[gdb/testsuite] Fix duplicate test-names in gdb.trace
[binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <ctype.h>
23 #include "gdb_regex.h"
24 #include "frame.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcmd.h"
28 #include "expression.h"
29 #include "parser-defs.h"
30 #include "language.h"
31 #include "varobj.h"
32 #include "inferior.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "breakpoint.h"
36 #include "gdbcore.h"
37 #include "hashtab.h"
38 #include "gdb_obstack.h"
39 #include "ada-lang.h"
40 #include "completer.h"
41 #include "ui-out.h"
42 #include "block.h"
43 #include "infcall.h"
44 #include "annotate.h"
45 #include "valprint.h"
46 #include "source.h"
47 #include "observable.h"
48 #include "stack.h"
49 #include "typeprint.h"
50 #include "namespace.h"
51 #include "cli/cli-style.h"
52
53 #include "value.h"
54 #include "mi/mi-common.h"
55 #include "arch-utils.h"
56 #include "cli/cli-utils.h"
57 #include "gdbsupport/function-view.h"
58 #include "gdbsupport/byte-vector.h"
59 #include <algorithm>
60
61 /* Define whether or not the C operator '/' truncates towards zero for
62 differently signed operands (truncation direction is undefined in C).
63 Copied from valarith.c. */
64
65 #ifndef TRUNCATION_TOWARDS_ZERO
66 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
67 #endif
68
69 static struct type *desc_base_type (struct type *);
70
71 static struct type *desc_bounds_type (struct type *);
72
73 static struct value *desc_bounds (struct value *);
74
75 static int fat_pntr_bounds_bitpos (struct type *);
76
77 static int fat_pntr_bounds_bitsize (struct type *);
78
79 static struct type *desc_data_target_type (struct type *);
80
81 static struct value *desc_data (struct value *);
82
83 static int fat_pntr_data_bitpos (struct type *);
84
85 static int fat_pntr_data_bitsize (struct type *);
86
87 static struct value *desc_one_bound (struct value *, int, int);
88
89 static int desc_bound_bitpos (struct type *, int, int);
90
91 static int desc_bound_bitsize (struct type *, int, int);
92
93 static struct type *desc_index_type (struct type *, int);
94
95 static int desc_arity (struct type *);
96
97 static int ada_type_match (struct type *, struct type *, int);
98
99 static int ada_args_match (struct symbol *, struct value **, int);
100
101 static struct value *make_array_descriptor (struct type *, struct value *);
102
103 static void ada_add_block_symbols (struct obstack *,
104 const struct block *,
105 const lookup_name_info &lookup_name,
106 domain_enum, struct objfile *);
107
108 static void ada_add_all_symbols (struct obstack *, const struct block *,
109 const lookup_name_info &lookup_name,
110 domain_enum, int, int *);
111
112 static int is_nonfunction (struct block_symbol *, int);
113
114 static void add_defn_to_vec (struct obstack *, struct symbol *,
115 const struct block *);
116
117 static int num_defns_collected (struct obstack *);
118
119 static struct block_symbol *defns_collected (struct obstack *, int);
120
121 static struct value *resolve_subexp (expression_up *, int *, int,
122 struct type *, int,
123 innermost_block_tracker *);
124
125 static void replace_operator_with_call (expression_up *, int, int, int,
126 struct symbol *, const struct block *);
127
128 static int possible_user_operator_p (enum exp_opcode, struct value **);
129
130 static const char *ada_op_name (enum exp_opcode);
131
132 static const char *ada_decoded_op_name (enum exp_opcode);
133
134 static int numeric_type_p (struct type *);
135
136 static int integer_type_p (struct type *);
137
138 static int scalar_type_p (struct type *);
139
140 static int discrete_type_p (struct type *);
141
142 static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
143 int, int);
144
145 static struct value *evaluate_subexp_type (struct expression *, int *);
146
147 static struct type *ada_find_parallel_type_with_name (struct type *,
148 const char *);
149
150 static int is_dynamic_field (struct type *, int);
151
152 static struct type *to_fixed_variant_branch_type (struct type *,
153 const gdb_byte *,
154 CORE_ADDR, struct value *);
155
156 static struct type *to_fixed_array_type (struct type *, struct value *, int);
157
158 static struct type *to_fixed_range_type (struct type *, struct value *);
159
160 static struct type *to_static_fixed_type (struct type *);
161 static struct type *static_unwrap_type (struct type *type);
162
163 static struct value *unwrap_value (struct value *);
164
165 static struct type *constrained_packed_array_type (struct type *, long *);
166
167 static struct type *decode_constrained_packed_array_type (struct type *);
168
169 static long decode_packed_array_bitsize (struct type *);
170
171 static struct value *decode_constrained_packed_array (struct value *);
172
173 static int ada_is_packed_array_type (struct type *);
174
175 static int ada_is_unconstrained_packed_array_type (struct type *);
176
177 static struct value *value_subscript_packed (struct value *, int,
178 struct value **);
179
180 static struct value *coerce_unspec_val_to_type (struct value *,
181 struct type *);
182
183 static int lesseq_defined_than (struct symbol *, struct symbol *);
184
185 static int equiv_types (struct type *, struct type *);
186
187 static int is_name_suffix (const char *);
188
189 static int advance_wild_match (const char **, const char *, int);
190
191 static bool wild_match (const char *name, const char *patn);
192
193 static struct value *ada_coerce_ref (struct value *);
194
195 static LONGEST pos_atr (struct value *);
196
197 static struct value *value_pos_atr (struct type *, struct value *);
198
199 static struct value *value_val_atr (struct type *, struct value *);
200
201 static struct symbol *standard_lookup (const char *, const struct block *,
202 domain_enum);
203
204 static struct value *ada_search_struct_field (const char *, struct value *, int,
205 struct type *);
206
207 static int find_struct_field (const char *, struct type *, int,
208 struct type **, int *, int *, int *, int *);
209
210 static int ada_resolve_function (struct block_symbol *, int,
211 struct value **, int, const char *,
212 struct type *, int);
213
214 static int ada_is_direct_array_type (struct type *);
215
216 static void ada_language_arch_info (struct gdbarch *,
217 struct language_arch_info *);
218
219 static struct value *ada_index_struct_field (int, struct value *, int,
220 struct type *);
221
222 static struct value *assign_aggregate (struct value *, struct value *,
223 struct expression *,
224 int *, enum noside);
225
226 static void aggregate_assign_from_choices (struct value *, struct value *,
227 struct expression *,
228 int *, LONGEST *, int *,
229 int, LONGEST, LONGEST);
230
231 static void aggregate_assign_positional (struct value *, struct value *,
232 struct expression *,
233 int *, LONGEST *, int *, int,
234 LONGEST, LONGEST);
235
236
237 static void aggregate_assign_others (struct value *, struct value *,
238 struct expression *,
239 int *, LONGEST *, int, LONGEST, LONGEST);
240
241
242 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
243
244
245 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
246 int *, enum noside);
247
248 static void ada_forward_operator_length (struct expression *, int, int *,
249 int *);
250
251 static struct type *ada_find_any_type (const char *name);
252
253 static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
254 (const lookup_name_info &lookup_name);
255
256 \f
257
258 /* The result of a symbol lookup to be stored in our symbol cache. */
259
260 struct cache_entry
261 {
262 /* The name used to perform the lookup. */
263 const char *name;
264 /* The namespace used during the lookup. */
265 domain_enum domain;
266 /* The symbol returned by the lookup, or NULL if no matching symbol
267 was found. */
268 struct symbol *sym;
269 /* The block where the symbol was found, or NULL if no matching
270 symbol was found. */
271 const struct block *block;
272 /* A pointer to the next entry with the same hash. */
273 struct cache_entry *next;
274 };
275
276 /* The Ada symbol cache, used to store the result of Ada-mode symbol
277 lookups in the course of executing the user's commands.
278
279 The cache is implemented using a simple, fixed-sized hash.
280 The size is fixed on the grounds that there are not likely to be
281 all that many symbols looked up during any given session, regardless
282 of the size of the symbol table. If we decide to go to a resizable
283 table, let's just use the stuff from libiberty instead. */
284
285 #define HASH_SIZE 1009
286
287 struct ada_symbol_cache
288 {
289 /* An obstack used to store the entries in our cache. */
290 struct obstack cache_space;
291
292 /* The root of the hash table used to implement our symbol cache. */
293 struct cache_entry *root[HASH_SIZE];
294 };
295
296 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
297
298 /* Maximum-sized dynamic type. */
299 static unsigned int varsize_limit;
300
301 static const char ada_completer_word_break_characters[] =
302 #ifdef VMS
303 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
304 #else
305 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
306 #endif
307
308 /* The name of the symbol to use to get the name of the main subprogram. */
309 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
310 = "__gnat_ada_main_program_name";
311
312 /* Limit on the number of warnings to raise per expression evaluation. */
313 static int warning_limit = 2;
314
315 /* Number of warning messages issued; reset to 0 by cleanups after
316 expression evaluation. */
317 static int warnings_issued = 0;
318
319 static const char *known_runtime_file_name_patterns[] = {
320 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
321 };
322
323 static const char *known_auxiliary_function_name_patterns[] = {
324 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
325 };
326
327 /* Maintenance-related settings for this module. */
328
329 static struct cmd_list_element *maint_set_ada_cmdlist;
330 static struct cmd_list_element *maint_show_ada_cmdlist;
331
332 /* The "maintenance ada set/show ignore-descriptive-type" value. */
333
334 static bool ada_ignore_descriptive_types_p = false;
335
336 /* Inferior-specific data. */
337
338 /* Per-inferior data for this module. */
339
340 struct ada_inferior_data
341 {
342 /* The ada__tags__type_specific_data type, which is used when decoding
343 tagged types. With older versions of GNAT, this type was directly
344 accessible through a component ("tsd") in the object tag. But this
345 is no longer the case, so we cache it for each inferior. */
346 struct type *tsd_type = nullptr;
347
348 /* The exception_support_info data. This data is used to determine
349 how to implement support for Ada exception catchpoints in a given
350 inferior. */
351 const struct exception_support_info *exception_info = nullptr;
352 };
353
354 /* Our key to this module's inferior data. */
355 static const struct inferior_key<ada_inferior_data> ada_inferior_data;
356
357 /* Return our inferior data for the given inferior (INF).
358
359 This function always returns a valid pointer to an allocated
360 ada_inferior_data structure. If INF's inferior data has not
361 been previously set, this functions creates a new one with all
362 fields set to zero, sets INF's inferior to it, and then returns
363 a pointer to that newly allocated ada_inferior_data. */
364
365 static struct ada_inferior_data *
366 get_ada_inferior_data (struct inferior *inf)
367 {
368 struct ada_inferior_data *data;
369
370 data = ada_inferior_data.get (inf);
371 if (data == NULL)
372 data = ada_inferior_data.emplace (inf);
373
374 return data;
375 }
376
377 /* Perform all necessary cleanups regarding our module's inferior data
378 that is required after the inferior INF just exited. */
379
380 static void
381 ada_inferior_exit (struct inferior *inf)
382 {
383 ada_inferior_data.clear (inf);
384 }
385
386
387 /* program-space-specific data. */
388
389 /* This module's per-program-space data. */
390 struct ada_pspace_data
391 {
392 ~ada_pspace_data ()
393 {
394 if (sym_cache != NULL)
395 ada_free_symbol_cache (sym_cache);
396 }
397
398 /* The Ada symbol cache. */
399 struct ada_symbol_cache *sym_cache = nullptr;
400 };
401
402 /* Key to our per-program-space data. */
403 static const struct program_space_key<ada_pspace_data> ada_pspace_data_handle;
404
405 /* Return this module's data for the given program space (PSPACE).
406 If not is found, add a zero'ed one now.
407
408 This function always returns a valid object. */
409
410 static struct ada_pspace_data *
411 get_ada_pspace_data (struct program_space *pspace)
412 {
413 struct ada_pspace_data *data;
414
415 data = ada_pspace_data_handle.get (pspace);
416 if (data == NULL)
417 data = ada_pspace_data_handle.emplace (pspace);
418
419 return data;
420 }
421
422 /* Utilities */
423
424 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
425 all typedef layers have been peeled. Otherwise, return TYPE.
426
427 Normally, we really expect a typedef type to only have 1 typedef layer.
428 In other words, we really expect the target type of a typedef type to be
429 a non-typedef type. This is particularly true for Ada units, because
430 the language does not have a typedef vs not-typedef distinction.
431 In that respect, the Ada compiler has been trying to eliminate as many
432 typedef definitions in the debugging information, since they generally
433 do not bring any extra information (we still use typedef under certain
434 circumstances related mostly to the GNAT encoding).
435
436 Unfortunately, we have seen situations where the debugging information
437 generated by the compiler leads to such multiple typedef layers. For
438 instance, consider the following example with stabs:
439
440 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
441 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
442
443 This is an error in the debugging information which causes type
444 pck__float_array___XUP to be defined twice, and the second time,
445 it is defined as a typedef of a typedef.
446
447 This is on the fringe of legality as far as debugging information is
448 concerned, and certainly unexpected. But it is easy to handle these
449 situations correctly, so we can afford to be lenient in this case. */
450
451 static struct type *
452 ada_typedef_target_type (struct type *type)
453 {
454 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
455 type = TYPE_TARGET_TYPE (type);
456 return type;
457 }
458
459 /* Given DECODED_NAME a string holding a symbol name in its
460 decoded form (ie using the Ada dotted notation), returns
461 its unqualified name. */
462
463 static const char *
464 ada_unqualified_name (const char *decoded_name)
465 {
466 const char *result;
467
468 /* If the decoded name starts with '<', it means that the encoded
469 name does not follow standard naming conventions, and thus that
470 it is not your typical Ada symbol name. Trying to unqualify it
471 is therefore pointless and possibly erroneous. */
472 if (decoded_name[0] == '<')
473 return decoded_name;
474
475 result = strrchr (decoded_name, '.');
476 if (result != NULL)
477 result++; /* Skip the dot... */
478 else
479 result = decoded_name;
480
481 return result;
482 }
483
484 /* Return a string starting with '<', followed by STR, and '>'. */
485
486 static std::string
487 add_angle_brackets (const char *str)
488 {
489 return string_printf ("<%s>", str);
490 }
491
492 static const char *
493 ada_get_gdb_completer_word_break_characters (void)
494 {
495 return ada_completer_word_break_characters;
496 }
497
498 /* Print an array element index using the Ada syntax. */
499
500 static void
501 ada_print_array_index (struct value *index_value, struct ui_file *stream,
502 const struct value_print_options *options)
503 {
504 LA_VALUE_PRINT (index_value, stream, options);
505 fprintf_filtered (stream, " => ");
506 }
507
508 /* la_watch_location_expression for Ada. */
509
510 static gdb::unique_xmalloc_ptr<char>
511 ada_watch_location_expression (struct type *type, CORE_ADDR addr)
512 {
513 type = check_typedef (TYPE_TARGET_TYPE (check_typedef (type)));
514 std::string name = type_to_string (type);
515 return gdb::unique_xmalloc_ptr<char>
516 (xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr)));
517 }
518
519 /* Assuming V points to an array of S objects, make sure that it contains at
520 least M objects, updating V and S as necessary. */
521
522 #define GROW_VECT(v, s, m) \
523 if ((s) < (m)) (v) = (char *) grow_vect (v, &(s), m, sizeof *(v));
524
525 /* Assuming VECT points to an array of *SIZE objects of size
526 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
527 updating *SIZE as necessary and returning the (new) array. */
528
529 static void *
530 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
531 {
532 if (*size < min_size)
533 {
534 *size *= 2;
535 if (*size < min_size)
536 *size = min_size;
537 vect = xrealloc (vect, *size * element_size);
538 }
539 return vect;
540 }
541
542 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
543 suffix of FIELD_NAME beginning "___". */
544
545 static int
546 field_name_match (const char *field_name, const char *target)
547 {
548 int len = strlen (target);
549
550 return
551 (strncmp (field_name, target, len) == 0
552 && (field_name[len] == '\0'
553 || (startswith (field_name + len, "___")
554 && strcmp (field_name + strlen (field_name) - 6,
555 "___XVN") != 0)));
556 }
557
558
559 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
560 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
561 and return its index. This function also handles fields whose name
562 have ___ suffixes because the compiler sometimes alters their name
563 by adding such a suffix to represent fields with certain constraints.
564 If the field could not be found, return a negative number if
565 MAYBE_MISSING is set. Otherwise raise an error. */
566
567 int
568 ada_get_field_index (const struct type *type, const char *field_name,
569 int maybe_missing)
570 {
571 int fieldno;
572 struct type *struct_type = check_typedef ((struct type *) type);
573
574 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
575 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
576 return fieldno;
577
578 if (!maybe_missing)
579 error (_("Unable to find field %s in struct %s. Aborting"),
580 field_name, TYPE_NAME (struct_type));
581
582 return -1;
583 }
584
585 /* The length of the prefix of NAME prior to any "___" suffix. */
586
587 int
588 ada_name_prefix_len (const char *name)
589 {
590 if (name == NULL)
591 return 0;
592 else
593 {
594 const char *p = strstr (name, "___");
595
596 if (p == NULL)
597 return strlen (name);
598 else
599 return p - name;
600 }
601 }
602
603 /* Return non-zero if SUFFIX is a suffix of STR.
604 Return zero if STR is null. */
605
606 static int
607 is_suffix (const char *str, const char *suffix)
608 {
609 int len1, len2;
610
611 if (str == NULL)
612 return 0;
613 len1 = strlen (str);
614 len2 = strlen (suffix);
615 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
616 }
617
618 /* The contents of value VAL, treated as a value of type TYPE. The
619 result is an lval in memory if VAL is. */
620
621 static struct value *
622 coerce_unspec_val_to_type (struct value *val, struct type *type)
623 {
624 type = ada_check_typedef (type);
625 if (value_type (val) == type)
626 return val;
627 else
628 {
629 struct value *result;
630
631 /* Make sure that the object size is not unreasonable before
632 trying to allocate some memory for it. */
633 ada_ensure_varsize_limit (type);
634
635 if (value_lazy (val)
636 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
637 result = allocate_value_lazy (type);
638 else
639 {
640 result = allocate_value (type);
641 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
642 }
643 set_value_component_location (result, val);
644 set_value_bitsize (result, value_bitsize (val));
645 set_value_bitpos (result, value_bitpos (val));
646 if (VALUE_LVAL (result) == lval_memory)
647 set_value_address (result, value_address (val));
648 return result;
649 }
650 }
651
652 static const gdb_byte *
653 cond_offset_host (const gdb_byte *valaddr, long offset)
654 {
655 if (valaddr == NULL)
656 return NULL;
657 else
658 return valaddr + offset;
659 }
660
661 static CORE_ADDR
662 cond_offset_target (CORE_ADDR address, long offset)
663 {
664 if (address == 0)
665 return 0;
666 else
667 return address + offset;
668 }
669
670 /* Issue a warning (as for the definition of warning in utils.c, but
671 with exactly one argument rather than ...), unless the limit on the
672 number of warnings has passed during the evaluation of the current
673 expression. */
674
675 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
676 provided by "complaint". */
677 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
678
679 static void
680 lim_warning (const char *format, ...)
681 {
682 va_list args;
683
684 va_start (args, format);
685 warnings_issued += 1;
686 if (warnings_issued <= warning_limit)
687 vwarning (format, args);
688
689 va_end (args);
690 }
691
692 /* Issue an error if the size of an object of type T is unreasonable,
693 i.e. if it would be a bad idea to allocate a value of this type in
694 GDB. */
695
696 void
697 ada_ensure_varsize_limit (const struct type *type)
698 {
699 if (TYPE_LENGTH (type) > varsize_limit)
700 error (_("object size is larger than varsize-limit"));
701 }
702
703 /* Maximum value of a SIZE-byte signed integer type. */
704 static LONGEST
705 max_of_size (int size)
706 {
707 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
708
709 return top_bit | (top_bit - 1);
710 }
711
712 /* Minimum value of a SIZE-byte signed integer type. */
713 static LONGEST
714 min_of_size (int size)
715 {
716 return -max_of_size (size) - 1;
717 }
718
719 /* Maximum value of a SIZE-byte unsigned integer type. */
720 static ULONGEST
721 umax_of_size (int size)
722 {
723 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
724
725 return top_bit | (top_bit - 1);
726 }
727
728 /* Maximum value of integral type T, as a signed quantity. */
729 static LONGEST
730 max_of_type (struct type *t)
731 {
732 if (TYPE_UNSIGNED (t))
733 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
734 else
735 return max_of_size (TYPE_LENGTH (t));
736 }
737
738 /* Minimum value of integral type T, as a signed quantity. */
739 static LONGEST
740 min_of_type (struct type *t)
741 {
742 if (TYPE_UNSIGNED (t))
743 return 0;
744 else
745 return min_of_size (TYPE_LENGTH (t));
746 }
747
748 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
749 LONGEST
750 ada_discrete_type_high_bound (struct type *type)
751 {
752 type = resolve_dynamic_type (type, {}, 0);
753 switch (TYPE_CODE (type))
754 {
755 case TYPE_CODE_RANGE:
756 return TYPE_HIGH_BOUND (type);
757 case TYPE_CODE_ENUM:
758 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
759 case TYPE_CODE_BOOL:
760 return 1;
761 case TYPE_CODE_CHAR:
762 case TYPE_CODE_INT:
763 return max_of_type (type);
764 default:
765 error (_("Unexpected type in ada_discrete_type_high_bound."));
766 }
767 }
768
769 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
770 LONGEST
771 ada_discrete_type_low_bound (struct type *type)
772 {
773 type = resolve_dynamic_type (type, {}, 0);
774 switch (TYPE_CODE (type))
775 {
776 case TYPE_CODE_RANGE:
777 return TYPE_LOW_BOUND (type);
778 case TYPE_CODE_ENUM:
779 return TYPE_FIELD_ENUMVAL (type, 0);
780 case TYPE_CODE_BOOL:
781 return 0;
782 case TYPE_CODE_CHAR:
783 case TYPE_CODE_INT:
784 return min_of_type (type);
785 default:
786 error (_("Unexpected type in ada_discrete_type_low_bound."));
787 }
788 }
789
790 /* The identity on non-range types. For range types, the underlying
791 non-range scalar type. */
792
793 static struct type *
794 get_base_type (struct type *type)
795 {
796 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
797 {
798 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
799 return type;
800 type = TYPE_TARGET_TYPE (type);
801 }
802 return type;
803 }
804
805 /* Return a decoded version of the given VALUE. This means returning
806 a value whose type is obtained by applying all the GNAT-specific
807 encodings, making the resulting type a static but standard description
808 of the initial type. */
809
810 struct value *
811 ada_get_decoded_value (struct value *value)
812 {
813 struct type *type = ada_check_typedef (value_type (value));
814
815 if (ada_is_array_descriptor_type (type)
816 || (ada_is_constrained_packed_array_type (type)
817 && TYPE_CODE (type) != TYPE_CODE_PTR))
818 {
819 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
820 value = ada_coerce_to_simple_array_ptr (value);
821 else
822 value = ada_coerce_to_simple_array (value);
823 }
824 else
825 value = ada_to_fixed_value (value);
826
827 return value;
828 }
829
830 /* Same as ada_get_decoded_value, but with the given TYPE.
831 Because there is no associated actual value for this type,
832 the resulting type might be a best-effort approximation in
833 the case of dynamic types. */
834
835 struct type *
836 ada_get_decoded_type (struct type *type)
837 {
838 type = to_static_fixed_type (type);
839 if (ada_is_constrained_packed_array_type (type))
840 type = ada_coerce_to_simple_array_type (type);
841 return type;
842 }
843
844 \f
845
846 /* Language Selection */
847
848 /* If the main program is in Ada, return language_ada, otherwise return LANG
849 (the main program is in Ada iif the adainit symbol is found). */
850
851 static enum language
852 ada_update_initial_language (enum language lang)
853 {
854 if (lookup_minimal_symbol ("adainit", NULL, NULL).minsym != NULL)
855 return language_ada;
856
857 return lang;
858 }
859
860 /* If the main procedure is written in Ada, then return its name.
861 The result is good until the next call. Return NULL if the main
862 procedure doesn't appear to be in Ada. */
863
864 char *
865 ada_main_name (void)
866 {
867 struct bound_minimal_symbol msym;
868 static gdb::unique_xmalloc_ptr<char> main_program_name;
869
870 /* For Ada, the name of the main procedure is stored in a specific
871 string constant, generated by the binder. Look for that symbol,
872 extract its address, and then read that string. If we didn't find
873 that string, then most probably the main procedure is not written
874 in Ada. */
875 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
876
877 if (msym.minsym != NULL)
878 {
879 CORE_ADDR main_program_name_addr;
880 int err_code;
881
882 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
883 if (main_program_name_addr == 0)
884 error (_("Invalid address for Ada main program name."));
885
886 target_read_string (main_program_name_addr, &main_program_name,
887 1024, &err_code);
888
889 if (err_code != 0)
890 return NULL;
891 return main_program_name.get ();
892 }
893
894 /* The main procedure doesn't seem to be in Ada. */
895 return NULL;
896 }
897 \f
898 /* Symbols */
899
900 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
901 of NULLs. */
902
903 const struct ada_opname_map ada_opname_table[] = {
904 {"Oadd", "\"+\"", BINOP_ADD},
905 {"Osubtract", "\"-\"", BINOP_SUB},
906 {"Omultiply", "\"*\"", BINOP_MUL},
907 {"Odivide", "\"/\"", BINOP_DIV},
908 {"Omod", "\"mod\"", BINOP_MOD},
909 {"Orem", "\"rem\"", BINOP_REM},
910 {"Oexpon", "\"**\"", BINOP_EXP},
911 {"Olt", "\"<\"", BINOP_LESS},
912 {"Ole", "\"<=\"", BINOP_LEQ},
913 {"Ogt", "\">\"", BINOP_GTR},
914 {"Oge", "\">=\"", BINOP_GEQ},
915 {"Oeq", "\"=\"", BINOP_EQUAL},
916 {"One", "\"/=\"", BINOP_NOTEQUAL},
917 {"Oand", "\"and\"", BINOP_BITWISE_AND},
918 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
919 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
920 {"Oconcat", "\"&\"", BINOP_CONCAT},
921 {"Oabs", "\"abs\"", UNOP_ABS},
922 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
923 {"Oadd", "\"+\"", UNOP_PLUS},
924 {"Osubtract", "\"-\"", UNOP_NEG},
925 {NULL, NULL}
926 };
927
928 /* The "encoded" form of DECODED, according to GNAT conventions. The
929 result is valid until the next call to ada_encode. If
930 THROW_ERRORS, throw an error if invalid operator name is found.
931 Otherwise, return NULL in that case. */
932
933 static char *
934 ada_encode_1 (const char *decoded, bool throw_errors)
935 {
936 static char *encoding_buffer = NULL;
937 static size_t encoding_buffer_size = 0;
938 const char *p;
939 int k;
940
941 if (decoded == NULL)
942 return NULL;
943
944 GROW_VECT (encoding_buffer, encoding_buffer_size,
945 2 * strlen (decoded) + 10);
946
947 k = 0;
948 for (p = decoded; *p != '\0'; p += 1)
949 {
950 if (*p == '.')
951 {
952 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
953 k += 2;
954 }
955 else if (*p == '"')
956 {
957 const struct ada_opname_map *mapping;
958
959 for (mapping = ada_opname_table;
960 mapping->encoded != NULL
961 && !startswith (p, mapping->decoded); mapping += 1)
962 ;
963 if (mapping->encoded == NULL)
964 {
965 if (throw_errors)
966 error (_("invalid Ada operator name: %s"), p);
967 else
968 return NULL;
969 }
970 strcpy (encoding_buffer + k, mapping->encoded);
971 k += strlen (mapping->encoded);
972 break;
973 }
974 else
975 {
976 encoding_buffer[k] = *p;
977 k += 1;
978 }
979 }
980
981 encoding_buffer[k] = '\0';
982 return encoding_buffer;
983 }
984
985 /* The "encoded" form of DECODED, according to GNAT conventions.
986 The result is valid until the next call to ada_encode. */
987
988 char *
989 ada_encode (const char *decoded)
990 {
991 return ada_encode_1 (decoded, true);
992 }
993
994 /* Return NAME folded to lower case, or, if surrounded by single
995 quotes, unfolded, but with the quotes stripped away. Result good
996 to next call. */
997
998 static char *
999 ada_fold_name (gdb::string_view name)
1000 {
1001 static char *fold_buffer = NULL;
1002 static size_t fold_buffer_size = 0;
1003
1004 int len = name.size ();
1005 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
1006
1007 if (name[0] == '\'')
1008 {
1009 strncpy (fold_buffer, name.data () + 1, len - 2);
1010 fold_buffer[len - 2] = '\000';
1011 }
1012 else
1013 {
1014 int i;
1015
1016 for (i = 0; i <= len; i += 1)
1017 fold_buffer[i] = tolower (name[i]);
1018 }
1019
1020 return fold_buffer;
1021 }
1022
1023 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1024
1025 static int
1026 is_lower_alphanum (const char c)
1027 {
1028 return (isdigit (c) || (isalpha (c) && islower (c)));
1029 }
1030
1031 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1032 This function saves in LEN the length of that same symbol name but
1033 without either of these suffixes:
1034 . .{DIGIT}+
1035 . ${DIGIT}+
1036 . ___{DIGIT}+
1037 . __{DIGIT}+.
1038
1039 These are suffixes introduced by the compiler for entities such as
1040 nested subprogram for instance, in order to avoid name clashes.
1041 They do not serve any purpose for the debugger. */
1042
1043 static void
1044 ada_remove_trailing_digits (const char *encoded, int *len)
1045 {
1046 if (*len > 1 && isdigit (encoded[*len - 1]))
1047 {
1048 int i = *len - 2;
1049
1050 while (i > 0 && isdigit (encoded[i]))
1051 i--;
1052 if (i >= 0 && encoded[i] == '.')
1053 *len = i;
1054 else if (i >= 0 && encoded[i] == '$')
1055 *len = i;
1056 else if (i >= 2 && startswith (encoded + i - 2, "___"))
1057 *len = i - 2;
1058 else if (i >= 1 && startswith (encoded + i - 1, "__"))
1059 *len = i - 1;
1060 }
1061 }
1062
1063 /* Remove the suffix introduced by the compiler for protected object
1064 subprograms. */
1065
1066 static void
1067 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1068 {
1069 /* Remove trailing N. */
1070
1071 /* Protected entry subprograms are broken into two
1072 separate subprograms: The first one is unprotected, and has
1073 a 'N' suffix; the second is the protected version, and has
1074 the 'P' suffix. The second calls the first one after handling
1075 the protection. Since the P subprograms are internally generated,
1076 we leave these names undecoded, giving the user a clue that this
1077 entity is internal. */
1078
1079 if (*len > 1
1080 && encoded[*len - 1] == 'N'
1081 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1082 *len = *len - 1;
1083 }
1084
1085 /* If ENCODED follows the GNAT entity encoding conventions, then return
1086 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1087 replaced by ENCODED. */
1088
1089 std::string
1090 ada_decode (const char *encoded)
1091 {
1092 int i, j;
1093 int len0;
1094 const char *p;
1095 int at_start_name;
1096 std::string decoded;
1097
1098 /* With function descriptors on PPC64, the value of a symbol named
1099 ".FN", if it exists, is the entry point of the function "FN". */
1100 if (encoded[0] == '.')
1101 encoded += 1;
1102
1103 /* The name of the Ada main procedure starts with "_ada_".
1104 This prefix is not part of the decoded name, so skip this part
1105 if we see this prefix. */
1106 if (startswith (encoded, "_ada_"))
1107 encoded += 5;
1108
1109 /* If the name starts with '_', then it is not a properly encoded
1110 name, so do not attempt to decode it. Similarly, if the name
1111 starts with '<', the name should not be decoded. */
1112 if (encoded[0] == '_' || encoded[0] == '<')
1113 goto Suppress;
1114
1115 len0 = strlen (encoded);
1116
1117 ada_remove_trailing_digits (encoded, &len0);
1118 ada_remove_po_subprogram_suffix (encoded, &len0);
1119
1120 /* Remove the ___X.* suffix if present. Do not forget to verify that
1121 the suffix is located before the current "end" of ENCODED. We want
1122 to avoid re-matching parts of ENCODED that have previously been
1123 marked as discarded (by decrementing LEN0). */
1124 p = strstr (encoded, "___");
1125 if (p != NULL && p - encoded < len0 - 3)
1126 {
1127 if (p[3] == 'X')
1128 len0 = p - encoded;
1129 else
1130 goto Suppress;
1131 }
1132
1133 /* Remove any trailing TKB suffix. It tells us that this symbol
1134 is for the body of a task, but that information does not actually
1135 appear in the decoded name. */
1136
1137 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1138 len0 -= 3;
1139
1140 /* Remove any trailing TB suffix. The TB suffix is slightly different
1141 from the TKB suffix because it is used for non-anonymous task
1142 bodies. */
1143
1144 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1145 len0 -= 2;
1146
1147 /* Remove trailing "B" suffixes. */
1148 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1149
1150 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1151 len0 -= 1;
1152
1153 /* Make decoded big enough for possible expansion by operator name. */
1154
1155 decoded.resize (2 * len0 + 1, 'X');
1156
1157 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1158
1159 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1160 {
1161 i = len0 - 2;
1162 while ((i >= 0 && isdigit (encoded[i]))
1163 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1164 i -= 1;
1165 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1166 len0 = i - 1;
1167 else if (encoded[i] == '$')
1168 len0 = i;
1169 }
1170
1171 /* The first few characters that are not alphabetic are not part
1172 of any encoding we use, so we can copy them over verbatim. */
1173
1174 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1175 decoded[j] = encoded[i];
1176
1177 at_start_name = 1;
1178 while (i < len0)
1179 {
1180 /* Is this a symbol function? */
1181 if (at_start_name && encoded[i] == 'O')
1182 {
1183 int k;
1184
1185 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1186 {
1187 int op_len = strlen (ada_opname_table[k].encoded);
1188 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1189 op_len - 1) == 0)
1190 && !isalnum (encoded[i + op_len]))
1191 {
1192 strcpy (&decoded.front() + j, ada_opname_table[k].decoded);
1193 at_start_name = 0;
1194 i += op_len;
1195 j += strlen (ada_opname_table[k].decoded);
1196 break;
1197 }
1198 }
1199 if (ada_opname_table[k].encoded != NULL)
1200 continue;
1201 }
1202 at_start_name = 0;
1203
1204 /* Replace "TK__" with "__", which will eventually be translated
1205 into "." (just below). */
1206
1207 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1208 i += 2;
1209
1210 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1211 be translated into "." (just below). These are internal names
1212 generated for anonymous blocks inside which our symbol is nested. */
1213
1214 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1215 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1216 && isdigit (encoded [i+4]))
1217 {
1218 int k = i + 5;
1219
1220 while (k < len0 && isdigit (encoded[k]))
1221 k++; /* Skip any extra digit. */
1222
1223 /* Double-check that the "__B_{DIGITS}+" sequence we found
1224 is indeed followed by "__". */
1225 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1226 i = k;
1227 }
1228
1229 /* Remove _E{DIGITS}+[sb] */
1230
1231 /* Just as for protected object subprograms, there are 2 categories
1232 of subprograms created by the compiler for each entry. The first
1233 one implements the actual entry code, and has a suffix following
1234 the convention above; the second one implements the barrier and
1235 uses the same convention as above, except that the 'E' is replaced
1236 by a 'B'.
1237
1238 Just as above, we do not decode the name of barrier functions
1239 to give the user a clue that the code he is debugging has been
1240 internally generated. */
1241
1242 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1243 && isdigit (encoded[i+2]))
1244 {
1245 int k = i + 3;
1246
1247 while (k < len0 && isdigit (encoded[k]))
1248 k++;
1249
1250 if (k < len0
1251 && (encoded[k] == 'b' || encoded[k] == 's'))
1252 {
1253 k++;
1254 /* Just as an extra precaution, make sure that if this
1255 suffix is followed by anything else, it is a '_'.
1256 Otherwise, we matched this sequence by accident. */
1257 if (k == len0
1258 || (k < len0 && encoded[k] == '_'))
1259 i = k;
1260 }
1261 }
1262
1263 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1264 the GNAT front-end in protected object subprograms. */
1265
1266 if (i < len0 + 3
1267 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1268 {
1269 /* Backtrack a bit up until we reach either the begining of
1270 the encoded name, or "__". Make sure that we only find
1271 digits or lowercase characters. */
1272 const char *ptr = encoded + i - 1;
1273
1274 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1275 ptr--;
1276 if (ptr < encoded
1277 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1278 i++;
1279 }
1280
1281 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1282 {
1283 /* This is a X[bn]* sequence not separated from the previous
1284 part of the name with a non-alpha-numeric character (in other
1285 words, immediately following an alpha-numeric character), then
1286 verify that it is placed at the end of the encoded name. If
1287 not, then the encoding is not valid and we should abort the
1288 decoding. Otherwise, just skip it, it is used in body-nested
1289 package names. */
1290 do
1291 i += 1;
1292 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1293 if (i < len0)
1294 goto Suppress;
1295 }
1296 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1297 {
1298 /* Replace '__' by '.'. */
1299 decoded[j] = '.';
1300 at_start_name = 1;
1301 i += 2;
1302 j += 1;
1303 }
1304 else
1305 {
1306 /* It's a character part of the decoded name, so just copy it
1307 over. */
1308 decoded[j] = encoded[i];
1309 i += 1;
1310 j += 1;
1311 }
1312 }
1313 decoded.resize (j);
1314
1315 /* Decoded names should never contain any uppercase character.
1316 Double-check this, and abort the decoding if we find one. */
1317
1318 for (i = 0; i < decoded.length(); ++i)
1319 if (isupper (decoded[i]) || decoded[i] == ' ')
1320 goto Suppress;
1321
1322 return decoded;
1323
1324 Suppress:
1325 if (encoded[0] == '<')
1326 decoded = encoded;
1327 else
1328 decoded = '<' + std::string(encoded) + '>';
1329 return decoded;
1330
1331 }
1332
1333 /* Table for keeping permanent unique copies of decoded names. Once
1334 allocated, names in this table are never released. While this is a
1335 storage leak, it should not be significant unless there are massive
1336 changes in the set of decoded names in successive versions of a
1337 symbol table loaded during a single session. */
1338 static struct htab *decoded_names_store;
1339
1340 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1341 in the language-specific part of GSYMBOL, if it has not been
1342 previously computed. Tries to save the decoded name in the same
1343 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1344 in any case, the decoded symbol has a lifetime at least that of
1345 GSYMBOL).
1346 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1347 const, but nevertheless modified to a semantically equivalent form
1348 when a decoded name is cached in it. */
1349
1350 const char *
1351 ada_decode_symbol (const struct general_symbol_info *arg)
1352 {
1353 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1354 const char **resultp =
1355 &gsymbol->language_specific.demangled_name;
1356
1357 if (!gsymbol->ada_mangled)
1358 {
1359 std::string decoded = ada_decode (gsymbol->linkage_name ());
1360 struct obstack *obstack = gsymbol->language_specific.obstack;
1361
1362 gsymbol->ada_mangled = 1;
1363
1364 if (obstack != NULL)
1365 *resultp = obstack_strdup (obstack, decoded.c_str ());
1366 else
1367 {
1368 /* Sometimes, we can't find a corresponding objfile, in
1369 which case, we put the result on the heap. Since we only
1370 decode when needed, we hope this usually does not cause a
1371 significant memory leak (FIXME). */
1372
1373 char **slot = (char **) htab_find_slot (decoded_names_store,
1374 decoded.c_str (), INSERT);
1375
1376 if (*slot == NULL)
1377 *slot = xstrdup (decoded.c_str ());
1378 *resultp = *slot;
1379 }
1380 }
1381
1382 return *resultp;
1383 }
1384
1385 static char *
1386 ada_la_decode (const char *encoded, int options)
1387 {
1388 return xstrdup (ada_decode (encoded).c_str ());
1389 }
1390
1391 /* Implement la_sniff_from_mangled_name for Ada. */
1392
1393 static int
1394 ada_sniff_from_mangled_name (const char *mangled, char **out)
1395 {
1396 std::string demangled = ada_decode (mangled);
1397
1398 *out = NULL;
1399
1400 if (demangled != mangled && demangled[0] != '<')
1401 {
1402 /* Set the gsymbol language to Ada, but still return 0.
1403 Two reasons for that:
1404
1405 1. For Ada, we prefer computing the symbol's decoded name
1406 on the fly rather than pre-compute it, in order to save
1407 memory (Ada projects are typically very large).
1408
1409 2. There are some areas in the definition of the GNAT
1410 encoding where, with a bit of bad luck, we might be able
1411 to decode a non-Ada symbol, generating an incorrect
1412 demangled name (Eg: names ending with "TB" for instance
1413 are identified as task bodies and so stripped from
1414 the decoded name returned).
1415
1416 Returning 1, here, but not setting *DEMANGLED, helps us get a
1417 little bit of the best of both worlds. Because we're last,
1418 we should not affect any of the other languages that were
1419 able to demangle the symbol before us; we get to correctly
1420 tag Ada symbols as such; and even if we incorrectly tagged a
1421 non-Ada symbol, which should be rare, any routing through the
1422 Ada language should be transparent (Ada tries to behave much
1423 like C/C++ with non-Ada symbols). */
1424 return 1;
1425 }
1426
1427 return 0;
1428 }
1429
1430 \f
1431
1432 /* Arrays */
1433
1434 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1435 generated by the GNAT compiler to describe the index type used
1436 for each dimension of an array, check whether it follows the latest
1437 known encoding. If not, fix it up to conform to the latest encoding.
1438 Otherwise, do nothing. This function also does nothing if
1439 INDEX_DESC_TYPE is NULL.
1440
1441 The GNAT encoding used to describe the array index type evolved a bit.
1442 Initially, the information would be provided through the name of each
1443 field of the structure type only, while the type of these fields was
1444 described as unspecified and irrelevant. The debugger was then expected
1445 to perform a global type lookup using the name of that field in order
1446 to get access to the full index type description. Because these global
1447 lookups can be very expensive, the encoding was later enhanced to make
1448 the global lookup unnecessary by defining the field type as being
1449 the full index type description.
1450
1451 The purpose of this routine is to allow us to support older versions
1452 of the compiler by detecting the use of the older encoding, and by
1453 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1454 we essentially replace each field's meaningless type by the associated
1455 index subtype). */
1456
1457 void
1458 ada_fixup_array_indexes_type (struct type *index_desc_type)
1459 {
1460 int i;
1461
1462 if (index_desc_type == NULL)
1463 return;
1464 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1465
1466 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1467 to check one field only, no need to check them all). If not, return
1468 now.
1469
1470 If our INDEX_DESC_TYPE was generated using the older encoding,
1471 the field type should be a meaningless integer type whose name
1472 is not equal to the field name. */
1473 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1474 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1475 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1476 return;
1477
1478 /* Fixup each field of INDEX_DESC_TYPE. */
1479 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1480 {
1481 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1482 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1483
1484 if (raw_type)
1485 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1486 }
1487 }
1488
1489 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1490
1491 static const char *bound_name[] = {
1492 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1493 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1494 };
1495
1496 /* Maximum number of array dimensions we are prepared to handle. */
1497
1498 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1499
1500
1501 /* The desc_* routines return primitive portions of array descriptors
1502 (fat pointers). */
1503
1504 /* The descriptor or array type, if any, indicated by TYPE; removes
1505 level of indirection, if needed. */
1506
1507 static struct type *
1508 desc_base_type (struct type *type)
1509 {
1510 if (type == NULL)
1511 return NULL;
1512 type = ada_check_typedef (type);
1513 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1514 type = ada_typedef_target_type (type);
1515
1516 if (type != NULL
1517 && (TYPE_CODE (type) == TYPE_CODE_PTR
1518 || TYPE_CODE (type) == TYPE_CODE_REF))
1519 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1520 else
1521 return type;
1522 }
1523
1524 /* True iff TYPE indicates a "thin" array pointer type. */
1525
1526 static int
1527 is_thin_pntr (struct type *type)
1528 {
1529 return
1530 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1531 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1532 }
1533
1534 /* The descriptor type for thin pointer type TYPE. */
1535
1536 static struct type *
1537 thin_descriptor_type (struct type *type)
1538 {
1539 struct type *base_type = desc_base_type (type);
1540
1541 if (base_type == NULL)
1542 return NULL;
1543 if (is_suffix (ada_type_name (base_type), "___XVE"))
1544 return base_type;
1545 else
1546 {
1547 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1548
1549 if (alt_type == NULL)
1550 return base_type;
1551 else
1552 return alt_type;
1553 }
1554 }
1555
1556 /* A pointer to the array data for thin-pointer value VAL. */
1557
1558 static struct value *
1559 thin_data_pntr (struct value *val)
1560 {
1561 struct type *type = ada_check_typedef (value_type (val));
1562 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1563
1564 data_type = lookup_pointer_type (data_type);
1565
1566 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1567 return value_cast (data_type, value_copy (val));
1568 else
1569 return value_from_longest (data_type, value_address (val));
1570 }
1571
1572 /* True iff TYPE indicates a "thick" array pointer type. */
1573
1574 static int
1575 is_thick_pntr (struct type *type)
1576 {
1577 type = desc_base_type (type);
1578 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1579 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1580 }
1581
1582 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1583 pointer to one, the type of its bounds data; otherwise, NULL. */
1584
1585 static struct type *
1586 desc_bounds_type (struct type *type)
1587 {
1588 struct type *r;
1589
1590 type = desc_base_type (type);
1591
1592 if (type == NULL)
1593 return NULL;
1594 else if (is_thin_pntr (type))
1595 {
1596 type = thin_descriptor_type (type);
1597 if (type == NULL)
1598 return NULL;
1599 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1600 if (r != NULL)
1601 return ada_check_typedef (r);
1602 }
1603 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1604 {
1605 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1606 if (r != NULL)
1607 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1608 }
1609 return NULL;
1610 }
1611
1612 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1613 one, a pointer to its bounds data. Otherwise NULL. */
1614
1615 static struct value *
1616 desc_bounds (struct value *arr)
1617 {
1618 struct type *type = ada_check_typedef (value_type (arr));
1619
1620 if (is_thin_pntr (type))
1621 {
1622 struct type *bounds_type =
1623 desc_bounds_type (thin_descriptor_type (type));
1624 LONGEST addr;
1625
1626 if (bounds_type == NULL)
1627 error (_("Bad GNAT array descriptor"));
1628
1629 /* NOTE: The following calculation is not really kosher, but
1630 since desc_type is an XVE-encoded type (and shouldn't be),
1631 the correct calculation is a real pain. FIXME (and fix GCC). */
1632 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1633 addr = value_as_long (arr);
1634 else
1635 addr = value_address (arr);
1636
1637 return
1638 value_from_longest (lookup_pointer_type (bounds_type),
1639 addr - TYPE_LENGTH (bounds_type));
1640 }
1641
1642 else if (is_thick_pntr (type))
1643 {
1644 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1645 _("Bad GNAT array descriptor"));
1646 struct type *p_bounds_type = value_type (p_bounds);
1647
1648 if (p_bounds_type
1649 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1650 {
1651 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1652
1653 if (TYPE_STUB (target_type))
1654 p_bounds = value_cast (lookup_pointer_type
1655 (ada_check_typedef (target_type)),
1656 p_bounds);
1657 }
1658 else
1659 error (_("Bad GNAT array descriptor"));
1660
1661 return p_bounds;
1662 }
1663 else
1664 return NULL;
1665 }
1666
1667 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1668 position of the field containing the address of the bounds data. */
1669
1670 static int
1671 fat_pntr_bounds_bitpos (struct type *type)
1672 {
1673 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1674 }
1675
1676 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1677 size of the field containing the address of the bounds data. */
1678
1679 static int
1680 fat_pntr_bounds_bitsize (struct type *type)
1681 {
1682 type = desc_base_type (type);
1683
1684 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1685 return TYPE_FIELD_BITSIZE (type, 1);
1686 else
1687 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1688 }
1689
1690 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1691 pointer to one, the type of its array data (a array-with-no-bounds type);
1692 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1693 data. */
1694
1695 static struct type *
1696 desc_data_target_type (struct type *type)
1697 {
1698 type = desc_base_type (type);
1699
1700 /* NOTE: The following is bogus; see comment in desc_bounds. */
1701 if (is_thin_pntr (type))
1702 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1703 else if (is_thick_pntr (type))
1704 {
1705 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1706
1707 if (data_type
1708 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1709 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1710 }
1711
1712 return NULL;
1713 }
1714
1715 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1716 its array data. */
1717
1718 static struct value *
1719 desc_data (struct value *arr)
1720 {
1721 struct type *type = value_type (arr);
1722
1723 if (is_thin_pntr (type))
1724 return thin_data_pntr (arr);
1725 else if (is_thick_pntr (type))
1726 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1727 _("Bad GNAT array descriptor"));
1728 else
1729 return NULL;
1730 }
1731
1732
1733 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1734 position of the field containing the address of the data. */
1735
1736 static int
1737 fat_pntr_data_bitpos (struct type *type)
1738 {
1739 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1740 }
1741
1742 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1743 size of the field containing the address of the data. */
1744
1745 static int
1746 fat_pntr_data_bitsize (struct type *type)
1747 {
1748 type = desc_base_type (type);
1749
1750 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1751 return TYPE_FIELD_BITSIZE (type, 0);
1752 else
1753 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1754 }
1755
1756 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1757 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1758 bound, if WHICH is 1. The first bound is I=1. */
1759
1760 static struct value *
1761 desc_one_bound (struct value *bounds, int i, int which)
1762 {
1763 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1764 _("Bad GNAT array descriptor bounds"));
1765 }
1766
1767 /* If BOUNDS is an array-bounds structure type, return the bit position
1768 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1769 bound, if WHICH is 1. The first bound is I=1. */
1770
1771 static int
1772 desc_bound_bitpos (struct type *type, int i, int which)
1773 {
1774 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1775 }
1776
1777 /* If BOUNDS is an array-bounds structure type, return the bit field size
1778 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1779 bound, if WHICH is 1. The first bound is I=1. */
1780
1781 static int
1782 desc_bound_bitsize (struct type *type, int i, int which)
1783 {
1784 type = desc_base_type (type);
1785
1786 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1787 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1788 else
1789 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1790 }
1791
1792 /* If TYPE is the type of an array-bounds structure, the type of its
1793 Ith bound (numbering from 1). Otherwise, NULL. */
1794
1795 static struct type *
1796 desc_index_type (struct type *type, int i)
1797 {
1798 type = desc_base_type (type);
1799
1800 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1801 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1802 else
1803 return NULL;
1804 }
1805
1806 /* The number of index positions in the array-bounds type TYPE.
1807 Return 0 if TYPE is NULL. */
1808
1809 static int
1810 desc_arity (struct type *type)
1811 {
1812 type = desc_base_type (type);
1813
1814 if (type != NULL)
1815 return TYPE_NFIELDS (type) / 2;
1816 return 0;
1817 }
1818
1819 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1820 an array descriptor type (representing an unconstrained array
1821 type). */
1822
1823 static int
1824 ada_is_direct_array_type (struct type *type)
1825 {
1826 if (type == NULL)
1827 return 0;
1828 type = ada_check_typedef (type);
1829 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1830 || ada_is_array_descriptor_type (type));
1831 }
1832
1833 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1834 * to one. */
1835
1836 static int
1837 ada_is_array_type (struct type *type)
1838 {
1839 while (type != NULL
1840 && (TYPE_CODE (type) == TYPE_CODE_PTR
1841 || TYPE_CODE (type) == TYPE_CODE_REF))
1842 type = TYPE_TARGET_TYPE (type);
1843 return ada_is_direct_array_type (type);
1844 }
1845
1846 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1847
1848 int
1849 ada_is_simple_array_type (struct type *type)
1850 {
1851 if (type == NULL)
1852 return 0;
1853 type = ada_check_typedef (type);
1854 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1855 || (TYPE_CODE (type) == TYPE_CODE_PTR
1856 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1857 == TYPE_CODE_ARRAY));
1858 }
1859
1860 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1861
1862 int
1863 ada_is_array_descriptor_type (struct type *type)
1864 {
1865 struct type *data_type = desc_data_target_type (type);
1866
1867 if (type == NULL)
1868 return 0;
1869 type = ada_check_typedef (type);
1870 return (data_type != NULL
1871 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1872 && desc_arity (desc_bounds_type (type)) > 0);
1873 }
1874
1875 /* Non-zero iff type is a partially mal-formed GNAT array
1876 descriptor. FIXME: This is to compensate for some problems with
1877 debugging output from GNAT. Re-examine periodically to see if it
1878 is still needed. */
1879
1880 int
1881 ada_is_bogus_array_descriptor (struct type *type)
1882 {
1883 return
1884 type != NULL
1885 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1886 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1887 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1888 && !ada_is_array_descriptor_type (type);
1889 }
1890
1891
1892 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1893 (fat pointer) returns the type of the array data described---specifically,
1894 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1895 in from the descriptor; otherwise, they are left unspecified. If
1896 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1897 returns NULL. The result is simply the type of ARR if ARR is not
1898 a descriptor. */
1899
1900 static struct type *
1901 ada_type_of_array (struct value *arr, int bounds)
1902 {
1903 if (ada_is_constrained_packed_array_type (value_type (arr)))
1904 return decode_constrained_packed_array_type (value_type (arr));
1905
1906 if (!ada_is_array_descriptor_type (value_type (arr)))
1907 return value_type (arr);
1908
1909 if (!bounds)
1910 {
1911 struct type *array_type =
1912 ada_check_typedef (desc_data_target_type (value_type (arr)));
1913
1914 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1915 TYPE_FIELD_BITSIZE (array_type, 0) =
1916 decode_packed_array_bitsize (value_type (arr));
1917
1918 return array_type;
1919 }
1920 else
1921 {
1922 struct type *elt_type;
1923 int arity;
1924 struct value *descriptor;
1925
1926 elt_type = ada_array_element_type (value_type (arr), -1);
1927 arity = ada_array_arity (value_type (arr));
1928
1929 if (elt_type == NULL || arity == 0)
1930 return ada_check_typedef (value_type (arr));
1931
1932 descriptor = desc_bounds (arr);
1933 if (value_as_long (descriptor) == 0)
1934 return NULL;
1935 while (arity > 0)
1936 {
1937 struct type *range_type = alloc_type_copy (value_type (arr));
1938 struct type *array_type = alloc_type_copy (value_type (arr));
1939 struct value *low = desc_one_bound (descriptor, arity, 0);
1940 struct value *high = desc_one_bound (descriptor, arity, 1);
1941
1942 arity -= 1;
1943 create_static_range_type (range_type, value_type (low),
1944 longest_to_int (value_as_long (low)),
1945 longest_to_int (value_as_long (high)));
1946 elt_type = create_array_type (array_type, elt_type, range_type);
1947
1948 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1949 {
1950 /* We need to store the element packed bitsize, as well as
1951 recompute the array size, because it was previously
1952 computed based on the unpacked element size. */
1953 LONGEST lo = value_as_long (low);
1954 LONGEST hi = value_as_long (high);
1955
1956 TYPE_FIELD_BITSIZE (elt_type, 0) =
1957 decode_packed_array_bitsize (value_type (arr));
1958 /* If the array has no element, then the size is already
1959 zero, and does not need to be recomputed. */
1960 if (lo < hi)
1961 {
1962 int array_bitsize =
1963 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1964
1965 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1966 }
1967 }
1968 }
1969
1970 return lookup_pointer_type (elt_type);
1971 }
1972 }
1973
1974 /* If ARR does not represent an array, returns ARR unchanged.
1975 Otherwise, returns either a standard GDB array with bounds set
1976 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1977 GDB array. Returns NULL if ARR is a null fat pointer. */
1978
1979 struct value *
1980 ada_coerce_to_simple_array_ptr (struct value *arr)
1981 {
1982 if (ada_is_array_descriptor_type (value_type (arr)))
1983 {
1984 struct type *arrType = ada_type_of_array (arr, 1);
1985
1986 if (arrType == NULL)
1987 return NULL;
1988 return value_cast (arrType, value_copy (desc_data (arr)));
1989 }
1990 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1991 return decode_constrained_packed_array (arr);
1992 else
1993 return arr;
1994 }
1995
1996 /* If ARR does not represent an array, returns ARR unchanged.
1997 Otherwise, returns a standard GDB array describing ARR (which may
1998 be ARR itself if it already is in the proper form). */
1999
2000 struct value *
2001 ada_coerce_to_simple_array (struct value *arr)
2002 {
2003 if (ada_is_array_descriptor_type (value_type (arr)))
2004 {
2005 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
2006
2007 if (arrVal == NULL)
2008 error (_("Bounds unavailable for null array pointer."));
2009 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
2010 return value_ind (arrVal);
2011 }
2012 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2013 return decode_constrained_packed_array (arr);
2014 else
2015 return arr;
2016 }
2017
2018 /* If TYPE represents a GNAT array type, return it translated to an
2019 ordinary GDB array type (possibly with BITSIZE fields indicating
2020 packing). For other types, is the identity. */
2021
2022 struct type *
2023 ada_coerce_to_simple_array_type (struct type *type)
2024 {
2025 if (ada_is_constrained_packed_array_type (type))
2026 return decode_constrained_packed_array_type (type);
2027
2028 if (ada_is_array_descriptor_type (type))
2029 return ada_check_typedef (desc_data_target_type (type));
2030
2031 return type;
2032 }
2033
2034 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2035
2036 static int
2037 ada_is_packed_array_type (struct type *type)
2038 {
2039 if (type == NULL)
2040 return 0;
2041 type = desc_base_type (type);
2042 type = ada_check_typedef (type);
2043 return
2044 ada_type_name (type) != NULL
2045 && strstr (ada_type_name (type), "___XP") != NULL;
2046 }
2047
2048 /* Non-zero iff TYPE represents a standard GNAT constrained
2049 packed-array type. */
2050
2051 int
2052 ada_is_constrained_packed_array_type (struct type *type)
2053 {
2054 return ada_is_packed_array_type (type)
2055 && !ada_is_array_descriptor_type (type);
2056 }
2057
2058 /* Non-zero iff TYPE represents an array descriptor for a
2059 unconstrained packed-array type. */
2060
2061 static int
2062 ada_is_unconstrained_packed_array_type (struct type *type)
2063 {
2064 return ada_is_packed_array_type (type)
2065 && ada_is_array_descriptor_type (type);
2066 }
2067
2068 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2069 return the size of its elements in bits. */
2070
2071 static long
2072 decode_packed_array_bitsize (struct type *type)
2073 {
2074 const char *raw_name;
2075 const char *tail;
2076 long bits;
2077
2078 /* Access to arrays implemented as fat pointers are encoded as a typedef
2079 of the fat pointer type. We need the name of the fat pointer type
2080 to do the decoding, so strip the typedef layer. */
2081 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2082 type = ada_typedef_target_type (type);
2083
2084 raw_name = ada_type_name (ada_check_typedef (type));
2085 if (!raw_name)
2086 raw_name = ada_type_name (desc_base_type (type));
2087
2088 if (!raw_name)
2089 return 0;
2090
2091 tail = strstr (raw_name, "___XP");
2092 gdb_assert (tail != NULL);
2093
2094 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2095 {
2096 lim_warning
2097 (_("could not understand bit size information on packed array"));
2098 return 0;
2099 }
2100
2101 return bits;
2102 }
2103
2104 /* Given that TYPE is a standard GDB array type with all bounds filled
2105 in, and that the element size of its ultimate scalar constituents
2106 (that is, either its elements, or, if it is an array of arrays, its
2107 elements' elements, etc.) is *ELT_BITS, return an identical type,
2108 but with the bit sizes of its elements (and those of any
2109 constituent arrays) recorded in the BITSIZE components of its
2110 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2111 in bits.
2112
2113 Note that, for arrays whose index type has an XA encoding where
2114 a bound references a record discriminant, getting that discriminant,
2115 and therefore the actual value of that bound, is not possible
2116 because none of the given parameters gives us access to the record.
2117 This function assumes that it is OK in the context where it is being
2118 used to return an array whose bounds are still dynamic and where
2119 the length is arbitrary. */
2120
2121 static struct type *
2122 constrained_packed_array_type (struct type *type, long *elt_bits)
2123 {
2124 struct type *new_elt_type;
2125 struct type *new_type;
2126 struct type *index_type_desc;
2127 struct type *index_type;
2128 LONGEST low_bound, high_bound;
2129
2130 type = ada_check_typedef (type);
2131 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2132 return type;
2133
2134 index_type_desc = ada_find_parallel_type (type, "___XA");
2135 if (index_type_desc)
2136 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2137 NULL);
2138 else
2139 index_type = TYPE_INDEX_TYPE (type);
2140
2141 new_type = alloc_type_copy (type);
2142 new_elt_type =
2143 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2144 elt_bits);
2145 create_array_type (new_type, new_elt_type, index_type);
2146 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2147 TYPE_NAME (new_type) = ada_type_name (type);
2148
2149 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2150 && is_dynamic_type (check_typedef (index_type)))
2151 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2152 low_bound = high_bound = 0;
2153 if (high_bound < low_bound)
2154 *elt_bits = TYPE_LENGTH (new_type) = 0;
2155 else
2156 {
2157 *elt_bits *= (high_bound - low_bound + 1);
2158 TYPE_LENGTH (new_type) =
2159 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2160 }
2161
2162 TYPE_FIXED_INSTANCE (new_type) = 1;
2163 return new_type;
2164 }
2165
2166 /* The array type encoded by TYPE, where
2167 ada_is_constrained_packed_array_type (TYPE). */
2168
2169 static struct type *
2170 decode_constrained_packed_array_type (struct type *type)
2171 {
2172 const char *raw_name = ada_type_name (ada_check_typedef (type));
2173 char *name;
2174 const char *tail;
2175 struct type *shadow_type;
2176 long bits;
2177
2178 if (!raw_name)
2179 raw_name = ada_type_name (desc_base_type (type));
2180
2181 if (!raw_name)
2182 return NULL;
2183
2184 name = (char *) alloca (strlen (raw_name) + 1);
2185 tail = strstr (raw_name, "___XP");
2186 type = desc_base_type (type);
2187
2188 memcpy (name, raw_name, tail - raw_name);
2189 name[tail - raw_name] = '\000';
2190
2191 shadow_type = ada_find_parallel_type_with_name (type, name);
2192
2193 if (shadow_type == NULL)
2194 {
2195 lim_warning (_("could not find bounds information on packed array"));
2196 return NULL;
2197 }
2198 shadow_type = check_typedef (shadow_type);
2199
2200 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2201 {
2202 lim_warning (_("could not understand bounds "
2203 "information on packed array"));
2204 return NULL;
2205 }
2206
2207 bits = decode_packed_array_bitsize (type);
2208 return constrained_packed_array_type (shadow_type, &bits);
2209 }
2210
2211 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2212 array, returns a simple array that denotes that array. Its type is a
2213 standard GDB array type except that the BITSIZEs of the array
2214 target types are set to the number of bits in each element, and the
2215 type length is set appropriately. */
2216
2217 static struct value *
2218 decode_constrained_packed_array (struct value *arr)
2219 {
2220 struct type *type;
2221
2222 /* If our value is a pointer, then dereference it. Likewise if
2223 the value is a reference. Make sure that this operation does not
2224 cause the target type to be fixed, as this would indirectly cause
2225 this array to be decoded. The rest of the routine assumes that
2226 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2227 and "value_ind" routines to perform the dereferencing, as opposed
2228 to using "ada_coerce_ref" or "ada_value_ind". */
2229 arr = coerce_ref (arr);
2230 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2231 arr = value_ind (arr);
2232
2233 type = decode_constrained_packed_array_type (value_type (arr));
2234 if (type == NULL)
2235 {
2236 error (_("can't unpack array"));
2237 return NULL;
2238 }
2239
2240 if (type_byte_order (value_type (arr)) == BFD_ENDIAN_BIG
2241 && ada_is_modular_type (value_type (arr)))
2242 {
2243 /* This is a (right-justified) modular type representing a packed
2244 array with no wrapper. In order to interpret the value through
2245 the (left-justified) packed array type we just built, we must
2246 first left-justify it. */
2247 int bit_size, bit_pos;
2248 ULONGEST mod;
2249
2250 mod = ada_modulus (value_type (arr)) - 1;
2251 bit_size = 0;
2252 while (mod > 0)
2253 {
2254 bit_size += 1;
2255 mod >>= 1;
2256 }
2257 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2258 arr = ada_value_primitive_packed_val (arr, NULL,
2259 bit_pos / HOST_CHAR_BIT,
2260 bit_pos % HOST_CHAR_BIT,
2261 bit_size,
2262 type);
2263 }
2264
2265 return coerce_unspec_val_to_type (arr, type);
2266 }
2267
2268
2269 /* The value of the element of packed array ARR at the ARITY indices
2270 given in IND. ARR must be a simple array. */
2271
2272 static struct value *
2273 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2274 {
2275 int i;
2276 int bits, elt_off, bit_off;
2277 long elt_total_bit_offset;
2278 struct type *elt_type;
2279 struct value *v;
2280
2281 bits = 0;
2282 elt_total_bit_offset = 0;
2283 elt_type = ada_check_typedef (value_type (arr));
2284 for (i = 0; i < arity; i += 1)
2285 {
2286 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2287 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2288 error
2289 (_("attempt to do packed indexing of "
2290 "something other than a packed array"));
2291 else
2292 {
2293 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2294 LONGEST lowerbound, upperbound;
2295 LONGEST idx;
2296
2297 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2298 {
2299 lim_warning (_("don't know bounds of array"));
2300 lowerbound = upperbound = 0;
2301 }
2302
2303 idx = pos_atr (ind[i]);
2304 if (idx < lowerbound || idx > upperbound)
2305 lim_warning (_("packed array index %ld out of bounds"),
2306 (long) idx);
2307 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2308 elt_total_bit_offset += (idx - lowerbound) * bits;
2309 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2310 }
2311 }
2312 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2313 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2314
2315 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2316 bits, elt_type);
2317 return v;
2318 }
2319
2320 /* Non-zero iff TYPE includes negative integer values. */
2321
2322 static int
2323 has_negatives (struct type *type)
2324 {
2325 switch (TYPE_CODE (type))
2326 {
2327 default:
2328 return 0;
2329 case TYPE_CODE_INT:
2330 return !TYPE_UNSIGNED (type);
2331 case TYPE_CODE_RANGE:
2332 return TYPE_LOW_BOUND (type) - TYPE_RANGE_DATA (type)->bias < 0;
2333 }
2334 }
2335
2336 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2337 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2338 the unpacked buffer.
2339
2340 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2341 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2342
2343 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2344 zero otherwise.
2345
2346 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2347
2348 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2349
2350 static void
2351 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2352 gdb_byte *unpacked, int unpacked_len,
2353 int is_big_endian, int is_signed_type,
2354 int is_scalar)
2355 {
2356 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2357 int src_idx; /* Index into the source area */
2358 int src_bytes_left; /* Number of source bytes left to process. */
2359 int srcBitsLeft; /* Number of source bits left to move */
2360 int unusedLS; /* Number of bits in next significant
2361 byte of source that are unused */
2362
2363 int unpacked_idx; /* Index into the unpacked buffer */
2364 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2365
2366 unsigned long accum; /* Staging area for bits being transferred */
2367 int accumSize; /* Number of meaningful bits in accum */
2368 unsigned char sign;
2369
2370 /* Transmit bytes from least to most significant; delta is the direction
2371 the indices move. */
2372 int delta = is_big_endian ? -1 : 1;
2373
2374 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2375 bits from SRC. .*/
2376 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2377 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2378 bit_size, unpacked_len);
2379
2380 srcBitsLeft = bit_size;
2381 src_bytes_left = src_len;
2382 unpacked_bytes_left = unpacked_len;
2383 sign = 0;
2384
2385 if (is_big_endian)
2386 {
2387 src_idx = src_len - 1;
2388 if (is_signed_type
2389 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2390 sign = ~0;
2391
2392 unusedLS =
2393 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2394 % HOST_CHAR_BIT;
2395
2396 if (is_scalar)
2397 {
2398 accumSize = 0;
2399 unpacked_idx = unpacked_len - 1;
2400 }
2401 else
2402 {
2403 /* Non-scalar values must be aligned at a byte boundary... */
2404 accumSize =
2405 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2406 /* ... And are placed at the beginning (most-significant) bytes
2407 of the target. */
2408 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2409 unpacked_bytes_left = unpacked_idx + 1;
2410 }
2411 }
2412 else
2413 {
2414 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2415
2416 src_idx = unpacked_idx = 0;
2417 unusedLS = bit_offset;
2418 accumSize = 0;
2419
2420 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2421 sign = ~0;
2422 }
2423
2424 accum = 0;
2425 while (src_bytes_left > 0)
2426 {
2427 /* Mask for removing bits of the next source byte that are not
2428 part of the value. */
2429 unsigned int unusedMSMask =
2430 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2431 1;
2432 /* Sign-extend bits for this byte. */
2433 unsigned int signMask = sign & ~unusedMSMask;
2434
2435 accum |=
2436 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2437 accumSize += HOST_CHAR_BIT - unusedLS;
2438 if (accumSize >= HOST_CHAR_BIT)
2439 {
2440 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2441 accumSize -= HOST_CHAR_BIT;
2442 accum >>= HOST_CHAR_BIT;
2443 unpacked_bytes_left -= 1;
2444 unpacked_idx += delta;
2445 }
2446 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2447 unusedLS = 0;
2448 src_bytes_left -= 1;
2449 src_idx += delta;
2450 }
2451 while (unpacked_bytes_left > 0)
2452 {
2453 accum |= sign << accumSize;
2454 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2455 accumSize -= HOST_CHAR_BIT;
2456 if (accumSize < 0)
2457 accumSize = 0;
2458 accum >>= HOST_CHAR_BIT;
2459 unpacked_bytes_left -= 1;
2460 unpacked_idx += delta;
2461 }
2462 }
2463
2464 /* Create a new value of type TYPE from the contents of OBJ starting
2465 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2466 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2467 assigning through the result will set the field fetched from.
2468 VALADDR is ignored unless OBJ is NULL, in which case,
2469 VALADDR+OFFSET must address the start of storage containing the
2470 packed value. The value returned in this case is never an lval.
2471 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2472
2473 struct value *
2474 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2475 long offset, int bit_offset, int bit_size,
2476 struct type *type)
2477 {
2478 struct value *v;
2479 const gdb_byte *src; /* First byte containing data to unpack */
2480 gdb_byte *unpacked;
2481 const int is_scalar = is_scalar_type (type);
2482 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
2483 gdb::byte_vector staging;
2484
2485 type = ada_check_typedef (type);
2486
2487 if (obj == NULL)
2488 src = valaddr + offset;
2489 else
2490 src = value_contents (obj) + offset;
2491
2492 if (is_dynamic_type (type))
2493 {
2494 /* The length of TYPE might by dynamic, so we need to resolve
2495 TYPE in order to know its actual size, which we then use
2496 to create the contents buffer of the value we return.
2497 The difficulty is that the data containing our object is
2498 packed, and therefore maybe not at a byte boundary. So, what
2499 we do, is unpack the data into a byte-aligned buffer, and then
2500 use that buffer as our object's value for resolving the type. */
2501 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2502 staging.resize (staging_len);
2503
2504 ada_unpack_from_contents (src, bit_offset, bit_size,
2505 staging.data (), staging.size (),
2506 is_big_endian, has_negatives (type),
2507 is_scalar);
2508 type = resolve_dynamic_type (type, staging, 0);
2509 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2510 {
2511 /* This happens when the length of the object is dynamic,
2512 and is actually smaller than the space reserved for it.
2513 For instance, in an array of variant records, the bit_size
2514 we're given is the array stride, which is constant and
2515 normally equal to the maximum size of its element.
2516 But, in reality, each element only actually spans a portion
2517 of that stride. */
2518 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2519 }
2520 }
2521
2522 if (obj == NULL)
2523 {
2524 v = allocate_value (type);
2525 src = valaddr + offset;
2526 }
2527 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2528 {
2529 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2530 gdb_byte *buf;
2531
2532 v = value_at (type, value_address (obj) + offset);
2533 buf = (gdb_byte *) alloca (src_len);
2534 read_memory (value_address (v), buf, src_len);
2535 src = buf;
2536 }
2537 else
2538 {
2539 v = allocate_value (type);
2540 src = value_contents (obj) + offset;
2541 }
2542
2543 if (obj != NULL)
2544 {
2545 long new_offset = offset;
2546
2547 set_value_component_location (v, obj);
2548 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2549 set_value_bitsize (v, bit_size);
2550 if (value_bitpos (v) >= HOST_CHAR_BIT)
2551 {
2552 ++new_offset;
2553 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2554 }
2555 set_value_offset (v, new_offset);
2556
2557 /* Also set the parent value. This is needed when trying to
2558 assign a new value (in inferior memory). */
2559 set_value_parent (v, obj);
2560 }
2561 else
2562 set_value_bitsize (v, bit_size);
2563 unpacked = value_contents_writeable (v);
2564
2565 if (bit_size == 0)
2566 {
2567 memset (unpacked, 0, TYPE_LENGTH (type));
2568 return v;
2569 }
2570
2571 if (staging.size () == TYPE_LENGTH (type))
2572 {
2573 /* Small short-cut: If we've unpacked the data into a buffer
2574 of the same size as TYPE's length, then we can reuse that,
2575 instead of doing the unpacking again. */
2576 memcpy (unpacked, staging.data (), staging.size ());
2577 }
2578 else
2579 ada_unpack_from_contents (src, bit_offset, bit_size,
2580 unpacked, TYPE_LENGTH (type),
2581 is_big_endian, has_negatives (type), is_scalar);
2582
2583 return v;
2584 }
2585
2586 /* Store the contents of FROMVAL into the location of TOVAL.
2587 Return a new value with the location of TOVAL and contents of
2588 FROMVAL. Handles assignment into packed fields that have
2589 floating-point or non-scalar types. */
2590
2591 static struct value *
2592 ada_value_assign (struct value *toval, struct value *fromval)
2593 {
2594 struct type *type = value_type (toval);
2595 int bits = value_bitsize (toval);
2596
2597 toval = ada_coerce_ref (toval);
2598 fromval = ada_coerce_ref (fromval);
2599
2600 if (ada_is_direct_array_type (value_type (toval)))
2601 toval = ada_coerce_to_simple_array (toval);
2602 if (ada_is_direct_array_type (value_type (fromval)))
2603 fromval = ada_coerce_to_simple_array (fromval);
2604
2605 if (!deprecated_value_modifiable (toval))
2606 error (_("Left operand of assignment is not a modifiable lvalue."));
2607
2608 if (VALUE_LVAL (toval) == lval_memory
2609 && bits > 0
2610 && (TYPE_CODE (type) == TYPE_CODE_FLT
2611 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2612 {
2613 int len = (value_bitpos (toval)
2614 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2615 int from_size;
2616 gdb_byte *buffer = (gdb_byte *) alloca (len);
2617 struct value *val;
2618 CORE_ADDR to_addr = value_address (toval);
2619
2620 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2621 fromval = value_cast (type, fromval);
2622
2623 read_memory (to_addr, buffer, len);
2624 from_size = value_bitsize (fromval);
2625 if (from_size == 0)
2626 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2627
2628 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
2629 ULONGEST from_offset = 0;
2630 if (is_big_endian && is_scalar_type (value_type (fromval)))
2631 from_offset = from_size - bits;
2632 copy_bitwise (buffer, value_bitpos (toval),
2633 value_contents (fromval), from_offset,
2634 bits, is_big_endian);
2635 write_memory_with_notification (to_addr, buffer, len);
2636
2637 val = value_copy (toval);
2638 memcpy (value_contents_raw (val), value_contents (fromval),
2639 TYPE_LENGTH (type));
2640 deprecated_set_value_type (val, type);
2641
2642 return val;
2643 }
2644
2645 return value_assign (toval, fromval);
2646 }
2647
2648
2649 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2650 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2651 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2652 COMPONENT, and not the inferior's memory. The current contents
2653 of COMPONENT are ignored.
2654
2655 Although not part of the initial design, this function also works
2656 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2657 had a null address, and COMPONENT had an address which is equal to
2658 its offset inside CONTAINER. */
2659
2660 static void
2661 value_assign_to_component (struct value *container, struct value *component,
2662 struct value *val)
2663 {
2664 LONGEST offset_in_container =
2665 (LONGEST) (value_address (component) - value_address (container));
2666 int bit_offset_in_container =
2667 value_bitpos (component) - value_bitpos (container);
2668 int bits;
2669
2670 val = value_cast (value_type (component), val);
2671
2672 if (value_bitsize (component) == 0)
2673 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2674 else
2675 bits = value_bitsize (component);
2676
2677 if (type_byte_order (value_type (container)) == BFD_ENDIAN_BIG)
2678 {
2679 int src_offset;
2680
2681 if (is_scalar_type (check_typedef (value_type (component))))
2682 src_offset
2683 = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits;
2684 else
2685 src_offset = 0;
2686 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2687 value_bitpos (container) + bit_offset_in_container,
2688 value_contents (val), src_offset, bits, 1);
2689 }
2690 else
2691 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2692 value_bitpos (container) + bit_offset_in_container,
2693 value_contents (val), 0, bits, 0);
2694 }
2695
2696 /* Determine if TYPE is an access to an unconstrained array. */
2697
2698 bool
2699 ada_is_access_to_unconstrained_array (struct type *type)
2700 {
2701 return (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
2702 && is_thick_pntr (ada_typedef_target_type (type)));
2703 }
2704
2705 /* The value of the element of array ARR at the ARITY indices given in IND.
2706 ARR may be either a simple array, GNAT array descriptor, or pointer
2707 thereto. */
2708
2709 struct value *
2710 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2711 {
2712 int k;
2713 struct value *elt;
2714 struct type *elt_type;
2715
2716 elt = ada_coerce_to_simple_array (arr);
2717
2718 elt_type = ada_check_typedef (value_type (elt));
2719 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2720 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2721 return value_subscript_packed (elt, arity, ind);
2722
2723 for (k = 0; k < arity; k += 1)
2724 {
2725 struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type);
2726
2727 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2728 error (_("too many subscripts (%d expected)"), k);
2729
2730 elt = value_subscript (elt, pos_atr (ind[k]));
2731
2732 if (ada_is_access_to_unconstrained_array (saved_elt_type)
2733 && TYPE_CODE (value_type (elt)) != TYPE_CODE_TYPEDEF)
2734 {
2735 /* The element is a typedef to an unconstrained array,
2736 except that the value_subscript call stripped the
2737 typedef layer. The typedef layer is GNAT's way to
2738 specify that the element is, at the source level, an
2739 access to the unconstrained array, rather than the
2740 unconstrained array. So, we need to restore that
2741 typedef layer, which we can do by forcing the element's
2742 type back to its original type. Otherwise, the returned
2743 value is going to be printed as the array, rather
2744 than as an access. Another symptom of the same issue
2745 would be that an expression trying to dereference the
2746 element would also be improperly rejected. */
2747 deprecated_set_value_type (elt, saved_elt_type);
2748 }
2749
2750 elt_type = ada_check_typedef (value_type (elt));
2751 }
2752
2753 return elt;
2754 }
2755
2756 /* Assuming ARR is a pointer to a GDB array, the value of the element
2757 of *ARR at the ARITY indices given in IND.
2758 Does not read the entire array into memory.
2759
2760 Note: Unlike what one would expect, this function is used instead of
2761 ada_value_subscript for basically all non-packed array types. The reason
2762 for this is that a side effect of doing our own pointer arithmetics instead
2763 of relying on value_subscript is that there is no implicit typedef peeling.
2764 This is important for arrays of array accesses, where it allows us to
2765 preserve the fact that the array's element is an array access, where the
2766 access part os encoded in a typedef layer. */
2767
2768 static struct value *
2769 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2770 {
2771 int k;
2772 struct value *array_ind = ada_value_ind (arr);
2773 struct type *type
2774 = check_typedef (value_enclosing_type (array_ind));
2775
2776 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2777 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2778 return value_subscript_packed (array_ind, arity, ind);
2779
2780 for (k = 0; k < arity; k += 1)
2781 {
2782 LONGEST lwb, upb;
2783 struct value *lwb_value;
2784
2785 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2786 error (_("too many subscripts (%d expected)"), k);
2787 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2788 value_copy (arr));
2789 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2790 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2791 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
2792 type = TYPE_TARGET_TYPE (type);
2793 }
2794
2795 return value_ind (arr);
2796 }
2797
2798 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2799 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2800 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2801 this array is LOW, as per Ada rules. */
2802 static struct value *
2803 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2804 int low, int high)
2805 {
2806 struct type *type0 = ada_check_typedef (type);
2807 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
2808 struct type *index_type
2809 = create_static_range_type (NULL, base_index_type, low, high);
2810 struct type *slice_type = create_array_type_with_stride
2811 (NULL, TYPE_TARGET_TYPE (type0), index_type,
2812 type0->dyn_prop (DYN_PROP_BYTE_STRIDE),
2813 TYPE_FIELD_BITSIZE (type0, 0));
2814 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2815 LONGEST base_low_pos, low_pos;
2816 CORE_ADDR base;
2817
2818 if (!discrete_position (base_index_type, low, &low_pos)
2819 || !discrete_position (base_index_type, base_low, &base_low_pos))
2820 {
2821 warning (_("unable to get positions in slice, use bounds instead"));
2822 low_pos = low;
2823 base_low_pos = base_low;
2824 }
2825
2826 base = value_as_address (array_ptr)
2827 + ((low_pos - base_low_pos)
2828 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2829 return value_at_lazy (slice_type, base);
2830 }
2831
2832
2833 static struct value *
2834 ada_value_slice (struct value *array, int low, int high)
2835 {
2836 struct type *type = ada_check_typedef (value_type (array));
2837 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2838 struct type *index_type
2839 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2840 struct type *slice_type = create_array_type_with_stride
2841 (NULL, TYPE_TARGET_TYPE (type), index_type,
2842 type->dyn_prop (DYN_PROP_BYTE_STRIDE),
2843 TYPE_FIELD_BITSIZE (type, 0));
2844 LONGEST low_pos, high_pos;
2845
2846 if (!discrete_position (base_index_type, low, &low_pos)
2847 || !discrete_position (base_index_type, high, &high_pos))
2848 {
2849 warning (_("unable to get positions in slice, use bounds instead"));
2850 low_pos = low;
2851 high_pos = high;
2852 }
2853
2854 return value_cast (slice_type,
2855 value_slice (array, low, high_pos - low_pos + 1));
2856 }
2857
2858 /* If type is a record type in the form of a standard GNAT array
2859 descriptor, returns the number of dimensions for type. If arr is a
2860 simple array, returns the number of "array of"s that prefix its
2861 type designation. Otherwise, returns 0. */
2862
2863 int
2864 ada_array_arity (struct type *type)
2865 {
2866 int arity;
2867
2868 if (type == NULL)
2869 return 0;
2870
2871 type = desc_base_type (type);
2872
2873 arity = 0;
2874 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2875 return desc_arity (desc_bounds_type (type));
2876 else
2877 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2878 {
2879 arity += 1;
2880 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2881 }
2882
2883 return arity;
2884 }
2885
2886 /* If TYPE is a record type in the form of a standard GNAT array
2887 descriptor or a simple array type, returns the element type for
2888 TYPE after indexing by NINDICES indices, or by all indices if
2889 NINDICES is -1. Otherwise, returns NULL. */
2890
2891 struct type *
2892 ada_array_element_type (struct type *type, int nindices)
2893 {
2894 type = desc_base_type (type);
2895
2896 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2897 {
2898 int k;
2899 struct type *p_array_type;
2900
2901 p_array_type = desc_data_target_type (type);
2902
2903 k = ada_array_arity (type);
2904 if (k == 0)
2905 return NULL;
2906
2907 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2908 if (nindices >= 0 && k > nindices)
2909 k = nindices;
2910 while (k > 0 && p_array_type != NULL)
2911 {
2912 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2913 k -= 1;
2914 }
2915 return p_array_type;
2916 }
2917 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2918 {
2919 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2920 {
2921 type = TYPE_TARGET_TYPE (type);
2922 nindices -= 1;
2923 }
2924 return type;
2925 }
2926
2927 return NULL;
2928 }
2929
2930 /* The type of nth index in arrays of given type (n numbering from 1).
2931 Does not examine memory. Throws an error if N is invalid or TYPE
2932 is not an array type. NAME is the name of the Ada attribute being
2933 evaluated ('range, 'first, 'last, or 'length); it is used in building
2934 the error message. */
2935
2936 static struct type *
2937 ada_index_type (struct type *type, int n, const char *name)
2938 {
2939 struct type *result_type;
2940
2941 type = desc_base_type (type);
2942
2943 if (n < 0 || n > ada_array_arity (type))
2944 error (_("invalid dimension number to '%s"), name);
2945
2946 if (ada_is_simple_array_type (type))
2947 {
2948 int i;
2949
2950 for (i = 1; i < n; i += 1)
2951 type = TYPE_TARGET_TYPE (type);
2952 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2953 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2954 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2955 perhaps stabsread.c would make more sense. */
2956 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2957 result_type = NULL;
2958 }
2959 else
2960 {
2961 result_type = desc_index_type (desc_bounds_type (type), n);
2962 if (result_type == NULL)
2963 error (_("attempt to take bound of something that is not an array"));
2964 }
2965
2966 return result_type;
2967 }
2968
2969 /* Given that arr is an array type, returns the lower bound of the
2970 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2971 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2972 array-descriptor type. It works for other arrays with bounds supplied
2973 by run-time quantities other than discriminants. */
2974
2975 static LONGEST
2976 ada_array_bound_from_type (struct type *arr_type, int n, int which)
2977 {
2978 struct type *type, *index_type_desc, *index_type;
2979 int i;
2980
2981 gdb_assert (which == 0 || which == 1);
2982
2983 if (ada_is_constrained_packed_array_type (arr_type))
2984 arr_type = decode_constrained_packed_array_type (arr_type);
2985
2986 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2987 return (LONGEST) - which;
2988
2989 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2990 type = TYPE_TARGET_TYPE (arr_type);
2991 else
2992 type = arr_type;
2993
2994 if (TYPE_FIXED_INSTANCE (type))
2995 {
2996 /* The array has already been fixed, so we do not need to
2997 check the parallel ___XA type again. That encoding has
2998 already been applied, so ignore it now. */
2999 index_type_desc = NULL;
3000 }
3001 else
3002 {
3003 index_type_desc = ada_find_parallel_type (type, "___XA");
3004 ada_fixup_array_indexes_type (index_type_desc);
3005 }
3006
3007 if (index_type_desc != NULL)
3008 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3009 NULL);
3010 else
3011 {
3012 struct type *elt_type = check_typedef (type);
3013
3014 for (i = 1; i < n; i++)
3015 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3016
3017 index_type = TYPE_INDEX_TYPE (elt_type);
3018 }
3019
3020 return
3021 (LONGEST) (which == 0
3022 ? ada_discrete_type_low_bound (index_type)
3023 : ada_discrete_type_high_bound (index_type));
3024 }
3025
3026 /* Given that arr is an array value, returns the lower bound of the
3027 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3028 WHICH is 1. This routine will also work for arrays with bounds
3029 supplied by run-time quantities other than discriminants. */
3030
3031 static LONGEST
3032 ada_array_bound (struct value *arr, int n, int which)
3033 {
3034 struct type *arr_type;
3035
3036 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3037 arr = value_ind (arr);
3038 arr_type = value_enclosing_type (arr);
3039
3040 if (ada_is_constrained_packed_array_type (arr_type))
3041 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
3042 else if (ada_is_simple_array_type (arr_type))
3043 return ada_array_bound_from_type (arr_type, n, which);
3044 else
3045 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
3046 }
3047
3048 /* Given that arr is an array value, returns the length of the
3049 nth index. This routine will also work for arrays with bounds
3050 supplied by run-time quantities other than discriminants.
3051 Does not work for arrays indexed by enumeration types with representation
3052 clauses at the moment. */
3053
3054 static LONGEST
3055 ada_array_length (struct value *arr, int n)
3056 {
3057 struct type *arr_type, *index_type;
3058 int low, high;
3059
3060 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3061 arr = value_ind (arr);
3062 arr_type = value_enclosing_type (arr);
3063
3064 if (ada_is_constrained_packed_array_type (arr_type))
3065 return ada_array_length (decode_constrained_packed_array (arr), n);
3066
3067 if (ada_is_simple_array_type (arr_type))
3068 {
3069 low = ada_array_bound_from_type (arr_type, n, 0);
3070 high = ada_array_bound_from_type (arr_type, n, 1);
3071 }
3072 else
3073 {
3074 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3075 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3076 }
3077
3078 arr_type = check_typedef (arr_type);
3079 index_type = ada_index_type (arr_type, n, "length");
3080 if (index_type != NULL)
3081 {
3082 struct type *base_type;
3083 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3084 base_type = TYPE_TARGET_TYPE (index_type);
3085 else
3086 base_type = index_type;
3087
3088 low = pos_atr (value_from_longest (base_type, low));
3089 high = pos_atr (value_from_longest (base_type, high));
3090 }
3091 return high - low + 1;
3092 }
3093
3094 /* An array whose type is that of ARR_TYPE (an array type), with
3095 bounds LOW to HIGH, but whose contents are unimportant. If HIGH is
3096 less than LOW, then LOW-1 is used. */
3097
3098 static struct value *
3099 empty_array (struct type *arr_type, int low, int high)
3100 {
3101 struct type *arr_type0 = ada_check_typedef (arr_type);
3102 struct type *index_type
3103 = create_static_range_type
3104 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low,
3105 high < low ? low - 1 : high);
3106 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3107
3108 return allocate_value (create_array_type (NULL, elt_type, index_type));
3109 }
3110 \f
3111
3112 /* Name resolution */
3113
3114 /* The "decoded" name for the user-definable Ada operator corresponding
3115 to OP. */
3116
3117 static const char *
3118 ada_decoded_op_name (enum exp_opcode op)
3119 {
3120 int i;
3121
3122 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3123 {
3124 if (ada_opname_table[i].op == op)
3125 return ada_opname_table[i].decoded;
3126 }
3127 error (_("Could not find operator name for opcode"));
3128 }
3129
3130 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3131 in a listing of choices during disambiguation (see sort_choices, below).
3132 The idea is that overloadings of a subprogram name from the
3133 same package should sort in their source order. We settle for ordering
3134 such symbols by their trailing number (__N or $N). */
3135
3136 static int
3137 encoded_ordered_before (const char *N0, const char *N1)
3138 {
3139 if (N1 == NULL)
3140 return 0;
3141 else if (N0 == NULL)
3142 return 1;
3143 else
3144 {
3145 int k0, k1;
3146
3147 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3148 ;
3149 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3150 ;
3151 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3152 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3153 {
3154 int n0, n1;
3155
3156 n0 = k0;
3157 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3158 n0 -= 1;
3159 n1 = k1;
3160 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3161 n1 -= 1;
3162 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3163 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3164 }
3165 return (strcmp (N0, N1) < 0);
3166 }
3167 }
3168
3169 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3170 encoded names. */
3171
3172 static void
3173 sort_choices (struct block_symbol syms[], int nsyms)
3174 {
3175 int i;
3176
3177 for (i = 1; i < nsyms; i += 1)
3178 {
3179 struct block_symbol sym = syms[i];
3180 int j;
3181
3182 for (j = i - 1; j >= 0; j -= 1)
3183 {
3184 if (encoded_ordered_before (syms[j].symbol->linkage_name (),
3185 sym.symbol->linkage_name ()))
3186 break;
3187 syms[j + 1] = syms[j];
3188 }
3189 syms[j + 1] = sym;
3190 }
3191 }
3192
3193 /* Whether GDB should display formals and return types for functions in the
3194 overloads selection menu. */
3195 static bool print_signatures = true;
3196
3197 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3198 all but functions, the signature is just the name of the symbol. For
3199 functions, this is the name of the function, the list of types for formals
3200 and the return type (if any). */
3201
3202 static void
3203 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3204 const struct type_print_options *flags)
3205 {
3206 struct type *type = SYMBOL_TYPE (sym);
3207
3208 fprintf_filtered (stream, "%s", sym->print_name ());
3209 if (!print_signatures
3210 || type == NULL
3211 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3212 return;
3213
3214 if (TYPE_NFIELDS (type) > 0)
3215 {
3216 int i;
3217
3218 fprintf_filtered (stream, " (");
3219 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3220 {
3221 if (i > 0)
3222 fprintf_filtered (stream, "; ");
3223 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3224 flags);
3225 }
3226 fprintf_filtered (stream, ")");
3227 }
3228 if (TYPE_TARGET_TYPE (type) != NULL
3229 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3230 {
3231 fprintf_filtered (stream, " return ");
3232 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3233 }
3234 }
3235
3236 /* Read and validate a set of numeric choices from the user in the
3237 range 0 .. N_CHOICES-1. Place the results in increasing
3238 order in CHOICES[0 .. N-1], and return N.
3239
3240 The user types choices as a sequence of numbers on one line
3241 separated by blanks, encoding them as follows:
3242
3243 + A choice of 0 means to cancel the selection, throwing an error.
3244 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3245 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3246
3247 The user is not allowed to choose more than MAX_RESULTS values.
3248
3249 ANNOTATION_SUFFIX, if present, is used to annotate the input
3250 prompts (for use with the -f switch). */
3251
3252 static int
3253 get_selections (int *choices, int n_choices, int max_results,
3254 int is_all_choice, const char *annotation_suffix)
3255 {
3256 const char *args;
3257 const char *prompt;
3258 int n_chosen;
3259 int first_choice = is_all_choice ? 2 : 1;
3260
3261 prompt = getenv ("PS2");
3262 if (prompt == NULL)
3263 prompt = "> ";
3264
3265 args = command_line_input (prompt, annotation_suffix);
3266
3267 if (args == NULL)
3268 error_no_arg (_("one or more choice numbers"));
3269
3270 n_chosen = 0;
3271
3272 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3273 order, as given in args. Choices are validated. */
3274 while (1)
3275 {
3276 char *args2;
3277 int choice, j;
3278
3279 args = skip_spaces (args);
3280 if (*args == '\0' && n_chosen == 0)
3281 error_no_arg (_("one or more choice numbers"));
3282 else if (*args == '\0')
3283 break;
3284
3285 choice = strtol (args, &args2, 10);
3286 if (args == args2 || choice < 0
3287 || choice > n_choices + first_choice - 1)
3288 error (_("Argument must be choice number"));
3289 args = args2;
3290
3291 if (choice == 0)
3292 error (_("cancelled"));
3293
3294 if (choice < first_choice)
3295 {
3296 n_chosen = n_choices;
3297 for (j = 0; j < n_choices; j += 1)
3298 choices[j] = j;
3299 break;
3300 }
3301 choice -= first_choice;
3302
3303 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3304 {
3305 }
3306
3307 if (j < 0 || choice != choices[j])
3308 {
3309 int k;
3310
3311 for (k = n_chosen - 1; k > j; k -= 1)
3312 choices[k + 1] = choices[k];
3313 choices[j + 1] = choice;
3314 n_chosen += 1;
3315 }
3316 }
3317
3318 if (n_chosen > max_results)
3319 error (_("Select no more than %d of the above"), max_results);
3320
3321 return n_chosen;
3322 }
3323
3324 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3325 by asking the user (if necessary), returning the number selected,
3326 and setting the first elements of SYMS items. Error if no symbols
3327 selected. */
3328
3329 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3330 to be re-integrated one of these days. */
3331
3332 static int
3333 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3334 {
3335 int i;
3336 int *chosen = XALLOCAVEC (int , nsyms);
3337 int n_chosen;
3338 int first_choice = (max_results == 1) ? 1 : 2;
3339 const char *select_mode = multiple_symbols_select_mode ();
3340
3341 if (max_results < 1)
3342 error (_("Request to select 0 symbols!"));
3343 if (nsyms <= 1)
3344 return nsyms;
3345
3346 if (select_mode == multiple_symbols_cancel)
3347 error (_("\
3348 canceled because the command is ambiguous\n\
3349 See set/show multiple-symbol."));
3350
3351 /* If select_mode is "all", then return all possible symbols.
3352 Only do that if more than one symbol can be selected, of course.
3353 Otherwise, display the menu as usual. */
3354 if (select_mode == multiple_symbols_all && max_results > 1)
3355 return nsyms;
3356
3357 printf_filtered (_("[0] cancel\n"));
3358 if (max_results > 1)
3359 printf_filtered (_("[1] all\n"));
3360
3361 sort_choices (syms, nsyms);
3362
3363 for (i = 0; i < nsyms; i += 1)
3364 {
3365 if (syms[i].symbol == NULL)
3366 continue;
3367
3368 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3369 {
3370 struct symtab_and_line sal =
3371 find_function_start_sal (syms[i].symbol, 1);
3372
3373 printf_filtered ("[%d] ", i + first_choice);
3374 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3375 &type_print_raw_options);
3376 if (sal.symtab == NULL)
3377 printf_filtered (_(" at %p[<no source file available>%p]:%d\n"),
3378 metadata_style.style ().ptr (), nullptr, sal.line);
3379 else
3380 printf_filtered
3381 (_(" at %ps:%d\n"),
3382 styled_string (file_name_style.style (),
3383 symtab_to_filename_for_display (sal.symtab)),
3384 sal.line);
3385 continue;
3386 }
3387 else
3388 {
3389 int is_enumeral =
3390 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3391 && SYMBOL_TYPE (syms[i].symbol) != NULL
3392 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
3393 struct symtab *symtab = NULL;
3394
3395 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3396 symtab = symbol_symtab (syms[i].symbol);
3397
3398 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3399 {
3400 printf_filtered ("[%d] ", i + first_choice);
3401 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3402 &type_print_raw_options);
3403 printf_filtered (_(" at %s:%d\n"),
3404 symtab_to_filename_for_display (symtab),
3405 SYMBOL_LINE (syms[i].symbol));
3406 }
3407 else if (is_enumeral
3408 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
3409 {
3410 printf_filtered (("[%d] "), i + first_choice);
3411 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3412 gdb_stdout, -1, 0, &type_print_raw_options);
3413 printf_filtered (_("'(%s) (enumeral)\n"),
3414 syms[i].symbol->print_name ());
3415 }
3416 else
3417 {
3418 printf_filtered ("[%d] ", i + first_choice);
3419 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3420 &type_print_raw_options);
3421
3422 if (symtab != NULL)
3423 printf_filtered (is_enumeral
3424 ? _(" in %s (enumeral)\n")
3425 : _(" at %s:?\n"),
3426 symtab_to_filename_for_display (symtab));
3427 else
3428 printf_filtered (is_enumeral
3429 ? _(" (enumeral)\n")
3430 : _(" at ?\n"));
3431 }
3432 }
3433 }
3434
3435 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3436 "overload-choice");
3437
3438 for (i = 0; i < n_chosen; i += 1)
3439 syms[i] = syms[chosen[i]];
3440
3441 return n_chosen;
3442 }
3443
3444 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3445 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3446 undefined namespace) and converts operators that are
3447 user-defined into appropriate function calls. If CONTEXT_TYPE is
3448 non-null, it provides a preferred result type [at the moment, only
3449 type void has any effect---causing procedures to be preferred over
3450 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3451 return type is preferred. May change (expand) *EXP. */
3452
3453 static void
3454 resolve (expression_up *expp, int void_context_p, int parse_completion,
3455 innermost_block_tracker *tracker)
3456 {
3457 struct type *context_type = NULL;
3458 int pc = 0;
3459
3460 if (void_context_p)
3461 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3462
3463 resolve_subexp (expp, &pc, 1, context_type, parse_completion, tracker);
3464 }
3465
3466 /* Resolve the operator of the subexpression beginning at
3467 position *POS of *EXPP. "Resolving" consists of replacing
3468 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3469 with their resolutions, replacing built-in operators with
3470 function calls to user-defined operators, where appropriate, and,
3471 when DEPROCEDURE_P is non-zero, converting function-valued variables
3472 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3473 are as in ada_resolve, above. */
3474
3475 static struct value *
3476 resolve_subexp (expression_up *expp, int *pos, int deprocedure_p,
3477 struct type *context_type, int parse_completion,
3478 innermost_block_tracker *tracker)
3479 {
3480 int pc = *pos;
3481 int i;
3482 struct expression *exp; /* Convenience: == *expp. */
3483 enum exp_opcode op = (*expp)->elts[pc].opcode;
3484 struct value **argvec; /* Vector of operand types (alloca'ed). */
3485 int nargs; /* Number of operands. */
3486 int oplen;
3487
3488 argvec = NULL;
3489 nargs = 0;
3490 exp = expp->get ();
3491
3492 /* Pass one: resolve operands, saving their types and updating *pos,
3493 if needed. */
3494 switch (op)
3495 {
3496 case OP_FUNCALL:
3497 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3498 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3499 *pos += 7;
3500 else
3501 {
3502 *pos += 3;
3503 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3504 }
3505 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3506 break;
3507
3508 case UNOP_ADDR:
3509 *pos += 1;
3510 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3511 break;
3512
3513 case UNOP_QUAL:
3514 *pos += 3;
3515 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type),
3516 parse_completion, tracker);
3517 break;
3518
3519 case OP_ATR_MODULUS:
3520 case OP_ATR_SIZE:
3521 case OP_ATR_TAG:
3522 case OP_ATR_FIRST:
3523 case OP_ATR_LAST:
3524 case OP_ATR_LENGTH:
3525 case OP_ATR_POS:
3526 case OP_ATR_VAL:
3527 case OP_ATR_MIN:
3528 case OP_ATR_MAX:
3529 case TERNOP_IN_RANGE:
3530 case BINOP_IN_BOUNDS:
3531 case UNOP_IN_RANGE:
3532 case OP_AGGREGATE:
3533 case OP_OTHERS:
3534 case OP_CHOICES:
3535 case OP_POSITIONAL:
3536 case OP_DISCRETE_RANGE:
3537 case OP_NAME:
3538 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3539 *pos += oplen;
3540 break;
3541
3542 case BINOP_ASSIGN:
3543 {
3544 struct value *arg1;
3545
3546 *pos += 1;
3547 arg1 = resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3548 if (arg1 == NULL)
3549 resolve_subexp (expp, pos, 1, NULL, parse_completion, tracker);
3550 else
3551 resolve_subexp (expp, pos, 1, value_type (arg1), parse_completion,
3552 tracker);
3553 break;
3554 }
3555
3556 case UNOP_CAST:
3557 *pos += 3;
3558 nargs = 1;
3559 break;
3560
3561 case BINOP_ADD:
3562 case BINOP_SUB:
3563 case BINOP_MUL:
3564 case BINOP_DIV:
3565 case BINOP_REM:
3566 case BINOP_MOD:
3567 case BINOP_EXP:
3568 case BINOP_CONCAT:
3569 case BINOP_LOGICAL_AND:
3570 case BINOP_LOGICAL_OR:
3571 case BINOP_BITWISE_AND:
3572 case BINOP_BITWISE_IOR:
3573 case BINOP_BITWISE_XOR:
3574
3575 case BINOP_EQUAL:
3576 case BINOP_NOTEQUAL:
3577 case BINOP_LESS:
3578 case BINOP_GTR:
3579 case BINOP_LEQ:
3580 case BINOP_GEQ:
3581
3582 case BINOP_REPEAT:
3583 case BINOP_SUBSCRIPT:
3584 case BINOP_COMMA:
3585 *pos += 1;
3586 nargs = 2;
3587 break;
3588
3589 case UNOP_NEG:
3590 case UNOP_PLUS:
3591 case UNOP_LOGICAL_NOT:
3592 case UNOP_ABS:
3593 case UNOP_IND:
3594 *pos += 1;
3595 nargs = 1;
3596 break;
3597
3598 case OP_LONG:
3599 case OP_FLOAT:
3600 case OP_VAR_VALUE:
3601 case OP_VAR_MSYM_VALUE:
3602 *pos += 4;
3603 break;
3604
3605 case OP_TYPE:
3606 case OP_BOOL:
3607 case OP_LAST:
3608 case OP_INTERNALVAR:
3609 *pos += 3;
3610 break;
3611
3612 case UNOP_MEMVAL:
3613 *pos += 3;
3614 nargs = 1;
3615 break;
3616
3617 case OP_REGISTER:
3618 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3619 break;
3620
3621 case STRUCTOP_STRUCT:
3622 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3623 nargs = 1;
3624 break;
3625
3626 case TERNOP_SLICE:
3627 *pos += 1;
3628 nargs = 3;
3629 break;
3630
3631 case OP_STRING:
3632 break;
3633
3634 default:
3635 error (_("Unexpected operator during name resolution"));
3636 }
3637
3638 argvec = XALLOCAVEC (struct value *, nargs + 1);
3639 for (i = 0; i < nargs; i += 1)
3640 argvec[i] = resolve_subexp (expp, pos, 1, NULL, parse_completion,
3641 tracker);
3642 argvec[i] = NULL;
3643 exp = expp->get ();
3644
3645 /* Pass two: perform any resolution on principal operator. */
3646 switch (op)
3647 {
3648 default:
3649 break;
3650
3651 case OP_VAR_VALUE:
3652 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3653 {
3654 std::vector<struct block_symbol> candidates;
3655 int n_candidates;
3656
3657 n_candidates =
3658 ada_lookup_symbol_list (exp->elts[pc + 2].symbol->linkage_name (),
3659 exp->elts[pc + 1].block, VAR_DOMAIN,
3660 &candidates);
3661
3662 if (n_candidates > 1)
3663 {
3664 /* Types tend to get re-introduced locally, so if there
3665 are any local symbols that are not types, first filter
3666 out all types. */
3667 int j;
3668 for (j = 0; j < n_candidates; j += 1)
3669 switch (SYMBOL_CLASS (candidates[j].symbol))
3670 {
3671 case LOC_REGISTER:
3672 case LOC_ARG:
3673 case LOC_REF_ARG:
3674 case LOC_REGPARM_ADDR:
3675 case LOC_LOCAL:
3676 case LOC_COMPUTED:
3677 goto FoundNonType;
3678 default:
3679 break;
3680 }
3681 FoundNonType:
3682 if (j < n_candidates)
3683 {
3684 j = 0;
3685 while (j < n_candidates)
3686 {
3687 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3688 {
3689 candidates[j] = candidates[n_candidates - 1];
3690 n_candidates -= 1;
3691 }
3692 else
3693 j += 1;
3694 }
3695 }
3696 }
3697
3698 if (n_candidates == 0)
3699 error (_("No definition found for %s"),
3700 exp->elts[pc + 2].symbol->print_name ());
3701 else if (n_candidates == 1)
3702 i = 0;
3703 else if (deprocedure_p
3704 && !is_nonfunction (candidates.data (), n_candidates))
3705 {
3706 i = ada_resolve_function
3707 (candidates.data (), n_candidates, NULL, 0,
3708 exp->elts[pc + 2].symbol->linkage_name (),
3709 context_type, parse_completion);
3710 if (i < 0)
3711 error (_("Could not find a match for %s"),
3712 exp->elts[pc + 2].symbol->print_name ());
3713 }
3714 else
3715 {
3716 printf_filtered (_("Multiple matches for %s\n"),
3717 exp->elts[pc + 2].symbol->print_name ());
3718 user_select_syms (candidates.data (), n_candidates, 1);
3719 i = 0;
3720 }
3721
3722 exp->elts[pc + 1].block = candidates[i].block;
3723 exp->elts[pc + 2].symbol = candidates[i].symbol;
3724 tracker->update (candidates[i]);
3725 }
3726
3727 if (deprocedure_p
3728 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3729 == TYPE_CODE_FUNC))
3730 {
3731 replace_operator_with_call (expp, pc, 0, 4,
3732 exp->elts[pc + 2].symbol,
3733 exp->elts[pc + 1].block);
3734 exp = expp->get ();
3735 }
3736 break;
3737
3738 case OP_FUNCALL:
3739 {
3740 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3741 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3742 {
3743 std::vector<struct block_symbol> candidates;
3744 int n_candidates;
3745
3746 n_candidates =
3747 ada_lookup_symbol_list (exp->elts[pc + 5].symbol->linkage_name (),
3748 exp->elts[pc + 4].block, VAR_DOMAIN,
3749 &candidates);
3750
3751 if (n_candidates == 1)
3752 i = 0;
3753 else
3754 {
3755 i = ada_resolve_function
3756 (candidates.data (), n_candidates,
3757 argvec, nargs,
3758 exp->elts[pc + 5].symbol->linkage_name (),
3759 context_type, parse_completion);
3760 if (i < 0)
3761 error (_("Could not find a match for %s"),
3762 exp->elts[pc + 5].symbol->print_name ());
3763 }
3764
3765 exp->elts[pc + 4].block = candidates[i].block;
3766 exp->elts[pc + 5].symbol = candidates[i].symbol;
3767 tracker->update (candidates[i]);
3768 }
3769 }
3770 break;
3771 case BINOP_ADD:
3772 case BINOP_SUB:
3773 case BINOP_MUL:
3774 case BINOP_DIV:
3775 case BINOP_REM:
3776 case BINOP_MOD:
3777 case BINOP_CONCAT:
3778 case BINOP_BITWISE_AND:
3779 case BINOP_BITWISE_IOR:
3780 case BINOP_BITWISE_XOR:
3781 case BINOP_EQUAL:
3782 case BINOP_NOTEQUAL:
3783 case BINOP_LESS:
3784 case BINOP_GTR:
3785 case BINOP_LEQ:
3786 case BINOP_GEQ:
3787 case BINOP_EXP:
3788 case UNOP_NEG:
3789 case UNOP_PLUS:
3790 case UNOP_LOGICAL_NOT:
3791 case UNOP_ABS:
3792 if (possible_user_operator_p (op, argvec))
3793 {
3794 std::vector<struct block_symbol> candidates;
3795 int n_candidates;
3796
3797 n_candidates =
3798 ada_lookup_symbol_list (ada_decoded_op_name (op),
3799 NULL, VAR_DOMAIN,
3800 &candidates);
3801
3802 i = ada_resolve_function (candidates.data (), n_candidates, argvec,
3803 nargs, ada_decoded_op_name (op), NULL,
3804 parse_completion);
3805 if (i < 0)
3806 break;
3807
3808 replace_operator_with_call (expp, pc, nargs, 1,
3809 candidates[i].symbol,
3810 candidates[i].block);
3811 exp = expp->get ();
3812 }
3813 break;
3814
3815 case OP_TYPE:
3816 case OP_REGISTER:
3817 return NULL;
3818 }
3819
3820 *pos = pc;
3821 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3822 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3823 exp->elts[pc + 1].objfile,
3824 exp->elts[pc + 2].msymbol);
3825 else
3826 return evaluate_subexp_type (exp, pos);
3827 }
3828
3829 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3830 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3831 a non-pointer. */
3832 /* The term "match" here is rather loose. The match is heuristic and
3833 liberal. */
3834
3835 static int
3836 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3837 {
3838 ftype = ada_check_typedef (ftype);
3839 atype = ada_check_typedef (atype);
3840
3841 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3842 ftype = TYPE_TARGET_TYPE (ftype);
3843 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3844 atype = TYPE_TARGET_TYPE (atype);
3845
3846 switch (TYPE_CODE (ftype))
3847 {
3848 default:
3849 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3850 case TYPE_CODE_PTR:
3851 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3852 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3853 TYPE_TARGET_TYPE (atype), 0);
3854 else
3855 return (may_deref
3856 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3857 case TYPE_CODE_INT:
3858 case TYPE_CODE_ENUM:
3859 case TYPE_CODE_RANGE:
3860 switch (TYPE_CODE (atype))
3861 {
3862 case TYPE_CODE_INT:
3863 case TYPE_CODE_ENUM:
3864 case TYPE_CODE_RANGE:
3865 return 1;
3866 default:
3867 return 0;
3868 }
3869
3870 case TYPE_CODE_ARRAY:
3871 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3872 || ada_is_array_descriptor_type (atype));
3873
3874 case TYPE_CODE_STRUCT:
3875 if (ada_is_array_descriptor_type (ftype))
3876 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3877 || ada_is_array_descriptor_type (atype));
3878 else
3879 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3880 && !ada_is_array_descriptor_type (atype));
3881
3882 case TYPE_CODE_UNION:
3883 case TYPE_CODE_FLT:
3884 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3885 }
3886 }
3887
3888 /* Return non-zero if the formals of FUNC "sufficiently match" the
3889 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3890 may also be an enumeral, in which case it is treated as a 0-
3891 argument function. */
3892
3893 static int
3894 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3895 {
3896 int i;
3897 struct type *func_type = SYMBOL_TYPE (func);
3898
3899 if (SYMBOL_CLASS (func) == LOC_CONST
3900 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3901 return (n_actuals == 0);
3902 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3903 return 0;
3904
3905 if (TYPE_NFIELDS (func_type) != n_actuals)
3906 return 0;
3907
3908 for (i = 0; i < n_actuals; i += 1)
3909 {
3910 if (actuals[i] == NULL)
3911 return 0;
3912 else
3913 {
3914 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3915 i));
3916 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3917
3918 if (!ada_type_match (ftype, atype, 1))
3919 return 0;
3920 }
3921 }
3922 return 1;
3923 }
3924
3925 /* False iff function type FUNC_TYPE definitely does not produce a value
3926 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3927 FUNC_TYPE is not a valid function type with a non-null return type
3928 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3929
3930 static int
3931 return_match (struct type *func_type, struct type *context_type)
3932 {
3933 struct type *return_type;
3934
3935 if (func_type == NULL)
3936 return 1;
3937
3938 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3939 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3940 else
3941 return_type = get_base_type (func_type);
3942 if (return_type == NULL)
3943 return 1;
3944
3945 context_type = get_base_type (context_type);
3946
3947 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3948 return context_type == NULL || return_type == context_type;
3949 else if (context_type == NULL)
3950 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3951 else
3952 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3953 }
3954
3955
3956 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3957 function (if any) that matches the types of the NARGS arguments in
3958 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3959 that returns that type, then eliminate matches that don't. If
3960 CONTEXT_TYPE is void and there is at least one match that does not
3961 return void, eliminate all matches that do.
3962
3963 Asks the user if there is more than one match remaining. Returns -1
3964 if there is no such symbol or none is selected. NAME is used
3965 solely for messages. May re-arrange and modify SYMS in
3966 the process; the index returned is for the modified vector. */
3967
3968 static int
3969 ada_resolve_function (struct block_symbol syms[],
3970 int nsyms, struct value **args, int nargs,
3971 const char *name, struct type *context_type,
3972 int parse_completion)
3973 {
3974 int fallback;
3975 int k;
3976 int m; /* Number of hits */
3977
3978 m = 0;
3979 /* In the first pass of the loop, we only accept functions matching
3980 context_type. If none are found, we add a second pass of the loop
3981 where every function is accepted. */
3982 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3983 {
3984 for (k = 0; k < nsyms; k += 1)
3985 {
3986 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3987
3988 if (ada_args_match (syms[k].symbol, args, nargs)
3989 && (fallback || return_match (type, context_type)))
3990 {
3991 syms[m] = syms[k];
3992 m += 1;
3993 }
3994 }
3995 }
3996
3997 /* If we got multiple matches, ask the user which one to use. Don't do this
3998 interactive thing during completion, though, as the purpose of the
3999 completion is providing a list of all possible matches. Prompting the
4000 user to filter it down would be completely unexpected in this case. */
4001 if (m == 0)
4002 return -1;
4003 else if (m > 1 && !parse_completion)
4004 {
4005 printf_filtered (_("Multiple matches for %s\n"), name);
4006 user_select_syms (syms, m, 1);
4007 return 0;
4008 }
4009 return 0;
4010 }
4011
4012 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
4013 on the function identified by SYM and BLOCK, and taking NARGS
4014 arguments. Update *EXPP as needed to hold more space. */
4015
4016 static void
4017 replace_operator_with_call (expression_up *expp, int pc, int nargs,
4018 int oplen, struct symbol *sym,
4019 const struct block *block)
4020 {
4021 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4022 symbol, -oplen for operator being replaced). */
4023 struct expression *newexp = (struct expression *)
4024 xzalloc (sizeof (struct expression)
4025 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
4026 struct expression *exp = expp->get ();
4027
4028 newexp->nelts = exp->nelts + 7 - oplen;
4029 newexp->language_defn = exp->language_defn;
4030 newexp->gdbarch = exp->gdbarch;
4031 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
4032 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4033 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
4034
4035 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4036 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4037
4038 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4039 newexp->elts[pc + 4].block = block;
4040 newexp->elts[pc + 5].symbol = sym;
4041
4042 expp->reset (newexp);
4043 }
4044
4045 /* Type-class predicates */
4046
4047 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4048 or FLOAT). */
4049
4050 static int
4051 numeric_type_p (struct type *type)
4052 {
4053 if (type == NULL)
4054 return 0;
4055 else
4056 {
4057 switch (TYPE_CODE (type))
4058 {
4059 case TYPE_CODE_INT:
4060 case TYPE_CODE_FLT:
4061 return 1;
4062 case TYPE_CODE_RANGE:
4063 return (type == TYPE_TARGET_TYPE (type)
4064 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4065 default:
4066 return 0;
4067 }
4068 }
4069 }
4070
4071 /* True iff TYPE is integral (an INT or RANGE of INTs). */
4072
4073 static int
4074 integer_type_p (struct type *type)
4075 {
4076 if (type == NULL)
4077 return 0;
4078 else
4079 {
4080 switch (TYPE_CODE (type))
4081 {
4082 case TYPE_CODE_INT:
4083 return 1;
4084 case TYPE_CODE_RANGE:
4085 return (type == TYPE_TARGET_TYPE (type)
4086 || integer_type_p (TYPE_TARGET_TYPE (type)));
4087 default:
4088 return 0;
4089 }
4090 }
4091 }
4092
4093 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
4094
4095 static int
4096 scalar_type_p (struct type *type)
4097 {
4098 if (type == NULL)
4099 return 0;
4100 else
4101 {
4102 switch (TYPE_CODE (type))
4103 {
4104 case TYPE_CODE_INT:
4105 case TYPE_CODE_RANGE:
4106 case TYPE_CODE_ENUM:
4107 case TYPE_CODE_FLT:
4108 return 1;
4109 default:
4110 return 0;
4111 }
4112 }
4113 }
4114
4115 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
4116
4117 static int
4118 discrete_type_p (struct type *type)
4119 {
4120 if (type == NULL)
4121 return 0;
4122 else
4123 {
4124 switch (TYPE_CODE (type))
4125 {
4126 case TYPE_CODE_INT:
4127 case TYPE_CODE_RANGE:
4128 case TYPE_CODE_ENUM:
4129 case TYPE_CODE_BOOL:
4130 return 1;
4131 default:
4132 return 0;
4133 }
4134 }
4135 }
4136
4137 /* Returns non-zero if OP with operands in the vector ARGS could be
4138 a user-defined function. Errs on the side of pre-defined operators
4139 (i.e., result 0). */
4140
4141 static int
4142 possible_user_operator_p (enum exp_opcode op, struct value *args[])
4143 {
4144 struct type *type0 =
4145 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
4146 struct type *type1 =
4147 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
4148
4149 if (type0 == NULL)
4150 return 0;
4151
4152 switch (op)
4153 {
4154 default:
4155 return 0;
4156
4157 case BINOP_ADD:
4158 case BINOP_SUB:
4159 case BINOP_MUL:
4160 case BINOP_DIV:
4161 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4162
4163 case BINOP_REM:
4164 case BINOP_MOD:
4165 case BINOP_BITWISE_AND:
4166 case BINOP_BITWISE_IOR:
4167 case BINOP_BITWISE_XOR:
4168 return (!(integer_type_p (type0) && integer_type_p (type1)));
4169
4170 case BINOP_EQUAL:
4171 case BINOP_NOTEQUAL:
4172 case BINOP_LESS:
4173 case BINOP_GTR:
4174 case BINOP_LEQ:
4175 case BINOP_GEQ:
4176 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4177
4178 case BINOP_CONCAT:
4179 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4180
4181 case BINOP_EXP:
4182 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4183
4184 case UNOP_NEG:
4185 case UNOP_PLUS:
4186 case UNOP_LOGICAL_NOT:
4187 case UNOP_ABS:
4188 return (!numeric_type_p (type0));
4189
4190 }
4191 }
4192 \f
4193 /* Renaming */
4194
4195 /* NOTES:
4196
4197 1. In the following, we assume that a renaming type's name may
4198 have an ___XD suffix. It would be nice if this went away at some
4199 point.
4200 2. We handle both the (old) purely type-based representation of
4201 renamings and the (new) variable-based encoding. At some point,
4202 it is devoutly to be hoped that the former goes away
4203 (FIXME: hilfinger-2007-07-09).
4204 3. Subprogram renamings are not implemented, although the XRS
4205 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4206
4207 /* If SYM encodes a renaming,
4208
4209 <renaming> renames <renamed entity>,
4210
4211 sets *LEN to the length of the renamed entity's name,
4212 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4213 the string describing the subcomponent selected from the renamed
4214 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4215 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4216 are undefined). Otherwise, returns a value indicating the category
4217 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4218 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4219 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4220 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4221 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4222 may be NULL, in which case they are not assigned.
4223
4224 [Currently, however, GCC does not generate subprogram renamings.] */
4225
4226 enum ada_renaming_category
4227 ada_parse_renaming (struct symbol *sym,
4228 const char **renamed_entity, int *len,
4229 const char **renaming_expr)
4230 {
4231 enum ada_renaming_category kind;
4232 const char *info;
4233 const char *suffix;
4234
4235 if (sym == NULL)
4236 return ADA_NOT_RENAMING;
4237 switch (SYMBOL_CLASS (sym))
4238 {
4239 default:
4240 return ADA_NOT_RENAMING;
4241 case LOC_LOCAL:
4242 case LOC_STATIC:
4243 case LOC_COMPUTED:
4244 case LOC_OPTIMIZED_OUT:
4245 info = strstr (sym->linkage_name (), "___XR");
4246 if (info == NULL)
4247 return ADA_NOT_RENAMING;
4248 switch (info[5])
4249 {
4250 case '_':
4251 kind = ADA_OBJECT_RENAMING;
4252 info += 6;
4253 break;
4254 case 'E':
4255 kind = ADA_EXCEPTION_RENAMING;
4256 info += 7;
4257 break;
4258 case 'P':
4259 kind = ADA_PACKAGE_RENAMING;
4260 info += 7;
4261 break;
4262 case 'S':
4263 kind = ADA_SUBPROGRAM_RENAMING;
4264 info += 7;
4265 break;
4266 default:
4267 return ADA_NOT_RENAMING;
4268 }
4269 }
4270
4271 if (renamed_entity != NULL)
4272 *renamed_entity = info;
4273 suffix = strstr (info, "___XE");
4274 if (suffix == NULL || suffix == info)
4275 return ADA_NOT_RENAMING;
4276 if (len != NULL)
4277 *len = strlen (info) - strlen (suffix);
4278 suffix += 5;
4279 if (renaming_expr != NULL)
4280 *renaming_expr = suffix;
4281 return kind;
4282 }
4283
4284 /* Compute the value of the given RENAMING_SYM, which is expected to
4285 be a symbol encoding a renaming expression. BLOCK is the block
4286 used to evaluate the renaming. */
4287
4288 static struct value *
4289 ada_read_renaming_var_value (struct symbol *renaming_sym,
4290 const struct block *block)
4291 {
4292 const char *sym_name;
4293
4294 sym_name = renaming_sym->linkage_name ();
4295 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4296 return evaluate_expression (expr.get ());
4297 }
4298 \f
4299
4300 /* Evaluation: Function Calls */
4301
4302 /* Return an lvalue containing the value VAL. This is the identity on
4303 lvalues, and otherwise has the side-effect of allocating memory
4304 in the inferior where a copy of the value contents is copied. */
4305
4306 static struct value *
4307 ensure_lval (struct value *val)
4308 {
4309 if (VALUE_LVAL (val) == not_lval
4310 || VALUE_LVAL (val) == lval_internalvar)
4311 {
4312 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4313 const CORE_ADDR addr =
4314 value_as_long (value_allocate_space_in_inferior (len));
4315
4316 VALUE_LVAL (val) = lval_memory;
4317 set_value_address (val, addr);
4318 write_memory (addr, value_contents (val), len);
4319 }
4320
4321 return val;
4322 }
4323
4324 /* Given ARG, a value of type (pointer or reference to a)*
4325 structure/union, extract the component named NAME from the ultimate
4326 target structure/union and return it as a value with its
4327 appropriate type.
4328
4329 The routine searches for NAME among all members of the structure itself
4330 and (recursively) among all members of any wrapper members
4331 (e.g., '_parent').
4332
4333 If NO_ERR, then simply return NULL in case of error, rather than
4334 calling error. */
4335
4336 static struct value *
4337 ada_value_struct_elt (struct value *arg, const char *name, int no_err)
4338 {
4339 struct type *t, *t1;
4340 struct value *v;
4341 int check_tag;
4342
4343 v = NULL;
4344 t1 = t = ada_check_typedef (value_type (arg));
4345 if (TYPE_CODE (t) == TYPE_CODE_REF)
4346 {
4347 t1 = TYPE_TARGET_TYPE (t);
4348 if (t1 == NULL)
4349 goto BadValue;
4350 t1 = ada_check_typedef (t1);
4351 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
4352 {
4353 arg = coerce_ref (arg);
4354 t = t1;
4355 }
4356 }
4357
4358 while (TYPE_CODE (t) == TYPE_CODE_PTR)
4359 {
4360 t1 = TYPE_TARGET_TYPE (t);
4361 if (t1 == NULL)
4362 goto BadValue;
4363 t1 = ada_check_typedef (t1);
4364 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
4365 {
4366 arg = value_ind (arg);
4367 t = t1;
4368 }
4369 else
4370 break;
4371 }
4372
4373 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
4374 goto BadValue;
4375
4376 if (t1 == t)
4377 v = ada_search_struct_field (name, arg, 0, t);
4378 else
4379 {
4380 int bit_offset, bit_size, byte_offset;
4381 struct type *field_type;
4382 CORE_ADDR address;
4383
4384 if (TYPE_CODE (t) == TYPE_CODE_PTR)
4385 address = value_address (ada_value_ind (arg));
4386 else
4387 address = value_address (ada_coerce_ref (arg));
4388
4389 /* Check to see if this is a tagged type. We also need to handle
4390 the case where the type is a reference to a tagged type, but
4391 we have to be careful to exclude pointers to tagged types.
4392 The latter should be shown as usual (as a pointer), whereas
4393 a reference should mostly be transparent to the user. */
4394
4395 if (ada_is_tagged_type (t1, 0)
4396 || (TYPE_CODE (t1) == TYPE_CODE_REF
4397 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
4398 {
4399 /* We first try to find the searched field in the current type.
4400 If not found then let's look in the fixed type. */
4401
4402 if (!find_struct_field (name, t1, 0,
4403 &field_type, &byte_offset, &bit_offset,
4404 &bit_size, NULL))
4405 check_tag = 1;
4406 else
4407 check_tag = 0;
4408 }
4409 else
4410 check_tag = 0;
4411
4412 /* Convert to fixed type in all cases, so that we have proper
4413 offsets to each field in unconstrained record types. */
4414 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
4415 address, NULL, check_tag);
4416
4417 if (find_struct_field (name, t1, 0,
4418 &field_type, &byte_offset, &bit_offset,
4419 &bit_size, NULL))
4420 {
4421 if (bit_size != 0)
4422 {
4423 if (TYPE_CODE (t) == TYPE_CODE_REF)
4424 arg = ada_coerce_ref (arg);
4425 else
4426 arg = ada_value_ind (arg);
4427 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
4428 bit_offset, bit_size,
4429 field_type);
4430 }
4431 else
4432 v = value_at_lazy (field_type, address + byte_offset);
4433 }
4434 }
4435
4436 if (v != NULL || no_err)
4437 return v;
4438 else
4439 error (_("There is no member named %s."), name);
4440
4441 BadValue:
4442 if (no_err)
4443 return NULL;
4444 else
4445 error (_("Attempt to extract a component of "
4446 "a value that is not a record."));
4447 }
4448
4449 /* Return the value ACTUAL, converted to be an appropriate value for a
4450 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4451 allocating any necessary descriptors (fat pointers), or copies of
4452 values not residing in memory, updating it as needed. */
4453
4454 struct value *
4455 ada_convert_actual (struct value *actual, struct type *formal_type0)
4456 {
4457 struct type *actual_type = ada_check_typedef (value_type (actual));
4458 struct type *formal_type = ada_check_typedef (formal_type0);
4459 struct type *formal_target =
4460 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4461 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4462 struct type *actual_target =
4463 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4464 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4465
4466 if (ada_is_array_descriptor_type (formal_target)
4467 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4468 return make_array_descriptor (formal_type, actual);
4469 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4470 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4471 {
4472 struct value *result;
4473
4474 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4475 && ada_is_array_descriptor_type (actual_target))
4476 result = desc_data (actual);
4477 else if (TYPE_CODE (formal_type) != TYPE_CODE_PTR)
4478 {
4479 if (VALUE_LVAL (actual) != lval_memory)
4480 {
4481 struct value *val;
4482
4483 actual_type = ada_check_typedef (value_type (actual));
4484 val = allocate_value (actual_type);
4485 memcpy ((char *) value_contents_raw (val),
4486 (char *) value_contents (actual),
4487 TYPE_LENGTH (actual_type));
4488 actual = ensure_lval (val);
4489 }
4490 result = value_addr (actual);
4491 }
4492 else
4493 return actual;
4494 return value_cast_pointers (formal_type, result, 0);
4495 }
4496 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4497 return ada_value_ind (actual);
4498 else if (ada_is_aligner_type (formal_type))
4499 {
4500 /* We need to turn this parameter into an aligner type
4501 as well. */
4502 struct value *aligner = allocate_value (formal_type);
4503 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4504
4505 value_assign_to_component (aligner, component, actual);
4506 return aligner;
4507 }
4508
4509 return actual;
4510 }
4511
4512 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4513 type TYPE. This is usually an inefficient no-op except on some targets
4514 (such as AVR) where the representation of a pointer and an address
4515 differs. */
4516
4517 static CORE_ADDR
4518 value_pointer (struct value *value, struct type *type)
4519 {
4520 struct gdbarch *gdbarch = get_type_arch (type);
4521 unsigned len = TYPE_LENGTH (type);
4522 gdb_byte *buf = (gdb_byte *) alloca (len);
4523 CORE_ADDR addr;
4524
4525 addr = value_address (value);
4526 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4527 addr = extract_unsigned_integer (buf, len, type_byte_order (type));
4528 return addr;
4529 }
4530
4531
4532 /* Push a descriptor of type TYPE for array value ARR on the stack at
4533 *SP, updating *SP to reflect the new descriptor. Return either
4534 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4535 to-descriptor type rather than a descriptor type), a struct value *
4536 representing a pointer to this descriptor. */
4537
4538 static struct value *
4539 make_array_descriptor (struct type *type, struct value *arr)
4540 {
4541 struct type *bounds_type = desc_bounds_type (type);
4542 struct type *desc_type = desc_base_type (type);
4543 struct value *descriptor = allocate_value (desc_type);
4544 struct value *bounds = allocate_value (bounds_type);
4545 int i;
4546
4547 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4548 i > 0; i -= 1)
4549 {
4550 modify_field (value_type (bounds), value_contents_writeable (bounds),
4551 ada_array_bound (arr, i, 0),
4552 desc_bound_bitpos (bounds_type, i, 0),
4553 desc_bound_bitsize (bounds_type, i, 0));
4554 modify_field (value_type (bounds), value_contents_writeable (bounds),
4555 ada_array_bound (arr, i, 1),
4556 desc_bound_bitpos (bounds_type, i, 1),
4557 desc_bound_bitsize (bounds_type, i, 1));
4558 }
4559
4560 bounds = ensure_lval (bounds);
4561
4562 modify_field (value_type (descriptor),
4563 value_contents_writeable (descriptor),
4564 value_pointer (ensure_lval (arr),
4565 TYPE_FIELD_TYPE (desc_type, 0)),
4566 fat_pntr_data_bitpos (desc_type),
4567 fat_pntr_data_bitsize (desc_type));
4568
4569 modify_field (value_type (descriptor),
4570 value_contents_writeable (descriptor),
4571 value_pointer (bounds,
4572 TYPE_FIELD_TYPE (desc_type, 1)),
4573 fat_pntr_bounds_bitpos (desc_type),
4574 fat_pntr_bounds_bitsize (desc_type));
4575
4576 descriptor = ensure_lval (descriptor);
4577
4578 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4579 return value_addr (descriptor);
4580 else
4581 return descriptor;
4582 }
4583 \f
4584 /* Symbol Cache Module */
4585
4586 /* Performance measurements made as of 2010-01-15 indicate that
4587 this cache does bring some noticeable improvements. Depending
4588 on the type of entity being printed, the cache can make it as much
4589 as an order of magnitude faster than without it.
4590
4591 The descriptive type DWARF extension has significantly reduced
4592 the need for this cache, at least when DWARF is being used. However,
4593 even in this case, some expensive name-based symbol searches are still
4594 sometimes necessary - to find an XVZ variable, mostly. */
4595
4596 /* Initialize the contents of SYM_CACHE. */
4597
4598 static void
4599 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4600 {
4601 obstack_init (&sym_cache->cache_space);
4602 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4603 }
4604
4605 /* Free the memory used by SYM_CACHE. */
4606
4607 static void
4608 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4609 {
4610 obstack_free (&sym_cache->cache_space, NULL);
4611 xfree (sym_cache);
4612 }
4613
4614 /* Return the symbol cache associated to the given program space PSPACE.
4615 If not allocated for this PSPACE yet, allocate and initialize one. */
4616
4617 static struct ada_symbol_cache *
4618 ada_get_symbol_cache (struct program_space *pspace)
4619 {
4620 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4621
4622 if (pspace_data->sym_cache == NULL)
4623 {
4624 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4625 ada_init_symbol_cache (pspace_data->sym_cache);
4626 }
4627
4628 return pspace_data->sym_cache;
4629 }
4630
4631 /* Clear all entries from the symbol cache. */
4632
4633 static void
4634 ada_clear_symbol_cache (void)
4635 {
4636 struct ada_symbol_cache *sym_cache
4637 = ada_get_symbol_cache (current_program_space);
4638
4639 obstack_free (&sym_cache->cache_space, NULL);
4640 ada_init_symbol_cache (sym_cache);
4641 }
4642
4643 /* Search our cache for an entry matching NAME and DOMAIN.
4644 Return it if found, or NULL otherwise. */
4645
4646 static struct cache_entry **
4647 find_entry (const char *name, domain_enum domain)
4648 {
4649 struct ada_symbol_cache *sym_cache
4650 = ada_get_symbol_cache (current_program_space);
4651 int h = msymbol_hash (name) % HASH_SIZE;
4652 struct cache_entry **e;
4653
4654 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4655 {
4656 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4657 return e;
4658 }
4659 return NULL;
4660 }
4661
4662 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4663 Return 1 if found, 0 otherwise.
4664
4665 If an entry was found and SYM is not NULL, set *SYM to the entry's
4666 SYM. Same principle for BLOCK if not NULL. */
4667
4668 static int
4669 lookup_cached_symbol (const char *name, domain_enum domain,
4670 struct symbol **sym, const struct block **block)
4671 {
4672 struct cache_entry **e = find_entry (name, domain);
4673
4674 if (e == NULL)
4675 return 0;
4676 if (sym != NULL)
4677 *sym = (*e)->sym;
4678 if (block != NULL)
4679 *block = (*e)->block;
4680 return 1;
4681 }
4682
4683 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4684 in domain DOMAIN, save this result in our symbol cache. */
4685
4686 static void
4687 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4688 const struct block *block)
4689 {
4690 struct ada_symbol_cache *sym_cache
4691 = ada_get_symbol_cache (current_program_space);
4692 int h;
4693 struct cache_entry *e;
4694
4695 /* Symbols for builtin types don't have a block.
4696 For now don't cache such symbols. */
4697 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4698 return;
4699
4700 /* If the symbol is a local symbol, then do not cache it, as a search
4701 for that symbol depends on the context. To determine whether
4702 the symbol is local or not, we check the block where we found it
4703 against the global and static blocks of its associated symtab. */
4704 if (sym
4705 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4706 GLOBAL_BLOCK) != block
4707 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4708 STATIC_BLOCK) != block)
4709 return;
4710
4711 h = msymbol_hash (name) % HASH_SIZE;
4712 e = XOBNEW (&sym_cache->cache_space, cache_entry);
4713 e->next = sym_cache->root[h];
4714 sym_cache->root[h] = e;
4715 e->name = obstack_strdup (&sym_cache->cache_space, name);
4716 e->sym = sym;
4717 e->domain = domain;
4718 e->block = block;
4719 }
4720 \f
4721 /* Symbol Lookup */
4722
4723 /* Return the symbol name match type that should be used used when
4724 searching for all symbols matching LOOKUP_NAME.
4725
4726 LOOKUP_NAME is expected to be a symbol name after transformation
4727 for Ada lookups. */
4728
4729 static symbol_name_match_type
4730 name_match_type_from_name (const char *lookup_name)
4731 {
4732 return (strstr (lookup_name, "__") == NULL
4733 ? symbol_name_match_type::WILD
4734 : symbol_name_match_type::FULL);
4735 }
4736
4737 /* Return the result of a standard (literal, C-like) lookup of NAME in
4738 given DOMAIN, visible from lexical block BLOCK. */
4739
4740 static struct symbol *
4741 standard_lookup (const char *name, const struct block *block,
4742 domain_enum domain)
4743 {
4744 /* Initialize it just to avoid a GCC false warning. */
4745 struct block_symbol sym = {};
4746
4747 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4748 return sym.symbol;
4749 ada_lookup_encoded_symbol (name, block, domain, &sym);
4750 cache_symbol (name, domain, sym.symbol, sym.block);
4751 return sym.symbol;
4752 }
4753
4754
4755 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4756 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4757 since they contend in overloading in the same way. */
4758 static int
4759 is_nonfunction (struct block_symbol syms[], int n)
4760 {
4761 int i;
4762
4763 for (i = 0; i < n; i += 1)
4764 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4765 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4766 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
4767 return 1;
4768
4769 return 0;
4770 }
4771
4772 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4773 struct types. Otherwise, they may not. */
4774
4775 static int
4776 equiv_types (struct type *type0, struct type *type1)
4777 {
4778 if (type0 == type1)
4779 return 1;
4780 if (type0 == NULL || type1 == NULL
4781 || TYPE_CODE (type0) != TYPE_CODE (type1))
4782 return 0;
4783 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4784 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4785 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4786 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4787 return 1;
4788
4789 return 0;
4790 }
4791
4792 /* True iff SYM0 represents the same entity as SYM1, or one that is
4793 no more defined than that of SYM1. */
4794
4795 static int
4796 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4797 {
4798 if (sym0 == sym1)
4799 return 1;
4800 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4801 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4802 return 0;
4803
4804 switch (SYMBOL_CLASS (sym0))
4805 {
4806 case LOC_UNDEF:
4807 return 1;
4808 case LOC_TYPEDEF:
4809 {
4810 struct type *type0 = SYMBOL_TYPE (sym0);
4811 struct type *type1 = SYMBOL_TYPE (sym1);
4812 const char *name0 = sym0->linkage_name ();
4813 const char *name1 = sym1->linkage_name ();
4814 int len0 = strlen (name0);
4815
4816 return
4817 TYPE_CODE (type0) == TYPE_CODE (type1)
4818 && (equiv_types (type0, type1)
4819 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4820 && startswith (name1 + len0, "___XV")));
4821 }
4822 case LOC_CONST:
4823 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4824 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4825
4826 case LOC_STATIC:
4827 {
4828 const char *name0 = sym0->linkage_name ();
4829 const char *name1 = sym1->linkage_name ();
4830 return (strcmp (name0, name1) == 0
4831 && SYMBOL_VALUE_ADDRESS (sym0) == SYMBOL_VALUE_ADDRESS (sym1));
4832 }
4833
4834 default:
4835 return 0;
4836 }
4837 }
4838
4839 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4840 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4841
4842 static void
4843 add_defn_to_vec (struct obstack *obstackp,
4844 struct symbol *sym,
4845 const struct block *block)
4846 {
4847 int i;
4848 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
4849
4850 /* Do not try to complete stub types, as the debugger is probably
4851 already scanning all symbols matching a certain name at the
4852 time when this function is called. Trying to replace the stub
4853 type by its associated full type will cause us to restart a scan
4854 which may lead to an infinite recursion. Instead, the client
4855 collecting the matching symbols will end up collecting several
4856 matches, with at least one of them complete. It can then filter
4857 out the stub ones if needed. */
4858
4859 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4860 {
4861 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4862 return;
4863 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4864 {
4865 prevDefns[i].symbol = sym;
4866 prevDefns[i].block = block;
4867 return;
4868 }
4869 }
4870
4871 {
4872 struct block_symbol info;
4873
4874 info.symbol = sym;
4875 info.block = block;
4876 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4877 }
4878 }
4879
4880 /* Number of block_symbol structures currently collected in current vector in
4881 OBSTACKP. */
4882
4883 static int
4884 num_defns_collected (struct obstack *obstackp)
4885 {
4886 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4887 }
4888
4889 /* Vector of block_symbol structures currently collected in current vector in
4890 OBSTACKP. If FINISH, close off the vector and return its final address. */
4891
4892 static struct block_symbol *
4893 defns_collected (struct obstack *obstackp, int finish)
4894 {
4895 if (finish)
4896 return (struct block_symbol *) obstack_finish (obstackp);
4897 else
4898 return (struct block_symbol *) obstack_base (obstackp);
4899 }
4900
4901 /* Return a bound minimal symbol matching NAME according to Ada
4902 decoding rules. Returns an invalid symbol if there is no such
4903 minimal symbol. Names prefixed with "standard__" are handled
4904 specially: "standard__" is first stripped off, and only static and
4905 global symbols are searched. */
4906
4907 struct bound_minimal_symbol
4908 ada_lookup_simple_minsym (const char *name)
4909 {
4910 struct bound_minimal_symbol result;
4911
4912 memset (&result, 0, sizeof (result));
4913
4914 symbol_name_match_type match_type = name_match_type_from_name (name);
4915 lookup_name_info lookup_name (name, match_type);
4916
4917 symbol_name_matcher_ftype *match_name
4918 = ada_get_symbol_name_matcher (lookup_name);
4919
4920 for (objfile *objfile : current_program_space->objfiles ())
4921 {
4922 for (minimal_symbol *msymbol : objfile->msymbols ())
4923 {
4924 if (match_name (msymbol->linkage_name (), lookup_name, NULL)
4925 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4926 {
4927 result.minsym = msymbol;
4928 result.objfile = objfile;
4929 break;
4930 }
4931 }
4932 }
4933
4934 return result;
4935 }
4936
4937 /* For all subprograms that statically enclose the subprogram of the
4938 selected frame, add symbols matching identifier NAME in DOMAIN
4939 and their blocks to the list of data in OBSTACKP, as for
4940 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4941 with a wildcard prefix. */
4942
4943 static void
4944 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4945 const lookup_name_info &lookup_name,
4946 domain_enum domain)
4947 {
4948 }
4949
4950 /* True if TYPE is definitely an artificial type supplied to a symbol
4951 for which no debugging information was given in the symbol file. */
4952
4953 static int
4954 is_nondebugging_type (struct type *type)
4955 {
4956 const char *name = ada_type_name (type);
4957
4958 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4959 }
4960
4961 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4962 that are deemed "identical" for practical purposes.
4963
4964 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4965 types and that their number of enumerals is identical (in other
4966 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4967
4968 static int
4969 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4970 {
4971 int i;
4972
4973 /* The heuristic we use here is fairly conservative. We consider
4974 that 2 enumerate types are identical if they have the same
4975 number of enumerals and that all enumerals have the same
4976 underlying value and name. */
4977
4978 /* All enums in the type should have an identical underlying value. */
4979 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4980 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
4981 return 0;
4982
4983 /* All enumerals should also have the same name (modulo any numerical
4984 suffix). */
4985 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4986 {
4987 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4988 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4989 int len_1 = strlen (name_1);
4990 int len_2 = strlen (name_2);
4991
4992 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4993 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4994 if (len_1 != len_2
4995 || strncmp (TYPE_FIELD_NAME (type1, i),
4996 TYPE_FIELD_NAME (type2, i),
4997 len_1) != 0)
4998 return 0;
4999 }
5000
5001 return 1;
5002 }
5003
5004 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
5005 that are deemed "identical" for practical purposes. Sometimes,
5006 enumerals are not strictly identical, but their types are so similar
5007 that they can be considered identical.
5008
5009 For instance, consider the following code:
5010
5011 type Color is (Black, Red, Green, Blue, White);
5012 type RGB_Color is new Color range Red .. Blue;
5013
5014 Type RGB_Color is a subrange of an implicit type which is a copy
5015 of type Color. If we call that implicit type RGB_ColorB ("B" is
5016 for "Base Type"), then type RGB_ColorB is a copy of type Color.
5017 As a result, when an expression references any of the enumeral
5018 by name (Eg. "print green"), the expression is technically
5019 ambiguous and the user should be asked to disambiguate. But
5020 doing so would only hinder the user, since it wouldn't matter
5021 what choice he makes, the outcome would always be the same.
5022 So, for practical purposes, we consider them as the same. */
5023
5024 static int
5025 symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
5026 {
5027 int i;
5028
5029 /* Before performing a thorough comparison check of each type,
5030 we perform a series of inexpensive checks. We expect that these
5031 checks will quickly fail in the vast majority of cases, and thus
5032 help prevent the unnecessary use of a more expensive comparison.
5033 Said comparison also expects us to make some of these checks
5034 (see ada_identical_enum_types_p). */
5035
5036 /* Quick check: All symbols should have an enum type. */
5037 for (i = 0; i < syms.size (); i++)
5038 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
5039 return 0;
5040
5041 /* Quick check: They should all have the same value. */
5042 for (i = 1; i < syms.size (); i++)
5043 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
5044 return 0;
5045
5046 /* Quick check: They should all have the same number of enumerals. */
5047 for (i = 1; i < syms.size (); i++)
5048 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
5049 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
5050 return 0;
5051
5052 /* All the sanity checks passed, so we might have a set of
5053 identical enumeration types. Perform a more complete
5054 comparison of the type of each symbol. */
5055 for (i = 1; i < syms.size (); i++)
5056 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5057 SYMBOL_TYPE (syms[0].symbol)))
5058 return 0;
5059
5060 return 1;
5061 }
5062
5063 /* Remove any non-debugging symbols in SYMS that definitely
5064 duplicate other symbols in the list (The only case I know of where
5065 this happens is when object files containing stabs-in-ecoff are
5066 linked with files containing ordinary ecoff debugging symbols (or no
5067 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5068 Returns the number of items in the modified list. */
5069
5070 static int
5071 remove_extra_symbols (std::vector<struct block_symbol> *syms)
5072 {
5073 int i, j;
5074
5075 /* We should never be called with less than 2 symbols, as there
5076 cannot be any extra symbol in that case. But it's easy to
5077 handle, since we have nothing to do in that case. */
5078 if (syms->size () < 2)
5079 return syms->size ();
5080
5081 i = 0;
5082 while (i < syms->size ())
5083 {
5084 int remove_p = 0;
5085
5086 /* If two symbols have the same name and one of them is a stub type,
5087 the get rid of the stub. */
5088
5089 if (TYPE_STUB (SYMBOL_TYPE ((*syms)[i].symbol))
5090 && (*syms)[i].symbol->linkage_name () != NULL)
5091 {
5092 for (j = 0; j < syms->size (); j++)
5093 {
5094 if (j != i
5095 && !TYPE_STUB (SYMBOL_TYPE ((*syms)[j].symbol))
5096 && (*syms)[j].symbol->linkage_name () != NULL
5097 && strcmp ((*syms)[i].symbol->linkage_name (),
5098 (*syms)[j].symbol->linkage_name ()) == 0)
5099 remove_p = 1;
5100 }
5101 }
5102
5103 /* Two symbols with the same name, same class and same address
5104 should be identical. */
5105
5106 else if ((*syms)[i].symbol->linkage_name () != NULL
5107 && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC
5108 && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol)))
5109 {
5110 for (j = 0; j < syms->size (); j += 1)
5111 {
5112 if (i != j
5113 && (*syms)[j].symbol->linkage_name () != NULL
5114 && strcmp ((*syms)[i].symbol->linkage_name (),
5115 (*syms)[j].symbol->linkage_name ()) == 0
5116 && SYMBOL_CLASS ((*syms)[i].symbol)
5117 == SYMBOL_CLASS ((*syms)[j].symbol)
5118 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
5119 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
5120 remove_p = 1;
5121 }
5122 }
5123
5124 if (remove_p)
5125 syms->erase (syms->begin () + i);
5126
5127 i += 1;
5128 }
5129
5130 /* If all the remaining symbols are identical enumerals, then
5131 just keep the first one and discard the rest.
5132
5133 Unlike what we did previously, we do not discard any entry
5134 unless they are ALL identical. This is because the symbol
5135 comparison is not a strict comparison, but rather a practical
5136 comparison. If all symbols are considered identical, then
5137 we can just go ahead and use the first one and discard the rest.
5138 But if we cannot reduce the list to a single element, we have
5139 to ask the user to disambiguate anyways. And if we have to
5140 present a multiple-choice menu, it's less confusing if the list
5141 isn't missing some choices that were identical and yet distinct. */
5142 if (symbols_are_identical_enums (*syms))
5143 syms->resize (1);
5144
5145 return syms->size ();
5146 }
5147
5148 /* Given a type that corresponds to a renaming entity, use the type name
5149 to extract the scope (package name or function name, fully qualified,
5150 and following the GNAT encoding convention) where this renaming has been
5151 defined. */
5152
5153 static std::string
5154 xget_renaming_scope (struct type *renaming_type)
5155 {
5156 /* The renaming types adhere to the following convention:
5157 <scope>__<rename>___<XR extension>.
5158 So, to extract the scope, we search for the "___XR" extension,
5159 and then backtrack until we find the first "__". */
5160
5161 const char *name = TYPE_NAME (renaming_type);
5162 const char *suffix = strstr (name, "___XR");
5163 const char *last;
5164
5165 /* Now, backtrack a bit until we find the first "__". Start looking
5166 at suffix - 3, as the <rename> part is at least one character long. */
5167
5168 for (last = suffix - 3; last > name; last--)
5169 if (last[0] == '_' && last[1] == '_')
5170 break;
5171
5172 /* Make a copy of scope and return it. */
5173 return std::string (name, last);
5174 }
5175
5176 /* Return nonzero if NAME corresponds to a package name. */
5177
5178 static int
5179 is_package_name (const char *name)
5180 {
5181 /* Here, We take advantage of the fact that no symbols are generated
5182 for packages, while symbols are generated for each function.
5183 So the condition for NAME represent a package becomes equivalent
5184 to NAME not existing in our list of symbols. There is only one
5185 small complication with library-level functions (see below). */
5186
5187 /* If it is a function that has not been defined at library level,
5188 then we should be able to look it up in the symbols. */
5189 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5190 return 0;
5191
5192 /* Library-level function names start with "_ada_". See if function
5193 "_ada_" followed by NAME can be found. */
5194
5195 /* Do a quick check that NAME does not contain "__", since library-level
5196 functions names cannot contain "__" in them. */
5197 if (strstr (name, "__") != NULL)
5198 return 0;
5199
5200 std::string fun_name = string_printf ("_ada_%s", name);
5201
5202 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
5203 }
5204
5205 /* Return nonzero if SYM corresponds to a renaming entity that is
5206 not visible from FUNCTION_NAME. */
5207
5208 static int
5209 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
5210 {
5211 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5212 return 0;
5213
5214 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
5215
5216 /* If the rename has been defined in a package, then it is visible. */
5217 if (is_package_name (scope.c_str ()))
5218 return 0;
5219
5220 /* Check that the rename is in the current function scope by checking
5221 that its name starts with SCOPE. */
5222
5223 /* If the function name starts with "_ada_", it means that it is
5224 a library-level function. Strip this prefix before doing the
5225 comparison, as the encoding for the renaming does not contain
5226 this prefix. */
5227 if (startswith (function_name, "_ada_"))
5228 function_name += 5;
5229
5230 return !startswith (function_name, scope.c_str ());
5231 }
5232
5233 /* Remove entries from SYMS that corresponds to a renaming entity that
5234 is not visible from the function associated with CURRENT_BLOCK or
5235 that is superfluous due to the presence of more specific renaming
5236 information. Places surviving symbols in the initial entries of
5237 SYMS and returns the number of surviving symbols.
5238
5239 Rationale:
5240 First, in cases where an object renaming is implemented as a
5241 reference variable, GNAT may produce both the actual reference
5242 variable and the renaming encoding. In this case, we discard the
5243 latter.
5244
5245 Second, GNAT emits a type following a specified encoding for each renaming
5246 entity. Unfortunately, STABS currently does not support the definition
5247 of types that are local to a given lexical block, so all renamings types
5248 are emitted at library level. As a consequence, if an application
5249 contains two renaming entities using the same name, and a user tries to
5250 print the value of one of these entities, the result of the ada symbol
5251 lookup will also contain the wrong renaming type.
5252
5253 This function partially covers for this limitation by attempting to
5254 remove from the SYMS list renaming symbols that should be visible
5255 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5256 method with the current information available. The implementation
5257 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5258
5259 - When the user tries to print a rename in a function while there
5260 is another rename entity defined in a package: Normally, the
5261 rename in the function has precedence over the rename in the
5262 package, so the latter should be removed from the list. This is
5263 currently not the case.
5264
5265 - This function will incorrectly remove valid renames if
5266 the CURRENT_BLOCK corresponds to a function which symbol name
5267 has been changed by an "Export" pragma. As a consequence,
5268 the user will be unable to print such rename entities. */
5269
5270 static int
5271 remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
5272 const struct block *current_block)
5273 {
5274 struct symbol *current_function;
5275 const char *current_function_name;
5276 int i;
5277 int is_new_style_renaming;
5278
5279 /* If there is both a renaming foo___XR... encoded as a variable and
5280 a simple variable foo in the same block, discard the latter.
5281 First, zero out such symbols, then compress. */
5282 is_new_style_renaming = 0;
5283 for (i = 0; i < syms->size (); i += 1)
5284 {
5285 struct symbol *sym = (*syms)[i].symbol;
5286 const struct block *block = (*syms)[i].block;
5287 const char *name;
5288 const char *suffix;
5289
5290 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5291 continue;
5292 name = sym->linkage_name ();
5293 suffix = strstr (name, "___XR");
5294
5295 if (suffix != NULL)
5296 {
5297 int name_len = suffix - name;
5298 int j;
5299
5300 is_new_style_renaming = 1;
5301 for (j = 0; j < syms->size (); j += 1)
5302 if (i != j && (*syms)[j].symbol != NULL
5303 && strncmp (name, (*syms)[j].symbol->linkage_name (),
5304 name_len) == 0
5305 && block == (*syms)[j].block)
5306 (*syms)[j].symbol = NULL;
5307 }
5308 }
5309 if (is_new_style_renaming)
5310 {
5311 int j, k;
5312
5313 for (j = k = 0; j < syms->size (); j += 1)
5314 if ((*syms)[j].symbol != NULL)
5315 {
5316 (*syms)[k] = (*syms)[j];
5317 k += 1;
5318 }
5319 return k;
5320 }
5321
5322 /* Extract the function name associated to CURRENT_BLOCK.
5323 Abort if unable to do so. */
5324
5325 if (current_block == NULL)
5326 return syms->size ();
5327
5328 current_function = block_linkage_function (current_block);
5329 if (current_function == NULL)
5330 return syms->size ();
5331
5332 current_function_name = current_function->linkage_name ();
5333 if (current_function_name == NULL)
5334 return syms->size ();
5335
5336 /* Check each of the symbols, and remove it from the list if it is
5337 a type corresponding to a renaming that is out of the scope of
5338 the current block. */
5339
5340 i = 0;
5341 while (i < syms->size ())
5342 {
5343 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
5344 == ADA_OBJECT_RENAMING
5345 && old_renaming_is_invisible ((*syms)[i].symbol,
5346 current_function_name))
5347 syms->erase (syms->begin () + i);
5348 else
5349 i += 1;
5350 }
5351
5352 return syms->size ();
5353 }
5354
5355 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5356 whose name and domain match NAME and DOMAIN respectively.
5357 If no match was found, then extend the search to "enclosing"
5358 routines (in other words, if we're inside a nested function,
5359 search the symbols defined inside the enclosing functions).
5360 If WILD_MATCH_P is nonzero, perform the naming matching in
5361 "wild" mode (see function "wild_match" for more info).
5362
5363 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5364
5365 static void
5366 ada_add_local_symbols (struct obstack *obstackp,
5367 const lookup_name_info &lookup_name,
5368 const struct block *block, domain_enum domain)
5369 {
5370 int block_depth = 0;
5371
5372 while (block != NULL)
5373 {
5374 block_depth += 1;
5375 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5376
5377 /* If we found a non-function match, assume that's the one. */
5378 if (is_nonfunction (defns_collected (obstackp, 0),
5379 num_defns_collected (obstackp)))
5380 return;
5381
5382 block = BLOCK_SUPERBLOCK (block);
5383 }
5384
5385 /* If no luck so far, try to find NAME as a local symbol in some lexically
5386 enclosing subprogram. */
5387 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5388 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
5389 }
5390
5391 /* An object of this type is used as the user_data argument when
5392 calling the map_matching_symbols method. */
5393
5394 struct match_data
5395 {
5396 struct objfile *objfile;
5397 struct obstack *obstackp;
5398 struct symbol *arg_sym;
5399 int found_sym;
5400 };
5401
5402 /* A callback for add_nonlocal_symbols that adds symbol, found in BSYM,
5403 to a list of symbols. DATA is a pointer to a struct match_data *
5404 containing the obstack that collects the symbol list, the file that SYM
5405 must come from, a flag indicating whether a non-argument symbol has
5406 been found in the current block, and the last argument symbol
5407 passed in SYM within the current block (if any). When SYM is null,
5408 marking the end of a block, the argument symbol is added if no
5409 other has been found. */
5410
5411 static bool
5412 aux_add_nonlocal_symbols (struct block_symbol *bsym,
5413 struct match_data *data)
5414 {
5415 const struct block *block = bsym->block;
5416 struct symbol *sym = bsym->symbol;
5417
5418 if (sym == NULL)
5419 {
5420 if (!data->found_sym && data->arg_sym != NULL)
5421 add_defn_to_vec (data->obstackp,
5422 fixup_symbol_section (data->arg_sym, data->objfile),
5423 block);
5424 data->found_sym = 0;
5425 data->arg_sym = NULL;
5426 }
5427 else
5428 {
5429 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5430 return true;
5431 else if (SYMBOL_IS_ARGUMENT (sym))
5432 data->arg_sym = sym;
5433 else
5434 {
5435 data->found_sym = 1;
5436 add_defn_to_vec (data->obstackp,
5437 fixup_symbol_section (sym, data->objfile),
5438 block);
5439 }
5440 }
5441 return true;
5442 }
5443
5444 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5445 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5446 symbols to OBSTACKP. Return whether we found such symbols. */
5447
5448 static int
5449 ada_add_block_renamings (struct obstack *obstackp,
5450 const struct block *block,
5451 const lookup_name_info &lookup_name,
5452 domain_enum domain)
5453 {
5454 struct using_direct *renaming;
5455 int defns_mark = num_defns_collected (obstackp);
5456
5457 symbol_name_matcher_ftype *name_match
5458 = ada_get_symbol_name_matcher (lookup_name);
5459
5460 for (renaming = block_using (block);
5461 renaming != NULL;
5462 renaming = renaming->next)
5463 {
5464 const char *r_name;
5465
5466 /* Avoid infinite recursions: skip this renaming if we are actually
5467 already traversing it.
5468
5469 Currently, symbol lookup in Ada don't use the namespace machinery from
5470 C++/Fortran support: skip namespace imports that use them. */
5471 if (renaming->searched
5472 || (renaming->import_src != NULL
5473 && renaming->import_src[0] != '\0')
5474 || (renaming->import_dest != NULL
5475 && renaming->import_dest[0] != '\0'))
5476 continue;
5477 renaming->searched = 1;
5478
5479 /* TODO: here, we perform another name-based symbol lookup, which can
5480 pull its own multiple overloads. In theory, we should be able to do
5481 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5482 not a simple name. But in order to do this, we would need to enhance
5483 the DWARF reader to associate a symbol to this renaming, instead of a
5484 name. So, for now, we do something simpler: re-use the C++/Fortran
5485 namespace machinery. */
5486 r_name = (renaming->alias != NULL
5487 ? renaming->alias
5488 : renaming->declaration);
5489 if (name_match (r_name, lookup_name, NULL))
5490 {
5491 lookup_name_info decl_lookup_name (renaming->declaration,
5492 lookup_name.match_type ());
5493 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5494 1, NULL);
5495 }
5496 renaming->searched = 0;
5497 }
5498 return num_defns_collected (obstackp) != defns_mark;
5499 }
5500
5501 /* Implements compare_names, but only applying the comparision using
5502 the given CASING. */
5503
5504 static int
5505 compare_names_with_case (const char *string1, const char *string2,
5506 enum case_sensitivity casing)
5507 {
5508 while (*string1 != '\0' && *string2 != '\0')
5509 {
5510 char c1, c2;
5511
5512 if (isspace (*string1) || isspace (*string2))
5513 return strcmp_iw_ordered (string1, string2);
5514
5515 if (casing == case_sensitive_off)
5516 {
5517 c1 = tolower (*string1);
5518 c2 = tolower (*string2);
5519 }
5520 else
5521 {
5522 c1 = *string1;
5523 c2 = *string2;
5524 }
5525 if (c1 != c2)
5526 break;
5527
5528 string1 += 1;
5529 string2 += 1;
5530 }
5531
5532 switch (*string1)
5533 {
5534 case '(':
5535 return strcmp_iw_ordered (string1, string2);
5536 case '_':
5537 if (*string2 == '\0')
5538 {
5539 if (is_name_suffix (string1))
5540 return 0;
5541 else
5542 return 1;
5543 }
5544 /* FALLTHROUGH */
5545 default:
5546 if (*string2 == '(')
5547 return strcmp_iw_ordered (string1, string2);
5548 else
5549 {
5550 if (casing == case_sensitive_off)
5551 return tolower (*string1) - tolower (*string2);
5552 else
5553 return *string1 - *string2;
5554 }
5555 }
5556 }
5557
5558 /* Compare STRING1 to STRING2, with results as for strcmp.
5559 Compatible with strcmp_iw_ordered in that...
5560
5561 strcmp_iw_ordered (STRING1, STRING2) <= 0
5562
5563 ... implies...
5564
5565 compare_names (STRING1, STRING2) <= 0
5566
5567 (they may differ as to what symbols compare equal). */
5568
5569 static int
5570 compare_names (const char *string1, const char *string2)
5571 {
5572 int result;
5573
5574 /* Similar to what strcmp_iw_ordered does, we need to perform
5575 a case-insensitive comparison first, and only resort to
5576 a second, case-sensitive, comparison if the first one was
5577 not sufficient to differentiate the two strings. */
5578
5579 result = compare_names_with_case (string1, string2, case_sensitive_off);
5580 if (result == 0)
5581 result = compare_names_with_case (string1, string2, case_sensitive_on);
5582
5583 return result;
5584 }
5585
5586 /* Convenience function to get at the Ada encoded lookup name for
5587 LOOKUP_NAME, as a C string. */
5588
5589 static const char *
5590 ada_lookup_name (const lookup_name_info &lookup_name)
5591 {
5592 return lookup_name.ada ().lookup_name ().c_str ();
5593 }
5594
5595 /* Add to OBSTACKP all non-local symbols whose name and domain match
5596 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5597 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5598 symbols otherwise. */
5599
5600 static void
5601 add_nonlocal_symbols (struct obstack *obstackp,
5602 const lookup_name_info &lookup_name,
5603 domain_enum domain, int global)
5604 {
5605 struct match_data data;
5606
5607 memset (&data, 0, sizeof data);
5608 data.obstackp = obstackp;
5609
5610 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5611
5612 auto callback = [&] (struct block_symbol *bsym)
5613 {
5614 return aux_add_nonlocal_symbols (bsym, &data);
5615 };
5616
5617 for (objfile *objfile : current_program_space->objfiles ())
5618 {
5619 data.objfile = objfile;
5620
5621 objfile->sf->qf->map_matching_symbols (objfile, lookup_name,
5622 domain, global, callback,
5623 (is_wild_match
5624 ? NULL : compare_names));
5625
5626 for (compunit_symtab *cu : objfile->compunits ())
5627 {
5628 const struct block *global_block
5629 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5630
5631 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5632 domain))
5633 data.found_sym = 1;
5634 }
5635 }
5636
5637 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5638 {
5639 const char *name = ada_lookup_name (lookup_name);
5640 std::string bracket_name = std::string ("<_ada_") + name + '>';
5641 lookup_name_info name1 (bracket_name, symbol_name_match_type::FULL);
5642
5643 for (objfile *objfile : current_program_space->objfiles ())
5644 {
5645 data.objfile = objfile;
5646 objfile->sf->qf->map_matching_symbols (objfile, name1,
5647 domain, global, callback,
5648 compare_names);
5649 }
5650 }
5651 }
5652
5653 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5654 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5655 returning the number of matches. Add these to OBSTACKP.
5656
5657 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5658 symbol match within the nest of blocks whose innermost member is BLOCK,
5659 is the one match returned (no other matches in that or
5660 enclosing blocks is returned). If there are any matches in or
5661 surrounding BLOCK, then these alone are returned.
5662
5663 Names prefixed with "standard__" are handled specially:
5664 "standard__" is first stripped off (by the lookup_name
5665 constructor), and only static and global symbols are searched.
5666
5667 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5668 to lookup global symbols. */
5669
5670 static void
5671 ada_add_all_symbols (struct obstack *obstackp,
5672 const struct block *block,
5673 const lookup_name_info &lookup_name,
5674 domain_enum domain,
5675 int full_search,
5676 int *made_global_lookup_p)
5677 {
5678 struct symbol *sym;
5679
5680 if (made_global_lookup_p)
5681 *made_global_lookup_p = 0;
5682
5683 /* Special case: If the user specifies a symbol name inside package
5684 Standard, do a non-wild matching of the symbol name without
5685 the "standard__" prefix. This was primarily introduced in order
5686 to allow the user to specifically access the standard exceptions
5687 using, for instance, Standard.Constraint_Error when Constraint_Error
5688 is ambiguous (due to the user defining its own Constraint_Error
5689 entity inside its program). */
5690 if (lookup_name.ada ().standard_p ())
5691 block = NULL;
5692
5693 /* Check the non-global symbols. If we have ANY match, then we're done. */
5694
5695 if (block != NULL)
5696 {
5697 if (full_search)
5698 ada_add_local_symbols (obstackp, lookup_name, block, domain);
5699 else
5700 {
5701 /* In the !full_search case we're are being called by
5702 ada_iterate_over_symbols, and we don't want to search
5703 superblocks. */
5704 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5705 }
5706 if (num_defns_collected (obstackp) > 0 || !full_search)
5707 return;
5708 }
5709
5710 /* No non-global symbols found. Check our cache to see if we have
5711 already performed this search before. If we have, then return
5712 the same result. */
5713
5714 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5715 domain, &sym, &block))
5716 {
5717 if (sym != NULL)
5718 add_defn_to_vec (obstackp, sym, block);
5719 return;
5720 }
5721
5722 if (made_global_lookup_p)
5723 *made_global_lookup_p = 1;
5724
5725 /* Search symbols from all global blocks. */
5726
5727 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
5728
5729 /* Now add symbols from all per-file blocks if we've gotten no hits
5730 (not strictly correct, but perhaps better than an error). */
5731
5732 if (num_defns_collected (obstackp) == 0)
5733 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
5734 }
5735
5736 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5737 is non-zero, enclosing scope and in global scopes, returning the number of
5738 matches.
5739 Fills *RESULTS with (SYM,BLOCK) tuples, indicating the symbols
5740 found and the blocks and symbol tables (if any) in which they were
5741 found.
5742
5743 When full_search is non-zero, any non-function/non-enumeral
5744 symbol match within the nest of blocks whose innermost member is BLOCK,
5745 is the one match returned (no other matches in that or
5746 enclosing blocks is returned). If there are any matches in or
5747 surrounding BLOCK, then these alone are returned.
5748
5749 Names prefixed with "standard__" are handled specially: "standard__"
5750 is first stripped off, and only static and global symbols are searched. */
5751
5752 static int
5753 ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5754 const struct block *block,
5755 domain_enum domain,
5756 std::vector<struct block_symbol> *results,
5757 int full_search)
5758 {
5759 int syms_from_global_search;
5760 int ndefns;
5761 auto_obstack obstack;
5762
5763 ada_add_all_symbols (&obstack, block, lookup_name,
5764 domain, full_search, &syms_from_global_search);
5765
5766 ndefns = num_defns_collected (&obstack);
5767
5768 struct block_symbol *base = defns_collected (&obstack, 1);
5769 for (int i = 0; i < ndefns; ++i)
5770 results->push_back (base[i]);
5771
5772 ndefns = remove_extra_symbols (results);
5773
5774 if (ndefns == 0 && full_search && syms_from_global_search)
5775 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
5776
5777 if (ndefns == 1 && full_search && syms_from_global_search)
5778 cache_symbol (ada_lookup_name (lookup_name), domain,
5779 (*results)[0].symbol, (*results)[0].block);
5780
5781 ndefns = remove_irrelevant_renamings (results, block);
5782
5783 return ndefns;
5784 }
5785
5786 /* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
5787 in global scopes, returning the number of matches, and filling *RESULTS
5788 with (SYM,BLOCK) tuples.
5789
5790 See ada_lookup_symbol_list_worker for further details. */
5791
5792 int
5793 ada_lookup_symbol_list (const char *name, const struct block *block,
5794 domain_enum domain,
5795 std::vector<struct block_symbol> *results)
5796 {
5797 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5798 lookup_name_info lookup_name (name, name_match_type);
5799
5800 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
5801 }
5802
5803 /* Implementation of the la_iterate_over_symbols method. */
5804
5805 static bool
5806 ada_iterate_over_symbols
5807 (const struct block *block, const lookup_name_info &name,
5808 domain_enum domain,
5809 gdb::function_view<symbol_found_callback_ftype> callback)
5810 {
5811 int ndefs, i;
5812 std::vector<struct block_symbol> results;
5813
5814 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5815
5816 for (i = 0; i < ndefs; ++i)
5817 {
5818 if (!callback (&results[i]))
5819 return false;
5820 }
5821
5822 return true;
5823 }
5824
5825 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5826 to 1, but choosing the first symbol found if there are multiple
5827 choices.
5828
5829 The result is stored in *INFO, which must be non-NULL.
5830 If no match is found, INFO->SYM is set to NULL. */
5831
5832 void
5833 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5834 domain_enum domain,
5835 struct block_symbol *info)
5836 {
5837 /* Since we already have an encoded name, wrap it in '<>' to force a
5838 verbatim match. Otherwise, if the name happens to not look like
5839 an encoded name (because it doesn't include a "__"),
5840 ada_lookup_name_info would re-encode/fold it again, and that
5841 would e.g., incorrectly lowercase object renaming names like
5842 "R28b" -> "r28b". */
5843 std::string verbatim = std::string ("<") + name + '>';
5844
5845 gdb_assert (info != NULL);
5846 *info = ada_lookup_symbol (verbatim.c_str (), block, domain);
5847 }
5848
5849 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5850 scope and in global scopes, or NULL if none. NAME is folded and
5851 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5852 choosing the first symbol if there are multiple choices. */
5853
5854 struct block_symbol
5855 ada_lookup_symbol (const char *name, const struct block *block0,
5856 domain_enum domain)
5857 {
5858 std::vector<struct block_symbol> candidates;
5859 int n_candidates;
5860
5861 n_candidates = ada_lookup_symbol_list (name, block0, domain, &candidates);
5862
5863 if (n_candidates == 0)
5864 return {};
5865
5866 block_symbol info = candidates[0];
5867 info.symbol = fixup_symbol_section (info.symbol, NULL);
5868 return info;
5869 }
5870
5871 static struct block_symbol
5872 ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5873 const char *name,
5874 const struct block *block,
5875 const domain_enum domain)
5876 {
5877 struct block_symbol sym;
5878
5879 sym = ada_lookup_symbol (name, block_static_block (block), domain);
5880 if (sym.symbol != NULL)
5881 return sym;
5882
5883 /* If we haven't found a match at this point, try the primitive
5884 types. In other languages, this search is performed before
5885 searching for global symbols in order to short-circuit that
5886 global-symbol search if it happens that the name corresponds
5887 to a primitive type. But we cannot do the same in Ada, because
5888 it is perfectly legitimate for a program to declare a type which
5889 has the same name as a standard type. If looking up a type in
5890 that situation, we have traditionally ignored the primitive type
5891 in favor of user-defined types. This is why, unlike most other
5892 languages, we search the primitive types this late and only after
5893 having searched the global symbols without success. */
5894
5895 if (domain == VAR_DOMAIN)
5896 {
5897 struct gdbarch *gdbarch;
5898
5899 if (block == NULL)
5900 gdbarch = target_gdbarch ();
5901 else
5902 gdbarch = block_gdbarch (block);
5903 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5904 if (sym.symbol != NULL)
5905 return sym;
5906 }
5907
5908 return {};
5909 }
5910
5911
5912 /* True iff STR is a possible encoded suffix of a normal Ada name
5913 that is to be ignored for matching purposes. Suffixes of parallel
5914 names (e.g., XVE) are not included here. Currently, the possible suffixes
5915 are given by any of the regular expressions:
5916
5917 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5918 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5919 TKB [subprogram suffix for task bodies]
5920 _E[0-9]+[bs]$ [protected object entry suffixes]
5921 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5922
5923 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5924 match is performed. This sequence is used to differentiate homonyms,
5925 is an optional part of a valid name suffix. */
5926
5927 static int
5928 is_name_suffix (const char *str)
5929 {
5930 int k;
5931 const char *matching;
5932 const int len = strlen (str);
5933
5934 /* Skip optional leading __[0-9]+. */
5935
5936 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5937 {
5938 str += 3;
5939 while (isdigit (str[0]))
5940 str += 1;
5941 }
5942
5943 /* [.$][0-9]+ */
5944
5945 if (str[0] == '.' || str[0] == '$')
5946 {
5947 matching = str + 1;
5948 while (isdigit (matching[0]))
5949 matching += 1;
5950 if (matching[0] == '\0')
5951 return 1;
5952 }
5953
5954 /* ___[0-9]+ */
5955
5956 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5957 {
5958 matching = str + 3;
5959 while (isdigit (matching[0]))
5960 matching += 1;
5961 if (matching[0] == '\0')
5962 return 1;
5963 }
5964
5965 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5966
5967 if (strcmp (str, "TKB") == 0)
5968 return 1;
5969
5970 #if 0
5971 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5972 with a N at the end. Unfortunately, the compiler uses the same
5973 convention for other internal types it creates. So treating
5974 all entity names that end with an "N" as a name suffix causes
5975 some regressions. For instance, consider the case of an enumerated
5976 type. To support the 'Image attribute, it creates an array whose
5977 name ends with N.
5978 Having a single character like this as a suffix carrying some
5979 information is a bit risky. Perhaps we should change the encoding
5980 to be something like "_N" instead. In the meantime, do not do
5981 the following check. */
5982 /* Protected Object Subprograms */
5983 if (len == 1 && str [0] == 'N')
5984 return 1;
5985 #endif
5986
5987 /* _E[0-9]+[bs]$ */
5988 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5989 {
5990 matching = str + 3;
5991 while (isdigit (matching[0]))
5992 matching += 1;
5993 if ((matching[0] == 'b' || matching[0] == 's')
5994 && matching [1] == '\0')
5995 return 1;
5996 }
5997
5998 /* ??? We should not modify STR directly, as we are doing below. This
5999 is fine in this case, but may become problematic later if we find
6000 that this alternative did not work, and want to try matching
6001 another one from the begining of STR. Since we modified it, we
6002 won't be able to find the begining of the string anymore! */
6003 if (str[0] == 'X')
6004 {
6005 str += 1;
6006 while (str[0] != '_' && str[0] != '\0')
6007 {
6008 if (str[0] != 'n' && str[0] != 'b')
6009 return 0;
6010 str += 1;
6011 }
6012 }
6013
6014 if (str[0] == '\000')
6015 return 1;
6016
6017 if (str[0] == '_')
6018 {
6019 if (str[1] != '_' || str[2] == '\000')
6020 return 0;
6021 if (str[2] == '_')
6022 {
6023 if (strcmp (str + 3, "JM") == 0)
6024 return 1;
6025 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6026 the LJM suffix in favor of the JM one. But we will
6027 still accept LJM as a valid suffix for a reasonable
6028 amount of time, just to allow ourselves to debug programs
6029 compiled using an older version of GNAT. */
6030 if (strcmp (str + 3, "LJM") == 0)
6031 return 1;
6032 if (str[3] != 'X')
6033 return 0;
6034 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
6035 || str[4] == 'U' || str[4] == 'P')
6036 return 1;
6037 if (str[4] == 'R' && str[5] != 'T')
6038 return 1;
6039 return 0;
6040 }
6041 if (!isdigit (str[2]))
6042 return 0;
6043 for (k = 3; str[k] != '\0'; k += 1)
6044 if (!isdigit (str[k]) && str[k] != '_')
6045 return 0;
6046 return 1;
6047 }
6048 if (str[0] == '$' && isdigit (str[1]))
6049 {
6050 for (k = 2; str[k] != '\0'; k += 1)
6051 if (!isdigit (str[k]) && str[k] != '_')
6052 return 0;
6053 return 1;
6054 }
6055 return 0;
6056 }
6057
6058 /* Return non-zero if the string starting at NAME and ending before
6059 NAME_END contains no capital letters. */
6060
6061 static int
6062 is_valid_name_for_wild_match (const char *name0)
6063 {
6064 std::string decoded_name = ada_decode (name0);
6065 int i;
6066
6067 /* If the decoded name starts with an angle bracket, it means that
6068 NAME0 does not follow the GNAT encoding format. It should then
6069 not be allowed as a possible wild match. */
6070 if (decoded_name[0] == '<')
6071 return 0;
6072
6073 for (i=0; decoded_name[i] != '\0'; i++)
6074 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6075 return 0;
6076
6077 return 1;
6078 }
6079
6080 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6081 that could start a simple name. Assumes that *NAMEP points into
6082 the string beginning at NAME0. */
6083
6084 static int
6085 advance_wild_match (const char **namep, const char *name0, int target0)
6086 {
6087 const char *name = *namep;
6088
6089 while (1)
6090 {
6091 int t0, t1;
6092
6093 t0 = *name;
6094 if (t0 == '_')
6095 {
6096 t1 = name[1];
6097 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6098 {
6099 name += 1;
6100 if (name == name0 + 5 && startswith (name0, "_ada"))
6101 break;
6102 else
6103 name += 1;
6104 }
6105 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6106 || name[2] == target0))
6107 {
6108 name += 2;
6109 break;
6110 }
6111 else
6112 return 0;
6113 }
6114 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6115 name += 1;
6116 else
6117 return 0;
6118 }
6119
6120 *namep = name;
6121 return 1;
6122 }
6123
6124 /* Return true iff NAME encodes a name of the form prefix.PATN.
6125 Ignores any informational suffixes of NAME (i.e., for which
6126 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6127 simple name. */
6128
6129 static bool
6130 wild_match (const char *name, const char *patn)
6131 {
6132 const char *p;
6133 const char *name0 = name;
6134
6135 while (1)
6136 {
6137 const char *match = name;
6138
6139 if (*name == *patn)
6140 {
6141 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6142 if (*p != *name)
6143 break;
6144 if (*p == '\0' && is_name_suffix (name))
6145 return match == name0 || is_valid_name_for_wild_match (name0);
6146
6147 if (name[-1] == '_')
6148 name -= 1;
6149 }
6150 if (!advance_wild_match (&name, name0, *patn))
6151 return false;
6152 }
6153 }
6154
6155 /* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6156 any trailing suffixes that encode debugging information or leading
6157 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6158 information that is ignored). */
6159
6160 static bool
6161 full_match (const char *sym_name, const char *search_name)
6162 {
6163 size_t search_name_len = strlen (search_name);
6164
6165 if (strncmp (sym_name, search_name, search_name_len) == 0
6166 && is_name_suffix (sym_name + search_name_len))
6167 return true;
6168
6169 if (startswith (sym_name, "_ada_")
6170 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6171 && is_name_suffix (sym_name + search_name_len + 5))
6172 return true;
6173
6174 return false;
6175 }
6176
6177 /* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6178 *defn_symbols, updating the list of symbols in OBSTACKP (if
6179 necessary). OBJFILE is the section containing BLOCK. */
6180
6181 static void
6182 ada_add_block_symbols (struct obstack *obstackp,
6183 const struct block *block,
6184 const lookup_name_info &lookup_name,
6185 domain_enum domain, struct objfile *objfile)
6186 {
6187 struct block_iterator iter;
6188 /* A matching argument symbol, if any. */
6189 struct symbol *arg_sym;
6190 /* Set true when we find a matching non-argument symbol. */
6191 int found_sym;
6192 struct symbol *sym;
6193
6194 arg_sym = NULL;
6195 found_sym = 0;
6196 for (sym = block_iter_match_first (block, lookup_name, &iter);
6197 sym != NULL;
6198 sym = block_iter_match_next (lookup_name, &iter))
6199 {
6200 if (symbol_matches_domain (sym->language (), SYMBOL_DOMAIN (sym), domain))
6201 {
6202 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6203 {
6204 if (SYMBOL_IS_ARGUMENT (sym))
6205 arg_sym = sym;
6206 else
6207 {
6208 found_sym = 1;
6209 add_defn_to_vec (obstackp,
6210 fixup_symbol_section (sym, objfile),
6211 block);
6212 }
6213 }
6214 }
6215 }
6216
6217 /* Handle renamings. */
6218
6219 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
6220 found_sym = 1;
6221
6222 if (!found_sym && arg_sym != NULL)
6223 {
6224 add_defn_to_vec (obstackp,
6225 fixup_symbol_section (arg_sym, objfile),
6226 block);
6227 }
6228
6229 if (!lookup_name.ada ().wild_match_p ())
6230 {
6231 arg_sym = NULL;
6232 found_sym = 0;
6233 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6234 const char *name = ada_lookup_name.c_str ();
6235 size_t name_len = ada_lookup_name.size ();
6236
6237 ALL_BLOCK_SYMBOLS (block, iter, sym)
6238 {
6239 if (symbol_matches_domain (sym->language (),
6240 SYMBOL_DOMAIN (sym), domain))
6241 {
6242 int cmp;
6243
6244 cmp = (int) '_' - (int) sym->linkage_name ()[0];
6245 if (cmp == 0)
6246 {
6247 cmp = !startswith (sym->linkage_name (), "_ada_");
6248 if (cmp == 0)
6249 cmp = strncmp (name, sym->linkage_name () + 5,
6250 name_len);
6251 }
6252
6253 if (cmp == 0
6254 && is_name_suffix (sym->linkage_name () + name_len + 5))
6255 {
6256 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6257 {
6258 if (SYMBOL_IS_ARGUMENT (sym))
6259 arg_sym = sym;
6260 else
6261 {
6262 found_sym = 1;
6263 add_defn_to_vec (obstackp,
6264 fixup_symbol_section (sym, objfile),
6265 block);
6266 }
6267 }
6268 }
6269 }
6270 }
6271
6272 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6273 They aren't parameters, right? */
6274 if (!found_sym && arg_sym != NULL)
6275 {
6276 add_defn_to_vec (obstackp,
6277 fixup_symbol_section (arg_sym, objfile),
6278 block);
6279 }
6280 }
6281 }
6282 \f
6283
6284 /* Symbol Completion */
6285
6286 /* See symtab.h. */
6287
6288 bool
6289 ada_lookup_name_info::matches
6290 (const char *sym_name,
6291 symbol_name_match_type match_type,
6292 completion_match_result *comp_match_res) const
6293 {
6294 bool match = false;
6295 const char *text = m_encoded_name.c_str ();
6296 size_t text_len = m_encoded_name.size ();
6297
6298 /* First, test against the fully qualified name of the symbol. */
6299
6300 if (strncmp (sym_name, text, text_len) == 0)
6301 match = true;
6302
6303 std::string decoded_name = ada_decode (sym_name);
6304 if (match && !m_encoded_p)
6305 {
6306 /* One needed check before declaring a positive match is to verify
6307 that iff we are doing a verbatim match, the decoded version
6308 of the symbol name starts with '<'. Otherwise, this symbol name
6309 is not a suitable completion. */
6310
6311 bool has_angle_bracket = (decoded_name[0] == '<');
6312 match = (has_angle_bracket == m_verbatim_p);
6313 }
6314
6315 if (match && !m_verbatim_p)
6316 {
6317 /* When doing non-verbatim match, another check that needs to
6318 be done is to verify that the potentially matching symbol name
6319 does not include capital letters, because the ada-mode would
6320 not be able to understand these symbol names without the
6321 angle bracket notation. */
6322 const char *tmp;
6323
6324 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6325 if (*tmp != '\0')
6326 match = false;
6327 }
6328
6329 /* Second: Try wild matching... */
6330
6331 if (!match && m_wild_match_p)
6332 {
6333 /* Since we are doing wild matching, this means that TEXT
6334 may represent an unqualified symbol name. We therefore must
6335 also compare TEXT against the unqualified name of the symbol. */
6336 sym_name = ada_unqualified_name (decoded_name.c_str ());
6337
6338 if (strncmp (sym_name, text, text_len) == 0)
6339 match = true;
6340 }
6341
6342 /* Finally: If we found a match, prepare the result to return. */
6343
6344 if (!match)
6345 return false;
6346
6347 if (comp_match_res != NULL)
6348 {
6349 std::string &match_str = comp_match_res->match.storage ();
6350
6351 if (!m_encoded_p)
6352 match_str = ada_decode (sym_name);
6353 else
6354 {
6355 if (m_verbatim_p)
6356 match_str = add_angle_brackets (sym_name);
6357 else
6358 match_str = sym_name;
6359
6360 }
6361
6362 comp_match_res->set_match (match_str.c_str ());
6363 }
6364
6365 return true;
6366 }
6367
6368 /* Add the list of possible symbol names completing TEXT to TRACKER.
6369 WORD is the entire command on which completion is made. */
6370
6371 static void
6372 ada_collect_symbol_completion_matches (completion_tracker &tracker,
6373 complete_symbol_mode mode,
6374 symbol_name_match_type name_match_type,
6375 const char *text, const char *word,
6376 enum type_code code)
6377 {
6378 struct symbol *sym;
6379 const struct block *b, *surrounding_static_block = 0;
6380 struct block_iterator iter;
6381
6382 gdb_assert (code == TYPE_CODE_UNDEF);
6383
6384 lookup_name_info lookup_name (text, name_match_type, true);
6385
6386 /* First, look at the partial symtab symbols. */
6387 expand_symtabs_matching (NULL,
6388 lookup_name,
6389 NULL,
6390 NULL,
6391 ALL_DOMAIN);
6392
6393 /* At this point scan through the misc symbol vectors and add each
6394 symbol you find to the list. Eventually we want to ignore
6395 anything that isn't a text symbol (everything else will be
6396 handled by the psymtab code above). */
6397
6398 for (objfile *objfile : current_program_space->objfiles ())
6399 {
6400 for (minimal_symbol *msymbol : objfile->msymbols ())
6401 {
6402 QUIT;
6403
6404 if (completion_skip_symbol (mode, msymbol))
6405 continue;
6406
6407 language symbol_language = msymbol->language ();
6408
6409 /* Ada minimal symbols won't have their language set to Ada. If
6410 we let completion_list_add_name compare using the
6411 default/C-like matcher, then when completing e.g., symbols in a
6412 package named "pck", we'd match internal Ada symbols like
6413 "pckS", which are invalid in an Ada expression, unless you wrap
6414 them in '<' '>' to request a verbatim match.
6415
6416 Unfortunately, some Ada encoded names successfully demangle as
6417 C++ symbols (using an old mangling scheme), such as "name__2Xn"
6418 -> "Xn::name(void)" and thus some Ada minimal symbols end up
6419 with the wrong language set. Paper over that issue here. */
6420 if (symbol_language == language_auto
6421 || symbol_language == language_cplus)
6422 symbol_language = language_ada;
6423
6424 completion_list_add_name (tracker,
6425 symbol_language,
6426 msymbol->linkage_name (),
6427 lookup_name, text, word);
6428 }
6429 }
6430
6431 /* Search upwards from currently selected frame (so that we can
6432 complete on local vars. */
6433
6434 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6435 {
6436 if (!BLOCK_SUPERBLOCK (b))
6437 surrounding_static_block = b; /* For elmin of dups */
6438
6439 ALL_BLOCK_SYMBOLS (b, iter, sym)
6440 {
6441 if (completion_skip_symbol (mode, sym))
6442 continue;
6443
6444 completion_list_add_name (tracker,
6445 sym->language (),
6446 sym->linkage_name (),
6447 lookup_name, text, word);
6448 }
6449 }
6450
6451 /* Go through the symtabs and check the externs and statics for
6452 symbols which match. */
6453
6454 for (objfile *objfile : current_program_space->objfiles ())
6455 {
6456 for (compunit_symtab *s : objfile->compunits ())
6457 {
6458 QUIT;
6459 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6460 ALL_BLOCK_SYMBOLS (b, iter, sym)
6461 {
6462 if (completion_skip_symbol (mode, sym))
6463 continue;
6464
6465 completion_list_add_name (tracker,
6466 sym->language (),
6467 sym->linkage_name (),
6468 lookup_name, text, word);
6469 }
6470 }
6471 }
6472
6473 for (objfile *objfile : current_program_space->objfiles ())
6474 {
6475 for (compunit_symtab *s : objfile->compunits ())
6476 {
6477 QUIT;
6478 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6479 /* Don't do this block twice. */
6480 if (b == surrounding_static_block)
6481 continue;
6482 ALL_BLOCK_SYMBOLS (b, iter, sym)
6483 {
6484 if (completion_skip_symbol (mode, sym))
6485 continue;
6486
6487 completion_list_add_name (tracker,
6488 sym->language (),
6489 sym->linkage_name (),
6490 lookup_name, text, word);
6491 }
6492 }
6493 }
6494 }
6495
6496 /* Field Access */
6497
6498 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6499 for tagged types. */
6500
6501 static int
6502 ada_is_dispatch_table_ptr_type (struct type *type)
6503 {
6504 const char *name;
6505
6506 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6507 return 0;
6508
6509 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6510 if (name == NULL)
6511 return 0;
6512
6513 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6514 }
6515
6516 /* Return non-zero if TYPE is an interface tag. */
6517
6518 static int
6519 ada_is_interface_tag (struct type *type)
6520 {
6521 const char *name = TYPE_NAME (type);
6522
6523 if (name == NULL)
6524 return 0;
6525
6526 return (strcmp (name, "ada__tags__interface_tag") == 0);
6527 }
6528
6529 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6530 to be invisible to users. */
6531
6532 int
6533 ada_is_ignored_field (struct type *type, int field_num)
6534 {
6535 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6536 return 1;
6537
6538 /* Check the name of that field. */
6539 {
6540 const char *name = TYPE_FIELD_NAME (type, field_num);
6541
6542 /* Anonymous field names should not be printed.
6543 brobecker/2007-02-20: I don't think this can actually happen
6544 but we don't want to print the value of anonymous fields anyway. */
6545 if (name == NULL)
6546 return 1;
6547
6548 /* Normally, fields whose name start with an underscore ("_")
6549 are fields that have been internally generated by the compiler,
6550 and thus should not be printed. The "_parent" field is special,
6551 however: This is a field internally generated by the compiler
6552 for tagged types, and it contains the components inherited from
6553 the parent type. This field should not be printed as is, but
6554 should not be ignored either. */
6555 if (name[0] == '_' && !startswith (name, "_parent"))
6556 return 1;
6557 }
6558
6559 /* If this is the dispatch table of a tagged type or an interface tag,
6560 then ignore. */
6561 if (ada_is_tagged_type (type, 1)
6562 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6563 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6564 return 1;
6565
6566 /* Not a special field, so it should not be ignored. */
6567 return 0;
6568 }
6569
6570 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6571 pointer or reference type whose ultimate target has a tag field. */
6572
6573 int
6574 ada_is_tagged_type (struct type *type, int refok)
6575 {
6576 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
6577 }
6578
6579 /* True iff TYPE represents the type of X'Tag */
6580
6581 int
6582 ada_is_tag_type (struct type *type)
6583 {
6584 type = ada_check_typedef (type);
6585
6586 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6587 return 0;
6588 else
6589 {
6590 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6591
6592 return (name != NULL
6593 && strcmp (name, "ada__tags__dispatch_table") == 0);
6594 }
6595 }
6596
6597 /* The type of the tag on VAL. */
6598
6599 static struct type *
6600 ada_tag_type (struct value *val)
6601 {
6602 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
6603 }
6604
6605 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6606 retired at Ada 05). */
6607
6608 static int
6609 is_ada95_tag (struct value *tag)
6610 {
6611 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6612 }
6613
6614 /* The value of the tag on VAL. */
6615
6616 static struct value *
6617 ada_value_tag (struct value *val)
6618 {
6619 return ada_value_struct_elt (val, "_tag", 0);
6620 }
6621
6622 /* The value of the tag on the object of type TYPE whose contents are
6623 saved at VALADDR, if it is non-null, or is at memory address
6624 ADDRESS. */
6625
6626 static struct value *
6627 value_tag_from_contents_and_address (struct type *type,
6628 const gdb_byte *valaddr,
6629 CORE_ADDR address)
6630 {
6631 int tag_byte_offset;
6632 struct type *tag_type;
6633
6634 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6635 NULL, NULL, NULL))
6636 {
6637 const gdb_byte *valaddr1 = ((valaddr == NULL)
6638 ? NULL
6639 : valaddr + tag_byte_offset);
6640 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6641
6642 return value_from_contents_and_address (tag_type, valaddr1, address1);
6643 }
6644 return NULL;
6645 }
6646
6647 static struct type *
6648 type_from_tag (struct value *tag)
6649 {
6650 const char *type_name = ada_tag_name (tag);
6651
6652 if (type_name != NULL)
6653 return ada_find_any_type (ada_encode (type_name));
6654 return NULL;
6655 }
6656
6657 /* Given a value OBJ of a tagged type, return a value of this
6658 type at the base address of the object. The base address, as
6659 defined in Ada.Tags, it is the address of the primary tag of
6660 the object, and therefore where the field values of its full
6661 view can be fetched. */
6662
6663 struct value *
6664 ada_tag_value_at_base_address (struct value *obj)
6665 {
6666 struct value *val;
6667 LONGEST offset_to_top = 0;
6668 struct type *ptr_type, *obj_type;
6669 struct value *tag;
6670 CORE_ADDR base_address;
6671
6672 obj_type = value_type (obj);
6673
6674 /* It is the responsability of the caller to deref pointers. */
6675
6676 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6677 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6678 return obj;
6679
6680 tag = ada_value_tag (obj);
6681 if (!tag)
6682 return obj;
6683
6684 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6685
6686 if (is_ada95_tag (tag))
6687 return obj;
6688
6689 ptr_type = language_lookup_primitive_type
6690 (language_def (language_ada), target_gdbarch(), "storage_offset");
6691 ptr_type = lookup_pointer_type (ptr_type);
6692 val = value_cast (ptr_type, tag);
6693 if (!val)
6694 return obj;
6695
6696 /* It is perfectly possible that an exception be raised while
6697 trying to determine the base address, just like for the tag;
6698 see ada_tag_name for more details. We do not print the error
6699 message for the same reason. */
6700
6701 try
6702 {
6703 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6704 }
6705
6706 catch (const gdb_exception_error &e)
6707 {
6708 return obj;
6709 }
6710
6711 /* If offset is null, nothing to do. */
6712
6713 if (offset_to_top == 0)
6714 return obj;
6715
6716 /* -1 is a special case in Ada.Tags; however, what should be done
6717 is not quite clear from the documentation. So do nothing for
6718 now. */
6719
6720 if (offset_to_top == -1)
6721 return obj;
6722
6723 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6724 from the base address. This was however incompatible with
6725 C++ dispatch table: C++ uses a *negative* value to *add*
6726 to the base address. Ada's convention has therefore been
6727 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6728 use the same convention. Here, we support both cases by
6729 checking the sign of OFFSET_TO_TOP. */
6730
6731 if (offset_to_top > 0)
6732 offset_to_top = -offset_to_top;
6733
6734 base_address = value_address (obj) + offset_to_top;
6735 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6736
6737 /* Make sure that we have a proper tag at the new address.
6738 Otherwise, offset_to_top is bogus (which can happen when
6739 the object is not initialized yet). */
6740
6741 if (!tag)
6742 return obj;
6743
6744 obj_type = type_from_tag (tag);
6745
6746 if (!obj_type)
6747 return obj;
6748
6749 return value_from_contents_and_address (obj_type, NULL, base_address);
6750 }
6751
6752 /* Return the "ada__tags__type_specific_data" type. */
6753
6754 static struct type *
6755 ada_get_tsd_type (struct inferior *inf)
6756 {
6757 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6758
6759 if (data->tsd_type == 0)
6760 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6761 return data->tsd_type;
6762 }
6763
6764 /* Return the TSD (type-specific data) associated to the given TAG.
6765 TAG is assumed to be the tag of a tagged-type entity.
6766
6767 May return NULL if we are unable to get the TSD. */
6768
6769 static struct value *
6770 ada_get_tsd_from_tag (struct value *tag)
6771 {
6772 struct value *val;
6773 struct type *type;
6774
6775 /* First option: The TSD is simply stored as a field of our TAG.
6776 Only older versions of GNAT would use this format, but we have
6777 to test it first, because there are no visible markers for
6778 the current approach except the absence of that field. */
6779
6780 val = ada_value_struct_elt (tag, "tsd", 1);
6781 if (val)
6782 return val;
6783
6784 /* Try the second representation for the dispatch table (in which
6785 there is no explicit 'tsd' field in the referent of the tag pointer,
6786 and instead the tsd pointer is stored just before the dispatch
6787 table. */
6788
6789 type = ada_get_tsd_type (current_inferior());
6790 if (type == NULL)
6791 return NULL;
6792 type = lookup_pointer_type (lookup_pointer_type (type));
6793 val = value_cast (type, tag);
6794 if (val == NULL)
6795 return NULL;
6796 return value_ind (value_ptradd (val, -1));
6797 }
6798
6799 /* Given the TSD of a tag (type-specific data), return a string
6800 containing the name of the associated type.
6801
6802 The returned value is good until the next call. May return NULL
6803 if we are unable to determine the tag name. */
6804
6805 static char *
6806 ada_tag_name_from_tsd (struct value *tsd)
6807 {
6808 static char name[1024];
6809 char *p;
6810 struct value *val;
6811
6812 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6813 if (val == NULL)
6814 return NULL;
6815 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6816 for (p = name; *p != '\0'; p += 1)
6817 if (isalpha (*p))
6818 *p = tolower (*p);
6819 return name;
6820 }
6821
6822 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6823 a C string.
6824
6825 Return NULL if the TAG is not an Ada tag, or if we were unable to
6826 determine the name of that tag. The result is good until the next
6827 call. */
6828
6829 const char *
6830 ada_tag_name (struct value *tag)
6831 {
6832 char *name = NULL;
6833
6834 if (!ada_is_tag_type (value_type (tag)))
6835 return NULL;
6836
6837 /* It is perfectly possible that an exception be raised while trying
6838 to determine the TAG's name, even under normal circumstances:
6839 The associated variable may be uninitialized or corrupted, for
6840 instance. We do not let any exception propagate past this point.
6841 instead we return NULL.
6842
6843 We also do not print the error message either (which often is very
6844 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6845 the caller print a more meaningful message if necessary. */
6846 try
6847 {
6848 struct value *tsd = ada_get_tsd_from_tag (tag);
6849
6850 if (tsd != NULL)
6851 name = ada_tag_name_from_tsd (tsd);
6852 }
6853 catch (const gdb_exception_error &e)
6854 {
6855 }
6856
6857 return name;
6858 }
6859
6860 /* The parent type of TYPE, or NULL if none. */
6861
6862 struct type *
6863 ada_parent_type (struct type *type)
6864 {
6865 int i;
6866
6867 type = ada_check_typedef (type);
6868
6869 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6870 return NULL;
6871
6872 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6873 if (ada_is_parent_field (type, i))
6874 {
6875 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6876
6877 /* If the _parent field is a pointer, then dereference it. */
6878 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6879 parent_type = TYPE_TARGET_TYPE (parent_type);
6880 /* If there is a parallel XVS type, get the actual base type. */
6881 parent_type = ada_get_base_type (parent_type);
6882
6883 return ada_check_typedef (parent_type);
6884 }
6885
6886 return NULL;
6887 }
6888
6889 /* True iff field number FIELD_NUM of structure type TYPE contains the
6890 parent-type (inherited) fields of a derived type. Assumes TYPE is
6891 a structure type with at least FIELD_NUM+1 fields. */
6892
6893 int
6894 ada_is_parent_field (struct type *type, int field_num)
6895 {
6896 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6897
6898 return (name != NULL
6899 && (startswith (name, "PARENT")
6900 || startswith (name, "_parent")));
6901 }
6902
6903 /* True iff field number FIELD_NUM of structure type TYPE is a
6904 transparent wrapper field (which should be silently traversed when doing
6905 field selection and flattened when printing). Assumes TYPE is a
6906 structure type with at least FIELD_NUM+1 fields. Such fields are always
6907 structures. */
6908
6909 int
6910 ada_is_wrapper_field (struct type *type, int field_num)
6911 {
6912 const char *name = TYPE_FIELD_NAME (type, field_num);
6913
6914 if (name != NULL && strcmp (name, "RETVAL") == 0)
6915 {
6916 /* This happens in functions with "out" or "in out" parameters
6917 which are passed by copy. For such functions, GNAT describes
6918 the function's return type as being a struct where the return
6919 value is in a field called RETVAL, and where the other "out"
6920 or "in out" parameters are fields of that struct. This is not
6921 a wrapper. */
6922 return 0;
6923 }
6924
6925 return (name != NULL
6926 && (startswith (name, "PARENT")
6927 || strcmp (name, "REP") == 0
6928 || startswith (name, "_parent")
6929 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6930 }
6931
6932 /* True iff field number FIELD_NUM of structure or union type TYPE
6933 is a variant wrapper. Assumes TYPE is a structure type with at least
6934 FIELD_NUM+1 fields. */
6935
6936 int
6937 ada_is_variant_part (struct type *type, int field_num)
6938 {
6939 /* Only Ada types are eligible. */
6940 if (!ADA_TYPE_P (type))
6941 return 0;
6942
6943 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6944
6945 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
6946 || (is_dynamic_field (type, field_num)
6947 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6948 == TYPE_CODE_UNION)));
6949 }
6950
6951 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6952 whose discriminants are contained in the record type OUTER_TYPE,
6953 returns the type of the controlling discriminant for the variant.
6954 May return NULL if the type could not be found. */
6955
6956 struct type *
6957 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6958 {
6959 const char *name = ada_variant_discrim_name (var_type);
6960
6961 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
6962 }
6963
6964 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6965 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6966 represents a 'when others' clause; otherwise 0. */
6967
6968 static int
6969 ada_is_others_clause (struct type *type, int field_num)
6970 {
6971 const char *name = TYPE_FIELD_NAME (type, field_num);
6972
6973 return (name != NULL && name[0] == 'O');
6974 }
6975
6976 /* Assuming that TYPE0 is the type of the variant part of a record,
6977 returns the name of the discriminant controlling the variant.
6978 The value is valid until the next call to ada_variant_discrim_name. */
6979
6980 const char *
6981 ada_variant_discrim_name (struct type *type0)
6982 {
6983 static char *result = NULL;
6984 static size_t result_len = 0;
6985 struct type *type;
6986 const char *name;
6987 const char *discrim_end;
6988 const char *discrim_start;
6989
6990 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6991 type = TYPE_TARGET_TYPE (type0);
6992 else
6993 type = type0;
6994
6995 name = ada_type_name (type);
6996
6997 if (name == NULL || name[0] == '\000')
6998 return "";
6999
7000 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
7001 discrim_end -= 1)
7002 {
7003 if (startswith (discrim_end, "___XVN"))
7004 break;
7005 }
7006 if (discrim_end == name)
7007 return "";
7008
7009 for (discrim_start = discrim_end; discrim_start != name + 3;
7010 discrim_start -= 1)
7011 {
7012 if (discrim_start == name + 1)
7013 return "";
7014 if ((discrim_start > name + 3
7015 && startswith (discrim_start - 3, "___"))
7016 || discrim_start[-1] == '.')
7017 break;
7018 }
7019
7020 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7021 strncpy (result, discrim_start, discrim_end - discrim_start);
7022 result[discrim_end - discrim_start] = '\0';
7023 return result;
7024 }
7025
7026 /* Scan STR for a subtype-encoded number, beginning at position K.
7027 Put the position of the character just past the number scanned in
7028 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7029 Return 1 if there was a valid number at the given position, and 0
7030 otherwise. A "subtype-encoded" number consists of the absolute value
7031 in decimal, followed by the letter 'm' to indicate a negative number.
7032 Assumes 0m does not occur. */
7033
7034 int
7035 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
7036 {
7037 ULONGEST RU;
7038
7039 if (!isdigit (str[k]))
7040 return 0;
7041
7042 /* Do it the hard way so as not to make any assumption about
7043 the relationship of unsigned long (%lu scan format code) and
7044 LONGEST. */
7045 RU = 0;
7046 while (isdigit (str[k]))
7047 {
7048 RU = RU * 10 + (str[k] - '0');
7049 k += 1;
7050 }
7051
7052 if (str[k] == 'm')
7053 {
7054 if (R != NULL)
7055 *R = (-(LONGEST) (RU - 1)) - 1;
7056 k += 1;
7057 }
7058 else if (R != NULL)
7059 *R = (LONGEST) RU;
7060
7061 /* NOTE on the above: Technically, C does not say what the results of
7062 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7063 number representable as a LONGEST (although either would probably work
7064 in most implementations). When RU>0, the locution in the then branch
7065 above is always equivalent to the negative of RU. */
7066
7067 if (new_k != NULL)
7068 *new_k = k;
7069 return 1;
7070 }
7071
7072 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7073 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7074 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
7075
7076 static int
7077 ada_in_variant (LONGEST val, struct type *type, int field_num)
7078 {
7079 const char *name = TYPE_FIELD_NAME (type, field_num);
7080 int p;
7081
7082 p = 0;
7083 while (1)
7084 {
7085 switch (name[p])
7086 {
7087 case '\0':
7088 return 0;
7089 case 'S':
7090 {
7091 LONGEST W;
7092
7093 if (!ada_scan_number (name, p + 1, &W, &p))
7094 return 0;
7095 if (val == W)
7096 return 1;
7097 break;
7098 }
7099 case 'R':
7100 {
7101 LONGEST L, U;
7102
7103 if (!ada_scan_number (name, p + 1, &L, &p)
7104 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7105 return 0;
7106 if (val >= L && val <= U)
7107 return 1;
7108 break;
7109 }
7110 case 'O':
7111 return 1;
7112 default:
7113 return 0;
7114 }
7115 }
7116 }
7117
7118 /* FIXME: Lots of redundancy below. Try to consolidate. */
7119
7120 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7121 ARG_TYPE, extract and return the value of one of its (non-static)
7122 fields. FIELDNO says which field. Differs from value_primitive_field
7123 only in that it can handle packed values of arbitrary type. */
7124
7125 struct value *
7126 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
7127 struct type *arg_type)
7128 {
7129 struct type *type;
7130
7131 arg_type = ada_check_typedef (arg_type);
7132 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7133
7134 /* Handle packed fields. It might be that the field is not packed
7135 relative to its containing structure, but the structure itself is
7136 packed; in this case we must take the bit-field path. */
7137 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0 || value_bitpos (arg1) != 0)
7138 {
7139 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7140 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
7141
7142 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
7143 offset + bit_pos / 8,
7144 bit_pos % 8, bit_size, type);
7145 }
7146 else
7147 return value_primitive_field (arg1, offset, fieldno, arg_type);
7148 }
7149
7150 /* Find field with name NAME in object of type TYPE. If found,
7151 set the following for each argument that is non-null:
7152 - *FIELD_TYPE_P to the field's type;
7153 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7154 an object of that type;
7155 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7156 - *BIT_SIZE_P to its size in bits if the field is packed, and
7157 0 otherwise;
7158 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7159 fields up to but not including the desired field, or by the total
7160 number of fields if not found. A NULL value of NAME never
7161 matches; the function just counts visible fields in this case.
7162
7163 Notice that we need to handle when a tagged record hierarchy
7164 has some components with the same name, like in this scenario:
7165
7166 type Top_T is tagged record
7167 N : Integer := 1;
7168 U : Integer := 974;
7169 A : Integer := 48;
7170 end record;
7171
7172 type Middle_T is new Top.Top_T with record
7173 N : Character := 'a';
7174 C : Integer := 3;
7175 end record;
7176
7177 type Bottom_T is new Middle.Middle_T with record
7178 N : Float := 4.0;
7179 C : Character := '5';
7180 X : Integer := 6;
7181 A : Character := 'J';
7182 end record;
7183
7184 Let's say we now have a variable declared and initialized as follow:
7185
7186 TC : Top_A := new Bottom_T;
7187
7188 And then we use this variable to call this function
7189
7190 procedure Assign (Obj: in out Top_T; TV : Integer);
7191
7192 as follow:
7193
7194 Assign (Top_T (B), 12);
7195
7196 Now, we're in the debugger, and we're inside that procedure
7197 then and we want to print the value of obj.c:
7198
7199 Usually, the tagged record or one of the parent type owns the
7200 component to print and there's no issue but in this particular
7201 case, what does it mean to ask for Obj.C? Since the actual
7202 type for object is type Bottom_T, it could mean two things: type
7203 component C from the Middle_T view, but also component C from
7204 Bottom_T. So in that "undefined" case, when the component is
7205 not found in the non-resolved type (which includes all the
7206 components of the parent type), then resolve it and see if we
7207 get better luck once expanded.
7208
7209 In the case of homonyms in the derived tagged type, we don't
7210 guaranty anything, and pick the one that's easiest for us
7211 to program.
7212
7213 Returns 1 if found, 0 otherwise. */
7214
7215 static int
7216 find_struct_field (const char *name, struct type *type, int offset,
7217 struct type **field_type_p,
7218 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7219 int *index_p)
7220 {
7221 int i;
7222 int parent_offset = -1;
7223
7224 type = ada_check_typedef (type);
7225
7226 if (field_type_p != NULL)
7227 *field_type_p = NULL;
7228 if (byte_offset_p != NULL)
7229 *byte_offset_p = 0;
7230 if (bit_offset_p != NULL)
7231 *bit_offset_p = 0;
7232 if (bit_size_p != NULL)
7233 *bit_size_p = 0;
7234
7235 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7236 {
7237 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7238 int fld_offset = offset + bit_pos / 8;
7239 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7240
7241 if (t_field_name == NULL)
7242 continue;
7243
7244 else if (ada_is_parent_field (type, i))
7245 {
7246 /* This is a field pointing us to the parent type of a tagged
7247 type. As hinted in this function's documentation, we give
7248 preference to fields in the current record first, so what
7249 we do here is just record the index of this field before
7250 we skip it. If it turns out we couldn't find our field
7251 in the current record, then we'll get back to it and search
7252 inside it whether the field might exist in the parent. */
7253
7254 parent_offset = i;
7255 continue;
7256 }
7257
7258 else if (name != NULL && field_name_match (t_field_name, name))
7259 {
7260 int bit_size = TYPE_FIELD_BITSIZE (type, i);
7261
7262 if (field_type_p != NULL)
7263 *field_type_p = TYPE_FIELD_TYPE (type, i);
7264 if (byte_offset_p != NULL)
7265 *byte_offset_p = fld_offset;
7266 if (bit_offset_p != NULL)
7267 *bit_offset_p = bit_pos % 8;
7268 if (bit_size_p != NULL)
7269 *bit_size_p = bit_size;
7270 return 1;
7271 }
7272 else if (ada_is_wrapper_field (type, i))
7273 {
7274 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7275 field_type_p, byte_offset_p, bit_offset_p,
7276 bit_size_p, index_p))
7277 return 1;
7278 }
7279 else if (ada_is_variant_part (type, i))
7280 {
7281 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7282 fixed type?? */
7283 int j;
7284 struct type *field_type
7285 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7286
7287 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7288 {
7289 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7290 fld_offset
7291 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7292 field_type_p, byte_offset_p,
7293 bit_offset_p, bit_size_p, index_p))
7294 return 1;
7295 }
7296 }
7297 else if (index_p != NULL)
7298 *index_p += 1;
7299 }
7300
7301 /* Field not found so far. If this is a tagged type which
7302 has a parent, try finding that field in the parent now. */
7303
7304 if (parent_offset != -1)
7305 {
7306 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
7307 int fld_offset = offset + bit_pos / 8;
7308
7309 if (find_struct_field (name, TYPE_FIELD_TYPE (type, parent_offset),
7310 fld_offset, field_type_p, byte_offset_p,
7311 bit_offset_p, bit_size_p, index_p))
7312 return 1;
7313 }
7314
7315 return 0;
7316 }
7317
7318 /* Number of user-visible fields in record type TYPE. */
7319
7320 static int
7321 num_visible_fields (struct type *type)
7322 {
7323 int n;
7324
7325 n = 0;
7326 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7327 return n;
7328 }
7329
7330 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7331 and search in it assuming it has (class) type TYPE.
7332 If found, return value, else return NULL.
7333
7334 Searches recursively through wrapper fields (e.g., '_parent').
7335
7336 In the case of homonyms in the tagged types, please refer to the
7337 long explanation in find_struct_field's function documentation. */
7338
7339 static struct value *
7340 ada_search_struct_field (const char *name, struct value *arg, int offset,
7341 struct type *type)
7342 {
7343 int i;
7344 int parent_offset = -1;
7345
7346 type = ada_check_typedef (type);
7347 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7348 {
7349 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7350
7351 if (t_field_name == NULL)
7352 continue;
7353
7354 else if (ada_is_parent_field (type, i))
7355 {
7356 /* This is a field pointing us to the parent type of a tagged
7357 type. As hinted in this function's documentation, we give
7358 preference to fields in the current record first, so what
7359 we do here is just record the index of this field before
7360 we skip it. If it turns out we couldn't find our field
7361 in the current record, then we'll get back to it and search
7362 inside it whether the field might exist in the parent. */
7363
7364 parent_offset = i;
7365 continue;
7366 }
7367
7368 else if (field_name_match (t_field_name, name))
7369 return ada_value_primitive_field (arg, offset, i, type);
7370
7371 else if (ada_is_wrapper_field (type, i))
7372 {
7373 struct value *v = /* Do not let indent join lines here. */
7374 ada_search_struct_field (name, arg,
7375 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7376 TYPE_FIELD_TYPE (type, i));
7377
7378 if (v != NULL)
7379 return v;
7380 }
7381
7382 else if (ada_is_variant_part (type, i))
7383 {
7384 /* PNH: Do we ever get here? See find_struct_field. */
7385 int j;
7386 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7387 i));
7388 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7389
7390 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7391 {
7392 struct value *v = ada_search_struct_field /* Force line
7393 break. */
7394 (name, arg,
7395 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7396 TYPE_FIELD_TYPE (field_type, j));
7397
7398 if (v != NULL)
7399 return v;
7400 }
7401 }
7402 }
7403
7404 /* Field not found so far. If this is a tagged type which
7405 has a parent, try finding that field in the parent now. */
7406
7407 if (parent_offset != -1)
7408 {
7409 struct value *v = ada_search_struct_field (
7410 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
7411 TYPE_FIELD_TYPE (type, parent_offset));
7412
7413 if (v != NULL)
7414 return v;
7415 }
7416
7417 return NULL;
7418 }
7419
7420 static struct value *ada_index_struct_field_1 (int *, struct value *,
7421 int, struct type *);
7422
7423
7424 /* Return field #INDEX in ARG, where the index is that returned by
7425 * find_struct_field through its INDEX_P argument. Adjust the address
7426 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7427 * If found, return value, else return NULL. */
7428
7429 static struct value *
7430 ada_index_struct_field (int index, struct value *arg, int offset,
7431 struct type *type)
7432 {
7433 return ada_index_struct_field_1 (&index, arg, offset, type);
7434 }
7435
7436
7437 /* Auxiliary function for ada_index_struct_field. Like
7438 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7439 * *INDEX_P. */
7440
7441 static struct value *
7442 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7443 struct type *type)
7444 {
7445 int i;
7446 type = ada_check_typedef (type);
7447
7448 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7449 {
7450 if (TYPE_FIELD_NAME (type, i) == NULL)
7451 continue;
7452 else if (ada_is_wrapper_field (type, i))
7453 {
7454 struct value *v = /* Do not let indent join lines here. */
7455 ada_index_struct_field_1 (index_p, arg,
7456 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7457 TYPE_FIELD_TYPE (type, i));
7458
7459 if (v != NULL)
7460 return v;
7461 }
7462
7463 else if (ada_is_variant_part (type, i))
7464 {
7465 /* PNH: Do we ever get here? See ada_search_struct_field,
7466 find_struct_field. */
7467 error (_("Cannot assign this kind of variant record"));
7468 }
7469 else if (*index_p == 0)
7470 return ada_value_primitive_field (arg, offset, i, type);
7471 else
7472 *index_p -= 1;
7473 }
7474 return NULL;
7475 }
7476
7477 /* Return a string representation of type TYPE. */
7478
7479 static std::string
7480 type_as_string (struct type *type)
7481 {
7482 string_file tmp_stream;
7483
7484 type_print (type, "", &tmp_stream, -1);
7485
7486 return std::move (tmp_stream.string ());
7487 }
7488
7489 /* Given a type TYPE, look up the type of the component of type named NAME.
7490 If DISPP is non-null, add its byte displacement from the beginning of a
7491 structure (pointed to by a value) of type TYPE to *DISPP (does not
7492 work for packed fields).
7493
7494 Matches any field whose name has NAME as a prefix, possibly
7495 followed by "___".
7496
7497 TYPE can be either a struct or union. If REFOK, TYPE may also
7498 be a (pointer or reference)+ to a struct or union, and the
7499 ultimate target type will be searched.
7500
7501 Looks recursively into variant clauses and parent types.
7502
7503 In the case of homonyms in the tagged types, please refer to the
7504 long explanation in find_struct_field's function documentation.
7505
7506 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7507 TYPE is not a type of the right kind. */
7508
7509 static struct type *
7510 ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
7511 int noerr)
7512 {
7513 int i;
7514 int parent_offset = -1;
7515
7516 if (name == NULL)
7517 goto BadName;
7518
7519 if (refok && type != NULL)
7520 while (1)
7521 {
7522 type = ada_check_typedef (type);
7523 if (TYPE_CODE (type) != TYPE_CODE_PTR
7524 && TYPE_CODE (type) != TYPE_CODE_REF)
7525 break;
7526 type = TYPE_TARGET_TYPE (type);
7527 }
7528
7529 if (type == NULL
7530 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7531 && TYPE_CODE (type) != TYPE_CODE_UNION))
7532 {
7533 if (noerr)
7534 return NULL;
7535
7536 error (_("Type %s is not a structure or union type"),
7537 type != NULL ? type_as_string (type).c_str () : _("(null)"));
7538 }
7539
7540 type = to_static_fixed_type (type);
7541
7542 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7543 {
7544 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7545 struct type *t;
7546
7547 if (t_field_name == NULL)
7548 continue;
7549
7550 else if (ada_is_parent_field (type, i))
7551 {
7552 /* This is a field pointing us to the parent type of a tagged
7553 type. As hinted in this function's documentation, we give
7554 preference to fields in the current record first, so what
7555 we do here is just record the index of this field before
7556 we skip it. If it turns out we couldn't find our field
7557 in the current record, then we'll get back to it and search
7558 inside it whether the field might exist in the parent. */
7559
7560 parent_offset = i;
7561 continue;
7562 }
7563
7564 else if (field_name_match (t_field_name, name))
7565 return TYPE_FIELD_TYPE (type, i);
7566
7567 else if (ada_is_wrapper_field (type, i))
7568 {
7569 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7570 0, 1);
7571 if (t != NULL)
7572 return t;
7573 }
7574
7575 else if (ada_is_variant_part (type, i))
7576 {
7577 int j;
7578 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7579 i));
7580
7581 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7582 {
7583 /* FIXME pnh 2008/01/26: We check for a field that is
7584 NOT wrapped in a struct, since the compiler sometimes
7585 generates these for unchecked variant types. Revisit
7586 if the compiler changes this practice. */
7587 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7588
7589 if (v_field_name != NULL
7590 && field_name_match (v_field_name, name))
7591 t = TYPE_FIELD_TYPE (field_type, j);
7592 else
7593 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7594 j),
7595 name, 0, 1);
7596
7597 if (t != NULL)
7598 return t;
7599 }
7600 }
7601
7602 }
7603
7604 /* Field not found so far. If this is a tagged type which
7605 has a parent, try finding that field in the parent now. */
7606
7607 if (parent_offset != -1)
7608 {
7609 struct type *t;
7610
7611 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, parent_offset),
7612 name, 0, 1);
7613 if (t != NULL)
7614 return t;
7615 }
7616
7617 BadName:
7618 if (!noerr)
7619 {
7620 const char *name_str = name != NULL ? name : _("<null>");
7621
7622 error (_("Type %s has no component named %s"),
7623 type_as_string (type).c_str (), name_str);
7624 }
7625
7626 return NULL;
7627 }
7628
7629 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7630 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7631 represents an unchecked union (that is, the variant part of a
7632 record that is named in an Unchecked_Union pragma). */
7633
7634 static int
7635 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7636 {
7637 const char *discrim_name = ada_variant_discrim_name (var_type);
7638
7639 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
7640 }
7641
7642
7643 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7644 within OUTER, determine which variant clause (field number in VAR_TYPE,
7645 numbering from 0) is applicable. Returns -1 if none are. */
7646
7647 int
7648 ada_which_variant_applies (struct type *var_type, struct value *outer)
7649 {
7650 int others_clause;
7651 int i;
7652 const char *discrim_name = ada_variant_discrim_name (var_type);
7653 struct value *discrim;
7654 LONGEST discrim_val;
7655
7656 /* Using plain value_from_contents_and_address here causes problems
7657 because we will end up trying to resolve a type that is currently
7658 being constructed. */
7659 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7660 if (discrim == NULL)
7661 return -1;
7662 discrim_val = value_as_long (discrim);
7663
7664 others_clause = -1;
7665 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7666 {
7667 if (ada_is_others_clause (var_type, i))
7668 others_clause = i;
7669 else if (ada_in_variant (discrim_val, var_type, i))
7670 return i;
7671 }
7672
7673 return others_clause;
7674 }
7675 \f
7676
7677
7678 /* Dynamic-Sized Records */
7679
7680 /* Strategy: The type ostensibly attached to a value with dynamic size
7681 (i.e., a size that is not statically recorded in the debugging
7682 data) does not accurately reflect the size or layout of the value.
7683 Our strategy is to convert these values to values with accurate,
7684 conventional types that are constructed on the fly. */
7685
7686 /* There is a subtle and tricky problem here. In general, we cannot
7687 determine the size of dynamic records without its data. However,
7688 the 'struct value' data structure, which GDB uses to represent
7689 quantities in the inferior process (the target), requires the size
7690 of the type at the time of its allocation in order to reserve space
7691 for GDB's internal copy of the data. That's why the
7692 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7693 rather than struct value*s.
7694
7695 However, GDB's internal history variables ($1, $2, etc.) are
7696 struct value*s containing internal copies of the data that are not, in
7697 general, the same as the data at their corresponding addresses in
7698 the target. Fortunately, the types we give to these values are all
7699 conventional, fixed-size types (as per the strategy described
7700 above), so that we don't usually have to perform the
7701 'to_fixed_xxx_type' conversions to look at their values.
7702 Unfortunately, there is one exception: if one of the internal
7703 history variables is an array whose elements are unconstrained
7704 records, then we will need to create distinct fixed types for each
7705 element selected. */
7706
7707 /* The upshot of all of this is that many routines take a (type, host
7708 address, target address) triple as arguments to represent a value.
7709 The host address, if non-null, is supposed to contain an internal
7710 copy of the relevant data; otherwise, the program is to consult the
7711 target at the target address. */
7712
7713 /* Assuming that VAL0 represents a pointer value, the result of
7714 dereferencing it. Differs from value_ind in its treatment of
7715 dynamic-sized types. */
7716
7717 struct value *
7718 ada_value_ind (struct value *val0)
7719 {
7720 struct value *val = value_ind (val0);
7721
7722 if (ada_is_tagged_type (value_type (val), 0))
7723 val = ada_tag_value_at_base_address (val);
7724
7725 return ada_to_fixed_value (val);
7726 }
7727
7728 /* The value resulting from dereferencing any "reference to"
7729 qualifiers on VAL0. */
7730
7731 static struct value *
7732 ada_coerce_ref (struct value *val0)
7733 {
7734 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7735 {
7736 struct value *val = val0;
7737
7738 val = coerce_ref (val);
7739
7740 if (ada_is_tagged_type (value_type (val), 0))
7741 val = ada_tag_value_at_base_address (val);
7742
7743 return ada_to_fixed_value (val);
7744 }
7745 else
7746 return val0;
7747 }
7748
7749 /* Return OFF rounded upward if necessary to a multiple of
7750 ALIGNMENT (a power of 2). */
7751
7752 static unsigned int
7753 align_value (unsigned int off, unsigned int alignment)
7754 {
7755 return (off + alignment - 1) & ~(alignment - 1);
7756 }
7757
7758 /* Return the bit alignment required for field #F of template type TYPE. */
7759
7760 static unsigned int
7761 field_alignment (struct type *type, int f)
7762 {
7763 const char *name = TYPE_FIELD_NAME (type, f);
7764 int len;
7765 int align_offset;
7766
7767 /* The field name should never be null, unless the debugging information
7768 is somehow malformed. In this case, we assume the field does not
7769 require any alignment. */
7770 if (name == NULL)
7771 return 1;
7772
7773 len = strlen (name);
7774
7775 if (!isdigit (name[len - 1]))
7776 return 1;
7777
7778 if (isdigit (name[len - 2]))
7779 align_offset = len - 2;
7780 else
7781 align_offset = len - 1;
7782
7783 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7784 return TARGET_CHAR_BIT;
7785
7786 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7787 }
7788
7789 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7790
7791 static struct symbol *
7792 ada_find_any_type_symbol (const char *name)
7793 {
7794 struct symbol *sym;
7795
7796 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7797 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7798 return sym;
7799
7800 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7801 return sym;
7802 }
7803
7804 /* Find a type named NAME. Ignores ambiguity. This routine will look
7805 solely for types defined by debug info, it will not search the GDB
7806 primitive types. */
7807
7808 static struct type *
7809 ada_find_any_type (const char *name)
7810 {
7811 struct symbol *sym = ada_find_any_type_symbol (name);
7812
7813 if (sym != NULL)
7814 return SYMBOL_TYPE (sym);
7815
7816 return NULL;
7817 }
7818
7819 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7820 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7821 symbol, in which case it is returned. Otherwise, this looks for
7822 symbols whose name is that of NAME_SYM suffixed with "___XR".
7823 Return symbol if found, and NULL otherwise. */
7824
7825 static bool
7826 ada_is_renaming_symbol (struct symbol *name_sym)
7827 {
7828 const char *name = name_sym->linkage_name ();
7829 return strstr (name, "___XR") != NULL;
7830 }
7831
7832 /* Because of GNAT encoding conventions, several GDB symbols may match a
7833 given type name. If the type denoted by TYPE0 is to be preferred to
7834 that of TYPE1 for purposes of type printing, return non-zero;
7835 otherwise return 0. */
7836
7837 int
7838 ada_prefer_type (struct type *type0, struct type *type1)
7839 {
7840 if (type1 == NULL)
7841 return 1;
7842 else if (type0 == NULL)
7843 return 0;
7844 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7845 return 1;
7846 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7847 return 0;
7848 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7849 return 1;
7850 else if (ada_is_constrained_packed_array_type (type0))
7851 return 1;
7852 else if (ada_is_array_descriptor_type (type0)
7853 && !ada_is_array_descriptor_type (type1))
7854 return 1;
7855 else
7856 {
7857 const char *type0_name = TYPE_NAME (type0);
7858 const char *type1_name = TYPE_NAME (type1);
7859
7860 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7861 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7862 return 1;
7863 }
7864 return 0;
7865 }
7866
7867 /* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
7868 null. */
7869
7870 const char *
7871 ada_type_name (struct type *type)
7872 {
7873 if (type == NULL)
7874 return NULL;
7875 return TYPE_NAME (type);
7876 }
7877
7878 /* Search the list of "descriptive" types associated to TYPE for a type
7879 whose name is NAME. */
7880
7881 static struct type *
7882 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7883 {
7884 struct type *result, *tmp;
7885
7886 if (ada_ignore_descriptive_types_p)
7887 return NULL;
7888
7889 /* If there no descriptive-type info, then there is no parallel type
7890 to be found. */
7891 if (!HAVE_GNAT_AUX_INFO (type))
7892 return NULL;
7893
7894 result = TYPE_DESCRIPTIVE_TYPE (type);
7895 while (result != NULL)
7896 {
7897 const char *result_name = ada_type_name (result);
7898
7899 if (result_name == NULL)
7900 {
7901 warning (_("unexpected null name on descriptive type"));
7902 return NULL;
7903 }
7904
7905 /* If the names match, stop. */
7906 if (strcmp (result_name, name) == 0)
7907 break;
7908
7909 /* Otherwise, look at the next item on the list, if any. */
7910 if (HAVE_GNAT_AUX_INFO (result))
7911 tmp = TYPE_DESCRIPTIVE_TYPE (result);
7912 else
7913 tmp = NULL;
7914
7915 /* If not found either, try after having resolved the typedef. */
7916 if (tmp != NULL)
7917 result = tmp;
7918 else
7919 {
7920 result = check_typedef (result);
7921 if (HAVE_GNAT_AUX_INFO (result))
7922 result = TYPE_DESCRIPTIVE_TYPE (result);
7923 else
7924 result = NULL;
7925 }
7926 }
7927
7928 /* If we didn't find a match, see whether this is a packed array. With
7929 older compilers, the descriptive type information is either absent or
7930 irrelevant when it comes to packed arrays so the above lookup fails.
7931 Fall back to using a parallel lookup by name in this case. */
7932 if (result == NULL && ada_is_constrained_packed_array_type (type))
7933 return ada_find_any_type (name);
7934
7935 return result;
7936 }
7937
7938 /* Find a parallel type to TYPE with the specified NAME, using the
7939 descriptive type taken from the debugging information, if available,
7940 and otherwise using the (slower) name-based method. */
7941
7942 static struct type *
7943 ada_find_parallel_type_with_name (struct type *type, const char *name)
7944 {
7945 struct type *result = NULL;
7946
7947 if (HAVE_GNAT_AUX_INFO (type))
7948 result = find_parallel_type_by_descriptive_type (type, name);
7949 else
7950 result = ada_find_any_type (name);
7951
7952 return result;
7953 }
7954
7955 /* Same as above, but specify the name of the parallel type by appending
7956 SUFFIX to the name of TYPE. */
7957
7958 struct type *
7959 ada_find_parallel_type (struct type *type, const char *suffix)
7960 {
7961 char *name;
7962 const char *type_name = ada_type_name (type);
7963 int len;
7964
7965 if (type_name == NULL)
7966 return NULL;
7967
7968 len = strlen (type_name);
7969
7970 name = (char *) alloca (len + strlen (suffix) + 1);
7971
7972 strcpy (name, type_name);
7973 strcpy (name + len, suffix);
7974
7975 return ada_find_parallel_type_with_name (type, name);
7976 }
7977
7978 /* If TYPE is a variable-size record type, return the corresponding template
7979 type describing its fields. Otherwise, return NULL. */
7980
7981 static struct type *
7982 dynamic_template_type (struct type *type)
7983 {
7984 type = ada_check_typedef (type);
7985
7986 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
7987 || ada_type_name (type) == NULL)
7988 return NULL;
7989 else
7990 {
7991 int len = strlen (ada_type_name (type));
7992
7993 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7994 return type;
7995 else
7996 return ada_find_parallel_type (type, "___XVE");
7997 }
7998 }
7999
8000 /* Assuming that TEMPL_TYPE is a union or struct type, returns
8001 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
8002
8003 static int
8004 is_dynamic_field (struct type *templ_type, int field_num)
8005 {
8006 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
8007
8008 return name != NULL
8009 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8010 && strstr (name, "___XVL") != NULL;
8011 }
8012
8013 /* The index of the variant field of TYPE, or -1 if TYPE does not
8014 represent a variant record type. */
8015
8016 static int
8017 variant_field_index (struct type *type)
8018 {
8019 int f;
8020
8021 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8022 return -1;
8023
8024 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8025 {
8026 if (ada_is_variant_part (type, f))
8027 return f;
8028 }
8029 return -1;
8030 }
8031
8032 /* A record type with no fields. */
8033
8034 static struct type *
8035 empty_record (struct type *templ)
8036 {
8037 struct type *type = alloc_type_copy (templ);
8038
8039 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8040 TYPE_NFIELDS (type) = 0;
8041 TYPE_FIELDS (type) = NULL;
8042 INIT_NONE_SPECIFIC (type);
8043 TYPE_NAME (type) = "<empty>";
8044 TYPE_LENGTH (type) = 0;
8045 return type;
8046 }
8047
8048 /* An ordinary record type (with fixed-length fields) that describes
8049 the value of type TYPE at VALADDR or ADDRESS (see comments at
8050 the beginning of this section) VAL according to GNAT conventions.
8051 DVAL0 should describe the (portion of a) record that contains any
8052 necessary discriminants. It should be NULL if value_type (VAL) is
8053 an outer-level type (i.e., as opposed to a branch of a variant.) A
8054 variant field (unless unchecked) is replaced by a particular branch
8055 of the variant.
8056
8057 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8058 length are not statically known are discarded. As a consequence,
8059 VALADDR, ADDRESS and DVAL0 are ignored.
8060
8061 NOTE: Limitations: For now, we assume that dynamic fields and
8062 variants occupy whole numbers of bytes. However, they need not be
8063 byte-aligned. */
8064
8065 struct type *
8066 ada_template_to_fixed_record_type_1 (struct type *type,
8067 const gdb_byte *valaddr,
8068 CORE_ADDR address, struct value *dval0,
8069 int keep_dynamic_fields)
8070 {
8071 struct value *mark = value_mark ();
8072 struct value *dval;
8073 struct type *rtype;
8074 int nfields, bit_len;
8075 int variant_field;
8076 long off;
8077 int fld_bit_len;
8078 int f;
8079
8080 /* Compute the number of fields in this record type that are going
8081 to be processed: unless keep_dynamic_fields, this includes only
8082 fields whose position and length are static will be processed. */
8083 if (keep_dynamic_fields)
8084 nfields = TYPE_NFIELDS (type);
8085 else
8086 {
8087 nfields = 0;
8088 while (nfields < TYPE_NFIELDS (type)
8089 && !ada_is_variant_part (type, nfields)
8090 && !is_dynamic_field (type, nfields))
8091 nfields++;
8092 }
8093
8094 rtype = alloc_type_copy (type);
8095 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8096 INIT_NONE_SPECIFIC (rtype);
8097 TYPE_NFIELDS (rtype) = nfields;
8098 TYPE_FIELDS (rtype) = (struct field *)
8099 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8100 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8101 TYPE_NAME (rtype) = ada_type_name (type);
8102 TYPE_FIXED_INSTANCE (rtype) = 1;
8103
8104 off = 0;
8105 bit_len = 0;
8106 variant_field = -1;
8107
8108 for (f = 0; f < nfields; f += 1)
8109 {
8110 off = align_value (off, field_alignment (type, f))
8111 + TYPE_FIELD_BITPOS (type, f);
8112 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
8113 TYPE_FIELD_BITSIZE (rtype, f) = 0;
8114
8115 if (ada_is_variant_part (type, f))
8116 {
8117 variant_field = f;
8118 fld_bit_len = 0;
8119 }
8120 else if (is_dynamic_field (type, f))
8121 {
8122 const gdb_byte *field_valaddr = valaddr;
8123 CORE_ADDR field_address = address;
8124 struct type *field_type =
8125 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8126
8127 if (dval0 == NULL)
8128 {
8129 /* rtype's length is computed based on the run-time
8130 value of discriminants. If the discriminants are not
8131 initialized, the type size may be completely bogus and
8132 GDB may fail to allocate a value for it. So check the
8133 size first before creating the value. */
8134 ada_ensure_varsize_limit (rtype);
8135 /* Using plain value_from_contents_and_address here
8136 causes problems because we will end up trying to
8137 resolve a type that is currently being
8138 constructed. */
8139 dval = value_from_contents_and_address_unresolved (rtype,
8140 valaddr,
8141 address);
8142 rtype = value_type (dval);
8143 }
8144 else
8145 dval = dval0;
8146
8147 /* If the type referenced by this field is an aligner type, we need
8148 to unwrap that aligner type, because its size might not be set.
8149 Keeping the aligner type would cause us to compute the wrong
8150 size for this field, impacting the offset of the all the fields
8151 that follow this one. */
8152 if (ada_is_aligner_type (field_type))
8153 {
8154 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8155
8156 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8157 field_address = cond_offset_target (field_address, field_offset);
8158 field_type = ada_aligned_type (field_type);
8159 }
8160
8161 field_valaddr = cond_offset_host (field_valaddr,
8162 off / TARGET_CHAR_BIT);
8163 field_address = cond_offset_target (field_address,
8164 off / TARGET_CHAR_BIT);
8165
8166 /* Get the fixed type of the field. Note that, in this case,
8167 we do not want to get the real type out of the tag: if
8168 the current field is the parent part of a tagged record,
8169 we will get the tag of the object. Clearly wrong: the real
8170 type of the parent is not the real type of the child. We
8171 would end up in an infinite loop. */
8172 field_type = ada_get_base_type (field_type);
8173 field_type = ada_to_fixed_type (field_type, field_valaddr,
8174 field_address, dval, 0);
8175 /* If the field size is already larger than the maximum
8176 object size, then the record itself will necessarily
8177 be larger than the maximum object size. We need to make
8178 this check now, because the size might be so ridiculously
8179 large (due to an uninitialized variable in the inferior)
8180 that it would cause an overflow when adding it to the
8181 record size. */
8182 ada_ensure_varsize_limit (field_type);
8183
8184 TYPE_FIELD_TYPE (rtype, f) = field_type;
8185 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8186 /* The multiplication can potentially overflow. But because
8187 the field length has been size-checked just above, and
8188 assuming that the maximum size is a reasonable value,
8189 an overflow should not happen in practice. So rather than
8190 adding overflow recovery code to this already complex code,
8191 we just assume that it's not going to happen. */
8192 fld_bit_len =
8193 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8194 }
8195 else
8196 {
8197 /* Note: If this field's type is a typedef, it is important
8198 to preserve the typedef layer.
8199
8200 Otherwise, we might be transforming a typedef to a fat
8201 pointer (encoding a pointer to an unconstrained array),
8202 into a basic fat pointer (encoding an unconstrained
8203 array). As both types are implemented using the same
8204 structure, the typedef is the only clue which allows us
8205 to distinguish between the two options. Stripping it
8206 would prevent us from printing this field appropriately. */
8207 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
8208 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8209 if (TYPE_FIELD_BITSIZE (type, f) > 0)
8210 fld_bit_len =
8211 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8212 else
8213 {
8214 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8215
8216 /* We need to be careful of typedefs when computing
8217 the length of our field. If this is a typedef,
8218 get the length of the target type, not the length
8219 of the typedef. */
8220 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8221 field_type = ada_typedef_target_type (field_type);
8222
8223 fld_bit_len =
8224 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8225 }
8226 }
8227 if (off + fld_bit_len > bit_len)
8228 bit_len = off + fld_bit_len;
8229 off += fld_bit_len;
8230 TYPE_LENGTH (rtype) =
8231 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8232 }
8233
8234 /* We handle the variant part, if any, at the end because of certain
8235 odd cases in which it is re-ordered so as NOT to be the last field of
8236 the record. This can happen in the presence of representation
8237 clauses. */
8238 if (variant_field >= 0)
8239 {
8240 struct type *branch_type;
8241
8242 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8243
8244 if (dval0 == NULL)
8245 {
8246 /* Using plain value_from_contents_and_address here causes
8247 problems because we will end up trying to resolve a type
8248 that is currently being constructed. */
8249 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8250 address);
8251 rtype = value_type (dval);
8252 }
8253 else
8254 dval = dval0;
8255
8256 branch_type =
8257 to_fixed_variant_branch_type
8258 (TYPE_FIELD_TYPE (type, variant_field),
8259 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8260 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8261 if (branch_type == NULL)
8262 {
8263 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8264 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8265 TYPE_NFIELDS (rtype) -= 1;
8266 }
8267 else
8268 {
8269 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8270 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8271 fld_bit_len =
8272 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8273 TARGET_CHAR_BIT;
8274 if (off + fld_bit_len > bit_len)
8275 bit_len = off + fld_bit_len;
8276 TYPE_LENGTH (rtype) =
8277 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8278 }
8279 }
8280
8281 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8282 should contain the alignment of that record, which should be a strictly
8283 positive value. If null or negative, then something is wrong, most
8284 probably in the debug info. In that case, we don't round up the size
8285 of the resulting type. If this record is not part of another structure,
8286 the current RTYPE length might be good enough for our purposes. */
8287 if (TYPE_LENGTH (type) <= 0)
8288 {
8289 if (TYPE_NAME (rtype))
8290 warning (_("Invalid type size for `%s' detected: %s."),
8291 TYPE_NAME (rtype), pulongest (TYPE_LENGTH (type)));
8292 else
8293 warning (_("Invalid type size for <unnamed> detected: %s."),
8294 pulongest (TYPE_LENGTH (type)));
8295 }
8296 else
8297 {
8298 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8299 TYPE_LENGTH (type));
8300 }
8301
8302 value_free_to_mark (mark);
8303 if (TYPE_LENGTH (rtype) > varsize_limit)
8304 error (_("record type with dynamic size is larger than varsize-limit"));
8305 return rtype;
8306 }
8307
8308 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8309 of 1. */
8310
8311 static struct type *
8312 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8313 CORE_ADDR address, struct value *dval0)
8314 {
8315 return ada_template_to_fixed_record_type_1 (type, valaddr,
8316 address, dval0, 1);
8317 }
8318
8319 /* An ordinary record type in which ___XVL-convention fields and
8320 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8321 static approximations, containing all possible fields. Uses
8322 no runtime values. Useless for use in values, but that's OK,
8323 since the results are used only for type determinations. Works on both
8324 structs and unions. Representation note: to save space, we memorize
8325 the result of this function in the TYPE_TARGET_TYPE of the
8326 template type. */
8327
8328 static struct type *
8329 template_to_static_fixed_type (struct type *type0)
8330 {
8331 struct type *type;
8332 int nfields;
8333 int f;
8334
8335 /* No need no do anything if the input type is already fixed. */
8336 if (TYPE_FIXED_INSTANCE (type0))
8337 return type0;
8338
8339 /* Likewise if we already have computed the static approximation. */
8340 if (TYPE_TARGET_TYPE (type0) != NULL)
8341 return TYPE_TARGET_TYPE (type0);
8342
8343 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8344 type = type0;
8345 nfields = TYPE_NFIELDS (type0);
8346
8347 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8348 recompute all over next time. */
8349 TYPE_TARGET_TYPE (type0) = type;
8350
8351 for (f = 0; f < nfields; f += 1)
8352 {
8353 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
8354 struct type *new_type;
8355
8356 if (is_dynamic_field (type0, f))
8357 {
8358 field_type = ada_check_typedef (field_type);
8359 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8360 }
8361 else
8362 new_type = static_unwrap_type (field_type);
8363
8364 if (new_type != field_type)
8365 {
8366 /* Clone TYPE0 only the first time we get a new field type. */
8367 if (type == type0)
8368 {
8369 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8370 TYPE_CODE (type) = TYPE_CODE (type0);
8371 INIT_NONE_SPECIFIC (type);
8372 TYPE_NFIELDS (type) = nfields;
8373 TYPE_FIELDS (type) = (struct field *)
8374 TYPE_ALLOC (type, nfields * sizeof (struct field));
8375 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8376 sizeof (struct field) * nfields);
8377 TYPE_NAME (type) = ada_type_name (type0);
8378 TYPE_FIXED_INSTANCE (type) = 1;
8379 TYPE_LENGTH (type) = 0;
8380 }
8381 TYPE_FIELD_TYPE (type, f) = new_type;
8382 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8383 }
8384 }
8385
8386 return type;
8387 }
8388
8389 /* Given an object of type TYPE whose contents are at VALADDR and
8390 whose address in memory is ADDRESS, returns a revision of TYPE,
8391 which should be a non-dynamic-sized record, in which the variant
8392 part, if any, is replaced with the appropriate branch. Looks
8393 for discriminant values in DVAL0, which can be NULL if the record
8394 contains the necessary discriminant values. */
8395
8396 static struct type *
8397 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8398 CORE_ADDR address, struct value *dval0)
8399 {
8400 struct value *mark = value_mark ();
8401 struct value *dval;
8402 struct type *rtype;
8403 struct type *branch_type;
8404 int nfields = TYPE_NFIELDS (type);
8405 int variant_field = variant_field_index (type);
8406
8407 if (variant_field == -1)
8408 return type;
8409
8410 if (dval0 == NULL)
8411 {
8412 dval = value_from_contents_and_address (type, valaddr, address);
8413 type = value_type (dval);
8414 }
8415 else
8416 dval = dval0;
8417
8418 rtype = alloc_type_copy (type);
8419 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8420 INIT_NONE_SPECIFIC (rtype);
8421 TYPE_NFIELDS (rtype) = nfields;
8422 TYPE_FIELDS (rtype) =
8423 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8424 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
8425 sizeof (struct field) * nfields);
8426 TYPE_NAME (rtype) = ada_type_name (type);
8427 TYPE_FIXED_INSTANCE (rtype) = 1;
8428 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8429
8430 branch_type = to_fixed_variant_branch_type
8431 (TYPE_FIELD_TYPE (type, variant_field),
8432 cond_offset_host (valaddr,
8433 TYPE_FIELD_BITPOS (type, variant_field)
8434 / TARGET_CHAR_BIT),
8435 cond_offset_target (address,
8436 TYPE_FIELD_BITPOS (type, variant_field)
8437 / TARGET_CHAR_BIT), dval);
8438 if (branch_type == NULL)
8439 {
8440 int f;
8441
8442 for (f = variant_field + 1; f < nfields; f += 1)
8443 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8444 TYPE_NFIELDS (rtype) -= 1;
8445 }
8446 else
8447 {
8448 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8449 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8450 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8451 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8452 }
8453 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
8454
8455 value_free_to_mark (mark);
8456 return rtype;
8457 }
8458
8459 /* An ordinary record type (with fixed-length fields) that describes
8460 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8461 beginning of this section]. Any necessary discriminants' values
8462 should be in DVAL, a record value; it may be NULL if the object
8463 at ADDR itself contains any necessary discriminant values.
8464 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8465 values from the record are needed. Except in the case that DVAL,
8466 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8467 unchecked) is replaced by a particular branch of the variant.
8468
8469 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8470 is questionable and may be removed. It can arise during the
8471 processing of an unconstrained-array-of-record type where all the
8472 variant branches have exactly the same size. This is because in
8473 such cases, the compiler does not bother to use the XVS convention
8474 when encoding the record. I am currently dubious of this
8475 shortcut and suspect the compiler should be altered. FIXME. */
8476
8477 static struct type *
8478 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8479 CORE_ADDR address, struct value *dval)
8480 {
8481 struct type *templ_type;
8482
8483 if (TYPE_FIXED_INSTANCE (type0))
8484 return type0;
8485
8486 templ_type = dynamic_template_type (type0);
8487
8488 if (templ_type != NULL)
8489 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8490 else if (variant_field_index (type0) >= 0)
8491 {
8492 if (dval == NULL && valaddr == NULL && address == 0)
8493 return type0;
8494 return to_record_with_fixed_variant_part (type0, valaddr, address,
8495 dval);
8496 }
8497 else
8498 {
8499 TYPE_FIXED_INSTANCE (type0) = 1;
8500 return type0;
8501 }
8502
8503 }
8504
8505 /* An ordinary record type (with fixed-length fields) that describes
8506 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8507 union type. Any necessary discriminants' values should be in DVAL,
8508 a record value. That is, this routine selects the appropriate
8509 branch of the union at ADDR according to the discriminant value
8510 indicated in the union's type name. Returns VAR_TYPE0 itself if
8511 it represents a variant subject to a pragma Unchecked_Union. */
8512
8513 static struct type *
8514 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8515 CORE_ADDR address, struct value *dval)
8516 {
8517 int which;
8518 struct type *templ_type;
8519 struct type *var_type;
8520
8521 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8522 var_type = TYPE_TARGET_TYPE (var_type0);
8523 else
8524 var_type = var_type0;
8525
8526 templ_type = ada_find_parallel_type (var_type, "___XVU");
8527
8528 if (templ_type != NULL)
8529 var_type = templ_type;
8530
8531 if (is_unchecked_variant (var_type, value_type (dval)))
8532 return var_type0;
8533 which = ada_which_variant_applies (var_type, dval);
8534
8535 if (which < 0)
8536 return empty_record (var_type);
8537 else if (is_dynamic_field (var_type, which))
8538 return to_fixed_record_type
8539 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8540 valaddr, address, dval);
8541 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8542 return
8543 to_fixed_record_type
8544 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8545 else
8546 return TYPE_FIELD_TYPE (var_type, which);
8547 }
8548
8549 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8550 ENCODING_TYPE, a type following the GNAT conventions for discrete
8551 type encodings, only carries redundant information. */
8552
8553 static int
8554 ada_is_redundant_range_encoding (struct type *range_type,
8555 struct type *encoding_type)
8556 {
8557 const char *bounds_str;
8558 int n;
8559 LONGEST lo, hi;
8560
8561 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8562
8563 if (TYPE_CODE (get_base_type (range_type))
8564 != TYPE_CODE (get_base_type (encoding_type)))
8565 {
8566 /* The compiler probably used a simple base type to describe
8567 the range type instead of the range's actual base type,
8568 expecting us to get the real base type from the encoding
8569 anyway. In this situation, the encoding cannot be ignored
8570 as redundant. */
8571 return 0;
8572 }
8573
8574 if (is_dynamic_type (range_type))
8575 return 0;
8576
8577 if (TYPE_NAME (encoding_type) == NULL)
8578 return 0;
8579
8580 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8581 if (bounds_str == NULL)
8582 return 0;
8583
8584 n = 8; /* Skip "___XDLU_". */
8585 if (!ada_scan_number (bounds_str, n, &lo, &n))
8586 return 0;
8587 if (TYPE_LOW_BOUND (range_type) != lo)
8588 return 0;
8589
8590 n += 2; /* Skip the "__" separator between the two bounds. */
8591 if (!ada_scan_number (bounds_str, n, &hi, &n))
8592 return 0;
8593 if (TYPE_HIGH_BOUND (range_type) != hi)
8594 return 0;
8595
8596 return 1;
8597 }
8598
8599 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8600 a type following the GNAT encoding for describing array type
8601 indices, only carries redundant information. */
8602
8603 static int
8604 ada_is_redundant_index_type_desc (struct type *array_type,
8605 struct type *desc_type)
8606 {
8607 struct type *this_layer = check_typedef (array_type);
8608 int i;
8609
8610 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8611 {
8612 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8613 TYPE_FIELD_TYPE (desc_type, i)))
8614 return 0;
8615 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8616 }
8617
8618 return 1;
8619 }
8620
8621 /* Assuming that TYPE0 is an array type describing the type of a value
8622 at ADDR, and that DVAL describes a record containing any
8623 discriminants used in TYPE0, returns a type for the value that
8624 contains no dynamic components (that is, no components whose sizes
8625 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8626 true, gives an error message if the resulting type's size is over
8627 varsize_limit. */
8628
8629 static struct type *
8630 to_fixed_array_type (struct type *type0, struct value *dval,
8631 int ignore_too_big)
8632 {
8633 struct type *index_type_desc;
8634 struct type *result;
8635 int constrained_packed_array_p;
8636 static const char *xa_suffix = "___XA";
8637
8638 type0 = ada_check_typedef (type0);
8639 if (TYPE_FIXED_INSTANCE (type0))
8640 return type0;
8641
8642 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8643 if (constrained_packed_array_p)
8644 type0 = decode_constrained_packed_array_type (type0);
8645
8646 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8647
8648 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8649 encoding suffixed with 'P' may still be generated. If so,
8650 it should be used to find the XA type. */
8651
8652 if (index_type_desc == NULL)
8653 {
8654 const char *type_name = ada_type_name (type0);
8655
8656 if (type_name != NULL)
8657 {
8658 const int len = strlen (type_name);
8659 char *name = (char *) alloca (len + strlen (xa_suffix));
8660
8661 if (type_name[len - 1] == 'P')
8662 {
8663 strcpy (name, type_name);
8664 strcpy (name + len - 1, xa_suffix);
8665 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8666 }
8667 }
8668 }
8669
8670 ada_fixup_array_indexes_type (index_type_desc);
8671 if (index_type_desc != NULL
8672 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8673 {
8674 /* Ignore this ___XA parallel type, as it does not bring any
8675 useful information. This allows us to avoid creating fixed
8676 versions of the array's index types, which would be identical
8677 to the original ones. This, in turn, can also help avoid
8678 the creation of fixed versions of the array itself. */
8679 index_type_desc = NULL;
8680 }
8681
8682 if (index_type_desc == NULL)
8683 {
8684 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8685
8686 /* NOTE: elt_type---the fixed version of elt_type0---should never
8687 depend on the contents of the array in properly constructed
8688 debugging data. */
8689 /* Create a fixed version of the array element type.
8690 We're not providing the address of an element here,
8691 and thus the actual object value cannot be inspected to do
8692 the conversion. This should not be a problem, since arrays of
8693 unconstrained objects are not allowed. In particular, all
8694 the elements of an array of a tagged type should all be of
8695 the same type specified in the debugging info. No need to
8696 consult the object tag. */
8697 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8698
8699 /* Make sure we always create a new array type when dealing with
8700 packed array types, since we're going to fix-up the array
8701 type length and element bitsize a little further down. */
8702 if (elt_type0 == elt_type && !constrained_packed_array_p)
8703 result = type0;
8704 else
8705 result = create_array_type (alloc_type_copy (type0),
8706 elt_type, TYPE_INDEX_TYPE (type0));
8707 }
8708 else
8709 {
8710 int i;
8711 struct type *elt_type0;
8712
8713 elt_type0 = type0;
8714 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8715 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8716
8717 /* NOTE: result---the fixed version of elt_type0---should never
8718 depend on the contents of the array in properly constructed
8719 debugging data. */
8720 /* Create a fixed version of the array element type.
8721 We're not providing the address of an element here,
8722 and thus the actual object value cannot be inspected to do
8723 the conversion. This should not be a problem, since arrays of
8724 unconstrained objects are not allowed. In particular, all
8725 the elements of an array of a tagged type should all be of
8726 the same type specified in the debugging info. No need to
8727 consult the object tag. */
8728 result =
8729 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8730
8731 elt_type0 = type0;
8732 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8733 {
8734 struct type *range_type =
8735 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8736
8737 result = create_array_type (alloc_type_copy (elt_type0),
8738 result, range_type);
8739 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8740 }
8741 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8742 error (_("array type with dynamic size is larger than varsize-limit"));
8743 }
8744
8745 /* We want to preserve the type name. This can be useful when
8746 trying to get the type name of a value that has already been
8747 printed (for instance, if the user did "print VAR; whatis $". */
8748 TYPE_NAME (result) = TYPE_NAME (type0);
8749
8750 if (constrained_packed_array_p)
8751 {
8752 /* So far, the resulting type has been created as if the original
8753 type was a regular (non-packed) array type. As a result, the
8754 bitsize of the array elements needs to be set again, and the array
8755 length needs to be recomputed based on that bitsize. */
8756 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8757 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8758
8759 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8760 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8761 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8762 TYPE_LENGTH (result)++;
8763 }
8764
8765 TYPE_FIXED_INSTANCE (result) = 1;
8766 return result;
8767 }
8768
8769
8770 /* A standard type (containing no dynamically sized components)
8771 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8772 DVAL describes a record containing any discriminants used in TYPE0,
8773 and may be NULL if there are none, or if the object of type TYPE at
8774 ADDRESS or in VALADDR contains these discriminants.
8775
8776 If CHECK_TAG is not null, in the case of tagged types, this function
8777 attempts to locate the object's tag and use it to compute the actual
8778 type. However, when ADDRESS is null, we cannot use it to determine the
8779 location of the tag, and therefore compute the tagged type's actual type.
8780 So we return the tagged type without consulting the tag. */
8781
8782 static struct type *
8783 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8784 CORE_ADDR address, struct value *dval, int check_tag)
8785 {
8786 type = ada_check_typedef (type);
8787
8788 /* Only un-fixed types need to be handled here. */
8789 if (!HAVE_GNAT_AUX_INFO (type))
8790 return type;
8791
8792 switch (TYPE_CODE (type))
8793 {
8794 default:
8795 return type;
8796 case TYPE_CODE_STRUCT:
8797 {
8798 struct type *static_type = to_static_fixed_type (type);
8799 struct type *fixed_record_type =
8800 to_fixed_record_type (type, valaddr, address, NULL);
8801
8802 /* If STATIC_TYPE is a tagged type and we know the object's address,
8803 then we can determine its tag, and compute the object's actual
8804 type from there. Note that we have to use the fixed record
8805 type (the parent part of the record may have dynamic fields
8806 and the way the location of _tag is expressed may depend on
8807 them). */
8808
8809 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8810 {
8811 struct value *tag =
8812 value_tag_from_contents_and_address
8813 (fixed_record_type,
8814 valaddr,
8815 address);
8816 struct type *real_type = type_from_tag (tag);
8817 struct value *obj =
8818 value_from_contents_and_address (fixed_record_type,
8819 valaddr,
8820 address);
8821 fixed_record_type = value_type (obj);
8822 if (real_type != NULL)
8823 return to_fixed_record_type
8824 (real_type, NULL,
8825 value_address (ada_tag_value_at_base_address (obj)), NULL);
8826 }
8827
8828 /* Check to see if there is a parallel ___XVZ variable.
8829 If there is, then it provides the actual size of our type. */
8830 else if (ada_type_name (fixed_record_type) != NULL)
8831 {
8832 const char *name = ada_type_name (fixed_record_type);
8833 char *xvz_name
8834 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
8835 bool xvz_found = false;
8836 LONGEST size;
8837
8838 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8839 try
8840 {
8841 xvz_found = get_int_var_value (xvz_name, size);
8842 }
8843 catch (const gdb_exception_error &except)
8844 {
8845 /* We found the variable, but somehow failed to read
8846 its value. Rethrow the same error, but with a little
8847 bit more information, to help the user understand
8848 what went wrong (Eg: the variable might have been
8849 optimized out). */
8850 throw_error (except.error,
8851 _("unable to read value of %s (%s)"),
8852 xvz_name, except.what ());
8853 }
8854
8855 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8856 {
8857 fixed_record_type = copy_type (fixed_record_type);
8858 TYPE_LENGTH (fixed_record_type) = size;
8859
8860 /* The FIXED_RECORD_TYPE may have be a stub. We have
8861 observed this when the debugging info is STABS, and
8862 apparently it is something that is hard to fix.
8863
8864 In practice, we don't need the actual type definition
8865 at all, because the presence of the XVZ variable allows us
8866 to assume that there must be a XVS type as well, which we
8867 should be able to use later, when we need the actual type
8868 definition.
8869
8870 In the meantime, pretend that the "fixed" type we are
8871 returning is NOT a stub, because this can cause trouble
8872 when using this type to create new types targeting it.
8873 Indeed, the associated creation routines often check
8874 whether the target type is a stub and will try to replace
8875 it, thus using a type with the wrong size. This, in turn,
8876 might cause the new type to have the wrong size too.
8877 Consider the case of an array, for instance, where the size
8878 of the array is computed from the number of elements in
8879 our array multiplied by the size of its element. */
8880 TYPE_STUB (fixed_record_type) = 0;
8881 }
8882 }
8883 return fixed_record_type;
8884 }
8885 case TYPE_CODE_ARRAY:
8886 return to_fixed_array_type (type, dval, 1);
8887 case TYPE_CODE_UNION:
8888 if (dval == NULL)
8889 return type;
8890 else
8891 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8892 }
8893 }
8894
8895 /* The same as ada_to_fixed_type_1, except that it preserves the type
8896 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8897
8898 The typedef layer needs be preserved in order to differentiate between
8899 arrays and array pointers when both types are implemented using the same
8900 fat pointer. In the array pointer case, the pointer is encoded as
8901 a typedef of the pointer type. For instance, considering:
8902
8903 type String_Access is access String;
8904 S1 : String_Access := null;
8905
8906 To the debugger, S1 is defined as a typedef of type String. But
8907 to the user, it is a pointer. So if the user tries to print S1,
8908 we should not dereference the array, but print the array address
8909 instead.
8910
8911 If we didn't preserve the typedef layer, we would lose the fact that
8912 the type is to be presented as a pointer (needs de-reference before
8913 being printed). And we would also use the source-level type name. */
8914
8915 struct type *
8916 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8917 CORE_ADDR address, struct value *dval, int check_tag)
8918
8919 {
8920 struct type *fixed_type =
8921 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8922
8923 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8924 then preserve the typedef layer.
8925
8926 Implementation note: We can only check the main-type portion of
8927 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8928 from TYPE now returns a type that has the same instance flags
8929 as TYPE. For instance, if TYPE is a "typedef const", and its
8930 target type is a "struct", then the typedef elimination will return
8931 a "const" version of the target type. See check_typedef for more
8932 details about how the typedef layer elimination is done.
8933
8934 brobecker/2010-11-19: It seems to me that the only case where it is
8935 useful to preserve the typedef layer is when dealing with fat pointers.
8936 Perhaps, we could add a check for that and preserve the typedef layer
8937 only in that situation. But this seems unnecessary so far, probably
8938 because we call check_typedef/ada_check_typedef pretty much everywhere.
8939 */
8940 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8941 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8942 == TYPE_MAIN_TYPE (fixed_type)))
8943 return type;
8944
8945 return fixed_type;
8946 }
8947
8948 /* A standard (static-sized) type corresponding as well as possible to
8949 TYPE0, but based on no runtime data. */
8950
8951 static struct type *
8952 to_static_fixed_type (struct type *type0)
8953 {
8954 struct type *type;
8955
8956 if (type0 == NULL)
8957 return NULL;
8958
8959 if (TYPE_FIXED_INSTANCE (type0))
8960 return type0;
8961
8962 type0 = ada_check_typedef (type0);
8963
8964 switch (TYPE_CODE (type0))
8965 {
8966 default:
8967 return type0;
8968 case TYPE_CODE_STRUCT:
8969 type = dynamic_template_type (type0);
8970 if (type != NULL)
8971 return template_to_static_fixed_type (type);
8972 else
8973 return template_to_static_fixed_type (type0);
8974 case TYPE_CODE_UNION:
8975 type = ada_find_parallel_type (type0, "___XVU");
8976 if (type != NULL)
8977 return template_to_static_fixed_type (type);
8978 else
8979 return template_to_static_fixed_type (type0);
8980 }
8981 }
8982
8983 /* A static approximation of TYPE with all type wrappers removed. */
8984
8985 static struct type *
8986 static_unwrap_type (struct type *type)
8987 {
8988 if (ada_is_aligner_type (type))
8989 {
8990 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
8991 if (ada_type_name (type1) == NULL)
8992 TYPE_NAME (type1) = ada_type_name (type);
8993
8994 return static_unwrap_type (type1);
8995 }
8996 else
8997 {
8998 struct type *raw_real_type = ada_get_base_type (type);
8999
9000 if (raw_real_type == type)
9001 return type;
9002 else
9003 return to_static_fixed_type (raw_real_type);
9004 }
9005 }
9006
9007 /* In some cases, incomplete and private types require
9008 cross-references that are not resolved as records (for example,
9009 type Foo;
9010 type FooP is access Foo;
9011 V: FooP;
9012 type Foo is array ...;
9013 ). In these cases, since there is no mechanism for producing
9014 cross-references to such types, we instead substitute for FooP a
9015 stub enumeration type that is nowhere resolved, and whose tag is
9016 the name of the actual type. Call these types "non-record stubs". */
9017
9018 /* A type equivalent to TYPE that is not a non-record stub, if one
9019 exists, otherwise TYPE. */
9020
9021 struct type *
9022 ada_check_typedef (struct type *type)
9023 {
9024 if (type == NULL)
9025 return NULL;
9026
9027 /* If our type is an access to an unconstrained array, which is encoded
9028 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
9029 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9030 what allows us to distinguish between fat pointers that represent
9031 array types, and fat pointers that represent array access types
9032 (in both cases, the compiler implements them as fat pointers). */
9033 if (ada_is_access_to_unconstrained_array (type))
9034 return type;
9035
9036 type = check_typedef (type);
9037 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
9038 || !TYPE_STUB (type)
9039 || TYPE_NAME (type) == NULL)
9040 return type;
9041 else
9042 {
9043 const char *name = TYPE_NAME (type);
9044 struct type *type1 = ada_find_any_type (name);
9045
9046 if (type1 == NULL)
9047 return type;
9048
9049 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9050 stubs pointing to arrays, as we don't create symbols for array
9051 types, only for the typedef-to-array types). If that's the case,
9052 strip the typedef layer. */
9053 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9054 type1 = ada_check_typedef (type1);
9055
9056 return type1;
9057 }
9058 }
9059
9060 /* A value representing the data at VALADDR/ADDRESS as described by
9061 type TYPE0, but with a standard (static-sized) type that correctly
9062 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9063 type, then return VAL0 [this feature is simply to avoid redundant
9064 creation of struct values]. */
9065
9066 static struct value *
9067 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9068 struct value *val0)
9069 {
9070 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
9071
9072 if (type == type0 && val0 != NULL)
9073 return val0;
9074
9075 if (VALUE_LVAL (val0) != lval_memory)
9076 {
9077 /* Our value does not live in memory; it could be a convenience
9078 variable, for instance. Create a not_lval value using val0's
9079 contents. */
9080 return value_from_contents (type, value_contents (val0));
9081 }
9082
9083 return value_from_contents_and_address (type, 0, address);
9084 }
9085
9086 /* A value representing VAL, but with a standard (static-sized) type
9087 that correctly describes it. Does not necessarily create a new
9088 value. */
9089
9090 struct value *
9091 ada_to_fixed_value (struct value *val)
9092 {
9093 val = unwrap_value (val);
9094 val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
9095 return val;
9096 }
9097 \f
9098
9099 /* Attributes */
9100
9101 /* Table mapping attribute numbers to names.
9102 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
9103
9104 static const char *attribute_names[] = {
9105 "<?>",
9106
9107 "first",
9108 "last",
9109 "length",
9110 "image",
9111 "max",
9112 "min",
9113 "modulus",
9114 "pos",
9115 "size",
9116 "tag",
9117 "val",
9118 0
9119 };
9120
9121 static const char *
9122 ada_attribute_name (enum exp_opcode n)
9123 {
9124 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9125 return attribute_names[n - OP_ATR_FIRST + 1];
9126 else
9127 return attribute_names[0];
9128 }
9129
9130 /* Evaluate the 'POS attribute applied to ARG. */
9131
9132 static LONGEST
9133 pos_atr (struct value *arg)
9134 {
9135 struct value *val = coerce_ref (arg);
9136 struct type *type = value_type (val);
9137 LONGEST result;
9138
9139 if (!discrete_type_p (type))
9140 error (_("'POS only defined on discrete types"));
9141
9142 if (!discrete_position (type, value_as_long (val), &result))
9143 error (_("enumeration value is invalid: can't find 'POS"));
9144
9145 return result;
9146 }
9147
9148 static struct value *
9149 value_pos_atr (struct type *type, struct value *arg)
9150 {
9151 return value_from_longest (type, pos_atr (arg));
9152 }
9153
9154 /* Evaluate the TYPE'VAL attribute applied to ARG. */
9155
9156 static struct value *
9157 value_val_atr (struct type *type, struct value *arg)
9158 {
9159 if (!discrete_type_p (type))
9160 error (_("'VAL only defined on discrete types"));
9161 if (!integer_type_p (value_type (arg)))
9162 error (_("'VAL requires integral argument"));
9163
9164 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9165 {
9166 long pos = value_as_long (arg);
9167
9168 if (pos < 0 || pos >= TYPE_NFIELDS (type))
9169 error (_("argument to 'VAL out of range"));
9170 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
9171 }
9172 else
9173 return value_from_longest (type, value_as_long (arg));
9174 }
9175 \f
9176
9177 /* Evaluation */
9178
9179 /* True if TYPE appears to be an Ada character type.
9180 [At the moment, this is true only for Character and Wide_Character;
9181 It is a heuristic test that could stand improvement]. */
9182
9183 bool
9184 ada_is_character_type (struct type *type)
9185 {
9186 const char *name;
9187
9188 /* If the type code says it's a character, then assume it really is,
9189 and don't check any further. */
9190 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9191 return true;
9192
9193 /* Otherwise, assume it's a character type iff it is a discrete type
9194 with a known character type name. */
9195 name = ada_type_name (type);
9196 return (name != NULL
9197 && (TYPE_CODE (type) == TYPE_CODE_INT
9198 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9199 && (strcmp (name, "character") == 0
9200 || strcmp (name, "wide_character") == 0
9201 || strcmp (name, "wide_wide_character") == 0
9202 || strcmp (name, "unsigned char") == 0));
9203 }
9204
9205 /* True if TYPE appears to be an Ada string type. */
9206
9207 bool
9208 ada_is_string_type (struct type *type)
9209 {
9210 type = ada_check_typedef (type);
9211 if (type != NULL
9212 && TYPE_CODE (type) != TYPE_CODE_PTR
9213 && (ada_is_simple_array_type (type)
9214 || ada_is_array_descriptor_type (type))
9215 && ada_array_arity (type) == 1)
9216 {
9217 struct type *elttype = ada_array_element_type (type, 1);
9218
9219 return ada_is_character_type (elttype);
9220 }
9221 else
9222 return false;
9223 }
9224
9225 /* The compiler sometimes provides a parallel XVS type for a given
9226 PAD type. Normally, it is safe to follow the PAD type directly,
9227 but older versions of the compiler have a bug that causes the offset
9228 of its "F" field to be wrong. Following that field in that case
9229 would lead to incorrect results, but this can be worked around
9230 by ignoring the PAD type and using the associated XVS type instead.
9231
9232 Set to True if the debugger should trust the contents of PAD types.
9233 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9234 static bool trust_pad_over_xvs = true;
9235
9236 /* True if TYPE is a struct type introduced by the compiler to force the
9237 alignment of a value. Such types have a single field with a
9238 distinctive name. */
9239
9240 int
9241 ada_is_aligner_type (struct type *type)
9242 {
9243 type = ada_check_typedef (type);
9244
9245 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
9246 return 0;
9247
9248 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
9249 && TYPE_NFIELDS (type) == 1
9250 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
9251 }
9252
9253 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9254 the parallel type. */
9255
9256 struct type *
9257 ada_get_base_type (struct type *raw_type)
9258 {
9259 struct type *real_type_namer;
9260 struct type *raw_real_type;
9261
9262 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9263 return raw_type;
9264
9265 if (ada_is_aligner_type (raw_type))
9266 /* The encoding specifies that we should always use the aligner type.
9267 So, even if this aligner type has an associated XVS type, we should
9268 simply ignore it.
9269
9270 According to the compiler gurus, an XVS type parallel to an aligner
9271 type may exist because of a stabs limitation. In stabs, aligner
9272 types are empty because the field has a variable-sized type, and
9273 thus cannot actually be used as an aligner type. As a result,
9274 we need the associated parallel XVS type to decode the type.
9275 Since the policy in the compiler is to not change the internal
9276 representation based on the debugging info format, we sometimes
9277 end up having a redundant XVS type parallel to the aligner type. */
9278 return raw_type;
9279
9280 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9281 if (real_type_namer == NULL
9282 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9283 || TYPE_NFIELDS (real_type_namer) != 1)
9284 return raw_type;
9285
9286 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9287 {
9288 /* This is an older encoding form where the base type needs to be
9289 looked up by name. We prefer the newer encoding because it is
9290 more efficient. */
9291 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9292 if (raw_real_type == NULL)
9293 return raw_type;
9294 else
9295 return raw_real_type;
9296 }
9297
9298 /* The field in our XVS type is a reference to the base type. */
9299 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
9300 }
9301
9302 /* The type of value designated by TYPE, with all aligners removed. */
9303
9304 struct type *
9305 ada_aligned_type (struct type *type)
9306 {
9307 if (ada_is_aligner_type (type))
9308 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9309 else
9310 return ada_get_base_type (type);
9311 }
9312
9313
9314 /* The address of the aligned value in an object at address VALADDR
9315 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9316
9317 const gdb_byte *
9318 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9319 {
9320 if (ada_is_aligner_type (type))
9321 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
9322 valaddr +
9323 TYPE_FIELD_BITPOS (type,
9324 0) / TARGET_CHAR_BIT);
9325 else
9326 return valaddr;
9327 }
9328
9329
9330
9331 /* The printed representation of an enumeration literal with encoded
9332 name NAME. The value is good to the next call of ada_enum_name. */
9333 const char *
9334 ada_enum_name (const char *name)
9335 {
9336 static char *result;
9337 static size_t result_len = 0;
9338 const char *tmp;
9339
9340 /* First, unqualify the enumeration name:
9341 1. Search for the last '.' character. If we find one, then skip
9342 all the preceding characters, the unqualified name starts
9343 right after that dot.
9344 2. Otherwise, we may be debugging on a target where the compiler
9345 translates dots into "__". Search forward for double underscores,
9346 but stop searching when we hit an overloading suffix, which is
9347 of the form "__" followed by digits. */
9348
9349 tmp = strrchr (name, '.');
9350 if (tmp != NULL)
9351 name = tmp + 1;
9352 else
9353 {
9354 while ((tmp = strstr (name, "__")) != NULL)
9355 {
9356 if (isdigit (tmp[2]))
9357 break;
9358 else
9359 name = tmp + 2;
9360 }
9361 }
9362
9363 if (name[0] == 'Q')
9364 {
9365 int v;
9366
9367 if (name[1] == 'U' || name[1] == 'W')
9368 {
9369 if (sscanf (name + 2, "%x", &v) != 1)
9370 return name;
9371 }
9372 else if (((name[1] >= '0' && name[1] <= '9')
9373 || (name[1] >= 'a' && name[1] <= 'z'))
9374 && name[2] == '\0')
9375 {
9376 GROW_VECT (result, result_len, 4);
9377 xsnprintf (result, result_len, "'%c'", name[1]);
9378 return result;
9379 }
9380 else
9381 return name;
9382
9383 GROW_VECT (result, result_len, 16);
9384 if (isascii (v) && isprint (v))
9385 xsnprintf (result, result_len, "'%c'", v);
9386 else if (name[1] == 'U')
9387 xsnprintf (result, result_len, "[\"%02x\"]", v);
9388 else
9389 xsnprintf (result, result_len, "[\"%04x\"]", v);
9390
9391 return result;
9392 }
9393 else
9394 {
9395 tmp = strstr (name, "__");
9396 if (tmp == NULL)
9397 tmp = strstr (name, "$");
9398 if (tmp != NULL)
9399 {
9400 GROW_VECT (result, result_len, tmp - name + 1);
9401 strncpy (result, name, tmp - name);
9402 result[tmp - name] = '\0';
9403 return result;
9404 }
9405
9406 return name;
9407 }
9408 }
9409
9410 /* Evaluate the subexpression of EXP starting at *POS as for
9411 evaluate_type, updating *POS to point just past the evaluated
9412 expression. */
9413
9414 static struct value *
9415 evaluate_subexp_type (struct expression *exp, int *pos)
9416 {
9417 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9418 }
9419
9420 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9421 value it wraps. */
9422
9423 static struct value *
9424 unwrap_value (struct value *val)
9425 {
9426 struct type *type = ada_check_typedef (value_type (val));
9427
9428 if (ada_is_aligner_type (type))
9429 {
9430 struct value *v = ada_value_struct_elt (val, "F", 0);
9431 struct type *val_type = ada_check_typedef (value_type (v));
9432
9433 if (ada_type_name (val_type) == NULL)
9434 TYPE_NAME (val_type) = ada_type_name (type);
9435
9436 return unwrap_value (v);
9437 }
9438 else
9439 {
9440 struct type *raw_real_type =
9441 ada_check_typedef (ada_get_base_type (type));
9442
9443 /* If there is no parallel XVS or XVE type, then the value is
9444 already unwrapped. Return it without further modification. */
9445 if ((type == raw_real_type)
9446 && ada_find_parallel_type (type, "___XVE") == NULL)
9447 return val;
9448
9449 return
9450 coerce_unspec_val_to_type
9451 (val, ada_to_fixed_type (raw_real_type, 0,
9452 value_address (val),
9453 NULL, 1));
9454 }
9455 }
9456
9457 static struct value *
9458 cast_from_fixed (struct type *type, struct value *arg)
9459 {
9460 struct value *scale = ada_scaling_factor (value_type (arg));
9461 arg = value_cast (value_type (scale), arg);
9462
9463 arg = value_binop (arg, scale, BINOP_MUL);
9464 return value_cast (type, arg);
9465 }
9466
9467 static struct value *
9468 cast_to_fixed (struct type *type, struct value *arg)
9469 {
9470 if (type == value_type (arg))
9471 return arg;
9472
9473 struct value *scale = ada_scaling_factor (type);
9474 if (ada_is_fixed_point_type (value_type (arg)))
9475 arg = cast_from_fixed (value_type (scale), arg);
9476 else
9477 arg = value_cast (value_type (scale), arg);
9478
9479 arg = value_binop (arg, scale, BINOP_DIV);
9480 return value_cast (type, arg);
9481 }
9482
9483 /* Given two array types T1 and T2, return nonzero iff both arrays
9484 contain the same number of elements. */
9485
9486 static int
9487 ada_same_array_size_p (struct type *t1, struct type *t2)
9488 {
9489 LONGEST lo1, hi1, lo2, hi2;
9490
9491 /* Get the array bounds in order to verify that the size of
9492 the two arrays match. */
9493 if (!get_array_bounds (t1, &lo1, &hi1)
9494 || !get_array_bounds (t2, &lo2, &hi2))
9495 error (_("unable to determine array bounds"));
9496
9497 /* To make things easier for size comparison, normalize a bit
9498 the case of empty arrays by making sure that the difference
9499 between upper bound and lower bound is always -1. */
9500 if (lo1 > hi1)
9501 hi1 = lo1 - 1;
9502 if (lo2 > hi2)
9503 hi2 = lo2 - 1;
9504
9505 return (hi1 - lo1 == hi2 - lo2);
9506 }
9507
9508 /* Assuming that VAL is an array of integrals, and TYPE represents
9509 an array with the same number of elements, but with wider integral
9510 elements, return an array "casted" to TYPE. In practice, this
9511 means that the returned array is built by casting each element
9512 of the original array into TYPE's (wider) element type. */
9513
9514 static struct value *
9515 ada_promote_array_of_integrals (struct type *type, struct value *val)
9516 {
9517 struct type *elt_type = TYPE_TARGET_TYPE (type);
9518 LONGEST lo, hi;
9519 struct value *res;
9520 LONGEST i;
9521
9522 /* Verify that both val and type are arrays of scalars, and
9523 that the size of val's elements is smaller than the size
9524 of type's element. */
9525 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9526 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9527 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9528 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9529 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9530 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9531
9532 if (!get_array_bounds (type, &lo, &hi))
9533 error (_("unable to determine array bounds"));
9534
9535 res = allocate_value (type);
9536
9537 /* Promote each array element. */
9538 for (i = 0; i < hi - lo + 1; i++)
9539 {
9540 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9541
9542 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9543 value_contents_all (elt), TYPE_LENGTH (elt_type));
9544 }
9545
9546 return res;
9547 }
9548
9549 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9550 return the converted value. */
9551
9552 static struct value *
9553 coerce_for_assign (struct type *type, struct value *val)
9554 {
9555 struct type *type2 = value_type (val);
9556
9557 if (type == type2)
9558 return val;
9559
9560 type2 = ada_check_typedef (type2);
9561 type = ada_check_typedef (type);
9562
9563 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9564 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9565 {
9566 val = ada_value_ind (val);
9567 type2 = value_type (val);
9568 }
9569
9570 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
9571 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9572 {
9573 if (!ada_same_array_size_p (type, type2))
9574 error (_("cannot assign arrays of different length"));
9575
9576 if (is_integral_type (TYPE_TARGET_TYPE (type))
9577 && is_integral_type (TYPE_TARGET_TYPE (type2))
9578 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9579 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9580 {
9581 /* Allow implicit promotion of the array elements to
9582 a wider type. */
9583 return ada_promote_array_of_integrals (type, val);
9584 }
9585
9586 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9587 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9588 error (_("Incompatible types in assignment"));
9589 deprecated_set_value_type (val, type);
9590 }
9591 return val;
9592 }
9593
9594 static struct value *
9595 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9596 {
9597 struct value *val;
9598 struct type *type1, *type2;
9599 LONGEST v, v1, v2;
9600
9601 arg1 = coerce_ref (arg1);
9602 arg2 = coerce_ref (arg2);
9603 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9604 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9605
9606 if (TYPE_CODE (type1) != TYPE_CODE_INT
9607 || TYPE_CODE (type2) != TYPE_CODE_INT)
9608 return value_binop (arg1, arg2, op);
9609
9610 switch (op)
9611 {
9612 case BINOP_MOD:
9613 case BINOP_DIV:
9614 case BINOP_REM:
9615 break;
9616 default:
9617 return value_binop (arg1, arg2, op);
9618 }
9619
9620 v2 = value_as_long (arg2);
9621 if (v2 == 0)
9622 error (_("second operand of %s must not be zero."), op_string (op));
9623
9624 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9625 return value_binop (arg1, arg2, op);
9626
9627 v1 = value_as_long (arg1);
9628 switch (op)
9629 {
9630 case BINOP_DIV:
9631 v = v1 / v2;
9632 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9633 v += v > 0 ? -1 : 1;
9634 break;
9635 case BINOP_REM:
9636 v = v1 % v2;
9637 if (v * v1 < 0)
9638 v -= v2;
9639 break;
9640 default:
9641 /* Should not reach this point. */
9642 v = 0;
9643 }
9644
9645 val = allocate_value (type1);
9646 store_unsigned_integer (value_contents_raw (val),
9647 TYPE_LENGTH (value_type (val)),
9648 type_byte_order (type1), v);
9649 return val;
9650 }
9651
9652 static int
9653 ada_value_equal (struct value *arg1, struct value *arg2)
9654 {
9655 if (ada_is_direct_array_type (value_type (arg1))
9656 || ada_is_direct_array_type (value_type (arg2)))
9657 {
9658 struct type *arg1_type, *arg2_type;
9659
9660 /* Automatically dereference any array reference before
9661 we attempt to perform the comparison. */
9662 arg1 = ada_coerce_ref (arg1);
9663 arg2 = ada_coerce_ref (arg2);
9664
9665 arg1 = ada_coerce_to_simple_array (arg1);
9666 arg2 = ada_coerce_to_simple_array (arg2);
9667
9668 arg1_type = ada_check_typedef (value_type (arg1));
9669 arg2_type = ada_check_typedef (value_type (arg2));
9670
9671 if (TYPE_CODE (arg1_type) != TYPE_CODE_ARRAY
9672 || TYPE_CODE (arg2_type) != TYPE_CODE_ARRAY)
9673 error (_("Attempt to compare array with non-array"));
9674 /* FIXME: The following works only for types whose
9675 representations use all bits (no padding or undefined bits)
9676 and do not have user-defined equality. */
9677 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9678 && memcmp (value_contents (arg1), value_contents (arg2),
9679 TYPE_LENGTH (arg1_type)) == 0);
9680 }
9681 return value_equal (arg1, arg2);
9682 }
9683
9684 /* Total number of component associations in the aggregate starting at
9685 index PC in EXP. Assumes that index PC is the start of an
9686 OP_AGGREGATE. */
9687
9688 static int
9689 num_component_specs (struct expression *exp, int pc)
9690 {
9691 int n, m, i;
9692
9693 m = exp->elts[pc + 1].longconst;
9694 pc += 3;
9695 n = 0;
9696 for (i = 0; i < m; i += 1)
9697 {
9698 switch (exp->elts[pc].opcode)
9699 {
9700 default:
9701 n += 1;
9702 break;
9703 case OP_CHOICES:
9704 n += exp->elts[pc + 1].longconst;
9705 break;
9706 }
9707 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9708 }
9709 return n;
9710 }
9711
9712 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9713 component of LHS (a simple array or a record), updating *POS past
9714 the expression, assuming that LHS is contained in CONTAINER. Does
9715 not modify the inferior's memory, nor does it modify LHS (unless
9716 LHS == CONTAINER). */
9717
9718 static void
9719 assign_component (struct value *container, struct value *lhs, LONGEST index,
9720 struct expression *exp, int *pos)
9721 {
9722 struct value *mark = value_mark ();
9723 struct value *elt;
9724 struct type *lhs_type = check_typedef (value_type (lhs));
9725
9726 if (TYPE_CODE (lhs_type) == TYPE_CODE_ARRAY)
9727 {
9728 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9729 struct value *index_val = value_from_longest (index_type, index);
9730
9731 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9732 }
9733 else
9734 {
9735 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9736 elt = ada_to_fixed_value (elt);
9737 }
9738
9739 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9740 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9741 else
9742 value_assign_to_component (container, elt,
9743 ada_evaluate_subexp (NULL, exp, pos,
9744 EVAL_NORMAL));
9745
9746 value_free_to_mark (mark);
9747 }
9748
9749 /* Assuming that LHS represents an lvalue having a record or array
9750 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9751 of that aggregate's value to LHS, advancing *POS past the
9752 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9753 lvalue containing LHS (possibly LHS itself). Does not modify
9754 the inferior's memory, nor does it modify the contents of
9755 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9756
9757 static struct value *
9758 assign_aggregate (struct value *container,
9759 struct value *lhs, struct expression *exp,
9760 int *pos, enum noside noside)
9761 {
9762 struct type *lhs_type;
9763 int n = exp->elts[*pos+1].longconst;
9764 LONGEST low_index, high_index;
9765 int num_specs;
9766 LONGEST *indices;
9767 int max_indices, num_indices;
9768 int i;
9769
9770 *pos += 3;
9771 if (noside != EVAL_NORMAL)
9772 {
9773 for (i = 0; i < n; i += 1)
9774 ada_evaluate_subexp (NULL, exp, pos, noside);
9775 return container;
9776 }
9777
9778 container = ada_coerce_ref (container);
9779 if (ada_is_direct_array_type (value_type (container)))
9780 container = ada_coerce_to_simple_array (container);
9781 lhs = ada_coerce_ref (lhs);
9782 if (!deprecated_value_modifiable (lhs))
9783 error (_("Left operand of assignment is not a modifiable lvalue."));
9784
9785 lhs_type = check_typedef (value_type (lhs));
9786 if (ada_is_direct_array_type (lhs_type))
9787 {
9788 lhs = ada_coerce_to_simple_array (lhs);
9789 lhs_type = check_typedef (value_type (lhs));
9790 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9791 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
9792 }
9793 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9794 {
9795 low_index = 0;
9796 high_index = num_visible_fields (lhs_type) - 1;
9797 }
9798 else
9799 error (_("Left-hand side must be array or record."));
9800
9801 num_specs = num_component_specs (exp, *pos - 3);
9802 max_indices = 4 * num_specs + 4;
9803 indices = XALLOCAVEC (LONGEST, max_indices);
9804 indices[0] = indices[1] = low_index - 1;
9805 indices[2] = indices[3] = high_index + 1;
9806 num_indices = 4;
9807
9808 for (i = 0; i < n; i += 1)
9809 {
9810 switch (exp->elts[*pos].opcode)
9811 {
9812 case OP_CHOICES:
9813 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9814 &num_indices, max_indices,
9815 low_index, high_index);
9816 break;
9817 case OP_POSITIONAL:
9818 aggregate_assign_positional (container, lhs, exp, pos, indices,
9819 &num_indices, max_indices,
9820 low_index, high_index);
9821 break;
9822 case OP_OTHERS:
9823 if (i != n-1)
9824 error (_("Misplaced 'others' clause"));
9825 aggregate_assign_others (container, lhs, exp, pos, indices,
9826 num_indices, low_index, high_index);
9827 break;
9828 default:
9829 error (_("Internal error: bad aggregate clause"));
9830 }
9831 }
9832
9833 return container;
9834 }
9835
9836 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9837 construct at *POS, updating *POS past the construct, given that
9838 the positions are relative to lower bound LOW, where HIGH is the
9839 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9840 updating *NUM_INDICES as needed. CONTAINER is as for
9841 assign_aggregate. */
9842 static void
9843 aggregate_assign_positional (struct value *container,
9844 struct value *lhs, struct expression *exp,
9845 int *pos, LONGEST *indices, int *num_indices,
9846 int max_indices, LONGEST low, LONGEST high)
9847 {
9848 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9849
9850 if (ind - 1 == high)
9851 warning (_("Extra components in aggregate ignored."));
9852 if (ind <= high)
9853 {
9854 add_component_interval (ind, ind, indices, num_indices, max_indices);
9855 *pos += 3;
9856 assign_component (container, lhs, ind, exp, pos);
9857 }
9858 else
9859 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9860 }
9861
9862 /* Assign into the components of LHS indexed by the OP_CHOICES
9863 construct at *POS, updating *POS past the construct, given that
9864 the allowable indices are LOW..HIGH. Record the indices assigned
9865 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
9866 needed. CONTAINER is as for assign_aggregate. */
9867 static void
9868 aggregate_assign_from_choices (struct value *container,
9869 struct value *lhs, struct expression *exp,
9870 int *pos, LONGEST *indices, int *num_indices,
9871 int max_indices, LONGEST low, LONGEST high)
9872 {
9873 int j;
9874 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9875 int choice_pos, expr_pc;
9876 int is_array = ada_is_direct_array_type (value_type (lhs));
9877
9878 choice_pos = *pos += 3;
9879
9880 for (j = 0; j < n_choices; j += 1)
9881 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9882 expr_pc = *pos;
9883 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9884
9885 for (j = 0; j < n_choices; j += 1)
9886 {
9887 LONGEST lower, upper;
9888 enum exp_opcode op = exp->elts[choice_pos].opcode;
9889
9890 if (op == OP_DISCRETE_RANGE)
9891 {
9892 choice_pos += 1;
9893 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9894 EVAL_NORMAL));
9895 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9896 EVAL_NORMAL));
9897 }
9898 else if (is_array)
9899 {
9900 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9901 EVAL_NORMAL));
9902 upper = lower;
9903 }
9904 else
9905 {
9906 int ind;
9907 const char *name;
9908
9909 switch (op)
9910 {
9911 case OP_NAME:
9912 name = &exp->elts[choice_pos + 2].string;
9913 break;
9914 case OP_VAR_VALUE:
9915 name = exp->elts[choice_pos + 2].symbol->natural_name ();
9916 break;
9917 default:
9918 error (_("Invalid record component association."));
9919 }
9920 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9921 ind = 0;
9922 if (! find_struct_field (name, value_type (lhs), 0,
9923 NULL, NULL, NULL, NULL, &ind))
9924 error (_("Unknown component name: %s."), name);
9925 lower = upper = ind;
9926 }
9927
9928 if (lower <= upper && (lower < low || upper > high))
9929 error (_("Index in component association out of bounds."));
9930
9931 add_component_interval (lower, upper, indices, num_indices,
9932 max_indices);
9933 while (lower <= upper)
9934 {
9935 int pos1;
9936
9937 pos1 = expr_pc;
9938 assign_component (container, lhs, lower, exp, &pos1);
9939 lower += 1;
9940 }
9941 }
9942 }
9943
9944 /* Assign the value of the expression in the OP_OTHERS construct in
9945 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9946 have not been previously assigned. The index intervals already assigned
9947 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
9948 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
9949 static void
9950 aggregate_assign_others (struct value *container,
9951 struct value *lhs, struct expression *exp,
9952 int *pos, LONGEST *indices, int num_indices,
9953 LONGEST low, LONGEST high)
9954 {
9955 int i;
9956 int expr_pc = *pos + 1;
9957
9958 for (i = 0; i < num_indices - 2; i += 2)
9959 {
9960 LONGEST ind;
9961
9962 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9963 {
9964 int localpos;
9965
9966 localpos = expr_pc;
9967 assign_component (container, lhs, ind, exp, &localpos);
9968 }
9969 }
9970 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9971 }
9972
9973 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
9974 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9975 modifying *SIZE as needed. It is an error if *SIZE exceeds
9976 MAX_SIZE. The resulting intervals do not overlap. */
9977 static void
9978 add_component_interval (LONGEST low, LONGEST high,
9979 LONGEST* indices, int *size, int max_size)
9980 {
9981 int i, j;
9982
9983 for (i = 0; i < *size; i += 2) {
9984 if (high >= indices[i] && low <= indices[i + 1])
9985 {
9986 int kh;
9987
9988 for (kh = i + 2; kh < *size; kh += 2)
9989 if (high < indices[kh])
9990 break;
9991 if (low < indices[i])
9992 indices[i] = low;
9993 indices[i + 1] = indices[kh - 1];
9994 if (high > indices[i + 1])
9995 indices[i + 1] = high;
9996 memcpy (indices + i + 2, indices + kh, *size - kh);
9997 *size -= kh - i - 2;
9998 return;
9999 }
10000 else if (high < indices[i])
10001 break;
10002 }
10003
10004 if (*size == max_size)
10005 error (_("Internal error: miscounted aggregate components."));
10006 *size += 2;
10007 for (j = *size-1; j >= i+2; j -= 1)
10008 indices[j] = indices[j - 2];
10009 indices[i] = low;
10010 indices[i + 1] = high;
10011 }
10012
10013 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10014 is different. */
10015
10016 static struct value *
10017 ada_value_cast (struct type *type, struct value *arg2)
10018 {
10019 if (type == ada_check_typedef (value_type (arg2)))
10020 return arg2;
10021
10022 if (ada_is_fixed_point_type (type))
10023 return cast_to_fixed (type, arg2);
10024
10025 if (ada_is_fixed_point_type (value_type (arg2)))
10026 return cast_from_fixed (type, arg2);
10027
10028 return value_cast (type, arg2);
10029 }
10030
10031 /* Evaluating Ada expressions, and printing their result.
10032 ------------------------------------------------------
10033
10034 1. Introduction:
10035 ----------------
10036
10037 We usually evaluate an Ada expression in order to print its value.
10038 We also evaluate an expression in order to print its type, which
10039 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10040 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10041 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10042 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10043 similar.
10044
10045 Evaluating expressions is a little more complicated for Ada entities
10046 than it is for entities in languages such as C. The main reason for
10047 this is that Ada provides types whose definition might be dynamic.
10048 One example of such types is variant records. Or another example
10049 would be an array whose bounds can only be known at run time.
10050
10051 The following description is a general guide as to what should be
10052 done (and what should NOT be done) in order to evaluate an expression
10053 involving such types, and when. This does not cover how the semantic
10054 information is encoded by GNAT as this is covered separatly. For the
10055 document used as the reference for the GNAT encoding, see exp_dbug.ads
10056 in the GNAT sources.
10057
10058 Ideally, we should embed each part of this description next to its
10059 associated code. Unfortunately, the amount of code is so vast right
10060 now that it's hard to see whether the code handling a particular
10061 situation might be duplicated or not. One day, when the code is
10062 cleaned up, this guide might become redundant with the comments
10063 inserted in the code, and we might want to remove it.
10064
10065 2. ``Fixing'' an Entity, the Simple Case:
10066 -----------------------------------------
10067
10068 When evaluating Ada expressions, the tricky issue is that they may
10069 reference entities whose type contents and size are not statically
10070 known. Consider for instance a variant record:
10071
10072 type Rec (Empty : Boolean := True) is record
10073 case Empty is
10074 when True => null;
10075 when False => Value : Integer;
10076 end case;
10077 end record;
10078 Yes : Rec := (Empty => False, Value => 1);
10079 No : Rec := (empty => True);
10080
10081 The size and contents of that record depends on the value of the
10082 descriminant (Rec.Empty). At this point, neither the debugging
10083 information nor the associated type structure in GDB are able to
10084 express such dynamic types. So what the debugger does is to create
10085 "fixed" versions of the type that applies to the specific object.
10086 We also informally refer to this operation as "fixing" an object,
10087 which means creating its associated fixed type.
10088
10089 Example: when printing the value of variable "Yes" above, its fixed
10090 type would look like this:
10091
10092 type Rec is record
10093 Empty : Boolean;
10094 Value : Integer;
10095 end record;
10096
10097 On the other hand, if we printed the value of "No", its fixed type
10098 would become:
10099
10100 type Rec is record
10101 Empty : Boolean;
10102 end record;
10103
10104 Things become a little more complicated when trying to fix an entity
10105 with a dynamic type that directly contains another dynamic type,
10106 such as an array of variant records, for instance. There are
10107 two possible cases: Arrays, and records.
10108
10109 3. ``Fixing'' Arrays:
10110 ---------------------
10111
10112 The type structure in GDB describes an array in terms of its bounds,
10113 and the type of its elements. By design, all elements in the array
10114 have the same type and we cannot represent an array of variant elements
10115 using the current type structure in GDB. When fixing an array,
10116 we cannot fix the array element, as we would potentially need one
10117 fixed type per element of the array. As a result, the best we can do
10118 when fixing an array is to produce an array whose bounds and size
10119 are correct (allowing us to read it from memory), but without having
10120 touched its element type. Fixing each element will be done later,
10121 when (if) necessary.
10122
10123 Arrays are a little simpler to handle than records, because the same
10124 amount of memory is allocated for each element of the array, even if
10125 the amount of space actually used by each element differs from element
10126 to element. Consider for instance the following array of type Rec:
10127
10128 type Rec_Array is array (1 .. 2) of Rec;
10129
10130 The actual amount of memory occupied by each element might be different
10131 from element to element, depending on the value of their discriminant.
10132 But the amount of space reserved for each element in the array remains
10133 fixed regardless. So we simply need to compute that size using
10134 the debugging information available, from which we can then determine
10135 the array size (we multiply the number of elements of the array by
10136 the size of each element).
10137
10138 The simplest case is when we have an array of a constrained element
10139 type. For instance, consider the following type declarations:
10140
10141 type Bounded_String (Max_Size : Integer) is
10142 Length : Integer;
10143 Buffer : String (1 .. Max_Size);
10144 end record;
10145 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10146
10147 In this case, the compiler describes the array as an array of
10148 variable-size elements (identified by its XVS suffix) for which
10149 the size can be read in the parallel XVZ variable.
10150
10151 In the case of an array of an unconstrained element type, the compiler
10152 wraps the array element inside a private PAD type. This type should not
10153 be shown to the user, and must be "unwrap"'ed before printing. Note
10154 that we also use the adjective "aligner" in our code to designate
10155 these wrapper types.
10156
10157 In some cases, the size allocated for each element is statically
10158 known. In that case, the PAD type already has the correct size,
10159 and the array element should remain unfixed.
10160
10161 But there are cases when this size is not statically known.
10162 For instance, assuming that "Five" is an integer variable:
10163
10164 type Dynamic is array (1 .. Five) of Integer;
10165 type Wrapper (Has_Length : Boolean := False) is record
10166 Data : Dynamic;
10167 case Has_Length is
10168 when True => Length : Integer;
10169 when False => null;
10170 end case;
10171 end record;
10172 type Wrapper_Array is array (1 .. 2) of Wrapper;
10173
10174 Hello : Wrapper_Array := (others => (Has_Length => True,
10175 Data => (others => 17),
10176 Length => 1));
10177
10178
10179 The debugging info would describe variable Hello as being an
10180 array of a PAD type. The size of that PAD type is not statically
10181 known, but can be determined using a parallel XVZ variable.
10182 In that case, a copy of the PAD type with the correct size should
10183 be used for the fixed array.
10184
10185 3. ``Fixing'' record type objects:
10186 ----------------------------------
10187
10188 Things are slightly different from arrays in the case of dynamic
10189 record types. In this case, in order to compute the associated
10190 fixed type, we need to determine the size and offset of each of
10191 its components. This, in turn, requires us to compute the fixed
10192 type of each of these components.
10193
10194 Consider for instance the example:
10195
10196 type Bounded_String (Max_Size : Natural) is record
10197 Str : String (1 .. Max_Size);
10198 Length : Natural;
10199 end record;
10200 My_String : Bounded_String (Max_Size => 10);
10201
10202 In that case, the position of field "Length" depends on the size
10203 of field Str, which itself depends on the value of the Max_Size
10204 discriminant. In order to fix the type of variable My_String,
10205 we need to fix the type of field Str. Therefore, fixing a variant
10206 record requires us to fix each of its components.
10207
10208 However, if a component does not have a dynamic size, the component
10209 should not be fixed. In particular, fields that use a PAD type
10210 should not fixed. Here is an example where this might happen
10211 (assuming type Rec above):
10212
10213 type Container (Big : Boolean) is record
10214 First : Rec;
10215 After : Integer;
10216 case Big is
10217 when True => Another : Integer;
10218 when False => null;
10219 end case;
10220 end record;
10221 My_Container : Container := (Big => False,
10222 First => (Empty => True),
10223 After => 42);
10224
10225 In that example, the compiler creates a PAD type for component First,
10226 whose size is constant, and then positions the component After just
10227 right after it. The offset of component After is therefore constant
10228 in this case.
10229
10230 The debugger computes the position of each field based on an algorithm
10231 that uses, among other things, the actual position and size of the field
10232 preceding it. Let's now imagine that the user is trying to print
10233 the value of My_Container. If the type fixing was recursive, we would
10234 end up computing the offset of field After based on the size of the
10235 fixed version of field First. And since in our example First has
10236 only one actual field, the size of the fixed type is actually smaller
10237 than the amount of space allocated to that field, and thus we would
10238 compute the wrong offset of field After.
10239
10240 To make things more complicated, we need to watch out for dynamic
10241 components of variant records (identified by the ___XVL suffix in
10242 the component name). Even if the target type is a PAD type, the size
10243 of that type might not be statically known. So the PAD type needs
10244 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10245 we might end up with the wrong size for our component. This can be
10246 observed with the following type declarations:
10247
10248 type Octal is new Integer range 0 .. 7;
10249 type Octal_Array is array (Positive range <>) of Octal;
10250 pragma Pack (Octal_Array);
10251
10252 type Octal_Buffer (Size : Positive) is record
10253 Buffer : Octal_Array (1 .. Size);
10254 Length : Integer;
10255 end record;
10256
10257 In that case, Buffer is a PAD type whose size is unset and needs
10258 to be computed by fixing the unwrapped type.
10259
10260 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10261 ----------------------------------------------------------
10262
10263 Lastly, when should the sub-elements of an entity that remained unfixed
10264 thus far, be actually fixed?
10265
10266 The answer is: Only when referencing that element. For instance
10267 when selecting one component of a record, this specific component
10268 should be fixed at that point in time. Or when printing the value
10269 of a record, each component should be fixed before its value gets
10270 printed. Similarly for arrays, the element of the array should be
10271 fixed when printing each element of the array, or when extracting
10272 one element out of that array. On the other hand, fixing should
10273 not be performed on the elements when taking a slice of an array!
10274
10275 Note that one of the side effects of miscomputing the offset and
10276 size of each field is that we end up also miscomputing the size
10277 of the containing type. This can have adverse results when computing
10278 the value of an entity. GDB fetches the value of an entity based
10279 on the size of its type, and thus a wrong size causes GDB to fetch
10280 the wrong amount of memory. In the case where the computed size is
10281 too small, GDB fetches too little data to print the value of our
10282 entity. Results in this case are unpredictable, as we usually read
10283 past the buffer containing the data =:-o. */
10284
10285 /* Evaluate a subexpression of EXP, at index *POS, and return a value
10286 for that subexpression cast to TO_TYPE. Advance *POS over the
10287 subexpression. */
10288
10289 static value *
10290 ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10291 enum noside noside, struct type *to_type)
10292 {
10293 int pc = *pos;
10294
10295 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10296 || exp->elts[pc].opcode == OP_VAR_VALUE)
10297 {
10298 (*pos) += 4;
10299
10300 value *val;
10301 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10302 {
10303 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10304 return value_zero (to_type, not_lval);
10305
10306 val = evaluate_var_msym_value (noside,
10307 exp->elts[pc + 1].objfile,
10308 exp->elts[pc + 2].msymbol);
10309 }
10310 else
10311 val = evaluate_var_value (noside,
10312 exp->elts[pc + 1].block,
10313 exp->elts[pc + 2].symbol);
10314
10315 if (noside == EVAL_SKIP)
10316 return eval_skip_value (exp);
10317
10318 val = ada_value_cast (to_type, val);
10319
10320 /* Follow the Ada language semantics that do not allow taking
10321 an address of the result of a cast (view conversion in Ada). */
10322 if (VALUE_LVAL (val) == lval_memory)
10323 {
10324 if (value_lazy (val))
10325 value_fetch_lazy (val);
10326 VALUE_LVAL (val) = not_lval;
10327 }
10328 return val;
10329 }
10330
10331 value *val = evaluate_subexp (to_type, exp, pos, noside);
10332 if (noside == EVAL_SKIP)
10333 return eval_skip_value (exp);
10334 return ada_value_cast (to_type, val);
10335 }
10336
10337 /* Implement the evaluate_exp routine in the exp_descriptor structure
10338 for the Ada language. */
10339
10340 static struct value *
10341 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
10342 int *pos, enum noside noside)
10343 {
10344 enum exp_opcode op;
10345 int tem;
10346 int pc;
10347 int preeval_pos;
10348 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10349 struct type *type;
10350 int nargs, oplen;
10351 struct value **argvec;
10352
10353 pc = *pos;
10354 *pos += 1;
10355 op = exp->elts[pc].opcode;
10356
10357 switch (op)
10358 {
10359 default:
10360 *pos -= 1;
10361 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10362
10363 if (noside == EVAL_NORMAL)
10364 arg1 = unwrap_value (arg1);
10365
10366 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
10367 then we need to perform the conversion manually, because
10368 evaluate_subexp_standard doesn't do it. This conversion is
10369 necessary in Ada because the different kinds of float/fixed
10370 types in Ada have different representations.
10371
10372 Similarly, we need to perform the conversion from OP_LONG
10373 ourselves. */
10374 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
10375 arg1 = ada_value_cast (expect_type, arg1);
10376
10377 return arg1;
10378
10379 case OP_STRING:
10380 {
10381 struct value *result;
10382
10383 *pos -= 1;
10384 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10385 /* The result type will have code OP_STRING, bashed there from
10386 OP_ARRAY. Bash it back. */
10387 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10388 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
10389 return result;
10390 }
10391
10392 case UNOP_CAST:
10393 (*pos) += 2;
10394 type = exp->elts[pc + 1].type;
10395 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
10396
10397 case UNOP_QUAL:
10398 (*pos) += 2;
10399 type = exp->elts[pc + 1].type;
10400 return ada_evaluate_subexp (type, exp, pos, noside);
10401
10402 case BINOP_ASSIGN:
10403 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10404 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10405 {
10406 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10407 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10408 return arg1;
10409 return ada_value_assign (arg1, arg1);
10410 }
10411 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10412 except if the lhs of our assignment is a convenience variable.
10413 In the case of assigning to a convenience variable, the lhs
10414 should be exactly the result of the evaluation of the rhs. */
10415 type = value_type (arg1);
10416 if (VALUE_LVAL (arg1) == lval_internalvar)
10417 type = NULL;
10418 arg2 = evaluate_subexp (type, exp, pos, noside);
10419 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10420 return arg1;
10421 if (VALUE_LVAL (arg1) == lval_internalvar)
10422 {
10423 /* Nothing. */
10424 }
10425 else if (ada_is_fixed_point_type (value_type (arg1)))
10426 arg2 = cast_to_fixed (value_type (arg1), arg2);
10427 else if (ada_is_fixed_point_type (value_type (arg2)))
10428 error
10429 (_("Fixed-point values must be assigned to fixed-point variables"));
10430 else
10431 arg2 = coerce_for_assign (value_type (arg1), arg2);
10432 return ada_value_assign (arg1, arg2);
10433
10434 case BINOP_ADD:
10435 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10436 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10437 if (noside == EVAL_SKIP)
10438 goto nosideret;
10439 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10440 return (value_from_longest
10441 (value_type (arg1),
10442 value_as_long (arg1) + value_as_long (arg2)));
10443 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10444 return (value_from_longest
10445 (value_type (arg2),
10446 value_as_long (arg1) + value_as_long (arg2)));
10447 if ((ada_is_fixed_point_type (value_type (arg1))
10448 || ada_is_fixed_point_type (value_type (arg2)))
10449 && value_type (arg1) != value_type (arg2))
10450 error (_("Operands of fixed-point addition must have the same type"));
10451 /* Do the addition, and cast the result to the type of the first
10452 argument. We cannot cast the result to a reference type, so if
10453 ARG1 is a reference type, find its underlying type. */
10454 type = value_type (arg1);
10455 while (TYPE_CODE (type) == TYPE_CODE_REF)
10456 type = TYPE_TARGET_TYPE (type);
10457 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10458 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10459
10460 case BINOP_SUB:
10461 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10462 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10463 if (noside == EVAL_SKIP)
10464 goto nosideret;
10465 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10466 return (value_from_longest
10467 (value_type (arg1),
10468 value_as_long (arg1) - value_as_long (arg2)));
10469 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10470 return (value_from_longest
10471 (value_type (arg2),
10472 value_as_long (arg1) - value_as_long (arg2)));
10473 if ((ada_is_fixed_point_type (value_type (arg1))
10474 || ada_is_fixed_point_type (value_type (arg2)))
10475 && value_type (arg1) != value_type (arg2))
10476 error (_("Operands of fixed-point subtraction "
10477 "must have the same type"));
10478 /* Do the substraction, and cast the result to the type of the first
10479 argument. We cannot cast the result to a reference type, so if
10480 ARG1 is a reference type, find its underlying type. */
10481 type = value_type (arg1);
10482 while (TYPE_CODE (type) == TYPE_CODE_REF)
10483 type = TYPE_TARGET_TYPE (type);
10484 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10485 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10486
10487 case BINOP_MUL:
10488 case BINOP_DIV:
10489 case BINOP_REM:
10490 case BINOP_MOD:
10491 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10492 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10493 if (noside == EVAL_SKIP)
10494 goto nosideret;
10495 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10496 {
10497 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10498 return value_zero (value_type (arg1), not_lval);
10499 }
10500 else
10501 {
10502 type = builtin_type (exp->gdbarch)->builtin_double;
10503 if (ada_is_fixed_point_type (value_type (arg1)))
10504 arg1 = cast_from_fixed (type, arg1);
10505 if (ada_is_fixed_point_type (value_type (arg2)))
10506 arg2 = cast_from_fixed (type, arg2);
10507 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10508 return ada_value_binop (arg1, arg2, op);
10509 }
10510
10511 case BINOP_EQUAL:
10512 case BINOP_NOTEQUAL:
10513 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10514 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10515 if (noside == EVAL_SKIP)
10516 goto nosideret;
10517 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10518 tem = 0;
10519 else
10520 {
10521 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10522 tem = ada_value_equal (arg1, arg2);
10523 }
10524 if (op == BINOP_NOTEQUAL)
10525 tem = !tem;
10526 type = language_bool_type (exp->language_defn, exp->gdbarch);
10527 return value_from_longest (type, (LONGEST) tem);
10528
10529 case UNOP_NEG:
10530 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10531 if (noside == EVAL_SKIP)
10532 goto nosideret;
10533 else if (ada_is_fixed_point_type (value_type (arg1)))
10534 return value_cast (value_type (arg1), value_neg (arg1));
10535 else
10536 {
10537 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10538 return value_neg (arg1);
10539 }
10540
10541 case BINOP_LOGICAL_AND:
10542 case BINOP_LOGICAL_OR:
10543 case UNOP_LOGICAL_NOT:
10544 {
10545 struct value *val;
10546
10547 *pos -= 1;
10548 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10549 type = language_bool_type (exp->language_defn, exp->gdbarch);
10550 return value_cast (type, val);
10551 }
10552
10553 case BINOP_BITWISE_AND:
10554 case BINOP_BITWISE_IOR:
10555 case BINOP_BITWISE_XOR:
10556 {
10557 struct value *val;
10558
10559 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10560 *pos = pc;
10561 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10562
10563 return value_cast (value_type (arg1), val);
10564 }
10565
10566 case OP_VAR_VALUE:
10567 *pos -= 1;
10568
10569 if (noside == EVAL_SKIP)
10570 {
10571 *pos += 4;
10572 goto nosideret;
10573 }
10574
10575 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10576 /* Only encountered when an unresolved symbol occurs in a
10577 context other than a function call, in which case, it is
10578 invalid. */
10579 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10580 exp->elts[pc + 2].symbol->print_name ());
10581
10582 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10583 {
10584 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10585 /* Check to see if this is a tagged type. We also need to handle
10586 the case where the type is a reference to a tagged type, but
10587 we have to be careful to exclude pointers to tagged types.
10588 The latter should be shown as usual (as a pointer), whereas
10589 a reference should mostly be transparent to the user. */
10590 if (ada_is_tagged_type (type, 0)
10591 || (TYPE_CODE (type) == TYPE_CODE_REF
10592 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10593 {
10594 /* Tagged types are a little special in the fact that the real
10595 type is dynamic and can only be determined by inspecting the
10596 object's tag. This means that we need to get the object's
10597 value first (EVAL_NORMAL) and then extract the actual object
10598 type from its tag.
10599
10600 Note that we cannot skip the final step where we extract
10601 the object type from its tag, because the EVAL_NORMAL phase
10602 results in dynamic components being resolved into fixed ones.
10603 This can cause problems when trying to print the type
10604 description of tagged types whose parent has a dynamic size:
10605 We use the type name of the "_parent" component in order
10606 to print the name of the ancestor type in the type description.
10607 If that component had a dynamic size, the resolution into
10608 a fixed type would result in the loss of that type name,
10609 thus preventing us from printing the name of the ancestor
10610 type in the type description. */
10611 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10612
10613 if (TYPE_CODE (type) != TYPE_CODE_REF)
10614 {
10615 struct type *actual_type;
10616
10617 actual_type = type_from_tag (ada_value_tag (arg1));
10618 if (actual_type == NULL)
10619 /* If, for some reason, we were unable to determine
10620 the actual type from the tag, then use the static
10621 approximation that we just computed as a fallback.
10622 This can happen if the debugging information is
10623 incomplete, for instance. */
10624 actual_type = type;
10625 return value_zero (actual_type, not_lval);
10626 }
10627 else
10628 {
10629 /* In the case of a ref, ada_coerce_ref takes care
10630 of determining the actual type. But the evaluation
10631 should return a ref as it should be valid to ask
10632 for its address; so rebuild a ref after coerce. */
10633 arg1 = ada_coerce_ref (arg1);
10634 return value_ref (arg1, TYPE_CODE_REF);
10635 }
10636 }
10637
10638 /* Records and unions for which GNAT encodings have been
10639 generated need to be statically fixed as well.
10640 Otherwise, non-static fixing produces a type where
10641 all dynamic properties are removed, which prevents "ptype"
10642 from being able to completely describe the type.
10643 For instance, a case statement in a variant record would be
10644 replaced by the relevant components based on the actual
10645 value of the discriminants. */
10646 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10647 && dynamic_template_type (type) != NULL)
10648 || (TYPE_CODE (type) == TYPE_CODE_UNION
10649 && ada_find_parallel_type (type, "___XVU") != NULL))
10650 {
10651 *pos += 4;
10652 return value_zero (to_static_fixed_type (type), not_lval);
10653 }
10654 }
10655
10656 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10657 return ada_to_fixed_value (arg1);
10658
10659 case OP_FUNCALL:
10660 (*pos) += 2;
10661
10662 /* Allocate arg vector, including space for the function to be
10663 called in argvec[0] and a terminating NULL. */
10664 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10665 argvec = XALLOCAVEC (struct value *, nargs + 2);
10666
10667 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10668 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10669 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10670 exp->elts[pc + 5].symbol->print_name ());
10671 else
10672 {
10673 for (tem = 0; tem <= nargs; tem += 1)
10674 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10675 argvec[tem] = 0;
10676
10677 if (noside == EVAL_SKIP)
10678 goto nosideret;
10679 }
10680
10681 if (ada_is_constrained_packed_array_type
10682 (desc_base_type (value_type (argvec[0]))))
10683 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10684 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10685 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10686 /* This is a packed array that has already been fixed, and
10687 therefore already coerced to a simple array. Nothing further
10688 to do. */
10689 ;
10690 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10691 {
10692 /* Make sure we dereference references so that all the code below
10693 feels like it's really handling the referenced value. Wrapping
10694 types (for alignment) may be there, so make sure we strip them as
10695 well. */
10696 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10697 }
10698 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10699 && VALUE_LVAL (argvec[0]) == lval_memory)
10700 argvec[0] = value_addr (argvec[0]);
10701
10702 type = ada_check_typedef (value_type (argvec[0]));
10703
10704 /* Ada allows us to implicitly dereference arrays when subscripting
10705 them. So, if this is an array typedef (encoding use for array
10706 access types encoded as fat pointers), strip it now. */
10707 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10708 type = ada_typedef_target_type (type);
10709
10710 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10711 {
10712 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
10713 {
10714 case TYPE_CODE_FUNC:
10715 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10716 break;
10717 case TYPE_CODE_ARRAY:
10718 break;
10719 case TYPE_CODE_STRUCT:
10720 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10721 argvec[0] = ada_value_ind (argvec[0]);
10722 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10723 break;
10724 default:
10725 error (_("cannot subscript or call something of type `%s'"),
10726 ada_type_name (value_type (argvec[0])));
10727 break;
10728 }
10729 }
10730
10731 switch (TYPE_CODE (type))
10732 {
10733 case TYPE_CODE_FUNC:
10734 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10735 {
10736 if (TYPE_TARGET_TYPE (type) == NULL)
10737 error_call_unknown_return_type (NULL);
10738 return allocate_value (TYPE_TARGET_TYPE (type));
10739 }
10740 return call_function_by_hand (argvec[0], NULL,
10741 gdb::make_array_view (argvec + 1,
10742 nargs));
10743 case TYPE_CODE_INTERNAL_FUNCTION:
10744 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10745 /* We don't know anything about what the internal
10746 function might return, but we have to return
10747 something. */
10748 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10749 not_lval);
10750 else
10751 return call_internal_function (exp->gdbarch, exp->language_defn,
10752 argvec[0], nargs, argvec + 1);
10753
10754 case TYPE_CODE_STRUCT:
10755 {
10756 int arity;
10757
10758 arity = ada_array_arity (type);
10759 type = ada_array_element_type (type, nargs);
10760 if (type == NULL)
10761 error (_("cannot subscript or call a record"));
10762 if (arity != nargs)
10763 error (_("wrong number of subscripts; expecting %d"), arity);
10764 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10765 return value_zero (ada_aligned_type (type), lval_memory);
10766 return
10767 unwrap_value (ada_value_subscript
10768 (argvec[0], nargs, argvec + 1));
10769 }
10770 case TYPE_CODE_ARRAY:
10771 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10772 {
10773 type = ada_array_element_type (type, nargs);
10774 if (type == NULL)
10775 error (_("element type of array unknown"));
10776 else
10777 return value_zero (ada_aligned_type (type), lval_memory);
10778 }
10779 return
10780 unwrap_value (ada_value_subscript
10781 (ada_coerce_to_simple_array (argvec[0]),
10782 nargs, argvec + 1));
10783 case TYPE_CODE_PTR: /* Pointer to array */
10784 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10785 {
10786 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10787 type = ada_array_element_type (type, nargs);
10788 if (type == NULL)
10789 error (_("element type of array unknown"));
10790 else
10791 return value_zero (ada_aligned_type (type), lval_memory);
10792 }
10793 return
10794 unwrap_value (ada_value_ptr_subscript (argvec[0],
10795 nargs, argvec + 1));
10796
10797 default:
10798 error (_("Attempt to index or call something other than an "
10799 "array or function"));
10800 }
10801
10802 case TERNOP_SLICE:
10803 {
10804 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10805 struct value *low_bound_val =
10806 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10807 struct value *high_bound_val =
10808 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10809 LONGEST low_bound;
10810 LONGEST high_bound;
10811
10812 low_bound_val = coerce_ref (low_bound_val);
10813 high_bound_val = coerce_ref (high_bound_val);
10814 low_bound = value_as_long (low_bound_val);
10815 high_bound = value_as_long (high_bound_val);
10816
10817 if (noside == EVAL_SKIP)
10818 goto nosideret;
10819
10820 /* If this is a reference to an aligner type, then remove all
10821 the aligners. */
10822 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10823 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10824 TYPE_TARGET_TYPE (value_type (array)) =
10825 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10826
10827 if (ada_is_constrained_packed_array_type (value_type (array)))
10828 error (_("cannot slice a packed array"));
10829
10830 /* If this is a reference to an array or an array lvalue,
10831 convert to a pointer. */
10832 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10833 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
10834 && VALUE_LVAL (array) == lval_memory))
10835 array = value_addr (array);
10836
10837 if (noside == EVAL_AVOID_SIDE_EFFECTS
10838 && ada_is_array_descriptor_type (ada_check_typedef
10839 (value_type (array))))
10840 return empty_array (ada_type_of_array (array, 0), low_bound,
10841 high_bound);
10842
10843 array = ada_coerce_to_simple_array_ptr (array);
10844
10845 /* If we have more than one level of pointer indirection,
10846 dereference the value until we get only one level. */
10847 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10848 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
10849 == TYPE_CODE_PTR))
10850 array = value_ind (array);
10851
10852 /* Make sure we really do have an array type before going further,
10853 to avoid a SEGV when trying to get the index type or the target
10854 type later down the road if the debug info generated by
10855 the compiler is incorrect or incomplete. */
10856 if (!ada_is_simple_array_type (value_type (array)))
10857 error (_("cannot take slice of non-array"));
10858
10859 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10860 == TYPE_CODE_PTR)
10861 {
10862 struct type *type0 = ada_check_typedef (value_type (array));
10863
10864 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10865 return empty_array (TYPE_TARGET_TYPE (type0), low_bound, high_bound);
10866 else
10867 {
10868 struct type *arr_type0 =
10869 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
10870
10871 return ada_value_slice_from_ptr (array, arr_type0,
10872 longest_to_int (low_bound),
10873 longest_to_int (high_bound));
10874 }
10875 }
10876 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10877 return array;
10878 else if (high_bound < low_bound)
10879 return empty_array (value_type (array), low_bound, high_bound);
10880 else
10881 return ada_value_slice (array, longest_to_int (low_bound),
10882 longest_to_int (high_bound));
10883 }
10884
10885 case UNOP_IN_RANGE:
10886 (*pos) += 2;
10887 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10888 type = check_typedef (exp->elts[pc + 1].type);
10889
10890 if (noside == EVAL_SKIP)
10891 goto nosideret;
10892
10893 switch (TYPE_CODE (type))
10894 {
10895 default:
10896 lim_warning (_("Membership test incompletely implemented; "
10897 "always returns true"));
10898 type = language_bool_type (exp->language_defn, exp->gdbarch);
10899 return value_from_longest (type, (LONGEST) 1);
10900
10901 case TYPE_CODE_RANGE:
10902 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10903 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
10904 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10905 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10906 type = language_bool_type (exp->language_defn, exp->gdbarch);
10907 return
10908 value_from_longest (type,
10909 (value_less (arg1, arg3)
10910 || value_equal (arg1, arg3))
10911 && (value_less (arg2, arg1)
10912 || value_equal (arg2, arg1)));
10913 }
10914
10915 case BINOP_IN_BOUNDS:
10916 (*pos) += 2;
10917 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10918 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10919
10920 if (noside == EVAL_SKIP)
10921 goto nosideret;
10922
10923 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10924 {
10925 type = language_bool_type (exp->language_defn, exp->gdbarch);
10926 return value_zero (type, not_lval);
10927 }
10928
10929 tem = longest_to_int (exp->elts[pc + 1].longconst);
10930
10931 type = ada_index_type (value_type (arg2), tem, "range");
10932 if (!type)
10933 type = value_type (arg1);
10934
10935 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10936 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
10937
10938 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10939 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10940 type = language_bool_type (exp->language_defn, exp->gdbarch);
10941 return
10942 value_from_longest (type,
10943 (value_less (arg1, arg3)
10944 || value_equal (arg1, arg3))
10945 && (value_less (arg2, arg1)
10946 || value_equal (arg2, arg1)));
10947
10948 case TERNOP_IN_RANGE:
10949 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10950 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10951 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10952
10953 if (noside == EVAL_SKIP)
10954 goto nosideret;
10955
10956 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10957 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10958 type = language_bool_type (exp->language_defn, exp->gdbarch);
10959 return
10960 value_from_longest (type,
10961 (value_less (arg1, arg3)
10962 || value_equal (arg1, arg3))
10963 && (value_less (arg2, arg1)
10964 || value_equal (arg2, arg1)));
10965
10966 case OP_ATR_FIRST:
10967 case OP_ATR_LAST:
10968 case OP_ATR_LENGTH:
10969 {
10970 struct type *type_arg;
10971
10972 if (exp->elts[*pos].opcode == OP_TYPE)
10973 {
10974 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10975 arg1 = NULL;
10976 type_arg = check_typedef (exp->elts[pc + 2].type);
10977 }
10978 else
10979 {
10980 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10981 type_arg = NULL;
10982 }
10983
10984 if (exp->elts[*pos].opcode != OP_LONG)
10985 error (_("Invalid operand to '%s"), ada_attribute_name (op));
10986 tem = longest_to_int (exp->elts[*pos + 2].longconst);
10987 *pos += 4;
10988
10989 if (noside == EVAL_SKIP)
10990 goto nosideret;
10991 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10992 {
10993 if (type_arg == NULL)
10994 type_arg = value_type (arg1);
10995
10996 if (ada_is_constrained_packed_array_type (type_arg))
10997 type_arg = decode_constrained_packed_array_type (type_arg);
10998
10999 if (!discrete_type_p (type_arg))
11000 {
11001 switch (op)
11002 {
11003 default: /* Should never happen. */
11004 error (_("unexpected attribute encountered"));
11005 case OP_ATR_FIRST:
11006 case OP_ATR_LAST:
11007 type_arg = ada_index_type (type_arg, tem,
11008 ada_attribute_name (op));
11009 break;
11010 case OP_ATR_LENGTH:
11011 type_arg = builtin_type (exp->gdbarch)->builtin_int;
11012 break;
11013 }
11014 }
11015
11016 return value_zero (type_arg, not_lval);
11017 }
11018 else if (type_arg == NULL)
11019 {
11020 arg1 = ada_coerce_ref (arg1);
11021
11022 if (ada_is_constrained_packed_array_type (value_type (arg1)))
11023 arg1 = ada_coerce_to_simple_array (arg1);
11024
11025 if (op == OP_ATR_LENGTH)
11026 type = builtin_type (exp->gdbarch)->builtin_int;
11027 else
11028 {
11029 type = ada_index_type (value_type (arg1), tem,
11030 ada_attribute_name (op));
11031 if (type == NULL)
11032 type = builtin_type (exp->gdbarch)->builtin_int;
11033 }
11034
11035 switch (op)
11036 {
11037 default: /* Should never happen. */
11038 error (_("unexpected attribute encountered"));
11039 case OP_ATR_FIRST:
11040 return value_from_longest
11041 (type, ada_array_bound (arg1, tem, 0));
11042 case OP_ATR_LAST:
11043 return value_from_longest
11044 (type, ada_array_bound (arg1, tem, 1));
11045 case OP_ATR_LENGTH:
11046 return value_from_longest
11047 (type, ada_array_length (arg1, tem));
11048 }
11049 }
11050 else if (discrete_type_p (type_arg))
11051 {
11052 struct type *range_type;
11053 const char *name = ada_type_name (type_arg);
11054
11055 range_type = NULL;
11056 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
11057 range_type = to_fixed_range_type (type_arg, NULL);
11058 if (range_type == NULL)
11059 range_type = type_arg;
11060 switch (op)
11061 {
11062 default:
11063 error (_("unexpected attribute encountered"));
11064 case OP_ATR_FIRST:
11065 return value_from_longest
11066 (range_type, ada_discrete_type_low_bound (range_type));
11067 case OP_ATR_LAST:
11068 return value_from_longest
11069 (range_type, ada_discrete_type_high_bound (range_type));
11070 case OP_ATR_LENGTH:
11071 error (_("the 'length attribute applies only to array types"));
11072 }
11073 }
11074 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
11075 error (_("unimplemented type attribute"));
11076 else
11077 {
11078 LONGEST low, high;
11079
11080 if (ada_is_constrained_packed_array_type (type_arg))
11081 type_arg = decode_constrained_packed_array_type (type_arg);
11082
11083 if (op == OP_ATR_LENGTH)
11084 type = builtin_type (exp->gdbarch)->builtin_int;
11085 else
11086 {
11087 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11088 if (type == NULL)
11089 type = builtin_type (exp->gdbarch)->builtin_int;
11090 }
11091
11092 switch (op)
11093 {
11094 default:
11095 error (_("unexpected attribute encountered"));
11096 case OP_ATR_FIRST:
11097 low = ada_array_bound_from_type (type_arg, tem, 0);
11098 return value_from_longest (type, low);
11099 case OP_ATR_LAST:
11100 high = ada_array_bound_from_type (type_arg, tem, 1);
11101 return value_from_longest (type, high);
11102 case OP_ATR_LENGTH:
11103 low = ada_array_bound_from_type (type_arg, tem, 0);
11104 high = ada_array_bound_from_type (type_arg, tem, 1);
11105 return value_from_longest (type, high - low + 1);
11106 }
11107 }
11108 }
11109
11110 case OP_ATR_TAG:
11111 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11112 if (noside == EVAL_SKIP)
11113 goto nosideret;
11114
11115 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11116 return value_zero (ada_tag_type (arg1), not_lval);
11117
11118 return ada_value_tag (arg1);
11119
11120 case OP_ATR_MIN:
11121 case OP_ATR_MAX:
11122 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11123 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11124 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11125 if (noside == EVAL_SKIP)
11126 goto nosideret;
11127 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11128 return value_zero (value_type (arg1), not_lval);
11129 else
11130 {
11131 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11132 return value_binop (arg1, arg2,
11133 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11134 }
11135
11136 case OP_ATR_MODULUS:
11137 {
11138 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
11139
11140 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11141 if (noside == EVAL_SKIP)
11142 goto nosideret;
11143
11144 if (!ada_is_modular_type (type_arg))
11145 error (_("'modulus must be applied to modular type"));
11146
11147 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11148 ada_modulus (type_arg));
11149 }
11150
11151
11152 case OP_ATR_POS:
11153 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11154 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11155 if (noside == EVAL_SKIP)
11156 goto nosideret;
11157 type = builtin_type (exp->gdbarch)->builtin_int;
11158 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11159 return value_zero (type, not_lval);
11160 else
11161 return value_pos_atr (type, arg1);
11162
11163 case OP_ATR_SIZE:
11164 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11165 type = value_type (arg1);
11166
11167 /* If the argument is a reference, then dereference its type, since
11168 the user is really asking for the size of the actual object,
11169 not the size of the pointer. */
11170 if (TYPE_CODE (type) == TYPE_CODE_REF)
11171 type = TYPE_TARGET_TYPE (type);
11172
11173 if (noside == EVAL_SKIP)
11174 goto nosideret;
11175 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11176 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
11177 else
11178 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
11179 TARGET_CHAR_BIT * TYPE_LENGTH (type));
11180
11181 case OP_ATR_VAL:
11182 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11183 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11184 type = exp->elts[pc + 2].type;
11185 if (noside == EVAL_SKIP)
11186 goto nosideret;
11187 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11188 return value_zero (type, not_lval);
11189 else
11190 return value_val_atr (type, arg1);
11191
11192 case BINOP_EXP:
11193 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11194 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11195 if (noside == EVAL_SKIP)
11196 goto nosideret;
11197 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11198 return value_zero (value_type (arg1), not_lval);
11199 else
11200 {
11201 /* For integer exponentiation operations,
11202 only promote the first argument. */
11203 if (is_integral_type (value_type (arg2)))
11204 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11205 else
11206 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11207
11208 return value_binop (arg1, arg2, op);
11209 }
11210
11211 case UNOP_PLUS:
11212 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11213 if (noside == EVAL_SKIP)
11214 goto nosideret;
11215 else
11216 return arg1;
11217
11218 case UNOP_ABS:
11219 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11220 if (noside == EVAL_SKIP)
11221 goto nosideret;
11222 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11223 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
11224 return value_neg (arg1);
11225 else
11226 return arg1;
11227
11228 case UNOP_IND:
11229 preeval_pos = *pos;
11230 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11231 if (noside == EVAL_SKIP)
11232 goto nosideret;
11233 type = ada_check_typedef (value_type (arg1));
11234 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11235 {
11236 if (ada_is_array_descriptor_type (type))
11237 /* GDB allows dereferencing GNAT array descriptors. */
11238 {
11239 struct type *arrType = ada_type_of_array (arg1, 0);
11240
11241 if (arrType == NULL)
11242 error (_("Attempt to dereference null array pointer."));
11243 return value_at_lazy (arrType, 0);
11244 }
11245 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11246 || TYPE_CODE (type) == TYPE_CODE_REF
11247 /* In C you can dereference an array to get the 1st elt. */
11248 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
11249 {
11250 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11251 only be determined by inspecting the object's tag.
11252 This means that we need to evaluate completely the
11253 expression in order to get its type. */
11254
11255 if ((TYPE_CODE (type) == TYPE_CODE_REF
11256 || TYPE_CODE (type) == TYPE_CODE_PTR)
11257 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11258 {
11259 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11260 EVAL_NORMAL);
11261 type = value_type (ada_value_ind (arg1));
11262 }
11263 else
11264 {
11265 type = to_static_fixed_type
11266 (ada_aligned_type
11267 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11268 }
11269 ada_ensure_varsize_limit (type);
11270 return value_zero (type, lval_memory);
11271 }
11272 else if (TYPE_CODE (type) == TYPE_CODE_INT)
11273 {
11274 /* GDB allows dereferencing an int. */
11275 if (expect_type == NULL)
11276 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11277 lval_memory);
11278 else
11279 {
11280 expect_type =
11281 to_static_fixed_type (ada_aligned_type (expect_type));
11282 return value_zero (expect_type, lval_memory);
11283 }
11284 }
11285 else
11286 error (_("Attempt to take contents of a non-pointer value."));
11287 }
11288 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
11289 type = ada_check_typedef (value_type (arg1));
11290
11291 if (TYPE_CODE (type) == TYPE_CODE_INT)
11292 /* GDB allows dereferencing an int. If we were given
11293 the expect_type, then use that as the target type.
11294 Otherwise, assume that the target type is an int. */
11295 {
11296 if (expect_type != NULL)
11297 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11298 arg1));
11299 else
11300 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11301 (CORE_ADDR) value_as_address (arg1));
11302 }
11303
11304 if (ada_is_array_descriptor_type (type))
11305 /* GDB allows dereferencing GNAT array descriptors. */
11306 return ada_coerce_to_simple_array (arg1);
11307 else
11308 return ada_value_ind (arg1);
11309
11310 case STRUCTOP_STRUCT:
11311 tem = longest_to_int (exp->elts[pc + 1].longconst);
11312 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
11313 preeval_pos = *pos;
11314 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11315 if (noside == EVAL_SKIP)
11316 goto nosideret;
11317 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11318 {
11319 struct type *type1 = value_type (arg1);
11320
11321 if (ada_is_tagged_type (type1, 1))
11322 {
11323 type = ada_lookup_struct_elt_type (type1,
11324 &exp->elts[pc + 2].string,
11325 1, 1);
11326
11327 /* If the field is not found, check if it exists in the
11328 extension of this object's type. This means that we
11329 need to evaluate completely the expression. */
11330
11331 if (type == NULL)
11332 {
11333 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11334 EVAL_NORMAL);
11335 arg1 = ada_value_struct_elt (arg1,
11336 &exp->elts[pc + 2].string,
11337 0);
11338 arg1 = unwrap_value (arg1);
11339 type = value_type (ada_to_fixed_value (arg1));
11340 }
11341 }
11342 else
11343 type =
11344 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11345 0);
11346
11347 return value_zero (ada_aligned_type (type), lval_memory);
11348 }
11349 else
11350 {
11351 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11352 arg1 = unwrap_value (arg1);
11353 return ada_to_fixed_value (arg1);
11354 }
11355
11356 case OP_TYPE:
11357 /* The value is not supposed to be used. This is here to make it
11358 easier to accommodate expressions that contain types. */
11359 (*pos) += 2;
11360 if (noside == EVAL_SKIP)
11361 goto nosideret;
11362 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11363 return allocate_value (exp->elts[pc + 1].type);
11364 else
11365 error (_("Attempt to use a type name as an expression"));
11366
11367 case OP_AGGREGATE:
11368 case OP_CHOICES:
11369 case OP_OTHERS:
11370 case OP_DISCRETE_RANGE:
11371 case OP_POSITIONAL:
11372 case OP_NAME:
11373 if (noside == EVAL_NORMAL)
11374 switch (op)
11375 {
11376 case OP_NAME:
11377 error (_("Undefined name, ambiguous name, or renaming used in "
11378 "component association: %s."), &exp->elts[pc+2].string);
11379 case OP_AGGREGATE:
11380 error (_("Aggregates only allowed on the right of an assignment"));
11381 default:
11382 internal_error (__FILE__, __LINE__,
11383 _("aggregate apparently mangled"));
11384 }
11385
11386 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11387 *pos += oplen - 1;
11388 for (tem = 0; tem < nargs; tem += 1)
11389 ada_evaluate_subexp (NULL, exp, pos, noside);
11390 goto nosideret;
11391 }
11392
11393 nosideret:
11394 return eval_skip_value (exp);
11395 }
11396 \f
11397
11398 /* Fixed point */
11399
11400 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
11401 type name that encodes the 'small and 'delta information.
11402 Otherwise, return NULL. */
11403
11404 static const char *
11405 fixed_type_info (struct type *type)
11406 {
11407 const char *name = ada_type_name (type);
11408 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11409
11410 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11411 {
11412 const char *tail = strstr (name, "___XF_");
11413
11414 if (tail == NULL)
11415 return NULL;
11416 else
11417 return tail + 5;
11418 }
11419 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11420 return fixed_type_info (TYPE_TARGET_TYPE (type));
11421 else
11422 return NULL;
11423 }
11424
11425 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
11426
11427 int
11428 ada_is_fixed_point_type (struct type *type)
11429 {
11430 return fixed_type_info (type) != NULL;
11431 }
11432
11433 /* Return non-zero iff TYPE represents a System.Address type. */
11434
11435 int
11436 ada_is_system_address_type (struct type *type)
11437 {
11438 return (TYPE_NAME (type)
11439 && strcmp (TYPE_NAME (type), "system__address") == 0);
11440 }
11441
11442 /* Assuming that TYPE is the representation of an Ada fixed-point
11443 type, return the target floating-point type to be used to represent
11444 of this type during internal computation. */
11445
11446 static struct type *
11447 ada_scaling_type (struct type *type)
11448 {
11449 return builtin_type (get_type_arch (type))->builtin_long_double;
11450 }
11451
11452 /* Assuming that TYPE is the representation of an Ada fixed-point
11453 type, return its delta, or NULL if the type is malformed and the
11454 delta cannot be determined. */
11455
11456 struct value *
11457 ada_delta (struct type *type)
11458 {
11459 const char *encoding = fixed_type_info (type);
11460 struct type *scale_type = ada_scaling_type (type);
11461
11462 long long num, den;
11463
11464 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11465 return nullptr;
11466 else
11467 return value_binop (value_from_longest (scale_type, num),
11468 value_from_longest (scale_type, den), BINOP_DIV);
11469 }
11470
11471 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
11472 factor ('SMALL value) associated with the type. */
11473
11474 struct value *
11475 ada_scaling_factor (struct type *type)
11476 {
11477 const char *encoding = fixed_type_info (type);
11478 struct type *scale_type = ada_scaling_type (type);
11479
11480 long long num0, den0, num1, den1;
11481 int n;
11482
11483 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
11484 &num0, &den0, &num1, &den1);
11485
11486 if (n < 2)
11487 return value_from_longest (scale_type, 1);
11488 else if (n == 4)
11489 return value_binop (value_from_longest (scale_type, num1),
11490 value_from_longest (scale_type, den1), BINOP_DIV);
11491 else
11492 return value_binop (value_from_longest (scale_type, num0),
11493 value_from_longest (scale_type, den0), BINOP_DIV);
11494 }
11495
11496 \f
11497
11498 /* Range types */
11499
11500 /* Scan STR beginning at position K for a discriminant name, and
11501 return the value of that discriminant field of DVAL in *PX. If
11502 PNEW_K is not null, put the position of the character beyond the
11503 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11504 not alter *PX and *PNEW_K if unsuccessful. */
11505
11506 static int
11507 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
11508 int *pnew_k)
11509 {
11510 static char *bound_buffer = NULL;
11511 static size_t bound_buffer_len = 0;
11512 const char *pstart, *pend, *bound;
11513 struct value *bound_val;
11514
11515 if (dval == NULL || str == NULL || str[k] == '\0')
11516 return 0;
11517
11518 pstart = str + k;
11519 pend = strstr (pstart, "__");
11520 if (pend == NULL)
11521 {
11522 bound = pstart;
11523 k += strlen (bound);
11524 }
11525 else
11526 {
11527 int len = pend - pstart;
11528
11529 /* Strip __ and beyond. */
11530 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11531 strncpy (bound_buffer, pstart, len);
11532 bound_buffer[len] = '\0';
11533
11534 bound = bound_buffer;
11535 k = pend - str;
11536 }
11537
11538 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11539 if (bound_val == NULL)
11540 return 0;
11541
11542 *px = value_as_long (bound_val);
11543 if (pnew_k != NULL)
11544 *pnew_k = k;
11545 return 1;
11546 }
11547
11548 /* Value of variable named NAME in the current environment. If
11549 no such variable found, then if ERR_MSG is null, returns 0, and
11550 otherwise causes an error with message ERR_MSG. */
11551
11552 static struct value *
11553 get_var_value (const char *name, const char *err_msg)
11554 {
11555 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
11556
11557 std::vector<struct block_symbol> syms;
11558 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11559 get_selected_block (0),
11560 VAR_DOMAIN, &syms, 1);
11561
11562 if (nsyms != 1)
11563 {
11564 if (err_msg == NULL)
11565 return 0;
11566 else
11567 error (("%s"), err_msg);
11568 }
11569
11570 return value_of_variable (syms[0].symbol, syms[0].block);
11571 }
11572
11573 /* Value of integer variable named NAME in the current environment.
11574 If no such variable is found, returns false. Otherwise, sets VALUE
11575 to the variable's value and returns true. */
11576
11577 bool
11578 get_int_var_value (const char *name, LONGEST &value)
11579 {
11580 struct value *var_val = get_var_value (name, 0);
11581
11582 if (var_val == 0)
11583 return false;
11584
11585 value = value_as_long (var_val);
11586 return true;
11587 }
11588
11589
11590 /* Return a range type whose base type is that of the range type named
11591 NAME in the current environment, and whose bounds are calculated
11592 from NAME according to the GNAT range encoding conventions.
11593 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11594 corresponding range type from debug information; fall back to using it
11595 if symbol lookup fails. If a new type must be created, allocate it
11596 like ORIG_TYPE was. The bounds information, in general, is encoded
11597 in NAME, the base type given in the named range type. */
11598
11599 static struct type *
11600 to_fixed_range_type (struct type *raw_type, struct value *dval)
11601 {
11602 const char *name;
11603 struct type *base_type;
11604 const char *subtype_info;
11605
11606 gdb_assert (raw_type != NULL);
11607 gdb_assert (TYPE_NAME (raw_type) != NULL);
11608
11609 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
11610 base_type = TYPE_TARGET_TYPE (raw_type);
11611 else
11612 base_type = raw_type;
11613
11614 name = TYPE_NAME (raw_type);
11615 subtype_info = strstr (name, "___XD");
11616 if (subtype_info == NULL)
11617 {
11618 LONGEST L = ada_discrete_type_low_bound (raw_type);
11619 LONGEST U = ada_discrete_type_high_bound (raw_type);
11620
11621 if (L < INT_MIN || U > INT_MAX)
11622 return raw_type;
11623 else
11624 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11625 L, U);
11626 }
11627 else
11628 {
11629 static char *name_buf = NULL;
11630 static size_t name_len = 0;
11631 int prefix_len = subtype_info - name;
11632 LONGEST L, U;
11633 struct type *type;
11634 const char *bounds_str;
11635 int n;
11636
11637 GROW_VECT (name_buf, name_len, prefix_len + 5);
11638 strncpy (name_buf, name, prefix_len);
11639 name_buf[prefix_len] = '\0';
11640
11641 subtype_info += 5;
11642 bounds_str = strchr (subtype_info, '_');
11643 n = 1;
11644
11645 if (*subtype_info == 'L')
11646 {
11647 if (!ada_scan_number (bounds_str, n, &L, &n)
11648 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11649 return raw_type;
11650 if (bounds_str[n] == '_')
11651 n += 2;
11652 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11653 n += 1;
11654 subtype_info += 1;
11655 }
11656 else
11657 {
11658 strcpy (name_buf + prefix_len, "___L");
11659 if (!get_int_var_value (name_buf, L))
11660 {
11661 lim_warning (_("Unknown lower bound, using 1."));
11662 L = 1;
11663 }
11664 }
11665
11666 if (*subtype_info == 'U')
11667 {
11668 if (!ada_scan_number (bounds_str, n, &U, &n)
11669 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11670 return raw_type;
11671 }
11672 else
11673 {
11674 strcpy (name_buf + prefix_len, "___U");
11675 if (!get_int_var_value (name_buf, U))
11676 {
11677 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11678 U = L;
11679 }
11680 }
11681
11682 type = create_static_range_type (alloc_type_copy (raw_type),
11683 base_type, L, U);
11684 /* create_static_range_type alters the resulting type's length
11685 to match the size of the base_type, which is not what we want.
11686 Set it back to the original range type's length. */
11687 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
11688 TYPE_NAME (type) = name;
11689 return type;
11690 }
11691 }
11692
11693 /* True iff NAME is the name of a range type. */
11694
11695 int
11696 ada_is_range_type_name (const char *name)
11697 {
11698 return (name != NULL && strstr (name, "___XD"));
11699 }
11700 \f
11701
11702 /* Modular types */
11703
11704 /* True iff TYPE is an Ada modular type. */
11705
11706 int
11707 ada_is_modular_type (struct type *type)
11708 {
11709 struct type *subranged_type = get_base_type (type);
11710
11711 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
11712 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
11713 && TYPE_UNSIGNED (subranged_type));
11714 }
11715
11716 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11717
11718 ULONGEST
11719 ada_modulus (struct type *type)
11720 {
11721 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11722 }
11723 \f
11724
11725 /* Ada exception catchpoint support:
11726 ---------------------------------
11727
11728 We support 3 kinds of exception catchpoints:
11729 . catchpoints on Ada exceptions
11730 . catchpoints on unhandled Ada exceptions
11731 . catchpoints on failed assertions
11732
11733 Exceptions raised during failed assertions, or unhandled exceptions
11734 could perfectly be caught with the general catchpoint on Ada exceptions.
11735 However, we can easily differentiate these two special cases, and having
11736 the option to distinguish these two cases from the rest can be useful
11737 to zero-in on certain situations.
11738
11739 Exception catchpoints are a specialized form of breakpoint,
11740 since they rely on inserting breakpoints inside known routines
11741 of the GNAT runtime. The implementation therefore uses a standard
11742 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11743 of breakpoint_ops.
11744
11745 Support in the runtime for exception catchpoints have been changed
11746 a few times already, and these changes affect the implementation
11747 of these catchpoints. In order to be able to support several
11748 variants of the runtime, we use a sniffer that will determine
11749 the runtime variant used by the program being debugged. */
11750
11751 /* Ada's standard exceptions.
11752
11753 The Ada 83 standard also defined Numeric_Error. But there so many
11754 situations where it was unclear from the Ada 83 Reference Manual
11755 (RM) whether Constraint_Error or Numeric_Error should be raised,
11756 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11757 Interpretation saying that anytime the RM says that Numeric_Error
11758 should be raised, the implementation may raise Constraint_Error.
11759 Ada 95 went one step further and pretty much removed Numeric_Error
11760 from the list of standard exceptions (it made it a renaming of
11761 Constraint_Error, to help preserve compatibility when compiling
11762 an Ada83 compiler). As such, we do not include Numeric_Error from
11763 this list of standard exceptions. */
11764
11765 static const char *standard_exc[] = {
11766 "constraint_error",
11767 "program_error",
11768 "storage_error",
11769 "tasking_error"
11770 };
11771
11772 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11773
11774 /* A structure that describes how to support exception catchpoints
11775 for a given executable. */
11776
11777 struct exception_support_info
11778 {
11779 /* The name of the symbol to break on in order to insert
11780 a catchpoint on exceptions. */
11781 const char *catch_exception_sym;
11782
11783 /* The name of the symbol to break on in order to insert
11784 a catchpoint on unhandled exceptions. */
11785 const char *catch_exception_unhandled_sym;
11786
11787 /* The name of the symbol to break on in order to insert
11788 a catchpoint on failed assertions. */
11789 const char *catch_assert_sym;
11790
11791 /* The name of the symbol to break on in order to insert
11792 a catchpoint on exception handling. */
11793 const char *catch_handlers_sym;
11794
11795 /* Assuming that the inferior just triggered an unhandled exception
11796 catchpoint, this function is responsible for returning the address
11797 in inferior memory where the name of that exception is stored.
11798 Return zero if the address could not be computed. */
11799 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11800 };
11801
11802 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11803 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11804
11805 /* The following exception support info structure describes how to
11806 implement exception catchpoints with the latest version of the
11807 Ada runtime (as of 2019-08-??). */
11808
11809 static const struct exception_support_info default_exception_support_info =
11810 {
11811 "__gnat_debug_raise_exception", /* catch_exception_sym */
11812 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11813 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11814 "__gnat_begin_handler_v1", /* catch_handlers_sym */
11815 ada_unhandled_exception_name_addr
11816 };
11817
11818 /* The following exception support info structure describes how to
11819 implement exception catchpoints with an earlier version of the
11820 Ada runtime (as of 2007-03-06) using v0 of the EH ABI. */
11821
11822 static const struct exception_support_info exception_support_info_v0 =
11823 {
11824 "__gnat_debug_raise_exception", /* catch_exception_sym */
11825 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11826 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11827 "__gnat_begin_handler", /* catch_handlers_sym */
11828 ada_unhandled_exception_name_addr
11829 };
11830
11831 /* The following exception support info structure describes how to
11832 implement exception catchpoints with a slightly older version
11833 of the Ada runtime. */
11834
11835 static const struct exception_support_info exception_support_info_fallback =
11836 {
11837 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11838 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11839 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11840 "__gnat_begin_handler", /* catch_handlers_sym */
11841 ada_unhandled_exception_name_addr_from_raise
11842 };
11843
11844 /* Return nonzero if we can detect the exception support routines
11845 described in EINFO.
11846
11847 This function errors out if an abnormal situation is detected
11848 (for instance, if we find the exception support routines, but
11849 that support is found to be incomplete). */
11850
11851 static int
11852 ada_has_this_exception_support (const struct exception_support_info *einfo)
11853 {
11854 struct symbol *sym;
11855
11856 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11857 that should be compiled with debugging information. As a result, we
11858 expect to find that symbol in the symtabs. */
11859
11860 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11861 if (sym == NULL)
11862 {
11863 /* Perhaps we did not find our symbol because the Ada runtime was
11864 compiled without debugging info, or simply stripped of it.
11865 It happens on some GNU/Linux distributions for instance, where
11866 users have to install a separate debug package in order to get
11867 the runtime's debugging info. In that situation, let the user
11868 know why we cannot insert an Ada exception catchpoint.
11869
11870 Note: Just for the purpose of inserting our Ada exception
11871 catchpoint, we could rely purely on the associated minimal symbol.
11872 But we would be operating in degraded mode anyway, since we are
11873 still lacking the debugging info needed later on to extract
11874 the name of the exception being raised (this name is printed in
11875 the catchpoint message, and is also used when trying to catch
11876 a specific exception). We do not handle this case for now. */
11877 struct bound_minimal_symbol msym
11878 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11879
11880 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11881 error (_("Your Ada runtime appears to be missing some debugging "
11882 "information.\nCannot insert Ada exception catchpoint "
11883 "in this configuration."));
11884
11885 return 0;
11886 }
11887
11888 /* Make sure that the symbol we found corresponds to a function. */
11889
11890 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11891 {
11892 error (_("Symbol \"%s\" is not a function (class = %d)"),
11893 sym->linkage_name (), SYMBOL_CLASS (sym));
11894 return 0;
11895 }
11896
11897 sym = standard_lookup (einfo->catch_handlers_sym, NULL, VAR_DOMAIN);
11898 if (sym == NULL)
11899 {
11900 struct bound_minimal_symbol msym
11901 = lookup_minimal_symbol (einfo->catch_handlers_sym, NULL, NULL);
11902
11903 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11904 error (_("Your Ada runtime appears to be missing some debugging "
11905 "information.\nCannot insert Ada exception catchpoint "
11906 "in this configuration."));
11907
11908 return 0;
11909 }
11910
11911 /* Make sure that the symbol we found corresponds to a function. */
11912
11913 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11914 {
11915 error (_("Symbol \"%s\" is not a function (class = %d)"),
11916 sym->linkage_name (), SYMBOL_CLASS (sym));
11917 return 0;
11918 }
11919
11920 return 1;
11921 }
11922
11923 /* Inspect the Ada runtime and determine which exception info structure
11924 should be used to provide support for exception catchpoints.
11925
11926 This function will always set the per-inferior exception_info,
11927 or raise an error. */
11928
11929 static void
11930 ada_exception_support_info_sniffer (void)
11931 {
11932 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11933
11934 /* If the exception info is already known, then no need to recompute it. */
11935 if (data->exception_info != NULL)
11936 return;
11937
11938 /* Check the latest (default) exception support info. */
11939 if (ada_has_this_exception_support (&default_exception_support_info))
11940 {
11941 data->exception_info = &default_exception_support_info;
11942 return;
11943 }
11944
11945 /* Try the v0 exception suport info. */
11946 if (ada_has_this_exception_support (&exception_support_info_v0))
11947 {
11948 data->exception_info = &exception_support_info_v0;
11949 return;
11950 }
11951
11952 /* Try our fallback exception suport info. */
11953 if (ada_has_this_exception_support (&exception_support_info_fallback))
11954 {
11955 data->exception_info = &exception_support_info_fallback;
11956 return;
11957 }
11958
11959 /* Sometimes, it is normal for us to not be able to find the routine
11960 we are looking for. This happens when the program is linked with
11961 the shared version of the GNAT runtime, and the program has not been
11962 started yet. Inform the user of these two possible causes if
11963 applicable. */
11964
11965 if (ada_update_initial_language (language_unknown) != language_ada)
11966 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11967
11968 /* If the symbol does not exist, then check that the program is
11969 already started, to make sure that shared libraries have been
11970 loaded. If it is not started, this may mean that the symbol is
11971 in a shared library. */
11972
11973 if (inferior_ptid.pid () == 0)
11974 error (_("Unable to insert catchpoint. Try to start the program first."));
11975
11976 /* At this point, we know that we are debugging an Ada program and
11977 that the inferior has been started, but we still are not able to
11978 find the run-time symbols. That can mean that we are in
11979 configurable run time mode, or that a-except as been optimized
11980 out by the linker... In any case, at this point it is not worth
11981 supporting this feature. */
11982
11983 error (_("Cannot insert Ada exception catchpoints in this configuration."));
11984 }
11985
11986 /* True iff FRAME is very likely to be that of a function that is
11987 part of the runtime system. This is all very heuristic, but is
11988 intended to be used as advice as to what frames are uninteresting
11989 to most users. */
11990
11991 static int
11992 is_known_support_routine (struct frame_info *frame)
11993 {
11994 enum language func_lang;
11995 int i;
11996 const char *fullname;
11997
11998 /* If this code does not have any debugging information (no symtab),
11999 This cannot be any user code. */
12000
12001 symtab_and_line sal = find_frame_sal (frame);
12002 if (sal.symtab == NULL)
12003 return 1;
12004
12005 /* If there is a symtab, but the associated source file cannot be
12006 located, then assume this is not user code: Selecting a frame
12007 for which we cannot display the code would not be very helpful
12008 for the user. This should also take care of case such as VxWorks
12009 where the kernel has some debugging info provided for a few units. */
12010
12011 fullname = symtab_to_fullname (sal.symtab);
12012 if (access (fullname, R_OK) != 0)
12013 return 1;
12014
12015 /* Check the unit filename against the Ada runtime file naming.
12016 We also check the name of the objfile against the name of some
12017 known system libraries that sometimes come with debugging info
12018 too. */
12019
12020 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12021 {
12022 re_comp (known_runtime_file_name_patterns[i]);
12023 if (re_exec (lbasename (sal.symtab->filename)))
12024 return 1;
12025 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12026 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
12027 return 1;
12028 }
12029
12030 /* Check whether the function is a GNAT-generated entity. */
12031
12032 gdb::unique_xmalloc_ptr<char> func_name
12033 = find_frame_funname (frame, &func_lang, NULL);
12034 if (func_name == NULL)
12035 return 1;
12036
12037 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12038 {
12039 re_comp (known_auxiliary_function_name_patterns[i]);
12040 if (re_exec (func_name.get ()))
12041 return 1;
12042 }
12043
12044 return 0;
12045 }
12046
12047 /* Find the first frame that contains debugging information and that is not
12048 part of the Ada run-time, starting from FI and moving upward. */
12049
12050 void
12051 ada_find_printable_frame (struct frame_info *fi)
12052 {
12053 for (; fi != NULL; fi = get_prev_frame (fi))
12054 {
12055 if (!is_known_support_routine (fi))
12056 {
12057 select_frame (fi);
12058 break;
12059 }
12060 }
12061
12062 }
12063
12064 /* Assuming that the inferior just triggered an unhandled exception
12065 catchpoint, return the address in inferior memory where the name
12066 of the exception is stored.
12067
12068 Return zero if the address could not be computed. */
12069
12070 static CORE_ADDR
12071 ada_unhandled_exception_name_addr (void)
12072 {
12073 return parse_and_eval_address ("e.full_name");
12074 }
12075
12076 /* Same as ada_unhandled_exception_name_addr, except that this function
12077 should be used when the inferior uses an older version of the runtime,
12078 where the exception name needs to be extracted from a specific frame
12079 several frames up in the callstack. */
12080
12081 static CORE_ADDR
12082 ada_unhandled_exception_name_addr_from_raise (void)
12083 {
12084 int frame_level;
12085 struct frame_info *fi;
12086 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12087
12088 /* To determine the name of this exception, we need to select
12089 the frame corresponding to RAISE_SYM_NAME. This frame is
12090 at least 3 levels up, so we simply skip the first 3 frames
12091 without checking the name of their associated function. */
12092 fi = get_current_frame ();
12093 for (frame_level = 0; frame_level < 3; frame_level += 1)
12094 if (fi != NULL)
12095 fi = get_prev_frame (fi);
12096
12097 while (fi != NULL)
12098 {
12099 enum language func_lang;
12100
12101 gdb::unique_xmalloc_ptr<char> func_name
12102 = find_frame_funname (fi, &func_lang, NULL);
12103 if (func_name != NULL)
12104 {
12105 if (strcmp (func_name.get (),
12106 data->exception_info->catch_exception_sym) == 0)
12107 break; /* We found the frame we were looking for... */
12108 }
12109 fi = get_prev_frame (fi);
12110 }
12111
12112 if (fi == NULL)
12113 return 0;
12114
12115 select_frame (fi);
12116 return parse_and_eval_address ("id.full_name");
12117 }
12118
12119 /* Assuming the inferior just triggered an Ada exception catchpoint
12120 (of any type), return the address in inferior memory where the name
12121 of the exception is stored, if applicable.
12122
12123 Assumes the selected frame is the current frame.
12124
12125 Return zero if the address could not be computed, or if not relevant. */
12126
12127 static CORE_ADDR
12128 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
12129 struct breakpoint *b)
12130 {
12131 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12132
12133 switch (ex)
12134 {
12135 case ada_catch_exception:
12136 return (parse_and_eval_address ("e.full_name"));
12137 break;
12138
12139 case ada_catch_exception_unhandled:
12140 return data->exception_info->unhandled_exception_name_addr ();
12141 break;
12142
12143 case ada_catch_handlers:
12144 return 0; /* The runtimes does not provide access to the exception
12145 name. */
12146 break;
12147
12148 case ada_catch_assert:
12149 return 0; /* Exception name is not relevant in this case. */
12150 break;
12151
12152 default:
12153 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12154 break;
12155 }
12156
12157 return 0; /* Should never be reached. */
12158 }
12159
12160 /* Assuming the inferior is stopped at an exception catchpoint,
12161 return the message which was associated to the exception, if
12162 available. Return NULL if the message could not be retrieved.
12163
12164 Note: The exception message can be associated to an exception
12165 either through the use of the Raise_Exception function, or
12166 more simply (Ada 2005 and later), via:
12167
12168 raise Exception_Name with "exception message";
12169
12170 */
12171
12172 static gdb::unique_xmalloc_ptr<char>
12173 ada_exception_message_1 (void)
12174 {
12175 struct value *e_msg_val;
12176 int e_msg_len;
12177
12178 /* For runtimes that support this feature, the exception message
12179 is passed as an unbounded string argument called "message". */
12180 e_msg_val = parse_and_eval ("message");
12181 if (e_msg_val == NULL)
12182 return NULL; /* Exception message not supported. */
12183
12184 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
12185 gdb_assert (e_msg_val != NULL);
12186 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
12187
12188 /* If the message string is empty, then treat it as if there was
12189 no exception message. */
12190 if (e_msg_len <= 0)
12191 return NULL;
12192
12193 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
12194 read_memory_string (value_address (e_msg_val), e_msg.get (), e_msg_len + 1);
12195 e_msg.get ()[e_msg_len] = '\0';
12196
12197 return e_msg;
12198 }
12199
12200 /* Same as ada_exception_message_1, except that all exceptions are
12201 contained here (returning NULL instead). */
12202
12203 static gdb::unique_xmalloc_ptr<char>
12204 ada_exception_message (void)
12205 {
12206 gdb::unique_xmalloc_ptr<char> e_msg;
12207
12208 try
12209 {
12210 e_msg = ada_exception_message_1 ();
12211 }
12212 catch (const gdb_exception_error &e)
12213 {
12214 e_msg.reset (nullptr);
12215 }
12216
12217 return e_msg;
12218 }
12219
12220 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
12221 any error that ada_exception_name_addr_1 might cause to be thrown.
12222 When an error is intercepted, a warning with the error message is printed,
12223 and zero is returned. */
12224
12225 static CORE_ADDR
12226 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
12227 struct breakpoint *b)
12228 {
12229 CORE_ADDR result = 0;
12230
12231 try
12232 {
12233 result = ada_exception_name_addr_1 (ex, b);
12234 }
12235
12236 catch (const gdb_exception_error &e)
12237 {
12238 warning (_("failed to get exception name: %s"), e.what ());
12239 return 0;
12240 }
12241
12242 return result;
12243 }
12244
12245 static std::string ada_exception_catchpoint_cond_string
12246 (const char *excep_string,
12247 enum ada_exception_catchpoint_kind ex);
12248
12249 /* Ada catchpoints.
12250
12251 In the case of catchpoints on Ada exceptions, the catchpoint will
12252 stop the target on every exception the program throws. When a user
12253 specifies the name of a specific exception, we translate this
12254 request into a condition expression (in text form), and then parse
12255 it into an expression stored in each of the catchpoint's locations.
12256 We then use this condition to check whether the exception that was
12257 raised is the one the user is interested in. If not, then the
12258 target is resumed again. We store the name of the requested
12259 exception, in order to be able to re-set the condition expression
12260 when symbols change. */
12261
12262 /* An instance of this type is used to represent an Ada catchpoint
12263 breakpoint location. */
12264
12265 class ada_catchpoint_location : public bp_location
12266 {
12267 public:
12268 ada_catchpoint_location (breakpoint *owner)
12269 : bp_location (owner, bp_loc_software_breakpoint)
12270 {}
12271
12272 /* The condition that checks whether the exception that was raised
12273 is the specific exception the user specified on catchpoint
12274 creation. */
12275 expression_up excep_cond_expr;
12276 };
12277
12278 /* An instance of this type is used to represent an Ada catchpoint. */
12279
12280 struct ada_catchpoint : public breakpoint
12281 {
12282 explicit ada_catchpoint (enum ada_exception_catchpoint_kind kind)
12283 : m_kind (kind)
12284 {
12285 }
12286
12287 /* The name of the specific exception the user specified. */
12288 std::string excep_string;
12289
12290 /* What kind of catchpoint this is. */
12291 enum ada_exception_catchpoint_kind m_kind;
12292 };
12293
12294 /* Parse the exception condition string in the context of each of the
12295 catchpoint's locations, and store them for later evaluation. */
12296
12297 static void
12298 create_excep_cond_exprs (struct ada_catchpoint *c,
12299 enum ada_exception_catchpoint_kind ex)
12300 {
12301 struct bp_location *bl;
12302
12303 /* Nothing to do if there's no specific exception to catch. */
12304 if (c->excep_string.empty ())
12305 return;
12306
12307 /* Same if there are no locations... */
12308 if (c->loc == NULL)
12309 return;
12310
12311 /* Compute the condition expression in text form, from the specific
12312 expection we want to catch. */
12313 std::string cond_string
12314 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (), ex);
12315
12316 /* Iterate over all the catchpoint's locations, and parse an
12317 expression for each. */
12318 for (bl = c->loc; bl != NULL; bl = bl->next)
12319 {
12320 struct ada_catchpoint_location *ada_loc
12321 = (struct ada_catchpoint_location *) bl;
12322 expression_up exp;
12323
12324 if (!bl->shlib_disabled)
12325 {
12326 const char *s;
12327
12328 s = cond_string.c_str ();
12329 try
12330 {
12331 exp = parse_exp_1 (&s, bl->address,
12332 block_for_pc (bl->address),
12333 0);
12334 }
12335 catch (const gdb_exception_error &e)
12336 {
12337 warning (_("failed to reevaluate internal exception condition "
12338 "for catchpoint %d: %s"),
12339 c->number, e.what ());
12340 }
12341 }
12342
12343 ada_loc->excep_cond_expr = std::move (exp);
12344 }
12345 }
12346
12347 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12348 structure for all exception catchpoint kinds. */
12349
12350 static struct bp_location *
12351 allocate_location_exception (struct breakpoint *self)
12352 {
12353 return new ada_catchpoint_location (self);
12354 }
12355
12356 /* Implement the RE_SET method in the breakpoint_ops structure for all
12357 exception catchpoint kinds. */
12358
12359 static void
12360 re_set_exception (struct breakpoint *b)
12361 {
12362 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12363
12364 /* Call the base class's method. This updates the catchpoint's
12365 locations. */
12366 bkpt_breakpoint_ops.re_set (b);
12367
12368 /* Reparse the exception conditional expressions. One for each
12369 location. */
12370 create_excep_cond_exprs (c, c->m_kind);
12371 }
12372
12373 /* Returns true if we should stop for this breakpoint hit. If the
12374 user specified a specific exception, we only want to cause a stop
12375 if the program thrown that exception. */
12376
12377 static int
12378 should_stop_exception (const struct bp_location *bl)
12379 {
12380 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12381 const struct ada_catchpoint_location *ada_loc
12382 = (const struct ada_catchpoint_location *) bl;
12383 int stop;
12384
12385 struct internalvar *var = lookup_internalvar ("_ada_exception");
12386 if (c->m_kind == ada_catch_assert)
12387 clear_internalvar (var);
12388 else
12389 {
12390 try
12391 {
12392 const char *expr;
12393
12394 if (c->m_kind == ada_catch_handlers)
12395 expr = ("GNAT_GCC_exception_Access(gcc_exception)"
12396 ".all.occurrence.id");
12397 else
12398 expr = "e";
12399
12400 struct value *exc = parse_and_eval (expr);
12401 set_internalvar (var, exc);
12402 }
12403 catch (const gdb_exception_error &ex)
12404 {
12405 clear_internalvar (var);
12406 }
12407 }
12408
12409 /* With no specific exception, should always stop. */
12410 if (c->excep_string.empty ())
12411 return 1;
12412
12413 if (ada_loc->excep_cond_expr == NULL)
12414 {
12415 /* We will have a NULL expression if back when we were creating
12416 the expressions, this location's had failed to parse. */
12417 return 1;
12418 }
12419
12420 stop = 1;
12421 try
12422 {
12423 struct value *mark;
12424
12425 mark = value_mark ();
12426 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
12427 value_free_to_mark (mark);
12428 }
12429 catch (const gdb_exception &ex)
12430 {
12431 exception_fprintf (gdb_stderr, ex,
12432 _("Error in testing exception condition:\n"));
12433 }
12434
12435 return stop;
12436 }
12437
12438 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12439 for all exception catchpoint kinds. */
12440
12441 static void
12442 check_status_exception (bpstat bs)
12443 {
12444 bs->stop = should_stop_exception (bs->bp_location_at);
12445 }
12446
12447 /* Implement the PRINT_IT method in the breakpoint_ops structure
12448 for all exception catchpoint kinds. */
12449
12450 static enum print_stop_action
12451 print_it_exception (bpstat bs)
12452 {
12453 struct ui_out *uiout = current_uiout;
12454 struct breakpoint *b = bs->breakpoint_at;
12455
12456 annotate_catchpoint (b->number);
12457
12458 if (uiout->is_mi_like_p ())
12459 {
12460 uiout->field_string ("reason",
12461 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12462 uiout->field_string ("disp", bpdisp_text (b->disposition));
12463 }
12464
12465 uiout->text (b->disposition == disp_del
12466 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12467 uiout->field_signed ("bkptno", b->number);
12468 uiout->text (", ");
12469
12470 /* ada_exception_name_addr relies on the selected frame being the
12471 current frame. Need to do this here because this function may be
12472 called more than once when printing a stop, and below, we'll
12473 select the first frame past the Ada run-time (see
12474 ada_find_printable_frame). */
12475 select_frame (get_current_frame ());
12476
12477 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12478 switch (c->m_kind)
12479 {
12480 case ada_catch_exception:
12481 case ada_catch_exception_unhandled:
12482 case ada_catch_handlers:
12483 {
12484 const CORE_ADDR addr = ada_exception_name_addr (c->m_kind, b);
12485 char exception_name[256];
12486
12487 if (addr != 0)
12488 {
12489 read_memory (addr, (gdb_byte *) exception_name,
12490 sizeof (exception_name) - 1);
12491 exception_name [sizeof (exception_name) - 1] = '\0';
12492 }
12493 else
12494 {
12495 /* For some reason, we were unable to read the exception
12496 name. This could happen if the Runtime was compiled
12497 without debugging info, for instance. In that case,
12498 just replace the exception name by the generic string
12499 "exception" - it will read as "an exception" in the
12500 notification we are about to print. */
12501 memcpy (exception_name, "exception", sizeof ("exception"));
12502 }
12503 /* In the case of unhandled exception breakpoints, we print
12504 the exception name as "unhandled EXCEPTION_NAME", to make
12505 it clearer to the user which kind of catchpoint just got
12506 hit. We used ui_out_text to make sure that this extra
12507 info does not pollute the exception name in the MI case. */
12508 if (c->m_kind == ada_catch_exception_unhandled)
12509 uiout->text ("unhandled ");
12510 uiout->field_string ("exception-name", exception_name);
12511 }
12512 break;
12513 case ada_catch_assert:
12514 /* In this case, the name of the exception is not really
12515 important. Just print "failed assertion" to make it clearer
12516 that his program just hit an assertion-failure catchpoint.
12517 We used ui_out_text because this info does not belong in
12518 the MI output. */
12519 uiout->text ("failed assertion");
12520 break;
12521 }
12522
12523 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
12524 if (exception_message != NULL)
12525 {
12526 uiout->text (" (");
12527 uiout->field_string ("exception-message", exception_message.get ());
12528 uiout->text (")");
12529 }
12530
12531 uiout->text (" at ");
12532 ada_find_printable_frame (get_current_frame ());
12533
12534 return PRINT_SRC_AND_LOC;
12535 }
12536
12537 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12538 for all exception catchpoint kinds. */
12539
12540 static void
12541 print_one_exception (struct breakpoint *b, struct bp_location **last_loc)
12542 {
12543 struct ui_out *uiout = current_uiout;
12544 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12545 struct value_print_options opts;
12546
12547 get_user_print_options (&opts);
12548
12549 if (opts.addressprint)
12550 uiout->field_skip ("addr");
12551
12552 annotate_field (5);
12553 switch (c->m_kind)
12554 {
12555 case ada_catch_exception:
12556 if (!c->excep_string.empty ())
12557 {
12558 std::string msg = string_printf (_("`%s' Ada exception"),
12559 c->excep_string.c_str ());
12560
12561 uiout->field_string ("what", msg);
12562 }
12563 else
12564 uiout->field_string ("what", "all Ada exceptions");
12565
12566 break;
12567
12568 case ada_catch_exception_unhandled:
12569 uiout->field_string ("what", "unhandled Ada exceptions");
12570 break;
12571
12572 case ada_catch_handlers:
12573 if (!c->excep_string.empty ())
12574 {
12575 uiout->field_fmt ("what",
12576 _("`%s' Ada exception handlers"),
12577 c->excep_string.c_str ());
12578 }
12579 else
12580 uiout->field_string ("what", "all Ada exceptions handlers");
12581 break;
12582
12583 case ada_catch_assert:
12584 uiout->field_string ("what", "failed Ada assertions");
12585 break;
12586
12587 default:
12588 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12589 break;
12590 }
12591 }
12592
12593 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12594 for all exception catchpoint kinds. */
12595
12596 static void
12597 print_mention_exception (struct breakpoint *b)
12598 {
12599 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12600 struct ui_out *uiout = current_uiout;
12601
12602 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
12603 : _("Catchpoint "));
12604 uiout->field_signed ("bkptno", b->number);
12605 uiout->text (": ");
12606
12607 switch (c->m_kind)
12608 {
12609 case ada_catch_exception:
12610 if (!c->excep_string.empty ())
12611 {
12612 std::string info = string_printf (_("`%s' Ada exception"),
12613 c->excep_string.c_str ());
12614 uiout->text (info.c_str ());
12615 }
12616 else
12617 uiout->text (_("all Ada exceptions"));
12618 break;
12619
12620 case ada_catch_exception_unhandled:
12621 uiout->text (_("unhandled Ada exceptions"));
12622 break;
12623
12624 case ada_catch_handlers:
12625 if (!c->excep_string.empty ())
12626 {
12627 std::string info
12628 = string_printf (_("`%s' Ada exception handlers"),
12629 c->excep_string.c_str ());
12630 uiout->text (info.c_str ());
12631 }
12632 else
12633 uiout->text (_("all Ada exceptions handlers"));
12634 break;
12635
12636 case ada_catch_assert:
12637 uiout->text (_("failed Ada assertions"));
12638 break;
12639
12640 default:
12641 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12642 break;
12643 }
12644 }
12645
12646 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12647 for all exception catchpoint kinds. */
12648
12649 static void
12650 print_recreate_exception (struct breakpoint *b, struct ui_file *fp)
12651 {
12652 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12653
12654 switch (c->m_kind)
12655 {
12656 case ada_catch_exception:
12657 fprintf_filtered (fp, "catch exception");
12658 if (!c->excep_string.empty ())
12659 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
12660 break;
12661
12662 case ada_catch_exception_unhandled:
12663 fprintf_filtered (fp, "catch exception unhandled");
12664 break;
12665
12666 case ada_catch_handlers:
12667 fprintf_filtered (fp, "catch handlers");
12668 break;
12669
12670 case ada_catch_assert:
12671 fprintf_filtered (fp, "catch assert");
12672 break;
12673
12674 default:
12675 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12676 }
12677 print_recreate_thread (b, fp);
12678 }
12679
12680 /* Virtual tables for various breakpoint types. */
12681 static struct breakpoint_ops catch_exception_breakpoint_ops;
12682 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12683 static struct breakpoint_ops catch_assert_breakpoint_ops;
12684 static struct breakpoint_ops catch_handlers_breakpoint_ops;
12685
12686 /* See ada-lang.h. */
12687
12688 bool
12689 is_ada_exception_catchpoint (breakpoint *bp)
12690 {
12691 return (bp->ops == &catch_exception_breakpoint_ops
12692 || bp->ops == &catch_exception_unhandled_breakpoint_ops
12693 || bp->ops == &catch_assert_breakpoint_ops
12694 || bp->ops == &catch_handlers_breakpoint_ops);
12695 }
12696
12697 /* Split the arguments specified in a "catch exception" command.
12698 Set EX to the appropriate catchpoint type.
12699 Set EXCEP_STRING to the name of the specific exception if
12700 specified by the user.
12701 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
12702 "catch handlers" command. False otherwise.
12703 If a condition is found at the end of the arguments, the condition
12704 expression is stored in COND_STRING (memory must be deallocated
12705 after use). Otherwise COND_STRING is set to NULL. */
12706
12707 static void
12708 catch_ada_exception_command_split (const char *args,
12709 bool is_catch_handlers_cmd,
12710 enum ada_exception_catchpoint_kind *ex,
12711 std::string *excep_string,
12712 std::string *cond_string)
12713 {
12714 std::string exception_name;
12715
12716 exception_name = extract_arg (&args);
12717 if (exception_name == "if")
12718 {
12719 /* This is not an exception name; this is the start of a condition
12720 expression for a catchpoint on all exceptions. So, "un-get"
12721 this token, and set exception_name to NULL. */
12722 exception_name.clear ();
12723 args -= 2;
12724 }
12725
12726 /* Check to see if we have a condition. */
12727
12728 args = skip_spaces (args);
12729 if (startswith (args, "if")
12730 && (isspace (args[2]) || args[2] == '\0'))
12731 {
12732 args += 2;
12733 args = skip_spaces (args);
12734
12735 if (args[0] == '\0')
12736 error (_("Condition missing after `if' keyword"));
12737 *cond_string = args;
12738
12739 args += strlen (args);
12740 }
12741
12742 /* Check that we do not have any more arguments. Anything else
12743 is unexpected. */
12744
12745 if (args[0] != '\0')
12746 error (_("Junk at end of expression"));
12747
12748 if (is_catch_handlers_cmd)
12749 {
12750 /* Catch handling of exceptions. */
12751 *ex = ada_catch_handlers;
12752 *excep_string = exception_name;
12753 }
12754 else if (exception_name.empty ())
12755 {
12756 /* Catch all exceptions. */
12757 *ex = ada_catch_exception;
12758 excep_string->clear ();
12759 }
12760 else if (exception_name == "unhandled")
12761 {
12762 /* Catch unhandled exceptions. */
12763 *ex = ada_catch_exception_unhandled;
12764 excep_string->clear ();
12765 }
12766 else
12767 {
12768 /* Catch a specific exception. */
12769 *ex = ada_catch_exception;
12770 *excep_string = exception_name;
12771 }
12772 }
12773
12774 /* Return the name of the symbol on which we should break in order to
12775 implement a catchpoint of the EX kind. */
12776
12777 static const char *
12778 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
12779 {
12780 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12781
12782 gdb_assert (data->exception_info != NULL);
12783
12784 switch (ex)
12785 {
12786 case ada_catch_exception:
12787 return (data->exception_info->catch_exception_sym);
12788 break;
12789 case ada_catch_exception_unhandled:
12790 return (data->exception_info->catch_exception_unhandled_sym);
12791 break;
12792 case ada_catch_assert:
12793 return (data->exception_info->catch_assert_sym);
12794 break;
12795 case ada_catch_handlers:
12796 return (data->exception_info->catch_handlers_sym);
12797 break;
12798 default:
12799 internal_error (__FILE__, __LINE__,
12800 _("unexpected catchpoint kind (%d)"), ex);
12801 }
12802 }
12803
12804 /* Return the breakpoint ops "virtual table" used for catchpoints
12805 of the EX kind. */
12806
12807 static const struct breakpoint_ops *
12808 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
12809 {
12810 switch (ex)
12811 {
12812 case ada_catch_exception:
12813 return (&catch_exception_breakpoint_ops);
12814 break;
12815 case ada_catch_exception_unhandled:
12816 return (&catch_exception_unhandled_breakpoint_ops);
12817 break;
12818 case ada_catch_assert:
12819 return (&catch_assert_breakpoint_ops);
12820 break;
12821 case ada_catch_handlers:
12822 return (&catch_handlers_breakpoint_ops);
12823 break;
12824 default:
12825 internal_error (__FILE__, __LINE__,
12826 _("unexpected catchpoint kind (%d)"), ex);
12827 }
12828 }
12829
12830 /* Return the condition that will be used to match the current exception
12831 being raised with the exception that the user wants to catch. This
12832 assumes that this condition is used when the inferior just triggered
12833 an exception catchpoint.
12834 EX: the type of catchpoints used for catching Ada exceptions. */
12835
12836 static std::string
12837 ada_exception_catchpoint_cond_string (const char *excep_string,
12838 enum ada_exception_catchpoint_kind ex)
12839 {
12840 int i;
12841 bool is_standard_exc = false;
12842 std::string result;
12843
12844 if (ex == ada_catch_handlers)
12845 {
12846 /* For exception handlers catchpoints, the condition string does
12847 not use the same parameter as for the other exceptions. */
12848 result = ("long_integer (GNAT_GCC_exception_Access"
12849 "(gcc_exception).all.occurrence.id)");
12850 }
12851 else
12852 result = "long_integer (e)";
12853
12854 /* The standard exceptions are a special case. They are defined in
12855 runtime units that have been compiled without debugging info; if
12856 EXCEP_STRING is the not-fully-qualified name of a standard
12857 exception (e.g. "constraint_error") then, during the evaluation
12858 of the condition expression, the symbol lookup on this name would
12859 *not* return this standard exception. The catchpoint condition
12860 may then be set only on user-defined exceptions which have the
12861 same not-fully-qualified name (e.g. my_package.constraint_error).
12862
12863 To avoid this unexcepted behavior, these standard exceptions are
12864 systematically prefixed by "standard". This means that "catch
12865 exception constraint_error" is rewritten into "catch exception
12866 standard.constraint_error".
12867
12868 If an exception named constraint_error is defined in another package of
12869 the inferior program, then the only way to specify this exception as a
12870 breakpoint condition is to use its fully-qualified named:
12871 e.g. my_package.constraint_error. */
12872
12873 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12874 {
12875 if (strcmp (standard_exc [i], excep_string) == 0)
12876 {
12877 is_standard_exc = true;
12878 break;
12879 }
12880 }
12881
12882 result += " = ";
12883
12884 if (is_standard_exc)
12885 string_appendf (result, "long_integer (&standard.%s)", excep_string);
12886 else
12887 string_appendf (result, "long_integer (&%s)", excep_string);
12888
12889 return result;
12890 }
12891
12892 /* Return the symtab_and_line that should be used to insert an exception
12893 catchpoint of the TYPE kind.
12894
12895 ADDR_STRING returns the name of the function where the real
12896 breakpoint that implements the catchpoints is set, depending on the
12897 type of catchpoint we need to create. */
12898
12899 static struct symtab_and_line
12900 ada_exception_sal (enum ada_exception_catchpoint_kind ex,
12901 std::string *addr_string, const struct breakpoint_ops **ops)
12902 {
12903 const char *sym_name;
12904 struct symbol *sym;
12905
12906 /* First, find out which exception support info to use. */
12907 ada_exception_support_info_sniffer ();
12908
12909 /* Then lookup the function on which we will break in order to catch
12910 the Ada exceptions requested by the user. */
12911 sym_name = ada_exception_sym_name (ex);
12912 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12913
12914 if (sym == NULL)
12915 error (_("Catchpoint symbol not found: %s"), sym_name);
12916
12917 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12918 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
12919
12920 /* Set ADDR_STRING. */
12921 *addr_string = sym_name;
12922
12923 /* Set OPS. */
12924 *ops = ada_exception_breakpoint_ops (ex);
12925
12926 return find_function_start_sal (sym, 1);
12927 }
12928
12929 /* Create an Ada exception catchpoint.
12930
12931 EX_KIND is the kind of exception catchpoint to be created.
12932
12933 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
12934 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12935 of the exception to which this catchpoint applies.
12936
12937 COND_STRING, if not empty, is the catchpoint condition.
12938
12939 TEMPFLAG, if nonzero, means that the underlying breakpoint
12940 should be temporary.
12941
12942 FROM_TTY is the usual argument passed to all commands implementations. */
12943
12944 void
12945 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
12946 enum ada_exception_catchpoint_kind ex_kind,
12947 const std::string &excep_string,
12948 const std::string &cond_string,
12949 int tempflag,
12950 int disabled,
12951 int from_tty)
12952 {
12953 std::string addr_string;
12954 const struct breakpoint_ops *ops = NULL;
12955 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
12956
12957 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint (ex_kind));
12958 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string.c_str (),
12959 ops, tempflag, disabled, from_tty);
12960 c->excep_string = excep_string;
12961 create_excep_cond_exprs (c.get (), ex_kind);
12962 if (!cond_string.empty ())
12963 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty);
12964 install_breakpoint (0, std::move (c), 1);
12965 }
12966
12967 /* Implement the "catch exception" command. */
12968
12969 static void
12970 catch_ada_exception_command (const char *arg_entry, int from_tty,
12971 struct cmd_list_element *command)
12972 {
12973 const char *arg = arg_entry;
12974 struct gdbarch *gdbarch = get_current_arch ();
12975 int tempflag;
12976 enum ada_exception_catchpoint_kind ex_kind;
12977 std::string excep_string;
12978 std::string cond_string;
12979
12980 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12981
12982 if (!arg)
12983 arg = "";
12984 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
12985 &cond_string);
12986 create_ada_exception_catchpoint (gdbarch, ex_kind,
12987 excep_string, cond_string,
12988 tempflag, 1 /* enabled */,
12989 from_tty);
12990 }
12991
12992 /* Implement the "catch handlers" command. */
12993
12994 static void
12995 catch_ada_handlers_command (const char *arg_entry, int from_tty,
12996 struct cmd_list_element *command)
12997 {
12998 const char *arg = arg_entry;
12999 struct gdbarch *gdbarch = get_current_arch ();
13000 int tempflag;
13001 enum ada_exception_catchpoint_kind ex_kind;
13002 std::string excep_string;
13003 std::string cond_string;
13004
13005 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13006
13007 if (!arg)
13008 arg = "";
13009 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
13010 &cond_string);
13011 create_ada_exception_catchpoint (gdbarch, ex_kind,
13012 excep_string, cond_string,
13013 tempflag, 1 /* enabled */,
13014 from_tty);
13015 }
13016
13017 /* Completion function for the Ada "catch" commands. */
13018
13019 static void
13020 catch_ada_completer (struct cmd_list_element *cmd, completion_tracker &tracker,
13021 const char *text, const char *word)
13022 {
13023 std::vector<ada_exc_info> exceptions = ada_exceptions_list (NULL);
13024
13025 for (const ada_exc_info &info : exceptions)
13026 {
13027 if (startswith (info.name, word))
13028 tracker.add_completion (make_unique_xstrdup (info.name));
13029 }
13030 }
13031
13032 /* Split the arguments specified in a "catch assert" command.
13033
13034 ARGS contains the command's arguments (or the empty string if
13035 no arguments were passed).
13036
13037 If ARGS contains a condition, set COND_STRING to that condition
13038 (the memory needs to be deallocated after use). */
13039
13040 static void
13041 catch_ada_assert_command_split (const char *args, std::string &cond_string)
13042 {
13043 args = skip_spaces (args);
13044
13045 /* Check whether a condition was provided. */
13046 if (startswith (args, "if")
13047 && (isspace (args[2]) || args[2] == '\0'))
13048 {
13049 args += 2;
13050 args = skip_spaces (args);
13051 if (args[0] == '\0')
13052 error (_("condition missing after `if' keyword"));
13053 cond_string.assign (args);
13054 }
13055
13056 /* Otherwise, there should be no other argument at the end of
13057 the command. */
13058 else if (args[0] != '\0')
13059 error (_("Junk at end of arguments."));
13060 }
13061
13062 /* Implement the "catch assert" command. */
13063
13064 static void
13065 catch_assert_command (const char *arg_entry, int from_tty,
13066 struct cmd_list_element *command)
13067 {
13068 const char *arg = arg_entry;
13069 struct gdbarch *gdbarch = get_current_arch ();
13070 int tempflag;
13071 std::string cond_string;
13072
13073 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13074
13075 if (!arg)
13076 arg = "";
13077 catch_ada_assert_command_split (arg, cond_string);
13078 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
13079 "", cond_string,
13080 tempflag, 1 /* enabled */,
13081 from_tty);
13082 }
13083
13084 /* Return non-zero if the symbol SYM is an Ada exception object. */
13085
13086 static int
13087 ada_is_exception_sym (struct symbol *sym)
13088 {
13089 const char *type_name = TYPE_NAME (SYMBOL_TYPE (sym));
13090
13091 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13092 && SYMBOL_CLASS (sym) != LOC_BLOCK
13093 && SYMBOL_CLASS (sym) != LOC_CONST
13094 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13095 && type_name != NULL && strcmp (type_name, "exception") == 0);
13096 }
13097
13098 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13099 Ada exception object. This matches all exceptions except the ones
13100 defined by the Ada language. */
13101
13102 static int
13103 ada_is_non_standard_exception_sym (struct symbol *sym)
13104 {
13105 int i;
13106
13107 if (!ada_is_exception_sym (sym))
13108 return 0;
13109
13110 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13111 if (strcmp (sym->linkage_name (), standard_exc[i]) == 0)
13112 return 0; /* A standard exception. */
13113
13114 /* Numeric_Error is also a standard exception, so exclude it.
13115 See the STANDARD_EXC description for more details as to why
13116 this exception is not listed in that array. */
13117 if (strcmp (sym->linkage_name (), "numeric_error") == 0)
13118 return 0;
13119
13120 return 1;
13121 }
13122
13123 /* A helper function for std::sort, comparing two struct ada_exc_info
13124 objects.
13125
13126 The comparison is determined first by exception name, and then
13127 by exception address. */
13128
13129 bool
13130 ada_exc_info::operator< (const ada_exc_info &other) const
13131 {
13132 int result;
13133
13134 result = strcmp (name, other.name);
13135 if (result < 0)
13136 return true;
13137 if (result == 0 && addr < other.addr)
13138 return true;
13139 return false;
13140 }
13141
13142 bool
13143 ada_exc_info::operator== (const ada_exc_info &other) const
13144 {
13145 return addr == other.addr && strcmp (name, other.name) == 0;
13146 }
13147
13148 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13149 routine, but keeping the first SKIP elements untouched.
13150
13151 All duplicates are also removed. */
13152
13153 static void
13154 sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
13155 int skip)
13156 {
13157 std::sort (exceptions->begin () + skip, exceptions->end ());
13158 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
13159 exceptions->end ());
13160 }
13161
13162 /* Add all exceptions defined by the Ada standard whose name match
13163 a regular expression.
13164
13165 If PREG is not NULL, then this regexp_t object is used to
13166 perform the symbol name matching. Otherwise, no name-based
13167 filtering is performed.
13168
13169 EXCEPTIONS is a vector of exceptions to which matching exceptions
13170 gets pushed. */
13171
13172 static void
13173 ada_add_standard_exceptions (compiled_regex *preg,
13174 std::vector<ada_exc_info> *exceptions)
13175 {
13176 int i;
13177
13178 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13179 {
13180 if (preg == NULL
13181 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
13182 {
13183 struct bound_minimal_symbol msymbol
13184 = ada_lookup_simple_minsym (standard_exc[i]);
13185
13186 if (msymbol.minsym != NULL)
13187 {
13188 struct ada_exc_info info
13189 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
13190
13191 exceptions->push_back (info);
13192 }
13193 }
13194 }
13195 }
13196
13197 /* Add all Ada exceptions defined locally and accessible from the given
13198 FRAME.
13199
13200 If PREG is not NULL, then this regexp_t object is used to
13201 perform the symbol name matching. Otherwise, no name-based
13202 filtering is performed.
13203
13204 EXCEPTIONS is a vector of exceptions to which matching exceptions
13205 gets pushed. */
13206
13207 static void
13208 ada_add_exceptions_from_frame (compiled_regex *preg,
13209 struct frame_info *frame,
13210 std::vector<ada_exc_info> *exceptions)
13211 {
13212 const struct block *block = get_frame_block (frame, 0);
13213
13214 while (block != 0)
13215 {
13216 struct block_iterator iter;
13217 struct symbol *sym;
13218
13219 ALL_BLOCK_SYMBOLS (block, iter, sym)
13220 {
13221 switch (SYMBOL_CLASS (sym))
13222 {
13223 case LOC_TYPEDEF:
13224 case LOC_BLOCK:
13225 case LOC_CONST:
13226 break;
13227 default:
13228 if (ada_is_exception_sym (sym))
13229 {
13230 struct ada_exc_info info = {sym->print_name (),
13231 SYMBOL_VALUE_ADDRESS (sym)};
13232
13233 exceptions->push_back (info);
13234 }
13235 }
13236 }
13237 if (BLOCK_FUNCTION (block) != NULL)
13238 break;
13239 block = BLOCK_SUPERBLOCK (block);
13240 }
13241 }
13242
13243 /* Return true if NAME matches PREG or if PREG is NULL. */
13244
13245 static bool
13246 name_matches_regex (const char *name, compiled_regex *preg)
13247 {
13248 return (preg == NULL
13249 || preg->exec (ada_decode (name).c_str (), 0, NULL, 0) == 0);
13250 }
13251
13252 /* Add all exceptions defined globally whose name name match
13253 a regular expression, excluding standard exceptions.
13254
13255 The reason we exclude standard exceptions is that they need
13256 to be handled separately: Standard exceptions are defined inside
13257 a runtime unit which is normally not compiled with debugging info,
13258 and thus usually do not show up in our symbol search. However,
13259 if the unit was in fact built with debugging info, we need to
13260 exclude them because they would duplicate the entry we found
13261 during the special loop that specifically searches for those
13262 standard exceptions.
13263
13264 If PREG is not NULL, then this regexp_t object is used to
13265 perform the symbol name matching. Otherwise, no name-based
13266 filtering is performed.
13267
13268 EXCEPTIONS is a vector of exceptions to which matching exceptions
13269 gets pushed. */
13270
13271 static void
13272 ada_add_global_exceptions (compiled_regex *preg,
13273 std::vector<ada_exc_info> *exceptions)
13274 {
13275 /* In Ada, the symbol "search name" is a linkage name, whereas the
13276 regular expression used to do the matching refers to the natural
13277 name. So match against the decoded name. */
13278 expand_symtabs_matching (NULL,
13279 lookup_name_info::match_any (),
13280 [&] (const char *search_name)
13281 {
13282 std::string decoded = ada_decode (search_name);
13283 return name_matches_regex (decoded.c_str (), preg);
13284 },
13285 NULL,
13286 VARIABLES_DOMAIN);
13287
13288 for (objfile *objfile : current_program_space->objfiles ())
13289 {
13290 for (compunit_symtab *s : objfile->compunits ())
13291 {
13292 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13293 int i;
13294
13295 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13296 {
13297 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13298 struct block_iterator iter;
13299 struct symbol *sym;
13300
13301 ALL_BLOCK_SYMBOLS (b, iter, sym)
13302 if (ada_is_non_standard_exception_sym (sym)
13303 && name_matches_regex (sym->natural_name (), preg))
13304 {
13305 struct ada_exc_info info
13306 = {sym->print_name (), SYMBOL_VALUE_ADDRESS (sym)};
13307
13308 exceptions->push_back (info);
13309 }
13310 }
13311 }
13312 }
13313 }
13314
13315 /* Implements ada_exceptions_list with the regular expression passed
13316 as a regex_t, rather than a string.
13317
13318 If not NULL, PREG is used to filter out exceptions whose names
13319 do not match. Otherwise, all exceptions are listed. */
13320
13321 static std::vector<ada_exc_info>
13322 ada_exceptions_list_1 (compiled_regex *preg)
13323 {
13324 std::vector<ada_exc_info> result;
13325 int prev_len;
13326
13327 /* First, list the known standard exceptions. These exceptions
13328 need to be handled separately, as they are usually defined in
13329 runtime units that have been compiled without debugging info. */
13330
13331 ada_add_standard_exceptions (preg, &result);
13332
13333 /* Next, find all exceptions whose scope is local and accessible
13334 from the currently selected frame. */
13335
13336 if (has_stack_frames ())
13337 {
13338 prev_len = result.size ();
13339 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13340 &result);
13341 if (result.size () > prev_len)
13342 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13343 }
13344
13345 /* Add all exceptions whose scope is global. */
13346
13347 prev_len = result.size ();
13348 ada_add_global_exceptions (preg, &result);
13349 if (result.size () > prev_len)
13350 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13351
13352 return result;
13353 }
13354
13355 /* Return a vector of ada_exc_info.
13356
13357 If REGEXP is NULL, all exceptions are included in the result.
13358 Otherwise, it should contain a valid regular expression,
13359 and only the exceptions whose names match that regular expression
13360 are included in the result.
13361
13362 The exceptions are sorted in the following order:
13363 - Standard exceptions (defined by the Ada language), in
13364 alphabetical order;
13365 - Exceptions only visible from the current frame, in
13366 alphabetical order;
13367 - Exceptions whose scope is global, in alphabetical order. */
13368
13369 std::vector<ada_exc_info>
13370 ada_exceptions_list (const char *regexp)
13371 {
13372 if (regexp == NULL)
13373 return ada_exceptions_list_1 (NULL);
13374
13375 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13376 return ada_exceptions_list_1 (&reg);
13377 }
13378
13379 /* Implement the "info exceptions" command. */
13380
13381 static void
13382 info_exceptions_command (const char *regexp, int from_tty)
13383 {
13384 struct gdbarch *gdbarch = get_current_arch ();
13385
13386 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
13387
13388 if (regexp != NULL)
13389 printf_filtered
13390 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13391 else
13392 printf_filtered (_("All defined Ada exceptions:\n"));
13393
13394 for (const ada_exc_info &info : exceptions)
13395 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
13396 }
13397
13398 /* Operators */
13399 /* Information about operators given special treatment in functions
13400 below. */
13401 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13402
13403 #define ADA_OPERATORS \
13404 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13405 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13406 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13407 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13408 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13409 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13410 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13411 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13412 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13413 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13414 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13415 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13416 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13417 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13418 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13419 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13420 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13421 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13422 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13423
13424 static void
13425 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13426 int *argsp)
13427 {
13428 switch (exp->elts[pc - 1].opcode)
13429 {
13430 default:
13431 operator_length_standard (exp, pc, oplenp, argsp);
13432 break;
13433
13434 #define OP_DEFN(op, len, args, binop) \
13435 case op: *oplenp = len; *argsp = args; break;
13436 ADA_OPERATORS;
13437 #undef OP_DEFN
13438
13439 case OP_AGGREGATE:
13440 *oplenp = 3;
13441 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13442 break;
13443
13444 case OP_CHOICES:
13445 *oplenp = 3;
13446 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13447 break;
13448 }
13449 }
13450
13451 /* Implementation of the exp_descriptor method operator_check. */
13452
13453 static int
13454 ada_operator_check (struct expression *exp, int pos,
13455 int (*objfile_func) (struct objfile *objfile, void *data),
13456 void *data)
13457 {
13458 const union exp_element *const elts = exp->elts;
13459 struct type *type = NULL;
13460
13461 switch (elts[pos].opcode)
13462 {
13463 case UNOP_IN_RANGE:
13464 case UNOP_QUAL:
13465 type = elts[pos + 1].type;
13466 break;
13467
13468 default:
13469 return operator_check_standard (exp, pos, objfile_func, data);
13470 }
13471
13472 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13473
13474 if (type && TYPE_OBJFILE (type)
13475 && (*objfile_func) (TYPE_OBJFILE (type), data))
13476 return 1;
13477
13478 return 0;
13479 }
13480
13481 static const char *
13482 ada_op_name (enum exp_opcode opcode)
13483 {
13484 switch (opcode)
13485 {
13486 default:
13487 return op_name_standard (opcode);
13488
13489 #define OP_DEFN(op, len, args, binop) case op: return #op;
13490 ADA_OPERATORS;
13491 #undef OP_DEFN
13492
13493 case OP_AGGREGATE:
13494 return "OP_AGGREGATE";
13495 case OP_CHOICES:
13496 return "OP_CHOICES";
13497 case OP_NAME:
13498 return "OP_NAME";
13499 }
13500 }
13501
13502 /* As for operator_length, but assumes PC is pointing at the first
13503 element of the operator, and gives meaningful results only for the
13504 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13505
13506 static void
13507 ada_forward_operator_length (struct expression *exp, int pc,
13508 int *oplenp, int *argsp)
13509 {
13510 switch (exp->elts[pc].opcode)
13511 {
13512 default:
13513 *oplenp = *argsp = 0;
13514 break;
13515
13516 #define OP_DEFN(op, len, args, binop) \
13517 case op: *oplenp = len; *argsp = args; break;
13518 ADA_OPERATORS;
13519 #undef OP_DEFN
13520
13521 case OP_AGGREGATE:
13522 *oplenp = 3;
13523 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13524 break;
13525
13526 case OP_CHOICES:
13527 *oplenp = 3;
13528 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13529 break;
13530
13531 case OP_STRING:
13532 case OP_NAME:
13533 {
13534 int len = longest_to_int (exp->elts[pc + 1].longconst);
13535
13536 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13537 *argsp = 0;
13538 break;
13539 }
13540 }
13541 }
13542
13543 static int
13544 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13545 {
13546 enum exp_opcode op = exp->elts[elt].opcode;
13547 int oplen, nargs;
13548 int pc = elt;
13549 int i;
13550
13551 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13552
13553 switch (op)
13554 {
13555 /* Ada attributes ('Foo). */
13556 case OP_ATR_FIRST:
13557 case OP_ATR_LAST:
13558 case OP_ATR_LENGTH:
13559 case OP_ATR_IMAGE:
13560 case OP_ATR_MAX:
13561 case OP_ATR_MIN:
13562 case OP_ATR_MODULUS:
13563 case OP_ATR_POS:
13564 case OP_ATR_SIZE:
13565 case OP_ATR_TAG:
13566 case OP_ATR_VAL:
13567 break;
13568
13569 case UNOP_IN_RANGE:
13570 case UNOP_QUAL:
13571 /* XXX: gdb_sprint_host_address, type_sprint */
13572 fprintf_filtered (stream, _("Type @"));
13573 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13574 fprintf_filtered (stream, " (");
13575 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13576 fprintf_filtered (stream, ")");
13577 break;
13578 case BINOP_IN_BOUNDS:
13579 fprintf_filtered (stream, " (%d)",
13580 longest_to_int (exp->elts[pc + 2].longconst));
13581 break;
13582 case TERNOP_IN_RANGE:
13583 break;
13584
13585 case OP_AGGREGATE:
13586 case OP_OTHERS:
13587 case OP_DISCRETE_RANGE:
13588 case OP_POSITIONAL:
13589 case OP_CHOICES:
13590 break;
13591
13592 case OP_NAME:
13593 case OP_STRING:
13594 {
13595 char *name = &exp->elts[elt + 2].string;
13596 int len = longest_to_int (exp->elts[elt + 1].longconst);
13597
13598 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13599 break;
13600 }
13601
13602 default:
13603 return dump_subexp_body_standard (exp, stream, elt);
13604 }
13605
13606 elt += oplen;
13607 for (i = 0; i < nargs; i += 1)
13608 elt = dump_subexp (exp, stream, elt);
13609
13610 return elt;
13611 }
13612
13613 /* The Ada extension of print_subexp (q.v.). */
13614
13615 static void
13616 ada_print_subexp (struct expression *exp, int *pos,
13617 struct ui_file *stream, enum precedence prec)
13618 {
13619 int oplen, nargs, i;
13620 int pc = *pos;
13621 enum exp_opcode op = exp->elts[pc].opcode;
13622
13623 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13624
13625 *pos += oplen;
13626 switch (op)
13627 {
13628 default:
13629 *pos -= oplen;
13630 print_subexp_standard (exp, pos, stream, prec);
13631 return;
13632
13633 case OP_VAR_VALUE:
13634 fputs_filtered (exp->elts[pc + 2].symbol->natural_name (), stream);
13635 return;
13636
13637 case BINOP_IN_BOUNDS:
13638 /* XXX: sprint_subexp */
13639 print_subexp (exp, pos, stream, PREC_SUFFIX);
13640 fputs_filtered (" in ", stream);
13641 print_subexp (exp, pos, stream, PREC_SUFFIX);
13642 fputs_filtered ("'range", stream);
13643 if (exp->elts[pc + 1].longconst > 1)
13644 fprintf_filtered (stream, "(%ld)",
13645 (long) exp->elts[pc + 1].longconst);
13646 return;
13647
13648 case TERNOP_IN_RANGE:
13649 if (prec >= PREC_EQUAL)
13650 fputs_filtered ("(", stream);
13651 /* XXX: sprint_subexp */
13652 print_subexp (exp, pos, stream, PREC_SUFFIX);
13653 fputs_filtered (" in ", stream);
13654 print_subexp (exp, pos, stream, PREC_EQUAL);
13655 fputs_filtered (" .. ", stream);
13656 print_subexp (exp, pos, stream, PREC_EQUAL);
13657 if (prec >= PREC_EQUAL)
13658 fputs_filtered (")", stream);
13659 return;
13660
13661 case OP_ATR_FIRST:
13662 case OP_ATR_LAST:
13663 case OP_ATR_LENGTH:
13664 case OP_ATR_IMAGE:
13665 case OP_ATR_MAX:
13666 case OP_ATR_MIN:
13667 case OP_ATR_MODULUS:
13668 case OP_ATR_POS:
13669 case OP_ATR_SIZE:
13670 case OP_ATR_TAG:
13671 case OP_ATR_VAL:
13672 if (exp->elts[*pos].opcode == OP_TYPE)
13673 {
13674 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
13675 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13676 &type_print_raw_options);
13677 *pos += 3;
13678 }
13679 else
13680 print_subexp (exp, pos, stream, PREC_SUFFIX);
13681 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13682 if (nargs > 1)
13683 {
13684 int tem;
13685
13686 for (tem = 1; tem < nargs; tem += 1)
13687 {
13688 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13689 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13690 }
13691 fputs_filtered (")", stream);
13692 }
13693 return;
13694
13695 case UNOP_QUAL:
13696 type_print (exp->elts[pc + 1].type, "", stream, 0);
13697 fputs_filtered ("'(", stream);
13698 print_subexp (exp, pos, stream, PREC_PREFIX);
13699 fputs_filtered (")", stream);
13700 return;
13701
13702 case UNOP_IN_RANGE:
13703 /* XXX: sprint_subexp */
13704 print_subexp (exp, pos, stream, PREC_SUFFIX);
13705 fputs_filtered (" in ", stream);
13706 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13707 &type_print_raw_options);
13708 return;
13709
13710 case OP_DISCRETE_RANGE:
13711 print_subexp (exp, pos, stream, PREC_SUFFIX);
13712 fputs_filtered ("..", stream);
13713 print_subexp (exp, pos, stream, PREC_SUFFIX);
13714 return;
13715
13716 case OP_OTHERS:
13717 fputs_filtered ("others => ", stream);
13718 print_subexp (exp, pos, stream, PREC_SUFFIX);
13719 return;
13720
13721 case OP_CHOICES:
13722 for (i = 0; i < nargs-1; i += 1)
13723 {
13724 if (i > 0)
13725 fputs_filtered ("|", stream);
13726 print_subexp (exp, pos, stream, PREC_SUFFIX);
13727 }
13728 fputs_filtered (" => ", stream);
13729 print_subexp (exp, pos, stream, PREC_SUFFIX);
13730 return;
13731
13732 case OP_POSITIONAL:
13733 print_subexp (exp, pos, stream, PREC_SUFFIX);
13734 return;
13735
13736 case OP_AGGREGATE:
13737 fputs_filtered ("(", stream);
13738 for (i = 0; i < nargs; i += 1)
13739 {
13740 if (i > 0)
13741 fputs_filtered (", ", stream);
13742 print_subexp (exp, pos, stream, PREC_SUFFIX);
13743 }
13744 fputs_filtered (")", stream);
13745 return;
13746 }
13747 }
13748
13749 /* Table mapping opcodes into strings for printing operators
13750 and precedences of the operators. */
13751
13752 static const struct op_print ada_op_print_tab[] = {
13753 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13754 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13755 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13756 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13757 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13758 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13759 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13760 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13761 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13762 {">=", BINOP_GEQ, PREC_ORDER, 0},
13763 {">", BINOP_GTR, PREC_ORDER, 0},
13764 {"<", BINOP_LESS, PREC_ORDER, 0},
13765 {">>", BINOP_RSH, PREC_SHIFT, 0},
13766 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13767 {"+", BINOP_ADD, PREC_ADD, 0},
13768 {"-", BINOP_SUB, PREC_ADD, 0},
13769 {"&", BINOP_CONCAT, PREC_ADD, 0},
13770 {"*", BINOP_MUL, PREC_MUL, 0},
13771 {"/", BINOP_DIV, PREC_MUL, 0},
13772 {"rem", BINOP_REM, PREC_MUL, 0},
13773 {"mod", BINOP_MOD, PREC_MUL, 0},
13774 {"**", BINOP_EXP, PREC_REPEAT, 0},
13775 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13776 {"-", UNOP_NEG, PREC_PREFIX, 0},
13777 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13778 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13779 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13780 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
13781 {".all", UNOP_IND, PREC_SUFFIX, 1},
13782 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13783 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
13784 {NULL, OP_NULL, PREC_SUFFIX, 0}
13785 };
13786 \f
13787 enum ada_primitive_types {
13788 ada_primitive_type_int,
13789 ada_primitive_type_long,
13790 ada_primitive_type_short,
13791 ada_primitive_type_char,
13792 ada_primitive_type_float,
13793 ada_primitive_type_double,
13794 ada_primitive_type_void,
13795 ada_primitive_type_long_long,
13796 ada_primitive_type_long_double,
13797 ada_primitive_type_natural,
13798 ada_primitive_type_positive,
13799 ada_primitive_type_system_address,
13800 ada_primitive_type_storage_offset,
13801 nr_ada_primitive_types
13802 };
13803
13804 static void
13805 ada_language_arch_info (struct gdbarch *gdbarch,
13806 struct language_arch_info *lai)
13807 {
13808 const struct builtin_type *builtin = builtin_type (gdbarch);
13809
13810 lai->primitive_type_vector
13811 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
13812 struct type *);
13813
13814 lai->primitive_type_vector [ada_primitive_type_int]
13815 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13816 0, "integer");
13817 lai->primitive_type_vector [ada_primitive_type_long]
13818 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13819 0, "long_integer");
13820 lai->primitive_type_vector [ada_primitive_type_short]
13821 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13822 0, "short_integer");
13823 lai->string_char_type
13824 = lai->primitive_type_vector [ada_primitive_type_char]
13825 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
13826 lai->primitive_type_vector [ada_primitive_type_float]
13827 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13828 "float", gdbarch_float_format (gdbarch));
13829 lai->primitive_type_vector [ada_primitive_type_double]
13830 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13831 "long_float", gdbarch_double_format (gdbarch));
13832 lai->primitive_type_vector [ada_primitive_type_long_long]
13833 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13834 0, "long_long_integer");
13835 lai->primitive_type_vector [ada_primitive_type_long_double]
13836 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
13837 "long_long_float", gdbarch_long_double_format (gdbarch));
13838 lai->primitive_type_vector [ada_primitive_type_natural]
13839 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13840 0, "natural");
13841 lai->primitive_type_vector [ada_primitive_type_positive]
13842 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13843 0, "positive");
13844 lai->primitive_type_vector [ada_primitive_type_void]
13845 = builtin->builtin_void;
13846
13847 lai->primitive_type_vector [ada_primitive_type_system_address]
13848 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
13849 "void"));
13850 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
13851 = "system__address";
13852
13853 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
13854 type. This is a signed integral type whose size is the same as
13855 the size of addresses. */
13856 {
13857 unsigned int addr_length = TYPE_LENGTH
13858 (lai->primitive_type_vector [ada_primitive_type_system_address]);
13859
13860 lai->primitive_type_vector [ada_primitive_type_storage_offset]
13861 = arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
13862 "storage_offset");
13863 }
13864
13865 lai->bool_type_symbol = NULL;
13866 lai->bool_type_default = builtin->builtin_bool;
13867 }
13868 \f
13869 /* Language vector */
13870
13871 /* Not really used, but needed in the ada_language_defn. */
13872
13873 static void
13874 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
13875 {
13876 ada_emit_char (c, type, stream, quoter, 1);
13877 }
13878
13879 static int
13880 parse (struct parser_state *ps)
13881 {
13882 warnings_issued = 0;
13883 return ada_parse (ps);
13884 }
13885
13886 static const struct exp_descriptor ada_exp_descriptor = {
13887 ada_print_subexp,
13888 ada_operator_length,
13889 ada_operator_check,
13890 ada_op_name,
13891 ada_dump_subexp_body,
13892 ada_evaluate_subexp
13893 };
13894
13895 /* symbol_name_matcher_ftype adapter for wild_match. */
13896
13897 static bool
13898 do_wild_match (const char *symbol_search_name,
13899 const lookup_name_info &lookup_name,
13900 completion_match_result *comp_match_res)
13901 {
13902 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
13903 }
13904
13905 /* symbol_name_matcher_ftype adapter for full_match. */
13906
13907 static bool
13908 do_full_match (const char *symbol_search_name,
13909 const lookup_name_info &lookup_name,
13910 completion_match_result *comp_match_res)
13911 {
13912 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
13913 }
13914
13915 /* symbol_name_matcher_ftype for exact (verbatim) matches. */
13916
13917 static bool
13918 do_exact_match (const char *symbol_search_name,
13919 const lookup_name_info &lookup_name,
13920 completion_match_result *comp_match_res)
13921 {
13922 return strcmp (symbol_search_name, ada_lookup_name (lookup_name)) == 0;
13923 }
13924
13925 /* Build the Ada lookup name for LOOKUP_NAME. */
13926
13927 ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
13928 {
13929 gdb::string_view user_name = lookup_name.name ();
13930
13931 if (user_name[0] == '<')
13932 {
13933 if (user_name.back () == '>')
13934 m_encoded_name
13935 = user_name.substr (1, user_name.size () - 2).to_string ();
13936 else
13937 m_encoded_name
13938 = user_name.substr (1, user_name.size () - 1).to_string ();
13939 m_encoded_p = true;
13940 m_verbatim_p = true;
13941 m_wild_match_p = false;
13942 m_standard_p = false;
13943 }
13944 else
13945 {
13946 m_verbatim_p = false;
13947
13948 m_encoded_p = user_name.find ("__") != gdb::string_view::npos;
13949
13950 if (!m_encoded_p)
13951 {
13952 const char *folded = ada_fold_name (user_name);
13953 const char *encoded = ada_encode_1 (folded, false);
13954 if (encoded != NULL)
13955 m_encoded_name = encoded;
13956 else
13957 m_encoded_name = user_name.to_string ();
13958 }
13959 else
13960 m_encoded_name = user_name.to_string ();
13961
13962 /* Handle the 'package Standard' special case. See description
13963 of m_standard_p. */
13964 if (startswith (m_encoded_name.c_str (), "standard__"))
13965 {
13966 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
13967 m_standard_p = true;
13968 }
13969 else
13970 m_standard_p = false;
13971
13972 /* If the name contains a ".", then the user is entering a fully
13973 qualified entity name, and the match must not be done in wild
13974 mode. Similarly, if the user wants to complete what looks
13975 like an encoded name, the match must not be done in wild
13976 mode. Also, in the standard__ special case always do
13977 non-wild matching. */
13978 m_wild_match_p
13979 = (lookup_name.match_type () != symbol_name_match_type::FULL
13980 && !m_encoded_p
13981 && !m_standard_p
13982 && user_name.find ('.') == std::string::npos);
13983 }
13984 }
13985
13986 /* symbol_name_matcher_ftype method for Ada. This only handles
13987 completion mode. */
13988
13989 static bool
13990 ada_symbol_name_matches (const char *symbol_search_name,
13991 const lookup_name_info &lookup_name,
13992 completion_match_result *comp_match_res)
13993 {
13994 return lookup_name.ada ().matches (symbol_search_name,
13995 lookup_name.match_type (),
13996 comp_match_res);
13997 }
13998
13999 /* A name matcher that matches the symbol name exactly, with
14000 strcmp. */
14001
14002 static bool
14003 literal_symbol_name_matcher (const char *symbol_search_name,
14004 const lookup_name_info &lookup_name,
14005 completion_match_result *comp_match_res)
14006 {
14007 gdb::string_view name_view = lookup_name.name ();
14008
14009 if (lookup_name.completion_mode ()
14010 ? (strncmp (symbol_search_name, name_view.data (),
14011 name_view.size ()) == 0)
14012 : symbol_search_name == name_view)
14013 {
14014 if (comp_match_res != NULL)
14015 comp_match_res->set_match (symbol_search_name);
14016 return true;
14017 }
14018 else
14019 return false;
14020 }
14021
14022 /* Implement the "la_get_symbol_name_matcher" language_defn method for
14023 Ada. */
14024
14025 static symbol_name_matcher_ftype *
14026 ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
14027 {
14028 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
14029 return literal_symbol_name_matcher;
14030
14031 if (lookup_name.completion_mode ())
14032 return ada_symbol_name_matches;
14033 else
14034 {
14035 if (lookup_name.ada ().wild_match_p ())
14036 return do_wild_match;
14037 else if (lookup_name.ada ().verbatim_p ())
14038 return do_exact_match;
14039 else
14040 return do_full_match;
14041 }
14042 }
14043
14044 /* Implement the "la_read_var_value" language_defn method for Ada. */
14045
14046 static struct value *
14047 ada_read_var_value (struct symbol *var, const struct block *var_block,
14048 struct frame_info *frame)
14049 {
14050 /* The only case where default_read_var_value is not sufficient
14051 is when VAR is a renaming... */
14052 if (frame != nullptr)
14053 {
14054 const struct block *frame_block = get_frame_block (frame, NULL);
14055 if (frame_block != nullptr && ada_is_renaming_symbol (var))
14056 return ada_read_renaming_var_value (var, frame_block);
14057 }
14058
14059 /* This is a typical case where we expect the default_read_var_value
14060 function to work. */
14061 return default_read_var_value (var, var_block, frame);
14062 }
14063
14064 static const char *ada_extensions[] =
14065 {
14066 ".adb", ".ads", ".a", ".ada", ".dg", NULL
14067 };
14068
14069 extern const struct language_defn ada_language_defn = {
14070 "ada", /* Language name */
14071 "Ada",
14072 language_ada,
14073 range_check_off,
14074 case_sensitive_on, /* Yes, Ada is case-insensitive, but
14075 that's not quite what this means. */
14076 array_row_major,
14077 macro_expansion_no,
14078 ada_extensions,
14079 &ada_exp_descriptor,
14080 parse,
14081 resolve,
14082 ada_printchar, /* Print a character constant */
14083 ada_printstr, /* Function to print string constant */
14084 emit_char, /* Function to print single char (not used) */
14085 ada_print_type, /* Print a type using appropriate syntax */
14086 ada_print_typedef, /* Print a typedef using appropriate syntax */
14087 ada_value_print_inner, /* la_value_print_inner */
14088 ada_value_print, /* Print a top-level value */
14089 ada_read_var_value, /* la_read_var_value */
14090 NULL, /* Language specific skip_trampoline */
14091 NULL, /* name_of_this */
14092 true, /* la_store_sym_names_in_linkage_form_p */
14093 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
14094 basic_lookup_transparent_type, /* lookup_transparent_type */
14095 ada_la_decode, /* Language specific symbol demangler */
14096 ada_sniff_from_mangled_name,
14097 NULL, /* Language specific
14098 class_name_from_physname */
14099 ada_op_print_tab, /* expression operators for printing */
14100 0, /* c-style arrays */
14101 1, /* String lower bound */
14102 ada_get_gdb_completer_word_break_characters,
14103 ada_collect_symbol_completion_matches,
14104 ada_language_arch_info,
14105 ada_print_array_index,
14106 default_pass_by_reference,
14107 ada_watch_location_expression,
14108 ada_get_symbol_name_matcher, /* la_get_symbol_name_matcher */
14109 ada_iterate_over_symbols,
14110 default_search_name_hash,
14111 &ada_varobj_ops,
14112 NULL,
14113 NULL,
14114 ada_is_string_type,
14115 "(...)" /* la_struct_too_deep_ellipsis */
14116 };
14117
14118 /* Command-list for the "set/show ada" prefix command. */
14119 static struct cmd_list_element *set_ada_list;
14120 static struct cmd_list_element *show_ada_list;
14121
14122 static void
14123 initialize_ada_catchpoint_ops (void)
14124 {
14125 struct breakpoint_ops *ops;
14126
14127 initialize_breakpoint_ops ();
14128
14129 ops = &catch_exception_breakpoint_ops;
14130 *ops = bkpt_breakpoint_ops;
14131 ops->allocate_location = allocate_location_exception;
14132 ops->re_set = re_set_exception;
14133 ops->check_status = check_status_exception;
14134 ops->print_it = print_it_exception;
14135 ops->print_one = print_one_exception;
14136 ops->print_mention = print_mention_exception;
14137 ops->print_recreate = print_recreate_exception;
14138
14139 ops = &catch_exception_unhandled_breakpoint_ops;
14140 *ops = bkpt_breakpoint_ops;
14141 ops->allocate_location = allocate_location_exception;
14142 ops->re_set = re_set_exception;
14143 ops->check_status = check_status_exception;
14144 ops->print_it = print_it_exception;
14145 ops->print_one = print_one_exception;
14146 ops->print_mention = print_mention_exception;
14147 ops->print_recreate = print_recreate_exception;
14148
14149 ops = &catch_assert_breakpoint_ops;
14150 *ops = bkpt_breakpoint_ops;
14151 ops->allocate_location = allocate_location_exception;
14152 ops->re_set = re_set_exception;
14153 ops->check_status = check_status_exception;
14154 ops->print_it = print_it_exception;
14155 ops->print_one = print_one_exception;
14156 ops->print_mention = print_mention_exception;
14157 ops->print_recreate = print_recreate_exception;
14158
14159 ops = &catch_handlers_breakpoint_ops;
14160 *ops = bkpt_breakpoint_ops;
14161 ops->allocate_location = allocate_location_exception;
14162 ops->re_set = re_set_exception;
14163 ops->check_status = check_status_exception;
14164 ops->print_it = print_it_exception;
14165 ops->print_one = print_one_exception;
14166 ops->print_mention = print_mention_exception;
14167 ops->print_recreate = print_recreate_exception;
14168 }
14169
14170 /* This module's 'new_objfile' observer. */
14171
14172 static void
14173 ada_new_objfile_observer (struct objfile *objfile)
14174 {
14175 ada_clear_symbol_cache ();
14176 }
14177
14178 /* This module's 'free_objfile' observer. */
14179
14180 static void
14181 ada_free_objfile_observer (struct objfile *objfile)
14182 {
14183 ada_clear_symbol_cache ();
14184 }
14185
14186 void _initialize_ada_language ();
14187 void
14188 _initialize_ada_language ()
14189 {
14190 initialize_ada_catchpoint_ops ();
14191
14192 add_basic_prefix_cmd ("ada", no_class,
14193 _("Prefix command for changing Ada-specific settings."),
14194 &set_ada_list, "set ada ", 0, &setlist);
14195
14196 add_show_prefix_cmd ("ada", no_class,
14197 _("Generic command for showing Ada-specific settings."),
14198 &show_ada_list, "show ada ", 0, &showlist);
14199
14200 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14201 &trust_pad_over_xvs, _("\
14202 Enable or disable an optimization trusting PAD types over XVS types."), _("\
14203 Show whether an optimization trusting PAD types over XVS types is activated."),
14204 _("\
14205 This is related to the encoding used by the GNAT compiler. The debugger\n\
14206 should normally trust the contents of PAD types, but certain older versions\n\
14207 of GNAT have a bug that sometimes causes the information in the PAD type\n\
14208 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14209 work around this bug. It is always safe to turn this option \"off\", but\n\
14210 this incurs a slight performance penalty, so it is recommended to NOT change\n\
14211 this option to \"off\" unless necessary."),
14212 NULL, NULL, &set_ada_list, &show_ada_list);
14213
14214 add_setshow_boolean_cmd ("print-signatures", class_vars,
14215 &print_signatures, _("\
14216 Enable or disable the output of formal and return types for functions in the \
14217 overloads selection menu."), _("\
14218 Show whether the output of formal and return types for functions in the \
14219 overloads selection menu is activated."),
14220 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14221
14222 add_catch_command ("exception", _("\
14223 Catch Ada exceptions, when raised.\n\
14224 Usage: catch exception [ARG] [if CONDITION]\n\
14225 Without any argument, stop when any Ada exception is raised.\n\
14226 If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\
14227 being raised does not have a handler (and will therefore lead to the task's\n\
14228 termination).\n\
14229 Otherwise, the catchpoint only stops when the name of the exception being\n\
14230 raised is the same as ARG.\n\
14231 CONDITION is a boolean expression that is evaluated to see whether the\n\
14232 exception should cause a stop."),
14233 catch_ada_exception_command,
14234 catch_ada_completer,
14235 CATCH_PERMANENT,
14236 CATCH_TEMPORARY);
14237
14238 add_catch_command ("handlers", _("\
14239 Catch Ada exceptions, when handled.\n\
14240 Usage: catch handlers [ARG] [if CONDITION]\n\
14241 Without any argument, stop when any Ada exception is handled.\n\
14242 With an argument, catch only exceptions with the given name.\n\
14243 CONDITION is a boolean expression that is evaluated to see whether the\n\
14244 exception should cause a stop."),
14245 catch_ada_handlers_command,
14246 catch_ada_completer,
14247 CATCH_PERMANENT,
14248 CATCH_TEMPORARY);
14249 add_catch_command ("assert", _("\
14250 Catch failed Ada assertions, when raised.\n\
14251 Usage: catch assert [if CONDITION]\n\
14252 CONDITION is a boolean expression that is evaluated to see whether the\n\
14253 exception should cause a stop."),
14254 catch_assert_command,
14255 NULL,
14256 CATCH_PERMANENT,
14257 CATCH_TEMPORARY);
14258
14259 varsize_limit = 65536;
14260 add_setshow_uinteger_cmd ("varsize-limit", class_support,
14261 &varsize_limit, _("\
14262 Set the maximum number of bytes allowed in a variable-size object."), _("\
14263 Show the maximum number of bytes allowed in a variable-size object."), _("\
14264 Attempts to access an object whose size is not a compile-time constant\n\
14265 and exceeds this limit will cause an error."),
14266 NULL, NULL, &setlist, &showlist);
14267
14268 add_info ("exceptions", info_exceptions_command,
14269 _("\
14270 List all Ada exception names.\n\
14271 Usage: info exceptions [REGEXP]\n\
14272 If a regular expression is passed as an argument, only those matching\n\
14273 the regular expression are listed."));
14274
14275 add_basic_prefix_cmd ("ada", class_maintenance,
14276 _("Set Ada maintenance-related variables."),
14277 &maint_set_ada_cmdlist, "maintenance set ada ",
14278 0/*allow-unknown*/, &maintenance_set_cmdlist);
14279
14280 add_show_prefix_cmd ("ada", class_maintenance,
14281 _("Show Ada maintenance-related variables."),
14282 &maint_show_ada_cmdlist, "maintenance show ada ",
14283 0/*allow-unknown*/, &maintenance_show_cmdlist);
14284
14285 add_setshow_boolean_cmd
14286 ("ignore-descriptive-types", class_maintenance,
14287 &ada_ignore_descriptive_types_p,
14288 _("Set whether descriptive types generated by GNAT should be ignored."),
14289 _("Show whether descriptive types generated by GNAT should be ignored."),
14290 _("\
14291 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14292 DWARF attribute."),
14293 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14294
14295 decoded_names_store = htab_create_alloc (256, htab_hash_string, streq_hash,
14296 NULL, xcalloc, xfree);
14297
14298 /* The ada-lang observers. */
14299 gdb::observers::new_objfile.attach (ada_new_objfile_observer);
14300 gdb::observers::free_objfile.attach (ada_free_objfile_observer);
14301 gdb::observers::inferior_exit.attach (ada_inferior_exit);
14302 }