Fix m32r-elf sim, default hardware to off.
[binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <ctype.h>
23 #include "demangle.h"
24 #include "gdb_regex.h"
25 #include "frame.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcmd.h"
29 #include "expression.h"
30 #include "parser-defs.h"
31 #include "language.h"
32 #include "varobj.h"
33 #include "c-lang.h"
34 #include "inferior.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "breakpoint.h"
38 #include "gdbcore.h"
39 #include "hashtab.h"
40 #include "gdb_obstack.h"
41 #include "ada-lang.h"
42 #include "completer.h"
43 #include <sys/stat.h>
44 #include "ui-out.h"
45 #include "block.h"
46 #include "infcall.h"
47 #include "dictionary.h"
48 #include "exceptions.h"
49 #include "annotate.h"
50 #include "valprint.h"
51 #include "source.h"
52 #include "observer.h"
53 #include "vec.h"
54 #include "stack.h"
55 #include "gdb_vecs.h"
56 #include "typeprint.h"
57
58 #include "psymtab.h"
59 #include "value.h"
60 #include "mi/mi-common.h"
61 #include "arch-utils.h"
62 #include "cli/cli-utils.h"
63
64 /* Define whether or not the C operator '/' truncates towards zero for
65 differently signed operands (truncation direction is undefined in C).
66 Copied from valarith.c. */
67
68 #ifndef TRUNCATION_TOWARDS_ZERO
69 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
70 #endif
71
72 static struct type *desc_base_type (struct type *);
73
74 static struct type *desc_bounds_type (struct type *);
75
76 static struct value *desc_bounds (struct value *);
77
78 static int fat_pntr_bounds_bitpos (struct type *);
79
80 static int fat_pntr_bounds_bitsize (struct type *);
81
82 static struct type *desc_data_target_type (struct type *);
83
84 static struct value *desc_data (struct value *);
85
86 static int fat_pntr_data_bitpos (struct type *);
87
88 static int fat_pntr_data_bitsize (struct type *);
89
90 static struct value *desc_one_bound (struct value *, int, int);
91
92 static int desc_bound_bitpos (struct type *, int, int);
93
94 static int desc_bound_bitsize (struct type *, int, int);
95
96 static struct type *desc_index_type (struct type *, int);
97
98 static int desc_arity (struct type *);
99
100 static int ada_type_match (struct type *, struct type *, int);
101
102 static int ada_args_match (struct symbol *, struct value **, int);
103
104 static int full_match (const char *, const char *);
105
106 static struct value *make_array_descriptor (struct type *, struct value *);
107
108 static void ada_add_block_symbols (struct obstack *,
109 const struct block *, const char *,
110 domain_enum, struct objfile *, int);
111
112 static int is_nonfunction (struct ada_symbol_info *, int);
113
114 static void add_defn_to_vec (struct obstack *, struct symbol *,
115 const struct block *);
116
117 static int num_defns_collected (struct obstack *);
118
119 static struct ada_symbol_info *defns_collected (struct obstack *, int);
120
121 static struct value *resolve_subexp (struct expression **, int *, int,
122 struct type *);
123
124 static void replace_operator_with_call (struct expression **, int, int, int,
125 struct symbol *, const struct block *);
126
127 static int possible_user_operator_p (enum exp_opcode, struct value **);
128
129 static char *ada_op_name (enum exp_opcode);
130
131 static const char *ada_decoded_op_name (enum exp_opcode);
132
133 static int numeric_type_p (struct type *);
134
135 static int integer_type_p (struct type *);
136
137 static int scalar_type_p (struct type *);
138
139 static int discrete_type_p (struct type *);
140
141 static enum ada_renaming_category parse_old_style_renaming (struct type *,
142 const char **,
143 int *,
144 const char **);
145
146 static struct symbol *find_old_style_renaming_symbol (const char *,
147 const struct block *);
148
149 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
150 int, int, int *);
151
152 static struct value *evaluate_subexp_type (struct expression *, int *);
153
154 static struct type *ada_find_parallel_type_with_name (struct type *,
155 const char *);
156
157 static int is_dynamic_field (struct type *, int);
158
159 static struct type *to_fixed_variant_branch_type (struct type *,
160 const gdb_byte *,
161 CORE_ADDR, struct value *);
162
163 static struct type *to_fixed_array_type (struct type *, struct value *, int);
164
165 static struct type *to_fixed_range_type (struct type *, struct value *);
166
167 static struct type *to_static_fixed_type (struct type *);
168 static struct type *static_unwrap_type (struct type *type);
169
170 static struct value *unwrap_value (struct value *);
171
172 static struct type *constrained_packed_array_type (struct type *, long *);
173
174 static struct type *decode_constrained_packed_array_type (struct type *);
175
176 static long decode_packed_array_bitsize (struct type *);
177
178 static struct value *decode_constrained_packed_array (struct value *);
179
180 static int ada_is_packed_array_type (struct type *);
181
182 static int ada_is_unconstrained_packed_array_type (struct type *);
183
184 static struct value *value_subscript_packed (struct value *, int,
185 struct value **);
186
187 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
188
189 static struct value *coerce_unspec_val_to_type (struct value *,
190 struct type *);
191
192 static struct value *get_var_value (char *, char *);
193
194 static int lesseq_defined_than (struct symbol *, struct symbol *);
195
196 static int equiv_types (struct type *, struct type *);
197
198 static int is_name_suffix (const char *);
199
200 static int advance_wild_match (const char **, const char *, int);
201
202 static int wild_match (const char *, const char *);
203
204 static struct value *ada_coerce_ref (struct value *);
205
206 static LONGEST pos_atr (struct value *);
207
208 static struct value *value_pos_atr (struct type *, struct value *);
209
210 static struct value *value_val_atr (struct type *, struct value *);
211
212 static struct symbol *standard_lookup (const char *, const struct block *,
213 domain_enum);
214
215 static struct value *ada_search_struct_field (char *, struct value *, int,
216 struct type *);
217
218 static struct value *ada_value_primitive_field (struct value *, int, int,
219 struct type *);
220
221 static int find_struct_field (const char *, struct type *, int,
222 struct type **, int *, int *, int *, int *);
223
224 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
225 struct value *);
226
227 static int ada_resolve_function (struct ada_symbol_info *, int,
228 struct value **, int, const char *,
229 struct type *);
230
231 static int ada_is_direct_array_type (struct type *);
232
233 static void ada_language_arch_info (struct gdbarch *,
234 struct language_arch_info *);
235
236 static void check_size (const struct type *);
237
238 static struct value *ada_index_struct_field (int, struct value *, int,
239 struct type *);
240
241 static struct value *assign_aggregate (struct value *, struct value *,
242 struct expression *,
243 int *, enum noside);
244
245 static void aggregate_assign_from_choices (struct value *, struct value *,
246 struct expression *,
247 int *, LONGEST *, int *,
248 int, LONGEST, LONGEST);
249
250 static void aggregate_assign_positional (struct value *, struct value *,
251 struct expression *,
252 int *, LONGEST *, int *, int,
253 LONGEST, LONGEST);
254
255
256 static void aggregate_assign_others (struct value *, struct value *,
257 struct expression *,
258 int *, LONGEST *, int, LONGEST, LONGEST);
259
260
261 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
262
263
264 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
265 int *, enum noside);
266
267 static void ada_forward_operator_length (struct expression *, int, int *,
268 int *);
269
270 static struct type *ada_find_any_type (const char *name);
271 \f
272
273 /* The result of a symbol lookup to be stored in our symbol cache. */
274
275 struct cache_entry
276 {
277 /* The name used to perform the lookup. */
278 const char *name;
279 /* The namespace used during the lookup. */
280 domain_enum namespace;
281 /* The symbol returned by the lookup, or NULL if no matching symbol
282 was found. */
283 struct symbol *sym;
284 /* The block where the symbol was found, or NULL if no matching
285 symbol was found. */
286 const struct block *block;
287 /* A pointer to the next entry with the same hash. */
288 struct cache_entry *next;
289 };
290
291 /* The Ada symbol cache, used to store the result of Ada-mode symbol
292 lookups in the course of executing the user's commands.
293
294 The cache is implemented using a simple, fixed-sized hash.
295 The size is fixed on the grounds that there are not likely to be
296 all that many symbols looked up during any given session, regardless
297 of the size of the symbol table. If we decide to go to a resizable
298 table, let's just use the stuff from libiberty instead. */
299
300 #define HASH_SIZE 1009
301
302 struct ada_symbol_cache
303 {
304 /* An obstack used to store the entries in our cache. */
305 struct obstack cache_space;
306
307 /* The root of the hash table used to implement our symbol cache. */
308 struct cache_entry *root[HASH_SIZE];
309 };
310
311 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
312
313 /* Maximum-sized dynamic type. */
314 static unsigned int varsize_limit;
315
316 /* FIXME: brobecker/2003-09-17: No longer a const because it is
317 returned by a function that does not return a const char *. */
318 static char *ada_completer_word_break_characters =
319 #ifdef VMS
320 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
321 #else
322 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
323 #endif
324
325 /* The name of the symbol to use to get the name of the main subprogram. */
326 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
327 = "__gnat_ada_main_program_name";
328
329 /* Limit on the number of warnings to raise per expression evaluation. */
330 static int warning_limit = 2;
331
332 /* Number of warning messages issued; reset to 0 by cleanups after
333 expression evaluation. */
334 static int warnings_issued = 0;
335
336 static const char *known_runtime_file_name_patterns[] = {
337 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
338 };
339
340 static const char *known_auxiliary_function_name_patterns[] = {
341 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
342 };
343
344 /* Space for allocating results of ada_lookup_symbol_list. */
345 static struct obstack symbol_list_obstack;
346
347 /* Maintenance-related settings for this module. */
348
349 static struct cmd_list_element *maint_set_ada_cmdlist;
350 static struct cmd_list_element *maint_show_ada_cmdlist;
351
352 /* Implement the "maintenance set ada" (prefix) command. */
353
354 static void
355 maint_set_ada_cmd (char *args, int from_tty)
356 {
357 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
358 gdb_stdout);
359 }
360
361 /* Implement the "maintenance show ada" (prefix) command. */
362
363 static void
364 maint_show_ada_cmd (char *args, int from_tty)
365 {
366 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
367 }
368
369 /* The "maintenance ada set/show ignore-descriptive-type" value. */
370
371 static int ada_ignore_descriptive_types_p = 0;
372
373 /* Inferior-specific data. */
374
375 /* Per-inferior data for this module. */
376
377 struct ada_inferior_data
378 {
379 /* The ada__tags__type_specific_data type, which is used when decoding
380 tagged types. With older versions of GNAT, this type was directly
381 accessible through a component ("tsd") in the object tag. But this
382 is no longer the case, so we cache it for each inferior. */
383 struct type *tsd_type;
384
385 /* The exception_support_info data. This data is used to determine
386 how to implement support for Ada exception catchpoints in a given
387 inferior. */
388 const struct exception_support_info *exception_info;
389 };
390
391 /* Our key to this module's inferior data. */
392 static const struct inferior_data *ada_inferior_data;
393
394 /* A cleanup routine for our inferior data. */
395 static void
396 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
397 {
398 struct ada_inferior_data *data;
399
400 data = inferior_data (inf, ada_inferior_data);
401 if (data != NULL)
402 xfree (data);
403 }
404
405 /* Return our inferior data for the given inferior (INF).
406
407 This function always returns a valid pointer to an allocated
408 ada_inferior_data structure. If INF's inferior data has not
409 been previously set, this functions creates a new one with all
410 fields set to zero, sets INF's inferior to it, and then returns
411 a pointer to that newly allocated ada_inferior_data. */
412
413 static struct ada_inferior_data *
414 get_ada_inferior_data (struct inferior *inf)
415 {
416 struct ada_inferior_data *data;
417
418 data = inferior_data (inf, ada_inferior_data);
419 if (data == NULL)
420 {
421 data = XCNEW (struct ada_inferior_data);
422 set_inferior_data (inf, ada_inferior_data, data);
423 }
424
425 return data;
426 }
427
428 /* Perform all necessary cleanups regarding our module's inferior data
429 that is required after the inferior INF just exited. */
430
431 static void
432 ada_inferior_exit (struct inferior *inf)
433 {
434 ada_inferior_data_cleanup (inf, NULL);
435 set_inferior_data (inf, ada_inferior_data, NULL);
436 }
437
438
439 /* program-space-specific data. */
440
441 /* This module's per-program-space data. */
442 struct ada_pspace_data
443 {
444 /* The Ada symbol cache. */
445 struct ada_symbol_cache *sym_cache;
446 };
447
448 /* Key to our per-program-space data. */
449 static const struct program_space_data *ada_pspace_data_handle;
450
451 /* Return this module's data for the given program space (PSPACE).
452 If not is found, add a zero'ed one now.
453
454 This function always returns a valid object. */
455
456 static struct ada_pspace_data *
457 get_ada_pspace_data (struct program_space *pspace)
458 {
459 struct ada_pspace_data *data;
460
461 data = program_space_data (pspace, ada_pspace_data_handle);
462 if (data == NULL)
463 {
464 data = XCNEW (struct ada_pspace_data);
465 set_program_space_data (pspace, ada_pspace_data_handle, data);
466 }
467
468 return data;
469 }
470
471 /* The cleanup callback for this module's per-program-space data. */
472
473 static void
474 ada_pspace_data_cleanup (struct program_space *pspace, void *data)
475 {
476 struct ada_pspace_data *pspace_data = data;
477
478 if (pspace_data->sym_cache != NULL)
479 ada_free_symbol_cache (pspace_data->sym_cache);
480 xfree (pspace_data);
481 }
482
483 /* Utilities */
484
485 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
486 all typedef layers have been peeled. Otherwise, return TYPE.
487
488 Normally, we really expect a typedef type to only have 1 typedef layer.
489 In other words, we really expect the target type of a typedef type to be
490 a non-typedef type. This is particularly true for Ada units, because
491 the language does not have a typedef vs not-typedef distinction.
492 In that respect, the Ada compiler has been trying to eliminate as many
493 typedef definitions in the debugging information, since they generally
494 do not bring any extra information (we still use typedef under certain
495 circumstances related mostly to the GNAT encoding).
496
497 Unfortunately, we have seen situations where the debugging information
498 generated by the compiler leads to such multiple typedef layers. For
499 instance, consider the following example with stabs:
500
501 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
502 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
503
504 This is an error in the debugging information which causes type
505 pck__float_array___XUP to be defined twice, and the second time,
506 it is defined as a typedef of a typedef.
507
508 This is on the fringe of legality as far as debugging information is
509 concerned, and certainly unexpected. But it is easy to handle these
510 situations correctly, so we can afford to be lenient in this case. */
511
512 static struct type *
513 ada_typedef_target_type (struct type *type)
514 {
515 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
516 type = TYPE_TARGET_TYPE (type);
517 return type;
518 }
519
520 /* Given DECODED_NAME a string holding a symbol name in its
521 decoded form (ie using the Ada dotted notation), returns
522 its unqualified name. */
523
524 static const char *
525 ada_unqualified_name (const char *decoded_name)
526 {
527 const char *result = strrchr (decoded_name, '.');
528
529 if (result != NULL)
530 result++; /* Skip the dot... */
531 else
532 result = decoded_name;
533
534 return result;
535 }
536
537 /* Return a string starting with '<', followed by STR, and '>'.
538 The result is good until the next call. */
539
540 static char *
541 add_angle_brackets (const char *str)
542 {
543 static char *result = NULL;
544
545 xfree (result);
546 result = xstrprintf ("<%s>", str);
547 return result;
548 }
549
550 static char *
551 ada_get_gdb_completer_word_break_characters (void)
552 {
553 return ada_completer_word_break_characters;
554 }
555
556 /* Print an array element index using the Ada syntax. */
557
558 static void
559 ada_print_array_index (struct value *index_value, struct ui_file *stream,
560 const struct value_print_options *options)
561 {
562 LA_VALUE_PRINT (index_value, stream, options);
563 fprintf_filtered (stream, " => ");
564 }
565
566 /* Assuming VECT points to an array of *SIZE objects of size
567 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
568 updating *SIZE as necessary and returning the (new) array. */
569
570 void *
571 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
572 {
573 if (*size < min_size)
574 {
575 *size *= 2;
576 if (*size < min_size)
577 *size = min_size;
578 vect = xrealloc (vect, *size * element_size);
579 }
580 return vect;
581 }
582
583 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
584 suffix of FIELD_NAME beginning "___". */
585
586 static int
587 field_name_match (const char *field_name, const char *target)
588 {
589 int len = strlen (target);
590
591 return
592 (strncmp (field_name, target, len) == 0
593 && (field_name[len] == '\0'
594 || (strncmp (field_name + len, "___", 3) == 0
595 && strcmp (field_name + strlen (field_name) - 6,
596 "___XVN") != 0)));
597 }
598
599
600 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
601 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
602 and return its index. This function also handles fields whose name
603 have ___ suffixes because the compiler sometimes alters their name
604 by adding such a suffix to represent fields with certain constraints.
605 If the field could not be found, return a negative number if
606 MAYBE_MISSING is set. Otherwise raise an error. */
607
608 int
609 ada_get_field_index (const struct type *type, const char *field_name,
610 int maybe_missing)
611 {
612 int fieldno;
613 struct type *struct_type = check_typedef ((struct type *) type);
614
615 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
616 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
617 return fieldno;
618
619 if (!maybe_missing)
620 error (_("Unable to find field %s in struct %s. Aborting"),
621 field_name, TYPE_NAME (struct_type));
622
623 return -1;
624 }
625
626 /* The length of the prefix of NAME prior to any "___" suffix. */
627
628 int
629 ada_name_prefix_len (const char *name)
630 {
631 if (name == NULL)
632 return 0;
633 else
634 {
635 const char *p = strstr (name, "___");
636
637 if (p == NULL)
638 return strlen (name);
639 else
640 return p - name;
641 }
642 }
643
644 /* Return non-zero if SUFFIX is a suffix of STR.
645 Return zero if STR is null. */
646
647 static int
648 is_suffix (const char *str, const char *suffix)
649 {
650 int len1, len2;
651
652 if (str == NULL)
653 return 0;
654 len1 = strlen (str);
655 len2 = strlen (suffix);
656 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
657 }
658
659 /* The contents of value VAL, treated as a value of type TYPE. The
660 result is an lval in memory if VAL is. */
661
662 static struct value *
663 coerce_unspec_val_to_type (struct value *val, struct type *type)
664 {
665 type = ada_check_typedef (type);
666 if (value_type (val) == type)
667 return val;
668 else
669 {
670 struct value *result;
671
672 /* Make sure that the object size is not unreasonable before
673 trying to allocate some memory for it. */
674 check_size (type);
675
676 if (value_lazy (val)
677 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
678 result = allocate_value_lazy (type);
679 else
680 {
681 result = allocate_value (type);
682 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
683 }
684 set_value_component_location (result, val);
685 set_value_bitsize (result, value_bitsize (val));
686 set_value_bitpos (result, value_bitpos (val));
687 set_value_address (result, value_address (val));
688 return result;
689 }
690 }
691
692 static const gdb_byte *
693 cond_offset_host (const gdb_byte *valaddr, long offset)
694 {
695 if (valaddr == NULL)
696 return NULL;
697 else
698 return valaddr + offset;
699 }
700
701 static CORE_ADDR
702 cond_offset_target (CORE_ADDR address, long offset)
703 {
704 if (address == 0)
705 return 0;
706 else
707 return address + offset;
708 }
709
710 /* Issue a warning (as for the definition of warning in utils.c, but
711 with exactly one argument rather than ...), unless the limit on the
712 number of warnings has passed during the evaluation of the current
713 expression. */
714
715 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
716 provided by "complaint". */
717 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
718
719 static void
720 lim_warning (const char *format, ...)
721 {
722 va_list args;
723
724 va_start (args, format);
725 warnings_issued += 1;
726 if (warnings_issued <= warning_limit)
727 vwarning (format, args);
728
729 va_end (args);
730 }
731
732 /* Issue an error if the size of an object of type T is unreasonable,
733 i.e. if it would be a bad idea to allocate a value of this type in
734 GDB. */
735
736 static void
737 check_size (const struct type *type)
738 {
739 if (TYPE_LENGTH (type) > varsize_limit)
740 error (_("object size is larger than varsize-limit"));
741 }
742
743 /* Maximum value of a SIZE-byte signed integer type. */
744 static LONGEST
745 max_of_size (int size)
746 {
747 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
748
749 return top_bit | (top_bit - 1);
750 }
751
752 /* Minimum value of a SIZE-byte signed integer type. */
753 static LONGEST
754 min_of_size (int size)
755 {
756 return -max_of_size (size) - 1;
757 }
758
759 /* Maximum value of a SIZE-byte unsigned integer type. */
760 static ULONGEST
761 umax_of_size (int size)
762 {
763 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
764
765 return top_bit | (top_bit - 1);
766 }
767
768 /* Maximum value of integral type T, as a signed quantity. */
769 static LONGEST
770 max_of_type (struct type *t)
771 {
772 if (TYPE_UNSIGNED (t))
773 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
774 else
775 return max_of_size (TYPE_LENGTH (t));
776 }
777
778 /* Minimum value of integral type T, as a signed quantity. */
779 static LONGEST
780 min_of_type (struct type *t)
781 {
782 if (TYPE_UNSIGNED (t))
783 return 0;
784 else
785 return min_of_size (TYPE_LENGTH (t));
786 }
787
788 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
789 LONGEST
790 ada_discrete_type_high_bound (struct type *type)
791 {
792 type = resolve_dynamic_type (type, 0);
793 switch (TYPE_CODE (type))
794 {
795 case TYPE_CODE_RANGE:
796 return TYPE_HIGH_BOUND (type);
797 case TYPE_CODE_ENUM:
798 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
799 case TYPE_CODE_BOOL:
800 return 1;
801 case TYPE_CODE_CHAR:
802 case TYPE_CODE_INT:
803 return max_of_type (type);
804 default:
805 error (_("Unexpected type in ada_discrete_type_high_bound."));
806 }
807 }
808
809 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
810 LONGEST
811 ada_discrete_type_low_bound (struct type *type)
812 {
813 type = resolve_dynamic_type (type, 0);
814 switch (TYPE_CODE (type))
815 {
816 case TYPE_CODE_RANGE:
817 return TYPE_LOW_BOUND (type);
818 case TYPE_CODE_ENUM:
819 return TYPE_FIELD_ENUMVAL (type, 0);
820 case TYPE_CODE_BOOL:
821 return 0;
822 case TYPE_CODE_CHAR:
823 case TYPE_CODE_INT:
824 return min_of_type (type);
825 default:
826 error (_("Unexpected type in ada_discrete_type_low_bound."));
827 }
828 }
829
830 /* The identity on non-range types. For range types, the underlying
831 non-range scalar type. */
832
833 static struct type *
834 get_base_type (struct type *type)
835 {
836 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
837 {
838 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
839 return type;
840 type = TYPE_TARGET_TYPE (type);
841 }
842 return type;
843 }
844
845 /* Return a decoded version of the given VALUE. This means returning
846 a value whose type is obtained by applying all the GNAT-specific
847 encondings, making the resulting type a static but standard description
848 of the initial type. */
849
850 struct value *
851 ada_get_decoded_value (struct value *value)
852 {
853 struct type *type = ada_check_typedef (value_type (value));
854
855 if (ada_is_array_descriptor_type (type)
856 || (ada_is_constrained_packed_array_type (type)
857 && TYPE_CODE (type) != TYPE_CODE_PTR))
858 {
859 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
860 value = ada_coerce_to_simple_array_ptr (value);
861 else
862 value = ada_coerce_to_simple_array (value);
863 }
864 else
865 value = ada_to_fixed_value (value);
866
867 return value;
868 }
869
870 /* Same as ada_get_decoded_value, but with the given TYPE.
871 Because there is no associated actual value for this type,
872 the resulting type might be a best-effort approximation in
873 the case of dynamic types. */
874
875 struct type *
876 ada_get_decoded_type (struct type *type)
877 {
878 type = to_static_fixed_type (type);
879 if (ada_is_constrained_packed_array_type (type))
880 type = ada_coerce_to_simple_array_type (type);
881 return type;
882 }
883
884 \f
885
886 /* Language Selection */
887
888 /* If the main program is in Ada, return language_ada, otherwise return LANG
889 (the main program is in Ada iif the adainit symbol is found). */
890
891 enum language
892 ada_update_initial_language (enum language lang)
893 {
894 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
895 (struct objfile *) NULL).minsym != NULL)
896 return language_ada;
897
898 return lang;
899 }
900
901 /* If the main procedure is written in Ada, then return its name.
902 The result is good until the next call. Return NULL if the main
903 procedure doesn't appear to be in Ada. */
904
905 char *
906 ada_main_name (void)
907 {
908 struct bound_minimal_symbol msym;
909 static char *main_program_name = NULL;
910
911 /* For Ada, the name of the main procedure is stored in a specific
912 string constant, generated by the binder. Look for that symbol,
913 extract its address, and then read that string. If we didn't find
914 that string, then most probably the main procedure is not written
915 in Ada. */
916 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
917
918 if (msym.minsym != NULL)
919 {
920 CORE_ADDR main_program_name_addr;
921 int err_code;
922
923 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
924 if (main_program_name_addr == 0)
925 error (_("Invalid address for Ada main program name."));
926
927 xfree (main_program_name);
928 target_read_string (main_program_name_addr, &main_program_name,
929 1024, &err_code);
930
931 if (err_code != 0)
932 return NULL;
933 return main_program_name;
934 }
935
936 /* The main procedure doesn't seem to be in Ada. */
937 return NULL;
938 }
939 \f
940 /* Symbols */
941
942 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
943 of NULLs. */
944
945 const struct ada_opname_map ada_opname_table[] = {
946 {"Oadd", "\"+\"", BINOP_ADD},
947 {"Osubtract", "\"-\"", BINOP_SUB},
948 {"Omultiply", "\"*\"", BINOP_MUL},
949 {"Odivide", "\"/\"", BINOP_DIV},
950 {"Omod", "\"mod\"", BINOP_MOD},
951 {"Orem", "\"rem\"", BINOP_REM},
952 {"Oexpon", "\"**\"", BINOP_EXP},
953 {"Olt", "\"<\"", BINOP_LESS},
954 {"Ole", "\"<=\"", BINOP_LEQ},
955 {"Ogt", "\">\"", BINOP_GTR},
956 {"Oge", "\">=\"", BINOP_GEQ},
957 {"Oeq", "\"=\"", BINOP_EQUAL},
958 {"One", "\"/=\"", BINOP_NOTEQUAL},
959 {"Oand", "\"and\"", BINOP_BITWISE_AND},
960 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
961 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
962 {"Oconcat", "\"&\"", BINOP_CONCAT},
963 {"Oabs", "\"abs\"", UNOP_ABS},
964 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
965 {"Oadd", "\"+\"", UNOP_PLUS},
966 {"Osubtract", "\"-\"", UNOP_NEG},
967 {NULL, NULL}
968 };
969
970 /* The "encoded" form of DECODED, according to GNAT conventions.
971 The result is valid until the next call to ada_encode. */
972
973 char *
974 ada_encode (const char *decoded)
975 {
976 static char *encoding_buffer = NULL;
977 static size_t encoding_buffer_size = 0;
978 const char *p;
979 int k;
980
981 if (decoded == NULL)
982 return NULL;
983
984 GROW_VECT (encoding_buffer, encoding_buffer_size,
985 2 * strlen (decoded) + 10);
986
987 k = 0;
988 for (p = decoded; *p != '\0'; p += 1)
989 {
990 if (*p == '.')
991 {
992 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
993 k += 2;
994 }
995 else if (*p == '"')
996 {
997 const struct ada_opname_map *mapping;
998
999 for (mapping = ada_opname_table;
1000 mapping->encoded != NULL
1001 && strncmp (mapping->decoded, p,
1002 strlen (mapping->decoded)) != 0; mapping += 1)
1003 ;
1004 if (mapping->encoded == NULL)
1005 error (_("invalid Ada operator name: %s"), p);
1006 strcpy (encoding_buffer + k, mapping->encoded);
1007 k += strlen (mapping->encoded);
1008 break;
1009 }
1010 else
1011 {
1012 encoding_buffer[k] = *p;
1013 k += 1;
1014 }
1015 }
1016
1017 encoding_buffer[k] = '\0';
1018 return encoding_buffer;
1019 }
1020
1021 /* Return NAME folded to lower case, or, if surrounded by single
1022 quotes, unfolded, but with the quotes stripped away. Result good
1023 to next call. */
1024
1025 char *
1026 ada_fold_name (const char *name)
1027 {
1028 static char *fold_buffer = NULL;
1029 static size_t fold_buffer_size = 0;
1030
1031 int len = strlen (name);
1032 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
1033
1034 if (name[0] == '\'')
1035 {
1036 strncpy (fold_buffer, name + 1, len - 2);
1037 fold_buffer[len - 2] = '\000';
1038 }
1039 else
1040 {
1041 int i;
1042
1043 for (i = 0; i <= len; i += 1)
1044 fold_buffer[i] = tolower (name[i]);
1045 }
1046
1047 return fold_buffer;
1048 }
1049
1050 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1051
1052 static int
1053 is_lower_alphanum (const char c)
1054 {
1055 return (isdigit (c) || (isalpha (c) && islower (c)));
1056 }
1057
1058 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1059 This function saves in LEN the length of that same symbol name but
1060 without either of these suffixes:
1061 . .{DIGIT}+
1062 . ${DIGIT}+
1063 . ___{DIGIT}+
1064 . __{DIGIT}+.
1065
1066 These are suffixes introduced by the compiler for entities such as
1067 nested subprogram for instance, in order to avoid name clashes.
1068 They do not serve any purpose for the debugger. */
1069
1070 static void
1071 ada_remove_trailing_digits (const char *encoded, int *len)
1072 {
1073 if (*len > 1 && isdigit (encoded[*len - 1]))
1074 {
1075 int i = *len - 2;
1076
1077 while (i > 0 && isdigit (encoded[i]))
1078 i--;
1079 if (i >= 0 && encoded[i] == '.')
1080 *len = i;
1081 else if (i >= 0 && encoded[i] == '$')
1082 *len = i;
1083 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
1084 *len = i - 2;
1085 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
1086 *len = i - 1;
1087 }
1088 }
1089
1090 /* Remove the suffix introduced by the compiler for protected object
1091 subprograms. */
1092
1093 static void
1094 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1095 {
1096 /* Remove trailing N. */
1097
1098 /* Protected entry subprograms are broken into two
1099 separate subprograms: The first one is unprotected, and has
1100 a 'N' suffix; the second is the protected version, and has
1101 the 'P' suffix. The second calls the first one after handling
1102 the protection. Since the P subprograms are internally generated,
1103 we leave these names undecoded, giving the user a clue that this
1104 entity is internal. */
1105
1106 if (*len > 1
1107 && encoded[*len - 1] == 'N'
1108 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1109 *len = *len - 1;
1110 }
1111
1112 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1113
1114 static void
1115 ada_remove_Xbn_suffix (const char *encoded, int *len)
1116 {
1117 int i = *len - 1;
1118
1119 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1120 i--;
1121
1122 if (encoded[i] != 'X')
1123 return;
1124
1125 if (i == 0)
1126 return;
1127
1128 if (isalnum (encoded[i-1]))
1129 *len = i;
1130 }
1131
1132 /* If ENCODED follows the GNAT entity encoding conventions, then return
1133 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1134 replaced by ENCODED.
1135
1136 The resulting string is valid until the next call of ada_decode.
1137 If the string is unchanged by decoding, the original string pointer
1138 is returned. */
1139
1140 const char *
1141 ada_decode (const char *encoded)
1142 {
1143 int i, j;
1144 int len0;
1145 const char *p;
1146 char *decoded;
1147 int at_start_name;
1148 static char *decoding_buffer = NULL;
1149 static size_t decoding_buffer_size = 0;
1150
1151 /* The name of the Ada main procedure starts with "_ada_".
1152 This prefix is not part of the decoded name, so skip this part
1153 if we see this prefix. */
1154 if (strncmp (encoded, "_ada_", 5) == 0)
1155 encoded += 5;
1156
1157 /* If the name starts with '_', then it is not a properly encoded
1158 name, so do not attempt to decode it. Similarly, if the name
1159 starts with '<', the name should not be decoded. */
1160 if (encoded[0] == '_' || encoded[0] == '<')
1161 goto Suppress;
1162
1163 len0 = strlen (encoded);
1164
1165 ada_remove_trailing_digits (encoded, &len0);
1166 ada_remove_po_subprogram_suffix (encoded, &len0);
1167
1168 /* Remove the ___X.* suffix if present. Do not forget to verify that
1169 the suffix is located before the current "end" of ENCODED. We want
1170 to avoid re-matching parts of ENCODED that have previously been
1171 marked as discarded (by decrementing LEN0). */
1172 p = strstr (encoded, "___");
1173 if (p != NULL && p - encoded < len0 - 3)
1174 {
1175 if (p[3] == 'X')
1176 len0 = p - encoded;
1177 else
1178 goto Suppress;
1179 }
1180
1181 /* Remove any trailing TKB suffix. It tells us that this symbol
1182 is for the body of a task, but that information does not actually
1183 appear in the decoded name. */
1184
1185 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
1186 len0 -= 3;
1187
1188 /* Remove any trailing TB suffix. The TB suffix is slightly different
1189 from the TKB suffix because it is used for non-anonymous task
1190 bodies. */
1191
1192 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
1193 len0 -= 2;
1194
1195 /* Remove trailing "B" suffixes. */
1196 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1197
1198 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
1199 len0 -= 1;
1200
1201 /* Make decoded big enough for possible expansion by operator name. */
1202
1203 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1204 decoded = decoding_buffer;
1205
1206 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1207
1208 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1209 {
1210 i = len0 - 2;
1211 while ((i >= 0 && isdigit (encoded[i]))
1212 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1213 i -= 1;
1214 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1215 len0 = i - 1;
1216 else if (encoded[i] == '$')
1217 len0 = i;
1218 }
1219
1220 /* The first few characters that are not alphabetic are not part
1221 of any encoding we use, so we can copy them over verbatim. */
1222
1223 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1224 decoded[j] = encoded[i];
1225
1226 at_start_name = 1;
1227 while (i < len0)
1228 {
1229 /* Is this a symbol function? */
1230 if (at_start_name && encoded[i] == 'O')
1231 {
1232 int k;
1233
1234 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1235 {
1236 int op_len = strlen (ada_opname_table[k].encoded);
1237 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1238 op_len - 1) == 0)
1239 && !isalnum (encoded[i + op_len]))
1240 {
1241 strcpy (decoded + j, ada_opname_table[k].decoded);
1242 at_start_name = 0;
1243 i += op_len;
1244 j += strlen (ada_opname_table[k].decoded);
1245 break;
1246 }
1247 }
1248 if (ada_opname_table[k].encoded != NULL)
1249 continue;
1250 }
1251 at_start_name = 0;
1252
1253 /* Replace "TK__" with "__", which will eventually be translated
1254 into "." (just below). */
1255
1256 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1257 i += 2;
1258
1259 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1260 be translated into "." (just below). These are internal names
1261 generated for anonymous blocks inside which our symbol is nested. */
1262
1263 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1264 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1265 && isdigit (encoded [i+4]))
1266 {
1267 int k = i + 5;
1268
1269 while (k < len0 && isdigit (encoded[k]))
1270 k++; /* Skip any extra digit. */
1271
1272 /* Double-check that the "__B_{DIGITS}+" sequence we found
1273 is indeed followed by "__". */
1274 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1275 i = k;
1276 }
1277
1278 /* Remove _E{DIGITS}+[sb] */
1279
1280 /* Just as for protected object subprograms, there are 2 categories
1281 of subprograms created by the compiler for each entry. The first
1282 one implements the actual entry code, and has a suffix following
1283 the convention above; the second one implements the barrier and
1284 uses the same convention as above, except that the 'E' is replaced
1285 by a 'B'.
1286
1287 Just as above, we do not decode the name of barrier functions
1288 to give the user a clue that the code he is debugging has been
1289 internally generated. */
1290
1291 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1292 && isdigit (encoded[i+2]))
1293 {
1294 int k = i + 3;
1295
1296 while (k < len0 && isdigit (encoded[k]))
1297 k++;
1298
1299 if (k < len0
1300 && (encoded[k] == 'b' || encoded[k] == 's'))
1301 {
1302 k++;
1303 /* Just as an extra precaution, make sure that if this
1304 suffix is followed by anything else, it is a '_'.
1305 Otherwise, we matched this sequence by accident. */
1306 if (k == len0
1307 || (k < len0 && encoded[k] == '_'))
1308 i = k;
1309 }
1310 }
1311
1312 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1313 the GNAT front-end in protected object subprograms. */
1314
1315 if (i < len0 + 3
1316 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1317 {
1318 /* Backtrack a bit up until we reach either the begining of
1319 the encoded name, or "__". Make sure that we only find
1320 digits or lowercase characters. */
1321 const char *ptr = encoded + i - 1;
1322
1323 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1324 ptr--;
1325 if (ptr < encoded
1326 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1327 i++;
1328 }
1329
1330 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1331 {
1332 /* This is a X[bn]* sequence not separated from the previous
1333 part of the name with a non-alpha-numeric character (in other
1334 words, immediately following an alpha-numeric character), then
1335 verify that it is placed at the end of the encoded name. If
1336 not, then the encoding is not valid and we should abort the
1337 decoding. Otherwise, just skip it, it is used in body-nested
1338 package names. */
1339 do
1340 i += 1;
1341 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1342 if (i < len0)
1343 goto Suppress;
1344 }
1345 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1346 {
1347 /* Replace '__' by '.'. */
1348 decoded[j] = '.';
1349 at_start_name = 1;
1350 i += 2;
1351 j += 1;
1352 }
1353 else
1354 {
1355 /* It's a character part of the decoded name, so just copy it
1356 over. */
1357 decoded[j] = encoded[i];
1358 i += 1;
1359 j += 1;
1360 }
1361 }
1362 decoded[j] = '\000';
1363
1364 /* Decoded names should never contain any uppercase character.
1365 Double-check this, and abort the decoding if we find one. */
1366
1367 for (i = 0; decoded[i] != '\0'; i += 1)
1368 if (isupper (decoded[i]) || decoded[i] == ' ')
1369 goto Suppress;
1370
1371 if (strcmp (decoded, encoded) == 0)
1372 return encoded;
1373 else
1374 return decoded;
1375
1376 Suppress:
1377 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1378 decoded = decoding_buffer;
1379 if (encoded[0] == '<')
1380 strcpy (decoded, encoded);
1381 else
1382 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1383 return decoded;
1384
1385 }
1386
1387 /* Table for keeping permanent unique copies of decoded names. Once
1388 allocated, names in this table are never released. While this is a
1389 storage leak, it should not be significant unless there are massive
1390 changes in the set of decoded names in successive versions of a
1391 symbol table loaded during a single session. */
1392 static struct htab *decoded_names_store;
1393
1394 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1395 in the language-specific part of GSYMBOL, if it has not been
1396 previously computed. Tries to save the decoded name in the same
1397 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1398 in any case, the decoded symbol has a lifetime at least that of
1399 GSYMBOL).
1400 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1401 const, but nevertheless modified to a semantically equivalent form
1402 when a decoded name is cached in it. */
1403
1404 const char *
1405 ada_decode_symbol (const struct general_symbol_info *arg)
1406 {
1407 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1408 const char **resultp =
1409 &gsymbol->language_specific.mangled_lang.demangled_name;
1410
1411 if (!gsymbol->ada_mangled)
1412 {
1413 const char *decoded = ada_decode (gsymbol->name);
1414 struct obstack *obstack = gsymbol->language_specific.obstack;
1415
1416 gsymbol->ada_mangled = 1;
1417
1418 if (obstack != NULL)
1419 *resultp = obstack_copy0 (obstack, decoded, strlen (decoded));
1420 else
1421 {
1422 /* Sometimes, we can't find a corresponding objfile, in
1423 which case, we put the result on the heap. Since we only
1424 decode when needed, we hope this usually does not cause a
1425 significant memory leak (FIXME). */
1426
1427 char **slot = (char **) htab_find_slot (decoded_names_store,
1428 decoded, INSERT);
1429
1430 if (*slot == NULL)
1431 *slot = xstrdup (decoded);
1432 *resultp = *slot;
1433 }
1434 }
1435
1436 return *resultp;
1437 }
1438
1439 static char *
1440 ada_la_decode (const char *encoded, int options)
1441 {
1442 return xstrdup (ada_decode (encoded));
1443 }
1444
1445 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1446 suffixes that encode debugging information or leading _ada_ on
1447 SYM_NAME (see is_name_suffix commentary for the debugging
1448 information that is ignored). If WILD, then NAME need only match a
1449 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1450 either argument is NULL. */
1451
1452 static int
1453 match_name (const char *sym_name, const char *name, int wild)
1454 {
1455 if (sym_name == NULL || name == NULL)
1456 return 0;
1457 else if (wild)
1458 return wild_match (sym_name, name) == 0;
1459 else
1460 {
1461 int len_name = strlen (name);
1462
1463 return (strncmp (sym_name, name, len_name) == 0
1464 && is_name_suffix (sym_name + len_name))
1465 || (strncmp (sym_name, "_ada_", 5) == 0
1466 && strncmp (sym_name + 5, name, len_name) == 0
1467 && is_name_suffix (sym_name + len_name + 5));
1468 }
1469 }
1470 \f
1471
1472 /* Arrays */
1473
1474 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1475 generated by the GNAT compiler to describe the index type used
1476 for each dimension of an array, check whether it follows the latest
1477 known encoding. If not, fix it up to conform to the latest encoding.
1478 Otherwise, do nothing. This function also does nothing if
1479 INDEX_DESC_TYPE is NULL.
1480
1481 The GNAT encoding used to describle the array index type evolved a bit.
1482 Initially, the information would be provided through the name of each
1483 field of the structure type only, while the type of these fields was
1484 described as unspecified and irrelevant. The debugger was then expected
1485 to perform a global type lookup using the name of that field in order
1486 to get access to the full index type description. Because these global
1487 lookups can be very expensive, the encoding was later enhanced to make
1488 the global lookup unnecessary by defining the field type as being
1489 the full index type description.
1490
1491 The purpose of this routine is to allow us to support older versions
1492 of the compiler by detecting the use of the older encoding, and by
1493 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1494 we essentially replace each field's meaningless type by the associated
1495 index subtype). */
1496
1497 void
1498 ada_fixup_array_indexes_type (struct type *index_desc_type)
1499 {
1500 int i;
1501
1502 if (index_desc_type == NULL)
1503 return;
1504 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1505
1506 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1507 to check one field only, no need to check them all). If not, return
1508 now.
1509
1510 If our INDEX_DESC_TYPE was generated using the older encoding,
1511 the field type should be a meaningless integer type whose name
1512 is not equal to the field name. */
1513 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1514 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1515 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1516 return;
1517
1518 /* Fixup each field of INDEX_DESC_TYPE. */
1519 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1520 {
1521 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1522 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1523
1524 if (raw_type)
1525 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1526 }
1527 }
1528
1529 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1530
1531 static char *bound_name[] = {
1532 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1533 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1534 };
1535
1536 /* Maximum number of array dimensions we are prepared to handle. */
1537
1538 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1539
1540
1541 /* The desc_* routines return primitive portions of array descriptors
1542 (fat pointers). */
1543
1544 /* The descriptor or array type, if any, indicated by TYPE; removes
1545 level of indirection, if needed. */
1546
1547 static struct type *
1548 desc_base_type (struct type *type)
1549 {
1550 if (type == NULL)
1551 return NULL;
1552 type = ada_check_typedef (type);
1553 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1554 type = ada_typedef_target_type (type);
1555
1556 if (type != NULL
1557 && (TYPE_CODE (type) == TYPE_CODE_PTR
1558 || TYPE_CODE (type) == TYPE_CODE_REF))
1559 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1560 else
1561 return type;
1562 }
1563
1564 /* True iff TYPE indicates a "thin" array pointer type. */
1565
1566 static int
1567 is_thin_pntr (struct type *type)
1568 {
1569 return
1570 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1571 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1572 }
1573
1574 /* The descriptor type for thin pointer type TYPE. */
1575
1576 static struct type *
1577 thin_descriptor_type (struct type *type)
1578 {
1579 struct type *base_type = desc_base_type (type);
1580
1581 if (base_type == NULL)
1582 return NULL;
1583 if (is_suffix (ada_type_name (base_type), "___XVE"))
1584 return base_type;
1585 else
1586 {
1587 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1588
1589 if (alt_type == NULL)
1590 return base_type;
1591 else
1592 return alt_type;
1593 }
1594 }
1595
1596 /* A pointer to the array data for thin-pointer value VAL. */
1597
1598 static struct value *
1599 thin_data_pntr (struct value *val)
1600 {
1601 struct type *type = ada_check_typedef (value_type (val));
1602 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1603
1604 data_type = lookup_pointer_type (data_type);
1605
1606 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1607 return value_cast (data_type, value_copy (val));
1608 else
1609 return value_from_longest (data_type, value_address (val));
1610 }
1611
1612 /* True iff TYPE indicates a "thick" array pointer type. */
1613
1614 static int
1615 is_thick_pntr (struct type *type)
1616 {
1617 type = desc_base_type (type);
1618 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1619 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1620 }
1621
1622 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1623 pointer to one, the type of its bounds data; otherwise, NULL. */
1624
1625 static struct type *
1626 desc_bounds_type (struct type *type)
1627 {
1628 struct type *r;
1629
1630 type = desc_base_type (type);
1631
1632 if (type == NULL)
1633 return NULL;
1634 else if (is_thin_pntr (type))
1635 {
1636 type = thin_descriptor_type (type);
1637 if (type == NULL)
1638 return NULL;
1639 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1640 if (r != NULL)
1641 return ada_check_typedef (r);
1642 }
1643 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1644 {
1645 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1646 if (r != NULL)
1647 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1648 }
1649 return NULL;
1650 }
1651
1652 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1653 one, a pointer to its bounds data. Otherwise NULL. */
1654
1655 static struct value *
1656 desc_bounds (struct value *arr)
1657 {
1658 struct type *type = ada_check_typedef (value_type (arr));
1659
1660 if (is_thin_pntr (type))
1661 {
1662 struct type *bounds_type =
1663 desc_bounds_type (thin_descriptor_type (type));
1664 LONGEST addr;
1665
1666 if (bounds_type == NULL)
1667 error (_("Bad GNAT array descriptor"));
1668
1669 /* NOTE: The following calculation is not really kosher, but
1670 since desc_type is an XVE-encoded type (and shouldn't be),
1671 the correct calculation is a real pain. FIXME (and fix GCC). */
1672 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1673 addr = value_as_long (arr);
1674 else
1675 addr = value_address (arr);
1676
1677 return
1678 value_from_longest (lookup_pointer_type (bounds_type),
1679 addr - TYPE_LENGTH (bounds_type));
1680 }
1681
1682 else if (is_thick_pntr (type))
1683 {
1684 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1685 _("Bad GNAT array descriptor"));
1686 struct type *p_bounds_type = value_type (p_bounds);
1687
1688 if (p_bounds_type
1689 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1690 {
1691 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1692
1693 if (TYPE_STUB (target_type))
1694 p_bounds = value_cast (lookup_pointer_type
1695 (ada_check_typedef (target_type)),
1696 p_bounds);
1697 }
1698 else
1699 error (_("Bad GNAT array descriptor"));
1700
1701 return p_bounds;
1702 }
1703 else
1704 return NULL;
1705 }
1706
1707 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1708 position of the field containing the address of the bounds data. */
1709
1710 static int
1711 fat_pntr_bounds_bitpos (struct type *type)
1712 {
1713 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1714 }
1715
1716 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1717 size of the field containing the address of the bounds data. */
1718
1719 static int
1720 fat_pntr_bounds_bitsize (struct type *type)
1721 {
1722 type = desc_base_type (type);
1723
1724 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1725 return TYPE_FIELD_BITSIZE (type, 1);
1726 else
1727 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1728 }
1729
1730 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1731 pointer to one, the type of its array data (a array-with-no-bounds type);
1732 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1733 data. */
1734
1735 static struct type *
1736 desc_data_target_type (struct type *type)
1737 {
1738 type = desc_base_type (type);
1739
1740 /* NOTE: The following is bogus; see comment in desc_bounds. */
1741 if (is_thin_pntr (type))
1742 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1743 else if (is_thick_pntr (type))
1744 {
1745 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1746
1747 if (data_type
1748 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1749 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1750 }
1751
1752 return NULL;
1753 }
1754
1755 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1756 its array data. */
1757
1758 static struct value *
1759 desc_data (struct value *arr)
1760 {
1761 struct type *type = value_type (arr);
1762
1763 if (is_thin_pntr (type))
1764 return thin_data_pntr (arr);
1765 else if (is_thick_pntr (type))
1766 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1767 _("Bad GNAT array descriptor"));
1768 else
1769 return NULL;
1770 }
1771
1772
1773 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1774 position of the field containing the address of the data. */
1775
1776 static int
1777 fat_pntr_data_bitpos (struct type *type)
1778 {
1779 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1780 }
1781
1782 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1783 size of the field containing the address of the data. */
1784
1785 static int
1786 fat_pntr_data_bitsize (struct type *type)
1787 {
1788 type = desc_base_type (type);
1789
1790 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1791 return TYPE_FIELD_BITSIZE (type, 0);
1792 else
1793 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1794 }
1795
1796 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1797 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1798 bound, if WHICH is 1. The first bound is I=1. */
1799
1800 static struct value *
1801 desc_one_bound (struct value *bounds, int i, int which)
1802 {
1803 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1804 _("Bad GNAT array descriptor bounds"));
1805 }
1806
1807 /* If BOUNDS is an array-bounds structure type, return the bit position
1808 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1809 bound, if WHICH is 1. The first bound is I=1. */
1810
1811 static int
1812 desc_bound_bitpos (struct type *type, int i, int which)
1813 {
1814 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1815 }
1816
1817 /* If BOUNDS is an array-bounds structure type, return the bit field size
1818 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1819 bound, if WHICH is 1. The first bound is I=1. */
1820
1821 static int
1822 desc_bound_bitsize (struct type *type, int i, int which)
1823 {
1824 type = desc_base_type (type);
1825
1826 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1827 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1828 else
1829 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1830 }
1831
1832 /* If TYPE is the type of an array-bounds structure, the type of its
1833 Ith bound (numbering from 1). Otherwise, NULL. */
1834
1835 static struct type *
1836 desc_index_type (struct type *type, int i)
1837 {
1838 type = desc_base_type (type);
1839
1840 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1841 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1842 else
1843 return NULL;
1844 }
1845
1846 /* The number of index positions in the array-bounds type TYPE.
1847 Return 0 if TYPE is NULL. */
1848
1849 static int
1850 desc_arity (struct type *type)
1851 {
1852 type = desc_base_type (type);
1853
1854 if (type != NULL)
1855 return TYPE_NFIELDS (type) / 2;
1856 return 0;
1857 }
1858
1859 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1860 an array descriptor type (representing an unconstrained array
1861 type). */
1862
1863 static int
1864 ada_is_direct_array_type (struct type *type)
1865 {
1866 if (type == NULL)
1867 return 0;
1868 type = ada_check_typedef (type);
1869 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1870 || ada_is_array_descriptor_type (type));
1871 }
1872
1873 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1874 * to one. */
1875
1876 static int
1877 ada_is_array_type (struct type *type)
1878 {
1879 while (type != NULL
1880 && (TYPE_CODE (type) == TYPE_CODE_PTR
1881 || TYPE_CODE (type) == TYPE_CODE_REF))
1882 type = TYPE_TARGET_TYPE (type);
1883 return ada_is_direct_array_type (type);
1884 }
1885
1886 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1887
1888 int
1889 ada_is_simple_array_type (struct type *type)
1890 {
1891 if (type == NULL)
1892 return 0;
1893 type = ada_check_typedef (type);
1894 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1895 || (TYPE_CODE (type) == TYPE_CODE_PTR
1896 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1897 == TYPE_CODE_ARRAY));
1898 }
1899
1900 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1901
1902 int
1903 ada_is_array_descriptor_type (struct type *type)
1904 {
1905 struct type *data_type = desc_data_target_type (type);
1906
1907 if (type == NULL)
1908 return 0;
1909 type = ada_check_typedef (type);
1910 return (data_type != NULL
1911 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1912 && desc_arity (desc_bounds_type (type)) > 0);
1913 }
1914
1915 /* Non-zero iff type is a partially mal-formed GNAT array
1916 descriptor. FIXME: This is to compensate for some problems with
1917 debugging output from GNAT. Re-examine periodically to see if it
1918 is still needed. */
1919
1920 int
1921 ada_is_bogus_array_descriptor (struct type *type)
1922 {
1923 return
1924 type != NULL
1925 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1926 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1927 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1928 && !ada_is_array_descriptor_type (type);
1929 }
1930
1931
1932 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1933 (fat pointer) returns the type of the array data described---specifically,
1934 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1935 in from the descriptor; otherwise, they are left unspecified. If
1936 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1937 returns NULL. The result is simply the type of ARR if ARR is not
1938 a descriptor. */
1939 struct type *
1940 ada_type_of_array (struct value *arr, int bounds)
1941 {
1942 if (ada_is_constrained_packed_array_type (value_type (arr)))
1943 return decode_constrained_packed_array_type (value_type (arr));
1944
1945 if (!ada_is_array_descriptor_type (value_type (arr)))
1946 return value_type (arr);
1947
1948 if (!bounds)
1949 {
1950 struct type *array_type =
1951 ada_check_typedef (desc_data_target_type (value_type (arr)));
1952
1953 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1954 TYPE_FIELD_BITSIZE (array_type, 0) =
1955 decode_packed_array_bitsize (value_type (arr));
1956
1957 return array_type;
1958 }
1959 else
1960 {
1961 struct type *elt_type;
1962 int arity;
1963 struct value *descriptor;
1964
1965 elt_type = ada_array_element_type (value_type (arr), -1);
1966 arity = ada_array_arity (value_type (arr));
1967
1968 if (elt_type == NULL || arity == 0)
1969 return ada_check_typedef (value_type (arr));
1970
1971 descriptor = desc_bounds (arr);
1972 if (value_as_long (descriptor) == 0)
1973 return NULL;
1974 while (arity > 0)
1975 {
1976 struct type *range_type = alloc_type_copy (value_type (arr));
1977 struct type *array_type = alloc_type_copy (value_type (arr));
1978 struct value *low = desc_one_bound (descriptor, arity, 0);
1979 struct value *high = desc_one_bound (descriptor, arity, 1);
1980
1981 arity -= 1;
1982 create_static_range_type (range_type, value_type (low),
1983 longest_to_int (value_as_long (low)),
1984 longest_to_int (value_as_long (high)));
1985 elt_type = create_array_type (array_type, elt_type, range_type);
1986
1987 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1988 {
1989 /* We need to store the element packed bitsize, as well as
1990 recompute the array size, because it was previously
1991 computed based on the unpacked element size. */
1992 LONGEST lo = value_as_long (low);
1993 LONGEST hi = value_as_long (high);
1994
1995 TYPE_FIELD_BITSIZE (elt_type, 0) =
1996 decode_packed_array_bitsize (value_type (arr));
1997 /* If the array has no element, then the size is already
1998 zero, and does not need to be recomputed. */
1999 if (lo < hi)
2000 {
2001 int array_bitsize =
2002 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2003
2004 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2005 }
2006 }
2007 }
2008
2009 return lookup_pointer_type (elt_type);
2010 }
2011 }
2012
2013 /* If ARR does not represent an array, returns ARR unchanged.
2014 Otherwise, returns either a standard GDB array with bounds set
2015 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2016 GDB array. Returns NULL if ARR is a null fat pointer. */
2017
2018 struct value *
2019 ada_coerce_to_simple_array_ptr (struct value *arr)
2020 {
2021 if (ada_is_array_descriptor_type (value_type (arr)))
2022 {
2023 struct type *arrType = ada_type_of_array (arr, 1);
2024
2025 if (arrType == NULL)
2026 return NULL;
2027 return value_cast (arrType, value_copy (desc_data (arr)));
2028 }
2029 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2030 return decode_constrained_packed_array (arr);
2031 else
2032 return arr;
2033 }
2034
2035 /* If ARR does not represent an array, returns ARR unchanged.
2036 Otherwise, returns a standard GDB array describing ARR (which may
2037 be ARR itself if it already is in the proper form). */
2038
2039 struct value *
2040 ada_coerce_to_simple_array (struct value *arr)
2041 {
2042 if (ada_is_array_descriptor_type (value_type (arr)))
2043 {
2044 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
2045
2046 if (arrVal == NULL)
2047 error (_("Bounds unavailable for null array pointer."));
2048 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
2049 return value_ind (arrVal);
2050 }
2051 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2052 return decode_constrained_packed_array (arr);
2053 else
2054 return arr;
2055 }
2056
2057 /* If TYPE represents a GNAT array type, return it translated to an
2058 ordinary GDB array type (possibly with BITSIZE fields indicating
2059 packing). For other types, is the identity. */
2060
2061 struct type *
2062 ada_coerce_to_simple_array_type (struct type *type)
2063 {
2064 if (ada_is_constrained_packed_array_type (type))
2065 return decode_constrained_packed_array_type (type);
2066
2067 if (ada_is_array_descriptor_type (type))
2068 return ada_check_typedef (desc_data_target_type (type));
2069
2070 return type;
2071 }
2072
2073 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2074
2075 static int
2076 ada_is_packed_array_type (struct type *type)
2077 {
2078 if (type == NULL)
2079 return 0;
2080 type = desc_base_type (type);
2081 type = ada_check_typedef (type);
2082 return
2083 ada_type_name (type) != NULL
2084 && strstr (ada_type_name (type), "___XP") != NULL;
2085 }
2086
2087 /* Non-zero iff TYPE represents a standard GNAT constrained
2088 packed-array type. */
2089
2090 int
2091 ada_is_constrained_packed_array_type (struct type *type)
2092 {
2093 return ada_is_packed_array_type (type)
2094 && !ada_is_array_descriptor_type (type);
2095 }
2096
2097 /* Non-zero iff TYPE represents an array descriptor for a
2098 unconstrained packed-array type. */
2099
2100 static int
2101 ada_is_unconstrained_packed_array_type (struct type *type)
2102 {
2103 return ada_is_packed_array_type (type)
2104 && ada_is_array_descriptor_type (type);
2105 }
2106
2107 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2108 return the size of its elements in bits. */
2109
2110 static long
2111 decode_packed_array_bitsize (struct type *type)
2112 {
2113 const char *raw_name;
2114 const char *tail;
2115 long bits;
2116
2117 /* Access to arrays implemented as fat pointers are encoded as a typedef
2118 of the fat pointer type. We need the name of the fat pointer type
2119 to do the decoding, so strip the typedef layer. */
2120 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2121 type = ada_typedef_target_type (type);
2122
2123 raw_name = ada_type_name (ada_check_typedef (type));
2124 if (!raw_name)
2125 raw_name = ada_type_name (desc_base_type (type));
2126
2127 if (!raw_name)
2128 return 0;
2129
2130 tail = strstr (raw_name, "___XP");
2131 gdb_assert (tail != NULL);
2132
2133 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2134 {
2135 lim_warning
2136 (_("could not understand bit size information on packed array"));
2137 return 0;
2138 }
2139
2140 return bits;
2141 }
2142
2143 /* Given that TYPE is a standard GDB array type with all bounds filled
2144 in, and that the element size of its ultimate scalar constituents
2145 (that is, either its elements, or, if it is an array of arrays, its
2146 elements' elements, etc.) is *ELT_BITS, return an identical type,
2147 but with the bit sizes of its elements (and those of any
2148 constituent arrays) recorded in the BITSIZE components of its
2149 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2150 in bits. */
2151
2152 static struct type *
2153 constrained_packed_array_type (struct type *type, long *elt_bits)
2154 {
2155 struct type *new_elt_type;
2156 struct type *new_type;
2157 struct type *index_type_desc;
2158 struct type *index_type;
2159 LONGEST low_bound, high_bound;
2160
2161 type = ada_check_typedef (type);
2162 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2163 return type;
2164
2165 index_type_desc = ada_find_parallel_type (type, "___XA");
2166 if (index_type_desc)
2167 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2168 NULL);
2169 else
2170 index_type = TYPE_INDEX_TYPE (type);
2171
2172 new_type = alloc_type_copy (type);
2173 new_elt_type =
2174 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2175 elt_bits);
2176 create_array_type (new_type, new_elt_type, index_type);
2177 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2178 TYPE_NAME (new_type) = ada_type_name (type);
2179
2180 if (get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2181 low_bound = high_bound = 0;
2182 if (high_bound < low_bound)
2183 *elt_bits = TYPE_LENGTH (new_type) = 0;
2184 else
2185 {
2186 *elt_bits *= (high_bound - low_bound + 1);
2187 TYPE_LENGTH (new_type) =
2188 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2189 }
2190
2191 TYPE_FIXED_INSTANCE (new_type) = 1;
2192 return new_type;
2193 }
2194
2195 /* The array type encoded by TYPE, where
2196 ada_is_constrained_packed_array_type (TYPE). */
2197
2198 static struct type *
2199 decode_constrained_packed_array_type (struct type *type)
2200 {
2201 const char *raw_name = ada_type_name (ada_check_typedef (type));
2202 char *name;
2203 const char *tail;
2204 struct type *shadow_type;
2205 long bits;
2206
2207 if (!raw_name)
2208 raw_name = ada_type_name (desc_base_type (type));
2209
2210 if (!raw_name)
2211 return NULL;
2212
2213 name = (char *) alloca (strlen (raw_name) + 1);
2214 tail = strstr (raw_name, "___XP");
2215 type = desc_base_type (type);
2216
2217 memcpy (name, raw_name, tail - raw_name);
2218 name[tail - raw_name] = '\000';
2219
2220 shadow_type = ada_find_parallel_type_with_name (type, name);
2221
2222 if (shadow_type == NULL)
2223 {
2224 lim_warning (_("could not find bounds information on packed array"));
2225 return NULL;
2226 }
2227 CHECK_TYPEDEF (shadow_type);
2228
2229 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2230 {
2231 lim_warning (_("could not understand bounds "
2232 "information on packed array"));
2233 return NULL;
2234 }
2235
2236 bits = decode_packed_array_bitsize (type);
2237 return constrained_packed_array_type (shadow_type, &bits);
2238 }
2239
2240 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2241 array, returns a simple array that denotes that array. Its type is a
2242 standard GDB array type except that the BITSIZEs of the array
2243 target types are set to the number of bits in each element, and the
2244 type length is set appropriately. */
2245
2246 static struct value *
2247 decode_constrained_packed_array (struct value *arr)
2248 {
2249 struct type *type;
2250
2251 /* If our value is a pointer, then dereference it. Likewise if
2252 the value is a reference. Make sure that this operation does not
2253 cause the target type to be fixed, as this would indirectly cause
2254 this array to be decoded. The rest of the routine assumes that
2255 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2256 and "value_ind" routines to perform the dereferencing, as opposed
2257 to using "ada_coerce_ref" or "ada_value_ind". */
2258 arr = coerce_ref (arr);
2259 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2260 arr = value_ind (arr);
2261
2262 type = decode_constrained_packed_array_type (value_type (arr));
2263 if (type == NULL)
2264 {
2265 error (_("can't unpack array"));
2266 return NULL;
2267 }
2268
2269 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2270 && ada_is_modular_type (value_type (arr)))
2271 {
2272 /* This is a (right-justified) modular type representing a packed
2273 array with no wrapper. In order to interpret the value through
2274 the (left-justified) packed array type we just built, we must
2275 first left-justify it. */
2276 int bit_size, bit_pos;
2277 ULONGEST mod;
2278
2279 mod = ada_modulus (value_type (arr)) - 1;
2280 bit_size = 0;
2281 while (mod > 0)
2282 {
2283 bit_size += 1;
2284 mod >>= 1;
2285 }
2286 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2287 arr = ada_value_primitive_packed_val (arr, NULL,
2288 bit_pos / HOST_CHAR_BIT,
2289 bit_pos % HOST_CHAR_BIT,
2290 bit_size,
2291 type);
2292 }
2293
2294 return coerce_unspec_val_to_type (arr, type);
2295 }
2296
2297
2298 /* The value of the element of packed array ARR at the ARITY indices
2299 given in IND. ARR must be a simple array. */
2300
2301 static struct value *
2302 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2303 {
2304 int i;
2305 int bits, elt_off, bit_off;
2306 long elt_total_bit_offset;
2307 struct type *elt_type;
2308 struct value *v;
2309
2310 bits = 0;
2311 elt_total_bit_offset = 0;
2312 elt_type = ada_check_typedef (value_type (arr));
2313 for (i = 0; i < arity; i += 1)
2314 {
2315 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2316 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2317 error
2318 (_("attempt to do packed indexing of "
2319 "something other than a packed array"));
2320 else
2321 {
2322 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2323 LONGEST lowerbound, upperbound;
2324 LONGEST idx;
2325
2326 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2327 {
2328 lim_warning (_("don't know bounds of array"));
2329 lowerbound = upperbound = 0;
2330 }
2331
2332 idx = pos_atr (ind[i]);
2333 if (idx < lowerbound || idx > upperbound)
2334 lim_warning (_("packed array index %ld out of bounds"),
2335 (long) idx);
2336 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2337 elt_total_bit_offset += (idx - lowerbound) * bits;
2338 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2339 }
2340 }
2341 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2342 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2343
2344 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2345 bits, elt_type);
2346 return v;
2347 }
2348
2349 /* Non-zero iff TYPE includes negative integer values. */
2350
2351 static int
2352 has_negatives (struct type *type)
2353 {
2354 switch (TYPE_CODE (type))
2355 {
2356 default:
2357 return 0;
2358 case TYPE_CODE_INT:
2359 return !TYPE_UNSIGNED (type);
2360 case TYPE_CODE_RANGE:
2361 return TYPE_LOW_BOUND (type) < 0;
2362 }
2363 }
2364
2365
2366 /* Create a new value of type TYPE from the contents of OBJ starting
2367 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2368 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2369 assigning through the result will set the field fetched from.
2370 VALADDR is ignored unless OBJ is NULL, in which case,
2371 VALADDR+OFFSET must address the start of storage containing the
2372 packed value. The value returned in this case is never an lval.
2373 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2374
2375 struct value *
2376 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2377 long offset, int bit_offset, int bit_size,
2378 struct type *type)
2379 {
2380 struct value *v;
2381 int src, /* Index into the source area */
2382 targ, /* Index into the target area */
2383 srcBitsLeft, /* Number of source bits left to move */
2384 nsrc, ntarg, /* Number of source and target bytes */
2385 unusedLS, /* Number of bits in next significant
2386 byte of source that are unused */
2387 accumSize; /* Number of meaningful bits in accum */
2388 unsigned char *bytes; /* First byte containing data to unpack */
2389 unsigned char *unpacked;
2390 unsigned long accum; /* Staging area for bits being transferred */
2391 unsigned char sign;
2392 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2393 /* Transmit bytes from least to most significant; delta is the direction
2394 the indices move. */
2395 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
2396
2397 type = ada_check_typedef (type);
2398
2399 if (obj == NULL)
2400 {
2401 v = allocate_value (type);
2402 bytes = (unsigned char *) (valaddr + offset);
2403 }
2404 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2405 {
2406 v = value_at (type, value_address (obj));
2407 type = value_type (v);
2408 bytes = (unsigned char *) alloca (len);
2409 read_memory (value_address (v) + offset, bytes, len);
2410 }
2411 else
2412 {
2413 v = allocate_value (type);
2414 bytes = (unsigned char *) value_contents (obj) + offset;
2415 }
2416
2417 if (obj != NULL)
2418 {
2419 long new_offset = offset;
2420
2421 set_value_component_location (v, obj);
2422 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2423 set_value_bitsize (v, bit_size);
2424 if (value_bitpos (v) >= HOST_CHAR_BIT)
2425 {
2426 ++new_offset;
2427 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2428 }
2429 set_value_offset (v, new_offset);
2430
2431 /* Also set the parent value. This is needed when trying to
2432 assign a new value (in inferior memory). */
2433 set_value_parent (v, obj);
2434 }
2435 else
2436 set_value_bitsize (v, bit_size);
2437 unpacked = (unsigned char *) value_contents (v);
2438
2439 srcBitsLeft = bit_size;
2440 nsrc = len;
2441 ntarg = TYPE_LENGTH (type);
2442 sign = 0;
2443 if (bit_size == 0)
2444 {
2445 memset (unpacked, 0, TYPE_LENGTH (type));
2446 return v;
2447 }
2448 else if (gdbarch_bits_big_endian (get_type_arch (type)))
2449 {
2450 src = len - 1;
2451 if (has_negatives (type)
2452 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2453 sign = ~0;
2454
2455 unusedLS =
2456 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2457 % HOST_CHAR_BIT;
2458
2459 switch (TYPE_CODE (type))
2460 {
2461 case TYPE_CODE_ARRAY:
2462 case TYPE_CODE_UNION:
2463 case TYPE_CODE_STRUCT:
2464 /* Non-scalar values must be aligned at a byte boundary... */
2465 accumSize =
2466 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2467 /* ... And are placed at the beginning (most-significant) bytes
2468 of the target. */
2469 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2470 ntarg = targ + 1;
2471 break;
2472 default:
2473 accumSize = 0;
2474 targ = TYPE_LENGTH (type) - 1;
2475 break;
2476 }
2477 }
2478 else
2479 {
2480 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2481
2482 src = targ = 0;
2483 unusedLS = bit_offset;
2484 accumSize = 0;
2485
2486 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2487 sign = ~0;
2488 }
2489
2490 accum = 0;
2491 while (nsrc > 0)
2492 {
2493 /* Mask for removing bits of the next source byte that are not
2494 part of the value. */
2495 unsigned int unusedMSMask =
2496 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2497 1;
2498 /* Sign-extend bits for this byte. */
2499 unsigned int signMask = sign & ~unusedMSMask;
2500
2501 accum |=
2502 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2503 accumSize += HOST_CHAR_BIT - unusedLS;
2504 if (accumSize >= HOST_CHAR_BIT)
2505 {
2506 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2507 accumSize -= HOST_CHAR_BIT;
2508 accum >>= HOST_CHAR_BIT;
2509 ntarg -= 1;
2510 targ += delta;
2511 }
2512 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2513 unusedLS = 0;
2514 nsrc -= 1;
2515 src += delta;
2516 }
2517 while (ntarg > 0)
2518 {
2519 accum |= sign << accumSize;
2520 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2521 accumSize -= HOST_CHAR_BIT;
2522 accum >>= HOST_CHAR_BIT;
2523 ntarg -= 1;
2524 targ += delta;
2525 }
2526
2527 return v;
2528 }
2529
2530 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2531 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2532 not overlap. */
2533 static void
2534 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2535 int src_offset, int n, int bits_big_endian_p)
2536 {
2537 unsigned int accum, mask;
2538 int accum_bits, chunk_size;
2539
2540 target += targ_offset / HOST_CHAR_BIT;
2541 targ_offset %= HOST_CHAR_BIT;
2542 source += src_offset / HOST_CHAR_BIT;
2543 src_offset %= HOST_CHAR_BIT;
2544 if (bits_big_endian_p)
2545 {
2546 accum = (unsigned char) *source;
2547 source += 1;
2548 accum_bits = HOST_CHAR_BIT - src_offset;
2549
2550 while (n > 0)
2551 {
2552 int unused_right;
2553
2554 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2555 accum_bits += HOST_CHAR_BIT;
2556 source += 1;
2557 chunk_size = HOST_CHAR_BIT - targ_offset;
2558 if (chunk_size > n)
2559 chunk_size = n;
2560 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2561 mask = ((1 << chunk_size) - 1) << unused_right;
2562 *target =
2563 (*target & ~mask)
2564 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2565 n -= chunk_size;
2566 accum_bits -= chunk_size;
2567 target += 1;
2568 targ_offset = 0;
2569 }
2570 }
2571 else
2572 {
2573 accum = (unsigned char) *source >> src_offset;
2574 source += 1;
2575 accum_bits = HOST_CHAR_BIT - src_offset;
2576
2577 while (n > 0)
2578 {
2579 accum = accum + ((unsigned char) *source << accum_bits);
2580 accum_bits += HOST_CHAR_BIT;
2581 source += 1;
2582 chunk_size = HOST_CHAR_BIT - targ_offset;
2583 if (chunk_size > n)
2584 chunk_size = n;
2585 mask = ((1 << chunk_size) - 1) << targ_offset;
2586 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2587 n -= chunk_size;
2588 accum_bits -= chunk_size;
2589 accum >>= chunk_size;
2590 target += 1;
2591 targ_offset = 0;
2592 }
2593 }
2594 }
2595
2596 /* Store the contents of FROMVAL into the location of TOVAL.
2597 Return a new value with the location of TOVAL and contents of
2598 FROMVAL. Handles assignment into packed fields that have
2599 floating-point or non-scalar types. */
2600
2601 static struct value *
2602 ada_value_assign (struct value *toval, struct value *fromval)
2603 {
2604 struct type *type = value_type (toval);
2605 int bits = value_bitsize (toval);
2606
2607 toval = ada_coerce_ref (toval);
2608 fromval = ada_coerce_ref (fromval);
2609
2610 if (ada_is_direct_array_type (value_type (toval)))
2611 toval = ada_coerce_to_simple_array (toval);
2612 if (ada_is_direct_array_type (value_type (fromval)))
2613 fromval = ada_coerce_to_simple_array (fromval);
2614
2615 if (!deprecated_value_modifiable (toval))
2616 error (_("Left operand of assignment is not a modifiable lvalue."));
2617
2618 if (VALUE_LVAL (toval) == lval_memory
2619 && bits > 0
2620 && (TYPE_CODE (type) == TYPE_CODE_FLT
2621 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2622 {
2623 int len = (value_bitpos (toval)
2624 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2625 int from_size;
2626 gdb_byte *buffer = alloca (len);
2627 struct value *val;
2628 CORE_ADDR to_addr = value_address (toval);
2629
2630 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2631 fromval = value_cast (type, fromval);
2632
2633 read_memory (to_addr, buffer, len);
2634 from_size = value_bitsize (fromval);
2635 if (from_size == 0)
2636 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2637 if (gdbarch_bits_big_endian (get_type_arch (type)))
2638 move_bits (buffer, value_bitpos (toval),
2639 value_contents (fromval), from_size - bits, bits, 1);
2640 else
2641 move_bits (buffer, value_bitpos (toval),
2642 value_contents (fromval), 0, bits, 0);
2643 write_memory_with_notification (to_addr, buffer, len);
2644
2645 val = value_copy (toval);
2646 memcpy (value_contents_raw (val), value_contents (fromval),
2647 TYPE_LENGTH (type));
2648 deprecated_set_value_type (val, type);
2649
2650 return val;
2651 }
2652
2653 return value_assign (toval, fromval);
2654 }
2655
2656
2657 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2658 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2659 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2660 * COMPONENT, and not the inferior's memory. The current contents
2661 * of COMPONENT are ignored. */
2662 static void
2663 value_assign_to_component (struct value *container, struct value *component,
2664 struct value *val)
2665 {
2666 LONGEST offset_in_container =
2667 (LONGEST) (value_address (component) - value_address (container));
2668 int bit_offset_in_container =
2669 value_bitpos (component) - value_bitpos (container);
2670 int bits;
2671
2672 val = value_cast (value_type (component), val);
2673
2674 if (value_bitsize (component) == 0)
2675 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2676 else
2677 bits = value_bitsize (component);
2678
2679 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2680 move_bits (value_contents_writeable (container) + offset_in_container,
2681 value_bitpos (container) + bit_offset_in_container,
2682 value_contents (val),
2683 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2684 bits, 1);
2685 else
2686 move_bits (value_contents_writeable (container) + offset_in_container,
2687 value_bitpos (container) + bit_offset_in_container,
2688 value_contents (val), 0, bits, 0);
2689 }
2690
2691 /* The value of the element of array ARR at the ARITY indices given in IND.
2692 ARR may be either a simple array, GNAT array descriptor, or pointer
2693 thereto. */
2694
2695 struct value *
2696 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2697 {
2698 int k;
2699 struct value *elt;
2700 struct type *elt_type;
2701
2702 elt = ada_coerce_to_simple_array (arr);
2703
2704 elt_type = ada_check_typedef (value_type (elt));
2705 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2706 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2707 return value_subscript_packed (elt, arity, ind);
2708
2709 for (k = 0; k < arity; k += 1)
2710 {
2711 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2712 error (_("too many subscripts (%d expected)"), k);
2713 elt = value_subscript (elt, pos_atr (ind[k]));
2714 }
2715 return elt;
2716 }
2717
2718 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2719 value of the element of *ARR at the ARITY indices given in
2720 IND. Does not read the entire array into memory. */
2721
2722 static struct value *
2723 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2724 struct value **ind)
2725 {
2726 int k;
2727
2728 for (k = 0; k < arity; k += 1)
2729 {
2730 LONGEST lwb, upb;
2731
2732 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2733 error (_("too many subscripts (%d expected)"), k);
2734 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2735 value_copy (arr));
2736 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2737 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2738 type = TYPE_TARGET_TYPE (type);
2739 }
2740
2741 return value_ind (arr);
2742 }
2743
2744 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2745 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2746 elements starting at index LOW. The lower bound of this array is LOW, as
2747 per Ada rules. */
2748 static struct value *
2749 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2750 int low, int high)
2751 {
2752 struct type *type0 = ada_check_typedef (type);
2753 CORE_ADDR base = value_as_address (array_ptr)
2754 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)))
2755 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2756 struct type *index_type
2757 = create_static_range_type (NULL,
2758 TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)),
2759 low, high);
2760 struct type *slice_type =
2761 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
2762
2763 return value_at_lazy (slice_type, base);
2764 }
2765
2766
2767 static struct value *
2768 ada_value_slice (struct value *array, int low, int high)
2769 {
2770 struct type *type = ada_check_typedef (value_type (array));
2771 struct type *index_type
2772 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2773 struct type *slice_type =
2774 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2775
2776 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2777 }
2778
2779 /* If type is a record type in the form of a standard GNAT array
2780 descriptor, returns the number of dimensions for type. If arr is a
2781 simple array, returns the number of "array of"s that prefix its
2782 type designation. Otherwise, returns 0. */
2783
2784 int
2785 ada_array_arity (struct type *type)
2786 {
2787 int arity;
2788
2789 if (type == NULL)
2790 return 0;
2791
2792 type = desc_base_type (type);
2793
2794 arity = 0;
2795 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2796 return desc_arity (desc_bounds_type (type));
2797 else
2798 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2799 {
2800 arity += 1;
2801 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2802 }
2803
2804 return arity;
2805 }
2806
2807 /* If TYPE is a record type in the form of a standard GNAT array
2808 descriptor or a simple array type, returns the element type for
2809 TYPE after indexing by NINDICES indices, or by all indices if
2810 NINDICES is -1. Otherwise, returns NULL. */
2811
2812 struct type *
2813 ada_array_element_type (struct type *type, int nindices)
2814 {
2815 type = desc_base_type (type);
2816
2817 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2818 {
2819 int k;
2820 struct type *p_array_type;
2821
2822 p_array_type = desc_data_target_type (type);
2823
2824 k = ada_array_arity (type);
2825 if (k == 0)
2826 return NULL;
2827
2828 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2829 if (nindices >= 0 && k > nindices)
2830 k = nindices;
2831 while (k > 0 && p_array_type != NULL)
2832 {
2833 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2834 k -= 1;
2835 }
2836 return p_array_type;
2837 }
2838 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2839 {
2840 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2841 {
2842 type = TYPE_TARGET_TYPE (type);
2843 nindices -= 1;
2844 }
2845 return type;
2846 }
2847
2848 return NULL;
2849 }
2850
2851 /* The type of nth index in arrays of given type (n numbering from 1).
2852 Does not examine memory. Throws an error if N is invalid or TYPE
2853 is not an array type. NAME is the name of the Ada attribute being
2854 evaluated ('range, 'first, 'last, or 'length); it is used in building
2855 the error message. */
2856
2857 static struct type *
2858 ada_index_type (struct type *type, int n, const char *name)
2859 {
2860 struct type *result_type;
2861
2862 type = desc_base_type (type);
2863
2864 if (n < 0 || n > ada_array_arity (type))
2865 error (_("invalid dimension number to '%s"), name);
2866
2867 if (ada_is_simple_array_type (type))
2868 {
2869 int i;
2870
2871 for (i = 1; i < n; i += 1)
2872 type = TYPE_TARGET_TYPE (type);
2873 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2874 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2875 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2876 perhaps stabsread.c would make more sense. */
2877 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2878 result_type = NULL;
2879 }
2880 else
2881 {
2882 result_type = desc_index_type (desc_bounds_type (type), n);
2883 if (result_type == NULL)
2884 error (_("attempt to take bound of something that is not an array"));
2885 }
2886
2887 return result_type;
2888 }
2889
2890 /* Given that arr is an array type, returns the lower bound of the
2891 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2892 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2893 array-descriptor type. It works for other arrays with bounds supplied
2894 by run-time quantities other than discriminants. */
2895
2896 static LONGEST
2897 ada_array_bound_from_type (struct type *arr_type, int n, int which)
2898 {
2899 struct type *type, *index_type_desc, *index_type;
2900 int i;
2901
2902 gdb_assert (which == 0 || which == 1);
2903
2904 if (ada_is_constrained_packed_array_type (arr_type))
2905 arr_type = decode_constrained_packed_array_type (arr_type);
2906
2907 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2908 return (LONGEST) - which;
2909
2910 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2911 type = TYPE_TARGET_TYPE (arr_type);
2912 else
2913 type = arr_type;
2914
2915 index_type_desc = ada_find_parallel_type (type, "___XA");
2916 ada_fixup_array_indexes_type (index_type_desc);
2917 if (index_type_desc != NULL)
2918 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2919 NULL);
2920 else
2921 {
2922 struct type *elt_type = check_typedef (type);
2923
2924 for (i = 1; i < n; i++)
2925 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
2926
2927 index_type = TYPE_INDEX_TYPE (elt_type);
2928 }
2929
2930 return
2931 (LONGEST) (which == 0
2932 ? ada_discrete_type_low_bound (index_type)
2933 : ada_discrete_type_high_bound (index_type));
2934 }
2935
2936 /* Given that arr is an array value, returns the lower bound of the
2937 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2938 WHICH is 1. This routine will also work for arrays with bounds
2939 supplied by run-time quantities other than discriminants. */
2940
2941 static LONGEST
2942 ada_array_bound (struct value *arr, int n, int which)
2943 {
2944 struct type *arr_type = value_type (arr);
2945
2946 if (ada_is_constrained_packed_array_type (arr_type))
2947 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
2948 else if (ada_is_simple_array_type (arr_type))
2949 return ada_array_bound_from_type (arr_type, n, which);
2950 else
2951 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2952 }
2953
2954 /* Given that arr is an array value, returns the length of the
2955 nth index. This routine will also work for arrays with bounds
2956 supplied by run-time quantities other than discriminants.
2957 Does not work for arrays indexed by enumeration types with representation
2958 clauses at the moment. */
2959
2960 static LONGEST
2961 ada_array_length (struct value *arr, int n)
2962 {
2963 struct type *arr_type = ada_check_typedef (value_type (arr));
2964
2965 if (ada_is_constrained_packed_array_type (arr_type))
2966 return ada_array_length (decode_constrained_packed_array (arr), n);
2967
2968 if (ada_is_simple_array_type (arr_type))
2969 return (ada_array_bound_from_type (arr_type, n, 1)
2970 - ada_array_bound_from_type (arr_type, n, 0) + 1);
2971 else
2972 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2973 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
2974 }
2975
2976 /* An empty array whose type is that of ARR_TYPE (an array type),
2977 with bounds LOW to LOW-1. */
2978
2979 static struct value *
2980 empty_array (struct type *arr_type, int low)
2981 {
2982 struct type *arr_type0 = ada_check_typedef (arr_type);
2983 struct type *index_type
2984 = create_static_range_type
2985 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
2986 struct type *elt_type = ada_array_element_type (arr_type0, 1);
2987
2988 return allocate_value (create_array_type (NULL, elt_type, index_type));
2989 }
2990 \f
2991
2992 /* Name resolution */
2993
2994 /* The "decoded" name for the user-definable Ada operator corresponding
2995 to OP. */
2996
2997 static const char *
2998 ada_decoded_op_name (enum exp_opcode op)
2999 {
3000 int i;
3001
3002 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3003 {
3004 if (ada_opname_table[i].op == op)
3005 return ada_opname_table[i].decoded;
3006 }
3007 error (_("Could not find operator name for opcode"));
3008 }
3009
3010
3011 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3012 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3013 undefined namespace) and converts operators that are
3014 user-defined into appropriate function calls. If CONTEXT_TYPE is
3015 non-null, it provides a preferred result type [at the moment, only
3016 type void has any effect---causing procedures to be preferred over
3017 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3018 return type is preferred. May change (expand) *EXP. */
3019
3020 static void
3021 resolve (struct expression **expp, int void_context_p)
3022 {
3023 struct type *context_type = NULL;
3024 int pc = 0;
3025
3026 if (void_context_p)
3027 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3028
3029 resolve_subexp (expp, &pc, 1, context_type);
3030 }
3031
3032 /* Resolve the operator of the subexpression beginning at
3033 position *POS of *EXPP. "Resolving" consists of replacing
3034 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3035 with their resolutions, replacing built-in operators with
3036 function calls to user-defined operators, where appropriate, and,
3037 when DEPROCEDURE_P is non-zero, converting function-valued variables
3038 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3039 are as in ada_resolve, above. */
3040
3041 static struct value *
3042 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
3043 struct type *context_type)
3044 {
3045 int pc = *pos;
3046 int i;
3047 struct expression *exp; /* Convenience: == *expp. */
3048 enum exp_opcode op = (*expp)->elts[pc].opcode;
3049 struct value **argvec; /* Vector of operand types (alloca'ed). */
3050 int nargs; /* Number of operands. */
3051 int oplen;
3052
3053 argvec = NULL;
3054 nargs = 0;
3055 exp = *expp;
3056
3057 /* Pass one: resolve operands, saving their types and updating *pos,
3058 if needed. */
3059 switch (op)
3060 {
3061 case OP_FUNCALL:
3062 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3063 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3064 *pos += 7;
3065 else
3066 {
3067 *pos += 3;
3068 resolve_subexp (expp, pos, 0, NULL);
3069 }
3070 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3071 break;
3072
3073 case UNOP_ADDR:
3074 *pos += 1;
3075 resolve_subexp (expp, pos, 0, NULL);
3076 break;
3077
3078 case UNOP_QUAL:
3079 *pos += 3;
3080 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
3081 break;
3082
3083 case OP_ATR_MODULUS:
3084 case OP_ATR_SIZE:
3085 case OP_ATR_TAG:
3086 case OP_ATR_FIRST:
3087 case OP_ATR_LAST:
3088 case OP_ATR_LENGTH:
3089 case OP_ATR_POS:
3090 case OP_ATR_VAL:
3091 case OP_ATR_MIN:
3092 case OP_ATR_MAX:
3093 case TERNOP_IN_RANGE:
3094 case BINOP_IN_BOUNDS:
3095 case UNOP_IN_RANGE:
3096 case OP_AGGREGATE:
3097 case OP_OTHERS:
3098 case OP_CHOICES:
3099 case OP_POSITIONAL:
3100 case OP_DISCRETE_RANGE:
3101 case OP_NAME:
3102 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3103 *pos += oplen;
3104 break;
3105
3106 case BINOP_ASSIGN:
3107 {
3108 struct value *arg1;
3109
3110 *pos += 1;
3111 arg1 = resolve_subexp (expp, pos, 0, NULL);
3112 if (arg1 == NULL)
3113 resolve_subexp (expp, pos, 1, NULL);
3114 else
3115 resolve_subexp (expp, pos, 1, value_type (arg1));
3116 break;
3117 }
3118
3119 case UNOP_CAST:
3120 *pos += 3;
3121 nargs = 1;
3122 break;
3123
3124 case BINOP_ADD:
3125 case BINOP_SUB:
3126 case BINOP_MUL:
3127 case BINOP_DIV:
3128 case BINOP_REM:
3129 case BINOP_MOD:
3130 case BINOP_EXP:
3131 case BINOP_CONCAT:
3132 case BINOP_LOGICAL_AND:
3133 case BINOP_LOGICAL_OR:
3134 case BINOP_BITWISE_AND:
3135 case BINOP_BITWISE_IOR:
3136 case BINOP_BITWISE_XOR:
3137
3138 case BINOP_EQUAL:
3139 case BINOP_NOTEQUAL:
3140 case BINOP_LESS:
3141 case BINOP_GTR:
3142 case BINOP_LEQ:
3143 case BINOP_GEQ:
3144
3145 case BINOP_REPEAT:
3146 case BINOP_SUBSCRIPT:
3147 case BINOP_COMMA:
3148 *pos += 1;
3149 nargs = 2;
3150 break;
3151
3152 case UNOP_NEG:
3153 case UNOP_PLUS:
3154 case UNOP_LOGICAL_NOT:
3155 case UNOP_ABS:
3156 case UNOP_IND:
3157 *pos += 1;
3158 nargs = 1;
3159 break;
3160
3161 case OP_LONG:
3162 case OP_DOUBLE:
3163 case OP_VAR_VALUE:
3164 *pos += 4;
3165 break;
3166
3167 case OP_TYPE:
3168 case OP_BOOL:
3169 case OP_LAST:
3170 case OP_INTERNALVAR:
3171 *pos += 3;
3172 break;
3173
3174 case UNOP_MEMVAL:
3175 *pos += 3;
3176 nargs = 1;
3177 break;
3178
3179 case OP_REGISTER:
3180 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3181 break;
3182
3183 case STRUCTOP_STRUCT:
3184 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3185 nargs = 1;
3186 break;
3187
3188 case TERNOP_SLICE:
3189 *pos += 1;
3190 nargs = 3;
3191 break;
3192
3193 case OP_STRING:
3194 break;
3195
3196 default:
3197 error (_("Unexpected operator during name resolution"));
3198 }
3199
3200 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
3201 for (i = 0; i < nargs; i += 1)
3202 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3203 argvec[i] = NULL;
3204 exp = *expp;
3205
3206 /* Pass two: perform any resolution on principal operator. */
3207 switch (op)
3208 {
3209 default:
3210 break;
3211
3212 case OP_VAR_VALUE:
3213 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3214 {
3215 struct ada_symbol_info *candidates;
3216 int n_candidates;
3217
3218 n_candidates =
3219 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3220 (exp->elts[pc + 2].symbol),
3221 exp->elts[pc + 1].block, VAR_DOMAIN,
3222 &candidates);
3223
3224 if (n_candidates > 1)
3225 {
3226 /* Types tend to get re-introduced locally, so if there
3227 are any local symbols that are not types, first filter
3228 out all types. */
3229 int j;
3230 for (j = 0; j < n_candidates; j += 1)
3231 switch (SYMBOL_CLASS (candidates[j].sym))
3232 {
3233 case LOC_REGISTER:
3234 case LOC_ARG:
3235 case LOC_REF_ARG:
3236 case LOC_REGPARM_ADDR:
3237 case LOC_LOCAL:
3238 case LOC_COMPUTED:
3239 goto FoundNonType;
3240 default:
3241 break;
3242 }
3243 FoundNonType:
3244 if (j < n_candidates)
3245 {
3246 j = 0;
3247 while (j < n_candidates)
3248 {
3249 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3250 {
3251 candidates[j] = candidates[n_candidates - 1];
3252 n_candidates -= 1;
3253 }
3254 else
3255 j += 1;
3256 }
3257 }
3258 }
3259
3260 if (n_candidates == 0)
3261 error (_("No definition found for %s"),
3262 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3263 else if (n_candidates == 1)
3264 i = 0;
3265 else if (deprocedure_p
3266 && !is_nonfunction (candidates, n_candidates))
3267 {
3268 i = ada_resolve_function
3269 (candidates, n_candidates, NULL, 0,
3270 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3271 context_type);
3272 if (i < 0)
3273 error (_("Could not find a match for %s"),
3274 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3275 }
3276 else
3277 {
3278 printf_filtered (_("Multiple matches for %s\n"),
3279 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3280 user_select_syms (candidates, n_candidates, 1);
3281 i = 0;
3282 }
3283
3284 exp->elts[pc + 1].block = candidates[i].block;
3285 exp->elts[pc + 2].symbol = candidates[i].sym;
3286 if (innermost_block == NULL
3287 || contained_in (candidates[i].block, innermost_block))
3288 innermost_block = candidates[i].block;
3289 }
3290
3291 if (deprocedure_p
3292 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3293 == TYPE_CODE_FUNC))
3294 {
3295 replace_operator_with_call (expp, pc, 0, 0,
3296 exp->elts[pc + 2].symbol,
3297 exp->elts[pc + 1].block);
3298 exp = *expp;
3299 }
3300 break;
3301
3302 case OP_FUNCALL:
3303 {
3304 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3305 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3306 {
3307 struct ada_symbol_info *candidates;
3308 int n_candidates;
3309
3310 n_candidates =
3311 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3312 (exp->elts[pc + 5].symbol),
3313 exp->elts[pc + 4].block, VAR_DOMAIN,
3314 &candidates);
3315 if (n_candidates == 1)
3316 i = 0;
3317 else
3318 {
3319 i = ada_resolve_function
3320 (candidates, n_candidates,
3321 argvec, nargs,
3322 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3323 context_type);
3324 if (i < 0)
3325 error (_("Could not find a match for %s"),
3326 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3327 }
3328
3329 exp->elts[pc + 4].block = candidates[i].block;
3330 exp->elts[pc + 5].symbol = candidates[i].sym;
3331 if (innermost_block == NULL
3332 || contained_in (candidates[i].block, innermost_block))
3333 innermost_block = candidates[i].block;
3334 }
3335 }
3336 break;
3337 case BINOP_ADD:
3338 case BINOP_SUB:
3339 case BINOP_MUL:
3340 case BINOP_DIV:
3341 case BINOP_REM:
3342 case BINOP_MOD:
3343 case BINOP_CONCAT:
3344 case BINOP_BITWISE_AND:
3345 case BINOP_BITWISE_IOR:
3346 case BINOP_BITWISE_XOR:
3347 case BINOP_EQUAL:
3348 case BINOP_NOTEQUAL:
3349 case BINOP_LESS:
3350 case BINOP_GTR:
3351 case BINOP_LEQ:
3352 case BINOP_GEQ:
3353 case BINOP_EXP:
3354 case UNOP_NEG:
3355 case UNOP_PLUS:
3356 case UNOP_LOGICAL_NOT:
3357 case UNOP_ABS:
3358 if (possible_user_operator_p (op, argvec))
3359 {
3360 struct ada_symbol_info *candidates;
3361 int n_candidates;
3362
3363 n_candidates =
3364 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3365 (struct block *) NULL, VAR_DOMAIN,
3366 &candidates);
3367 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3368 ada_decoded_op_name (op), NULL);
3369 if (i < 0)
3370 break;
3371
3372 replace_operator_with_call (expp, pc, nargs, 1,
3373 candidates[i].sym, candidates[i].block);
3374 exp = *expp;
3375 }
3376 break;
3377
3378 case OP_TYPE:
3379 case OP_REGISTER:
3380 return NULL;
3381 }
3382
3383 *pos = pc;
3384 return evaluate_subexp_type (exp, pos);
3385 }
3386
3387 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3388 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3389 a non-pointer. */
3390 /* The term "match" here is rather loose. The match is heuristic and
3391 liberal. */
3392
3393 static int
3394 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3395 {
3396 ftype = ada_check_typedef (ftype);
3397 atype = ada_check_typedef (atype);
3398
3399 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3400 ftype = TYPE_TARGET_TYPE (ftype);
3401 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3402 atype = TYPE_TARGET_TYPE (atype);
3403
3404 switch (TYPE_CODE (ftype))
3405 {
3406 default:
3407 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3408 case TYPE_CODE_PTR:
3409 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3410 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3411 TYPE_TARGET_TYPE (atype), 0);
3412 else
3413 return (may_deref
3414 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3415 case TYPE_CODE_INT:
3416 case TYPE_CODE_ENUM:
3417 case TYPE_CODE_RANGE:
3418 switch (TYPE_CODE (atype))
3419 {
3420 case TYPE_CODE_INT:
3421 case TYPE_CODE_ENUM:
3422 case TYPE_CODE_RANGE:
3423 return 1;
3424 default:
3425 return 0;
3426 }
3427
3428 case TYPE_CODE_ARRAY:
3429 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3430 || ada_is_array_descriptor_type (atype));
3431
3432 case TYPE_CODE_STRUCT:
3433 if (ada_is_array_descriptor_type (ftype))
3434 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3435 || ada_is_array_descriptor_type (atype));
3436 else
3437 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3438 && !ada_is_array_descriptor_type (atype));
3439
3440 case TYPE_CODE_UNION:
3441 case TYPE_CODE_FLT:
3442 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3443 }
3444 }
3445
3446 /* Return non-zero if the formals of FUNC "sufficiently match" the
3447 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3448 may also be an enumeral, in which case it is treated as a 0-
3449 argument function. */
3450
3451 static int
3452 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3453 {
3454 int i;
3455 struct type *func_type = SYMBOL_TYPE (func);
3456
3457 if (SYMBOL_CLASS (func) == LOC_CONST
3458 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3459 return (n_actuals == 0);
3460 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3461 return 0;
3462
3463 if (TYPE_NFIELDS (func_type) != n_actuals)
3464 return 0;
3465
3466 for (i = 0; i < n_actuals; i += 1)
3467 {
3468 if (actuals[i] == NULL)
3469 return 0;
3470 else
3471 {
3472 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3473 i));
3474 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3475
3476 if (!ada_type_match (ftype, atype, 1))
3477 return 0;
3478 }
3479 }
3480 return 1;
3481 }
3482
3483 /* False iff function type FUNC_TYPE definitely does not produce a value
3484 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3485 FUNC_TYPE is not a valid function type with a non-null return type
3486 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3487
3488 static int
3489 return_match (struct type *func_type, struct type *context_type)
3490 {
3491 struct type *return_type;
3492
3493 if (func_type == NULL)
3494 return 1;
3495
3496 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3497 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3498 else
3499 return_type = get_base_type (func_type);
3500 if (return_type == NULL)
3501 return 1;
3502
3503 context_type = get_base_type (context_type);
3504
3505 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3506 return context_type == NULL || return_type == context_type;
3507 else if (context_type == NULL)
3508 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3509 else
3510 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3511 }
3512
3513
3514 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3515 function (if any) that matches the types of the NARGS arguments in
3516 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3517 that returns that type, then eliminate matches that don't. If
3518 CONTEXT_TYPE is void and there is at least one match that does not
3519 return void, eliminate all matches that do.
3520
3521 Asks the user if there is more than one match remaining. Returns -1
3522 if there is no such symbol or none is selected. NAME is used
3523 solely for messages. May re-arrange and modify SYMS in
3524 the process; the index returned is for the modified vector. */
3525
3526 static int
3527 ada_resolve_function (struct ada_symbol_info syms[],
3528 int nsyms, struct value **args, int nargs,
3529 const char *name, struct type *context_type)
3530 {
3531 int fallback;
3532 int k;
3533 int m; /* Number of hits */
3534
3535 m = 0;
3536 /* In the first pass of the loop, we only accept functions matching
3537 context_type. If none are found, we add a second pass of the loop
3538 where every function is accepted. */
3539 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3540 {
3541 for (k = 0; k < nsyms; k += 1)
3542 {
3543 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3544
3545 if (ada_args_match (syms[k].sym, args, nargs)
3546 && (fallback || return_match (type, context_type)))
3547 {
3548 syms[m] = syms[k];
3549 m += 1;
3550 }
3551 }
3552 }
3553
3554 if (m == 0)
3555 return -1;
3556 else if (m > 1)
3557 {
3558 printf_filtered (_("Multiple matches for %s\n"), name);
3559 user_select_syms (syms, m, 1);
3560 return 0;
3561 }
3562 return 0;
3563 }
3564
3565 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3566 in a listing of choices during disambiguation (see sort_choices, below).
3567 The idea is that overloadings of a subprogram name from the
3568 same package should sort in their source order. We settle for ordering
3569 such symbols by their trailing number (__N or $N). */
3570
3571 static int
3572 encoded_ordered_before (const char *N0, const char *N1)
3573 {
3574 if (N1 == NULL)
3575 return 0;
3576 else if (N0 == NULL)
3577 return 1;
3578 else
3579 {
3580 int k0, k1;
3581
3582 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3583 ;
3584 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3585 ;
3586 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3587 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3588 {
3589 int n0, n1;
3590
3591 n0 = k0;
3592 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3593 n0 -= 1;
3594 n1 = k1;
3595 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3596 n1 -= 1;
3597 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3598 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3599 }
3600 return (strcmp (N0, N1) < 0);
3601 }
3602 }
3603
3604 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3605 encoded names. */
3606
3607 static void
3608 sort_choices (struct ada_symbol_info syms[], int nsyms)
3609 {
3610 int i;
3611
3612 for (i = 1; i < nsyms; i += 1)
3613 {
3614 struct ada_symbol_info sym = syms[i];
3615 int j;
3616
3617 for (j = i - 1; j >= 0; j -= 1)
3618 {
3619 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3620 SYMBOL_LINKAGE_NAME (sym.sym)))
3621 break;
3622 syms[j + 1] = syms[j];
3623 }
3624 syms[j + 1] = sym;
3625 }
3626 }
3627
3628 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3629 by asking the user (if necessary), returning the number selected,
3630 and setting the first elements of SYMS items. Error if no symbols
3631 selected. */
3632
3633 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3634 to be re-integrated one of these days. */
3635
3636 int
3637 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3638 {
3639 int i;
3640 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3641 int n_chosen;
3642 int first_choice = (max_results == 1) ? 1 : 2;
3643 const char *select_mode = multiple_symbols_select_mode ();
3644
3645 if (max_results < 1)
3646 error (_("Request to select 0 symbols!"));
3647 if (nsyms <= 1)
3648 return nsyms;
3649
3650 if (select_mode == multiple_symbols_cancel)
3651 error (_("\
3652 canceled because the command is ambiguous\n\
3653 See set/show multiple-symbol."));
3654
3655 /* If select_mode is "all", then return all possible symbols.
3656 Only do that if more than one symbol can be selected, of course.
3657 Otherwise, display the menu as usual. */
3658 if (select_mode == multiple_symbols_all && max_results > 1)
3659 return nsyms;
3660
3661 printf_unfiltered (_("[0] cancel\n"));
3662 if (max_results > 1)
3663 printf_unfiltered (_("[1] all\n"));
3664
3665 sort_choices (syms, nsyms);
3666
3667 for (i = 0; i < nsyms; i += 1)
3668 {
3669 if (syms[i].sym == NULL)
3670 continue;
3671
3672 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3673 {
3674 struct symtab_and_line sal =
3675 find_function_start_sal (syms[i].sym, 1);
3676
3677 if (sal.symtab == NULL)
3678 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3679 i + first_choice,
3680 SYMBOL_PRINT_NAME (syms[i].sym),
3681 sal.line);
3682 else
3683 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3684 SYMBOL_PRINT_NAME (syms[i].sym),
3685 symtab_to_filename_for_display (sal.symtab),
3686 sal.line);
3687 continue;
3688 }
3689 else
3690 {
3691 int is_enumeral =
3692 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3693 && SYMBOL_TYPE (syms[i].sym) != NULL
3694 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3695 struct symtab *symtab = SYMBOL_SYMTAB (syms[i].sym);
3696
3697 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3698 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3699 i + first_choice,
3700 SYMBOL_PRINT_NAME (syms[i].sym),
3701 symtab_to_filename_for_display (symtab),
3702 SYMBOL_LINE (syms[i].sym));
3703 else if (is_enumeral
3704 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3705 {
3706 printf_unfiltered (("[%d] "), i + first_choice);
3707 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3708 gdb_stdout, -1, 0, &type_print_raw_options);
3709 printf_unfiltered (_("'(%s) (enumeral)\n"),
3710 SYMBOL_PRINT_NAME (syms[i].sym));
3711 }
3712 else if (symtab != NULL)
3713 printf_unfiltered (is_enumeral
3714 ? _("[%d] %s in %s (enumeral)\n")
3715 : _("[%d] %s at %s:?\n"),
3716 i + first_choice,
3717 SYMBOL_PRINT_NAME (syms[i].sym),
3718 symtab_to_filename_for_display (symtab));
3719 else
3720 printf_unfiltered (is_enumeral
3721 ? _("[%d] %s (enumeral)\n")
3722 : _("[%d] %s at ?\n"),
3723 i + first_choice,
3724 SYMBOL_PRINT_NAME (syms[i].sym));
3725 }
3726 }
3727
3728 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3729 "overload-choice");
3730
3731 for (i = 0; i < n_chosen; i += 1)
3732 syms[i] = syms[chosen[i]];
3733
3734 return n_chosen;
3735 }
3736
3737 /* Read and validate a set of numeric choices from the user in the
3738 range 0 .. N_CHOICES-1. Place the results in increasing
3739 order in CHOICES[0 .. N-1], and return N.
3740
3741 The user types choices as a sequence of numbers on one line
3742 separated by blanks, encoding them as follows:
3743
3744 + A choice of 0 means to cancel the selection, throwing an error.
3745 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3746 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3747
3748 The user is not allowed to choose more than MAX_RESULTS values.
3749
3750 ANNOTATION_SUFFIX, if present, is used to annotate the input
3751 prompts (for use with the -f switch). */
3752
3753 int
3754 get_selections (int *choices, int n_choices, int max_results,
3755 int is_all_choice, char *annotation_suffix)
3756 {
3757 char *args;
3758 char *prompt;
3759 int n_chosen;
3760 int first_choice = is_all_choice ? 2 : 1;
3761
3762 prompt = getenv ("PS2");
3763 if (prompt == NULL)
3764 prompt = "> ";
3765
3766 args = command_line_input (prompt, 0, annotation_suffix);
3767
3768 if (args == NULL)
3769 error_no_arg (_("one or more choice numbers"));
3770
3771 n_chosen = 0;
3772
3773 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3774 order, as given in args. Choices are validated. */
3775 while (1)
3776 {
3777 char *args2;
3778 int choice, j;
3779
3780 args = skip_spaces (args);
3781 if (*args == '\0' && n_chosen == 0)
3782 error_no_arg (_("one or more choice numbers"));
3783 else if (*args == '\0')
3784 break;
3785
3786 choice = strtol (args, &args2, 10);
3787 if (args == args2 || choice < 0
3788 || choice > n_choices + first_choice - 1)
3789 error (_("Argument must be choice number"));
3790 args = args2;
3791
3792 if (choice == 0)
3793 error (_("cancelled"));
3794
3795 if (choice < first_choice)
3796 {
3797 n_chosen = n_choices;
3798 for (j = 0; j < n_choices; j += 1)
3799 choices[j] = j;
3800 break;
3801 }
3802 choice -= first_choice;
3803
3804 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3805 {
3806 }
3807
3808 if (j < 0 || choice != choices[j])
3809 {
3810 int k;
3811
3812 for (k = n_chosen - 1; k > j; k -= 1)
3813 choices[k + 1] = choices[k];
3814 choices[j + 1] = choice;
3815 n_chosen += 1;
3816 }
3817 }
3818
3819 if (n_chosen > max_results)
3820 error (_("Select no more than %d of the above"), max_results);
3821
3822 return n_chosen;
3823 }
3824
3825 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3826 on the function identified by SYM and BLOCK, and taking NARGS
3827 arguments. Update *EXPP as needed to hold more space. */
3828
3829 static void
3830 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3831 int oplen, struct symbol *sym,
3832 const struct block *block)
3833 {
3834 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3835 symbol, -oplen for operator being replaced). */
3836 struct expression *newexp = (struct expression *)
3837 xzalloc (sizeof (struct expression)
3838 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3839 struct expression *exp = *expp;
3840
3841 newexp->nelts = exp->nelts + 7 - oplen;
3842 newexp->language_defn = exp->language_defn;
3843 newexp->gdbarch = exp->gdbarch;
3844 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3845 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3846 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3847
3848 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3849 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3850
3851 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3852 newexp->elts[pc + 4].block = block;
3853 newexp->elts[pc + 5].symbol = sym;
3854
3855 *expp = newexp;
3856 xfree (exp);
3857 }
3858
3859 /* Type-class predicates */
3860
3861 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3862 or FLOAT). */
3863
3864 static int
3865 numeric_type_p (struct type *type)
3866 {
3867 if (type == NULL)
3868 return 0;
3869 else
3870 {
3871 switch (TYPE_CODE (type))
3872 {
3873 case TYPE_CODE_INT:
3874 case TYPE_CODE_FLT:
3875 return 1;
3876 case TYPE_CODE_RANGE:
3877 return (type == TYPE_TARGET_TYPE (type)
3878 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3879 default:
3880 return 0;
3881 }
3882 }
3883 }
3884
3885 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3886
3887 static int
3888 integer_type_p (struct type *type)
3889 {
3890 if (type == NULL)
3891 return 0;
3892 else
3893 {
3894 switch (TYPE_CODE (type))
3895 {
3896 case TYPE_CODE_INT:
3897 return 1;
3898 case TYPE_CODE_RANGE:
3899 return (type == TYPE_TARGET_TYPE (type)
3900 || integer_type_p (TYPE_TARGET_TYPE (type)));
3901 default:
3902 return 0;
3903 }
3904 }
3905 }
3906
3907 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3908
3909 static int
3910 scalar_type_p (struct type *type)
3911 {
3912 if (type == NULL)
3913 return 0;
3914 else
3915 {
3916 switch (TYPE_CODE (type))
3917 {
3918 case TYPE_CODE_INT:
3919 case TYPE_CODE_RANGE:
3920 case TYPE_CODE_ENUM:
3921 case TYPE_CODE_FLT:
3922 return 1;
3923 default:
3924 return 0;
3925 }
3926 }
3927 }
3928
3929 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3930
3931 static int
3932 discrete_type_p (struct type *type)
3933 {
3934 if (type == NULL)
3935 return 0;
3936 else
3937 {
3938 switch (TYPE_CODE (type))
3939 {
3940 case TYPE_CODE_INT:
3941 case TYPE_CODE_RANGE:
3942 case TYPE_CODE_ENUM:
3943 case TYPE_CODE_BOOL:
3944 return 1;
3945 default:
3946 return 0;
3947 }
3948 }
3949 }
3950
3951 /* Returns non-zero if OP with operands in the vector ARGS could be
3952 a user-defined function. Errs on the side of pre-defined operators
3953 (i.e., result 0). */
3954
3955 static int
3956 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3957 {
3958 struct type *type0 =
3959 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3960 struct type *type1 =
3961 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3962
3963 if (type0 == NULL)
3964 return 0;
3965
3966 switch (op)
3967 {
3968 default:
3969 return 0;
3970
3971 case BINOP_ADD:
3972 case BINOP_SUB:
3973 case BINOP_MUL:
3974 case BINOP_DIV:
3975 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3976
3977 case BINOP_REM:
3978 case BINOP_MOD:
3979 case BINOP_BITWISE_AND:
3980 case BINOP_BITWISE_IOR:
3981 case BINOP_BITWISE_XOR:
3982 return (!(integer_type_p (type0) && integer_type_p (type1)));
3983
3984 case BINOP_EQUAL:
3985 case BINOP_NOTEQUAL:
3986 case BINOP_LESS:
3987 case BINOP_GTR:
3988 case BINOP_LEQ:
3989 case BINOP_GEQ:
3990 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3991
3992 case BINOP_CONCAT:
3993 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3994
3995 case BINOP_EXP:
3996 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3997
3998 case UNOP_NEG:
3999 case UNOP_PLUS:
4000 case UNOP_LOGICAL_NOT:
4001 case UNOP_ABS:
4002 return (!numeric_type_p (type0));
4003
4004 }
4005 }
4006 \f
4007 /* Renaming */
4008
4009 /* NOTES:
4010
4011 1. In the following, we assume that a renaming type's name may
4012 have an ___XD suffix. It would be nice if this went away at some
4013 point.
4014 2. We handle both the (old) purely type-based representation of
4015 renamings and the (new) variable-based encoding. At some point,
4016 it is devoutly to be hoped that the former goes away
4017 (FIXME: hilfinger-2007-07-09).
4018 3. Subprogram renamings are not implemented, although the XRS
4019 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4020
4021 /* If SYM encodes a renaming,
4022
4023 <renaming> renames <renamed entity>,
4024
4025 sets *LEN to the length of the renamed entity's name,
4026 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4027 the string describing the subcomponent selected from the renamed
4028 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4029 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4030 are undefined). Otherwise, returns a value indicating the category
4031 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4032 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4033 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4034 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4035 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4036 may be NULL, in which case they are not assigned.
4037
4038 [Currently, however, GCC does not generate subprogram renamings.] */
4039
4040 enum ada_renaming_category
4041 ada_parse_renaming (struct symbol *sym,
4042 const char **renamed_entity, int *len,
4043 const char **renaming_expr)
4044 {
4045 enum ada_renaming_category kind;
4046 const char *info;
4047 const char *suffix;
4048
4049 if (sym == NULL)
4050 return ADA_NOT_RENAMING;
4051 switch (SYMBOL_CLASS (sym))
4052 {
4053 default:
4054 return ADA_NOT_RENAMING;
4055 case LOC_TYPEDEF:
4056 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4057 renamed_entity, len, renaming_expr);
4058 case LOC_LOCAL:
4059 case LOC_STATIC:
4060 case LOC_COMPUTED:
4061 case LOC_OPTIMIZED_OUT:
4062 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4063 if (info == NULL)
4064 return ADA_NOT_RENAMING;
4065 switch (info[5])
4066 {
4067 case '_':
4068 kind = ADA_OBJECT_RENAMING;
4069 info += 6;
4070 break;
4071 case 'E':
4072 kind = ADA_EXCEPTION_RENAMING;
4073 info += 7;
4074 break;
4075 case 'P':
4076 kind = ADA_PACKAGE_RENAMING;
4077 info += 7;
4078 break;
4079 case 'S':
4080 kind = ADA_SUBPROGRAM_RENAMING;
4081 info += 7;
4082 break;
4083 default:
4084 return ADA_NOT_RENAMING;
4085 }
4086 }
4087
4088 if (renamed_entity != NULL)
4089 *renamed_entity = info;
4090 suffix = strstr (info, "___XE");
4091 if (suffix == NULL || suffix == info)
4092 return ADA_NOT_RENAMING;
4093 if (len != NULL)
4094 *len = strlen (info) - strlen (suffix);
4095 suffix += 5;
4096 if (renaming_expr != NULL)
4097 *renaming_expr = suffix;
4098 return kind;
4099 }
4100
4101 /* Assuming TYPE encodes a renaming according to the old encoding in
4102 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4103 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4104 ADA_NOT_RENAMING otherwise. */
4105 static enum ada_renaming_category
4106 parse_old_style_renaming (struct type *type,
4107 const char **renamed_entity, int *len,
4108 const char **renaming_expr)
4109 {
4110 enum ada_renaming_category kind;
4111 const char *name;
4112 const char *info;
4113 const char *suffix;
4114
4115 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4116 || TYPE_NFIELDS (type) != 1)
4117 return ADA_NOT_RENAMING;
4118
4119 name = type_name_no_tag (type);
4120 if (name == NULL)
4121 return ADA_NOT_RENAMING;
4122
4123 name = strstr (name, "___XR");
4124 if (name == NULL)
4125 return ADA_NOT_RENAMING;
4126 switch (name[5])
4127 {
4128 case '\0':
4129 case '_':
4130 kind = ADA_OBJECT_RENAMING;
4131 break;
4132 case 'E':
4133 kind = ADA_EXCEPTION_RENAMING;
4134 break;
4135 case 'P':
4136 kind = ADA_PACKAGE_RENAMING;
4137 break;
4138 case 'S':
4139 kind = ADA_SUBPROGRAM_RENAMING;
4140 break;
4141 default:
4142 return ADA_NOT_RENAMING;
4143 }
4144
4145 info = TYPE_FIELD_NAME (type, 0);
4146 if (info == NULL)
4147 return ADA_NOT_RENAMING;
4148 if (renamed_entity != NULL)
4149 *renamed_entity = info;
4150 suffix = strstr (info, "___XE");
4151 if (renaming_expr != NULL)
4152 *renaming_expr = suffix + 5;
4153 if (suffix == NULL || suffix == info)
4154 return ADA_NOT_RENAMING;
4155 if (len != NULL)
4156 *len = suffix - info;
4157 return kind;
4158 }
4159
4160 /* Compute the value of the given RENAMING_SYM, which is expected to
4161 be a symbol encoding a renaming expression. BLOCK is the block
4162 used to evaluate the renaming. */
4163
4164 static struct value *
4165 ada_read_renaming_var_value (struct symbol *renaming_sym,
4166 const struct block *block)
4167 {
4168 const char *sym_name;
4169 struct expression *expr;
4170 struct value *value;
4171 struct cleanup *old_chain = NULL;
4172
4173 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4174 expr = parse_exp_1 (&sym_name, 0, block, 0);
4175 old_chain = make_cleanup (free_current_contents, &expr);
4176 value = evaluate_expression (expr);
4177
4178 do_cleanups (old_chain);
4179 return value;
4180 }
4181 \f
4182
4183 /* Evaluation: Function Calls */
4184
4185 /* Return an lvalue containing the value VAL. This is the identity on
4186 lvalues, and otherwise has the side-effect of allocating memory
4187 in the inferior where a copy of the value contents is copied. */
4188
4189 static struct value *
4190 ensure_lval (struct value *val)
4191 {
4192 if (VALUE_LVAL (val) == not_lval
4193 || VALUE_LVAL (val) == lval_internalvar)
4194 {
4195 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4196 const CORE_ADDR addr =
4197 value_as_long (value_allocate_space_in_inferior (len));
4198
4199 set_value_address (val, addr);
4200 VALUE_LVAL (val) = lval_memory;
4201 write_memory (addr, value_contents (val), len);
4202 }
4203
4204 return val;
4205 }
4206
4207 /* Return the value ACTUAL, converted to be an appropriate value for a
4208 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4209 allocating any necessary descriptors (fat pointers), or copies of
4210 values not residing in memory, updating it as needed. */
4211
4212 struct value *
4213 ada_convert_actual (struct value *actual, struct type *formal_type0)
4214 {
4215 struct type *actual_type = ada_check_typedef (value_type (actual));
4216 struct type *formal_type = ada_check_typedef (formal_type0);
4217 struct type *formal_target =
4218 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4219 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4220 struct type *actual_target =
4221 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4222 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4223
4224 if (ada_is_array_descriptor_type (formal_target)
4225 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4226 return make_array_descriptor (formal_type, actual);
4227 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4228 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4229 {
4230 struct value *result;
4231
4232 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4233 && ada_is_array_descriptor_type (actual_target))
4234 result = desc_data (actual);
4235 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4236 {
4237 if (VALUE_LVAL (actual) != lval_memory)
4238 {
4239 struct value *val;
4240
4241 actual_type = ada_check_typedef (value_type (actual));
4242 val = allocate_value (actual_type);
4243 memcpy ((char *) value_contents_raw (val),
4244 (char *) value_contents (actual),
4245 TYPE_LENGTH (actual_type));
4246 actual = ensure_lval (val);
4247 }
4248 result = value_addr (actual);
4249 }
4250 else
4251 return actual;
4252 return value_cast_pointers (formal_type, result, 0);
4253 }
4254 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4255 return ada_value_ind (actual);
4256
4257 return actual;
4258 }
4259
4260 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4261 type TYPE. This is usually an inefficient no-op except on some targets
4262 (such as AVR) where the representation of a pointer and an address
4263 differs. */
4264
4265 static CORE_ADDR
4266 value_pointer (struct value *value, struct type *type)
4267 {
4268 struct gdbarch *gdbarch = get_type_arch (type);
4269 unsigned len = TYPE_LENGTH (type);
4270 gdb_byte *buf = alloca (len);
4271 CORE_ADDR addr;
4272
4273 addr = value_address (value);
4274 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4275 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4276 return addr;
4277 }
4278
4279
4280 /* Push a descriptor of type TYPE for array value ARR on the stack at
4281 *SP, updating *SP to reflect the new descriptor. Return either
4282 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4283 to-descriptor type rather than a descriptor type), a struct value *
4284 representing a pointer to this descriptor. */
4285
4286 static struct value *
4287 make_array_descriptor (struct type *type, struct value *arr)
4288 {
4289 struct type *bounds_type = desc_bounds_type (type);
4290 struct type *desc_type = desc_base_type (type);
4291 struct value *descriptor = allocate_value (desc_type);
4292 struct value *bounds = allocate_value (bounds_type);
4293 int i;
4294
4295 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4296 i > 0; i -= 1)
4297 {
4298 modify_field (value_type (bounds), value_contents_writeable (bounds),
4299 ada_array_bound (arr, i, 0),
4300 desc_bound_bitpos (bounds_type, i, 0),
4301 desc_bound_bitsize (bounds_type, i, 0));
4302 modify_field (value_type (bounds), value_contents_writeable (bounds),
4303 ada_array_bound (arr, i, 1),
4304 desc_bound_bitpos (bounds_type, i, 1),
4305 desc_bound_bitsize (bounds_type, i, 1));
4306 }
4307
4308 bounds = ensure_lval (bounds);
4309
4310 modify_field (value_type (descriptor),
4311 value_contents_writeable (descriptor),
4312 value_pointer (ensure_lval (arr),
4313 TYPE_FIELD_TYPE (desc_type, 0)),
4314 fat_pntr_data_bitpos (desc_type),
4315 fat_pntr_data_bitsize (desc_type));
4316
4317 modify_field (value_type (descriptor),
4318 value_contents_writeable (descriptor),
4319 value_pointer (bounds,
4320 TYPE_FIELD_TYPE (desc_type, 1)),
4321 fat_pntr_bounds_bitpos (desc_type),
4322 fat_pntr_bounds_bitsize (desc_type));
4323
4324 descriptor = ensure_lval (descriptor);
4325
4326 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4327 return value_addr (descriptor);
4328 else
4329 return descriptor;
4330 }
4331 \f
4332 /* Symbol Cache Module */
4333
4334 /* Performance measurements made as of 2010-01-15 indicate that
4335 this cache does bring some noticeable improvements. Depending
4336 on the type of entity being printed, the cache can make it as much
4337 as an order of magnitude faster than without it.
4338
4339 The descriptive type DWARF extension has significantly reduced
4340 the need for this cache, at least when DWARF is being used. However,
4341 even in this case, some expensive name-based symbol searches are still
4342 sometimes necessary - to find an XVZ variable, mostly. */
4343
4344 /* Initialize the contents of SYM_CACHE. */
4345
4346 static void
4347 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4348 {
4349 obstack_init (&sym_cache->cache_space);
4350 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4351 }
4352
4353 /* Free the memory used by SYM_CACHE. */
4354
4355 static void
4356 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4357 {
4358 obstack_free (&sym_cache->cache_space, NULL);
4359 xfree (sym_cache);
4360 }
4361
4362 /* Return the symbol cache associated to the given program space PSPACE.
4363 If not allocated for this PSPACE yet, allocate and initialize one. */
4364
4365 static struct ada_symbol_cache *
4366 ada_get_symbol_cache (struct program_space *pspace)
4367 {
4368 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4369 struct ada_symbol_cache *sym_cache = pspace_data->sym_cache;
4370
4371 if (sym_cache == NULL)
4372 {
4373 sym_cache = XCNEW (struct ada_symbol_cache);
4374 ada_init_symbol_cache (sym_cache);
4375 }
4376
4377 return sym_cache;
4378 }
4379
4380 /* Clear all entries from the symbol cache. */
4381
4382 static void
4383 ada_clear_symbol_cache (void)
4384 {
4385 struct ada_symbol_cache *sym_cache
4386 = ada_get_symbol_cache (current_program_space);
4387
4388 obstack_free (&sym_cache->cache_space, NULL);
4389 ada_init_symbol_cache (sym_cache);
4390 }
4391
4392 /* Search our cache for an entry matching NAME and NAMESPACE.
4393 Return it if found, or NULL otherwise. */
4394
4395 static struct cache_entry **
4396 find_entry (const char *name, domain_enum namespace)
4397 {
4398 struct ada_symbol_cache *sym_cache
4399 = ada_get_symbol_cache (current_program_space);
4400 int h = msymbol_hash (name) % HASH_SIZE;
4401 struct cache_entry **e;
4402
4403 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4404 {
4405 if (namespace == (*e)->namespace && strcmp (name, (*e)->name) == 0)
4406 return e;
4407 }
4408 return NULL;
4409 }
4410
4411 /* Search the symbol cache for an entry matching NAME and NAMESPACE.
4412 Return 1 if found, 0 otherwise.
4413
4414 If an entry was found and SYM is not NULL, set *SYM to the entry's
4415 SYM. Same principle for BLOCK if not NULL. */
4416
4417 static int
4418 lookup_cached_symbol (const char *name, domain_enum namespace,
4419 struct symbol **sym, const struct block **block)
4420 {
4421 struct cache_entry **e = find_entry (name, namespace);
4422
4423 if (e == NULL)
4424 return 0;
4425 if (sym != NULL)
4426 *sym = (*e)->sym;
4427 if (block != NULL)
4428 *block = (*e)->block;
4429 return 1;
4430 }
4431
4432 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4433 in domain NAMESPACE, save this result in our symbol cache. */
4434
4435 static void
4436 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
4437 const struct block *block)
4438 {
4439 struct ada_symbol_cache *sym_cache
4440 = ada_get_symbol_cache (current_program_space);
4441 int h;
4442 char *copy;
4443 struct cache_entry *e;
4444
4445 /* If the symbol is a local symbol, then do not cache it, as a search
4446 for that symbol depends on the context. To determine whether
4447 the symbol is local or not, we check the block where we found it
4448 against the global and static blocks of its associated symtab. */
4449 if (sym
4450 && BLOCKVECTOR_BLOCK (BLOCKVECTOR (sym->symtab), GLOBAL_BLOCK) != block
4451 && BLOCKVECTOR_BLOCK (BLOCKVECTOR (sym->symtab), STATIC_BLOCK) != block)
4452 return;
4453
4454 h = msymbol_hash (name) % HASH_SIZE;
4455 e = (struct cache_entry *) obstack_alloc (&sym_cache->cache_space,
4456 sizeof (*e));
4457 e->next = sym_cache->root[h];
4458 sym_cache->root[h] = e;
4459 e->name = copy = obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
4460 strcpy (copy, name);
4461 e->sym = sym;
4462 e->namespace = namespace;
4463 e->block = block;
4464 }
4465 \f
4466 /* Symbol Lookup */
4467
4468 /* Return nonzero if wild matching should be used when searching for
4469 all symbols matching LOOKUP_NAME.
4470
4471 LOOKUP_NAME is expected to be a symbol name after transformation
4472 for Ada lookups (see ada_name_for_lookup). */
4473
4474 static int
4475 should_use_wild_match (const char *lookup_name)
4476 {
4477 return (strstr (lookup_name, "__") == NULL);
4478 }
4479
4480 /* Return the result of a standard (literal, C-like) lookup of NAME in
4481 given DOMAIN, visible from lexical block BLOCK. */
4482
4483 static struct symbol *
4484 standard_lookup (const char *name, const struct block *block,
4485 domain_enum domain)
4486 {
4487 /* Initialize it just to avoid a GCC false warning. */
4488 struct symbol *sym = NULL;
4489
4490 if (lookup_cached_symbol (name, domain, &sym, NULL))
4491 return sym;
4492 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4493 cache_symbol (name, domain, sym, block_found);
4494 return sym;
4495 }
4496
4497
4498 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4499 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4500 since they contend in overloading in the same way. */
4501 static int
4502 is_nonfunction (struct ada_symbol_info syms[], int n)
4503 {
4504 int i;
4505
4506 for (i = 0; i < n; i += 1)
4507 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4508 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4509 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
4510 return 1;
4511
4512 return 0;
4513 }
4514
4515 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4516 struct types. Otherwise, they may not. */
4517
4518 static int
4519 equiv_types (struct type *type0, struct type *type1)
4520 {
4521 if (type0 == type1)
4522 return 1;
4523 if (type0 == NULL || type1 == NULL
4524 || TYPE_CODE (type0) != TYPE_CODE (type1))
4525 return 0;
4526 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4527 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4528 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4529 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4530 return 1;
4531
4532 return 0;
4533 }
4534
4535 /* True iff SYM0 represents the same entity as SYM1, or one that is
4536 no more defined than that of SYM1. */
4537
4538 static int
4539 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4540 {
4541 if (sym0 == sym1)
4542 return 1;
4543 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4544 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4545 return 0;
4546
4547 switch (SYMBOL_CLASS (sym0))
4548 {
4549 case LOC_UNDEF:
4550 return 1;
4551 case LOC_TYPEDEF:
4552 {
4553 struct type *type0 = SYMBOL_TYPE (sym0);
4554 struct type *type1 = SYMBOL_TYPE (sym1);
4555 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4556 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4557 int len0 = strlen (name0);
4558
4559 return
4560 TYPE_CODE (type0) == TYPE_CODE (type1)
4561 && (equiv_types (type0, type1)
4562 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4563 && strncmp (name1 + len0, "___XV", 5) == 0));
4564 }
4565 case LOC_CONST:
4566 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4567 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4568 default:
4569 return 0;
4570 }
4571 }
4572
4573 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4574 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4575
4576 static void
4577 add_defn_to_vec (struct obstack *obstackp,
4578 struct symbol *sym,
4579 const struct block *block)
4580 {
4581 int i;
4582 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4583
4584 /* Do not try to complete stub types, as the debugger is probably
4585 already scanning all symbols matching a certain name at the
4586 time when this function is called. Trying to replace the stub
4587 type by its associated full type will cause us to restart a scan
4588 which may lead to an infinite recursion. Instead, the client
4589 collecting the matching symbols will end up collecting several
4590 matches, with at least one of them complete. It can then filter
4591 out the stub ones if needed. */
4592
4593 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4594 {
4595 if (lesseq_defined_than (sym, prevDefns[i].sym))
4596 return;
4597 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4598 {
4599 prevDefns[i].sym = sym;
4600 prevDefns[i].block = block;
4601 return;
4602 }
4603 }
4604
4605 {
4606 struct ada_symbol_info info;
4607
4608 info.sym = sym;
4609 info.block = block;
4610 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4611 }
4612 }
4613
4614 /* Number of ada_symbol_info structures currently collected in
4615 current vector in *OBSTACKP. */
4616
4617 static int
4618 num_defns_collected (struct obstack *obstackp)
4619 {
4620 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4621 }
4622
4623 /* Vector of ada_symbol_info structures currently collected in current
4624 vector in *OBSTACKP. If FINISH, close off the vector and return
4625 its final address. */
4626
4627 static struct ada_symbol_info *
4628 defns_collected (struct obstack *obstackp, int finish)
4629 {
4630 if (finish)
4631 return obstack_finish (obstackp);
4632 else
4633 return (struct ada_symbol_info *) obstack_base (obstackp);
4634 }
4635
4636 /* Return a bound minimal symbol matching NAME according to Ada
4637 decoding rules. Returns an invalid symbol if there is no such
4638 minimal symbol. Names prefixed with "standard__" are handled
4639 specially: "standard__" is first stripped off, and only static and
4640 global symbols are searched. */
4641
4642 struct bound_minimal_symbol
4643 ada_lookup_simple_minsym (const char *name)
4644 {
4645 struct bound_minimal_symbol result;
4646 struct objfile *objfile;
4647 struct minimal_symbol *msymbol;
4648 const int wild_match_p = should_use_wild_match (name);
4649
4650 memset (&result, 0, sizeof (result));
4651
4652 /* Special case: If the user specifies a symbol name inside package
4653 Standard, do a non-wild matching of the symbol name without
4654 the "standard__" prefix. This was primarily introduced in order
4655 to allow the user to specifically access the standard exceptions
4656 using, for instance, Standard.Constraint_Error when Constraint_Error
4657 is ambiguous (due to the user defining its own Constraint_Error
4658 entity inside its program). */
4659 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4660 name += sizeof ("standard__") - 1;
4661
4662 ALL_MSYMBOLS (objfile, msymbol)
4663 {
4664 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
4665 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4666 {
4667 result.minsym = msymbol;
4668 result.objfile = objfile;
4669 break;
4670 }
4671 }
4672
4673 return result;
4674 }
4675
4676 /* For all subprograms that statically enclose the subprogram of the
4677 selected frame, add symbols matching identifier NAME in DOMAIN
4678 and their blocks to the list of data in OBSTACKP, as for
4679 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4680 with a wildcard prefix. */
4681
4682 static void
4683 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4684 const char *name, domain_enum namespace,
4685 int wild_match_p)
4686 {
4687 }
4688
4689 /* True if TYPE is definitely an artificial type supplied to a symbol
4690 for which no debugging information was given in the symbol file. */
4691
4692 static int
4693 is_nondebugging_type (struct type *type)
4694 {
4695 const char *name = ada_type_name (type);
4696
4697 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4698 }
4699
4700 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4701 that are deemed "identical" for practical purposes.
4702
4703 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4704 types and that their number of enumerals is identical (in other
4705 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4706
4707 static int
4708 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4709 {
4710 int i;
4711
4712 /* The heuristic we use here is fairly conservative. We consider
4713 that 2 enumerate types are identical if they have the same
4714 number of enumerals and that all enumerals have the same
4715 underlying value and name. */
4716
4717 /* All enums in the type should have an identical underlying value. */
4718 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4719 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
4720 return 0;
4721
4722 /* All enumerals should also have the same name (modulo any numerical
4723 suffix). */
4724 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4725 {
4726 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4727 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4728 int len_1 = strlen (name_1);
4729 int len_2 = strlen (name_2);
4730
4731 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4732 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4733 if (len_1 != len_2
4734 || strncmp (TYPE_FIELD_NAME (type1, i),
4735 TYPE_FIELD_NAME (type2, i),
4736 len_1) != 0)
4737 return 0;
4738 }
4739
4740 return 1;
4741 }
4742
4743 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4744 that are deemed "identical" for practical purposes. Sometimes,
4745 enumerals are not strictly identical, but their types are so similar
4746 that they can be considered identical.
4747
4748 For instance, consider the following code:
4749
4750 type Color is (Black, Red, Green, Blue, White);
4751 type RGB_Color is new Color range Red .. Blue;
4752
4753 Type RGB_Color is a subrange of an implicit type which is a copy
4754 of type Color. If we call that implicit type RGB_ColorB ("B" is
4755 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4756 As a result, when an expression references any of the enumeral
4757 by name (Eg. "print green"), the expression is technically
4758 ambiguous and the user should be asked to disambiguate. But
4759 doing so would only hinder the user, since it wouldn't matter
4760 what choice he makes, the outcome would always be the same.
4761 So, for practical purposes, we consider them as the same. */
4762
4763 static int
4764 symbols_are_identical_enums (struct ada_symbol_info *syms, int nsyms)
4765 {
4766 int i;
4767
4768 /* Before performing a thorough comparison check of each type,
4769 we perform a series of inexpensive checks. We expect that these
4770 checks will quickly fail in the vast majority of cases, and thus
4771 help prevent the unnecessary use of a more expensive comparison.
4772 Said comparison also expects us to make some of these checks
4773 (see ada_identical_enum_types_p). */
4774
4775 /* Quick check: All symbols should have an enum type. */
4776 for (i = 0; i < nsyms; i++)
4777 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM)
4778 return 0;
4779
4780 /* Quick check: They should all have the same value. */
4781 for (i = 1; i < nsyms; i++)
4782 if (SYMBOL_VALUE (syms[i].sym) != SYMBOL_VALUE (syms[0].sym))
4783 return 0;
4784
4785 /* Quick check: They should all have the same number of enumerals. */
4786 for (i = 1; i < nsyms; i++)
4787 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].sym))
4788 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].sym)))
4789 return 0;
4790
4791 /* All the sanity checks passed, so we might have a set of
4792 identical enumeration types. Perform a more complete
4793 comparison of the type of each symbol. */
4794 for (i = 1; i < nsyms; i++)
4795 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].sym),
4796 SYMBOL_TYPE (syms[0].sym)))
4797 return 0;
4798
4799 return 1;
4800 }
4801
4802 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4803 duplicate other symbols in the list (The only case I know of where
4804 this happens is when object files containing stabs-in-ecoff are
4805 linked with files containing ordinary ecoff debugging symbols (or no
4806 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4807 Returns the number of items in the modified list. */
4808
4809 static int
4810 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4811 {
4812 int i, j;
4813
4814 /* We should never be called with less than 2 symbols, as there
4815 cannot be any extra symbol in that case. But it's easy to
4816 handle, since we have nothing to do in that case. */
4817 if (nsyms < 2)
4818 return nsyms;
4819
4820 i = 0;
4821 while (i < nsyms)
4822 {
4823 int remove_p = 0;
4824
4825 /* If two symbols have the same name and one of them is a stub type,
4826 the get rid of the stub. */
4827
4828 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4829 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4830 {
4831 for (j = 0; j < nsyms; j++)
4832 {
4833 if (j != i
4834 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4835 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4836 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4837 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4838 remove_p = 1;
4839 }
4840 }
4841
4842 /* Two symbols with the same name, same class and same address
4843 should be identical. */
4844
4845 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4846 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4847 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4848 {
4849 for (j = 0; j < nsyms; j += 1)
4850 {
4851 if (i != j
4852 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4853 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4854 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4855 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4856 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4857 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4858 remove_p = 1;
4859 }
4860 }
4861
4862 if (remove_p)
4863 {
4864 for (j = i + 1; j < nsyms; j += 1)
4865 syms[j - 1] = syms[j];
4866 nsyms -= 1;
4867 }
4868
4869 i += 1;
4870 }
4871
4872 /* If all the remaining symbols are identical enumerals, then
4873 just keep the first one and discard the rest.
4874
4875 Unlike what we did previously, we do not discard any entry
4876 unless they are ALL identical. This is because the symbol
4877 comparison is not a strict comparison, but rather a practical
4878 comparison. If all symbols are considered identical, then
4879 we can just go ahead and use the first one and discard the rest.
4880 But if we cannot reduce the list to a single element, we have
4881 to ask the user to disambiguate anyways. And if we have to
4882 present a multiple-choice menu, it's less confusing if the list
4883 isn't missing some choices that were identical and yet distinct. */
4884 if (symbols_are_identical_enums (syms, nsyms))
4885 nsyms = 1;
4886
4887 return nsyms;
4888 }
4889
4890 /* Given a type that corresponds to a renaming entity, use the type name
4891 to extract the scope (package name or function name, fully qualified,
4892 and following the GNAT encoding convention) where this renaming has been
4893 defined. The string returned needs to be deallocated after use. */
4894
4895 static char *
4896 xget_renaming_scope (struct type *renaming_type)
4897 {
4898 /* The renaming types adhere to the following convention:
4899 <scope>__<rename>___<XR extension>.
4900 So, to extract the scope, we search for the "___XR" extension,
4901 and then backtrack until we find the first "__". */
4902
4903 const char *name = type_name_no_tag (renaming_type);
4904 char *suffix = strstr (name, "___XR");
4905 char *last;
4906 int scope_len;
4907 char *scope;
4908
4909 /* Now, backtrack a bit until we find the first "__". Start looking
4910 at suffix - 3, as the <rename> part is at least one character long. */
4911
4912 for (last = suffix - 3; last > name; last--)
4913 if (last[0] == '_' && last[1] == '_')
4914 break;
4915
4916 /* Make a copy of scope and return it. */
4917
4918 scope_len = last - name;
4919 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4920
4921 strncpy (scope, name, scope_len);
4922 scope[scope_len] = '\0';
4923
4924 return scope;
4925 }
4926
4927 /* Return nonzero if NAME corresponds to a package name. */
4928
4929 static int
4930 is_package_name (const char *name)
4931 {
4932 /* Here, We take advantage of the fact that no symbols are generated
4933 for packages, while symbols are generated for each function.
4934 So the condition for NAME represent a package becomes equivalent
4935 to NAME not existing in our list of symbols. There is only one
4936 small complication with library-level functions (see below). */
4937
4938 char *fun_name;
4939
4940 /* If it is a function that has not been defined at library level,
4941 then we should be able to look it up in the symbols. */
4942 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4943 return 0;
4944
4945 /* Library-level function names start with "_ada_". See if function
4946 "_ada_" followed by NAME can be found. */
4947
4948 /* Do a quick check that NAME does not contain "__", since library-level
4949 functions names cannot contain "__" in them. */
4950 if (strstr (name, "__") != NULL)
4951 return 0;
4952
4953 fun_name = xstrprintf ("_ada_%s", name);
4954
4955 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4956 }
4957
4958 /* Return nonzero if SYM corresponds to a renaming entity that is
4959 not visible from FUNCTION_NAME. */
4960
4961 static int
4962 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
4963 {
4964 char *scope;
4965 struct cleanup *old_chain;
4966
4967 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4968 return 0;
4969
4970 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4971 old_chain = make_cleanup (xfree, scope);
4972
4973 /* If the rename has been defined in a package, then it is visible. */
4974 if (is_package_name (scope))
4975 {
4976 do_cleanups (old_chain);
4977 return 0;
4978 }
4979
4980 /* Check that the rename is in the current function scope by checking
4981 that its name starts with SCOPE. */
4982
4983 /* If the function name starts with "_ada_", it means that it is
4984 a library-level function. Strip this prefix before doing the
4985 comparison, as the encoding for the renaming does not contain
4986 this prefix. */
4987 if (strncmp (function_name, "_ada_", 5) == 0)
4988 function_name += 5;
4989
4990 {
4991 int is_invisible = strncmp (function_name, scope, strlen (scope)) != 0;
4992
4993 do_cleanups (old_chain);
4994 return is_invisible;
4995 }
4996 }
4997
4998 /* Remove entries from SYMS that corresponds to a renaming entity that
4999 is not visible from the function associated with CURRENT_BLOCK or
5000 that is superfluous due to the presence of more specific renaming
5001 information. Places surviving symbols in the initial entries of
5002 SYMS and returns the number of surviving symbols.
5003
5004 Rationale:
5005 First, in cases where an object renaming is implemented as a
5006 reference variable, GNAT may produce both the actual reference
5007 variable and the renaming encoding. In this case, we discard the
5008 latter.
5009
5010 Second, GNAT emits a type following a specified encoding for each renaming
5011 entity. Unfortunately, STABS currently does not support the definition
5012 of types that are local to a given lexical block, so all renamings types
5013 are emitted at library level. As a consequence, if an application
5014 contains two renaming entities using the same name, and a user tries to
5015 print the value of one of these entities, the result of the ada symbol
5016 lookup will also contain the wrong renaming type.
5017
5018 This function partially covers for this limitation by attempting to
5019 remove from the SYMS list renaming symbols that should be visible
5020 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5021 method with the current information available. The implementation
5022 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5023
5024 - When the user tries to print a rename in a function while there
5025 is another rename entity defined in a package: Normally, the
5026 rename in the function has precedence over the rename in the
5027 package, so the latter should be removed from the list. This is
5028 currently not the case.
5029
5030 - This function will incorrectly remove valid renames if
5031 the CURRENT_BLOCK corresponds to a function which symbol name
5032 has been changed by an "Export" pragma. As a consequence,
5033 the user will be unable to print such rename entities. */
5034
5035 static int
5036 remove_irrelevant_renamings (struct ada_symbol_info *syms,
5037 int nsyms, const struct block *current_block)
5038 {
5039 struct symbol *current_function;
5040 const char *current_function_name;
5041 int i;
5042 int is_new_style_renaming;
5043
5044 /* If there is both a renaming foo___XR... encoded as a variable and
5045 a simple variable foo in the same block, discard the latter.
5046 First, zero out such symbols, then compress. */
5047 is_new_style_renaming = 0;
5048 for (i = 0; i < nsyms; i += 1)
5049 {
5050 struct symbol *sym = syms[i].sym;
5051 const struct block *block = syms[i].block;
5052 const char *name;
5053 const char *suffix;
5054
5055 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5056 continue;
5057 name = SYMBOL_LINKAGE_NAME (sym);
5058 suffix = strstr (name, "___XR");
5059
5060 if (suffix != NULL)
5061 {
5062 int name_len = suffix - name;
5063 int j;
5064
5065 is_new_style_renaming = 1;
5066 for (j = 0; j < nsyms; j += 1)
5067 if (i != j && syms[j].sym != NULL
5068 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
5069 name_len) == 0
5070 && block == syms[j].block)
5071 syms[j].sym = NULL;
5072 }
5073 }
5074 if (is_new_style_renaming)
5075 {
5076 int j, k;
5077
5078 for (j = k = 0; j < nsyms; j += 1)
5079 if (syms[j].sym != NULL)
5080 {
5081 syms[k] = syms[j];
5082 k += 1;
5083 }
5084 return k;
5085 }
5086
5087 /* Extract the function name associated to CURRENT_BLOCK.
5088 Abort if unable to do so. */
5089
5090 if (current_block == NULL)
5091 return nsyms;
5092
5093 current_function = block_linkage_function (current_block);
5094 if (current_function == NULL)
5095 return nsyms;
5096
5097 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5098 if (current_function_name == NULL)
5099 return nsyms;
5100
5101 /* Check each of the symbols, and remove it from the list if it is
5102 a type corresponding to a renaming that is out of the scope of
5103 the current block. */
5104
5105 i = 0;
5106 while (i < nsyms)
5107 {
5108 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
5109 == ADA_OBJECT_RENAMING
5110 && old_renaming_is_invisible (syms[i].sym, current_function_name))
5111 {
5112 int j;
5113
5114 for (j = i + 1; j < nsyms; j += 1)
5115 syms[j - 1] = syms[j];
5116 nsyms -= 1;
5117 }
5118 else
5119 i += 1;
5120 }
5121
5122 return nsyms;
5123 }
5124
5125 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5126 whose name and domain match NAME and DOMAIN respectively.
5127 If no match was found, then extend the search to "enclosing"
5128 routines (in other words, if we're inside a nested function,
5129 search the symbols defined inside the enclosing functions).
5130 If WILD_MATCH_P is nonzero, perform the naming matching in
5131 "wild" mode (see function "wild_match" for more info).
5132
5133 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5134
5135 static void
5136 ada_add_local_symbols (struct obstack *obstackp, const char *name,
5137 const struct block *block, domain_enum domain,
5138 int wild_match_p)
5139 {
5140 int block_depth = 0;
5141
5142 while (block != NULL)
5143 {
5144 block_depth += 1;
5145 ada_add_block_symbols (obstackp, block, name, domain, NULL,
5146 wild_match_p);
5147
5148 /* If we found a non-function match, assume that's the one. */
5149 if (is_nonfunction (defns_collected (obstackp, 0),
5150 num_defns_collected (obstackp)))
5151 return;
5152
5153 block = BLOCK_SUPERBLOCK (block);
5154 }
5155
5156 /* If no luck so far, try to find NAME as a local symbol in some lexically
5157 enclosing subprogram. */
5158 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5159 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
5160 }
5161
5162 /* An object of this type is used as the user_data argument when
5163 calling the map_matching_symbols method. */
5164
5165 struct match_data
5166 {
5167 struct objfile *objfile;
5168 struct obstack *obstackp;
5169 struct symbol *arg_sym;
5170 int found_sym;
5171 };
5172
5173 /* A callback for add_matching_symbols that adds SYM, found in BLOCK,
5174 to a list of symbols. DATA0 is a pointer to a struct match_data *
5175 containing the obstack that collects the symbol list, the file that SYM
5176 must come from, a flag indicating whether a non-argument symbol has
5177 been found in the current block, and the last argument symbol
5178 passed in SYM within the current block (if any). When SYM is null,
5179 marking the end of a block, the argument symbol is added if no
5180 other has been found. */
5181
5182 static int
5183 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
5184 {
5185 struct match_data *data = (struct match_data *) data0;
5186
5187 if (sym == NULL)
5188 {
5189 if (!data->found_sym && data->arg_sym != NULL)
5190 add_defn_to_vec (data->obstackp,
5191 fixup_symbol_section (data->arg_sym, data->objfile),
5192 block);
5193 data->found_sym = 0;
5194 data->arg_sym = NULL;
5195 }
5196 else
5197 {
5198 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5199 return 0;
5200 else if (SYMBOL_IS_ARGUMENT (sym))
5201 data->arg_sym = sym;
5202 else
5203 {
5204 data->found_sym = 1;
5205 add_defn_to_vec (data->obstackp,
5206 fixup_symbol_section (sym, data->objfile),
5207 block);
5208 }
5209 }
5210 return 0;
5211 }
5212
5213 /* Implements compare_names, but only applying the comparision using
5214 the given CASING. */
5215
5216 static int
5217 compare_names_with_case (const char *string1, const char *string2,
5218 enum case_sensitivity casing)
5219 {
5220 while (*string1 != '\0' && *string2 != '\0')
5221 {
5222 char c1, c2;
5223
5224 if (isspace (*string1) || isspace (*string2))
5225 return strcmp_iw_ordered (string1, string2);
5226
5227 if (casing == case_sensitive_off)
5228 {
5229 c1 = tolower (*string1);
5230 c2 = tolower (*string2);
5231 }
5232 else
5233 {
5234 c1 = *string1;
5235 c2 = *string2;
5236 }
5237 if (c1 != c2)
5238 break;
5239
5240 string1 += 1;
5241 string2 += 1;
5242 }
5243
5244 switch (*string1)
5245 {
5246 case '(':
5247 return strcmp_iw_ordered (string1, string2);
5248 case '_':
5249 if (*string2 == '\0')
5250 {
5251 if (is_name_suffix (string1))
5252 return 0;
5253 else
5254 return 1;
5255 }
5256 /* FALLTHROUGH */
5257 default:
5258 if (*string2 == '(')
5259 return strcmp_iw_ordered (string1, string2);
5260 else
5261 {
5262 if (casing == case_sensitive_off)
5263 return tolower (*string1) - tolower (*string2);
5264 else
5265 return *string1 - *string2;
5266 }
5267 }
5268 }
5269
5270 /* Compare STRING1 to STRING2, with results as for strcmp.
5271 Compatible with strcmp_iw_ordered in that...
5272
5273 strcmp_iw_ordered (STRING1, STRING2) <= 0
5274
5275 ... implies...
5276
5277 compare_names (STRING1, STRING2) <= 0
5278
5279 (they may differ as to what symbols compare equal). */
5280
5281 static int
5282 compare_names (const char *string1, const char *string2)
5283 {
5284 int result;
5285
5286 /* Similar to what strcmp_iw_ordered does, we need to perform
5287 a case-insensitive comparison first, and only resort to
5288 a second, case-sensitive, comparison if the first one was
5289 not sufficient to differentiate the two strings. */
5290
5291 result = compare_names_with_case (string1, string2, case_sensitive_off);
5292 if (result == 0)
5293 result = compare_names_with_case (string1, string2, case_sensitive_on);
5294
5295 return result;
5296 }
5297
5298 /* Add to OBSTACKP all non-local symbols whose name and domain match
5299 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5300 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5301
5302 static void
5303 add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5304 domain_enum domain, int global,
5305 int is_wild_match)
5306 {
5307 struct objfile *objfile;
5308 struct match_data data;
5309
5310 memset (&data, 0, sizeof data);
5311 data.obstackp = obstackp;
5312
5313 ALL_OBJFILES (objfile)
5314 {
5315 data.objfile = objfile;
5316
5317 if (is_wild_match)
5318 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5319 aux_add_nonlocal_symbols, &data,
5320 wild_match, NULL);
5321 else
5322 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5323 aux_add_nonlocal_symbols, &data,
5324 full_match, compare_names);
5325 }
5326
5327 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5328 {
5329 ALL_OBJFILES (objfile)
5330 {
5331 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
5332 strcpy (name1, "_ada_");
5333 strcpy (name1 + sizeof ("_ada_") - 1, name);
5334 data.objfile = objfile;
5335 objfile->sf->qf->map_matching_symbols (objfile, name1, domain,
5336 global,
5337 aux_add_nonlocal_symbols,
5338 &data,
5339 full_match, compare_names);
5340 }
5341 }
5342 }
5343
5344 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and, if full_search is
5345 non-zero, enclosing scope and in global scopes, returning the number of
5346 matches.
5347 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
5348 indicating the symbols found and the blocks and symbol tables (if
5349 any) in which they were found. This vector is transient---good only to
5350 the next call of ada_lookup_symbol_list.
5351
5352 When full_search is non-zero, any non-function/non-enumeral
5353 symbol match within the nest of blocks whose innermost member is BLOCK0,
5354 is the one match returned (no other matches in that or
5355 enclosing blocks is returned). If there are any matches in or
5356 surrounding BLOCK0, then these alone are returned.
5357
5358 Names prefixed with "standard__" are handled specially: "standard__"
5359 is first stripped off, and only static and global symbols are searched. */
5360
5361 static int
5362 ada_lookup_symbol_list_worker (const char *name0, const struct block *block0,
5363 domain_enum namespace,
5364 struct ada_symbol_info **results,
5365 int full_search)
5366 {
5367 struct symbol *sym;
5368 const struct block *block;
5369 const char *name;
5370 const int wild_match_p = should_use_wild_match (name0);
5371 int cacheIfUnique;
5372 int ndefns;
5373
5374 obstack_free (&symbol_list_obstack, NULL);
5375 obstack_init (&symbol_list_obstack);
5376
5377 cacheIfUnique = 0;
5378
5379 /* Search specified block and its superiors. */
5380
5381 name = name0;
5382 block = block0;
5383
5384 /* Special case: If the user specifies a symbol name inside package
5385 Standard, do a non-wild matching of the symbol name without
5386 the "standard__" prefix. This was primarily introduced in order
5387 to allow the user to specifically access the standard exceptions
5388 using, for instance, Standard.Constraint_Error when Constraint_Error
5389 is ambiguous (due to the user defining its own Constraint_Error
5390 entity inside its program). */
5391 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
5392 {
5393 block = NULL;
5394 name = name0 + sizeof ("standard__") - 1;
5395 }
5396
5397 /* Check the non-global symbols. If we have ANY match, then we're done. */
5398
5399 if (block != NULL)
5400 {
5401 if (full_search)
5402 {
5403 ada_add_local_symbols (&symbol_list_obstack, name, block,
5404 namespace, wild_match_p);
5405 }
5406 else
5407 {
5408 /* In the !full_search case we're are being called by
5409 ada_iterate_over_symbols, and we don't want to search
5410 superblocks. */
5411 ada_add_block_symbols (&symbol_list_obstack, block, name,
5412 namespace, NULL, wild_match_p);
5413 }
5414 if (num_defns_collected (&symbol_list_obstack) > 0 || !full_search)
5415 goto done;
5416 }
5417
5418 /* No non-global symbols found. Check our cache to see if we have
5419 already performed this search before. If we have, then return
5420 the same result. */
5421
5422 cacheIfUnique = 1;
5423 if (lookup_cached_symbol (name0, namespace, &sym, &block))
5424 {
5425 if (sym != NULL)
5426 add_defn_to_vec (&symbol_list_obstack, sym, block);
5427 goto done;
5428 }
5429
5430 /* Search symbols from all global blocks. */
5431
5432 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
5433 wild_match_p);
5434
5435 /* Now add symbols from all per-file blocks if we've gotten no hits
5436 (not strictly correct, but perhaps better than an error). */
5437
5438 if (num_defns_collected (&symbol_list_obstack) == 0)
5439 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
5440 wild_match_p);
5441
5442 done:
5443 ndefns = num_defns_collected (&symbol_list_obstack);
5444 *results = defns_collected (&symbol_list_obstack, 1);
5445
5446 ndefns = remove_extra_symbols (*results, ndefns);
5447
5448 if (ndefns == 0 && full_search)
5449 cache_symbol (name0, namespace, NULL, NULL);
5450
5451 if (ndefns == 1 && full_search && cacheIfUnique)
5452 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
5453
5454 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
5455
5456 return ndefns;
5457 }
5458
5459 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing scope and
5460 in global scopes, returning the number of matches, and setting *RESULTS
5461 to a vector of (SYM,BLOCK) tuples.
5462 See ada_lookup_symbol_list_worker for further details. */
5463
5464 int
5465 ada_lookup_symbol_list (const char *name0, const struct block *block0,
5466 domain_enum domain, struct ada_symbol_info **results)
5467 {
5468 return ada_lookup_symbol_list_worker (name0, block0, domain, results, 1);
5469 }
5470
5471 /* Implementation of the la_iterate_over_symbols method. */
5472
5473 static void
5474 ada_iterate_over_symbols (const struct block *block,
5475 const char *name, domain_enum domain,
5476 symbol_found_callback_ftype *callback,
5477 void *data)
5478 {
5479 int ndefs, i;
5480 struct ada_symbol_info *results;
5481
5482 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5483 for (i = 0; i < ndefs; ++i)
5484 {
5485 if (! (*callback) (results[i].sym, data))
5486 break;
5487 }
5488 }
5489
5490 /* If NAME is the name of an entity, return a string that should
5491 be used to look that entity up in Ada units. This string should
5492 be deallocated after use using xfree.
5493
5494 NAME can have any form that the "break" or "print" commands might
5495 recognize. In other words, it does not have to be the "natural"
5496 name, or the "encoded" name. */
5497
5498 char *
5499 ada_name_for_lookup (const char *name)
5500 {
5501 char *canon;
5502 int nlen = strlen (name);
5503
5504 if (name[0] == '<' && name[nlen - 1] == '>')
5505 {
5506 canon = xmalloc (nlen - 1);
5507 memcpy (canon, name + 1, nlen - 2);
5508 canon[nlen - 2] = '\0';
5509 }
5510 else
5511 canon = xstrdup (ada_encode (ada_fold_name (name)));
5512 return canon;
5513 }
5514
5515 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5516 to 1, but choosing the first symbol found if there are multiple
5517 choices.
5518
5519 The result is stored in *INFO, which must be non-NULL.
5520 If no match is found, INFO->SYM is set to NULL. */
5521
5522 void
5523 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5524 domain_enum namespace,
5525 struct ada_symbol_info *info)
5526 {
5527 struct ada_symbol_info *candidates;
5528 int n_candidates;
5529
5530 gdb_assert (info != NULL);
5531 memset (info, 0, sizeof (struct ada_symbol_info));
5532
5533 n_candidates = ada_lookup_symbol_list (name, block, namespace, &candidates);
5534 if (n_candidates == 0)
5535 return;
5536
5537 *info = candidates[0];
5538 info->sym = fixup_symbol_section (info->sym, NULL);
5539 }
5540
5541 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5542 scope and in global scopes, or NULL if none. NAME is folded and
5543 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5544 choosing the first symbol if there are multiple choices.
5545 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5546
5547 struct symbol *
5548 ada_lookup_symbol (const char *name, const struct block *block0,
5549 domain_enum namespace, int *is_a_field_of_this)
5550 {
5551 struct ada_symbol_info info;
5552
5553 if (is_a_field_of_this != NULL)
5554 *is_a_field_of_this = 0;
5555
5556 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5557 block0, namespace, &info);
5558 return info.sym;
5559 }
5560
5561 static struct symbol *
5562 ada_lookup_symbol_nonlocal (const char *name,
5563 const struct block *block,
5564 const domain_enum domain)
5565 {
5566 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5567 }
5568
5569
5570 /* True iff STR is a possible encoded suffix of a normal Ada name
5571 that is to be ignored for matching purposes. Suffixes of parallel
5572 names (e.g., XVE) are not included here. Currently, the possible suffixes
5573 are given by any of the regular expressions:
5574
5575 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5576 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5577 TKB [subprogram suffix for task bodies]
5578 _E[0-9]+[bs]$ [protected object entry suffixes]
5579 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5580
5581 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5582 match is performed. This sequence is used to differentiate homonyms,
5583 is an optional part of a valid name suffix. */
5584
5585 static int
5586 is_name_suffix (const char *str)
5587 {
5588 int k;
5589 const char *matching;
5590 const int len = strlen (str);
5591
5592 /* Skip optional leading __[0-9]+. */
5593
5594 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5595 {
5596 str += 3;
5597 while (isdigit (str[0]))
5598 str += 1;
5599 }
5600
5601 /* [.$][0-9]+ */
5602
5603 if (str[0] == '.' || str[0] == '$')
5604 {
5605 matching = str + 1;
5606 while (isdigit (matching[0]))
5607 matching += 1;
5608 if (matching[0] == '\0')
5609 return 1;
5610 }
5611
5612 /* ___[0-9]+ */
5613
5614 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5615 {
5616 matching = str + 3;
5617 while (isdigit (matching[0]))
5618 matching += 1;
5619 if (matching[0] == '\0')
5620 return 1;
5621 }
5622
5623 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5624
5625 if (strcmp (str, "TKB") == 0)
5626 return 1;
5627
5628 #if 0
5629 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5630 with a N at the end. Unfortunately, the compiler uses the same
5631 convention for other internal types it creates. So treating
5632 all entity names that end with an "N" as a name suffix causes
5633 some regressions. For instance, consider the case of an enumerated
5634 type. To support the 'Image attribute, it creates an array whose
5635 name ends with N.
5636 Having a single character like this as a suffix carrying some
5637 information is a bit risky. Perhaps we should change the encoding
5638 to be something like "_N" instead. In the meantime, do not do
5639 the following check. */
5640 /* Protected Object Subprograms */
5641 if (len == 1 && str [0] == 'N')
5642 return 1;
5643 #endif
5644
5645 /* _E[0-9]+[bs]$ */
5646 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5647 {
5648 matching = str + 3;
5649 while (isdigit (matching[0]))
5650 matching += 1;
5651 if ((matching[0] == 'b' || matching[0] == 's')
5652 && matching [1] == '\0')
5653 return 1;
5654 }
5655
5656 /* ??? We should not modify STR directly, as we are doing below. This
5657 is fine in this case, but may become problematic later if we find
5658 that this alternative did not work, and want to try matching
5659 another one from the begining of STR. Since we modified it, we
5660 won't be able to find the begining of the string anymore! */
5661 if (str[0] == 'X')
5662 {
5663 str += 1;
5664 while (str[0] != '_' && str[0] != '\0')
5665 {
5666 if (str[0] != 'n' && str[0] != 'b')
5667 return 0;
5668 str += 1;
5669 }
5670 }
5671
5672 if (str[0] == '\000')
5673 return 1;
5674
5675 if (str[0] == '_')
5676 {
5677 if (str[1] != '_' || str[2] == '\000')
5678 return 0;
5679 if (str[2] == '_')
5680 {
5681 if (strcmp (str + 3, "JM") == 0)
5682 return 1;
5683 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5684 the LJM suffix in favor of the JM one. But we will
5685 still accept LJM as a valid suffix for a reasonable
5686 amount of time, just to allow ourselves to debug programs
5687 compiled using an older version of GNAT. */
5688 if (strcmp (str + 3, "LJM") == 0)
5689 return 1;
5690 if (str[3] != 'X')
5691 return 0;
5692 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5693 || str[4] == 'U' || str[4] == 'P')
5694 return 1;
5695 if (str[4] == 'R' && str[5] != 'T')
5696 return 1;
5697 return 0;
5698 }
5699 if (!isdigit (str[2]))
5700 return 0;
5701 for (k = 3; str[k] != '\0'; k += 1)
5702 if (!isdigit (str[k]) && str[k] != '_')
5703 return 0;
5704 return 1;
5705 }
5706 if (str[0] == '$' && isdigit (str[1]))
5707 {
5708 for (k = 2; str[k] != '\0'; k += 1)
5709 if (!isdigit (str[k]) && str[k] != '_')
5710 return 0;
5711 return 1;
5712 }
5713 return 0;
5714 }
5715
5716 /* Return non-zero if the string starting at NAME and ending before
5717 NAME_END contains no capital letters. */
5718
5719 static int
5720 is_valid_name_for_wild_match (const char *name0)
5721 {
5722 const char *decoded_name = ada_decode (name0);
5723 int i;
5724
5725 /* If the decoded name starts with an angle bracket, it means that
5726 NAME0 does not follow the GNAT encoding format. It should then
5727 not be allowed as a possible wild match. */
5728 if (decoded_name[0] == '<')
5729 return 0;
5730
5731 for (i=0; decoded_name[i] != '\0'; i++)
5732 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5733 return 0;
5734
5735 return 1;
5736 }
5737
5738 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5739 that could start a simple name. Assumes that *NAMEP points into
5740 the string beginning at NAME0. */
5741
5742 static int
5743 advance_wild_match (const char **namep, const char *name0, int target0)
5744 {
5745 const char *name = *namep;
5746
5747 while (1)
5748 {
5749 int t0, t1;
5750
5751 t0 = *name;
5752 if (t0 == '_')
5753 {
5754 t1 = name[1];
5755 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5756 {
5757 name += 1;
5758 if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5759 break;
5760 else
5761 name += 1;
5762 }
5763 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5764 || name[2] == target0))
5765 {
5766 name += 2;
5767 break;
5768 }
5769 else
5770 return 0;
5771 }
5772 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5773 name += 1;
5774 else
5775 return 0;
5776 }
5777
5778 *namep = name;
5779 return 1;
5780 }
5781
5782 /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5783 informational suffixes of NAME (i.e., for which is_name_suffix is
5784 true). Assumes that PATN is a lower-cased Ada simple name. */
5785
5786 static int
5787 wild_match (const char *name, const char *patn)
5788 {
5789 const char *p;
5790 const char *name0 = name;
5791
5792 while (1)
5793 {
5794 const char *match = name;
5795
5796 if (*name == *patn)
5797 {
5798 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5799 if (*p != *name)
5800 break;
5801 if (*p == '\0' && is_name_suffix (name))
5802 return match != name0 && !is_valid_name_for_wild_match (name0);
5803
5804 if (name[-1] == '_')
5805 name -= 1;
5806 }
5807 if (!advance_wild_match (&name, name0, *patn))
5808 return 1;
5809 }
5810 }
5811
5812 /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5813 informational suffix. */
5814
5815 static int
5816 full_match (const char *sym_name, const char *search_name)
5817 {
5818 return !match_name (sym_name, search_name, 0);
5819 }
5820
5821
5822 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5823 vector *defn_symbols, updating the list of symbols in OBSTACKP
5824 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5825 OBJFILE is the section containing BLOCK. */
5826
5827 static void
5828 ada_add_block_symbols (struct obstack *obstackp,
5829 const struct block *block, const char *name,
5830 domain_enum domain, struct objfile *objfile,
5831 int wild)
5832 {
5833 struct block_iterator iter;
5834 int name_len = strlen (name);
5835 /* A matching argument symbol, if any. */
5836 struct symbol *arg_sym;
5837 /* Set true when we find a matching non-argument symbol. */
5838 int found_sym;
5839 struct symbol *sym;
5840
5841 arg_sym = NULL;
5842 found_sym = 0;
5843 if (wild)
5844 {
5845 for (sym = block_iter_match_first (block, name, wild_match, &iter);
5846 sym != NULL; sym = block_iter_match_next (name, wild_match, &iter))
5847 {
5848 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5849 SYMBOL_DOMAIN (sym), domain)
5850 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
5851 {
5852 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5853 continue;
5854 else if (SYMBOL_IS_ARGUMENT (sym))
5855 arg_sym = sym;
5856 else
5857 {
5858 found_sym = 1;
5859 add_defn_to_vec (obstackp,
5860 fixup_symbol_section (sym, objfile),
5861 block);
5862 }
5863 }
5864 }
5865 }
5866 else
5867 {
5868 for (sym = block_iter_match_first (block, name, full_match, &iter);
5869 sym != NULL; sym = block_iter_match_next (name, full_match, &iter))
5870 {
5871 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5872 SYMBOL_DOMAIN (sym), domain))
5873 {
5874 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5875 {
5876 if (SYMBOL_IS_ARGUMENT (sym))
5877 arg_sym = sym;
5878 else
5879 {
5880 found_sym = 1;
5881 add_defn_to_vec (obstackp,
5882 fixup_symbol_section (sym, objfile),
5883 block);
5884 }
5885 }
5886 }
5887 }
5888 }
5889
5890 if (!found_sym && arg_sym != NULL)
5891 {
5892 add_defn_to_vec (obstackp,
5893 fixup_symbol_section (arg_sym, objfile),
5894 block);
5895 }
5896
5897 if (!wild)
5898 {
5899 arg_sym = NULL;
5900 found_sym = 0;
5901
5902 ALL_BLOCK_SYMBOLS (block, iter, sym)
5903 {
5904 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5905 SYMBOL_DOMAIN (sym), domain))
5906 {
5907 int cmp;
5908
5909 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5910 if (cmp == 0)
5911 {
5912 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5913 if (cmp == 0)
5914 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5915 name_len);
5916 }
5917
5918 if (cmp == 0
5919 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5920 {
5921 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5922 {
5923 if (SYMBOL_IS_ARGUMENT (sym))
5924 arg_sym = sym;
5925 else
5926 {
5927 found_sym = 1;
5928 add_defn_to_vec (obstackp,
5929 fixup_symbol_section (sym, objfile),
5930 block);
5931 }
5932 }
5933 }
5934 }
5935 }
5936
5937 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5938 They aren't parameters, right? */
5939 if (!found_sym && arg_sym != NULL)
5940 {
5941 add_defn_to_vec (obstackp,
5942 fixup_symbol_section (arg_sym, objfile),
5943 block);
5944 }
5945 }
5946 }
5947 \f
5948
5949 /* Symbol Completion */
5950
5951 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
5952 name in a form that's appropriate for the completion. The result
5953 does not need to be deallocated, but is only good until the next call.
5954
5955 TEXT_LEN is equal to the length of TEXT.
5956 Perform a wild match if WILD_MATCH_P is set.
5957 ENCODED_P should be set if TEXT represents the start of a symbol name
5958 in its encoded form. */
5959
5960 static const char *
5961 symbol_completion_match (const char *sym_name,
5962 const char *text, int text_len,
5963 int wild_match_p, int encoded_p)
5964 {
5965 const int verbatim_match = (text[0] == '<');
5966 int match = 0;
5967
5968 if (verbatim_match)
5969 {
5970 /* Strip the leading angle bracket. */
5971 text = text + 1;
5972 text_len--;
5973 }
5974
5975 /* First, test against the fully qualified name of the symbol. */
5976
5977 if (strncmp (sym_name, text, text_len) == 0)
5978 match = 1;
5979
5980 if (match && !encoded_p)
5981 {
5982 /* One needed check before declaring a positive match is to verify
5983 that iff we are doing a verbatim match, the decoded version
5984 of the symbol name starts with '<'. Otherwise, this symbol name
5985 is not a suitable completion. */
5986 const char *sym_name_copy = sym_name;
5987 int has_angle_bracket;
5988
5989 sym_name = ada_decode (sym_name);
5990 has_angle_bracket = (sym_name[0] == '<');
5991 match = (has_angle_bracket == verbatim_match);
5992 sym_name = sym_name_copy;
5993 }
5994
5995 if (match && !verbatim_match)
5996 {
5997 /* When doing non-verbatim match, another check that needs to
5998 be done is to verify that the potentially matching symbol name
5999 does not include capital letters, because the ada-mode would
6000 not be able to understand these symbol names without the
6001 angle bracket notation. */
6002 const char *tmp;
6003
6004 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6005 if (*tmp != '\0')
6006 match = 0;
6007 }
6008
6009 /* Second: Try wild matching... */
6010
6011 if (!match && wild_match_p)
6012 {
6013 /* Since we are doing wild matching, this means that TEXT
6014 may represent an unqualified symbol name. We therefore must
6015 also compare TEXT against the unqualified name of the symbol. */
6016 sym_name = ada_unqualified_name (ada_decode (sym_name));
6017
6018 if (strncmp (sym_name, text, text_len) == 0)
6019 match = 1;
6020 }
6021
6022 /* Finally: If we found a mach, prepare the result to return. */
6023
6024 if (!match)
6025 return NULL;
6026
6027 if (verbatim_match)
6028 sym_name = add_angle_brackets (sym_name);
6029
6030 if (!encoded_p)
6031 sym_name = ada_decode (sym_name);
6032
6033 return sym_name;
6034 }
6035
6036 /* A companion function to ada_make_symbol_completion_list().
6037 Check if SYM_NAME represents a symbol which name would be suitable
6038 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
6039 it is appended at the end of the given string vector SV.
6040
6041 ORIG_TEXT is the string original string from the user command
6042 that needs to be completed. WORD is the entire command on which
6043 completion should be performed. These two parameters are used to
6044 determine which part of the symbol name should be added to the
6045 completion vector.
6046 if WILD_MATCH_P is set, then wild matching is performed.
6047 ENCODED_P should be set if TEXT represents a symbol name in its
6048 encoded formed (in which case the completion should also be
6049 encoded). */
6050
6051 static void
6052 symbol_completion_add (VEC(char_ptr) **sv,
6053 const char *sym_name,
6054 const char *text, int text_len,
6055 const char *orig_text, const char *word,
6056 int wild_match_p, int encoded_p)
6057 {
6058 const char *match = symbol_completion_match (sym_name, text, text_len,
6059 wild_match_p, encoded_p);
6060 char *completion;
6061
6062 if (match == NULL)
6063 return;
6064
6065 /* We found a match, so add the appropriate completion to the given
6066 string vector. */
6067
6068 if (word == orig_text)
6069 {
6070 completion = xmalloc (strlen (match) + 5);
6071 strcpy (completion, match);
6072 }
6073 else if (word > orig_text)
6074 {
6075 /* Return some portion of sym_name. */
6076 completion = xmalloc (strlen (match) + 5);
6077 strcpy (completion, match + (word - orig_text));
6078 }
6079 else
6080 {
6081 /* Return some of ORIG_TEXT plus sym_name. */
6082 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
6083 strncpy (completion, word, orig_text - word);
6084 completion[orig_text - word] = '\0';
6085 strcat (completion, match);
6086 }
6087
6088 VEC_safe_push (char_ptr, *sv, completion);
6089 }
6090
6091 /* An object of this type is passed as the user_data argument to the
6092 expand_symtabs_matching method. */
6093 struct add_partial_datum
6094 {
6095 VEC(char_ptr) **completions;
6096 const char *text;
6097 int text_len;
6098 const char *text0;
6099 const char *word;
6100 int wild_match;
6101 int encoded;
6102 };
6103
6104 /* A callback for expand_symtabs_matching. */
6105
6106 static int
6107 ada_complete_symbol_matcher (const char *name, void *user_data)
6108 {
6109 struct add_partial_datum *data = user_data;
6110
6111 return symbol_completion_match (name, data->text, data->text_len,
6112 data->wild_match, data->encoded) != NULL;
6113 }
6114
6115 /* Return a list of possible symbol names completing TEXT0. WORD is
6116 the entire command on which completion is made. */
6117
6118 static VEC (char_ptr) *
6119 ada_make_symbol_completion_list (const char *text0, const char *word,
6120 enum type_code code)
6121 {
6122 char *text;
6123 int text_len;
6124 int wild_match_p;
6125 int encoded_p;
6126 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
6127 struct symbol *sym;
6128 struct symtab *s;
6129 struct minimal_symbol *msymbol;
6130 struct objfile *objfile;
6131 const struct block *b, *surrounding_static_block = 0;
6132 int i;
6133 struct block_iterator iter;
6134 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
6135
6136 gdb_assert (code == TYPE_CODE_UNDEF);
6137
6138 if (text0[0] == '<')
6139 {
6140 text = xstrdup (text0);
6141 make_cleanup (xfree, text);
6142 text_len = strlen (text);
6143 wild_match_p = 0;
6144 encoded_p = 1;
6145 }
6146 else
6147 {
6148 text = xstrdup (ada_encode (text0));
6149 make_cleanup (xfree, text);
6150 text_len = strlen (text);
6151 for (i = 0; i < text_len; i++)
6152 text[i] = tolower (text[i]);
6153
6154 encoded_p = (strstr (text0, "__") != NULL);
6155 /* If the name contains a ".", then the user is entering a fully
6156 qualified entity name, and the match must not be done in wild
6157 mode. Similarly, if the user wants to complete what looks like
6158 an encoded name, the match must not be done in wild mode. */
6159 wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
6160 }
6161
6162 /* First, look at the partial symtab symbols. */
6163 {
6164 struct add_partial_datum data;
6165
6166 data.completions = &completions;
6167 data.text = text;
6168 data.text_len = text_len;
6169 data.text0 = text0;
6170 data.word = word;
6171 data.wild_match = wild_match_p;
6172 data.encoded = encoded_p;
6173 expand_symtabs_matching (NULL, ada_complete_symbol_matcher, ALL_DOMAIN,
6174 &data);
6175 }
6176
6177 /* At this point scan through the misc symbol vectors and add each
6178 symbol you find to the list. Eventually we want to ignore
6179 anything that isn't a text symbol (everything else will be
6180 handled by the psymtab code above). */
6181
6182 ALL_MSYMBOLS (objfile, msymbol)
6183 {
6184 QUIT;
6185 symbol_completion_add (&completions, MSYMBOL_LINKAGE_NAME (msymbol),
6186 text, text_len, text0, word, wild_match_p,
6187 encoded_p);
6188 }
6189
6190 /* Search upwards from currently selected frame (so that we can
6191 complete on local vars. */
6192
6193 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6194 {
6195 if (!BLOCK_SUPERBLOCK (b))
6196 surrounding_static_block = b; /* For elmin of dups */
6197
6198 ALL_BLOCK_SYMBOLS (b, iter, sym)
6199 {
6200 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6201 text, text_len, text0, word,
6202 wild_match_p, encoded_p);
6203 }
6204 }
6205
6206 /* Go through the symtabs and check the externs and statics for
6207 symbols which match. */
6208
6209 ALL_SYMTABS (objfile, s)
6210 {
6211 QUIT;
6212 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
6213 ALL_BLOCK_SYMBOLS (b, iter, sym)
6214 {
6215 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6216 text, text_len, text0, word,
6217 wild_match_p, encoded_p);
6218 }
6219 }
6220
6221 ALL_SYMTABS (objfile, s)
6222 {
6223 QUIT;
6224 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
6225 /* Don't do this block twice. */
6226 if (b == surrounding_static_block)
6227 continue;
6228 ALL_BLOCK_SYMBOLS (b, iter, sym)
6229 {
6230 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6231 text, text_len, text0, word,
6232 wild_match_p, encoded_p);
6233 }
6234 }
6235
6236 do_cleanups (old_chain);
6237 return completions;
6238 }
6239
6240 /* Field Access */
6241
6242 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6243 for tagged types. */
6244
6245 static int
6246 ada_is_dispatch_table_ptr_type (struct type *type)
6247 {
6248 const char *name;
6249
6250 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6251 return 0;
6252
6253 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6254 if (name == NULL)
6255 return 0;
6256
6257 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6258 }
6259
6260 /* Return non-zero if TYPE is an interface tag. */
6261
6262 static int
6263 ada_is_interface_tag (struct type *type)
6264 {
6265 const char *name = TYPE_NAME (type);
6266
6267 if (name == NULL)
6268 return 0;
6269
6270 return (strcmp (name, "ada__tags__interface_tag") == 0);
6271 }
6272
6273 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6274 to be invisible to users. */
6275
6276 int
6277 ada_is_ignored_field (struct type *type, int field_num)
6278 {
6279 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6280 return 1;
6281
6282 /* Check the name of that field. */
6283 {
6284 const char *name = TYPE_FIELD_NAME (type, field_num);
6285
6286 /* Anonymous field names should not be printed.
6287 brobecker/2007-02-20: I don't think this can actually happen
6288 but we don't want to print the value of annonymous fields anyway. */
6289 if (name == NULL)
6290 return 1;
6291
6292 /* Normally, fields whose name start with an underscore ("_")
6293 are fields that have been internally generated by the compiler,
6294 and thus should not be printed. The "_parent" field is special,
6295 however: This is a field internally generated by the compiler
6296 for tagged types, and it contains the components inherited from
6297 the parent type. This field should not be printed as is, but
6298 should not be ignored either. */
6299 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
6300 return 1;
6301 }
6302
6303 /* If this is the dispatch table of a tagged type or an interface tag,
6304 then ignore. */
6305 if (ada_is_tagged_type (type, 1)
6306 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6307 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6308 return 1;
6309
6310 /* Not a special field, so it should not be ignored. */
6311 return 0;
6312 }
6313
6314 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6315 pointer or reference type whose ultimate target has a tag field. */
6316
6317 int
6318 ada_is_tagged_type (struct type *type, int refok)
6319 {
6320 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
6321 }
6322
6323 /* True iff TYPE represents the type of X'Tag */
6324
6325 int
6326 ada_is_tag_type (struct type *type)
6327 {
6328 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6329 return 0;
6330 else
6331 {
6332 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6333
6334 return (name != NULL
6335 && strcmp (name, "ada__tags__dispatch_table") == 0);
6336 }
6337 }
6338
6339 /* The type of the tag on VAL. */
6340
6341 struct type *
6342 ada_tag_type (struct value *val)
6343 {
6344 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
6345 }
6346
6347 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6348 retired at Ada 05). */
6349
6350 static int
6351 is_ada95_tag (struct value *tag)
6352 {
6353 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6354 }
6355
6356 /* The value of the tag on VAL. */
6357
6358 struct value *
6359 ada_value_tag (struct value *val)
6360 {
6361 return ada_value_struct_elt (val, "_tag", 0);
6362 }
6363
6364 /* The value of the tag on the object of type TYPE whose contents are
6365 saved at VALADDR, if it is non-null, or is at memory address
6366 ADDRESS. */
6367
6368 static struct value *
6369 value_tag_from_contents_and_address (struct type *type,
6370 const gdb_byte *valaddr,
6371 CORE_ADDR address)
6372 {
6373 int tag_byte_offset;
6374 struct type *tag_type;
6375
6376 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6377 NULL, NULL, NULL))
6378 {
6379 const gdb_byte *valaddr1 = ((valaddr == NULL)
6380 ? NULL
6381 : valaddr + tag_byte_offset);
6382 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6383
6384 return value_from_contents_and_address (tag_type, valaddr1, address1);
6385 }
6386 return NULL;
6387 }
6388
6389 static struct type *
6390 type_from_tag (struct value *tag)
6391 {
6392 const char *type_name = ada_tag_name (tag);
6393
6394 if (type_name != NULL)
6395 return ada_find_any_type (ada_encode (type_name));
6396 return NULL;
6397 }
6398
6399 /* Given a value OBJ of a tagged type, return a value of this
6400 type at the base address of the object. The base address, as
6401 defined in Ada.Tags, it is the address of the primary tag of
6402 the object, and therefore where the field values of its full
6403 view can be fetched. */
6404
6405 struct value *
6406 ada_tag_value_at_base_address (struct value *obj)
6407 {
6408 volatile struct gdb_exception e;
6409 struct value *val;
6410 LONGEST offset_to_top = 0;
6411 struct type *ptr_type, *obj_type;
6412 struct value *tag;
6413 CORE_ADDR base_address;
6414
6415 obj_type = value_type (obj);
6416
6417 /* It is the responsability of the caller to deref pointers. */
6418
6419 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6420 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6421 return obj;
6422
6423 tag = ada_value_tag (obj);
6424 if (!tag)
6425 return obj;
6426
6427 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6428
6429 if (is_ada95_tag (tag))
6430 return obj;
6431
6432 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6433 ptr_type = lookup_pointer_type (ptr_type);
6434 val = value_cast (ptr_type, tag);
6435 if (!val)
6436 return obj;
6437
6438 /* It is perfectly possible that an exception be raised while
6439 trying to determine the base address, just like for the tag;
6440 see ada_tag_name for more details. We do not print the error
6441 message for the same reason. */
6442
6443 TRY_CATCH (e, RETURN_MASK_ERROR)
6444 {
6445 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6446 }
6447
6448 if (e.reason < 0)
6449 return obj;
6450
6451 /* If offset is null, nothing to do. */
6452
6453 if (offset_to_top == 0)
6454 return obj;
6455
6456 /* -1 is a special case in Ada.Tags; however, what should be done
6457 is not quite clear from the documentation. So do nothing for
6458 now. */
6459
6460 if (offset_to_top == -1)
6461 return obj;
6462
6463 base_address = value_address (obj) - offset_to_top;
6464 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6465
6466 /* Make sure that we have a proper tag at the new address.
6467 Otherwise, offset_to_top is bogus (which can happen when
6468 the object is not initialized yet). */
6469
6470 if (!tag)
6471 return obj;
6472
6473 obj_type = type_from_tag (tag);
6474
6475 if (!obj_type)
6476 return obj;
6477
6478 return value_from_contents_and_address (obj_type, NULL, base_address);
6479 }
6480
6481 /* Return the "ada__tags__type_specific_data" type. */
6482
6483 static struct type *
6484 ada_get_tsd_type (struct inferior *inf)
6485 {
6486 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6487
6488 if (data->tsd_type == 0)
6489 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6490 return data->tsd_type;
6491 }
6492
6493 /* Return the TSD (type-specific data) associated to the given TAG.
6494 TAG is assumed to be the tag of a tagged-type entity.
6495
6496 May return NULL if we are unable to get the TSD. */
6497
6498 static struct value *
6499 ada_get_tsd_from_tag (struct value *tag)
6500 {
6501 struct value *val;
6502 struct type *type;
6503
6504 /* First option: The TSD is simply stored as a field of our TAG.
6505 Only older versions of GNAT would use this format, but we have
6506 to test it first, because there are no visible markers for
6507 the current approach except the absence of that field. */
6508
6509 val = ada_value_struct_elt (tag, "tsd", 1);
6510 if (val)
6511 return val;
6512
6513 /* Try the second representation for the dispatch table (in which
6514 there is no explicit 'tsd' field in the referent of the tag pointer,
6515 and instead the tsd pointer is stored just before the dispatch
6516 table. */
6517
6518 type = ada_get_tsd_type (current_inferior());
6519 if (type == NULL)
6520 return NULL;
6521 type = lookup_pointer_type (lookup_pointer_type (type));
6522 val = value_cast (type, tag);
6523 if (val == NULL)
6524 return NULL;
6525 return value_ind (value_ptradd (val, -1));
6526 }
6527
6528 /* Given the TSD of a tag (type-specific data), return a string
6529 containing the name of the associated type.
6530
6531 The returned value is good until the next call. May return NULL
6532 if we are unable to determine the tag name. */
6533
6534 static char *
6535 ada_tag_name_from_tsd (struct value *tsd)
6536 {
6537 static char name[1024];
6538 char *p;
6539 struct value *val;
6540
6541 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6542 if (val == NULL)
6543 return NULL;
6544 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6545 for (p = name; *p != '\0'; p += 1)
6546 if (isalpha (*p))
6547 *p = tolower (*p);
6548 return name;
6549 }
6550
6551 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6552 a C string.
6553
6554 Return NULL if the TAG is not an Ada tag, or if we were unable to
6555 determine the name of that tag. The result is good until the next
6556 call. */
6557
6558 const char *
6559 ada_tag_name (struct value *tag)
6560 {
6561 volatile struct gdb_exception e;
6562 char *name = NULL;
6563
6564 if (!ada_is_tag_type (value_type (tag)))
6565 return NULL;
6566
6567 /* It is perfectly possible that an exception be raised while trying
6568 to determine the TAG's name, even under normal circumstances:
6569 The associated variable may be uninitialized or corrupted, for
6570 instance. We do not let any exception propagate past this point.
6571 instead we return NULL.
6572
6573 We also do not print the error message either (which often is very
6574 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6575 the caller print a more meaningful message if necessary. */
6576 TRY_CATCH (e, RETURN_MASK_ERROR)
6577 {
6578 struct value *tsd = ada_get_tsd_from_tag (tag);
6579
6580 if (tsd != NULL)
6581 name = ada_tag_name_from_tsd (tsd);
6582 }
6583
6584 return name;
6585 }
6586
6587 /* The parent type of TYPE, or NULL if none. */
6588
6589 struct type *
6590 ada_parent_type (struct type *type)
6591 {
6592 int i;
6593
6594 type = ada_check_typedef (type);
6595
6596 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6597 return NULL;
6598
6599 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6600 if (ada_is_parent_field (type, i))
6601 {
6602 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6603
6604 /* If the _parent field is a pointer, then dereference it. */
6605 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6606 parent_type = TYPE_TARGET_TYPE (parent_type);
6607 /* If there is a parallel XVS type, get the actual base type. */
6608 parent_type = ada_get_base_type (parent_type);
6609
6610 return ada_check_typedef (parent_type);
6611 }
6612
6613 return NULL;
6614 }
6615
6616 /* True iff field number FIELD_NUM of structure type TYPE contains the
6617 parent-type (inherited) fields of a derived type. Assumes TYPE is
6618 a structure type with at least FIELD_NUM+1 fields. */
6619
6620 int
6621 ada_is_parent_field (struct type *type, int field_num)
6622 {
6623 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6624
6625 return (name != NULL
6626 && (strncmp (name, "PARENT", 6) == 0
6627 || strncmp (name, "_parent", 7) == 0));
6628 }
6629
6630 /* True iff field number FIELD_NUM of structure type TYPE is a
6631 transparent wrapper field (which should be silently traversed when doing
6632 field selection and flattened when printing). Assumes TYPE is a
6633 structure type with at least FIELD_NUM+1 fields. Such fields are always
6634 structures. */
6635
6636 int
6637 ada_is_wrapper_field (struct type *type, int field_num)
6638 {
6639 const char *name = TYPE_FIELD_NAME (type, field_num);
6640
6641 return (name != NULL
6642 && (strncmp (name, "PARENT", 6) == 0
6643 || strcmp (name, "REP") == 0
6644 || strncmp (name, "_parent", 7) == 0
6645 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6646 }
6647
6648 /* True iff field number FIELD_NUM of structure or union type TYPE
6649 is a variant wrapper. Assumes TYPE is a structure type with at least
6650 FIELD_NUM+1 fields. */
6651
6652 int
6653 ada_is_variant_part (struct type *type, int field_num)
6654 {
6655 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6656
6657 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
6658 || (is_dynamic_field (type, field_num)
6659 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6660 == TYPE_CODE_UNION)));
6661 }
6662
6663 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6664 whose discriminants are contained in the record type OUTER_TYPE,
6665 returns the type of the controlling discriminant for the variant.
6666 May return NULL if the type could not be found. */
6667
6668 struct type *
6669 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6670 {
6671 char *name = ada_variant_discrim_name (var_type);
6672
6673 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
6674 }
6675
6676 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6677 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6678 represents a 'when others' clause; otherwise 0. */
6679
6680 int
6681 ada_is_others_clause (struct type *type, int field_num)
6682 {
6683 const char *name = TYPE_FIELD_NAME (type, field_num);
6684
6685 return (name != NULL && name[0] == 'O');
6686 }
6687
6688 /* Assuming that TYPE0 is the type of the variant part of a record,
6689 returns the name of the discriminant controlling the variant.
6690 The value is valid until the next call to ada_variant_discrim_name. */
6691
6692 char *
6693 ada_variant_discrim_name (struct type *type0)
6694 {
6695 static char *result = NULL;
6696 static size_t result_len = 0;
6697 struct type *type;
6698 const char *name;
6699 const char *discrim_end;
6700 const char *discrim_start;
6701
6702 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6703 type = TYPE_TARGET_TYPE (type0);
6704 else
6705 type = type0;
6706
6707 name = ada_type_name (type);
6708
6709 if (name == NULL || name[0] == '\000')
6710 return "";
6711
6712 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6713 discrim_end -= 1)
6714 {
6715 if (strncmp (discrim_end, "___XVN", 6) == 0)
6716 break;
6717 }
6718 if (discrim_end == name)
6719 return "";
6720
6721 for (discrim_start = discrim_end; discrim_start != name + 3;
6722 discrim_start -= 1)
6723 {
6724 if (discrim_start == name + 1)
6725 return "";
6726 if ((discrim_start > name + 3
6727 && strncmp (discrim_start - 3, "___", 3) == 0)
6728 || discrim_start[-1] == '.')
6729 break;
6730 }
6731
6732 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6733 strncpy (result, discrim_start, discrim_end - discrim_start);
6734 result[discrim_end - discrim_start] = '\0';
6735 return result;
6736 }
6737
6738 /* Scan STR for a subtype-encoded number, beginning at position K.
6739 Put the position of the character just past the number scanned in
6740 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6741 Return 1 if there was a valid number at the given position, and 0
6742 otherwise. A "subtype-encoded" number consists of the absolute value
6743 in decimal, followed by the letter 'm' to indicate a negative number.
6744 Assumes 0m does not occur. */
6745
6746 int
6747 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6748 {
6749 ULONGEST RU;
6750
6751 if (!isdigit (str[k]))
6752 return 0;
6753
6754 /* Do it the hard way so as not to make any assumption about
6755 the relationship of unsigned long (%lu scan format code) and
6756 LONGEST. */
6757 RU = 0;
6758 while (isdigit (str[k]))
6759 {
6760 RU = RU * 10 + (str[k] - '0');
6761 k += 1;
6762 }
6763
6764 if (str[k] == 'm')
6765 {
6766 if (R != NULL)
6767 *R = (-(LONGEST) (RU - 1)) - 1;
6768 k += 1;
6769 }
6770 else if (R != NULL)
6771 *R = (LONGEST) RU;
6772
6773 /* NOTE on the above: Technically, C does not say what the results of
6774 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6775 number representable as a LONGEST (although either would probably work
6776 in most implementations). When RU>0, the locution in the then branch
6777 above is always equivalent to the negative of RU. */
6778
6779 if (new_k != NULL)
6780 *new_k = k;
6781 return 1;
6782 }
6783
6784 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6785 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6786 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6787
6788 int
6789 ada_in_variant (LONGEST val, struct type *type, int field_num)
6790 {
6791 const char *name = TYPE_FIELD_NAME (type, field_num);
6792 int p;
6793
6794 p = 0;
6795 while (1)
6796 {
6797 switch (name[p])
6798 {
6799 case '\0':
6800 return 0;
6801 case 'S':
6802 {
6803 LONGEST W;
6804
6805 if (!ada_scan_number (name, p + 1, &W, &p))
6806 return 0;
6807 if (val == W)
6808 return 1;
6809 break;
6810 }
6811 case 'R':
6812 {
6813 LONGEST L, U;
6814
6815 if (!ada_scan_number (name, p + 1, &L, &p)
6816 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6817 return 0;
6818 if (val >= L && val <= U)
6819 return 1;
6820 break;
6821 }
6822 case 'O':
6823 return 1;
6824 default:
6825 return 0;
6826 }
6827 }
6828 }
6829
6830 /* FIXME: Lots of redundancy below. Try to consolidate. */
6831
6832 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6833 ARG_TYPE, extract and return the value of one of its (non-static)
6834 fields. FIELDNO says which field. Differs from value_primitive_field
6835 only in that it can handle packed values of arbitrary type. */
6836
6837 static struct value *
6838 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6839 struct type *arg_type)
6840 {
6841 struct type *type;
6842
6843 arg_type = ada_check_typedef (arg_type);
6844 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6845
6846 /* Handle packed fields. */
6847
6848 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6849 {
6850 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6851 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6852
6853 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
6854 offset + bit_pos / 8,
6855 bit_pos % 8, bit_size, type);
6856 }
6857 else
6858 return value_primitive_field (arg1, offset, fieldno, arg_type);
6859 }
6860
6861 /* Find field with name NAME in object of type TYPE. If found,
6862 set the following for each argument that is non-null:
6863 - *FIELD_TYPE_P to the field's type;
6864 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6865 an object of that type;
6866 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6867 - *BIT_SIZE_P to its size in bits if the field is packed, and
6868 0 otherwise;
6869 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6870 fields up to but not including the desired field, or by the total
6871 number of fields if not found. A NULL value of NAME never
6872 matches; the function just counts visible fields in this case.
6873
6874 Returns 1 if found, 0 otherwise. */
6875
6876 static int
6877 find_struct_field (const char *name, struct type *type, int offset,
6878 struct type **field_type_p,
6879 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6880 int *index_p)
6881 {
6882 int i;
6883
6884 type = ada_check_typedef (type);
6885
6886 if (field_type_p != NULL)
6887 *field_type_p = NULL;
6888 if (byte_offset_p != NULL)
6889 *byte_offset_p = 0;
6890 if (bit_offset_p != NULL)
6891 *bit_offset_p = 0;
6892 if (bit_size_p != NULL)
6893 *bit_size_p = 0;
6894
6895 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6896 {
6897 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6898 int fld_offset = offset + bit_pos / 8;
6899 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6900
6901 if (t_field_name == NULL)
6902 continue;
6903
6904 else if (name != NULL && field_name_match (t_field_name, name))
6905 {
6906 int bit_size = TYPE_FIELD_BITSIZE (type, i);
6907
6908 if (field_type_p != NULL)
6909 *field_type_p = TYPE_FIELD_TYPE (type, i);
6910 if (byte_offset_p != NULL)
6911 *byte_offset_p = fld_offset;
6912 if (bit_offset_p != NULL)
6913 *bit_offset_p = bit_pos % 8;
6914 if (bit_size_p != NULL)
6915 *bit_size_p = bit_size;
6916 return 1;
6917 }
6918 else if (ada_is_wrapper_field (type, i))
6919 {
6920 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6921 field_type_p, byte_offset_p, bit_offset_p,
6922 bit_size_p, index_p))
6923 return 1;
6924 }
6925 else if (ada_is_variant_part (type, i))
6926 {
6927 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6928 fixed type?? */
6929 int j;
6930 struct type *field_type
6931 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6932
6933 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6934 {
6935 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6936 fld_offset
6937 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6938 field_type_p, byte_offset_p,
6939 bit_offset_p, bit_size_p, index_p))
6940 return 1;
6941 }
6942 }
6943 else if (index_p != NULL)
6944 *index_p += 1;
6945 }
6946 return 0;
6947 }
6948
6949 /* Number of user-visible fields in record type TYPE. */
6950
6951 static int
6952 num_visible_fields (struct type *type)
6953 {
6954 int n;
6955
6956 n = 0;
6957 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6958 return n;
6959 }
6960
6961 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
6962 and search in it assuming it has (class) type TYPE.
6963 If found, return value, else return NULL.
6964
6965 Searches recursively through wrapper fields (e.g., '_parent'). */
6966
6967 static struct value *
6968 ada_search_struct_field (char *name, struct value *arg, int offset,
6969 struct type *type)
6970 {
6971 int i;
6972
6973 type = ada_check_typedef (type);
6974 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6975 {
6976 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6977
6978 if (t_field_name == NULL)
6979 continue;
6980
6981 else if (field_name_match (t_field_name, name))
6982 return ada_value_primitive_field (arg, offset, i, type);
6983
6984 else if (ada_is_wrapper_field (type, i))
6985 {
6986 struct value *v = /* Do not let indent join lines here. */
6987 ada_search_struct_field (name, arg,
6988 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6989 TYPE_FIELD_TYPE (type, i));
6990
6991 if (v != NULL)
6992 return v;
6993 }
6994
6995 else if (ada_is_variant_part (type, i))
6996 {
6997 /* PNH: Do we ever get here? See find_struct_field. */
6998 int j;
6999 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7000 i));
7001 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7002
7003 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7004 {
7005 struct value *v = ada_search_struct_field /* Force line
7006 break. */
7007 (name, arg,
7008 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7009 TYPE_FIELD_TYPE (field_type, j));
7010
7011 if (v != NULL)
7012 return v;
7013 }
7014 }
7015 }
7016 return NULL;
7017 }
7018
7019 static struct value *ada_index_struct_field_1 (int *, struct value *,
7020 int, struct type *);
7021
7022
7023 /* Return field #INDEX in ARG, where the index is that returned by
7024 * find_struct_field through its INDEX_P argument. Adjust the address
7025 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7026 * If found, return value, else return NULL. */
7027
7028 static struct value *
7029 ada_index_struct_field (int index, struct value *arg, int offset,
7030 struct type *type)
7031 {
7032 return ada_index_struct_field_1 (&index, arg, offset, type);
7033 }
7034
7035
7036 /* Auxiliary function for ada_index_struct_field. Like
7037 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7038 * *INDEX_P. */
7039
7040 static struct value *
7041 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7042 struct type *type)
7043 {
7044 int i;
7045 type = ada_check_typedef (type);
7046
7047 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7048 {
7049 if (TYPE_FIELD_NAME (type, i) == NULL)
7050 continue;
7051 else if (ada_is_wrapper_field (type, i))
7052 {
7053 struct value *v = /* Do not let indent join lines here. */
7054 ada_index_struct_field_1 (index_p, arg,
7055 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7056 TYPE_FIELD_TYPE (type, i));
7057
7058 if (v != NULL)
7059 return v;
7060 }
7061
7062 else if (ada_is_variant_part (type, i))
7063 {
7064 /* PNH: Do we ever get here? See ada_search_struct_field,
7065 find_struct_field. */
7066 error (_("Cannot assign this kind of variant record"));
7067 }
7068 else if (*index_p == 0)
7069 return ada_value_primitive_field (arg, offset, i, type);
7070 else
7071 *index_p -= 1;
7072 }
7073 return NULL;
7074 }
7075
7076 /* Given ARG, a value of type (pointer or reference to a)*
7077 structure/union, extract the component named NAME from the ultimate
7078 target structure/union and return it as a value with its
7079 appropriate type.
7080
7081 The routine searches for NAME among all members of the structure itself
7082 and (recursively) among all members of any wrapper members
7083 (e.g., '_parent').
7084
7085 If NO_ERR, then simply return NULL in case of error, rather than
7086 calling error. */
7087
7088 struct value *
7089 ada_value_struct_elt (struct value *arg, char *name, int no_err)
7090 {
7091 struct type *t, *t1;
7092 struct value *v;
7093
7094 v = NULL;
7095 t1 = t = ada_check_typedef (value_type (arg));
7096 if (TYPE_CODE (t) == TYPE_CODE_REF)
7097 {
7098 t1 = TYPE_TARGET_TYPE (t);
7099 if (t1 == NULL)
7100 goto BadValue;
7101 t1 = ada_check_typedef (t1);
7102 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7103 {
7104 arg = coerce_ref (arg);
7105 t = t1;
7106 }
7107 }
7108
7109 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7110 {
7111 t1 = TYPE_TARGET_TYPE (t);
7112 if (t1 == NULL)
7113 goto BadValue;
7114 t1 = ada_check_typedef (t1);
7115 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7116 {
7117 arg = value_ind (arg);
7118 t = t1;
7119 }
7120 else
7121 break;
7122 }
7123
7124 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
7125 goto BadValue;
7126
7127 if (t1 == t)
7128 v = ada_search_struct_field (name, arg, 0, t);
7129 else
7130 {
7131 int bit_offset, bit_size, byte_offset;
7132 struct type *field_type;
7133 CORE_ADDR address;
7134
7135 if (TYPE_CODE (t) == TYPE_CODE_PTR)
7136 address = value_address (ada_value_ind (arg));
7137 else
7138 address = value_address (ada_coerce_ref (arg));
7139
7140 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
7141 if (find_struct_field (name, t1, 0,
7142 &field_type, &byte_offset, &bit_offset,
7143 &bit_size, NULL))
7144 {
7145 if (bit_size != 0)
7146 {
7147 if (TYPE_CODE (t) == TYPE_CODE_REF)
7148 arg = ada_coerce_ref (arg);
7149 else
7150 arg = ada_value_ind (arg);
7151 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7152 bit_offset, bit_size,
7153 field_type);
7154 }
7155 else
7156 v = value_at_lazy (field_type, address + byte_offset);
7157 }
7158 }
7159
7160 if (v != NULL || no_err)
7161 return v;
7162 else
7163 error (_("There is no member named %s."), name);
7164
7165 BadValue:
7166 if (no_err)
7167 return NULL;
7168 else
7169 error (_("Attempt to extract a component of "
7170 "a value that is not a record."));
7171 }
7172
7173 /* Given a type TYPE, look up the type of the component of type named NAME.
7174 If DISPP is non-null, add its byte displacement from the beginning of a
7175 structure (pointed to by a value) of type TYPE to *DISPP (does not
7176 work for packed fields).
7177
7178 Matches any field whose name has NAME as a prefix, possibly
7179 followed by "___".
7180
7181 TYPE can be either a struct or union. If REFOK, TYPE may also
7182 be a (pointer or reference)+ to a struct or union, and the
7183 ultimate target type will be searched.
7184
7185 Looks recursively into variant clauses and parent types.
7186
7187 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7188 TYPE is not a type of the right kind. */
7189
7190 static struct type *
7191 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
7192 int noerr, int *dispp)
7193 {
7194 int i;
7195
7196 if (name == NULL)
7197 goto BadName;
7198
7199 if (refok && type != NULL)
7200 while (1)
7201 {
7202 type = ada_check_typedef (type);
7203 if (TYPE_CODE (type) != TYPE_CODE_PTR
7204 && TYPE_CODE (type) != TYPE_CODE_REF)
7205 break;
7206 type = TYPE_TARGET_TYPE (type);
7207 }
7208
7209 if (type == NULL
7210 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7211 && TYPE_CODE (type) != TYPE_CODE_UNION))
7212 {
7213 if (noerr)
7214 return NULL;
7215 else
7216 {
7217 target_terminal_ours ();
7218 gdb_flush (gdb_stdout);
7219 if (type == NULL)
7220 error (_("Type (null) is not a structure or union type"));
7221 else
7222 {
7223 /* XXX: type_sprint */
7224 fprintf_unfiltered (gdb_stderr, _("Type "));
7225 type_print (type, "", gdb_stderr, -1);
7226 error (_(" is not a structure or union type"));
7227 }
7228 }
7229 }
7230
7231 type = to_static_fixed_type (type);
7232
7233 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7234 {
7235 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7236 struct type *t;
7237 int disp;
7238
7239 if (t_field_name == NULL)
7240 continue;
7241
7242 else if (field_name_match (t_field_name, name))
7243 {
7244 if (dispp != NULL)
7245 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
7246 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7247 }
7248
7249 else if (ada_is_wrapper_field (type, i))
7250 {
7251 disp = 0;
7252 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7253 0, 1, &disp);
7254 if (t != NULL)
7255 {
7256 if (dispp != NULL)
7257 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7258 return t;
7259 }
7260 }
7261
7262 else if (ada_is_variant_part (type, i))
7263 {
7264 int j;
7265 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7266 i));
7267
7268 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7269 {
7270 /* FIXME pnh 2008/01/26: We check for a field that is
7271 NOT wrapped in a struct, since the compiler sometimes
7272 generates these for unchecked variant types. Revisit
7273 if the compiler changes this practice. */
7274 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7275 disp = 0;
7276 if (v_field_name != NULL
7277 && field_name_match (v_field_name, name))
7278 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
7279 else
7280 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7281 j),
7282 name, 0, 1, &disp);
7283
7284 if (t != NULL)
7285 {
7286 if (dispp != NULL)
7287 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7288 return t;
7289 }
7290 }
7291 }
7292
7293 }
7294
7295 BadName:
7296 if (!noerr)
7297 {
7298 target_terminal_ours ();
7299 gdb_flush (gdb_stdout);
7300 if (name == NULL)
7301 {
7302 /* XXX: type_sprint */
7303 fprintf_unfiltered (gdb_stderr, _("Type "));
7304 type_print (type, "", gdb_stderr, -1);
7305 error (_(" has no component named <null>"));
7306 }
7307 else
7308 {
7309 /* XXX: type_sprint */
7310 fprintf_unfiltered (gdb_stderr, _("Type "));
7311 type_print (type, "", gdb_stderr, -1);
7312 error (_(" has no component named %s"), name);
7313 }
7314 }
7315
7316 return NULL;
7317 }
7318
7319 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7320 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7321 represents an unchecked union (that is, the variant part of a
7322 record that is named in an Unchecked_Union pragma). */
7323
7324 static int
7325 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7326 {
7327 char *discrim_name = ada_variant_discrim_name (var_type);
7328
7329 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
7330 == NULL);
7331 }
7332
7333
7334 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7335 within a value of type OUTER_TYPE that is stored in GDB at
7336 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7337 numbering from 0) is applicable. Returns -1 if none are. */
7338
7339 int
7340 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7341 const gdb_byte *outer_valaddr)
7342 {
7343 int others_clause;
7344 int i;
7345 char *discrim_name = ada_variant_discrim_name (var_type);
7346 struct value *outer;
7347 struct value *discrim;
7348 LONGEST discrim_val;
7349
7350 /* Using plain value_from_contents_and_address here causes problems
7351 because we will end up trying to resolve a type that is currently
7352 being constructed. */
7353 outer = value_from_contents_and_address_unresolved (outer_type,
7354 outer_valaddr, 0);
7355 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7356 if (discrim == NULL)
7357 return -1;
7358 discrim_val = value_as_long (discrim);
7359
7360 others_clause = -1;
7361 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7362 {
7363 if (ada_is_others_clause (var_type, i))
7364 others_clause = i;
7365 else if (ada_in_variant (discrim_val, var_type, i))
7366 return i;
7367 }
7368
7369 return others_clause;
7370 }
7371 \f
7372
7373
7374 /* Dynamic-Sized Records */
7375
7376 /* Strategy: The type ostensibly attached to a value with dynamic size
7377 (i.e., a size that is not statically recorded in the debugging
7378 data) does not accurately reflect the size or layout of the value.
7379 Our strategy is to convert these values to values with accurate,
7380 conventional types that are constructed on the fly. */
7381
7382 /* There is a subtle and tricky problem here. In general, we cannot
7383 determine the size of dynamic records without its data. However,
7384 the 'struct value' data structure, which GDB uses to represent
7385 quantities in the inferior process (the target), requires the size
7386 of the type at the time of its allocation in order to reserve space
7387 for GDB's internal copy of the data. That's why the
7388 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7389 rather than struct value*s.
7390
7391 However, GDB's internal history variables ($1, $2, etc.) are
7392 struct value*s containing internal copies of the data that are not, in
7393 general, the same as the data at their corresponding addresses in
7394 the target. Fortunately, the types we give to these values are all
7395 conventional, fixed-size types (as per the strategy described
7396 above), so that we don't usually have to perform the
7397 'to_fixed_xxx_type' conversions to look at their values.
7398 Unfortunately, there is one exception: if one of the internal
7399 history variables is an array whose elements are unconstrained
7400 records, then we will need to create distinct fixed types for each
7401 element selected. */
7402
7403 /* The upshot of all of this is that many routines take a (type, host
7404 address, target address) triple as arguments to represent a value.
7405 The host address, if non-null, is supposed to contain an internal
7406 copy of the relevant data; otherwise, the program is to consult the
7407 target at the target address. */
7408
7409 /* Assuming that VAL0 represents a pointer value, the result of
7410 dereferencing it. Differs from value_ind in its treatment of
7411 dynamic-sized types. */
7412
7413 struct value *
7414 ada_value_ind (struct value *val0)
7415 {
7416 struct value *val = value_ind (val0);
7417
7418 if (ada_is_tagged_type (value_type (val), 0))
7419 val = ada_tag_value_at_base_address (val);
7420
7421 return ada_to_fixed_value (val);
7422 }
7423
7424 /* The value resulting from dereferencing any "reference to"
7425 qualifiers on VAL0. */
7426
7427 static struct value *
7428 ada_coerce_ref (struct value *val0)
7429 {
7430 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7431 {
7432 struct value *val = val0;
7433
7434 val = coerce_ref (val);
7435
7436 if (ada_is_tagged_type (value_type (val), 0))
7437 val = ada_tag_value_at_base_address (val);
7438
7439 return ada_to_fixed_value (val);
7440 }
7441 else
7442 return val0;
7443 }
7444
7445 /* Return OFF rounded upward if necessary to a multiple of
7446 ALIGNMENT (a power of 2). */
7447
7448 static unsigned int
7449 align_value (unsigned int off, unsigned int alignment)
7450 {
7451 return (off + alignment - 1) & ~(alignment - 1);
7452 }
7453
7454 /* Return the bit alignment required for field #F of template type TYPE. */
7455
7456 static unsigned int
7457 field_alignment (struct type *type, int f)
7458 {
7459 const char *name = TYPE_FIELD_NAME (type, f);
7460 int len;
7461 int align_offset;
7462
7463 /* The field name should never be null, unless the debugging information
7464 is somehow malformed. In this case, we assume the field does not
7465 require any alignment. */
7466 if (name == NULL)
7467 return 1;
7468
7469 len = strlen (name);
7470
7471 if (!isdigit (name[len - 1]))
7472 return 1;
7473
7474 if (isdigit (name[len - 2]))
7475 align_offset = len - 2;
7476 else
7477 align_offset = len - 1;
7478
7479 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
7480 return TARGET_CHAR_BIT;
7481
7482 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7483 }
7484
7485 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7486
7487 static struct symbol *
7488 ada_find_any_type_symbol (const char *name)
7489 {
7490 struct symbol *sym;
7491
7492 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7493 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7494 return sym;
7495
7496 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7497 return sym;
7498 }
7499
7500 /* Find a type named NAME. Ignores ambiguity. This routine will look
7501 solely for types defined by debug info, it will not search the GDB
7502 primitive types. */
7503
7504 static struct type *
7505 ada_find_any_type (const char *name)
7506 {
7507 struct symbol *sym = ada_find_any_type_symbol (name);
7508
7509 if (sym != NULL)
7510 return SYMBOL_TYPE (sym);
7511
7512 return NULL;
7513 }
7514
7515 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7516 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7517 symbol, in which case it is returned. Otherwise, this looks for
7518 symbols whose name is that of NAME_SYM suffixed with "___XR".
7519 Return symbol if found, and NULL otherwise. */
7520
7521 struct symbol *
7522 ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
7523 {
7524 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7525 struct symbol *sym;
7526
7527 if (strstr (name, "___XR") != NULL)
7528 return name_sym;
7529
7530 sym = find_old_style_renaming_symbol (name, block);
7531
7532 if (sym != NULL)
7533 return sym;
7534
7535 /* Not right yet. FIXME pnh 7/20/2007. */
7536 sym = ada_find_any_type_symbol (name);
7537 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7538 return sym;
7539 else
7540 return NULL;
7541 }
7542
7543 static struct symbol *
7544 find_old_style_renaming_symbol (const char *name, const struct block *block)
7545 {
7546 const struct symbol *function_sym = block_linkage_function (block);
7547 char *rename;
7548
7549 if (function_sym != NULL)
7550 {
7551 /* If the symbol is defined inside a function, NAME is not fully
7552 qualified. This means we need to prepend the function name
7553 as well as adding the ``___XR'' suffix to build the name of
7554 the associated renaming symbol. */
7555 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
7556 /* Function names sometimes contain suffixes used
7557 for instance to qualify nested subprograms. When building
7558 the XR type name, we need to make sure that this suffix is
7559 not included. So do not include any suffix in the function
7560 name length below. */
7561 int function_name_len = ada_name_prefix_len (function_name);
7562 const int rename_len = function_name_len + 2 /* "__" */
7563 + strlen (name) + 6 /* "___XR\0" */ ;
7564
7565 /* Strip the suffix if necessary. */
7566 ada_remove_trailing_digits (function_name, &function_name_len);
7567 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7568 ada_remove_Xbn_suffix (function_name, &function_name_len);
7569
7570 /* Library-level functions are a special case, as GNAT adds
7571 a ``_ada_'' prefix to the function name to avoid namespace
7572 pollution. However, the renaming symbols themselves do not
7573 have this prefix, so we need to skip this prefix if present. */
7574 if (function_name_len > 5 /* "_ada_" */
7575 && strstr (function_name, "_ada_") == function_name)
7576 {
7577 function_name += 5;
7578 function_name_len -= 5;
7579 }
7580
7581 rename = (char *) alloca (rename_len * sizeof (char));
7582 strncpy (rename, function_name, function_name_len);
7583 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7584 "__%s___XR", name);
7585 }
7586 else
7587 {
7588 const int rename_len = strlen (name) + 6;
7589
7590 rename = (char *) alloca (rename_len * sizeof (char));
7591 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
7592 }
7593
7594 return ada_find_any_type_symbol (rename);
7595 }
7596
7597 /* Because of GNAT encoding conventions, several GDB symbols may match a
7598 given type name. If the type denoted by TYPE0 is to be preferred to
7599 that of TYPE1 for purposes of type printing, return non-zero;
7600 otherwise return 0. */
7601
7602 int
7603 ada_prefer_type (struct type *type0, struct type *type1)
7604 {
7605 if (type1 == NULL)
7606 return 1;
7607 else if (type0 == NULL)
7608 return 0;
7609 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7610 return 1;
7611 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7612 return 0;
7613 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7614 return 1;
7615 else if (ada_is_constrained_packed_array_type (type0))
7616 return 1;
7617 else if (ada_is_array_descriptor_type (type0)
7618 && !ada_is_array_descriptor_type (type1))
7619 return 1;
7620 else
7621 {
7622 const char *type0_name = type_name_no_tag (type0);
7623 const char *type1_name = type_name_no_tag (type1);
7624
7625 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7626 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7627 return 1;
7628 }
7629 return 0;
7630 }
7631
7632 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
7633 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7634
7635 const char *
7636 ada_type_name (struct type *type)
7637 {
7638 if (type == NULL)
7639 return NULL;
7640 else if (TYPE_NAME (type) != NULL)
7641 return TYPE_NAME (type);
7642 else
7643 return TYPE_TAG_NAME (type);
7644 }
7645
7646 /* Search the list of "descriptive" types associated to TYPE for a type
7647 whose name is NAME. */
7648
7649 static struct type *
7650 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7651 {
7652 struct type *result;
7653
7654 if (ada_ignore_descriptive_types_p)
7655 return NULL;
7656
7657 /* If there no descriptive-type info, then there is no parallel type
7658 to be found. */
7659 if (!HAVE_GNAT_AUX_INFO (type))
7660 return NULL;
7661
7662 result = TYPE_DESCRIPTIVE_TYPE (type);
7663 while (result != NULL)
7664 {
7665 const char *result_name = ada_type_name (result);
7666
7667 if (result_name == NULL)
7668 {
7669 warning (_("unexpected null name on descriptive type"));
7670 return NULL;
7671 }
7672
7673 /* If the names match, stop. */
7674 if (strcmp (result_name, name) == 0)
7675 break;
7676
7677 /* Otherwise, look at the next item on the list, if any. */
7678 if (HAVE_GNAT_AUX_INFO (result))
7679 result = TYPE_DESCRIPTIVE_TYPE (result);
7680 else
7681 result = NULL;
7682 }
7683
7684 /* If we didn't find a match, see whether this is a packed array. With
7685 older compilers, the descriptive type information is either absent or
7686 irrelevant when it comes to packed arrays so the above lookup fails.
7687 Fall back to using a parallel lookup by name in this case. */
7688 if (result == NULL && ada_is_constrained_packed_array_type (type))
7689 return ada_find_any_type (name);
7690
7691 return result;
7692 }
7693
7694 /* Find a parallel type to TYPE with the specified NAME, using the
7695 descriptive type taken from the debugging information, if available,
7696 and otherwise using the (slower) name-based method. */
7697
7698 static struct type *
7699 ada_find_parallel_type_with_name (struct type *type, const char *name)
7700 {
7701 struct type *result = NULL;
7702
7703 if (HAVE_GNAT_AUX_INFO (type))
7704 result = find_parallel_type_by_descriptive_type (type, name);
7705 else
7706 result = ada_find_any_type (name);
7707
7708 return result;
7709 }
7710
7711 /* Same as above, but specify the name of the parallel type by appending
7712 SUFFIX to the name of TYPE. */
7713
7714 struct type *
7715 ada_find_parallel_type (struct type *type, const char *suffix)
7716 {
7717 char *name;
7718 const char *typename = ada_type_name (type);
7719 int len;
7720
7721 if (typename == NULL)
7722 return NULL;
7723
7724 len = strlen (typename);
7725
7726 name = (char *) alloca (len + strlen (suffix) + 1);
7727
7728 strcpy (name, typename);
7729 strcpy (name + len, suffix);
7730
7731 return ada_find_parallel_type_with_name (type, name);
7732 }
7733
7734 /* If TYPE is a variable-size record type, return the corresponding template
7735 type describing its fields. Otherwise, return NULL. */
7736
7737 static struct type *
7738 dynamic_template_type (struct type *type)
7739 {
7740 type = ada_check_typedef (type);
7741
7742 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
7743 || ada_type_name (type) == NULL)
7744 return NULL;
7745 else
7746 {
7747 int len = strlen (ada_type_name (type));
7748
7749 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7750 return type;
7751 else
7752 return ada_find_parallel_type (type, "___XVE");
7753 }
7754 }
7755
7756 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7757 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7758
7759 static int
7760 is_dynamic_field (struct type *templ_type, int field_num)
7761 {
7762 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
7763
7764 return name != NULL
7765 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7766 && strstr (name, "___XVL") != NULL;
7767 }
7768
7769 /* The index of the variant field of TYPE, or -1 if TYPE does not
7770 represent a variant record type. */
7771
7772 static int
7773 variant_field_index (struct type *type)
7774 {
7775 int f;
7776
7777 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7778 return -1;
7779
7780 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7781 {
7782 if (ada_is_variant_part (type, f))
7783 return f;
7784 }
7785 return -1;
7786 }
7787
7788 /* A record type with no fields. */
7789
7790 static struct type *
7791 empty_record (struct type *template)
7792 {
7793 struct type *type = alloc_type_copy (template);
7794
7795 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7796 TYPE_NFIELDS (type) = 0;
7797 TYPE_FIELDS (type) = NULL;
7798 INIT_CPLUS_SPECIFIC (type);
7799 TYPE_NAME (type) = "<empty>";
7800 TYPE_TAG_NAME (type) = NULL;
7801 TYPE_LENGTH (type) = 0;
7802 return type;
7803 }
7804
7805 /* An ordinary record type (with fixed-length fields) that describes
7806 the value of type TYPE at VALADDR or ADDRESS (see comments at
7807 the beginning of this section) VAL according to GNAT conventions.
7808 DVAL0 should describe the (portion of a) record that contains any
7809 necessary discriminants. It should be NULL if value_type (VAL) is
7810 an outer-level type (i.e., as opposed to a branch of a variant.) A
7811 variant field (unless unchecked) is replaced by a particular branch
7812 of the variant.
7813
7814 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7815 length are not statically known are discarded. As a consequence,
7816 VALADDR, ADDRESS and DVAL0 are ignored.
7817
7818 NOTE: Limitations: For now, we assume that dynamic fields and
7819 variants occupy whole numbers of bytes. However, they need not be
7820 byte-aligned. */
7821
7822 struct type *
7823 ada_template_to_fixed_record_type_1 (struct type *type,
7824 const gdb_byte *valaddr,
7825 CORE_ADDR address, struct value *dval0,
7826 int keep_dynamic_fields)
7827 {
7828 struct value *mark = value_mark ();
7829 struct value *dval;
7830 struct type *rtype;
7831 int nfields, bit_len;
7832 int variant_field;
7833 long off;
7834 int fld_bit_len;
7835 int f;
7836
7837 /* Compute the number of fields in this record type that are going
7838 to be processed: unless keep_dynamic_fields, this includes only
7839 fields whose position and length are static will be processed. */
7840 if (keep_dynamic_fields)
7841 nfields = TYPE_NFIELDS (type);
7842 else
7843 {
7844 nfields = 0;
7845 while (nfields < TYPE_NFIELDS (type)
7846 && !ada_is_variant_part (type, nfields)
7847 && !is_dynamic_field (type, nfields))
7848 nfields++;
7849 }
7850
7851 rtype = alloc_type_copy (type);
7852 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7853 INIT_CPLUS_SPECIFIC (rtype);
7854 TYPE_NFIELDS (rtype) = nfields;
7855 TYPE_FIELDS (rtype) = (struct field *)
7856 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7857 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7858 TYPE_NAME (rtype) = ada_type_name (type);
7859 TYPE_TAG_NAME (rtype) = NULL;
7860 TYPE_FIXED_INSTANCE (rtype) = 1;
7861
7862 off = 0;
7863 bit_len = 0;
7864 variant_field = -1;
7865
7866 for (f = 0; f < nfields; f += 1)
7867 {
7868 off = align_value (off, field_alignment (type, f))
7869 + TYPE_FIELD_BITPOS (type, f);
7870 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
7871 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7872
7873 if (ada_is_variant_part (type, f))
7874 {
7875 variant_field = f;
7876 fld_bit_len = 0;
7877 }
7878 else if (is_dynamic_field (type, f))
7879 {
7880 const gdb_byte *field_valaddr = valaddr;
7881 CORE_ADDR field_address = address;
7882 struct type *field_type =
7883 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7884
7885 if (dval0 == NULL)
7886 {
7887 /* rtype's length is computed based on the run-time
7888 value of discriminants. If the discriminants are not
7889 initialized, the type size may be completely bogus and
7890 GDB may fail to allocate a value for it. So check the
7891 size first before creating the value. */
7892 check_size (rtype);
7893 /* Using plain value_from_contents_and_address here
7894 causes problems because we will end up trying to
7895 resolve a type that is currently being
7896 constructed. */
7897 dval = value_from_contents_and_address_unresolved (rtype,
7898 valaddr,
7899 address);
7900 rtype = value_type (dval);
7901 }
7902 else
7903 dval = dval0;
7904
7905 /* If the type referenced by this field is an aligner type, we need
7906 to unwrap that aligner type, because its size might not be set.
7907 Keeping the aligner type would cause us to compute the wrong
7908 size for this field, impacting the offset of the all the fields
7909 that follow this one. */
7910 if (ada_is_aligner_type (field_type))
7911 {
7912 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7913
7914 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7915 field_address = cond_offset_target (field_address, field_offset);
7916 field_type = ada_aligned_type (field_type);
7917 }
7918
7919 field_valaddr = cond_offset_host (field_valaddr,
7920 off / TARGET_CHAR_BIT);
7921 field_address = cond_offset_target (field_address,
7922 off / TARGET_CHAR_BIT);
7923
7924 /* Get the fixed type of the field. Note that, in this case,
7925 we do not want to get the real type out of the tag: if
7926 the current field is the parent part of a tagged record,
7927 we will get the tag of the object. Clearly wrong: the real
7928 type of the parent is not the real type of the child. We
7929 would end up in an infinite loop. */
7930 field_type = ada_get_base_type (field_type);
7931 field_type = ada_to_fixed_type (field_type, field_valaddr,
7932 field_address, dval, 0);
7933 /* If the field size is already larger than the maximum
7934 object size, then the record itself will necessarily
7935 be larger than the maximum object size. We need to make
7936 this check now, because the size might be so ridiculously
7937 large (due to an uninitialized variable in the inferior)
7938 that it would cause an overflow when adding it to the
7939 record size. */
7940 check_size (field_type);
7941
7942 TYPE_FIELD_TYPE (rtype, f) = field_type;
7943 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7944 /* The multiplication can potentially overflow. But because
7945 the field length has been size-checked just above, and
7946 assuming that the maximum size is a reasonable value,
7947 an overflow should not happen in practice. So rather than
7948 adding overflow recovery code to this already complex code,
7949 we just assume that it's not going to happen. */
7950 fld_bit_len =
7951 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7952 }
7953 else
7954 {
7955 /* Note: If this field's type is a typedef, it is important
7956 to preserve the typedef layer.
7957
7958 Otherwise, we might be transforming a typedef to a fat
7959 pointer (encoding a pointer to an unconstrained array),
7960 into a basic fat pointer (encoding an unconstrained
7961 array). As both types are implemented using the same
7962 structure, the typedef is the only clue which allows us
7963 to distinguish between the two options. Stripping it
7964 would prevent us from printing this field appropriately. */
7965 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
7966 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7967 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7968 fld_bit_len =
7969 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7970 else
7971 {
7972 struct type *field_type = TYPE_FIELD_TYPE (type, f);
7973
7974 /* We need to be careful of typedefs when computing
7975 the length of our field. If this is a typedef,
7976 get the length of the target type, not the length
7977 of the typedef. */
7978 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
7979 field_type = ada_typedef_target_type (field_type);
7980
7981 fld_bit_len =
7982 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7983 }
7984 }
7985 if (off + fld_bit_len > bit_len)
7986 bit_len = off + fld_bit_len;
7987 off += fld_bit_len;
7988 TYPE_LENGTH (rtype) =
7989 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7990 }
7991
7992 /* We handle the variant part, if any, at the end because of certain
7993 odd cases in which it is re-ordered so as NOT to be the last field of
7994 the record. This can happen in the presence of representation
7995 clauses. */
7996 if (variant_field >= 0)
7997 {
7998 struct type *branch_type;
7999
8000 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8001
8002 if (dval0 == NULL)
8003 {
8004 /* Using plain value_from_contents_and_address here causes
8005 problems because we will end up trying to resolve a type
8006 that is currently being constructed. */
8007 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8008 address);
8009 rtype = value_type (dval);
8010 }
8011 else
8012 dval = dval0;
8013
8014 branch_type =
8015 to_fixed_variant_branch_type
8016 (TYPE_FIELD_TYPE (type, variant_field),
8017 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8018 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8019 if (branch_type == NULL)
8020 {
8021 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8022 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8023 TYPE_NFIELDS (rtype) -= 1;
8024 }
8025 else
8026 {
8027 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8028 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8029 fld_bit_len =
8030 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8031 TARGET_CHAR_BIT;
8032 if (off + fld_bit_len > bit_len)
8033 bit_len = off + fld_bit_len;
8034 TYPE_LENGTH (rtype) =
8035 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8036 }
8037 }
8038
8039 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8040 should contain the alignment of that record, which should be a strictly
8041 positive value. If null or negative, then something is wrong, most
8042 probably in the debug info. In that case, we don't round up the size
8043 of the resulting type. If this record is not part of another structure,
8044 the current RTYPE length might be good enough for our purposes. */
8045 if (TYPE_LENGTH (type) <= 0)
8046 {
8047 if (TYPE_NAME (rtype))
8048 warning (_("Invalid type size for `%s' detected: %d."),
8049 TYPE_NAME (rtype), TYPE_LENGTH (type));
8050 else
8051 warning (_("Invalid type size for <unnamed> detected: %d."),
8052 TYPE_LENGTH (type));
8053 }
8054 else
8055 {
8056 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8057 TYPE_LENGTH (type));
8058 }
8059
8060 value_free_to_mark (mark);
8061 if (TYPE_LENGTH (rtype) > varsize_limit)
8062 error (_("record type with dynamic size is larger than varsize-limit"));
8063 return rtype;
8064 }
8065
8066 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8067 of 1. */
8068
8069 static struct type *
8070 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8071 CORE_ADDR address, struct value *dval0)
8072 {
8073 return ada_template_to_fixed_record_type_1 (type, valaddr,
8074 address, dval0, 1);
8075 }
8076
8077 /* An ordinary record type in which ___XVL-convention fields and
8078 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8079 static approximations, containing all possible fields. Uses
8080 no runtime values. Useless for use in values, but that's OK,
8081 since the results are used only for type determinations. Works on both
8082 structs and unions. Representation note: to save space, we memorize
8083 the result of this function in the TYPE_TARGET_TYPE of the
8084 template type. */
8085
8086 static struct type *
8087 template_to_static_fixed_type (struct type *type0)
8088 {
8089 struct type *type;
8090 int nfields;
8091 int f;
8092
8093 if (TYPE_TARGET_TYPE (type0) != NULL)
8094 return TYPE_TARGET_TYPE (type0);
8095
8096 nfields = TYPE_NFIELDS (type0);
8097 type = type0;
8098
8099 for (f = 0; f < nfields; f += 1)
8100 {
8101 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
8102 struct type *new_type;
8103
8104 if (is_dynamic_field (type0, f))
8105 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8106 else
8107 new_type = static_unwrap_type (field_type);
8108 if (type == type0 && new_type != field_type)
8109 {
8110 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8111 TYPE_CODE (type) = TYPE_CODE (type0);
8112 INIT_CPLUS_SPECIFIC (type);
8113 TYPE_NFIELDS (type) = nfields;
8114 TYPE_FIELDS (type) = (struct field *)
8115 TYPE_ALLOC (type, nfields * sizeof (struct field));
8116 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8117 sizeof (struct field) * nfields);
8118 TYPE_NAME (type) = ada_type_name (type0);
8119 TYPE_TAG_NAME (type) = NULL;
8120 TYPE_FIXED_INSTANCE (type) = 1;
8121 TYPE_LENGTH (type) = 0;
8122 }
8123 TYPE_FIELD_TYPE (type, f) = new_type;
8124 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8125 }
8126 return type;
8127 }
8128
8129 /* Given an object of type TYPE whose contents are at VALADDR and
8130 whose address in memory is ADDRESS, returns a revision of TYPE,
8131 which should be a non-dynamic-sized record, in which the variant
8132 part, if any, is replaced with the appropriate branch. Looks
8133 for discriminant values in DVAL0, which can be NULL if the record
8134 contains the necessary discriminant values. */
8135
8136 static struct type *
8137 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8138 CORE_ADDR address, struct value *dval0)
8139 {
8140 struct value *mark = value_mark ();
8141 struct value *dval;
8142 struct type *rtype;
8143 struct type *branch_type;
8144 int nfields = TYPE_NFIELDS (type);
8145 int variant_field = variant_field_index (type);
8146
8147 if (variant_field == -1)
8148 return type;
8149
8150 if (dval0 == NULL)
8151 {
8152 dval = value_from_contents_and_address (type, valaddr, address);
8153 type = value_type (dval);
8154 }
8155 else
8156 dval = dval0;
8157
8158 rtype = alloc_type_copy (type);
8159 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8160 INIT_CPLUS_SPECIFIC (rtype);
8161 TYPE_NFIELDS (rtype) = nfields;
8162 TYPE_FIELDS (rtype) =
8163 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8164 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
8165 sizeof (struct field) * nfields);
8166 TYPE_NAME (rtype) = ada_type_name (type);
8167 TYPE_TAG_NAME (rtype) = NULL;
8168 TYPE_FIXED_INSTANCE (rtype) = 1;
8169 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8170
8171 branch_type = to_fixed_variant_branch_type
8172 (TYPE_FIELD_TYPE (type, variant_field),
8173 cond_offset_host (valaddr,
8174 TYPE_FIELD_BITPOS (type, variant_field)
8175 / TARGET_CHAR_BIT),
8176 cond_offset_target (address,
8177 TYPE_FIELD_BITPOS (type, variant_field)
8178 / TARGET_CHAR_BIT), dval);
8179 if (branch_type == NULL)
8180 {
8181 int f;
8182
8183 for (f = variant_field + 1; f < nfields; f += 1)
8184 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8185 TYPE_NFIELDS (rtype) -= 1;
8186 }
8187 else
8188 {
8189 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8190 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8191 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8192 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8193 }
8194 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
8195
8196 value_free_to_mark (mark);
8197 return rtype;
8198 }
8199
8200 /* An ordinary record type (with fixed-length fields) that describes
8201 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8202 beginning of this section]. Any necessary discriminants' values
8203 should be in DVAL, a record value; it may be NULL if the object
8204 at ADDR itself contains any necessary discriminant values.
8205 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8206 values from the record are needed. Except in the case that DVAL,
8207 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8208 unchecked) is replaced by a particular branch of the variant.
8209
8210 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8211 is questionable and may be removed. It can arise during the
8212 processing of an unconstrained-array-of-record type where all the
8213 variant branches have exactly the same size. This is because in
8214 such cases, the compiler does not bother to use the XVS convention
8215 when encoding the record. I am currently dubious of this
8216 shortcut and suspect the compiler should be altered. FIXME. */
8217
8218 static struct type *
8219 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8220 CORE_ADDR address, struct value *dval)
8221 {
8222 struct type *templ_type;
8223
8224 if (TYPE_FIXED_INSTANCE (type0))
8225 return type0;
8226
8227 templ_type = dynamic_template_type (type0);
8228
8229 if (templ_type != NULL)
8230 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8231 else if (variant_field_index (type0) >= 0)
8232 {
8233 if (dval == NULL && valaddr == NULL && address == 0)
8234 return type0;
8235 return to_record_with_fixed_variant_part (type0, valaddr, address,
8236 dval);
8237 }
8238 else
8239 {
8240 TYPE_FIXED_INSTANCE (type0) = 1;
8241 return type0;
8242 }
8243
8244 }
8245
8246 /* An ordinary record type (with fixed-length fields) that describes
8247 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8248 union type. Any necessary discriminants' values should be in DVAL,
8249 a record value. That is, this routine selects the appropriate
8250 branch of the union at ADDR according to the discriminant value
8251 indicated in the union's type name. Returns VAR_TYPE0 itself if
8252 it represents a variant subject to a pragma Unchecked_Union. */
8253
8254 static struct type *
8255 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8256 CORE_ADDR address, struct value *dval)
8257 {
8258 int which;
8259 struct type *templ_type;
8260 struct type *var_type;
8261
8262 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8263 var_type = TYPE_TARGET_TYPE (var_type0);
8264 else
8265 var_type = var_type0;
8266
8267 templ_type = ada_find_parallel_type (var_type, "___XVU");
8268
8269 if (templ_type != NULL)
8270 var_type = templ_type;
8271
8272 if (is_unchecked_variant (var_type, value_type (dval)))
8273 return var_type0;
8274 which =
8275 ada_which_variant_applies (var_type,
8276 value_type (dval), value_contents (dval));
8277
8278 if (which < 0)
8279 return empty_record (var_type);
8280 else if (is_dynamic_field (var_type, which))
8281 return to_fixed_record_type
8282 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8283 valaddr, address, dval);
8284 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8285 return
8286 to_fixed_record_type
8287 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8288 else
8289 return TYPE_FIELD_TYPE (var_type, which);
8290 }
8291
8292 /* Assuming that TYPE0 is an array type describing the type of a value
8293 at ADDR, and that DVAL describes a record containing any
8294 discriminants used in TYPE0, returns a type for the value that
8295 contains no dynamic components (that is, no components whose sizes
8296 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8297 true, gives an error message if the resulting type's size is over
8298 varsize_limit. */
8299
8300 static struct type *
8301 to_fixed_array_type (struct type *type0, struct value *dval,
8302 int ignore_too_big)
8303 {
8304 struct type *index_type_desc;
8305 struct type *result;
8306 int constrained_packed_array_p;
8307
8308 type0 = ada_check_typedef (type0);
8309 if (TYPE_FIXED_INSTANCE (type0))
8310 return type0;
8311
8312 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8313 if (constrained_packed_array_p)
8314 type0 = decode_constrained_packed_array_type (type0);
8315
8316 index_type_desc = ada_find_parallel_type (type0, "___XA");
8317 ada_fixup_array_indexes_type (index_type_desc);
8318 if (index_type_desc == NULL)
8319 {
8320 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8321
8322 /* NOTE: elt_type---the fixed version of elt_type0---should never
8323 depend on the contents of the array in properly constructed
8324 debugging data. */
8325 /* Create a fixed version of the array element type.
8326 We're not providing the address of an element here,
8327 and thus the actual object value cannot be inspected to do
8328 the conversion. This should not be a problem, since arrays of
8329 unconstrained objects are not allowed. In particular, all
8330 the elements of an array of a tagged type should all be of
8331 the same type specified in the debugging info. No need to
8332 consult the object tag. */
8333 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8334
8335 /* Make sure we always create a new array type when dealing with
8336 packed array types, since we're going to fix-up the array
8337 type length and element bitsize a little further down. */
8338 if (elt_type0 == elt_type && !constrained_packed_array_p)
8339 result = type0;
8340 else
8341 result = create_array_type (alloc_type_copy (type0),
8342 elt_type, TYPE_INDEX_TYPE (type0));
8343 }
8344 else
8345 {
8346 int i;
8347 struct type *elt_type0;
8348
8349 elt_type0 = type0;
8350 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8351 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8352
8353 /* NOTE: result---the fixed version of elt_type0---should never
8354 depend on the contents of the array in properly constructed
8355 debugging data. */
8356 /* Create a fixed version of the array element type.
8357 We're not providing the address of an element here,
8358 and thus the actual object value cannot be inspected to do
8359 the conversion. This should not be a problem, since arrays of
8360 unconstrained objects are not allowed. In particular, all
8361 the elements of an array of a tagged type should all be of
8362 the same type specified in the debugging info. No need to
8363 consult the object tag. */
8364 result =
8365 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8366
8367 elt_type0 = type0;
8368 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8369 {
8370 struct type *range_type =
8371 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8372
8373 result = create_array_type (alloc_type_copy (elt_type0),
8374 result, range_type);
8375 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8376 }
8377 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8378 error (_("array type with dynamic size is larger than varsize-limit"));
8379 }
8380
8381 /* We want to preserve the type name. This can be useful when
8382 trying to get the type name of a value that has already been
8383 printed (for instance, if the user did "print VAR; whatis $". */
8384 TYPE_NAME (result) = TYPE_NAME (type0);
8385
8386 if (constrained_packed_array_p)
8387 {
8388 /* So far, the resulting type has been created as if the original
8389 type was a regular (non-packed) array type. As a result, the
8390 bitsize of the array elements needs to be set again, and the array
8391 length needs to be recomputed based on that bitsize. */
8392 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8393 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8394
8395 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8396 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8397 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8398 TYPE_LENGTH (result)++;
8399 }
8400
8401 TYPE_FIXED_INSTANCE (result) = 1;
8402 return result;
8403 }
8404
8405
8406 /* A standard type (containing no dynamically sized components)
8407 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8408 DVAL describes a record containing any discriminants used in TYPE0,
8409 and may be NULL if there are none, or if the object of type TYPE at
8410 ADDRESS or in VALADDR contains these discriminants.
8411
8412 If CHECK_TAG is not null, in the case of tagged types, this function
8413 attempts to locate the object's tag and use it to compute the actual
8414 type. However, when ADDRESS is null, we cannot use it to determine the
8415 location of the tag, and therefore compute the tagged type's actual type.
8416 So we return the tagged type without consulting the tag. */
8417
8418 static struct type *
8419 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8420 CORE_ADDR address, struct value *dval, int check_tag)
8421 {
8422 type = ada_check_typedef (type);
8423 switch (TYPE_CODE (type))
8424 {
8425 default:
8426 return type;
8427 case TYPE_CODE_STRUCT:
8428 {
8429 struct type *static_type = to_static_fixed_type (type);
8430 struct type *fixed_record_type =
8431 to_fixed_record_type (type, valaddr, address, NULL);
8432
8433 /* If STATIC_TYPE is a tagged type and we know the object's address,
8434 then we can determine its tag, and compute the object's actual
8435 type from there. Note that we have to use the fixed record
8436 type (the parent part of the record may have dynamic fields
8437 and the way the location of _tag is expressed may depend on
8438 them). */
8439
8440 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8441 {
8442 struct value *tag =
8443 value_tag_from_contents_and_address
8444 (fixed_record_type,
8445 valaddr,
8446 address);
8447 struct type *real_type = type_from_tag (tag);
8448 struct value *obj =
8449 value_from_contents_and_address (fixed_record_type,
8450 valaddr,
8451 address);
8452 fixed_record_type = value_type (obj);
8453 if (real_type != NULL)
8454 return to_fixed_record_type
8455 (real_type, NULL,
8456 value_address (ada_tag_value_at_base_address (obj)), NULL);
8457 }
8458
8459 /* Check to see if there is a parallel ___XVZ variable.
8460 If there is, then it provides the actual size of our type. */
8461 else if (ada_type_name (fixed_record_type) != NULL)
8462 {
8463 const char *name = ada_type_name (fixed_record_type);
8464 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
8465 int xvz_found = 0;
8466 LONGEST size;
8467
8468 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8469 size = get_int_var_value (xvz_name, &xvz_found);
8470 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8471 {
8472 fixed_record_type = copy_type (fixed_record_type);
8473 TYPE_LENGTH (fixed_record_type) = size;
8474
8475 /* The FIXED_RECORD_TYPE may have be a stub. We have
8476 observed this when the debugging info is STABS, and
8477 apparently it is something that is hard to fix.
8478
8479 In practice, we don't need the actual type definition
8480 at all, because the presence of the XVZ variable allows us
8481 to assume that there must be a XVS type as well, which we
8482 should be able to use later, when we need the actual type
8483 definition.
8484
8485 In the meantime, pretend that the "fixed" type we are
8486 returning is NOT a stub, because this can cause trouble
8487 when using this type to create new types targeting it.
8488 Indeed, the associated creation routines often check
8489 whether the target type is a stub and will try to replace
8490 it, thus using a type with the wrong size. This, in turn,
8491 might cause the new type to have the wrong size too.
8492 Consider the case of an array, for instance, where the size
8493 of the array is computed from the number of elements in
8494 our array multiplied by the size of its element. */
8495 TYPE_STUB (fixed_record_type) = 0;
8496 }
8497 }
8498 return fixed_record_type;
8499 }
8500 case TYPE_CODE_ARRAY:
8501 return to_fixed_array_type (type, dval, 1);
8502 case TYPE_CODE_UNION:
8503 if (dval == NULL)
8504 return type;
8505 else
8506 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8507 }
8508 }
8509
8510 /* The same as ada_to_fixed_type_1, except that it preserves the type
8511 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8512
8513 The typedef layer needs be preserved in order to differentiate between
8514 arrays and array pointers when both types are implemented using the same
8515 fat pointer. In the array pointer case, the pointer is encoded as
8516 a typedef of the pointer type. For instance, considering:
8517
8518 type String_Access is access String;
8519 S1 : String_Access := null;
8520
8521 To the debugger, S1 is defined as a typedef of type String. But
8522 to the user, it is a pointer. So if the user tries to print S1,
8523 we should not dereference the array, but print the array address
8524 instead.
8525
8526 If we didn't preserve the typedef layer, we would lose the fact that
8527 the type is to be presented as a pointer (needs de-reference before
8528 being printed). And we would also use the source-level type name. */
8529
8530 struct type *
8531 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8532 CORE_ADDR address, struct value *dval, int check_tag)
8533
8534 {
8535 struct type *fixed_type =
8536 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8537
8538 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8539 then preserve the typedef layer.
8540
8541 Implementation note: We can only check the main-type portion of
8542 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8543 from TYPE now returns a type that has the same instance flags
8544 as TYPE. For instance, if TYPE is a "typedef const", and its
8545 target type is a "struct", then the typedef elimination will return
8546 a "const" version of the target type. See check_typedef for more
8547 details about how the typedef layer elimination is done.
8548
8549 brobecker/2010-11-19: It seems to me that the only case where it is
8550 useful to preserve the typedef layer is when dealing with fat pointers.
8551 Perhaps, we could add a check for that and preserve the typedef layer
8552 only in that situation. But this seems unecessary so far, probably
8553 because we call check_typedef/ada_check_typedef pretty much everywhere.
8554 */
8555 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8556 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8557 == TYPE_MAIN_TYPE (fixed_type)))
8558 return type;
8559
8560 return fixed_type;
8561 }
8562
8563 /* A standard (static-sized) type corresponding as well as possible to
8564 TYPE0, but based on no runtime data. */
8565
8566 static struct type *
8567 to_static_fixed_type (struct type *type0)
8568 {
8569 struct type *type;
8570
8571 if (type0 == NULL)
8572 return NULL;
8573
8574 if (TYPE_FIXED_INSTANCE (type0))
8575 return type0;
8576
8577 type0 = ada_check_typedef (type0);
8578
8579 switch (TYPE_CODE (type0))
8580 {
8581 default:
8582 return type0;
8583 case TYPE_CODE_STRUCT:
8584 type = dynamic_template_type (type0);
8585 if (type != NULL)
8586 return template_to_static_fixed_type (type);
8587 else
8588 return template_to_static_fixed_type (type0);
8589 case TYPE_CODE_UNION:
8590 type = ada_find_parallel_type (type0, "___XVU");
8591 if (type != NULL)
8592 return template_to_static_fixed_type (type);
8593 else
8594 return template_to_static_fixed_type (type0);
8595 }
8596 }
8597
8598 /* A static approximation of TYPE with all type wrappers removed. */
8599
8600 static struct type *
8601 static_unwrap_type (struct type *type)
8602 {
8603 if (ada_is_aligner_type (type))
8604 {
8605 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
8606 if (ada_type_name (type1) == NULL)
8607 TYPE_NAME (type1) = ada_type_name (type);
8608
8609 return static_unwrap_type (type1);
8610 }
8611 else
8612 {
8613 struct type *raw_real_type = ada_get_base_type (type);
8614
8615 if (raw_real_type == type)
8616 return type;
8617 else
8618 return to_static_fixed_type (raw_real_type);
8619 }
8620 }
8621
8622 /* In some cases, incomplete and private types require
8623 cross-references that are not resolved as records (for example,
8624 type Foo;
8625 type FooP is access Foo;
8626 V: FooP;
8627 type Foo is array ...;
8628 ). In these cases, since there is no mechanism for producing
8629 cross-references to such types, we instead substitute for FooP a
8630 stub enumeration type that is nowhere resolved, and whose tag is
8631 the name of the actual type. Call these types "non-record stubs". */
8632
8633 /* A type equivalent to TYPE that is not a non-record stub, if one
8634 exists, otherwise TYPE. */
8635
8636 struct type *
8637 ada_check_typedef (struct type *type)
8638 {
8639 if (type == NULL)
8640 return NULL;
8641
8642 /* If our type is a typedef type of a fat pointer, then we're done.
8643 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8644 what allows us to distinguish between fat pointers that represent
8645 array types, and fat pointers that represent array access types
8646 (in both cases, the compiler implements them as fat pointers). */
8647 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8648 && is_thick_pntr (ada_typedef_target_type (type)))
8649 return type;
8650
8651 CHECK_TYPEDEF (type);
8652 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
8653 || !TYPE_STUB (type)
8654 || TYPE_TAG_NAME (type) == NULL)
8655 return type;
8656 else
8657 {
8658 const char *name = TYPE_TAG_NAME (type);
8659 struct type *type1 = ada_find_any_type (name);
8660
8661 if (type1 == NULL)
8662 return type;
8663
8664 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8665 stubs pointing to arrays, as we don't create symbols for array
8666 types, only for the typedef-to-array types). If that's the case,
8667 strip the typedef layer. */
8668 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
8669 type1 = ada_check_typedef (type1);
8670
8671 return type1;
8672 }
8673 }
8674
8675 /* A value representing the data at VALADDR/ADDRESS as described by
8676 type TYPE0, but with a standard (static-sized) type that correctly
8677 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8678 type, then return VAL0 [this feature is simply to avoid redundant
8679 creation of struct values]. */
8680
8681 static struct value *
8682 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8683 struct value *val0)
8684 {
8685 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
8686
8687 if (type == type0 && val0 != NULL)
8688 return val0;
8689 else
8690 return value_from_contents_and_address (type, 0, address);
8691 }
8692
8693 /* A value representing VAL, but with a standard (static-sized) type
8694 that correctly describes it. Does not necessarily create a new
8695 value. */
8696
8697 struct value *
8698 ada_to_fixed_value (struct value *val)
8699 {
8700 val = unwrap_value (val);
8701 val = ada_to_fixed_value_create (value_type (val),
8702 value_address (val),
8703 val);
8704 return val;
8705 }
8706 \f
8707
8708 /* Attributes */
8709
8710 /* Table mapping attribute numbers to names.
8711 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
8712
8713 static const char *attribute_names[] = {
8714 "<?>",
8715
8716 "first",
8717 "last",
8718 "length",
8719 "image",
8720 "max",
8721 "min",
8722 "modulus",
8723 "pos",
8724 "size",
8725 "tag",
8726 "val",
8727 0
8728 };
8729
8730 const char *
8731 ada_attribute_name (enum exp_opcode n)
8732 {
8733 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8734 return attribute_names[n - OP_ATR_FIRST + 1];
8735 else
8736 return attribute_names[0];
8737 }
8738
8739 /* Evaluate the 'POS attribute applied to ARG. */
8740
8741 static LONGEST
8742 pos_atr (struct value *arg)
8743 {
8744 struct value *val = coerce_ref (arg);
8745 struct type *type = value_type (val);
8746
8747 if (!discrete_type_p (type))
8748 error (_("'POS only defined on discrete types"));
8749
8750 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8751 {
8752 int i;
8753 LONGEST v = value_as_long (val);
8754
8755 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
8756 {
8757 if (v == TYPE_FIELD_ENUMVAL (type, i))
8758 return i;
8759 }
8760 error (_("enumeration value is invalid: can't find 'POS"));
8761 }
8762 else
8763 return value_as_long (val);
8764 }
8765
8766 static struct value *
8767 value_pos_atr (struct type *type, struct value *arg)
8768 {
8769 return value_from_longest (type, pos_atr (arg));
8770 }
8771
8772 /* Evaluate the TYPE'VAL attribute applied to ARG. */
8773
8774 static struct value *
8775 value_val_atr (struct type *type, struct value *arg)
8776 {
8777 if (!discrete_type_p (type))
8778 error (_("'VAL only defined on discrete types"));
8779 if (!integer_type_p (value_type (arg)))
8780 error (_("'VAL requires integral argument"));
8781
8782 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8783 {
8784 long pos = value_as_long (arg);
8785
8786 if (pos < 0 || pos >= TYPE_NFIELDS (type))
8787 error (_("argument to 'VAL out of range"));
8788 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
8789 }
8790 else
8791 return value_from_longest (type, value_as_long (arg));
8792 }
8793 \f
8794
8795 /* Evaluation */
8796
8797 /* True if TYPE appears to be an Ada character type.
8798 [At the moment, this is true only for Character and Wide_Character;
8799 It is a heuristic test that could stand improvement]. */
8800
8801 int
8802 ada_is_character_type (struct type *type)
8803 {
8804 const char *name;
8805
8806 /* If the type code says it's a character, then assume it really is,
8807 and don't check any further. */
8808 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
8809 return 1;
8810
8811 /* Otherwise, assume it's a character type iff it is a discrete type
8812 with a known character type name. */
8813 name = ada_type_name (type);
8814 return (name != NULL
8815 && (TYPE_CODE (type) == TYPE_CODE_INT
8816 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8817 && (strcmp (name, "character") == 0
8818 || strcmp (name, "wide_character") == 0
8819 || strcmp (name, "wide_wide_character") == 0
8820 || strcmp (name, "unsigned char") == 0));
8821 }
8822
8823 /* True if TYPE appears to be an Ada string type. */
8824
8825 int
8826 ada_is_string_type (struct type *type)
8827 {
8828 type = ada_check_typedef (type);
8829 if (type != NULL
8830 && TYPE_CODE (type) != TYPE_CODE_PTR
8831 && (ada_is_simple_array_type (type)
8832 || ada_is_array_descriptor_type (type))
8833 && ada_array_arity (type) == 1)
8834 {
8835 struct type *elttype = ada_array_element_type (type, 1);
8836
8837 return ada_is_character_type (elttype);
8838 }
8839 else
8840 return 0;
8841 }
8842
8843 /* The compiler sometimes provides a parallel XVS type for a given
8844 PAD type. Normally, it is safe to follow the PAD type directly,
8845 but older versions of the compiler have a bug that causes the offset
8846 of its "F" field to be wrong. Following that field in that case
8847 would lead to incorrect results, but this can be worked around
8848 by ignoring the PAD type and using the associated XVS type instead.
8849
8850 Set to True if the debugger should trust the contents of PAD types.
8851 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8852 static int trust_pad_over_xvs = 1;
8853
8854 /* True if TYPE is a struct type introduced by the compiler to force the
8855 alignment of a value. Such types have a single field with a
8856 distinctive name. */
8857
8858 int
8859 ada_is_aligner_type (struct type *type)
8860 {
8861 type = ada_check_typedef (type);
8862
8863 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
8864 return 0;
8865
8866 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
8867 && TYPE_NFIELDS (type) == 1
8868 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
8869 }
8870
8871 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
8872 the parallel type. */
8873
8874 struct type *
8875 ada_get_base_type (struct type *raw_type)
8876 {
8877 struct type *real_type_namer;
8878 struct type *raw_real_type;
8879
8880 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
8881 return raw_type;
8882
8883 if (ada_is_aligner_type (raw_type))
8884 /* The encoding specifies that we should always use the aligner type.
8885 So, even if this aligner type has an associated XVS type, we should
8886 simply ignore it.
8887
8888 According to the compiler gurus, an XVS type parallel to an aligner
8889 type may exist because of a stabs limitation. In stabs, aligner
8890 types are empty because the field has a variable-sized type, and
8891 thus cannot actually be used as an aligner type. As a result,
8892 we need the associated parallel XVS type to decode the type.
8893 Since the policy in the compiler is to not change the internal
8894 representation based on the debugging info format, we sometimes
8895 end up having a redundant XVS type parallel to the aligner type. */
8896 return raw_type;
8897
8898 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
8899 if (real_type_namer == NULL
8900 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
8901 || TYPE_NFIELDS (real_type_namer) != 1)
8902 return raw_type;
8903
8904 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
8905 {
8906 /* This is an older encoding form where the base type needs to be
8907 looked up by name. We prefer the newer enconding because it is
8908 more efficient. */
8909 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8910 if (raw_real_type == NULL)
8911 return raw_type;
8912 else
8913 return raw_real_type;
8914 }
8915
8916 /* The field in our XVS type is a reference to the base type. */
8917 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
8918 }
8919
8920 /* The type of value designated by TYPE, with all aligners removed. */
8921
8922 struct type *
8923 ada_aligned_type (struct type *type)
8924 {
8925 if (ada_is_aligner_type (type))
8926 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
8927 else
8928 return ada_get_base_type (type);
8929 }
8930
8931
8932 /* The address of the aligned value in an object at address VALADDR
8933 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
8934
8935 const gdb_byte *
8936 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
8937 {
8938 if (ada_is_aligner_type (type))
8939 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
8940 valaddr +
8941 TYPE_FIELD_BITPOS (type,
8942 0) / TARGET_CHAR_BIT);
8943 else
8944 return valaddr;
8945 }
8946
8947
8948
8949 /* The printed representation of an enumeration literal with encoded
8950 name NAME. The value is good to the next call of ada_enum_name. */
8951 const char *
8952 ada_enum_name (const char *name)
8953 {
8954 static char *result;
8955 static size_t result_len = 0;
8956 char *tmp;
8957
8958 /* First, unqualify the enumeration name:
8959 1. Search for the last '.' character. If we find one, then skip
8960 all the preceding characters, the unqualified name starts
8961 right after that dot.
8962 2. Otherwise, we may be debugging on a target where the compiler
8963 translates dots into "__". Search forward for double underscores,
8964 but stop searching when we hit an overloading suffix, which is
8965 of the form "__" followed by digits. */
8966
8967 tmp = strrchr (name, '.');
8968 if (tmp != NULL)
8969 name = tmp + 1;
8970 else
8971 {
8972 while ((tmp = strstr (name, "__")) != NULL)
8973 {
8974 if (isdigit (tmp[2]))
8975 break;
8976 else
8977 name = tmp + 2;
8978 }
8979 }
8980
8981 if (name[0] == 'Q')
8982 {
8983 int v;
8984
8985 if (name[1] == 'U' || name[1] == 'W')
8986 {
8987 if (sscanf (name + 2, "%x", &v) != 1)
8988 return name;
8989 }
8990 else
8991 return name;
8992
8993 GROW_VECT (result, result_len, 16);
8994 if (isascii (v) && isprint (v))
8995 xsnprintf (result, result_len, "'%c'", v);
8996 else if (name[1] == 'U')
8997 xsnprintf (result, result_len, "[\"%02x\"]", v);
8998 else
8999 xsnprintf (result, result_len, "[\"%04x\"]", v);
9000
9001 return result;
9002 }
9003 else
9004 {
9005 tmp = strstr (name, "__");
9006 if (tmp == NULL)
9007 tmp = strstr (name, "$");
9008 if (tmp != NULL)
9009 {
9010 GROW_VECT (result, result_len, tmp - name + 1);
9011 strncpy (result, name, tmp - name);
9012 result[tmp - name] = '\0';
9013 return result;
9014 }
9015
9016 return name;
9017 }
9018 }
9019
9020 /* Evaluate the subexpression of EXP starting at *POS as for
9021 evaluate_type, updating *POS to point just past the evaluated
9022 expression. */
9023
9024 static struct value *
9025 evaluate_subexp_type (struct expression *exp, int *pos)
9026 {
9027 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9028 }
9029
9030 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9031 value it wraps. */
9032
9033 static struct value *
9034 unwrap_value (struct value *val)
9035 {
9036 struct type *type = ada_check_typedef (value_type (val));
9037
9038 if (ada_is_aligner_type (type))
9039 {
9040 struct value *v = ada_value_struct_elt (val, "F", 0);
9041 struct type *val_type = ada_check_typedef (value_type (v));
9042
9043 if (ada_type_name (val_type) == NULL)
9044 TYPE_NAME (val_type) = ada_type_name (type);
9045
9046 return unwrap_value (v);
9047 }
9048 else
9049 {
9050 struct type *raw_real_type =
9051 ada_check_typedef (ada_get_base_type (type));
9052
9053 /* If there is no parallel XVS or XVE type, then the value is
9054 already unwrapped. Return it without further modification. */
9055 if ((type == raw_real_type)
9056 && ada_find_parallel_type (type, "___XVE") == NULL)
9057 return val;
9058
9059 return
9060 coerce_unspec_val_to_type
9061 (val, ada_to_fixed_type (raw_real_type, 0,
9062 value_address (val),
9063 NULL, 1));
9064 }
9065 }
9066
9067 static struct value *
9068 cast_to_fixed (struct type *type, struct value *arg)
9069 {
9070 LONGEST val;
9071
9072 if (type == value_type (arg))
9073 return arg;
9074 else if (ada_is_fixed_point_type (value_type (arg)))
9075 val = ada_float_to_fixed (type,
9076 ada_fixed_to_float (value_type (arg),
9077 value_as_long (arg)));
9078 else
9079 {
9080 DOUBLEST argd = value_as_double (arg);
9081
9082 val = ada_float_to_fixed (type, argd);
9083 }
9084
9085 return value_from_longest (type, val);
9086 }
9087
9088 static struct value *
9089 cast_from_fixed (struct type *type, struct value *arg)
9090 {
9091 DOUBLEST val = ada_fixed_to_float (value_type (arg),
9092 value_as_long (arg));
9093
9094 return value_from_double (type, val);
9095 }
9096
9097 /* Given two array types T1 and T2, return nonzero iff both arrays
9098 contain the same number of elements. */
9099
9100 static int
9101 ada_same_array_size_p (struct type *t1, struct type *t2)
9102 {
9103 LONGEST lo1, hi1, lo2, hi2;
9104
9105 /* Get the array bounds in order to verify that the size of
9106 the two arrays match. */
9107 if (!get_array_bounds (t1, &lo1, &hi1)
9108 || !get_array_bounds (t2, &lo2, &hi2))
9109 error (_("unable to determine array bounds"));
9110
9111 /* To make things easier for size comparison, normalize a bit
9112 the case of empty arrays by making sure that the difference
9113 between upper bound and lower bound is always -1. */
9114 if (lo1 > hi1)
9115 hi1 = lo1 - 1;
9116 if (lo2 > hi2)
9117 hi2 = lo2 - 1;
9118
9119 return (hi1 - lo1 == hi2 - lo2);
9120 }
9121
9122 /* Assuming that VAL is an array of integrals, and TYPE represents
9123 an array with the same number of elements, but with wider integral
9124 elements, return an array "casted" to TYPE. In practice, this
9125 means that the returned array is built by casting each element
9126 of the original array into TYPE's (wider) element type. */
9127
9128 static struct value *
9129 ada_promote_array_of_integrals (struct type *type, struct value *val)
9130 {
9131 struct type *elt_type = TYPE_TARGET_TYPE (type);
9132 LONGEST lo, hi;
9133 struct value *res;
9134 LONGEST i;
9135
9136 /* Verify that both val and type are arrays of scalars, and
9137 that the size of val's elements is smaller than the size
9138 of type's element. */
9139 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9140 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9141 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9142 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9143 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9144 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9145
9146 if (!get_array_bounds (type, &lo, &hi))
9147 error (_("unable to determine array bounds"));
9148
9149 res = allocate_value (type);
9150
9151 /* Promote each array element. */
9152 for (i = 0; i < hi - lo + 1; i++)
9153 {
9154 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9155
9156 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9157 value_contents_all (elt), TYPE_LENGTH (elt_type));
9158 }
9159
9160 return res;
9161 }
9162
9163 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9164 return the converted value. */
9165
9166 static struct value *
9167 coerce_for_assign (struct type *type, struct value *val)
9168 {
9169 struct type *type2 = value_type (val);
9170
9171 if (type == type2)
9172 return val;
9173
9174 type2 = ada_check_typedef (type2);
9175 type = ada_check_typedef (type);
9176
9177 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9178 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9179 {
9180 val = ada_value_ind (val);
9181 type2 = value_type (val);
9182 }
9183
9184 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
9185 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9186 {
9187 if (!ada_same_array_size_p (type, type2))
9188 error (_("cannot assign arrays of different length"));
9189
9190 if (is_integral_type (TYPE_TARGET_TYPE (type))
9191 && is_integral_type (TYPE_TARGET_TYPE (type2))
9192 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9193 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9194 {
9195 /* Allow implicit promotion of the array elements to
9196 a wider type. */
9197 return ada_promote_array_of_integrals (type, val);
9198 }
9199
9200 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9201 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9202 error (_("Incompatible types in assignment"));
9203 deprecated_set_value_type (val, type);
9204 }
9205 return val;
9206 }
9207
9208 static struct value *
9209 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9210 {
9211 struct value *val;
9212 struct type *type1, *type2;
9213 LONGEST v, v1, v2;
9214
9215 arg1 = coerce_ref (arg1);
9216 arg2 = coerce_ref (arg2);
9217 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9218 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9219
9220 if (TYPE_CODE (type1) != TYPE_CODE_INT
9221 || TYPE_CODE (type2) != TYPE_CODE_INT)
9222 return value_binop (arg1, arg2, op);
9223
9224 switch (op)
9225 {
9226 case BINOP_MOD:
9227 case BINOP_DIV:
9228 case BINOP_REM:
9229 break;
9230 default:
9231 return value_binop (arg1, arg2, op);
9232 }
9233
9234 v2 = value_as_long (arg2);
9235 if (v2 == 0)
9236 error (_("second operand of %s must not be zero."), op_string (op));
9237
9238 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9239 return value_binop (arg1, arg2, op);
9240
9241 v1 = value_as_long (arg1);
9242 switch (op)
9243 {
9244 case BINOP_DIV:
9245 v = v1 / v2;
9246 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9247 v += v > 0 ? -1 : 1;
9248 break;
9249 case BINOP_REM:
9250 v = v1 % v2;
9251 if (v * v1 < 0)
9252 v -= v2;
9253 break;
9254 default:
9255 /* Should not reach this point. */
9256 v = 0;
9257 }
9258
9259 val = allocate_value (type1);
9260 store_unsigned_integer (value_contents_raw (val),
9261 TYPE_LENGTH (value_type (val)),
9262 gdbarch_byte_order (get_type_arch (type1)), v);
9263 return val;
9264 }
9265
9266 static int
9267 ada_value_equal (struct value *arg1, struct value *arg2)
9268 {
9269 if (ada_is_direct_array_type (value_type (arg1))
9270 || ada_is_direct_array_type (value_type (arg2)))
9271 {
9272 /* Automatically dereference any array reference before
9273 we attempt to perform the comparison. */
9274 arg1 = ada_coerce_ref (arg1);
9275 arg2 = ada_coerce_ref (arg2);
9276
9277 arg1 = ada_coerce_to_simple_array (arg1);
9278 arg2 = ada_coerce_to_simple_array (arg2);
9279 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
9280 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
9281 error (_("Attempt to compare array with non-array"));
9282 /* FIXME: The following works only for types whose
9283 representations use all bits (no padding or undefined bits)
9284 and do not have user-defined equality. */
9285 return
9286 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
9287 && memcmp (value_contents (arg1), value_contents (arg2),
9288 TYPE_LENGTH (value_type (arg1))) == 0;
9289 }
9290 return value_equal (arg1, arg2);
9291 }
9292
9293 /* Total number of component associations in the aggregate starting at
9294 index PC in EXP. Assumes that index PC is the start of an
9295 OP_AGGREGATE. */
9296
9297 static int
9298 num_component_specs (struct expression *exp, int pc)
9299 {
9300 int n, m, i;
9301
9302 m = exp->elts[pc + 1].longconst;
9303 pc += 3;
9304 n = 0;
9305 for (i = 0; i < m; i += 1)
9306 {
9307 switch (exp->elts[pc].opcode)
9308 {
9309 default:
9310 n += 1;
9311 break;
9312 case OP_CHOICES:
9313 n += exp->elts[pc + 1].longconst;
9314 break;
9315 }
9316 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9317 }
9318 return n;
9319 }
9320
9321 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9322 component of LHS (a simple array or a record), updating *POS past
9323 the expression, assuming that LHS is contained in CONTAINER. Does
9324 not modify the inferior's memory, nor does it modify LHS (unless
9325 LHS == CONTAINER). */
9326
9327 static void
9328 assign_component (struct value *container, struct value *lhs, LONGEST index,
9329 struct expression *exp, int *pos)
9330 {
9331 struct value *mark = value_mark ();
9332 struct value *elt;
9333
9334 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
9335 {
9336 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9337 struct value *index_val = value_from_longest (index_type, index);
9338
9339 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9340 }
9341 else
9342 {
9343 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9344 elt = ada_to_fixed_value (elt);
9345 }
9346
9347 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9348 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9349 else
9350 value_assign_to_component (container, elt,
9351 ada_evaluate_subexp (NULL, exp, pos,
9352 EVAL_NORMAL));
9353
9354 value_free_to_mark (mark);
9355 }
9356
9357 /* Assuming that LHS represents an lvalue having a record or array
9358 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9359 of that aggregate's value to LHS, advancing *POS past the
9360 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9361 lvalue containing LHS (possibly LHS itself). Does not modify
9362 the inferior's memory, nor does it modify the contents of
9363 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9364
9365 static struct value *
9366 assign_aggregate (struct value *container,
9367 struct value *lhs, struct expression *exp,
9368 int *pos, enum noside noside)
9369 {
9370 struct type *lhs_type;
9371 int n = exp->elts[*pos+1].longconst;
9372 LONGEST low_index, high_index;
9373 int num_specs;
9374 LONGEST *indices;
9375 int max_indices, num_indices;
9376 int i;
9377
9378 *pos += 3;
9379 if (noside != EVAL_NORMAL)
9380 {
9381 for (i = 0; i < n; i += 1)
9382 ada_evaluate_subexp (NULL, exp, pos, noside);
9383 return container;
9384 }
9385
9386 container = ada_coerce_ref (container);
9387 if (ada_is_direct_array_type (value_type (container)))
9388 container = ada_coerce_to_simple_array (container);
9389 lhs = ada_coerce_ref (lhs);
9390 if (!deprecated_value_modifiable (lhs))
9391 error (_("Left operand of assignment is not a modifiable lvalue."));
9392
9393 lhs_type = value_type (lhs);
9394 if (ada_is_direct_array_type (lhs_type))
9395 {
9396 lhs = ada_coerce_to_simple_array (lhs);
9397 lhs_type = value_type (lhs);
9398 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9399 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
9400 }
9401 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9402 {
9403 low_index = 0;
9404 high_index = num_visible_fields (lhs_type) - 1;
9405 }
9406 else
9407 error (_("Left-hand side must be array or record."));
9408
9409 num_specs = num_component_specs (exp, *pos - 3);
9410 max_indices = 4 * num_specs + 4;
9411 indices = alloca (max_indices * sizeof (indices[0]));
9412 indices[0] = indices[1] = low_index - 1;
9413 indices[2] = indices[3] = high_index + 1;
9414 num_indices = 4;
9415
9416 for (i = 0; i < n; i += 1)
9417 {
9418 switch (exp->elts[*pos].opcode)
9419 {
9420 case OP_CHOICES:
9421 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9422 &num_indices, max_indices,
9423 low_index, high_index);
9424 break;
9425 case OP_POSITIONAL:
9426 aggregate_assign_positional (container, lhs, exp, pos, indices,
9427 &num_indices, max_indices,
9428 low_index, high_index);
9429 break;
9430 case OP_OTHERS:
9431 if (i != n-1)
9432 error (_("Misplaced 'others' clause"));
9433 aggregate_assign_others (container, lhs, exp, pos, indices,
9434 num_indices, low_index, high_index);
9435 break;
9436 default:
9437 error (_("Internal error: bad aggregate clause"));
9438 }
9439 }
9440
9441 return container;
9442 }
9443
9444 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9445 construct at *POS, updating *POS past the construct, given that
9446 the positions are relative to lower bound LOW, where HIGH is the
9447 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9448 updating *NUM_INDICES as needed. CONTAINER is as for
9449 assign_aggregate. */
9450 static void
9451 aggregate_assign_positional (struct value *container,
9452 struct value *lhs, struct expression *exp,
9453 int *pos, LONGEST *indices, int *num_indices,
9454 int max_indices, LONGEST low, LONGEST high)
9455 {
9456 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9457
9458 if (ind - 1 == high)
9459 warning (_("Extra components in aggregate ignored."));
9460 if (ind <= high)
9461 {
9462 add_component_interval (ind, ind, indices, num_indices, max_indices);
9463 *pos += 3;
9464 assign_component (container, lhs, ind, exp, pos);
9465 }
9466 else
9467 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9468 }
9469
9470 /* Assign into the components of LHS indexed by the OP_CHOICES
9471 construct at *POS, updating *POS past the construct, given that
9472 the allowable indices are LOW..HIGH. Record the indices assigned
9473 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
9474 needed. CONTAINER is as for assign_aggregate. */
9475 static void
9476 aggregate_assign_from_choices (struct value *container,
9477 struct value *lhs, struct expression *exp,
9478 int *pos, LONGEST *indices, int *num_indices,
9479 int max_indices, LONGEST low, LONGEST high)
9480 {
9481 int j;
9482 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9483 int choice_pos, expr_pc;
9484 int is_array = ada_is_direct_array_type (value_type (lhs));
9485
9486 choice_pos = *pos += 3;
9487
9488 for (j = 0; j < n_choices; j += 1)
9489 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9490 expr_pc = *pos;
9491 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9492
9493 for (j = 0; j < n_choices; j += 1)
9494 {
9495 LONGEST lower, upper;
9496 enum exp_opcode op = exp->elts[choice_pos].opcode;
9497
9498 if (op == OP_DISCRETE_RANGE)
9499 {
9500 choice_pos += 1;
9501 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9502 EVAL_NORMAL));
9503 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9504 EVAL_NORMAL));
9505 }
9506 else if (is_array)
9507 {
9508 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9509 EVAL_NORMAL));
9510 upper = lower;
9511 }
9512 else
9513 {
9514 int ind;
9515 const char *name;
9516
9517 switch (op)
9518 {
9519 case OP_NAME:
9520 name = &exp->elts[choice_pos + 2].string;
9521 break;
9522 case OP_VAR_VALUE:
9523 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9524 break;
9525 default:
9526 error (_("Invalid record component association."));
9527 }
9528 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9529 ind = 0;
9530 if (! find_struct_field (name, value_type (lhs), 0,
9531 NULL, NULL, NULL, NULL, &ind))
9532 error (_("Unknown component name: %s."), name);
9533 lower = upper = ind;
9534 }
9535
9536 if (lower <= upper && (lower < low || upper > high))
9537 error (_("Index in component association out of bounds."));
9538
9539 add_component_interval (lower, upper, indices, num_indices,
9540 max_indices);
9541 while (lower <= upper)
9542 {
9543 int pos1;
9544
9545 pos1 = expr_pc;
9546 assign_component (container, lhs, lower, exp, &pos1);
9547 lower += 1;
9548 }
9549 }
9550 }
9551
9552 /* Assign the value of the expression in the OP_OTHERS construct in
9553 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9554 have not been previously assigned. The index intervals already assigned
9555 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
9556 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
9557 static void
9558 aggregate_assign_others (struct value *container,
9559 struct value *lhs, struct expression *exp,
9560 int *pos, LONGEST *indices, int num_indices,
9561 LONGEST low, LONGEST high)
9562 {
9563 int i;
9564 int expr_pc = *pos + 1;
9565
9566 for (i = 0; i < num_indices - 2; i += 2)
9567 {
9568 LONGEST ind;
9569
9570 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9571 {
9572 int localpos;
9573
9574 localpos = expr_pc;
9575 assign_component (container, lhs, ind, exp, &localpos);
9576 }
9577 }
9578 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9579 }
9580
9581 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
9582 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9583 modifying *SIZE as needed. It is an error if *SIZE exceeds
9584 MAX_SIZE. The resulting intervals do not overlap. */
9585 static void
9586 add_component_interval (LONGEST low, LONGEST high,
9587 LONGEST* indices, int *size, int max_size)
9588 {
9589 int i, j;
9590
9591 for (i = 0; i < *size; i += 2) {
9592 if (high >= indices[i] && low <= indices[i + 1])
9593 {
9594 int kh;
9595
9596 for (kh = i + 2; kh < *size; kh += 2)
9597 if (high < indices[kh])
9598 break;
9599 if (low < indices[i])
9600 indices[i] = low;
9601 indices[i + 1] = indices[kh - 1];
9602 if (high > indices[i + 1])
9603 indices[i + 1] = high;
9604 memcpy (indices + i + 2, indices + kh, *size - kh);
9605 *size -= kh - i - 2;
9606 return;
9607 }
9608 else if (high < indices[i])
9609 break;
9610 }
9611
9612 if (*size == max_size)
9613 error (_("Internal error: miscounted aggregate components."));
9614 *size += 2;
9615 for (j = *size-1; j >= i+2; j -= 1)
9616 indices[j] = indices[j - 2];
9617 indices[i] = low;
9618 indices[i + 1] = high;
9619 }
9620
9621 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9622 is different. */
9623
9624 static struct value *
9625 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
9626 {
9627 if (type == ada_check_typedef (value_type (arg2)))
9628 return arg2;
9629
9630 if (ada_is_fixed_point_type (type))
9631 return (cast_to_fixed (type, arg2));
9632
9633 if (ada_is_fixed_point_type (value_type (arg2)))
9634 return cast_from_fixed (type, arg2);
9635
9636 return value_cast (type, arg2);
9637 }
9638
9639 /* Evaluating Ada expressions, and printing their result.
9640 ------------------------------------------------------
9641
9642 1. Introduction:
9643 ----------------
9644
9645 We usually evaluate an Ada expression in order to print its value.
9646 We also evaluate an expression in order to print its type, which
9647 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9648 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9649 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9650 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9651 similar.
9652
9653 Evaluating expressions is a little more complicated for Ada entities
9654 than it is for entities in languages such as C. The main reason for
9655 this is that Ada provides types whose definition might be dynamic.
9656 One example of such types is variant records. Or another example
9657 would be an array whose bounds can only be known at run time.
9658
9659 The following description is a general guide as to what should be
9660 done (and what should NOT be done) in order to evaluate an expression
9661 involving such types, and when. This does not cover how the semantic
9662 information is encoded by GNAT as this is covered separatly. For the
9663 document used as the reference for the GNAT encoding, see exp_dbug.ads
9664 in the GNAT sources.
9665
9666 Ideally, we should embed each part of this description next to its
9667 associated code. Unfortunately, the amount of code is so vast right
9668 now that it's hard to see whether the code handling a particular
9669 situation might be duplicated or not. One day, when the code is
9670 cleaned up, this guide might become redundant with the comments
9671 inserted in the code, and we might want to remove it.
9672
9673 2. ``Fixing'' an Entity, the Simple Case:
9674 -----------------------------------------
9675
9676 When evaluating Ada expressions, the tricky issue is that they may
9677 reference entities whose type contents and size are not statically
9678 known. Consider for instance a variant record:
9679
9680 type Rec (Empty : Boolean := True) is record
9681 case Empty is
9682 when True => null;
9683 when False => Value : Integer;
9684 end case;
9685 end record;
9686 Yes : Rec := (Empty => False, Value => 1);
9687 No : Rec := (empty => True);
9688
9689 The size and contents of that record depends on the value of the
9690 descriminant (Rec.Empty). At this point, neither the debugging
9691 information nor the associated type structure in GDB are able to
9692 express such dynamic types. So what the debugger does is to create
9693 "fixed" versions of the type that applies to the specific object.
9694 We also informally refer to this opperation as "fixing" an object,
9695 which means creating its associated fixed type.
9696
9697 Example: when printing the value of variable "Yes" above, its fixed
9698 type would look like this:
9699
9700 type Rec is record
9701 Empty : Boolean;
9702 Value : Integer;
9703 end record;
9704
9705 On the other hand, if we printed the value of "No", its fixed type
9706 would become:
9707
9708 type Rec is record
9709 Empty : Boolean;
9710 end record;
9711
9712 Things become a little more complicated when trying to fix an entity
9713 with a dynamic type that directly contains another dynamic type,
9714 such as an array of variant records, for instance. There are
9715 two possible cases: Arrays, and records.
9716
9717 3. ``Fixing'' Arrays:
9718 ---------------------
9719
9720 The type structure in GDB describes an array in terms of its bounds,
9721 and the type of its elements. By design, all elements in the array
9722 have the same type and we cannot represent an array of variant elements
9723 using the current type structure in GDB. When fixing an array,
9724 we cannot fix the array element, as we would potentially need one
9725 fixed type per element of the array. As a result, the best we can do
9726 when fixing an array is to produce an array whose bounds and size
9727 are correct (allowing us to read it from memory), but without having
9728 touched its element type. Fixing each element will be done later,
9729 when (if) necessary.
9730
9731 Arrays are a little simpler to handle than records, because the same
9732 amount of memory is allocated for each element of the array, even if
9733 the amount of space actually used by each element differs from element
9734 to element. Consider for instance the following array of type Rec:
9735
9736 type Rec_Array is array (1 .. 2) of Rec;
9737
9738 The actual amount of memory occupied by each element might be different
9739 from element to element, depending on the value of their discriminant.
9740 But the amount of space reserved for each element in the array remains
9741 fixed regardless. So we simply need to compute that size using
9742 the debugging information available, from which we can then determine
9743 the array size (we multiply the number of elements of the array by
9744 the size of each element).
9745
9746 The simplest case is when we have an array of a constrained element
9747 type. For instance, consider the following type declarations:
9748
9749 type Bounded_String (Max_Size : Integer) is
9750 Length : Integer;
9751 Buffer : String (1 .. Max_Size);
9752 end record;
9753 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9754
9755 In this case, the compiler describes the array as an array of
9756 variable-size elements (identified by its XVS suffix) for which
9757 the size can be read in the parallel XVZ variable.
9758
9759 In the case of an array of an unconstrained element type, the compiler
9760 wraps the array element inside a private PAD type. This type should not
9761 be shown to the user, and must be "unwrap"'ed before printing. Note
9762 that we also use the adjective "aligner" in our code to designate
9763 these wrapper types.
9764
9765 In some cases, the size allocated for each element is statically
9766 known. In that case, the PAD type already has the correct size,
9767 and the array element should remain unfixed.
9768
9769 But there are cases when this size is not statically known.
9770 For instance, assuming that "Five" is an integer variable:
9771
9772 type Dynamic is array (1 .. Five) of Integer;
9773 type Wrapper (Has_Length : Boolean := False) is record
9774 Data : Dynamic;
9775 case Has_Length is
9776 when True => Length : Integer;
9777 when False => null;
9778 end case;
9779 end record;
9780 type Wrapper_Array is array (1 .. 2) of Wrapper;
9781
9782 Hello : Wrapper_Array := (others => (Has_Length => True,
9783 Data => (others => 17),
9784 Length => 1));
9785
9786
9787 The debugging info would describe variable Hello as being an
9788 array of a PAD type. The size of that PAD type is not statically
9789 known, but can be determined using a parallel XVZ variable.
9790 In that case, a copy of the PAD type with the correct size should
9791 be used for the fixed array.
9792
9793 3. ``Fixing'' record type objects:
9794 ----------------------------------
9795
9796 Things are slightly different from arrays in the case of dynamic
9797 record types. In this case, in order to compute the associated
9798 fixed type, we need to determine the size and offset of each of
9799 its components. This, in turn, requires us to compute the fixed
9800 type of each of these components.
9801
9802 Consider for instance the example:
9803
9804 type Bounded_String (Max_Size : Natural) is record
9805 Str : String (1 .. Max_Size);
9806 Length : Natural;
9807 end record;
9808 My_String : Bounded_String (Max_Size => 10);
9809
9810 In that case, the position of field "Length" depends on the size
9811 of field Str, which itself depends on the value of the Max_Size
9812 discriminant. In order to fix the type of variable My_String,
9813 we need to fix the type of field Str. Therefore, fixing a variant
9814 record requires us to fix each of its components.
9815
9816 However, if a component does not have a dynamic size, the component
9817 should not be fixed. In particular, fields that use a PAD type
9818 should not fixed. Here is an example where this might happen
9819 (assuming type Rec above):
9820
9821 type Container (Big : Boolean) is record
9822 First : Rec;
9823 After : Integer;
9824 case Big is
9825 when True => Another : Integer;
9826 when False => null;
9827 end case;
9828 end record;
9829 My_Container : Container := (Big => False,
9830 First => (Empty => True),
9831 After => 42);
9832
9833 In that example, the compiler creates a PAD type for component First,
9834 whose size is constant, and then positions the component After just
9835 right after it. The offset of component After is therefore constant
9836 in this case.
9837
9838 The debugger computes the position of each field based on an algorithm
9839 that uses, among other things, the actual position and size of the field
9840 preceding it. Let's now imagine that the user is trying to print
9841 the value of My_Container. If the type fixing was recursive, we would
9842 end up computing the offset of field After based on the size of the
9843 fixed version of field First. And since in our example First has
9844 only one actual field, the size of the fixed type is actually smaller
9845 than the amount of space allocated to that field, and thus we would
9846 compute the wrong offset of field After.
9847
9848 To make things more complicated, we need to watch out for dynamic
9849 components of variant records (identified by the ___XVL suffix in
9850 the component name). Even if the target type is a PAD type, the size
9851 of that type might not be statically known. So the PAD type needs
9852 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9853 we might end up with the wrong size for our component. This can be
9854 observed with the following type declarations:
9855
9856 type Octal is new Integer range 0 .. 7;
9857 type Octal_Array is array (Positive range <>) of Octal;
9858 pragma Pack (Octal_Array);
9859
9860 type Octal_Buffer (Size : Positive) is record
9861 Buffer : Octal_Array (1 .. Size);
9862 Length : Integer;
9863 end record;
9864
9865 In that case, Buffer is a PAD type whose size is unset and needs
9866 to be computed by fixing the unwrapped type.
9867
9868 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9869 ----------------------------------------------------------
9870
9871 Lastly, when should the sub-elements of an entity that remained unfixed
9872 thus far, be actually fixed?
9873
9874 The answer is: Only when referencing that element. For instance
9875 when selecting one component of a record, this specific component
9876 should be fixed at that point in time. Or when printing the value
9877 of a record, each component should be fixed before its value gets
9878 printed. Similarly for arrays, the element of the array should be
9879 fixed when printing each element of the array, or when extracting
9880 one element out of that array. On the other hand, fixing should
9881 not be performed on the elements when taking a slice of an array!
9882
9883 Note that one of the side-effects of miscomputing the offset and
9884 size of each field is that we end up also miscomputing the size
9885 of the containing type. This can have adverse results when computing
9886 the value of an entity. GDB fetches the value of an entity based
9887 on the size of its type, and thus a wrong size causes GDB to fetch
9888 the wrong amount of memory. In the case where the computed size is
9889 too small, GDB fetches too little data to print the value of our
9890 entiry. Results in this case as unpredicatble, as we usually read
9891 past the buffer containing the data =:-o. */
9892
9893 /* Implement the evaluate_exp routine in the exp_descriptor structure
9894 for the Ada language. */
9895
9896 static struct value *
9897 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
9898 int *pos, enum noside noside)
9899 {
9900 enum exp_opcode op;
9901 int tem;
9902 int pc;
9903 int preeval_pos;
9904 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
9905 struct type *type;
9906 int nargs, oplen;
9907 struct value **argvec;
9908
9909 pc = *pos;
9910 *pos += 1;
9911 op = exp->elts[pc].opcode;
9912
9913 switch (op)
9914 {
9915 default:
9916 *pos -= 1;
9917 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9918
9919 if (noside == EVAL_NORMAL)
9920 arg1 = unwrap_value (arg1);
9921
9922 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
9923 then we need to perform the conversion manually, because
9924 evaluate_subexp_standard doesn't do it. This conversion is
9925 necessary in Ada because the different kinds of float/fixed
9926 types in Ada have different representations.
9927
9928 Similarly, we need to perform the conversion from OP_LONG
9929 ourselves. */
9930 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
9931 arg1 = ada_value_cast (expect_type, arg1, noside);
9932
9933 return arg1;
9934
9935 case OP_STRING:
9936 {
9937 struct value *result;
9938
9939 *pos -= 1;
9940 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
9941 /* The result type will have code OP_STRING, bashed there from
9942 OP_ARRAY. Bash it back. */
9943 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
9944 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
9945 return result;
9946 }
9947
9948 case UNOP_CAST:
9949 (*pos) += 2;
9950 type = exp->elts[pc + 1].type;
9951 arg1 = evaluate_subexp (type, exp, pos, noside);
9952 if (noside == EVAL_SKIP)
9953 goto nosideret;
9954 arg1 = ada_value_cast (type, arg1, noside);
9955 return arg1;
9956
9957 case UNOP_QUAL:
9958 (*pos) += 2;
9959 type = exp->elts[pc + 1].type;
9960 return ada_evaluate_subexp (type, exp, pos, noside);
9961
9962 case BINOP_ASSIGN:
9963 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9964 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9965 {
9966 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
9967 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9968 return arg1;
9969 return ada_value_assign (arg1, arg1);
9970 }
9971 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9972 except if the lhs of our assignment is a convenience variable.
9973 In the case of assigning to a convenience variable, the lhs
9974 should be exactly the result of the evaluation of the rhs. */
9975 type = value_type (arg1);
9976 if (VALUE_LVAL (arg1) == lval_internalvar)
9977 type = NULL;
9978 arg2 = evaluate_subexp (type, exp, pos, noside);
9979 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9980 return arg1;
9981 if (ada_is_fixed_point_type (value_type (arg1)))
9982 arg2 = cast_to_fixed (value_type (arg1), arg2);
9983 else if (ada_is_fixed_point_type (value_type (arg2)))
9984 error
9985 (_("Fixed-point values must be assigned to fixed-point variables"));
9986 else
9987 arg2 = coerce_for_assign (value_type (arg1), arg2);
9988 return ada_value_assign (arg1, arg2);
9989
9990 case BINOP_ADD:
9991 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9992 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9993 if (noside == EVAL_SKIP)
9994 goto nosideret;
9995 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9996 return (value_from_longest
9997 (value_type (arg1),
9998 value_as_long (arg1) + value_as_long (arg2)));
9999 if ((ada_is_fixed_point_type (value_type (arg1))
10000 || ada_is_fixed_point_type (value_type (arg2)))
10001 && value_type (arg1) != value_type (arg2))
10002 error (_("Operands of fixed-point addition must have the same type"));
10003 /* Do the addition, and cast the result to the type of the first
10004 argument. We cannot cast the result to a reference type, so if
10005 ARG1 is a reference type, find its underlying type. */
10006 type = value_type (arg1);
10007 while (TYPE_CODE (type) == TYPE_CODE_REF)
10008 type = TYPE_TARGET_TYPE (type);
10009 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10010 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10011
10012 case BINOP_SUB:
10013 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10014 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10015 if (noside == EVAL_SKIP)
10016 goto nosideret;
10017 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10018 return (value_from_longest
10019 (value_type (arg1),
10020 value_as_long (arg1) - value_as_long (arg2)));
10021 if ((ada_is_fixed_point_type (value_type (arg1))
10022 || ada_is_fixed_point_type (value_type (arg2)))
10023 && value_type (arg1) != value_type (arg2))
10024 error (_("Operands of fixed-point subtraction "
10025 "must have the same type"));
10026 /* Do the substraction, and cast the result to the type of the first
10027 argument. We cannot cast the result to a reference type, so if
10028 ARG1 is a reference type, find its underlying type. */
10029 type = value_type (arg1);
10030 while (TYPE_CODE (type) == TYPE_CODE_REF)
10031 type = TYPE_TARGET_TYPE (type);
10032 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10033 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10034
10035 case BINOP_MUL:
10036 case BINOP_DIV:
10037 case BINOP_REM:
10038 case BINOP_MOD:
10039 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10040 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10041 if (noside == EVAL_SKIP)
10042 goto nosideret;
10043 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10044 {
10045 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10046 return value_zero (value_type (arg1), not_lval);
10047 }
10048 else
10049 {
10050 type = builtin_type (exp->gdbarch)->builtin_double;
10051 if (ada_is_fixed_point_type (value_type (arg1)))
10052 arg1 = cast_from_fixed (type, arg1);
10053 if (ada_is_fixed_point_type (value_type (arg2)))
10054 arg2 = cast_from_fixed (type, arg2);
10055 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10056 return ada_value_binop (arg1, arg2, op);
10057 }
10058
10059 case BINOP_EQUAL:
10060 case BINOP_NOTEQUAL:
10061 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10062 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10063 if (noside == EVAL_SKIP)
10064 goto nosideret;
10065 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10066 tem = 0;
10067 else
10068 {
10069 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10070 tem = ada_value_equal (arg1, arg2);
10071 }
10072 if (op == BINOP_NOTEQUAL)
10073 tem = !tem;
10074 type = language_bool_type (exp->language_defn, exp->gdbarch);
10075 return value_from_longest (type, (LONGEST) tem);
10076
10077 case UNOP_NEG:
10078 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10079 if (noside == EVAL_SKIP)
10080 goto nosideret;
10081 else if (ada_is_fixed_point_type (value_type (arg1)))
10082 return value_cast (value_type (arg1), value_neg (arg1));
10083 else
10084 {
10085 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10086 return value_neg (arg1);
10087 }
10088
10089 case BINOP_LOGICAL_AND:
10090 case BINOP_LOGICAL_OR:
10091 case UNOP_LOGICAL_NOT:
10092 {
10093 struct value *val;
10094
10095 *pos -= 1;
10096 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10097 type = language_bool_type (exp->language_defn, exp->gdbarch);
10098 return value_cast (type, val);
10099 }
10100
10101 case BINOP_BITWISE_AND:
10102 case BINOP_BITWISE_IOR:
10103 case BINOP_BITWISE_XOR:
10104 {
10105 struct value *val;
10106
10107 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10108 *pos = pc;
10109 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10110
10111 return value_cast (value_type (arg1), val);
10112 }
10113
10114 case OP_VAR_VALUE:
10115 *pos -= 1;
10116
10117 if (noside == EVAL_SKIP)
10118 {
10119 *pos += 4;
10120 goto nosideret;
10121 }
10122
10123 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10124 /* Only encountered when an unresolved symbol occurs in a
10125 context other than a function call, in which case, it is
10126 invalid. */
10127 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10128 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
10129
10130 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10131 {
10132 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10133 /* Check to see if this is a tagged type. We also need to handle
10134 the case where the type is a reference to a tagged type, but
10135 we have to be careful to exclude pointers to tagged types.
10136 The latter should be shown as usual (as a pointer), whereas
10137 a reference should mostly be transparent to the user. */
10138 if (ada_is_tagged_type (type, 0)
10139 || (TYPE_CODE (type) == TYPE_CODE_REF
10140 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10141 {
10142 /* Tagged types are a little special in the fact that the real
10143 type is dynamic and can only be determined by inspecting the
10144 object's tag. This means that we need to get the object's
10145 value first (EVAL_NORMAL) and then extract the actual object
10146 type from its tag.
10147
10148 Note that we cannot skip the final step where we extract
10149 the object type from its tag, because the EVAL_NORMAL phase
10150 results in dynamic components being resolved into fixed ones.
10151 This can cause problems when trying to print the type
10152 description of tagged types whose parent has a dynamic size:
10153 We use the type name of the "_parent" component in order
10154 to print the name of the ancestor type in the type description.
10155 If that component had a dynamic size, the resolution into
10156 a fixed type would result in the loss of that type name,
10157 thus preventing us from printing the name of the ancestor
10158 type in the type description. */
10159 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10160
10161 if (TYPE_CODE (type) != TYPE_CODE_REF)
10162 {
10163 struct type *actual_type;
10164
10165 actual_type = type_from_tag (ada_value_tag (arg1));
10166 if (actual_type == NULL)
10167 /* If, for some reason, we were unable to determine
10168 the actual type from the tag, then use the static
10169 approximation that we just computed as a fallback.
10170 This can happen if the debugging information is
10171 incomplete, for instance. */
10172 actual_type = type;
10173 return value_zero (actual_type, not_lval);
10174 }
10175 else
10176 {
10177 /* In the case of a ref, ada_coerce_ref takes care
10178 of determining the actual type. But the evaluation
10179 should return a ref as it should be valid to ask
10180 for its address; so rebuild a ref after coerce. */
10181 arg1 = ada_coerce_ref (arg1);
10182 return value_ref (arg1);
10183 }
10184 }
10185
10186 /* Records and unions for which GNAT encodings have been
10187 generated need to be statically fixed as well.
10188 Otherwise, non-static fixing produces a type where
10189 all dynamic properties are removed, which prevents "ptype"
10190 from being able to completely describe the type.
10191 For instance, a case statement in a variant record would be
10192 replaced by the relevant components based on the actual
10193 value of the discriminants. */
10194 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10195 && dynamic_template_type (type) != NULL)
10196 || (TYPE_CODE (type) == TYPE_CODE_UNION
10197 && ada_find_parallel_type (type, "___XVU") != NULL))
10198 {
10199 *pos += 4;
10200 return value_zero (to_static_fixed_type (type), not_lval);
10201 }
10202 }
10203
10204 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10205 return ada_to_fixed_value (arg1);
10206
10207 case OP_FUNCALL:
10208 (*pos) += 2;
10209
10210 /* Allocate arg vector, including space for the function to be
10211 called in argvec[0] and a terminating NULL. */
10212 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10213 argvec =
10214 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
10215
10216 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10217 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10218 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10219 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10220 else
10221 {
10222 for (tem = 0; tem <= nargs; tem += 1)
10223 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10224 argvec[tem] = 0;
10225
10226 if (noside == EVAL_SKIP)
10227 goto nosideret;
10228 }
10229
10230 if (ada_is_constrained_packed_array_type
10231 (desc_base_type (value_type (argvec[0]))))
10232 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10233 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10234 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10235 /* This is a packed array that has already been fixed, and
10236 therefore already coerced to a simple array. Nothing further
10237 to do. */
10238 ;
10239 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
10240 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10241 && VALUE_LVAL (argvec[0]) == lval_memory))
10242 argvec[0] = value_addr (argvec[0]);
10243
10244 type = ada_check_typedef (value_type (argvec[0]));
10245
10246 /* Ada allows us to implicitly dereference arrays when subscripting
10247 them. So, if this is an array typedef (encoding use for array
10248 access types encoded as fat pointers), strip it now. */
10249 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10250 type = ada_typedef_target_type (type);
10251
10252 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10253 {
10254 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
10255 {
10256 case TYPE_CODE_FUNC:
10257 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10258 break;
10259 case TYPE_CODE_ARRAY:
10260 break;
10261 case TYPE_CODE_STRUCT:
10262 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10263 argvec[0] = ada_value_ind (argvec[0]);
10264 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10265 break;
10266 default:
10267 error (_("cannot subscript or call something of type `%s'"),
10268 ada_type_name (value_type (argvec[0])));
10269 break;
10270 }
10271 }
10272
10273 switch (TYPE_CODE (type))
10274 {
10275 case TYPE_CODE_FUNC:
10276 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10277 {
10278 struct type *rtype = TYPE_TARGET_TYPE (type);
10279
10280 if (TYPE_GNU_IFUNC (type))
10281 return allocate_value (TYPE_TARGET_TYPE (rtype));
10282 return allocate_value (rtype);
10283 }
10284 return call_function_by_hand (argvec[0], nargs, argvec + 1);
10285 case TYPE_CODE_INTERNAL_FUNCTION:
10286 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10287 /* We don't know anything about what the internal
10288 function might return, but we have to return
10289 something. */
10290 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10291 not_lval);
10292 else
10293 return call_internal_function (exp->gdbarch, exp->language_defn,
10294 argvec[0], nargs, argvec + 1);
10295
10296 case TYPE_CODE_STRUCT:
10297 {
10298 int arity;
10299
10300 arity = ada_array_arity (type);
10301 type = ada_array_element_type (type, nargs);
10302 if (type == NULL)
10303 error (_("cannot subscript or call a record"));
10304 if (arity != nargs)
10305 error (_("wrong number of subscripts; expecting %d"), arity);
10306 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10307 return value_zero (ada_aligned_type (type), lval_memory);
10308 return
10309 unwrap_value (ada_value_subscript
10310 (argvec[0], nargs, argvec + 1));
10311 }
10312 case TYPE_CODE_ARRAY:
10313 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10314 {
10315 type = ada_array_element_type (type, nargs);
10316 if (type == NULL)
10317 error (_("element type of array unknown"));
10318 else
10319 return value_zero (ada_aligned_type (type), lval_memory);
10320 }
10321 return
10322 unwrap_value (ada_value_subscript
10323 (ada_coerce_to_simple_array (argvec[0]),
10324 nargs, argvec + 1));
10325 case TYPE_CODE_PTR: /* Pointer to array */
10326 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10327 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10328 {
10329 type = ada_array_element_type (type, nargs);
10330 if (type == NULL)
10331 error (_("element type of array unknown"));
10332 else
10333 return value_zero (ada_aligned_type (type), lval_memory);
10334 }
10335 return
10336 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
10337 nargs, argvec + 1));
10338
10339 default:
10340 error (_("Attempt to index or call something other than an "
10341 "array or function"));
10342 }
10343
10344 case TERNOP_SLICE:
10345 {
10346 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10347 struct value *low_bound_val =
10348 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10349 struct value *high_bound_val =
10350 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10351 LONGEST low_bound;
10352 LONGEST high_bound;
10353
10354 low_bound_val = coerce_ref (low_bound_val);
10355 high_bound_val = coerce_ref (high_bound_val);
10356 low_bound = pos_atr (low_bound_val);
10357 high_bound = pos_atr (high_bound_val);
10358
10359 if (noside == EVAL_SKIP)
10360 goto nosideret;
10361
10362 /* If this is a reference to an aligner type, then remove all
10363 the aligners. */
10364 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10365 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10366 TYPE_TARGET_TYPE (value_type (array)) =
10367 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10368
10369 if (ada_is_constrained_packed_array_type (value_type (array)))
10370 error (_("cannot slice a packed array"));
10371
10372 /* If this is a reference to an array or an array lvalue,
10373 convert to a pointer. */
10374 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10375 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
10376 && VALUE_LVAL (array) == lval_memory))
10377 array = value_addr (array);
10378
10379 if (noside == EVAL_AVOID_SIDE_EFFECTS
10380 && ada_is_array_descriptor_type (ada_check_typedef
10381 (value_type (array))))
10382 return empty_array (ada_type_of_array (array, 0), low_bound);
10383
10384 array = ada_coerce_to_simple_array_ptr (array);
10385
10386 /* If we have more than one level of pointer indirection,
10387 dereference the value until we get only one level. */
10388 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10389 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
10390 == TYPE_CODE_PTR))
10391 array = value_ind (array);
10392
10393 /* Make sure we really do have an array type before going further,
10394 to avoid a SEGV when trying to get the index type or the target
10395 type later down the road if the debug info generated by
10396 the compiler is incorrect or incomplete. */
10397 if (!ada_is_simple_array_type (value_type (array)))
10398 error (_("cannot take slice of non-array"));
10399
10400 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10401 == TYPE_CODE_PTR)
10402 {
10403 struct type *type0 = ada_check_typedef (value_type (array));
10404
10405 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10406 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
10407 else
10408 {
10409 struct type *arr_type0 =
10410 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
10411
10412 return ada_value_slice_from_ptr (array, arr_type0,
10413 longest_to_int (low_bound),
10414 longest_to_int (high_bound));
10415 }
10416 }
10417 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10418 return array;
10419 else if (high_bound < low_bound)
10420 return empty_array (value_type (array), low_bound);
10421 else
10422 return ada_value_slice (array, longest_to_int (low_bound),
10423 longest_to_int (high_bound));
10424 }
10425
10426 case UNOP_IN_RANGE:
10427 (*pos) += 2;
10428 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10429 type = check_typedef (exp->elts[pc + 1].type);
10430
10431 if (noside == EVAL_SKIP)
10432 goto nosideret;
10433
10434 switch (TYPE_CODE (type))
10435 {
10436 default:
10437 lim_warning (_("Membership test incompletely implemented; "
10438 "always returns true"));
10439 type = language_bool_type (exp->language_defn, exp->gdbarch);
10440 return value_from_longest (type, (LONGEST) 1);
10441
10442 case TYPE_CODE_RANGE:
10443 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10444 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
10445 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10446 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10447 type = language_bool_type (exp->language_defn, exp->gdbarch);
10448 return
10449 value_from_longest (type,
10450 (value_less (arg1, arg3)
10451 || value_equal (arg1, arg3))
10452 && (value_less (arg2, arg1)
10453 || value_equal (arg2, arg1)));
10454 }
10455
10456 case BINOP_IN_BOUNDS:
10457 (*pos) += 2;
10458 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10459 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10460
10461 if (noside == EVAL_SKIP)
10462 goto nosideret;
10463
10464 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10465 {
10466 type = language_bool_type (exp->language_defn, exp->gdbarch);
10467 return value_zero (type, not_lval);
10468 }
10469
10470 tem = longest_to_int (exp->elts[pc + 1].longconst);
10471
10472 type = ada_index_type (value_type (arg2), tem, "range");
10473 if (!type)
10474 type = value_type (arg1);
10475
10476 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10477 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
10478
10479 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10480 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10481 type = language_bool_type (exp->language_defn, exp->gdbarch);
10482 return
10483 value_from_longest (type,
10484 (value_less (arg1, arg3)
10485 || value_equal (arg1, arg3))
10486 && (value_less (arg2, arg1)
10487 || value_equal (arg2, arg1)));
10488
10489 case TERNOP_IN_RANGE:
10490 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10491 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10492 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10493
10494 if (noside == EVAL_SKIP)
10495 goto nosideret;
10496
10497 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10498 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10499 type = language_bool_type (exp->language_defn, exp->gdbarch);
10500 return
10501 value_from_longest (type,
10502 (value_less (arg1, arg3)
10503 || value_equal (arg1, arg3))
10504 && (value_less (arg2, arg1)
10505 || value_equal (arg2, arg1)));
10506
10507 case OP_ATR_FIRST:
10508 case OP_ATR_LAST:
10509 case OP_ATR_LENGTH:
10510 {
10511 struct type *type_arg;
10512
10513 if (exp->elts[*pos].opcode == OP_TYPE)
10514 {
10515 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10516 arg1 = NULL;
10517 type_arg = check_typedef (exp->elts[pc + 2].type);
10518 }
10519 else
10520 {
10521 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10522 type_arg = NULL;
10523 }
10524
10525 if (exp->elts[*pos].opcode != OP_LONG)
10526 error (_("Invalid operand to '%s"), ada_attribute_name (op));
10527 tem = longest_to_int (exp->elts[*pos + 2].longconst);
10528 *pos += 4;
10529
10530 if (noside == EVAL_SKIP)
10531 goto nosideret;
10532
10533 if (type_arg == NULL)
10534 {
10535 arg1 = ada_coerce_ref (arg1);
10536
10537 if (ada_is_constrained_packed_array_type (value_type (arg1)))
10538 arg1 = ada_coerce_to_simple_array (arg1);
10539
10540 if (op == OP_ATR_LENGTH)
10541 type = builtin_type (exp->gdbarch)->builtin_int;
10542 else
10543 {
10544 type = ada_index_type (value_type (arg1), tem,
10545 ada_attribute_name (op));
10546 if (type == NULL)
10547 type = builtin_type (exp->gdbarch)->builtin_int;
10548 }
10549
10550 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10551 return allocate_value (type);
10552
10553 switch (op)
10554 {
10555 default: /* Should never happen. */
10556 error (_("unexpected attribute encountered"));
10557 case OP_ATR_FIRST:
10558 return value_from_longest
10559 (type, ada_array_bound (arg1, tem, 0));
10560 case OP_ATR_LAST:
10561 return value_from_longest
10562 (type, ada_array_bound (arg1, tem, 1));
10563 case OP_ATR_LENGTH:
10564 return value_from_longest
10565 (type, ada_array_length (arg1, tem));
10566 }
10567 }
10568 else if (discrete_type_p (type_arg))
10569 {
10570 struct type *range_type;
10571 const char *name = ada_type_name (type_arg);
10572
10573 range_type = NULL;
10574 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
10575 range_type = to_fixed_range_type (type_arg, NULL);
10576 if (range_type == NULL)
10577 range_type = type_arg;
10578 switch (op)
10579 {
10580 default:
10581 error (_("unexpected attribute encountered"));
10582 case OP_ATR_FIRST:
10583 return value_from_longest
10584 (range_type, ada_discrete_type_low_bound (range_type));
10585 case OP_ATR_LAST:
10586 return value_from_longest
10587 (range_type, ada_discrete_type_high_bound (range_type));
10588 case OP_ATR_LENGTH:
10589 error (_("the 'length attribute applies only to array types"));
10590 }
10591 }
10592 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
10593 error (_("unimplemented type attribute"));
10594 else
10595 {
10596 LONGEST low, high;
10597
10598 if (ada_is_constrained_packed_array_type (type_arg))
10599 type_arg = decode_constrained_packed_array_type (type_arg);
10600
10601 if (op == OP_ATR_LENGTH)
10602 type = builtin_type (exp->gdbarch)->builtin_int;
10603 else
10604 {
10605 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10606 if (type == NULL)
10607 type = builtin_type (exp->gdbarch)->builtin_int;
10608 }
10609
10610 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10611 return allocate_value (type);
10612
10613 switch (op)
10614 {
10615 default:
10616 error (_("unexpected attribute encountered"));
10617 case OP_ATR_FIRST:
10618 low = ada_array_bound_from_type (type_arg, tem, 0);
10619 return value_from_longest (type, low);
10620 case OP_ATR_LAST:
10621 high = ada_array_bound_from_type (type_arg, tem, 1);
10622 return value_from_longest (type, high);
10623 case OP_ATR_LENGTH:
10624 low = ada_array_bound_from_type (type_arg, tem, 0);
10625 high = ada_array_bound_from_type (type_arg, tem, 1);
10626 return value_from_longest (type, high - low + 1);
10627 }
10628 }
10629 }
10630
10631 case OP_ATR_TAG:
10632 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10633 if (noside == EVAL_SKIP)
10634 goto nosideret;
10635
10636 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10637 return value_zero (ada_tag_type (arg1), not_lval);
10638
10639 return ada_value_tag (arg1);
10640
10641 case OP_ATR_MIN:
10642 case OP_ATR_MAX:
10643 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10644 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10645 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10646 if (noside == EVAL_SKIP)
10647 goto nosideret;
10648 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10649 return value_zero (value_type (arg1), not_lval);
10650 else
10651 {
10652 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10653 return value_binop (arg1, arg2,
10654 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
10655 }
10656
10657 case OP_ATR_MODULUS:
10658 {
10659 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
10660
10661 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10662 if (noside == EVAL_SKIP)
10663 goto nosideret;
10664
10665 if (!ada_is_modular_type (type_arg))
10666 error (_("'modulus must be applied to modular type"));
10667
10668 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
10669 ada_modulus (type_arg));
10670 }
10671
10672
10673 case OP_ATR_POS:
10674 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10675 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10676 if (noside == EVAL_SKIP)
10677 goto nosideret;
10678 type = builtin_type (exp->gdbarch)->builtin_int;
10679 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10680 return value_zero (type, not_lval);
10681 else
10682 return value_pos_atr (type, arg1);
10683
10684 case OP_ATR_SIZE:
10685 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10686 type = value_type (arg1);
10687
10688 /* If the argument is a reference, then dereference its type, since
10689 the user is really asking for the size of the actual object,
10690 not the size of the pointer. */
10691 if (TYPE_CODE (type) == TYPE_CODE_REF)
10692 type = TYPE_TARGET_TYPE (type);
10693
10694 if (noside == EVAL_SKIP)
10695 goto nosideret;
10696 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10697 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
10698 else
10699 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
10700 TARGET_CHAR_BIT * TYPE_LENGTH (type));
10701
10702 case OP_ATR_VAL:
10703 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10704 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10705 type = exp->elts[pc + 2].type;
10706 if (noside == EVAL_SKIP)
10707 goto nosideret;
10708 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10709 return value_zero (type, not_lval);
10710 else
10711 return value_val_atr (type, arg1);
10712
10713 case BINOP_EXP:
10714 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10715 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10716 if (noside == EVAL_SKIP)
10717 goto nosideret;
10718 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10719 return value_zero (value_type (arg1), not_lval);
10720 else
10721 {
10722 /* For integer exponentiation operations,
10723 only promote the first argument. */
10724 if (is_integral_type (value_type (arg2)))
10725 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10726 else
10727 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10728
10729 return value_binop (arg1, arg2, op);
10730 }
10731
10732 case UNOP_PLUS:
10733 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10734 if (noside == EVAL_SKIP)
10735 goto nosideret;
10736 else
10737 return arg1;
10738
10739 case UNOP_ABS:
10740 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10741 if (noside == EVAL_SKIP)
10742 goto nosideret;
10743 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10744 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
10745 return value_neg (arg1);
10746 else
10747 return arg1;
10748
10749 case UNOP_IND:
10750 preeval_pos = *pos;
10751 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10752 if (noside == EVAL_SKIP)
10753 goto nosideret;
10754 type = ada_check_typedef (value_type (arg1));
10755 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10756 {
10757 if (ada_is_array_descriptor_type (type))
10758 /* GDB allows dereferencing GNAT array descriptors. */
10759 {
10760 struct type *arrType = ada_type_of_array (arg1, 0);
10761
10762 if (arrType == NULL)
10763 error (_("Attempt to dereference null array pointer."));
10764 return value_at_lazy (arrType, 0);
10765 }
10766 else if (TYPE_CODE (type) == TYPE_CODE_PTR
10767 || TYPE_CODE (type) == TYPE_CODE_REF
10768 /* In C you can dereference an array to get the 1st elt. */
10769 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
10770 {
10771 /* As mentioned in the OP_VAR_VALUE case, tagged types can
10772 only be determined by inspecting the object's tag.
10773 This means that we need to evaluate completely the
10774 expression in order to get its type. */
10775
10776 if ((TYPE_CODE (type) == TYPE_CODE_REF
10777 || TYPE_CODE (type) == TYPE_CODE_PTR)
10778 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
10779 {
10780 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
10781 EVAL_NORMAL);
10782 type = value_type (ada_value_ind (arg1));
10783 }
10784 else
10785 {
10786 type = to_static_fixed_type
10787 (ada_aligned_type
10788 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10789 }
10790 check_size (type);
10791 return value_zero (type, lval_memory);
10792 }
10793 else if (TYPE_CODE (type) == TYPE_CODE_INT)
10794 {
10795 /* GDB allows dereferencing an int. */
10796 if (expect_type == NULL)
10797 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10798 lval_memory);
10799 else
10800 {
10801 expect_type =
10802 to_static_fixed_type (ada_aligned_type (expect_type));
10803 return value_zero (expect_type, lval_memory);
10804 }
10805 }
10806 else
10807 error (_("Attempt to take contents of a non-pointer value."));
10808 }
10809 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
10810 type = ada_check_typedef (value_type (arg1));
10811
10812 if (TYPE_CODE (type) == TYPE_CODE_INT)
10813 /* GDB allows dereferencing an int. If we were given
10814 the expect_type, then use that as the target type.
10815 Otherwise, assume that the target type is an int. */
10816 {
10817 if (expect_type != NULL)
10818 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10819 arg1));
10820 else
10821 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10822 (CORE_ADDR) value_as_address (arg1));
10823 }
10824
10825 if (ada_is_array_descriptor_type (type))
10826 /* GDB allows dereferencing GNAT array descriptors. */
10827 return ada_coerce_to_simple_array (arg1);
10828 else
10829 return ada_value_ind (arg1);
10830
10831 case STRUCTOP_STRUCT:
10832 tem = longest_to_int (exp->elts[pc + 1].longconst);
10833 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
10834 preeval_pos = *pos;
10835 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10836 if (noside == EVAL_SKIP)
10837 goto nosideret;
10838 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10839 {
10840 struct type *type1 = value_type (arg1);
10841
10842 if (ada_is_tagged_type (type1, 1))
10843 {
10844 type = ada_lookup_struct_elt_type (type1,
10845 &exp->elts[pc + 2].string,
10846 1, 1, NULL);
10847
10848 /* If the field is not found, check if it exists in the
10849 extension of this object's type. This means that we
10850 need to evaluate completely the expression. */
10851
10852 if (type == NULL)
10853 {
10854 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
10855 EVAL_NORMAL);
10856 arg1 = ada_value_struct_elt (arg1,
10857 &exp->elts[pc + 2].string,
10858 0);
10859 arg1 = unwrap_value (arg1);
10860 type = value_type (ada_to_fixed_value (arg1));
10861 }
10862 }
10863 else
10864 type =
10865 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
10866 0, NULL);
10867
10868 return value_zero (ada_aligned_type (type), lval_memory);
10869 }
10870 else
10871 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
10872 arg1 = unwrap_value (arg1);
10873 return ada_to_fixed_value (arg1);
10874
10875 case OP_TYPE:
10876 /* The value is not supposed to be used. This is here to make it
10877 easier to accommodate expressions that contain types. */
10878 (*pos) += 2;
10879 if (noside == EVAL_SKIP)
10880 goto nosideret;
10881 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10882 return allocate_value (exp->elts[pc + 1].type);
10883 else
10884 error (_("Attempt to use a type name as an expression"));
10885
10886 case OP_AGGREGATE:
10887 case OP_CHOICES:
10888 case OP_OTHERS:
10889 case OP_DISCRETE_RANGE:
10890 case OP_POSITIONAL:
10891 case OP_NAME:
10892 if (noside == EVAL_NORMAL)
10893 switch (op)
10894 {
10895 case OP_NAME:
10896 error (_("Undefined name, ambiguous name, or renaming used in "
10897 "component association: %s."), &exp->elts[pc+2].string);
10898 case OP_AGGREGATE:
10899 error (_("Aggregates only allowed on the right of an assignment"));
10900 default:
10901 internal_error (__FILE__, __LINE__,
10902 _("aggregate apparently mangled"));
10903 }
10904
10905 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10906 *pos += oplen - 1;
10907 for (tem = 0; tem < nargs; tem += 1)
10908 ada_evaluate_subexp (NULL, exp, pos, noside);
10909 goto nosideret;
10910 }
10911
10912 nosideret:
10913 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
10914 }
10915 \f
10916
10917 /* Fixed point */
10918
10919 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
10920 type name that encodes the 'small and 'delta information.
10921 Otherwise, return NULL. */
10922
10923 static const char *
10924 fixed_type_info (struct type *type)
10925 {
10926 const char *name = ada_type_name (type);
10927 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
10928
10929 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
10930 {
10931 const char *tail = strstr (name, "___XF_");
10932
10933 if (tail == NULL)
10934 return NULL;
10935 else
10936 return tail + 5;
10937 }
10938 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
10939 return fixed_type_info (TYPE_TARGET_TYPE (type));
10940 else
10941 return NULL;
10942 }
10943
10944 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
10945
10946 int
10947 ada_is_fixed_point_type (struct type *type)
10948 {
10949 return fixed_type_info (type) != NULL;
10950 }
10951
10952 /* Return non-zero iff TYPE represents a System.Address type. */
10953
10954 int
10955 ada_is_system_address_type (struct type *type)
10956 {
10957 return (TYPE_NAME (type)
10958 && strcmp (TYPE_NAME (type), "system__address") == 0);
10959 }
10960
10961 /* Assuming that TYPE is the representation of an Ada fixed-point
10962 type, return its delta, or -1 if the type is malformed and the
10963 delta cannot be determined. */
10964
10965 DOUBLEST
10966 ada_delta (struct type *type)
10967 {
10968 const char *encoding = fixed_type_info (type);
10969 DOUBLEST num, den;
10970
10971 /* Strictly speaking, num and den are encoded as integer. However,
10972 they may not fit into a long, and they will have to be converted
10973 to DOUBLEST anyway. So scan them as DOUBLEST. */
10974 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10975 &num, &den) < 2)
10976 return -1.0;
10977 else
10978 return num / den;
10979 }
10980
10981 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
10982 factor ('SMALL value) associated with the type. */
10983
10984 static DOUBLEST
10985 scaling_factor (struct type *type)
10986 {
10987 const char *encoding = fixed_type_info (type);
10988 DOUBLEST num0, den0, num1, den1;
10989 int n;
10990
10991 /* Strictly speaking, num's and den's are encoded as integer. However,
10992 they may not fit into a long, and they will have to be converted
10993 to DOUBLEST anyway. So scan them as DOUBLEST. */
10994 n = sscanf (encoding,
10995 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
10996 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10997 &num0, &den0, &num1, &den1);
10998
10999 if (n < 2)
11000 return 1.0;
11001 else if (n == 4)
11002 return num1 / den1;
11003 else
11004 return num0 / den0;
11005 }
11006
11007
11008 /* Assuming that X is the representation of a value of fixed-point
11009 type TYPE, return its floating-point equivalent. */
11010
11011 DOUBLEST
11012 ada_fixed_to_float (struct type *type, LONGEST x)
11013 {
11014 return (DOUBLEST) x *scaling_factor (type);
11015 }
11016
11017 /* The representation of a fixed-point value of type TYPE
11018 corresponding to the value X. */
11019
11020 LONGEST
11021 ada_float_to_fixed (struct type *type, DOUBLEST x)
11022 {
11023 return (LONGEST) (x / scaling_factor (type) + 0.5);
11024 }
11025
11026 \f
11027
11028 /* Range types */
11029
11030 /* Scan STR beginning at position K for a discriminant name, and
11031 return the value of that discriminant field of DVAL in *PX. If
11032 PNEW_K is not null, put the position of the character beyond the
11033 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11034 not alter *PX and *PNEW_K if unsuccessful. */
11035
11036 static int
11037 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
11038 int *pnew_k)
11039 {
11040 static char *bound_buffer = NULL;
11041 static size_t bound_buffer_len = 0;
11042 char *bound;
11043 char *pend;
11044 struct value *bound_val;
11045
11046 if (dval == NULL || str == NULL || str[k] == '\0')
11047 return 0;
11048
11049 pend = strstr (str + k, "__");
11050 if (pend == NULL)
11051 {
11052 bound = str + k;
11053 k += strlen (bound);
11054 }
11055 else
11056 {
11057 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
11058 bound = bound_buffer;
11059 strncpy (bound_buffer, str + k, pend - (str + k));
11060 bound[pend - (str + k)] = '\0';
11061 k = pend - str;
11062 }
11063
11064 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11065 if (bound_val == NULL)
11066 return 0;
11067
11068 *px = value_as_long (bound_val);
11069 if (pnew_k != NULL)
11070 *pnew_k = k;
11071 return 1;
11072 }
11073
11074 /* Value of variable named NAME in the current environment. If
11075 no such variable found, then if ERR_MSG is null, returns 0, and
11076 otherwise causes an error with message ERR_MSG. */
11077
11078 static struct value *
11079 get_var_value (char *name, char *err_msg)
11080 {
11081 struct ada_symbol_info *syms;
11082 int nsyms;
11083
11084 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
11085 &syms);
11086
11087 if (nsyms != 1)
11088 {
11089 if (err_msg == NULL)
11090 return 0;
11091 else
11092 error (("%s"), err_msg);
11093 }
11094
11095 return value_of_variable (syms[0].sym, syms[0].block);
11096 }
11097
11098 /* Value of integer variable named NAME in the current environment. If
11099 no such variable found, returns 0, and sets *FLAG to 0. If
11100 successful, sets *FLAG to 1. */
11101
11102 LONGEST
11103 get_int_var_value (char *name, int *flag)
11104 {
11105 struct value *var_val = get_var_value (name, 0);
11106
11107 if (var_val == 0)
11108 {
11109 if (flag != NULL)
11110 *flag = 0;
11111 return 0;
11112 }
11113 else
11114 {
11115 if (flag != NULL)
11116 *flag = 1;
11117 return value_as_long (var_val);
11118 }
11119 }
11120
11121
11122 /* Return a range type whose base type is that of the range type named
11123 NAME in the current environment, and whose bounds are calculated
11124 from NAME according to the GNAT range encoding conventions.
11125 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11126 corresponding range type from debug information; fall back to using it
11127 if symbol lookup fails. If a new type must be created, allocate it
11128 like ORIG_TYPE was. The bounds information, in general, is encoded
11129 in NAME, the base type given in the named range type. */
11130
11131 static struct type *
11132 to_fixed_range_type (struct type *raw_type, struct value *dval)
11133 {
11134 const char *name;
11135 struct type *base_type;
11136 char *subtype_info;
11137
11138 gdb_assert (raw_type != NULL);
11139 gdb_assert (TYPE_NAME (raw_type) != NULL);
11140
11141 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
11142 base_type = TYPE_TARGET_TYPE (raw_type);
11143 else
11144 base_type = raw_type;
11145
11146 name = TYPE_NAME (raw_type);
11147 subtype_info = strstr (name, "___XD");
11148 if (subtype_info == NULL)
11149 {
11150 LONGEST L = ada_discrete_type_low_bound (raw_type);
11151 LONGEST U = ada_discrete_type_high_bound (raw_type);
11152
11153 if (L < INT_MIN || U > INT_MAX)
11154 return raw_type;
11155 else
11156 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11157 L, U);
11158 }
11159 else
11160 {
11161 static char *name_buf = NULL;
11162 static size_t name_len = 0;
11163 int prefix_len = subtype_info - name;
11164 LONGEST L, U;
11165 struct type *type;
11166 char *bounds_str;
11167 int n;
11168
11169 GROW_VECT (name_buf, name_len, prefix_len + 5);
11170 strncpy (name_buf, name, prefix_len);
11171 name_buf[prefix_len] = '\0';
11172
11173 subtype_info += 5;
11174 bounds_str = strchr (subtype_info, '_');
11175 n = 1;
11176
11177 if (*subtype_info == 'L')
11178 {
11179 if (!ada_scan_number (bounds_str, n, &L, &n)
11180 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11181 return raw_type;
11182 if (bounds_str[n] == '_')
11183 n += 2;
11184 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11185 n += 1;
11186 subtype_info += 1;
11187 }
11188 else
11189 {
11190 int ok;
11191
11192 strcpy (name_buf + prefix_len, "___L");
11193 L = get_int_var_value (name_buf, &ok);
11194 if (!ok)
11195 {
11196 lim_warning (_("Unknown lower bound, using 1."));
11197 L = 1;
11198 }
11199 }
11200
11201 if (*subtype_info == 'U')
11202 {
11203 if (!ada_scan_number (bounds_str, n, &U, &n)
11204 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11205 return raw_type;
11206 }
11207 else
11208 {
11209 int ok;
11210
11211 strcpy (name_buf + prefix_len, "___U");
11212 U = get_int_var_value (name_buf, &ok);
11213 if (!ok)
11214 {
11215 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11216 U = L;
11217 }
11218 }
11219
11220 type = create_static_range_type (alloc_type_copy (raw_type),
11221 base_type, L, U);
11222 TYPE_NAME (type) = name;
11223 return type;
11224 }
11225 }
11226
11227 /* True iff NAME is the name of a range type. */
11228
11229 int
11230 ada_is_range_type_name (const char *name)
11231 {
11232 return (name != NULL && strstr (name, "___XD"));
11233 }
11234 \f
11235
11236 /* Modular types */
11237
11238 /* True iff TYPE is an Ada modular type. */
11239
11240 int
11241 ada_is_modular_type (struct type *type)
11242 {
11243 struct type *subranged_type = get_base_type (type);
11244
11245 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
11246 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
11247 && TYPE_UNSIGNED (subranged_type));
11248 }
11249
11250 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11251
11252 ULONGEST
11253 ada_modulus (struct type *type)
11254 {
11255 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11256 }
11257 \f
11258
11259 /* Ada exception catchpoint support:
11260 ---------------------------------
11261
11262 We support 3 kinds of exception catchpoints:
11263 . catchpoints on Ada exceptions
11264 . catchpoints on unhandled Ada exceptions
11265 . catchpoints on failed assertions
11266
11267 Exceptions raised during failed assertions, or unhandled exceptions
11268 could perfectly be caught with the general catchpoint on Ada exceptions.
11269 However, we can easily differentiate these two special cases, and having
11270 the option to distinguish these two cases from the rest can be useful
11271 to zero-in on certain situations.
11272
11273 Exception catchpoints are a specialized form of breakpoint,
11274 since they rely on inserting breakpoints inside known routines
11275 of the GNAT runtime. The implementation therefore uses a standard
11276 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11277 of breakpoint_ops.
11278
11279 Support in the runtime for exception catchpoints have been changed
11280 a few times already, and these changes affect the implementation
11281 of these catchpoints. In order to be able to support several
11282 variants of the runtime, we use a sniffer that will determine
11283 the runtime variant used by the program being debugged. */
11284
11285 /* Ada's standard exceptions.
11286
11287 The Ada 83 standard also defined Numeric_Error. But there so many
11288 situations where it was unclear from the Ada 83 Reference Manual
11289 (RM) whether Constraint_Error or Numeric_Error should be raised,
11290 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11291 Interpretation saying that anytime the RM says that Numeric_Error
11292 should be raised, the implementation may raise Constraint_Error.
11293 Ada 95 went one step further and pretty much removed Numeric_Error
11294 from the list of standard exceptions (it made it a renaming of
11295 Constraint_Error, to help preserve compatibility when compiling
11296 an Ada83 compiler). As such, we do not include Numeric_Error from
11297 this list of standard exceptions. */
11298
11299 static char *standard_exc[] = {
11300 "constraint_error",
11301 "program_error",
11302 "storage_error",
11303 "tasking_error"
11304 };
11305
11306 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11307
11308 /* A structure that describes how to support exception catchpoints
11309 for a given executable. */
11310
11311 struct exception_support_info
11312 {
11313 /* The name of the symbol to break on in order to insert
11314 a catchpoint on exceptions. */
11315 const char *catch_exception_sym;
11316
11317 /* The name of the symbol to break on in order to insert
11318 a catchpoint on unhandled exceptions. */
11319 const char *catch_exception_unhandled_sym;
11320
11321 /* The name of the symbol to break on in order to insert
11322 a catchpoint on failed assertions. */
11323 const char *catch_assert_sym;
11324
11325 /* Assuming that the inferior just triggered an unhandled exception
11326 catchpoint, this function is responsible for returning the address
11327 in inferior memory where the name of that exception is stored.
11328 Return zero if the address could not be computed. */
11329 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11330 };
11331
11332 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11333 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11334
11335 /* The following exception support info structure describes how to
11336 implement exception catchpoints with the latest version of the
11337 Ada runtime (as of 2007-03-06). */
11338
11339 static const struct exception_support_info default_exception_support_info =
11340 {
11341 "__gnat_debug_raise_exception", /* catch_exception_sym */
11342 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11343 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11344 ada_unhandled_exception_name_addr
11345 };
11346
11347 /* The following exception support info structure describes how to
11348 implement exception catchpoints with a slightly older version
11349 of the Ada runtime. */
11350
11351 static const struct exception_support_info exception_support_info_fallback =
11352 {
11353 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11354 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11355 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11356 ada_unhandled_exception_name_addr_from_raise
11357 };
11358
11359 /* Return nonzero if we can detect the exception support routines
11360 described in EINFO.
11361
11362 This function errors out if an abnormal situation is detected
11363 (for instance, if we find the exception support routines, but
11364 that support is found to be incomplete). */
11365
11366 static int
11367 ada_has_this_exception_support (const struct exception_support_info *einfo)
11368 {
11369 struct symbol *sym;
11370
11371 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11372 that should be compiled with debugging information. As a result, we
11373 expect to find that symbol in the symtabs. */
11374
11375 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11376 if (sym == NULL)
11377 {
11378 /* Perhaps we did not find our symbol because the Ada runtime was
11379 compiled without debugging info, or simply stripped of it.
11380 It happens on some GNU/Linux distributions for instance, where
11381 users have to install a separate debug package in order to get
11382 the runtime's debugging info. In that situation, let the user
11383 know why we cannot insert an Ada exception catchpoint.
11384
11385 Note: Just for the purpose of inserting our Ada exception
11386 catchpoint, we could rely purely on the associated minimal symbol.
11387 But we would be operating in degraded mode anyway, since we are
11388 still lacking the debugging info needed later on to extract
11389 the name of the exception being raised (this name is printed in
11390 the catchpoint message, and is also used when trying to catch
11391 a specific exception). We do not handle this case for now. */
11392 struct bound_minimal_symbol msym
11393 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11394
11395 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11396 error (_("Your Ada runtime appears to be missing some debugging "
11397 "information.\nCannot insert Ada exception catchpoint "
11398 "in this configuration."));
11399
11400 return 0;
11401 }
11402
11403 /* Make sure that the symbol we found corresponds to a function. */
11404
11405 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11406 error (_("Symbol \"%s\" is not a function (class = %d)"),
11407 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11408
11409 return 1;
11410 }
11411
11412 /* Inspect the Ada runtime and determine which exception info structure
11413 should be used to provide support for exception catchpoints.
11414
11415 This function will always set the per-inferior exception_info,
11416 or raise an error. */
11417
11418 static void
11419 ada_exception_support_info_sniffer (void)
11420 {
11421 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11422
11423 /* If the exception info is already known, then no need to recompute it. */
11424 if (data->exception_info != NULL)
11425 return;
11426
11427 /* Check the latest (default) exception support info. */
11428 if (ada_has_this_exception_support (&default_exception_support_info))
11429 {
11430 data->exception_info = &default_exception_support_info;
11431 return;
11432 }
11433
11434 /* Try our fallback exception suport info. */
11435 if (ada_has_this_exception_support (&exception_support_info_fallback))
11436 {
11437 data->exception_info = &exception_support_info_fallback;
11438 return;
11439 }
11440
11441 /* Sometimes, it is normal for us to not be able to find the routine
11442 we are looking for. This happens when the program is linked with
11443 the shared version of the GNAT runtime, and the program has not been
11444 started yet. Inform the user of these two possible causes if
11445 applicable. */
11446
11447 if (ada_update_initial_language (language_unknown) != language_ada)
11448 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11449
11450 /* If the symbol does not exist, then check that the program is
11451 already started, to make sure that shared libraries have been
11452 loaded. If it is not started, this may mean that the symbol is
11453 in a shared library. */
11454
11455 if (ptid_get_pid (inferior_ptid) == 0)
11456 error (_("Unable to insert catchpoint. Try to start the program first."));
11457
11458 /* At this point, we know that we are debugging an Ada program and
11459 that the inferior has been started, but we still are not able to
11460 find the run-time symbols. That can mean that we are in
11461 configurable run time mode, or that a-except as been optimized
11462 out by the linker... In any case, at this point it is not worth
11463 supporting this feature. */
11464
11465 error (_("Cannot insert Ada exception catchpoints in this configuration."));
11466 }
11467
11468 /* True iff FRAME is very likely to be that of a function that is
11469 part of the runtime system. This is all very heuristic, but is
11470 intended to be used as advice as to what frames are uninteresting
11471 to most users. */
11472
11473 static int
11474 is_known_support_routine (struct frame_info *frame)
11475 {
11476 struct symtab_and_line sal;
11477 char *func_name;
11478 enum language func_lang;
11479 int i;
11480 const char *fullname;
11481
11482 /* If this code does not have any debugging information (no symtab),
11483 This cannot be any user code. */
11484
11485 find_frame_sal (frame, &sal);
11486 if (sal.symtab == NULL)
11487 return 1;
11488
11489 /* If there is a symtab, but the associated source file cannot be
11490 located, then assume this is not user code: Selecting a frame
11491 for which we cannot display the code would not be very helpful
11492 for the user. This should also take care of case such as VxWorks
11493 where the kernel has some debugging info provided for a few units. */
11494
11495 fullname = symtab_to_fullname (sal.symtab);
11496 if (access (fullname, R_OK) != 0)
11497 return 1;
11498
11499 /* Check the unit filename againt the Ada runtime file naming.
11500 We also check the name of the objfile against the name of some
11501 known system libraries that sometimes come with debugging info
11502 too. */
11503
11504 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11505 {
11506 re_comp (known_runtime_file_name_patterns[i]);
11507 if (re_exec (lbasename (sal.symtab->filename)))
11508 return 1;
11509 if (sal.symtab->objfile != NULL
11510 && re_exec (objfile_name (sal.symtab->objfile)))
11511 return 1;
11512 }
11513
11514 /* Check whether the function is a GNAT-generated entity. */
11515
11516 find_frame_funname (frame, &func_name, &func_lang, NULL);
11517 if (func_name == NULL)
11518 return 1;
11519
11520 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11521 {
11522 re_comp (known_auxiliary_function_name_patterns[i]);
11523 if (re_exec (func_name))
11524 {
11525 xfree (func_name);
11526 return 1;
11527 }
11528 }
11529
11530 xfree (func_name);
11531 return 0;
11532 }
11533
11534 /* Find the first frame that contains debugging information and that is not
11535 part of the Ada run-time, starting from FI and moving upward. */
11536
11537 void
11538 ada_find_printable_frame (struct frame_info *fi)
11539 {
11540 for (; fi != NULL; fi = get_prev_frame (fi))
11541 {
11542 if (!is_known_support_routine (fi))
11543 {
11544 select_frame (fi);
11545 break;
11546 }
11547 }
11548
11549 }
11550
11551 /* Assuming that the inferior just triggered an unhandled exception
11552 catchpoint, return the address in inferior memory where the name
11553 of the exception is stored.
11554
11555 Return zero if the address could not be computed. */
11556
11557 static CORE_ADDR
11558 ada_unhandled_exception_name_addr (void)
11559 {
11560 return parse_and_eval_address ("e.full_name");
11561 }
11562
11563 /* Same as ada_unhandled_exception_name_addr, except that this function
11564 should be used when the inferior uses an older version of the runtime,
11565 where the exception name needs to be extracted from a specific frame
11566 several frames up in the callstack. */
11567
11568 static CORE_ADDR
11569 ada_unhandled_exception_name_addr_from_raise (void)
11570 {
11571 int frame_level;
11572 struct frame_info *fi;
11573 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11574 struct cleanup *old_chain;
11575
11576 /* To determine the name of this exception, we need to select
11577 the frame corresponding to RAISE_SYM_NAME. This frame is
11578 at least 3 levels up, so we simply skip the first 3 frames
11579 without checking the name of their associated function. */
11580 fi = get_current_frame ();
11581 for (frame_level = 0; frame_level < 3; frame_level += 1)
11582 if (fi != NULL)
11583 fi = get_prev_frame (fi);
11584
11585 old_chain = make_cleanup (null_cleanup, NULL);
11586 while (fi != NULL)
11587 {
11588 char *func_name;
11589 enum language func_lang;
11590
11591 find_frame_funname (fi, &func_name, &func_lang, NULL);
11592 if (func_name != NULL)
11593 {
11594 make_cleanup (xfree, func_name);
11595
11596 if (strcmp (func_name,
11597 data->exception_info->catch_exception_sym) == 0)
11598 break; /* We found the frame we were looking for... */
11599 fi = get_prev_frame (fi);
11600 }
11601 }
11602 do_cleanups (old_chain);
11603
11604 if (fi == NULL)
11605 return 0;
11606
11607 select_frame (fi);
11608 return parse_and_eval_address ("id.full_name");
11609 }
11610
11611 /* Assuming the inferior just triggered an Ada exception catchpoint
11612 (of any type), return the address in inferior memory where the name
11613 of the exception is stored, if applicable.
11614
11615 Return zero if the address could not be computed, or if not relevant. */
11616
11617 static CORE_ADDR
11618 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
11619 struct breakpoint *b)
11620 {
11621 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11622
11623 switch (ex)
11624 {
11625 case ada_catch_exception:
11626 return (parse_and_eval_address ("e.full_name"));
11627 break;
11628
11629 case ada_catch_exception_unhandled:
11630 return data->exception_info->unhandled_exception_name_addr ();
11631 break;
11632
11633 case ada_catch_assert:
11634 return 0; /* Exception name is not relevant in this case. */
11635 break;
11636
11637 default:
11638 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11639 break;
11640 }
11641
11642 return 0; /* Should never be reached. */
11643 }
11644
11645 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
11646 any error that ada_exception_name_addr_1 might cause to be thrown.
11647 When an error is intercepted, a warning with the error message is printed,
11648 and zero is returned. */
11649
11650 static CORE_ADDR
11651 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
11652 struct breakpoint *b)
11653 {
11654 volatile struct gdb_exception e;
11655 CORE_ADDR result = 0;
11656
11657 TRY_CATCH (e, RETURN_MASK_ERROR)
11658 {
11659 result = ada_exception_name_addr_1 (ex, b);
11660 }
11661
11662 if (e.reason < 0)
11663 {
11664 warning (_("failed to get exception name: %s"), e.message);
11665 return 0;
11666 }
11667
11668 return result;
11669 }
11670
11671 static char *ada_exception_catchpoint_cond_string (const char *excep_string);
11672
11673 /* Ada catchpoints.
11674
11675 In the case of catchpoints on Ada exceptions, the catchpoint will
11676 stop the target on every exception the program throws. When a user
11677 specifies the name of a specific exception, we translate this
11678 request into a condition expression (in text form), and then parse
11679 it into an expression stored in each of the catchpoint's locations.
11680 We then use this condition to check whether the exception that was
11681 raised is the one the user is interested in. If not, then the
11682 target is resumed again. We store the name of the requested
11683 exception, in order to be able to re-set the condition expression
11684 when symbols change. */
11685
11686 /* An instance of this type is used to represent an Ada catchpoint
11687 breakpoint location. It includes a "struct bp_location" as a kind
11688 of base class; users downcast to "struct bp_location *" when
11689 needed. */
11690
11691 struct ada_catchpoint_location
11692 {
11693 /* The base class. */
11694 struct bp_location base;
11695
11696 /* The condition that checks whether the exception that was raised
11697 is the specific exception the user specified on catchpoint
11698 creation. */
11699 struct expression *excep_cond_expr;
11700 };
11701
11702 /* Implement the DTOR method in the bp_location_ops structure for all
11703 Ada exception catchpoint kinds. */
11704
11705 static void
11706 ada_catchpoint_location_dtor (struct bp_location *bl)
11707 {
11708 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
11709
11710 xfree (al->excep_cond_expr);
11711 }
11712
11713 /* The vtable to be used in Ada catchpoint locations. */
11714
11715 static const struct bp_location_ops ada_catchpoint_location_ops =
11716 {
11717 ada_catchpoint_location_dtor
11718 };
11719
11720 /* An instance of this type is used to represent an Ada catchpoint.
11721 It includes a "struct breakpoint" as a kind of base class; users
11722 downcast to "struct breakpoint *" when needed. */
11723
11724 struct ada_catchpoint
11725 {
11726 /* The base class. */
11727 struct breakpoint base;
11728
11729 /* The name of the specific exception the user specified. */
11730 char *excep_string;
11731 };
11732
11733 /* Parse the exception condition string in the context of each of the
11734 catchpoint's locations, and store them for later evaluation. */
11735
11736 static void
11737 create_excep_cond_exprs (struct ada_catchpoint *c)
11738 {
11739 struct cleanup *old_chain;
11740 struct bp_location *bl;
11741 char *cond_string;
11742
11743 /* Nothing to do if there's no specific exception to catch. */
11744 if (c->excep_string == NULL)
11745 return;
11746
11747 /* Same if there are no locations... */
11748 if (c->base.loc == NULL)
11749 return;
11750
11751 /* Compute the condition expression in text form, from the specific
11752 expection we want to catch. */
11753 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
11754 old_chain = make_cleanup (xfree, cond_string);
11755
11756 /* Iterate over all the catchpoint's locations, and parse an
11757 expression for each. */
11758 for (bl = c->base.loc; bl != NULL; bl = bl->next)
11759 {
11760 struct ada_catchpoint_location *ada_loc
11761 = (struct ada_catchpoint_location *) bl;
11762 struct expression *exp = NULL;
11763
11764 if (!bl->shlib_disabled)
11765 {
11766 volatile struct gdb_exception e;
11767 const char *s;
11768
11769 s = cond_string;
11770 TRY_CATCH (e, RETURN_MASK_ERROR)
11771 {
11772 exp = parse_exp_1 (&s, bl->address,
11773 block_for_pc (bl->address), 0);
11774 }
11775 if (e.reason < 0)
11776 {
11777 warning (_("failed to reevaluate internal exception condition "
11778 "for catchpoint %d: %s"),
11779 c->base.number, e.message);
11780 /* There is a bug in GCC on sparc-solaris when building with
11781 optimization which causes EXP to change unexpectedly
11782 (http://gcc.gnu.org/bugzilla/show_bug.cgi?id=56982).
11783 The problem should be fixed starting with GCC 4.9.
11784 In the meantime, work around it by forcing EXP back
11785 to NULL. */
11786 exp = NULL;
11787 }
11788 }
11789
11790 ada_loc->excep_cond_expr = exp;
11791 }
11792
11793 do_cleanups (old_chain);
11794 }
11795
11796 /* Implement the DTOR method in the breakpoint_ops structure for all
11797 exception catchpoint kinds. */
11798
11799 static void
11800 dtor_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
11801 {
11802 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11803
11804 xfree (c->excep_string);
11805
11806 bkpt_breakpoint_ops.dtor (b);
11807 }
11808
11809 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11810 structure for all exception catchpoint kinds. */
11811
11812 static struct bp_location *
11813 allocate_location_exception (enum ada_exception_catchpoint_kind ex,
11814 struct breakpoint *self)
11815 {
11816 struct ada_catchpoint_location *loc;
11817
11818 loc = XNEW (struct ada_catchpoint_location);
11819 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
11820 loc->excep_cond_expr = NULL;
11821 return &loc->base;
11822 }
11823
11824 /* Implement the RE_SET method in the breakpoint_ops structure for all
11825 exception catchpoint kinds. */
11826
11827 static void
11828 re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
11829 {
11830 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11831
11832 /* Call the base class's method. This updates the catchpoint's
11833 locations. */
11834 bkpt_breakpoint_ops.re_set (b);
11835
11836 /* Reparse the exception conditional expressions. One for each
11837 location. */
11838 create_excep_cond_exprs (c);
11839 }
11840
11841 /* Returns true if we should stop for this breakpoint hit. If the
11842 user specified a specific exception, we only want to cause a stop
11843 if the program thrown that exception. */
11844
11845 static int
11846 should_stop_exception (const struct bp_location *bl)
11847 {
11848 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
11849 const struct ada_catchpoint_location *ada_loc
11850 = (const struct ada_catchpoint_location *) bl;
11851 volatile struct gdb_exception ex;
11852 int stop;
11853
11854 /* With no specific exception, should always stop. */
11855 if (c->excep_string == NULL)
11856 return 1;
11857
11858 if (ada_loc->excep_cond_expr == NULL)
11859 {
11860 /* We will have a NULL expression if back when we were creating
11861 the expressions, this location's had failed to parse. */
11862 return 1;
11863 }
11864
11865 stop = 1;
11866 TRY_CATCH (ex, RETURN_MASK_ALL)
11867 {
11868 struct value *mark;
11869
11870 mark = value_mark ();
11871 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
11872 value_free_to_mark (mark);
11873 }
11874 if (ex.reason < 0)
11875 exception_fprintf (gdb_stderr, ex,
11876 _("Error in testing exception condition:\n"));
11877 return stop;
11878 }
11879
11880 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
11881 for all exception catchpoint kinds. */
11882
11883 static void
11884 check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
11885 {
11886 bs->stop = should_stop_exception (bs->bp_location_at);
11887 }
11888
11889 /* Implement the PRINT_IT method in the breakpoint_ops structure
11890 for all exception catchpoint kinds. */
11891
11892 static enum print_stop_action
11893 print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
11894 {
11895 struct ui_out *uiout = current_uiout;
11896 struct breakpoint *b = bs->breakpoint_at;
11897
11898 annotate_catchpoint (b->number);
11899
11900 if (ui_out_is_mi_like_p (uiout))
11901 {
11902 ui_out_field_string (uiout, "reason",
11903 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
11904 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
11905 }
11906
11907 ui_out_text (uiout,
11908 b->disposition == disp_del ? "\nTemporary catchpoint "
11909 : "\nCatchpoint ");
11910 ui_out_field_int (uiout, "bkptno", b->number);
11911 ui_out_text (uiout, ", ");
11912
11913 switch (ex)
11914 {
11915 case ada_catch_exception:
11916 case ada_catch_exception_unhandled:
11917 {
11918 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
11919 char exception_name[256];
11920
11921 if (addr != 0)
11922 {
11923 read_memory (addr, (gdb_byte *) exception_name,
11924 sizeof (exception_name) - 1);
11925 exception_name [sizeof (exception_name) - 1] = '\0';
11926 }
11927 else
11928 {
11929 /* For some reason, we were unable to read the exception
11930 name. This could happen if the Runtime was compiled
11931 without debugging info, for instance. In that case,
11932 just replace the exception name by the generic string
11933 "exception" - it will read as "an exception" in the
11934 notification we are about to print. */
11935 memcpy (exception_name, "exception", sizeof ("exception"));
11936 }
11937 /* In the case of unhandled exception breakpoints, we print
11938 the exception name as "unhandled EXCEPTION_NAME", to make
11939 it clearer to the user which kind of catchpoint just got
11940 hit. We used ui_out_text to make sure that this extra
11941 info does not pollute the exception name in the MI case. */
11942 if (ex == ada_catch_exception_unhandled)
11943 ui_out_text (uiout, "unhandled ");
11944 ui_out_field_string (uiout, "exception-name", exception_name);
11945 }
11946 break;
11947 case ada_catch_assert:
11948 /* In this case, the name of the exception is not really
11949 important. Just print "failed assertion" to make it clearer
11950 that his program just hit an assertion-failure catchpoint.
11951 We used ui_out_text because this info does not belong in
11952 the MI output. */
11953 ui_out_text (uiout, "failed assertion");
11954 break;
11955 }
11956 ui_out_text (uiout, " at ");
11957 ada_find_printable_frame (get_current_frame ());
11958
11959 return PRINT_SRC_AND_LOC;
11960 }
11961
11962 /* Implement the PRINT_ONE method in the breakpoint_ops structure
11963 for all exception catchpoint kinds. */
11964
11965 static void
11966 print_one_exception (enum ada_exception_catchpoint_kind ex,
11967 struct breakpoint *b, struct bp_location **last_loc)
11968 {
11969 struct ui_out *uiout = current_uiout;
11970 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11971 struct value_print_options opts;
11972
11973 get_user_print_options (&opts);
11974 if (opts.addressprint)
11975 {
11976 annotate_field (4);
11977 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
11978 }
11979
11980 annotate_field (5);
11981 *last_loc = b->loc;
11982 switch (ex)
11983 {
11984 case ada_catch_exception:
11985 if (c->excep_string != NULL)
11986 {
11987 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11988
11989 ui_out_field_string (uiout, "what", msg);
11990 xfree (msg);
11991 }
11992 else
11993 ui_out_field_string (uiout, "what", "all Ada exceptions");
11994
11995 break;
11996
11997 case ada_catch_exception_unhandled:
11998 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
11999 break;
12000
12001 case ada_catch_assert:
12002 ui_out_field_string (uiout, "what", "failed Ada assertions");
12003 break;
12004
12005 default:
12006 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12007 break;
12008 }
12009 }
12010
12011 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12012 for all exception catchpoint kinds. */
12013
12014 static void
12015 print_mention_exception (enum ada_exception_catchpoint_kind ex,
12016 struct breakpoint *b)
12017 {
12018 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12019 struct ui_out *uiout = current_uiout;
12020
12021 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
12022 : _("Catchpoint "));
12023 ui_out_field_int (uiout, "bkptno", b->number);
12024 ui_out_text (uiout, ": ");
12025
12026 switch (ex)
12027 {
12028 case ada_catch_exception:
12029 if (c->excep_string != NULL)
12030 {
12031 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12032 struct cleanup *old_chain = make_cleanup (xfree, info);
12033
12034 ui_out_text (uiout, info);
12035 do_cleanups (old_chain);
12036 }
12037 else
12038 ui_out_text (uiout, _("all Ada exceptions"));
12039 break;
12040
12041 case ada_catch_exception_unhandled:
12042 ui_out_text (uiout, _("unhandled Ada exceptions"));
12043 break;
12044
12045 case ada_catch_assert:
12046 ui_out_text (uiout, _("failed Ada assertions"));
12047 break;
12048
12049 default:
12050 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12051 break;
12052 }
12053 }
12054
12055 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12056 for all exception catchpoint kinds. */
12057
12058 static void
12059 print_recreate_exception (enum ada_exception_catchpoint_kind ex,
12060 struct breakpoint *b, struct ui_file *fp)
12061 {
12062 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12063
12064 switch (ex)
12065 {
12066 case ada_catch_exception:
12067 fprintf_filtered (fp, "catch exception");
12068 if (c->excep_string != NULL)
12069 fprintf_filtered (fp, " %s", c->excep_string);
12070 break;
12071
12072 case ada_catch_exception_unhandled:
12073 fprintf_filtered (fp, "catch exception unhandled");
12074 break;
12075
12076 case ada_catch_assert:
12077 fprintf_filtered (fp, "catch assert");
12078 break;
12079
12080 default:
12081 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12082 }
12083 print_recreate_thread (b, fp);
12084 }
12085
12086 /* Virtual table for "catch exception" breakpoints. */
12087
12088 static void
12089 dtor_catch_exception (struct breakpoint *b)
12090 {
12091 dtor_exception (ada_catch_exception, b);
12092 }
12093
12094 static struct bp_location *
12095 allocate_location_catch_exception (struct breakpoint *self)
12096 {
12097 return allocate_location_exception (ada_catch_exception, self);
12098 }
12099
12100 static void
12101 re_set_catch_exception (struct breakpoint *b)
12102 {
12103 re_set_exception (ada_catch_exception, b);
12104 }
12105
12106 static void
12107 check_status_catch_exception (bpstat bs)
12108 {
12109 check_status_exception (ada_catch_exception, bs);
12110 }
12111
12112 static enum print_stop_action
12113 print_it_catch_exception (bpstat bs)
12114 {
12115 return print_it_exception (ada_catch_exception, bs);
12116 }
12117
12118 static void
12119 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
12120 {
12121 print_one_exception (ada_catch_exception, b, last_loc);
12122 }
12123
12124 static void
12125 print_mention_catch_exception (struct breakpoint *b)
12126 {
12127 print_mention_exception (ada_catch_exception, b);
12128 }
12129
12130 static void
12131 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12132 {
12133 print_recreate_exception (ada_catch_exception, b, fp);
12134 }
12135
12136 static struct breakpoint_ops catch_exception_breakpoint_ops;
12137
12138 /* Virtual table for "catch exception unhandled" breakpoints. */
12139
12140 static void
12141 dtor_catch_exception_unhandled (struct breakpoint *b)
12142 {
12143 dtor_exception (ada_catch_exception_unhandled, b);
12144 }
12145
12146 static struct bp_location *
12147 allocate_location_catch_exception_unhandled (struct breakpoint *self)
12148 {
12149 return allocate_location_exception (ada_catch_exception_unhandled, self);
12150 }
12151
12152 static void
12153 re_set_catch_exception_unhandled (struct breakpoint *b)
12154 {
12155 re_set_exception (ada_catch_exception_unhandled, b);
12156 }
12157
12158 static void
12159 check_status_catch_exception_unhandled (bpstat bs)
12160 {
12161 check_status_exception (ada_catch_exception_unhandled, bs);
12162 }
12163
12164 static enum print_stop_action
12165 print_it_catch_exception_unhandled (bpstat bs)
12166 {
12167 return print_it_exception (ada_catch_exception_unhandled, bs);
12168 }
12169
12170 static void
12171 print_one_catch_exception_unhandled (struct breakpoint *b,
12172 struct bp_location **last_loc)
12173 {
12174 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
12175 }
12176
12177 static void
12178 print_mention_catch_exception_unhandled (struct breakpoint *b)
12179 {
12180 print_mention_exception (ada_catch_exception_unhandled, b);
12181 }
12182
12183 static void
12184 print_recreate_catch_exception_unhandled (struct breakpoint *b,
12185 struct ui_file *fp)
12186 {
12187 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
12188 }
12189
12190 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12191
12192 /* Virtual table for "catch assert" breakpoints. */
12193
12194 static void
12195 dtor_catch_assert (struct breakpoint *b)
12196 {
12197 dtor_exception (ada_catch_assert, b);
12198 }
12199
12200 static struct bp_location *
12201 allocate_location_catch_assert (struct breakpoint *self)
12202 {
12203 return allocate_location_exception (ada_catch_assert, self);
12204 }
12205
12206 static void
12207 re_set_catch_assert (struct breakpoint *b)
12208 {
12209 re_set_exception (ada_catch_assert, b);
12210 }
12211
12212 static void
12213 check_status_catch_assert (bpstat bs)
12214 {
12215 check_status_exception (ada_catch_assert, bs);
12216 }
12217
12218 static enum print_stop_action
12219 print_it_catch_assert (bpstat bs)
12220 {
12221 return print_it_exception (ada_catch_assert, bs);
12222 }
12223
12224 static void
12225 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
12226 {
12227 print_one_exception (ada_catch_assert, b, last_loc);
12228 }
12229
12230 static void
12231 print_mention_catch_assert (struct breakpoint *b)
12232 {
12233 print_mention_exception (ada_catch_assert, b);
12234 }
12235
12236 static void
12237 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12238 {
12239 print_recreate_exception (ada_catch_assert, b, fp);
12240 }
12241
12242 static struct breakpoint_ops catch_assert_breakpoint_ops;
12243
12244 /* Return a newly allocated copy of the first space-separated token
12245 in ARGSP, and then adjust ARGSP to point immediately after that
12246 token.
12247
12248 Return NULL if ARGPS does not contain any more tokens. */
12249
12250 static char *
12251 ada_get_next_arg (char **argsp)
12252 {
12253 char *args = *argsp;
12254 char *end;
12255 char *result;
12256
12257 args = skip_spaces (args);
12258 if (args[0] == '\0')
12259 return NULL; /* No more arguments. */
12260
12261 /* Find the end of the current argument. */
12262
12263 end = skip_to_space (args);
12264
12265 /* Adjust ARGSP to point to the start of the next argument. */
12266
12267 *argsp = end;
12268
12269 /* Make a copy of the current argument and return it. */
12270
12271 result = xmalloc (end - args + 1);
12272 strncpy (result, args, end - args);
12273 result[end - args] = '\0';
12274
12275 return result;
12276 }
12277
12278 /* Split the arguments specified in a "catch exception" command.
12279 Set EX to the appropriate catchpoint type.
12280 Set EXCEP_STRING to the name of the specific exception if
12281 specified by the user.
12282 If a condition is found at the end of the arguments, the condition
12283 expression is stored in COND_STRING (memory must be deallocated
12284 after use). Otherwise COND_STRING is set to NULL. */
12285
12286 static void
12287 catch_ada_exception_command_split (char *args,
12288 enum ada_exception_catchpoint_kind *ex,
12289 char **excep_string,
12290 char **cond_string)
12291 {
12292 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
12293 char *exception_name;
12294 char *cond = NULL;
12295
12296 exception_name = ada_get_next_arg (&args);
12297 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
12298 {
12299 /* This is not an exception name; this is the start of a condition
12300 expression for a catchpoint on all exceptions. So, "un-get"
12301 this token, and set exception_name to NULL. */
12302 xfree (exception_name);
12303 exception_name = NULL;
12304 args -= 2;
12305 }
12306 make_cleanup (xfree, exception_name);
12307
12308 /* Check to see if we have a condition. */
12309
12310 args = skip_spaces (args);
12311 if (strncmp (args, "if", 2) == 0
12312 && (isspace (args[2]) || args[2] == '\0'))
12313 {
12314 args += 2;
12315 args = skip_spaces (args);
12316
12317 if (args[0] == '\0')
12318 error (_("Condition missing after `if' keyword"));
12319 cond = xstrdup (args);
12320 make_cleanup (xfree, cond);
12321
12322 args += strlen (args);
12323 }
12324
12325 /* Check that we do not have any more arguments. Anything else
12326 is unexpected. */
12327
12328 if (args[0] != '\0')
12329 error (_("Junk at end of expression"));
12330
12331 discard_cleanups (old_chain);
12332
12333 if (exception_name == NULL)
12334 {
12335 /* Catch all exceptions. */
12336 *ex = ada_catch_exception;
12337 *excep_string = NULL;
12338 }
12339 else if (strcmp (exception_name, "unhandled") == 0)
12340 {
12341 /* Catch unhandled exceptions. */
12342 *ex = ada_catch_exception_unhandled;
12343 *excep_string = NULL;
12344 }
12345 else
12346 {
12347 /* Catch a specific exception. */
12348 *ex = ada_catch_exception;
12349 *excep_string = exception_name;
12350 }
12351 *cond_string = cond;
12352 }
12353
12354 /* Return the name of the symbol on which we should break in order to
12355 implement a catchpoint of the EX kind. */
12356
12357 static const char *
12358 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
12359 {
12360 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12361
12362 gdb_assert (data->exception_info != NULL);
12363
12364 switch (ex)
12365 {
12366 case ada_catch_exception:
12367 return (data->exception_info->catch_exception_sym);
12368 break;
12369 case ada_catch_exception_unhandled:
12370 return (data->exception_info->catch_exception_unhandled_sym);
12371 break;
12372 case ada_catch_assert:
12373 return (data->exception_info->catch_assert_sym);
12374 break;
12375 default:
12376 internal_error (__FILE__, __LINE__,
12377 _("unexpected catchpoint kind (%d)"), ex);
12378 }
12379 }
12380
12381 /* Return the breakpoint ops "virtual table" used for catchpoints
12382 of the EX kind. */
12383
12384 static const struct breakpoint_ops *
12385 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
12386 {
12387 switch (ex)
12388 {
12389 case ada_catch_exception:
12390 return (&catch_exception_breakpoint_ops);
12391 break;
12392 case ada_catch_exception_unhandled:
12393 return (&catch_exception_unhandled_breakpoint_ops);
12394 break;
12395 case ada_catch_assert:
12396 return (&catch_assert_breakpoint_ops);
12397 break;
12398 default:
12399 internal_error (__FILE__, __LINE__,
12400 _("unexpected catchpoint kind (%d)"), ex);
12401 }
12402 }
12403
12404 /* Return the condition that will be used to match the current exception
12405 being raised with the exception that the user wants to catch. This
12406 assumes that this condition is used when the inferior just triggered
12407 an exception catchpoint.
12408
12409 The string returned is a newly allocated string that needs to be
12410 deallocated later. */
12411
12412 static char *
12413 ada_exception_catchpoint_cond_string (const char *excep_string)
12414 {
12415 int i;
12416
12417 /* The standard exceptions are a special case. They are defined in
12418 runtime units that have been compiled without debugging info; if
12419 EXCEP_STRING is the not-fully-qualified name of a standard
12420 exception (e.g. "constraint_error") then, during the evaluation
12421 of the condition expression, the symbol lookup on this name would
12422 *not* return this standard exception. The catchpoint condition
12423 may then be set only on user-defined exceptions which have the
12424 same not-fully-qualified name (e.g. my_package.constraint_error).
12425
12426 To avoid this unexcepted behavior, these standard exceptions are
12427 systematically prefixed by "standard". This means that "catch
12428 exception constraint_error" is rewritten into "catch exception
12429 standard.constraint_error".
12430
12431 If an exception named contraint_error is defined in another package of
12432 the inferior program, then the only way to specify this exception as a
12433 breakpoint condition is to use its fully-qualified named:
12434 e.g. my_package.constraint_error. */
12435
12436 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12437 {
12438 if (strcmp (standard_exc [i], excep_string) == 0)
12439 {
12440 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
12441 excep_string);
12442 }
12443 }
12444 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
12445 }
12446
12447 /* Return the symtab_and_line that should be used to insert an exception
12448 catchpoint of the TYPE kind.
12449
12450 EXCEP_STRING should contain the name of a specific exception that
12451 the catchpoint should catch, or NULL otherwise.
12452
12453 ADDR_STRING returns the name of the function where the real
12454 breakpoint that implements the catchpoints is set, depending on the
12455 type of catchpoint we need to create. */
12456
12457 static struct symtab_and_line
12458 ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string,
12459 char **addr_string, const struct breakpoint_ops **ops)
12460 {
12461 const char *sym_name;
12462 struct symbol *sym;
12463
12464 /* First, find out which exception support info to use. */
12465 ada_exception_support_info_sniffer ();
12466
12467 /* Then lookup the function on which we will break in order to catch
12468 the Ada exceptions requested by the user. */
12469 sym_name = ada_exception_sym_name (ex);
12470 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12471
12472 /* We can assume that SYM is not NULL at this stage. If the symbol
12473 did not exist, ada_exception_support_info_sniffer would have
12474 raised an exception.
12475
12476 Also, ada_exception_support_info_sniffer should have already
12477 verified that SYM is a function symbol. */
12478 gdb_assert (sym != NULL);
12479 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
12480
12481 /* Set ADDR_STRING. */
12482 *addr_string = xstrdup (sym_name);
12483
12484 /* Set OPS. */
12485 *ops = ada_exception_breakpoint_ops (ex);
12486
12487 return find_function_start_sal (sym, 1);
12488 }
12489
12490 /* Create an Ada exception catchpoint.
12491
12492 EX_KIND is the kind of exception catchpoint to be created.
12493
12494 If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
12495 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12496 of the exception to which this catchpoint applies. When not NULL,
12497 the string must be allocated on the heap, and its deallocation
12498 is no longer the responsibility of the caller.
12499
12500 COND_STRING, if not NULL, is the catchpoint condition. This string
12501 must be allocated on the heap, and its deallocation is no longer
12502 the responsibility of the caller.
12503
12504 TEMPFLAG, if nonzero, means that the underlying breakpoint
12505 should be temporary.
12506
12507 FROM_TTY is the usual argument passed to all commands implementations. */
12508
12509 void
12510 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
12511 enum ada_exception_catchpoint_kind ex_kind,
12512 char *excep_string,
12513 char *cond_string,
12514 int tempflag,
12515 int disabled,
12516 int from_tty)
12517 {
12518 struct ada_catchpoint *c;
12519 char *addr_string = NULL;
12520 const struct breakpoint_ops *ops = NULL;
12521 struct symtab_and_line sal
12522 = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops);
12523
12524 c = XNEW (struct ada_catchpoint);
12525 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
12526 ops, tempflag, disabled, from_tty);
12527 c->excep_string = excep_string;
12528 create_excep_cond_exprs (c);
12529 if (cond_string != NULL)
12530 set_breakpoint_condition (&c->base, cond_string, from_tty);
12531 install_breakpoint (0, &c->base, 1);
12532 }
12533
12534 /* Implement the "catch exception" command. */
12535
12536 static void
12537 catch_ada_exception_command (char *arg, int from_tty,
12538 struct cmd_list_element *command)
12539 {
12540 struct gdbarch *gdbarch = get_current_arch ();
12541 int tempflag;
12542 enum ada_exception_catchpoint_kind ex_kind;
12543 char *excep_string = NULL;
12544 char *cond_string = NULL;
12545
12546 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12547
12548 if (!arg)
12549 arg = "";
12550 catch_ada_exception_command_split (arg, &ex_kind, &excep_string,
12551 &cond_string);
12552 create_ada_exception_catchpoint (gdbarch, ex_kind,
12553 excep_string, cond_string,
12554 tempflag, 1 /* enabled */,
12555 from_tty);
12556 }
12557
12558 /* Split the arguments specified in a "catch assert" command.
12559
12560 ARGS contains the command's arguments (or the empty string if
12561 no arguments were passed).
12562
12563 If ARGS contains a condition, set COND_STRING to that condition
12564 (the memory needs to be deallocated after use). */
12565
12566 static void
12567 catch_ada_assert_command_split (char *args, char **cond_string)
12568 {
12569 args = skip_spaces (args);
12570
12571 /* Check whether a condition was provided. */
12572 if (strncmp (args, "if", 2) == 0
12573 && (isspace (args[2]) || args[2] == '\0'))
12574 {
12575 args += 2;
12576 args = skip_spaces (args);
12577 if (args[0] == '\0')
12578 error (_("condition missing after `if' keyword"));
12579 *cond_string = xstrdup (args);
12580 }
12581
12582 /* Otherwise, there should be no other argument at the end of
12583 the command. */
12584 else if (args[0] != '\0')
12585 error (_("Junk at end of arguments."));
12586 }
12587
12588 /* Implement the "catch assert" command. */
12589
12590 static void
12591 catch_assert_command (char *arg, int from_tty,
12592 struct cmd_list_element *command)
12593 {
12594 struct gdbarch *gdbarch = get_current_arch ();
12595 int tempflag;
12596 char *cond_string = NULL;
12597
12598 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12599
12600 if (!arg)
12601 arg = "";
12602 catch_ada_assert_command_split (arg, &cond_string);
12603 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
12604 NULL, cond_string,
12605 tempflag, 1 /* enabled */,
12606 from_tty);
12607 }
12608
12609 /* Return non-zero if the symbol SYM is an Ada exception object. */
12610
12611 static int
12612 ada_is_exception_sym (struct symbol *sym)
12613 {
12614 const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
12615
12616 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
12617 && SYMBOL_CLASS (sym) != LOC_BLOCK
12618 && SYMBOL_CLASS (sym) != LOC_CONST
12619 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
12620 && type_name != NULL && strcmp (type_name, "exception") == 0);
12621 }
12622
12623 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
12624 Ada exception object. This matches all exceptions except the ones
12625 defined by the Ada language. */
12626
12627 static int
12628 ada_is_non_standard_exception_sym (struct symbol *sym)
12629 {
12630 int i;
12631
12632 if (!ada_is_exception_sym (sym))
12633 return 0;
12634
12635 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12636 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
12637 return 0; /* A standard exception. */
12638
12639 /* Numeric_Error is also a standard exception, so exclude it.
12640 See the STANDARD_EXC description for more details as to why
12641 this exception is not listed in that array. */
12642 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
12643 return 0;
12644
12645 return 1;
12646 }
12647
12648 /* A helper function for qsort, comparing two struct ada_exc_info
12649 objects.
12650
12651 The comparison is determined first by exception name, and then
12652 by exception address. */
12653
12654 static int
12655 compare_ada_exception_info (const void *a, const void *b)
12656 {
12657 const struct ada_exc_info *exc_a = (struct ada_exc_info *) a;
12658 const struct ada_exc_info *exc_b = (struct ada_exc_info *) b;
12659 int result;
12660
12661 result = strcmp (exc_a->name, exc_b->name);
12662 if (result != 0)
12663 return result;
12664
12665 if (exc_a->addr < exc_b->addr)
12666 return -1;
12667 if (exc_a->addr > exc_b->addr)
12668 return 1;
12669
12670 return 0;
12671 }
12672
12673 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
12674 routine, but keeping the first SKIP elements untouched.
12675
12676 All duplicates are also removed. */
12677
12678 static void
12679 sort_remove_dups_ada_exceptions_list (VEC(ada_exc_info) **exceptions,
12680 int skip)
12681 {
12682 struct ada_exc_info *to_sort
12683 = VEC_address (ada_exc_info, *exceptions) + skip;
12684 int to_sort_len
12685 = VEC_length (ada_exc_info, *exceptions) - skip;
12686 int i, j;
12687
12688 qsort (to_sort, to_sort_len, sizeof (struct ada_exc_info),
12689 compare_ada_exception_info);
12690
12691 for (i = 1, j = 1; i < to_sort_len; i++)
12692 if (compare_ada_exception_info (&to_sort[i], &to_sort[j - 1]) != 0)
12693 to_sort[j++] = to_sort[i];
12694 to_sort_len = j;
12695 VEC_truncate(ada_exc_info, *exceptions, skip + to_sort_len);
12696 }
12697
12698 /* A function intended as the "name_matcher" callback in the struct
12699 quick_symbol_functions' expand_symtabs_matching method.
12700
12701 SEARCH_NAME is the symbol's search name.
12702
12703 If USER_DATA is not NULL, it is a pointer to a regext_t object
12704 used to match the symbol (by natural name). Otherwise, when USER_DATA
12705 is null, no filtering is performed, and all symbols are a positive
12706 match. */
12707
12708 static int
12709 ada_exc_search_name_matches (const char *search_name, void *user_data)
12710 {
12711 regex_t *preg = user_data;
12712
12713 if (preg == NULL)
12714 return 1;
12715
12716 /* In Ada, the symbol "search name" is a linkage name, whereas
12717 the regular expression used to do the matching refers to
12718 the natural name. So match against the decoded name. */
12719 return (regexec (preg, ada_decode (search_name), 0, NULL, 0) == 0);
12720 }
12721
12722 /* Add all exceptions defined by the Ada standard whose name match
12723 a regular expression.
12724
12725 If PREG is not NULL, then this regexp_t object is used to
12726 perform the symbol name matching. Otherwise, no name-based
12727 filtering is performed.
12728
12729 EXCEPTIONS is a vector of exceptions to which matching exceptions
12730 gets pushed. */
12731
12732 static void
12733 ada_add_standard_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
12734 {
12735 int i;
12736
12737 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12738 {
12739 if (preg == NULL
12740 || regexec (preg, standard_exc[i], 0, NULL, 0) == 0)
12741 {
12742 struct bound_minimal_symbol msymbol
12743 = ada_lookup_simple_minsym (standard_exc[i]);
12744
12745 if (msymbol.minsym != NULL)
12746 {
12747 struct ada_exc_info info
12748 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
12749
12750 VEC_safe_push (ada_exc_info, *exceptions, &info);
12751 }
12752 }
12753 }
12754 }
12755
12756 /* Add all Ada exceptions defined locally and accessible from the given
12757 FRAME.
12758
12759 If PREG is not NULL, then this regexp_t object is used to
12760 perform the symbol name matching. Otherwise, no name-based
12761 filtering is performed.
12762
12763 EXCEPTIONS is a vector of exceptions to which matching exceptions
12764 gets pushed. */
12765
12766 static void
12767 ada_add_exceptions_from_frame (regex_t *preg, struct frame_info *frame,
12768 VEC(ada_exc_info) **exceptions)
12769 {
12770 const struct block *block = get_frame_block (frame, 0);
12771
12772 while (block != 0)
12773 {
12774 struct block_iterator iter;
12775 struct symbol *sym;
12776
12777 ALL_BLOCK_SYMBOLS (block, iter, sym)
12778 {
12779 switch (SYMBOL_CLASS (sym))
12780 {
12781 case LOC_TYPEDEF:
12782 case LOC_BLOCK:
12783 case LOC_CONST:
12784 break;
12785 default:
12786 if (ada_is_exception_sym (sym))
12787 {
12788 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
12789 SYMBOL_VALUE_ADDRESS (sym)};
12790
12791 VEC_safe_push (ada_exc_info, *exceptions, &info);
12792 }
12793 }
12794 }
12795 if (BLOCK_FUNCTION (block) != NULL)
12796 break;
12797 block = BLOCK_SUPERBLOCK (block);
12798 }
12799 }
12800
12801 /* Add all exceptions defined globally whose name name match
12802 a regular expression, excluding standard exceptions.
12803
12804 The reason we exclude standard exceptions is that they need
12805 to be handled separately: Standard exceptions are defined inside
12806 a runtime unit which is normally not compiled with debugging info,
12807 and thus usually do not show up in our symbol search. However,
12808 if the unit was in fact built with debugging info, we need to
12809 exclude them because they would duplicate the entry we found
12810 during the special loop that specifically searches for those
12811 standard exceptions.
12812
12813 If PREG is not NULL, then this regexp_t object is used to
12814 perform the symbol name matching. Otherwise, no name-based
12815 filtering is performed.
12816
12817 EXCEPTIONS is a vector of exceptions to which matching exceptions
12818 gets pushed. */
12819
12820 static void
12821 ada_add_global_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
12822 {
12823 struct objfile *objfile;
12824 struct symtab *s;
12825
12826 expand_symtabs_matching (NULL, ada_exc_search_name_matches,
12827 VARIABLES_DOMAIN, preg);
12828
12829 ALL_PRIMARY_SYMTABS (objfile, s)
12830 {
12831 const struct blockvector *bv = BLOCKVECTOR (s);
12832 int i;
12833
12834 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
12835 {
12836 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
12837 struct block_iterator iter;
12838 struct symbol *sym;
12839
12840 ALL_BLOCK_SYMBOLS (b, iter, sym)
12841 if (ada_is_non_standard_exception_sym (sym)
12842 && (preg == NULL
12843 || regexec (preg, SYMBOL_NATURAL_NAME (sym),
12844 0, NULL, 0) == 0))
12845 {
12846 struct ada_exc_info info
12847 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
12848
12849 VEC_safe_push (ada_exc_info, *exceptions, &info);
12850 }
12851 }
12852 }
12853 }
12854
12855 /* Implements ada_exceptions_list with the regular expression passed
12856 as a regex_t, rather than a string.
12857
12858 If not NULL, PREG is used to filter out exceptions whose names
12859 do not match. Otherwise, all exceptions are listed. */
12860
12861 static VEC(ada_exc_info) *
12862 ada_exceptions_list_1 (regex_t *preg)
12863 {
12864 VEC(ada_exc_info) *result = NULL;
12865 struct cleanup *old_chain
12866 = make_cleanup (VEC_cleanup (ada_exc_info), &result);
12867 int prev_len;
12868
12869 /* First, list the known standard exceptions. These exceptions
12870 need to be handled separately, as they are usually defined in
12871 runtime units that have been compiled without debugging info. */
12872
12873 ada_add_standard_exceptions (preg, &result);
12874
12875 /* Next, find all exceptions whose scope is local and accessible
12876 from the currently selected frame. */
12877
12878 if (has_stack_frames ())
12879 {
12880 prev_len = VEC_length (ada_exc_info, result);
12881 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
12882 &result);
12883 if (VEC_length (ada_exc_info, result) > prev_len)
12884 sort_remove_dups_ada_exceptions_list (&result, prev_len);
12885 }
12886
12887 /* Add all exceptions whose scope is global. */
12888
12889 prev_len = VEC_length (ada_exc_info, result);
12890 ada_add_global_exceptions (preg, &result);
12891 if (VEC_length (ada_exc_info, result) > prev_len)
12892 sort_remove_dups_ada_exceptions_list (&result, prev_len);
12893
12894 discard_cleanups (old_chain);
12895 return result;
12896 }
12897
12898 /* Return a vector of ada_exc_info.
12899
12900 If REGEXP is NULL, all exceptions are included in the result.
12901 Otherwise, it should contain a valid regular expression,
12902 and only the exceptions whose names match that regular expression
12903 are included in the result.
12904
12905 The exceptions are sorted in the following order:
12906 - Standard exceptions (defined by the Ada language), in
12907 alphabetical order;
12908 - Exceptions only visible from the current frame, in
12909 alphabetical order;
12910 - Exceptions whose scope is global, in alphabetical order. */
12911
12912 VEC(ada_exc_info) *
12913 ada_exceptions_list (const char *regexp)
12914 {
12915 VEC(ada_exc_info) *result = NULL;
12916 struct cleanup *old_chain = NULL;
12917 regex_t reg;
12918
12919 if (regexp != NULL)
12920 old_chain = compile_rx_or_error (&reg, regexp,
12921 _("invalid regular expression"));
12922
12923 result = ada_exceptions_list_1 (regexp != NULL ? &reg : NULL);
12924
12925 if (old_chain != NULL)
12926 do_cleanups (old_chain);
12927 return result;
12928 }
12929
12930 /* Implement the "info exceptions" command. */
12931
12932 static void
12933 info_exceptions_command (char *regexp, int from_tty)
12934 {
12935 VEC(ada_exc_info) *exceptions;
12936 struct cleanup *cleanup;
12937 struct gdbarch *gdbarch = get_current_arch ();
12938 int ix;
12939 struct ada_exc_info *info;
12940
12941 exceptions = ada_exceptions_list (regexp);
12942 cleanup = make_cleanup (VEC_cleanup (ada_exc_info), &exceptions);
12943
12944 if (regexp != NULL)
12945 printf_filtered
12946 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
12947 else
12948 printf_filtered (_("All defined Ada exceptions:\n"));
12949
12950 for (ix = 0; VEC_iterate(ada_exc_info, exceptions, ix, info); ix++)
12951 printf_filtered ("%s: %s\n", info->name, paddress (gdbarch, info->addr));
12952
12953 do_cleanups (cleanup);
12954 }
12955
12956 /* Operators */
12957 /* Information about operators given special treatment in functions
12958 below. */
12959 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
12960
12961 #define ADA_OPERATORS \
12962 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
12963 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
12964 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
12965 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
12966 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
12967 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
12968 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
12969 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
12970 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
12971 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
12972 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
12973 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
12974 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
12975 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
12976 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
12977 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
12978 OP_DEFN (OP_OTHERS, 1, 1, 0) \
12979 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
12980 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
12981
12982 static void
12983 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
12984 int *argsp)
12985 {
12986 switch (exp->elts[pc - 1].opcode)
12987 {
12988 default:
12989 operator_length_standard (exp, pc, oplenp, argsp);
12990 break;
12991
12992 #define OP_DEFN(op, len, args, binop) \
12993 case op: *oplenp = len; *argsp = args; break;
12994 ADA_OPERATORS;
12995 #undef OP_DEFN
12996
12997 case OP_AGGREGATE:
12998 *oplenp = 3;
12999 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13000 break;
13001
13002 case OP_CHOICES:
13003 *oplenp = 3;
13004 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13005 break;
13006 }
13007 }
13008
13009 /* Implementation of the exp_descriptor method operator_check. */
13010
13011 static int
13012 ada_operator_check (struct expression *exp, int pos,
13013 int (*objfile_func) (struct objfile *objfile, void *data),
13014 void *data)
13015 {
13016 const union exp_element *const elts = exp->elts;
13017 struct type *type = NULL;
13018
13019 switch (elts[pos].opcode)
13020 {
13021 case UNOP_IN_RANGE:
13022 case UNOP_QUAL:
13023 type = elts[pos + 1].type;
13024 break;
13025
13026 default:
13027 return operator_check_standard (exp, pos, objfile_func, data);
13028 }
13029
13030 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13031
13032 if (type && TYPE_OBJFILE (type)
13033 && (*objfile_func) (TYPE_OBJFILE (type), data))
13034 return 1;
13035
13036 return 0;
13037 }
13038
13039 static char *
13040 ada_op_name (enum exp_opcode opcode)
13041 {
13042 switch (opcode)
13043 {
13044 default:
13045 return op_name_standard (opcode);
13046
13047 #define OP_DEFN(op, len, args, binop) case op: return #op;
13048 ADA_OPERATORS;
13049 #undef OP_DEFN
13050
13051 case OP_AGGREGATE:
13052 return "OP_AGGREGATE";
13053 case OP_CHOICES:
13054 return "OP_CHOICES";
13055 case OP_NAME:
13056 return "OP_NAME";
13057 }
13058 }
13059
13060 /* As for operator_length, but assumes PC is pointing at the first
13061 element of the operator, and gives meaningful results only for the
13062 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13063
13064 static void
13065 ada_forward_operator_length (struct expression *exp, int pc,
13066 int *oplenp, int *argsp)
13067 {
13068 switch (exp->elts[pc].opcode)
13069 {
13070 default:
13071 *oplenp = *argsp = 0;
13072 break;
13073
13074 #define OP_DEFN(op, len, args, binop) \
13075 case op: *oplenp = len; *argsp = args; break;
13076 ADA_OPERATORS;
13077 #undef OP_DEFN
13078
13079 case OP_AGGREGATE:
13080 *oplenp = 3;
13081 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13082 break;
13083
13084 case OP_CHOICES:
13085 *oplenp = 3;
13086 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13087 break;
13088
13089 case OP_STRING:
13090 case OP_NAME:
13091 {
13092 int len = longest_to_int (exp->elts[pc + 1].longconst);
13093
13094 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13095 *argsp = 0;
13096 break;
13097 }
13098 }
13099 }
13100
13101 static int
13102 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13103 {
13104 enum exp_opcode op = exp->elts[elt].opcode;
13105 int oplen, nargs;
13106 int pc = elt;
13107 int i;
13108
13109 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13110
13111 switch (op)
13112 {
13113 /* Ada attributes ('Foo). */
13114 case OP_ATR_FIRST:
13115 case OP_ATR_LAST:
13116 case OP_ATR_LENGTH:
13117 case OP_ATR_IMAGE:
13118 case OP_ATR_MAX:
13119 case OP_ATR_MIN:
13120 case OP_ATR_MODULUS:
13121 case OP_ATR_POS:
13122 case OP_ATR_SIZE:
13123 case OP_ATR_TAG:
13124 case OP_ATR_VAL:
13125 break;
13126
13127 case UNOP_IN_RANGE:
13128 case UNOP_QUAL:
13129 /* XXX: gdb_sprint_host_address, type_sprint */
13130 fprintf_filtered (stream, _("Type @"));
13131 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13132 fprintf_filtered (stream, " (");
13133 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13134 fprintf_filtered (stream, ")");
13135 break;
13136 case BINOP_IN_BOUNDS:
13137 fprintf_filtered (stream, " (%d)",
13138 longest_to_int (exp->elts[pc + 2].longconst));
13139 break;
13140 case TERNOP_IN_RANGE:
13141 break;
13142
13143 case OP_AGGREGATE:
13144 case OP_OTHERS:
13145 case OP_DISCRETE_RANGE:
13146 case OP_POSITIONAL:
13147 case OP_CHOICES:
13148 break;
13149
13150 case OP_NAME:
13151 case OP_STRING:
13152 {
13153 char *name = &exp->elts[elt + 2].string;
13154 int len = longest_to_int (exp->elts[elt + 1].longconst);
13155
13156 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13157 break;
13158 }
13159
13160 default:
13161 return dump_subexp_body_standard (exp, stream, elt);
13162 }
13163
13164 elt += oplen;
13165 for (i = 0; i < nargs; i += 1)
13166 elt = dump_subexp (exp, stream, elt);
13167
13168 return elt;
13169 }
13170
13171 /* The Ada extension of print_subexp (q.v.). */
13172
13173 static void
13174 ada_print_subexp (struct expression *exp, int *pos,
13175 struct ui_file *stream, enum precedence prec)
13176 {
13177 int oplen, nargs, i;
13178 int pc = *pos;
13179 enum exp_opcode op = exp->elts[pc].opcode;
13180
13181 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13182
13183 *pos += oplen;
13184 switch (op)
13185 {
13186 default:
13187 *pos -= oplen;
13188 print_subexp_standard (exp, pos, stream, prec);
13189 return;
13190
13191 case OP_VAR_VALUE:
13192 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13193 return;
13194
13195 case BINOP_IN_BOUNDS:
13196 /* XXX: sprint_subexp */
13197 print_subexp (exp, pos, stream, PREC_SUFFIX);
13198 fputs_filtered (" in ", stream);
13199 print_subexp (exp, pos, stream, PREC_SUFFIX);
13200 fputs_filtered ("'range", stream);
13201 if (exp->elts[pc + 1].longconst > 1)
13202 fprintf_filtered (stream, "(%ld)",
13203 (long) exp->elts[pc + 1].longconst);
13204 return;
13205
13206 case TERNOP_IN_RANGE:
13207 if (prec >= PREC_EQUAL)
13208 fputs_filtered ("(", stream);
13209 /* XXX: sprint_subexp */
13210 print_subexp (exp, pos, stream, PREC_SUFFIX);
13211 fputs_filtered (" in ", stream);
13212 print_subexp (exp, pos, stream, PREC_EQUAL);
13213 fputs_filtered (" .. ", stream);
13214 print_subexp (exp, pos, stream, PREC_EQUAL);
13215 if (prec >= PREC_EQUAL)
13216 fputs_filtered (")", stream);
13217 return;
13218
13219 case OP_ATR_FIRST:
13220 case OP_ATR_LAST:
13221 case OP_ATR_LENGTH:
13222 case OP_ATR_IMAGE:
13223 case OP_ATR_MAX:
13224 case OP_ATR_MIN:
13225 case OP_ATR_MODULUS:
13226 case OP_ATR_POS:
13227 case OP_ATR_SIZE:
13228 case OP_ATR_TAG:
13229 case OP_ATR_VAL:
13230 if (exp->elts[*pos].opcode == OP_TYPE)
13231 {
13232 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
13233 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13234 &type_print_raw_options);
13235 *pos += 3;
13236 }
13237 else
13238 print_subexp (exp, pos, stream, PREC_SUFFIX);
13239 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13240 if (nargs > 1)
13241 {
13242 int tem;
13243
13244 for (tem = 1; tem < nargs; tem += 1)
13245 {
13246 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13247 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13248 }
13249 fputs_filtered (")", stream);
13250 }
13251 return;
13252
13253 case UNOP_QUAL:
13254 type_print (exp->elts[pc + 1].type, "", stream, 0);
13255 fputs_filtered ("'(", stream);
13256 print_subexp (exp, pos, stream, PREC_PREFIX);
13257 fputs_filtered (")", stream);
13258 return;
13259
13260 case UNOP_IN_RANGE:
13261 /* XXX: sprint_subexp */
13262 print_subexp (exp, pos, stream, PREC_SUFFIX);
13263 fputs_filtered (" in ", stream);
13264 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13265 &type_print_raw_options);
13266 return;
13267
13268 case OP_DISCRETE_RANGE:
13269 print_subexp (exp, pos, stream, PREC_SUFFIX);
13270 fputs_filtered ("..", stream);
13271 print_subexp (exp, pos, stream, PREC_SUFFIX);
13272 return;
13273
13274 case OP_OTHERS:
13275 fputs_filtered ("others => ", stream);
13276 print_subexp (exp, pos, stream, PREC_SUFFIX);
13277 return;
13278
13279 case OP_CHOICES:
13280 for (i = 0; i < nargs-1; i += 1)
13281 {
13282 if (i > 0)
13283 fputs_filtered ("|", stream);
13284 print_subexp (exp, pos, stream, PREC_SUFFIX);
13285 }
13286 fputs_filtered (" => ", stream);
13287 print_subexp (exp, pos, stream, PREC_SUFFIX);
13288 return;
13289
13290 case OP_POSITIONAL:
13291 print_subexp (exp, pos, stream, PREC_SUFFIX);
13292 return;
13293
13294 case OP_AGGREGATE:
13295 fputs_filtered ("(", stream);
13296 for (i = 0; i < nargs; i += 1)
13297 {
13298 if (i > 0)
13299 fputs_filtered (", ", stream);
13300 print_subexp (exp, pos, stream, PREC_SUFFIX);
13301 }
13302 fputs_filtered (")", stream);
13303 return;
13304 }
13305 }
13306
13307 /* Table mapping opcodes into strings for printing operators
13308 and precedences of the operators. */
13309
13310 static const struct op_print ada_op_print_tab[] = {
13311 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13312 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13313 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13314 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13315 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13316 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13317 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13318 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13319 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13320 {">=", BINOP_GEQ, PREC_ORDER, 0},
13321 {">", BINOP_GTR, PREC_ORDER, 0},
13322 {"<", BINOP_LESS, PREC_ORDER, 0},
13323 {">>", BINOP_RSH, PREC_SHIFT, 0},
13324 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13325 {"+", BINOP_ADD, PREC_ADD, 0},
13326 {"-", BINOP_SUB, PREC_ADD, 0},
13327 {"&", BINOP_CONCAT, PREC_ADD, 0},
13328 {"*", BINOP_MUL, PREC_MUL, 0},
13329 {"/", BINOP_DIV, PREC_MUL, 0},
13330 {"rem", BINOP_REM, PREC_MUL, 0},
13331 {"mod", BINOP_MOD, PREC_MUL, 0},
13332 {"**", BINOP_EXP, PREC_REPEAT, 0},
13333 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13334 {"-", UNOP_NEG, PREC_PREFIX, 0},
13335 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13336 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13337 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13338 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
13339 {".all", UNOP_IND, PREC_SUFFIX, 1},
13340 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13341 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
13342 {NULL, 0, 0, 0}
13343 };
13344 \f
13345 enum ada_primitive_types {
13346 ada_primitive_type_int,
13347 ada_primitive_type_long,
13348 ada_primitive_type_short,
13349 ada_primitive_type_char,
13350 ada_primitive_type_float,
13351 ada_primitive_type_double,
13352 ada_primitive_type_void,
13353 ada_primitive_type_long_long,
13354 ada_primitive_type_long_double,
13355 ada_primitive_type_natural,
13356 ada_primitive_type_positive,
13357 ada_primitive_type_system_address,
13358 nr_ada_primitive_types
13359 };
13360
13361 static void
13362 ada_language_arch_info (struct gdbarch *gdbarch,
13363 struct language_arch_info *lai)
13364 {
13365 const struct builtin_type *builtin = builtin_type (gdbarch);
13366
13367 lai->primitive_type_vector
13368 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
13369 struct type *);
13370
13371 lai->primitive_type_vector [ada_primitive_type_int]
13372 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13373 0, "integer");
13374 lai->primitive_type_vector [ada_primitive_type_long]
13375 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13376 0, "long_integer");
13377 lai->primitive_type_vector [ada_primitive_type_short]
13378 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13379 0, "short_integer");
13380 lai->string_char_type
13381 = lai->primitive_type_vector [ada_primitive_type_char]
13382 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
13383 lai->primitive_type_vector [ada_primitive_type_float]
13384 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13385 "float", NULL);
13386 lai->primitive_type_vector [ada_primitive_type_double]
13387 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13388 "long_float", NULL);
13389 lai->primitive_type_vector [ada_primitive_type_long_long]
13390 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13391 0, "long_long_integer");
13392 lai->primitive_type_vector [ada_primitive_type_long_double]
13393 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13394 "long_long_float", NULL);
13395 lai->primitive_type_vector [ada_primitive_type_natural]
13396 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13397 0, "natural");
13398 lai->primitive_type_vector [ada_primitive_type_positive]
13399 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13400 0, "positive");
13401 lai->primitive_type_vector [ada_primitive_type_void]
13402 = builtin->builtin_void;
13403
13404 lai->primitive_type_vector [ada_primitive_type_system_address]
13405 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
13406 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
13407 = "system__address";
13408
13409 lai->bool_type_symbol = NULL;
13410 lai->bool_type_default = builtin->builtin_bool;
13411 }
13412 \f
13413 /* Language vector */
13414
13415 /* Not really used, but needed in the ada_language_defn. */
13416
13417 static void
13418 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
13419 {
13420 ada_emit_char (c, type, stream, quoter, 1);
13421 }
13422
13423 static int
13424 parse (struct parser_state *ps)
13425 {
13426 warnings_issued = 0;
13427 return ada_parse (ps);
13428 }
13429
13430 static const struct exp_descriptor ada_exp_descriptor = {
13431 ada_print_subexp,
13432 ada_operator_length,
13433 ada_operator_check,
13434 ada_op_name,
13435 ada_dump_subexp_body,
13436 ada_evaluate_subexp
13437 };
13438
13439 /* Implement the "la_get_symbol_name_cmp" language_defn method
13440 for Ada. */
13441
13442 static symbol_name_cmp_ftype
13443 ada_get_symbol_name_cmp (const char *lookup_name)
13444 {
13445 if (should_use_wild_match (lookup_name))
13446 return wild_match;
13447 else
13448 return compare_names;
13449 }
13450
13451 /* Implement the "la_read_var_value" language_defn method for Ada. */
13452
13453 static struct value *
13454 ada_read_var_value (struct symbol *var, struct frame_info *frame)
13455 {
13456 const struct block *frame_block = NULL;
13457 struct symbol *renaming_sym = NULL;
13458
13459 /* The only case where default_read_var_value is not sufficient
13460 is when VAR is a renaming... */
13461 if (frame)
13462 frame_block = get_frame_block (frame, NULL);
13463 if (frame_block)
13464 renaming_sym = ada_find_renaming_symbol (var, frame_block);
13465 if (renaming_sym != NULL)
13466 return ada_read_renaming_var_value (renaming_sym, frame_block);
13467
13468 /* This is a typical case where we expect the default_read_var_value
13469 function to work. */
13470 return default_read_var_value (var, frame);
13471 }
13472
13473 const struct language_defn ada_language_defn = {
13474 "ada", /* Language name */
13475 "Ada",
13476 language_ada,
13477 range_check_off,
13478 case_sensitive_on, /* Yes, Ada is case-insensitive, but
13479 that's not quite what this means. */
13480 array_row_major,
13481 macro_expansion_no,
13482 &ada_exp_descriptor,
13483 parse,
13484 ada_error,
13485 resolve,
13486 ada_printchar, /* Print a character constant */
13487 ada_printstr, /* Function to print string constant */
13488 emit_char, /* Function to print single char (not used) */
13489 ada_print_type, /* Print a type using appropriate syntax */
13490 ada_print_typedef, /* Print a typedef using appropriate syntax */
13491 ada_val_print, /* Print a value using appropriate syntax */
13492 ada_value_print, /* Print a top-level value */
13493 ada_read_var_value, /* la_read_var_value */
13494 NULL, /* Language specific skip_trampoline */
13495 NULL, /* name_of_this */
13496 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
13497 basic_lookup_transparent_type, /* lookup_transparent_type */
13498 ada_la_decode, /* Language specific symbol demangler */
13499 NULL, /* Language specific
13500 class_name_from_physname */
13501 ada_op_print_tab, /* expression operators for printing */
13502 0, /* c-style arrays */
13503 1, /* String lower bound */
13504 ada_get_gdb_completer_word_break_characters,
13505 ada_make_symbol_completion_list,
13506 ada_language_arch_info,
13507 ada_print_array_index,
13508 default_pass_by_reference,
13509 c_get_string,
13510 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
13511 ada_iterate_over_symbols,
13512 &ada_varobj_ops,
13513 LANG_MAGIC
13514 };
13515
13516 /* Provide a prototype to silence -Wmissing-prototypes. */
13517 extern initialize_file_ftype _initialize_ada_language;
13518
13519 /* Command-list for the "set/show ada" prefix command. */
13520 static struct cmd_list_element *set_ada_list;
13521 static struct cmd_list_element *show_ada_list;
13522
13523 /* Implement the "set ada" prefix command. */
13524
13525 static void
13526 set_ada_command (char *arg, int from_tty)
13527 {
13528 printf_unfiltered (_(\
13529 "\"set ada\" must be followed by the name of a setting.\n"));
13530 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
13531 }
13532
13533 /* Implement the "show ada" prefix command. */
13534
13535 static void
13536 show_ada_command (char *args, int from_tty)
13537 {
13538 cmd_show_list (show_ada_list, from_tty, "");
13539 }
13540
13541 static void
13542 initialize_ada_catchpoint_ops (void)
13543 {
13544 struct breakpoint_ops *ops;
13545
13546 initialize_breakpoint_ops ();
13547
13548 ops = &catch_exception_breakpoint_ops;
13549 *ops = bkpt_breakpoint_ops;
13550 ops->dtor = dtor_catch_exception;
13551 ops->allocate_location = allocate_location_catch_exception;
13552 ops->re_set = re_set_catch_exception;
13553 ops->check_status = check_status_catch_exception;
13554 ops->print_it = print_it_catch_exception;
13555 ops->print_one = print_one_catch_exception;
13556 ops->print_mention = print_mention_catch_exception;
13557 ops->print_recreate = print_recreate_catch_exception;
13558
13559 ops = &catch_exception_unhandled_breakpoint_ops;
13560 *ops = bkpt_breakpoint_ops;
13561 ops->dtor = dtor_catch_exception_unhandled;
13562 ops->allocate_location = allocate_location_catch_exception_unhandled;
13563 ops->re_set = re_set_catch_exception_unhandled;
13564 ops->check_status = check_status_catch_exception_unhandled;
13565 ops->print_it = print_it_catch_exception_unhandled;
13566 ops->print_one = print_one_catch_exception_unhandled;
13567 ops->print_mention = print_mention_catch_exception_unhandled;
13568 ops->print_recreate = print_recreate_catch_exception_unhandled;
13569
13570 ops = &catch_assert_breakpoint_ops;
13571 *ops = bkpt_breakpoint_ops;
13572 ops->dtor = dtor_catch_assert;
13573 ops->allocate_location = allocate_location_catch_assert;
13574 ops->re_set = re_set_catch_assert;
13575 ops->check_status = check_status_catch_assert;
13576 ops->print_it = print_it_catch_assert;
13577 ops->print_one = print_one_catch_assert;
13578 ops->print_mention = print_mention_catch_assert;
13579 ops->print_recreate = print_recreate_catch_assert;
13580 }
13581
13582 /* This module's 'new_objfile' observer. */
13583
13584 static void
13585 ada_new_objfile_observer (struct objfile *objfile)
13586 {
13587 ada_clear_symbol_cache ();
13588 }
13589
13590 /* This module's 'free_objfile' observer. */
13591
13592 static void
13593 ada_free_objfile_observer (struct objfile *objfile)
13594 {
13595 ada_clear_symbol_cache ();
13596 }
13597
13598 void
13599 _initialize_ada_language (void)
13600 {
13601 add_language (&ada_language_defn);
13602
13603 initialize_ada_catchpoint_ops ();
13604
13605 add_prefix_cmd ("ada", no_class, set_ada_command,
13606 _("Prefix command for changing Ada-specfic settings"),
13607 &set_ada_list, "set ada ", 0, &setlist);
13608
13609 add_prefix_cmd ("ada", no_class, show_ada_command,
13610 _("Generic command for showing Ada-specific settings."),
13611 &show_ada_list, "show ada ", 0, &showlist);
13612
13613 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
13614 &trust_pad_over_xvs, _("\
13615 Enable or disable an optimization trusting PAD types over XVS types"), _("\
13616 Show whether an optimization trusting PAD types over XVS types is activated"),
13617 _("\
13618 This is related to the encoding used by the GNAT compiler. The debugger\n\
13619 should normally trust the contents of PAD types, but certain older versions\n\
13620 of GNAT have a bug that sometimes causes the information in the PAD type\n\
13621 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
13622 work around this bug. It is always safe to turn this option \"off\", but\n\
13623 this incurs a slight performance penalty, so it is recommended to NOT change\n\
13624 this option to \"off\" unless necessary."),
13625 NULL, NULL, &set_ada_list, &show_ada_list);
13626
13627 add_catch_command ("exception", _("\
13628 Catch Ada exceptions, when raised.\n\
13629 With an argument, catch only exceptions with the given name."),
13630 catch_ada_exception_command,
13631 NULL,
13632 CATCH_PERMANENT,
13633 CATCH_TEMPORARY);
13634 add_catch_command ("assert", _("\
13635 Catch failed Ada assertions, when raised.\n\
13636 With an argument, catch only exceptions with the given name."),
13637 catch_assert_command,
13638 NULL,
13639 CATCH_PERMANENT,
13640 CATCH_TEMPORARY);
13641
13642 varsize_limit = 65536;
13643
13644 add_info ("exceptions", info_exceptions_command,
13645 _("\
13646 List all Ada exception names.\n\
13647 If a regular expression is passed as an argument, only those matching\n\
13648 the regular expression are listed."));
13649
13650 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
13651 _("Set Ada maintenance-related variables."),
13652 &maint_set_ada_cmdlist, "maintenance set ada ",
13653 0/*allow-unknown*/, &maintenance_set_cmdlist);
13654
13655 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
13656 _("Show Ada maintenance-related variables"),
13657 &maint_show_ada_cmdlist, "maintenance show ada ",
13658 0/*allow-unknown*/, &maintenance_show_cmdlist);
13659
13660 add_setshow_boolean_cmd
13661 ("ignore-descriptive-types", class_maintenance,
13662 &ada_ignore_descriptive_types_p,
13663 _("Set whether descriptive types generated by GNAT should be ignored."),
13664 _("Show whether descriptive types generated by GNAT should be ignored."),
13665 _("\
13666 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
13667 DWARF attribute."),
13668 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
13669
13670 obstack_init (&symbol_list_obstack);
13671
13672 decoded_names_store = htab_create_alloc
13673 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
13674 NULL, xcalloc, xfree);
13675
13676 /* The ada-lang observers. */
13677 observer_attach_new_objfile (ada_new_objfile_observer);
13678 observer_attach_free_objfile (ada_free_objfile_observer);
13679 observer_attach_inferior_exit (ada_inferior_exit);
13680
13681 /* Setup various context-specific data. */
13682 ada_inferior_data
13683 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
13684 ada_pspace_data_handle
13685 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
13686 }