[gdb/testsuite] Fix ERROR in gdb.dwarf2/dw2-out-of-range-end-of-seq.exp
[binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2021 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <ctype.h>
23 #include "gdb_regex.h"
24 #include "frame.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcmd.h"
28 #include "expression.h"
29 #include "parser-defs.h"
30 #include "language.h"
31 #include "varobj.h"
32 #include "inferior.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "breakpoint.h"
36 #include "gdbcore.h"
37 #include "hashtab.h"
38 #include "gdb_obstack.h"
39 #include "ada-lang.h"
40 #include "completer.h"
41 #include "ui-out.h"
42 #include "block.h"
43 #include "infcall.h"
44 #include "annotate.h"
45 #include "valprint.h"
46 #include "source.h"
47 #include "observable.h"
48 #include "stack.h"
49 #include "typeprint.h"
50 #include "namespace.h"
51 #include "cli/cli-style.h"
52
53 #include "value.h"
54 #include "mi/mi-common.h"
55 #include "arch-utils.h"
56 #include "cli/cli-utils.h"
57 #include "gdbsupport/function-view.h"
58 #include "gdbsupport/byte-vector.h"
59 #include <algorithm>
60
61 /* Define whether or not the C operator '/' truncates towards zero for
62 differently signed operands (truncation direction is undefined in C).
63 Copied from valarith.c. */
64
65 #ifndef TRUNCATION_TOWARDS_ZERO
66 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
67 #endif
68
69 static struct type *desc_base_type (struct type *);
70
71 static struct type *desc_bounds_type (struct type *);
72
73 static struct value *desc_bounds (struct value *);
74
75 static int fat_pntr_bounds_bitpos (struct type *);
76
77 static int fat_pntr_bounds_bitsize (struct type *);
78
79 static struct type *desc_data_target_type (struct type *);
80
81 static struct value *desc_data (struct value *);
82
83 static int fat_pntr_data_bitpos (struct type *);
84
85 static int fat_pntr_data_bitsize (struct type *);
86
87 static struct value *desc_one_bound (struct value *, int, int);
88
89 static int desc_bound_bitpos (struct type *, int, int);
90
91 static int desc_bound_bitsize (struct type *, int, int);
92
93 static struct type *desc_index_type (struct type *, int);
94
95 static int desc_arity (struct type *);
96
97 static int ada_type_match (struct type *, struct type *, int);
98
99 static int ada_args_match (struct symbol *, struct value **, int);
100
101 static struct value *make_array_descriptor (struct type *, struct value *);
102
103 static void ada_add_block_symbols (struct obstack *,
104 const struct block *,
105 const lookup_name_info &lookup_name,
106 domain_enum, struct objfile *);
107
108 static void ada_add_all_symbols (struct obstack *, const struct block *,
109 const lookup_name_info &lookup_name,
110 domain_enum, int, int *);
111
112 static int is_nonfunction (struct block_symbol *, int);
113
114 static void add_defn_to_vec (struct obstack *, struct symbol *,
115 const struct block *);
116
117 static int num_defns_collected (struct obstack *);
118
119 static struct block_symbol *defns_collected (struct obstack *, int);
120
121 static struct value *resolve_subexp (expression_up *, int *, int,
122 struct type *, int,
123 innermost_block_tracker *);
124
125 static void replace_operator_with_call (expression_up *, int, int, int,
126 struct symbol *, const struct block *);
127
128 static int possible_user_operator_p (enum exp_opcode, struct value **);
129
130 static const char *ada_decoded_op_name (enum exp_opcode);
131
132 static int numeric_type_p (struct type *);
133
134 static int integer_type_p (struct type *);
135
136 static int scalar_type_p (struct type *);
137
138 static int discrete_type_p (struct type *);
139
140 static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
141 int, int);
142
143 static struct value *evaluate_subexp_type (struct expression *, int *);
144
145 static struct type *ada_find_parallel_type_with_name (struct type *,
146 const char *);
147
148 static int is_dynamic_field (struct type *, int);
149
150 static struct type *to_fixed_variant_branch_type (struct type *,
151 const gdb_byte *,
152 CORE_ADDR, struct value *);
153
154 static struct type *to_fixed_array_type (struct type *, struct value *, int);
155
156 static struct type *to_fixed_range_type (struct type *, struct value *);
157
158 static struct type *to_static_fixed_type (struct type *);
159 static struct type *static_unwrap_type (struct type *type);
160
161 static struct value *unwrap_value (struct value *);
162
163 static struct type *constrained_packed_array_type (struct type *, long *);
164
165 static struct type *decode_constrained_packed_array_type (struct type *);
166
167 static long decode_packed_array_bitsize (struct type *);
168
169 static struct value *decode_constrained_packed_array (struct value *);
170
171 static int ada_is_unconstrained_packed_array_type (struct type *);
172
173 static struct value *value_subscript_packed (struct value *, int,
174 struct value **);
175
176 static struct value *coerce_unspec_val_to_type (struct value *,
177 struct type *);
178
179 static int lesseq_defined_than (struct symbol *, struct symbol *);
180
181 static int equiv_types (struct type *, struct type *);
182
183 static int is_name_suffix (const char *);
184
185 static int advance_wild_match (const char **, const char *, char);
186
187 static bool wild_match (const char *name, const char *patn);
188
189 static struct value *ada_coerce_ref (struct value *);
190
191 static LONGEST pos_atr (struct value *);
192
193 static struct value *value_pos_atr (struct type *, struct value *);
194
195 static struct value *val_atr (struct type *, LONGEST);
196
197 static struct value *value_val_atr (struct type *, struct value *);
198
199 static struct symbol *standard_lookup (const char *, const struct block *,
200 domain_enum);
201
202 static struct value *ada_search_struct_field (const char *, struct value *, int,
203 struct type *);
204
205 static int find_struct_field (const char *, struct type *, int,
206 struct type **, int *, int *, int *, int *);
207
208 static int ada_resolve_function (struct block_symbol *, int,
209 struct value **, int, const char *,
210 struct type *, int);
211
212 static int ada_is_direct_array_type (struct type *);
213
214 static struct value *ada_index_struct_field (int, struct value *, int,
215 struct type *);
216
217 static struct value *assign_aggregate (struct value *, struct value *,
218 struct expression *,
219 int *, enum noside);
220
221 static void aggregate_assign_from_choices (struct value *, struct value *,
222 struct expression *,
223 int *, std::vector<LONGEST> &,
224 LONGEST, LONGEST);
225
226 static void aggregate_assign_positional (struct value *, struct value *,
227 struct expression *,
228 int *, std::vector<LONGEST> &,
229 LONGEST, LONGEST);
230
231
232 static void aggregate_assign_others (struct value *, struct value *,
233 struct expression *,
234 int *, std::vector<LONGEST> &,
235 LONGEST, LONGEST);
236
237
238 static void add_component_interval (LONGEST, LONGEST, std::vector<LONGEST> &);
239
240
241 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
242 int *, enum noside);
243
244 static void ada_forward_operator_length (struct expression *, int, int *,
245 int *);
246
247 static struct type *ada_find_any_type (const char *name);
248
249 static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
250 (const lookup_name_info &lookup_name);
251
252 \f
253
254 /* The result of a symbol lookup to be stored in our symbol cache. */
255
256 struct cache_entry
257 {
258 /* The name used to perform the lookup. */
259 const char *name;
260 /* The namespace used during the lookup. */
261 domain_enum domain;
262 /* The symbol returned by the lookup, or NULL if no matching symbol
263 was found. */
264 struct symbol *sym;
265 /* The block where the symbol was found, or NULL if no matching
266 symbol was found. */
267 const struct block *block;
268 /* A pointer to the next entry with the same hash. */
269 struct cache_entry *next;
270 };
271
272 /* The Ada symbol cache, used to store the result of Ada-mode symbol
273 lookups in the course of executing the user's commands.
274
275 The cache is implemented using a simple, fixed-sized hash.
276 The size is fixed on the grounds that there are not likely to be
277 all that many symbols looked up during any given session, regardless
278 of the size of the symbol table. If we decide to go to a resizable
279 table, let's just use the stuff from libiberty instead. */
280
281 #define HASH_SIZE 1009
282
283 struct ada_symbol_cache
284 {
285 /* An obstack used to store the entries in our cache. */
286 struct obstack cache_space;
287
288 /* The root of the hash table used to implement our symbol cache. */
289 struct cache_entry *root[HASH_SIZE];
290 };
291
292 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
293
294 /* Maximum-sized dynamic type. */
295 static unsigned int varsize_limit;
296
297 static const char ada_completer_word_break_characters[] =
298 #ifdef VMS
299 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
300 #else
301 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
302 #endif
303
304 /* The name of the symbol to use to get the name of the main subprogram. */
305 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
306 = "__gnat_ada_main_program_name";
307
308 /* Limit on the number of warnings to raise per expression evaluation. */
309 static int warning_limit = 2;
310
311 /* Number of warning messages issued; reset to 0 by cleanups after
312 expression evaluation. */
313 static int warnings_issued = 0;
314
315 static const char * const known_runtime_file_name_patterns[] = {
316 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
317 };
318
319 static const char * const known_auxiliary_function_name_patterns[] = {
320 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
321 };
322
323 /* Maintenance-related settings for this module. */
324
325 static struct cmd_list_element *maint_set_ada_cmdlist;
326 static struct cmd_list_element *maint_show_ada_cmdlist;
327
328 /* The "maintenance ada set/show ignore-descriptive-type" value. */
329
330 static bool ada_ignore_descriptive_types_p = false;
331
332 /* Inferior-specific data. */
333
334 /* Per-inferior data for this module. */
335
336 struct ada_inferior_data
337 {
338 /* The ada__tags__type_specific_data type, which is used when decoding
339 tagged types. With older versions of GNAT, this type was directly
340 accessible through a component ("tsd") in the object tag. But this
341 is no longer the case, so we cache it for each inferior. */
342 struct type *tsd_type = nullptr;
343
344 /* The exception_support_info data. This data is used to determine
345 how to implement support for Ada exception catchpoints in a given
346 inferior. */
347 const struct exception_support_info *exception_info = nullptr;
348 };
349
350 /* Our key to this module's inferior data. */
351 static const struct inferior_key<ada_inferior_data> ada_inferior_data;
352
353 /* Return our inferior data for the given inferior (INF).
354
355 This function always returns a valid pointer to an allocated
356 ada_inferior_data structure. If INF's inferior data has not
357 been previously set, this functions creates a new one with all
358 fields set to zero, sets INF's inferior to it, and then returns
359 a pointer to that newly allocated ada_inferior_data. */
360
361 static struct ada_inferior_data *
362 get_ada_inferior_data (struct inferior *inf)
363 {
364 struct ada_inferior_data *data;
365
366 data = ada_inferior_data.get (inf);
367 if (data == NULL)
368 data = ada_inferior_data.emplace (inf);
369
370 return data;
371 }
372
373 /* Perform all necessary cleanups regarding our module's inferior data
374 that is required after the inferior INF just exited. */
375
376 static void
377 ada_inferior_exit (struct inferior *inf)
378 {
379 ada_inferior_data.clear (inf);
380 }
381
382
383 /* program-space-specific data. */
384
385 /* This module's per-program-space data. */
386 struct ada_pspace_data
387 {
388 ~ada_pspace_data ()
389 {
390 if (sym_cache != NULL)
391 ada_free_symbol_cache (sym_cache);
392 }
393
394 /* The Ada symbol cache. */
395 struct ada_symbol_cache *sym_cache = nullptr;
396 };
397
398 /* Key to our per-program-space data. */
399 static const struct program_space_key<ada_pspace_data> ada_pspace_data_handle;
400
401 /* Return this module's data for the given program space (PSPACE).
402 If not is found, add a zero'ed one now.
403
404 This function always returns a valid object. */
405
406 static struct ada_pspace_data *
407 get_ada_pspace_data (struct program_space *pspace)
408 {
409 struct ada_pspace_data *data;
410
411 data = ada_pspace_data_handle.get (pspace);
412 if (data == NULL)
413 data = ada_pspace_data_handle.emplace (pspace);
414
415 return data;
416 }
417
418 /* Utilities */
419
420 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
421 all typedef layers have been peeled. Otherwise, return TYPE.
422
423 Normally, we really expect a typedef type to only have 1 typedef layer.
424 In other words, we really expect the target type of a typedef type to be
425 a non-typedef type. This is particularly true for Ada units, because
426 the language does not have a typedef vs not-typedef distinction.
427 In that respect, the Ada compiler has been trying to eliminate as many
428 typedef definitions in the debugging information, since they generally
429 do not bring any extra information (we still use typedef under certain
430 circumstances related mostly to the GNAT encoding).
431
432 Unfortunately, we have seen situations where the debugging information
433 generated by the compiler leads to such multiple typedef layers. For
434 instance, consider the following example with stabs:
435
436 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
437 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
438
439 This is an error in the debugging information which causes type
440 pck__float_array___XUP to be defined twice, and the second time,
441 it is defined as a typedef of a typedef.
442
443 This is on the fringe of legality as far as debugging information is
444 concerned, and certainly unexpected. But it is easy to handle these
445 situations correctly, so we can afford to be lenient in this case. */
446
447 static struct type *
448 ada_typedef_target_type (struct type *type)
449 {
450 while (type->code () == TYPE_CODE_TYPEDEF)
451 type = TYPE_TARGET_TYPE (type);
452 return type;
453 }
454
455 /* Given DECODED_NAME a string holding a symbol name in its
456 decoded form (ie using the Ada dotted notation), returns
457 its unqualified name. */
458
459 static const char *
460 ada_unqualified_name (const char *decoded_name)
461 {
462 const char *result;
463
464 /* If the decoded name starts with '<', it means that the encoded
465 name does not follow standard naming conventions, and thus that
466 it is not your typical Ada symbol name. Trying to unqualify it
467 is therefore pointless and possibly erroneous. */
468 if (decoded_name[0] == '<')
469 return decoded_name;
470
471 result = strrchr (decoded_name, '.');
472 if (result != NULL)
473 result++; /* Skip the dot... */
474 else
475 result = decoded_name;
476
477 return result;
478 }
479
480 /* Return a string starting with '<', followed by STR, and '>'. */
481
482 static std::string
483 add_angle_brackets (const char *str)
484 {
485 return string_printf ("<%s>", str);
486 }
487
488 /* Assuming V points to an array of S objects, make sure that it contains at
489 least M objects, updating V and S as necessary. */
490
491 #define GROW_VECT(v, s, m) \
492 if ((s) < (m)) (v) = (char *) grow_vect (v, &(s), m, sizeof *(v));
493
494 /* Assuming VECT points to an array of *SIZE objects of size
495 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
496 updating *SIZE as necessary and returning the (new) array. */
497
498 static void *
499 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
500 {
501 if (*size < min_size)
502 {
503 *size *= 2;
504 if (*size < min_size)
505 *size = min_size;
506 vect = xrealloc (vect, *size * element_size);
507 }
508 return vect;
509 }
510
511 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
512 suffix of FIELD_NAME beginning "___". */
513
514 static int
515 field_name_match (const char *field_name, const char *target)
516 {
517 int len = strlen (target);
518
519 return
520 (strncmp (field_name, target, len) == 0
521 && (field_name[len] == '\0'
522 || (startswith (field_name + len, "___")
523 && strcmp (field_name + strlen (field_name) - 6,
524 "___XVN") != 0)));
525 }
526
527
528 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
529 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
530 and return its index. This function also handles fields whose name
531 have ___ suffixes because the compiler sometimes alters their name
532 by adding such a suffix to represent fields with certain constraints.
533 If the field could not be found, return a negative number if
534 MAYBE_MISSING is set. Otherwise raise an error. */
535
536 int
537 ada_get_field_index (const struct type *type, const char *field_name,
538 int maybe_missing)
539 {
540 int fieldno;
541 struct type *struct_type = check_typedef ((struct type *) type);
542
543 for (fieldno = 0; fieldno < struct_type->num_fields (); fieldno++)
544 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
545 return fieldno;
546
547 if (!maybe_missing)
548 error (_("Unable to find field %s in struct %s. Aborting"),
549 field_name, struct_type->name ());
550
551 return -1;
552 }
553
554 /* The length of the prefix of NAME prior to any "___" suffix. */
555
556 int
557 ada_name_prefix_len (const char *name)
558 {
559 if (name == NULL)
560 return 0;
561 else
562 {
563 const char *p = strstr (name, "___");
564
565 if (p == NULL)
566 return strlen (name);
567 else
568 return p - name;
569 }
570 }
571
572 /* Return non-zero if SUFFIX is a suffix of STR.
573 Return zero if STR is null. */
574
575 static int
576 is_suffix (const char *str, const char *suffix)
577 {
578 int len1, len2;
579
580 if (str == NULL)
581 return 0;
582 len1 = strlen (str);
583 len2 = strlen (suffix);
584 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
585 }
586
587 /* The contents of value VAL, treated as a value of type TYPE. The
588 result is an lval in memory if VAL is. */
589
590 static struct value *
591 coerce_unspec_val_to_type (struct value *val, struct type *type)
592 {
593 type = ada_check_typedef (type);
594 if (value_type (val) == type)
595 return val;
596 else
597 {
598 struct value *result;
599
600 /* Make sure that the object size is not unreasonable before
601 trying to allocate some memory for it. */
602 ada_ensure_varsize_limit (type);
603
604 if (value_lazy (val)
605 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
606 result = allocate_value_lazy (type);
607 else
608 {
609 result = allocate_value (type);
610 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
611 }
612 set_value_component_location (result, val);
613 set_value_bitsize (result, value_bitsize (val));
614 set_value_bitpos (result, value_bitpos (val));
615 if (VALUE_LVAL (result) == lval_memory)
616 set_value_address (result, value_address (val));
617 return result;
618 }
619 }
620
621 static const gdb_byte *
622 cond_offset_host (const gdb_byte *valaddr, long offset)
623 {
624 if (valaddr == NULL)
625 return NULL;
626 else
627 return valaddr + offset;
628 }
629
630 static CORE_ADDR
631 cond_offset_target (CORE_ADDR address, long offset)
632 {
633 if (address == 0)
634 return 0;
635 else
636 return address + offset;
637 }
638
639 /* Issue a warning (as for the definition of warning in utils.c, but
640 with exactly one argument rather than ...), unless the limit on the
641 number of warnings has passed during the evaluation of the current
642 expression. */
643
644 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
645 provided by "complaint". */
646 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
647
648 static void
649 lim_warning (const char *format, ...)
650 {
651 va_list args;
652
653 va_start (args, format);
654 warnings_issued += 1;
655 if (warnings_issued <= warning_limit)
656 vwarning (format, args);
657
658 va_end (args);
659 }
660
661 /* Issue an error if the size of an object of type T is unreasonable,
662 i.e. if it would be a bad idea to allocate a value of this type in
663 GDB. */
664
665 void
666 ada_ensure_varsize_limit (const struct type *type)
667 {
668 if (TYPE_LENGTH (type) > varsize_limit)
669 error (_("object size is larger than varsize-limit"));
670 }
671
672 /* Maximum value of a SIZE-byte signed integer type. */
673 static LONGEST
674 max_of_size (int size)
675 {
676 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
677
678 return top_bit | (top_bit - 1);
679 }
680
681 /* Minimum value of a SIZE-byte signed integer type. */
682 static LONGEST
683 min_of_size (int size)
684 {
685 return -max_of_size (size) - 1;
686 }
687
688 /* Maximum value of a SIZE-byte unsigned integer type. */
689 static ULONGEST
690 umax_of_size (int size)
691 {
692 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
693
694 return top_bit | (top_bit - 1);
695 }
696
697 /* Maximum value of integral type T, as a signed quantity. */
698 static LONGEST
699 max_of_type (struct type *t)
700 {
701 if (t->is_unsigned ())
702 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
703 else
704 return max_of_size (TYPE_LENGTH (t));
705 }
706
707 /* Minimum value of integral type T, as a signed quantity. */
708 static LONGEST
709 min_of_type (struct type *t)
710 {
711 if (t->is_unsigned ())
712 return 0;
713 else
714 return min_of_size (TYPE_LENGTH (t));
715 }
716
717 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
718 LONGEST
719 ada_discrete_type_high_bound (struct type *type)
720 {
721 type = resolve_dynamic_type (type, {}, 0);
722 switch (type->code ())
723 {
724 case TYPE_CODE_RANGE:
725 {
726 const dynamic_prop &high = type->bounds ()->high;
727
728 if (high.kind () == PROP_CONST)
729 return high.const_val ();
730 else
731 {
732 gdb_assert (high.kind () == PROP_UNDEFINED);
733
734 /* This happens when trying to evaluate a type's dynamic bound
735 without a live target. There is nothing relevant for us to
736 return here, so return 0. */
737 return 0;
738 }
739 }
740 case TYPE_CODE_ENUM:
741 return TYPE_FIELD_ENUMVAL (type, type->num_fields () - 1);
742 case TYPE_CODE_BOOL:
743 return 1;
744 case TYPE_CODE_CHAR:
745 case TYPE_CODE_INT:
746 return max_of_type (type);
747 default:
748 error (_("Unexpected type in ada_discrete_type_high_bound."));
749 }
750 }
751
752 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
753 LONGEST
754 ada_discrete_type_low_bound (struct type *type)
755 {
756 type = resolve_dynamic_type (type, {}, 0);
757 switch (type->code ())
758 {
759 case TYPE_CODE_RANGE:
760 {
761 const dynamic_prop &low = type->bounds ()->low;
762
763 if (low.kind () == PROP_CONST)
764 return low.const_val ();
765 else
766 {
767 gdb_assert (low.kind () == PROP_UNDEFINED);
768
769 /* This happens when trying to evaluate a type's dynamic bound
770 without a live target. There is nothing relevant for us to
771 return here, so return 0. */
772 return 0;
773 }
774 }
775 case TYPE_CODE_ENUM:
776 return TYPE_FIELD_ENUMVAL (type, 0);
777 case TYPE_CODE_BOOL:
778 return 0;
779 case TYPE_CODE_CHAR:
780 case TYPE_CODE_INT:
781 return min_of_type (type);
782 default:
783 error (_("Unexpected type in ada_discrete_type_low_bound."));
784 }
785 }
786
787 /* The identity on non-range types. For range types, the underlying
788 non-range scalar type. */
789
790 static struct type *
791 get_base_type (struct type *type)
792 {
793 while (type != NULL && type->code () == TYPE_CODE_RANGE)
794 {
795 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
796 return type;
797 type = TYPE_TARGET_TYPE (type);
798 }
799 return type;
800 }
801
802 /* Return a decoded version of the given VALUE. This means returning
803 a value whose type is obtained by applying all the GNAT-specific
804 encodings, making the resulting type a static but standard description
805 of the initial type. */
806
807 struct value *
808 ada_get_decoded_value (struct value *value)
809 {
810 struct type *type = ada_check_typedef (value_type (value));
811
812 if (ada_is_array_descriptor_type (type)
813 || (ada_is_constrained_packed_array_type (type)
814 && type->code () != TYPE_CODE_PTR))
815 {
816 if (type->code () == TYPE_CODE_TYPEDEF) /* array access type. */
817 value = ada_coerce_to_simple_array_ptr (value);
818 else
819 value = ada_coerce_to_simple_array (value);
820 }
821 else
822 value = ada_to_fixed_value (value);
823
824 return value;
825 }
826
827 /* Same as ada_get_decoded_value, but with the given TYPE.
828 Because there is no associated actual value for this type,
829 the resulting type might be a best-effort approximation in
830 the case of dynamic types. */
831
832 struct type *
833 ada_get_decoded_type (struct type *type)
834 {
835 type = to_static_fixed_type (type);
836 if (ada_is_constrained_packed_array_type (type))
837 type = ada_coerce_to_simple_array_type (type);
838 return type;
839 }
840
841 \f
842
843 /* Language Selection */
844
845 /* If the main program is in Ada, return language_ada, otherwise return LANG
846 (the main program is in Ada iif the adainit symbol is found). */
847
848 static enum language
849 ada_update_initial_language (enum language lang)
850 {
851 if (lookup_minimal_symbol ("adainit", NULL, NULL).minsym != NULL)
852 return language_ada;
853
854 return lang;
855 }
856
857 /* If the main procedure is written in Ada, then return its name.
858 The result is good until the next call. Return NULL if the main
859 procedure doesn't appear to be in Ada. */
860
861 char *
862 ada_main_name (void)
863 {
864 struct bound_minimal_symbol msym;
865 static gdb::unique_xmalloc_ptr<char> main_program_name;
866
867 /* For Ada, the name of the main procedure is stored in a specific
868 string constant, generated by the binder. Look for that symbol,
869 extract its address, and then read that string. If we didn't find
870 that string, then most probably the main procedure is not written
871 in Ada. */
872 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
873
874 if (msym.minsym != NULL)
875 {
876 CORE_ADDR main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
877 if (main_program_name_addr == 0)
878 error (_("Invalid address for Ada main program name."));
879
880 main_program_name = target_read_string (main_program_name_addr, 1024);
881 return main_program_name.get ();
882 }
883
884 /* The main procedure doesn't seem to be in Ada. */
885 return NULL;
886 }
887 \f
888 /* Symbols */
889
890 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
891 of NULLs. */
892
893 const struct ada_opname_map ada_opname_table[] = {
894 {"Oadd", "\"+\"", BINOP_ADD},
895 {"Osubtract", "\"-\"", BINOP_SUB},
896 {"Omultiply", "\"*\"", BINOP_MUL},
897 {"Odivide", "\"/\"", BINOP_DIV},
898 {"Omod", "\"mod\"", BINOP_MOD},
899 {"Orem", "\"rem\"", BINOP_REM},
900 {"Oexpon", "\"**\"", BINOP_EXP},
901 {"Olt", "\"<\"", BINOP_LESS},
902 {"Ole", "\"<=\"", BINOP_LEQ},
903 {"Ogt", "\">\"", BINOP_GTR},
904 {"Oge", "\">=\"", BINOP_GEQ},
905 {"Oeq", "\"=\"", BINOP_EQUAL},
906 {"One", "\"/=\"", BINOP_NOTEQUAL},
907 {"Oand", "\"and\"", BINOP_BITWISE_AND},
908 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
909 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
910 {"Oconcat", "\"&\"", BINOP_CONCAT},
911 {"Oabs", "\"abs\"", UNOP_ABS},
912 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
913 {"Oadd", "\"+\"", UNOP_PLUS},
914 {"Osubtract", "\"-\"", UNOP_NEG},
915 {NULL, NULL}
916 };
917
918 /* The "encoded" form of DECODED, according to GNAT conventions. If
919 THROW_ERRORS, throw an error if invalid operator name is found.
920 Otherwise, return the empty string in that case. */
921
922 static std::string
923 ada_encode_1 (const char *decoded, bool throw_errors)
924 {
925 if (decoded == NULL)
926 return {};
927
928 std::string encoding_buffer;
929 for (const char *p = decoded; *p != '\0'; p += 1)
930 {
931 if (*p == '.')
932 encoding_buffer.append ("__");
933 else if (*p == '"')
934 {
935 const struct ada_opname_map *mapping;
936
937 for (mapping = ada_opname_table;
938 mapping->encoded != NULL
939 && !startswith (p, mapping->decoded); mapping += 1)
940 ;
941 if (mapping->encoded == NULL)
942 {
943 if (throw_errors)
944 error (_("invalid Ada operator name: %s"), p);
945 else
946 return {};
947 }
948 encoding_buffer.append (mapping->encoded);
949 break;
950 }
951 else
952 encoding_buffer.push_back (*p);
953 }
954
955 return encoding_buffer;
956 }
957
958 /* The "encoded" form of DECODED, according to GNAT conventions. */
959
960 std::string
961 ada_encode (const char *decoded)
962 {
963 return ada_encode_1 (decoded, true);
964 }
965
966 /* Return NAME folded to lower case, or, if surrounded by single
967 quotes, unfolded, but with the quotes stripped away. Result good
968 to next call. */
969
970 static char *
971 ada_fold_name (gdb::string_view name)
972 {
973 static char *fold_buffer = NULL;
974 static size_t fold_buffer_size = 0;
975
976 int len = name.size ();
977 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
978
979 if (name[0] == '\'')
980 {
981 strncpy (fold_buffer, name.data () + 1, len - 2);
982 fold_buffer[len - 2] = '\000';
983 }
984 else
985 {
986 int i;
987
988 for (i = 0; i < len; i += 1)
989 fold_buffer[i] = tolower (name[i]);
990 fold_buffer[i] = '\0';
991 }
992
993 return fold_buffer;
994 }
995
996 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
997
998 static int
999 is_lower_alphanum (const char c)
1000 {
1001 return (isdigit (c) || (isalpha (c) && islower (c)));
1002 }
1003
1004 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1005 This function saves in LEN the length of that same symbol name but
1006 without either of these suffixes:
1007 . .{DIGIT}+
1008 . ${DIGIT}+
1009 . ___{DIGIT}+
1010 . __{DIGIT}+.
1011
1012 These are suffixes introduced by the compiler for entities such as
1013 nested subprogram for instance, in order to avoid name clashes.
1014 They do not serve any purpose for the debugger. */
1015
1016 static void
1017 ada_remove_trailing_digits (const char *encoded, int *len)
1018 {
1019 if (*len > 1 && isdigit (encoded[*len - 1]))
1020 {
1021 int i = *len - 2;
1022
1023 while (i > 0 && isdigit (encoded[i]))
1024 i--;
1025 if (i >= 0 && encoded[i] == '.')
1026 *len = i;
1027 else if (i >= 0 && encoded[i] == '$')
1028 *len = i;
1029 else if (i >= 2 && startswith (encoded + i - 2, "___"))
1030 *len = i - 2;
1031 else if (i >= 1 && startswith (encoded + i - 1, "__"))
1032 *len = i - 1;
1033 }
1034 }
1035
1036 /* Remove the suffix introduced by the compiler for protected object
1037 subprograms. */
1038
1039 static void
1040 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1041 {
1042 /* Remove trailing N. */
1043
1044 /* Protected entry subprograms are broken into two
1045 separate subprograms: The first one is unprotected, and has
1046 a 'N' suffix; the second is the protected version, and has
1047 the 'P' suffix. The second calls the first one after handling
1048 the protection. Since the P subprograms are internally generated,
1049 we leave these names undecoded, giving the user a clue that this
1050 entity is internal. */
1051
1052 if (*len > 1
1053 && encoded[*len - 1] == 'N'
1054 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1055 *len = *len - 1;
1056 }
1057
1058 /* If ENCODED follows the GNAT entity encoding conventions, then return
1059 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1060 replaced by ENCODED. */
1061
1062 std::string
1063 ada_decode (const char *encoded)
1064 {
1065 int i, j;
1066 int len0;
1067 const char *p;
1068 int at_start_name;
1069 std::string decoded;
1070
1071 /* With function descriptors on PPC64, the value of a symbol named
1072 ".FN", if it exists, is the entry point of the function "FN". */
1073 if (encoded[0] == '.')
1074 encoded += 1;
1075
1076 /* The name of the Ada main procedure starts with "_ada_".
1077 This prefix is not part of the decoded name, so skip this part
1078 if we see this prefix. */
1079 if (startswith (encoded, "_ada_"))
1080 encoded += 5;
1081
1082 /* If the name starts with '_', then it is not a properly encoded
1083 name, so do not attempt to decode it. Similarly, if the name
1084 starts with '<', the name should not be decoded. */
1085 if (encoded[0] == '_' || encoded[0] == '<')
1086 goto Suppress;
1087
1088 len0 = strlen (encoded);
1089
1090 ada_remove_trailing_digits (encoded, &len0);
1091 ada_remove_po_subprogram_suffix (encoded, &len0);
1092
1093 /* Remove the ___X.* suffix if present. Do not forget to verify that
1094 the suffix is located before the current "end" of ENCODED. We want
1095 to avoid re-matching parts of ENCODED that have previously been
1096 marked as discarded (by decrementing LEN0). */
1097 p = strstr (encoded, "___");
1098 if (p != NULL && p - encoded < len0 - 3)
1099 {
1100 if (p[3] == 'X')
1101 len0 = p - encoded;
1102 else
1103 goto Suppress;
1104 }
1105
1106 /* Remove any trailing TKB suffix. It tells us that this symbol
1107 is for the body of a task, but that information does not actually
1108 appear in the decoded name. */
1109
1110 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1111 len0 -= 3;
1112
1113 /* Remove any trailing TB suffix. The TB suffix is slightly different
1114 from the TKB suffix because it is used for non-anonymous task
1115 bodies. */
1116
1117 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1118 len0 -= 2;
1119
1120 /* Remove trailing "B" suffixes. */
1121 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1122
1123 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1124 len0 -= 1;
1125
1126 /* Make decoded big enough for possible expansion by operator name. */
1127
1128 decoded.resize (2 * len0 + 1, 'X');
1129
1130 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1131
1132 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1133 {
1134 i = len0 - 2;
1135 while ((i >= 0 && isdigit (encoded[i]))
1136 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1137 i -= 1;
1138 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1139 len0 = i - 1;
1140 else if (encoded[i] == '$')
1141 len0 = i;
1142 }
1143
1144 /* The first few characters that are not alphabetic are not part
1145 of any encoding we use, so we can copy them over verbatim. */
1146
1147 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1148 decoded[j] = encoded[i];
1149
1150 at_start_name = 1;
1151 while (i < len0)
1152 {
1153 /* Is this a symbol function? */
1154 if (at_start_name && encoded[i] == 'O')
1155 {
1156 int k;
1157
1158 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1159 {
1160 int op_len = strlen (ada_opname_table[k].encoded);
1161 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1162 op_len - 1) == 0)
1163 && !isalnum (encoded[i + op_len]))
1164 {
1165 strcpy (&decoded.front() + j, ada_opname_table[k].decoded);
1166 at_start_name = 0;
1167 i += op_len;
1168 j += strlen (ada_opname_table[k].decoded);
1169 break;
1170 }
1171 }
1172 if (ada_opname_table[k].encoded != NULL)
1173 continue;
1174 }
1175 at_start_name = 0;
1176
1177 /* Replace "TK__" with "__", which will eventually be translated
1178 into "." (just below). */
1179
1180 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1181 i += 2;
1182
1183 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1184 be translated into "." (just below). These are internal names
1185 generated for anonymous blocks inside which our symbol is nested. */
1186
1187 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1188 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1189 && isdigit (encoded [i+4]))
1190 {
1191 int k = i + 5;
1192
1193 while (k < len0 && isdigit (encoded[k]))
1194 k++; /* Skip any extra digit. */
1195
1196 /* Double-check that the "__B_{DIGITS}+" sequence we found
1197 is indeed followed by "__". */
1198 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1199 i = k;
1200 }
1201
1202 /* Remove _E{DIGITS}+[sb] */
1203
1204 /* Just as for protected object subprograms, there are 2 categories
1205 of subprograms created by the compiler for each entry. The first
1206 one implements the actual entry code, and has a suffix following
1207 the convention above; the second one implements the barrier and
1208 uses the same convention as above, except that the 'E' is replaced
1209 by a 'B'.
1210
1211 Just as above, we do not decode the name of barrier functions
1212 to give the user a clue that the code he is debugging has been
1213 internally generated. */
1214
1215 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1216 && isdigit (encoded[i+2]))
1217 {
1218 int k = i + 3;
1219
1220 while (k < len0 && isdigit (encoded[k]))
1221 k++;
1222
1223 if (k < len0
1224 && (encoded[k] == 'b' || encoded[k] == 's'))
1225 {
1226 k++;
1227 /* Just as an extra precaution, make sure that if this
1228 suffix is followed by anything else, it is a '_'.
1229 Otherwise, we matched this sequence by accident. */
1230 if (k == len0
1231 || (k < len0 && encoded[k] == '_'))
1232 i = k;
1233 }
1234 }
1235
1236 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1237 the GNAT front-end in protected object subprograms. */
1238
1239 if (i < len0 + 3
1240 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1241 {
1242 /* Backtrack a bit up until we reach either the begining of
1243 the encoded name, or "__". Make sure that we only find
1244 digits or lowercase characters. */
1245 const char *ptr = encoded + i - 1;
1246
1247 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1248 ptr--;
1249 if (ptr < encoded
1250 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1251 i++;
1252 }
1253
1254 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1255 {
1256 /* This is a X[bn]* sequence not separated from the previous
1257 part of the name with a non-alpha-numeric character (in other
1258 words, immediately following an alpha-numeric character), then
1259 verify that it is placed at the end of the encoded name. If
1260 not, then the encoding is not valid and we should abort the
1261 decoding. Otherwise, just skip it, it is used in body-nested
1262 package names. */
1263 do
1264 i += 1;
1265 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1266 if (i < len0)
1267 goto Suppress;
1268 }
1269 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1270 {
1271 /* Replace '__' by '.'. */
1272 decoded[j] = '.';
1273 at_start_name = 1;
1274 i += 2;
1275 j += 1;
1276 }
1277 else
1278 {
1279 /* It's a character part of the decoded name, so just copy it
1280 over. */
1281 decoded[j] = encoded[i];
1282 i += 1;
1283 j += 1;
1284 }
1285 }
1286 decoded.resize (j);
1287
1288 /* Decoded names should never contain any uppercase character.
1289 Double-check this, and abort the decoding if we find one. */
1290
1291 for (i = 0; i < decoded.length(); ++i)
1292 if (isupper (decoded[i]) || decoded[i] == ' ')
1293 goto Suppress;
1294
1295 return decoded;
1296
1297 Suppress:
1298 if (encoded[0] == '<')
1299 decoded = encoded;
1300 else
1301 decoded = '<' + std::string(encoded) + '>';
1302 return decoded;
1303
1304 }
1305
1306 /* Table for keeping permanent unique copies of decoded names. Once
1307 allocated, names in this table are never released. While this is a
1308 storage leak, it should not be significant unless there are massive
1309 changes in the set of decoded names in successive versions of a
1310 symbol table loaded during a single session. */
1311 static struct htab *decoded_names_store;
1312
1313 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1314 in the language-specific part of GSYMBOL, if it has not been
1315 previously computed. Tries to save the decoded name in the same
1316 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1317 in any case, the decoded symbol has a lifetime at least that of
1318 GSYMBOL).
1319 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1320 const, but nevertheless modified to a semantically equivalent form
1321 when a decoded name is cached in it. */
1322
1323 const char *
1324 ada_decode_symbol (const struct general_symbol_info *arg)
1325 {
1326 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1327 const char **resultp =
1328 &gsymbol->language_specific.demangled_name;
1329
1330 if (!gsymbol->ada_mangled)
1331 {
1332 std::string decoded = ada_decode (gsymbol->linkage_name ());
1333 struct obstack *obstack = gsymbol->language_specific.obstack;
1334
1335 gsymbol->ada_mangled = 1;
1336
1337 if (obstack != NULL)
1338 *resultp = obstack_strdup (obstack, decoded.c_str ());
1339 else
1340 {
1341 /* Sometimes, we can't find a corresponding objfile, in
1342 which case, we put the result on the heap. Since we only
1343 decode when needed, we hope this usually does not cause a
1344 significant memory leak (FIXME). */
1345
1346 char **slot = (char **) htab_find_slot (decoded_names_store,
1347 decoded.c_str (), INSERT);
1348
1349 if (*slot == NULL)
1350 *slot = xstrdup (decoded.c_str ());
1351 *resultp = *slot;
1352 }
1353 }
1354
1355 return *resultp;
1356 }
1357
1358 static char *
1359 ada_la_decode (const char *encoded, int options)
1360 {
1361 return xstrdup (ada_decode (encoded).c_str ());
1362 }
1363
1364 \f
1365
1366 /* Arrays */
1367
1368 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1369 generated by the GNAT compiler to describe the index type used
1370 for each dimension of an array, check whether it follows the latest
1371 known encoding. If not, fix it up to conform to the latest encoding.
1372 Otherwise, do nothing. This function also does nothing if
1373 INDEX_DESC_TYPE is NULL.
1374
1375 The GNAT encoding used to describe the array index type evolved a bit.
1376 Initially, the information would be provided through the name of each
1377 field of the structure type only, while the type of these fields was
1378 described as unspecified and irrelevant. The debugger was then expected
1379 to perform a global type lookup using the name of that field in order
1380 to get access to the full index type description. Because these global
1381 lookups can be very expensive, the encoding was later enhanced to make
1382 the global lookup unnecessary by defining the field type as being
1383 the full index type description.
1384
1385 The purpose of this routine is to allow us to support older versions
1386 of the compiler by detecting the use of the older encoding, and by
1387 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1388 we essentially replace each field's meaningless type by the associated
1389 index subtype). */
1390
1391 void
1392 ada_fixup_array_indexes_type (struct type *index_desc_type)
1393 {
1394 int i;
1395
1396 if (index_desc_type == NULL)
1397 return;
1398 gdb_assert (index_desc_type->num_fields () > 0);
1399
1400 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1401 to check one field only, no need to check them all). If not, return
1402 now.
1403
1404 If our INDEX_DESC_TYPE was generated using the older encoding,
1405 the field type should be a meaningless integer type whose name
1406 is not equal to the field name. */
1407 if (index_desc_type->field (0).type ()->name () != NULL
1408 && strcmp (index_desc_type->field (0).type ()->name (),
1409 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1410 return;
1411
1412 /* Fixup each field of INDEX_DESC_TYPE. */
1413 for (i = 0; i < index_desc_type->num_fields (); i++)
1414 {
1415 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1416 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1417
1418 if (raw_type)
1419 index_desc_type->field (i).set_type (raw_type);
1420 }
1421 }
1422
1423 /* The desc_* routines return primitive portions of array descriptors
1424 (fat pointers). */
1425
1426 /* The descriptor or array type, if any, indicated by TYPE; removes
1427 level of indirection, if needed. */
1428
1429 static struct type *
1430 desc_base_type (struct type *type)
1431 {
1432 if (type == NULL)
1433 return NULL;
1434 type = ada_check_typedef (type);
1435 if (type->code () == TYPE_CODE_TYPEDEF)
1436 type = ada_typedef_target_type (type);
1437
1438 if (type != NULL
1439 && (type->code () == TYPE_CODE_PTR
1440 || type->code () == TYPE_CODE_REF))
1441 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1442 else
1443 return type;
1444 }
1445
1446 /* True iff TYPE indicates a "thin" array pointer type. */
1447
1448 static int
1449 is_thin_pntr (struct type *type)
1450 {
1451 return
1452 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1453 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1454 }
1455
1456 /* The descriptor type for thin pointer type TYPE. */
1457
1458 static struct type *
1459 thin_descriptor_type (struct type *type)
1460 {
1461 struct type *base_type = desc_base_type (type);
1462
1463 if (base_type == NULL)
1464 return NULL;
1465 if (is_suffix (ada_type_name (base_type), "___XVE"))
1466 return base_type;
1467 else
1468 {
1469 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1470
1471 if (alt_type == NULL)
1472 return base_type;
1473 else
1474 return alt_type;
1475 }
1476 }
1477
1478 /* A pointer to the array data for thin-pointer value VAL. */
1479
1480 static struct value *
1481 thin_data_pntr (struct value *val)
1482 {
1483 struct type *type = ada_check_typedef (value_type (val));
1484 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1485
1486 data_type = lookup_pointer_type (data_type);
1487
1488 if (type->code () == TYPE_CODE_PTR)
1489 return value_cast (data_type, value_copy (val));
1490 else
1491 return value_from_longest (data_type, value_address (val));
1492 }
1493
1494 /* True iff TYPE indicates a "thick" array pointer type. */
1495
1496 static int
1497 is_thick_pntr (struct type *type)
1498 {
1499 type = desc_base_type (type);
1500 return (type != NULL && type->code () == TYPE_CODE_STRUCT
1501 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1502 }
1503
1504 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1505 pointer to one, the type of its bounds data; otherwise, NULL. */
1506
1507 static struct type *
1508 desc_bounds_type (struct type *type)
1509 {
1510 struct type *r;
1511
1512 type = desc_base_type (type);
1513
1514 if (type == NULL)
1515 return NULL;
1516 else if (is_thin_pntr (type))
1517 {
1518 type = thin_descriptor_type (type);
1519 if (type == NULL)
1520 return NULL;
1521 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1522 if (r != NULL)
1523 return ada_check_typedef (r);
1524 }
1525 else if (type->code () == TYPE_CODE_STRUCT)
1526 {
1527 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1528 if (r != NULL)
1529 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1530 }
1531 return NULL;
1532 }
1533
1534 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1535 one, a pointer to its bounds data. Otherwise NULL. */
1536
1537 static struct value *
1538 desc_bounds (struct value *arr)
1539 {
1540 struct type *type = ada_check_typedef (value_type (arr));
1541
1542 if (is_thin_pntr (type))
1543 {
1544 struct type *bounds_type =
1545 desc_bounds_type (thin_descriptor_type (type));
1546 LONGEST addr;
1547
1548 if (bounds_type == NULL)
1549 error (_("Bad GNAT array descriptor"));
1550
1551 /* NOTE: The following calculation is not really kosher, but
1552 since desc_type is an XVE-encoded type (and shouldn't be),
1553 the correct calculation is a real pain. FIXME (and fix GCC). */
1554 if (type->code () == TYPE_CODE_PTR)
1555 addr = value_as_long (arr);
1556 else
1557 addr = value_address (arr);
1558
1559 return
1560 value_from_longest (lookup_pointer_type (bounds_type),
1561 addr - TYPE_LENGTH (bounds_type));
1562 }
1563
1564 else if (is_thick_pntr (type))
1565 {
1566 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1567 _("Bad GNAT array descriptor"));
1568 struct type *p_bounds_type = value_type (p_bounds);
1569
1570 if (p_bounds_type
1571 && p_bounds_type->code () == TYPE_CODE_PTR)
1572 {
1573 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1574
1575 if (target_type->is_stub ())
1576 p_bounds = value_cast (lookup_pointer_type
1577 (ada_check_typedef (target_type)),
1578 p_bounds);
1579 }
1580 else
1581 error (_("Bad GNAT array descriptor"));
1582
1583 return p_bounds;
1584 }
1585 else
1586 return NULL;
1587 }
1588
1589 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1590 position of the field containing the address of the bounds data. */
1591
1592 static int
1593 fat_pntr_bounds_bitpos (struct type *type)
1594 {
1595 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1596 }
1597
1598 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1599 size of the field containing the address of the bounds data. */
1600
1601 static int
1602 fat_pntr_bounds_bitsize (struct type *type)
1603 {
1604 type = desc_base_type (type);
1605
1606 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1607 return TYPE_FIELD_BITSIZE (type, 1);
1608 else
1609 return 8 * TYPE_LENGTH (ada_check_typedef (type->field (1).type ()));
1610 }
1611
1612 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1613 pointer to one, the type of its array data (a array-with-no-bounds type);
1614 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1615 data. */
1616
1617 static struct type *
1618 desc_data_target_type (struct type *type)
1619 {
1620 type = desc_base_type (type);
1621
1622 /* NOTE: The following is bogus; see comment in desc_bounds. */
1623 if (is_thin_pntr (type))
1624 return desc_base_type (thin_descriptor_type (type)->field (1).type ());
1625 else if (is_thick_pntr (type))
1626 {
1627 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1628
1629 if (data_type
1630 && ada_check_typedef (data_type)->code () == TYPE_CODE_PTR)
1631 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1632 }
1633
1634 return NULL;
1635 }
1636
1637 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1638 its array data. */
1639
1640 static struct value *
1641 desc_data (struct value *arr)
1642 {
1643 struct type *type = value_type (arr);
1644
1645 if (is_thin_pntr (type))
1646 return thin_data_pntr (arr);
1647 else if (is_thick_pntr (type))
1648 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1649 _("Bad GNAT array descriptor"));
1650 else
1651 return NULL;
1652 }
1653
1654
1655 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1656 position of the field containing the address of the data. */
1657
1658 static int
1659 fat_pntr_data_bitpos (struct type *type)
1660 {
1661 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1662 }
1663
1664 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1665 size of the field containing the address of the data. */
1666
1667 static int
1668 fat_pntr_data_bitsize (struct type *type)
1669 {
1670 type = desc_base_type (type);
1671
1672 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1673 return TYPE_FIELD_BITSIZE (type, 0);
1674 else
1675 return TARGET_CHAR_BIT * TYPE_LENGTH (type->field (0).type ());
1676 }
1677
1678 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1679 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1680 bound, if WHICH is 1. The first bound is I=1. */
1681
1682 static struct value *
1683 desc_one_bound (struct value *bounds, int i, int which)
1684 {
1685 char bound_name[20];
1686 xsnprintf (bound_name, sizeof (bound_name), "%cB%d",
1687 which ? 'U' : 'L', i - 1);
1688 return value_struct_elt (&bounds, NULL, bound_name, NULL,
1689 _("Bad GNAT array descriptor bounds"));
1690 }
1691
1692 /* If BOUNDS is an array-bounds structure type, return the bit position
1693 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1694 bound, if WHICH is 1. The first bound is I=1. */
1695
1696 static int
1697 desc_bound_bitpos (struct type *type, int i, int which)
1698 {
1699 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1700 }
1701
1702 /* If BOUNDS is an array-bounds structure type, return the bit field size
1703 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1704 bound, if WHICH is 1. The first bound is I=1. */
1705
1706 static int
1707 desc_bound_bitsize (struct type *type, int i, int which)
1708 {
1709 type = desc_base_type (type);
1710
1711 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1712 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1713 else
1714 return 8 * TYPE_LENGTH (type->field (2 * i + which - 2).type ());
1715 }
1716
1717 /* If TYPE is the type of an array-bounds structure, the type of its
1718 Ith bound (numbering from 1). Otherwise, NULL. */
1719
1720 static struct type *
1721 desc_index_type (struct type *type, int i)
1722 {
1723 type = desc_base_type (type);
1724
1725 if (type->code () == TYPE_CODE_STRUCT)
1726 {
1727 char bound_name[20];
1728 xsnprintf (bound_name, sizeof (bound_name), "LB%d", i - 1);
1729 return lookup_struct_elt_type (type, bound_name, 1);
1730 }
1731 else
1732 return NULL;
1733 }
1734
1735 /* The number of index positions in the array-bounds type TYPE.
1736 Return 0 if TYPE is NULL. */
1737
1738 static int
1739 desc_arity (struct type *type)
1740 {
1741 type = desc_base_type (type);
1742
1743 if (type != NULL)
1744 return type->num_fields () / 2;
1745 return 0;
1746 }
1747
1748 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1749 an array descriptor type (representing an unconstrained array
1750 type). */
1751
1752 static int
1753 ada_is_direct_array_type (struct type *type)
1754 {
1755 if (type == NULL)
1756 return 0;
1757 type = ada_check_typedef (type);
1758 return (type->code () == TYPE_CODE_ARRAY
1759 || ada_is_array_descriptor_type (type));
1760 }
1761
1762 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1763 * to one. */
1764
1765 static int
1766 ada_is_array_type (struct type *type)
1767 {
1768 while (type != NULL
1769 && (type->code () == TYPE_CODE_PTR
1770 || type->code () == TYPE_CODE_REF))
1771 type = TYPE_TARGET_TYPE (type);
1772 return ada_is_direct_array_type (type);
1773 }
1774
1775 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1776
1777 int
1778 ada_is_simple_array_type (struct type *type)
1779 {
1780 if (type == NULL)
1781 return 0;
1782 type = ada_check_typedef (type);
1783 return (type->code () == TYPE_CODE_ARRAY
1784 || (type->code () == TYPE_CODE_PTR
1785 && (ada_check_typedef (TYPE_TARGET_TYPE (type))->code ()
1786 == TYPE_CODE_ARRAY)));
1787 }
1788
1789 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1790
1791 int
1792 ada_is_array_descriptor_type (struct type *type)
1793 {
1794 struct type *data_type = desc_data_target_type (type);
1795
1796 if (type == NULL)
1797 return 0;
1798 type = ada_check_typedef (type);
1799 return (data_type != NULL
1800 && data_type->code () == TYPE_CODE_ARRAY
1801 && desc_arity (desc_bounds_type (type)) > 0);
1802 }
1803
1804 /* Non-zero iff type is a partially mal-formed GNAT array
1805 descriptor. FIXME: This is to compensate for some problems with
1806 debugging output from GNAT. Re-examine periodically to see if it
1807 is still needed. */
1808
1809 int
1810 ada_is_bogus_array_descriptor (struct type *type)
1811 {
1812 return
1813 type != NULL
1814 && type->code () == TYPE_CODE_STRUCT
1815 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1816 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1817 && !ada_is_array_descriptor_type (type);
1818 }
1819
1820
1821 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1822 (fat pointer) returns the type of the array data described---specifically,
1823 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1824 in from the descriptor; otherwise, they are left unspecified. If
1825 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1826 returns NULL. The result is simply the type of ARR if ARR is not
1827 a descriptor. */
1828
1829 static struct type *
1830 ada_type_of_array (struct value *arr, int bounds)
1831 {
1832 if (ada_is_constrained_packed_array_type (value_type (arr)))
1833 return decode_constrained_packed_array_type (value_type (arr));
1834
1835 if (!ada_is_array_descriptor_type (value_type (arr)))
1836 return value_type (arr);
1837
1838 if (!bounds)
1839 {
1840 struct type *array_type =
1841 ada_check_typedef (desc_data_target_type (value_type (arr)));
1842
1843 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1844 TYPE_FIELD_BITSIZE (array_type, 0) =
1845 decode_packed_array_bitsize (value_type (arr));
1846
1847 return array_type;
1848 }
1849 else
1850 {
1851 struct type *elt_type;
1852 int arity;
1853 struct value *descriptor;
1854
1855 elt_type = ada_array_element_type (value_type (arr), -1);
1856 arity = ada_array_arity (value_type (arr));
1857
1858 if (elt_type == NULL || arity == 0)
1859 return ada_check_typedef (value_type (arr));
1860
1861 descriptor = desc_bounds (arr);
1862 if (value_as_long (descriptor) == 0)
1863 return NULL;
1864 while (arity > 0)
1865 {
1866 struct type *range_type = alloc_type_copy (value_type (arr));
1867 struct type *array_type = alloc_type_copy (value_type (arr));
1868 struct value *low = desc_one_bound (descriptor, arity, 0);
1869 struct value *high = desc_one_bound (descriptor, arity, 1);
1870
1871 arity -= 1;
1872 create_static_range_type (range_type, value_type (low),
1873 longest_to_int (value_as_long (low)),
1874 longest_to_int (value_as_long (high)));
1875 elt_type = create_array_type (array_type, elt_type, range_type);
1876
1877 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1878 {
1879 /* We need to store the element packed bitsize, as well as
1880 recompute the array size, because it was previously
1881 computed based on the unpacked element size. */
1882 LONGEST lo = value_as_long (low);
1883 LONGEST hi = value_as_long (high);
1884
1885 TYPE_FIELD_BITSIZE (elt_type, 0) =
1886 decode_packed_array_bitsize (value_type (arr));
1887 /* If the array has no element, then the size is already
1888 zero, and does not need to be recomputed. */
1889 if (lo < hi)
1890 {
1891 int array_bitsize =
1892 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1893
1894 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1895 }
1896 }
1897 }
1898
1899 return lookup_pointer_type (elt_type);
1900 }
1901 }
1902
1903 /* If ARR does not represent an array, returns ARR unchanged.
1904 Otherwise, returns either a standard GDB array with bounds set
1905 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1906 GDB array. Returns NULL if ARR is a null fat pointer. */
1907
1908 struct value *
1909 ada_coerce_to_simple_array_ptr (struct value *arr)
1910 {
1911 if (ada_is_array_descriptor_type (value_type (arr)))
1912 {
1913 struct type *arrType = ada_type_of_array (arr, 1);
1914
1915 if (arrType == NULL)
1916 return NULL;
1917 return value_cast (arrType, value_copy (desc_data (arr)));
1918 }
1919 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1920 return decode_constrained_packed_array (arr);
1921 else
1922 return arr;
1923 }
1924
1925 /* If ARR does not represent an array, returns ARR unchanged.
1926 Otherwise, returns a standard GDB array describing ARR (which may
1927 be ARR itself if it already is in the proper form). */
1928
1929 struct value *
1930 ada_coerce_to_simple_array (struct value *arr)
1931 {
1932 if (ada_is_array_descriptor_type (value_type (arr)))
1933 {
1934 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1935
1936 if (arrVal == NULL)
1937 error (_("Bounds unavailable for null array pointer."));
1938 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
1939 return value_ind (arrVal);
1940 }
1941 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1942 return decode_constrained_packed_array (arr);
1943 else
1944 return arr;
1945 }
1946
1947 /* If TYPE represents a GNAT array type, return it translated to an
1948 ordinary GDB array type (possibly with BITSIZE fields indicating
1949 packing). For other types, is the identity. */
1950
1951 struct type *
1952 ada_coerce_to_simple_array_type (struct type *type)
1953 {
1954 if (ada_is_constrained_packed_array_type (type))
1955 return decode_constrained_packed_array_type (type);
1956
1957 if (ada_is_array_descriptor_type (type))
1958 return ada_check_typedef (desc_data_target_type (type));
1959
1960 return type;
1961 }
1962
1963 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1964
1965 static int
1966 ada_is_gnat_encoded_packed_array_type (struct type *type)
1967 {
1968 if (type == NULL)
1969 return 0;
1970 type = desc_base_type (type);
1971 type = ada_check_typedef (type);
1972 return
1973 ada_type_name (type) != NULL
1974 && strstr (ada_type_name (type), "___XP") != NULL;
1975 }
1976
1977 /* Non-zero iff TYPE represents a standard GNAT constrained
1978 packed-array type. */
1979
1980 int
1981 ada_is_constrained_packed_array_type (struct type *type)
1982 {
1983 return ada_is_gnat_encoded_packed_array_type (type)
1984 && !ada_is_array_descriptor_type (type);
1985 }
1986
1987 /* Non-zero iff TYPE represents an array descriptor for a
1988 unconstrained packed-array type. */
1989
1990 static int
1991 ada_is_unconstrained_packed_array_type (struct type *type)
1992 {
1993 if (!ada_is_array_descriptor_type (type))
1994 return 0;
1995
1996 if (ada_is_gnat_encoded_packed_array_type (type))
1997 return 1;
1998
1999 /* If we saw GNAT encodings, then the above code is sufficient.
2000 However, with minimal encodings, we will just have a thick
2001 pointer instead. */
2002 if (is_thick_pntr (type))
2003 {
2004 type = desc_base_type (type);
2005 /* The structure's first field is a pointer to an array, so this
2006 fetches the array type. */
2007 type = TYPE_TARGET_TYPE (type->field (0).type ());
2008 /* Now we can see if the array elements are packed. */
2009 return TYPE_FIELD_BITSIZE (type, 0) > 0;
2010 }
2011
2012 return 0;
2013 }
2014
2015 /* Return true if TYPE is a (Gnat-encoded) constrained packed array
2016 type, or if it is an ordinary (non-Gnat-encoded) packed array. */
2017
2018 static bool
2019 ada_is_any_packed_array_type (struct type *type)
2020 {
2021 return (ada_is_constrained_packed_array_type (type)
2022 || (type->code () == TYPE_CODE_ARRAY
2023 && TYPE_FIELD_BITSIZE (type, 0) % 8 != 0));
2024 }
2025
2026 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2027 return the size of its elements in bits. */
2028
2029 static long
2030 decode_packed_array_bitsize (struct type *type)
2031 {
2032 const char *raw_name;
2033 const char *tail;
2034 long bits;
2035
2036 /* Access to arrays implemented as fat pointers are encoded as a typedef
2037 of the fat pointer type. We need the name of the fat pointer type
2038 to do the decoding, so strip the typedef layer. */
2039 if (type->code () == TYPE_CODE_TYPEDEF)
2040 type = ada_typedef_target_type (type);
2041
2042 raw_name = ada_type_name (ada_check_typedef (type));
2043 if (!raw_name)
2044 raw_name = ada_type_name (desc_base_type (type));
2045
2046 if (!raw_name)
2047 return 0;
2048
2049 tail = strstr (raw_name, "___XP");
2050 if (tail == nullptr)
2051 {
2052 gdb_assert (is_thick_pntr (type));
2053 /* The structure's first field is a pointer to an array, so this
2054 fetches the array type. */
2055 type = TYPE_TARGET_TYPE (type->field (0).type ());
2056 /* Now we can see if the array elements are packed. */
2057 return TYPE_FIELD_BITSIZE (type, 0);
2058 }
2059
2060 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2061 {
2062 lim_warning
2063 (_("could not understand bit size information on packed array"));
2064 return 0;
2065 }
2066
2067 return bits;
2068 }
2069
2070 /* Given that TYPE is a standard GDB array type with all bounds filled
2071 in, and that the element size of its ultimate scalar constituents
2072 (that is, either its elements, or, if it is an array of arrays, its
2073 elements' elements, etc.) is *ELT_BITS, return an identical type,
2074 but with the bit sizes of its elements (and those of any
2075 constituent arrays) recorded in the BITSIZE components of its
2076 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2077 in bits.
2078
2079 Note that, for arrays whose index type has an XA encoding where
2080 a bound references a record discriminant, getting that discriminant,
2081 and therefore the actual value of that bound, is not possible
2082 because none of the given parameters gives us access to the record.
2083 This function assumes that it is OK in the context where it is being
2084 used to return an array whose bounds are still dynamic and where
2085 the length is arbitrary. */
2086
2087 static struct type *
2088 constrained_packed_array_type (struct type *type, long *elt_bits)
2089 {
2090 struct type *new_elt_type;
2091 struct type *new_type;
2092 struct type *index_type_desc;
2093 struct type *index_type;
2094 LONGEST low_bound, high_bound;
2095
2096 type = ada_check_typedef (type);
2097 if (type->code () != TYPE_CODE_ARRAY)
2098 return type;
2099
2100 index_type_desc = ada_find_parallel_type (type, "___XA");
2101 if (index_type_desc)
2102 index_type = to_fixed_range_type (index_type_desc->field (0).type (),
2103 NULL);
2104 else
2105 index_type = type->index_type ();
2106
2107 new_type = alloc_type_copy (type);
2108 new_elt_type =
2109 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2110 elt_bits);
2111 create_array_type (new_type, new_elt_type, index_type);
2112 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2113 new_type->set_name (ada_type_name (type));
2114
2115 if ((check_typedef (index_type)->code () == TYPE_CODE_RANGE
2116 && is_dynamic_type (check_typedef (index_type)))
2117 || !get_discrete_bounds (index_type, &low_bound, &high_bound))
2118 low_bound = high_bound = 0;
2119 if (high_bound < low_bound)
2120 *elt_bits = TYPE_LENGTH (new_type) = 0;
2121 else
2122 {
2123 *elt_bits *= (high_bound - low_bound + 1);
2124 TYPE_LENGTH (new_type) =
2125 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2126 }
2127
2128 new_type->set_is_fixed_instance (true);
2129 return new_type;
2130 }
2131
2132 /* The array type encoded by TYPE, where
2133 ada_is_constrained_packed_array_type (TYPE). */
2134
2135 static struct type *
2136 decode_constrained_packed_array_type (struct type *type)
2137 {
2138 const char *raw_name = ada_type_name (ada_check_typedef (type));
2139 char *name;
2140 const char *tail;
2141 struct type *shadow_type;
2142 long bits;
2143
2144 if (!raw_name)
2145 raw_name = ada_type_name (desc_base_type (type));
2146
2147 if (!raw_name)
2148 return NULL;
2149
2150 name = (char *) alloca (strlen (raw_name) + 1);
2151 tail = strstr (raw_name, "___XP");
2152 type = desc_base_type (type);
2153
2154 memcpy (name, raw_name, tail - raw_name);
2155 name[tail - raw_name] = '\000';
2156
2157 shadow_type = ada_find_parallel_type_with_name (type, name);
2158
2159 if (shadow_type == NULL)
2160 {
2161 lim_warning (_("could not find bounds information on packed array"));
2162 return NULL;
2163 }
2164 shadow_type = check_typedef (shadow_type);
2165
2166 if (shadow_type->code () != TYPE_CODE_ARRAY)
2167 {
2168 lim_warning (_("could not understand bounds "
2169 "information on packed array"));
2170 return NULL;
2171 }
2172
2173 bits = decode_packed_array_bitsize (type);
2174 return constrained_packed_array_type (shadow_type, &bits);
2175 }
2176
2177 /* Helper function for decode_constrained_packed_array. Set the field
2178 bitsize on a series of packed arrays. Returns the number of
2179 elements in TYPE. */
2180
2181 static LONGEST
2182 recursively_update_array_bitsize (struct type *type)
2183 {
2184 gdb_assert (type->code () == TYPE_CODE_ARRAY);
2185
2186 LONGEST low, high;
2187 if (!get_discrete_bounds (type->index_type (), &low, &high)
2188 || low > high)
2189 return 0;
2190 LONGEST our_len = high - low + 1;
2191
2192 struct type *elt_type = TYPE_TARGET_TYPE (type);
2193 if (elt_type->code () == TYPE_CODE_ARRAY)
2194 {
2195 LONGEST elt_len = recursively_update_array_bitsize (elt_type);
2196 LONGEST elt_bitsize = elt_len * TYPE_FIELD_BITSIZE (elt_type, 0);
2197 TYPE_FIELD_BITSIZE (type, 0) = elt_bitsize;
2198
2199 TYPE_LENGTH (type) = ((our_len * elt_bitsize + HOST_CHAR_BIT - 1)
2200 / HOST_CHAR_BIT);
2201 }
2202
2203 return our_len;
2204 }
2205
2206 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2207 array, returns a simple array that denotes that array. Its type is a
2208 standard GDB array type except that the BITSIZEs of the array
2209 target types are set to the number of bits in each element, and the
2210 type length is set appropriately. */
2211
2212 static struct value *
2213 decode_constrained_packed_array (struct value *arr)
2214 {
2215 struct type *type;
2216
2217 /* If our value is a pointer, then dereference it. Likewise if
2218 the value is a reference. Make sure that this operation does not
2219 cause the target type to be fixed, as this would indirectly cause
2220 this array to be decoded. The rest of the routine assumes that
2221 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2222 and "value_ind" routines to perform the dereferencing, as opposed
2223 to using "ada_coerce_ref" or "ada_value_ind". */
2224 arr = coerce_ref (arr);
2225 if (ada_check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
2226 arr = value_ind (arr);
2227
2228 type = decode_constrained_packed_array_type (value_type (arr));
2229 if (type == NULL)
2230 {
2231 error (_("can't unpack array"));
2232 return NULL;
2233 }
2234
2235 /* Decoding the packed array type could not correctly set the field
2236 bitsizes for any dimension except the innermost, because the
2237 bounds may be variable and were not passed to that function. So,
2238 we further resolve the array bounds here and then update the
2239 sizes. */
2240 const gdb_byte *valaddr = value_contents_for_printing (arr);
2241 CORE_ADDR address = value_address (arr);
2242 gdb::array_view<const gdb_byte> view
2243 = gdb::make_array_view (valaddr, TYPE_LENGTH (type));
2244 type = resolve_dynamic_type (type, view, address);
2245 recursively_update_array_bitsize (type);
2246
2247 if (type_byte_order (value_type (arr)) == BFD_ENDIAN_BIG
2248 && ada_is_modular_type (value_type (arr)))
2249 {
2250 /* This is a (right-justified) modular type representing a packed
2251 array with no wrapper. In order to interpret the value through
2252 the (left-justified) packed array type we just built, we must
2253 first left-justify it. */
2254 int bit_size, bit_pos;
2255 ULONGEST mod;
2256
2257 mod = ada_modulus (value_type (arr)) - 1;
2258 bit_size = 0;
2259 while (mod > 0)
2260 {
2261 bit_size += 1;
2262 mod >>= 1;
2263 }
2264 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2265 arr = ada_value_primitive_packed_val (arr, NULL,
2266 bit_pos / HOST_CHAR_BIT,
2267 bit_pos % HOST_CHAR_BIT,
2268 bit_size,
2269 type);
2270 }
2271
2272 return coerce_unspec_val_to_type (arr, type);
2273 }
2274
2275
2276 /* The value of the element of packed array ARR at the ARITY indices
2277 given in IND. ARR must be a simple array. */
2278
2279 static struct value *
2280 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2281 {
2282 int i;
2283 int bits, elt_off, bit_off;
2284 long elt_total_bit_offset;
2285 struct type *elt_type;
2286 struct value *v;
2287
2288 bits = 0;
2289 elt_total_bit_offset = 0;
2290 elt_type = ada_check_typedef (value_type (arr));
2291 for (i = 0; i < arity; i += 1)
2292 {
2293 if (elt_type->code () != TYPE_CODE_ARRAY
2294 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2295 error
2296 (_("attempt to do packed indexing of "
2297 "something other than a packed array"));
2298 else
2299 {
2300 struct type *range_type = elt_type->index_type ();
2301 LONGEST lowerbound, upperbound;
2302 LONGEST idx;
2303
2304 if (!get_discrete_bounds (range_type, &lowerbound, &upperbound))
2305 {
2306 lim_warning (_("don't know bounds of array"));
2307 lowerbound = upperbound = 0;
2308 }
2309
2310 idx = pos_atr (ind[i]);
2311 if (idx < lowerbound || idx > upperbound)
2312 lim_warning (_("packed array index %ld out of bounds"),
2313 (long) idx);
2314 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2315 elt_total_bit_offset += (idx - lowerbound) * bits;
2316 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2317 }
2318 }
2319 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2320 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2321
2322 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2323 bits, elt_type);
2324 return v;
2325 }
2326
2327 /* Non-zero iff TYPE includes negative integer values. */
2328
2329 static int
2330 has_negatives (struct type *type)
2331 {
2332 switch (type->code ())
2333 {
2334 default:
2335 return 0;
2336 case TYPE_CODE_INT:
2337 return !type->is_unsigned ();
2338 case TYPE_CODE_RANGE:
2339 return type->bounds ()->low.const_val () - type->bounds ()->bias < 0;
2340 }
2341 }
2342
2343 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2344 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2345 the unpacked buffer.
2346
2347 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2348 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2349
2350 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2351 zero otherwise.
2352
2353 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2354
2355 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2356
2357 static void
2358 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2359 gdb_byte *unpacked, int unpacked_len,
2360 int is_big_endian, int is_signed_type,
2361 int is_scalar)
2362 {
2363 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2364 int src_idx; /* Index into the source area */
2365 int src_bytes_left; /* Number of source bytes left to process. */
2366 int srcBitsLeft; /* Number of source bits left to move */
2367 int unusedLS; /* Number of bits in next significant
2368 byte of source that are unused */
2369
2370 int unpacked_idx; /* Index into the unpacked buffer */
2371 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2372
2373 unsigned long accum; /* Staging area for bits being transferred */
2374 int accumSize; /* Number of meaningful bits in accum */
2375 unsigned char sign;
2376
2377 /* Transmit bytes from least to most significant; delta is the direction
2378 the indices move. */
2379 int delta = is_big_endian ? -1 : 1;
2380
2381 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2382 bits from SRC. .*/
2383 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2384 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2385 bit_size, unpacked_len);
2386
2387 srcBitsLeft = bit_size;
2388 src_bytes_left = src_len;
2389 unpacked_bytes_left = unpacked_len;
2390 sign = 0;
2391
2392 if (is_big_endian)
2393 {
2394 src_idx = src_len - 1;
2395 if (is_signed_type
2396 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2397 sign = ~0;
2398
2399 unusedLS =
2400 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2401 % HOST_CHAR_BIT;
2402
2403 if (is_scalar)
2404 {
2405 accumSize = 0;
2406 unpacked_idx = unpacked_len - 1;
2407 }
2408 else
2409 {
2410 /* Non-scalar values must be aligned at a byte boundary... */
2411 accumSize =
2412 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2413 /* ... And are placed at the beginning (most-significant) bytes
2414 of the target. */
2415 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2416 unpacked_bytes_left = unpacked_idx + 1;
2417 }
2418 }
2419 else
2420 {
2421 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2422
2423 src_idx = unpacked_idx = 0;
2424 unusedLS = bit_offset;
2425 accumSize = 0;
2426
2427 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2428 sign = ~0;
2429 }
2430
2431 accum = 0;
2432 while (src_bytes_left > 0)
2433 {
2434 /* Mask for removing bits of the next source byte that are not
2435 part of the value. */
2436 unsigned int unusedMSMask =
2437 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2438 1;
2439 /* Sign-extend bits for this byte. */
2440 unsigned int signMask = sign & ~unusedMSMask;
2441
2442 accum |=
2443 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2444 accumSize += HOST_CHAR_BIT - unusedLS;
2445 if (accumSize >= HOST_CHAR_BIT)
2446 {
2447 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2448 accumSize -= HOST_CHAR_BIT;
2449 accum >>= HOST_CHAR_BIT;
2450 unpacked_bytes_left -= 1;
2451 unpacked_idx += delta;
2452 }
2453 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2454 unusedLS = 0;
2455 src_bytes_left -= 1;
2456 src_idx += delta;
2457 }
2458 while (unpacked_bytes_left > 0)
2459 {
2460 accum |= sign << accumSize;
2461 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2462 accumSize -= HOST_CHAR_BIT;
2463 if (accumSize < 0)
2464 accumSize = 0;
2465 accum >>= HOST_CHAR_BIT;
2466 unpacked_bytes_left -= 1;
2467 unpacked_idx += delta;
2468 }
2469 }
2470
2471 /* Create a new value of type TYPE from the contents of OBJ starting
2472 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2473 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2474 assigning through the result will set the field fetched from.
2475 VALADDR is ignored unless OBJ is NULL, in which case,
2476 VALADDR+OFFSET must address the start of storage containing the
2477 packed value. The value returned in this case is never an lval.
2478 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2479
2480 struct value *
2481 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2482 long offset, int bit_offset, int bit_size,
2483 struct type *type)
2484 {
2485 struct value *v;
2486 const gdb_byte *src; /* First byte containing data to unpack */
2487 gdb_byte *unpacked;
2488 const int is_scalar = is_scalar_type (type);
2489 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
2490 gdb::byte_vector staging;
2491
2492 type = ada_check_typedef (type);
2493
2494 if (obj == NULL)
2495 src = valaddr + offset;
2496 else
2497 src = value_contents (obj) + offset;
2498
2499 if (is_dynamic_type (type))
2500 {
2501 /* The length of TYPE might by dynamic, so we need to resolve
2502 TYPE in order to know its actual size, which we then use
2503 to create the contents buffer of the value we return.
2504 The difficulty is that the data containing our object is
2505 packed, and therefore maybe not at a byte boundary. So, what
2506 we do, is unpack the data into a byte-aligned buffer, and then
2507 use that buffer as our object's value for resolving the type. */
2508 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2509 staging.resize (staging_len);
2510
2511 ada_unpack_from_contents (src, bit_offset, bit_size,
2512 staging.data (), staging.size (),
2513 is_big_endian, has_negatives (type),
2514 is_scalar);
2515 type = resolve_dynamic_type (type, staging, 0);
2516 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2517 {
2518 /* This happens when the length of the object is dynamic,
2519 and is actually smaller than the space reserved for it.
2520 For instance, in an array of variant records, the bit_size
2521 we're given is the array stride, which is constant and
2522 normally equal to the maximum size of its element.
2523 But, in reality, each element only actually spans a portion
2524 of that stride. */
2525 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2526 }
2527 }
2528
2529 if (obj == NULL)
2530 {
2531 v = allocate_value (type);
2532 src = valaddr + offset;
2533 }
2534 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2535 {
2536 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2537 gdb_byte *buf;
2538
2539 v = value_at (type, value_address (obj) + offset);
2540 buf = (gdb_byte *) alloca (src_len);
2541 read_memory (value_address (v), buf, src_len);
2542 src = buf;
2543 }
2544 else
2545 {
2546 v = allocate_value (type);
2547 src = value_contents (obj) + offset;
2548 }
2549
2550 if (obj != NULL)
2551 {
2552 long new_offset = offset;
2553
2554 set_value_component_location (v, obj);
2555 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2556 set_value_bitsize (v, bit_size);
2557 if (value_bitpos (v) >= HOST_CHAR_BIT)
2558 {
2559 ++new_offset;
2560 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2561 }
2562 set_value_offset (v, new_offset);
2563
2564 /* Also set the parent value. This is needed when trying to
2565 assign a new value (in inferior memory). */
2566 set_value_parent (v, obj);
2567 }
2568 else
2569 set_value_bitsize (v, bit_size);
2570 unpacked = value_contents_writeable (v);
2571
2572 if (bit_size == 0)
2573 {
2574 memset (unpacked, 0, TYPE_LENGTH (type));
2575 return v;
2576 }
2577
2578 if (staging.size () == TYPE_LENGTH (type))
2579 {
2580 /* Small short-cut: If we've unpacked the data into a buffer
2581 of the same size as TYPE's length, then we can reuse that,
2582 instead of doing the unpacking again. */
2583 memcpy (unpacked, staging.data (), staging.size ());
2584 }
2585 else
2586 ada_unpack_from_contents (src, bit_offset, bit_size,
2587 unpacked, TYPE_LENGTH (type),
2588 is_big_endian, has_negatives (type), is_scalar);
2589
2590 return v;
2591 }
2592
2593 /* Store the contents of FROMVAL into the location of TOVAL.
2594 Return a new value with the location of TOVAL and contents of
2595 FROMVAL. Handles assignment into packed fields that have
2596 floating-point or non-scalar types. */
2597
2598 static struct value *
2599 ada_value_assign (struct value *toval, struct value *fromval)
2600 {
2601 struct type *type = value_type (toval);
2602 int bits = value_bitsize (toval);
2603
2604 toval = ada_coerce_ref (toval);
2605 fromval = ada_coerce_ref (fromval);
2606
2607 if (ada_is_direct_array_type (value_type (toval)))
2608 toval = ada_coerce_to_simple_array (toval);
2609 if (ada_is_direct_array_type (value_type (fromval)))
2610 fromval = ada_coerce_to_simple_array (fromval);
2611
2612 if (!deprecated_value_modifiable (toval))
2613 error (_("Left operand of assignment is not a modifiable lvalue."));
2614
2615 if (VALUE_LVAL (toval) == lval_memory
2616 && bits > 0
2617 && (type->code () == TYPE_CODE_FLT
2618 || type->code () == TYPE_CODE_STRUCT))
2619 {
2620 int len = (value_bitpos (toval)
2621 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2622 int from_size;
2623 gdb_byte *buffer = (gdb_byte *) alloca (len);
2624 struct value *val;
2625 CORE_ADDR to_addr = value_address (toval);
2626
2627 if (type->code () == TYPE_CODE_FLT)
2628 fromval = value_cast (type, fromval);
2629
2630 read_memory (to_addr, buffer, len);
2631 from_size = value_bitsize (fromval);
2632 if (from_size == 0)
2633 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2634
2635 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
2636 ULONGEST from_offset = 0;
2637 if (is_big_endian && is_scalar_type (value_type (fromval)))
2638 from_offset = from_size - bits;
2639 copy_bitwise (buffer, value_bitpos (toval),
2640 value_contents (fromval), from_offset,
2641 bits, is_big_endian);
2642 write_memory_with_notification (to_addr, buffer, len);
2643
2644 val = value_copy (toval);
2645 memcpy (value_contents_raw (val), value_contents (fromval),
2646 TYPE_LENGTH (type));
2647 deprecated_set_value_type (val, type);
2648
2649 return val;
2650 }
2651
2652 return value_assign (toval, fromval);
2653 }
2654
2655
2656 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2657 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2658 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2659 COMPONENT, and not the inferior's memory. The current contents
2660 of COMPONENT are ignored.
2661
2662 Although not part of the initial design, this function also works
2663 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2664 had a null address, and COMPONENT had an address which is equal to
2665 its offset inside CONTAINER. */
2666
2667 static void
2668 value_assign_to_component (struct value *container, struct value *component,
2669 struct value *val)
2670 {
2671 LONGEST offset_in_container =
2672 (LONGEST) (value_address (component) - value_address (container));
2673 int bit_offset_in_container =
2674 value_bitpos (component) - value_bitpos (container);
2675 int bits;
2676
2677 val = value_cast (value_type (component), val);
2678
2679 if (value_bitsize (component) == 0)
2680 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2681 else
2682 bits = value_bitsize (component);
2683
2684 if (type_byte_order (value_type (container)) == BFD_ENDIAN_BIG)
2685 {
2686 int src_offset;
2687
2688 if (is_scalar_type (check_typedef (value_type (component))))
2689 src_offset
2690 = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits;
2691 else
2692 src_offset = 0;
2693 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2694 value_bitpos (container) + bit_offset_in_container,
2695 value_contents (val), src_offset, bits, 1);
2696 }
2697 else
2698 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2699 value_bitpos (container) + bit_offset_in_container,
2700 value_contents (val), 0, bits, 0);
2701 }
2702
2703 /* Determine if TYPE is an access to an unconstrained array. */
2704
2705 bool
2706 ada_is_access_to_unconstrained_array (struct type *type)
2707 {
2708 return (type->code () == TYPE_CODE_TYPEDEF
2709 && is_thick_pntr (ada_typedef_target_type (type)));
2710 }
2711
2712 /* The value of the element of array ARR at the ARITY indices given in IND.
2713 ARR may be either a simple array, GNAT array descriptor, or pointer
2714 thereto. */
2715
2716 struct value *
2717 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2718 {
2719 int k;
2720 struct value *elt;
2721 struct type *elt_type;
2722
2723 elt = ada_coerce_to_simple_array (arr);
2724
2725 elt_type = ada_check_typedef (value_type (elt));
2726 if (elt_type->code () == TYPE_CODE_ARRAY
2727 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2728 return value_subscript_packed (elt, arity, ind);
2729
2730 for (k = 0; k < arity; k += 1)
2731 {
2732 struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type);
2733
2734 if (elt_type->code () != TYPE_CODE_ARRAY)
2735 error (_("too many subscripts (%d expected)"), k);
2736
2737 elt = value_subscript (elt, pos_atr (ind[k]));
2738
2739 if (ada_is_access_to_unconstrained_array (saved_elt_type)
2740 && value_type (elt)->code () != TYPE_CODE_TYPEDEF)
2741 {
2742 /* The element is a typedef to an unconstrained array,
2743 except that the value_subscript call stripped the
2744 typedef layer. The typedef layer is GNAT's way to
2745 specify that the element is, at the source level, an
2746 access to the unconstrained array, rather than the
2747 unconstrained array. So, we need to restore that
2748 typedef layer, which we can do by forcing the element's
2749 type back to its original type. Otherwise, the returned
2750 value is going to be printed as the array, rather
2751 than as an access. Another symptom of the same issue
2752 would be that an expression trying to dereference the
2753 element would also be improperly rejected. */
2754 deprecated_set_value_type (elt, saved_elt_type);
2755 }
2756
2757 elt_type = ada_check_typedef (value_type (elt));
2758 }
2759
2760 return elt;
2761 }
2762
2763 /* Assuming ARR is a pointer to a GDB array, the value of the element
2764 of *ARR at the ARITY indices given in IND.
2765 Does not read the entire array into memory.
2766
2767 Note: Unlike what one would expect, this function is used instead of
2768 ada_value_subscript for basically all non-packed array types. The reason
2769 for this is that a side effect of doing our own pointer arithmetics instead
2770 of relying on value_subscript is that there is no implicit typedef peeling.
2771 This is important for arrays of array accesses, where it allows us to
2772 preserve the fact that the array's element is an array access, where the
2773 access part os encoded in a typedef layer. */
2774
2775 static struct value *
2776 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2777 {
2778 int k;
2779 struct value *array_ind = ada_value_ind (arr);
2780 struct type *type
2781 = check_typedef (value_enclosing_type (array_ind));
2782
2783 if (type->code () == TYPE_CODE_ARRAY
2784 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2785 return value_subscript_packed (array_ind, arity, ind);
2786
2787 for (k = 0; k < arity; k += 1)
2788 {
2789 LONGEST lwb, upb;
2790
2791 if (type->code () != TYPE_CODE_ARRAY)
2792 error (_("too many subscripts (%d expected)"), k);
2793 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2794 value_copy (arr));
2795 get_discrete_bounds (type->index_type (), &lwb, &upb);
2796 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2797 type = TYPE_TARGET_TYPE (type);
2798 }
2799
2800 return value_ind (arr);
2801 }
2802
2803 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2804 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2805 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2806 this array is LOW, as per Ada rules. */
2807 static struct value *
2808 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2809 int low, int high)
2810 {
2811 struct type *type0 = ada_check_typedef (type);
2812 struct type *base_index_type = TYPE_TARGET_TYPE (type0->index_type ());
2813 struct type *index_type
2814 = create_static_range_type (NULL, base_index_type, low, high);
2815 struct type *slice_type = create_array_type_with_stride
2816 (NULL, TYPE_TARGET_TYPE (type0), index_type,
2817 type0->dyn_prop (DYN_PROP_BYTE_STRIDE),
2818 TYPE_FIELD_BITSIZE (type0, 0));
2819 int base_low = ada_discrete_type_low_bound (type0->index_type ());
2820 gdb::optional<LONGEST> base_low_pos, low_pos;
2821 CORE_ADDR base;
2822
2823 low_pos = discrete_position (base_index_type, low);
2824 base_low_pos = discrete_position (base_index_type, base_low);
2825
2826 if (!low_pos.has_value () || !base_low_pos.has_value ())
2827 {
2828 warning (_("unable to get positions in slice, use bounds instead"));
2829 low_pos = low;
2830 base_low_pos = base_low;
2831 }
2832
2833 ULONGEST stride = TYPE_FIELD_BITSIZE (slice_type, 0) / 8;
2834 if (stride == 0)
2835 stride = TYPE_LENGTH (TYPE_TARGET_TYPE (type0));
2836
2837 base = value_as_address (array_ptr) + (*low_pos - *base_low_pos) * stride;
2838 return value_at_lazy (slice_type, base);
2839 }
2840
2841
2842 static struct value *
2843 ada_value_slice (struct value *array, int low, int high)
2844 {
2845 struct type *type = ada_check_typedef (value_type (array));
2846 struct type *base_index_type = TYPE_TARGET_TYPE (type->index_type ());
2847 struct type *index_type
2848 = create_static_range_type (NULL, type->index_type (), low, high);
2849 struct type *slice_type = create_array_type_with_stride
2850 (NULL, TYPE_TARGET_TYPE (type), index_type,
2851 type->dyn_prop (DYN_PROP_BYTE_STRIDE),
2852 TYPE_FIELD_BITSIZE (type, 0));
2853 gdb::optional<LONGEST> low_pos, high_pos;
2854
2855
2856 low_pos = discrete_position (base_index_type, low);
2857 high_pos = discrete_position (base_index_type, high);
2858
2859 if (!low_pos.has_value () || !high_pos.has_value ())
2860 {
2861 warning (_("unable to get positions in slice, use bounds instead"));
2862 low_pos = low;
2863 high_pos = high;
2864 }
2865
2866 return value_cast (slice_type,
2867 value_slice (array, low, *high_pos - *low_pos + 1));
2868 }
2869
2870 /* If type is a record type in the form of a standard GNAT array
2871 descriptor, returns the number of dimensions for type. If arr is a
2872 simple array, returns the number of "array of"s that prefix its
2873 type designation. Otherwise, returns 0. */
2874
2875 int
2876 ada_array_arity (struct type *type)
2877 {
2878 int arity;
2879
2880 if (type == NULL)
2881 return 0;
2882
2883 type = desc_base_type (type);
2884
2885 arity = 0;
2886 if (type->code () == TYPE_CODE_STRUCT)
2887 return desc_arity (desc_bounds_type (type));
2888 else
2889 while (type->code () == TYPE_CODE_ARRAY)
2890 {
2891 arity += 1;
2892 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2893 }
2894
2895 return arity;
2896 }
2897
2898 /* If TYPE is a record type in the form of a standard GNAT array
2899 descriptor or a simple array type, returns the element type for
2900 TYPE after indexing by NINDICES indices, or by all indices if
2901 NINDICES is -1. Otherwise, returns NULL. */
2902
2903 struct type *
2904 ada_array_element_type (struct type *type, int nindices)
2905 {
2906 type = desc_base_type (type);
2907
2908 if (type->code () == TYPE_CODE_STRUCT)
2909 {
2910 int k;
2911 struct type *p_array_type;
2912
2913 p_array_type = desc_data_target_type (type);
2914
2915 k = ada_array_arity (type);
2916 if (k == 0)
2917 return NULL;
2918
2919 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2920 if (nindices >= 0 && k > nindices)
2921 k = nindices;
2922 while (k > 0 && p_array_type != NULL)
2923 {
2924 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2925 k -= 1;
2926 }
2927 return p_array_type;
2928 }
2929 else if (type->code () == TYPE_CODE_ARRAY)
2930 {
2931 while (nindices != 0 && type->code () == TYPE_CODE_ARRAY)
2932 {
2933 type = TYPE_TARGET_TYPE (type);
2934 nindices -= 1;
2935 }
2936 return type;
2937 }
2938
2939 return NULL;
2940 }
2941
2942 /* The type of nth index in arrays of given type (n numbering from 1).
2943 Does not examine memory. Throws an error if N is invalid or TYPE
2944 is not an array type. NAME is the name of the Ada attribute being
2945 evaluated ('range, 'first, 'last, or 'length); it is used in building
2946 the error message. */
2947
2948 static struct type *
2949 ada_index_type (struct type *type, int n, const char *name)
2950 {
2951 struct type *result_type;
2952
2953 type = desc_base_type (type);
2954
2955 if (n < 0 || n > ada_array_arity (type))
2956 error (_("invalid dimension number to '%s"), name);
2957
2958 if (ada_is_simple_array_type (type))
2959 {
2960 int i;
2961
2962 for (i = 1; i < n; i += 1)
2963 type = TYPE_TARGET_TYPE (type);
2964 result_type = TYPE_TARGET_TYPE (type->index_type ());
2965 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2966 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2967 perhaps stabsread.c would make more sense. */
2968 if (result_type && result_type->code () == TYPE_CODE_UNDEF)
2969 result_type = NULL;
2970 }
2971 else
2972 {
2973 result_type = desc_index_type (desc_bounds_type (type), n);
2974 if (result_type == NULL)
2975 error (_("attempt to take bound of something that is not an array"));
2976 }
2977
2978 return result_type;
2979 }
2980
2981 /* Given that arr is an array type, returns the lower bound of the
2982 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2983 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2984 array-descriptor type. It works for other arrays with bounds supplied
2985 by run-time quantities other than discriminants. */
2986
2987 static LONGEST
2988 ada_array_bound_from_type (struct type *arr_type, int n, int which)
2989 {
2990 struct type *type, *index_type_desc, *index_type;
2991 int i;
2992
2993 gdb_assert (which == 0 || which == 1);
2994
2995 if (ada_is_constrained_packed_array_type (arr_type))
2996 arr_type = decode_constrained_packed_array_type (arr_type);
2997
2998 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2999 return (LONGEST) - which;
3000
3001 if (arr_type->code () == TYPE_CODE_PTR)
3002 type = TYPE_TARGET_TYPE (arr_type);
3003 else
3004 type = arr_type;
3005
3006 if (type->is_fixed_instance ())
3007 {
3008 /* The array has already been fixed, so we do not need to
3009 check the parallel ___XA type again. That encoding has
3010 already been applied, so ignore it now. */
3011 index_type_desc = NULL;
3012 }
3013 else
3014 {
3015 index_type_desc = ada_find_parallel_type (type, "___XA");
3016 ada_fixup_array_indexes_type (index_type_desc);
3017 }
3018
3019 if (index_type_desc != NULL)
3020 index_type = to_fixed_range_type (index_type_desc->field (n - 1).type (),
3021 NULL);
3022 else
3023 {
3024 struct type *elt_type = check_typedef (type);
3025
3026 for (i = 1; i < n; i++)
3027 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3028
3029 index_type = elt_type->index_type ();
3030 }
3031
3032 return
3033 (LONGEST) (which == 0
3034 ? ada_discrete_type_low_bound (index_type)
3035 : ada_discrete_type_high_bound (index_type));
3036 }
3037
3038 /* Given that arr is an array value, returns the lower bound of the
3039 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3040 WHICH is 1. This routine will also work for arrays with bounds
3041 supplied by run-time quantities other than discriminants. */
3042
3043 static LONGEST
3044 ada_array_bound (struct value *arr, int n, int which)
3045 {
3046 struct type *arr_type;
3047
3048 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
3049 arr = value_ind (arr);
3050 arr_type = value_enclosing_type (arr);
3051
3052 if (ada_is_constrained_packed_array_type (arr_type))
3053 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
3054 else if (ada_is_simple_array_type (arr_type))
3055 return ada_array_bound_from_type (arr_type, n, which);
3056 else
3057 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
3058 }
3059
3060 /* Given that arr is an array value, returns the length of the
3061 nth index. This routine will also work for arrays with bounds
3062 supplied by run-time quantities other than discriminants.
3063 Does not work for arrays indexed by enumeration types with representation
3064 clauses at the moment. */
3065
3066 static LONGEST
3067 ada_array_length (struct value *arr, int n)
3068 {
3069 struct type *arr_type, *index_type;
3070 int low, high;
3071
3072 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
3073 arr = value_ind (arr);
3074 arr_type = value_enclosing_type (arr);
3075
3076 if (ada_is_constrained_packed_array_type (arr_type))
3077 return ada_array_length (decode_constrained_packed_array (arr), n);
3078
3079 if (ada_is_simple_array_type (arr_type))
3080 {
3081 low = ada_array_bound_from_type (arr_type, n, 0);
3082 high = ada_array_bound_from_type (arr_type, n, 1);
3083 }
3084 else
3085 {
3086 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3087 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3088 }
3089
3090 arr_type = check_typedef (arr_type);
3091 index_type = ada_index_type (arr_type, n, "length");
3092 if (index_type != NULL)
3093 {
3094 struct type *base_type;
3095 if (index_type->code () == TYPE_CODE_RANGE)
3096 base_type = TYPE_TARGET_TYPE (index_type);
3097 else
3098 base_type = index_type;
3099
3100 low = pos_atr (value_from_longest (base_type, low));
3101 high = pos_atr (value_from_longest (base_type, high));
3102 }
3103 return high - low + 1;
3104 }
3105
3106 /* An array whose type is that of ARR_TYPE (an array type), with
3107 bounds LOW to HIGH, but whose contents are unimportant. If HIGH is
3108 less than LOW, then LOW-1 is used. */
3109
3110 static struct value *
3111 empty_array (struct type *arr_type, int low, int high)
3112 {
3113 struct type *arr_type0 = ada_check_typedef (arr_type);
3114 struct type *index_type
3115 = create_static_range_type
3116 (NULL, TYPE_TARGET_TYPE (arr_type0->index_type ()), low,
3117 high < low ? low - 1 : high);
3118 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3119
3120 return allocate_value (create_array_type (NULL, elt_type, index_type));
3121 }
3122 \f
3123
3124 /* Name resolution */
3125
3126 /* The "decoded" name for the user-definable Ada operator corresponding
3127 to OP. */
3128
3129 static const char *
3130 ada_decoded_op_name (enum exp_opcode op)
3131 {
3132 int i;
3133
3134 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3135 {
3136 if (ada_opname_table[i].op == op)
3137 return ada_opname_table[i].decoded;
3138 }
3139 error (_("Could not find operator name for opcode"));
3140 }
3141
3142 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3143 in a listing of choices during disambiguation (see sort_choices, below).
3144 The idea is that overloadings of a subprogram name from the
3145 same package should sort in their source order. We settle for ordering
3146 such symbols by their trailing number (__N or $N). */
3147
3148 static int
3149 encoded_ordered_before (const char *N0, const char *N1)
3150 {
3151 if (N1 == NULL)
3152 return 0;
3153 else if (N0 == NULL)
3154 return 1;
3155 else
3156 {
3157 int k0, k1;
3158
3159 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3160 ;
3161 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3162 ;
3163 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3164 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3165 {
3166 int n0, n1;
3167
3168 n0 = k0;
3169 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3170 n0 -= 1;
3171 n1 = k1;
3172 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3173 n1 -= 1;
3174 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3175 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3176 }
3177 return (strcmp (N0, N1) < 0);
3178 }
3179 }
3180
3181 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3182 encoded names. */
3183
3184 static void
3185 sort_choices (struct block_symbol syms[], int nsyms)
3186 {
3187 int i;
3188
3189 for (i = 1; i < nsyms; i += 1)
3190 {
3191 struct block_symbol sym = syms[i];
3192 int j;
3193
3194 for (j = i - 1; j >= 0; j -= 1)
3195 {
3196 if (encoded_ordered_before (syms[j].symbol->linkage_name (),
3197 sym.symbol->linkage_name ()))
3198 break;
3199 syms[j + 1] = syms[j];
3200 }
3201 syms[j + 1] = sym;
3202 }
3203 }
3204
3205 /* Whether GDB should display formals and return types for functions in the
3206 overloads selection menu. */
3207 static bool print_signatures = true;
3208
3209 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3210 all but functions, the signature is just the name of the symbol. For
3211 functions, this is the name of the function, the list of types for formals
3212 and the return type (if any). */
3213
3214 static void
3215 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3216 const struct type_print_options *flags)
3217 {
3218 struct type *type = SYMBOL_TYPE (sym);
3219
3220 fprintf_filtered (stream, "%s", sym->print_name ());
3221 if (!print_signatures
3222 || type == NULL
3223 || type->code () != TYPE_CODE_FUNC)
3224 return;
3225
3226 if (type->num_fields () > 0)
3227 {
3228 int i;
3229
3230 fprintf_filtered (stream, " (");
3231 for (i = 0; i < type->num_fields (); ++i)
3232 {
3233 if (i > 0)
3234 fprintf_filtered (stream, "; ");
3235 ada_print_type (type->field (i).type (), NULL, stream, -1, 0,
3236 flags);
3237 }
3238 fprintf_filtered (stream, ")");
3239 }
3240 if (TYPE_TARGET_TYPE (type) != NULL
3241 && TYPE_TARGET_TYPE (type)->code () != TYPE_CODE_VOID)
3242 {
3243 fprintf_filtered (stream, " return ");
3244 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3245 }
3246 }
3247
3248 /* Read and validate a set of numeric choices from the user in the
3249 range 0 .. N_CHOICES-1. Place the results in increasing
3250 order in CHOICES[0 .. N-1], and return N.
3251
3252 The user types choices as a sequence of numbers on one line
3253 separated by blanks, encoding them as follows:
3254
3255 + A choice of 0 means to cancel the selection, throwing an error.
3256 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3257 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3258
3259 The user is not allowed to choose more than MAX_RESULTS values.
3260
3261 ANNOTATION_SUFFIX, if present, is used to annotate the input
3262 prompts (for use with the -f switch). */
3263
3264 static int
3265 get_selections (int *choices, int n_choices, int max_results,
3266 int is_all_choice, const char *annotation_suffix)
3267 {
3268 const char *args;
3269 const char *prompt;
3270 int n_chosen;
3271 int first_choice = is_all_choice ? 2 : 1;
3272
3273 prompt = getenv ("PS2");
3274 if (prompt == NULL)
3275 prompt = "> ";
3276
3277 args = command_line_input (prompt, annotation_suffix);
3278
3279 if (args == NULL)
3280 error_no_arg (_("one or more choice numbers"));
3281
3282 n_chosen = 0;
3283
3284 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3285 order, as given in args. Choices are validated. */
3286 while (1)
3287 {
3288 char *args2;
3289 int choice, j;
3290
3291 args = skip_spaces (args);
3292 if (*args == '\0' && n_chosen == 0)
3293 error_no_arg (_("one or more choice numbers"));
3294 else if (*args == '\0')
3295 break;
3296
3297 choice = strtol (args, &args2, 10);
3298 if (args == args2 || choice < 0
3299 || choice > n_choices + first_choice - 1)
3300 error (_("Argument must be choice number"));
3301 args = args2;
3302
3303 if (choice == 0)
3304 error (_("cancelled"));
3305
3306 if (choice < first_choice)
3307 {
3308 n_chosen = n_choices;
3309 for (j = 0; j < n_choices; j += 1)
3310 choices[j] = j;
3311 break;
3312 }
3313 choice -= first_choice;
3314
3315 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3316 {
3317 }
3318
3319 if (j < 0 || choice != choices[j])
3320 {
3321 int k;
3322
3323 for (k = n_chosen - 1; k > j; k -= 1)
3324 choices[k + 1] = choices[k];
3325 choices[j + 1] = choice;
3326 n_chosen += 1;
3327 }
3328 }
3329
3330 if (n_chosen > max_results)
3331 error (_("Select no more than %d of the above"), max_results);
3332
3333 return n_chosen;
3334 }
3335
3336 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3337 by asking the user (if necessary), returning the number selected,
3338 and setting the first elements of SYMS items. Error if no symbols
3339 selected. */
3340
3341 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3342 to be re-integrated one of these days. */
3343
3344 static int
3345 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3346 {
3347 int i;
3348 int *chosen = XALLOCAVEC (int , nsyms);
3349 int n_chosen;
3350 int first_choice = (max_results == 1) ? 1 : 2;
3351 const char *select_mode = multiple_symbols_select_mode ();
3352
3353 if (max_results < 1)
3354 error (_("Request to select 0 symbols!"));
3355 if (nsyms <= 1)
3356 return nsyms;
3357
3358 if (select_mode == multiple_symbols_cancel)
3359 error (_("\
3360 canceled because the command is ambiguous\n\
3361 See set/show multiple-symbol."));
3362
3363 /* If select_mode is "all", then return all possible symbols.
3364 Only do that if more than one symbol can be selected, of course.
3365 Otherwise, display the menu as usual. */
3366 if (select_mode == multiple_symbols_all && max_results > 1)
3367 return nsyms;
3368
3369 printf_filtered (_("[0] cancel\n"));
3370 if (max_results > 1)
3371 printf_filtered (_("[1] all\n"));
3372
3373 sort_choices (syms, nsyms);
3374
3375 for (i = 0; i < nsyms; i += 1)
3376 {
3377 if (syms[i].symbol == NULL)
3378 continue;
3379
3380 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3381 {
3382 struct symtab_and_line sal =
3383 find_function_start_sal (syms[i].symbol, 1);
3384
3385 printf_filtered ("[%d] ", i + first_choice);
3386 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3387 &type_print_raw_options);
3388 if (sal.symtab == NULL)
3389 printf_filtered (_(" at %p[<no source file available>%p]:%d\n"),
3390 metadata_style.style ().ptr (), nullptr, sal.line);
3391 else
3392 printf_filtered
3393 (_(" at %ps:%d\n"),
3394 styled_string (file_name_style.style (),
3395 symtab_to_filename_for_display (sal.symtab)),
3396 sal.line);
3397 continue;
3398 }
3399 else
3400 {
3401 int is_enumeral =
3402 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3403 && SYMBOL_TYPE (syms[i].symbol) != NULL
3404 && SYMBOL_TYPE (syms[i].symbol)->code () == TYPE_CODE_ENUM);
3405 struct symtab *symtab = NULL;
3406
3407 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3408 symtab = symbol_symtab (syms[i].symbol);
3409
3410 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3411 {
3412 printf_filtered ("[%d] ", i + first_choice);
3413 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3414 &type_print_raw_options);
3415 printf_filtered (_(" at %s:%d\n"),
3416 symtab_to_filename_for_display (symtab),
3417 SYMBOL_LINE (syms[i].symbol));
3418 }
3419 else if (is_enumeral
3420 && SYMBOL_TYPE (syms[i].symbol)->name () != NULL)
3421 {
3422 printf_filtered (("[%d] "), i + first_choice);
3423 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3424 gdb_stdout, -1, 0, &type_print_raw_options);
3425 printf_filtered (_("'(%s) (enumeral)\n"),
3426 syms[i].symbol->print_name ());
3427 }
3428 else
3429 {
3430 printf_filtered ("[%d] ", i + first_choice);
3431 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3432 &type_print_raw_options);
3433
3434 if (symtab != NULL)
3435 printf_filtered (is_enumeral
3436 ? _(" in %s (enumeral)\n")
3437 : _(" at %s:?\n"),
3438 symtab_to_filename_for_display (symtab));
3439 else
3440 printf_filtered (is_enumeral
3441 ? _(" (enumeral)\n")
3442 : _(" at ?\n"));
3443 }
3444 }
3445 }
3446
3447 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3448 "overload-choice");
3449
3450 for (i = 0; i < n_chosen; i += 1)
3451 syms[i] = syms[chosen[i]];
3452
3453 return n_chosen;
3454 }
3455
3456 /* Resolve the operator of the subexpression beginning at
3457 position *POS of *EXPP. "Resolving" consists of replacing
3458 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3459 with their resolutions, replacing built-in operators with
3460 function calls to user-defined operators, where appropriate, and,
3461 when DEPROCEDURE_P is non-zero, converting function-valued variables
3462 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3463 are as in ada_resolve, above. */
3464
3465 static struct value *
3466 resolve_subexp (expression_up *expp, int *pos, int deprocedure_p,
3467 struct type *context_type, int parse_completion,
3468 innermost_block_tracker *tracker)
3469 {
3470 int pc = *pos;
3471 int i;
3472 struct expression *exp; /* Convenience: == *expp. */
3473 enum exp_opcode op = (*expp)->elts[pc].opcode;
3474 struct value **argvec; /* Vector of operand types (alloca'ed). */
3475 int nargs; /* Number of operands. */
3476 int oplen;
3477 /* If we're resolving an expression like ARRAY(ARG...), then we set
3478 this to the type of the array, so we can use the index types as
3479 the expected types for resolution. */
3480 struct type *array_type = nullptr;
3481 /* The arity of ARRAY_TYPE. */
3482 int array_arity = 0;
3483
3484 argvec = NULL;
3485 nargs = 0;
3486 exp = expp->get ();
3487
3488 /* Pass one: resolve operands, saving their types and updating *pos,
3489 if needed. */
3490 switch (op)
3491 {
3492 case OP_FUNCALL:
3493 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3494 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3495 *pos += 7;
3496 else
3497 {
3498 *pos += 3;
3499 struct value *lhs = resolve_subexp (expp, pos, 0, NULL,
3500 parse_completion, tracker);
3501 struct type *lhstype = ada_check_typedef (value_type (lhs));
3502 array_arity = ada_array_arity (lhstype);
3503 if (array_arity > 0)
3504 array_type = lhstype;
3505 }
3506 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3507 break;
3508
3509 case UNOP_ADDR:
3510 *pos += 1;
3511 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3512 break;
3513
3514 case UNOP_QUAL:
3515 *pos += 3;
3516 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type),
3517 parse_completion, tracker);
3518 break;
3519
3520 case OP_ATR_MODULUS:
3521 case OP_ATR_SIZE:
3522 case OP_ATR_TAG:
3523 case OP_ATR_FIRST:
3524 case OP_ATR_LAST:
3525 case OP_ATR_LENGTH:
3526 case OP_ATR_POS:
3527 case OP_ATR_VAL:
3528 case OP_ATR_MIN:
3529 case OP_ATR_MAX:
3530 case TERNOP_IN_RANGE:
3531 case BINOP_IN_BOUNDS:
3532 case UNOP_IN_RANGE:
3533 case OP_AGGREGATE:
3534 case OP_OTHERS:
3535 case OP_CHOICES:
3536 case OP_POSITIONAL:
3537 case OP_DISCRETE_RANGE:
3538 case OP_NAME:
3539 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3540 *pos += oplen;
3541 break;
3542
3543 case BINOP_ASSIGN:
3544 {
3545 struct value *arg1;
3546
3547 *pos += 1;
3548 arg1 = resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3549 if (arg1 == NULL)
3550 resolve_subexp (expp, pos, 1, NULL, parse_completion, tracker);
3551 else
3552 resolve_subexp (expp, pos, 1, value_type (arg1), parse_completion,
3553 tracker);
3554 break;
3555 }
3556
3557 case UNOP_CAST:
3558 *pos += 3;
3559 nargs = 1;
3560 break;
3561
3562 case BINOP_ADD:
3563 case BINOP_SUB:
3564 case BINOP_MUL:
3565 case BINOP_DIV:
3566 case BINOP_REM:
3567 case BINOP_MOD:
3568 case BINOP_EXP:
3569 case BINOP_CONCAT:
3570 case BINOP_LOGICAL_AND:
3571 case BINOP_LOGICAL_OR:
3572 case BINOP_BITWISE_AND:
3573 case BINOP_BITWISE_IOR:
3574 case BINOP_BITWISE_XOR:
3575
3576 case BINOP_EQUAL:
3577 case BINOP_NOTEQUAL:
3578 case BINOP_LESS:
3579 case BINOP_GTR:
3580 case BINOP_LEQ:
3581 case BINOP_GEQ:
3582
3583 case BINOP_REPEAT:
3584 case BINOP_SUBSCRIPT:
3585 case BINOP_COMMA:
3586 *pos += 1;
3587 nargs = 2;
3588 break;
3589
3590 case UNOP_NEG:
3591 case UNOP_PLUS:
3592 case UNOP_LOGICAL_NOT:
3593 case UNOP_ABS:
3594 case UNOP_IND:
3595 *pos += 1;
3596 nargs = 1;
3597 break;
3598
3599 case OP_LONG:
3600 case OP_FLOAT:
3601 case OP_VAR_VALUE:
3602 case OP_VAR_MSYM_VALUE:
3603 *pos += 4;
3604 break;
3605
3606 case OP_TYPE:
3607 case OP_BOOL:
3608 case OP_LAST:
3609 case OP_INTERNALVAR:
3610 *pos += 3;
3611 break;
3612
3613 case UNOP_MEMVAL:
3614 *pos += 3;
3615 nargs = 1;
3616 break;
3617
3618 case OP_REGISTER:
3619 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3620 break;
3621
3622 case STRUCTOP_STRUCT:
3623 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3624 nargs = 1;
3625 break;
3626
3627 case TERNOP_SLICE:
3628 *pos += 1;
3629 nargs = 3;
3630 break;
3631
3632 case OP_STRING:
3633 break;
3634
3635 default:
3636 error (_("Unexpected operator during name resolution"));
3637 }
3638
3639 argvec = XALLOCAVEC (struct value *, nargs + 1);
3640 for (i = 0; i < nargs; i += 1)
3641 {
3642 struct type *subtype = nullptr;
3643 if (i < array_arity)
3644 subtype = ada_index_type (array_type, i + 1, "array type");
3645 argvec[i] = resolve_subexp (expp, pos, 1, subtype, parse_completion,
3646 tracker);
3647 }
3648 argvec[i] = NULL;
3649 exp = expp->get ();
3650
3651 /* Pass two: perform any resolution on principal operator. */
3652 switch (op)
3653 {
3654 default:
3655 break;
3656
3657 case OP_VAR_VALUE:
3658 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3659 {
3660 std::vector<struct block_symbol> candidates;
3661 int n_candidates;
3662
3663 n_candidates =
3664 ada_lookup_symbol_list (exp->elts[pc + 2].symbol->linkage_name (),
3665 exp->elts[pc + 1].block, VAR_DOMAIN,
3666 &candidates);
3667
3668 if (n_candidates > 1)
3669 {
3670 /* Types tend to get re-introduced locally, so if there
3671 are any local symbols that are not types, first filter
3672 out all types. */
3673 int j;
3674 for (j = 0; j < n_candidates; j += 1)
3675 switch (SYMBOL_CLASS (candidates[j].symbol))
3676 {
3677 case LOC_REGISTER:
3678 case LOC_ARG:
3679 case LOC_REF_ARG:
3680 case LOC_REGPARM_ADDR:
3681 case LOC_LOCAL:
3682 case LOC_COMPUTED:
3683 goto FoundNonType;
3684 default:
3685 break;
3686 }
3687 FoundNonType:
3688 if (j < n_candidates)
3689 {
3690 j = 0;
3691 while (j < n_candidates)
3692 {
3693 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3694 {
3695 candidates[j] = candidates[n_candidates - 1];
3696 n_candidates -= 1;
3697 }
3698 else
3699 j += 1;
3700 }
3701 }
3702 }
3703
3704 if (n_candidates == 0)
3705 error (_("No definition found for %s"),
3706 exp->elts[pc + 2].symbol->print_name ());
3707 else if (n_candidates == 1)
3708 i = 0;
3709 else if (deprocedure_p
3710 && !is_nonfunction (candidates.data (), n_candidates))
3711 {
3712 i = ada_resolve_function
3713 (candidates.data (), n_candidates, NULL, 0,
3714 exp->elts[pc + 2].symbol->linkage_name (),
3715 context_type, parse_completion);
3716 if (i < 0)
3717 error (_("Could not find a match for %s"),
3718 exp->elts[pc + 2].symbol->print_name ());
3719 }
3720 else
3721 {
3722 printf_filtered (_("Multiple matches for %s\n"),
3723 exp->elts[pc + 2].symbol->print_name ());
3724 user_select_syms (candidates.data (), n_candidates, 1);
3725 i = 0;
3726 }
3727
3728 exp->elts[pc + 1].block = candidates[i].block;
3729 exp->elts[pc + 2].symbol = candidates[i].symbol;
3730 tracker->update (candidates[i]);
3731 }
3732
3733 if (deprocedure_p
3734 && (SYMBOL_TYPE (exp->elts[pc + 2].symbol)->code ()
3735 == TYPE_CODE_FUNC))
3736 {
3737 replace_operator_with_call (expp, pc, 0, 4,
3738 exp->elts[pc + 2].symbol,
3739 exp->elts[pc + 1].block);
3740 exp = expp->get ();
3741 }
3742 break;
3743
3744 case OP_FUNCALL:
3745 {
3746 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3747 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3748 {
3749 std::vector<struct block_symbol> candidates;
3750 int n_candidates;
3751
3752 n_candidates =
3753 ada_lookup_symbol_list (exp->elts[pc + 5].symbol->linkage_name (),
3754 exp->elts[pc + 4].block, VAR_DOMAIN,
3755 &candidates);
3756
3757 if (n_candidates == 1)
3758 i = 0;
3759 else
3760 {
3761 i = ada_resolve_function
3762 (candidates.data (), n_candidates,
3763 argvec, nargs,
3764 exp->elts[pc + 5].symbol->linkage_name (),
3765 context_type, parse_completion);
3766 if (i < 0)
3767 error (_("Could not find a match for %s"),
3768 exp->elts[pc + 5].symbol->print_name ());
3769 }
3770
3771 exp->elts[pc + 4].block = candidates[i].block;
3772 exp->elts[pc + 5].symbol = candidates[i].symbol;
3773 tracker->update (candidates[i]);
3774 }
3775 }
3776 break;
3777 case BINOP_ADD:
3778 case BINOP_SUB:
3779 case BINOP_MUL:
3780 case BINOP_DIV:
3781 case BINOP_REM:
3782 case BINOP_MOD:
3783 case BINOP_CONCAT:
3784 case BINOP_BITWISE_AND:
3785 case BINOP_BITWISE_IOR:
3786 case BINOP_BITWISE_XOR:
3787 case BINOP_EQUAL:
3788 case BINOP_NOTEQUAL:
3789 case BINOP_LESS:
3790 case BINOP_GTR:
3791 case BINOP_LEQ:
3792 case BINOP_GEQ:
3793 case BINOP_EXP:
3794 case UNOP_NEG:
3795 case UNOP_PLUS:
3796 case UNOP_LOGICAL_NOT:
3797 case UNOP_ABS:
3798 if (possible_user_operator_p (op, argvec))
3799 {
3800 std::vector<struct block_symbol> candidates;
3801 int n_candidates;
3802
3803 n_candidates =
3804 ada_lookup_symbol_list (ada_decoded_op_name (op),
3805 NULL, VAR_DOMAIN,
3806 &candidates);
3807
3808 i = ada_resolve_function (candidates.data (), n_candidates, argvec,
3809 nargs, ada_decoded_op_name (op), NULL,
3810 parse_completion);
3811 if (i < 0)
3812 break;
3813
3814 replace_operator_with_call (expp, pc, nargs, 1,
3815 candidates[i].symbol,
3816 candidates[i].block);
3817 exp = expp->get ();
3818 }
3819 break;
3820
3821 case OP_TYPE:
3822 case OP_REGISTER:
3823 return NULL;
3824 }
3825
3826 *pos = pc;
3827 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3828 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3829 exp->elts[pc + 1].objfile,
3830 exp->elts[pc + 2].msymbol);
3831 else
3832 return evaluate_subexp_type (exp, pos);
3833 }
3834
3835 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3836 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3837 a non-pointer. */
3838 /* The term "match" here is rather loose. The match is heuristic and
3839 liberal. */
3840
3841 static int
3842 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3843 {
3844 ftype = ada_check_typedef (ftype);
3845 atype = ada_check_typedef (atype);
3846
3847 if (ftype->code () == TYPE_CODE_REF)
3848 ftype = TYPE_TARGET_TYPE (ftype);
3849 if (atype->code () == TYPE_CODE_REF)
3850 atype = TYPE_TARGET_TYPE (atype);
3851
3852 switch (ftype->code ())
3853 {
3854 default:
3855 return ftype->code () == atype->code ();
3856 case TYPE_CODE_PTR:
3857 if (atype->code () == TYPE_CODE_PTR)
3858 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3859 TYPE_TARGET_TYPE (atype), 0);
3860 else
3861 return (may_deref
3862 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3863 case TYPE_CODE_INT:
3864 case TYPE_CODE_ENUM:
3865 case TYPE_CODE_RANGE:
3866 switch (atype->code ())
3867 {
3868 case TYPE_CODE_INT:
3869 case TYPE_CODE_ENUM:
3870 case TYPE_CODE_RANGE:
3871 return 1;
3872 default:
3873 return 0;
3874 }
3875
3876 case TYPE_CODE_ARRAY:
3877 return (atype->code () == TYPE_CODE_ARRAY
3878 || ada_is_array_descriptor_type (atype));
3879
3880 case TYPE_CODE_STRUCT:
3881 if (ada_is_array_descriptor_type (ftype))
3882 return (atype->code () == TYPE_CODE_ARRAY
3883 || ada_is_array_descriptor_type (atype));
3884 else
3885 return (atype->code () == TYPE_CODE_STRUCT
3886 && !ada_is_array_descriptor_type (atype));
3887
3888 case TYPE_CODE_UNION:
3889 case TYPE_CODE_FLT:
3890 return (atype->code () == ftype->code ());
3891 }
3892 }
3893
3894 /* Return non-zero if the formals of FUNC "sufficiently match" the
3895 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3896 may also be an enumeral, in which case it is treated as a 0-
3897 argument function. */
3898
3899 static int
3900 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3901 {
3902 int i;
3903 struct type *func_type = SYMBOL_TYPE (func);
3904
3905 if (SYMBOL_CLASS (func) == LOC_CONST
3906 && func_type->code () == TYPE_CODE_ENUM)
3907 return (n_actuals == 0);
3908 else if (func_type == NULL || func_type->code () != TYPE_CODE_FUNC)
3909 return 0;
3910
3911 if (func_type->num_fields () != n_actuals)
3912 return 0;
3913
3914 for (i = 0; i < n_actuals; i += 1)
3915 {
3916 if (actuals[i] == NULL)
3917 return 0;
3918 else
3919 {
3920 struct type *ftype = ada_check_typedef (func_type->field (i).type ());
3921 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3922
3923 if (!ada_type_match (ftype, atype, 1))
3924 return 0;
3925 }
3926 }
3927 return 1;
3928 }
3929
3930 /* False iff function type FUNC_TYPE definitely does not produce a value
3931 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3932 FUNC_TYPE is not a valid function type with a non-null return type
3933 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3934
3935 static int
3936 return_match (struct type *func_type, struct type *context_type)
3937 {
3938 struct type *return_type;
3939
3940 if (func_type == NULL)
3941 return 1;
3942
3943 if (func_type->code () == TYPE_CODE_FUNC)
3944 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3945 else
3946 return_type = get_base_type (func_type);
3947 if (return_type == NULL)
3948 return 1;
3949
3950 context_type = get_base_type (context_type);
3951
3952 if (return_type->code () == TYPE_CODE_ENUM)
3953 return context_type == NULL || return_type == context_type;
3954 else if (context_type == NULL)
3955 return return_type->code () != TYPE_CODE_VOID;
3956 else
3957 return return_type->code () == context_type->code ();
3958 }
3959
3960
3961 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3962 function (if any) that matches the types of the NARGS arguments in
3963 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3964 that returns that type, then eliminate matches that don't. If
3965 CONTEXT_TYPE is void and there is at least one match that does not
3966 return void, eliminate all matches that do.
3967
3968 Asks the user if there is more than one match remaining. Returns -1
3969 if there is no such symbol or none is selected. NAME is used
3970 solely for messages. May re-arrange and modify SYMS in
3971 the process; the index returned is for the modified vector. */
3972
3973 static int
3974 ada_resolve_function (struct block_symbol syms[],
3975 int nsyms, struct value **args, int nargs,
3976 const char *name, struct type *context_type,
3977 int parse_completion)
3978 {
3979 int fallback;
3980 int k;
3981 int m; /* Number of hits */
3982
3983 m = 0;
3984 /* In the first pass of the loop, we only accept functions matching
3985 context_type. If none are found, we add a second pass of the loop
3986 where every function is accepted. */
3987 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3988 {
3989 for (k = 0; k < nsyms; k += 1)
3990 {
3991 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3992
3993 if (ada_args_match (syms[k].symbol, args, nargs)
3994 && (fallback || return_match (type, context_type)))
3995 {
3996 syms[m] = syms[k];
3997 m += 1;
3998 }
3999 }
4000 }
4001
4002 /* If we got multiple matches, ask the user which one to use. Don't do this
4003 interactive thing during completion, though, as the purpose of the
4004 completion is providing a list of all possible matches. Prompting the
4005 user to filter it down would be completely unexpected in this case. */
4006 if (m == 0)
4007 return -1;
4008 else if (m > 1 && !parse_completion)
4009 {
4010 printf_filtered (_("Multiple matches for %s\n"), name);
4011 user_select_syms (syms, m, 1);
4012 return 0;
4013 }
4014 return 0;
4015 }
4016
4017 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
4018 on the function identified by SYM and BLOCK, and taking NARGS
4019 arguments. Update *EXPP as needed to hold more space. */
4020
4021 static void
4022 replace_operator_with_call (expression_up *expp, int pc, int nargs,
4023 int oplen, struct symbol *sym,
4024 const struct block *block)
4025 {
4026 /* We want to add 6 more elements (3 for funcall, 4 for function
4027 symbol, -OPLEN for operator being replaced) to the
4028 expression. */
4029 struct expression *exp = expp->get ();
4030 int save_nelts = exp->nelts;
4031 int extra_elts = 7 - oplen;
4032 exp->nelts += extra_elts;
4033
4034 if (extra_elts > 0)
4035 exp->resize (exp->nelts);
4036 memmove (exp->elts + pc + 7, exp->elts + pc + oplen,
4037 EXP_ELEM_TO_BYTES (save_nelts - pc - oplen));
4038 if (extra_elts < 0)
4039 exp->resize (exp->nelts);
4040
4041 exp->elts[pc].opcode = exp->elts[pc + 2].opcode = OP_FUNCALL;
4042 exp->elts[pc + 1].longconst = (LONGEST) nargs;
4043
4044 exp->elts[pc + 3].opcode = exp->elts[pc + 6].opcode = OP_VAR_VALUE;
4045 exp->elts[pc + 4].block = block;
4046 exp->elts[pc + 5].symbol = sym;
4047 }
4048
4049 /* Type-class predicates */
4050
4051 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4052 or FLOAT). */
4053
4054 static int
4055 numeric_type_p (struct type *type)
4056 {
4057 if (type == NULL)
4058 return 0;
4059 else
4060 {
4061 switch (type->code ())
4062 {
4063 case TYPE_CODE_INT:
4064 case TYPE_CODE_FLT:
4065 return 1;
4066 case TYPE_CODE_RANGE:
4067 return (type == TYPE_TARGET_TYPE (type)
4068 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4069 default:
4070 return 0;
4071 }
4072 }
4073 }
4074
4075 /* True iff TYPE is integral (an INT or RANGE of INTs). */
4076
4077 static int
4078 integer_type_p (struct type *type)
4079 {
4080 if (type == NULL)
4081 return 0;
4082 else
4083 {
4084 switch (type->code ())
4085 {
4086 case TYPE_CODE_INT:
4087 return 1;
4088 case TYPE_CODE_RANGE:
4089 return (type == TYPE_TARGET_TYPE (type)
4090 || integer_type_p (TYPE_TARGET_TYPE (type)));
4091 default:
4092 return 0;
4093 }
4094 }
4095 }
4096
4097 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
4098
4099 static int
4100 scalar_type_p (struct type *type)
4101 {
4102 if (type == NULL)
4103 return 0;
4104 else
4105 {
4106 switch (type->code ())
4107 {
4108 case TYPE_CODE_INT:
4109 case TYPE_CODE_RANGE:
4110 case TYPE_CODE_ENUM:
4111 case TYPE_CODE_FLT:
4112 return 1;
4113 default:
4114 return 0;
4115 }
4116 }
4117 }
4118
4119 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
4120
4121 static int
4122 discrete_type_p (struct type *type)
4123 {
4124 if (type == NULL)
4125 return 0;
4126 else
4127 {
4128 switch (type->code ())
4129 {
4130 case TYPE_CODE_INT:
4131 case TYPE_CODE_RANGE:
4132 case TYPE_CODE_ENUM:
4133 case TYPE_CODE_BOOL:
4134 return 1;
4135 default:
4136 return 0;
4137 }
4138 }
4139 }
4140
4141 /* Returns non-zero if OP with operands in the vector ARGS could be
4142 a user-defined function. Errs on the side of pre-defined operators
4143 (i.e., result 0). */
4144
4145 static int
4146 possible_user_operator_p (enum exp_opcode op, struct value *args[])
4147 {
4148 struct type *type0 =
4149 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
4150 struct type *type1 =
4151 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
4152
4153 if (type0 == NULL)
4154 return 0;
4155
4156 switch (op)
4157 {
4158 default:
4159 return 0;
4160
4161 case BINOP_ADD:
4162 case BINOP_SUB:
4163 case BINOP_MUL:
4164 case BINOP_DIV:
4165 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4166
4167 case BINOP_REM:
4168 case BINOP_MOD:
4169 case BINOP_BITWISE_AND:
4170 case BINOP_BITWISE_IOR:
4171 case BINOP_BITWISE_XOR:
4172 return (!(integer_type_p (type0) && integer_type_p (type1)));
4173
4174 case BINOP_EQUAL:
4175 case BINOP_NOTEQUAL:
4176 case BINOP_LESS:
4177 case BINOP_GTR:
4178 case BINOP_LEQ:
4179 case BINOP_GEQ:
4180 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4181
4182 case BINOP_CONCAT:
4183 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4184
4185 case BINOP_EXP:
4186 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4187
4188 case UNOP_NEG:
4189 case UNOP_PLUS:
4190 case UNOP_LOGICAL_NOT:
4191 case UNOP_ABS:
4192 return (!numeric_type_p (type0));
4193
4194 }
4195 }
4196 \f
4197 /* Renaming */
4198
4199 /* NOTES:
4200
4201 1. In the following, we assume that a renaming type's name may
4202 have an ___XD suffix. It would be nice if this went away at some
4203 point.
4204 2. We handle both the (old) purely type-based representation of
4205 renamings and the (new) variable-based encoding. At some point,
4206 it is devoutly to be hoped that the former goes away
4207 (FIXME: hilfinger-2007-07-09).
4208 3. Subprogram renamings are not implemented, although the XRS
4209 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4210
4211 /* If SYM encodes a renaming,
4212
4213 <renaming> renames <renamed entity>,
4214
4215 sets *LEN to the length of the renamed entity's name,
4216 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4217 the string describing the subcomponent selected from the renamed
4218 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4219 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4220 are undefined). Otherwise, returns a value indicating the category
4221 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4222 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4223 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4224 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4225 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4226 may be NULL, in which case they are not assigned.
4227
4228 [Currently, however, GCC does not generate subprogram renamings.] */
4229
4230 enum ada_renaming_category
4231 ada_parse_renaming (struct symbol *sym,
4232 const char **renamed_entity, int *len,
4233 const char **renaming_expr)
4234 {
4235 enum ada_renaming_category kind;
4236 const char *info;
4237 const char *suffix;
4238
4239 if (sym == NULL)
4240 return ADA_NOT_RENAMING;
4241 switch (SYMBOL_CLASS (sym))
4242 {
4243 default:
4244 return ADA_NOT_RENAMING;
4245 case LOC_LOCAL:
4246 case LOC_STATIC:
4247 case LOC_COMPUTED:
4248 case LOC_OPTIMIZED_OUT:
4249 info = strstr (sym->linkage_name (), "___XR");
4250 if (info == NULL)
4251 return ADA_NOT_RENAMING;
4252 switch (info[5])
4253 {
4254 case '_':
4255 kind = ADA_OBJECT_RENAMING;
4256 info += 6;
4257 break;
4258 case 'E':
4259 kind = ADA_EXCEPTION_RENAMING;
4260 info += 7;
4261 break;
4262 case 'P':
4263 kind = ADA_PACKAGE_RENAMING;
4264 info += 7;
4265 break;
4266 case 'S':
4267 kind = ADA_SUBPROGRAM_RENAMING;
4268 info += 7;
4269 break;
4270 default:
4271 return ADA_NOT_RENAMING;
4272 }
4273 }
4274
4275 if (renamed_entity != NULL)
4276 *renamed_entity = info;
4277 suffix = strstr (info, "___XE");
4278 if (suffix == NULL || suffix == info)
4279 return ADA_NOT_RENAMING;
4280 if (len != NULL)
4281 *len = strlen (info) - strlen (suffix);
4282 suffix += 5;
4283 if (renaming_expr != NULL)
4284 *renaming_expr = suffix;
4285 return kind;
4286 }
4287
4288 /* Compute the value of the given RENAMING_SYM, which is expected to
4289 be a symbol encoding a renaming expression. BLOCK is the block
4290 used to evaluate the renaming. */
4291
4292 static struct value *
4293 ada_read_renaming_var_value (struct symbol *renaming_sym,
4294 const struct block *block)
4295 {
4296 const char *sym_name;
4297
4298 sym_name = renaming_sym->linkage_name ();
4299 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4300 return evaluate_expression (expr.get ());
4301 }
4302 \f
4303
4304 /* Evaluation: Function Calls */
4305
4306 /* Return an lvalue containing the value VAL. This is the identity on
4307 lvalues, and otherwise has the side-effect of allocating memory
4308 in the inferior where a copy of the value contents is copied. */
4309
4310 static struct value *
4311 ensure_lval (struct value *val)
4312 {
4313 if (VALUE_LVAL (val) == not_lval
4314 || VALUE_LVAL (val) == lval_internalvar)
4315 {
4316 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4317 const CORE_ADDR addr =
4318 value_as_long (value_allocate_space_in_inferior (len));
4319
4320 VALUE_LVAL (val) = lval_memory;
4321 set_value_address (val, addr);
4322 write_memory (addr, value_contents (val), len);
4323 }
4324
4325 return val;
4326 }
4327
4328 /* Given ARG, a value of type (pointer or reference to a)*
4329 structure/union, extract the component named NAME from the ultimate
4330 target structure/union and return it as a value with its
4331 appropriate type.
4332
4333 The routine searches for NAME among all members of the structure itself
4334 and (recursively) among all members of any wrapper members
4335 (e.g., '_parent').
4336
4337 If NO_ERR, then simply return NULL in case of error, rather than
4338 calling error. */
4339
4340 static struct value *
4341 ada_value_struct_elt (struct value *arg, const char *name, int no_err)
4342 {
4343 struct type *t, *t1;
4344 struct value *v;
4345 int check_tag;
4346
4347 v = NULL;
4348 t1 = t = ada_check_typedef (value_type (arg));
4349 if (t->code () == TYPE_CODE_REF)
4350 {
4351 t1 = TYPE_TARGET_TYPE (t);
4352 if (t1 == NULL)
4353 goto BadValue;
4354 t1 = ada_check_typedef (t1);
4355 if (t1->code () == TYPE_CODE_PTR)
4356 {
4357 arg = coerce_ref (arg);
4358 t = t1;
4359 }
4360 }
4361
4362 while (t->code () == TYPE_CODE_PTR)
4363 {
4364 t1 = TYPE_TARGET_TYPE (t);
4365 if (t1 == NULL)
4366 goto BadValue;
4367 t1 = ada_check_typedef (t1);
4368 if (t1->code () == TYPE_CODE_PTR)
4369 {
4370 arg = value_ind (arg);
4371 t = t1;
4372 }
4373 else
4374 break;
4375 }
4376
4377 if (t1->code () != TYPE_CODE_STRUCT && t1->code () != TYPE_CODE_UNION)
4378 goto BadValue;
4379
4380 if (t1 == t)
4381 v = ada_search_struct_field (name, arg, 0, t);
4382 else
4383 {
4384 int bit_offset, bit_size, byte_offset;
4385 struct type *field_type;
4386 CORE_ADDR address;
4387
4388 if (t->code () == TYPE_CODE_PTR)
4389 address = value_address (ada_value_ind (arg));
4390 else
4391 address = value_address (ada_coerce_ref (arg));
4392
4393 /* Check to see if this is a tagged type. We also need to handle
4394 the case where the type is a reference to a tagged type, but
4395 we have to be careful to exclude pointers to tagged types.
4396 The latter should be shown as usual (as a pointer), whereas
4397 a reference should mostly be transparent to the user. */
4398
4399 if (ada_is_tagged_type (t1, 0)
4400 || (t1->code () == TYPE_CODE_REF
4401 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
4402 {
4403 /* We first try to find the searched field in the current type.
4404 If not found then let's look in the fixed type. */
4405
4406 if (!find_struct_field (name, t1, 0,
4407 &field_type, &byte_offset, &bit_offset,
4408 &bit_size, NULL))
4409 check_tag = 1;
4410 else
4411 check_tag = 0;
4412 }
4413 else
4414 check_tag = 0;
4415
4416 /* Convert to fixed type in all cases, so that we have proper
4417 offsets to each field in unconstrained record types. */
4418 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
4419 address, NULL, check_tag);
4420
4421 /* Resolve the dynamic type as well. */
4422 arg = value_from_contents_and_address (t1, nullptr, address);
4423 t1 = value_type (arg);
4424
4425 if (find_struct_field (name, t1, 0,
4426 &field_type, &byte_offset, &bit_offset,
4427 &bit_size, NULL))
4428 {
4429 if (bit_size != 0)
4430 {
4431 if (t->code () == TYPE_CODE_REF)
4432 arg = ada_coerce_ref (arg);
4433 else
4434 arg = ada_value_ind (arg);
4435 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
4436 bit_offset, bit_size,
4437 field_type);
4438 }
4439 else
4440 v = value_at_lazy (field_type, address + byte_offset);
4441 }
4442 }
4443
4444 if (v != NULL || no_err)
4445 return v;
4446 else
4447 error (_("There is no member named %s."), name);
4448
4449 BadValue:
4450 if (no_err)
4451 return NULL;
4452 else
4453 error (_("Attempt to extract a component of "
4454 "a value that is not a record."));
4455 }
4456
4457 /* Return the value ACTUAL, converted to be an appropriate value for a
4458 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4459 allocating any necessary descriptors (fat pointers), or copies of
4460 values not residing in memory, updating it as needed. */
4461
4462 struct value *
4463 ada_convert_actual (struct value *actual, struct type *formal_type0)
4464 {
4465 struct type *actual_type = ada_check_typedef (value_type (actual));
4466 struct type *formal_type = ada_check_typedef (formal_type0);
4467 struct type *formal_target =
4468 formal_type->code () == TYPE_CODE_PTR
4469 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4470 struct type *actual_target =
4471 actual_type->code () == TYPE_CODE_PTR
4472 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4473
4474 if (ada_is_array_descriptor_type (formal_target)
4475 && actual_target->code () == TYPE_CODE_ARRAY)
4476 return make_array_descriptor (formal_type, actual);
4477 else if (formal_type->code () == TYPE_CODE_PTR
4478 || formal_type->code () == TYPE_CODE_REF)
4479 {
4480 struct value *result;
4481
4482 if (formal_target->code () == TYPE_CODE_ARRAY
4483 && ada_is_array_descriptor_type (actual_target))
4484 result = desc_data (actual);
4485 else if (formal_type->code () != TYPE_CODE_PTR)
4486 {
4487 if (VALUE_LVAL (actual) != lval_memory)
4488 {
4489 struct value *val;
4490
4491 actual_type = ada_check_typedef (value_type (actual));
4492 val = allocate_value (actual_type);
4493 memcpy ((char *) value_contents_raw (val),
4494 (char *) value_contents (actual),
4495 TYPE_LENGTH (actual_type));
4496 actual = ensure_lval (val);
4497 }
4498 result = value_addr (actual);
4499 }
4500 else
4501 return actual;
4502 return value_cast_pointers (formal_type, result, 0);
4503 }
4504 else if (actual_type->code () == TYPE_CODE_PTR)
4505 return ada_value_ind (actual);
4506 else if (ada_is_aligner_type (formal_type))
4507 {
4508 /* We need to turn this parameter into an aligner type
4509 as well. */
4510 struct value *aligner = allocate_value (formal_type);
4511 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4512
4513 value_assign_to_component (aligner, component, actual);
4514 return aligner;
4515 }
4516
4517 return actual;
4518 }
4519
4520 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4521 type TYPE. This is usually an inefficient no-op except on some targets
4522 (such as AVR) where the representation of a pointer and an address
4523 differs. */
4524
4525 static CORE_ADDR
4526 value_pointer (struct value *value, struct type *type)
4527 {
4528 struct gdbarch *gdbarch = get_type_arch (type);
4529 unsigned len = TYPE_LENGTH (type);
4530 gdb_byte *buf = (gdb_byte *) alloca (len);
4531 CORE_ADDR addr;
4532
4533 addr = value_address (value);
4534 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4535 addr = extract_unsigned_integer (buf, len, type_byte_order (type));
4536 return addr;
4537 }
4538
4539
4540 /* Push a descriptor of type TYPE for array value ARR on the stack at
4541 *SP, updating *SP to reflect the new descriptor. Return either
4542 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4543 to-descriptor type rather than a descriptor type), a struct value *
4544 representing a pointer to this descriptor. */
4545
4546 static struct value *
4547 make_array_descriptor (struct type *type, struct value *arr)
4548 {
4549 struct type *bounds_type = desc_bounds_type (type);
4550 struct type *desc_type = desc_base_type (type);
4551 struct value *descriptor = allocate_value (desc_type);
4552 struct value *bounds = allocate_value (bounds_type);
4553 int i;
4554
4555 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4556 i > 0; i -= 1)
4557 {
4558 modify_field (value_type (bounds), value_contents_writeable (bounds),
4559 ada_array_bound (arr, i, 0),
4560 desc_bound_bitpos (bounds_type, i, 0),
4561 desc_bound_bitsize (bounds_type, i, 0));
4562 modify_field (value_type (bounds), value_contents_writeable (bounds),
4563 ada_array_bound (arr, i, 1),
4564 desc_bound_bitpos (bounds_type, i, 1),
4565 desc_bound_bitsize (bounds_type, i, 1));
4566 }
4567
4568 bounds = ensure_lval (bounds);
4569
4570 modify_field (value_type (descriptor),
4571 value_contents_writeable (descriptor),
4572 value_pointer (ensure_lval (arr),
4573 desc_type->field (0).type ()),
4574 fat_pntr_data_bitpos (desc_type),
4575 fat_pntr_data_bitsize (desc_type));
4576
4577 modify_field (value_type (descriptor),
4578 value_contents_writeable (descriptor),
4579 value_pointer (bounds,
4580 desc_type->field (1).type ()),
4581 fat_pntr_bounds_bitpos (desc_type),
4582 fat_pntr_bounds_bitsize (desc_type));
4583
4584 descriptor = ensure_lval (descriptor);
4585
4586 if (type->code () == TYPE_CODE_PTR)
4587 return value_addr (descriptor);
4588 else
4589 return descriptor;
4590 }
4591 \f
4592 /* Symbol Cache Module */
4593
4594 /* Performance measurements made as of 2010-01-15 indicate that
4595 this cache does bring some noticeable improvements. Depending
4596 on the type of entity being printed, the cache can make it as much
4597 as an order of magnitude faster than without it.
4598
4599 The descriptive type DWARF extension has significantly reduced
4600 the need for this cache, at least when DWARF is being used. However,
4601 even in this case, some expensive name-based symbol searches are still
4602 sometimes necessary - to find an XVZ variable, mostly. */
4603
4604 /* Initialize the contents of SYM_CACHE. */
4605
4606 static void
4607 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4608 {
4609 obstack_init (&sym_cache->cache_space);
4610 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4611 }
4612
4613 /* Free the memory used by SYM_CACHE. */
4614
4615 static void
4616 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4617 {
4618 obstack_free (&sym_cache->cache_space, NULL);
4619 xfree (sym_cache);
4620 }
4621
4622 /* Return the symbol cache associated to the given program space PSPACE.
4623 If not allocated for this PSPACE yet, allocate and initialize one. */
4624
4625 static struct ada_symbol_cache *
4626 ada_get_symbol_cache (struct program_space *pspace)
4627 {
4628 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4629
4630 if (pspace_data->sym_cache == NULL)
4631 {
4632 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4633 ada_init_symbol_cache (pspace_data->sym_cache);
4634 }
4635
4636 return pspace_data->sym_cache;
4637 }
4638
4639 /* Clear all entries from the symbol cache. */
4640
4641 static void
4642 ada_clear_symbol_cache (void)
4643 {
4644 struct ada_symbol_cache *sym_cache
4645 = ada_get_symbol_cache (current_program_space);
4646
4647 obstack_free (&sym_cache->cache_space, NULL);
4648 ada_init_symbol_cache (sym_cache);
4649 }
4650
4651 /* Search our cache for an entry matching NAME and DOMAIN.
4652 Return it if found, or NULL otherwise. */
4653
4654 static struct cache_entry **
4655 find_entry (const char *name, domain_enum domain)
4656 {
4657 struct ada_symbol_cache *sym_cache
4658 = ada_get_symbol_cache (current_program_space);
4659 int h = msymbol_hash (name) % HASH_SIZE;
4660 struct cache_entry **e;
4661
4662 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4663 {
4664 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4665 return e;
4666 }
4667 return NULL;
4668 }
4669
4670 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4671 Return 1 if found, 0 otherwise.
4672
4673 If an entry was found and SYM is not NULL, set *SYM to the entry's
4674 SYM. Same principle for BLOCK if not NULL. */
4675
4676 static int
4677 lookup_cached_symbol (const char *name, domain_enum domain,
4678 struct symbol **sym, const struct block **block)
4679 {
4680 struct cache_entry **e = find_entry (name, domain);
4681
4682 if (e == NULL)
4683 return 0;
4684 if (sym != NULL)
4685 *sym = (*e)->sym;
4686 if (block != NULL)
4687 *block = (*e)->block;
4688 return 1;
4689 }
4690
4691 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4692 in domain DOMAIN, save this result in our symbol cache. */
4693
4694 static void
4695 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4696 const struct block *block)
4697 {
4698 struct ada_symbol_cache *sym_cache
4699 = ada_get_symbol_cache (current_program_space);
4700 int h;
4701 struct cache_entry *e;
4702
4703 /* Symbols for builtin types don't have a block.
4704 For now don't cache such symbols. */
4705 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4706 return;
4707
4708 /* If the symbol is a local symbol, then do not cache it, as a search
4709 for that symbol depends on the context. To determine whether
4710 the symbol is local or not, we check the block where we found it
4711 against the global and static blocks of its associated symtab. */
4712 if (sym
4713 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4714 GLOBAL_BLOCK) != block
4715 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4716 STATIC_BLOCK) != block)
4717 return;
4718
4719 h = msymbol_hash (name) % HASH_SIZE;
4720 e = XOBNEW (&sym_cache->cache_space, cache_entry);
4721 e->next = sym_cache->root[h];
4722 sym_cache->root[h] = e;
4723 e->name = obstack_strdup (&sym_cache->cache_space, name);
4724 e->sym = sym;
4725 e->domain = domain;
4726 e->block = block;
4727 }
4728 \f
4729 /* Symbol Lookup */
4730
4731 /* Return the symbol name match type that should be used used when
4732 searching for all symbols matching LOOKUP_NAME.
4733
4734 LOOKUP_NAME is expected to be a symbol name after transformation
4735 for Ada lookups. */
4736
4737 static symbol_name_match_type
4738 name_match_type_from_name (const char *lookup_name)
4739 {
4740 return (strstr (lookup_name, "__") == NULL
4741 ? symbol_name_match_type::WILD
4742 : symbol_name_match_type::FULL);
4743 }
4744
4745 /* Return the result of a standard (literal, C-like) lookup of NAME in
4746 given DOMAIN, visible from lexical block BLOCK. */
4747
4748 static struct symbol *
4749 standard_lookup (const char *name, const struct block *block,
4750 domain_enum domain)
4751 {
4752 /* Initialize it just to avoid a GCC false warning. */
4753 struct block_symbol sym = {};
4754
4755 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4756 return sym.symbol;
4757 ada_lookup_encoded_symbol (name, block, domain, &sym);
4758 cache_symbol (name, domain, sym.symbol, sym.block);
4759 return sym.symbol;
4760 }
4761
4762
4763 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4764 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4765 since they contend in overloading in the same way. */
4766 static int
4767 is_nonfunction (struct block_symbol syms[], int n)
4768 {
4769 int i;
4770
4771 for (i = 0; i < n; i += 1)
4772 if (SYMBOL_TYPE (syms[i].symbol)->code () != TYPE_CODE_FUNC
4773 && (SYMBOL_TYPE (syms[i].symbol)->code () != TYPE_CODE_ENUM
4774 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
4775 return 1;
4776
4777 return 0;
4778 }
4779
4780 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4781 struct types. Otherwise, they may not. */
4782
4783 static int
4784 equiv_types (struct type *type0, struct type *type1)
4785 {
4786 if (type0 == type1)
4787 return 1;
4788 if (type0 == NULL || type1 == NULL
4789 || type0->code () != type1->code ())
4790 return 0;
4791 if ((type0->code () == TYPE_CODE_STRUCT
4792 || type0->code () == TYPE_CODE_ENUM)
4793 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4794 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4795 return 1;
4796
4797 return 0;
4798 }
4799
4800 /* True iff SYM0 represents the same entity as SYM1, or one that is
4801 no more defined than that of SYM1. */
4802
4803 static int
4804 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4805 {
4806 if (sym0 == sym1)
4807 return 1;
4808 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4809 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4810 return 0;
4811
4812 switch (SYMBOL_CLASS (sym0))
4813 {
4814 case LOC_UNDEF:
4815 return 1;
4816 case LOC_TYPEDEF:
4817 {
4818 struct type *type0 = SYMBOL_TYPE (sym0);
4819 struct type *type1 = SYMBOL_TYPE (sym1);
4820 const char *name0 = sym0->linkage_name ();
4821 const char *name1 = sym1->linkage_name ();
4822 int len0 = strlen (name0);
4823
4824 return
4825 type0->code () == type1->code ()
4826 && (equiv_types (type0, type1)
4827 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4828 && startswith (name1 + len0, "___XV")));
4829 }
4830 case LOC_CONST:
4831 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4832 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4833
4834 case LOC_STATIC:
4835 {
4836 const char *name0 = sym0->linkage_name ();
4837 const char *name1 = sym1->linkage_name ();
4838 return (strcmp (name0, name1) == 0
4839 && SYMBOL_VALUE_ADDRESS (sym0) == SYMBOL_VALUE_ADDRESS (sym1));
4840 }
4841
4842 default:
4843 return 0;
4844 }
4845 }
4846
4847 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4848 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4849
4850 static void
4851 add_defn_to_vec (struct obstack *obstackp,
4852 struct symbol *sym,
4853 const struct block *block)
4854 {
4855 int i;
4856 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
4857
4858 /* Do not try to complete stub types, as the debugger is probably
4859 already scanning all symbols matching a certain name at the
4860 time when this function is called. Trying to replace the stub
4861 type by its associated full type will cause us to restart a scan
4862 which may lead to an infinite recursion. Instead, the client
4863 collecting the matching symbols will end up collecting several
4864 matches, with at least one of them complete. It can then filter
4865 out the stub ones if needed. */
4866
4867 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4868 {
4869 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4870 return;
4871 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4872 {
4873 prevDefns[i].symbol = sym;
4874 prevDefns[i].block = block;
4875 return;
4876 }
4877 }
4878
4879 {
4880 struct block_symbol info;
4881
4882 info.symbol = sym;
4883 info.block = block;
4884 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4885 }
4886 }
4887
4888 /* Number of block_symbol structures currently collected in current vector in
4889 OBSTACKP. */
4890
4891 static int
4892 num_defns_collected (struct obstack *obstackp)
4893 {
4894 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4895 }
4896
4897 /* Vector of block_symbol structures currently collected in current vector in
4898 OBSTACKP. If FINISH, close off the vector and return its final address. */
4899
4900 static struct block_symbol *
4901 defns_collected (struct obstack *obstackp, int finish)
4902 {
4903 if (finish)
4904 return (struct block_symbol *) obstack_finish (obstackp);
4905 else
4906 return (struct block_symbol *) obstack_base (obstackp);
4907 }
4908
4909 /* Return a bound minimal symbol matching NAME according to Ada
4910 decoding rules. Returns an invalid symbol if there is no such
4911 minimal symbol. Names prefixed with "standard__" are handled
4912 specially: "standard__" is first stripped off, and only static and
4913 global symbols are searched. */
4914
4915 struct bound_minimal_symbol
4916 ada_lookup_simple_minsym (const char *name)
4917 {
4918 struct bound_minimal_symbol result;
4919
4920 memset (&result, 0, sizeof (result));
4921
4922 symbol_name_match_type match_type = name_match_type_from_name (name);
4923 lookup_name_info lookup_name (name, match_type);
4924
4925 symbol_name_matcher_ftype *match_name
4926 = ada_get_symbol_name_matcher (lookup_name);
4927
4928 for (objfile *objfile : current_program_space->objfiles ())
4929 {
4930 for (minimal_symbol *msymbol : objfile->msymbols ())
4931 {
4932 if (match_name (msymbol->linkage_name (), lookup_name, NULL)
4933 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4934 {
4935 result.minsym = msymbol;
4936 result.objfile = objfile;
4937 break;
4938 }
4939 }
4940 }
4941
4942 return result;
4943 }
4944
4945 /* For all subprograms that statically enclose the subprogram of the
4946 selected frame, add symbols matching identifier NAME in DOMAIN
4947 and their blocks to the list of data in OBSTACKP, as for
4948 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4949 with a wildcard prefix. */
4950
4951 static void
4952 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4953 const lookup_name_info &lookup_name,
4954 domain_enum domain)
4955 {
4956 }
4957
4958 /* True if TYPE is definitely an artificial type supplied to a symbol
4959 for which no debugging information was given in the symbol file. */
4960
4961 static int
4962 is_nondebugging_type (struct type *type)
4963 {
4964 const char *name = ada_type_name (type);
4965
4966 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4967 }
4968
4969 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4970 that are deemed "identical" for practical purposes.
4971
4972 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4973 types and that their number of enumerals is identical (in other
4974 words, type1->num_fields () == type2->num_fields ()). */
4975
4976 static int
4977 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4978 {
4979 int i;
4980
4981 /* The heuristic we use here is fairly conservative. We consider
4982 that 2 enumerate types are identical if they have the same
4983 number of enumerals and that all enumerals have the same
4984 underlying value and name. */
4985
4986 /* All enums in the type should have an identical underlying value. */
4987 for (i = 0; i < type1->num_fields (); i++)
4988 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
4989 return 0;
4990
4991 /* All enumerals should also have the same name (modulo any numerical
4992 suffix). */
4993 for (i = 0; i < type1->num_fields (); i++)
4994 {
4995 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4996 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4997 int len_1 = strlen (name_1);
4998 int len_2 = strlen (name_2);
4999
5000 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
5001 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
5002 if (len_1 != len_2
5003 || strncmp (TYPE_FIELD_NAME (type1, i),
5004 TYPE_FIELD_NAME (type2, i),
5005 len_1) != 0)
5006 return 0;
5007 }
5008
5009 return 1;
5010 }
5011
5012 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
5013 that are deemed "identical" for practical purposes. Sometimes,
5014 enumerals are not strictly identical, but their types are so similar
5015 that they can be considered identical.
5016
5017 For instance, consider the following code:
5018
5019 type Color is (Black, Red, Green, Blue, White);
5020 type RGB_Color is new Color range Red .. Blue;
5021
5022 Type RGB_Color is a subrange of an implicit type which is a copy
5023 of type Color. If we call that implicit type RGB_ColorB ("B" is
5024 for "Base Type"), then type RGB_ColorB is a copy of type Color.
5025 As a result, when an expression references any of the enumeral
5026 by name (Eg. "print green"), the expression is technically
5027 ambiguous and the user should be asked to disambiguate. But
5028 doing so would only hinder the user, since it wouldn't matter
5029 what choice he makes, the outcome would always be the same.
5030 So, for practical purposes, we consider them as the same. */
5031
5032 static int
5033 symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
5034 {
5035 int i;
5036
5037 /* Before performing a thorough comparison check of each type,
5038 we perform a series of inexpensive checks. We expect that these
5039 checks will quickly fail in the vast majority of cases, and thus
5040 help prevent the unnecessary use of a more expensive comparison.
5041 Said comparison also expects us to make some of these checks
5042 (see ada_identical_enum_types_p). */
5043
5044 /* Quick check: All symbols should have an enum type. */
5045 for (i = 0; i < syms.size (); i++)
5046 if (SYMBOL_TYPE (syms[i].symbol)->code () != TYPE_CODE_ENUM)
5047 return 0;
5048
5049 /* Quick check: They should all have the same value. */
5050 for (i = 1; i < syms.size (); i++)
5051 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
5052 return 0;
5053
5054 /* Quick check: They should all have the same number of enumerals. */
5055 for (i = 1; i < syms.size (); i++)
5056 if (SYMBOL_TYPE (syms[i].symbol)->num_fields ()
5057 != SYMBOL_TYPE (syms[0].symbol)->num_fields ())
5058 return 0;
5059
5060 /* All the sanity checks passed, so we might have a set of
5061 identical enumeration types. Perform a more complete
5062 comparison of the type of each symbol. */
5063 for (i = 1; i < syms.size (); i++)
5064 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5065 SYMBOL_TYPE (syms[0].symbol)))
5066 return 0;
5067
5068 return 1;
5069 }
5070
5071 /* Remove any non-debugging symbols in SYMS that definitely
5072 duplicate other symbols in the list (The only case I know of where
5073 this happens is when object files containing stabs-in-ecoff are
5074 linked with files containing ordinary ecoff debugging symbols (or no
5075 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5076 Returns the number of items in the modified list. */
5077
5078 static int
5079 remove_extra_symbols (std::vector<struct block_symbol> *syms)
5080 {
5081 int i, j;
5082
5083 /* We should never be called with less than 2 symbols, as there
5084 cannot be any extra symbol in that case. But it's easy to
5085 handle, since we have nothing to do in that case. */
5086 if (syms->size () < 2)
5087 return syms->size ();
5088
5089 i = 0;
5090 while (i < syms->size ())
5091 {
5092 int remove_p = 0;
5093
5094 /* If two symbols have the same name and one of them is a stub type,
5095 the get rid of the stub. */
5096
5097 if (SYMBOL_TYPE ((*syms)[i].symbol)->is_stub ()
5098 && (*syms)[i].symbol->linkage_name () != NULL)
5099 {
5100 for (j = 0; j < syms->size (); j++)
5101 {
5102 if (j != i
5103 && !SYMBOL_TYPE ((*syms)[j].symbol)->is_stub ()
5104 && (*syms)[j].symbol->linkage_name () != NULL
5105 && strcmp ((*syms)[i].symbol->linkage_name (),
5106 (*syms)[j].symbol->linkage_name ()) == 0)
5107 remove_p = 1;
5108 }
5109 }
5110
5111 /* Two symbols with the same name, same class and same address
5112 should be identical. */
5113
5114 else if ((*syms)[i].symbol->linkage_name () != NULL
5115 && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC
5116 && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol)))
5117 {
5118 for (j = 0; j < syms->size (); j += 1)
5119 {
5120 if (i != j
5121 && (*syms)[j].symbol->linkage_name () != NULL
5122 && strcmp ((*syms)[i].symbol->linkage_name (),
5123 (*syms)[j].symbol->linkage_name ()) == 0
5124 && SYMBOL_CLASS ((*syms)[i].symbol)
5125 == SYMBOL_CLASS ((*syms)[j].symbol)
5126 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
5127 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
5128 remove_p = 1;
5129 }
5130 }
5131
5132 if (remove_p)
5133 syms->erase (syms->begin () + i);
5134 else
5135 i += 1;
5136 }
5137
5138 /* If all the remaining symbols are identical enumerals, then
5139 just keep the first one and discard the rest.
5140
5141 Unlike what we did previously, we do not discard any entry
5142 unless they are ALL identical. This is because the symbol
5143 comparison is not a strict comparison, but rather a practical
5144 comparison. If all symbols are considered identical, then
5145 we can just go ahead and use the first one and discard the rest.
5146 But if we cannot reduce the list to a single element, we have
5147 to ask the user to disambiguate anyways. And if we have to
5148 present a multiple-choice menu, it's less confusing if the list
5149 isn't missing some choices that were identical and yet distinct. */
5150 if (symbols_are_identical_enums (*syms))
5151 syms->resize (1);
5152
5153 return syms->size ();
5154 }
5155
5156 /* Given a type that corresponds to a renaming entity, use the type name
5157 to extract the scope (package name or function name, fully qualified,
5158 and following the GNAT encoding convention) where this renaming has been
5159 defined. */
5160
5161 static std::string
5162 xget_renaming_scope (struct type *renaming_type)
5163 {
5164 /* The renaming types adhere to the following convention:
5165 <scope>__<rename>___<XR extension>.
5166 So, to extract the scope, we search for the "___XR" extension,
5167 and then backtrack until we find the first "__". */
5168
5169 const char *name = renaming_type->name ();
5170 const char *suffix = strstr (name, "___XR");
5171 const char *last;
5172
5173 /* Now, backtrack a bit until we find the first "__". Start looking
5174 at suffix - 3, as the <rename> part is at least one character long. */
5175
5176 for (last = suffix - 3; last > name; last--)
5177 if (last[0] == '_' && last[1] == '_')
5178 break;
5179
5180 /* Make a copy of scope and return it. */
5181 return std::string (name, last);
5182 }
5183
5184 /* Return nonzero if NAME corresponds to a package name. */
5185
5186 static int
5187 is_package_name (const char *name)
5188 {
5189 /* Here, We take advantage of the fact that no symbols are generated
5190 for packages, while symbols are generated for each function.
5191 So the condition for NAME represent a package becomes equivalent
5192 to NAME not existing in our list of symbols. There is only one
5193 small complication with library-level functions (see below). */
5194
5195 /* If it is a function that has not been defined at library level,
5196 then we should be able to look it up in the symbols. */
5197 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5198 return 0;
5199
5200 /* Library-level function names start with "_ada_". See if function
5201 "_ada_" followed by NAME can be found. */
5202
5203 /* Do a quick check that NAME does not contain "__", since library-level
5204 functions names cannot contain "__" in them. */
5205 if (strstr (name, "__") != NULL)
5206 return 0;
5207
5208 std::string fun_name = string_printf ("_ada_%s", name);
5209
5210 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
5211 }
5212
5213 /* Return nonzero if SYM corresponds to a renaming entity that is
5214 not visible from FUNCTION_NAME. */
5215
5216 static int
5217 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
5218 {
5219 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5220 return 0;
5221
5222 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
5223
5224 /* If the rename has been defined in a package, then it is visible. */
5225 if (is_package_name (scope.c_str ()))
5226 return 0;
5227
5228 /* Check that the rename is in the current function scope by checking
5229 that its name starts with SCOPE. */
5230
5231 /* If the function name starts with "_ada_", it means that it is
5232 a library-level function. Strip this prefix before doing the
5233 comparison, as the encoding for the renaming does not contain
5234 this prefix. */
5235 if (startswith (function_name, "_ada_"))
5236 function_name += 5;
5237
5238 return !startswith (function_name, scope.c_str ());
5239 }
5240
5241 /* Remove entries from SYMS that corresponds to a renaming entity that
5242 is not visible from the function associated with CURRENT_BLOCK or
5243 that is superfluous due to the presence of more specific renaming
5244 information. Places surviving symbols in the initial entries of
5245 SYMS and returns the number of surviving symbols.
5246
5247 Rationale:
5248 First, in cases where an object renaming is implemented as a
5249 reference variable, GNAT may produce both the actual reference
5250 variable and the renaming encoding. In this case, we discard the
5251 latter.
5252
5253 Second, GNAT emits a type following a specified encoding for each renaming
5254 entity. Unfortunately, STABS currently does not support the definition
5255 of types that are local to a given lexical block, so all renamings types
5256 are emitted at library level. As a consequence, if an application
5257 contains two renaming entities using the same name, and a user tries to
5258 print the value of one of these entities, the result of the ada symbol
5259 lookup will also contain the wrong renaming type.
5260
5261 This function partially covers for this limitation by attempting to
5262 remove from the SYMS list renaming symbols that should be visible
5263 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5264 method with the current information available. The implementation
5265 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5266
5267 - When the user tries to print a rename in a function while there
5268 is another rename entity defined in a package: Normally, the
5269 rename in the function has precedence over the rename in the
5270 package, so the latter should be removed from the list. This is
5271 currently not the case.
5272
5273 - This function will incorrectly remove valid renames if
5274 the CURRENT_BLOCK corresponds to a function which symbol name
5275 has been changed by an "Export" pragma. As a consequence,
5276 the user will be unable to print such rename entities. */
5277
5278 static int
5279 remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
5280 const struct block *current_block)
5281 {
5282 struct symbol *current_function;
5283 const char *current_function_name;
5284 int i;
5285 int is_new_style_renaming;
5286
5287 /* If there is both a renaming foo___XR... encoded as a variable and
5288 a simple variable foo in the same block, discard the latter.
5289 First, zero out such symbols, then compress. */
5290 is_new_style_renaming = 0;
5291 for (i = 0; i < syms->size (); i += 1)
5292 {
5293 struct symbol *sym = (*syms)[i].symbol;
5294 const struct block *block = (*syms)[i].block;
5295 const char *name;
5296 const char *suffix;
5297
5298 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5299 continue;
5300 name = sym->linkage_name ();
5301 suffix = strstr (name, "___XR");
5302
5303 if (suffix != NULL)
5304 {
5305 int name_len = suffix - name;
5306 int j;
5307
5308 is_new_style_renaming = 1;
5309 for (j = 0; j < syms->size (); j += 1)
5310 if (i != j && (*syms)[j].symbol != NULL
5311 && strncmp (name, (*syms)[j].symbol->linkage_name (),
5312 name_len) == 0
5313 && block == (*syms)[j].block)
5314 (*syms)[j].symbol = NULL;
5315 }
5316 }
5317 if (is_new_style_renaming)
5318 {
5319 int j, k;
5320
5321 for (j = k = 0; j < syms->size (); j += 1)
5322 if ((*syms)[j].symbol != NULL)
5323 {
5324 (*syms)[k] = (*syms)[j];
5325 k += 1;
5326 }
5327 return k;
5328 }
5329
5330 /* Extract the function name associated to CURRENT_BLOCK.
5331 Abort if unable to do so. */
5332
5333 if (current_block == NULL)
5334 return syms->size ();
5335
5336 current_function = block_linkage_function (current_block);
5337 if (current_function == NULL)
5338 return syms->size ();
5339
5340 current_function_name = current_function->linkage_name ();
5341 if (current_function_name == NULL)
5342 return syms->size ();
5343
5344 /* Check each of the symbols, and remove it from the list if it is
5345 a type corresponding to a renaming that is out of the scope of
5346 the current block. */
5347
5348 i = 0;
5349 while (i < syms->size ())
5350 {
5351 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
5352 == ADA_OBJECT_RENAMING
5353 && old_renaming_is_invisible ((*syms)[i].symbol,
5354 current_function_name))
5355 syms->erase (syms->begin () + i);
5356 else
5357 i += 1;
5358 }
5359
5360 return syms->size ();
5361 }
5362
5363 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5364 whose name and domain match NAME and DOMAIN respectively.
5365 If no match was found, then extend the search to "enclosing"
5366 routines (in other words, if we're inside a nested function,
5367 search the symbols defined inside the enclosing functions).
5368 If WILD_MATCH_P is nonzero, perform the naming matching in
5369 "wild" mode (see function "wild_match" for more info).
5370
5371 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5372
5373 static void
5374 ada_add_local_symbols (struct obstack *obstackp,
5375 const lookup_name_info &lookup_name,
5376 const struct block *block, domain_enum domain)
5377 {
5378 int block_depth = 0;
5379
5380 while (block != NULL)
5381 {
5382 block_depth += 1;
5383 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5384
5385 /* If we found a non-function match, assume that's the one. */
5386 if (is_nonfunction (defns_collected (obstackp, 0),
5387 num_defns_collected (obstackp)))
5388 return;
5389
5390 block = BLOCK_SUPERBLOCK (block);
5391 }
5392
5393 /* If no luck so far, try to find NAME as a local symbol in some lexically
5394 enclosing subprogram. */
5395 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5396 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
5397 }
5398
5399 /* An object of this type is used as the user_data argument when
5400 calling the map_matching_symbols method. */
5401
5402 struct match_data
5403 {
5404 struct objfile *objfile;
5405 struct obstack *obstackp;
5406 struct symbol *arg_sym;
5407 int found_sym;
5408 };
5409
5410 /* A callback for add_nonlocal_symbols that adds symbol, found in BSYM,
5411 to a list of symbols. DATA is a pointer to a struct match_data *
5412 containing the obstack that collects the symbol list, the file that SYM
5413 must come from, a flag indicating whether a non-argument symbol has
5414 been found in the current block, and the last argument symbol
5415 passed in SYM within the current block (if any). When SYM is null,
5416 marking the end of a block, the argument symbol is added if no
5417 other has been found. */
5418
5419 static bool
5420 aux_add_nonlocal_symbols (struct block_symbol *bsym,
5421 struct match_data *data)
5422 {
5423 const struct block *block = bsym->block;
5424 struct symbol *sym = bsym->symbol;
5425
5426 if (sym == NULL)
5427 {
5428 if (!data->found_sym && data->arg_sym != NULL)
5429 add_defn_to_vec (data->obstackp,
5430 fixup_symbol_section (data->arg_sym, data->objfile),
5431 block);
5432 data->found_sym = 0;
5433 data->arg_sym = NULL;
5434 }
5435 else
5436 {
5437 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5438 return true;
5439 else if (SYMBOL_IS_ARGUMENT (sym))
5440 data->arg_sym = sym;
5441 else
5442 {
5443 data->found_sym = 1;
5444 add_defn_to_vec (data->obstackp,
5445 fixup_symbol_section (sym, data->objfile),
5446 block);
5447 }
5448 }
5449 return true;
5450 }
5451
5452 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5453 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5454 symbols to OBSTACKP. Return whether we found such symbols. */
5455
5456 static int
5457 ada_add_block_renamings (struct obstack *obstackp,
5458 const struct block *block,
5459 const lookup_name_info &lookup_name,
5460 domain_enum domain)
5461 {
5462 struct using_direct *renaming;
5463 int defns_mark = num_defns_collected (obstackp);
5464
5465 symbol_name_matcher_ftype *name_match
5466 = ada_get_symbol_name_matcher (lookup_name);
5467
5468 for (renaming = block_using (block);
5469 renaming != NULL;
5470 renaming = renaming->next)
5471 {
5472 const char *r_name;
5473
5474 /* Avoid infinite recursions: skip this renaming if we are actually
5475 already traversing it.
5476
5477 Currently, symbol lookup in Ada don't use the namespace machinery from
5478 C++/Fortran support: skip namespace imports that use them. */
5479 if (renaming->searched
5480 || (renaming->import_src != NULL
5481 && renaming->import_src[0] != '\0')
5482 || (renaming->import_dest != NULL
5483 && renaming->import_dest[0] != '\0'))
5484 continue;
5485 renaming->searched = 1;
5486
5487 /* TODO: here, we perform another name-based symbol lookup, which can
5488 pull its own multiple overloads. In theory, we should be able to do
5489 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5490 not a simple name. But in order to do this, we would need to enhance
5491 the DWARF reader to associate a symbol to this renaming, instead of a
5492 name. So, for now, we do something simpler: re-use the C++/Fortran
5493 namespace machinery. */
5494 r_name = (renaming->alias != NULL
5495 ? renaming->alias
5496 : renaming->declaration);
5497 if (name_match (r_name, lookup_name, NULL))
5498 {
5499 lookup_name_info decl_lookup_name (renaming->declaration,
5500 lookup_name.match_type ());
5501 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5502 1, NULL);
5503 }
5504 renaming->searched = 0;
5505 }
5506 return num_defns_collected (obstackp) != defns_mark;
5507 }
5508
5509 /* Implements compare_names, but only applying the comparision using
5510 the given CASING. */
5511
5512 static int
5513 compare_names_with_case (const char *string1, const char *string2,
5514 enum case_sensitivity casing)
5515 {
5516 while (*string1 != '\0' && *string2 != '\0')
5517 {
5518 char c1, c2;
5519
5520 if (isspace (*string1) || isspace (*string2))
5521 return strcmp_iw_ordered (string1, string2);
5522
5523 if (casing == case_sensitive_off)
5524 {
5525 c1 = tolower (*string1);
5526 c2 = tolower (*string2);
5527 }
5528 else
5529 {
5530 c1 = *string1;
5531 c2 = *string2;
5532 }
5533 if (c1 != c2)
5534 break;
5535
5536 string1 += 1;
5537 string2 += 1;
5538 }
5539
5540 switch (*string1)
5541 {
5542 case '(':
5543 return strcmp_iw_ordered (string1, string2);
5544 case '_':
5545 if (*string2 == '\0')
5546 {
5547 if (is_name_suffix (string1))
5548 return 0;
5549 else
5550 return 1;
5551 }
5552 /* FALLTHROUGH */
5553 default:
5554 if (*string2 == '(')
5555 return strcmp_iw_ordered (string1, string2);
5556 else
5557 {
5558 if (casing == case_sensitive_off)
5559 return tolower (*string1) - tolower (*string2);
5560 else
5561 return *string1 - *string2;
5562 }
5563 }
5564 }
5565
5566 /* Compare STRING1 to STRING2, with results as for strcmp.
5567 Compatible with strcmp_iw_ordered in that...
5568
5569 strcmp_iw_ordered (STRING1, STRING2) <= 0
5570
5571 ... implies...
5572
5573 compare_names (STRING1, STRING2) <= 0
5574
5575 (they may differ as to what symbols compare equal). */
5576
5577 static int
5578 compare_names (const char *string1, const char *string2)
5579 {
5580 int result;
5581
5582 /* Similar to what strcmp_iw_ordered does, we need to perform
5583 a case-insensitive comparison first, and only resort to
5584 a second, case-sensitive, comparison if the first one was
5585 not sufficient to differentiate the two strings. */
5586
5587 result = compare_names_with_case (string1, string2, case_sensitive_off);
5588 if (result == 0)
5589 result = compare_names_with_case (string1, string2, case_sensitive_on);
5590
5591 return result;
5592 }
5593
5594 /* Convenience function to get at the Ada encoded lookup name for
5595 LOOKUP_NAME, as a C string. */
5596
5597 static const char *
5598 ada_lookup_name (const lookup_name_info &lookup_name)
5599 {
5600 return lookup_name.ada ().lookup_name ().c_str ();
5601 }
5602
5603 /* Add to OBSTACKP all non-local symbols whose name and domain match
5604 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5605 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5606 symbols otherwise. */
5607
5608 static void
5609 add_nonlocal_symbols (struct obstack *obstackp,
5610 const lookup_name_info &lookup_name,
5611 domain_enum domain, int global)
5612 {
5613 struct match_data data;
5614
5615 memset (&data, 0, sizeof data);
5616 data.obstackp = obstackp;
5617
5618 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5619
5620 auto callback = [&] (struct block_symbol *bsym)
5621 {
5622 return aux_add_nonlocal_symbols (bsym, &data);
5623 };
5624
5625 for (objfile *objfile : current_program_space->objfiles ())
5626 {
5627 data.objfile = objfile;
5628
5629 objfile->sf->qf->map_matching_symbols (objfile, lookup_name,
5630 domain, global, callback,
5631 (is_wild_match
5632 ? NULL : compare_names));
5633
5634 for (compunit_symtab *cu : objfile->compunits ())
5635 {
5636 const struct block *global_block
5637 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5638
5639 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5640 domain))
5641 data.found_sym = 1;
5642 }
5643 }
5644
5645 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5646 {
5647 const char *name = ada_lookup_name (lookup_name);
5648 std::string bracket_name = std::string ("<_ada_") + name + '>';
5649 lookup_name_info name1 (bracket_name, symbol_name_match_type::FULL);
5650
5651 for (objfile *objfile : current_program_space->objfiles ())
5652 {
5653 data.objfile = objfile;
5654 objfile->sf->qf->map_matching_symbols (objfile, name1,
5655 domain, global, callback,
5656 compare_names);
5657 }
5658 }
5659 }
5660
5661 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5662 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5663 returning the number of matches. Add these to OBSTACKP.
5664
5665 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5666 symbol match within the nest of blocks whose innermost member is BLOCK,
5667 is the one match returned (no other matches in that or
5668 enclosing blocks is returned). If there are any matches in or
5669 surrounding BLOCK, then these alone are returned.
5670
5671 Names prefixed with "standard__" are handled specially:
5672 "standard__" is first stripped off (by the lookup_name
5673 constructor), and only static and global symbols are searched.
5674
5675 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5676 to lookup global symbols. */
5677
5678 static void
5679 ada_add_all_symbols (struct obstack *obstackp,
5680 const struct block *block,
5681 const lookup_name_info &lookup_name,
5682 domain_enum domain,
5683 int full_search,
5684 int *made_global_lookup_p)
5685 {
5686 struct symbol *sym;
5687
5688 if (made_global_lookup_p)
5689 *made_global_lookup_p = 0;
5690
5691 /* Special case: If the user specifies a symbol name inside package
5692 Standard, do a non-wild matching of the symbol name without
5693 the "standard__" prefix. This was primarily introduced in order
5694 to allow the user to specifically access the standard exceptions
5695 using, for instance, Standard.Constraint_Error when Constraint_Error
5696 is ambiguous (due to the user defining its own Constraint_Error
5697 entity inside its program). */
5698 if (lookup_name.ada ().standard_p ())
5699 block = NULL;
5700
5701 /* Check the non-global symbols. If we have ANY match, then we're done. */
5702
5703 if (block != NULL)
5704 {
5705 if (full_search)
5706 ada_add_local_symbols (obstackp, lookup_name, block, domain);
5707 else
5708 {
5709 /* In the !full_search case we're are being called by
5710 iterate_over_symbols, and we don't want to search
5711 superblocks. */
5712 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5713 }
5714 if (num_defns_collected (obstackp) > 0 || !full_search)
5715 return;
5716 }
5717
5718 /* No non-global symbols found. Check our cache to see if we have
5719 already performed this search before. If we have, then return
5720 the same result. */
5721
5722 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5723 domain, &sym, &block))
5724 {
5725 if (sym != NULL)
5726 add_defn_to_vec (obstackp, sym, block);
5727 return;
5728 }
5729
5730 if (made_global_lookup_p)
5731 *made_global_lookup_p = 1;
5732
5733 /* Search symbols from all global blocks. */
5734
5735 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
5736
5737 /* Now add symbols from all per-file blocks if we've gotten no hits
5738 (not strictly correct, but perhaps better than an error). */
5739
5740 if (num_defns_collected (obstackp) == 0)
5741 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
5742 }
5743
5744 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5745 is non-zero, enclosing scope and in global scopes, returning the number of
5746 matches.
5747 Fills *RESULTS with (SYM,BLOCK) tuples, indicating the symbols
5748 found and the blocks and symbol tables (if any) in which they were
5749 found.
5750
5751 When full_search is non-zero, any non-function/non-enumeral
5752 symbol match within the nest of blocks whose innermost member is BLOCK,
5753 is the one match returned (no other matches in that or
5754 enclosing blocks is returned). If there are any matches in or
5755 surrounding BLOCK, then these alone are returned.
5756
5757 Names prefixed with "standard__" are handled specially: "standard__"
5758 is first stripped off, and only static and global symbols are searched. */
5759
5760 static int
5761 ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5762 const struct block *block,
5763 domain_enum domain,
5764 std::vector<struct block_symbol> *results,
5765 int full_search)
5766 {
5767 int syms_from_global_search;
5768 int ndefns;
5769 auto_obstack obstack;
5770
5771 ada_add_all_symbols (&obstack, block, lookup_name,
5772 domain, full_search, &syms_from_global_search);
5773
5774 ndefns = num_defns_collected (&obstack);
5775
5776 struct block_symbol *base = defns_collected (&obstack, 1);
5777 for (int i = 0; i < ndefns; ++i)
5778 results->push_back (base[i]);
5779
5780 ndefns = remove_extra_symbols (results);
5781
5782 if (ndefns == 0 && full_search && syms_from_global_search)
5783 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
5784
5785 if (ndefns == 1 && full_search && syms_from_global_search)
5786 cache_symbol (ada_lookup_name (lookup_name), domain,
5787 (*results)[0].symbol, (*results)[0].block);
5788
5789 ndefns = remove_irrelevant_renamings (results, block);
5790
5791 return ndefns;
5792 }
5793
5794 /* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
5795 in global scopes, returning the number of matches, and filling *RESULTS
5796 with (SYM,BLOCK) tuples.
5797
5798 See ada_lookup_symbol_list_worker for further details. */
5799
5800 int
5801 ada_lookup_symbol_list (const char *name, const struct block *block,
5802 domain_enum domain,
5803 std::vector<struct block_symbol> *results)
5804 {
5805 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5806 lookup_name_info lookup_name (name, name_match_type);
5807
5808 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
5809 }
5810
5811 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5812 to 1, but choosing the first symbol found if there are multiple
5813 choices.
5814
5815 The result is stored in *INFO, which must be non-NULL.
5816 If no match is found, INFO->SYM is set to NULL. */
5817
5818 void
5819 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5820 domain_enum domain,
5821 struct block_symbol *info)
5822 {
5823 /* Since we already have an encoded name, wrap it in '<>' to force a
5824 verbatim match. Otherwise, if the name happens to not look like
5825 an encoded name (because it doesn't include a "__"),
5826 ada_lookup_name_info would re-encode/fold it again, and that
5827 would e.g., incorrectly lowercase object renaming names like
5828 "R28b" -> "r28b". */
5829 std::string verbatim = add_angle_brackets (name);
5830
5831 gdb_assert (info != NULL);
5832 *info = ada_lookup_symbol (verbatim.c_str (), block, domain);
5833 }
5834
5835 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5836 scope and in global scopes, or NULL if none. NAME is folded and
5837 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5838 choosing the first symbol if there are multiple choices. */
5839
5840 struct block_symbol
5841 ada_lookup_symbol (const char *name, const struct block *block0,
5842 domain_enum domain)
5843 {
5844 std::vector<struct block_symbol> candidates;
5845 int n_candidates;
5846
5847 n_candidates = ada_lookup_symbol_list (name, block0, domain, &candidates);
5848
5849 if (n_candidates == 0)
5850 return {};
5851
5852 block_symbol info = candidates[0];
5853 info.symbol = fixup_symbol_section (info.symbol, NULL);
5854 return info;
5855 }
5856
5857
5858 /* True iff STR is a possible encoded suffix of a normal Ada name
5859 that is to be ignored for matching purposes. Suffixes of parallel
5860 names (e.g., XVE) are not included here. Currently, the possible suffixes
5861 are given by any of the regular expressions:
5862
5863 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5864 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5865 TKB [subprogram suffix for task bodies]
5866 _E[0-9]+[bs]$ [protected object entry suffixes]
5867 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5868
5869 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5870 match is performed. This sequence is used to differentiate homonyms,
5871 is an optional part of a valid name suffix. */
5872
5873 static int
5874 is_name_suffix (const char *str)
5875 {
5876 int k;
5877 const char *matching;
5878 const int len = strlen (str);
5879
5880 /* Skip optional leading __[0-9]+. */
5881
5882 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5883 {
5884 str += 3;
5885 while (isdigit (str[0]))
5886 str += 1;
5887 }
5888
5889 /* [.$][0-9]+ */
5890
5891 if (str[0] == '.' || str[0] == '$')
5892 {
5893 matching = str + 1;
5894 while (isdigit (matching[0]))
5895 matching += 1;
5896 if (matching[0] == '\0')
5897 return 1;
5898 }
5899
5900 /* ___[0-9]+ */
5901
5902 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5903 {
5904 matching = str + 3;
5905 while (isdigit (matching[0]))
5906 matching += 1;
5907 if (matching[0] == '\0')
5908 return 1;
5909 }
5910
5911 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5912
5913 if (strcmp (str, "TKB") == 0)
5914 return 1;
5915
5916 #if 0
5917 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5918 with a N at the end. Unfortunately, the compiler uses the same
5919 convention for other internal types it creates. So treating
5920 all entity names that end with an "N" as a name suffix causes
5921 some regressions. For instance, consider the case of an enumerated
5922 type. To support the 'Image attribute, it creates an array whose
5923 name ends with N.
5924 Having a single character like this as a suffix carrying some
5925 information is a bit risky. Perhaps we should change the encoding
5926 to be something like "_N" instead. In the meantime, do not do
5927 the following check. */
5928 /* Protected Object Subprograms */
5929 if (len == 1 && str [0] == 'N')
5930 return 1;
5931 #endif
5932
5933 /* _E[0-9]+[bs]$ */
5934 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5935 {
5936 matching = str + 3;
5937 while (isdigit (matching[0]))
5938 matching += 1;
5939 if ((matching[0] == 'b' || matching[0] == 's')
5940 && matching [1] == '\0')
5941 return 1;
5942 }
5943
5944 /* ??? We should not modify STR directly, as we are doing below. This
5945 is fine in this case, but may become problematic later if we find
5946 that this alternative did not work, and want to try matching
5947 another one from the begining of STR. Since we modified it, we
5948 won't be able to find the begining of the string anymore! */
5949 if (str[0] == 'X')
5950 {
5951 str += 1;
5952 while (str[0] != '_' && str[0] != '\0')
5953 {
5954 if (str[0] != 'n' && str[0] != 'b')
5955 return 0;
5956 str += 1;
5957 }
5958 }
5959
5960 if (str[0] == '\000')
5961 return 1;
5962
5963 if (str[0] == '_')
5964 {
5965 if (str[1] != '_' || str[2] == '\000')
5966 return 0;
5967 if (str[2] == '_')
5968 {
5969 if (strcmp (str + 3, "JM") == 0)
5970 return 1;
5971 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5972 the LJM suffix in favor of the JM one. But we will
5973 still accept LJM as a valid suffix for a reasonable
5974 amount of time, just to allow ourselves to debug programs
5975 compiled using an older version of GNAT. */
5976 if (strcmp (str + 3, "LJM") == 0)
5977 return 1;
5978 if (str[3] != 'X')
5979 return 0;
5980 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5981 || str[4] == 'U' || str[4] == 'P')
5982 return 1;
5983 if (str[4] == 'R' && str[5] != 'T')
5984 return 1;
5985 return 0;
5986 }
5987 if (!isdigit (str[2]))
5988 return 0;
5989 for (k = 3; str[k] != '\0'; k += 1)
5990 if (!isdigit (str[k]) && str[k] != '_')
5991 return 0;
5992 return 1;
5993 }
5994 if (str[0] == '$' && isdigit (str[1]))
5995 {
5996 for (k = 2; str[k] != '\0'; k += 1)
5997 if (!isdigit (str[k]) && str[k] != '_')
5998 return 0;
5999 return 1;
6000 }
6001 return 0;
6002 }
6003
6004 /* Return non-zero if the string starting at NAME and ending before
6005 NAME_END contains no capital letters. */
6006
6007 static int
6008 is_valid_name_for_wild_match (const char *name0)
6009 {
6010 std::string decoded_name = ada_decode (name0);
6011 int i;
6012
6013 /* If the decoded name starts with an angle bracket, it means that
6014 NAME0 does not follow the GNAT encoding format. It should then
6015 not be allowed as a possible wild match. */
6016 if (decoded_name[0] == '<')
6017 return 0;
6018
6019 for (i=0; decoded_name[i] != '\0'; i++)
6020 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6021 return 0;
6022
6023 return 1;
6024 }
6025
6026 /* Advance *NAMEP to next occurrence in the string NAME0 of the TARGET0
6027 character which could start a simple name. Assumes that *NAMEP points
6028 somewhere inside the string beginning at NAME0. */
6029
6030 static int
6031 advance_wild_match (const char **namep, const char *name0, char target0)
6032 {
6033 const char *name = *namep;
6034
6035 while (1)
6036 {
6037 char t0, t1;
6038
6039 t0 = *name;
6040 if (t0 == '_')
6041 {
6042 t1 = name[1];
6043 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6044 {
6045 name += 1;
6046 if (name == name0 + 5 && startswith (name0, "_ada"))
6047 break;
6048 else
6049 name += 1;
6050 }
6051 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6052 || name[2] == target0))
6053 {
6054 name += 2;
6055 break;
6056 }
6057 else if (t1 == '_' && name[2] == 'B' && name[3] == '_')
6058 {
6059 /* Names like "pkg__B_N__name", where N is a number, are
6060 block-local. We can handle these by simply skipping
6061 the "B_" here. */
6062 name += 4;
6063 }
6064 else
6065 return 0;
6066 }
6067 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6068 name += 1;
6069 else
6070 return 0;
6071 }
6072
6073 *namep = name;
6074 return 1;
6075 }
6076
6077 /* Return true iff NAME encodes a name of the form prefix.PATN.
6078 Ignores any informational suffixes of NAME (i.e., for which
6079 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6080 simple name. */
6081
6082 static bool
6083 wild_match (const char *name, const char *patn)
6084 {
6085 const char *p;
6086 const char *name0 = name;
6087
6088 while (1)
6089 {
6090 const char *match = name;
6091
6092 if (*name == *patn)
6093 {
6094 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6095 if (*p != *name)
6096 break;
6097 if (*p == '\0' && is_name_suffix (name))
6098 return match == name0 || is_valid_name_for_wild_match (name0);
6099
6100 if (name[-1] == '_')
6101 name -= 1;
6102 }
6103 if (!advance_wild_match (&name, name0, *patn))
6104 return false;
6105 }
6106 }
6107
6108 /* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6109 *defn_symbols, updating the list of symbols in OBSTACKP (if
6110 necessary). OBJFILE is the section containing BLOCK. */
6111
6112 static void
6113 ada_add_block_symbols (struct obstack *obstackp,
6114 const struct block *block,
6115 const lookup_name_info &lookup_name,
6116 domain_enum domain, struct objfile *objfile)
6117 {
6118 struct block_iterator iter;
6119 /* A matching argument symbol, if any. */
6120 struct symbol *arg_sym;
6121 /* Set true when we find a matching non-argument symbol. */
6122 int found_sym;
6123 struct symbol *sym;
6124
6125 arg_sym = NULL;
6126 found_sym = 0;
6127 for (sym = block_iter_match_first (block, lookup_name, &iter);
6128 sym != NULL;
6129 sym = block_iter_match_next (lookup_name, &iter))
6130 {
6131 if (symbol_matches_domain (sym->language (), SYMBOL_DOMAIN (sym), domain))
6132 {
6133 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6134 {
6135 if (SYMBOL_IS_ARGUMENT (sym))
6136 arg_sym = sym;
6137 else
6138 {
6139 found_sym = 1;
6140 add_defn_to_vec (obstackp,
6141 fixup_symbol_section (sym, objfile),
6142 block);
6143 }
6144 }
6145 }
6146 }
6147
6148 /* Handle renamings. */
6149
6150 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
6151 found_sym = 1;
6152
6153 if (!found_sym && arg_sym != NULL)
6154 {
6155 add_defn_to_vec (obstackp,
6156 fixup_symbol_section (arg_sym, objfile),
6157 block);
6158 }
6159
6160 if (!lookup_name.ada ().wild_match_p ())
6161 {
6162 arg_sym = NULL;
6163 found_sym = 0;
6164 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6165 const char *name = ada_lookup_name.c_str ();
6166 size_t name_len = ada_lookup_name.size ();
6167
6168 ALL_BLOCK_SYMBOLS (block, iter, sym)
6169 {
6170 if (symbol_matches_domain (sym->language (),
6171 SYMBOL_DOMAIN (sym), domain))
6172 {
6173 int cmp;
6174
6175 cmp = (int) '_' - (int) sym->linkage_name ()[0];
6176 if (cmp == 0)
6177 {
6178 cmp = !startswith (sym->linkage_name (), "_ada_");
6179 if (cmp == 0)
6180 cmp = strncmp (name, sym->linkage_name () + 5,
6181 name_len);
6182 }
6183
6184 if (cmp == 0
6185 && is_name_suffix (sym->linkage_name () + name_len + 5))
6186 {
6187 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6188 {
6189 if (SYMBOL_IS_ARGUMENT (sym))
6190 arg_sym = sym;
6191 else
6192 {
6193 found_sym = 1;
6194 add_defn_to_vec (obstackp,
6195 fixup_symbol_section (sym, objfile),
6196 block);
6197 }
6198 }
6199 }
6200 }
6201 }
6202
6203 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6204 They aren't parameters, right? */
6205 if (!found_sym && arg_sym != NULL)
6206 {
6207 add_defn_to_vec (obstackp,
6208 fixup_symbol_section (arg_sym, objfile),
6209 block);
6210 }
6211 }
6212 }
6213 \f
6214
6215 /* Symbol Completion */
6216
6217 /* See symtab.h. */
6218
6219 bool
6220 ada_lookup_name_info::matches
6221 (const char *sym_name,
6222 symbol_name_match_type match_type,
6223 completion_match_result *comp_match_res) const
6224 {
6225 bool match = false;
6226 const char *text = m_encoded_name.c_str ();
6227 size_t text_len = m_encoded_name.size ();
6228
6229 /* First, test against the fully qualified name of the symbol. */
6230
6231 if (strncmp (sym_name, text, text_len) == 0)
6232 match = true;
6233
6234 std::string decoded_name = ada_decode (sym_name);
6235 if (match && !m_encoded_p)
6236 {
6237 /* One needed check before declaring a positive match is to verify
6238 that iff we are doing a verbatim match, the decoded version
6239 of the symbol name starts with '<'. Otherwise, this symbol name
6240 is not a suitable completion. */
6241
6242 bool has_angle_bracket = (decoded_name[0] == '<');
6243 match = (has_angle_bracket == m_verbatim_p);
6244 }
6245
6246 if (match && !m_verbatim_p)
6247 {
6248 /* When doing non-verbatim match, another check that needs to
6249 be done is to verify that the potentially matching symbol name
6250 does not include capital letters, because the ada-mode would
6251 not be able to understand these symbol names without the
6252 angle bracket notation. */
6253 const char *tmp;
6254
6255 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6256 if (*tmp != '\0')
6257 match = false;
6258 }
6259
6260 /* Second: Try wild matching... */
6261
6262 if (!match && m_wild_match_p)
6263 {
6264 /* Since we are doing wild matching, this means that TEXT
6265 may represent an unqualified symbol name. We therefore must
6266 also compare TEXT against the unqualified name of the symbol. */
6267 sym_name = ada_unqualified_name (decoded_name.c_str ());
6268
6269 if (strncmp (sym_name, text, text_len) == 0)
6270 match = true;
6271 }
6272
6273 /* Finally: If we found a match, prepare the result to return. */
6274
6275 if (!match)
6276 return false;
6277
6278 if (comp_match_res != NULL)
6279 {
6280 std::string &match_str = comp_match_res->match.storage ();
6281
6282 if (!m_encoded_p)
6283 match_str = ada_decode (sym_name);
6284 else
6285 {
6286 if (m_verbatim_p)
6287 match_str = add_angle_brackets (sym_name);
6288 else
6289 match_str = sym_name;
6290
6291 }
6292
6293 comp_match_res->set_match (match_str.c_str ());
6294 }
6295
6296 return true;
6297 }
6298
6299 /* Field Access */
6300
6301 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6302 for tagged types. */
6303
6304 static int
6305 ada_is_dispatch_table_ptr_type (struct type *type)
6306 {
6307 const char *name;
6308
6309 if (type->code () != TYPE_CODE_PTR)
6310 return 0;
6311
6312 name = TYPE_TARGET_TYPE (type)->name ();
6313 if (name == NULL)
6314 return 0;
6315
6316 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6317 }
6318
6319 /* Return non-zero if TYPE is an interface tag. */
6320
6321 static int
6322 ada_is_interface_tag (struct type *type)
6323 {
6324 const char *name = type->name ();
6325
6326 if (name == NULL)
6327 return 0;
6328
6329 return (strcmp (name, "ada__tags__interface_tag") == 0);
6330 }
6331
6332 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6333 to be invisible to users. */
6334
6335 int
6336 ada_is_ignored_field (struct type *type, int field_num)
6337 {
6338 if (field_num < 0 || field_num > type->num_fields ())
6339 return 1;
6340
6341 /* Check the name of that field. */
6342 {
6343 const char *name = TYPE_FIELD_NAME (type, field_num);
6344
6345 /* Anonymous field names should not be printed.
6346 brobecker/2007-02-20: I don't think this can actually happen
6347 but we don't want to print the value of anonymous fields anyway. */
6348 if (name == NULL)
6349 return 1;
6350
6351 /* Normally, fields whose name start with an underscore ("_")
6352 are fields that have been internally generated by the compiler,
6353 and thus should not be printed. The "_parent" field is special,
6354 however: This is a field internally generated by the compiler
6355 for tagged types, and it contains the components inherited from
6356 the parent type. This field should not be printed as is, but
6357 should not be ignored either. */
6358 if (name[0] == '_' && !startswith (name, "_parent"))
6359 return 1;
6360 }
6361
6362 /* If this is the dispatch table of a tagged type or an interface tag,
6363 then ignore. */
6364 if (ada_is_tagged_type (type, 1)
6365 && (ada_is_dispatch_table_ptr_type (type->field (field_num).type ())
6366 || ada_is_interface_tag (type->field (field_num).type ())))
6367 return 1;
6368
6369 /* Not a special field, so it should not be ignored. */
6370 return 0;
6371 }
6372
6373 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6374 pointer or reference type whose ultimate target has a tag field. */
6375
6376 int
6377 ada_is_tagged_type (struct type *type, int refok)
6378 {
6379 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
6380 }
6381
6382 /* True iff TYPE represents the type of X'Tag */
6383
6384 int
6385 ada_is_tag_type (struct type *type)
6386 {
6387 type = ada_check_typedef (type);
6388
6389 if (type == NULL || type->code () != TYPE_CODE_PTR)
6390 return 0;
6391 else
6392 {
6393 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6394
6395 return (name != NULL
6396 && strcmp (name, "ada__tags__dispatch_table") == 0);
6397 }
6398 }
6399
6400 /* The type of the tag on VAL. */
6401
6402 static struct type *
6403 ada_tag_type (struct value *val)
6404 {
6405 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
6406 }
6407
6408 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6409 retired at Ada 05). */
6410
6411 static int
6412 is_ada95_tag (struct value *tag)
6413 {
6414 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6415 }
6416
6417 /* The value of the tag on VAL. */
6418
6419 static struct value *
6420 ada_value_tag (struct value *val)
6421 {
6422 return ada_value_struct_elt (val, "_tag", 0);
6423 }
6424
6425 /* The value of the tag on the object of type TYPE whose contents are
6426 saved at VALADDR, if it is non-null, or is at memory address
6427 ADDRESS. */
6428
6429 static struct value *
6430 value_tag_from_contents_and_address (struct type *type,
6431 const gdb_byte *valaddr,
6432 CORE_ADDR address)
6433 {
6434 int tag_byte_offset;
6435 struct type *tag_type;
6436
6437 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6438 NULL, NULL, NULL))
6439 {
6440 const gdb_byte *valaddr1 = ((valaddr == NULL)
6441 ? NULL
6442 : valaddr + tag_byte_offset);
6443 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6444
6445 return value_from_contents_and_address (tag_type, valaddr1, address1);
6446 }
6447 return NULL;
6448 }
6449
6450 static struct type *
6451 type_from_tag (struct value *tag)
6452 {
6453 gdb::unique_xmalloc_ptr<char> type_name = ada_tag_name (tag);
6454
6455 if (type_name != NULL)
6456 return ada_find_any_type (ada_encode (type_name.get ()).c_str ());
6457 return NULL;
6458 }
6459
6460 /* Given a value OBJ of a tagged type, return a value of this
6461 type at the base address of the object. The base address, as
6462 defined in Ada.Tags, it is the address of the primary tag of
6463 the object, and therefore where the field values of its full
6464 view can be fetched. */
6465
6466 struct value *
6467 ada_tag_value_at_base_address (struct value *obj)
6468 {
6469 struct value *val;
6470 LONGEST offset_to_top = 0;
6471 struct type *ptr_type, *obj_type;
6472 struct value *tag;
6473 CORE_ADDR base_address;
6474
6475 obj_type = value_type (obj);
6476
6477 /* It is the responsability of the caller to deref pointers. */
6478
6479 if (obj_type->code () == TYPE_CODE_PTR || obj_type->code () == TYPE_CODE_REF)
6480 return obj;
6481
6482 tag = ada_value_tag (obj);
6483 if (!tag)
6484 return obj;
6485
6486 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6487
6488 if (is_ada95_tag (tag))
6489 return obj;
6490
6491 ptr_type = language_lookup_primitive_type
6492 (language_def (language_ada), target_gdbarch(), "storage_offset");
6493 ptr_type = lookup_pointer_type (ptr_type);
6494 val = value_cast (ptr_type, tag);
6495 if (!val)
6496 return obj;
6497
6498 /* It is perfectly possible that an exception be raised while
6499 trying to determine the base address, just like for the tag;
6500 see ada_tag_name for more details. We do not print the error
6501 message for the same reason. */
6502
6503 try
6504 {
6505 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6506 }
6507
6508 catch (const gdb_exception_error &e)
6509 {
6510 return obj;
6511 }
6512
6513 /* If offset is null, nothing to do. */
6514
6515 if (offset_to_top == 0)
6516 return obj;
6517
6518 /* -1 is a special case in Ada.Tags; however, what should be done
6519 is not quite clear from the documentation. So do nothing for
6520 now. */
6521
6522 if (offset_to_top == -1)
6523 return obj;
6524
6525 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6526 from the base address. This was however incompatible with
6527 C++ dispatch table: C++ uses a *negative* value to *add*
6528 to the base address. Ada's convention has therefore been
6529 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6530 use the same convention. Here, we support both cases by
6531 checking the sign of OFFSET_TO_TOP. */
6532
6533 if (offset_to_top > 0)
6534 offset_to_top = -offset_to_top;
6535
6536 base_address = value_address (obj) + offset_to_top;
6537 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6538
6539 /* Make sure that we have a proper tag at the new address.
6540 Otherwise, offset_to_top is bogus (which can happen when
6541 the object is not initialized yet). */
6542
6543 if (!tag)
6544 return obj;
6545
6546 obj_type = type_from_tag (tag);
6547
6548 if (!obj_type)
6549 return obj;
6550
6551 return value_from_contents_and_address (obj_type, NULL, base_address);
6552 }
6553
6554 /* Return the "ada__tags__type_specific_data" type. */
6555
6556 static struct type *
6557 ada_get_tsd_type (struct inferior *inf)
6558 {
6559 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6560
6561 if (data->tsd_type == 0)
6562 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6563 return data->tsd_type;
6564 }
6565
6566 /* Return the TSD (type-specific data) associated to the given TAG.
6567 TAG is assumed to be the tag of a tagged-type entity.
6568
6569 May return NULL if we are unable to get the TSD. */
6570
6571 static struct value *
6572 ada_get_tsd_from_tag (struct value *tag)
6573 {
6574 struct value *val;
6575 struct type *type;
6576
6577 /* First option: The TSD is simply stored as a field of our TAG.
6578 Only older versions of GNAT would use this format, but we have
6579 to test it first, because there are no visible markers for
6580 the current approach except the absence of that field. */
6581
6582 val = ada_value_struct_elt (tag, "tsd", 1);
6583 if (val)
6584 return val;
6585
6586 /* Try the second representation for the dispatch table (in which
6587 there is no explicit 'tsd' field in the referent of the tag pointer,
6588 and instead the tsd pointer is stored just before the dispatch
6589 table. */
6590
6591 type = ada_get_tsd_type (current_inferior());
6592 if (type == NULL)
6593 return NULL;
6594 type = lookup_pointer_type (lookup_pointer_type (type));
6595 val = value_cast (type, tag);
6596 if (val == NULL)
6597 return NULL;
6598 return value_ind (value_ptradd (val, -1));
6599 }
6600
6601 /* Given the TSD of a tag (type-specific data), return a string
6602 containing the name of the associated type.
6603
6604 May return NULL if we are unable to determine the tag name. */
6605
6606 static gdb::unique_xmalloc_ptr<char>
6607 ada_tag_name_from_tsd (struct value *tsd)
6608 {
6609 char *p;
6610 struct value *val;
6611
6612 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6613 if (val == NULL)
6614 return NULL;
6615 gdb::unique_xmalloc_ptr<char> buffer
6616 = target_read_string (value_as_address (val), INT_MAX);
6617 if (buffer == nullptr)
6618 return nullptr;
6619
6620 for (p = buffer.get (); *p != '\0'; ++p)
6621 {
6622 if (isalpha (*p))
6623 *p = tolower (*p);
6624 }
6625
6626 return buffer;
6627 }
6628
6629 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6630 a C string.
6631
6632 Return NULL if the TAG is not an Ada tag, or if we were unable to
6633 determine the name of that tag. */
6634
6635 gdb::unique_xmalloc_ptr<char>
6636 ada_tag_name (struct value *tag)
6637 {
6638 gdb::unique_xmalloc_ptr<char> name;
6639
6640 if (!ada_is_tag_type (value_type (tag)))
6641 return NULL;
6642
6643 /* It is perfectly possible that an exception be raised while trying
6644 to determine the TAG's name, even under normal circumstances:
6645 The associated variable may be uninitialized or corrupted, for
6646 instance. We do not let any exception propagate past this point.
6647 instead we return NULL.
6648
6649 We also do not print the error message either (which often is very
6650 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6651 the caller print a more meaningful message if necessary. */
6652 try
6653 {
6654 struct value *tsd = ada_get_tsd_from_tag (tag);
6655
6656 if (tsd != NULL)
6657 name = ada_tag_name_from_tsd (tsd);
6658 }
6659 catch (const gdb_exception_error &e)
6660 {
6661 }
6662
6663 return name;
6664 }
6665
6666 /* The parent type of TYPE, or NULL if none. */
6667
6668 struct type *
6669 ada_parent_type (struct type *type)
6670 {
6671 int i;
6672
6673 type = ada_check_typedef (type);
6674
6675 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
6676 return NULL;
6677
6678 for (i = 0; i < type->num_fields (); i += 1)
6679 if (ada_is_parent_field (type, i))
6680 {
6681 struct type *parent_type = type->field (i).type ();
6682
6683 /* If the _parent field is a pointer, then dereference it. */
6684 if (parent_type->code () == TYPE_CODE_PTR)
6685 parent_type = TYPE_TARGET_TYPE (parent_type);
6686 /* If there is a parallel XVS type, get the actual base type. */
6687 parent_type = ada_get_base_type (parent_type);
6688
6689 return ada_check_typedef (parent_type);
6690 }
6691
6692 return NULL;
6693 }
6694
6695 /* True iff field number FIELD_NUM of structure type TYPE contains the
6696 parent-type (inherited) fields of a derived type. Assumes TYPE is
6697 a structure type with at least FIELD_NUM+1 fields. */
6698
6699 int
6700 ada_is_parent_field (struct type *type, int field_num)
6701 {
6702 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6703
6704 return (name != NULL
6705 && (startswith (name, "PARENT")
6706 || startswith (name, "_parent")));
6707 }
6708
6709 /* True iff field number FIELD_NUM of structure type TYPE is a
6710 transparent wrapper field (which should be silently traversed when doing
6711 field selection and flattened when printing). Assumes TYPE is a
6712 structure type with at least FIELD_NUM+1 fields. Such fields are always
6713 structures. */
6714
6715 int
6716 ada_is_wrapper_field (struct type *type, int field_num)
6717 {
6718 const char *name = TYPE_FIELD_NAME (type, field_num);
6719
6720 if (name != NULL && strcmp (name, "RETVAL") == 0)
6721 {
6722 /* This happens in functions with "out" or "in out" parameters
6723 which are passed by copy. For such functions, GNAT describes
6724 the function's return type as being a struct where the return
6725 value is in a field called RETVAL, and where the other "out"
6726 or "in out" parameters are fields of that struct. This is not
6727 a wrapper. */
6728 return 0;
6729 }
6730
6731 return (name != NULL
6732 && (startswith (name, "PARENT")
6733 || strcmp (name, "REP") == 0
6734 || startswith (name, "_parent")
6735 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6736 }
6737
6738 /* True iff field number FIELD_NUM of structure or union type TYPE
6739 is a variant wrapper. Assumes TYPE is a structure type with at least
6740 FIELD_NUM+1 fields. */
6741
6742 int
6743 ada_is_variant_part (struct type *type, int field_num)
6744 {
6745 /* Only Ada types are eligible. */
6746 if (!ADA_TYPE_P (type))
6747 return 0;
6748
6749 struct type *field_type = type->field (field_num).type ();
6750
6751 return (field_type->code () == TYPE_CODE_UNION
6752 || (is_dynamic_field (type, field_num)
6753 && (TYPE_TARGET_TYPE (field_type)->code ()
6754 == TYPE_CODE_UNION)));
6755 }
6756
6757 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6758 whose discriminants are contained in the record type OUTER_TYPE,
6759 returns the type of the controlling discriminant for the variant.
6760 May return NULL if the type could not be found. */
6761
6762 struct type *
6763 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6764 {
6765 const char *name = ada_variant_discrim_name (var_type);
6766
6767 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
6768 }
6769
6770 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6771 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6772 represents a 'when others' clause; otherwise 0. */
6773
6774 static int
6775 ada_is_others_clause (struct type *type, int field_num)
6776 {
6777 const char *name = TYPE_FIELD_NAME (type, field_num);
6778
6779 return (name != NULL && name[0] == 'O');
6780 }
6781
6782 /* Assuming that TYPE0 is the type of the variant part of a record,
6783 returns the name of the discriminant controlling the variant.
6784 The value is valid until the next call to ada_variant_discrim_name. */
6785
6786 const char *
6787 ada_variant_discrim_name (struct type *type0)
6788 {
6789 static char *result = NULL;
6790 static size_t result_len = 0;
6791 struct type *type;
6792 const char *name;
6793 const char *discrim_end;
6794 const char *discrim_start;
6795
6796 if (type0->code () == TYPE_CODE_PTR)
6797 type = TYPE_TARGET_TYPE (type0);
6798 else
6799 type = type0;
6800
6801 name = ada_type_name (type);
6802
6803 if (name == NULL || name[0] == '\000')
6804 return "";
6805
6806 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6807 discrim_end -= 1)
6808 {
6809 if (startswith (discrim_end, "___XVN"))
6810 break;
6811 }
6812 if (discrim_end == name)
6813 return "";
6814
6815 for (discrim_start = discrim_end; discrim_start != name + 3;
6816 discrim_start -= 1)
6817 {
6818 if (discrim_start == name + 1)
6819 return "";
6820 if ((discrim_start > name + 3
6821 && startswith (discrim_start - 3, "___"))
6822 || discrim_start[-1] == '.')
6823 break;
6824 }
6825
6826 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6827 strncpy (result, discrim_start, discrim_end - discrim_start);
6828 result[discrim_end - discrim_start] = '\0';
6829 return result;
6830 }
6831
6832 /* Scan STR for a subtype-encoded number, beginning at position K.
6833 Put the position of the character just past the number scanned in
6834 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6835 Return 1 if there was a valid number at the given position, and 0
6836 otherwise. A "subtype-encoded" number consists of the absolute value
6837 in decimal, followed by the letter 'm' to indicate a negative number.
6838 Assumes 0m does not occur. */
6839
6840 int
6841 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6842 {
6843 ULONGEST RU;
6844
6845 if (!isdigit (str[k]))
6846 return 0;
6847
6848 /* Do it the hard way so as not to make any assumption about
6849 the relationship of unsigned long (%lu scan format code) and
6850 LONGEST. */
6851 RU = 0;
6852 while (isdigit (str[k]))
6853 {
6854 RU = RU * 10 + (str[k] - '0');
6855 k += 1;
6856 }
6857
6858 if (str[k] == 'm')
6859 {
6860 if (R != NULL)
6861 *R = (-(LONGEST) (RU - 1)) - 1;
6862 k += 1;
6863 }
6864 else if (R != NULL)
6865 *R = (LONGEST) RU;
6866
6867 /* NOTE on the above: Technically, C does not say what the results of
6868 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6869 number representable as a LONGEST (although either would probably work
6870 in most implementations). When RU>0, the locution in the then branch
6871 above is always equivalent to the negative of RU. */
6872
6873 if (new_k != NULL)
6874 *new_k = k;
6875 return 1;
6876 }
6877
6878 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6879 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6880 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6881
6882 static int
6883 ada_in_variant (LONGEST val, struct type *type, int field_num)
6884 {
6885 const char *name = TYPE_FIELD_NAME (type, field_num);
6886 int p;
6887
6888 p = 0;
6889 while (1)
6890 {
6891 switch (name[p])
6892 {
6893 case '\0':
6894 return 0;
6895 case 'S':
6896 {
6897 LONGEST W;
6898
6899 if (!ada_scan_number (name, p + 1, &W, &p))
6900 return 0;
6901 if (val == W)
6902 return 1;
6903 break;
6904 }
6905 case 'R':
6906 {
6907 LONGEST L, U;
6908
6909 if (!ada_scan_number (name, p + 1, &L, &p)
6910 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6911 return 0;
6912 if (val >= L && val <= U)
6913 return 1;
6914 break;
6915 }
6916 case 'O':
6917 return 1;
6918 default:
6919 return 0;
6920 }
6921 }
6922 }
6923
6924 /* FIXME: Lots of redundancy below. Try to consolidate. */
6925
6926 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6927 ARG_TYPE, extract and return the value of one of its (non-static)
6928 fields. FIELDNO says which field. Differs from value_primitive_field
6929 only in that it can handle packed values of arbitrary type. */
6930
6931 struct value *
6932 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6933 struct type *arg_type)
6934 {
6935 struct type *type;
6936
6937 arg_type = ada_check_typedef (arg_type);
6938 type = arg_type->field (fieldno).type ();
6939
6940 /* Handle packed fields. It might be that the field is not packed
6941 relative to its containing structure, but the structure itself is
6942 packed; in this case we must take the bit-field path. */
6943 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0 || value_bitpos (arg1) != 0)
6944 {
6945 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6946 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6947
6948 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
6949 offset + bit_pos / 8,
6950 bit_pos % 8, bit_size, type);
6951 }
6952 else
6953 return value_primitive_field (arg1, offset, fieldno, arg_type);
6954 }
6955
6956 /* Find field with name NAME in object of type TYPE. If found,
6957 set the following for each argument that is non-null:
6958 - *FIELD_TYPE_P to the field's type;
6959 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6960 an object of that type;
6961 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6962 - *BIT_SIZE_P to its size in bits if the field is packed, and
6963 0 otherwise;
6964 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6965 fields up to but not including the desired field, or by the total
6966 number of fields if not found. A NULL value of NAME never
6967 matches; the function just counts visible fields in this case.
6968
6969 Notice that we need to handle when a tagged record hierarchy
6970 has some components with the same name, like in this scenario:
6971
6972 type Top_T is tagged record
6973 N : Integer := 1;
6974 U : Integer := 974;
6975 A : Integer := 48;
6976 end record;
6977
6978 type Middle_T is new Top.Top_T with record
6979 N : Character := 'a';
6980 C : Integer := 3;
6981 end record;
6982
6983 type Bottom_T is new Middle.Middle_T with record
6984 N : Float := 4.0;
6985 C : Character := '5';
6986 X : Integer := 6;
6987 A : Character := 'J';
6988 end record;
6989
6990 Let's say we now have a variable declared and initialized as follow:
6991
6992 TC : Top_A := new Bottom_T;
6993
6994 And then we use this variable to call this function
6995
6996 procedure Assign (Obj: in out Top_T; TV : Integer);
6997
6998 as follow:
6999
7000 Assign (Top_T (B), 12);
7001
7002 Now, we're in the debugger, and we're inside that procedure
7003 then and we want to print the value of obj.c:
7004
7005 Usually, the tagged record or one of the parent type owns the
7006 component to print and there's no issue but in this particular
7007 case, what does it mean to ask for Obj.C? Since the actual
7008 type for object is type Bottom_T, it could mean two things: type
7009 component C from the Middle_T view, but also component C from
7010 Bottom_T. So in that "undefined" case, when the component is
7011 not found in the non-resolved type (which includes all the
7012 components of the parent type), then resolve it and see if we
7013 get better luck once expanded.
7014
7015 In the case of homonyms in the derived tagged type, we don't
7016 guaranty anything, and pick the one that's easiest for us
7017 to program.
7018
7019 Returns 1 if found, 0 otherwise. */
7020
7021 static int
7022 find_struct_field (const char *name, struct type *type, int offset,
7023 struct type **field_type_p,
7024 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7025 int *index_p)
7026 {
7027 int i;
7028 int parent_offset = -1;
7029
7030 type = ada_check_typedef (type);
7031
7032 if (field_type_p != NULL)
7033 *field_type_p = NULL;
7034 if (byte_offset_p != NULL)
7035 *byte_offset_p = 0;
7036 if (bit_offset_p != NULL)
7037 *bit_offset_p = 0;
7038 if (bit_size_p != NULL)
7039 *bit_size_p = 0;
7040
7041 for (i = 0; i < type->num_fields (); i += 1)
7042 {
7043 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7044 int fld_offset = offset + bit_pos / 8;
7045 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7046
7047 if (t_field_name == NULL)
7048 continue;
7049
7050 else if (ada_is_parent_field (type, i))
7051 {
7052 /* This is a field pointing us to the parent type of a tagged
7053 type. As hinted in this function's documentation, we give
7054 preference to fields in the current record first, so what
7055 we do here is just record the index of this field before
7056 we skip it. If it turns out we couldn't find our field
7057 in the current record, then we'll get back to it and search
7058 inside it whether the field might exist in the parent. */
7059
7060 parent_offset = i;
7061 continue;
7062 }
7063
7064 else if (name != NULL && field_name_match (t_field_name, name))
7065 {
7066 int bit_size = TYPE_FIELD_BITSIZE (type, i);
7067
7068 if (field_type_p != NULL)
7069 *field_type_p = type->field (i).type ();
7070 if (byte_offset_p != NULL)
7071 *byte_offset_p = fld_offset;
7072 if (bit_offset_p != NULL)
7073 *bit_offset_p = bit_pos % 8;
7074 if (bit_size_p != NULL)
7075 *bit_size_p = bit_size;
7076 return 1;
7077 }
7078 else if (ada_is_wrapper_field (type, i))
7079 {
7080 if (find_struct_field (name, type->field (i).type (), fld_offset,
7081 field_type_p, byte_offset_p, bit_offset_p,
7082 bit_size_p, index_p))
7083 return 1;
7084 }
7085 else if (ada_is_variant_part (type, i))
7086 {
7087 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7088 fixed type?? */
7089 int j;
7090 struct type *field_type
7091 = ada_check_typedef (type->field (i).type ());
7092
7093 for (j = 0; j < field_type->num_fields (); j += 1)
7094 {
7095 if (find_struct_field (name, field_type->field (j).type (),
7096 fld_offset
7097 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7098 field_type_p, byte_offset_p,
7099 bit_offset_p, bit_size_p, index_p))
7100 return 1;
7101 }
7102 }
7103 else if (index_p != NULL)
7104 *index_p += 1;
7105 }
7106
7107 /* Field not found so far. If this is a tagged type which
7108 has a parent, try finding that field in the parent now. */
7109
7110 if (parent_offset != -1)
7111 {
7112 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
7113 int fld_offset = offset + bit_pos / 8;
7114
7115 if (find_struct_field (name, type->field (parent_offset).type (),
7116 fld_offset, field_type_p, byte_offset_p,
7117 bit_offset_p, bit_size_p, index_p))
7118 return 1;
7119 }
7120
7121 return 0;
7122 }
7123
7124 /* Number of user-visible fields in record type TYPE. */
7125
7126 static int
7127 num_visible_fields (struct type *type)
7128 {
7129 int n;
7130
7131 n = 0;
7132 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7133 return n;
7134 }
7135
7136 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7137 and search in it assuming it has (class) type TYPE.
7138 If found, return value, else return NULL.
7139
7140 Searches recursively through wrapper fields (e.g., '_parent').
7141
7142 In the case of homonyms in the tagged types, please refer to the
7143 long explanation in find_struct_field's function documentation. */
7144
7145 static struct value *
7146 ada_search_struct_field (const char *name, struct value *arg, int offset,
7147 struct type *type)
7148 {
7149 int i;
7150 int parent_offset = -1;
7151
7152 type = ada_check_typedef (type);
7153 for (i = 0; i < type->num_fields (); i += 1)
7154 {
7155 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7156
7157 if (t_field_name == NULL)
7158 continue;
7159
7160 else if (ada_is_parent_field (type, i))
7161 {
7162 /* This is a field pointing us to the parent type of a tagged
7163 type. As hinted in this function's documentation, we give
7164 preference to fields in the current record first, so what
7165 we do here is just record the index of this field before
7166 we skip it. If it turns out we couldn't find our field
7167 in the current record, then we'll get back to it and search
7168 inside it whether the field might exist in the parent. */
7169
7170 parent_offset = i;
7171 continue;
7172 }
7173
7174 else if (field_name_match (t_field_name, name))
7175 return ada_value_primitive_field (arg, offset, i, type);
7176
7177 else if (ada_is_wrapper_field (type, i))
7178 {
7179 struct value *v = /* Do not let indent join lines here. */
7180 ada_search_struct_field (name, arg,
7181 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7182 type->field (i).type ());
7183
7184 if (v != NULL)
7185 return v;
7186 }
7187
7188 else if (ada_is_variant_part (type, i))
7189 {
7190 /* PNH: Do we ever get here? See find_struct_field. */
7191 int j;
7192 struct type *field_type = ada_check_typedef (type->field (i).type ());
7193 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7194
7195 for (j = 0; j < field_type->num_fields (); j += 1)
7196 {
7197 struct value *v = ada_search_struct_field /* Force line
7198 break. */
7199 (name, arg,
7200 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7201 field_type->field (j).type ());
7202
7203 if (v != NULL)
7204 return v;
7205 }
7206 }
7207 }
7208
7209 /* Field not found so far. If this is a tagged type which
7210 has a parent, try finding that field in the parent now. */
7211
7212 if (parent_offset != -1)
7213 {
7214 struct value *v = ada_search_struct_field (
7215 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
7216 type->field (parent_offset).type ());
7217
7218 if (v != NULL)
7219 return v;
7220 }
7221
7222 return NULL;
7223 }
7224
7225 static struct value *ada_index_struct_field_1 (int *, struct value *,
7226 int, struct type *);
7227
7228
7229 /* Return field #INDEX in ARG, where the index is that returned by
7230 * find_struct_field through its INDEX_P argument. Adjust the address
7231 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7232 * If found, return value, else return NULL. */
7233
7234 static struct value *
7235 ada_index_struct_field (int index, struct value *arg, int offset,
7236 struct type *type)
7237 {
7238 return ada_index_struct_field_1 (&index, arg, offset, type);
7239 }
7240
7241
7242 /* Auxiliary function for ada_index_struct_field. Like
7243 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7244 * *INDEX_P. */
7245
7246 static struct value *
7247 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7248 struct type *type)
7249 {
7250 int i;
7251 type = ada_check_typedef (type);
7252
7253 for (i = 0; i < type->num_fields (); i += 1)
7254 {
7255 if (TYPE_FIELD_NAME (type, i) == NULL)
7256 continue;
7257 else if (ada_is_wrapper_field (type, i))
7258 {
7259 struct value *v = /* Do not let indent join lines here. */
7260 ada_index_struct_field_1 (index_p, arg,
7261 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7262 type->field (i).type ());
7263
7264 if (v != NULL)
7265 return v;
7266 }
7267
7268 else if (ada_is_variant_part (type, i))
7269 {
7270 /* PNH: Do we ever get here? See ada_search_struct_field,
7271 find_struct_field. */
7272 error (_("Cannot assign this kind of variant record"));
7273 }
7274 else if (*index_p == 0)
7275 return ada_value_primitive_field (arg, offset, i, type);
7276 else
7277 *index_p -= 1;
7278 }
7279 return NULL;
7280 }
7281
7282 /* Return a string representation of type TYPE. */
7283
7284 static std::string
7285 type_as_string (struct type *type)
7286 {
7287 string_file tmp_stream;
7288
7289 type_print (type, "", &tmp_stream, -1);
7290
7291 return std::move (tmp_stream.string ());
7292 }
7293
7294 /* Given a type TYPE, look up the type of the component of type named NAME.
7295 If DISPP is non-null, add its byte displacement from the beginning of a
7296 structure (pointed to by a value) of type TYPE to *DISPP (does not
7297 work for packed fields).
7298
7299 Matches any field whose name has NAME as a prefix, possibly
7300 followed by "___".
7301
7302 TYPE can be either a struct or union. If REFOK, TYPE may also
7303 be a (pointer or reference)+ to a struct or union, and the
7304 ultimate target type will be searched.
7305
7306 Looks recursively into variant clauses and parent types.
7307
7308 In the case of homonyms in the tagged types, please refer to the
7309 long explanation in find_struct_field's function documentation.
7310
7311 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7312 TYPE is not a type of the right kind. */
7313
7314 static struct type *
7315 ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
7316 int noerr)
7317 {
7318 int i;
7319 int parent_offset = -1;
7320
7321 if (name == NULL)
7322 goto BadName;
7323
7324 if (refok && type != NULL)
7325 while (1)
7326 {
7327 type = ada_check_typedef (type);
7328 if (type->code () != TYPE_CODE_PTR && type->code () != TYPE_CODE_REF)
7329 break;
7330 type = TYPE_TARGET_TYPE (type);
7331 }
7332
7333 if (type == NULL
7334 || (type->code () != TYPE_CODE_STRUCT
7335 && type->code () != TYPE_CODE_UNION))
7336 {
7337 if (noerr)
7338 return NULL;
7339
7340 error (_("Type %s is not a structure or union type"),
7341 type != NULL ? type_as_string (type).c_str () : _("(null)"));
7342 }
7343
7344 type = to_static_fixed_type (type);
7345
7346 for (i = 0; i < type->num_fields (); i += 1)
7347 {
7348 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7349 struct type *t;
7350
7351 if (t_field_name == NULL)
7352 continue;
7353
7354 else if (ada_is_parent_field (type, i))
7355 {
7356 /* This is a field pointing us to the parent type of a tagged
7357 type. As hinted in this function's documentation, we give
7358 preference to fields in the current record first, so what
7359 we do here is just record the index of this field before
7360 we skip it. If it turns out we couldn't find our field
7361 in the current record, then we'll get back to it and search
7362 inside it whether the field might exist in the parent. */
7363
7364 parent_offset = i;
7365 continue;
7366 }
7367
7368 else if (field_name_match (t_field_name, name))
7369 return type->field (i).type ();
7370
7371 else if (ada_is_wrapper_field (type, i))
7372 {
7373 t = ada_lookup_struct_elt_type (type->field (i).type (), name,
7374 0, 1);
7375 if (t != NULL)
7376 return t;
7377 }
7378
7379 else if (ada_is_variant_part (type, i))
7380 {
7381 int j;
7382 struct type *field_type = ada_check_typedef (type->field (i).type ());
7383
7384 for (j = field_type->num_fields () - 1; j >= 0; j -= 1)
7385 {
7386 /* FIXME pnh 2008/01/26: We check for a field that is
7387 NOT wrapped in a struct, since the compiler sometimes
7388 generates these for unchecked variant types. Revisit
7389 if the compiler changes this practice. */
7390 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7391
7392 if (v_field_name != NULL
7393 && field_name_match (v_field_name, name))
7394 t = field_type->field (j).type ();
7395 else
7396 t = ada_lookup_struct_elt_type (field_type->field (j).type (),
7397 name, 0, 1);
7398
7399 if (t != NULL)
7400 return t;
7401 }
7402 }
7403
7404 }
7405
7406 /* Field not found so far. If this is a tagged type which
7407 has a parent, try finding that field in the parent now. */
7408
7409 if (parent_offset != -1)
7410 {
7411 struct type *t;
7412
7413 t = ada_lookup_struct_elt_type (type->field (parent_offset).type (),
7414 name, 0, 1);
7415 if (t != NULL)
7416 return t;
7417 }
7418
7419 BadName:
7420 if (!noerr)
7421 {
7422 const char *name_str = name != NULL ? name : _("<null>");
7423
7424 error (_("Type %s has no component named %s"),
7425 type_as_string (type).c_str (), name_str);
7426 }
7427
7428 return NULL;
7429 }
7430
7431 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7432 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7433 represents an unchecked union (that is, the variant part of a
7434 record that is named in an Unchecked_Union pragma). */
7435
7436 static int
7437 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7438 {
7439 const char *discrim_name = ada_variant_discrim_name (var_type);
7440
7441 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
7442 }
7443
7444
7445 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7446 within OUTER, determine which variant clause (field number in VAR_TYPE,
7447 numbering from 0) is applicable. Returns -1 if none are. */
7448
7449 int
7450 ada_which_variant_applies (struct type *var_type, struct value *outer)
7451 {
7452 int others_clause;
7453 int i;
7454 const char *discrim_name = ada_variant_discrim_name (var_type);
7455 struct value *discrim;
7456 LONGEST discrim_val;
7457
7458 /* Using plain value_from_contents_and_address here causes problems
7459 because we will end up trying to resolve a type that is currently
7460 being constructed. */
7461 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7462 if (discrim == NULL)
7463 return -1;
7464 discrim_val = value_as_long (discrim);
7465
7466 others_clause = -1;
7467 for (i = 0; i < var_type->num_fields (); i += 1)
7468 {
7469 if (ada_is_others_clause (var_type, i))
7470 others_clause = i;
7471 else if (ada_in_variant (discrim_val, var_type, i))
7472 return i;
7473 }
7474
7475 return others_clause;
7476 }
7477 \f
7478
7479
7480 /* Dynamic-Sized Records */
7481
7482 /* Strategy: The type ostensibly attached to a value with dynamic size
7483 (i.e., a size that is not statically recorded in the debugging
7484 data) does not accurately reflect the size or layout of the value.
7485 Our strategy is to convert these values to values with accurate,
7486 conventional types that are constructed on the fly. */
7487
7488 /* There is a subtle and tricky problem here. In general, we cannot
7489 determine the size of dynamic records without its data. However,
7490 the 'struct value' data structure, which GDB uses to represent
7491 quantities in the inferior process (the target), requires the size
7492 of the type at the time of its allocation in order to reserve space
7493 for GDB's internal copy of the data. That's why the
7494 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7495 rather than struct value*s.
7496
7497 However, GDB's internal history variables ($1, $2, etc.) are
7498 struct value*s containing internal copies of the data that are not, in
7499 general, the same as the data at their corresponding addresses in
7500 the target. Fortunately, the types we give to these values are all
7501 conventional, fixed-size types (as per the strategy described
7502 above), so that we don't usually have to perform the
7503 'to_fixed_xxx_type' conversions to look at their values.
7504 Unfortunately, there is one exception: if one of the internal
7505 history variables is an array whose elements are unconstrained
7506 records, then we will need to create distinct fixed types for each
7507 element selected. */
7508
7509 /* The upshot of all of this is that many routines take a (type, host
7510 address, target address) triple as arguments to represent a value.
7511 The host address, if non-null, is supposed to contain an internal
7512 copy of the relevant data; otherwise, the program is to consult the
7513 target at the target address. */
7514
7515 /* Assuming that VAL0 represents a pointer value, the result of
7516 dereferencing it. Differs from value_ind in its treatment of
7517 dynamic-sized types. */
7518
7519 struct value *
7520 ada_value_ind (struct value *val0)
7521 {
7522 struct value *val = value_ind (val0);
7523
7524 if (ada_is_tagged_type (value_type (val), 0))
7525 val = ada_tag_value_at_base_address (val);
7526
7527 return ada_to_fixed_value (val);
7528 }
7529
7530 /* The value resulting from dereferencing any "reference to"
7531 qualifiers on VAL0. */
7532
7533 static struct value *
7534 ada_coerce_ref (struct value *val0)
7535 {
7536 if (value_type (val0)->code () == TYPE_CODE_REF)
7537 {
7538 struct value *val = val0;
7539
7540 val = coerce_ref (val);
7541
7542 if (ada_is_tagged_type (value_type (val), 0))
7543 val = ada_tag_value_at_base_address (val);
7544
7545 return ada_to_fixed_value (val);
7546 }
7547 else
7548 return val0;
7549 }
7550
7551 /* Return the bit alignment required for field #F of template type TYPE. */
7552
7553 static unsigned int
7554 field_alignment (struct type *type, int f)
7555 {
7556 const char *name = TYPE_FIELD_NAME (type, f);
7557 int len;
7558 int align_offset;
7559
7560 /* The field name should never be null, unless the debugging information
7561 is somehow malformed. In this case, we assume the field does not
7562 require any alignment. */
7563 if (name == NULL)
7564 return 1;
7565
7566 len = strlen (name);
7567
7568 if (!isdigit (name[len - 1]))
7569 return 1;
7570
7571 if (isdigit (name[len - 2]))
7572 align_offset = len - 2;
7573 else
7574 align_offset = len - 1;
7575
7576 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7577 return TARGET_CHAR_BIT;
7578
7579 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7580 }
7581
7582 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7583
7584 static struct symbol *
7585 ada_find_any_type_symbol (const char *name)
7586 {
7587 struct symbol *sym;
7588
7589 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7590 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7591 return sym;
7592
7593 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7594 return sym;
7595 }
7596
7597 /* Find a type named NAME. Ignores ambiguity. This routine will look
7598 solely for types defined by debug info, it will not search the GDB
7599 primitive types. */
7600
7601 static struct type *
7602 ada_find_any_type (const char *name)
7603 {
7604 struct symbol *sym = ada_find_any_type_symbol (name);
7605
7606 if (sym != NULL)
7607 return SYMBOL_TYPE (sym);
7608
7609 return NULL;
7610 }
7611
7612 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7613 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7614 symbol, in which case it is returned. Otherwise, this looks for
7615 symbols whose name is that of NAME_SYM suffixed with "___XR".
7616 Return symbol if found, and NULL otherwise. */
7617
7618 static bool
7619 ada_is_renaming_symbol (struct symbol *name_sym)
7620 {
7621 const char *name = name_sym->linkage_name ();
7622 return strstr (name, "___XR") != NULL;
7623 }
7624
7625 /* Because of GNAT encoding conventions, several GDB symbols may match a
7626 given type name. If the type denoted by TYPE0 is to be preferred to
7627 that of TYPE1 for purposes of type printing, return non-zero;
7628 otherwise return 0. */
7629
7630 int
7631 ada_prefer_type (struct type *type0, struct type *type1)
7632 {
7633 if (type1 == NULL)
7634 return 1;
7635 else if (type0 == NULL)
7636 return 0;
7637 else if (type1->code () == TYPE_CODE_VOID)
7638 return 1;
7639 else if (type0->code () == TYPE_CODE_VOID)
7640 return 0;
7641 else if (type1->name () == NULL && type0->name () != NULL)
7642 return 1;
7643 else if (ada_is_constrained_packed_array_type (type0))
7644 return 1;
7645 else if (ada_is_array_descriptor_type (type0)
7646 && !ada_is_array_descriptor_type (type1))
7647 return 1;
7648 else
7649 {
7650 const char *type0_name = type0->name ();
7651 const char *type1_name = type1->name ();
7652
7653 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7654 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7655 return 1;
7656 }
7657 return 0;
7658 }
7659
7660 /* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
7661 null. */
7662
7663 const char *
7664 ada_type_name (struct type *type)
7665 {
7666 if (type == NULL)
7667 return NULL;
7668 return type->name ();
7669 }
7670
7671 /* Search the list of "descriptive" types associated to TYPE for a type
7672 whose name is NAME. */
7673
7674 static struct type *
7675 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7676 {
7677 struct type *result, *tmp;
7678
7679 if (ada_ignore_descriptive_types_p)
7680 return NULL;
7681
7682 /* If there no descriptive-type info, then there is no parallel type
7683 to be found. */
7684 if (!HAVE_GNAT_AUX_INFO (type))
7685 return NULL;
7686
7687 result = TYPE_DESCRIPTIVE_TYPE (type);
7688 while (result != NULL)
7689 {
7690 const char *result_name = ada_type_name (result);
7691
7692 if (result_name == NULL)
7693 {
7694 warning (_("unexpected null name on descriptive type"));
7695 return NULL;
7696 }
7697
7698 /* If the names match, stop. */
7699 if (strcmp (result_name, name) == 0)
7700 break;
7701
7702 /* Otherwise, look at the next item on the list, if any. */
7703 if (HAVE_GNAT_AUX_INFO (result))
7704 tmp = TYPE_DESCRIPTIVE_TYPE (result);
7705 else
7706 tmp = NULL;
7707
7708 /* If not found either, try after having resolved the typedef. */
7709 if (tmp != NULL)
7710 result = tmp;
7711 else
7712 {
7713 result = check_typedef (result);
7714 if (HAVE_GNAT_AUX_INFO (result))
7715 result = TYPE_DESCRIPTIVE_TYPE (result);
7716 else
7717 result = NULL;
7718 }
7719 }
7720
7721 /* If we didn't find a match, see whether this is a packed array. With
7722 older compilers, the descriptive type information is either absent or
7723 irrelevant when it comes to packed arrays so the above lookup fails.
7724 Fall back to using a parallel lookup by name in this case. */
7725 if (result == NULL && ada_is_constrained_packed_array_type (type))
7726 return ada_find_any_type (name);
7727
7728 return result;
7729 }
7730
7731 /* Find a parallel type to TYPE with the specified NAME, using the
7732 descriptive type taken from the debugging information, if available,
7733 and otherwise using the (slower) name-based method. */
7734
7735 static struct type *
7736 ada_find_parallel_type_with_name (struct type *type, const char *name)
7737 {
7738 struct type *result = NULL;
7739
7740 if (HAVE_GNAT_AUX_INFO (type))
7741 result = find_parallel_type_by_descriptive_type (type, name);
7742 else
7743 result = ada_find_any_type (name);
7744
7745 return result;
7746 }
7747
7748 /* Same as above, but specify the name of the parallel type by appending
7749 SUFFIX to the name of TYPE. */
7750
7751 struct type *
7752 ada_find_parallel_type (struct type *type, const char *suffix)
7753 {
7754 char *name;
7755 const char *type_name = ada_type_name (type);
7756 int len;
7757
7758 if (type_name == NULL)
7759 return NULL;
7760
7761 len = strlen (type_name);
7762
7763 name = (char *) alloca (len + strlen (suffix) + 1);
7764
7765 strcpy (name, type_name);
7766 strcpy (name + len, suffix);
7767
7768 return ada_find_parallel_type_with_name (type, name);
7769 }
7770
7771 /* If TYPE is a variable-size record type, return the corresponding template
7772 type describing its fields. Otherwise, return NULL. */
7773
7774 static struct type *
7775 dynamic_template_type (struct type *type)
7776 {
7777 type = ada_check_typedef (type);
7778
7779 if (type == NULL || type->code () != TYPE_CODE_STRUCT
7780 || ada_type_name (type) == NULL)
7781 return NULL;
7782 else
7783 {
7784 int len = strlen (ada_type_name (type));
7785
7786 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7787 return type;
7788 else
7789 return ada_find_parallel_type (type, "___XVE");
7790 }
7791 }
7792
7793 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7794 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7795
7796 static int
7797 is_dynamic_field (struct type *templ_type, int field_num)
7798 {
7799 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
7800
7801 return name != NULL
7802 && templ_type->field (field_num).type ()->code () == TYPE_CODE_PTR
7803 && strstr (name, "___XVL") != NULL;
7804 }
7805
7806 /* The index of the variant field of TYPE, or -1 if TYPE does not
7807 represent a variant record type. */
7808
7809 static int
7810 variant_field_index (struct type *type)
7811 {
7812 int f;
7813
7814 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
7815 return -1;
7816
7817 for (f = 0; f < type->num_fields (); f += 1)
7818 {
7819 if (ada_is_variant_part (type, f))
7820 return f;
7821 }
7822 return -1;
7823 }
7824
7825 /* A record type with no fields. */
7826
7827 static struct type *
7828 empty_record (struct type *templ)
7829 {
7830 struct type *type = alloc_type_copy (templ);
7831
7832 type->set_code (TYPE_CODE_STRUCT);
7833 INIT_NONE_SPECIFIC (type);
7834 type->set_name ("<empty>");
7835 TYPE_LENGTH (type) = 0;
7836 return type;
7837 }
7838
7839 /* An ordinary record type (with fixed-length fields) that describes
7840 the value of type TYPE at VALADDR or ADDRESS (see comments at
7841 the beginning of this section) VAL according to GNAT conventions.
7842 DVAL0 should describe the (portion of a) record that contains any
7843 necessary discriminants. It should be NULL if value_type (VAL) is
7844 an outer-level type (i.e., as opposed to a branch of a variant.) A
7845 variant field (unless unchecked) is replaced by a particular branch
7846 of the variant.
7847
7848 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7849 length are not statically known are discarded. As a consequence,
7850 VALADDR, ADDRESS and DVAL0 are ignored.
7851
7852 NOTE: Limitations: For now, we assume that dynamic fields and
7853 variants occupy whole numbers of bytes. However, they need not be
7854 byte-aligned. */
7855
7856 struct type *
7857 ada_template_to_fixed_record_type_1 (struct type *type,
7858 const gdb_byte *valaddr,
7859 CORE_ADDR address, struct value *dval0,
7860 int keep_dynamic_fields)
7861 {
7862 struct value *mark = value_mark ();
7863 struct value *dval;
7864 struct type *rtype;
7865 int nfields, bit_len;
7866 int variant_field;
7867 long off;
7868 int fld_bit_len;
7869 int f;
7870
7871 /* Compute the number of fields in this record type that are going
7872 to be processed: unless keep_dynamic_fields, this includes only
7873 fields whose position and length are static will be processed. */
7874 if (keep_dynamic_fields)
7875 nfields = type->num_fields ();
7876 else
7877 {
7878 nfields = 0;
7879 while (nfields < type->num_fields ()
7880 && !ada_is_variant_part (type, nfields)
7881 && !is_dynamic_field (type, nfields))
7882 nfields++;
7883 }
7884
7885 rtype = alloc_type_copy (type);
7886 rtype->set_code (TYPE_CODE_STRUCT);
7887 INIT_NONE_SPECIFIC (rtype);
7888 rtype->set_num_fields (nfields);
7889 rtype->set_fields
7890 ((struct field *) TYPE_ZALLOC (rtype, nfields * sizeof (struct field)));
7891 rtype->set_name (ada_type_name (type));
7892 rtype->set_is_fixed_instance (true);
7893
7894 off = 0;
7895 bit_len = 0;
7896 variant_field = -1;
7897
7898 for (f = 0; f < nfields; f += 1)
7899 {
7900 off = align_up (off, field_alignment (type, f))
7901 + TYPE_FIELD_BITPOS (type, f);
7902 SET_FIELD_BITPOS (rtype->field (f), off);
7903 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7904
7905 if (ada_is_variant_part (type, f))
7906 {
7907 variant_field = f;
7908 fld_bit_len = 0;
7909 }
7910 else if (is_dynamic_field (type, f))
7911 {
7912 const gdb_byte *field_valaddr = valaddr;
7913 CORE_ADDR field_address = address;
7914 struct type *field_type =
7915 TYPE_TARGET_TYPE (type->field (f).type ());
7916
7917 if (dval0 == NULL)
7918 {
7919 /* rtype's length is computed based on the run-time
7920 value of discriminants. If the discriminants are not
7921 initialized, the type size may be completely bogus and
7922 GDB may fail to allocate a value for it. So check the
7923 size first before creating the value. */
7924 ada_ensure_varsize_limit (rtype);
7925 /* Using plain value_from_contents_and_address here
7926 causes problems because we will end up trying to
7927 resolve a type that is currently being
7928 constructed. */
7929 dval = value_from_contents_and_address_unresolved (rtype,
7930 valaddr,
7931 address);
7932 rtype = value_type (dval);
7933 }
7934 else
7935 dval = dval0;
7936
7937 /* If the type referenced by this field is an aligner type, we need
7938 to unwrap that aligner type, because its size might not be set.
7939 Keeping the aligner type would cause us to compute the wrong
7940 size for this field, impacting the offset of the all the fields
7941 that follow this one. */
7942 if (ada_is_aligner_type (field_type))
7943 {
7944 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7945
7946 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7947 field_address = cond_offset_target (field_address, field_offset);
7948 field_type = ada_aligned_type (field_type);
7949 }
7950
7951 field_valaddr = cond_offset_host (field_valaddr,
7952 off / TARGET_CHAR_BIT);
7953 field_address = cond_offset_target (field_address,
7954 off / TARGET_CHAR_BIT);
7955
7956 /* Get the fixed type of the field. Note that, in this case,
7957 we do not want to get the real type out of the tag: if
7958 the current field is the parent part of a tagged record,
7959 we will get the tag of the object. Clearly wrong: the real
7960 type of the parent is not the real type of the child. We
7961 would end up in an infinite loop. */
7962 field_type = ada_get_base_type (field_type);
7963 field_type = ada_to_fixed_type (field_type, field_valaddr,
7964 field_address, dval, 0);
7965 /* If the field size is already larger than the maximum
7966 object size, then the record itself will necessarily
7967 be larger than the maximum object size. We need to make
7968 this check now, because the size might be so ridiculously
7969 large (due to an uninitialized variable in the inferior)
7970 that it would cause an overflow when adding it to the
7971 record size. */
7972 ada_ensure_varsize_limit (field_type);
7973
7974 rtype->field (f).set_type (field_type);
7975 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7976 /* The multiplication can potentially overflow. But because
7977 the field length has been size-checked just above, and
7978 assuming that the maximum size is a reasonable value,
7979 an overflow should not happen in practice. So rather than
7980 adding overflow recovery code to this already complex code,
7981 we just assume that it's not going to happen. */
7982 fld_bit_len =
7983 TYPE_LENGTH (rtype->field (f).type ()) * TARGET_CHAR_BIT;
7984 }
7985 else
7986 {
7987 /* Note: If this field's type is a typedef, it is important
7988 to preserve the typedef layer.
7989
7990 Otherwise, we might be transforming a typedef to a fat
7991 pointer (encoding a pointer to an unconstrained array),
7992 into a basic fat pointer (encoding an unconstrained
7993 array). As both types are implemented using the same
7994 structure, the typedef is the only clue which allows us
7995 to distinguish between the two options. Stripping it
7996 would prevent us from printing this field appropriately. */
7997 rtype->field (f).set_type (type->field (f).type ());
7998 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7999 if (TYPE_FIELD_BITSIZE (type, f) > 0)
8000 fld_bit_len =
8001 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8002 else
8003 {
8004 struct type *field_type = type->field (f).type ();
8005
8006 /* We need to be careful of typedefs when computing
8007 the length of our field. If this is a typedef,
8008 get the length of the target type, not the length
8009 of the typedef. */
8010 if (field_type->code () == TYPE_CODE_TYPEDEF)
8011 field_type = ada_typedef_target_type (field_type);
8012
8013 fld_bit_len =
8014 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8015 }
8016 }
8017 if (off + fld_bit_len > bit_len)
8018 bit_len = off + fld_bit_len;
8019 off += fld_bit_len;
8020 TYPE_LENGTH (rtype) =
8021 align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8022 }
8023
8024 /* We handle the variant part, if any, at the end because of certain
8025 odd cases in which it is re-ordered so as NOT to be the last field of
8026 the record. This can happen in the presence of representation
8027 clauses. */
8028 if (variant_field >= 0)
8029 {
8030 struct type *branch_type;
8031
8032 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8033
8034 if (dval0 == NULL)
8035 {
8036 /* Using plain value_from_contents_and_address here causes
8037 problems because we will end up trying to resolve a type
8038 that is currently being constructed. */
8039 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8040 address);
8041 rtype = value_type (dval);
8042 }
8043 else
8044 dval = dval0;
8045
8046 branch_type =
8047 to_fixed_variant_branch_type
8048 (type->field (variant_field).type (),
8049 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8050 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8051 if (branch_type == NULL)
8052 {
8053 for (f = variant_field + 1; f < rtype->num_fields (); f += 1)
8054 rtype->field (f - 1) = rtype->field (f);
8055 rtype->set_num_fields (rtype->num_fields () - 1);
8056 }
8057 else
8058 {
8059 rtype->field (variant_field).set_type (branch_type);
8060 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8061 fld_bit_len =
8062 TYPE_LENGTH (rtype->field (variant_field).type ()) *
8063 TARGET_CHAR_BIT;
8064 if (off + fld_bit_len > bit_len)
8065 bit_len = off + fld_bit_len;
8066 TYPE_LENGTH (rtype) =
8067 align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8068 }
8069 }
8070
8071 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8072 should contain the alignment of that record, which should be a strictly
8073 positive value. If null or negative, then something is wrong, most
8074 probably in the debug info. In that case, we don't round up the size
8075 of the resulting type. If this record is not part of another structure,
8076 the current RTYPE length might be good enough for our purposes. */
8077 if (TYPE_LENGTH (type) <= 0)
8078 {
8079 if (rtype->name ())
8080 warning (_("Invalid type size for `%s' detected: %s."),
8081 rtype->name (), pulongest (TYPE_LENGTH (type)));
8082 else
8083 warning (_("Invalid type size for <unnamed> detected: %s."),
8084 pulongest (TYPE_LENGTH (type)));
8085 }
8086 else
8087 {
8088 TYPE_LENGTH (rtype) = align_up (TYPE_LENGTH (rtype),
8089 TYPE_LENGTH (type));
8090 }
8091
8092 value_free_to_mark (mark);
8093 if (TYPE_LENGTH (rtype) > varsize_limit)
8094 error (_("record type with dynamic size is larger than varsize-limit"));
8095 return rtype;
8096 }
8097
8098 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8099 of 1. */
8100
8101 static struct type *
8102 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8103 CORE_ADDR address, struct value *dval0)
8104 {
8105 return ada_template_to_fixed_record_type_1 (type, valaddr,
8106 address, dval0, 1);
8107 }
8108
8109 /* An ordinary record type in which ___XVL-convention fields and
8110 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8111 static approximations, containing all possible fields. Uses
8112 no runtime values. Useless for use in values, but that's OK,
8113 since the results are used only for type determinations. Works on both
8114 structs and unions. Representation note: to save space, we memorize
8115 the result of this function in the TYPE_TARGET_TYPE of the
8116 template type. */
8117
8118 static struct type *
8119 template_to_static_fixed_type (struct type *type0)
8120 {
8121 struct type *type;
8122 int nfields;
8123 int f;
8124
8125 /* No need no do anything if the input type is already fixed. */
8126 if (type0->is_fixed_instance ())
8127 return type0;
8128
8129 /* Likewise if we already have computed the static approximation. */
8130 if (TYPE_TARGET_TYPE (type0) != NULL)
8131 return TYPE_TARGET_TYPE (type0);
8132
8133 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8134 type = type0;
8135 nfields = type0->num_fields ();
8136
8137 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8138 recompute all over next time. */
8139 TYPE_TARGET_TYPE (type0) = type;
8140
8141 for (f = 0; f < nfields; f += 1)
8142 {
8143 struct type *field_type = type0->field (f).type ();
8144 struct type *new_type;
8145
8146 if (is_dynamic_field (type0, f))
8147 {
8148 field_type = ada_check_typedef (field_type);
8149 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8150 }
8151 else
8152 new_type = static_unwrap_type (field_type);
8153
8154 if (new_type != field_type)
8155 {
8156 /* Clone TYPE0 only the first time we get a new field type. */
8157 if (type == type0)
8158 {
8159 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8160 type->set_code (type0->code ());
8161 INIT_NONE_SPECIFIC (type);
8162 type->set_num_fields (nfields);
8163
8164 field *fields =
8165 ((struct field *)
8166 TYPE_ALLOC (type, nfields * sizeof (struct field)));
8167 memcpy (fields, type0->fields (),
8168 sizeof (struct field) * nfields);
8169 type->set_fields (fields);
8170
8171 type->set_name (ada_type_name (type0));
8172 type->set_is_fixed_instance (true);
8173 TYPE_LENGTH (type) = 0;
8174 }
8175 type->field (f).set_type (new_type);
8176 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8177 }
8178 }
8179
8180 return type;
8181 }
8182
8183 /* Given an object of type TYPE whose contents are at VALADDR and
8184 whose address in memory is ADDRESS, returns a revision of TYPE,
8185 which should be a non-dynamic-sized record, in which the variant
8186 part, if any, is replaced with the appropriate branch. Looks
8187 for discriminant values in DVAL0, which can be NULL if the record
8188 contains the necessary discriminant values. */
8189
8190 static struct type *
8191 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8192 CORE_ADDR address, struct value *dval0)
8193 {
8194 struct value *mark = value_mark ();
8195 struct value *dval;
8196 struct type *rtype;
8197 struct type *branch_type;
8198 int nfields = type->num_fields ();
8199 int variant_field = variant_field_index (type);
8200
8201 if (variant_field == -1)
8202 return type;
8203
8204 if (dval0 == NULL)
8205 {
8206 dval = value_from_contents_and_address (type, valaddr, address);
8207 type = value_type (dval);
8208 }
8209 else
8210 dval = dval0;
8211
8212 rtype = alloc_type_copy (type);
8213 rtype->set_code (TYPE_CODE_STRUCT);
8214 INIT_NONE_SPECIFIC (rtype);
8215 rtype->set_num_fields (nfields);
8216
8217 field *fields =
8218 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8219 memcpy (fields, type->fields (), sizeof (struct field) * nfields);
8220 rtype->set_fields (fields);
8221
8222 rtype->set_name (ada_type_name (type));
8223 rtype->set_is_fixed_instance (true);
8224 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8225
8226 branch_type = to_fixed_variant_branch_type
8227 (type->field (variant_field).type (),
8228 cond_offset_host (valaddr,
8229 TYPE_FIELD_BITPOS (type, variant_field)
8230 / TARGET_CHAR_BIT),
8231 cond_offset_target (address,
8232 TYPE_FIELD_BITPOS (type, variant_field)
8233 / TARGET_CHAR_BIT), dval);
8234 if (branch_type == NULL)
8235 {
8236 int f;
8237
8238 for (f = variant_field + 1; f < nfields; f += 1)
8239 rtype->field (f - 1) = rtype->field (f);
8240 rtype->set_num_fields (rtype->num_fields () - 1);
8241 }
8242 else
8243 {
8244 rtype->field (variant_field).set_type (branch_type);
8245 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8246 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8247 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8248 }
8249 TYPE_LENGTH (rtype) -= TYPE_LENGTH (type->field (variant_field).type ());
8250
8251 value_free_to_mark (mark);
8252 return rtype;
8253 }
8254
8255 /* An ordinary record type (with fixed-length fields) that describes
8256 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8257 beginning of this section]. Any necessary discriminants' values
8258 should be in DVAL, a record value; it may be NULL if the object
8259 at ADDR itself contains any necessary discriminant values.
8260 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8261 values from the record are needed. Except in the case that DVAL,
8262 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8263 unchecked) is replaced by a particular branch of the variant.
8264
8265 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8266 is questionable and may be removed. It can arise during the
8267 processing of an unconstrained-array-of-record type where all the
8268 variant branches have exactly the same size. This is because in
8269 such cases, the compiler does not bother to use the XVS convention
8270 when encoding the record. I am currently dubious of this
8271 shortcut and suspect the compiler should be altered. FIXME. */
8272
8273 static struct type *
8274 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8275 CORE_ADDR address, struct value *dval)
8276 {
8277 struct type *templ_type;
8278
8279 if (type0->is_fixed_instance ())
8280 return type0;
8281
8282 templ_type = dynamic_template_type (type0);
8283
8284 if (templ_type != NULL)
8285 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8286 else if (variant_field_index (type0) >= 0)
8287 {
8288 if (dval == NULL && valaddr == NULL && address == 0)
8289 return type0;
8290 return to_record_with_fixed_variant_part (type0, valaddr, address,
8291 dval);
8292 }
8293 else
8294 {
8295 type0->set_is_fixed_instance (true);
8296 return type0;
8297 }
8298
8299 }
8300
8301 /* An ordinary record type (with fixed-length fields) that describes
8302 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8303 union type. Any necessary discriminants' values should be in DVAL,
8304 a record value. That is, this routine selects the appropriate
8305 branch of the union at ADDR according to the discriminant value
8306 indicated in the union's type name. Returns VAR_TYPE0 itself if
8307 it represents a variant subject to a pragma Unchecked_Union. */
8308
8309 static struct type *
8310 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8311 CORE_ADDR address, struct value *dval)
8312 {
8313 int which;
8314 struct type *templ_type;
8315 struct type *var_type;
8316
8317 if (var_type0->code () == TYPE_CODE_PTR)
8318 var_type = TYPE_TARGET_TYPE (var_type0);
8319 else
8320 var_type = var_type0;
8321
8322 templ_type = ada_find_parallel_type (var_type, "___XVU");
8323
8324 if (templ_type != NULL)
8325 var_type = templ_type;
8326
8327 if (is_unchecked_variant (var_type, value_type (dval)))
8328 return var_type0;
8329 which = ada_which_variant_applies (var_type, dval);
8330
8331 if (which < 0)
8332 return empty_record (var_type);
8333 else if (is_dynamic_field (var_type, which))
8334 return to_fixed_record_type
8335 (TYPE_TARGET_TYPE (var_type->field (which).type ()),
8336 valaddr, address, dval);
8337 else if (variant_field_index (var_type->field (which).type ()) >= 0)
8338 return
8339 to_fixed_record_type
8340 (var_type->field (which).type (), valaddr, address, dval);
8341 else
8342 return var_type->field (which).type ();
8343 }
8344
8345 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8346 ENCODING_TYPE, a type following the GNAT conventions for discrete
8347 type encodings, only carries redundant information. */
8348
8349 static int
8350 ada_is_redundant_range_encoding (struct type *range_type,
8351 struct type *encoding_type)
8352 {
8353 const char *bounds_str;
8354 int n;
8355 LONGEST lo, hi;
8356
8357 gdb_assert (range_type->code () == TYPE_CODE_RANGE);
8358
8359 if (get_base_type (range_type)->code ()
8360 != get_base_type (encoding_type)->code ())
8361 {
8362 /* The compiler probably used a simple base type to describe
8363 the range type instead of the range's actual base type,
8364 expecting us to get the real base type from the encoding
8365 anyway. In this situation, the encoding cannot be ignored
8366 as redundant. */
8367 return 0;
8368 }
8369
8370 if (is_dynamic_type (range_type))
8371 return 0;
8372
8373 if (encoding_type->name () == NULL)
8374 return 0;
8375
8376 bounds_str = strstr (encoding_type->name (), "___XDLU_");
8377 if (bounds_str == NULL)
8378 return 0;
8379
8380 n = 8; /* Skip "___XDLU_". */
8381 if (!ada_scan_number (bounds_str, n, &lo, &n))
8382 return 0;
8383 if (range_type->bounds ()->low.const_val () != lo)
8384 return 0;
8385
8386 n += 2; /* Skip the "__" separator between the two bounds. */
8387 if (!ada_scan_number (bounds_str, n, &hi, &n))
8388 return 0;
8389 if (range_type->bounds ()->high.const_val () != hi)
8390 return 0;
8391
8392 return 1;
8393 }
8394
8395 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8396 a type following the GNAT encoding for describing array type
8397 indices, only carries redundant information. */
8398
8399 static int
8400 ada_is_redundant_index_type_desc (struct type *array_type,
8401 struct type *desc_type)
8402 {
8403 struct type *this_layer = check_typedef (array_type);
8404 int i;
8405
8406 for (i = 0; i < desc_type->num_fields (); i++)
8407 {
8408 if (!ada_is_redundant_range_encoding (this_layer->index_type (),
8409 desc_type->field (i).type ()))
8410 return 0;
8411 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8412 }
8413
8414 return 1;
8415 }
8416
8417 /* Assuming that TYPE0 is an array type describing the type of a value
8418 at ADDR, and that DVAL describes a record containing any
8419 discriminants used in TYPE0, returns a type for the value that
8420 contains no dynamic components (that is, no components whose sizes
8421 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8422 true, gives an error message if the resulting type's size is over
8423 varsize_limit. */
8424
8425 static struct type *
8426 to_fixed_array_type (struct type *type0, struct value *dval,
8427 int ignore_too_big)
8428 {
8429 struct type *index_type_desc;
8430 struct type *result;
8431 int constrained_packed_array_p;
8432 static const char *xa_suffix = "___XA";
8433
8434 type0 = ada_check_typedef (type0);
8435 if (type0->is_fixed_instance ())
8436 return type0;
8437
8438 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8439 if (constrained_packed_array_p)
8440 {
8441 type0 = decode_constrained_packed_array_type (type0);
8442 if (type0 == nullptr)
8443 error (_("could not decode constrained packed array type"));
8444 }
8445
8446 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8447
8448 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8449 encoding suffixed with 'P' may still be generated. If so,
8450 it should be used to find the XA type. */
8451
8452 if (index_type_desc == NULL)
8453 {
8454 const char *type_name = ada_type_name (type0);
8455
8456 if (type_name != NULL)
8457 {
8458 const int len = strlen (type_name);
8459 char *name = (char *) alloca (len + strlen (xa_suffix));
8460
8461 if (type_name[len - 1] == 'P')
8462 {
8463 strcpy (name, type_name);
8464 strcpy (name + len - 1, xa_suffix);
8465 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8466 }
8467 }
8468 }
8469
8470 ada_fixup_array_indexes_type (index_type_desc);
8471 if (index_type_desc != NULL
8472 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8473 {
8474 /* Ignore this ___XA parallel type, as it does not bring any
8475 useful information. This allows us to avoid creating fixed
8476 versions of the array's index types, which would be identical
8477 to the original ones. This, in turn, can also help avoid
8478 the creation of fixed versions of the array itself. */
8479 index_type_desc = NULL;
8480 }
8481
8482 if (index_type_desc == NULL)
8483 {
8484 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8485
8486 /* NOTE: elt_type---the fixed version of elt_type0---should never
8487 depend on the contents of the array in properly constructed
8488 debugging data. */
8489 /* Create a fixed version of the array element type.
8490 We're not providing the address of an element here,
8491 and thus the actual object value cannot be inspected to do
8492 the conversion. This should not be a problem, since arrays of
8493 unconstrained objects are not allowed. In particular, all
8494 the elements of an array of a tagged type should all be of
8495 the same type specified in the debugging info. No need to
8496 consult the object tag. */
8497 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8498
8499 /* Make sure we always create a new array type when dealing with
8500 packed array types, since we're going to fix-up the array
8501 type length and element bitsize a little further down. */
8502 if (elt_type0 == elt_type && !constrained_packed_array_p)
8503 result = type0;
8504 else
8505 result = create_array_type (alloc_type_copy (type0),
8506 elt_type, type0->index_type ());
8507 }
8508 else
8509 {
8510 int i;
8511 struct type *elt_type0;
8512
8513 elt_type0 = type0;
8514 for (i = index_type_desc->num_fields (); i > 0; i -= 1)
8515 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8516
8517 /* NOTE: result---the fixed version of elt_type0---should never
8518 depend on the contents of the array in properly constructed
8519 debugging data. */
8520 /* Create a fixed version of the array element type.
8521 We're not providing the address of an element here,
8522 and thus the actual object value cannot be inspected to do
8523 the conversion. This should not be a problem, since arrays of
8524 unconstrained objects are not allowed. In particular, all
8525 the elements of an array of a tagged type should all be of
8526 the same type specified in the debugging info. No need to
8527 consult the object tag. */
8528 result =
8529 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8530
8531 elt_type0 = type0;
8532 for (i = index_type_desc->num_fields () - 1; i >= 0; i -= 1)
8533 {
8534 struct type *range_type =
8535 to_fixed_range_type (index_type_desc->field (i).type (), dval);
8536
8537 result = create_array_type (alloc_type_copy (elt_type0),
8538 result, range_type);
8539 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8540 }
8541 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8542 error (_("array type with dynamic size is larger than varsize-limit"));
8543 }
8544
8545 /* We want to preserve the type name. This can be useful when
8546 trying to get the type name of a value that has already been
8547 printed (for instance, if the user did "print VAR; whatis $". */
8548 result->set_name (type0->name ());
8549
8550 if (constrained_packed_array_p)
8551 {
8552 /* So far, the resulting type has been created as if the original
8553 type was a regular (non-packed) array type. As a result, the
8554 bitsize of the array elements needs to be set again, and the array
8555 length needs to be recomputed based on that bitsize. */
8556 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8557 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8558
8559 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8560 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8561 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8562 TYPE_LENGTH (result)++;
8563 }
8564
8565 result->set_is_fixed_instance (true);
8566 return result;
8567 }
8568
8569
8570 /* A standard type (containing no dynamically sized components)
8571 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8572 DVAL describes a record containing any discriminants used in TYPE0,
8573 and may be NULL if there are none, or if the object of type TYPE at
8574 ADDRESS or in VALADDR contains these discriminants.
8575
8576 If CHECK_TAG is not null, in the case of tagged types, this function
8577 attempts to locate the object's tag and use it to compute the actual
8578 type. However, when ADDRESS is null, we cannot use it to determine the
8579 location of the tag, and therefore compute the tagged type's actual type.
8580 So we return the tagged type without consulting the tag. */
8581
8582 static struct type *
8583 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8584 CORE_ADDR address, struct value *dval, int check_tag)
8585 {
8586 type = ada_check_typedef (type);
8587
8588 /* Only un-fixed types need to be handled here. */
8589 if (!HAVE_GNAT_AUX_INFO (type))
8590 return type;
8591
8592 switch (type->code ())
8593 {
8594 default:
8595 return type;
8596 case TYPE_CODE_STRUCT:
8597 {
8598 struct type *static_type = to_static_fixed_type (type);
8599 struct type *fixed_record_type =
8600 to_fixed_record_type (type, valaddr, address, NULL);
8601
8602 /* If STATIC_TYPE is a tagged type and we know the object's address,
8603 then we can determine its tag, and compute the object's actual
8604 type from there. Note that we have to use the fixed record
8605 type (the parent part of the record may have dynamic fields
8606 and the way the location of _tag is expressed may depend on
8607 them). */
8608
8609 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8610 {
8611 struct value *tag =
8612 value_tag_from_contents_and_address
8613 (fixed_record_type,
8614 valaddr,
8615 address);
8616 struct type *real_type = type_from_tag (tag);
8617 struct value *obj =
8618 value_from_contents_and_address (fixed_record_type,
8619 valaddr,
8620 address);
8621 fixed_record_type = value_type (obj);
8622 if (real_type != NULL)
8623 return to_fixed_record_type
8624 (real_type, NULL,
8625 value_address (ada_tag_value_at_base_address (obj)), NULL);
8626 }
8627
8628 /* Check to see if there is a parallel ___XVZ variable.
8629 If there is, then it provides the actual size of our type. */
8630 else if (ada_type_name (fixed_record_type) != NULL)
8631 {
8632 const char *name = ada_type_name (fixed_record_type);
8633 char *xvz_name
8634 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
8635 bool xvz_found = false;
8636 LONGEST size;
8637
8638 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8639 try
8640 {
8641 xvz_found = get_int_var_value (xvz_name, size);
8642 }
8643 catch (const gdb_exception_error &except)
8644 {
8645 /* We found the variable, but somehow failed to read
8646 its value. Rethrow the same error, but with a little
8647 bit more information, to help the user understand
8648 what went wrong (Eg: the variable might have been
8649 optimized out). */
8650 throw_error (except.error,
8651 _("unable to read value of %s (%s)"),
8652 xvz_name, except.what ());
8653 }
8654
8655 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8656 {
8657 fixed_record_type = copy_type (fixed_record_type);
8658 TYPE_LENGTH (fixed_record_type) = size;
8659
8660 /* The FIXED_RECORD_TYPE may have be a stub. We have
8661 observed this when the debugging info is STABS, and
8662 apparently it is something that is hard to fix.
8663
8664 In practice, we don't need the actual type definition
8665 at all, because the presence of the XVZ variable allows us
8666 to assume that there must be a XVS type as well, which we
8667 should be able to use later, when we need the actual type
8668 definition.
8669
8670 In the meantime, pretend that the "fixed" type we are
8671 returning is NOT a stub, because this can cause trouble
8672 when using this type to create new types targeting it.
8673 Indeed, the associated creation routines often check
8674 whether the target type is a stub and will try to replace
8675 it, thus using a type with the wrong size. This, in turn,
8676 might cause the new type to have the wrong size too.
8677 Consider the case of an array, for instance, where the size
8678 of the array is computed from the number of elements in
8679 our array multiplied by the size of its element. */
8680 fixed_record_type->set_is_stub (false);
8681 }
8682 }
8683 return fixed_record_type;
8684 }
8685 case TYPE_CODE_ARRAY:
8686 return to_fixed_array_type (type, dval, 1);
8687 case TYPE_CODE_UNION:
8688 if (dval == NULL)
8689 return type;
8690 else
8691 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8692 }
8693 }
8694
8695 /* The same as ada_to_fixed_type_1, except that it preserves the type
8696 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8697
8698 The typedef layer needs be preserved in order to differentiate between
8699 arrays and array pointers when both types are implemented using the same
8700 fat pointer. In the array pointer case, the pointer is encoded as
8701 a typedef of the pointer type. For instance, considering:
8702
8703 type String_Access is access String;
8704 S1 : String_Access := null;
8705
8706 To the debugger, S1 is defined as a typedef of type String. But
8707 to the user, it is a pointer. So if the user tries to print S1,
8708 we should not dereference the array, but print the array address
8709 instead.
8710
8711 If we didn't preserve the typedef layer, we would lose the fact that
8712 the type is to be presented as a pointer (needs de-reference before
8713 being printed). And we would also use the source-level type name. */
8714
8715 struct type *
8716 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8717 CORE_ADDR address, struct value *dval, int check_tag)
8718
8719 {
8720 struct type *fixed_type =
8721 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8722
8723 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8724 then preserve the typedef layer.
8725
8726 Implementation note: We can only check the main-type portion of
8727 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8728 from TYPE now returns a type that has the same instance flags
8729 as TYPE. For instance, if TYPE is a "typedef const", and its
8730 target type is a "struct", then the typedef elimination will return
8731 a "const" version of the target type. See check_typedef for more
8732 details about how the typedef layer elimination is done.
8733
8734 brobecker/2010-11-19: It seems to me that the only case where it is
8735 useful to preserve the typedef layer is when dealing with fat pointers.
8736 Perhaps, we could add a check for that and preserve the typedef layer
8737 only in that situation. But this seems unnecessary so far, probably
8738 because we call check_typedef/ada_check_typedef pretty much everywhere.
8739 */
8740 if (type->code () == TYPE_CODE_TYPEDEF
8741 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8742 == TYPE_MAIN_TYPE (fixed_type)))
8743 return type;
8744
8745 return fixed_type;
8746 }
8747
8748 /* A standard (static-sized) type corresponding as well as possible to
8749 TYPE0, but based on no runtime data. */
8750
8751 static struct type *
8752 to_static_fixed_type (struct type *type0)
8753 {
8754 struct type *type;
8755
8756 if (type0 == NULL)
8757 return NULL;
8758
8759 if (type0->is_fixed_instance ())
8760 return type0;
8761
8762 type0 = ada_check_typedef (type0);
8763
8764 switch (type0->code ())
8765 {
8766 default:
8767 return type0;
8768 case TYPE_CODE_STRUCT:
8769 type = dynamic_template_type (type0);
8770 if (type != NULL)
8771 return template_to_static_fixed_type (type);
8772 else
8773 return template_to_static_fixed_type (type0);
8774 case TYPE_CODE_UNION:
8775 type = ada_find_parallel_type (type0, "___XVU");
8776 if (type != NULL)
8777 return template_to_static_fixed_type (type);
8778 else
8779 return template_to_static_fixed_type (type0);
8780 }
8781 }
8782
8783 /* A static approximation of TYPE with all type wrappers removed. */
8784
8785 static struct type *
8786 static_unwrap_type (struct type *type)
8787 {
8788 if (ada_is_aligner_type (type))
8789 {
8790 struct type *type1 = ada_check_typedef (type)->field (0).type ();
8791 if (ada_type_name (type1) == NULL)
8792 type1->set_name (ada_type_name (type));
8793
8794 return static_unwrap_type (type1);
8795 }
8796 else
8797 {
8798 struct type *raw_real_type = ada_get_base_type (type);
8799
8800 if (raw_real_type == type)
8801 return type;
8802 else
8803 return to_static_fixed_type (raw_real_type);
8804 }
8805 }
8806
8807 /* In some cases, incomplete and private types require
8808 cross-references that are not resolved as records (for example,
8809 type Foo;
8810 type FooP is access Foo;
8811 V: FooP;
8812 type Foo is array ...;
8813 ). In these cases, since there is no mechanism for producing
8814 cross-references to such types, we instead substitute for FooP a
8815 stub enumeration type that is nowhere resolved, and whose tag is
8816 the name of the actual type. Call these types "non-record stubs". */
8817
8818 /* A type equivalent to TYPE that is not a non-record stub, if one
8819 exists, otherwise TYPE. */
8820
8821 struct type *
8822 ada_check_typedef (struct type *type)
8823 {
8824 if (type == NULL)
8825 return NULL;
8826
8827 /* If our type is an access to an unconstrained array, which is encoded
8828 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
8829 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8830 what allows us to distinguish between fat pointers that represent
8831 array types, and fat pointers that represent array access types
8832 (in both cases, the compiler implements them as fat pointers). */
8833 if (ada_is_access_to_unconstrained_array (type))
8834 return type;
8835
8836 type = check_typedef (type);
8837 if (type == NULL || type->code () != TYPE_CODE_ENUM
8838 || !type->is_stub ()
8839 || type->name () == NULL)
8840 return type;
8841 else
8842 {
8843 const char *name = type->name ();
8844 struct type *type1 = ada_find_any_type (name);
8845
8846 if (type1 == NULL)
8847 return type;
8848
8849 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8850 stubs pointing to arrays, as we don't create symbols for array
8851 types, only for the typedef-to-array types). If that's the case,
8852 strip the typedef layer. */
8853 if (type1->code () == TYPE_CODE_TYPEDEF)
8854 type1 = ada_check_typedef (type1);
8855
8856 return type1;
8857 }
8858 }
8859
8860 /* A value representing the data at VALADDR/ADDRESS as described by
8861 type TYPE0, but with a standard (static-sized) type that correctly
8862 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8863 type, then return VAL0 [this feature is simply to avoid redundant
8864 creation of struct values]. */
8865
8866 static struct value *
8867 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8868 struct value *val0)
8869 {
8870 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
8871
8872 if (type == type0 && val0 != NULL)
8873 return val0;
8874
8875 if (VALUE_LVAL (val0) != lval_memory)
8876 {
8877 /* Our value does not live in memory; it could be a convenience
8878 variable, for instance. Create a not_lval value using val0's
8879 contents. */
8880 return value_from_contents (type, value_contents (val0));
8881 }
8882
8883 return value_from_contents_and_address (type, 0, address);
8884 }
8885
8886 /* A value representing VAL, but with a standard (static-sized) type
8887 that correctly describes it. Does not necessarily create a new
8888 value. */
8889
8890 struct value *
8891 ada_to_fixed_value (struct value *val)
8892 {
8893 val = unwrap_value (val);
8894 val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
8895 return val;
8896 }
8897 \f
8898
8899 /* Attributes */
8900
8901 /* Table mapping attribute numbers to names.
8902 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
8903
8904 static const char * const attribute_names[] = {
8905 "<?>",
8906
8907 "first",
8908 "last",
8909 "length",
8910 "image",
8911 "max",
8912 "min",
8913 "modulus",
8914 "pos",
8915 "size",
8916 "tag",
8917 "val",
8918 0
8919 };
8920
8921 static const char *
8922 ada_attribute_name (enum exp_opcode n)
8923 {
8924 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8925 return attribute_names[n - OP_ATR_FIRST + 1];
8926 else
8927 return attribute_names[0];
8928 }
8929
8930 /* Evaluate the 'POS attribute applied to ARG. */
8931
8932 static LONGEST
8933 pos_atr (struct value *arg)
8934 {
8935 struct value *val = coerce_ref (arg);
8936 struct type *type = value_type (val);
8937
8938 if (!discrete_type_p (type))
8939 error (_("'POS only defined on discrete types"));
8940
8941 gdb::optional<LONGEST> result = discrete_position (type, value_as_long (val));
8942 if (!result.has_value ())
8943 error (_("enumeration value is invalid: can't find 'POS"));
8944
8945 return *result;
8946 }
8947
8948 static struct value *
8949 value_pos_atr (struct type *type, struct value *arg)
8950 {
8951 return value_from_longest (type, pos_atr (arg));
8952 }
8953
8954 /* Evaluate the TYPE'VAL attribute applied to ARG. */
8955
8956 static struct value *
8957 val_atr (struct type *type, LONGEST val)
8958 {
8959 gdb_assert (discrete_type_p (type));
8960 if (type->code () == TYPE_CODE_RANGE)
8961 type = TYPE_TARGET_TYPE (type);
8962 if (type->code () == TYPE_CODE_ENUM)
8963 {
8964 if (val < 0 || val >= type->num_fields ())
8965 error (_("argument to 'VAL out of range"));
8966 val = TYPE_FIELD_ENUMVAL (type, val);
8967 }
8968 return value_from_longest (type, val);
8969 }
8970
8971 static struct value *
8972 value_val_atr (struct type *type, struct value *arg)
8973 {
8974 if (!discrete_type_p (type))
8975 error (_("'VAL only defined on discrete types"));
8976 if (!integer_type_p (value_type (arg)))
8977 error (_("'VAL requires integral argument"));
8978
8979 return val_atr (type, value_as_long (arg));
8980 }
8981 \f
8982
8983 /* Evaluation */
8984
8985 /* True if TYPE appears to be an Ada character type.
8986 [At the moment, this is true only for Character and Wide_Character;
8987 It is a heuristic test that could stand improvement]. */
8988
8989 bool
8990 ada_is_character_type (struct type *type)
8991 {
8992 const char *name;
8993
8994 /* If the type code says it's a character, then assume it really is,
8995 and don't check any further. */
8996 if (type->code () == TYPE_CODE_CHAR)
8997 return true;
8998
8999 /* Otherwise, assume it's a character type iff it is a discrete type
9000 with a known character type name. */
9001 name = ada_type_name (type);
9002 return (name != NULL
9003 && (type->code () == TYPE_CODE_INT
9004 || type->code () == TYPE_CODE_RANGE)
9005 && (strcmp (name, "character") == 0
9006 || strcmp (name, "wide_character") == 0
9007 || strcmp (name, "wide_wide_character") == 0
9008 || strcmp (name, "unsigned char") == 0));
9009 }
9010
9011 /* True if TYPE appears to be an Ada string type. */
9012
9013 bool
9014 ada_is_string_type (struct type *type)
9015 {
9016 type = ada_check_typedef (type);
9017 if (type != NULL
9018 && type->code () != TYPE_CODE_PTR
9019 && (ada_is_simple_array_type (type)
9020 || ada_is_array_descriptor_type (type))
9021 && ada_array_arity (type) == 1)
9022 {
9023 struct type *elttype = ada_array_element_type (type, 1);
9024
9025 return ada_is_character_type (elttype);
9026 }
9027 else
9028 return false;
9029 }
9030
9031 /* The compiler sometimes provides a parallel XVS type for a given
9032 PAD type. Normally, it is safe to follow the PAD type directly,
9033 but older versions of the compiler have a bug that causes the offset
9034 of its "F" field to be wrong. Following that field in that case
9035 would lead to incorrect results, but this can be worked around
9036 by ignoring the PAD type and using the associated XVS type instead.
9037
9038 Set to True if the debugger should trust the contents of PAD types.
9039 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9040 static bool trust_pad_over_xvs = true;
9041
9042 /* True if TYPE is a struct type introduced by the compiler to force the
9043 alignment of a value. Such types have a single field with a
9044 distinctive name. */
9045
9046 int
9047 ada_is_aligner_type (struct type *type)
9048 {
9049 type = ada_check_typedef (type);
9050
9051 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
9052 return 0;
9053
9054 return (type->code () == TYPE_CODE_STRUCT
9055 && type->num_fields () == 1
9056 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
9057 }
9058
9059 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9060 the parallel type. */
9061
9062 struct type *
9063 ada_get_base_type (struct type *raw_type)
9064 {
9065 struct type *real_type_namer;
9066 struct type *raw_real_type;
9067
9068 if (raw_type == NULL || raw_type->code () != TYPE_CODE_STRUCT)
9069 return raw_type;
9070
9071 if (ada_is_aligner_type (raw_type))
9072 /* The encoding specifies that we should always use the aligner type.
9073 So, even if this aligner type has an associated XVS type, we should
9074 simply ignore it.
9075
9076 According to the compiler gurus, an XVS type parallel to an aligner
9077 type may exist because of a stabs limitation. In stabs, aligner
9078 types are empty because the field has a variable-sized type, and
9079 thus cannot actually be used as an aligner type. As a result,
9080 we need the associated parallel XVS type to decode the type.
9081 Since the policy in the compiler is to not change the internal
9082 representation based on the debugging info format, we sometimes
9083 end up having a redundant XVS type parallel to the aligner type. */
9084 return raw_type;
9085
9086 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9087 if (real_type_namer == NULL
9088 || real_type_namer->code () != TYPE_CODE_STRUCT
9089 || real_type_namer->num_fields () != 1)
9090 return raw_type;
9091
9092 if (real_type_namer->field (0).type ()->code () != TYPE_CODE_REF)
9093 {
9094 /* This is an older encoding form where the base type needs to be
9095 looked up by name. We prefer the newer encoding because it is
9096 more efficient. */
9097 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9098 if (raw_real_type == NULL)
9099 return raw_type;
9100 else
9101 return raw_real_type;
9102 }
9103
9104 /* The field in our XVS type is a reference to the base type. */
9105 return TYPE_TARGET_TYPE (real_type_namer->field (0).type ());
9106 }
9107
9108 /* The type of value designated by TYPE, with all aligners removed. */
9109
9110 struct type *
9111 ada_aligned_type (struct type *type)
9112 {
9113 if (ada_is_aligner_type (type))
9114 return ada_aligned_type (type->field (0).type ());
9115 else
9116 return ada_get_base_type (type);
9117 }
9118
9119
9120 /* The address of the aligned value in an object at address VALADDR
9121 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9122
9123 const gdb_byte *
9124 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9125 {
9126 if (ada_is_aligner_type (type))
9127 return ada_aligned_value_addr (type->field (0).type (),
9128 valaddr +
9129 TYPE_FIELD_BITPOS (type,
9130 0) / TARGET_CHAR_BIT);
9131 else
9132 return valaddr;
9133 }
9134
9135
9136
9137 /* The printed representation of an enumeration literal with encoded
9138 name NAME. The value is good to the next call of ada_enum_name. */
9139 const char *
9140 ada_enum_name (const char *name)
9141 {
9142 static char *result;
9143 static size_t result_len = 0;
9144 const char *tmp;
9145
9146 /* First, unqualify the enumeration name:
9147 1. Search for the last '.' character. If we find one, then skip
9148 all the preceding characters, the unqualified name starts
9149 right after that dot.
9150 2. Otherwise, we may be debugging on a target where the compiler
9151 translates dots into "__". Search forward for double underscores,
9152 but stop searching when we hit an overloading suffix, which is
9153 of the form "__" followed by digits. */
9154
9155 tmp = strrchr (name, '.');
9156 if (tmp != NULL)
9157 name = tmp + 1;
9158 else
9159 {
9160 while ((tmp = strstr (name, "__")) != NULL)
9161 {
9162 if (isdigit (tmp[2]))
9163 break;
9164 else
9165 name = tmp + 2;
9166 }
9167 }
9168
9169 if (name[0] == 'Q')
9170 {
9171 int v;
9172
9173 if (name[1] == 'U' || name[1] == 'W')
9174 {
9175 if (sscanf (name + 2, "%x", &v) != 1)
9176 return name;
9177 }
9178 else if (((name[1] >= '0' && name[1] <= '9')
9179 || (name[1] >= 'a' && name[1] <= 'z'))
9180 && name[2] == '\0')
9181 {
9182 GROW_VECT (result, result_len, 4);
9183 xsnprintf (result, result_len, "'%c'", name[1]);
9184 return result;
9185 }
9186 else
9187 return name;
9188
9189 GROW_VECT (result, result_len, 16);
9190 if (isascii (v) && isprint (v))
9191 xsnprintf (result, result_len, "'%c'", v);
9192 else if (name[1] == 'U')
9193 xsnprintf (result, result_len, "[\"%02x\"]", v);
9194 else
9195 xsnprintf (result, result_len, "[\"%04x\"]", v);
9196
9197 return result;
9198 }
9199 else
9200 {
9201 tmp = strstr (name, "__");
9202 if (tmp == NULL)
9203 tmp = strstr (name, "$");
9204 if (tmp != NULL)
9205 {
9206 GROW_VECT (result, result_len, tmp - name + 1);
9207 strncpy (result, name, tmp - name);
9208 result[tmp - name] = '\0';
9209 return result;
9210 }
9211
9212 return name;
9213 }
9214 }
9215
9216 /* Evaluate the subexpression of EXP starting at *POS as for
9217 evaluate_type, updating *POS to point just past the evaluated
9218 expression. */
9219
9220 static struct value *
9221 evaluate_subexp_type (struct expression *exp, int *pos)
9222 {
9223 return evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9224 }
9225
9226 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9227 value it wraps. */
9228
9229 static struct value *
9230 unwrap_value (struct value *val)
9231 {
9232 struct type *type = ada_check_typedef (value_type (val));
9233
9234 if (ada_is_aligner_type (type))
9235 {
9236 struct value *v = ada_value_struct_elt (val, "F", 0);
9237 struct type *val_type = ada_check_typedef (value_type (v));
9238
9239 if (ada_type_name (val_type) == NULL)
9240 val_type->set_name (ada_type_name (type));
9241
9242 return unwrap_value (v);
9243 }
9244 else
9245 {
9246 struct type *raw_real_type =
9247 ada_check_typedef (ada_get_base_type (type));
9248
9249 /* If there is no parallel XVS or XVE type, then the value is
9250 already unwrapped. Return it without further modification. */
9251 if ((type == raw_real_type)
9252 && ada_find_parallel_type (type, "___XVE") == NULL)
9253 return val;
9254
9255 return
9256 coerce_unspec_val_to_type
9257 (val, ada_to_fixed_type (raw_real_type, 0,
9258 value_address (val),
9259 NULL, 1));
9260 }
9261 }
9262
9263 static struct value *
9264 cast_from_gnat_encoded_fixed_point_type (struct type *type, struct value *arg)
9265 {
9266 struct value *scale
9267 = gnat_encoded_fixed_point_scaling_factor (value_type (arg));
9268 arg = value_cast (value_type (scale), arg);
9269
9270 arg = value_binop (arg, scale, BINOP_MUL);
9271 return value_cast (type, arg);
9272 }
9273
9274 static struct value *
9275 cast_to_gnat_encoded_fixed_point_type (struct type *type, struct value *arg)
9276 {
9277 if (type == value_type (arg))
9278 return arg;
9279
9280 struct value *scale = gnat_encoded_fixed_point_scaling_factor (type);
9281 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg)))
9282 arg = cast_from_gnat_encoded_fixed_point_type (value_type (scale), arg);
9283 else
9284 arg = value_cast (value_type (scale), arg);
9285
9286 arg = value_binop (arg, scale, BINOP_DIV);
9287 return value_cast (type, arg);
9288 }
9289
9290 /* Given two array types T1 and T2, return nonzero iff both arrays
9291 contain the same number of elements. */
9292
9293 static int
9294 ada_same_array_size_p (struct type *t1, struct type *t2)
9295 {
9296 LONGEST lo1, hi1, lo2, hi2;
9297
9298 /* Get the array bounds in order to verify that the size of
9299 the two arrays match. */
9300 if (!get_array_bounds (t1, &lo1, &hi1)
9301 || !get_array_bounds (t2, &lo2, &hi2))
9302 error (_("unable to determine array bounds"));
9303
9304 /* To make things easier for size comparison, normalize a bit
9305 the case of empty arrays by making sure that the difference
9306 between upper bound and lower bound is always -1. */
9307 if (lo1 > hi1)
9308 hi1 = lo1 - 1;
9309 if (lo2 > hi2)
9310 hi2 = lo2 - 1;
9311
9312 return (hi1 - lo1 == hi2 - lo2);
9313 }
9314
9315 /* Assuming that VAL is an array of integrals, and TYPE represents
9316 an array with the same number of elements, but with wider integral
9317 elements, return an array "casted" to TYPE. In practice, this
9318 means that the returned array is built by casting each element
9319 of the original array into TYPE's (wider) element type. */
9320
9321 static struct value *
9322 ada_promote_array_of_integrals (struct type *type, struct value *val)
9323 {
9324 struct type *elt_type = TYPE_TARGET_TYPE (type);
9325 LONGEST lo, hi;
9326 struct value *res;
9327 LONGEST i;
9328
9329 /* Verify that both val and type are arrays of scalars, and
9330 that the size of val's elements is smaller than the size
9331 of type's element. */
9332 gdb_assert (type->code () == TYPE_CODE_ARRAY);
9333 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9334 gdb_assert (value_type (val)->code () == TYPE_CODE_ARRAY);
9335 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9336 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9337 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9338
9339 if (!get_array_bounds (type, &lo, &hi))
9340 error (_("unable to determine array bounds"));
9341
9342 res = allocate_value (type);
9343
9344 /* Promote each array element. */
9345 for (i = 0; i < hi - lo + 1; i++)
9346 {
9347 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9348
9349 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9350 value_contents_all (elt), TYPE_LENGTH (elt_type));
9351 }
9352
9353 return res;
9354 }
9355
9356 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9357 return the converted value. */
9358
9359 static struct value *
9360 coerce_for_assign (struct type *type, struct value *val)
9361 {
9362 struct type *type2 = value_type (val);
9363
9364 if (type == type2)
9365 return val;
9366
9367 type2 = ada_check_typedef (type2);
9368 type = ada_check_typedef (type);
9369
9370 if (type2->code () == TYPE_CODE_PTR
9371 && type->code () == TYPE_CODE_ARRAY)
9372 {
9373 val = ada_value_ind (val);
9374 type2 = value_type (val);
9375 }
9376
9377 if (type2->code () == TYPE_CODE_ARRAY
9378 && type->code () == TYPE_CODE_ARRAY)
9379 {
9380 if (!ada_same_array_size_p (type, type2))
9381 error (_("cannot assign arrays of different length"));
9382
9383 if (is_integral_type (TYPE_TARGET_TYPE (type))
9384 && is_integral_type (TYPE_TARGET_TYPE (type2))
9385 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9386 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9387 {
9388 /* Allow implicit promotion of the array elements to
9389 a wider type. */
9390 return ada_promote_array_of_integrals (type, val);
9391 }
9392
9393 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9394 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9395 error (_("Incompatible types in assignment"));
9396 deprecated_set_value_type (val, type);
9397 }
9398 return val;
9399 }
9400
9401 static struct value *
9402 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9403 {
9404 struct value *val;
9405 struct type *type1, *type2;
9406 LONGEST v, v1, v2;
9407
9408 arg1 = coerce_ref (arg1);
9409 arg2 = coerce_ref (arg2);
9410 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9411 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9412
9413 if (type1->code () != TYPE_CODE_INT
9414 || type2->code () != TYPE_CODE_INT)
9415 return value_binop (arg1, arg2, op);
9416
9417 switch (op)
9418 {
9419 case BINOP_MOD:
9420 case BINOP_DIV:
9421 case BINOP_REM:
9422 break;
9423 default:
9424 return value_binop (arg1, arg2, op);
9425 }
9426
9427 v2 = value_as_long (arg2);
9428 if (v2 == 0)
9429 error (_("second operand of %s must not be zero."), op_string (op));
9430
9431 if (type1->is_unsigned () || op == BINOP_MOD)
9432 return value_binop (arg1, arg2, op);
9433
9434 v1 = value_as_long (arg1);
9435 switch (op)
9436 {
9437 case BINOP_DIV:
9438 v = v1 / v2;
9439 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9440 v += v > 0 ? -1 : 1;
9441 break;
9442 case BINOP_REM:
9443 v = v1 % v2;
9444 if (v * v1 < 0)
9445 v -= v2;
9446 break;
9447 default:
9448 /* Should not reach this point. */
9449 v = 0;
9450 }
9451
9452 val = allocate_value (type1);
9453 store_unsigned_integer (value_contents_raw (val),
9454 TYPE_LENGTH (value_type (val)),
9455 type_byte_order (type1), v);
9456 return val;
9457 }
9458
9459 static int
9460 ada_value_equal (struct value *arg1, struct value *arg2)
9461 {
9462 if (ada_is_direct_array_type (value_type (arg1))
9463 || ada_is_direct_array_type (value_type (arg2)))
9464 {
9465 struct type *arg1_type, *arg2_type;
9466
9467 /* Automatically dereference any array reference before
9468 we attempt to perform the comparison. */
9469 arg1 = ada_coerce_ref (arg1);
9470 arg2 = ada_coerce_ref (arg2);
9471
9472 arg1 = ada_coerce_to_simple_array (arg1);
9473 arg2 = ada_coerce_to_simple_array (arg2);
9474
9475 arg1_type = ada_check_typedef (value_type (arg1));
9476 arg2_type = ada_check_typedef (value_type (arg2));
9477
9478 if (arg1_type->code () != TYPE_CODE_ARRAY
9479 || arg2_type->code () != TYPE_CODE_ARRAY)
9480 error (_("Attempt to compare array with non-array"));
9481 /* FIXME: The following works only for types whose
9482 representations use all bits (no padding or undefined bits)
9483 and do not have user-defined equality. */
9484 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9485 && memcmp (value_contents (arg1), value_contents (arg2),
9486 TYPE_LENGTH (arg1_type)) == 0);
9487 }
9488 return value_equal (arg1, arg2);
9489 }
9490
9491 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9492 component of LHS (a simple array or a record), updating *POS past
9493 the expression, assuming that LHS is contained in CONTAINER. Does
9494 not modify the inferior's memory, nor does it modify LHS (unless
9495 LHS == CONTAINER). */
9496
9497 static void
9498 assign_component (struct value *container, struct value *lhs, LONGEST index,
9499 struct expression *exp, int *pos)
9500 {
9501 struct value *mark = value_mark ();
9502 struct value *elt;
9503 struct type *lhs_type = check_typedef (value_type (lhs));
9504
9505 if (lhs_type->code () == TYPE_CODE_ARRAY)
9506 {
9507 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9508 struct value *index_val = value_from_longest (index_type, index);
9509
9510 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9511 }
9512 else
9513 {
9514 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9515 elt = ada_to_fixed_value (elt);
9516 }
9517
9518 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9519 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9520 else
9521 value_assign_to_component (container, elt,
9522 ada_evaluate_subexp (NULL, exp, pos,
9523 EVAL_NORMAL));
9524
9525 value_free_to_mark (mark);
9526 }
9527
9528 /* Assuming that LHS represents an lvalue having a record or array
9529 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9530 of that aggregate's value to LHS, advancing *POS past the
9531 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9532 lvalue containing LHS (possibly LHS itself). Does not modify
9533 the inferior's memory, nor does it modify the contents of
9534 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9535
9536 static struct value *
9537 assign_aggregate (struct value *container,
9538 struct value *lhs, struct expression *exp,
9539 int *pos, enum noside noside)
9540 {
9541 struct type *lhs_type;
9542 int n = exp->elts[*pos+1].longconst;
9543 LONGEST low_index, high_index;
9544 int i;
9545
9546 *pos += 3;
9547 if (noside != EVAL_NORMAL)
9548 {
9549 for (i = 0; i < n; i += 1)
9550 ada_evaluate_subexp (NULL, exp, pos, noside);
9551 return container;
9552 }
9553
9554 container = ada_coerce_ref (container);
9555 if (ada_is_direct_array_type (value_type (container)))
9556 container = ada_coerce_to_simple_array (container);
9557 lhs = ada_coerce_ref (lhs);
9558 if (!deprecated_value_modifiable (lhs))
9559 error (_("Left operand of assignment is not a modifiable lvalue."));
9560
9561 lhs_type = check_typedef (value_type (lhs));
9562 if (ada_is_direct_array_type (lhs_type))
9563 {
9564 lhs = ada_coerce_to_simple_array (lhs);
9565 lhs_type = check_typedef (value_type (lhs));
9566 low_index = lhs_type->bounds ()->low.const_val ();
9567 high_index = lhs_type->bounds ()->high.const_val ();
9568 }
9569 else if (lhs_type->code () == TYPE_CODE_STRUCT)
9570 {
9571 low_index = 0;
9572 high_index = num_visible_fields (lhs_type) - 1;
9573 }
9574 else
9575 error (_("Left-hand side must be array or record."));
9576
9577 std::vector<LONGEST> indices (4);
9578 indices[0] = indices[1] = low_index - 1;
9579 indices[2] = indices[3] = high_index + 1;
9580
9581 for (i = 0; i < n; i += 1)
9582 {
9583 switch (exp->elts[*pos].opcode)
9584 {
9585 case OP_CHOICES:
9586 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9587 low_index, high_index);
9588 break;
9589 case OP_POSITIONAL:
9590 aggregate_assign_positional (container, lhs, exp, pos, indices,
9591 low_index, high_index);
9592 break;
9593 case OP_OTHERS:
9594 if (i != n-1)
9595 error (_("Misplaced 'others' clause"));
9596 aggregate_assign_others (container, lhs, exp, pos, indices,
9597 low_index, high_index);
9598 break;
9599 default:
9600 error (_("Internal error: bad aggregate clause"));
9601 }
9602 }
9603
9604 return container;
9605 }
9606
9607 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9608 construct at *POS, updating *POS past the construct, given that
9609 the positions are relative to lower bound LOW, where HIGH is the
9610 upper bound. Record the position in INDICES. CONTAINER is as for
9611 assign_aggregate. */
9612 static void
9613 aggregate_assign_positional (struct value *container,
9614 struct value *lhs, struct expression *exp,
9615 int *pos, std::vector<LONGEST> &indices,
9616 LONGEST low, LONGEST high)
9617 {
9618 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9619
9620 if (ind - 1 == high)
9621 warning (_("Extra components in aggregate ignored."));
9622 if (ind <= high)
9623 {
9624 add_component_interval (ind, ind, indices);
9625 *pos += 3;
9626 assign_component (container, lhs, ind, exp, pos);
9627 }
9628 else
9629 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9630 }
9631
9632 /* Assign into the components of LHS indexed by the OP_CHOICES
9633 construct at *POS, updating *POS past the construct, given that
9634 the allowable indices are LOW..HIGH. Record the indices assigned
9635 to in INDICES. CONTAINER is as for assign_aggregate. */
9636 static void
9637 aggregate_assign_from_choices (struct value *container,
9638 struct value *lhs, struct expression *exp,
9639 int *pos, std::vector<LONGEST> &indices,
9640 LONGEST low, LONGEST high)
9641 {
9642 int j;
9643 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9644 int choice_pos, expr_pc;
9645 int is_array = ada_is_direct_array_type (value_type (lhs));
9646
9647 choice_pos = *pos += 3;
9648
9649 for (j = 0; j < n_choices; j += 1)
9650 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9651 expr_pc = *pos;
9652 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9653
9654 for (j = 0; j < n_choices; j += 1)
9655 {
9656 LONGEST lower, upper;
9657 enum exp_opcode op = exp->elts[choice_pos].opcode;
9658
9659 if (op == OP_DISCRETE_RANGE)
9660 {
9661 choice_pos += 1;
9662 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9663 EVAL_NORMAL));
9664 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9665 EVAL_NORMAL));
9666 }
9667 else if (is_array)
9668 {
9669 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9670 EVAL_NORMAL));
9671 upper = lower;
9672 }
9673 else
9674 {
9675 int ind;
9676 const char *name;
9677
9678 switch (op)
9679 {
9680 case OP_NAME:
9681 name = &exp->elts[choice_pos + 2].string;
9682 break;
9683 case OP_VAR_VALUE:
9684 name = exp->elts[choice_pos + 2].symbol->natural_name ();
9685 break;
9686 default:
9687 error (_("Invalid record component association."));
9688 }
9689 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9690 ind = 0;
9691 if (! find_struct_field (name, value_type (lhs), 0,
9692 NULL, NULL, NULL, NULL, &ind))
9693 error (_("Unknown component name: %s."), name);
9694 lower = upper = ind;
9695 }
9696
9697 if (lower <= upper && (lower < low || upper > high))
9698 error (_("Index in component association out of bounds."));
9699
9700 add_component_interval (lower, upper, indices);
9701 while (lower <= upper)
9702 {
9703 int pos1;
9704
9705 pos1 = expr_pc;
9706 assign_component (container, lhs, lower, exp, &pos1);
9707 lower += 1;
9708 }
9709 }
9710 }
9711
9712 /* Assign the value of the expression in the OP_OTHERS construct in
9713 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9714 have not been previously assigned. The index intervals already assigned
9715 are in INDICES. Updates *POS to after the OP_OTHERS clause.
9716 CONTAINER is as for assign_aggregate. */
9717 static void
9718 aggregate_assign_others (struct value *container,
9719 struct value *lhs, struct expression *exp,
9720 int *pos, std::vector<LONGEST> &indices,
9721 LONGEST low, LONGEST high)
9722 {
9723 int i;
9724 int expr_pc = *pos + 1;
9725
9726 int num_indices = indices.size ();
9727 for (i = 0; i < num_indices - 2; i += 2)
9728 {
9729 LONGEST ind;
9730
9731 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9732 {
9733 int localpos;
9734
9735 localpos = expr_pc;
9736 assign_component (container, lhs, ind, exp, &localpos);
9737 }
9738 }
9739 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9740 }
9741
9742 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
9743 [ INDICES[0] .. INDICES[1] ],... The resulting intervals do not
9744 overlap. */
9745 static void
9746 add_component_interval (LONGEST low, LONGEST high,
9747 std::vector<LONGEST> &indices)
9748 {
9749 int i, j;
9750
9751 int size = indices.size ();
9752 for (i = 0; i < size; i += 2) {
9753 if (high >= indices[i] && low <= indices[i + 1])
9754 {
9755 int kh;
9756
9757 for (kh = i + 2; kh < size; kh += 2)
9758 if (high < indices[kh])
9759 break;
9760 if (low < indices[i])
9761 indices[i] = low;
9762 indices[i + 1] = indices[kh - 1];
9763 if (high > indices[i + 1])
9764 indices[i + 1] = high;
9765 memcpy (indices.data () + i + 2, indices.data () + kh, size - kh);
9766 indices.resize (kh - i - 2);
9767 return;
9768 }
9769 else if (high < indices[i])
9770 break;
9771 }
9772
9773 indices.resize (indices.size () + 2);
9774 for (j = indices.size () - 1; j >= i + 2; j -= 1)
9775 indices[j] = indices[j - 2];
9776 indices[i] = low;
9777 indices[i + 1] = high;
9778 }
9779
9780 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9781 is different. */
9782
9783 static struct value *
9784 ada_value_cast (struct type *type, struct value *arg2)
9785 {
9786 if (type == ada_check_typedef (value_type (arg2)))
9787 return arg2;
9788
9789 if (ada_is_gnat_encoded_fixed_point_type (type))
9790 return cast_to_gnat_encoded_fixed_point_type (type, arg2);
9791
9792 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
9793 return cast_from_gnat_encoded_fixed_point_type (type, arg2);
9794
9795 return value_cast (type, arg2);
9796 }
9797
9798 /* Evaluating Ada expressions, and printing their result.
9799 ------------------------------------------------------
9800
9801 1. Introduction:
9802 ----------------
9803
9804 We usually evaluate an Ada expression in order to print its value.
9805 We also evaluate an expression in order to print its type, which
9806 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9807 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9808 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9809 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9810 similar.
9811
9812 Evaluating expressions is a little more complicated for Ada entities
9813 than it is for entities in languages such as C. The main reason for
9814 this is that Ada provides types whose definition might be dynamic.
9815 One example of such types is variant records. Or another example
9816 would be an array whose bounds can only be known at run time.
9817
9818 The following description is a general guide as to what should be
9819 done (and what should NOT be done) in order to evaluate an expression
9820 involving such types, and when. This does not cover how the semantic
9821 information is encoded by GNAT as this is covered separatly. For the
9822 document used as the reference for the GNAT encoding, see exp_dbug.ads
9823 in the GNAT sources.
9824
9825 Ideally, we should embed each part of this description next to its
9826 associated code. Unfortunately, the amount of code is so vast right
9827 now that it's hard to see whether the code handling a particular
9828 situation might be duplicated or not. One day, when the code is
9829 cleaned up, this guide might become redundant with the comments
9830 inserted in the code, and we might want to remove it.
9831
9832 2. ``Fixing'' an Entity, the Simple Case:
9833 -----------------------------------------
9834
9835 When evaluating Ada expressions, the tricky issue is that they may
9836 reference entities whose type contents and size are not statically
9837 known. Consider for instance a variant record:
9838
9839 type Rec (Empty : Boolean := True) is record
9840 case Empty is
9841 when True => null;
9842 when False => Value : Integer;
9843 end case;
9844 end record;
9845 Yes : Rec := (Empty => False, Value => 1);
9846 No : Rec := (empty => True);
9847
9848 The size and contents of that record depends on the value of the
9849 descriminant (Rec.Empty). At this point, neither the debugging
9850 information nor the associated type structure in GDB are able to
9851 express such dynamic types. So what the debugger does is to create
9852 "fixed" versions of the type that applies to the specific object.
9853 We also informally refer to this operation as "fixing" an object,
9854 which means creating its associated fixed type.
9855
9856 Example: when printing the value of variable "Yes" above, its fixed
9857 type would look like this:
9858
9859 type Rec is record
9860 Empty : Boolean;
9861 Value : Integer;
9862 end record;
9863
9864 On the other hand, if we printed the value of "No", its fixed type
9865 would become:
9866
9867 type Rec is record
9868 Empty : Boolean;
9869 end record;
9870
9871 Things become a little more complicated when trying to fix an entity
9872 with a dynamic type that directly contains another dynamic type,
9873 such as an array of variant records, for instance. There are
9874 two possible cases: Arrays, and records.
9875
9876 3. ``Fixing'' Arrays:
9877 ---------------------
9878
9879 The type structure in GDB describes an array in terms of its bounds,
9880 and the type of its elements. By design, all elements in the array
9881 have the same type and we cannot represent an array of variant elements
9882 using the current type structure in GDB. When fixing an array,
9883 we cannot fix the array element, as we would potentially need one
9884 fixed type per element of the array. As a result, the best we can do
9885 when fixing an array is to produce an array whose bounds and size
9886 are correct (allowing us to read it from memory), but without having
9887 touched its element type. Fixing each element will be done later,
9888 when (if) necessary.
9889
9890 Arrays are a little simpler to handle than records, because the same
9891 amount of memory is allocated for each element of the array, even if
9892 the amount of space actually used by each element differs from element
9893 to element. Consider for instance the following array of type Rec:
9894
9895 type Rec_Array is array (1 .. 2) of Rec;
9896
9897 The actual amount of memory occupied by each element might be different
9898 from element to element, depending on the value of their discriminant.
9899 But the amount of space reserved for each element in the array remains
9900 fixed regardless. So we simply need to compute that size using
9901 the debugging information available, from which we can then determine
9902 the array size (we multiply the number of elements of the array by
9903 the size of each element).
9904
9905 The simplest case is when we have an array of a constrained element
9906 type. For instance, consider the following type declarations:
9907
9908 type Bounded_String (Max_Size : Integer) is
9909 Length : Integer;
9910 Buffer : String (1 .. Max_Size);
9911 end record;
9912 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9913
9914 In this case, the compiler describes the array as an array of
9915 variable-size elements (identified by its XVS suffix) for which
9916 the size can be read in the parallel XVZ variable.
9917
9918 In the case of an array of an unconstrained element type, the compiler
9919 wraps the array element inside a private PAD type. This type should not
9920 be shown to the user, and must be "unwrap"'ed before printing. Note
9921 that we also use the adjective "aligner" in our code to designate
9922 these wrapper types.
9923
9924 In some cases, the size allocated for each element is statically
9925 known. In that case, the PAD type already has the correct size,
9926 and the array element should remain unfixed.
9927
9928 But there are cases when this size is not statically known.
9929 For instance, assuming that "Five" is an integer variable:
9930
9931 type Dynamic is array (1 .. Five) of Integer;
9932 type Wrapper (Has_Length : Boolean := False) is record
9933 Data : Dynamic;
9934 case Has_Length is
9935 when True => Length : Integer;
9936 when False => null;
9937 end case;
9938 end record;
9939 type Wrapper_Array is array (1 .. 2) of Wrapper;
9940
9941 Hello : Wrapper_Array := (others => (Has_Length => True,
9942 Data => (others => 17),
9943 Length => 1));
9944
9945
9946 The debugging info would describe variable Hello as being an
9947 array of a PAD type. The size of that PAD type is not statically
9948 known, but can be determined using a parallel XVZ variable.
9949 In that case, a copy of the PAD type with the correct size should
9950 be used for the fixed array.
9951
9952 3. ``Fixing'' record type objects:
9953 ----------------------------------
9954
9955 Things are slightly different from arrays in the case of dynamic
9956 record types. In this case, in order to compute the associated
9957 fixed type, we need to determine the size and offset of each of
9958 its components. This, in turn, requires us to compute the fixed
9959 type of each of these components.
9960
9961 Consider for instance the example:
9962
9963 type Bounded_String (Max_Size : Natural) is record
9964 Str : String (1 .. Max_Size);
9965 Length : Natural;
9966 end record;
9967 My_String : Bounded_String (Max_Size => 10);
9968
9969 In that case, the position of field "Length" depends on the size
9970 of field Str, which itself depends on the value of the Max_Size
9971 discriminant. In order to fix the type of variable My_String,
9972 we need to fix the type of field Str. Therefore, fixing a variant
9973 record requires us to fix each of its components.
9974
9975 However, if a component does not have a dynamic size, the component
9976 should not be fixed. In particular, fields that use a PAD type
9977 should not fixed. Here is an example where this might happen
9978 (assuming type Rec above):
9979
9980 type Container (Big : Boolean) is record
9981 First : Rec;
9982 After : Integer;
9983 case Big is
9984 when True => Another : Integer;
9985 when False => null;
9986 end case;
9987 end record;
9988 My_Container : Container := (Big => False,
9989 First => (Empty => True),
9990 After => 42);
9991
9992 In that example, the compiler creates a PAD type for component First,
9993 whose size is constant, and then positions the component After just
9994 right after it. The offset of component After is therefore constant
9995 in this case.
9996
9997 The debugger computes the position of each field based on an algorithm
9998 that uses, among other things, the actual position and size of the field
9999 preceding it. Let's now imagine that the user is trying to print
10000 the value of My_Container. If the type fixing was recursive, we would
10001 end up computing the offset of field After based on the size of the
10002 fixed version of field First. And since in our example First has
10003 only one actual field, the size of the fixed type is actually smaller
10004 than the amount of space allocated to that field, and thus we would
10005 compute the wrong offset of field After.
10006
10007 To make things more complicated, we need to watch out for dynamic
10008 components of variant records (identified by the ___XVL suffix in
10009 the component name). Even if the target type is a PAD type, the size
10010 of that type might not be statically known. So the PAD type needs
10011 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10012 we might end up with the wrong size for our component. This can be
10013 observed with the following type declarations:
10014
10015 type Octal is new Integer range 0 .. 7;
10016 type Octal_Array is array (Positive range <>) of Octal;
10017 pragma Pack (Octal_Array);
10018
10019 type Octal_Buffer (Size : Positive) is record
10020 Buffer : Octal_Array (1 .. Size);
10021 Length : Integer;
10022 end record;
10023
10024 In that case, Buffer is a PAD type whose size is unset and needs
10025 to be computed by fixing the unwrapped type.
10026
10027 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10028 ----------------------------------------------------------
10029
10030 Lastly, when should the sub-elements of an entity that remained unfixed
10031 thus far, be actually fixed?
10032
10033 The answer is: Only when referencing that element. For instance
10034 when selecting one component of a record, this specific component
10035 should be fixed at that point in time. Or when printing the value
10036 of a record, each component should be fixed before its value gets
10037 printed. Similarly for arrays, the element of the array should be
10038 fixed when printing each element of the array, or when extracting
10039 one element out of that array. On the other hand, fixing should
10040 not be performed on the elements when taking a slice of an array!
10041
10042 Note that one of the side effects of miscomputing the offset and
10043 size of each field is that we end up also miscomputing the size
10044 of the containing type. This can have adverse results when computing
10045 the value of an entity. GDB fetches the value of an entity based
10046 on the size of its type, and thus a wrong size causes GDB to fetch
10047 the wrong amount of memory. In the case where the computed size is
10048 too small, GDB fetches too little data to print the value of our
10049 entity. Results in this case are unpredictable, as we usually read
10050 past the buffer containing the data =:-o. */
10051
10052 /* Evaluate a subexpression of EXP, at index *POS, and return a value
10053 for that subexpression cast to TO_TYPE. Advance *POS over the
10054 subexpression. */
10055
10056 static value *
10057 ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10058 enum noside noside, struct type *to_type)
10059 {
10060 int pc = *pos;
10061
10062 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10063 || exp->elts[pc].opcode == OP_VAR_VALUE)
10064 {
10065 (*pos) += 4;
10066
10067 value *val;
10068 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10069 {
10070 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10071 return value_zero (to_type, not_lval);
10072
10073 val = evaluate_var_msym_value (noside,
10074 exp->elts[pc + 1].objfile,
10075 exp->elts[pc + 2].msymbol);
10076 }
10077 else
10078 val = evaluate_var_value (noside,
10079 exp->elts[pc + 1].block,
10080 exp->elts[pc + 2].symbol);
10081
10082 if (noside == EVAL_SKIP)
10083 return eval_skip_value (exp);
10084
10085 val = ada_value_cast (to_type, val);
10086
10087 /* Follow the Ada language semantics that do not allow taking
10088 an address of the result of a cast (view conversion in Ada). */
10089 if (VALUE_LVAL (val) == lval_memory)
10090 {
10091 if (value_lazy (val))
10092 value_fetch_lazy (val);
10093 VALUE_LVAL (val) = not_lval;
10094 }
10095 return val;
10096 }
10097
10098 value *val = evaluate_subexp (to_type, exp, pos, noside);
10099 if (noside == EVAL_SKIP)
10100 return eval_skip_value (exp);
10101 return ada_value_cast (to_type, val);
10102 }
10103
10104 /* Implement the evaluate_exp routine in the exp_descriptor structure
10105 for the Ada language. */
10106
10107 static struct value *
10108 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
10109 int *pos, enum noside noside)
10110 {
10111 enum exp_opcode op;
10112 int tem;
10113 int pc;
10114 int preeval_pos;
10115 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10116 struct type *type;
10117 int nargs, oplen;
10118 struct value **argvec;
10119
10120 pc = *pos;
10121 *pos += 1;
10122 op = exp->elts[pc].opcode;
10123
10124 switch (op)
10125 {
10126 default:
10127 *pos -= 1;
10128 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10129
10130 if (noside == EVAL_NORMAL)
10131 arg1 = unwrap_value (arg1);
10132
10133 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
10134 then we need to perform the conversion manually, because
10135 evaluate_subexp_standard doesn't do it. This conversion is
10136 necessary in Ada because the different kinds of float/fixed
10137 types in Ada have different representations.
10138
10139 Similarly, we need to perform the conversion from OP_LONG
10140 ourselves. */
10141 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
10142 arg1 = ada_value_cast (expect_type, arg1);
10143
10144 return arg1;
10145
10146 case OP_STRING:
10147 {
10148 struct value *result;
10149
10150 *pos -= 1;
10151 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10152 /* The result type will have code OP_STRING, bashed there from
10153 OP_ARRAY. Bash it back. */
10154 if (value_type (result)->code () == TYPE_CODE_STRING)
10155 value_type (result)->set_code (TYPE_CODE_ARRAY);
10156 return result;
10157 }
10158
10159 case UNOP_CAST:
10160 (*pos) += 2;
10161 type = exp->elts[pc + 1].type;
10162 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
10163
10164 case UNOP_QUAL:
10165 (*pos) += 2;
10166 type = exp->elts[pc + 1].type;
10167 return ada_evaluate_subexp (type, exp, pos, noside);
10168
10169 case BINOP_ASSIGN:
10170 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10171 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10172 {
10173 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10174 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10175 return arg1;
10176 return ada_value_assign (arg1, arg1);
10177 }
10178 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10179 except if the lhs of our assignment is a convenience variable.
10180 In the case of assigning to a convenience variable, the lhs
10181 should be exactly the result of the evaluation of the rhs. */
10182 type = value_type (arg1);
10183 if (VALUE_LVAL (arg1) == lval_internalvar)
10184 type = NULL;
10185 arg2 = evaluate_subexp (type, exp, pos, noside);
10186 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10187 return arg1;
10188 if (VALUE_LVAL (arg1) == lval_internalvar)
10189 {
10190 /* Nothing. */
10191 }
10192 else if (ada_is_gnat_encoded_fixed_point_type (value_type (arg1)))
10193 arg2 = cast_to_gnat_encoded_fixed_point_type (value_type (arg1), arg2);
10194 else if (ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
10195 error
10196 (_("Fixed-point values must be assigned to fixed-point variables"));
10197 else
10198 arg2 = coerce_for_assign (value_type (arg1), arg2);
10199 return ada_value_assign (arg1, arg2);
10200
10201 case BINOP_ADD:
10202 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10203 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10204 if (noside == EVAL_SKIP)
10205 goto nosideret;
10206 if (value_type (arg1)->code () == TYPE_CODE_PTR)
10207 return (value_from_longest
10208 (value_type (arg1),
10209 value_as_long (arg1) + value_as_long (arg2)));
10210 if (value_type (arg2)->code () == TYPE_CODE_PTR)
10211 return (value_from_longest
10212 (value_type (arg2),
10213 value_as_long (arg1) + value_as_long (arg2)));
10214 /* Preserve the original type for use by the range case below.
10215 We cannot cast the result to a reference type, so if ARG1 is
10216 a reference type, find its underlying type. */
10217 type = value_type (arg1);
10218 while (type->code () == TYPE_CODE_REF)
10219 type = TYPE_TARGET_TYPE (type);
10220 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg1))
10221 || ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
10222 {
10223 if (value_type (arg1) != value_type (arg2))
10224 error (_("Operands of fixed-point addition must have the same type"));
10225 }
10226 else
10227 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10228 arg1 = value_binop (arg1, arg2, BINOP_ADD);
10229 /* We need to special-case the result of adding to a range.
10230 This is done for the benefit of "ptype". gdb's Ada support
10231 historically used the LHS to set the result type here, so
10232 preserve this behavior. */
10233 if (type->code () == TYPE_CODE_RANGE)
10234 arg1 = value_cast (type, arg1);
10235 return arg1;
10236
10237 case BINOP_SUB:
10238 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10239 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10240 if (noside == EVAL_SKIP)
10241 goto nosideret;
10242 if (value_type (arg1)->code () == TYPE_CODE_PTR)
10243 return (value_from_longest
10244 (value_type (arg1),
10245 value_as_long (arg1) - value_as_long (arg2)));
10246 if (value_type (arg2)->code () == TYPE_CODE_PTR)
10247 return (value_from_longest
10248 (value_type (arg2),
10249 value_as_long (arg1) - value_as_long (arg2)));
10250 /* Preserve the original type for use by the range case below.
10251 We cannot cast the result to a reference type, so if ARG1 is
10252 a reference type, find its underlying type. */
10253 type = value_type (arg1);
10254 while (type->code () == TYPE_CODE_REF)
10255 type = TYPE_TARGET_TYPE (type);
10256 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg1))
10257 || ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
10258 {
10259 if (value_type (arg1) != value_type (arg2))
10260 error (_("Operands of fixed-point subtraction "
10261 "must have the same type"));
10262 }
10263 else
10264 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10265 arg1 = value_binop (arg1, arg2, BINOP_SUB);
10266 /* We need to special-case the result of adding to a range.
10267 This is done for the benefit of "ptype". gdb's Ada support
10268 historically used the LHS to set the result type here, so
10269 preserve this behavior. */
10270 if (type->code () == TYPE_CODE_RANGE)
10271 arg1 = value_cast (type, arg1);
10272 return arg1;
10273
10274 case BINOP_MUL:
10275 case BINOP_DIV:
10276 case BINOP_REM:
10277 case BINOP_MOD:
10278 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10279 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
10280 if (noside == EVAL_SKIP)
10281 goto nosideret;
10282 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10283 {
10284 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10285 return value_zero (value_type (arg1), not_lval);
10286 }
10287 else
10288 {
10289 type = builtin_type (exp->gdbarch)->builtin_double;
10290 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg1)))
10291 arg1 = cast_from_gnat_encoded_fixed_point_type (type, arg1);
10292 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
10293 arg2 = cast_from_gnat_encoded_fixed_point_type (type, arg2);
10294 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10295 return ada_value_binop (arg1, arg2, op);
10296 }
10297
10298 case BINOP_EQUAL:
10299 case BINOP_NOTEQUAL:
10300 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10301 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10302 if (noside == EVAL_SKIP)
10303 goto nosideret;
10304 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10305 tem = 0;
10306 else
10307 {
10308 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10309 tem = ada_value_equal (arg1, arg2);
10310 }
10311 if (op == BINOP_NOTEQUAL)
10312 tem = !tem;
10313 type = language_bool_type (exp->language_defn, exp->gdbarch);
10314 return value_from_longest (type, (LONGEST) tem);
10315
10316 case UNOP_NEG:
10317 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10318 if (noside == EVAL_SKIP)
10319 goto nosideret;
10320 else if (ada_is_gnat_encoded_fixed_point_type (value_type (arg1)))
10321 return value_cast (value_type (arg1), value_neg (arg1));
10322 else
10323 {
10324 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10325 return value_neg (arg1);
10326 }
10327
10328 case BINOP_LOGICAL_AND:
10329 case BINOP_LOGICAL_OR:
10330 case UNOP_LOGICAL_NOT:
10331 {
10332 struct value *val;
10333
10334 *pos -= 1;
10335 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10336 type = language_bool_type (exp->language_defn, exp->gdbarch);
10337 return value_cast (type, val);
10338 }
10339
10340 case BINOP_BITWISE_AND:
10341 case BINOP_BITWISE_IOR:
10342 case BINOP_BITWISE_XOR:
10343 {
10344 struct value *val;
10345
10346 arg1 = evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10347 *pos = pc;
10348 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10349
10350 return value_cast (value_type (arg1), val);
10351 }
10352
10353 case OP_VAR_VALUE:
10354 *pos -= 1;
10355
10356 if (noside == EVAL_SKIP)
10357 {
10358 *pos += 4;
10359 goto nosideret;
10360 }
10361
10362 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10363 /* Only encountered when an unresolved symbol occurs in a
10364 context other than a function call, in which case, it is
10365 invalid. */
10366 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10367 exp->elts[pc + 2].symbol->print_name ());
10368
10369 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10370 {
10371 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10372 /* Check to see if this is a tagged type. We also need to handle
10373 the case where the type is a reference to a tagged type, but
10374 we have to be careful to exclude pointers to tagged types.
10375 The latter should be shown as usual (as a pointer), whereas
10376 a reference should mostly be transparent to the user. */
10377 if (ada_is_tagged_type (type, 0)
10378 || (type->code () == TYPE_CODE_REF
10379 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10380 {
10381 /* Tagged types are a little special in the fact that the real
10382 type is dynamic and can only be determined by inspecting the
10383 object's tag. This means that we need to get the object's
10384 value first (EVAL_NORMAL) and then extract the actual object
10385 type from its tag.
10386
10387 Note that we cannot skip the final step where we extract
10388 the object type from its tag, because the EVAL_NORMAL phase
10389 results in dynamic components being resolved into fixed ones.
10390 This can cause problems when trying to print the type
10391 description of tagged types whose parent has a dynamic size:
10392 We use the type name of the "_parent" component in order
10393 to print the name of the ancestor type in the type description.
10394 If that component had a dynamic size, the resolution into
10395 a fixed type would result in the loss of that type name,
10396 thus preventing us from printing the name of the ancestor
10397 type in the type description. */
10398 arg1 = evaluate_subexp (nullptr, exp, pos, EVAL_NORMAL);
10399
10400 if (type->code () != TYPE_CODE_REF)
10401 {
10402 struct type *actual_type;
10403
10404 actual_type = type_from_tag (ada_value_tag (arg1));
10405 if (actual_type == NULL)
10406 /* If, for some reason, we were unable to determine
10407 the actual type from the tag, then use the static
10408 approximation that we just computed as a fallback.
10409 This can happen if the debugging information is
10410 incomplete, for instance. */
10411 actual_type = type;
10412 return value_zero (actual_type, not_lval);
10413 }
10414 else
10415 {
10416 /* In the case of a ref, ada_coerce_ref takes care
10417 of determining the actual type. But the evaluation
10418 should return a ref as it should be valid to ask
10419 for its address; so rebuild a ref after coerce. */
10420 arg1 = ada_coerce_ref (arg1);
10421 return value_ref (arg1, TYPE_CODE_REF);
10422 }
10423 }
10424
10425 /* Records and unions for which GNAT encodings have been
10426 generated need to be statically fixed as well.
10427 Otherwise, non-static fixing produces a type where
10428 all dynamic properties are removed, which prevents "ptype"
10429 from being able to completely describe the type.
10430 For instance, a case statement in a variant record would be
10431 replaced by the relevant components based on the actual
10432 value of the discriminants. */
10433 if ((type->code () == TYPE_CODE_STRUCT
10434 && dynamic_template_type (type) != NULL)
10435 || (type->code () == TYPE_CODE_UNION
10436 && ada_find_parallel_type (type, "___XVU") != NULL))
10437 {
10438 *pos += 4;
10439 return value_zero (to_static_fixed_type (type), not_lval);
10440 }
10441 }
10442
10443 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10444 return ada_to_fixed_value (arg1);
10445
10446 case OP_FUNCALL:
10447 (*pos) += 2;
10448
10449 /* Allocate arg vector, including space for the function to be
10450 called in argvec[0] and a terminating NULL. */
10451 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10452 argvec = XALLOCAVEC (struct value *, nargs + 2);
10453
10454 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10455 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10456 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10457 exp->elts[pc + 5].symbol->print_name ());
10458 else
10459 {
10460 for (tem = 0; tem <= nargs; tem += 1)
10461 argvec[tem] = evaluate_subexp (nullptr, exp, pos, noside);
10462 argvec[tem] = 0;
10463
10464 if (noside == EVAL_SKIP)
10465 goto nosideret;
10466 }
10467
10468 if (ada_is_constrained_packed_array_type
10469 (desc_base_type (value_type (argvec[0]))))
10470 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10471 else if (value_type (argvec[0])->code () == TYPE_CODE_ARRAY
10472 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10473 /* This is a packed array that has already been fixed, and
10474 therefore already coerced to a simple array. Nothing further
10475 to do. */
10476 ;
10477 else if (value_type (argvec[0])->code () == TYPE_CODE_REF)
10478 {
10479 /* Make sure we dereference references so that all the code below
10480 feels like it's really handling the referenced value. Wrapping
10481 types (for alignment) may be there, so make sure we strip them as
10482 well. */
10483 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10484 }
10485 else if (value_type (argvec[0])->code () == TYPE_CODE_ARRAY
10486 && VALUE_LVAL (argvec[0]) == lval_memory)
10487 argvec[0] = value_addr (argvec[0]);
10488
10489 type = ada_check_typedef (value_type (argvec[0]));
10490
10491 /* Ada allows us to implicitly dereference arrays when subscripting
10492 them. So, if this is an array typedef (encoding use for array
10493 access types encoded as fat pointers), strip it now. */
10494 if (type->code () == TYPE_CODE_TYPEDEF)
10495 type = ada_typedef_target_type (type);
10496
10497 if (type->code () == TYPE_CODE_PTR)
10498 {
10499 switch (ada_check_typedef (TYPE_TARGET_TYPE (type))->code ())
10500 {
10501 case TYPE_CODE_FUNC:
10502 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10503 break;
10504 case TYPE_CODE_ARRAY:
10505 break;
10506 case TYPE_CODE_STRUCT:
10507 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10508 argvec[0] = ada_value_ind (argvec[0]);
10509 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10510 break;
10511 default:
10512 error (_("cannot subscript or call something of type `%s'"),
10513 ada_type_name (value_type (argvec[0])));
10514 break;
10515 }
10516 }
10517
10518 switch (type->code ())
10519 {
10520 case TYPE_CODE_FUNC:
10521 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10522 {
10523 if (TYPE_TARGET_TYPE (type) == NULL)
10524 error_call_unknown_return_type (NULL);
10525 return allocate_value (TYPE_TARGET_TYPE (type));
10526 }
10527 return call_function_by_hand (argvec[0], NULL,
10528 gdb::make_array_view (argvec + 1,
10529 nargs));
10530 case TYPE_CODE_INTERNAL_FUNCTION:
10531 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10532 /* We don't know anything about what the internal
10533 function might return, but we have to return
10534 something. */
10535 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10536 not_lval);
10537 else
10538 return call_internal_function (exp->gdbarch, exp->language_defn,
10539 argvec[0], nargs, argvec + 1);
10540
10541 case TYPE_CODE_STRUCT:
10542 {
10543 int arity;
10544
10545 arity = ada_array_arity (type);
10546 type = ada_array_element_type (type, nargs);
10547 if (type == NULL)
10548 error (_("cannot subscript or call a record"));
10549 if (arity != nargs)
10550 error (_("wrong number of subscripts; expecting %d"), arity);
10551 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10552 return value_zero (ada_aligned_type (type), lval_memory);
10553 return
10554 unwrap_value (ada_value_subscript
10555 (argvec[0], nargs, argvec + 1));
10556 }
10557 case TYPE_CODE_ARRAY:
10558 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10559 {
10560 type = ada_array_element_type (type, nargs);
10561 if (type == NULL)
10562 error (_("element type of array unknown"));
10563 else
10564 return value_zero (ada_aligned_type (type), lval_memory);
10565 }
10566 return
10567 unwrap_value (ada_value_subscript
10568 (ada_coerce_to_simple_array (argvec[0]),
10569 nargs, argvec + 1));
10570 case TYPE_CODE_PTR: /* Pointer to array */
10571 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10572 {
10573 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10574 type = ada_array_element_type (type, nargs);
10575 if (type == NULL)
10576 error (_("element type of array unknown"));
10577 else
10578 return value_zero (ada_aligned_type (type), lval_memory);
10579 }
10580 return
10581 unwrap_value (ada_value_ptr_subscript (argvec[0],
10582 nargs, argvec + 1));
10583
10584 default:
10585 error (_("Attempt to index or call something other than an "
10586 "array or function"));
10587 }
10588
10589 case TERNOP_SLICE:
10590 {
10591 struct value *array = evaluate_subexp (nullptr, exp, pos, noside);
10592 struct value *low_bound_val
10593 = evaluate_subexp (nullptr, exp, pos, noside);
10594 struct value *high_bound_val
10595 = evaluate_subexp (nullptr, exp, pos, noside);
10596 LONGEST low_bound;
10597 LONGEST high_bound;
10598
10599 low_bound_val = coerce_ref (low_bound_val);
10600 high_bound_val = coerce_ref (high_bound_val);
10601 low_bound = value_as_long (low_bound_val);
10602 high_bound = value_as_long (high_bound_val);
10603
10604 if (noside == EVAL_SKIP)
10605 goto nosideret;
10606
10607 /* If this is a reference to an aligner type, then remove all
10608 the aligners. */
10609 if (value_type (array)->code () == TYPE_CODE_REF
10610 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10611 TYPE_TARGET_TYPE (value_type (array)) =
10612 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10613
10614 if (ada_is_any_packed_array_type (value_type (array)))
10615 error (_("cannot slice a packed array"));
10616
10617 /* If this is a reference to an array or an array lvalue,
10618 convert to a pointer. */
10619 if (value_type (array)->code () == TYPE_CODE_REF
10620 || (value_type (array)->code () == TYPE_CODE_ARRAY
10621 && VALUE_LVAL (array) == lval_memory))
10622 array = value_addr (array);
10623
10624 if (noside == EVAL_AVOID_SIDE_EFFECTS
10625 && ada_is_array_descriptor_type (ada_check_typedef
10626 (value_type (array))))
10627 return empty_array (ada_type_of_array (array, 0), low_bound,
10628 high_bound);
10629
10630 array = ada_coerce_to_simple_array_ptr (array);
10631
10632 /* If we have more than one level of pointer indirection,
10633 dereference the value until we get only one level. */
10634 while (value_type (array)->code () == TYPE_CODE_PTR
10635 && (TYPE_TARGET_TYPE (value_type (array))->code ()
10636 == TYPE_CODE_PTR))
10637 array = value_ind (array);
10638
10639 /* Make sure we really do have an array type before going further,
10640 to avoid a SEGV when trying to get the index type or the target
10641 type later down the road if the debug info generated by
10642 the compiler is incorrect or incomplete. */
10643 if (!ada_is_simple_array_type (value_type (array)))
10644 error (_("cannot take slice of non-array"));
10645
10646 if (ada_check_typedef (value_type (array))->code ()
10647 == TYPE_CODE_PTR)
10648 {
10649 struct type *type0 = ada_check_typedef (value_type (array));
10650
10651 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10652 return empty_array (TYPE_TARGET_TYPE (type0), low_bound, high_bound);
10653 else
10654 {
10655 struct type *arr_type0 =
10656 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
10657
10658 return ada_value_slice_from_ptr (array, arr_type0,
10659 longest_to_int (low_bound),
10660 longest_to_int (high_bound));
10661 }
10662 }
10663 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10664 return array;
10665 else if (high_bound < low_bound)
10666 return empty_array (value_type (array), low_bound, high_bound);
10667 else
10668 return ada_value_slice (array, longest_to_int (low_bound),
10669 longest_to_int (high_bound));
10670 }
10671
10672 case UNOP_IN_RANGE:
10673 (*pos) += 2;
10674 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10675 type = check_typedef (exp->elts[pc + 1].type);
10676
10677 if (noside == EVAL_SKIP)
10678 goto nosideret;
10679
10680 switch (type->code ())
10681 {
10682 default:
10683 lim_warning (_("Membership test incompletely implemented; "
10684 "always returns true"));
10685 type = language_bool_type (exp->language_defn, exp->gdbarch);
10686 return value_from_longest (type, (LONGEST) 1);
10687
10688 case TYPE_CODE_RANGE:
10689 arg2 = value_from_longest (type,
10690 type->bounds ()->low.const_val ());
10691 arg3 = value_from_longest (type,
10692 type->bounds ()->high.const_val ());
10693 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10694 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10695 type = language_bool_type (exp->language_defn, exp->gdbarch);
10696 return
10697 value_from_longest (type,
10698 (value_less (arg1, arg3)
10699 || value_equal (arg1, arg3))
10700 && (value_less (arg2, arg1)
10701 || value_equal (arg2, arg1)));
10702 }
10703
10704 case BINOP_IN_BOUNDS:
10705 (*pos) += 2;
10706 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10707 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
10708
10709 if (noside == EVAL_SKIP)
10710 goto nosideret;
10711
10712 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10713 {
10714 type = language_bool_type (exp->language_defn, exp->gdbarch);
10715 return value_zero (type, not_lval);
10716 }
10717
10718 tem = longest_to_int (exp->elts[pc + 1].longconst);
10719
10720 type = ada_index_type (value_type (arg2), tem, "range");
10721 if (!type)
10722 type = value_type (arg1);
10723
10724 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10725 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
10726
10727 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10728 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10729 type = language_bool_type (exp->language_defn, exp->gdbarch);
10730 return
10731 value_from_longest (type,
10732 (value_less (arg1, arg3)
10733 || value_equal (arg1, arg3))
10734 && (value_less (arg2, arg1)
10735 || value_equal (arg2, arg1)));
10736
10737 case TERNOP_IN_RANGE:
10738 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10739 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
10740 arg3 = evaluate_subexp (nullptr, exp, pos, noside);
10741
10742 if (noside == EVAL_SKIP)
10743 goto nosideret;
10744
10745 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10746 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10747 type = language_bool_type (exp->language_defn, exp->gdbarch);
10748 return
10749 value_from_longest (type,
10750 (value_less (arg1, arg3)
10751 || value_equal (arg1, arg3))
10752 && (value_less (arg2, arg1)
10753 || value_equal (arg2, arg1)));
10754
10755 case OP_ATR_FIRST:
10756 case OP_ATR_LAST:
10757 case OP_ATR_LENGTH:
10758 {
10759 struct type *type_arg;
10760
10761 if (exp->elts[*pos].opcode == OP_TYPE)
10762 {
10763 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
10764 arg1 = NULL;
10765 type_arg = check_typedef (exp->elts[pc + 2].type);
10766 }
10767 else
10768 {
10769 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10770 type_arg = NULL;
10771 }
10772
10773 if (exp->elts[*pos].opcode != OP_LONG)
10774 error (_("Invalid operand to '%s"), ada_attribute_name (op));
10775 tem = longest_to_int (exp->elts[*pos + 2].longconst);
10776 *pos += 4;
10777
10778 if (noside == EVAL_SKIP)
10779 goto nosideret;
10780 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10781 {
10782 if (type_arg == NULL)
10783 type_arg = value_type (arg1);
10784
10785 if (ada_is_constrained_packed_array_type (type_arg))
10786 type_arg = decode_constrained_packed_array_type (type_arg);
10787
10788 if (!discrete_type_p (type_arg))
10789 {
10790 switch (op)
10791 {
10792 default: /* Should never happen. */
10793 error (_("unexpected attribute encountered"));
10794 case OP_ATR_FIRST:
10795 case OP_ATR_LAST:
10796 type_arg = ada_index_type (type_arg, tem,
10797 ada_attribute_name (op));
10798 break;
10799 case OP_ATR_LENGTH:
10800 type_arg = builtin_type (exp->gdbarch)->builtin_int;
10801 break;
10802 }
10803 }
10804
10805 return value_zero (type_arg, not_lval);
10806 }
10807 else if (type_arg == NULL)
10808 {
10809 arg1 = ada_coerce_ref (arg1);
10810
10811 if (ada_is_constrained_packed_array_type (value_type (arg1)))
10812 arg1 = ada_coerce_to_simple_array (arg1);
10813
10814 if (op == OP_ATR_LENGTH)
10815 type = builtin_type (exp->gdbarch)->builtin_int;
10816 else
10817 {
10818 type = ada_index_type (value_type (arg1), tem,
10819 ada_attribute_name (op));
10820 if (type == NULL)
10821 type = builtin_type (exp->gdbarch)->builtin_int;
10822 }
10823
10824 switch (op)
10825 {
10826 default: /* Should never happen. */
10827 error (_("unexpected attribute encountered"));
10828 case OP_ATR_FIRST:
10829 return value_from_longest
10830 (type, ada_array_bound (arg1, tem, 0));
10831 case OP_ATR_LAST:
10832 return value_from_longest
10833 (type, ada_array_bound (arg1, tem, 1));
10834 case OP_ATR_LENGTH:
10835 return value_from_longest
10836 (type, ada_array_length (arg1, tem));
10837 }
10838 }
10839 else if (discrete_type_p (type_arg))
10840 {
10841 struct type *range_type;
10842 const char *name = ada_type_name (type_arg);
10843
10844 range_type = NULL;
10845 if (name != NULL && type_arg->code () != TYPE_CODE_ENUM)
10846 range_type = to_fixed_range_type (type_arg, NULL);
10847 if (range_type == NULL)
10848 range_type = type_arg;
10849 switch (op)
10850 {
10851 default:
10852 error (_("unexpected attribute encountered"));
10853 case OP_ATR_FIRST:
10854 return value_from_longest
10855 (range_type, ada_discrete_type_low_bound (range_type));
10856 case OP_ATR_LAST:
10857 return value_from_longest
10858 (range_type, ada_discrete_type_high_bound (range_type));
10859 case OP_ATR_LENGTH:
10860 error (_("the 'length attribute applies only to array types"));
10861 }
10862 }
10863 else if (type_arg->code () == TYPE_CODE_FLT)
10864 error (_("unimplemented type attribute"));
10865 else
10866 {
10867 LONGEST low, high;
10868
10869 if (ada_is_constrained_packed_array_type (type_arg))
10870 type_arg = decode_constrained_packed_array_type (type_arg);
10871
10872 if (op == OP_ATR_LENGTH)
10873 type = builtin_type (exp->gdbarch)->builtin_int;
10874 else
10875 {
10876 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10877 if (type == NULL)
10878 type = builtin_type (exp->gdbarch)->builtin_int;
10879 }
10880
10881 switch (op)
10882 {
10883 default:
10884 error (_("unexpected attribute encountered"));
10885 case OP_ATR_FIRST:
10886 low = ada_array_bound_from_type (type_arg, tem, 0);
10887 return value_from_longest (type, low);
10888 case OP_ATR_LAST:
10889 high = ada_array_bound_from_type (type_arg, tem, 1);
10890 return value_from_longest (type, high);
10891 case OP_ATR_LENGTH:
10892 low = ada_array_bound_from_type (type_arg, tem, 0);
10893 high = ada_array_bound_from_type (type_arg, tem, 1);
10894 return value_from_longest (type, high - low + 1);
10895 }
10896 }
10897 }
10898
10899 case OP_ATR_TAG:
10900 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10901 if (noside == EVAL_SKIP)
10902 goto nosideret;
10903
10904 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10905 return value_zero (ada_tag_type (arg1), not_lval);
10906
10907 return ada_value_tag (arg1);
10908
10909 case OP_ATR_MIN:
10910 case OP_ATR_MAX:
10911 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
10912 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10913 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
10914 if (noside == EVAL_SKIP)
10915 goto nosideret;
10916 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10917 return value_zero (value_type (arg1), not_lval);
10918 else
10919 {
10920 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10921 return value_binop (arg1, arg2,
10922 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
10923 }
10924
10925 case OP_ATR_MODULUS:
10926 {
10927 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
10928
10929 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
10930 if (noside == EVAL_SKIP)
10931 goto nosideret;
10932
10933 if (!ada_is_modular_type (type_arg))
10934 error (_("'modulus must be applied to modular type"));
10935
10936 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
10937 ada_modulus (type_arg));
10938 }
10939
10940
10941 case OP_ATR_POS:
10942 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
10943 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10944 if (noside == EVAL_SKIP)
10945 goto nosideret;
10946 type = builtin_type (exp->gdbarch)->builtin_int;
10947 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10948 return value_zero (type, not_lval);
10949 else
10950 return value_pos_atr (type, arg1);
10951
10952 case OP_ATR_SIZE:
10953 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10954 type = value_type (arg1);
10955
10956 /* If the argument is a reference, then dereference its type, since
10957 the user is really asking for the size of the actual object,
10958 not the size of the pointer. */
10959 if (type->code () == TYPE_CODE_REF)
10960 type = TYPE_TARGET_TYPE (type);
10961
10962 if (noside == EVAL_SKIP)
10963 goto nosideret;
10964 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10965 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
10966 else
10967 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
10968 TARGET_CHAR_BIT * TYPE_LENGTH (type));
10969
10970 case OP_ATR_VAL:
10971 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
10972 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10973 type = exp->elts[pc + 2].type;
10974 if (noside == EVAL_SKIP)
10975 goto nosideret;
10976 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10977 return value_zero (type, not_lval);
10978 else
10979 return value_val_atr (type, arg1);
10980
10981 case BINOP_EXP:
10982 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10983 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
10984 if (noside == EVAL_SKIP)
10985 goto nosideret;
10986 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10987 return value_zero (value_type (arg1), not_lval);
10988 else
10989 {
10990 /* For integer exponentiation operations,
10991 only promote the first argument. */
10992 if (is_integral_type (value_type (arg2)))
10993 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10994 else
10995 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10996
10997 return value_binop (arg1, arg2, op);
10998 }
10999
11000 case UNOP_PLUS:
11001 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
11002 if (noside == EVAL_SKIP)
11003 goto nosideret;
11004 else
11005 return arg1;
11006
11007 case UNOP_ABS:
11008 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
11009 if (noside == EVAL_SKIP)
11010 goto nosideret;
11011 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11012 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
11013 return value_neg (arg1);
11014 else
11015 return arg1;
11016
11017 case UNOP_IND:
11018 preeval_pos = *pos;
11019 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
11020 if (noside == EVAL_SKIP)
11021 goto nosideret;
11022 type = ada_check_typedef (value_type (arg1));
11023 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11024 {
11025 if (ada_is_array_descriptor_type (type))
11026 /* GDB allows dereferencing GNAT array descriptors. */
11027 {
11028 struct type *arrType = ada_type_of_array (arg1, 0);
11029
11030 if (arrType == NULL)
11031 error (_("Attempt to dereference null array pointer."));
11032 return value_at_lazy (arrType, 0);
11033 }
11034 else if (type->code () == TYPE_CODE_PTR
11035 || type->code () == TYPE_CODE_REF
11036 /* In C you can dereference an array to get the 1st elt. */
11037 || type->code () == TYPE_CODE_ARRAY)
11038 {
11039 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11040 only be determined by inspecting the object's tag.
11041 This means that we need to evaluate completely the
11042 expression in order to get its type. */
11043
11044 if ((type->code () == TYPE_CODE_REF
11045 || type->code () == TYPE_CODE_PTR)
11046 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11047 {
11048 arg1
11049 = evaluate_subexp (nullptr, exp, &preeval_pos, EVAL_NORMAL);
11050 type = value_type (ada_value_ind (arg1));
11051 }
11052 else
11053 {
11054 type = to_static_fixed_type
11055 (ada_aligned_type
11056 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11057 }
11058 ada_ensure_varsize_limit (type);
11059 return value_zero (type, lval_memory);
11060 }
11061 else if (type->code () == TYPE_CODE_INT)
11062 {
11063 /* GDB allows dereferencing an int. */
11064 if (expect_type == NULL)
11065 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11066 lval_memory);
11067 else
11068 {
11069 expect_type =
11070 to_static_fixed_type (ada_aligned_type (expect_type));
11071 return value_zero (expect_type, lval_memory);
11072 }
11073 }
11074 else
11075 error (_("Attempt to take contents of a non-pointer value."));
11076 }
11077 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
11078 type = ada_check_typedef (value_type (arg1));
11079
11080 if (type->code () == TYPE_CODE_INT)
11081 /* GDB allows dereferencing an int. If we were given
11082 the expect_type, then use that as the target type.
11083 Otherwise, assume that the target type is an int. */
11084 {
11085 if (expect_type != NULL)
11086 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11087 arg1));
11088 else
11089 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11090 (CORE_ADDR) value_as_address (arg1));
11091 }
11092
11093 if (ada_is_array_descriptor_type (type))
11094 /* GDB allows dereferencing GNAT array descriptors. */
11095 return ada_coerce_to_simple_array (arg1);
11096 else
11097 return ada_value_ind (arg1);
11098
11099 case STRUCTOP_STRUCT:
11100 tem = longest_to_int (exp->elts[pc + 1].longconst);
11101 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
11102 preeval_pos = *pos;
11103 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
11104 if (noside == EVAL_SKIP)
11105 goto nosideret;
11106 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11107 {
11108 struct type *type1 = value_type (arg1);
11109
11110 if (ada_is_tagged_type (type1, 1))
11111 {
11112 type = ada_lookup_struct_elt_type (type1,
11113 &exp->elts[pc + 2].string,
11114 1, 1);
11115
11116 /* If the field is not found, check if it exists in the
11117 extension of this object's type. This means that we
11118 need to evaluate completely the expression. */
11119
11120 if (type == NULL)
11121 {
11122 arg1
11123 = evaluate_subexp (nullptr, exp, &preeval_pos, EVAL_NORMAL);
11124 arg1 = ada_value_struct_elt (arg1,
11125 &exp->elts[pc + 2].string,
11126 0);
11127 arg1 = unwrap_value (arg1);
11128 type = value_type (ada_to_fixed_value (arg1));
11129 }
11130 }
11131 else
11132 type =
11133 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11134 0);
11135
11136 return value_zero (ada_aligned_type (type), lval_memory);
11137 }
11138 else
11139 {
11140 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11141 arg1 = unwrap_value (arg1);
11142 return ada_to_fixed_value (arg1);
11143 }
11144
11145 case OP_TYPE:
11146 /* The value is not supposed to be used. This is here to make it
11147 easier to accommodate expressions that contain types. */
11148 (*pos) += 2;
11149 if (noside == EVAL_SKIP)
11150 goto nosideret;
11151 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11152 return allocate_value (exp->elts[pc + 1].type);
11153 else
11154 error (_("Attempt to use a type name as an expression"));
11155
11156 case OP_AGGREGATE:
11157 case OP_CHOICES:
11158 case OP_OTHERS:
11159 case OP_DISCRETE_RANGE:
11160 case OP_POSITIONAL:
11161 case OP_NAME:
11162 if (noside == EVAL_NORMAL)
11163 switch (op)
11164 {
11165 case OP_NAME:
11166 error (_("Undefined name, ambiguous name, or renaming used in "
11167 "component association: %s."), &exp->elts[pc+2].string);
11168 case OP_AGGREGATE:
11169 error (_("Aggregates only allowed on the right of an assignment"));
11170 default:
11171 internal_error (__FILE__, __LINE__,
11172 _("aggregate apparently mangled"));
11173 }
11174
11175 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11176 *pos += oplen - 1;
11177 for (tem = 0; tem < nargs; tem += 1)
11178 ada_evaluate_subexp (NULL, exp, pos, noside);
11179 goto nosideret;
11180 }
11181
11182 nosideret:
11183 return eval_skip_value (exp);
11184 }
11185 \f
11186
11187 /* Fixed point */
11188
11189 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
11190 type name that encodes the 'small and 'delta information.
11191 Otherwise, return NULL. */
11192
11193 static const char *
11194 gnat_encoded_fixed_point_type_info (struct type *type)
11195 {
11196 const char *name = ada_type_name (type);
11197 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : type->code ();
11198
11199 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11200 {
11201 const char *tail = strstr (name, "___XF_");
11202
11203 if (tail == NULL)
11204 return NULL;
11205 else
11206 return tail + 5;
11207 }
11208 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11209 return gnat_encoded_fixed_point_type_info (TYPE_TARGET_TYPE (type));
11210 else
11211 return NULL;
11212 }
11213
11214 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
11215
11216 int
11217 ada_is_gnat_encoded_fixed_point_type (struct type *type)
11218 {
11219 return gnat_encoded_fixed_point_type_info (type) != NULL;
11220 }
11221
11222 /* Return non-zero iff TYPE represents a System.Address type. */
11223
11224 int
11225 ada_is_system_address_type (struct type *type)
11226 {
11227 return (type->name () && strcmp (type->name (), "system__address") == 0);
11228 }
11229
11230 /* Assuming that TYPE is the representation of an Ada fixed-point
11231 type, return the target floating-point type to be used to represent
11232 of this type during internal computation. */
11233
11234 static struct type *
11235 ada_scaling_type (struct type *type)
11236 {
11237 return builtin_type (get_type_arch (type))->builtin_long_double;
11238 }
11239
11240 /* Assuming that TYPE is the representation of an Ada fixed-point
11241 type, return its delta, or NULL if the type is malformed and the
11242 delta cannot be determined. */
11243
11244 struct value *
11245 gnat_encoded_fixed_point_delta (struct type *type)
11246 {
11247 const char *encoding = gnat_encoded_fixed_point_type_info (type);
11248 struct type *scale_type = ada_scaling_type (type);
11249
11250 long long num, den;
11251
11252 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11253 return nullptr;
11254 else
11255 return value_binop (value_from_longest (scale_type, num),
11256 value_from_longest (scale_type, den), BINOP_DIV);
11257 }
11258
11259 /* Assuming that ada_is_gnat_encoded_fixed_point_type (TYPE), return
11260 the scaling factor ('SMALL value) associated with the type. */
11261
11262 struct value *
11263 gnat_encoded_fixed_point_scaling_factor (struct type *type)
11264 {
11265 const char *encoding = gnat_encoded_fixed_point_type_info (type);
11266 struct type *scale_type = ada_scaling_type (type);
11267
11268 long long num0, den0, num1, den1;
11269 int n;
11270
11271 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
11272 &num0, &den0, &num1, &den1);
11273
11274 if (n < 2)
11275 return value_from_longest (scale_type, 1);
11276 else if (n == 4)
11277 return value_binop (value_from_longest (scale_type, num1),
11278 value_from_longest (scale_type, den1), BINOP_DIV);
11279 else
11280 return value_binop (value_from_longest (scale_type, num0),
11281 value_from_longest (scale_type, den0), BINOP_DIV);
11282 }
11283
11284 \f
11285
11286 /* Range types */
11287
11288 /* Scan STR beginning at position K for a discriminant name, and
11289 return the value of that discriminant field of DVAL in *PX. If
11290 PNEW_K is not null, put the position of the character beyond the
11291 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11292 not alter *PX and *PNEW_K if unsuccessful. */
11293
11294 static int
11295 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
11296 int *pnew_k)
11297 {
11298 static char *bound_buffer = NULL;
11299 static size_t bound_buffer_len = 0;
11300 const char *pstart, *pend, *bound;
11301 struct value *bound_val;
11302
11303 if (dval == NULL || str == NULL || str[k] == '\0')
11304 return 0;
11305
11306 pstart = str + k;
11307 pend = strstr (pstart, "__");
11308 if (pend == NULL)
11309 {
11310 bound = pstart;
11311 k += strlen (bound);
11312 }
11313 else
11314 {
11315 int len = pend - pstart;
11316
11317 /* Strip __ and beyond. */
11318 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11319 strncpy (bound_buffer, pstart, len);
11320 bound_buffer[len] = '\0';
11321
11322 bound = bound_buffer;
11323 k = pend - str;
11324 }
11325
11326 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11327 if (bound_val == NULL)
11328 return 0;
11329
11330 *px = value_as_long (bound_val);
11331 if (pnew_k != NULL)
11332 *pnew_k = k;
11333 return 1;
11334 }
11335
11336 /* Value of variable named NAME. Only exact matches are considered.
11337 If no such variable found, then if ERR_MSG is null, returns 0, and
11338 otherwise causes an error with message ERR_MSG. */
11339
11340 static struct value *
11341 get_var_value (const char *name, const char *err_msg)
11342 {
11343 std::string quoted_name = add_angle_brackets (name);
11344
11345 lookup_name_info lookup_name (quoted_name, symbol_name_match_type::FULL);
11346
11347 std::vector<struct block_symbol> syms;
11348 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11349 get_selected_block (0),
11350 VAR_DOMAIN, &syms, 1);
11351
11352 if (nsyms != 1)
11353 {
11354 if (err_msg == NULL)
11355 return 0;
11356 else
11357 error (("%s"), err_msg);
11358 }
11359
11360 return value_of_variable (syms[0].symbol, syms[0].block);
11361 }
11362
11363 /* Value of integer variable named NAME in the current environment.
11364 If no such variable is found, returns false. Otherwise, sets VALUE
11365 to the variable's value and returns true. */
11366
11367 bool
11368 get_int_var_value (const char *name, LONGEST &value)
11369 {
11370 struct value *var_val = get_var_value (name, 0);
11371
11372 if (var_val == 0)
11373 return false;
11374
11375 value = value_as_long (var_val);
11376 return true;
11377 }
11378
11379
11380 /* Return a range type whose base type is that of the range type named
11381 NAME in the current environment, and whose bounds are calculated
11382 from NAME according to the GNAT range encoding conventions.
11383 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11384 corresponding range type from debug information; fall back to using it
11385 if symbol lookup fails. If a new type must be created, allocate it
11386 like ORIG_TYPE was. The bounds information, in general, is encoded
11387 in NAME, the base type given in the named range type. */
11388
11389 static struct type *
11390 to_fixed_range_type (struct type *raw_type, struct value *dval)
11391 {
11392 const char *name;
11393 struct type *base_type;
11394 const char *subtype_info;
11395
11396 gdb_assert (raw_type != NULL);
11397 gdb_assert (raw_type->name () != NULL);
11398
11399 if (raw_type->code () == TYPE_CODE_RANGE)
11400 base_type = TYPE_TARGET_TYPE (raw_type);
11401 else
11402 base_type = raw_type;
11403
11404 name = raw_type->name ();
11405 subtype_info = strstr (name, "___XD");
11406 if (subtype_info == NULL)
11407 {
11408 LONGEST L = ada_discrete_type_low_bound (raw_type);
11409 LONGEST U = ada_discrete_type_high_bound (raw_type);
11410
11411 if (L < INT_MIN || U > INT_MAX)
11412 return raw_type;
11413 else
11414 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11415 L, U);
11416 }
11417 else
11418 {
11419 static char *name_buf = NULL;
11420 static size_t name_len = 0;
11421 int prefix_len = subtype_info - name;
11422 LONGEST L, U;
11423 struct type *type;
11424 const char *bounds_str;
11425 int n;
11426
11427 GROW_VECT (name_buf, name_len, prefix_len + 5);
11428 strncpy (name_buf, name, prefix_len);
11429 name_buf[prefix_len] = '\0';
11430
11431 subtype_info += 5;
11432 bounds_str = strchr (subtype_info, '_');
11433 n = 1;
11434
11435 if (*subtype_info == 'L')
11436 {
11437 if (!ada_scan_number (bounds_str, n, &L, &n)
11438 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11439 return raw_type;
11440 if (bounds_str[n] == '_')
11441 n += 2;
11442 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11443 n += 1;
11444 subtype_info += 1;
11445 }
11446 else
11447 {
11448 strcpy (name_buf + prefix_len, "___L");
11449 if (!get_int_var_value (name_buf, L))
11450 {
11451 lim_warning (_("Unknown lower bound, using 1."));
11452 L = 1;
11453 }
11454 }
11455
11456 if (*subtype_info == 'U')
11457 {
11458 if (!ada_scan_number (bounds_str, n, &U, &n)
11459 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11460 return raw_type;
11461 }
11462 else
11463 {
11464 strcpy (name_buf + prefix_len, "___U");
11465 if (!get_int_var_value (name_buf, U))
11466 {
11467 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11468 U = L;
11469 }
11470 }
11471
11472 type = create_static_range_type (alloc_type_copy (raw_type),
11473 base_type, L, U);
11474 /* create_static_range_type alters the resulting type's length
11475 to match the size of the base_type, which is not what we want.
11476 Set it back to the original range type's length. */
11477 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
11478 type->set_name (name);
11479 return type;
11480 }
11481 }
11482
11483 /* True iff NAME is the name of a range type. */
11484
11485 int
11486 ada_is_range_type_name (const char *name)
11487 {
11488 return (name != NULL && strstr (name, "___XD"));
11489 }
11490 \f
11491
11492 /* Modular types */
11493
11494 /* True iff TYPE is an Ada modular type. */
11495
11496 int
11497 ada_is_modular_type (struct type *type)
11498 {
11499 struct type *subranged_type = get_base_type (type);
11500
11501 return (subranged_type != NULL && type->code () == TYPE_CODE_RANGE
11502 && subranged_type->code () == TYPE_CODE_INT
11503 && subranged_type->is_unsigned ());
11504 }
11505
11506 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11507
11508 ULONGEST
11509 ada_modulus (struct type *type)
11510 {
11511 const dynamic_prop &high = type->bounds ()->high;
11512
11513 if (high.kind () == PROP_CONST)
11514 return (ULONGEST) high.const_val () + 1;
11515
11516 /* If TYPE is unresolved, the high bound might be a location list. Return
11517 0, for lack of a better value to return. */
11518 return 0;
11519 }
11520 \f
11521
11522 /* Ada exception catchpoint support:
11523 ---------------------------------
11524
11525 We support 3 kinds of exception catchpoints:
11526 . catchpoints on Ada exceptions
11527 . catchpoints on unhandled Ada exceptions
11528 . catchpoints on failed assertions
11529
11530 Exceptions raised during failed assertions, or unhandled exceptions
11531 could perfectly be caught with the general catchpoint on Ada exceptions.
11532 However, we can easily differentiate these two special cases, and having
11533 the option to distinguish these two cases from the rest can be useful
11534 to zero-in on certain situations.
11535
11536 Exception catchpoints are a specialized form of breakpoint,
11537 since they rely on inserting breakpoints inside known routines
11538 of the GNAT runtime. The implementation therefore uses a standard
11539 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11540 of breakpoint_ops.
11541
11542 Support in the runtime for exception catchpoints have been changed
11543 a few times already, and these changes affect the implementation
11544 of these catchpoints. In order to be able to support several
11545 variants of the runtime, we use a sniffer that will determine
11546 the runtime variant used by the program being debugged. */
11547
11548 /* Ada's standard exceptions.
11549
11550 The Ada 83 standard also defined Numeric_Error. But there so many
11551 situations where it was unclear from the Ada 83 Reference Manual
11552 (RM) whether Constraint_Error or Numeric_Error should be raised,
11553 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11554 Interpretation saying that anytime the RM says that Numeric_Error
11555 should be raised, the implementation may raise Constraint_Error.
11556 Ada 95 went one step further and pretty much removed Numeric_Error
11557 from the list of standard exceptions (it made it a renaming of
11558 Constraint_Error, to help preserve compatibility when compiling
11559 an Ada83 compiler). As such, we do not include Numeric_Error from
11560 this list of standard exceptions. */
11561
11562 static const char * const standard_exc[] = {
11563 "constraint_error",
11564 "program_error",
11565 "storage_error",
11566 "tasking_error"
11567 };
11568
11569 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11570
11571 /* A structure that describes how to support exception catchpoints
11572 for a given executable. */
11573
11574 struct exception_support_info
11575 {
11576 /* The name of the symbol to break on in order to insert
11577 a catchpoint on exceptions. */
11578 const char *catch_exception_sym;
11579
11580 /* The name of the symbol to break on in order to insert
11581 a catchpoint on unhandled exceptions. */
11582 const char *catch_exception_unhandled_sym;
11583
11584 /* The name of the symbol to break on in order to insert
11585 a catchpoint on failed assertions. */
11586 const char *catch_assert_sym;
11587
11588 /* The name of the symbol to break on in order to insert
11589 a catchpoint on exception handling. */
11590 const char *catch_handlers_sym;
11591
11592 /* Assuming that the inferior just triggered an unhandled exception
11593 catchpoint, this function is responsible for returning the address
11594 in inferior memory where the name of that exception is stored.
11595 Return zero if the address could not be computed. */
11596 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11597 };
11598
11599 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11600 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11601
11602 /* The following exception support info structure describes how to
11603 implement exception catchpoints with the latest version of the
11604 Ada runtime (as of 2019-08-??). */
11605
11606 static const struct exception_support_info default_exception_support_info =
11607 {
11608 "__gnat_debug_raise_exception", /* catch_exception_sym */
11609 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11610 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11611 "__gnat_begin_handler_v1", /* catch_handlers_sym */
11612 ada_unhandled_exception_name_addr
11613 };
11614
11615 /* The following exception support info structure describes how to
11616 implement exception catchpoints with an earlier version of the
11617 Ada runtime (as of 2007-03-06) using v0 of the EH ABI. */
11618
11619 static const struct exception_support_info exception_support_info_v0 =
11620 {
11621 "__gnat_debug_raise_exception", /* catch_exception_sym */
11622 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11623 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11624 "__gnat_begin_handler", /* catch_handlers_sym */
11625 ada_unhandled_exception_name_addr
11626 };
11627
11628 /* The following exception support info structure describes how to
11629 implement exception catchpoints with a slightly older version
11630 of the Ada runtime. */
11631
11632 static const struct exception_support_info exception_support_info_fallback =
11633 {
11634 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11635 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11636 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11637 "__gnat_begin_handler", /* catch_handlers_sym */
11638 ada_unhandled_exception_name_addr_from_raise
11639 };
11640
11641 /* Return nonzero if we can detect the exception support routines
11642 described in EINFO.
11643
11644 This function errors out if an abnormal situation is detected
11645 (for instance, if we find the exception support routines, but
11646 that support is found to be incomplete). */
11647
11648 static int
11649 ada_has_this_exception_support (const struct exception_support_info *einfo)
11650 {
11651 struct symbol *sym;
11652
11653 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11654 that should be compiled with debugging information. As a result, we
11655 expect to find that symbol in the symtabs. */
11656
11657 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11658 if (sym == NULL)
11659 {
11660 /* Perhaps we did not find our symbol because the Ada runtime was
11661 compiled without debugging info, or simply stripped of it.
11662 It happens on some GNU/Linux distributions for instance, where
11663 users have to install a separate debug package in order to get
11664 the runtime's debugging info. In that situation, let the user
11665 know why we cannot insert an Ada exception catchpoint.
11666
11667 Note: Just for the purpose of inserting our Ada exception
11668 catchpoint, we could rely purely on the associated minimal symbol.
11669 But we would be operating in degraded mode anyway, since we are
11670 still lacking the debugging info needed later on to extract
11671 the name of the exception being raised (this name is printed in
11672 the catchpoint message, and is also used when trying to catch
11673 a specific exception). We do not handle this case for now. */
11674 struct bound_minimal_symbol msym
11675 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11676
11677 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11678 error (_("Your Ada runtime appears to be missing some debugging "
11679 "information.\nCannot insert Ada exception catchpoint "
11680 "in this configuration."));
11681
11682 return 0;
11683 }
11684
11685 /* Make sure that the symbol we found corresponds to a function. */
11686
11687 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11688 {
11689 error (_("Symbol \"%s\" is not a function (class = %d)"),
11690 sym->linkage_name (), SYMBOL_CLASS (sym));
11691 return 0;
11692 }
11693
11694 sym = standard_lookup (einfo->catch_handlers_sym, NULL, VAR_DOMAIN);
11695 if (sym == NULL)
11696 {
11697 struct bound_minimal_symbol msym
11698 = lookup_minimal_symbol (einfo->catch_handlers_sym, NULL, NULL);
11699
11700 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11701 error (_("Your Ada runtime appears to be missing some debugging "
11702 "information.\nCannot insert Ada exception catchpoint "
11703 "in this configuration."));
11704
11705 return 0;
11706 }
11707
11708 /* Make sure that the symbol we found corresponds to a function. */
11709
11710 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11711 {
11712 error (_("Symbol \"%s\" is not a function (class = %d)"),
11713 sym->linkage_name (), SYMBOL_CLASS (sym));
11714 return 0;
11715 }
11716
11717 return 1;
11718 }
11719
11720 /* Inspect the Ada runtime and determine which exception info structure
11721 should be used to provide support for exception catchpoints.
11722
11723 This function will always set the per-inferior exception_info,
11724 or raise an error. */
11725
11726 static void
11727 ada_exception_support_info_sniffer (void)
11728 {
11729 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11730
11731 /* If the exception info is already known, then no need to recompute it. */
11732 if (data->exception_info != NULL)
11733 return;
11734
11735 /* Check the latest (default) exception support info. */
11736 if (ada_has_this_exception_support (&default_exception_support_info))
11737 {
11738 data->exception_info = &default_exception_support_info;
11739 return;
11740 }
11741
11742 /* Try the v0 exception suport info. */
11743 if (ada_has_this_exception_support (&exception_support_info_v0))
11744 {
11745 data->exception_info = &exception_support_info_v0;
11746 return;
11747 }
11748
11749 /* Try our fallback exception suport info. */
11750 if (ada_has_this_exception_support (&exception_support_info_fallback))
11751 {
11752 data->exception_info = &exception_support_info_fallback;
11753 return;
11754 }
11755
11756 /* Sometimes, it is normal for us to not be able to find the routine
11757 we are looking for. This happens when the program is linked with
11758 the shared version of the GNAT runtime, and the program has not been
11759 started yet. Inform the user of these two possible causes if
11760 applicable. */
11761
11762 if (ada_update_initial_language (language_unknown) != language_ada)
11763 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11764
11765 /* If the symbol does not exist, then check that the program is
11766 already started, to make sure that shared libraries have been
11767 loaded. If it is not started, this may mean that the symbol is
11768 in a shared library. */
11769
11770 if (inferior_ptid.pid () == 0)
11771 error (_("Unable to insert catchpoint. Try to start the program first."));
11772
11773 /* At this point, we know that we are debugging an Ada program and
11774 that the inferior has been started, but we still are not able to
11775 find the run-time symbols. That can mean that we are in
11776 configurable run time mode, or that a-except as been optimized
11777 out by the linker... In any case, at this point it is not worth
11778 supporting this feature. */
11779
11780 error (_("Cannot insert Ada exception catchpoints in this configuration."));
11781 }
11782
11783 /* True iff FRAME is very likely to be that of a function that is
11784 part of the runtime system. This is all very heuristic, but is
11785 intended to be used as advice as to what frames are uninteresting
11786 to most users. */
11787
11788 static int
11789 is_known_support_routine (struct frame_info *frame)
11790 {
11791 enum language func_lang;
11792 int i;
11793 const char *fullname;
11794
11795 /* If this code does not have any debugging information (no symtab),
11796 This cannot be any user code. */
11797
11798 symtab_and_line sal = find_frame_sal (frame);
11799 if (sal.symtab == NULL)
11800 return 1;
11801
11802 /* If there is a symtab, but the associated source file cannot be
11803 located, then assume this is not user code: Selecting a frame
11804 for which we cannot display the code would not be very helpful
11805 for the user. This should also take care of case such as VxWorks
11806 where the kernel has some debugging info provided for a few units. */
11807
11808 fullname = symtab_to_fullname (sal.symtab);
11809 if (access (fullname, R_OK) != 0)
11810 return 1;
11811
11812 /* Check the unit filename against the Ada runtime file naming.
11813 We also check the name of the objfile against the name of some
11814 known system libraries that sometimes come with debugging info
11815 too. */
11816
11817 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11818 {
11819 re_comp (known_runtime_file_name_patterns[i]);
11820 if (re_exec (lbasename (sal.symtab->filename)))
11821 return 1;
11822 if (SYMTAB_OBJFILE (sal.symtab) != NULL
11823 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
11824 return 1;
11825 }
11826
11827 /* Check whether the function is a GNAT-generated entity. */
11828
11829 gdb::unique_xmalloc_ptr<char> func_name
11830 = find_frame_funname (frame, &func_lang, NULL);
11831 if (func_name == NULL)
11832 return 1;
11833
11834 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11835 {
11836 re_comp (known_auxiliary_function_name_patterns[i]);
11837 if (re_exec (func_name.get ()))
11838 return 1;
11839 }
11840
11841 return 0;
11842 }
11843
11844 /* Find the first frame that contains debugging information and that is not
11845 part of the Ada run-time, starting from FI and moving upward. */
11846
11847 void
11848 ada_find_printable_frame (struct frame_info *fi)
11849 {
11850 for (; fi != NULL; fi = get_prev_frame (fi))
11851 {
11852 if (!is_known_support_routine (fi))
11853 {
11854 select_frame (fi);
11855 break;
11856 }
11857 }
11858
11859 }
11860
11861 /* Assuming that the inferior just triggered an unhandled exception
11862 catchpoint, return the address in inferior memory where the name
11863 of the exception is stored.
11864
11865 Return zero if the address could not be computed. */
11866
11867 static CORE_ADDR
11868 ada_unhandled_exception_name_addr (void)
11869 {
11870 return parse_and_eval_address ("e.full_name");
11871 }
11872
11873 /* Same as ada_unhandled_exception_name_addr, except that this function
11874 should be used when the inferior uses an older version of the runtime,
11875 where the exception name needs to be extracted from a specific frame
11876 several frames up in the callstack. */
11877
11878 static CORE_ADDR
11879 ada_unhandled_exception_name_addr_from_raise (void)
11880 {
11881 int frame_level;
11882 struct frame_info *fi;
11883 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11884
11885 /* To determine the name of this exception, we need to select
11886 the frame corresponding to RAISE_SYM_NAME. This frame is
11887 at least 3 levels up, so we simply skip the first 3 frames
11888 without checking the name of their associated function. */
11889 fi = get_current_frame ();
11890 for (frame_level = 0; frame_level < 3; frame_level += 1)
11891 if (fi != NULL)
11892 fi = get_prev_frame (fi);
11893
11894 while (fi != NULL)
11895 {
11896 enum language func_lang;
11897
11898 gdb::unique_xmalloc_ptr<char> func_name
11899 = find_frame_funname (fi, &func_lang, NULL);
11900 if (func_name != NULL)
11901 {
11902 if (strcmp (func_name.get (),
11903 data->exception_info->catch_exception_sym) == 0)
11904 break; /* We found the frame we were looking for... */
11905 }
11906 fi = get_prev_frame (fi);
11907 }
11908
11909 if (fi == NULL)
11910 return 0;
11911
11912 select_frame (fi);
11913 return parse_and_eval_address ("id.full_name");
11914 }
11915
11916 /* Assuming the inferior just triggered an Ada exception catchpoint
11917 (of any type), return the address in inferior memory where the name
11918 of the exception is stored, if applicable.
11919
11920 Assumes the selected frame is the current frame.
11921
11922 Return zero if the address could not be computed, or if not relevant. */
11923
11924 static CORE_ADDR
11925 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
11926 struct breakpoint *b)
11927 {
11928 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11929
11930 switch (ex)
11931 {
11932 case ada_catch_exception:
11933 return (parse_and_eval_address ("e.full_name"));
11934 break;
11935
11936 case ada_catch_exception_unhandled:
11937 return data->exception_info->unhandled_exception_name_addr ();
11938 break;
11939
11940 case ada_catch_handlers:
11941 return 0; /* The runtimes does not provide access to the exception
11942 name. */
11943 break;
11944
11945 case ada_catch_assert:
11946 return 0; /* Exception name is not relevant in this case. */
11947 break;
11948
11949 default:
11950 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11951 break;
11952 }
11953
11954 return 0; /* Should never be reached. */
11955 }
11956
11957 /* Assuming the inferior is stopped at an exception catchpoint,
11958 return the message which was associated to the exception, if
11959 available. Return NULL if the message could not be retrieved.
11960
11961 Note: The exception message can be associated to an exception
11962 either through the use of the Raise_Exception function, or
11963 more simply (Ada 2005 and later), via:
11964
11965 raise Exception_Name with "exception message";
11966
11967 */
11968
11969 static gdb::unique_xmalloc_ptr<char>
11970 ada_exception_message_1 (void)
11971 {
11972 struct value *e_msg_val;
11973 int e_msg_len;
11974
11975 /* For runtimes that support this feature, the exception message
11976 is passed as an unbounded string argument called "message". */
11977 e_msg_val = parse_and_eval ("message");
11978 if (e_msg_val == NULL)
11979 return NULL; /* Exception message not supported. */
11980
11981 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
11982 gdb_assert (e_msg_val != NULL);
11983 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
11984
11985 /* If the message string is empty, then treat it as if there was
11986 no exception message. */
11987 if (e_msg_len <= 0)
11988 return NULL;
11989
11990 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
11991 read_memory (value_address (e_msg_val), (gdb_byte *) e_msg.get (),
11992 e_msg_len);
11993 e_msg.get ()[e_msg_len] = '\0';
11994
11995 return e_msg;
11996 }
11997
11998 /* Same as ada_exception_message_1, except that all exceptions are
11999 contained here (returning NULL instead). */
12000
12001 static gdb::unique_xmalloc_ptr<char>
12002 ada_exception_message (void)
12003 {
12004 gdb::unique_xmalloc_ptr<char> e_msg;
12005
12006 try
12007 {
12008 e_msg = ada_exception_message_1 ();
12009 }
12010 catch (const gdb_exception_error &e)
12011 {
12012 e_msg.reset (nullptr);
12013 }
12014
12015 return e_msg;
12016 }
12017
12018 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
12019 any error that ada_exception_name_addr_1 might cause to be thrown.
12020 When an error is intercepted, a warning with the error message is printed,
12021 and zero is returned. */
12022
12023 static CORE_ADDR
12024 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
12025 struct breakpoint *b)
12026 {
12027 CORE_ADDR result = 0;
12028
12029 try
12030 {
12031 result = ada_exception_name_addr_1 (ex, b);
12032 }
12033
12034 catch (const gdb_exception_error &e)
12035 {
12036 warning (_("failed to get exception name: %s"), e.what ());
12037 return 0;
12038 }
12039
12040 return result;
12041 }
12042
12043 static std::string ada_exception_catchpoint_cond_string
12044 (const char *excep_string,
12045 enum ada_exception_catchpoint_kind ex);
12046
12047 /* Ada catchpoints.
12048
12049 In the case of catchpoints on Ada exceptions, the catchpoint will
12050 stop the target on every exception the program throws. When a user
12051 specifies the name of a specific exception, we translate this
12052 request into a condition expression (in text form), and then parse
12053 it into an expression stored in each of the catchpoint's locations.
12054 We then use this condition to check whether the exception that was
12055 raised is the one the user is interested in. If not, then the
12056 target is resumed again. We store the name of the requested
12057 exception, in order to be able to re-set the condition expression
12058 when symbols change. */
12059
12060 /* An instance of this type is used to represent an Ada catchpoint
12061 breakpoint location. */
12062
12063 class ada_catchpoint_location : public bp_location
12064 {
12065 public:
12066 ada_catchpoint_location (breakpoint *owner)
12067 : bp_location (owner, bp_loc_software_breakpoint)
12068 {}
12069
12070 /* The condition that checks whether the exception that was raised
12071 is the specific exception the user specified on catchpoint
12072 creation. */
12073 expression_up excep_cond_expr;
12074 };
12075
12076 /* An instance of this type is used to represent an Ada catchpoint. */
12077
12078 struct ada_catchpoint : public breakpoint
12079 {
12080 explicit ada_catchpoint (enum ada_exception_catchpoint_kind kind)
12081 : m_kind (kind)
12082 {
12083 }
12084
12085 /* The name of the specific exception the user specified. */
12086 std::string excep_string;
12087
12088 /* What kind of catchpoint this is. */
12089 enum ada_exception_catchpoint_kind m_kind;
12090 };
12091
12092 /* Parse the exception condition string in the context of each of the
12093 catchpoint's locations, and store them for later evaluation. */
12094
12095 static void
12096 create_excep_cond_exprs (struct ada_catchpoint *c,
12097 enum ada_exception_catchpoint_kind ex)
12098 {
12099 struct bp_location *bl;
12100
12101 /* Nothing to do if there's no specific exception to catch. */
12102 if (c->excep_string.empty ())
12103 return;
12104
12105 /* Same if there are no locations... */
12106 if (c->loc == NULL)
12107 return;
12108
12109 /* Compute the condition expression in text form, from the specific
12110 expection we want to catch. */
12111 std::string cond_string
12112 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (), ex);
12113
12114 /* Iterate over all the catchpoint's locations, and parse an
12115 expression for each. */
12116 for (bl = c->loc; bl != NULL; bl = bl->next)
12117 {
12118 struct ada_catchpoint_location *ada_loc
12119 = (struct ada_catchpoint_location *) bl;
12120 expression_up exp;
12121
12122 if (!bl->shlib_disabled)
12123 {
12124 const char *s;
12125
12126 s = cond_string.c_str ();
12127 try
12128 {
12129 exp = parse_exp_1 (&s, bl->address,
12130 block_for_pc (bl->address),
12131 0);
12132 }
12133 catch (const gdb_exception_error &e)
12134 {
12135 warning (_("failed to reevaluate internal exception condition "
12136 "for catchpoint %d: %s"),
12137 c->number, e.what ());
12138 }
12139 }
12140
12141 ada_loc->excep_cond_expr = std::move (exp);
12142 }
12143 }
12144
12145 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12146 structure for all exception catchpoint kinds. */
12147
12148 static struct bp_location *
12149 allocate_location_exception (struct breakpoint *self)
12150 {
12151 return new ada_catchpoint_location (self);
12152 }
12153
12154 /* Implement the RE_SET method in the breakpoint_ops structure for all
12155 exception catchpoint kinds. */
12156
12157 static void
12158 re_set_exception (struct breakpoint *b)
12159 {
12160 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12161
12162 /* Call the base class's method. This updates the catchpoint's
12163 locations. */
12164 bkpt_breakpoint_ops.re_set (b);
12165
12166 /* Reparse the exception conditional expressions. One for each
12167 location. */
12168 create_excep_cond_exprs (c, c->m_kind);
12169 }
12170
12171 /* Returns true if we should stop for this breakpoint hit. If the
12172 user specified a specific exception, we only want to cause a stop
12173 if the program thrown that exception. */
12174
12175 static int
12176 should_stop_exception (const struct bp_location *bl)
12177 {
12178 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12179 const struct ada_catchpoint_location *ada_loc
12180 = (const struct ada_catchpoint_location *) bl;
12181 int stop;
12182
12183 struct internalvar *var = lookup_internalvar ("_ada_exception");
12184 if (c->m_kind == ada_catch_assert)
12185 clear_internalvar (var);
12186 else
12187 {
12188 try
12189 {
12190 const char *expr;
12191
12192 if (c->m_kind == ada_catch_handlers)
12193 expr = ("GNAT_GCC_exception_Access(gcc_exception)"
12194 ".all.occurrence.id");
12195 else
12196 expr = "e";
12197
12198 struct value *exc = parse_and_eval (expr);
12199 set_internalvar (var, exc);
12200 }
12201 catch (const gdb_exception_error &ex)
12202 {
12203 clear_internalvar (var);
12204 }
12205 }
12206
12207 /* With no specific exception, should always stop. */
12208 if (c->excep_string.empty ())
12209 return 1;
12210
12211 if (ada_loc->excep_cond_expr == NULL)
12212 {
12213 /* We will have a NULL expression if back when we were creating
12214 the expressions, this location's had failed to parse. */
12215 return 1;
12216 }
12217
12218 stop = 1;
12219 try
12220 {
12221 struct value *mark;
12222
12223 mark = value_mark ();
12224 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
12225 value_free_to_mark (mark);
12226 }
12227 catch (const gdb_exception &ex)
12228 {
12229 exception_fprintf (gdb_stderr, ex,
12230 _("Error in testing exception condition:\n"));
12231 }
12232
12233 return stop;
12234 }
12235
12236 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12237 for all exception catchpoint kinds. */
12238
12239 static void
12240 check_status_exception (bpstat bs)
12241 {
12242 bs->stop = should_stop_exception (bs->bp_location_at.get ());
12243 }
12244
12245 /* Implement the PRINT_IT method in the breakpoint_ops structure
12246 for all exception catchpoint kinds. */
12247
12248 static enum print_stop_action
12249 print_it_exception (bpstat bs)
12250 {
12251 struct ui_out *uiout = current_uiout;
12252 struct breakpoint *b = bs->breakpoint_at;
12253
12254 annotate_catchpoint (b->number);
12255
12256 if (uiout->is_mi_like_p ())
12257 {
12258 uiout->field_string ("reason",
12259 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12260 uiout->field_string ("disp", bpdisp_text (b->disposition));
12261 }
12262
12263 uiout->text (b->disposition == disp_del
12264 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12265 uiout->field_signed ("bkptno", b->number);
12266 uiout->text (", ");
12267
12268 /* ada_exception_name_addr relies on the selected frame being the
12269 current frame. Need to do this here because this function may be
12270 called more than once when printing a stop, and below, we'll
12271 select the first frame past the Ada run-time (see
12272 ada_find_printable_frame). */
12273 select_frame (get_current_frame ());
12274
12275 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12276 switch (c->m_kind)
12277 {
12278 case ada_catch_exception:
12279 case ada_catch_exception_unhandled:
12280 case ada_catch_handlers:
12281 {
12282 const CORE_ADDR addr = ada_exception_name_addr (c->m_kind, b);
12283 char exception_name[256];
12284
12285 if (addr != 0)
12286 {
12287 read_memory (addr, (gdb_byte *) exception_name,
12288 sizeof (exception_name) - 1);
12289 exception_name [sizeof (exception_name) - 1] = '\0';
12290 }
12291 else
12292 {
12293 /* For some reason, we were unable to read the exception
12294 name. This could happen if the Runtime was compiled
12295 without debugging info, for instance. In that case,
12296 just replace the exception name by the generic string
12297 "exception" - it will read as "an exception" in the
12298 notification we are about to print. */
12299 memcpy (exception_name, "exception", sizeof ("exception"));
12300 }
12301 /* In the case of unhandled exception breakpoints, we print
12302 the exception name as "unhandled EXCEPTION_NAME", to make
12303 it clearer to the user which kind of catchpoint just got
12304 hit. We used ui_out_text to make sure that this extra
12305 info does not pollute the exception name in the MI case. */
12306 if (c->m_kind == ada_catch_exception_unhandled)
12307 uiout->text ("unhandled ");
12308 uiout->field_string ("exception-name", exception_name);
12309 }
12310 break;
12311 case ada_catch_assert:
12312 /* In this case, the name of the exception is not really
12313 important. Just print "failed assertion" to make it clearer
12314 that his program just hit an assertion-failure catchpoint.
12315 We used ui_out_text because this info does not belong in
12316 the MI output. */
12317 uiout->text ("failed assertion");
12318 break;
12319 }
12320
12321 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
12322 if (exception_message != NULL)
12323 {
12324 uiout->text (" (");
12325 uiout->field_string ("exception-message", exception_message.get ());
12326 uiout->text (")");
12327 }
12328
12329 uiout->text (" at ");
12330 ada_find_printable_frame (get_current_frame ());
12331
12332 return PRINT_SRC_AND_LOC;
12333 }
12334
12335 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12336 for all exception catchpoint kinds. */
12337
12338 static void
12339 print_one_exception (struct breakpoint *b, struct bp_location **last_loc)
12340 {
12341 struct ui_out *uiout = current_uiout;
12342 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12343 struct value_print_options opts;
12344
12345 get_user_print_options (&opts);
12346
12347 if (opts.addressprint)
12348 uiout->field_skip ("addr");
12349
12350 annotate_field (5);
12351 switch (c->m_kind)
12352 {
12353 case ada_catch_exception:
12354 if (!c->excep_string.empty ())
12355 {
12356 std::string msg = string_printf (_("`%s' Ada exception"),
12357 c->excep_string.c_str ());
12358
12359 uiout->field_string ("what", msg);
12360 }
12361 else
12362 uiout->field_string ("what", "all Ada exceptions");
12363
12364 break;
12365
12366 case ada_catch_exception_unhandled:
12367 uiout->field_string ("what", "unhandled Ada exceptions");
12368 break;
12369
12370 case ada_catch_handlers:
12371 if (!c->excep_string.empty ())
12372 {
12373 uiout->field_fmt ("what",
12374 _("`%s' Ada exception handlers"),
12375 c->excep_string.c_str ());
12376 }
12377 else
12378 uiout->field_string ("what", "all Ada exceptions handlers");
12379 break;
12380
12381 case ada_catch_assert:
12382 uiout->field_string ("what", "failed Ada assertions");
12383 break;
12384
12385 default:
12386 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12387 break;
12388 }
12389 }
12390
12391 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12392 for all exception catchpoint kinds. */
12393
12394 static void
12395 print_mention_exception (struct breakpoint *b)
12396 {
12397 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12398 struct ui_out *uiout = current_uiout;
12399
12400 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
12401 : _("Catchpoint "));
12402 uiout->field_signed ("bkptno", b->number);
12403 uiout->text (": ");
12404
12405 switch (c->m_kind)
12406 {
12407 case ada_catch_exception:
12408 if (!c->excep_string.empty ())
12409 {
12410 std::string info = string_printf (_("`%s' Ada exception"),
12411 c->excep_string.c_str ());
12412 uiout->text (info.c_str ());
12413 }
12414 else
12415 uiout->text (_("all Ada exceptions"));
12416 break;
12417
12418 case ada_catch_exception_unhandled:
12419 uiout->text (_("unhandled Ada exceptions"));
12420 break;
12421
12422 case ada_catch_handlers:
12423 if (!c->excep_string.empty ())
12424 {
12425 std::string info
12426 = string_printf (_("`%s' Ada exception handlers"),
12427 c->excep_string.c_str ());
12428 uiout->text (info.c_str ());
12429 }
12430 else
12431 uiout->text (_("all Ada exceptions handlers"));
12432 break;
12433
12434 case ada_catch_assert:
12435 uiout->text (_("failed Ada assertions"));
12436 break;
12437
12438 default:
12439 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12440 break;
12441 }
12442 }
12443
12444 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12445 for all exception catchpoint kinds. */
12446
12447 static void
12448 print_recreate_exception (struct breakpoint *b, struct ui_file *fp)
12449 {
12450 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12451
12452 switch (c->m_kind)
12453 {
12454 case ada_catch_exception:
12455 fprintf_filtered (fp, "catch exception");
12456 if (!c->excep_string.empty ())
12457 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
12458 break;
12459
12460 case ada_catch_exception_unhandled:
12461 fprintf_filtered (fp, "catch exception unhandled");
12462 break;
12463
12464 case ada_catch_handlers:
12465 fprintf_filtered (fp, "catch handlers");
12466 break;
12467
12468 case ada_catch_assert:
12469 fprintf_filtered (fp, "catch assert");
12470 break;
12471
12472 default:
12473 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12474 }
12475 print_recreate_thread (b, fp);
12476 }
12477
12478 /* Virtual tables for various breakpoint types. */
12479 static struct breakpoint_ops catch_exception_breakpoint_ops;
12480 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12481 static struct breakpoint_ops catch_assert_breakpoint_ops;
12482 static struct breakpoint_ops catch_handlers_breakpoint_ops;
12483
12484 /* See ada-lang.h. */
12485
12486 bool
12487 is_ada_exception_catchpoint (breakpoint *bp)
12488 {
12489 return (bp->ops == &catch_exception_breakpoint_ops
12490 || bp->ops == &catch_exception_unhandled_breakpoint_ops
12491 || bp->ops == &catch_assert_breakpoint_ops
12492 || bp->ops == &catch_handlers_breakpoint_ops);
12493 }
12494
12495 /* Split the arguments specified in a "catch exception" command.
12496 Set EX to the appropriate catchpoint type.
12497 Set EXCEP_STRING to the name of the specific exception if
12498 specified by the user.
12499 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
12500 "catch handlers" command. False otherwise.
12501 If a condition is found at the end of the arguments, the condition
12502 expression is stored in COND_STRING (memory must be deallocated
12503 after use). Otherwise COND_STRING is set to NULL. */
12504
12505 static void
12506 catch_ada_exception_command_split (const char *args,
12507 bool is_catch_handlers_cmd,
12508 enum ada_exception_catchpoint_kind *ex,
12509 std::string *excep_string,
12510 std::string *cond_string)
12511 {
12512 std::string exception_name;
12513
12514 exception_name = extract_arg (&args);
12515 if (exception_name == "if")
12516 {
12517 /* This is not an exception name; this is the start of a condition
12518 expression for a catchpoint on all exceptions. So, "un-get"
12519 this token, and set exception_name to NULL. */
12520 exception_name.clear ();
12521 args -= 2;
12522 }
12523
12524 /* Check to see if we have a condition. */
12525
12526 args = skip_spaces (args);
12527 if (startswith (args, "if")
12528 && (isspace (args[2]) || args[2] == '\0'))
12529 {
12530 args += 2;
12531 args = skip_spaces (args);
12532
12533 if (args[0] == '\0')
12534 error (_("Condition missing after `if' keyword"));
12535 *cond_string = args;
12536
12537 args += strlen (args);
12538 }
12539
12540 /* Check that we do not have any more arguments. Anything else
12541 is unexpected. */
12542
12543 if (args[0] != '\0')
12544 error (_("Junk at end of expression"));
12545
12546 if (is_catch_handlers_cmd)
12547 {
12548 /* Catch handling of exceptions. */
12549 *ex = ada_catch_handlers;
12550 *excep_string = exception_name;
12551 }
12552 else if (exception_name.empty ())
12553 {
12554 /* Catch all exceptions. */
12555 *ex = ada_catch_exception;
12556 excep_string->clear ();
12557 }
12558 else if (exception_name == "unhandled")
12559 {
12560 /* Catch unhandled exceptions. */
12561 *ex = ada_catch_exception_unhandled;
12562 excep_string->clear ();
12563 }
12564 else
12565 {
12566 /* Catch a specific exception. */
12567 *ex = ada_catch_exception;
12568 *excep_string = exception_name;
12569 }
12570 }
12571
12572 /* Return the name of the symbol on which we should break in order to
12573 implement a catchpoint of the EX kind. */
12574
12575 static const char *
12576 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
12577 {
12578 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12579
12580 gdb_assert (data->exception_info != NULL);
12581
12582 switch (ex)
12583 {
12584 case ada_catch_exception:
12585 return (data->exception_info->catch_exception_sym);
12586 break;
12587 case ada_catch_exception_unhandled:
12588 return (data->exception_info->catch_exception_unhandled_sym);
12589 break;
12590 case ada_catch_assert:
12591 return (data->exception_info->catch_assert_sym);
12592 break;
12593 case ada_catch_handlers:
12594 return (data->exception_info->catch_handlers_sym);
12595 break;
12596 default:
12597 internal_error (__FILE__, __LINE__,
12598 _("unexpected catchpoint kind (%d)"), ex);
12599 }
12600 }
12601
12602 /* Return the breakpoint ops "virtual table" used for catchpoints
12603 of the EX kind. */
12604
12605 static const struct breakpoint_ops *
12606 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
12607 {
12608 switch (ex)
12609 {
12610 case ada_catch_exception:
12611 return (&catch_exception_breakpoint_ops);
12612 break;
12613 case ada_catch_exception_unhandled:
12614 return (&catch_exception_unhandled_breakpoint_ops);
12615 break;
12616 case ada_catch_assert:
12617 return (&catch_assert_breakpoint_ops);
12618 break;
12619 case ada_catch_handlers:
12620 return (&catch_handlers_breakpoint_ops);
12621 break;
12622 default:
12623 internal_error (__FILE__, __LINE__,
12624 _("unexpected catchpoint kind (%d)"), ex);
12625 }
12626 }
12627
12628 /* Return the condition that will be used to match the current exception
12629 being raised with the exception that the user wants to catch. This
12630 assumes that this condition is used when the inferior just triggered
12631 an exception catchpoint.
12632 EX: the type of catchpoints used for catching Ada exceptions. */
12633
12634 static std::string
12635 ada_exception_catchpoint_cond_string (const char *excep_string,
12636 enum ada_exception_catchpoint_kind ex)
12637 {
12638 int i;
12639 bool is_standard_exc = false;
12640 std::string result;
12641
12642 if (ex == ada_catch_handlers)
12643 {
12644 /* For exception handlers catchpoints, the condition string does
12645 not use the same parameter as for the other exceptions. */
12646 result = ("long_integer (GNAT_GCC_exception_Access"
12647 "(gcc_exception).all.occurrence.id)");
12648 }
12649 else
12650 result = "long_integer (e)";
12651
12652 /* The standard exceptions are a special case. They are defined in
12653 runtime units that have been compiled without debugging info; if
12654 EXCEP_STRING is the not-fully-qualified name of a standard
12655 exception (e.g. "constraint_error") then, during the evaluation
12656 of the condition expression, the symbol lookup on this name would
12657 *not* return this standard exception. The catchpoint condition
12658 may then be set only on user-defined exceptions which have the
12659 same not-fully-qualified name (e.g. my_package.constraint_error).
12660
12661 To avoid this unexcepted behavior, these standard exceptions are
12662 systematically prefixed by "standard". This means that "catch
12663 exception constraint_error" is rewritten into "catch exception
12664 standard.constraint_error".
12665
12666 If an exception named constraint_error is defined in another package of
12667 the inferior program, then the only way to specify this exception as a
12668 breakpoint condition is to use its fully-qualified named:
12669 e.g. my_package.constraint_error. */
12670
12671 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12672 {
12673 if (strcmp (standard_exc [i], excep_string) == 0)
12674 {
12675 is_standard_exc = true;
12676 break;
12677 }
12678 }
12679
12680 result += " = ";
12681
12682 if (is_standard_exc)
12683 string_appendf (result, "long_integer (&standard.%s)", excep_string);
12684 else
12685 string_appendf (result, "long_integer (&%s)", excep_string);
12686
12687 return result;
12688 }
12689
12690 /* Return the symtab_and_line that should be used to insert an exception
12691 catchpoint of the TYPE kind.
12692
12693 ADDR_STRING returns the name of the function where the real
12694 breakpoint that implements the catchpoints is set, depending on the
12695 type of catchpoint we need to create. */
12696
12697 static struct symtab_and_line
12698 ada_exception_sal (enum ada_exception_catchpoint_kind ex,
12699 std::string *addr_string, const struct breakpoint_ops **ops)
12700 {
12701 const char *sym_name;
12702 struct symbol *sym;
12703
12704 /* First, find out which exception support info to use. */
12705 ada_exception_support_info_sniffer ();
12706
12707 /* Then lookup the function on which we will break in order to catch
12708 the Ada exceptions requested by the user. */
12709 sym_name = ada_exception_sym_name (ex);
12710 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12711
12712 if (sym == NULL)
12713 error (_("Catchpoint symbol not found: %s"), sym_name);
12714
12715 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12716 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
12717
12718 /* Set ADDR_STRING. */
12719 *addr_string = sym_name;
12720
12721 /* Set OPS. */
12722 *ops = ada_exception_breakpoint_ops (ex);
12723
12724 return find_function_start_sal (sym, 1);
12725 }
12726
12727 /* Create an Ada exception catchpoint.
12728
12729 EX_KIND is the kind of exception catchpoint to be created.
12730
12731 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
12732 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12733 of the exception to which this catchpoint applies.
12734
12735 COND_STRING, if not empty, is the catchpoint condition.
12736
12737 TEMPFLAG, if nonzero, means that the underlying breakpoint
12738 should be temporary.
12739
12740 FROM_TTY is the usual argument passed to all commands implementations. */
12741
12742 void
12743 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
12744 enum ada_exception_catchpoint_kind ex_kind,
12745 const std::string &excep_string,
12746 const std::string &cond_string,
12747 int tempflag,
12748 int disabled,
12749 int from_tty)
12750 {
12751 std::string addr_string;
12752 const struct breakpoint_ops *ops = NULL;
12753 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
12754
12755 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint (ex_kind));
12756 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string.c_str (),
12757 ops, tempflag, disabled, from_tty);
12758 c->excep_string = excep_string;
12759 create_excep_cond_exprs (c.get (), ex_kind);
12760 if (!cond_string.empty ())
12761 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty, false);
12762 install_breakpoint (0, std::move (c), 1);
12763 }
12764
12765 /* Implement the "catch exception" command. */
12766
12767 static void
12768 catch_ada_exception_command (const char *arg_entry, int from_tty,
12769 struct cmd_list_element *command)
12770 {
12771 const char *arg = arg_entry;
12772 struct gdbarch *gdbarch = get_current_arch ();
12773 int tempflag;
12774 enum ada_exception_catchpoint_kind ex_kind;
12775 std::string excep_string;
12776 std::string cond_string;
12777
12778 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12779
12780 if (!arg)
12781 arg = "";
12782 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
12783 &cond_string);
12784 create_ada_exception_catchpoint (gdbarch, ex_kind,
12785 excep_string, cond_string,
12786 tempflag, 1 /* enabled */,
12787 from_tty);
12788 }
12789
12790 /* Implement the "catch handlers" command. */
12791
12792 static void
12793 catch_ada_handlers_command (const char *arg_entry, int from_tty,
12794 struct cmd_list_element *command)
12795 {
12796 const char *arg = arg_entry;
12797 struct gdbarch *gdbarch = get_current_arch ();
12798 int tempflag;
12799 enum ada_exception_catchpoint_kind ex_kind;
12800 std::string excep_string;
12801 std::string cond_string;
12802
12803 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12804
12805 if (!arg)
12806 arg = "";
12807 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
12808 &cond_string);
12809 create_ada_exception_catchpoint (gdbarch, ex_kind,
12810 excep_string, cond_string,
12811 tempflag, 1 /* enabled */,
12812 from_tty);
12813 }
12814
12815 /* Completion function for the Ada "catch" commands. */
12816
12817 static void
12818 catch_ada_completer (struct cmd_list_element *cmd, completion_tracker &tracker,
12819 const char *text, const char *word)
12820 {
12821 std::vector<ada_exc_info> exceptions = ada_exceptions_list (NULL);
12822
12823 for (const ada_exc_info &info : exceptions)
12824 {
12825 if (startswith (info.name, word))
12826 tracker.add_completion (make_unique_xstrdup (info.name));
12827 }
12828 }
12829
12830 /* Split the arguments specified in a "catch assert" command.
12831
12832 ARGS contains the command's arguments (or the empty string if
12833 no arguments were passed).
12834
12835 If ARGS contains a condition, set COND_STRING to that condition
12836 (the memory needs to be deallocated after use). */
12837
12838 static void
12839 catch_ada_assert_command_split (const char *args, std::string &cond_string)
12840 {
12841 args = skip_spaces (args);
12842
12843 /* Check whether a condition was provided. */
12844 if (startswith (args, "if")
12845 && (isspace (args[2]) || args[2] == '\0'))
12846 {
12847 args += 2;
12848 args = skip_spaces (args);
12849 if (args[0] == '\0')
12850 error (_("condition missing after `if' keyword"));
12851 cond_string.assign (args);
12852 }
12853
12854 /* Otherwise, there should be no other argument at the end of
12855 the command. */
12856 else if (args[0] != '\0')
12857 error (_("Junk at end of arguments."));
12858 }
12859
12860 /* Implement the "catch assert" command. */
12861
12862 static void
12863 catch_assert_command (const char *arg_entry, int from_tty,
12864 struct cmd_list_element *command)
12865 {
12866 const char *arg = arg_entry;
12867 struct gdbarch *gdbarch = get_current_arch ();
12868 int tempflag;
12869 std::string cond_string;
12870
12871 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12872
12873 if (!arg)
12874 arg = "";
12875 catch_ada_assert_command_split (arg, cond_string);
12876 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
12877 "", cond_string,
12878 tempflag, 1 /* enabled */,
12879 from_tty);
12880 }
12881
12882 /* Return non-zero if the symbol SYM is an Ada exception object. */
12883
12884 static int
12885 ada_is_exception_sym (struct symbol *sym)
12886 {
12887 const char *type_name = SYMBOL_TYPE (sym)->name ();
12888
12889 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
12890 && SYMBOL_CLASS (sym) != LOC_BLOCK
12891 && SYMBOL_CLASS (sym) != LOC_CONST
12892 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
12893 && type_name != NULL && strcmp (type_name, "exception") == 0);
12894 }
12895
12896 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
12897 Ada exception object. This matches all exceptions except the ones
12898 defined by the Ada language. */
12899
12900 static int
12901 ada_is_non_standard_exception_sym (struct symbol *sym)
12902 {
12903 int i;
12904
12905 if (!ada_is_exception_sym (sym))
12906 return 0;
12907
12908 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12909 if (strcmp (sym->linkage_name (), standard_exc[i]) == 0)
12910 return 0; /* A standard exception. */
12911
12912 /* Numeric_Error is also a standard exception, so exclude it.
12913 See the STANDARD_EXC description for more details as to why
12914 this exception is not listed in that array. */
12915 if (strcmp (sym->linkage_name (), "numeric_error") == 0)
12916 return 0;
12917
12918 return 1;
12919 }
12920
12921 /* A helper function for std::sort, comparing two struct ada_exc_info
12922 objects.
12923
12924 The comparison is determined first by exception name, and then
12925 by exception address. */
12926
12927 bool
12928 ada_exc_info::operator< (const ada_exc_info &other) const
12929 {
12930 int result;
12931
12932 result = strcmp (name, other.name);
12933 if (result < 0)
12934 return true;
12935 if (result == 0 && addr < other.addr)
12936 return true;
12937 return false;
12938 }
12939
12940 bool
12941 ada_exc_info::operator== (const ada_exc_info &other) const
12942 {
12943 return addr == other.addr && strcmp (name, other.name) == 0;
12944 }
12945
12946 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
12947 routine, but keeping the first SKIP elements untouched.
12948
12949 All duplicates are also removed. */
12950
12951 static void
12952 sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
12953 int skip)
12954 {
12955 std::sort (exceptions->begin () + skip, exceptions->end ());
12956 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
12957 exceptions->end ());
12958 }
12959
12960 /* Add all exceptions defined by the Ada standard whose name match
12961 a regular expression.
12962
12963 If PREG is not NULL, then this regexp_t object is used to
12964 perform the symbol name matching. Otherwise, no name-based
12965 filtering is performed.
12966
12967 EXCEPTIONS is a vector of exceptions to which matching exceptions
12968 gets pushed. */
12969
12970 static void
12971 ada_add_standard_exceptions (compiled_regex *preg,
12972 std::vector<ada_exc_info> *exceptions)
12973 {
12974 int i;
12975
12976 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12977 {
12978 if (preg == NULL
12979 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
12980 {
12981 struct bound_minimal_symbol msymbol
12982 = ada_lookup_simple_minsym (standard_exc[i]);
12983
12984 if (msymbol.minsym != NULL)
12985 {
12986 struct ada_exc_info info
12987 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
12988
12989 exceptions->push_back (info);
12990 }
12991 }
12992 }
12993 }
12994
12995 /* Add all Ada exceptions defined locally and accessible from the given
12996 FRAME.
12997
12998 If PREG is not NULL, then this regexp_t object is used to
12999 perform the symbol name matching. Otherwise, no name-based
13000 filtering is performed.
13001
13002 EXCEPTIONS is a vector of exceptions to which matching exceptions
13003 gets pushed. */
13004
13005 static void
13006 ada_add_exceptions_from_frame (compiled_regex *preg,
13007 struct frame_info *frame,
13008 std::vector<ada_exc_info> *exceptions)
13009 {
13010 const struct block *block = get_frame_block (frame, 0);
13011
13012 while (block != 0)
13013 {
13014 struct block_iterator iter;
13015 struct symbol *sym;
13016
13017 ALL_BLOCK_SYMBOLS (block, iter, sym)
13018 {
13019 switch (SYMBOL_CLASS (sym))
13020 {
13021 case LOC_TYPEDEF:
13022 case LOC_BLOCK:
13023 case LOC_CONST:
13024 break;
13025 default:
13026 if (ada_is_exception_sym (sym))
13027 {
13028 struct ada_exc_info info = {sym->print_name (),
13029 SYMBOL_VALUE_ADDRESS (sym)};
13030
13031 exceptions->push_back (info);
13032 }
13033 }
13034 }
13035 if (BLOCK_FUNCTION (block) != NULL)
13036 break;
13037 block = BLOCK_SUPERBLOCK (block);
13038 }
13039 }
13040
13041 /* Return true if NAME matches PREG or if PREG is NULL. */
13042
13043 static bool
13044 name_matches_regex (const char *name, compiled_regex *preg)
13045 {
13046 return (preg == NULL
13047 || preg->exec (ada_decode (name).c_str (), 0, NULL, 0) == 0);
13048 }
13049
13050 /* Add all exceptions defined globally whose name name match
13051 a regular expression, excluding standard exceptions.
13052
13053 The reason we exclude standard exceptions is that they need
13054 to be handled separately: Standard exceptions are defined inside
13055 a runtime unit which is normally not compiled with debugging info,
13056 and thus usually do not show up in our symbol search. However,
13057 if the unit was in fact built with debugging info, we need to
13058 exclude them because they would duplicate the entry we found
13059 during the special loop that specifically searches for those
13060 standard exceptions.
13061
13062 If PREG is not NULL, then this regexp_t object is used to
13063 perform the symbol name matching. Otherwise, no name-based
13064 filtering is performed.
13065
13066 EXCEPTIONS is a vector of exceptions to which matching exceptions
13067 gets pushed. */
13068
13069 static void
13070 ada_add_global_exceptions (compiled_regex *preg,
13071 std::vector<ada_exc_info> *exceptions)
13072 {
13073 /* In Ada, the symbol "search name" is a linkage name, whereas the
13074 regular expression used to do the matching refers to the natural
13075 name. So match against the decoded name. */
13076 expand_symtabs_matching (NULL,
13077 lookup_name_info::match_any (),
13078 [&] (const char *search_name)
13079 {
13080 std::string decoded = ada_decode (search_name);
13081 return name_matches_regex (decoded.c_str (), preg);
13082 },
13083 NULL,
13084 VARIABLES_DOMAIN);
13085
13086 for (objfile *objfile : current_program_space->objfiles ())
13087 {
13088 for (compunit_symtab *s : objfile->compunits ())
13089 {
13090 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13091 int i;
13092
13093 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13094 {
13095 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13096 struct block_iterator iter;
13097 struct symbol *sym;
13098
13099 ALL_BLOCK_SYMBOLS (b, iter, sym)
13100 if (ada_is_non_standard_exception_sym (sym)
13101 && name_matches_regex (sym->natural_name (), preg))
13102 {
13103 struct ada_exc_info info
13104 = {sym->print_name (), SYMBOL_VALUE_ADDRESS (sym)};
13105
13106 exceptions->push_back (info);
13107 }
13108 }
13109 }
13110 }
13111 }
13112
13113 /* Implements ada_exceptions_list with the regular expression passed
13114 as a regex_t, rather than a string.
13115
13116 If not NULL, PREG is used to filter out exceptions whose names
13117 do not match. Otherwise, all exceptions are listed. */
13118
13119 static std::vector<ada_exc_info>
13120 ada_exceptions_list_1 (compiled_regex *preg)
13121 {
13122 std::vector<ada_exc_info> result;
13123 int prev_len;
13124
13125 /* First, list the known standard exceptions. These exceptions
13126 need to be handled separately, as they are usually defined in
13127 runtime units that have been compiled without debugging info. */
13128
13129 ada_add_standard_exceptions (preg, &result);
13130
13131 /* Next, find all exceptions whose scope is local and accessible
13132 from the currently selected frame. */
13133
13134 if (has_stack_frames ())
13135 {
13136 prev_len = result.size ();
13137 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13138 &result);
13139 if (result.size () > prev_len)
13140 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13141 }
13142
13143 /* Add all exceptions whose scope is global. */
13144
13145 prev_len = result.size ();
13146 ada_add_global_exceptions (preg, &result);
13147 if (result.size () > prev_len)
13148 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13149
13150 return result;
13151 }
13152
13153 /* Return a vector of ada_exc_info.
13154
13155 If REGEXP is NULL, all exceptions are included in the result.
13156 Otherwise, it should contain a valid regular expression,
13157 and only the exceptions whose names match that regular expression
13158 are included in the result.
13159
13160 The exceptions are sorted in the following order:
13161 - Standard exceptions (defined by the Ada language), in
13162 alphabetical order;
13163 - Exceptions only visible from the current frame, in
13164 alphabetical order;
13165 - Exceptions whose scope is global, in alphabetical order. */
13166
13167 std::vector<ada_exc_info>
13168 ada_exceptions_list (const char *regexp)
13169 {
13170 if (regexp == NULL)
13171 return ada_exceptions_list_1 (NULL);
13172
13173 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13174 return ada_exceptions_list_1 (&reg);
13175 }
13176
13177 /* Implement the "info exceptions" command. */
13178
13179 static void
13180 info_exceptions_command (const char *regexp, int from_tty)
13181 {
13182 struct gdbarch *gdbarch = get_current_arch ();
13183
13184 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
13185
13186 if (regexp != NULL)
13187 printf_filtered
13188 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13189 else
13190 printf_filtered (_("All defined Ada exceptions:\n"));
13191
13192 for (const ada_exc_info &info : exceptions)
13193 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
13194 }
13195
13196 /* Operators */
13197 /* Information about operators given special treatment in functions
13198 below. */
13199 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13200
13201 #define ADA_OPERATORS \
13202 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13203 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13204 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13205 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13206 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13207 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13208 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13209 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13210 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13211 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13212 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13213 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13214 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13215 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13216 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13217 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13218 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13219 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13220 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13221
13222 static void
13223 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13224 int *argsp)
13225 {
13226 switch (exp->elts[pc - 1].opcode)
13227 {
13228 default:
13229 operator_length_standard (exp, pc, oplenp, argsp);
13230 break;
13231
13232 #define OP_DEFN(op, len, args, binop) \
13233 case op: *oplenp = len; *argsp = args; break;
13234 ADA_OPERATORS;
13235 #undef OP_DEFN
13236
13237 case OP_AGGREGATE:
13238 *oplenp = 3;
13239 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13240 break;
13241
13242 case OP_CHOICES:
13243 *oplenp = 3;
13244 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13245 break;
13246 }
13247 }
13248
13249 /* Implementation of the exp_descriptor method operator_check. */
13250
13251 static int
13252 ada_operator_check (struct expression *exp, int pos,
13253 int (*objfile_func) (struct objfile *objfile, void *data),
13254 void *data)
13255 {
13256 const union exp_element *const elts = exp->elts;
13257 struct type *type = NULL;
13258
13259 switch (elts[pos].opcode)
13260 {
13261 case UNOP_IN_RANGE:
13262 case UNOP_QUAL:
13263 type = elts[pos + 1].type;
13264 break;
13265
13266 default:
13267 return operator_check_standard (exp, pos, objfile_func, data);
13268 }
13269
13270 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13271
13272 if (type != nullptr && type->objfile () != nullptr
13273 && objfile_func (type->objfile (), data))
13274 return 1;
13275
13276 return 0;
13277 }
13278
13279 /* As for operator_length, but assumes PC is pointing at the first
13280 element of the operator, and gives meaningful results only for the
13281 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13282
13283 static void
13284 ada_forward_operator_length (struct expression *exp, int pc,
13285 int *oplenp, int *argsp)
13286 {
13287 switch (exp->elts[pc].opcode)
13288 {
13289 default:
13290 *oplenp = *argsp = 0;
13291 break;
13292
13293 #define OP_DEFN(op, len, args, binop) \
13294 case op: *oplenp = len; *argsp = args; break;
13295 ADA_OPERATORS;
13296 #undef OP_DEFN
13297
13298 case OP_AGGREGATE:
13299 *oplenp = 3;
13300 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13301 break;
13302
13303 case OP_CHOICES:
13304 *oplenp = 3;
13305 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13306 break;
13307
13308 case OP_STRING:
13309 case OP_NAME:
13310 {
13311 int len = longest_to_int (exp->elts[pc + 1].longconst);
13312
13313 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13314 *argsp = 0;
13315 break;
13316 }
13317 }
13318 }
13319
13320 static int
13321 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13322 {
13323 enum exp_opcode op = exp->elts[elt].opcode;
13324 int oplen, nargs;
13325 int pc = elt;
13326 int i;
13327
13328 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13329
13330 switch (op)
13331 {
13332 /* Ada attributes ('Foo). */
13333 case OP_ATR_FIRST:
13334 case OP_ATR_LAST:
13335 case OP_ATR_LENGTH:
13336 case OP_ATR_IMAGE:
13337 case OP_ATR_MAX:
13338 case OP_ATR_MIN:
13339 case OP_ATR_MODULUS:
13340 case OP_ATR_POS:
13341 case OP_ATR_SIZE:
13342 case OP_ATR_TAG:
13343 case OP_ATR_VAL:
13344 break;
13345
13346 case UNOP_IN_RANGE:
13347 case UNOP_QUAL:
13348 /* XXX: gdb_sprint_host_address, type_sprint */
13349 fprintf_filtered (stream, _("Type @"));
13350 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13351 fprintf_filtered (stream, " (");
13352 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13353 fprintf_filtered (stream, ")");
13354 break;
13355 case BINOP_IN_BOUNDS:
13356 fprintf_filtered (stream, " (%d)",
13357 longest_to_int (exp->elts[pc + 2].longconst));
13358 break;
13359 case TERNOP_IN_RANGE:
13360 break;
13361
13362 case OP_AGGREGATE:
13363 case OP_OTHERS:
13364 case OP_DISCRETE_RANGE:
13365 case OP_POSITIONAL:
13366 case OP_CHOICES:
13367 break;
13368
13369 case OP_NAME:
13370 case OP_STRING:
13371 {
13372 char *name = &exp->elts[elt + 2].string;
13373 int len = longest_to_int (exp->elts[elt + 1].longconst);
13374
13375 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13376 break;
13377 }
13378
13379 default:
13380 return dump_subexp_body_standard (exp, stream, elt);
13381 }
13382
13383 elt += oplen;
13384 for (i = 0; i < nargs; i += 1)
13385 elt = dump_subexp (exp, stream, elt);
13386
13387 return elt;
13388 }
13389
13390 /* The Ada extension of print_subexp (q.v.). */
13391
13392 static void
13393 ada_print_subexp (struct expression *exp, int *pos,
13394 struct ui_file *stream, enum precedence prec)
13395 {
13396 int oplen, nargs, i;
13397 int pc = *pos;
13398 enum exp_opcode op = exp->elts[pc].opcode;
13399
13400 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13401
13402 *pos += oplen;
13403 switch (op)
13404 {
13405 default:
13406 *pos -= oplen;
13407 print_subexp_standard (exp, pos, stream, prec);
13408 return;
13409
13410 case OP_VAR_VALUE:
13411 fputs_filtered (exp->elts[pc + 2].symbol->natural_name (), stream);
13412 return;
13413
13414 case BINOP_IN_BOUNDS:
13415 /* XXX: sprint_subexp */
13416 print_subexp (exp, pos, stream, PREC_SUFFIX);
13417 fputs_filtered (" in ", stream);
13418 print_subexp (exp, pos, stream, PREC_SUFFIX);
13419 fputs_filtered ("'range", stream);
13420 if (exp->elts[pc + 1].longconst > 1)
13421 fprintf_filtered (stream, "(%ld)",
13422 (long) exp->elts[pc + 1].longconst);
13423 return;
13424
13425 case TERNOP_IN_RANGE:
13426 if (prec >= PREC_EQUAL)
13427 fputs_filtered ("(", stream);
13428 /* XXX: sprint_subexp */
13429 print_subexp (exp, pos, stream, PREC_SUFFIX);
13430 fputs_filtered (" in ", stream);
13431 print_subexp (exp, pos, stream, PREC_EQUAL);
13432 fputs_filtered (" .. ", stream);
13433 print_subexp (exp, pos, stream, PREC_EQUAL);
13434 if (prec >= PREC_EQUAL)
13435 fputs_filtered (")", stream);
13436 return;
13437
13438 case OP_ATR_FIRST:
13439 case OP_ATR_LAST:
13440 case OP_ATR_LENGTH:
13441 case OP_ATR_IMAGE:
13442 case OP_ATR_MAX:
13443 case OP_ATR_MIN:
13444 case OP_ATR_MODULUS:
13445 case OP_ATR_POS:
13446 case OP_ATR_SIZE:
13447 case OP_ATR_TAG:
13448 case OP_ATR_VAL:
13449 if (exp->elts[*pos].opcode == OP_TYPE)
13450 {
13451 if (exp->elts[*pos + 1].type->code () != TYPE_CODE_VOID)
13452 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13453 &type_print_raw_options);
13454 *pos += 3;
13455 }
13456 else
13457 print_subexp (exp, pos, stream, PREC_SUFFIX);
13458 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13459 if (nargs > 1)
13460 {
13461 int tem;
13462
13463 for (tem = 1; tem < nargs; tem += 1)
13464 {
13465 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13466 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13467 }
13468 fputs_filtered (")", stream);
13469 }
13470 return;
13471
13472 case UNOP_QUAL:
13473 type_print (exp->elts[pc + 1].type, "", stream, 0);
13474 fputs_filtered ("'(", stream);
13475 print_subexp (exp, pos, stream, PREC_PREFIX);
13476 fputs_filtered (")", stream);
13477 return;
13478
13479 case UNOP_IN_RANGE:
13480 /* XXX: sprint_subexp */
13481 print_subexp (exp, pos, stream, PREC_SUFFIX);
13482 fputs_filtered (" in ", stream);
13483 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13484 &type_print_raw_options);
13485 return;
13486
13487 case OP_DISCRETE_RANGE:
13488 print_subexp (exp, pos, stream, PREC_SUFFIX);
13489 fputs_filtered ("..", stream);
13490 print_subexp (exp, pos, stream, PREC_SUFFIX);
13491 return;
13492
13493 case OP_OTHERS:
13494 fputs_filtered ("others => ", stream);
13495 print_subexp (exp, pos, stream, PREC_SUFFIX);
13496 return;
13497
13498 case OP_CHOICES:
13499 for (i = 0; i < nargs-1; i += 1)
13500 {
13501 if (i > 0)
13502 fputs_filtered ("|", stream);
13503 print_subexp (exp, pos, stream, PREC_SUFFIX);
13504 }
13505 fputs_filtered (" => ", stream);
13506 print_subexp (exp, pos, stream, PREC_SUFFIX);
13507 return;
13508
13509 case OP_POSITIONAL:
13510 print_subexp (exp, pos, stream, PREC_SUFFIX);
13511 return;
13512
13513 case OP_AGGREGATE:
13514 fputs_filtered ("(", stream);
13515 for (i = 0; i < nargs; i += 1)
13516 {
13517 if (i > 0)
13518 fputs_filtered (", ", stream);
13519 print_subexp (exp, pos, stream, PREC_SUFFIX);
13520 }
13521 fputs_filtered (")", stream);
13522 return;
13523 }
13524 }
13525
13526 /* Table mapping opcodes into strings for printing operators
13527 and precedences of the operators. */
13528
13529 static const struct op_print ada_op_print_tab[] = {
13530 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13531 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13532 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13533 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13534 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13535 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13536 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13537 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13538 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13539 {">=", BINOP_GEQ, PREC_ORDER, 0},
13540 {">", BINOP_GTR, PREC_ORDER, 0},
13541 {"<", BINOP_LESS, PREC_ORDER, 0},
13542 {">>", BINOP_RSH, PREC_SHIFT, 0},
13543 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13544 {"+", BINOP_ADD, PREC_ADD, 0},
13545 {"-", BINOP_SUB, PREC_ADD, 0},
13546 {"&", BINOP_CONCAT, PREC_ADD, 0},
13547 {"*", BINOP_MUL, PREC_MUL, 0},
13548 {"/", BINOP_DIV, PREC_MUL, 0},
13549 {"rem", BINOP_REM, PREC_MUL, 0},
13550 {"mod", BINOP_MOD, PREC_MUL, 0},
13551 {"**", BINOP_EXP, PREC_REPEAT, 0},
13552 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13553 {"-", UNOP_NEG, PREC_PREFIX, 0},
13554 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13555 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13556 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13557 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
13558 {".all", UNOP_IND, PREC_SUFFIX, 1},
13559 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13560 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
13561 {NULL, OP_NULL, PREC_SUFFIX, 0}
13562 };
13563 \f
13564 /* Language vector */
13565
13566 static const struct exp_descriptor ada_exp_descriptor = {
13567 ada_print_subexp,
13568 ada_operator_length,
13569 ada_operator_check,
13570 ada_dump_subexp_body,
13571 ada_evaluate_subexp
13572 };
13573
13574 /* symbol_name_matcher_ftype adapter for wild_match. */
13575
13576 static bool
13577 do_wild_match (const char *symbol_search_name,
13578 const lookup_name_info &lookup_name,
13579 completion_match_result *comp_match_res)
13580 {
13581 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
13582 }
13583
13584 /* symbol_name_matcher_ftype adapter for full_match. */
13585
13586 static bool
13587 do_full_match (const char *symbol_search_name,
13588 const lookup_name_info &lookup_name,
13589 completion_match_result *comp_match_res)
13590 {
13591 const char *lname = lookup_name.ada ().lookup_name ().c_str ();
13592
13593 /* If both symbols start with "_ada_", just let the loop below
13594 handle the comparison. However, if only the symbol name starts
13595 with "_ada_", skip the prefix and let the match proceed as
13596 usual. */
13597 if (startswith (symbol_search_name, "_ada_")
13598 && !startswith (lname, "_ada"))
13599 symbol_search_name += 5;
13600
13601 int uscore_count = 0;
13602 while (*lname != '\0')
13603 {
13604 if (*symbol_search_name != *lname)
13605 {
13606 if (*symbol_search_name == 'B' && uscore_count == 2
13607 && symbol_search_name[1] == '_')
13608 {
13609 symbol_search_name += 2;
13610 while (isdigit (*symbol_search_name))
13611 ++symbol_search_name;
13612 if (symbol_search_name[0] == '_'
13613 && symbol_search_name[1] == '_')
13614 {
13615 symbol_search_name += 2;
13616 continue;
13617 }
13618 }
13619 return false;
13620 }
13621
13622 if (*symbol_search_name == '_')
13623 ++uscore_count;
13624 else
13625 uscore_count = 0;
13626
13627 ++symbol_search_name;
13628 ++lname;
13629 }
13630
13631 return is_name_suffix (symbol_search_name);
13632 }
13633
13634 /* symbol_name_matcher_ftype for exact (verbatim) matches. */
13635
13636 static bool
13637 do_exact_match (const char *symbol_search_name,
13638 const lookup_name_info &lookup_name,
13639 completion_match_result *comp_match_res)
13640 {
13641 return strcmp (symbol_search_name, ada_lookup_name (lookup_name)) == 0;
13642 }
13643
13644 /* Build the Ada lookup name for LOOKUP_NAME. */
13645
13646 ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
13647 {
13648 gdb::string_view user_name = lookup_name.name ();
13649
13650 if (user_name[0] == '<')
13651 {
13652 if (user_name.back () == '>')
13653 m_encoded_name
13654 = gdb::to_string (user_name.substr (1, user_name.size () - 2));
13655 else
13656 m_encoded_name
13657 = gdb::to_string (user_name.substr (1, user_name.size () - 1));
13658 m_encoded_p = true;
13659 m_verbatim_p = true;
13660 m_wild_match_p = false;
13661 m_standard_p = false;
13662 }
13663 else
13664 {
13665 m_verbatim_p = false;
13666
13667 m_encoded_p = user_name.find ("__") != gdb::string_view::npos;
13668
13669 if (!m_encoded_p)
13670 {
13671 const char *folded = ada_fold_name (user_name);
13672 m_encoded_name = ada_encode_1 (folded, false);
13673 if (m_encoded_name.empty ())
13674 m_encoded_name = gdb::to_string (user_name);
13675 }
13676 else
13677 m_encoded_name = gdb::to_string (user_name);
13678
13679 /* Handle the 'package Standard' special case. See description
13680 of m_standard_p. */
13681 if (startswith (m_encoded_name.c_str (), "standard__"))
13682 {
13683 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
13684 m_standard_p = true;
13685 }
13686 else
13687 m_standard_p = false;
13688
13689 /* If the name contains a ".", then the user is entering a fully
13690 qualified entity name, and the match must not be done in wild
13691 mode. Similarly, if the user wants to complete what looks
13692 like an encoded name, the match must not be done in wild
13693 mode. Also, in the standard__ special case always do
13694 non-wild matching. */
13695 m_wild_match_p
13696 = (lookup_name.match_type () != symbol_name_match_type::FULL
13697 && !m_encoded_p
13698 && !m_standard_p
13699 && user_name.find ('.') == std::string::npos);
13700 }
13701 }
13702
13703 /* symbol_name_matcher_ftype method for Ada. This only handles
13704 completion mode. */
13705
13706 static bool
13707 ada_symbol_name_matches (const char *symbol_search_name,
13708 const lookup_name_info &lookup_name,
13709 completion_match_result *comp_match_res)
13710 {
13711 return lookup_name.ada ().matches (symbol_search_name,
13712 lookup_name.match_type (),
13713 comp_match_res);
13714 }
13715
13716 /* A name matcher that matches the symbol name exactly, with
13717 strcmp. */
13718
13719 static bool
13720 literal_symbol_name_matcher (const char *symbol_search_name,
13721 const lookup_name_info &lookup_name,
13722 completion_match_result *comp_match_res)
13723 {
13724 gdb::string_view name_view = lookup_name.name ();
13725
13726 if (lookup_name.completion_mode ()
13727 ? (strncmp (symbol_search_name, name_view.data (),
13728 name_view.size ()) == 0)
13729 : symbol_search_name == name_view)
13730 {
13731 if (comp_match_res != NULL)
13732 comp_match_res->set_match (symbol_search_name);
13733 return true;
13734 }
13735 else
13736 return false;
13737 }
13738
13739 /* Implement the "get_symbol_name_matcher" language_defn method for
13740 Ada. */
13741
13742 static symbol_name_matcher_ftype *
13743 ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
13744 {
13745 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
13746 return literal_symbol_name_matcher;
13747
13748 if (lookup_name.completion_mode ())
13749 return ada_symbol_name_matches;
13750 else
13751 {
13752 if (lookup_name.ada ().wild_match_p ())
13753 return do_wild_match;
13754 else if (lookup_name.ada ().verbatim_p ())
13755 return do_exact_match;
13756 else
13757 return do_full_match;
13758 }
13759 }
13760
13761 /* Class representing the Ada language. */
13762
13763 class ada_language : public language_defn
13764 {
13765 public:
13766 ada_language ()
13767 : language_defn (language_ada)
13768 { /* Nothing. */ }
13769
13770 /* See language.h. */
13771
13772 const char *name () const override
13773 { return "ada"; }
13774
13775 /* See language.h. */
13776
13777 const char *natural_name () const override
13778 { return "Ada"; }
13779
13780 /* See language.h. */
13781
13782 const std::vector<const char *> &filename_extensions () const override
13783 {
13784 static const std::vector<const char *> extensions
13785 = { ".adb", ".ads", ".a", ".ada", ".dg" };
13786 return extensions;
13787 }
13788
13789 /* Print an array element index using the Ada syntax. */
13790
13791 void print_array_index (struct type *index_type,
13792 LONGEST index,
13793 struct ui_file *stream,
13794 const value_print_options *options) const override
13795 {
13796 struct value *index_value = val_atr (index_type, index);
13797
13798 value_print (index_value, stream, options);
13799 fprintf_filtered (stream, " => ");
13800 }
13801
13802 /* Implement the "read_var_value" language_defn method for Ada. */
13803
13804 struct value *read_var_value (struct symbol *var,
13805 const struct block *var_block,
13806 struct frame_info *frame) const override
13807 {
13808 /* The only case where default_read_var_value is not sufficient
13809 is when VAR is a renaming... */
13810 if (frame != nullptr)
13811 {
13812 const struct block *frame_block = get_frame_block (frame, NULL);
13813 if (frame_block != nullptr && ada_is_renaming_symbol (var))
13814 return ada_read_renaming_var_value (var, frame_block);
13815 }
13816
13817 /* This is a typical case where we expect the default_read_var_value
13818 function to work. */
13819 return language_defn::read_var_value (var, var_block, frame);
13820 }
13821
13822 /* See language.h. */
13823 void language_arch_info (struct gdbarch *gdbarch,
13824 struct language_arch_info *lai) const override
13825 {
13826 const struct builtin_type *builtin = builtin_type (gdbarch);
13827
13828 /* Helper function to allow shorter lines below. */
13829 auto add = [&] (struct type *t)
13830 {
13831 lai->add_primitive_type (t);
13832 };
13833
13834 add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13835 0, "integer"));
13836 add (arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13837 0, "long_integer"));
13838 add (arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13839 0, "short_integer"));
13840 struct type *char_type = arch_character_type (gdbarch, TARGET_CHAR_BIT,
13841 0, "character");
13842 lai->set_string_char_type (char_type);
13843 add (char_type);
13844 add (arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13845 "float", gdbarch_float_format (gdbarch)));
13846 add (arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13847 "long_float", gdbarch_double_format (gdbarch)));
13848 add (arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13849 0, "long_long_integer"));
13850 add (arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
13851 "long_long_float",
13852 gdbarch_long_double_format (gdbarch)));
13853 add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13854 0, "natural"));
13855 add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13856 0, "positive"));
13857 add (builtin->builtin_void);
13858
13859 struct type *system_addr_ptr
13860 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
13861 "void"));
13862 system_addr_ptr->set_name ("system__address");
13863 add (system_addr_ptr);
13864
13865 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
13866 type. This is a signed integral type whose size is the same as
13867 the size of addresses. */
13868 unsigned int addr_length = TYPE_LENGTH (system_addr_ptr);
13869 add (arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
13870 "storage_offset"));
13871
13872 lai->set_bool_type (builtin->builtin_bool);
13873 }
13874
13875 /* See language.h. */
13876
13877 bool iterate_over_symbols
13878 (const struct block *block, const lookup_name_info &name,
13879 domain_enum domain,
13880 gdb::function_view<symbol_found_callback_ftype> callback) const override
13881 {
13882 std::vector<struct block_symbol> results;
13883
13884 ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
13885 for (block_symbol &sym : results)
13886 {
13887 if (!callback (&sym))
13888 return false;
13889 }
13890
13891 return true;
13892 }
13893
13894 /* See language.h. */
13895 bool sniff_from_mangled_name (const char *mangled,
13896 char **out) const override
13897 {
13898 std::string demangled = ada_decode (mangled);
13899
13900 *out = NULL;
13901
13902 if (demangled != mangled && demangled[0] != '<')
13903 {
13904 /* Set the gsymbol language to Ada, but still return 0.
13905 Two reasons for that:
13906
13907 1. For Ada, we prefer computing the symbol's decoded name
13908 on the fly rather than pre-compute it, in order to save
13909 memory (Ada projects are typically very large).
13910
13911 2. There are some areas in the definition of the GNAT
13912 encoding where, with a bit of bad luck, we might be able
13913 to decode a non-Ada symbol, generating an incorrect
13914 demangled name (Eg: names ending with "TB" for instance
13915 are identified as task bodies and so stripped from
13916 the decoded name returned).
13917
13918 Returning true, here, but not setting *DEMANGLED, helps us get
13919 a little bit of the best of both worlds. Because we're last,
13920 we should not affect any of the other languages that were
13921 able to demangle the symbol before us; we get to correctly
13922 tag Ada symbols as such; and even if we incorrectly tagged a
13923 non-Ada symbol, which should be rare, any routing through the
13924 Ada language should be transparent (Ada tries to behave much
13925 like C/C++ with non-Ada symbols). */
13926 return true;
13927 }
13928
13929 return false;
13930 }
13931
13932 /* See language.h. */
13933
13934 char *demangle_symbol (const char *mangled, int options) const override
13935 {
13936 return ada_la_decode (mangled, options);
13937 }
13938
13939 /* See language.h. */
13940
13941 void print_type (struct type *type, const char *varstring,
13942 struct ui_file *stream, int show, int level,
13943 const struct type_print_options *flags) const override
13944 {
13945 ada_print_type (type, varstring, stream, show, level, flags);
13946 }
13947
13948 /* See language.h. */
13949
13950 const char *word_break_characters (void) const override
13951 {
13952 return ada_completer_word_break_characters;
13953 }
13954
13955 /* See language.h. */
13956
13957 void collect_symbol_completion_matches (completion_tracker &tracker,
13958 complete_symbol_mode mode,
13959 symbol_name_match_type name_match_type,
13960 const char *text, const char *word,
13961 enum type_code code) const override
13962 {
13963 struct symbol *sym;
13964 const struct block *b, *surrounding_static_block = 0;
13965 struct block_iterator iter;
13966
13967 gdb_assert (code == TYPE_CODE_UNDEF);
13968
13969 lookup_name_info lookup_name (text, name_match_type, true);
13970
13971 /* First, look at the partial symtab symbols. */
13972 expand_symtabs_matching (NULL,
13973 lookup_name,
13974 NULL,
13975 NULL,
13976 ALL_DOMAIN);
13977
13978 /* At this point scan through the misc symbol vectors and add each
13979 symbol you find to the list. Eventually we want to ignore
13980 anything that isn't a text symbol (everything else will be
13981 handled by the psymtab code above). */
13982
13983 for (objfile *objfile : current_program_space->objfiles ())
13984 {
13985 for (minimal_symbol *msymbol : objfile->msymbols ())
13986 {
13987 QUIT;
13988
13989 if (completion_skip_symbol (mode, msymbol))
13990 continue;
13991
13992 language symbol_language = msymbol->language ();
13993
13994 /* Ada minimal symbols won't have their language set to Ada. If
13995 we let completion_list_add_name compare using the
13996 default/C-like matcher, then when completing e.g., symbols in a
13997 package named "pck", we'd match internal Ada symbols like
13998 "pckS", which are invalid in an Ada expression, unless you wrap
13999 them in '<' '>' to request a verbatim match.
14000
14001 Unfortunately, some Ada encoded names successfully demangle as
14002 C++ symbols (using an old mangling scheme), such as "name__2Xn"
14003 -> "Xn::name(void)" and thus some Ada minimal symbols end up
14004 with the wrong language set. Paper over that issue here. */
14005 if (symbol_language == language_auto
14006 || symbol_language == language_cplus)
14007 symbol_language = language_ada;
14008
14009 completion_list_add_name (tracker,
14010 symbol_language,
14011 msymbol->linkage_name (),
14012 lookup_name, text, word);
14013 }
14014 }
14015
14016 /* Search upwards from currently selected frame (so that we can
14017 complete on local vars. */
14018
14019 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
14020 {
14021 if (!BLOCK_SUPERBLOCK (b))
14022 surrounding_static_block = b; /* For elmin of dups */
14023
14024 ALL_BLOCK_SYMBOLS (b, iter, sym)
14025 {
14026 if (completion_skip_symbol (mode, sym))
14027 continue;
14028
14029 completion_list_add_name (tracker,
14030 sym->language (),
14031 sym->linkage_name (),
14032 lookup_name, text, word);
14033 }
14034 }
14035
14036 /* Go through the symtabs and check the externs and statics for
14037 symbols which match. */
14038
14039 for (objfile *objfile : current_program_space->objfiles ())
14040 {
14041 for (compunit_symtab *s : objfile->compunits ())
14042 {
14043 QUIT;
14044 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
14045 ALL_BLOCK_SYMBOLS (b, iter, sym)
14046 {
14047 if (completion_skip_symbol (mode, sym))
14048 continue;
14049
14050 completion_list_add_name (tracker,
14051 sym->language (),
14052 sym->linkage_name (),
14053 lookup_name, text, word);
14054 }
14055 }
14056 }
14057
14058 for (objfile *objfile : current_program_space->objfiles ())
14059 {
14060 for (compunit_symtab *s : objfile->compunits ())
14061 {
14062 QUIT;
14063 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
14064 /* Don't do this block twice. */
14065 if (b == surrounding_static_block)
14066 continue;
14067 ALL_BLOCK_SYMBOLS (b, iter, sym)
14068 {
14069 if (completion_skip_symbol (mode, sym))
14070 continue;
14071
14072 completion_list_add_name (tracker,
14073 sym->language (),
14074 sym->linkage_name (),
14075 lookup_name, text, word);
14076 }
14077 }
14078 }
14079 }
14080
14081 /* See language.h. */
14082
14083 gdb::unique_xmalloc_ptr<char> watch_location_expression
14084 (struct type *type, CORE_ADDR addr) const override
14085 {
14086 type = check_typedef (TYPE_TARGET_TYPE (check_typedef (type)));
14087 std::string name = type_to_string (type);
14088 return gdb::unique_xmalloc_ptr<char>
14089 (xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr)));
14090 }
14091
14092 /* See language.h. */
14093
14094 void value_print (struct value *val, struct ui_file *stream,
14095 const struct value_print_options *options) const override
14096 {
14097 return ada_value_print (val, stream, options);
14098 }
14099
14100 /* See language.h. */
14101
14102 void value_print_inner
14103 (struct value *val, struct ui_file *stream, int recurse,
14104 const struct value_print_options *options) const override
14105 {
14106 return ada_value_print_inner (val, stream, recurse, options);
14107 }
14108
14109 /* See language.h. */
14110
14111 struct block_symbol lookup_symbol_nonlocal
14112 (const char *name, const struct block *block,
14113 const domain_enum domain) const override
14114 {
14115 struct block_symbol sym;
14116
14117 sym = ada_lookup_symbol (name, block_static_block (block), domain);
14118 if (sym.symbol != NULL)
14119 return sym;
14120
14121 /* If we haven't found a match at this point, try the primitive
14122 types. In other languages, this search is performed before
14123 searching for global symbols in order to short-circuit that
14124 global-symbol search if it happens that the name corresponds
14125 to a primitive type. But we cannot do the same in Ada, because
14126 it is perfectly legitimate for a program to declare a type which
14127 has the same name as a standard type. If looking up a type in
14128 that situation, we have traditionally ignored the primitive type
14129 in favor of user-defined types. This is why, unlike most other
14130 languages, we search the primitive types this late and only after
14131 having searched the global symbols without success. */
14132
14133 if (domain == VAR_DOMAIN)
14134 {
14135 struct gdbarch *gdbarch;
14136
14137 if (block == NULL)
14138 gdbarch = target_gdbarch ();
14139 else
14140 gdbarch = block_gdbarch (block);
14141 sym.symbol
14142 = language_lookup_primitive_type_as_symbol (this, gdbarch, name);
14143 if (sym.symbol != NULL)
14144 return sym;
14145 }
14146
14147 return {};
14148 }
14149
14150 /* See language.h. */
14151
14152 int parser (struct parser_state *ps) const override
14153 {
14154 warnings_issued = 0;
14155 return ada_parse (ps);
14156 }
14157
14158 /* See language.h.
14159
14160 Same as evaluate_type (*EXP), but resolves ambiguous symbol references
14161 (marked by OP_VAR_VALUE nodes in which the symbol has an undefined
14162 namespace) and converts operators that are user-defined into
14163 appropriate function calls. If CONTEXT_TYPE is non-null, it provides
14164 a preferred result type [at the moment, only type void has any
14165 effect---causing procedures to be preferred over functions in calls].
14166 A null CONTEXT_TYPE indicates that a non-void return type is
14167 preferred. May change (expand) *EXP. */
14168
14169 void post_parser (expression_up *expp, struct parser_state *ps)
14170 const override
14171 {
14172 struct type *context_type = NULL;
14173 int pc = 0;
14174
14175 if (ps->void_context_p)
14176 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
14177
14178 resolve_subexp (expp, &pc, 1, context_type, ps->parse_completion,
14179 ps->block_tracker);
14180 }
14181
14182 /* See language.h. */
14183
14184 void emitchar (int ch, struct type *chtype,
14185 struct ui_file *stream, int quoter) const override
14186 {
14187 ada_emit_char (ch, chtype, stream, quoter, 1);
14188 }
14189
14190 /* See language.h. */
14191
14192 void printchar (int ch, struct type *chtype,
14193 struct ui_file *stream) const override
14194 {
14195 ada_printchar (ch, chtype, stream);
14196 }
14197
14198 /* See language.h. */
14199
14200 void printstr (struct ui_file *stream, struct type *elttype,
14201 const gdb_byte *string, unsigned int length,
14202 const char *encoding, int force_ellipses,
14203 const struct value_print_options *options) const override
14204 {
14205 ada_printstr (stream, elttype, string, length, encoding,
14206 force_ellipses, options);
14207 }
14208
14209 /* See language.h. */
14210
14211 void print_typedef (struct type *type, struct symbol *new_symbol,
14212 struct ui_file *stream) const override
14213 {
14214 ada_print_typedef (type, new_symbol, stream);
14215 }
14216
14217 /* See language.h. */
14218
14219 bool is_string_type_p (struct type *type) const override
14220 {
14221 return ada_is_string_type (type);
14222 }
14223
14224 /* See language.h. */
14225
14226 const char *struct_too_deep_ellipsis () const override
14227 { return "(...)"; }
14228
14229 /* See language.h. */
14230
14231 bool c_style_arrays_p () const override
14232 { return false; }
14233
14234 /* See language.h. */
14235
14236 bool store_sym_names_in_linkage_form_p () const override
14237 { return true; }
14238
14239 /* See language.h. */
14240
14241 const struct lang_varobj_ops *varobj_ops () const override
14242 { return &ada_varobj_ops; }
14243
14244 /* See language.h. */
14245
14246 const struct exp_descriptor *expression_ops () const override
14247 { return &ada_exp_descriptor; }
14248
14249 /* See language.h. */
14250
14251 const struct op_print *opcode_print_table () const override
14252 { return ada_op_print_tab; }
14253
14254 protected:
14255 /* See language.h. */
14256
14257 symbol_name_matcher_ftype *get_symbol_name_matcher_inner
14258 (const lookup_name_info &lookup_name) const override
14259 {
14260 return ada_get_symbol_name_matcher (lookup_name);
14261 }
14262 };
14263
14264 /* Single instance of the Ada language class. */
14265
14266 static ada_language ada_language_defn;
14267
14268 /* Command-list for the "set/show ada" prefix command. */
14269 static struct cmd_list_element *set_ada_list;
14270 static struct cmd_list_element *show_ada_list;
14271
14272 static void
14273 initialize_ada_catchpoint_ops (void)
14274 {
14275 struct breakpoint_ops *ops;
14276
14277 initialize_breakpoint_ops ();
14278
14279 ops = &catch_exception_breakpoint_ops;
14280 *ops = bkpt_breakpoint_ops;
14281 ops->allocate_location = allocate_location_exception;
14282 ops->re_set = re_set_exception;
14283 ops->check_status = check_status_exception;
14284 ops->print_it = print_it_exception;
14285 ops->print_one = print_one_exception;
14286 ops->print_mention = print_mention_exception;
14287 ops->print_recreate = print_recreate_exception;
14288
14289 ops = &catch_exception_unhandled_breakpoint_ops;
14290 *ops = bkpt_breakpoint_ops;
14291 ops->allocate_location = allocate_location_exception;
14292 ops->re_set = re_set_exception;
14293 ops->check_status = check_status_exception;
14294 ops->print_it = print_it_exception;
14295 ops->print_one = print_one_exception;
14296 ops->print_mention = print_mention_exception;
14297 ops->print_recreate = print_recreate_exception;
14298
14299 ops = &catch_assert_breakpoint_ops;
14300 *ops = bkpt_breakpoint_ops;
14301 ops->allocate_location = allocate_location_exception;
14302 ops->re_set = re_set_exception;
14303 ops->check_status = check_status_exception;
14304 ops->print_it = print_it_exception;
14305 ops->print_one = print_one_exception;
14306 ops->print_mention = print_mention_exception;
14307 ops->print_recreate = print_recreate_exception;
14308
14309 ops = &catch_handlers_breakpoint_ops;
14310 *ops = bkpt_breakpoint_ops;
14311 ops->allocate_location = allocate_location_exception;
14312 ops->re_set = re_set_exception;
14313 ops->check_status = check_status_exception;
14314 ops->print_it = print_it_exception;
14315 ops->print_one = print_one_exception;
14316 ops->print_mention = print_mention_exception;
14317 ops->print_recreate = print_recreate_exception;
14318 }
14319
14320 /* This module's 'new_objfile' observer. */
14321
14322 static void
14323 ada_new_objfile_observer (struct objfile *objfile)
14324 {
14325 ada_clear_symbol_cache ();
14326 }
14327
14328 /* This module's 'free_objfile' observer. */
14329
14330 static void
14331 ada_free_objfile_observer (struct objfile *objfile)
14332 {
14333 ada_clear_symbol_cache ();
14334 }
14335
14336 void _initialize_ada_language ();
14337 void
14338 _initialize_ada_language ()
14339 {
14340 initialize_ada_catchpoint_ops ();
14341
14342 add_basic_prefix_cmd ("ada", no_class,
14343 _("Prefix command for changing Ada-specific settings."),
14344 &set_ada_list, "set ada ", 0, &setlist);
14345
14346 add_show_prefix_cmd ("ada", no_class,
14347 _("Generic command for showing Ada-specific settings."),
14348 &show_ada_list, "show ada ", 0, &showlist);
14349
14350 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14351 &trust_pad_over_xvs, _("\
14352 Enable or disable an optimization trusting PAD types over XVS types."), _("\
14353 Show whether an optimization trusting PAD types over XVS types is activated."),
14354 _("\
14355 This is related to the encoding used by the GNAT compiler. The debugger\n\
14356 should normally trust the contents of PAD types, but certain older versions\n\
14357 of GNAT have a bug that sometimes causes the information in the PAD type\n\
14358 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14359 work around this bug. It is always safe to turn this option \"off\", but\n\
14360 this incurs a slight performance penalty, so it is recommended to NOT change\n\
14361 this option to \"off\" unless necessary."),
14362 NULL, NULL, &set_ada_list, &show_ada_list);
14363
14364 add_setshow_boolean_cmd ("print-signatures", class_vars,
14365 &print_signatures, _("\
14366 Enable or disable the output of formal and return types for functions in the \
14367 overloads selection menu."), _("\
14368 Show whether the output of formal and return types for functions in the \
14369 overloads selection menu is activated."),
14370 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14371
14372 add_catch_command ("exception", _("\
14373 Catch Ada exceptions, when raised.\n\
14374 Usage: catch exception [ARG] [if CONDITION]\n\
14375 Without any argument, stop when any Ada exception is raised.\n\
14376 If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\
14377 being raised does not have a handler (and will therefore lead to the task's\n\
14378 termination).\n\
14379 Otherwise, the catchpoint only stops when the name of the exception being\n\
14380 raised is the same as ARG.\n\
14381 CONDITION is a boolean expression that is evaluated to see whether the\n\
14382 exception should cause a stop."),
14383 catch_ada_exception_command,
14384 catch_ada_completer,
14385 CATCH_PERMANENT,
14386 CATCH_TEMPORARY);
14387
14388 add_catch_command ("handlers", _("\
14389 Catch Ada exceptions, when handled.\n\
14390 Usage: catch handlers [ARG] [if CONDITION]\n\
14391 Without any argument, stop when any Ada exception is handled.\n\
14392 With an argument, catch only exceptions with the given name.\n\
14393 CONDITION is a boolean expression that is evaluated to see whether the\n\
14394 exception should cause a stop."),
14395 catch_ada_handlers_command,
14396 catch_ada_completer,
14397 CATCH_PERMANENT,
14398 CATCH_TEMPORARY);
14399 add_catch_command ("assert", _("\
14400 Catch failed Ada assertions, when raised.\n\
14401 Usage: catch assert [if CONDITION]\n\
14402 CONDITION is a boolean expression that is evaluated to see whether the\n\
14403 exception should cause a stop."),
14404 catch_assert_command,
14405 NULL,
14406 CATCH_PERMANENT,
14407 CATCH_TEMPORARY);
14408
14409 varsize_limit = 65536;
14410 add_setshow_uinteger_cmd ("varsize-limit", class_support,
14411 &varsize_limit, _("\
14412 Set the maximum number of bytes allowed in a variable-size object."), _("\
14413 Show the maximum number of bytes allowed in a variable-size object."), _("\
14414 Attempts to access an object whose size is not a compile-time constant\n\
14415 and exceeds this limit will cause an error."),
14416 NULL, NULL, &setlist, &showlist);
14417
14418 add_info ("exceptions", info_exceptions_command,
14419 _("\
14420 List all Ada exception names.\n\
14421 Usage: info exceptions [REGEXP]\n\
14422 If a regular expression is passed as an argument, only those matching\n\
14423 the regular expression are listed."));
14424
14425 add_basic_prefix_cmd ("ada", class_maintenance,
14426 _("Set Ada maintenance-related variables."),
14427 &maint_set_ada_cmdlist, "maintenance set ada ",
14428 0/*allow-unknown*/, &maintenance_set_cmdlist);
14429
14430 add_show_prefix_cmd ("ada", class_maintenance,
14431 _("Show Ada maintenance-related variables."),
14432 &maint_show_ada_cmdlist, "maintenance show ada ",
14433 0/*allow-unknown*/, &maintenance_show_cmdlist);
14434
14435 add_setshow_boolean_cmd
14436 ("ignore-descriptive-types", class_maintenance,
14437 &ada_ignore_descriptive_types_p,
14438 _("Set whether descriptive types generated by GNAT should be ignored."),
14439 _("Show whether descriptive types generated by GNAT should be ignored."),
14440 _("\
14441 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14442 DWARF attribute."),
14443 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14444
14445 decoded_names_store = htab_create_alloc (256, htab_hash_string, streq_hash,
14446 NULL, xcalloc, xfree);
14447
14448 /* The ada-lang observers. */
14449 gdb::observers::new_objfile.attach (ada_new_objfile_observer);
14450 gdb::observers::free_objfile.attach (ada_free_objfile_observer);
14451 gdb::observers::inferior_exit.attach (ada_inferior_exit);
14452 }