Wrong type for 'Length result.
[binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <stdio.h>
23 #include <string.h>
24 #include <ctype.h>
25 #include <stdarg.h>
26 #include "demangle.h"
27 #include "gdb_regex.h"
28 #include "frame.h"
29 #include "symtab.h"
30 #include "gdbtypes.h"
31 #include "gdbcmd.h"
32 #include "expression.h"
33 #include "parser-defs.h"
34 #include "language.h"
35 #include "varobj.h"
36 #include "c-lang.h"
37 #include "inferior.h"
38 #include "symfile.h"
39 #include "objfiles.h"
40 #include "breakpoint.h"
41 #include "gdbcore.h"
42 #include "hashtab.h"
43 #include "gdb_obstack.h"
44 #include "ada-lang.h"
45 #include "completer.h"
46 #include <sys/stat.h>
47 #include "ui-out.h"
48 #include "block.h"
49 #include "infcall.h"
50 #include "dictionary.h"
51 #include "exceptions.h"
52 #include "annotate.h"
53 #include "valprint.h"
54 #include "source.h"
55 #include "observer.h"
56 #include "vec.h"
57 #include "stack.h"
58 #include "gdb_vecs.h"
59 #include "typeprint.h"
60
61 #include "psymtab.h"
62 #include "value.h"
63 #include "mi/mi-common.h"
64 #include "arch-utils.h"
65 #include "cli/cli-utils.h"
66
67 /* Define whether or not the C operator '/' truncates towards zero for
68 differently signed operands (truncation direction is undefined in C).
69 Copied from valarith.c. */
70
71 #ifndef TRUNCATION_TOWARDS_ZERO
72 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
73 #endif
74
75 static struct type *desc_base_type (struct type *);
76
77 static struct type *desc_bounds_type (struct type *);
78
79 static struct value *desc_bounds (struct value *);
80
81 static int fat_pntr_bounds_bitpos (struct type *);
82
83 static int fat_pntr_bounds_bitsize (struct type *);
84
85 static struct type *desc_data_target_type (struct type *);
86
87 static struct value *desc_data (struct value *);
88
89 static int fat_pntr_data_bitpos (struct type *);
90
91 static int fat_pntr_data_bitsize (struct type *);
92
93 static struct value *desc_one_bound (struct value *, int, int);
94
95 static int desc_bound_bitpos (struct type *, int, int);
96
97 static int desc_bound_bitsize (struct type *, int, int);
98
99 static struct type *desc_index_type (struct type *, int);
100
101 static int desc_arity (struct type *);
102
103 static int ada_type_match (struct type *, struct type *, int);
104
105 static int ada_args_match (struct symbol *, struct value **, int);
106
107 static int full_match (const char *, const char *);
108
109 static struct value *make_array_descriptor (struct type *, struct value *);
110
111 static void ada_add_block_symbols (struct obstack *,
112 const struct block *, const char *,
113 domain_enum, struct objfile *, int);
114
115 static int is_nonfunction (struct ada_symbol_info *, int);
116
117 static void add_defn_to_vec (struct obstack *, struct symbol *,
118 const struct block *);
119
120 static int num_defns_collected (struct obstack *);
121
122 static struct ada_symbol_info *defns_collected (struct obstack *, int);
123
124 static struct value *resolve_subexp (struct expression **, int *, int,
125 struct type *);
126
127 static void replace_operator_with_call (struct expression **, int, int, int,
128 struct symbol *, const struct block *);
129
130 static int possible_user_operator_p (enum exp_opcode, struct value **);
131
132 static char *ada_op_name (enum exp_opcode);
133
134 static const char *ada_decoded_op_name (enum exp_opcode);
135
136 static int numeric_type_p (struct type *);
137
138 static int integer_type_p (struct type *);
139
140 static int scalar_type_p (struct type *);
141
142 static int discrete_type_p (struct type *);
143
144 static enum ada_renaming_category parse_old_style_renaming (struct type *,
145 const char **,
146 int *,
147 const char **);
148
149 static struct symbol *find_old_style_renaming_symbol (const char *,
150 const struct block *);
151
152 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
153 int, int, int *);
154
155 static struct value *evaluate_subexp_type (struct expression *, int *);
156
157 static struct type *ada_find_parallel_type_with_name (struct type *,
158 const char *);
159
160 static int is_dynamic_field (struct type *, int);
161
162 static struct type *to_fixed_variant_branch_type (struct type *,
163 const gdb_byte *,
164 CORE_ADDR, struct value *);
165
166 static struct type *to_fixed_array_type (struct type *, struct value *, int);
167
168 static struct type *to_fixed_range_type (struct type *, struct value *);
169
170 static struct type *to_static_fixed_type (struct type *);
171 static struct type *static_unwrap_type (struct type *type);
172
173 static struct value *unwrap_value (struct value *);
174
175 static struct type *constrained_packed_array_type (struct type *, long *);
176
177 static struct type *decode_constrained_packed_array_type (struct type *);
178
179 static long decode_packed_array_bitsize (struct type *);
180
181 static struct value *decode_constrained_packed_array (struct value *);
182
183 static int ada_is_packed_array_type (struct type *);
184
185 static int ada_is_unconstrained_packed_array_type (struct type *);
186
187 static struct value *value_subscript_packed (struct value *, int,
188 struct value **);
189
190 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
191
192 static struct value *coerce_unspec_val_to_type (struct value *,
193 struct type *);
194
195 static struct value *get_var_value (char *, char *);
196
197 static int lesseq_defined_than (struct symbol *, struct symbol *);
198
199 static int equiv_types (struct type *, struct type *);
200
201 static int is_name_suffix (const char *);
202
203 static int advance_wild_match (const char **, const char *, int);
204
205 static int wild_match (const char *, const char *);
206
207 static struct value *ada_coerce_ref (struct value *);
208
209 static LONGEST pos_atr (struct value *);
210
211 static struct value *value_pos_atr (struct type *, struct value *);
212
213 static struct value *value_val_atr (struct type *, struct value *);
214
215 static struct symbol *standard_lookup (const char *, const struct block *,
216 domain_enum);
217
218 static struct value *ada_search_struct_field (char *, struct value *, int,
219 struct type *);
220
221 static struct value *ada_value_primitive_field (struct value *, int, int,
222 struct type *);
223
224 static int find_struct_field (const char *, struct type *, int,
225 struct type **, int *, int *, int *, int *);
226
227 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
228 struct value *);
229
230 static int ada_resolve_function (struct ada_symbol_info *, int,
231 struct value **, int, const char *,
232 struct type *);
233
234 static int ada_is_direct_array_type (struct type *);
235
236 static void ada_language_arch_info (struct gdbarch *,
237 struct language_arch_info *);
238
239 static void check_size (const struct type *);
240
241 static struct value *ada_index_struct_field (int, struct value *, int,
242 struct type *);
243
244 static struct value *assign_aggregate (struct value *, struct value *,
245 struct expression *,
246 int *, enum noside);
247
248 static void aggregate_assign_from_choices (struct value *, struct value *,
249 struct expression *,
250 int *, LONGEST *, int *,
251 int, LONGEST, LONGEST);
252
253 static void aggregate_assign_positional (struct value *, struct value *,
254 struct expression *,
255 int *, LONGEST *, int *, int,
256 LONGEST, LONGEST);
257
258
259 static void aggregate_assign_others (struct value *, struct value *,
260 struct expression *,
261 int *, LONGEST *, int, LONGEST, LONGEST);
262
263
264 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
265
266
267 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
268 int *, enum noside);
269
270 static void ada_forward_operator_length (struct expression *, int, int *,
271 int *);
272
273 static struct type *ada_find_any_type (const char *name);
274 \f
275
276
277 /* Maximum-sized dynamic type. */
278 static unsigned int varsize_limit;
279
280 /* FIXME: brobecker/2003-09-17: No longer a const because it is
281 returned by a function that does not return a const char *. */
282 static char *ada_completer_word_break_characters =
283 #ifdef VMS
284 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
285 #else
286 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
287 #endif
288
289 /* The name of the symbol to use to get the name of the main subprogram. */
290 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
291 = "__gnat_ada_main_program_name";
292
293 /* Limit on the number of warnings to raise per expression evaluation. */
294 static int warning_limit = 2;
295
296 /* Number of warning messages issued; reset to 0 by cleanups after
297 expression evaluation. */
298 static int warnings_issued = 0;
299
300 static const char *known_runtime_file_name_patterns[] = {
301 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
302 };
303
304 static const char *known_auxiliary_function_name_patterns[] = {
305 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
306 };
307
308 /* Space for allocating results of ada_lookup_symbol_list. */
309 static struct obstack symbol_list_obstack;
310
311 /* Maintenance-related settings for this module. */
312
313 static struct cmd_list_element *maint_set_ada_cmdlist;
314 static struct cmd_list_element *maint_show_ada_cmdlist;
315
316 /* Implement the "maintenance set ada" (prefix) command. */
317
318 static void
319 maint_set_ada_cmd (char *args, int from_tty)
320 {
321 help_list (maint_set_ada_cmdlist, "maintenance set ada ", -1, gdb_stdout);
322 }
323
324 /* Implement the "maintenance show ada" (prefix) command. */
325
326 static void
327 maint_show_ada_cmd (char *args, int from_tty)
328 {
329 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
330 }
331
332 /* The "maintenance ada set/show ignore-descriptive-type" value. */
333
334 static int ada_ignore_descriptive_types_p = 0;
335
336 /* Inferior-specific data. */
337
338 /* Per-inferior data for this module. */
339
340 struct ada_inferior_data
341 {
342 /* The ada__tags__type_specific_data type, which is used when decoding
343 tagged types. With older versions of GNAT, this type was directly
344 accessible through a component ("tsd") in the object tag. But this
345 is no longer the case, so we cache it for each inferior. */
346 struct type *tsd_type;
347
348 /* The exception_support_info data. This data is used to determine
349 how to implement support for Ada exception catchpoints in a given
350 inferior. */
351 const struct exception_support_info *exception_info;
352 };
353
354 /* Our key to this module's inferior data. */
355 static const struct inferior_data *ada_inferior_data;
356
357 /* A cleanup routine for our inferior data. */
358 static void
359 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
360 {
361 struct ada_inferior_data *data;
362
363 data = inferior_data (inf, ada_inferior_data);
364 if (data != NULL)
365 xfree (data);
366 }
367
368 /* Return our inferior data for the given inferior (INF).
369
370 This function always returns a valid pointer to an allocated
371 ada_inferior_data structure. If INF's inferior data has not
372 been previously set, this functions creates a new one with all
373 fields set to zero, sets INF's inferior to it, and then returns
374 a pointer to that newly allocated ada_inferior_data. */
375
376 static struct ada_inferior_data *
377 get_ada_inferior_data (struct inferior *inf)
378 {
379 struct ada_inferior_data *data;
380
381 data = inferior_data (inf, ada_inferior_data);
382 if (data == NULL)
383 {
384 data = XCNEW (struct ada_inferior_data);
385 set_inferior_data (inf, ada_inferior_data, data);
386 }
387
388 return data;
389 }
390
391 /* Perform all necessary cleanups regarding our module's inferior data
392 that is required after the inferior INF just exited. */
393
394 static void
395 ada_inferior_exit (struct inferior *inf)
396 {
397 ada_inferior_data_cleanup (inf, NULL);
398 set_inferior_data (inf, ada_inferior_data, NULL);
399 }
400
401 /* Utilities */
402
403 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
404 all typedef layers have been peeled. Otherwise, return TYPE.
405
406 Normally, we really expect a typedef type to only have 1 typedef layer.
407 In other words, we really expect the target type of a typedef type to be
408 a non-typedef type. This is particularly true for Ada units, because
409 the language does not have a typedef vs not-typedef distinction.
410 In that respect, the Ada compiler has been trying to eliminate as many
411 typedef definitions in the debugging information, since they generally
412 do not bring any extra information (we still use typedef under certain
413 circumstances related mostly to the GNAT encoding).
414
415 Unfortunately, we have seen situations where the debugging information
416 generated by the compiler leads to such multiple typedef layers. For
417 instance, consider the following example with stabs:
418
419 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
420 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
421
422 This is an error in the debugging information which causes type
423 pck__float_array___XUP to be defined twice, and the second time,
424 it is defined as a typedef of a typedef.
425
426 This is on the fringe of legality as far as debugging information is
427 concerned, and certainly unexpected. But it is easy to handle these
428 situations correctly, so we can afford to be lenient in this case. */
429
430 static struct type *
431 ada_typedef_target_type (struct type *type)
432 {
433 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
434 type = TYPE_TARGET_TYPE (type);
435 return type;
436 }
437
438 /* Given DECODED_NAME a string holding a symbol name in its
439 decoded form (ie using the Ada dotted notation), returns
440 its unqualified name. */
441
442 static const char *
443 ada_unqualified_name (const char *decoded_name)
444 {
445 const char *result = strrchr (decoded_name, '.');
446
447 if (result != NULL)
448 result++; /* Skip the dot... */
449 else
450 result = decoded_name;
451
452 return result;
453 }
454
455 /* Return a string starting with '<', followed by STR, and '>'.
456 The result is good until the next call. */
457
458 static char *
459 add_angle_brackets (const char *str)
460 {
461 static char *result = NULL;
462
463 xfree (result);
464 result = xstrprintf ("<%s>", str);
465 return result;
466 }
467
468 static char *
469 ada_get_gdb_completer_word_break_characters (void)
470 {
471 return ada_completer_word_break_characters;
472 }
473
474 /* Print an array element index using the Ada syntax. */
475
476 static void
477 ada_print_array_index (struct value *index_value, struct ui_file *stream,
478 const struct value_print_options *options)
479 {
480 LA_VALUE_PRINT (index_value, stream, options);
481 fprintf_filtered (stream, " => ");
482 }
483
484 /* Assuming VECT points to an array of *SIZE objects of size
485 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
486 updating *SIZE as necessary and returning the (new) array. */
487
488 void *
489 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
490 {
491 if (*size < min_size)
492 {
493 *size *= 2;
494 if (*size < min_size)
495 *size = min_size;
496 vect = xrealloc (vect, *size * element_size);
497 }
498 return vect;
499 }
500
501 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
502 suffix of FIELD_NAME beginning "___". */
503
504 static int
505 field_name_match (const char *field_name, const char *target)
506 {
507 int len = strlen (target);
508
509 return
510 (strncmp (field_name, target, len) == 0
511 && (field_name[len] == '\0'
512 || (strncmp (field_name + len, "___", 3) == 0
513 && strcmp (field_name + strlen (field_name) - 6,
514 "___XVN") != 0)));
515 }
516
517
518 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
519 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
520 and return its index. This function also handles fields whose name
521 have ___ suffixes because the compiler sometimes alters their name
522 by adding such a suffix to represent fields with certain constraints.
523 If the field could not be found, return a negative number if
524 MAYBE_MISSING is set. Otherwise raise an error. */
525
526 int
527 ada_get_field_index (const struct type *type, const char *field_name,
528 int maybe_missing)
529 {
530 int fieldno;
531 struct type *struct_type = check_typedef ((struct type *) type);
532
533 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
534 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
535 return fieldno;
536
537 if (!maybe_missing)
538 error (_("Unable to find field %s in struct %s. Aborting"),
539 field_name, TYPE_NAME (struct_type));
540
541 return -1;
542 }
543
544 /* The length of the prefix of NAME prior to any "___" suffix. */
545
546 int
547 ada_name_prefix_len (const char *name)
548 {
549 if (name == NULL)
550 return 0;
551 else
552 {
553 const char *p = strstr (name, "___");
554
555 if (p == NULL)
556 return strlen (name);
557 else
558 return p - name;
559 }
560 }
561
562 /* Return non-zero if SUFFIX is a suffix of STR.
563 Return zero if STR is null. */
564
565 static int
566 is_suffix (const char *str, const char *suffix)
567 {
568 int len1, len2;
569
570 if (str == NULL)
571 return 0;
572 len1 = strlen (str);
573 len2 = strlen (suffix);
574 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
575 }
576
577 /* The contents of value VAL, treated as a value of type TYPE. The
578 result is an lval in memory if VAL is. */
579
580 static struct value *
581 coerce_unspec_val_to_type (struct value *val, struct type *type)
582 {
583 type = ada_check_typedef (type);
584 if (value_type (val) == type)
585 return val;
586 else
587 {
588 struct value *result;
589
590 /* Make sure that the object size is not unreasonable before
591 trying to allocate some memory for it. */
592 check_size (type);
593
594 if (value_lazy (val)
595 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
596 result = allocate_value_lazy (type);
597 else
598 {
599 result = allocate_value (type);
600 memcpy (value_contents_raw (result), value_contents (val),
601 TYPE_LENGTH (type));
602 }
603 set_value_component_location (result, val);
604 set_value_bitsize (result, value_bitsize (val));
605 set_value_bitpos (result, value_bitpos (val));
606 set_value_address (result, value_address (val));
607 set_value_optimized_out (result, value_optimized_out_const (val));
608 return result;
609 }
610 }
611
612 static const gdb_byte *
613 cond_offset_host (const gdb_byte *valaddr, long offset)
614 {
615 if (valaddr == NULL)
616 return NULL;
617 else
618 return valaddr + offset;
619 }
620
621 static CORE_ADDR
622 cond_offset_target (CORE_ADDR address, long offset)
623 {
624 if (address == 0)
625 return 0;
626 else
627 return address + offset;
628 }
629
630 /* Issue a warning (as for the definition of warning in utils.c, but
631 with exactly one argument rather than ...), unless the limit on the
632 number of warnings has passed during the evaluation of the current
633 expression. */
634
635 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
636 provided by "complaint". */
637 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
638
639 static void
640 lim_warning (const char *format, ...)
641 {
642 va_list args;
643
644 va_start (args, format);
645 warnings_issued += 1;
646 if (warnings_issued <= warning_limit)
647 vwarning (format, args);
648
649 va_end (args);
650 }
651
652 /* Issue an error if the size of an object of type T is unreasonable,
653 i.e. if it would be a bad idea to allocate a value of this type in
654 GDB. */
655
656 static void
657 check_size (const struct type *type)
658 {
659 if (TYPE_LENGTH (type) > varsize_limit)
660 error (_("object size is larger than varsize-limit"));
661 }
662
663 /* Maximum value of a SIZE-byte signed integer type. */
664 static LONGEST
665 max_of_size (int size)
666 {
667 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
668
669 return top_bit | (top_bit - 1);
670 }
671
672 /* Minimum value of a SIZE-byte signed integer type. */
673 static LONGEST
674 min_of_size (int size)
675 {
676 return -max_of_size (size) - 1;
677 }
678
679 /* Maximum value of a SIZE-byte unsigned integer type. */
680 static ULONGEST
681 umax_of_size (int size)
682 {
683 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
684
685 return top_bit | (top_bit - 1);
686 }
687
688 /* Maximum value of integral type T, as a signed quantity. */
689 static LONGEST
690 max_of_type (struct type *t)
691 {
692 if (TYPE_UNSIGNED (t))
693 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
694 else
695 return max_of_size (TYPE_LENGTH (t));
696 }
697
698 /* Minimum value of integral type T, as a signed quantity. */
699 static LONGEST
700 min_of_type (struct type *t)
701 {
702 if (TYPE_UNSIGNED (t))
703 return 0;
704 else
705 return min_of_size (TYPE_LENGTH (t));
706 }
707
708 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
709 LONGEST
710 ada_discrete_type_high_bound (struct type *type)
711 {
712 switch (TYPE_CODE (type))
713 {
714 case TYPE_CODE_RANGE:
715 return TYPE_HIGH_BOUND (type);
716 case TYPE_CODE_ENUM:
717 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
718 case TYPE_CODE_BOOL:
719 return 1;
720 case TYPE_CODE_CHAR:
721 case TYPE_CODE_INT:
722 return max_of_type (type);
723 default:
724 error (_("Unexpected type in ada_discrete_type_high_bound."));
725 }
726 }
727
728 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
729 LONGEST
730 ada_discrete_type_low_bound (struct type *type)
731 {
732 switch (TYPE_CODE (type))
733 {
734 case TYPE_CODE_RANGE:
735 return TYPE_LOW_BOUND (type);
736 case TYPE_CODE_ENUM:
737 return TYPE_FIELD_ENUMVAL (type, 0);
738 case TYPE_CODE_BOOL:
739 return 0;
740 case TYPE_CODE_CHAR:
741 case TYPE_CODE_INT:
742 return min_of_type (type);
743 default:
744 error (_("Unexpected type in ada_discrete_type_low_bound."));
745 }
746 }
747
748 /* The identity on non-range types. For range types, the underlying
749 non-range scalar type. */
750
751 static struct type *
752 get_base_type (struct type *type)
753 {
754 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
755 {
756 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
757 return type;
758 type = TYPE_TARGET_TYPE (type);
759 }
760 return type;
761 }
762
763 /* Return a decoded version of the given VALUE. This means returning
764 a value whose type is obtained by applying all the GNAT-specific
765 encondings, making the resulting type a static but standard description
766 of the initial type. */
767
768 struct value *
769 ada_get_decoded_value (struct value *value)
770 {
771 struct type *type = ada_check_typedef (value_type (value));
772
773 if (ada_is_array_descriptor_type (type)
774 || (ada_is_constrained_packed_array_type (type)
775 && TYPE_CODE (type) != TYPE_CODE_PTR))
776 {
777 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
778 value = ada_coerce_to_simple_array_ptr (value);
779 else
780 value = ada_coerce_to_simple_array (value);
781 }
782 else
783 value = ada_to_fixed_value (value);
784
785 return value;
786 }
787
788 /* Same as ada_get_decoded_value, but with the given TYPE.
789 Because there is no associated actual value for this type,
790 the resulting type might be a best-effort approximation in
791 the case of dynamic types. */
792
793 struct type *
794 ada_get_decoded_type (struct type *type)
795 {
796 type = to_static_fixed_type (type);
797 if (ada_is_constrained_packed_array_type (type))
798 type = ada_coerce_to_simple_array_type (type);
799 return type;
800 }
801
802 \f
803
804 /* Language Selection */
805
806 /* If the main program is in Ada, return language_ada, otherwise return LANG
807 (the main program is in Ada iif the adainit symbol is found). */
808
809 enum language
810 ada_update_initial_language (enum language lang)
811 {
812 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
813 (struct objfile *) NULL) != NULL)
814 return language_ada;
815
816 return lang;
817 }
818
819 /* If the main procedure is written in Ada, then return its name.
820 The result is good until the next call. Return NULL if the main
821 procedure doesn't appear to be in Ada. */
822
823 char *
824 ada_main_name (void)
825 {
826 struct minimal_symbol *msym;
827 static char *main_program_name = NULL;
828
829 /* For Ada, the name of the main procedure is stored in a specific
830 string constant, generated by the binder. Look for that symbol,
831 extract its address, and then read that string. If we didn't find
832 that string, then most probably the main procedure is not written
833 in Ada. */
834 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
835
836 if (msym != NULL)
837 {
838 CORE_ADDR main_program_name_addr;
839 int err_code;
840
841 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
842 if (main_program_name_addr == 0)
843 error (_("Invalid address for Ada main program name."));
844
845 xfree (main_program_name);
846 target_read_string (main_program_name_addr, &main_program_name,
847 1024, &err_code);
848
849 if (err_code != 0)
850 return NULL;
851 return main_program_name;
852 }
853
854 /* The main procedure doesn't seem to be in Ada. */
855 return NULL;
856 }
857 \f
858 /* Symbols */
859
860 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
861 of NULLs. */
862
863 const struct ada_opname_map ada_opname_table[] = {
864 {"Oadd", "\"+\"", BINOP_ADD},
865 {"Osubtract", "\"-\"", BINOP_SUB},
866 {"Omultiply", "\"*\"", BINOP_MUL},
867 {"Odivide", "\"/\"", BINOP_DIV},
868 {"Omod", "\"mod\"", BINOP_MOD},
869 {"Orem", "\"rem\"", BINOP_REM},
870 {"Oexpon", "\"**\"", BINOP_EXP},
871 {"Olt", "\"<\"", BINOP_LESS},
872 {"Ole", "\"<=\"", BINOP_LEQ},
873 {"Ogt", "\">\"", BINOP_GTR},
874 {"Oge", "\">=\"", BINOP_GEQ},
875 {"Oeq", "\"=\"", BINOP_EQUAL},
876 {"One", "\"/=\"", BINOP_NOTEQUAL},
877 {"Oand", "\"and\"", BINOP_BITWISE_AND},
878 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
879 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
880 {"Oconcat", "\"&\"", BINOP_CONCAT},
881 {"Oabs", "\"abs\"", UNOP_ABS},
882 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
883 {"Oadd", "\"+\"", UNOP_PLUS},
884 {"Osubtract", "\"-\"", UNOP_NEG},
885 {NULL, NULL}
886 };
887
888 /* The "encoded" form of DECODED, according to GNAT conventions.
889 The result is valid until the next call to ada_encode. */
890
891 char *
892 ada_encode (const char *decoded)
893 {
894 static char *encoding_buffer = NULL;
895 static size_t encoding_buffer_size = 0;
896 const char *p;
897 int k;
898
899 if (decoded == NULL)
900 return NULL;
901
902 GROW_VECT (encoding_buffer, encoding_buffer_size,
903 2 * strlen (decoded) + 10);
904
905 k = 0;
906 for (p = decoded; *p != '\0'; p += 1)
907 {
908 if (*p == '.')
909 {
910 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
911 k += 2;
912 }
913 else if (*p == '"')
914 {
915 const struct ada_opname_map *mapping;
916
917 for (mapping = ada_opname_table;
918 mapping->encoded != NULL
919 && strncmp (mapping->decoded, p,
920 strlen (mapping->decoded)) != 0; mapping += 1)
921 ;
922 if (mapping->encoded == NULL)
923 error (_("invalid Ada operator name: %s"), p);
924 strcpy (encoding_buffer + k, mapping->encoded);
925 k += strlen (mapping->encoded);
926 break;
927 }
928 else
929 {
930 encoding_buffer[k] = *p;
931 k += 1;
932 }
933 }
934
935 encoding_buffer[k] = '\0';
936 return encoding_buffer;
937 }
938
939 /* Return NAME folded to lower case, or, if surrounded by single
940 quotes, unfolded, but with the quotes stripped away. Result good
941 to next call. */
942
943 char *
944 ada_fold_name (const char *name)
945 {
946 static char *fold_buffer = NULL;
947 static size_t fold_buffer_size = 0;
948
949 int len = strlen (name);
950 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
951
952 if (name[0] == '\'')
953 {
954 strncpy (fold_buffer, name + 1, len - 2);
955 fold_buffer[len - 2] = '\000';
956 }
957 else
958 {
959 int i;
960
961 for (i = 0; i <= len; i += 1)
962 fold_buffer[i] = tolower (name[i]);
963 }
964
965 return fold_buffer;
966 }
967
968 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
969
970 static int
971 is_lower_alphanum (const char c)
972 {
973 return (isdigit (c) || (isalpha (c) && islower (c)));
974 }
975
976 /* ENCODED is the linkage name of a symbol and LEN contains its length.
977 This function saves in LEN the length of that same symbol name but
978 without either of these suffixes:
979 . .{DIGIT}+
980 . ${DIGIT}+
981 . ___{DIGIT}+
982 . __{DIGIT}+.
983
984 These are suffixes introduced by the compiler for entities such as
985 nested subprogram for instance, in order to avoid name clashes.
986 They do not serve any purpose for the debugger. */
987
988 static void
989 ada_remove_trailing_digits (const char *encoded, int *len)
990 {
991 if (*len > 1 && isdigit (encoded[*len - 1]))
992 {
993 int i = *len - 2;
994
995 while (i > 0 && isdigit (encoded[i]))
996 i--;
997 if (i >= 0 && encoded[i] == '.')
998 *len = i;
999 else if (i >= 0 && encoded[i] == '$')
1000 *len = i;
1001 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
1002 *len = i - 2;
1003 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
1004 *len = i - 1;
1005 }
1006 }
1007
1008 /* Remove the suffix introduced by the compiler for protected object
1009 subprograms. */
1010
1011 static void
1012 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1013 {
1014 /* Remove trailing N. */
1015
1016 /* Protected entry subprograms are broken into two
1017 separate subprograms: The first one is unprotected, and has
1018 a 'N' suffix; the second is the protected version, and has
1019 the 'P' suffix. The second calls the first one after handling
1020 the protection. Since the P subprograms are internally generated,
1021 we leave these names undecoded, giving the user a clue that this
1022 entity is internal. */
1023
1024 if (*len > 1
1025 && encoded[*len - 1] == 'N'
1026 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1027 *len = *len - 1;
1028 }
1029
1030 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1031
1032 static void
1033 ada_remove_Xbn_suffix (const char *encoded, int *len)
1034 {
1035 int i = *len - 1;
1036
1037 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1038 i--;
1039
1040 if (encoded[i] != 'X')
1041 return;
1042
1043 if (i == 0)
1044 return;
1045
1046 if (isalnum (encoded[i-1]))
1047 *len = i;
1048 }
1049
1050 /* If ENCODED follows the GNAT entity encoding conventions, then return
1051 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1052 replaced by ENCODED.
1053
1054 The resulting string is valid until the next call of ada_decode.
1055 If the string is unchanged by decoding, the original string pointer
1056 is returned. */
1057
1058 const char *
1059 ada_decode (const char *encoded)
1060 {
1061 int i, j;
1062 int len0;
1063 const char *p;
1064 char *decoded;
1065 int at_start_name;
1066 static char *decoding_buffer = NULL;
1067 static size_t decoding_buffer_size = 0;
1068
1069 /* The name of the Ada main procedure starts with "_ada_".
1070 This prefix is not part of the decoded name, so skip this part
1071 if we see this prefix. */
1072 if (strncmp (encoded, "_ada_", 5) == 0)
1073 encoded += 5;
1074
1075 /* If the name starts with '_', then it is not a properly encoded
1076 name, so do not attempt to decode it. Similarly, if the name
1077 starts with '<', the name should not be decoded. */
1078 if (encoded[0] == '_' || encoded[0] == '<')
1079 goto Suppress;
1080
1081 len0 = strlen (encoded);
1082
1083 ada_remove_trailing_digits (encoded, &len0);
1084 ada_remove_po_subprogram_suffix (encoded, &len0);
1085
1086 /* Remove the ___X.* suffix if present. Do not forget to verify that
1087 the suffix is located before the current "end" of ENCODED. We want
1088 to avoid re-matching parts of ENCODED that have previously been
1089 marked as discarded (by decrementing LEN0). */
1090 p = strstr (encoded, "___");
1091 if (p != NULL && p - encoded < len0 - 3)
1092 {
1093 if (p[3] == 'X')
1094 len0 = p - encoded;
1095 else
1096 goto Suppress;
1097 }
1098
1099 /* Remove any trailing TKB suffix. It tells us that this symbol
1100 is for the body of a task, but that information does not actually
1101 appear in the decoded name. */
1102
1103 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
1104 len0 -= 3;
1105
1106 /* Remove any trailing TB suffix. The TB suffix is slightly different
1107 from the TKB suffix because it is used for non-anonymous task
1108 bodies. */
1109
1110 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
1111 len0 -= 2;
1112
1113 /* Remove trailing "B" suffixes. */
1114 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1115
1116 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
1117 len0 -= 1;
1118
1119 /* Make decoded big enough for possible expansion by operator name. */
1120
1121 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1122 decoded = decoding_buffer;
1123
1124 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1125
1126 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1127 {
1128 i = len0 - 2;
1129 while ((i >= 0 && isdigit (encoded[i]))
1130 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1131 i -= 1;
1132 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1133 len0 = i - 1;
1134 else if (encoded[i] == '$')
1135 len0 = i;
1136 }
1137
1138 /* The first few characters that are not alphabetic are not part
1139 of any encoding we use, so we can copy them over verbatim. */
1140
1141 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1142 decoded[j] = encoded[i];
1143
1144 at_start_name = 1;
1145 while (i < len0)
1146 {
1147 /* Is this a symbol function? */
1148 if (at_start_name && encoded[i] == 'O')
1149 {
1150 int k;
1151
1152 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1153 {
1154 int op_len = strlen (ada_opname_table[k].encoded);
1155 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1156 op_len - 1) == 0)
1157 && !isalnum (encoded[i + op_len]))
1158 {
1159 strcpy (decoded + j, ada_opname_table[k].decoded);
1160 at_start_name = 0;
1161 i += op_len;
1162 j += strlen (ada_opname_table[k].decoded);
1163 break;
1164 }
1165 }
1166 if (ada_opname_table[k].encoded != NULL)
1167 continue;
1168 }
1169 at_start_name = 0;
1170
1171 /* Replace "TK__" with "__", which will eventually be translated
1172 into "." (just below). */
1173
1174 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1175 i += 2;
1176
1177 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1178 be translated into "." (just below). These are internal names
1179 generated for anonymous blocks inside which our symbol is nested. */
1180
1181 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1182 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1183 && isdigit (encoded [i+4]))
1184 {
1185 int k = i + 5;
1186
1187 while (k < len0 && isdigit (encoded[k]))
1188 k++; /* Skip any extra digit. */
1189
1190 /* Double-check that the "__B_{DIGITS}+" sequence we found
1191 is indeed followed by "__". */
1192 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1193 i = k;
1194 }
1195
1196 /* Remove _E{DIGITS}+[sb] */
1197
1198 /* Just as for protected object subprograms, there are 2 categories
1199 of subprograms created by the compiler for each entry. The first
1200 one implements the actual entry code, and has a suffix following
1201 the convention above; the second one implements the barrier and
1202 uses the same convention as above, except that the 'E' is replaced
1203 by a 'B'.
1204
1205 Just as above, we do not decode the name of barrier functions
1206 to give the user a clue that the code he is debugging has been
1207 internally generated. */
1208
1209 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1210 && isdigit (encoded[i+2]))
1211 {
1212 int k = i + 3;
1213
1214 while (k < len0 && isdigit (encoded[k]))
1215 k++;
1216
1217 if (k < len0
1218 && (encoded[k] == 'b' || encoded[k] == 's'))
1219 {
1220 k++;
1221 /* Just as an extra precaution, make sure that if this
1222 suffix is followed by anything else, it is a '_'.
1223 Otherwise, we matched this sequence by accident. */
1224 if (k == len0
1225 || (k < len0 && encoded[k] == '_'))
1226 i = k;
1227 }
1228 }
1229
1230 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1231 the GNAT front-end in protected object subprograms. */
1232
1233 if (i < len0 + 3
1234 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1235 {
1236 /* Backtrack a bit up until we reach either the begining of
1237 the encoded name, or "__". Make sure that we only find
1238 digits or lowercase characters. */
1239 const char *ptr = encoded + i - 1;
1240
1241 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1242 ptr--;
1243 if (ptr < encoded
1244 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1245 i++;
1246 }
1247
1248 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1249 {
1250 /* This is a X[bn]* sequence not separated from the previous
1251 part of the name with a non-alpha-numeric character (in other
1252 words, immediately following an alpha-numeric character), then
1253 verify that it is placed at the end of the encoded name. If
1254 not, then the encoding is not valid and we should abort the
1255 decoding. Otherwise, just skip it, it is used in body-nested
1256 package names. */
1257 do
1258 i += 1;
1259 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1260 if (i < len0)
1261 goto Suppress;
1262 }
1263 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1264 {
1265 /* Replace '__' by '.'. */
1266 decoded[j] = '.';
1267 at_start_name = 1;
1268 i += 2;
1269 j += 1;
1270 }
1271 else
1272 {
1273 /* It's a character part of the decoded name, so just copy it
1274 over. */
1275 decoded[j] = encoded[i];
1276 i += 1;
1277 j += 1;
1278 }
1279 }
1280 decoded[j] = '\000';
1281
1282 /* Decoded names should never contain any uppercase character.
1283 Double-check this, and abort the decoding if we find one. */
1284
1285 for (i = 0; decoded[i] != '\0'; i += 1)
1286 if (isupper (decoded[i]) || decoded[i] == ' ')
1287 goto Suppress;
1288
1289 if (strcmp (decoded, encoded) == 0)
1290 return encoded;
1291 else
1292 return decoded;
1293
1294 Suppress:
1295 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1296 decoded = decoding_buffer;
1297 if (encoded[0] == '<')
1298 strcpy (decoded, encoded);
1299 else
1300 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1301 return decoded;
1302
1303 }
1304
1305 /* Table for keeping permanent unique copies of decoded names. Once
1306 allocated, names in this table are never released. While this is a
1307 storage leak, it should not be significant unless there are massive
1308 changes in the set of decoded names in successive versions of a
1309 symbol table loaded during a single session. */
1310 static struct htab *decoded_names_store;
1311
1312 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1313 in the language-specific part of GSYMBOL, if it has not been
1314 previously computed. Tries to save the decoded name in the same
1315 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1316 in any case, the decoded symbol has a lifetime at least that of
1317 GSYMBOL).
1318 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1319 const, but nevertheless modified to a semantically equivalent form
1320 when a decoded name is cached in it. */
1321
1322 const char *
1323 ada_decode_symbol (const struct general_symbol_info *arg)
1324 {
1325 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1326 const char **resultp =
1327 &gsymbol->language_specific.mangled_lang.demangled_name;
1328
1329 if (!gsymbol->ada_mangled)
1330 {
1331 const char *decoded = ada_decode (gsymbol->name);
1332 struct obstack *obstack = gsymbol->language_specific.obstack;
1333
1334 gsymbol->ada_mangled = 1;
1335
1336 if (obstack != NULL)
1337 *resultp = obstack_copy0 (obstack, decoded, strlen (decoded));
1338 else
1339 {
1340 /* Sometimes, we can't find a corresponding objfile, in
1341 which case, we put the result on the heap. Since we only
1342 decode when needed, we hope this usually does not cause a
1343 significant memory leak (FIXME). */
1344
1345 char **slot = (char **) htab_find_slot (decoded_names_store,
1346 decoded, INSERT);
1347
1348 if (*slot == NULL)
1349 *slot = xstrdup (decoded);
1350 *resultp = *slot;
1351 }
1352 }
1353
1354 return *resultp;
1355 }
1356
1357 static char *
1358 ada_la_decode (const char *encoded, int options)
1359 {
1360 return xstrdup (ada_decode (encoded));
1361 }
1362
1363 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1364 suffixes that encode debugging information or leading _ada_ on
1365 SYM_NAME (see is_name_suffix commentary for the debugging
1366 information that is ignored). If WILD, then NAME need only match a
1367 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1368 either argument is NULL. */
1369
1370 static int
1371 match_name (const char *sym_name, const char *name, int wild)
1372 {
1373 if (sym_name == NULL || name == NULL)
1374 return 0;
1375 else if (wild)
1376 return wild_match (sym_name, name) == 0;
1377 else
1378 {
1379 int len_name = strlen (name);
1380
1381 return (strncmp (sym_name, name, len_name) == 0
1382 && is_name_suffix (sym_name + len_name))
1383 || (strncmp (sym_name, "_ada_", 5) == 0
1384 && strncmp (sym_name + 5, name, len_name) == 0
1385 && is_name_suffix (sym_name + len_name + 5));
1386 }
1387 }
1388 \f
1389
1390 /* Arrays */
1391
1392 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1393 generated by the GNAT compiler to describe the index type used
1394 for each dimension of an array, check whether it follows the latest
1395 known encoding. If not, fix it up to conform to the latest encoding.
1396 Otherwise, do nothing. This function also does nothing if
1397 INDEX_DESC_TYPE is NULL.
1398
1399 The GNAT encoding used to describle the array index type evolved a bit.
1400 Initially, the information would be provided through the name of each
1401 field of the structure type only, while the type of these fields was
1402 described as unspecified and irrelevant. The debugger was then expected
1403 to perform a global type lookup using the name of that field in order
1404 to get access to the full index type description. Because these global
1405 lookups can be very expensive, the encoding was later enhanced to make
1406 the global lookup unnecessary by defining the field type as being
1407 the full index type description.
1408
1409 The purpose of this routine is to allow us to support older versions
1410 of the compiler by detecting the use of the older encoding, and by
1411 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1412 we essentially replace each field's meaningless type by the associated
1413 index subtype). */
1414
1415 void
1416 ada_fixup_array_indexes_type (struct type *index_desc_type)
1417 {
1418 int i;
1419
1420 if (index_desc_type == NULL)
1421 return;
1422 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1423
1424 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1425 to check one field only, no need to check them all). If not, return
1426 now.
1427
1428 If our INDEX_DESC_TYPE was generated using the older encoding,
1429 the field type should be a meaningless integer type whose name
1430 is not equal to the field name. */
1431 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1432 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1433 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1434 return;
1435
1436 /* Fixup each field of INDEX_DESC_TYPE. */
1437 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1438 {
1439 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1440 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1441
1442 if (raw_type)
1443 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1444 }
1445 }
1446
1447 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1448
1449 static char *bound_name[] = {
1450 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1451 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1452 };
1453
1454 /* Maximum number of array dimensions we are prepared to handle. */
1455
1456 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1457
1458
1459 /* The desc_* routines return primitive portions of array descriptors
1460 (fat pointers). */
1461
1462 /* The descriptor or array type, if any, indicated by TYPE; removes
1463 level of indirection, if needed. */
1464
1465 static struct type *
1466 desc_base_type (struct type *type)
1467 {
1468 if (type == NULL)
1469 return NULL;
1470 type = ada_check_typedef (type);
1471 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1472 type = ada_typedef_target_type (type);
1473
1474 if (type != NULL
1475 && (TYPE_CODE (type) == TYPE_CODE_PTR
1476 || TYPE_CODE (type) == TYPE_CODE_REF))
1477 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1478 else
1479 return type;
1480 }
1481
1482 /* True iff TYPE indicates a "thin" array pointer type. */
1483
1484 static int
1485 is_thin_pntr (struct type *type)
1486 {
1487 return
1488 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1489 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1490 }
1491
1492 /* The descriptor type for thin pointer type TYPE. */
1493
1494 static struct type *
1495 thin_descriptor_type (struct type *type)
1496 {
1497 struct type *base_type = desc_base_type (type);
1498
1499 if (base_type == NULL)
1500 return NULL;
1501 if (is_suffix (ada_type_name (base_type), "___XVE"))
1502 return base_type;
1503 else
1504 {
1505 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1506
1507 if (alt_type == NULL)
1508 return base_type;
1509 else
1510 return alt_type;
1511 }
1512 }
1513
1514 /* A pointer to the array data for thin-pointer value VAL. */
1515
1516 static struct value *
1517 thin_data_pntr (struct value *val)
1518 {
1519 struct type *type = ada_check_typedef (value_type (val));
1520 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1521
1522 data_type = lookup_pointer_type (data_type);
1523
1524 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1525 return value_cast (data_type, value_copy (val));
1526 else
1527 return value_from_longest (data_type, value_address (val));
1528 }
1529
1530 /* True iff TYPE indicates a "thick" array pointer type. */
1531
1532 static int
1533 is_thick_pntr (struct type *type)
1534 {
1535 type = desc_base_type (type);
1536 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1537 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1538 }
1539
1540 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1541 pointer to one, the type of its bounds data; otherwise, NULL. */
1542
1543 static struct type *
1544 desc_bounds_type (struct type *type)
1545 {
1546 struct type *r;
1547
1548 type = desc_base_type (type);
1549
1550 if (type == NULL)
1551 return NULL;
1552 else if (is_thin_pntr (type))
1553 {
1554 type = thin_descriptor_type (type);
1555 if (type == NULL)
1556 return NULL;
1557 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1558 if (r != NULL)
1559 return ada_check_typedef (r);
1560 }
1561 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1562 {
1563 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1564 if (r != NULL)
1565 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1566 }
1567 return NULL;
1568 }
1569
1570 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1571 one, a pointer to its bounds data. Otherwise NULL. */
1572
1573 static struct value *
1574 desc_bounds (struct value *arr)
1575 {
1576 struct type *type = ada_check_typedef (value_type (arr));
1577
1578 if (is_thin_pntr (type))
1579 {
1580 struct type *bounds_type =
1581 desc_bounds_type (thin_descriptor_type (type));
1582 LONGEST addr;
1583
1584 if (bounds_type == NULL)
1585 error (_("Bad GNAT array descriptor"));
1586
1587 /* NOTE: The following calculation is not really kosher, but
1588 since desc_type is an XVE-encoded type (and shouldn't be),
1589 the correct calculation is a real pain. FIXME (and fix GCC). */
1590 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1591 addr = value_as_long (arr);
1592 else
1593 addr = value_address (arr);
1594
1595 return
1596 value_from_longest (lookup_pointer_type (bounds_type),
1597 addr - TYPE_LENGTH (bounds_type));
1598 }
1599
1600 else if (is_thick_pntr (type))
1601 {
1602 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1603 _("Bad GNAT array descriptor"));
1604 struct type *p_bounds_type = value_type (p_bounds);
1605
1606 if (p_bounds_type
1607 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1608 {
1609 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1610
1611 if (TYPE_STUB (target_type))
1612 p_bounds = value_cast (lookup_pointer_type
1613 (ada_check_typedef (target_type)),
1614 p_bounds);
1615 }
1616 else
1617 error (_("Bad GNAT array descriptor"));
1618
1619 return p_bounds;
1620 }
1621 else
1622 return NULL;
1623 }
1624
1625 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1626 position of the field containing the address of the bounds data. */
1627
1628 static int
1629 fat_pntr_bounds_bitpos (struct type *type)
1630 {
1631 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1632 }
1633
1634 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1635 size of the field containing the address of the bounds data. */
1636
1637 static int
1638 fat_pntr_bounds_bitsize (struct type *type)
1639 {
1640 type = desc_base_type (type);
1641
1642 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1643 return TYPE_FIELD_BITSIZE (type, 1);
1644 else
1645 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1646 }
1647
1648 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1649 pointer to one, the type of its array data (a array-with-no-bounds type);
1650 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1651 data. */
1652
1653 static struct type *
1654 desc_data_target_type (struct type *type)
1655 {
1656 type = desc_base_type (type);
1657
1658 /* NOTE: The following is bogus; see comment in desc_bounds. */
1659 if (is_thin_pntr (type))
1660 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1661 else if (is_thick_pntr (type))
1662 {
1663 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1664
1665 if (data_type
1666 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1667 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1668 }
1669
1670 return NULL;
1671 }
1672
1673 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1674 its array data. */
1675
1676 static struct value *
1677 desc_data (struct value *arr)
1678 {
1679 struct type *type = value_type (arr);
1680
1681 if (is_thin_pntr (type))
1682 return thin_data_pntr (arr);
1683 else if (is_thick_pntr (type))
1684 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1685 _("Bad GNAT array descriptor"));
1686 else
1687 return NULL;
1688 }
1689
1690
1691 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1692 position of the field containing the address of the data. */
1693
1694 static int
1695 fat_pntr_data_bitpos (struct type *type)
1696 {
1697 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1698 }
1699
1700 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1701 size of the field containing the address of the data. */
1702
1703 static int
1704 fat_pntr_data_bitsize (struct type *type)
1705 {
1706 type = desc_base_type (type);
1707
1708 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1709 return TYPE_FIELD_BITSIZE (type, 0);
1710 else
1711 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1712 }
1713
1714 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1715 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1716 bound, if WHICH is 1. The first bound is I=1. */
1717
1718 static struct value *
1719 desc_one_bound (struct value *bounds, int i, int which)
1720 {
1721 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1722 _("Bad GNAT array descriptor bounds"));
1723 }
1724
1725 /* If BOUNDS is an array-bounds structure type, return the bit position
1726 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1727 bound, if WHICH is 1. The first bound is I=1. */
1728
1729 static int
1730 desc_bound_bitpos (struct type *type, int i, int which)
1731 {
1732 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1733 }
1734
1735 /* If BOUNDS is an array-bounds structure type, return the bit field size
1736 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1737 bound, if WHICH is 1. The first bound is I=1. */
1738
1739 static int
1740 desc_bound_bitsize (struct type *type, int i, int which)
1741 {
1742 type = desc_base_type (type);
1743
1744 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1745 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1746 else
1747 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1748 }
1749
1750 /* If TYPE is the type of an array-bounds structure, the type of its
1751 Ith bound (numbering from 1). Otherwise, NULL. */
1752
1753 static struct type *
1754 desc_index_type (struct type *type, int i)
1755 {
1756 type = desc_base_type (type);
1757
1758 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1759 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1760 else
1761 return NULL;
1762 }
1763
1764 /* The number of index positions in the array-bounds type TYPE.
1765 Return 0 if TYPE is NULL. */
1766
1767 static int
1768 desc_arity (struct type *type)
1769 {
1770 type = desc_base_type (type);
1771
1772 if (type != NULL)
1773 return TYPE_NFIELDS (type) / 2;
1774 return 0;
1775 }
1776
1777 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1778 an array descriptor type (representing an unconstrained array
1779 type). */
1780
1781 static int
1782 ada_is_direct_array_type (struct type *type)
1783 {
1784 if (type == NULL)
1785 return 0;
1786 type = ada_check_typedef (type);
1787 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1788 || ada_is_array_descriptor_type (type));
1789 }
1790
1791 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1792 * to one. */
1793
1794 static int
1795 ada_is_array_type (struct type *type)
1796 {
1797 while (type != NULL
1798 && (TYPE_CODE (type) == TYPE_CODE_PTR
1799 || TYPE_CODE (type) == TYPE_CODE_REF))
1800 type = TYPE_TARGET_TYPE (type);
1801 return ada_is_direct_array_type (type);
1802 }
1803
1804 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1805
1806 int
1807 ada_is_simple_array_type (struct type *type)
1808 {
1809 if (type == NULL)
1810 return 0;
1811 type = ada_check_typedef (type);
1812 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1813 || (TYPE_CODE (type) == TYPE_CODE_PTR
1814 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1815 == TYPE_CODE_ARRAY));
1816 }
1817
1818 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1819
1820 int
1821 ada_is_array_descriptor_type (struct type *type)
1822 {
1823 struct type *data_type = desc_data_target_type (type);
1824
1825 if (type == NULL)
1826 return 0;
1827 type = ada_check_typedef (type);
1828 return (data_type != NULL
1829 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1830 && desc_arity (desc_bounds_type (type)) > 0);
1831 }
1832
1833 /* Non-zero iff type is a partially mal-formed GNAT array
1834 descriptor. FIXME: This is to compensate for some problems with
1835 debugging output from GNAT. Re-examine periodically to see if it
1836 is still needed. */
1837
1838 int
1839 ada_is_bogus_array_descriptor (struct type *type)
1840 {
1841 return
1842 type != NULL
1843 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1844 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1845 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1846 && !ada_is_array_descriptor_type (type);
1847 }
1848
1849
1850 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1851 (fat pointer) returns the type of the array data described---specifically,
1852 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1853 in from the descriptor; otherwise, they are left unspecified. If
1854 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1855 returns NULL. The result is simply the type of ARR if ARR is not
1856 a descriptor. */
1857 struct type *
1858 ada_type_of_array (struct value *arr, int bounds)
1859 {
1860 if (ada_is_constrained_packed_array_type (value_type (arr)))
1861 return decode_constrained_packed_array_type (value_type (arr));
1862
1863 if (!ada_is_array_descriptor_type (value_type (arr)))
1864 return value_type (arr);
1865
1866 if (!bounds)
1867 {
1868 struct type *array_type =
1869 ada_check_typedef (desc_data_target_type (value_type (arr)));
1870
1871 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1872 TYPE_FIELD_BITSIZE (array_type, 0) =
1873 decode_packed_array_bitsize (value_type (arr));
1874
1875 return array_type;
1876 }
1877 else
1878 {
1879 struct type *elt_type;
1880 int arity;
1881 struct value *descriptor;
1882
1883 elt_type = ada_array_element_type (value_type (arr), -1);
1884 arity = ada_array_arity (value_type (arr));
1885
1886 if (elt_type == NULL || arity == 0)
1887 return ada_check_typedef (value_type (arr));
1888
1889 descriptor = desc_bounds (arr);
1890 if (value_as_long (descriptor) == 0)
1891 return NULL;
1892 while (arity > 0)
1893 {
1894 struct type *range_type = alloc_type_copy (value_type (arr));
1895 struct type *array_type = alloc_type_copy (value_type (arr));
1896 struct value *low = desc_one_bound (descriptor, arity, 0);
1897 struct value *high = desc_one_bound (descriptor, arity, 1);
1898
1899 arity -= 1;
1900 create_range_type (range_type, value_type (low),
1901 longest_to_int (value_as_long (low)),
1902 longest_to_int (value_as_long (high)));
1903 elt_type = create_array_type (array_type, elt_type, range_type);
1904
1905 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1906 {
1907 /* We need to store the element packed bitsize, as well as
1908 recompute the array size, because it was previously
1909 computed based on the unpacked element size. */
1910 LONGEST lo = value_as_long (low);
1911 LONGEST hi = value_as_long (high);
1912
1913 TYPE_FIELD_BITSIZE (elt_type, 0) =
1914 decode_packed_array_bitsize (value_type (arr));
1915 /* If the array has no element, then the size is already
1916 zero, and does not need to be recomputed. */
1917 if (lo < hi)
1918 {
1919 int array_bitsize =
1920 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1921
1922 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1923 }
1924 }
1925 }
1926
1927 return lookup_pointer_type (elt_type);
1928 }
1929 }
1930
1931 /* If ARR does not represent an array, returns ARR unchanged.
1932 Otherwise, returns either a standard GDB array with bounds set
1933 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1934 GDB array. Returns NULL if ARR is a null fat pointer. */
1935
1936 struct value *
1937 ada_coerce_to_simple_array_ptr (struct value *arr)
1938 {
1939 if (ada_is_array_descriptor_type (value_type (arr)))
1940 {
1941 struct type *arrType = ada_type_of_array (arr, 1);
1942
1943 if (arrType == NULL)
1944 return NULL;
1945 return value_cast (arrType, value_copy (desc_data (arr)));
1946 }
1947 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1948 return decode_constrained_packed_array (arr);
1949 else
1950 return arr;
1951 }
1952
1953 /* If ARR does not represent an array, returns ARR unchanged.
1954 Otherwise, returns a standard GDB array describing ARR (which may
1955 be ARR itself if it already is in the proper form). */
1956
1957 struct value *
1958 ada_coerce_to_simple_array (struct value *arr)
1959 {
1960 if (ada_is_array_descriptor_type (value_type (arr)))
1961 {
1962 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1963
1964 if (arrVal == NULL)
1965 error (_("Bounds unavailable for null array pointer."));
1966 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1967 return value_ind (arrVal);
1968 }
1969 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1970 return decode_constrained_packed_array (arr);
1971 else
1972 return arr;
1973 }
1974
1975 /* If TYPE represents a GNAT array type, return it translated to an
1976 ordinary GDB array type (possibly with BITSIZE fields indicating
1977 packing). For other types, is the identity. */
1978
1979 struct type *
1980 ada_coerce_to_simple_array_type (struct type *type)
1981 {
1982 if (ada_is_constrained_packed_array_type (type))
1983 return decode_constrained_packed_array_type (type);
1984
1985 if (ada_is_array_descriptor_type (type))
1986 return ada_check_typedef (desc_data_target_type (type));
1987
1988 return type;
1989 }
1990
1991 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1992
1993 static int
1994 ada_is_packed_array_type (struct type *type)
1995 {
1996 if (type == NULL)
1997 return 0;
1998 type = desc_base_type (type);
1999 type = ada_check_typedef (type);
2000 return
2001 ada_type_name (type) != NULL
2002 && strstr (ada_type_name (type), "___XP") != NULL;
2003 }
2004
2005 /* Non-zero iff TYPE represents a standard GNAT constrained
2006 packed-array type. */
2007
2008 int
2009 ada_is_constrained_packed_array_type (struct type *type)
2010 {
2011 return ada_is_packed_array_type (type)
2012 && !ada_is_array_descriptor_type (type);
2013 }
2014
2015 /* Non-zero iff TYPE represents an array descriptor for a
2016 unconstrained packed-array type. */
2017
2018 static int
2019 ada_is_unconstrained_packed_array_type (struct type *type)
2020 {
2021 return ada_is_packed_array_type (type)
2022 && ada_is_array_descriptor_type (type);
2023 }
2024
2025 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2026 return the size of its elements in bits. */
2027
2028 static long
2029 decode_packed_array_bitsize (struct type *type)
2030 {
2031 const char *raw_name;
2032 const char *tail;
2033 long bits;
2034
2035 /* Access to arrays implemented as fat pointers are encoded as a typedef
2036 of the fat pointer type. We need the name of the fat pointer type
2037 to do the decoding, so strip the typedef layer. */
2038 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2039 type = ada_typedef_target_type (type);
2040
2041 raw_name = ada_type_name (ada_check_typedef (type));
2042 if (!raw_name)
2043 raw_name = ada_type_name (desc_base_type (type));
2044
2045 if (!raw_name)
2046 return 0;
2047
2048 tail = strstr (raw_name, "___XP");
2049 gdb_assert (tail != NULL);
2050
2051 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2052 {
2053 lim_warning
2054 (_("could not understand bit size information on packed array"));
2055 return 0;
2056 }
2057
2058 return bits;
2059 }
2060
2061 /* Given that TYPE is a standard GDB array type with all bounds filled
2062 in, and that the element size of its ultimate scalar constituents
2063 (that is, either its elements, or, if it is an array of arrays, its
2064 elements' elements, etc.) is *ELT_BITS, return an identical type,
2065 but with the bit sizes of its elements (and those of any
2066 constituent arrays) recorded in the BITSIZE components of its
2067 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2068 in bits. */
2069
2070 static struct type *
2071 constrained_packed_array_type (struct type *type, long *elt_bits)
2072 {
2073 struct type *new_elt_type;
2074 struct type *new_type;
2075 struct type *index_type_desc;
2076 struct type *index_type;
2077 LONGEST low_bound, high_bound;
2078
2079 type = ada_check_typedef (type);
2080 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2081 return type;
2082
2083 index_type_desc = ada_find_parallel_type (type, "___XA");
2084 if (index_type_desc)
2085 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2086 NULL);
2087 else
2088 index_type = TYPE_INDEX_TYPE (type);
2089
2090 new_type = alloc_type_copy (type);
2091 new_elt_type =
2092 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2093 elt_bits);
2094 create_array_type (new_type, new_elt_type, index_type);
2095 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2096 TYPE_NAME (new_type) = ada_type_name (type);
2097
2098 if (get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2099 low_bound = high_bound = 0;
2100 if (high_bound < low_bound)
2101 *elt_bits = TYPE_LENGTH (new_type) = 0;
2102 else
2103 {
2104 *elt_bits *= (high_bound - low_bound + 1);
2105 TYPE_LENGTH (new_type) =
2106 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2107 }
2108
2109 TYPE_FIXED_INSTANCE (new_type) = 1;
2110 return new_type;
2111 }
2112
2113 /* The array type encoded by TYPE, where
2114 ada_is_constrained_packed_array_type (TYPE). */
2115
2116 static struct type *
2117 decode_constrained_packed_array_type (struct type *type)
2118 {
2119 const char *raw_name = ada_type_name (ada_check_typedef (type));
2120 char *name;
2121 const char *tail;
2122 struct type *shadow_type;
2123 long bits;
2124
2125 if (!raw_name)
2126 raw_name = ada_type_name (desc_base_type (type));
2127
2128 if (!raw_name)
2129 return NULL;
2130
2131 name = (char *) alloca (strlen (raw_name) + 1);
2132 tail = strstr (raw_name, "___XP");
2133 type = desc_base_type (type);
2134
2135 memcpy (name, raw_name, tail - raw_name);
2136 name[tail - raw_name] = '\000';
2137
2138 shadow_type = ada_find_parallel_type_with_name (type, name);
2139
2140 if (shadow_type == NULL)
2141 {
2142 lim_warning (_("could not find bounds information on packed array"));
2143 return NULL;
2144 }
2145 CHECK_TYPEDEF (shadow_type);
2146
2147 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2148 {
2149 lim_warning (_("could not understand bounds "
2150 "information on packed array"));
2151 return NULL;
2152 }
2153
2154 bits = decode_packed_array_bitsize (type);
2155 return constrained_packed_array_type (shadow_type, &bits);
2156 }
2157
2158 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2159 array, returns a simple array that denotes that array. Its type is a
2160 standard GDB array type except that the BITSIZEs of the array
2161 target types are set to the number of bits in each element, and the
2162 type length is set appropriately. */
2163
2164 static struct value *
2165 decode_constrained_packed_array (struct value *arr)
2166 {
2167 struct type *type;
2168
2169 arr = ada_coerce_ref (arr);
2170
2171 /* If our value is a pointer, then dererence it. Make sure that
2172 this operation does not cause the target type to be fixed, as
2173 this would indirectly cause this array to be decoded. The rest
2174 of the routine assumes that the array hasn't been decoded yet,
2175 so we use the basic "value_ind" routine to perform the dereferencing,
2176 as opposed to using "ada_value_ind". */
2177 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2178 arr = value_ind (arr);
2179
2180 type = decode_constrained_packed_array_type (value_type (arr));
2181 if (type == NULL)
2182 {
2183 error (_("can't unpack array"));
2184 return NULL;
2185 }
2186
2187 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2188 && ada_is_modular_type (value_type (arr)))
2189 {
2190 /* This is a (right-justified) modular type representing a packed
2191 array with no wrapper. In order to interpret the value through
2192 the (left-justified) packed array type we just built, we must
2193 first left-justify it. */
2194 int bit_size, bit_pos;
2195 ULONGEST mod;
2196
2197 mod = ada_modulus (value_type (arr)) - 1;
2198 bit_size = 0;
2199 while (mod > 0)
2200 {
2201 bit_size += 1;
2202 mod >>= 1;
2203 }
2204 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2205 arr = ada_value_primitive_packed_val (arr, NULL,
2206 bit_pos / HOST_CHAR_BIT,
2207 bit_pos % HOST_CHAR_BIT,
2208 bit_size,
2209 type);
2210 }
2211
2212 return coerce_unspec_val_to_type (arr, type);
2213 }
2214
2215
2216 /* The value of the element of packed array ARR at the ARITY indices
2217 given in IND. ARR must be a simple array. */
2218
2219 static struct value *
2220 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2221 {
2222 int i;
2223 int bits, elt_off, bit_off;
2224 long elt_total_bit_offset;
2225 struct type *elt_type;
2226 struct value *v;
2227
2228 bits = 0;
2229 elt_total_bit_offset = 0;
2230 elt_type = ada_check_typedef (value_type (arr));
2231 for (i = 0; i < arity; i += 1)
2232 {
2233 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2234 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2235 error
2236 (_("attempt to do packed indexing of "
2237 "something other than a packed array"));
2238 else
2239 {
2240 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2241 LONGEST lowerbound, upperbound;
2242 LONGEST idx;
2243
2244 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2245 {
2246 lim_warning (_("don't know bounds of array"));
2247 lowerbound = upperbound = 0;
2248 }
2249
2250 idx = pos_atr (ind[i]);
2251 if (idx < lowerbound || idx > upperbound)
2252 lim_warning (_("packed array index %ld out of bounds"),
2253 (long) idx);
2254 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2255 elt_total_bit_offset += (idx - lowerbound) * bits;
2256 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2257 }
2258 }
2259 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2260 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2261
2262 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2263 bits, elt_type);
2264 return v;
2265 }
2266
2267 /* Non-zero iff TYPE includes negative integer values. */
2268
2269 static int
2270 has_negatives (struct type *type)
2271 {
2272 switch (TYPE_CODE (type))
2273 {
2274 default:
2275 return 0;
2276 case TYPE_CODE_INT:
2277 return !TYPE_UNSIGNED (type);
2278 case TYPE_CODE_RANGE:
2279 return TYPE_LOW_BOUND (type) < 0;
2280 }
2281 }
2282
2283
2284 /* Create a new value of type TYPE from the contents of OBJ starting
2285 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2286 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2287 assigning through the result will set the field fetched from.
2288 VALADDR is ignored unless OBJ is NULL, in which case,
2289 VALADDR+OFFSET must address the start of storage containing the
2290 packed value. The value returned in this case is never an lval.
2291 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2292
2293 struct value *
2294 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2295 long offset, int bit_offset, int bit_size,
2296 struct type *type)
2297 {
2298 struct value *v;
2299 int src, /* Index into the source area */
2300 targ, /* Index into the target area */
2301 srcBitsLeft, /* Number of source bits left to move */
2302 nsrc, ntarg, /* Number of source and target bytes */
2303 unusedLS, /* Number of bits in next significant
2304 byte of source that are unused */
2305 accumSize; /* Number of meaningful bits in accum */
2306 unsigned char *bytes; /* First byte containing data to unpack */
2307 unsigned char *unpacked;
2308 unsigned long accum; /* Staging area for bits being transferred */
2309 unsigned char sign;
2310 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2311 /* Transmit bytes from least to most significant; delta is the direction
2312 the indices move. */
2313 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
2314
2315 type = ada_check_typedef (type);
2316
2317 if (obj == NULL)
2318 {
2319 v = allocate_value (type);
2320 bytes = (unsigned char *) (valaddr + offset);
2321 }
2322 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2323 {
2324 v = value_at (type, value_address (obj));
2325 bytes = (unsigned char *) alloca (len);
2326 read_memory (value_address (v) + offset, bytes, len);
2327 }
2328 else
2329 {
2330 v = allocate_value (type);
2331 bytes = (unsigned char *) value_contents (obj) + offset;
2332 }
2333
2334 if (obj != NULL)
2335 {
2336 long new_offset = offset;
2337
2338 set_value_component_location (v, obj);
2339 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2340 set_value_bitsize (v, bit_size);
2341 if (value_bitpos (v) >= HOST_CHAR_BIT)
2342 {
2343 ++new_offset;
2344 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2345 }
2346 set_value_offset (v, new_offset);
2347
2348 /* Also set the parent value. This is needed when trying to
2349 assign a new value (in inferior memory). */
2350 set_value_parent (v, obj);
2351 }
2352 else
2353 set_value_bitsize (v, bit_size);
2354 unpacked = (unsigned char *) value_contents (v);
2355
2356 srcBitsLeft = bit_size;
2357 nsrc = len;
2358 ntarg = TYPE_LENGTH (type);
2359 sign = 0;
2360 if (bit_size == 0)
2361 {
2362 memset (unpacked, 0, TYPE_LENGTH (type));
2363 return v;
2364 }
2365 else if (gdbarch_bits_big_endian (get_type_arch (type)))
2366 {
2367 src = len - 1;
2368 if (has_negatives (type)
2369 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2370 sign = ~0;
2371
2372 unusedLS =
2373 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2374 % HOST_CHAR_BIT;
2375
2376 switch (TYPE_CODE (type))
2377 {
2378 case TYPE_CODE_ARRAY:
2379 case TYPE_CODE_UNION:
2380 case TYPE_CODE_STRUCT:
2381 /* Non-scalar values must be aligned at a byte boundary... */
2382 accumSize =
2383 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2384 /* ... And are placed at the beginning (most-significant) bytes
2385 of the target. */
2386 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2387 ntarg = targ + 1;
2388 break;
2389 default:
2390 accumSize = 0;
2391 targ = TYPE_LENGTH (type) - 1;
2392 break;
2393 }
2394 }
2395 else
2396 {
2397 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2398
2399 src = targ = 0;
2400 unusedLS = bit_offset;
2401 accumSize = 0;
2402
2403 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2404 sign = ~0;
2405 }
2406
2407 accum = 0;
2408 while (nsrc > 0)
2409 {
2410 /* Mask for removing bits of the next source byte that are not
2411 part of the value. */
2412 unsigned int unusedMSMask =
2413 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2414 1;
2415 /* Sign-extend bits for this byte. */
2416 unsigned int signMask = sign & ~unusedMSMask;
2417
2418 accum |=
2419 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2420 accumSize += HOST_CHAR_BIT - unusedLS;
2421 if (accumSize >= HOST_CHAR_BIT)
2422 {
2423 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2424 accumSize -= HOST_CHAR_BIT;
2425 accum >>= HOST_CHAR_BIT;
2426 ntarg -= 1;
2427 targ += delta;
2428 }
2429 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2430 unusedLS = 0;
2431 nsrc -= 1;
2432 src += delta;
2433 }
2434 while (ntarg > 0)
2435 {
2436 accum |= sign << accumSize;
2437 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2438 accumSize -= HOST_CHAR_BIT;
2439 accum >>= HOST_CHAR_BIT;
2440 ntarg -= 1;
2441 targ += delta;
2442 }
2443
2444 return v;
2445 }
2446
2447 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2448 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2449 not overlap. */
2450 static void
2451 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2452 int src_offset, int n, int bits_big_endian_p)
2453 {
2454 unsigned int accum, mask;
2455 int accum_bits, chunk_size;
2456
2457 target += targ_offset / HOST_CHAR_BIT;
2458 targ_offset %= HOST_CHAR_BIT;
2459 source += src_offset / HOST_CHAR_BIT;
2460 src_offset %= HOST_CHAR_BIT;
2461 if (bits_big_endian_p)
2462 {
2463 accum = (unsigned char) *source;
2464 source += 1;
2465 accum_bits = HOST_CHAR_BIT - src_offset;
2466
2467 while (n > 0)
2468 {
2469 int unused_right;
2470
2471 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2472 accum_bits += HOST_CHAR_BIT;
2473 source += 1;
2474 chunk_size = HOST_CHAR_BIT - targ_offset;
2475 if (chunk_size > n)
2476 chunk_size = n;
2477 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2478 mask = ((1 << chunk_size) - 1) << unused_right;
2479 *target =
2480 (*target & ~mask)
2481 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2482 n -= chunk_size;
2483 accum_bits -= chunk_size;
2484 target += 1;
2485 targ_offset = 0;
2486 }
2487 }
2488 else
2489 {
2490 accum = (unsigned char) *source >> src_offset;
2491 source += 1;
2492 accum_bits = HOST_CHAR_BIT - src_offset;
2493
2494 while (n > 0)
2495 {
2496 accum = accum + ((unsigned char) *source << accum_bits);
2497 accum_bits += HOST_CHAR_BIT;
2498 source += 1;
2499 chunk_size = HOST_CHAR_BIT - targ_offset;
2500 if (chunk_size > n)
2501 chunk_size = n;
2502 mask = ((1 << chunk_size) - 1) << targ_offset;
2503 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2504 n -= chunk_size;
2505 accum_bits -= chunk_size;
2506 accum >>= chunk_size;
2507 target += 1;
2508 targ_offset = 0;
2509 }
2510 }
2511 }
2512
2513 /* Store the contents of FROMVAL into the location of TOVAL.
2514 Return a new value with the location of TOVAL and contents of
2515 FROMVAL. Handles assignment into packed fields that have
2516 floating-point or non-scalar types. */
2517
2518 static struct value *
2519 ada_value_assign (struct value *toval, struct value *fromval)
2520 {
2521 struct type *type = value_type (toval);
2522 int bits = value_bitsize (toval);
2523
2524 toval = ada_coerce_ref (toval);
2525 fromval = ada_coerce_ref (fromval);
2526
2527 if (ada_is_direct_array_type (value_type (toval)))
2528 toval = ada_coerce_to_simple_array (toval);
2529 if (ada_is_direct_array_type (value_type (fromval)))
2530 fromval = ada_coerce_to_simple_array (fromval);
2531
2532 if (!deprecated_value_modifiable (toval))
2533 error (_("Left operand of assignment is not a modifiable lvalue."));
2534
2535 if (VALUE_LVAL (toval) == lval_memory
2536 && bits > 0
2537 && (TYPE_CODE (type) == TYPE_CODE_FLT
2538 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2539 {
2540 int len = (value_bitpos (toval)
2541 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2542 int from_size;
2543 gdb_byte *buffer = alloca (len);
2544 struct value *val;
2545 CORE_ADDR to_addr = value_address (toval);
2546
2547 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2548 fromval = value_cast (type, fromval);
2549
2550 read_memory (to_addr, buffer, len);
2551 from_size = value_bitsize (fromval);
2552 if (from_size == 0)
2553 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2554 if (gdbarch_bits_big_endian (get_type_arch (type)))
2555 move_bits (buffer, value_bitpos (toval),
2556 value_contents (fromval), from_size - bits, bits, 1);
2557 else
2558 move_bits (buffer, value_bitpos (toval),
2559 value_contents (fromval), 0, bits, 0);
2560 write_memory_with_notification (to_addr, buffer, len);
2561
2562 val = value_copy (toval);
2563 memcpy (value_contents_raw (val), value_contents (fromval),
2564 TYPE_LENGTH (type));
2565 deprecated_set_value_type (val, type);
2566
2567 return val;
2568 }
2569
2570 return value_assign (toval, fromval);
2571 }
2572
2573
2574 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2575 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2576 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2577 * COMPONENT, and not the inferior's memory. The current contents
2578 * of COMPONENT are ignored. */
2579 static void
2580 value_assign_to_component (struct value *container, struct value *component,
2581 struct value *val)
2582 {
2583 LONGEST offset_in_container =
2584 (LONGEST) (value_address (component) - value_address (container));
2585 int bit_offset_in_container =
2586 value_bitpos (component) - value_bitpos (container);
2587 int bits;
2588
2589 val = value_cast (value_type (component), val);
2590
2591 if (value_bitsize (component) == 0)
2592 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2593 else
2594 bits = value_bitsize (component);
2595
2596 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2597 move_bits (value_contents_writeable (container) + offset_in_container,
2598 value_bitpos (container) + bit_offset_in_container,
2599 value_contents (val),
2600 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2601 bits, 1);
2602 else
2603 move_bits (value_contents_writeable (container) + offset_in_container,
2604 value_bitpos (container) + bit_offset_in_container,
2605 value_contents (val), 0, bits, 0);
2606 }
2607
2608 /* The value of the element of array ARR at the ARITY indices given in IND.
2609 ARR may be either a simple array, GNAT array descriptor, or pointer
2610 thereto. */
2611
2612 struct value *
2613 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2614 {
2615 int k;
2616 struct value *elt;
2617 struct type *elt_type;
2618
2619 elt = ada_coerce_to_simple_array (arr);
2620
2621 elt_type = ada_check_typedef (value_type (elt));
2622 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2623 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2624 return value_subscript_packed (elt, arity, ind);
2625
2626 for (k = 0; k < arity; k += 1)
2627 {
2628 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2629 error (_("too many subscripts (%d expected)"), k);
2630 elt = value_subscript (elt, pos_atr (ind[k]));
2631 }
2632 return elt;
2633 }
2634
2635 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2636 value of the element of *ARR at the ARITY indices given in
2637 IND. Does not read the entire array into memory. */
2638
2639 static struct value *
2640 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2641 struct value **ind)
2642 {
2643 int k;
2644
2645 for (k = 0; k < arity; k += 1)
2646 {
2647 LONGEST lwb, upb;
2648
2649 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2650 error (_("too many subscripts (%d expected)"), k);
2651 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2652 value_copy (arr));
2653 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2654 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2655 type = TYPE_TARGET_TYPE (type);
2656 }
2657
2658 return value_ind (arr);
2659 }
2660
2661 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2662 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2663 elements starting at index LOW. The lower bound of this array is LOW, as
2664 per Ada rules. */
2665 static struct value *
2666 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2667 int low, int high)
2668 {
2669 struct type *type0 = ada_check_typedef (type);
2670 CORE_ADDR base = value_as_address (array_ptr)
2671 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)))
2672 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2673 struct type *index_type =
2674 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)),
2675 low, high);
2676 struct type *slice_type =
2677 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
2678
2679 return value_at_lazy (slice_type, base);
2680 }
2681
2682
2683 static struct value *
2684 ada_value_slice (struct value *array, int low, int high)
2685 {
2686 struct type *type = ada_check_typedef (value_type (array));
2687 struct type *index_type =
2688 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2689 struct type *slice_type =
2690 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2691
2692 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2693 }
2694
2695 /* If type is a record type in the form of a standard GNAT array
2696 descriptor, returns the number of dimensions for type. If arr is a
2697 simple array, returns the number of "array of"s that prefix its
2698 type designation. Otherwise, returns 0. */
2699
2700 int
2701 ada_array_arity (struct type *type)
2702 {
2703 int arity;
2704
2705 if (type == NULL)
2706 return 0;
2707
2708 type = desc_base_type (type);
2709
2710 arity = 0;
2711 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2712 return desc_arity (desc_bounds_type (type));
2713 else
2714 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2715 {
2716 arity += 1;
2717 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2718 }
2719
2720 return arity;
2721 }
2722
2723 /* If TYPE is a record type in the form of a standard GNAT array
2724 descriptor or a simple array type, returns the element type for
2725 TYPE after indexing by NINDICES indices, or by all indices if
2726 NINDICES is -1. Otherwise, returns NULL. */
2727
2728 struct type *
2729 ada_array_element_type (struct type *type, int nindices)
2730 {
2731 type = desc_base_type (type);
2732
2733 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2734 {
2735 int k;
2736 struct type *p_array_type;
2737
2738 p_array_type = desc_data_target_type (type);
2739
2740 k = ada_array_arity (type);
2741 if (k == 0)
2742 return NULL;
2743
2744 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2745 if (nindices >= 0 && k > nindices)
2746 k = nindices;
2747 while (k > 0 && p_array_type != NULL)
2748 {
2749 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2750 k -= 1;
2751 }
2752 return p_array_type;
2753 }
2754 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2755 {
2756 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2757 {
2758 type = TYPE_TARGET_TYPE (type);
2759 nindices -= 1;
2760 }
2761 return type;
2762 }
2763
2764 return NULL;
2765 }
2766
2767 /* The type of nth index in arrays of given type (n numbering from 1).
2768 Does not examine memory. Throws an error if N is invalid or TYPE
2769 is not an array type. NAME is the name of the Ada attribute being
2770 evaluated ('range, 'first, 'last, or 'length); it is used in building
2771 the error message. */
2772
2773 static struct type *
2774 ada_index_type (struct type *type, int n, const char *name)
2775 {
2776 struct type *result_type;
2777
2778 type = desc_base_type (type);
2779
2780 if (n < 0 || n > ada_array_arity (type))
2781 error (_("invalid dimension number to '%s"), name);
2782
2783 if (ada_is_simple_array_type (type))
2784 {
2785 int i;
2786
2787 for (i = 1; i < n; i += 1)
2788 type = TYPE_TARGET_TYPE (type);
2789 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2790 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2791 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2792 perhaps stabsread.c would make more sense. */
2793 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2794 result_type = NULL;
2795 }
2796 else
2797 {
2798 result_type = desc_index_type (desc_bounds_type (type), n);
2799 if (result_type == NULL)
2800 error (_("attempt to take bound of something that is not an array"));
2801 }
2802
2803 return result_type;
2804 }
2805
2806 /* Given that arr is an array type, returns the lower bound of the
2807 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2808 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2809 array-descriptor type. It works for other arrays with bounds supplied
2810 by run-time quantities other than discriminants. */
2811
2812 static LONGEST
2813 ada_array_bound_from_type (struct type *arr_type, int n, int which)
2814 {
2815 struct type *type, *index_type_desc, *index_type;
2816 int i;
2817
2818 gdb_assert (which == 0 || which == 1);
2819
2820 if (ada_is_constrained_packed_array_type (arr_type))
2821 arr_type = decode_constrained_packed_array_type (arr_type);
2822
2823 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2824 return (LONGEST) - which;
2825
2826 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2827 type = TYPE_TARGET_TYPE (arr_type);
2828 else
2829 type = arr_type;
2830
2831 index_type_desc = ada_find_parallel_type (type, "___XA");
2832 ada_fixup_array_indexes_type (index_type_desc);
2833 if (index_type_desc != NULL)
2834 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2835 NULL);
2836 else
2837 {
2838 struct type *elt_type = check_typedef (type);
2839
2840 for (i = 1; i < n; i++)
2841 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
2842
2843 index_type = TYPE_INDEX_TYPE (elt_type);
2844 }
2845
2846 return
2847 (LONGEST) (which == 0
2848 ? ada_discrete_type_low_bound (index_type)
2849 : ada_discrete_type_high_bound (index_type));
2850 }
2851
2852 /* Given that arr is an array value, returns the lower bound of the
2853 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2854 WHICH is 1. This routine will also work for arrays with bounds
2855 supplied by run-time quantities other than discriminants. */
2856
2857 static LONGEST
2858 ada_array_bound (struct value *arr, int n, int which)
2859 {
2860 struct type *arr_type = value_type (arr);
2861
2862 if (ada_is_constrained_packed_array_type (arr_type))
2863 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
2864 else if (ada_is_simple_array_type (arr_type))
2865 return ada_array_bound_from_type (arr_type, n, which);
2866 else
2867 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2868 }
2869
2870 /* Given that arr is an array value, returns the length of the
2871 nth index. This routine will also work for arrays with bounds
2872 supplied by run-time quantities other than discriminants.
2873 Does not work for arrays indexed by enumeration types with representation
2874 clauses at the moment. */
2875
2876 static LONGEST
2877 ada_array_length (struct value *arr, int n)
2878 {
2879 struct type *arr_type = ada_check_typedef (value_type (arr));
2880
2881 if (ada_is_constrained_packed_array_type (arr_type))
2882 return ada_array_length (decode_constrained_packed_array (arr), n);
2883
2884 if (ada_is_simple_array_type (arr_type))
2885 return (ada_array_bound_from_type (arr_type, n, 1)
2886 - ada_array_bound_from_type (arr_type, n, 0) + 1);
2887 else
2888 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2889 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
2890 }
2891
2892 /* An empty array whose type is that of ARR_TYPE (an array type),
2893 with bounds LOW to LOW-1. */
2894
2895 static struct value *
2896 empty_array (struct type *arr_type, int low)
2897 {
2898 struct type *arr_type0 = ada_check_typedef (arr_type);
2899 struct type *index_type =
2900 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)),
2901 low, low - 1);
2902 struct type *elt_type = ada_array_element_type (arr_type0, 1);
2903
2904 return allocate_value (create_array_type (NULL, elt_type, index_type));
2905 }
2906 \f
2907
2908 /* Name resolution */
2909
2910 /* The "decoded" name for the user-definable Ada operator corresponding
2911 to OP. */
2912
2913 static const char *
2914 ada_decoded_op_name (enum exp_opcode op)
2915 {
2916 int i;
2917
2918 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2919 {
2920 if (ada_opname_table[i].op == op)
2921 return ada_opname_table[i].decoded;
2922 }
2923 error (_("Could not find operator name for opcode"));
2924 }
2925
2926
2927 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2928 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2929 undefined namespace) and converts operators that are
2930 user-defined into appropriate function calls. If CONTEXT_TYPE is
2931 non-null, it provides a preferred result type [at the moment, only
2932 type void has any effect---causing procedures to be preferred over
2933 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2934 return type is preferred. May change (expand) *EXP. */
2935
2936 static void
2937 resolve (struct expression **expp, int void_context_p)
2938 {
2939 struct type *context_type = NULL;
2940 int pc = 0;
2941
2942 if (void_context_p)
2943 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2944
2945 resolve_subexp (expp, &pc, 1, context_type);
2946 }
2947
2948 /* Resolve the operator of the subexpression beginning at
2949 position *POS of *EXPP. "Resolving" consists of replacing
2950 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2951 with their resolutions, replacing built-in operators with
2952 function calls to user-defined operators, where appropriate, and,
2953 when DEPROCEDURE_P is non-zero, converting function-valued variables
2954 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2955 are as in ada_resolve, above. */
2956
2957 static struct value *
2958 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2959 struct type *context_type)
2960 {
2961 int pc = *pos;
2962 int i;
2963 struct expression *exp; /* Convenience: == *expp. */
2964 enum exp_opcode op = (*expp)->elts[pc].opcode;
2965 struct value **argvec; /* Vector of operand types (alloca'ed). */
2966 int nargs; /* Number of operands. */
2967 int oplen;
2968
2969 argvec = NULL;
2970 nargs = 0;
2971 exp = *expp;
2972
2973 /* Pass one: resolve operands, saving their types and updating *pos,
2974 if needed. */
2975 switch (op)
2976 {
2977 case OP_FUNCALL:
2978 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2979 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2980 *pos += 7;
2981 else
2982 {
2983 *pos += 3;
2984 resolve_subexp (expp, pos, 0, NULL);
2985 }
2986 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2987 break;
2988
2989 case UNOP_ADDR:
2990 *pos += 1;
2991 resolve_subexp (expp, pos, 0, NULL);
2992 break;
2993
2994 case UNOP_QUAL:
2995 *pos += 3;
2996 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
2997 break;
2998
2999 case OP_ATR_MODULUS:
3000 case OP_ATR_SIZE:
3001 case OP_ATR_TAG:
3002 case OP_ATR_FIRST:
3003 case OP_ATR_LAST:
3004 case OP_ATR_LENGTH:
3005 case OP_ATR_POS:
3006 case OP_ATR_VAL:
3007 case OP_ATR_MIN:
3008 case OP_ATR_MAX:
3009 case TERNOP_IN_RANGE:
3010 case BINOP_IN_BOUNDS:
3011 case UNOP_IN_RANGE:
3012 case OP_AGGREGATE:
3013 case OP_OTHERS:
3014 case OP_CHOICES:
3015 case OP_POSITIONAL:
3016 case OP_DISCRETE_RANGE:
3017 case OP_NAME:
3018 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3019 *pos += oplen;
3020 break;
3021
3022 case BINOP_ASSIGN:
3023 {
3024 struct value *arg1;
3025
3026 *pos += 1;
3027 arg1 = resolve_subexp (expp, pos, 0, NULL);
3028 if (arg1 == NULL)
3029 resolve_subexp (expp, pos, 1, NULL);
3030 else
3031 resolve_subexp (expp, pos, 1, value_type (arg1));
3032 break;
3033 }
3034
3035 case UNOP_CAST:
3036 *pos += 3;
3037 nargs = 1;
3038 break;
3039
3040 case BINOP_ADD:
3041 case BINOP_SUB:
3042 case BINOP_MUL:
3043 case BINOP_DIV:
3044 case BINOP_REM:
3045 case BINOP_MOD:
3046 case BINOP_EXP:
3047 case BINOP_CONCAT:
3048 case BINOP_LOGICAL_AND:
3049 case BINOP_LOGICAL_OR:
3050 case BINOP_BITWISE_AND:
3051 case BINOP_BITWISE_IOR:
3052 case BINOP_BITWISE_XOR:
3053
3054 case BINOP_EQUAL:
3055 case BINOP_NOTEQUAL:
3056 case BINOP_LESS:
3057 case BINOP_GTR:
3058 case BINOP_LEQ:
3059 case BINOP_GEQ:
3060
3061 case BINOP_REPEAT:
3062 case BINOP_SUBSCRIPT:
3063 case BINOP_COMMA:
3064 *pos += 1;
3065 nargs = 2;
3066 break;
3067
3068 case UNOP_NEG:
3069 case UNOP_PLUS:
3070 case UNOP_LOGICAL_NOT:
3071 case UNOP_ABS:
3072 case UNOP_IND:
3073 *pos += 1;
3074 nargs = 1;
3075 break;
3076
3077 case OP_LONG:
3078 case OP_DOUBLE:
3079 case OP_VAR_VALUE:
3080 *pos += 4;
3081 break;
3082
3083 case OP_TYPE:
3084 case OP_BOOL:
3085 case OP_LAST:
3086 case OP_INTERNALVAR:
3087 *pos += 3;
3088 break;
3089
3090 case UNOP_MEMVAL:
3091 *pos += 3;
3092 nargs = 1;
3093 break;
3094
3095 case OP_REGISTER:
3096 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3097 break;
3098
3099 case STRUCTOP_STRUCT:
3100 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3101 nargs = 1;
3102 break;
3103
3104 case TERNOP_SLICE:
3105 *pos += 1;
3106 nargs = 3;
3107 break;
3108
3109 case OP_STRING:
3110 break;
3111
3112 default:
3113 error (_("Unexpected operator during name resolution"));
3114 }
3115
3116 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
3117 for (i = 0; i < nargs; i += 1)
3118 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3119 argvec[i] = NULL;
3120 exp = *expp;
3121
3122 /* Pass two: perform any resolution on principal operator. */
3123 switch (op)
3124 {
3125 default:
3126 break;
3127
3128 case OP_VAR_VALUE:
3129 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3130 {
3131 struct ada_symbol_info *candidates;
3132 int n_candidates;
3133
3134 n_candidates =
3135 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3136 (exp->elts[pc + 2].symbol),
3137 exp->elts[pc + 1].block, VAR_DOMAIN,
3138 &candidates);
3139
3140 if (n_candidates > 1)
3141 {
3142 /* Types tend to get re-introduced locally, so if there
3143 are any local symbols that are not types, first filter
3144 out all types. */
3145 int j;
3146 for (j = 0; j < n_candidates; j += 1)
3147 switch (SYMBOL_CLASS (candidates[j].sym))
3148 {
3149 case LOC_REGISTER:
3150 case LOC_ARG:
3151 case LOC_REF_ARG:
3152 case LOC_REGPARM_ADDR:
3153 case LOC_LOCAL:
3154 case LOC_COMPUTED:
3155 goto FoundNonType;
3156 default:
3157 break;
3158 }
3159 FoundNonType:
3160 if (j < n_candidates)
3161 {
3162 j = 0;
3163 while (j < n_candidates)
3164 {
3165 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3166 {
3167 candidates[j] = candidates[n_candidates - 1];
3168 n_candidates -= 1;
3169 }
3170 else
3171 j += 1;
3172 }
3173 }
3174 }
3175
3176 if (n_candidates == 0)
3177 error (_("No definition found for %s"),
3178 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3179 else if (n_candidates == 1)
3180 i = 0;
3181 else if (deprocedure_p
3182 && !is_nonfunction (candidates, n_candidates))
3183 {
3184 i = ada_resolve_function
3185 (candidates, n_candidates, NULL, 0,
3186 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3187 context_type);
3188 if (i < 0)
3189 error (_("Could not find a match for %s"),
3190 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3191 }
3192 else
3193 {
3194 printf_filtered (_("Multiple matches for %s\n"),
3195 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3196 user_select_syms (candidates, n_candidates, 1);
3197 i = 0;
3198 }
3199
3200 exp->elts[pc + 1].block = candidates[i].block;
3201 exp->elts[pc + 2].symbol = candidates[i].sym;
3202 if (innermost_block == NULL
3203 || contained_in (candidates[i].block, innermost_block))
3204 innermost_block = candidates[i].block;
3205 }
3206
3207 if (deprocedure_p
3208 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3209 == TYPE_CODE_FUNC))
3210 {
3211 replace_operator_with_call (expp, pc, 0, 0,
3212 exp->elts[pc + 2].symbol,
3213 exp->elts[pc + 1].block);
3214 exp = *expp;
3215 }
3216 break;
3217
3218 case OP_FUNCALL:
3219 {
3220 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3221 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3222 {
3223 struct ada_symbol_info *candidates;
3224 int n_candidates;
3225
3226 n_candidates =
3227 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3228 (exp->elts[pc + 5].symbol),
3229 exp->elts[pc + 4].block, VAR_DOMAIN,
3230 &candidates);
3231 if (n_candidates == 1)
3232 i = 0;
3233 else
3234 {
3235 i = ada_resolve_function
3236 (candidates, n_candidates,
3237 argvec, nargs,
3238 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3239 context_type);
3240 if (i < 0)
3241 error (_("Could not find a match for %s"),
3242 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3243 }
3244
3245 exp->elts[pc + 4].block = candidates[i].block;
3246 exp->elts[pc + 5].symbol = candidates[i].sym;
3247 if (innermost_block == NULL
3248 || contained_in (candidates[i].block, innermost_block))
3249 innermost_block = candidates[i].block;
3250 }
3251 }
3252 break;
3253 case BINOP_ADD:
3254 case BINOP_SUB:
3255 case BINOP_MUL:
3256 case BINOP_DIV:
3257 case BINOP_REM:
3258 case BINOP_MOD:
3259 case BINOP_CONCAT:
3260 case BINOP_BITWISE_AND:
3261 case BINOP_BITWISE_IOR:
3262 case BINOP_BITWISE_XOR:
3263 case BINOP_EQUAL:
3264 case BINOP_NOTEQUAL:
3265 case BINOP_LESS:
3266 case BINOP_GTR:
3267 case BINOP_LEQ:
3268 case BINOP_GEQ:
3269 case BINOP_EXP:
3270 case UNOP_NEG:
3271 case UNOP_PLUS:
3272 case UNOP_LOGICAL_NOT:
3273 case UNOP_ABS:
3274 if (possible_user_operator_p (op, argvec))
3275 {
3276 struct ada_symbol_info *candidates;
3277 int n_candidates;
3278
3279 n_candidates =
3280 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3281 (struct block *) NULL, VAR_DOMAIN,
3282 &candidates);
3283 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3284 ada_decoded_op_name (op), NULL);
3285 if (i < 0)
3286 break;
3287
3288 replace_operator_with_call (expp, pc, nargs, 1,
3289 candidates[i].sym, candidates[i].block);
3290 exp = *expp;
3291 }
3292 break;
3293
3294 case OP_TYPE:
3295 case OP_REGISTER:
3296 return NULL;
3297 }
3298
3299 *pos = pc;
3300 return evaluate_subexp_type (exp, pos);
3301 }
3302
3303 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3304 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3305 a non-pointer. */
3306 /* The term "match" here is rather loose. The match is heuristic and
3307 liberal. */
3308
3309 static int
3310 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3311 {
3312 ftype = ada_check_typedef (ftype);
3313 atype = ada_check_typedef (atype);
3314
3315 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3316 ftype = TYPE_TARGET_TYPE (ftype);
3317 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3318 atype = TYPE_TARGET_TYPE (atype);
3319
3320 switch (TYPE_CODE (ftype))
3321 {
3322 default:
3323 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3324 case TYPE_CODE_PTR:
3325 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3326 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3327 TYPE_TARGET_TYPE (atype), 0);
3328 else
3329 return (may_deref
3330 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3331 case TYPE_CODE_INT:
3332 case TYPE_CODE_ENUM:
3333 case TYPE_CODE_RANGE:
3334 switch (TYPE_CODE (atype))
3335 {
3336 case TYPE_CODE_INT:
3337 case TYPE_CODE_ENUM:
3338 case TYPE_CODE_RANGE:
3339 return 1;
3340 default:
3341 return 0;
3342 }
3343
3344 case TYPE_CODE_ARRAY:
3345 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3346 || ada_is_array_descriptor_type (atype));
3347
3348 case TYPE_CODE_STRUCT:
3349 if (ada_is_array_descriptor_type (ftype))
3350 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3351 || ada_is_array_descriptor_type (atype));
3352 else
3353 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3354 && !ada_is_array_descriptor_type (atype));
3355
3356 case TYPE_CODE_UNION:
3357 case TYPE_CODE_FLT:
3358 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3359 }
3360 }
3361
3362 /* Return non-zero if the formals of FUNC "sufficiently match" the
3363 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3364 may also be an enumeral, in which case it is treated as a 0-
3365 argument function. */
3366
3367 static int
3368 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3369 {
3370 int i;
3371 struct type *func_type = SYMBOL_TYPE (func);
3372
3373 if (SYMBOL_CLASS (func) == LOC_CONST
3374 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3375 return (n_actuals == 0);
3376 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3377 return 0;
3378
3379 if (TYPE_NFIELDS (func_type) != n_actuals)
3380 return 0;
3381
3382 for (i = 0; i < n_actuals; i += 1)
3383 {
3384 if (actuals[i] == NULL)
3385 return 0;
3386 else
3387 {
3388 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3389 i));
3390 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3391
3392 if (!ada_type_match (ftype, atype, 1))
3393 return 0;
3394 }
3395 }
3396 return 1;
3397 }
3398
3399 /* False iff function type FUNC_TYPE definitely does not produce a value
3400 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3401 FUNC_TYPE is not a valid function type with a non-null return type
3402 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3403
3404 static int
3405 return_match (struct type *func_type, struct type *context_type)
3406 {
3407 struct type *return_type;
3408
3409 if (func_type == NULL)
3410 return 1;
3411
3412 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3413 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3414 else
3415 return_type = get_base_type (func_type);
3416 if (return_type == NULL)
3417 return 1;
3418
3419 context_type = get_base_type (context_type);
3420
3421 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3422 return context_type == NULL || return_type == context_type;
3423 else if (context_type == NULL)
3424 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3425 else
3426 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3427 }
3428
3429
3430 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3431 function (if any) that matches the types of the NARGS arguments in
3432 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3433 that returns that type, then eliminate matches that don't. If
3434 CONTEXT_TYPE is void and there is at least one match that does not
3435 return void, eliminate all matches that do.
3436
3437 Asks the user if there is more than one match remaining. Returns -1
3438 if there is no such symbol or none is selected. NAME is used
3439 solely for messages. May re-arrange and modify SYMS in
3440 the process; the index returned is for the modified vector. */
3441
3442 static int
3443 ada_resolve_function (struct ada_symbol_info syms[],
3444 int nsyms, struct value **args, int nargs,
3445 const char *name, struct type *context_type)
3446 {
3447 int fallback;
3448 int k;
3449 int m; /* Number of hits */
3450
3451 m = 0;
3452 /* In the first pass of the loop, we only accept functions matching
3453 context_type. If none are found, we add a second pass of the loop
3454 where every function is accepted. */
3455 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3456 {
3457 for (k = 0; k < nsyms; k += 1)
3458 {
3459 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3460
3461 if (ada_args_match (syms[k].sym, args, nargs)
3462 && (fallback || return_match (type, context_type)))
3463 {
3464 syms[m] = syms[k];
3465 m += 1;
3466 }
3467 }
3468 }
3469
3470 if (m == 0)
3471 return -1;
3472 else if (m > 1)
3473 {
3474 printf_filtered (_("Multiple matches for %s\n"), name);
3475 user_select_syms (syms, m, 1);
3476 return 0;
3477 }
3478 return 0;
3479 }
3480
3481 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3482 in a listing of choices during disambiguation (see sort_choices, below).
3483 The idea is that overloadings of a subprogram name from the
3484 same package should sort in their source order. We settle for ordering
3485 such symbols by their trailing number (__N or $N). */
3486
3487 static int
3488 encoded_ordered_before (const char *N0, const char *N1)
3489 {
3490 if (N1 == NULL)
3491 return 0;
3492 else if (N0 == NULL)
3493 return 1;
3494 else
3495 {
3496 int k0, k1;
3497
3498 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3499 ;
3500 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3501 ;
3502 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3503 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3504 {
3505 int n0, n1;
3506
3507 n0 = k0;
3508 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3509 n0 -= 1;
3510 n1 = k1;
3511 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3512 n1 -= 1;
3513 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3514 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3515 }
3516 return (strcmp (N0, N1) < 0);
3517 }
3518 }
3519
3520 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3521 encoded names. */
3522
3523 static void
3524 sort_choices (struct ada_symbol_info syms[], int nsyms)
3525 {
3526 int i;
3527
3528 for (i = 1; i < nsyms; i += 1)
3529 {
3530 struct ada_symbol_info sym = syms[i];
3531 int j;
3532
3533 for (j = i - 1; j >= 0; j -= 1)
3534 {
3535 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3536 SYMBOL_LINKAGE_NAME (sym.sym)))
3537 break;
3538 syms[j + 1] = syms[j];
3539 }
3540 syms[j + 1] = sym;
3541 }
3542 }
3543
3544 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3545 by asking the user (if necessary), returning the number selected,
3546 and setting the first elements of SYMS items. Error if no symbols
3547 selected. */
3548
3549 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3550 to be re-integrated one of these days. */
3551
3552 int
3553 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3554 {
3555 int i;
3556 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3557 int n_chosen;
3558 int first_choice = (max_results == 1) ? 1 : 2;
3559 const char *select_mode = multiple_symbols_select_mode ();
3560
3561 if (max_results < 1)
3562 error (_("Request to select 0 symbols!"));
3563 if (nsyms <= 1)
3564 return nsyms;
3565
3566 if (select_mode == multiple_symbols_cancel)
3567 error (_("\
3568 canceled because the command is ambiguous\n\
3569 See set/show multiple-symbol."));
3570
3571 /* If select_mode is "all", then return all possible symbols.
3572 Only do that if more than one symbol can be selected, of course.
3573 Otherwise, display the menu as usual. */
3574 if (select_mode == multiple_symbols_all && max_results > 1)
3575 return nsyms;
3576
3577 printf_unfiltered (_("[0] cancel\n"));
3578 if (max_results > 1)
3579 printf_unfiltered (_("[1] all\n"));
3580
3581 sort_choices (syms, nsyms);
3582
3583 for (i = 0; i < nsyms; i += 1)
3584 {
3585 if (syms[i].sym == NULL)
3586 continue;
3587
3588 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3589 {
3590 struct symtab_and_line sal =
3591 find_function_start_sal (syms[i].sym, 1);
3592
3593 if (sal.symtab == NULL)
3594 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3595 i + first_choice,
3596 SYMBOL_PRINT_NAME (syms[i].sym),
3597 sal.line);
3598 else
3599 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3600 SYMBOL_PRINT_NAME (syms[i].sym),
3601 symtab_to_filename_for_display (sal.symtab),
3602 sal.line);
3603 continue;
3604 }
3605 else
3606 {
3607 int is_enumeral =
3608 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3609 && SYMBOL_TYPE (syms[i].sym) != NULL
3610 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3611 struct symtab *symtab = SYMBOL_SYMTAB (syms[i].sym);
3612
3613 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3614 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3615 i + first_choice,
3616 SYMBOL_PRINT_NAME (syms[i].sym),
3617 symtab_to_filename_for_display (symtab),
3618 SYMBOL_LINE (syms[i].sym));
3619 else if (is_enumeral
3620 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3621 {
3622 printf_unfiltered (("[%d] "), i + first_choice);
3623 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3624 gdb_stdout, -1, 0, &type_print_raw_options);
3625 printf_unfiltered (_("'(%s) (enumeral)\n"),
3626 SYMBOL_PRINT_NAME (syms[i].sym));
3627 }
3628 else if (symtab != NULL)
3629 printf_unfiltered (is_enumeral
3630 ? _("[%d] %s in %s (enumeral)\n")
3631 : _("[%d] %s at %s:?\n"),
3632 i + first_choice,
3633 SYMBOL_PRINT_NAME (syms[i].sym),
3634 symtab_to_filename_for_display (symtab));
3635 else
3636 printf_unfiltered (is_enumeral
3637 ? _("[%d] %s (enumeral)\n")
3638 : _("[%d] %s at ?\n"),
3639 i + first_choice,
3640 SYMBOL_PRINT_NAME (syms[i].sym));
3641 }
3642 }
3643
3644 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3645 "overload-choice");
3646
3647 for (i = 0; i < n_chosen; i += 1)
3648 syms[i] = syms[chosen[i]];
3649
3650 return n_chosen;
3651 }
3652
3653 /* Read and validate a set of numeric choices from the user in the
3654 range 0 .. N_CHOICES-1. Place the results in increasing
3655 order in CHOICES[0 .. N-1], and return N.
3656
3657 The user types choices as a sequence of numbers on one line
3658 separated by blanks, encoding them as follows:
3659
3660 + A choice of 0 means to cancel the selection, throwing an error.
3661 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3662 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3663
3664 The user is not allowed to choose more than MAX_RESULTS values.
3665
3666 ANNOTATION_SUFFIX, if present, is used to annotate the input
3667 prompts (for use with the -f switch). */
3668
3669 int
3670 get_selections (int *choices, int n_choices, int max_results,
3671 int is_all_choice, char *annotation_suffix)
3672 {
3673 char *args;
3674 char *prompt;
3675 int n_chosen;
3676 int first_choice = is_all_choice ? 2 : 1;
3677
3678 prompt = getenv ("PS2");
3679 if (prompt == NULL)
3680 prompt = "> ";
3681
3682 args = command_line_input (prompt, 0, annotation_suffix);
3683
3684 if (args == NULL)
3685 error_no_arg (_("one or more choice numbers"));
3686
3687 n_chosen = 0;
3688
3689 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3690 order, as given in args. Choices are validated. */
3691 while (1)
3692 {
3693 char *args2;
3694 int choice, j;
3695
3696 args = skip_spaces (args);
3697 if (*args == '\0' && n_chosen == 0)
3698 error_no_arg (_("one or more choice numbers"));
3699 else if (*args == '\0')
3700 break;
3701
3702 choice = strtol (args, &args2, 10);
3703 if (args == args2 || choice < 0
3704 || choice > n_choices + first_choice - 1)
3705 error (_("Argument must be choice number"));
3706 args = args2;
3707
3708 if (choice == 0)
3709 error (_("cancelled"));
3710
3711 if (choice < first_choice)
3712 {
3713 n_chosen = n_choices;
3714 for (j = 0; j < n_choices; j += 1)
3715 choices[j] = j;
3716 break;
3717 }
3718 choice -= first_choice;
3719
3720 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3721 {
3722 }
3723
3724 if (j < 0 || choice != choices[j])
3725 {
3726 int k;
3727
3728 for (k = n_chosen - 1; k > j; k -= 1)
3729 choices[k + 1] = choices[k];
3730 choices[j + 1] = choice;
3731 n_chosen += 1;
3732 }
3733 }
3734
3735 if (n_chosen > max_results)
3736 error (_("Select no more than %d of the above"), max_results);
3737
3738 return n_chosen;
3739 }
3740
3741 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3742 on the function identified by SYM and BLOCK, and taking NARGS
3743 arguments. Update *EXPP as needed to hold more space. */
3744
3745 static void
3746 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3747 int oplen, struct symbol *sym,
3748 const struct block *block)
3749 {
3750 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3751 symbol, -oplen for operator being replaced). */
3752 struct expression *newexp = (struct expression *)
3753 xzalloc (sizeof (struct expression)
3754 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3755 struct expression *exp = *expp;
3756
3757 newexp->nelts = exp->nelts + 7 - oplen;
3758 newexp->language_defn = exp->language_defn;
3759 newexp->gdbarch = exp->gdbarch;
3760 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3761 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3762 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3763
3764 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3765 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3766
3767 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3768 newexp->elts[pc + 4].block = block;
3769 newexp->elts[pc + 5].symbol = sym;
3770
3771 *expp = newexp;
3772 xfree (exp);
3773 }
3774
3775 /* Type-class predicates */
3776
3777 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3778 or FLOAT). */
3779
3780 static int
3781 numeric_type_p (struct type *type)
3782 {
3783 if (type == NULL)
3784 return 0;
3785 else
3786 {
3787 switch (TYPE_CODE (type))
3788 {
3789 case TYPE_CODE_INT:
3790 case TYPE_CODE_FLT:
3791 return 1;
3792 case TYPE_CODE_RANGE:
3793 return (type == TYPE_TARGET_TYPE (type)
3794 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3795 default:
3796 return 0;
3797 }
3798 }
3799 }
3800
3801 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3802
3803 static int
3804 integer_type_p (struct type *type)
3805 {
3806 if (type == NULL)
3807 return 0;
3808 else
3809 {
3810 switch (TYPE_CODE (type))
3811 {
3812 case TYPE_CODE_INT:
3813 return 1;
3814 case TYPE_CODE_RANGE:
3815 return (type == TYPE_TARGET_TYPE (type)
3816 || integer_type_p (TYPE_TARGET_TYPE (type)));
3817 default:
3818 return 0;
3819 }
3820 }
3821 }
3822
3823 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3824
3825 static int
3826 scalar_type_p (struct type *type)
3827 {
3828 if (type == NULL)
3829 return 0;
3830 else
3831 {
3832 switch (TYPE_CODE (type))
3833 {
3834 case TYPE_CODE_INT:
3835 case TYPE_CODE_RANGE:
3836 case TYPE_CODE_ENUM:
3837 case TYPE_CODE_FLT:
3838 return 1;
3839 default:
3840 return 0;
3841 }
3842 }
3843 }
3844
3845 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3846
3847 static int
3848 discrete_type_p (struct type *type)
3849 {
3850 if (type == NULL)
3851 return 0;
3852 else
3853 {
3854 switch (TYPE_CODE (type))
3855 {
3856 case TYPE_CODE_INT:
3857 case TYPE_CODE_RANGE:
3858 case TYPE_CODE_ENUM:
3859 case TYPE_CODE_BOOL:
3860 return 1;
3861 default:
3862 return 0;
3863 }
3864 }
3865 }
3866
3867 /* Returns non-zero if OP with operands in the vector ARGS could be
3868 a user-defined function. Errs on the side of pre-defined operators
3869 (i.e., result 0). */
3870
3871 static int
3872 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3873 {
3874 struct type *type0 =
3875 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3876 struct type *type1 =
3877 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3878
3879 if (type0 == NULL)
3880 return 0;
3881
3882 switch (op)
3883 {
3884 default:
3885 return 0;
3886
3887 case BINOP_ADD:
3888 case BINOP_SUB:
3889 case BINOP_MUL:
3890 case BINOP_DIV:
3891 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3892
3893 case BINOP_REM:
3894 case BINOP_MOD:
3895 case BINOP_BITWISE_AND:
3896 case BINOP_BITWISE_IOR:
3897 case BINOP_BITWISE_XOR:
3898 return (!(integer_type_p (type0) && integer_type_p (type1)));
3899
3900 case BINOP_EQUAL:
3901 case BINOP_NOTEQUAL:
3902 case BINOP_LESS:
3903 case BINOP_GTR:
3904 case BINOP_LEQ:
3905 case BINOP_GEQ:
3906 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3907
3908 case BINOP_CONCAT:
3909 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3910
3911 case BINOP_EXP:
3912 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3913
3914 case UNOP_NEG:
3915 case UNOP_PLUS:
3916 case UNOP_LOGICAL_NOT:
3917 case UNOP_ABS:
3918 return (!numeric_type_p (type0));
3919
3920 }
3921 }
3922 \f
3923 /* Renaming */
3924
3925 /* NOTES:
3926
3927 1. In the following, we assume that a renaming type's name may
3928 have an ___XD suffix. It would be nice if this went away at some
3929 point.
3930 2. We handle both the (old) purely type-based representation of
3931 renamings and the (new) variable-based encoding. At some point,
3932 it is devoutly to be hoped that the former goes away
3933 (FIXME: hilfinger-2007-07-09).
3934 3. Subprogram renamings are not implemented, although the XRS
3935 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3936
3937 /* If SYM encodes a renaming,
3938
3939 <renaming> renames <renamed entity>,
3940
3941 sets *LEN to the length of the renamed entity's name,
3942 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3943 the string describing the subcomponent selected from the renamed
3944 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3945 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3946 are undefined). Otherwise, returns a value indicating the category
3947 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3948 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3949 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3950 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3951 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3952 may be NULL, in which case they are not assigned.
3953
3954 [Currently, however, GCC does not generate subprogram renamings.] */
3955
3956 enum ada_renaming_category
3957 ada_parse_renaming (struct symbol *sym,
3958 const char **renamed_entity, int *len,
3959 const char **renaming_expr)
3960 {
3961 enum ada_renaming_category kind;
3962 const char *info;
3963 const char *suffix;
3964
3965 if (sym == NULL)
3966 return ADA_NOT_RENAMING;
3967 switch (SYMBOL_CLASS (sym))
3968 {
3969 default:
3970 return ADA_NOT_RENAMING;
3971 case LOC_TYPEDEF:
3972 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3973 renamed_entity, len, renaming_expr);
3974 case LOC_LOCAL:
3975 case LOC_STATIC:
3976 case LOC_COMPUTED:
3977 case LOC_OPTIMIZED_OUT:
3978 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3979 if (info == NULL)
3980 return ADA_NOT_RENAMING;
3981 switch (info[5])
3982 {
3983 case '_':
3984 kind = ADA_OBJECT_RENAMING;
3985 info += 6;
3986 break;
3987 case 'E':
3988 kind = ADA_EXCEPTION_RENAMING;
3989 info += 7;
3990 break;
3991 case 'P':
3992 kind = ADA_PACKAGE_RENAMING;
3993 info += 7;
3994 break;
3995 case 'S':
3996 kind = ADA_SUBPROGRAM_RENAMING;
3997 info += 7;
3998 break;
3999 default:
4000 return ADA_NOT_RENAMING;
4001 }
4002 }
4003
4004 if (renamed_entity != NULL)
4005 *renamed_entity = info;
4006 suffix = strstr (info, "___XE");
4007 if (suffix == NULL || suffix == info)
4008 return ADA_NOT_RENAMING;
4009 if (len != NULL)
4010 *len = strlen (info) - strlen (suffix);
4011 suffix += 5;
4012 if (renaming_expr != NULL)
4013 *renaming_expr = suffix;
4014 return kind;
4015 }
4016
4017 /* Assuming TYPE encodes a renaming according to the old encoding in
4018 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4019 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4020 ADA_NOT_RENAMING otherwise. */
4021 static enum ada_renaming_category
4022 parse_old_style_renaming (struct type *type,
4023 const char **renamed_entity, int *len,
4024 const char **renaming_expr)
4025 {
4026 enum ada_renaming_category kind;
4027 const char *name;
4028 const char *info;
4029 const char *suffix;
4030
4031 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4032 || TYPE_NFIELDS (type) != 1)
4033 return ADA_NOT_RENAMING;
4034
4035 name = type_name_no_tag (type);
4036 if (name == NULL)
4037 return ADA_NOT_RENAMING;
4038
4039 name = strstr (name, "___XR");
4040 if (name == NULL)
4041 return ADA_NOT_RENAMING;
4042 switch (name[5])
4043 {
4044 case '\0':
4045 case '_':
4046 kind = ADA_OBJECT_RENAMING;
4047 break;
4048 case 'E':
4049 kind = ADA_EXCEPTION_RENAMING;
4050 break;
4051 case 'P':
4052 kind = ADA_PACKAGE_RENAMING;
4053 break;
4054 case 'S':
4055 kind = ADA_SUBPROGRAM_RENAMING;
4056 break;
4057 default:
4058 return ADA_NOT_RENAMING;
4059 }
4060
4061 info = TYPE_FIELD_NAME (type, 0);
4062 if (info == NULL)
4063 return ADA_NOT_RENAMING;
4064 if (renamed_entity != NULL)
4065 *renamed_entity = info;
4066 suffix = strstr (info, "___XE");
4067 if (renaming_expr != NULL)
4068 *renaming_expr = suffix + 5;
4069 if (suffix == NULL || suffix == info)
4070 return ADA_NOT_RENAMING;
4071 if (len != NULL)
4072 *len = suffix - info;
4073 return kind;
4074 }
4075
4076 /* Compute the value of the given RENAMING_SYM, which is expected to
4077 be a symbol encoding a renaming expression. BLOCK is the block
4078 used to evaluate the renaming. */
4079
4080 static struct value *
4081 ada_read_renaming_var_value (struct symbol *renaming_sym,
4082 struct block *block)
4083 {
4084 const char *sym_name;
4085 struct expression *expr;
4086 struct value *value;
4087 struct cleanup *old_chain = NULL;
4088
4089 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4090 expr = parse_exp_1 (&sym_name, 0, block, 0);
4091 old_chain = make_cleanup (free_current_contents, &expr);
4092 value = evaluate_expression (expr);
4093
4094 do_cleanups (old_chain);
4095 return value;
4096 }
4097 \f
4098
4099 /* Evaluation: Function Calls */
4100
4101 /* Return an lvalue containing the value VAL. This is the identity on
4102 lvalues, and otherwise has the side-effect of allocating memory
4103 in the inferior where a copy of the value contents is copied. */
4104
4105 static struct value *
4106 ensure_lval (struct value *val)
4107 {
4108 if (VALUE_LVAL (val) == not_lval
4109 || VALUE_LVAL (val) == lval_internalvar)
4110 {
4111 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4112 const CORE_ADDR addr =
4113 value_as_long (value_allocate_space_in_inferior (len));
4114
4115 set_value_address (val, addr);
4116 VALUE_LVAL (val) = lval_memory;
4117 write_memory (addr, value_contents (val), len);
4118 }
4119
4120 return val;
4121 }
4122
4123 /* Return the value ACTUAL, converted to be an appropriate value for a
4124 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4125 allocating any necessary descriptors (fat pointers), or copies of
4126 values not residing in memory, updating it as needed. */
4127
4128 struct value *
4129 ada_convert_actual (struct value *actual, struct type *formal_type0)
4130 {
4131 struct type *actual_type = ada_check_typedef (value_type (actual));
4132 struct type *formal_type = ada_check_typedef (formal_type0);
4133 struct type *formal_target =
4134 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4135 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4136 struct type *actual_target =
4137 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4138 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4139
4140 if (ada_is_array_descriptor_type (formal_target)
4141 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4142 return make_array_descriptor (formal_type, actual);
4143 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4144 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4145 {
4146 struct value *result;
4147
4148 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4149 && ada_is_array_descriptor_type (actual_target))
4150 result = desc_data (actual);
4151 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4152 {
4153 if (VALUE_LVAL (actual) != lval_memory)
4154 {
4155 struct value *val;
4156
4157 actual_type = ada_check_typedef (value_type (actual));
4158 val = allocate_value (actual_type);
4159 memcpy ((char *) value_contents_raw (val),
4160 (char *) value_contents (actual),
4161 TYPE_LENGTH (actual_type));
4162 actual = ensure_lval (val);
4163 }
4164 result = value_addr (actual);
4165 }
4166 else
4167 return actual;
4168 return value_cast_pointers (formal_type, result, 0);
4169 }
4170 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4171 return ada_value_ind (actual);
4172
4173 return actual;
4174 }
4175
4176 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4177 type TYPE. This is usually an inefficient no-op except on some targets
4178 (such as AVR) where the representation of a pointer and an address
4179 differs. */
4180
4181 static CORE_ADDR
4182 value_pointer (struct value *value, struct type *type)
4183 {
4184 struct gdbarch *gdbarch = get_type_arch (type);
4185 unsigned len = TYPE_LENGTH (type);
4186 gdb_byte *buf = alloca (len);
4187 CORE_ADDR addr;
4188
4189 addr = value_address (value);
4190 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4191 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4192 return addr;
4193 }
4194
4195
4196 /* Push a descriptor of type TYPE for array value ARR on the stack at
4197 *SP, updating *SP to reflect the new descriptor. Return either
4198 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4199 to-descriptor type rather than a descriptor type), a struct value *
4200 representing a pointer to this descriptor. */
4201
4202 static struct value *
4203 make_array_descriptor (struct type *type, struct value *arr)
4204 {
4205 struct type *bounds_type = desc_bounds_type (type);
4206 struct type *desc_type = desc_base_type (type);
4207 struct value *descriptor = allocate_value (desc_type);
4208 struct value *bounds = allocate_value (bounds_type);
4209 int i;
4210
4211 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4212 i > 0; i -= 1)
4213 {
4214 modify_field (value_type (bounds), value_contents_writeable (bounds),
4215 ada_array_bound (arr, i, 0),
4216 desc_bound_bitpos (bounds_type, i, 0),
4217 desc_bound_bitsize (bounds_type, i, 0));
4218 modify_field (value_type (bounds), value_contents_writeable (bounds),
4219 ada_array_bound (arr, i, 1),
4220 desc_bound_bitpos (bounds_type, i, 1),
4221 desc_bound_bitsize (bounds_type, i, 1));
4222 }
4223
4224 bounds = ensure_lval (bounds);
4225
4226 modify_field (value_type (descriptor),
4227 value_contents_writeable (descriptor),
4228 value_pointer (ensure_lval (arr),
4229 TYPE_FIELD_TYPE (desc_type, 0)),
4230 fat_pntr_data_bitpos (desc_type),
4231 fat_pntr_data_bitsize (desc_type));
4232
4233 modify_field (value_type (descriptor),
4234 value_contents_writeable (descriptor),
4235 value_pointer (bounds,
4236 TYPE_FIELD_TYPE (desc_type, 1)),
4237 fat_pntr_bounds_bitpos (desc_type),
4238 fat_pntr_bounds_bitsize (desc_type));
4239
4240 descriptor = ensure_lval (descriptor);
4241
4242 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4243 return value_addr (descriptor);
4244 else
4245 return descriptor;
4246 }
4247 \f
4248 /* Symbol Cache Module */
4249
4250 /* This section implements a simple, fixed-sized hash table for those
4251 Ada-mode symbols that get looked up in the course of executing the user's
4252 commands. The size is fixed on the grounds that there are not
4253 likely to be all that many symbols looked up during any given
4254 session, regardless of the size of the symbol table. If we decide
4255 to go to a resizable table, let's just use the stuff from libiberty
4256 instead. */
4257
4258 /* Performance measurements made as of 2010-01-15 indicate that
4259 this case does bring some noticeable improvements. Depending
4260 on the type of entity being printed, the cache can make it as much
4261 as an order of magnitude faster than without it.
4262
4263 The descriptive type DWARF extension has significantly reduced
4264 the need for this cache, at least when DWARF is being used. However,
4265 even in this case, some expensive name-based symbol searches are still
4266 sometimes necessary - to find an XVZ variable, mostly. */
4267
4268 #define HASH_SIZE 1009
4269
4270 /* The result of a symbol lookup to be stored in our cache. */
4271
4272 struct cache_entry
4273 {
4274 /* The name used to perform the lookup. */
4275 const char *name;
4276 /* The namespace used during the lookup. */
4277 domain_enum namespace;
4278 /* The symbol returned by the lookup, or NULL if no matching symbol
4279 was found. */
4280 struct symbol *sym;
4281 /* The block where the symbol was found, or NULL if no matching
4282 symbol was found. */
4283 const struct block *block;
4284 /* A pointer to the next entry with the same hash. */
4285 struct cache_entry *next;
4286 };
4287
4288 /* An obstack used to store the entries in our cache. */
4289 static struct obstack cache_space;
4290
4291 /* The root of the hash table used to implement our symbol cache. */
4292 static struct cache_entry *cache[HASH_SIZE];
4293
4294 /* Clear all entries from the symbol cache. */
4295
4296 static void
4297 ada_clear_symbol_cache (void)
4298 {
4299 obstack_free (&cache_space, NULL);
4300 obstack_init (&cache_space);
4301 memset (cache, '\000', sizeof (cache));
4302 }
4303
4304 /* Search our cache for an entry matching NAME and NAMESPACE.
4305 Return it if found, or NULL otherwise. */
4306
4307 static struct cache_entry **
4308 find_entry (const char *name, domain_enum namespace)
4309 {
4310 int h = msymbol_hash (name) % HASH_SIZE;
4311 struct cache_entry **e;
4312
4313 for (e = &cache[h]; *e != NULL; e = &(*e)->next)
4314 {
4315 if (namespace == (*e)->namespace && strcmp (name, (*e)->name) == 0)
4316 return e;
4317 }
4318 return NULL;
4319 }
4320
4321 /* Search the symbol cache for an entry matching NAME and NAMESPACE.
4322 Return 1 if found, 0 otherwise.
4323
4324 If an entry was found and SYM is not NULL, set *SYM to the entry's
4325 SYM. Same principle for BLOCK if not NULL. */
4326
4327 static int
4328 lookup_cached_symbol (const char *name, domain_enum namespace,
4329 struct symbol **sym, const struct block **block)
4330 {
4331 struct cache_entry **e = find_entry (name, namespace);
4332
4333 if (e == NULL)
4334 return 0;
4335 if (sym != NULL)
4336 *sym = (*e)->sym;
4337 if (block != NULL)
4338 *block = (*e)->block;
4339 return 1;
4340 }
4341
4342 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4343 in domain NAMESPACE, save this result in our symbol cache. */
4344
4345 static void
4346 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
4347 const struct block *block)
4348 {
4349 int h;
4350 char *copy;
4351 struct cache_entry *e;
4352
4353 /* If the symbol is a local symbol, then do not cache it, as a search
4354 for that symbol depends on the context. To determine whether
4355 the symbol is local or not, we check the block where we found it
4356 against the global and static blocks of its associated symtab. */
4357 if (sym
4358 && BLOCKVECTOR_BLOCK (BLOCKVECTOR (sym->symtab), GLOBAL_BLOCK) != block
4359 && BLOCKVECTOR_BLOCK (BLOCKVECTOR (sym->symtab), STATIC_BLOCK) != block)
4360 return;
4361
4362 h = msymbol_hash (name) % HASH_SIZE;
4363 e = (struct cache_entry *) obstack_alloc (&cache_space, sizeof (*e));
4364 e->next = cache[h];
4365 cache[h] = e;
4366 e->name = copy = obstack_alloc (&cache_space, strlen (name) + 1);
4367 strcpy (copy, name);
4368 e->sym = sym;
4369 e->namespace = namespace;
4370 e->block = block;
4371 }
4372 \f
4373 /* Symbol Lookup */
4374
4375 /* Return nonzero if wild matching should be used when searching for
4376 all symbols matching LOOKUP_NAME.
4377
4378 LOOKUP_NAME is expected to be a symbol name after transformation
4379 for Ada lookups (see ada_name_for_lookup). */
4380
4381 static int
4382 should_use_wild_match (const char *lookup_name)
4383 {
4384 return (strstr (lookup_name, "__") == NULL);
4385 }
4386
4387 /* Return the result of a standard (literal, C-like) lookup of NAME in
4388 given DOMAIN, visible from lexical block BLOCK. */
4389
4390 static struct symbol *
4391 standard_lookup (const char *name, const struct block *block,
4392 domain_enum domain)
4393 {
4394 /* Initialize it just to avoid a GCC false warning. */
4395 struct symbol *sym = NULL;
4396
4397 if (lookup_cached_symbol (name, domain, &sym, NULL))
4398 return sym;
4399 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4400 cache_symbol (name, domain, sym, block_found);
4401 return sym;
4402 }
4403
4404
4405 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4406 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4407 since they contend in overloading in the same way. */
4408 static int
4409 is_nonfunction (struct ada_symbol_info syms[], int n)
4410 {
4411 int i;
4412
4413 for (i = 0; i < n; i += 1)
4414 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4415 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4416 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
4417 return 1;
4418
4419 return 0;
4420 }
4421
4422 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4423 struct types. Otherwise, they may not. */
4424
4425 static int
4426 equiv_types (struct type *type0, struct type *type1)
4427 {
4428 if (type0 == type1)
4429 return 1;
4430 if (type0 == NULL || type1 == NULL
4431 || TYPE_CODE (type0) != TYPE_CODE (type1))
4432 return 0;
4433 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4434 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4435 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4436 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4437 return 1;
4438
4439 return 0;
4440 }
4441
4442 /* True iff SYM0 represents the same entity as SYM1, or one that is
4443 no more defined than that of SYM1. */
4444
4445 static int
4446 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4447 {
4448 if (sym0 == sym1)
4449 return 1;
4450 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4451 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4452 return 0;
4453
4454 switch (SYMBOL_CLASS (sym0))
4455 {
4456 case LOC_UNDEF:
4457 return 1;
4458 case LOC_TYPEDEF:
4459 {
4460 struct type *type0 = SYMBOL_TYPE (sym0);
4461 struct type *type1 = SYMBOL_TYPE (sym1);
4462 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4463 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4464 int len0 = strlen (name0);
4465
4466 return
4467 TYPE_CODE (type0) == TYPE_CODE (type1)
4468 && (equiv_types (type0, type1)
4469 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4470 && strncmp (name1 + len0, "___XV", 5) == 0));
4471 }
4472 case LOC_CONST:
4473 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4474 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4475 default:
4476 return 0;
4477 }
4478 }
4479
4480 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4481 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4482
4483 static void
4484 add_defn_to_vec (struct obstack *obstackp,
4485 struct symbol *sym,
4486 const struct block *block)
4487 {
4488 int i;
4489 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4490
4491 /* Do not try to complete stub types, as the debugger is probably
4492 already scanning all symbols matching a certain name at the
4493 time when this function is called. Trying to replace the stub
4494 type by its associated full type will cause us to restart a scan
4495 which may lead to an infinite recursion. Instead, the client
4496 collecting the matching symbols will end up collecting several
4497 matches, with at least one of them complete. It can then filter
4498 out the stub ones if needed. */
4499
4500 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4501 {
4502 if (lesseq_defined_than (sym, prevDefns[i].sym))
4503 return;
4504 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4505 {
4506 prevDefns[i].sym = sym;
4507 prevDefns[i].block = block;
4508 return;
4509 }
4510 }
4511
4512 {
4513 struct ada_symbol_info info;
4514
4515 info.sym = sym;
4516 info.block = block;
4517 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4518 }
4519 }
4520
4521 /* Number of ada_symbol_info structures currently collected in
4522 current vector in *OBSTACKP. */
4523
4524 static int
4525 num_defns_collected (struct obstack *obstackp)
4526 {
4527 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4528 }
4529
4530 /* Vector of ada_symbol_info structures currently collected in current
4531 vector in *OBSTACKP. If FINISH, close off the vector and return
4532 its final address. */
4533
4534 static struct ada_symbol_info *
4535 defns_collected (struct obstack *obstackp, int finish)
4536 {
4537 if (finish)
4538 return obstack_finish (obstackp);
4539 else
4540 return (struct ada_symbol_info *) obstack_base (obstackp);
4541 }
4542
4543 /* Return a bound minimal symbol matching NAME according to Ada
4544 decoding rules. Returns an invalid symbol if there is no such
4545 minimal symbol. Names prefixed with "standard__" are handled
4546 specially: "standard__" is first stripped off, and only static and
4547 global symbols are searched. */
4548
4549 struct bound_minimal_symbol
4550 ada_lookup_simple_minsym (const char *name)
4551 {
4552 struct bound_minimal_symbol result;
4553 struct objfile *objfile;
4554 struct minimal_symbol *msymbol;
4555 const int wild_match_p = should_use_wild_match (name);
4556
4557 memset (&result, 0, sizeof (result));
4558
4559 /* Special case: If the user specifies a symbol name inside package
4560 Standard, do a non-wild matching of the symbol name without
4561 the "standard__" prefix. This was primarily introduced in order
4562 to allow the user to specifically access the standard exceptions
4563 using, for instance, Standard.Constraint_Error when Constraint_Error
4564 is ambiguous (due to the user defining its own Constraint_Error
4565 entity inside its program). */
4566 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4567 name += sizeof ("standard__") - 1;
4568
4569 ALL_MSYMBOLS (objfile, msymbol)
4570 {
4571 if (match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
4572 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4573 {
4574 result.minsym = msymbol;
4575 result.objfile = objfile;
4576 break;
4577 }
4578 }
4579
4580 return result;
4581 }
4582
4583 /* For all subprograms that statically enclose the subprogram of the
4584 selected frame, add symbols matching identifier NAME in DOMAIN
4585 and their blocks to the list of data in OBSTACKP, as for
4586 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4587 with a wildcard prefix. */
4588
4589 static void
4590 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4591 const char *name, domain_enum namespace,
4592 int wild_match_p)
4593 {
4594 }
4595
4596 /* True if TYPE is definitely an artificial type supplied to a symbol
4597 for which no debugging information was given in the symbol file. */
4598
4599 static int
4600 is_nondebugging_type (struct type *type)
4601 {
4602 const char *name = ada_type_name (type);
4603
4604 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4605 }
4606
4607 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4608 that are deemed "identical" for practical purposes.
4609
4610 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4611 types and that their number of enumerals is identical (in other
4612 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4613
4614 static int
4615 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4616 {
4617 int i;
4618
4619 /* The heuristic we use here is fairly conservative. We consider
4620 that 2 enumerate types are identical if they have the same
4621 number of enumerals and that all enumerals have the same
4622 underlying value and name. */
4623
4624 /* All enums in the type should have an identical underlying value. */
4625 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4626 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
4627 return 0;
4628
4629 /* All enumerals should also have the same name (modulo any numerical
4630 suffix). */
4631 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4632 {
4633 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4634 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4635 int len_1 = strlen (name_1);
4636 int len_2 = strlen (name_2);
4637
4638 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4639 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4640 if (len_1 != len_2
4641 || strncmp (TYPE_FIELD_NAME (type1, i),
4642 TYPE_FIELD_NAME (type2, i),
4643 len_1) != 0)
4644 return 0;
4645 }
4646
4647 return 1;
4648 }
4649
4650 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4651 that are deemed "identical" for practical purposes. Sometimes,
4652 enumerals are not strictly identical, but their types are so similar
4653 that they can be considered identical.
4654
4655 For instance, consider the following code:
4656
4657 type Color is (Black, Red, Green, Blue, White);
4658 type RGB_Color is new Color range Red .. Blue;
4659
4660 Type RGB_Color is a subrange of an implicit type which is a copy
4661 of type Color. If we call that implicit type RGB_ColorB ("B" is
4662 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4663 As a result, when an expression references any of the enumeral
4664 by name (Eg. "print green"), the expression is technically
4665 ambiguous and the user should be asked to disambiguate. But
4666 doing so would only hinder the user, since it wouldn't matter
4667 what choice he makes, the outcome would always be the same.
4668 So, for practical purposes, we consider them as the same. */
4669
4670 static int
4671 symbols_are_identical_enums (struct ada_symbol_info *syms, int nsyms)
4672 {
4673 int i;
4674
4675 /* Before performing a thorough comparison check of each type,
4676 we perform a series of inexpensive checks. We expect that these
4677 checks will quickly fail in the vast majority of cases, and thus
4678 help prevent the unnecessary use of a more expensive comparison.
4679 Said comparison also expects us to make some of these checks
4680 (see ada_identical_enum_types_p). */
4681
4682 /* Quick check: All symbols should have an enum type. */
4683 for (i = 0; i < nsyms; i++)
4684 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM)
4685 return 0;
4686
4687 /* Quick check: They should all have the same value. */
4688 for (i = 1; i < nsyms; i++)
4689 if (SYMBOL_VALUE (syms[i].sym) != SYMBOL_VALUE (syms[0].sym))
4690 return 0;
4691
4692 /* Quick check: They should all have the same number of enumerals. */
4693 for (i = 1; i < nsyms; i++)
4694 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].sym))
4695 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].sym)))
4696 return 0;
4697
4698 /* All the sanity checks passed, so we might have a set of
4699 identical enumeration types. Perform a more complete
4700 comparison of the type of each symbol. */
4701 for (i = 1; i < nsyms; i++)
4702 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].sym),
4703 SYMBOL_TYPE (syms[0].sym)))
4704 return 0;
4705
4706 return 1;
4707 }
4708
4709 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4710 duplicate other symbols in the list (The only case I know of where
4711 this happens is when object files containing stabs-in-ecoff are
4712 linked with files containing ordinary ecoff debugging symbols (or no
4713 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4714 Returns the number of items in the modified list. */
4715
4716 static int
4717 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4718 {
4719 int i, j;
4720
4721 /* We should never be called with less than 2 symbols, as there
4722 cannot be any extra symbol in that case. But it's easy to
4723 handle, since we have nothing to do in that case. */
4724 if (nsyms < 2)
4725 return nsyms;
4726
4727 i = 0;
4728 while (i < nsyms)
4729 {
4730 int remove_p = 0;
4731
4732 /* If two symbols have the same name and one of them is a stub type,
4733 the get rid of the stub. */
4734
4735 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4736 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4737 {
4738 for (j = 0; j < nsyms; j++)
4739 {
4740 if (j != i
4741 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4742 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4743 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4744 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4745 remove_p = 1;
4746 }
4747 }
4748
4749 /* Two symbols with the same name, same class and same address
4750 should be identical. */
4751
4752 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4753 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4754 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4755 {
4756 for (j = 0; j < nsyms; j += 1)
4757 {
4758 if (i != j
4759 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4760 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4761 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4762 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4763 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4764 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4765 remove_p = 1;
4766 }
4767 }
4768
4769 if (remove_p)
4770 {
4771 for (j = i + 1; j < nsyms; j += 1)
4772 syms[j - 1] = syms[j];
4773 nsyms -= 1;
4774 }
4775
4776 i += 1;
4777 }
4778
4779 /* If all the remaining symbols are identical enumerals, then
4780 just keep the first one and discard the rest.
4781
4782 Unlike what we did previously, we do not discard any entry
4783 unless they are ALL identical. This is because the symbol
4784 comparison is not a strict comparison, but rather a practical
4785 comparison. If all symbols are considered identical, then
4786 we can just go ahead and use the first one and discard the rest.
4787 But if we cannot reduce the list to a single element, we have
4788 to ask the user to disambiguate anyways. And if we have to
4789 present a multiple-choice menu, it's less confusing if the list
4790 isn't missing some choices that were identical and yet distinct. */
4791 if (symbols_are_identical_enums (syms, nsyms))
4792 nsyms = 1;
4793
4794 return nsyms;
4795 }
4796
4797 /* Given a type that corresponds to a renaming entity, use the type name
4798 to extract the scope (package name or function name, fully qualified,
4799 and following the GNAT encoding convention) where this renaming has been
4800 defined. The string returned needs to be deallocated after use. */
4801
4802 static char *
4803 xget_renaming_scope (struct type *renaming_type)
4804 {
4805 /* The renaming types adhere to the following convention:
4806 <scope>__<rename>___<XR extension>.
4807 So, to extract the scope, we search for the "___XR" extension,
4808 and then backtrack until we find the first "__". */
4809
4810 const char *name = type_name_no_tag (renaming_type);
4811 char *suffix = strstr (name, "___XR");
4812 char *last;
4813 int scope_len;
4814 char *scope;
4815
4816 /* Now, backtrack a bit until we find the first "__". Start looking
4817 at suffix - 3, as the <rename> part is at least one character long. */
4818
4819 for (last = suffix - 3; last > name; last--)
4820 if (last[0] == '_' && last[1] == '_')
4821 break;
4822
4823 /* Make a copy of scope and return it. */
4824
4825 scope_len = last - name;
4826 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4827
4828 strncpy (scope, name, scope_len);
4829 scope[scope_len] = '\0';
4830
4831 return scope;
4832 }
4833
4834 /* Return nonzero if NAME corresponds to a package name. */
4835
4836 static int
4837 is_package_name (const char *name)
4838 {
4839 /* Here, We take advantage of the fact that no symbols are generated
4840 for packages, while symbols are generated for each function.
4841 So the condition for NAME represent a package becomes equivalent
4842 to NAME not existing in our list of symbols. There is only one
4843 small complication with library-level functions (see below). */
4844
4845 char *fun_name;
4846
4847 /* If it is a function that has not been defined at library level,
4848 then we should be able to look it up in the symbols. */
4849 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4850 return 0;
4851
4852 /* Library-level function names start with "_ada_". See if function
4853 "_ada_" followed by NAME can be found. */
4854
4855 /* Do a quick check that NAME does not contain "__", since library-level
4856 functions names cannot contain "__" in them. */
4857 if (strstr (name, "__") != NULL)
4858 return 0;
4859
4860 fun_name = xstrprintf ("_ada_%s", name);
4861
4862 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4863 }
4864
4865 /* Return nonzero if SYM corresponds to a renaming entity that is
4866 not visible from FUNCTION_NAME. */
4867
4868 static int
4869 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
4870 {
4871 char *scope;
4872 struct cleanup *old_chain;
4873
4874 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4875 return 0;
4876
4877 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4878 old_chain = make_cleanup (xfree, scope);
4879
4880 /* If the rename has been defined in a package, then it is visible. */
4881 if (is_package_name (scope))
4882 {
4883 do_cleanups (old_chain);
4884 return 0;
4885 }
4886
4887 /* Check that the rename is in the current function scope by checking
4888 that its name starts with SCOPE. */
4889
4890 /* If the function name starts with "_ada_", it means that it is
4891 a library-level function. Strip this prefix before doing the
4892 comparison, as the encoding for the renaming does not contain
4893 this prefix. */
4894 if (strncmp (function_name, "_ada_", 5) == 0)
4895 function_name += 5;
4896
4897 {
4898 int is_invisible = strncmp (function_name, scope, strlen (scope)) != 0;
4899
4900 do_cleanups (old_chain);
4901 return is_invisible;
4902 }
4903 }
4904
4905 /* Remove entries from SYMS that corresponds to a renaming entity that
4906 is not visible from the function associated with CURRENT_BLOCK or
4907 that is superfluous due to the presence of more specific renaming
4908 information. Places surviving symbols in the initial entries of
4909 SYMS and returns the number of surviving symbols.
4910
4911 Rationale:
4912 First, in cases where an object renaming is implemented as a
4913 reference variable, GNAT may produce both the actual reference
4914 variable and the renaming encoding. In this case, we discard the
4915 latter.
4916
4917 Second, GNAT emits a type following a specified encoding for each renaming
4918 entity. Unfortunately, STABS currently does not support the definition
4919 of types that are local to a given lexical block, so all renamings types
4920 are emitted at library level. As a consequence, if an application
4921 contains two renaming entities using the same name, and a user tries to
4922 print the value of one of these entities, the result of the ada symbol
4923 lookup will also contain the wrong renaming type.
4924
4925 This function partially covers for this limitation by attempting to
4926 remove from the SYMS list renaming symbols that should be visible
4927 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4928 method with the current information available. The implementation
4929 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4930
4931 - When the user tries to print a rename in a function while there
4932 is another rename entity defined in a package: Normally, the
4933 rename in the function has precedence over the rename in the
4934 package, so the latter should be removed from the list. This is
4935 currently not the case.
4936
4937 - This function will incorrectly remove valid renames if
4938 the CURRENT_BLOCK corresponds to a function which symbol name
4939 has been changed by an "Export" pragma. As a consequence,
4940 the user will be unable to print such rename entities. */
4941
4942 static int
4943 remove_irrelevant_renamings (struct ada_symbol_info *syms,
4944 int nsyms, const struct block *current_block)
4945 {
4946 struct symbol *current_function;
4947 const char *current_function_name;
4948 int i;
4949 int is_new_style_renaming;
4950
4951 /* If there is both a renaming foo___XR... encoded as a variable and
4952 a simple variable foo in the same block, discard the latter.
4953 First, zero out such symbols, then compress. */
4954 is_new_style_renaming = 0;
4955 for (i = 0; i < nsyms; i += 1)
4956 {
4957 struct symbol *sym = syms[i].sym;
4958 const struct block *block = syms[i].block;
4959 const char *name;
4960 const char *suffix;
4961
4962 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4963 continue;
4964 name = SYMBOL_LINKAGE_NAME (sym);
4965 suffix = strstr (name, "___XR");
4966
4967 if (suffix != NULL)
4968 {
4969 int name_len = suffix - name;
4970 int j;
4971
4972 is_new_style_renaming = 1;
4973 for (j = 0; j < nsyms; j += 1)
4974 if (i != j && syms[j].sym != NULL
4975 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4976 name_len) == 0
4977 && block == syms[j].block)
4978 syms[j].sym = NULL;
4979 }
4980 }
4981 if (is_new_style_renaming)
4982 {
4983 int j, k;
4984
4985 for (j = k = 0; j < nsyms; j += 1)
4986 if (syms[j].sym != NULL)
4987 {
4988 syms[k] = syms[j];
4989 k += 1;
4990 }
4991 return k;
4992 }
4993
4994 /* Extract the function name associated to CURRENT_BLOCK.
4995 Abort if unable to do so. */
4996
4997 if (current_block == NULL)
4998 return nsyms;
4999
5000 current_function = block_linkage_function (current_block);
5001 if (current_function == NULL)
5002 return nsyms;
5003
5004 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5005 if (current_function_name == NULL)
5006 return nsyms;
5007
5008 /* Check each of the symbols, and remove it from the list if it is
5009 a type corresponding to a renaming that is out of the scope of
5010 the current block. */
5011
5012 i = 0;
5013 while (i < nsyms)
5014 {
5015 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
5016 == ADA_OBJECT_RENAMING
5017 && old_renaming_is_invisible (syms[i].sym, current_function_name))
5018 {
5019 int j;
5020
5021 for (j = i + 1; j < nsyms; j += 1)
5022 syms[j - 1] = syms[j];
5023 nsyms -= 1;
5024 }
5025 else
5026 i += 1;
5027 }
5028
5029 return nsyms;
5030 }
5031
5032 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5033 whose name and domain match NAME and DOMAIN respectively.
5034 If no match was found, then extend the search to "enclosing"
5035 routines (in other words, if we're inside a nested function,
5036 search the symbols defined inside the enclosing functions).
5037 If WILD_MATCH_P is nonzero, perform the naming matching in
5038 "wild" mode (see function "wild_match" for more info).
5039
5040 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5041
5042 static void
5043 ada_add_local_symbols (struct obstack *obstackp, const char *name,
5044 const struct block *block, domain_enum domain,
5045 int wild_match_p)
5046 {
5047 int block_depth = 0;
5048
5049 while (block != NULL)
5050 {
5051 block_depth += 1;
5052 ada_add_block_symbols (obstackp, block, name, domain, NULL,
5053 wild_match_p);
5054
5055 /* If we found a non-function match, assume that's the one. */
5056 if (is_nonfunction (defns_collected (obstackp, 0),
5057 num_defns_collected (obstackp)))
5058 return;
5059
5060 block = BLOCK_SUPERBLOCK (block);
5061 }
5062
5063 /* If no luck so far, try to find NAME as a local symbol in some lexically
5064 enclosing subprogram. */
5065 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5066 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
5067 }
5068
5069 /* An object of this type is used as the user_data argument when
5070 calling the map_matching_symbols method. */
5071
5072 struct match_data
5073 {
5074 struct objfile *objfile;
5075 struct obstack *obstackp;
5076 struct symbol *arg_sym;
5077 int found_sym;
5078 };
5079
5080 /* A callback for add_matching_symbols that adds SYM, found in BLOCK,
5081 to a list of symbols. DATA0 is a pointer to a struct match_data *
5082 containing the obstack that collects the symbol list, the file that SYM
5083 must come from, a flag indicating whether a non-argument symbol has
5084 been found in the current block, and the last argument symbol
5085 passed in SYM within the current block (if any). When SYM is null,
5086 marking the end of a block, the argument symbol is added if no
5087 other has been found. */
5088
5089 static int
5090 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
5091 {
5092 struct match_data *data = (struct match_data *) data0;
5093
5094 if (sym == NULL)
5095 {
5096 if (!data->found_sym && data->arg_sym != NULL)
5097 add_defn_to_vec (data->obstackp,
5098 fixup_symbol_section (data->arg_sym, data->objfile),
5099 block);
5100 data->found_sym = 0;
5101 data->arg_sym = NULL;
5102 }
5103 else
5104 {
5105 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5106 return 0;
5107 else if (SYMBOL_IS_ARGUMENT (sym))
5108 data->arg_sym = sym;
5109 else
5110 {
5111 data->found_sym = 1;
5112 add_defn_to_vec (data->obstackp,
5113 fixup_symbol_section (sym, data->objfile),
5114 block);
5115 }
5116 }
5117 return 0;
5118 }
5119
5120 /* Implements compare_names, but only applying the comparision using
5121 the given CASING. */
5122
5123 static int
5124 compare_names_with_case (const char *string1, const char *string2,
5125 enum case_sensitivity casing)
5126 {
5127 while (*string1 != '\0' && *string2 != '\0')
5128 {
5129 char c1, c2;
5130
5131 if (isspace (*string1) || isspace (*string2))
5132 return strcmp_iw_ordered (string1, string2);
5133
5134 if (casing == case_sensitive_off)
5135 {
5136 c1 = tolower (*string1);
5137 c2 = tolower (*string2);
5138 }
5139 else
5140 {
5141 c1 = *string1;
5142 c2 = *string2;
5143 }
5144 if (c1 != c2)
5145 break;
5146
5147 string1 += 1;
5148 string2 += 1;
5149 }
5150
5151 switch (*string1)
5152 {
5153 case '(':
5154 return strcmp_iw_ordered (string1, string2);
5155 case '_':
5156 if (*string2 == '\0')
5157 {
5158 if (is_name_suffix (string1))
5159 return 0;
5160 else
5161 return 1;
5162 }
5163 /* FALLTHROUGH */
5164 default:
5165 if (*string2 == '(')
5166 return strcmp_iw_ordered (string1, string2);
5167 else
5168 {
5169 if (casing == case_sensitive_off)
5170 return tolower (*string1) - tolower (*string2);
5171 else
5172 return *string1 - *string2;
5173 }
5174 }
5175 }
5176
5177 /* Compare STRING1 to STRING2, with results as for strcmp.
5178 Compatible with strcmp_iw_ordered in that...
5179
5180 strcmp_iw_ordered (STRING1, STRING2) <= 0
5181
5182 ... implies...
5183
5184 compare_names (STRING1, STRING2) <= 0
5185
5186 (they may differ as to what symbols compare equal). */
5187
5188 static int
5189 compare_names (const char *string1, const char *string2)
5190 {
5191 int result;
5192
5193 /* Similar to what strcmp_iw_ordered does, we need to perform
5194 a case-insensitive comparison first, and only resort to
5195 a second, case-sensitive, comparison if the first one was
5196 not sufficient to differentiate the two strings. */
5197
5198 result = compare_names_with_case (string1, string2, case_sensitive_off);
5199 if (result == 0)
5200 result = compare_names_with_case (string1, string2, case_sensitive_on);
5201
5202 return result;
5203 }
5204
5205 /* Add to OBSTACKP all non-local symbols whose name and domain match
5206 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5207 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5208
5209 static void
5210 add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5211 domain_enum domain, int global,
5212 int is_wild_match)
5213 {
5214 struct objfile *objfile;
5215 struct match_data data;
5216
5217 memset (&data, 0, sizeof data);
5218 data.obstackp = obstackp;
5219
5220 ALL_OBJFILES (objfile)
5221 {
5222 data.objfile = objfile;
5223
5224 if (is_wild_match)
5225 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5226 aux_add_nonlocal_symbols, &data,
5227 wild_match, NULL);
5228 else
5229 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5230 aux_add_nonlocal_symbols, &data,
5231 full_match, compare_names);
5232 }
5233
5234 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5235 {
5236 ALL_OBJFILES (objfile)
5237 {
5238 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
5239 strcpy (name1, "_ada_");
5240 strcpy (name1 + sizeof ("_ada_") - 1, name);
5241 data.objfile = objfile;
5242 objfile->sf->qf->map_matching_symbols (objfile, name1, domain,
5243 global,
5244 aux_add_nonlocal_symbols,
5245 &data,
5246 full_match, compare_names);
5247 }
5248 }
5249 }
5250
5251 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and, if full_search is
5252 non-zero, enclosing scope and in global scopes, returning the number of
5253 matches.
5254 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
5255 indicating the symbols found and the blocks and symbol tables (if
5256 any) in which they were found. This vector is transient---good only to
5257 the next call of ada_lookup_symbol_list.
5258
5259 When full_search is non-zero, any non-function/non-enumeral
5260 symbol match within the nest of blocks whose innermost member is BLOCK0,
5261 is the one match returned (no other matches in that or
5262 enclosing blocks is returned). If there are any matches in or
5263 surrounding BLOCK0, then these alone are returned.
5264
5265 Names prefixed with "standard__" are handled specially: "standard__"
5266 is first stripped off, and only static and global symbols are searched. */
5267
5268 static int
5269 ada_lookup_symbol_list_worker (const char *name0, const struct block *block0,
5270 domain_enum namespace,
5271 struct ada_symbol_info **results,
5272 int full_search)
5273 {
5274 struct symbol *sym;
5275 const struct block *block;
5276 const char *name;
5277 const int wild_match_p = should_use_wild_match (name0);
5278 int cacheIfUnique;
5279 int ndefns;
5280
5281 obstack_free (&symbol_list_obstack, NULL);
5282 obstack_init (&symbol_list_obstack);
5283
5284 cacheIfUnique = 0;
5285
5286 /* Search specified block and its superiors. */
5287
5288 name = name0;
5289 block = block0;
5290
5291 /* Special case: If the user specifies a symbol name inside package
5292 Standard, do a non-wild matching of the symbol name without
5293 the "standard__" prefix. This was primarily introduced in order
5294 to allow the user to specifically access the standard exceptions
5295 using, for instance, Standard.Constraint_Error when Constraint_Error
5296 is ambiguous (due to the user defining its own Constraint_Error
5297 entity inside its program). */
5298 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
5299 {
5300 block = NULL;
5301 name = name0 + sizeof ("standard__") - 1;
5302 }
5303
5304 /* Check the non-global symbols. If we have ANY match, then we're done. */
5305
5306 if (block != NULL)
5307 {
5308 if (full_search)
5309 {
5310 ada_add_local_symbols (&symbol_list_obstack, name, block,
5311 namespace, wild_match_p);
5312 }
5313 else
5314 {
5315 /* In the !full_search case we're are being called by
5316 ada_iterate_over_symbols, and we don't want to search
5317 superblocks. */
5318 ada_add_block_symbols (&symbol_list_obstack, block, name,
5319 namespace, NULL, wild_match_p);
5320 }
5321 if (num_defns_collected (&symbol_list_obstack) > 0 || !full_search)
5322 goto done;
5323 }
5324
5325 /* No non-global symbols found. Check our cache to see if we have
5326 already performed this search before. If we have, then return
5327 the same result. */
5328
5329 cacheIfUnique = 1;
5330 if (lookup_cached_symbol (name0, namespace, &sym, &block))
5331 {
5332 if (sym != NULL)
5333 add_defn_to_vec (&symbol_list_obstack, sym, block);
5334 goto done;
5335 }
5336
5337 /* Search symbols from all global blocks. */
5338
5339 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
5340 wild_match_p);
5341
5342 /* Now add symbols from all per-file blocks if we've gotten no hits
5343 (not strictly correct, but perhaps better than an error). */
5344
5345 if (num_defns_collected (&symbol_list_obstack) == 0)
5346 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
5347 wild_match_p);
5348
5349 done:
5350 ndefns = num_defns_collected (&symbol_list_obstack);
5351 *results = defns_collected (&symbol_list_obstack, 1);
5352
5353 ndefns = remove_extra_symbols (*results, ndefns);
5354
5355 if (ndefns == 0 && full_search)
5356 cache_symbol (name0, namespace, NULL, NULL);
5357
5358 if (ndefns == 1 && full_search && cacheIfUnique)
5359 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
5360
5361 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
5362
5363 return ndefns;
5364 }
5365
5366 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing scope and
5367 in global scopes, returning the number of matches, and setting *RESULTS
5368 to a vector of (SYM,BLOCK) tuples.
5369 See ada_lookup_symbol_list_worker for further details. */
5370
5371 int
5372 ada_lookup_symbol_list (const char *name0, const struct block *block0,
5373 domain_enum domain, struct ada_symbol_info **results)
5374 {
5375 return ada_lookup_symbol_list_worker (name0, block0, domain, results, 1);
5376 }
5377
5378 /* Implementation of the la_iterate_over_symbols method. */
5379
5380 static void
5381 ada_iterate_over_symbols (const struct block *block,
5382 const char *name, domain_enum domain,
5383 symbol_found_callback_ftype *callback,
5384 void *data)
5385 {
5386 int ndefs, i;
5387 struct ada_symbol_info *results;
5388
5389 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5390 for (i = 0; i < ndefs; ++i)
5391 {
5392 if (! (*callback) (results[i].sym, data))
5393 break;
5394 }
5395 }
5396
5397 /* If NAME is the name of an entity, return a string that should
5398 be used to look that entity up in Ada units. This string should
5399 be deallocated after use using xfree.
5400
5401 NAME can have any form that the "break" or "print" commands might
5402 recognize. In other words, it does not have to be the "natural"
5403 name, or the "encoded" name. */
5404
5405 char *
5406 ada_name_for_lookup (const char *name)
5407 {
5408 char *canon;
5409 int nlen = strlen (name);
5410
5411 if (name[0] == '<' && name[nlen - 1] == '>')
5412 {
5413 canon = xmalloc (nlen - 1);
5414 memcpy (canon, name + 1, nlen - 2);
5415 canon[nlen - 2] = '\0';
5416 }
5417 else
5418 canon = xstrdup (ada_encode (ada_fold_name (name)));
5419 return canon;
5420 }
5421
5422 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5423 to 1, but choosing the first symbol found if there are multiple
5424 choices.
5425
5426 The result is stored in *INFO, which must be non-NULL.
5427 If no match is found, INFO->SYM is set to NULL. */
5428
5429 void
5430 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5431 domain_enum namespace,
5432 struct ada_symbol_info *info)
5433 {
5434 struct ada_symbol_info *candidates;
5435 int n_candidates;
5436
5437 gdb_assert (info != NULL);
5438 memset (info, 0, sizeof (struct ada_symbol_info));
5439
5440 n_candidates = ada_lookup_symbol_list (name, block, namespace, &candidates);
5441 if (n_candidates == 0)
5442 return;
5443
5444 *info = candidates[0];
5445 info->sym = fixup_symbol_section (info->sym, NULL);
5446 }
5447
5448 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5449 scope and in global scopes, or NULL if none. NAME is folded and
5450 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5451 choosing the first symbol if there are multiple choices.
5452 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5453
5454 struct symbol *
5455 ada_lookup_symbol (const char *name, const struct block *block0,
5456 domain_enum namespace, int *is_a_field_of_this)
5457 {
5458 struct ada_symbol_info info;
5459
5460 if (is_a_field_of_this != NULL)
5461 *is_a_field_of_this = 0;
5462
5463 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5464 block0, namespace, &info);
5465 return info.sym;
5466 }
5467
5468 static struct symbol *
5469 ada_lookup_symbol_nonlocal (const char *name,
5470 const struct block *block,
5471 const domain_enum domain)
5472 {
5473 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5474 }
5475
5476
5477 /* True iff STR is a possible encoded suffix of a normal Ada name
5478 that is to be ignored for matching purposes. Suffixes of parallel
5479 names (e.g., XVE) are not included here. Currently, the possible suffixes
5480 are given by any of the regular expressions:
5481
5482 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5483 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5484 TKB [subprogram suffix for task bodies]
5485 _E[0-9]+[bs]$ [protected object entry suffixes]
5486 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5487
5488 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5489 match is performed. This sequence is used to differentiate homonyms,
5490 is an optional part of a valid name suffix. */
5491
5492 static int
5493 is_name_suffix (const char *str)
5494 {
5495 int k;
5496 const char *matching;
5497 const int len = strlen (str);
5498
5499 /* Skip optional leading __[0-9]+. */
5500
5501 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5502 {
5503 str += 3;
5504 while (isdigit (str[0]))
5505 str += 1;
5506 }
5507
5508 /* [.$][0-9]+ */
5509
5510 if (str[0] == '.' || str[0] == '$')
5511 {
5512 matching = str + 1;
5513 while (isdigit (matching[0]))
5514 matching += 1;
5515 if (matching[0] == '\0')
5516 return 1;
5517 }
5518
5519 /* ___[0-9]+ */
5520
5521 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5522 {
5523 matching = str + 3;
5524 while (isdigit (matching[0]))
5525 matching += 1;
5526 if (matching[0] == '\0')
5527 return 1;
5528 }
5529
5530 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5531
5532 if (strcmp (str, "TKB") == 0)
5533 return 1;
5534
5535 #if 0
5536 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5537 with a N at the end. Unfortunately, the compiler uses the same
5538 convention for other internal types it creates. So treating
5539 all entity names that end with an "N" as a name suffix causes
5540 some regressions. For instance, consider the case of an enumerated
5541 type. To support the 'Image attribute, it creates an array whose
5542 name ends with N.
5543 Having a single character like this as a suffix carrying some
5544 information is a bit risky. Perhaps we should change the encoding
5545 to be something like "_N" instead. In the meantime, do not do
5546 the following check. */
5547 /* Protected Object Subprograms */
5548 if (len == 1 && str [0] == 'N')
5549 return 1;
5550 #endif
5551
5552 /* _E[0-9]+[bs]$ */
5553 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5554 {
5555 matching = str + 3;
5556 while (isdigit (matching[0]))
5557 matching += 1;
5558 if ((matching[0] == 'b' || matching[0] == 's')
5559 && matching [1] == '\0')
5560 return 1;
5561 }
5562
5563 /* ??? We should not modify STR directly, as we are doing below. This
5564 is fine in this case, but may become problematic later if we find
5565 that this alternative did not work, and want to try matching
5566 another one from the begining of STR. Since we modified it, we
5567 won't be able to find the begining of the string anymore! */
5568 if (str[0] == 'X')
5569 {
5570 str += 1;
5571 while (str[0] != '_' && str[0] != '\0')
5572 {
5573 if (str[0] != 'n' && str[0] != 'b')
5574 return 0;
5575 str += 1;
5576 }
5577 }
5578
5579 if (str[0] == '\000')
5580 return 1;
5581
5582 if (str[0] == '_')
5583 {
5584 if (str[1] != '_' || str[2] == '\000')
5585 return 0;
5586 if (str[2] == '_')
5587 {
5588 if (strcmp (str + 3, "JM") == 0)
5589 return 1;
5590 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5591 the LJM suffix in favor of the JM one. But we will
5592 still accept LJM as a valid suffix for a reasonable
5593 amount of time, just to allow ourselves to debug programs
5594 compiled using an older version of GNAT. */
5595 if (strcmp (str + 3, "LJM") == 0)
5596 return 1;
5597 if (str[3] != 'X')
5598 return 0;
5599 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5600 || str[4] == 'U' || str[4] == 'P')
5601 return 1;
5602 if (str[4] == 'R' && str[5] != 'T')
5603 return 1;
5604 return 0;
5605 }
5606 if (!isdigit (str[2]))
5607 return 0;
5608 for (k = 3; str[k] != '\0'; k += 1)
5609 if (!isdigit (str[k]) && str[k] != '_')
5610 return 0;
5611 return 1;
5612 }
5613 if (str[0] == '$' && isdigit (str[1]))
5614 {
5615 for (k = 2; str[k] != '\0'; k += 1)
5616 if (!isdigit (str[k]) && str[k] != '_')
5617 return 0;
5618 return 1;
5619 }
5620 return 0;
5621 }
5622
5623 /* Return non-zero if the string starting at NAME and ending before
5624 NAME_END contains no capital letters. */
5625
5626 static int
5627 is_valid_name_for_wild_match (const char *name0)
5628 {
5629 const char *decoded_name = ada_decode (name0);
5630 int i;
5631
5632 /* If the decoded name starts with an angle bracket, it means that
5633 NAME0 does not follow the GNAT encoding format. It should then
5634 not be allowed as a possible wild match. */
5635 if (decoded_name[0] == '<')
5636 return 0;
5637
5638 for (i=0; decoded_name[i] != '\0'; i++)
5639 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5640 return 0;
5641
5642 return 1;
5643 }
5644
5645 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5646 that could start a simple name. Assumes that *NAMEP points into
5647 the string beginning at NAME0. */
5648
5649 static int
5650 advance_wild_match (const char **namep, const char *name0, int target0)
5651 {
5652 const char *name = *namep;
5653
5654 while (1)
5655 {
5656 int t0, t1;
5657
5658 t0 = *name;
5659 if (t0 == '_')
5660 {
5661 t1 = name[1];
5662 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5663 {
5664 name += 1;
5665 if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5666 break;
5667 else
5668 name += 1;
5669 }
5670 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5671 || name[2] == target0))
5672 {
5673 name += 2;
5674 break;
5675 }
5676 else
5677 return 0;
5678 }
5679 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5680 name += 1;
5681 else
5682 return 0;
5683 }
5684
5685 *namep = name;
5686 return 1;
5687 }
5688
5689 /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5690 informational suffixes of NAME (i.e., for which is_name_suffix is
5691 true). Assumes that PATN is a lower-cased Ada simple name. */
5692
5693 static int
5694 wild_match (const char *name, const char *patn)
5695 {
5696 const char *p;
5697 const char *name0 = name;
5698
5699 while (1)
5700 {
5701 const char *match = name;
5702
5703 if (*name == *patn)
5704 {
5705 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5706 if (*p != *name)
5707 break;
5708 if (*p == '\0' && is_name_suffix (name))
5709 return match != name0 && !is_valid_name_for_wild_match (name0);
5710
5711 if (name[-1] == '_')
5712 name -= 1;
5713 }
5714 if (!advance_wild_match (&name, name0, *patn))
5715 return 1;
5716 }
5717 }
5718
5719 /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5720 informational suffix. */
5721
5722 static int
5723 full_match (const char *sym_name, const char *search_name)
5724 {
5725 return !match_name (sym_name, search_name, 0);
5726 }
5727
5728
5729 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5730 vector *defn_symbols, updating the list of symbols in OBSTACKP
5731 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5732 OBJFILE is the section containing BLOCK. */
5733
5734 static void
5735 ada_add_block_symbols (struct obstack *obstackp,
5736 const struct block *block, const char *name,
5737 domain_enum domain, struct objfile *objfile,
5738 int wild)
5739 {
5740 struct block_iterator iter;
5741 int name_len = strlen (name);
5742 /* A matching argument symbol, if any. */
5743 struct symbol *arg_sym;
5744 /* Set true when we find a matching non-argument symbol. */
5745 int found_sym;
5746 struct symbol *sym;
5747
5748 arg_sym = NULL;
5749 found_sym = 0;
5750 if (wild)
5751 {
5752 for (sym = block_iter_match_first (block, name, wild_match, &iter);
5753 sym != NULL; sym = block_iter_match_next (name, wild_match, &iter))
5754 {
5755 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5756 SYMBOL_DOMAIN (sym), domain)
5757 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
5758 {
5759 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5760 continue;
5761 else if (SYMBOL_IS_ARGUMENT (sym))
5762 arg_sym = sym;
5763 else
5764 {
5765 found_sym = 1;
5766 add_defn_to_vec (obstackp,
5767 fixup_symbol_section (sym, objfile),
5768 block);
5769 }
5770 }
5771 }
5772 }
5773 else
5774 {
5775 for (sym = block_iter_match_first (block, name, full_match, &iter);
5776 sym != NULL; sym = block_iter_match_next (name, full_match, &iter))
5777 {
5778 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5779 SYMBOL_DOMAIN (sym), domain))
5780 {
5781 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5782 {
5783 if (SYMBOL_IS_ARGUMENT (sym))
5784 arg_sym = sym;
5785 else
5786 {
5787 found_sym = 1;
5788 add_defn_to_vec (obstackp,
5789 fixup_symbol_section (sym, objfile),
5790 block);
5791 }
5792 }
5793 }
5794 }
5795 }
5796
5797 if (!found_sym && arg_sym != NULL)
5798 {
5799 add_defn_to_vec (obstackp,
5800 fixup_symbol_section (arg_sym, objfile),
5801 block);
5802 }
5803
5804 if (!wild)
5805 {
5806 arg_sym = NULL;
5807 found_sym = 0;
5808
5809 ALL_BLOCK_SYMBOLS (block, iter, sym)
5810 {
5811 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5812 SYMBOL_DOMAIN (sym), domain))
5813 {
5814 int cmp;
5815
5816 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5817 if (cmp == 0)
5818 {
5819 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5820 if (cmp == 0)
5821 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5822 name_len);
5823 }
5824
5825 if (cmp == 0
5826 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5827 {
5828 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5829 {
5830 if (SYMBOL_IS_ARGUMENT (sym))
5831 arg_sym = sym;
5832 else
5833 {
5834 found_sym = 1;
5835 add_defn_to_vec (obstackp,
5836 fixup_symbol_section (sym, objfile),
5837 block);
5838 }
5839 }
5840 }
5841 }
5842 }
5843
5844 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5845 They aren't parameters, right? */
5846 if (!found_sym && arg_sym != NULL)
5847 {
5848 add_defn_to_vec (obstackp,
5849 fixup_symbol_section (arg_sym, objfile),
5850 block);
5851 }
5852 }
5853 }
5854 \f
5855
5856 /* Symbol Completion */
5857
5858 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
5859 name in a form that's appropriate for the completion. The result
5860 does not need to be deallocated, but is only good until the next call.
5861
5862 TEXT_LEN is equal to the length of TEXT.
5863 Perform a wild match if WILD_MATCH_P is set.
5864 ENCODED_P should be set if TEXT represents the start of a symbol name
5865 in its encoded form. */
5866
5867 static const char *
5868 symbol_completion_match (const char *sym_name,
5869 const char *text, int text_len,
5870 int wild_match_p, int encoded_p)
5871 {
5872 const int verbatim_match = (text[0] == '<');
5873 int match = 0;
5874
5875 if (verbatim_match)
5876 {
5877 /* Strip the leading angle bracket. */
5878 text = text + 1;
5879 text_len--;
5880 }
5881
5882 /* First, test against the fully qualified name of the symbol. */
5883
5884 if (strncmp (sym_name, text, text_len) == 0)
5885 match = 1;
5886
5887 if (match && !encoded_p)
5888 {
5889 /* One needed check before declaring a positive match is to verify
5890 that iff we are doing a verbatim match, the decoded version
5891 of the symbol name starts with '<'. Otherwise, this symbol name
5892 is not a suitable completion. */
5893 const char *sym_name_copy = sym_name;
5894 int has_angle_bracket;
5895
5896 sym_name = ada_decode (sym_name);
5897 has_angle_bracket = (sym_name[0] == '<');
5898 match = (has_angle_bracket == verbatim_match);
5899 sym_name = sym_name_copy;
5900 }
5901
5902 if (match && !verbatim_match)
5903 {
5904 /* When doing non-verbatim match, another check that needs to
5905 be done is to verify that the potentially matching symbol name
5906 does not include capital letters, because the ada-mode would
5907 not be able to understand these symbol names without the
5908 angle bracket notation. */
5909 const char *tmp;
5910
5911 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5912 if (*tmp != '\0')
5913 match = 0;
5914 }
5915
5916 /* Second: Try wild matching... */
5917
5918 if (!match && wild_match_p)
5919 {
5920 /* Since we are doing wild matching, this means that TEXT
5921 may represent an unqualified symbol name. We therefore must
5922 also compare TEXT against the unqualified name of the symbol. */
5923 sym_name = ada_unqualified_name (ada_decode (sym_name));
5924
5925 if (strncmp (sym_name, text, text_len) == 0)
5926 match = 1;
5927 }
5928
5929 /* Finally: If we found a mach, prepare the result to return. */
5930
5931 if (!match)
5932 return NULL;
5933
5934 if (verbatim_match)
5935 sym_name = add_angle_brackets (sym_name);
5936
5937 if (!encoded_p)
5938 sym_name = ada_decode (sym_name);
5939
5940 return sym_name;
5941 }
5942
5943 /* A companion function to ada_make_symbol_completion_list().
5944 Check if SYM_NAME represents a symbol which name would be suitable
5945 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5946 it is appended at the end of the given string vector SV.
5947
5948 ORIG_TEXT is the string original string from the user command
5949 that needs to be completed. WORD is the entire command on which
5950 completion should be performed. These two parameters are used to
5951 determine which part of the symbol name should be added to the
5952 completion vector.
5953 if WILD_MATCH_P is set, then wild matching is performed.
5954 ENCODED_P should be set if TEXT represents a symbol name in its
5955 encoded formed (in which case the completion should also be
5956 encoded). */
5957
5958 static void
5959 symbol_completion_add (VEC(char_ptr) **sv,
5960 const char *sym_name,
5961 const char *text, int text_len,
5962 const char *orig_text, const char *word,
5963 int wild_match_p, int encoded_p)
5964 {
5965 const char *match = symbol_completion_match (sym_name, text, text_len,
5966 wild_match_p, encoded_p);
5967 char *completion;
5968
5969 if (match == NULL)
5970 return;
5971
5972 /* We found a match, so add the appropriate completion to the given
5973 string vector. */
5974
5975 if (word == orig_text)
5976 {
5977 completion = xmalloc (strlen (match) + 5);
5978 strcpy (completion, match);
5979 }
5980 else if (word > orig_text)
5981 {
5982 /* Return some portion of sym_name. */
5983 completion = xmalloc (strlen (match) + 5);
5984 strcpy (completion, match + (word - orig_text));
5985 }
5986 else
5987 {
5988 /* Return some of ORIG_TEXT plus sym_name. */
5989 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5990 strncpy (completion, word, orig_text - word);
5991 completion[orig_text - word] = '\0';
5992 strcat (completion, match);
5993 }
5994
5995 VEC_safe_push (char_ptr, *sv, completion);
5996 }
5997
5998 /* An object of this type is passed as the user_data argument to the
5999 expand_symtabs_matching method. */
6000 struct add_partial_datum
6001 {
6002 VEC(char_ptr) **completions;
6003 const char *text;
6004 int text_len;
6005 const char *text0;
6006 const char *word;
6007 int wild_match;
6008 int encoded;
6009 };
6010
6011 /* A callback for expand_symtabs_matching. */
6012
6013 static int
6014 ada_complete_symbol_matcher (const char *name, void *user_data)
6015 {
6016 struct add_partial_datum *data = user_data;
6017
6018 return symbol_completion_match (name, data->text, data->text_len,
6019 data->wild_match, data->encoded) != NULL;
6020 }
6021
6022 /* Return a list of possible symbol names completing TEXT0. WORD is
6023 the entire command on which completion is made. */
6024
6025 static VEC (char_ptr) *
6026 ada_make_symbol_completion_list (const char *text0, const char *word,
6027 enum type_code code)
6028 {
6029 char *text;
6030 int text_len;
6031 int wild_match_p;
6032 int encoded_p;
6033 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
6034 struct symbol *sym;
6035 struct symtab *s;
6036 struct minimal_symbol *msymbol;
6037 struct objfile *objfile;
6038 struct block *b, *surrounding_static_block = 0;
6039 int i;
6040 struct block_iterator iter;
6041 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
6042
6043 gdb_assert (code == TYPE_CODE_UNDEF);
6044
6045 if (text0[0] == '<')
6046 {
6047 text = xstrdup (text0);
6048 make_cleanup (xfree, text);
6049 text_len = strlen (text);
6050 wild_match_p = 0;
6051 encoded_p = 1;
6052 }
6053 else
6054 {
6055 text = xstrdup (ada_encode (text0));
6056 make_cleanup (xfree, text);
6057 text_len = strlen (text);
6058 for (i = 0; i < text_len; i++)
6059 text[i] = tolower (text[i]);
6060
6061 encoded_p = (strstr (text0, "__") != NULL);
6062 /* If the name contains a ".", then the user is entering a fully
6063 qualified entity name, and the match must not be done in wild
6064 mode. Similarly, if the user wants to complete what looks like
6065 an encoded name, the match must not be done in wild mode. */
6066 wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
6067 }
6068
6069 /* First, look at the partial symtab symbols. */
6070 {
6071 struct add_partial_datum data;
6072
6073 data.completions = &completions;
6074 data.text = text;
6075 data.text_len = text_len;
6076 data.text0 = text0;
6077 data.word = word;
6078 data.wild_match = wild_match_p;
6079 data.encoded = encoded_p;
6080 expand_symtabs_matching (NULL, ada_complete_symbol_matcher, ALL_DOMAIN,
6081 &data);
6082 }
6083
6084 /* At this point scan through the misc symbol vectors and add each
6085 symbol you find to the list. Eventually we want to ignore
6086 anything that isn't a text symbol (everything else will be
6087 handled by the psymtab code above). */
6088
6089 ALL_MSYMBOLS (objfile, msymbol)
6090 {
6091 QUIT;
6092 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
6093 text, text_len, text0, word, wild_match_p,
6094 encoded_p);
6095 }
6096
6097 /* Search upwards from currently selected frame (so that we can
6098 complete on local vars. */
6099
6100 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6101 {
6102 if (!BLOCK_SUPERBLOCK (b))
6103 surrounding_static_block = b; /* For elmin of dups */
6104
6105 ALL_BLOCK_SYMBOLS (b, iter, sym)
6106 {
6107 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6108 text, text_len, text0, word,
6109 wild_match_p, encoded_p);
6110 }
6111 }
6112
6113 /* Go through the symtabs and check the externs and statics for
6114 symbols which match. */
6115
6116 ALL_SYMTABS (objfile, s)
6117 {
6118 QUIT;
6119 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
6120 ALL_BLOCK_SYMBOLS (b, iter, sym)
6121 {
6122 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6123 text, text_len, text0, word,
6124 wild_match_p, encoded_p);
6125 }
6126 }
6127
6128 ALL_SYMTABS (objfile, s)
6129 {
6130 QUIT;
6131 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
6132 /* Don't do this block twice. */
6133 if (b == surrounding_static_block)
6134 continue;
6135 ALL_BLOCK_SYMBOLS (b, iter, sym)
6136 {
6137 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6138 text, text_len, text0, word,
6139 wild_match_p, encoded_p);
6140 }
6141 }
6142
6143 do_cleanups (old_chain);
6144 return completions;
6145 }
6146
6147 /* Field Access */
6148
6149 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6150 for tagged types. */
6151
6152 static int
6153 ada_is_dispatch_table_ptr_type (struct type *type)
6154 {
6155 const char *name;
6156
6157 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6158 return 0;
6159
6160 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6161 if (name == NULL)
6162 return 0;
6163
6164 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6165 }
6166
6167 /* Return non-zero if TYPE is an interface tag. */
6168
6169 static int
6170 ada_is_interface_tag (struct type *type)
6171 {
6172 const char *name = TYPE_NAME (type);
6173
6174 if (name == NULL)
6175 return 0;
6176
6177 return (strcmp (name, "ada__tags__interface_tag") == 0);
6178 }
6179
6180 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6181 to be invisible to users. */
6182
6183 int
6184 ada_is_ignored_field (struct type *type, int field_num)
6185 {
6186 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6187 return 1;
6188
6189 /* Check the name of that field. */
6190 {
6191 const char *name = TYPE_FIELD_NAME (type, field_num);
6192
6193 /* Anonymous field names should not be printed.
6194 brobecker/2007-02-20: I don't think this can actually happen
6195 but we don't want to print the value of annonymous fields anyway. */
6196 if (name == NULL)
6197 return 1;
6198
6199 /* Normally, fields whose name start with an underscore ("_")
6200 are fields that have been internally generated by the compiler,
6201 and thus should not be printed. The "_parent" field is special,
6202 however: This is a field internally generated by the compiler
6203 for tagged types, and it contains the components inherited from
6204 the parent type. This field should not be printed as is, but
6205 should not be ignored either. */
6206 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
6207 return 1;
6208 }
6209
6210 /* If this is the dispatch table of a tagged type or an interface tag,
6211 then ignore. */
6212 if (ada_is_tagged_type (type, 1)
6213 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6214 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6215 return 1;
6216
6217 /* Not a special field, so it should not be ignored. */
6218 return 0;
6219 }
6220
6221 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6222 pointer or reference type whose ultimate target has a tag field. */
6223
6224 int
6225 ada_is_tagged_type (struct type *type, int refok)
6226 {
6227 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
6228 }
6229
6230 /* True iff TYPE represents the type of X'Tag */
6231
6232 int
6233 ada_is_tag_type (struct type *type)
6234 {
6235 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6236 return 0;
6237 else
6238 {
6239 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6240
6241 return (name != NULL
6242 && strcmp (name, "ada__tags__dispatch_table") == 0);
6243 }
6244 }
6245
6246 /* The type of the tag on VAL. */
6247
6248 struct type *
6249 ada_tag_type (struct value *val)
6250 {
6251 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
6252 }
6253
6254 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6255 retired at Ada 05). */
6256
6257 static int
6258 is_ada95_tag (struct value *tag)
6259 {
6260 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6261 }
6262
6263 /* The value of the tag on VAL. */
6264
6265 struct value *
6266 ada_value_tag (struct value *val)
6267 {
6268 return ada_value_struct_elt (val, "_tag", 0);
6269 }
6270
6271 /* The value of the tag on the object of type TYPE whose contents are
6272 saved at VALADDR, if it is non-null, or is at memory address
6273 ADDRESS. */
6274
6275 static struct value *
6276 value_tag_from_contents_and_address (struct type *type,
6277 const gdb_byte *valaddr,
6278 CORE_ADDR address)
6279 {
6280 int tag_byte_offset;
6281 struct type *tag_type;
6282
6283 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6284 NULL, NULL, NULL))
6285 {
6286 const gdb_byte *valaddr1 = ((valaddr == NULL)
6287 ? NULL
6288 : valaddr + tag_byte_offset);
6289 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6290
6291 return value_from_contents_and_address (tag_type, valaddr1, address1);
6292 }
6293 return NULL;
6294 }
6295
6296 static struct type *
6297 type_from_tag (struct value *tag)
6298 {
6299 const char *type_name = ada_tag_name (tag);
6300
6301 if (type_name != NULL)
6302 return ada_find_any_type (ada_encode (type_name));
6303 return NULL;
6304 }
6305
6306 /* Given a value OBJ of a tagged type, return a value of this
6307 type at the base address of the object. The base address, as
6308 defined in Ada.Tags, it is the address of the primary tag of
6309 the object, and therefore where the field values of its full
6310 view can be fetched. */
6311
6312 struct value *
6313 ada_tag_value_at_base_address (struct value *obj)
6314 {
6315 volatile struct gdb_exception e;
6316 struct value *val;
6317 LONGEST offset_to_top = 0;
6318 struct type *ptr_type, *obj_type;
6319 struct value *tag;
6320 CORE_ADDR base_address;
6321
6322 obj_type = value_type (obj);
6323
6324 /* It is the responsability of the caller to deref pointers. */
6325
6326 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6327 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6328 return obj;
6329
6330 tag = ada_value_tag (obj);
6331 if (!tag)
6332 return obj;
6333
6334 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6335
6336 if (is_ada95_tag (tag))
6337 return obj;
6338
6339 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6340 ptr_type = lookup_pointer_type (ptr_type);
6341 val = value_cast (ptr_type, tag);
6342 if (!val)
6343 return obj;
6344
6345 /* It is perfectly possible that an exception be raised while
6346 trying to determine the base address, just like for the tag;
6347 see ada_tag_name for more details. We do not print the error
6348 message for the same reason. */
6349
6350 TRY_CATCH (e, RETURN_MASK_ERROR)
6351 {
6352 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6353 }
6354
6355 if (e.reason < 0)
6356 return obj;
6357
6358 /* If offset is null, nothing to do. */
6359
6360 if (offset_to_top == 0)
6361 return obj;
6362
6363 /* -1 is a special case in Ada.Tags; however, what should be done
6364 is not quite clear from the documentation. So do nothing for
6365 now. */
6366
6367 if (offset_to_top == -1)
6368 return obj;
6369
6370 base_address = value_address (obj) - offset_to_top;
6371 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6372
6373 /* Make sure that we have a proper tag at the new address.
6374 Otherwise, offset_to_top is bogus (which can happen when
6375 the object is not initialized yet). */
6376
6377 if (!tag)
6378 return obj;
6379
6380 obj_type = type_from_tag (tag);
6381
6382 if (!obj_type)
6383 return obj;
6384
6385 return value_from_contents_and_address (obj_type, NULL, base_address);
6386 }
6387
6388 /* Return the "ada__tags__type_specific_data" type. */
6389
6390 static struct type *
6391 ada_get_tsd_type (struct inferior *inf)
6392 {
6393 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6394
6395 if (data->tsd_type == 0)
6396 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6397 return data->tsd_type;
6398 }
6399
6400 /* Return the TSD (type-specific data) associated to the given TAG.
6401 TAG is assumed to be the tag of a tagged-type entity.
6402
6403 May return NULL if we are unable to get the TSD. */
6404
6405 static struct value *
6406 ada_get_tsd_from_tag (struct value *tag)
6407 {
6408 struct value *val;
6409 struct type *type;
6410
6411 /* First option: The TSD is simply stored as a field of our TAG.
6412 Only older versions of GNAT would use this format, but we have
6413 to test it first, because there are no visible markers for
6414 the current approach except the absence of that field. */
6415
6416 val = ada_value_struct_elt (tag, "tsd", 1);
6417 if (val)
6418 return val;
6419
6420 /* Try the second representation for the dispatch table (in which
6421 there is no explicit 'tsd' field in the referent of the tag pointer,
6422 and instead the tsd pointer is stored just before the dispatch
6423 table. */
6424
6425 type = ada_get_tsd_type (current_inferior());
6426 if (type == NULL)
6427 return NULL;
6428 type = lookup_pointer_type (lookup_pointer_type (type));
6429 val = value_cast (type, tag);
6430 if (val == NULL)
6431 return NULL;
6432 return value_ind (value_ptradd (val, -1));
6433 }
6434
6435 /* Given the TSD of a tag (type-specific data), return a string
6436 containing the name of the associated type.
6437
6438 The returned value is good until the next call. May return NULL
6439 if we are unable to determine the tag name. */
6440
6441 static char *
6442 ada_tag_name_from_tsd (struct value *tsd)
6443 {
6444 static char name[1024];
6445 char *p;
6446 struct value *val;
6447
6448 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6449 if (val == NULL)
6450 return NULL;
6451 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6452 for (p = name; *p != '\0'; p += 1)
6453 if (isalpha (*p))
6454 *p = tolower (*p);
6455 return name;
6456 }
6457
6458 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6459 a C string.
6460
6461 Return NULL if the TAG is not an Ada tag, or if we were unable to
6462 determine the name of that tag. The result is good until the next
6463 call. */
6464
6465 const char *
6466 ada_tag_name (struct value *tag)
6467 {
6468 volatile struct gdb_exception e;
6469 char *name = NULL;
6470
6471 if (!ada_is_tag_type (value_type (tag)))
6472 return NULL;
6473
6474 /* It is perfectly possible that an exception be raised while trying
6475 to determine the TAG's name, even under normal circumstances:
6476 The associated variable may be uninitialized or corrupted, for
6477 instance. We do not let any exception propagate past this point.
6478 instead we return NULL.
6479
6480 We also do not print the error message either (which often is very
6481 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6482 the caller print a more meaningful message if necessary. */
6483 TRY_CATCH (e, RETURN_MASK_ERROR)
6484 {
6485 struct value *tsd = ada_get_tsd_from_tag (tag);
6486
6487 if (tsd != NULL)
6488 name = ada_tag_name_from_tsd (tsd);
6489 }
6490
6491 return name;
6492 }
6493
6494 /* The parent type of TYPE, or NULL if none. */
6495
6496 struct type *
6497 ada_parent_type (struct type *type)
6498 {
6499 int i;
6500
6501 type = ada_check_typedef (type);
6502
6503 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6504 return NULL;
6505
6506 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6507 if (ada_is_parent_field (type, i))
6508 {
6509 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6510
6511 /* If the _parent field is a pointer, then dereference it. */
6512 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6513 parent_type = TYPE_TARGET_TYPE (parent_type);
6514 /* If there is a parallel XVS type, get the actual base type. */
6515 parent_type = ada_get_base_type (parent_type);
6516
6517 return ada_check_typedef (parent_type);
6518 }
6519
6520 return NULL;
6521 }
6522
6523 /* True iff field number FIELD_NUM of structure type TYPE contains the
6524 parent-type (inherited) fields of a derived type. Assumes TYPE is
6525 a structure type with at least FIELD_NUM+1 fields. */
6526
6527 int
6528 ada_is_parent_field (struct type *type, int field_num)
6529 {
6530 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6531
6532 return (name != NULL
6533 && (strncmp (name, "PARENT", 6) == 0
6534 || strncmp (name, "_parent", 7) == 0));
6535 }
6536
6537 /* True iff field number FIELD_NUM of structure type TYPE is a
6538 transparent wrapper field (which should be silently traversed when doing
6539 field selection and flattened when printing). Assumes TYPE is a
6540 structure type with at least FIELD_NUM+1 fields. Such fields are always
6541 structures. */
6542
6543 int
6544 ada_is_wrapper_field (struct type *type, int field_num)
6545 {
6546 const char *name = TYPE_FIELD_NAME (type, field_num);
6547
6548 return (name != NULL
6549 && (strncmp (name, "PARENT", 6) == 0
6550 || strcmp (name, "REP") == 0
6551 || strncmp (name, "_parent", 7) == 0
6552 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6553 }
6554
6555 /* True iff field number FIELD_NUM of structure or union type TYPE
6556 is a variant wrapper. Assumes TYPE is a structure type with at least
6557 FIELD_NUM+1 fields. */
6558
6559 int
6560 ada_is_variant_part (struct type *type, int field_num)
6561 {
6562 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6563
6564 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
6565 || (is_dynamic_field (type, field_num)
6566 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6567 == TYPE_CODE_UNION)));
6568 }
6569
6570 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6571 whose discriminants are contained in the record type OUTER_TYPE,
6572 returns the type of the controlling discriminant for the variant.
6573 May return NULL if the type could not be found. */
6574
6575 struct type *
6576 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6577 {
6578 char *name = ada_variant_discrim_name (var_type);
6579
6580 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
6581 }
6582
6583 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6584 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6585 represents a 'when others' clause; otherwise 0. */
6586
6587 int
6588 ada_is_others_clause (struct type *type, int field_num)
6589 {
6590 const char *name = TYPE_FIELD_NAME (type, field_num);
6591
6592 return (name != NULL && name[0] == 'O');
6593 }
6594
6595 /* Assuming that TYPE0 is the type of the variant part of a record,
6596 returns the name of the discriminant controlling the variant.
6597 The value is valid until the next call to ada_variant_discrim_name. */
6598
6599 char *
6600 ada_variant_discrim_name (struct type *type0)
6601 {
6602 static char *result = NULL;
6603 static size_t result_len = 0;
6604 struct type *type;
6605 const char *name;
6606 const char *discrim_end;
6607 const char *discrim_start;
6608
6609 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6610 type = TYPE_TARGET_TYPE (type0);
6611 else
6612 type = type0;
6613
6614 name = ada_type_name (type);
6615
6616 if (name == NULL || name[0] == '\000')
6617 return "";
6618
6619 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6620 discrim_end -= 1)
6621 {
6622 if (strncmp (discrim_end, "___XVN", 6) == 0)
6623 break;
6624 }
6625 if (discrim_end == name)
6626 return "";
6627
6628 for (discrim_start = discrim_end; discrim_start != name + 3;
6629 discrim_start -= 1)
6630 {
6631 if (discrim_start == name + 1)
6632 return "";
6633 if ((discrim_start > name + 3
6634 && strncmp (discrim_start - 3, "___", 3) == 0)
6635 || discrim_start[-1] == '.')
6636 break;
6637 }
6638
6639 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6640 strncpy (result, discrim_start, discrim_end - discrim_start);
6641 result[discrim_end - discrim_start] = '\0';
6642 return result;
6643 }
6644
6645 /* Scan STR for a subtype-encoded number, beginning at position K.
6646 Put the position of the character just past the number scanned in
6647 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6648 Return 1 if there was a valid number at the given position, and 0
6649 otherwise. A "subtype-encoded" number consists of the absolute value
6650 in decimal, followed by the letter 'm' to indicate a negative number.
6651 Assumes 0m does not occur. */
6652
6653 int
6654 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6655 {
6656 ULONGEST RU;
6657
6658 if (!isdigit (str[k]))
6659 return 0;
6660
6661 /* Do it the hard way so as not to make any assumption about
6662 the relationship of unsigned long (%lu scan format code) and
6663 LONGEST. */
6664 RU = 0;
6665 while (isdigit (str[k]))
6666 {
6667 RU = RU * 10 + (str[k] - '0');
6668 k += 1;
6669 }
6670
6671 if (str[k] == 'm')
6672 {
6673 if (R != NULL)
6674 *R = (-(LONGEST) (RU - 1)) - 1;
6675 k += 1;
6676 }
6677 else if (R != NULL)
6678 *R = (LONGEST) RU;
6679
6680 /* NOTE on the above: Technically, C does not say what the results of
6681 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6682 number representable as a LONGEST (although either would probably work
6683 in most implementations). When RU>0, the locution in the then branch
6684 above is always equivalent to the negative of RU. */
6685
6686 if (new_k != NULL)
6687 *new_k = k;
6688 return 1;
6689 }
6690
6691 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6692 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6693 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6694
6695 int
6696 ada_in_variant (LONGEST val, struct type *type, int field_num)
6697 {
6698 const char *name = TYPE_FIELD_NAME (type, field_num);
6699 int p;
6700
6701 p = 0;
6702 while (1)
6703 {
6704 switch (name[p])
6705 {
6706 case '\0':
6707 return 0;
6708 case 'S':
6709 {
6710 LONGEST W;
6711
6712 if (!ada_scan_number (name, p + 1, &W, &p))
6713 return 0;
6714 if (val == W)
6715 return 1;
6716 break;
6717 }
6718 case 'R':
6719 {
6720 LONGEST L, U;
6721
6722 if (!ada_scan_number (name, p + 1, &L, &p)
6723 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6724 return 0;
6725 if (val >= L && val <= U)
6726 return 1;
6727 break;
6728 }
6729 case 'O':
6730 return 1;
6731 default:
6732 return 0;
6733 }
6734 }
6735 }
6736
6737 /* FIXME: Lots of redundancy below. Try to consolidate. */
6738
6739 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6740 ARG_TYPE, extract and return the value of one of its (non-static)
6741 fields. FIELDNO says which field. Differs from value_primitive_field
6742 only in that it can handle packed values of arbitrary type. */
6743
6744 static struct value *
6745 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6746 struct type *arg_type)
6747 {
6748 struct type *type;
6749
6750 arg_type = ada_check_typedef (arg_type);
6751 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6752
6753 /* Handle packed fields. */
6754
6755 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6756 {
6757 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6758 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6759
6760 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
6761 offset + bit_pos / 8,
6762 bit_pos % 8, bit_size, type);
6763 }
6764 else
6765 return value_primitive_field (arg1, offset, fieldno, arg_type);
6766 }
6767
6768 /* Find field with name NAME in object of type TYPE. If found,
6769 set the following for each argument that is non-null:
6770 - *FIELD_TYPE_P to the field's type;
6771 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6772 an object of that type;
6773 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6774 - *BIT_SIZE_P to its size in bits if the field is packed, and
6775 0 otherwise;
6776 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6777 fields up to but not including the desired field, or by the total
6778 number of fields if not found. A NULL value of NAME never
6779 matches; the function just counts visible fields in this case.
6780
6781 Returns 1 if found, 0 otherwise. */
6782
6783 static int
6784 find_struct_field (const char *name, struct type *type, int offset,
6785 struct type **field_type_p,
6786 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6787 int *index_p)
6788 {
6789 int i;
6790
6791 type = ada_check_typedef (type);
6792
6793 if (field_type_p != NULL)
6794 *field_type_p = NULL;
6795 if (byte_offset_p != NULL)
6796 *byte_offset_p = 0;
6797 if (bit_offset_p != NULL)
6798 *bit_offset_p = 0;
6799 if (bit_size_p != NULL)
6800 *bit_size_p = 0;
6801
6802 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6803 {
6804 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6805 int fld_offset = offset + bit_pos / 8;
6806 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6807
6808 if (t_field_name == NULL)
6809 continue;
6810
6811 else if (name != NULL && field_name_match (t_field_name, name))
6812 {
6813 int bit_size = TYPE_FIELD_BITSIZE (type, i);
6814
6815 if (field_type_p != NULL)
6816 *field_type_p = TYPE_FIELD_TYPE (type, i);
6817 if (byte_offset_p != NULL)
6818 *byte_offset_p = fld_offset;
6819 if (bit_offset_p != NULL)
6820 *bit_offset_p = bit_pos % 8;
6821 if (bit_size_p != NULL)
6822 *bit_size_p = bit_size;
6823 return 1;
6824 }
6825 else if (ada_is_wrapper_field (type, i))
6826 {
6827 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6828 field_type_p, byte_offset_p, bit_offset_p,
6829 bit_size_p, index_p))
6830 return 1;
6831 }
6832 else if (ada_is_variant_part (type, i))
6833 {
6834 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6835 fixed type?? */
6836 int j;
6837 struct type *field_type
6838 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6839
6840 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6841 {
6842 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6843 fld_offset
6844 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6845 field_type_p, byte_offset_p,
6846 bit_offset_p, bit_size_p, index_p))
6847 return 1;
6848 }
6849 }
6850 else if (index_p != NULL)
6851 *index_p += 1;
6852 }
6853 return 0;
6854 }
6855
6856 /* Number of user-visible fields in record type TYPE. */
6857
6858 static int
6859 num_visible_fields (struct type *type)
6860 {
6861 int n;
6862
6863 n = 0;
6864 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6865 return n;
6866 }
6867
6868 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
6869 and search in it assuming it has (class) type TYPE.
6870 If found, return value, else return NULL.
6871
6872 Searches recursively through wrapper fields (e.g., '_parent'). */
6873
6874 static struct value *
6875 ada_search_struct_field (char *name, struct value *arg, int offset,
6876 struct type *type)
6877 {
6878 int i;
6879
6880 type = ada_check_typedef (type);
6881 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6882 {
6883 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6884
6885 if (t_field_name == NULL)
6886 continue;
6887
6888 else if (field_name_match (t_field_name, name))
6889 return ada_value_primitive_field (arg, offset, i, type);
6890
6891 else if (ada_is_wrapper_field (type, i))
6892 {
6893 struct value *v = /* Do not let indent join lines here. */
6894 ada_search_struct_field (name, arg,
6895 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6896 TYPE_FIELD_TYPE (type, i));
6897
6898 if (v != NULL)
6899 return v;
6900 }
6901
6902 else if (ada_is_variant_part (type, i))
6903 {
6904 /* PNH: Do we ever get here? See find_struct_field. */
6905 int j;
6906 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6907 i));
6908 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6909
6910 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6911 {
6912 struct value *v = ada_search_struct_field /* Force line
6913 break. */
6914 (name, arg,
6915 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6916 TYPE_FIELD_TYPE (field_type, j));
6917
6918 if (v != NULL)
6919 return v;
6920 }
6921 }
6922 }
6923 return NULL;
6924 }
6925
6926 static struct value *ada_index_struct_field_1 (int *, struct value *,
6927 int, struct type *);
6928
6929
6930 /* Return field #INDEX in ARG, where the index is that returned by
6931 * find_struct_field through its INDEX_P argument. Adjust the address
6932 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6933 * If found, return value, else return NULL. */
6934
6935 static struct value *
6936 ada_index_struct_field (int index, struct value *arg, int offset,
6937 struct type *type)
6938 {
6939 return ada_index_struct_field_1 (&index, arg, offset, type);
6940 }
6941
6942
6943 /* Auxiliary function for ada_index_struct_field. Like
6944 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6945 * *INDEX_P. */
6946
6947 static struct value *
6948 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6949 struct type *type)
6950 {
6951 int i;
6952 type = ada_check_typedef (type);
6953
6954 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6955 {
6956 if (TYPE_FIELD_NAME (type, i) == NULL)
6957 continue;
6958 else if (ada_is_wrapper_field (type, i))
6959 {
6960 struct value *v = /* Do not let indent join lines here. */
6961 ada_index_struct_field_1 (index_p, arg,
6962 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6963 TYPE_FIELD_TYPE (type, i));
6964
6965 if (v != NULL)
6966 return v;
6967 }
6968
6969 else if (ada_is_variant_part (type, i))
6970 {
6971 /* PNH: Do we ever get here? See ada_search_struct_field,
6972 find_struct_field. */
6973 error (_("Cannot assign this kind of variant record"));
6974 }
6975 else if (*index_p == 0)
6976 return ada_value_primitive_field (arg, offset, i, type);
6977 else
6978 *index_p -= 1;
6979 }
6980 return NULL;
6981 }
6982
6983 /* Given ARG, a value of type (pointer or reference to a)*
6984 structure/union, extract the component named NAME from the ultimate
6985 target structure/union and return it as a value with its
6986 appropriate type.
6987
6988 The routine searches for NAME among all members of the structure itself
6989 and (recursively) among all members of any wrapper members
6990 (e.g., '_parent').
6991
6992 If NO_ERR, then simply return NULL in case of error, rather than
6993 calling error. */
6994
6995 struct value *
6996 ada_value_struct_elt (struct value *arg, char *name, int no_err)
6997 {
6998 struct type *t, *t1;
6999 struct value *v;
7000
7001 v = NULL;
7002 t1 = t = ada_check_typedef (value_type (arg));
7003 if (TYPE_CODE (t) == TYPE_CODE_REF)
7004 {
7005 t1 = TYPE_TARGET_TYPE (t);
7006 if (t1 == NULL)
7007 goto BadValue;
7008 t1 = ada_check_typedef (t1);
7009 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7010 {
7011 arg = coerce_ref (arg);
7012 t = t1;
7013 }
7014 }
7015
7016 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7017 {
7018 t1 = TYPE_TARGET_TYPE (t);
7019 if (t1 == NULL)
7020 goto BadValue;
7021 t1 = ada_check_typedef (t1);
7022 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7023 {
7024 arg = value_ind (arg);
7025 t = t1;
7026 }
7027 else
7028 break;
7029 }
7030
7031 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
7032 goto BadValue;
7033
7034 if (t1 == t)
7035 v = ada_search_struct_field (name, arg, 0, t);
7036 else
7037 {
7038 int bit_offset, bit_size, byte_offset;
7039 struct type *field_type;
7040 CORE_ADDR address;
7041
7042 if (TYPE_CODE (t) == TYPE_CODE_PTR)
7043 address = value_address (ada_value_ind (arg));
7044 else
7045 address = value_address (ada_coerce_ref (arg));
7046
7047 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
7048 if (find_struct_field (name, t1, 0,
7049 &field_type, &byte_offset, &bit_offset,
7050 &bit_size, NULL))
7051 {
7052 if (bit_size != 0)
7053 {
7054 if (TYPE_CODE (t) == TYPE_CODE_REF)
7055 arg = ada_coerce_ref (arg);
7056 else
7057 arg = ada_value_ind (arg);
7058 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7059 bit_offset, bit_size,
7060 field_type);
7061 }
7062 else
7063 v = value_at_lazy (field_type, address + byte_offset);
7064 }
7065 }
7066
7067 if (v != NULL || no_err)
7068 return v;
7069 else
7070 error (_("There is no member named %s."), name);
7071
7072 BadValue:
7073 if (no_err)
7074 return NULL;
7075 else
7076 error (_("Attempt to extract a component of "
7077 "a value that is not a record."));
7078 }
7079
7080 /* Given a type TYPE, look up the type of the component of type named NAME.
7081 If DISPP is non-null, add its byte displacement from the beginning of a
7082 structure (pointed to by a value) of type TYPE to *DISPP (does not
7083 work for packed fields).
7084
7085 Matches any field whose name has NAME as a prefix, possibly
7086 followed by "___".
7087
7088 TYPE can be either a struct or union. If REFOK, TYPE may also
7089 be a (pointer or reference)+ to a struct or union, and the
7090 ultimate target type will be searched.
7091
7092 Looks recursively into variant clauses and parent types.
7093
7094 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7095 TYPE is not a type of the right kind. */
7096
7097 static struct type *
7098 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
7099 int noerr, int *dispp)
7100 {
7101 int i;
7102
7103 if (name == NULL)
7104 goto BadName;
7105
7106 if (refok && type != NULL)
7107 while (1)
7108 {
7109 type = ada_check_typedef (type);
7110 if (TYPE_CODE (type) != TYPE_CODE_PTR
7111 && TYPE_CODE (type) != TYPE_CODE_REF)
7112 break;
7113 type = TYPE_TARGET_TYPE (type);
7114 }
7115
7116 if (type == NULL
7117 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7118 && TYPE_CODE (type) != TYPE_CODE_UNION))
7119 {
7120 if (noerr)
7121 return NULL;
7122 else
7123 {
7124 target_terminal_ours ();
7125 gdb_flush (gdb_stdout);
7126 if (type == NULL)
7127 error (_("Type (null) is not a structure or union type"));
7128 else
7129 {
7130 /* XXX: type_sprint */
7131 fprintf_unfiltered (gdb_stderr, _("Type "));
7132 type_print (type, "", gdb_stderr, -1);
7133 error (_(" is not a structure or union type"));
7134 }
7135 }
7136 }
7137
7138 type = to_static_fixed_type (type);
7139
7140 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7141 {
7142 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7143 struct type *t;
7144 int disp;
7145
7146 if (t_field_name == NULL)
7147 continue;
7148
7149 else if (field_name_match (t_field_name, name))
7150 {
7151 if (dispp != NULL)
7152 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
7153 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7154 }
7155
7156 else if (ada_is_wrapper_field (type, i))
7157 {
7158 disp = 0;
7159 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7160 0, 1, &disp);
7161 if (t != NULL)
7162 {
7163 if (dispp != NULL)
7164 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7165 return t;
7166 }
7167 }
7168
7169 else if (ada_is_variant_part (type, i))
7170 {
7171 int j;
7172 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7173 i));
7174
7175 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7176 {
7177 /* FIXME pnh 2008/01/26: We check for a field that is
7178 NOT wrapped in a struct, since the compiler sometimes
7179 generates these for unchecked variant types. Revisit
7180 if the compiler changes this practice. */
7181 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7182 disp = 0;
7183 if (v_field_name != NULL
7184 && field_name_match (v_field_name, name))
7185 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
7186 else
7187 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7188 j),
7189 name, 0, 1, &disp);
7190
7191 if (t != NULL)
7192 {
7193 if (dispp != NULL)
7194 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7195 return t;
7196 }
7197 }
7198 }
7199
7200 }
7201
7202 BadName:
7203 if (!noerr)
7204 {
7205 target_terminal_ours ();
7206 gdb_flush (gdb_stdout);
7207 if (name == NULL)
7208 {
7209 /* XXX: type_sprint */
7210 fprintf_unfiltered (gdb_stderr, _("Type "));
7211 type_print (type, "", gdb_stderr, -1);
7212 error (_(" has no component named <null>"));
7213 }
7214 else
7215 {
7216 /* XXX: type_sprint */
7217 fprintf_unfiltered (gdb_stderr, _("Type "));
7218 type_print (type, "", gdb_stderr, -1);
7219 error (_(" has no component named %s"), name);
7220 }
7221 }
7222
7223 return NULL;
7224 }
7225
7226 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7227 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7228 represents an unchecked union (that is, the variant part of a
7229 record that is named in an Unchecked_Union pragma). */
7230
7231 static int
7232 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7233 {
7234 char *discrim_name = ada_variant_discrim_name (var_type);
7235
7236 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
7237 == NULL);
7238 }
7239
7240
7241 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7242 within a value of type OUTER_TYPE that is stored in GDB at
7243 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7244 numbering from 0) is applicable. Returns -1 if none are. */
7245
7246 int
7247 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7248 const gdb_byte *outer_valaddr)
7249 {
7250 int others_clause;
7251 int i;
7252 char *discrim_name = ada_variant_discrim_name (var_type);
7253 struct value *outer;
7254 struct value *discrim;
7255 LONGEST discrim_val;
7256
7257 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
7258 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7259 if (discrim == NULL)
7260 return -1;
7261 discrim_val = value_as_long (discrim);
7262
7263 others_clause = -1;
7264 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7265 {
7266 if (ada_is_others_clause (var_type, i))
7267 others_clause = i;
7268 else if (ada_in_variant (discrim_val, var_type, i))
7269 return i;
7270 }
7271
7272 return others_clause;
7273 }
7274 \f
7275
7276
7277 /* Dynamic-Sized Records */
7278
7279 /* Strategy: The type ostensibly attached to a value with dynamic size
7280 (i.e., a size that is not statically recorded in the debugging
7281 data) does not accurately reflect the size or layout of the value.
7282 Our strategy is to convert these values to values with accurate,
7283 conventional types that are constructed on the fly. */
7284
7285 /* There is a subtle and tricky problem here. In general, we cannot
7286 determine the size of dynamic records without its data. However,
7287 the 'struct value' data structure, which GDB uses to represent
7288 quantities in the inferior process (the target), requires the size
7289 of the type at the time of its allocation in order to reserve space
7290 for GDB's internal copy of the data. That's why the
7291 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7292 rather than struct value*s.
7293
7294 However, GDB's internal history variables ($1, $2, etc.) are
7295 struct value*s containing internal copies of the data that are not, in
7296 general, the same as the data at their corresponding addresses in
7297 the target. Fortunately, the types we give to these values are all
7298 conventional, fixed-size types (as per the strategy described
7299 above), so that we don't usually have to perform the
7300 'to_fixed_xxx_type' conversions to look at their values.
7301 Unfortunately, there is one exception: if one of the internal
7302 history variables is an array whose elements are unconstrained
7303 records, then we will need to create distinct fixed types for each
7304 element selected. */
7305
7306 /* The upshot of all of this is that many routines take a (type, host
7307 address, target address) triple as arguments to represent a value.
7308 The host address, if non-null, is supposed to contain an internal
7309 copy of the relevant data; otherwise, the program is to consult the
7310 target at the target address. */
7311
7312 /* Assuming that VAL0 represents a pointer value, the result of
7313 dereferencing it. Differs from value_ind in its treatment of
7314 dynamic-sized types. */
7315
7316 struct value *
7317 ada_value_ind (struct value *val0)
7318 {
7319 struct value *val = value_ind (val0);
7320
7321 if (ada_is_tagged_type (value_type (val), 0))
7322 val = ada_tag_value_at_base_address (val);
7323
7324 return ada_to_fixed_value (val);
7325 }
7326
7327 /* The value resulting from dereferencing any "reference to"
7328 qualifiers on VAL0. */
7329
7330 static struct value *
7331 ada_coerce_ref (struct value *val0)
7332 {
7333 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7334 {
7335 struct value *val = val0;
7336
7337 val = coerce_ref (val);
7338
7339 if (ada_is_tagged_type (value_type (val), 0))
7340 val = ada_tag_value_at_base_address (val);
7341
7342 return ada_to_fixed_value (val);
7343 }
7344 else
7345 return val0;
7346 }
7347
7348 /* Return OFF rounded upward if necessary to a multiple of
7349 ALIGNMENT (a power of 2). */
7350
7351 static unsigned int
7352 align_value (unsigned int off, unsigned int alignment)
7353 {
7354 return (off + alignment - 1) & ~(alignment - 1);
7355 }
7356
7357 /* Return the bit alignment required for field #F of template type TYPE. */
7358
7359 static unsigned int
7360 field_alignment (struct type *type, int f)
7361 {
7362 const char *name = TYPE_FIELD_NAME (type, f);
7363 int len;
7364 int align_offset;
7365
7366 /* The field name should never be null, unless the debugging information
7367 is somehow malformed. In this case, we assume the field does not
7368 require any alignment. */
7369 if (name == NULL)
7370 return 1;
7371
7372 len = strlen (name);
7373
7374 if (!isdigit (name[len - 1]))
7375 return 1;
7376
7377 if (isdigit (name[len - 2]))
7378 align_offset = len - 2;
7379 else
7380 align_offset = len - 1;
7381
7382 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
7383 return TARGET_CHAR_BIT;
7384
7385 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7386 }
7387
7388 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7389
7390 static struct symbol *
7391 ada_find_any_type_symbol (const char *name)
7392 {
7393 struct symbol *sym;
7394
7395 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7396 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7397 return sym;
7398
7399 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7400 return sym;
7401 }
7402
7403 /* Find a type named NAME. Ignores ambiguity. This routine will look
7404 solely for types defined by debug info, it will not search the GDB
7405 primitive types. */
7406
7407 static struct type *
7408 ada_find_any_type (const char *name)
7409 {
7410 struct symbol *sym = ada_find_any_type_symbol (name);
7411
7412 if (sym != NULL)
7413 return SYMBOL_TYPE (sym);
7414
7415 return NULL;
7416 }
7417
7418 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7419 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7420 symbol, in which case it is returned. Otherwise, this looks for
7421 symbols whose name is that of NAME_SYM suffixed with "___XR".
7422 Return symbol if found, and NULL otherwise. */
7423
7424 struct symbol *
7425 ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
7426 {
7427 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7428 struct symbol *sym;
7429
7430 if (strstr (name, "___XR") != NULL)
7431 return name_sym;
7432
7433 sym = find_old_style_renaming_symbol (name, block);
7434
7435 if (sym != NULL)
7436 return sym;
7437
7438 /* Not right yet. FIXME pnh 7/20/2007. */
7439 sym = ada_find_any_type_symbol (name);
7440 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7441 return sym;
7442 else
7443 return NULL;
7444 }
7445
7446 static struct symbol *
7447 find_old_style_renaming_symbol (const char *name, const struct block *block)
7448 {
7449 const struct symbol *function_sym = block_linkage_function (block);
7450 char *rename;
7451
7452 if (function_sym != NULL)
7453 {
7454 /* If the symbol is defined inside a function, NAME is not fully
7455 qualified. This means we need to prepend the function name
7456 as well as adding the ``___XR'' suffix to build the name of
7457 the associated renaming symbol. */
7458 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
7459 /* Function names sometimes contain suffixes used
7460 for instance to qualify nested subprograms. When building
7461 the XR type name, we need to make sure that this suffix is
7462 not included. So do not include any suffix in the function
7463 name length below. */
7464 int function_name_len = ada_name_prefix_len (function_name);
7465 const int rename_len = function_name_len + 2 /* "__" */
7466 + strlen (name) + 6 /* "___XR\0" */ ;
7467
7468 /* Strip the suffix if necessary. */
7469 ada_remove_trailing_digits (function_name, &function_name_len);
7470 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7471 ada_remove_Xbn_suffix (function_name, &function_name_len);
7472
7473 /* Library-level functions are a special case, as GNAT adds
7474 a ``_ada_'' prefix to the function name to avoid namespace
7475 pollution. However, the renaming symbols themselves do not
7476 have this prefix, so we need to skip this prefix if present. */
7477 if (function_name_len > 5 /* "_ada_" */
7478 && strstr (function_name, "_ada_") == function_name)
7479 {
7480 function_name += 5;
7481 function_name_len -= 5;
7482 }
7483
7484 rename = (char *) alloca (rename_len * sizeof (char));
7485 strncpy (rename, function_name, function_name_len);
7486 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7487 "__%s___XR", name);
7488 }
7489 else
7490 {
7491 const int rename_len = strlen (name) + 6;
7492
7493 rename = (char *) alloca (rename_len * sizeof (char));
7494 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
7495 }
7496
7497 return ada_find_any_type_symbol (rename);
7498 }
7499
7500 /* Because of GNAT encoding conventions, several GDB symbols may match a
7501 given type name. If the type denoted by TYPE0 is to be preferred to
7502 that of TYPE1 for purposes of type printing, return non-zero;
7503 otherwise return 0. */
7504
7505 int
7506 ada_prefer_type (struct type *type0, struct type *type1)
7507 {
7508 if (type1 == NULL)
7509 return 1;
7510 else if (type0 == NULL)
7511 return 0;
7512 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7513 return 1;
7514 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7515 return 0;
7516 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7517 return 1;
7518 else if (ada_is_constrained_packed_array_type (type0))
7519 return 1;
7520 else if (ada_is_array_descriptor_type (type0)
7521 && !ada_is_array_descriptor_type (type1))
7522 return 1;
7523 else
7524 {
7525 const char *type0_name = type_name_no_tag (type0);
7526 const char *type1_name = type_name_no_tag (type1);
7527
7528 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7529 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7530 return 1;
7531 }
7532 return 0;
7533 }
7534
7535 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
7536 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7537
7538 const char *
7539 ada_type_name (struct type *type)
7540 {
7541 if (type == NULL)
7542 return NULL;
7543 else if (TYPE_NAME (type) != NULL)
7544 return TYPE_NAME (type);
7545 else
7546 return TYPE_TAG_NAME (type);
7547 }
7548
7549 /* Search the list of "descriptive" types associated to TYPE for a type
7550 whose name is NAME. */
7551
7552 static struct type *
7553 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7554 {
7555 struct type *result;
7556
7557 if (ada_ignore_descriptive_types_p)
7558 return NULL;
7559
7560 /* If there no descriptive-type info, then there is no parallel type
7561 to be found. */
7562 if (!HAVE_GNAT_AUX_INFO (type))
7563 return NULL;
7564
7565 result = TYPE_DESCRIPTIVE_TYPE (type);
7566 while (result != NULL)
7567 {
7568 const char *result_name = ada_type_name (result);
7569
7570 if (result_name == NULL)
7571 {
7572 warning (_("unexpected null name on descriptive type"));
7573 return NULL;
7574 }
7575
7576 /* If the names match, stop. */
7577 if (strcmp (result_name, name) == 0)
7578 break;
7579
7580 /* Otherwise, look at the next item on the list, if any. */
7581 if (HAVE_GNAT_AUX_INFO (result))
7582 result = TYPE_DESCRIPTIVE_TYPE (result);
7583 else
7584 result = NULL;
7585 }
7586
7587 /* If we didn't find a match, see whether this is a packed array. With
7588 older compilers, the descriptive type information is either absent or
7589 irrelevant when it comes to packed arrays so the above lookup fails.
7590 Fall back to using a parallel lookup by name in this case. */
7591 if (result == NULL && ada_is_constrained_packed_array_type (type))
7592 return ada_find_any_type (name);
7593
7594 return result;
7595 }
7596
7597 /* Find a parallel type to TYPE with the specified NAME, using the
7598 descriptive type taken from the debugging information, if available,
7599 and otherwise using the (slower) name-based method. */
7600
7601 static struct type *
7602 ada_find_parallel_type_with_name (struct type *type, const char *name)
7603 {
7604 struct type *result = NULL;
7605
7606 if (HAVE_GNAT_AUX_INFO (type))
7607 result = find_parallel_type_by_descriptive_type (type, name);
7608 else
7609 result = ada_find_any_type (name);
7610
7611 return result;
7612 }
7613
7614 /* Same as above, but specify the name of the parallel type by appending
7615 SUFFIX to the name of TYPE. */
7616
7617 struct type *
7618 ada_find_parallel_type (struct type *type, const char *suffix)
7619 {
7620 char *name;
7621 const char *typename = ada_type_name (type);
7622 int len;
7623
7624 if (typename == NULL)
7625 return NULL;
7626
7627 len = strlen (typename);
7628
7629 name = (char *) alloca (len + strlen (suffix) + 1);
7630
7631 strcpy (name, typename);
7632 strcpy (name + len, suffix);
7633
7634 return ada_find_parallel_type_with_name (type, name);
7635 }
7636
7637 /* If TYPE is a variable-size record type, return the corresponding template
7638 type describing its fields. Otherwise, return NULL. */
7639
7640 static struct type *
7641 dynamic_template_type (struct type *type)
7642 {
7643 type = ada_check_typedef (type);
7644
7645 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
7646 || ada_type_name (type) == NULL)
7647 return NULL;
7648 else
7649 {
7650 int len = strlen (ada_type_name (type));
7651
7652 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7653 return type;
7654 else
7655 return ada_find_parallel_type (type, "___XVE");
7656 }
7657 }
7658
7659 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7660 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7661
7662 static int
7663 is_dynamic_field (struct type *templ_type, int field_num)
7664 {
7665 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
7666
7667 return name != NULL
7668 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7669 && strstr (name, "___XVL") != NULL;
7670 }
7671
7672 /* The index of the variant field of TYPE, or -1 if TYPE does not
7673 represent a variant record type. */
7674
7675 static int
7676 variant_field_index (struct type *type)
7677 {
7678 int f;
7679
7680 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7681 return -1;
7682
7683 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7684 {
7685 if (ada_is_variant_part (type, f))
7686 return f;
7687 }
7688 return -1;
7689 }
7690
7691 /* A record type with no fields. */
7692
7693 static struct type *
7694 empty_record (struct type *template)
7695 {
7696 struct type *type = alloc_type_copy (template);
7697
7698 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7699 TYPE_NFIELDS (type) = 0;
7700 TYPE_FIELDS (type) = NULL;
7701 INIT_CPLUS_SPECIFIC (type);
7702 TYPE_NAME (type) = "<empty>";
7703 TYPE_TAG_NAME (type) = NULL;
7704 TYPE_LENGTH (type) = 0;
7705 return type;
7706 }
7707
7708 /* An ordinary record type (with fixed-length fields) that describes
7709 the value of type TYPE at VALADDR or ADDRESS (see comments at
7710 the beginning of this section) VAL according to GNAT conventions.
7711 DVAL0 should describe the (portion of a) record that contains any
7712 necessary discriminants. It should be NULL if value_type (VAL) is
7713 an outer-level type (i.e., as opposed to a branch of a variant.) A
7714 variant field (unless unchecked) is replaced by a particular branch
7715 of the variant.
7716
7717 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7718 length are not statically known are discarded. As a consequence,
7719 VALADDR, ADDRESS and DVAL0 are ignored.
7720
7721 NOTE: Limitations: For now, we assume that dynamic fields and
7722 variants occupy whole numbers of bytes. However, they need not be
7723 byte-aligned. */
7724
7725 struct type *
7726 ada_template_to_fixed_record_type_1 (struct type *type,
7727 const gdb_byte *valaddr,
7728 CORE_ADDR address, struct value *dval0,
7729 int keep_dynamic_fields)
7730 {
7731 struct value *mark = value_mark ();
7732 struct value *dval;
7733 struct type *rtype;
7734 int nfields, bit_len;
7735 int variant_field;
7736 long off;
7737 int fld_bit_len;
7738 int f;
7739
7740 /* Compute the number of fields in this record type that are going
7741 to be processed: unless keep_dynamic_fields, this includes only
7742 fields whose position and length are static will be processed. */
7743 if (keep_dynamic_fields)
7744 nfields = TYPE_NFIELDS (type);
7745 else
7746 {
7747 nfields = 0;
7748 while (nfields < TYPE_NFIELDS (type)
7749 && !ada_is_variant_part (type, nfields)
7750 && !is_dynamic_field (type, nfields))
7751 nfields++;
7752 }
7753
7754 rtype = alloc_type_copy (type);
7755 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7756 INIT_CPLUS_SPECIFIC (rtype);
7757 TYPE_NFIELDS (rtype) = nfields;
7758 TYPE_FIELDS (rtype) = (struct field *)
7759 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7760 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7761 TYPE_NAME (rtype) = ada_type_name (type);
7762 TYPE_TAG_NAME (rtype) = NULL;
7763 TYPE_FIXED_INSTANCE (rtype) = 1;
7764
7765 off = 0;
7766 bit_len = 0;
7767 variant_field = -1;
7768
7769 for (f = 0; f < nfields; f += 1)
7770 {
7771 off = align_value (off, field_alignment (type, f))
7772 + TYPE_FIELD_BITPOS (type, f);
7773 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
7774 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7775
7776 if (ada_is_variant_part (type, f))
7777 {
7778 variant_field = f;
7779 fld_bit_len = 0;
7780 }
7781 else if (is_dynamic_field (type, f))
7782 {
7783 const gdb_byte *field_valaddr = valaddr;
7784 CORE_ADDR field_address = address;
7785 struct type *field_type =
7786 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7787
7788 if (dval0 == NULL)
7789 {
7790 /* rtype's length is computed based on the run-time
7791 value of discriminants. If the discriminants are not
7792 initialized, the type size may be completely bogus and
7793 GDB may fail to allocate a value for it. So check the
7794 size first before creating the value. */
7795 check_size (rtype);
7796 dval = value_from_contents_and_address (rtype, valaddr, address);
7797 }
7798 else
7799 dval = dval0;
7800
7801 /* If the type referenced by this field is an aligner type, we need
7802 to unwrap that aligner type, because its size might not be set.
7803 Keeping the aligner type would cause us to compute the wrong
7804 size for this field, impacting the offset of the all the fields
7805 that follow this one. */
7806 if (ada_is_aligner_type (field_type))
7807 {
7808 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7809
7810 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7811 field_address = cond_offset_target (field_address, field_offset);
7812 field_type = ada_aligned_type (field_type);
7813 }
7814
7815 field_valaddr = cond_offset_host (field_valaddr,
7816 off / TARGET_CHAR_BIT);
7817 field_address = cond_offset_target (field_address,
7818 off / TARGET_CHAR_BIT);
7819
7820 /* Get the fixed type of the field. Note that, in this case,
7821 we do not want to get the real type out of the tag: if
7822 the current field is the parent part of a tagged record,
7823 we will get the tag of the object. Clearly wrong: the real
7824 type of the parent is not the real type of the child. We
7825 would end up in an infinite loop. */
7826 field_type = ada_get_base_type (field_type);
7827 field_type = ada_to_fixed_type (field_type, field_valaddr,
7828 field_address, dval, 0);
7829 /* If the field size is already larger than the maximum
7830 object size, then the record itself will necessarily
7831 be larger than the maximum object size. We need to make
7832 this check now, because the size might be so ridiculously
7833 large (due to an uninitialized variable in the inferior)
7834 that it would cause an overflow when adding it to the
7835 record size. */
7836 check_size (field_type);
7837
7838 TYPE_FIELD_TYPE (rtype, f) = field_type;
7839 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7840 /* The multiplication can potentially overflow. But because
7841 the field length has been size-checked just above, and
7842 assuming that the maximum size is a reasonable value,
7843 an overflow should not happen in practice. So rather than
7844 adding overflow recovery code to this already complex code,
7845 we just assume that it's not going to happen. */
7846 fld_bit_len =
7847 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7848 }
7849 else
7850 {
7851 /* Note: If this field's type is a typedef, it is important
7852 to preserve the typedef layer.
7853
7854 Otherwise, we might be transforming a typedef to a fat
7855 pointer (encoding a pointer to an unconstrained array),
7856 into a basic fat pointer (encoding an unconstrained
7857 array). As both types are implemented using the same
7858 structure, the typedef is the only clue which allows us
7859 to distinguish between the two options. Stripping it
7860 would prevent us from printing this field appropriately. */
7861 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
7862 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7863 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7864 fld_bit_len =
7865 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7866 else
7867 {
7868 struct type *field_type = TYPE_FIELD_TYPE (type, f);
7869
7870 /* We need to be careful of typedefs when computing
7871 the length of our field. If this is a typedef,
7872 get the length of the target type, not the length
7873 of the typedef. */
7874 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
7875 field_type = ada_typedef_target_type (field_type);
7876
7877 fld_bit_len =
7878 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7879 }
7880 }
7881 if (off + fld_bit_len > bit_len)
7882 bit_len = off + fld_bit_len;
7883 off += fld_bit_len;
7884 TYPE_LENGTH (rtype) =
7885 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7886 }
7887
7888 /* We handle the variant part, if any, at the end because of certain
7889 odd cases in which it is re-ordered so as NOT to be the last field of
7890 the record. This can happen in the presence of representation
7891 clauses. */
7892 if (variant_field >= 0)
7893 {
7894 struct type *branch_type;
7895
7896 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7897
7898 if (dval0 == NULL)
7899 dval = value_from_contents_and_address (rtype, valaddr, address);
7900 else
7901 dval = dval0;
7902
7903 branch_type =
7904 to_fixed_variant_branch_type
7905 (TYPE_FIELD_TYPE (type, variant_field),
7906 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7907 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7908 if (branch_type == NULL)
7909 {
7910 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
7911 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7912 TYPE_NFIELDS (rtype) -= 1;
7913 }
7914 else
7915 {
7916 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7917 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7918 fld_bit_len =
7919 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
7920 TARGET_CHAR_BIT;
7921 if (off + fld_bit_len > bit_len)
7922 bit_len = off + fld_bit_len;
7923 TYPE_LENGTH (rtype) =
7924 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7925 }
7926 }
7927
7928 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7929 should contain the alignment of that record, which should be a strictly
7930 positive value. If null or negative, then something is wrong, most
7931 probably in the debug info. In that case, we don't round up the size
7932 of the resulting type. If this record is not part of another structure,
7933 the current RTYPE length might be good enough for our purposes. */
7934 if (TYPE_LENGTH (type) <= 0)
7935 {
7936 if (TYPE_NAME (rtype))
7937 warning (_("Invalid type size for `%s' detected: %d."),
7938 TYPE_NAME (rtype), TYPE_LENGTH (type));
7939 else
7940 warning (_("Invalid type size for <unnamed> detected: %d."),
7941 TYPE_LENGTH (type));
7942 }
7943 else
7944 {
7945 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
7946 TYPE_LENGTH (type));
7947 }
7948
7949 value_free_to_mark (mark);
7950 if (TYPE_LENGTH (rtype) > varsize_limit)
7951 error (_("record type with dynamic size is larger than varsize-limit"));
7952 return rtype;
7953 }
7954
7955 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7956 of 1. */
7957
7958 static struct type *
7959 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
7960 CORE_ADDR address, struct value *dval0)
7961 {
7962 return ada_template_to_fixed_record_type_1 (type, valaddr,
7963 address, dval0, 1);
7964 }
7965
7966 /* An ordinary record type in which ___XVL-convention fields and
7967 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7968 static approximations, containing all possible fields. Uses
7969 no runtime values. Useless for use in values, but that's OK,
7970 since the results are used only for type determinations. Works on both
7971 structs and unions. Representation note: to save space, we memorize
7972 the result of this function in the TYPE_TARGET_TYPE of the
7973 template type. */
7974
7975 static struct type *
7976 template_to_static_fixed_type (struct type *type0)
7977 {
7978 struct type *type;
7979 int nfields;
7980 int f;
7981
7982 if (TYPE_TARGET_TYPE (type0) != NULL)
7983 return TYPE_TARGET_TYPE (type0);
7984
7985 nfields = TYPE_NFIELDS (type0);
7986 type = type0;
7987
7988 for (f = 0; f < nfields; f += 1)
7989 {
7990 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
7991 struct type *new_type;
7992
7993 if (is_dynamic_field (type0, f))
7994 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
7995 else
7996 new_type = static_unwrap_type (field_type);
7997 if (type == type0 && new_type != field_type)
7998 {
7999 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8000 TYPE_CODE (type) = TYPE_CODE (type0);
8001 INIT_CPLUS_SPECIFIC (type);
8002 TYPE_NFIELDS (type) = nfields;
8003 TYPE_FIELDS (type) = (struct field *)
8004 TYPE_ALLOC (type, nfields * sizeof (struct field));
8005 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8006 sizeof (struct field) * nfields);
8007 TYPE_NAME (type) = ada_type_name (type0);
8008 TYPE_TAG_NAME (type) = NULL;
8009 TYPE_FIXED_INSTANCE (type) = 1;
8010 TYPE_LENGTH (type) = 0;
8011 }
8012 TYPE_FIELD_TYPE (type, f) = new_type;
8013 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8014 }
8015 return type;
8016 }
8017
8018 /* Given an object of type TYPE whose contents are at VALADDR and
8019 whose address in memory is ADDRESS, returns a revision of TYPE,
8020 which should be a non-dynamic-sized record, in which the variant
8021 part, if any, is replaced with the appropriate branch. Looks
8022 for discriminant values in DVAL0, which can be NULL if the record
8023 contains the necessary discriminant values. */
8024
8025 static struct type *
8026 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8027 CORE_ADDR address, struct value *dval0)
8028 {
8029 struct value *mark = value_mark ();
8030 struct value *dval;
8031 struct type *rtype;
8032 struct type *branch_type;
8033 int nfields = TYPE_NFIELDS (type);
8034 int variant_field = variant_field_index (type);
8035
8036 if (variant_field == -1)
8037 return type;
8038
8039 if (dval0 == NULL)
8040 dval = value_from_contents_and_address (type, valaddr, address);
8041 else
8042 dval = dval0;
8043
8044 rtype = alloc_type_copy (type);
8045 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8046 INIT_CPLUS_SPECIFIC (rtype);
8047 TYPE_NFIELDS (rtype) = nfields;
8048 TYPE_FIELDS (rtype) =
8049 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8050 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
8051 sizeof (struct field) * nfields);
8052 TYPE_NAME (rtype) = ada_type_name (type);
8053 TYPE_TAG_NAME (rtype) = NULL;
8054 TYPE_FIXED_INSTANCE (rtype) = 1;
8055 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8056
8057 branch_type = to_fixed_variant_branch_type
8058 (TYPE_FIELD_TYPE (type, variant_field),
8059 cond_offset_host (valaddr,
8060 TYPE_FIELD_BITPOS (type, variant_field)
8061 / TARGET_CHAR_BIT),
8062 cond_offset_target (address,
8063 TYPE_FIELD_BITPOS (type, variant_field)
8064 / TARGET_CHAR_BIT), dval);
8065 if (branch_type == NULL)
8066 {
8067 int f;
8068
8069 for (f = variant_field + 1; f < nfields; f += 1)
8070 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8071 TYPE_NFIELDS (rtype) -= 1;
8072 }
8073 else
8074 {
8075 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8076 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8077 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8078 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8079 }
8080 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
8081
8082 value_free_to_mark (mark);
8083 return rtype;
8084 }
8085
8086 /* An ordinary record type (with fixed-length fields) that describes
8087 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8088 beginning of this section]. Any necessary discriminants' values
8089 should be in DVAL, a record value; it may be NULL if the object
8090 at ADDR itself contains any necessary discriminant values.
8091 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8092 values from the record are needed. Except in the case that DVAL,
8093 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8094 unchecked) is replaced by a particular branch of the variant.
8095
8096 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8097 is questionable and may be removed. It can arise during the
8098 processing of an unconstrained-array-of-record type where all the
8099 variant branches have exactly the same size. This is because in
8100 such cases, the compiler does not bother to use the XVS convention
8101 when encoding the record. I am currently dubious of this
8102 shortcut and suspect the compiler should be altered. FIXME. */
8103
8104 static struct type *
8105 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8106 CORE_ADDR address, struct value *dval)
8107 {
8108 struct type *templ_type;
8109
8110 if (TYPE_FIXED_INSTANCE (type0))
8111 return type0;
8112
8113 templ_type = dynamic_template_type (type0);
8114
8115 if (templ_type != NULL)
8116 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8117 else if (variant_field_index (type0) >= 0)
8118 {
8119 if (dval == NULL && valaddr == NULL && address == 0)
8120 return type0;
8121 return to_record_with_fixed_variant_part (type0, valaddr, address,
8122 dval);
8123 }
8124 else
8125 {
8126 TYPE_FIXED_INSTANCE (type0) = 1;
8127 return type0;
8128 }
8129
8130 }
8131
8132 /* An ordinary record type (with fixed-length fields) that describes
8133 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8134 union type. Any necessary discriminants' values should be in DVAL,
8135 a record value. That is, this routine selects the appropriate
8136 branch of the union at ADDR according to the discriminant value
8137 indicated in the union's type name. Returns VAR_TYPE0 itself if
8138 it represents a variant subject to a pragma Unchecked_Union. */
8139
8140 static struct type *
8141 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8142 CORE_ADDR address, struct value *dval)
8143 {
8144 int which;
8145 struct type *templ_type;
8146 struct type *var_type;
8147
8148 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8149 var_type = TYPE_TARGET_TYPE (var_type0);
8150 else
8151 var_type = var_type0;
8152
8153 templ_type = ada_find_parallel_type (var_type, "___XVU");
8154
8155 if (templ_type != NULL)
8156 var_type = templ_type;
8157
8158 if (is_unchecked_variant (var_type, value_type (dval)))
8159 return var_type0;
8160 which =
8161 ada_which_variant_applies (var_type,
8162 value_type (dval), value_contents (dval));
8163
8164 if (which < 0)
8165 return empty_record (var_type);
8166 else if (is_dynamic_field (var_type, which))
8167 return to_fixed_record_type
8168 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8169 valaddr, address, dval);
8170 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8171 return
8172 to_fixed_record_type
8173 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8174 else
8175 return TYPE_FIELD_TYPE (var_type, which);
8176 }
8177
8178 /* Assuming that TYPE0 is an array type describing the type of a value
8179 at ADDR, and that DVAL describes a record containing any
8180 discriminants used in TYPE0, returns a type for the value that
8181 contains no dynamic components (that is, no components whose sizes
8182 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8183 true, gives an error message if the resulting type's size is over
8184 varsize_limit. */
8185
8186 static struct type *
8187 to_fixed_array_type (struct type *type0, struct value *dval,
8188 int ignore_too_big)
8189 {
8190 struct type *index_type_desc;
8191 struct type *result;
8192 int constrained_packed_array_p;
8193
8194 type0 = ada_check_typedef (type0);
8195 if (TYPE_FIXED_INSTANCE (type0))
8196 return type0;
8197
8198 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8199 if (constrained_packed_array_p)
8200 type0 = decode_constrained_packed_array_type (type0);
8201
8202 index_type_desc = ada_find_parallel_type (type0, "___XA");
8203 ada_fixup_array_indexes_type (index_type_desc);
8204 if (index_type_desc == NULL)
8205 {
8206 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8207
8208 /* NOTE: elt_type---the fixed version of elt_type0---should never
8209 depend on the contents of the array in properly constructed
8210 debugging data. */
8211 /* Create a fixed version of the array element type.
8212 We're not providing the address of an element here,
8213 and thus the actual object value cannot be inspected to do
8214 the conversion. This should not be a problem, since arrays of
8215 unconstrained objects are not allowed. In particular, all
8216 the elements of an array of a tagged type should all be of
8217 the same type specified in the debugging info. No need to
8218 consult the object tag. */
8219 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8220
8221 /* Make sure we always create a new array type when dealing with
8222 packed array types, since we're going to fix-up the array
8223 type length and element bitsize a little further down. */
8224 if (elt_type0 == elt_type && !constrained_packed_array_p)
8225 result = type0;
8226 else
8227 result = create_array_type (alloc_type_copy (type0),
8228 elt_type, TYPE_INDEX_TYPE (type0));
8229 }
8230 else
8231 {
8232 int i;
8233 struct type *elt_type0;
8234
8235 elt_type0 = type0;
8236 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8237 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8238
8239 /* NOTE: result---the fixed version of elt_type0---should never
8240 depend on the contents of the array in properly constructed
8241 debugging data. */
8242 /* Create a fixed version of the array element type.
8243 We're not providing the address of an element here,
8244 and thus the actual object value cannot be inspected to do
8245 the conversion. This should not be a problem, since arrays of
8246 unconstrained objects are not allowed. In particular, all
8247 the elements of an array of a tagged type should all be of
8248 the same type specified in the debugging info. No need to
8249 consult the object tag. */
8250 result =
8251 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8252
8253 elt_type0 = type0;
8254 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8255 {
8256 struct type *range_type =
8257 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8258
8259 result = create_array_type (alloc_type_copy (elt_type0),
8260 result, range_type);
8261 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8262 }
8263 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8264 error (_("array type with dynamic size is larger than varsize-limit"));
8265 }
8266
8267 /* We want to preserve the type name. This can be useful when
8268 trying to get the type name of a value that has already been
8269 printed (for instance, if the user did "print VAR; whatis $". */
8270 TYPE_NAME (result) = TYPE_NAME (type0);
8271
8272 if (constrained_packed_array_p)
8273 {
8274 /* So far, the resulting type has been created as if the original
8275 type was a regular (non-packed) array type. As a result, the
8276 bitsize of the array elements needs to be set again, and the array
8277 length needs to be recomputed based on that bitsize. */
8278 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8279 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8280
8281 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8282 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8283 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8284 TYPE_LENGTH (result)++;
8285 }
8286
8287 TYPE_FIXED_INSTANCE (result) = 1;
8288 return result;
8289 }
8290
8291
8292 /* A standard type (containing no dynamically sized components)
8293 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8294 DVAL describes a record containing any discriminants used in TYPE0,
8295 and may be NULL if there are none, or if the object of type TYPE at
8296 ADDRESS or in VALADDR contains these discriminants.
8297
8298 If CHECK_TAG is not null, in the case of tagged types, this function
8299 attempts to locate the object's tag and use it to compute the actual
8300 type. However, when ADDRESS is null, we cannot use it to determine the
8301 location of the tag, and therefore compute the tagged type's actual type.
8302 So we return the tagged type without consulting the tag. */
8303
8304 static struct type *
8305 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8306 CORE_ADDR address, struct value *dval, int check_tag)
8307 {
8308 type = ada_check_typedef (type);
8309 switch (TYPE_CODE (type))
8310 {
8311 default:
8312 return type;
8313 case TYPE_CODE_STRUCT:
8314 {
8315 struct type *static_type = to_static_fixed_type (type);
8316 struct type *fixed_record_type =
8317 to_fixed_record_type (type, valaddr, address, NULL);
8318
8319 /* If STATIC_TYPE is a tagged type and we know the object's address,
8320 then we can determine its tag, and compute the object's actual
8321 type from there. Note that we have to use the fixed record
8322 type (the parent part of the record may have dynamic fields
8323 and the way the location of _tag is expressed may depend on
8324 them). */
8325
8326 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8327 {
8328 struct value *tag =
8329 value_tag_from_contents_and_address
8330 (fixed_record_type,
8331 valaddr,
8332 address);
8333 struct type *real_type = type_from_tag (tag);
8334 struct value *obj =
8335 value_from_contents_and_address (fixed_record_type,
8336 valaddr,
8337 address);
8338 if (real_type != NULL)
8339 return to_fixed_record_type
8340 (real_type, NULL,
8341 value_address (ada_tag_value_at_base_address (obj)), NULL);
8342 }
8343
8344 /* Check to see if there is a parallel ___XVZ variable.
8345 If there is, then it provides the actual size of our type. */
8346 else if (ada_type_name (fixed_record_type) != NULL)
8347 {
8348 const char *name = ada_type_name (fixed_record_type);
8349 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
8350 int xvz_found = 0;
8351 LONGEST size;
8352
8353 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8354 size = get_int_var_value (xvz_name, &xvz_found);
8355 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8356 {
8357 fixed_record_type = copy_type (fixed_record_type);
8358 TYPE_LENGTH (fixed_record_type) = size;
8359
8360 /* The FIXED_RECORD_TYPE may have be a stub. We have
8361 observed this when the debugging info is STABS, and
8362 apparently it is something that is hard to fix.
8363
8364 In practice, we don't need the actual type definition
8365 at all, because the presence of the XVZ variable allows us
8366 to assume that there must be a XVS type as well, which we
8367 should be able to use later, when we need the actual type
8368 definition.
8369
8370 In the meantime, pretend that the "fixed" type we are
8371 returning is NOT a stub, because this can cause trouble
8372 when using this type to create new types targeting it.
8373 Indeed, the associated creation routines often check
8374 whether the target type is a stub and will try to replace
8375 it, thus using a type with the wrong size. This, in turn,
8376 might cause the new type to have the wrong size too.
8377 Consider the case of an array, for instance, where the size
8378 of the array is computed from the number of elements in
8379 our array multiplied by the size of its element. */
8380 TYPE_STUB (fixed_record_type) = 0;
8381 }
8382 }
8383 return fixed_record_type;
8384 }
8385 case TYPE_CODE_ARRAY:
8386 return to_fixed_array_type (type, dval, 1);
8387 case TYPE_CODE_UNION:
8388 if (dval == NULL)
8389 return type;
8390 else
8391 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8392 }
8393 }
8394
8395 /* The same as ada_to_fixed_type_1, except that it preserves the type
8396 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8397
8398 The typedef layer needs be preserved in order to differentiate between
8399 arrays and array pointers when both types are implemented using the same
8400 fat pointer. In the array pointer case, the pointer is encoded as
8401 a typedef of the pointer type. For instance, considering:
8402
8403 type String_Access is access String;
8404 S1 : String_Access := null;
8405
8406 To the debugger, S1 is defined as a typedef of type String. But
8407 to the user, it is a pointer. So if the user tries to print S1,
8408 we should not dereference the array, but print the array address
8409 instead.
8410
8411 If we didn't preserve the typedef layer, we would lose the fact that
8412 the type is to be presented as a pointer (needs de-reference before
8413 being printed). And we would also use the source-level type name. */
8414
8415 struct type *
8416 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8417 CORE_ADDR address, struct value *dval, int check_tag)
8418
8419 {
8420 struct type *fixed_type =
8421 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8422
8423 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8424 then preserve the typedef layer.
8425
8426 Implementation note: We can only check the main-type portion of
8427 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8428 from TYPE now returns a type that has the same instance flags
8429 as TYPE. For instance, if TYPE is a "typedef const", and its
8430 target type is a "struct", then the typedef elimination will return
8431 a "const" version of the target type. See check_typedef for more
8432 details about how the typedef layer elimination is done.
8433
8434 brobecker/2010-11-19: It seems to me that the only case where it is
8435 useful to preserve the typedef layer is when dealing with fat pointers.
8436 Perhaps, we could add a check for that and preserve the typedef layer
8437 only in that situation. But this seems unecessary so far, probably
8438 because we call check_typedef/ada_check_typedef pretty much everywhere.
8439 */
8440 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8441 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8442 == TYPE_MAIN_TYPE (fixed_type)))
8443 return type;
8444
8445 return fixed_type;
8446 }
8447
8448 /* A standard (static-sized) type corresponding as well as possible to
8449 TYPE0, but based on no runtime data. */
8450
8451 static struct type *
8452 to_static_fixed_type (struct type *type0)
8453 {
8454 struct type *type;
8455
8456 if (type0 == NULL)
8457 return NULL;
8458
8459 if (TYPE_FIXED_INSTANCE (type0))
8460 return type0;
8461
8462 type0 = ada_check_typedef (type0);
8463
8464 switch (TYPE_CODE (type0))
8465 {
8466 default:
8467 return type0;
8468 case TYPE_CODE_STRUCT:
8469 type = dynamic_template_type (type0);
8470 if (type != NULL)
8471 return template_to_static_fixed_type (type);
8472 else
8473 return template_to_static_fixed_type (type0);
8474 case TYPE_CODE_UNION:
8475 type = ada_find_parallel_type (type0, "___XVU");
8476 if (type != NULL)
8477 return template_to_static_fixed_type (type);
8478 else
8479 return template_to_static_fixed_type (type0);
8480 }
8481 }
8482
8483 /* A static approximation of TYPE with all type wrappers removed. */
8484
8485 static struct type *
8486 static_unwrap_type (struct type *type)
8487 {
8488 if (ada_is_aligner_type (type))
8489 {
8490 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
8491 if (ada_type_name (type1) == NULL)
8492 TYPE_NAME (type1) = ada_type_name (type);
8493
8494 return static_unwrap_type (type1);
8495 }
8496 else
8497 {
8498 struct type *raw_real_type = ada_get_base_type (type);
8499
8500 if (raw_real_type == type)
8501 return type;
8502 else
8503 return to_static_fixed_type (raw_real_type);
8504 }
8505 }
8506
8507 /* In some cases, incomplete and private types require
8508 cross-references that are not resolved as records (for example,
8509 type Foo;
8510 type FooP is access Foo;
8511 V: FooP;
8512 type Foo is array ...;
8513 ). In these cases, since there is no mechanism for producing
8514 cross-references to such types, we instead substitute for FooP a
8515 stub enumeration type that is nowhere resolved, and whose tag is
8516 the name of the actual type. Call these types "non-record stubs". */
8517
8518 /* A type equivalent to TYPE that is not a non-record stub, if one
8519 exists, otherwise TYPE. */
8520
8521 struct type *
8522 ada_check_typedef (struct type *type)
8523 {
8524 if (type == NULL)
8525 return NULL;
8526
8527 /* If our type is a typedef type of a fat pointer, then we're done.
8528 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8529 what allows us to distinguish between fat pointers that represent
8530 array types, and fat pointers that represent array access types
8531 (in both cases, the compiler implements them as fat pointers). */
8532 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8533 && is_thick_pntr (ada_typedef_target_type (type)))
8534 return type;
8535
8536 CHECK_TYPEDEF (type);
8537 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
8538 || !TYPE_STUB (type)
8539 || TYPE_TAG_NAME (type) == NULL)
8540 return type;
8541 else
8542 {
8543 const char *name = TYPE_TAG_NAME (type);
8544 struct type *type1 = ada_find_any_type (name);
8545
8546 if (type1 == NULL)
8547 return type;
8548
8549 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8550 stubs pointing to arrays, as we don't create symbols for array
8551 types, only for the typedef-to-array types). If that's the case,
8552 strip the typedef layer. */
8553 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
8554 type1 = ada_check_typedef (type1);
8555
8556 return type1;
8557 }
8558 }
8559
8560 /* A value representing the data at VALADDR/ADDRESS as described by
8561 type TYPE0, but with a standard (static-sized) type that correctly
8562 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8563 type, then return VAL0 [this feature is simply to avoid redundant
8564 creation of struct values]. */
8565
8566 static struct value *
8567 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8568 struct value *val0)
8569 {
8570 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
8571
8572 if (type == type0 && val0 != NULL)
8573 return val0;
8574 else
8575 return value_from_contents_and_address (type, 0, address);
8576 }
8577
8578 /* A value representing VAL, but with a standard (static-sized) type
8579 that correctly describes it. Does not necessarily create a new
8580 value. */
8581
8582 struct value *
8583 ada_to_fixed_value (struct value *val)
8584 {
8585 val = unwrap_value (val);
8586 val = ada_to_fixed_value_create (value_type (val),
8587 value_address (val),
8588 val);
8589 return val;
8590 }
8591 \f
8592
8593 /* Attributes */
8594
8595 /* Table mapping attribute numbers to names.
8596 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
8597
8598 static const char *attribute_names[] = {
8599 "<?>",
8600
8601 "first",
8602 "last",
8603 "length",
8604 "image",
8605 "max",
8606 "min",
8607 "modulus",
8608 "pos",
8609 "size",
8610 "tag",
8611 "val",
8612 0
8613 };
8614
8615 const char *
8616 ada_attribute_name (enum exp_opcode n)
8617 {
8618 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8619 return attribute_names[n - OP_ATR_FIRST + 1];
8620 else
8621 return attribute_names[0];
8622 }
8623
8624 /* Evaluate the 'POS attribute applied to ARG. */
8625
8626 static LONGEST
8627 pos_atr (struct value *arg)
8628 {
8629 struct value *val = coerce_ref (arg);
8630 struct type *type = value_type (val);
8631
8632 if (!discrete_type_p (type))
8633 error (_("'POS only defined on discrete types"));
8634
8635 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8636 {
8637 int i;
8638 LONGEST v = value_as_long (val);
8639
8640 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
8641 {
8642 if (v == TYPE_FIELD_ENUMVAL (type, i))
8643 return i;
8644 }
8645 error (_("enumeration value is invalid: can't find 'POS"));
8646 }
8647 else
8648 return value_as_long (val);
8649 }
8650
8651 static struct value *
8652 value_pos_atr (struct type *type, struct value *arg)
8653 {
8654 return value_from_longest (type, pos_atr (arg));
8655 }
8656
8657 /* Evaluate the TYPE'VAL attribute applied to ARG. */
8658
8659 static struct value *
8660 value_val_atr (struct type *type, struct value *arg)
8661 {
8662 if (!discrete_type_p (type))
8663 error (_("'VAL only defined on discrete types"));
8664 if (!integer_type_p (value_type (arg)))
8665 error (_("'VAL requires integral argument"));
8666
8667 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8668 {
8669 long pos = value_as_long (arg);
8670
8671 if (pos < 0 || pos >= TYPE_NFIELDS (type))
8672 error (_("argument to 'VAL out of range"));
8673 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
8674 }
8675 else
8676 return value_from_longest (type, value_as_long (arg));
8677 }
8678 \f
8679
8680 /* Evaluation */
8681
8682 /* True if TYPE appears to be an Ada character type.
8683 [At the moment, this is true only for Character and Wide_Character;
8684 It is a heuristic test that could stand improvement]. */
8685
8686 int
8687 ada_is_character_type (struct type *type)
8688 {
8689 const char *name;
8690
8691 /* If the type code says it's a character, then assume it really is,
8692 and don't check any further. */
8693 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
8694 return 1;
8695
8696 /* Otherwise, assume it's a character type iff it is a discrete type
8697 with a known character type name. */
8698 name = ada_type_name (type);
8699 return (name != NULL
8700 && (TYPE_CODE (type) == TYPE_CODE_INT
8701 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8702 && (strcmp (name, "character") == 0
8703 || strcmp (name, "wide_character") == 0
8704 || strcmp (name, "wide_wide_character") == 0
8705 || strcmp (name, "unsigned char") == 0));
8706 }
8707
8708 /* True if TYPE appears to be an Ada string type. */
8709
8710 int
8711 ada_is_string_type (struct type *type)
8712 {
8713 type = ada_check_typedef (type);
8714 if (type != NULL
8715 && TYPE_CODE (type) != TYPE_CODE_PTR
8716 && (ada_is_simple_array_type (type)
8717 || ada_is_array_descriptor_type (type))
8718 && ada_array_arity (type) == 1)
8719 {
8720 struct type *elttype = ada_array_element_type (type, 1);
8721
8722 return ada_is_character_type (elttype);
8723 }
8724 else
8725 return 0;
8726 }
8727
8728 /* The compiler sometimes provides a parallel XVS type for a given
8729 PAD type. Normally, it is safe to follow the PAD type directly,
8730 but older versions of the compiler have a bug that causes the offset
8731 of its "F" field to be wrong. Following that field in that case
8732 would lead to incorrect results, but this can be worked around
8733 by ignoring the PAD type and using the associated XVS type instead.
8734
8735 Set to True if the debugger should trust the contents of PAD types.
8736 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8737 static int trust_pad_over_xvs = 1;
8738
8739 /* True if TYPE is a struct type introduced by the compiler to force the
8740 alignment of a value. Such types have a single field with a
8741 distinctive name. */
8742
8743 int
8744 ada_is_aligner_type (struct type *type)
8745 {
8746 type = ada_check_typedef (type);
8747
8748 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
8749 return 0;
8750
8751 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
8752 && TYPE_NFIELDS (type) == 1
8753 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
8754 }
8755
8756 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
8757 the parallel type. */
8758
8759 struct type *
8760 ada_get_base_type (struct type *raw_type)
8761 {
8762 struct type *real_type_namer;
8763 struct type *raw_real_type;
8764
8765 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
8766 return raw_type;
8767
8768 if (ada_is_aligner_type (raw_type))
8769 /* The encoding specifies that we should always use the aligner type.
8770 So, even if this aligner type has an associated XVS type, we should
8771 simply ignore it.
8772
8773 According to the compiler gurus, an XVS type parallel to an aligner
8774 type may exist because of a stabs limitation. In stabs, aligner
8775 types are empty because the field has a variable-sized type, and
8776 thus cannot actually be used as an aligner type. As a result,
8777 we need the associated parallel XVS type to decode the type.
8778 Since the policy in the compiler is to not change the internal
8779 representation based on the debugging info format, we sometimes
8780 end up having a redundant XVS type parallel to the aligner type. */
8781 return raw_type;
8782
8783 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
8784 if (real_type_namer == NULL
8785 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
8786 || TYPE_NFIELDS (real_type_namer) != 1)
8787 return raw_type;
8788
8789 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
8790 {
8791 /* This is an older encoding form where the base type needs to be
8792 looked up by name. We prefer the newer enconding because it is
8793 more efficient. */
8794 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8795 if (raw_real_type == NULL)
8796 return raw_type;
8797 else
8798 return raw_real_type;
8799 }
8800
8801 /* The field in our XVS type is a reference to the base type. */
8802 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
8803 }
8804
8805 /* The type of value designated by TYPE, with all aligners removed. */
8806
8807 struct type *
8808 ada_aligned_type (struct type *type)
8809 {
8810 if (ada_is_aligner_type (type))
8811 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
8812 else
8813 return ada_get_base_type (type);
8814 }
8815
8816
8817 /* The address of the aligned value in an object at address VALADDR
8818 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
8819
8820 const gdb_byte *
8821 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
8822 {
8823 if (ada_is_aligner_type (type))
8824 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
8825 valaddr +
8826 TYPE_FIELD_BITPOS (type,
8827 0) / TARGET_CHAR_BIT);
8828 else
8829 return valaddr;
8830 }
8831
8832
8833
8834 /* The printed representation of an enumeration literal with encoded
8835 name NAME. The value is good to the next call of ada_enum_name. */
8836 const char *
8837 ada_enum_name (const char *name)
8838 {
8839 static char *result;
8840 static size_t result_len = 0;
8841 char *tmp;
8842
8843 /* First, unqualify the enumeration name:
8844 1. Search for the last '.' character. If we find one, then skip
8845 all the preceding characters, the unqualified name starts
8846 right after that dot.
8847 2. Otherwise, we may be debugging on a target where the compiler
8848 translates dots into "__". Search forward for double underscores,
8849 but stop searching when we hit an overloading suffix, which is
8850 of the form "__" followed by digits. */
8851
8852 tmp = strrchr (name, '.');
8853 if (tmp != NULL)
8854 name = tmp + 1;
8855 else
8856 {
8857 while ((tmp = strstr (name, "__")) != NULL)
8858 {
8859 if (isdigit (tmp[2]))
8860 break;
8861 else
8862 name = tmp + 2;
8863 }
8864 }
8865
8866 if (name[0] == 'Q')
8867 {
8868 int v;
8869
8870 if (name[1] == 'U' || name[1] == 'W')
8871 {
8872 if (sscanf (name + 2, "%x", &v) != 1)
8873 return name;
8874 }
8875 else
8876 return name;
8877
8878 GROW_VECT (result, result_len, 16);
8879 if (isascii (v) && isprint (v))
8880 xsnprintf (result, result_len, "'%c'", v);
8881 else if (name[1] == 'U')
8882 xsnprintf (result, result_len, "[\"%02x\"]", v);
8883 else
8884 xsnprintf (result, result_len, "[\"%04x\"]", v);
8885
8886 return result;
8887 }
8888 else
8889 {
8890 tmp = strstr (name, "__");
8891 if (tmp == NULL)
8892 tmp = strstr (name, "$");
8893 if (tmp != NULL)
8894 {
8895 GROW_VECT (result, result_len, tmp - name + 1);
8896 strncpy (result, name, tmp - name);
8897 result[tmp - name] = '\0';
8898 return result;
8899 }
8900
8901 return name;
8902 }
8903 }
8904
8905 /* Evaluate the subexpression of EXP starting at *POS as for
8906 evaluate_type, updating *POS to point just past the evaluated
8907 expression. */
8908
8909 static struct value *
8910 evaluate_subexp_type (struct expression *exp, int *pos)
8911 {
8912 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8913 }
8914
8915 /* If VAL is wrapped in an aligner or subtype wrapper, return the
8916 value it wraps. */
8917
8918 static struct value *
8919 unwrap_value (struct value *val)
8920 {
8921 struct type *type = ada_check_typedef (value_type (val));
8922
8923 if (ada_is_aligner_type (type))
8924 {
8925 struct value *v = ada_value_struct_elt (val, "F", 0);
8926 struct type *val_type = ada_check_typedef (value_type (v));
8927
8928 if (ada_type_name (val_type) == NULL)
8929 TYPE_NAME (val_type) = ada_type_name (type);
8930
8931 return unwrap_value (v);
8932 }
8933 else
8934 {
8935 struct type *raw_real_type =
8936 ada_check_typedef (ada_get_base_type (type));
8937
8938 /* If there is no parallel XVS or XVE type, then the value is
8939 already unwrapped. Return it without further modification. */
8940 if ((type == raw_real_type)
8941 && ada_find_parallel_type (type, "___XVE") == NULL)
8942 return val;
8943
8944 return
8945 coerce_unspec_val_to_type
8946 (val, ada_to_fixed_type (raw_real_type, 0,
8947 value_address (val),
8948 NULL, 1));
8949 }
8950 }
8951
8952 static struct value *
8953 cast_to_fixed (struct type *type, struct value *arg)
8954 {
8955 LONGEST val;
8956
8957 if (type == value_type (arg))
8958 return arg;
8959 else if (ada_is_fixed_point_type (value_type (arg)))
8960 val = ada_float_to_fixed (type,
8961 ada_fixed_to_float (value_type (arg),
8962 value_as_long (arg)));
8963 else
8964 {
8965 DOUBLEST argd = value_as_double (arg);
8966
8967 val = ada_float_to_fixed (type, argd);
8968 }
8969
8970 return value_from_longest (type, val);
8971 }
8972
8973 static struct value *
8974 cast_from_fixed (struct type *type, struct value *arg)
8975 {
8976 DOUBLEST val = ada_fixed_to_float (value_type (arg),
8977 value_as_long (arg));
8978
8979 return value_from_double (type, val);
8980 }
8981
8982 /* Given two array types T1 and T2, return nonzero iff both arrays
8983 contain the same number of elements. */
8984
8985 static int
8986 ada_same_array_size_p (struct type *t1, struct type *t2)
8987 {
8988 LONGEST lo1, hi1, lo2, hi2;
8989
8990 /* Get the array bounds in order to verify that the size of
8991 the two arrays match. */
8992 if (!get_array_bounds (t1, &lo1, &hi1)
8993 || !get_array_bounds (t2, &lo2, &hi2))
8994 error (_("unable to determine array bounds"));
8995
8996 /* To make things easier for size comparison, normalize a bit
8997 the case of empty arrays by making sure that the difference
8998 between upper bound and lower bound is always -1. */
8999 if (lo1 > hi1)
9000 hi1 = lo1 - 1;
9001 if (lo2 > hi2)
9002 hi2 = lo2 - 1;
9003
9004 return (hi1 - lo1 == hi2 - lo2);
9005 }
9006
9007 /* Assuming that VAL is an array of integrals, and TYPE represents
9008 an array with the same number of elements, but with wider integral
9009 elements, return an array "casted" to TYPE. In practice, this
9010 means that the returned array is built by casting each element
9011 of the original array into TYPE's (wider) element type. */
9012
9013 static struct value *
9014 ada_promote_array_of_integrals (struct type *type, struct value *val)
9015 {
9016 struct type *elt_type = TYPE_TARGET_TYPE (type);
9017 LONGEST lo, hi;
9018 struct value *res;
9019 LONGEST i;
9020
9021 /* Verify that both val and type are arrays of scalars, and
9022 that the size of val's elements is smaller than the size
9023 of type's element. */
9024 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9025 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9026 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9027 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9028 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9029 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9030
9031 if (!get_array_bounds (type, &lo, &hi))
9032 error (_("unable to determine array bounds"));
9033
9034 res = allocate_value (type);
9035
9036 /* Promote each array element. */
9037 for (i = 0; i < hi - lo + 1; i++)
9038 {
9039 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9040
9041 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9042 value_contents_all (elt), TYPE_LENGTH (elt_type));
9043 }
9044
9045 return res;
9046 }
9047
9048 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9049 return the converted value. */
9050
9051 static struct value *
9052 coerce_for_assign (struct type *type, struct value *val)
9053 {
9054 struct type *type2 = value_type (val);
9055
9056 if (type == type2)
9057 return val;
9058
9059 type2 = ada_check_typedef (type2);
9060 type = ada_check_typedef (type);
9061
9062 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9063 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9064 {
9065 val = ada_value_ind (val);
9066 type2 = value_type (val);
9067 }
9068
9069 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
9070 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9071 {
9072 if (!ada_same_array_size_p (type, type2))
9073 error (_("cannot assign arrays of different length"));
9074
9075 if (is_integral_type (TYPE_TARGET_TYPE (type))
9076 && is_integral_type (TYPE_TARGET_TYPE (type2))
9077 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9078 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9079 {
9080 /* Allow implicit promotion of the array elements to
9081 a wider type. */
9082 return ada_promote_array_of_integrals (type, val);
9083 }
9084
9085 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9086 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9087 error (_("Incompatible types in assignment"));
9088 deprecated_set_value_type (val, type);
9089 }
9090 return val;
9091 }
9092
9093 static struct value *
9094 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9095 {
9096 struct value *val;
9097 struct type *type1, *type2;
9098 LONGEST v, v1, v2;
9099
9100 arg1 = coerce_ref (arg1);
9101 arg2 = coerce_ref (arg2);
9102 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9103 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9104
9105 if (TYPE_CODE (type1) != TYPE_CODE_INT
9106 || TYPE_CODE (type2) != TYPE_CODE_INT)
9107 return value_binop (arg1, arg2, op);
9108
9109 switch (op)
9110 {
9111 case BINOP_MOD:
9112 case BINOP_DIV:
9113 case BINOP_REM:
9114 break;
9115 default:
9116 return value_binop (arg1, arg2, op);
9117 }
9118
9119 v2 = value_as_long (arg2);
9120 if (v2 == 0)
9121 error (_("second operand of %s must not be zero."), op_string (op));
9122
9123 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9124 return value_binop (arg1, arg2, op);
9125
9126 v1 = value_as_long (arg1);
9127 switch (op)
9128 {
9129 case BINOP_DIV:
9130 v = v1 / v2;
9131 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9132 v += v > 0 ? -1 : 1;
9133 break;
9134 case BINOP_REM:
9135 v = v1 % v2;
9136 if (v * v1 < 0)
9137 v -= v2;
9138 break;
9139 default:
9140 /* Should not reach this point. */
9141 v = 0;
9142 }
9143
9144 val = allocate_value (type1);
9145 store_unsigned_integer (value_contents_raw (val),
9146 TYPE_LENGTH (value_type (val)),
9147 gdbarch_byte_order (get_type_arch (type1)), v);
9148 return val;
9149 }
9150
9151 static int
9152 ada_value_equal (struct value *arg1, struct value *arg2)
9153 {
9154 if (ada_is_direct_array_type (value_type (arg1))
9155 || ada_is_direct_array_type (value_type (arg2)))
9156 {
9157 /* Automatically dereference any array reference before
9158 we attempt to perform the comparison. */
9159 arg1 = ada_coerce_ref (arg1);
9160 arg2 = ada_coerce_ref (arg2);
9161
9162 arg1 = ada_coerce_to_simple_array (arg1);
9163 arg2 = ada_coerce_to_simple_array (arg2);
9164 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
9165 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
9166 error (_("Attempt to compare array with non-array"));
9167 /* FIXME: The following works only for types whose
9168 representations use all bits (no padding or undefined bits)
9169 and do not have user-defined equality. */
9170 return
9171 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
9172 && memcmp (value_contents (arg1), value_contents (arg2),
9173 TYPE_LENGTH (value_type (arg1))) == 0;
9174 }
9175 return value_equal (arg1, arg2);
9176 }
9177
9178 /* Total number of component associations in the aggregate starting at
9179 index PC in EXP. Assumes that index PC is the start of an
9180 OP_AGGREGATE. */
9181
9182 static int
9183 num_component_specs (struct expression *exp, int pc)
9184 {
9185 int n, m, i;
9186
9187 m = exp->elts[pc + 1].longconst;
9188 pc += 3;
9189 n = 0;
9190 for (i = 0; i < m; i += 1)
9191 {
9192 switch (exp->elts[pc].opcode)
9193 {
9194 default:
9195 n += 1;
9196 break;
9197 case OP_CHOICES:
9198 n += exp->elts[pc + 1].longconst;
9199 break;
9200 }
9201 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9202 }
9203 return n;
9204 }
9205
9206 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9207 component of LHS (a simple array or a record), updating *POS past
9208 the expression, assuming that LHS is contained in CONTAINER. Does
9209 not modify the inferior's memory, nor does it modify LHS (unless
9210 LHS == CONTAINER). */
9211
9212 static void
9213 assign_component (struct value *container, struct value *lhs, LONGEST index,
9214 struct expression *exp, int *pos)
9215 {
9216 struct value *mark = value_mark ();
9217 struct value *elt;
9218
9219 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
9220 {
9221 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9222 struct value *index_val = value_from_longest (index_type, index);
9223
9224 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9225 }
9226 else
9227 {
9228 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9229 elt = ada_to_fixed_value (elt);
9230 }
9231
9232 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9233 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9234 else
9235 value_assign_to_component (container, elt,
9236 ada_evaluate_subexp (NULL, exp, pos,
9237 EVAL_NORMAL));
9238
9239 value_free_to_mark (mark);
9240 }
9241
9242 /* Assuming that LHS represents an lvalue having a record or array
9243 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9244 of that aggregate's value to LHS, advancing *POS past the
9245 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9246 lvalue containing LHS (possibly LHS itself). Does not modify
9247 the inferior's memory, nor does it modify the contents of
9248 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9249
9250 static struct value *
9251 assign_aggregate (struct value *container,
9252 struct value *lhs, struct expression *exp,
9253 int *pos, enum noside noside)
9254 {
9255 struct type *lhs_type;
9256 int n = exp->elts[*pos+1].longconst;
9257 LONGEST low_index, high_index;
9258 int num_specs;
9259 LONGEST *indices;
9260 int max_indices, num_indices;
9261 int i;
9262
9263 *pos += 3;
9264 if (noside != EVAL_NORMAL)
9265 {
9266 for (i = 0; i < n; i += 1)
9267 ada_evaluate_subexp (NULL, exp, pos, noside);
9268 return container;
9269 }
9270
9271 container = ada_coerce_ref (container);
9272 if (ada_is_direct_array_type (value_type (container)))
9273 container = ada_coerce_to_simple_array (container);
9274 lhs = ada_coerce_ref (lhs);
9275 if (!deprecated_value_modifiable (lhs))
9276 error (_("Left operand of assignment is not a modifiable lvalue."));
9277
9278 lhs_type = value_type (lhs);
9279 if (ada_is_direct_array_type (lhs_type))
9280 {
9281 lhs = ada_coerce_to_simple_array (lhs);
9282 lhs_type = value_type (lhs);
9283 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9284 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
9285 }
9286 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9287 {
9288 low_index = 0;
9289 high_index = num_visible_fields (lhs_type) - 1;
9290 }
9291 else
9292 error (_("Left-hand side must be array or record."));
9293
9294 num_specs = num_component_specs (exp, *pos - 3);
9295 max_indices = 4 * num_specs + 4;
9296 indices = alloca (max_indices * sizeof (indices[0]));
9297 indices[0] = indices[1] = low_index - 1;
9298 indices[2] = indices[3] = high_index + 1;
9299 num_indices = 4;
9300
9301 for (i = 0; i < n; i += 1)
9302 {
9303 switch (exp->elts[*pos].opcode)
9304 {
9305 case OP_CHOICES:
9306 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9307 &num_indices, max_indices,
9308 low_index, high_index);
9309 break;
9310 case OP_POSITIONAL:
9311 aggregate_assign_positional (container, lhs, exp, pos, indices,
9312 &num_indices, max_indices,
9313 low_index, high_index);
9314 break;
9315 case OP_OTHERS:
9316 if (i != n-1)
9317 error (_("Misplaced 'others' clause"));
9318 aggregate_assign_others (container, lhs, exp, pos, indices,
9319 num_indices, low_index, high_index);
9320 break;
9321 default:
9322 error (_("Internal error: bad aggregate clause"));
9323 }
9324 }
9325
9326 return container;
9327 }
9328
9329 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9330 construct at *POS, updating *POS past the construct, given that
9331 the positions are relative to lower bound LOW, where HIGH is the
9332 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9333 updating *NUM_INDICES as needed. CONTAINER is as for
9334 assign_aggregate. */
9335 static void
9336 aggregate_assign_positional (struct value *container,
9337 struct value *lhs, struct expression *exp,
9338 int *pos, LONGEST *indices, int *num_indices,
9339 int max_indices, LONGEST low, LONGEST high)
9340 {
9341 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9342
9343 if (ind - 1 == high)
9344 warning (_("Extra components in aggregate ignored."));
9345 if (ind <= high)
9346 {
9347 add_component_interval (ind, ind, indices, num_indices, max_indices);
9348 *pos += 3;
9349 assign_component (container, lhs, ind, exp, pos);
9350 }
9351 else
9352 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9353 }
9354
9355 /* Assign into the components of LHS indexed by the OP_CHOICES
9356 construct at *POS, updating *POS past the construct, given that
9357 the allowable indices are LOW..HIGH. Record the indices assigned
9358 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
9359 needed. CONTAINER is as for assign_aggregate. */
9360 static void
9361 aggregate_assign_from_choices (struct value *container,
9362 struct value *lhs, struct expression *exp,
9363 int *pos, LONGEST *indices, int *num_indices,
9364 int max_indices, LONGEST low, LONGEST high)
9365 {
9366 int j;
9367 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9368 int choice_pos, expr_pc;
9369 int is_array = ada_is_direct_array_type (value_type (lhs));
9370
9371 choice_pos = *pos += 3;
9372
9373 for (j = 0; j < n_choices; j += 1)
9374 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9375 expr_pc = *pos;
9376 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9377
9378 for (j = 0; j < n_choices; j += 1)
9379 {
9380 LONGEST lower, upper;
9381 enum exp_opcode op = exp->elts[choice_pos].opcode;
9382
9383 if (op == OP_DISCRETE_RANGE)
9384 {
9385 choice_pos += 1;
9386 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9387 EVAL_NORMAL));
9388 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9389 EVAL_NORMAL));
9390 }
9391 else if (is_array)
9392 {
9393 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9394 EVAL_NORMAL));
9395 upper = lower;
9396 }
9397 else
9398 {
9399 int ind;
9400 const char *name;
9401
9402 switch (op)
9403 {
9404 case OP_NAME:
9405 name = &exp->elts[choice_pos + 2].string;
9406 break;
9407 case OP_VAR_VALUE:
9408 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9409 break;
9410 default:
9411 error (_("Invalid record component association."));
9412 }
9413 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9414 ind = 0;
9415 if (! find_struct_field (name, value_type (lhs), 0,
9416 NULL, NULL, NULL, NULL, &ind))
9417 error (_("Unknown component name: %s."), name);
9418 lower = upper = ind;
9419 }
9420
9421 if (lower <= upper && (lower < low || upper > high))
9422 error (_("Index in component association out of bounds."));
9423
9424 add_component_interval (lower, upper, indices, num_indices,
9425 max_indices);
9426 while (lower <= upper)
9427 {
9428 int pos1;
9429
9430 pos1 = expr_pc;
9431 assign_component (container, lhs, lower, exp, &pos1);
9432 lower += 1;
9433 }
9434 }
9435 }
9436
9437 /* Assign the value of the expression in the OP_OTHERS construct in
9438 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9439 have not been previously assigned. The index intervals already assigned
9440 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
9441 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
9442 static void
9443 aggregate_assign_others (struct value *container,
9444 struct value *lhs, struct expression *exp,
9445 int *pos, LONGEST *indices, int num_indices,
9446 LONGEST low, LONGEST high)
9447 {
9448 int i;
9449 int expr_pc = *pos + 1;
9450
9451 for (i = 0; i < num_indices - 2; i += 2)
9452 {
9453 LONGEST ind;
9454
9455 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9456 {
9457 int localpos;
9458
9459 localpos = expr_pc;
9460 assign_component (container, lhs, ind, exp, &localpos);
9461 }
9462 }
9463 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9464 }
9465
9466 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
9467 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9468 modifying *SIZE as needed. It is an error if *SIZE exceeds
9469 MAX_SIZE. The resulting intervals do not overlap. */
9470 static void
9471 add_component_interval (LONGEST low, LONGEST high,
9472 LONGEST* indices, int *size, int max_size)
9473 {
9474 int i, j;
9475
9476 for (i = 0; i < *size; i += 2) {
9477 if (high >= indices[i] && low <= indices[i + 1])
9478 {
9479 int kh;
9480
9481 for (kh = i + 2; kh < *size; kh += 2)
9482 if (high < indices[kh])
9483 break;
9484 if (low < indices[i])
9485 indices[i] = low;
9486 indices[i + 1] = indices[kh - 1];
9487 if (high > indices[i + 1])
9488 indices[i + 1] = high;
9489 memcpy (indices + i + 2, indices + kh, *size - kh);
9490 *size -= kh - i - 2;
9491 return;
9492 }
9493 else if (high < indices[i])
9494 break;
9495 }
9496
9497 if (*size == max_size)
9498 error (_("Internal error: miscounted aggregate components."));
9499 *size += 2;
9500 for (j = *size-1; j >= i+2; j -= 1)
9501 indices[j] = indices[j - 2];
9502 indices[i] = low;
9503 indices[i + 1] = high;
9504 }
9505
9506 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9507 is different. */
9508
9509 static struct value *
9510 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
9511 {
9512 if (type == ada_check_typedef (value_type (arg2)))
9513 return arg2;
9514
9515 if (ada_is_fixed_point_type (type))
9516 return (cast_to_fixed (type, arg2));
9517
9518 if (ada_is_fixed_point_type (value_type (arg2)))
9519 return cast_from_fixed (type, arg2);
9520
9521 return value_cast (type, arg2);
9522 }
9523
9524 /* Evaluating Ada expressions, and printing their result.
9525 ------------------------------------------------------
9526
9527 1. Introduction:
9528 ----------------
9529
9530 We usually evaluate an Ada expression in order to print its value.
9531 We also evaluate an expression in order to print its type, which
9532 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9533 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9534 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9535 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9536 similar.
9537
9538 Evaluating expressions is a little more complicated for Ada entities
9539 than it is for entities in languages such as C. The main reason for
9540 this is that Ada provides types whose definition might be dynamic.
9541 One example of such types is variant records. Or another example
9542 would be an array whose bounds can only be known at run time.
9543
9544 The following description is a general guide as to what should be
9545 done (and what should NOT be done) in order to evaluate an expression
9546 involving such types, and when. This does not cover how the semantic
9547 information is encoded by GNAT as this is covered separatly. For the
9548 document used as the reference for the GNAT encoding, see exp_dbug.ads
9549 in the GNAT sources.
9550
9551 Ideally, we should embed each part of this description next to its
9552 associated code. Unfortunately, the amount of code is so vast right
9553 now that it's hard to see whether the code handling a particular
9554 situation might be duplicated or not. One day, when the code is
9555 cleaned up, this guide might become redundant with the comments
9556 inserted in the code, and we might want to remove it.
9557
9558 2. ``Fixing'' an Entity, the Simple Case:
9559 -----------------------------------------
9560
9561 When evaluating Ada expressions, the tricky issue is that they may
9562 reference entities whose type contents and size are not statically
9563 known. Consider for instance a variant record:
9564
9565 type Rec (Empty : Boolean := True) is record
9566 case Empty is
9567 when True => null;
9568 when False => Value : Integer;
9569 end case;
9570 end record;
9571 Yes : Rec := (Empty => False, Value => 1);
9572 No : Rec := (empty => True);
9573
9574 The size and contents of that record depends on the value of the
9575 descriminant (Rec.Empty). At this point, neither the debugging
9576 information nor the associated type structure in GDB are able to
9577 express such dynamic types. So what the debugger does is to create
9578 "fixed" versions of the type that applies to the specific object.
9579 We also informally refer to this opperation as "fixing" an object,
9580 which means creating its associated fixed type.
9581
9582 Example: when printing the value of variable "Yes" above, its fixed
9583 type would look like this:
9584
9585 type Rec is record
9586 Empty : Boolean;
9587 Value : Integer;
9588 end record;
9589
9590 On the other hand, if we printed the value of "No", its fixed type
9591 would become:
9592
9593 type Rec is record
9594 Empty : Boolean;
9595 end record;
9596
9597 Things become a little more complicated when trying to fix an entity
9598 with a dynamic type that directly contains another dynamic type,
9599 such as an array of variant records, for instance. There are
9600 two possible cases: Arrays, and records.
9601
9602 3. ``Fixing'' Arrays:
9603 ---------------------
9604
9605 The type structure in GDB describes an array in terms of its bounds,
9606 and the type of its elements. By design, all elements in the array
9607 have the same type and we cannot represent an array of variant elements
9608 using the current type structure in GDB. When fixing an array,
9609 we cannot fix the array element, as we would potentially need one
9610 fixed type per element of the array. As a result, the best we can do
9611 when fixing an array is to produce an array whose bounds and size
9612 are correct (allowing us to read it from memory), but without having
9613 touched its element type. Fixing each element will be done later,
9614 when (if) necessary.
9615
9616 Arrays are a little simpler to handle than records, because the same
9617 amount of memory is allocated for each element of the array, even if
9618 the amount of space actually used by each element differs from element
9619 to element. Consider for instance the following array of type Rec:
9620
9621 type Rec_Array is array (1 .. 2) of Rec;
9622
9623 The actual amount of memory occupied by each element might be different
9624 from element to element, depending on the value of their discriminant.
9625 But the amount of space reserved for each element in the array remains
9626 fixed regardless. So we simply need to compute that size using
9627 the debugging information available, from which we can then determine
9628 the array size (we multiply the number of elements of the array by
9629 the size of each element).
9630
9631 The simplest case is when we have an array of a constrained element
9632 type. For instance, consider the following type declarations:
9633
9634 type Bounded_String (Max_Size : Integer) is
9635 Length : Integer;
9636 Buffer : String (1 .. Max_Size);
9637 end record;
9638 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9639
9640 In this case, the compiler describes the array as an array of
9641 variable-size elements (identified by its XVS suffix) for which
9642 the size can be read in the parallel XVZ variable.
9643
9644 In the case of an array of an unconstrained element type, the compiler
9645 wraps the array element inside a private PAD type. This type should not
9646 be shown to the user, and must be "unwrap"'ed before printing. Note
9647 that we also use the adjective "aligner" in our code to designate
9648 these wrapper types.
9649
9650 In some cases, the size allocated for each element is statically
9651 known. In that case, the PAD type already has the correct size,
9652 and the array element should remain unfixed.
9653
9654 But there are cases when this size is not statically known.
9655 For instance, assuming that "Five" is an integer variable:
9656
9657 type Dynamic is array (1 .. Five) of Integer;
9658 type Wrapper (Has_Length : Boolean := False) is record
9659 Data : Dynamic;
9660 case Has_Length is
9661 when True => Length : Integer;
9662 when False => null;
9663 end case;
9664 end record;
9665 type Wrapper_Array is array (1 .. 2) of Wrapper;
9666
9667 Hello : Wrapper_Array := (others => (Has_Length => True,
9668 Data => (others => 17),
9669 Length => 1));
9670
9671
9672 The debugging info would describe variable Hello as being an
9673 array of a PAD type. The size of that PAD type is not statically
9674 known, but can be determined using a parallel XVZ variable.
9675 In that case, a copy of the PAD type with the correct size should
9676 be used for the fixed array.
9677
9678 3. ``Fixing'' record type objects:
9679 ----------------------------------
9680
9681 Things are slightly different from arrays in the case of dynamic
9682 record types. In this case, in order to compute the associated
9683 fixed type, we need to determine the size and offset of each of
9684 its components. This, in turn, requires us to compute the fixed
9685 type of each of these components.
9686
9687 Consider for instance the example:
9688
9689 type Bounded_String (Max_Size : Natural) is record
9690 Str : String (1 .. Max_Size);
9691 Length : Natural;
9692 end record;
9693 My_String : Bounded_String (Max_Size => 10);
9694
9695 In that case, the position of field "Length" depends on the size
9696 of field Str, which itself depends on the value of the Max_Size
9697 discriminant. In order to fix the type of variable My_String,
9698 we need to fix the type of field Str. Therefore, fixing a variant
9699 record requires us to fix each of its components.
9700
9701 However, if a component does not have a dynamic size, the component
9702 should not be fixed. In particular, fields that use a PAD type
9703 should not fixed. Here is an example where this might happen
9704 (assuming type Rec above):
9705
9706 type Container (Big : Boolean) is record
9707 First : Rec;
9708 After : Integer;
9709 case Big is
9710 when True => Another : Integer;
9711 when False => null;
9712 end case;
9713 end record;
9714 My_Container : Container := (Big => False,
9715 First => (Empty => True),
9716 After => 42);
9717
9718 In that example, the compiler creates a PAD type for component First,
9719 whose size is constant, and then positions the component After just
9720 right after it. The offset of component After is therefore constant
9721 in this case.
9722
9723 The debugger computes the position of each field based on an algorithm
9724 that uses, among other things, the actual position and size of the field
9725 preceding it. Let's now imagine that the user is trying to print
9726 the value of My_Container. If the type fixing was recursive, we would
9727 end up computing the offset of field After based on the size of the
9728 fixed version of field First. And since in our example First has
9729 only one actual field, the size of the fixed type is actually smaller
9730 than the amount of space allocated to that field, and thus we would
9731 compute the wrong offset of field After.
9732
9733 To make things more complicated, we need to watch out for dynamic
9734 components of variant records (identified by the ___XVL suffix in
9735 the component name). Even if the target type is a PAD type, the size
9736 of that type might not be statically known. So the PAD type needs
9737 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9738 we might end up with the wrong size for our component. This can be
9739 observed with the following type declarations:
9740
9741 type Octal is new Integer range 0 .. 7;
9742 type Octal_Array is array (Positive range <>) of Octal;
9743 pragma Pack (Octal_Array);
9744
9745 type Octal_Buffer (Size : Positive) is record
9746 Buffer : Octal_Array (1 .. Size);
9747 Length : Integer;
9748 end record;
9749
9750 In that case, Buffer is a PAD type whose size is unset and needs
9751 to be computed by fixing the unwrapped type.
9752
9753 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9754 ----------------------------------------------------------
9755
9756 Lastly, when should the sub-elements of an entity that remained unfixed
9757 thus far, be actually fixed?
9758
9759 The answer is: Only when referencing that element. For instance
9760 when selecting one component of a record, this specific component
9761 should be fixed at that point in time. Or when printing the value
9762 of a record, each component should be fixed before its value gets
9763 printed. Similarly for arrays, the element of the array should be
9764 fixed when printing each element of the array, or when extracting
9765 one element out of that array. On the other hand, fixing should
9766 not be performed on the elements when taking a slice of an array!
9767
9768 Note that one of the side-effects of miscomputing the offset and
9769 size of each field is that we end up also miscomputing the size
9770 of the containing type. This can have adverse results when computing
9771 the value of an entity. GDB fetches the value of an entity based
9772 on the size of its type, and thus a wrong size causes GDB to fetch
9773 the wrong amount of memory. In the case where the computed size is
9774 too small, GDB fetches too little data to print the value of our
9775 entiry. Results in this case as unpredicatble, as we usually read
9776 past the buffer containing the data =:-o. */
9777
9778 /* Implement the evaluate_exp routine in the exp_descriptor structure
9779 for the Ada language. */
9780
9781 static struct value *
9782 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
9783 int *pos, enum noside noside)
9784 {
9785 enum exp_opcode op;
9786 int tem;
9787 int pc;
9788 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
9789 struct type *type;
9790 int nargs, oplen;
9791 struct value **argvec;
9792
9793 pc = *pos;
9794 *pos += 1;
9795 op = exp->elts[pc].opcode;
9796
9797 switch (op)
9798 {
9799 default:
9800 *pos -= 1;
9801 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9802
9803 if (noside == EVAL_NORMAL)
9804 arg1 = unwrap_value (arg1);
9805
9806 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
9807 then we need to perform the conversion manually, because
9808 evaluate_subexp_standard doesn't do it. This conversion is
9809 necessary in Ada because the different kinds of float/fixed
9810 types in Ada have different representations.
9811
9812 Similarly, we need to perform the conversion from OP_LONG
9813 ourselves. */
9814 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
9815 arg1 = ada_value_cast (expect_type, arg1, noside);
9816
9817 return arg1;
9818
9819 case OP_STRING:
9820 {
9821 struct value *result;
9822
9823 *pos -= 1;
9824 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
9825 /* The result type will have code OP_STRING, bashed there from
9826 OP_ARRAY. Bash it back. */
9827 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
9828 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
9829 return result;
9830 }
9831
9832 case UNOP_CAST:
9833 (*pos) += 2;
9834 type = exp->elts[pc + 1].type;
9835 arg1 = evaluate_subexp (type, exp, pos, noside);
9836 if (noside == EVAL_SKIP)
9837 goto nosideret;
9838 arg1 = ada_value_cast (type, arg1, noside);
9839 return arg1;
9840
9841 case UNOP_QUAL:
9842 (*pos) += 2;
9843 type = exp->elts[pc + 1].type;
9844 return ada_evaluate_subexp (type, exp, pos, noside);
9845
9846 case BINOP_ASSIGN:
9847 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9848 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9849 {
9850 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
9851 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9852 return arg1;
9853 return ada_value_assign (arg1, arg1);
9854 }
9855 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9856 except if the lhs of our assignment is a convenience variable.
9857 In the case of assigning to a convenience variable, the lhs
9858 should be exactly the result of the evaluation of the rhs. */
9859 type = value_type (arg1);
9860 if (VALUE_LVAL (arg1) == lval_internalvar)
9861 type = NULL;
9862 arg2 = evaluate_subexp (type, exp, pos, noside);
9863 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9864 return arg1;
9865 if (ada_is_fixed_point_type (value_type (arg1)))
9866 arg2 = cast_to_fixed (value_type (arg1), arg2);
9867 else if (ada_is_fixed_point_type (value_type (arg2)))
9868 error
9869 (_("Fixed-point values must be assigned to fixed-point variables"));
9870 else
9871 arg2 = coerce_for_assign (value_type (arg1), arg2);
9872 return ada_value_assign (arg1, arg2);
9873
9874 case BINOP_ADD:
9875 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9876 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9877 if (noside == EVAL_SKIP)
9878 goto nosideret;
9879 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9880 return (value_from_longest
9881 (value_type (arg1),
9882 value_as_long (arg1) + value_as_long (arg2)));
9883 if ((ada_is_fixed_point_type (value_type (arg1))
9884 || ada_is_fixed_point_type (value_type (arg2)))
9885 && value_type (arg1) != value_type (arg2))
9886 error (_("Operands of fixed-point addition must have the same type"));
9887 /* Do the addition, and cast the result to the type of the first
9888 argument. We cannot cast the result to a reference type, so if
9889 ARG1 is a reference type, find its underlying type. */
9890 type = value_type (arg1);
9891 while (TYPE_CODE (type) == TYPE_CODE_REF)
9892 type = TYPE_TARGET_TYPE (type);
9893 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9894 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
9895
9896 case BINOP_SUB:
9897 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9898 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9899 if (noside == EVAL_SKIP)
9900 goto nosideret;
9901 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9902 return (value_from_longest
9903 (value_type (arg1),
9904 value_as_long (arg1) - value_as_long (arg2)));
9905 if ((ada_is_fixed_point_type (value_type (arg1))
9906 || ada_is_fixed_point_type (value_type (arg2)))
9907 && value_type (arg1) != value_type (arg2))
9908 error (_("Operands of fixed-point subtraction "
9909 "must have the same type"));
9910 /* Do the substraction, and cast the result to the type of the first
9911 argument. We cannot cast the result to a reference type, so if
9912 ARG1 is a reference type, find its underlying type. */
9913 type = value_type (arg1);
9914 while (TYPE_CODE (type) == TYPE_CODE_REF)
9915 type = TYPE_TARGET_TYPE (type);
9916 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9917 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
9918
9919 case BINOP_MUL:
9920 case BINOP_DIV:
9921 case BINOP_REM:
9922 case BINOP_MOD:
9923 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9924 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9925 if (noside == EVAL_SKIP)
9926 goto nosideret;
9927 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9928 {
9929 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9930 return value_zero (value_type (arg1), not_lval);
9931 }
9932 else
9933 {
9934 type = builtin_type (exp->gdbarch)->builtin_double;
9935 if (ada_is_fixed_point_type (value_type (arg1)))
9936 arg1 = cast_from_fixed (type, arg1);
9937 if (ada_is_fixed_point_type (value_type (arg2)))
9938 arg2 = cast_from_fixed (type, arg2);
9939 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9940 return ada_value_binop (arg1, arg2, op);
9941 }
9942
9943 case BINOP_EQUAL:
9944 case BINOP_NOTEQUAL:
9945 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9946 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
9947 if (noside == EVAL_SKIP)
9948 goto nosideret;
9949 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9950 tem = 0;
9951 else
9952 {
9953 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9954 tem = ada_value_equal (arg1, arg2);
9955 }
9956 if (op == BINOP_NOTEQUAL)
9957 tem = !tem;
9958 type = language_bool_type (exp->language_defn, exp->gdbarch);
9959 return value_from_longest (type, (LONGEST) tem);
9960
9961 case UNOP_NEG:
9962 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9963 if (noside == EVAL_SKIP)
9964 goto nosideret;
9965 else if (ada_is_fixed_point_type (value_type (arg1)))
9966 return value_cast (value_type (arg1), value_neg (arg1));
9967 else
9968 {
9969 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9970 return value_neg (arg1);
9971 }
9972
9973 case BINOP_LOGICAL_AND:
9974 case BINOP_LOGICAL_OR:
9975 case UNOP_LOGICAL_NOT:
9976 {
9977 struct value *val;
9978
9979 *pos -= 1;
9980 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9981 type = language_bool_type (exp->language_defn, exp->gdbarch);
9982 return value_cast (type, val);
9983 }
9984
9985 case BINOP_BITWISE_AND:
9986 case BINOP_BITWISE_IOR:
9987 case BINOP_BITWISE_XOR:
9988 {
9989 struct value *val;
9990
9991 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9992 *pos = pc;
9993 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9994
9995 return value_cast (value_type (arg1), val);
9996 }
9997
9998 case OP_VAR_VALUE:
9999 *pos -= 1;
10000
10001 if (noside == EVAL_SKIP)
10002 {
10003 *pos += 4;
10004 goto nosideret;
10005 }
10006 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10007 /* Only encountered when an unresolved symbol occurs in a
10008 context other than a function call, in which case, it is
10009 invalid. */
10010 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10011 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
10012 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10013 {
10014 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10015 /* Check to see if this is a tagged type. We also need to handle
10016 the case where the type is a reference to a tagged type, but
10017 we have to be careful to exclude pointers to tagged types.
10018 The latter should be shown as usual (as a pointer), whereas
10019 a reference should mostly be transparent to the user. */
10020 if (ada_is_tagged_type (type, 0)
10021 || (TYPE_CODE(type) == TYPE_CODE_REF
10022 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10023 {
10024 /* Tagged types are a little special in the fact that the real
10025 type is dynamic and can only be determined by inspecting the
10026 object's tag. This means that we need to get the object's
10027 value first (EVAL_NORMAL) and then extract the actual object
10028 type from its tag.
10029
10030 Note that we cannot skip the final step where we extract
10031 the object type from its tag, because the EVAL_NORMAL phase
10032 results in dynamic components being resolved into fixed ones.
10033 This can cause problems when trying to print the type
10034 description of tagged types whose parent has a dynamic size:
10035 We use the type name of the "_parent" component in order
10036 to print the name of the ancestor type in the type description.
10037 If that component had a dynamic size, the resolution into
10038 a fixed type would result in the loss of that type name,
10039 thus preventing us from printing the name of the ancestor
10040 type in the type description. */
10041 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10042
10043 if (TYPE_CODE (type) != TYPE_CODE_REF)
10044 {
10045 struct type *actual_type;
10046
10047 actual_type = type_from_tag (ada_value_tag (arg1));
10048 if (actual_type == NULL)
10049 /* If, for some reason, we were unable to determine
10050 the actual type from the tag, then use the static
10051 approximation that we just computed as a fallback.
10052 This can happen if the debugging information is
10053 incomplete, for instance. */
10054 actual_type = type;
10055 return value_zero (actual_type, not_lval);
10056 }
10057 else
10058 {
10059 /* In the case of a ref, ada_coerce_ref takes care
10060 of determining the actual type. But the evaluation
10061 should return a ref as it should be valid to ask
10062 for its address; so rebuild a ref after coerce. */
10063 arg1 = ada_coerce_ref (arg1);
10064 return value_ref (arg1);
10065 }
10066 }
10067
10068 *pos += 4;
10069 return value_zero
10070 (to_static_fixed_type
10071 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
10072 not_lval);
10073 }
10074 else
10075 {
10076 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10077 return ada_to_fixed_value (arg1);
10078 }
10079
10080 case OP_FUNCALL:
10081 (*pos) += 2;
10082
10083 /* Allocate arg vector, including space for the function to be
10084 called in argvec[0] and a terminating NULL. */
10085 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10086 argvec =
10087 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
10088
10089 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10090 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10091 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10092 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10093 else
10094 {
10095 for (tem = 0; tem <= nargs; tem += 1)
10096 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10097 argvec[tem] = 0;
10098
10099 if (noside == EVAL_SKIP)
10100 goto nosideret;
10101 }
10102
10103 if (ada_is_constrained_packed_array_type
10104 (desc_base_type (value_type (argvec[0]))))
10105 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10106 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10107 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10108 /* This is a packed array that has already been fixed, and
10109 therefore already coerced to a simple array. Nothing further
10110 to do. */
10111 ;
10112 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
10113 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10114 && VALUE_LVAL (argvec[0]) == lval_memory))
10115 argvec[0] = value_addr (argvec[0]);
10116
10117 type = ada_check_typedef (value_type (argvec[0]));
10118
10119 /* Ada allows us to implicitly dereference arrays when subscripting
10120 them. So, if this is an array typedef (encoding use for array
10121 access types encoded as fat pointers), strip it now. */
10122 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10123 type = ada_typedef_target_type (type);
10124
10125 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10126 {
10127 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
10128 {
10129 case TYPE_CODE_FUNC:
10130 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10131 break;
10132 case TYPE_CODE_ARRAY:
10133 break;
10134 case TYPE_CODE_STRUCT:
10135 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10136 argvec[0] = ada_value_ind (argvec[0]);
10137 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10138 break;
10139 default:
10140 error (_("cannot subscript or call something of type `%s'"),
10141 ada_type_name (value_type (argvec[0])));
10142 break;
10143 }
10144 }
10145
10146 switch (TYPE_CODE (type))
10147 {
10148 case TYPE_CODE_FUNC:
10149 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10150 {
10151 struct type *rtype = TYPE_TARGET_TYPE (type);
10152
10153 if (TYPE_GNU_IFUNC (type))
10154 return allocate_value (TYPE_TARGET_TYPE (rtype));
10155 return allocate_value (rtype);
10156 }
10157 return call_function_by_hand (argvec[0], nargs, argvec + 1);
10158 case TYPE_CODE_INTERNAL_FUNCTION:
10159 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10160 /* We don't know anything about what the internal
10161 function might return, but we have to return
10162 something. */
10163 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10164 not_lval);
10165 else
10166 return call_internal_function (exp->gdbarch, exp->language_defn,
10167 argvec[0], nargs, argvec + 1);
10168
10169 case TYPE_CODE_STRUCT:
10170 {
10171 int arity;
10172
10173 arity = ada_array_arity (type);
10174 type = ada_array_element_type (type, nargs);
10175 if (type == NULL)
10176 error (_("cannot subscript or call a record"));
10177 if (arity != nargs)
10178 error (_("wrong number of subscripts; expecting %d"), arity);
10179 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10180 return value_zero (ada_aligned_type (type), lval_memory);
10181 return
10182 unwrap_value (ada_value_subscript
10183 (argvec[0], nargs, argvec + 1));
10184 }
10185 case TYPE_CODE_ARRAY:
10186 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10187 {
10188 type = ada_array_element_type (type, nargs);
10189 if (type == NULL)
10190 error (_("element type of array unknown"));
10191 else
10192 return value_zero (ada_aligned_type (type), lval_memory);
10193 }
10194 return
10195 unwrap_value (ada_value_subscript
10196 (ada_coerce_to_simple_array (argvec[0]),
10197 nargs, argvec + 1));
10198 case TYPE_CODE_PTR: /* Pointer to array */
10199 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10200 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10201 {
10202 type = ada_array_element_type (type, nargs);
10203 if (type == NULL)
10204 error (_("element type of array unknown"));
10205 else
10206 return value_zero (ada_aligned_type (type), lval_memory);
10207 }
10208 return
10209 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
10210 nargs, argvec + 1));
10211
10212 default:
10213 error (_("Attempt to index or call something other than an "
10214 "array or function"));
10215 }
10216
10217 case TERNOP_SLICE:
10218 {
10219 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10220 struct value *low_bound_val =
10221 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10222 struct value *high_bound_val =
10223 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10224 LONGEST low_bound;
10225 LONGEST high_bound;
10226
10227 low_bound_val = coerce_ref (low_bound_val);
10228 high_bound_val = coerce_ref (high_bound_val);
10229 low_bound = pos_atr (low_bound_val);
10230 high_bound = pos_atr (high_bound_val);
10231
10232 if (noside == EVAL_SKIP)
10233 goto nosideret;
10234
10235 /* If this is a reference to an aligner type, then remove all
10236 the aligners. */
10237 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10238 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10239 TYPE_TARGET_TYPE (value_type (array)) =
10240 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10241
10242 if (ada_is_constrained_packed_array_type (value_type (array)))
10243 error (_("cannot slice a packed array"));
10244
10245 /* If this is a reference to an array or an array lvalue,
10246 convert to a pointer. */
10247 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10248 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
10249 && VALUE_LVAL (array) == lval_memory))
10250 array = value_addr (array);
10251
10252 if (noside == EVAL_AVOID_SIDE_EFFECTS
10253 && ada_is_array_descriptor_type (ada_check_typedef
10254 (value_type (array))))
10255 return empty_array (ada_type_of_array (array, 0), low_bound);
10256
10257 array = ada_coerce_to_simple_array_ptr (array);
10258
10259 /* If we have more than one level of pointer indirection,
10260 dereference the value until we get only one level. */
10261 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10262 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
10263 == TYPE_CODE_PTR))
10264 array = value_ind (array);
10265
10266 /* Make sure we really do have an array type before going further,
10267 to avoid a SEGV when trying to get the index type or the target
10268 type later down the road if the debug info generated by
10269 the compiler is incorrect or incomplete. */
10270 if (!ada_is_simple_array_type (value_type (array)))
10271 error (_("cannot take slice of non-array"));
10272
10273 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10274 == TYPE_CODE_PTR)
10275 {
10276 struct type *type0 = ada_check_typedef (value_type (array));
10277
10278 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10279 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
10280 else
10281 {
10282 struct type *arr_type0 =
10283 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
10284
10285 return ada_value_slice_from_ptr (array, arr_type0,
10286 longest_to_int (low_bound),
10287 longest_to_int (high_bound));
10288 }
10289 }
10290 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10291 return array;
10292 else if (high_bound < low_bound)
10293 return empty_array (value_type (array), low_bound);
10294 else
10295 return ada_value_slice (array, longest_to_int (low_bound),
10296 longest_to_int (high_bound));
10297 }
10298
10299 case UNOP_IN_RANGE:
10300 (*pos) += 2;
10301 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10302 type = check_typedef (exp->elts[pc + 1].type);
10303
10304 if (noside == EVAL_SKIP)
10305 goto nosideret;
10306
10307 switch (TYPE_CODE (type))
10308 {
10309 default:
10310 lim_warning (_("Membership test incompletely implemented; "
10311 "always returns true"));
10312 type = language_bool_type (exp->language_defn, exp->gdbarch);
10313 return value_from_longest (type, (LONGEST) 1);
10314
10315 case TYPE_CODE_RANGE:
10316 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10317 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
10318 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10319 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10320 type = language_bool_type (exp->language_defn, exp->gdbarch);
10321 return
10322 value_from_longest (type,
10323 (value_less (arg1, arg3)
10324 || value_equal (arg1, arg3))
10325 && (value_less (arg2, arg1)
10326 || value_equal (arg2, arg1)));
10327 }
10328
10329 case BINOP_IN_BOUNDS:
10330 (*pos) += 2;
10331 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10332 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10333
10334 if (noside == EVAL_SKIP)
10335 goto nosideret;
10336
10337 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10338 {
10339 type = language_bool_type (exp->language_defn, exp->gdbarch);
10340 return value_zero (type, not_lval);
10341 }
10342
10343 tem = longest_to_int (exp->elts[pc + 1].longconst);
10344
10345 type = ada_index_type (value_type (arg2), tem, "range");
10346 if (!type)
10347 type = value_type (arg1);
10348
10349 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10350 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
10351
10352 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10353 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10354 type = language_bool_type (exp->language_defn, exp->gdbarch);
10355 return
10356 value_from_longest (type,
10357 (value_less (arg1, arg3)
10358 || value_equal (arg1, arg3))
10359 && (value_less (arg2, arg1)
10360 || value_equal (arg2, arg1)));
10361
10362 case TERNOP_IN_RANGE:
10363 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10364 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10365 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10366
10367 if (noside == EVAL_SKIP)
10368 goto nosideret;
10369
10370 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10371 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10372 type = language_bool_type (exp->language_defn, exp->gdbarch);
10373 return
10374 value_from_longest (type,
10375 (value_less (arg1, arg3)
10376 || value_equal (arg1, arg3))
10377 && (value_less (arg2, arg1)
10378 || value_equal (arg2, arg1)));
10379
10380 case OP_ATR_FIRST:
10381 case OP_ATR_LAST:
10382 case OP_ATR_LENGTH:
10383 {
10384 struct type *type_arg;
10385
10386 if (exp->elts[*pos].opcode == OP_TYPE)
10387 {
10388 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10389 arg1 = NULL;
10390 type_arg = check_typedef (exp->elts[pc + 2].type);
10391 }
10392 else
10393 {
10394 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10395 type_arg = NULL;
10396 }
10397
10398 if (exp->elts[*pos].opcode != OP_LONG)
10399 error (_("Invalid operand to '%s"), ada_attribute_name (op));
10400 tem = longest_to_int (exp->elts[*pos + 2].longconst);
10401 *pos += 4;
10402
10403 if (noside == EVAL_SKIP)
10404 goto nosideret;
10405
10406 if (type_arg == NULL)
10407 {
10408 arg1 = ada_coerce_ref (arg1);
10409
10410 if (ada_is_constrained_packed_array_type (value_type (arg1)))
10411 arg1 = ada_coerce_to_simple_array (arg1);
10412
10413 if (op == OP_ATR_LENGTH)
10414 type = builtin_type (exp->gdbarch)->builtin_int;
10415 else
10416 {
10417 type = ada_index_type (value_type (arg1), tem,
10418 ada_attribute_name (op));
10419 if (type == NULL)
10420 type = builtin_type (exp->gdbarch)->builtin_int;
10421 }
10422
10423 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10424 return allocate_value (type);
10425
10426 switch (op)
10427 {
10428 default: /* Should never happen. */
10429 error (_("unexpected attribute encountered"));
10430 case OP_ATR_FIRST:
10431 return value_from_longest
10432 (type, ada_array_bound (arg1, tem, 0));
10433 case OP_ATR_LAST:
10434 return value_from_longest
10435 (type, ada_array_bound (arg1, tem, 1));
10436 case OP_ATR_LENGTH:
10437 return value_from_longest
10438 (type, ada_array_length (arg1, tem));
10439 }
10440 }
10441 else if (discrete_type_p (type_arg))
10442 {
10443 struct type *range_type;
10444 const char *name = ada_type_name (type_arg);
10445
10446 range_type = NULL;
10447 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
10448 range_type = to_fixed_range_type (type_arg, NULL);
10449 if (range_type == NULL)
10450 range_type = type_arg;
10451 switch (op)
10452 {
10453 default:
10454 error (_("unexpected attribute encountered"));
10455 case OP_ATR_FIRST:
10456 return value_from_longest
10457 (range_type, ada_discrete_type_low_bound (range_type));
10458 case OP_ATR_LAST:
10459 return value_from_longest
10460 (range_type, ada_discrete_type_high_bound (range_type));
10461 case OP_ATR_LENGTH:
10462 error (_("the 'length attribute applies only to array types"));
10463 }
10464 }
10465 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
10466 error (_("unimplemented type attribute"));
10467 else
10468 {
10469 LONGEST low, high;
10470
10471 if (ada_is_constrained_packed_array_type (type_arg))
10472 type_arg = decode_constrained_packed_array_type (type_arg);
10473
10474 if (op == OP_ATR_LENGTH)
10475 type = builtin_type (exp->gdbarch)->builtin_int;
10476 else
10477 {
10478 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10479 if (type == NULL)
10480 type = builtin_type (exp->gdbarch)->builtin_int;
10481 }
10482
10483 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10484 return allocate_value (type);
10485
10486 switch (op)
10487 {
10488 default:
10489 error (_("unexpected attribute encountered"));
10490 case OP_ATR_FIRST:
10491 low = ada_array_bound_from_type (type_arg, tem, 0);
10492 return value_from_longest (type, low);
10493 case OP_ATR_LAST:
10494 high = ada_array_bound_from_type (type_arg, tem, 1);
10495 return value_from_longest (type, high);
10496 case OP_ATR_LENGTH:
10497 low = ada_array_bound_from_type (type_arg, tem, 0);
10498 high = ada_array_bound_from_type (type_arg, tem, 1);
10499 return value_from_longest (type, high - low + 1);
10500 }
10501 }
10502 }
10503
10504 case OP_ATR_TAG:
10505 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10506 if (noside == EVAL_SKIP)
10507 goto nosideret;
10508
10509 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10510 return value_zero (ada_tag_type (arg1), not_lval);
10511
10512 return ada_value_tag (arg1);
10513
10514 case OP_ATR_MIN:
10515 case OP_ATR_MAX:
10516 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10517 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10518 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10519 if (noside == EVAL_SKIP)
10520 goto nosideret;
10521 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10522 return value_zero (value_type (arg1), not_lval);
10523 else
10524 {
10525 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10526 return value_binop (arg1, arg2,
10527 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
10528 }
10529
10530 case OP_ATR_MODULUS:
10531 {
10532 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
10533
10534 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10535 if (noside == EVAL_SKIP)
10536 goto nosideret;
10537
10538 if (!ada_is_modular_type (type_arg))
10539 error (_("'modulus must be applied to modular type"));
10540
10541 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
10542 ada_modulus (type_arg));
10543 }
10544
10545
10546 case OP_ATR_POS:
10547 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10548 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10549 if (noside == EVAL_SKIP)
10550 goto nosideret;
10551 type = builtin_type (exp->gdbarch)->builtin_int;
10552 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10553 return value_zero (type, not_lval);
10554 else
10555 return value_pos_atr (type, arg1);
10556
10557 case OP_ATR_SIZE:
10558 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10559 type = value_type (arg1);
10560
10561 /* If the argument is a reference, then dereference its type, since
10562 the user is really asking for the size of the actual object,
10563 not the size of the pointer. */
10564 if (TYPE_CODE (type) == TYPE_CODE_REF)
10565 type = TYPE_TARGET_TYPE (type);
10566
10567 if (noside == EVAL_SKIP)
10568 goto nosideret;
10569 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10570 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
10571 else
10572 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
10573 TARGET_CHAR_BIT * TYPE_LENGTH (type));
10574
10575 case OP_ATR_VAL:
10576 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10577 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10578 type = exp->elts[pc + 2].type;
10579 if (noside == EVAL_SKIP)
10580 goto nosideret;
10581 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10582 return value_zero (type, not_lval);
10583 else
10584 return value_val_atr (type, arg1);
10585
10586 case BINOP_EXP:
10587 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10588 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10589 if (noside == EVAL_SKIP)
10590 goto nosideret;
10591 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10592 return value_zero (value_type (arg1), not_lval);
10593 else
10594 {
10595 /* For integer exponentiation operations,
10596 only promote the first argument. */
10597 if (is_integral_type (value_type (arg2)))
10598 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10599 else
10600 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10601
10602 return value_binop (arg1, arg2, op);
10603 }
10604
10605 case UNOP_PLUS:
10606 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10607 if (noside == EVAL_SKIP)
10608 goto nosideret;
10609 else
10610 return arg1;
10611
10612 case UNOP_ABS:
10613 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10614 if (noside == EVAL_SKIP)
10615 goto nosideret;
10616 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10617 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
10618 return value_neg (arg1);
10619 else
10620 return arg1;
10621
10622 case UNOP_IND:
10623 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10624 if (noside == EVAL_SKIP)
10625 goto nosideret;
10626 type = ada_check_typedef (value_type (arg1));
10627 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10628 {
10629 if (ada_is_array_descriptor_type (type))
10630 /* GDB allows dereferencing GNAT array descriptors. */
10631 {
10632 struct type *arrType = ada_type_of_array (arg1, 0);
10633
10634 if (arrType == NULL)
10635 error (_("Attempt to dereference null array pointer."));
10636 return value_at_lazy (arrType, 0);
10637 }
10638 else if (TYPE_CODE (type) == TYPE_CODE_PTR
10639 || TYPE_CODE (type) == TYPE_CODE_REF
10640 /* In C you can dereference an array to get the 1st elt. */
10641 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
10642 {
10643 type = to_static_fixed_type
10644 (ada_aligned_type
10645 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10646 check_size (type);
10647 return value_zero (type, lval_memory);
10648 }
10649 else if (TYPE_CODE (type) == TYPE_CODE_INT)
10650 {
10651 /* GDB allows dereferencing an int. */
10652 if (expect_type == NULL)
10653 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10654 lval_memory);
10655 else
10656 {
10657 expect_type =
10658 to_static_fixed_type (ada_aligned_type (expect_type));
10659 return value_zero (expect_type, lval_memory);
10660 }
10661 }
10662 else
10663 error (_("Attempt to take contents of a non-pointer value."));
10664 }
10665 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
10666 type = ada_check_typedef (value_type (arg1));
10667
10668 if (TYPE_CODE (type) == TYPE_CODE_INT)
10669 /* GDB allows dereferencing an int. If we were given
10670 the expect_type, then use that as the target type.
10671 Otherwise, assume that the target type is an int. */
10672 {
10673 if (expect_type != NULL)
10674 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10675 arg1));
10676 else
10677 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10678 (CORE_ADDR) value_as_address (arg1));
10679 }
10680
10681 if (ada_is_array_descriptor_type (type))
10682 /* GDB allows dereferencing GNAT array descriptors. */
10683 return ada_coerce_to_simple_array (arg1);
10684 else
10685 return ada_value_ind (arg1);
10686
10687 case STRUCTOP_STRUCT:
10688 tem = longest_to_int (exp->elts[pc + 1].longconst);
10689 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
10690 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10691 if (noside == EVAL_SKIP)
10692 goto nosideret;
10693 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10694 {
10695 struct type *type1 = value_type (arg1);
10696
10697 if (ada_is_tagged_type (type1, 1))
10698 {
10699 type = ada_lookup_struct_elt_type (type1,
10700 &exp->elts[pc + 2].string,
10701 1, 1, NULL);
10702 if (type == NULL)
10703 /* In this case, we assume that the field COULD exist
10704 in some extension of the type. Return an object of
10705 "type" void, which will match any formal
10706 (see ada_type_match). */
10707 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
10708 lval_memory);
10709 }
10710 else
10711 type =
10712 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
10713 0, NULL);
10714
10715 return value_zero (ada_aligned_type (type), lval_memory);
10716 }
10717 else
10718 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
10719 arg1 = unwrap_value (arg1);
10720 return ada_to_fixed_value (arg1);
10721
10722 case OP_TYPE:
10723 /* The value is not supposed to be used. This is here to make it
10724 easier to accommodate expressions that contain types. */
10725 (*pos) += 2;
10726 if (noside == EVAL_SKIP)
10727 goto nosideret;
10728 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10729 return allocate_value (exp->elts[pc + 1].type);
10730 else
10731 error (_("Attempt to use a type name as an expression"));
10732
10733 case OP_AGGREGATE:
10734 case OP_CHOICES:
10735 case OP_OTHERS:
10736 case OP_DISCRETE_RANGE:
10737 case OP_POSITIONAL:
10738 case OP_NAME:
10739 if (noside == EVAL_NORMAL)
10740 switch (op)
10741 {
10742 case OP_NAME:
10743 error (_("Undefined name, ambiguous name, or renaming used in "
10744 "component association: %s."), &exp->elts[pc+2].string);
10745 case OP_AGGREGATE:
10746 error (_("Aggregates only allowed on the right of an assignment"));
10747 default:
10748 internal_error (__FILE__, __LINE__,
10749 _("aggregate apparently mangled"));
10750 }
10751
10752 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10753 *pos += oplen - 1;
10754 for (tem = 0; tem < nargs; tem += 1)
10755 ada_evaluate_subexp (NULL, exp, pos, noside);
10756 goto nosideret;
10757 }
10758
10759 nosideret:
10760 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
10761 }
10762 \f
10763
10764 /* Fixed point */
10765
10766 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
10767 type name that encodes the 'small and 'delta information.
10768 Otherwise, return NULL. */
10769
10770 static const char *
10771 fixed_type_info (struct type *type)
10772 {
10773 const char *name = ada_type_name (type);
10774 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
10775
10776 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
10777 {
10778 const char *tail = strstr (name, "___XF_");
10779
10780 if (tail == NULL)
10781 return NULL;
10782 else
10783 return tail + 5;
10784 }
10785 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
10786 return fixed_type_info (TYPE_TARGET_TYPE (type));
10787 else
10788 return NULL;
10789 }
10790
10791 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
10792
10793 int
10794 ada_is_fixed_point_type (struct type *type)
10795 {
10796 return fixed_type_info (type) != NULL;
10797 }
10798
10799 /* Return non-zero iff TYPE represents a System.Address type. */
10800
10801 int
10802 ada_is_system_address_type (struct type *type)
10803 {
10804 return (TYPE_NAME (type)
10805 && strcmp (TYPE_NAME (type), "system__address") == 0);
10806 }
10807
10808 /* Assuming that TYPE is the representation of an Ada fixed-point
10809 type, return its delta, or -1 if the type is malformed and the
10810 delta cannot be determined. */
10811
10812 DOUBLEST
10813 ada_delta (struct type *type)
10814 {
10815 const char *encoding = fixed_type_info (type);
10816 DOUBLEST num, den;
10817
10818 /* Strictly speaking, num and den are encoded as integer. However,
10819 they may not fit into a long, and they will have to be converted
10820 to DOUBLEST anyway. So scan them as DOUBLEST. */
10821 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10822 &num, &den) < 2)
10823 return -1.0;
10824 else
10825 return num / den;
10826 }
10827
10828 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
10829 factor ('SMALL value) associated with the type. */
10830
10831 static DOUBLEST
10832 scaling_factor (struct type *type)
10833 {
10834 const char *encoding = fixed_type_info (type);
10835 DOUBLEST num0, den0, num1, den1;
10836 int n;
10837
10838 /* Strictly speaking, num's and den's are encoded as integer. However,
10839 they may not fit into a long, and they will have to be converted
10840 to DOUBLEST anyway. So scan them as DOUBLEST. */
10841 n = sscanf (encoding,
10842 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
10843 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10844 &num0, &den0, &num1, &den1);
10845
10846 if (n < 2)
10847 return 1.0;
10848 else if (n == 4)
10849 return num1 / den1;
10850 else
10851 return num0 / den0;
10852 }
10853
10854
10855 /* Assuming that X is the representation of a value of fixed-point
10856 type TYPE, return its floating-point equivalent. */
10857
10858 DOUBLEST
10859 ada_fixed_to_float (struct type *type, LONGEST x)
10860 {
10861 return (DOUBLEST) x *scaling_factor (type);
10862 }
10863
10864 /* The representation of a fixed-point value of type TYPE
10865 corresponding to the value X. */
10866
10867 LONGEST
10868 ada_float_to_fixed (struct type *type, DOUBLEST x)
10869 {
10870 return (LONGEST) (x / scaling_factor (type) + 0.5);
10871 }
10872
10873 \f
10874
10875 /* Range types */
10876
10877 /* Scan STR beginning at position K for a discriminant name, and
10878 return the value of that discriminant field of DVAL in *PX. If
10879 PNEW_K is not null, put the position of the character beyond the
10880 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
10881 not alter *PX and *PNEW_K if unsuccessful. */
10882
10883 static int
10884 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
10885 int *pnew_k)
10886 {
10887 static char *bound_buffer = NULL;
10888 static size_t bound_buffer_len = 0;
10889 char *bound;
10890 char *pend;
10891 struct value *bound_val;
10892
10893 if (dval == NULL || str == NULL || str[k] == '\0')
10894 return 0;
10895
10896 pend = strstr (str + k, "__");
10897 if (pend == NULL)
10898 {
10899 bound = str + k;
10900 k += strlen (bound);
10901 }
10902 else
10903 {
10904 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
10905 bound = bound_buffer;
10906 strncpy (bound_buffer, str + k, pend - (str + k));
10907 bound[pend - (str + k)] = '\0';
10908 k = pend - str;
10909 }
10910
10911 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
10912 if (bound_val == NULL)
10913 return 0;
10914
10915 *px = value_as_long (bound_val);
10916 if (pnew_k != NULL)
10917 *pnew_k = k;
10918 return 1;
10919 }
10920
10921 /* Value of variable named NAME in the current environment. If
10922 no such variable found, then if ERR_MSG is null, returns 0, and
10923 otherwise causes an error with message ERR_MSG. */
10924
10925 static struct value *
10926 get_var_value (char *name, char *err_msg)
10927 {
10928 struct ada_symbol_info *syms;
10929 int nsyms;
10930
10931 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
10932 &syms);
10933
10934 if (nsyms != 1)
10935 {
10936 if (err_msg == NULL)
10937 return 0;
10938 else
10939 error (("%s"), err_msg);
10940 }
10941
10942 return value_of_variable (syms[0].sym, syms[0].block);
10943 }
10944
10945 /* Value of integer variable named NAME in the current environment. If
10946 no such variable found, returns 0, and sets *FLAG to 0. If
10947 successful, sets *FLAG to 1. */
10948
10949 LONGEST
10950 get_int_var_value (char *name, int *flag)
10951 {
10952 struct value *var_val = get_var_value (name, 0);
10953
10954 if (var_val == 0)
10955 {
10956 if (flag != NULL)
10957 *flag = 0;
10958 return 0;
10959 }
10960 else
10961 {
10962 if (flag != NULL)
10963 *flag = 1;
10964 return value_as_long (var_val);
10965 }
10966 }
10967
10968
10969 /* Return a range type whose base type is that of the range type named
10970 NAME in the current environment, and whose bounds are calculated
10971 from NAME according to the GNAT range encoding conventions.
10972 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
10973 corresponding range type from debug information; fall back to using it
10974 if symbol lookup fails. If a new type must be created, allocate it
10975 like ORIG_TYPE was. The bounds information, in general, is encoded
10976 in NAME, the base type given in the named range type. */
10977
10978 static struct type *
10979 to_fixed_range_type (struct type *raw_type, struct value *dval)
10980 {
10981 const char *name;
10982 struct type *base_type;
10983 char *subtype_info;
10984
10985 gdb_assert (raw_type != NULL);
10986 gdb_assert (TYPE_NAME (raw_type) != NULL);
10987
10988 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
10989 base_type = TYPE_TARGET_TYPE (raw_type);
10990 else
10991 base_type = raw_type;
10992
10993 name = TYPE_NAME (raw_type);
10994 subtype_info = strstr (name, "___XD");
10995 if (subtype_info == NULL)
10996 {
10997 LONGEST L = ada_discrete_type_low_bound (raw_type);
10998 LONGEST U = ada_discrete_type_high_bound (raw_type);
10999
11000 if (L < INT_MIN || U > INT_MAX)
11001 return raw_type;
11002 else
11003 return create_range_type (alloc_type_copy (raw_type), raw_type,
11004 ada_discrete_type_low_bound (raw_type),
11005 ada_discrete_type_high_bound (raw_type));
11006 }
11007 else
11008 {
11009 static char *name_buf = NULL;
11010 static size_t name_len = 0;
11011 int prefix_len = subtype_info - name;
11012 LONGEST L, U;
11013 struct type *type;
11014 char *bounds_str;
11015 int n;
11016
11017 GROW_VECT (name_buf, name_len, prefix_len + 5);
11018 strncpy (name_buf, name, prefix_len);
11019 name_buf[prefix_len] = '\0';
11020
11021 subtype_info += 5;
11022 bounds_str = strchr (subtype_info, '_');
11023 n = 1;
11024
11025 if (*subtype_info == 'L')
11026 {
11027 if (!ada_scan_number (bounds_str, n, &L, &n)
11028 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11029 return raw_type;
11030 if (bounds_str[n] == '_')
11031 n += 2;
11032 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11033 n += 1;
11034 subtype_info += 1;
11035 }
11036 else
11037 {
11038 int ok;
11039
11040 strcpy (name_buf + prefix_len, "___L");
11041 L = get_int_var_value (name_buf, &ok);
11042 if (!ok)
11043 {
11044 lim_warning (_("Unknown lower bound, using 1."));
11045 L = 1;
11046 }
11047 }
11048
11049 if (*subtype_info == 'U')
11050 {
11051 if (!ada_scan_number (bounds_str, n, &U, &n)
11052 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11053 return raw_type;
11054 }
11055 else
11056 {
11057 int ok;
11058
11059 strcpy (name_buf + prefix_len, "___U");
11060 U = get_int_var_value (name_buf, &ok);
11061 if (!ok)
11062 {
11063 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11064 U = L;
11065 }
11066 }
11067
11068 type = create_range_type (alloc_type_copy (raw_type), base_type, L, U);
11069 TYPE_NAME (type) = name;
11070 return type;
11071 }
11072 }
11073
11074 /* True iff NAME is the name of a range type. */
11075
11076 int
11077 ada_is_range_type_name (const char *name)
11078 {
11079 return (name != NULL && strstr (name, "___XD"));
11080 }
11081 \f
11082
11083 /* Modular types */
11084
11085 /* True iff TYPE is an Ada modular type. */
11086
11087 int
11088 ada_is_modular_type (struct type *type)
11089 {
11090 struct type *subranged_type = get_base_type (type);
11091
11092 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
11093 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
11094 && TYPE_UNSIGNED (subranged_type));
11095 }
11096
11097 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11098
11099 ULONGEST
11100 ada_modulus (struct type *type)
11101 {
11102 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11103 }
11104 \f
11105
11106 /* Ada exception catchpoint support:
11107 ---------------------------------
11108
11109 We support 3 kinds of exception catchpoints:
11110 . catchpoints on Ada exceptions
11111 . catchpoints on unhandled Ada exceptions
11112 . catchpoints on failed assertions
11113
11114 Exceptions raised during failed assertions, or unhandled exceptions
11115 could perfectly be caught with the general catchpoint on Ada exceptions.
11116 However, we can easily differentiate these two special cases, and having
11117 the option to distinguish these two cases from the rest can be useful
11118 to zero-in on certain situations.
11119
11120 Exception catchpoints are a specialized form of breakpoint,
11121 since they rely on inserting breakpoints inside known routines
11122 of the GNAT runtime. The implementation therefore uses a standard
11123 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11124 of breakpoint_ops.
11125
11126 Support in the runtime for exception catchpoints have been changed
11127 a few times already, and these changes affect the implementation
11128 of these catchpoints. In order to be able to support several
11129 variants of the runtime, we use a sniffer that will determine
11130 the runtime variant used by the program being debugged. */
11131
11132 /* Ada's standard exceptions. */
11133
11134 static char *standard_exc[] = {
11135 "constraint_error",
11136 "program_error",
11137 "storage_error",
11138 "tasking_error"
11139 };
11140
11141 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11142
11143 /* A structure that describes how to support exception catchpoints
11144 for a given executable. */
11145
11146 struct exception_support_info
11147 {
11148 /* The name of the symbol to break on in order to insert
11149 a catchpoint on exceptions. */
11150 const char *catch_exception_sym;
11151
11152 /* The name of the symbol to break on in order to insert
11153 a catchpoint on unhandled exceptions. */
11154 const char *catch_exception_unhandled_sym;
11155
11156 /* The name of the symbol to break on in order to insert
11157 a catchpoint on failed assertions. */
11158 const char *catch_assert_sym;
11159
11160 /* Assuming that the inferior just triggered an unhandled exception
11161 catchpoint, this function is responsible for returning the address
11162 in inferior memory where the name of that exception is stored.
11163 Return zero if the address could not be computed. */
11164 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11165 };
11166
11167 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11168 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11169
11170 /* The following exception support info structure describes how to
11171 implement exception catchpoints with the latest version of the
11172 Ada runtime (as of 2007-03-06). */
11173
11174 static const struct exception_support_info default_exception_support_info =
11175 {
11176 "__gnat_debug_raise_exception", /* catch_exception_sym */
11177 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11178 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11179 ada_unhandled_exception_name_addr
11180 };
11181
11182 /* The following exception support info structure describes how to
11183 implement exception catchpoints with a slightly older version
11184 of the Ada runtime. */
11185
11186 static const struct exception_support_info exception_support_info_fallback =
11187 {
11188 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11189 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11190 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11191 ada_unhandled_exception_name_addr_from_raise
11192 };
11193
11194 /* Return nonzero if we can detect the exception support routines
11195 described in EINFO.
11196
11197 This function errors out if an abnormal situation is detected
11198 (for instance, if we find the exception support routines, but
11199 that support is found to be incomplete). */
11200
11201 static int
11202 ada_has_this_exception_support (const struct exception_support_info *einfo)
11203 {
11204 struct symbol *sym;
11205
11206 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11207 that should be compiled with debugging information. As a result, we
11208 expect to find that symbol in the symtabs. */
11209
11210 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11211 if (sym == NULL)
11212 {
11213 /* Perhaps we did not find our symbol because the Ada runtime was
11214 compiled without debugging info, or simply stripped of it.
11215 It happens on some GNU/Linux distributions for instance, where
11216 users have to install a separate debug package in order to get
11217 the runtime's debugging info. In that situation, let the user
11218 know why we cannot insert an Ada exception catchpoint.
11219
11220 Note: Just for the purpose of inserting our Ada exception
11221 catchpoint, we could rely purely on the associated minimal symbol.
11222 But we would be operating in degraded mode anyway, since we are
11223 still lacking the debugging info needed later on to extract
11224 the name of the exception being raised (this name is printed in
11225 the catchpoint message, and is also used when trying to catch
11226 a specific exception). We do not handle this case for now. */
11227 struct minimal_symbol *msym
11228 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11229
11230 if (msym && MSYMBOL_TYPE (msym) != mst_solib_trampoline)
11231 error (_("Your Ada runtime appears to be missing some debugging "
11232 "information.\nCannot insert Ada exception catchpoint "
11233 "in this configuration."));
11234
11235 return 0;
11236 }
11237
11238 /* Make sure that the symbol we found corresponds to a function. */
11239
11240 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11241 error (_("Symbol \"%s\" is not a function (class = %d)"),
11242 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11243
11244 return 1;
11245 }
11246
11247 /* Inspect the Ada runtime and determine which exception info structure
11248 should be used to provide support for exception catchpoints.
11249
11250 This function will always set the per-inferior exception_info,
11251 or raise an error. */
11252
11253 static void
11254 ada_exception_support_info_sniffer (void)
11255 {
11256 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11257
11258 /* If the exception info is already known, then no need to recompute it. */
11259 if (data->exception_info != NULL)
11260 return;
11261
11262 /* Check the latest (default) exception support info. */
11263 if (ada_has_this_exception_support (&default_exception_support_info))
11264 {
11265 data->exception_info = &default_exception_support_info;
11266 return;
11267 }
11268
11269 /* Try our fallback exception suport info. */
11270 if (ada_has_this_exception_support (&exception_support_info_fallback))
11271 {
11272 data->exception_info = &exception_support_info_fallback;
11273 return;
11274 }
11275
11276 /* Sometimes, it is normal for us to not be able to find the routine
11277 we are looking for. This happens when the program is linked with
11278 the shared version of the GNAT runtime, and the program has not been
11279 started yet. Inform the user of these two possible causes if
11280 applicable. */
11281
11282 if (ada_update_initial_language (language_unknown) != language_ada)
11283 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11284
11285 /* If the symbol does not exist, then check that the program is
11286 already started, to make sure that shared libraries have been
11287 loaded. If it is not started, this may mean that the symbol is
11288 in a shared library. */
11289
11290 if (ptid_get_pid (inferior_ptid) == 0)
11291 error (_("Unable to insert catchpoint. Try to start the program first."));
11292
11293 /* At this point, we know that we are debugging an Ada program and
11294 that the inferior has been started, but we still are not able to
11295 find the run-time symbols. That can mean that we are in
11296 configurable run time mode, or that a-except as been optimized
11297 out by the linker... In any case, at this point it is not worth
11298 supporting this feature. */
11299
11300 error (_("Cannot insert Ada exception catchpoints in this configuration."));
11301 }
11302
11303 /* True iff FRAME is very likely to be that of a function that is
11304 part of the runtime system. This is all very heuristic, but is
11305 intended to be used as advice as to what frames are uninteresting
11306 to most users. */
11307
11308 static int
11309 is_known_support_routine (struct frame_info *frame)
11310 {
11311 struct symtab_and_line sal;
11312 char *func_name;
11313 enum language func_lang;
11314 int i;
11315 const char *fullname;
11316
11317 /* If this code does not have any debugging information (no symtab),
11318 This cannot be any user code. */
11319
11320 find_frame_sal (frame, &sal);
11321 if (sal.symtab == NULL)
11322 return 1;
11323
11324 /* If there is a symtab, but the associated source file cannot be
11325 located, then assume this is not user code: Selecting a frame
11326 for which we cannot display the code would not be very helpful
11327 for the user. This should also take care of case such as VxWorks
11328 where the kernel has some debugging info provided for a few units. */
11329
11330 fullname = symtab_to_fullname (sal.symtab);
11331 if (access (fullname, R_OK) != 0)
11332 return 1;
11333
11334 /* Check the unit filename againt the Ada runtime file naming.
11335 We also check the name of the objfile against the name of some
11336 known system libraries that sometimes come with debugging info
11337 too. */
11338
11339 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11340 {
11341 re_comp (known_runtime_file_name_patterns[i]);
11342 if (re_exec (lbasename (sal.symtab->filename)))
11343 return 1;
11344 if (sal.symtab->objfile != NULL
11345 && re_exec (objfile_name (sal.symtab->objfile)))
11346 return 1;
11347 }
11348
11349 /* Check whether the function is a GNAT-generated entity. */
11350
11351 find_frame_funname (frame, &func_name, &func_lang, NULL);
11352 if (func_name == NULL)
11353 return 1;
11354
11355 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11356 {
11357 re_comp (known_auxiliary_function_name_patterns[i]);
11358 if (re_exec (func_name))
11359 {
11360 xfree (func_name);
11361 return 1;
11362 }
11363 }
11364
11365 xfree (func_name);
11366 return 0;
11367 }
11368
11369 /* Find the first frame that contains debugging information and that is not
11370 part of the Ada run-time, starting from FI and moving upward. */
11371
11372 void
11373 ada_find_printable_frame (struct frame_info *fi)
11374 {
11375 for (; fi != NULL; fi = get_prev_frame (fi))
11376 {
11377 if (!is_known_support_routine (fi))
11378 {
11379 select_frame (fi);
11380 break;
11381 }
11382 }
11383
11384 }
11385
11386 /* Assuming that the inferior just triggered an unhandled exception
11387 catchpoint, return the address in inferior memory where the name
11388 of the exception is stored.
11389
11390 Return zero if the address could not be computed. */
11391
11392 static CORE_ADDR
11393 ada_unhandled_exception_name_addr (void)
11394 {
11395 return parse_and_eval_address ("e.full_name");
11396 }
11397
11398 /* Same as ada_unhandled_exception_name_addr, except that this function
11399 should be used when the inferior uses an older version of the runtime,
11400 where the exception name needs to be extracted from a specific frame
11401 several frames up in the callstack. */
11402
11403 static CORE_ADDR
11404 ada_unhandled_exception_name_addr_from_raise (void)
11405 {
11406 int frame_level;
11407 struct frame_info *fi;
11408 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11409 struct cleanup *old_chain;
11410
11411 /* To determine the name of this exception, we need to select
11412 the frame corresponding to RAISE_SYM_NAME. This frame is
11413 at least 3 levels up, so we simply skip the first 3 frames
11414 without checking the name of their associated function. */
11415 fi = get_current_frame ();
11416 for (frame_level = 0; frame_level < 3; frame_level += 1)
11417 if (fi != NULL)
11418 fi = get_prev_frame (fi);
11419
11420 old_chain = make_cleanup (null_cleanup, NULL);
11421 while (fi != NULL)
11422 {
11423 char *func_name;
11424 enum language func_lang;
11425
11426 find_frame_funname (fi, &func_name, &func_lang, NULL);
11427 if (func_name != NULL)
11428 {
11429 make_cleanup (xfree, func_name);
11430
11431 if (strcmp (func_name,
11432 data->exception_info->catch_exception_sym) == 0)
11433 break; /* We found the frame we were looking for... */
11434 fi = get_prev_frame (fi);
11435 }
11436 }
11437 do_cleanups (old_chain);
11438
11439 if (fi == NULL)
11440 return 0;
11441
11442 select_frame (fi);
11443 return parse_and_eval_address ("id.full_name");
11444 }
11445
11446 /* Assuming the inferior just triggered an Ada exception catchpoint
11447 (of any type), return the address in inferior memory where the name
11448 of the exception is stored, if applicable.
11449
11450 Return zero if the address could not be computed, or if not relevant. */
11451
11452 static CORE_ADDR
11453 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
11454 struct breakpoint *b)
11455 {
11456 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11457
11458 switch (ex)
11459 {
11460 case ada_catch_exception:
11461 return (parse_and_eval_address ("e.full_name"));
11462 break;
11463
11464 case ada_catch_exception_unhandled:
11465 return data->exception_info->unhandled_exception_name_addr ();
11466 break;
11467
11468 case ada_catch_assert:
11469 return 0; /* Exception name is not relevant in this case. */
11470 break;
11471
11472 default:
11473 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11474 break;
11475 }
11476
11477 return 0; /* Should never be reached. */
11478 }
11479
11480 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
11481 any error that ada_exception_name_addr_1 might cause to be thrown.
11482 When an error is intercepted, a warning with the error message is printed,
11483 and zero is returned. */
11484
11485 static CORE_ADDR
11486 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
11487 struct breakpoint *b)
11488 {
11489 volatile struct gdb_exception e;
11490 CORE_ADDR result = 0;
11491
11492 TRY_CATCH (e, RETURN_MASK_ERROR)
11493 {
11494 result = ada_exception_name_addr_1 (ex, b);
11495 }
11496
11497 if (e.reason < 0)
11498 {
11499 warning (_("failed to get exception name: %s"), e.message);
11500 return 0;
11501 }
11502
11503 return result;
11504 }
11505
11506 static char *ada_exception_catchpoint_cond_string (const char *excep_string);
11507
11508 /* Ada catchpoints.
11509
11510 In the case of catchpoints on Ada exceptions, the catchpoint will
11511 stop the target on every exception the program throws. When a user
11512 specifies the name of a specific exception, we translate this
11513 request into a condition expression (in text form), and then parse
11514 it into an expression stored in each of the catchpoint's locations.
11515 We then use this condition to check whether the exception that was
11516 raised is the one the user is interested in. If not, then the
11517 target is resumed again. We store the name of the requested
11518 exception, in order to be able to re-set the condition expression
11519 when symbols change. */
11520
11521 /* An instance of this type is used to represent an Ada catchpoint
11522 breakpoint location. It includes a "struct bp_location" as a kind
11523 of base class; users downcast to "struct bp_location *" when
11524 needed. */
11525
11526 struct ada_catchpoint_location
11527 {
11528 /* The base class. */
11529 struct bp_location base;
11530
11531 /* The condition that checks whether the exception that was raised
11532 is the specific exception the user specified on catchpoint
11533 creation. */
11534 struct expression *excep_cond_expr;
11535 };
11536
11537 /* Implement the DTOR method in the bp_location_ops structure for all
11538 Ada exception catchpoint kinds. */
11539
11540 static void
11541 ada_catchpoint_location_dtor (struct bp_location *bl)
11542 {
11543 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
11544
11545 xfree (al->excep_cond_expr);
11546 }
11547
11548 /* The vtable to be used in Ada catchpoint locations. */
11549
11550 static const struct bp_location_ops ada_catchpoint_location_ops =
11551 {
11552 ada_catchpoint_location_dtor
11553 };
11554
11555 /* An instance of this type is used to represent an Ada catchpoint.
11556 It includes a "struct breakpoint" as a kind of base class; users
11557 downcast to "struct breakpoint *" when needed. */
11558
11559 struct ada_catchpoint
11560 {
11561 /* The base class. */
11562 struct breakpoint base;
11563
11564 /* The name of the specific exception the user specified. */
11565 char *excep_string;
11566 };
11567
11568 /* Parse the exception condition string in the context of each of the
11569 catchpoint's locations, and store them for later evaluation. */
11570
11571 static void
11572 create_excep_cond_exprs (struct ada_catchpoint *c)
11573 {
11574 struct cleanup *old_chain;
11575 struct bp_location *bl;
11576 char *cond_string;
11577
11578 /* Nothing to do if there's no specific exception to catch. */
11579 if (c->excep_string == NULL)
11580 return;
11581
11582 /* Same if there are no locations... */
11583 if (c->base.loc == NULL)
11584 return;
11585
11586 /* Compute the condition expression in text form, from the specific
11587 expection we want to catch. */
11588 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
11589 old_chain = make_cleanup (xfree, cond_string);
11590
11591 /* Iterate over all the catchpoint's locations, and parse an
11592 expression for each. */
11593 for (bl = c->base.loc; bl != NULL; bl = bl->next)
11594 {
11595 struct ada_catchpoint_location *ada_loc
11596 = (struct ada_catchpoint_location *) bl;
11597 struct expression *exp = NULL;
11598
11599 if (!bl->shlib_disabled)
11600 {
11601 volatile struct gdb_exception e;
11602 const char *s;
11603
11604 s = cond_string;
11605 TRY_CATCH (e, RETURN_MASK_ERROR)
11606 {
11607 exp = parse_exp_1 (&s, bl->address,
11608 block_for_pc (bl->address), 0);
11609 }
11610 if (e.reason < 0)
11611 {
11612 warning (_("failed to reevaluate internal exception condition "
11613 "for catchpoint %d: %s"),
11614 c->base.number, e.message);
11615 /* There is a bug in GCC on sparc-solaris when building with
11616 optimization which causes EXP to change unexpectedly
11617 (http://gcc.gnu.org/bugzilla/show_bug.cgi?id=56982).
11618 The problem should be fixed starting with GCC 4.9.
11619 In the meantime, work around it by forcing EXP back
11620 to NULL. */
11621 exp = NULL;
11622 }
11623 }
11624
11625 ada_loc->excep_cond_expr = exp;
11626 }
11627
11628 do_cleanups (old_chain);
11629 }
11630
11631 /* Implement the DTOR method in the breakpoint_ops structure for all
11632 exception catchpoint kinds. */
11633
11634 static void
11635 dtor_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
11636 {
11637 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11638
11639 xfree (c->excep_string);
11640
11641 bkpt_breakpoint_ops.dtor (b);
11642 }
11643
11644 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11645 structure for all exception catchpoint kinds. */
11646
11647 static struct bp_location *
11648 allocate_location_exception (enum ada_exception_catchpoint_kind ex,
11649 struct breakpoint *self)
11650 {
11651 struct ada_catchpoint_location *loc;
11652
11653 loc = XNEW (struct ada_catchpoint_location);
11654 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
11655 loc->excep_cond_expr = NULL;
11656 return &loc->base;
11657 }
11658
11659 /* Implement the RE_SET method in the breakpoint_ops structure for all
11660 exception catchpoint kinds. */
11661
11662 static void
11663 re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
11664 {
11665 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11666
11667 /* Call the base class's method. This updates the catchpoint's
11668 locations. */
11669 bkpt_breakpoint_ops.re_set (b);
11670
11671 /* Reparse the exception conditional expressions. One for each
11672 location. */
11673 create_excep_cond_exprs (c);
11674 }
11675
11676 /* Returns true if we should stop for this breakpoint hit. If the
11677 user specified a specific exception, we only want to cause a stop
11678 if the program thrown that exception. */
11679
11680 static int
11681 should_stop_exception (const struct bp_location *bl)
11682 {
11683 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
11684 const struct ada_catchpoint_location *ada_loc
11685 = (const struct ada_catchpoint_location *) bl;
11686 volatile struct gdb_exception ex;
11687 int stop;
11688
11689 /* With no specific exception, should always stop. */
11690 if (c->excep_string == NULL)
11691 return 1;
11692
11693 if (ada_loc->excep_cond_expr == NULL)
11694 {
11695 /* We will have a NULL expression if back when we were creating
11696 the expressions, this location's had failed to parse. */
11697 return 1;
11698 }
11699
11700 stop = 1;
11701 TRY_CATCH (ex, RETURN_MASK_ALL)
11702 {
11703 struct value *mark;
11704
11705 mark = value_mark ();
11706 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
11707 value_free_to_mark (mark);
11708 }
11709 if (ex.reason < 0)
11710 exception_fprintf (gdb_stderr, ex,
11711 _("Error in testing exception condition:\n"));
11712 return stop;
11713 }
11714
11715 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
11716 for all exception catchpoint kinds. */
11717
11718 static void
11719 check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
11720 {
11721 bs->stop = should_stop_exception (bs->bp_location_at);
11722 }
11723
11724 /* Implement the PRINT_IT method in the breakpoint_ops structure
11725 for all exception catchpoint kinds. */
11726
11727 static enum print_stop_action
11728 print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
11729 {
11730 struct ui_out *uiout = current_uiout;
11731 struct breakpoint *b = bs->breakpoint_at;
11732
11733 annotate_catchpoint (b->number);
11734
11735 if (ui_out_is_mi_like_p (uiout))
11736 {
11737 ui_out_field_string (uiout, "reason",
11738 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
11739 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
11740 }
11741
11742 ui_out_text (uiout,
11743 b->disposition == disp_del ? "\nTemporary catchpoint "
11744 : "\nCatchpoint ");
11745 ui_out_field_int (uiout, "bkptno", b->number);
11746 ui_out_text (uiout, ", ");
11747
11748 switch (ex)
11749 {
11750 case ada_catch_exception:
11751 case ada_catch_exception_unhandled:
11752 {
11753 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
11754 char exception_name[256];
11755
11756 if (addr != 0)
11757 {
11758 read_memory (addr, (gdb_byte *) exception_name,
11759 sizeof (exception_name) - 1);
11760 exception_name [sizeof (exception_name) - 1] = '\0';
11761 }
11762 else
11763 {
11764 /* For some reason, we were unable to read the exception
11765 name. This could happen if the Runtime was compiled
11766 without debugging info, for instance. In that case,
11767 just replace the exception name by the generic string
11768 "exception" - it will read as "an exception" in the
11769 notification we are about to print. */
11770 memcpy (exception_name, "exception", sizeof ("exception"));
11771 }
11772 /* In the case of unhandled exception breakpoints, we print
11773 the exception name as "unhandled EXCEPTION_NAME", to make
11774 it clearer to the user which kind of catchpoint just got
11775 hit. We used ui_out_text to make sure that this extra
11776 info does not pollute the exception name in the MI case. */
11777 if (ex == ada_catch_exception_unhandled)
11778 ui_out_text (uiout, "unhandled ");
11779 ui_out_field_string (uiout, "exception-name", exception_name);
11780 }
11781 break;
11782 case ada_catch_assert:
11783 /* In this case, the name of the exception is not really
11784 important. Just print "failed assertion" to make it clearer
11785 that his program just hit an assertion-failure catchpoint.
11786 We used ui_out_text because this info does not belong in
11787 the MI output. */
11788 ui_out_text (uiout, "failed assertion");
11789 break;
11790 }
11791 ui_out_text (uiout, " at ");
11792 ada_find_printable_frame (get_current_frame ());
11793
11794 return PRINT_SRC_AND_LOC;
11795 }
11796
11797 /* Implement the PRINT_ONE method in the breakpoint_ops structure
11798 for all exception catchpoint kinds. */
11799
11800 static void
11801 print_one_exception (enum ada_exception_catchpoint_kind ex,
11802 struct breakpoint *b, struct bp_location **last_loc)
11803 {
11804 struct ui_out *uiout = current_uiout;
11805 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11806 struct value_print_options opts;
11807
11808 get_user_print_options (&opts);
11809 if (opts.addressprint)
11810 {
11811 annotate_field (4);
11812 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
11813 }
11814
11815 annotate_field (5);
11816 *last_loc = b->loc;
11817 switch (ex)
11818 {
11819 case ada_catch_exception:
11820 if (c->excep_string != NULL)
11821 {
11822 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11823
11824 ui_out_field_string (uiout, "what", msg);
11825 xfree (msg);
11826 }
11827 else
11828 ui_out_field_string (uiout, "what", "all Ada exceptions");
11829
11830 break;
11831
11832 case ada_catch_exception_unhandled:
11833 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
11834 break;
11835
11836 case ada_catch_assert:
11837 ui_out_field_string (uiout, "what", "failed Ada assertions");
11838 break;
11839
11840 default:
11841 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11842 break;
11843 }
11844 }
11845
11846 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
11847 for all exception catchpoint kinds. */
11848
11849 static void
11850 print_mention_exception (enum ada_exception_catchpoint_kind ex,
11851 struct breakpoint *b)
11852 {
11853 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11854 struct ui_out *uiout = current_uiout;
11855
11856 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
11857 : _("Catchpoint "));
11858 ui_out_field_int (uiout, "bkptno", b->number);
11859 ui_out_text (uiout, ": ");
11860
11861 switch (ex)
11862 {
11863 case ada_catch_exception:
11864 if (c->excep_string != NULL)
11865 {
11866 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11867 struct cleanup *old_chain = make_cleanup (xfree, info);
11868
11869 ui_out_text (uiout, info);
11870 do_cleanups (old_chain);
11871 }
11872 else
11873 ui_out_text (uiout, _("all Ada exceptions"));
11874 break;
11875
11876 case ada_catch_exception_unhandled:
11877 ui_out_text (uiout, _("unhandled Ada exceptions"));
11878 break;
11879
11880 case ada_catch_assert:
11881 ui_out_text (uiout, _("failed Ada assertions"));
11882 break;
11883
11884 default:
11885 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11886 break;
11887 }
11888 }
11889
11890 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
11891 for all exception catchpoint kinds. */
11892
11893 static void
11894 print_recreate_exception (enum ada_exception_catchpoint_kind ex,
11895 struct breakpoint *b, struct ui_file *fp)
11896 {
11897 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11898
11899 switch (ex)
11900 {
11901 case ada_catch_exception:
11902 fprintf_filtered (fp, "catch exception");
11903 if (c->excep_string != NULL)
11904 fprintf_filtered (fp, " %s", c->excep_string);
11905 break;
11906
11907 case ada_catch_exception_unhandled:
11908 fprintf_filtered (fp, "catch exception unhandled");
11909 break;
11910
11911 case ada_catch_assert:
11912 fprintf_filtered (fp, "catch assert");
11913 break;
11914
11915 default:
11916 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11917 }
11918 print_recreate_thread (b, fp);
11919 }
11920
11921 /* Virtual table for "catch exception" breakpoints. */
11922
11923 static void
11924 dtor_catch_exception (struct breakpoint *b)
11925 {
11926 dtor_exception (ada_catch_exception, b);
11927 }
11928
11929 static struct bp_location *
11930 allocate_location_catch_exception (struct breakpoint *self)
11931 {
11932 return allocate_location_exception (ada_catch_exception, self);
11933 }
11934
11935 static void
11936 re_set_catch_exception (struct breakpoint *b)
11937 {
11938 re_set_exception (ada_catch_exception, b);
11939 }
11940
11941 static void
11942 check_status_catch_exception (bpstat bs)
11943 {
11944 check_status_exception (ada_catch_exception, bs);
11945 }
11946
11947 static enum print_stop_action
11948 print_it_catch_exception (bpstat bs)
11949 {
11950 return print_it_exception (ada_catch_exception, bs);
11951 }
11952
11953 static void
11954 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
11955 {
11956 print_one_exception (ada_catch_exception, b, last_loc);
11957 }
11958
11959 static void
11960 print_mention_catch_exception (struct breakpoint *b)
11961 {
11962 print_mention_exception (ada_catch_exception, b);
11963 }
11964
11965 static void
11966 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
11967 {
11968 print_recreate_exception (ada_catch_exception, b, fp);
11969 }
11970
11971 static struct breakpoint_ops catch_exception_breakpoint_ops;
11972
11973 /* Virtual table for "catch exception unhandled" breakpoints. */
11974
11975 static void
11976 dtor_catch_exception_unhandled (struct breakpoint *b)
11977 {
11978 dtor_exception (ada_catch_exception_unhandled, b);
11979 }
11980
11981 static struct bp_location *
11982 allocate_location_catch_exception_unhandled (struct breakpoint *self)
11983 {
11984 return allocate_location_exception (ada_catch_exception_unhandled, self);
11985 }
11986
11987 static void
11988 re_set_catch_exception_unhandled (struct breakpoint *b)
11989 {
11990 re_set_exception (ada_catch_exception_unhandled, b);
11991 }
11992
11993 static void
11994 check_status_catch_exception_unhandled (bpstat bs)
11995 {
11996 check_status_exception (ada_catch_exception_unhandled, bs);
11997 }
11998
11999 static enum print_stop_action
12000 print_it_catch_exception_unhandled (bpstat bs)
12001 {
12002 return print_it_exception (ada_catch_exception_unhandled, bs);
12003 }
12004
12005 static void
12006 print_one_catch_exception_unhandled (struct breakpoint *b,
12007 struct bp_location **last_loc)
12008 {
12009 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
12010 }
12011
12012 static void
12013 print_mention_catch_exception_unhandled (struct breakpoint *b)
12014 {
12015 print_mention_exception (ada_catch_exception_unhandled, b);
12016 }
12017
12018 static void
12019 print_recreate_catch_exception_unhandled (struct breakpoint *b,
12020 struct ui_file *fp)
12021 {
12022 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
12023 }
12024
12025 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12026
12027 /* Virtual table for "catch assert" breakpoints. */
12028
12029 static void
12030 dtor_catch_assert (struct breakpoint *b)
12031 {
12032 dtor_exception (ada_catch_assert, b);
12033 }
12034
12035 static struct bp_location *
12036 allocate_location_catch_assert (struct breakpoint *self)
12037 {
12038 return allocate_location_exception (ada_catch_assert, self);
12039 }
12040
12041 static void
12042 re_set_catch_assert (struct breakpoint *b)
12043 {
12044 re_set_exception (ada_catch_assert, b);
12045 }
12046
12047 static void
12048 check_status_catch_assert (bpstat bs)
12049 {
12050 check_status_exception (ada_catch_assert, bs);
12051 }
12052
12053 static enum print_stop_action
12054 print_it_catch_assert (bpstat bs)
12055 {
12056 return print_it_exception (ada_catch_assert, bs);
12057 }
12058
12059 static void
12060 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
12061 {
12062 print_one_exception (ada_catch_assert, b, last_loc);
12063 }
12064
12065 static void
12066 print_mention_catch_assert (struct breakpoint *b)
12067 {
12068 print_mention_exception (ada_catch_assert, b);
12069 }
12070
12071 static void
12072 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12073 {
12074 print_recreate_exception (ada_catch_assert, b, fp);
12075 }
12076
12077 static struct breakpoint_ops catch_assert_breakpoint_ops;
12078
12079 /* Return a newly allocated copy of the first space-separated token
12080 in ARGSP, and then adjust ARGSP to point immediately after that
12081 token.
12082
12083 Return NULL if ARGPS does not contain any more tokens. */
12084
12085 static char *
12086 ada_get_next_arg (char **argsp)
12087 {
12088 char *args = *argsp;
12089 char *end;
12090 char *result;
12091
12092 args = skip_spaces (args);
12093 if (args[0] == '\0')
12094 return NULL; /* No more arguments. */
12095
12096 /* Find the end of the current argument. */
12097
12098 end = skip_to_space (args);
12099
12100 /* Adjust ARGSP to point to the start of the next argument. */
12101
12102 *argsp = end;
12103
12104 /* Make a copy of the current argument and return it. */
12105
12106 result = xmalloc (end - args + 1);
12107 strncpy (result, args, end - args);
12108 result[end - args] = '\0';
12109
12110 return result;
12111 }
12112
12113 /* Split the arguments specified in a "catch exception" command.
12114 Set EX to the appropriate catchpoint type.
12115 Set EXCEP_STRING to the name of the specific exception if
12116 specified by the user.
12117 If a condition is found at the end of the arguments, the condition
12118 expression is stored in COND_STRING (memory must be deallocated
12119 after use). Otherwise COND_STRING is set to NULL. */
12120
12121 static void
12122 catch_ada_exception_command_split (char *args,
12123 enum ada_exception_catchpoint_kind *ex,
12124 char **excep_string,
12125 char **cond_string)
12126 {
12127 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
12128 char *exception_name;
12129 char *cond = NULL;
12130
12131 exception_name = ada_get_next_arg (&args);
12132 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
12133 {
12134 /* This is not an exception name; this is the start of a condition
12135 expression for a catchpoint on all exceptions. So, "un-get"
12136 this token, and set exception_name to NULL. */
12137 xfree (exception_name);
12138 exception_name = NULL;
12139 args -= 2;
12140 }
12141 make_cleanup (xfree, exception_name);
12142
12143 /* Check to see if we have a condition. */
12144
12145 args = skip_spaces (args);
12146 if (strncmp (args, "if", 2) == 0
12147 && (isspace (args[2]) || args[2] == '\0'))
12148 {
12149 args += 2;
12150 args = skip_spaces (args);
12151
12152 if (args[0] == '\0')
12153 error (_("Condition missing after `if' keyword"));
12154 cond = xstrdup (args);
12155 make_cleanup (xfree, cond);
12156
12157 args += strlen (args);
12158 }
12159
12160 /* Check that we do not have any more arguments. Anything else
12161 is unexpected. */
12162
12163 if (args[0] != '\0')
12164 error (_("Junk at end of expression"));
12165
12166 discard_cleanups (old_chain);
12167
12168 if (exception_name == NULL)
12169 {
12170 /* Catch all exceptions. */
12171 *ex = ada_catch_exception;
12172 *excep_string = NULL;
12173 }
12174 else if (strcmp (exception_name, "unhandled") == 0)
12175 {
12176 /* Catch unhandled exceptions. */
12177 *ex = ada_catch_exception_unhandled;
12178 *excep_string = NULL;
12179 }
12180 else
12181 {
12182 /* Catch a specific exception. */
12183 *ex = ada_catch_exception;
12184 *excep_string = exception_name;
12185 }
12186 *cond_string = cond;
12187 }
12188
12189 /* Return the name of the symbol on which we should break in order to
12190 implement a catchpoint of the EX kind. */
12191
12192 static const char *
12193 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
12194 {
12195 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12196
12197 gdb_assert (data->exception_info != NULL);
12198
12199 switch (ex)
12200 {
12201 case ada_catch_exception:
12202 return (data->exception_info->catch_exception_sym);
12203 break;
12204 case ada_catch_exception_unhandled:
12205 return (data->exception_info->catch_exception_unhandled_sym);
12206 break;
12207 case ada_catch_assert:
12208 return (data->exception_info->catch_assert_sym);
12209 break;
12210 default:
12211 internal_error (__FILE__, __LINE__,
12212 _("unexpected catchpoint kind (%d)"), ex);
12213 }
12214 }
12215
12216 /* Return the breakpoint ops "virtual table" used for catchpoints
12217 of the EX kind. */
12218
12219 static const struct breakpoint_ops *
12220 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
12221 {
12222 switch (ex)
12223 {
12224 case ada_catch_exception:
12225 return (&catch_exception_breakpoint_ops);
12226 break;
12227 case ada_catch_exception_unhandled:
12228 return (&catch_exception_unhandled_breakpoint_ops);
12229 break;
12230 case ada_catch_assert:
12231 return (&catch_assert_breakpoint_ops);
12232 break;
12233 default:
12234 internal_error (__FILE__, __LINE__,
12235 _("unexpected catchpoint kind (%d)"), ex);
12236 }
12237 }
12238
12239 /* Return the condition that will be used to match the current exception
12240 being raised with the exception that the user wants to catch. This
12241 assumes that this condition is used when the inferior just triggered
12242 an exception catchpoint.
12243
12244 The string returned is a newly allocated string that needs to be
12245 deallocated later. */
12246
12247 static char *
12248 ada_exception_catchpoint_cond_string (const char *excep_string)
12249 {
12250 int i;
12251
12252 /* The standard exceptions are a special case. They are defined in
12253 runtime units that have been compiled without debugging info; if
12254 EXCEP_STRING is the not-fully-qualified name of a standard
12255 exception (e.g. "constraint_error") then, during the evaluation
12256 of the condition expression, the symbol lookup on this name would
12257 *not* return this standard exception. The catchpoint condition
12258 may then be set only on user-defined exceptions which have the
12259 same not-fully-qualified name (e.g. my_package.constraint_error).
12260
12261 To avoid this unexcepted behavior, these standard exceptions are
12262 systematically prefixed by "standard". This means that "catch
12263 exception constraint_error" is rewritten into "catch exception
12264 standard.constraint_error".
12265
12266 If an exception named contraint_error is defined in another package of
12267 the inferior program, then the only way to specify this exception as a
12268 breakpoint condition is to use its fully-qualified named:
12269 e.g. my_package.constraint_error. */
12270
12271 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12272 {
12273 if (strcmp (standard_exc [i], excep_string) == 0)
12274 {
12275 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
12276 excep_string);
12277 }
12278 }
12279 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
12280 }
12281
12282 /* Return the symtab_and_line that should be used to insert an exception
12283 catchpoint of the TYPE kind.
12284
12285 EXCEP_STRING should contain the name of a specific exception that
12286 the catchpoint should catch, or NULL otherwise.
12287
12288 ADDR_STRING returns the name of the function where the real
12289 breakpoint that implements the catchpoints is set, depending on the
12290 type of catchpoint we need to create. */
12291
12292 static struct symtab_and_line
12293 ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string,
12294 char **addr_string, const struct breakpoint_ops **ops)
12295 {
12296 const char *sym_name;
12297 struct symbol *sym;
12298
12299 /* First, find out which exception support info to use. */
12300 ada_exception_support_info_sniffer ();
12301
12302 /* Then lookup the function on which we will break in order to catch
12303 the Ada exceptions requested by the user. */
12304 sym_name = ada_exception_sym_name (ex);
12305 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12306
12307 /* We can assume that SYM is not NULL at this stage. If the symbol
12308 did not exist, ada_exception_support_info_sniffer would have
12309 raised an exception.
12310
12311 Also, ada_exception_support_info_sniffer should have already
12312 verified that SYM is a function symbol. */
12313 gdb_assert (sym != NULL);
12314 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
12315
12316 /* Set ADDR_STRING. */
12317 *addr_string = xstrdup (sym_name);
12318
12319 /* Set OPS. */
12320 *ops = ada_exception_breakpoint_ops (ex);
12321
12322 return find_function_start_sal (sym, 1);
12323 }
12324
12325 /* Create an Ada exception catchpoint.
12326
12327 EX_KIND is the kind of exception catchpoint to be created.
12328
12329 If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
12330 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12331 of the exception to which this catchpoint applies. When not NULL,
12332 the string must be allocated on the heap, and its deallocation
12333 is no longer the responsibility of the caller.
12334
12335 COND_STRING, if not NULL, is the catchpoint condition. This string
12336 must be allocated on the heap, and its deallocation is no longer
12337 the responsibility of the caller.
12338
12339 TEMPFLAG, if nonzero, means that the underlying breakpoint
12340 should be temporary.
12341
12342 FROM_TTY is the usual argument passed to all commands implementations. */
12343
12344 void
12345 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
12346 enum ada_exception_catchpoint_kind ex_kind,
12347 char *excep_string,
12348 char *cond_string,
12349 int tempflag,
12350 int disabled,
12351 int from_tty)
12352 {
12353 struct ada_catchpoint *c;
12354 char *addr_string = NULL;
12355 const struct breakpoint_ops *ops = NULL;
12356 struct symtab_and_line sal
12357 = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops);
12358
12359 c = XNEW (struct ada_catchpoint);
12360 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
12361 ops, tempflag, disabled, from_tty);
12362 c->excep_string = excep_string;
12363 create_excep_cond_exprs (c);
12364 if (cond_string != NULL)
12365 set_breakpoint_condition (&c->base, cond_string, from_tty);
12366 install_breakpoint (0, &c->base, 1);
12367 }
12368
12369 /* Implement the "catch exception" command. */
12370
12371 static void
12372 catch_ada_exception_command (char *arg, int from_tty,
12373 struct cmd_list_element *command)
12374 {
12375 struct gdbarch *gdbarch = get_current_arch ();
12376 int tempflag;
12377 enum ada_exception_catchpoint_kind ex_kind;
12378 char *excep_string = NULL;
12379 char *cond_string = NULL;
12380
12381 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12382
12383 if (!arg)
12384 arg = "";
12385 catch_ada_exception_command_split (arg, &ex_kind, &excep_string,
12386 &cond_string);
12387 create_ada_exception_catchpoint (gdbarch, ex_kind,
12388 excep_string, cond_string,
12389 tempflag, 1 /* enabled */,
12390 from_tty);
12391 }
12392
12393 /* Split the arguments specified in a "catch assert" command.
12394
12395 ARGS contains the command's arguments (or the empty string if
12396 no arguments were passed).
12397
12398 If ARGS contains a condition, set COND_STRING to that condition
12399 (the memory needs to be deallocated after use). */
12400
12401 static void
12402 catch_ada_assert_command_split (char *args, char **cond_string)
12403 {
12404 args = skip_spaces (args);
12405
12406 /* Check whether a condition was provided. */
12407 if (strncmp (args, "if", 2) == 0
12408 && (isspace (args[2]) || args[2] == '\0'))
12409 {
12410 args += 2;
12411 args = skip_spaces (args);
12412 if (args[0] == '\0')
12413 error (_("condition missing after `if' keyword"));
12414 *cond_string = xstrdup (args);
12415 }
12416
12417 /* Otherwise, there should be no other argument at the end of
12418 the command. */
12419 else if (args[0] != '\0')
12420 error (_("Junk at end of arguments."));
12421 }
12422
12423 /* Implement the "catch assert" command. */
12424
12425 static void
12426 catch_assert_command (char *arg, int from_tty,
12427 struct cmd_list_element *command)
12428 {
12429 struct gdbarch *gdbarch = get_current_arch ();
12430 int tempflag;
12431 char *cond_string = NULL;
12432
12433 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12434
12435 if (!arg)
12436 arg = "";
12437 catch_ada_assert_command_split (arg, &cond_string);
12438 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
12439 NULL, cond_string,
12440 tempflag, 1 /* enabled */,
12441 from_tty);
12442 }
12443
12444 /* Return non-zero if the symbol SYM is an Ada exception object. */
12445
12446 static int
12447 ada_is_exception_sym (struct symbol *sym)
12448 {
12449 const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
12450
12451 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
12452 && SYMBOL_CLASS (sym) != LOC_BLOCK
12453 && SYMBOL_CLASS (sym) != LOC_CONST
12454 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
12455 && type_name != NULL && strcmp (type_name, "exception") == 0);
12456 }
12457
12458 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
12459 Ada exception object. This matches all exceptions except the ones
12460 defined by the Ada language. */
12461
12462 static int
12463 ada_is_non_standard_exception_sym (struct symbol *sym)
12464 {
12465 int i;
12466
12467 if (!ada_is_exception_sym (sym))
12468 return 0;
12469
12470 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12471 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
12472 return 0; /* A standard exception. */
12473
12474 /* Numeric_Error is also a standard exception, so exclude it.
12475 See the STANDARD_EXC description for more details as to why
12476 this exception is not listed in that array. */
12477 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
12478 return 0;
12479
12480 return 1;
12481 }
12482
12483 /* A helper function for qsort, comparing two struct ada_exc_info
12484 objects.
12485
12486 The comparison is determined first by exception name, and then
12487 by exception address. */
12488
12489 static int
12490 compare_ada_exception_info (const void *a, const void *b)
12491 {
12492 const struct ada_exc_info *exc_a = (struct ada_exc_info *) a;
12493 const struct ada_exc_info *exc_b = (struct ada_exc_info *) b;
12494 int result;
12495
12496 result = strcmp (exc_a->name, exc_b->name);
12497 if (result != 0)
12498 return result;
12499
12500 if (exc_a->addr < exc_b->addr)
12501 return -1;
12502 if (exc_a->addr > exc_b->addr)
12503 return 1;
12504
12505 return 0;
12506 }
12507
12508 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
12509 routine, but keeping the first SKIP elements untouched.
12510
12511 All duplicates are also removed. */
12512
12513 static void
12514 sort_remove_dups_ada_exceptions_list (VEC(ada_exc_info) **exceptions,
12515 int skip)
12516 {
12517 struct ada_exc_info *to_sort
12518 = VEC_address (ada_exc_info, *exceptions) + skip;
12519 int to_sort_len
12520 = VEC_length (ada_exc_info, *exceptions) - skip;
12521 int i, j;
12522
12523 qsort (to_sort, to_sort_len, sizeof (struct ada_exc_info),
12524 compare_ada_exception_info);
12525
12526 for (i = 1, j = 1; i < to_sort_len; i++)
12527 if (compare_ada_exception_info (&to_sort[i], &to_sort[j - 1]) != 0)
12528 to_sort[j++] = to_sort[i];
12529 to_sort_len = j;
12530 VEC_truncate(ada_exc_info, *exceptions, skip + to_sort_len);
12531 }
12532
12533 /* A function intended as the "name_matcher" callback in the struct
12534 quick_symbol_functions' expand_symtabs_matching method.
12535
12536 SEARCH_NAME is the symbol's search name.
12537
12538 If USER_DATA is not NULL, it is a pointer to a regext_t object
12539 used to match the symbol (by natural name). Otherwise, when USER_DATA
12540 is null, no filtering is performed, and all symbols are a positive
12541 match. */
12542
12543 static int
12544 ada_exc_search_name_matches (const char *search_name, void *user_data)
12545 {
12546 regex_t *preg = user_data;
12547
12548 if (preg == NULL)
12549 return 1;
12550
12551 /* In Ada, the symbol "search name" is a linkage name, whereas
12552 the regular expression used to do the matching refers to
12553 the natural name. So match against the decoded name. */
12554 return (regexec (preg, ada_decode (search_name), 0, NULL, 0) == 0);
12555 }
12556
12557 /* Add all exceptions defined by the Ada standard whose name match
12558 a regular expression.
12559
12560 If PREG is not NULL, then this regexp_t object is used to
12561 perform the symbol name matching. Otherwise, no name-based
12562 filtering is performed.
12563
12564 EXCEPTIONS is a vector of exceptions to which matching exceptions
12565 gets pushed. */
12566
12567 static void
12568 ada_add_standard_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
12569 {
12570 int i;
12571
12572 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12573 {
12574 if (preg == NULL
12575 || regexec (preg, standard_exc[i], 0, NULL, 0) == 0)
12576 {
12577 struct bound_minimal_symbol msymbol
12578 = ada_lookup_simple_minsym (standard_exc[i]);
12579
12580 if (msymbol.minsym != NULL)
12581 {
12582 struct ada_exc_info info
12583 = {standard_exc[i], SYMBOL_VALUE_ADDRESS (msymbol.minsym)};
12584
12585 VEC_safe_push (ada_exc_info, *exceptions, &info);
12586 }
12587 }
12588 }
12589 }
12590
12591 /* Add all Ada exceptions defined locally and accessible from the given
12592 FRAME.
12593
12594 If PREG is not NULL, then this regexp_t object is used to
12595 perform the symbol name matching. Otherwise, no name-based
12596 filtering is performed.
12597
12598 EXCEPTIONS is a vector of exceptions to which matching exceptions
12599 gets pushed. */
12600
12601 static void
12602 ada_add_exceptions_from_frame (regex_t *preg, struct frame_info *frame,
12603 VEC(ada_exc_info) **exceptions)
12604 {
12605 struct block *block = get_frame_block (frame, 0);
12606
12607 while (block != 0)
12608 {
12609 struct block_iterator iter;
12610 struct symbol *sym;
12611
12612 ALL_BLOCK_SYMBOLS (block, iter, sym)
12613 {
12614 switch (SYMBOL_CLASS (sym))
12615 {
12616 case LOC_TYPEDEF:
12617 case LOC_BLOCK:
12618 case LOC_CONST:
12619 break;
12620 default:
12621 if (ada_is_exception_sym (sym))
12622 {
12623 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
12624 SYMBOL_VALUE_ADDRESS (sym)};
12625
12626 VEC_safe_push (ada_exc_info, *exceptions, &info);
12627 }
12628 }
12629 }
12630 if (BLOCK_FUNCTION (block) != NULL)
12631 break;
12632 block = BLOCK_SUPERBLOCK (block);
12633 }
12634 }
12635
12636 /* Add all exceptions defined globally whose name name match
12637 a regular expression, excluding standard exceptions.
12638
12639 The reason we exclude standard exceptions is that they need
12640 to be handled separately: Standard exceptions are defined inside
12641 a runtime unit which is normally not compiled with debugging info,
12642 and thus usually do not show up in our symbol search. However,
12643 if the unit was in fact built with debugging info, we need to
12644 exclude them because they would duplicate the entry we found
12645 during the special loop that specifically searches for those
12646 standard exceptions.
12647
12648 If PREG is not NULL, then this regexp_t object is used to
12649 perform the symbol name matching. Otherwise, no name-based
12650 filtering is performed.
12651
12652 EXCEPTIONS is a vector of exceptions to which matching exceptions
12653 gets pushed. */
12654
12655 static void
12656 ada_add_global_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
12657 {
12658 struct objfile *objfile;
12659 struct symtab *s;
12660
12661 expand_symtabs_matching (NULL, ada_exc_search_name_matches,
12662 VARIABLES_DOMAIN, preg);
12663
12664 ALL_PRIMARY_SYMTABS (objfile, s)
12665 {
12666 struct blockvector *bv = BLOCKVECTOR (s);
12667 int i;
12668
12669 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
12670 {
12671 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
12672 struct block_iterator iter;
12673 struct symbol *sym;
12674
12675 ALL_BLOCK_SYMBOLS (b, iter, sym)
12676 if (ada_is_non_standard_exception_sym (sym)
12677 && (preg == NULL
12678 || regexec (preg, SYMBOL_NATURAL_NAME (sym),
12679 0, NULL, 0) == 0))
12680 {
12681 struct ada_exc_info info
12682 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
12683
12684 VEC_safe_push (ada_exc_info, *exceptions, &info);
12685 }
12686 }
12687 }
12688 }
12689
12690 /* Implements ada_exceptions_list with the regular expression passed
12691 as a regex_t, rather than a string.
12692
12693 If not NULL, PREG is used to filter out exceptions whose names
12694 do not match. Otherwise, all exceptions are listed. */
12695
12696 static VEC(ada_exc_info) *
12697 ada_exceptions_list_1 (regex_t *preg)
12698 {
12699 VEC(ada_exc_info) *result = NULL;
12700 struct cleanup *old_chain
12701 = make_cleanup (VEC_cleanup (ada_exc_info), &result);
12702 int prev_len;
12703
12704 /* First, list the known standard exceptions. These exceptions
12705 need to be handled separately, as they are usually defined in
12706 runtime units that have been compiled without debugging info. */
12707
12708 ada_add_standard_exceptions (preg, &result);
12709
12710 /* Next, find all exceptions whose scope is local and accessible
12711 from the currently selected frame. */
12712
12713 if (has_stack_frames ())
12714 {
12715 prev_len = VEC_length (ada_exc_info, result);
12716 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
12717 &result);
12718 if (VEC_length (ada_exc_info, result) > prev_len)
12719 sort_remove_dups_ada_exceptions_list (&result, prev_len);
12720 }
12721
12722 /* Add all exceptions whose scope is global. */
12723
12724 prev_len = VEC_length (ada_exc_info, result);
12725 ada_add_global_exceptions (preg, &result);
12726 if (VEC_length (ada_exc_info, result) > prev_len)
12727 sort_remove_dups_ada_exceptions_list (&result, prev_len);
12728
12729 discard_cleanups (old_chain);
12730 return result;
12731 }
12732
12733 /* Return a vector of ada_exc_info.
12734
12735 If REGEXP is NULL, all exceptions are included in the result.
12736 Otherwise, it should contain a valid regular expression,
12737 and only the exceptions whose names match that regular expression
12738 are included in the result.
12739
12740 The exceptions are sorted in the following order:
12741 - Standard exceptions (defined by the Ada language), in
12742 alphabetical order;
12743 - Exceptions only visible from the current frame, in
12744 alphabetical order;
12745 - Exceptions whose scope is global, in alphabetical order. */
12746
12747 VEC(ada_exc_info) *
12748 ada_exceptions_list (const char *regexp)
12749 {
12750 VEC(ada_exc_info) *result = NULL;
12751 struct cleanup *old_chain = NULL;
12752 regex_t reg;
12753
12754 if (regexp != NULL)
12755 old_chain = compile_rx_or_error (&reg, regexp,
12756 _("invalid regular expression"));
12757
12758 result = ada_exceptions_list_1 (regexp != NULL ? &reg : NULL);
12759
12760 if (old_chain != NULL)
12761 do_cleanups (old_chain);
12762 return result;
12763 }
12764
12765 /* Implement the "info exceptions" command. */
12766
12767 static void
12768 info_exceptions_command (char *regexp, int from_tty)
12769 {
12770 VEC(ada_exc_info) *exceptions;
12771 struct cleanup *cleanup;
12772 struct gdbarch *gdbarch = get_current_arch ();
12773 int ix;
12774 struct ada_exc_info *info;
12775
12776 exceptions = ada_exceptions_list (regexp);
12777 cleanup = make_cleanup (VEC_cleanup (ada_exc_info), &exceptions);
12778
12779 if (regexp != NULL)
12780 printf_filtered
12781 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
12782 else
12783 printf_filtered (_("All defined Ada exceptions:\n"));
12784
12785 for (ix = 0; VEC_iterate(ada_exc_info, exceptions, ix, info); ix++)
12786 printf_filtered ("%s: %s\n", info->name, paddress (gdbarch, info->addr));
12787
12788 do_cleanups (cleanup);
12789 }
12790
12791 /* Operators */
12792 /* Information about operators given special treatment in functions
12793 below. */
12794 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
12795
12796 #define ADA_OPERATORS \
12797 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
12798 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
12799 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
12800 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
12801 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
12802 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
12803 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
12804 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
12805 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
12806 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
12807 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
12808 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
12809 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
12810 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
12811 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
12812 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
12813 OP_DEFN (OP_OTHERS, 1, 1, 0) \
12814 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
12815 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
12816
12817 static void
12818 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
12819 int *argsp)
12820 {
12821 switch (exp->elts[pc - 1].opcode)
12822 {
12823 default:
12824 operator_length_standard (exp, pc, oplenp, argsp);
12825 break;
12826
12827 #define OP_DEFN(op, len, args, binop) \
12828 case op: *oplenp = len; *argsp = args; break;
12829 ADA_OPERATORS;
12830 #undef OP_DEFN
12831
12832 case OP_AGGREGATE:
12833 *oplenp = 3;
12834 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
12835 break;
12836
12837 case OP_CHOICES:
12838 *oplenp = 3;
12839 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
12840 break;
12841 }
12842 }
12843
12844 /* Implementation of the exp_descriptor method operator_check. */
12845
12846 static int
12847 ada_operator_check (struct expression *exp, int pos,
12848 int (*objfile_func) (struct objfile *objfile, void *data),
12849 void *data)
12850 {
12851 const union exp_element *const elts = exp->elts;
12852 struct type *type = NULL;
12853
12854 switch (elts[pos].opcode)
12855 {
12856 case UNOP_IN_RANGE:
12857 case UNOP_QUAL:
12858 type = elts[pos + 1].type;
12859 break;
12860
12861 default:
12862 return operator_check_standard (exp, pos, objfile_func, data);
12863 }
12864
12865 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
12866
12867 if (type && TYPE_OBJFILE (type)
12868 && (*objfile_func) (TYPE_OBJFILE (type), data))
12869 return 1;
12870
12871 return 0;
12872 }
12873
12874 static char *
12875 ada_op_name (enum exp_opcode opcode)
12876 {
12877 switch (opcode)
12878 {
12879 default:
12880 return op_name_standard (opcode);
12881
12882 #define OP_DEFN(op, len, args, binop) case op: return #op;
12883 ADA_OPERATORS;
12884 #undef OP_DEFN
12885
12886 case OP_AGGREGATE:
12887 return "OP_AGGREGATE";
12888 case OP_CHOICES:
12889 return "OP_CHOICES";
12890 case OP_NAME:
12891 return "OP_NAME";
12892 }
12893 }
12894
12895 /* As for operator_length, but assumes PC is pointing at the first
12896 element of the operator, and gives meaningful results only for the
12897 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
12898
12899 static void
12900 ada_forward_operator_length (struct expression *exp, int pc,
12901 int *oplenp, int *argsp)
12902 {
12903 switch (exp->elts[pc].opcode)
12904 {
12905 default:
12906 *oplenp = *argsp = 0;
12907 break;
12908
12909 #define OP_DEFN(op, len, args, binop) \
12910 case op: *oplenp = len; *argsp = args; break;
12911 ADA_OPERATORS;
12912 #undef OP_DEFN
12913
12914 case OP_AGGREGATE:
12915 *oplenp = 3;
12916 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
12917 break;
12918
12919 case OP_CHOICES:
12920 *oplenp = 3;
12921 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
12922 break;
12923
12924 case OP_STRING:
12925 case OP_NAME:
12926 {
12927 int len = longest_to_int (exp->elts[pc + 1].longconst);
12928
12929 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
12930 *argsp = 0;
12931 break;
12932 }
12933 }
12934 }
12935
12936 static int
12937 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
12938 {
12939 enum exp_opcode op = exp->elts[elt].opcode;
12940 int oplen, nargs;
12941 int pc = elt;
12942 int i;
12943
12944 ada_forward_operator_length (exp, elt, &oplen, &nargs);
12945
12946 switch (op)
12947 {
12948 /* Ada attributes ('Foo). */
12949 case OP_ATR_FIRST:
12950 case OP_ATR_LAST:
12951 case OP_ATR_LENGTH:
12952 case OP_ATR_IMAGE:
12953 case OP_ATR_MAX:
12954 case OP_ATR_MIN:
12955 case OP_ATR_MODULUS:
12956 case OP_ATR_POS:
12957 case OP_ATR_SIZE:
12958 case OP_ATR_TAG:
12959 case OP_ATR_VAL:
12960 break;
12961
12962 case UNOP_IN_RANGE:
12963 case UNOP_QUAL:
12964 /* XXX: gdb_sprint_host_address, type_sprint */
12965 fprintf_filtered (stream, _("Type @"));
12966 gdb_print_host_address (exp->elts[pc + 1].type, stream);
12967 fprintf_filtered (stream, " (");
12968 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
12969 fprintf_filtered (stream, ")");
12970 break;
12971 case BINOP_IN_BOUNDS:
12972 fprintf_filtered (stream, " (%d)",
12973 longest_to_int (exp->elts[pc + 2].longconst));
12974 break;
12975 case TERNOP_IN_RANGE:
12976 break;
12977
12978 case OP_AGGREGATE:
12979 case OP_OTHERS:
12980 case OP_DISCRETE_RANGE:
12981 case OP_POSITIONAL:
12982 case OP_CHOICES:
12983 break;
12984
12985 case OP_NAME:
12986 case OP_STRING:
12987 {
12988 char *name = &exp->elts[elt + 2].string;
12989 int len = longest_to_int (exp->elts[elt + 1].longconst);
12990
12991 fprintf_filtered (stream, "Text: `%.*s'", len, name);
12992 break;
12993 }
12994
12995 default:
12996 return dump_subexp_body_standard (exp, stream, elt);
12997 }
12998
12999 elt += oplen;
13000 for (i = 0; i < nargs; i += 1)
13001 elt = dump_subexp (exp, stream, elt);
13002
13003 return elt;
13004 }
13005
13006 /* The Ada extension of print_subexp (q.v.). */
13007
13008 static void
13009 ada_print_subexp (struct expression *exp, int *pos,
13010 struct ui_file *stream, enum precedence prec)
13011 {
13012 int oplen, nargs, i;
13013 int pc = *pos;
13014 enum exp_opcode op = exp->elts[pc].opcode;
13015
13016 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13017
13018 *pos += oplen;
13019 switch (op)
13020 {
13021 default:
13022 *pos -= oplen;
13023 print_subexp_standard (exp, pos, stream, prec);
13024 return;
13025
13026 case OP_VAR_VALUE:
13027 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13028 return;
13029
13030 case BINOP_IN_BOUNDS:
13031 /* XXX: sprint_subexp */
13032 print_subexp (exp, pos, stream, PREC_SUFFIX);
13033 fputs_filtered (" in ", stream);
13034 print_subexp (exp, pos, stream, PREC_SUFFIX);
13035 fputs_filtered ("'range", stream);
13036 if (exp->elts[pc + 1].longconst > 1)
13037 fprintf_filtered (stream, "(%ld)",
13038 (long) exp->elts[pc + 1].longconst);
13039 return;
13040
13041 case TERNOP_IN_RANGE:
13042 if (prec >= PREC_EQUAL)
13043 fputs_filtered ("(", stream);
13044 /* XXX: sprint_subexp */
13045 print_subexp (exp, pos, stream, PREC_SUFFIX);
13046 fputs_filtered (" in ", stream);
13047 print_subexp (exp, pos, stream, PREC_EQUAL);
13048 fputs_filtered (" .. ", stream);
13049 print_subexp (exp, pos, stream, PREC_EQUAL);
13050 if (prec >= PREC_EQUAL)
13051 fputs_filtered (")", stream);
13052 return;
13053
13054 case OP_ATR_FIRST:
13055 case OP_ATR_LAST:
13056 case OP_ATR_LENGTH:
13057 case OP_ATR_IMAGE:
13058 case OP_ATR_MAX:
13059 case OP_ATR_MIN:
13060 case OP_ATR_MODULUS:
13061 case OP_ATR_POS:
13062 case OP_ATR_SIZE:
13063 case OP_ATR_TAG:
13064 case OP_ATR_VAL:
13065 if (exp->elts[*pos].opcode == OP_TYPE)
13066 {
13067 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
13068 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13069 &type_print_raw_options);
13070 *pos += 3;
13071 }
13072 else
13073 print_subexp (exp, pos, stream, PREC_SUFFIX);
13074 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13075 if (nargs > 1)
13076 {
13077 int tem;
13078
13079 for (tem = 1; tem < nargs; tem += 1)
13080 {
13081 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13082 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13083 }
13084 fputs_filtered (")", stream);
13085 }
13086 return;
13087
13088 case UNOP_QUAL:
13089 type_print (exp->elts[pc + 1].type, "", stream, 0);
13090 fputs_filtered ("'(", stream);
13091 print_subexp (exp, pos, stream, PREC_PREFIX);
13092 fputs_filtered (")", stream);
13093 return;
13094
13095 case UNOP_IN_RANGE:
13096 /* XXX: sprint_subexp */
13097 print_subexp (exp, pos, stream, PREC_SUFFIX);
13098 fputs_filtered (" in ", stream);
13099 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13100 &type_print_raw_options);
13101 return;
13102
13103 case OP_DISCRETE_RANGE:
13104 print_subexp (exp, pos, stream, PREC_SUFFIX);
13105 fputs_filtered ("..", stream);
13106 print_subexp (exp, pos, stream, PREC_SUFFIX);
13107 return;
13108
13109 case OP_OTHERS:
13110 fputs_filtered ("others => ", stream);
13111 print_subexp (exp, pos, stream, PREC_SUFFIX);
13112 return;
13113
13114 case OP_CHOICES:
13115 for (i = 0; i < nargs-1; i += 1)
13116 {
13117 if (i > 0)
13118 fputs_filtered ("|", stream);
13119 print_subexp (exp, pos, stream, PREC_SUFFIX);
13120 }
13121 fputs_filtered (" => ", stream);
13122 print_subexp (exp, pos, stream, PREC_SUFFIX);
13123 return;
13124
13125 case OP_POSITIONAL:
13126 print_subexp (exp, pos, stream, PREC_SUFFIX);
13127 return;
13128
13129 case OP_AGGREGATE:
13130 fputs_filtered ("(", stream);
13131 for (i = 0; i < nargs; i += 1)
13132 {
13133 if (i > 0)
13134 fputs_filtered (", ", stream);
13135 print_subexp (exp, pos, stream, PREC_SUFFIX);
13136 }
13137 fputs_filtered (")", stream);
13138 return;
13139 }
13140 }
13141
13142 /* Table mapping opcodes into strings for printing operators
13143 and precedences of the operators. */
13144
13145 static const struct op_print ada_op_print_tab[] = {
13146 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13147 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13148 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13149 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13150 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13151 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13152 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13153 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13154 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13155 {">=", BINOP_GEQ, PREC_ORDER, 0},
13156 {">", BINOP_GTR, PREC_ORDER, 0},
13157 {"<", BINOP_LESS, PREC_ORDER, 0},
13158 {">>", BINOP_RSH, PREC_SHIFT, 0},
13159 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13160 {"+", BINOP_ADD, PREC_ADD, 0},
13161 {"-", BINOP_SUB, PREC_ADD, 0},
13162 {"&", BINOP_CONCAT, PREC_ADD, 0},
13163 {"*", BINOP_MUL, PREC_MUL, 0},
13164 {"/", BINOP_DIV, PREC_MUL, 0},
13165 {"rem", BINOP_REM, PREC_MUL, 0},
13166 {"mod", BINOP_MOD, PREC_MUL, 0},
13167 {"**", BINOP_EXP, PREC_REPEAT, 0},
13168 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13169 {"-", UNOP_NEG, PREC_PREFIX, 0},
13170 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13171 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13172 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13173 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
13174 {".all", UNOP_IND, PREC_SUFFIX, 1},
13175 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13176 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
13177 {NULL, 0, 0, 0}
13178 };
13179 \f
13180 enum ada_primitive_types {
13181 ada_primitive_type_int,
13182 ada_primitive_type_long,
13183 ada_primitive_type_short,
13184 ada_primitive_type_char,
13185 ada_primitive_type_float,
13186 ada_primitive_type_double,
13187 ada_primitive_type_void,
13188 ada_primitive_type_long_long,
13189 ada_primitive_type_long_double,
13190 ada_primitive_type_natural,
13191 ada_primitive_type_positive,
13192 ada_primitive_type_system_address,
13193 nr_ada_primitive_types
13194 };
13195
13196 static void
13197 ada_language_arch_info (struct gdbarch *gdbarch,
13198 struct language_arch_info *lai)
13199 {
13200 const struct builtin_type *builtin = builtin_type (gdbarch);
13201
13202 lai->primitive_type_vector
13203 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
13204 struct type *);
13205
13206 lai->primitive_type_vector [ada_primitive_type_int]
13207 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13208 0, "integer");
13209 lai->primitive_type_vector [ada_primitive_type_long]
13210 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13211 0, "long_integer");
13212 lai->primitive_type_vector [ada_primitive_type_short]
13213 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13214 0, "short_integer");
13215 lai->string_char_type
13216 = lai->primitive_type_vector [ada_primitive_type_char]
13217 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
13218 lai->primitive_type_vector [ada_primitive_type_float]
13219 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13220 "float", NULL);
13221 lai->primitive_type_vector [ada_primitive_type_double]
13222 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13223 "long_float", NULL);
13224 lai->primitive_type_vector [ada_primitive_type_long_long]
13225 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13226 0, "long_long_integer");
13227 lai->primitive_type_vector [ada_primitive_type_long_double]
13228 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13229 "long_long_float", NULL);
13230 lai->primitive_type_vector [ada_primitive_type_natural]
13231 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13232 0, "natural");
13233 lai->primitive_type_vector [ada_primitive_type_positive]
13234 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13235 0, "positive");
13236 lai->primitive_type_vector [ada_primitive_type_void]
13237 = builtin->builtin_void;
13238
13239 lai->primitive_type_vector [ada_primitive_type_system_address]
13240 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
13241 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
13242 = "system__address";
13243
13244 lai->bool_type_symbol = NULL;
13245 lai->bool_type_default = builtin->builtin_bool;
13246 }
13247 \f
13248 /* Language vector */
13249
13250 /* Not really used, but needed in the ada_language_defn. */
13251
13252 static void
13253 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
13254 {
13255 ada_emit_char (c, type, stream, quoter, 1);
13256 }
13257
13258 static int
13259 parse (void)
13260 {
13261 warnings_issued = 0;
13262 return ada_parse ();
13263 }
13264
13265 static const struct exp_descriptor ada_exp_descriptor = {
13266 ada_print_subexp,
13267 ada_operator_length,
13268 ada_operator_check,
13269 ada_op_name,
13270 ada_dump_subexp_body,
13271 ada_evaluate_subexp
13272 };
13273
13274 /* Implement the "la_get_symbol_name_cmp" language_defn method
13275 for Ada. */
13276
13277 static symbol_name_cmp_ftype
13278 ada_get_symbol_name_cmp (const char *lookup_name)
13279 {
13280 if (should_use_wild_match (lookup_name))
13281 return wild_match;
13282 else
13283 return compare_names;
13284 }
13285
13286 /* Implement the "la_read_var_value" language_defn method for Ada. */
13287
13288 static struct value *
13289 ada_read_var_value (struct symbol *var, struct frame_info *frame)
13290 {
13291 struct block *frame_block = NULL;
13292 struct symbol *renaming_sym = NULL;
13293
13294 /* The only case where default_read_var_value is not sufficient
13295 is when VAR is a renaming... */
13296 if (frame)
13297 frame_block = get_frame_block (frame, NULL);
13298 if (frame_block)
13299 renaming_sym = ada_find_renaming_symbol (var, frame_block);
13300 if (renaming_sym != NULL)
13301 return ada_read_renaming_var_value (renaming_sym, frame_block);
13302
13303 /* This is a typical case where we expect the default_read_var_value
13304 function to work. */
13305 return default_read_var_value (var, frame);
13306 }
13307
13308 const struct language_defn ada_language_defn = {
13309 "ada", /* Language name */
13310 "Ada",
13311 language_ada,
13312 range_check_off,
13313 case_sensitive_on, /* Yes, Ada is case-insensitive, but
13314 that's not quite what this means. */
13315 array_row_major,
13316 macro_expansion_no,
13317 &ada_exp_descriptor,
13318 parse,
13319 ada_error,
13320 resolve,
13321 ada_printchar, /* Print a character constant */
13322 ada_printstr, /* Function to print string constant */
13323 emit_char, /* Function to print single char (not used) */
13324 ada_print_type, /* Print a type using appropriate syntax */
13325 ada_print_typedef, /* Print a typedef using appropriate syntax */
13326 ada_val_print, /* Print a value using appropriate syntax */
13327 ada_value_print, /* Print a top-level value */
13328 ada_read_var_value, /* la_read_var_value */
13329 NULL, /* Language specific skip_trampoline */
13330 NULL, /* name_of_this */
13331 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
13332 basic_lookup_transparent_type, /* lookup_transparent_type */
13333 ada_la_decode, /* Language specific symbol demangler */
13334 NULL, /* Language specific
13335 class_name_from_physname */
13336 ada_op_print_tab, /* expression operators for printing */
13337 0, /* c-style arrays */
13338 1, /* String lower bound */
13339 ada_get_gdb_completer_word_break_characters,
13340 ada_make_symbol_completion_list,
13341 ada_language_arch_info,
13342 ada_print_array_index,
13343 default_pass_by_reference,
13344 c_get_string,
13345 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
13346 ada_iterate_over_symbols,
13347 &ada_varobj_ops,
13348 LANG_MAGIC
13349 };
13350
13351 /* Provide a prototype to silence -Wmissing-prototypes. */
13352 extern initialize_file_ftype _initialize_ada_language;
13353
13354 /* Command-list for the "set/show ada" prefix command. */
13355 static struct cmd_list_element *set_ada_list;
13356 static struct cmd_list_element *show_ada_list;
13357
13358 /* Implement the "set ada" prefix command. */
13359
13360 static void
13361 set_ada_command (char *arg, int from_tty)
13362 {
13363 printf_unfiltered (_(\
13364 "\"set ada\" must be followed by the name of a setting.\n"));
13365 help_list (set_ada_list, "set ada ", -1, gdb_stdout);
13366 }
13367
13368 /* Implement the "show ada" prefix command. */
13369
13370 static void
13371 show_ada_command (char *args, int from_tty)
13372 {
13373 cmd_show_list (show_ada_list, from_tty, "");
13374 }
13375
13376 static void
13377 initialize_ada_catchpoint_ops (void)
13378 {
13379 struct breakpoint_ops *ops;
13380
13381 initialize_breakpoint_ops ();
13382
13383 ops = &catch_exception_breakpoint_ops;
13384 *ops = bkpt_breakpoint_ops;
13385 ops->dtor = dtor_catch_exception;
13386 ops->allocate_location = allocate_location_catch_exception;
13387 ops->re_set = re_set_catch_exception;
13388 ops->check_status = check_status_catch_exception;
13389 ops->print_it = print_it_catch_exception;
13390 ops->print_one = print_one_catch_exception;
13391 ops->print_mention = print_mention_catch_exception;
13392 ops->print_recreate = print_recreate_catch_exception;
13393
13394 ops = &catch_exception_unhandled_breakpoint_ops;
13395 *ops = bkpt_breakpoint_ops;
13396 ops->dtor = dtor_catch_exception_unhandled;
13397 ops->allocate_location = allocate_location_catch_exception_unhandled;
13398 ops->re_set = re_set_catch_exception_unhandled;
13399 ops->check_status = check_status_catch_exception_unhandled;
13400 ops->print_it = print_it_catch_exception_unhandled;
13401 ops->print_one = print_one_catch_exception_unhandled;
13402 ops->print_mention = print_mention_catch_exception_unhandled;
13403 ops->print_recreate = print_recreate_catch_exception_unhandled;
13404
13405 ops = &catch_assert_breakpoint_ops;
13406 *ops = bkpt_breakpoint_ops;
13407 ops->dtor = dtor_catch_assert;
13408 ops->allocate_location = allocate_location_catch_assert;
13409 ops->re_set = re_set_catch_assert;
13410 ops->check_status = check_status_catch_assert;
13411 ops->print_it = print_it_catch_assert;
13412 ops->print_one = print_one_catch_assert;
13413 ops->print_mention = print_mention_catch_assert;
13414 ops->print_recreate = print_recreate_catch_assert;
13415 }
13416
13417 /* This module's 'new_objfile' observer. */
13418
13419 static void
13420 ada_new_objfile_observer (struct objfile *objfile)
13421 {
13422 ada_clear_symbol_cache ();
13423 }
13424
13425 /* This module's 'free_objfile' observer. */
13426
13427 static void
13428 ada_free_objfile_observer (struct objfile *objfile)
13429 {
13430 ada_clear_symbol_cache ();
13431 }
13432
13433 void
13434 _initialize_ada_language (void)
13435 {
13436 add_language (&ada_language_defn);
13437
13438 initialize_ada_catchpoint_ops ();
13439
13440 add_prefix_cmd ("ada", no_class, set_ada_command,
13441 _("Prefix command for changing Ada-specfic settings"),
13442 &set_ada_list, "set ada ", 0, &setlist);
13443
13444 add_prefix_cmd ("ada", no_class, show_ada_command,
13445 _("Generic command for showing Ada-specific settings."),
13446 &show_ada_list, "show ada ", 0, &showlist);
13447
13448 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
13449 &trust_pad_over_xvs, _("\
13450 Enable or disable an optimization trusting PAD types over XVS types"), _("\
13451 Show whether an optimization trusting PAD types over XVS types is activated"),
13452 _("\
13453 This is related to the encoding used by the GNAT compiler. The debugger\n\
13454 should normally trust the contents of PAD types, but certain older versions\n\
13455 of GNAT have a bug that sometimes causes the information in the PAD type\n\
13456 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
13457 work around this bug. It is always safe to turn this option \"off\", but\n\
13458 this incurs a slight performance penalty, so it is recommended to NOT change\n\
13459 this option to \"off\" unless necessary."),
13460 NULL, NULL, &set_ada_list, &show_ada_list);
13461
13462 add_catch_command ("exception", _("\
13463 Catch Ada exceptions, when raised.\n\
13464 With an argument, catch only exceptions with the given name."),
13465 catch_ada_exception_command,
13466 NULL,
13467 CATCH_PERMANENT,
13468 CATCH_TEMPORARY);
13469 add_catch_command ("assert", _("\
13470 Catch failed Ada assertions, when raised.\n\
13471 With an argument, catch only exceptions with the given name."),
13472 catch_assert_command,
13473 NULL,
13474 CATCH_PERMANENT,
13475 CATCH_TEMPORARY);
13476
13477 varsize_limit = 65536;
13478
13479 add_info ("exceptions", info_exceptions_command,
13480 _("\
13481 List all Ada exception names.\n\
13482 If a regular expression is passed as an argument, only those matching\n\
13483 the regular expression are listed."));
13484
13485 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
13486 _("Set Ada maintenance-related variables."),
13487 &maint_set_ada_cmdlist, "maintenance set ada ",
13488 0/*allow-unknown*/, &maintenance_set_cmdlist);
13489
13490 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
13491 _("Show Ada maintenance-related variables"),
13492 &maint_show_ada_cmdlist, "maintenance show ada ",
13493 0/*allow-unknown*/, &maintenance_show_cmdlist);
13494
13495 add_setshow_boolean_cmd
13496 ("ignore-descriptive-types", class_maintenance,
13497 &ada_ignore_descriptive_types_p,
13498 _("Set whether descriptive types generated by GNAT should be ignored."),
13499 _("Show whether descriptive types generated by GNAT should be ignored."),
13500 _("\
13501 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
13502 DWARF attribute."),
13503 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
13504
13505 obstack_init (&symbol_list_obstack);
13506 obstack_init (&cache_space);
13507
13508 decoded_names_store = htab_create_alloc
13509 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
13510 NULL, xcalloc, xfree);
13511
13512 /* The ada-lang observers. */
13513 observer_attach_new_objfile (ada_new_objfile_observer);
13514 observer_attach_free_objfile (ada_free_objfile_observer);
13515
13516 /* Setup per-inferior data. */
13517 observer_attach_inferior_exit (ada_inferior_exit);
13518 ada_inferior_data
13519 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
13520 }