gdb: adjust gdbarch_tdep calls in nat files
[binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2021 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <ctype.h>
23 #include "gdb_regex.h"
24 #include "frame.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcmd.h"
28 #include "expression.h"
29 #include "parser-defs.h"
30 #include "language.h"
31 #include "varobj.h"
32 #include "inferior.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "breakpoint.h"
36 #include "gdbcore.h"
37 #include "hashtab.h"
38 #include "gdb_obstack.h"
39 #include "ada-lang.h"
40 #include "completer.h"
41 #include "ui-out.h"
42 #include "block.h"
43 #include "infcall.h"
44 #include "annotate.h"
45 #include "valprint.h"
46 #include "source.h"
47 #include "observable.h"
48 #include "stack.h"
49 #include "typeprint.h"
50 #include "namespace.h"
51 #include "cli/cli-style.h"
52 #include "cli/cli-decode.h"
53
54 #include "value.h"
55 #include "mi/mi-common.h"
56 #include "arch-utils.h"
57 #include "cli/cli-utils.h"
58 #include "gdbsupport/function-view.h"
59 #include "gdbsupport/byte-vector.h"
60 #include <algorithm>
61 #include "ada-exp.h"
62
63 /* Define whether or not the C operator '/' truncates towards zero for
64 differently signed operands (truncation direction is undefined in C).
65 Copied from valarith.c. */
66
67 #ifndef TRUNCATION_TOWARDS_ZERO
68 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
69 #endif
70
71 static struct type *desc_base_type (struct type *);
72
73 static struct type *desc_bounds_type (struct type *);
74
75 static struct value *desc_bounds (struct value *);
76
77 static int fat_pntr_bounds_bitpos (struct type *);
78
79 static int fat_pntr_bounds_bitsize (struct type *);
80
81 static struct type *desc_data_target_type (struct type *);
82
83 static struct value *desc_data (struct value *);
84
85 static int fat_pntr_data_bitpos (struct type *);
86
87 static int fat_pntr_data_bitsize (struct type *);
88
89 static struct value *desc_one_bound (struct value *, int, int);
90
91 static int desc_bound_bitpos (struct type *, int, int);
92
93 static int desc_bound_bitsize (struct type *, int, int);
94
95 static struct type *desc_index_type (struct type *, int);
96
97 static int desc_arity (struct type *);
98
99 static int ada_args_match (struct symbol *, struct value **, int);
100
101 static struct value *make_array_descriptor (struct type *, struct value *);
102
103 static void ada_add_block_symbols (std::vector<struct block_symbol> &,
104 const struct block *,
105 const lookup_name_info &lookup_name,
106 domain_enum, struct objfile *);
107
108 static void ada_add_all_symbols (std::vector<struct block_symbol> &,
109 const struct block *,
110 const lookup_name_info &lookup_name,
111 domain_enum, int, int *);
112
113 static int is_nonfunction (const std::vector<struct block_symbol> &);
114
115 static void add_defn_to_vec (std::vector<struct block_symbol> &,
116 struct symbol *,
117 const struct block *);
118
119 static int possible_user_operator_p (enum exp_opcode, struct value **);
120
121 static const char *ada_decoded_op_name (enum exp_opcode);
122
123 static int numeric_type_p (struct type *);
124
125 static int integer_type_p (struct type *);
126
127 static int scalar_type_p (struct type *);
128
129 static int discrete_type_p (struct type *);
130
131 static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
132 int, int);
133
134 static struct type *ada_find_parallel_type_with_name (struct type *,
135 const char *);
136
137 static int is_dynamic_field (struct type *, int);
138
139 static struct type *to_fixed_variant_branch_type (struct type *,
140 const gdb_byte *,
141 CORE_ADDR, struct value *);
142
143 static struct type *to_fixed_array_type (struct type *, struct value *, int);
144
145 static struct type *to_fixed_range_type (struct type *, struct value *);
146
147 static struct type *to_static_fixed_type (struct type *);
148 static struct type *static_unwrap_type (struct type *type);
149
150 static struct value *unwrap_value (struct value *);
151
152 static struct type *constrained_packed_array_type (struct type *, long *);
153
154 static struct type *decode_constrained_packed_array_type (struct type *);
155
156 static long decode_packed_array_bitsize (struct type *);
157
158 static struct value *decode_constrained_packed_array (struct value *);
159
160 static int ada_is_unconstrained_packed_array_type (struct type *);
161
162 static struct value *value_subscript_packed (struct value *, int,
163 struct value **);
164
165 static struct value *coerce_unspec_val_to_type (struct value *,
166 struct type *);
167
168 static int lesseq_defined_than (struct symbol *, struct symbol *);
169
170 static int equiv_types (struct type *, struct type *);
171
172 static int is_name_suffix (const char *);
173
174 static int advance_wild_match (const char **, const char *, char);
175
176 static bool wild_match (const char *name, const char *patn);
177
178 static struct value *ada_coerce_ref (struct value *);
179
180 static LONGEST pos_atr (struct value *);
181
182 static struct value *val_atr (struct type *, LONGEST);
183
184 static struct symbol *standard_lookup (const char *, const struct block *,
185 domain_enum);
186
187 static struct value *ada_search_struct_field (const char *, struct value *, int,
188 struct type *);
189
190 static int find_struct_field (const char *, struct type *, int,
191 struct type **, int *, int *, int *, int *);
192
193 static int ada_resolve_function (std::vector<struct block_symbol> &,
194 struct value **, int, const char *,
195 struct type *, bool);
196
197 static int ada_is_direct_array_type (struct type *);
198
199 static struct value *ada_index_struct_field (int, struct value *, int,
200 struct type *);
201
202 static void add_component_interval (LONGEST, LONGEST, std::vector<LONGEST> &);
203
204
205 static struct type *ada_find_any_type (const char *name);
206
207 static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
208 (const lookup_name_info &lookup_name);
209
210 \f
211
212 /* The result of a symbol lookup to be stored in our symbol cache. */
213
214 struct cache_entry
215 {
216 /* The name used to perform the lookup. */
217 const char *name;
218 /* The namespace used during the lookup. */
219 domain_enum domain;
220 /* The symbol returned by the lookup, or NULL if no matching symbol
221 was found. */
222 struct symbol *sym;
223 /* The block where the symbol was found, or NULL if no matching
224 symbol was found. */
225 const struct block *block;
226 /* A pointer to the next entry with the same hash. */
227 struct cache_entry *next;
228 };
229
230 /* The Ada symbol cache, used to store the result of Ada-mode symbol
231 lookups in the course of executing the user's commands.
232
233 The cache is implemented using a simple, fixed-sized hash.
234 The size is fixed on the grounds that there are not likely to be
235 all that many symbols looked up during any given session, regardless
236 of the size of the symbol table. If we decide to go to a resizable
237 table, let's just use the stuff from libiberty instead. */
238
239 #define HASH_SIZE 1009
240
241 struct ada_symbol_cache
242 {
243 /* An obstack used to store the entries in our cache. */
244 struct auto_obstack cache_space;
245
246 /* The root of the hash table used to implement our symbol cache. */
247 struct cache_entry *root[HASH_SIZE] {};
248 };
249
250 static const char ada_completer_word_break_characters[] =
251 #ifdef VMS
252 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
253 #else
254 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
255 #endif
256
257 /* The name of the symbol to use to get the name of the main subprogram. */
258 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
259 = "__gnat_ada_main_program_name";
260
261 /* Limit on the number of warnings to raise per expression evaluation. */
262 static int warning_limit = 2;
263
264 /* Number of warning messages issued; reset to 0 by cleanups after
265 expression evaluation. */
266 static int warnings_issued = 0;
267
268 static const char * const known_runtime_file_name_patterns[] = {
269 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
270 };
271
272 static const char * const known_auxiliary_function_name_patterns[] = {
273 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
274 };
275
276 /* Maintenance-related settings for this module. */
277
278 static struct cmd_list_element *maint_set_ada_cmdlist;
279 static struct cmd_list_element *maint_show_ada_cmdlist;
280
281 /* The "maintenance ada set/show ignore-descriptive-type" value. */
282
283 static bool ada_ignore_descriptive_types_p = false;
284
285 /* Inferior-specific data. */
286
287 /* Per-inferior data for this module. */
288
289 struct ada_inferior_data
290 {
291 /* The ada__tags__type_specific_data type, which is used when decoding
292 tagged types. With older versions of GNAT, this type was directly
293 accessible through a component ("tsd") in the object tag. But this
294 is no longer the case, so we cache it for each inferior. */
295 struct type *tsd_type = nullptr;
296
297 /* The exception_support_info data. This data is used to determine
298 how to implement support for Ada exception catchpoints in a given
299 inferior. */
300 const struct exception_support_info *exception_info = nullptr;
301 };
302
303 /* Our key to this module's inferior data. */
304 static const struct inferior_key<ada_inferior_data> ada_inferior_data;
305
306 /* Return our inferior data for the given inferior (INF).
307
308 This function always returns a valid pointer to an allocated
309 ada_inferior_data structure. If INF's inferior data has not
310 been previously set, this functions creates a new one with all
311 fields set to zero, sets INF's inferior to it, and then returns
312 a pointer to that newly allocated ada_inferior_data. */
313
314 static struct ada_inferior_data *
315 get_ada_inferior_data (struct inferior *inf)
316 {
317 struct ada_inferior_data *data;
318
319 data = ada_inferior_data.get (inf);
320 if (data == NULL)
321 data = ada_inferior_data.emplace (inf);
322
323 return data;
324 }
325
326 /* Perform all necessary cleanups regarding our module's inferior data
327 that is required after the inferior INF just exited. */
328
329 static void
330 ada_inferior_exit (struct inferior *inf)
331 {
332 ada_inferior_data.clear (inf);
333 }
334
335
336 /* program-space-specific data. */
337
338 /* This module's per-program-space data. */
339 struct ada_pspace_data
340 {
341 /* The Ada symbol cache. */
342 std::unique_ptr<ada_symbol_cache> sym_cache;
343 };
344
345 /* Key to our per-program-space data. */
346 static const struct program_space_key<ada_pspace_data> ada_pspace_data_handle;
347
348 /* Return this module's data for the given program space (PSPACE).
349 If not is found, add a zero'ed one now.
350
351 This function always returns a valid object. */
352
353 static struct ada_pspace_data *
354 get_ada_pspace_data (struct program_space *pspace)
355 {
356 struct ada_pspace_data *data;
357
358 data = ada_pspace_data_handle.get (pspace);
359 if (data == NULL)
360 data = ada_pspace_data_handle.emplace (pspace);
361
362 return data;
363 }
364
365 /* Utilities */
366
367 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
368 all typedef layers have been peeled. Otherwise, return TYPE.
369
370 Normally, we really expect a typedef type to only have 1 typedef layer.
371 In other words, we really expect the target type of a typedef type to be
372 a non-typedef type. This is particularly true for Ada units, because
373 the language does not have a typedef vs not-typedef distinction.
374 In that respect, the Ada compiler has been trying to eliminate as many
375 typedef definitions in the debugging information, since they generally
376 do not bring any extra information (we still use typedef under certain
377 circumstances related mostly to the GNAT encoding).
378
379 Unfortunately, we have seen situations where the debugging information
380 generated by the compiler leads to such multiple typedef layers. For
381 instance, consider the following example with stabs:
382
383 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
384 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
385
386 This is an error in the debugging information which causes type
387 pck__float_array___XUP to be defined twice, and the second time,
388 it is defined as a typedef of a typedef.
389
390 This is on the fringe of legality as far as debugging information is
391 concerned, and certainly unexpected. But it is easy to handle these
392 situations correctly, so we can afford to be lenient in this case. */
393
394 static struct type *
395 ada_typedef_target_type (struct type *type)
396 {
397 while (type->code () == TYPE_CODE_TYPEDEF)
398 type = TYPE_TARGET_TYPE (type);
399 return type;
400 }
401
402 /* Given DECODED_NAME a string holding a symbol name in its
403 decoded form (ie using the Ada dotted notation), returns
404 its unqualified name. */
405
406 static const char *
407 ada_unqualified_name (const char *decoded_name)
408 {
409 const char *result;
410
411 /* If the decoded name starts with '<', it means that the encoded
412 name does not follow standard naming conventions, and thus that
413 it is not your typical Ada symbol name. Trying to unqualify it
414 is therefore pointless and possibly erroneous. */
415 if (decoded_name[0] == '<')
416 return decoded_name;
417
418 result = strrchr (decoded_name, '.');
419 if (result != NULL)
420 result++; /* Skip the dot... */
421 else
422 result = decoded_name;
423
424 return result;
425 }
426
427 /* Return a string starting with '<', followed by STR, and '>'. */
428
429 static std::string
430 add_angle_brackets (const char *str)
431 {
432 return string_printf ("<%s>", str);
433 }
434
435 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
436 suffix of FIELD_NAME beginning "___". */
437
438 static int
439 field_name_match (const char *field_name, const char *target)
440 {
441 int len = strlen (target);
442
443 return
444 (strncmp (field_name, target, len) == 0
445 && (field_name[len] == '\0'
446 || (startswith (field_name + len, "___")
447 && strcmp (field_name + strlen (field_name) - 6,
448 "___XVN") != 0)));
449 }
450
451
452 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
453 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
454 and return its index. This function also handles fields whose name
455 have ___ suffixes because the compiler sometimes alters their name
456 by adding such a suffix to represent fields with certain constraints.
457 If the field could not be found, return a negative number if
458 MAYBE_MISSING is set. Otherwise raise an error. */
459
460 int
461 ada_get_field_index (const struct type *type, const char *field_name,
462 int maybe_missing)
463 {
464 int fieldno;
465 struct type *struct_type = check_typedef ((struct type *) type);
466
467 for (fieldno = 0; fieldno < struct_type->num_fields (); fieldno++)
468 if (field_name_match (struct_type->field (fieldno).name (), field_name))
469 return fieldno;
470
471 if (!maybe_missing)
472 error (_("Unable to find field %s in struct %s. Aborting"),
473 field_name, struct_type->name ());
474
475 return -1;
476 }
477
478 /* The length of the prefix of NAME prior to any "___" suffix. */
479
480 int
481 ada_name_prefix_len (const char *name)
482 {
483 if (name == NULL)
484 return 0;
485 else
486 {
487 const char *p = strstr (name, "___");
488
489 if (p == NULL)
490 return strlen (name);
491 else
492 return p - name;
493 }
494 }
495
496 /* Return non-zero if SUFFIX is a suffix of STR.
497 Return zero if STR is null. */
498
499 static int
500 is_suffix (const char *str, const char *suffix)
501 {
502 int len1, len2;
503
504 if (str == NULL)
505 return 0;
506 len1 = strlen (str);
507 len2 = strlen (suffix);
508 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
509 }
510
511 /* The contents of value VAL, treated as a value of type TYPE. The
512 result is an lval in memory if VAL is. */
513
514 static struct value *
515 coerce_unspec_val_to_type (struct value *val, struct type *type)
516 {
517 type = ada_check_typedef (type);
518 if (value_type (val) == type)
519 return val;
520 else
521 {
522 struct value *result;
523
524 if (value_optimized_out (val))
525 result = allocate_optimized_out_value (type);
526 else if (value_lazy (val)
527 /* Be careful not to make a lazy not_lval value. */
528 || (VALUE_LVAL (val) != not_lval
529 && TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val))))
530 result = allocate_value_lazy (type);
531 else
532 {
533 result = allocate_value (type);
534 value_contents_copy (result, 0, val, 0, TYPE_LENGTH (type));
535 }
536 set_value_component_location (result, val);
537 set_value_bitsize (result, value_bitsize (val));
538 set_value_bitpos (result, value_bitpos (val));
539 if (VALUE_LVAL (result) == lval_memory)
540 set_value_address (result, value_address (val));
541 return result;
542 }
543 }
544
545 static const gdb_byte *
546 cond_offset_host (const gdb_byte *valaddr, long offset)
547 {
548 if (valaddr == NULL)
549 return NULL;
550 else
551 return valaddr + offset;
552 }
553
554 static CORE_ADDR
555 cond_offset_target (CORE_ADDR address, long offset)
556 {
557 if (address == 0)
558 return 0;
559 else
560 return address + offset;
561 }
562
563 /* Issue a warning (as for the definition of warning in utils.c, but
564 with exactly one argument rather than ...), unless the limit on the
565 number of warnings has passed during the evaluation of the current
566 expression. */
567
568 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
569 provided by "complaint". */
570 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
571
572 static void
573 lim_warning (const char *format, ...)
574 {
575 va_list args;
576
577 va_start (args, format);
578 warnings_issued += 1;
579 if (warnings_issued <= warning_limit)
580 vwarning (format, args);
581
582 va_end (args);
583 }
584
585 /* Maximum value of a SIZE-byte signed integer type. */
586 static LONGEST
587 max_of_size (int size)
588 {
589 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
590
591 return top_bit | (top_bit - 1);
592 }
593
594 /* Minimum value of a SIZE-byte signed integer type. */
595 static LONGEST
596 min_of_size (int size)
597 {
598 return -max_of_size (size) - 1;
599 }
600
601 /* Maximum value of a SIZE-byte unsigned integer type. */
602 static ULONGEST
603 umax_of_size (int size)
604 {
605 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
606
607 return top_bit | (top_bit - 1);
608 }
609
610 /* Maximum value of integral type T, as a signed quantity. */
611 static LONGEST
612 max_of_type (struct type *t)
613 {
614 if (t->is_unsigned ())
615 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
616 else
617 return max_of_size (TYPE_LENGTH (t));
618 }
619
620 /* Minimum value of integral type T, as a signed quantity. */
621 static LONGEST
622 min_of_type (struct type *t)
623 {
624 if (t->is_unsigned ())
625 return 0;
626 else
627 return min_of_size (TYPE_LENGTH (t));
628 }
629
630 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
631 LONGEST
632 ada_discrete_type_high_bound (struct type *type)
633 {
634 type = resolve_dynamic_type (type, {}, 0);
635 switch (type->code ())
636 {
637 case TYPE_CODE_RANGE:
638 {
639 const dynamic_prop &high = type->bounds ()->high;
640
641 if (high.kind () == PROP_CONST)
642 return high.const_val ();
643 else
644 {
645 gdb_assert (high.kind () == PROP_UNDEFINED);
646
647 /* This happens when trying to evaluate a type's dynamic bound
648 without a live target. There is nothing relevant for us to
649 return here, so return 0. */
650 return 0;
651 }
652 }
653 case TYPE_CODE_ENUM:
654 return type->field (type->num_fields () - 1).loc_enumval ();
655 case TYPE_CODE_BOOL:
656 return 1;
657 case TYPE_CODE_CHAR:
658 case TYPE_CODE_INT:
659 return max_of_type (type);
660 default:
661 error (_("Unexpected type in ada_discrete_type_high_bound."));
662 }
663 }
664
665 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
666 LONGEST
667 ada_discrete_type_low_bound (struct type *type)
668 {
669 type = resolve_dynamic_type (type, {}, 0);
670 switch (type->code ())
671 {
672 case TYPE_CODE_RANGE:
673 {
674 const dynamic_prop &low = type->bounds ()->low;
675
676 if (low.kind () == PROP_CONST)
677 return low.const_val ();
678 else
679 {
680 gdb_assert (low.kind () == PROP_UNDEFINED);
681
682 /* This happens when trying to evaluate a type's dynamic bound
683 without a live target. There is nothing relevant for us to
684 return here, so return 0. */
685 return 0;
686 }
687 }
688 case TYPE_CODE_ENUM:
689 return type->field (0).loc_enumval ();
690 case TYPE_CODE_BOOL:
691 return 0;
692 case TYPE_CODE_CHAR:
693 case TYPE_CODE_INT:
694 return min_of_type (type);
695 default:
696 error (_("Unexpected type in ada_discrete_type_low_bound."));
697 }
698 }
699
700 /* The identity on non-range types. For range types, the underlying
701 non-range scalar type. */
702
703 static struct type *
704 get_base_type (struct type *type)
705 {
706 while (type != NULL && type->code () == TYPE_CODE_RANGE)
707 {
708 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
709 return type;
710 type = TYPE_TARGET_TYPE (type);
711 }
712 return type;
713 }
714
715 /* Return a decoded version of the given VALUE. This means returning
716 a value whose type is obtained by applying all the GNAT-specific
717 encodings, making the resulting type a static but standard description
718 of the initial type. */
719
720 struct value *
721 ada_get_decoded_value (struct value *value)
722 {
723 struct type *type = ada_check_typedef (value_type (value));
724
725 if (ada_is_array_descriptor_type (type)
726 || (ada_is_constrained_packed_array_type (type)
727 && type->code () != TYPE_CODE_PTR))
728 {
729 if (type->code () == TYPE_CODE_TYPEDEF) /* array access type. */
730 value = ada_coerce_to_simple_array_ptr (value);
731 else
732 value = ada_coerce_to_simple_array (value);
733 }
734 else
735 value = ada_to_fixed_value (value);
736
737 return value;
738 }
739
740 /* Same as ada_get_decoded_value, but with the given TYPE.
741 Because there is no associated actual value for this type,
742 the resulting type might be a best-effort approximation in
743 the case of dynamic types. */
744
745 struct type *
746 ada_get_decoded_type (struct type *type)
747 {
748 type = to_static_fixed_type (type);
749 if (ada_is_constrained_packed_array_type (type))
750 type = ada_coerce_to_simple_array_type (type);
751 return type;
752 }
753
754 \f
755
756 /* Language Selection */
757
758 /* If the main program is in Ada, return language_ada, otherwise return LANG
759 (the main program is in Ada iif the adainit symbol is found). */
760
761 static enum language
762 ada_update_initial_language (enum language lang)
763 {
764 if (lookup_minimal_symbol ("adainit", NULL, NULL).minsym != NULL)
765 return language_ada;
766
767 return lang;
768 }
769
770 /* If the main procedure is written in Ada, then return its name.
771 The result is good until the next call. Return NULL if the main
772 procedure doesn't appear to be in Ada. */
773
774 char *
775 ada_main_name (void)
776 {
777 struct bound_minimal_symbol msym;
778 static gdb::unique_xmalloc_ptr<char> main_program_name;
779
780 /* For Ada, the name of the main procedure is stored in a specific
781 string constant, generated by the binder. Look for that symbol,
782 extract its address, and then read that string. If we didn't find
783 that string, then most probably the main procedure is not written
784 in Ada. */
785 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
786
787 if (msym.minsym != NULL)
788 {
789 CORE_ADDR main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
790 if (main_program_name_addr == 0)
791 error (_("Invalid address for Ada main program name."));
792
793 main_program_name = target_read_string (main_program_name_addr, 1024);
794 return main_program_name.get ();
795 }
796
797 /* The main procedure doesn't seem to be in Ada. */
798 return NULL;
799 }
800 \f
801 /* Symbols */
802
803 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
804 of NULLs. */
805
806 const struct ada_opname_map ada_opname_table[] = {
807 {"Oadd", "\"+\"", BINOP_ADD},
808 {"Osubtract", "\"-\"", BINOP_SUB},
809 {"Omultiply", "\"*\"", BINOP_MUL},
810 {"Odivide", "\"/\"", BINOP_DIV},
811 {"Omod", "\"mod\"", BINOP_MOD},
812 {"Orem", "\"rem\"", BINOP_REM},
813 {"Oexpon", "\"**\"", BINOP_EXP},
814 {"Olt", "\"<\"", BINOP_LESS},
815 {"Ole", "\"<=\"", BINOP_LEQ},
816 {"Ogt", "\">\"", BINOP_GTR},
817 {"Oge", "\">=\"", BINOP_GEQ},
818 {"Oeq", "\"=\"", BINOP_EQUAL},
819 {"One", "\"/=\"", BINOP_NOTEQUAL},
820 {"Oand", "\"and\"", BINOP_BITWISE_AND},
821 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
822 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
823 {"Oconcat", "\"&\"", BINOP_CONCAT},
824 {"Oabs", "\"abs\"", UNOP_ABS},
825 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
826 {"Oadd", "\"+\"", UNOP_PLUS},
827 {"Osubtract", "\"-\"", UNOP_NEG},
828 {NULL, NULL}
829 };
830
831 /* If STR is a decoded version of a compiler-provided suffix (like the
832 "[cold]" in "symbol[cold]"), return true. Otherwise, return
833 false. */
834
835 static bool
836 is_compiler_suffix (const char *str)
837 {
838 gdb_assert (*str == '[');
839 ++str;
840 while (*str != '\0' && isalpha (*str))
841 ++str;
842 /* We accept a missing "]" in order to support completion. */
843 return *str == '\0' || (str[0] == ']' && str[1] == '\0');
844 }
845
846 /* The "encoded" form of DECODED, according to GNAT conventions. If
847 THROW_ERRORS, throw an error if invalid operator name is found.
848 Otherwise, return the empty string in that case. */
849
850 static std::string
851 ada_encode_1 (const char *decoded, bool throw_errors)
852 {
853 if (decoded == NULL)
854 return {};
855
856 std::string encoding_buffer;
857 for (const char *p = decoded; *p != '\0'; p += 1)
858 {
859 if (*p == '.')
860 encoding_buffer.append ("__");
861 else if (*p == '[' && is_compiler_suffix (p))
862 {
863 encoding_buffer = encoding_buffer + "." + (p + 1);
864 if (encoding_buffer.back () == ']')
865 encoding_buffer.pop_back ();
866 break;
867 }
868 else if (*p == '"')
869 {
870 const struct ada_opname_map *mapping;
871
872 for (mapping = ada_opname_table;
873 mapping->encoded != NULL
874 && !startswith (p, mapping->decoded); mapping += 1)
875 ;
876 if (mapping->encoded == NULL)
877 {
878 if (throw_errors)
879 error (_("invalid Ada operator name: %s"), p);
880 else
881 return {};
882 }
883 encoding_buffer.append (mapping->encoded);
884 break;
885 }
886 else
887 encoding_buffer.push_back (*p);
888 }
889
890 return encoding_buffer;
891 }
892
893 /* The "encoded" form of DECODED, according to GNAT conventions. */
894
895 std::string
896 ada_encode (const char *decoded)
897 {
898 return ada_encode_1 (decoded, true);
899 }
900
901 /* Return NAME folded to lower case, or, if surrounded by single
902 quotes, unfolded, but with the quotes stripped away. Result good
903 to next call. */
904
905 static const char *
906 ada_fold_name (gdb::string_view name)
907 {
908 static std::string fold_storage;
909
910 if (!name.empty () && name[0] == '\'')
911 fold_storage = gdb::to_string (name.substr (1, name.size () - 2));
912 else
913 {
914 fold_storage = gdb::to_string (name);
915 for (int i = 0; i < name.size (); i += 1)
916 fold_storage[i] = tolower (fold_storage[i]);
917 }
918
919 return fold_storage.c_str ();
920 }
921
922 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
923
924 static int
925 is_lower_alphanum (const char c)
926 {
927 return (isdigit (c) || (isalpha (c) && islower (c)));
928 }
929
930 /* ENCODED is the linkage name of a symbol and LEN contains its length.
931 This function saves in LEN the length of that same symbol name but
932 without either of these suffixes:
933 . .{DIGIT}+
934 . ${DIGIT}+
935 . ___{DIGIT}+
936 . __{DIGIT}+.
937
938 These are suffixes introduced by the compiler for entities such as
939 nested subprogram for instance, in order to avoid name clashes.
940 They do not serve any purpose for the debugger. */
941
942 static void
943 ada_remove_trailing_digits (const char *encoded, int *len)
944 {
945 if (*len > 1 && isdigit (encoded[*len - 1]))
946 {
947 int i = *len - 2;
948
949 while (i > 0 && isdigit (encoded[i]))
950 i--;
951 if (i >= 0 && encoded[i] == '.')
952 *len = i;
953 else if (i >= 0 && encoded[i] == '$')
954 *len = i;
955 else if (i >= 2 && startswith (encoded + i - 2, "___"))
956 *len = i - 2;
957 else if (i >= 1 && startswith (encoded + i - 1, "__"))
958 *len = i - 1;
959 }
960 }
961
962 /* Remove the suffix introduced by the compiler for protected object
963 subprograms. */
964
965 static void
966 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
967 {
968 /* Remove trailing N. */
969
970 /* Protected entry subprograms are broken into two
971 separate subprograms: The first one is unprotected, and has
972 a 'N' suffix; the second is the protected version, and has
973 the 'P' suffix. The second calls the first one after handling
974 the protection. Since the P subprograms are internally generated,
975 we leave these names undecoded, giving the user a clue that this
976 entity is internal. */
977
978 if (*len > 1
979 && encoded[*len - 1] == 'N'
980 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
981 *len = *len - 1;
982 }
983
984 /* If ENCODED ends with a compiler-provided suffix (like ".cold"),
985 then update *LEN to remove the suffix and return the offset of the
986 character just past the ".". Otherwise, return -1. */
987
988 static int
989 remove_compiler_suffix (const char *encoded, int *len)
990 {
991 int offset = *len - 1;
992 while (offset > 0 && isalpha (encoded[offset]))
993 --offset;
994 if (offset > 0 && encoded[offset] == '.')
995 {
996 *len = offset;
997 return offset + 1;
998 }
999 return -1;
1000 }
1001
1002 /* See ada-lang.h. */
1003
1004 std::string
1005 ada_decode (const char *encoded, bool wrap)
1006 {
1007 int i, j;
1008 int len0;
1009 const char *p;
1010 int at_start_name;
1011 std::string decoded;
1012 int suffix = -1;
1013
1014 /* With function descriptors on PPC64, the value of a symbol named
1015 ".FN", if it exists, is the entry point of the function "FN". */
1016 if (encoded[0] == '.')
1017 encoded += 1;
1018
1019 /* The name of the Ada main procedure starts with "_ada_".
1020 This prefix is not part of the decoded name, so skip this part
1021 if we see this prefix. */
1022 if (startswith (encoded, "_ada_"))
1023 encoded += 5;
1024
1025 /* If the name starts with '_', then it is not a properly encoded
1026 name, so do not attempt to decode it. Similarly, if the name
1027 starts with '<', the name should not be decoded. */
1028 if (encoded[0] == '_' || encoded[0] == '<')
1029 goto Suppress;
1030
1031 len0 = strlen (encoded);
1032
1033 suffix = remove_compiler_suffix (encoded, &len0);
1034
1035 ada_remove_trailing_digits (encoded, &len0);
1036 ada_remove_po_subprogram_suffix (encoded, &len0);
1037
1038 /* Remove the ___X.* suffix if present. Do not forget to verify that
1039 the suffix is located before the current "end" of ENCODED. We want
1040 to avoid re-matching parts of ENCODED that have previously been
1041 marked as discarded (by decrementing LEN0). */
1042 p = strstr (encoded, "___");
1043 if (p != NULL && p - encoded < len0 - 3)
1044 {
1045 if (p[3] == 'X')
1046 len0 = p - encoded;
1047 else
1048 goto Suppress;
1049 }
1050
1051 /* Remove any trailing TKB suffix. It tells us that this symbol
1052 is for the body of a task, but that information does not actually
1053 appear in the decoded name. */
1054
1055 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1056 len0 -= 3;
1057
1058 /* Remove any trailing TB suffix. The TB suffix is slightly different
1059 from the TKB suffix because it is used for non-anonymous task
1060 bodies. */
1061
1062 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1063 len0 -= 2;
1064
1065 /* Remove trailing "B" suffixes. */
1066 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1067
1068 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1069 len0 -= 1;
1070
1071 /* Make decoded big enough for possible expansion by operator name. */
1072
1073 decoded.resize (2 * len0 + 1, 'X');
1074
1075 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1076
1077 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1078 {
1079 i = len0 - 2;
1080 while ((i >= 0 && isdigit (encoded[i]))
1081 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1082 i -= 1;
1083 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1084 len0 = i - 1;
1085 else if (encoded[i] == '$')
1086 len0 = i;
1087 }
1088
1089 /* The first few characters that are not alphabetic are not part
1090 of any encoding we use, so we can copy them over verbatim. */
1091
1092 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1093 decoded[j] = encoded[i];
1094
1095 at_start_name = 1;
1096 while (i < len0)
1097 {
1098 /* Is this a symbol function? */
1099 if (at_start_name && encoded[i] == 'O')
1100 {
1101 int k;
1102
1103 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1104 {
1105 int op_len = strlen (ada_opname_table[k].encoded);
1106 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1107 op_len - 1) == 0)
1108 && !isalnum (encoded[i + op_len]))
1109 {
1110 strcpy (&decoded.front() + j, ada_opname_table[k].decoded);
1111 at_start_name = 0;
1112 i += op_len;
1113 j += strlen (ada_opname_table[k].decoded);
1114 break;
1115 }
1116 }
1117 if (ada_opname_table[k].encoded != NULL)
1118 continue;
1119 }
1120 at_start_name = 0;
1121
1122 /* Replace "TK__" with "__", which will eventually be translated
1123 into "." (just below). */
1124
1125 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1126 i += 2;
1127
1128 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1129 be translated into "." (just below). These are internal names
1130 generated for anonymous blocks inside which our symbol is nested. */
1131
1132 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1133 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1134 && isdigit (encoded [i+4]))
1135 {
1136 int k = i + 5;
1137
1138 while (k < len0 && isdigit (encoded[k]))
1139 k++; /* Skip any extra digit. */
1140
1141 /* Double-check that the "__B_{DIGITS}+" sequence we found
1142 is indeed followed by "__". */
1143 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1144 i = k;
1145 }
1146
1147 /* Remove _E{DIGITS}+[sb] */
1148
1149 /* Just as for protected object subprograms, there are 2 categories
1150 of subprograms created by the compiler for each entry. The first
1151 one implements the actual entry code, and has a suffix following
1152 the convention above; the second one implements the barrier and
1153 uses the same convention as above, except that the 'E' is replaced
1154 by a 'B'.
1155
1156 Just as above, we do not decode the name of barrier functions
1157 to give the user a clue that the code he is debugging has been
1158 internally generated. */
1159
1160 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1161 && isdigit (encoded[i+2]))
1162 {
1163 int k = i + 3;
1164
1165 while (k < len0 && isdigit (encoded[k]))
1166 k++;
1167
1168 if (k < len0
1169 && (encoded[k] == 'b' || encoded[k] == 's'))
1170 {
1171 k++;
1172 /* Just as an extra precaution, make sure that if this
1173 suffix is followed by anything else, it is a '_'.
1174 Otherwise, we matched this sequence by accident. */
1175 if (k == len0
1176 || (k < len0 && encoded[k] == '_'))
1177 i = k;
1178 }
1179 }
1180
1181 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1182 the GNAT front-end in protected object subprograms. */
1183
1184 if (i < len0 + 3
1185 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1186 {
1187 /* Backtrack a bit up until we reach either the begining of
1188 the encoded name, or "__". Make sure that we only find
1189 digits or lowercase characters. */
1190 const char *ptr = encoded + i - 1;
1191
1192 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1193 ptr--;
1194 if (ptr < encoded
1195 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1196 i++;
1197 }
1198
1199 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1200 {
1201 /* This is a X[bn]* sequence not separated from the previous
1202 part of the name with a non-alpha-numeric character (in other
1203 words, immediately following an alpha-numeric character), then
1204 verify that it is placed at the end of the encoded name. If
1205 not, then the encoding is not valid and we should abort the
1206 decoding. Otherwise, just skip it, it is used in body-nested
1207 package names. */
1208 do
1209 i += 1;
1210 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1211 if (i < len0)
1212 goto Suppress;
1213 }
1214 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1215 {
1216 /* Replace '__' by '.'. */
1217 decoded[j] = '.';
1218 at_start_name = 1;
1219 i += 2;
1220 j += 1;
1221 }
1222 else
1223 {
1224 /* It's a character part of the decoded name, so just copy it
1225 over. */
1226 decoded[j] = encoded[i];
1227 i += 1;
1228 j += 1;
1229 }
1230 }
1231 decoded.resize (j);
1232
1233 /* Decoded names should never contain any uppercase character.
1234 Double-check this, and abort the decoding if we find one. */
1235
1236 for (i = 0; i < decoded.length(); ++i)
1237 if (isupper (decoded[i]) || decoded[i] == ' ')
1238 goto Suppress;
1239
1240 /* If the compiler added a suffix, append it now. */
1241 if (suffix >= 0)
1242 decoded = decoded + "[" + &encoded[suffix] + "]";
1243
1244 return decoded;
1245
1246 Suppress:
1247 if (!wrap)
1248 return {};
1249
1250 if (encoded[0] == '<')
1251 decoded = encoded;
1252 else
1253 decoded = '<' + std::string(encoded) + '>';
1254 return decoded;
1255 }
1256
1257 /* Table for keeping permanent unique copies of decoded names. Once
1258 allocated, names in this table are never released. While this is a
1259 storage leak, it should not be significant unless there are massive
1260 changes in the set of decoded names in successive versions of a
1261 symbol table loaded during a single session. */
1262 static struct htab *decoded_names_store;
1263
1264 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1265 in the language-specific part of GSYMBOL, if it has not been
1266 previously computed. Tries to save the decoded name in the same
1267 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1268 in any case, the decoded symbol has a lifetime at least that of
1269 GSYMBOL).
1270 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1271 const, but nevertheless modified to a semantically equivalent form
1272 when a decoded name is cached in it. */
1273
1274 const char *
1275 ada_decode_symbol (const struct general_symbol_info *arg)
1276 {
1277 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1278 const char **resultp =
1279 &gsymbol->language_specific.demangled_name;
1280
1281 if (!gsymbol->ada_mangled)
1282 {
1283 std::string decoded = ada_decode (gsymbol->linkage_name ());
1284 struct obstack *obstack = gsymbol->language_specific.obstack;
1285
1286 gsymbol->ada_mangled = 1;
1287
1288 if (obstack != NULL)
1289 *resultp = obstack_strdup (obstack, decoded.c_str ());
1290 else
1291 {
1292 /* Sometimes, we can't find a corresponding objfile, in
1293 which case, we put the result on the heap. Since we only
1294 decode when needed, we hope this usually does not cause a
1295 significant memory leak (FIXME). */
1296
1297 char **slot = (char **) htab_find_slot (decoded_names_store,
1298 decoded.c_str (), INSERT);
1299
1300 if (*slot == NULL)
1301 *slot = xstrdup (decoded.c_str ());
1302 *resultp = *slot;
1303 }
1304 }
1305
1306 return *resultp;
1307 }
1308
1309 \f
1310
1311 /* Arrays */
1312
1313 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1314 generated by the GNAT compiler to describe the index type used
1315 for each dimension of an array, check whether it follows the latest
1316 known encoding. If not, fix it up to conform to the latest encoding.
1317 Otherwise, do nothing. This function also does nothing if
1318 INDEX_DESC_TYPE is NULL.
1319
1320 The GNAT encoding used to describe the array index type evolved a bit.
1321 Initially, the information would be provided through the name of each
1322 field of the structure type only, while the type of these fields was
1323 described as unspecified and irrelevant. The debugger was then expected
1324 to perform a global type lookup using the name of that field in order
1325 to get access to the full index type description. Because these global
1326 lookups can be very expensive, the encoding was later enhanced to make
1327 the global lookup unnecessary by defining the field type as being
1328 the full index type description.
1329
1330 The purpose of this routine is to allow us to support older versions
1331 of the compiler by detecting the use of the older encoding, and by
1332 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1333 we essentially replace each field's meaningless type by the associated
1334 index subtype). */
1335
1336 void
1337 ada_fixup_array_indexes_type (struct type *index_desc_type)
1338 {
1339 int i;
1340
1341 if (index_desc_type == NULL)
1342 return;
1343 gdb_assert (index_desc_type->num_fields () > 0);
1344
1345 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1346 to check one field only, no need to check them all). If not, return
1347 now.
1348
1349 If our INDEX_DESC_TYPE was generated using the older encoding,
1350 the field type should be a meaningless integer type whose name
1351 is not equal to the field name. */
1352 if (index_desc_type->field (0).type ()->name () != NULL
1353 && strcmp (index_desc_type->field (0).type ()->name (),
1354 index_desc_type->field (0).name ()) == 0)
1355 return;
1356
1357 /* Fixup each field of INDEX_DESC_TYPE. */
1358 for (i = 0; i < index_desc_type->num_fields (); i++)
1359 {
1360 const char *name = index_desc_type->field (i).name ();
1361 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1362
1363 if (raw_type)
1364 index_desc_type->field (i).set_type (raw_type);
1365 }
1366 }
1367
1368 /* The desc_* routines return primitive portions of array descriptors
1369 (fat pointers). */
1370
1371 /* The descriptor or array type, if any, indicated by TYPE; removes
1372 level of indirection, if needed. */
1373
1374 static struct type *
1375 desc_base_type (struct type *type)
1376 {
1377 if (type == NULL)
1378 return NULL;
1379 type = ada_check_typedef (type);
1380 if (type->code () == TYPE_CODE_TYPEDEF)
1381 type = ada_typedef_target_type (type);
1382
1383 if (type != NULL
1384 && (type->code () == TYPE_CODE_PTR
1385 || type->code () == TYPE_CODE_REF))
1386 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1387 else
1388 return type;
1389 }
1390
1391 /* True iff TYPE indicates a "thin" array pointer type. */
1392
1393 static int
1394 is_thin_pntr (struct type *type)
1395 {
1396 return
1397 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1398 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1399 }
1400
1401 /* The descriptor type for thin pointer type TYPE. */
1402
1403 static struct type *
1404 thin_descriptor_type (struct type *type)
1405 {
1406 struct type *base_type = desc_base_type (type);
1407
1408 if (base_type == NULL)
1409 return NULL;
1410 if (is_suffix (ada_type_name (base_type), "___XVE"))
1411 return base_type;
1412 else
1413 {
1414 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1415
1416 if (alt_type == NULL)
1417 return base_type;
1418 else
1419 return alt_type;
1420 }
1421 }
1422
1423 /* A pointer to the array data for thin-pointer value VAL. */
1424
1425 static struct value *
1426 thin_data_pntr (struct value *val)
1427 {
1428 struct type *type = ada_check_typedef (value_type (val));
1429 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1430
1431 data_type = lookup_pointer_type (data_type);
1432
1433 if (type->code () == TYPE_CODE_PTR)
1434 return value_cast (data_type, value_copy (val));
1435 else
1436 return value_from_longest (data_type, value_address (val));
1437 }
1438
1439 /* True iff TYPE indicates a "thick" array pointer type. */
1440
1441 static int
1442 is_thick_pntr (struct type *type)
1443 {
1444 type = desc_base_type (type);
1445 return (type != NULL && type->code () == TYPE_CODE_STRUCT
1446 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1447 }
1448
1449 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1450 pointer to one, the type of its bounds data; otherwise, NULL. */
1451
1452 static struct type *
1453 desc_bounds_type (struct type *type)
1454 {
1455 struct type *r;
1456
1457 type = desc_base_type (type);
1458
1459 if (type == NULL)
1460 return NULL;
1461 else if (is_thin_pntr (type))
1462 {
1463 type = thin_descriptor_type (type);
1464 if (type == NULL)
1465 return NULL;
1466 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1467 if (r != NULL)
1468 return ada_check_typedef (r);
1469 }
1470 else if (type->code () == TYPE_CODE_STRUCT)
1471 {
1472 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1473 if (r != NULL)
1474 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1475 }
1476 return NULL;
1477 }
1478
1479 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1480 one, a pointer to its bounds data. Otherwise NULL. */
1481
1482 static struct value *
1483 desc_bounds (struct value *arr)
1484 {
1485 struct type *type = ada_check_typedef (value_type (arr));
1486
1487 if (is_thin_pntr (type))
1488 {
1489 struct type *bounds_type =
1490 desc_bounds_type (thin_descriptor_type (type));
1491 LONGEST addr;
1492
1493 if (bounds_type == NULL)
1494 error (_("Bad GNAT array descriptor"));
1495
1496 /* NOTE: The following calculation is not really kosher, but
1497 since desc_type is an XVE-encoded type (and shouldn't be),
1498 the correct calculation is a real pain. FIXME (and fix GCC). */
1499 if (type->code () == TYPE_CODE_PTR)
1500 addr = value_as_long (arr);
1501 else
1502 addr = value_address (arr);
1503
1504 return
1505 value_from_longest (lookup_pointer_type (bounds_type),
1506 addr - TYPE_LENGTH (bounds_type));
1507 }
1508
1509 else if (is_thick_pntr (type))
1510 {
1511 struct value *p_bounds = value_struct_elt (&arr, {}, "P_BOUNDS", NULL,
1512 _("Bad GNAT array descriptor"));
1513 struct type *p_bounds_type = value_type (p_bounds);
1514
1515 if (p_bounds_type
1516 && p_bounds_type->code () == TYPE_CODE_PTR)
1517 {
1518 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1519
1520 if (target_type->is_stub ())
1521 p_bounds = value_cast (lookup_pointer_type
1522 (ada_check_typedef (target_type)),
1523 p_bounds);
1524 }
1525 else
1526 error (_("Bad GNAT array descriptor"));
1527
1528 return p_bounds;
1529 }
1530 else
1531 return NULL;
1532 }
1533
1534 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1535 position of the field containing the address of the bounds data. */
1536
1537 static int
1538 fat_pntr_bounds_bitpos (struct type *type)
1539 {
1540 return desc_base_type (type)->field (1).loc_bitpos ();
1541 }
1542
1543 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1544 size of the field containing the address of the bounds data. */
1545
1546 static int
1547 fat_pntr_bounds_bitsize (struct type *type)
1548 {
1549 type = desc_base_type (type);
1550
1551 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1552 return TYPE_FIELD_BITSIZE (type, 1);
1553 else
1554 return 8 * TYPE_LENGTH (ada_check_typedef (type->field (1).type ()));
1555 }
1556
1557 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1558 pointer to one, the type of its array data (a array-with-no-bounds type);
1559 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1560 data. */
1561
1562 static struct type *
1563 desc_data_target_type (struct type *type)
1564 {
1565 type = desc_base_type (type);
1566
1567 /* NOTE: The following is bogus; see comment in desc_bounds. */
1568 if (is_thin_pntr (type))
1569 return desc_base_type (thin_descriptor_type (type)->field (1).type ());
1570 else if (is_thick_pntr (type))
1571 {
1572 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1573
1574 if (data_type
1575 && ada_check_typedef (data_type)->code () == TYPE_CODE_PTR)
1576 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1577 }
1578
1579 return NULL;
1580 }
1581
1582 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1583 its array data. */
1584
1585 static struct value *
1586 desc_data (struct value *arr)
1587 {
1588 struct type *type = value_type (arr);
1589
1590 if (is_thin_pntr (type))
1591 return thin_data_pntr (arr);
1592 else if (is_thick_pntr (type))
1593 return value_struct_elt (&arr, {}, "P_ARRAY", NULL,
1594 _("Bad GNAT array descriptor"));
1595 else
1596 return NULL;
1597 }
1598
1599
1600 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1601 position of the field containing the address of the data. */
1602
1603 static int
1604 fat_pntr_data_bitpos (struct type *type)
1605 {
1606 return desc_base_type (type)->field (0).loc_bitpos ();
1607 }
1608
1609 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1610 size of the field containing the address of the data. */
1611
1612 static int
1613 fat_pntr_data_bitsize (struct type *type)
1614 {
1615 type = desc_base_type (type);
1616
1617 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1618 return TYPE_FIELD_BITSIZE (type, 0);
1619 else
1620 return TARGET_CHAR_BIT * TYPE_LENGTH (type->field (0).type ());
1621 }
1622
1623 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1624 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1625 bound, if WHICH is 1. The first bound is I=1. */
1626
1627 static struct value *
1628 desc_one_bound (struct value *bounds, int i, int which)
1629 {
1630 char bound_name[20];
1631 xsnprintf (bound_name, sizeof (bound_name), "%cB%d",
1632 which ? 'U' : 'L', i - 1);
1633 return value_struct_elt (&bounds, {}, bound_name, NULL,
1634 _("Bad GNAT array descriptor bounds"));
1635 }
1636
1637 /* If BOUNDS is an array-bounds structure type, return the bit position
1638 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1639 bound, if WHICH is 1. The first bound is I=1. */
1640
1641 static int
1642 desc_bound_bitpos (struct type *type, int i, int which)
1643 {
1644 return desc_base_type (type)->field (2 * i + which - 2).loc_bitpos ();
1645 }
1646
1647 /* If BOUNDS is an array-bounds structure type, return the bit field size
1648 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1649 bound, if WHICH is 1. The first bound is I=1. */
1650
1651 static int
1652 desc_bound_bitsize (struct type *type, int i, int which)
1653 {
1654 type = desc_base_type (type);
1655
1656 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1657 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1658 else
1659 return 8 * TYPE_LENGTH (type->field (2 * i + which - 2).type ());
1660 }
1661
1662 /* If TYPE is the type of an array-bounds structure, the type of its
1663 Ith bound (numbering from 1). Otherwise, NULL. */
1664
1665 static struct type *
1666 desc_index_type (struct type *type, int i)
1667 {
1668 type = desc_base_type (type);
1669
1670 if (type->code () == TYPE_CODE_STRUCT)
1671 {
1672 char bound_name[20];
1673 xsnprintf (bound_name, sizeof (bound_name), "LB%d", i - 1);
1674 return lookup_struct_elt_type (type, bound_name, 1);
1675 }
1676 else
1677 return NULL;
1678 }
1679
1680 /* The number of index positions in the array-bounds type TYPE.
1681 Return 0 if TYPE is NULL. */
1682
1683 static int
1684 desc_arity (struct type *type)
1685 {
1686 type = desc_base_type (type);
1687
1688 if (type != NULL)
1689 return type->num_fields () / 2;
1690 return 0;
1691 }
1692
1693 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1694 an array descriptor type (representing an unconstrained array
1695 type). */
1696
1697 static int
1698 ada_is_direct_array_type (struct type *type)
1699 {
1700 if (type == NULL)
1701 return 0;
1702 type = ada_check_typedef (type);
1703 return (type->code () == TYPE_CODE_ARRAY
1704 || ada_is_array_descriptor_type (type));
1705 }
1706
1707 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1708 * to one. */
1709
1710 static int
1711 ada_is_array_type (struct type *type)
1712 {
1713 while (type != NULL
1714 && (type->code () == TYPE_CODE_PTR
1715 || type->code () == TYPE_CODE_REF))
1716 type = TYPE_TARGET_TYPE (type);
1717 return ada_is_direct_array_type (type);
1718 }
1719
1720 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1721
1722 int
1723 ada_is_simple_array_type (struct type *type)
1724 {
1725 if (type == NULL)
1726 return 0;
1727 type = ada_check_typedef (type);
1728 return (type->code () == TYPE_CODE_ARRAY
1729 || (type->code () == TYPE_CODE_PTR
1730 && (ada_check_typedef (TYPE_TARGET_TYPE (type))->code ()
1731 == TYPE_CODE_ARRAY)));
1732 }
1733
1734 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1735
1736 int
1737 ada_is_array_descriptor_type (struct type *type)
1738 {
1739 struct type *data_type = desc_data_target_type (type);
1740
1741 if (type == NULL)
1742 return 0;
1743 type = ada_check_typedef (type);
1744 return (data_type != NULL
1745 && data_type->code () == TYPE_CODE_ARRAY
1746 && desc_arity (desc_bounds_type (type)) > 0);
1747 }
1748
1749 /* Non-zero iff type is a partially mal-formed GNAT array
1750 descriptor. FIXME: This is to compensate for some problems with
1751 debugging output from GNAT. Re-examine periodically to see if it
1752 is still needed. */
1753
1754 int
1755 ada_is_bogus_array_descriptor (struct type *type)
1756 {
1757 return
1758 type != NULL
1759 && type->code () == TYPE_CODE_STRUCT
1760 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1761 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1762 && !ada_is_array_descriptor_type (type);
1763 }
1764
1765
1766 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1767 (fat pointer) returns the type of the array data described---specifically,
1768 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1769 in from the descriptor; otherwise, they are left unspecified. If
1770 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1771 returns NULL. The result is simply the type of ARR if ARR is not
1772 a descriptor. */
1773
1774 static struct type *
1775 ada_type_of_array (struct value *arr, int bounds)
1776 {
1777 if (ada_is_constrained_packed_array_type (value_type (arr)))
1778 return decode_constrained_packed_array_type (value_type (arr));
1779
1780 if (!ada_is_array_descriptor_type (value_type (arr)))
1781 return value_type (arr);
1782
1783 if (!bounds)
1784 {
1785 struct type *array_type =
1786 ada_check_typedef (desc_data_target_type (value_type (arr)));
1787
1788 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1789 TYPE_FIELD_BITSIZE (array_type, 0) =
1790 decode_packed_array_bitsize (value_type (arr));
1791
1792 return array_type;
1793 }
1794 else
1795 {
1796 struct type *elt_type;
1797 int arity;
1798 struct value *descriptor;
1799
1800 elt_type = ada_array_element_type (value_type (arr), -1);
1801 arity = ada_array_arity (value_type (arr));
1802
1803 if (elt_type == NULL || arity == 0)
1804 return ada_check_typedef (value_type (arr));
1805
1806 descriptor = desc_bounds (arr);
1807 if (value_as_long (descriptor) == 0)
1808 return NULL;
1809 while (arity > 0)
1810 {
1811 struct type *range_type = alloc_type_copy (value_type (arr));
1812 struct type *array_type = alloc_type_copy (value_type (arr));
1813 struct value *low = desc_one_bound (descriptor, arity, 0);
1814 struct value *high = desc_one_bound (descriptor, arity, 1);
1815
1816 arity -= 1;
1817 create_static_range_type (range_type, value_type (low),
1818 longest_to_int (value_as_long (low)),
1819 longest_to_int (value_as_long (high)));
1820 elt_type = create_array_type (array_type, elt_type, range_type);
1821
1822 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1823 {
1824 /* We need to store the element packed bitsize, as well as
1825 recompute the array size, because it was previously
1826 computed based on the unpacked element size. */
1827 LONGEST lo = value_as_long (low);
1828 LONGEST hi = value_as_long (high);
1829
1830 TYPE_FIELD_BITSIZE (elt_type, 0) =
1831 decode_packed_array_bitsize (value_type (arr));
1832 /* If the array has no element, then the size is already
1833 zero, and does not need to be recomputed. */
1834 if (lo < hi)
1835 {
1836 int array_bitsize =
1837 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1838
1839 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1840 }
1841 }
1842 }
1843
1844 return lookup_pointer_type (elt_type);
1845 }
1846 }
1847
1848 /* If ARR does not represent an array, returns ARR unchanged.
1849 Otherwise, returns either a standard GDB array with bounds set
1850 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1851 GDB array. Returns NULL if ARR is a null fat pointer. */
1852
1853 struct value *
1854 ada_coerce_to_simple_array_ptr (struct value *arr)
1855 {
1856 if (ada_is_array_descriptor_type (value_type (arr)))
1857 {
1858 struct type *arrType = ada_type_of_array (arr, 1);
1859
1860 if (arrType == NULL)
1861 return NULL;
1862 return value_cast (arrType, value_copy (desc_data (arr)));
1863 }
1864 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1865 return decode_constrained_packed_array (arr);
1866 else
1867 return arr;
1868 }
1869
1870 /* If ARR does not represent an array, returns ARR unchanged.
1871 Otherwise, returns a standard GDB array describing ARR (which may
1872 be ARR itself if it already is in the proper form). */
1873
1874 struct value *
1875 ada_coerce_to_simple_array (struct value *arr)
1876 {
1877 if (ada_is_array_descriptor_type (value_type (arr)))
1878 {
1879 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1880
1881 if (arrVal == NULL)
1882 error (_("Bounds unavailable for null array pointer."));
1883 return value_ind (arrVal);
1884 }
1885 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1886 return decode_constrained_packed_array (arr);
1887 else
1888 return arr;
1889 }
1890
1891 /* If TYPE represents a GNAT array type, return it translated to an
1892 ordinary GDB array type (possibly with BITSIZE fields indicating
1893 packing). For other types, is the identity. */
1894
1895 struct type *
1896 ada_coerce_to_simple_array_type (struct type *type)
1897 {
1898 if (ada_is_constrained_packed_array_type (type))
1899 return decode_constrained_packed_array_type (type);
1900
1901 if (ada_is_array_descriptor_type (type))
1902 return ada_check_typedef (desc_data_target_type (type));
1903
1904 return type;
1905 }
1906
1907 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1908
1909 static int
1910 ada_is_gnat_encoded_packed_array_type (struct type *type)
1911 {
1912 if (type == NULL)
1913 return 0;
1914 type = desc_base_type (type);
1915 type = ada_check_typedef (type);
1916 return
1917 ada_type_name (type) != NULL
1918 && strstr (ada_type_name (type), "___XP") != NULL;
1919 }
1920
1921 /* Non-zero iff TYPE represents a standard GNAT constrained
1922 packed-array type. */
1923
1924 int
1925 ada_is_constrained_packed_array_type (struct type *type)
1926 {
1927 return ada_is_gnat_encoded_packed_array_type (type)
1928 && !ada_is_array_descriptor_type (type);
1929 }
1930
1931 /* Non-zero iff TYPE represents an array descriptor for a
1932 unconstrained packed-array type. */
1933
1934 static int
1935 ada_is_unconstrained_packed_array_type (struct type *type)
1936 {
1937 if (!ada_is_array_descriptor_type (type))
1938 return 0;
1939
1940 if (ada_is_gnat_encoded_packed_array_type (type))
1941 return 1;
1942
1943 /* If we saw GNAT encodings, then the above code is sufficient.
1944 However, with minimal encodings, we will just have a thick
1945 pointer instead. */
1946 if (is_thick_pntr (type))
1947 {
1948 type = desc_base_type (type);
1949 /* The structure's first field is a pointer to an array, so this
1950 fetches the array type. */
1951 type = TYPE_TARGET_TYPE (type->field (0).type ());
1952 /* Now we can see if the array elements are packed. */
1953 return TYPE_FIELD_BITSIZE (type, 0) > 0;
1954 }
1955
1956 return 0;
1957 }
1958
1959 /* Return true if TYPE is a (Gnat-encoded) constrained packed array
1960 type, or if it is an ordinary (non-Gnat-encoded) packed array. */
1961
1962 static bool
1963 ada_is_any_packed_array_type (struct type *type)
1964 {
1965 return (ada_is_constrained_packed_array_type (type)
1966 || (type->code () == TYPE_CODE_ARRAY
1967 && TYPE_FIELD_BITSIZE (type, 0) % 8 != 0));
1968 }
1969
1970 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
1971 return the size of its elements in bits. */
1972
1973 static long
1974 decode_packed_array_bitsize (struct type *type)
1975 {
1976 const char *raw_name;
1977 const char *tail;
1978 long bits;
1979
1980 /* Access to arrays implemented as fat pointers are encoded as a typedef
1981 of the fat pointer type. We need the name of the fat pointer type
1982 to do the decoding, so strip the typedef layer. */
1983 if (type->code () == TYPE_CODE_TYPEDEF)
1984 type = ada_typedef_target_type (type);
1985
1986 raw_name = ada_type_name (ada_check_typedef (type));
1987 if (!raw_name)
1988 raw_name = ada_type_name (desc_base_type (type));
1989
1990 if (!raw_name)
1991 return 0;
1992
1993 tail = strstr (raw_name, "___XP");
1994 if (tail == nullptr)
1995 {
1996 gdb_assert (is_thick_pntr (type));
1997 /* The structure's first field is a pointer to an array, so this
1998 fetches the array type. */
1999 type = TYPE_TARGET_TYPE (type->field (0).type ());
2000 /* Now we can see if the array elements are packed. */
2001 return TYPE_FIELD_BITSIZE (type, 0);
2002 }
2003
2004 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2005 {
2006 lim_warning
2007 (_("could not understand bit size information on packed array"));
2008 return 0;
2009 }
2010
2011 return bits;
2012 }
2013
2014 /* Given that TYPE is a standard GDB array type with all bounds filled
2015 in, and that the element size of its ultimate scalar constituents
2016 (that is, either its elements, or, if it is an array of arrays, its
2017 elements' elements, etc.) is *ELT_BITS, return an identical type,
2018 but with the bit sizes of its elements (and those of any
2019 constituent arrays) recorded in the BITSIZE components of its
2020 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2021 in bits.
2022
2023 Note that, for arrays whose index type has an XA encoding where
2024 a bound references a record discriminant, getting that discriminant,
2025 and therefore the actual value of that bound, is not possible
2026 because none of the given parameters gives us access to the record.
2027 This function assumes that it is OK in the context where it is being
2028 used to return an array whose bounds are still dynamic and where
2029 the length is arbitrary. */
2030
2031 static struct type *
2032 constrained_packed_array_type (struct type *type, long *elt_bits)
2033 {
2034 struct type *new_elt_type;
2035 struct type *new_type;
2036 struct type *index_type_desc;
2037 struct type *index_type;
2038 LONGEST low_bound, high_bound;
2039
2040 type = ada_check_typedef (type);
2041 if (type->code () != TYPE_CODE_ARRAY)
2042 return type;
2043
2044 index_type_desc = ada_find_parallel_type (type, "___XA");
2045 if (index_type_desc)
2046 index_type = to_fixed_range_type (index_type_desc->field (0).type (),
2047 NULL);
2048 else
2049 index_type = type->index_type ();
2050
2051 new_type = alloc_type_copy (type);
2052 new_elt_type =
2053 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2054 elt_bits);
2055 create_array_type (new_type, new_elt_type, index_type);
2056 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2057 new_type->set_name (ada_type_name (type));
2058
2059 if ((check_typedef (index_type)->code () == TYPE_CODE_RANGE
2060 && is_dynamic_type (check_typedef (index_type)))
2061 || !get_discrete_bounds (index_type, &low_bound, &high_bound))
2062 low_bound = high_bound = 0;
2063 if (high_bound < low_bound)
2064 *elt_bits = TYPE_LENGTH (new_type) = 0;
2065 else
2066 {
2067 *elt_bits *= (high_bound - low_bound + 1);
2068 TYPE_LENGTH (new_type) =
2069 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2070 }
2071
2072 new_type->set_is_fixed_instance (true);
2073 return new_type;
2074 }
2075
2076 /* The array type encoded by TYPE, where
2077 ada_is_constrained_packed_array_type (TYPE). */
2078
2079 static struct type *
2080 decode_constrained_packed_array_type (struct type *type)
2081 {
2082 const char *raw_name = ada_type_name (ada_check_typedef (type));
2083 char *name;
2084 const char *tail;
2085 struct type *shadow_type;
2086 long bits;
2087
2088 if (!raw_name)
2089 raw_name = ada_type_name (desc_base_type (type));
2090
2091 if (!raw_name)
2092 return NULL;
2093
2094 name = (char *) alloca (strlen (raw_name) + 1);
2095 tail = strstr (raw_name, "___XP");
2096 type = desc_base_type (type);
2097
2098 memcpy (name, raw_name, tail - raw_name);
2099 name[tail - raw_name] = '\000';
2100
2101 shadow_type = ada_find_parallel_type_with_name (type, name);
2102
2103 if (shadow_type == NULL)
2104 {
2105 lim_warning (_("could not find bounds information on packed array"));
2106 return NULL;
2107 }
2108 shadow_type = check_typedef (shadow_type);
2109
2110 if (shadow_type->code () != TYPE_CODE_ARRAY)
2111 {
2112 lim_warning (_("could not understand bounds "
2113 "information on packed array"));
2114 return NULL;
2115 }
2116
2117 bits = decode_packed_array_bitsize (type);
2118 return constrained_packed_array_type (shadow_type, &bits);
2119 }
2120
2121 /* Helper function for decode_constrained_packed_array. Set the field
2122 bitsize on a series of packed arrays. Returns the number of
2123 elements in TYPE. */
2124
2125 static LONGEST
2126 recursively_update_array_bitsize (struct type *type)
2127 {
2128 gdb_assert (type->code () == TYPE_CODE_ARRAY);
2129
2130 LONGEST low, high;
2131 if (!get_discrete_bounds (type->index_type (), &low, &high)
2132 || low > high)
2133 return 0;
2134 LONGEST our_len = high - low + 1;
2135
2136 struct type *elt_type = TYPE_TARGET_TYPE (type);
2137 if (elt_type->code () == TYPE_CODE_ARRAY)
2138 {
2139 LONGEST elt_len = recursively_update_array_bitsize (elt_type);
2140 LONGEST elt_bitsize = elt_len * TYPE_FIELD_BITSIZE (elt_type, 0);
2141 TYPE_FIELD_BITSIZE (type, 0) = elt_bitsize;
2142
2143 TYPE_LENGTH (type) = ((our_len * elt_bitsize + HOST_CHAR_BIT - 1)
2144 / HOST_CHAR_BIT);
2145 }
2146
2147 return our_len;
2148 }
2149
2150 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2151 array, returns a simple array that denotes that array. Its type is a
2152 standard GDB array type except that the BITSIZEs of the array
2153 target types are set to the number of bits in each element, and the
2154 type length is set appropriately. */
2155
2156 static struct value *
2157 decode_constrained_packed_array (struct value *arr)
2158 {
2159 struct type *type;
2160
2161 /* If our value is a pointer, then dereference it. Likewise if
2162 the value is a reference. Make sure that this operation does not
2163 cause the target type to be fixed, as this would indirectly cause
2164 this array to be decoded. The rest of the routine assumes that
2165 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2166 and "value_ind" routines to perform the dereferencing, as opposed
2167 to using "ada_coerce_ref" or "ada_value_ind". */
2168 arr = coerce_ref (arr);
2169 if (ada_check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
2170 arr = value_ind (arr);
2171
2172 type = decode_constrained_packed_array_type (value_type (arr));
2173 if (type == NULL)
2174 {
2175 error (_("can't unpack array"));
2176 return NULL;
2177 }
2178
2179 /* Decoding the packed array type could not correctly set the field
2180 bitsizes for any dimension except the innermost, because the
2181 bounds may be variable and were not passed to that function. So,
2182 we further resolve the array bounds here and then update the
2183 sizes. */
2184 const gdb_byte *valaddr = value_contents_for_printing (arr).data ();
2185 CORE_ADDR address = value_address (arr);
2186 gdb::array_view<const gdb_byte> view
2187 = gdb::make_array_view (valaddr, TYPE_LENGTH (type));
2188 type = resolve_dynamic_type (type, view, address);
2189 recursively_update_array_bitsize (type);
2190
2191 if (type_byte_order (value_type (arr)) == BFD_ENDIAN_BIG
2192 && ada_is_modular_type (value_type (arr)))
2193 {
2194 /* This is a (right-justified) modular type representing a packed
2195 array with no wrapper. In order to interpret the value through
2196 the (left-justified) packed array type we just built, we must
2197 first left-justify it. */
2198 int bit_size, bit_pos;
2199 ULONGEST mod;
2200
2201 mod = ada_modulus (value_type (arr)) - 1;
2202 bit_size = 0;
2203 while (mod > 0)
2204 {
2205 bit_size += 1;
2206 mod >>= 1;
2207 }
2208 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2209 arr = ada_value_primitive_packed_val (arr, NULL,
2210 bit_pos / HOST_CHAR_BIT,
2211 bit_pos % HOST_CHAR_BIT,
2212 bit_size,
2213 type);
2214 }
2215
2216 return coerce_unspec_val_to_type (arr, type);
2217 }
2218
2219
2220 /* The value of the element of packed array ARR at the ARITY indices
2221 given in IND. ARR must be a simple array. */
2222
2223 static struct value *
2224 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2225 {
2226 int i;
2227 int bits, elt_off, bit_off;
2228 long elt_total_bit_offset;
2229 struct type *elt_type;
2230 struct value *v;
2231
2232 bits = 0;
2233 elt_total_bit_offset = 0;
2234 elt_type = ada_check_typedef (value_type (arr));
2235 for (i = 0; i < arity; i += 1)
2236 {
2237 if (elt_type->code () != TYPE_CODE_ARRAY
2238 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2239 error
2240 (_("attempt to do packed indexing of "
2241 "something other than a packed array"));
2242 else
2243 {
2244 struct type *range_type = elt_type->index_type ();
2245 LONGEST lowerbound, upperbound;
2246 LONGEST idx;
2247
2248 if (!get_discrete_bounds (range_type, &lowerbound, &upperbound))
2249 {
2250 lim_warning (_("don't know bounds of array"));
2251 lowerbound = upperbound = 0;
2252 }
2253
2254 idx = pos_atr (ind[i]);
2255 if (idx < lowerbound || idx > upperbound)
2256 lim_warning (_("packed array index %ld out of bounds"),
2257 (long) idx);
2258 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2259 elt_total_bit_offset += (idx - lowerbound) * bits;
2260 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2261 }
2262 }
2263 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2264 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2265
2266 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2267 bits, elt_type);
2268 return v;
2269 }
2270
2271 /* Non-zero iff TYPE includes negative integer values. */
2272
2273 static int
2274 has_negatives (struct type *type)
2275 {
2276 switch (type->code ())
2277 {
2278 default:
2279 return 0;
2280 case TYPE_CODE_INT:
2281 return !type->is_unsigned ();
2282 case TYPE_CODE_RANGE:
2283 return type->bounds ()->low.const_val () - type->bounds ()->bias < 0;
2284 }
2285 }
2286
2287 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2288 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2289 the unpacked buffer.
2290
2291 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2292 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2293
2294 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2295 zero otherwise.
2296
2297 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2298
2299 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2300
2301 static void
2302 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2303 gdb_byte *unpacked, int unpacked_len,
2304 int is_big_endian, int is_signed_type,
2305 int is_scalar)
2306 {
2307 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2308 int src_idx; /* Index into the source area */
2309 int src_bytes_left; /* Number of source bytes left to process. */
2310 int srcBitsLeft; /* Number of source bits left to move */
2311 int unusedLS; /* Number of bits in next significant
2312 byte of source that are unused */
2313
2314 int unpacked_idx; /* Index into the unpacked buffer */
2315 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2316
2317 unsigned long accum; /* Staging area for bits being transferred */
2318 int accumSize; /* Number of meaningful bits in accum */
2319 unsigned char sign;
2320
2321 /* Transmit bytes from least to most significant; delta is the direction
2322 the indices move. */
2323 int delta = is_big_endian ? -1 : 1;
2324
2325 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2326 bits from SRC. .*/
2327 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2328 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2329 bit_size, unpacked_len);
2330
2331 srcBitsLeft = bit_size;
2332 src_bytes_left = src_len;
2333 unpacked_bytes_left = unpacked_len;
2334 sign = 0;
2335
2336 if (is_big_endian)
2337 {
2338 src_idx = src_len - 1;
2339 if (is_signed_type
2340 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2341 sign = ~0;
2342
2343 unusedLS =
2344 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2345 % HOST_CHAR_BIT;
2346
2347 if (is_scalar)
2348 {
2349 accumSize = 0;
2350 unpacked_idx = unpacked_len - 1;
2351 }
2352 else
2353 {
2354 /* Non-scalar values must be aligned at a byte boundary... */
2355 accumSize =
2356 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2357 /* ... And are placed at the beginning (most-significant) bytes
2358 of the target. */
2359 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2360 unpacked_bytes_left = unpacked_idx + 1;
2361 }
2362 }
2363 else
2364 {
2365 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2366
2367 src_idx = unpacked_idx = 0;
2368 unusedLS = bit_offset;
2369 accumSize = 0;
2370
2371 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2372 sign = ~0;
2373 }
2374
2375 accum = 0;
2376 while (src_bytes_left > 0)
2377 {
2378 /* Mask for removing bits of the next source byte that are not
2379 part of the value. */
2380 unsigned int unusedMSMask =
2381 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2382 1;
2383 /* Sign-extend bits for this byte. */
2384 unsigned int signMask = sign & ~unusedMSMask;
2385
2386 accum |=
2387 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2388 accumSize += HOST_CHAR_BIT - unusedLS;
2389 if (accumSize >= HOST_CHAR_BIT)
2390 {
2391 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2392 accumSize -= HOST_CHAR_BIT;
2393 accum >>= HOST_CHAR_BIT;
2394 unpacked_bytes_left -= 1;
2395 unpacked_idx += delta;
2396 }
2397 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2398 unusedLS = 0;
2399 src_bytes_left -= 1;
2400 src_idx += delta;
2401 }
2402 while (unpacked_bytes_left > 0)
2403 {
2404 accum |= sign << accumSize;
2405 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2406 accumSize -= HOST_CHAR_BIT;
2407 if (accumSize < 0)
2408 accumSize = 0;
2409 accum >>= HOST_CHAR_BIT;
2410 unpacked_bytes_left -= 1;
2411 unpacked_idx += delta;
2412 }
2413 }
2414
2415 /* Create a new value of type TYPE from the contents of OBJ starting
2416 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2417 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2418 assigning through the result will set the field fetched from.
2419 VALADDR is ignored unless OBJ is NULL, in which case,
2420 VALADDR+OFFSET must address the start of storage containing the
2421 packed value. The value returned in this case is never an lval.
2422 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2423
2424 struct value *
2425 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2426 long offset, int bit_offset, int bit_size,
2427 struct type *type)
2428 {
2429 struct value *v;
2430 const gdb_byte *src; /* First byte containing data to unpack */
2431 gdb_byte *unpacked;
2432 const int is_scalar = is_scalar_type (type);
2433 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
2434 gdb::byte_vector staging;
2435
2436 type = ada_check_typedef (type);
2437
2438 if (obj == NULL)
2439 src = valaddr + offset;
2440 else
2441 src = value_contents (obj).data () + offset;
2442
2443 if (is_dynamic_type (type))
2444 {
2445 /* The length of TYPE might by dynamic, so we need to resolve
2446 TYPE in order to know its actual size, which we then use
2447 to create the contents buffer of the value we return.
2448 The difficulty is that the data containing our object is
2449 packed, and therefore maybe not at a byte boundary. So, what
2450 we do, is unpack the data into a byte-aligned buffer, and then
2451 use that buffer as our object's value for resolving the type. */
2452 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2453 staging.resize (staging_len);
2454
2455 ada_unpack_from_contents (src, bit_offset, bit_size,
2456 staging.data (), staging.size (),
2457 is_big_endian, has_negatives (type),
2458 is_scalar);
2459 type = resolve_dynamic_type (type, staging, 0);
2460 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2461 {
2462 /* This happens when the length of the object is dynamic,
2463 and is actually smaller than the space reserved for it.
2464 For instance, in an array of variant records, the bit_size
2465 we're given is the array stride, which is constant and
2466 normally equal to the maximum size of its element.
2467 But, in reality, each element only actually spans a portion
2468 of that stride. */
2469 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2470 }
2471 }
2472
2473 if (obj == NULL)
2474 {
2475 v = allocate_value (type);
2476 src = valaddr + offset;
2477 }
2478 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2479 {
2480 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2481 gdb_byte *buf;
2482
2483 v = value_at (type, value_address (obj) + offset);
2484 buf = (gdb_byte *) alloca (src_len);
2485 read_memory (value_address (v), buf, src_len);
2486 src = buf;
2487 }
2488 else
2489 {
2490 v = allocate_value (type);
2491 src = value_contents (obj).data () + offset;
2492 }
2493
2494 if (obj != NULL)
2495 {
2496 long new_offset = offset;
2497
2498 set_value_component_location (v, obj);
2499 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2500 set_value_bitsize (v, bit_size);
2501 if (value_bitpos (v) >= HOST_CHAR_BIT)
2502 {
2503 ++new_offset;
2504 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2505 }
2506 set_value_offset (v, new_offset);
2507
2508 /* Also set the parent value. This is needed when trying to
2509 assign a new value (in inferior memory). */
2510 set_value_parent (v, obj);
2511 }
2512 else
2513 set_value_bitsize (v, bit_size);
2514 unpacked = value_contents_writeable (v).data ();
2515
2516 if (bit_size == 0)
2517 {
2518 memset (unpacked, 0, TYPE_LENGTH (type));
2519 return v;
2520 }
2521
2522 if (staging.size () == TYPE_LENGTH (type))
2523 {
2524 /* Small short-cut: If we've unpacked the data into a buffer
2525 of the same size as TYPE's length, then we can reuse that,
2526 instead of doing the unpacking again. */
2527 memcpy (unpacked, staging.data (), staging.size ());
2528 }
2529 else
2530 ada_unpack_from_contents (src, bit_offset, bit_size,
2531 unpacked, TYPE_LENGTH (type),
2532 is_big_endian, has_negatives (type), is_scalar);
2533
2534 return v;
2535 }
2536
2537 /* Store the contents of FROMVAL into the location of TOVAL.
2538 Return a new value with the location of TOVAL and contents of
2539 FROMVAL. Handles assignment into packed fields that have
2540 floating-point or non-scalar types. */
2541
2542 static struct value *
2543 ada_value_assign (struct value *toval, struct value *fromval)
2544 {
2545 struct type *type = value_type (toval);
2546 int bits = value_bitsize (toval);
2547
2548 toval = ada_coerce_ref (toval);
2549 fromval = ada_coerce_ref (fromval);
2550
2551 if (ada_is_direct_array_type (value_type (toval)))
2552 toval = ada_coerce_to_simple_array (toval);
2553 if (ada_is_direct_array_type (value_type (fromval)))
2554 fromval = ada_coerce_to_simple_array (fromval);
2555
2556 if (!deprecated_value_modifiable (toval))
2557 error (_("Left operand of assignment is not a modifiable lvalue."));
2558
2559 if (VALUE_LVAL (toval) == lval_memory
2560 && bits > 0
2561 && (type->code () == TYPE_CODE_FLT
2562 || type->code () == TYPE_CODE_STRUCT))
2563 {
2564 int len = (value_bitpos (toval)
2565 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2566 int from_size;
2567 gdb_byte *buffer = (gdb_byte *) alloca (len);
2568 struct value *val;
2569 CORE_ADDR to_addr = value_address (toval);
2570
2571 if (type->code () == TYPE_CODE_FLT)
2572 fromval = value_cast (type, fromval);
2573
2574 read_memory (to_addr, buffer, len);
2575 from_size = value_bitsize (fromval);
2576 if (from_size == 0)
2577 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2578
2579 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
2580 ULONGEST from_offset = 0;
2581 if (is_big_endian && is_scalar_type (value_type (fromval)))
2582 from_offset = from_size - bits;
2583 copy_bitwise (buffer, value_bitpos (toval),
2584 value_contents (fromval).data (), from_offset,
2585 bits, is_big_endian);
2586 write_memory_with_notification (to_addr, buffer, len);
2587
2588 val = value_copy (toval);
2589 memcpy (value_contents_raw (val).data (),
2590 value_contents (fromval).data (),
2591 TYPE_LENGTH (type));
2592 deprecated_set_value_type (val, type);
2593
2594 return val;
2595 }
2596
2597 return value_assign (toval, fromval);
2598 }
2599
2600
2601 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2602 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2603 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2604 COMPONENT, and not the inferior's memory. The current contents
2605 of COMPONENT are ignored.
2606
2607 Although not part of the initial design, this function also works
2608 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2609 had a null address, and COMPONENT had an address which is equal to
2610 its offset inside CONTAINER. */
2611
2612 static void
2613 value_assign_to_component (struct value *container, struct value *component,
2614 struct value *val)
2615 {
2616 LONGEST offset_in_container =
2617 (LONGEST) (value_address (component) - value_address (container));
2618 int bit_offset_in_container =
2619 value_bitpos (component) - value_bitpos (container);
2620 int bits;
2621
2622 val = value_cast (value_type (component), val);
2623
2624 if (value_bitsize (component) == 0)
2625 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2626 else
2627 bits = value_bitsize (component);
2628
2629 if (type_byte_order (value_type (container)) == BFD_ENDIAN_BIG)
2630 {
2631 int src_offset;
2632
2633 if (is_scalar_type (check_typedef (value_type (component))))
2634 src_offset
2635 = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits;
2636 else
2637 src_offset = 0;
2638 copy_bitwise ((value_contents_writeable (container).data ()
2639 + offset_in_container),
2640 value_bitpos (container) + bit_offset_in_container,
2641 value_contents (val).data (), src_offset, bits, 1);
2642 }
2643 else
2644 copy_bitwise ((value_contents_writeable (container).data ()
2645 + offset_in_container),
2646 value_bitpos (container) + bit_offset_in_container,
2647 value_contents (val).data (), 0, bits, 0);
2648 }
2649
2650 /* Determine if TYPE is an access to an unconstrained array. */
2651
2652 bool
2653 ada_is_access_to_unconstrained_array (struct type *type)
2654 {
2655 return (type->code () == TYPE_CODE_TYPEDEF
2656 && is_thick_pntr (ada_typedef_target_type (type)));
2657 }
2658
2659 /* The value of the element of array ARR at the ARITY indices given in IND.
2660 ARR may be either a simple array, GNAT array descriptor, or pointer
2661 thereto. */
2662
2663 struct value *
2664 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2665 {
2666 int k;
2667 struct value *elt;
2668 struct type *elt_type;
2669
2670 elt = ada_coerce_to_simple_array (arr);
2671
2672 elt_type = ada_check_typedef (value_type (elt));
2673 if (elt_type->code () == TYPE_CODE_ARRAY
2674 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2675 return value_subscript_packed (elt, arity, ind);
2676
2677 for (k = 0; k < arity; k += 1)
2678 {
2679 struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type);
2680
2681 if (elt_type->code () != TYPE_CODE_ARRAY)
2682 error (_("too many subscripts (%d expected)"), k);
2683
2684 elt = value_subscript (elt, pos_atr (ind[k]));
2685
2686 if (ada_is_access_to_unconstrained_array (saved_elt_type)
2687 && value_type (elt)->code () != TYPE_CODE_TYPEDEF)
2688 {
2689 /* The element is a typedef to an unconstrained array,
2690 except that the value_subscript call stripped the
2691 typedef layer. The typedef layer is GNAT's way to
2692 specify that the element is, at the source level, an
2693 access to the unconstrained array, rather than the
2694 unconstrained array. So, we need to restore that
2695 typedef layer, which we can do by forcing the element's
2696 type back to its original type. Otherwise, the returned
2697 value is going to be printed as the array, rather
2698 than as an access. Another symptom of the same issue
2699 would be that an expression trying to dereference the
2700 element would also be improperly rejected. */
2701 deprecated_set_value_type (elt, saved_elt_type);
2702 }
2703
2704 elt_type = ada_check_typedef (value_type (elt));
2705 }
2706
2707 return elt;
2708 }
2709
2710 /* Assuming ARR is a pointer to a GDB array, the value of the element
2711 of *ARR at the ARITY indices given in IND.
2712 Does not read the entire array into memory.
2713
2714 Note: Unlike what one would expect, this function is used instead of
2715 ada_value_subscript for basically all non-packed array types. The reason
2716 for this is that a side effect of doing our own pointer arithmetics instead
2717 of relying on value_subscript is that there is no implicit typedef peeling.
2718 This is important for arrays of array accesses, where it allows us to
2719 preserve the fact that the array's element is an array access, where the
2720 access part os encoded in a typedef layer. */
2721
2722 static struct value *
2723 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2724 {
2725 int k;
2726 struct value *array_ind = ada_value_ind (arr);
2727 struct type *type
2728 = check_typedef (value_enclosing_type (array_ind));
2729
2730 if (type->code () == TYPE_CODE_ARRAY
2731 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2732 return value_subscript_packed (array_ind, arity, ind);
2733
2734 for (k = 0; k < arity; k += 1)
2735 {
2736 LONGEST lwb, upb;
2737
2738 if (type->code () != TYPE_CODE_ARRAY)
2739 error (_("too many subscripts (%d expected)"), k);
2740 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2741 value_copy (arr));
2742 get_discrete_bounds (type->index_type (), &lwb, &upb);
2743 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2744 type = TYPE_TARGET_TYPE (type);
2745 }
2746
2747 return value_ind (arr);
2748 }
2749
2750 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2751 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2752 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2753 this array is LOW, as per Ada rules. */
2754 static struct value *
2755 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2756 int low, int high)
2757 {
2758 struct type *type0 = ada_check_typedef (type);
2759 struct type *base_index_type = TYPE_TARGET_TYPE (type0->index_type ());
2760 struct type *index_type
2761 = create_static_range_type (NULL, base_index_type, low, high);
2762 struct type *slice_type = create_array_type_with_stride
2763 (NULL, TYPE_TARGET_TYPE (type0), index_type,
2764 type0->dyn_prop (DYN_PROP_BYTE_STRIDE),
2765 TYPE_FIELD_BITSIZE (type0, 0));
2766 int base_low = ada_discrete_type_low_bound (type0->index_type ());
2767 gdb::optional<LONGEST> base_low_pos, low_pos;
2768 CORE_ADDR base;
2769
2770 low_pos = discrete_position (base_index_type, low);
2771 base_low_pos = discrete_position (base_index_type, base_low);
2772
2773 if (!low_pos.has_value () || !base_low_pos.has_value ())
2774 {
2775 warning (_("unable to get positions in slice, use bounds instead"));
2776 low_pos = low;
2777 base_low_pos = base_low;
2778 }
2779
2780 ULONGEST stride = TYPE_FIELD_BITSIZE (slice_type, 0) / 8;
2781 if (stride == 0)
2782 stride = TYPE_LENGTH (TYPE_TARGET_TYPE (type0));
2783
2784 base = value_as_address (array_ptr) + (*low_pos - *base_low_pos) * stride;
2785 return value_at_lazy (slice_type, base);
2786 }
2787
2788
2789 static struct value *
2790 ada_value_slice (struct value *array, int low, int high)
2791 {
2792 struct type *type = ada_check_typedef (value_type (array));
2793 struct type *base_index_type = TYPE_TARGET_TYPE (type->index_type ());
2794 struct type *index_type
2795 = create_static_range_type (NULL, type->index_type (), low, high);
2796 struct type *slice_type = create_array_type_with_stride
2797 (NULL, TYPE_TARGET_TYPE (type), index_type,
2798 type->dyn_prop (DYN_PROP_BYTE_STRIDE),
2799 TYPE_FIELD_BITSIZE (type, 0));
2800 gdb::optional<LONGEST> low_pos, high_pos;
2801
2802
2803 low_pos = discrete_position (base_index_type, low);
2804 high_pos = discrete_position (base_index_type, high);
2805
2806 if (!low_pos.has_value () || !high_pos.has_value ())
2807 {
2808 warning (_("unable to get positions in slice, use bounds instead"));
2809 low_pos = low;
2810 high_pos = high;
2811 }
2812
2813 return value_cast (slice_type,
2814 value_slice (array, low, *high_pos - *low_pos + 1));
2815 }
2816
2817 /* If type is a record type in the form of a standard GNAT array
2818 descriptor, returns the number of dimensions for type. If arr is a
2819 simple array, returns the number of "array of"s that prefix its
2820 type designation. Otherwise, returns 0. */
2821
2822 int
2823 ada_array_arity (struct type *type)
2824 {
2825 int arity;
2826
2827 if (type == NULL)
2828 return 0;
2829
2830 type = desc_base_type (type);
2831
2832 arity = 0;
2833 if (type->code () == TYPE_CODE_STRUCT)
2834 return desc_arity (desc_bounds_type (type));
2835 else
2836 while (type->code () == TYPE_CODE_ARRAY)
2837 {
2838 arity += 1;
2839 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2840 }
2841
2842 return arity;
2843 }
2844
2845 /* If TYPE is a record type in the form of a standard GNAT array
2846 descriptor or a simple array type, returns the element type for
2847 TYPE after indexing by NINDICES indices, or by all indices if
2848 NINDICES is -1. Otherwise, returns NULL. */
2849
2850 struct type *
2851 ada_array_element_type (struct type *type, int nindices)
2852 {
2853 type = desc_base_type (type);
2854
2855 if (type->code () == TYPE_CODE_STRUCT)
2856 {
2857 int k;
2858 struct type *p_array_type;
2859
2860 p_array_type = desc_data_target_type (type);
2861
2862 k = ada_array_arity (type);
2863 if (k == 0)
2864 return NULL;
2865
2866 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2867 if (nindices >= 0 && k > nindices)
2868 k = nindices;
2869 while (k > 0 && p_array_type != NULL)
2870 {
2871 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2872 k -= 1;
2873 }
2874 return p_array_type;
2875 }
2876 else if (type->code () == TYPE_CODE_ARRAY)
2877 {
2878 while (nindices != 0 && type->code () == TYPE_CODE_ARRAY)
2879 {
2880 type = TYPE_TARGET_TYPE (type);
2881 nindices -= 1;
2882 }
2883 return type;
2884 }
2885
2886 return NULL;
2887 }
2888
2889 /* See ada-lang.h. */
2890
2891 struct type *
2892 ada_index_type (struct type *type, int n, const char *name)
2893 {
2894 struct type *result_type;
2895
2896 type = desc_base_type (type);
2897
2898 if (n < 0 || n > ada_array_arity (type))
2899 error (_("invalid dimension number to '%s"), name);
2900
2901 if (ada_is_simple_array_type (type))
2902 {
2903 int i;
2904
2905 for (i = 1; i < n; i += 1)
2906 {
2907 type = ada_check_typedef (type);
2908 type = TYPE_TARGET_TYPE (type);
2909 }
2910 result_type = TYPE_TARGET_TYPE (ada_check_typedef (type)->index_type ());
2911 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2912 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2913 perhaps stabsread.c would make more sense. */
2914 if (result_type && result_type->code () == TYPE_CODE_UNDEF)
2915 result_type = NULL;
2916 }
2917 else
2918 {
2919 result_type = desc_index_type (desc_bounds_type (type), n);
2920 if (result_type == NULL)
2921 error (_("attempt to take bound of something that is not an array"));
2922 }
2923
2924 return result_type;
2925 }
2926
2927 /* Given that arr is an array type, returns the lower bound of the
2928 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2929 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2930 array-descriptor type. It works for other arrays with bounds supplied
2931 by run-time quantities other than discriminants. */
2932
2933 static LONGEST
2934 ada_array_bound_from_type (struct type *arr_type, int n, int which)
2935 {
2936 struct type *type, *index_type_desc, *index_type;
2937 int i;
2938
2939 gdb_assert (which == 0 || which == 1);
2940
2941 if (ada_is_constrained_packed_array_type (arr_type))
2942 arr_type = decode_constrained_packed_array_type (arr_type);
2943
2944 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2945 return (LONGEST) - which;
2946
2947 if (arr_type->code () == TYPE_CODE_PTR)
2948 type = TYPE_TARGET_TYPE (arr_type);
2949 else
2950 type = arr_type;
2951
2952 if (type->is_fixed_instance ())
2953 {
2954 /* The array has already been fixed, so we do not need to
2955 check the parallel ___XA type again. That encoding has
2956 already been applied, so ignore it now. */
2957 index_type_desc = NULL;
2958 }
2959 else
2960 {
2961 index_type_desc = ada_find_parallel_type (type, "___XA");
2962 ada_fixup_array_indexes_type (index_type_desc);
2963 }
2964
2965 if (index_type_desc != NULL)
2966 index_type = to_fixed_range_type (index_type_desc->field (n - 1).type (),
2967 NULL);
2968 else
2969 {
2970 struct type *elt_type = check_typedef (type);
2971
2972 for (i = 1; i < n; i++)
2973 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
2974
2975 index_type = elt_type->index_type ();
2976 }
2977
2978 return
2979 (LONGEST) (which == 0
2980 ? ada_discrete_type_low_bound (index_type)
2981 : ada_discrete_type_high_bound (index_type));
2982 }
2983
2984 /* Given that arr is an array value, returns the lower bound of the
2985 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2986 WHICH is 1. This routine will also work for arrays with bounds
2987 supplied by run-time quantities other than discriminants. */
2988
2989 static LONGEST
2990 ada_array_bound (struct value *arr, int n, int which)
2991 {
2992 struct type *arr_type;
2993
2994 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
2995 arr = value_ind (arr);
2996 arr_type = value_enclosing_type (arr);
2997
2998 if (ada_is_constrained_packed_array_type (arr_type))
2999 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
3000 else if (ada_is_simple_array_type (arr_type))
3001 return ada_array_bound_from_type (arr_type, n, which);
3002 else
3003 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
3004 }
3005
3006 /* Given that arr is an array value, returns the length of the
3007 nth index. This routine will also work for arrays with bounds
3008 supplied by run-time quantities other than discriminants.
3009 Does not work for arrays indexed by enumeration types with representation
3010 clauses at the moment. */
3011
3012 static LONGEST
3013 ada_array_length (struct value *arr, int n)
3014 {
3015 struct type *arr_type, *index_type;
3016 int low, high;
3017
3018 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
3019 arr = value_ind (arr);
3020 arr_type = value_enclosing_type (arr);
3021
3022 if (ada_is_constrained_packed_array_type (arr_type))
3023 return ada_array_length (decode_constrained_packed_array (arr), n);
3024
3025 if (ada_is_simple_array_type (arr_type))
3026 {
3027 low = ada_array_bound_from_type (arr_type, n, 0);
3028 high = ada_array_bound_from_type (arr_type, n, 1);
3029 }
3030 else
3031 {
3032 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3033 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3034 }
3035
3036 arr_type = check_typedef (arr_type);
3037 index_type = ada_index_type (arr_type, n, "length");
3038 if (index_type != NULL)
3039 {
3040 struct type *base_type;
3041 if (index_type->code () == TYPE_CODE_RANGE)
3042 base_type = TYPE_TARGET_TYPE (index_type);
3043 else
3044 base_type = index_type;
3045
3046 low = pos_atr (value_from_longest (base_type, low));
3047 high = pos_atr (value_from_longest (base_type, high));
3048 }
3049 return high - low + 1;
3050 }
3051
3052 /* An array whose type is that of ARR_TYPE (an array type), with
3053 bounds LOW to HIGH, but whose contents are unimportant. If HIGH is
3054 less than LOW, then LOW-1 is used. */
3055
3056 static struct value *
3057 empty_array (struct type *arr_type, int low, int high)
3058 {
3059 struct type *arr_type0 = ada_check_typedef (arr_type);
3060 struct type *index_type
3061 = create_static_range_type
3062 (NULL, TYPE_TARGET_TYPE (arr_type0->index_type ()), low,
3063 high < low ? low - 1 : high);
3064 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3065
3066 return allocate_value (create_array_type (NULL, elt_type, index_type));
3067 }
3068 \f
3069
3070 /* Name resolution */
3071
3072 /* The "decoded" name for the user-definable Ada operator corresponding
3073 to OP. */
3074
3075 static const char *
3076 ada_decoded_op_name (enum exp_opcode op)
3077 {
3078 int i;
3079
3080 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3081 {
3082 if (ada_opname_table[i].op == op)
3083 return ada_opname_table[i].decoded;
3084 }
3085 error (_("Could not find operator name for opcode"));
3086 }
3087
3088 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3089 in a listing of choices during disambiguation (see sort_choices, below).
3090 The idea is that overloadings of a subprogram name from the
3091 same package should sort in their source order. We settle for ordering
3092 such symbols by their trailing number (__N or $N). */
3093
3094 static int
3095 encoded_ordered_before (const char *N0, const char *N1)
3096 {
3097 if (N1 == NULL)
3098 return 0;
3099 else if (N0 == NULL)
3100 return 1;
3101 else
3102 {
3103 int k0, k1;
3104
3105 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3106 ;
3107 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3108 ;
3109 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3110 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3111 {
3112 int n0, n1;
3113
3114 n0 = k0;
3115 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3116 n0 -= 1;
3117 n1 = k1;
3118 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3119 n1 -= 1;
3120 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3121 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3122 }
3123 return (strcmp (N0, N1) < 0);
3124 }
3125 }
3126
3127 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3128 encoded names. */
3129
3130 static void
3131 sort_choices (struct block_symbol syms[], int nsyms)
3132 {
3133 int i;
3134
3135 for (i = 1; i < nsyms; i += 1)
3136 {
3137 struct block_symbol sym = syms[i];
3138 int j;
3139
3140 for (j = i - 1; j >= 0; j -= 1)
3141 {
3142 if (encoded_ordered_before (syms[j].symbol->linkage_name (),
3143 sym.symbol->linkage_name ()))
3144 break;
3145 syms[j + 1] = syms[j];
3146 }
3147 syms[j + 1] = sym;
3148 }
3149 }
3150
3151 /* Whether GDB should display formals and return types for functions in the
3152 overloads selection menu. */
3153 static bool print_signatures = true;
3154
3155 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3156 all but functions, the signature is just the name of the symbol. For
3157 functions, this is the name of the function, the list of types for formals
3158 and the return type (if any). */
3159
3160 static void
3161 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3162 const struct type_print_options *flags)
3163 {
3164 struct type *type = SYMBOL_TYPE (sym);
3165
3166 fprintf_filtered (stream, "%s", sym->print_name ());
3167 if (!print_signatures
3168 || type == NULL
3169 || type->code () != TYPE_CODE_FUNC)
3170 return;
3171
3172 if (type->num_fields () > 0)
3173 {
3174 int i;
3175
3176 fprintf_filtered (stream, " (");
3177 for (i = 0; i < type->num_fields (); ++i)
3178 {
3179 if (i > 0)
3180 fprintf_filtered (stream, "; ");
3181 ada_print_type (type->field (i).type (), NULL, stream, -1, 0,
3182 flags);
3183 }
3184 fprintf_filtered (stream, ")");
3185 }
3186 if (TYPE_TARGET_TYPE (type) != NULL
3187 && TYPE_TARGET_TYPE (type)->code () != TYPE_CODE_VOID)
3188 {
3189 fprintf_filtered (stream, " return ");
3190 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3191 }
3192 }
3193
3194 /* Read and validate a set of numeric choices from the user in the
3195 range 0 .. N_CHOICES-1. Place the results in increasing
3196 order in CHOICES[0 .. N-1], and return N.
3197
3198 The user types choices as a sequence of numbers on one line
3199 separated by blanks, encoding them as follows:
3200
3201 + A choice of 0 means to cancel the selection, throwing an error.
3202 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3203 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3204
3205 The user is not allowed to choose more than MAX_RESULTS values.
3206
3207 ANNOTATION_SUFFIX, if present, is used to annotate the input
3208 prompts (for use with the -f switch). */
3209
3210 static int
3211 get_selections (int *choices, int n_choices, int max_results,
3212 int is_all_choice, const char *annotation_suffix)
3213 {
3214 const char *args;
3215 const char *prompt;
3216 int n_chosen;
3217 int first_choice = is_all_choice ? 2 : 1;
3218
3219 prompt = getenv ("PS2");
3220 if (prompt == NULL)
3221 prompt = "> ";
3222
3223 args = command_line_input (prompt, annotation_suffix);
3224
3225 if (args == NULL)
3226 error_no_arg (_("one or more choice numbers"));
3227
3228 n_chosen = 0;
3229
3230 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3231 order, as given in args. Choices are validated. */
3232 while (1)
3233 {
3234 char *args2;
3235 int choice, j;
3236
3237 args = skip_spaces (args);
3238 if (*args == '\0' && n_chosen == 0)
3239 error_no_arg (_("one or more choice numbers"));
3240 else if (*args == '\0')
3241 break;
3242
3243 choice = strtol (args, &args2, 10);
3244 if (args == args2 || choice < 0
3245 || choice > n_choices + first_choice - 1)
3246 error (_("Argument must be choice number"));
3247 args = args2;
3248
3249 if (choice == 0)
3250 error (_("cancelled"));
3251
3252 if (choice < first_choice)
3253 {
3254 n_chosen = n_choices;
3255 for (j = 0; j < n_choices; j += 1)
3256 choices[j] = j;
3257 break;
3258 }
3259 choice -= first_choice;
3260
3261 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3262 {
3263 }
3264
3265 if (j < 0 || choice != choices[j])
3266 {
3267 int k;
3268
3269 for (k = n_chosen - 1; k > j; k -= 1)
3270 choices[k + 1] = choices[k];
3271 choices[j + 1] = choice;
3272 n_chosen += 1;
3273 }
3274 }
3275
3276 if (n_chosen > max_results)
3277 error (_("Select no more than %d of the above"), max_results);
3278
3279 return n_chosen;
3280 }
3281
3282 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3283 by asking the user (if necessary), returning the number selected,
3284 and setting the first elements of SYMS items. Error if no symbols
3285 selected. */
3286
3287 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3288 to be re-integrated one of these days. */
3289
3290 static int
3291 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3292 {
3293 int i;
3294 int *chosen = XALLOCAVEC (int , nsyms);
3295 int n_chosen;
3296 int first_choice = (max_results == 1) ? 1 : 2;
3297 const char *select_mode = multiple_symbols_select_mode ();
3298
3299 if (max_results < 1)
3300 error (_("Request to select 0 symbols!"));
3301 if (nsyms <= 1)
3302 return nsyms;
3303
3304 if (select_mode == multiple_symbols_cancel)
3305 error (_("\
3306 canceled because the command is ambiguous\n\
3307 See set/show multiple-symbol."));
3308
3309 /* If select_mode is "all", then return all possible symbols.
3310 Only do that if more than one symbol can be selected, of course.
3311 Otherwise, display the menu as usual. */
3312 if (select_mode == multiple_symbols_all && max_results > 1)
3313 return nsyms;
3314
3315 printf_filtered (_("[0] cancel\n"));
3316 if (max_results > 1)
3317 printf_filtered (_("[1] all\n"));
3318
3319 sort_choices (syms, nsyms);
3320
3321 for (i = 0; i < nsyms; i += 1)
3322 {
3323 if (syms[i].symbol == NULL)
3324 continue;
3325
3326 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3327 {
3328 struct symtab_and_line sal =
3329 find_function_start_sal (syms[i].symbol, 1);
3330
3331 printf_filtered ("[%d] ", i + first_choice);
3332 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3333 &type_print_raw_options);
3334 if (sal.symtab == NULL)
3335 printf_filtered (_(" at %p[<no source file available>%p]:%d\n"),
3336 metadata_style.style ().ptr (), nullptr, sal.line);
3337 else
3338 printf_filtered
3339 (_(" at %ps:%d\n"),
3340 styled_string (file_name_style.style (),
3341 symtab_to_filename_for_display (sal.symtab)),
3342 sal.line);
3343 continue;
3344 }
3345 else
3346 {
3347 int is_enumeral =
3348 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3349 && SYMBOL_TYPE (syms[i].symbol) != NULL
3350 && SYMBOL_TYPE (syms[i].symbol)->code () == TYPE_CODE_ENUM);
3351 struct symtab *symtab = NULL;
3352
3353 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3354 symtab = symbol_symtab (syms[i].symbol);
3355
3356 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3357 {
3358 printf_filtered ("[%d] ", i + first_choice);
3359 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3360 &type_print_raw_options);
3361 printf_filtered (_(" at %s:%d\n"),
3362 symtab_to_filename_for_display (symtab),
3363 SYMBOL_LINE (syms[i].symbol));
3364 }
3365 else if (is_enumeral
3366 && SYMBOL_TYPE (syms[i].symbol)->name () != NULL)
3367 {
3368 printf_filtered (("[%d] "), i + first_choice);
3369 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3370 gdb_stdout, -1, 0, &type_print_raw_options);
3371 printf_filtered (_("'(%s) (enumeral)\n"),
3372 syms[i].symbol->print_name ());
3373 }
3374 else
3375 {
3376 printf_filtered ("[%d] ", i + first_choice);
3377 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3378 &type_print_raw_options);
3379
3380 if (symtab != NULL)
3381 printf_filtered (is_enumeral
3382 ? _(" in %s (enumeral)\n")
3383 : _(" at %s:?\n"),
3384 symtab_to_filename_for_display (symtab));
3385 else
3386 printf_filtered (is_enumeral
3387 ? _(" (enumeral)\n")
3388 : _(" at ?\n"));
3389 }
3390 }
3391 }
3392
3393 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3394 "overload-choice");
3395
3396 for (i = 0; i < n_chosen; i += 1)
3397 syms[i] = syms[chosen[i]];
3398
3399 return n_chosen;
3400 }
3401
3402 /* See ada-lang.h. */
3403
3404 block_symbol
3405 ada_find_operator_symbol (enum exp_opcode op, bool parse_completion,
3406 int nargs, value *argvec[])
3407 {
3408 if (possible_user_operator_p (op, argvec))
3409 {
3410 std::vector<struct block_symbol> candidates
3411 = ada_lookup_symbol_list (ada_decoded_op_name (op),
3412 NULL, VAR_DOMAIN);
3413
3414 int i = ada_resolve_function (candidates, argvec,
3415 nargs, ada_decoded_op_name (op), NULL,
3416 parse_completion);
3417 if (i >= 0)
3418 return candidates[i];
3419 }
3420 return {};
3421 }
3422
3423 /* See ada-lang.h. */
3424
3425 block_symbol
3426 ada_resolve_funcall (struct symbol *sym, const struct block *block,
3427 struct type *context_type,
3428 bool parse_completion,
3429 int nargs, value *argvec[],
3430 innermost_block_tracker *tracker)
3431 {
3432 std::vector<struct block_symbol> candidates
3433 = ada_lookup_symbol_list (sym->linkage_name (), block, VAR_DOMAIN);
3434
3435 int i;
3436 if (candidates.size () == 1)
3437 i = 0;
3438 else
3439 {
3440 i = ada_resolve_function
3441 (candidates,
3442 argvec, nargs,
3443 sym->linkage_name (),
3444 context_type, parse_completion);
3445 if (i < 0)
3446 error (_("Could not find a match for %s"), sym->print_name ());
3447 }
3448
3449 tracker->update (candidates[i]);
3450 return candidates[i];
3451 }
3452
3453 /* Resolve a mention of a name where the context type is an
3454 enumeration type. */
3455
3456 static int
3457 ada_resolve_enum (std::vector<struct block_symbol> &syms,
3458 const char *name, struct type *context_type,
3459 bool parse_completion)
3460 {
3461 gdb_assert (context_type->code () == TYPE_CODE_ENUM);
3462 context_type = ada_check_typedef (context_type);
3463
3464 for (int i = 0; i < syms.size (); ++i)
3465 {
3466 /* We already know the name matches, so we're just looking for
3467 an element of the correct enum type. */
3468 if (ada_check_typedef (SYMBOL_TYPE (syms[i].symbol)) == context_type)
3469 return i;
3470 }
3471
3472 error (_("No name '%s' in enumeration type '%s'"), name,
3473 ada_type_name (context_type));
3474 }
3475
3476 /* See ada-lang.h. */
3477
3478 block_symbol
3479 ada_resolve_variable (struct symbol *sym, const struct block *block,
3480 struct type *context_type,
3481 bool parse_completion,
3482 int deprocedure_p,
3483 innermost_block_tracker *tracker)
3484 {
3485 std::vector<struct block_symbol> candidates
3486 = ada_lookup_symbol_list (sym->linkage_name (), block, VAR_DOMAIN);
3487
3488 if (std::any_of (candidates.begin (),
3489 candidates.end (),
3490 [] (block_symbol &bsym)
3491 {
3492 switch (SYMBOL_CLASS (bsym.symbol))
3493 {
3494 case LOC_REGISTER:
3495 case LOC_ARG:
3496 case LOC_REF_ARG:
3497 case LOC_REGPARM_ADDR:
3498 case LOC_LOCAL:
3499 case LOC_COMPUTED:
3500 return true;
3501 default:
3502 return false;
3503 }
3504 }))
3505 {
3506 /* Types tend to get re-introduced locally, so if there
3507 are any local symbols that are not types, first filter
3508 out all types. */
3509 candidates.erase
3510 (std::remove_if
3511 (candidates.begin (),
3512 candidates.end (),
3513 [] (block_symbol &bsym)
3514 {
3515 return SYMBOL_CLASS (bsym.symbol) == LOC_TYPEDEF;
3516 }),
3517 candidates.end ());
3518 }
3519
3520 /* Filter out artificial symbols. */
3521 candidates.erase
3522 (std::remove_if
3523 (candidates.begin (),
3524 candidates.end (),
3525 [] (block_symbol &bsym)
3526 {
3527 return bsym.symbol->artificial;
3528 }),
3529 candidates.end ());
3530
3531 int i;
3532 if (candidates.empty ())
3533 error (_("No definition found for %s"), sym->print_name ());
3534 else if (candidates.size () == 1)
3535 i = 0;
3536 else if (context_type != nullptr
3537 && context_type->code () == TYPE_CODE_ENUM)
3538 i = ada_resolve_enum (candidates, sym->linkage_name (), context_type,
3539 parse_completion);
3540 else if (deprocedure_p && !is_nonfunction (candidates))
3541 {
3542 i = ada_resolve_function
3543 (candidates, NULL, 0,
3544 sym->linkage_name (),
3545 context_type, parse_completion);
3546 if (i < 0)
3547 error (_("Could not find a match for %s"), sym->print_name ());
3548 }
3549 else
3550 {
3551 printf_filtered (_("Multiple matches for %s\n"), sym->print_name ());
3552 user_select_syms (candidates.data (), candidates.size (), 1);
3553 i = 0;
3554 }
3555
3556 tracker->update (candidates[i]);
3557 return candidates[i];
3558 }
3559
3560 /* Return non-zero if formal type FTYPE matches actual type ATYPE. */
3561 /* The term "match" here is rather loose. The match is heuristic and
3562 liberal. */
3563
3564 static int
3565 ada_type_match (struct type *ftype, struct type *atype)
3566 {
3567 ftype = ada_check_typedef (ftype);
3568 atype = ada_check_typedef (atype);
3569
3570 if (ftype->code () == TYPE_CODE_REF)
3571 ftype = TYPE_TARGET_TYPE (ftype);
3572 if (atype->code () == TYPE_CODE_REF)
3573 atype = TYPE_TARGET_TYPE (atype);
3574
3575 switch (ftype->code ())
3576 {
3577 default:
3578 return ftype->code () == atype->code ();
3579 case TYPE_CODE_PTR:
3580 if (atype->code () != TYPE_CODE_PTR)
3581 return 0;
3582 atype = TYPE_TARGET_TYPE (atype);
3583 /* This can only happen if the actual argument is 'null'. */
3584 if (atype->code () == TYPE_CODE_INT && TYPE_LENGTH (atype) == 0)
3585 return 1;
3586 return ada_type_match (TYPE_TARGET_TYPE (ftype), atype);
3587 case TYPE_CODE_INT:
3588 case TYPE_CODE_ENUM:
3589 case TYPE_CODE_RANGE:
3590 switch (atype->code ())
3591 {
3592 case TYPE_CODE_INT:
3593 case TYPE_CODE_ENUM:
3594 case TYPE_CODE_RANGE:
3595 return 1;
3596 default:
3597 return 0;
3598 }
3599
3600 case TYPE_CODE_ARRAY:
3601 return (atype->code () == TYPE_CODE_ARRAY
3602 || ada_is_array_descriptor_type (atype));
3603
3604 case TYPE_CODE_STRUCT:
3605 if (ada_is_array_descriptor_type (ftype))
3606 return (atype->code () == TYPE_CODE_ARRAY
3607 || ada_is_array_descriptor_type (atype));
3608 else
3609 return (atype->code () == TYPE_CODE_STRUCT
3610 && !ada_is_array_descriptor_type (atype));
3611
3612 case TYPE_CODE_UNION:
3613 case TYPE_CODE_FLT:
3614 return (atype->code () == ftype->code ());
3615 }
3616 }
3617
3618 /* Return non-zero if the formals of FUNC "sufficiently match" the
3619 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3620 may also be an enumeral, in which case it is treated as a 0-
3621 argument function. */
3622
3623 static int
3624 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3625 {
3626 int i;
3627 struct type *func_type = SYMBOL_TYPE (func);
3628
3629 if (SYMBOL_CLASS (func) == LOC_CONST
3630 && func_type->code () == TYPE_CODE_ENUM)
3631 return (n_actuals == 0);
3632 else if (func_type == NULL || func_type->code () != TYPE_CODE_FUNC)
3633 return 0;
3634
3635 if (func_type->num_fields () != n_actuals)
3636 return 0;
3637
3638 for (i = 0; i < n_actuals; i += 1)
3639 {
3640 if (actuals[i] == NULL)
3641 return 0;
3642 else
3643 {
3644 struct type *ftype = ada_check_typedef (func_type->field (i).type ());
3645 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3646
3647 if (!ada_type_match (ftype, atype))
3648 return 0;
3649 }
3650 }
3651 return 1;
3652 }
3653
3654 /* False iff function type FUNC_TYPE definitely does not produce a value
3655 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3656 FUNC_TYPE is not a valid function type with a non-null return type
3657 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3658
3659 static int
3660 return_match (struct type *func_type, struct type *context_type)
3661 {
3662 struct type *return_type;
3663
3664 if (func_type == NULL)
3665 return 1;
3666
3667 if (func_type->code () == TYPE_CODE_FUNC)
3668 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3669 else
3670 return_type = get_base_type (func_type);
3671 if (return_type == NULL)
3672 return 1;
3673
3674 context_type = get_base_type (context_type);
3675
3676 if (return_type->code () == TYPE_CODE_ENUM)
3677 return context_type == NULL || return_type == context_type;
3678 else if (context_type == NULL)
3679 return return_type->code () != TYPE_CODE_VOID;
3680 else
3681 return return_type->code () == context_type->code ();
3682 }
3683
3684
3685 /* Returns the index in SYMS that contains the symbol for the
3686 function (if any) that matches the types of the NARGS arguments in
3687 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3688 that returns that type, then eliminate matches that don't. If
3689 CONTEXT_TYPE is void and there is at least one match that does not
3690 return void, eliminate all matches that do.
3691
3692 Asks the user if there is more than one match remaining. Returns -1
3693 if there is no such symbol or none is selected. NAME is used
3694 solely for messages. May re-arrange and modify SYMS in
3695 the process; the index returned is for the modified vector. */
3696
3697 static int
3698 ada_resolve_function (std::vector<struct block_symbol> &syms,
3699 struct value **args, int nargs,
3700 const char *name, struct type *context_type,
3701 bool parse_completion)
3702 {
3703 int fallback;
3704 int k;
3705 int m; /* Number of hits */
3706
3707 m = 0;
3708 /* In the first pass of the loop, we only accept functions matching
3709 context_type. If none are found, we add a second pass of the loop
3710 where every function is accepted. */
3711 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3712 {
3713 for (k = 0; k < syms.size (); k += 1)
3714 {
3715 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3716
3717 if (ada_args_match (syms[k].symbol, args, nargs)
3718 && (fallback || return_match (type, context_type)))
3719 {
3720 syms[m] = syms[k];
3721 m += 1;
3722 }
3723 }
3724 }
3725
3726 /* If we got multiple matches, ask the user which one to use. Don't do this
3727 interactive thing during completion, though, as the purpose of the
3728 completion is providing a list of all possible matches. Prompting the
3729 user to filter it down would be completely unexpected in this case. */
3730 if (m == 0)
3731 return -1;
3732 else if (m > 1 && !parse_completion)
3733 {
3734 printf_filtered (_("Multiple matches for %s\n"), name);
3735 user_select_syms (syms.data (), m, 1);
3736 return 0;
3737 }
3738 return 0;
3739 }
3740
3741 /* Type-class predicates */
3742
3743 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3744 or FLOAT). */
3745
3746 static int
3747 numeric_type_p (struct type *type)
3748 {
3749 if (type == NULL)
3750 return 0;
3751 else
3752 {
3753 switch (type->code ())
3754 {
3755 case TYPE_CODE_INT:
3756 case TYPE_CODE_FLT:
3757 case TYPE_CODE_FIXED_POINT:
3758 return 1;
3759 case TYPE_CODE_RANGE:
3760 return (type == TYPE_TARGET_TYPE (type)
3761 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3762 default:
3763 return 0;
3764 }
3765 }
3766 }
3767
3768 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3769
3770 static int
3771 integer_type_p (struct type *type)
3772 {
3773 if (type == NULL)
3774 return 0;
3775 else
3776 {
3777 switch (type->code ())
3778 {
3779 case TYPE_CODE_INT:
3780 return 1;
3781 case TYPE_CODE_RANGE:
3782 return (type == TYPE_TARGET_TYPE (type)
3783 || integer_type_p (TYPE_TARGET_TYPE (type)));
3784 default:
3785 return 0;
3786 }
3787 }
3788 }
3789
3790 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3791
3792 static int
3793 scalar_type_p (struct type *type)
3794 {
3795 if (type == NULL)
3796 return 0;
3797 else
3798 {
3799 switch (type->code ())
3800 {
3801 case TYPE_CODE_INT:
3802 case TYPE_CODE_RANGE:
3803 case TYPE_CODE_ENUM:
3804 case TYPE_CODE_FLT:
3805 case TYPE_CODE_FIXED_POINT:
3806 return 1;
3807 default:
3808 return 0;
3809 }
3810 }
3811 }
3812
3813 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3814
3815 static int
3816 discrete_type_p (struct type *type)
3817 {
3818 if (type == NULL)
3819 return 0;
3820 else
3821 {
3822 switch (type->code ())
3823 {
3824 case TYPE_CODE_INT:
3825 case TYPE_CODE_RANGE:
3826 case TYPE_CODE_ENUM:
3827 case TYPE_CODE_BOOL:
3828 return 1;
3829 default:
3830 return 0;
3831 }
3832 }
3833 }
3834
3835 /* Returns non-zero if OP with operands in the vector ARGS could be
3836 a user-defined function. Errs on the side of pre-defined operators
3837 (i.e., result 0). */
3838
3839 static int
3840 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3841 {
3842 struct type *type0 =
3843 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3844 struct type *type1 =
3845 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3846
3847 if (type0 == NULL)
3848 return 0;
3849
3850 switch (op)
3851 {
3852 default:
3853 return 0;
3854
3855 case BINOP_ADD:
3856 case BINOP_SUB:
3857 case BINOP_MUL:
3858 case BINOP_DIV:
3859 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3860
3861 case BINOP_REM:
3862 case BINOP_MOD:
3863 case BINOP_BITWISE_AND:
3864 case BINOP_BITWISE_IOR:
3865 case BINOP_BITWISE_XOR:
3866 return (!(integer_type_p (type0) && integer_type_p (type1)));
3867
3868 case BINOP_EQUAL:
3869 case BINOP_NOTEQUAL:
3870 case BINOP_LESS:
3871 case BINOP_GTR:
3872 case BINOP_LEQ:
3873 case BINOP_GEQ:
3874 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3875
3876 case BINOP_CONCAT:
3877 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3878
3879 case BINOP_EXP:
3880 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3881
3882 case UNOP_NEG:
3883 case UNOP_PLUS:
3884 case UNOP_LOGICAL_NOT:
3885 case UNOP_ABS:
3886 return (!numeric_type_p (type0));
3887
3888 }
3889 }
3890 \f
3891 /* Renaming */
3892
3893 /* NOTES:
3894
3895 1. In the following, we assume that a renaming type's name may
3896 have an ___XD suffix. It would be nice if this went away at some
3897 point.
3898 2. We handle both the (old) purely type-based representation of
3899 renamings and the (new) variable-based encoding. At some point,
3900 it is devoutly to be hoped that the former goes away
3901 (FIXME: hilfinger-2007-07-09).
3902 3. Subprogram renamings are not implemented, although the XRS
3903 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3904
3905 /* If SYM encodes a renaming,
3906
3907 <renaming> renames <renamed entity>,
3908
3909 sets *LEN to the length of the renamed entity's name,
3910 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3911 the string describing the subcomponent selected from the renamed
3912 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3913 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3914 are undefined). Otherwise, returns a value indicating the category
3915 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3916 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3917 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3918 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3919 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3920 may be NULL, in which case they are not assigned.
3921
3922 [Currently, however, GCC does not generate subprogram renamings.] */
3923
3924 enum ada_renaming_category
3925 ada_parse_renaming (struct symbol *sym,
3926 const char **renamed_entity, int *len,
3927 const char **renaming_expr)
3928 {
3929 enum ada_renaming_category kind;
3930 const char *info;
3931 const char *suffix;
3932
3933 if (sym == NULL)
3934 return ADA_NOT_RENAMING;
3935 switch (SYMBOL_CLASS (sym))
3936 {
3937 default:
3938 return ADA_NOT_RENAMING;
3939 case LOC_LOCAL:
3940 case LOC_STATIC:
3941 case LOC_COMPUTED:
3942 case LOC_OPTIMIZED_OUT:
3943 info = strstr (sym->linkage_name (), "___XR");
3944 if (info == NULL)
3945 return ADA_NOT_RENAMING;
3946 switch (info[5])
3947 {
3948 case '_':
3949 kind = ADA_OBJECT_RENAMING;
3950 info += 6;
3951 break;
3952 case 'E':
3953 kind = ADA_EXCEPTION_RENAMING;
3954 info += 7;
3955 break;
3956 case 'P':
3957 kind = ADA_PACKAGE_RENAMING;
3958 info += 7;
3959 break;
3960 case 'S':
3961 kind = ADA_SUBPROGRAM_RENAMING;
3962 info += 7;
3963 break;
3964 default:
3965 return ADA_NOT_RENAMING;
3966 }
3967 }
3968
3969 if (renamed_entity != NULL)
3970 *renamed_entity = info;
3971 suffix = strstr (info, "___XE");
3972 if (suffix == NULL || suffix == info)
3973 return ADA_NOT_RENAMING;
3974 if (len != NULL)
3975 *len = strlen (info) - strlen (suffix);
3976 suffix += 5;
3977 if (renaming_expr != NULL)
3978 *renaming_expr = suffix;
3979 return kind;
3980 }
3981
3982 /* Compute the value of the given RENAMING_SYM, which is expected to
3983 be a symbol encoding a renaming expression. BLOCK is the block
3984 used to evaluate the renaming. */
3985
3986 static struct value *
3987 ada_read_renaming_var_value (struct symbol *renaming_sym,
3988 const struct block *block)
3989 {
3990 const char *sym_name;
3991
3992 sym_name = renaming_sym->linkage_name ();
3993 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
3994 return evaluate_expression (expr.get ());
3995 }
3996 \f
3997
3998 /* Evaluation: Function Calls */
3999
4000 /* Return an lvalue containing the value VAL. This is the identity on
4001 lvalues, and otherwise has the side-effect of allocating memory
4002 in the inferior where a copy of the value contents is copied. */
4003
4004 static struct value *
4005 ensure_lval (struct value *val)
4006 {
4007 if (VALUE_LVAL (val) == not_lval
4008 || VALUE_LVAL (val) == lval_internalvar)
4009 {
4010 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4011 const CORE_ADDR addr =
4012 value_as_long (value_allocate_space_in_inferior (len));
4013
4014 VALUE_LVAL (val) = lval_memory;
4015 set_value_address (val, addr);
4016 write_memory (addr, value_contents (val).data (), len);
4017 }
4018
4019 return val;
4020 }
4021
4022 /* Given ARG, a value of type (pointer or reference to a)*
4023 structure/union, extract the component named NAME from the ultimate
4024 target structure/union and return it as a value with its
4025 appropriate type.
4026
4027 The routine searches for NAME among all members of the structure itself
4028 and (recursively) among all members of any wrapper members
4029 (e.g., '_parent').
4030
4031 If NO_ERR, then simply return NULL in case of error, rather than
4032 calling error. */
4033
4034 static struct value *
4035 ada_value_struct_elt (struct value *arg, const char *name, int no_err)
4036 {
4037 struct type *t, *t1;
4038 struct value *v;
4039 int check_tag;
4040
4041 v = NULL;
4042 t1 = t = ada_check_typedef (value_type (arg));
4043 if (t->code () == TYPE_CODE_REF)
4044 {
4045 t1 = TYPE_TARGET_TYPE (t);
4046 if (t1 == NULL)
4047 goto BadValue;
4048 t1 = ada_check_typedef (t1);
4049 if (t1->code () == TYPE_CODE_PTR)
4050 {
4051 arg = coerce_ref (arg);
4052 t = t1;
4053 }
4054 }
4055
4056 while (t->code () == TYPE_CODE_PTR)
4057 {
4058 t1 = TYPE_TARGET_TYPE (t);
4059 if (t1 == NULL)
4060 goto BadValue;
4061 t1 = ada_check_typedef (t1);
4062 if (t1->code () == TYPE_CODE_PTR)
4063 {
4064 arg = value_ind (arg);
4065 t = t1;
4066 }
4067 else
4068 break;
4069 }
4070
4071 if (t1->code () != TYPE_CODE_STRUCT && t1->code () != TYPE_CODE_UNION)
4072 goto BadValue;
4073
4074 if (t1 == t)
4075 v = ada_search_struct_field (name, arg, 0, t);
4076 else
4077 {
4078 int bit_offset, bit_size, byte_offset;
4079 struct type *field_type;
4080 CORE_ADDR address;
4081
4082 if (t->code () == TYPE_CODE_PTR)
4083 address = value_address (ada_value_ind (arg));
4084 else
4085 address = value_address (ada_coerce_ref (arg));
4086
4087 /* Check to see if this is a tagged type. We also need to handle
4088 the case where the type is a reference to a tagged type, but
4089 we have to be careful to exclude pointers to tagged types.
4090 The latter should be shown as usual (as a pointer), whereas
4091 a reference should mostly be transparent to the user. */
4092
4093 if (ada_is_tagged_type (t1, 0)
4094 || (t1->code () == TYPE_CODE_REF
4095 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
4096 {
4097 /* We first try to find the searched field in the current type.
4098 If not found then let's look in the fixed type. */
4099
4100 if (!find_struct_field (name, t1, 0,
4101 nullptr, nullptr, nullptr,
4102 nullptr, nullptr))
4103 check_tag = 1;
4104 else
4105 check_tag = 0;
4106 }
4107 else
4108 check_tag = 0;
4109
4110 /* Convert to fixed type in all cases, so that we have proper
4111 offsets to each field in unconstrained record types. */
4112 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
4113 address, NULL, check_tag);
4114
4115 /* Resolve the dynamic type as well. */
4116 arg = value_from_contents_and_address (t1, nullptr, address);
4117 t1 = value_type (arg);
4118
4119 if (find_struct_field (name, t1, 0,
4120 &field_type, &byte_offset, &bit_offset,
4121 &bit_size, NULL))
4122 {
4123 if (bit_size != 0)
4124 {
4125 if (t->code () == TYPE_CODE_REF)
4126 arg = ada_coerce_ref (arg);
4127 else
4128 arg = ada_value_ind (arg);
4129 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
4130 bit_offset, bit_size,
4131 field_type);
4132 }
4133 else
4134 v = value_at_lazy (field_type, address + byte_offset);
4135 }
4136 }
4137
4138 if (v != NULL || no_err)
4139 return v;
4140 else
4141 error (_("There is no member named %s."), name);
4142
4143 BadValue:
4144 if (no_err)
4145 return NULL;
4146 else
4147 error (_("Attempt to extract a component of "
4148 "a value that is not a record."));
4149 }
4150
4151 /* Return the value ACTUAL, converted to be an appropriate value for a
4152 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4153 allocating any necessary descriptors (fat pointers), or copies of
4154 values not residing in memory, updating it as needed. */
4155
4156 struct value *
4157 ada_convert_actual (struct value *actual, struct type *formal_type0)
4158 {
4159 struct type *actual_type = ada_check_typedef (value_type (actual));
4160 struct type *formal_type = ada_check_typedef (formal_type0);
4161 struct type *formal_target =
4162 formal_type->code () == TYPE_CODE_PTR
4163 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4164 struct type *actual_target =
4165 actual_type->code () == TYPE_CODE_PTR
4166 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4167
4168 if (ada_is_array_descriptor_type (formal_target)
4169 && actual_target->code () == TYPE_CODE_ARRAY)
4170 return make_array_descriptor (formal_type, actual);
4171 else if (formal_type->code () == TYPE_CODE_PTR
4172 || formal_type->code () == TYPE_CODE_REF)
4173 {
4174 struct value *result;
4175
4176 if (formal_target->code () == TYPE_CODE_ARRAY
4177 && ada_is_array_descriptor_type (actual_target))
4178 result = desc_data (actual);
4179 else if (formal_type->code () != TYPE_CODE_PTR)
4180 {
4181 if (VALUE_LVAL (actual) != lval_memory)
4182 {
4183 struct value *val;
4184
4185 actual_type = ada_check_typedef (value_type (actual));
4186 val = allocate_value (actual_type);
4187 memcpy ((char *) value_contents_raw (val).data (),
4188 (char *) value_contents (actual).data (),
4189 TYPE_LENGTH (actual_type));
4190 actual = ensure_lval (val);
4191 }
4192 result = value_addr (actual);
4193 }
4194 else
4195 return actual;
4196 return value_cast_pointers (formal_type, result, 0);
4197 }
4198 else if (actual_type->code () == TYPE_CODE_PTR)
4199 return ada_value_ind (actual);
4200 else if (ada_is_aligner_type (formal_type))
4201 {
4202 /* We need to turn this parameter into an aligner type
4203 as well. */
4204 struct value *aligner = allocate_value (formal_type);
4205 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4206
4207 value_assign_to_component (aligner, component, actual);
4208 return aligner;
4209 }
4210
4211 return actual;
4212 }
4213
4214 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4215 type TYPE. This is usually an inefficient no-op except on some targets
4216 (such as AVR) where the representation of a pointer and an address
4217 differs. */
4218
4219 static CORE_ADDR
4220 value_pointer (struct value *value, struct type *type)
4221 {
4222 unsigned len = TYPE_LENGTH (type);
4223 gdb_byte *buf = (gdb_byte *) alloca (len);
4224 CORE_ADDR addr;
4225
4226 addr = value_address (value);
4227 gdbarch_address_to_pointer (type->arch (), type, buf, addr);
4228 addr = extract_unsigned_integer (buf, len, type_byte_order (type));
4229 return addr;
4230 }
4231
4232
4233 /* Push a descriptor of type TYPE for array value ARR on the stack at
4234 *SP, updating *SP to reflect the new descriptor. Return either
4235 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4236 to-descriptor type rather than a descriptor type), a struct value *
4237 representing a pointer to this descriptor. */
4238
4239 static struct value *
4240 make_array_descriptor (struct type *type, struct value *arr)
4241 {
4242 struct type *bounds_type = desc_bounds_type (type);
4243 struct type *desc_type = desc_base_type (type);
4244 struct value *descriptor = allocate_value (desc_type);
4245 struct value *bounds = allocate_value (bounds_type);
4246 int i;
4247
4248 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4249 i > 0; i -= 1)
4250 {
4251 modify_field (value_type (bounds),
4252 value_contents_writeable (bounds).data (),
4253 ada_array_bound (arr, i, 0),
4254 desc_bound_bitpos (bounds_type, i, 0),
4255 desc_bound_bitsize (bounds_type, i, 0));
4256 modify_field (value_type (bounds),
4257 value_contents_writeable (bounds).data (),
4258 ada_array_bound (arr, i, 1),
4259 desc_bound_bitpos (bounds_type, i, 1),
4260 desc_bound_bitsize (bounds_type, i, 1));
4261 }
4262
4263 bounds = ensure_lval (bounds);
4264
4265 modify_field (value_type (descriptor),
4266 value_contents_writeable (descriptor).data (),
4267 value_pointer (ensure_lval (arr),
4268 desc_type->field (0).type ()),
4269 fat_pntr_data_bitpos (desc_type),
4270 fat_pntr_data_bitsize (desc_type));
4271
4272 modify_field (value_type (descriptor),
4273 value_contents_writeable (descriptor).data (),
4274 value_pointer (bounds,
4275 desc_type->field (1).type ()),
4276 fat_pntr_bounds_bitpos (desc_type),
4277 fat_pntr_bounds_bitsize (desc_type));
4278
4279 descriptor = ensure_lval (descriptor);
4280
4281 if (type->code () == TYPE_CODE_PTR)
4282 return value_addr (descriptor);
4283 else
4284 return descriptor;
4285 }
4286 \f
4287 /* Symbol Cache Module */
4288
4289 /* Performance measurements made as of 2010-01-15 indicate that
4290 this cache does bring some noticeable improvements. Depending
4291 on the type of entity being printed, the cache can make it as much
4292 as an order of magnitude faster than without it.
4293
4294 The descriptive type DWARF extension has significantly reduced
4295 the need for this cache, at least when DWARF is being used. However,
4296 even in this case, some expensive name-based symbol searches are still
4297 sometimes necessary - to find an XVZ variable, mostly. */
4298
4299 /* Return the symbol cache associated to the given program space PSPACE.
4300 If not allocated for this PSPACE yet, allocate and initialize one. */
4301
4302 static struct ada_symbol_cache *
4303 ada_get_symbol_cache (struct program_space *pspace)
4304 {
4305 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4306
4307 if (pspace_data->sym_cache == nullptr)
4308 pspace_data->sym_cache.reset (new ada_symbol_cache);
4309
4310 return pspace_data->sym_cache.get ();
4311 }
4312
4313 /* Clear all entries from the symbol cache. */
4314
4315 static void
4316 ada_clear_symbol_cache ()
4317 {
4318 struct ada_pspace_data *pspace_data
4319 = get_ada_pspace_data (current_program_space);
4320
4321 if (pspace_data->sym_cache != nullptr)
4322 pspace_data->sym_cache.reset ();
4323 }
4324
4325 /* Search our cache for an entry matching NAME and DOMAIN.
4326 Return it if found, or NULL otherwise. */
4327
4328 static struct cache_entry **
4329 find_entry (const char *name, domain_enum domain)
4330 {
4331 struct ada_symbol_cache *sym_cache
4332 = ada_get_symbol_cache (current_program_space);
4333 int h = msymbol_hash (name) % HASH_SIZE;
4334 struct cache_entry **e;
4335
4336 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4337 {
4338 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4339 return e;
4340 }
4341 return NULL;
4342 }
4343
4344 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4345 Return 1 if found, 0 otherwise.
4346
4347 If an entry was found and SYM is not NULL, set *SYM to the entry's
4348 SYM. Same principle for BLOCK if not NULL. */
4349
4350 static int
4351 lookup_cached_symbol (const char *name, domain_enum domain,
4352 struct symbol **sym, const struct block **block)
4353 {
4354 struct cache_entry **e = find_entry (name, domain);
4355
4356 if (e == NULL)
4357 return 0;
4358 if (sym != NULL)
4359 *sym = (*e)->sym;
4360 if (block != NULL)
4361 *block = (*e)->block;
4362 return 1;
4363 }
4364
4365 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4366 in domain DOMAIN, save this result in our symbol cache. */
4367
4368 static void
4369 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4370 const struct block *block)
4371 {
4372 struct ada_symbol_cache *sym_cache
4373 = ada_get_symbol_cache (current_program_space);
4374 int h;
4375 struct cache_entry *e;
4376
4377 /* Symbols for builtin types don't have a block.
4378 For now don't cache such symbols. */
4379 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4380 return;
4381
4382 /* If the symbol is a local symbol, then do not cache it, as a search
4383 for that symbol depends on the context. To determine whether
4384 the symbol is local or not, we check the block where we found it
4385 against the global and static blocks of its associated symtab. */
4386 if (sym
4387 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4388 GLOBAL_BLOCK) != block
4389 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4390 STATIC_BLOCK) != block)
4391 return;
4392
4393 h = msymbol_hash (name) % HASH_SIZE;
4394 e = XOBNEW (&sym_cache->cache_space, cache_entry);
4395 e->next = sym_cache->root[h];
4396 sym_cache->root[h] = e;
4397 e->name = obstack_strdup (&sym_cache->cache_space, name);
4398 e->sym = sym;
4399 e->domain = domain;
4400 e->block = block;
4401 }
4402 \f
4403 /* Symbol Lookup */
4404
4405 /* Return the symbol name match type that should be used used when
4406 searching for all symbols matching LOOKUP_NAME.
4407
4408 LOOKUP_NAME is expected to be a symbol name after transformation
4409 for Ada lookups. */
4410
4411 static symbol_name_match_type
4412 name_match_type_from_name (const char *lookup_name)
4413 {
4414 return (strstr (lookup_name, "__") == NULL
4415 ? symbol_name_match_type::WILD
4416 : symbol_name_match_type::FULL);
4417 }
4418
4419 /* Return the result of a standard (literal, C-like) lookup of NAME in
4420 given DOMAIN, visible from lexical block BLOCK. */
4421
4422 static struct symbol *
4423 standard_lookup (const char *name, const struct block *block,
4424 domain_enum domain)
4425 {
4426 /* Initialize it just to avoid a GCC false warning. */
4427 struct block_symbol sym = {};
4428
4429 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4430 return sym.symbol;
4431 ada_lookup_encoded_symbol (name, block, domain, &sym);
4432 cache_symbol (name, domain, sym.symbol, sym.block);
4433 return sym.symbol;
4434 }
4435
4436
4437 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4438 in the symbol fields of SYMS. We treat enumerals as functions,
4439 since they contend in overloading in the same way. */
4440 static int
4441 is_nonfunction (const std::vector<struct block_symbol> &syms)
4442 {
4443 for (const block_symbol &sym : syms)
4444 if (SYMBOL_TYPE (sym.symbol)->code () != TYPE_CODE_FUNC
4445 && (SYMBOL_TYPE (sym.symbol)->code () != TYPE_CODE_ENUM
4446 || SYMBOL_CLASS (sym.symbol) != LOC_CONST))
4447 return 1;
4448
4449 return 0;
4450 }
4451
4452 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4453 struct types. Otherwise, they may not. */
4454
4455 static int
4456 equiv_types (struct type *type0, struct type *type1)
4457 {
4458 if (type0 == type1)
4459 return 1;
4460 if (type0 == NULL || type1 == NULL
4461 || type0->code () != type1->code ())
4462 return 0;
4463 if ((type0->code () == TYPE_CODE_STRUCT
4464 || type0->code () == TYPE_CODE_ENUM)
4465 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4466 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4467 return 1;
4468
4469 return 0;
4470 }
4471
4472 /* True iff SYM0 represents the same entity as SYM1, or one that is
4473 no more defined than that of SYM1. */
4474
4475 static int
4476 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4477 {
4478 if (sym0 == sym1)
4479 return 1;
4480 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4481 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4482 return 0;
4483
4484 switch (SYMBOL_CLASS (sym0))
4485 {
4486 case LOC_UNDEF:
4487 return 1;
4488 case LOC_TYPEDEF:
4489 {
4490 struct type *type0 = SYMBOL_TYPE (sym0);
4491 struct type *type1 = SYMBOL_TYPE (sym1);
4492 const char *name0 = sym0->linkage_name ();
4493 const char *name1 = sym1->linkage_name ();
4494 int len0 = strlen (name0);
4495
4496 return
4497 type0->code () == type1->code ()
4498 && (equiv_types (type0, type1)
4499 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4500 && startswith (name1 + len0, "___XV")));
4501 }
4502 case LOC_CONST:
4503 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4504 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4505
4506 case LOC_STATIC:
4507 {
4508 const char *name0 = sym0->linkage_name ();
4509 const char *name1 = sym1->linkage_name ();
4510 return (strcmp (name0, name1) == 0
4511 && SYMBOL_VALUE_ADDRESS (sym0) == SYMBOL_VALUE_ADDRESS (sym1));
4512 }
4513
4514 default:
4515 return 0;
4516 }
4517 }
4518
4519 /* Append (SYM,BLOCK) to the end of the array of struct block_symbol
4520 records in RESULT. Do nothing if SYM is a duplicate. */
4521
4522 static void
4523 add_defn_to_vec (std::vector<struct block_symbol> &result,
4524 struct symbol *sym,
4525 const struct block *block)
4526 {
4527 /* Do not try to complete stub types, as the debugger is probably
4528 already scanning all symbols matching a certain name at the
4529 time when this function is called. Trying to replace the stub
4530 type by its associated full type will cause us to restart a scan
4531 which may lead to an infinite recursion. Instead, the client
4532 collecting the matching symbols will end up collecting several
4533 matches, with at least one of them complete. It can then filter
4534 out the stub ones if needed. */
4535
4536 for (int i = result.size () - 1; i >= 0; i -= 1)
4537 {
4538 if (lesseq_defined_than (sym, result[i].symbol))
4539 return;
4540 else if (lesseq_defined_than (result[i].symbol, sym))
4541 {
4542 result[i].symbol = sym;
4543 result[i].block = block;
4544 return;
4545 }
4546 }
4547
4548 struct block_symbol info;
4549 info.symbol = sym;
4550 info.block = block;
4551 result.push_back (info);
4552 }
4553
4554 /* Return a bound minimal symbol matching NAME according to Ada
4555 decoding rules. Returns an invalid symbol if there is no such
4556 minimal symbol. Names prefixed with "standard__" are handled
4557 specially: "standard__" is first stripped off, and only static and
4558 global symbols are searched. */
4559
4560 struct bound_minimal_symbol
4561 ada_lookup_simple_minsym (const char *name)
4562 {
4563 struct bound_minimal_symbol result;
4564
4565 memset (&result, 0, sizeof (result));
4566
4567 symbol_name_match_type match_type = name_match_type_from_name (name);
4568 lookup_name_info lookup_name (name, match_type);
4569
4570 symbol_name_matcher_ftype *match_name
4571 = ada_get_symbol_name_matcher (lookup_name);
4572
4573 for (objfile *objfile : current_program_space->objfiles ())
4574 {
4575 for (minimal_symbol *msymbol : objfile->msymbols ())
4576 {
4577 if (match_name (msymbol->linkage_name (), lookup_name, NULL)
4578 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4579 {
4580 result.minsym = msymbol;
4581 result.objfile = objfile;
4582 break;
4583 }
4584 }
4585 }
4586
4587 return result;
4588 }
4589
4590 /* True if TYPE is definitely an artificial type supplied to a symbol
4591 for which no debugging information was given in the symbol file. */
4592
4593 static int
4594 is_nondebugging_type (struct type *type)
4595 {
4596 const char *name = ada_type_name (type);
4597
4598 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4599 }
4600
4601 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4602 that are deemed "identical" for practical purposes.
4603
4604 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4605 types and that their number of enumerals is identical (in other
4606 words, type1->num_fields () == type2->num_fields ()). */
4607
4608 static int
4609 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4610 {
4611 int i;
4612
4613 /* The heuristic we use here is fairly conservative. We consider
4614 that 2 enumerate types are identical if they have the same
4615 number of enumerals and that all enumerals have the same
4616 underlying value and name. */
4617
4618 /* All enums in the type should have an identical underlying value. */
4619 for (i = 0; i < type1->num_fields (); i++)
4620 if (type1->field (i).loc_enumval () != type2->field (i).loc_enumval ())
4621 return 0;
4622
4623 /* All enumerals should also have the same name (modulo any numerical
4624 suffix). */
4625 for (i = 0; i < type1->num_fields (); i++)
4626 {
4627 const char *name_1 = type1->field (i).name ();
4628 const char *name_2 = type2->field (i).name ();
4629 int len_1 = strlen (name_1);
4630 int len_2 = strlen (name_2);
4631
4632 ada_remove_trailing_digits (type1->field (i).name (), &len_1);
4633 ada_remove_trailing_digits (type2->field (i).name (), &len_2);
4634 if (len_1 != len_2
4635 || strncmp (type1->field (i).name (),
4636 type2->field (i).name (),
4637 len_1) != 0)
4638 return 0;
4639 }
4640
4641 return 1;
4642 }
4643
4644 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4645 that are deemed "identical" for practical purposes. Sometimes,
4646 enumerals are not strictly identical, but their types are so similar
4647 that they can be considered identical.
4648
4649 For instance, consider the following code:
4650
4651 type Color is (Black, Red, Green, Blue, White);
4652 type RGB_Color is new Color range Red .. Blue;
4653
4654 Type RGB_Color is a subrange of an implicit type which is a copy
4655 of type Color. If we call that implicit type RGB_ColorB ("B" is
4656 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4657 As a result, when an expression references any of the enumeral
4658 by name (Eg. "print green"), the expression is technically
4659 ambiguous and the user should be asked to disambiguate. But
4660 doing so would only hinder the user, since it wouldn't matter
4661 what choice he makes, the outcome would always be the same.
4662 So, for practical purposes, we consider them as the same. */
4663
4664 static int
4665 symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
4666 {
4667 int i;
4668
4669 /* Before performing a thorough comparison check of each type,
4670 we perform a series of inexpensive checks. We expect that these
4671 checks will quickly fail in the vast majority of cases, and thus
4672 help prevent the unnecessary use of a more expensive comparison.
4673 Said comparison also expects us to make some of these checks
4674 (see ada_identical_enum_types_p). */
4675
4676 /* Quick check: All symbols should have an enum type. */
4677 for (i = 0; i < syms.size (); i++)
4678 if (SYMBOL_TYPE (syms[i].symbol)->code () != TYPE_CODE_ENUM)
4679 return 0;
4680
4681 /* Quick check: They should all have the same value. */
4682 for (i = 1; i < syms.size (); i++)
4683 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
4684 return 0;
4685
4686 /* Quick check: They should all have the same number of enumerals. */
4687 for (i = 1; i < syms.size (); i++)
4688 if (SYMBOL_TYPE (syms[i].symbol)->num_fields ()
4689 != SYMBOL_TYPE (syms[0].symbol)->num_fields ())
4690 return 0;
4691
4692 /* All the sanity checks passed, so we might have a set of
4693 identical enumeration types. Perform a more complete
4694 comparison of the type of each symbol. */
4695 for (i = 1; i < syms.size (); i++)
4696 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
4697 SYMBOL_TYPE (syms[0].symbol)))
4698 return 0;
4699
4700 return 1;
4701 }
4702
4703 /* Remove any non-debugging symbols in SYMS that definitely
4704 duplicate other symbols in the list (The only case I know of where
4705 this happens is when object files containing stabs-in-ecoff are
4706 linked with files containing ordinary ecoff debugging symbols (or no
4707 debugging symbols)). Modifies SYMS to squeeze out deleted entries. */
4708
4709 static void
4710 remove_extra_symbols (std::vector<struct block_symbol> *syms)
4711 {
4712 int i, j;
4713
4714 /* We should never be called with less than 2 symbols, as there
4715 cannot be any extra symbol in that case. But it's easy to
4716 handle, since we have nothing to do in that case. */
4717 if (syms->size () < 2)
4718 return;
4719
4720 i = 0;
4721 while (i < syms->size ())
4722 {
4723 int remove_p = 0;
4724
4725 /* If two symbols have the same name and one of them is a stub type,
4726 the get rid of the stub. */
4727
4728 if (SYMBOL_TYPE ((*syms)[i].symbol)->is_stub ()
4729 && (*syms)[i].symbol->linkage_name () != NULL)
4730 {
4731 for (j = 0; j < syms->size (); j++)
4732 {
4733 if (j != i
4734 && !SYMBOL_TYPE ((*syms)[j].symbol)->is_stub ()
4735 && (*syms)[j].symbol->linkage_name () != NULL
4736 && strcmp ((*syms)[i].symbol->linkage_name (),
4737 (*syms)[j].symbol->linkage_name ()) == 0)
4738 remove_p = 1;
4739 }
4740 }
4741
4742 /* Two symbols with the same name, same class and same address
4743 should be identical. */
4744
4745 else if ((*syms)[i].symbol->linkage_name () != NULL
4746 && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC
4747 && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol)))
4748 {
4749 for (j = 0; j < syms->size (); j += 1)
4750 {
4751 if (i != j
4752 && (*syms)[j].symbol->linkage_name () != NULL
4753 && strcmp ((*syms)[i].symbol->linkage_name (),
4754 (*syms)[j].symbol->linkage_name ()) == 0
4755 && SYMBOL_CLASS ((*syms)[i].symbol)
4756 == SYMBOL_CLASS ((*syms)[j].symbol)
4757 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
4758 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
4759 remove_p = 1;
4760 }
4761 }
4762
4763 if (remove_p)
4764 syms->erase (syms->begin () + i);
4765 else
4766 i += 1;
4767 }
4768
4769 /* If all the remaining symbols are identical enumerals, then
4770 just keep the first one and discard the rest.
4771
4772 Unlike what we did previously, we do not discard any entry
4773 unless they are ALL identical. This is because the symbol
4774 comparison is not a strict comparison, but rather a practical
4775 comparison. If all symbols are considered identical, then
4776 we can just go ahead and use the first one and discard the rest.
4777 But if we cannot reduce the list to a single element, we have
4778 to ask the user to disambiguate anyways. And if we have to
4779 present a multiple-choice menu, it's less confusing if the list
4780 isn't missing some choices that were identical and yet distinct. */
4781 if (symbols_are_identical_enums (*syms))
4782 syms->resize (1);
4783 }
4784
4785 /* Given a type that corresponds to a renaming entity, use the type name
4786 to extract the scope (package name or function name, fully qualified,
4787 and following the GNAT encoding convention) where this renaming has been
4788 defined. */
4789
4790 static std::string
4791 xget_renaming_scope (struct type *renaming_type)
4792 {
4793 /* The renaming types adhere to the following convention:
4794 <scope>__<rename>___<XR extension>.
4795 So, to extract the scope, we search for the "___XR" extension,
4796 and then backtrack until we find the first "__". */
4797
4798 const char *name = renaming_type->name ();
4799 const char *suffix = strstr (name, "___XR");
4800 const char *last;
4801
4802 /* Now, backtrack a bit until we find the first "__". Start looking
4803 at suffix - 3, as the <rename> part is at least one character long. */
4804
4805 for (last = suffix - 3; last > name; last--)
4806 if (last[0] == '_' && last[1] == '_')
4807 break;
4808
4809 /* Make a copy of scope and return it. */
4810 return std::string (name, last);
4811 }
4812
4813 /* Return nonzero if NAME corresponds to a package name. */
4814
4815 static int
4816 is_package_name (const char *name)
4817 {
4818 /* Here, We take advantage of the fact that no symbols are generated
4819 for packages, while symbols are generated for each function.
4820 So the condition for NAME represent a package becomes equivalent
4821 to NAME not existing in our list of symbols. There is only one
4822 small complication with library-level functions (see below). */
4823
4824 /* If it is a function that has not been defined at library level,
4825 then we should be able to look it up in the symbols. */
4826 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4827 return 0;
4828
4829 /* Library-level function names start with "_ada_". See if function
4830 "_ada_" followed by NAME can be found. */
4831
4832 /* Do a quick check that NAME does not contain "__", since library-level
4833 functions names cannot contain "__" in them. */
4834 if (strstr (name, "__") != NULL)
4835 return 0;
4836
4837 std::string fun_name = string_printf ("_ada_%s", name);
4838
4839 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
4840 }
4841
4842 /* Return nonzero if SYM corresponds to a renaming entity that is
4843 not visible from FUNCTION_NAME. */
4844
4845 static int
4846 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
4847 {
4848 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4849 return 0;
4850
4851 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4852
4853 /* If the rename has been defined in a package, then it is visible. */
4854 if (is_package_name (scope.c_str ()))
4855 return 0;
4856
4857 /* Check that the rename is in the current function scope by checking
4858 that its name starts with SCOPE. */
4859
4860 /* If the function name starts with "_ada_", it means that it is
4861 a library-level function. Strip this prefix before doing the
4862 comparison, as the encoding for the renaming does not contain
4863 this prefix. */
4864 if (startswith (function_name, "_ada_"))
4865 function_name += 5;
4866
4867 return !startswith (function_name, scope.c_str ());
4868 }
4869
4870 /* Remove entries from SYMS that corresponds to a renaming entity that
4871 is not visible from the function associated with CURRENT_BLOCK or
4872 that is superfluous due to the presence of more specific renaming
4873 information. Places surviving symbols in the initial entries of
4874 SYMS.
4875
4876 Rationale:
4877 First, in cases where an object renaming is implemented as a
4878 reference variable, GNAT may produce both the actual reference
4879 variable and the renaming encoding. In this case, we discard the
4880 latter.
4881
4882 Second, GNAT emits a type following a specified encoding for each renaming
4883 entity. Unfortunately, STABS currently does not support the definition
4884 of types that are local to a given lexical block, so all renamings types
4885 are emitted at library level. As a consequence, if an application
4886 contains two renaming entities using the same name, and a user tries to
4887 print the value of one of these entities, the result of the ada symbol
4888 lookup will also contain the wrong renaming type.
4889
4890 This function partially covers for this limitation by attempting to
4891 remove from the SYMS list renaming symbols that should be visible
4892 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4893 method with the current information available. The implementation
4894 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4895
4896 - When the user tries to print a rename in a function while there
4897 is another rename entity defined in a package: Normally, the
4898 rename in the function has precedence over the rename in the
4899 package, so the latter should be removed from the list. This is
4900 currently not the case.
4901
4902 - This function will incorrectly remove valid renames if
4903 the CURRENT_BLOCK corresponds to a function which symbol name
4904 has been changed by an "Export" pragma. As a consequence,
4905 the user will be unable to print such rename entities. */
4906
4907 static void
4908 remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
4909 const struct block *current_block)
4910 {
4911 struct symbol *current_function;
4912 const char *current_function_name;
4913 int i;
4914 int is_new_style_renaming;
4915
4916 /* If there is both a renaming foo___XR... encoded as a variable and
4917 a simple variable foo in the same block, discard the latter.
4918 First, zero out such symbols, then compress. */
4919 is_new_style_renaming = 0;
4920 for (i = 0; i < syms->size (); i += 1)
4921 {
4922 struct symbol *sym = (*syms)[i].symbol;
4923 const struct block *block = (*syms)[i].block;
4924 const char *name;
4925 const char *suffix;
4926
4927 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4928 continue;
4929 name = sym->linkage_name ();
4930 suffix = strstr (name, "___XR");
4931
4932 if (suffix != NULL)
4933 {
4934 int name_len = suffix - name;
4935 int j;
4936
4937 is_new_style_renaming = 1;
4938 for (j = 0; j < syms->size (); j += 1)
4939 if (i != j && (*syms)[j].symbol != NULL
4940 && strncmp (name, (*syms)[j].symbol->linkage_name (),
4941 name_len) == 0
4942 && block == (*syms)[j].block)
4943 (*syms)[j].symbol = NULL;
4944 }
4945 }
4946 if (is_new_style_renaming)
4947 {
4948 int j, k;
4949
4950 for (j = k = 0; j < syms->size (); j += 1)
4951 if ((*syms)[j].symbol != NULL)
4952 {
4953 (*syms)[k] = (*syms)[j];
4954 k += 1;
4955 }
4956 syms->resize (k);
4957 return;
4958 }
4959
4960 /* Extract the function name associated to CURRENT_BLOCK.
4961 Abort if unable to do so. */
4962
4963 if (current_block == NULL)
4964 return;
4965
4966 current_function = block_linkage_function (current_block);
4967 if (current_function == NULL)
4968 return;
4969
4970 current_function_name = current_function->linkage_name ();
4971 if (current_function_name == NULL)
4972 return;
4973
4974 /* Check each of the symbols, and remove it from the list if it is
4975 a type corresponding to a renaming that is out of the scope of
4976 the current block. */
4977
4978 i = 0;
4979 while (i < syms->size ())
4980 {
4981 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
4982 == ADA_OBJECT_RENAMING
4983 && old_renaming_is_invisible ((*syms)[i].symbol,
4984 current_function_name))
4985 syms->erase (syms->begin () + i);
4986 else
4987 i += 1;
4988 }
4989 }
4990
4991 /* Add to RESULT all symbols from BLOCK (and its super-blocks)
4992 whose name and domain match LOOKUP_NAME and DOMAIN respectively.
4993
4994 Note: This function assumes that RESULT is empty. */
4995
4996 static void
4997 ada_add_local_symbols (std::vector<struct block_symbol> &result,
4998 const lookup_name_info &lookup_name,
4999 const struct block *block, domain_enum domain)
5000 {
5001 while (block != NULL)
5002 {
5003 ada_add_block_symbols (result, block, lookup_name, domain, NULL);
5004
5005 /* If we found a non-function match, assume that's the one. We
5006 only check this when finding a function boundary, so that we
5007 can accumulate all results from intervening blocks first. */
5008 if (BLOCK_FUNCTION (block) != nullptr && is_nonfunction (result))
5009 return;
5010
5011 block = BLOCK_SUPERBLOCK (block);
5012 }
5013 }
5014
5015 /* An object of this type is used as the callback argument when
5016 calling the map_matching_symbols method. */
5017
5018 struct match_data
5019 {
5020 explicit match_data (std::vector<struct block_symbol> *rp)
5021 : resultp (rp)
5022 {
5023 }
5024 DISABLE_COPY_AND_ASSIGN (match_data);
5025
5026 bool operator() (struct block_symbol *bsym);
5027
5028 struct objfile *objfile = nullptr;
5029 std::vector<struct block_symbol> *resultp;
5030 struct symbol *arg_sym = nullptr;
5031 bool found_sym = false;
5032 };
5033
5034 /* A callback for add_nonlocal_symbols that adds symbol, found in
5035 BSYM, to a list of symbols. */
5036
5037 bool
5038 match_data::operator() (struct block_symbol *bsym)
5039 {
5040 const struct block *block = bsym->block;
5041 struct symbol *sym = bsym->symbol;
5042
5043 if (sym == NULL)
5044 {
5045 if (!found_sym && arg_sym != NULL)
5046 add_defn_to_vec (*resultp,
5047 fixup_symbol_section (arg_sym, objfile),
5048 block);
5049 found_sym = false;
5050 arg_sym = NULL;
5051 }
5052 else
5053 {
5054 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5055 return true;
5056 else if (SYMBOL_IS_ARGUMENT (sym))
5057 arg_sym = sym;
5058 else
5059 {
5060 found_sym = true;
5061 add_defn_to_vec (*resultp,
5062 fixup_symbol_section (sym, objfile),
5063 block);
5064 }
5065 }
5066 return true;
5067 }
5068
5069 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5070 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5071 symbols to RESULT. Return whether we found such symbols. */
5072
5073 static int
5074 ada_add_block_renamings (std::vector<struct block_symbol> &result,
5075 const struct block *block,
5076 const lookup_name_info &lookup_name,
5077 domain_enum domain)
5078 {
5079 struct using_direct *renaming;
5080 int defns_mark = result.size ();
5081
5082 symbol_name_matcher_ftype *name_match
5083 = ada_get_symbol_name_matcher (lookup_name);
5084
5085 for (renaming = block_using (block);
5086 renaming != NULL;
5087 renaming = renaming->next)
5088 {
5089 const char *r_name;
5090
5091 /* Avoid infinite recursions: skip this renaming if we are actually
5092 already traversing it.
5093
5094 Currently, symbol lookup in Ada don't use the namespace machinery from
5095 C++/Fortran support: skip namespace imports that use them. */
5096 if (renaming->searched
5097 || (renaming->import_src != NULL
5098 && renaming->import_src[0] != '\0')
5099 || (renaming->import_dest != NULL
5100 && renaming->import_dest[0] != '\0'))
5101 continue;
5102 renaming->searched = 1;
5103
5104 /* TODO: here, we perform another name-based symbol lookup, which can
5105 pull its own multiple overloads. In theory, we should be able to do
5106 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5107 not a simple name. But in order to do this, we would need to enhance
5108 the DWARF reader to associate a symbol to this renaming, instead of a
5109 name. So, for now, we do something simpler: re-use the C++/Fortran
5110 namespace machinery. */
5111 r_name = (renaming->alias != NULL
5112 ? renaming->alias
5113 : renaming->declaration);
5114 if (name_match (r_name, lookup_name, NULL))
5115 {
5116 lookup_name_info decl_lookup_name (renaming->declaration,
5117 lookup_name.match_type ());
5118 ada_add_all_symbols (result, block, decl_lookup_name, domain,
5119 1, NULL);
5120 }
5121 renaming->searched = 0;
5122 }
5123 return result.size () != defns_mark;
5124 }
5125
5126 /* Implements compare_names, but only applying the comparision using
5127 the given CASING. */
5128
5129 static int
5130 compare_names_with_case (const char *string1, const char *string2,
5131 enum case_sensitivity casing)
5132 {
5133 while (*string1 != '\0' && *string2 != '\0')
5134 {
5135 char c1, c2;
5136
5137 if (isspace (*string1) || isspace (*string2))
5138 return strcmp_iw_ordered (string1, string2);
5139
5140 if (casing == case_sensitive_off)
5141 {
5142 c1 = tolower (*string1);
5143 c2 = tolower (*string2);
5144 }
5145 else
5146 {
5147 c1 = *string1;
5148 c2 = *string2;
5149 }
5150 if (c1 != c2)
5151 break;
5152
5153 string1 += 1;
5154 string2 += 1;
5155 }
5156
5157 switch (*string1)
5158 {
5159 case '(':
5160 return strcmp_iw_ordered (string1, string2);
5161 case '_':
5162 if (*string2 == '\0')
5163 {
5164 if (is_name_suffix (string1))
5165 return 0;
5166 else
5167 return 1;
5168 }
5169 /* FALLTHROUGH */
5170 default:
5171 if (*string2 == '(')
5172 return strcmp_iw_ordered (string1, string2);
5173 else
5174 {
5175 if (casing == case_sensitive_off)
5176 return tolower (*string1) - tolower (*string2);
5177 else
5178 return *string1 - *string2;
5179 }
5180 }
5181 }
5182
5183 /* Compare STRING1 to STRING2, with results as for strcmp.
5184 Compatible with strcmp_iw_ordered in that...
5185
5186 strcmp_iw_ordered (STRING1, STRING2) <= 0
5187
5188 ... implies...
5189
5190 compare_names (STRING1, STRING2) <= 0
5191
5192 (they may differ as to what symbols compare equal). */
5193
5194 static int
5195 compare_names (const char *string1, const char *string2)
5196 {
5197 int result;
5198
5199 /* Similar to what strcmp_iw_ordered does, we need to perform
5200 a case-insensitive comparison first, and only resort to
5201 a second, case-sensitive, comparison if the first one was
5202 not sufficient to differentiate the two strings. */
5203
5204 result = compare_names_with_case (string1, string2, case_sensitive_off);
5205 if (result == 0)
5206 result = compare_names_with_case (string1, string2, case_sensitive_on);
5207
5208 return result;
5209 }
5210
5211 /* Convenience function to get at the Ada encoded lookup name for
5212 LOOKUP_NAME, as a C string. */
5213
5214 static const char *
5215 ada_lookup_name (const lookup_name_info &lookup_name)
5216 {
5217 return lookup_name.ada ().lookup_name ().c_str ();
5218 }
5219
5220 /* A helper for add_nonlocal_symbols. Call expand_matching_symbols
5221 for OBJFILE, then walk the objfile's symtabs and update the
5222 results. */
5223
5224 static void
5225 map_matching_symbols (struct objfile *objfile,
5226 const lookup_name_info &lookup_name,
5227 bool is_wild_match,
5228 domain_enum domain,
5229 int global,
5230 match_data &data)
5231 {
5232 data.objfile = objfile;
5233 objfile->expand_matching_symbols (lookup_name, domain, global,
5234 is_wild_match ? nullptr : compare_names);
5235
5236 const int block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
5237 for (compunit_symtab *symtab : objfile->compunits ())
5238 {
5239 const struct block *block
5240 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (symtab), block_kind);
5241 if (!iterate_over_symbols_terminated (block, lookup_name,
5242 domain, data))
5243 break;
5244 }
5245 }
5246
5247 /* Add to RESULT all non-local symbols whose name and domain match
5248 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5249 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5250 symbols otherwise. */
5251
5252 static void
5253 add_nonlocal_symbols (std::vector<struct block_symbol> &result,
5254 const lookup_name_info &lookup_name,
5255 domain_enum domain, int global)
5256 {
5257 struct match_data data (&result);
5258
5259 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5260
5261 for (objfile *objfile : current_program_space->objfiles ())
5262 {
5263 map_matching_symbols (objfile, lookup_name, is_wild_match, domain,
5264 global, data);
5265
5266 for (compunit_symtab *cu : objfile->compunits ())
5267 {
5268 const struct block *global_block
5269 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5270
5271 if (ada_add_block_renamings (result, global_block, lookup_name,
5272 domain))
5273 data.found_sym = true;
5274 }
5275 }
5276
5277 if (result.empty () && global && !is_wild_match)
5278 {
5279 const char *name = ada_lookup_name (lookup_name);
5280 std::string bracket_name = std::string ("<_ada_") + name + '>';
5281 lookup_name_info name1 (bracket_name, symbol_name_match_type::FULL);
5282
5283 for (objfile *objfile : current_program_space->objfiles ())
5284 map_matching_symbols (objfile, name1, false, domain, global, data);
5285 }
5286 }
5287
5288 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5289 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5290 returning the number of matches. Add these to RESULT.
5291
5292 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5293 symbol match within the nest of blocks whose innermost member is BLOCK,
5294 is the one match returned (no other matches in that or
5295 enclosing blocks is returned). If there are any matches in or
5296 surrounding BLOCK, then these alone are returned.
5297
5298 Names prefixed with "standard__" are handled specially:
5299 "standard__" is first stripped off (by the lookup_name
5300 constructor), and only static and global symbols are searched.
5301
5302 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5303 to lookup global symbols. */
5304
5305 static void
5306 ada_add_all_symbols (std::vector<struct block_symbol> &result,
5307 const struct block *block,
5308 const lookup_name_info &lookup_name,
5309 domain_enum domain,
5310 int full_search,
5311 int *made_global_lookup_p)
5312 {
5313 struct symbol *sym;
5314
5315 if (made_global_lookup_p)
5316 *made_global_lookup_p = 0;
5317
5318 /* Special case: If the user specifies a symbol name inside package
5319 Standard, do a non-wild matching of the symbol name without
5320 the "standard__" prefix. This was primarily introduced in order
5321 to allow the user to specifically access the standard exceptions
5322 using, for instance, Standard.Constraint_Error when Constraint_Error
5323 is ambiguous (due to the user defining its own Constraint_Error
5324 entity inside its program). */
5325 if (lookup_name.ada ().standard_p ())
5326 block = NULL;
5327
5328 /* Check the non-global symbols. If we have ANY match, then we're done. */
5329
5330 if (block != NULL)
5331 {
5332 if (full_search)
5333 ada_add_local_symbols (result, lookup_name, block, domain);
5334 else
5335 {
5336 /* In the !full_search case we're are being called by
5337 iterate_over_symbols, and we don't want to search
5338 superblocks. */
5339 ada_add_block_symbols (result, block, lookup_name, domain, NULL);
5340 }
5341 if (!result.empty () || !full_search)
5342 return;
5343 }
5344
5345 /* No non-global symbols found. Check our cache to see if we have
5346 already performed this search before. If we have, then return
5347 the same result. */
5348
5349 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5350 domain, &sym, &block))
5351 {
5352 if (sym != NULL)
5353 add_defn_to_vec (result, sym, block);
5354 return;
5355 }
5356
5357 if (made_global_lookup_p)
5358 *made_global_lookup_p = 1;
5359
5360 /* Search symbols from all global blocks. */
5361
5362 add_nonlocal_symbols (result, lookup_name, domain, 1);
5363
5364 /* Now add symbols from all per-file blocks if we've gotten no hits
5365 (not strictly correct, but perhaps better than an error). */
5366
5367 if (result.empty ())
5368 add_nonlocal_symbols (result, lookup_name, domain, 0);
5369 }
5370
5371 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5372 is non-zero, enclosing scope and in global scopes.
5373
5374 Returns (SYM,BLOCK) tuples, indicating the symbols found and the
5375 blocks and symbol tables (if any) in which they were found.
5376
5377 When full_search is non-zero, any non-function/non-enumeral
5378 symbol match within the nest of blocks whose innermost member is BLOCK,
5379 is the one match returned (no other matches in that or
5380 enclosing blocks is returned). If there are any matches in or
5381 surrounding BLOCK, then these alone are returned.
5382
5383 Names prefixed with "standard__" are handled specially: "standard__"
5384 is first stripped off, and only static and global symbols are searched. */
5385
5386 static std::vector<struct block_symbol>
5387 ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5388 const struct block *block,
5389 domain_enum domain,
5390 int full_search)
5391 {
5392 int syms_from_global_search;
5393 std::vector<struct block_symbol> results;
5394
5395 ada_add_all_symbols (results, block, lookup_name,
5396 domain, full_search, &syms_from_global_search);
5397
5398 remove_extra_symbols (&results);
5399
5400 if (results.empty () && full_search && syms_from_global_search)
5401 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
5402
5403 if (results.size () == 1 && full_search && syms_from_global_search)
5404 cache_symbol (ada_lookup_name (lookup_name), domain,
5405 results[0].symbol, results[0].block);
5406
5407 remove_irrelevant_renamings (&results, block);
5408 return results;
5409 }
5410
5411 /* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
5412 in global scopes, returning (SYM,BLOCK) tuples.
5413
5414 See ada_lookup_symbol_list_worker for further details. */
5415
5416 std::vector<struct block_symbol>
5417 ada_lookup_symbol_list (const char *name, const struct block *block,
5418 domain_enum domain)
5419 {
5420 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5421 lookup_name_info lookup_name (name, name_match_type);
5422
5423 return ada_lookup_symbol_list_worker (lookup_name, block, domain, 1);
5424 }
5425
5426 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5427 to 1, but choosing the first symbol found if there are multiple
5428 choices.
5429
5430 The result is stored in *INFO, which must be non-NULL.
5431 If no match is found, INFO->SYM is set to NULL. */
5432
5433 void
5434 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5435 domain_enum domain,
5436 struct block_symbol *info)
5437 {
5438 /* Since we already have an encoded name, wrap it in '<>' to force a
5439 verbatim match. Otherwise, if the name happens to not look like
5440 an encoded name (because it doesn't include a "__"),
5441 ada_lookup_name_info would re-encode/fold it again, and that
5442 would e.g., incorrectly lowercase object renaming names like
5443 "R28b" -> "r28b". */
5444 std::string verbatim = add_angle_brackets (name);
5445
5446 gdb_assert (info != NULL);
5447 *info = ada_lookup_symbol (verbatim.c_str (), block, domain);
5448 }
5449
5450 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5451 scope and in global scopes, or NULL if none. NAME is folded and
5452 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5453 choosing the first symbol if there are multiple choices. */
5454
5455 struct block_symbol
5456 ada_lookup_symbol (const char *name, const struct block *block0,
5457 domain_enum domain)
5458 {
5459 std::vector<struct block_symbol> candidates
5460 = ada_lookup_symbol_list (name, block0, domain);
5461
5462 if (candidates.empty ())
5463 return {};
5464
5465 block_symbol info = candidates[0];
5466 info.symbol = fixup_symbol_section (info.symbol, NULL);
5467 return info;
5468 }
5469
5470
5471 /* True iff STR is a possible encoded suffix of a normal Ada name
5472 that is to be ignored for matching purposes. Suffixes of parallel
5473 names (e.g., XVE) are not included here. Currently, the possible suffixes
5474 are given by any of the regular expressions:
5475
5476 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5477 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5478 TKB [subprogram suffix for task bodies]
5479 _E[0-9]+[bs]$ [protected object entry suffixes]
5480 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5481
5482 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5483 match is performed. This sequence is used to differentiate homonyms,
5484 is an optional part of a valid name suffix. */
5485
5486 static int
5487 is_name_suffix (const char *str)
5488 {
5489 int k;
5490 const char *matching;
5491 const int len = strlen (str);
5492
5493 /* Skip optional leading __[0-9]+. */
5494
5495 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5496 {
5497 str += 3;
5498 while (isdigit (str[0]))
5499 str += 1;
5500 }
5501
5502 /* [.$][0-9]+ */
5503
5504 if (str[0] == '.' || str[0] == '$')
5505 {
5506 matching = str + 1;
5507 while (isdigit (matching[0]))
5508 matching += 1;
5509 if (matching[0] == '\0')
5510 return 1;
5511 }
5512
5513 /* ___[0-9]+ */
5514
5515 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5516 {
5517 matching = str + 3;
5518 while (isdigit (matching[0]))
5519 matching += 1;
5520 if (matching[0] == '\0')
5521 return 1;
5522 }
5523
5524 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5525
5526 if (strcmp (str, "TKB") == 0)
5527 return 1;
5528
5529 #if 0
5530 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5531 with a N at the end. Unfortunately, the compiler uses the same
5532 convention for other internal types it creates. So treating
5533 all entity names that end with an "N" as a name suffix causes
5534 some regressions. For instance, consider the case of an enumerated
5535 type. To support the 'Image attribute, it creates an array whose
5536 name ends with N.
5537 Having a single character like this as a suffix carrying some
5538 information is a bit risky. Perhaps we should change the encoding
5539 to be something like "_N" instead. In the meantime, do not do
5540 the following check. */
5541 /* Protected Object Subprograms */
5542 if (len == 1 && str [0] == 'N')
5543 return 1;
5544 #endif
5545
5546 /* _E[0-9]+[bs]$ */
5547 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5548 {
5549 matching = str + 3;
5550 while (isdigit (matching[0]))
5551 matching += 1;
5552 if ((matching[0] == 'b' || matching[0] == 's')
5553 && matching [1] == '\0')
5554 return 1;
5555 }
5556
5557 /* ??? We should not modify STR directly, as we are doing below. This
5558 is fine in this case, but may become problematic later if we find
5559 that this alternative did not work, and want to try matching
5560 another one from the begining of STR. Since we modified it, we
5561 won't be able to find the begining of the string anymore! */
5562 if (str[0] == 'X')
5563 {
5564 str += 1;
5565 while (str[0] != '_' && str[0] != '\0')
5566 {
5567 if (str[0] != 'n' && str[0] != 'b')
5568 return 0;
5569 str += 1;
5570 }
5571 }
5572
5573 if (str[0] == '\000')
5574 return 1;
5575
5576 if (str[0] == '_')
5577 {
5578 if (str[1] != '_' || str[2] == '\000')
5579 return 0;
5580 if (str[2] == '_')
5581 {
5582 if (strcmp (str + 3, "JM") == 0)
5583 return 1;
5584 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5585 the LJM suffix in favor of the JM one. But we will
5586 still accept LJM as a valid suffix for a reasonable
5587 amount of time, just to allow ourselves to debug programs
5588 compiled using an older version of GNAT. */
5589 if (strcmp (str + 3, "LJM") == 0)
5590 return 1;
5591 if (str[3] != 'X')
5592 return 0;
5593 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5594 || str[4] == 'U' || str[4] == 'P')
5595 return 1;
5596 if (str[4] == 'R' && str[5] != 'T')
5597 return 1;
5598 return 0;
5599 }
5600 if (!isdigit (str[2]))
5601 return 0;
5602 for (k = 3; str[k] != '\0'; k += 1)
5603 if (!isdigit (str[k]) && str[k] != '_')
5604 return 0;
5605 return 1;
5606 }
5607 if (str[0] == '$' && isdigit (str[1]))
5608 {
5609 for (k = 2; str[k] != '\0'; k += 1)
5610 if (!isdigit (str[k]) && str[k] != '_')
5611 return 0;
5612 return 1;
5613 }
5614 return 0;
5615 }
5616
5617 /* Return non-zero if the string starting at NAME and ending before
5618 NAME_END contains no capital letters. */
5619
5620 static int
5621 is_valid_name_for_wild_match (const char *name0)
5622 {
5623 std::string decoded_name = ada_decode (name0);
5624 int i;
5625
5626 /* If the decoded name starts with an angle bracket, it means that
5627 NAME0 does not follow the GNAT encoding format. It should then
5628 not be allowed as a possible wild match. */
5629 if (decoded_name[0] == '<')
5630 return 0;
5631
5632 for (i=0; decoded_name[i] != '\0'; i++)
5633 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5634 return 0;
5635
5636 return 1;
5637 }
5638
5639 /* Advance *NAMEP to next occurrence in the string NAME0 of the TARGET0
5640 character which could start a simple name. Assumes that *NAMEP points
5641 somewhere inside the string beginning at NAME0. */
5642
5643 static int
5644 advance_wild_match (const char **namep, const char *name0, char target0)
5645 {
5646 const char *name = *namep;
5647
5648 while (1)
5649 {
5650 char t0, t1;
5651
5652 t0 = *name;
5653 if (t0 == '_')
5654 {
5655 t1 = name[1];
5656 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5657 {
5658 name += 1;
5659 if (name == name0 + 5 && startswith (name0, "_ada"))
5660 break;
5661 else
5662 name += 1;
5663 }
5664 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5665 || name[2] == target0))
5666 {
5667 name += 2;
5668 break;
5669 }
5670 else if (t1 == '_' && name[2] == 'B' && name[3] == '_')
5671 {
5672 /* Names like "pkg__B_N__name", where N is a number, are
5673 block-local. We can handle these by simply skipping
5674 the "B_" here. */
5675 name += 4;
5676 }
5677 else
5678 return 0;
5679 }
5680 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5681 name += 1;
5682 else
5683 return 0;
5684 }
5685
5686 *namep = name;
5687 return 1;
5688 }
5689
5690 /* Return true iff NAME encodes a name of the form prefix.PATN.
5691 Ignores any informational suffixes of NAME (i.e., for which
5692 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
5693 simple name. */
5694
5695 static bool
5696 wild_match (const char *name, const char *patn)
5697 {
5698 const char *p;
5699 const char *name0 = name;
5700
5701 while (1)
5702 {
5703 const char *match = name;
5704
5705 if (*name == *patn)
5706 {
5707 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5708 if (*p != *name)
5709 break;
5710 if (*p == '\0' && is_name_suffix (name))
5711 return match == name0 || is_valid_name_for_wild_match (name0);
5712
5713 if (name[-1] == '_')
5714 name -= 1;
5715 }
5716 if (!advance_wild_match (&name, name0, *patn))
5717 return false;
5718 }
5719 }
5720
5721 /* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to RESULT (if
5722 necessary). OBJFILE is the section containing BLOCK. */
5723
5724 static void
5725 ada_add_block_symbols (std::vector<struct block_symbol> &result,
5726 const struct block *block,
5727 const lookup_name_info &lookup_name,
5728 domain_enum domain, struct objfile *objfile)
5729 {
5730 struct block_iterator iter;
5731 /* A matching argument symbol, if any. */
5732 struct symbol *arg_sym;
5733 /* Set true when we find a matching non-argument symbol. */
5734 bool found_sym;
5735 struct symbol *sym;
5736
5737 arg_sym = NULL;
5738 found_sym = false;
5739 for (sym = block_iter_match_first (block, lookup_name, &iter);
5740 sym != NULL;
5741 sym = block_iter_match_next (lookup_name, &iter))
5742 {
5743 if (symbol_matches_domain (sym->language (), SYMBOL_DOMAIN (sym), domain))
5744 {
5745 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5746 {
5747 if (SYMBOL_IS_ARGUMENT (sym))
5748 arg_sym = sym;
5749 else
5750 {
5751 found_sym = true;
5752 add_defn_to_vec (result,
5753 fixup_symbol_section (sym, objfile),
5754 block);
5755 }
5756 }
5757 }
5758 }
5759
5760 /* Handle renamings. */
5761
5762 if (ada_add_block_renamings (result, block, lookup_name, domain))
5763 found_sym = true;
5764
5765 if (!found_sym && arg_sym != NULL)
5766 {
5767 add_defn_to_vec (result,
5768 fixup_symbol_section (arg_sym, objfile),
5769 block);
5770 }
5771
5772 if (!lookup_name.ada ().wild_match_p ())
5773 {
5774 arg_sym = NULL;
5775 found_sym = false;
5776 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
5777 const char *name = ada_lookup_name.c_str ();
5778 size_t name_len = ada_lookup_name.size ();
5779
5780 ALL_BLOCK_SYMBOLS (block, iter, sym)
5781 {
5782 if (symbol_matches_domain (sym->language (),
5783 SYMBOL_DOMAIN (sym), domain))
5784 {
5785 int cmp;
5786
5787 cmp = (int) '_' - (int) sym->linkage_name ()[0];
5788 if (cmp == 0)
5789 {
5790 cmp = !startswith (sym->linkage_name (), "_ada_");
5791 if (cmp == 0)
5792 cmp = strncmp (name, sym->linkage_name () + 5,
5793 name_len);
5794 }
5795
5796 if (cmp == 0
5797 && is_name_suffix (sym->linkage_name () + name_len + 5))
5798 {
5799 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5800 {
5801 if (SYMBOL_IS_ARGUMENT (sym))
5802 arg_sym = sym;
5803 else
5804 {
5805 found_sym = true;
5806 add_defn_to_vec (result,
5807 fixup_symbol_section (sym, objfile),
5808 block);
5809 }
5810 }
5811 }
5812 }
5813 }
5814
5815 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5816 They aren't parameters, right? */
5817 if (!found_sym && arg_sym != NULL)
5818 {
5819 add_defn_to_vec (result,
5820 fixup_symbol_section (arg_sym, objfile),
5821 block);
5822 }
5823 }
5824 }
5825 \f
5826
5827 /* Symbol Completion */
5828
5829 /* See symtab.h. */
5830
5831 bool
5832 ada_lookup_name_info::matches
5833 (const char *sym_name,
5834 symbol_name_match_type match_type,
5835 completion_match_result *comp_match_res) const
5836 {
5837 bool match = false;
5838 const char *text = m_encoded_name.c_str ();
5839 size_t text_len = m_encoded_name.size ();
5840
5841 /* First, test against the fully qualified name of the symbol. */
5842
5843 if (strncmp (sym_name, text, text_len) == 0)
5844 match = true;
5845
5846 std::string decoded_name = ada_decode (sym_name);
5847 if (match && !m_encoded_p)
5848 {
5849 /* One needed check before declaring a positive match is to verify
5850 that iff we are doing a verbatim match, the decoded version
5851 of the symbol name starts with '<'. Otherwise, this symbol name
5852 is not a suitable completion. */
5853
5854 bool has_angle_bracket = (decoded_name[0] == '<');
5855 match = (has_angle_bracket == m_verbatim_p);
5856 }
5857
5858 if (match && !m_verbatim_p)
5859 {
5860 /* When doing non-verbatim match, another check that needs to
5861 be done is to verify that the potentially matching symbol name
5862 does not include capital letters, because the ada-mode would
5863 not be able to understand these symbol names without the
5864 angle bracket notation. */
5865 const char *tmp;
5866
5867 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5868 if (*tmp != '\0')
5869 match = false;
5870 }
5871
5872 /* Second: Try wild matching... */
5873
5874 if (!match && m_wild_match_p)
5875 {
5876 /* Since we are doing wild matching, this means that TEXT
5877 may represent an unqualified symbol name. We therefore must
5878 also compare TEXT against the unqualified name of the symbol. */
5879 sym_name = ada_unqualified_name (decoded_name.c_str ());
5880
5881 if (strncmp (sym_name, text, text_len) == 0)
5882 match = true;
5883 }
5884
5885 /* Finally: If we found a match, prepare the result to return. */
5886
5887 if (!match)
5888 return false;
5889
5890 if (comp_match_res != NULL)
5891 {
5892 std::string &match_str = comp_match_res->match.storage ();
5893
5894 if (!m_encoded_p)
5895 match_str = ada_decode (sym_name);
5896 else
5897 {
5898 if (m_verbatim_p)
5899 match_str = add_angle_brackets (sym_name);
5900 else
5901 match_str = sym_name;
5902
5903 }
5904
5905 comp_match_res->set_match (match_str.c_str ());
5906 }
5907
5908 return true;
5909 }
5910
5911 /* Field Access */
5912
5913 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5914 for tagged types. */
5915
5916 static int
5917 ada_is_dispatch_table_ptr_type (struct type *type)
5918 {
5919 const char *name;
5920
5921 if (type->code () != TYPE_CODE_PTR)
5922 return 0;
5923
5924 name = TYPE_TARGET_TYPE (type)->name ();
5925 if (name == NULL)
5926 return 0;
5927
5928 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5929 }
5930
5931 /* Return non-zero if TYPE is an interface tag. */
5932
5933 static int
5934 ada_is_interface_tag (struct type *type)
5935 {
5936 const char *name = type->name ();
5937
5938 if (name == NULL)
5939 return 0;
5940
5941 return (strcmp (name, "ada__tags__interface_tag") == 0);
5942 }
5943
5944 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5945 to be invisible to users. */
5946
5947 int
5948 ada_is_ignored_field (struct type *type, int field_num)
5949 {
5950 if (field_num < 0 || field_num > type->num_fields ())
5951 return 1;
5952
5953 /* Check the name of that field. */
5954 {
5955 const char *name = type->field (field_num).name ();
5956
5957 /* Anonymous field names should not be printed.
5958 brobecker/2007-02-20: I don't think this can actually happen
5959 but we don't want to print the value of anonymous fields anyway. */
5960 if (name == NULL)
5961 return 1;
5962
5963 /* Normally, fields whose name start with an underscore ("_")
5964 are fields that have been internally generated by the compiler,
5965 and thus should not be printed. The "_parent" field is special,
5966 however: This is a field internally generated by the compiler
5967 for tagged types, and it contains the components inherited from
5968 the parent type. This field should not be printed as is, but
5969 should not be ignored either. */
5970 if (name[0] == '_' && !startswith (name, "_parent"))
5971 return 1;
5972 }
5973
5974 /* If this is the dispatch table of a tagged type or an interface tag,
5975 then ignore. */
5976 if (ada_is_tagged_type (type, 1)
5977 && (ada_is_dispatch_table_ptr_type (type->field (field_num).type ())
5978 || ada_is_interface_tag (type->field (field_num).type ())))
5979 return 1;
5980
5981 /* Not a special field, so it should not be ignored. */
5982 return 0;
5983 }
5984
5985 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5986 pointer or reference type whose ultimate target has a tag field. */
5987
5988 int
5989 ada_is_tagged_type (struct type *type, int refok)
5990 {
5991 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
5992 }
5993
5994 /* True iff TYPE represents the type of X'Tag */
5995
5996 int
5997 ada_is_tag_type (struct type *type)
5998 {
5999 type = ada_check_typedef (type);
6000
6001 if (type == NULL || type->code () != TYPE_CODE_PTR)
6002 return 0;
6003 else
6004 {
6005 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6006
6007 return (name != NULL
6008 && strcmp (name, "ada__tags__dispatch_table") == 0);
6009 }
6010 }
6011
6012 /* The type of the tag on VAL. */
6013
6014 static struct type *
6015 ada_tag_type (struct value *val)
6016 {
6017 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
6018 }
6019
6020 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6021 retired at Ada 05). */
6022
6023 static int
6024 is_ada95_tag (struct value *tag)
6025 {
6026 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6027 }
6028
6029 /* The value of the tag on VAL. */
6030
6031 static struct value *
6032 ada_value_tag (struct value *val)
6033 {
6034 return ada_value_struct_elt (val, "_tag", 0);
6035 }
6036
6037 /* The value of the tag on the object of type TYPE whose contents are
6038 saved at VALADDR, if it is non-null, or is at memory address
6039 ADDRESS. */
6040
6041 static struct value *
6042 value_tag_from_contents_and_address (struct type *type,
6043 const gdb_byte *valaddr,
6044 CORE_ADDR address)
6045 {
6046 int tag_byte_offset;
6047 struct type *tag_type;
6048
6049 gdb::array_view<const gdb_byte> contents;
6050 if (valaddr != nullptr)
6051 contents = gdb::make_array_view (valaddr, TYPE_LENGTH (type));
6052 struct type *resolved_type = resolve_dynamic_type (type, contents, address);
6053 if (find_struct_field ("_tag", resolved_type, 0, &tag_type, &tag_byte_offset,
6054 NULL, NULL, NULL))
6055 {
6056 const gdb_byte *valaddr1 = ((valaddr == NULL)
6057 ? NULL
6058 : valaddr + tag_byte_offset);
6059 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6060
6061 return value_from_contents_and_address (tag_type, valaddr1, address1);
6062 }
6063 return NULL;
6064 }
6065
6066 static struct type *
6067 type_from_tag (struct value *tag)
6068 {
6069 gdb::unique_xmalloc_ptr<char> type_name = ada_tag_name (tag);
6070
6071 if (type_name != NULL)
6072 return ada_find_any_type (ada_encode (type_name.get ()).c_str ());
6073 return NULL;
6074 }
6075
6076 /* Given a value OBJ of a tagged type, return a value of this
6077 type at the base address of the object. The base address, as
6078 defined in Ada.Tags, it is the address of the primary tag of
6079 the object, and therefore where the field values of its full
6080 view can be fetched. */
6081
6082 struct value *
6083 ada_tag_value_at_base_address (struct value *obj)
6084 {
6085 struct value *val;
6086 LONGEST offset_to_top = 0;
6087 struct type *ptr_type, *obj_type;
6088 struct value *tag;
6089 CORE_ADDR base_address;
6090
6091 obj_type = value_type (obj);
6092
6093 /* It is the responsability of the caller to deref pointers. */
6094
6095 if (obj_type->code () == TYPE_CODE_PTR || obj_type->code () == TYPE_CODE_REF)
6096 return obj;
6097
6098 tag = ada_value_tag (obj);
6099 if (!tag)
6100 return obj;
6101
6102 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6103
6104 if (is_ada95_tag (tag))
6105 return obj;
6106
6107 ptr_type = language_lookup_primitive_type
6108 (language_def (language_ada), target_gdbarch(), "storage_offset");
6109 ptr_type = lookup_pointer_type (ptr_type);
6110 val = value_cast (ptr_type, tag);
6111 if (!val)
6112 return obj;
6113
6114 /* It is perfectly possible that an exception be raised while
6115 trying to determine the base address, just like for the tag;
6116 see ada_tag_name for more details. We do not print the error
6117 message for the same reason. */
6118
6119 try
6120 {
6121 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6122 }
6123
6124 catch (const gdb_exception_error &e)
6125 {
6126 return obj;
6127 }
6128
6129 /* If offset is null, nothing to do. */
6130
6131 if (offset_to_top == 0)
6132 return obj;
6133
6134 /* -1 is a special case in Ada.Tags; however, what should be done
6135 is not quite clear from the documentation. So do nothing for
6136 now. */
6137
6138 if (offset_to_top == -1)
6139 return obj;
6140
6141 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6142 from the base address. This was however incompatible with
6143 C++ dispatch table: C++ uses a *negative* value to *add*
6144 to the base address. Ada's convention has therefore been
6145 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6146 use the same convention. Here, we support both cases by
6147 checking the sign of OFFSET_TO_TOP. */
6148
6149 if (offset_to_top > 0)
6150 offset_to_top = -offset_to_top;
6151
6152 base_address = value_address (obj) + offset_to_top;
6153 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6154
6155 /* Make sure that we have a proper tag at the new address.
6156 Otherwise, offset_to_top is bogus (which can happen when
6157 the object is not initialized yet). */
6158
6159 if (!tag)
6160 return obj;
6161
6162 obj_type = type_from_tag (tag);
6163
6164 if (!obj_type)
6165 return obj;
6166
6167 return value_from_contents_and_address (obj_type, NULL, base_address);
6168 }
6169
6170 /* Return the "ada__tags__type_specific_data" type. */
6171
6172 static struct type *
6173 ada_get_tsd_type (struct inferior *inf)
6174 {
6175 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6176
6177 if (data->tsd_type == 0)
6178 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6179 return data->tsd_type;
6180 }
6181
6182 /* Return the TSD (type-specific data) associated to the given TAG.
6183 TAG is assumed to be the tag of a tagged-type entity.
6184
6185 May return NULL if we are unable to get the TSD. */
6186
6187 static struct value *
6188 ada_get_tsd_from_tag (struct value *tag)
6189 {
6190 struct value *val;
6191 struct type *type;
6192
6193 /* First option: The TSD is simply stored as a field of our TAG.
6194 Only older versions of GNAT would use this format, but we have
6195 to test it first, because there are no visible markers for
6196 the current approach except the absence of that field. */
6197
6198 val = ada_value_struct_elt (tag, "tsd", 1);
6199 if (val)
6200 return val;
6201
6202 /* Try the second representation for the dispatch table (in which
6203 there is no explicit 'tsd' field in the referent of the tag pointer,
6204 and instead the tsd pointer is stored just before the dispatch
6205 table. */
6206
6207 type = ada_get_tsd_type (current_inferior());
6208 if (type == NULL)
6209 return NULL;
6210 type = lookup_pointer_type (lookup_pointer_type (type));
6211 val = value_cast (type, tag);
6212 if (val == NULL)
6213 return NULL;
6214 return value_ind (value_ptradd (val, -1));
6215 }
6216
6217 /* Given the TSD of a tag (type-specific data), return a string
6218 containing the name of the associated type.
6219
6220 May return NULL if we are unable to determine the tag name. */
6221
6222 static gdb::unique_xmalloc_ptr<char>
6223 ada_tag_name_from_tsd (struct value *tsd)
6224 {
6225 char *p;
6226 struct value *val;
6227
6228 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6229 if (val == NULL)
6230 return NULL;
6231 gdb::unique_xmalloc_ptr<char> buffer
6232 = target_read_string (value_as_address (val), INT_MAX);
6233 if (buffer == nullptr)
6234 return nullptr;
6235
6236 for (p = buffer.get (); *p != '\0'; ++p)
6237 {
6238 if (isalpha (*p))
6239 *p = tolower (*p);
6240 }
6241
6242 return buffer;
6243 }
6244
6245 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6246 a C string.
6247
6248 Return NULL if the TAG is not an Ada tag, or if we were unable to
6249 determine the name of that tag. */
6250
6251 gdb::unique_xmalloc_ptr<char>
6252 ada_tag_name (struct value *tag)
6253 {
6254 gdb::unique_xmalloc_ptr<char> name;
6255
6256 if (!ada_is_tag_type (value_type (tag)))
6257 return NULL;
6258
6259 /* It is perfectly possible that an exception be raised while trying
6260 to determine the TAG's name, even under normal circumstances:
6261 The associated variable may be uninitialized or corrupted, for
6262 instance. We do not let any exception propagate past this point.
6263 instead we return NULL.
6264
6265 We also do not print the error message either (which often is very
6266 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6267 the caller print a more meaningful message if necessary. */
6268 try
6269 {
6270 struct value *tsd = ada_get_tsd_from_tag (tag);
6271
6272 if (tsd != NULL)
6273 name = ada_tag_name_from_tsd (tsd);
6274 }
6275 catch (const gdb_exception_error &e)
6276 {
6277 }
6278
6279 return name;
6280 }
6281
6282 /* The parent type of TYPE, or NULL if none. */
6283
6284 struct type *
6285 ada_parent_type (struct type *type)
6286 {
6287 int i;
6288
6289 type = ada_check_typedef (type);
6290
6291 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
6292 return NULL;
6293
6294 for (i = 0; i < type->num_fields (); i += 1)
6295 if (ada_is_parent_field (type, i))
6296 {
6297 struct type *parent_type = type->field (i).type ();
6298
6299 /* If the _parent field is a pointer, then dereference it. */
6300 if (parent_type->code () == TYPE_CODE_PTR)
6301 parent_type = TYPE_TARGET_TYPE (parent_type);
6302 /* If there is a parallel XVS type, get the actual base type. */
6303 parent_type = ada_get_base_type (parent_type);
6304
6305 return ada_check_typedef (parent_type);
6306 }
6307
6308 return NULL;
6309 }
6310
6311 /* True iff field number FIELD_NUM of structure type TYPE contains the
6312 parent-type (inherited) fields of a derived type. Assumes TYPE is
6313 a structure type with at least FIELD_NUM+1 fields. */
6314
6315 int
6316 ada_is_parent_field (struct type *type, int field_num)
6317 {
6318 const char *name = ada_check_typedef (type)->field (field_num).name ();
6319
6320 return (name != NULL
6321 && (startswith (name, "PARENT")
6322 || startswith (name, "_parent")));
6323 }
6324
6325 /* True iff field number FIELD_NUM of structure type TYPE is a
6326 transparent wrapper field (which should be silently traversed when doing
6327 field selection and flattened when printing). Assumes TYPE is a
6328 structure type with at least FIELD_NUM+1 fields. Such fields are always
6329 structures. */
6330
6331 int
6332 ada_is_wrapper_field (struct type *type, int field_num)
6333 {
6334 const char *name = type->field (field_num).name ();
6335
6336 if (name != NULL && strcmp (name, "RETVAL") == 0)
6337 {
6338 /* This happens in functions with "out" or "in out" parameters
6339 which are passed by copy. For such functions, GNAT describes
6340 the function's return type as being a struct where the return
6341 value is in a field called RETVAL, and where the other "out"
6342 or "in out" parameters are fields of that struct. This is not
6343 a wrapper. */
6344 return 0;
6345 }
6346
6347 return (name != NULL
6348 && (startswith (name, "PARENT")
6349 || strcmp (name, "REP") == 0
6350 || startswith (name, "_parent")
6351 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6352 }
6353
6354 /* True iff field number FIELD_NUM of structure or union type TYPE
6355 is a variant wrapper. Assumes TYPE is a structure type with at least
6356 FIELD_NUM+1 fields. */
6357
6358 int
6359 ada_is_variant_part (struct type *type, int field_num)
6360 {
6361 /* Only Ada types are eligible. */
6362 if (!ADA_TYPE_P (type))
6363 return 0;
6364
6365 struct type *field_type = type->field (field_num).type ();
6366
6367 return (field_type->code () == TYPE_CODE_UNION
6368 || (is_dynamic_field (type, field_num)
6369 && (TYPE_TARGET_TYPE (field_type)->code ()
6370 == TYPE_CODE_UNION)));
6371 }
6372
6373 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6374 whose discriminants are contained in the record type OUTER_TYPE,
6375 returns the type of the controlling discriminant for the variant.
6376 May return NULL if the type could not be found. */
6377
6378 struct type *
6379 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6380 {
6381 const char *name = ada_variant_discrim_name (var_type);
6382
6383 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
6384 }
6385
6386 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6387 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6388 represents a 'when others' clause; otherwise 0. */
6389
6390 static int
6391 ada_is_others_clause (struct type *type, int field_num)
6392 {
6393 const char *name = type->field (field_num).name ();
6394
6395 return (name != NULL && name[0] == 'O');
6396 }
6397
6398 /* Assuming that TYPE0 is the type of the variant part of a record,
6399 returns the name of the discriminant controlling the variant.
6400 The value is valid until the next call to ada_variant_discrim_name. */
6401
6402 const char *
6403 ada_variant_discrim_name (struct type *type0)
6404 {
6405 static std::string result;
6406 struct type *type;
6407 const char *name;
6408 const char *discrim_end;
6409 const char *discrim_start;
6410
6411 if (type0->code () == TYPE_CODE_PTR)
6412 type = TYPE_TARGET_TYPE (type0);
6413 else
6414 type = type0;
6415
6416 name = ada_type_name (type);
6417
6418 if (name == NULL || name[0] == '\000')
6419 return "";
6420
6421 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6422 discrim_end -= 1)
6423 {
6424 if (startswith (discrim_end, "___XVN"))
6425 break;
6426 }
6427 if (discrim_end == name)
6428 return "";
6429
6430 for (discrim_start = discrim_end; discrim_start != name + 3;
6431 discrim_start -= 1)
6432 {
6433 if (discrim_start == name + 1)
6434 return "";
6435 if ((discrim_start > name + 3
6436 && startswith (discrim_start - 3, "___"))
6437 || discrim_start[-1] == '.')
6438 break;
6439 }
6440
6441 result = std::string (discrim_start, discrim_end - discrim_start);
6442 return result.c_str ();
6443 }
6444
6445 /* Scan STR for a subtype-encoded number, beginning at position K.
6446 Put the position of the character just past the number scanned in
6447 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6448 Return 1 if there was a valid number at the given position, and 0
6449 otherwise. A "subtype-encoded" number consists of the absolute value
6450 in decimal, followed by the letter 'm' to indicate a negative number.
6451 Assumes 0m does not occur. */
6452
6453 int
6454 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6455 {
6456 ULONGEST RU;
6457
6458 if (!isdigit (str[k]))
6459 return 0;
6460
6461 /* Do it the hard way so as not to make any assumption about
6462 the relationship of unsigned long (%lu scan format code) and
6463 LONGEST. */
6464 RU = 0;
6465 while (isdigit (str[k]))
6466 {
6467 RU = RU * 10 + (str[k] - '0');
6468 k += 1;
6469 }
6470
6471 if (str[k] == 'm')
6472 {
6473 if (R != NULL)
6474 *R = (-(LONGEST) (RU - 1)) - 1;
6475 k += 1;
6476 }
6477 else if (R != NULL)
6478 *R = (LONGEST) RU;
6479
6480 /* NOTE on the above: Technically, C does not say what the results of
6481 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6482 number representable as a LONGEST (although either would probably work
6483 in most implementations). When RU>0, the locution in the then branch
6484 above is always equivalent to the negative of RU. */
6485
6486 if (new_k != NULL)
6487 *new_k = k;
6488 return 1;
6489 }
6490
6491 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6492 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6493 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6494
6495 static int
6496 ada_in_variant (LONGEST val, struct type *type, int field_num)
6497 {
6498 const char *name = type->field (field_num).name ();
6499 int p;
6500
6501 p = 0;
6502 while (1)
6503 {
6504 switch (name[p])
6505 {
6506 case '\0':
6507 return 0;
6508 case 'S':
6509 {
6510 LONGEST W;
6511
6512 if (!ada_scan_number (name, p + 1, &W, &p))
6513 return 0;
6514 if (val == W)
6515 return 1;
6516 break;
6517 }
6518 case 'R':
6519 {
6520 LONGEST L, U;
6521
6522 if (!ada_scan_number (name, p + 1, &L, &p)
6523 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6524 return 0;
6525 if (val >= L && val <= U)
6526 return 1;
6527 break;
6528 }
6529 case 'O':
6530 return 1;
6531 default:
6532 return 0;
6533 }
6534 }
6535 }
6536
6537 /* FIXME: Lots of redundancy below. Try to consolidate. */
6538
6539 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6540 ARG_TYPE, extract and return the value of one of its (non-static)
6541 fields. FIELDNO says which field. Differs from value_primitive_field
6542 only in that it can handle packed values of arbitrary type. */
6543
6544 struct value *
6545 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6546 struct type *arg_type)
6547 {
6548 struct type *type;
6549
6550 arg_type = ada_check_typedef (arg_type);
6551 type = arg_type->field (fieldno).type ();
6552
6553 /* Handle packed fields. It might be that the field is not packed
6554 relative to its containing structure, but the structure itself is
6555 packed; in this case we must take the bit-field path. */
6556 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0 || value_bitpos (arg1) != 0)
6557 {
6558 int bit_pos = arg_type->field (fieldno).loc_bitpos ();
6559 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6560
6561 return ada_value_primitive_packed_val (arg1,
6562 value_contents (arg1).data (),
6563 offset + bit_pos / 8,
6564 bit_pos % 8, bit_size, type);
6565 }
6566 else
6567 return value_primitive_field (arg1, offset, fieldno, arg_type);
6568 }
6569
6570 /* Find field with name NAME in object of type TYPE. If found,
6571 set the following for each argument that is non-null:
6572 - *FIELD_TYPE_P to the field's type;
6573 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6574 an object of that type;
6575 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6576 - *BIT_SIZE_P to its size in bits if the field is packed, and
6577 0 otherwise;
6578 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6579 fields up to but not including the desired field, or by the total
6580 number of fields if not found. A NULL value of NAME never
6581 matches; the function just counts visible fields in this case.
6582
6583 Notice that we need to handle when a tagged record hierarchy
6584 has some components with the same name, like in this scenario:
6585
6586 type Top_T is tagged record
6587 N : Integer := 1;
6588 U : Integer := 974;
6589 A : Integer := 48;
6590 end record;
6591
6592 type Middle_T is new Top.Top_T with record
6593 N : Character := 'a';
6594 C : Integer := 3;
6595 end record;
6596
6597 type Bottom_T is new Middle.Middle_T with record
6598 N : Float := 4.0;
6599 C : Character := '5';
6600 X : Integer := 6;
6601 A : Character := 'J';
6602 end record;
6603
6604 Let's say we now have a variable declared and initialized as follow:
6605
6606 TC : Top_A := new Bottom_T;
6607
6608 And then we use this variable to call this function
6609
6610 procedure Assign (Obj: in out Top_T; TV : Integer);
6611
6612 as follow:
6613
6614 Assign (Top_T (B), 12);
6615
6616 Now, we're in the debugger, and we're inside that procedure
6617 then and we want to print the value of obj.c:
6618
6619 Usually, the tagged record or one of the parent type owns the
6620 component to print and there's no issue but in this particular
6621 case, what does it mean to ask for Obj.C? Since the actual
6622 type for object is type Bottom_T, it could mean two things: type
6623 component C from the Middle_T view, but also component C from
6624 Bottom_T. So in that "undefined" case, when the component is
6625 not found in the non-resolved type (which includes all the
6626 components of the parent type), then resolve it and see if we
6627 get better luck once expanded.
6628
6629 In the case of homonyms in the derived tagged type, we don't
6630 guaranty anything, and pick the one that's easiest for us
6631 to program.
6632
6633 Returns 1 if found, 0 otherwise. */
6634
6635 static int
6636 find_struct_field (const char *name, struct type *type, int offset,
6637 struct type **field_type_p,
6638 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6639 int *index_p)
6640 {
6641 int i;
6642 int parent_offset = -1;
6643
6644 type = ada_check_typedef (type);
6645
6646 if (field_type_p != NULL)
6647 *field_type_p = NULL;
6648 if (byte_offset_p != NULL)
6649 *byte_offset_p = 0;
6650 if (bit_offset_p != NULL)
6651 *bit_offset_p = 0;
6652 if (bit_size_p != NULL)
6653 *bit_size_p = 0;
6654
6655 for (i = 0; i < type->num_fields (); i += 1)
6656 {
6657 /* These can't be computed using TYPE_FIELD_BITPOS for a dynamic
6658 type. However, we only need the values to be correct when
6659 the caller asks for them. */
6660 int bit_pos = 0, fld_offset = 0;
6661 if (byte_offset_p != nullptr || bit_offset_p != nullptr)
6662 {
6663 bit_pos = type->field (i).loc_bitpos ();
6664 fld_offset = offset + bit_pos / 8;
6665 }
6666
6667 const char *t_field_name = type->field (i).name ();
6668
6669 if (t_field_name == NULL)
6670 continue;
6671
6672 else if (ada_is_parent_field (type, i))
6673 {
6674 /* This is a field pointing us to the parent type of a tagged
6675 type. As hinted in this function's documentation, we give
6676 preference to fields in the current record first, so what
6677 we do here is just record the index of this field before
6678 we skip it. If it turns out we couldn't find our field
6679 in the current record, then we'll get back to it and search
6680 inside it whether the field might exist in the parent. */
6681
6682 parent_offset = i;
6683 continue;
6684 }
6685
6686 else if (name != NULL && field_name_match (t_field_name, name))
6687 {
6688 int bit_size = TYPE_FIELD_BITSIZE (type, i);
6689
6690 if (field_type_p != NULL)
6691 *field_type_p = type->field (i).type ();
6692 if (byte_offset_p != NULL)
6693 *byte_offset_p = fld_offset;
6694 if (bit_offset_p != NULL)
6695 *bit_offset_p = bit_pos % 8;
6696 if (bit_size_p != NULL)
6697 *bit_size_p = bit_size;
6698 return 1;
6699 }
6700 else if (ada_is_wrapper_field (type, i))
6701 {
6702 if (find_struct_field (name, type->field (i).type (), fld_offset,
6703 field_type_p, byte_offset_p, bit_offset_p,
6704 bit_size_p, index_p))
6705 return 1;
6706 }
6707 else if (ada_is_variant_part (type, i))
6708 {
6709 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6710 fixed type?? */
6711 int j;
6712 struct type *field_type
6713 = ada_check_typedef (type->field (i).type ());
6714
6715 for (j = 0; j < field_type->num_fields (); j += 1)
6716 {
6717 if (find_struct_field (name, field_type->field (j).type (),
6718 fld_offset
6719 + field_type->field (j).loc_bitpos () / 8,
6720 field_type_p, byte_offset_p,
6721 bit_offset_p, bit_size_p, index_p))
6722 return 1;
6723 }
6724 }
6725 else if (index_p != NULL)
6726 *index_p += 1;
6727 }
6728
6729 /* Field not found so far. If this is a tagged type which
6730 has a parent, try finding that field in the parent now. */
6731
6732 if (parent_offset != -1)
6733 {
6734 /* As above, only compute the offset when truly needed. */
6735 int fld_offset = offset;
6736 if (byte_offset_p != nullptr || bit_offset_p != nullptr)
6737 {
6738 int bit_pos = type->field (parent_offset).loc_bitpos ();
6739 fld_offset += bit_pos / 8;
6740 }
6741
6742 if (find_struct_field (name, type->field (parent_offset).type (),
6743 fld_offset, field_type_p, byte_offset_p,
6744 bit_offset_p, bit_size_p, index_p))
6745 return 1;
6746 }
6747
6748 return 0;
6749 }
6750
6751 /* Number of user-visible fields in record type TYPE. */
6752
6753 static int
6754 num_visible_fields (struct type *type)
6755 {
6756 int n;
6757
6758 n = 0;
6759 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6760 return n;
6761 }
6762
6763 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
6764 and search in it assuming it has (class) type TYPE.
6765 If found, return value, else return NULL.
6766
6767 Searches recursively through wrapper fields (e.g., '_parent').
6768
6769 In the case of homonyms in the tagged types, please refer to the
6770 long explanation in find_struct_field's function documentation. */
6771
6772 static struct value *
6773 ada_search_struct_field (const char *name, struct value *arg, int offset,
6774 struct type *type)
6775 {
6776 int i;
6777 int parent_offset = -1;
6778
6779 type = ada_check_typedef (type);
6780 for (i = 0; i < type->num_fields (); i += 1)
6781 {
6782 const char *t_field_name = type->field (i).name ();
6783
6784 if (t_field_name == NULL)
6785 continue;
6786
6787 else if (ada_is_parent_field (type, i))
6788 {
6789 /* This is a field pointing us to the parent type of a tagged
6790 type. As hinted in this function's documentation, we give
6791 preference to fields in the current record first, so what
6792 we do here is just record the index of this field before
6793 we skip it. If it turns out we couldn't find our field
6794 in the current record, then we'll get back to it and search
6795 inside it whether the field might exist in the parent. */
6796
6797 parent_offset = i;
6798 continue;
6799 }
6800
6801 else if (field_name_match (t_field_name, name))
6802 return ada_value_primitive_field (arg, offset, i, type);
6803
6804 else if (ada_is_wrapper_field (type, i))
6805 {
6806 struct value *v = /* Do not let indent join lines here. */
6807 ada_search_struct_field (name, arg,
6808 offset + type->field (i).loc_bitpos () / 8,
6809 type->field (i).type ());
6810
6811 if (v != NULL)
6812 return v;
6813 }
6814
6815 else if (ada_is_variant_part (type, i))
6816 {
6817 /* PNH: Do we ever get here? See find_struct_field. */
6818 int j;
6819 struct type *field_type = ada_check_typedef (type->field (i).type ());
6820 int var_offset = offset + type->field (i).loc_bitpos () / 8;
6821
6822 for (j = 0; j < field_type->num_fields (); j += 1)
6823 {
6824 struct value *v = ada_search_struct_field /* Force line
6825 break. */
6826 (name, arg,
6827 var_offset + field_type->field (j).loc_bitpos () / 8,
6828 field_type->field (j).type ());
6829
6830 if (v != NULL)
6831 return v;
6832 }
6833 }
6834 }
6835
6836 /* Field not found so far. If this is a tagged type which
6837 has a parent, try finding that field in the parent now. */
6838
6839 if (parent_offset != -1)
6840 {
6841 struct value *v = ada_search_struct_field (
6842 name, arg, offset + type->field (parent_offset).loc_bitpos () / 8,
6843 type->field (parent_offset).type ());
6844
6845 if (v != NULL)
6846 return v;
6847 }
6848
6849 return NULL;
6850 }
6851
6852 static struct value *ada_index_struct_field_1 (int *, struct value *,
6853 int, struct type *);
6854
6855
6856 /* Return field #INDEX in ARG, where the index is that returned by
6857 * find_struct_field through its INDEX_P argument. Adjust the address
6858 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6859 * If found, return value, else return NULL. */
6860
6861 static struct value *
6862 ada_index_struct_field (int index, struct value *arg, int offset,
6863 struct type *type)
6864 {
6865 return ada_index_struct_field_1 (&index, arg, offset, type);
6866 }
6867
6868
6869 /* Auxiliary function for ada_index_struct_field. Like
6870 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6871 * *INDEX_P. */
6872
6873 static struct value *
6874 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6875 struct type *type)
6876 {
6877 int i;
6878 type = ada_check_typedef (type);
6879
6880 for (i = 0; i < type->num_fields (); i += 1)
6881 {
6882 if (type->field (i).name () == NULL)
6883 continue;
6884 else if (ada_is_wrapper_field (type, i))
6885 {
6886 struct value *v = /* Do not let indent join lines here. */
6887 ada_index_struct_field_1 (index_p, arg,
6888 offset + type->field (i).loc_bitpos () / 8,
6889 type->field (i).type ());
6890
6891 if (v != NULL)
6892 return v;
6893 }
6894
6895 else if (ada_is_variant_part (type, i))
6896 {
6897 /* PNH: Do we ever get here? See ada_search_struct_field,
6898 find_struct_field. */
6899 error (_("Cannot assign this kind of variant record"));
6900 }
6901 else if (*index_p == 0)
6902 return ada_value_primitive_field (arg, offset, i, type);
6903 else
6904 *index_p -= 1;
6905 }
6906 return NULL;
6907 }
6908
6909 /* Return a string representation of type TYPE. */
6910
6911 static std::string
6912 type_as_string (struct type *type)
6913 {
6914 string_file tmp_stream;
6915
6916 type_print (type, "", &tmp_stream, -1);
6917
6918 return std::move (tmp_stream.string ());
6919 }
6920
6921 /* Given a type TYPE, look up the type of the component of type named NAME.
6922 If DISPP is non-null, add its byte displacement from the beginning of a
6923 structure (pointed to by a value) of type TYPE to *DISPP (does not
6924 work for packed fields).
6925
6926 Matches any field whose name has NAME as a prefix, possibly
6927 followed by "___".
6928
6929 TYPE can be either a struct or union. If REFOK, TYPE may also
6930 be a (pointer or reference)+ to a struct or union, and the
6931 ultimate target type will be searched.
6932
6933 Looks recursively into variant clauses and parent types.
6934
6935 In the case of homonyms in the tagged types, please refer to the
6936 long explanation in find_struct_field's function documentation.
6937
6938 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6939 TYPE is not a type of the right kind. */
6940
6941 static struct type *
6942 ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
6943 int noerr)
6944 {
6945 int i;
6946 int parent_offset = -1;
6947
6948 if (name == NULL)
6949 goto BadName;
6950
6951 if (refok && type != NULL)
6952 while (1)
6953 {
6954 type = ada_check_typedef (type);
6955 if (type->code () != TYPE_CODE_PTR && type->code () != TYPE_CODE_REF)
6956 break;
6957 type = TYPE_TARGET_TYPE (type);
6958 }
6959
6960 if (type == NULL
6961 || (type->code () != TYPE_CODE_STRUCT
6962 && type->code () != TYPE_CODE_UNION))
6963 {
6964 if (noerr)
6965 return NULL;
6966
6967 error (_("Type %s is not a structure or union type"),
6968 type != NULL ? type_as_string (type).c_str () : _("(null)"));
6969 }
6970
6971 type = to_static_fixed_type (type);
6972
6973 for (i = 0; i < type->num_fields (); i += 1)
6974 {
6975 const char *t_field_name = type->field (i).name ();
6976 struct type *t;
6977
6978 if (t_field_name == NULL)
6979 continue;
6980
6981 else if (ada_is_parent_field (type, i))
6982 {
6983 /* This is a field pointing us to the parent type of a tagged
6984 type. As hinted in this function's documentation, we give
6985 preference to fields in the current record first, so what
6986 we do here is just record the index of this field before
6987 we skip it. If it turns out we couldn't find our field
6988 in the current record, then we'll get back to it and search
6989 inside it whether the field might exist in the parent. */
6990
6991 parent_offset = i;
6992 continue;
6993 }
6994
6995 else if (field_name_match (t_field_name, name))
6996 return type->field (i).type ();
6997
6998 else if (ada_is_wrapper_field (type, i))
6999 {
7000 t = ada_lookup_struct_elt_type (type->field (i).type (), name,
7001 0, 1);
7002 if (t != NULL)
7003 return t;
7004 }
7005
7006 else if (ada_is_variant_part (type, i))
7007 {
7008 int j;
7009 struct type *field_type = ada_check_typedef (type->field (i).type ());
7010
7011 for (j = field_type->num_fields () - 1; j >= 0; j -= 1)
7012 {
7013 /* FIXME pnh 2008/01/26: We check for a field that is
7014 NOT wrapped in a struct, since the compiler sometimes
7015 generates these for unchecked variant types. Revisit
7016 if the compiler changes this practice. */
7017 const char *v_field_name = field_type->field (j).name ();
7018
7019 if (v_field_name != NULL
7020 && field_name_match (v_field_name, name))
7021 t = field_type->field (j).type ();
7022 else
7023 t = ada_lookup_struct_elt_type (field_type->field (j).type (),
7024 name, 0, 1);
7025
7026 if (t != NULL)
7027 return t;
7028 }
7029 }
7030
7031 }
7032
7033 /* Field not found so far. If this is a tagged type which
7034 has a parent, try finding that field in the parent now. */
7035
7036 if (parent_offset != -1)
7037 {
7038 struct type *t;
7039
7040 t = ada_lookup_struct_elt_type (type->field (parent_offset).type (),
7041 name, 0, 1);
7042 if (t != NULL)
7043 return t;
7044 }
7045
7046 BadName:
7047 if (!noerr)
7048 {
7049 const char *name_str = name != NULL ? name : _("<null>");
7050
7051 error (_("Type %s has no component named %s"),
7052 type_as_string (type).c_str (), name_str);
7053 }
7054
7055 return NULL;
7056 }
7057
7058 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7059 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7060 represents an unchecked union (that is, the variant part of a
7061 record that is named in an Unchecked_Union pragma). */
7062
7063 static int
7064 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7065 {
7066 const char *discrim_name = ada_variant_discrim_name (var_type);
7067
7068 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
7069 }
7070
7071
7072 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7073 within OUTER, determine which variant clause (field number in VAR_TYPE,
7074 numbering from 0) is applicable. Returns -1 if none are. */
7075
7076 int
7077 ada_which_variant_applies (struct type *var_type, struct value *outer)
7078 {
7079 int others_clause;
7080 int i;
7081 const char *discrim_name = ada_variant_discrim_name (var_type);
7082 struct value *discrim;
7083 LONGEST discrim_val;
7084
7085 /* Using plain value_from_contents_and_address here causes problems
7086 because we will end up trying to resolve a type that is currently
7087 being constructed. */
7088 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7089 if (discrim == NULL)
7090 return -1;
7091 discrim_val = value_as_long (discrim);
7092
7093 others_clause = -1;
7094 for (i = 0; i < var_type->num_fields (); i += 1)
7095 {
7096 if (ada_is_others_clause (var_type, i))
7097 others_clause = i;
7098 else if (ada_in_variant (discrim_val, var_type, i))
7099 return i;
7100 }
7101
7102 return others_clause;
7103 }
7104 \f
7105
7106
7107 /* Dynamic-Sized Records */
7108
7109 /* Strategy: The type ostensibly attached to a value with dynamic size
7110 (i.e., a size that is not statically recorded in the debugging
7111 data) does not accurately reflect the size or layout of the value.
7112 Our strategy is to convert these values to values with accurate,
7113 conventional types that are constructed on the fly. */
7114
7115 /* There is a subtle and tricky problem here. In general, we cannot
7116 determine the size of dynamic records without its data. However,
7117 the 'struct value' data structure, which GDB uses to represent
7118 quantities in the inferior process (the target), requires the size
7119 of the type at the time of its allocation in order to reserve space
7120 for GDB's internal copy of the data. That's why the
7121 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7122 rather than struct value*s.
7123
7124 However, GDB's internal history variables ($1, $2, etc.) are
7125 struct value*s containing internal copies of the data that are not, in
7126 general, the same as the data at their corresponding addresses in
7127 the target. Fortunately, the types we give to these values are all
7128 conventional, fixed-size types (as per the strategy described
7129 above), so that we don't usually have to perform the
7130 'to_fixed_xxx_type' conversions to look at their values.
7131 Unfortunately, there is one exception: if one of the internal
7132 history variables is an array whose elements are unconstrained
7133 records, then we will need to create distinct fixed types for each
7134 element selected. */
7135
7136 /* The upshot of all of this is that many routines take a (type, host
7137 address, target address) triple as arguments to represent a value.
7138 The host address, if non-null, is supposed to contain an internal
7139 copy of the relevant data; otherwise, the program is to consult the
7140 target at the target address. */
7141
7142 /* Assuming that VAL0 represents a pointer value, the result of
7143 dereferencing it. Differs from value_ind in its treatment of
7144 dynamic-sized types. */
7145
7146 struct value *
7147 ada_value_ind (struct value *val0)
7148 {
7149 struct value *val = value_ind (val0);
7150
7151 if (ada_is_tagged_type (value_type (val), 0))
7152 val = ada_tag_value_at_base_address (val);
7153
7154 return ada_to_fixed_value (val);
7155 }
7156
7157 /* The value resulting from dereferencing any "reference to"
7158 qualifiers on VAL0. */
7159
7160 static struct value *
7161 ada_coerce_ref (struct value *val0)
7162 {
7163 if (value_type (val0)->code () == TYPE_CODE_REF)
7164 {
7165 struct value *val = val0;
7166
7167 val = coerce_ref (val);
7168
7169 if (ada_is_tagged_type (value_type (val), 0))
7170 val = ada_tag_value_at_base_address (val);
7171
7172 return ada_to_fixed_value (val);
7173 }
7174 else
7175 return val0;
7176 }
7177
7178 /* Return the bit alignment required for field #F of template type TYPE. */
7179
7180 static unsigned int
7181 field_alignment (struct type *type, int f)
7182 {
7183 const char *name = type->field (f).name ();
7184 int len;
7185 int align_offset;
7186
7187 /* The field name should never be null, unless the debugging information
7188 is somehow malformed. In this case, we assume the field does not
7189 require any alignment. */
7190 if (name == NULL)
7191 return 1;
7192
7193 len = strlen (name);
7194
7195 if (!isdigit (name[len - 1]))
7196 return 1;
7197
7198 if (isdigit (name[len - 2]))
7199 align_offset = len - 2;
7200 else
7201 align_offset = len - 1;
7202
7203 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7204 return TARGET_CHAR_BIT;
7205
7206 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7207 }
7208
7209 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7210
7211 static struct symbol *
7212 ada_find_any_type_symbol (const char *name)
7213 {
7214 struct symbol *sym;
7215
7216 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7217 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7218 return sym;
7219
7220 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7221 return sym;
7222 }
7223
7224 /* Find a type named NAME. Ignores ambiguity. This routine will look
7225 solely for types defined by debug info, it will not search the GDB
7226 primitive types. */
7227
7228 static struct type *
7229 ada_find_any_type (const char *name)
7230 {
7231 struct symbol *sym = ada_find_any_type_symbol (name);
7232
7233 if (sym != NULL)
7234 return SYMBOL_TYPE (sym);
7235
7236 return NULL;
7237 }
7238
7239 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7240 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7241 symbol, in which case it is returned. Otherwise, this looks for
7242 symbols whose name is that of NAME_SYM suffixed with "___XR".
7243 Return symbol if found, and NULL otherwise. */
7244
7245 static bool
7246 ada_is_renaming_symbol (struct symbol *name_sym)
7247 {
7248 const char *name = name_sym->linkage_name ();
7249 return strstr (name, "___XR") != NULL;
7250 }
7251
7252 /* Because of GNAT encoding conventions, several GDB symbols may match a
7253 given type name. If the type denoted by TYPE0 is to be preferred to
7254 that of TYPE1 for purposes of type printing, return non-zero;
7255 otherwise return 0. */
7256
7257 int
7258 ada_prefer_type (struct type *type0, struct type *type1)
7259 {
7260 if (type1 == NULL)
7261 return 1;
7262 else if (type0 == NULL)
7263 return 0;
7264 else if (type1->code () == TYPE_CODE_VOID)
7265 return 1;
7266 else if (type0->code () == TYPE_CODE_VOID)
7267 return 0;
7268 else if (type1->name () == NULL && type0->name () != NULL)
7269 return 1;
7270 else if (ada_is_constrained_packed_array_type (type0))
7271 return 1;
7272 else if (ada_is_array_descriptor_type (type0)
7273 && !ada_is_array_descriptor_type (type1))
7274 return 1;
7275 else
7276 {
7277 const char *type0_name = type0->name ();
7278 const char *type1_name = type1->name ();
7279
7280 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7281 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7282 return 1;
7283 }
7284 return 0;
7285 }
7286
7287 /* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
7288 null. */
7289
7290 const char *
7291 ada_type_name (struct type *type)
7292 {
7293 if (type == NULL)
7294 return NULL;
7295 return type->name ();
7296 }
7297
7298 /* Search the list of "descriptive" types associated to TYPE for a type
7299 whose name is NAME. */
7300
7301 static struct type *
7302 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7303 {
7304 struct type *result, *tmp;
7305
7306 if (ada_ignore_descriptive_types_p)
7307 return NULL;
7308
7309 /* If there no descriptive-type info, then there is no parallel type
7310 to be found. */
7311 if (!HAVE_GNAT_AUX_INFO (type))
7312 return NULL;
7313
7314 result = TYPE_DESCRIPTIVE_TYPE (type);
7315 while (result != NULL)
7316 {
7317 const char *result_name = ada_type_name (result);
7318
7319 if (result_name == NULL)
7320 {
7321 warning (_("unexpected null name on descriptive type"));
7322 return NULL;
7323 }
7324
7325 /* If the names match, stop. */
7326 if (strcmp (result_name, name) == 0)
7327 break;
7328
7329 /* Otherwise, look at the next item on the list, if any. */
7330 if (HAVE_GNAT_AUX_INFO (result))
7331 tmp = TYPE_DESCRIPTIVE_TYPE (result);
7332 else
7333 tmp = NULL;
7334
7335 /* If not found either, try after having resolved the typedef. */
7336 if (tmp != NULL)
7337 result = tmp;
7338 else
7339 {
7340 result = check_typedef (result);
7341 if (HAVE_GNAT_AUX_INFO (result))
7342 result = TYPE_DESCRIPTIVE_TYPE (result);
7343 else
7344 result = NULL;
7345 }
7346 }
7347
7348 /* If we didn't find a match, see whether this is a packed array. With
7349 older compilers, the descriptive type information is either absent or
7350 irrelevant when it comes to packed arrays so the above lookup fails.
7351 Fall back to using a parallel lookup by name in this case. */
7352 if (result == NULL && ada_is_constrained_packed_array_type (type))
7353 return ada_find_any_type (name);
7354
7355 return result;
7356 }
7357
7358 /* Find a parallel type to TYPE with the specified NAME, using the
7359 descriptive type taken from the debugging information, if available,
7360 and otherwise using the (slower) name-based method. */
7361
7362 static struct type *
7363 ada_find_parallel_type_with_name (struct type *type, const char *name)
7364 {
7365 struct type *result = NULL;
7366
7367 if (HAVE_GNAT_AUX_INFO (type))
7368 result = find_parallel_type_by_descriptive_type (type, name);
7369 else
7370 result = ada_find_any_type (name);
7371
7372 return result;
7373 }
7374
7375 /* Same as above, but specify the name of the parallel type by appending
7376 SUFFIX to the name of TYPE. */
7377
7378 struct type *
7379 ada_find_parallel_type (struct type *type, const char *suffix)
7380 {
7381 char *name;
7382 const char *type_name = ada_type_name (type);
7383 int len;
7384
7385 if (type_name == NULL)
7386 return NULL;
7387
7388 len = strlen (type_name);
7389
7390 name = (char *) alloca (len + strlen (suffix) + 1);
7391
7392 strcpy (name, type_name);
7393 strcpy (name + len, suffix);
7394
7395 return ada_find_parallel_type_with_name (type, name);
7396 }
7397
7398 /* If TYPE is a variable-size record type, return the corresponding template
7399 type describing its fields. Otherwise, return NULL. */
7400
7401 static struct type *
7402 dynamic_template_type (struct type *type)
7403 {
7404 type = ada_check_typedef (type);
7405
7406 if (type == NULL || type->code () != TYPE_CODE_STRUCT
7407 || ada_type_name (type) == NULL)
7408 return NULL;
7409 else
7410 {
7411 int len = strlen (ada_type_name (type));
7412
7413 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7414 return type;
7415 else
7416 return ada_find_parallel_type (type, "___XVE");
7417 }
7418 }
7419
7420 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7421 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7422
7423 static int
7424 is_dynamic_field (struct type *templ_type, int field_num)
7425 {
7426 const char *name = templ_type->field (field_num).name ();
7427
7428 return name != NULL
7429 && templ_type->field (field_num).type ()->code () == TYPE_CODE_PTR
7430 && strstr (name, "___XVL") != NULL;
7431 }
7432
7433 /* The index of the variant field of TYPE, or -1 if TYPE does not
7434 represent a variant record type. */
7435
7436 static int
7437 variant_field_index (struct type *type)
7438 {
7439 int f;
7440
7441 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
7442 return -1;
7443
7444 for (f = 0; f < type->num_fields (); f += 1)
7445 {
7446 if (ada_is_variant_part (type, f))
7447 return f;
7448 }
7449 return -1;
7450 }
7451
7452 /* A record type with no fields. */
7453
7454 static struct type *
7455 empty_record (struct type *templ)
7456 {
7457 struct type *type = alloc_type_copy (templ);
7458
7459 type->set_code (TYPE_CODE_STRUCT);
7460 INIT_NONE_SPECIFIC (type);
7461 type->set_name ("<empty>");
7462 TYPE_LENGTH (type) = 0;
7463 return type;
7464 }
7465
7466 /* An ordinary record type (with fixed-length fields) that describes
7467 the value of type TYPE at VALADDR or ADDRESS (see comments at
7468 the beginning of this section) VAL according to GNAT conventions.
7469 DVAL0 should describe the (portion of a) record that contains any
7470 necessary discriminants. It should be NULL if value_type (VAL) is
7471 an outer-level type (i.e., as opposed to a branch of a variant.) A
7472 variant field (unless unchecked) is replaced by a particular branch
7473 of the variant.
7474
7475 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7476 length are not statically known are discarded. As a consequence,
7477 VALADDR, ADDRESS and DVAL0 are ignored.
7478
7479 NOTE: Limitations: For now, we assume that dynamic fields and
7480 variants occupy whole numbers of bytes. However, they need not be
7481 byte-aligned. */
7482
7483 struct type *
7484 ada_template_to_fixed_record_type_1 (struct type *type,
7485 const gdb_byte *valaddr,
7486 CORE_ADDR address, struct value *dval0,
7487 int keep_dynamic_fields)
7488 {
7489 struct value *mark = value_mark ();
7490 struct value *dval;
7491 struct type *rtype;
7492 int nfields, bit_len;
7493 int variant_field;
7494 long off;
7495 int fld_bit_len;
7496 int f;
7497
7498 /* Compute the number of fields in this record type that are going
7499 to be processed: unless keep_dynamic_fields, this includes only
7500 fields whose position and length are static will be processed. */
7501 if (keep_dynamic_fields)
7502 nfields = type->num_fields ();
7503 else
7504 {
7505 nfields = 0;
7506 while (nfields < type->num_fields ()
7507 && !ada_is_variant_part (type, nfields)
7508 && !is_dynamic_field (type, nfields))
7509 nfields++;
7510 }
7511
7512 rtype = alloc_type_copy (type);
7513 rtype->set_code (TYPE_CODE_STRUCT);
7514 INIT_NONE_SPECIFIC (rtype);
7515 rtype->set_num_fields (nfields);
7516 rtype->set_fields
7517 ((struct field *) TYPE_ZALLOC (rtype, nfields * sizeof (struct field)));
7518 rtype->set_name (ada_type_name (type));
7519 rtype->set_is_fixed_instance (true);
7520
7521 off = 0;
7522 bit_len = 0;
7523 variant_field = -1;
7524
7525 for (f = 0; f < nfields; f += 1)
7526 {
7527 off = align_up (off, field_alignment (type, f))
7528 + type->field (f).loc_bitpos ();
7529 rtype->field (f).set_loc_bitpos (off);
7530 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7531
7532 if (ada_is_variant_part (type, f))
7533 {
7534 variant_field = f;
7535 fld_bit_len = 0;
7536 }
7537 else if (is_dynamic_field (type, f))
7538 {
7539 const gdb_byte *field_valaddr = valaddr;
7540 CORE_ADDR field_address = address;
7541 struct type *field_type =
7542 TYPE_TARGET_TYPE (type->field (f).type ());
7543
7544 if (dval0 == NULL)
7545 {
7546 /* Using plain value_from_contents_and_address here
7547 causes problems because we will end up trying to
7548 resolve a type that is currently being
7549 constructed. */
7550 dval = value_from_contents_and_address_unresolved (rtype,
7551 valaddr,
7552 address);
7553 rtype = value_type (dval);
7554 }
7555 else
7556 dval = dval0;
7557
7558 /* If the type referenced by this field is an aligner type, we need
7559 to unwrap that aligner type, because its size might not be set.
7560 Keeping the aligner type would cause us to compute the wrong
7561 size for this field, impacting the offset of the all the fields
7562 that follow this one. */
7563 if (ada_is_aligner_type (field_type))
7564 {
7565 long field_offset = type->field (f).loc_bitpos ();
7566
7567 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7568 field_address = cond_offset_target (field_address, field_offset);
7569 field_type = ada_aligned_type (field_type);
7570 }
7571
7572 field_valaddr = cond_offset_host (field_valaddr,
7573 off / TARGET_CHAR_BIT);
7574 field_address = cond_offset_target (field_address,
7575 off / TARGET_CHAR_BIT);
7576
7577 /* Get the fixed type of the field. Note that, in this case,
7578 we do not want to get the real type out of the tag: if
7579 the current field is the parent part of a tagged record,
7580 we will get the tag of the object. Clearly wrong: the real
7581 type of the parent is not the real type of the child. We
7582 would end up in an infinite loop. */
7583 field_type = ada_get_base_type (field_type);
7584 field_type = ada_to_fixed_type (field_type, field_valaddr,
7585 field_address, dval, 0);
7586
7587 rtype->field (f).set_type (field_type);
7588 rtype->field (f).set_name (type->field (f).name ());
7589 /* The multiplication can potentially overflow. But because
7590 the field length has been size-checked just above, and
7591 assuming that the maximum size is a reasonable value,
7592 an overflow should not happen in practice. So rather than
7593 adding overflow recovery code to this already complex code,
7594 we just assume that it's not going to happen. */
7595 fld_bit_len =
7596 TYPE_LENGTH (rtype->field (f).type ()) * TARGET_CHAR_BIT;
7597 }
7598 else
7599 {
7600 /* Note: If this field's type is a typedef, it is important
7601 to preserve the typedef layer.
7602
7603 Otherwise, we might be transforming a typedef to a fat
7604 pointer (encoding a pointer to an unconstrained array),
7605 into a basic fat pointer (encoding an unconstrained
7606 array). As both types are implemented using the same
7607 structure, the typedef is the only clue which allows us
7608 to distinguish between the two options. Stripping it
7609 would prevent us from printing this field appropriately. */
7610 rtype->field (f).set_type (type->field (f).type ());
7611 rtype->field (f).set_name (type->field (f).name ());
7612 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7613 fld_bit_len =
7614 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7615 else
7616 {
7617 struct type *field_type = type->field (f).type ();
7618
7619 /* We need to be careful of typedefs when computing
7620 the length of our field. If this is a typedef,
7621 get the length of the target type, not the length
7622 of the typedef. */
7623 if (field_type->code () == TYPE_CODE_TYPEDEF)
7624 field_type = ada_typedef_target_type (field_type);
7625
7626 fld_bit_len =
7627 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7628 }
7629 }
7630 if (off + fld_bit_len > bit_len)
7631 bit_len = off + fld_bit_len;
7632 off += fld_bit_len;
7633 TYPE_LENGTH (rtype) =
7634 align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7635 }
7636
7637 /* We handle the variant part, if any, at the end because of certain
7638 odd cases in which it is re-ordered so as NOT to be the last field of
7639 the record. This can happen in the presence of representation
7640 clauses. */
7641 if (variant_field >= 0)
7642 {
7643 struct type *branch_type;
7644
7645 off = rtype->field (variant_field).loc_bitpos ();
7646
7647 if (dval0 == NULL)
7648 {
7649 /* Using plain value_from_contents_and_address here causes
7650 problems because we will end up trying to resolve a type
7651 that is currently being constructed. */
7652 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
7653 address);
7654 rtype = value_type (dval);
7655 }
7656 else
7657 dval = dval0;
7658
7659 branch_type =
7660 to_fixed_variant_branch_type
7661 (type->field (variant_field).type (),
7662 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7663 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7664 if (branch_type == NULL)
7665 {
7666 for (f = variant_field + 1; f < rtype->num_fields (); f += 1)
7667 rtype->field (f - 1) = rtype->field (f);
7668 rtype->set_num_fields (rtype->num_fields () - 1);
7669 }
7670 else
7671 {
7672 rtype->field (variant_field).set_type (branch_type);
7673 rtype->field (variant_field).set_name ("S");
7674 fld_bit_len =
7675 TYPE_LENGTH (rtype->field (variant_field).type ()) *
7676 TARGET_CHAR_BIT;
7677 if (off + fld_bit_len > bit_len)
7678 bit_len = off + fld_bit_len;
7679 TYPE_LENGTH (rtype) =
7680 align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7681 }
7682 }
7683
7684 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7685 should contain the alignment of that record, which should be a strictly
7686 positive value. If null or negative, then something is wrong, most
7687 probably in the debug info. In that case, we don't round up the size
7688 of the resulting type. If this record is not part of another structure,
7689 the current RTYPE length might be good enough for our purposes. */
7690 if (TYPE_LENGTH (type) <= 0)
7691 {
7692 if (rtype->name ())
7693 warning (_("Invalid type size for `%s' detected: %s."),
7694 rtype->name (), pulongest (TYPE_LENGTH (type)));
7695 else
7696 warning (_("Invalid type size for <unnamed> detected: %s."),
7697 pulongest (TYPE_LENGTH (type)));
7698 }
7699 else
7700 {
7701 TYPE_LENGTH (rtype) = align_up (TYPE_LENGTH (rtype),
7702 TYPE_LENGTH (type));
7703 }
7704
7705 value_free_to_mark (mark);
7706 return rtype;
7707 }
7708
7709 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7710 of 1. */
7711
7712 static struct type *
7713 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
7714 CORE_ADDR address, struct value *dval0)
7715 {
7716 return ada_template_to_fixed_record_type_1 (type, valaddr,
7717 address, dval0, 1);
7718 }
7719
7720 /* An ordinary record type in which ___XVL-convention fields and
7721 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7722 static approximations, containing all possible fields. Uses
7723 no runtime values. Useless for use in values, but that's OK,
7724 since the results are used only for type determinations. Works on both
7725 structs and unions. Representation note: to save space, we memorize
7726 the result of this function in the TYPE_TARGET_TYPE of the
7727 template type. */
7728
7729 static struct type *
7730 template_to_static_fixed_type (struct type *type0)
7731 {
7732 struct type *type;
7733 int nfields;
7734 int f;
7735
7736 /* No need no do anything if the input type is already fixed. */
7737 if (type0->is_fixed_instance ())
7738 return type0;
7739
7740 /* Likewise if we already have computed the static approximation. */
7741 if (TYPE_TARGET_TYPE (type0) != NULL)
7742 return TYPE_TARGET_TYPE (type0);
7743
7744 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
7745 type = type0;
7746 nfields = type0->num_fields ();
7747
7748 /* Whether or not we cloned TYPE0, cache the result so that we don't do
7749 recompute all over next time. */
7750 TYPE_TARGET_TYPE (type0) = type;
7751
7752 for (f = 0; f < nfields; f += 1)
7753 {
7754 struct type *field_type = type0->field (f).type ();
7755 struct type *new_type;
7756
7757 if (is_dynamic_field (type0, f))
7758 {
7759 field_type = ada_check_typedef (field_type);
7760 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
7761 }
7762 else
7763 new_type = static_unwrap_type (field_type);
7764
7765 if (new_type != field_type)
7766 {
7767 /* Clone TYPE0 only the first time we get a new field type. */
7768 if (type == type0)
7769 {
7770 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
7771 type->set_code (type0->code ());
7772 INIT_NONE_SPECIFIC (type);
7773 type->set_num_fields (nfields);
7774
7775 field *fields =
7776 ((struct field *)
7777 TYPE_ALLOC (type, nfields * sizeof (struct field)));
7778 memcpy (fields, type0->fields (),
7779 sizeof (struct field) * nfields);
7780 type->set_fields (fields);
7781
7782 type->set_name (ada_type_name (type0));
7783 type->set_is_fixed_instance (true);
7784 TYPE_LENGTH (type) = 0;
7785 }
7786 type->field (f).set_type (new_type);
7787 type->field (f).set_name (type0->field (f).name ());
7788 }
7789 }
7790
7791 return type;
7792 }
7793
7794 /* Given an object of type TYPE whose contents are at VALADDR and
7795 whose address in memory is ADDRESS, returns a revision of TYPE,
7796 which should be a non-dynamic-sized record, in which the variant
7797 part, if any, is replaced with the appropriate branch. Looks
7798 for discriminant values in DVAL0, which can be NULL if the record
7799 contains the necessary discriminant values. */
7800
7801 static struct type *
7802 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
7803 CORE_ADDR address, struct value *dval0)
7804 {
7805 struct value *mark = value_mark ();
7806 struct value *dval;
7807 struct type *rtype;
7808 struct type *branch_type;
7809 int nfields = type->num_fields ();
7810 int variant_field = variant_field_index (type);
7811
7812 if (variant_field == -1)
7813 return type;
7814
7815 if (dval0 == NULL)
7816 {
7817 dval = value_from_contents_and_address (type, valaddr, address);
7818 type = value_type (dval);
7819 }
7820 else
7821 dval = dval0;
7822
7823 rtype = alloc_type_copy (type);
7824 rtype->set_code (TYPE_CODE_STRUCT);
7825 INIT_NONE_SPECIFIC (rtype);
7826 rtype->set_num_fields (nfields);
7827
7828 field *fields =
7829 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7830 memcpy (fields, type->fields (), sizeof (struct field) * nfields);
7831 rtype->set_fields (fields);
7832
7833 rtype->set_name (ada_type_name (type));
7834 rtype->set_is_fixed_instance (true);
7835 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7836
7837 branch_type = to_fixed_variant_branch_type
7838 (type->field (variant_field).type (),
7839 cond_offset_host (valaddr,
7840 type->field (variant_field).loc_bitpos ()
7841 / TARGET_CHAR_BIT),
7842 cond_offset_target (address,
7843 type->field (variant_field).loc_bitpos ()
7844 / TARGET_CHAR_BIT), dval);
7845 if (branch_type == NULL)
7846 {
7847 int f;
7848
7849 for (f = variant_field + 1; f < nfields; f += 1)
7850 rtype->field (f - 1) = rtype->field (f);
7851 rtype->set_num_fields (rtype->num_fields () - 1);
7852 }
7853 else
7854 {
7855 rtype->field (variant_field).set_type (branch_type);
7856 rtype->field (variant_field).set_name ("S");
7857 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7858 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7859 }
7860 TYPE_LENGTH (rtype) -= TYPE_LENGTH (type->field (variant_field).type ());
7861
7862 value_free_to_mark (mark);
7863 return rtype;
7864 }
7865
7866 /* An ordinary record type (with fixed-length fields) that describes
7867 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7868 beginning of this section]. Any necessary discriminants' values
7869 should be in DVAL, a record value; it may be NULL if the object
7870 at ADDR itself contains any necessary discriminant values.
7871 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7872 values from the record are needed. Except in the case that DVAL,
7873 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7874 unchecked) is replaced by a particular branch of the variant.
7875
7876 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7877 is questionable and may be removed. It can arise during the
7878 processing of an unconstrained-array-of-record type where all the
7879 variant branches have exactly the same size. This is because in
7880 such cases, the compiler does not bother to use the XVS convention
7881 when encoding the record. I am currently dubious of this
7882 shortcut and suspect the compiler should be altered. FIXME. */
7883
7884 static struct type *
7885 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7886 CORE_ADDR address, struct value *dval)
7887 {
7888 struct type *templ_type;
7889
7890 if (type0->is_fixed_instance ())
7891 return type0;
7892
7893 templ_type = dynamic_template_type (type0);
7894
7895 if (templ_type != NULL)
7896 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7897 else if (variant_field_index (type0) >= 0)
7898 {
7899 if (dval == NULL && valaddr == NULL && address == 0)
7900 return type0;
7901 return to_record_with_fixed_variant_part (type0, valaddr, address,
7902 dval);
7903 }
7904 else
7905 {
7906 type0->set_is_fixed_instance (true);
7907 return type0;
7908 }
7909
7910 }
7911
7912 /* An ordinary record type (with fixed-length fields) that describes
7913 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7914 union type. Any necessary discriminants' values should be in DVAL,
7915 a record value. That is, this routine selects the appropriate
7916 branch of the union at ADDR according to the discriminant value
7917 indicated in the union's type name. Returns VAR_TYPE0 itself if
7918 it represents a variant subject to a pragma Unchecked_Union. */
7919
7920 static struct type *
7921 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7922 CORE_ADDR address, struct value *dval)
7923 {
7924 int which;
7925 struct type *templ_type;
7926 struct type *var_type;
7927
7928 if (var_type0->code () == TYPE_CODE_PTR)
7929 var_type = TYPE_TARGET_TYPE (var_type0);
7930 else
7931 var_type = var_type0;
7932
7933 templ_type = ada_find_parallel_type (var_type, "___XVU");
7934
7935 if (templ_type != NULL)
7936 var_type = templ_type;
7937
7938 if (is_unchecked_variant (var_type, value_type (dval)))
7939 return var_type0;
7940 which = ada_which_variant_applies (var_type, dval);
7941
7942 if (which < 0)
7943 return empty_record (var_type);
7944 else if (is_dynamic_field (var_type, which))
7945 return to_fixed_record_type
7946 (TYPE_TARGET_TYPE (var_type->field (which).type ()),
7947 valaddr, address, dval);
7948 else if (variant_field_index (var_type->field (which).type ()) >= 0)
7949 return
7950 to_fixed_record_type
7951 (var_type->field (which).type (), valaddr, address, dval);
7952 else
7953 return var_type->field (which).type ();
7954 }
7955
7956 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
7957 ENCODING_TYPE, a type following the GNAT conventions for discrete
7958 type encodings, only carries redundant information. */
7959
7960 static int
7961 ada_is_redundant_range_encoding (struct type *range_type,
7962 struct type *encoding_type)
7963 {
7964 const char *bounds_str;
7965 int n;
7966 LONGEST lo, hi;
7967
7968 gdb_assert (range_type->code () == TYPE_CODE_RANGE);
7969
7970 if (get_base_type (range_type)->code ()
7971 != get_base_type (encoding_type)->code ())
7972 {
7973 /* The compiler probably used a simple base type to describe
7974 the range type instead of the range's actual base type,
7975 expecting us to get the real base type from the encoding
7976 anyway. In this situation, the encoding cannot be ignored
7977 as redundant. */
7978 return 0;
7979 }
7980
7981 if (is_dynamic_type (range_type))
7982 return 0;
7983
7984 if (encoding_type->name () == NULL)
7985 return 0;
7986
7987 bounds_str = strstr (encoding_type->name (), "___XDLU_");
7988 if (bounds_str == NULL)
7989 return 0;
7990
7991 n = 8; /* Skip "___XDLU_". */
7992 if (!ada_scan_number (bounds_str, n, &lo, &n))
7993 return 0;
7994 if (range_type->bounds ()->low.const_val () != lo)
7995 return 0;
7996
7997 n += 2; /* Skip the "__" separator between the two bounds. */
7998 if (!ada_scan_number (bounds_str, n, &hi, &n))
7999 return 0;
8000 if (range_type->bounds ()->high.const_val () != hi)
8001 return 0;
8002
8003 return 1;
8004 }
8005
8006 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8007 a type following the GNAT encoding for describing array type
8008 indices, only carries redundant information. */
8009
8010 static int
8011 ada_is_redundant_index_type_desc (struct type *array_type,
8012 struct type *desc_type)
8013 {
8014 struct type *this_layer = check_typedef (array_type);
8015 int i;
8016
8017 for (i = 0; i < desc_type->num_fields (); i++)
8018 {
8019 if (!ada_is_redundant_range_encoding (this_layer->index_type (),
8020 desc_type->field (i).type ()))
8021 return 0;
8022 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8023 }
8024
8025 return 1;
8026 }
8027
8028 /* Assuming that TYPE0 is an array type describing the type of a value
8029 at ADDR, and that DVAL describes a record containing any
8030 discriminants used in TYPE0, returns a type for the value that
8031 contains no dynamic components (that is, no components whose sizes
8032 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8033 true, gives an error message if the resulting type's size is over
8034 varsize_limit. */
8035
8036 static struct type *
8037 to_fixed_array_type (struct type *type0, struct value *dval,
8038 int ignore_too_big)
8039 {
8040 struct type *index_type_desc;
8041 struct type *result;
8042 int constrained_packed_array_p;
8043 static const char *xa_suffix = "___XA";
8044
8045 type0 = ada_check_typedef (type0);
8046 if (type0->is_fixed_instance ())
8047 return type0;
8048
8049 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8050 if (constrained_packed_array_p)
8051 {
8052 type0 = decode_constrained_packed_array_type (type0);
8053 if (type0 == nullptr)
8054 error (_("could not decode constrained packed array type"));
8055 }
8056
8057 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8058
8059 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8060 encoding suffixed with 'P' may still be generated. If so,
8061 it should be used to find the XA type. */
8062
8063 if (index_type_desc == NULL)
8064 {
8065 const char *type_name = ada_type_name (type0);
8066
8067 if (type_name != NULL)
8068 {
8069 const int len = strlen (type_name);
8070 char *name = (char *) alloca (len + strlen (xa_suffix));
8071
8072 if (type_name[len - 1] == 'P')
8073 {
8074 strcpy (name, type_name);
8075 strcpy (name + len - 1, xa_suffix);
8076 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8077 }
8078 }
8079 }
8080
8081 ada_fixup_array_indexes_type (index_type_desc);
8082 if (index_type_desc != NULL
8083 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8084 {
8085 /* Ignore this ___XA parallel type, as it does not bring any
8086 useful information. This allows us to avoid creating fixed
8087 versions of the array's index types, which would be identical
8088 to the original ones. This, in turn, can also help avoid
8089 the creation of fixed versions of the array itself. */
8090 index_type_desc = NULL;
8091 }
8092
8093 if (index_type_desc == NULL)
8094 {
8095 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8096
8097 /* NOTE: elt_type---the fixed version of elt_type0---should never
8098 depend on the contents of the array in properly constructed
8099 debugging data. */
8100 /* Create a fixed version of the array element type.
8101 We're not providing the address of an element here,
8102 and thus the actual object value cannot be inspected to do
8103 the conversion. This should not be a problem, since arrays of
8104 unconstrained objects are not allowed. In particular, all
8105 the elements of an array of a tagged type should all be of
8106 the same type specified in the debugging info. No need to
8107 consult the object tag. */
8108 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8109
8110 /* Make sure we always create a new array type when dealing with
8111 packed array types, since we're going to fix-up the array
8112 type length and element bitsize a little further down. */
8113 if (elt_type0 == elt_type && !constrained_packed_array_p)
8114 result = type0;
8115 else
8116 result = create_array_type (alloc_type_copy (type0),
8117 elt_type, type0->index_type ());
8118 }
8119 else
8120 {
8121 int i;
8122 struct type *elt_type0;
8123
8124 elt_type0 = type0;
8125 for (i = index_type_desc->num_fields (); i > 0; i -= 1)
8126 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8127
8128 /* NOTE: result---the fixed version of elt_type0---should never
8129 depend on the contents of the array in properly constructed
8130 debugging data. */
8131 /* Create a fixed version of the array element type.
8132 We're not providing the address of an element here,
8133 and thus the actual object value cannot be inspected to do
8134 the conversion. This should not be a problem, since arrays of
8135 unconstrained objects are not allowed. In particular, all
8136 the elements of an array of a tagged type should all be of
8137 the same type specified in the debugging info. No need to
8138 consult the object tag. */
8139 result =
8140 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8141
8142 elt_type0 = type0;
8143 for (i = index_type_desc->num_fields () - 1; i >= 0; i -= 1)
8144 {
8145 struct type *range_type =
8146 to_fixed_range_type (index_type_desc->field (i).type (), dval);
8147
8148 result = create_array_type (alloc_type_copy (elt_type0),
8149 result, range_type);
8150 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8151 }
8152 }
8153
8154 /* We want to preserve the type name. This can be useful when
8155 trying to get the type name of a value that has already been
8156 printed (for instance, if the user did "print VAR; whatis $". */
8157 result->set_name (type0->name ());
8158
8159 if (constrained_packed_array_p)
8160 {
8161 /* So far, the resulting type has been created as if the original
8162 type was a regular (non-packed) array type. As a result, the
8163 bitsize of the array elements needs to be set again, and the array
8164 length needs to be recomputed based on that bitsize. */
8165 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8166 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8167
8168 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8169 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8170 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8171 TYPE_LENGTH (result)++;
8172 }
8173
8174 result->set_is_fixed_instance (true);
8175 return result;
8176 }
8177
8178
8179 /* A standard type (containing no dynamically sized components)
8180 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8181 DVAL describes a record containing any discriminants used in TYPE0,
8182 and may be NULL if there are none, or if the object of type TYPE at
8183 ADDRESS or in VALADDR contains these discriminants.
8184
8185 If CHECK_TAG is not null, in the case of tagged types, this function
8186 attempts to locate the object's tag and use it to compute the actual
8187 type. However, when ADDRESS is null, we cannot use it to determine the
8188 location of the tag, and therefore compute the tagged type's actual type.
8189 So we return the tagged type without consulting the tag. */
8190
8191 static struct type *
8192 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8193 CORE_ADDR address, struct value *dval, int check_tag)
8194 {
8195 type = ada_check_typedef (type);
8196
8197 /* Only un-fixed types need to be handled here. */
8198 if (!HAVE_GNAT_AUX_INFO (type))
8199 return type;
8200
8201 switch (type->code ())
8202 {
8203 default:
8204 return type;
8205 case TYPE_CODE_STRUCT:
8206 {
8207 struct type *static_type = to_static_fixed_type (type);
8208 struct type *fixed_record_type =
8209 to_fixed_record_type (type, valaddr, address, NULL);
8210
8211 /* If STATIC_TYPE is a tagged type and we know the object's address,
8212 then we can determine its tag, and compute the object's actual
8213 type from there. Note that we have to use the fixed record
8214 type (the parent part of the record may have dynamic fields
8215 and the way the location of _tag is expressed may depend on
8216 them). */
8217
8218 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8219 {
8220 struct value *tag =
8221 value_tag_from_contents_and_address
8222 (fixed_record_type,
8223 valaddr,
8224 address);
8225 struct type *real_type = type_from_tag (tag);
8226 struct value *obj =
8227 value_from_contents_and_address (fixed_record_type,
8228 valaddr,
8229 address);
8230 fixed_record_type = value_type (obj);
8231 if (real_type != NULL)
8232 return to_fixed_record_type
8233 (real_type, NULL,
8234 value_address (ada_tag_value_at_base_address (obj)), NULL);
8235 }
8236
8237 /* Check to see if there is a parallel ___XVZ variable.
8238 If there is, then it provides the actual size of our type. */
8239 else if (ada_type_name (fixed_record_type) != NULL)
8240 {
8241 const char *name = ada_type_name (fixed_record_type);
8242 char *xvz_name
8243 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
8244 bool xvz_found = false;
8245 LONGEST size;
8246
8247 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8248 try
8249 {
8250 xvz_found = get_int_var_value (xvz_name, size);
8251 }
8252 catch (const gdb_exception_error &except)
8253 {
8254 /* We found the variable, but somehow failed to read
8255 its value. Rethrow the same error, but with a little
8256 bit more information, to help the user understand
8257 what went wrong (Eg: the variable might have been
8258 optimized out). */
8259 throw_error (except.error,
8260 _("unable to read value of %s (%s)"),
8261 xvz_name, except.what ());
8262 }
8263
8264 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8265 {
8266 fixed_record_type = copy_type (fixed_record_type);
8267 TYPE_LENGTH (fixed_record_type) = size;
8268
8269 /* The FIXED_RECORD_TYPE may have be a stub. We have
8270 observed this when the debugging info is STABS, and
8271 apparently it is something that is hard to fix.
8272
8273 In practice, we don't need the actual type definition
8274 at all, because the presence of the XVZ variable allows us
8275 to assume that there must be a XVS type as well, which we
8276 should be able to use later, when we need the actual type
8277 definition.
8278
8279 In the meantime, pretend that the "fixed" type we are
8280 returning is NOT a stub, because this can cause trouble
8281 when using this type to create new types targeting it.
8282 Indeed, the associated creation routines often check
8283 whether the target type is a stub and will try to replace
8284 it, thus using a type with the wrong size. This, in turn,
8285 might cause the new type to have the wrong size too.
8286 Consider the case of an array, for instance, where the size
8287 of the array is computed from the number of elements in
8288 our array multiplied by the size of its element. */
8289 fixed_record_type->set_is_stub (false);
8290 }
8291 }
8292 return fixed_record_type;
8293 }
8294 case TYPE_CODE_ARRAY:
8295 return to_fixed_array_type (type, dval, 1);
8296 case TYPE_CODE_UNION:
8297 if (dval == NULL)
8298 return type;
8299 else
8300 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8301 }
8302 }
8303
8304 /* The same as ada_to_fixed_type_1, except that it preserves the type
8305 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8306
8307 The typedef layer needs be preserved in order to differentiate between
8308 arrays and array pointers when both types are implemented using the same
8309 fat pointer. In the array pointer case, the pointer is encoded as
8310 a typedef of the pointer type. For instance, considering:
8311
8312 type String_Access is access String;
8313 S1 : String_Access := null;
8314
8315 To the debugger, S1 is defined as a typedef of type String. But
8316 to the user, it is a pointer. So if the user tries to print S1,
8317 we should not dereference the array, but print the array address
8318 instead.
8319
8320 If we didn't preserve the typedef layer, we would lose the fact that
8321 the type is to be presented as a pointer (needs de-reference before
8322 being printed). And we would also use the source-level type name. */
8323
8324 struct type *
8325 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8326 CORE_ADDR address, struct value *dval, int check_tag)
8327
8328 {
8329 struct type *fixed_type =
8330 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8331
8332 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8333 then preserve the typedef layer.
8334
8335 Implementation note: We can only check the main-type portion of
8336 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8337 from TYPE now returns a type that has the same instance flags
8338 as TYPE. For instance, if TYPE is a "typedef const", and its
8339 target type is a "struct", then the typedef elimination will return
8340 a "const" version of the target type. See check_typedef for more
8341 details about how the typedef layer elimination is done.
8342
8343 brobecker/2010-11-19: It seems to me that the only case where it is
8344 useful to preserve the typedef layer is when dealing with fat pointers.
8345 Perhaps, we could add a check for that and preserve the typedef layer
8346 only in that situation. But this seems unnecessary so far, probably
8347 because we call check_typedef/ada_check_typedef pretty much everywhere.
8348 */
8349 if (type->code () == TYPE_CODE_TYPEDEF
8350 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8351 == TYPE_MAIN_TYPE (fixed_type)))
8352 return type;
8353
8354 return fixed_type;
8355 }
8356
8357 /* A standard (static-sized) type corresponding as well as possible to
8358 TYPE0, but based on no runtime data. */
8359
8360 static struct type *
8361 to_static_fixed_type (struct type *type0)
8362 {
8363 struct type *type;
8364
8365 if (type0 == NULL)
8366 return NULL;
8367
8368 if (type0->is_fixed_instance ())
8369 return type0;
8370
8371 type0 = ada_check_typedef (type0);
8372
8373 switch (type0->code ())
8374 {
8375 default:
8376 return type0;
8377 case TYPE_CODE_STRUCT:
8378 type = dynamic_template_type (type0);
8379 if (type != NULL)
8380 return template_to_static_fixed_type (type);
8381 else
8382 return template_to_static_fixed_type (type0);
8383 case TYPE_CODE_UNION:
8384 type = ada_find_parallel_type (type0, "___XVU");
8385 if (type != NULL)
8386 return template_to_static_fixed_type (type);
8387 else
8388 return template_to_static_fixed_type (type0);
8389 }
8390 }
8391
8392 /* A static approximation of TYPE with all type wrappers removed. */
8393
8394 static struct type *
8395 static_unwrap_type (struct type *type)
8396 {
8397 if (ada_is_aligner_type (type))
8398 {
8399 struct type *type1 = ada_check_typedef (type)->field (0).type ();
8400 if (ada_type_name (type1) == NULL)
8401 type1->set_name (ada_type_name (type));
8402
8403 return static_unwrap_type (type1);
8404 }
8405 else
8406 {
8407 struct type *raw_real_type = ada_get_base_type (type);
8408
8409 if (raw_real_type == type)
8410 return type;
8411 else
8412 return to_static_fixed_type (raw_real_type);
8413 }
8414 }
8415
8416 /* In some cases, incomplete and private types require
8417 cross-references that are not resolved as records (for example,
8418 type Foo;
8419 type FooP is access Foo;
8420 V: FooP;
8421 type Foo is array ...;
8422 ). In these cases, since there is no mechanism for producing
8423 cross-references to such types, we instead substitute for FooP a
8424 stub enumeration type that is nowhere resolved, and whose tag is
8425 the name of the actual type. Call these types "non-record stubs". */
8426
8427 /* A type equivalent to TYPE that is not a non-record stub, if one
8428 exists, otherwise TYPE. */
8429
8430 struct type *
8431 ada_check_typedef (struct type *type)
8432 {
8433 if (type == NULL)
8434 return NULL;
8435
8436 /* If our type is an access to an unconstrained array, which is encoded
8437 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
8438 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8439 what allows us to distinguish between fat pointers that represent
8440 array types, and fat pointers that represent array access types
8441 (in both cases, the compiler implements them as fat pointers). */
8442 if (ada_is_access_to_unconstrained_array (type))
8443 return type;
8444
8445 type = check_typedef (type);
8446 if (type == NULL || type->code () != TYPE_CODE_ENUM
8447 || !type->is_stub ()
8448 || type->name () == NULL)
8449 return type;
8450 else
8451 {
8452 const char *name = type->name ();
8453 struct type *type1 = ada_find_any_type (name);
8454
8455 if (type1 == NULL)
8456 return type;
8457
8458 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8459 stubs pointing to arrays, as we don't create symbols for array
8460 types, only for the typedef-to-array types). If that's the case,
8461 strip the typedef layer. */
8462 if (type1->code () == TYPE_CODE_TYPEDEF)
8463 type1 = ada_check_typedef (type1);
8464
8465 return type1;
8466 }
8467 }
8468
8469 /* A value representing the data at VALADDR/ADDRESS as described by
8470 type TYPE0, but with a standard (static-sized) type that correctly
8471 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8472 type, then return VAL0 [this feature is simply to avoid redundant
8473 creation of struct values]. */
8474
8475 static struct value *
8476 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8477 struct value *val0)
8478 {
8479 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
8480
8481 if (type == type0 && val0 != NULL)
8482 return val0;
8483
8484 if (VALUE_LVAL (val0) != lval_memory)
8485 {
8486 /* Our value does not live in memory; it could be a convenience
8487 variable, for instance. Create a not_lval value using val0's
8488 contents. */
8489 return value_from_contents (type, value_contents (val0).data ());
8490 }
8491
8492 return value_from_contents_and_address (type, 0, address);
8493 }
8494
8495 /* A value representing VAL, but with a standard (static-sized) type
8496 that correctly describes it. Does not necessarily create a new
8497 value. */
8498
8499 struct value *
8500 ada_to_fixed_value (struct value *val)
8501 {
8502 val = unwrap_value (val);
8503 val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
8504 return val;
8505 }
8506 \f
8507
8508 /* Attributes */
8509
8510 /* Table mapping attribute numbers to names.
8511 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
8512
8513 static const char * const attribute_names[] = {
8514 "<?>",
8515
8516 "first",
8517 "last",
8518 "length",
8519 "image",
8520 "max",
8521 "min",
8522 "modulus",
8523 "pos",
8524 "size",
8525 "tag",
8526 "val",
8527 0
8528 };
8529
8530 static const char *
8531 ada_attribute_name (enum exp_opcode n)
8532 {
8533 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8534 return attribute_names[n - OP_ATR_FIRST + 1];
8535 else
8536 return attribute_names[0];
8537 }
8538
8539 /* Evaluate the 'POS attribute applied to ARG. */
8540
8541 static LONGEST
8542 pos_atr (struct value *arg)
8543 {
8544 struct value *val = coerce_ref (arg);
8545 struct type *type = value_type (val);
8546
8547 if (!discrete_type_p (type))
8548 error (_("'POS only defined on discrete types"));
8549
8550 gdb::optional<LONGEST> result = discrete_position (type, value_as_long (val));
8551 if (!result.has_value ())
8552 error (_("enumeration value is invalid: can't find 'POS"));
8553
8554 return *result;
8555 }
8556
8557 struct value *
8558 ada_pos_atr (struct type *expect_type,
8559 struct expression *exp,
8560 enum noside noside, enum exp_opcode op,
8561 struct value *arg)
8562 {
8563 struct type *type = builtin_type (exp->gdbarch)->builtin_int;
8564 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8565 return value_zero (type, not_lval);
8566 return value_from_longest (type, pos_atr (arg));
8567 }
8568
8569 /* Evaluate the TYPE'VAL attribute applied to ARG. */
8570
8571 static struct value *
8572 val_atr (struct type *type, LONGEST val)
8573 {
8574 gdb_assert (discrete_type_p (type));
8575 if (type->code () == TYPE_CODE_RANGE)
8576 type = TYPE_TARGET_TYPE (type);
8577 if (type->code () == TYPE_CODE_ENUM)
8578 {
8579 if (val < 0 || val >= type->num_fields ())
8580 error (_("argument to 'VAL out of range"));
8581 val = type->field (val).loc_enumval ();
8582 }
8583 return value_from_longest (type, val);
8584 }
8585
8586 struct value *
8587 ada_val_atr (enum noside noside, struct type *type, struct value *arg)
8588 {
8589 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8590 return value_zero (type, not_lval);
8591
8592 if (!discrete_type_p (type))
8593 error (_("'VAL only defined on discrete types"));
8594 if (!integer_type_p (value_type (arg)))
8595 error (_("'VAL requires integral argument"));
8596
8597 return val_atr (type, value_as_long (arg));
8598 }
8599 \f
8600
8601 /* Evaluation */
8602
8603 /* True if TYPE appears to be an Ada character type.
8604 [At the moment, this is true only for Character and Wide_Character;
8605 It is a heuristic test that could stand improvement]. */
8606
8607 bool
8608 ada_is_character_type (struct type *type)
8609 {
8610 const char *name;
8611
8612 /* If the type code says it's a character, then assume it really is,
8613 and don't check any further. */
8614 if (type->code () == TYPE_CODE_CHAR)
8615 return true;
8616
8617 /* Otherwise, assume it's a character type iff it is a discrete type
8618 with a known character type name. */
8619 name = ada_type_name (type);
8620 return (name != NULL
8621 && (type->code () == TYPE_CODE_INT
8622 || type->code () == TYPE_CODE_RANGE)
8623 && (strcmp (name, "character") == 0
8624 || strcmp (name, "wide_character") == 0
8625 || strcmp (name, "wide_wide_character") == 0
8626 || strcmp (name, "unsigned char") == 0));
8627 }
8628
8629 /* True if TYPE appears to be an Ada string type. */
8630
8631 bool
8632 ada_is_string_type (struct type *type)
8633 {
8634 type = ada_check_typedef (type);
8635 if (type != NULL
8636 && type->code () != TYPE_CODE_PTR
8637 && (ada_is_simple_array_type (type)
8638 || ada_is_array_descriptor_type (type))
8639 && ada_array_arity (type) == 1)
8640 {
8641 struct type *elttype = ada_array_element_type (type, 1);
8642
8643 return ada_is_character_type (elttype);
8644 }
8645 else
8646 return false;
8647 }
8648
8649 /* The compiler sometimes provides a parallel XVS type for a given
8650 PAD type. Normally, it is safe to follow the PAD type directly,
8651 but older versions of the compiler have a bug that causes the offset
8652 of its "F" field to be wrong. Following that field in that case
8653 would lead to incorrect results, but this can be worked around
8654 by ignoring the PAD type and using the associated XVS type instead.
8655
8656 Set to True if the debugger should trust the contents of PAD types.
8657 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8658 static bool trust_pad_over_xvs = true;
8659
8660 /* True if TYPE is a struct type introduced by the compiler to force the
8661 alignment of a value. Such types have a single field with a
8662 distinctive name. */
8663
8664 int
8665 ada_is_aligner_type (struct type *type)
8666 {
8667 type = ada_check_typedef (type);
8668
8669 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
8670 return 0;
8671
8672 return (type->code () == TYPE_CODE_STRUCT
8673 && type->num_fields () == 1
8674 && strcmp (type->field (0).name (), "F") == 0);
8675 }
8676
8677 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
8678 the parallel type. */
8679
8680 struct type *
8681 ada_get_base_type (struct type *raw_type)
8682 {
8683 struct type *real_type_namer;
8684 struct type *raw_real_type;
8685
8686 if (raw_type == NULL || raw_type->code () != TYPE_CODE_STRUCT)
8687 return raw_type;
8688
8689 if (ada_is_aligner_type (raw_type))
8690 /* The encoding specifies that we should always use the aligner type.
8691 So, even if this aligner type has an associated XVS type, we should
8692 simply ignore it.
8693
8694 According to the compiler gurus, an XVS type parallel to an aligner
8695 type may exist because of a stabs limitation. In stabs, aligner
8696 types are empty because the field has a variable-sized type, and
8697 thus cannot actually be used as an aligner type. As a result,
8698 we need the associated parallel XVS type to decode the type.
8699 Since the policy in the compiler is to not change the internal
8700 representation based on the debugging info format, we sometimes
8701 end up having a redundant XVS type parallel to the aligner type. */
8702 return raw_type;
8703
8704 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
8705 if (real_type_namer == NULL
8706 || real_type_namer->code () != TYPE_CODE_STRUCT
8707 || real_type_namer->num_fields () != 1)
8708 return raw_type;
8709
8710 if (real_type_namer->field (0).type ()->code () != TYPE_CODE_REF)
8711 {
8712 /* This is an older encoding form where the base type needs to be
8713 looked up by name. We prefer the newer encoding because it is
8714 more efficient. */
8715 raw_real_type = ada_find_any_type (real_type_namer->field (0).name ());
8716 if (raw_real_type == NULL)
8717 return raw_type;
8718 else
8719 return raw_real_type;
8720 }
8721
8722 /* The field in our XVS type is a reference to the base type. */
8723 return TYPE_TARGET_TYPE (real_type_namer->field (0).type ());
8724 }
8725
8726 /* The type of value designated by TYPE, with all aligners removed. */
8727
8728 struct type *
8729 ada_aligned_type (struct type *type)
8730 {
8731 if (ada_is_aligner_type (type))
8732 return ada_aligned_type (type->field (0).type ());
8733 else
8734 return ada_get_base_type (type);
8735 }
8736
8737
8738 /* The address of the aligned value in an object at address VALADDR
8739 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
8740
8741 const gdb_byte *
8742 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
8743 {
8744 if (ada_is_aligner_type (type))
8745 return ada_aligned_value_addr
8746 (type->field (0).type (),
8747 valaddr + type->field (0).loc_bitpos () / TARGET_CHAR_BIT);
8748 else
8749 return valaddr;
8750 }
8751
8752
8753
8754 /* The printed representation of an enumeration literal with encoded
8755 name NAME. The value is good to the next call of ada_enum_name. */
8756 const char *
8757 ada_enum_name (const char *name)
8758 {
8759 static std::string storage;
8760 const char *tmp;
8761
8762 /* First, unqualify the enumeration name:
8763 1. Search for the last '.' character. If we find one, then skip
8764 all the preceding characters, the unqualified name starts
8765 right after that dot.
8766 2. Otherwise, we may be debugging on a target where the compiler
8767 translates dots into "__". Search forward for double underscores,
8768 but stop searching when we hit an overloading suffix, which is
8769 of the form "__" followed by digits. */
8770
8771 tmp = strrchr (name, '.');
8772 if (tmp != NULL)
8773 name = tmp + 1;
8774 else
8775 {
8776 while ((tmp = strstr (name, "__")) != NULL)
8777 {
8778 if (isdigit (tmp[2]))
8779 break;
8780 else
8781 name = tmp + 2;
8782 }
8783 }
8784
8785 if (name[0] == 'Q')
8786 {
8787 int v;
8788
8789 if (name[1] == 'U' || name[1] == 'W')
8790 {
8791 if (sscanf (name + 2, "%x", &v) != 1)
8792 return name;
8793 }
8794 else if (((name[1] >= '0' && name[1] <= '9')
8795 || (name[1] >= 'a' && name[1] <= 'z'))
8796 && name[2] == '\0')
8797 {
8798 storage = string_printf ("'%c'", name[1]);
8799 return storage.c_str ();
8800 }
8801 else
8802 return name;
8803
8804 if (isascii (v) && isprint (v))
8805 storage = string_printf ("'%c'", v);
8806 else if (name[1] == 'U')
8807 storage = string_printf ("[\"%02x\"]", v);
8808 else
8809 storage = string_printf ("[\"%04x\"]", v);
8810
8811 return storage.c_str ();
8812 }
8813 else
8814 {
8815 tmp = strstr (name, "__");
8816 if (tmp == NULL)
8817 tmp = strstr (name, "$");
8818 if (tmp != NULL)
8819 {
8820 storage = std::string (name, tmp - name);
8821 return storage.c_str ();
8822 }
8823
8824 return name;
8825 }
8826 }
8827
8828 /* If VAL is wrapped in an aligner or subtype wrapper, return the
8829 value it wraps. */
8830
8831 static struct value *
8832 unwrap_value (struct value *val)
8833 {
8834 struct type *type = ada_check_typedef (value_type (val));
8835
8836 if (ada_is_aligner_type (type))
8837 {
8838 struct value *v = ada_value_struct_elt (val, "F", 0);
8839 struct type *val_type = ada_check_typedef (value_type (v));
8840
8841 if (ada_type_name (val_type) == NULL)
8842 val_type->set_name (ada_type_name (type));
8843
8844 return unwrap_value (v);
8845 }
8846 else
8847 {
8848 struct type *raw_real_type =
8849 ada_check_typedef (ada_get_base_type (type));
8850
8851 /* If there is no parallel XVS or XVE type, then the value is
8852 already unwrapped. Return it without further modification. */
8853 if ((type == raw_real_type)
8854 && ada_find_parallel_type (type, "___XVE") == NULL)
8855 return val;
8856
8857 return
8858 coerce_unspec_val_to_type
8859 (val, ada_to_fixed_type (raw_real_type, 0,
8860 value_address (val),
8861 NULL, 1));
8862 }
8863 }
8864
8865 /* Given two array types T1 and T2, return nonzero iff both arrays
8866 contain the same number of elements. */
8867
8868 static int
8869 ada_same_array_size_p (struct type *t1, struct type *t2)
8870 {
8871 LONGEST lo1, hi1, lo2, hi2;
8872
8873 /* Get the array bounds in order to verify that the size of
8874 the two arrays match. */
8875 if (!get_array_bounds (t1, &lo1, &hi1)
8876 || !get_array_bounds (t2, &lo2, &hi2))
8877 error (_("unable to determine array bounds"));
8878
8879 /* To make things easier for size comparison, normalize a bit
8880 the case of empty arrays by making sure that the difference
8881 between upper bound and lower bound is always -1. */
8882 if (lo1 > hi1)
8883 hi1 = lo1 - 1;
8884 if (lo2 > hi2)
8885 hi2 = lo2 - 1;
8886
8887 return (hi1 - lo1 == hi2 - lo2);
8888 }
8889
8890 /* Assuming that VAL is an array of integrals, and TYPE represents
8891 an array with the same number of elements, but with wider integral
8892 elements, return an array "casted" to TYPE. In practice, this
8893 means that the returned array is built by casting each element
8894 of the original array into TYPE's (wider) element type. */
8895
8896 static struct value *
8897 ada_promote_array_of_integrals (struct type *type, struct value *val)
8898 {
8899 struct type *elt_type = TYPE_TARGET_TYPE (type);
8900 LONGEST lo, hi;
8901 struct value *res;
8902 LONGEST i;
8903
8904 /* Verify that both val and type are arrays of scalars, and
8905 that the size of val's elements is smaller than the size
8906 of type's element. */
8907 gdb_assert (type->code () == TYPE_CODE_ARRAY);
8908 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
8909 gdb_assert (value_type (val)->code () == TYPE_CODE_ARRAY);
8910 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
8911 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
8912 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
8913
8914 if (!get_array_bounds (type, &lo, &hi))
8915 error (_("unable to determine array bounds"));
8916
8917 res = allocate_value (type);
8918
8919 /* Promote each array element. */
8920 for (i = 0; i < hi - lo + 1; i++)
8921 {
8922 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
8923
8924 memcpy ((value_contents_writeable (res).data ()
8925 + (i * TYPE_LENGTH (elt_type))),
8926 value_contents_all (elt).data (), TYPE_LENGTH (elt_type));
8927 }
8928
8929 return res;
8930 }
8931
8932 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8933 return the converted value. */
8934
8935 static struct value *
8936 coerce_for_assign (struct type *type, struct value *val)
8937 {
8938 struct type *type2 = value_type (val);
8939
8940 if (type == type2)
8941 return val;
8942
8943 type2 = ada_check_typedef (type2);
8944 type = ada_check_typedef (type);
8945
8946 if (type2->code () == TYPE_CODE_PTR
8947 && type->code () == TYPE_CODE_ARRAY)
8948 {
8949 val = ada_value_ind (val);
8950 type2 = value_type (val);
8951 }
8952
8953 if (type2->code () == TYPE_CODE_ARRAY
8954 && type->code () == TYPE_CODE_ARRAY)
8955 {
8956 if (!ada_same_array_size_p (type, type2))
8957 error (_("cannot assign arrays of different length"));
8958
8959 if (is_integral_type (TYPE_TARGET_TYPE (type))
8960 && is_integral_type (TYPE_TARGET_TYPE (type2))
8961 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8962 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
8963 {
8964 /* Allow implicit promotion of the array elements to
8965 a wider type. */
8966 return ada_promote_array_of_integrals (type, val);
8967 }
8968
8969 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8970 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
8971 error (_("Incompatible types in assignment"));
8972 deprecated_set_value_type (val, type);
8973 }
8974 return val;
8975 }
8976
8977 static struct value *
8978 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8979 {
8980 struct value *val;
8981 struct type *type1, *type2;
8982 LONGEST v, v1, v2;
8983
8984 arg1 = coerce_ref (arg1);
8985 arg2 = coerce_ref (arg2);
8986 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
8987 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
8988
8989 if (type1->code () != TYPE_CODE_INT
8990 || type2->code () != TYPE_CODE_INT)
8991 return value_binop (arg1, arg2, op);
8992
8993 switch (op)
8994 {
8995 case BINOP_MOD:
8996 case BINOP_DIV:
8997 case BINOP_REM:
8998 break;
8999 default:
9000 return value_binop (arg1, arg2, op);
9001 }
9002
9003 v2 = value_as_long (arg2);
9004 if (v2 == 0)
9005 {
9006 const char *name;
9007 if (op == BINOP_MOD)
9008 name = "mod";
9009 else if (op == BINOP_DIV)
9010 name = "/";
9011 else
9012 {
9013 gdb_assert (op == BINOP_REM);
9014 name = "rem";
9015 }
9016
9017 error (_("second operand of %s must not be zero."), name);
9018 }
9019
9020 if (type1->is_unsigned () || op == BINOP_MOD)
9021 return value_binop (arg1, arg2, op);
9022
9023 v1 = value_as_long (arg1);
9024 switch (op)
9025 {
9026 case BINOP_DIV:
9027 v = v1 / v2;
9028 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9029 v += v > 0 ? -1 : 1;
9030 break;
9031 case BINOP_REM:
9032 v = v1 % v2;
9033 if (v * v1 < 0)
9034 v -= v2;
9035 break;
9036 default:
9037 /* Should not reach this point. */
9038 v = 0;
9039 }
9040
9041 val = allocate_value (type1);
9042 store_unsigned_integer (value_contents_raw (val).data (),
9043 TYPE_LENGTH (value_type (val)),
9044 type_byte_order (type1), v);
9045 return val;
9046 }
9047
9048 static int
9049 ada_value_equal (struct value *arg1, struct value *arg2)
9050 {
9051 if (ada_is_direct_array_type (value_type (arg1))
9052 || ada_is_direct_array_type (value_type (arg2)))
9053 {
9054 struct type *arg1_type, *arg2_type;
9055
9056 /* Automatically dereference any array reference before
9057 we attempt to perform the comparison. */
9058 arg1 = ada_coerce_ref (arg1);
9059 arg2 = ada_coerce_ref (arg2);
9060
9061 arg1 = ada_coerce_to_simple_array (arg1);
9062 arg2 = ada_coerce_to_simple_array (arg2);
9063
9064 arg1_type = ada_check_typedef (value_type (arg1));
9065 arg2_type = ada_check_typedef (value_type (arg2));
9066
9067 if (arg1_type->code () != TYPE_CODE_ARRAY
9068 || arg2_type->code () != TYPE_CODE_ARRAY)
9069 error (_("Attempt to compare array with non-array"));
9070 /* FIXME: The following works only for types whose
9071 representations use all bits (no padding or undefined bits)
9072 and do not have user-defined equality. */
9073 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9074 && memcmp (value_contents (arg1).data (),
9075 value_contents (arg2).data (),
9076 TYPE_LENGTH (arg1_type)) == 0);
9077 }
9078 return value_equal (arg1, arg2);
9079 }
9080
9081 namespace expr
9082 {
9083
9084 bool
9085 check_objfile (const std::unique_ptr<ada_component> &comp,
9086 struct objfile *objfile)
9087 {
9088 return comp->uses_objfile (objfile);
9089 }
9090
9091 /* Assign the result of evaluating ARG starting at *POS to the INDEXth
9092 component of LHS (a simple array or a record). Does not modify the
9093 inferior's memory, nor does it modify LHS (unless LHS ==
9094 CONTAINER). */
9095
9096 static void
9097 assign_component (struct value *container, struct value *lhs, LONGEST index,
9098 struct expression *exp, operation_up &arg)
9099 {
9100 scoped_value_mark mark;
9101
9102 struct value *elt;
9103 struct type *lhs_type = check_typedef (value_type (lhs));
9104
9105 if (lhs_type->code () == TYPE_CODE_ARRAY)
9106 {
9107 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9108 struct value *index_val = value_from_longest (index_type, index);
9109
9110 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9111 }
9112 else
9113 {
9114 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9115 elt = ada_to_fixed_value (elt);
9116 }
9117
9118 ada_aggregate_operation *ag_op
9119 = dynamic_cast<ada_aggregate_operation *> (arg.get ());
9120 if (ag_op != nullptr)
9121 ag_op->assign_aggregate (container, elt, exp);
9122 else
9123 value_assign_to_component (container, elt,
9124 arg->evaluate (nullptr, exp,
9125 EVAL_NORMAL));
9126 }
9127
9128 bool
9129 ada_aggregate_component::uses_objfile (struct objfile *objfile)
9130 {
9131 for (const auto &item : m_components)
9132 if (item->uses_objfile (objfile))
9133 return true;
9134 return false;
9135 }
9136
9137 void
9138 ada_aggregate_component::dump (ui_file *stream, int depth)
9139 {
9140 fprintf_filtered (stream, _("%*sAggregate\n"), depth, "");
9141 for (const auto &item : m_components)
9142 item->dump (stream, depth + 1);
9143 }
9144
9145 void
9146 ada_aggregate_component::assign (struct value *container,
9147 struct value *lhs, struct expression *exp,
9148 std::vector<LONGEST> &indices,
9149 LONGEST low, LONGEST high)
9150 {
9151 for (auto &item : m_components)
9152 item->assign (container, lhs, exp, indices, low, high);
9153 }
9154
9155 /* See ada-exp.h. */
9156
9157 value *
9158 ada_aggregate_operation::assign_aggregate (struct value *container,
9159 struct value *lhs,
9160 struct expression *exp)
9161 {
9162 struct type *lhs_type;
9163 LONGEST low_index, high_index;
9164
9165 container = ada_coerce_ref (container);
9166 if (ada_is_direct_array_type (value_type (container)))
9167 container = ada_coerce_to_simple_array (container);
9168 lhs = ada_coerce_ref (lhs);
9169 if (!deprecated_value_modifiable (lhs))
9170 error (_("Left operand of assignment is not a modifiable lvalue."));
9171
9172 lhs_type = check_typedef (value_type (lhs));
9173 if (ada_is_direct_array_type (lhs_type))
9174 {
9175 lhs = ada_coerce_to_simple_array (lhs);
9176 lhs_type = check_typedef (value_type (lhs));
9177 low_index = lhs_type->bounds ()->low.const_val ();
9178 high_index = lhs_type->bounds ()->high.const_val ();
9179 }
9180 else if (lhs_type->code () == TYPE_CODE_STRUCT)
9181 {
9182 low_index = 0;
9183 high_index = num_visible_fields (lhs_type) - 1;
9184 }
9185 else
9186 error (_("Left-hand side must be array or record."));
9187
9188 std::vector<LONGEST> indices (4);
9189 indices[0] = indices[1] = low_index - 1;
9190 indices[2] = indices[3] = high_index + 1;
9191
9192 std::get<0> (m_storage)->assign (container, lhs, exp, indices,
9193 low_index, high_index);
9194
9195 return container;
9196 }
9197
9198 bool
9199 ada_positional_component::uses_objfile (struct objfile *objfile)
9200 {
9201 return m_op->uses_objfile (objfile);
9202 }
9203
9204 void
9205 ada_positional_component::dump (ui_file *stream, int depth)
9206 {
9207 fprintf_filtered (stream, _("%*sPositional, index = %d\n"),
9208 depth, "", m_index);
9209 m_op->dump (stream, depth + 1);
9210 }
9211
9212 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9213 construct, given that the positions are relative to lower bound
9214 LOW, where HIGH is the upper bound. Record the position in
9215 INDICES. CONTAINER is as for assign_aggregate. */
9216 void
9217 ada_positional_component::assign (struct value *container,
9218 struct value *lhs, struct expression *exp,
9219 std::vector<LONGEST> &indices,
9220 LONGEST low, LONGEST high)
9221 {
9222 LONGEST ind = m_index + low;
9223
9224 if (ind - 1 == high)
9225 warning (_("Extra components in aggregate ignored."));
9226 if (ind <= high)
9227 {
9228 add_component_interval (ind, ind, indices);
9229 assign_component (container, lhs, ind, exp, m_op);
9230 }
9231 }
9232
9233 bool
9234 ada_discrete_range_association::uses_objfile (struct objfile *objfile)
9235 {
9236 return m_low->uses_objfile (objfile) || m_high->uses_objfile (objfile);
9237 }
9238
9239 void
9240 ada_discrete_range_association::dump (ui_file *stream, int depth)
9241 {
9242 fprintf_filtered (stream, _("%*sDiscrete range:\n"), depth, "");
9243 m_low->dump (stream, depth + 1);
9244 m_high->dump (stream, depth + 1);
9245 }
9246
9247 void
9248 ada_discrete_range_association::assign (struct value *container,
9249 struct value *lhs,
9250 struct expression *exp,
9251 std::vector<LONGEST> &indices,
9252 LONGEST low, LONGEST high,
9253 operation_up &op)
9254 {
9255 LONGEST lower = value_as_long (m_low->evaluate (nullptr, exp, EVAL_NORMAL));
9256 LONGEST upper = value_as_long (m_high->evaluate (nullptr, exp, EVAL_NORMAL));
9257
9258 if (lower <= upper && (lower < low || upper > high))
9259 error (_("Index in component association out of bounds."));
9260
9261 add_component_interval (lower, upper, indices);
9262 while (lower <= upper)
9263 {
9264 assign_component (container, lhs, lower, exp, op);
9265 lower += 1;
9266 }
9267 }
9268
9269 bool
9270 ada_name_association::uses_objfile (struct objfile *objfile)
9271 {
9272 return m_val->uses_objfile (objfile);
9273 }
9274
9275 void
9276 ada_name_association::dump (ui_file *stream, int depth)
9277 {
9278 fprintf_filtered (stream, _("%*sName:\n"), depth, "");
9279 m_val->dump (stream, depth + 1);
9280 }
9281
9282 void
9283 ada_name_association::assign (struct value *container,
9284 struct value *lhs,
9285 struct expression *exp,
9286 std::vector<LONGEST> &indices,
9287 LONGEST low, LONGEST high,
9288 operation_up &op)
9289 {
9290 int index;
9291
9292 if (ada_is_direct_array_type (value_type (lhs)))
9293 index = longest_to_int (value_as_long (m_val->evaluate (nullptr, exp,
9294 EVAL_NORMAL)));
9295 else
9296 {
9297 ada_string_operation *strop
9298 = dynamic_cast<ada_string_operation *> (m_val.get ());
9299
9300 const char *name;
9301 if (strop != nullptr)
9302 name = strop->get_name ();
9303 else
9304 {
9305 ada_var_value_operation *vvo
9306 = dynamic_cast<ada_var_value_operation *> (m_val.get ());
9307 if (vvo != nullptr)
9308 error (_("Invalid record component association."));
9309 name = vvo->get_symbol ()->natural_name ();
9310 }
9311
9312 index = 0;
9313 if (! find_struct_field (name, value_type (lhs), 0,
9314 NULL, NULL, NULL, NULL, &index))
9315 error (_("Unknown component name: %s."), name);
9316 }
9317
9318 add_component_interval (index, index, indices);
9319 assign_component (container, lhs, index, exp, op);
9320 }
9321
9322 bool
9323 ada_choices_component::uses_objfile (struct objfile *objfile)
9324 {
9325 if (m_op->uses_objfile (objfile))
9326 return true;
9327 for (const auto &item : m_assocs)
9328 if (item->uses_objfile (objfile))
9329 return true;
9330 return false;
9331 }
9332
9333 void
9334 ada_choices_component::dump (ui_file *stream, int depth)
9335 {
9336 fprintf_filtered (stream, _("%*sChoices:\n"), depth, "");
9337 m_op->dump (stream, depth + 1);
9338 for (const auto &item : m_assocs)
9339 item->dump (stream, depth + 1);
9340 }
9341
9342 /* Assign into the components of LHS indexed by the OP_CHOICES
9343 construct at *POS, updating *POS past the construct, given that
9344 the allowable indices are LOW..HIGH. Record the indices assigned
9345 to in INDICES. CONTAINER is as for assign_aggregate. */
9346 void
9347 ada_choices_component::assign (struct value *container,
9348 struct value *lhs, struct expression *exp,
9349 std::vector<LONGEST> &indices,
9350 LONGEST low, LONGEST high)
9351 {
9352 for (auto &item : m_assocs)
9353 item->assign (container, lhs, exp, indices, low, high, m_op);
9354 }
9355
9356 bool
9357 ada_others_component::uses_objfile (struct objfile *objfile)
9358 {
9359 return m_op->uses_objfile (objfile);
9360 }
9361
9362 void
9363 ada_others_component::dump (ui_file *stream, int depth)
9364 {
9365 fprintf_filtered (stream, _("%*sOthers:\n"), depth, "");
9366 m_op->dump (stream, depth + 1);
9367 }
9368
9369 /* Assign the value of the expression in the OP_OTHERS construct in
9370 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9371 have not been previously assigned. The index intervals already assigned
9372 are in INDICES. CONTAINER is as for assign_aggregate. */
9373 void
9374 ada_others_component::assign (struct value *container,
9375 struct value *lhs, struct expression *exp,
9376 std::vector<LONGEST> &indices,
9377 LONGEST low, LONGEST high)
9378 {
9379 int num_indices = indices.size ();
9380 for (int i = 0; i < num_indices - 2; i += 2)
9381 {
9382 for (LONGEST ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9383 assign_component (container, lhs, ind, exp, m_op);
9384 }
9385 }
9386
9387 struct value *
9388 ada_assign_operation::evaluate (struct type *expect_type,
9389 struct expression *exp,
9390 enum noside noside)
9391 {
9392 value *arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
9393
9394 ada_aggregate_operation *ag_op
9395 = dynamic_cast<ada_aggregate_operation *> (std::get<1> (m_storage).get ());
9396 if (ag_op != nullptr)
9397 {
9398 if (noside != EVAL_NORMAL)
9399 return arg1;
9400
9401 arg1 = ag_op->assign_aggregate (arg1, arg1, exp);
9402 return ada_value_assign (arg1, arg1);
9403 }
9404 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9405 except if the lhs of our assignment is a convenience variable.
9406 In the case of assigning to a convenience variable, the lhs
9407 should be exactly the result of the evaluation of the rhs. */
9408 struct type *type = value_type (arg1);
9409 if (VALUE_LVAL (arg1) == lval_internalvar)
9410 type = NULL;
9411 value *arg2 = std::get<1> (m_storage)->evaluate (type, exp, noside);
9412 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9413 return arg1;
9414 if (VALUE_LVAL (arg1) == lval_internalvar)
9415 {
9416 /* Nothing. */
9417 }
9418 else
9419 arg2 = coerce_for_assign (value_type (arg1), arg2);
9420 return ada_value_assign (arg1, arg2);
9421 }
9422
9423 } /* namespace expr */
9424
9425 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
9426 [ INDICES[0] .. INDICES[1] ],... The resulting intervals do not
9427 overlap. */
9428 static void
9429 add_component_interval (LONGEST low, LONGEST high,
9430 std::vector<LONGEST> &indices)
9431 {
9432 int i, j;
9433
9434 int size = indices.size ();
9435 for (i = 0; i < size; i += 2) {
9436 if (high >= indices[i] && low <= indices[i + 1])
9437 {
9438 int kh;
9439
9440 for (kh = i + 2; kh < size; kh += 2)
9441 if (high < indices[kh])
9442 break;
9443 if (low < indices[i])
9444 indices[i] = low;
9445 indices[i + 1] = indices[kh - 1];
9446 if (high > indices[i + 1])
9447 indices[i + 1] = high;
9448 memcpy (indices.data () + i + 2, indices.data () + kh, size - kh);
9449 indices.resize (kh - i - 2);
9450 return;
9451 }
9452 else if (high < indices[i])
9453 break;
9454 }
9455
9456 indices.resize (indices.size () + 2);
9457 for (j = indices.size () - 1; j >= i + 2; j -= 1)
9458 indices[j] = indices[j - 2];
9459 indices[i] = low;
9460 indices[i + 1] = high;
9461 }
9462
9463 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9464 is different. */
9465
9466 static struct value *
9467 ada_value_cast (struct type *type, struct value *arg2)
9468 {
9469 if (type == ada_check_typedef (value_type (arg2)))
9470 return arg2;
9471
9472 return value_cast (type, arg2);
9473 }
9474
9475 /* Evaluating Ada expressions, and printing their result.
9476 ------------------------------------------------------
9477
9478 1. Introduction:
9479 ----------------
9480
9481 We usually evaluate an Ada expression in order to print its value.
9482 We also evaluate an expression in order to print its type, which
9483 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9484 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9485 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9486 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9487 similar.
9488
9489 Evaluating expressions is a little more complicated for Ada entities
9490 than it is for entities in languages such as C. The main reason for
9491 this is that Ada provides types whose definition might be dynamic.
9492 One example of such types is variant records. Or another example
9493 would be an array whose bounds can only be known at run time.
9494
9495 The following description is a general guide as to what should be
9496 done (and what should NOT be done) in order to evaluate an expression
9497 involving such types, and when. This does not cover how the semantic
9498 information is encoded by GNAT as this is covered separatly. For the
9499 document used as the reference for the GNAT encoding, see exp_dbug.ads
9500 in the GNAT sources.
9501
9502 Ideally, we should embed each part of this description next to its
9503 associated code. Unfortunately, the amount of code is so vast right
9504 now that it's hard to see whether the code handling a particular
9505 situation might be duplicated or not. One day, when the code is
9506 cleaned up, this guide might become redundant with the comments
9507 inserted in the code, and we might want to remove it.
9508
9509 2. ``Fixing'' an Entity, the Simple Case:
9510 -----------------------------------------
9511
9512 When evaluating Ada expressions, the tricky issue is that they may
9513 reference entities whose type contents and size are not statically
9514 known. Consider for instance a variant record:
9515
9516 type Rec (Empty : Boolean := True) is record
9517 case Empty is
9518 when True => null;
9519 when False => Value : Integer;
9520 end case;
9521 end record;
9522 Yes : Rec := (Empty => False, Value => 1);
9523 No : Rec := (empty => True);
9524
9525 The size and contents of that record depends on the value of the
9526 descriminant (Rec.Empty). At this point, neither the debugging
9527 information nor the associated type structure in GDB are able to
9528 express such dynamic types. So what the debugger does is to create
9529 "fixed" versions of the type that applies to the specific object.
9530 We also informally refer to this operation as "fixing" an object,
9531 which means creating its associated fixed type.
9532
9533 Example: when printing the value of variable "Yes" above, its fixed
9534 type would look like this:
9535
9536 type Rec is record
9537 Empty : Boolean;
9538 Value : Integer;
9539 end record;
9540
9541 On the other hand, if we printed the value of "No", its fixed type
9542 would become:
9543
9544 type Rec is record
9545 Empty : Boolean;
9546 end record;
9547
9548 Things become a little more complicated when trying to fix an entity
9549 with a dynamic type that directly contains another dynamic type,
9550 such as an array of variant records, for instance. There are
9551 two possible cases: Arrays, and records.
9552
9553 3. ``Fixing'' Arrays:
9554 ---------------------
9555
9556 The type structure in GDB describes an array in terms of its bounds,
9557 and the type of its elements. By design, all elements in the array
9558 have the same type and we cannot represent an array of variant elements
9559 using the current type structure in GDB. When fixing an array,
9560 we cannot fix the array element, as we would potentially need one
9561 fixed type per element of the array. As a result, the best we can do
9562 when fixing an array is to produce an array whose bounds and size
9563 are correct (allowing us to read it from memory), but without having
9564 touched its element type. Fixing each element will be done later,
9565 when (if) necessary.
9566
9567 Arrays are a little simpler to handle than records, because the same
9568 amount of memory is allocated for each element of the array, even if
9569 the amount of space actually used by each element differs from element
9570 to element. Consider for instance the following array of type Rec:
9571
9572 type Rec_Array is array (1 .. 2) of Rec;
9573
9574 The actual amount of memory occupied by each element might be different
9575 from element to element, depending on the value of their discriminant.
9576 But the amount of space reserved for each element in the array remains
9577 fixed regardless. So we simply need to compute that size using
9578 the debugging information available, from which we can then determine
9579 the array size (we multiply the number of elements of the array by
9580 the size of each element).
9581
9582 The simplest case is when we have an array of a constrained element
9583 type. For instance, consider the following type declarations:
9584
9585 type Bounded_String (Max_Size : Integer) is
9586 Length : Integer;
9587 Buffer : String (1 .. Max_Size);
9588 end record;
9589 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9590
9591 In this case, the compiler describes the array as an array of
9592 variable-size elements (identified by its XVS suffix) for which
9593 the size can be read in the parallel XVZ variable.
9594
9595 In the case of an array of an unconstrained element type, the compiler
9596 wraps the array element inside a private PAD type. This type should not
9597 be shown to the user, and must be "unwrap"'ed before printing. Note
9598 that we also use the adjective "aligner" in our code to designate
9599 these wrapper types.
9600
9601 In some cases, the size allocated for each element is statically
9602 known. In that case, the PAD type already has the correct size,
9603 and the array element should remain unfixed.
9604
9605 But there are cases when this size is not statically known.
9606 For instance, assuming that "Five" is an integer variable:
9607
9608 type Dynamic is array (1 .. Five) of Integer;
9609 type Wrapper (Has_Length : Boolean := False) is record
9610 Data : Dynamic;
9611 case Has_Length is
9612 when True => Length : Integer;
9613 when False => null;
9614 end case;
9615 end record;
9616 type Wrapper_Array is array (1 .. 2) of Wrapper;
9617
9618 Hello : Wrapper_Array := (others => (Has_Length => True,
9619 Data => (others => 17),
9620 Length => 1));
9621
9622
9623 The debugging info would describe variable Hello as being an
9624 array of a PAD type. The size of that PAD type is not statically
9625 known, but can be determined using a parallel XVZ variable.
9626 In that case, a copy of the PAD type with the correct size should
9627 be used for the fixed array.
9628
9629 3. ``Fixing'' record type objects:
9630 ----------------------------------
9631
9632 Things are slightly different from arrays in the case of dynamic
9633 record types. In this case, in order to compute the associated
9634 fixed type, we need to determine the size and offset of each of
9635 its components. This, in turn, requires us to compute the fixed
9636 type of each of these components.
9637
9638 Consider for instance the example:
9639
9640 type Bounded_String (Max_Size : Natural) is record
9641 Str : String (1 .. Max_Size);
9642 Length : Natural;
9643 end record;
9644 My_String : Bounded_String (Max_Size => 10);
9645
9646 In that case, the position of field "Length" depends on the size
9647 of field Str, which itself depends on the value of the Max_Size
9648 discriminant. In order to fix the type of variable My_String,
9649 we need to fix the type of field Str. Therefore, fixing a variant
9650 record requires us to fix each of its components.
9651
9652 However, if a component does not have a dynamic size, the component
9653 should not be fixed. In particular, fields that use a PAD type
9654 should not fixed. Here is an example where this might happen
9655 (assuming type Rec above):
9656
9657 type Container (Big : Boolean) is record
9658 First : Rec;
9659 After : Integer;
9660 case Big is
9661 when True => Another : Integer;
9662 when False => null;
9663 end case;
9664 end record;
9665 My_Container : Container := (Big => False,
9666 First => (Empty => True),
9667 After => 42);
9668
9669 In that example, the compiler creates a PAD type for component First,
9670 whose size is constant, and then positions the component After just
9671 right after it. The offset of component After is therefore constant
9672 in this case.
9673
9674 The debugger computes the position of each field based on an algorithm
9675 that uses, among other things, the actual position and size of the field
9676 preceding it. Let's now imagine that the user is trying to print
9677 the value of My_Container. If the type fixing was recursive, we would
9678 end up computing the offset of field After based on the size of the
9679 fixed version of field First. And since in our example First has
9680 only one actual field, the size of the fixed type is actually smaller
9681 than the amount of space allocated to that field, and thus we would
9682 compute the wrong offset of field After.
9683
9684 To make things more complicated, we need to watch out for dynamic
9685 components of variant records (identified by the ___XVL suffix in
9686 the component name). Even if the target type is a PAD type, the size
9687 of that type might not be statically known. So the PAD type needs
9688 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9689 we might end up with the wrong size for our component. This can be
9690 observed with the following type declarations:
9691
9692 type Octal is new Integer range 0 .. 7;
9693 type Octal_Array is array (Positive range <>) of Octal;
9694 pragma Pack (Octal_Array);
9695
9696 type Octal_Buffer (Size : Positive) is record
9697 Buffer : Octal_Array (1 .. Size);
9698 Length : Integer;
9699 end record;
9700
9701 In that case, Buffer is a PAD type whose size is unset and needs
9702 to be computed by fixing the unwrapped type.
9703
9704 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9705 ----------------------------------------------------------
9706
9707 Lastly, when should the sub-elements of an entity that remained unfixed
9708 thus far, be actually fixed?
9709
9710 The answer is: Only when referencing that element. For instance
9711 when selecting one component of a record, this specific component
9712 should be fixed at that point in time. Or when printing the value
9713 of a record, each component should be fixed before its value gets
9714 printed. Similarly for arrays, the element of the array should be
9715 fixed when printing each element of the array, or when extracting
9716 one element out of that array. On the other hand, fixing should
9717 not be performed on the elements when taking a slice of an array!
9718
9719 Note that one of the side effects of miscomputing the offset and
9720 size of each field is that we end up also miscomputing the size
9721 of the containing type. This can have adverse results when computing
9722 the value of an entity. GDB fetches the value of an entity based
9723 on the size of its type, and thus a wrong size causes GDB to fetch
9724 the wrong amount of memory. In the case where the computed size is
9725 too small, GDB fetches too little data to print the value of our
9726 entity. Results in this case are unpredictable, as we usually read
9727 past the buffer containing the data =:-o. */
9728
9729 /* A helper function for TERNOP_IN_RANGE. */
9730
9731 static value *
9732 eval_ternop_in_range (struct type *expect_type, struct expression *exp,
9733 enum noside noside,
9734 value *arg1, value *arg2, value *arg3)
9735 {
9736 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9737 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9738 struct type *type = language_bool_type (exp->language_defn, exp->gdbarch);
9739 return
9740 value_from_longest (type,
9741 (value_less (arg1, arg3)
9742 || value_equal (arg1, arg3))
9743 && (value_less (arg2, arg1)
9744 || value_equal (arg2, arg1)));
9745 }
9746
9747 /* A helper function for UNOP_NEG. */
9748
9749 value *
9750 ada_unop_neg (struct type *expect_type,
9751 struct expression *exp,
9752 enum noside noside, enum exp_opcode op,
9753 struct value *arg1)
9754 {
9755 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9756 return value_neg (arg1);
9757 }
9758
9759 /* A helper function for UNOP_IN_RANGE. */
9760
9761 value *
9762 ada_unop_in_range (struct type *expect_type,
9763 struct expression *exp,
9764 enum noside noside, enum exp_opcode op,
9765 struct value *arg1, struct type *type)
9766 {
9767 struct value *arg2, *arg3;
9768 switch (type->code ())
9769 {
9770 default:
9771 lim_warning (_("Membership test incompletely implemented; "
9772 "always returns true"));
9773 type = language_bool_type (exp->language_defn, exp->gdbarch);
9774 return value_from_longest (type, (LONGEST) 1);
9775
9776 case TYPE_CODE_RANGE:
9777 arg2 = value_from_longest (type,
9778 type->bounds ()->low.const_val ());
9779 arg3 = value_from_longest (type,
9780 type->bounds ()->high.const_val ());
9781 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9782 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9783 type = language_bool_type (exp->language_defn, exp->gdbarch);
9784 return
9785 value_from_longest (type,
9786 (value_less (arg1, arg3)
9787 || value_equal (arg1, arg3))
9788 && (value_less (arg2, arg1)
9789 || value_equal (arg2, arg1)));
9790 }
9791 }
9792
9793 /* A helper function for OP_ATR_TAG. */
9794
9795 value *
9796 ada_atr_tag (struct type *expect_type,
9797 struct expression *exp,
9798 enum noside noside, enum exp_opcode op,
9799 struct value *arg1)
9800 {
9801 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9802 return value_zero (ada_tag_type (arg1), not_lval);
9803
9804 return ada_value_tag (arg1);
9805 }
9806
9807 /* A helper function for OP_ATR_SIZE. */
9808
9809 value *
9810 ada_atr_size (struct type *expect_type,
9811 struct expression *exp,
9812 enum noside noside, enum exp_opcode op,
9813 struct value *arg1)
9814 {
9815 struct type *type = value_type (arg1);
9816
9817 /* If the argument is a reference, then dereference its type, since
9818 the user is really asking for the size of the actual object,
9819 not the size of the pointer. */
9820 if (type->code () == TYPE_CODE_REF)
9821 type = TYPE_TARGET_TYPE (type);
9822
9823 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9824 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
9825 else
9826 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
9827 TARGET_CHAR_BIT * TYPE_LENGTH (type));
9828 }
9829
9830 /* A helper function for UNOP_ABS. */
9831
9832 value *
9833 ada_abs (struct type *expect_type,
9834 struct expression *exp,
9835 enum noside noside, enum exp_opcode op,
9836 struct value *arg1)
9837 {
9838 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9839 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
9840 return value_neg (arg1);
9841 else
9842 return arg1;
9843 }
9844
9845 /* A helper function for BINOP_MUL. */
9846
9847 value *
9848 ada_mult_binop (struct type *expect_type,
9849 struct expression *exp,
9850 enum noside noside, enum exp_opcode op,
9851 struct value *arg1, struct value *arg2)
9852 {
9853 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9854 {
9855 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9856 return value_zero (value_type (arg1), not_lval);
9857 }
9858 else
9859 {
9860 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9861 return ada_value_binop (arg1, arg2, op);
9862 }
9863 }
9864
9865 /* A helper function for BINOP_EQUAL and BINOP_NOTEQUAL. */
9866
9867 value *
9868 ada_equal_binop (struct type *expect_type,
9869 struct expression *exp,
9870 enum noside noside, enum exp_opcode op,
9871 struct value *arg1, struct value *arg2)
9872 {
9873 int tem;
9874 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9875 tem = 0;
9876 else
9877 {
9878 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9879 tem = ada_value_equal (arg1, arg2);
9880 }
9881 if (op == BINOP_NOTEQUAL)
9882 tem = !tem;
9883 struct type *type = language_bool_type (exp->language_defn, exp->gdbarch);
9884 return value_from_longest (type, (LONGEST) tem);
9885 }
9886
9887 /* A helper function for TERNOP_SLICE. */
9888
9889 value *
9890 ada_ternop_slice (struct expression *exp,
9891 enum noside noside,
9892 struct value *array, struct value *low_bound_val,
9893 struct value *high_bound_val)
9894 {
9895 LONGEST low_bound;
9896 LONGEST high_bound;
9897
9898 low_bound_val = coerce_ref (low_bound_val);
9899 high_bound_val = coerce_ref (high_bound_val);
9900 low_bound = value_as_long (low_bound_val);
9901 high_bound = value_as_long (high_bound_val);
9902
9903 /* If this is a reference to an aligner type, then remove all
9904 the aligners. */
9905 if (value_type (array)->code () == TYPE_CODE_REF
9906 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
9907 TYPE_TARGET_TYPE (value_type (array)) =
9908 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
9909
9910 if (ada_is_any_packed_array_type (value_type (array)))
9911 error (_("cannot slice a packed array"));
9912
9913 /* If this is a reference to an array or an array lvalue,
9914 convert to a pointer. */
9915 if (value_type (array)->code () == TYPE_CODE_REF
9916 || (value_type (array)->code () == TYPE_CODE_ARRAY
9917 && VALUE_LVAL (array) == lval_memory))
9918 array = value_addr (array);
9919
9920 if (noside == EVAL_AVOID_SIDE_EFFECTS
9921 && ada_is_array_descriptor_type (ada_check_typedef
9922 (value_type (array))))
9923 return empty_array (ada_type_of_array (array, 0), low_bound,
9924 high_bound);
9925
9926 array = ada_coerce_to_simple_array_ptr (array);
9927
9928 /* If we have more than one level of pointer indirection,
9929 dereference the value until we get only one level. */
9930 while (value_type (array)->code () == TYPE_CODE_PTR
9931 && (TYPE_TARGET_TYPE (value_type (array))->code ()
9932 == TYPE_CODE_PTR))
9933 array = value_ind (array);
9934
9935 /* Make sure we really do have an array type before going further,
9936 to avoid a SEGV when trying to get the index type or the target
9937 type later down the road if the debug info generated by
9938 the compiler is incorrect or incomplete. */
9939 if (!ada_is_simple_array_type (value_type (array)))
9940 error (_("cannot take slice of non-array"));
9941
9942 if (ada_check_typedef (value_type (array))->code ()
9943 == TYPE_CODE_PTR)
9944 {
9945 struct type *type0 = ada_check_typedef (value_type (array));
9946
9947 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
9948 return empty_array (TYPE_TARGET_TYPE (type0), low_bound, high_bound);
9949 else
9950 {
9951 struct type *arr_type0 =
9952 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
9953
9954 return ada_value_slice_from_ptr (array, arr_type0,
9955 longest_to_int (low_bound),
9956 longest_to_int (high_bound));
9957 }
9958 }
9959 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9960 return array;
9961 else if (high_bound < low_bound)
9962 return empty_array (value_type (array), low_bound, high_bound);
9963 else
9964 return ada_value_slice (array, longest_to_int (low_bound),
9965 longest_to_int (high_bound));
9966 }
9967
9968 /* A helper function for BINOP_IN_BOUNDS. */
9969
9970 value *
9971 ada_binop_in_bounds (struct expression *exp, enum noside noside,
9972 struct value *arg1, struct value *arg2, int n)
9973 {
9974 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9975 {
9976 struct type *type = language_bool_type (exp->language_defn,
9977 exp->gdbarch);
9978 return value_zero (type, not_lval);
9979 }
9980
9981 struct type *type = ada_index_type (value_type (arg2), n, "range");
9982 if (!type)
9983 type = value_type (arg1);
9984
9985 value *arg3 = value_from_longest (type, ada_array_bound (arg2, n, 1));
9986 arg2 = value_from_longest (type, ada_array_bound (arg2, n, 0));
9987
9988 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9989 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9990 type = language_bool_type (exp->language_defn, exp->gdbarch);
9991 return value_from_longest (type,
9992 (value_less (arg1, arg3)
9993 || value_equal (arg1, arg3))
9994 && (value_less (arg2, arg1)
9995 || value_equal (arg2, arg1)));
9996 }
9997
9998 /* A helper function for some attribute operations. */
9999
10000 static value *
10001 ada_unop_atr (struct expression *exp, enum noside noside, enum exp_opcode op,
10002 struct value *arg1, struct type *type_arg, int tem)
10003 {
10004 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10005 {
10006 if (type_arg == NULL)
10007 type_arg = value_type (arg1);
10008
10009 if (ada_is_constrained_packed_array_type (type_arg))
10010 type_arg = decode_constrained_packed_array_type (type_arg);
10011
10012 if (!discrete_type_p (type_arg))
10013 {
10014 switch (op)
10015 {
10016 default: /* Should never happen. */
10017 error (_("unexpected attribute encountered"));
10018 case OP_ATR_FIRST:
10019 case OP_ATR_LAST:
10020 type_arg = ada_index_type (type_arg, tem,
10021 ada_attribute_name (op));
10022 break;
10023 case OP_ATR_LENGTH:
10024 type_arg = builtin_type (exp->gdbarch)->builtin_int;
10025 break;
10026 }
10027 }
10028
10029 return value_zero (type_arg, not_lval);
10030 }
10031 else if (type_arg == NULL)
10032 {
10033 arg1 = ada_coerce_ref (arg1);
10034
10035 if (ada_is_constrained_packed_array_type (value_type (arg1)))
10036 arg1 = ada_coerce_to_simple_array (arg1);
10037
10038 struct type *type;
10039 if (op == OP_ATR_LENGTH)
10040 type = builtin_type (exp->gdbarch)->builtin_int;
10041 else
10042 {
10043 type = ada_index_type (value_type (arg1), tem,
10044 ada_attribute_name (op));
10045 if (type == NULL)
10046 type = builtin_type (exp->gdbarch)->builtin_int;
10047 }
10048
10049 switch (op)
10050 {
10051 default: /* Should never happen. */
10052 error (_("unexpected attribute encountered"));
10053 case OP_ATR_FIRST:
10054 return value_from_longest
10055 (type, ada_array_bound (arg1, tem, 0));
10056 case OP_ATR_LAST:
10057 return value_from_longest
10058 (type, ada_array_bound (arg1, tem, 1));
10059 case OP_ATR_LENGTH:
10060 return value_from_longest
10061 (type, ada_array_length (arg1, tem));
10062 }
10063 }
10064 else if (discrete_type_p (type_arg))
10065 {
10066 struct type *range_type;
10067 const char *name = ada_type_name (type_arg);
10068
10069 range_type = NULL;
10070 if (name != NULL && type_arg->code () != TYPE_CODE_ENUM)
10071 range_type = to_fixed_range_type (type_arg, NULL);
10072 if (range_type == NULL)
10073 range_type = type_arg;
10074 switch (op)
10075 {
10076 default:
10077 error (_("unexpected attribute encountered"));
10078 case OP_ATR_FIRST:
10079 return value_from_longest
10080 (range_type, ada_discrete_type_low_bound (range_type));
10081 case OP_ATR_LAST:
10082 return value_from_longest
10083 (range_type, ada_discrete_type_high_bound (range_type));
10084 case OP_ATR_LENGTH:
10085 error (_("the 'length attribute applies only to array types"));
10086 }
10087 }
10088 else if (type_arg->code () == TYPE_CODE_FLT)
10089 error (_("unimplemented type attribute"));
10090 else
10091 {
10092 LONGEST low, high;
10093
10094 if (ada_is_constrained_packed_array_type (type_arg))
10095 type_arg = decode_constrained_packed_array_type (type_arg);
10096
10097 struct type *type;
10098 if (op == OP_ATR_LENGTH)
10099 type = builtin_type (exp->gdbarch)->builtin_int;
10100 else
10101 {
10102 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10103 if (type == NULL)
10104 type = builtin_type (exp->gdbarch)->builtin_int;
10105 }
10106
10107 switch (op)
10108 {
10109 default:
10110 error (_("unexpected attribute encountered"));
10111 case OP_ATR_FIRST:
10112 low = ada_array_bound_from_type (type_arg, tem, 0);
10113 return value_from_longest (type, low);
10114 case OP_ATR_LAST:
10115 high = ada_array_bound_from_type (type_arg, tem, 1);
10116 return value_from_longest (type, high);
10117 case OP_ATR_LENGTH:
10118 low = ada_array_bound_from_type (type_arg, tem, 0);
10119 high = ada_array_bound_from_type (type_arg, tem, 1);
10120 return value_from_longest (type, high - low + 1);
10121 }
10122 }
10123 }
10124
10125 /* A helper function for OP_ATR_MIN and OP_ATR_MAX. */
10126
10127 struct value *
10128 ada_binop_minmax (struct type *expect_type,
10129 struct expression *exp,
10130 enum noside noside, enum exp_opcode op,
10131 struct value *arg1, struct value *arg2)
10132 {
10133 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10134 return value_zero (value_type (arg1), not_lval);
10135 else
10136 {
10137 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10138 return value_binop (arg1, arg2, op);
10139 }
10140 }
10141
10142 /* A helper function for BINOP_EXP. */
10143
10144 struct value *
10145 ada_binop_exp (struct type *expect_type,
10146 struct expression *exp,
10147 enum noside noside, enum exp_opcode op,
10148 struct value *arg1, struct value *arg2)
10149 {
10150 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10151 return value_zero (value_type (arg1), not_lval);
10152 else
10153 {
10154 /* For integer exponentiation operations,
10155 only promote the first argument. */
10156 if (is_integral_type (value_type (arg2)))
10157 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10158 else
10159 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10160
10161 return value_binop (arg1, arg2, op);
10162 }
10163 }
10164
10165 namespace expr
10166 {
10167
10168 /* See ada-exp.h. */
10169
10170 operation_up
10171 ada_resolvable::replace (operation_up &&owner,
10172 struct expression *exp,
10173 bool deprocedure_p,
10174 bool parse_completion,
10175 innermost_block_tracker *tracker,
10176 struct type *context_type)
10177 {
10178 if (resolve (exp, deprocedure_p, parse_completion, tracker, context_type))
10179 return (make_operation<ada_funcall_operation>
10180 (std::move (owner),
10181 std::vector<operation_up> ()));
10182 return std::move (owner);
10183 }
10184
10185 /* Convert the character literal whose ASCII value would be VAL to the
10186 appropriate value of type TYPE, if there is a translation.
10187 Otherwise return VAL. Hence, in an enumeration type ('A', 'B'),
10188 the literal 'A' (VAL == 65), returns 0. */
10189
10190 static LONGEST
10191 convert_char_literal (struct type *type, LONGEST val)
10192 {
10193 char name[7];
10194 int f;
10195
10196 if (type == NULL)
10197 return val;
10198 type = check_typedef (type);
10199 if (type->code () != TYPE_CODE_ENUM)
10200 return val;
10201
10202 if ((val >= 'a' && val <= 'z') || (val >= '0' && val <= '9'))
10203 xsnprintf (name, sizeof (name), "Q%c", (int) val);
10204 else
10205 xsnprintf (name, sizeof (name), "QU%02x", (int) val);
10206 size_t len = strlen (name);
10207 for (f = 0; f < type->num_fields (); f += 1)
10208 {
10209 /* Check the suffix because an enum constant in a package will
10210 have a name like "pkg__QUxx". This is safe enough because we
10211 already have the correct type, and because mangling means
10212 there can't be clashes. */
10213 const char *ename = type->field (f).name ();
10214 size_t elen = strlen (ename);
10215
10216 if (elen >= len && strcmp (name, ename + elen - len) == 0)
10217 return type->field (f).loc_enumval ();
10218 }
10219 return val;
10220 }
10221
10222 /* See ada-exp.h. */
10223
10224 operation_up
10225 ada_char_operation::replace (operation_up &&owner,
10226 struct expression *exp,
10227 bool deprocedure_p,
10228 bool parse_completion,
10229 innermost_block_tracker *tracker,
10230 struct type *context_type)
10231 {
10232 operation_up result = std::move (owner);
10233
10234 if (context_type != nullptr && context_type->code () == TYPE_CODE_ENUM)
10235 {
10236 gdb_assert (result.get () == this);
10237 std::get<0> (m_storage) = context_type;
10238 std::get<1> (m_storage)
10239 = convert_char_literal (context_type, std::get<1> (m_storage));
10240 }
10241
10242 return make_operation<ada_wrapped_operation> (std::move (result));
10243 }
10244
10245 value *
10246 ada_wrapped_operation::evaluate (struct type *expect_type,
10247 struct expression *exp,
10248 enum noside noside)
10249 {
10250 value *result = std::get<0> (m_storage)->evaluate (expect_type, exp, noside);
10251 if (noside == EVAL_NORMAL)
10252 result = unwrap_value (result);
10253
10254 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
10255 then we need to perform the conversion manually, because
10256 evaluate_subexp_standard doesn't do it. This conversion is
10257 necessary in Ada because the different kinds of float/fixed
10258 types in Ada have different representations.
10259
10260 Similarly, we need to perform the conversion from OP_LONG
10261 ourselves. */
10262 if ((opcode () == OP_FLOAT || opcode () == OP_LONG) && expect_type != NULL)
10263 result = ada_value_cast (expect_type, result);
10264
10265 return result;
10266 }
10267
10268 value *
10269 ada_string_operation::evaluate (struct type *expect_type,
10270 struct expression *exp,
10271 enum noside noside)
10272 {
10273 value *result = string_operation::evaluate (expect_type, exp, noside);
10274 /* The result type will have code OP_STRING, bashed there from
10275 OP_ARRAY. Bash it back. */
10276 if (value_type (result)->code () == TYPE_CODE_STRING)
10277 value_type (result)->set_code (TYPE_CODE_ARRAY);
10278 return result;
10279 }
10280
10281 value *
10282 ada_qual_operation::evaluate (struct type *expect_type,
10283 struct expression *exp,
10284 enum noside noside)
10285 {
10286 struct type *type = std::get<1> (m_storage);
10287 return std::get<0> (m_storage)->evaluate (type, exp, noside);
10288 }
10289
10290 value *
10291 ada_ternop_range_operation::evaluate (struct type *expect_type,
10292 struct expression *exp,
10293 enum noside noside)
10294 {
10295 value *arg0 = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
10296 value *arg1 = std::get<1> (m_storage)->evaluate (nullptr, exp, noside);
10297 value *arg2 = std::get<2> (m_storage)->evaluate (nullptr, exp, noside);
10298 return eval_ternop_in_range (expect_type, exp, noside, arg0, arg1, arg2);
10299 }
10300
10301 value *
10302 ada_binop_addsub_operation::evaluate (struct type *expect_type,
10303 struct expression *exp,
10304 enum noside noside)
10305 {
10306 value *arg1 = std::get<1> (m_storage)->evaluate_with_coercion (exp, noside);
10307 value *arg2 = std::get<2> (m_storage)->evaluate_with_coercion (exp, noside);
10308
10309 auto do_op = [=] (LONGEST x, LONGEST y)
10310 {
10311 if (std::get<0> (m_storage) == BINOP_ADD)
10312 return x + y;
10313 return x - y;
10314 };
10315
10316 if (value_type (arg1)->code () == TYPE_CODE_PTR)
10317 return (value_from_longest
10318 (value_type (arg1),
10319 do_op (value_as_long (arg1), value_as_long (arg2))));
10320 if (value_type (arg2)->code () == TYPE_CODE_PTR)
10321 return (value_from_longest
10322 (value_type (arg2),
10323 do_op (value_as_long (arg1), value_as_long (arg2))));
10324 /* Preserve the original type for use by the range case below.
10325 We cannot cast the result to a reference type, so if ARG1 is
10326 a reference type, find its underlying type. */
10327 struct type *type = value_type (arg1);
10328 while (type->code () == TYPE_CODE_REF)
10329 type = TYPE_TARGET_TYPE (type);
10330 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10331 arg1 = value_binop (arg1, arg2, std::get<0> (m_storage));
10332 /* We need to special-case the result with a range.
10333 This is done for the benefit of "ptype". gdb's Ada support
10334 historically used the LHS to set the result type here, so
10335 preserve this behavior. */
10336 if (type->code () == TYPE_CODE_RANGE)
10337 arg1 = value_cast (type, arg1);
10338 return arg1;
10339 }
10340
10341 value *
10342 ada_unop_atr_operation::evaluate (struct type *expect_type,
10343 struct expression *exp,
10344 enum noside noside)
10345 {
10346 struct type *type_arg = nullptr;
10347 value *val = nullptr;
10348
10349 if (std::get<0> (m_storage)->opcode () == OP_TYPE)
10350 {
10351 value *tem = std::get<0> (m_storage)->evaluate (nullptr, exp,
10352 EVAL_AVOID_SIDE_EFFECTS);
10353 type_arg = value_type (tem);
10354 }
10355 else
10356 val = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
10357
10358 return ada_unop_atr (exp, noside, std::get<1> (m_storage),
10359 val, type_arg, std::get<2> (m_storage));
10360 }
10361
10362 value *
10363 ada_var_msym_value_operation::evaluate_for_cast (struct type *expect_type,
10364 struct expression *exp,
10365 enum noside noside)
10366 {
10367 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10368 return value_zero (expect_type, not_lval);
10369
10370 const bound_minimal_symbol &b = std::get<0> (m_storage);
10371 value *val = evaluate_var_msym_value (noside, b.objfile, b.minsym);
10372
10373 val = ada_value_cast (expect_type, val);
10374
10375 /* Follow the Ada language semantics that do not allow taking
10376 an address of the result of a cast (view conversion in Ada). */
10377 if (VALUE_LVAL (val) == lval_memory)
10378 {
10379 if (value_lazy (val))
10380 value_fetch_lazy (val);
10381 VALUE_LVAL (val) = not_lval;
10382 }
10383 return val;
10384 }
10385
10386 value *
10387 ada_var_value_operation::evaluate_for_cast (struct type *expect_type,
10388 struct expression *exp,
10389 enum noside noside)
10390 {
10391 value *val = evaluate_var_value (noside,
10392 std::get<0> (m_storage).block,
10393 std::get<0> (m_storage).symbol);
10394
10395 val = ada_value_cast (expect_type, val);
10396
10397 /* Follow the Ada language semantics that do not allow taking
10398 an address of the result of a cast (view conversion in Ada). */
10399 if (VALUE_LVAL (val) == lval_memory)
10400 {
10401 if (value_lazy (val))
10402 value_fetch_lazy (val);
10403 VALUE_LVAL (val) = not_lval;
10404 }
10405 return val;
10406 }
10407
10408 value *
10409 ada_var_value_operation::evaluate (struct type *expect_type,
10410 struct expression *exp,
10411 enum noside noside)
10412 {
10413 symbol *sym = std::get<0> (m_storage).symbol;
10414
10415 if (SYMBOL_DOMAIN (sym) == UNDEF_DOMAIN)
10416 /* Only encountered when an unresolved symbol occurs in a
10417 context other than a function call, in which case, it is
10418 invalid. */
10419 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10420 sym->print_name ());
10421
10422 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10423 {
10424 struct type *type = static_unwrap_type (SYMBOL_TYPE (sym));
10425 /* Check to see if this is a tagged type. We also need to handle
10426 the case where the type is a reference to a tagged type, but
10427 we have to be careful to exclude pointers to tagged types.
10428 The latter should be shown as usual (as a pointer), whereas
10429 a reference should mostly be transparent to the user. */
10430 if (ada_is_tagged_type (type, 0)
10431 || (type->code () == TYPE_CODE_REF
10432 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10433 {
10434 /* Tagged types are a little special in the fact that the real
10435 type is dynamic and can only be determined by inspecting the
10436 object's tag. This means that we need to get the object's
10437 value first (EVAL_NORMAL) and then extract the actual object
10438 type from its tag.
10439
10440 Note that we cannot skip the final step where we extract
10441 the object type from its tag, because the EVAL_NORMAL phase
10442 results in dynamic components being resolved into fixed ones.
10443 This can cause problems when trying to print the type
10444 description of tagged types whose parent has a dynamic size:
10445 We use the type name of the "_parent" component in order
10446 to print the name of the ancestor type in the type description.
10447 If that component had a dynamic size, the resolution into
10448 a fixed type would result in the loss of that type name,
10449 thus preventing us from printing the name of the ancestor
10450 type in the type description. */
10451 value *arg1 = evaluate (nullptr, exp, EVAL_NORMAL);
10452
10453 if (type->code () != TYPE_CODE_REF)
10454 {
10455 struct type *actual_type;
10456
10457 actual_type = type_from_tag (ada_value_tag (arg1));
10458 if (actual_type == NULL)
10459 /* If, for some reason, we were unable to determine
10460 the actual type from the tag, then use the static
10461 approximation that we just computed as a fallback.
10462 This can happen if the debugging information is
10463 incomplete, for instance. */
10464 actual_type = type;
10465 return value_zero (actual_type, not_lval);
10466 }
10467 else
10468 {
10469 /* In the case of a ref, ada_coerce_ref takes care
10470 of determining the actual type. But the evaluation
10471 should return a ref as it should be valid to ask
10472 for its address; so rebuild a ref after coerce. */
10473 arg1 = ada_coerce_ref (arg1);
10474 return value_ref (arg1, TYPE_CODE_REF);
10475 }
10476 }
10477
10478 /* Records and unions for which GNAT encodings have been
10479 generated need to be statically fixed as well.
10480 Otherwise, non-static fixing produces a type where
10481 all dynamic properties are removed, which prevents "ptype"
10482 from being able to completely describe the type.
10483 For instance, a case statement in a variant record would be
10484 replaced by the relevant components based on the actual
10485 value of the discriminants. */
10486 if ((type->code () == TYPE_CODE_STRUCT
10487 && dynamic_template_type (type) != NULL)
10488 || (type->code () == TYPE_CODE_UNION
10489 && ada_find_parallel_type (type, "___XVU") != NULL))
10490 return value_zero (to_static_fixed_type (type), not_lval);
10491 }
10492
10493 value *arg1 = var_value_operation::evaluate (expect_type, exp, noside);
10494 return ada_to_fixed_value (arg1);
10495 }
10496
10497 bool
10498 ada_var_value_operation::resolve (struct expression *exp,
10499 bool deprocedure_p,
10500 bool parse_completion,
10501 innermost_block_tracker *tracker,
10502 struct type *context_type)
10503 {
10504 symbol *sym = std::get<0> (m_storage).symbol;
10505 if (SYMBOL_DOMAIN (sym) == UNDEF_DOMAIN)
10506 {
10507 block_symbol resolved
10508 = ada_resolve_variable (sym, std::get<0> (m_storage).block,
10509 context_type, parse_completion,
10510 deprocedure_p, tracker);
10511 std::get<0> (m_storage) = resolved;
10512 }
10513
10514 if (deprocedure_p
10515 && (SYMBOL_TYPE (std::get<0> (m_storage).symbol)->code ()
10516 == TYPE_CODE_FUNC))
10517 return true;
10518
10519 return false;
10520 }
10521
10522 value *
10523 ada_atr_val_operation::evaluate (struct type *expect_type,
10524 struct expression *exp,
10525 enum noside noside)
10526 {
10527 value *arg = std::get<1> (m_storage)->evaluate (nullptr, exp, noside);
10528 return ada_val_atr (noside, std::get<0> (m_storage), arg);
10529 }
10530
10531 value *
10532 ada_unop_ind_operation::evaluate (struct type *expect_type,
10533 struct expression *exp,
10534 enum noside noside)
10535 {
10536 value *arg1 = std::get<0> (m_storage)->evaluate (expect_type, exp, noside);
10537
10538 struct type *type = ada_check_typedef (value_type (arg1));
10539 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10540 {
10541 if (ada_is_array_descriptor_type (type))
10542 /* GDB allows dereferencing GNAT array descriptors. */
10543 {
10544 struct type *arrType = ada_type_of_array (arg1, 0);
10545
10546 if (arrType == NULL)
10547 error (_("Attempt to dereference null array pointer."));
10548 return value_at_lazy (arrType, 0);
10549 }
10550 else if (type->code () == TYPE_CODE_PTR
10551 || type->code () == TYPE_CODE_REF
10552 /* In C you can dereference an array to get the 1st elt. */
10553 || type->code () == TYPE_CODE_ARRAY)
10554 {
10555 /* As mentioned in the OP_VAR_VALUE case, tagged types can
10556 only be determined by inspecting the object's tag.
10557 This means that we need to evaluate completely the
10558 expression in order to get its type. */
10559
10560 if ((type->code () == TYPE_CODE_REF
10561 || type->code () == TYPE_CODE_PTR)
10562 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
10563 {
10564 arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp,
10565 EVAL_NORMAL);
10566 type = value_type (ada_value_ind (arg1));
10567 }
10568 else
10569 {
10570 type = to_static_fixed_type
10571 (ada_aligned_type
10572 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10573 }
10574 return value_zero (type, lval_memory);
10575 }
10576 else if (type->code () == TYPE_CODE_INT)
10577 {
10578 /* GDB allows dereferencing an int. */
10579 if (expect_type == NULL)
10580 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10581 lval_memory);
10582 else
10583 {
10584 expect_type =
10585 to_static_fixed_type (ada_aligned_type (expect_type));
10586 return value_zero (expect_type, lval_memory);
10587 }
10588 }
10589 else
10590 error (_("Attempt to take contents of a non-pointer value."));
10591 }
10592 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
10593 type = ada_check_typedef (value_type (arg1));
10594
10595 if (type->code () == TYPE_CODE_INT)
10596 /* GDB allows dereferencing an int. If we were given
10597 the expect_type, then use that as the target type.
10598 Otherwise, assume that the target type is an int. */
10599 {
10600 if (expect_type != NULL)
10601 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10602 arg1));
10603 else
10604 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10605 (CORE_ADDR) value_as_address (arg1));
10606 }
10607
10608 if (ada_is_array_descriptor_type (type))
10609 /* GDB allows dereferencing GNAT array descriptors. */
10610 return ada_coerce_to_simple_array (arg1);
10611 else
10612 return ada_value_ind (arg1);
10613 }
10614
10615 value *
10616 ada_structop_operation::evaluate (struct type *expect_type,
10617 struct expression *exp,
10618 enum noside noside)
10619 {
10620 value *arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
10621 const char *str = std::get<1> (m_storage).c_str ();
10622 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10623 {
10624 struct type *type;
10625 struct type *type1 = value_type (arg1);
10626
10627 if (ada_is_tagged_type (type1, 1))
10628 {
10629 type = ada_lookup_struct_elt_type (type1, str, 1, 1);
10630
10631 /* If the field is not found, check if it exists in the
10632 extension of this object's type. This means that we
10633 need to evaluate completely the expression. */
10634
10635 if (type == NULL)
10636 {
10637 arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp,
10638 EVAL_NORMAL);
10639 arg1 = ada_value_struct_elt (arg1, str, 0);
10640 arg1 = unwrap_value (arg1);
10641 type = value_type (ada_to_fixed_value (arg1));
10642 }
10643 }
10644 else
10645 type = ada_lookup_struct_elt_type (type1, str, 1, 0);
10646
10647 return value_zero (ada_aligned_type (type), lval_memory);
10648 }
10649 else
10650 {
10651 arg1 = ada_value_struct_elt (arg1, str, 0);
10652 arg1 = unwrap_value (arg1);
10653 return ada_to_fixed_value (arg1);
10654 }
10655 }
10656
10657 value *
10658 ada_funcall_operation::evaluate (struct type *expect_type,
10659 struct expression *exp,
10660 enum noside noside)
10661 {
10662 const std::vector<operation_up> &args_up = std::get<1> (m_storage);
10663 int nargs = args_up.size ();
10664 std::vector<value *> argvec (nargs);
10665 operation_up &callee_op = std::get<0> (m_storage);
10666
10667 ada_var_value_operation *avv
10668 = dynamic_cast<ada_var_value_operation *> (callee_op.get ());
10669 if (avv != nullptr
10670 && SYMBOL_DOMAIN (avv->get_symbol ()) == UNDEF_DOMAIN)
10671 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10672 avv->get_symbol ()->print_name ());
10673
10674 value *callee = callee_op->evaluate (nullptr, exp, noside);
10675 for (int i = 0; i < args_up.size (); ++i)
10676 argvec[i] = args_up[i]->evaluate (nullptr, exp, noside);
10677
10678 if (ada_is_constrained_packed_array_type
10679 (desc_base_type (value_type (callee))))
10680 callee = ada_coerce_to_simple_array (callee);
10681 else if (value_type (callee)->code () == TYPE_CODE_ARRAY
10682 && TYPE_FIELD_BITSIZE (value_type (callee), 0) != 0)
10683 /* This is a packed array that has already been fixed, and
10684 therefore already coerced to a simple array. Nothing further
10685 to do. */
10686 ;
10687 else if (value_type (callee)->code () == TYPE_CODE_REF)
10688 {
10689 /* Make sure we dereference references so that all the code below
10690 feels like it's really handling the referenced value. Wrapping
10691 types (for alignment) may be there, so make sure we strip them as
10692 well. */
10693 callee = ada_to_fixed_value (coerce_ref (callee));
10694 }
10695 else if (value_type (callee)->code () == TYPE_CODE_ARRAY
10696 && VALUE_LVAL (callee) == lval_memory)
10697 callee = value_addr (callee);
10698
10699 struct type *type = ada_check_typedef (value_type (callee));
10700
10701 /* Ada allows us to implicitly dereference arrays when subscripting
10702 them. So, if this is an array typedef (encoding use for array
10703 access types encoded as fat pointers), strip it now. */
10704 if (type->code () == TYPE_CODE_TYPEDEF)
10705 type = ada_typedef_target_type (type);
10706
10707 if (type->code () == TYPE_CODE_PTR)
10708 {
10709 switch (ada_check_typedef (TYPE_TARGET_TYPE (type))->code ())
10710 {
10711 case TYPE_CODE_FUNC:
10712 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10713 break;
10714 case TYPE_CODE_ARRAY:
10715 break;
10716 case TYPE_CODE_STRUCT:
10717 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10718 callee = ada_value_ind (callee);
10719 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10720 break;
10721 default:
10722 error (_("cannot subscript or call something of type `%s'"),
10723 ada_type_name (value_type (callee)));
10724 break;
10725 }
10726 }
10727
10728 switch (type->code ())
10729 {
10730 case TYPE_CODE_FUNC:
10731 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10732 {
10733 if (TYPE_TARGET_TYPE (type) == NULL)
10734 error_call_unknown_return_type (NULL);
10735 return allocate_value (TYPE_TARGET_TYPE (type));
10736 }
10737 return call_function_by_hand (callee, NULL, argvec);
10738 case TYPE_CODE_INTERNAL_FUNCTION:
10739 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10740 /* We don't know anything about what the internal
10741 function might return, but we have to return
10742 something. */
10743 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10744 not_lval);
10745 else
10746 return call_internal_function (exp->gdbarch, exp->language_defn,
10747 callee, nargs,
10748 argvec.data ());
10749
10750 case TYPE_CODE_STRUCT:
10751 {
10752 int arity;
10753
10754 arity = ada_array_arity (type);
10755 type = ada_array_element_type (type, nargs);
10756 if (type == NULL)
10757 error (_("cannot subscript or call a record"));
10758 if (arity != nargs)
10759 error (_("wrong number of subscripts; expecting %d"), arity);
10760 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10761 return value_zero (ada_aligned_type (type), lval_memory);
10762 return
10763 unwrap_value (ada_value_subscript
10764 (callee, nargs, argvec.data ()));
10765 }
10766 case TYPE_CODE_ARRAY:
10767 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10768 {
10769 type = ada_array_element_type (type, nargs);
10770 if (type == NULL)
10771 error (_("element type of array unknown"));
10772 else
10773 return value_zero (ada_aligned_type (type), lval_memory);
10774 }
10775 return
10776 unwrap_value (ada_value_subscript
10777 (ada_coerce_to_simple_array (callee),
10778 nargs, argvec.data ()));
10779 case TYPE_CODE_PTR: /* Pointer to array */
10780 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10781 {
10782 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10783 type = ada_array_element_type (type, nargs);
10784 if (type == NULL)
10785 error (_("element type of array unknown"));
10786 else
10787 return value_zero (ada_aligned_type (type), lval_memory);
10788 }
10789 return
10790 unwrap_value (ada_value_ptr_subscript (callee, nargs,
10791 argvec.data ()));
10792
10793 default:
10794 error (_("Attempt to index or call something other than an "
10795 "array or function"));
10796 }
10797 }
10798
10799 bool
10800 ada_funcall_operation::resolve (struct expression *exp,
10801 bool deprocedure_p,
10802 bool parse_completion,
10803 innermost_block_tracker *tracker,
10804 struct type *context_type)
10805 {
10806 operation_up &callee_op = std::get<0> (m_storage);
10807
10808 ada_var_value_operation *avv
10809 = dynamic_cast<ada_var_value_operation *> (callee_op.get ());
10810 if (avv == nullptr)
10811 return false;
10812
10813 symbol *sym = avv->get_symbol ();
10814 if (SYMBOL_DOMAIN (sym) != UNDEF_DOMAIN)
10815 return false;
10816
10817 const std::vector<operation_up> &args_up = std::get<1> (m_storage);
10818 int nargs = args_up.size ();
10819 std::vector<value *> argvec (nargs);
10820
10821 for (int i = 0; i < args_up.size (); ++i)
10822 argvec[i] = args_up[i]->evaluate (nullptr, exp, EVAL_AVOID_SIDE_EFFECTS);
10823
10824 const block *block = avv->get_block ();
10825 block_symbol resolved
10826 = ada_resolve_funcall (sym, block,
10827 context_type, parse_completion,
10828 nargs, argvec.data (),
10829 tracker);
10830
10831 std::get<0> (m_storage)
10832 = make_operation<ada_var_value_operation> (resolved);
10833 return false;
10834 }
10835
10836 bool
10837 ada_ternop_slice_operation::resolve (struct expression *exp,
10838 bool deprocedure_p,
10839 bool parse_completion,
10840 innermost_block_tracker *tracker,
10841 struct type *context_type)
10842 {
10843 /* Historically this check was done during resolution, so we
10844 continue that here. */
10845 value *v = std::get<0> (m_storage)->evaluate (context_type, exp,
10846 EVAL_AVOID_SIDE_EFFECTS);
10847 if (ada_is_any_packed_array_type (value_type (v)))
10848 error (_("cannot slice a packed array"));
10849 return false;
10850 }
10851
10852 }
10853
10854 \f
10855
10856 /* Return non-zero iff TYPE represents a System.Address type. */
10857
10858 int
10859 ada_is_system_address_type (struct type *type)
10860 {
10861 return (type->name () && strcmp (type->name (), "system__address") == 0);
10862 }
10863
10864 \f
10865
10866 /* Range types */
10867
10868 /* Scan STR beginning at position K for a discriminant name, and
10869 return the value of that discriminant field of DVAL in *PX. If
10870 PNEW_K is not null, put the position of the character beyond the
10871 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
10872 not alter *PX and *PNEW_K if unsuccessful. */
10873
10874 static int
10875 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
10876 int *pnew_k)
10877 {
10878 static std::string storage;
10879 const char *pstart, *pend, *bound;
10880 struct value *bound_val;
10881
10882 if (dval == NULL || str == NULL || str[k] == '\0')
10883 return 0;
10884
10885 pstart = str + k;
10886 pend = strstr (pstart, "__");
10887 if (pend == NULL)
10888 {
10889 bound = pstart;
10890 k += strlen (bound);
10891 }
10892 else
10893 {
10894 int len = pend - pstart;
10895
10896 /* Strip __ and beyond. */
10897 storage = std::string (pstart, len);
10898 bound = storage.c_str ();
10899 k = pend - str;
10900 }
10901
10902 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
10903 if (bound_val == NULL)
10904 return 0;
10905
10906 *px = value_as_long (bound_val);
10907 if (pnew_k != NULL)
10908 *pnew_k = k;
10909 return 1;
10910 }
10911
10912 /* Value of variable named NAME. Only exact matches are considered.
10913 If no such variable found, then if ERR_MSG is null, returns 0, and
10914 otherwise causes an error with message ERR_MSG. */
10915
10916 static struct value *
10917 get_var_value (const char *name, const char *err_msg)
10918 {
10919 std::string quoted_name = add_angle_brackets (name);
10920
10921 lookup_name_info lookup_name (quoted_name, symbol_name_match_type::FULL);
10922
10923 std::vector<struct block_symbol> syms
10924 = ada_lookup_symbol_list_worker (lookup_name,
10925 get_selected_block (0),
10926 VAR_DOMAIN, 1);
10927
10928 if (syms.size () != 1)
10929 {
10930 if (err_msg == NULL)
10931 return 0;
10932 else
10933 error (("%s"), err_msg);
10934 }
10935
10936 return value_of_variable (syms[0].symbol, syms[0].block);
10937 }
10938
10939 /* Value of integer variable named NAME in the current environment.
10940 If no such variable is found, returns false. Otherwise, sets VALUE
10941 to the variable's value and returns true. */
10942
10943 bool
10944 get_int_var_value (const char *name, LONGEST &value)
10945 {
10946 struct value *var_val = get_var_value (name, 0);
10947
10948 if (var_val == 0)
10949 return false;
10950
10951 value = value_as_long (var_val);
10952 return true;
10953 }
10954
10955
10956 /* Return a range type whose base type is that of the range type named
10957 NAME in the current environment, and whose bounds are calculated
10958 from NAME according to the GNAT range encoding conventions.
10959 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
10960 corresponding range type from debug information; fall back to using it
10961 if symbol lookup fails. If a new type must be created, allocate it
10962 like ORIG_TYPE was. The bounds information, in general, is encoded
10963 in NAME, the base type given in the named range type. */
10964
10965 static struct type *
10966 to_fixed_range_type (struct type *raw_type, struct value *dval)
10967 {
10968 const char *name;
10969 struct type *base_type;
10970 const char *subtype_info;
10971
10972 gdb_assert (raw_type != NULL);
10973 gdb_assert (raw_type->name () != NULL);
10974
10975 if (raw_type->code () == TYPE_CODE_RANGE)
10976 base_type = TYPE_TARGET_TYPE (raw_type);
10977 else
10978 base_type = raw_type;
10979
10980 name = raw_type->name ();
10981 subtype_info = strstr (name, "___XD");
10982 if (subtype_info == NULL)
10983 {
10984 LONGEST L = ada_discrete_type_low_bound (raw_type);
10985 LONGEST U = ada_discrete_type_high_bound (raw_type);
10986
10987 if (L < INT_MIN || U > INT_MAX)
10988 return raw_type;
10989 else
10990 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
10991 L, U);
10992 }
10993 else
10994 {
10995 int prefix_len = subtype_info - name;
10996 LONGEST L, U;
10997 struct type *type;
10998 const char *bounds_str;
10999 int n;
11000
11001 subtype_info += 5;
11002 bounds_str = strchr (subtype_info, '_');
11003 n = 1;
11004
11005 if (*subtype_info == 'L')
11006 {
11007 if (!ada_scan_number (bounds_str, n, &L, &n)
11008 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11009 return raw_type;
11010 if (bounds_str[n] == '_')
11011 n += 2;
11012 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11013 n += 1;
11014 subtype_info += 1;
11015 }
11016 else
11017 {
11018 std::string name_buf = std::string (name, prefix_len) + "___L";
11019 if (!get_int_var_value (name_buf.c_str (), L))
11020 {
11021 lim_warning (_("Unknown lower bound, using 1."));
11022 L = 1;
11023 }
11024 }
11025
11026 if (*subtype_info == 'U')
11027 {
11028 if (!ada_scan_number (bounds_str, n, &U, &n)
11029 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11030 return raw_type;
11031 }
11032 else
11033 {
11034 std::string name_buf = std::string (name, prefix_len) + "___U";
11035 if (!get_int_var_value (name_buf.c_str (), U))
11036 {
11037 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11038 U = L;
11039 }
11040 }
11041
11042 type = create_static_range_type (alloc_type_copy (raw_type),
11043 base_type, L, U);
11044 /* create_static_range_type alters the resulting type's length
11045 to match the size of the base_type, which is not what we want.
11046 Set it back to the original range type's length. */
11047 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
11048 type->set_name (name);
11049 return type;
11050 }
11051 }
11052
11053 /* True iff NAME is the name of a range type. */
11054
11055 int
11056 ada_is_range_type_name (const char *name)
11057 {
11058 return (name != NULL && strstr (name, "___XD"));
11059 }
11060 \f
11061
11062 /* Modular types */
11063
11064 /* True iff TYPE is an Ada modular type. */
11065
11066 int
11067 ada_is_modular_type (struct type *type)
11068 {
11069 struct type *subranged_type = get_base_type (type);
11070
11071 return (subranged_type != NULL && type->code () == TYPE_CODE_RANGE
11072 && subranged_type->code () == TYPE_CODE_INT
11073 && subranged_type->is_unsigned ());
11074 }
11075
11076 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11077
11078 ULONGEST
11079 ada_modulus (struct type *type)
11080 {
11081 const dynamic_prop &high = type->bounds ()->high;
11082
11083 if (high.kind () == PROP_CONST)
11084 return (ULONGEST) high.const_val () + 1;
11085
11086 /* If TYPE is unresolved, the high bound might be a location list. Return
11087 0, for lack of a better value to return. */
11088 return 0;
11089 }
11090 \f
11091
11092 /* Ada exception catchpoint support:
11093 ---------------------------------
11094
11095 We support 3 kinds of exception catchpoints:
11096 . catchpoints on Ada exceptions
11097 . catchpoints on unhandled Ada exceptions
11098 . catchpoints on failed assertions
11099
11100 Exceptions raised during failed assertions, or unhandled exceptions
11101 could perfectly be caught with the general catchpoint on Ada exceptions.
11102 However, we can easily differentiate these two special cases, and having
11103 the option to distinguish these two cases from the rest can be useful
11104 to zero-in on certain situations.
11105
11106 Exception catchpoints are a specialized form of breakpoint,
11107 since they rely on inserting breakpoints inside known routines
11108 of the GNAT runtime. The implementation therefore uses a standard
11109 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11110 of breakpoint_ops.
11111
11112 Support in the runtime for exception catchpoints have been changed
11113 a few times already, and these changes affect the implementation
11114 of these catchpoints. In order to be able to support several
11115 variants of the runtime, we use a sniffer that will determine
11116 the runtime variant used by the program being debugged. */
11117
11118 /* Ada's standard exceptions.
11119
11120 The Ada 83 standard also defined Numeric_Error. But there so many
11121 situations where it was unclear from the Ada 83 Reference Manual
11122 (RM) whether Constraint_Error or Numeric_Error should be raised,
11123 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11124 Interpretation saying that anytime the RM says that Numeric_Error
11125 should be raised, the implementation may raise Constraint_Error.
11126 Ada 95 went one step further and pretty much removed Numeric_Error
11127 from the list of standard exceptions (it made it a renaming of
11128 Constraint_Error, to help preserve compatibility when compiling
11129 an Ada83 compiler). As such, we do not include Numeric_Error from
11130 this list of standard exceptions. */
11131
11132 static const char * const standard_exc[] = {
11133 "constraint_error",
11134 "program_error",
11135 "storage_error",
11136 "tasking_error"
11137 };
11138
11139 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11140
11141 /* A structure that describes how to support exception catchpoints
11142 for a given executable. */
11143
11144 struct exception_support_info
11145 {
11146 /* The name of the symbol to break on in order to insert
11147 a catchpoint on exceptions. */
11148 const char *catch_exception_sym;
11149
11150 /* The name of the symbol to break on in order to insert
11151 a catchpoint on unhandled exceptions. */
11152 const char *catch_exception_unhandled_sym;
11153
11154 /* The name of the symbol to break on in order to insert
11155 a catchpoint on failed assertions. */
11156 const char *catch_assert_sym;
11157
11158 /* The name of the symbol to break on in order to insert
11159 a catchpoint on exception handling. */
11160 const char *catch_handlers_sym;
11161
11162 /* Assuming that the inferior just triggered an unhandled exception
11163 catchpoint, this function is responsible for returning the address
11164 in inferior memory where the name of that exception is stored.
11165 Return zero if the address could not be computed. */
11166 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11167 };
11168
11169 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11170 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11171
11172 /* The following exception support info structure describes how to
11173 implement exception catchpoints with the latest version of the
11174 Ada runtime (as of 2019-08-??). */
11175
11176 static const struct exception_support_info default_exception_support_info =
11177 {
11178 "__gnat_debug_raise_exception", /* catch_exception_sym */
11179 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11180 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11181 "__gnat_begin_handler_v1", /* catch_handlers_sym */
11182 ada_unhandled_exception_name_addr
11183 };
11184
11185 /* The following exception support info structure describes how to
11186 implement exception catchpoints with an earlier version of the
11187 Ada runtime (as of 2007-03-06) using v0 of the EH ABI. */
11188
11189 static const struct exception_support_info exception_support_info_v0 =
11190 {
11191 "__gnat_debug_raise_exception", /* catch_exception_sym */
11192 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11193 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11194 "__gnat_begin_handler", /* catch_handlers_sym */
11195 ada_unhandled_exception_name_addr
11196 };
11197
11198 /* The following exception support info structure describes how to
11199 implement exception catchpoints with a slightly older version
11200 of the Ada runtime. */
11201
11202 static const struct exception_support_info exception_support_info_fallback =
11203 {
11204 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11205 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11206 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11207 "__gnat_begin_handler", /* catch_handlers_sym */
11208 ada_unhandled_exception_name_addr_from_raise
11209 };
11210
11211 /* Return nonzero if we can detect the exception support routines
11212 described in EINFO.
11213
11214 This function errors out if an abnormal situation is detected
11215 (for instance, if we find the exception support routines, but
11216 that support is found to be incomplete). */
11217
11218 static int
11219 ada_has_this_exception_support (const struct exception_support_info *einfo)
11220 {
11221 struct symbol *sym;
11222
11223 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11224 that should be compiled with debugging information. As a result, we
11225 expect to find that symbol in the symtabs. */
11226
11227 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11228 if (sym == NULL)
11229 {
11230 /* Perhaps we did not find our symbol because the Ada runtime was
11231 compiled without debugging info, or simply stripped of it.
11232 It happens on some GNU/Linux distributions for instance, where
11233 users have to install a separate debug package in order to get
11234 the runtime's debugging info. In that situation, let the user
11235 know why we cannot insert an Ada exception catchpoint.
11236
11237 Note: Just for the purpose of inserting our Ada exception
11238 catchpoint, we could rely purely on the associated minimal symbol.
11239 But we would be operating in degraded mode anyway, since we are
11240 still lacking the debugging info needed later on to extract
11241 the name of the exception being raised (this name is printed in
11242 the catchpoint message, and is also used when trying to catch
11243 a specific exception). We do not handle this case for now. */
11244 struct bound_minimal_symbol msym
11245 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11246
11247 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11248 error (_("Your Ada runtime appears to be missing some debugging "
11249 "information.\nCannot insert Ada exception catchpoint "
11250 "in this configuration."));
11251
11252 return 0;
11253 }
11254
11255 /* Make sure that the symbol we found corresponds to a function. */
11256
11257 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11258 {
11259 error (_("Symbol \"%s\" is not a function (class = %d)"),
11260 sym->linkage_name (), SYMBOL_CLASS (sym));
11261 return 0;
11262 }
11263
11264 sym = standard_lookup (einfo->catch_handlers_sym, NULL, VAR_DOMAIN);
11265 if (sym == NULL)
11266 {
11267 struct bound_minimal_symbol msym
11268 = lookup_minimal_symbol (einfo->catch_handlers_sym, NULL, NULL);
11269
11270 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11271 error (_("Your Ada runtime appears to be missing some debugging "
11272 "information.\nCannot insert Ada exception catchpoint "
11273 "in this configuration."));
11274
11275 return 0;
11276 }
11277
11278 /* Make sure that the symbol we found corresponds to a function. */
11279
11280 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11281 {
11282 error (_("Symbol \"%s\" is not a function (class = %d)"),
11283 sym->linkage_name (), SYMBOL_CLASS (sym));
11284 return 0;
11285 }
11286
11287 return 1;
11288 }
11289
11290 /* Inspect the Ada runtime and determine which exception info structure
11291 should be used to provide support for exception catchpoints.
11292
11293 This function will always set the per-inferior exception_info,
11294 or raise an error. */
11295
11296 static void
11297 ada_exception_support_info_sniffer (void)
11298 {
11299 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11300
11301 /* If the exception info is already known, then no need to recompute it. */
11302 if (data->exception_info != NULL)
11303 return;
11304
11305 /* Check the latest (default) exception support info. */
11306 if (ada_has_this_exception_support (&default_exception_support_info))
11307 {
11308 data->exception_info = &default_exception_support_info;
11309 return;
11310 }
11311
11312 /* Try the v0 exception suport info. */
11313 if (ada_has_this_exception_support (&exception_support_info_v0))
11314 {
11315 data->exception_info = &exception_support_info_v0;
11316 return;
11317 }
11318
11319 /* Try our fallback exception suport info. */
11320 if (ada_has_this_exception_support (&exception_support_info_fallback))
11321 {
11322 data->exception_info = &exception_support_info_fallback;
11323 return;
11324 }
11325
11326 /* Sometimes, it is normal for us to not be able to find the routine
11327 we are looking for. This happens when the program is linked with
11328 the shared version of the GNAT runtime, and the program has not been
11329 started yet. Inform the user of these two possible causes if
11330 applicable. */
11331
11332 if (ada_update_initial_language (language_unknown) != language_ada)
11333 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11334
11335 /* If the symbol does not exist, then check that the program is
11336 already started, to make sure that shared libraries have been
11337 loaded. If it is not started, this may mean that the symbol is
11338 in a shared library. */
11339
11340 if (inferior_ptid.pid () == 0)
11341 error (_("Unable to insert catchpoint. Try to start the program first."));
11342
11343 /* At this point, we know that we are debugging an Ada program and
11344 that the inferior has been started, but we still are not able to
11345 find the run-time symbols. That can mean that we are in
11346 configurable run time mode, or that a-except as been optimized
11347 out by the linker... In any case, at this point it is not worth
11348 supporting this feature. */
11349
11350 error (_("Cannot insert Ada exception catchpoints in this configuration."));
11351 }
11352
11353 /* True iff FRAME is very likely to be that of a function that is
11354 part of the runtime system. This is all very heuristic, but is
11355 intended to be used as advice as to what frames are uninteresting
11356 to most users. */
11357
11358 static int
11359 is_known_support_routine (struct frame_info *frame)
11360 {
11361 enum language func_lang;
11362 int i;
11363 const char *fullname;
11364
11365 /* If this code does not have any debugging information (no symtab),
11366 This cannot be any user code. */
11367
11368 symtab_and_line sal = find_frame_sal (frame);
11369 if (sal.symtab == NULL)
11370 return 1;
11371
11372 /* If there is a symtab, but the associated source file cannot be
11373 located, then assume this is not user code: Selecting a frame
11374 for which we cannot display the code would not be very helpful
11375 for the user. This should also take care of case such as VxWorks
11376 where the kernel has some debugging info provided for a few units. */
11377
11378 fullname = symtab_to_fullname (sal.symtab);
11379 if (access (fullname, R_OK) != 0)
11380 return 1;
11381
11382 /* Check the unit filename against the Ada runtime file naming.
11383 We also check the name of the objfile against the name of some
11384 known system libraries that sometimes come with debugging info
11385 too. */
11386
11387 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11388 {
11389 re_comp (known_runtime_file_name_patterns[i]);
11390 if (re_exec (lbasename (sal.symtab->filename)))
11391 return 1;
11392 if (SYMTAB_OBJFILE (sal.symtab) != NULL
11393 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
11394 return 1;
11395 }
11396
11397 /* Check whether the function is a GNAT-generated entity. */
11398
11399 gdb::unique_xmalloc_ptr<char> func_name
11400 = find_frame_funname (frame, &func_lang, NULL);
11401 if (func_name == NULL)
11402 return 1;
11403
11404 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11405 {
11406 re_comp (known_auxiliary_function_name_patterns[i]);
11407 if (re_exec (func_name.get ()))
11408 return 1;
11409 }
11410
11411 return 0;
11412 }
11413
11414 /* Find the first frame that contains debugging information and that is not
11415 part of the Ada run-time, starting from FI and moving upward. */
11416
11417 void
11418 ada_find_printable_frame (struct frame_info *fi)
11419 {
11420 for (; fi != NULL; fi = get_prev_frame (fi))
11421 {
11422 if (!is_known_support_routine (fi))
11423 {
11424 select_frame (fi);
11425 break;
11426 }
11427 }
11428
11429 }
11430
11431 /* Assuming that the inferior just triggered an unhandled exception
11432 catchpoint, return the address in inferior memory where the name
11433 of the exception is stored.
11434
11435 Return zero if the address could not be computed. */
11436
11437 static CORE_ADDR
11438 ada_unhandled_exception_name_addr (void)
11439 {
11440 return parse_and_eval_address ("e.full_name");
11441 }
11442
11443 /* Same as ada_unhandled_exception_name_addr, except that this function
11444 should be used when the inferior uses an older version of the runtime,
11445 where the exception name needs to be extracted from a specific frame
11446 several frames up in the callstack. */
11447
11448 static CORE_ADDR
11449 ada_unhandled_exception_name_addr_from_raise (void)
11450 {
11451 int frame_level;
11452 struct frame_info *fi;
11453 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11454
11455 /* To determine the name of this exception, we need to select
11456 the frame corresponding to RAISE_SYM_NAME. This frame is
11457 at least 3 levels up, so we simply skip the first 3 frames
11458 without checking the name of their associated function. */
11459 fi = get_current_frame ();
11460 for (frame_level = 0; frame_level < 3; frame_level += 1)
11461 if (fi != NULL)
11462 fi = get_prev_frame (fi);
11463
11464 while (fi != NULL)
11465 {
11466 enum language func_lang;
11467
11468 gdb::unique_xmalloc_ptr<char> func_name
11469 = find_frame_funname (fi, &func_lang, NULL);
11470 if (func_name != NULL)
11471 {
11472 if (strcmp (func_name.get (),
11473 data->exception_info->catch_exception_sym) == 0)
11474 break; /* We found the frame we were looking for... */
11475 }
11476 fi = get_prev_frame (fi);
11477 }
11478
11479 if (fi == NULL)
11480 return 0;
11481
11482 select_frame (fi);
11483 return parse_and_eval_address ("id.full_name");
11484 }
11485
11486 /* Assuming the inferior just triggered an Ada exception catchpoint
11487 (of any type), return the address in inferior memory where the name
11488 of the exception is stored, if applicable.
11489
11490 Assumes the selected frame is the current frame.
11491
11492 Return zero if the address could not be computed, or if not relevant. */
11493
11494 static CORE_ADDR
11495 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
11496 struct breakpoint *b)
11497 {
11498 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11499
11500 switch (ex)
11501 {
11502 case ada_catch_exception:
11503 return (parse_and_eval_address ("e.full_name"));
11504 break;
11505
11506 case ada_catch_exception_unhandled:
11507 return data->exception_info->unhandled_exception_name_addr ();
11508 break;
11509
11510 case ada_catch_handlers:
11511 return 0; /* The runtimes does not provide access to the exception
11512 name. */
11513 break;
11514
11515 case ada_catch_assert:
11516 return 0; /* Exception name is not relevant in this case. */
11517 break;
11518
11519 default:
11520 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11521 break;
11522 }
11523
11524 return 0; /* Should never be reached. */
11525 }
11526
11527 /* Assuming the inferior is stopped at an exception catchpoint,
11528 return the message which was associated to the exception, if
11529 available. Return NULL if the message could not be retrieved.
11530
11531 Note: The exception message can be associated to an exception
11532 either through the use of the Raise_Exception function, or
11533 more simply (Ada 2005 and later), via:
11534
11535 raise Exception_Name with "exception message";
11536
11537 */
11538
11539 static gdb::unique_xmalloc_ptr<char>
11540 ada_exception_message_1 (void)
11541 {
11542 struct value *e_msg_val;
11543 int e_msg_len;
11544
11545 /* For runtimes that support this feature, the exception message
11546 is passed as an unbounded string argument called "message". */
11547 e_msg_val = parse_and_eval ("message");
11548 if (e_msg_val == NULL)
11549 return NULL; /* Exception message not supported. */
11550
11551 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
11552 gdb_assert (e_msg_val != NULL);
11553 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
11554
11555 /* If the message string is empty, then treat it as if there was
11556 no exception message. */
11557 if (e_msg_len <= 0)
11558 return NULL;
11559
11560 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
11561 read_memory (value_address (e_msg_val), (gdb_byte *) e_msg.get (),
11562 e_msg_len);
11563 e_msg.get ()[e_msg_len] = '\0';
11564
11565 return e_msg;
11566 }
11567
11568 /* Same as ada_exception_message_1, except that all exceptions are
11569 contained here (returning NULL instead). */
11570
11571 static gdb::unique_xmalloc_ptr<char>
11572 ada_exception_message (void)
11573 {
11574 gdb::unique_xmalloc_ptr<char> e_msg;
11575
11576 try
11577 {
11578 e_msg = ada_exception_message_1 ();
11579 }
11580 catch (const gdb_exception_error &e)
11581 {
11582 e_msg.reset (nullptr);
11583 }
11584
11585 return e_msg;
11586 }
11587
11588 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
11589 any error that ada_exception_name_addr_1 might cause to be thrown.
11590 When an error is intercepted, a warning with the error message is printed,
11591 and zero is returned. */
11592
11593 static CORE_ADDR
11594 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
11595 struct breakpoint *b)
11596 {
11597 CORE_ADDR result = 0;
11598
11599 try
11600 {
11601 result = ada_exception_name_addr_1 (ex, b);
11602 }
11603
11604 catch (const gdb_exception_error &e)
11605 {
11606 warning (_("failed to get exception name: %s"), e.what ());
11607 return 0;
11608 }
11609
11610 return result;
11611 }
11612
11613 static std::string ada_exception_catchpoint_cond_string
11614 (const char *excep_string,
11615 enum ada_exception_catchpoint_kind ex);
11616
11617 /* Ada catchpoints.
11618
11619 In the case of catchpoints on Ada exceptions, the catchpoint will
11620 stop the target on every exception the program throws. When a user
11621 specifies the name of a specific exception, we translate this
11622 request into a condition expression (in text form), and then parse
11623 it into an expression stored in each of the catchpoint's locations.
11624 We then use this condition to check whether the exception that was
11625 raised is the one the user is interested in. If not, then the
11626 target is resumed again. We store the name of the requested
11627 exception, in order to be able to re-set the condition expression
11628 when symbols change. */
11629
11630 /* An instance of this type is used to represent an Ada catchpoint
11631 breakpoint location. */
11632
11633 class ada_catchpoint_location : public bp_location
11634 {
11635 public:
11636 ada_catchpoint_location (breakpoint *owner)
11637 : bp_location (owner, bp_loc_software_breakpoint)
11638 {}
11639
11640 /* The condition that checks whether the exception that was raised
11641 is the specific exception the user specified on catchpoint
11642 creation. */
11643 expression_up excep_cond_expr;
11644 };
11645
11646 /* An instance of this type is used to represent an Ada catchpoint. */
11647
11648 struct ada_catchpoint : public breakpoint
11649 {
11650 explicit ada_catchpoint (enum ada_exception_catchpoint_kind kind)
11651 : m_kind (kind)
11652 {
11653 }
11654
11655 /* The name of the specific exception the user specified. */
11656 std::string excep_string;
11657
11658 /* What kind of catchpoint this is. */
11659 enum ada_exception_catchpoint_kind m_kind;
11660 };
11661
11662 /* Parse the exception condition string in the context of each of the
11663 catchpoint's locations, and store them for later evaluation. */
11664
11665 static void
11666 create_excep_cond_exprs (struct ada_catchpoint *c,
11667 enum ada_exception_catchpoint_kind ex)
11668 {
11669 /* Nothing to do if there's no specific exception to catch. */
11670 if (c->excep_string.empty ())
11671 return;
11672
11673 /* Same if there are no locations... */
11674 if (c->loc == NULL)
11675 return;
11676
11677 /* Compute the condition expression in text form, from the specific
11678 expection we want to catch. */
11679 std::string cond_string
11680 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (), ex);
11681
11682 /* Iterate over all the catchpoint's locations, and parse an
11683 expression for each. */
11684 for (bp_location *bl : c->locations ())
11685 {
11686 struct ada_catchpoint_location *ada_loc
11687 = (struct ada_catchpoint_location *) bl;
11688 expression_up exp;
11689
11690 if (!bl->shlib_disabled)
11691 {
11692 const char *s;
11693
11694 s = cond_string.c_str ();
11695 try
11696 {
11697 exp = parse_exp_1 (&s, bl->address,
11698 block_for_pc (bl->address),
11699 0);
11700 }
11701 catch (const gdb_exception_error &e)
11702 {
11703 warning (_("failed to reevaluate internal exception condition "
11704 "for catchpoint %d: %s"),
11705 c->number, e.what ());
11706 }
11707 }
11708
11709 ada_loc->excep_cond_expr = std::move (exp);
11710 }
11711 }
11712
11713 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11714 structure for all exception catchpoint kinds. */
11715
11716 static struct bp_location *
11717 allocate_location_exception (struct breakpoint *self)
11718 {
11719 return new ada_catchpoint_location (self);
11720 }
11721
11722 /* Implement the RE_SET method in the breakpoint_ops structure for all
11723 exception catchpoint kinds. */
11724
11725 static void
11726 re_set_exception (struct breakpoint *b)
11727 {
11728 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11729
11730 /* Call the base class's method. This updates the catchpoint's
11731 locations. */
11732 bkpt_breakpoint_ops.re_set (b);
11733
11734 /* Reparse the exception conditional expressions. One for each
11735 location. */
11736 create_excep_cond_exprs (c, c->m_kind);
11737 }
11738
11739 /* Returns true if we should stop for this breakpoint hit. If the
11740 user specified a specific exception, we only want to cause a stop
11741 if the program thrown that exception. */
11742
11743 static bool
11744 should_stop_exception (const struct bp_location *bl)
11745 {
11746 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
11747 const struct ada_catchpoint_location *ada_loc
11748 = (const struct ada_catchpoint_location *) bl;
11749 bool stop;
11750
11751 struct internalvar *var = lookup_internalvar ("_ada_exception");
11752 if (c->m_kind == ada_catch_assert)
11753 clear_internalvar (var);
11754 else
11755 {
11756 try
11757 {
11758 const char *expr;
11759
11760 if (c->m_kind == ada_catch_handlers)
11761 expr = ("GNAT_GCC_exception_Access(gcc_exception)"
11762 ".all.occurrence.id");
11763 else
11764 expr = "e";
11765
11766 struct value *exc = parse_and_eval (expr);
11767 set_internalvar (var, exc);
11768 }
11769 catch (const gdb_exception_error &ex)
11770 {
11771 clear_internalvar (var);
11772 }
11773 }
11774
11775 /* With no specific exception, should always stop. */
11776 if (c->excep_string.empty ())
11777 return true;
11778
11779 if (ada_loc->excep_cond_expr == NULL)
11780 {
11781 /* We will have a NULL expression if back when we were creating
11782 the expressions, this location's had failed to parse. */
11783 return true;
11784 }
11785
11786 stop = true;
11787 try
11788 {
11789 struct value *mark;
11790
11791 mark = value_mark ();
11792 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
11793 value_free_to_mark (mark);
11794 }
11795 catch (const gdb_exception &ex)
11796 {
11797 exception_fprintf (gdb_stderr, ex,
11798 _("Error in testing exception condition:\n"));
11799 }
11800
11801 return stop;
11802 }
11803
11804 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
11805 for all exception catchpoint kinds. */
11806
11807 static void
11808 check_status_exception (bpstat *bs)
11809 {
11810 bs->stop = should_stop_exception (bs->bp_location_at.get ());
11811 }
11812
11813 /* Implement the PRINT_IT method in the breakpoint_ops structure
11814 for all exception catchpoint kinds. */
11815
11816 static enum print_stop_action
11817 print_it_exception (bpstat *bs)
11818 {
11819 struct ui_out *uiout = current_uiout;
11820 struct breakpoint *b = bs->breakpoint_at;
11821
11822 annotate_catchpoint (b->number);
11823
11824 if (uiout->is_mi_like_p ())
11825 {
11826 uiout->field_string ("reason",
11827 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
11828 uiout->field_string ("disp", bpdisp_text (b->disposition));
11829 }
11830
11831 uiout->text (b->disposition == disp_del
11832 ? "\nTemporary catchpoint " : "\nCatchpoint ");
11833 uiout->field_signed ("bkptno", b->number);
11834 uiout->text (", ");
11835
11836 /* ada_exception_name_addr relies on the selected frame being the
11837 current frame. Need to do this here because this function may be
11838 called more than once when printing a stop, and below, we'll
11839 select the first frame past the Ada run-time (see
11840 ada_find_printable_frame). */
11841 select_frame (get_current_frame ());
11842
11843 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11844 switch (c->m_kind)
11845 {
11846 case ada_catch_exception:
11847 case ada_catch_exception_unhandled:
11848 case ada_catch_handlers:
11849 {
11850 const CORE_ADDR addr = ada_exception_name_addr (c->m_kind, b);
11851 char exception_name[256];
11852
11853 if (addr != 0)
11854 {
11855 read_memory (addr, (gdb_byte *) exception_name,
11856 sizeof (exception_name) - 1);
11857 exception_name [sizeof (exception_name) - 1] = '\0';
11858 }
11859 else
11860 {
11861 /* For some reason, we were unable to read the exception
11862 name. This could happen if the Runtime was compiled
11863 without debugging info, for instance. In that case,
11864 just replace the exception name by the generic string
11865 "exception" - it will read as "an exception" in the
11866 notification we are about to print. */
11867 memcpy (exception_name, "exception", sizeof ("exception"));
11868 }
11869 /* In the case of unhandled exception breakpoints, we print
11870 the exception name as "unhandled EXCEPTION_NAME", to make
11871 it clearer to the user which kind of catchpoint just got
11872 hit. We used ui_out_text to make sure that this extra
11873 info does not pollute the exception name in the MI case. */
11874 if (c->m_kind == ada_catch_exception_unhandled)
11875 uiout->text ("unhandled ");
11876 uiout->field_string ("exception-name", exception_name);
11877 }
11878 break;
11879 case ada_catch_assert:
11880 /* In this case, the name of the exception is not really
11881 important. Just print "failed assertion" to make it clearer
11882 that his program just hit an assertion-failure catchpoint.
11883 We used ui_out_text because this info does not belong in
11884 the MI output. */
11885 uiout->text ("failed assertion");
11886 break;
11887 }
11888
11889 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
11890 if (exception_message != NULL)
11891 {
11892 uiout->text (" (");
11893 uiout->field_string ("exception-message", exception_message.get ());
11894 uiout->text (")");
11895 }
11896
11897 uiout->text (" at ");
11898 ada_find_printable_frame (get_current_frame ());
11899
11900 return PRINT_SRC_AND_LOC;
11901 }
11902
11903 /* Implement the PRINT_ONE method in the breakpoint_ops structure
11904 for all exception catchpoint kinds. */
11905
11906 static void
11907 print_one_exception (struct breakpoint *b, struct bp_location **last_loc)
11908 {
11909 struct ui_out *uiout = current_uiout;
11910 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11911 struct value_print_options opts;
11912
11913 get_user_print_options (&opts);
11914
11915 if (opts.addressprint)
11916 uiout->field_skip ("addr");
11917
11918 annotate_field (5);
11919 switch (c->m_kind)
11920 {
11921 case ada_catch_exception:
11922 if (!c->excep_string.empty ())
11923 {
11924 std::string msg = string_printf (_("`%s' Ada exception"),
11925 c->excep_string.c_str ());
11926
11927 uiout->field_string ("what", msg);
11928 }
11929 else
11930 uiout->field_string ("what", "all Ada exceptions");
11931
11932 break;
11933
11934 case ada_catch_exception_unhandled:
11935 uiout->field_string ("what", "unhandled Ada exceptions");
11936 break;
11937
11938 case ada_catch_handlers:
11939 if (!c->excep_string.empty ())
11940 {
11941 uiout->field_fmt ("what",
11942 _("`%s' Ada exception handlers"),
11943 c->excep_string.c_str ());
11944 }
11945 else
11946 uiout->field_string ("what", "all Ada exceptions handlers");
11947 break;
11948
11949 case ada_catch_assert:
11950 uiout->field_string ("what", "failed Ada assertions");
11951 break;
11952
11953 default:
11954 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11955 break;
11956 }
11957 }
11958
11959 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
11960 for all exception catchpoint kinds. */
11961
11962 static void
11963 print_mention_exception (struct breakpoint *b)
11964 {
11965 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11966 struct ui_out *uiout = current_uiout;
11967
11968 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
11969 : _("Catchpoint "));
11970 uiout->field_signed ("bkptno", b->number);
11971 uiout->text (": ");
11972
11973 switch (c->m_kind)
11974 {
11975 case ada_catch_exception:
11976 if (!c->excep_string.empty ())
11977 {
11978 std::string info = string_printf (_("`%s' Ada exception"),
11979 c->excep_string.c_str ());
11980 uiout->text (info);
11981 }
11982 else
11983 uiout->text (_("all Ada exceptions"));
11984 break;
11985
11986 case ada_catch_exception_unhandled:
11987 uiout->text (_("unhandled Ada exceptions"));
11988 break;
11989
11990 case ada_catch_handlers:
11991 if (!c->excep_string.empty ())
11992 {
11993 std::string info
11994 = string_printf (_("`%s' Ada exception handlers"),
11995 c->excep_string.c_str ());
11996 uiout->text (info);
11997 }
11998 else
11999 uiout->text (_("all Ada exceptions handlers"));
12000 break;
12001
12002 case ada_catch_assert:
12003 uiout->text (_("failed Ada assertions"));
12004 break;
12005
12006 default:
12007 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12008 break;
12009 }
12010 }
12011
12012 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12013 for all exception catchpoint kinds. */
12014
12015 static void
12016 print_recreate_exception (struct breakpoint *b, struct ui_file *fp)
12017 {
12018 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12019
12020 switch (c->m_kind)
12021 {
12022 case ada_catch_exception:
12023 fprintf_filtered (fp, "catch exception");
12024 if (!c->excep_string.empty ())
12025 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
12026 break;
12027
12028 case ada_catch_exception_unhandled:
12029 fprintf_filtered (fp, "catch exception unhandled");
12030 break;
12031
12032 case ada_catch_handlers:
12033 fprintf_filtered (fp, "catch handlers");
12034 break;
12035
12036 case ada_catch_assert:
12037 fprintf_filtered (fp, "catch assert");
12038 break;
12039
12040 default:
12041 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12042 }
12043 print_recreate_thread (b, fp);
12044 }
12045
12046 /* Virtual tables for various breakpoint types. */
12047 static struct breakpoint_ops catch_exception_breakpoint_ops;
12048 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12049 static struct breakpoint_ops catch_assert_breakpoint_ops;
12050 static struct breakpoint_ops catch_handlers_breakpoint_ops;
12051
12052 /* See ada-lang.h. */
12053
12054 bool
12055 is_ada_exception_catchpoint (breakpoint *bp)
12056 {
12057 return (bp->ops == &catch_exception_breakpoint_ops
12058 || bp->ops == &catch_exception_unhandled_breakpoint_ops
12059 || bp->ops == &catch_assert_breakpoint_ops
12060 || bp->ops == &catch_handlers_breakpoint_ops);
12061 }
12062
12063 /* Split the arguments specified in a "catch exception" command.
12064 Set EX to the appropriate catchpoint type.
12065 Set EXCEP_STRING to the name of the specific exception if
12066 specified by the user.
12067 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
12068 "catch handlers" command. False otherwise.
12069 If a condition is found at the end of the arguments, the condition
12070 expression is stored in COND_STRING (memory must be deallocated
12071 after use). Otherwise COND_STRING is set to NULL. */
12072
12073 static void
12074 catch_ada_exception_command_split (const char *args,
12075 bool is_catch_handlers_cmd,
12076 enum ada_exception_catchpoint_kind *ex,
12077 std::string *excep_string,
12078 std::string *cond_string)
12079 {
12080 std::string exception_name;
12081
12082 exception_name = extract_arg (&args);
12083 if (exception_name == "if")
12084 {
12085 /* This is not an exception name; this is the start of a condition
12086 expression for a catchpoint on all exceptions. So, "un-get"
12087 this token, and set exception_name to NULL. */
12088 exception_name.clear ();
12089 args -= 2;
12090 }
12091
12092 /* Check to see if we have a condition. */
12093
12094 args = skip_spaces (args);
12095 if (startswith (args, "if")
12096 && (isspace (args[2]) || args[2] == '\0'))
12097 {
12098 args += 2;
12099 args = skip_spaces (args);
12100
12101 if (args[0] == '\0')
12102 error (_("Condition missing after `if' keyword"));
12103 *cond_string = args;
12104
12105 args += strlen (args);
12106 }
12107
12108 /* Check that we do not have any more arguments. Anything else
12109 is unexpected. */
12110
12111 if (args[0] != '\0')
12112 error (_("Junk at end of expression"));
12113
12114 if (is_catch_handlers_cmd)
12115 {
12116 /* Catch handling of exceptions. */
12117 *ex = ada_catch_handlers;
12118 *excep_string = exception_name;
12119 }
12120 else if (exception_name.empty ())
12121 {
12122 /* Catch all exceptions. */
12123 *ex = ada_catch_exception;
12124 excep_string->clear ();
12125 }
12126 else if (exception_name == "unhandled")
12127 {
12128 /* Catch unhandled exceptions. */
12129 *ex = ada_catch_exception_unhandled;
12130 excep_string->clear ();
12131 }
12132 else
12133 {
12134 /* Catch a specific exception. */
12135 *ex = ada_catch_exception;
12136 *excep_string = exception_name;
12137 }
12138 }
12139
12140 /* Return the name of the symbol on which we should break in order to
12141 implement a catchpoint of the EX kind. */
12142
12143 static const char *
12144 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
12145 {
12146 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12147
12148 gdb_assert (data->exception_info != NULL);
12149
12150 switch (ex)
12151 {
12152 case ada_catch_exception:
12153 return (data->exception_info->catch_exception_sym);
12154 break;
12155 case ada_catch_exception_unhandled:
12156 return (data->exception_info->catch_exception_unhandled_sym);
12157 break;
12158 case ada_catch_assert:
12159 return (data->exception_info->catch_assert_sym);
12160 break;
12161 case ada_catch_handlers:
12162 return (data->exception_info->catch_handlers_sym);
12163 break;
12164 default:
12165 internal_error (__FILE__, __LINE__,
12166 _("unexpected catchpoint kind (%d)"), ex);
12167 }
12168 }
12169
12170 /* Return the breakpoint ops "virtual table" used for catchpoints
12171 of the EX kind. */
12172
12173 static const struct breakpoint_ops *
12174 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
12175 {
12176 switch (ex)
12177 {
12178 case ada_catch_exception:
12179 return (&catch_exception_breakpoint_ops);
12180 break;
12181 case ada_catch_exception_unhandled:
12182 return (&catch_exception_unhandled_breakpoint_ops);
12183 break;
12184 case ada_catch_assert:
12185 return (&catch_assert_breakpoint_ops);
12186 break;
12187 case ada_catch_handlers:
12188 return (&catch_handlers_breakpoint_ops);
12189 break;
12190 default:
12191 internal_error (__FILE__, __LINE__,
12192 _("unexpected catchpoint kind (%d)"), ex);
12193 }
12194 }
12195
12196 /* Return the condition that will be used to match the current exception
12197 being raised with the exception that the user wants to catch. This
12198 assumes that this condition is used when the inferior just triggered
12199 an exception catchpoint.
12200 EX: the type of catchpoints used for catching Ada exceptions. */
12201
12202 static std::string
12203 ada_exception_catchpoint_cond_string (const char *excep_string,
12204 enum ada_exception_catchpoint_kind ex)
12205 {
12206 int i;
12207 bool is_standard_exc = false;
12208 std::string result;
12209
12210 if (ex == ada_catch_handlers)
12211 {
12212 /* For exception handlers catchpoints, the condition string does
12213 not use the same parameter as for the other exceptions. */
12214 result = ("long_integer (GNAT_GCC_exception_Access"
12215 "(gcc_exception).all.occurrence.id)");
12216 }
12217 else
12218 result = "long_integer (e)";
12219
12220 /* The standard exceptions are a special case. They are defined in
12221 runtime units that have been compiled without debugging info; if
12222 EXCEP_STRING is the not-fully-qualified name of a standard
12223 exception (e.g. "constraint_error") then, during the evaluation
12224 of the condition expression, the symbol lookup on this name would
12225 *not* return this standard exception. The catchpoint condition
12226 may then be set only on user-defined exceptions which have the
12227 same not-fully-qualified name (e.g. my_package.constraint_error).
12228
12229 To avoid this unexcepted behavior, these standard exceptions are
12230 systematically prefixed by "standard". This means that "catch
12231 exception constraint_error" is rewritten into "catch exception
12232 standard.constraint_error".
12233
12234 If an exception named constraint_error is defined in another package of
12235 the inferior program, then the only way to specify this exception as a
12236 breakpoint condition is to use its fully-qualified named:
12237 e.g. my_package.constraint_error. */
12238
12239 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12240 {
12241 if (strcmp (standard_exc [i], excep_string) == 0)
12242 {
12243 is_standard_exc = true;
12244 break;
12245 }
12246 }
12247
12248 result += " = ";
12249
12250 if (is_standard_exc)
12251 string_appendf (result, "long_integer (&standard.%s)", excep_string);
12252 else
12253 string_appendf (result, "long_integer (&%s)", excep_string);
12254
12255 return result;
12256 }
12257
12258 /* Return the symtab_and_line that should be used to insert an exception
12259 catchpoint of the TYPE kind.
12260
12261 ADDR_STRING returns the name of the function where the real
12262 breakpoint that implements the catchpoints is set, depending on the
12263 type of catchpoint we need to create. */
12264
12265 static struct symtab_and_line
12266 ada_exception_sal (enum ada_exception_catchpoint_kind ex,
12267 std::string *addr_string, const struct breakpoint_ops **ops)
12268 {
12269 const char *sym_name;
12270 struct symbol *sym;
12271
12272 /* First, find out which exception support info to use. */
12273 ada_exception_support_info_sniffer ();
12274
12275 /* Then lookup the function on which we will break in order to catch
12276 the Ada exceptions requested by the user. */
12277 sym_name = ada_exception_sym_name (ex);
12278 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12279
12280 if (sym == NULL)
12281 error (_("Catchpoint symbol not found: %s"), sym_name);
12282
12283 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12284 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
12285
12286 /* Set ADDR_STRING. */
12287 *addr_string = sym_name;
12288
12289 /* Set OPS. */
12290 *ops = ada_exception_breakpoint_ops (ex);
12291
12292 return find_function_start_sal (sym, 1);
12293 }
12294
12295 /* Create an Ada exception catchpoint.
12296
12297 EX_KIND is the kind of exception catchpoint to be created.
12298
12299 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
12300 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12301 of the exception to which this catchpoint applies.
12302
12303 COND_STRING, if not empty, is the catchpoint condition.
12304
12305 TEMPFLAG, if nonzero, means that the underlying breakpoint
12306 should be temporary.
12307
12308 FROM_TTY is the usual argument passed to all commands implementations. */
12309
12310 void
12311 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
12312 enum ada_exception_catchpoint_kind ex_kind,
12313 const std::string &excep_string,
12314 const std::string &cond_string,
12315 int tempflag,
12316 int disabled,
12317 int from_tty)
12318 {
12319 std::string addr_string;
12320 const struct breakpoint_ops *ops = NULL;
12321 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
12322
12323 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint (ex_kind));
12324 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string.c_str (),
12325 ops, tempflag, disabled, from_tty);
12326 c->excep_string = excep_string;
12327 create_excep_cond_exprs (c.get (), ex_kind);
12328 if (!cond_string.empty ())
12329 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty, false);
12330 install_breakpoint (0, std::move (c), 1);
12331 }
12332
12333 /* Implement the "catch exception" command. */
12334
12335 static void
12336 catch_ada_exception_command (const char *arg_entry, int from_tty,
12337 struct cmd_list_element *command)
12338 {
12339 const char *arg = arg_entry;
12340 struct gdbarch *gdbarch = get_current_arch ();
12341 int tempflag;
12342 enum ada_exception_catchpoint_kind ex_kind;
12343 std::string excep_string;
12344 std::string cond_string;
12345
12346 tempflag = command->context () == CATCH_TEMPORARY;
12347
12348 if (!arg)
12349 arg = "";
12350 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
12351 &cond_string);
12352 create_ada_exception_catchpoint (gdbarch, ex_kind,
12353 excep_string, cond_string,
12354 tempflag, 1 /* enabled */,
12355 from_tty);
12356 }
12357
12358 /* Implement the "catch handlers" command. */
12359
12360 static void
12361 catch_ada_handlers_command (const char *arg_entry, int from_tty,
12362 struct cmd_list_element *command)
12363 {
12364 const char *arg = arg_entry;
12365 struct gdbarch *gdbarch = get_current_arch ();
12366 int tempflag;
12367 enum ada_exception_catchpoint_kind ex_kind;
12368 std::string excep_string;
12369 std::string cond_string;
12370
12371 tempflag = command->context () == CATCH_TEMPORARY;
12372
12373 if (!arg)
12374 arg = "";
12375 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
12376 &cond_string);
12377 create_ada_exception_catchpoint (gdbarch, ex_kind,
12378 excep_string, cond_string,
12379 tempflag, 1 /* enabled */,
12380 from_tty);
12381 }
12382
12383 /* Completion function for the Ada "catch" commands. */
12384
12385 static void
12386 catch_ada_completer (struct cmd_list_element *cmd, completion_tracker &tracker,
12387 const char *text, const char *word)
12388 {
12389 std::vector<ada_exc_info> exceptions = ada_exceptions_list (NULL);
12390
12391 for (const ada_exc_info &info : exceptions)
12392 {
12393 if (startswith (info.name, word))
12394 tracker.add_completion (make_unique_xstrdup (info.name));
12395 }
12396 }
12397
12398 /* Split the arguments specified in a "catch assert" command.
12399
12400 ARGS contains the command's arguments (or the empty string if
12401 no arguments were passed).
12402
12403 If ARGS contains a condition, set COND_STRING to that condition
12404 (the memory needs to be deallocated after use). */
12405
12406 static void
12407 catch_ada_assert_command_split (const char *args, std::string &cond_string)
12408 {
12409 args = skip_spaces (args);
12410
12411 /* Check whether a condition was provided. */
12412 if (startswith (args, "if")
12413 && (isspace (args[2]) || args[2] == '\0'))
12414 {
12415 args += 2;
12416 args = skip_spaces (args);
12417 if (args[0] == '\0')
12418 error (_("condition missing after `if' keyword"));
12419 cond_string.assign (args);
12420 }
12421
12422 /* Otherwise, there should be no other argument at the end of
12423 the command. */
12424 else if (args[0] != '\0')
12425 error (_("Junk at end of arguments."));
12426 }
12427
12428 /* Implement the "catch assert" command. */
12429
12430 static void
12431 catch_assert_command (const char *arg_entry, int from_tty,
12432 struct cmd_list_element *command)
12433 {
12434 const char *arg = arg_entry;
12435 struct gdbarch *gdbarch = get_current_arch ();
12436 int tempflag;
12437 std::string cond_string;
12438
12439 tempflag = command->context () == CATCH_TEMPORARY;
12440
12441 if (!arg)
12442 arg = "";
12443 catch_ada_assert_command_split (arg, cond_string);
12444 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
12445 "", cond_string,
12446 tempflag, 1 /* enabled */,
12447 from_tty);
12448 }
12449
12450 /* Return non-zero if the symbol SYM is an Ada exception object. */
12451
12452 static int
12453 ada_is_exception_sym (struct symbol *sym)
12454 {
12455 const char *type_name = SYMBOL_TYPE (sym)->name ();
12456
12457 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
12458 && SYMBOL_CLASS (sym) != LOC_BLOCK
12459 && SYMBOL_CLASS (sym) != LOC_CONST
12460 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
12461 && type_name != NULL && strcmp (type_name, "exception") == 0);
12462 }
12463
12464 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
12465 Ada exception object. This matches all exceptions except the ones
12466 defined by the Ada language. */
12467
12468 static int
12469 ada_is_non_standard_exception_sym (struct symbol *sym)
12470 {
12471 int i;
12472
12473 if (!ada_is_exception_sym (sym))
12474 return 0;
12475
12476 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12477 if (strcmp (sym->linkage_name (), standard_exc[i]) == 0)
12478 return 0; /* A standard exception. */
12479
12480 /* Numeric_Error is also a standard exception, so exclude it.
12481 See the STANDARD_EXC description for more details as to why
12482 this exception is not listed in that array. */
12483 if (strcmp (sym->linkage_name (), "numeric_error") == 0)
12484 return 0;
12485
12486 return 1;
12487 }
12488
12489 /* A helper function for std::sort, comparing two struct ada_exc_info
12490 objects.
12491
12492 The comparison is determined first by exception name, and then
12493 by exception address. */
12494
12495 bool
12496 ada_exc_info::operator< (const ada_exc_info &other) const
12497 {
12498 int result;
12499
12500 result = strcmp (name, other.name);
12501 if (result < 0)
12502 return true;
12503 if (result == 0 && addr < other.addr)
12504 return true;
12505 return false;
12506 }
12507
12508 bool
12509 ada_exc_info::operator== (const ada_exc_info &other) const
12510 {
12511 return addr == other.addr && strcmp (name, other.name) == 0;
12512 }
12513
12514 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
12515 routine, but keeping the first SKIP elements untouched.
12516
12517 All duplicates are also removed. */
12518
12519 static void
12520 sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
12521 int skip)
12522 {
12523 std::sort (exceptions->begin () + skip, exceptions->end ());
12524 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
12525 exceptions->end ());
12526 }
12527
12528 /* Add all exceptions defined by the Ada standard whose name match
12529 a regular expression.
12530
12531 If PREG is not NULL, then this regexp_t object is used to
12532 perform the symbol name matching. Otherwise, no name-based
12533 filtering is performed.
12534
12535 EXCEPTIONS is a vector of exceptions to which matching exceptions
12536 gets pushed. */
12537
12538 static void
12539 ada_add_standard_exceptions (compiled_regex *preg,
12540 std::vector<ada_exc_info> *exceptions)
12541 {
12542 int i;
12543
12544 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12545 {
12546 if (preg == NULL
12547 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
12548 {
12549 struct bound_minimal_symbol msymbol
12550 = ada_lookup_simple_minsym (standard_exc[i]);
12551
12552 if (msymbol.minsym != NULL)
12553 {
12554 struct ada_exc_info info
12555 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
12556
12557 exceptions->push_back (info);
12558 }
12559 }
12560 }
12561 }
12562
12563 /* Add all Ada exceptions defined locally and accessible from the given
12564 FRAME.
12565
12566 If PREG is not NULL, then this regexp_t object is used to
12567 perform the symbol name matching. Otherwise, no name-based
12568 filtering is performed.
12569
12570 EXCEPTIONS is a vector of exceptions to which matching exceptions
12571 gets pushed. */
12572
12573 static void
12574 ada_add_exceptions_from_frame (compiled_regex *preg,
12575 struct frame_info *frame,
12576 std::vector<ada_exc_info> *exceptions)
12577 {
12578 const struct block *block = get_frame_block (frame, 0);
12579
12580 while (block != 0)
12581 {
12582 struct block_iterator iter;
12583 struct symbol *sym;
12584
12585 ALL_BLOCK_SYMBOLS (block, iter, sym)
12586 {
12587 switch (SYMBOL_CLASS (sym))
12588 {
12589 case LOC_TYPEDEF:
12590 case LOC_BLOCK:
12591 case LOC_CONST:
12592 break;
12593 default:
12594 if (ada_is_exception_sym (sym))
12595 {
12596 struct ada_exc_info info = {sym->print_name (),
12597 SYMBOL_VALUE_ADDRESS (sym)};
12598
12599 exceptions->push_back (info);
12600 }
12601 }
12602 }
12603 if (BLOCK_FUNCTION (block) != NULL)
12604 break;
12605 block = BLOCK_SUPERBLOCK (block);
12606 }
12607 }
12608
12609 /* Return true if NAME matches PREG or if PREG is NULL. */
12610
12611 static bool
12612 name_matches_regex (const char *name, compiled_regex *preg)
12613 {
12614 return (preg == NULL
12615 || preg->exec (ada_decode (name).c_str (), 0, NULL, 0) == 0);
12616 }
12617
12618 /* Add all exceptions defined globally whose name name match
12619 a regular expression, excluding standard exceptions.
12620
12621 The reason we exclude standard exceptions is that they need
12622 to be handled separately: Standard exceptions are defined inside
12623 a runtime unit which is normally not compiled with debugging info,
12624 and thus usually do not show up in our symbol search. However,
12625 if the unit was in fact built with debugging info, we need to
12626 exclude them because they would duplicate the entry we found
12627 during the special loop that specifically searches for those
12628 standard exceptions.
12629
12630 If PREG is not NULL, then this regexp_t object is used to
12631 perform the symbol name matching. Otherwise, no name-based
12632 filtering is performed.
12633
12634 EXCEPTIONS is a vector of exceptions to which matching exceptions
12635 gets pushed. */
12636
12637 static void
12638 ada_add_global_exceptions (compiled_regex *preg,
12639 std::vector<ada_exc_info> *exceptions)
12640 {
12641 /* In Ada, the symbol "search name" is a linkage name, whereas the
12642 regular expression used to do the matching refers to the natural
12643 name. So match against the decoded name. */
12644 expand_symtabs_matching (NULL,
12645 lookup_name_info::match_any (),
12646 [&] (const char *search_name)
12647 {
12648 std::string decoded = ada_decode (search_name);
12649 return name_matches_regex (decoded.c_str (), preg);
12650 },
12651 NULL,
12652 SEARCH_GLOBAL_BLOCK | SEARCH_STATIC_BLOCK,
12653 VARIABLES_DOMAIN);
12654
12655 for (objfile *objfile : current_program_space->objfiles ())
12656 {
12657 for (compunit_symtab *s : objfile->compunits ())
12658 {
12659 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
12660 int i;
12661
12662 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
12663 {
12664 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
12665 struct block_iterator iter;
12666 struct symbol *sym;
12667
12668 ALL_BLOCK_SYMBOLS (b, iter, sym)
12669 if (ada_is_non_standard_exception_sym (sym)
12670 && name_matches_regex (sym->natural_name (), preg))
12671 {
12672 struct ada_exc_info info
12673 = {sym->print_name (), SYMBOL_VALUE_ADDRESS (sym)};
12674
12675 exceptions->push_back (info);
12676 }
12677 }
12678 }
12679 }
12680 }
12681
12682 /* Implements ada_exceptions_list with the regular expression passed
12683 as a regex_t, rather than a string.
12684
12685 If not NULL, PREG is used to filter out exceptions whose names
12686 do not match. Otherwise, all exceptions are listed. */
12687
12688 static std::vector<ada_exc_info>
12689 ada_exceptions_list_1 (compiled_regex *preg)
12690 {
12691 std::vector<ada_exc_info> result;
12692 int prev_len;
12693
12694 /* First, list the known standard exceptions. These exceptions
12695 need to be handled separately, as they are usually defined in
12696 runtime units that have been compiled without debugging info. */
12697
12698 ada_add_standard_exceptions (preg, &result);
12699
12700 /* Next, find all exceptions whose scope is local and accessible
12701 from the currently selected frame. */
12702
12703 if (has_stack_frames ())
12704 {
12705 prev_len = result.size ();
12706 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
12707 &result);
12708 if (result.size () > prev_len)
12709 sort_remove_dups_ada_exceptions_list (&result, prev_len);
12710 }
12711
12712 /* Add all exceptions whose scope is global. */
12713
12714 prev_len = result.size ();
12715 ada_add_global_exceptions (preg, &result);
12716 if (result.size () > prev_len)
12717 sort_remove_dups_ada_exceptions_list (&result, prev_len);
12718
12719 return result;
12720 }
12721
12722 /* Return a vector of ada_exc_info.
12723
12724 If REGEXP is NULL, all exceptions are included in the result.
12725 Otherwise, it should contain a valid regular expression,
12726 and only the exceptions whose names match that regular expression
12727 are included in the result.
12728
12729 The exceptions are sorted in the following order:
12730 - Standard exceptions (defined by the Ada language), in
12731 alphabetical order;
12732 - Exceptions only visible from the current frame, in
12733 alphabetical order;
12734 - Exceptions whose scope is global, in alphabetical order. */
12735
12736 std::vector<ada_exc_info>
12737 ada_exceptions_list (const char *regexp)
12738 {
12739 if (regexp == NULL)
12740 return ada_exceptions_list_1 (NULL);
12741
12742 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
12743 return ada_exceptions_list_1 (&reg);
12744 }
12745
12746 /* Implement the "info exceptions" command. */
12747
12748 static void
12749 info_exceptions_command (const char *regexp, int from_tty)
12750 {
12751 struct gdbarch *gdbarch = get_current_arch ();
12752
12753 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
12754
12755 if (regexp != NULL)
12756 printf_filtered
12757 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
12758 else
12759 printf_filtered (_("All defined Ada exceptions:\n"));
12760
12761 for (const ada_exc_info &info : exceptions)
12762 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
12763 }
12764
12765 \f
12766 /* Language vector */
12767
12768 /* symbol_name_matcher_ftype adapter for wild_match. */
12769
12770 static bool
12771 do_wild_match (const char *symbol_search_name,
12772 const lookup_name_info &lookup_name,
12773 completion_match_result *comp_match_res)
12774 {
12775 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
12776 }
12777
12778 /* symbol_name_matcher_ftype adapter for full_match. */
12779
12780 static bool
12781 do_full_match (const char *symbol_search_name,
12782 const lookup_name_info &lookup_name,
12783 completion_match_result *comp_match_res)
12784 {
12785 const char *lname = lookup_name.ada ().lookup_name ().c_str ();
12786
12787 /* If both symbols start with "_ada_", just let the loop below
12788 handle the comparison. However, if only the symbol name starts
12789 with "_ada_", skip the prefix and let the match proceed as
12790 usual. */
12791 if (startswith (symbol_search_name, "_ada_")
12792 && !startswith (lname, "_ada"))
12793 symbol_search_name += 5;
12794
12795 int uscore_count = 0;
12796 while (*lname != '\0')
12797 {
12798 if (*symbol_search_name != *lname)
12799 {
12800 if (*symbol_search_name == 'B' && uscore_count == 2
12801 && symbol_search_name[1] == '_')
12802 {
12803 symbol_search_name += 2;
12804 while (isdigit (*symbol_search_name))
12805 ++symbol_search_name;
12806 if (symbol_search_name[0] == '_'
12807 && symbol_search_name[1] == '_')
12808 {
12809 symbol_search_name += 2;
12810 continue;
12811 }
12812 }
12813 return false;
12814 }
12815
12816 if (*symbol_search_name == '_')
12817 ++uscore_count;
12818 else
12819 uscore_count = 0;
12820
12821 ++symbol_search_name;
12822 ++lname;
12823 }
12824
12825 return is_name_suffix (symbol_search_name);
12826 }
12827
12828 /* symbol_name_matcher_ftype for exact (verbatim) matches. */
12829
12830 static bool
12831 do_exact_match (const char *symbol_search_name,
12832 const lookup_name_info &lookup_name,
12833 completion_match_result *comp_match_res)
12834 {
12835 return strcmp (symbol_search_name, ada_lookup_name (lookup_name)) == 0;
12836 }
12837
12838 /* Build the Ada lookup name for LOOKUP_NAME. */
12839
12840 ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
12841 {
12842 gdb::string_view user_name = lookup_name.name ();
12843
12844 if (!user_name.empty () && user_name[0] == '<')
12845 {
12846 if (user_name.back () == '>')
12847 m_encoded_name
12848 = gdb::to_string (user_name.substr (1, user_name.size () - 2));
12849 else
12850 m_encoded_name
12851 = gdb::to_string (user_name.substr (1, user_name.size () - 1));
12852 m_encoded_p = true;
12853 m_verbatim_p = true;
12854 m_wild_match_p = false;
12855 m_standard_p = false;
12856 }
12857 else
12858 {
12859 m_verbatim_p = false;
12860
12861 m_encoded_p = user_name.find ("__") != gdb::string_view::npos;
12862
12863 if (!m_encoded_p)
12864 {
12865 const char *folded = ada_fold_name (user_name);
12866 m_encoded_name = ada_encode_1 (folded, false);
12867 if (m_encoded_name.empty ())
12868 m_encoded_name = gdb::to_string (user_name);
12869 }
12870 else
12871 m_encoded_name = gdb::to_string (user_name);
12872
12873 /* Handle the 'package Standard' special case. See description
12874 of m_standard_p. */
12875 if (startswith (m_encoded_name.c_str (), "standard__"))
12876 {
12877 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
12878 m_standard_p = true;
12879 }
12880 else
12881 m_standard_p = false;
12882
12883 /* If the name contains a ".", then the user is entering a fully
12884 qualified entity name, and the match must not be done in wild
12885 mode. Similarly, if the user wants to complete what looks
12886 like an encoded name, the match must not be done in wild
12887 mode. Also, in the standard__ special case always do
12888 non-wild matching. */
12889 m_wild_match_p
12890 = (lookup_name.match_type () != symbol_name_match_type::FULL
12891 && !m_encoded_p
12892 && !m_standard_p
12893 && user_name.find ('.') == std::string::npos);
12894 }
12895 }
12896
12897 /* symbol_name_matcher_ftype method for Ada. This only handles
12898 completion mode. */
12899
12900 static bool
12901 ada_symbol_name_matches (const char *symbol_search_name,
12902 const lookup_name_info &lookup_name,
12903 completion_match_result *comp_match_res)
12904 {
12905 return lookup_name.ada ().matches (symbol_search_name,
12906 lookup_name.match_type (),
12907 comp_match_res);
12908 }
12909
12910 /* A name matcher that matches the symbol name exactly, with
12911 strcmp. */
12912
12913 static bool
12914 literal_symbol_name_matcher (const char *symbol_search_name,
12915 const lookup_name_info &lookup_name,
12916 completion_match_result *comp_match_res)
12917 {
12918 gdb::string_view name_view = lookup_name.name ();
12919
12920 if (lookup_name.completion_mode ()
12921 ? (strncmp (symbol_search_name, name_view.data (),
12922 name_view.size ()) == 0)
12923 : symbol_search_name == name_view)
12924 {
12925 if (comp_match_res != NULL)
12926 comp_match_res->set_match (symbol_search_name);
12927 return true;
12928 }
12929 else
12930 return false;
12931 }
12932
12933 /* Implement the "get_symbol_name_matcher" language_defn method for
12934 Ada. */
12935
12936 static symbol_name_matcher_ftype *
12937 ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
12938 {
12939 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
12940 return literal_symbol_name_matcher;
12941
12942 if (lookup_name.completion_mode ())
12943 return ada_symbol_name_matches;
12944 else
12945 {
12946 if (lookup_name.ada ().wild_match_p ())
12947 return do_wild_match;
12948 else if (lookup_name.ada ().verbatim_p ())
12949 return do_exact_match;
12950 else
12951 return do_full_match;
12952 }
12953 }
12954
12955 /* Class representing the Ada language. */
12956
12957 class ada_language : public language_defn
12958 {
12959 public:
12960 ada_language ()
12961 : language_defn (language_ada)
12962 { /* Nothing. */ }
12963
12964 /* See language.h. */
12965
12966 const char *name () const override
12967 { return "ada"; }
12968
12969 /* See language.h. */
12970
12971 const char *natural_name () const override
12972 { return "Ada"; }
12973
12974 /* See language.h. */
12975
12976 const std::vector<const char *> &filename_extensions () const override
12977 {
12978 static const std::vector<const char *> extensions
12979 = { ".adb", ".ads", ".a", ".ada", ".dg" };
12980 return extensions;
12981 }
12982
12983 /* Print an array element index using the Ada syntax. */
12984
12985 void print_array_index (struct type *index_type,
12986 LONGEST index,
12987 struct ui_file *stream,
12988 const value_print_options *options) const override
12989 {
12990 struct value *index_value = val_atr (index_type, index);
12991
12992 value_print (index_value, stream, options);
12993 fprintf_filtered (stream, " => ");
12994 }
12995
12996 /* Implement the "read_var_value" language_defn method for Ada. */
12997
12998 struct value *read_var_value (struct symbol *var,
12999 const struct block *var_block,
13000 struct frame_info *frame) const override
13001 {
13002 /* The only case where default_read_var_value is not sufficient
13003 is when VAR is a renaming... */
13004 if (frame != nullptr)
13005 {
13006 const struct block *frame_block = get_frame_block (frame, NULL);
13007 if (frame_block != nullptr && ada_is_renaming_symbol (var))
13008 return ada_read_renaming_var_value (var, frame_block);
13009 }
13010
13011 /* This is a typical case where we expect the default_read_var_value
13012 function to work. */
13013 return language_defn::read_var_value (var, var_block, frame);
13014 }
13015
13016 /* See language.h. */
13017 virtual bool symbol_printing_suppressed (struct symbol *symbol) const override
13018 {
13019 return symbol->artificial;
13020 }
13021
13022 /* See language.h. */
13023 void language_arch_info (struct gdbarch *gdbarch,
13024 struct language_arch_info *lai) const override
13025 {
13026 const struct builtin_type *builtin = builtin_type (gdbarch);
13027
13028 /* Helper function to allow shorter lines below. */
13029 auto add = [&] (struct type *t)
13030 {
13031 lai->add_primitive_type (t);
13032 };
13033
13034 add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13035 0, "integer"));
13036 add (arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13037 0, "long_integer"));
13038 add (arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13039 0, "short_integer"));
13040 struct type *char_type = arch_character_type (gdbarch, TARGET_CHAR_BIT,
13041 0, "character");
13042 lai->set_string_char_type (char_type);
13043 add (char_type);
13044 add (arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13045 "float", gdbarch_float_format (gdbarch)));
13046 add (arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13047 "long_float", gdbarch_double_format (gdbarch)));
13048 add (arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13049 0, "long_long_integer"));
13050 add (arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
13051 "long_long_float",
13052 gdbarch_long_double_format (gdbarch)));
13053 add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13054 0, "natural"));
13055 add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13056 0, "positive"));
13057 add (builtin->builtin_void);
13058
13059 struct type *system_addr_ptr
13060 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
13061 "void"));
13062 system_addr_ptr->set_name ("system__address");
13063 add (system_addr_ptr);
13064
13065 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
13066 type. This is a signed integral type whose size is the same as
13067 the size of addresses. */
13068 unsigned int addr_length = TYPE_LENGTH (system_addr_ptr);
13069 add (arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
13070 "storage_offset"));
13071
13072 lai->set_bool_type (builtin->builtin_bool);
13073 }
13074
13075 /* See language.h. */
13076
13077 bool iterate_over_symbols
13078 (const struct block *block, const lookup_name_info &name,
13079 domain_enum domain,
13080 gdb::function_view<symbol_found_callback_ftype> callback) const override
13081 {
13082 std::vector<struct block_symbol> results
13083 = ada_lookup_symbol_list_worker (name, block, domain, 0);
13084 for (block_symbol &sym : results)
13085 {
13086 if (!callback (&sym))
13087 return false;
13088 }
13089
13090 return true;
13091 }
13092
13093 /* See language.h. */
13094 bool sniff_from_mangled_name
13095 (const char *mangled,
13096 gdb::unique_xmalloc_ptr<char> *out) const override
13097 {
13098 std::string demangled = ada_decode (mangled);
13099
13100 *out = NULL;
13101
13102 if (demangled != mangled && demangled[0] != '<')
13103 {
13104 /* Set the gsymbol language to Ada, but still return 0.
13105 Two reasons for that:
13106
13107 1. For Ada, we prefer computing the symbol's decoded name
13108 on the fly rather than pre-compute it, in order to save
13109 memory (Ada projects are typically very large).
13110
13111 2. There are some areas in the definition of the GNAT
13112 encoding where, with a bit of bad luck, we might be able
13113 to decode a non-Ada symbol, generating an incorrect
13114 demangled name (Eg: names ending with "TB" for instance
13115 are identified as task bodies and so stripped from
13116 the decoded name returned).
13117
13118 Returning true, here, but not setting *DEMANGLED, helps us get
13119 a little bit of the best of both worlds. Because we're last,
13120 we should not affect any of the other languages that were
13121 able to demangle the symbol before us; we get to correctly
13122 tag Ada symbols as such; and even if we incorrectly tagged a
13123 non-Ada symbol, which should be rare, any routing through the
13124 Ada language should be transparent (Ada tries to behave much
13125 like C/C++ with non-Ada symbols). */
13126 return true;
13127 }
13128
13129 return false;
13130 }
13131
13132 /* See language.h. */
13133
13134 gdb::unique_xmalloc_ptr<char> demangle_symbol (const char *mangled,
13135 int options) const override
13136 {
13137 return make_unique_xstrdup (ada_decode (mangled).c_str ());
13138 }
13139
13140 /* See language.h. */
13141
13142 void print_type (struct type *type, const char *varstring,
13143 struct ui_file *stream, int show, int level,
13144 const struct type_print_options *flags) const override
13145 {
13146 ada_print_type (type, varstring, stream, show, level, flags);
13147 }
13148
13149 /* See language.h. */
13150
13151 const char *word_break_characters (void) const override
13152 {
13153 return ada_completer_word_break_characters;
13154 }
13155
13156 /* See language.h. */
13157
13158 void collect_symbol_completion_matches (completion_tracker &tracker,
13159 complete_symbol_mode mode,
13160 symbol_name_match_type name_match_type,
13161 const char *text, const char *word,
13162 enum type_code code) const override
13163 {
13164 struct symbol *sym;
13165 const struct block *b, *surrounding_static_block = 0;
13166 struct block_iterator iter;
13167
13168 gdb_assert (code == TYPE_CODE_UNDEF);
13169
13170 lookup_name_info lookup_name (text, name_match_type, true);
13171
13172 /* First, look at the partial symtab symbols. */
13173 expand_symtabs_matching (NULL,
13174 lookup_name,
13175 NULL,
13176 NULL,
13177 SEARCH_GLOBAL_BLOCK | SEARCH_STATIC_BLOCK,
13178 ALL_DOMAIN);
13179
13180 /* At this point scan through the misc symbol vectors and add each
13181 symbol you find to the list. Eventually we want to ignore
13182 anything that isn't a text symbol (everything else will be
13183 handled by the psymtab code above). */
13184
13185 for (objfile *objfile : current_program_space->objfiles ())
13186 {
13187 for (minimal_symbol *msymbol : objfile->msymbols ())
13188 {
13189 QUIT;
13190
13191 if (completion_skip_symbol (mode, msymbol))
13192 continue;
13193
13194 language symbol_language = msymbol->language ();
13195
13196 /* Ada minimal symbols won't have their language set to Ada. If
13197 we let completion_list_add_name compare using the
13198 default/C-like matcher, then when completing e.g., symbols in a
13199 package named "pck", we'd match internal Ada symbols like
13200 "pckS", which are invalid in an Ada expression, unless you wrap
13201 them in '<' '>' to request a verbatim match.
13202
13203 Unfortunately, some Ada encoded names successfully demangle as
13204 C++ symbols (using an old mangling scheme), such as "name__2Xn"
13205 -> "Xn::name(void)" and thus some Ada minimal symbols end up
13206 with the wrong language set. Paper over that issue here. */
13207 if (symbol_language == language_auto
13208 || symbol_language == language_cplus)
13209 symbol_language = language_ada;
13210
13211 completion_list_add_name (tracker,
13212 symbol_language,
13213 msymbol->linkage_name (),
13214 lookup_name, text, word);
13215 }
13216 }
13217
13218 /* Search upwards from currently selected frame (so that we can
13219 complete on local vars. */
13220
13221 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
13222 {
13223 if (!BLOCK_SUPERBLOCK (b))
13224 surrounding_static_block = b; /* For elmin of dups */
13225
13226 ALL_BLOCK_SYMBOLS (b, iter, sym)
13227 {
13228 if (completion_skip_symbol (mode, sym))
13229 continue;
13230
13231 completion_list_add_name (tracker,
13232 sym->language (),
13233 sym->linkage_name (),
13234 lookup_name, text, word);
13235 }
13236 }
13237
13238 /* Go through the symtabs and check the externs and statics for
13239 symbols which match. */
13240
13241 for (objfile *objfile : current_program_space->objfiles ())
13242 {
13243 for (compunit_symtab *s : objfile->compunits ())
13244 {
13245 QUIT;
13246 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
13247 ALL_BLOCK_SYMBOLS (b, iter, sym)
13248 {
13249 if (completion_skip_symbol (mode, sym))
13250 continue;
13251
13252 completion_list_add_name (tracker,
13253 sym->language (),
13254 sym->linkage_name (),
13255 lookup_name, text, word);
13256 }
13257 }
13258 }
13259
13260 for (objfile *objfile : current_program_space->objfiles ())
13261 {
13262 for (compunit_symtab *s : objfile->compunits ())
13263 {
13264 QUIT;
13265 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
13266 /* Don't do this block twice. */
13267 if (b == surrounding_static_block)
13268 continue;
13269 ALL_BLOCK_SYMBOLS (b, iter, sym)
13270 {
13271 if (completion_skip_symbol (mode, sym))
13272 continue;
13273
13274 completion_list_add_name (tracker,
13275 sym->language (),
13276 sym->linkage_name (),
13277 lookup_name, text, word);
13278 }
13279 }
13280 }
13281 }
13282
13283 /* See language.h. */
13284
13285 gdb::unique_xmalloc_ptr<char> watch_location_expression
13286 (struct type *type, CORE_ADDR addr) const override
13287 {
13288 type = check_typedef (TYPE_TARGET_TYPE (check_typedef (type)));
13289 std::string name = type_to_string (type);
13290 return gdb::unique_xmalloc_ptr<char>
13291 (xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr)));
13292 }
13293
13294 /* See language.h. */
13295
13296 void value_print (struct value *val, struct ui_file *stream,
13297 const struct value_print_options *options) const override
13298 {
13299 return ada_value_print (val, stream, options);
13300 }
13301
13302 /* See language.h. */
13303
13304 void value_print_inner
13305 (struct value *val, struct ui_file *stream, int recurse,
13306 const struct value_print_options *options) const override
13307 {
13308 return ada_value_print_inner (val, stream, recurse, options);
13309 }
13310
13311 /* See language.h. */
13312
13313 struct block_symbol lookup_symbol_nonlocal
13314 (const char *name, const struct block *block,
13315 const domain_enum domain) const override
13316 {
13317 struct block_symbol sym;
13318
13319 sym = ada_lookup_symbol (name, block_static_block (block), domain);
13320 if (sym.symbol != NULL)
13321 return sym;
13322
13323 /* If we haven't found a match at this point, try the primitive
13324 types. In other languages, this search is performed before
13325 searching for global symbols in order to short-circuit that
13326 global-symbol search if it happens that the name corresponds
13327 to a primitive type. But we cannot do the same in Ada, because
13328 it is perfectly legitimate for a program to declare a type which
13329 has the same name as a standard type. If looking up a type in
13330 that situation, we have traditionally ignored the primitive type
13331 in favor of user-defined types. This is why, unlike most other
13332 languages, we search the primitive types this late and only after
13333 having searched the global symbols without success. */
13334
13335 if (domain == VAR_DOMAIN)
13336 {
13337 struct gdbarch *gdbarch;
13338
13339 if (block == NULL)
13340 gdbarch = target_gdbarch ();
13341 else
13342 gdbarch = block_gdbarch (block);
13343 sym.symbol
13344 = language_lookup_primitive_type_as_symbol (this, gdbarch, name);
13345 if (sym.symbol != NULL)
13346 return sym;
13347 }
13348
13349 return {};
13350 }
13351
13352 /* See language.h. */
13353
13354 int parser (struct parser_state *ps) const override
13355 {
13356 warnings_issued = 0;
13357 return ada_parse (ps);
13358 }
13359
13360 /* See language.h. */
13361
13362 void emitchar (int ch, struct type *chtype,
13363 struct ui_file *stream, int quoter) const override
13364 {
13365 ada_emit_char (ch, chtype, stream, quoter, 1);
13366 }
13367
13368 /* See language.h. */
13369
13370 void printchar (int ch, struct type *chtype,
13371 struct ui_file *stream) const override
13372 {
13373 ada_printchar (ch, chtype, stream);
13374 }
13375
13376 /* See language.h. */
13377
13378 void printstr (struct ui_file *stream, struct type *elttype,
13379 const gdb_byte *string, unsigned int length,
13380 const char *encoding, int force_ellipses,
13381 const struct value_print_options *options) const override
13382 {
13383 ada_printstr (stream, elttype, string, length, encoding,
13384 force_ellipses, options);
13385 }
13386
13387 /* See language.h. */
13388
13389 void print_typedef (struct type *type, struct symbol *new_symbol,
13390 struct ui_file *stream) const override
13391 {
13392 ada_print_typedef (type, new_symbol, stream);
13393 }
13394
13395 /* See language.h. */
13396
13397 bool is_string_type_p (struct type *type) const override
13398 {
13399 return ada_is_string_type (type);
13400 }
13401
13402 /* See language.h. */
13403
13404 const char *struct_too_deep_ellipsis () const override
13405 { return "(...)"; }
13406
13407 /* See language.h. */
13408
13409 bool c_style_arrays_p () const override
13410 { return false; }
13411
13412 /* See language.h. */
13413
13414 bool store_sym_names_in_linkage_form_p () const override
13415 { return true; }
13416
13417 /* See language.h. */
13418
13419 const struct lang_varobj_ops *varobj_ops () const override
13420 { return &ada_varobj_ops; }
13421
13422 protected:
13423 /* See language.h. */
13424
13425 symbol_name_matcher_ftype *get_symbol_name_matcher_inner
13426 (const lookup_name_info &lookup_name) const override
13427 {
13428 return ada_get_symbol_name_matcher (lookup_name);
13429 }
13430 };
13431
13432 /* Single instance of the Ada language class. */
13433
13434 static ada_language ada_language_defn;
13435
13436 /* Command-list for the "set/show ada" prefix command. */
13437 static struct cmd_list_element *set_ada_list;
13438 static struct cmd_list_element *show_ada_list;
13439
13440 static void
13441 initialize_ada_catchpoint_ops (void)
13442 {
13443 struct breakpoint_ops *ops;
13444
13445 initialize_breakpoint_ops ();
13446
13447 ops = &catch_exception_breakpoint_ops;
13448 *ops = bkpt_breakpoint_ops;
13449 ops->allocate_location = allocate_location_exception;
13450 ops->re_set = re_set_exception;
13451 ops->check_status = check_status_exception;
13452 ops->print_it = print_it_exception;
13453 ops->print_one = print_one_exception;
13454 ops->print_mention = print_mention_exception;
13455 ops->print_recreate = print_recreate_exception;
13456
13457 ops = &catch_exception_unhandled_breakpoint_ops;
13458 *ops = bkpt_breakpoint_ops;
13459 ops->allocate_location = allocate_location_exception;
13460 ops->re_set = re_set_exception;
13461 ops->check_status = check_status_exception;
13462 ops->print_it = print_it_exception;
13463 ops->print_one = print_one_exception;
13464 ops->print_mention = print_mention_exception;
13465 ops->print_recreate = print_recreate_exception;
13466
13467 ops = &catch_assert_breakpoint_ops;
13468 *ops = bkpt_breakpoint_ops;
13469 ops->allocate_location = allocate_location_exception;
13470 ops->re_set = re_set_exception;
13471 ops->check_status = check_status_exception;
13472 ops->print_it = print_it_exception;
13473 ops->print_one = print_one_exception;
13474 ops->print_mention = print_mention_exception;
13475 ops->print_recreate = print_recreate_exception;
13476
13477 ops = &catch_handlers_breakpoint_ops;
13478 *ops = bkpt_breakpoint_ops;
13479 ops->allocate_location = allocate_location_exception;
13480 ops->re_set = re_set_exception;
13481 ops->check_status = check_status_exception;
13482 ops->print_it = print_it_exception;
13483 ops->print_one = print_one_exception;
13484 ops->print_mention = print_mention_exception;
13485 ops->print_recreate = print_recreate_exception;
13486 }
13487
13488 /* This module's 'new_objfile' observer. */
13489
13490 static void
13491 ada_new_objfile_observer (struct objfile *objfile)
13492 {
13493 ada_clear_symbol_cache ();
13494 }
13495
13496 /* This module's 'free_objfile' observer. */
13497
13498 static void
13499 ada_free_objfile_observer (struct objfile *objfile)
13500 {
13501 ada_clear_symbol_cache ();
13502 }
13503
13504 void _initialize_ada_language ();
13505 void
13506 _initialize_ada_language ()
13507 {
13508 initialize_ada_catchpoint_ops ();
13509
13510 add_setshow_prefix_cmd
13511 ("ada", no_class,
13512 _("Prefix command for changing Ada-specific settings."),
13513 _("Generic command for showing Ada-specific settings."),
13514 &set_ada_list, &show_ada_list,
13515 &setlist, &showlist);
13516
13517 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
13518 &trust_pad_over_xvs, _("\
13519 Enable or disable an optimization trusting PAD types over XVS types."), _("\
13520 Show whether an optimization trusting PAD types over XVS types is activated."),
13521 _("\
13522 This is related to the encoding used by the GNAT compiler. The debugger\n\
13523 should normally trust the contents of PAD types, but certain older versions\n\
13524 of GNAT have a bug that sometimes causes the information in the PAD type\n\
13525 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
13526 work around this bug. It is always safe to turn this option \"off\", but\n\
13527 this incurs a slight performance penalty, so it is recommended to NOT change\n\
13528 this option to \"off\" unless necessary."),
13529 NULL, NULL, &set_ada_list, &show_ada_list);
13530
13531 add_setshow_boolean_cmd ("print-signatures", class_vars,
13532 &print_signatures, _("\
13533 Enable or disable the output of formal and return types for functions in the \
13534 overloads selection menu."), _("\
13535 Show whether the output of formal and return types for functions in the \
13536 overloads selection menu is activated."),
13537 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
13538
13539 add_catch_command ("exception", _("\
13540 Catch Ada exceptions, when raised.\n\
13541 Usage: catch exception [ARG] [if CONDITION]\n\
13542 Without any argument, stop when any Ada exception is raised.\n\
13543 If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\
13544 being raised does not have a handler (and will therefore lead to the task's\n\
13545 termination).\n\
13546 Otherwise, the catchpoint only stops when the name of the exception being\n\
13547 raised is the same as ARG.\n\
13548 CONDITION is a boolean expression that is evaluated to see whether the\n\
13549 exception should cause a stop."),
13550 catch_ada_exception_command,
13551 catch_ada_completer,
13552 CATCH_PERMANENT,
13553 CATCH_TEMPORARY);
13554
13555 add_catch_command ("handlers", _("\
13556 Catch Ada exceptions, when handled.\n\
13557 Usage: catch handlers [ARG] [if CONDITION]\n\
13558 Without any argument, stop when any Ada exception is handled.\n\
13559 With an argument, catch only exceptions with the given name.\n\
13560 CONDITION is a boolean expression that is evaluated to see whether the\n\
13561 exception should cause a stop."),
13562 catch_ada_handlers_command,
13563 catch_ada_completer,
13564 CATCH_PERMANENT,
13565 CATCH_TEMPORARY);
13566 add_catch_command ("assert", _("\
13567 Catch failed Ada assertions, when raised.\n\
13568 Usage: catch assert [if CONDITION]\n\
13569 CONDITION is a boolean expression that is evaluated to see whether the\n\
13570 exception should cause a stop."),
13571 catch_assert_command,
13572 NULL,
13573 CATCH_PERMANENT,
13574 CATCH_TEMPORARY);
13575
13576 add_info ("exceptions", info_exceptions_command,
13577 _("\
13578 List all Ada exception names.\n\
13579 Usage: info exceptions [REGEXP]\n\
13580 If a regular expression is passed as an argument, only those matching\n\
13581 the regular expression are listed."));
13582
13583 add_setshow_prefix_cmd ("ada", class_maintenance,
13584 _("Set Ada maintenance-related variables."),
13585 _("Show Ada maintenance-related variables."),
13586 &maint_set_ada_cmdlist, &maint_show_ada_cmdlist,
13587 &maintenance_set_cmdlist, &maintenance_show_cmdlist);
13588
13589 add_setshow_boolean_cmd
13590 ("ignore-descriptive-types", class_maintenance,
13591 &ada_ignore_descriptive_types_p,
13592 _("Set whether descriptive types generated by GNAT should be ignored."),
13593 _("Show whether descriptive types generated by GNAT should be ignored."),
13594 _("\
13595 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
13596 DWARF attribute."),
13597 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
13598
13599 decoded_names_store = htab_create_alloc (256, htab_hash_string,
13600 htab_eq_string,
13601 NULL, xcalloc, xfree);
13602
13603 /* The ada-lang observers. */
13604 gdb::observers::new_objfile.attach (ada_new_objfile_observer, "ada-lang");
13605 gdb::observers::free_objfile.attach (ada_free_objfile_observer, "ada-lang");
13606 gdb::observers::inferior_exit.attach (ada_inferior_exit, "ada-lang");
13607 }