804 The result is good until the next call. Return NULL if the main
805 procedure doesn't appear to be in Ada. */
806
807 char *
808 ada_main_name (void)
809 {
810 struct bound_minimal_symbol msym;
811 static gdb::unique_xmalloc_ptr<char> main_program_name;
812
813 /* For Ada, the name of the main procedure is stored in a specific
814 string constant, generated by the binder. Look for that symbol,
815 extract its address, and then read that string. If we didn't find
816 that string, then most probably the main procedure is not written
817 in Ada. */
818 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
819
820 if (msym.minsym != NULL)
821 {
822 CORE_ADDR main_program_name_addr = msym.value_address ();
823 if (main_program_name_addr == 0)
824 error (_("Invalid address for Ada main program name."));
825
826 main_program_name = target_read_string (main_program_name_addr, 1024);
827 return main_program_name.get ();
828 }
829
830 /* The main procedure doesn't seem to be in Ada. */
831 return NULL;
832 }
833 \f
834 /* Symbols */
835
836 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
837 of NULLs. */
838
839 const struct ada_opname_map ada_opname_table[] = {
840 {"Oadd", "\"+\"", BINOP_ADD},
841 {"Osubtract", "\"-\"", BINOP_SUB},
842 {"Omultiply", "\"*\"", BINOP_MUL},
843 {"Odivide", "\"/\"", BINOP_DIV},
844 {"Omod", "\"mod\"", BINOP_MOD},
845 {"Orem", "\"rem\"", BINOP_REM},
846 {"Oexpon", "\"**\"", BINOP_EXP},
847 {"Olt", "\"<\"", BINOP_LESS},
848 {"Ole", "\"<=\"", BINOP_LEQ},
849 {"Ogt", "\">\"", BINOP_GTR},
850 {"Oge", "\">=\"", BINOP_GEQ},
851 {"Oeq", "\"=\"", BINOP_EQUAL},
852 {"One", "\"/=\"", BINOP_NOTEQUAL},
853 {"Oand", "\"and\"", BINOP_BITWISE_AND},
854 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
855 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
856 {"Oconcat", "\"&\"", BINOP_CONCAT},
857 {"Oabs", "\"abs\"", UNOP_ABS},
858 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
859 {"Oadd", "\"+\"", UNOP_PLUS},
860 {"Osubtract", "\"-\"", UNOP_NEG},
861 {NULL, NULL}
862 };
863
864 /* If STR is a decoded version of a compiler-provided suffix (like the
865 "[cold]" in "symbol[cold]"), return true. Otherwise, return
866 false. */
867
868 static bool
869 is_compiler_suffix (const char *str)
870 {
871 gdb_assert (*str == '[');
872 ++str;
873 while (*str != '\0' && isalpha (*str))
874 ++str;
875 /* We accept a missing "]" in order to support completion. */
876 return *str == '\0' || (str[0] == ']' && str[1] == '\0');
877 }
878
879 /* Append a non-ASCII character to RESULT. */
880 static void
881 append_hex_encoded (std::string &result, uint32_t one_char)
882 {
883 if (one_char <= 0xff)
884 {
885 result.append ("U");
886 result.append (phex (one_char, 1));
887 }
888 else if (one_char <= 0xffff)
889 {
890 result.append ("W");
891 result.append (phex (one_char, 2));
892 }
893 else
894 {
895 result.append ("WW");
896 result.append (phex (one_char, 4));
897 }
898 }
899
900 /* Return a string that is a copy of the data in STORAGE, with
901 non-ASCII characters replaced by the appropriate hex encoding. A
902 template is used because, for UTF-8, we actually want to work with
903 UTF-32 codepoints. */
904 template<typename T>
905 std::string
906 copy_and_hex_encode (struct obstack *storage)
907 {
908 const T *chars = (T *) obstack_base (storage);
909 int num_chars = obstack_object_size (storage) / sizeof (T);
910 std::string result;
911 for (int i = 0; i < num_chars; ++i)
912 {
913 if (chars[i] <= 0x7f)
914 {
915 /* The host character set has to be a superset of ASCII, as
916 are all the other character sets we can use. */
917 result.push_back (chars[i]);
918 }
919 else
920 append_hex_encoded (result, chars[i]);
921 }
922 return result;
923 }
924
925 /* The "encoded" form of DECODED, according to GNAT conventions. If
926 THROW_ERRORS, throw an error if invalid operator name is found.
927 Otherwise, return the empty string in that case. */
928
929 static std::string
930 ada_encode_1 (const char *decoded, bool throw_errors)
931 {
932 if (decoded == NULL)
933 return {};
934
935 std::string encoding_buffer;
936 bool saw_non_ascii = false;
937 for (const char *p = decoded; *p != '\0'; p += 1)
938 {
939 if ((*p & 0x80) != 0)
940 saw_non_ascii = true;
941
942 if (*p == '.')
943 encoding_buffer.append ("__");
944 else if (*p == '[' && is_compiler_suffix (p))
945 {
946 encoding_buffer = encoding_buffer + "." + (p + 1);
947 if (encoding_buffer.back () == ']')
948 encoding_buffer.pop_back ();
949 break;
950 }
951 else if (*p == '"')
952 {
953 const struct ada_opname_map *mapping;
954
955 for (mapping = ada_opname_table;
956 mapping->encoded != NULL
957 && !startswith (p, mapping->decoded); mapping += 1)
958 ;
959 if (mapping->encoded == NULL)
960 {
961 if (throw_errors)
962 error (_("invalid Ada operator name: %s"), p);
963 else
964 return {};
965 }
966 encoding_buffer.append (mapping->encoded);
967 break;
968 }
969 else
970 encoding_buffer.push_back (*p);
971 }
972
973 /* If a non-ASCII character is seen, we must convert it to the
974 appropriate hex form. As this is more expensive, we keep track
975 of whether it is even necessary. */
976 if (saw_non_ascii)
977 {
978 auto_obstack storage;
979 bool is_utf8 = ada_source_charset == ada_utf8;
980 try
981 {
982 convert_between_encodings
983 (host_charset (),
984 is_utf8 ? HOST_UTF32 : ada_source_charset,
985 (const gdb_byte *) encoding_buffer.c_str (),
986 encoding_buffer.length (), 1,
987 &storage, translit_none);
988 }
989 catch (const gdb_exception &)
990 {
991 static bool warned = false;
992
993 /* Converting to UTF-32 shouldn't fail, so if it doesn't, we
994 might like to know why. */
995 if (!warned)
996 {
997 warned = true;
998 warning (_("charset conversion failure for '%s'.\n"
999 "You may have the wrong value for 'set ada source-charset'."),
1000 encoding_buffer.c_str ());
1001 }
1002
1003 /* We don't try to recover from errors. */
1004 return encoding_buffer;
1005 }
1006
1007 if (is_utf8)
1008 return copy_and_hex_encode<uint32_t> (&storage);
1009 return copy_and_hex_encode<gdb_byte> (&storage);
1010 }
1011
1012 return encoding_buffer;
1013 }
1014
1015 /* Find the entry for C in the case-folding table. Return nullptr if
1016 the entry does not cover C. */
1017 static const utf8_entry *
1018 find_case_fold_entry (uint32_t c)
1019 {
1020 auto iter = std::lower_bound (std::begin (ada_case_fold),
1021 std::end (ada_case_fold),
1022 c);
1023 if (iter == std::end (ada_case_fold)
1024 || c < iter->start
1025 || c > iter->end)
1026 return nullptr;
1027 return &*iter;
1028 }
1029
1030 /* Return NAME folded to lower case, or, if surrounded by single
1031 quotes, unfolded, but with the quotes stripped away. If
1032 THROW_ON_ERROR is true, encoding failures will throw an exception
1033 rather than emitting a warning. Result good to next call. */
1034
1035 static const char *
1036 ada_fold_name (gdb::string_view name, bool throw_on_error = false)
1037 {
1038 static std::string fold_storage;
1039
1040 if (!name.empty () && name[0] == '\'')
1041 fold_storage = gdb::to_string (name.substr (1, name.size () - 2));
1042 else
1043 {
1044 /* Why convert to UTF-32 and implement our own case-folding,
1045 rather than convert to wchar_t and use the platform's
1046 functions? I'm glad you asked.
1047
1048 The main problem is that GNAT implements an unusual rule for
1049 case folding. For ASCII letters, letters in single-byte
1050 encodings (such as ISO-8859-*), and Unicode letters that fit
1051 in a single byte (i.e., code point is <= 0xff), the letter is
1052 folded to lower case. Other Unicode letters are folded to
1053 upper case.
1054
1055 This rule means that the code must be able to examine the
1056 value of the character. And, some hosts do not use Unicode
1057 for wchar_t, so examining the value of such characters is
1058 forbidden. */
1059 auto_obstack storage;
1060 try
1061 {
1062 convert_between_encodings
1063 (host_charset (), HOST_UTF32,
1064 (const gdb_byte *) name.data (),
1065 name.length (), 1,
1066 &storage, translit_none);
1067 }
1068 catch (const gdb_exception &)
1069 {
1070 if (throw_on_error)
1071 throw;
1072
1073 static bool warned = false;
1074
1075 /* Converting to UTF-32 shouldn't fail, so if it doesn't, we
1076 might like to know why. */
1077 if (!warned)
1078 {
1079 warned = true;
1080 warning (_("could not convert '%s' from the host encoding (%s) to UTF-32.\n"
1081 "This normally should not happen, please file a bug report."),
1082 gdb::to_string (name).c_str (), host_charset ());
1083 }
1084
1085 /* We don't try to recover from errors; just return the
1086 original string. */
1087 fold_storage = gdb::to_string (name);
1088 return fold_storage.c_str ();
1089 }
1090
1091 bool is_utf8 = ada_source_charset == ada_utf8;
1092 uint32_t *chars = (uint32_t *) obstack_base (&storage);
1093 int num_chars = obstack_object_size (&storage) / sizeof (uint32_t);
1094 for (int i = 0; i < num_chars; ++i)
1095 {
1096 const struct utf8_entry *entry = find_case_fold_entry (chars[i]);
1097 if (entry != nullptr)
1098 {
1099 uint32_t low = chars[i] + entry->lower_delta;
1100 if (!is_utf8 || low <= 0xff)
1101 chars[i] = low;
1102 else
1103 chars[i] = chars[i] + entry->upper_delta;
1104 }
1105 }
1106
1107 /* Now convert back to ordinary characters. */
1108 auto_obstack reconverted;
1109 try
1110 {
1111 convert_between_encodings (HOST_UTF32,
1112 host_charset (),
1113 (const gdb_byte *) chars,
1114 num_chars * sizeof (uint32_t),
1115 sizeof (uint32_t),
1116 &reconverted,
1117 translit_none);
1118 obstack_1grow (&reconverted, '\0');
1119 fold_storage = std::string ((const char *) obstack_base (&reconverted));
1120 }
1121 catch (const gdb_exception &)
1122 {
1123 if (throw_on_error)
1124 throw;
1125
1126 static bool warned = false;
1127
1128 /* Converting back from UTF-32 shouldn't normally fail, but
1129 there are some host encodings without upper/lower
1130 equivalence. */
1131 if (!warned)
1132 {
1133 warned = true;
1134 warning (_("could not convert the lower-cased variant of '%s'\n"
1135 "from UTF-32 to the host encoding (%s)."),
1136 gdb::to_string (name).c_str (), host_charset ());
1137 }
1138
1139 /* We don't try to recover from errors; just return the
1140 original string. */
1141 fold_storage = gdb::to_string (name);
1142 }
1143 }
1144
1145 return fold_storage.c_str ();
1146 }
1147
1148 /* The "encoded" form of DECODED, according to GNAT conventions. */
1149
1150 std::string
1151 ada_encode (const char *decoded)
1152 {
1153 if (decoded[0] != '<')
1154 decoded = ada_fold_name (decoded);
1155 return ada_encode_1 (decoded, true);
1156 }
1157
1158 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1159
1160 static int
1161 is_lower_alphanum (const char c)
1162 {
1163 return (isdigit (c) || (isalpha (c) && islower (c)));
1164 }
1165
1166 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1167 This function saves in LEN the length of that same symbol name but
1168 without either of these suffixes:
1169 . .{DIGIT}+
1170 . ${DIGIT}+
1171 . ___{DIGIT}+
1172 . __{DIGIT}+.
1173
1174 These are suffixes introduced by the compiler for entities such as
1175 nested subprogram for instance, in order to avoid name clashes.
1176 They do not serve any purpose for the debugger. */
1177
1178 static void
1179 ada_remove_trailing_digits (const char *encoded, int *len)
1180 {
1181 if (*len > 1 && isdigit (encoded[*len - 1]))
1182 {
1183 int i = *len - 2;
1184
1185 while (i > 0 && isdigit (encoded[i]))
1186 i--;
1187 if (i >= 0 && encoded[i] == '.')
1188 *len = i;
1189 else if (i >= 0 && encoded[i] == '$')
1190 *len = i;
1191 else if (i >= 2 && startswith (encoded + i - 2, "___"))
1192 *len = i - 2;
1193 else if (i >= 1 && startswith (encoded + i - 1, "__"))
1194 *len = i - 1;
1195 }
1196 }
1197
1198 /* Remove the suffix introduced by the compiler for protected object
1199 subprograms. */
1200
1201 static void
1202 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1203 {
1204 /* Remove trailing N. */
1205
1206 /* Protected entry subprograms are broken into two
1207 separate subprograms: The first one is unprotected, and has
1208 a 'N' suffix; the second is the protected version, and has
1209 the 'P' suffix. The second calls the first one after handling
1210 the protection. Since the P subprograms are internally generated,
1211 we leave these names undecoded, giving the user a clue that this
1212 entity is internal. */
1213
1214 if (*len > 1
1215 && encoded[*len - 1] == 'N'
1216 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1217 *len = *len - 1;
1218 }
1219
1220 /* If ENCODED ends with a compiler-provided suffix (like ".cold"),
1221 then update *LEN to remove the suffix and return the offset of the
1222 character just past the ".". Otherwise, return -1. */
1223
1224 static int
1225 remove_compiler_suffix (const char *encoded, int *len)
1226 {
1227 int offset = *len - 1;
1228 while (offset > 0 && isalpha (encoded[offset]))
1229 --offset;
1230 if (offset > 0 && encoded[offset] == '.')
1231 {
1232 *len = offset;
1233 return offset + 1;
1234 }
1235 return -1;
1236 }
1237
1238 /* Convert an ASCII hex string to a number. Reads exactly N
1239 characters from STR. Returns true on success, false if one of the
1240 digits was not a hex digit. */
1241 static bool
1242 convert_hex (const char *str, int n, uint32_t *out)
1243 {
1244 uint32_t result = 0;
1245
1246 for (int i = 0; i < n; ++i)
1247 {
1248 if (!isxdigit (str[i]))
1249 return false;
1250 result <<= 4;
1251 result |= fromhex (str[i]);
1252 }
1253
1254 *out = result;
1255 return true;
1256 }
1257
1258 /* Convert a wide character from its ASCII hex representation in STR
1259 (consisting of exactly N characters) to the host encoding,
1260 appending the resulting bytes to OUT. If N==2 and the Ada source
1261 charset is not UTF-8, then hex refers to an encoding in the
1262 ADA_SOURCE_CHARSET; otherwise, use UTF-32. Return true on success.
1263 Return false and do not modify OUT on conversion failure. */
1264 static bool
1265 convert_from_hex_encoded (std::string &out, const char *str, int n)
1266 {
1267 uint32_t value;
1268
1269 if (!convert_hex (str, n, &value))
1270 return false;
1271 try
1272 {
1273 auto_obstack bytes;
1274 /* In the 'U' case, the hex digits encode the character in the
1275 Ada source charset. However, if the source charset is UTF-8,
1276 this really means it is a single-byte UTF-32 character. */
1277 if (n == 2 && ada_source_charset != ada_utf8)
1278 {
1279 gdb_byte one_char = (gdb_byte) value;
1280
1281 convert_between_encodings (ada_source_charset, host_charset (),
1282 &one_char,
1283 sizeof (one_char), sizeof (one_char),
1284 &bytes, translit_none);
1285 }
1286 else
1287 convert_between_encodings (HOST_UTF32, host_charset (),
1288 (const gdb_byte *) &value,
1289 sizeof (value), sizeof (value),
1290 &bytes, translit_none);
1291 obstack_1grow (&bytes, '\0');
1292 out.append ((const char *) obstack_base (&bytes));
1293 }
1294 catch (const gdb_exception &)
1295 {
1296 /* On failure, the caller will just let the encoded form
1297 through, which seems basically reasonable. */
1298 return false;
1299 }
1300
1301 return true;
1302 }
1303
1304 /* See ada-lang.h. */
1305
1306 std::string
1307 ada_decode (const char *encoded, bool wrap, bool operators)
1308 {
1309 int i;
1310 int len0;
1311 const char *p;
1312 int at_start_name;
1313 std::string decoded;
1314 int suffix = -1;
1315
1316 /* With function descriptors on PPC64, the value of a symbol named
1317 ".FN", if it exists, is the entry point of the function "FN". */
1318 if (encoded[0] == '.')
1319 encoded += 1;
1320
1321 /* The name of the Ada main procedure starts with "_ada_".
1322 This prefix is not part of the decoded name, so skip this part
1323 if we see this prefix. */
1324 if (startswith (encoded, "_ada_"))
1325 encoded += 5;
1326 /* The "___ghost_" prefix is used for ghost entities. Normally
1327 these aren't preserved but when they are, it's useful to see
1328 them. */
1329 if (startswith (encoded, "___ghost_"))
1330 encoded += 9;
1331
1332 /* If the name starts with '_', then it is not a properly encoded
1333 name, so do not attempt to decode it. Similarly, if the name
1334 starts with '<', the name should not be decoded. */
1335 if (encoded[0] == '_' || encoded[0] == '<')
1336 goto Suppress;
1337
1338 len0 = strlen (encoded);
1339
1340 suffix = remove_compiler_suffix (encoded, &len0);
1341
1342 ada_remove_trailing_digits (encoded, &len0);
1343 ada_remove_po_subprogram_suffix (encoded, &len0);
1344
1345 /* Remove the ___X.* suffix if present. Do not forget to verify that
1346 the suffix is located before the current "end" of ENCODED. We want
1347 to avoid re-matching parts of ENCODED that have previously been
1348 marked as discarded (by decrementing LEN0). */
1349 p = strstr (encoded, "___");
1350 if (p != NULL && p - encoded < len0 - 3)
1351 {
1352 if (p[3] == 'X')
1353 len0 = p - encoded;
1354 else
1355 goto Suppress;
1356 }
1357
1358 /* Remove any trailing TKB suffix. It tells us that this symbol
1359 is for the body of a task, but that information does not actually
1360 appear in the decoded name. */
1361
1362 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1363 len0 -= 3;
1364
1365 /* Remove any trailing TB suffix. The TB suffix is slightly different
1366 from the TKB suffix because it is used for non-anonymous task
1367 bodies. */
1368
1369 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1370 len0 -= 2;
1371
1372 /* Remove trailing "B" suffixes. */
1373 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1374
1375 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1376 len0 -= 1;
1377
1378 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1379
1380 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1381 {
1382 i = len0 - 2;
1383 while ((i >= 0 && isdigit (encoded[i]))
1384 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1385 i -= 1;
1386 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1387 len0 = i - 1;
1388 else if (encoded[i] == '$')
1389 len0 = i;
1390 }
1391
1392 /* The first few characters that are not alphabetic are not part
1393 of any encoding we use, so we can copy them over verbatim. */
1394
1395 for (i = 0; i < len0 && !isalpha (encoded[i]); i += 1)
1396 decoded.push_back (encoded[i]);
1397
1398 at_start_name = 1;
1399 while (i < len0)
1400 {
1401 /* Is this a symbol function? */
1402 if (operators && at_start_name && encoded[i] == 'O')
1403 {
1404 int k;
1405
1406 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1407 {
1408 int op_len = strlen (ada_opname_table[k].encoded);
1409 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1410 op_len - 1) == 0)
1411 && !isalnum (encoded[i + op_len]))
1412 {
1413 decoded.append (ada_opname_table[k].decoded);
1414 at_start_name = 0;
1415 i += op_len;
1416 break;
1417 }
1418 }
1419 if (ada_opname_table[k].encoded != NULL)
1420 continue;
1421 }
1422 at_start_name = 0;
1423
1424 /* Replace "TK__" with "__", which will eventually be translated
1425 into "." (just below). */
1426
1427 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1428 i += 2;
1429
1430 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1431 be translated into "." (just below). These are internal names
1432 generated for anonymous blocks inside which our symbol is nested. */
1433
1434 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1435 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1436 && isdigit (encoded [i+4]))
1437 {
1438 int k = i + 5;
1439
1440 while (k < len0 && isdigit (encoded[k]))
1441 k++; /* Skip any extra digit. */
1442
1443 /* Double-check that the "__B_{DIGITS}+" sequence we found
1444 is indeed followed by "__". */
1445 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1446 i = k;
1447 }
1448
1449 /* Remove _E{DIGITS}+[sb] */
1450
1451 /* Just as for protected object subprograms, there are 2 categories
1452 of subprograms created by the compiler for each entry. The first
1453 one implements the actual entry code, and has a suffix following
1454 the convention above; the second one implements the barrier and
1455 uses the same convention as above, except that the 'E' is replaced
1456 by a 'B'.
1457
1458 Just as above, we do not decode the name of barrier functions
1459 to give the user a clue that the code he is debugging has been
1460 internally generated. */
1461
1462 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1463 && isdigit (encoded[i+2]))
1464 {
1465 int k = i + 3;
1466
1467 while (k < len0 && isdigit (encoded[k]))
1468 k++;
1469
1470 if (k < len0
1471 && (encoded[k] == 'b' || encoded[k] == 's'))
1472 {
1473 k++;
1474 /* Just as an extra precaution, make sure that if this
1475 suffix is followed by anything else, it is a '_'.
1476 Otherwise, we matched this sequence by accident. */
1477 if (k == len0
1478 || (k < len0 && encoded[k] == '_'))
1479 i = k;
1480 }
1481 }
1482
1483 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1484 the GNAT front-end in protected object subprograms. */
1485
1486 if (i < len0 + 3
1487 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1488 {
1489 /* Backtrack a bit up until we reach either the begining of
1490 the encoded name, or "__". Make sure that we only find
1491 digits or lowercase characters. */
1492 const char *ptr = encoded + i - 1;
1493
1494 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1495 ptr--;
1496 if (ptr < encoded
1497 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1498 i++;
1499 }
1500
1501 if (i < len0 + 3 && encoded[i] == 'U' && isxdigit (encoded[i + 1]))
1502 {
1503 if (convert_from_hex_encoded (decoded, &encoded[i + 1], 2))
1504 {
1505 i += 3;
1506 continue;
1507 }
1508 }
1509 else if (i < len0 + 5 && encoded[i] == 'W' && isxdigit (encoded[i + 1]))
1510 {
1511 if (convert_from_hex_encoded (decoded, &encoded[i + 1], 4))
1512 {
1513 i += 5;
1514 continue;
1515 }
1516 }
1517 else if (i < len0 + 10 && encoded[i] == 'W' && encoded[i + 1] == 'W'
1518 && isxdigit (encoded[i + 2]))
1519 {
1520 if (convert_from_hex_encoded (decoded, &encoded[i + 2], 8))
1521 {
1522 i += 10;
1523 continue;
1524 }
1525 }
1526
1527 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1528 {
1529 /* This is a X[bn]* sequence not separated from the previous
1530 part of the name with a non-alpha-numeric character (in other
1531 words, immediately following an alpha-numeric character), then
1532 verify that it is placed at the end of the encoded name. If
1533 not, then the encoding is not valid and we should abort the
1534 decoding. Otherwise, just skip it, it is used in body-nested
1535 package names. */
1536 do
1537 i += 1;
1538 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1539 if (i < len0)
1540 goto Suppress;
1541 }
1542 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1543 {
1544 /* Replace '__' by '.'. */
1545 decoded.push_back ('.');
1546 at_start_name = 1;
1547 i += 2;
1548 }
1549 else
1550 {
1551 /* It's a character part of the decoded name, so just copy it
1552 over. */
1553 decoded.push_back (encoded[i]);
1554 i += 1;
1555 }
1556 }
1557
1558 /* Decoded names should never contain any uppercase character.
1559 Double-check this, and abort the decoding if we find one. */
1560
1561 if (operators)
1562 {
1563 for (i = 0; i < decoded.length(); ++i)
1564 if (isupper (decoded[i]) || decoded[i] == ' ')
1565 goto Suppress;
1566 }
1567
1568 /* If the compiler added a suffix, append it now. */
1569 if (suffix >= 0)
1570 decoded = decoded + "[" + &encoded[suffix] + "]";
1571
1572 return decoded;
1573
1574 Suppress:
1575 if (!wrap)
1576 return {};
1577
1578 if (encoded[0] == '<')
1579 decoded = encoded;
1580 else
1581 decoded = '<' + std::string(encoded) + '>';
1582 return decoded;
1583 }
1584
1585 /* Table for keeping permanent unique copies of decoded names. Once
1586 allocated, names in this table are never released. While this is a
1587 storage leak, it should not be significant unless there are massive
1588 changes in the set of decoded names in successive versions of a
1589 symbol table loaded during a single session. */
1590 static struct htab *decoded_names_store;
1591
1592 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1593 in the language-specific part of GSYMBOL, if it has not been
1594 previously computed. Tries to save the decoded name in the same
1595 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1596 in any case, the decoded symbol has a lifetime at least that of
1597 GSYMBOL).
1598 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1599 const, but nevertheless modified to a semantically equivalent form
1600 when a decoded name is cached in it. */
1601
1602 const char *
1603 ada_decode_symbol (const struct general_symbol_info *arg)
1604 {
1605 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1606 const char **resultp =
1607 &gsymbol->language_specific.demangled_name;
1608
1609 if (!gsymbol->ada_mangled)
1610 {
1611 std::string decoded = ada_decode (gsymbol->linkage_name ());
1612 struct obstack *obstack = gsymbol->language_specific.obstack;
1613
1614 gsymbol->ada_mangled = 1;
1615
1616 if (obstack != NULL)
1617 *resultp = obstack_strdup (obstack, decoded.c_str ());
1618 else
1619 {
1620 /* Sometimes, we can't find a corresponding objfile, in
1621 which case, we put the result on the heap. Since we only
1622 decode when needed, we hope this usually does not cause a
1623 significant memory leak (FIXME). */
1624
1625 char **slot = (char **) htab_find_slot (decoded_names_store,
1626 decoded.c_str (), INSERT);
1627
1628 if (*slot == NULL)
1629 *slot = xstrdup (decoded.c_str ());
1630 *resultp = *slot;
1631 }
1632 }
1633
1634 return *resultp;
1635 }
1636
1637 \f
1638
1639 /* Arrays */
1640
1641 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1642 generated by the GNAT compiler to describe the index type used
1643 for each dimension of an array, check whether it follows the latest
1644 known encoding. If not, fix it up to conform to the latest encoding.
1645 Otherwise, do nothing. This function also does nothing if
1646 INDEX_DESC_TYPE is NULL.
1647
1648 The GNAT encoding used to describe the array index type evolved a bit.
1649 Initially, the information would be provided through the name of each
1650 field of the structure type only, while the type of these fields was
1651 described as unspecified and irrelevant. The debugger was then expected
1652 to perform a global type lookup using the name of that field in order
1653 to get access to the full index type description. Because these global
1654 lookups can be very expensive, the encoding was later enhanced to make
1655 the global lookup unnecessary by defining the field type as being
1656 the full index type description.
1657
1658 The purpose of this routine is to allow us to support older versions
1659 of the compiler by detecting the use of the older encoding, and by
1660 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1661 we essentially replace each field's meaningless type by the associated
1662 index subtype). */
1663
1664 void
1665 ada_fixup_array_indexes_type (struct type *index_desc_type)
1666 {
1667 int i;
1668
1669 if (index_desc_type == NULL)
1670 return;
1671 gdb_assert (index_desc_type->num_fields () > 0);
1672
1673 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1674 to check one field only, no need to check them all). If not, return
1675 now.
1676
1677 If our INDEX_DESC_TYPE was generated using the older encoding,
1678 the field type should be a meaningless integer type whose name
1679 is not equal to the field name. */
1680 if (index_desc_type->field (0).type ()->name () != NULL
1681 && strcmp (index_desc_type->field (0).type ()->name (),
1682 index_desc_type->field (0).name ()) == 0)
1683 return;
1684
1685 /* Fixup each field of INDEX_DESC_TYPE. */
1686 for (i = 0; i < index_desc_type->num_fields (); i++)
1687 {
1688 const char *name = index_desc_type->field (i).name ();
1689 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1690
1691 if (raw_type)
1692 index_desc_type->field (i).set_type (raw_type);
1693 }
1694 }
1695
1696 /* The desc_* routines return primitive portions of array descriptors
1697 (fat pointers). */
1698
1699 /* The descriptor or array type, if any, indicated by TYPE; removes
1700 level of indirection, if needed. */
1701
1702 static struct type *
1703 desc_base_type (struct type *type)
1704 {
1705 if (type == NULL)
1706 return NULL;
1707 type = ada_check_typedef (type);
1708 if (type->code () == TYPE_CODE_TYPEDEF)
1709 type = ada_typedef_target_type (type);
1710
1711 if (type != NULL
1712 && (type->code () == TYPE_CODE_PTR
1713 || type->code () == TYPE_CODE_REF))
1714 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1715 else
1716 return type;
1717 }
1718
1719 /* True iff TYPE indicates a "thin" array pointer type. */
1720
1721 static int
1722 is_thin_pntr (struct type *type)
1723 {
1724 return
1725 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1726 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1727 }
1728
1729 /* The descriptor type for thin pointer type TYPE. */
1730
1731 static struct type *
1732 thin_descriptor_type (struct type *type)
1733 {
1734 struct type *base_type = desc_base_type (type);
1735
1736 if (base_type == NULL)
1737 return NULL;
1738 if (is_suffix (ada_type_name (base_type), "___XVE"))
1739 return base_type;
1740 else
1741 {
1742 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1743
1744 if (alt_type == NULL)
1745 return base_type;
1746 else
1747 return alt_type;
1748 }
1749 }
1750
1751 /* A pointer to the array data for thin-pointer value VAL. */
1752
1753 static struct value *
1754 thin_data_pntr (struct value *val)
1755 {
1756 struct type *type = ada_check_typedef (value_type (val));
1757 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1758
1759 data_type = lookup_pointer_type (data_type);
1760
1761 if (type->code () == TYPE_CODE_PTR)
1762 return value_cast (data_type, value_copy (val));
1763 else
1764 return value_from_longest (data_type, value_address (val));
1765 }
1766
1767 /* True iff TYPE indicates a "thick" array pointer type. */
1768
1769 static int
1770 is_thick_pntr (struct type *type)
1771 {
1772 type = desc_base_type (type);
1773 return (type != NULL && type->code () == TYPE_CODE_STRUCT
1774 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1775 }
1776
1777 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1778 pointer to one, the type of its bounds data; otherwise, NULL. */
1779
1780 static struct type *
1781 desc_bounds_type (struct type *type)
1782 {
1783 struct type *r;
1784
1785 type = desc_base_type (type);
1786
1787 if (type == NULL)
1788 return NULL;
1789 else if (is_thin_pntr (type))
1790 {
1791 type = thin_descriptor_type (type);
1792 if (type == NULL)
1793 return NULL;
1794 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1795 if (r != NULL)
1796 return ada_check_typedef (r);
1797 }
1798 else if (type->code () == TYPE_CODE_STRUCT)
1799 {
1800 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1801 if (r != NULL)
1802 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1803 }
1804 return NULL;
1805 }
1806
1807 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1808 one, a pointer to its bounds data. Otherwise NULL. */
1809
1810 static struct value *
1811 desc_bounds (struct value *arr)
1812 {
1813 struct type *type = ada_check_typedef (value_type (arr));
1814
1815 if (is_thin_pntr (type))
1816 {
1817 struct type *bounds_type =
1818 desc_bounds_type (thin_descriptor_type (type));
1819 LONGEST addr;
1820
1821 if (bounds_type == NULL)
1822 error (_("Bad GNAT array descriptor"));
1823
1824 /* NOTE: The following calculation is not really kosher, but
1825 since desc_type is an XVE-encoded type (and shouldn't be),
1826 the correct calculation is a real pain. FIXME (and fix GCC). */
1827 if (type->code () == TYPE_CODE_PTR)
1828 addr = value_as_long (arr);
1829 else
1830 addr = value_address (arr);
1831
1832 return
1833 value_from_longest (lookup_pointer_type (bounds_type),
1834 addr - TYPE_LENGTH (bounds_type));
1835 }
1836
1837 else if (is_thick_pntr (type))
1838 {
1839 struct value *p_bounds = value_struct_elt (&arr, {}, "P_BOUNDS", NULL,
1840 _("Bad GNAT array descriptor"));
1841 struct type *p_bounds_type = value_type (p_bounds);
1842
1843 if (p_bounds_type
1844 && p_bounds_type->code () == TYPE_CODE_PTR)
1845 {
1846 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1847
1848 if (target_type->is_stub ())
1849 p_bounds = value_cast (lookup_pointer_type
1850 (ada_check_typedef (target_type)),
1851 p_bounds);
1852 }
1853 else
1854 error (_("Bad GNAT array descriptor"));
1855
1856 return p_bounds;
1857 }
1858 else
1859 return NULL;
1860 }
1861
1862 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1863 position of the field containing the address of the bounds data. */
1864
1865 static int
1866 fat_pntr_bounds_bitpos (struct type *type)
1867 {
1868 return desc_base_type (type)->field (1).loc_bitpos ();
1869 }
1870
1871 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1872 size of the field containing the address of the bounds data. */
1873
1874 static int
1875 fat_pntr_bounds_bitsize (struct type *type)
1876 {
1877 type = desc_base_type (type);
1878
1879 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1880 return TYPE_FIELD_BITSIZE (type, 1);
1881 else
1882 return 8 * TYPE_LENGTH (ada_check_typedef (type->field (1).type ()));
1883 }
1884
1885 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1886 pointer to one, the type of its array data (a array-with-no-bounds type);
1887 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1888 data. */
1889
1890 static struct type *
1891 desc_data_target_type (struct type *type)
1892 {
1893 type = desc_base_type (type);
1894
1895 /* NOTE: The following is bogus; see comment in desc_bounds. */
1896 if (is_thin_pntr (type))
1897 return desc_base_type (thin_descriptor_type (type)->field (1).type ());
1898 else if (is_thick_pntr (type))
1899 {
1900 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1901
1902 if (data_type
1903 && ada_check_typedef (data_type)->code () == TYPE_CODE_PTR)
1904 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1905 }
1906
1907 return NULL;
1908 }
1909
1910 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1911 its array data. */
1912
1913 static struct value *
1914 desc_data (struct value *arr)
1915 {
1916 struct type *type = value_type (arr);
1917
1918 if (is_thin_pntr (type))
1919 return thin_data_pntr (arr);
1920 else if (is_thick_pntr (type))
1921 return value_struct_elt (&arr, {}, "P_ARRAY", NULL,
1922 _("Bad GNAT array descriptor"));
1923 else
1924 return NULL;
1925 }
1926
1927
1928 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1929 position of the field containing the address of the data. */
1930
1931 static int
1932 fat_pntr_data_bitpos (struct type *type)
1933 {
1934 return desc_base_type (type)->field (0).loc_bitpos ();
1935 }
1936
1937 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1938 size of the field containing the address of the data. */
1939
1940 static int
1941 fat_pntr_data_bitsize (struct type *type)
1942 {
1943 type = desc_base_type (type);
1944
1945 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1946 return TYPE_FIELD_BITSIZE (type, 0);
1947 else
1948 return TARGET_CHAR_BIT * TYPE_LENGTH (type->field (0).type ());
1949 }
1950
1951 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1952 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1953 bound, if WHICH is 1. The first bound is I=1. */
1954
1955 static struct value *
1956 desc_one_bound (struct value *bounds, int i, int which)
1957 {
1958 char bound_name[20];
1959 xsnprintf (bound_name, sizeof (bound_name), "%cB%d",
1960 which ? 'U' : 'L', i - 1);
1961 return value_struct_elt (&bounds, {}, bound_name, NULL,
1962 _("Bad GNAT array descriptor bounds"));
1963 }
1964
1965 /* If BOUNDS is an array-bounds structure type, return the bit position
1966 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1967 bound, if WHICH is 1. The first bound is I=1. */
1968
1969 static int
1970 desc_bound_bitpos (struct type *type, int i, int which)
1971 {
1972 return desc_base_type (type)->field (2 * i + which - 2).loc_bitpos ();
1973 }
1974
1975 /* If BOUNDS is an array-bounds structure type, return the bit field size
1976 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1977 bound, if WHICH is 1. The first bound is I=1. */
1978
1979 static int
1980 desc_bound_bitsize (struct type *type, int i, int which)
1981 {
1982 type = desc_base_type (type);
1983
1984 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1985 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1986 else
1987 return 8 * TYPE_LENGTH (type->field (2 * i + which - 2).type ());
1988 }
1989
1990 /* If TYPE is the type of an array-bounds structure, the type of its
1991 Ith bound (numbering from 1). Otherwise, NULL. */
1992
1993 static struct type *
1994 desc_index_type (struct type *type, int i)
1995 {
1996 type = desc_base_type (type);
1997
1998 if (type->code () == TYPE_CODE_STRUCT)
1999 {
2000 char bound_name[20];
2001 xsnprintf (bound_name, sizeof (bound_name), "LB%d", i - 1);
2002 return lookup_struct_elt_type (type, bound_name, 1);
2003 }
2004 else
2005 return NULL;
2006 }
2007
2008 /* The number of index positions in the array-bounds type TYPE.
2009 Return 0 if TYPE is NULL. */
2010
2011 static int
2012 desc_arity (struct type *type)
2013 {
2014 type = desc_base_type (type);
2015
2016 if (type != NULL)
2017 return type->num_fields () / 2;
2018 return 0;
2019 }
2020
2021 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
2022 an array descriptor type (representing an unconstrained array
2023 type). */
2024
2025 static int
2026 ada_is_direct_array_type (struct type *type)
2027 {
2028 if (type == NULL)
2029 return 0;
2030 type = ada_check_typedef (type);
2031 return (type->code () == TYPE_CODE_ARRAY
2032 || ada_is_array_descriptor_type (type));
2033 }
2034
2035 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
2036 * to one. */
2037
2038 static int
2039 ada_is_array_type (struct type *type)
2040 {
2041 while (type != NULL
2042 && (type->code () == TYPE_CODE_PTR
2043 || type->code () == TYPE_CODE_REF))
2044 type = TYPE_TARGET_TYPE (type);
2045 return ada_is_direct_array_type (type);
2046 }
2047
2048 /* Non-zero iff TYPE is a simple array type or pointer to one. */
2049
2050 int
2051 ada_is_simple_array_type (struct type *type)
2052 {
2053 if (type == NULL)
2054 return 0;
2055 type = ada_check_typedef (type);
2056 return (type->code () == TYPE_CODE_ARRAY
2057 || (type->code () == TYPE_CODE_PTR
2058 && (ada_check_typedef (TYPE_TARGET_TYPE (type))->code ()
2059 == TYPE_CODE_ARRAY)));
2060 }
2061
2062 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
2063
2064 int
2065 ada_is_array_descriptor_type (struct type *type)
2066 {
2067 struct type *data_type = desc_data_target_type (type);
2068
2069 if (type == NULL)
2070 return 0;
2071 type = ada_check_typedef (type);
2072 return (data_type != NULL
2073 && data_type->code () == TYPE_CODE_ARRAY
2074 && desc_arity (desc_bounds_type (type)) > 0);
2075 }
2076
2077 /* Non-zero iff type is a partially mal-formed GNAT array
2078 descriptor. FIXME: This is to compensate for some problems with
2079 debugging output from GNAT. Re-examine periodically to see if it
2080 is still needed. */
2081
2082 int
2083 ada_is_bogus_array_descriptor (struct type *type)
2084 {
2085 return
2086 type != NULL
2087 && type->code () == TYPE_CODE_STRUCT
2088 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
2089 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
2090 && !ada_is_array_descriptor_type (type);
2091 }
2092
2093
2094 /* If ARR has a record type in the form of a standard GNAT array descriptor,
2095 (fat pointer) returns the type of the array data described---specifically,
2096 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
2097 in from the descriptor; otherwise, they are left unspecified. If
2098 the ARR denotes a null array descriptor and BOUNDS is non-zero,
2099 returns NULL. The result is simply the type of ARR if ARR is not
2100 a descriptor. */
2101
2102 static struct type *
2103 ada_type_of_array (struct value *arr, int bounds)
2104 {
2105 if (ada_is_constrained_packed_array_type (value_type (arr)))
2106 return decode_constrained_packed_array_type (value_type (arr));
2107
2108 if (!ada_is_array_descriptor_type (value_type (arr)))
2109 return value_type (arr);
2110
2111 if (!bounds)
2112 {
2113 struct type *array_type =
2114 ada_check_typedef (desc_data_target_type (value_type (arr)));
2115
2116 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
2117 TYPE_FIELD_BITSIZE (array_type, 0) =
2118 decode_packed_array_bitsize (value_type (arr));
2119
2120 return array_type;
2121 }
2122 else
2123 {
2124 struct type *elt_type;
2125 int arity;
2126 struct value *descriptor;
2127
2128 elt_type = ada_array_element_type (value_type (arr), -1);
2129 arity = ada_array_arity (value_type (arr));
2130
2131 if (elt_type == NULL || arity == 0)
2132 return ada_check_typedef (value_type (arr));
2133
2134 descriptor = desc_bounds (arr);
2135 if (value_as_long (descriptor) == 0)
2136 return NULL;
2137 while (arity > 0)
2138 {
2139 struct type *range_type = alloc_type_copy (value_type (arr));
2140 struct type *array_type = alloc_type_copy (value_type (arr));
2141 struct value *low = desc_one_bound (descriptor, arity, 0);
2142 struct value *high = desc_one_bound (descriptor, arity, 1);
2143
2144 arity -= 1;
2145 create_static_range_type (range_type, value_type (low),
2146 longest_to_int (value_as_long (low)),
2147 longest_to_int (value_as_long (high)));
2148 elt_type = create_array_type (array_type, elt_type, range_type);
2149
2150 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
2151 {
2152 /* We need to store the element packed bitsize, as well as
2153 recompute the array size, because it was previously
2154 computed based on the unpacked element size. */
2155 LONGEST lo = value_as_long (low);
2156 LONGEST hi = value_as_long (high);
2157
2158 TYPE_FIELD_BITSIZE (elt_type, 0) =
2159 decode_packed_array_bitsize (value_type (arr));
2160 /* If the array has no element, then the size is already
2161 zero, and does not need to be recomputed. */
2162 if (lo < hi)
2163 {
2164 int array_bitsize =
2165 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2166
2167 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2168 }
2169 }
2170 }
2171
2172 return lookup_pointer_type (elt_type);
2173 }
2174 }
2175
2176 /* If ARR does not represent an array, returns ARR unchanged.
2177 Otherwise, returns either a standard GDB array with bounds set
2178 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2179 GDB array. Returns NULL if ARR is a null fat pointer. */
2180
2181 struct value *
2182 ada_coerce_to_simple_array_ptr (struct value *arr)
2183 {
2184 if (ada_is_array_descriptor_type (value_type (arr)))
2185 {
2186 struct type *arrType = ada_type_of_array (arr, 1);
2187
2188 if (arrType == NULL)
2189 return NULL;
2190 return value_cast (arrType, value_copy (desc_data (arr)));
2191 }
2192 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2193 return decode_constrained_packed_array (arr);
2194 else
2195 return arr;
2196 }
2197
2198 /* If ARR does not represent an array, returns ARR unchanged.
2199 Otherwise, returns a standard GDB array describing ARR (which may
2200 be ARR itself if it already is in the proper form). */
2201
2202 struct value *
2203 ada_coerce_to_simple_array (struct value *arr)
2204 {
2205 if (ada_is_array_descriptor_type (value_type (arr)))
2206 {
2207 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
2208
2209 if (arrVal == NULL)
2210 error (_("Bounds unavailable for null array pointer."));
2211 return value_ind (arrVal);
2212 }
2213 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2214 return decode_constrained_packed_array (arr);
2215 else
2216 return arr;
2217 }
2218
2219 /* If TYPE represents a GNAT array type, return it translated to an
2220 ordinary GDB array type (possibly with BITSIZE fields indicating
2221 packing). For other types, is the identity. */
2222
2223 struct type *
2224 ada_coerce_to_simple_array_type (struct type *type)
2225 {
2226 if (ada_is_constrained_packed_array_type (type))
2227 return decode_constrained_packed_array_type (type);
2228
2229 if (ada_is_array_descriptor_type (type))
2230 return ada_check_typedef (desc_data_target_type (type));
2231
2232 return type;
2233 }
2234
2235 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2236
2237 static int
2238 ada_is_gnat_encoded_packed_array_type (struct type *type)
2239 {
2240 if (type == NULL)
2241 return 0;
2242 type = desc_base_type (type);
2243 type = ada_check_typedef (type);
2244 return
2245 ada_type_name (type) != NULL
2246 && strstr (ada_type_name (type), "___XP") != NULL;
2247 }
2248
2249 /* Non-zero iff TYPE represents a standard GNAT constrained
2250 packed-array type. */
2251
2252 int
2253 ada_is_constrained_packed_array_type (struct type *type)
2254 {
2255 return ada_is_gnat_encoded_packed_array_type (type)
2256 && !ada_is_array_descriptor_type (type);
2257 }
2258
2259 /* Non-zero iff TYPE represents an array descriptor for a
2260 unconstrained packed-array type. */
2261
2262 static int
2263 ada_is_unconstrained_packed_array_type (struct type *type)
2264 {
2265 if (!ada_is_array_descriptor_type (type))
2266 return 0;
2267
2268 if (ada_is_gnat_encoded_packed_array_type (type))
2269 return 1;
2270
2271 /* If we saw GNAT encodings, then the above code is sufficient.
2272 However, with minimal encodings, we will just have a thick
2273 pointer instead. */
2274 if (is_thick_pntr (type))
2275 {
2276 type = desc_base_type (type);
2277 /* The structure's first field is a pointer to an array, so this
2278 fetches the array type. */
2279 type = TYPE_TARGET_TYPE (type->field (0).type ());
2280 if (type->code () == TYPE_CODE_TYPEDEF)
2281 type = ada_typedef_target_type (type);
2282 /* Now we can see if the array elements are packed. */
2283 return TYPE_FIELD_BITSIZE (type, 0) > 0;
2284 }
2285
2286 return 0;
2287 }
2288
2289 /* Return true if TYPE is a (Gnat-encoded) constrained packed array
2290 type, or if it is an ordinary (non-Gnat-encoded) packed array. */
2291
2292 static bool
2293 ada_is_any_packed_array_type (struct type *type)
2294 {
2295 return (ada_is_constrained_packed_array_type (type)
2296 || (type->code () == TYPE_CODE_ARRAY
2297 && TYPE_FIELD_BITSIZE (type, 0) % 8 != 0));
2298 }
2299
2300 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2301 return the size of its elements in bits. */
2302
2303 static long
2304 decode_packed_array_bitsize (struct type *type)
2305 {
2306 const char *raw_name;
2307 const char *tail;
2308 long bits;
2309
2310 /* Access to arrays implemented as fat pointers are encoded as a typedef
2311 of the fat pointer type. We need the name of the fat pointer type
2312 to do the decoding, so strip the typedef layer. */
2313 if (type->code () == TYPE_CODE_TYPEDEF)
2314 type = ada_typedef_target_type (type);
2315
2316 raw_name = ada_type_name (ada_check_typedef (type));
2317 if (!raw_name)
2318 raw_name = ada_type_name (desc_base_type (type));
2319
2320 if (!raw_name)
2321 return 0;
2322
2323 tail = strstr (raw_name, "___XP");
2324 if (tail == nullptr)
2325 {
2326 gdb_assert (is_thick_pntr (type));
2327 /* The structure's first field is a pointer to an array, so this
2328 fetches the array type. */
2329 type = TYPE_TARGET_TYPE (type->field (0).type ());
2330 /* Now we can see if the array elements are packed. */
2331 return TYPE_FIELD_BITSIZE (type, 0);
2332 }
2333
2334 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2335 {
2336 lim_warning
2337 (_("could not understand bit size information on packed array"));
2338 return 0;
2339 }
2340
2341 return bits;
2342 }
2343
2344 /* Given that TYPE is a standard GDB array type with all bounds filled
2345 in, and that the element size of its ultimate scalar constituents
2346 (that is, either its elements, or, if it is an array of arrays, its
2347 elements' elements, etc.) is *ELT_BITS, return an identical type,
2348 but with the bit sizes of its elements (and those of any
2349 constituent arrays) recorded in the BITSIZE components of its
2350 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2351 in bits.
2352
2353 Note that, for arrays whose index type has an XA encoding where
2354 a bound references a record discriminant, getting that discriminant,
2355 and therefore the actual value of that bound, is not possible
2356 because none of the given parameters gives us access to the record.
2357 This function assumes that it is OK in the context where it is being
2358 used to return an array whose bounds are still dynamic and where
2359 the length is arbitrary. */
2360
2361 static struct type *
2362 constrained_packed_array_type (struct type *type, long *elt_bits)
2363 {
2364 struct type *new_elt_type;
2365 struct type *new_type;
2366 struct type *index_type_desc;
2367 struct type *index_type;
2368 LONGEST low_bound, high_bound;
2369
2370 type = ada_check_typedef (type);
2371 if (type->code () != TYPE_CODE_ARRAY)
2372 return type;
2373
2374 index_type_desc = ada_find_parallel_type (type, "___XA");
2375 if (index_type_desc)
2376 index_type = to_fixed_range_type (index_type_desc->field (0).type (),
2377 NULL);
2378 else
2379 index_type = type->index_type ();
2380
2381 new_type = alloc_type_copy (type);
2382 new_elt_type =
2383 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2384 elt_bits);
2385 create_array_type (new_type, new_elt_type, index_type);
2386 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2387 new_type->set_name (ada_type_name (type));
2388
2389 if ((check_typedef (index_type)->code () == TYPE_CODE_RANGE
2390 && is_dynamic_type (check_typedef (index_type)))
2391 || !get_discrete_bounds (index_type, &low_bound, &high_bound))
2392 low_bound = high_bound = 0;
2393 if (high_bound < low_bound)
2394 *elt_bits = TYPE_LENGTH (new_type) = 0;
2395 else
2396 {
2397 *elt_bits *= (high_bound - low_bound + 1);
2398 TYPE_LENGTH (new_type) =
2399 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2400 }
2401
2402 new_type->set_is_fixed_instance (true);
2403 return new_type;
2404 }
2405
2406 /* The array type encoded by TYPE, where
2407 ada_is_constrained_packed_array_type (TYPE). */
2408
2409 static struct type *
2410 decode_constrained_packed_array_type (struct type *type)
2411 {
2412 const char *raw_name = ada_type_name (ada_check_typedef (type));
2413 char *name;
2414 const char *tail;
2415 struct type *shadow_type;
2416 long bits;
2417
2418 if (!raw_name)
2419 raw_name = ada_type_name (desc_base_type (type));
2420
2421 if (!raw_name)
2422 return NULL;
2423
2424 name = (char *) alloca (strlen (raw_name) + 1);
2425 tail = strstr (raw_name, "___XP");
2426 type = desc_base_type (type);
2427
2428 memcpy (name, raw_name, tail - raw_name);
2429 name[tail - raw_name] = '\000';
2430
2431 shadow_type = ada_find_parallel_type_with_name (type, name);
2432
2433 if (shadow_type == NULL)
2434 {
2435 lim_warning (_("could not find bounds information on packed array"));
2436 return NULL;
2437 }
2438 shadow_type = check_typedef (shadow_type);
2439
2440 if (shadow_type->code () != TYPE_CODE_ARRAY)
2441 {
2442 lim_warning (_("could not understand bounds "
2443 "information on packed array"));
2444 return NULL;
2445 }
2446
2447 bits = decode_packed_array_bitsize (type);
2448 return constrained_packed_array_type (shadow_type, &bits);
2449 }
2450
2451 /* Helper function for decode_constrained_packed_array. Set the field
2452 bitsize on a series of packed arrays. Returns the number of
2453 elements in TYPE. */
2454
2455 static LONGEST
2456 recursively_update_array_bitsize (struct type *type)
2457 {
2458 gdb_assert (type->code () == TYPE_CODE_ARRAY);
2459
2460 LONGEST low, high;
2461 if (!get_discrete_bounds (type->index_type (), &low, &high)
2462 || low > high)
2463 return 0;
2464 LONGEST our_len = high - low + 1;
2465
2466 struct type *elt_type = TYPE_TARGET_TYPE (type);
2467 if (elt_type->code () == TYPE_CODE_ARRAY)
2468 {
2469 LONGEST elt_len = recursively_update_array_bitsize (elt_type);
2470 LONGEST elt_bitsize = elt_len * TYPE_FIELD_BITSIZE (elt_type, 0);
2471 TYPE_FIELD_BITSIZE (type, 0) = elt_bitsize;
2472
2473 TYPE_LENGTH (type) = ((our_len * elt_bitsize + HOST_CHAR_BIT - 1)
2474 / HOST_CHAR_BIT);
2475 }
2476
2477 return our_len;
2478 }
2479
2480 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2481 array, returns a simple array that denotes that array. Its type is a
2482 standard GDB array type except that the BITSIZEs of the array
2483 target types are set to the number of bits in each element, and the
2484 type length is set appropriately. */
2485
2486 static struct value *
2487 decode_constrained_packed_array (struct value *arr)
2488 {
2489 struct type *type;
2490
2491 /* If our value is a pointer, then dereference it. Likewise if
2492 the value is a reference. Make sure that this operation does not
2493 cause the target type to be fixed, as this would indirectly cause
2494 this array to be decoded. The rest of the routine assumes that
2495 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2496 and "value_ind" routines to perform the dereferencing, as opposed
2497 to using "ada_coerce_ref" or "ada_value_ind". */
2498 arr = coerce_ref (arr);
2499 if (ada_check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
2500 arr = value_ind (arr);
2501
2502 type = decode_constrained_packed_array_type (value_type (arr));
2503 if (type == NULL)
2504 {
2505 error (_("can't unpack array"));
2506 return NULL;
2507 }
2508
2509 /* Decoding the packed array type could not correctly set the field
2510 bitsizes for any dimension except the innermost, because the
2511 bounds may be variable and were not passed to that function. So,
2512 we further resolve the array bounds here and then update the
2513 sizes. */
2514 const gdb_byte *valaddr = value_contents_for_printing (arr).data ();
2515 CORE_ADDR address = value_address (arr);
2516 gdb::array_view<const gdb_byte> view
2517 = gdb::make_array_view (valaddr, TYPE_LENGTH (type));
2518 type = resolve_dynamic_type (type, view, address);
2519 recursively_update_array_bitsize (type);
2520
2521 if (type_byte_order (value_type (arr)) == BFD_ENDIAN_BIG
2522 && ada_is_modular_type (value_type (arr)))
2523 {
2524 /* This is a (right-justified) modular type representing a packed
2525 array with no wrapper. In order to interpret the value through
2526 the (left-justified) packed array type we just built, we must
2527 first left-justify it. */
2528 int bit_size, bit_pos;
2529 ULONGEST mod;
2530
2531 mod = ada_modulus (value_type (arr)) - 1;
2532 bit_size = 0;
2533 while (mod > 0)
2534 {
2535 bit_size += 1;
2536 mod >>= 1;
2537 }
2538 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2539 arr = ada_value_primitive_packed_val (arr, NULL,
2540 bit_pos / HOST_CHAR_BIT,
2541 bit_pos % HOST_CHAR_BIT,
2542 bit_size,
2543 type);
2544 }
2545
2546 return coerce_unspec_val_to_type (arr, type);
2547 }
2548
2549
2550 /* The value of the element of packed array ARR at the ARITY indices
2551 given in IND. ARR must be a simple array. */
2552
2553 static struct value *
2554 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2555 {
2556 int i;
2557 int bits, elt_off, bit_off;
2558 long elt_total_bit_offset;
2559 struct type *elt_type;
2560 struct value *v;
2561
2562 bits = 0;
2563 elt_total_bit_offset = 0;
2564 elt_type = ada_check_typedef (value_type (arr));
2565 for (i = 0; i < arity; i += 1)
2566 {
2567 if (elt_type->code () != TYPE_CODE_ARRAY
2568 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2569 error
2570 (_("attempt to do packed indexing of "
2571 "something other than a packed array"));
2572 else
2573 {
2574 struct type *range_type = elt_type->index_type ();
2575 LONGEST lowerbound, upperbound;
2576 LONGEST idx;
2577
2578 if (!get_discrete_bounds (range_type, &lowerbound, &upperbound))
2579 {
2580 lim_warning (_("don't know bounds of array"));
2581 lowerbound = upperbound = 0;
2582 }
2583
2584 idx = pos_atr (ind[i]);
2585 if (idx < lowerbound || idx > upperbound)
2586 lim_warning (_("packed array index %ld out of bounds"),
2587 (long) idx);
2588 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2589 elt_total_bit_offset += (idx - lowerbound) * bits;
2590 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2591 }
2592 }
2593 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2594 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2595
2596 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2597 bits, elt_type);
2598 return v;
2599 }
2600
2601 /* Non-zero iff TYPE includes negative integer values. */
2602
2603 static int
2604 has_negatives (struct type *type)
2605 {
2606 switch (type->code ())
2607 {
2608 default:
2609 return 0;
2610 case TYPE_CODE_INT:
2611 return !type->is_unsigned ();
2612 case TYPE_CODE_RANGE:
2613 return type->bounds ()->low.const_val () - type->bounds ()->bias < 0;
2614 }
2615 }
2616
2617 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2618 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2619 the unpacked buffer.
2620
2621 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2622 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2623
2624 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2625 zero otherwise.
2626
2627 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2628
2629 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2630
2631 static void
2632 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2633 gdb_byte *unpacked, int unpacked_len,
2634 int is_big_endian, int is_signed_type,
2635 int is_scalar)
2636 {
2637 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2638 int src_idx; /* Index into the source area */
2639 int src_bytes_left; /* Number of source bytes left to process. */
2640 int srcBitsLeft; /* Number of source bits left to move */
2641 int unusedLS; /* Number of bits in next significant
2642 byte of source that are unused */
2643
2644 int unpacked_idx; /* Index into the unpacked buffer */
2645 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2646
2647 unsigned long accum; /* Staging area for bits being transferred */
2648 int accumSize; /* Number of meaningful bits in accum */
2649 unsigned char sign;
2650
2651 /* Transmit bytes from least to most significant; delta is the direction
2652 the indices move. */
2653 int delta = is_big_endian ? -1 : 1;
2654
2655 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2656 bits from SRC. .*/
2657 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2658 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2659 bit_size, unpacked_len);
2660
2661 srcBitsLeft = bit_size;
2662 src_bytes_left = src_len;
2663 unpacked_bytes_left = unpacked_len;
2664 sign = 0;
2665
2666 if (is_big_endian)
2667 {
2668 src_idx = src_len - 1;
2669 if (is_signed_type
2670 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2671 sign = ~0;
2672
2673 unusedLS =
2674 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2675 % HOST_CHAR_BIT;
2676
2677 if (is_scalar)
2678 {
2679 accumSize = 0;
2680 unpacked_idx = unpacked_len - 1;
2681 }
2682 else
2683 {
2684 /* Non-scalar values must be aligned at a byte boundary... */
2685 accumSize =
2686 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2687 /* ... And are placed at the beginning (most-significant) bytes
2688 of the target. */
2689 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2690 unpacked_bytes_left = unpacked_idx + 1;
2691 }
2692 }
2693 else
2694 {
2695 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2696
2697 src_idx = unpacked_idx = 0;
2698 unusedLS = bit_offset;
2699 accumSize = 0;
2700
2701 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2702 sign = ~0;
2703 }
2704
2705 accum = 0;
2706 while (src_bytes_left > 0)
2707 {
2708 /* Mask for removing bits of the next source byte that are not
2709 part of the value. */
2710 unsigned int unusedMSMask =
2711 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2712 1;
2713 /* Sign-extend bits for this byte. */
2714 unsigned int signMask = sign & ~unusedMSMask;
2715
2716 accum |=
2717 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2718 accumSize += HOST_CHAR_BIT - unusedLS;
2719 if (accumSize >= HOST_CHAR_BIT)
2720 {
2721 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2722 accumSize -= HOST_CHAR_BIT;
2723 accum >>= HOST_CHAR_BIT;
2724 unpacked_bytes_left -= 1;
2725 unpacked_idx += delta;
2726 }
2727 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2728 unusedLS = 0;
2729 src_bytes_left -= 1;
2730 src_idx += delta;
2731 }
2732 while (unpacked_bytes_left > 0)
2733 {
2734 accum |= sign << accumSize;
2735 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2736 accumSize -= HOST_CHAR_BIT;
2737 if (accumSize < 0)
2738 accumSize = 0;
2739 accum >>= HOST_CHAR_BIT;
2740 unpacked_bytes_left -= 1;
2741 unpacked_idx += delta;
2742 }
2743 }
2744
2745 /* Create a new value of type TYPE from the contents of OBJ starting
2746 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2747 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2748 assigning through the result will set the field fetched from.
2749 VALADDR is ignored unless OBJ is NULL, in which case,
2750 VALADDR+OFFSET must address the start of storage containing the
2751 packed value. The value returned in this case is never an lval.
2752 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2753
2754 struct value *
2755 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2756 long offset, int bit_offset, int bit_size,
2757 struct type *type)
2758 {
2759 struct value *v;
2760 const gdb_byte *src; /* First byte containing data to unpack */
2761 gdb_byte *unpacked;
2762 const int is_scalar = is_scalar_type (type);
2763 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
2764 gdb::byte_vector staging;
2765
2766 type = ada_check_typedef (type);
2767
2768 if (obj == NULL)
2769 src = valaddr + offset;
2770 else
2771 src = value_contents (obj).data () + offset;
2772
2773 if (is_dynamic_type (type))
2774 {
2775 /* The length of TYPE might by dynamic, so we need to resolve
2776 TYPE in order to know its actual size, which we then use
2777 to create the contents buffer of the value we return.
2778 The difficulty is that the data containing our object is
2779 packed, and therefore maybe not at a byte boundary. So, what
2780 we do, is unpack the data into a byte-aligned buffer, and then
2781 use that buffer as our object's value for resolving the type. */
2782 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2783 staging.resize (staging_len);
2784
2785 ada_unpack_from_contents (src, bit_offset, bit_size,
2786 staging.data (), staging.size (),
2787 is_big_endian, has_negatives (type),
2788 is_scalar);
2789 type = resolve_dynamic_type (type, staging, 0);
2790 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2791 {
2792 /* This happens when the length of the object is dynamic,
2793 and is actually smaller than the space reserved for it.
2794 For instance, in an array of variant records, the bit_size
2795 we're given is the array stride, which is constant and
2796 normally equal to the maximum size of its element.
2797 But, in reality, each element only actually spans a portion
2798 of that stride. */
2799 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2800 }
2801 }
2802
2803 if (obj == NULL)
2804 {
2805 v = allocate_value (type);
2806 src = valaddr + offset;
2807 }
2808 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2809 {
2810 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2811 gdb_byte *buf;
2812
2813 v = value_at (type, value_address (obj) + offset);
2814 buf = (gdb_byte *) alloca (src_len);
2815 read_memory (value_address (v), buf, src_len);
2816 src = buf;
2817 }
2818 else
2819 {
2820 v = allocate_value (type);
2821 src = value_contents (obj).data () + offset;
2822 }
2823
2824 if (obj != NULL)
2825 {
2826 long new_offset = offset;
2827
2828 set_value_component_location (v, obj);
2829 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2830 set_value_bitsize (v, bit_size);
2831 if (value_bitpos (v) >= HOST_CHAR_BIT)
2832 {
2833 ++new_offset;
2834 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2835 }
2836 set_value_offset (v, new_offset);
2837
2838 /* Also set the parent value. This is needed when trying to
2839 assign a new value (in inferior memory). */
2840 set_value_parent (v, obj);
2841 }
2842 else
2843 set_value_bitsize (v, bit_size);
2844 unpacked = value_contents_writeable (v).data ();
2845
2846 if (bit_size == 0)
2847 {
2848 memset (unpacked, 0, TYPE_LENGTH (type));
2849 return v;
2850 }
2851
2852 if (staging.size () == TYPE_LENGTH (type))
2853 {
2854 /* Small short-cut: If we've unpacked the data into a buffer
2855 of the same size as TYPE's length, then we can reuse that,
2856 instead of doing the unpacking again. */
2857 memcpy (unpacked, staging.data (), staging.size ());
2858 }
2859 else
2860 ada_unpack_from_contents (src, bit_offset, bit_size,
2861 unpacked, TYPE_LENGTH (type),
2862 is_big_endian, has_negatives (type), is_scalar);
2863
2864 return v;
2865 }
2866
2867 /* Store the contents of FROMVAL into the location of TOVAL.
2868 Return a new value with the location of TOVAL and contents of
2869 FROMVAL. Handles assignment into packed fields that have
2870 floating-point or non-scalar types. */
2871
2872 static struct value *
2873 ada_value_assign (struct value *toval, struct value *fromval)
2874 {
2875 struct type *type = value_type (toval);
2876 int bits = value_bitsize (toval);
2877
2878 toval = ada_coerce_ref (toval);
2879 fromval = ada_coerce_ref (fromval);
2880
2881 if (ada_is_direct_array_type (value_type (toval)))
2882 toval = ada_coerce_to_simple_array (toval);
2883 if (ada_is_direct_array_type (value_type (fromval)))
2884 fromval = ada_coerce_to_simple_array (fromval);
2885
2886 if (!deprecated_value_modifiable (toval))
2887 error (_("Left operand of assignment is not a modifiable lvalue."));
2888
2889 if (VALUE_LVAL (toval) == lval_memory
2890 && bits > 0
2891 && (type->code () == TYPE_CODE_FLT
2892 || type->code () == TYPE_CODE_STRUCT))
2893 {
2894 int len = (value_bitpos (toval)
2895 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2896 int from_size;
2897 gdb_byte *buffer = (gdb_byte *) alloca (len);
2898 struct value *val;
2899 CORE_ADDR to_addr = value_address (toval);
2900
2901 if (type->code () == TYPE_CODE_FLT)
2902 fromval = value_cast (type, fromval);
2903
2904 read_memory (to_addr, buffer, len);
2905 from_size = value_bitsize (fromval);
2906 if (from_size == 0)
2907 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2908
2909 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
2910 ULONGEST from_offset = 0;
2911 if (is_big_endian && is_scalar_type (value_type (fromval)))
2912 from_offset = from_size - bits;
2913 copy_bitwise (buffer, value_bitpos (toval),
2914 value_contents (fromval).data (), from_offset,
2915 bits, is_big_endian);
2916 write_memory_with_notification (to_addr, buffer, len);
2917
2918 val = value_copy (toval);
2919 memcpy (value_contents_raw (val).data (),
2920 value_contents (fromval).data (),
2921 TYPE_LENGTH (type));
2922 deprecated_set_value_type (val, type);
2923
2924 return val;
2925 }
2926
2927 return value_assign (toval, fromval);
2928 }
2929
2930
2931 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2932 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2933 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2934 COMPONENT, and not the inferior's memory. The current contents
2935 of COMPONENT are ignored.
2936
2937 Although not part of the initial design, this function also works
2938 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2939 had a null address, and COMPONENT had an address which is equal to
2940 its offset inside CONTAINER. */
2941
2942 static void
2943 value_assign_to_component (struct value *container, struct value *component,
2944 struct value *val)
2945 {
2946 LONGEST offset_in_container =
2947 (LONGEST) (value_address (component) - value_address (container));
2948 int bit_offset_in_container =
2949 value_bitpos (component) - value_bitpos (container);
2950 int bits;
2951
2952 val = value_cast (value_type (component), val);
2953
2954 if (value_bitsize (component) == 0)
2955 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2956 else
2957 bits = value_bitsize (component);
2958
2959 if (type_byte_order (value_type (container)) == BFD_ENDIAN_BIG)
2960 {
2961 int src_offset;
2962
2963 if (is_scalar_type (check_typedef (value_type (component))))
2964 src_offset
2965 = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits;
2966 else
2967 src_offset = 0;
2968 copy_bitwise ((value_contents_writeable (container).data ()
2969 + offset_in_container),
2970 value_bitpos (container) + bit_offset_in_container,
2971 value_contents (val).data (), src_offset, bits, 1);
2972 }
2973 else
2974 copy_bitwise ((value_contents_writeable (container).data ()
2975 + offset_in_container),
2976 value_bitpos (container) + bit_offset_in_container,
2977 value_contents (val).data (), 0, bits, 0);
2978 }
2979
2980 /* Determine if TYPE is an access to an unconstrained array. */
2981
2982 bool
2983 ada_is_access_to_unconstrained_array (struct type *type)
2984 {
2985 return (type->code () == TYPE_CODE_TYPEDEF
2986 && is_thick_pntr (ada_typedef_target_type (type)));
2987 }
2988
2989 /* The value of the element of array ARR at the ARITY indices given in IND.
2990 ARR may be either a simple array, GNAT array descriptor, or pointer
2991 thereto. */
2992
2993 struct value *
2994 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2995 {
2996 int k;
2997 struct value *elt;
2998 struct type *elt_type;
2999
3000 elt = ada_coerce_to_simple_array (arr);
3001
3002 elt_type = ada_check_typedef (value_type (elt));
3003 if (elt_type->code () == TYPE_CODE_ARRAY
3004 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
3005 return value_subscript_packed (elt, arity, ind);
3006
3007 for (k = 0; k < arity; k += 1)
3008 {
3009 struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type);
3010
3011 if (elt_type->code () != TYPE_CODE_ARRAY)
3012 error (_("too many subscripts (%d expected)"), k);
3013
3014 elt = value_subscript (elt, pos_atr (ind[k]));
3015
3016 if (ada_is_access_to_unconstrained_array (saved_elt_type)
3017 && value_type (elt)->code () != TYPE_CODE_TYPEDEF)
3018 {
3019 /* The element is a typedef to an unconstrained array,
3020 except that the value_subscript call stripped the
3021 typedef layer. The typedef layer is GNAT's way to
3022 specify that the element is, at the source level, an
3023 access to the unconstrained array, rather than the
3024 unconstrained array. So, we need to restore that
3025 typedef layer, which we can do by forcing the element's
3026 type back to its original type. Otherwise, the returned
3027 value is going to be printed as the array, rather
3028 than as an access. Another symptom of the same issue
3029 would be that an expression trying to dereference the
3030 element would also be improperly rejected. */
3031 deprecated_set_value_type (elt, saved_elt_type);
3032 }
3033
3034 elt_type = ada_check_typedef (value_type (elt));
3035 }
3036
3037 return elt;
3038 }
3039
3040 /* Assuming ARR is a pointer to a GDB array, the value of the element
3041 of *ARR at the ARITY indices given in IND.
3042 Does not read the entire array into memory.
3043
3044 Note: Unlike what one would expect, this function is used instead of
3045 ada_value_subscript for basically all non-packed array types. The reason
3046 for this is that a side effect of doing our own pointer arithmetics instead
3047 of relying on value_subscript is that there is no implicit typedef peeling.
3048 This is important for arrays of array accesses, where it allows us to
3049 preserve the fact that the array's element is an array access, where the
3050 access part os encoded in a typedef layer. */
3051
3052 static struct value *
3053 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
3054 {
3055 int k;
3056 struct value *array_ind = ada_value_ind (arr);
3057 struct type *type
3058 = check_typedef (value_enclosing_type (array_ind));
3059
3060 if (type->code () == TYPE_CODE_ARRAY
3061 && TYPE_FIELD_BITSIZE (type, 0) > 0)
3062 return value_subscript_packed (array_ind, arity, ind);
3063
3064 for (k = 0; k < arity; k += 1)
3065 {
3066 LONGEST lwb, upb;
3067
3068 if (type->code () != TYPE_CODE_ARRAY)
3069 error (_("too many subscripts (%d expected)"), k);
3070 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
3071 value_copy (arr));
3072 get_discrete_bounds (type->index_type (), &lwb, &upb);
3073 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
3074 type = TYPE_TARGET_TYPE (type);
3075 }
3076
3077 return value_ind (arr);
3078 }
3079
3080 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
3081 actual type of ARRAY_PTR is ignored), returns the Ada slice of
3082 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
3083 this array is LOW, as per Ada rules. */
3084 static struct value *
3085 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
3086 int low, int high)
3087 {
3088 struct type *type0 = ada_check_typedef (type);
3089 struct type *base_index_type = TYPE_TARGET_TYPE (type0->index_type ());
3090 struct type *index_type
3091 = create_static_range_type (NULL, base_index_type, low, high);
3092 struct type *slice_type = create_array_type_with_stride
3093 (NULL, TYPE_TARGET_TYPE (type0), index_type,
3094 type0->dyn_prop (DYN_PROP_BYTE_STRIDE),
3095 TYPE_FIELD_BITSIZE (type0, 0));
3096 int base_low = ada_discrete_type_low_bound (type0->index_type ());
3097 gdb::optional<LONGEST> base_low_pos, low_pos;
3098 CORE_ADDR base;
3099
3100 low_pos = discrete_position (base_index_type, low);
3101 base_low_pos = discrete_position (base_index_type, base_low);
3102
3103 if (!low_pos.has_value () || !base_low_pos.has_value ())
3104 {
3105 warning (_("unable to get positions in slice, use bounds instead"));
3106 low_pos = low;
3107 base_low_pos = base_low;
3108 }
3109
3110 ULONGEST stride = TYPE_FIELD_BITSIZE (slice_type, 0) / 8;
3111 if (stride == 0)
3112 stride = TYPE_LENGTH (TYPE_TARGET_TYPE (type0));
3113
3114 base = value_as_address (array_ptr) + (*low_pos - *base_low_pos) * stride;
3115 return value_at_lazy (slice_type, base);
3116 }
3117
3118
3119 static struct value *
3120 ada_value_slice (struct value *array, int low, int high)
3121 {
3122 struct type *type = ada_check_typedef (value_type (array));
3123 struct type *base_index_type = TYPE_TARGET_TYPE (type->index_type ());
3124 struct type *index_type
3125 = create_static_range_type (NULL, type->index_type (), low, high);
3126 struct type *slice_type = create_array_type_with_stride
3127 (NULL, TYPE_TARGET_TYPE (type), index_type,
3128 type->dyn_prop (DYN_PROP_BYTE_STRIDE),
3129 TYPE_FIELD_BITSIZE (type, 0));
3130 gdb::optional<LONGEST> low_pos, high_pos;
3131
3132
3133 low_pos = discrete_position (base_index_type, low);
3134 high_pos = discrete_position (base_index_type, high);
3135
3136 if (!low_pos.has_value () || !high_pos.has_value ())
3137 {
3138 warning (_("unable to get positions in slice, use bounds instead"));
3139 low_pos = low;
3140 high_pos = high;
3141 }
3142
3143 return value_cast (slice_type,
3144 value_slice (array, low, *high_pos - *low_pos + 1));
3145 }
3146
3147 /* If type is a record type in the form of a standard GNAT array
3148 descriptor, returns the number of dimensions for type. If arr is a
3149 simple array, returns the number of "array of"s that prefix its
3150 type designation. Otherwise, returns 0. */
3151
3152 int
3153 ada_array_arity (struct type *type)
3154 {
3155 int arity;
3156
3157 if (type == NULL)
3158 return 0;
3159
3160 type = desc_base_type (type);
3161
3162 arity = 0;
3163 if (type->code () == TYPE_CODE_STRUCT)
3164 return desc_arity (desc_bounds_type (type));
3165 else
3166 while (type->code () == TYPE_CODE_ARRAY)
3167 {
3168 arity += 1;
3169 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
3170 }
3171
3172 return arity;
3173 }
3174
3175 /* If TYPE is a record type in the form of a standard GNAT array
3176 descriptor or a simple array type, returns the element type for
3177 TYPE after indexing by NINDICES indices, or by all indices if
3178 NINDICES is -1. Otherwise, returns NULL. */
3179
3180 struct type *
3181 ada_array_element_type (struct type *type, int nindices)
3182 {
3183 type = desc_base_type (type);
3184
3185 if (type->code () == TYPE_CODE_STRUCT)
3186 {
3187 int k;
3188 struct type *p_array_type;
3189
3190 p_array_type = desc_data_target_type (type);
3191
3192 k = ada_array_arity (type);
3193 if (k == 0)
3194 return NULL;
3195
3196 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
3197 if (nindices >= 0 && k > nindices)
3198 k = nindices;
3199 while (k > 0 && p_array_type != NULL)
3200 {
3201 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
3202 k -= 1;
3203 }
3204 return p_array_type;
3205 }
3206 else if (type->code () == TYPE_CODE_ARRAY)
3207 {
3208 while (nindices != 0 && type->code () == TYPE_CODE_ARRAY)
3209 {
3210 type = TYPE_TARGET_TYPE (type);
3211 nindices -= 1;
3212 }
3213 return type;
3214 }
3215
3216 return NULL;
3217 }
3218
3219 /* See ada-lang.h. */
3220
3221 struct type *
3222 ada_index_type (struct type *type, int n, const char *name)
3223 {
3224 struct type *result_type;
3225
3226 type = desc_base_type (type);
3227
3228 if (n < 0 || n > ada_array_arity (type))
3229 error (_("invalid dimension number to '%s"), name);
3230
3231 if (ada_is_simple_array_type (type))
3232 {
3233 int i;
3234
3235 for (i = 1; i < n; i += 1)
3236 {
3237 type = ada_check_typedef (type);
3238 type = TYPE_TARGET_TYPE (type);
3239 }
3240 result_type = TYPE_TARGET_TYPE (ada_check_typedef (type)->index_type ());
3241 /* FIXME: The stabs type r(0,0);bound;bound in an array type
3242 has a target type of TYPE_CODE_UNDEF. We compensate here, but
3243 perhaps stabsread.c would make more sense. */
3244 if (result_type && result_type->code () == TYPE_CODE_UNDEF)
3245 result_type = NULL;
3246 }
3247 else
3248 {
3249 result_type = desc_index_type (desc_bounds_type (type), n);
3250 if (result_type == NULL)
3251 error (_("attempt to take bound of something that is not an array"));
3252 }
3253
3254 return result_type;
3255 }
3256
3257 /* Given that arr is an array type, returns the lower bound of the
3258 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
3259 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
3260 array-descriptor type. It works for other arrays with bounds supplied
3261 by run-time quantities other than discriminants. */
3262
3263 static LONGEST
3264 ada_array_bound_from_type (struct type *arr_type, int n, int which)
3265 {
3266 struct type *type, *index_type_desc, *index_type;
3267 int i;
3268
3269 gdb_assert (which == 0 || which == 1);
3270
3271 if (ada_is_constrained_packed_array_type (arr_type))
3272 arr_type = decode_constrained_packed_array_type (arr_type);
3273
3274 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
3275 return (LONGEST) - which;
3276
3277 if (arr_type->code () == TYPE_CODE_PTR)
3278 type = TYPE_TARGET_TYPE (arr_type);
3279 else
3280 type = arr_type;
3281
3282 if (type->is_fixed_instance ())
3283 {
3284 /* The array has already been fixed, so we do not need to
3285 check the parallel ___XA type again. That encoding has
3286 already been applied, so ignore it now. */
3287 index_type_desc = NULL;
3288 }
3289 else
3290 {
3291 index_type_desc = ada_find_parallel_type (type, "___XA");
3292 ada_fixup_array_indexes_type (index_type_desc);
3293 }
3294
3295 if (index_type_desc != NULL)
3296 index_type = to_fixed_range_type (index_type_desc->field (n - 1).type (),
3297 NULL);
3298 else
3299 {
3300 struct type *elt_type = check_typedef (type);
3301
3302 for (i = 1; i < n; i++)
3303 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3304
3305 index_type = elt_type->index_type ();
3306 }
3307
3308 return
3309 (LONGEST) (which == 0
3310 ? ada_discrete_type_low_bound (index_type)
3311 : ada_discrete_type_high_bound (index_type));
3312 }
3313
3314 /* Given that arr is an array value, returns the lower bound of the
3315 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3316 WHICH is 1. This routine will also work for arrays with bounds
3317 supplied by run-time quantities other than discriminants. */
3318
3319 static LONGEST
3320 ada_array_bound (struct value *arr, int n, int which)
3321 {
3322 struct type *arr_type;
3323
3324 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
3325 arr = value_ind (arr);
3326 arr_type = value_enclosing_type (arr);
3327
3328 if (ada_is_constrained_packed_array_type (arr_type))
3329 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
3330 else if (ada_is_simple_array_type (arr_type))
3331 return ada_array_bound_from_type (arr_type, n, which);
3332 else
3333 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
3334 }
3335
3336 /* Given that arr is an array value, returns the length of the
3337 nth index. This routine will also work for arrays with bounds
3338 supplied by run-time quantities other than discriminants.
3339 Does not work for arrays indexed by enumeration types with representation
3340 clauses at the moment. */
3341
3342 static LONGEST
3343 ada_array_length (struct value *arr, int n)
3344 {
3345 struct type *arr_type, *index_type;
3346 int low, high;
3347
3348 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
3349 arr = value_ind (arr);
3350 arr_type = value_enclosing_type (arr);
3351
3352 if (ada_is_constrained_packed_array_type (arr_type))
3353 return ada_array_length (decode_constrained_packed_array (arr), n);
3354
3355 if (ada_is_simple_array_type (arr_type))
3356 {
3357 low = ada_array_bound_from_type (arr_type, n, 0);
3358 high = ada_array_bound_from_type (arr_type, n, 1);
3359 }
3360 else
3361 {
3362 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3363 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3364 }
3365
3366 arr_type = check_typedef (arr_type);
3367 index_type = ada_index_type (arr_type, n, "length");
3368 if (index_type != NULL)
3369 {
3370 struct type *base_type;
3371 if (index_type->code () == TYPE_CODE_RANGE)
3372 base_type = TYPE_TARGET_TYPE (index_type);
3373 else
3374 base_type = index_type;
3375
3376 low = pos_atr (value_from_longest (base_type, low));
3377 high = pos_atr (value_from_longest (base_type, high));
3378 }
3379 return high - low + 1;
3380 }
3381
3382 /* An array whose type is that of ARR_TYPE (an array type), with
3383 bounds LOW to HIGH, but whose contents are unimportant. If HIGH is
3384 less than LOW, then LOW-1 is used. */
3385
3386 static struct value *
3387 empty_array (struct type *arr_type, int low, int high)
3388 {
3389 struct type *arr_type0 = ada_check_typedef (arr_type);
3390 struct type *index_type
3391 = create_static_range_type
3392 (NULL, TYPE_TARGET_TYPE (arr_type0->index_type ()), low,
3393 high < low ? low - 1 : high);
3394 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3395
3396 return allocate_value (create_array_type (NULL, elt_type, index_type));
3397 }
3398 \f
3399
3400 /* Name resolution */
3401
3402 /* The "decoded" name for the user-definable Ada operator corresponding
3403 to OP. */
3404
3405 static const char *
3406 ada_decoded_op_name (enum exp_opcode op)
3407 {
3408 int i;
3409
3410 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3411 {
3412 if (ada_opname_table[i].op == op)
3413 return ada_opname_table[i].decoded;
3414 }
3415 error (_("Could not find operator name for opcode"));
3416 }
3417
3418 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3419 in a listing of choices during disambiguation (see sort_choices, below).
3420 The idea is that overloadings of a subprogram name from the
3421 same package should sort in their source order. We settle for ordering
3422 such symbols by their trailing number (__N or $N). */
3423
3424 static int
3425 encoded_ordered_before (const char *N0, const char *N1)
3426 {
3427 if (N1 == NULL)
3428 return 0;
3429 else if (N0 == NULL)
3430 return 1;
3431 else
3432 {
3433 int k0, k1;
3434
3435 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3436 ;
3437 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3438 ;
3439 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3440 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3441 {
3442 int n0, n1;
3443
3444 n0 = k0;
3445 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3446 n0 -= 1;
3447 n1 = k1;
3448 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3449 n1 -= 1;
3450 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3451 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3452 }
3453 return (strcmp (N0, N1) < 0);
3454 }
3455 }
3456
3457 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3458 encoded names. */
3459
3460 static void
3461 sort_choices (struct block_symbol syms[], int nsyms)
3462 {
3463 int i;
3464
3465 for (i = 1; i < nsyms; i += 1)
3466 {
3467 struct block_symbol sym = syms[i];
3468 int j;
3469
3470 for (j = i - 1; j >= 0; j -= 1)
3471 {
3472 if (encoded_ordered_before (syms[j].symbol->linkage_name (),
3473 sym.symbol->linkage_name ()))
3474 break;
3475 syms[j + 1] = syms[j];
3476 }
3477 syms[j + 1] = sym;
3478 }
3479 }
3480
3481 /* Whether GDB should display formals and return types for functions in the
3482 overloads selection menu. */
3483 static bool print_signatures = true;
3484
3485 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3486 all but functions, the signature is just the name of the symbol. For
3487 functions, this is the name of the function, the list of types for formals
3488 and the return type (if any). */
3489
3490 static void
3491 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3492 const struct type_print_options *flags)
3493 {
3494 struct type *type = sym->type ();
3495
3496 gdb_printf (stream, "%s", sym->print_name ());
3497 if (!print_signatures
3498 || type == NULL
3499 || type->code () != TYPE_CODE_FUNC)
3500 return;
3501
3502 if (type->num_fields () > 0)
3503 {
3504 int i;
3505
3506 gdb_printf (stream, " (");
3507 for (i = 0; i < type->num_fields (); ++i)
3508 {
3509 if (i > 0)
3510 gdb_printf (stream, "; ");
3511 ada_print_type (type->field (i).type (), NULL, stream, -1, 0,
3512 flags);
3513 }
3514 gdb_printf (stream, ")");
3515 }
3516 if (TYPE_TARGET_TYPE (type) != NULL
3517 && TYPE_TARGET_TYPE (type)->code () != TYPE_CODE_VOID)
3518 {
3519 gdb_printf (stream, " return ");
3520 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3521 }
3522 }
3523
3524 /* Read and validate a set of numeric choices from the user in the
3525 range 0 .. N_CHOICES-1. Place the results in increasing
3526 order in CHOICES[0 .. N-1], and return N.
3527
3528 The user types choices as a sequence of numbers on one line
3529 separated by blanks, encoding them as follows:
3530
3531 + A choice of 0 means to cancel the selection, throwing an error.
3532 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3533 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3534
3535 The user is not allowed to choose more than MAX_RESULTS values.
3536
3537 ANNOTATION_SUFFIX, if present, is used to annotate the input
3538 prompts (for use with the -f switch). */
3539
3540 static int
3541 get_selections (int *choices, int n_choices, int max_results,
3542 int is_all_choice, const char *annotation_suffix)
3543 {
3544 const char *args;
3545 const char *prompt;
3546 int n_chosen;
3547 int first_choice = is_all_choice ? 2 : 1;
3548
3549 prompt = getenv ("PS2");
3550 if (prompt == NULL)
3551 prompt = "> ";
3552
3553 args = command_line_input (prompt, annotation_suffix);
3554
3555 if (args == NULL)
3556 error_no_arg (_("one or more choice numbers"));
3557
3558 n_chosen = 0;
3559
3560 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3561 order, as given in args. Choices are validated. */
3562 while (1)
3563 {
3564 char *args2;
3565 int choice, j;
3566
3567 args = skip_spaces (args);
3568 if (*args == '\0' && n_chosen == 0)
3569 error_no_arg (_("one or more choice numbers"));
3570 else if (*args == '\0')
3571 break;
3572
3573 choice = strtol (args, &args2, 10);
3574 if (args == args2 || choice < 0
3575 || choice > n_choices + first_choice - 1)
3576 error (_("Argument must be choice number"));
3577 args = args2;
3578
3579 if (choice == 0)
3580 error (_("cancelled"));
3581
3582 if (choice < first_choice)
3583 {
3584 n_chosen = n_choices;
3585 for (j = 0; j < n_choices; j += 1)
3586 choices[j] = j;
3587 break;
3588 }
3589 choice -= first_choice;
3590
3591 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3592 {
3593 }
3594
3595 if (j < 0 || choice != choices[j])
3596 {
3597 int k;
3598
3599 for (k = n_chosen - 1; k > j; k -= 1)
3600 choices[k + 1] = choices[k];
3601 choices[j + 1] = choice;
3602 n_chosen += 1;
3603 }
3604 }
3605
3606 if (n_chosen > max_results)
3607 error (_("Select no more than %d of the above"), max_results);
3608
3609 return n_chosen;
3610 }
3611
3612 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3613 by asking the user (if necessary), returning the number selected,
3614 and setting the first elements of SYMS items. Error if no symbols
3615 selected. */
3616
3617 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3618 to be re-integrated one of these days. */
3619
3620 static int
3621 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3622 {
3623 int i;
3624 int *chosen = XALLOCAVEC (int , nsyms);
3625 int n_chosen;
3626 int first_choice = (max_results == 1) ? 1 : 2;
3627 const char *select_mode = multiple_symbols_select_mode ();
3628
3629 if (max_results < 1)
3630 error (_("Request to select 0 symbols!"));
3631 if (nsyms <= 1)
3632 return nsyms;
3633
3634 if (select_mode == multiple_symbols_cancel)
3635 error (_("\
3636 canceled because the command is ambiguous\n\
3637 See set/show multiple-symbol."));
3638
3639 /* If select_mode is "all", then return all possible symbols.
3640 Only do that if more than one symbol can be selected, of course.
3641 Otherwise, display the menu as usual. */
3642 if (select_mode == multiple_symbols_all && max_results > 1)
3643 return nsyms;
3644
3645 gdb_printf (_("[0] cancel\n"));
3646 if (max_results > 1)
3647 gdb_printf (_("[1] all\n"));
3648
3649 sort_choices (syms, nsyms);
3650
3651 for (i = 0; i < nsyms; i += 1)
3652 {
3653 if (syms[i].symbol == NULL)
3654 continue;
3655
3656 if (syms[i].symbol->aclass () == LOC_BLOCK)
3657 {
3658 struct symtab_and_line sal =
3659 find_function_start_sal (syms[i].symbol, 1);
3660
3661 gdb_printf ("[%d] ", i + first_choice);
3662 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3663 &type_print_raw_options);
3664 if (sal.symtab == NULL)
3665 gdb_printf (_(" at %p[<no source file available>%p]:%d\n"),
3666 metadata_style.style ().ptr (), nullptr, sal.line);
3667 else
3668 gdb_printf
3669 (_(" at %ps:%d\n"),
3670 styled_string (file_name_style.style (),
3671 symtab_to_filename_for_display (sal.symtab)),
3672 sal.line);
3673 continue;
3674 }
3675 else
3676 {
3677 int is_enumeral =
3678 (syms[i].symbol->aclass () == LOC_CONST
3679 && syms[i].symbol->type () != NULL
3680 && syms[i].symbol->type ()->code () == TYPE_CODE_ENUM);
3681 struct symtab *symtab = NULL;
3682
3683 if (syms[i].symbol->is_objfile_owned ())
3684 symtab = syms[i].symbol->symtab ();
3685
3686 if (syms[i].symbol->line () != 0 && symtab != NULL)
3687 {
3688 gdb_printf ("[%d] ", i + first_choice);
3689 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3690 &type_print_raw_options);
3691 gdb_printf (_(" at %s:%d\n"),
3692 symtab_to_filename_for_display (symtab),
3693 syms[i].symbol->line ());
3694 }
3695 else if (is_enumeral
3696 && syms[i].symbol->type ()->name () != NULL)
3697 {
3698 gdb_printf (("[%d] "), i + first_choice);
3699 ada_print_type (syms[i].symbol->type (), NULL,
3700 gdb_stdout, -1, 0, &type_print_raw_options);
3701 gdb_printf (_("'(%s) (enumeral)\n"),
3702 syms[i].symbol->print_name ());
3703 }
3704 else
3705 {
3706 gdb_printf ("[%d] ", i + first_choice);
3707 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3708 &type_print_raw_options);
3709
3710 if (symtab != NULL)
3711 gdb_printf (is_enumeral
3712 ? _(" in %s (enumeral)\n")
3713 : _(" at %s:?\n"),
3714 symtab_to_filename_for_display (symtab));
3715 else
3716 gdb_printf (is_enumeral
3717 ? _(" (enumeral)\n")
3718 : _(" at ?\n"));
3719 }
3720 }
3721 }
3722
3723 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3724 "overload-choice");
3725
3726 for (i = 0; i < n_chosen; i += 1)
3727 syms[i] = syms[chosen[i]];
3728
3729 return n_chosen;
3730 }
3731
3732 /* See ada-lang.h. */
3733
3734 block_symbol
3735 ada_find_operator_symbol (enum exp_opcode op, bool parse_completion,
3736 int nargs, value *argvec[])
3737 {
3738 if (possible_user_operator_p (op, argvec))
3739 {
3740 std::vector<struct block_symbol> candidates
3741 = ada_lookup_symbol_list (ada_decoded_op_name (op),
3742 NULL, VAR_DOMAIN);
3743
3744 int i = ada_resolve_function (candidates, argvec,
3745 nargs, ada_decoded_op_name (op), NULL,
3746 parse_completion);
3747 if (i >= 0)
3748 return candidates[i];
3749 }
3750 return {};
3751 }
3752
3753 /* See ada-lang.h. */
3754
3755 block_symbol
3756 ada_resolve_funcall (struct symbol *sym, const struct block *block,
3757 struct type *context_type,
3758 bool parse_completion,
3759 int nargs, value *argvec[],
3760 innermost_block_tracker *tracker)
3761 {
3762 std::vector<struct block_symbol> candidates
3763 = ada_lookup_symbol_list (sym->linkage_name (), block, VAR_DOMAIN);
3764
3765 int i;
3766 if (candidates.size () == 1)
3767 i = 0;
3768 else
3769 {
3770 i = ada_resolve_function
3771 (candidates,
3772 argvec, nargs,
3773 sym->linkage_name (),
3774 context_type, parse_completion);
3775 if (i < 0)
3776 error (_("Could not find a match for %s"), sym->print_name ());
3777 }
3778
3779 tracker->update (candidates[i]);
3780 return candidates[i];
3781 }
3782
3783 /* Resolve a mention of a name where the context type is an
3784 enumeration type. */
3785
3786 static int
3787 ada_resolve_enum (std::vector<struct block_symbol> &syms,
3788 const char *name, struct type *context_type,
3789 bool parse_completion)
3790 {
3791 gdb_assert (context_type->code () == TYPE_CODE_ENUM);
3792 context_type = ada_check_typedef (context_type);
3793
3794 for (int i = 0; i < syms.size (); ++i)
3795 {
3796 /* We already know the name matches, so we're just looking for
3797 an element of the correct enum type. */
3798 if (ada_check_typedef (syms[i].symbol->type ()) == context_type)
3799 return i;
3800 }
3801
3802 error (_("No name '%s' in enumeration type '%s'"), name,
3803 ada_type_name (context_type));
3804 }
3805
3806 /* See ada-lang.h. */
3807
3808 block_symbol
3809 ada_resolve_variable (struct symbol *sym, const struct block *block,
3810 struct type *context_type,
3811 bool parse_completion,
3812 int deprocedure_p,
3813 innermost_block_tracker *tracker)
3814 {
3815 std::vector<struct block_symbol> candidates
3816 = ada_lookup_symbol_list (sym->linkage_name (), block, VAR_DOMAIN);
3817
3818 if (std::any_of (candidates.begin (),
3819 candidates.end (),
3820 [] (block_symbol &bsym)
3821 {
3822 switch (bsym.symbol->aclass ())
3823 {
3824 case LOC_REGISTER:
3825 case LOC_ARG:
3826 case LOC_REF_ARG:
3827 case LOC_REGPARM_ADDR:
3828 case LOC_LOCAL:
3829 case LOC_COMPUTED:
3830 return true;
3831 default:
3832 return false;
3833 }
3834 }))
3835 {
3836 /* Types tend to get re-introduced locally, so if there
3837 are any local symbols that are not types, first filter
3838 out all types. */
3839 candidates.erase
3840 (std::remove_if
3841 (candidates.begin (),
3842 candidates.end (),
3843 [] (block_symbol &bsym)
3844 {
3845 return bsym.symbol->aclass () == LOC_TYPEDEF;
3846 }),
3847 candidates.end ());
3848 }
3849
3850 /* Filter out artificial symbols. */
3851 candidates.erase
3852 (std::remove_if
3853 (candidates.begin (),
3854 candidates.end (),
3855 [] (block_symbol &bsym)
3856 {
3857 return bsym.symbol->is_artificial ();
3858 }),
3859 candidates.end ());
3860
3861 int i;
3862 if (candidates.empty ())
3863 error (_("No definition found for %s"), sym->print_name ());
3864 else if (candidates.size () == 1)
3865 i = 0;
3866 else if (context_type != nullptr
3867 && context_type->code () == TYPE_CODE_ENUM)
3868 i = ada_resolve_enum (candidates, sym->linkage_name (), context_type,
3869 parse_completion);
3870 else if (deprocedure_p && !is_nonfunction (candidates))
3871 {
3872 i = ada_resolve_function
3873 (candidates, NULL, 0,
3874 sym->linkage_name (),
3875 context_type, parse_completion);
3876 if (i < 0)
3877 error (_("Could not find a match for %s"), sym->print_name ());
3878 }
3879 else
3880 {
3881 gdb_printf (_("Multiple matches for %s\n"), sym->print_name ());
3882 user_select_syms (candidates.data (), candidates.size (), 1);
3883 i = 0;
3884 }
3885
3886 tracker->update (candidates[i]);
3887 return candidates[i];
3888 }
3889
3890 /* Return non-zero if formal type FTYPE matches actual type ATYPE. */
3891 /* The term "match" here is rather loose. The match is heuristic and
3892 liberal. */
3893
3894 static int
3895 ada_type_match (struct type *ftype, struct type *atype)
3896 {
3897 ftype = ada_check_typedef (ftype);
3898 atype = ada_check_typedef (atype);
3899
3900 if (ftype->code () == TYPE_CODE_REF)
3901 ftype = TYPE_TARGET_TYPE (ftype);
3902 if (atype->code () == TYPE_CODE_REF)
3903 atype = TYPE_TARGET_TYPE (atype);
3904
3905 switch (ftype->code ())
3906 {
3907 default:
3908 return ftype->code () == atype->code ();
3909 case TYPE_CODE_PTR:
3910 if (atype->code () != TYPE_CODE_PTR)
3911 return 0;
3912 atype = TYPE_TARGET_TYPE (atype);
3913 /* This can only happen if the actual argument is 'null'. */
3914 if (atype->code () == TYPE_CODE_INT && TYPE_LENGTH (atype) == 0)
3915 return 1;
3916 return ada_type_match (TYPE_TARGET_TYPE (ftype), atype);
3917 case TYPE_CODE_INT:
3918 case TYPE_CODE_ENUM:
3919 case TYPE_CODE_RANGE:
3920 switch (atype->code ())
3921 {
3922 case TYPE_CODE_INT:
3923 case TYPE_CODE_ENUM:
3924 case TYPE_CODE_RANGE:
3925 return 1;
3926 default:
3927 return 0;
3928 }
3929
3930 case TYPE_CODE_ARRAY:
3931 return (atype->code () == TYPE_CODE_ARRAY
3932 || ada_is_array_descriptor_type (atype));
3933
3934 case TYPE_CODE_STRUCT:
3935 if (ada_is_array_descriptor_type (ftype))
3936 return (atype->code () == TYPE_CODE_ARRAY
3937 || ada_is_array_descriptor_type (atype));
3938 else
3939 return (atype->code () == TYPE_CODE_STRUCT
3940 && !ada_is_array_descriptor_type (atype));
3941
3942 case TYPE_CODE_UNION:
3943 case TYPE_CODE_FLT:
3944 return (atype->code () == ftype->code ());
3945 }
3946 }
3947
3948 /* Return non-zero if the formals of FUNC "sufficiently match" the
3949 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3950 may also be an enumeral, in which case it is treated as a 0-
3951 argument function. */
3952
3953 static int
3954 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3955 {
3956 int i;
3957 struct type *func_type = func->type ();
3958
3959 if (func->aclass () == LOC_CONST
3960 && func_type->code () == TYPE_CODE_ENUM)
3961 return (n_actuals == 0);
3962 else if (func_type == NULL || func_type->code () != TYPE_CODE_FUNC)
3963 return 0;
3964
3965 if (func_type->num_fields () != n_actuals)
3966 return 0;
3967
3968 for (i = 0; i < n_actuals; i += 1)
3969 {
3970 if (actuals[i] == NULL)
3971 return 0;
3972 else
3973 {
3974 struct type *ftype = ada_check_typedef (func_type->field (i).type ());
3975 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3976
3977 if (!ada_type_match (ftype, atype))
3978 return 0;
3979 }
3980 }
3981 return 1;
3982 }
3983
3984 /* False iff function type FUNC_TYPE definitely does not produce a value
3985 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3986 FUNC_TYPE is not a valid function type with a non-null return type
3987 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3988
3989 static int
3990 return_match (struct type *func_type, struct type *context_type)
3991 {
3992 struct type *return_type;
3993
3994 if (func_type == NULL)
3995 return 1;
3996
3997 if (func_type->code () == TYPE_CODE_FUNC)
3998 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3999 else
4000 return_type = get_base_type (func_type);
4001 if (return_type == NULL)
4002 return 1;
4003
4004 context_type = get_base_type (context_type);
4005
4006 if (return_type->code () == TYPE_CODE_ENUM)
4007 return context_type == NULL || return_type == context_type;
4008 else if (context_type == NULL)
4009 return return_type->code () != TYPE_CODE_VOID;
4010 else
4011 return return_type->code () == context_type->code ();
4012 }
4013
4014
4015 /* Returns the index in SYMS that contains the symbol for the
4016 function (if any) that matches the types of the NARGS arguments in
4017 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
4018 that returns that type, then eliminate matches that don't. If
4019 CONTEXT_TYPE is void and there is at least one match that does not
4020 return void, eliminate all matches that do.
4021
4022 Asks the user if there is more than one match remaining. Returns -1
4023 if there is no such symbol or none is selected. NAME is used
4024 solely for messages. May re-arrange and modify SYMS in
4025 the process; the index returned is for the modified vector. */
4026
4027 static int
4028 ada_resolve_function (std::vector<struct block_symbol> &syms,
4029 struct value **args, int nargs,
4030 const char *name, struct type *context_type,
4031 bool parse_completion)
4032 {
4033 int fallback;
4034 int k;
4035 int m; /* Number of hits */
4036
4037 m = 0;
4038 /* In the first pass of the loop, we only accept functions matching
4039 context_type. If none are found, we add a second pass of the loop
4040 where every function is accepted. */
4041 for (fallback = 0; m == 0 && fallback < 2; fallback++)
4042 {
4043 for (k = 0; k < syms.size (); k += 1)
4044 {
4045 struct type *type = ada_check_typedef (syms[k].symbol->type ());
4046
4047 if (ada_args_match (syms[k].symbol, args, nargs)
4048 && (fallback || return_match (type, context_type)))
4049 {
4050 syms[m] = syms[k];
4051 m += 1;
4052 }
4053 }
4054 }
4055
4056 /* If we got multiple matches, ask the user which one to use. Don't do this
4057 interactive thing during completion, though, as the purpose of the
4058 completion is providing a list of all possible matches. Prompting the
4059 user to filter it down would be completely unexpected in this case. */
4060 if (m == 0)
4061 return -1;
4062 else if (m > 1 && !parse_completion)
4063 {
4064 gdb_printf (_("Multiple matches for %s\n"), name);
4065 user_select_syms (syms.data (), m, 1);
4066 return 0;
4067 }
4068 return 0;
4069 }
4070
4071 /* Type-class predicates */
4072
4073 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4074 or FLOAT). */
4075
4076 static int
4077 numeric_type_p (struct type *type)
4078 {
4079 if (type == NULL)
4080 return 0;
4081 else
4082 {
4083 switch (type->code ())
4084 {
4085 case TYPE_CODE_INT:
4086 case TYPE_CODE_FLT:
4087 case TYPE_CODE_FIXED_POINT:
4088 return 1;
4089 case TYPE_CODE_RANGE:
4090 return (type == TYPE_TARGET_TYPE (type)
4091 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4092 default:
4093 return 0;
4094 }
4095 }
4096 }
4097
4098 /* True iff TYPE is integral (an INT or RANGE of INTs). */
4099
4100 static int
4101 integer_type_p (struct type *type)
4102 {
4103 if (type == NULL)
4104 return 0;
4105 else
4106 {
4107 switch (type->code ())
4108 {
4109 case TYPE_CODE_INT:
4110 return 1;
4111 case TYPE_CODE_RANGE:
4112 return (type == TYPE_TARGET_TYPE (type)
4113 || integer_type_p (TYPE_TARGET_TYPE (type)));
4114 default:
4115 return 0;
4116 }
4117 }
4118 }
4119
4120 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
4121
4122 static int
4123 scalar_type_p (struct type *type)
4124 {
4125 if (type == NULL)
4126 return 0;
4127 else
4128 {
4129 switch (type->code ())
4130 {
4131 case TYPE_CODE_INT:
4132 case TYPE_CODE_RANGE:
4133 case TYPE_CODE_ENUM:
4134 case TYPE_CODE_FLT:
4135 case TYPE_CODE_FIXED_POINT:
4136 return 1;
4137 default:
4138 return 0;
4139 }
4140 }
4141 }
4142
4143 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
4144
4145 static int
4146 discrete_type_p (struct type *type)
4147 {
4148 if (type == NULL)
4149 return 0;
4150 else
4151 {
4152 switch (type->code ())
4153 {
4154 case TYPE_CODE_INT:
4155 case TYPE_CODE_RANGE:
4156 case TYPE_CODE_ENUM:
4157 case TYPE_CODE_BOOL:
4158 return 1;
4159 default:
4160 return 0;
4161 }
4162 }
4163 }
4164
4165 /* Returns non-zero if OP with operands in the vector ARGS could be
4166 a user-defined function. Errs on the side of pre-defined operators
4167 (i.e., result 0). */
4168
4169 static int
4170 possible_user_operator_p (enum exp_opcode op, struct value *args[])
4171 {
4172 struct type *type0 =
4173 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
4174 struct type *type1 =
4175 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
4176
4177 if (type0 == NULL)
4178 return 0;
4179
4180 switch (op)
4181 {
4182 default:
4183 return 0;
4184
4185 case BINOP_ADD:
4186 case BINOP_SUB:
4187 case BINOP_MUL:
4188 case BINOP_DIV:
4189 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4190
4191 case BINOP_REM:
4192 case BINOP_MOD:
4193 case BINOP_BITWISE_AND:
4194 case BINOP_BITWISE_IOR:
4195 case BINOP_BITWISE_XOR:
4196 return (!(integer_type_p (type0) && integer_type_p (type1)));
4197
4198 case BINOP_EQUAL:
4199 case BINOP_NOTEQUAL:
4200 case BINOP_LESS:
4201 case BINOP_GTR:
4202 case BINOP_LEQ:
4203 case BINOP_GEQ:
4204 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4205
4206 case BINOP_CONCAT:
4207 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4208
4209 case BINOP_EXP:
4210 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4211
4212 case UNOP_NEG:
4213 case UNOP_PLUS:
4214 case UNOP_LOGICAL_NOT:
4215 case UNOP_ABS:
4216 return (!numeric_type_p (type0));
4217
4218 }
4219 }
4220 \f
4221 /* Renaming */
4222
4223 /* NOTES:
4224
4225 1. In the following, we assume that a renaming type's name may
4226 have an ___XD suffix. It would be nice if this went away at some
4227 point.
4228 2. We handle both the (old) purely type-based representation of
4229 renamings and the (new) variable-based encoding. At some point,
4230 it is devoutly to be hoped that the former goes away
4231 (FIXME: hilfinger-2007-07-09).
4232 3. Subprogram renamings are not implemented, although the XRS
4233 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4234
4235 /* If SYM encodes a renaming,
4236
4237 <renaming> renames <renamed entity>,
4238
4239 sets *LEN to the length of the renamed entity's name,
4240 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4241 the string describing the subcomponent selected from the renamed
4242 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4243 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4244 are undefined). Otherwise, returns a value indicating the category
4245 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4246 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4247 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4248 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4249 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4250 may be NULL, in which case they are not assigned.
4251
4252 [Currently, however, GCC does not generate subprogram renamings.] */
4253
4254 enum ada_renaming_category
4255 ada_parse_renaming (struct symbol *sym,
4256 const char **renamed_entity, int *len,
4257 const char **renaming_expr)
4258 {
4259 enum ada_renaming_category kind;
4260 const char *info;
4261 const char *suffix;
4262
4263 if (sym == NULL)
4264 return ADA_NOT_RENAMING;
4265 switch (sym->aclass ())
4266 {
4267 default:
4268 return ADA_NOT_RENAMING;
4269 case LOC_LOCAL:
4270 case LOC_STATIC:
4271 case LOC_COMPUTED:
4272 case LOC_OPTIMIZED_OUT:
4273 info = strstr (sym->linkage_name (), "___XR");
4274 if (info == NULL)
4275 return ADA_NOT_RENAMING;
4276 switch (info[5])
4277 {
4278 case '_':
4279 kind = ADA_OBJECT_RENAMING;
4280 info += 6;
4281 break;
4282 case 'E':
4283 kind = ADA_EXCEPTION_RENAMING;
4284 info += 7;
4285 break;
4286 case 'P':
4287 kind = ADA_PACKAGE_RENAMING;
4288 info += 7;
4289 break;
4290 case 'S':
4291 kind = ADA_SUBPROGRAM_RENAMING;
4292 info += 7;
4293 break;
4294 default:
4295 return ADA_NOT_RENAMING;
4296 }
4297 }
4298
4299 if (renamed_entity != NULL)
4300 *renamed_entity = info;
4301 suffix = strstr (info, "___XE");
4302 if (suffix == NULL || suffix == info)
4303 return ADA_NOT_RENAMING;
4304 if (len != NULL)
4305 *len = strlen (info) - strlen (suffix);
4306 suffix += 5;
4307 if (renaming_expr != NULL)
4308 *renaming_expr = suffix;
4309 return kind;
4310 }
4311
4312 /* Compute the value of the given RENAMING_SYM, which is expected to
4313 be a symbol encoding a renaming expression. BLOCK is the block
4314 used to evaluate the renaming. */
4315
4316 static struct value *
4317 ada_read_renaming_var_value (struct symbol *renaming_sym,
4318 const struct block *block)
4319 {
4320 const char *sym_name;
4321
4322 sym_name = renaming_sym->linkage_name ();
4323 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4324 return evaluate_expression (expr.get ());
4325 }
4326 \f
4327
4328 /* Evaluation: Function Calls */
4329
4330 /* Return an lvalue containing the value VAL. This is the identity on
4331 lvalues, and otherwise has the side-effect of allocating memory
4332 in the inferior where a copy of the value contents is copied. */
4333
4334 static struct value *
4335 ensure_lval (struct value *val)
4336 {
4337 if (VALUE_LVAL (val) == not_lval
4338 || VALUE_LVAL (val) == lval_internalvar)
4339 {
4340 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4341 const CORE_ADDR addr =
4342 value_as_long (value_allocate_space_in_inferior (len));
4343
4344 VALUE_LVAL (val) = lval_memory;
4345 set_value_address (val, addr);
4346 write_memory (addr, value_contents (val).data (), len);
4347 }
4348
4349 return val;
4350 }
4351
4352 /* Given ARG, a value of type (pointer or reference to a)*
4353 structure/union, extract the component named NAME from the ultimate
4354 target structure/union and return it as a value with its
4355 appropriate type.
4356
4357 The routine searches for NAME among all members of the structure itself
4358 and (recursively) among all members of any wrapper members
4359 (e.g., '_parent').
4360
4361 If NO_ERR, then simply return NULL in case of error, rather than
4362 calling error. */
4363
4364 static struct value *
4365 ada_value_struct_elt (struct value *arg, const char *name, int no_err)
4366 {
4367 struct type *t, *t1;
4368 struct value *v;
4369 int check_tag;
4370
4371 v = NULL;
4372 t1 = t = ada_check_typedef (value_type (arg));
4373 if (t->code () == TYPE_CODE_REF)
4374 {
4375 t1 = TYPE_TARGET_TYPE (t);
4376 if (t1 == NULL)
4377 goto BadValue;
4378 t1 = ada_check_typedef (t1);
4379 if (t1->code () == TYPE_CODE_PTR)
4380 {
4381 arg = coerce_ref (arg);
4382 t = t1;
4383 }
4384 }
4385
4386 while (t->code () == TYPE_CODE_PTR)
4387 {
4388 t1 = TYPE_TARGET_TYPE (t);
4389 if (t1 == NULL)
4390 goto BadValue;
4391 t1 = ada_check_typedef (t1);
4392 if (t1->code () == TYPE_CODE_PTR)
4393 {
4394 arg = value_ind (arg);
4395 t = t1;
4396 }
4397 else
4398 break;
4399 }
4400
4401 if (t1->code () != TYPE_CODE_STRUCT && t1->code () != TYPE_CODE_UNION)
4402 goto BadValue;
4403
4404 if (t1 == t)
4405 v = ada_search_struct_field (name, arg, 0, t);
4406 else
4407 {
4408 int bit_offset, bit_size, byte_offset;
4409 struct type *field_type;
4410 CORE_ADDR address;
4411
4412 if (t->code () == TYPE_CODE_PTR)
4413 address = value_address (ada_value_ind (arg));
4414 else
4415 address = value_address (ada_coerce_ref (arg));
4416
4417 /* Check to see if this is a tagged type. We also need to handle
4418 the case where the type is a reference to a tagged type, but
4419 we have to be careful to exclude pointers to tagged types.
4420 The latter should be shown as usual (as a pointer), whereas
4421 a reference should mostly be transparent to the user. */
4422
4423 if (ada_is_tagged_type (t1, 0)
4424 || (t1->code () == TYPE_CODE_REF
4425 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
4426 {
4427 /* We first try to find the searched field in the current type.
4428 If not found then let's look in the fixed type. */
4429
4430 if (!find_struct_field (name, t1, 0,
4431 nullptr, nullptr, nullptr,
4432 nullptr, nullptr))
4433 check_tag = 1;
4434 else
4435 check_tag = 0;
4436 }
4437 else
4438 check_tag = 0;
4439
4440 /* Convert to fixed type in all cases, so that we have proper
4441 offsets to each field in unconstrained record types. */
4442 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
4443 address, NULL, check_tag);
4444
4445 /* Resolve the dynamic type as well. */
4446 arg = value_from_contents_and_address (t1, nullptr, address);
4447 t1 = value_type (arg);
4448
4449 if (find_struct_field (name, t1, 0,
4450 &field_type, &byte_offset, &bit_offset,
4451 &bit_size, NULL))
4452 {
4453 if (bit_size != 0)
4454 {
4455 if (t->code () == TYPE_CODE_REF)
4456 arg = ada_coerce_ref (arg);
4457 else
4458 arg = ada_value_ind (arg);
4459 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
4460 bit_offset, bit_size,
4461 field_type);
4462 }
4463 else
4464 v = value_at_lazy (field_type, address + byte_offset);
4465 }
4466 }
4467
4468 if (v != NULL || no_err)
4469 return v;
4470 else
4471 error (_("There is no member named %s."), name);
4472
4473 BadValue:
4474 if (no_err)
4475 return NULL;
4476 else
4477 error (_("Attempt to extract a component of "
4478 "a value that is not a record."));
4479 }
4480
4481 /* Return the value ACTUAL, converted to be an appropriate value for a
4482 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4483 allocating any necessary descriptors (fat pointers), or copies of
4484 values not residing in memory, updating it as needed. */
4485
4486 struct value *
4487 ada_convert_actual (struct value *actual, struct type *formal_type0)
4488 {
4489 struct type *actual_type = ada_check_typedef (value_type (actual));
4490 struct type *formal_type = ada_check_typedef (formal_type0);
4491 struct type *formal_target =
4492 formal_type->code () == TYPE_CODE_PTR
4493 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4494 struct type *actual_target =
4495 actual_type->code () == TYPE_CODE_PTR
4496 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4497
4498 if (ada_is_array_descriptor_type (formal_target)
4499 && actual_target->code () == TYPE_CODE_ARRAY)
4500 return make_array_descriptor (formal_type, actual);
4501 else if (formal_type->code () == TYPE_CODE_PTR
4502 || formal_type->code () == TYPE_CODE_REF)
4503 {
4504 struct value *result;
4505
4506 if (formal_target->code () == TYPE_CODE_ARRAY
4507 && ada_is_array_descriptor_type (actual_target))
4508 result = desc_data (actual);
4509 else if (formal_type->code () != TYPE_CODE_PTR)
4510 {
4511 if (VALUE_LVAL (actual) != lval_memory)
4512 {
4513 struct value *val;
4514
4515 actual_type = ada_check_typedef (value_type (actual));
4516 val = allocate_value (actual_type);
4517 copy (value_contents (actual), value_contents_raw (val));
4518 actual = ensure_lval (val);
4519 }
4520 result = value_addr (actual);
4521 }
4522 else
4523 return actual;
4524 return value_cast_pointers (formal_type, result, 0);
4525 }
4526 else if (actual_type->code () == TYPE_CODE_PTR)
4527 return ada_value_ind (actual);
4528 else if (ada_is_aligner_type (formal_type))
4529 {
4530 /* We need to turn this parameter into an aligner type
4531 as well. */
4532 struct value *aligner = allocate_value (formal_type);
4533 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4534
4535 value_assign_to_component (aligner, component, actual);
4536 return aligner;
4537 }
4538
4539 return actual;
4540 }
4541
4542 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4543 type TYPE. This is usually an inefficient no-op except on some targets
4544 (such as AVR) where the representation of a pointer and an address
4545 differs. */
4546
4547 static CORE_ADDR
4548 value_pointer (struct value *value, struct type *type)
4549 {
4550 unsigned len = TYPE_LENGTH (type);
4551 gdb_byte *buf = (gdb_byte *) alloca (len);
4552 CORE_ADDR addr;
4553
4554 addr = value_address (value);
4555 gdbarch_address_to_pointer (type->arch (), type, buf, addr);
4556 addr = extract_unsigned_integer (buf, len, type_byte_order (type));
4557 return addr;
4558 }
4559
4560
4561 /* Push a descriptor of type TYPE for array value ARR on the stack at
4562 *SP, updating *SP to reflect the new descriptor. Return either
4563 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4564 to-descriptor type rather than a descriptor type), a struct value *
4565 representing a pointer to this descriptor. */
4566
4567 static struct value *
4568 make_array_descriptor (struct type *type, struct value *arr)
4569 {
4570 struct type *bounds_type = desc_bounds_type (type);
4571 struct type *desc_type = desc_base_type (type);
4572 struct value *descriptor = allocate_value (desc_type);
4573 struct value *bounds = allocate_value (bounds_type);
4574 int i;
4575
4576 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4577 i > 0; i -= 1)
4578 {
4579 modify_field (value_type (bounds),
4580 value_contents_writeable (bounds).data (),
4581 ada_array_bound (arr, i, 0),
4582 desc_bound_bitpos (bounds_type, i, 0),
4583 desc_bound_bitsize (bounds_type, i, 0));
4584 modify_field (value_type (bounds),
4585 value_contents_writeable (bounds).data (),
4586 ada_array_bound (arr, i, 1),
4587 desc_bound_bitpos (bounds_type, i, 1),
4588 desc_bound_bitsize (bounds_type, i, 1));
4589 }
4590
4591 bounds = ensure_lval (bounds);
4592
4593 modify_field (value_type (descriptor),
4594 value_contents_writeable (descriptor).data (),
4595 value_pointer (ensure_lval (arr),
4596 desc_type->field (0).type ()),
4597 fat_pntr_data_bitpos (desc_type),
4598 fat_pntr_data_bitsize (desc_type));
4599
4600 modify_field (value_type (descriptor),
4601 value_contents_writeable (descriptor).data (),
4602 value_pointer (bounds,
4603 desc_type->field (1).type ()),
4604 fat_pntr_bounds_bitpos (desc_type),
4605 fat_pntr_bounds_bitsize (desc_type));
4606
4607 descriptor = ensure_lval (descriptor);
4608
4609 if (type->code () == TYPE_CODE_PTR)
4610 return value_addr (descriptor);
4611 else
4612 return descriptor;
4613 }
4614 \f
4615 /* Symbol Cache Module */
4616
4617 /* Performance measurements made as of 2010-01-15 indicate that
4618 this cache does bring some noticeable improvements. Depending
4619 on the type of entity being printed, the cache can make it as much
4620 as an order of magnitude faster than without it.
4621
4622 The descriptive type DWARF extension has significantly reduced
4623 the need for this cache, at least when DWARF is being used. However,
4624 even in this case, some expensive name-based symbol searches are still
4625 sometimes necessary - to find an XVZ variable, mostly. */
4626
4627 /* Return the symbol cache associated to the given program space PSPACE.
4628 If not allocated for this PSPACE yet, allocate and initialize one. */
4629
4630 static struct ada_symbol_cache *
4631 ada_get_symbol_cache (struct program_space *pspace)
4632 {
4633 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4634
4635 if (pspace_data->sym_cache == nullptr)
4636 pspace_data->sym_cache.reset (new ada_symbol_cache);
4637
4638 return pspace_data->sym_cache.get ();
4639 }
4640
4641 /* Clear all entries from the symbol cache. */
4642
4643 static void
4644 ada_clear_symbol_cache ()
4645 {
4646 struct ada_pspace_data *pspace_data
4647 = get_ada_pspace_data (current_program_space);
4648
4649 if (pspace_data->sym_cache != nullptr)
4650 pspace_data->sym_cache.reset ();
4651 }
4652
4653 /* Search our cache for an entry matching NAME and DOMAIN.
4654 Return it if found, or NULL otherwise. */
4655
4656 static struct cache_entry **
4657 find_entry (const char *name, domain_enum domain)
4658 {
4659 struct ada_symbol_cache *sym_cache
4660 = ada_get_symbol_cache (current_program_space);
4661 int h = msymbol_hash (name) % HASH_SIZE;
4662 struct cache_entry **e;
4663
4664 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4665 {
4666 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4667 return e;
4668 }
4669 return NULL;
4670 }
4671
4672 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4673 Return 1 if found, 0 otherwise.
4674
4675 If an entry was found and SYM is not NULL, set *SYM to the entry's
4676 SYM. Same principle for BLOCK if not NULL. */
4677
4678 static int
4679 lookup_cached_symbol (const char *name, domain_enum domain,
4680 struct symbol **sym, const struct block **block)
4681 {
4682 struct cache_entry **e = find_entry (name, domain);
4683
4684 if (e == NULL)
4685 return 0;
4686 if (sym != NULL)
4687 *sym = (*e)->sym;
4688 if (block != NULL)
4689 *block = (*e)->block;
4690 return 1;
4691 }
4692
4693 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4694 in domain DOMAIN, save this result in our symbol cache. */
4695
4696 static void
4697 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4698 const struct block *block)
4699 {
4700 struct ada_symbol_cache *sym_cache
4701 = ada_get_symbol_cache (current_program_space);
4702 int h;
4703 struct cache_entry *e;
4704
4705 /* Symbols for builtin types don't have a block.
4706 For now don't cache such symbols. */
4707 if (sym != NULL && !sym->is_objfile_owned ())
4708 return;
4709
4710 /* If the symbol is a local symbol, then do not cache it, as a search
4711 for that symbol depends on the context. To determine whether
4712 the symbol is local or not, we check the block where we found it
4713 against the global and static blocks of its associated symtab. */
4714 if (sym != nullptr)
4715 {
4716 const blockvector &bv = *sym->symtab ()->compunit ()->blockvector ();
4717
4718 if (bv.global_block () != block && bv.static_block () != block)
4719 return;
4720 }
4721
4722 h = msymbol_hash (name) % HASH_SIZE;
4723 e = XOBNEW (&sym_cache->cache_space, cache_entry);
4724 e->next = sym_cache->root[h];
4725 sym_cache->root[h] = e;
4726 e->name = obstack_strdup (&sym_cache->cache_space, name);
4727 e->sym = sym;
4728 e->domain = domain;
4729 e->block = block;
4730 }
4731 \f
4732 /* Symbol Lookup */
4733
4734 /* Return the symbol name match type that should be used used when
4735 searching for all symbols matching LOOKUP_NAME.
4736
4737 LOOKUP_NAME is expected to be a symbol name after transformation
4738 for Ada lookups. */
4739
4740 static symbol_name_match_type
4741 name_match_type_from_name (const char *lookup_name)
4742 {
4743 return (strstr (lookup_name, "__") == NULL
4744 ? symbol_name_match_type::WILD
4745 : symbol_name_match_type::FULL);
4746 }
4747
4748 /* Return the result of a standard (literal, C-like) lookup of NAME in
4749 given DOMAIN, visible from lexical block BLOCK. */
4750
4751 static struct symbol *
4752 standard_lookup (const char *name, const struct block *block,
4753 domain_enum domain)
4754 {
4755 /* Initialize it just to avoid a GCC false warning. */
4756 struct block_symbol sym = {};
4757
4758 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4759 return sym.symbol;
4760 ada_lookup_encoded_symbol (name, block, domain, &sym);
4761 cache_symbol (name, domain, sym.symbol, sym.block);
4762 return sym.symbol;
4763 }
4764
4765
4766 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4767 in the symbol fields of SYMS. We treat enumerals as functions,
4768 since they contend in overloading in the same way. */
4769 static int
4770 is_nonfunction (const std::vector<struct block_symbol> &syms)
4771 {
4772 for (const block_symbol &sym : syms)
4773 if (sym.symbol->type ()->code () != TYPE_CODE_FUNC
4774 && (sym.symbol->type ()->code () != TYPE_CODE_ENUM
4775 || sym.symbol->aclass () != LOC_CONST))
4776 return 1;
4777
4778 return 0;
4779 }
4780
4781 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4782 struct types. Otherwise, they may not. */
4783
4784 static int
4785 equiv_types (struct type *type0, struct type *type1)
4786 {
4787 if (type0 == type1)
4788 return 1;
4789 if (type0 == NULL || type1 == NULL
4790 || type0->code () != type1->code ())
4791 return 0;
4792 if ((type0->code () == TYPE_CODE_STRUCT
4793 || type0->code () == TYPE_CODE_ENUM)
4794 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4795 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4796 return 1;
4797
4798 return 0;
4799 }
4800
4801 /* True iff SYM0 represents the same entity as SYM1, or one that is
4802 no more defined than that of SYM1. */
4803
4804 static int
4805 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4806 {
4807 if (sym0 == sym1)
4808 return 1;
4809 if (sym0->domain () != sym1->domain ()
4810 || sym0->aclass () != sym1->aclass ())
4811 return 0;
4812
4813 switch (sym0->aclass ())
4814 {
4815 case LOC_UNDEF:
4816 return 1;
4817 case LOC_TYPEDEF:
4818 {
4819 struct type *type0 = sym0->type ();
4820 struct type *type1 = sym1->type ();
4821 const char *name0 = sym0->linkage_name ();
4822 const char *name1 = sym1->linkage_name ();
4823 int len0 = strlen (name0);
4824
4825 return
4826 type0->code () == type1->code ()
4827 && (equiv_types (type0, type1)
4828 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4829 && startswith (name1 + len0, "___XV")));
4830 }
4831 case LOC_CONST:
4832 return sym0->value_longest () == sym1->value_longest ()
4833 && equiv_types (sym0->type (), sym1->type ());
4834
4835 case LOC_STATIC:
4836 {
4837 const char *name0 = sym0->linkage_name ();
4838 const char *name1 = sym1->linkage_name ();
4839 return (strcmp (name0, name1) == 0
4840 && sym0->value_address () == sym1->value_address ());
4841 }
4842
4843 default:
4844 return 0;
4845 }
4846 }
4847
4848 /* Append (SYM,BLOCK) to the end of the array of struct block_symbol
4849 records in RESULT. Do nothing if SYM is a duplicate. */
4850
4851 static void
4852 add_defn_to_vec (std::vector<struct block_symbol> &result,
4853 struct symbol *sym,
4854 const struct block *block)
4855 {
4856 /* Do not try to complete stub types, as the debugger is probably
4857 already scanning all symbols matching a certain name at the
4858 time when this function is called. Trying to replace the stub
4859 type by its associated full type will cause us to restart a scan
4860 which may lead to an infinite recursion. Instead, the client
4861 collecting the matching symbols will end up collecting several
4862 matches, with at least one of them complete. It can then filter
4863 out the stub ones if needed. */
4864
4865 for (int i = result.size () - 1; i >= 0; i -= 1)
4866 {
4867 if (lesseq_defined_than (sym, result[i].symbol))
4868 return;
4869 else if (lesseq_defined_than (result[i].symbol, sym))
4870 {
4871 result[i].symbol = sym;
4872 result[i].block = block;
4873 return;
4874 }
4875 }
4876
4877 struct block_symbol info;
4878 info.symbol = sym;
4879 info.block = block;
4880 result.push_back (info);
4881 }
4882
4883 /* Return a bound minimal symbol matching NAME according to Ada
4884 decoding rules. Returns an invalid symbol if there is no such
4885 minimal symbol. Names prefixed with "standard__" are handled
4886 specially: "standard__" is first stripped off, and only static and
4887 global symbols are searched. */
4888
4889 struct bound_minimal_symbol
4890 ada_lookup_simple_minsym (const char *name)
4891 {
4892 struct bound_minimal_symbol result;
4893
4894 symbol_name_match_type match_type = name_match_type_from_name (name);
4895 lookup_name_info lookup_name (name, match_type);
4896
4897 symbol_name_matcher_ftype *match_name
4898 = ada_get_symbol_name_matcher (lookup_name);
4899
4900 for (objfile *objfile : current_program_space->objfiles ())
4901 {
4902 for (minimal_symbol *msymbol : objfile->msymbols ())
4903 {
4904 if (match_name (msymbol->linkage_name (), lookup_name, NULL)
4905 && msymbol->type () != mst_solib_trampoline)
4906 {
4907 result.minsym = msymbol;
4908 result.objfile = objfile;
4909 break;
4910 }
4911 }
4912 }
4913
4914 return result;
4915 }
4916
4917 /* True if TYPE is definitely an artificial type supplied to a symbol
4918 for which no debugging information was given in the symbol file. */
4919
4920 static int
4921 is_nondebugging_type (struct type *type)
4922 {
4923 const char *name = ada_type_name (type);
4924
4925 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4926 }
4927
4928 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4929 that are deemed "identical" for practical purposes.
4930
4931 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4932 types and that their number of enumerals is identical (in other
4933 words, type1->num_fields () == type2->num_fields ()). */
4934
4935 static int
4936 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4937 {
4938 int i;
4939
4940 /* The heuristic we use here is fairly conservative. We consider
4941 that 2 enumerate types are identical if they have the same
4942 number of enumerals and that all enumerals have the same
4943 underlying value and name. */
4944
4945 /* All enums in the type should have an identical underlying value. */
4946 for (i = 0; i < type1->num_fields (); i++)
4947 if (type1->field (i).loc_enumval () != type2->field (i).loc_enumval ())
4948 return 0;
4949
4950 /* All enumerals should also have the same name (modulo any numerical
4951 suffix). */
4952 for (i = 0; i < type1->num_fields (); i++)
4953 {
4954 const char *name_1 = type1->field (i).name ();
4955 const char *name_2 = type2->field (i).name ();
4956 int len_1 = strlen (name_1);
4957 int len_2 = strlen (name_2);
4958
4959 ada_remove_trailing_digits (type1->field (i).name (), &len_1);
4960 ada_remove_trailing_digits (type2->field (i).name (), &len_2);
4961 if (len_1 != len_2
4962 || strncmp (type1->field (i).name (),
4963 type2->field (i).name (),
4964 len_1) != 0)
4965 return 0;
4966 }
4967
4968 return 1;
4969 }
4970
4971 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4972 that are deemed "identical" for practical purposes. Sometimes,
4973 enumerals are not strictly identical, but their types are so similar
4974 that they can be considered identical.
4975
4976 For instance, consider the following code:
4977
4978 type Color is (Black, Red, Green, Blue, White);
4979 type RGB_Color is new Color range Red .. Blue;
4980
4981 Type RGB_Color is a subrange of an implicit type which is a copy
4982 of type Color. If we call that implicit type RGB_ColorB ("B" is
4983 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4984 As a result, when an expression references any of the enumeral
4985 by name (Eg. "print green"), the expression is technically
4986 ambiguous and the user should be asked to disambiguate. But
4987 doing so would only hinder the user, since it wouldn't matter
4988 what choice he makes, the outcome would always be the same.
4989 So, for practical purposes, we consider them as the same. */
4990
4991 static int
4992 symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
4993 {
4994 int i;
4995
4996 /* Before performing a thorough comparison check of each type,
4997 we perform a series of inexpensive checks. We expect that these
4998 checks will quickly fail in the vast majority of cases, and thus
4999 help prevent the unnecessary use of a more expensive comparison.
5000 Said comparison also expects us to make some of these checks
5001 (see ada_identical_enum_types_p). */
5002
5003 /* Quick check: All symbols should have an enum type. */
5004 for (i = 0; i < syms.size (); i++)
5005 if (syms[i].symbol->type ()->code () != TYPE_CODE_ENUM)
5006 return 0;
5007
5008 /* Quick check: They should all have the same value. */
5009 for (i = 1; i < syms.size (); i++)
5010 if (syms[i].symbol->value_longest () != syms[0].symbol->value_longest ())
5011 return 0;
5012
5013 /* Quick check: They should all have the same number of enumerals. */
5014 for (i = 1; i < syms.size (); i++)
5015 if (syms[i].symbol->type ()->num_fields ()
5016 != syms[0].symbol->type ()->num_fields ())
5017 return 0;
5018
5019 /* All the sanity checks passed, so we might have a set of
5020 identical enumeration types. Perform a more complete
5021 comparison of the type of each symbol. */
5022 for (i = 1; i < syms.size (); i++)
5023 if (!ada_identical_enum_types_p (syms[i].symbol->type (),
5024 syms[0].symbol->type ()))
5025 return 0;
5026
5027 return 1;
5028 }
5029
5030 /* Remove any non-debugging symbols in SYMS that definitely
5031 duplicate other symbols in the list (The only case I know of where
5032 this happens is when object files containing stabs-in-ecoff are
5033 linked with files containing ordinary ecoff debugging symbols (or no
5034 debugging symbols)). Modifies SYMS to squeeze out deleted entries. */
5035
5036 static void
5037 remove_extra_symbols (std::vector<struct block_symbol> *syms)
5038 {
5039 int i, j;
5040
5041 /* We should never be called with less than 2 symbols, as there
5042 cannot be any extra symbol in that case. But it's easy to
5043 handle, since we have nothing to do in that case. */
5044 if (syms->size () < 2)
5045 return;
5046
5047 i = 0;
5048 while (i < syms->size ())
5049 {
5050 int remove_p = 0;
5051
5052 /* If two symbols have the same name and one of them is a stub type,
5053 the get rid of the stub. */
5054
5055 if ((*syms)[i].symbol->type ()->is_stub ()
5056 && (*syms)[i].symbol->linkage_name () != NULL)
5057 {
5058 for (j = 0; j < syms->size (); j++)
5059 {
5060 if (j != i
5061 && !(*syms)[j].symbol->type ()->is_stub ()
5062 && (*syms)[j].symbol->linkage_name () != NULL
5063 && strcmp ((*syms)[i].symbol->linkage_name (),
5064 (*syms)[j].symbol->linkage_name ()) == 0)
5065 remove_p = 1;
5066 }
5067 }
5068
5069 /* Two symbols with the same name, same class and same address
5070 should be identical. */
5071
5072 else if ((*syms)[i].symbol->linkage_name () != NULL
5073 && (*syms)[i].symbol->aclass () == LOC_STATIC
5074 && is_nondebugging_type ((*syms)[i].symbol->type ()))
5075 {
5076 for (j = 0; j < syms->size (); j += 1)
5077 {
5078 if (i != j
5079 && (*syms)[j].symbol->linkage_name () != NULL
5080 && strcmp ((*syms)[i].symbol->linkage_name (),
5081 (*syms)[j].symbol->linkage_name ()) == 0
5082 && ((*syms)[i].symbol->aclass ()
5083 == (*syms)[j].symbol->aclass ())
5084 && (*syms)[i].symbol->value_address ()
5085 == (*syms)[j].symbol->value_address ())
5086 remove_p = 1;
5087 }
5088 }
5089
5090 if (remove_p)
5091 syms->erase (syms->begin () + i);
5092 else
5093 i += 1;
5094 }
5095
5096 /* If all the remaining symbols are identical enumerals, then
5097 just keep the first one and discard the rest.
5098
5099 Unlike what we did previously, we do not discard any entry
5100 unless they are ALL identical. This is because the symbol
5101 comparison is not a strict comparison, but rather a practical
5102 comparison. If all symbols are considered identical, then
5103 we can just go ahead and use the first one and discard the rest.
5104 But if we cannot reduce the list to a single element, we have
5105 to ask the user to disambiguate anyways. And if we have to
5106 present a multiple-choice menu, it's less confusing if the list
5107 isn't missing some choices that were identical and yet distinct. */
5108 if (symbols_are_identical_enums (*syms))
5109 syms->resize (1);
5110 }
5111
5112 /* Given a type that corresponds to a renaming entity, use the type name
5113 to extract the scope (package name or function name, fully qualified,
5114 and following the GNAT encoding convention) where this renaming has been
5115 defined. */
5116
5117 static std::string
5118 xget_renaming_scope (struct type *renaming_type)
5119 {
5120 /* The renaming types adhere to the following convention:
5121 <scope>__<rename>___<XR extension>.
5122 So, to extract the scope, we search for the "___XR" extension,
5123 and then backtrack until we find the first "__". */
5124
5125 const char *name = renaming_type->name ();
5126 const char *suffix = strstr (name, "___XR");
5127 const char *last;
5128
5129 /* Now, backtrack a bit until we find the first "__". Start looking
5130 at suffix - 3, as the <rename> part is at least one character long. */
5131
5132 for (last = suffix - 3; last > name; last--)
5133 if (last[0] == '_' && last[1] == '_')
5134 break;
5135
5136 /* Make a copy of scope and return it. */
5137 return std::string (name, last);
5138 }
5139
5140 /* Return nonzero if NAME corresponds to a package name. */
5141
5142 static int
5143 is_package_name (const char *name)
5144 {
5145 /* Here, We take advantage of the fact that no symbols are generated
5146 for packages, while symbols are generated for each function.
5147 So the condition for NAME represent a package becomes equivalent
5148 to NAME not existing in our list of symbols. There is only one
5149 small complication with library-level functions (see below). */
5150
5151 /* If it is a function that has not been defined at library level,
5152 then we should be able to look it up in the symbols. */
5153 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5154 return 0;
5155
5156 /* Library-level function names start with "_ada_". See if function
5157 "_ada_" followed by NAME can be found. */
5158
5159 /* Do a quick check that NAME does not contain "__", since library-level
5160 functions names cannot contain "__" in them. */
5161 if (strstr (name, "__") != NULL)
5162 return 0;
5163
5164 std::string fun_name = string_printf ("_ada_%s", name);
5165
5166 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
5167 }
5168
5169 /* Return nonzero if SYM corresponds to a renaming entity that is
5170 not visible from FUNCTION_NAME. */
5171
5172 static int
5173 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
5174 {
5175 if (sym->aclass () != LOC_TYPEDEF)
5176 return 0;
5177
5178 std::string scope = xget_renaming_scope (sym->type ());
5179
5180 /* If the rename has been defined in a package, then it is visible. */
5181 if (is_package_name (scope.c_str ()))
5182 return 0;
5183
5184 /* Check that the rename is in the current function scope by checking
5185 that its name starts with SCOPE. */
5186
5187 /* If the function name starts with "_ada_", it means that it is
5188 a library-level function. Strip this prefix before doing the
5189 comparison, as the encoding for the renaming does not contain
5190 this prefix. */
5191 if (startswith (function_name, "_ada_"))
5192 function_name += 5;
5193
5194 return !startswith (function_name, scope.c_str ());
5195 }
5196
5197 /* Remove entries from SYMS that corresponds to a renaming entity that
5198 is not visible from the function associated with CURRENT_BLOCK or
5199 that is superfluous due to the presence of more specific renaming
5200 information. Places surviving symbols in the initial entries of
5201 SYMS.
5202
5203 Rationale:
5204 First, in cases where an object renaming is implemented as a
5205 reference variable, GNAT may produce both the actual reference
5206 variable and the renaming encoding. In this case, we discard the
5207 latter.
5208
5209 Second, GNAT emits a type following a specified encoding for each renaming
5210 entity. Unfortunately, STABS currently does not support the definition
5211 of types that are local to a given lexical block, so all renamings types
5212 are emitted at library level. As a consequence, if an application
5213 contains two renaming entities using the same name, and a user tries to
5214 print the value of one of these entities, the result of the ada symbol
5215 lookup will also contain the wrong renaming type.
5216
5217 This function partially covers for this limitation by attempting to
5218 remove from the SYMS list renaming symbols that should be visible
5219 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5220 method with the current information available. The implementation
5221 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5222
5223 - When the user tries to print a rename in a function while there
5224 is another rename entity defined in a package: Normally, the
5225 rename in the function has precedence over the rename in the
5226 package, so the latter should be removed from the list. This is
5227 currently not the case.
5228
5229 - This function will incorrectly remove valid renames if
5230 the CURRENT_BLOCK corresponds to a function which symbol name
5231 has been changed by an "Export" pragma. As a consequence,
5232 the user will be unable to print such rename entities. */
5233
5234 static void
5235 remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
5236 const struct block *current_block)
5237 {
5238 struct symbol *current_function;
5239 const char *current_function_name;
5240 int i;
5241 int is_new_style_renaming;
5242
5243 /* If there is both a renaming foo___XR... encoded as a variable and
5244 a simple variable foo in the same block, discard the latter.
5245 First, zero out such symbols, then compress. */
5246 is_new_style_renaming = 0;
5247 for (i = 0; i < syms->size (); i += 1)
5248 {
5249 struct symbol *sym = (*syms)[i].symbol;
5250 const struct block *block = (*syms)[i].block;
5251 const char *name;
5252 const char *suffix;
5253
5254 if (sym == NULL || sym->aclass () == LOC_TYPEDEF)
5255 continue;
5256 name = sym->linkage_name ();
5257 suffix = strstr (name, "___XR");
5258
5259 if (suffix != NULL)
5260 {
5261 int name_len = suffix - name;
5262 int j;
5263
5264 is_new_style_renaming = 1;
5265 for (j = 0; j < syms->size (); j += 1)
5266 if (i != j && (*syms)[j].symbol != NULL
5267 && strncmp (name, (*syms)[j].symbol->linkage_name (),
5268 name_len) == 0
5269 && block == (*syms)[j].block)
5270 (*syms)[j].symbol = NULL;
5271 }
5272 }
5273 if (is_new_style_renaming)
5274 {
5275 int j, k;
5276
5277 for (j = k = 0; j < syms->size (); j += 1)
5278 if ((*syms)[j].symbol != NULL)
5279 {
5280 (*syms)[k] = (*syms)[j];
5281 k += 1;
5282 }
5283 syms->resize (k);
5284 return;
5285 }
5286
5287 /* Extract the function name associated to CURRENT_BLOCK.
5288 Abort if unable to do so. */
5289
5290 if (current_block == NULL)
5291 return;
5292
5293 current_function = block_linkage_function (current_block);
5294 if (current_function == NULL)
5295 return;
5296
5297 current_function_name = current_function->linkage_name ();
5298 if (current_function_name == NULL)
5299 return;
5300
5301 /* Check each of the symbols, and remove it from the list if it is
5302 a type corresponding to a renaming that is out of the scope of
5303 the current block. */
5304
5305 i = 0;
5306 while (i < syms->size ())
5307 {
5308 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
5309 == ADA_OBJECT_RENAMING
5310 && old_renaming_is_invisible ((*syms)[i].symbol,
5311 current_function_name))
5312 syms->erase (syms->begin () + i);
5313 else
5314 i += 1;
5315 }
5316 }
5317
5318 /* Add to RESULT all symbols from BLOCK (and its super-blocks)
5319 whose name and domain match LOOKUP_NAME and DOMAIN respectively.
5320
5321 Note: This function assumes that RESULT is empty. */
5322
5323 static void
5324 ada_add_local_symbols (std::vector<struct block_symbol> &result,
5325 const lookup_name_info &lookup_name,
5326 const struct block *block, domain_enum domain)
5327 {
5328 while (block != NULL)
5329 {
5330 ada_add_block_symbols (result, block, lookup_name, domain, NULL);
5331
5332 /* If we found a non-function match, assume that's the one. We
5333 only check this when finding a function boundary, so that we
5334 can accumulate all results from intervening blocks first. */
5335 if (block->function () != nullptr && is_nonfunction (result))
5336 return;
5337
5338 block = block->superblock ();
5339 }
5340 }
5341
5342 /* An object of this type is used as the callback argument when
5343 calling the map_matching_symbols method. */
5344
5345 struct match_data
5346 {
5347 explicit match_data (std::vector<struct block_symbol> *rp)
5348 : resultp (rp)
5349 {
5350 }
5351 DISABLE_COPY_AND_ASSIGN (match_data);
5352
5353 bool operator() (struct block_symbol *bsym);
5354
5355 struct objfile *objfile = nullptr;
5356 std::vector<struct block_symbol> *resultp;
5357 struct symbol *arg_sym = nullptr;
5358 bool found_sym = false;
5359 };
5360
5361 /* A callback for add_nonlocal_symbols that adds symbol, found in
5362 BSYM, to a list of symbols. */
5363
5364 bool
5365 match_data::operator() (struct block_symbol *bsym)
5366 {
5367 const struct block *block = bsym->block;
5368 struct symbol *sym = bsym->symbol;
5369
5370 if (sym == NULL)
5371 {
5372 if (!found_sym && arg_sym != NULL)
5373 add_defn_to_vec (*resultp,
5374 fixup_symbol_section (arg_sym, objfile),
5375 block);
5376 found_sym = false;
5377 arg_sym = NULL;
5378 }
5379 else
5380 {
5381 if (sym->aclass () == LOC_UNRESOLVED)
5382 return true;
5383 else if (sym->is_argument ())
5384 arg_sym = sym;
5385 else
5386 {
5387 found_sym = true;
5388 add_defn_to_vec (*resultp,
5389 fixup_symbol_section (sym, objfile),
5390 block);
5391 }
5392 }
5393 return true;
5394 }
5395
5396 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5397 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5398 symbols to RESULT. Return whether we found such symbols. */
5399
5400 static int
5401 ada_add_block_renamings (std::vector<struct block_symbol> &result,
5402 const struct block *block,
5403 const lookup_name_info &lookup_name,
5404 domain_enum domain)
5405 {
5406 struct using_direct *renaming;
5407 int defns_mark = result.size ();
5408
5409 symbol_name_matcher_ftype *name_match
5410 = ada_get_symbol_name_matcher (lookup_name);
5411
5412 for (renaming = block_using (block);
5413 renaming != NULL;
5414 renaming = renaming->next)
5415 {
5416 const char *r_name;
5417
5418 /* Avoid infinite recursions: skip this renaming if we are actually
5419 already traversing it.
5420
5421 Currently, symbol lookup in Ada don't use the namespace machinery from
5422 C++/Fortran support: skip namespace imports that use them. */
5423 if (renaming->searched
5424 || (renaming->import_src != NULL
5425 && renaming->import_src[0] != '\0')
5426 || (renaming->import_dest != NULL
5427 && renaming->import_dest[0] != '\0'))
5428 continue;
5429 renaming->searched = 1;
5430
5431 /* TODO: here, we perform another name-based symbol lookup, which can
5432 pull its own multiple overloads. In theory, we should be able to do
5433 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5434 not a simple name. But in order to do this, we would need to enhance
5435 the DWARF reader to associate a symbol to this renaming, instead of a
5436 name. So, for now, we do something simpler: re-use the C++/Fortran
5437 namespace machinery. */
5438 r_name = (renaming->alias != NULL
5439 ? renaming->alias
5440 : renaming->declaration);
5441 if (name_match (r_name, lookup_name, NULL))
5442 {
5443 lookup_name_info decl_lookup_name (renaming->declaration,
5444 lookup_name.match_type ());
5445 ada_add_all_symbols (result, block, decl_lookup_name, domain,
5446 1, NULL);
5447 }
5448 renaming->searched = 0;
5449 }
5450 return result.size () != defns_mark;
5451 }
5452
5453 /* Implements compare_names, but only applying the comparision using
5454 the given CASING. */
5455
5456 static int
5457 compare_names_with_case (const char *string1, const char *string2,
5458 enum case_sensitivity casing)
5459 {
5460 while (*string1 != '\0' && *string2 != '\0')
5461 {
5462 char c1, c2;
5463
5464 if (isspace (*string1) || isspace (*string2))
5465 return strcmp_iw_ordered (string1, string2);
5466
5467 if (casing == case_sensitive_off)
5468 {
5469 c1 = tolower (*string1);
5470 c2 = tolower (*string2);
5471 }
5472 else
5473 {
5474 c1 = *string1;
5475 c2 = *string2;
5476 }
5477 if (c1 != c2)
5478 break;
5479
5480 string1 += 1;
5481 string2 += 1;
5482 }
5483
5484 switch (*string1)
5485 {
5486 case '(':
5487 return strcmp_iw_ordered (string1, string2);
5488 case '_':
5489 if (*string2 == '\0')
5490 {
5491 if (is_name_suffix (string1))
5492 return 0;
5493 else
5494 return 1;
5495 }
5496 /* FALLTHROUGH */
5497 default:
5498 if (*string2 == '(')
5499 return strcmp_iw_ordered (string1, string2);
5500 else
5501 {
5502 if (casing == case_sensitive_off)
5503 return tolower (*string1) - tolower (*string2);
5504 else
5505 return *string1 - *string2;
5506 }
5507 }
5508 }
5509
5510 /* Compare STRING1 to STRING2, with results as for strcmp.
5511 Compatible with strcmp_iw_ordered in that...
5512
5513 strcmp_iw_ordered (STRING1, STRING2) <= 0
5514
5515 ... implies...
5516
5517 compare_names (STRING1, STRING2) <= 0
5518
5519 (they may differ as to what symbols compare equal). */
5520
5521 static int
5522 compare_names (const char *string1, const char *string2)
5523 {
5524 int result;
5525
5526 /* Similar to what strcmp_iw_ordered does, we need to perform
5527 a case-insensitive comparison first, and only resort to
5528 a second, case-sensitive, comparison if the first one was
5529 not sufficient to differentiate the two strings. */
5530
5531 result = compare_names_with_case (string1, string2, case_sensitive_off);
5532 if (result == 0)
5533 result = compare_names_with_case (string1, string2, case_sensitive_on);
5534
5535 return result;
5536 }
5537
5538 /* Convenience function to get at the Ada encoded lookup name for
5539 LOOKUP_NAME, as a C string. */
5540
5541 static const char *
5542 ada_lookup_name (const lookup_name_info &lookup_name)
5543 {
5544 return lookup_name.ada ().lookup_name ().c_str ();
5545 }
5546
5547 /* A helper for add_nonlocal_symbols. Call expand_matching_symbols
5548 for OBJFILE, then walk the objfile's symtabs and update the
5549 results. */
5550
5551 static void
5552 map_matching_symbols (struct objfile *objfile,
5553 const lookup_name_info &lookup_name,
5554 bool is_wild_match,
5555 domain_enum domain,
5556 int global,
5557 match_data &data)
5558 {
5559 data.objfile = objfile;
5560 objfile->expand_matching_symbols (lookup_name, domain, global,
5561 is_wild_match ? nullptr : compare_names);
5562
5563 const int block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
5564 for (compunit_symtab *symtab : objfile->compunits ())
5565 {
5566 const struct block *block
5567 = symtab->blockvector ()->block (block_kind);
5568 if (!iterate_over_symbols_terminated (block, lookup_name,
5569 domain, data))
5570 break;
5571 }
5572 }
5573
5574 /* Add to RESULT all non-local symbols whose name and domain match
5575 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5576 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5577 symbols otherwise. */
5578
5579 static void
5580 add_nonlocal_symbols (std::vector<struct block_symbol> &result,
5581 const lookup_name_info &lookup_name,
5582 domain_enum domain, int global)
5583 {
5584 struct match_data data (&result);
5585
5586 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5587
5588 for (objfile *objfile : current_program_space->objfiles ())
5589 {
5590 map_matching_symbols (objfile, lookup_name, is_wild_match, domain,
5591 global, data);
5592
5593 for (compunit_symtab *cu : objfile->compunits ())
5594 {
5595 const struct block *global_block
5596 = cu->blockvector ()->global_block ();
5597
5598 if (ada_add_block_renamings (result, global_block, lookup_name,
5599 domain))
5600 data.found_sym = true;
5601 }
5602 }
5603
5604 if (result.empty () && global && !is_wild_match)
5605 {
5606 const char *name = ada_lookup_name (lookup_name);
5607 std::string bracket_name = std::string ("<_ada_") + name + '>';
5608 lookup_name_info name1 (bracket_name, symbol_name_match_type::FULL);
5609
5610 for (objfile *objfile : current_program_space->objfiles ())
5611 map_matching_symbols (objfile, name1, false, domain, global, data);
5612 }
5613 }
5614
5615 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5616 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5617 returning the number of matches. Add these to RESULT.
5618
5619 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5620 symbol match within the nest of blocks whose innermost member is BLOCK,
5621 is the one match returned (no other matches in that or
5622 enclosing blocks is returned). If there are any matches in or
5623 surrounding BLOCK, then these alone are returned.
5624
5625 Names prefixed with "standard__" are handled specially:
5626 "standard__" is first stripped off (by the lookup_name
5627 constructor), and only static and global symbols are searched.
5628
5629 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5630 to lookup global symbols. */
5631
5632 static void
5633 ada_add_all_symbols (std::vector<struct block_symbol> &result,
5634 const struct block *block,
5635 const lookup_name_info &lookup_name,
5636 domain_enum domain,
5637 int full_search,
5638 int *made_global_lookup_p)
5639 {
5640 struct symbol *sym;
5641
5642 if (made_global_lookup_p)
5643 *made_global_lookup_p = 0;
5644
5645 /* Special case: If the user specifies a symbol name inside package
5646 Standard, do a non-wild matching of the symbol name without
5647 the "standard__" prefix. This was primarily introduced in order
5648 to allow the user to specifically access the standard exceptions
5649 using, for instance, Standard.Constraint_Error when Constraint_Error
5650 is ambiguous (due to the user defining its own Constraint_Error
5651 entity inside its program). */
5652 if (lookup_name.ada ().standard_p ())
5653 block = NULL;
5654
5655 /* Check the non-global symbols. If we have ANY match, then we're done. */
5656
5657 if (block != NULL)
5658 {
5659 if (full_search)
5660 ada_add_local_symbols (result, lookup_name, block, domain);
5661 else
5662 {
5663 /* In the !full_search case we're are being called by
5664 iterate_over_symbols, and we don't want to search
5665 superblocks. */
5666 ada_add_block_symbols (result, block, lookup_name, domain, NULL);
5667 }
5668 if (!result.empty () || !full_search)
5669 return;
5670 }
5671
5672 /* No non-global symbols found. Check our cache to see if we have
5673 already performed this search before. If we have, then return
5674 the same result. */
5675
5676 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5677 domain, &sym, &block))
5678 {
5679 if (sym != NULL)
5680 add_defn_to_vec (result, sym, block);
5681 return;
5682 }
5683
5684 if (made_global_lookup_p)
5685 *made_global_lookup_p = 1;
5686
5687 /* Search symbols from all global blocks. */
5688
5689 add_nonlocal_symbols (result, lookup_name, domain, 1);
5690
5691 /* Now add symbols from all per-file blocks if we've gotten no hits
5692 (not strictly correct, but perhaps better than an error). */
5693
5694 if (result.empty ())
5695 add_nonlocal_symbols (result, lookup_name, domain, 0);
5696 }
5697
5698 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5699 is non-zero, enclosing scope and in global scopes.
5700
5701 Returns (SYM,BLOCK) tuples, indicating the symbols found and the
5702 blocks and symbol tables (if any) in which they were found.
5703
5704 When full_search is non-zero, any non-function/non-enumeral
5705 symbol match within the nest of blocks whose innermost member is BLOCK,
5706 is the one match returned (no other matches in that or
5707 enclosing blocks is returned). If there are any matches in or
5708 surrounding BLOCK, then these alone are returned.
5709
5710 Names prefixed with "standard__" are handled specially: "standard__"
5711 is first stripped off, and only static and global symbols are searched. */
5712
5713 static std::vector<struct block_symbol>
5714 ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5715 const struct block *block,
5716 domain_enum domain,
5717 int full_search)
5718 {
5719 int syms_from_global_search;
5720 std::vector<struct block_symbol> results;
5721
5722 ada_add_all_symbols (results, block, lookup_name,
5723 domain, full_search, &syms_from_global_search);
5724
5725 remove_extra_symbols (&results);
5726
5727 if (results.empty () && full_search && syms_from_global_search)
5728 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
5729
5730 if (results.size () == 1 && full_search && syms_from_global_search)
5731 cache_symbol (ada_lookup_name (lookup_name), domain,
5732 results[0].symbol, results[0].block);
5733
5734 remove_irrelevant_renamings (&results, block);
5735 return results;
5736 }
5737
5738 /* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
5739 in global scopes, returning (SYM,BLOCK) tuples.
5740
5741 See ada_lookup_symbol_list_worker for further details. */
5742
5743 std::vector<struct block_symbol>
5744 ada_lookup_symbol_list (const char *name, const struct block *block,
5745 domain_enum domain)
5746 {
5747 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5748 lookup_name_info lookup_name (name, name_match_type);
5749
5750 return ada_lookup_symbol_list_worker (lookup_name, block, domain, 1);
5751 }
5752
5753 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5754 to 1, but choosing the first symbol found if there are multiple
5755 choices.
5756
5757 The result is stored in *INFO, which must be non-NULL.
5758 If no match is found, INFO->SYM is set to NULL. */
5759
5760 void
5761 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5762 domain_enum domain,
5763 struct block_symbol *info)
5764 {
5765 /* Since we already have an encoded name, wrap it in '<>' to force a
5766 verbatim match. Otherwise, if the name happens to not look like
5767 an encoded name (because it doesn't include a "__"),
5768 ada_lookup_name_info would re-encode/fold it again, and that
5769 would e.g., incorrectly lowercase object renaming names like
5770 "R28b" -> "r28b". */
5771 std::string verbatim = add_angle_brackets (name);
5772
5773 gdb_assert (info != NULL);
5774 *info = ada_lookup_symbol (verbatim.c_str (), block, domain);
5775 }
5776
5777 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5778 scope and in global scopes, or NULL if none. NAME is folded and
5779 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5780 choosing the first symbol if there are multiple choices. */
5781
5782 struct block_symbol
5783 ada_lookup_symbol (const char *name, const struct block *block0,
5784 domain_enum domain)
5785 {
5786 std::vector<struct block_symbol> candidates
5787 = ada_lookup_symbol_list (name, block0, domain);
5788
5789 if (candidates.empty ())
5790 return {};
5791
5792 block_symbol info = candidates[0];
5793 info.symbol = fixup_symbol_section (info.symbol, NULL);
5794 return info;
5795 }
5796
5797
5798 /* True iff STR is a possible encoded suffix of a normal Ada name
5799 that is to be ignored for matching purposes. Suffixes of parallel
5800 names (e.g., XVE) are not included here. Currently, the possible suffixes
5801 are given by any of the regular expressions:
5802
5803 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5804 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5805 TKB [subprogram suffix for task bodies]
5806 _E[0-9]+[bs]$ [protected object entry suffixes]
5807 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5808
5809 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5810 match is performed. This sequence is used to differentiate homonyms,
5811 is an optional part of a valid name suffix. */
5812
5813 static int
5814 is_name_suffix (const char *str)
5815 {
5816 int k;
5817 const char *matching;
5818 const int len = strlen (str);
5819
5820 /* Skip optional leading __[0-9]+. */
5821
5822 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5823 {
5824 str += 3;
5825 while (isdigit (str[0]))
5826 str += 1;
5827 }
5828
5829 /* [.$][0-9]+ */
5830
5831 if (str[0] == '.' || str[0] == '$')
5832 {
5833 matching = str + 1;
5834 while (isdigit (matching[0]))
5835 matching += 1;
5836 if (matching[0] == '\0')
5837 return 1;
5838 }
5839
5840 /* ___[0-9]+ */
5841
5842 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5843 {
5844 matching = str + 3;
5845 while (isdigit (matching[0]))
5846 matching += 1;
5847 if (matching[0] == '\0')
5848 return 1;
5849 }
5850
5851 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5852
5853 if (strcmp (str, "TKB") == 0)
5854 return 1;
5855
5856 #if 0
5857 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5858 with a N at the end. Unfortunately, the compiler uses the same
5859 convention for other internal types it creates. So treating
5860 all entity names that end with an "N" as a name suffix causes
5861 some regressions. For instance, consider the case of an enumerated
5862 type. To support the 'Image attribute, it creates an array whose
5863 name ends with N.
5864 Having a single character like this as a suffix carrying some
5865 information is a bit risky. Perhaps we should change the encoding
5866 to be something like "_N" instead. In the meantime, do not do
5867 the following check. */
5868 /* Protected Object Subprograms */
5869 if (len == 1 && str [0] == 'N')
5870 return 1;
5871 #endif
5872
5873 /* _E[0-9]+[bs]$ */
5874 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5875 {
5876 matching = str + 3;
5877 while (isdigit (matching[0]))
5878 matching += 1;
5879 if ((matching[0] == 'b' || matching[0] == 's')
5880 && matching [1] == '\0')
5881 return 1;
5882 }
5883
5884 /* ??? We should not modify STR directly, as we are doing below. This
5885 is fine in this case, but may become problematic later if we find
5886 that this alternative did not work, and want to try matching
5887 another one from the begining of STR. Since we modified it, we
5888 won't be able to find the begining of the string anymore! */
5889 if (str[0] == 'X')
5890 {
5891 str += 1;
5892 while (str[0] != '_' && str[0] != '\0')
5893 {
5894 if (str[0] != 'n' && str[0] != 'b')
5895 return 0;
5896 str += 1;
5897 }
5898 }
5899
5900 if (str[0] == '\000')
5901 return 1;
5902
5903 if (str[0] == '_')
5904 {
5905 if (str[1] != '_' || str[2] == '\000')
5906 return 0;
5907 if (str[2] == '_')
5908 {
5909 if (strcmp (str + 3, "JM") == 0)
5910 return 1;
5911 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5912 the LJM suffix in favor of the JM one. But we will
5913 still accept LJM as a valid suffix for a reasonable
5914 amount of time, just to allow ourselves to debug programs
5915 compiled using an older version of GNAT. */
5916 if (strcmp (str + 3, "LJM") == 0)
5917 return 1;
5918 if (str[3] != 'X')
5919 return 0;
5920 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5921 || str[4] == 'U' || str[4] == 'P')
5922 return 1;
5923 if (str[4] == 'R' && str[5] != 'T')
5924 return 1;
5925 return 0;
5926 }
5927 if (!isdigit (str[2]))
5928 return 0;
5929 for (k = 3; str[k] != '\0'; k += 1)
5930 if (!isdigit (str[k]) && str[k] != '_')
5931 return 0;
5932 return 1;
5933 }
5934 if (str[0] == '$' && isdigit (str[1]))
5935 {
5936 for (k = 2; str[k] != '\0'; k += 1)
5937 if (!isdigit (str[k]) && str[k] != '_')
5938 return 0;
5939 return 1;
5940 }
5941 return 0;
5942 }
5943
5944 /* Return non-zero if the string starting at NAME and ending before
5945 NAME_END contains no capital letters. */
5946
5947 static int
5948 is_valid_name_for_wild_match (const char *name0)
5949 {
5950 std::string decoded_name = ada_decode (name0);
5951 int i;
5952
5953 /* If the decoded name starts with an angle bracket, it means that
5954 NAME0 does not follow the GNAT encoding format. It should then
5955 not be allowed as a possible wild match. */
5956 if (decoded_name[0] == '<')
5957 return 0;
5958
5959 for (i=0; decoded_name[i] != '\0'; i++)
5960 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5961 return 0;
5962
5963 return 1;
5964 }
5965
5966 /* Advance *NAMEP to next occurrence in the string NAME0 of the TARGET0
5967 character which could start a simple name. Assumes that *NAMEP points
5968 somewhere inside the string beginning at NAME0. */
5969
5970 static int
5971 advance_wild_match (const char **namep, const char *name0, char target0)
5972 {
5973 const char *name = *namep;
5974
5975 while (1)
5976 {
5977 char t0, t1;
5978
5979 t0 = *name;
5980 if (t0 == '_')
5981 {
5982 t1 = name[1];
5983 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5984 {
5985 name += 1;
5986 if (name == name0 + 5 && startswith (name0, "_ada"))
5987 break;
5988 else
5989 name += 1;
5990 }
5991 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5992 || name[2] == target0))
5993 {
5994 name += 2;
5995 break;
5996 }
5997 else if (t1 == '_' && name[2] == 'B' && name[3] == '_')
5998 {
5999 /* Names like "pkg__B_N__name", where N is a number, are
6000 block-local. We can handle these by simply skipping
6001 the "B_" here. */
6002 name += 4;
6003 }
6004 else
6005 return 0;
6006 }
6007 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6008 name += 1;
6009 else
6010 return 0;
6011 }
6012
6013 *namep = name;
6014 return 1;
6015 }
6016
6017 /* Return true iff NAME encodes a name of the form prefix.PATN.
6018 Ignores any informational suffixes of NAME (i.e., for which
6019 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6020 simple name. */
6021
6022 static bool
6023 wild_match (const char *name, const char *patn)
6024 {
6025 const char *p;
6026 const char *name0 = name;
6027
6028 if (startswith (name, "___ghost_"))
6029 name += 9;
6030
6031 while (1)
6032 {
6033 const char *match = name;
6034
6035 if (*name == *patn)
6036 {
6037 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6038 if (*p != *name)
6039 break;
6040 if (*p == '\0' && is_name_suffix (name))
6041 return match == name0 || is_valid_name_for_wild_match (name0);
6042
6043 if (name[-1] == '_')
6044 name -= 1;
6045 }
6046 if (!advance_wild_match (&name, name0, *patn))
6047 return false;
6048 }
6049 }
6050
6051 /* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to RESULT (if
6052 necessary). OBJFILE is the section containing BLOCK. */
6053
6054 static void
6055 ada_add_block_symbols (std::vector<struct block_symbol> &result,
6056 const struct block *block,
6057 const lookup_name_info &lookup_name,
6058 domain_enum domain, struct objfile *objfile)
6059 {
6060 struct block_iterator iter;
6061 /* A matching argument symbol, if any. */
6062 struct symbol *arg_sym;
6063 /* Set true when we find a matching non-argument symbol. */
6064 bool found_sym;
6065 struct symbol *sym;
6066
6067 arg_sym = NULL;
6068 found_sym = false;
6069 for (sym = block_iter_match_first (block, lookup_name, &iter);
6070 sym != NULL;
6071 sym = block_iter_match_next (lookup_name, &iter))
6072 {
6073 if (symbol_matches_domain (sym->language (), sym->domain (), domain))
6074 {
6075 if (sym->aclass () != LOC_UNRESOLVED)
6076 {
6077 if (sym->is_argument ())
6078 arg_sym = sym;
6079 else
6080 {
6081 found_sym = true;
6082 add_defn_to_vec (result,
6083 fixup_symbol_section (sym, objfile),
6084 block);
6085 }
6086 }
6087 }
6088 }
6089
6090 /* Handle renamings. */
6091
6092 if (ada_add_block_renamings (result, block, lookup_name, domain))
6093 found_sym = true;
6094
6095 if (!found_sym && arg_sym != NULL)
6096 {
6097 add_defn_to_vec (result,
6098 fixup_symbol_section (arg_sym, objfile),
6099 block);
6100 }
6101
6102 if (!lookup_name.ada ().wild_match_p ())
6103 {
6104 arg_sym = NULL;
6105 found_sym = false;
6106 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6107 const char *name = ada_lookup_name.c_str ();
6108 size_t name_len = ada_lookup_name.size ();
6109
6110 ALL_BLOCK_SYMBOLS (block, iter, sym)
6111 {
6112 if (symbol_matches_domain (sym->language (),
6113 sym->domain (), domain))
6114 {
6115 int cmp;
6116
6117 cmp = (int) '_' - (int) sym->linkage_name ()[0];
6118 if (cmp == 0)
6119 {
6120 cmp = !startswith (sym->linkage_name (), "_ada_");
6121 if (cmp == 0)
6122 cmp = strncmp (name, sym->linkage_name () + 5,
6123 name_len);
6124 }
6125
6126 if (cmp == 0
6127 && is_name_suffix (sym->linkage_name () + name_len + 5))
6128 {
6129 if (sym->aclass () != LOC_UNRESOLVED)
6130 {
6131 if (sym->is_argument ())
6132 arg_sym = sym;
6133 else
6134 {
6135 found_sym = true;
6136 add_defn_to_vec (result,
6137 fixup_symbol_section (sym, objfile),
6138 block);
6139 }
6140 }
6141 }
6142 }
6143 }
6144
6145 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6146 They aren't parameters, right? */
6147 if (!found_sym && arg_sym != NULL)
6148 {
6149 add_defn_to_vec (result,
6150 fixup_symbol_section (arg_sym, objfile),
6151 block);
6152 }
6153 }
6154 }
6155 \f
6156
6157 /* Symbol Completion */
6158
6159 /* See symtab.h. */
6160
6161 bool
6162 ada_lookup_name_info::matches
6163 (const char *sym_name,
6164 symbol_name_match_type match_type,
6165 completion_match_result *comp_match_res) const
6166 {
6167 bool match = false;
6168 const char *text = m_encoded_name.c_str ();
6169 size_t text_len = m_encoded_name.size ();
6170
6171 /* First, test against the fully qualified name of the symbol. */
6172
6173 if (strncmp (sym_name, text, text_len) == 0)
6174 match = true;
6175
6176 std::string decoded_name = ada_decode (sym_name);
6177 if (match && !m_encoded_p)
6178 {
6179 /* One needed check before declaring a positive match is to verify
6180 that iff we are doing a verbatim match, the decoded version
6181 of the symbol name starts with '<'. Otherwise, this symbol name
6182 is not a suitable completion. */
6183
6184 bool has_angle_bracket = (decoded_name[0] == '<');
6185 match = (has_angle_bracket == m_verbatim_p);
6186 }
6187
6188 if (match && !m_verbatim_p)
6189 {
6190 /* When doing non-verbatim match, another check that needs to
6191 be done is to verify that the potentially matching symbol name
6192 does not include capital letters, because the ada-mode would
6193 not be able to understand these symbol names without the
6194 angle bracket notation. */
6195 const char *tmp;
6196
6197 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6198 if (*tmp != '\0')
6199 match = false;
6200 }
6201
6202 /* Second: Try wild matching... */
6203
6204 if (!match && m_wild_match_p)
6205 {
6206 /* Since we are doing wild matching, this means that TEXT
6207 may represent an unqualified symbol name. We therefore must
6208 also compare TEXT against the unqualified name of the symbol. */
6209 sym_name = ada_unqualified_name (decoded_name.c_str ());
6210
6211 if (strncmp (sym_name, text, text_len) == 0)
6212 match = true;
6213 }
6214
6215 /* Finally: If we found a match, prepare the result to return. */
6216
6217 if (!match)
6218 return false;
6219
6220 if (comp_match_res != NULL)
6221 {
6222 std::string &match_str = comp_match_res->match.storage ();
6223
6224 if (!m_encoded_p)
6225 match_str = ada_decode (sym_name);
6226 else
6227 {
6228 if (m_verbatim_p)
6229 match_str = add_angle_brackets (sym_name);
6230 else
6231 match_str = sym_name;
6232
6233 }
6234
6235 comp_match_res->set_match (match_str.c_str ());
6236 }
6237
6238 return true;
6239 }
6240
6241 /* Field Access */
6242
6243 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6244 for tagged types. */
6245
6246 static int
6247 ada_is_dispatch_table_ptr_type (struct type *type)
6248 {
6249 const char *name;
6250
6251 if (type->code () != TYPE_CODE_PTR)
6252 return 0;
6253
6254 name = TYPE_TARGET_TYPE (type)->name ();
6255 if (name == NULL)
6256 return 0;
6257
6258 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6259 }
6260
6261 /* Return non-zero if TYPE is an interface tag. */
6262
6263 static int
6264 ada_is_interface_tag (struct type *type)
6265 {
6266 const char *name = type->name ();
6267
6268 if (name == NULL)
6269 return 0;
6270
6271 return (strcmp (name, "ada__tags__interface_tag") == 0);
6272 }
6273
6274 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6275 to be invisible to users. */
6276
6277 int
6278 ada_is_ignored_field (struct type *type, int field_num)
6279 {
6280 if (field_num < 0 || field_num > type->num_fields ())
6281 return 1;
6282
6283 /* Check the name of that field. */
6284 {
6285 const char *name = type->field (field_num).name ();
6286
6287 /* Anonymous field names should not be printed.
6288 brobecker/2007-02-20: I don't think this can actually happen
6289 but we don't want to print the value of anonymous fields anyway. */
6290 if (name == NULL)
6291 return 1;
6292
6293 /* Normally, fields whose name start with an underscore ("_")
6294 are fields that have been internally generated by the compiler,
6295 and thus should not be printed. The "_parent" field is special,
6296 however: This is a field internally generated by the compiler
6297 for tagged types, and it contains the components inherited from
6298 the parent type. This field should not be printed as is, but
6299 should not be ignored either. */
6300 if (name[0] == '_' && !startswith (name, "_parent"))
6301 return 1;
6302
6303 /* The compiler doesn't document this, but sometimes it emits
6304 a field whose name starts with a capital letter, like 'V148s'.
6305 These aren't marked as artificial in any way, but we know they
6306 should be ignored. However, wrapper fields should not be
6307 ignored. */
6308 if (name[0] == 'S' || name[0] == 'R' || name[0] == 'O')
6309 {
6310 /* Wrapper field. */
6311 }
6312 else if (isupper (name[0]))
6313 return 1;
6314 }
6315
6316 /* If this is the dispatch table of a tagged type or an interface tag,
6317 then ignore. */
6318 if (ada_is_tagged_type (type, 1)
6319 && (ada_is_dispatch_table_ptr_type (type->field (field_num).type ())
6320 || ada_is_interface_tag (type->field (field_num).type ())))
6321 return 1;
6322
6323 /* Not a special field, so it should not be ignored. */
6324 return 0;
6325 }
6326
6327 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6328 pointer or reference type whose ultimate target has a tag field. */
6329
6330 int
6331 ada_is_tagged_type (struct type *type, int refok)
6332 {
6333 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
6334 }
6335
6336 /* True iff TYPE represents the type of X'Tag */
6337
6338 int
6339 ada_is_tag_type (struct type *type)
6340 {
6341 type = ada_check_typedef (type);
6342
6343 if (type == NULL || type->code () != TYPE_CODE_PTR)
6344 return 0;
6345 else
6346 {
6347 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6348
6349 return (name != NULL
6350 && strcmp (name, "ada__tags__dispatch_table") == 0);
6351 }
6352 }
6353
6354 /* The type of the tag on VAL. */
6355
6356 static struct type *
6357 ada_tag_type (struct value *val)
6358 {
6359 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
6360 }
6361
6362 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6363 retired at Ada 05). */
6364
6365 static int
6366 is_ada95_tag (struct value *tag)
6367 {
6368 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6369 }
6370
6371 /* The value of the tag on VAL. */
6372
6373 static struct value *
6374 ada_value_tag (struct value *val)
6375 {
6376 return ada_value_struct_elt (val, "_tag", 0);
6377 }
6378
6379 /* The value of the tag on the object of type TYPE whose contents are
6380 saved at VALADDR, if it is non-null, or is at memory address
6381 ADDRESS. */
6382
6383 static struct value *
6384 value_tag_from_contents_and_address (struct type *type,
6385 const gdb_byte *valaddr,
6386 CORE_ADDR address)
6387 {
6388 int tag_byte_offset;
6389 struct type *tag_type;
6390
6391 gdb::array_view<const gdb_byte> contents;
6392 if (valaddr != nullptr)
6393 contents = gdb::make_array_view (valaddr, TYPE_LENGTH (type));
6394 struct type *resolved_type = resolve_dynamic_type (type, contents, address);
6395 if (find_struct_field ("_tag", resolved_type, 0, &tag_type, &tag_byte_offset,
6396 NULL, NULL, NULL))
6397 {
6398 const gdb_byte *valaddr1 = ((valaddr == NULL)
6399 ? NULL
6400 : valaddr + tag_byte_offset);
6401 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6402
6403 return value_from_contents_and_address (tag_type, valaddr1, address1);
6404 }
6405 return NULL;
6406 }
6407
6408 static struct type *
6409 type_from_tag (struct value *tag)
6410 {
6411 gdb::unique_xmalloc_ptr<char> type_name = ada_tag_name (tag);
6412
6413 if (type_name != NULL)
6414 return ada_find_any_type (ada_encode (type_name.get ()).c_str ());
6415 return NULL;
6416 }
6417
6418 /* Given a value OBJ of a tagged type, return a value of this
6419 type at the base address of the object. The base address, as
6420 defined in Ada.Tags, it is the address of the primary tag of
6421 the object, and therefore where the field values of its full
6422 view can be fetched. */
6423
6424 struct value *
6425 ada_tag_value_at_base_address (struct value *obj)
6426 {
6427 struct value *val;
6428 LONGEST offset_to_top = 0;
6429 struct type *ptr_type, *obj_type;
6430 struct value *tag;
6431 CORE_ADDR base_address;
6432
6433 obj_type = value_type (obj);
6434
6435 /* It is the responsability of the caller to deref pointers. */
6436
6437 if (obj_type->code () == TYPE_CODE_PTR || obj_type->code () == TYPE_CODE_REF)
6438 return obj;
6439
6440 tag = ada_value_tag (obj);
6441 if (!tag)
6442 return obj;
6443
6444 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6445
6446 if (is_ada95_tag (tag))
6447 return obj;
6448
6449 struct type *offset_type
6450 = language_lookup_primitive_type (language_def (language_ada),
6451 target_gdbarch(), "storage_offset");
6452 ptr_type = lookup_pointer_type (offset_type);
6453 val = value_cast (ptr_type, tag);
6454 if (!val)
6455 return obj;
6456
6457 /* It is perfectly possible that an exception be raised while
6458 trying to determine the base address, just like for the tag;
6459 see ada_tag_name for more details. We do not print the error
6460 message for the same reason. */
6461
6462 try
6463 {
6464 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6465 }
6466
6467 catch (const gdb_exception_error &e)
6468 {
6469 return obj;
6470 }
6471
6472 /* If offset is null, nothing to do. */
6473
6474 if (offset_to_top == 0)
6475 return obj;
6476
6477 /* -1 is a special case in Ada.Tags; however, what should be done
6478 is not quite clear from the documentation. So do nothing for
6479 now. */
6480
6481 if (offset_to_top == -1)
6482 return obj;
6483
6484 /* Storage_Offset'Last is used to indicate that a dynamic offset to
6485 top is used. In this situation the offset is stored just after
6486 the tag, in the object itself. */
6487 ULONGEST last = (((ULONGEST) 1) << (8 * TYPE_LENGTH (offset_type) - 1)) - 1;
6488 if (offset_to_top == last)
6489 {
6490 struct value *tem = value_addr (tag);
6491 tem = value_ptradd (tem, 1);
6492 tem = value_cast (ptr_type, tem);
6493 offset_to_top = value_as_long (value_ind (tem));
6494 }
6495 else if (offset_to_top > 0)
6496 {
6497 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6498 from the base address. This was however incompatible with
6499 C++ dispatch table: C++ uses a *negative* value to *add*
6500 to the base address. Ada's convention has therefore been
6501 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6502 use the same convention. Here, we support both cases by
6503 checking the sign of OFFSET_TO_TOP. */
6504 offset_to_top = -offset_to_top;
6505 }
6506
6507 base_address = value_address (obj) + offset_to_top;
6508 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6509
6510 /* Make sure that we have a proper tag at the new address.
6511 Otherwise, offset_to_top is bogus (which can happen when
6512 the object is not initialized yet). */
6513
6514 if (!tag)
6515 return obj;
6516
6517 obj_type = type_from_tag (tag);
6518
6519 if (!obj_type)
6520 return obj;
6521
6522 return value_from_contents_and_address (obj_type, NULL, base_address);
6523 }
6524
6525 /* Return the "ada__tags__type_specific_data" type. */
6526
6527 static struct type *
6528 ada_get_tsd_type (struct inferior *inf)
6529 {
6530 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6531
6532 if (data->tsd_type == 0)
6533 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6534 return data->tsd_type;
6535 }
6536
6537 /* Return the TSD (type-specific data) associated to the given TAG.
6538 TAG is assumed to be the tag of a tagged-type entity.
6539
6540 May return NULL if we are unable to get the TSD. */
6541
6542 static struct value *
6543 ada_get_tsd_from_tag (struct value *tag)
6544 {
6545 struct value *val;
6546 struct type *type;
6547
6548 /* First option: The TSD is simply stored as a field of our TAG.
6549 Only older versions of GNAT would use this format, but we have
6550 to test it first, because there are no visible markers for
6551 the current approach except the absence of that field. */
6552
6553 val = ada_value_struct_elt (tag, "tsd", 1);
6554 if (val)
6555 return val;
6556
6557 /* Try the second representation for the dispatch table (in which
6558 there is no explicit 'tsd' field in the referent of the tag pointer,
6559 and instead the tsd pointer is stored just before the dispatch
6560 table. */
6561
6562 type = ada_get_tsd_type (current_inferior());
6563 if (type == NULL)
6564 return NULL;
6565 type = lookup_pointer_type (lookup_pointer_type (type));
6566 val = value_cast (type, tag);
6567 if (val == NULL)
6568 return NULL;
6569 return value_ind (value_ptradd (val, -1));
6570 }
6571
6572 /* Given the TSD of a tag (type-specific data), return a string
6573 containing the name of the associated type.
6574
6575 May return NULL if we are unable to determine the tag name. */
6576
6577 static gdb::unique_xmalloc_ptr<char>
6578 ada_tag_name_from_tsd (struct value *tsd)
6579 {
6580 struct value *val;
6581
6582 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6583 if (val == NULL)
6584 return NULL;
6585 gdb::unique_xmalloc_ptr<char> buffer
6586 = target_read_string (value_as_address (val), INT_MAX);
6587 if (buffer == nullptr)
6588 return nullptr;
6589
6590 try
6591 {
6592 /* Let this throw an exception on error. If the data is
6593 uninitialized, we'd rather not have the user see a
6594 warning. */
6595 const char *folded = ada_fold_name (buffer.get (), true);
6596 return make_unique_xstrdup (folded);
6597 }
6598 catch (const gdb_exception &)
6599 {
6600 return nullptr;
6601 }
6602 }
6603
6604 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6605 a C string.
6606
6607 Return NULL if the TAG is not an Ada tag, or if we were unable to
6608 determine the name of that tag. */
6609
6610 gdb::unique_xmalloc_ptr<char>
6611 ada_tag_name (struct value *tag)
6612 {
6613 gdb::unique_xmalloc_ptr<char> name;
6614
6615 if (!ada_is_tag_type (value_type (tag)))
6616 return NULL;
6617
6618 /* It is perfectly possible that an exception be raised while trying
6619 to determine the TAG's name, even under normal circumstances:
6620 The associated variable may be uninitialized or corrupted, for
6621 instance. We do not let any exception propagate past this point.
6622 instead we return NULL.
6623
6624 We also do not print the error message either (which often is very
6625 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6626 the caller print a more meaningful message if necessary. */
6627 try
6628 {
6629 struct value *tsd = ada_get_tsd_from_tag (tag);
6630
6631 if (tsd != NULL)
6632 name = ada_tag_name_from_tsd (tsd);
6633 }
6634 catch (const gdb_exception_error &e)
6635 {
6636 }
6637
6638 return name;
6639 }
6640
6641 /* The parent type of TYPE, or NULL if none. */
6642
6643 struct type *
6644 ada_parent_type (struct type *type)
6645 {
6646 int i;
6647
6648 type = ada_check_typedef (type);
6649
6650 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
6651 return NULL;
6652
6653 for (i = 0; i < type->num_fields (); i += 1)
6654 if (ada_is_parent_field (type, i))
6655 {
6656 struct type *parent_type = type->field (i).type ();
6657
6658 /* If the _parent field is a pointer, then dereference it. */
6659 if (parent_type->code () == TYPE_CODE_PTR)
6660 parent_type = TYPE_TARGET_TYPE (parent_type);
6661 /* If there is a parallel XVS type, get the actual base type. */
6662 parent_type = ada_get_base_type (parent_type);
6663
6664 return ada_check_typedef (parent_type);
6665 }
6666
6667 return NULL;
6668 }
6669
6670 /* True iff field number FIELD_NUM of structure type TYPE contains the
6671 parent-type (inherited) fields of a derived type. Assumes TYPE is
6672 a structure type with at least FIELD_NUM+1 fields. */
6673
6674 int
6675 ada_is_parent_field (struct type *type, int field_num)
6676 {
6677 const char *name = ada_check_typedef (type)->field (field_num).name ();
6678
6679 return (name != NULL
6680 && (startswith (name, "PARENT")
6681 || startswith (name, "_parent")));
6682 }
6683
6684 /* True iff field number FIELD_NUM of structure type TYPE is a
6685 transparent wrapper field (which should be silently traversed when doing
6686 field selection and flattened when printing). Assumes TYPE is a
6687 structure type with at least FIELD_NUM+1 fields. Such fields are always
6688 structures. */
6689
6690 int
6691 ada_is_wrapper_field (struct type *type, int field_num)
6692 {
6693 const char *name = type->field (field_num).name ();
6694
6695 if (name != NULL && strcmp (name, "RETVAL") == 0)
6696 {
6697 /* This happens in functions with "out" or "in out" parameters
6698 which are passed by copy. For such functions, GNAT describes
6699 the function's return type as being a struct where the return
6700 value is in a field called RETVAL, and where the other "out"
6701 or "in out" parameters are fields of that struct. This is not
6702 a wrapper. */
6703 return 0;
6704 }
6705
6706 return (name != NULL
6707 && (startswith (name, "PARENT")
6708 || strcmp (name, "REP") == 0
6709 || startswith (name, "_parent")
6710 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6711 }
6712
6713 /* True iff field number FIELD_NUM of structure or union type TYPE
6714 is a variant wrapper. Assumes TYPE is a structure type with at least
6715 FIELD_NUM+1 fields. */
6716
6717 int
6718 ada_is_variant_part (struct type *type, int field_num)
6719 {
6720 /* Only Ada types are eligible. */
6721 if (!ADA_TYPE_P (type))
6722 return 0;
6723
6724 struct type *field_type = type->field (field_num).type ();
6725
6726 return (field_type->code () == TYPE_CODE_UNION
6727 || (is_dynamic_field (type, field_num)
6728 && (TYPE_TARGET_TYPE (field_type)->code ()
6729 == TYPE_CODE_UNION)));
6730 }
6731
6732 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6733 whose discriminants are contained in the record type OUTER_TYPE,
6734 returns the type of the controlling discriminant for the variant.
6735 May return NULL if the type could not be found. */
6736
6737 struct type *
6738 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6739 {
6740 const char *name = ada_variant_discrim_name (var_type);
6741
6742 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
6743 }
6744
6745 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6746 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6747 represents a 'when others' clause; otherwise 0. */
6748
6749 static int
6750 ada_is_others_clause (struct type *type, int field_num)
6751 {
6752 const char *name = type->field (field_num).name ();
6753
6754 return (name != NULL && name[0] == 'O');
6755 }
6756
6757 /* Assuming that TYPE0 is the type of the variant part of a record,
6758 returns the name of the discriminant controlling the variant.
6759 The value is valid until the next call to ada_variant_discrim_name. */
6760
6761 const char *
6762 ada_variant_discrim_name (struct type *type0)
6763 {
6764 static std::string result;
6765 struct type *type;
6766 const char *name;
6767 const char *discrim_end;
6768 const char *discrim_start;
6769
6770 if (type0->code () == TYPE_CODE_PTR)
6771 type = TYPE_TARGET_TYPE (type0);
6772 else
6773 type = type0;
6774
6775 name = ada_type_name (type);
6776
6777 if (name == NULL || name[0] == '\000')
6778 return "";
6779
6780 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6781 discrim_end -= 1)
6782 {
6783 if (startswith (discrim_end, "___XVN"))
6784 break;
6785 }
6786 if (discrim_end == name)
6787 return "";
6788
6789 for (discrim_start = discrim_end; discrim_start != name + 3;
6790 discrim_start -= 1)
6791 {
6792 if (discrim_start == name + 1)
6793 return "";
6794 if ((discrim_start > name + 3
6795 && startswith (discrim_start - 3, "___"))
6796 || discrim_start[-1] == '.')
6797 break;
6798 }
6799
6800 result = std::string (discrim_start, discrim_end - discrim_start);
6801 return result.c_str ();
6802 }
6803
6804 /* Scan STR for a subtype-encoded number, beginning at position K.
6805 Put the position of the character just past the number scanned in
6806 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6807 Return 1 if there was a valid number at the given position, and 0
6808 otherwise. A "subtype-encoded" number consists of the absolute value
6809 in decimal, followed by the letter 'm' to indicate a negative number.
6810 Assumes 0m does not occur. */
6811
6812 int
6813 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6814 {
6815 ULONGEST RU;
6816
6817 if (!isdigit (str[k]))
6818 return 0;
6819
6820 /* Do it the hard way so as not to make any assumption about
6821 the relationship of unsigned long (%lu scan format code) and
6822 LONGEST. */
6823 RU = 0;
6824 while (isdigit (str[k]))
6825 {
6826 RU = RU * 10 + (str[k] - '0');
6827 k += 1;
6828 }
6829
6830 if (str[k] == 'm')
6831 {
6832 if (R != NULL)
6833 *R = (-(LONGEST) (RU - 1)) - 1;
6834 k += 1;
6835 }
6836 else if (R != NULL)
6837 *R = (LONGEST) RU;
6838
6839 /* NOTE on the above: Technically, C does not say what the results of
6840 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6841 number representable as a LONGEST (although either would probably work
6842 in most implementations). When RU>0, the locution in the then branch
6843 above is always equivalent to the negative of RU. */
6844
6845 if (new_k != NULL)
6846 *new_k = k;
6847 return 1;
6848 }
6849
6850 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6851 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6852 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6853
6854 static int
6855 ada_in_variant (LONGEST val, struct type *type, int field_num)
6856 {
6857 const char *name = type->field (field_num).name ();
6858 int p;
6859
6860 p = 0;
6861 while (1)
6862 {
6863 switch (name[p])
6864 {
6865 case '\0':
6866 return 0;
6867 case 'S':
6868 {
6869 LONGEST W;
6870
6871 if (!ada_scan_number (name, p + 1, &W, &p))
6872 return 0;
6873 if (val == W)
6874 return 1;
6875 break;
6876 }
6877 case 'R':
6878 {
6879 LONGEST L, U;
6880
6881 if (!ada_scan_number (name, p + 1, &L, &p)
6882 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6883 return 0;
6884 if (val >= L && val <= U)
6885 return 1;
6886 break;
6887 }
6888 case 'O':
6889 return 1;
6890 default:
6891 return 0;
6892 }
6893 }
6894 }
6895
6896 /* FIXME: Lots of redundancy below. Try to consolidate. */
6897
6898 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6899 ARG_TYPE, extract and return the value of one of its (non-static)
6900 fields. FIELDNO says which field. Differs from value_primitive_field
6901 only in that it can handle packed values of arbitrary type. */
6902
6903 struct value *
6904 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6905 struct type *arg_type)
6906 {
6907 struct type *type;
6908
6909 arg_type = ada_check_typedef (arg_type);
6910 type = arg_type->field (fieldno).type ();
6911
6912 /* Handle packed fields. It might be that the field is not packed
6913 relative to its containing structure, but the structure itself is
6914 packed; in this case we must take the bit-field path. */
6915 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0 || value_bitpos (arg1) != 0)
6916 {
6917 int bit_pos = arg_type->field (fieldno).loc_bitpos ();
6918 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6919
6920 return ada_value_primitive_packed_val (arg1,
6921 value_contents (arg1).data (),
6922 offset + bit_pos / 8,
6923 bit_pos % 8, bit_size, type);
6924 }
6925 else
6926 return value_primitive_field (arg1, offset, fieldno, arg_type);
6927 }
6928
6929 /* Find field with name NAME in object of type TYPE. If found,
6930 set the following for each argument that is non-null:
6931 - *FIELD_TYPE_P to the field's type;
6932 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6933 an object of that type;
6934 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6935 - *BIT_SIZE_P to its size in bits if the field is packed, and
6936 0 otherwise;
6937 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6938 fields up to but not including the desired field, or by the total
6939 number of fields if not found. A NULL value of NAME never
6940 matches; the function just counts visible fields in this case.
6941
6942 Notice that we need to handle when a tagged record hierarchy
6943 has some components with the same name, like in this scenario:
6944
6945 type Top_T is tagged record
6946 N : Integer := 1;
6947 U : Integer := 974;
6948 A : Integer := 48;
6949 end record;
6950
6951 type Middle_T is new Top.Top_T with record
6952 N : Character := 'a';
6953 C : Integer := 3;
6954 end record;
6955
6956 type Bottom_T is new Middle.Middle_T with record
6957 N : Float := 4.0;
6958 C : Character := '5';
6959 X : Integer := 6;
6960 A : Character := 'J';
6961 end record;
6962
6963 Let's say we now have a variable declared and initialized as follow:
6964
6965 TC : Top_A := new Bottom_T;
6966
6967 And then we use this variable to call this function
6968
6969 procedure Assign (Obj: in out Top_T; TV : Integer);
6970
6971 as follow:
6972
6973 Assign (Top_T (B), 12);
6974
6975 Now, we're in the debugger, and we're inside that procedure
6976 then and we want to print the value of obj.c:
6977
6978 Usually, the tagged record or one of the parent type owns the
6979 component to print and there's no issue but in this particular
6980 case, what does it mean to ask for Obj.C? Since the actual
6981 type for object is type Bottom_T, it could mean two things: type
6982 component C from the Middle_T view, but also component C from
6983 Bottom_T. So in that "undefined" case, when the component is
6984 not found in the non-resolved type (which includes all the
6985 components of the parent type), then resolve it and see if we
6986 get better luck once expanded.
6987
6988 In the case of homonyms in the derived tagged type, we don't
6989 guaranty anything, and pick the one that's easiest for us
6990 to program.
6991
6992 Returns 1 if found, 0 otherwise. */
6993
6994 static int
6995 find_struct_field (const char *name, struct type *type, int offset,
6996 struct type **field_type_p,
6997 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6998 int *index_p)
6999 {
7000 int i;
7001 int parent_offset = -1;
7002
7003 type = ada_check_typedef (type);
7004
7005 if (field_type_p != NULL)
7006 *field_type_p = NULL;
7007 if (byte_offset_p != NULL)
7008 *byte_offset_p = 0;
7009 if (bit_offset_p != NULL)
7010 *bit_offset_p = 0;
7011 if (bit_size_p != NULL)
7012 *bit_size_p = 0;
7013
7014 for (i = 0; i < type->num_fields (); i += 1)
7015 {
7016 /* These can't be computed using TYPE_FIELD_BITPOS for a dynamic
7017 type. However, we only need the values to be correct when
7018 the caller asks for them. */
7019 int bit_pos = 0, fld_offset = 0;
7020 if (byte_offset_p != nullptr || bit_offset_p != nullptr)
7021 {
7022 bit_pos = type->field (i).loc_bitpos ();
7023 fld_offset = offset + bit_pos / 8;
7024 }
7025
7026 const char *t_field_name = type->field (i).name ();
7027
7028 if (t_field_name == NULL)
7029 continue;
7030
7031 else if (ada_is_parent_field (type, i))
7032 {
7033 /* This is a field pointing us to the parent type of a tagged
7034 type. As hinted in this function's documentation, we give
7035 preference to fields in the current record first, so what
7036 we do here is just record the index of this field before
7037 we skip it. If it turns out we couldn't find our field
7038 in the current record, then we'll get back to it and search
7039 inside it whether the field might exist in the parent. */
7040
7041 parent_offset = i;
7042 continue;
7043 }
7044
7045 else if (name != NULL && field_name_match (t_field_name, name))
7046 {
7047 int bit_size = TYPE_FIELD_BITSIZE (type, i);
7048
7049 if (field_type_p != NULL)
7050 *field_type_p = type->field (i).type ();
7051 if (byte_offset_p != NULL)
7052 *byte_offset_p = fld_offset;
7053 if (bit_offset_p != NULL)
7054 *bit_offset_p = bit_pos % 8;
7055 if (bit_size_p != NULL)
7056 *bit_size_p = bit_size;
7057 return 1;
7058 }
7059 else if (ada_is_wrapper_field (type, i))
7060 {
7061 if (find_struct_field (name, type->field (i).type (), fld_offset,
7062 field_type_p, byte_offset_p, bit_offset_p,
7063 bit_size_p, index_p))
7064 return 1;
7065 }
7066 else if (ada_is_variant_part (type, i))
7067 {
7068 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7069 fixed type?? */
7070 int j;
7071 struct type *field_type
7072 = ada_check_typedef (type->field (i).type ());
7073
7074 for (j = 0; j < field_type->num_fields (); j += 1)
7075 {
7076 if (find_struct_field (name, field_type->field (j).type (),
7077 fld_offset
7078 + field_type->field (j).loc_bitpos () / 8,
7079 field_type_p, byte_offset_p,
7080 bit_offset_p, bit_size_p, index_p))
7081 return 1;
7082 }
7083 }
7084 else if (index_p != NULL)
7085 *index_p += 1;
7086 }
7087
7088 /* Field not found so far. If this is a tagged type which
7089 has a parent, try finding that field in the parent now. */
7090
7091 if (parent_offset != -1)
7092 {
7093 /* As above, only compute the offset when truly needed. */
7094 int fld_offset = offset;
7095 if (byte_offset_p != nullptr || bit_offset_p != nullptr)
7096 {
7097 int bit_pos = type->field (parent_offset).loc_bitpos ();
7098 fld_offset += bit_pos / 8;
7099 }
7100
7101 if (find_struct_field (name, type->field (parent_offset).type (),
7102 fld_offset, field_type_p, byte_offset_p,
7103 bit_offset_p, bit_size_p, index_p))
7104 return 1;
7105 }
7106
7107 return 0;
7108 }
7109
7110 /* Number of user-visible fields in record type TYPE. */
7111
7112 static int
7113 num_visible_fields (struct type *type)
7114 {
7115 int n;
7116
7117 n = 0;
7118 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7119 return n;
7120 }
7121
7122 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7123 and search in it assuming it has (class) type TYPE.
7124 If found, return value, else return NULL.
7125
7126 Searches recursively through wrapper fields (e.g., '_parent').
7127
7128 In the case of homonyms in the tagged types, please refer to the
7129 long explanation in find_struct_field's function documentation. */
7130
7131 static struct value *
7132 ada_search_struct_field (const char *name, struct value *arg, int offset,
7133 struct type *type)
7134 {
7135 int i;
7136 int parent_offset = -1;
7137
7138 type = ada_check_typedef (type);
7139 for (i = 0; i < type->num_fields (); i += 1)
7140 {
7141 const char *t_field_name = type->field (i).name ();
7142
7143 if (t_field_name == NULL)
7144 continue;
7145
7146 else if (ada_is_parent_field (type, i))
7147 {
7148 /* This is a field pointing us to the parent type of a tagged
7149 type. As hinted in this function's documentation, we give
7150 preference to fields in the current record first, so what
7151 we do here is just record the index of this field before
7152 we skip it. If it turns out we couldn't find our field
7153 in the current record, then we'll get back to it and search
7154 inside it whether the field might exist in the parent. */
7155
7156 parent_offset = i;
7157 continue;
7158 }
7159
7160 else if (field_name_match (t_field_name, name))
7161 return ada_value_primitive_field (arg, offset, i, type);
7162
7163 else if (ada_is_wrapper_field (type, i))
7164 {
7165 struct value *v = /* Do not let indent join lines here. */
7166 ada_search_struct_field (name, arg,
7167 offset + type->field (i).loc_bitpos () / 8,
7168 type->field (i).type ());
7169
7170 if (v != NULL)
7171 return v;
7172 }
7173
7174 else if (ada_is_variant_part (type, i))
7175 {
7176 /* PNH: Do we ever get here? See find_struct_field. */
7177 int j;
7178 struct type *field_type = ada_check_typedef (type->field (i).type ());
7179 int var_offset = offset + type->field (i).loc_bitpos () / 8;
7180
7181 for (j = 0; j < field_type->num_fields (); j += 1)
7182 {
7183 struct value *v = ada_search_struct_field /* Force line
7184 break. */
7185 (name, arg,
7186 var_offset + field_type->field (j).loc_bitpos () / 8,
7187 field_type->field (j).type ());
7188
7189 if (v != NULL)
7190 return v;
7191 }
7192 }
7193 }
7194
7195 /* Field not found so far. If this is a tagged type which
7196 has a parent, try finding that field in the parent now. */
7197
7198 if (parent_offset != -1)
7199 {
7200 struct value *v = ada_search_struct_field (
7201 name, arg, offset + type->field (parent_offset).loc_bitpos () / 8,
7202 type->field (parent_offset).type ());
7203
7204 if (v != NULL)
7205 return v;
7206 }
7207
7208 return NULL;
7209 }
7210
7211 static struct value *ada_index_struct_field_1 (int *, struct value *,
7212 int, struct type *);
7213
7214
7215 /* Return field #INDEX in ARG, where the index is that returned by
7216 * find_struct_field through its INDEX_P argument. Adjust the address
7217 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7218 * If found, return value, else return NULL. */
7219
7220 static struct value *
7221 ada_index_struct_field (int index, struct value *arg, int offset,
7222 struct type *type)
7223 {
7224 return ada_index_struct_field_1 (&index, arg, offset, type);
7225 }
7226
7227
7228 /* Auxiliary function for ada_index_struct_field. Like
7229 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7230 * *INDEX_P. */
7231
7232 static struct value *
7233 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7234 struct type *type)
7235 {
7236 int i;
7237 type = ada_check_typedef (type);
7238
7239 for (i = 0; i < type->num_fields (); i += 1)
7240 {
7241 if (type->field (i).name () == NULL)
7242 continue;
7243 else if (ada_is_wrapper_field (type, i))
7244 {
7245 struct value *v = /* Do not let indent join lines here. */
7246 ada_index_struct_field_1 (index_p, arg,
7247 offset + type->field (i).loc_bitpos () / 8,
7248 type->field (i).type ());
7249
7250 if (v != NULL)
7251 return v;
7252 }
7253
7254 else if (ada_is_variant_part (type, i))
7255 {
7256 /* PNH: Do we ever get here? See ada_search_struct_field,
7257 find_struct_field. */
7258 error (_("Cannot assign this kind of variant record"));
7259 }
7260 else if (*index_p == 0)
7261 return ada_value_primitive_field (arg, offset, i, type);
7262 else
7263 *index_p -= 1;
7264 }
7265 return NULL;
7266 }
7267
7268 /* Return a string representation of type TYPE. */
7269
7270 static std::string
7271 type_as_string (struct type *type)
7272 {
7273 string_file tmp_stream;
7274
7275 type_print (type, "", &tmp_stream, -1);
7276
7277 return tmp_stream.release ();
7278 }
7279
7280 /* Given a type TYPE, look up the type of the component of type named NAME.
7281 If DISPP is non-null, add its byte displacement from the beginning of a
7282 structure (pointed to by a value) of type TYPE to *DISPP (does not
7283 work for packed fields).
7284
7285 Matches any field whose name has NAME as a prefix, possibly
7286 followed by "___".
7287
7288 TYPE can be either a struct or union. If REFOK, TYPE may also
7289 be a (pointer or reference)+ to a struct or union, and the
7290 ultimate target type will be searched.
7291
7292 Looks recursively into variant clauses and parent types.
7293
7294 In the case of homonyms in the tagged types, please refer to the
7295 long explanation in find_struct_field's function documentation.
7296
7297 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7298 TYPE is not a type of the right kind. */
7299
7300 static struct type *
7301 ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
7302 int noerr)
7303 {
7304 int i;
7305 int parent_offset = -1;
7306
7307 if (name == NULL)
7308 goto BadName;
7309
7310 if (refok && type != NULL)
7311 while (1)
7312 {
7313 type = ada_check_typedef (type);
7314 if (type->code () != TYPE_CODE_PTR && type->code () != TYPE_CODE_REF)
7315 break;
7316 type = TYPE_TARGET_TYPE (type);
7317 }
7318
7319 if (type == NULL
7320 || (type->code () != TYPE_CODE_STRUCT
7321 && type->code () != TYPE_CODE_UNION))
7322 {
7323 if (noerr)
7324 return NULL;
7325
7326 error (_("Type %s is not a structure or union type"),
7327 type != NULL ? type_as_string (type).c_str () : _("(null)"));
7328 }
7329
7330 type = to_static_fixed_type (type);
7331
7332 for (i = 0; i < type->num_fields (); i += 1)
7333 {
7334 const char *t_field_name = type->field (i).name ();
7335 struct type *t;
7336
7337 if (t_field_name == NULL)
7338 continue;
7339
7340 else if (ada_is_parent_field (type, i))
7341 {
7342 /* This is a field pointing us to the parent type of a tagged
7343 type. As hinted in this function's documentation, we give
7344 preference to fields in the current record first, so what
7345 we do here is just record the index of this field before
7346 we skip it. If it turns out we couldn't find our field
7347 in the current record, then we'll get back to it and search
7348 inside it whether the field might exist in the parent. */
7349
7350 parent_offset = i;
7351 continue;
7352 }
7353
7354 else if (field_name_match (t_field_name, name))
7355 return type->field (i).type ();
7356
7357 else if (ada_is_wrapper_field (type, i))
7358 {
7359 t = ada_lookup_struct_elt_type (type->field (i).type (), name,
7360 0, 1);
7361 if (t != NULL)
7362 return t;
7363 }
7364
7365 else if (ada_is_variant_part (type, i))
7366 {
7367 int j;
7368 struct type *field_type = ada_check_typedef (type->field (i).type ());
7369
7370 for (j = field_type->num_fields () - 1; j >= 0; j -= 1)
7371 {
7372 /* FIXME pnh 2008/01/26: We check for a field that is
7373 NOT wrapped in a struct, since the compiler sometimes
7374 generates these for unchecked variant types. Revisit
7375 if the compiler changes this practice. */
7376 const char *v_field_name = field_type->field (j).name ();
7377
7378 if (v_field_name != NULL
7379 && field_name_match (v_field_name, name))
7380 t = field_type->field (j).type ();
7381 else
7382 t = ada_lookup_struct_elt_type (field_type->field (j).type (),
7383 name, 0, 1);
7384
7385 if (t != NULL)
7386 return t;
7387 }
7388 }
7389
7390 }
7391
7392 /* Field not found so far. If this is a tagged type which
7393 has a parent, try finding that field in the parent now. */
7394
7395 if (parent_offset != -1)
7396 {
7397 struct type *t;
7398
7399 t = ada_lookup_struct_elt_type (type->field (parent_offset).type (),
7400 name, 0, 1);
7401 if (t != NULL)
7402 return t;
7403 }
7404
7405 BadName:
7406 if (!noerr)
7407 {
7408 const char *name_str = name != NULL ? name : _("<null>");
7409
7410 error (_("Type %s has no component named %s"),
7411 type_as_string (type).c_str (), name_str);
7412 }
7413
7414 return NULL;
7415 }
7416
7417 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7418 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7419 represents an unchecked union (that is, the variant part of a
7420 record that is named in an Unchecked_Union pragma). */
7421
7422 static int
7423 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7424 {
7425 const char *discrim_name = ada_variant_discrim_name (var_type);
7426
7427 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
7428 }
7429
7430
7431 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7432 within OUTER, determine which variant clause (field number in VAR_TYPE,
7433 numbering from 0) is applicable. Returns -1 if none are. */
7434
7435 int
7436 ada_which_variant_applies (struct type *var_type, struct value *outer)
7437 {
7438 int others_clause;
7439 int i;
7440 const char *discrim_name = ada_variant_discrim_name (var_type);
7441 struct value *discrim;
7442 LONGEST discrim_val;
7443
7444 /* Using plain value_from_contents_and_address here causes problems
7445 because we will end up trying to resolve a type that is currently
7446 being constructed. */
7447 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7448 if (discrim == NULL)
7449 return -1;
7450 discrim_val = value_as_long (discrim);
7451
7452 others_clause = -1;
7453 for (i = 0; i < var_type->num_fields (); i += 1)
7454 {
7455 if (ada_is_others_clause (var_type, i))
7456 others_clause = i;
7457 else if (ada_in_variant (discrim_val, var_type, i))
7458 return i;
7459 }
7460
7461 return others_clause;
7462 }
7463 \f
7464
7465
7466 /* Dynamic-Sized Records */
7467
7468 /* Strategy: The type ostensibly attached to a value with dynamic size
7469 (i.e., a size that is not statically recorded in the debugging
7470 data) does not accurately reflect the size or layout of the value.
7471 Our strategy is to convert these values to values with accurate,
7472 conventional types that are constructed on the fly. */
7473
7474 /* There is a subtle and tricky problem here. In general, we cannot
7475 determine the size of dynamic records without its data. However,
7476 the 'struct value' data structure, which GDB uses to represent
7477 quantities in the inferior process (the target), requires the size
7478 of the type at the time of its allocation in order to reserve space
7479 for GDB's internal copy of the data. That's why the
7480 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7481 rather than struct value*s.
7482
7483 However, GDB's internal history variables ($1, $2, etc.) are
7484 struct value*s containing internal copies of the data that are not, in
7485 general, the same as the data at their corresponding addresses in
7486 the target. Fortunately, the types we give to these values are all
7487 conventional, fixed-size types (as per the strategy described
7488 above), so that we don't usually have to perform the
7489 'to_fixed_xxx_type' conversions to look at their values.
7490 Unfortunately, there is one exception: if one of the internal
7491 history variables is an array whose elements are unconstrained
7492 records, then we will need to create distinct fixed types for each
7493 element selected. */
7494
7495 /* The upshot of all of this is that many routines take a (type, host
7496 address, target address) triple as arguments to represent a value.
7497 The host address, if non-null, is supposed to contain an internal
7498 copy of the relevant data; otherwise, the program is to consult the
7499 target at the target address. */
7500
7501 /* Assuming that VAL0 represents a pointer value, the result of
7502 dereferencing it. Differs from value_ind in its treatment of
7503 dynamic-sized types. */
7504
7505 struct value *
7506 ada_value_ind (struct value *val0)
7507 {
7508 struct value *val = value_ind (val0);
7509
7510 if (ada_is_tagged_type (value_type (val), 0))
7511 val = ada_tag_value_at_base_address (val);
7512
7513 return ada_to_fixed_value (val);
7514 }
7515
7516 /* The value resulting from dereferencing any "reference to"
7517 qualifiers on VAL0. */
7518
7519 static struct value *
7520 ada_coerce_ref (struct value *val0)
7521 {
7522 if (value_type (val0)->code () == TYPE_CODE_REF)
7523 {
7524 struct value *val = val0;
7525
7526 val = coerce_ref (val);
7527
7528 if (ada_is_tagged_type (value_type (val), 0))
7529 val = ada_tag_value_at_base_address (val);
7530
7531 return ada_to_fixed_value (val);
7532 }
7533 else
7534 return val0;
7535 }
7536
7537 /* Return the bit alignment required for field #F of template type TYPE. */
7538
7539 static unsigned int
7540 field_alignment (struct type *type, int f)
7541 {
7542 const char *name = type->field (f).name ();
7543 int len;
7544 int align_offset;
7545
7546 /* The field name should never be null, unless the debugging information
7547 is somehow malformed. In this case, we assume the field does not
7548 require any alignment. */
7549 if (name == NULL)
7550 return 1;
7551
7552 len = strlen (name);
7553
7554 if (!isdigit (name[len - 1]))
7555 return 1;
7556
7557 if (isdigit (name[len - 2]))
7558 align_offset = len - 2;
7559 else
7560 align_offset = len - 1;
7561
7562 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7563 return TARGET_CHAR_BIT;
7564
7565 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7566 }
7567
7568 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7569
7570 static struct symbol *
7571 ada_find_any_type_symbol (const char *name)
7572 {
7573 struct symbol *sym;
7574
7575 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7576 if (sym != NULL && sym->aclass () == LOC_TYPEDEF)
7577 return sym;
7578
7579 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7580 return sym;
7581 }
7582
7583 /* Find a type named NAME. Ignores ambiguity. This routine will look
7584 solely for types defined by debug info, it will not search the GDB
7585 primitive types. */
7586
7587 static struct type *
7588 ada_find_any_type (const char *name)
7589 {
7590 struct symbol *sym = ada_find_any_type_symbol (name);
7591
7592 if (sym != NULL)
7593 return sym->type ();
7594
7595 return NULL;
7596 }
7597
7598 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7599 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7600 symbol, in which case it is returned. Otherwise, this looks for
7601 symbols whose name is that of NAME_SYM suffixed with "___XR".
7602 Return symbol if found, and NULL otherwise. */
7603
7604 static bool
7605 ada_is_renaming_symbol (struct symbol *name_sym)
7606 {
7607 const char *name = name_sym->linkage_name ();
7608 return strstr (name, "___XR") != NULL;
7609 }
7610
7611 /* Because of GNAT encoding conventions, several GDB symbols may match a
7612 given type name. If the type denoted by TYPE0 is to be preferred to
7613 that of TYPE1 for purposes of type printing, return non-zero;
7614 otherwise return 0. */
7615
7616 int
7617 ada_prefer_type (struct type *type0, struct type *type1)
7618 {
7619 if (type1 == NULL)
7620 return 1;
7621 else if (type0 == NULL)
7622 return 0;
7623 else if (type1->code () == TYPE_CODE_VOID)
7624 return 1;
7625 else if (type0->code () == TYPE_CODE_VOID)
7626 return 0;
7627 else if (type1->name () == NULL && type0->name () != NULL)
7628 return 1;
7629 else if (ada_is_constrained_packed_array_type (type0))
7630 return 1;
7631 else if (ada_is_array_descriptor_type (type0)
7632 && !ada_is_array_descriptor_type (type1))
7633 return 1;
7634 else
7635 {
7636 const char *type0_name = type0->name ();
7637 const char *type1_name = type1->name ();
7638
7639 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7640 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7641 return 1;
7642 }
7643 return 0;
7644 }
7645
7646 /* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
7647 null. */
7648
7649 const char *
7650 ada_type_name (struct type *type)
7651 {
7652 if (type == NULL)
7653 return NULL;
7654 return type->name ();
7655 }
7656
7657 /* Search the list of "descriptive" types associated to TYPE for a type
7658 whose name is NAME. */
7659
7660 static struct type *
7661 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7662 {
7663 struct type *result, *tmp;
7664
7665 if (ada_ignore_descriptive_types_p)
7666 return NULL;
7667
7668 /* If there no descriptive-type info, then there is no parallel type
7669 to be found. */
7670 if (!HAVE_GNAT_AUX_INFO (type))
7671 return NULL;
7672
7673 result = TYPE_DESCRIPTIVE_TYPE (type);
7674 while (result != NULL)
7675 {
7676 const char *result_name = ada_type_name (result);
7677
7678 if (result_name == NULL)
7679 {
7680 warning (_("unexpected null name on descriptive type"));
7681 return NULL;
7682 }
7683
7684 /* If the names match, stop. */
7685 if (strcmp (result_name, name) == 0)
7686 break;
7687
7688 /* Otherwise, look at the next item on the list, if any. */
7689 if (HAVE_GNAT_AUX_INFO (result))
7690 tmp = TYPE_DESCRIPTIVE_TYPE (result);
7691 else
7692 tmp = NULL;
7693
7694 /* If not found either, try after having resolved the typedef. */
7695 if (tmp != NULL)
7696 result = tmp;
7697 else
7698 {
7699 result = check_typedef (result);
7700 if (HAVE_GNAT_AUX_INFO (result))
7701 result = TYPE_DESCRIPTIVE_TYPE (result);
7702 else
7703 result = NULL;
7704 }
7705 }
7706
7707 /* If we didn't find a match, see whether this is a packed array. With
7708 older compilers, the descriptive type information is either absent or
7709 irrelevant when it comes to packed arrays so the above lookup fails.
7710 Fall back to using a parallel lookup by name in this case. */
7711 if (result == NULL && ada_is_constrained_packed_array_type (type))
7712 return ada_find_any_type (name);
7713
7714 return result;
7715 }
7716
7717 /* Find a parallel type to TYPE with the specified NAME, using the
7718 descriptive type taken from the debugging information, if available,
7719 and otherwise using the (slower) name-based method. */
7720
7721 static struct type *
7722 ada_find_parallel_type_with_name (struct type *type, const char *name)
7723 {
7724 struct type *result = NULL;
7725
7726 if (HAVE_GNAT_AUX_INFO (type))
7727 result = find_parallel_type_by_descriptive_type (type, name);
7728 else
7729 result = ada_find_any_type (name);
7730
7731 return result;
7732 }
7733
7734 /* Same as above, but specify the name of the parallel type by appending
7735 SUFFIX to the name of TYPE. */
7736
7737 struct type *
7738 ada_find_parallel_type (struct type *type, const char *suffix)
7739 {
7740 char *name;
7741 const char *type_name = ada_type_name (type);
7742 int len;
7743
7744 if (type_name == NULL)
7745 return NULL;
7746
7747 len = strlen (type_name);
7748
7749 name = (char *) alloca (len + strlen (suffix) + 1);
7750
7751 strcpy (name, type_name);
7752 strcpy (name + len, suffix);
7753
7754 return ada_find_parallel_type_with_name (type, name);
7755 }
7756
7757 /* If TYPE is a variable-size record type, return the corresponding template
7758 type describing its fields. Otherwise, return NULL. */
7759
7760 static struct type *
7761 dynamic_template_type (struct type *type)
7762 {
7763 type = ada_check_typedef (type);
7764
7765 if (type == NULL || type->code () != TYPE_CODE_STRUCT
7766 || ada_type_name (type) == NULL)
7767 return NULL;
7768 else
7769 {
7770 int len = strlen (ada_type_name (type));
7771
7772 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7773 return type;
7774 else
7775 return ada_find_parallel_type (type, "___XVE");
7776 }
7777 }
7778
7779 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7780 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7781
7782 static int
7783 is_dynamic_field (struct type *templ_type, int field_num)
7784 {
7785 const char *name = templ_type->field (field_num).name ();
7786
7787 return name != NULL
7788 && templ_type->field (field_num).type ()->code () == TYPE_CODE_PTR
7789 && strstr (name, "___XVL") != NULL;
7790 }
7791
7792 /* The index of the variant field of TYPE, or -1 if TYPE does not
7793 represent a variant record type. */
7794
7795 static int
7796 variant_field_index (struct type *type)
7797 {
7798 int f;
7799
7800 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
7801 return -1;
7802
7803 for (f = 0; f < type->num_fields (); f += 1)
7804 {
7805 if (ada_is_variant_part (type, f))
7806 return f;
7807 }
7808 return -1;
7809 }
7810
7811 /* A record type with no fields. */
7812
7813 static struct type *
7814 empty_record (struct type *templ)
7815 {
7816 struct type *type = alloc_type_copy (templ);
7817
7818 type->set_code (TYPE_CODE_STRUCT);
7819 INIT_NONE_SPECIFIC (type);
7820 type->set_name ("<empty>");
7821 TYPE_LENGTH (type) = 0;
7822 return type;
7823 }
7824
7825 /* An ordinary record type (with fixed-length fields) that describes
7826 the value of type TYPE at VALADDR or ADDRESS (see comments at
7827 the beginning of this section) VAL according to GNAT conventions.
7828 DVAL0 should describe the (portion of a) record that contains any
7829 necessary discriminants. It should be NULL if value_type (VAL) is
7830 an outer-level type (i.e., as opposed to a branch of a variant.) A
7831 variant field (unless unchecked) is replaced by a particular branch
7832 of the variant.
7833
7834 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7835 length are not statically known are discarded. As a consequence,
7836 VALADDR, ADDRESS and DVAL0 are ignored.
7837
7838 NOTE: Limitations: For now, we assume that dynamic fields and
7839 variants occupy whole numbers of bytes. However, they need not be
7840 byte-aligned. */
7841
7842 struct type *
7843 ada_template_to_fixed_record_type_1 (struct type *type,
7844 const gdb_byte *valaddr,
7845 CORE_ADDR address, struct value *dval0,
7846 int keep_dynamic_fields)
7847 {
7848 struct value *mark = value_mark ();
7849 struct value *dval;
7850 struct type *rtype;
7851 int nfields, bit_len;
7852 int variant_field;
7853 long off;
7854 int fld_bit_len;
7855 int f;
7856
7857 /* Compute the number of fields in this record type that are going
7858 to be processed: unless keep_dynamic_fields, this includes only
7859 fields whose position and length are static will be processed. */
7860 if (keep_dynamic_fields)
7861 nfields = type->num_fields ();
7862 else
7863 {
7864 nfields = 0;
7865 while (nfields < type->num_fields ()
7866 && !ada_is_variant_part (type, nfields)
7867 && !is_dynamic_field (type, nfields))
7868 nfields++;
7869 }
7870
7871 rtype = alloc_type_copy (type);
7872 rtype->set_code (TYPE_CODE_STRUCT);
7873 INIT_NONE_SPECIFIC (rtype);
7874 rtype->set_num_fields (nfields);
7875 rtype->set_fields
7876 ((struct field *) TYPE_ZALLOC (rtype, nfields * sizeof (struct field)));
7877 rtype->set_name (ada_type_name (type));
7878 rtype->set_is_fixed_instance (true);
7879
7880 off = 0;
7881 bit_len = 0;
7882 variant_field = -1;
7883
7884 for (f = 0; f < nfields; f += 1)
7885 {
7886 off = align_up (off, field_alignment (type, f))
7887 + type->field (f).loc_bitpos ();
7888 rtype->field (f).set_loc_bitpos (off);
7889 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7890
7891 if (ada_is_variant_part (type, f))
7892 {
7893 variant_field = f;
7894 fld_bit_len = 0;
7895 }
7896 else if (is_dynamic_field (type, f))
7897 {
7898 const gdb_byte *field_valaddr = valaddr;
7899 CORE_ADDR field_address = address;
7900 struct type *field_type =
7901 TYPE_TARGET_TYPE (type->field (f).type ());
7902
7903 if (dval0 == NULL)
7904 {
7905 /* Using plain value_from_contents_and_address here
7906 causes problems because we will end up trying to
7907 resolve a type that is currently being
7908 constructed. */
7909 dval = value_from_contents_and_address_unresolved (rtype,
7910 valaddr,
7911 address);
7912 rtype = value_type (dval);
7913 }
7914 else
7915 dval = dval0;
7916
7917 /* If the type referenced by this field is an aligner type, we need
7918 to unwrap that aligner type, because its size might not be set.
7919 Keeping the aligner type would cause us to compute the wrong
7920 size for this field, impacting the offset of the all the fields
7921 that follow this one. */
7922 if (ada_is_aligner_type (field_type))
7923 {
7924 long field_offset = type->field (f).loc_bitpos ();
7925
7926 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7927 field_address = cond_offset_target (field_address, field_offset);
7928 field_type = ada_aligned_type (field_type);
7929 }
7930
7931 field_valaddr = cond_offset_host (field_valaddr,
7932 off / TARGET_CHAR_BIT);
7933 field_address = cond_offset_target (field_address,
7934 off / TARGET_CHAR_BIT);
7935
7936 /* Get the fixed type of the field. Note that, in this case,
7937 we do not want to get the real type out of the tag: if
7938 the current field is the parent part of a tagged record,
7939 we will get the tag of the object. Clearly wrong: the real
7940 type of the parent is not the real type of the child. We
7941 would end up in an infinite loop. */
7942 field_type = ada_get_base_type (field_type);
7943 field_type = ada_to_fixed_type (field_type, field_valaddr,
7944 field_address, dval, 0);
7945
7946 rtype->field (f).set_type (field_type);
7947 rtype->field (f).set_name (type->field (f).name ());
7948 /* The multiplication can potentially overflow. But because
7949 the field length has been size-checked just above, and
7950 assuming that the maximum size is a reasonable value,
7951 an overflow should not happen in practice. So rather than
7952 adding overflow recovery code to this already complex code,
7953 we just assume that it's not going to happen. */
7954 fld_bit_len =
7955 TYPE_LENGTH (rtype->field (f).type ()) * TARGET_CHAR_BIT;
7956 }
7957 else
7958 {
7959 /* Note: If this field's type is a typedef, it is important
7960 to preserve the typedef layer.
7961
7962 Otherwise, we might be transforming a typedef to a fat
7963 pointer (encoding a pointer to an unconstrained array),
7964 into a basic fat pointer (encoding an unconstrained
7965 array). As both types are implemented using the same
7966 structure, the typedef is the only clue which allows us
7967 to distinguish between the two options. Stripping it
7968 would prevent us from printing this field appropriately. */
7969 rtype->field (f).set_type (type->field (f).type ());
7970 rtype->field (f).set_name (type->field (f).name ());
7971 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7972 fld_bit_len =
7973 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7974 else
7975 {
7976 struct type *field_type = type->field (f).type ();
7977
7978 /* We need to be careful of typedefs when computing
7979 the length of our field. If this is a typedef,
7980 get the length of the target type, not the length
7981 of the typedef. */
7982 if (field_type->code () == TYPE_CODE_TYPEDEF)
7983 field_type = ada_typedef_target_type (field_type);
7984
7985 fld_bit_len =
7986 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7987 }
7988 }
7989 if (off + fld_bit_len > bit_len)
7990 bit_len = off + fld_bit_len;
7991 off += fld_bit_len;
7992 TYPE_LENGTH (rtype) =
7993 align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7994 }
7995
7996 /* We handle the variant part, if any, at the end because of certain
7997 odd cases in which it is re-ordered so as NOT to be the last field of
7998 the record. This can happen in the presence of representation
7999 clauses. */
8000 if (variant_field >= 0)
8001 {
8002 struct type *branch_type;
8003
8004 off = rtype->field (variant_field).loc_bitpos ();
8005
8006 if (dval0 == NULL)
8007 {
8008 /* Using plain value_from_contents_and_address here causes
8009 problems because we will end up trying to resolve a type
8010 that is currently being constructed. */
8011 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8012 address);
8013 rtype = value_type (dval);
8014 }
8015 else
8016 dval = dval0;
8017
8018 branch_type =
8019 to_fixed_variant_branch_type
8020 (type->field (variant_field).type (),
8021 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8022 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8023 if (branch_type == NULL)
8024 {
8025 for (f = variant_field + 1; f < rtype->num_fields (); f += 1)
8026 rtype->field (f - 1) = rtype->field (f);
8027 rtype->set_num_fields (rtype->num_fields () - 1);
8028 }
8029 else
8030 {
8031 rtype->field (variant_field).set_type (branch_type);
8032 rtype->field (variant_field).set_name ("S");
8033 fld_bit_len =
8034 TYPE_LENGTH (rtype->field (variant_field).type ()) *
8035 TARGET_CHAR_BIT;
8036 if (off + fld_bit_len > bit_len)
8037 bit_len = off + fld_bit_len;
8038 TYPE_LENGTH (rtype) =
8039 align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8040 }
8041 }
8042
8043 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8044 should contain the alignment of that record, which should be a strictly
8045 positive value. If null or negative, then something is wrong, most
8046 probably in the debug info. In that case, we don't round up the size
8047 of the resulting type. If this record is not part of another structure,
8048 the current RTYPE length might be good enough for our purposes. */
8049 if (TYPE_LENGTH (type) <= 0)
8050 {
8051 if (rtype->name ())
8052 warning (_("Invalid type size for `%s' detected: %s."),
8053 rtype->name (), pulongest (TYPE_LENGTH (type)));
8054 else
8055 warning (_("Invalid type size for <unnamed> detected: %s."),
8056 pulongest (TYPE_LENGTH (type)));
8057 }
8058 else
8059 {
8060 TYPE_LENGTH (rtype) = align_up (TYPE_LENGTH (rtype),
8061 TYPE_LENGTH (type));
8062 }
8063
8064 value_free_to_mark (mark);
8065 return rtype;
8066 }
8067
8068 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8069 of 1. */
8070
8071 static struct type *
8072 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8073 CORE_ADDR address, struct value *dval0)
8074 {
8075 return ada_template_to_fixed_record_type_1 (type, valaddr,
8076 address, dval0, 1);
8077 }
8078
8079 /* An ordinary record type in which ___XVL-convention fields and
8080 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8081 static approximations, containing all possible fields. Uses
8082 no runtime values. Useless for use in values, but that's OK,
8083 since the results are used only for type determinations. Works on both
8084 structs and unions. Representation note: to save space, we memorize
8085 the result of this function in the TYPE_TARGET_TYPE of the
8086 template type. */
8087
8088 static struct type *
8089 template_to_static_fixed_type (struct type *type0)
8090 {
8091 struct type *type;
8092 int nfields;
8093 int f;
8094
8095 /* No need no do anything if the input type is already fixed. */
8096 if (type0->is_fixed_instance ())
8097 return type0;
8098
8099 /* Likewise if we already have computed the static approximation. */
8100 if (TYPE_TARGET_TYPE (type0) != NULL)
8101 return TYPE_TARGET_TYPE (type0);
8102
8103 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8104 type = type0;
8105 nfields = type0->num_fields ();
8106
8107 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8108 recompute all over next time. */
8109 TYPE_TARGET_TYPE (type0) = type;
8110
8111 for (f = 0; f < nfields; f += 1)
8112 {
8113 struct type *field_type = type0->field (f).type ();
8114 struct type *new_type;
8115
8116 if (is_dynamic_field (type0, f))
8117 {
8118 field_type = ada_check_typedef (field_type);
8119 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8120 }
8121 else
8122 new_type = static_unwrap_type (field_type);
8123
8124 if (new_type != field_type)
8125 {
8126 /* Clone TYPE0 only the first time we get a new field type. */
8127 if (type == type0)
8128 {
8129 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8130 type->set_code (type0->code ());
8131 INIT_NONE_SPECIFIC (type);
8132 type->set_num_fields (nfields);
8133
8134 field *fields =
8135 ((struct field *)
8136 TYPE_ALLOC (type, nfields * sizeof (struct field)));
8137 memcpy (fields, type0->fields (),
8138 sizeof (struct field) * nfields);
8139 type->set_fields (fields);
8140
8141 type->set_name (ada_type_name (type0));
8142 type->set_is_fixed_instance (true);
8143 TYPE_LENGTH (type) = 0;
8144 }
8145 type->field (f).set_type (new_type);
8146 type->field (f).set_name (type0->field (f).name ());
8147 }
8148 }
8149
8150 return type;
8151 }
8152
8153 /* Given an object of type TYPE whose contents are at VALADDR and
8154 whose address in memory is ADDRESS, returns a revision of TYPE,
8155 which should be a non-dynamic-sized record, in which the variant
8156 part, if any, is replaced with the appropriate branch. Looks
8157 for discriminant values in DVAL0, which can be NULL if the record
8158 contains the necessary discriminant values. */
8159
8160 static struct type *
8161 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8162 CORE_ADDR address, struct value *dval0)
8163 {
8164 struct value *mark = value_mark ();
8165 struct value *dval;
8166 struct type *rtype;
8167 struct type *branch_type;
8168 int nfields = type->num_fields ();
8169 int variant_field = variant_field_index (type);
8170
8171 if (variant_field == -1)
8172 return type;
8173
8174 if (dval0 == NULL)
8175 {
8176 dval = value_from_contents_and_address (type, valaddr, address);
8177 type = value_type (dval);
8178 }
8179 else
8180 dval = dval0;
8181
8182 rtype = alloc_type_copy (type);
8183 rtype->set_code (TYPE_CODE_STRUCT);
8184 INIT_NONE_SPECIFIC (rtype);
8185 rtype->set_num_fields (nfields);
8186
8187 field *fields =
8188 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8189 memcpy (fields, type->fields (), sizeof (struct field) * nfields);
8190 rtype->set_fields (fields);
8191
8192 rtype->set_name (ada_type_name (type));
8193 rtype->set_is_fixed_instance (true);
8194 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8195
8196 branch_type = to_fixed_variant_branch_type
8197 (type->field (variant_field).type (),
8198 cond_offset_host (valaddr,
8199 type->field (variant_field).loc_bitpos ()
8200 / TARGET_CHAR_BIT),
8201 cond_offset_target (address,
8202 type->field (variant_field).loc_bitpos ()
8203 / TARGET_CHAR_BIT), dval);
8204 if (branch_type == NULL)
8205 {
8206 int f;
8207
8208 for (f = variant_field + 1; f < nfields; f += 1)
8209 rtype->field (f - 1) = rtype->field (f);
8210 rtype->set_num_fields (rtype->num_fields () - 1);
8211 }
8212 else
8213 {
8214 rtype->field (variant_field).set_type (branch_type);
8215 rtype->field (variant_field).set_name ("S");
8216 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8217 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8218 }
8219 TYPE_LENGTH (rtype) -= TYPE_LENGTH (type->field (variant_field).type ());
8220
8221 value_free_to_mark (mark);
8222 return rtype;
8223 }
8224
8225 /* An ordinary record type (with fixed-length fields) that describes
8226 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8227 beginning of this section]. Any necessary discriminants' values
8228 should be in DVAL, a record value; it may be NULL if the object
8229 at ADDR itself contains any necessary discriminant values.
8230 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8231 values from the record are needed. Except in the case that DVAL,
8232 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8233 unchecked) is replaced by a particular branch of the variant.
8234
8235 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8236 is questionable and may be removed. It can arise during the
8237 processing of an unconstrained-array-of-record type where all the
8238 variant branches have exactly the same size. This is because in
8239 such cases, the compiler does not bother to use the XVS convention
8240 when encoding the record. I am currently dubious of this
8241 shortcut and suspect the compiler should be altered. FIXME. */
8242
8243 static struct type *
8244 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8245 CORE_ADDR address, struct value *dval)
8246 {
8247 struct type *templ_type;
8248
8249 if (type0->is_fixed_instance ())
8250 return type0;
8251
8252 templ_type = dynamic_template_type (type0);
8253
8254 if (templ_type != NULL)
8255 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8256 else if (variant_field_index (type0) >= 0)
8257 {
8258 if (dval == NULL && valaddr == NULL && address == 0)
8259 return type0;
8260 return to_record_with_fixed_variant_part (type0, valaddr, address,
8261 dval);
8262 }
8263 else
8264 {
8265 type0->set_is_fixed_instance (true);
8266 return type0;
8267 }
8268
8269 }
8270
8271 /* An ordinary record type (with fixed-length fields) that describes
8272 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8273 union type. Any necessary discriminants' values should be in DVAL,
8274 a record value. That is, this routine selects the appropriate
8275 branch of the union at ADDR according to the discriminant value
8276 indicated in the union's type name. Returns VAR_TYPE0 itself if
8277 it represents a variant subject to a pragma Unchecked_Union. */
8278
8279 static struct type *
8280 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8281 CORE_ADDR address, struct value *dval)
8282 {
8283 int which;
8284 struct type *templ_type;
8285 struct type *var_type;
8286
8287 if (var_type0->code () == TYPE_CODE_PTR)
8288 var_type = TYPE_TARGET_TYPE (var_type0);
8289 else
8290 var_type = var_type0;
8291
8292 templ_type = ada_find_parallel_type (var_type, "___XVU");
8293
8294 if (templ_type != NULL)
8295 var_type = templ_type;
8296
8297 if (is_unchecked_variant (var_type, value_type (dval)))
8298 return var_type0;
8299 which = ada_which_variant_applies (var_type, dval);
8300
8301 if (which < 0)
8302 return empty_record (var_type);
8303 else if (is_dynamic_field (var_type, which))
8304 return to_fixed_record_type
8305 (TYPE_TARGET_TYPE (var_type->field (which).type ()),
8306 valaddr, address, dval);
8307 else if (variant_field_index (var_type->field (which).type ()) >= 0)
8308 return
8309 to_fixed_record_type
8310 (var_type->field (which).type (), valaddr, address, dval);
8311 else
8312 return var_type->field (which).type ();
8313 }
8314
8315 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8316 ENCODING_TYPE, a type following the GNAT conventions for discrete
8317 type encodings, only carries redundant information. */
8318
8319 static int
8320 ada_is_redundant_range_encoding (struct type *range_type,
8321 struct type *encoding_type)
8322 {
8323 const char *bounds_str;
8324 int n;
8325 LONGEST lo, hi;
8326
8327 gdb_assert (range_type->code () == TYPE_CODE_RANGE);
8328
8329 if (get_base_type (range_type)->code ()
8330 != get_base_type (encoding_type)->code ())
8331 {
8332 /* The compiler probably used a simple base type to describe
8333 the range type instead of the range's actual base type,
8334 expecting us to get the real base type from the encoding
8335 anyway. In this situation, the encoding cannot be ignored
8336 as redundant. */
8337 return 0;
8338 }
8339
8340 if (is_dynamic_type (range_type))
8341 return 0;
8342
8343 if (encoding_type->name () == NULL)
8344 return 0;
8345
8346 bounds_str = strstr (encoding_type->name (), "___XDLU_");
8347 if (bounds_str == NULL)
8348 return 0;
8349
8350 n = 8; /* Skip "___XDLU_". */
8351 if (!ada_scan_number (bounds_str, n, &lo, &n))
8352 return 0;
8353 if (range_type->bounds ()->low.const_val () != lo)
8354 return 0;
8355
8356 n += 2; /* Skip the "__" separator between the two bounds. */
8357 if (!ada_scan_number (bounds_str, n, &hi, &n))
8358 return 0;
8359 if (range_type->bounds ()->high.const_val () != hi)
8360 return 0;
8361
8362 return 1;
8363 }
8364
8365 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8366 a type following the GNAT encoding for describing array type
8367 indices, only carries redundant information. */
8368
8369 static int
8370 ada_is_redundant_index_type_desc (struct type *array_type,
8371 struct type *desc_type)
8372 {
8373 struct type *this_layer = check_typedef (array_type);
8374 int i;
8375
8376 for (i = 0; i < desc_type->num_fields (); i++)
8377 {
8378 if (!ada_is_redundant_range_encoding (this_layer->index_type (),
8379 desc_type->field (i).type ()))
8380 return 0;
8381 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8382 }
8383
8384 return 1;
8385 }
8386
8387 /* Assuming that TYPE0 is an array type describing the type of a value
8388 at ADDR, and that DVAL describes a record containing any
8389 discriminants used in TYPE0, returns a type for the value that
8390 contains no dynamic components (that is, no components whose sizes
8391 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8392 true, gives an error message if the resulting type's size is over
8393 varsize_limit. */
8394
8395 static struct type *
8396 to_fixed_array_type (struct type *type0, struct value *dval,
8397 int ignore_too_big)
8398 {
8399 struct type *index_type_desc;
8400 struct type *result;
8401 int constrained_packed_array_p;
8402 static const char *xa_suffix = "___XA";
8403
8404 type0 = ada_check_typedef (type0);
8405 if (type0->is_fixed_instance ())
8406 return type0;
8407
8408 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8409 if (constrained_packed_array_p)
8410 {
8411 type0 = decode_constrained_packed_array_type (type0);
8412 if (type0 == nullptr)
8413 error (_("could not decode constrained packed array type"));
8414 }
8415
8416 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8417
8418 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8419 encoding suffixed with 'P' may still be generated. If so,
8420 it should be used to find the XA type. */
8421
8422 if (index_type_desc == NULL)
8423 {
8424 const char *type_name = ada_type_name (type0);
8425
8426 if (type_name != NULL)
8427 {
8428 const int len = strlen (type_name);
8429 char *name = (char *) alloca (len + strlen (xa_suffix));
8430
8431 if (type_name[len - 1] == 'P')
8432 {
8433 strcpy (name, type_name);
8434 strcpy (name + len - 1, xa_suffix);
8435 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8436 }
8437 }
8438 }
8439
8440 ada_fixup_array_indexes_type (index_type_desc);
8441 if (index_type_desc != NULL
8442 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8443 {
8444 /* Ignore this ___XA parallel type, as it does not bring any
8445 useful information. This allows us to avoid creating fixed
8446 versions of the array's index types, which would be identical
8447 to the original ones. This, in turn, can also help avoid
8448 the creation of fixed versions of the array itself. */
8449 index_type_desc = NULL;
8450 }
8451
8452 if (index_type_desc == NULL)
8453 {
8454 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8455
8456 /* NOTE: elt_type---the fixed version of elt_type0---should never
8457 depend on the contents of the array in properly constructed
8458 debugging data. */
8459 /* Create a fixed version of the array element type.
8460 We're not providing the address of an element here,
8461 and thus the actual object value cannot be inspected to do
8462 the conversion. This should not be a problem, since arrays of
8463 unconstrained objects are not allowed. In particular, all
8464 the elements of an array of a tagged type should all be of
8465 the same type specified in the debugging info. No need to
8466 consult the object tag. */
8467 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8468
8469 /* Make sure we always create a new array type when dealing with
8470 packed array types, since we're going to fix-up the array
8471 type length and element bitsize a little further down. */
8472 if (elt_type0 == elt_type && !constrained_packed_array_p)
8473 result = type0;
8474 else
8475 result = create_array_type (alloc_type_copy (type0),
8476 elt_type, type0->index_type ());
8477 }
8478 else
8479 {
8480 int i;
8481 struct type *elt_type0;
8482
8483 elt_type0 = type0;
8484 for (i = index_type_desc->num_fields (); i > 0; i -= 1)
8485 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8486
8487 /* NOTE: result---the fixed version of elt_type0---should never
8488 depend on the contents of the array in properly constructed
8489 debugging data. */
8490 /* Create a fixed version of the array element type.
8491 We're not providing the address of an element here,
8492 and thus the actual object value cannot be inspected to do
8493 the conversion. This should not be a problem, since arrays of
8494 unconstrained objects are not allowed. In particular, all
8495 the elements of an array of a tagged type should all be of
8496 the same type specified in the debugging info. No need to
8497 consult the object tag. */
8498 result =
8499 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8500
8501 elt_type0 = type0;
8502 for (i = index_type_desc->num_fields () - 1; i >= 0; i -= 1)
8503 {
8504 struct type *range_type =
8505 to_fixed_range_type (index_type_desc->field (i).type (), dval);
8506
8507 result = create_array_type (alloc_type_copy (elt_type0),
8508 result, range_type);
8509 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8510 }
8511 }
8512
8513 /* We want to preserve the type name. This can be useful when
8514 trying to get the type name of a value that has already been
8515 printed (for instance, if the user did "print VAR; whatis $". */
8516 result->set_name (type0->name ());
8517
8518 if (constrained_packed_array_p)
8519 {
8520 /* So far, the resulting type has been created as if the original
8521 type was a regular (non-packed) array type. As a result, the
8522 bitsize of the array elements needs to be set again, and the array
8523 length needs to be recomputed based on that bitsize. */
8524 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8525 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8526
8527 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8528 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8529 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8530 TYPE_LENGTH (result)++;
8531 }
8532
8533 result->set_is_fixed_instance (true);
8534 return result;
8535 }
8536
8537
8538 /* A standard type (containing no dynamically sized components)
8539 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8540 DVAL describes a record containing any discriminants used in TYPE0,
8541 and may be NULL if there are none, or if the object of type TYPE at
8542 ADDRESS or in VALADDR contains these discriminants.
8543
8544 If CHECK_TAG is not null, in the case of tagged types, this function
8545 attempts to locate the object's tag and use it to compute the actual
8546 type. However, when ADDRESS is null, we cannot use it to determine the
8547 location of the tag, and therefore compute the tagged type's actual type.
8548 So we return the tagged type without consulting the tag. */
8549
8550 static struct type *
8551 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8552 CORE_ADDR address, struct value *dval, int check_tag)
8553 {
8554 type = ada_check_typedef (type);
8555
8556 /* Only un-fixed types need to be handled here. */
8557 if (!HAVE_GNAT_AUX_INFO (type))
8558 return type;
8559
8560 switch (type->code ())
8561 {
8562 default:
8563 return type;
8564 case TYPE_CODE_STRUCT:
8565 {
8566 struct type *static_type = to_static_fixed_type (type);
8567 struct type *fixed_record_type =
8568 to_fixed_record_type (type, valaddr, address, NULL);
8569
8570 /* If STATIC_TYPE is a tagged type and we know the object's address,
8571 then we can determine its tag, and compute the object's actual
8572 type from there. Note that we have to use the fixed record
8573 type (the parent part of the record may have dynamic fields
8574 and the way the location of _tag is expressed may depend on
8575 them). */
8576
8577 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8578 {
8579 struct value *tag =
8580 value_tag_from_contents_and_address
8581 (fixed_record_type,
8582 valaddr,
8583 address);
8584 struct type *real_type = type_from_tag (tag);
8585 struct value *obj =
8586 value_from_contents_and_address (fixed_record_type,
8587 valaddr,
8588 address);
8589 fixed_record_type = value_type (obj);
8590 if (real_type != NULL)
8591 return to_fixed_record_type
8592 (real_type, NULL,
8593 value_address (ada_tag_value_at_base_address (obj)), NULL);
8594 }
8595
8596 /* Check to see if there is a parallel ___XVZ variable.
8597 If there is, then it provides the actual size of our type. */
8598 else if (ada_type_name (fixed_record_type) != NULL)
8599 {
8600 const char *name = ada_type_name (fixed_record_type);
8601 char *xvz_name
8602 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
8603 bool xvz_found = false;
8604 LONGEST size;
8605
8606 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8607 try
8608 {
8609 xvz_found = get_int_var_value (xvz_name, size);
8610 }
8611 catch (const gdb_exception_error &except)
8612 {
8613 /* We found the variable, but somehow failed to read
8614 its value. Rethrow the same error, but with a little
8615 bit more information, to help the user understand
8616 what went wrong (Eg: the variable might have been
8617 optimized out). */
8618 throw_error (except.error,
8619 _("unable to read value of %s (%s)"),
8620 xvz_name, except.what ());
8621 }
8622
8623 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8624 {
8625 fixed_record_type = copy_type (fixed_record_type);
8626 TYPE_LENGTH (fixed_record_type) = size;
8627
8628 /* The FIXED_RECORD_TYPE may have be a stub. We have
8629 observed this when the debugging info is STABS, and
8630 apparently it is something that is hard to fix.
8631
8632 In practice, we don't need the actual type definition
8633 at all, because the presence of the XVZ variable allows us
8634 to assume that there must be a XVS type as well, which we
8635 should be able to use later, when we need the actual type
8636 definition.
8637
8638 In the meantime, pretend that the "fixed" type we are
8639 returning is NOT a stub, because this can cause trouble
8640 when using this type to create new types targeting it.
8641 Indeed, the associated creation routines often check
8642 whether the target type is a stub and will try to replace
8643 it, thus using a type with the wrong size. This, in turn,
8644 might cause the new type to have the wrong size too.
8645 Consider the case of an array, for instance, where the size
8646 of the array is computed from the number of elements in
8647 our array multiplied by the size of its element. */
8648 fixed_record_type->set_is_stub (false);
8649 }
8650 }
8651 return fixed_record_type;
8652 }
8653 case TYPE_CODE_ARRAY:
8654 return to_fixed_array_type (type, dval, 1);
8655 case TYPE_CODE_UNION:
8656 if (dval == NULL)
8657 return type;
8658 else
8659 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8660 }
8661 }
8662
8663 /* The same as ada_to_fixed_type_1, except that it preserves the type
8664 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8665
8666 The typedef layer needs be preserved in order to differentiate between
8667 arrays and array pointers when both types are implemented using the same
8668 fat pointer. In the array pointer case, the pointer is encoded as
8669 a typedef of the pointer type. For instance, considering:
8670
8671 type String_Access is access String;
8672 S1 : String_Access := null;
8673
8674 To the debugger, S1 is defined as a typedef of type String. But
8675 to the user, it is a pointer. So if the user tries to print S1,
8676 we should not dereference the array, but print the array address
8677 instead.
8678
8679 If we didn't preserve the typedef layer, we would lose the fact that
8680 the type is to be presented as a pointer (needs de-reference before
8681 being printed). And we would also use the source-level type name. */
8682
8683 struct type *
8684 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8685 CORE_ADDR address, struct value *dval, int check_tag)
8686
8687 {
8688 struct type *fixed_type =
8689 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8690
8691 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8692 then preserve the typedef layer.
8693
8694 Implementation note: We can only check the main-type portion of
8695 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8696 from TYPE now returns a type that has the same instance flags
8697 as TYPE. For instance, if TYPE is a "typedef const", and its
8698 target type is a "struct", then the typedef elimination will return
8699 a "const" version of the target type. See check_typedef for more
8700 details about how the typedef layer elimination is done.
8701
8702 brobecker/2010-11-19: It seems to me that the only case where it is
8703 useful to preserve the typedef layer is when dealing with fat pointers.
8704 Perhaps, we could add a check for that and preserve the typedef layer
8705 only in that situation. But this seems unnecessary so far, probably
8706 because we call check_typedef/ada_check_typedef pretty much everywhere.
8707 */
8708 if (type->code () == TYPE_CODE_TYPEDEF
8709 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8710 == TYPE_MAIN_TYPE (fixed_type)))
8711 return type;
8712
8713 return fixed_type;
8714 }
8715
8716 /* A standard (static-sized) type corresponding as well as possible to
8717 TYPE0, but based on no runtime data. */
8718
8719 static struct type *
8720 to_static_fixed_type (struct type *type0)
8721 {
8722 struct type *type;
8723
8724 if (type0 == NULL)
8725 return NULL;
8726
8727 if (type0->is_fixed_instance ())
8728 return type0;
8729
8730 type0 = ada_check_typedef (type0);
8731
8732 switch (type0->code ())
8733 {
8734 default:
8735 return type0;
8736 case TYPE_CODE_STRUCT:
8737 type = dynamic_template_type (type0);
8738 if (type != NULL)
8739 return template_to_static_fixed_type (type);
8740 else
8741 return template_to_static_fixed_type (type0);
8742 case TYPE_CODE_UNION:
8743 type = ada_find_parallel_type (type0, "___XVU");
8744 if (type != NULL)
8745 return template_to_static_fixed_type (type);
8746 else
8747 return template_to_static_fixed_type (type0);
8748 }
8749 }
8750
8751 /* A static approximation of TYPE with all type wrappers removed. */
8752
8753 static struct type *
8754 static_unwrap_type (struct type *type)
8755 {
8756 if (ada_is_aligner_type (type))
8757 {
8758 struct type *type1 = ada_check_typedef (type)->field (0).type ();
8759 if (ada_type_name (type1) == NULL)
8760 type1->set_name (ada_type_name (type));
8761
8762 return static_unwrap_type (type1);
8763 }
8764 else
8765 {
8766 struct type *raw_real_type = ada_get_base_type (type);
8767
8768 if (raw_real_type == type)
8769 return type;
8770 else
8771 return to_static_fixed_type (raw_real_type);
8772 }
8773 }
8774
8775 /* In some cases, incomplete and private types require
8776 cross-references that are not resolved as records (for example,
8777 type Foo;
8778 type FooP is access Foo;
8779 V: FooP;
8780 type Foo is array ...;
8781 ). In these cases, since there is no mechanism for producing
8782 cross-references to such types, we instead substitute for FooP a
8783 stub enumeration type that is nowhere resolved, and whose tag is
8784 the name of the actual type. Call these types "non-record stubs". */
8785
8786 /* A type equivalent to TYPE that is not a non-record stub, if one
8787 exists, otherwise TYPE. */
8788
8789 struct type *
8790 ada_check_typedef (struct type *type)
8791 {
8792 if (type == NULL)
8793 return NULL;
8794
8795 /* If our type is an access to an unconstrained array, which is encoded
8796 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
8797 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8798 what allows us to distinguish between fat pointers that represent
8799 array types, and fat pointers that represent array access types
8800 (in both cases, the compiler implements them as fat pointers). */
8801 if (ada_is_access_to_unconstrained_array (type))
8802 return type;
8803
8804 type = check_typedef (type);
8805 if (type == NULL || type->code () != TYPE_CODE_ENUM
8806 || !type->is_stub ()
8807 || type->name () == NULL)
8808 return type;
8809 else
8810 {
8811 const char *name = type->name ();
8812 struct type *type1 = ada_find_any_type (name);
8813
8814 if (type1 == NULL)
8815 return type;
8816
8817 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8818 stubs pointing to arrays, as we don't create symbols for array
8819 types, only for the typedef-to-array types). If that's the case,
8820 strip the typedef layer. */
8821 if (type1->code () == TYPE_CODE_TYPEDEF)
8822 type1 = ada_check_typedef (type1);
8823
8824 return type1;
8825 }
8826 }
8827
8828 /* A value representing the data at VALADDR/ADDRESS as described by
8829 type TYPE0, but with a standard (static-sized) type that correctly
8830 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8831 type, then return VAL0 [this feature is simply to avoid redundant
8832 creation of struct values]. */
8833
8834 static struct value *
8835 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8836 struct value *val0)
8837 {
8838 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
8839
8840 if (type == type0 && val0 != NULL)
8841 return val0;
8842
8843 if (VALUE_LVAL (val0) != lval_memory)
8844 {
8845 /* Our value does not live in memory; it could be a convenience
8846 variable, for instance. Create a not_lval value using val0's
8847 contents. */
8848 return value_from_contents (type, value_contents (val0).data ());
8849 }
8850
8851 return value_from_contents_and_address (type, 0, address);
8852 }
8853
8854 /* A value representing VAL, but with a standard (static-sized) type
8855 that correctly describes it. Does not necessarily create a new
8856 value. */
8857
8858 struct value *
8859 ada_to_fixed_value (struct value *val)
8860 {
8861 val = unwrap_value (val);
8862 val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
8863 return val;
8864 }
8865 \f
8866
8867 /* Attributes */
8868
8869 /* Table mapping attribute numbers to names.
8870 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
8871
8872 static const char * const attribute_names[] = {
8873 "<?>",
8874
8875 "first",
8876 "last",
8877 "length",
8878 "image",
8879 "max",
8880 "min",
8881 "modulus",
8882 "pos",
8883 "size",
8884 "tag",
8885 "val",
8886 0
8887 };
8888
8889 static const char *
8890 ada_attribute_name (enum exp_opcode n)
8891 {
8892 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8893 return attribute_names[n - OP_ATR_FIRST + 1];
8894 else
8895 return attribute_names[0];
8896 }
8897
8898 /* Evaluate the 'POS attribute applied to ARG. */
8899
8900 static LONGEST
8901 pos_atr (struct value *arg)
8902 {
8903 struct value *val = coerce_ref (arg);
8904 struct type *type = value_type (val);
8905
8906 if (!discrete_type_p (type))
8907 error (_("'POS only defined on discrete types"));
8908
8909 gdb::optional<LONGEST> result = discrete_position (type, value_as_long (val));
8910 if (!result.has_value ())
8911 error (_("enumeration value is invalid: can't find 'POS"));
8912
8913 return *result;
8914 }
8915
8916 struct value *
8917 ada_pos_atr (struct type *expect_type,
8918 struct expression *exp,
8919 enum noside noside, enum exp_opcode op,
8920 struct value *arg)
8921 {
8922 struct type *type = builtin_type (exp->gdbarch)->builtin_int;
8923 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8924 return value_zero (type, not_lval);
8925 return value_from_longest (type, pos_atr (arg));
8926 }
8927
8928 /* Evaluate the TYPE'VAL attribute applied to ARG. */
8929
8930 static struct value *
8931 val_atr (struct type *type, LONGEST val)
8932 {
8933 gdb_assert (discrete_type_p (type));
8934 if (type->code () == TYPE_CODE_RANGE)
8935 type = TYPE_TARGET_TYPE (type);
8936 if (type->code () == TYPE_CODE_ENUM)
8937 {
8938 if (val < 0 || val >= type->num_fields ())
8939 error (_("argument to 'VAL out of range"));
8940 val = type->field (val).loc_enumval ();
8941 }
8942 return value_from_longest (type, val);
8943 }
8944
8945 struct value *
8946 ada_val_atr (enum noside noside, struct type *type, struct value *arg)
8947 {
8948 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8949 return value_zero (type, not_lval);
8950
8951 if (!discrete_type_p (type))
8952 error (_("'VAL only defined on discrete types"));
8953 if (!integer_type_p (value_type (arg)))
8954 error (_("'VAL requires integral argument"));
8955
8956 return val_atr (type, value_as_long (arg));
8957 }
8958 \f
8959
8960 /* Evaluation */
8961
8962 /* True if TYPE appears to be an Ada character type.
8963 [At the moment, this is true only for Character and Wide_Character;
8964 It is a heuristic test that could stand improvement]. */
8965
8966 bool
8967 ada_is_character_type (struct type *type)
8968 {
8969 const char *name;
8970
8971 /* If the type code says it's a character, then assume it really is,
8972 and don't check any further. */
8973 if (type->code () == TYPE_CODE_CHAR)
8974 return true;
8975
8976 /* Otherwise, assume it's a character type iff it is a discrete type
8977 with a known character type name. */
8978 name = ada_type_name (type);
8979 return (name != NULL
8980 && (type->code () == TYPE_CODE_INT
8981 || type->code () == TYPE_CODE_RANGE)
8982 && (strcmp (name, "character") == 0
8983 || strcmp (name, "wide_character") == 0
8984 || strcmp (name, "wide_wide_character") == 0
8985 || strcmp (name, "unsigned char") == 0));
8986 }
8987
8988 /* True if TYPE appears to be an Ada string type. */
8989
8990 bool
8991 ada_is_string_type (struct type *type)
8992 {
8993 type = ada_check_typedef (type);
8994 if (type != NULL
8995 && type->code () != TYPE_CODE_PTR
8996 && (ada_is_simple_array_type (type)
8997 || ada_is_array_descriptor_type (type))
8998 && ada_array_arity (type) == 1)
8999 {
9000 struct type *elttype = ada_array_element_type (type, 1);
9001
9002 return ada_is_character_type (elttype);
9003 }
9004 else
9005 return false;
9006 }
9007
9008 /* The compiler sometimes provides a parallel XVS type for a given
9009 PAD type. Normally, it is safe to follow the PAD type directly,
9010 but older versions of the compiler have a bug that causes the offset
9011 of its "F" field to be wrong. Following that field in that case
9012 would lead to incorrect results, but this can be worked around
9013 by ignoring the PAD type and using the associated XVS type instead.
9014
9015 Set to True if the debugger should trust the contents of PAD types.
9016 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9017 static bool trust_pad_over_xvs = true;
9018
9019 /* True if TYPE is a struct type introduced by the compiler to force the
9020 alignment of a value. Such types have a single field with a
9021 distinctive name. */
9022
9023 int
9024 ada_is_aligner_type (struct type *type)
9025 {
9026 type = ada_check_typedef (type);
9027
9028 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
9029 return 0;
9030
9031 return (type->code () == TYPE_CODE_STRUCT
9032 && type->num_fields () == 1
9033 && strcmp (type->field (0).name (), "F") == 0);
9034 }
9035
9036 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9037 the parallel type. */
9038
9039 struct type *
9040 ada_get_base_type (struct type *raw_type)
9041 {
9042 struct type *real_type_namer;
9043 struct type *raw_real_type;
9044
9045 if (raw_type == NULL || raw_type->code () != TYPE_CODE_STRUCT)
9046 return raw_type;
9047
9048 if (ada_is_aligner_type (raw_type))
9049 /* The encoding specifies that we should always use the aligner type.
9050 So, even if this aligner type has an associated XVS type, we should
9051 simply ignore it.
9052
9053 According to the compiler gurus, an XVS type parallel to an aligner
9054 type may exist because of a stabs limitation. In stabs, aligner
9055 types are empty because the field has a variable-sized type, and
9056 thus cannot actually be used as an aligner type. As a result,
9057 we need the associated parallel XVS type to decode the type.
9058 Since the policy in the compiler is to not change the internal
9059 representation based on the debugging info format, we sometimes
9060 end up having a redundant XVS type parallel to the aligner type. */
9061 return raw_type;
9062
9063 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9064 if (real_type_namer == NULL
9065 || real_type_namer->code () != TYPE_CODE_STRUCT
9066 || real_type_namer->num_fields () != 1)
9067 return raw_type;
9068
9069 if (real_type_namer->field (0).type ()->code () != TYPE_CODE_REF)
9070 {
9071 /* This is an older encoding form where the base type needs to be
9072 looked up by name. We prefer the newer encoding because it is
9073 more efficient. */
9074 raw_real_type = ada_find_any_type (real_type_namer->field (0).name ());
9075 if (raw_real_type == NULL)
9076 return raw_type;
9077 else
9078 return raw_real_type;
9079 }
9080
9081 /* The field in our XVS type is a reference to the base type. */
9082 return TYPE_TARGET_TYPE (real_type_namer->field (0).type ());
9083 }
9084
9085 /* The type of value designated by TYPE, with all aligners removed. */
9086
9087 struct type *
9088 ada_aligned_type (struct type *type)
9089 {
9090 if (ada_is_aligner_type (type))
9091 return ada_aligned_type (type->field (0).type ());
9092 else
9093 return ada_get_base_type (type);
9094 }
9095
9096
9097 /* The address of the aligned value in an object at address VALADDR
9098 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9099
9100 const gdb_byte *
9101 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9102 {
9103 if (ada_is_aligner_type (type))
9104 return ada_aligned_value_addr
9105 (type->field (0).type (),
9106 valaddr + type->field (0).loc_bitpos () / TARGET_CHAR_BIT);
9107 else
9108 return valaddr;
9109 }
9110
9111
9112
9113 /* The printed representation of an enumeration literal with encoded
9114 name NAME. The value is good to the next call of ada_enum_name. */
9115 const char *
9116 ada_enum_name (const char *name)
9117 {
9118 static std::string storage;
9119 const char *tmp;
9120
9121 /* First, unqualify the enumeration name:
9122 1. Search for the last '.' character. If we find one, then skip
9123 all the preceding characters, the unqualified name starts
9124 right after that dot.
9125 2. Otherwise, we may be debugging on a target where the compiler
9126 translates dots into "__". Search forward for double underscores,
9127 but stop searching when we hit an overloading suffix, which is
9128 of the form "__" followed by digits. */
9129
9130 tmp = strrchr (name, '.');
9131 if (tmp != NULL)
9132 name = tmp + 1;
9133 else
9134 {
9135 while ((tmp = strstr (name, "__")) != NULL)
9136 {
9137 if (isdigit (tmp[2]))
9138 break;
9139 else
9140 name = tmp + 2;
9141 }
9142 }
9143
9144 if (name[0] == 'Q')
9145 {
9146 int v;
9147
9148 if (name[1] == 'U' || name[1] == 'W')
9149 {
9150 int offset = 2;
9151 if (name[1] == 'W' && name[2] == 'W')
9152 {
9153 /* Also handle the QWW case. */
9154 ++offset;
9155 }
9156 if (sscanf (name + offset, "%x", &v) != 1)
9157 return name;
9158 }
9159 else if (((name[1] >= '0' && name[1] <= '9')
9160 || (name[1] >= 'a' && name[1] <= 'z'))
9161 && name[2] == '\0')
9162 {
9163 storage = string_printf ("'%c'", name[1]);
9164 return storage.c_str ();
9165 }
9166 else
9167 return name;
9168
9169 if (isascii (v) && isprint (v))
9170 storage = string_printf ("'%c'", v);
9171 else if (name[1] == 'U')
9172 storage = string_printf ("'[\"%02x\"]'", v);
9173 else if (name[2] != 'W')
9174 storage = string_printf ("'[\"%04x\"]'", v);
9175 else
9176 storage = string_printf ("'[\"%06x\"]'", v);
9177
9178 return storage.c_str ();
9179 }
9180 else
9181 {
9182 tmp = strstr (name, "__");
9183 if (tmp == NULL)
9184 tmp = strstr (name, "$");
9185 if (tmp != NULL)
9186 {
9187 storage = std::string (name, tmp - name);
9188 return storage.c_str ();
9189 }
9190
9191 return name;
9192 }
9193 }
9194
9195 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9196 value it wraps. */
9197
9198 static struct value *
9199 unwrap_value (struct value *val)
9200 {
9201 struct type *type = ada_check_typedef (value_type (val));
9202
9203 if (ada_is_aligner_type (type))
9204 {
9205 struct value *v = ada_value_struct_elt (val, "F", 0);
9206 struct type *val_type = ada_check_typedef (value_type (v));
9207
9208 if (ada_type_name (val_type) == NULL)
9209 val_type->set_name (ada_type_name (type));
9210
9211 return unwrap_value (v);
9212 }
9213 else
9214 {
9215 struct type *raw_real_type =
9216 ada_check_typedef (ada_get_base_type (type));
9217
9218 /* If there is no parallel XVS or XVE type, then the value is
9219 already unwrapped. Return it without further modification. */
9220 if ((type == raw_real_type)
9221 && ada_find_parallel_type (type, "___XVE") == NULL)
9222 return val;
9223
9224 return
9225 coerce_unspec_val_to_type
9226 (val, ada_to_fixed_type (raw_real_type, 0,
9227 value_address (val),
9228 NULL, 1));
9229 }
9230 }
9231
9232 /* Given two array types T1 and T2, return nonzero iff both arrays
9233 contain the same number of elements. */
9234
9235 static int
9236 ada_same_array_size_p (struct type *t1, struct type *t2)
9237 {
9238 LONGEST lo1, hi1, lo2, hi2;
9239
9240 /* Get the array bounds in order to verify that the size of
9241 the two arrays match. */
9242 if (!get_array_bounds (t1, &lo1, &hi1)
9243 || !get_array_bounds (t2, &lo2, &hi2))
9244 error (_("unable to determine array bounds"));
9245
9246 /* To make things easier for size comparison, normalize a bit
9247 the case of empty arrays by making sure that the difference
9248 between upper bound and lower bound is always -1. */
9249 if (lo1 > hi1)
9250 hi1 = lo1 - 1;
9251 if (lo2 > hi2)
9252 hi2 = lo2 - 1;
9253
9254 return (hi1 - lo1 == hi2 - lo2);
9255 }
9256
9257 /* Assuming that VAL is an array of integrals, and TYPE represents
9258 an array with the same number of elements, but with wider integral
9259 elements, return an array "casted" to TYPE. In practice, this
9260 means that the returned array is built by casting each element
9261 of the original array into TYPE's (wider) element type. */
9262
9263 static struct value *
9264 ada_promote_array_of_integrals (struct type *type, struct value *val)
9265 {
9266 struct type *elt_type = TYPE_TARGET_TYPE (type);
9267 LONGEST lo, hi;
9268 LONGEST i;
9269
9270 /* Verify that both val and type are arrays of scalars, and
9271 that the size of val's elements is smaller than the size
9272 of type's element. */
9273 gdb_assert (type->code () == TYPE_CODE_ARRAY);
9274 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9275 gdb_assert (value_type (val)->code () == TYPE_CODE_ARRAY);
9276 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9277 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9278 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9279
9280 if (!get_array_bounds (type, &lo, &hi))
9281 error (_("unable to determine array bounds"));
9282
9283 value *res = allocate_value (type);
9284 gdb::array_view<gdb_byte> res_contents = value_contents_writeable (res);
9285
9286 /* Promote each array element. */
9287 for (i = 0; i < hi - lo + 1; i++)
9288 {
9289 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9290 int elt_len = TYPE_LENGTH (elt_type);
9291
9292 copy (value_contents_all (elt), res_contents.slice (elt_len * i, elt_len));
9293 }
9294
9295 return res;
9296 }
9297
9298 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9299 return the converted value. */
9300
9301 static struct value *
9302 coerce_for_assign (struct type *type, struct value *val)
9303 {
9304 struct type *type2 = value_type (val);
9305
9306 if (type == type2)
9307 return val;
9308
9309 type2 = ada_check_typedef (type2);
9310 type = ada_check_typedef (type);
9311
9312 if (type2->code () == TYPE_CODE_PTR
9313 && type->code () == TYPE_CODE_ARRAY)
9314 {
9315 val = ada_value_ind (val);
9316 type2 = value_type (val);
9317 }
9318
9319 if (type2->code () == TYPE_CODE_ARRAY
9320 && type->code () == TYPE_CODE_ARRAY)
9321 {
9322 if (!ada_same_array_size_p (type, type2))
9323 error (_("cannot assign arrays of different length"));
9324
9325 if (is_integral_type (TYPE_TARGET_TYPE (type))
9326 && is_integral_type (TYPE_TARGET_TYPE (type2))
9327 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9328 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9329 {
9330 /* Allow implicit promotion of the array elements to
9331 a wider type. */
9332 return ada_promote_array_of_integrals (type, val);
9333 }
9334
9335 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9336 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9337 error (_("Incompatible types in assignment"));
9338 deprecated_set_value_type (val, type);
9339 }
9340 return val;
9341 }
9342
9343 static struct value *
9344 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9345 {
9346 struct value *val;
9347 struct type *type1, *type2;
9348 LONGEST v, v1, v2;
9349
9350 arg1 = coerce_ref (arg1);
9351 arg2 = coerce_ref (arg2);
9352 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9353 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9354
9355 if (type1->code () != TYPE_CODE_INT
9356 || type2->code () != TYPE_CODE_INT)
9357 return value_binop (arg1, arg2, op);
9358
9359 switch (op)
9360 {
9361 case BINOP_MOD:
9362 case BINOP_DIV:
9363 case BINOP_REM:
9364 break;
9365 default:
9366 return value_binop (arg1, arg2, op);
9367 }
9368
9369 v2 = value_as_long (arg2);
9370 if (v2 == 0)
9371 {
9372 const char *name;
9373 if (op == BINOP_MOD)
9374 name = "mod";
9375 else if (op == BINOP_DIV)
9376 name = "/";
9377 else
9378 {
9379 gdb_assert (op == BINOP_REM);
9380 name = "rem";
9381 }
9382
9383 error (_("second operand of %s must not be zero."), name);
9384 }
9385
9386 if (type1->is_unsigned () || op == BINOP_MOD)
9387 return value_binop (arg1, arg2, op);
9388
9389 v1 = value_as_long (arg1);
9390 switch (op)
9391 {
9392 case BINOP_DIV:
9393 v = v1 / v2;
9394 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9395 v += v > 0 ? -1 : 1;
9396 break;
9397 case BINOP_REM:
9398 v = v1 % v2;
9399 if (v * v1 < 0)
9400 v -= v2;
9401 break;
9402 default:
9403 /* Should not reach this point. */
9404 v = 0;
9405 }
9406
9407 val = allocate_value (type1);
9408 store_unsigned_integer (value_contents_raw (val).data (),
9409 TYPE_LENGTH (value_type (val)),
9410 type_byte_order (type1), v);
9411 return val;
9412 }
9413
9414 static int
9415 ada_value_equal (struct value *arg1, struct value *arg2)
9416 {
9417 if (ada_is_direct_array_type (value_type (arg1))
9418 || ada_is_direct_array_type (value_type (arg2)))
9419 {
9420 struct type *arg1_type, *arg2_type;
9421
9422 /* Automatically dereference any array reference before
9423 we attempt to perform the comparison. */
9424 arg1 = ada_coerce_ref (arg1);
9425 arg2 = ada_coerce_ref (arg2);
9426
9427 arg1 = ada_coerce_to_simple_array (arg1);
9428 arg2 = ada_coerce_to_simple_array (arg2);
9429
9430 arg1_type = ada_check_typedef (value_type (arg1));
9431 arg2_type = ada_check_typedef (value_type (arg2));
9432
9433 if (arg1_type->code () != TYPE_CODE_ARRAY
9434 || arg2_type->code () != TYPE_CODE_ARRAY)
9435 error (_("Attempt to compare array with non-array"));
9436 /* FIXME: The following works only for types whose
9437 representations use all bits (no padding or undefined bits)
9438 and do not have user-defined equality. */
9439 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9440 && memcmp (value_contents (arg1).data (),
9441 value_contents (arg2).data (),
9442 TYPE_LENGTH (arg1_type)) == 0);
9443 }
9444 return value_equal (arg1, arg2);
9445 }
9446
9447 namespace expr
9448 {
9449
9450 bool
9451 check_objfile (const std::unique_ptr<ada_component> &comp,
9452 struct objfile *objfile)
9453 {
9454 return comp->uses_objfile (objfile);
9455 }
9456
9457 /* Assign the result of evaluating ARG starting at *POS to the INDEXth
9458 component of LHS (a simple array or a record). Does not modify the
9459 inferior's memory, nor does it modify LHS (unless LHS ==
9460 CONTAINER). */
9461
9462 static void
9463 assign_component (struct value *container, struct value *lhs, LONGEST index,
9464 struct expression *exp, operation_up &arg)
9465 {
9466 scoped_value_mark mark;
9467
9468 struct value *elt;
9469 struct type *lhs_type = check_typedef (value_type (lhs));
9470
9471 if (lhs_type->code () == TYPE_CODE_ARRAY)
9472 {
9473 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9474 struct value *index_val = value_from_longest (index_type, index);
9475
9476 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9477 }
9478 else
9479 {
9480 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9481 elt = ada_to_fixed_value (elt);
9482 }
9483
9484 ada_aggregate_operation *ag_op
9485 = dynamic_cast<ada_aggregate_operation *> (arg.get ());
9486 if (ag_op != nullptr)
9487 ag_op->assign_aggregate (container, elt, exp);
9488 else
9489 value_assign_to_component (container, elt,
9490 arg->evaluate (nullptr, exp,
9491 EVAL_NORMAL));
9492 }
9493
9494 bool
9495 ada_aggregate_component::uses_objfile (struct objfile *objfile)
9496 {
9497 for (const auto &item : m_components)
9498 if (item->uses_objfile (objfile))
9499 return true;
9500 return false;
9501 }
9502
9503 void
9504 ada_aggregate_component::dump (ui_file *stream, int depth)
9505 {
9506 gdb_printf (stream, _("%*sAggregate\n"), depth, "");
9507 for (const auto &item : m_components)
9508 item->dump (stream, depth + 1);
9509 }
9510
9511 void
9512 ada_aggregate_component::assign (struct value *container,
9513 struct value *lhs, struct expression *exp,
9514 std::vector<LONGEST> &indices,
9515 LONGEST low, LONGEST high)
9516 {
9517 for (auto &item : m_components)
9518 item->assign (container, lhs, exp, indices, low, high);
9519 }
9520
9521 /* See ada-exp.h. */
9522
9523 value *
9524 ada_aggregate_operation::assign_aggregate (struct value *container,
9525 struct value *lhs,
9526 struct expression *exp)
9527 {
9528 struct type *lhs_type;
9529 LONGEST low_index, high_index;
9530
9531 container = ada_coerce_ref (container);
9532 if (ada_is_direct_array_type (value_type (container)))
9533 container = ada_coerce_to_simple_array (container);
9534 lhs = ada_coerce_ref (lhs);
9535 if (!deprecated_value_modifiable (lhs))
9536 error (_("Left operand of assignment is not a modifiable lvalue."));
9537
9538 lhs_type = check_typedef (value_type (lhs));
9539 if (ada_is_direct_array_type (lhs_type))
9540 {
9541 lhs = ada_coerce_to_simple_array (lhs);
9542 lhs_type = check_typedef (value_type (lhs));
9543 low_index = lhs_type->bounds ()->low.const_val ();
9544 high_index = lhs_type->bounds ()->high.const_val ();
9545 }
9546 else if (lhs_type->code () == TYPE_CODE_STRUCT)
9547 {
9548 low_index = 0;
9549 high_index = num_visible_fields (lhs_type) - 1;
9550 }
9551 else
9552 error (_("Left-hand side must be array or record."));
9553
9554 std::vector<LONGEST> indices (4);
9555 indices[0] = indices[1] = low_index - 1;
9556 indices[2] = indices[3] = high_index + 1;
9557
9558 std::get<0> (m_storage)->assign (container, lhs, exp, indices,
9559 low_index, high_index);
9560
9561 return container;
9562 }
9563
9564 bool
9565 ada_positional_component::uses_objfile (struct objfile *objfile)
9566 {
9567 return m_op->uses_objfile (objfile);
9568 }
9569
9570 void
9571 ada_positional_component::dump (ui_file *stream, int depth)
9572 {
9573 gdb_printf (stream, _("%*sPositional, index = %d\n"),
9574 depth, "", m_index);
9575 m_op->dump (stream, depth + 1);
9576 }
9577
9578 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9579 construct, given that the positions are relative to lower bound
9580 LOW, where HIGH is the upper bound. Record the position in
9581 INDICES. CONTAINER is as for assign_aggregate. */
9582 void
9583 ada_positional_component::assign (struct value *container,
9584 struct value *lhs, struct expression *exp,
9585 std::vector<LONGEST> &indices,
9586 LONGEST low, LONGEST high)
9587 {
9588 LONGEST ind = m_index + low;
9589
9590 if (ind - 1 == high)
9591 warning (_("Extra components in aggregate ignored."));
9592 if (ind <= high)
9593 {
9594 add_component_interval (ind, ind, indices);
9595 assign_component (container, lhs, ind, exp, m_op);
9596 }
9597 }
9598
9599 bool
9600 ada_discrete_range_association::uses_objfile (struct objfile *objfile)
9601 {
9602 return m_low->uses_objfile (objfile) || m_high->uses_objfile (objfile);
9603 }
9604
9605 void
9606 ada_discrete_range_association::dump (ui_file *stream, int depth)
9607 {
9608 gdb_printf (stream, _("%*sDiscrete range:\n"), depth, "");
9609 m_low->dump (stream, depth + 1);
9610 m_high->dump (stream, depth + 1);
9611 }
9612
9613 void
9614 ada_discrete_range_association::assign (struct value *container,
9615 struct value *lhs,
9616 struct expression *exp,
9617 std::vector<LONGEST> &indices,
9618 LONGEST low, LONGEST high,
9619 operation_up &op)
9620 {
9621 LONGEST lower = value_as_long (m_low->evaluate (nullptr, exp, EVAL_NORMAL));
9622 LONGEST upper = value_as_long (m_high->evaluate (nullptr, exp, EVAL_NORMAL));
9623
9624 if (lower <= upper && (lower < low || upper > high))
9625 error (_("Index in component association out of bounds."));
9626
9627 add_component_interval (lower, upper, indices);
9628 while (lower <= upper)
9629 {
9630 assign_component (container, lhs, lower, exp, op);
9631 lower += 1;
9632 }
9633 }
9634
9635 bool
9636 ada_name_association::uses_objfile (struct objfile *objfile)
9637 {
9638 return m_val->uses_objfile (objfile);
9639 }
9640
9641 void
9642 ada_name_association::dump (ui_file *stream, int depth)
9643 {
9644 gdb_printf (stream, _("%*sName:\n"), depth, "");
9645 m_val->dump (stream, depth + 1);
9646 }
9647
9648 void
9649 ada_name_association::assign (struct value *container,
9650 struct value *lhs,
9651 struct expression *exp,
9652 std::vector<LONGEST> &indices,
9653 LONGEST low, LONGEST high,
9654 operation_up &op)
9655 {
9656 int index;
9657
9658 if (ada_is_direct_array_type (value_type (lhs)))
9659 index = longest_to_int (value_as_long (m_val->evaluate (nullptr, exp,
9660 EVAL_NORMAL)));
9661 else
9662 {
9663 ada_string_operation *strop
9664 = dynamic_cast<ada_string_operation *> (m_val.get ());
9665
9666 const char *name;
9667 if (strop != nullptr)
9668 name = strop->get_name ();
9669 else
9670 {
9671 ada_var_value_operation *vvo
9672 = dynamic_cast<ada_var_value_operation *> (m_val.get ());
9673 if (vvo != nullptr)
9674 error (_("Invalid record component association."));
9675 name = vvo->get_symbol ()->natural_name ();
9676 }
9677
9678 index = 0;
9679 if (! find_struct_field (name, value_type (lhs), 0,
9680 NULL, NULL, NULL, NULL, &index))
9681 error (_("Unknown component name: %s."), name);
9682 }
9683
9684 add_component_interval (index, index, indices);
9685 assign_component (container, lhs, index, exp, op);
9686 }
9687
9688 bool
9689 ada_choices_component::uses_objfile (struct objfile *objfile)
9690 {
9691 if (m_op->uses_objfile (objfile))
9692 return true;
9693 for (const auto &item : m_assocs)
9694 if (item->uses_objfile (objfile))
9695 return true;
9696 return false;
9697 }
9698
9699 void
9700 ada_choices_component::dump (ui_file *stream, int depth)
9701 {
9702 gdb_printf (stream, _("%*sChoices:\n"), depth, "");
9703 m_op->dump (stream, depth + 1);
9704 for (const auto &item : m_assocs)
9705 item->dump (stream, depth + 1);
9706 }
9707
9708 /* Assign into the components of LHS indexed by the OP_CHOICES
9709 construct at *POS, updating *POS past the construct, given that
9710 the allowable indices are LOW..HIGH. Record the indices assigned
9711 to in INDICES. CONTAINER is as for assign_aggregate. */
9712 void
9713 ada_choices_component::assign (struct value *container,
9714 struct value *lhs, struct expression *exp,
9715 std::vector<LONGEST> &indices,
9716 LONGEST low, LONGEST high)
9717 {
9718 for (auto &item : m_assocs)
9719 item->assign (container, lhs, exp, indices, low, high, m_op);
9720 }
9721
9722 bool
9723 ada_others_component::uses_objfile (struct objfile *objfile)
9724 {
9725 return m_op->uses_objfile (objfile);
9726 }
9727
9728 void
9729 ada_others_component::dump (ui_file *stream, int depth)
9730 {
9731 gdb_printf (stream, _("%*sOthers:\n"), depth, "");
9732 m_op->dump (stream, depth + 1);
9733 }
9734
9735 /* Assign the value of the expression in the OP_OTHERS construct in
9736 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9737 have not been previously assigned. The index intervals already assigned
9738 are in INDICES. CONTAINER is as for assign_aggregate. */
9739 void
9740 ada_others_component::assign (struct value *container,
9741 struct value *lhs, struct expression *exp,
9742 std::vector<LONGEST> &indices,
9743 LONGEST low, LONGEST high)
9744 {
9745 int num_indices = indices.size ();
9746 for (int i = 0; i < num_indices - 2; i += 2)
9747 {
9748 for (LONGEST ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9749 assign_component (container, lhs, ind, exp, m_op);
9750 }
9751 }
9752
9753 struct value *
9754 ada_assign_operation::evaluate (struct type *expect_type,
9755 struct expression *exp,
9756 enum noside noside)
9757 {
9758 value *arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
9759
9760 ada_aggregate_operation *ag_op
9761 = dynamic_cast<ada_aggregate_operation *> (std::get<1> (m_storage).get ());
9762 if (ag_op != nullptr)
9763 {
9764 if (noside != EVAL_NORMAL)
9765 return arg1;
9766
9767 arg1 = ag_op->assign_aggregate (arg1, arg1, exp);
9768 return ada_value_assign (arg1, arg1);
9769 }
9770 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9771 except if the lhs of our assignment is a convenience variable.
9772 In the case of assigning to a convenience variable, the lhs
9773 should be exactly the result of the evaluation of the rhs. */
9774 struct type *type = value_type (arg1);
9775 if (VALUE_LVAL (arg1) == lval_internalvar)
9776 type = NULL;
9777 value *arg2 = std::get<1> (m_storage)->evaluate (type, exp, noside);
9778 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9779 return arg1;
9780 if (VALUE_LVAL (arg1) == lval_internalvar)
9781 {
9782 /* Nothing. */
9783 }
9784 else
9785 arg2 = coerce_for_assign (value_type (arg1), arg2);
9786 return ada_value_assign (arg1, arg2);
9787 }
9788
9789 } /* namespace expr */
9790
9791 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
9792 [ INDICES[0] .. INDICES[1] ],... The resulting intervals do not
9793 overlap. */
9794 static void
9795 add_component_interval (LONGEST low, LONGEST high,
9796 std::vector<LONGEST> &indices)
9797 {
9798 int i, j;
9799
9800 int size = indices.size ();
9801 for (i = 0; i < size; i += 2) {
9802 if (high >= indices[i] && low <= indices[i + 1])
9803 {
9804 int kh;
9805
9806 for (kh = i + 2; kh < size; kh += 2)
9807 if (high < indices[kh])
9808 break;
9809 if (low < indices[i])
9810 indices[i] = low;
9811 indices[i + 1] = indices[kh - 1];
9812 if (high > indices[i + 1])
9813 indices[i + 1] = high;
9814 memcpy (indices.data () + i + 2, indices.data () + kh, size - kh);
9815 indices.resize (kh - i - 2);
9816 return;
9817 }
9818 else if (high < indices[i])
9819 break;
9820 }
9821
9822 indices.resize (indices.size () + 2);
9823 for (j = indices.size () - 1; j >= i + 2; j -= 1)
9824 indices[j] = indices[j - 2];
9825 indices[i] = low;
9826 indices[i + 1] = high;
9827 }
9828
9829 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9830 is different. */
9831
9832 static struct value *
9833 ada_value_cast (struct type *type, struct value *arg2)
9834 {
9835 if (type == ada_check_typedef (value_type (arg2)))
9836 return arg2;
9837
9838 return value_cast (type, arg2);
9839 }
9840
9841 /* Evaluating Ada expressions, and printing their result.
9842 ------------------------------------------------------
9843
9844 1. Introduction:
9845 ----------------
9846
9847 We usually evaluate an Ada expression in order to print its value.
9848 We also evaluate an expression in order to print its type, which
9849 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9850 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9851 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9852 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9853 similar.
9854
9855 Evaluating expressions is a little more complicated for Ada entities
9856 than it is for entities in languages such as C. The main reason for
9857 this is that Ada provides types whose definition might be dynamic.
9858 One example of such types is variant records. Or another example
9859 would be an array whose bounds can only be known at run time.
9860
9861 The following description is a general guide as to what should be
9862 done (and what should NOT be done) in order to evaluate an expression
9863 involving such types, and when. This does not cover how the semantic
9864 information is encoded by GNAT as this is covered separatly. For the
9865 document used as the reference for the GNAT encoding, see exp_dbug.ads
9866 in the GNAT sources.
9867
9868 Ideally, we should embed each part of this description next to its
9869 associated code. Unfortunately, the amount of code is so vast right
9870 now that it's hard to see whether the code handling a particular
9871 situation might be duplicated or not. One day, when the code is
9872 cleaned up, this guide might become redundant with the comments
9873 inserted in the code, and we might want to remove it.
9874
9875 2. ``Fixing'' an Entity, the Simple Case:
9876 -----------------------------------------
9877
9878 When evaluating Ada expressions, the tricky issue is that they may
9879 reference entities whose type contents and size are not statically
9880 known. Consider for instance a variant record:
9881
9882 type Rec (Empty : Boolean := True) is record
9883 case Empty is
9884 when True => null;
9885 when False => Value : Integer;
9886 end case;
9887 end record;
9888 Yes : Rec := (Empty => False, Value => 1);
9889 No : Rec := (empty => True);
9890
9891 The size and contents of that record depends on the value of the
9892 descriminant (Rec.Empty). At this point, neither the debugging
9893 information nor the associated type structure in GDB are able to
9894 express such dynamic types. So what the debugger does is to create
9895 "fixed" versions of the type that applies to the specific object.
9896 We also informally refer to this operation as "fixing" an object,
9897 which means creating its associated fixed type.
9898
9899 Example: when printing the value of variable "Yes" above, its fixed
9900 type would look like this:
9901
9902 type Rec is record
9903 Empty : Boolean;
9904 Value : Integer;
9905 end record;
9906
9907 On the other hand, if we printed the value of "No", its fixed type
9908 would become:
9909
9910 type Rec is record
9911 Empty : Boolean;
9912 end record;
9913
9914 Things become a little more complicated when trying to fix an entity
9915 with a dynamic type that directly contains another dynamic type,
9916 such as an array of variant records, for instance. There are
9917 two possible cases: Arrays, and records.
9918
9919 3. ``Fixing'' Arrays:
9920 ---------------------
9921
9922 The type structure in GDB describes an array in terms of its bounds,
9923 and the type of its elements. By design, all elements in the array
9924 have the same type and we cannot represent an array of variant elements
9925 using the current type structure in GDB. When fixing an array,
9926 we cannot fix the array element, as we would potentially need one
9927 fixed type per element of the array. As a result, the best we can do
9928 when fixing an array is to produce an array whose bounds and size
9929 are correct (allowing us to read it from memory), but without having
9930 touched its element type. Fixing each element will be done later,
9931 when (if) necessary.
9932
9933 Arrays are a little simpler to handle than records, because the same
9934 amount of memory is allocated for each element of the array, even if
9935 the amount of space actually used by each element differs from element
9936 to element. Consider for instance the following array of type Rec:
9937
9938 type Rec_Array is array (1 .. 2) of Rec;
9939
9940 The actual amount of memory occupied by each element might be different
9941 from element to element, depending on the value of their discriminant.
9942 But the amount of space reserved for each element in the array remains
9943 fixed regardless. So we simply need to compute that size using
9944 the debugging information available, from which we can then determine
9945 the array size (we multiply the number of elements of the array by
9946 the size of each element).
9947
9948 The simplest case is when we have an array of a constrained element
9949 type. For instance, consider the following type declarations:
9950
9951 type Bounded_String (Max_Size : Integer) is
9952 Length : Integer;
9953 Buffer : String (1 .. Max_Size);
9954 end record;
9955 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9956
9957 In this case, the compiler describes the array as an array of
9958 variable-size elements (identified by its XVS suffix) for which
9959 the size can be read in the parallel XVZ variable.
9960
9961 In the case of an array of an unconstrained element type, the compiler
9962 wraps the array element inside a private PAD type. This type should not
9963 be shown to the user, and must be "unwrap"'ed before printing. Note
9964 that we also use the adjective "aligner" in our code to designate
9965 these wrapper types.
9966
9967 In some cases, the size allocated for each element is statically
9968 known. In that case, the PAD type already has the correct size,
9969 and the array element should remain unfixed.
9970
9971 But there are cases when this size is not statically known.
9972 For instance, assuming that "Five" is an integer variable:
9973
9974 type Dynamic is array (1 .. Five) of Integer;
9975 type Wrapper (Has_Length : Boolean := False) is record
9976 Data : Dynamic;
9977 case Has_Length is
9978 when True => Length : Integer;
9979 when False => null;
9980 end case;
9981 end record;
9982 type Wrapper_Array is array (1 .. 2) of Wrapper;
9983
9984 Hello : Wrapper_Array := (others => (Has_Length => True,
9985 Data => (others => 17),
9986 Length => 1));
9987
9988
9989 The debugging info would describe variable Hello as being an
9990 array of a PAD type. The size of that PAD type is not statically
9991 known, but can be determined using a parallel XVZ variable.
9992 In that case, a copy of the PAD type with the correct size should
9993 be used for the fixed array.
9994
9995 3. ``Fixing'' record type objects:
9996 ----------------------------------
9997
9998 Things are slightly different from arrays in the case of dynamic
9999 record types. In this case, in order to compute the associated
10000 fixed type, we need to determine the size and offset of each of
10001 its components. This, in turn, requires us to compute the fixed
10002 type of each of these components.
10003
10004 Consider for instance the example:
10005
10006 type Bounded_String (Max_Size : Natural) is record
10007 Str : String (1 .. Max_Size);
10008 Length : Natural;
10009 end record;
10010 My_String : Bounded_String (Max_Size => 10);
10011
10012 In that case, the position of field "Length" depends on the size
10013 of field Str, which itself depends on the value of the Max_Size
10014 discriminant. In order to fix the type of variable My_String,
10015 we need to fix the type of field Str. Therefore, fixing a variant
10016 record requires us to fix each of its components.
10017
10018 However, if a component does not have a dynamic size, the component
10019 should not be fixed. In particular, fields that use a PAD type
10020 should not fixed. Here is an example where this might happen
10021 (assuming type Rec above):
10022
10023 type Container (Big : Boolean) is record
10024 First : Rec;
10025 After : Integer;
10026 case Big is
10027 when True => Another : Integer;
10028 when False => null;
10029 end case;
10030 end record;
10031 My_Container : Container := (Big => False,
10032 First => (Empty => True),
10033 After => 42);
10034
10035 In that example, the compiler creates a PAD type for component First,
10036 whose size is constant, and then positions the component After just
10037 right after it. The offset of component After is therefore constant
10038 in this case.
10039
10040 The debugger computes the position of each field based on an algorithm
10041 that uses, among other things, the actual position and size of the field
10042 preceding it. Let's now imagine that the user is trying to print
10043 the value of My_Container. If the type fixing was recursive, we would
10044 end up computing the offset of field After based on the size of the
10045 fixed version of field First. And since in our example First has
10046 only one actual field, the size of the fixed type is actually smaller
10047 than the amount of space allocated to that field, and thus we would
10048 compute the wrong offset of field After.
10049
10050 To make things more complicated, we need to watch out for dynamic
10051 components of variant records (identified by the ___XVL suffix in
10052 the component name). Even if the target type is a PAD type, the size
10053 of that type might not be statically known. So the PAD type needs
10054 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10055 we might end up with the wrong size for our component. This can be
10056 observed with the following type declarations:
10057
10058 type Octal is new Integer range 0 .. 7;
10059 type Octal_Array is array (Positive range <>) of Octal;
10060 pragma Pack (Octal_Array);
10061
10062 type Octal_Buffer (Size : Positive) is record
10063 Buffer : Octal_Array (1 .. Size);
10064 Length : Integer;
10065 end record;
10066
10067 In that case, Buffer is a PAD type whose size is unset and needs
10068 to be computed by fixing the unwrapped type.
10069
10070 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10071 ----------------------------------------------------------
10072
10073 Lastly, when should the sub-elements of an entity that remained unfixed
10074 thus far, be actually fixed?
10075
10076 The answer is: Only when referencing that element. For instance
10077 when selecting one component of a record, this specific component
10078 should be fixed at that point in time. Or when printing the value
10079 of a record, each component should be fixed before its value gets
10080 printed. Similarly for arrays, the element of the array should be
10081 fixed when printing each element of the array, or when extracting
10082 one element out of that array. On the other hand, fixing should
10083 not be performed on the elements when taking a slice of an array!
10084
10085 Note that one of the side effects of miscomputing the offset and
10086 size of each field is that we end up also miscomputing the size
10087 of the containing type. This can have adverse results when computing
10088 the value of an entity. GDB fetches the value of an entity based
10089 on the size of its type, and thus a wrong size causes GDB to fetch
10090 the wrong amount of memory. In the case where the computed size is
10091 too small, GDB fetches too little data to print the value of our
10092 entity. Results in this case are unpredictable, as we usually read
10093 past the buffer containing the data =:-o. */
10094
10095 /* A helper function for TERNOP_IN_RANGE. */
10096
10097 static value *
10098 eval_ternop_in_range (struct type *expect_type, struct expression *exp,
10099 enum noside noside,
10100 value *arg1, value *arg2, value *arg3)
10101 {
10102 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10103 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10104 struct type *type = language_bool_type (exp->language_defn, exp->gdbarch);
10105 return
10106 value_from_longest (type,
10107 (value_less (arg1, arg3)
10108 || value_equal (arg1, arg3))
10109 && (value_less (arg2, arg1)
10110 || value_equal (arg2, arg1)));
10111 }
10112
10113 /* A helper function for UNOP_NEG. */
10114
10115 value *
10116 ada_unop_neg (struct type *expect_type,
10117 struct expression *exp,
10118 enum noside noside, enum exp_opcode op,
10119 struct value *arg1)
10120 {
10121 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10122 return value_neg (arg1);
10123 }
10124
10125 /* A helper function for UNOP_IN_RANGE. */
10126
10127 value *
10128 ada_unop_in_range (struct type *expect_type,
10129 struct expression *exp,
10130 enum noside noside, enum exp_opcode op,
10131 struct value *arg1, struct type *type)
10132 {
10133 struct value *arg2, *arg3;
10134 switch (type->code ())
10135 {
10136 default:
10137 lim_warning (_("Membership test incompletely implemented; "
10138 "always returns true"));
10139 type = language_bool_type (exp->language_defn, exp->gdbarch);
10140 return value_from_longest (type, (LONGEST) 1);
10141
10142 case TYPE_CODE_RANGE:
10143 arg2 = value_from_longest (type,
10144 type->bounds ()->low.const_val ());
10145 arg3 = value_from_longest (type,
10146 type->bounds ()->high.const_val ());
10147 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10148 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10149 type = language_bool_type (exp->language_defn, exp->gdbarch);
10150 return
10151 value_from_longest (type,
10152 (value_less (arg1, arg3)
10153 || value_equal (arg1, arg3))
10154 && (value_less (arg2, arg1)
10155 || value_equal (arg2, arg1)));
10156 }
10157 }
10158
10159 /* A helper function for OP_ATR_TAG. */
10160
10161 value *
10162 ada_atr_tag (struct type *expect_type,
10163 struct expression *exp,
10164 enum noside noside, enum exp_opcode op,
10165 struct value *arg1)
10166 {
10167 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10168 return value_zero (ada_tag_type (arg1), not_lval);
10169
10170 return ada_value_tag (arg1);
10171 }
10172
10173 /* A helper function for OP_ATR_SIZE. */
10174
10175 value *
10176 ada_atr_size (struct type *expect_type,
10177 struct expression *exp,
10178 enum noside noside, enum exp_opcode op,
10179 struct value *arg1)
10180 {
10181 struct type *type = value_type (arg1);
10182
10183 /* If the argument is a reference, then dereference its type, since
10184 the user is really asking for the size of the actual object,
10185 not the size of the pointer. */
10186 if (type->code () == TYPE_CODE_REF)
10187 type = TYPE_TARGET_TYPE (type);
10188
10189 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10190 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
10191 else
10192 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
10193 TARGET_CHAR_BIT * TYPE_LENGTH (type));
10194 }
10195
10196 /* A helper function for UNOP_ABS. */
10197
10198 value *
10199 ada_abs (struct type *expect_type,
10200 struct expression *exp,
10201 enum noside noside, enum exp_opcode op,
10202 struct value *arg1)
10203 {
10204 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10205 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
10206 return value_neg (arg1);
10207 else
10208 return arg1;
10209 }
10210
10211 /* A helper function for BINOP_MUL. */
10212
10213 value *
10214 ada_mult_binop (struct type *expect_type,
10215 struct expression *exp,
10216 enum noside noside, enum exp_opcode op,
10217 struct value *arg1, struct value *arg2)
10218 {
10219 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10220 {
10221 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10222 return value_zero (value_type (arg1), not_lval);
10223 }
10224 else
10225 {
10226 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10227 return ada_value_binop (arg1, arg2, op);
10228 }
10229 }
10230
10231 /* A helper function for BINOP_EQUAL and BINOP_NOTEQUAL. */
10232
10233 value *
10234 ada_equal_binop (struct type *expect_type,
10235 struct expression *exp,
10236 enum noside noside, enum exp_opcode op,
10237 struct value *arg1, struct value *arg2)
10238 {
10239 int tem;
10240 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10241 tem = 0;
10242 else
10243 {
10244 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10245 tem = ada_value_equal (arg1, arg2);
10246 }
10247 if (op == BINOP_NOTEQUAL)
10248 tem = !tem;
10249 struct type *type = language_bool_type (exp->language_defn, exp->gdbarch);
10250 return value_from_longest (type, (LONGEST) tem);
10251 }
10252
10253 /* A helper function for TERNOP_SLICE. */
10254
10255 value *
10256 ada_ternop_slice (struct expression *exp,
10257 enum noside noside,
10258 struct value *array, struct value *low_bound_val,
10259 struct value *high_bound_val)
10260 {
10261 LONGEST low_bound;
10262 LONGEST high_bound;
10263
10264 low_bound_val = coerce_ref (low_bound_val);
10265 high_bound_val = coerce_ref (high_bound_val);
10266 low_bound = value_as_long (low_bound_val);
10267 high_bound = value_as_long (high_bound_val);
10268
10269 /* If this is a reference to an aligner type, then remove all
10270 the aligners. */
10271 if (value_type (array)->code () == TYPE_CODE_REF
10272 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10273 TYPE_TARGET_TYPE (value_type (array)) =
10274 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10275
10276 if (ada_is_any_packed_array_type (value_type (array)))
10277 error (_("cannot slice a packed array"));
10278
10279 /* If this is a reference to an array or an array lvalue,
10280 convert to a pointer. */
10281 if (value_type (array)->code () == TYPE_CODE_REF
10282 || (value_type (array)->code () == TYPE_CODE_ARRAY
10283 && VALUE_LVAL (array) == lval_memory))
10284 array = value_addr (array);
10285
10286 if (noside == EVAL_AVOID_SIDE_EFFECTS
10287 && ada_is_array_descriptor_type (ada_check_typedef
10288 (value_type (array))))
10289 return empty_array (ada_type_of_array (array, 0), low_bound,
10290 high_bound);
10291
10292 array = ada_coerce_to_simple_array_ptr (array);
10293
10294 /* If we have more than one level of pointer indirection,
10295 dereference the value until we get only one level. */
10296 while (value_type (array)->code () == TYPE_CODE_PTR
10297 && (TYPE_TARGET_TYPE (value_type (array))->code ()
10298 == TYPE_CODE_PTR))
10299 array = value_ind (array);
10300
10301 /* Make sure we really do have an array type before going further,
10302 to avoid a SEGV when trying to get the index type or the target
10303 type later down the road if the debug info generated by
10304 the compiler is incorrect or incomplete. */
10305 if (!ada_is_simple_array_type (value_type (array)))
10306 error (_("cannot take slice of non-array"));
10307
10308 if (ada_check_typedef (value_type (array))->code ()
10309 == TYPE_CODE_PTR)
10310 {
10311 struct type *type0 = ada_check_typedef (value_type (array));
10312
10313 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10314 return empty_array (TYPE_TARGET_TYPE (type0), low_bound, high_bound);
10315 else
10316 {
10317 struct type *arr_type0 =
10318 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
10319
10320 return ada_value_slice_from_ptr (array, arr_type0,
10321 longest_to_int (low_bound),
10322 longest_to_int (high_bound));
10323 }
10324 }
10325 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10326 return array;
10327 else if (high_bound < low_bound)
10328 return empty_array (value_type (array), low_bound, high_bound);
10329 else
10330 return ada_value_slice (array, longest_to_int (low_bound),
10331 longest_to_int (high_bound));
10332 }
10333
10334 /* A helper function for BINOP_IN_BOUNDS. */
10335
10336 value *
10337 ada_binop_in_bounds (struct expression *exp, enum noside noside,
10338 struct value *arg1, struct value *arg2, int n)
10339 {
10340 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10341 {
10342 struct type *type = language_bool_type (exp->language_defn,
10343 exp->gdbarch);
10344 return value_zero (type, not_lval);
10345 }
10346
10347 struct type *type = ada_index_type (value_type (arg2), n, "range");
10348 if (!type)
10349 type = value_type (arg1);
10350
10351 value *arg3 = value_from_longest (type, ada_array_bound (arg2, n, 1));
10352 arg2 = value_from_longest (type, ada_array_bound (arg2, n, 0));
10353
10354 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10355 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10356 type = language_bool_type (exp->language_defn, exp->gdbarch);
10357 return value_from_longest (type,
10358 (value_less (arg1, arg3)
10359 || value_equal (arg1, arg3))
10360 && (value_less (arg2, arg1)
10361 || value_equal (arg2, arg1)));
10362 }
10363
10364 /* A helper function for some attribute operations. */
10365
10366 static value *
10367 ada_unop_atr (struct expression *exp, enum noside noside, enum exp_opcode op,
10368 struct value *arg1, struct type *type_arg, int tem)
10369 {
10370 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10371 {
10372 if (type_arg == NULL)
10373 type_arg = value_type (arg1);
10374
10375 if (ada_is_constrained_packed_array_type (type_arg))
10376 type_arg = decode_constrained_packed_array_type (type_arg);
10377
10378 if (!discrete_type_p (type_arg))
10379 {
10380 switch (op)
10381 {
10382 default: /* Should never happen. */
10383 error (_("unexpected attribute encountered"));
10384 case OP_ATR_FIRST:
10385 case OP_ATR_LAST:
10386 type_arg = ada_index_type (type_arg, tem,
10387 ada_attribute_name (op));
10388 break;
10389 case OP_ATR_LENGTH:
10390 type_arg = builtin_type (exp->gdbarch)->builtin_int;
10391 break;
10392 }
10393 }
10394
10395 return value_zero (type_arg, not_lval);
10396 }
10397 else if (type_arg == NULL)
10398 {
10399 arg1 = ada_coerce_ref (arg1);
10400
10401 if (ada_is_constrained_packed_array_type (value_type (arg1)))
10402 arg1 = ada_coerce_to_simple_array (arg1);
10403
10404 struct type *type;
10405 if (op == OP_ATR_LENGTH)
10406 type = builtin_type (exp->gdbarch)->builtin_int;
10407 else
10408 {
10409 type = ada_index_type (value_type (arg1), tem,
10410 ada_attribute_name (op));
10411 if (type == NULL)
10412 type = builtin_type (exp->gdbarch)->builtin_int;
10413 }
10414
10415 switch (op)
10416 {
10417 default: /* Should never happen. */
10418 error (_("unexpected attribute encountered"));
10419 case OP_ATR_FIRST:
10420 return value_from_longest
10421 (type, ada_array_bound (arg1, tem, 0));
10422 case OP_ATR_LAST:
10423 return value_from_longest
10424 (type, ada_array_bound (arg1, tem, 1));
10425 case OP_ATR_LENGTH:
10426 return value_from_longest
10427 (type, ada_array_length (arg1, tem));
10428 }
10429 }
10430 else if (discrete_type_p (type_arg))
10431 {
10432 struct type *range_type;
10433 const char *name = ada_type_name (type_arg);
10434
10435 range_type = NULL;
10436 if (name != NULL && type_arg->code () != TYPE_CODE_ENUM)
10437 range_type = to_fixed_range_type (type_arg, NULL);
10438 if (range_type == NULL)
10439 range_type = type_arg;
10440 switch (op)
10441 {
10442 default:
10443 error (_("unexpected attribute encountered"));
10444 case OP_ATR_FIRST:
10445 return value_from_longest
10446 (range_type, ada_discrete_type_low_bound (range_type));
10447 case OP_ATR_LAST:
10448 return value_from_longest
10449 (range_type, ada_discrete_type_high_bound (range_type));
10450 case OP_ATR_LENGTH:
10451 error (_("the 'length attribute applies only to array types"));
10452 }
10453 }
10454 else if (type_arg->code () == TYPE_CODE_FLT)
10455 error (_("unimplemented type attribute"));
10456 else
10457 {
10458 LONGEST low, high;
10459
10460 if (ada_is_constrained_packed_array_type (type_arg))
10461 type_arg = decode_constrained_packed_array_type (type_arg);
10462
10463 struct type *type;
10464 if (op == OP_ATR_LENGTH)
10465 type = builtin_type (exp->gdbarch)->builtin_int;
10466 else
10467 {
10468 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10469 if (type == NULL)
10470 type = builtin_type (exp->gdbarch)->builtin_int;
10471 }
10472
10473 switch (op)
10474 {
10475 default:
10476 error (_("unexpected attribute encountered"));
10477 case OP_ATR_FIRST:
10478 low = ada_array_bound_from_type (type_arg, tem, 0);
10479 return value_from_longest (type, low);
10480 case OP_ATR_LAST:
10481 high = ada_array_bound_from_type (type_arg, tem, 1);
10482 return value_from_longest (type, high);
10483 case OP_ATR_LENGTH:
10484 low = ada_array_bound_from_type (type_arg, tem, 0);
10485 high = ada_array_bound_from_type (type_arg, tem, 1);
10486 return value_from_longest (type, high - low + 1);
10487 }
10488 }
10489 }
10490
10491 /* A helper function for OP_ATR_MIN and OP_ATR_MAX. */
10492
10493 struct value *
10494 ada_binop_minmax (struct type *expect_type,
10495 struct expression *exp,
10496 enum noside noside, enum exp_opcode op,
10497 struct value *arg1, struct value *arg2)
10498 {
10499 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10500 return value_zero (value_type (arg1), not_lval);
10501 else
10502 {
10503 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10504 return value_binop (arg1, arg2, op);
10505 }
10506 }
10507
10508 /* A helper function for BINOP_EXP. */
10509
10510 struct value *
10511 ada_binop_exp (struct type *expect_type,
10512 struct expression *exp,
10513 enum noside noside, enum exp_opcode op,
10514 struct value *arg1, struct value *arg2)
10515 {
10516 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10517 return value_zero (value_type (arg1), not_lval);
10518 else
10519 {
10520 /* For integer exponentiation operations,
10521 only promote the first argument. */
10522 if (is_integral_type (value_type (arg2)))
10523 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10524 else
10525 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10526
10527 return value_binop (arg1, arg2, op);
10528 }
10529 }
10530
10531 namespace expr
10532 {
10533
10534 /* See ada-exp.h. */
10535
10536 operation_up
10537 ada_resolvable::replace (operation_up &&owner,
10538 struct expression *exp,
10539 bool deprocedure_p,
10540 bool parse_completion,
10541 innermost_block_tracker *tracker,
10542 struct type *context_type)
10543 {
10544 if (resolve (exp, deprocedure_p, parse_completion, tracker, context_type))
10545 return (make_operation<ada_funcall_operation>
10546 (std::move (owner),
10547 std::vector<operation_up> ()));
10548 return std::move (owner);
10549 }
10550
10551 /* Convert the character literal whose value would be VAL to the
10552 appropriate value of type TYPE, if there is a translation.
10553 Otherwise return VAL. Hence, in an enumeration type ('A', 'B'),
10554 the literal 'A' (VAL == 65), returns 0. */
10555
10556 static LONGEST
10557 convert_char_literal (struct type *type, LONGEST val)
10558 {
10559 char name[12];
10560 int f;
10561
10562 if (type == NULL)
10563 return val;
10564 type = check_typedef (type);
10565 if (type->code () != TYPE_CODE_ENUM)
10566 return val;
10567
10568 if ((val >= 'a' && val <= 'z') || (val >= '0' && val <= '9'))
10569 xsnprintf (name, sizeof (name), "Q%c", (int) val);
10570 else if (val >= 0 && val < 256)
10571 xsnprintf (name, sizeof (name), "QU%02x", (unsigned) val);
10572 else if (val >= 0 && val < 0x10000)
10573 xsnprintf (name, sizeof (name), "QW%04x", (unsigned) val);
10574 else
10575 xsnprintf (name, sizeof (name), "QWW%08lx", (unsigned long) val);
10576 size_t len = strlen (name);
10577 for (f = 0; f < type->num_fields (); f += 1)
10578 {
10579 /* Check the suffix because an enum constant in a package will
10580 have a name like "pkg__QUxx". This is safe enough because we
10581 already have the correct type, and because mangling means
10582 there can't be clashes. */
10583 const char *ename = type->field (f).name ();
10584 size_t elen = strlen (ename);
10585
10586 if (elen >= len && strcmp (name, ename + elen - len) == 0)
10587 return type->field (f).loc_enumval ();
10588 }
10589 return val;
10590 }
10591
10592 value *
10593 ada_char_operation::evaluate (struct type *expect_type,
10594 struct expression *exp,
10595 enum noside noside)
10596 {
10597 value *result = long_const_operation::evaluate (expect_type, exp, noside);
10598 if (expect_type != nullptr)
10599 result = ada_value_cast (expect_type, result);
10600 return result;
10601 }
10602
10603 /* See ada-exp.h. */
10604
10605 operation_up
10606 ada_char_operation::replace (operation_up &&owner,
10607 struct expression *exp,
10608 bool deprocedure_p,
10609 bool parse_completion,
10610 innermost_block_tracker *tracker,
10611 struct type *context_type)
10612 {
10613 operation_up result = std::move (owner);
10614
10615 if (context_type != nullptr && context_type->code () == TYPE_CODE_ENUM)
10616 {
10617 gdb_assert (result.get () == this);
10618 std::get<0> (m_storage) = context_type;
10619 std::get<1> (m_storage)
10620 = convert_char_literal (context_type, std::get<1> (m_storage));
10621 }
10622
10623 return result;
10624 }
10625
10626 value *
10627 ada_wrapped_operation::evaluate (struct type *expect_type,
10628 struct expression *exp,
10629 enum noside noside)
10630 {
10631 value *result = std::get<0> (m_storage)->evaluate (expect_type, exp, noside);
10632 if (noside == EVAL_NORMAL)
10633 result = unwrap_value (result);
10634
10635 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
10636 then we need to perform the conversion manually, because
10637 evaluate_subexp_standard doesn't do it. This conversion is
10638 necessary in Ada because the different kinds of float/fixed
10639 types in Ada have different representations.
10640
10641 Similarly, we need to perform the conversion from OP_LONG
10642 ourselves. */
10643 if ((opcode () == OP_FLOAT || opcode () == OP_LONG) && expect_type != NULL)
10644 result = ada_value_cast (expect_type, result);
10645
10646 return result;
10647 }
10648
10649 value *
10650 ada_string_operation::evaluate (struct type *expect_type,
10651 struct expression *exp,
10652 enum noside noside)
10653 {
10654 struct type *char_type;
10655 if (expect_type != nullptr && ada_is_string_type (expect_type))
10656 char_type = ada_array_element_type (expect_type, 1);
10657 else
10658 char_type = language_string_char_type (exp->language_defn, exp->gdbarch);
10659
10660 const std::string &str = std::get<0> (m_storage);
10661 const char *encoding;
10662 switch (TYPE_LENGTH (char_type))
10663 {
10664 case 1:
10665 {
10666 /* Simply copy over the data -- this isn't perhaps strictly
10667 correct according to the encodings, but it is gdb's
10668 historical behavior. */
10669 struct type *stringtype
10670 = lookup_array_range_type (char_type, 1, str.length ());
10671 struct value *val = allocate_value (stringtype);
10672 memcpy (value_contents_raw (val).data (), str.c_str (),
10673 str.length ());
10674 return val;
10675 }
10676
10677 case 2:
10678 if (gdbarch_byte_order (exp->gdbarch) == BFD_ENDIAN_BIG)
10679 encoding = "UTF-16BE";
10680 else
10681 encoding = "UTF-16LE";
10682 break;
10683
10684 case 4:
10685 if (gdbarch_byte_order (exp->gdbarch) == BFD_ENDIAN_BIG)
10686 encoding = "UTF-32BE";
10687 else
10688 encoding = "UTF-32LE";
10689 break;
10690
10691 default:
10692 error (_("unexpected character type size %s"),
10693 pulongest (TYPE_LENGTH (char_type)));
10694 }
10695
10696 auto_obstack converted;
10697 convert_between_encodings (host_charset (), encoding,
10698 (const gdb_byte *) str.c_str (),
10699 str.length (), 1,
10700 &converted, translit_none);
10701
10702 struct type *stringtype
10703 = lookup_array_range_type (char_type, 1,
10704 obstack_object_size (&converted)
10705 / TYPE_LENGTH (char_type));
10706 struct value *val = allocate_value (stringtype);
10707 memcpy (value_contents_raw (val).data (),
10708 obstack_base (&converted),
10709 obstack_object_size (&converted));
10710 return val;
10711 }
10712
10713 value *
10714 ada_concat_operation::evaluate (struct type *expect_type,
10715 struct expression *exp,
10716 enum noside noside)
10717 {
10718 /* If one side is a literal, evaluate the other side first so that
10719 the expected type can be set properly. */
10720 const operation_up &lhs_expr = std::get<0> (m_storage);
10721 const operation_up &rhs_expr = std::get<1> (m_storage);
10722
10723 value *lhs, *rhs;
10724 if (dynamic_cast<ada_string_operation *> (lhs_expr.get ()) != nullptr)
10725 {
10726 rhs = rhs_expr->evaluate (nullptr, exp, noside);
10727 lhs = lhs_expr->evaluate (value_type (rhs), exp, noside);
10728 }
10729 else if (dynamic_cast<ada_char_operation *> (lhs_expr.get ()) != nullptr)
10730 {
10731 rhs = rhs_expr->evaluate (nullptr, exp, noside);
10732 struct type *rhs_type = check_typedef (value_type (rhs));
10733 struct type *elt_type = nullptr;
10734 if (rhs_type->code () == TYPE_CODE_ARRAY)
10735 elt_type = TYPE_TARGET_TYPE (rhs_type);
10736 lhs = lhs_expr->evaluate (elt_type, exp, noside);
10737 }
10738 else if (dynamic_cast<ada_string_operation *> (rhs_expr.get ()) != nullptr)
10739 {
10740 lhs = lhs_expr->evaluate (nullptr, exp, noside);
10741 rhs = rhs_expr->evaluate (value_type (lhs), exp, noside);
10742 }
10743 else if (dynamic_cast<ada_char_operation *> (rhs_expr.get ()) != nullptr)
10744 {
10745 lhs = lhs_expr->evaluate (nullptr, exp, noside);
10746 struct type *lhs_type = check_typedef (value_type (lhs));
10747 struct type *elt_type = nullptr;
10748 if (lhs_type->code () == TYPE_CODE_ARRAY)
10749 elt_type = TYPE_TARGET_TYPE (lhs_type);
10750 rhs = rhs_expr->evaluate (elt_type, exp, noside);
10751 }
10752 else
10753 return concat_operation::evaluate (expect_type, exp, noside);
10754
10755 return value_concat (lhs, rhs);
10756 }
10757
10758 value *
10759 ada_qual_operation::evaluate (struct type *expect_type,
10760 struct expression *exp,
10761 enum noside noside)
10762 {
10763 struct type *type = std::get<1> (m_storage);
10764 return std::get<0> (m_storage)->evaluate (type, exp, noside);
10765 }
10766
10767 value *
10768 ada_ternop_range_operation::evaluate (struct type *expect_type,
10769 struct expression *exp,
10770 enum noside noside)
10771 {
10772 value *arg0 = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
10773 value *arg1 = std::get<1> (m_storage)->evaluate (nullptr, exp, noside);
10774 value *arg2 = std::get<2> (m_storage)->evaluate (nullptr, exp, noside);
10775 return eval_ternop_in_range (expect_type, exp, noside, arg0, arg1, arg2);
10776 }
10777
10778 value *
10779 ada_binop_addsub_operation::evaluate (struct type *expect_type,
10780 struct expression *exp,
10781 enum noside noside)
10782 {
10783 value *arg1 = std::get<1> (m_storage)->evaluate_with_coercion (exp, noside);
10784 value *arg2 = std::get<2> (m_storage)->evaluate_with_coercion (exp, noside);
10785
10786 auto do_op = [=] (LONGEST x, LONGEST y)
10787 {
10788 if (std::get<0> (m_storage) == BINOP_ADD)
10789 return x + y;
10790 return x - y;
10791 };
10792
10793 if (value_type (arg1)->code () == TYPE_CODE_PTR)
10794 return (value_from_longest
10795 (value_type (arg1),
10796 do_op (value_as_long (arg1), value_as_long (arg2))));
10797 if (value_type (arg2)->code () == TYPE_CODE_PTR)
10798 return (value_from_longest
10799 (value_type (arg2),
10800 do_op (value_as_long (arg1), value_as_long (arg2))));
10801 /* Preserve the original type for use by the range case below.
10802 We cannot cast the result to a reference type, so if ARG1 is
10803 a reference type, find its underlying type. */
10804 struct type *type = value_type (arg1);
10805 while (type->code () == TYPE_CODE_REF)
10806 type = TYPE_TARGET_TYPE (type);
10807 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10808 arg1 = value_binop (arg1, arg2, std::get<0> (m_storage));
10809 /* We need to special-case the result with a range.
10810 This is done for the benefit of "ptype". gdb's Ada support
10811 historically used the LHS to set the result type here, so
10812 preserve this behavior. */
10813 if (type->code () == TYPE_CODE_RANGE)
10814 arg1 = value_cast (type, arg1);
10815 return arg1;
10816 }
10817
10818 value *
10819 ada_unop_atr_operation::evaluate (struct type *expect_type,
10820 struct expression *exp,
10821 enum noside noside)
10822 {
10823 struct type *type_arg = nullptr;
10824 value *val = nullptr;
10825
10826 if (std::get<0> (m_storage)->opcode () == OP_TYPE)
10827 {
10828 value *tem = std::get<0> (m_storage)->evaluate (nullptr, exp,
10829 EVAL_AVOID_SIDE_EFFECTS);
10830 type_arg = value_type (tem);
10831 }
10832 else
10833 val = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
10834
10835 return ada_unop_atr (exp, noside, std::get<1> (m_storage),
10836 val, type_arg, std::get<2> (m_storage));
10837 }
10838
10839 value *
10840 ada_var_msym_value_operation::evaluate_for_cast (struct type *expect_type,
10841 struct expression *exp,
10842 enum noside noside)
10843 {
10844 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10845 return value_zero (expect_type, not_lval);
10846
10847 const bound_minimal_symbol &b = std::get<0> (m_storage);
10848 value *val = evaluate_var_msym_value (noside, b.objfile, b.minsym);
10849
10850 val = ada_value_cast (expect_type, val);
10851
10852 /* Follow the Ada language semantics that do not allow taking
10853 an address of the result of a cast (view conversion in Ada). */
10854 if (VALUE_LVAL (val) == lval_memory)
10855 {
10856 if (value_lazy (val))
10857 value_fetch_lazy (val);
10858 VALUE_LVAL (val) = not_lval;
10859 }
10860 return val;
10861 }
10862
10863 value *
10864 ada_var_value_operation::evaluate_for_cast (struct type *expect_type,
10865 struct expression *exp,
10866 enum noside noside)
10867 {
10868 value *val = evaluate_var_value (noside,
10869 std::get<0> (m_storage).block,
10870 std::get<0> (m_storage).symbol);
10871
10872 val = ada_value_cast (expect_type, val);
10873
10874 /* Follow the Ada language semantics that do not allow taking
10875 an address of the result of a cast (view conversion in Ada). */
10876 if (VALUE_LVAL (val) == lval_memory)
10877 {
10878 if (value_lazy (val))
10879 value_fetch_lazy (val);
10880 VALUE_LVAL (val) = not_lval;
10881 }
10882 return val;
10883 }
10884
10885 value *
10886 ada_var_value_operation::evaluate (struct type *expect_type,
10887 struct expression *exp,
10888 enum noside noside)
10889 {
10890 symbol *sym = std::get<0> (m_storage).symbol;
10891
10892 if (sym->domain () == UNDEF_DOMAIN)
10893 /* Only encountered when an unresolved symbol occurs in a
10894 context other than a function call, in which case, it is
10895 invalid. */
10896 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10897 sym->print_name ());
10898
10899 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10900 {
10901 struct type *type = static_unwrap_type (sym->type ());
10902 /* Check to see if this is a tagged type. We also need to handle
10903 the case where the type is a reference to a tagged type, but
10904 we have to be careful to exclude pointers to tagged types.
10905 The latter should be shown as usual (as a pointer), whereas
10906 a reference should mostly be transparent to the user. */
10907 if (ada_is_tagged_type (type, 0)
10908 || (type->code () == TYPE_CODE_REF
10909 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10910 {
10911 /* Tagged types are a little special in the fact that the real
10912 type is dynamic and can only be determined by inspecting the
10913 object's tag. This means that we need to get the object's
10914 value first (EVAL_NORMAL) and then extract the actual object
10915 type from its tag.
10916
10917 Note that we cannot skip the final step where we extract
10918 the object type from its tag, because the EVAL_NORMAL phase
10919 results in dynamic components being resolved into fixed ones.
10920 This can cause problems when trying to print the type
10921 description of tagged types whose parent has a dynamic size:
10922 We use the type name of the "_parent" component in order
10923 to print the name of the ancestor type in the type description.
10924 If that component had a dynamic size, the resolution into
10925 a fixed type would result in the loss of that type name,
10926 thus preventing us from printing the name of the ancestor
10927 type in the type description. */
10928 value *arg1 = evaluate (nullptr, exp, EVAL_NORMAL);
10929
10930 if (type->code () != TYPE_CODE_REF)
10931 {
10932 struct type *actual_type;
10933
10934 actual_type = type_from_tag (ada_value_tag (arg1));
10935 if (actual_type == NULL)
10936 /* If, for some reason, we were unable to determine
10937 the actual type from the tag, then use the static
10938 approximation that we just computed as a fallback.
10939 This can happen if the debugging information is
10940 incomplete, for instance. */
10941 actual_type = type;
10942 return value_zero (actual_type, not_lval);
10943 }
10944 else
10945 {
10946 /* In the case of a ref, ada_coerce_ref takes care
10947 of determining the actual type. But the evaluation
10948 should return a ref as it should be valid to ask
10949 for its address; so rebuild a ref after coerce. */
10950 arg1 = ada_coerce_ref (arg1);
10951 return value_ref (arg1, TYPE_CODE_REF);
10952 }
10953 }
10954
10955 /* Records and unions for which GNAT encodings have been
10956 generated need to be statically fixed as well.
10957 Otherwise, non-static fixing produces a type where
10958 all dynamic properties are removed, which prevents "ptype"
10959 from being able to completely describe the type.
10960 For instance, a case statement in a variant record would be
10961 replaced by the relevant components based on the actual
10962 value of the discriminants. */
10963 if ((type->code () == TYPE_CODE_STRUCT
10964 && dynamic_template_type (type) != NULL)
10965 || (type->code () == TYPE_CODE_UNION
10966 && ada_find_parallel_type (type, "___XVU") != NULL))
10967 return value_zero (to_static_fixed_type (type), not_lval);
10968 }
10969
10970 value *arg1 = var_value_operation::evaluate (expect_type, exp, noside);
10971 return ada_to_fixed_value (arg1);
10972 }
10973
10974 bool
10975 ada_var_value_operation::resolve (struct expression *exp,
10976 bool deprocedure_p,
10977 bool parse_completion,
10978 innermost_block_tracker *tracker,
10979 struct type *context_type)
10980 {
10981 symbol *sym = std::get<0> (m_storage).symbol;
10982 if (sym->domain () == UNDEF_DOMAIN)
10983 {
10984 block_symbol resolved
10985 = ada_resolve_variable (sym, std::get<0> (m_storage).block,
10986 context_type, parse_completion,
10987 deprocedure_p, tracker);
10988 std::get<0> (m_storage) = resolved;
10989 }
10990
10991 if (deprocedure_p
10992 && (std::get<0> (m_storage).symbol->type ()->code ()
10993 == TYPE_CODE_FUNC))
10994 return true;
10995
10996 return false;
10997 }
10998
10999 value *
11000 ada_atr_val_operation::evaluate (struct type *expect_type,
11001 struct expression *exp,
11002 enum noside noside)
11003 {
11004 value *arg = std::get<1> (m_storage)->evaluate (nullptr, exp, noside);
11005 return ada_val_atr (noside, std::get<0> (m_storage), arg);
11006 }
11007
11008 value *
11009 ada_unop_ind_operation::evaluate (struct type *expect_type,
11010 struct expression *exp,
11011 enum noside noside)
11012 {
11013 value *arg1 = std::get<0> (m_storage)->evaluate (expect_type, exp, noside);
11014
11015 struct type *type = ada_check_typedef (value_type (arg1));
11016 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11017 {
11018 if (ada_is_array_descriptor_type (type))
11019 /* GDB allows dereferencing GNAT array descriptors. */
11020 {
11021 struct type *arrType = ada_type_of_array (arg1, 0);
11022
11023 if (arrType == NULL)
11024 error (_("Attempt to dereference null array pointer."));
11025 return value_at_lazy (arrType, 0);
11026 }
11027 else if (type->code () == TYPE_CODE_PTR
11028 || type->code () == TYPE_CODE_REF
11029 /* In C you can dereference an array to get the 1st elt. */
11030 || type->code () == TYPE_CODE_ARRAY)
11031 {
11032 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11033 only be determined by inspecting the object's tag.
11034 This means that we need to evaluate completely the
11035 expression in order to get its type. */
11036
11037 if ((type->code () == TYPE_CODE_REF
11038 || type->code () == TYPE_CODE_PTR)
11039 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11040 {
11041 arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp,
11042 EVAL_NORMAL);
11043 type = value_type (ada_value_ind (arg1));
11044 }
11045 else
11046 {
11047 type = to_static_fixed_type
11048 (ada_aligned_type
11049 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11050 }
11051 return value_zero (type, lval_memory);
11052 }
11053 else if (type->code () == TYPE_CODE_INT)
11054 {
11055 /* GDB allows dereferencing an int. */
11056 if (expect_type == NULL)
11057 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11058 lval_memory);
11059 else
11060 {
11061 expect_type =
11062 to_static_fixed_type (ada_aligned_type (expect_type));
11063 return value_zero (expect_type, lval_memory);
11064 }
11065 }
11066 else
11067 error (_("Attempt to take contents of a non-pointer value."));
11068 }
11069 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
11070 type = ada_check_typedef (value_type (arg1));
11071
11072 if (type->code () == TYPE_CODE_INT)
11073 /* GDB allows dereferencing an int. If we were given
11074 the expect_type, then use that as the target type.
11075 Otherwise, assume that the target type is an int. */
11076 {
11077 if (expect_type != NULL)
11078 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11079 arg1));
11080 else
11081 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11082 (CORE_ADDR) value_as_address (arg1));
11083 }
11084
11085 if (ada_is_array_descriptor_type (type))
11086 /* GDB allows dereferencing GNAT array descriptors. */
11087 return ada_coerce_to_simple_array (arg1);
11088 else
11089 return ada_value_ind (arg1);
11090 }
11091
11092 value *
11093 ada_structop_operation::evaluate (struct type *expect_type,
11094 struct expression *exp,
11095 enum noside noside)
11096 {
11097 value *arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
11098 const char *str = std::get<1> (m_storage).c_str ();
11099 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11100 {
11101 struct type *type;
11102 struct type *type1 = value_type (arg1);
11103
11104 if (ada_is_tagged_type (type1, 1))
11105 {
11106 type = ada_lookup_struct_elt_type (type1, str, 1, 1);
11107
11108 /* If the field is not found, check if it exists in the
11109 extension of this object's type. This means that we
11110 need to evaluate completely the expression. */
11111
11112 if (type == NULL)
11113 {
11114 arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp,
11115 EVAL_NORMAL);
11116 arg1 = ada_value_struct_elt (arg1, str, 0);
11117 arg1 = unwrap_value (arg1);
11118 type = value_type (ada_to_fixed_value (arg1));
11119 }
11120 }
11121 else
11122 type = ada_lookup_struct_elt_type (type1, str, 1, 0);
11123
11124 return value_zero (ada_aligned_type (type), lval_memory);
11125 }
11126 else
11127 {
11128 arg1 = ada_value_struct_elt (arg1, str, 0);
11129 arg1 = unwrap_value (arg1);
11130 return ada_to_fixed_value (arg1);
11131 }
11132 }
11133
11134 value *
11135 ada_funcall_operation::evaluate (struct type *expect_type,
11136 struct expression *exp,
11137 enum noside noside)
11138 {
11139 const std::vector<operation_up> &args_up = std::get<1> (m_storage);
11140 int nargs = args_up.size ();
11141 std::vector<value *> argvec (nargs);
11142 operation_up &callee_op = std::get<0> (m_storage);
11143
11144 ada_var_value_operation *avv
11145 = dynamic_cast<ada_var_value_operation *> (callee_op.get ());
11146 if (avv != nullptr
11147 && avv->get_symbol ()->domain () == UNDEF_DOMAIN)
11148 error (_("Unexpected unresolved symbol, %s, during evaluation"),
11149 avv->get_symbol ()->print_name ());
11150
11151 value *callee = callee_op->evaluate (nullptr, exp, noside);
11152 for (int i = 0; i < args_up.size (); ++i)
11153 argvec[i] = args_up[i]->evaluate (nullptr, exp, noside);
11154
11155 if (ada_is_constrained_packed_array_type
11156 (desc_base_type (value_type (callee))))
11157 callee = ada_coerce_to_simple_array (callee);
11158 else if (value_type (callee)->code () == TYPE_CODE_ARRAY
11159 && TYPE_FIELD_BITSIZE (value_type (callee), 0) != 0)
11160 /* This is a packed array that has already been fixed, and
11161 therefore already coerced to a simple array. Nothing further
11162 to do. */
11163 ;
11164 else if (value_type (callee)->code () == TYPE_CODE_REF)
11165 {
11166 /* Make sure we dereference references so that all the code below
11167 feels like it's really handling the referenced value. Wrapping
11168 types (for alignment) may be there, so make sure we strip them as
11169 well. */
11170 callee = ada_to_fixed_value (coerce_ref (callee));
11171 }
11172 else if (value_type (callee)->code () == TYPE_CODE_ARRAY
11173 && VALUE_LVAL (callee) == lval_memory)
11174 callee = value_addr (callee);
11175
11176 struct type *type = ada_check_typedef (value_type (callee));
11177
11178 /* Ada allows us to implicitly dereference arrays when subscripting
11179 them. So, if this is an array typedef (encoding use for array
11180 access types encoded as fat pointers), strip it now. */
11181 if (type->code () == TYPE_CODE_TYPEDEF)
11182 type = ada_typedef_target_type (type);
11183
11184 if (type->code () == TYPE_CODE_PTR)
11185 {
11186 switch (ada_check_typedef (TYPE_TARGET_TYPE (type))->code ())
11187 {
11188 case TYPE_CODE_FUNC:
11189 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
11190 break;
11191 case TYPE_CODE_ARRAY:
11192 break;
11193 case TYPE_CODE_STRUCT:
11194 if (noside != EVAL_AVOID_SIDE_EFFECTS)
11195 callee = ada_value_ind (callee);
11196 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
11197 break;
11198 default:
11199 error (_("cannot subscript or call something of type `%s'"),
11200 ada_type_name (value_type (callee)));
11201 break;
11202 }
11203 }
11204
11205 switch (type->code ())
11206 {
11207 case TYPE_CODE_FUNC:
11208 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11209 {
11210 if (TYPE_TARGET_TYPE (type) == NULL)
11211 error_call_unknown_return_type (NULL);
11212 return allocate_value (TYPE_TARGET_TYPE (type));
11213 }
11214 return call_function_by_hand (callee, NULL, argvec);
11215 case TYPE_CODE_INTERNAL_FUNCTION:
11216 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11217 /* We don't know anything about what the internal
11218 function might return, but we have to return
11219 something. */
11220 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11221 not_lval);
11222 else
11223 return call_internal_function (exp->gdbarch, exp->language_defn,
11224 callee, nargs,
11225 argvec.data ());
11226
11227 case TYPE_CODE_STRUCT:
11228 {
11229 int arity;
11230
11231 arity = ada_array_arity (type);
11232 type = ada_array_element_type (type, nargs);
11233 if (type == NULL)
11234 error (_("cannot subscript or call a record"));
11235 if (arity != nargs)
11236 error (_("wrong number of subscripts; expecting %d"), arity);
11237 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11238 return value_zero (ada_aligned_type (type), lval_memory);
11239 return
11240 unwrap_value (ada_value_subscript
11241 (callee, nargs, argvec.data ()));
11242 }
11243 case TYPE_CODE_ARRAY:
11244 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11245 {
11246 type = ada_array_element_type (type, nargs);
11247 if (type == NULL)
11248 error (_("element type of array unknown"));
11249 else
11250 return value_zero (ada_aligned_type (type), lval_memory);
11251 }
11252 return
11253 unwrap_value (ada_value_subscript
11254 (ada_coerce_to_simple_array (callee),
11255 nargs, argvec.data ()));
11256 case TYPE_CODE_PTR: /* Pointer to array */
11257 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11258 {
11259 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
11260 type = ada_array_element_type (type, nargs);
11261 if (type == NULL)
11262 error (_("element type of array unknown"));
11263 else
11264 return value_zero (ada_aligned_type (type), lval_memory);
11265 }
11266 return
11267 unwrap_value (ada_value_ptr_subscript (callee, nargs,
11268 argvec.data ()));
11269
11270 default:
11271 error (_("Attempt to index or call something other than an "
11272 "array or function"));
11273 }
11274 }
11275
11276 bool
11277 ada_funcall_operation::resolve (struct expression *exp,
11278 bool deprocedure_p,
11279 bool parse_completion,
11280 innermost_block_tracker *tracker,
11281 struct type *context_type)
11282 {
11283 operation_up &callee_op = std::get<0> (m_storage);
11284
11285 ada_var_value_operation *avv
11286 = dynamic_cast<ada_var_value_operation *> (callee_op.get ());
11287 if (avv == nullptr)
11288 return false;
11289
11290 symbol *sym = avv->get_symbol ();
11291 if (sym->domain () != UNDEF_DOMAIN)
11292 return false;
11293
11294 const std::vector<operation_up> &args_up = std::get<1> (m_storage);
11295 int nargs = args_up.size ();
11296 std::vector<value *> argvec (nargs);
11297
11298 for (int i = 0; i < args_up.size (); ++i)
11299 argvec[i] = args_up[i]->evaluate (nullptr, exp, EVAL_AVOID_SIDE_EFFECTS);
11300
11301 const block *block = avv->get_block ();
11302 block_symbol resolved
11303 = ada_resolve_funcall (sym, block,
11304 context_type, parse_completion,
11305 nargs, argvec.data (),
11306 tracker);
11307
11308 std::get<0> (m_storage)
11309 = make_operation<ada_var_value_operation> (resolved);
11310 return false;
11311 }
11312
11313 bool
11314 ada_ternop_slice_operation::resolve (struct expression *exp,
11315 bool deprocedure_p,
11316 bool parse_completion,
11317 innermost_block_tracker *tracker,
11318 struct type *context_type)
11319 {
11320 /* Historically this check was done during resolution, so we
11321 continue that here. */
11322 value *v = std::get<0> (m_storage)->evaluate (context_type, exp,
11323 EVAL_AVOID_SIDE_EFFECTS);
11324 if (ada_is_any_packed_array_type (value_type (v)))
11325 error (_("cannot slice a packed array"));
11326 return false;
11327 }
11328
11329 }
11330
11331 \f
11332
11333 /* Return non-zero iff TYPE represents a System.Address type. */
11334
11335 int
11336 ada_is_system_address_type (struct type *type)
11337 {
11338 return (type->name () && strcmp (type->name (), "system__address") == 0);
11339 }
11340
11341 \f
11342
11343 /* Range types */
11344
11345 /* Scan STR beginning at position K for a discriminant name, and
11346 return the value of that discriminant field of DVAL in *PX. If
11347 PNEW_K is not null, put the position of the character beyond the
11348 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11349 not alter *PX and *PNEW_K if unsuccessful. */
11350
11351 static int
11352 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
11353 int *pnew_k)
11354 {
11355 static std::string storage;
11356 const char *pstart, *pend, *bound;
11357 struct value *bound_val;
11358
11359 if (dval == NULL || str == NULL || str[k] == '\0')
11360 return 0;
11361
11362 pstart = str + k;
11363 pend = strstr (pstart, "__");
11364 if (pend == NULL)
11365 {
11366 bound = pstart;
11367 k += strlen (bound);
11368 }
11369 else
11370 {
11371 int len = pend - pstart;
11372
11373 /* Strip __ and beyond. */
11374 storage = std::string (pstart, len);
11375 bound = storage.c_str ();
11376 k = pend - str;
11377 }
11378
11379 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11380 if (bound_val == NULL)
11381 return 0;
11382
11383 *px = value_as_long (bound_val);
11384 if (pnew_k != NULL)
11385 *pnew_k = k;
11386 return 1;
11387 }
11388
11389 /* Value of variable named NAME. Only exact matches are considered.
11390 If no such variable found, then if ERR_MSG is null, returns 0, and
11391 otherwise causes an error with message ERR_MSG. */
11392
11393 static struct value *
11394 get_var_value (const char *name, const char *err_msg)
11395 {
11396 std::string quoted_name = add_angle_brackets (name);
11397
11398 lookup_name_info lookup_name (quoted_name, symbol_name_match_type::FULL);
11399
11400 std::vector<struct block_symbol> syms
11401 = ada_lookup_symbol_list_worker (lookup_name,
11402 get_selected_block (0),
11403 VAR_DOMAIN, 1);
11404
11405 if (syms.size () != 1)
11406 {
11407 if (err_msg == NULL)
11408 return 0;
11409 else
11410 error (("%s"), err_msg);
11411 }
11412
11413 return value_of_variable (syms[0].symbol, syms[0].block);
11414 }
11415
11416 /* Value of integer variable named NAME in the current environment.
11417 If no such variable is found, returns false. Otherwise, sets VALUE
11418 to the variable's value and returns true. */
11419
11420 bool
11421 get_int_var_value (const char *name, LONGEST &value)
11422 {
11423 struct value *var_val = get_var_value (name, 0);
11424
11425 if (var_val == 0)
11426 return false;
11427
11428 value = value_as_long (var_val);
11429 return true;
11430 }
11431
11432
11433 /* Return a range type whose base type is that of the range type named
11434 NAME in the current environment, and whose bounds are calculated
11435 from NAME according to the GNAT range encoding conventions.
11436 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11437 corresponding range type from debug information; fall back to using it
11438 if symbol lookup fails. If a new type must be created, allocate it
11439 like ORIG_TYPE was. The bounds information, in general, is encoded
11440 in NAME, the base type given in the named range type. */
11441
11442 static struct type *
11443 to_fixed_range_type (struct type *raw_type, struct value *dval)
11444 {
11445 const char *name;
11446 struct type *base_type;
11447 const char *subtype_info;
11448
11449 gdb_assert (raw_type != NULL);
11450 gdb_assert (raw_type->name () != NULL);
11451
11452 if (raw_type->code () == TYPE_CODE_RANGE)
11453 base_type = TYPE_TARGET_TYPE (raw_type);
11454 else
11455 base_type = raw_type;
11456
11457 name = raw_type->name ();
11458 subtype_info = strstr (name, "___XD");
11459 if (subtype_info == NULL)
11460 {
11461 LONGEST L = ada_discrete_type_low_bound (raw_type);
11462 LONGEST U = ada_discrete_type_high_bound (raw_type);
11463
11464 if (L < INT_MIN || U > INT_MAX)
11465 return raw_type;
11466 else
11467 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11468 L, U);
11469 }
11470 else
11471 {
11472 int prefix_len = subtype_info - name;
11473 LONGEST L, U;
11474 struct type *type;
11475 const char *bounds_str;
11476 int n;
11477
11478 subtype_info += 5;
11479 bounds_str = strchr (subtype_info, '_');
11480 n = 1;
11481
11482 if (*subtype_info == 'L')
11483 {
11484 if (!ada_scan_number (bounds_str, n, &L, &n)
11485 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11486 return raw_type;
11487 if (bounds_str[n] == '_')
11488 n += 2;
11489 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11490 n += 1;
11491 subtype_info += 1;
11492 }
11493 else
11494 {
11495 std::string name_buf = std::string (name, prefix_len) + "___L";
11496 if (!get_int_var_value (name_buf.c_str (), L))
11497 {
11498 lim_warning (_("Unknown lower bound, using 1."));
11499 L = 1;
11500 }
11501 }
11502
11503 if (*subtype_info == 'U')
11504 {
11505 if (!ada_scan_number (bounds_str, n, &U, &n)
11506 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11507 return raw_type;
11508 }
11509 else
11510 {
11511 std::string name_buf = std::string (name, prefix_len) + "___U";
11512 if (!get_int_var_value (name_buf.c_str (), U))
11513 {
11514 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11515 U = L;
11516 }
11517 }
11518
11519 type = create_static_range_type (alloc_type_copy (raw_type),
11520 base_type, L, U);
11521 /* create_static_range_type alters the resulting type's length
11522 to match the size of the base_type, which is not what we want.
11523 Set it back to the original range type's length. */
11524 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
11525 type->set_name (name);
11526 return type;
11527 }
11528 }
11529
11530 /* True iff NAME is the name of a range type. */
11531
11532 int
11533 ada_is_range_type_name (const char *name)
11534 {
11535 return (name != NULL && strstr (name, "___XD"));
11536 }
11537 \f
11538
11539 /* Modular types */
11540
11541 /* True iff TYPE is an Ada modular type. */
11542
11543 int
11544 ada_is_modular_type (struct type *type)
11545 {
11546 struct type *subranged_type = get_base_type (type);
11547
11548 return (subranged_type != NULL && type->code () == TYPE_CODE_RANGE
11549 && subranged_type->code () == TYPE_CODE_INT
11550 && subranged_type->is_unsigned ());
11551 }
11552
11553 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11554
11555 ULONGEST
11556 ada_modulus (struct type *type)
11557 {
11558 const dynamic_prop &high = type->bounds ()->high;
11559
11560 if (high.kind () == PROP_CONST)
11561 return (ULONGEST) high.const_val () + 1;
11562
11563 /* If TYPE is unresolved, the high bound might be a location list. Return
11564 0, for lack of a better value to return. */
11565 return 0;
11566 }
11567 \f
11568
11569 /* Ada exception catchpoint support:
11570 ---------------------------------
11571
11572 We support 3 kinds of exception catchpoints:
11573 . catchpoints on Ada exceptions
11574 . catchpoints on unhandled Ada exceptions
11575 . catchpoints on failed assertions
11576
11577 Exceptions raised during failed assertions, or unhandled exceptions
11578 could perfectly be caught with the general catchpoint on Ada exceptions.
11579 However, we can easily differentiate these two special cases, and having
11580 the option to distinguish these two cases from the rest can be useful
11581 to zero-in on certain situations.
11582
11583 Exception catchpoints are a specialized form of breakpoint,
11584 since they rely on inserting breakpoints inside known routines
11585 of the GNAT runtime. The implementation therefore uses a standard
11586 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11587 of breakpoint_ops.
11588
11589 Support in the runtime for exception catchpoints have been changed
11590 a few times already, and these changes affect the implementation
11591 of these catchpoints. In order to be able to support several
11592 variants of the runtime, we use a sniffer that will determine
11593 the runtime variant used by the program being debugged. */
11594
11595 /* Ada's standard exceptions.
11596
11597 The Ada 83 standard also defined Numeric_Error. But there so many
11598 situations where it was unclear from the Ada 83 Reference Manual
11599 (RM) whether Constraint_Error or Numeric_Error should be raised,
11600 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11601 Interpretation saying that anytime the RM says that Numeric_Error
11602 should be raised, the implementation may raise Constraint_Error.
11603 Ada 95 went one step further and pretty much removed Numeric_Error
11604 from the list of standard exceptions (it made it a renaming of
11605 Constraint_Error, to help preserve compatibility when compiling
11606 an Ada83 compiler). As such, we do not include Numeric_Error from
11607 this list of standard exceptions. */
11608
11609 static const char * const standard_exc[] = {
11610 "constraint_error",
11611 "program_error",
11612 "storage_error",
11613 "tasking_error"
11614 };
11615
11616 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11617
11618 /* A structure that describes how to support exception catchpoints
11619 for a given executable. */
11620
11621 struct exception_support_info
11622 {
11623 /* The name of the symbol to break on in order to insert
11624 a catchpoint on exceptions. */
11625 const char *catch_exception_sym;
11626
11627 /* The name of the symbol to break on in order to insert
11628 a catchpoint on unhandled exceptions. */
11629 const char *catch_exception_unhandled_sym;
11630
11631 /* The name of the symbol to break on in order to insert
11632 a catchpoint on failed assertions. */
11633 const char *catch_assert_sym;
11634
11635 /* The name of the symbol to break on in order to insert
11636 a catchpoint on exception handling. */
11637 const char *catch_handlers_sym;
11638
11639 /* Assuming that the inferior just triggered an unhandled exception
11640 catchpoint, this function is responsible for returning the address
11641 in inferior memory where the name of that exception is stored.
11642 Return zero if the address could not be computed. */
11643 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11644 };
11645
11646 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11647 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11648
11649 /* The following exception support info structure describes how to
11650 implement exception catchpoints with the latest version of the
11651 Ada runtime (as of 2019-08-??). */
11652
11653 static const struct exception_support_info default_exception_support_info =
11654 {
11655 "__gnat_debug_raise_exception", /* catch_exception_sym */
11656 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11657 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11658 "__gnat_begin_handler_v1", /* catch_handlers_sym */
11659 ada_unhandled_exception_name_addr
11660 };
11661
11662 /* The following exception support info structure describes how to
11663 implement exception catchpoints with an earlier version of the
11664 Ada runtime (as of 2007-03-06) using v0 of the EH ABI. */
11665
11666 static const struct exception_support_info exception_support_info_v0 =
11667 {
11668 "__gnat_debug_raise_exception", /* catch_exception_sym */
11669 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11670 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11671 "__gnat_begin_handler", /* catch_handlers_sym */
11672 ada_unhandled_exception_name_addr
11673 };
11674
11675 /* The following exception support info structure describes how to
11676 implement exception catchpoints with a slightly older version
11677 of the Ada runtime. */
11678
11679 static const struct exception_support_info exception_support_info_fallback =
11680 {
11681 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11682 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11683 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11684 "__gnat_begin_handler", /* catch_handlers_sym */
11685 ada_unhandled_exception_name_addr_from_raise
11686 };
11687
11688 /* Return nonzero if we can detect the exception support routines
11689 described in EINFO.
11690
11691 This function errors out if an abnormal situation is detected
11692 (for instance, if we find the exception support routines, but
11693 that support is found to be incomplete). */
11694
11695 static int
11696 ada_has_this_exception_support (const struct exception_support_info *einfo)
11697 {
11698 struct symbol *sym;
11699
11700 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11701 that should be compiled with debugging information. As a result, we
11702 expect to find that symbol in the symtabs. */
11703
11704 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11705 if (sym == NULL)
11706 {
11707 /* Perhaps we did not find our symbol because the Ada runtime was
11708 compiled without debugging info, or simply stripped of it.
11709 It happens on some GNU/Linux distributions for instance, where
11710 users have to install a separate debug package in order to get
11711 the runtime's debugging info. In that situation, let the user
11712 know why we cannot insert an Ada exception catchpoint.
11713
11714 Note: Just for the purpose of inserting our Ada exception
11715 catchpoint, we could rely purely on the associated minimal symbol.
11716 But we would be operating in degraded mode anyway, since we are
11717 still lacking the debugging info needed later on to extract
11718 the name of the exception being raised (this name is printed in
11719 the catchpoint message, and is also used when trying to catch
11720 a specific exception). We do not handle this case for now. */
11721 struct bound_minimal_symbol msym
11722 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11723
11724 if (msym.minsym && msym.minsym->type () != mst_solib_trampoline)
11725 error (_("Your Ada runtime appears to be missing some debugging "
11726 "information.\nCannot insert Ada exception catchpoint "
11727 "in this configuration."));
11728
11729 return 0;
11730 }
11731
11732 /* Make sure that the symbol we found corresponds to a function. */
11733
11734 if (sym->aclass () != LOC_BLOCK)
11735 {
11736 error (_("Symbol \"%s\" is not a function (class = %d)"),
11737 sym->linkage_name (), sym->aclass ());
11738 return 0;
11739 }
11740
11741 sym = standard_lookup (einfo->catch_handlers_sym, NULL, VAR_DOMAIN);
11742 if (sym == NULL)
11743 {
11744 struct bound_minimal_symbol msym
11745 = lookup_minimal_symbol (einfo->catch_handlers_sym, NULL, NULL);
11746
11747 if (msym.minsym && msym.minsym->type () != mst_solib_trampoline)
11748 error (_("Your Ada runtime appears to be missing some debugging "
11749 "information.\nCannot insert Ada exception catchpoint "
11750 "in this configuration."));
11751
11752 return 0;
11753 }
11754
11755 /* Make sure that the symbol we found corresponds to a function. */
11756
11757 if (sym->aclass () != LOC_BLOCK)
11758 {
11759 error (_("Symbol \"%s\" is not a function (class = %d)"),
11760 sym->linkage_name (), sym->aclass ());
11761 return 0;
11762 }
11763
11764 return 1;
11765 }
11766
11767 /* Inspect the Ada runtime and determine which exception info structure
11768 should be used to provide support for exception catchpoints.
11769
11770 This function will always set the per-inferior exception_info,
11771 or raise an error. */
11772
11773 static void
11774 ada_exception_support_info_sniffer (void)
11775 {
11776 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11777
11778 /* If the exception info is already known, then no need to recompute it. */
11779 if (data->exception_info != NULL)
11780 return;
11781
11782 /* Check the latest (default) exception support info. */
11783 if (ada_has_this_exception_support (&default_exception_support_info))
11784 {
11785 data->exception_info = &default_exception_support_info;
11786 return;
11787 }
11788
11789 /* Try the v0 exception suport info. */
11790 if (ada_has_this_exception_support (&exception_support_info_v0))
11791 {
11792 data->exception_info = &exception_support_info_v0;
11793 return;
11794 }
11795
11796 /* Try our fallback exception suport info. */
11797 if (ada_has_this_exception_support (&exception_support_info_fallback))
11798 {
11799 data->exception_info = &exception_support_info_fallback;
11800 return;
11801 }
11802
11803 /* Sometimes, it is normal for us to not be able to find the routine
11804 we are looking for. This happens when the program is linked with
11805 the shared version of the GNAT runtime, and the program has not been
11806 started yet. Inform the user of these two possible causes if
11807 applicable. */
11808
11809 if (ada_update_initial_language (language_unknown) != language_ada)
11810 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11811
11812 /* If the symbol does not exist, then check that the program is
11813 already started, to make sure that shared libraries have been
11814 loaded. If it is not started, this may mean that the symbol is
11815 in a shared library. */
11816
11817 if (inferior_ptid.pid () == 0)
11818 error (_("Unable to insert catchpoint. Try to start the program first."));
11819
11820 /* At this point, we know that we are debugging an Ada program and
11821 that the inferior has been started, but we still are not able to
11822 find the run-time symbols. That can mean that we are in
11823 configurable run time mode, or that a-except as been optimized
11824 out by the linker... In any case, at this point it is not worth
11825 supporting this feature. */
11826
11827 error (_("Cannot insert Ada exception catchpoints in this configuration."));
11828 }
11829
11830 /* True iff FRAME is very likely to be that of a function that is
11831 part of the runtime system. This is all very heuristic, but is
11832 intended to be used as advice as to what frames are uninteresting
11833 to most users. */
11834
11835 static int
11836 is_known_support_routine (struct frame_info *frame)
11837 {
11838 enum language func_lang;
11839 int i;
11840 const char *fullname;
11841
11842 /* If this code does not have any debugging information (no symtab),
11843 This cannot be any user code. */
11844
11845 symtab_and_line sal = find_frame_sal (frame);
11846 if (sal.symtab == NULL)
11847 return 1;
11848
11849 /* If there is a symtab, but the associated source file cannot be
11850 located, then assume this is not user code: Selecting a frame
11851 for which we cannot display the code would not be very helpful
11852 for the user. This should also take care of case such as VxWorks
11853 where the kernel has some debugging info provided for a few units. */
11854
11855 fullname = symtab_to_fullname (sal.symtab);
11856 if (access (fullname, R_OK) != 0)
11857 return 1;
11858
11859 /* Check the unit filename against the Ada runtime file naming.
11860 We also check the name of the objfile against the name of some
11861 known system libraries that sometimes come with debugging info
11862 too. */
11863
11864 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11865 {
11866 re_comp (known_runtime_file_name_patterns[i]);
11867 if (re_exec (lbasename (sal.symtab->filename)))
11868 return 1;
11869 if (sal.symtab->compunit ()->objfile () != NULL
11870 && re_exec (objfile_name (sal.symtab->compunit ()->objfile ())))
11871 return 1;
11872 }
11873
11874 /* Check whether the function is a GNAT-generated entity. */
11875
11876 gdb::unique_xmalloc_ptr<char> func_name
11877 = find_frame_funname (frame, &func_lang, NULL);
11878 if (func_name == NULL)
11879 return 1;
11880
11881 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11882 {
11883 re_comp (known_auxiliary_function_name_patterns[i]);
11884 if (re_exec (func_name.get ()))
11885 return 1;
11886 }
11887
11888 return 0;
11889 }
11890
11891 /* Find the first frame that contains debugging information and that is not
11892 part of the Ada run-time, starting from FI and moving upward. */
11893
11894 void
11895 ada_find_printable_frame (struct frame_info *fi)
11896 {
11897 for (; fi != NULL; fi = get_prev_frame (fi))
11898 {
11899 if (!is_known_support_routine (fi))
11900 {
11901 select_frame (fi);
11902 break;
11903 }
11904 }
11905
11906 }
11907
11908 /* Assuming that the inferior just triggered an unhandled exception
11909 catchpoint, return the address in inferior memory where the name
11910 of the exception is stored.
11911
11912 Return zero if the address could not be computed. */
11913
11914 static CORE_ADDR
11915 ada_unhandled_exception_name_addr (void)
11916 {
11917 return parse_and_eval_address ("e.full_name");
11918 }
11919
11920 /* Same as ada_unhandled_exception_name_addr, except that this function
11921 should be used when the inferior uses an older version of the runtime,
11922 where the exception name needs to be extracted from a specific frame
11923 several frames up in the callstack. */
11924
11925 static CORE_ADDR
11926 ada_unhandled_exception_name_addr_from_raise (void)
11927 {
11928 int frame_level;
11929 struct frame_info *fi;
11930 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11931
11932 /* To determine the name of this exception, we need to select
11933 the frame corresponding to RAISE_SYM_NAME. This frame is
11934 at least 3 levels up, so we simply skip the first 3 frames
11935 without checking the name of their associated function. */
11936 fi = get_current_frame ();
11937 for (frame_level = 0; frame_level < 3; frame_level += 1)
11938 if (fi != NULL)
11939 fi = get_prev_frame (fi);
11940
11941 while (fi != NULL)
11942 {
11943 enum language func_lang;
11944
11945 gdb::unique_xmalloc_ptr<char> func_name
11946 = find_frame_funname (fi, &func_lang, NULL);
11947 if (func_name != NULL)
11948 {
11949 if (strcmp (func_name.get (),
11950 data->exception_info->catch_exception_sym) == 0)
11951 break; /* We found the frame we were looking for... */
11952 }
11953 fi = get_prev_frame (fi);
11954 }
11955
11956 if (fi == NULL)
11957 return 0;
11958
11959 select_frame (fi);
11960 return parse_and_eval_address ("id.full_name");
11961 }
11962
11963 /* Assuming the inferior just triggered an Ada exception catchpoint
11964 (of any type), return the address in inferior memory where the name
11965 of the exception is stored, if applicable.
11966
11967 Assumes the selected frame is the current frame.
11968
11969 Return zero if the address could not be computed, or if not relevant. */
11970
11971 static CORE_ADDR
11972 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
11973 struct breakpoint *b)
11974 {
11975 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11976
11977 switch (ex)
11978 {
11979 case ada_catch_exception:
11980 return (parse_and_eval_address ("e.full_name"));
11981 break;
11982
11983 case ada_catch_exception_unhandled:
11984 return data->exception_info->unhandled_exception_name_addr ();
11985 break;
11986
11987 case ada_catch_handlers:
11988 return 0; /* The runtimes does not provide access to the exception
11989 name. */
11990 break;
11991
11992 case ada_catch_assert:
11993 return 0; /* Exception name is not relevant in this case. */
11994 break;
11995
11996 default:
11997 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11998 break;
11999 }
12000
12001 return 0; /* Should never be reached. */
12002 }
12003
12004 /* Assuming the inferior is stopped at an exception catchpoint,
12005 return the message which was associated to the exception, if
12006 available. Return NULL if the message could not be retrieved.
12007
12008 Note: The exception message can be associated to an exception
12009 either through the use of the Raise_Exception function, or
12010 more simply (Ada 2005 and later), via:
12011
12012 raise Exception_Name with "exception message";
12013
12014 */
12015
12016 static gdb::unique_xmalloc_ptr<char>
12017 ada_exception_message_1 (void)
12018 {
12019 struct value *e_msg_val;
12020 int e_msg_len;
12021
12022 /* For runtimes that support this feature, the exception message
12023 is passed as an unbounded string argument called "message". */
12024 e_msg_val = parse_and_eval ("message");
12025 if (e_msg_val == NULL)
12026 return NULL; /* Exception message not supported. */
12027
12028 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
12029 gdb_assert (e_msg_val != NULL);
12030 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
12031
12032 /* If the message string is empty, then treat it as if there was
12033 no exception message. */
12034 if (e_msg_len <= 0)
12035 return NULL;
12036
12037 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
12038 read_memory (value_address (e_msg_val), (gdb_byte *) e_msg.get (),
12039 e_msg_len);
12040 e_msg.get ()[e_msg_len] = '\0';
12041
12042 return e_msg;
12043 }
12044
12045 /* Same as ada_exception_message_1, except that all exceptions are
12046 contained here (returning NULL instead). */
12047
12048 static gdb::unique_xmalloc_ptr<char>
12049 ada_exception_message (void)
12050 {
12051 gdb::unique_xmalloc_ptr<char> e_msg;
12052
12053 try
12054 {
12055 e_msg = ada_exception_message_1 ();
12056 }
12057 catch (const gdb_exception_error &e)
12058 {
12059 e_msg.reset (nullptr);
12060 }
12061
12062 return e_msg;
12063 }
12064
12065 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
12066 any error that ada_exception_name_addr_1 might cause to be thrown.
12067 When an error is intercepted, a warning with the error message is printed,
12068 and zero is returned. */
12069
12070 static CORE_ADDR
12071 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
12072 struct breakpoint *b)
12073 {
12074 CORE_ADDR result = 0;
12075
12076 try
12077 {
12078 result = ada_exception_name_addr_1 (ex, b);
12079 }
12080
12081 catch (const gdb_exception_error &e)
12082 {
12083 warning (_("failed to get exception name: %s"), e.what ());
12084 return 0;
12085 }
12086
12087 return result;
12088 }
12089
12090 static std::string ada_exception_catchpoint_cond_string
12091 (const char *excep_string,
12092 enum ada_exception_catchpoint_kind ex);
12093
12094 /* Ada catchpoints.
12095
12096 In the case of catchpoints on Ada exceptions, the catchpoint will
12097 stop the target on every exception the program throws. When a user
12098 specifies the name of a specific exception, we translate this
12099 request into a condition expression (in text form), and then parse
12100 it into an expression stored in each of the catchpoint's locations.
12101 We then use this condition to check whether the exception that was
12102 raised is the one the user is interested in. If not, then the
12103 target is resumed again. We store the name of the requested
12104 exception, in order to be able to re-set the condition expression
12105 when symbols change. */
12106
12107 /* An instance of this type is used to represent an Ada catchpoint
12108 breakpoint location. */
12109
12110 class ada_catchpoint_location : public bp_location
12111 {
12112 public:
12113 ada_catchpoint_location (breakpoint *owner)
12114 : bp_location (owner, bp_loc_software_breakpoint)
12115 {}
12116
12117 /* The condition that checks whether the exception that was raised
12118 is the specific exception the user specified on catchpoint
12119 creation. */
12120 expression_up excep_cond_expr;
12121 };
12122
12123 /* An instance of this type is used to represent an Ada catchpoint. */
12124
12125 struct ada_catchpoint : public breakpoint
12126 {
12127 explicit ada_catchpoint (enum ada_exception_catchpoint_kind kind)
12128 : m_kind (kind)
12129 {
12130 }
12131
12132 struct bp_location *allocate_location () override;
12133 void re_set () override;
12134 void check_status (struct bpstat *bs) override;
12135 enum print_stop_action print_it (struct bpstat *bs) override;
12136 bool print_one (struct bp_location **) override;
12137 void print_mention () override;
12138 void print_recreate (struct ui_file *fp) override;
12139
12140 /* The name of the specific exception the user specified. */
12141 std::string excep_string;
12142
12143 /* What kind of catchpoint this is. */
12144 enum ada_exception_catchpoint_kind m_kind;
12145 };
12146
12147 /* Parse the exception condition string in the context of each of the
12148 catchpoint's locations, and store them for later evaluation. */
12149
12150 static void
12151 create_excep_cond_exprs (struct ada_catchpoint *c,
12152 enum ada_exception_catchpoint_kind ex)
12153 {
12154 /* Nothing to do if there's no specific exception to catch. */
12155 if (c->excep_string.empty ())
12156 return;
12157
12158 /* Same if there are no locations... */
12159 if (c->loc == NULL)
12160 return;
12161
12162 /* Compute the condition expression in text form, from the specific
12163 expection we want to catch. */
12164 std::string cond_string
12165 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (), ex);
12166
12167 /* Iterate over all the catchpoint's locations, and parse an
12168 expression for each. */
12169 for (bp_location *bl : c->locations ())
12170 {
12171 struct ada_catchpoint_location *ada_loc
12172 = (struct ada_catchpoint_location *) bl;
12173 expression_up exp;
12174
12175 if (!bl->shlib_disabled)
12176 {
12177 const char *s;
12178
12179 s = cond_string.c_str ();
12180 try
12181 {
12182 exp = parse_exp_1 (&s, bl->address,
12183 block_for_pc (bl->address),
12184 0);
12185 }
12186 catch (const gdb_exception_error &e)
12187 {
12188 warning (_("failed to reevaluate internal exception condition "
12189 "for catchpoint %d: %s"),
12190 c->number, e.what ());
12191 }
12192 }
12193
12194 ada_loc->excep_cond_expr = std::move (exp);
12195 }
12196 }
12197
12198 /* Implement the ALLOCATE_LOCATION method in the structure for all
12199 exception catchpoint kinds. */
12200
12201 struct bp_location *
12202 ada_catchpoint::allocate_location ()
12203 {
12204 return new ada_catchpoint_location (this);
12205 }
12206
12207 /* Implement the RE_SET method in the structure for all exception
12208 catchpoint kinds. */
12209
12210 void
12211 ada_catchpoint::re_set ()
12212 {
12213 /* Call the base class's method. This updates the catchpoint's
12214 locations. */
12215 this->breakpoint::re_set ();
12216
12217 /* Reparse the exception conditional expressions. One for each
12218 location. */
12219 create_excep_cond_exprs (this, m_kind);
12220 }
12221
12222 /* Returns true if we should stop for this breakpoint hit. If the
12223 user specified a specific exception, we only want to cause a stop
12224 if the program thrown that exception. */
12225
12226 static bool
12227 should_stop_exception (const struct bp_location *bl)
12228 {
12229 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12230 const struct ada_catchpoint_location *ada_loc
12231 = (const struct ada_catchpoint_location *) bl;
12232 bool stop;
12233
12234 struct internalvar *var = lookup_internalvar ("_ada_exception");
12235 if (c->m_kind == ada_catch_assert)
12236 clear_internalvar (var);
12237 else
12238 {
12239 try
12240 {
12241 const char *expr;
12242
12243 if (c->m_kind == ada_catch_handlers)
12244 expr = ("GNAT_GCC_exception_Access(gcc_exception)"
12245 ".all.occurrence.id");
12246 else
12247 expr = "e";
12248
12249 struct value *exc = parse_and_eval (expr);
12250 set_internalvar (var, exc);
12251 }
12252 catch (const gdb_exception_error &ex)
12253 {
12254 clear_internalvar (var);
12255 }
12256 }
12257
12258 /* With no specific exception, should always stop. */
12259 if (c->excep_string.empty ())
12260 return true;
12261
12262 if (ada_loc->excep_cond_expr == NULL)
12263 {
12264 /* We will have a NULL expression if back when we were creating
12265 the expressions, this location's had failed to parse. */
12266 return true;
12267 }
12268
12269 stop = true;
12270 try
12271 {
12272 struct value *mark;
12273
12274 mark = value_mark ();
12275 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
12276 value_free_to_mark (mark);
12277 }
12278 catch (const gdb_exception &ex)
12279 {
12280 exception_fprintf (gdb_stderr, ex,
12281 _("Error in testing exception condition:\n"));
12282 }
12283
12284 return stop;
12285 }
12286
12287 /* Implement the CHECK_STATUS method in the structure for all
12288 exception catchpoint kinds. */
12289
12290 void
12291 ada_catchpoint::check_status (bpstat *bs)
12292 {
12293 bs->stop = should_stop_exception (bs->bp_location_at.get ());
12294 }
12295
12296 /* Implement the PRINT_IT method in the structure for all exception
12297 catchpoint kinds. */
12298
12299 enum print_stop_action
12300 ada_catchpoint::print_it (bpstat *bs)
12301 {
12302 struct ui_out *uiout = current_uiout;
12303
12304 annotate_catchpoint (number);
12305
12306 if (uiout->is_mi_like_p ())
12307 {
12308 uiout->field_string ("reason",
12309 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12310 uiout->field_string ("disp", bpdisp_text (disposition));
12311 }
12312
12313 uiout->text (disposition == disp_del
12314 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12315 uiout->field_signed ("bkptno", number);
12316 uiout->text (", ");
12317
12318 /* ada_exception_name_addr relies on the selected frame being the
12319 current frame. Need to do this here because this function may be
12320 called more than once when printing a stop, and below, we'll
12321 select the first frame past the Ada run-time (see
12322 ada_find_printable_frame). */
12323 select_frame (get_current_frame ());
12324
12325 switch (m_kind)
12326 {
12327 case ada_catch_exception:
12328 case ada_catch_exception_unhandled:
12329 case ada_catch_handlers:
12330 {
12331 const CORE_ADDR addr = ada_exception_name_addr (m_kind, this);
12332 char exception_name[256];
12333
12334 if (addr != 0)
12335 {
12336 read_memory (addr, (gdb_byte *) exception_name,
12337 sizeof (exception_name) - 1);
12338 exception_name [sizeof (exception_name) - 1] = '\0';
12339 }
12340 else
12341 {
12342 /* For some reason, we were unable to read the exception
12343 name. This could happen if the Runtime was compiled
12344 without debugging info, for instance. In that case,
12345 just replace the exception name by the generic string
12346 "exception" - it will read as "an exception" in the
12347 notification we are about to print. */
12348 memcpy (exception_name, "exception", sizeof ("exception"));
12349 }
12350 /* In the case of unhandled exception breakpoints, we print
12351 the exception name as "unhandled EXCEPTION_NAME", to make
12352 it clearer to the user which kind of catchpoint just got
12353 hit. We used ui_out_text to make sure that this extra
12354 info does not pollute the exception name in the MI case. */
12355 if (m_kind == ada_catch_exception_unhandled)
12356 uiout->text ("unhandled ");
12357 uiout->field_string ("exception-name", exception_name);
12358 }
12359 break;
12360 case ada_catch_assert:
12361 /* In this case, the name of the exception is not really
12362 important. Just print "failed assertion" to make it clearer
12363 that his program just hit an assertion-failure catchpoint.
12364 We used ui_out_text because this info does not belong in
12365 the MI output. */
12366 uiout->text ("failed assertion");
12367 break;
12368 }
12369
12370 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
12371 if (exception_message != NULL)
12372 {
12373 uiout->text (" (");
12374 uiout->field_string ("exception-message", exception_message.get ());
12375 uiout->text (")");
12376 }
12377
12378 uiout->text (" at ");
12379 ada_find_printable_frame (get_current_frame ());
12380
12381 return PRINT_SRC_AND_LOC;
12382 }
12383
12384 /* Implement the PRINT_ONE method in the structure for all exception
12385 catchpoint kinds. */
12386
12387 bool
12388 ada_catchpoint::print_one (struct bp_location **last_loc)
12389 {
12390 struct ui_out *uiout = current_uiout;
12391 struct value_print_options opts;
12392
12393 get_user_print_options (&opts);
12394
12395 if (opts.addressprint)
12396 uiout->field_skip ("addr");
12397
12398 annotate_field (5);
12399 switch (m_kind)
12400 {
12401 case ada_catch_exception:
12402 if (!excep_string.empty ())
12403 {
12404 std::string msg = string_printf (_("`%s' Ada exception"),
12405 excep_string.c_str ());
12406
12407 uiout->field_string ("what", msg);
12408 }
12409 else
12410 uiout->field_string ("what", "all Ada exceptions");
12411
12412 break;
12413
12414 case ada_catch_exception_unhandled:
12415 uiout->field_string ("what", "unhandled Ada exceptions");
12416 break;
12417
12418 case ada_catch_handlers:
12419 if (!excep_string.empty ())
12420 {
12421 uiout->field_fmt ("what",
12422 _("`%s' Ada exception handlers"),
12423 excep_string.c_str ());
12424 }
12425 else
12426 uiout->field_string ("what", "all Ada exceptions handlers");
12427 break;
12428
12429 case ada_catch_assert:
12430 uiout->field_string ("what", "failed Ada assertions");
12431 break;
12432
12433 default:
12434 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12435 break;
12436 }
12437
12438 return true;
12439 }
12440
12441 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12442 for all exception catchpoint kinds. */
12443
12444 void
12445 ada_catchpoint::print_mention ()
12446 {
12447 struct ui_out *uiout = current_uiout;
12448
12449 uiout->text (disposition == disp_del ? _("Temporary catchpoint ")
12450 : _("Catchpoint "));
12451 uiout->field_signed ("bkptno", number);
12452 uiout->text (": ");
12453
12454 switch (m_kind)
12455 {
12456 case ada_catch_exception:
12457 if (!excep_string.empty ())
12458 {
12459 std::string info = string_printf (_("`%s' Ada exception"),
12460 excep_string.c_str ());
12461 uiout->text (info);
12462 }
12463 else
12464 uiout->text (_("all Ada exceptions"));
12465 break;
12466
12467 case ada_catch_exception_unhandled:
12468 uiout->text (_("unhandled Ada exceptions"));
12469 break;
12470
12471 case ada_catch_handlers:
12472 if (!excep_string.empty ())
12473 {
12474 std::string info
12475 = string_printf (_("`%s' Ada exception handlers"),
12476 excep_string.c_str ());
12477 uiout->text (info);
12478 }
12479 else
12480 uiout->text (_("all Ada exceptions handlers"));
12481 break;
12482
12483 case ada_catch_assert:
12484 uiout->text (_("failed Ada assertions"));
12485 break;
12486
12487 default:
12488 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12489 break;
12490 }
12491 }
12492
12493 /* Implement the PRINT_RECREATE method in the structure for all
12494 exception catchpoint kinds. */
12495
12496 void
12497 ada_catchpoint::print_recreate (struct ui_file *fp)
12498 {
12499 switch (m_kind)
12500 {
12501 case ada_catch_exception:
12502 gdb_printf (fp, "catch exception");
12503 if (!excep_string.empty ())
12504 gdb_printf (fp, " %s", excep_string.c_str ());
12505 break;
12506
12507 case ada_catch_exception_unhandled:
12508 gdb_printf (fp, "catch exception unhandled");
12509 break;
12510
12511 case ada_catch_handlers:
12512 gdb_printf (fp, "catch handlers");
12513 break;
12514
12515 case ada_catch_assert:
12516 gdb_printf (fp, "catch assert");
12517 break;
12518
12519 default:
12520 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12521 }
12522 print_recreate_thread (this, fp);
12523 }
12524
12525 /* See ada-lang.h. */
12526
12527 bool
12528 is_ada_exception_catchpoint (breakpoint *bp)
12529 {
12530 return dynamic_cast<ada_catchpoint *> (bp) != nullptr;
12531 }
12532
12533 /* Split the arguments specified in a "catch exception" command.
12534 Set EX to the appropriate catchpoint type.
12535 Set EXCEP_STRING to the name of the specific exception if
12536 specified by the user.
12537 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
12538 "catch handlers" command. False otherwise.
12539 If a condition is found at the end of the arguments, the condition
12540 expression is stored in COND_STRING (memory must be deallocated
12541 after use). Otherwise COND_STRING is set to NULL. */
12542
12543 static void
12544 catch_ada_exception_command_split (const char *args,
12545 bool is_catch_handlers_cmd,
12546 enum ada_exception_catchpoint_kind *ex,
12547 std::string *excep_string,
12548 std::string *cond_string)
12549 {
12550 std::string exception_name;
12551
12552 exception_name = extract_arg (&args);
12553 if (exception_name == "if")
12554 {
12555 /* This is not an exception name; this is the start of a condition
12556 expression for a catchpoint on all exceptions. So, "un-get"
12557 this token, and set exception_name to NULL. */
12558 exception_name.clear ();
12559 args -= 2;
12560 }
12561
12562 /* Check to see if we have a condition. */
12563
12564 args = skip_spaces (args);
12565 if (startswith (args, "if")
12566 && (isspace (args[2]) || args[2] == '\0'))
12567 {
12568 args += 2;
12569 args = skip_spaces (args);
12570
12571 if (args[0] == '\0')
12572 error (_("Condition missing after `if' keyword"));
12573 *cond_string = args;
12574
12575 args += strlen (args);
12576 }
12577
12578 /* Check that we do not have any more arguments. Anything else
12579 is unexpected. */
12580
12581 if (args[0] != '\0')
12582 error (_("Junk at end of expression"));
12583
12584 if (is_catch_handlers_cmd)
12585 {
12586 /* Catch handling of exceptions. */
12587 *ex = ada_catch_handlers;
12588 *excep_string = exception_name;
12589 }
12590 else if (exception_name.empty ())
12591 {
12592 /* Catch all exceptions. */
12593 *ex = ada_catch_exception;
12594 excep_string->clear ();
12595 }
12596 else if (exception_name == "unhandled")
12597 {
12598 /* Catch unhandled exceptions. */
12599 *ex = ada_catch_exception_unhandled;
12600 excep_string->clear ();
12601 }
12602 else
12603 {
12604 /* Catch a specific exception. */
12605 *ex = ada_catch_exception;
12606 *excep_string = exception_name;
12607 }
12608 }
12609
12610 /* Return the name of the symbol on which we should break in order to
12611 implement a catchpoint of the EX kind. */
12612
12613 static const char *
12614 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
12615 {
12616 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12617
12618 gdb_assert (data->exception_info != NULL);
12619
12620 switch (ex)
12621 {
12622 case ada_catch_exception:
12623 return (data->exception_info->catch_exception_sym);
12624 break;
12625 case ada_catch_exception_unhandled:
12626 return (data->exception_info->catch_exception_unhandled_sym);
12627 break;
12628 case ada_catch_assert:
12629 return (data->exception_info->catch_assert_sym);
12630 break;
12631 case ada_catch_handlers:
12632 return (data->exception_info->catch_handlers_sym);
12633 break;
12634 default:
12635 internal_error (__FILE__, __LINE__,
12636 _("unexpected catchpoint kind (%d)"), ex);
12637 }
12638 }
12639
12640 /* Return the condition that will be used to match the current exception
12641 being raised with the exception that the user wants to catch. This
12642 assumes that this condition is used when the inferior just triggered
12643 an exception catchpoint.
12644 EX: the type of catchpoints used for catching Ada exceptions. */
12645
12646 static std::string
12647 ada_exception_catchpoint_cond_string (const char *excep_string,
12648 enum ada_exception_catchpoint_kind ex)
12649 {
12650 bool is_standard_exc = false;
12651 std::string result;
12652
12653 if (ex == ada_catch_handlers)
12654 {
12655 /* For exception handlers catchpoints, the condition string does
12656 not use the same parameter as for the other exceptions. */
12657 result = ("long_integer (GNAT_GCC_exception_Access"
12658 "(gcc_exception).all.occurrence.id)");
12659 }
12660 else
12661 result = "long_integer (e)";
12662
12663 /* The standard exceptions are a special case. They are defined in
12664 runtime units that have been compiled without debugging info; if
12665 EXCEP_STRING is the not-fully-qualified name of a standard
12666 exception (e.g. "constraint_error") then, during the evaluation
12667 of the condition expression, the symbol lookup on this name would
12668 *not* return this standard exception. The catchpoint condition
12669 may then be set only on user-defined exceptions which have the
12670 same not-fully-qualified name (e.g. my_package.constraint_error).
12671
12672 To avoid this unexcepted behavior, these standard exceptions are
12673 systematically prefixed by "standard". This means that "catch
12674 exception constraint_error" is rewritten into "catch exception
12675 standard.constraint_error".
12676
12677 If an exception named constraint_error is defined in another package of
12678 the inferior program, then the only way to specify this exception as a
12679 breakpoint condition is to use its fully-qualified named:
12680 e.g. my_package.constraint_error. */
12681
12682 for (const char *name : standard_exc)
12683 {
12684 if (strcmp (name, excep_string) == 0)
12685 {
12686 is_standard_exc = true;
12687 break;
12688 }
12689 }
12690
12691 result += " = ";
12692
12693 if (is_standard_exc)
12694 string_appendf (result, "long_integer (&standard.%s)", excep_string);
12695 else
12696 string_appendf (result, "long_integer (&%s)", excep_string);
12697
12698 return result;
12699 }
12700
12701 /* Return the symtab_and_line that should be used to insert an exception
12702 catchpoint of the TYPE kind.
12703
12704 ADDR_STRING returns the name of the function where the real
12705 breakpoint that implements the catchpoints is set, depending on the
12706 type of catchpoint we need to create. */
12707
12708 static struct symtab_and_line
12709 ada_exception_sal (enum ada_exception_catchpoint_kind ex,
12710 std::string *addr_string)
12711 {
12712 const char *sym_name;
12713 struct symbol *sym;
12714
12715 /* First, find out which exception support info to use. */
12716 ada_exception_support_info_sniffer ();
12717
12718 /* Then lookup the function on which we will break in order to catch
12719 the Ada exceptions requested by the user. */
12720 sym_name = ada_exception_sym_name (ex);
12721 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12722
12723 if (sym == NULL)
12724 error (_("Catchpoint symbol not found: %s"), sym_name);
12725
12726 if (sym->aclass () != LOC_BLOCK)
12727 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
12728
12729 /* Set ADDR_STRING. */
12730 *addr_string = sym_name;
12731
12732 return find_function_start_sal (sym, 1);
12733 }
12734
12735 /* Create an Ada exception catchpoint.
12736
12737 EX_KIND is the kind of exception catchpoint to be created.
12738
12739 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
12740 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12741 of the exception to which this catchpoint applies.
12742
12743 COND_STRING, if not empty, is the catchpoint condition.
12744
12745 TEMPFLAG, if nonzero, means that the underlying breakpoint
12746 should be temporary.
12747
12748 FROM_TTY is the usual argument passed to all commands implementations. */
12749
12750 void
12751 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
12752 enum ada_exception_catchpoint_kind ex_kind,
12753 const std::string &excep_string,
12754 const std::string &cond_string,
12755 int tempflag,
12756 int disabled,
12757 int from_tty)
12758 {
12759 std::string addr_string;
12760 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string);
12761
12762 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint (ex_kind));
12763 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string.c_str (),
12764 &vtable_breakpoint_ops,
12765 tempflag, disabled, from_tty);
12766 c->excep_string = excep_string;
12767 create_excep_cond_exprs (c.get (), ex_kind);
12768 if (!cond_string.empty ())
12769 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty, false);
12770 install_breakpoint (0, std::move (c), 1);
12771 }
12772
12773 /* Implement the "catch exception" command. */
12774
12775 static void
12776 catch_ada_exception_command (const char *arg_entry, int from_tty,
12777 struct cmd_list_element *command)
12778 {
12779 const char *arg = arg_entry;
12780 struct gdbarch *gdbarch = get_current_arch ();
12781 int tempflag;
12782 enum ada_exception_catchpoint_kind ex_kind;
12783 std::string excep_string;
12784 std::string cond_string;
12785
12786 tempflag = command->context () == CATCH_TEMPORARY;
12787
12788 if (!arg)
12789 arg = "";
12790 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
12791 &cond_string);
12792 create_ada_exception_catchpoint (gdbarch, ex_kind,
12793 excep_string, cond_string,
12794 tempflag, 1 /* enabled */,
12795 from_tty);
12796 }
12797
12798 /* Implement the "catch handlers" command. */
12799
12800 static void
12801 catch_ada_handlers_command (const char *arg_entry, int from_tty,
12802 struct cmd_list_element *command)
12803 {
12804 const char *arg = arg_entry;
12805 struct gdbarch *gdbarch = get_current_arch ();
12806 int tempflag;
12807 enum ada_exception_catchpoint_kind ex_kind;
12808 std::string excep_string;
12809 std::string cond_string;
12810
12811 tempflag = command->context () == CATCH_TEMPORARY;
12812
12813 if (!arg)
12814 arg = "";
12815 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
12816 &cond_string);
12817 create_ada_exception_catchpoint (gdbarch, ex_kind,
12818 excep_string, cond_string,
12819 tempflag, 1 /* enabled */,
12820 from_tty);
12821 }
12822
12823 /* Completion function for the Ada "catch" commands. */
12824
12825 static void
12826 catch_ada_completer (struct cmd_list_element *cmd, completion_tracker &tracker,
12827 const char *text, const char *word)
12828 {
12829 std::vector<ada_exc_info> exceptions = ada_exceptions_list (NULL);
12830
12831 for (const ada_exc_info &info : exceptions)
12832 {
12833 if (startswith (info.name, word))
12834 tracker.add_completion (make_unique_xstrdup (info.name));
12835 }
12836 }
12837
12838 /* Split the arguments specified in a "catch assert" command.
12839
12840 ARGS contains the command's arguments (or the empty string if
12841 no arguments were passed).
12842
12843 If ARGS contains a condition, set COND_STRING to that condition
12844 (the memory needs to be deallocated after use). */
12845
12846 static void
12847 catch_ada_assert_command_split (const char *args, std::string &cond_string)
12848 {
12849 args = skip_spaces (args);
12850
12851 /* Check whether a condition was provided. */
12852 if (startswith (args, "if")
12853 && (isspace (args[2]) || args[2] == '\0'))
12854 {
12855 args += 2;
12856 args = skip_spaces (args);
12857 if (args[0] == '\0')
12858 error (_("condition missing after `if' keyword"));
12859 cond_string.assign (args);
12860 }
12861
12862 /* Otherwise, there should be no other argument at the end of
12863 the command. */
12864 else if (args[0] != '\0')
12865 error (_("Junk at end of arguments."));
12866 }
12867
12868 /* Implement the "catch assert" command. */
12869
12870 static void
12871 catch_assert_command (const char *arg_entry, int from_tty,
12872 struct cmd_list_element *command)
12873 {
12874 const char *arg = arg_entry;
12875 struct gdbarch *gdbarch = get_current_arch ();
12876 int tempflag;
12877 std::string cond_string;
12878
12879 tempflag = command->context () == CATCH_TEMPORARY;
12880
12881 if (!arg)
12882 arg = "";
12883 catch_ada_assert_command_split (arg, cond_string);
12884 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
12885 "", cond_string,
12886 tempflag, 1 /* enabled */,
12887 from_tty);
12888 }
12889
12890 /* Return non-zero if the symbol SYM is an Ada exception object. */
12891
12892 static int
12893 ada_is_exception_sym (struct symbol *sym)
12894 {
12895 const char *type_name = sym->type ()->name ();
12896
12897 return (sym->aclass () != LOC_TYPEDEF
12898 && sym->aclass () != LOC_BLOCK
12899 && sym->aclass () != LOC_CONST
12900 && sym->aclass () != LOC_UNRESOLVED
12901 && type_name != NULL && strcmp (type_name, "exception") == 0);
12902 }
12903
12904 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
12905 Ada exception object. This matches all exceptions except the ones
12906 defined by the Ada language. */
12907
12908 static int
12909 ada_is_non_standard_exception_sym (struct symbol *sym)
12910 {
12911 if (!ada_is_exception_sym (sym))
12912 return 0;
12913
12914 for (const char *name : standard_exc)
12915 if (strcmp (sym->linkage_name (), name) == 0)
12916 return 0; /* A standard exception. */
12917
12918 /* Numeric_Error is also a standard exception, so exclude it.
12919 See the STANDARD_EXC description for more details as to why
12920 this exception is not listed in that array. */
12921 if (strcmp (sym->linkage_name (), "numeric_error") == 0)
12922 return 0;
12923
12924 return 1;
12925 }
12926
12927 /* A helper function for std::sort, comparing two struct ada_exc_info
12928 objects.
12929
12930 The comparison is determined first by exception name, and then
12931 by exception address. */
12932
12933 bool
12934 ada_exc_info::operator< (const ada_exc_info &other) const
12935 {
12936 int result;
12937
12938 result = strcmp (name, other.name);
12939 if (result < 0)
12940 return true;
12941 if (result == 0 && addr < other.addr)
12942 return true;
12943 return false;
12944 }
12945
12946 bool
12947 ada_exc_info::operator== (const ada_exc_info &other) const
12948 {
12949 return addr == other.addr && strcmp (name, other.name) == 0;
12950 }
12951
12952 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
12953 routine, but keeping the first SKIP elements untouched.
12954
12955 All duplicates are also removed. */
12956
12957 static void
12958 sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
12959 int skip)
12960 {
12961 std::sort (exceptions->begin () + skip, exceptions->end ());
12962 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
12963 exceptions->end ());
12964 }
12965
12966 /* Add all exceptions defined by the Ada standard whose name match
12967 a regular expression.
12968
12969 If PREG is not NULL, then this regexp_t object is used to
12970 perform the symbol name matching. Otherwise, no name-based
12971 filtering is performed.
12972
12973 EXCEPTIONS is a vector of exceptions to which matching exceptions
12974 gets pushed. */
12975
12976 static void
12977 ada_add_standard_exceptions (compiled_regex *preg,
12978 std::vector<ada_exc_info> *exceptions)
12979 {
12980 for (const char *name : standard_exc)
12981 {
12982 if (preg == NULL || preg->exec (name, 0, NULL, 0) == 0)
12983 {
12984 struct bound_minimal_symbol msymbol
12985 = ada_lookup_simple_minsym (name);
12986
12987 if (msymbol.minsym != NULL)
12988 {
12989 struct ada_exc_info info
12990 = {name, msymbol.value_address ()};
12991
12992 exceptions->push_back (info);
12993 }
12994 }
12995 }
12996 }
12997
12998 /* Add all Ada exceptions defined locally and accessible from the given
12999 FRAME.
13000
13001 If PREG is not NULL, then this regexp_t object is used to
13002 perform the symbol name matching. Otherwise, no name-based
13003 filtering is performed.
13004
13005 EXCEPTIONS is a vector of exceptions to which matching exceptions
13006 gets pushed. */
13007
13008 static void
13009 ada_add_exceptions_from_frame (compiled_regex *preg,
13010 struct frame_info *frame,
13011 std::vector<ada_exc_info> *exceptions)
13012 {
13013 const struct block *block = get_frame_block (frame, 0);
13014
13015 while (block != 0)
13016 {
13017 struct block_iterator iter;
13018 struct symbol *sym;
13019
13020 ALL_BLOCK_SYMBOLS (block, iter, sym)
13021 {
13022 switch (sym->aclass ())
13023 {
13024 case LOC_TYPEDEF:
13025 case LOC_BLOCK:
13026 case LOC_CONST:
13027 break;
13028 default:
13029 if (ada_is_exception_sym (sym))
13030 {
13031 struct ada_exc_info info = {sym->print_name (),
13032 sym->value_address ()};
13033
13034 exceptions->push_back (info);
13035 }
13036 }
13037 }
13038 if (block->function () != NULL)
13039 break;
13040 block = block->superblock ();
13041 }
13042 }
13043
13044 /* Return true if NAME matches PREG or if PREG is NULL. */
13045
13046 static bool
13047 name_matches_regex (const char *name, compiled_regex *preg)
13048 {
13049 return (preg == NULL
13050 || preg->exec (ada_decode (name).c_str (), 0, NULL, 0) == 0);
13051 }
13052
13053 /* Add all exceptions defined globally whose name name match
13054 a regular expression, excluding standard exceptions.
13055
13056 The reason we exclude standard exceptions is that they need
13057 to be handled separately: Standard exceptions are defined inside
13058 a runtime unit which is normally not compiled with debugging info,
13059 and thus usually do not show up in our symbol search. However,
13060 if the unit was in fact built with debugging info, we need to
13061 exclude them because they would duplicate the entry we found
13062 during the special loop that specifically searches for those
13063 standard exceptions.
13064
13065 If PREG is not NULL, then this regexp_t object is used to
13066 perform the symbol name matching. Otherwise, no name-based
13067 filtering is performed.
13068
13069 EXCEPTIONS is a vector of exceptions to which matching exceptions
13070 gets pushed. */
13071
13072 static void
13073 ada_add_global_exceptions (compiled_regex *preg,
13074 std::vector<ada_exc_info> *exceptions)
13075 {
13076 /* In Ada, the symbol "search name" is a linkage name, whereas the
13077 regular expression used to do the matching refers to the natural
13078 name. So match against the decoded name. */
13079 expand_symtabs_matching (NULL,
13080 lookup_name_info::match_any (),
13081 [&] (const char *search_name)
13082 {
13083 std::string decoded = ada_decode (search_name);
13084 return name_matches_regex (decoded.c_str (), preg);
13085 },
13086 NULL,
13087 SEARCH_GLOBAL_BLOCK | SEARCH_STATIC_BLOCK,
13088 VARIABLES_DOMAIN);
13089
13090 for (objfile *objfile : current_program_space->objfiles ())
13091 {
13092 for (compunit_symtab *s : objfile->compunits ())
13093 {
13094 const struct blockvector *bv = s->blockvector ();
13095 int i;
13096
13097 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13098 {
13099 const struct block *b = bv->block (i);
13100 struct block_iterator iter;
13101 struct symbol *sym;
13102
13103 ALL_BLOCK_SYMBOLS (b, iter, sym)
13104 if (ada_is_non_standard_exception_sym (sym)
13105 && name_matches_regex (sym->natural_name (), preg))
13106 {
13107 struct ada_exc_info info
13108 = {sym->print_name (), sym->value_address ()};
13109
13110 exceptions->push_back (info);
13111 }
13112 }
13113 }
13114 }
13115 }
13116
13117 /* Implements ada_exceptions_list with the regular expression passed
13118 as a regex_t, rather than a string.
13119
13120 If not NULL, PREG is used to filter out exceptions whose names
13121 do not match. Otherwise, all exceptions are listed. */
13122
13123 static std::vector<ada_exc_info>
13124 ada_exceptions_list_1 (compiled_regex *preg)
13125 {
13126 std::vector<ada_exc_info> result;
13127 int prev_len;
13128
13129 /* First, list the known standard exceptions. These exceptions
13130 need to be handled separately, as they are usually defined in
13131 runtime units that have been compiled without debugging info. */
13132
13133 ada_add_standard_exceptions (preg, &result);
13134
13135 /* Next, find all exceptions whose scope is local and accessible
13136 from the currently selected frame. */
13137
13138 if (has_stack_frames ())
13139 {
13140 prev_len = result.size ();
13141 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13142 &result);
13143 if (result.size () > prev_len)
13144 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13145 }
13146
13147 /* Add all exceptions whose scope is global. */
13148
13149 prev_len = result.size ();
13150 ada_add_global_exceptions (preg, &result);
13151 if (result.size () > prev_len)
13152 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13153
13154 return result;
13155 }
13156
13157 /* Return a vector of ada_exc_info.
13158
13159 If REGEXP is NULL, all exceptions are included in the result.
13160 Otherwise, it should contain a valid regular expression,
13161 and only the exceptions whose names match that regular expression
13162 are included in the result.
13163
13164 The exceptions are sorted in the following order:
13165 - Standard exceptions (defined by the Ada language), in
13166 alphabetical order;
13167 - Exceptions only visible from the current frame, in
13168 alphabetical order;
13169 - Exceptions whose scope is global, in alphabetical order. */
13170
13171 std::vector<ada_exc_info>
13172 ada_exceptions_list (const char *regexp)
13173 {
13174 if (regexp == NULL)
13175 return ada_exceptions_list_1 (NULL);
13176
13177 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13178 return ada_exceptions_list_1 (&reg);
13179 }
13180
13181 /* Implement the "info exceptions" command. */
13182
13183 static void
13184 info_exceptions_command (const char *regexp, int from_tty)
13185 {
13186 struct gdbarch *gdbarch = get_current_arch ();
13187
13188 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
13189
13190 if (regexp != NULL)
13191 gdb_printf
13192 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13193 else
13194 gdb_printf (_("All defined Ada exceptions:\n"));
13195
13196 for (const ada_exc_info &info : exceptions)
13197 gdb_printf ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
13198 }
13199
13200 \f
13201 /* Language vector */
13202
13203 /* symbol_name_matcher_ftype adapter for wild_match. */
13204
13205 static bool
13206 do_wild_match (const char *symbol_search_name,
13207 const lookup_name_info &lookup_name,
13208 completion_match_result *comp_match_res)
13209 {
13210 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
13211 }
13212
13213 /* symbol_name_matcher_ftype adapter for full_match. */
13214
13215 static bool
13216 do_full_match (const char *symbol_search_name,
13217 const lookup_name_info &lookup_name,
13218 completion_match_result *comp_match_res)
13219 {
13220 const char *lname = lookup_name.ada ().lookup_name ().c_str ();
13221
13222 /* If both symbols start with "_ada_", just let the loop below
13223 handle the comparison. However, if only the symbol name starts
13224 with "_ada_", skip the prefix and let the match proceed as
13225 usual. */
13226 if (startswith (symbol_search_name, "_ada_")
13227 && !startswith (lname, "_ada"))
13228 symbol_search_name += 5;
13229 /* Likewise for ghost entities. */
13230 if (startswith (symbol_search_name, "___ghost_")
13231 && !startswith (lname, "___ghost_"))
13232 symbol_search_name += 9;
13233
13234 int uscore_count = 0;
13235 while (*lname != '\0')
13236 {
13237 if (*symbol_search_name != *lname)
13238 {
13239 if (*symbol_search_name == 'B' && uscore_count == 2
13240 && symbol_search_name[1] == '_')
13241 {
13242 symbol_search_name += 2;
13243 while (isdigit (*symbol_search_name))
13244 ++symbol_search_name;
13245 if (symbol_search_name[0] == '_'
13246 && symbol_search_name[1] == '_')
13247 {
13248 symbol_search_name += 2;
13249 continue;
13250 }
13251 }
13252 return false;
13253 }
13254
13255 if (*symbol_search_name == '_')
13256 ++uscore_count;
13257 else
13258 uscore_count = 0;
13259
13260 ++symbol_search_name;
13261 ++lname;
13262 }
13263
13264 return is_name_suffix (symbol_search_name);
13265 }
13266
13267 /* symbol_name_matcher_ftype for exact (verbatim) matches. */
13268
13269 static bool
13270 do_exact_match (const char *symbol_search_name,
13271 const lookup_name_info &lookup_name,
13272 completion_match_result *comp_match_res)
13273 {
13274 return strcmp (symbol_search_name, ada_lookup_name (lookup_name)) == 0;
13275 }
13276
13277 /* Build the Ada lookup name for LOOKUP_NAME. */
13278
13279 ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
13280 {
13281 gdb::string_view user_name = lookup_name.name ();
13282
13283 if (!user_name.empty () && user_name[0] == '<')
13284 {
13285 if (user_name.back () == '>')
13286 m_encoded_name
13287 = gdb::to_string (user_name.substr (1, user_name.size () - 2));
13288 else
13289 m_encoded_name
13290 = gdb::to_string (user_name.substr (1, user_name.size () - 1));
13291 m_encoded_p = true;
13292 m_verbatim_p = true;
13293 m_wild_match_p = false;
13294 m_standard_p = false;
13295 }
13296 else
13297 {
13298 m_verbatim_p = false;
13299
13300 m_encoded_p = user_name.find ("__") != gdb::string_view::npos;
13301
13302 if (!m_encoded_p)
13303 {
13304 const char *folded = ada_fold_name (user_name);
13305 m_encoded_name = ada_encode_1 (folded, false);
13306 if (m_encoded_name.empty ())
13307 m_encoded_name = gdb::to_string (user_name);
13308 }
13309 else
13310 m_encoded_name = gdb::to_string (user_name);
13311
13312 /* Handle the 'package Standard' special case. See description
13313 of m_standard_p. */
13314 if (startswith (m_encoded_name.c_str (), "standard__"))
13315 {
13316 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
13317 m_standard_p = true;
13318 }
13319 else
13320 m_standard_p = false;
13321
13322 /* If the name contains a ".", then the user is entering a fully
13323 qualified entity name, and the match must not be done in wild
13324 mode. Similarly, if the user wants to complete what looks
13325 like an encoded name, the match must not be done in wild
13326 mode. Also, in the standard__ special case always do
13327 non-wild matching. */
13328 m_wild_match_p
13329 = (lookup_name.match_type () != symbol_name_match_type::FULL
13330 && !m_encoded_p
13331 && !m_standard_p
13332 && user_name.find ('.') == std::string::npos);
13333 }
13334 }
13335
13336 /* symbol_name_matcher_ftype method for Ada. This only handles
13337 completion mode. */
13338
13339 static bool
13340 ada_symbol_name_matches (const char *symbol_search_name,
13341 const lookup_name_info &lookup_name,
13342 completion_match_result *comp_match_res)
13343 {
13344 return lookup_name.ada ().matches (symbol_search_name,
13345 lookup_name.match_type (),
13346 comp_match_res);
13347 }
13348
13349 /* A name matcher that matches the symbol name exactly, with
13350 strcmp. */
13351
13352 static bool
13353 literal_symbol_name_matcher (const char *symbol_search_name,
13354 const lookup_name_info &lookup_name,
13355 completion_match_result *comp_match_res)
13356 {
13357 gdb::string_view name_view = lookup_name.name ();
13358
13359 if (lookup_name.completion_mode ()
13360 ? (strncmp (symbol_search_name, name_view.data (),
13361 name_view.size ()) == 0)
13362 : symbol_search_name == name_view)
13363 {
13364 if (comp_match_res != NULL)
13365 comp_match_res->set_match (symbol_search_name);
13366 return true;
13367 }
13368 else
13369 return false;
13370 }
13371
13372 /* Implement the "get_symbol_name_matcher" language_defn method for
13373 Ada. */
13374
13375 static symbol_name_matcher_ftype *
13376 ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
13377 {
13378 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
13379 return literal_symbol_name_matcher;
13380
13381 if (lookup_name.completion_mode ())
13382 return ada_symbol_name_matches;
13383 else
13384 {
13385 if (lookup_name.ada ().wild_match_p ())
13386 return do_wild_match;
13387 else if (lookup_name.ada ().verbatim_p ())
13388 return do_exact_match;
13389 else
13390 return do_full_match;
13391 }
13392 }
13393
13394 /* Class representing the Ada language. */
13395
13396 class ada_language : public language_defn
13397 {
13398 public:
13399 ada_language ()
13400 : language_defn (language_ada)
13401 { /* Nothing. */ }
13402
13403 /* See language.h. */
13404
13405 const char *name () const override
13406 { return "ada"; }
13407
13408 /* See language.h. */
13409
13410 const char *natural_name () const override
13411 { return "Ada"; }
13412
13413 /* See language.h. */
13414
13415 const std::vector<const char *> &filename_extensions () const override
13416 {
13417 static const std::vector<const char *> extensions
13418 = { ".adb", ".ads", ".a", ".ada", ".dg" };
13419 return extensions;
13420 }
13421
13422 /* Print an array element index using the Ada syntax. */
13423
13424 void print_array_index (struct type *index_type,
13425 LONGEST index,
13426 struct ui_file *stream,
13427 const value_print_options *options) const override
13428 {
13429 struct value *index_value = val_atr (index_type, index);
13430
13431 value_print (index_value, stream, options);
13432 gdb_printf (stream, " => ");
13433 }
13434
13435 /* Implement the "read_var_value" language_defn method for Ada. */
13436
13437 struct value *read_var_value (struct symbol *var,
13438 const struct block *var_block,
13439 struct frame_info *frame) const override
13440 {
13441 /* The only case where default_read_var_value is not sufficient
13442 is when VAR is a renaming... */
13443 if (frame != nullptr)
13444 {
13445 const struct block *frame_block = get_frame_block (frame, NULL);
13446 if (frame_block != nullptr && ada_is_renaming_symbol (var))
13447 return ada_read_renaming_var_value (var, frame_block);
13448 }
13449
13450 /* This is a typical case where we expect the default_read_var_value
13451 function to work. */
13452 return language_defn::read_var_value (var, var_block, frame);
13453 }
13454
13455 /* See language.h. */
13456 bool symbol_printing_suppressed (struct symbol *symbol) const override
13457 {
13458 return symbol->is_artificial ();
13459 }
13460
13461 /* See language.h. */
13462 void language_arch_info (struct gdbarch *gdbarch,
13463 struct language_arch_info *lai) const override
13464 {
13465 const struct builtin_type *builtin = builtin_type (gdbarch);
13466
13467 /* Helper function to allow shorter lines below. */
13468 auto add = [&] (struct type *t)
13469 {
13470 lai->add_primitive_type (t);
13471 };
13472
13473 add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13474 0, "integer"));
13475 add (arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13476 0, "long_integer"));
13477 add (arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13478 0, "short_integer"));
13479 struct type *char_type = arch_character_type (gdbarch, TARGET_CHAR_BIT,
13480 1, "character");
13481 lai->set_string_char_type (char_type);
13482 add (char_type);
13483 add (arch_character_type (gdbarch, 16, 1, "wide_character"));
13484 add (arch_character_type (gdbarch, 32, 1, "wide_wide_character"));
13485 add (arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13486 "float", gdbarch_float_format (gdbarch)));
13487 add (arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13488 "long_float", gdbarch_double_format (gdbarch)));
13489 add (arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13490 0, "long_long_integer"));
13491 add (arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
13492 "long_long_float",
13493 gdbarch_long_double_format (gdbarch)));
13494 add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13495 0, "natural"));
13496 add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13497 0, "positive"));
13498 add (builtin->builtin_void);
13499
13500 struct type *system_addr_ptr
13501 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
13502 "void"));
13503 system_addr_ptr->set_name ("system__address");
13504 add (system_addr_ptr);
13505
13506 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
13507 type. This is a signed integral type whose size is the same as
13508 the size of addresses. */
13509 unsigned int addr_length = TYPE_LENGTH (system_addr_ptr);
13510 add (arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
13511 "storage_offset"));
13512
13513 lai->set_bool_type (builtin->builtin_bool);
13514 }
13515
13516 /* See language.h. */
13517
13518 bool iterate_over_symbols
13519 (const struct block *block, const lookup_name_info &name,
13520 domain_enum domain,
13521 gdb::function_view<symbol_found_callback_ftype> callback) const override
13522 {
13523 std::vector<struct block_symbol> results
13524 = ada_lookup_symbol_list_worker (name, block, domain, 0);
13525 for (block_symbol &sym : results)
13526 {
13527 if (!callback (&sym))
13528 return false;
13529 }
13530
13531 return true;
13532 }
13533
13534 /* See language.h. */
13535 bool sniff_from_mangled_name
13536 (const char *mangled,
13537 gdb::unique_xmalloc_ptr<char> *out) const override
13538 {
13539 std::string demangled = ada_decode (mangled);
13540
13541 *out = NULL;
13542
13543 if (demangled != mangled && demangled[0] != '<')
13544 {
13545 /* Set the gsymbol language to Ada, but still return 0.
13546 Two reasons for that:
13547
13548 1. For Ada, we prefer computing the symbol's decoded name
13549 on the fly rather than pre-compute it, in order to save
13550 memory (Ada projects are typically very large).
13551
13552 2. There are some areas in the definition of the GNAT
13553 encoding where, with a bit of bad luck, we might be able
13554 to decode a non-Ada symbol, generating an incorrect
13555 demangled name (Eg: names ending with "TB" for instance
13556 are identified as task bodies and so stripped from
13557 the decoded name returned).
13558
13559 Returning true, here, but not setting *DEMANGLED, helps us get
13560 a little bit of the best of both worlds. Because we're last,
13561 we should not affect any of the other languages that were
13562 able to demangle the symbol before us; we get to correctly
13563 tag Ada symbols as such; and even if we incorrectly tagged a
13564 non-Ada symbol, which should be rare, any routing through the
13565 Ada language should be transparent (Ada tries to behave much
13566 like C/C++ with non-Ada symbols). */
13567 return true;
13568 }
13569
13570 return false;
13571 }
13572
13573 /* See language.h. */
13574
13575 gdb::unique_xmalloc_ptr<char> demangle_symbol (const char *mangled,
13576 int options) const override
13577 {
13578 return make_unique_xstrdup (ada_decode (mangled).c_str ());
13579 }
13580
13581 /* See language.h. */
13582
13583 void print_type (struct type *type, const char *varstring,
13584 struct ui_file *stream, int show, int level,
13585 const struct type_print_options *flags) const override
13586 {
13587 ada_print_type (type, varstring, stream, show, level, flags);
13588 }
13589
13590 /* See language.h. */
13591
13592 const char *word_break_characters (void) const override
13593 {
13594 return ada_completer_word_break_characters;
13595 }
13596
13597 /* See language.h. */
13598
13599 void collect_symbol_completion_matches (completion_tracker &tracker,
13600 complete_symbol_mode mode,
13601 symbol_name_match_type name_match_type,
13602 const char *text, const char *word,
13603 enum type_code code) const override
13604 {
13605 struct symbol *sym;
13606 const struct block *b, *surrounding_static_block = 0;
13607 struct block_iterator iter;
13608
13609 gdb_assert (code == TYPE_CODE_UNDEF);
13610
13611 lookup_name_info lookup_name (text, name_match_type, true);
13612
13613 /* First, look at the partial symtab symbols. */
13614 expand_symtabs_matching (NULL,
13615 lookup_name,
13616 NULL,
13617 NULL,
13618 SEARCH_GLOBAL_BLOCK | SEARCH_STATIC_BLOCK,
13619 ALL_DOMAIN);
13620
13621 /* At this point scan through the misc symbol vectors and add each
13622 symbol you find to the list. Eventually we want to ignore
13623 anything that isn't a text symbol (everything else will be
13624 handled by the psymtab code above). */
13625
13626 for (objfile *objfile : current_program_space->objfiles ())
13627 {
13628 for (minimal_symbol *msymbol : objfile->msymbols ())
13629 {
13630 QUIT;
13631
13632 if (completion_skip_symbol (mode, msymbol))
13633 continue;
13634
13635 language symbol_language = msymbol->language ();
13636
13637 /* Ada minimal symbols won't have their language set to Ada. If
13638 we let completion_list_add_name compare using the
13639 default/C-like matcher, then when completing e.g., symbols in a
13640 package named "pck", we'd match internal Ada symbols like
13641 "pckS", which are invalid in an Ada expression, unless you wrap
13642 them in '<' '>' to request a verbatim match.
13643
13644 Unfortunately, some Ada encoded names successfully demangle as
13645 C++ symbols (using an old mangling scheme), such as "name__2Xn"
13646 -> "Xn::name(void)" and thus some Ada minimal symbols end up
13647 with the wrong language set. Paper over that issue here. */
13648 if (symbol_language == language_auto
13649 || symbol_language == language_cplus)
13650 symbol_language = language_ada;
13651
13652 completion_list_add_name (tracker,
13653 symbol_language,
13654 msymbol->linkage_name (),
13655 lookup_name, text, word);
13656 }
13657 }
13658
13659 /* Search upwards from currently selected frame (so that we can
13660 complete on local vars. */
13661
13662 for (b = get_selected_block (0); b != NULL; b = b->superblock ())
13663 {
13664 if (!b->superblock ())
13665 surrounding_static_block = b; /* For elmin of dups */
13666
13667 ALL_BLOCK_SYMBOLS (b, iter, sym)
13668 {
13669 if (completion_skip_symbol (mode, sym))
13670 continue;
13671
13672 completion_list_add_name (tracker,
13673 sym->language (),
13674 sym->linkage_name (),
13675 lookup_name, text, word);
13676 }
13677 }
13678
13679 /* Go through the symtabs and check the externs and statics for
13680 symbols which match. */
13681
13682 for (objfile *objfile : current_program_space->objfiles ())
13683 {
13684 for (compunit_symtab *s : objfile->compunits ())
13685 {
13686 QUIT;
13687 b = s->blockvector ()->global_block ();
13688 ALL_BLOCK_SYMBOLS (b, iter, sym)
13689 {
13690 if (completion_skip_symbol (mode, sym))
13691 continue;
13692
13693 completion_list_add_name (tracker,
13694 sym->language (),
13695 sym->linkage_name (),
13696 lookup_name, text, word);
13697 }
13698 }
13699 }
13700
13701 for (objfile *objfile : current_program_space->objfiles ())
13702 {
13703 for (compunit_symtab *s : objfile->compunits ())
13704 {
13705 QUIT;
13706 b = s->blockvector ()->static_block ();
13707 /* Don't do this block twice. */
13708 if (b == surrounding_static_block)
13709 continue;
13710 ALL_BLOCK_SYMBOLS (b, iter, sym)
13711 {
13712 if (completion_skip_symbol (mode, sym))
13713 continue;
13714
13715 completion_list_add_name (tracker,
13716 sym->language (),
13717 sym->linkage_name (),
13718 lookup_name, text, word);
13719 }
13720 }
13721 }
13722 }
13723
13724 /* See language.h. */
13725
13726 gdb::unique_xmalloc_ptr<char> watch_location_expression
13727 (struct type *type, CORE_ADDR addr) const override
13728 {
13729 type = check_typedef (TYPE_TARGET_TYPE (check_typedef (type)));
13730 std::string name = type_to_string (type);
13731 return xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr));
13732 }
13733
13734 /* See language.h. */
13735
13736 void value_print (struct value *val, struct ui_file *stream,
13737 const struct value_print_options *options) const override
13738 {
13739 return ada_value_print (val, stream, options);
13740 }
13741
13742 /* See language.h. */
13743
13744 void value_print_inner
13745 (struct value *val, struct ui_file *stream, int recurse,
13746 const struct value_print_options *options) const override
13747 {
13748 return ada_value_print_inner (val, stream, recurse, options);
13749 }
13750
13751 /* See language.h. */
13752
13753 struct block_symbol lookup_symbol_nonlocal
13754 (const char *name, const struct block *block,
13755 const domain_enum domain) const override
13756 {
13757 struct block_symbol sym;
13758
13759 sym = ada_lookup_symbol (name, block_static_block (block), domain);
13760 if (sym.symbol != NULL)
13761 return sym;
13762
13763 /* If we haven't found a match at this point, try the primitive
13764 types. In other languages, this search is performed before
13765 searching for global symbols in order to short-circuit that
13766 global-symbol search if it happens that the name corresponds
13767 to a primitive type. But we cannot do the same in Ada, because
13768 it is perfectly legitimate for a program to declare a type which
13769 has the same name as a standard type. If looking up a type in
13770 that situation, we have traditionally ignored the primitive type
13771 in favor of user-defined types. This is why, unlike most other
13772 languages, we search the primitive types this late and only after
13773 having searched the global symbols without success. */
13774
13775 if (domain == VAR_DOMAIN)
13776 {
13777 struct gdbarch *gdbarch;
13778
13779 if (block == NULL)
13780 gdbarch = target_gdbarch ();
13781 else
13782 gdbarch = block_gdbarch (block);
13783 sym.symbol
13784 = language_lookup_primitive_type_as_symbol (this, gdbarch, name);
13785 if (sym.symbol != NULL)
13786 return sym;
13787 }
13788
13789 return {};
13790 }
13791
13792 /* See language.h. */
13793
13794 int parser (struct parser_state *ps) const override
13795 {
13796 warnings_issued = 0;
13797 return ada_parse (ps);
13798 }
13799
13800 /* See language.h. */
13801
13802 void emitchar (int ch, struct type *chtype,
13803 struct ui_file *stream, int quoter) const override
13804 {
13805 ada_emit_char (ch, chtype, stream, quoter, 1);
13806 }
13807
13808 /* See language.h. */
13809
13810 void printchar (int ch, struct type *chtype,
13811 struct ui_file *stream) const override
13812 {
13813 ada_printchar (ch, chtype, stream);
13814 }
13815
13816 /* See language.h. */
13817
13818 void printstr (struct ui_file *stream, struct type *elttype,
13819 const gdb_byte *string, unsigned int length,
13820 const char *encoding, int force_ellipses,
13821 const struct value_print_options *options) const override
13822 {
13823 ada_printstr (stream, elttype, string, length, encoding,
13824 force_ellipses, options);
13825 }
13826
13827 /* See language.h. */
13828
13829 void print_typedef (struct type *type, struct symbol *new_symbol,
13830 struct ui_file *stream) const override
13831 {
13832 ada_print_typedef (type, new_symbol, stream);
13833 }
13834
13835 /* See language.h. */
13836
13837 bool is_string_type_p (struct type *type) const override
13838 {
13839 return ada_is_string_type (type);
13840 }
13841
13842 /* See language.h. */
13843
13844 const char *struct_too_deep_ellipsis () const override
13845 { return "(...)"; }
13846
13847 /* See language.h. */
13848
13849 bool c_style_arrays_p () const override
13850 { return false; }
13851
13852 /* See language.h. */
13853
13854 bool store_sym_names_in_linkage_form_p () const override
13855 { return true; }
13856
13857 /* See language.h. */
13858
13859 const struct lang_varobj_ops *varobj_ops () const override
13860 { return &ada_varobj_ops; }
13861
13862 protected:
13863 /* See language.h. */
13864
13865 symbol_name_matcher_ftype *get_symbol_name_matcher_inner
13866 (const lookup_name_info &lookup_name) const override
13867 {
13868 return ada_get_symbol_name_matcher (lookup_name);
13869 }
13870 };
13871
13872 /* Single instance of the Ada language class. */
13873
13874 static ada_language ada_language_defn;
13875
13876 /* Command-list for the "set/show ada" prefix command. */
13877 static struct cmd_list_element *set_ada_list;
13878 static struct cmd_list_element *show_ada_list;
13879
13880 /* This module's 'new_objfile' observer. */
13881
13882 static void
13883 ada_new_objfile_observer (struct objfile *objfile)
13884 {
13885 ada_clear_symbol_cache ();
13886 }
13887
13888 /* This module's 'free_objfile' observer. */
13889
13890 static void
13891 ada_free_objfile_observer (struct objfile *objfile)
13892 {
13893 ada_clear_symbol_cache ();
13894 }
13895
13896 /* Charsets known to GNAT. */
13897 static const char * const gnat_source_charsets[] =
13898 {
13899 /* Note that code below assumes that the default comes first.
13900 Latin-1 is the default here, because that is also GNAT's
13901 default. */
13902 "ISO-8859-1",
13903 "ISO-8859-2",
13904 "ISO-8859-3",
13905 "ISO-8859-4",
13906 "ISO-8859-5",
13907 "ISO-8859-15",
13908 "CP437",
13909 "CP850",
13910 /* Note that this value is special-cased in the encoder and
13911 decoder. */
13912 ada_utf8,
13913 nullptr
13914 };
13915
13916 void _initialize_ada_language ();
13917 void
13918 _initialize_ada_language ()
13919 {
13920 add_setshow_prefix_cmd
13921 ("ada", no_class,
13922 _("Prefix command for changing Ada-specific settings."),
13923 _("Generic command for showing Ada-specific settings."),
13924 &set_ada_list, &show_ada_list,
13925 &setlist, &showlist);
13926
13927 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
13928 &trust_pad_over_xvs, _("\
13929 Enable or disable an optimization trusting PAD types over XVS types."), _("\
13930 Show whether an optimization trusting PAD types over XVS types is activated."),
13931 _("\
13932 This is related to the encoding used by the GNAT compiler. The debugger\n\
13933 should normally trust the contents of PAD types, but certain older versions\n\
13934 of GNAT have a bug that sometimes causes the information in the PAD type\n\
13935 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
13936 work around this bug. It is always safe to turn this option \"off\", but\n\
13937 this incurs a slight performance penalty, so it is recommended to NOT change\n\
13938 this option to \"off\" unless necessary."),
13939 NULL, NULL, &set_ada_list, &show_ada_list);
13940
13941 add_setshow_boolean_cmd ("print-signatures", class_vars,
13942 &print_signatures, _("\
13943 Enable or disable the output of formal and return types for functions in the \
13944 overloads selection menu."), _("\
13945 Show whether the output of formal and return types for functions in the \
13946 overloads selection menu is activated."),
13947 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
13948
13949 ada_source_charset = gnat_source_charsets[0];
13950 add_setshow_enum_cmd ("source-charset", class_files,
13951 gnat_source_charsets,
13952 &ada_source_charset, _("\
13953 Set the Ada source character set."), _("\
13954 Show the Ada source character set."), _("\
13955 The character set used for Ada source files.\n\
13956 This must correspond to the '-gnati' or '-gnatW' option passed to GNAT."),
13957 nullptr, nullptr,
13958 &set_ada_list, &show_ada_list);
13959
13960 add_catch_command ("exception", _("\
13961 Catch Ada exceptions, when raised.\n\
13962 Usage: catch exception [ARG] [if CONDITION]\n\
13963 Without any argument, stop when any Ada exception is raised.\n\
13964 If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\
13965 being raised does not have a handler (and will therefore lead to the task's\n\
13966 termination).\n\
13967 Otherwise, the catchpoint only stops when the name of the exception being\n\
13968 raised is the same as ARG.\n\
13969 CONDITION is a boolean expression that is evaluated to see whether the\n\
13970 exception should cause a stop."),
13971 catch_ada_exception_command,
13972 catch_ada_completer,
13973 CATCH_PERMANENT,
13974 CATCH_TEMPORARY);
13975
13976 add_catch_command ("handlers", _("\
13977 Catch Ada exceptions, when handled.\n\
13978 Usage: catch handlers [ARG] [if CONDITION]\n\
13979 Without any argument, stop when any Ada exception is handled.\n\
13980 With an argument, catch only exceptions with the given name.\n\
13981 CONDITION is a boolean expression that is evaluated to see whether the\n\
13982 exception should cause a stop."),
13983 catch_ada_handlers_command,
13984 catch_ada_completer,
13985 CATCH_PERMANENT,
13986 CATCH_TEMPORARY);
13987 add_catch_command ("assert", _("\
13988 Catch failed Ada assertions, when raised.\n\
13989 Usage: catch assert [if CONDITION]\n\
13990 CONDITION is a boolean expression that is evaluated to see whether the\n\
13991 exception should cause a stop."),
13992 catch_assert_command,
13993 NULL,
13994 CATCH_PERMANENT,
13995 CATCH_TEMPORARY);
13996
13997 add_info ("exceptions", info_exceptions_command,
13998 _("\
13999 List all Ada exception names.\n\
14000 Usage: info exceptions [REGEXP]\n\
14001 If a regular expression is passed as an argument, only those matching\n\
14002 the regular expression are listed."));
14003
14004 add_setshow_prefix_cmd ("ada", class_maintenance,
14005 _("Set Ada maintenance-related variables."),
14006 _("Show Ada maintenance-related variables."),
14007 &maint_set_ada_cmdlist, &maint_show_ada_cmdlist,
14008 &maintenance_set_cmdlist, &maintenance_show_cmdlist);
14009
14010 add_setshow_boolean_cmd
14011 ("ignore-descriptive-types", class_maintenance,
14012 &ada_ignore_descriptive_types_p,
14013 _("Set whether descriptive types generated by GNAT should be ignored."),
14014 _("Show whether descriptive types generated by GNAT should be ignored."),
14015 _("\
14016 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14017 DWARF attribute."),
14018 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14019
14020 decoded_names_store = htab_create_alloc (256, htab_hash_string,
14021 htab_eq_string,
14022 NULL, xcalloc, xfree);
14023
14024 /* The ada-lang observers. */
14025 gdb::observers::new_objfile.attach (ada_new_objfile_observer, "ada-lang");
14026 gdb::observers::free_objfile.attach (ada_free_objfile_observer, "ada-lang");
14027 gdb::observers::inferior_exit.attach (ada_inferior_exit, "ada-lang");
14028 }