* dsrec.c (load_srec, make_srec): Use bfd_get_section_size instead of
[binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger. Copyright
2 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004.
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21 #include "defs.h"
22 #include <stdio.h>
23 #include "gdb_string.h"
24 #include <ctype.h>
25 #include <stdarg.h>
26 #include "demangle.h"
27 #include "gdb_regex.h"
28 #include "frame.h"
29 #include "symtab.h"
30 #include "gdbtypes.h"
31 #include "gdbcmd.h"
32 #include "expression.h"
33 #include "parser-defs.h"
34 #include "language.h"
35 #include "c-lang.h"
36 #include "inferior.h"
37 #include "symfile.h"
38 #include "objfiles.h"
39 #include "breakpoint.h"
40 #include "gdbcore.h"
41 #include "hashtab.h"
42 #include "gdb_obstack.h"
43 #include "ada-lang.h"
44 #include "completer.h"
45 #include "gdb_stat.h"
46 #ifdef UI_OUT
47 #include "ui-out.h"
48 #endif
49 #include "block.h"
50 #include "infcall.h"
51 #include "dictionary.h"
52
53 #ifndef ADA_RETAIN_DOTS
54 #define ADA_RETAIN_DOTS 0
55 #endif
56
57 /* Define whether or not the C operator '/' truncates towards zero for
58 differently signed operands (truncation direction is undefined in C).
59 Copied from valarith.c. */
60
61 #ifndef TRUNCATION_TOWARDS_ZERO
62 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
63 #endif
64
65 /* A structure that contains a vector of strings.
66 The main purpose of this type is to group the vector and its
67 associated parameters in one structure. This makes it easier
68 to handle and pass around. */
69
70 struct string_vector
71 {
72 char **array; /* The vector itself. */
73 int index; /* Index of the next available element in the array. */
74 size_t size; /* The number of entries allocated in the array. */
75 };
76
77 static struct string_vector xnew_string_vector (int initial_size);
78 static void string_vector_append (struct string_vector *sv, char *str);
79
80 static const char *ada_unqualified_name (const char *decoded_name);
81 static char *add_angle_brackets (const char *str);
82 static void extract_string (CORE_ADDR addr, char *buf);
83 static char *function_name_from_pc (CORE_ADDR pc);
84
85 static struct type *ada_create_fundamental_type (struct objfile *, int);
86
87 static void modify_general_field (char *, LONGEST, int, int);
88
89 static struct type *desc_base_type (struct type *);
90
91 static struct type *desc_bounds_type (struct type *);
92
93 static struct value *desc_bounds (struct value *);
94
95 static int fat_pntr_bounds_bitpos (struct type *);
96
97 static int fat_pntr_bounds_bitsize (struct type *);
98
99 static struct type *desc_data_type (struct type *);
100
101 static struct value *desc_data (struct value *);
102
103 static int fat_pntr_data_bitpos (struct type *);
104
105 static int fat_pntr_data_bitsize (struct type *);
106
107 static struct value *desc_one_bound (struct value *, int, int);
108
109 static int desc_bound_bitpos (struct type *, int, int);
110
111 static int desc_bound_bitsize (struct type *, int, int);
112
113 static struct type *desc_index_type (struct type *, int);
114
115 static int desc_arity (struct type *);
116
117 static int ada_type_match (struct type *, struct type *, int);
118
119 static int ada_args_match (struct symbol *, struct value **, int);
120
121 static struct value *ensure_lval (struct value *, CORE_ADDR *);
122
123 static struct value *convert_actual (struct value *, struct type *,
124 CORE_ADDR *);
125
126 static struct value *make_array_descriptor (struct type *, struct value *,
127 CORE_ADDR *);
128
129 static void ada_add_block_symbols (struct obstack *,
130 struct block *, const char *,
131 domain_enum, struct objfile *,
132 struct symtab *, int);
133
134 static int is_nonfunction (struct ada_symbol_info *, int);
135
136 static void add_defn_to_vec (struct obstack *, struct symbol *, struct block *,
137 struct symtab *);
138
139 static int num_defns_collected (struct obstack *);
140
141 static struct ada_symbol_info *defns_collected (struct obstack *, int);
142
143 static struct partial_symbol *ada_lookup_partial_symbol (struct partial_symtab
144 *, const char *, int,
145 domain_enum, int);
146
147 static struct symtab *symtab_for_sym (struct symbol *);
148
149 static struct value *resolve_subexp (struct expression **, int *, int,
150 struct type *);
151
152 static void replace_operator_with_call (struct expression **, int, int, int,
153 struct symbol *, struct block *);
154
155 static int possible_user_operator_p (enum exp_opcode, struct value **);
156
157 static char *ada_op_name (enum exp_opcode);
158
159 static const char *ada_decoded_op_name (enum exp_opcode);
160
161 static int numeric_type_p (struct type *);
162
163 static int integer_type_p (struct type *);
164
165 static int scalar_type_p (struct type *);
166
167 static int discrete_type_p (struct type *);
168
169 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
170 int, int, int *);
171
172 static char *extended_canonical_line_spec (struct symtab_and_line,
173 const char *);
174
175 static struct value *evaluate_subexp (struct type *, struct expression *,
176 int *, enum noside);
177
178 static struct value *evaluate_subexp_type (struct expression *, int *);
179
180 static struct type *ada_create_fundamental_type (struct objfile *, int);
181
182 static int is_dynamic_field (struct type *, int);
183
184 static struct type *to_fixed_variant_branch_type (struct type *, char *,
185 CORE_ADDR, struct value *);
186
187 static struct type *to_fixed_array_type (struct type *, struct value *, int);
188
189 static struct type *to_fixed_range_type (char *, struct value *,
190 struct objfile *);
191
192 static struct type *to_static_fixed_type (struct type *);
193
194 static struct value *unwrap_value (struct value *);
195
196 static struct type *packed_array_type (struct type *, long *);
197
198 static struct type *decode_packed_array_type (struct type *);
199
200 static struct value *decode_packed_array (struct value *);
201
202 static struct value *value_subscript_packed (struct value *, int,
203 struct value **);
204
205 static struct value *coerce_unspec_val_to_type (struct value *,
206 struct type *);
207
208 static struct value *get_var_value (char *, char *);
209
210 static int lesseq_defined_than (struct symbol *, struct symbol *);
211
212 static int equiv_types (struct type *, struct type *);
213
214 static int is_name_suffix (const char *);
215
216 static int wild_match (const char *, int, const char *);
217
218 static struct symtabs_and_lines
219 find_sal_from_funcs_and_line (const char *, int,
220 struct ada_symbol_info *, int);
221
222 static int find_line_in_linetable (struct linetable *, int,
223 struct ada_symbol_info *,
224 int, int *);
225
226 static int find_next_line_in_linetable (struct linetable *, int, int, int);
227
228 static void read_all_symtabs (const char *);
229
230 static int is_plausible_func_for_line (struct symbol *, int);
231
232 static struct value *ada_coerce_ref (struct value *);
233
234 static LONGEST pos_atr (struct value *);
235
236 static struct value *value_pos_atr (struct value *);
237
238 static struct value *value_val_atr (struct type *, struct value *);
239
240 static struct symbol *standard_lookup (const char *, const struct block *,
241 domain_enum);
242
243 extern void symtab_symbol_info (char *regexp, domain_enum kind,
244 int from_tty);
245
246 static struct value *ada_search_struct_field (char *, struct value *, int,
247 struct type *);
248
249 static struct value *ada_value_primitive_field (struct value *, int, int,
250 struct type *);
251
252 static int find_struct_field (char *, struct type *, int,
253 struct type **, int *, int *, int *);
254
255 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
256 struct value *);
257
258 static struct value *ada_to_fixed_value (struct value *);
259
260 static void adjust_pc_past_prologue (CORE_ADDR *);
261
262 static int ada_resolve_function (struct ada_symbol_info *, int,
263 struct value **, int, const char *,
264 struct type *);
265
266 static struct value *ada_coerce_to_simple_array (struct value *);
267
268 static int ada_is_direct_array_type (struct type *);
269
270 static void error_breakpoint_runtime_sym_not_found (const char *err_desc);
271
272 static int is_runtime_sym_defined (const char *name, int allow_tramp);
273
274 \f
275
276 /* Maximum-sized dynamic type. */
277 static unsigned int varsize_limit;
278
279 /* FIXME: brobecker/2003-09-17: No longer a const because it is
280 returned by a function that does not return a const char *. */
281 static char *ada_completer_word_break_characters =
282 #ifdef VMS
283 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
284 #else
285 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
286 #endif
287
288 /* The name of the symbol to use to get the name of the main subprogram. */
289 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
290 = "__gnat_ada_main_program_name";
291
292 /* The name of the runtime function called when an exception is raised. */
293 static const char raise_sym_name[] = "__gnat_raise_nodefer_with_msg";
294
295 /* The name of the runtime function called when an unhandled exception
296 is raised. */
297 static const char raise_unhandled_sym_name[] = "__gnat_unhandled_exception";
298
299 /* The name of the runtime function called when an assert failure is
300 raised. */
301 static const char raise_assert_sym_name[] =
302 "system__assertions__raise_assert_failure";
303
304 /* When GDB stops on an unhandled exception, GDB will go up the stack until
305 if finds a frame corresponding to this function, in order to extract the
306 name of the exception that has been raised from one of the parameters. */
307 static const char process_raise_exception_name[] =
308 "ada__exceptions__process_raise_exception";
309
310 /* A string that reflects the longest exception expression rewrite,
311 aside from the exception name. */
312 static const char longest_exception_template[] =
313 "'__gnat_raise_nodefer_with_msg' if long_integer(e) = long_integer(&)";
314
315 /* Limit on the number of warnings to raise per expression evaluation. */
316 static int warning_limit = 2;
317
318 /* Number of warning messages issued; reset to 0 by cleanups after
319 expression evaluation. */
320 static int warnings_issued = 0;
321
322 static const char *known_runtime_file_name_patterns[] = {
323 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
324 };
325
326 static const char *known_auxiliary_function_name_patterns[] = {
327 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
328 };
329
330 /* Space for allocating results of ada_lookup_symbol_list. */
331 static struct obstack symbol_list_obstack;
332
333 /* Utilities */
334
335 /* Create a new empty string_vector struct with an initial size of
336 INITIAL_SIZE. */
337
338 static struct string_vector
339 xnew_string_vector (int initial_size)
340 {
341 struct string_vector result;
342
343 result.array = (char **) xmalloc ((initial_size + 1) * sizeof (char *));
344 result.index = 0;
345 result.size = initial_size;
346
347 return result;
348 }
349
350 /* Add STR at the end of the given string vector SV. If SV is already
351 full, its size is automatically increased (doubled). */
352
353 static void
354 string_vector_append (struct string_vector *sv, char *str)
355 {
356 if (sv->index >= sv->size)
357 GROW_VECT (sv->array, sv->size, sv->size * 2);
358
359 sv->array[sv->index] = str;
360 sv->index++;
361 }
362
363 /* Given DECODED_NAME a string holding a symbol name in its
364 decoded form (ie using the Ada dotted notation), returns
365 its unqualified name. */
366
367 static const char *
368 ada_unqualified_name (const char *decoded_name)
369 {
370 const char *result = strrchr (decoded_name, '.');
371
372 if (result != NULL)
373 result++; /* Skip the dot... */
374 else
375 result = decoded_name;
376
377 return result;
378 }
379
380 /* Return a string starting with '<', followed by STR, and '>'.
381 The result is good until the next call. */
382
383 static char *
384 add_angle_brackets (const char *str)
385 {
386 static char *result = NULL;
387
388 xfree (result);
389 result = (char *) xmalloc ((strlen (str) + 3) * sizeof (char));
390
391 sprintf (result, "<%s>", str);
392 return result;
393 }
394
395 static char *
396 ada_get_gdb_completer_word_break_characters (void)
397 {
398 return ada_completer_word_break_characters;
399 }
400
401 /* Read the string located at ADDR from the inferior and store the
402 result into BUF. */
403
404 static void
405 extract_string (CORE_ADDR addr, char *buf)
406 {
407 int char_index = 0;
408
409 /* Loop, reading one byte at a time, until we reach the '\000'
410 end-of-string marker. */
411 do
412 {
413 target_read_memory (addr + char_index * sizeof (char),
414 buf + char_index * sizeof (char), sizeof (char));
415 char_index++;
416 }
417 while (buf[char_index - 1] != '\000');
418 }
419
420 /* Return the name of the function owning the instruction located at PC.
421 Return NULL if no such function could be found. */
422
423 static char *
424 function_name_from_pc (CORE_ADDR pc)
425 {
426 char *func_name;
427
428 if (!find_pc_partial_function (pc, &func_name, NULL, NULL))
429 return NULL;
430
431 return func_name;
432 }
433
434 /* Assuming *OLD_VECT points to an array of *SIZE objects of size
435 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
436 updating *OLD_VECT and *SIZE as necessary. */
437
438 void
439 grow_vect (void **old_vect, size_t * size, size_t min_size, int element_size)
440 {
441 if (*size < min_size)
442 {
443 *size *= 2;
444 if (*size < min_size)
445 *size = min_size;
446 *old_vect = xrealloc (*old_vect, *size * element_size);
447 }
448 }
449
450 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
451 suffix of FIELD_NAME beginning "___". */
452
453 static int
454 field_name_match (const char *field_name, const char *target)
455 {
456 int len = strlen (target);
457 return
458 (strncmp (field_name, target, len) == 0
459 && (field_name[len] == '\0'
460 || (strncmp (field_name + len, "___", 3) == 0
461 && strcmp (field_name + strlen (field_name) - 6, "___XVN") != 0)));
462 }
463
464
465 /* Assuming TYPE is a TYPE_CODE_STRUCT, find the field whose name matches
466 FIELD_NAME, and return its index. This function also handles fields
467 whose name have ___ suffixes because the compiler sometimes alters
468 their name by adding such a suffix to represent fields with certain
469 constraints. If the field could not be found, return a negative
470 number if MAYBE_MISSING is set. Otherwise raise an error. */
471
472 int
473 ada_get_field_index (const struct type *type, const char *field_name,
474 int maybe_missing)
475 {
476 int fieldno;
477 for (fieldno = 0; fieldno < TYPE_NFIELDS (type); fieldno++)
478 if (field_name_match (TYPE_FIELD_NAME (type, fieldno), field_name))
479 return fieldno;
480
481 if (!maybe_missing)
482 error ("Unable to find field %s in struct %s. Aborting",
483 field_name, TYPE_NAME (type));
484
485 return -1;
486 }
487
488 /* The length of the prefix of NAME prior to any "___" suffix. */
489
490 int
491 ada_name_prefix_len (const char *name)
492 {
493 if (name == NULL)
494 return 0;
495 else
496 {
497 const char *p = strstr (name, "___");
498 if (p == NULL)
499 return strlen (name);
500 else
501 return p - name;
502 }
503 }
504
505 /* Return non-zero if SUFFIX is a suffix of STR.
506 Return zero if STR is null. */
507
508 static int
509 is_suffix (const char *str, const char *suffix)
510 {
511 int len1, len2;
512 if (str == NULL)
513 return 0;
514 len1 = strlen (str);
515 len2 = strlen (suffix);
516 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
517 }
518
519 /* Create a value of type TYPE whose contents come from VALADDR, if it
520 is non-null, and whose memory address (in the inferior) is
521 ADDRESS. */
522
523 struct value *
524 value_from_contents_and_address (struct type *type, char *valaddr,
525 CORE_ADDR address)
526 {
527 struct value *v = allocate_value (type);
528 if (valaddr == NULL)
529 VALUE_LAZY (v) = 1;
530 else
531 memcpy (VALUE_CONTENTS_RAW (v), valaddr, TYPE_LENGTH (type));
532 VALUE_ADDRESS (v) = address;
533 if (address != 0)
534 VALUE_LVAL (v) = lval_memory;
535 return v;
536 }
537
538 /* The contents of value VAL, treated as a value of type TYPE. The
539 result is an lval in memory if VAL is. */
540
541 static struct value *
542 coerce_unspec_val_to_type (struct value *val, struct type *type)
543 {
544 CHECK_TYPEDEF (type);
545 if (VALUE_TYPE (val) == type)
546 return val;
547 else
548 {
549 struct value *result;
550
551 /* Make sure that the object size is not unreasonable before
552 trying to allocate some memory for it. */
553 if (TYPE_LENGTH (type) > varsize_limit)
554 error ("object size is larger than varsize-limit");
555
556 result = allocate_value (type);
557 VALUE_LVAL (result) = VALUE_LVAL (val);
558 VALUE_BITSIZE (result) = VALUE_BITSIZE (val);
559 VALUE_BITPOS (result) = VALUE_BITPOS (val);
560 VALUE_ADDRESS (result) = VALUE_ADDRESS (val) + VALUE_OFFSET (val);
561 if (VALUE_LAZY (val) ||
562 TYPE_LENGTH (type) > TYPE_LENGTH (VALUE_TYPE (val)))
563 VALUE_LAZY (result) = 1;
564 else
565 memcpy (VALUE_CONTENTS_RAW (result), VALUE_CONTENTS (val),
566 TYPE_LENGTH (type));
567 return result;
568 }
569 }
570
571 static char *
572 cond_offset_host (char *valaddr, long offset)
573 {
574 if (valaddr == NULL)
575 return NULL;
576 else
577 return valaddr + offset;
578 }
579
580 static CORE_ADDR
581 cond_offset_target (CORE_ADDR address, long offset)
582 {
583 if (address == 0)
584 return 0;
585 else
586 return address + offset;
587 }
588
589 /* Issue a warning (as for the definition of warning in utils.c, but
590 with exactly one argument rather than ...), unless the limit on the
591 number of warnings has passed during the evaluation of the current
592 expression. */
593 static void
594 lim_warning (const char *format, long arg)
595 {
596 warnings_issued += 1;
597 if (warnings_issued <= warning_limit)
598 warning (format, arg);
599 }
600
601 static const char *
602 ada_translate_error_message (const char *string)
603 {
604 if (strcmp (string, "Invalid cast.") == 0)
605 return "Invalid type conversion.";
606 else
607 return string;
608 }
609
610 static LONGEST
611 MAX_OF_SIZE (int size)
612 {
613 LONGEST top_bit = (LONGEST) 1 << (size*8-2);
614 return top_bit | (top_bit-1);
615 }
616
617 static LONGEST
618 MIN_OF_SIZE (int size)
619 {
620 return - MAX_OF_SIZE (size) - 1;
621 }
622
623 static ULONGEST
624 UMAX_OF_SIZE (int size)
625 {
626 ULONGEST top_bit = (ULONGEST) 1 << (size*8-1);
627 return top_bit | (top_bit-1);
628 }
629
630 static ULONGEST
631 UMIN_OF_SIZE (int size)
632 {
633 return 0;
634 }
635
636 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
637 static struct value *
638 discrete_type_high_bound (struct type *type)
639 {
640 switch (TYPE_CODE (type))
641 {
642 case TYPE_CODE_RANGE:
643 return value_from_longest (TYPE_TARGET_TYPE (type),
644 TYPE_HIGH_BOUND (type));
645 case TYPE_CODE_ENUM:
646 return
647 value_from_longest (type,
648 TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type)-1));
649 case TYPE_CODE_INT:
650 return value_from_longest (type, MAX_OF_TYPE (type));
651 default:
652 error ("Unexpected type in discrete_type_high_bound.");
653 }
654 }
655
656 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
657 static struct value *
658 discrete_type_low_bound (struct type *type)
659 {
660 switch (TYPE_CODE (type))
661 {
662 case TYPE_CODE_RANGE:
663 return value_from_longest (TYPE_TARGET_TYPE (type),
664 TYPE_LOW_BOUND (type));
665 case TYPE_CODE_ENUM:
666 return value_from_longest (type, TYPE_FIELD_BITPOS (type, 0));
667 case TYPE_CODE_INT:
668 return value_from_longest (type, MIN_OF_TYPE (type));
669 default:
670 error ("Unexpected type in discrete_type_low_bound.");
671 }
672 }
673
674 /* The identity on non-range types. For range types, the underlying
675 non-range scalar type. */
676
677 static struct type *
678 base_type (struct type *type)
679 {
680 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
681 {
682 if (type == TYPE_TARGET_TYPE (type)
683 || TYPE_TARGET_TYPE (type) == NULL)
684 return type;
685 type = TYPE_TARGET_TYPE (type);
686 }
687 return type;
688 }
689
690 \f
691 /* Language Selection */
692
693 /* If the main program is in Ada, return language_ada, otherwise return LANG
694 (the main program is in Ada iif the adainit symbol is found).
695
696 MAIN_PST is not used. */
697
698 enum language
699 ada_update_initial_language (enum language lang,
700 struct partial_symtab *main_pst)
701 {
702 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
703 (struct objfile *) NULL) != NULL)
704 return language_ada;
705
706 return lang;
707 }
708 \f
709 /* Symbols */
710
711 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
712 of NULLs. */
713
714 const struct ada_opname_map ada_opname_table[] = {
715 {"Oadd", "\"+\"", BINOP_ADD},
716 {"Osubtract", "\"-\"", BINOP_SUB},
717 {"Omultiply", "\"*\"", BINOP_MUL},
718 {"Odivide", "\"/\"", BINOP_DIV},
719 {"Omod", "\"mod\"", BINOP_MOD},
720 {"Orem", "\"rem\"", BINOP_REM},
721 {"Oexpon", "\"**\"", BINOP_EXP},
722 {"Olt", "\"<\"", BINOP_LESS},
723 {"Ole", "\"<=\"", BINOP_LEQ},
724 {"Ogt", "\">\"", BINOP_GTR},
725 {"Oge", "\">=\"", BINOP_GEQ},
726 {"Oeq", "\"=\"", BINOP_EQUAL},
727 {"One", "\"/=\"", BINOP_NOTEQUAL},
728 {"Oand", "\"and\"", BINOP_BITWISE_AND},
729 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
730 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
731 {"Oconcat", "\"&\"", BINOP_CONCAT},
732 {"Oabs", "\"abs\"", UNOP_ABS},
733 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
734 {"Oadd", "\"+\"", UNOP_PLUS},
735 {"Osubtract", "\"-\"", UNOP_NEG},
736 {NULL, NULL}
737 };
738
739 /* Return non-zero if STR should be suppressed in info listings. */
740
741 static int
742 is_suppressed_name (const char *str)
743 {
744 if (strncmp (str, "_ada_", 5) == 0)
745 str += 5;
746 if (str[0] == '_' || str[0] == '\000')
747 return 1;
748 else
749 {
750 const char *p;
751 const char *suffix = strstr (str, "___");
752 if (suffix != NULL && suffix[3] != 'X')
753 return 1;
754 if (suffix == NULL)
755 suffix = str + strlen (str);
756 for (p = suffix - 1; p != str; p -= 1)
757 if (isupper (*p))
758 {
759 int i;
760 if (p[0] == 'X' && p[-1] != '_')
761 goto OK;
762 if (*p != 'O')
763 return 1;
764 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
765 if (strncmp (ada_opname_table[i].encoded, p,
766 strlen (ada_opname_table[i].encoded)) == 0)
767 goto OK;
768 return 1;
769 OK:;
770 }
771 return 0;
772 }
773 }
774
775 /* The "encoded" form of DECODED, according to GNAT conventions.
776 The result is valid until the next call to ada_encode. */
777
778 char *
779 ada_encode (const char *decoded)
780 {
781 static char *encoding_buffer = NULL;
782 static size_t encoding_buffer_size = 0;
783 const char *p;
784 int k;
785
786 if (decoded == NULL)
787 return NULL;
788
789 GROW_VECT (encoding_buffer, encoding_buffer_size,
790 2 * strlen (decoded) + 10);
791
792 k = 0;
793 for (p = decoded; *p != '\0'; p += 1)
794 {
795 if (!ADA_RETAIN_DOTS && *p == '.')
796 {
797 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
798 k += 2;
799 }
800 else if (*p == '"')
801 {
802 const struct ada_opname_map *mapping;
803
804 for (mapping = ada_opname_table;
805 mapping->encoded != NULL &&
806 strncmp (mapping->decoded, p,
807 strlen (mapping->decoded)) != 0;
808 mapping += 1)
809 ;
810 if (mapping->encoded == NULL)
811 error ("invalid Ada operator name: %s", p);
812 strcpy (encoding_buffer + k, mapping->encoded);
813 k += strlen (mapping->encoded);
814 break;
815 }
816 else
817 {
818 encoding_buffer[k] = *p;
819 k += 1;
820 }
821 }
822
823 encoding_buffer[k] = '\0';
824 return encoding_buffer;
825 }
826
827 /* Return NAME folded to lower case, or, if surrounded by single
828 quotes, unfolded, but with the quotes stripped away. Result good
829 to next call. */
830
831 char *
832 ada_fold_name (const char *name)
833 {
834 static char *fold_buffer = NULL;
835 static size_t fold_buffer_size = 0;
836
837 int len = strlen (name);
838 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
839
840 if (name[0] == '\'')
841 {
842 strncpy (fold_buffer, name + 1, len - 2);
843 fold_buffer[len - 2] = '\000';
844 }
845 else
846 {
847 int i;
848 for (i = 0; i <= len; i += 1)
849 fold_buffer[i] = tolower (name[i]);
850 }
851
852 return fold_buffer;
853 }
854
855 /* decode:
856 0. Discard trailing .{DIGIT}+ or trailing ___{DIGIT}+
857 These are suffixes introduced by GNAT5 to nested subprogram
858 names, and do not serve any purpose for the debugger.
859 1. Discard final __{DIGIT}+ or $({DIGIT}+(__{DIGIT}+)*)
860 2. Convert other instances of embedded "__" to `.'.
861 3. Discard leading _ada_.
862 4. Convert operator names to the appropriate quoted symbols.
863 5. Remove everything after first ___ if it is followed by
864 'X'.
865 6. Replace TK__ with __, and a trailing B or TKB with nothing.
866 7. Put symbols that should be suppressed in <...> brackets.
867 8. Remove trailing X[bn]* suffix (indicating names in package bodies).
868
869 The resulting string is valid until the next call of ada_decode.
870 If the string is unchanged by demangling, the original string pointer
871 is returned. */
872
873 const char *
874 ada_decode (const char *encoded)
875 {
876 int i, j;
877 int len0;
878 const char *p;
879 char *decoded;
880 int at_start_name;
881 static char *decoding_buffer = NULL;
882 static size_t decoding_buffer_size = 0;
883
884 if (strncmp (encoded, "_ada_", 5) == 0)
885 encoded += 5;
886
887 if (encoded[0] == '_' || encoded[0] == '<')
888 goto Suppress;
889
890 /* Remove trailing .{DIGIT}+ or ___{DIGIT}+. */
891 len0 = strlen (encoded);
892 if (len0 > 1 && isdigit (encoded[len0 - 1]))
893 {
894 i = len0 - 2;
895 while (i > 0 && isdigit (encoded[i]))
896 i--;
897 if (i >= 0 && encoded[i] == '.')
898 len0 = i;
899 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
900 len0 = i - 2;
901 }
902
903 /* Remove the ___X.* suffix if present. Do not forget to verify that
904 the suffix is located before the current "end" of ENCODED. We want
905 to avoid re-matching parts of ENCODED that have previously been
906 marked as discarded (by decrementing LEN0). */
907 p = strstr (encoded, "___");
908 if (p != NULL && p - encoded < len0 - 3)
909 {
910 if (p[3] == 'X')
911 len0 = p - encoded;
912 else
913 goto Suppress;
914 }
915
916 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
917 len0 -= 3;
918
919 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
920 len0 -= 1;
921
922 /* Make decoded big enough for possible expansion by operator name. */
923 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
924 decoded = decoding_buffer;
925
926 if (len0 > 1 && isdigit (encoded[len0 - 1]))
927 {
928 i = len0 - 2;
929 while ((i >= 0 && isdigit (encoded[i]))
930 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
931 i -= 1;
932 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
933 len0 = i - 1;
934 else if (encoded[i] == '$')
935 len0 = i;
936 }
937
938 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
939 decoded[j] = encoded[i];
940
941 at_start_name = 1;
942 while (i < len0)
943 {
944 if (at_start_name && encoded[i] == 'O')
945 {
946 int k;
947 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
948 {
949 int op_len = strlen (ada_opname_table[k].encoded);
950 if (strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
951 op_len - 1) == 0
952 && !isalnum (encoded[i + op_len]))
953 {
954 strcpy (decoded + j, ada_opname_table[k].decoded);
955 at_start_name = 0;
956 i += op_len;
957 j += strlen (ada_opname_table[k].decoded);
958 break;
959 }
960 }
961 if (ada_opname_table[k].encoded != NULL)
962 continue;
963 }
964 at_start_name = 0;
965
966 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
967 i += 2;
968 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
969 {
970 do
971 i += 1;
972 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
973 if (i < len0)
974 goto Suppress;
975 }
976 else if (!ADA_RETAIN_DOTS
977 && i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
978 {
979 decoded[j] = '.';
980 at_start_name = 1;
981 i += 2;
982 j += 1;
983 }
984 else
985 {
986 decoded[j] = encoded[i];
987 i += 1;
988 j += 1;
989 }
990 }
991 decoded[j] = '\000';
992
993 for (i = 0; decoded[i] != '\0'; i += 1)
994 if (isupper (decoded[i]) || decoded[i] == ' ')
995 goto Suppress;
996
997 if (strcmp (decoded, encoded) == 0)
998 return encoded;
999 else
1000 return decoded;
1001
1002 Suppress:
1003 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1004 decoded = decoding_buffer;
1005 if (encoded[0] == '<')
1006 strcpy (decoded, encoded);
1007 else
1008 sprintf (decoded, "<%s>", encoded);
1009 return decoded;
1010
1011 }
1012
1013 /* Table for keeping permanent unique copies of decoded names. Once
1014 allocated, names in this table are never released. While this is a
1015 storage leak, it should not be significant unless there are massive
1016 changes in the set of decoded names in successive versions of a
1017 symbol table loaded during a single session. */
1018 static struct htab *decoded_names_store;
1019
1020 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1021 in the language-specific part of GSYMBOL, if it has not been
1022 previously computed. Tries to save the decoded name in the same
1023 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1024 in any case, the decoded symbol has a lifetime at least that of
1025 GSYMBOL).
1026 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1027 const, but nevertheless modified to a semantically equivalent form
1028 when a decoded name is cached in it.
1029 */
1030
1031 char *ada_decode_symbol (const struct general_symbol_info *gsymbol)
1032 {
1033 char **resultp =
1034 (char **) &gsymbol->language_specific.cplus_specific.demangled_name;
1035 if (*resultp == NULL)
1036 {
1037 const char *decoded = ada_decode (gsymbol->name);
1038 if (gsymbol->bfd_section != NULL)
1039 {
1040 bfd *obfd = gsymbol->bfd_section->owner;
1041 if (obfd != NULL)
1042 {
1043 struct objfile *objf;
1044 ALL_OBJFILES (objf)
1045 {
1046 if (obfd == objf->obfd)
1047 {
1048 *resultp = obsavestring (decoded, strlen (decoded),
1049 &objf->objfile_obstack);
1050 break;
1051 }
1052 }
1053 }
1054 }
1055 /* Sometimes, we can't find a corresponding objfile, in which
1056 case, we put the result on the heap. Since we only decode
1057 when needed, we hope this usually does not cause a
1058 significant memory leak (FIXME). */
1059 if (*resultp == NULL)
1060 {
1061 char **slot =
1062 (char **) htab_find_slot (decoded_names_store,
1063 decoded, INSERT);
1064 if (*slot == NULL)
1065 *slot = xstrdup (decoded);
1066 *resultp = *slot;
1067 }
1068 }
1069
1070 return *resultp;
1071 }
1072
1073 char *ada_la_decode (const char *encoded, int options)
1074 {
1075 return xstrdup (ada_decode (encoded));
1076 }
1077
1078 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1079 suffixes that encode debugging information or leading _ada_ on
1080 SYM_NAME (see is_name_suffix commentary for the debugging
1081 information that is ignored). If WILD, then NAME need only match a
1082 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1083 either argument is NULL. */
1084
1085 int
1086 ada_match_name (const char *sym_name, const char *name, int wild)
1087 {
1088 if (sym_name == NULL || name == NULL)
1089 return 0;
1090 else if (wild)
1091 return wild_match (name, strlen (name), sym_name);
1092 else
1093 {
1094 int len_name = strlen (name);
1095 return (strncmp (sym_name, name, len_name) == 0
1096 && is_name_suffix (sym_name + len_name))
1097 || (strncmp (sym_name, "_ada_", 5) == 0
1098 && strncmp (sym_name + 5, name, len_name) == 0
1099 && is_name_suffix (sym_name + len_name + 5));
1100 }
1101 }
1102
1103 /* True (non-zero) iff, in Ada mode, the symbol SYM should be
1104 suppressed in info listings. */
1105
1106 int
1107 ada_suppress_symbol_printing (struct symbol *sym)
1108 {
1109 if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN)
1110 return 1;
1111 else
1112 return is_suppressed_name (SYMBOL_LINKAGE_NAME (sym));
1113 }
1114 \f
1115
1116 /* Arrays */
1117
1118 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1119
1120 static char *bound_name[] = {
1121 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1122 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1123 };
1124
1125 /* Maximum number of array dimensions we are prepared to handle. */
1126
1127 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1128
1129 /* Like modify_field, but allows bitpos > wordlength. */
1130
1131 static void
1132 modify_general_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
1133 {
1134 modify_field (addr + bitpos / 8, fieldval, bitpos % 8, bitsize);
1135 }
1136
1137
1138 /* The desc_* routines return primitive portions of array descriptors
1139 (fat pointers). */
1140
1141 /* The descriptor or array type, if any, indicated by TYPE; removes
1142 level of indirection, if needed. */
1143
1144 static struct type *
1145 desc_base_type (struct type *type)
1146 {
1147 if (type == NULL)
1148 return NULL;
1149 CHECK_TYPEDEF (type);
1150 if (type != NULL &&
1151 (TYPE_CODE (type) == TYPE_CODE_PTR
1152 || TYPE_CODE (type) == TYPE_CODE_REF))
1153 return check_typedef (TYPE_TARGET_TYPE (type));
1154 else
1155 return type;
1156 }
1157
1158 /* True iff TYPE indicates a "thin" array pointer type. */
1159
1160 static int
1161 is_thin_pntr (struct type *type)
1162 {
1163 return
1164 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1165 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1166 }
1167
1168 /* The descriptor type for thin pointer type TYPE. */
1169
1170 static struct type *
1171 thin_descriptor_type (struct type *type)
1172 {
1173 struct type *base_type = desc_base_type (type);
1174 if (base_type == NULL)
1175 return NULL;
1176 if (is_suffix (ada_type_name (base_type), "___XVE"))
1177 return base_type;
1178 else
1179 {
1180 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1181 if (alt_type == NULL)
1182 return base_type;
1183 else
1184 return alt_type;
1185 }
1186 }
1187
1188 /* A pointer to the array data for thin-pointer value VAL. */
1189
1190 static struct value *
1191 thin_data_pntr (struct value *val)
1192 {
1193 struct type *type = VALUE_TYPE (val);
1194 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1195 return value_cast (desc_data_type (thin_descriptor_type (type)),
1196 value_copy (val));
1197 else
1198 return value_from_longest (desc_data_type (thin_descriptor_type (type)),
1199 VALUE_ADDRESS (val) + VALUE_OFFSET (val));
1200 }
1201
1202 /* True iff TYPE indicates a "thick" array pointer type. */
1203
1204 static int
1205 is_thick_pntr (struct type *type)
1206 {
1207 type = desc_base_type (type);
1208 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1209 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1210 }
1211
1212 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1213 pointer to one, the type of its bounds data; otherwise, NULL. */
1214
1215 static struct type *
1216 desc_bounds_type (struct type *type)
1217 {
1218 struct type *r;
1219
1220 type = desc_base_type (type);
1221
1222 if (type == NULL)
1223 return NULL;
1224 else if (is_thin_pntr (type))
1225 {
1226 type = thin_descriptor_type (type);
1227 if (type == NULL)
1228 return NULL;
1229 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1230 if (r != NULL)
1231 return check_typedef (r);
1232 }
1233 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1234 {
1235 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1236 if (r != NULL)
1237 return check_typedef (TYPE_TARGET_TYPE (check_typedef (r)));
1238 }
1239 return NULL;
1240 }
1241
1242 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1243 one, a pointer to its bounds data. Otherwise NULL. */
1244
1245 static struct value *
1246 desc_bounds (struct value *arr)
1247 {
1248 struct type *type = check_typedef (VALUE_TYPE (arr));
1249 if (is_thin_pntr (type))
1250 {
1251 struct type *bounds_type =
1252 desc_bounds_type (thin_descriptor_type (type));
1253 LONGEST addr;
1254
1255 if (desc_bounds_type == NULL)
1256 error ("Bad GNAT array descriptor");
1257
1258 /* NOTE: The following calculation is not really kosher, but
1259 since desc_type is an XVE-encoded type (and shouldn't be),
1260 the correct calculation is a real pain. FIXME (and fix GCC). */
1261 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1262 addr = value_as_long (arr);
1263 else
1264 addr = VALUE_ADDRESS (arr) + VALUE_OFFSET (arr);
1265
1266 return
1267 value_from_longest (lookup_pointer_type (bounds_type),
1268 addr - TYPE_LENGTH (bounds_type));
1269 }
1270
1271 else if (is_thick_pntr (type))
1272 return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1273 "Bad GNAT array descriptor");
1274 else
1275 return NULL;
1276 }
1277
1278 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1279 position of the field containing the address of the bounds data. */
1280
1281 static int
1282 fat_pntr_bounds_bitpos (struct type *type)
1283 {
1284 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1285 }
1286
1287 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1288 size of the field containing the address of the bounds data. */
1289
1290 static int
1291 fat_pntr_bounds_bitsize (struct type *type)
1292 {
1293 type = desc_base_type (type);
1294
1295 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1296 return TYPE_FIELD_BITSIZE (type, 1);
1297 else
1298 return 8 * TYPE_LENGTH (check_typedef (TYPE_FIELD_TYPE (type, 1)));
1299 }
1300
1301 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1302 pointer to one, the type of its array data (a
1303 pointer-to-array-with-no-bounds type); otherwise, NULL. Use
1304 ada_type_of_array to get an array type with bounds data. */
1305
1306 static struct type *
1307 desc_data_type (struct type *type)
1308 {
1309 type = desc_base_type (type);
1310
1311 /* NOTE: The following is bogus; see comment in desc_bounds. */
1312 if (is_thin_pntr (type))
1313 return lookup_pointer_type
1314 (desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1)));
1315 else if (is_thick_pntr (type))
1316 return lookup_struct_elt_type (type, "P_ARRAY", 1);
1317 else
1318 return NULL;
1319 }
1320
1321 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1322 its array data. */
1323
1324 static struct value *
1325 desc_data (struct value *arr)
1326 {
1327 struct type *type = VALUE_TYPE (arr);
1328 if (is_thin_pntr (type))
1329 return thin_data_pntr (arr);
1330 else if (is_thick_pntr (type))
1331 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1332 "Bad GNAT array descriptor");
1333 else
1334 return NULL;
1335 }
1336
1337
1338 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1339 position of the field containing the address of the data. */
1340
1341 static int
1342 fat_pntr_data_bitpos (struct type *type)
1343 {
1344 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1345 }
1346
1347 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1348 size of the field containing the address of the data. */
1349
1350 static int
1351 fat_pntr_data_bitsize (struct type *type)
1352 {
1353 type = desc_base_type (type);
1354
1355 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1356 return TYPE_FIELD_BITSIZE (type, 0);
1357 else
1358 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1359 }
1360
1361 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1362 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1363 bound, if WHICH is 1. The first bound is I=1. */
1364
1365 static struct value *
1366 desc_one_bound (struct value *bounds, int i, int which)
1367 {
1368 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1369 "Bad GNAT array descriptor bounds");
1370 }
1371
1372 /* If BOUNDS is an array-bounds structure type, return the bit position
1373 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1374 bound, if WHICH is 1. The first bound is I=1. */
1375
1376 static int
1377 desc_bound_bitpos (struct type *type, int i, int which)
1378 {
1379 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1380 }
1381
1382 /* If BOUNDS is an array-bounds structure type, return the bit field size
1383 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1384 bound, if WHICH is 1. The first bound is I=1. */
1385
1386 static int
1387 desc_bound_bitsize (struct type *type, int i, int which)
1388 {
1389 type = desc_base_type (type);
1390
1391 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1392 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1393 else
1394 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1395 }
1396
1397 /* If TYPE is the type of an array-bounds structure, the type of its
1398 Ith bound (numbering from 1). Otherwise, NULL. */
1399
1400 static struct type *
1401 desc_index_type (struct type *type, int i)
1402 {
1403 type = desc_base_type (type);
1404
1405 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1406 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1407 else
1408 return NULL;
1409 }
1410
1411 /* The number of index positions in the array-bounds type TYPE.
1412 Return 0 if TYPE is NULL. */
1413
1414 static int
1415 desc_arity (struct type *type)
1416 {
1417 type = desc_base_type (type);
1418
1419 if (type != NULL)
1420 return TYPE_NFIELDS (type) / 2;
1421 return 0;
1422 }
1423
1424 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1425 an array descriptor type (representing an unconstrained array
1426 type). */
1427
1428 static int
1429 ada_is_direct_array_type (struct type *type)
1430 {
1431 if (type == NULL)
1432 return 0;
1433 CHECK_TYPEDEF (type);
1434 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1435 || ada_is_array_descriptor_type (type));
1436 }
1437
1438 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1439
1440 int
1441 ada_is_simple_array_type (struct type *type)
1442 {
1443 if (type == NULL)
1444 return 0;
1445 CHECK_TYPEDEF (type);
1446 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1447 || (TYPE_CODE (type) == TYPE_CODE_PTR
1448 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
1449 }
1450
1451 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1452
1453 int
1454 ada_is_array_descriptor_type (struct type *type)
1455 {
1456 struct type *data_type = desc_data_type (type);
1457
1458 if (type == NULL)
1459 return 0;
1460 CHECK_TYPEDEF (type);
1461 return
1462 data_type != NULL
1463 && ((TYPE_CODE (data_type) == TYPE_CODE_PTR
1464 && TYPE_TARGET_TYPE (data_type) != NULL
1465 && TYPE_CODE (TYPE_TARGET_TYPE (data_type)) == TYPE_CODE_ARRAY)
1466 ||
1467 TYPE_CODE (data_type) == TYPE_CODE_ARRAY)
1468 && desc_arity (desc_bounds_type (type)) > 0;
1469 }
1470
1471 /* Non-zero iff type is a partially mal-formed GNAT array
1472 descriptor. FIXME: This is to compensate for some problems with
1473 debugging output from GNAT. Re-examine periodically to see if it
1474 is still needed. */
1475
1476 int
1477 ada_is_bogus_array_descriptor (struct type *type)
1478 {
1479 return
1480 type != NULL
1481 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1482 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1483 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1484 && !ada_is_array_descriptor_type (type);
1485 }
1486
1487
1488 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1489 (fat pointer) returns the type of the array data described---specifically,
1490 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1491 in from the descriptor; otherwise, they are left unspecified. If
1492 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1493 returns NULL. The result is simply the type of ARR if ARR is not
1494 a descriptor. */
1495 struct type *
1496 ada_type_of_array (struct value *arr, int bounds)
1497 {
1498 if (ada_is_packed_array_type (VALUE_TYPE (arr)))
1499 return decode_packed_array_type (VALUE_TYPE (arr));
1500
1501 if (!ada_is_array_descriptor_type (VALUE_TYPE (arr)))
1502 return VALUE_TYPE (arr);
1503
1504 if (!bounds)
1505 return
1506 check_typedef (TYPE_TARGET_TYPE (desc_data_type (VALUE_TYPE (arr))));
1507 else
1508 {
1509 struct type *elt_type;
1510 int arity;
1511 struct value *descriptor;
1512 struct objfile *objf = TYPE_OBJFILE (VALUE_TYPE (arr));
1513
1514 elt_type = ada_array_element_type (VALUE_TYPE (arr), -1);
1515 arity = ada_array_arity (VALUE_TYPE (arr));
1516
1517 if (elt_type == NULL || arity == 0)
1518 return check_typedef (VALUE_TYPE (arr));
1519
1520 descriptor = desc_bounds (arr);
1521 if (value_as_long (descriptor) == 0)
1522 return NULL;
1523 while (arity > 0)
1524 {
1525 struct type *range_type = alloc_type (objf);
1526 struct type *array_type = alloc_type (objf);
1527 struct value *low = desc_one_bound (descriptor, arity, 0);
1528 struct value *high = desc_one_bound (descriptor, arity, 1);
1529 arity -= 1;
1530
1531 create_range_type (range_type, VALUE_TYPE (low),
1532 (int) value_as_long (low),
1533 (int) value_as_long (high));
1534 elt_type = create_array_type (array_type, elt_type, range_type);
1535 }
1536
1537 return lookup_pointer_type (elt_type);
1538 }
1539 }
1540
1541 /* If ARR does not represent an array, returns ARR unchanged.
1542 Otherwise, returns either a standard GDB array with bounds set
1543 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1544 GDB array. Returns NULL if ARR is a null fat pointer. */
1545
1546 struct value *
1547 ada_coerce_to_simple_array_ptr (struct value *arr)
1548 {
1549 if (ada_is_array_descriptor_type (VALUE_TYPE (arr)))
1550 {
1551 struct type *arrType = ada_type_of_array (arr, 1);
1552 if (arrType == NULL)
1553 return NULL;
1554 return value_cast (arrType, value_copy (desc_data (arr)));
1555 }
1556 else if (ada_is_packed_array_type (VALUE_TYPE (arr)))
1557 return decode_packed_array (arr);
1558 else
1559 return arr;
1560 }
1561
1562 /* If ARR does not represent an array, returns ARR unchanged.
1563 Otherwise, returns a standard GDB array describing ARR (which may
1564 be ARR itself if it already is in the proper form). */
1565
1566 static struct value *
1567 ada_coerce_to_simple_array (struct value *arr)
1568 {
1569 if (ada_is_array_descriptor_type (VALUE_TYPE (arr)))
1570 {
1571 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1572 if (arrVal == NULL)
1573 error ("Bounds unavailable for null array pointer.");
1574 return value_ind (arrVal);
1575 }
1576 else if (ada_is_packed_array_type (VALUE_TYPE (arr)))
1577 return decode_packed_array (arr);
1578 else
1579 return arr;
1580 }
1581
1582 /* If TYPE represents a GNAT array type, return it translated to an
1583 ordinary GDB array type (possibly with BITSIZE fields indicating
1584 packing). For other types, is the identity. */
1585
1586 struct type *
1587 ada_coerce_to_simple_array_type (struct type *type)
1588 {
1589 struct value *mark = value_mark ();
1590 struct value *dummy = value_from_longest (builtin_type_long, 0);
1591 struct type *result;
1592 VALUE_TYPE (dummy) = type;
1593 result = ada_type_of_array (dummy, 0);
1594 value_free_to_mark (mark);
1595 return result;
1596 }
1597
1598 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1599
1600 int
1601 ada_is_packed_array_type (struct type *type)
1602 {
1603 if (type == NULL)
1604 return 0;
1605 type = desc_base_type (type);
1606 CHECK_TYPEDEF (type);
1607 return
1608 ada_type_name (type) != NULL
1609 && strstr (ada_type_name (type), "___XP") != NULL;
1610 }
1611
1612 /* Given that TYPE is a standard GDB array type with all bounds filled
1613 in, and that the element size of its ultimate scalar constituents
1614 (that is, either its elements, or, if it is an array of arrays, its
1615 elements' elements, etc.) is *ELT_BITS, return an identical type,
1616 but with the bit sizes of its elements (and those of any
1617 constituent arrays) recorded in the BITSIZE components of its
1618 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1619 in bits. */
1620
1621 static struct type *
1622 packed_array_type (struct type *type, long *elt_bits)
1623 {
1624 struct type *new_elt_type;
1625 struct type *new_type;
1626 LONGEST low_bound, high_bound;
1627
1628 CHECK_TYPEDEF (type);
1629 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1630 return type;
1631
1632 new_type = alloc_type (TYPE_OBJFILE (type));
1633 new_elt_type = packed_array_type (check_typedef (TYPE_TARGET_TYPE (type)),
1634 elt_bits);
1635 create_array_type (new_type, new_elt_type, TYPE_FIELD_TYPE (type, 0));
1636 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
1637 TYPE_NAME (new_type) = ada_type_name (type);
1638
1639 if (get_discrete_bounds (TYPE_FIELD_TYPE (type, 0),
1640 &low_bound, &high_bound) < 0)
1641 low_bound = high_bound = 0;
1642 if (high_bound < low_bound)
1643 *elt_bits = TYPE_LENGTH (new_type) = 0;
1644 else
1645 {
1646 *elt_bits *= (high_bound - low_bound + 1);
1647 TYPE_LENGTH (new_type) =
1648 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
1649 }
1650
1651 TYPE_FLAGS (new_type) |= TYPE_FLAG_FIXED_INSTANCE;
1652 return new_type;
1653 }
1654
1655 /* The array type encoded by TYPE, where ada_is_packed_array_type (TYPE). */
1656
1657 static struct type *
1658 decode_packed_array_type (struct type *type)
1659 {
1660 struct symbol *sym;
1661 struct block **blocks;
1662 const char *raw_name = ada_type_name (check_typedef (type));
1663 char *name = (char *) alloca (strlen (raw_name) + 1);
1664 char *tail = strstr (raw_name, "___XP");
1665 struct type *shadow_type;
1666 long bits;
1667 int i, n;
1668
1669 type = desc_base_type (type);
1670
1671 memcpy (name, raw_name, tail - raw_name);
1672 name[tail - raw_name] = '\000';
1673
1674 sym = standard_lookup (name, get_selected_block (0), VAR_DOMAIN);
1675 if (sym == NULL || SYMBOL_TYPE (sym) == NULL)
1676 {
1677 lim_warning ("could not find bounds information on packed array", 0);
1678 return NULL;
1679 }
1680 shadow_type = SYMBOL_TYPE (sym);
1681
1682 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
1683 {
1684 lim_warning ("could not understand bounds information on packed array",
1685 0);
1686 return NULL;
1687 }
1688
1689 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1690 {
1691 lim_warning
1692 ("could not understand bit size information on packed array", 0);
1693 return NULL;
1694 }
1695
1696 return packed_array_type (shadow_type, &bits);
1697 }
1698
1699 /* Given that ARR is a struct value *indicating a GNAT packed array,
1700 returns a simple array that denotes that array. Its type is a
1701 standard GDB array type except that the BITSIZEs of the array
1702 target types are set to the number of bits in each element, and the
1703 type length is set appropriately. */
1704
1705 static struct value *
1706 decode_packed_array (struct value *arr)
1707 {
1708 struct type *type;
1709
1710 arr = ada_coerce_ref (arr);
1711 if (TYPE_CODE (VALUE_TYPE (arr)) == TYPE_CODE_PTR)
1712 arr = ada_value_ind (arr);
1713
1714 type = decode_packed_array_type (VALUE_TYPE (arr));
1715 if (type == NULL)
1716 {
1717 error ("can't unpack array");
1718 return NULL;
1719 }
1720 return coerce_unspec_val_to_type (arr, type);
1721 }
1722
1723
1724 /* The value of the element of packed array ARR at the ARITY indices
1725 given in IND. ARR must be a simple array. */
1726
1727 static struct value *
1728 value_subscript_packed (struct value *arr, int arity, struct value **ind)
1729 {
1730 int i;
1731 int bits, elt_off, bit_off;
1732 long elt_total_bit_offset;
1733 struct type *elt_type;
1734 struct value *v;
1735
1736 bits = 0;
1737 elt_total_bit_offset = 0;
1738 elt_type = check_typedef (VALUE_TYPE (arr));
1739 for (i = 0; i < arity; i += 1)
1740 {
1741 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
1742 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
1743 error
1744 ("attempt to do packed indexing of something other than a packed array");
1745 else
1746 {
1747 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
1748 LONGEST lowerbound, upperbound;
1749 LONGEST idx;
1750
1751 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
1752 {
1753 lim_warning ("don't know bounds of array", 0);
1754 lowerbound = upperbound = 0;
1755 }
1756
1757 idx = value_as_long (value_pos_atr (ind[i]));
1758 if (idx < lowerbound || idx > upperbound)
1759 lim_warning ("packed array index %ld out of bounds", (long) idx);
1760 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
1761 elt_total_bit_offset += (idx - lowerbound) * bits;
1762 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
1763 }
1764 }
1765 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
1766 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
1767
1768 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
1769 bits, elt_type);
1770 if (VALUE_LVAL (arr) == lval_internalvar)
1771 VALUE_LVAL (v) = lval_internalvar_component;
1772 else
1773 VALUE_LVAL (v) = VALUE_LVAL (arr);
1774 return v;
1775 }
1776
1777 /* Non-zero iff TYPE includes negative integer values. */
1778
1779 static int
1780 has_negatives (struct type *type)
1781 {
1782 switch (TYPE_CODE (type))
1783 {
1784 default:
1785 return 0;
1786 case TYPE_CODE_INT:
1787 return !TYPE_UNSIGNED (type);
1788 case TYPE_CODE_RANGE:
1789 return TYPE_LOW_BOUND (type) < 0;
1790 }
1791 }
1792
1793
1794 /* Create a new value of type TYPE from the contents of OBJ starting
1795 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
1796 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
1797 assigning through the result will set the field fetched from.
1798 VALADDR is ignored unless OBJ is NULL, in which case,
1799 VALADDR+OFFSET must address the start of storage containing the
1800 packed value. The value returned in this case is never an lval.
1801 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
1802
1803 struct value *
1804 ada_value_primitive_packed_val (struct value *obj, char *valaddr, long offset,
1805 int bit_offset, int bit_size,
1806 struct type *type)
1807 {
1808 struct value *v;
1809 int src, /* Index into the source area */
1810 targ, /* Index into the target area */
1811 srcBitsLeft, /* Number of source bits left to move */
1812 nsrc, ntarg, /* Number of source and target bytes */
1813 unusedLS, /* Number of bits in next significant
1814 byte of source that are unused */
1815 accumSize; /* Number of meaningful bits in accum */
1816 unsigned char *bytes; /* First byte containing data to unpack */
1817 unsigned char *unpacked;
1818 unsigned long accum; /* Staging area for bits being transferred */
1819 unsigned char sign;
1820 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
1821 /* Transmit bytes from least to most significant; delta is the direction
1822 the indices move. */
1823 int delta = BITS_BIG_ENDIAN ? -1 : 1;
1824
1825 CHECK_TYPEDEF (type);
1826
1827 if (obj == NULL)
1828 {
1829 v = allocate_value (type);
1830 bytes = (unsigned char *) (valaddr + offset);
1831 }
1832 else if (VALUE_LAZY (obj))
1833 {
1834 v = value_at (type,
1835 VALUE_ADDRESS (obj) + VALUE_OFFSET (obj) + offset, NULL);
1836 bytes = (unsigned char *) alloca (len);
1837 read_memory (VALUE_ADDRESS (v), bytes, len);
1838 }
1839 else
1840 {
1841 v = allocate_value (type);
1842 bytes = (unsigned char *) VALUE_CONTENTS (obj) + offset;
1843 }
1844
1845 if (obj != NULL)
1846 {
1847 VALUE_LVAL (v) = VALUE_LVAL (obj);
1848 if (VALUE_LVAL (obj) == lval_internalvar)
1849 VALUE_LVAL (v) = lval_internalvar_component;
1850 VALUE_ADDRESS (v) = VALUE_ADDRESS (obj) + VALUE_OFFSET (obj) + offset;
1851 VALUE_BITPOS (v) = bit_offset + VALUE_BITPOS (obj);
1852 VALUE_BITSIZE (v) = bit_size;
1853 if (VALUE_BITPOS (v) >= HOST_CHAR_BIT)
1854 {
1855 VALUE_ADDRESS (v) += 1;
1856 VALUE_BITPOS (v) -= HOST_CHAR_BIT;
1857 }
1858 }
1859 else
1860 VALUE_BITSIZE (v) = bit_size;
1861 unpacked = (unsigned char *) VALUE_CONTENTS (v);
1862
1863 srcBitsLeft = bit_size;
1864 nsrc = len;
1865 ntarg = TYPE_LENGTH (type);
1866 sign = 0;
1867 if (bit_size == 0)
1868 {
1869 memset (unpacked, 0, TYPE_LENGTH (type));
1870 return v;
1871 }
1872 else if (BITS_BIG_ENDIAN)
1873 {
1874 src = len - 1;
1875 if (has_negatives (type) &&
1876 ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
1877 sign = ~0;
1878
1879 unusedLS =
1880 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
1881 % HOST_CHAR_BIT;
1882
1883 switch (TYPE_CODE (type))
1884 {
1885 case TYPE_CODE_ARRAY:
1886 case TYPE_CODE_UNION:
1887 case TYPE_CODE_STRUCT:
1888 /* Non-scalar values must be aligned at a byte boundary... */
1889 accumSize =
1890 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
1891 /* ... And are placed at the beginning (most-significant) bytes
1892 of the target. */
1893 targ = src;
1894 break;
1895 default:
1896 accumSize = 0;
1897 targ = TYPE_LENGTH (type) - 1;
1898 break;
1899 }
1900 }
1901 else
1902 {
1903 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
1904
1905 src = targ = 0;
1906 unusedLS = bit_offset;
1907 accumSize = 0;
1908
1909 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
1910 sign = ~0;
1911 }
1912
1913 accum = 0;
1914 while (nsrc > 0)
1915 {
1916 /* Mask for removing bits of the next source byte that are not
1917 part of the value. */
1918 unsigned int unusedMSMask =
1919 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
1920 1;
1921 /* Sign-extend bits for this byte. */
1922 unsigned int signMask = sign & ~unusedMSMask;
1923 accum |=
1924 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
1925 accumSize += HOST_CHAR_BIT - unusedLS;
1926 if (accumSize >= HOST_CHAR_BIT)
1927 {
1928 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
1929 accumSize -= HOST_CHAR_BIT;
1930 accum >>= HOST_CHAR_BIT;
1931 ntarg -= 1;
1932 targ += delta;
1933 }
1934 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
1935 unusedLS = 0;
1936 nsrc -= 1;
1937 src += delta;
1938 }
1939 while (ntarg > 0)
1940 {
1941 accum |= sign << accumSize;
1942 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
1943 accumSize -= HOST_CHAR_BIT;
1944 accum >>= HOST_CHAR_BIT;
1945 ntarg -= 1;
1946 targ += delta;
1947 }
1948
1949 return v;
1950 }
1951
1952 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
1953 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
1954 not overlap. */
1955 static void
1956 move_bits (char *target, int targ_offset, char *source, int src_offset, int n)
1957 {
1958 unsigned int accum, mask;
1959 int accum_bits, chunk_size;
1960
1961 target += targ_offset / HOST_CHAR_BIT;
1962 targ_offset %= HOST_CHAR_BIT;
1963 source += src_offset / HOST_CHAR_BIT;
1964 src_offset %= HOST_CHAR_BIT;
1965 if (BITS_BIG_ENDIAN)
1966 {
1967 accum = (unsigned char) *source;
1968 source += 1;
1969 accum_bits = HOST_CHAR_BIT - src_offset;
1970
1971 while (n > 0)
1972 {
1973 int unused_right;
1974 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
1975 accum_bits += HOST_CHAR_BIT;
1976 source += 1;
1977 chunk_size = HOST_CHAR_BIT - targ_offset;
1978 if (chunk_size > n)
1979 chunk_size = n;
1980 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
1981 mask = ((1 << chunk_size) - 1) << unused_right;
1982 *target =
1983 (*target & ~mask)
1984 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
1985 n -= chunk_size;
1986 accum_bits -= chunk_size;
1987 target += 1;
1988 targ_offset = 0;
1989 }
1990 }
1991 else
1992 {
1993 accum = (unsigned char) *source >> src_offset;
1994 source += 1;
1995 accum_bits = HOST_CHAR_BIT - src_offset;
1996
1997 while (n > 0)
1998 {
1999 accum = accum + ((unsigned char) *source << accum_bits);
2000 accum_bits += HOST_CHAR_BIT;
2001 source += 1;
2002 chunk_size = HOST_CHAR_BIT - targ_offset;
2003 if (chunk_size > n)
2004 chunk_size = n;
2005 mask = ((1 << chunk_size) - 1) << targ_offset;
2006 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2007 n -= chunk_size;
2008 accum_bits -= chunk_size;
2009 accum >>= chunk_size;
2010 target += 1;
2011 targ_offset = 0;
2012 }
2013 }
2014 }
2015
2016
2017 /* Store the contents of FROMVAL into the location of TOVAL.
2018 Return a new value with the location of TOVAL and contents of
2019 FROMVAL. Handles assignment into packed fields that have
2020 floating-point or non-scalar types. */
2021
2022 static struct value *
2023 ada_value_assign (struct value *toval, struct value *fromval)
2024 {
2025 struct type *type = VALUE_TYPE (toval);
2026 int bits = VALUE_BITSIZE (toval);
2027
2028 if (!toval->modifiable)
2029 error ("Left operand of assignment is not a modifiable lvalue.");
2030
2031 COERCE_REF (toval);
2032
2033 if (VALUE_LVAL (toval) == lval_memory
2034 && bits > 0
2035 && (TYPE_CODE (type) == TYPE_CODE_FLT
2036 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2037 {
2038 int len =
2039 (VALUE_BITPOS (toval) + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2040 char *buffer = (char *) alloca (len);
2041 struct value *val;
2042
2043 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2044 fromval = value_cast (type, fromval);
2045
2046 read_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval), buffer, len);
2047 if (BITS_BIG_ENDIAN)
2048 move_bits (buffer, VALUE_BITPOS (toval),
2049 VALUE_CONTENTS (fromval),
2050 TYPE_LENGTH (VALUE_TYPE (fromval)) * TARGET_CHAR_BIT -
2051 bits, bits);
2052 else
2053 move_bits (buffer, VALUE_BITPOS (toval), VALUE_CONTENTS (fromval),
2054 0, bits);
2055 write_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval), buffer,
2056 len);
2057
2058 val = value_copy (toval);
2059 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS (fromval),
2060 TYPE_LENGTH (type));
2061 VALUE_TYPE (val) = type;
2062
2063 return val;
2064 }
2065
2066 return value_assign (toval, fromval);
2067 }
2068
2069
2070 /* The value of the element of array ARR at the ARITY indices given in IND.
2071 ARR may be either a simple array, GNAT array descriptor, or pointer
2072 thereto. */
2073
2074 struct value *
2075 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2076 {
2077 int k;
2078 struct value *elt;
2079 struct type *elt_type;
2080
2081 elt = ada_coerce_to_simple_array (arr);
2082
2083 elt_type = check_typedef (VALUE_TYPE (elt));
2084 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2085 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2086 return value_subscript_packed (elt, arity, ind);
2087
2088 for (k = 0; k < arity; k += 1)
2089 {
2090 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2091 error ("too many subscripts (%d expected)", k);
2092 elt = value_subscript (elt, value_pos_atr (ind[k]));
2093 }
2094 return elt;
2095 }
2096
2097 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2098 value of the element of *ARR at the ARITY indices given in
2099 IND. Does not read the entire array into memory. */
2100
2101 struct value *
2102 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2103 struct value **ind)
2104 {
2105 int k;
2106
2107 for (k = 0; k < arity; k += 1)
2108 {
2109 LONGEST lwb, upb;
2110 struct value *idx;
2111
2112 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2113 error ("too many subscripts (%d expected)", k);
2114 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2115 value_copy (arr));
2116 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2117 idx = value_pos_atr (ind[k]);
2118 if (lwb != 0)
2119 idx = value_sub (idx, value_from_longest (builtin_type_int, lwb));
2120 arr = value_add (arr, idx);
2121 type = TYPE_TARGET_TYPE (type);
2122 }
2123
2124 return value_ind (arr);
2125 }
2126
2127 /* If type is a record type in the form of a standard GNAT array
2128 descriptor, returns the number of dimensions for type. If arr is a
2129 simple array, returns the number of "array of"s that prefix its
2130 type designation. Otherwise, returns 0. */
2131
2132 int
2133 ada_array_arity (struct type *type)
2134 {
2135 int arity;
2136
2137 if (type == NULL)
2138 return 0;
2139
2140 type = desc_base_type (type);
2141
2142 arity = 0;
2143 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2144 return desc_arity (desc_bounds_type (type));
2145 else
2146 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2147 {
2148 arity += 1;
2149 type = check_typedef (TYPE_TARGET_TYPE (type));
2150 }
2151
2152 return arity;
2153 }
2154
2155 /* If TYPE is a record type in the form of a standard GNAT array
2156 descriptor or a simple array type, returns the element type for
2157 TYPE after indexing by NINDICES indices, or by all indices if
2158 NINDICES is -1. Otherwise, returns NULL. */
2159
2160 struct type *
2161 ada_array_element_type (struct type *type, int nindices)
2162 {
2163 type = desc_base_type (type);
2164
2165 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2166 {
2167 int k;
2168 struct type *p_array_type;
2169
2170 p_array_type = desc_data_type (type);
2171
2172 k = ada_array_arity (type);
2173 if (k == 0)
2174 return NULL;
2175
2176 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2177 if (nindices >= 0 && k > nindices)
2178 k = nindices;
2179 p_array_type = TYPE_TARGET_TYPE (p_array_type);
2180 while (k > 0 && p_array_type != NULL)
2181 {
2182 p_array_type = check_typedef (TYPE_TARGET_TYPE (p_array_type));
2183 k -= 1;
2184 }
2185 return p_array_type;
2186 }
2187 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2188 {
2189 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2190 {
2191 type = TYPE_TARGET_TYPE (type);
2192 nindices -= 1;
2193 }
2194 return type;
2195 }
2196
2197 return NULL;
2198 }
2199
2200 /* The type of nth index in arrays of given type (n numbering from 1).
2201 Does not examine memory. */
2202
2203 struct type *
2204 ada_index_type (struct type *type, int n)
2205 {
2206 struct type *result_type;
2207
2208 type = desc_base_type (type);
2209
2210 if (n > ada_array_arity (type))
2211 return NULL;
2212
2213 if (ada_is_simple_array_type (type))
2214 {
2215 int i;
2216
2217 for (i = 1; i < n; i += 1)
2218 type = TYPE_TARGET_TYPE (type);
2219 result_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 0));
2220 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2221 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2222 perhaps stabsread.c would make more sense. */
2223 if (result_type == NULL
2224 || TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2225 result_type = builtin_type_int;
2226
2227 return result_type;
2228 }
2229 else
2230 return desc_index_type (desc_bounds_type (type), n);
2231 }
2232
2233 /* Given that arr is an array type, returns the lower bound of the
2234 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2235 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2236 array-descriptor type. If TYPEP is non-null, *TYPEP is set to the
2237 bounds type. It works for other arrays with bounds supplied by
2238 run-time quantities other than discriminants. */
2239
2240 LONGEST
2241 ada_array_bound_from_type (struct type * arr_type, int n, int which,
2242 struct type ** typep)
2243 {
2244 struct type *type;
2245 struct type *index_type_desc;
2246
2247 if (ada_is_packed_array_type (arr_type))
2248 arr_type = decode_packed_array_type (arr_type);
2249
2250 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2251 {
2252 if (typep != NULL)
2253 *typep = builtin_type_int;
2254 return (LONGEST) - which;
2255 }
2256
2257 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2258 type = TYPE_TARGET_TYPE (arr_type);
2259 else
2260 type = arr_type;
2261
2262 index_type_desc = ada_find_parallel_type (type, "___XA");
2263 if (index_type_desc == NULL)
2264 {
2265 struct type *range_type;
2266 struct type *index_type;
2267
2268 while (n > 1)
2269 {
2270 type = TYPE_TARGET_TYPE (type);
2271 n -= 1;
2272 }
2273
2274 range_type = TYPE_INDEX_TYPE (type);
2275 index_type = TYPE_TARGET_TYPE (range_type);
2276 if (TYPE_CODE (index_type) == TYPE_CODE_UNDEF)
2277 index_type = builtin_type_long;
2278 if (typep != NULL)
2279 *typep = index_type;
2280 return
2281 (LONGEST) (which == 0
2282 ? TYPE_LOW_BOUND (range_type)
2283 : TYPE_HIGH_BOUND (range_type));
2284 }
2285 else
2286 {
2287 struct type *index_type =
2288 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, n - 1),
2289 NULL, TYPE_OBJFILE (arr_type));
2290 if (typep != NULL)
2291 *typep = TYPE_TARGET_TYPE (index_type);
2292 return
2293 (LONGEST) (which == 0
2294 ? TYPE_LOW_BOUND (index_type)
2295 : TYPE_HIGH_BOUND (index_type));
2296 }
2297 }
2298
2299 /* Given that arr is an array value, returns the lower bound of the
2300 nth index (numbering from 1) if which is 0, and the upper bound if
2301 which is 1. This routine will also work for arrays with bounds
2302 supplied by run-time quantities other than discriminants. */
2303
2304 struct value *
2305 ada_array_bound (struct value *arr, int n, int which)
2306 {
2307 struct type *arr_type = VALUE_TYPE (arr);
2308
2309 if (ada_is_packed_array_type (arr_type))
2310 return ada_array_bound (decode_packed_array (arr), n, which);
2311 else if (ada_is_simple_array_type (arr_type))
2312 {
2313 struct type *type;
2314 LONGEST v = ada_array_bound_from_type (arr_type, n, which, &type);
2315 return value_from_longest (type, v);
2316 }
2317 else
2318 return desc_one_bound (desc_bounds (arr), n, which);
2319 }
2320
2321 /* Given that arr is an array value, returns the length of the
2322 nth index. This routine will also work for arrays with bounds
2323 supplied by run-time quantities other than discriminants.
2324 Does not work for arrays indexed by enumeration types with representation
2325 clauses at the moment. */
2326
2327 struct value *
2328 ada_array_length (struct value *arr, int n)
2329 {
2330 struct type *arr_type = check_typedef (VALUE_TYPE (arr));
2331
2332 if (ada_is_packed_array_type (arr_type))
2333 return ada_array_length (decode_packed_array (arr), n);
2334
2335 if (ada_is_simple_array_type (arr_type))
2336 {
2337 struct type *type;
2338 LONGEST v =
2339 ada_array_bound_from_type (arr_type, n, 1, &type) -
2340 ada_array_bound_from_type (arr_type, n, 0, NULL) + 1;
2341 return value_from_longest (type, v);
2342 }
2343 else
2344 return
2345 value_from_longest (builtin_type_ada_int,
2346 value_as_long (desc_one_bound (desc_bounds (arr),
2347 n, 1))
2348 - value_as_long (desc_one_bound (desc_bounds (arr),
2349 n, 0)) + 1);
2350 }
2351
2352 /* An empty array whose type is that of ARR_TYPE (an array type),
2353 with bounds LOW to LOW-1. */
2354
2355 static struct value *
2356 empty_array (struct type *arr_type, int low)
2357 {
2358 return allocate_value (create_range_type (NULL, TYPE_INDEX_TYPE (arr_type),
2359 low, low - 1));
2360 }
2361 \f
2362
2363 /* Name resolution */
2364
2365 /* The "decoded" name for the user-definable Ada operator corresponding
2366 to OP. */
2367
2368 static const char *
2369 ada_decoded_op_name (enum exp_opcode op)
2370 {
2371 int i;
2372
2373 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2374 {
2375 if (ada_opname_table[i].op == op)
2376 return ada_opname_table[i].decoded;
2377 }
2378 error ("Could not find operator name for opcode");
2379 }
2380
2381
2382 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2383 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2384 undefined namespace) and converts operators that are
2385 user-defined into appropriate function calls. If CONTEXT_TYPE is
2386 non-null, it provides a preferred result type [at the moment, only
2387 type void has any effect---causing procedures to be preferred over
2388 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2389 return type is preferred. May change (expand) *EXP. */
2390
2391 static void
2392 resolve (struct expression **expp, int void_context_p)
2393 {
2394 int pc;
2395 pc = 0;
2396 resolve_subexp (expp, &pc, 1, void_context_p ? builtin_type_void : NULL);
2397 }
2398
2399 /* Resolve the operator of the subexpression beginning at
2400 position *POS of *EXPP. "Resolving" consists of replacing
2401 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2402 with their resolutions, replacing built-in operators with
2403 function calls to user-defined operators, where appropriate, and,
2404 when DEPROCEDURE_P is non-zero, converting function-valued variables
2405 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2406 are as in ada_resolve, above. */
2407
2408 static struct value *
2409 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2410 struct type *context_type)
2411 {
2412 int pc = *pos;
2413 int i;
2414 struct expression *exp; /* Convenience: == *expp. */
2415 enum exp_opcode op = (*expp)->elts[pc].opcode;
2416 struct value **argvec; /* Vector of operand types (alloca'ed). */
2417 int nargs; /* Number of operands. */
2418
2419 argvec = NULL;
2420 nargs = 0;
2421 exp = *expp;
2422
2423 /* Pass one: resolve operands, saving their types and updating *pos. */
2424 switch (op)
2425 {
2426 case OP_FUNCALL:
2427 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2428 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2429 *pos += 7;
2430 else
2431 {
2432 *pos += 3;
2433 resolve_subexp (expp, pos, 0, NULL);
2434 }
2435 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2436 break;
2437
2438 case UNOP_QUAL:
2439 *pos += 3;
2440 resolve_subexp (expp, pos, 1, exp->elts[pc + 1].type);
2441 break;
2442
2443 case UNOP_ADDR:
2444 *pos += 1;
2445 resolve_subexp (expp, pos, 0, NULL);
2446 break;
2447
2448 case OP_ATR_MODULUS:
2449 *pos += 4;
2450 break;
2451
2452 case OP_ATR_SIZE:
2453 case OP_ATR_TAG:
2454 *pos += 1;
2455 nargs = 1;
2456 break;
2457
2458 case OP_ATR_FIRST:
2459 case OP_ATR_LAST:
2460 case OP_ATR_LENGTH:
2461 case OP_ATR_POS:
2462 case OP_ATR_VAL:
2463 *pos += 1;
2464 nargs = 2;
2465 break;
2466
2467 case OP_ATR_MIN:
2468 case OP_ATR_MAX:
2469 *pos += 1;
2470 nargs = 3;
2471 break;
2472
2473 case BINOP_ASSIGN:
2474 {
2475 struct value *arg1;
2476
2477 *pos += 1;
2478 arg1 = resolve_subexp (expp, pos, 0, NULL);
2479 if (arg1 == NULL)
2480 resolve_subexp (expp, pos, 1, NULL);
2481 else
2482 resolve_subexp (expp, pos, 1, VALUE_TYPE (arg1));
2483 break;
2484 }
2485
2486 case UNOP_CAST:
2487 case UNOP_IN_RANGE:
2488 *pos += 3;
2489 nargs = 1;
2490 break;
2491
2492 case BINOP_ADD:
2493 case BINOP_SUB:
2494 case BINOP_MUL:
2495 case BINOP_DIV:
2496 case BINOP_REM:
2497 case BINOP_MOD:
2498 case BINOP_EXP:
2499 case BINOP_CONCAT:
2500 case BINOP_LOGICAL_AND:
2501 case BINOP_LOGICAL_OR:
2502 case BINOP_BITWISE_AND:
2503 case BINOP_BITWISE_IOR:
2504 case BINOP_BITWISE_XOR:
2505
2506 case BINOP_EQUAL:
2507 case BINOP_NOTEQUAL:
2508 case BINOP_LESS:
2509 case BINOP_GTR:
2510 case BINOP_LEQ:
2511 case BINOP_GEQ:
2512
2513 case BINOP_REPEAT:
2514 case BINOP_SUBSCRIPT:
2515 case BINOP_COMMA:
2516 *pos += 1;
2517 nargs = 2;
2518 break;
2519
2520 case UNOP_NEG:
2521 case UNOP_PLUS:
2522 case UNOP_LOGICAL_NOT:
2523 case UNOP_ABS:
2524 case UNOP_IND:
2525 *pos += 1;
2526 nargs = 1;
2527 break;
2528
2529 case OP_LONG:
2530 case OP_DOUBLE:
2531 case OP_VAR_VALUE:
2532 *pos += 4;
2533 break;
2534
2535 case OP_TYPE:
2536 case OP_BOOL:
2537 case OP_LAST:
2538 case OP_REGISTER:
2539 case OP_INTERNALVAR:
2540 *pos += 3;
2541 break;
2542
2543 case UNOP_MEMVAL:
2544 *pos += 3;
2545 nargs = 1;
2546 break;
2547
2548 case STRUCTOP_STRUCT:
2549 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2550 nargs = 1;
2551 break;
2552
2553 case OP_STRING:
2554 (*pos) += 3
2555 + BYTES_TO_EXP_ELEM (longest_to_int (exp->elts[pc + 1].longconst) + 1);
2556 break;
2557
2558 case TERNOP_SLICE:
2559 case TERNOP_IN_RANGE:
2560 *pos += 1;
2561 nargs = 3;
2562 break;
2563
2564 case BINOP_IN_BOUNDS:
2565 *pos += 3;
2566 nargs = 2;
2567 break;
2568
2569 default:
2570 error ("Unexpected operator during name resolution");
2571 }
2572
2573 argvec =
2574 (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
2575 for (i = 0; i < nargs; i += 1)
2576 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
2577 argvec[i] = NULL;
2578 exp = *expp;
2579
2580 /* Pass two: perform any resolution on principal operator. */
2581 switch (op)
2582 {
2583 default:
2584 break;
2585
2586 case OP_VAR_VALUE:
2587 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
2588 {
2589 struct ada_symbol_info *candidates;
2590 int n_candidates;
2591
2592 n_candidates =
2593 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME (exp->elts[pc + 2]
2594 .symbol),
2595 exp->elts[pc + 1].block,
2596 VAR_DOMAIN, &candidates);
2597
2598 if (n_candidates > 1)
2599 {
2600 /* Types tend to get re-introduced locally, so if there
2601 are any local symbols that are not types, first filter
2602 out all types. */
2603 int j;
2604 for (j = 0; j < n_candidates; j += 1)
2605 switch (SYMBOL_CLASS (candidates[j].sym))
2606 {
2607 case LOC_REGISTER:
2608 case LOC_ARG:
2609 case LOC_REF_ARG:
2610 case LOC_REGPARM:
2611 case LOC_REGPARM_ADDR:
2612 case LOC_LOCAL:
2613 case LOC_LOCAL_ARG:
2614 case LOC_BASEREG:
2615 case LOC_BASEREG_ARG:
2616 case LOC_COMPUTED:
2617 case LOC_COMPUTED_ARG:
2618 goto FoundNonType;
2619 default:
2620 break;
2621 }
2622 FoundNonType:
2623 if (j < n_candidates)
2624 {
2625 j = 0;
2626 while (j < n_candidates)
2627 {
2628 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
2629 {
2630 candidates[j] = candidates[n_candidates - 1];
2631 n_candidates -= 1;
2632 }
2633 else
2634 j += 1;
2635 }
2636 }
2637 }
2638
2639 if (n_candidates == 0)
2640 error ("No definition found for %s",
2641 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2642 else if (n_candidates == 1)
2643 i = 0;
2644 else if (deprocedure_p
2645 && !is_nonfunction (candidates, n_candidates))
2646 {
2647 i = ada_resolve_function (candidates, n_candidates, NULL, 0,
2648 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2]
2649 .symbol),
2650 context_type);
2651 if (i < 0)
2652 error ("Could not find a match for %s",
2653 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2654 }
2655 else
2656 {
2657 printf_filtered ("Multiple matches for %s\n",
2658 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2659 user_select_syms (candidates, n_candidates, 1);
2660 i = 0;
2661 }
2662
2663 exp->elts[pc + 1].block = candidates[i].block;
2664 exp->elts[pc + 2].symbol = candidates[i].sym;
2665 if (innermost_block == NULL ||
2666 contained_in (candidates[i].block, innermost_block))
2667 innermost_block = candidates[i].block;
2668 }
2669
2670 if (deprocedure_p
2671 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
2672 == TYPE_CODE_FUNC))
2673 {
2674 replace_operator_with_call (expp, pc, 0, 0,
2675 exp->elts[pc + 2].symbol,
2676 exp->elts[pc + 1].block);
2677 exp = *expp;
2678 }
2679 break;
2680
2681 case OP_FUNCALL:
2682 {
2683 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2684 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2685 {
2686 struct ada_symbol_info *candidates;
2687 int n_candidates;
2688
2689 n_candidates =
2690 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME (exp->elts[pc + 5]
2691 .symbol),
2692 exp->elts[pc + 4].block,
2693 VAR_DOMAIN, &candidates);
2694 if (n_candidates == 1)
2695 i = 0;
2696 else
2697 {
2698 i = ada_resolve_function (candidates, n_candidates,
2699 argvec, nargs,
2700 SYMBOL_LINKAGE_NAME (exp->elts[pc+5]
2701 .symbol),
2702 context_type);
2703 if (i < 0)
2704 error ("Could not find a match for %s",
2705 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
2706 }
2707
2708 exp->elts[pc + 4].block = candidates[i].block;
2709 exp->elts[pc + 5].symbol = candidates[i].sym;
2710 if (innermost_block == NULL ||
2711 contained_in (candidates[i].block, innermost_block))
2712 innermost_block = candidates[i].block;
2713 }
2714 }
2715 break;
2716 case BINOP_ADD:
2717 case BINOP_SUB:
2718 case BINOP_MUL:
2719 case BINOP_DIV:
2720 case BINOP_REM:
2721 case BINOP_MOD:
2722 case BINOP_CONCAT:
2723 case BINOP_BITWISE_AND:
2724 case BINOP_BITWISE_IOR:
2725 case BINOP_BITWISE_XOR:
2726 case BINOP_EQUAL:
2727 case BINOP_NOTEQUAL:
2728 case BINOP_LESS:
2729 case BINOP_GTR:
2730 case BINOP_LEQ:
2731 case BINOP_GEQ:
2732 case BINOP_EXP:
2733 case UNOP_NEG:
2734 case UNOP_PLUS:
2735 case UNOP_LOGICAL_NOT:
2736 case UNOP_ABS:
2737 if (possible_user_operator_p (op, argvec))
2738 {
2739 struct ada_symbol_info *candidates;
2740 int n_candidates;
2741
2742 n_candidates =
2743 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
2744 (struct block *) NULL, VAR_DOMAIN,
2745 &candidates);
2746 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
2747 ada_decoded_op_name (op), NULL);
2748 if (i < 0)
2749 break;
2750
2751 replace_operator_with_call (expp, pc, nargs, 1,
2752 candidates[i].sym, candidates[i].block);
2753 exp = *expp;
2754 }
2755 break;
2756
2757 case OP_TYPE:
2758 return NULL;
2759 }
2760
2761 *pos = pc;
2762 return evaluate_subexp_type (exp, pos);
2763 }
2764
2765 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
2766 MAY_DEREF is non-zero, the formal may be a pointer and the actual
2767 a non-pointer. A type of 'void' (which is never a valid expression type)
2768 by convention matches anything. */
2769 /* The term "match" here is rather loose. The match is heuristic and
2770 liberal. FIXME: TOO liberal, in fact. */
2771
2772 static int
2773 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
2774 {
2775 CHECK_TYPEDEF (ftype);
2776 CHECK_TYPEDEF (atype);
2777
2778 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
2779 ftype = TYPE_TARGET_TYPE (ftype);
2780 if (TYPE_CODE (atype) == TYPE_CODE_REF)
2781 atype = TYPE_TARGET_TYPE (atype);
2782
2783 if (TYPE_CODE (ftype) == TYPE_CODE_VOID
2784 || TYPE_CODE (atype) == TYPE_CODE_VOID)
2785 return 1;
2786
2787 switch (TYPE_CODE (ftype))
2788 {
2789 default:
2790 return 1;
2791 case TYPE_CODE_PTR:
2792 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
2793 return ada_type_match (TYPE_TARGET_TYPE (ftype),
2794 TYPE_TARGET_TYPE (atype), 0);
2795 else
2796 return (may_deref &&
2797 ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
2798 case TYPE_CODE_INT:
2799 case TYPE_CODE_ENUM:
2800 case TYPE_CODE_RANGE:
2801 switch (TYPE_CODE (atype))
2802 {
2803 case TYPE_CODE_INT:
2804 case TYPE_CODE_ENUM:
2805 case TYPE_CODE_RANGE:
2806 return 1;
2807 default:
2808 return 0;
2809 }
2810
2811 case TYPE_CODE_ARRAY:
2812 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
2813 || ada_is_array_descriptor_type (atype));
2814
2815 case TYPE_CODE_STRUCT:
2816 if (ada_is_array_descriptor_type (ftype))
2817 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
2818 || ada_is_array_descriptor_type (atype));
2819 else
2820 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
2821 && !ada_is_array_descriptor_type (atype));
2822
2823 case TYPE_CODE_UNION:
2824 case TYPE_CODE_FLT:
2825 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
2826 }
2827 }
2828
2829 /* Return non-zero if the formals of FUNC "sufficiently match" the
2830 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
2831 may also be an enumeral, in which case it is treated as a 0-
2832 argument function. */
2833
2834 static int
2835 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
2836 {
2837 int i;
2838 struct type *func_type = SYMBOL_TYPE (func);
2839
2840 if (SYMBOL_CLASS (func) == LOC_CONST &&
2841 TYPE_CODE (func_type) == TYPE_CODE_ENUM)
2842 return (n_actuals == 0);
2843 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
2844 return 0;
2845
2846 if (TYPE_NFIELDS (func_type) != n_actuals)
2847 return 0;
2848
2849 for (i = 0; i < n_actuals; i += 1)
2850 {
2851 if (actuals[i] == NULL)
2852 return 0;
2853 else
2854 {
2855 struct type *ftype = check_typedef (TYPE_FIELD_TYPE (func_type, i));
2856 struct type *atype = check_typedef (VALUE_TYPE (actuals[i]));
2857
2858 if (!ada_type_match (ftype, atype, 1))
2859 return 0;
2860 }
2861 }
2862 return 1;
2863 }
2864
2865 /* False iff function type FUNC_TYPE definitely does not produce a value
2866 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
2867 FUNC_TYPE is not a valid function type with a non-null return type
2868 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
2869
2870 static int
2871 return_match (struct type *func_type, struct type *context_type)
2872 {
2873 struct type *return_type;
2874
2875 if (func_type == NULL)
2876 return 1;
2877
2878 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
2879 return_type = base_type (TYPE_TARGET_TYPE (func_type));
2880 else
2881 return_type = base_type (func_type);
2882 if (return_type == NULL)
2883 return 1;
2884
2885 context_type = base_type (context_type);
2886
2887 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
2888 return context_type == NULL || return_type == context_type;
2889 else if (context_type == NULL)
2890 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
2891 else
2892 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
2893 }
2894
2895
2896 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
2897 function (if any) that matches the types of the NARGS arguments in
2898 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
2899 that returns that type, then eliminate matches that don't. If
2900 CONTEXT_TYPE is void and there is at least one match that does not
2901 return void, eliminate all matches that do.
2902
2903 Asks the user if there is more than one match remaining. Returns -1
2904 if there is no such symbol or none is selected. NAME is used
2905 solely for messages. May re-arrange and modify SYMS in
2906 the process; the index returned is for the modified vector. */
2907
2908 static int
2909 ada_resolve_function (struct ada_symbol_info syms[],
2910 int nsyms, struct value **args, int nargs,
2911 const char *name, struct type *context_type)
2912 {
2913 int k;
2914 int m; /* Number of hits */
2915 struct type *fallback;
2916 struct type *return_type;
2917
2918 return_type = context_type;
2919 if (context_type == NULL)
2920 fallback = builtin_type_void;
2921 else
2922 fallback = NULL;
2923
2924 m = 0;
2925 while (1)
2926 {
2927 for (k = 0; k < nsyms; k += 1)
2928 {
2929 struct type *type = check_typedef (SYMBOL_TYPE (syms[k].sym));
2930
2931 if (ada_args_match (syms[k].sym, args, nargs)
2932 && return_match (type, return_type))
2933 {
2934 syms[m] = syms[k];
2935 m += 1;
2936 }
2937 }
2938 if (m > 0 || return_type == fallback)
2939 break;
2940 else
2941 return_type = fallback;
2942 }
2943
2944 if (m == 0)
2945 return -1;
2946 else if (m > 1)
2947 {
2948 printf_filtered ("Multiple matches for %s\n", name);
2949 user_select_syms (syms, m, 1);
2950 return 0;
2951 }
2952 return 0;
2953 }
2954
2955 /* Returns true (non-zero) iff decoded name N0 should appear before N1
2956 in a listing of choices during disambiguation (see sort_choices, below).
2957 The idea is that overloadings of a subprogram name from the
2958 same package should sort in their source order. We settle for ordering
2959 such symbols by their trailing number (__N or $N). */
2960
2961 static int
2962 encoded_ordered_before (char *N0, char *N1)
2963 {
2964 if (N1 == NULL)
2965 return 0;
2966 else if (N0 == NULL)
2967 return 1;
2968 else
2969 {
2970 int k0, k1;
2971 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
2972 ;
2973 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
2974 ;
2975 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
2976 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
2977 {
2978 int n0, n1;
2979 n0 = k0;
2980 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
2981 n0 -= 1;
2982 n1 = k1;
2983 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
2984 n1 -= 1;
2985 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
2986 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
2987 }
2988 return (strcmp (N0, N1) < 0);
2989 }
2990 }
2991
2992 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
2993 encoded names. */
2994
2995 static void
2996 sort_choices (struct ada_symbol_info syms[], int nsyms)
2997 {
2998 int i;
2999 for (i = 1; i < nsyms; i += 1)
3000 {
3001 struct ada_symbol_info sym = syms[i];
3002 int j;
3003
3004 for (j = i - 1; j >= 0; j -= 1)
3005 {
3006 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3007 SYMBOL_LINKAGE_NAME (sym.sym)))
3008 break;
3009 syms[j + 1] = syms[j];
3010 }
3011 syms[j + 1] = sym;
3012 }
3013 }
3014
3015 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3016 by asking the user (if necessary), returning the number selected,
3017 and setting the first elements of SYMS items. Error if no symbols
3018 selected. */
3019
3020 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3021 to be re-integrated one of these days. */
3022
3023 int
3024 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3025 {
3026 int i;
3027 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3028 int n_chosen;
3029 int first_choice = (max_results == 1) ? 1 : 2;
3030
3031 if (max_results < 1)
3032 error ("Request to select 0 symbols!");
3033 if (nsyms <= 1)
3034 return nsyms;
3035
3036 printf_unfiltered ("[0] cancel\n");
3037 if (max_results > 1)
3038 printf_unfiltered ("[1] all\n");
3039
3040 sort_choices (syms, nsyms);
3041
3042 for (i = 0; i < nsyms; i += 1)
3043 {
3044 if (syms[i].sym == NULL)
3045 continue;
3046
3047 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3048 {
3049 struct symtab_and_line sal = find_function_start_sal (syms[i].sym, 1);
3050 printf_unfiltered ("[%d] %s at %s:%d\n",
3051 i + first_choice,
3052 SYMBOL_PRINT_NAME (syms[i].sym),
3053 sal.symtab == NULL
3054 ? "<no source file available>"
3055 : sal.symtab->filename, sal.line);
3056 continue;
3057 }
3058 else
3059 {
3060 int is_enumeral =
3061 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3062 && SYMBOL_TYPE (syms[i].sym) != NULL
3063 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3064 struct symtab *symtab = symtab_for_sym (syms[i].sym);
3065
3066 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3067 printf_unfiltered ("[%d] %s at %s:%d\n",
3068 i + first_choice,
3069 SYMBOL_PRINT_NAME (syms[i].sym),
3070 symtab->filename, SYMBOL_LINE (syms[i].sym));
3071 else if (is_enumeral && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3072 {
3073 printf_unfiltered ("[%d] ", i + first_choice);
3074 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3075 gdb_stdout, -1, 0);
3076 printf_unfiltered ("'(%s) (enumeral)\n",
3077 SYMBOL_PRINT_NAME (syms[i].sym));
3078 }
3079 else if (symtab != NULL)
3080 printf_unfiltered (is_enumeral
3081 ? "[%d] %s in %s (enumeral)\n"
3082 : "[%d] %s at %s:?\n",
3083 i + first_choice,
3084 SYMBOL_PRINT_NAME (syms[i].sym),
3085 symtab->filename);
3086 else
3087 printf_unfiltered (is_enumeral
3088 ? "[%d] %s (enumeral)\n"
3089 : "[%d] %s at ?\n",
3090 i + first_choice,
3091 SYMBOL_PRINT_NAME (syms[i].sym));
3092 }
3093 }
3094
3095 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3096 "overload-choice");
3097
3098 for (i = 0; i < n_chosen; i += 1)
3099 syms[i] = syms[chosen[i]];
3100
3101 return n_chosen;
3102 }
3103
3104 /* Read and validate a set of numeric choices from the user in the
3105 range 0 .. N_CHOICES-1. Place the results in increasing
3106 order in CHOICES[0 .. N-1], and return N.
3107
3108 The user types choices as a sequence of numbers on one line
3109 separated by blanks, encoding them as follows:
3110
3111 + A choice of 0 means to cancel the selection, throwing an error.
3112 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3113 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3114
3115 The user is not allowed to choose more than MAX_RESULTS values.
3116
3117 ANNOTATION_SUFFIX, if present, is used to annotate the input
3118 prompts (for use with the -f switch). */
3119
3120 int
3121 get_selections (int *choices, int n_choices, int max_results,
3122 int is_all_choice, char *annotation_suffix)
3123 {
3124 char *args;
3125 const char *prompt;
3126 int n_chosen;
3127 int first_choice = is_all_choice ? 2 : 1;
3128
3129 prompt = getenv ("PS2");
3130 if (prompt == NULL)
3131 prompt = ">";
3132
3133 printf_unfiltered ("%s ", prompt);
3134 gdb_flush (gdb_stdout);
3135
3136 args = command_line_input ((char *) NULL, 0, annotation_suffix);
3137
3138 if (args == NULL)
3139 error_no_arg ("one or more choice numbers");
3140
3141 n_chosen = 0;
3142
3143 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3144 order, as given in args. Choices are validated. */
3145 while (1)
3146 {
3147 char *args2;
3148 int choice, j;
3149
3150 while (isspace (*args))
3151 args += 1;
3152 if (*args == '\0' && n_chosen == 0)
3153 error_no_arg ("one or more choice numbers");
3154 else if (*args == '\0')
3155 break;
3156
3157 choice = strtol (args, &args2, 10);
3158 if (args == args2 || choice < 0
3159 || choice > n_choices + first_choice - 1)
3160 error ("Argument must be choice number");
3161 args = args2;
3162
3163 if (choice == 0)
3164 error ("cancelled");
3165
3166 if (choice < first_choice)
3167 {
3168 n_chosen = n_choices;
3169 for (j = 0; j < n_choices; j += 1)
3170 choices[j] = j;
3171 break;
3172 }
3173 choice -= first_choice;
3174
3175 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3176 {
3177 }
3178
3179 if (j < 0 || choice != choices[j])
3180 {
3181 int k;
3182 for (k = n_chosen - 1; k > j; k -= 1)
3183 choices[k + 1] = choices[k];
3184 choices[j + 1] = choice;
3185 n_chosen += 1;
3186 }
3187 }
3188
3189 if (n_chosen > max_results)
3190 error ("Select no more than %d of the above", max_results);
3191
3192 return n_chosen;
3193 }
3194
3195 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3196 on the function identified by SYM and BLOCK, and taking NARGS
3197 arguments. Update *EXPP as needed to hold more space. */
3198
3199 static void
3200 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3201 int oplen, struct symbol *sym,
3202 struct block *block)
3203 {
3204 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3205 symbol, -oplen for operator being replaced). */
3206 struct expression *newexp = (struct expression *)
3207 xmalloc (sizeof (struct expression)
3208 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3209 struct expression *exp = *expp;
3210
3211 newexp->nelts = exp->nelts + 7 - oplen;
3212 newexp->language_defn = exp->language_defn;
3213 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3214 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3215 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3216
3217 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3218 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3219
3220 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3221 newexp->elts[pc + 4].block = block;
3222 newexp->elts[pc + 5].symbol = sym;
3223
3224 *expp = newexp;
3225 xfree (exp);
3226 }
3227
3228 /* Type-class predicates */
3229
3230 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3231 or FLOAT). */
3232
3233 static int
3234 numeric_type_p (struct type *type)
3235 {
3236 if (type == NULL)
3237 return 0;
3238 else
3239 {
3240 switch (TYPE_CODE (type))
3241 {
3242 case TYPE_CODE_INT:
3243 case TYPE_CODE_FLT:
3244 return 1;
3245 case TYPE_CODE_RANGE:
3246 return (type == TYPE_TARGET_TYPE (type)
3247 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3248 default:
3249 return 0;
3250 }
3251 }
3252 }
3253
3254 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3255
3256 static int
3257 integer_type_p (struct type *type)
3258 {
3259 if (type == NULL)
3260 return 0;
3261 else
3262 {
3263 switch (TYPE_CODE (type))
3264 {
3265 case TYPE_CODE_INT:
3266 return 1;
3267 case TYPE_CODE_RANGE:
3268 return (type == TYPE_TARGET_TYPE (type)
3269 || integer_type_p (TYPE_TARGET_TYPE (type)));
3270 default:
3271 return 0;
3272 }
3273 }
3274 }
3275
3276 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3277
3278 static int
3279 scalar_type_p (struct type *type)
3280 {
3281 if (type == NULL)
3282 return 0;
3283 else
3284 {
3285 switch (TYPE_CODE (type))
3286 {
3287 case TYPE_CODE_INT:
3288 case TYPE_CODE_RANGE:
3289 case TYPE_CODE_ENUM:
3290 case TYPE_CODE_FLT:
3291 return 1;
3292 default:
3293 return 0;
3294 }
3295 }
3296 }
3297
3298 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3299
3300 static int
3301 discrete_type_p (struct type *type)
3302 {
3303 if (type == NULL)
3304 return 0;
3305 else
3306 {
3307 switch (TYPE_CODE (type))
3308 {
3309 case TYPE_CODE_INT:
3310 case TYPE_CODE_RANGE:
3311 case TYPE_CODE_ENUM:
3312 return 1;
3313 default:
3314 return 0;
3315 }
3316 }
3317 }
3318
3319 /* Returns non-zero if OP with operands in the vector ARGS could be
3320 a user-defined function. Errs on the side of pre-defined operators
3321 (i.e., result 0). */
3322
3323 static int
3324 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3325 {
3326 struct type *type0 =
3327 (args[0] == NULL) ? NULL : check_typedef (VALUE_TYPE (args[0]));
3328 struct type *type1 =
3329 (args[1] == NULL) ? NULL : check_typedef (VALUE_TYPE (args[1]));
3330
3331 if (type0 == NULL)
3332 return 0;
3333
3334 switch (op)
3335 {
3336 default:
3337 return 0;
3338
3339 case BINOP_ADD:
3340 case BINOP_SUB:
3341 case BINOP_MUL:
3342 case BINOP_DIV:
3343 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3344
3345 case BINOP_REM:
3346 case BINOP_MOD:
3347 case BINOP_BITWISE_AND:
3348 case BINOP_BITWISE_IOR:
3349 case BINOP_BITWISE_XOR:
3350 return (!(integer_type_p (type0) && integer_type_p (type1)));
3351
3352 case BINOP_EQUAL:
3353 case BINOP_NOTEQUAL:
3354 case BINOP_LESS:
3355 case BINOP_GTR:
3356 case BINOP_LEQ:
3357 case BINOP_GEQ:
3358 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3359
3360 case BINOP_CONCAT:
3361 return ((TYPE_CODE (type0) != TYPE_CODE_ARRAY &&
3362 (TYPE_CODE (type0) != TYPE_CODE_PTR ||
3363 TYPE_CODE (TYPE_TARGET_TYPE (type0))
3364 != TYPE_CODE_ARRAY))
3365 || (TYPE_CODE (type1) != TYPE_CODE_ARRAY &&
3366 (TYPE_CODE (type1) != TYPE_CODE_PTR ||
3367 TYPE_CODE (TYPE_TARGET_TYPE (type1)) != TYPE_CODE_ARRAY)));
3368
3369 case BINOP_EXP:
3370 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3371
3372 case UNOP_NEG:
3373 case UNOP_PLUS:
3374 case UNOP_LOGICAL_NOT:
3375 case UNOP_ABS:
3376 return (!numeric_type_p (type0));
3377
3378 }
3379 }
3380 \f
3381 /* Renaming */
3382
3383 /* NOTE: In the following, we assume that a renaming type's name may
3384 have an ___XD suffix. It would be nice if this went away at some
3385 point. */
3386
3387 /* If TYPE encodes a renaming, returns the renaming suffix, which
3388 is XR for an object renaming, XRP for a procedure renaming, XRE for
3389 an exception renaming, and XRS for a subprogram renaming. Returns
3390 NULL if NAME encodes none of these. */
3391
3392 const char *
3393 ada_renaming_type (struct type *type)
3394 {
3395 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_ENUM)
3396 {
3397 const char *name = type_name_no_tag (type);
3398 const char *suffix = (name == NULL) ? NULL : strstr (name, "___XR");
3399 if (suffix == NULL
3400 || (suffix[5] != '\000' && strchr ("PES_", suffix[5]) == NULL))
3401 return NULL;
3402 else
3403 return suffix + 3;
3404 }
3405 else
3406 return NULL;
3407 }
3408
3409 /* Return non-zero iff SYM encodes an object renaming. */
3410
3411 int
3412 ada_is_object_renaming (struct symbol *sym)
3413 {
3414 const char *renaming_type = ada_renaming_type (SYMBOL_TYPE (sym));
3415 return renaming_type != NULL
3416 && (renaming_type[2] == '\0' || renaming_type[2] == '_');
3417 }
3418
3419 /* Assuming that SYM encodes a non-object renaming, returns the original
3420 name of the renamed entity. The name is good until the end of
3421 parsing. */
3422
3423 char *
3424 ada_simple_renamed_entity (struct symbol *sym)
3425 {
3426 struct type *type;
3427 const char *raw_name;
3428 int len;
3429 char *result;
3430
3431 type = SYMBOL_TYPE (sym);
3432 if (type == NULL || TYPE_NFIELDS (type) < 1)
3433 error ("Improperly encoded renaming.");
3434
3435 raw_name = TYPE_FIELD_NAME (type, 0);
3436 len = (raw_name == NULL ? 0 : strlen (raw_name)) - 5;
3437 if (len <= 0)
3438 error ("Improperly encoded renaming.");
3439
3440 result = xmalloc (len + 1);
3441 strncpy (result, raw_name, len);
3442 result[len] = '\000';
3443 return result;
3444 }
3445 \f
3446
3447 /* Evaluation: Function Calls */
3448
3449 /* Return an lvalue containing the value VAL. This is the identity on
3450 lvalues, and otherwise has the side-effect of pushing a copy of VAL
3451 on the stack, using and updating *SP as the stack pointer, and
3452 returning an lvalue whose VALUE_ADDRESS points to the copy. */
3453
3454 static struct value *
3455 ensure_lval (struct value *val, CORE_ADDR *sp)
3456 {
3457 CORE_ADDR old_sp = *sp;
3458
3459 if (VALUE_LVAL (val))
3460 return val;
3461
3462 if (DEPRECATED_STACK_ALIGN_P ())
3463 *sp = push_bytes (*sp, VALUE_CONTENTS_RAW (val),
3464 DEPRECATED_STACK_ALIGN
3465 (TYPE_LENGTH (check_typedef (VALUE_TYPE (val)))));
3466 else
3467 *sp = push_bytes (*sp, VALUE_CONTENTS_RAW (val),
3468 TYPE_LENGTH (check_typedef (VALUE_TYPE (val))));
3469
3470 VALUE_LVAL (val) = lval_memory;
3471 if (INNER_THAN (1, 2))
3472 VALUE_ADDRESS (val) = *sp;
3473 else
3474 VALUE_ADDRESS (val) = old_sp;
3475
3476 return val;
3477 }
3478
3479 /* Return the value ACTUAL, converted to be an appropriate value for a
3480 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3481 allocating any necessary descriptors (fat pointers), or copies of
3482 values not residing in memory, updating it as needed. */
3483
3484 static struct value *
3485 convert_actual (struct value *actual, struct type *formal_type0,
3486 CORE_ADDR *sp)
3487 {
3488 struct type *actual_type = check_typedef (VALUE_TYPE (actual));
3489 struct type *formal_type = check_typedef (formal_type0);
3490 struct type *formal_target =
3491 TYPE_CODE (formal_type) == TYPE_CODE_PTR
3492 ? check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
3493 struct type *actual_target =
3494 TYPE_CODE (actual_type) == TYPE_CODE_PTR
3495 ? check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
3496
3497 if (ada_is_array_descriptor_type (formal_target)
3498 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
3499 return make_array_descriptor (formal_type, actual, sp);
3500 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR)
3501 {
3502 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
3503 && ada_is_array_descriptor_type (actual_target))
3504 return desc_data (actual);
3505 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
3506 {
3507 if (VALUE_LVAL (actual) != lval_memory)
3508 {
3509 struct value *val;
3510 actual_type = check_typedef (VALUE_TYPE (actual));
3511 val = allocate_value (actual_type);
3512 memcpy ((char *) VALUE_CONTENTS_RAW (val),
3513 (char *) VALUE_CONTENTS (actual),
3514 TYPE_LENGTH (actual_type));
3515 actual = ensure_lval (val, sp);
3516 }
3517 return value_addr (actual);
3518 }
3519 }
3520 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
3521 return ada_value_ind (actual);
3522
3523 return actual;
3524 }
3525
3526
3527 /* Push a descriptor of type TYPE for array value ARR on the stack at
3528 *SP, updating *SP to reflect the new descriptor. Return either
3529 an lvalue representing the new descriptor, or (if TYPE is a pointer-
3530 to-descriptor type rather than a descriptor type), a struct value *
3531 representing a pointer to this descriptor. */
3532
3533 static struct value *
3534 make_array_descriptor (struct type *type, struct value *arr, CORE_ADDR *sp)
3535 {
3536 struct type *bounds_type = desc_bounds_type (type);
3537 struct type *desc_type = desc_base_type (type);
3538 struct value *descriptor = allocate_value (desc_type);
3539 struct value *bounds = allocate_value (bounds_type);
3540 int i;
3541
3542 for (i = ada_array_arity (check_typedef (VALUE_TYPE (arr))); i > 0; i -= 1)
3543 {
3544 modify_general_field (VALUE_CONTENTS (bounds),
3545 value_as_long (ada_array_bound (arr, i, 0)),
3546 desc_bound_bitpos (bounds_type, i, 0),
3547 desc_bound_bitsize (bounds_type, i, 0));
3548 modify_general_field (VALUE_CONTENTS (bounds),
3549 value_as_long (ada_array_bound (arr, i, 1)),
3550 desc_bound_bitpos (bounds_type, i, 1),
3551 desc_bound_bitsize (bounds_type, i, 1));
3552 }
3553
3554 bounds = ensure_lval (bounds, sp);
3555
3556 modify_general_field (VALUE_CONTENTS (descriptor),
3557 VALUE_ADDRESS (ensure_lval (arr, sp)),
3558 fat_pntr_data_bitpos (desc_type),
3559 fat_pntr_data_bitsize (desc_type));
3560
3561 modify_general_field (VALUE_CONTENTS (descriptor),
3562 VALUE_ADDRESS (bounds),
3563 fat_pntr_bounds_bitpos (desc_type),
3564 fat_pntr_bounds_bitsize (desc_type));
3565
3566 descriptor = ensure_lval (descriptor, sp);
3567
3568 if (TYPE_CODE (type) == TYPE_CODE_PTR)
3569 return value_addr (descriptor);
3570 else
3571 return descriptor;
3572 }
3573
3574
3575 /* Assuming a dummy frame has been established on the target, perform any
3576 conversions needed for calling function FUNC on the NARGS actual
3577 parameters in ARGS, other than standard C conversions. Does
3578 nothing if FUNC does not have Ada-style prototype data, or if NARGS
3579 does not match the number of arguments expected. Use *SP as a
3580 stack pointer for additional data that must be pushed, updating its
3581 value as needed. */
3582
3583 void
3584 ada_convert_actuals (struct value *func, int nargs, struct value *args[],
3585 CORE_ADDR *sp)
3586 {
3587 int i;
3588
3589 if (TYPE_NFIELDS (VALUE_TYPE (func)) == 0
3590 || nargs != TYPE_NFIELDS (VALUE_TYPE (func)))
3591 return;
3592
3593 for (i = 0; i < nargs; i += 1)
3594 args[i] =
3595 convert_actual (args[i], TYPE_FIELD_TYPE (VALUE_TYPE (func), i), sp);
3596 }
3597 \f
3598 /* Experimental Symbol Cache Module */
3599
3600 /* This section implements a simple, fixed-sized hash table for those
3601 Ada-mode symbols that get looked up in the course of executing the user's
3602 commands. The size is fixed on the grounds that there are not
3603 likely to be all that many symbols looked up during any given
3604 session, regardless of the size of the symbol table. If we decide
3605 to go to a resizable table, let's just use the stuff from libiberty
3606 instead. */
3607
3608 #define HASH_SIZE 1009
3609
3610 struct cache_entry {
3611 const char *name;
3612 domain_enum namespace;
3613 struct symbol *sym;
3614 struct symtab *symtab;
3615 struct block *block;
3616 struct cache_entry *next;
3617 };
3618
3619 static struct obstack cache_space;
3620
3621 static struct cache_entry *cache[HASH_SIZE];
3622
3623 /* Clear all entries from the symbol cache. */
3624
3625 void
3626 clear_ada_sym_cache (void)
3627 {
3628 obstack_free (&cache_space, NULL);
3629 obstack_init (&cache_space);
3630 memset (cache, '\000', sizeof (cache));
3631 }
3632
3633 static struct cache_entry **
3634 find_entry (const char *name, domain_enum namespace)
3635 {
3636 int h = msymbol_hash (name) % HASH_SIZE;
3637 struct cache_entry **e;
3638 for (e = &cache[h]; *e != NULL; e = &(*e)->next)
3639 {
3640 if (namespace == (*e)->namespace && strcmp (name, (*e)->name) == 0)
3641 return e;
3642 }
3643 return NULL;
3644 }
3645
3646 /* Return (in SYM) the last cached definition for global or static symbol NAME
3647 in namespace DOMAIN. Returns 1 if entry found, 0 otherwise.
3648 If SYMTAB is non-NULL, store the symbol
3649 table in which the symbol was found there, or NULL if not found.
3650 *BLOCK is set to the block in which NAME is found. */
3651
3652 static int
3653 lookup_cached_symbol (const char *name, domain_enum namespace,
3654 struct symbol **sym, struct block **block,
3655 struct symtab **symtab)
3656 {
3657 struct cache_entry **e = find_entry (name, namespace);
3658 if (e == NULL)
3659 return 0;
3660 if (sym != NULL)
3661 *sym = (*e)->sym;
3662 if (block != NULL)
3663 *block = (*e)->block;
3664 if (symtab != NULL)
3665 *symtab = (*e)->symtab;
3666 return 1;
3667 }
3668
3669 /* Set the cached definition of NAME in DOMAIN to SYM in block
3670 BLOCK and symbol table SYMTAB. */
3671
3672 static void
3673 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
3674 struct block *block, struct symtab *symtab)
3675 {
3676 int h = msymbol_hash (name) % HASH_SIZE;
3677 char *copy;
3678 struct cache_entry *e =
3679 (struct cache_entry *) obstack_alloc(&cache_space, sizeof (*e));
3680 e->next = cache[h];
3681 cache[h] = e;
3682 e->name = copy = obstack_alloc (&cache_space, strlen (name) + 1);
3683 strcpy (copy, name);
3684 e->sym = sym;
3685 e->namespace = namespace;
3686 e->symtab = symtab;
3687 e->block = block;
3688 }
3689 \f
3690 /* Symbol Lookup */
3691
3692 /* Return the result of a standard (literal, C-like) lookup of NAME in
3693 given DOMAIN, visible from lexical block BLOCK. */
3694
3695 static struct symbol *
3696 standard_lookup (const char *name, const struct block *block,
3697 domain_enum domain)
3698 {
3699 struct symbol *sym;
3700 struct symtab *symtab;
3701
3702 if (lookup_cached_symbol (name, domain, &sym, NULL, NULL))
3703 return sym;
3704 sym = lookup_symbol_in_language (name, block, domain, language_c, 0, &symtab);
3705 cache_symbol (name, domain, sym, block_found, symtab);
3706 return sym;
3707 }
3708
3709
3710 /* Non-zero iff there is at least one non-function/non-enumeral symbol
3711 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
3712 since they contend in overloading in the same way. */
3713 static int
3714 is_nonfunction (struct ada_symbol_info syms[], int n)
3715 {
3716 int i;
3717
3718 for (i = 0; i < n; i += 1)
3719 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
3720 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
3721 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
3722 return 1;
3723
3724 return 0;
3725 }
3726
3727 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
3728 struct types. Otherwise, they may not. */
3729
3730 static int
3731 equiv_types (struct type *type0, struct type *type1)
3732 {
3733 if (type0 == type1)
3734 return 1;
3735 if (type0 == NULL || type1 == NULL
3736 || TYPE_CODE (type0) != TYPE_CODE (type1))
3737 return 0;
3738 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
3739 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
3740 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
3741 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
3742 return 1;
3743
3744 return 0;
3745 }
3746
3747 /* True iff SYM0 represents the same entity as SYM1, or one that is
3748 no more defined than that of SYM1. */
3749
3750 static int
3751 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
3752 {
3753 if (sym0 == sym1)
3754 return 1;
3755 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
3756 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
3757 return 0;
3758
3759 switch (SYMBOL_CLASS (sym0))
3760 {
3761 case LOC_UNDEF:
3762 return 1;
3763 case LOC_TYPEDEF:
3764 {
3765 struct type *type0 = SYMBOL_TYPE (sym0);
3766 struct type *type1 = SYMBOL_TYPE (sym1);
3767 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
3768 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
3769 int len0 = strlen (name0);
3770 return
3771 TYPE_CODE (type0) == TYPE_CODE (type1)
3772 && (equiv_types (type0, type1)
3773 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
3774 && strncmp (name1 + len0, "___XV", 5) == 0));
3775 }
3776 case LOC_CONST:
3777 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
3778 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
3779 default:
3780 return 0;
3781 }
3782 }
3783
3784 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
3785 records in OBSTACKP. Do nothing if SYM is a duplicate. */
3786
3787 static void
3788 add_defn_to_vec (struct obstack *obstackp,
3789 struct symbol *sym,
3790 struct block *block,
3791 struct symtab *symtab)
3792 {
3793 int i;
3794 size_t tmp;
3795 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
3796
3797 if (SYMBOL_TYPE (sym) != NULL)
3798 CHECK_TYPEDEF (SYMBOL_TYPE (sym));
3799 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
3800 {
3801 if (lesseq_defined_than (sym, prevDefns[i].sym))
3802 return;
3803 else if (lesseq_defined_than (prevDefns[i].sym, sym))
3804 {
3805 prevDefns[i].sym = sym;
3806 prevDefns[i].block = block;
3807 prevDefns[i].symtab = symtab;
3808 return;
3809 }
3810 }
3811
3812 {
3813 struct ada_symbol_info info;
3814
3815 info.sym = sym;
3816 info.block = block;
3817 info.symtab = symtab;
3818 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
3819 }
3820 }
3821
3822 /* Number of ada_symbol_info structures currently collected in
3823 current vector in *OBSTACKP. */
3824
3825 static int
3826 num_defns_collected (struct obstack *obstackp)
3827 {
3828 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
3829 }
3830
3831 /* Vector of ada_symbol_info structures currently collected in current
3832 vector in *OBSTACKP. If FINISH, close off the vector and return
3833 its final address. */
3834
3835 static struct ada_symbol_info *
3836 defns_collected (struct obstack *obstackp, int finish)
3837 {
3838 if (finish)
3839 return obstack_finish (obstackp);
3840 else
3841 return (struct ada_symbol_info *) obstack_base (obstackp);
3842 }
3843
3844 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
3845 name in a form that's appropriate for the completion. The result
3846 does not need to be deallocated, but is only good until the next call.
3847
3848 TEXT_LEN is equal to the length of TEXT.
3849 Perform a wild match if WILD_MATCH is set.
3850 ENCODED should be set if TEXT represents the start of a symbol name
3851 in its encoded form. */
3852
3853 static const char *
3854 symbol_completion_match (const char *sym_name,
3855 const char *text, int text_len,
3856 int wild_match, int encoded)
3857 {
3858 char *result;
3859 const int verbatim_match = (text[0] == '<');
3860 int match = 0;
3861
3862 if (verbatim_match)
3863 {
3864 /* Strip the leading angle bracket. */
3865 text = text + 1;
3866 text_len--;
3867 }
3868
3869 /* First, test against the fully qualified name of the symbol. */
3870
3871 if (strncmp (sym_name, text, text_len) == 0)
3872 match = 1;
3873
3874 if (match && !encoded)
3875 {
3876 /* One needed check before declaring a positive match is to verify
3877 that iff we are doing a verbatim match, the decoded version
3878 of the symbol name starts with '<'. Otherwise, this symbol name
3879 is not a suitable completion. */
3880 const char *sym_name_copy = sym_name;
3881 int has_angle_bracket;
3882
3883 sym_name = ada_decode (sym_name);
3884 has_angle_bracket = (sym_name [0] == '<');
3885 match = (has_angle_bracket == verbatim_match);
3886 sym_name = sym_name_copy;
3887 }
3888
3889 if (match && !verbatim_match)
3890 {
3891 /* When doing non-verbatim match, another check that needs to
3892 be done is to verify that the potentially matching symbol name
3893 does not include capital letters, because the ada-mode would
3894 not be able to understand these symbol names without the
3895 angle bracket notation. */
3896 const char *tmp;
3897
3898 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
3899 if (*tmp != '\0')
3900 match = 0;
3901 }
3902
3903 /* Second: Try wild matching... */
3904
3905 if (!match && wild_match)
3906 {
3907 /* Since we are doing wild matching, this means that TEXT
3908 may represent an unqualified symbol name. We therefore must
3909 also compare TEXT against the unqualified name of the symbol. */
3910 sym_name = ada_unqualified_name (ada_decode (sym_name));
3911
3912 if (strncmp (sym_name, text, text_len) == 0)
3913 match = 1;
3914 }
3915
3916 /* Finally: If we found a mach, prepare the result to return. */
3917
3918 if (!match)
3919 return NULL;
3920
3921 if (verbatim_match)
3922 sym_name = add_angle_brackets (sym_name);
3923
3924 if (!encoded)
3925 sym_name = ada_decode (sym_name);
3926
3927 return sym_name;
3928 }
3929
3930 /* A companion function to ada_make_symbol_completion_list().
3931 Check if SYM_NAME represents a symbol which name would be suitable
3932 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
3933 it is appended at the end of the given string vector SV.
3934
3935 ORIG_TEXT is the string original string from the user command
3936 that needs to be completed. WORD is the entire command on which
3937 completion should be performed. These two parameters are used to
3938 determine which part of the symbol name should be added to the
3939 completion vector.
3940 if WILD_MATCH is set, then wild matching is performed.
3941 ENCODED should be set if TEXT represents a symbol name in its
3942 encoded formed (in which case the completion should also be
3943 encoded). */
3944
3945 static void
3946 symbol_completion_add (struct string_vector *sv,
3947 const char *sym_name,
3948 const char *text, int text_len,
3949 const char *orig_text, const char *word,
3950 int wild_match, int encoded)
3951 {
3952 const char *match = symbol_completion_match (sym_name, text, text_len,
3953 wild_match, encoded);
3954 char *completion;
3955
3956 if (match == NULL)
3957 return;
3958
3959 /* We found a match, so add the appropriate completion to the given
3960 string vector. */
3961
3962 if (word == orig_text)
3963 {
3964 completion = xmalloc (strlen (match) + 5);
3965 strcpy (completion, match);
3966 }
3967 else if (word > orig_text)
3968 {
3969 /* Return some portion of sym_name. */
3970 completion = xmalloc (strlen (match) + 5);
3971 strcpy (completion, match + (word - orig_text));
3972 }
3973 else
3974 {
3975 /* Return some of ORIG_TEXT plus sym_name. */
3976 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
3977 strncpy (completion, word, orig_text - word);
3978 completion[orig_text - word] = '\0';
3979 strcat (completion, match);
3980 }
3981
3982 string_vector_append (sv, completion);
3983 }
3984
3985 /* Return a list of possible symbol names completing TEXT0. The list
3986 is NULL terminated. WORD is the entire command on which completion
3987 is made. */
3988
3989 char **
3990 ada_make_symbol_completion_list (const char *text0, const char *word)
3991 {
3992 /* Note: This function is almost a copy of make_symbol_completion_list(),
3993 except it has been adapted for Ada. It is somewhat of a shame to
3994 duplicate so much code, but we don't really have the infrastructure
3995 yet to develop a language-aware version of he symbol completer... */
3996 char *text;
3997 int text_len;
3998 int wild_match;
3999 int encoded;
4000 struct string_vector result = xnew_string_vector (128);
4001 struct symbol *sym;
4002 struct symtab *s;
4003 struct partial_symtab *ps;
4004 struct minimal_symbol *msymbol;
4005 struct objfile *objfile;
4006 struct block *b, *surrounding_static_block = 0;
4007 int i;
4008 struct dict_iterator iter;
4009
4010 if (text0[0] == '<')
4011 {
4012 text = xstrdup (text0);
4013 make_cleanup (xfree, text);
4014 text_len = strlen (text);
4015 wild_match = 0;
4016 encoded = 1;
4017 }
4018 else
4019 {
4020 text = xstrdup (ada_encode (text0));
4021 make_cleanup (xfree, text);
4022 text_len = strlen (text);
4023 for (i = 0; i < text_len; i++)
4024 text[i] = tolower (text[i]);
4025
4026 /* FIXME: brobecker/2003-09-17: When we get rid of ADA_RETAIN_DOTS,
4027 we can restrict the wild_match check to searching "__" only. */
4028 wild_match = (strstr (text0, "__") == NULL
4029 && strchr (text0, '.') == NULL);
4030 encoded = (strstr (text0, "__") != NULL);
4031 }
4032
4033 /* First, look at the partial symtab symbols. */
4034 ALL_PSYMTABS (objfile, ps)
4035 {
4036 struct partial_symbol **psym;
4037
4038 /* If the psymtab's been read in we'll get it when we search
4039 through the blockvector. */
4040 if (ps->readin)
4041 continue;
4042
4043 for (psym = objfile->global_psymbols.list + ps->globals_offset;
4044 psym < (objfile->global_psymbols.list + ps->globals_offset
4045 + ps->n_global_syms);
4046 psym++)
4047 {
4048 QUIT;
4049 symbol_completion_add (&result, SYMBOL_LINKAGE_NAME (*psym),
4050 text, text_len, text0, word,
4051 wild_match, encoded);
4052 }
4053
4054 for (psym = objfile->static_psymbols.list + ps->statics_offset;
4055 psym < (objfile->static_psymbols.list + ps->statics_offset
4056 + ps->n_static_syms);
4057 psym++)
4058 {
4059 QUIT;
4060 symbol_completion_add (&result, SYMBOL_LINKAGE_NAME (*psym),
4061 text, text_len, text0, word,
4062 wild_match, encoded);
4063 }
4064 }
4065
4066 /* At this point scan through the misc symbol vectors and add each
4067 symbol you find to the list. Eventually we want to ignore
4068 anything that isn't a text symbol (everything else will be
4069 handled by the psymtab code above). */
4070
4071 ALL_MSYMBOLS (objfile, msymbol)
4072 {
4073 QUIT;
4074 symbol_completion_add (&result, SYMBOL_LINKAGE_NAME (msymbol),
4075 text, text_len, text0, word,
4076 wild_match, encoded);
4077 }
4078
4079 /* Search upwards from currently selected frame (so that we can
4080 complete on local vars. */
4081
4082 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
4083 {
4084 if (!BLOCK_SUPERBLOCK (b))
4085 surrounding_static_block = b; /* For elmin of dups */
4086
4087 ALL_BLOCK_SYMBOLS (b, iter, sym)
4088 {
4089 symbol_completion_add (&result, SYMBOL_LINKAGE_NAME (sym),
4090 text, text_len, text0, word,
4091 wild_match, encoded);
4092 }
4093 }
4094
4095 /* Go through the symtabs and check the externs and statics for
4096 symbols which match. */
4097
4098 ALL_SYMTABS (objfile, s)
4099 {
4100 QUIT;
4101 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4102 ALL_BLOCK_SYMBOLS (b, iter, sym)
4103 {
4104 symbol_completion_add (&result, SYMBOL_LINKAGE_NAME (sym),
4105 text, text_len, text0, word,
4106 wild_match, encoded);
4107 }
4108 }
4109
4110 ALL_SYMTABS (objfile, s)
4111 {
4112 QUIT;
4113 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4114 /* Don't do this block twice. */
4115 if (b == surrounding_static_block)
4116 continue;
4117 ALL_BLOCK_SYMBOLS (b, iter, sym)
4118 {
4119 symbol_completion_add (&result, SYMBOL_LINKAGE_NAME (sym),
4120 text, text_len, text0, word,
4121 wild_match, encoded);
4122 }
4123 }
4124
4125 /* Append the closing NULL entry. */
4126 string_vector_append (&result, NULL);
4127
4128 return (result.array);
4129 }
4130
4131 /* Look, in partial_symtab PST, for symbol NAME in given namespace.
4132 Check the global symbols if GLOBAL, the static symbols if not.
4133 Do wild-card match if WILD. */
4134
4135 static struct partial_symbol *
4136 ada_lookup_partial_symbol (struct partial_symtab *pst, const char *name,
4137 int global, domain_enum namespace, int wild)
4138 {
4139 struct partial_symbol **start;
4140 int name_len = strlen (name);
4141 int length = (global ? pst->n_global_syms : pst->n_static_syms);
4142 int i;
4143
4144 if (length == 0)
4145 {
4146 return (NULL);
4147 }
4148
4149 start = (global ?
4150 pst->objfile->global_psymbols.list + pst->globals_offset :
4151 pst->objfile->static_psymbols.list + pst->statics_offset);
4152
4153 if (wild)
4154 {
4155 for (i = 0; i < length; i += 1)
4156 {
4157 struct partial_symbol *psym = start[i];
4158
4159 if (SYMBOL_DOMAIN (psym) == namespace &&
4160 wild_match (name, name_len, SYMBOL_LINKAGE_NAME (psym)))
4161 return psym;
4162 }
4163 return NULL;
4164 }
4165 else
4166 {
4167 if (global)
4168 {
4169 int U;
4170 i = 0;
4171 U = length - 1;
4172 while (U - i > 4)
4173 {
4174 int M = (U + i) >> 1;
4175 struct partial_symbol *psym = start[M];
4176 if (SYMBOL_LINKAGE_NAME (psym)[0] < name[0])
4177 i = M + 1;
4178 else if (SYMBOL_LINKAGE_NAME (psym)[0] > name[0])
4179 U = M - 1;
4180 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), name) < 0)
4181 i = M + 1;
4182 else
4183 U = M;
4184 }
4185 }
4186 else
4187 i = 0;
4188
4189 while (i < length)
4190 {
4191 struct partial_symbol *psym = start[i];
4192
4193 if (SYMBOL_DOMAIN (psym) == namespace)
4194 {
4195 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym), name_len);
4196
4197 if (cmp < 0)
4198 {
4199 if (global)
4200 break;
4201 }
4202 else if (cmp == 0
4203 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4204 + name_len))
4205 return psym;
4206 }
4207 i += 1;
4208 }
4209
4210 if (global)
4211 {
4212 int U;
4213 i = 0;
4214 U = length - 1;
4215 while (U - i > 4)
4216 {
4217 int M = (U + i) >> 1;
4218 struct partial_symbol *psym = start[M];
4219 if (SYMBOL_LINKAGE_NAME (psym)[0] < '_')
4220 i = M + 1;
4221 else if (SYMBOL_LINKAGE_NAME (psym)[0] > '_')
4222 U = M - 1;
4223 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), "_ada_") < 0)
4224 i = M + 1;
4225 else
4226 U = M;
4227 }
4228 }
4229 else
4230 i = 0;
4231
4232 while (i < length)
4233 {
4234 struct partial_symbol *psym = start[i];
4235
4236 if (SYMBOL_DOMAIN (psym) == namespace)
4237 {
4238 int cmp;
4239
4240 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (psym)[0];
4241 if (cmp == 0)
4242 {
4243 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (psym), 5);
4244 if (cmp == 0)
4245 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym) + 5,
4246 name_len);
4247 }
4248
4249 if (cmp < 0)
4250 {
4251 if (global)
4252 break;
4253 }
4254 else if (cmp == 0
4255 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4256 + name_len + 5))
4257 return psym;
4258 }
4259 i += 1;
4260 }
4261 }
4262 return NULL;
4263 }
4264
4265 /* Find a symbol table containing symbol SYM or NULL if none. */
4266
4267 static struct symtab *
4268 symtab_for_sym (struct symbol *sym)
4269 {
4270 struct symtab *s;
4271 struct objfile *objfile;
4272 struct block *b;
4273 struct symbol *tmp_sym;
4274 struct dict_iterator iter;
4275 int j;
4276
4277 ALL_SYMTABS (objfile, s)
4278 {
4279 switch (SYMBOL_CLASS (sym))
4280 {
4281 case LOC_CONST:
4282 case LOC_STATIC:
4283 case LOC_TYPEDEF:
4284 case LOC_REGISTER:
4285 case LOC_LABEL:
4286 case LOC_BLOCK:
4287 case LOC_CONST_BYTES:
4288 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4289 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4290 return s;
4291 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4292 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4293 return s;
4294 break;
4295 default:
4296 break;
4297 }
4298 switch (SYMBOL_CLASS (sym))
4299 {
4300 case LOC_REGISTER:
4301 case LOC_ARG:
4302 case LOC_REF_ARG:
4303 case LOC_REGPARM:
4304 case LOC_REGPARM_ADDR:
4305 case LOC_LOCAL:
4306 case LOC_TYPEDEF:
4307 case LOC_LOCAL_ARG:
4308 case LOC_BASEREG:
4309 case LOC_BASEREG_ARG:
4310 case LOC_COMPUTED:
4311 case LOC_COMPUTED_ARG:
4312 for (j = FIRST_LOCAL_BLOCK;
4313 j < BLOCKVECTOR_NBLOCKS (BLOCKVECTOR (s)); j += 1)
4314 {
4315 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), j);
4316 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4317 return s;
4318 }
4319 break;
4320 default:
4321 break;
4322 }
4323 }
4324 return NULL;
4325 }
4326
4327 /* Return a minimal symbol matching NAME according to Ada decoding
4328 rules. Returns NULL if there is no such minimal symbol. Names
4329 prefixed with "standard__" are handled specially: "standard__" is
4330 first stripped off, and only static and global symbols are searched. */
4331
4332 struct minimal_symbol *
4333 ada_lookup_simple_minsym (const char *name)
4334 {
4335 struct objfile *objfile;
4336 struct minimal_symbol *msymbol;
4337 int wild_match;
4338
4339 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4340 {
4341 name += sizeof ("standard__") - 1;
4342 wild_match = 0;
4343 }
4344 else
4345 wild_match = (strstr (name, "__") == NULL);
4346
4347 ALL_MSYMBOLS (objfile, msymbol)
4348 {
4349 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4350 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4351 return msymbol;
4352 }
4353
4354 return NULL;
4355 }
4356
4357 /* Return up minimal symbol for NAME, folded and encoded according to
4358 Ada conventions, or NULL if none. The last two arguments are ignored. */
4359
4360 static struct minimal_symbol *
4361 ada_lookup_minimal_symbol (const char *name, const char *sfile,
4362 struct objfile *objf)
4363 {
4364 return ada_lookup_simple_minsym (ada_encode (name));
4365 }
4366
4367 /* For all subprograms that statically enclose the subprogram of the
4368 selected frame, add symbols matching identifier NAME in DOMAIN
4369 and their blocks to the list of data in OBSTACKP, as for
4370 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4371 wildcard prefix. */
4372
4373 static void
4374 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4375 const char *name, domain_enum namespace,
4376 int wild_match)
4377 {
4378 #ifdef HAVE_ADD_SYMBOLS_FROM_ENCLOSING_PROCS
4379 /* Use a heuristic to find the frames of enclosing subprograms: treat the
4380 pointer-sized value at location 0 from the local-variable base of a
4381 frame as a static link, and then search up the call stack for a
4382 frame with that same local-variable base. */
4383 static struct symbol static_link_sym;
4384 static struct symbol *static_link;
4385 struct value *target_link_val;
4386
4387 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
4388 struct frame_info *frame;
4389
4390 if (! target_has_stack)
4391 return;
4392
4393 if (static_link == NULL)
4394 {
4395 /* Initialize the local variable symbol that stands for the
4396 static link (when there is one). */
4397 static_link = &static_link_sym;
4398 SYMBOL_LINKAGE_NAME (static_link) = "";
4399 SYMBOL_LANGUAGE (static_link) = language_unknown;
4400 SYMBOL_CLASS (static_link) = LOC_LOCAL;
4401 SYMBOL_DOMAIN (static_link) = VAR_DOMAIN;
4402 SYMBOL_TYPE (static_link) = lookup_pointer_type (builtin_type_void);
4403 SYMBOL_VALUE (static_link) =
4404 -(long) TYPE_LENGTH (SYMBOL_TYPE (static_link));
4405 }
4406
4407 frame = get_selected_frame ();
4408 if (frame == NULL
4409 || inside_main_func (get_frame_address_in_block (frame)))
4410 return;
4411
4412 target_link_val = read_var_value (static_link, frame);
4413 while (target_link_val != NULL
4414 && num_defns_collected (obstackp) == 0
4415 && frame_relative_level (frame) <= MAX_ENCLOSING_FRAME_LEVELS)
4416 {
4417 CORE_ADDR target_link = value_as_address (target_link_val);
4418
4419 frame = get_prev_frame (frame);
4420 if (frame == NULL)
4421 break;
4422
4423 if (get_frame_locals_address (frame) == target_link)
4424 {
4425 struct block *block;
4426
4427 QUIT;
4428
4429 block = get_frame_block (frame, 0);
4430 while (block != NULL && block_function (block) != NULL
4431 && num_defns_collected (obstackp) == 0)
4432 {
4433 QUIT;
4434
4435 ada_add_block_symbols (obstackp, block, name, namespace,
4436 NULL, NULL, wild_match);
4437
4438 block = BLOCK_SUPERBLOCK (block);
4439 }
4440 }
4441 }
4442
4443 do_cleanups (old_chain);
4444 #endif
4445 }
4446
4447 /* FIXME: The next two routines belong in symtab.c */
4448
4449 static void restore_language (void* lang)
4450 {
4451 set_language ((enum language) lang);
4452 }
4453
4454 /* As for lookup_symbol, but performed as if the current language
4455 were LANG. */
4456
4457 struct symbol *
4458 lookup_symbol_in_language (const char *name, const struct block *block,
4459 domain_enum domain, enum language lang,
4460 int *is_a_field_of_this, struct symtab **symtab)
4461 {
4462 struct cleanup *old_chain
4463 = make_cleanup (restore_language, (void*) current_language->la_language);
4464 struct symbol *result;
4465 set_language (lang);
4466 result = lookup_symbol (name, block, domain, is_a_field_of_this, symtab);
4467 do_cleanups (old_chain);
4468 return result;
4469 }
4470
4471 /* True if TYPE is definitely an artificial type supplied to a symbol
4472 for which no debugging information was given in the symbol file. */
4473
4474 static int
4475 is_nondebugging_type (struct type *type)
4476 {
4477 char *name = ada_type_name (type);
4478 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4479 }
4480
4481 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4482 duplicate other symbols in the list (The only case I know of where
4483 this happens is when object files containing stabs-in-ecoff are
4484 linked with files containing ordinary ecoff debugging symbols (or no
4485 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4486 Returns the number of items in the modified list. */
4487
4488 static int
4489 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4490 {
4491 int i, j;
4492
4493 i = 0;
4494 while (i < nsyms)
4495 {
4496 if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4497 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4498 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4499 {
4500 for (j = 0; j < nsyms; j += 1)
4501 {
4502 if (i != j
4503 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4504 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4505 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4506 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4507 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4508 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4509 {
4510 int k;
4511 for (k = i + 1; k < nsyms; k += 1)
4512 syms[k - 1] = syms[k];
4513 nsyms -= 1;
4514 goto NextSymbol;
4515 }
4516 }
4517 }
4518 i += 1;
4519 NextSymbol:
4520 ;
4521 }
4522 return nsyms;
4523 }
4524
4525 /* Given a type that corresponds to a renaming entity, use the type name
4526 to extract the scope (package name or function name, fully qualified,
4527 and following the GNAT encoding convention) where this renaming has been
4528 defined. The string returned needs to be deallocated after use. */
4529
4530 static char *
4531 xget_renaming_scope (struct type *renaming_type)
4532 {
4533 /* The renaming types adhere to the following convention:
4534 <scope>__<rename>___<XR extension>.
4535 So, to extract the scope, we search for the "___XR" extension,
4536 and then backtrack until we find the first "__". */
4537
4538 const char *name = type_name_no_tag (renaming_type);
4539 char *suffix = strstr (name, "___XR");
4540 char *last;
4541 int scope_len;
4542 char *scope;
4543
4544 /* Now, backtrack a bit until we find the first "__". Start looking
4545 at suffix - 3, as the <rename> part is at least one character long. */
4546
4547 for (last = suffix - 3; last > name; last--)
4548 if (last[0] == '_' && last[1] == '_')
4549 break;
4550
4551 /* Make a copy of scope and return it. */
4552
4553 scope_len = last - name;
4554 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4555
4556 strncpy (scope, name, scope_len);
4557 scope[scope_len] = '\0';
4558
4559 return scope;
4560 }
4561
4562 /* Return nonzero if NAME corresponds to a package name. */
4563
4564 static int
4565 is_package_name (const char *name)
4566 {
4567 /* Here, We take advantage of the fact that no symbols are generated
4568 for packages, while symbols are generated for each function.
4569 So the condition for NAME represent a package becomes equivalent
4570 to NAME not existing in our list of symbols. There is only one
4571 small complication with library-level functions (see below). */
4572
4573 char *fun_name;
4574
4575 /* If it is a function that has not been defined at library level,
4576 then we should be able to look it up in the symbols. */
4577 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4578 return 0;
4579
4580 /* Library-level function names start with "_ada_". See if function
4581 "_ada_" followed by NAME can be found. */
4582
4583 /* Do a quick check that NAME does not contain "__", since library-level
4584 functions names can not contain "__" in them. */
4585 if (strstr (name, "__") != NULL)
4586 return 0;
4587
4588 fun_name = (char *) alloca (strlen (name) + 5 + 1);
4589 xasprintf (&fun_name, "_ada_%s", name);
4590
4591 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4592 }
4593
4594 /* Return nonzero if SYM corresponds to a renaming entity that is
4595 visible from FUNCTION_NAME. */
4596
4597 static int
4598 renaming_is_visible (const struct symbol *sym, char *function_name)
4599 {
4600 char *scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4601
4602 make_cleanup (xfree, scope);
4603
4604 /* If the rename has been defined in a package, then it is visible. */
4605 if (is_package_name (scope))
4606 return 1;
4607
4608 /* Check that the rename is in the current function scope by checking
4609 that its name starts with SCOPE. */
4610
4611 /* If the function name starts with "_ada_", it means that it is
4612 a library-level function. Strip this prefix before doing the
4613 comparison, as the encoding for the renaming does not contain
4614 this prefix. */
4615 if (strncmp (function_name, "_ada_", 5) == 0)
4616 function_name += 5;
4617
4618 return (strncmp (function_name, scope, strlen (scope)) == 0);
4619 }
4620
4621 /* Iterates over the SYMS list and remove any entry that corresponds to
4622 a renaming entity that is not visible from the function associated
4623 with CURRENT_BLOCK.
4624
4625 Rationale:
4626 GNAT emits a type following a specified encoding for each renaming
4627 entity. Unfortunately, STABS currently does not support the definition
4628 of types that are local to a given lexical block, so all renamings types
4629 are emitted at library level. As a consequence, if an application
4630 contains two renaming entities using the same name, and a user tries to
4631 print the value of one of these entities, the result of the ada symbol
4632 lookup will also contain the wrong renaming type.
4633
4634 This function partially covers for this limitation by attempting to
4635 remove from the SYMS list renaming symbols that should be visible
4636 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4637 method with the current information available. The implementation
4638 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4639
4640 - When the user tries to print a rename in a function while there
4641 is another rename entity defined in a package: Normally, the
4642 rename in the function has precedence over the rename in the
4643 package, so the latter should be removed from the list. This is
4644 currently not the case.
4645
4646 - This function will incorrectly remove valid renames if
4647 the CURRENT_BLOCK corresponds to a function which symbol name
4648 has been changed by an "Export" pragma. As a consequence,
4649 the user will be unable to print such rename entities. */
4650
4651 static int
4652 remove_out_of_scope_renamings (struct ada_symbol_info *syms,
4653 int nsyms,
4654 struct block *current_block)
4655 {
4656 struct symbol *current_function;
4657 char *current_function_name;
4658 int i;
4659
4660 /* Extract the function name associated to CURRENT_BLOCK.
4661 Abort if unable to do so. */
4662
4663 if (current_block == NULL)
4664 return nsyms;
4665
4666 current_function = block_function (current_block);
4667 if (current_function == NULL)
4668 return nsyms;
4669
4670 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4671 if (current_function_name == NULL)
4672 return nsyms;
4673
4674 /* Check each of the symbols, and remove it from the list if it is
4675 a type corresponding to a renaming that is out of the scope of
4676 the current block. */
4677
4678 i = 0;
4679 while (i < nsyms)
4680 {
4681 if (ada_is_object_renaming (syms[i].sym)
4682 && !renaming_is_visible (syms[i].sym, current_function_name))
4683 {
4684 int j;
4685 for (j = i + 1; j < nsyms; j++)
4686 syms[j - 1] = syms[j];
4687 nsyms -= 1;
4688 }
4689 else
4690 i += 1;
4691 }
4692
4693 return nsyms;
4694 }
4695
4696 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4697 scope and in global scopes, returning the number of matches. Sets
4698 *RESULTS to point to a vector of (SYM,BLOCK,SYMTAB) triples,
4699 indicating the symbols found and the blocks and symbol tables (if
4700 any) in which they were found. This vector are transient---good only to
4701 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4702 symbol match within the nest of blocks whose innermost member is BLOCK0,
4703 is the one match returned (no other matches in that or
4704 enclosing blocks is returned). If there are any matches in or
4705 surrounding BLOCK0, then these alone are returned. Otherwise, the
4706 search extends to global and file-scope (static) symbol tables.
4707 Names prefixed with "standard__" are handled specially: "standard__"
4708 is first stripped off, and only static and global symbols are searched. */
4709
4710 int
4711 ada_lookup_symbol_list (const char *name0, const struct block *block0,
4712 domain_enum namespace,
4713 struct ada_symbol_info **results)
4714 {
4715 struct symbol *sym;
4716 struct symtab *s;
4717 struct partial_symtab *ps;
4718 struct blockvector *bv;
4719 struct objfile *objfile;
4720 struct block *block;
4721 const char *name;
4722 struct minimal_symbol *msymbol;
4723 int wild_match;
4724 int cacheIfUnique;
4725 int block_depth;
4726 int ndefns;
4727
4728 obstack_free (&symbol_list_obstack, NULL);
4729 obstack_init (&symbol_list_obstack);
4730
4731 cacheIfUnique = 0;
4732
4733 /* Search specified block and its superiors. */
4734
4735 wild_match = (strstr (name0, "__") == NULL);
4736 name = name0;
4737 block = (struct block *) block0; /* FIXME: No cast ought to be
4738 needed, but adding const will
4739 have a cascade effect. */
4740 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4741 {
4742 wild_match = 0;
4743 block = NULL;
4744 name = name0 + sizeof ("standard__") - 1;
4745 }
4746
4747 block_depth = 0;
4748 while (block != NULL)
4749 {
4750 block_depth += 1;
4751 ada_add_block_symbols (&symbol_list_obstack, block, name,
4752 namespace, NULL, NULL, wild_match);
4753
4754 /* If we found a non-function match, assume that's the one. */
4755 if (is_nonfunction (defns_collected (&symbol_list_obstack, 0),
4756 num_defns_collected (&symbol_list_obstack)))
4757 goto done;
4758
4759 block = BLOCK_SUPERBLOCK (block);
4760 }
4761
4762 /* If no luck so far, try to find NAME as a local symbol in some lexically
4763 enclosing subprogram. */
4764 if (num_defns_collected (&symbol_list_obstack) == 0 && block_depth > 2)
4765 add_symbols_from_enclosing_procs (&symbol_list_obstack,
4766 name, namespace, wild_match);
4767
4768 /* If we found ANY matches among non-global symbols, we're done. */
4769
4770 if (num_defns_collected (&symbol_list_obstack) > 0)
4771 goto done;
4772
4773 cacheIfUnique = 1;
4774 if (lookup_cached_symbol (name0, namespace, &sym, &block, &s))
4775 {
4776 if (sym != NULL)
4777 add_defn_to_vec (&symbol_list_obstack, sym, block, s);
4778 goto done;
4779 }
4780
4781 /* Now add symbols from all global blocks: symbol tables, minimal symbol
4782 tables, and psymtab's. */
4783
4784 ALL_SYMTABS (objfile, s)
4785 {
4786 QUIT;
4787 if (!s->primary)
4788 continue;
4789 bv = BLOCKVECTOR (s);
4790 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4791 ada_add_block_symbols (&symbol_list_obstack, block, name, namespace,
4792 objfile, s, wild_match);
4793 }
4794
4795 if (namespace == VAR_DOMAIN)
4796 {
4797 ALL_MSYMBOLS (objfile, msymbol)
4798 {
4799 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match))
4800 {
4801 switch (MSYMBOL_TYPE (msymbol))
4802 {
4803 case mst_solib_trampoline:
4804 break;
4805 default:
4806 s = find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol));
4807 if (s != NULL)
4808 {
4809 int ndefns0 = num_defns_collected (&symbol_list_obstack);
4810 QUIT;
4811 bv = BLOCKVECTOR (s);
4812 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4813 ada_add_block_symbols (&symbol_list_obstack, block,
4814 SYMBOL_LINKAGE_NAME (msymbol),
4815 namespace, objfile, s, wild_match);
4816
4817 if (num_defns_collected (&symbol_list_obstack) == ndefns0)
4818 {
4819 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4820 ada_add_block_symbols (&symbol_list_obstack, block,
4821 SYMBOL_LINKAGE_NAME (msymbol),
4822 namespace, objfile, s,
4823 wild_match);
4824 }
4825 }
4826 }
4827 }
4828 }
4829 }
4830
4831 ALL_PSYMTABS (objfile, ps)
4832 {
4833 QUIT;
4834 if (!ps->readin
4835 && ada_lookup_partial_symbol (ps, name, 1, namespace, wild_match))
4836 {
4837 s = PSYMTAB_TO_SYMTAB (ps);
4838 if (!s->primary)
4839 continue;
4840 bv = BLOCKVECTOR (s);
4841 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4842 ada_add_block_symbols (&symbol_list_obstack, block, name,
4843 namespace, objfile, s, wild_match);
4844 }
4845 }
4846
4847 /* Now add symbols from all per-file blocks if we've gotten no hits
4848 (Not strictly correct, but perhaps better than an error).
4849 Do the symtabs first, then check the psymtabs. */
4850
4851 if (num_defns_collected (&symbol_list_obstack) == 0)
4852 {
4853
4854 ALL_SYMTABS (objfile, s)
4855 {
4856 QUIT;
4857 if (!s->primary)
4858 continue;
4859 bv = BLOCKVECTOR (s);
4860 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4861 ada_add_block_symbols (&symbol_list_obstack, block, name, namespace,
4862 objfile, s, wild_match);
4863 }
4864
4865 ALL_PSYMTABS (objfile, ps)
4866 {
4867 QUIT;
4868 if (!ps->readin
4869 && ada_lookup_partial_symbol (ps, name, 0, namespace, wild_match))
4870 {
4871 s = PSYMTAB_TO_SYMTAB (ps);
4872 bv = BLOCKVECTOR (s);
4873 if (!s->primary)
4874 continue;
4875 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4876 ada_add_block_symbols (&symbol_list_obstack, block, name,
4877 namespace, objfile, s, wild_match);
4878 }
4879 }
4880 }
4881
4882 done:
4883 ndefns = num_defns_collected (&symbol_list_obstack);
4884 *results = defns_collected (&symbol_list_obstack, 1);
4885
4886 ndefns = remove_extra_symbols (*results, ndefns);
4887
4888 if (ndefns == 0)
4889 cache_symbol (name0, namespace, NULL, NULL, NULL);
4890
4891 if (ndefns == 1 && cacheIfUnique)
4892 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block,
4893 (*results)[0].symtab);
4894
4895 ndefns = remove_out_of_scope_renamings (*results, ndefns,
4896 (struct block *) block0);
4897
4898 return ndefns;
4899 }
4900
4901 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4902 scope and in global scopes, or NULL if none. NAME is folded and
4903 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4904 but is disambiguated by user query if needed. *IS_A_FIELD_OF_THIS is
4905 set to 0 and *SYMTAB is set to the symbol table in which the symbol
4906 was found (in both cases, these assignments occur only if the
4907 pointers are non-null). */
4908
4909
4910 struct symbol *
4911 ada_lookup_symbol (const char *name, const struct block *block0,
4912 domain_enum namespace, int *is_a_field_of_this,
4913 struct symtab **symtab)
4914 {
4915 struct ada_symbol_info *candidates;
4916 int n_candidates;
4917
4918 n_candidates = ada_lookup_symbol_list (ada_encode (ada_fold_name (name)),
4919 block0, namespace, &candidates);
4920
4921 if (n_candidates == 0)
4922 return NULL;
4923 else if (n_candidates != 1)
4924 user_select_syms (candidates, n_candidates, 1);
4925
4926 if (is_a_field_of_this != NULL)
4927 *is_a_field_of_this = 0;
4928
4929 if (symtab != NULL)
4930 {
4931 *symtab = candidates[0].symtab;
4932 if (*symtab == NULL && candidates[0].block != NULL)
4933 {
4934 struct objfile *objfile;
4935 struct symtab *s;
4936 struct block *b;
4937 struct blockvector *bv;
4938
4939 /* Search the list of symtabs for one which contains the
4940 address of the start of this block. */
4941 ALL_SYMTABS (objfile, s)
4942 {
4943 bv = BLOCKVECTOR (s);
4944 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4945 if (BLOCK_START (b) <= BLOCK_START (candidates[0].block)
4946 && BLOCK_END (b) > BLOCK_START (candidates[0].block))
4947 {
4948 *symtab = s;
4949 return fixup_symbol_section (candidates[0].sym, objfile);
4950 }
4951 return fixup_symbol_section (candidates[0].sym, NULL);
4952 }
4953 }
4954 }
4955 return candidates[0].sym;
4956 }
4957
4958 static struct symbol *
4959 ada_lookup_symbol_nonlocal (const char *name,
4960 const char *linkage_name,
4961 const struct block *block,
4962 const domain_enum domain,
4963 struct symtab **symtab)
4964 {
4965 if (linkage_name == NULL)
4966 linkage_name = name;
4967 return ada_lookup_symbol (linkage_name, block_static_block (block), domain,
4968 NULL, symtab);
4969 }
4970
4971
4972 /* True iff STR is a possible encoded suffix of a normal Ada name
4973 that is to be ignored for matching purposes. Suffixes of parallel
4974 names (e.g., XVE) are not included here. Currently, the possible suffixes
4975 are given by either of the regular expression:
4976
4977 (__[0-9]+)?\.[0-9]+ [nested subprogram suffix, on platforms such as Linux]
4978 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4979 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(LJM|X([FDBUP].*|R[^T]?)))?$
4980 */
4981
4982 static int
4983 is_name_suffix (const char *str)
4984 {
4985 int k;
4986 const char *matching;
4987 const int len = strlen (str);
4988
4989 /* (__[0-9]+)?\.[0-9]+ */
4990 matching = str;
4991 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4992 {
4993 matching += 3;
4994 while (isdigit (matching[0]))
4995 matching += 1;
4996 if (matching[0] == '\0')
4997 return 1;
4998 }
4999
5000 if (matching[0] == '.')
5001 {
5002 matching += 1;
5003 while (isdigit (matching[0]))
5004 matching += 1;
5005 if (matching[0] == '\0')
5006 return 1;
5007 }
5008
5009 /* ___[0-9]+ */
5010 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5011 {
5012 matching = str + 3;
5013 while (isdigit (matching[0]))
5014 matching += 1;
5015 if (matching[0] == '\0')
5016 return 1;
5017 }
5018
5019 /* ??? We should not modify STR directly, as we are doing below. This
5020 is fine in this case, but may become problematic later if we find
5021 that this alternative did not work, and want to try matching
5022 another one from the begining of STR. Since we modified it, we
5023 won't be able to find the begining of the string anymore! */
5024 if (str[0] == 'X')
5025 {
5026 str += 1;
5027 while (str[0] != '_' && str[0] != '\0')
5028 {
5029 if (str[0] != 'n' && str[0] != 'b')
5030 return 0;
5031 str += 1;
5032 }
5033 }
5034 if (str[0] == '\000')
5035 return 1;
5036 if (str[0] == '_')
5037 {
5038 if (str[1] != '_' || str[2] == '\000')
5039 return 0;
5040 if (str[2] == '_')
5041 {
5042 if (strcmp (str + 3, "LJM") == 0)
5043 return 1;
5044 if (str[3] != 'X')
5045 return 0;
5046 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B' ||
5047 str[4] == 'U' || str[4] == 'P')
5048 return 1;
5049 if (str[4] == 'R' && str[5] != 'T')
5050 return 1;
5051 return 0;
5052 }
5053 if (!isdigit (str[2]))
5054 return 0;
5055 for (k = 3; str[k] != '\0'; k += 1)
5056 if (!isdigit (str[k]) && str[k] != '_')
5057 return 0;
5058 return 1;
5059 }
5060 if (str[0] == '$' && isdigit (str[1]))
5061 {
5062 for (k = 2; str[k] != '\0'; k += 1)
5063 if (!isdigit (str[k]) && str[k] != '_')
5064 return 0;
5065 return 1;
5066 }
5067 return 0;
5068 }
5069
5070 /* Return nonzero if the given string starts with a dot ('.')
5071 followed by zero or more digits.
5072
5073 Note: brobecker/2003-11-10: A forward declaration has not been
5074 added at the begining of this file yet, because this function
5075 is only used to work around a problem found during wild matching
5076 when trying to match minimal symbol names against symbol names
5077 obtained from dwarf-2 data. This function is therefore currently
5078 only used in wild_match() and is likely to be deleted when the
5079 problem in dwarf-2 is fixed. */
5080
5081 static int
5082 is_dot_digits_suffix (const char *str)
5083 {
5084 if (str[0] != '.')
5085 return 0;
5086
5087 str++;
5088 while (isdigit (str[0]))
5089 str++;
5090 return (str[0] == '\0');
5091 }
5092
5093 /* True if NAME represents a name of the form A1.A2....An, n>=1 and
5094 PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores
5095 informational suffixes of NAME (i.e., for which is_name_suffix is
5096 true). */
5097
5098 static int
5099 wild_match (const char *patn0, int patn_len, const char *name0)
5100 {
5101 int name_len;
5102 char *name;
5103 char *patn;
5104
5105 /* FIXME: brobecker/2003-11-10: For some reason, the symbol name
5106 stored in the symbol table for nested function names is sometimes
5107 different from the name of the associated entity stored in
5108 the dwarf-2 data: This is the case for nested subprograms, where
5109 the minimal symbol name contains a trailing ".[:digit:]+" suffix,
5110 while the symbol name from the dwarf-2 data does not.
5111
5112 Although the DWARF-2 standard documents that entity names stored
5113 in the dwarf-2 data should be identical to the name as seen in
5114 the source code, GNAT takes a different approach as we already use
5115 a special encoding mechanism to convey the information so that
5116 a C debugger can still use the information generated to debug
5117 Ada programs. A corollary is that the symbol names in the dwarf-2
5118 data should match the names found in the symbol table. I therefore
5119 consider this issue as a compiler defect.
5120
5121 Until the compiler is properly fixed, we work-around the problem
5122 by ignoring such suffixes during the match. We do so by making
5123 a copy of PATN0 and NAME0, and then by stripping such a suffix
5124 if present. We then perform the match on the resulting strings. */
5125 {
5126 char *dot;
5127 name_len = strlen (name0);
5128
5129 name = (char *) alloca ((name_len + 1) * sizeof (char));
5130 strcpy (name, name0);
5131 dot = strrchr (name, '.');
5132 if (dot != NULL && is_dot_digits_suffix (dot))
5133 *dot = '\0';
5134
5135 patn = (char *) alloca ((patn_len + 1) * sizeof (char));
5136 strncpy (patn, patn0, patn_len);
5137 patn[patn_len] = '\0';
5138 dot = strrchr (patn, '.');
5139 if (dot != NULL && is_dot_digits_suffix (dot))
5140 {
5141 *dot = '\0';
5142 patn_len = dot - patn;
5143 }
5144 }
5145
5146 /* Now perform the wild match. */
5147
5148 name_len = strlen (name);
5149 if (name_len >= patn_len + 5 && strncmp (name, "_ada_", 5) == 0
5150 && strncmp (patn, name + 5, patn_len) == 0
5151 && is_name_suffix (name + patn_len + 5))
5152 return 1;
5153
5154 while (name_len >= patn_len)
5155 {
5156 if (strncmp (patn, name, patn_len) == 0
5157 && is_name_suffix (name + patn_len))
5158 return 1;
5159 do
5160 {
5161 name += 1;
5162 name_len -= 1;
5163 }
5164 while (name_len > 0
5165 && name[0] != '.' && (name[0] != '_' || name[1] != '_'));
5166 if (name_len <= 0)
5167 return 0;
5168 if (name[0] == '_')
5169 {
5170 if (!islower (name[2]))
5171 return 0;
5172 name += 2;
5173 name_len -= 2;
5174 }
5175 else
5176 {
5177 if (!islower (name[1]))
5178 return 0;
5179 name += 1;
5180 name_len -= 1;
5181 }
5182 }
5183
5184 return 0;
5185 }
5186
5187
5188 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5189 vector *defn_symbols, updating the list of symbols in OBSTACKP
5190 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5191 OBJFILE is the section containing BLOCK.
5192 SYMTAB is recorded with each symbol added. */
5193
5194 static void
5195 ada_add_block_symbols (struct obstack *obstackp,
5196 struct block *block, const char *name,
5197 domain_enum domain, struct objfile *objfile,
5198 struct symtab *symtab, int wild)
5199 {
5200 struct dict_iterator iter;
5201 int name_len = strlen (name);
5202 /* A matching argument symbol, if any. */
5203 struct symbol *arg_sym;
5204 /* Set true when we find a matching non-argument symbol. */
5205 int found_sym;
5206 struct symbol *sym;
5207
5208 arg_sym = NULL;
5209 found_sym = 0;
5210 if (wild)
5211 {
5212 struct symbol *sym;
5213 ALL_BLOCK_SYMBOLS (block, iter, sym)
5214 {
5215 if (SYMBOL_DOMAIN (sym) == domain &&
5216 wild_match (name, name_len, SYMBOL_LINKAGE_NAME (sym)))
5217 {
5218 switch (SYMBOL_CLASS (sym))
5219 {
5220 case LOC_ARG:
5221 case LOC_LOCAL_ARG:
5222 case LOC_REF_ARG:
5223 case LOC_REGPARM:
5224 case LOC_REGPARM_ADDR:
5225 case LOC_BASEREG_ARG:
5226 case LOC_COMPUTED_ARG:
5227 arg_sym = sym;
5228 break;
5229 case LOC_UNRESOLVED:
5230 continue;
5231 default:
5232 found_sym = 1;
5233 add_defn_to_vec (obstackp,
5234 fixup_symbol_section (sym, objfile),
5235 block, symtab);
5236 break;
5237 }
5238 }
5239 }
5240 }
5241 else
5242 {
5243 ALL_BLOCK_SYMBOLS (block, iter, sym)
5244 {
5245 if (SYMBOL_DOMAIN (sym) == domain)
5246 {
5247 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym), name_len);
5248 if (cmp == 0
5249 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len))
5250 {
5251 switch (SYMBOL_CLASS (sym))
5252 {
5253 case LOC_ARG:
5254 case LOC_LOCAL_ARG:
5255 case LOC_REF_ARG:
5256 case LOC_REGPARM:
5257 case LOC_REGPARM_ADDR:
5258 case LOC_BASEREG_ARG:
5259 case LOC_COMPUTED_ARG:
5260 arg_sym = sym;
5261 break;
5262 case LOC_UNRESOLVED:
5263 break;
5264 default:
5265 found_sym = 1;
5266 add_defn_to_vec (obstackp,
5267 fixup_symbol_section (sym, objfile),
5268 block, symtab);
5269 break;
5270 }
5271 }
5272 }
5273 }
5274 }
5275
5276 if (!found_sym && arg_sym != NULL)
5277 {
5278 add_defn_to_vec (obstackp,
5279 fixup_symbol_section (arg_sym, objfile),
5280 block, symtab);
5281 }
5282
5283 if (!wild)
5284 {
5285 arg_sym = NULL;
5286 found_sym = 0;
5287
5288 ALL_BLOCK_SYMBOLS (block, iter, sym)
5289 {
5290 if (SYMBOL_DOMAIN (sym) == domain)
5291 {
5292 int cmp;
5293
5294 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5295 if (cmp == 0)
5296 {
5297 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5298 if (cmp == 0)
5299 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5300 name_len);
5301 }
5302
5303 if (cmp == 0
5304 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5305 {
5306 switch (SYMBOL_CLASS (sym))
5307 {
5308 case LOC_ARG:
5309 case LOC_LOCAL_ARG:
5310 case LOC_REF_ARG:
5311 case LOC_REGPARM:
5312 case LOC_REGPARM_ADDR:
5313 case LOC_BASEREG_ARG:
5314 case LOC_COMPUTED_ARG:
5315 arg_sym = sym;
5316 break;
5317 case LOC_UNRESOLVED:
5318 break;
5319 default:
5320 found_sym = 1;
5321 add_defn_to_vec (obstackp,
5322 fixup_symbol_section (sym, objfile),
5323 block, symtab);
5324 break;
5325 }
5326 }
5327 }
5328 end_loop2: ;
5329 }
5330
5331 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5332 They aren't parameters, right? */
5333 if (!found_sym && arg_sym != NULL)
5334 {
5335 add_defn_to_vec (obstackp,
5336 fixup_symbol_section (arg_sym, objfile),
5337 block, symtab);
5338 }
5339 }
5340 }
5341 \f
5342 /* Breakpoint-related */
5343
5344 /* Import message from symtab.c. */
5345 extern char no_symtab_msg[];
5346
5347 /* Assuming that LINE is pointing at the beginning of an argument to
5348 'break', return a pointer to the delimiter for the initial segment
5349 of that name. This is the first ':', ' ', or end of LINE. */
5350
5351 char *
5352 ada_start_decode_line_1 (char *line)
5353 {
5354 /* NOTE: strpbrk would be more elegant, but I am reluctant to be
5355 the first to use such a library function in GDB code. */
5356 char *p;
5357 for (p = line; *p != '\000' && *p != ' ' && *p != ':'; p += 1)
5358 ;
5359 return p;
5360 }
5361
5362 /* *SPEC points to a function and line number spec (as in a break
5363 command), following any initial file name specification.
5364
5365 Return all symbol table/line specfications (sals) consistent with the
5366 information in *SPEC and FILE_TABLE in the following sense:
5367 + FILE_TABLE is null, or the sal refers to a line in the file
5368 named by FILE_TABLE.
5369 + If *SPEC points to an argument with a trailing ':LINENUM',
5370 then the sal refers to that line (or one following it as closely as
5371 possible).
5372 + If *SPEC does not start with '*', the sal is in a function with
5373 that name.
5374
5375 Returns with 0 elements if no matching non-minimal symbols found.
5376
5377 If *SPEC begins with a function name of the form <NAME>, then NAME
5378 is taken as a literal name; otherwise the function name is subject
5379 to the usual encoding.
5380
5381 *SPEC is updated to point after the function/line number specification.
5382
5383 FUNFIRSTLINE is non-zero if we desire the first line of real code
5384 in each function.
5385
5386 If CANONICAL is non-NULL, and if any of the sals require a
5387 'canonical line spec', then *CANONICAL is set to point to an array
5388 of strings, corresponding to and equal in length to the returned
5389 list of sals, such that (*CANONICAL)[i] is non-null and contains a
5390 canonical line spec for the ith returned sal, if needed. If no
5391 canonical line specs are required and CANONICAL is non-null,
5392 *CANONICAL is set to NULL.
5393
5394 A 'canonical line spec' is simply a name (in the format of the
5395 breakpoint command) that uniquely identifies a breakpoint position,
5396 with no further contextual information or user selection. It is
5397 needed whenever the file name, function name, and line number
5398 information supplied is insufficient for this unique
5399 identification. Currently overloaded functions, the name '*',
5400 or static functions without a filename yield a canonical line spec.
5401 The array and the line spec strings are allocated on the heap; it
5402 is the caller's responsibility to free them. */
5403
5404 struct symtabs_and_lines
5405 ada_finish_decode_line_1 (char **spec, struct symtab *file_table,
5406 int funfirstline, char ***canonical)
5407 {
5408 struct ada_symbol_info *symbols;
5409 const struct block *block;
5410 int n_matches, i, line_num;
5411 struct symtabs_and_lines selected;
5412 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
5413 char *name;
5414 int is_quoted;
5415
5416 int len;
5417 char *lower_name;
5418 char *unquoted_name;
5419
5420 if (file_table == NULL)
5421 block = block_static_block (get_selected_block (0));
5422 else
5423 block = BLOCKVECTOR_BLOCK (BLOCKVECTOR (file_table), STATIC_BLOCK);
5424
5425 if (canonical != NULL)
5426 *canonical = (char **) NULL;
5427
5428 is_quoted = (**spec && strchr (get_gdb_completer_quote_characters (),
5429 **spec) != NULL);
5430
5431 name = *spec;
5432 if (**spec == '*')
5433 *spec += 1;
5434 else
5435 {
5436 if (is_quoted)
5437 *spec = skip_quoted (*spec);
5438 while (**spec != '\000' &&
5439 !strchr (ada_completer_word_break_characters, **spec))
5440 *spec += 1;
5441 }
5442 len = *spec - name;
5443
5444 line_num = -1;
5445 if (file_table != NULL && (*spec)[0] == ':' && isdigit ((*spec)[1]))
5446 {
5447 line_num = strtol (*spec + 1, spec, 10);
5448 while (**spec == ' ' || **spec == '\t')
5449 *spec += 1;
5450 }
5451
5452 if (name[0] == '*')
5453 {
5454 if (line_num == -1)
5455 error ("Wild-card function with no line number or file name.");
5456
5457 return ada_sals_for_line (file_table->filename, line_num,
5458 funfirstline, canonical, 0);
5459 }
5460
5461 if (name[0] == '\'')
5462 {
5463 name += 1;
5464 len -= 2;
5465 }
5466
5467 if (name[0] == '<')
5468 {
5469 unquoted_name = (char *) alloca (len - 1);
5470 memcpy (unquoted_name, name + 1, len - 2);
5471 unquoted_name[len - 2] = '\000';
5472 lower_name = NULL;
5473 }
5474 else
5475 {
5476 unquoted_name = (char *) alloca (len + 1);
5477 memcpy (unquoted_name, name, len);
5478 unquoted_name[len] = '\000';
5479 lower_name = (char *) alloca (len + 1);
5480 for (i = 0; i < len; i += 1)
5481 lower_name[i] = tolower (name[i]);
5482 lower_name[len] = '\000';
5483 }
5484
5485 n_matches = 0;
5486 if (lower_name != NULL)
5487 n_matches = ada_lookup_symbol_list (ada_encode (lower_name), block,
5488 VAR_DOMAIN, &symbols);
5489 if (n_matches == 0)
5490 n_matches = ada_lookup_symbol_list (unquoted_name, block,
5491 VAR_DOMAIN, &symbols);
5492 if (n_matches == 0 && line_num >= 0)
5493 error ("No line number information found for %s.", unquoted_name);
5494 else if (n_matches == 0)
5495 {
5496 #ifdef HPPA_COMPILER_BUG
5497 /* FIXME: See comment in symtab.c::decode_line_1 */
5498 #undef volatile
5499 volatile struct symtab_and_line val;
5500 #define volatile /*nothing */
5501 #else
5502 struct symtab_and_line val;
5503 #endif
5504 struct minimal_symbol *msymbol;
5505
5506 init_sal (&val);
5507
5508 msymbol = NULL;
5509 if (lower_name != NULL)
5510 msymbol = ada_lookup_simple_minsym (ada_encode (lower_name));
5511 if (msymbol == NULL)
5512 msymbol = ada_lookup_simple_minsym (unquoted_name);
5513 if (msymbol != NULL)
5514 {
5515 val.pc = SYMBOL_VALUE_ADDRESS (msymbol);
5516 val.section = SYMBOL_BFD_SECTION (msymbol);
5517 if (funfirstline)
5518 {
5519 val.pc += FUNCTION_START_OFFSET;
5520 SKIP_PROLOGUE (val.pc);
5521 }
5522 selected.sals = (struct symtab_and_line *)
5523 xmalloc (sizeof (struct symtab_and_line));
5524 selected.sals[0] = val;
5525 selected.nelts = 1;
5526 return selected;
5527 }
5528
5529 if (!have_full_symbols () &&
5530 !have_partial_symbols () && !have_minimal_symbols ())
5531 error ("No symbol table is loaded. Use the \"file\" command.");
5532
5533 error ("Function \"%s\" not defined.", unquoted_name);
5534 return selected; /* for lint */
5535 }
5536
5537 if (line_num >= 0)
5538 {
5539 struct symtabs_and_lines best_sal =
5540 find_sal_from_funcs_and_line (file_table->filename, line_num,
5541 symbols, n_matches);
5542 if (funfirstline)
5543 adjust_pc_past_prologue (&best_sal.sals[0].pc);
5544 return best_sal;
5545 }
5546 else
5547 {
5548 selected.nelts =
5549 user_select_syms (symbols, n_matches, n_matches);
5550 }
5551
5552 selected.sals = (struct symtab_and_line *)
5553 xmalloc (sizeof (struct symtab_and_line) * selected.nelts);
5554 memset (selected.sals, 0, selected.nelts * sizeof (selected.sals[i]));
5555 make_cleanup (xfree, selected.sals);
5556
5557 i = 0;
5558 while (i < selected.nelts)
5559 {
5560 if (SYMBOL_CLASS (symbols[i].sym) == LOC_BLOCK)
5561 selected.sals[i]
5562 = find_function_start_sal (symbols[i].sym, funfirstline);
5563 else if (SYMBOL_LINE (symbols[i].sym) != 0)
5564 {
5565 selected.sals[i].symtab =
5566 symbols[i].symtab
5567 ? symbols[i].symtab : symtab_for_sym (symbols[i].sym);
5568 selected.sals[i].line = SYMBOL_LINE (symbols[i].sym);
5569 }
5570 else if (line_num >= 0)
5571 {
5572 /* Ignore this choice */
5573 symbols[i] = symbols[selected.nelts - 1];
5574 selected.nelts -= 1;
5575 continue;
5576 }
5577 else
5578 error ("Line number not known for symbol \"%s\"", unquoted_name);
5579 i += 1;
5580 }
5581
5582 if (canonical != NULL && (line_num >= 0 || n_matches > 1))
5583 {
5584 *canonical = (char **) xmalloc (sizeof (char *) * selected.nelts);
5585 for (i = 0; i < selected.nelts; i += 1)
5586 (*canonical)[i] =
5587 extended_canonical_line_spec (selected.sals[i],
5588 SYMBOL_PRINT_NAME (symbols[i].sym));
5589 }
5590
5591 discard_cleanups (old_chain);
5592 return selected;
5593 }
5594
5595 /* The (single) sal corresponding to line LINE_NUM in a symbol table
5596 with file name FILENAME that occurs in one of the functions listed
5597 in the symbol fields of SYMBOLS[0 .. NSYMS-1]. */
5598
5599 static struct symtabs_and_lines
5600 find_sal_from_funcs_and_line (const char *filename, int line_num,
5601 struct ada_symbol_info *symbols, int nsyms)
5602 {
5603 struct symtabs_and_lines sals;
5604 int best_index, best;
5605 struct linetable *best_linetable;
5606 struct objfile *objfile;
5607 struct symtab *s;
5608 struct symtab *best_symtab;
5609
5610 read_all_symtabs (filename);
5611
5612 best_index = 0;
5613 best_linetable = NULL;
5614 best_symtab = NULL;
5615 best = 0;
5616 ALL_SYMTABS (objfile, s)
5617 {
5618 struct linetable *l;
5619 int ind, exact;
5620
5621 QUIT;
5622
5623 if (strcmp (filename, s->filename) != 0)
5624 continue;
5625 l = LINETABLE (s);
5626 ind = find_line_in_linetable (l, line_num, symbols, nsyms, &exact);
5627 if (ind >= 0)
5628 {
5629 if (exact)
5630 {
5631 best_index = ind;
5632 best_linetable = l;
5633 best_symtab = s;
5634 goto done;
5635 }
5636 if (best == 0 || l->item[ind].line < best)
5637 {
5638 best = l->item[ind].line;
5639 best_index = ind;
5640 best_linetable = l;
5641 best_symtab = s;
5642 }
5643 }
5644 }
5645
5646 if (best == 0)
5647 error ("Line number not found in designated function.");
5648
5649 done:
5650
5651 sals.nelts = 1;
5652 sals.sals = (struct symtab_and_line *) xmalloc (sizeof (sals.sals[0]));
5653
5654 init_sal (&sals.sals[0]);
5655
5656 sals.sals[0].line = best_linetable->item[best_index].line;
5657 sals.sals[0].pc = best_linetable->item[best_index].pc;
5658 sals.sals[0].symtab = best_symtab;
5659
5660 return sals;
5661 }
5662
5663 /* Return the index in LINETABLE of the best match for LINE_NUM whose
5664 pc falls within one of the functions denoted by the symbol fields
5665 of SYMBOLS[0..NSYMS-1]. Set *EXACTP to 1 if the match is exact,
5666 and 0 otherwise. */
5667
5668 static int
5669 find_line_in_linetable (struct linetable *linetable, int line_num,
5670 struct ada_symbol_info *symbols, int nsyms, int *exactp)
5671 {
5672 int i, len, best_index, best;
5673
5674 if (line_num <= 0 || linetable == NULL)
5675 return -1;
5676
5677 len = linetable->nitems;
5678 for (i = 0, best_index = -1, best = 0; i < len; i += 1)
5679 {
5680 int k;
5681 struct linetable_entry *item = &(linetable->item[i]);
5682
5683 for (k = 0; k < nsyms; k += 1)
5684 {
5685 if (symbols[k].sym != NULL
5686 && SYMBOL_CLASS (symbols[k].sym) == LOC_BLOCK
5687 && item->pc >= BLOCK_START (SYMBOL_BLOCK_VALUE (symbols[k].sym))
5688 && item->pc < BLOCK_END (SYMBOL_BLOCK_VALUE (symbols[k].sym)))
5689 goto candidate;
5690 }
5691 continue;
5692
5693 candidate:
5694
5695 if (item->line == line_num)
5696 {
5697 *exactp = 1;
5698 return i;
5699 }
5700
5701 if (item->line > line_num && (best == 0 || item->line < best))
5702 {
5703 best = item->line;
5704 best_index = i;
5705 }
5706 }
5707
5708 *exactp = 0;
5709 return best_index;
5710 }
5711
5712 /* Find the smallest k >= LINE_NUM such that k is a line number in
5713 LINETABLE, and k falls strictly within a named function that begins at
5714 or before LINE_NUM. Return -1 if there is no such k. */
5715
5716 static int
5717 nearest_line_number_in_linetable (struct linetable *linetable, int line_num)
5718 {
5719 int i, len, best;
5720
5721 if (line_num <= 0 || linetable == NULL || linetable->nitems == 0)
5722 return -1;
5723 len = linetable->nitems;
5724
5725 i = 0;
5726 best = INT_MAX;
5727 while (i < len)
5728 {
5729 struct linetable_entry *item = &(linetable->item[i]);
5730
5731 if (item->line >= line_num && item->line < best)
5732 {
5733 char *func_name;
5734 CORE_ADDR start, end;
5735
5736 func_name = NULL;
5737 find_pc_partial_function (item->pc, &func_name, &start, &end);
5738
5739 if (func_name != NULL && item->pc < end)
5740 {
5741 if (item->line == line_num)
5742 return line_num;
5743 else
5744 {
5745 struct symbol *sym =
5746 standard_lookup (func_name, NULL, VAR_DOMAIN);
5747 if (is_plausible_func_for_line (sym, line_num))
5748 best = item->line;
5749 else
5750 {
5751 do
5752 i += 1;
5753 while (i < len && linetable->item[i].pc < end);
5754 continue;
5755 }
5756 }
5757 }
5758 }
5759
5760 i += 1;
5761 }
5762
5763 return (best == INT_MAX) ? -1 : best;
5764 }
5765
5766
5767 /* Return the next higher index, k, into LINETABLE such that k > IND,
5768 entry k in LINETABLE has a line number equal to LINE_NUM, k
5769 corresponds to a PC that is in a function different from that
5770 corresponding to IND, and falls strictly within a named function
5771 that begins at a line at or preceding STARTING_LINE.
5772 Return -1 if there is no such k.
5773 IND == -1 corresponds to no function. */
5774
5775 static int
5776 find_next_line_in_linetable (struct linetable *linetable, int line_num,
5777 int starting_line, int ind)
5778 {
5779 int i, len;
5780
5781 if (line_num <= 0 || linetable == NULL || ind >= linetable->nitems)
5782 return -1;
5783 len = linetable->nitems;
5784
5785 if (ind >= 0)
5786 {
5787 CORE_ADDR start, end;
5788
5789 if (find_pc_partial_function (linetable->item[ind].pc,
5790 (char **) NULL, &start, &end))
5791 {
5792 while (ind < len && linetable->item[ind].pc < end)
5793 ind += 1;
5794 }
5795 else
5796 ind += 1;
5797 }
5798 else
5799 ind = 0;
5800
5801 i = ind;
5802 while (i < len)
5803 {
5804 struct linetable_entry *item = &(linetable->item[i]);
5805
5806 if (item->line >= line_num)
5807 {
5808 char *func_name;
5809 CORE_ADDR start, end;
5810
5811 func_name = NULL;
5812 find_pc_partial_function (item->pc, &func_name, &start, &end);
5813
5814 if (func_name != NULL && item->pc < end)
5815 {
5816 if (item->line == line_num)
5817 {
5818 struct symbol *sym =
5819 standard_lookup (func_name, NULL, VAR_DOMAIN);
5820 if (is_plausible_func_for_line (sym, starting_line))
5821 return i;
5822 else
5823 {
5824 while ((i + 1) < len && linetable->item[i + 1].pc < end)
5825 i += 1;
5826 }
5827 }
5828 }
5829 }
5830 i += 1;
5831 }
5832
5833 return -1;
5834 }
5835
5836 /* True iff function symbol SYM starts somewhere at or before line #
5837 LINE_NUM. */
5838
5839 static int
5840 is_plausible_func_for_line (struct symbol *sym, int line_num)
5841 {
5842 struct symtab_and_line start_sal;
5843
5844 if (sym == NULL)
5845 return 0;
5846
5847 start_sal = find_function_start_sal (sym, 0);
5848
5849 return (start_sal.line != 0 && line_num >= start_sal.line);
5850 }
5851
5852 /* Read in all symbol tables corresponding to partial symbol tables
5853 with file name FILENAME. */
5854
5855 static void
5856 read_all_symtabs (const char *filename)
5857 {
5858 struct partial_symtab *ps;
5859 struct objfile *objfile;
5860
5861 ALL_PSYMTABS (objfile, ps)
5862 {
5863 QUIT;
5864
5865 if (strcmp (filename, ps->filename) == 0)
5866 PSYMTAB_TO_SYMTAB (ps);
5867 }
5868 }
5869
5870 /* All sals corresponding to line LINE_NUM in a symbol table from file
5871 FILENAME, as filtered by the user. Filter out any lines that
5872 reside in functions with "suppressed" names (not corresponding to
5873 explicit Ada functions), if there is at least one in a function
5874 with a non-suppressed name. If CANONICAL is not null, set
5875 it to a corresponding array of canonical line specs.
5876 If ONE_LOCATION_ONLY is set and several matches are found for
5877 the given location, then automatically select the first match found
5878 instead of asking the user which instance should be returned. */
5879
5880 struct symtabs_and_lines
5881 ada_sals_for_line (const char *filename, int line_num,
5882 int funfirstline, char ***canonical,
5883 int one_location_only)
5884 {
5885 struct symtabs_and_lines result;
5886 struct objfile *objfile;
5887 struct symtab *s;
5888 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
5889 size_t len;
5890
5891 read_all_symtabs (filename);
5892
5893 result.sals =
5894 (struct symtab_and_line *) xmalloc (4 * sizeof (result.sals[0]));
5895 result.nelts = 0;
5896 len = 4;
5897 make_cleanup (free_current_contents, &result.sals);
5898
5899 ALL_SYMTABS (objfile, s)
5900 {
5901 int ind, target_line_num;
5902
5903 QUIT;
5904
5905 if (strcmp (s->filename, filename) != 0)
5906 continue;
5907
5908 target_line_num =
5909 nearest_line_number_in_linetable (LINETABLE (s), line_num);
5910 if (target_line_num == -1)
5911 continue;
5912
5913 ind = -1;
5914 while (1)
5915 {
5916 ind =
5917 find_next_line_in_linetable (LINETABLE (s),
5918 target_line_num, line_num, ind);
5919
5920 if (ind < 0)
5921 break;
5922
5923 GROW_VECT (result.sals, len, result.nelts + 1);
5924 init_sal (&result.sals[result.nelts]);
5925 result.sals[result.nelts].line = line_num;
5926 result.sals[result.nelts].pc = LINETABLE (s)->item[ind].pc;
5927 result.sals[result.nelts].symtab = s;
5928
5929 if (funfirstline)
5930 adjust_pc_past_prologue (&result.sals[result.nelts].pc);
5931
5932 result.nelts += 1;
5933 }
5934 }
5935
5936 if (canonical != NULL || result.nelts > 1)
5937 {
5938 int k, j, n;
5939 char **func_names = (char **) alloca (result.nelts * sizeof (char *));
5940 int first_choice = (result.nelts > 1) ? 2 : 1;
5941 int *choices = (int *) alloca (result.nelts * sizeof (int));
5942
5943 for (k = 0; k < result.nelts; k += 1)
5944 {
5945 find_pc_partial_function (result.sals[k].pc, &func_names[k],
5946 (CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
5947 if (func_names[k] == NULL)
5948 error ("Could not find function for one or more breakpoints.");
5949 }
5950
5951 /* Remove suppressed names, unless all are suppressed. */
5952 for (j = 0; j < result.nelts; j += 1)
5953 if (!is_suppressed_name (func_names[j]))
5954 {
5955 /* At least one name is unsuppressed, so remove all
5956 suppressed names. */
5957 for (k = n = 0; k < result.nelts; k += 1)
5958 if (!is_suppressed_name (func_names[k]))
5959 {
5960 func_names[n] = func_names[k];
5961 result.sals[n] = result.sals[k];
5962 n += 1;
5963 }
5964 result.nelts = n;
5965 break;
5966 }
5967
5968 if (result.nelts > 1)
5969 {
5970 if (one_location_only)
5971 {
5972 /* Automatically select the first of all possible choices. */
5973 n = 1;
5974 choices[0] = 0;
5975 }
5976 else
5977 {
5978 printf_unfiltered ("[0] cancel\n");
5979 if (result.nelts > 1)
5980 printf_unfiltered ("[1] all\n");
5981 for (k = 0; k < result.nelts; k += 1)
5982 printf_unfiltered ("[%d] %s\n", k + first_choice,
5983 ada_decode (func_names[k]));
5984
5985 n = get_selections (choices, result.nelts, result.nelts,
5986 result.nelts > 1, "instance-choice");
5987 }
5988
5989 for (k = 0; k < n; k += 1)
5990 {
5991 result.sals[k] = result.sals[choices[k]];
5992 func_names[k] = func_names[choices[k]];
5993 }
5994 result.nelts = n;
5995 }
5996
5997 if (canonical != NULL && result.nelts == 0)
5998 *canonical = NULL;
5999 else if (canonical != NULL)
6000 {
6001 *canonical = (char **) xmalloc (result.nelts * sizeof (char **));
6002 make_cleanup (xfree, *canonical);
6003 for (k = 0; k < result.nelts; k += 1)
6004 {
6005 (*canonical)[k] =
6006 extended_canonical_line_spec (result.sals[k], func_names[k]);
6007 if ((*canonical)[k] == NULL)
6008 error ("Could not locate one or more breakpoints.");
6009 make_cleanup (xfree, (*canonical)[k]);
6010 }
6011 }
6012 }
6013
6014 if (result.nelts == 0)
6015 {
6016 do_cleanups (old_chain);
6017 result.sals = NULL;
6018 }
6019 else
6020 discard_cleanups (old_chain);
6021 return result;
6022 }
6023
6024
6025 /* A canonical line specification of the form FILE:NAME:LINENUM for
6026 symbol table and line data SAL. NULL if insufficient
6027 information. The caller is responsible for releasing any space
6028 allocated. */
6029
6030 static char *
6031 extended_canonical_line_spec (struct symtab_and_line sal, const char *name)
6032 {
6033 char *r;
6034
6035 if (sal.symtab == NULL || sal.symtab->filename == NULL || sal.line <= 0)
6036 return NULL;
6037
6038 r = (char *) xmalloc (strlen (name) + strlen (sal.symtab->filename)
6039 + sizeof (sal.line) * 3 + 3);
6040 sprintf (r, "%s:'%s':%d", sal.symtab->filename, name, sal.line);
6041 return r;
6042 }
6043
6044 /* If the main procedure is written in Ada, then return its name.
6045 The result is good until the next call. Return NULL if the main
6046 procedure doesn't appear to be in Ada. */
6047
6048 char *
6049 ada_main_name (void)
6050 {
6051 struct minimal_symbol *msym;
6052 CORE_ADDR main_program_name_addr;
6053 static char main_program_name[1024];
6054 /* For Ada, the name of the main procedure is stored in a specific
6055 string constant, generated by the binder. Look for that symbol,
6056 extract its address, and then read that string. If we didn't find
6057 that string, then most probably the main procedure is not written
6058 in Ada. */
6059 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
6060
6061 if (msym != NULL)
6062 {
6063 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
6064 if (main_program_name_addr == 0)
6065 error ("Invalid address for Ada main program name.");
6066
6067 extract_string (main_program_name_addr, main_program_name);
6068 return main_program_name;
6069 }
6070
6071 /* The main procedure doesn't seem to be in Ada. */
6072 return NULL;
6073 }
6074
6075 /* Return type of Ada breakpoint associated with bp_stat:
6076 0 if not an Ada-specific breakpoint, 1 for break on specific exception,
6077 2 for break on unhandled exception, 3 for assert. */
6078
6079 static int
6080 ada_exception_breakpoint_type (bpstat bs)
6081 {
6082 #ifdef GNAT_GDB
6083 return ((! bs || ! bs->breakpoint_at) ? 0
6084 : bs->breakpoint_at->break_on_exception);
6085 #else
6086 return 0;
6087 #endif
6088 }
6089
6090 /* True iff FRAME is very likely to be that of a function that is
6091 part of the runtime system. This is all very heuristic, but is
6092 intended to be used as advice as to what frames are uninteresting
6093 to most users. */
6094
6095 static int
6096 is_known_support_routine (struct frame_info *frame)
6097 {
6098 struct frame_info *next_frame = get_next_frame (frame);
6099 /* If frame is not innermost, that normally means that frame->pc
6100 points to *after* the call instruction, and we want to get the line
6101 containing the call, never the next line. But if the next frame is
6102 a signal_handler_caller or a dummy frame, then the next frame was
6103 not entered as the result of a call, and we want to get the line
6104 containing frame->pc. */
6105 const int pc_is_after_call =
6106 next_frame != NULL
6107 && get_frame_type (next_frame) != SIGTRAMP_FRAME
6108 && get_frame_type (next_frame) != DUMMY_FRAME;
6109 struct symtab_and_line sal
6110 = find_pc_line (get_frame_pc (frame), pc_is_after_call);
6111 char *func_name;
6112 int i;
6113 struct stat st;
6114
6115 /* The heuristic:
6116 1. The symtab is null (indicating no debugging symbols)
6117 2. The symtab's filename does not exist.
6118 3. The object file's name is one of the standard libraries.
6119 4. The symtab's file name has the form of an Ada library source file.
6120 5. The function at frame's PC has a GNAT-compiler-generated name. */
6121
6122 if (sal.symtab == NULL)
6123 return 1;
6124
6125 /* On some systems (e.g. VxWorks), the kernel contains debugging
6126 symbols; in this case, the filename referenced by these symbols
6127 does not exists. */
6128
6129 if (stat (sal.symtab->filename, &st))
6130 return 1;
6131
6132 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
6133 {
6134 re_comp (known_runtime_file_name_patterns[i]);
6135 if (re_exec (sal.symtab->filename))
6136 return 1;
6137 }
6138 if (sal.symtab->objfile != NULL)
6139 {
6140 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
6141 {
6142 re_comp (known_runtime_file_name_patterns[i]);
6143 if (re_exec (sal.symtab->objfile->name))
6144 return 1;
6145 }
6146 }
6147
6148 /* If the frame PC points after the call instruction, then we need to
6149 decrement it in order to search for the function associated to this
6150 PC. Otherwise, if the associated call was the last instruction of
6151 the function, we might either find the wrong function or even fail
6152 during the function name lookup. */
6153 if (pc_is_after_call)
6154 func_name = function_name_from_pc (get_frame_pc (frame) - 1);
6155 else
6156 func_name = function_name_from_pc (get_frame_pc (frame));
6157
6158 if (func_name == NULL)
6159 return 1;
6160
6161 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
6162 {
6163 re_comp (known_auxiliary_function_name_patterns[i]);
6164 if (re_exec (func_name))
6165 return 1;
6166 }
6167
6168 return 0;
6169 }
6170
6171 /* Find the first frame that contains debugging information and that is not
6172 part of the Ada run-time, starting from FI and moving upward. */
6173
6174 void
6175 ada_find_printable_frame (struct frame_info *fi)
6176 {
6177 for (; fi != NULL; fi = get_prev_frame (fi))
6178 {
6179 if (!is_known_support_routine (fi))
6180 {
6181 select_frame (fi);
6182 break;
6183 }
6184 }
6185
6186 }
6187
6188 /* Name found for exception associated with last bpstat sent to
6189 ada_adjust_exception_stop. Set to the null string if that bpstat
6190 did not correspond to an Ada exception or no name could be found. */
6191
6192 static char last_exception_name[256];
6193
6194 /* If BS indicates a stop in an Ada exception, try to go up to a frame
6195 that will be meaningful to the user, and save the name of the last
6196 exception (truncated, if necessary) in last_exception_name. */
6197
6198 void
6199 ada_adjust_exception_stop (bpstat bs)
6200 {
6201 CORE_ADDR addr;
6202 struct frame_info *fi;
6203 int frame_level;
6204 char *selected_frame_func;
6205
6206 addr = 0;
6207 last_exception_name[0] = '\0';
6208 fi = get_selected_frame ();
6209 selected_frame_func = function_name_from_pc (get_frame_pc (fi));
6210
6211 switch (ada_exception_breakpoint_type (bs))
6212 {
6213 default:
6214 return;
6215 case 1:
6216 break;
6217 case 2:
6218 /* Unhandled exceptions. Select the frame corresponding to
6219 ada.exceptions.process_raise_exception. This frame is at
6220 least 2 levels up, so we simply skip the first 2 frames
6221 without checking the name of their associated function. */
6222 for (frame_level = 0; frame_level < 2; frame_level += 1)
6223 if (fi != NULL)
6224 fi = get_prev_frame (fi);
6225 while (fi != NULL)
6226 {
6227 const char *func_name = function_name_from_pc (get_frame_pc (fi));
6228 if (func_name != NULL
6229 && strcmp (func_name, process_raise_exception_name) == 0)
6230 break; /* We found the frame we were looking for... */
6231 fi = get_prev_frame (fi);
6232 }
6233 if (fi == NULL)
6234 break;
6235 select_frame (fi);
6236 break;
6237 }
6238
6239 addr = parse_and_eval_address ("e.full_name");
6240
6241 if (addr != 0)
6242 read_memory (addr, last_exception_name,
6243 sizeof (last_exception_name) - 1);
6244 last_exception_name[sizeof (last_exception_name) - 1] = '\0';
6245 ada_find_printable_frame (get_selected_frame ());
6246 }
6247
6248 /* Output Ada exception name (if any) associated with last call to
6249 ada_adjust_exception_stop. */
6250
6251 void
6252 ada_print_exception_stop (bpstat bs)
6253 {
6254 if (last_exception_name[0] != '\000')
6255 {
6256 ui_out_text (uiout, last_exception_name);
6257 ui_out_text (uiout, " at ");
6258 }
6259 }
6260
6261 /* Parses the CONDITION string associated with a breakpoint exception
6262 to get the name of the exception on which the breakpoint has been
6263 set. The returned string needs to be deallocated after use. */
6264
6265 static char *
6266 exception_name_from_cond (const char *condition)
6267 {
6268 char *start, *end, *exception_name;
6269 int exception_name_len;
6270
6271 start = strrchr (condition, '&') + 1;
6272 end = strchr (start, ')') - 1;
6273 exception_name_len = end - start + 1;
6274
6275 exception_name =
6276 (char *) xmalloc ((exception_name_len + 1) * sizeof (char));
6277 sprintf (exception_name, "%.*s", exception_name_len, start);
6278
6279 return exception_name;
6280 }
6281
6282 /* Print Ada-specific exception information about B, other than task
6283 clause. Return non-zero iff B was an Ada exception breakpoint. */
6284
6285 int
6286 ada_print_exception_breakpoint_nontask (struct breakpoint *b)
6287 {
6288 #ifdef GNAT_GDB
6289 if (b->break_on_exception == 1)
6290 {
6291 if (b->cond_string) /* the breakpoint is on a specific exception. */
6292 {
6293 char *exception_name = exception_name_from_cond (b->cond_string);
6294
6295 make_cleanup (xfree, exception_name);
6296
6297 ui_out_text (uiout, "on ");
6298 if (ui_out_is_mi_like_p (uiout))
6299 ui_out_field_string (uiout, "exception", exception_name);
6300 else
6301 {
6302 ui_out_text (uiout, "exception ");
6303 ui_out_text (uiout, exception_name);
6304 ui_out_text (uiout, " ");
6305 }
6306 }
6307 else
6308 ui_out_text (uiout, "on all exceptions");
6309 }
6310 else if (b->break_on_exception == 2)
6311 ui_out_text (uiout, "on unhandled exception");
6312 else if (b->break_on_exception == 3)
6313 ui_out_text (uiout, "on assert failure");
6314 else
6315 return 0;
6316 return 1;
6317 #else
6318 return 0;
6319 #endif
6320 }
6321
6322 /* Print task identifier for breakpoint B, if it is an Ada-specific
6323 breakpoint with non-zero tasking information. */
6324
6325 void
6326 ada_print_exception_breakpoint_task (struct breakpoint *b)
6327 {
6328 #ifdef GNAT_GDB
6329 if (b->task != 0)
6330 {
6331 ui_out_text (uiout, " task ");
6332 ui_out_field_int (uiout, "task", b->task);
6333 }
6334 #endif
6335 }
6336
6337 int
6338 ada_is_exception_sym (struct symbol *sym)
6339 {
6340 char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
6341
6342 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
6343 && SYMBOL_CLASS (sym) != LOC_BLOCK
6344 && SYMBOL_CLASS (sym) != LOC_CONST
6345 && type_name != NULL && strcmp (type_name, "exception") == 0);
6346 }
6347
6348 int
6349 ada_maybe_exception_partial_symbol (struct partial_symbol *sym)
6350 {
6351 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
6352 && SYMBOL_CLASS (sym) != LOC_BLOCK
6353 && SYMBOL_CLASS (sym) != LOC_CONST);
6354 }
6355
6356 /* Cause the appropriate error if no appropriate runtime symbol is
6357 found to set a breakpoint, using ERR_DESC to describe the
6358 breakpoint. */
6359
6360 static void
6361 error_breakpoint_runtime_sym_not_found (const char *err_desc)
6362 {
6363 /* If we are not debugging an Ada program, we can not put exception
6364 breakpoints! */
6365
6366 if (ada_update_initial_language (language_unknown, NULL) != language_ada)
6367 error ("Unable to break on %s. Is this an Ada main program?", err_desc);
6368
6369 /* If the symbol does not exist, then check that the program is
6370 already started, to make sure that shared libraries have been
6371 loaded. If it is not started, this may mean that the symbol is
6372 in a shared library. */
6373
6374 if (ptid_get_pid (inferior_ptid) == 0)
6375 error ("Unable to break on %s. Try to start the program first.", err_desc);
6376
6377 /* At this point, we know that we are debugging an Ada program and
6378 that the inferior has been started, but we still are not able to
6379 find the run-time symbols. That can mean that we are in
6380 configurable run time mode, or that a-except as been optimized
6381 out by the linker... In any case, at this point it is not worth
6382 supporting this feature. */
6383
6384 error ("Cannot break on %s in this configuration.", err_desc);
6385 }
6386
6387 /* Test if NAME is currently defined, and that either ALLOW_TRAMP or
6388 the symbol is not a shared-library trampoline. Return the result of
6389 the test. */
6390
6391 static int
6392 is_runtime_sym_defined (const char *name, int allow_tramp)
6393 {
6394 struct minimal_symbol *msym;
6395
6396 msym = lookup_minimal_symbol (name, NULL, NULL);
6397 return (msym != NULL && msym->type != mst_unknown
6398 && (allow_tramp || msym->type != mst_solib_trampoline));
6399 }
6400
6401 /* If ARG points to an Ada exception or assert breakpoint, rewrite
6402 into equivalent form. Return resulting argument string. Set
6403 *BREAK_ON_EXCEPTIONP to 1 for ordinary break on exception, 2 for
6404 break on unhandled, 3 for assert, 0 otherwise. */
6405
6406 char *
6407 ada_breakpoint_rewrite (char *arg, int *break_on_exceptionp)
6408 {
6409 if (arg == NULL)
6410 return arg;
6411 *break_on_exceptionp = 0;
6412 if (current_language->la_language == language_ada
6413 && strncmp (arg, "exception", 9) == 0
6414 && (arg[9] == ' ' || arg[9] == '\t' || arg[9] == '\0'))
6415 {
6416 char *tok, *end_tok;
6417 int toklen;
6418 int has_exception_propagation =
6419 is_runtime_sym_defined (raise_sym_name, 1);
6420
6421 *break_on_exceptionp = 1;
6422
6423 tok = arg + 9;
6424 while (*tok == ' ' || *tok == '\t')
6425 tok += 1;
6426
6427 end_tok = tok;
6428
6429 while (*end_tok != ' ' && *end_tok != '\t' && *end_tok != '\000')
6430 end_tok += 1;
6431
6432 toklen = end_tok - tok;
6433
6434 arg = (char *) xmalloc (sizeof (longest_exception_template) + toklen);
6435 make_cleanup (xfree, arg);
6436 if (toklen == 0)
6437 {
6438 if (has_exception_propagation)
6439 sprintf (arg, "'%s'", raise_sym_name);
6440 else
6441 error_breakpoint_runtime_sym_not_found ("exception");
6442 }
6443 else if (strncmp (tok, "unhandled", toklen) == 0)
6444 {
6445 if (is_runtime_sym_defined (raise_unhandled_sym_name, 1))
6446 sprintf (arg, "'%s'", raise_unhandled_sym_name);
6447 else
6448 error_breakpoint_runtime_sym_not_found ("exception");
6449
6450 *break_on_exceptionp = 2;
6451 }
6452 else
6453 {
6454 if (is_runtime_sym_defined (raise_sym_name, 0))
6455 sprintf (arg, "'%s' if long_integer(e) = long_integer(&%.*s)",
6456 raise_sym_name, toklen, tok);
6457 else
6458 error_breakpoint_runtime_sym_not_found ("specific exception");
6459 }
6460 }
6461 else if (current_language->la_language == language_ada
6462 && strncmp (arg, "assert", 6) == 0
6463 && (arg[6] == ' ' || arg[6] == '\t' || arg[6] == '\0'))
6464 {
6465 char *tok = arg + 6;
6466
6467 if (!is_runtime_sym_defined (raise_assert_sym_name, 1))
6468 error_breakpoint_runtime_sym_not_found ("failed assertion");
6469
6470 *break_on_exceptionp = 3;
6471
6472 arg =
6473 (char *) xmalloc (sizeof (raise_assert_sym_name) + strlen (tok) + 2);
6474 make_cleanup (xfree, arg);
6475 sprintf (arg, "'%s'%s", raise_assert_sym_name, tok);
6476 }
6477 return arg;
6478 }
6479 \f
6480
6481 /* Field Access */
6482
6483 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6484 to be invisible to users. */
6485
6486 int
6487 ada_is_ignored_field (struct type *type, int field_num)
6488 {
6489 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6490 return 1;
6491 else
6492 {
6493 const char *name = TYPE_FIELD_NAME (type, field_num);
6494 return (name == NULL
6495 || (name[0] == '_' && strncmp (name, "_parent", 7) != 0));
6496 }
6497 }
6498
6499 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6500 pointer or reference type whose ultimate target has a tag field. */
6501
6502 int
6503 ada_is_tagged_type (struct type *type, int refok)
6504 {
6505 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
6506 }
6507
6508 /* True iff TYPE represents the type of X'Tag */
6509
6510 int
6511 ada_is_tag_type (struct type *type)
6512 {
6513 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6514 return 0;
6515 else {
6516 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6517 return (name != NULL
6518 && strcmp (name, "ada__tags__dispatch_table") == 0);
6519 }
6520 }
6521
6522 /* The type of the tag on VAL. */
6523
6524 struct type *
6525 ada_tag_type (struct value *val)
6526 {
6527 return ada_lookup_struct_elt_type (VALUE_TYPE (val), "_tag", 1, 0, NULL);
6528 }
6529
6530 /* The value of the tag on VAL. */
6531
6532 struct value *
6533 ada_value_tag (struct value *val)
6534 {
6535 return ada_value_struct_elt (val, "_tag", "record");
6536 }
6537
6538 /* The value of the tag on the object of type TYPE whose contents are
6539 saved at VALADDR, if it is non-null, or is at memory address
6540 ADDRESS. */
6541
6542 static struct value *
6543 value_tag_from_contents_and_address (struct type *type, char *valaddr,
6544 CORE_ADDR address)
6545 {
6546 int tag_byte_offset, dummy1, dummy2;
6547 struct type *tag_type;
6548 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6549 &dummy1, &dummy2))
6550 {
6551 char *valaddr1 = (valaddr == NULL) ? NULL : valaddr + tag_byte_offset;
6552 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6553
6554 return value_from_contents_and_address (tag_type, valaddr1, address1);
6555 }
6556 return NULL;
6557 }
6558
6559 static struct type *
6560 type_from_tag (struct value *tag)
6561 {
6562 const char *type_name = ada_tag_name (tag);
6563 if (type_name != NULL)
6564 return ada_find_any_type (ada_encode (type_name));
6565 return NULL;
6566 }
6567
6568 struct tag_args {
6569 struct value *tag;
6570 char *name;
6571 };
6572
6573 /* Wrapper function used by ada_tag_name. Given a struct tag_args*
6574 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
6575 The value stored in ARGS->name is valid until the next call to
6576 ada_tag_name_1. */
6577
6578 static int
6579 ada_tag_name_1 (void *args0)
6580 {
6581 struct tag_args *args = (struct tag_args *) args0;
6582 static char name[1024];
6583 char* p;
6584 struct value *val;
6585 args->name = NULL;
6586 val = ada_value_struct_elt (args->tag, "tsd", NULL);
6587 if (val == NULL)
6588 return 0;
6589 val = ada_value_struct_elt (val, "expanded_name", NULL);
6590 if (val == NULL)
6591 return 0;
6592 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6593 for (p = name; *p != '\0'; p += 1)
6594 if (isalpha (*p))
6595 *p = tolower (*p);
6596 args->name = name;
6597 return 0;
6598 }
6599
6600 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6601 * a C string. */
6602
6603 const char *
6604 ada_tag_name (struct value *tag)
6605 {
6606 struct tag_args args;
6607 if (! ada_is_tag_type (VALUE_TYPE (tag)))
6608 return NULL;
6609 args.tag = tag;
6610 args.name = NULL;
6611 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
6612 return args.name;
6613 }
6614
6615 /* The parent type of TYPE, or NULL if none. */
6616
6617 struct type *
6618 ada_parent_type (struct type *type)
6619 {
6620 int i;
6621
6622 CHECK_TYPEDEF (type);
6623
6624 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6625 return NULL;
6626
6627 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6628 if (ada_is_parent_field (type, i))
6629 return check_typedef (TYPE_FIELD_TYPE (type, i));
6630
6631 return NULL;
6632 }
6633
6634 /* True iff field number FIELD_NUM of structure type TYPE contains the
6635 parent-type (inherited) fields of a derived type. Assumes TYPE is
6636 a structure type with at least FIELD_NUM+1 fields. */
6637
6638 int
6639 ada_is_parent_field (struct type *type, int field_num)
6640 {
6641 const char *name = TYPE_FIELD_NAME (check_typedef (type), field_num);
6642 return (name != NULL
6643 && (strncmp (name, "PARENT", 6) == 0
6644 || strncmp (name, "_parent", 7) == 0));
6645 }
6646
6647 /* True iff field number FIELD_NUM of structure type TYPE is a
6648 transparent wrapper field (which should be silently traversed when doing
6649 field selection and flattened when printing). Assumes TYPE is a
6650 structure type with at least FIELD_NUM+1 fields. Such fields are always
6651 structures. */
6652
6653 int
6654 ada_is_wrapper_field (struct type *type, int field_num)
6655 {
6656 const char *name = TYPE_FIELD_NAME (type, field_num);
6657 return (name != NULL
6658 && (strncmp (name, "PARENT", 6) == 0
6659 || strcmp (name, "REP") == 0
6660 || strncmp (name, "_parent", 7) == 0
6661 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6662 }
6663
6664 /* True iff field number FIELD_NUM of structure or union type TYPE
6665 is a variant wrapper. Assumes TYPE is a structure type with at least
6666 FIELD_NUM+1 fields. */
6667
6668 int
6669 ada_is_variant_part (struct type *type, int field_num)
6670 {
6671 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6672 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
6673 || (is_dynamic_field (type, field_num)
6674 && TYPE_CODE (TYPE_TARGET_TYPE (field_type)) ==
6675 TYPE_CODE_UNION));
6676 }
6677
6678 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6679 whose discriminants are contained in the record type OUTER_TYPE,
6680 returns the type of the controlling discriminant for the variant. */
6681
6682 struct type *
6683 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6684 {
6685 char *name = ada_variant_discrim_name (var_type);
6686 struct type *type =
6687 ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
6688 if (type == NULL)
6689 return builtin_type_int;
6690 else
6691 return type;
6692 }
6693
6694 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6695 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6696 represents a 'when others' clause; otherwise 0. */
6697
6698 int
6699 ada_is_others_clause (struct type *type, int field_num)
6700 {
6701 const char *name = TYPE_FIELD_NAME (type, field_num);
6702 return (name != NULL && name[0] == 'O');
6703 }
6704
6705 /* Assuming that TYPE0 is the type of the variant part of a record,
6706 returns the name of the discriminant controlling the variant.
6707 The value is valid until the next call to ada_variant_discrim_name. */
6708
6709 char *
6710 ada_variant_discrim_name (struct type *type0)
6711 {
6712 static char *result = NULL;
6713 static size_t result_len = 0;
6714 struct type *type;
6715 const char *name;
6716 const char *discrim_end;
6717 const char *discrim_start;
6718
6719 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6720 type = TYPE_TARGET_TYPE (type0);
6721 else
6722 type = type0;
6723
6724 name = ada_type_name (type);
6725
6726 if (name == NULL || name[0] == '\000')
6727 return "";
6728
6729 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6730 discrim_end -= 1)
6731 {
6732 if (strncmp (discrim_end, "___XVN", 6) == 0)
6733 break;
6734 }
6735 if (discrim_end == name)
6736 return "";
6737
6738 for (discrim_start = discrim_end; discrim_start != name + 3;
6739 discrim_start -= 1)
6740 {
6741 if (discrim_start == name + 1)
6742 return "";
6743 if ((discrim_start > name + 3
6744 && strncmp (discrim_start - 3, "___", 3) == 0)
6745 || discrim_start[-1] == '.')
6746 break;
6747 }
6748
6749 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6750 strncpy (result, discrim_start, discrim_end - discrim_start);
6751 result[discrim_end - discrim_start] = '\0';
6752 return result;
6753 }
6754
6755 /* Scan STR for a subtype-encoded number, beginning at position K.
6756 Put the position of the character just past the number scanned in
6757 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6758 Return 1 if there was a valid number at the given position, and 0
6759 otherwise. A "subtype-encoded" number consists of the absolute value
6760 in decimal, followed by the letter 'm' to indicate a negative number.
6761 Assumes 0m does not occur. */
6762
6763 int
6764 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6765 {
6766 ULONGEST RU;
6767
6768 if (!isdigit (str[k]))
6769 return 0;
6770
6771 /* Do it the hard way so as not to make any assumption about
6772 the relationship of unsigned long (%lu scan format code) and
6773 LONGEST. */
6774 RU = 0;
6775 while (isdigit (str[k]))
6776 {
6777 RU = RU * 10 + (str[k] - '0');
6778 k += 1;
6779 }
6780
6781 if (str[k] == 'm')
6782 {
6783 if (R != NULL)
6784 *R = (-(LONGEST) (RU - 1)) - 1;
6785 k += 1;
6786 }
6787 else if (R != NULL)
6788 *R = (LONGEST) RU;
6789
6790 /* NOTE on the above: Technically, C does not say what the results of
6791 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6792 number representable as a LONGEST (although either would probably work
6793 in most implementations). When RU>0, the locution in the then branch
6794 above is always equivalent to the negative of RU. */
6795
6796 if (new_k != NULL)
6797 *new_k = k;
6798 return 1;
6799 }
6800
6801 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6802 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6803 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6804
6805 int
6806 ada_in_variant (LONGEST val, struct type *type, int field_num)
6807 {
6808 const char *name = TYPE_FIELD_NAME (type, field_num);
6809 int p;
6810
6811 p = 0;
6812 while (1)
6813 {
6814 switch (name[p])
6815 {
6816 case '\0':
6817 return 0;
6818 case 'S':
6819 {
6820 LONGEST W;
6821 if (!ada_scan_number (name, p + 1, &W, &p))
6822 return 0;
6823 if (val == W)
6824 return 1;
6825 break;
6826 }
6827 case 'R':
6828 {
6829 LONGEST L, U;
6830 if (!ada_scan_number (name, p + 1, &L, &p)
6831 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6832 return 0;
6833 if (val >= L && val <= U)
6834 return 1;
6835 break;
6836 }
6837 case 'O':
6838 return 1;
6839 default:
6840 return 0;
6841 }
6842 }
6843 }
6844
6845 /* FIXME: Lots of redundancy below. Try to consolidate. */
6846
6847 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6848 ARG_TYPE, extract and return the value of one of its (non-static)
6849 fields. FIELDNO says which field. Differs from value_primitive_field
6850 only in that it can handle packed values of arbitrary type. */
6851
6852 static struct value *
6853 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6854 struct type *arg_type)
6855 {
6856 struct type *type;
6857
6858 CHECK_TYPEDEF (arg_type);
6859 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6860
6861 /* Handle packed fields. */
6862
6863 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6864 {
6865 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6866 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6867
6868 return ada_value_primitive_packed_val (arg1, VALUE_CONTENTS (arg1),
6869 offset + bit_pos / 8,
6870 bit_pos % 8, bit_size, type);
6871 }
6872 else
6873 return value_primitive_field (arg1, offset, fieldno, arg_type);
6874 }
6875
6876 /* Find field with name NAME in object of type TYPE. If found, return 1
6877 after setting *FIELD_TYPE_P to the field's type, *BYTE_OFFSET_P to
6878 OFFSET + the byte offset of the field within an object of that type,
6879 *BIT_OFFSET_P to the bit offset modulo byte size of the field, and
6880 *BIT_SIZE_P to its size in bits if the field is packed, and 0 otherwise.
6881 Looks inside wrappers for the field. Returns 0 if field not
6882 found. */
6883 static int
6884 find_struct_field (char *name, struct type *type, int offset,
6885 struct type **field_type_p,
6886 int *byte_offset_p, int *bit_offset_p, int *bit_size_p)
6887 {
6888 int i;
6889
6890 CHECK_TYPEDEF (type);
6891 *field_type_p = NULL;
6892 *byte_offset_p = *bit_offset_p = *bit_size_p = 0;
6893
6894 for (i = TYPE_NFIELDS (type) - 1; i >= 0; i -= 1)
6895 {
6896 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6897 int fld_offset = offset + bit_pos / 8;
6898 char *t_field_name = TYPE_FIELD_NAME (type, i);
6899
6900 if (t_field_name == NULL)
6901 continue;
6902
6903 else if (field_name_match (t_field_name, name))
6904 {
6905 int bit_size = TYPE_FIELD_BITSIZE (type, i);
6906 *field_type_p = TYPE_FIELD_TYPE (type, i);
6907 *byte_offset_p = fld_offset;
6908 *bit_offset_p = bit_pos % 8;
6909 *bit_size_p = bit_size;
6910 return 1;
6911 }
6912 else if (ada_is_wrapper_field (type, i))
6913 {
6914 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6915 field_type_p, byte_offset_p, bit_offset_p,
6916 bit_size_p))
6917 return 1;
6918 }
6919 else if (ada_is_variant_part (type, i))
6920 {
6921 int j;
6922 struct type *field_type = check_typedef (TYPE_FIELD_TYPE (type, i));
6923
6924 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6925 {
6926 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6927 fld_offset
6928 + TYPE_FIELD_BITPOS (field_type, j)/8,
6929 field_type_p, byte_offset_p, bit_offset_p,
6930 bit_size_p))
6931 return 1;
6932 }
6933 }
6934 }
6935 return 0;
6936 }
6937
6938
6939
6940 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
6941 and search in it assuming it has (class) type TYPE.
6942 If found, return value, else return NULL.
6943
6944 Searches recursively through wrapper fields (e.g., '_parent'). */
6945
6946 static struct value *
6947 ada_search_struct_field (char *name, struct value *arg, int offset,
6948 struct type *type)
6949 {
6950 int i;
6951 CHECK_TYPEDEF (type);
6952
6953 for (i = TYPE_NFIELDS (type) - 1; i >= 0; i -= 1)
6954 {
6955 char *t_field_name = TYPE_FIELD_NAME (type, i);
6956
6957 if (t_field_name == NULL)
6958 continue;
6959
6960 else if (field_name_match (t_field_name, name))
6961 return ada_value_primitive_field (arg, offset, i, type);
6962
6963 else if (ada_is_wrapper_field (type, i))
6964 {
6965 struct value *v =
6966 ada_search_struct_field (name, arg,
6967 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6968 TYPE_FIELD_TYPE (type, i));
6969 if (v != NULL)
6970 return v;
6971 }
6972
6973 else if (ada_is_variant_part (type, i))
6974 {
6975 int j;
6976 struct type *field_type = check_typedef (TYPE_FIELD_TYPE (type, i));
6977 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6978
6979 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6980 {
6981 struct value *v =
6982 ada_search_struct_field (name, arg,
6983 var_offset
6984 + TYPE_FIELD_BITPOS (field_type, j)/8,
6985 TYPE_FIELD_TYPE (field_type, j));
6986 if (v != NULL)
6987 return v;
6988 }
6989 }
6990 }
6991 return NULL;
6992 }
6993
6994 /* Given ARG, a value of type (pointer or reference to a)*
6995 structure/union, extract the component named NAME from the ultimate
6996 target structure/union and return it as a value with its
6997 appropriate type. If ARG is a pointer or reference and the field
6998 is not packed, returns a reference to the field, otherwise the
6999 value of the field (an lvalue if ARG is an lvalue).
7000
7001 The routine searches for NAME among all members of the structure itself
7002 and (recursively) among all members of any wrapper members
7003 (e.g., '_parent').
7004
7005 ERR is a name (for use in error messages) that identifies the class
7006 of entity that ARG is supposed to be. ERR may be null, indicating
7007 that on error, the function simply returns NULL, and does not
7008 throw an error. (FIXME: True only if ARG is a pointer or reference
7009 at the moment). */
7010
7011 struct value *
7012 ada_value_struct_elt (struct value *arg, char *name, char *err)
7013 {
7014 struct type *t, *t1;
7015 struct value *v;
7016
7017 v = NULL;
7018 t1 = t = check_typedef (VALUE_TYPE (arg));
7019 if (TYPE_CODE (t) == TYPE_CODE_REF)
7020 {
7021 t1 = TYPE_TARGET_TYPE (t);
7022 if (t1 == NULL)
7023 {
7024 if (err == NULL)
7025 return NULL;
7026 else
7027 error ("Bad value type in a %s.", err);
7028 }
7029 CHECK_TYPEDEF (t1);
7030 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7031 {
7032 COERCE_REF (arg);
7033 t = t1;
7034 }
7035 }
7036
7037 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7038 {
7039 t1 = TYPE_TARGET_TYPE (t);
7040 if (t1 == NULL)
7041 {
7042 if (err == NULL)
7043 return NULL;
7044 else
7045 error ("Bad value type in a %s.", err);
7046 }
7047 CHECK_TYPEDEF (t1);
7048 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7049 {
7050 arg = value_ind (arg);
7051 t = t1;
7052 }
7053 else
7054 break;
7055 }
7056
7057 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
7058 {
7059 if (err == NULL)
7060 return NULL;
7061 else
7062 error ("Attempt to extract a component of a value that is not a %s.",
7063 err);
7064 }
7065
7066 if (t1 == t)
7067 v = ada_search_struct_field (name, arg, 0, t);
7068 else
7069 {
7070 int bit_offset, bit_size, byte_offset;
7071 struct type *field_type;
7072 CORE_ADDR address;
7073
7074 if (TYPE_CODE (t) == TYPE_CODE_PTR)
7075 address = value_as_address (arg);
7076 else
7077 address = unpack_pointer (t, VALUE_CONTENTS (arg));
7078
7079 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL);
7080 if (find_struct_field (name, t1, 0,
7081 &field_type, &byte_offset, &bit_offset, &bit_size))
7082 {
7083 if (bit_size != 0)
7084 {
7085 arg = ada_value_ind (arg);
7086 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7087 bit_offset, bit_size,
7088 field_type);
7089 }
7090 else
7091 v = value_from_pointer (lookup_reference_type (field_type),
7092 address + byte_offset);
7093 }
7094 }
7095
7096 if (v == NULL && err != NULL)
7097 error ("There is no member named %s.", name);
7098
7099 return v;
7100 }
7101
7102 /* Given a type TYPE, look up the type of the component of type named NAME.
7103 If DISPP is non-null, add its byte displacement from the beginning of a
7104 structure (pointed to by a value) of type TYPE to *DISPP (does not
7105 work for packed fields).
7106
7107 Matches any field whose name has NAME as a prefix, possibly
7108 followed by "___".
7109
7110 TYPE can be either a struct or union. If REFOK, TYPE may also
7111 be a (pointer or reference)+ to a struct or union, and the
7112 ultimate target type will be searched.
7113
7114 Looks recursively into variant clauses and parent types.
7115
7116 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7117 TYPE is not a type of the right kind. */
7118
7119 static struct type *
7120 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
7121 int noerr, int *dispp)
7122 {
7123 int i;
7124
7125 if (name == NULL)
7126 goto BadName;
7127
7128 if (refok && type != NULL)
7129 while (1)
7130 {
7131 CHECK_TYPEDEF (type);
7132 if (TYPE_CODE (type) != TYPE_CODE_PTR
7133 && TYPE_CODE (type) != TYPE_CODE_REF)
7134 break;
7135 type = TYPE_TARGET_TYPE (type);
7136 }
7137
7138 if (type == NULL
7139 || (TYPE_CODE (type) != TYPE_CODE_STRUCT &&
7140 TYPE_CODE (type) != TYPE_CODE_UNION))
7141 {
7142 if (noerr)
7143 return NULL;
7144 else
7145 {
7146 target_terminal_ours ();
7147 gdb_flush (gdb_stdout);
7148 fprintf_unfiltered (gdb_stderr, "Type ");
7149 if (type == NULL)
7150 fprintf_unfiltered (gdb_stderr, "(null)");
7151 else
7152 type_print (type, "", gdb_stderr, -1);
7153 error (" is not a structure or union type");
7154 }
7155 }
7156
7157 type = to_static_fixed_type (type);
7158
7159 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7160 {
7161 char *t_field_name = TYPE_FIELD_NAME (type, i);
7162 struct type *t;
7163 int disp;
7164
7165 if (t_field_name == NULL)
7166 continue;
7167
7168 else if (field_name_match (t_field_name, name))
7169 {
7170 if (dispp != NULL)
7171 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
7172 return check_typedef (TYPE_FIELD_TYPE (type, i));
7173 }
7174
7175 else if (ada_is_wrapper_field (type, i))
7176 {
7177 disp = 0;
7178 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7179 0, 1, &disp);
7180 if (t != NULL)
7181 {
7182 if (dispp != NULL)
7183 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7184 return t;
7185 }
7186 }
7187
7188 else if (ada_is_variant_part (type, i))
7189 {
7190 int j;
7191 struct type *field_type = check_typedef (TYPE_FIELD_TYPE (type, i));
7192
7193 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7194 {
7195 disp = 0;
7196 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
7197 name, 0, 1, &disp);
7198 if (t != NULL)
7199 {
7200 if (dispp != NULL)
7201 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7202 return t;
7203 }
7204 }
7205 }
7206
7207 }
7208
7209 BadName:
7210 if (!noerr)
7211 {
7212 target_terminal_ours ();
7213 gdb_flush (gdb_stdout);
7214 fprintf_unfiltered (gdb_stderr, "Type ");
7215 type_print (type, "", gdb_stderr, -1);
7216 fprintf_unfiltered (gdb_stderr, " has no component named ");
7217 error ("%s", name == NULL ? "<null>" : name);
7218 }
7219
7220 return NULL;
7221 }
7222
7223 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7224 within a value of type OUTER_TYPE that is stored in GDB at
7225 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7226 numbering from 0) is applicable. Returns -1 if none are. */
7227
7228 int
7229 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7230 char *outer_valaddr)
7231 {
7232 int others_clause;
7233 int i;
7234 int disp;
7235 struct type *discrim_type;
7236 char *discrim_name = ada_variant_discrim_name (var_type);
7237 LONGEST discrim_val;
7238
7239 disp = 0;
7240 discrim_type =
7241 ada_lookup_struct_elt_type (outer_type, discrim_name, 1, 1, &disp);
7242 if (discrim_type == NULL)
7243 return -1;
7244 discrim_val = unpack_long (discrim_type, outer_valaddr + disp);
7245
7246 others_clause = -1;
7247 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7248 {
7249 if (ada_is_others_clause (var_type, i))
7250 others_clause = i;
7251 else if (ada_in_variant (discrim_val, var_type, i))
7252 return i;
7253 }
7254
7255 return others_clause;
7256 }
7257 \f
7258
7259
7260 /* Dynamic-Sized Records */
7261
7262 /* Strategy: The type ostensibly attached to a value with dynamic size
7263 (i.e., a size that is not statically recorded in the debugging
7264 data) does not accurately reflect the size or layout of the value.
7265 Our strategy is to convert these values to values with accurate,
7266 conventional types that are constructed on the fly. */
7267
7268 /* There is a subtle and tricky problem here. In general, we cannot
7269 determine the size of dynamic records without its data. However,
7270 the 'struct value' data structure, which GDB uses to represent
7271 quantities in the inferior process (the target), requires the size
7272 of the type at the time of its allocation in order to reserve space
7273 for GDB's internal copy of the data. That's why the
7274 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7275 rather than struct value*s.
7276
7277 However, GDB's internal history variables ($1, $2, etc.) are
7278 struct value*s containing internal copies of the data that are not, in
7279 general, the same as the data at their corresponding addresses in
7280 the target. Fortunately, the types we give to these values are all
7281 conventional, fixed-size types (as per the strategy described
7282 above), so that we don't usually have to perform the
7283 'to_fixed_xxx_type' conversions to look at their values.
7284 Unfortunately, there is one exception: if one of the internal
7285 history variables is an array whose elements are unconstrained
7286 records, then we will need to create distinct fixed types for each
7287 element selected. */
7288
7289 /* The upshot of all of this is that many routines take a (type, host
7290 address, target address) triple as arguments to represent a value.
7291 The host address, if non-null, is supposed to contain an internal
7292 copy of the relevant data; otherwise, the program is to consult the
7293 target at the target address. */
7294
7295 /* Assuming that VAL0 represents a pointer value, the result of
7296 dereferencing it. Differs from value_ind in its treatment of
7297 dynamic-sized types. */
7298
7299 struct value *
7300 ada_value_ind (struct value *val0)
7301 {
7302 struct value *val = unwrap_value (value_ind (val0));
7303 return ada_to_fixed_value (val);
7304 }
7305
7306 /* The value resulting from dereferencing any "reference to"
7307 qualifiers on VAL0. */
7308
7309 static struct value *
7310 ada_coerce_ref (struct value *val0)
7311 {
7312 if (TYPE_CODE (VALUE_TYPE (val0)) == TYPE_CODE_REF)
7313 {
7314 struct value *val = val0;
7315 COERCE_REF (val);
7316 val = unwrap_value (val);
7317 return ada_to_fixed_value (val);
7318 }
7319 else
7320 return val0;
7321 }
7322
7323 /* Return OFF rounded upward if necessary to a multiple of
7324 ALIGNMENT (a power of 2). */
7325
7326 static unsigned int
7327 align_value (unsigned int off, unsigned int alignment)
7328 {
7329 return (off + alignment - 1) & ~(alignment - 1);
7330 }
7331
7332 /* Return the bit alignment required for field #F of template type TYPE. */
7333
7334 static unsigned int
7335 field_alignment (struct type *type, int f)
7336 {
7337 const char *name = TYPE_FIELD_NAME (type, f);
7338 int len = (name == NULL) ? 0 : strlen (name);
7339 int align_offset;
7340
7341 if (!isdigit (name[len - 1]))
7342 return 1;
7343
7344 if (isdigit (name[len - 2]))
7345 align_offset = len - 2;
7346 else
7347 align_offset = len - 1;
7348
7349 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
7350 return TARGET_CHAR_BIT;
7351
7352 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7353 }
7354
7355 /* Find a symbol named NAME. Ignores ambiguity. */
7356
7357 struct symbol *
7358 ada_find_any_symbol (const char *name)
7359 {
7360 struct symbol *sym;
7361
7362 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7363 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7364 return sym;
7365
7366 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7367 return sym;
7368 }
7369
7370 /* Find a type named NAME. Ignores ambiguity. */
7371
7372 struct type *
7373 ada_find_any_type (const char *name)
7374 {
7375 struct symbol *sym = ada_find_any_symbol (name);
7376
7377 if (sym != NULL)
7378 return SYMBOL_TYPE (sym);
7379
7380 return NULL;
7381 }
7382
7383 /* Given a symbol NAME and its associated BLOCK, search all symbols
7384 for its ___XR counterpart, which is the ``renaming'' symbol
7385 associated to NAME. Return this symbol if found, return
7386 NULL otherwise. */
7387
7388 struct symbol *
7389 ada_find_renaming_symbol (const char *name, struct block *block)
7390 {
7391 const struct symbol *function_sym = block_function (block);
7392 char *rename;
7393
7394 if (function_sym != NULL)
7395 {
7396 /* If the symbol is defined inside a function, NAME is not fully
7397 qualified. This means we need to prepend the function name
7398 as well as adding the ``___XR'' suffix to build the name of
7399 the associated renaming symbol. */
7400 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
7401 const int function_name_len = strlen (function_name);
7402 const int rename_len = function_name_len
7403 + 2 /* "__" */
7404 + strlen (name)
7405 + 6 /* "___XR\0" */;
7406
7407 /* Library-level functions are a special case, as GNAT adds
7408 a ``_ada_'' prefix to the function name to avoid namespace
7409 pollution. However, the renaming symbol themselves do not
7410 have this prefix, so we need to skip this prefix if present. */
7411 if (function_name_len > 5 /* "_ada_" */
7412 && strstr (function_name, "_ada_") == function_name)
7413 function_name = function_name + 5;
7414
7415 rename = (char *) alloca (rename_len * sizeof (char));
7416 sprintf (rename, "%s__%s___XR", function_name, name);
7417 }
7418 else
7419 {
7420 const int rename_len = strlen (name) + 6;
7421 rename = (char *) alloca (rename_len * sizeof (char));
7422 sprintf (rename, "%s___XR", name);
7423 }
7424
7425 return ada_find_any_symbol (rename);
7426 }
7427
7428 /* Because of GNAT encoding conventions, several GDB symbols may match a
7429 given type name. If the type denoted by TYPE0 is to be preferred to
7430 that of TYPE1 for purposes of type printing, return non-zero;
7431 otherwise return 0. */
7432
7433 int
7434 ada_prefer_type (struct type *type0, struct type *type1)
7435 {
7436 if (type1 == NULL)
7437 return 1;
7438 else if (type0 == NULL)
7439 return 0;
7440 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7441 return 1;
7442 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7443 return 0;
7444 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7445 return 1;
7446 else if (ada_is_packed_array_type (type0))
7447 return 1;
7448 else if (ada_is_array_descriptor_type (type0)
7449 && !ada_is_array_descriptor_type (type1))
7450 return 1;
7451 else if (ada_renaming_type (type0) != NULL
7452 && ada_renaming_type (type1) == NULL)
7453 return 1;
7454 return 0;
7455 }
7456
7457 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
7458 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7459
7460 char *
7461 ada_type_name (struct type *type)
7462 {
7463 if (type == NULL)
7464 return NULL;
7465 else if (TYPE_NAME (type) != NULL)
7466 return TYPE_NAME (type);
7467 else
7468 return TYPE_TAG_NAME (type);
7469 }
7470
7471 /* Find a parallel type to TYPE whose name is formed by appending
7472 SUFFIX to the name of TYPE. */
7473
7474 struct type *
7475 ada_find_parallel_type (struct type *type, const char *suffix)
7476 {
7477 static char *name;
7478 static size_t name_len = 0;
7479 int len;
7480 char *typename = ada_type_name (type);
7481
7482 if (typename == NULL)
7483 return NULL;
7484
7485 len = strlen (typename);
7486
7487 GROW_VECT (name, name_len, len + strlen (suffix) + 1);
7488
7489 strcpy (name, typename);
7490 strcpy (name + len, suffix);
7491
7492 return ada_find_any_type (name);
7493 }
7494
7495
7496 /* If TYPE is a variable-size record type, return the corresponding template
7497 type describing its fields. Otherwise, return NULL. */
7498
7499 static struct type *
7500 dynamic_template_type (struct type *type)
7501 {
7502 CHECK_TYPEDEF (type);
7503
7504 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
7505 || ada_type_name (type) == NULL)
7506 return NULL;
7507 else
7508 {
7509 int len = strlen (ada_type_name (type));
7510 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7511 return type;
7512 else
7513 return ada_find_parallel_type (type, "___XVE");
7514 }
7515 }
7516
7517 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7518 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7519
7520 static int
7521 is_dynamic_field (struct type *templ_type, int field_num)
7522 {
7523 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
7524 return name != NULL
7525 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7526 && strstr (name, "___XVL") != NULL;
7527 }
7528
7529 /* The index of the variant field of TYPE, or -1 if TYPE does not
7530 represent a variant record type. */
7531
7532 static int
7533 variant_field_index (struct type *type)
7534 {
7535 int f;
7536
7537 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7538 return -1;
7539
7540 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7541 {
7542 if (ada_is_variant_part (type, f))
7543 return f;
7544 }
7545 return -1;
7546 }
7547
7548 /* A record type with no fields. */
7549
7550 static struct type *
7551 empty_record (struct objfile *objfile)
7552 {
7553 struct type *type = alloc_type (objfile);
7554 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7555 TYPE_NFIELDS (type) = 0;
7556 TYPE_FIELDS (type) = NULL;
7557 TYPE_NAME (type) = "<empty>";
7558 TYPE_TAG_NAME (type) = NULL;
7559 TYPE_FLAGS (type) = 0;
7560 TYPE_LENGTH (type) = 0;
7561 return type;
7562 }
7563
7564 /* An ordinary record type (with fixed-length fields) that describes
7565 the value of type TYPE at VALADDR or ADDRESS (see comments at
7566 the beginning of this section) VAL according to GNAT conventions.
7567 DVAL0 should describe the (portion of a) record that contains any
7568 necessary discriminants. It should be NULL if VALUE_TYPE (VAL) is
7569 an outer-level type (i.e., as opposed to a branch of a variant.) A
7570 variant field (unless unchecked) is replaced by a particular branch
7571 of the variant.
7572
7573 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7574 length are not statically known are discarded. As a consequence,
7575 VALADDR, ADDRESS and DVAL0 are ignored.
7576
7577 NOTE: Limitations: For now, we assume that dynamic fields and
7578 variants occupy whole numbers of bytes. However, they need not be
7579 byte-aligned. */
7580
7581 struct type *
7582 ada_template_to_fixed_record_type_1 (struct type *type, char *valaddr,
7583 CORE_ADDR address, struct value *dval0,
7584 int keep_dynamic_fields)
7585 {
7586 struct value *mark = value_mark ();
7587 struct value *dval;
7588 struct type *rtype;
7589 int nfields, bit_len;
7590 int variant_field;
7591 long off;
7592 int fld_bit_len, bit_incr;
7593 int f;
7594
7595 /* Compute the number of fields in this record type that are going
7596 to be processed: unless keep_dynamic_fields, this includes only
7597 fields whose position and length are static will be processed. */
7598 if (keep_dynamic_fields)
7599 nfields = TYPE_NFIELDS (type);
7600 else
7601 {
7602 nfields = 0;
7603 while (nfields < TYPE_NFIELDS (type)
7604 && !ada_is_variant_part (type, nfields)
7605 && !is_dynamic_field (type, nfields))
7606 nfields++;
7607 }
7608
7609 rtype = alloc_type (TYPE_OBJFILE (type));
7610 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7611 INIT_CPLUS_SPECIFIC (rtype);
7612 TYPE_NFIELDS (rtype) = nfields;
7613 TYPE_FIELDS (rtype) = (struct field *)
7614 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7615 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7616 TYPE_NAME (rtype) = ada_type_name (type);
7617 TYPE_TAG_NAME (rtype) = NULL;
7618 TYPE_FLAGS (rtype) |= TYPE_FLAG_FIXED_INSTANCE;
7619
7620 off = 0;
7621 bit_len = 0;
7622 variant_field = -1;
7623
7624 for (f = 0; f < nfields; f += 1)
7625 {
7626 off =
7627 align_value (off,
7628 field_alignment (type, f)) + TYPE_FIELD_BITPOS (type, f);
7629 TYPE_FIELD_BITPOS (rtype, f) = off;
7630 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7631
7632 if (ada_is_variant_part (type, f))
7633 {
7634 variant_field = f;
7635 fld_bit_len = bit_incr = 0;
7636 }
7637 else if (is_dynamic_field (type, f))
7638 {
7639 if (dval0 == NULL)
7640 dval = value_from_contents_and_address (rtype, valaddr, address);
7641 else
7642 dval = dval0;
7643
7644 TYPE_FIELD_TYPE (rtype, f) =
7645 ada_to_fixed_type
7646 (ada_get_base_type
7647 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f))),
7648 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7649 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7650 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7651 bit_incr = fld_bit_len =
7652 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7653 }
7654 else
7655 {
7656 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
7657 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7658 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7659 bit_incr = fld_bit_len =
7660 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7661 else
7662 bit_incr = fld_bit_len =
7663 TYPE_LENGTH (TYPE_FIELD_TYPE (type, f)) * TARGET_CHAR_BIT;
7664 }
7665 if (off + fld_bit_len > bit_len)
7666 bit_len = off + fld_bit_len;
7667 off += bit_incr;
7668 TYPE_LENGTH (rtype) =
7669 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7670 }
7671
7672 /* We handle the variant part, if any, at the end because of certain
7673 odd cases in which it is re-ordered so as NOT the last field of
7674 the record. This can happen in the presence of representation
7675 clauses. */
7676 if (variant_field >= 0)
7677 {
7678 struct type *branch_type;
7679
7680 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7681
7682 if (dval0 == NULL)
7683 dval = value_from_contents_and_address (rtype, valaddr, address);
7684 else
7685 dval = dval0;
7686
7687 branch_type =
7688 to_fixed_variant_branch_type
7689 (TYPE_FIELD_TYPE (type, variant_field),
7690 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7691 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7692 if (branch_type == NULL)
7693 {
7694 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
7695 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7696 TYPE_NFIELDS (rtype) -= 1;
7697 }
7698 else
7699 {
7700 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7701 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7702 fld_bit_len =
7703 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
7704 TARGET_CHAR_BIT;
7705 if (off + fld_bit_len > bit_len)
7706 bit_len = off + fld_bit_len;
7707 TYPE_LENGTH (rtype) =
7708 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7709 }
7710 }
7711
7712 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype), TYPE_LENGTH (type));
7713
7714 value_free_to_mark (mark);
7715 if (TYPE_LENGTH (rtype) > varsize_limit)
7716 error ("record type with dynamic size is larger than varsize-limit");
7717 return rtype;
7718 }
7719
7720 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7721 of 1. */
7722
7723 static struct type *
7724 template_to_fixed_record_type (struct type *type, char *valaddr,
7725 CORE_ADDR address, struct value *dval0)
7726 {
7727 return ada_template_to_fixed_record_type_1 (type, valaddr,
7728 address, dval0, 1);
7729 }
7730
7731 /* An ordinary record type in which ___XVL-convention fields and
7732 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7733 static approximations, containing all possible fields. Uses
7734 no runtime values. Useless for use in values, but that's OK,
7735 since the results are used only for type determinations. Works on both
7736 structs and unions. Representation note: to save space, we memorize
7737 the result of this function in the TYPE_TARGET_TYPE of the
7738 template type. */
7739
7740 static struct type *
7741 template_to_static_fixed_type (struct type *type0)
7742 {
7743 struct type *type;
7744 int nfields;
7745 int f;
7746
7747 if (TYPE_TARGET_TYPE (type0) != NULL)
7748 return TYPE_TARGET_TYPE (type0);
7749
7750 nfields = TYPE_NFIELDS (type0);
7751 type = type0;
7752
7753 for (f = 0; f < nfields; f += 1)
7754 {
7755 struct type *field_type = CHECK_TYPEDEF (TYPE_FIELD_TYPE (type0, f));
7756 struct type *new_type;
7757
7758 if (is_dynamic_field (type0, f))
7759 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
7760 else
7761 new_type = to_static_fixed_type (field_type);
7762 if (type == type0 && new_type != field_type)
7763 {
7764 TYPE_TARGET_TYPE (type0) = type = alloc_type (TYPE_OBJFILE (type0));
7765 TYPE_CODE (type) = TYPE_CODE (type0);
7766 INIT_CPLUS_SPECIFIC (type);
7767 TYPE_NFIELDS (type) = nfields;
7768 TYPE_FIELDS (type) = (struct field *)
7769 TYPE_ALLOC (type, nfields * sizeof (struct field));
7770 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7771 sizeof (struct field) * nfields);
7772 TYPE_NAME (type) = ada_type_name (type0);
7773 TYPE_TAG_NAME (type) = NULL;
7774 TYPE_FLAGS (type) |= TYPE_FLAG_FIXED_INSTANCE;
7775 TYPE_LENGTH (type) = 0;
7776 }
7777 TYPE_FIELD_TYPE (type, f) = new_type;
7778 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
7779 }
7780 return type;
7781 }
7782
7783 /* Given an object of type TYPE whose contents are at VALADDR and
7784 whose address in memory is ADDRESS, returns a revision of TYPE --
7785 a non-dynamic-sized record with a variant part -- in which
7786 the variant part is replaced with the appropriate branch. Looks
7787 for discriminant values in DVAL0, which can be NULL if the record
7788 contains the necessary discriminant values. */
7789
7790 static struct type *
7791 to_record_with_fixed_variant_part (struct type *type, char *valaddr,
7792 CORE_ADDR address, struct value *dval0)
7793 {
7794 struct value *mark = value_mark ();
7795 struct value *dval;
7796 struct type *rtype;
7797 struct type *branch_type;
7798 int nfields = TYPE_NFIELDS (type);
7799 int variant_field = variant_field_index (type);
7800
7801 if (variant_field == -1)
7802 return type;
7803
7804 if (dval0 == NULL)
7805 dval = value_from_contents_and_address (type, valaddr, address);
7806 else
7807 dval = dval0;
7808
7809 rtype = alloc_type (TYPE_OBJFILE (type));
7810 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7811 INIT_CPLUS_SPECIFIC (rtype);
7812 TYPE_NFIELDS (rtype) = nfields;
7813 TYPE_FIELDS (rtype) =
7814 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7815 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
7816 sizeof (struct field) * nfields);
7817 TYPE_NAME (rtype) = ada_type_name (type);
7818 TYPE_TAG_NAME (rtype) = NULL;
7819 TYPE_FLAGS (rtype) |= TYPE_FLAG_FIXED_INSTANCE;
7820 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7821
7822 branch_type = to_fixed_variant_branch_type
7823 (TYPE_FIELD_TYPE (type, variant_field),
7824 cond_offset_host (valaddr,
7825 TYPE_FIELD_BITPOS (type, variant_field)
7826 / TARGET_CHAR_BIT),
7827 cond_offset_target (address,
7828 TYPE_FIELD_BITPOS (type, variant_field)
7829 / TARGET_CHAR_BIT), dval);
7830 if (branch_type == NULL)
7831 {
7832 int f;
7833 for (f = variant_field + 1; f < nfields; f += 1)
7834 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7835 TYPE_NFIELDS (rtype) -= 1;
7836 }
7837 else
7838 {
7839 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7840 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7841 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7842 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7843 }
7844 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
7845
7846 value_free_to_mark (mark);
7847 return rtype;
7848 }
7849
7850 /* An ordinary record type (with fixed-length fields) that describes
7851 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7852 beginning of this section]. Any necessary discriminants' values
7853 should be in DVAL, a record value; it may be NULL if the object
7854 at ADDR itself contains any necessary discriminant values.
7855 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7856 values from the record are needed. Except in the case that DVAL,
7857 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7858 unchecked) is replaced by a particular branch of the variant.
7859
7860 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7861 is questionable and may be removed. It can arise during the
7862 processing of an unconstrained-array-of-record type where all the
7863 variant branches have exactly the same size. This is because in
7864 such cases, the compiler does not bother to use the XVS convention
7865 when encoding the record. I am currently dubious of this
7866 shortcut and suspect the compiler should be altered. FIXME. */
7867
7868 static struct type *
7869 to_fixed_record_type (struct type *type0, char *valaddr,
7870 CORE_ADDR address, struct value *dval)
7871 {
7872 struct type *templ_type;
7873
7874 if (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE)
7875 return type0;
7876
7877 templ_type = dynamic_template_type (type0);
7878
7879 if (templ_type != NULL)
7880 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7881 else if (variant_field_index (type0) >= 0)
7882 {
7883 if (dval == NULL && valaddr == NULL && address == 0)
7884 return type0;
7885 return to_record_with_fixed_variant_part (type0, valaddr, address,
7886 dval);
7887 }
7888 else
7889 {
7890 TYPE_FLAGS (type0) |= TYPE_FLAG_FIXED_INSTANCE;
7891 return type0;
7892 }
7893
7894 }
7895
7896 /* An ordinary record type (with fixed-length fields) that describes
7897 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7898 union type. Any necessary discriminants' values should be in DVAL,
7899 a record value. That is, this routine selects the appropriate
7900 branch of the union at ADDR according to the discriminant value
7901 indicated in the union's type name. */
7902
7903 static struct type *
7904 to_fixed_variant_branch_type (struct type *var_type0, char *valaddr,
7905 CORE_ADDR address, struct value *dval)
7906 {
7907 int which;
7908 struct type *templ_type;
7909 struct type *var_type;
7910
7911 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7912 var_type = TYPE_TARGET_TYPE (var_type0);
7913 else
7914 var_type = var_type0;
7915
7916 templ_type = ada_find_parallel_type (var_type, "___XVU");
7917
7918 if (templ_type != NULL)
7919 var_type = templ_type;
7920
7921 which =
7922 ada_which_variant_applies (var_type,
7923 VALUE_TYPE (dval), VALUE_CONTENTS (dval));
7924
7925 if (which < 0)
7926 return empty_record (TYPE_OBJFILE (var_type));
7927 else if (is_dynamic_field (var_type, which))
7928 return to_fixed_record_type
7929 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7930 valaddr, address, dval);
7931 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
7932 return
7933 to_fixed_record_type
7934 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
7935 else
7936 return TYPE_FIELD_TYPE (var_type, which);
7937 }
7938
7939 /* Assuming that TYPE0 is an array type describing the type of a value
7940 at ADDR, and that DVAL describes a record containing any
7941 discriminants used in TYPE0, returns a type for the value that
7942 contains no dynamic components (that is, no components whose sizes
7943 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7944 true, gives an error message if the resulting type's size is over
7945 varsize_limit. */
7946
7947 static struct type *
7948 to_fixed_array_type (struct type *type0, struct value *dval,
7949 int ignore_too_big)
7950 {
7951 struct type *index_type_desc;
7952 struct type *result;
7953
7954 if (ada_is_packed_array_type (type0) /* revisit? */
7955 || (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE))
7956 return type0;
7957
7958 index_type_desc = ada_find_parallel_type (type0, "___XA");
7959 if (index_type_desc == NULL)
7960 {
7961 struct type *elt_type0 = check_typedef (TYPE_TARGET_TYPE (type0));
7962 /* NOTE: elt_type---the fixed version of elt_type0---should never
7963 depend on the contents of the array in properly constructed
7964 debugging data. */
7965 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval);
7966
7967 if (elt_type0 == elt_type)
7968 result = type0;
7969 else
7970 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
7971 elt_type, TYPE_INDEX_TYPE (type0));
7972 }
7973 else
7974 {
7975 int i;
7976 struct type *elt_type0;
7977
7978 elt_type0 = type0;
7979 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
7980 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7981
7982 /* NOTE: result---the fixed version of elt_type0---should never
7983 depend on the contents of the array in properly constructed
7984 debugging data. */
7985 result = ada_to_fixed_type (check_typedef (elt_type0), 0, 0, dval);
7986 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
7987 {
7988 struct type *range_type =
7989 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, i),
7990 dval, TYPE_OBJFILE (type0));
7991 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
7992 result, range_type);
7993 }
7994 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
7995 error ("array type with dynamic size is larger than varsize-limit");
7996 }
7997
7998 TYPE_FLAGS (result) |= TYPE_FLAG_FIXED_INSTANCE;
7999 return result;
8000 }
8001
8002
8003 /* A standard type (containing no dynamically sized components)
8004 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8005 DVAL describes a record containing any discriminants used in TYPE0,
8006 and may be NULL if there are none, or if the object of type TYPE at
8007 ADDRESS or in VALADDR contains these discriminants. */
8008
8009 struct type *
8010 ada_to_fixed_type (struct type *type, char *valaddr,
8011 CORE_ADDR address, struct value *dval)
8012 {
8013 CHECK_TYPEDEF (type);
8014 switch (TYPE_CODE (type))
8015 {
8016 default:
8017 return type;
8018 case TYPE_CODE_STRUCT:
8019 {
8020 struct type *static_type = to_static_fixed_type (type);
8021 if (ada_is_tagged_type (static_type, 0))
8022 {
8023 struct type *real_type =
8024 type_from_tag (value_tag_from_contents_and_address (static_type,
8025 valaddr,
8026 address));
8027 if (real_type != NULL)
8028 type = real_type;
8029 }
8030 return to_fixed_record_type (type, valaddr, address, NULL);
8031 }
8032 case TYPE_CODE_ARRAY:
8033 return to_fixed_array_type (type, dval, 1);
8034 case TYPE_CODE_UNION:
8035 if (dval == NULL)
8036 return type;
8037 else
8038 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8039 }
8040 }
8041
8042 /* A standard (static-sized) type corresponding as well as possible to
8043 TYPE0, but based on no runtime data. */
8044
8045 static struct type *
8046 to_static_fixed_type (struct type *type0)
8047 {
8048 struct type *type;
8049
8050 if (type0 == NULL)
8051 return NULL;
8052
8053 if (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE)
8054 return type0;
8055
8056 CHECK_TYPEDEF (type0);
8057
8058 switch (TYPE_CODE (type0))
8059 {
8060 default:
8061 return type0;
8062 case TYPE_CODE_STRUCT:
8063 type = dynamic_template_type (type0);
8064 if (type != NULL)
8065 return template_to_static_fixed_type (type);
8066 else
8067 return template_to_static_fixed_type (type0);
8068 case TYPE_CODE_UNION:
8069 type = ada_find_parallel_type (type0, "___XVU");
8070 if (type != NULL)
8071 return template_to_static_fixed_type (type);
8072 else
8073 return template_to_static_fixed_type (type0);
8074 }
8075 }
8076
8077 /* A static approximation of TYPE with all type wrappers removed. */
8078
8079 static struct type *
8080 static_unwrap_type (struct type *type)
8081 {
8082 if (ada_is_aligner_type (type))
8083 {
8084 struct type *type1 = TYPE_FIELD_TYPE (check_typedef (type), 0);
8085 if (ada_type_name (type1) == NULL)
8086 TYPE_NAME (type1) = ada_type_name (type);
8087
8088 return static_unwrap_type (type1);
8089 }
8090 else
8091 {
8092 struct type *raw_real_type = ada_get_base_type (type);
8093 if (raw_real_type == type)
8094 return type;
8095 else
8096 return to_static_fixed_type (raw_real_type);
8097 }
8098 }
8099
8100 /* In some cases, incomplete and private types require
8101 cross-references that are not resolved as records (for example,
8102 type Foo;
8103 type FooP is access Foo;
8104 V: FooP;
8105 type Foo is array ...;
8106 ). In these cases, since there is no mechanism for producing
8107 cross-references to such types, we instead substitute for FooP a
8108 stub enumeration type that is nowhere resolved, and whose tag is
8109 the name of the actual type. Call these types "non-record stubs". */
8110
8111 /* A type equivalent to TYPE that is not a non-record stub, if one
8112 exists, otherwise TYPE. */
8113
8114 struct type *
8115 ada_completed_type (struct type *type)
8116 {
8117 CHECK_TYPEDEF (type);
8118 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
8119 || (TYPE_FLAGS (type) & TYPE_FLAG_STUB) == 0
8120 || TYPE_TAG_NAME (type) == NULL)
8121 return type;
8122 else
8123 {
8124 char *name = TYPE_TAG_NAME (type);
8125 struct type *type1 = ada_find_any_type (name);
8126 return (type1 == NULL) ? type : type1;
8127 }
8128 }
8129
8130 /* A value representing the data at VALADDR/ADDRESS as described by
8131 type TYPE0, but with a standard (static-sized) type that correctly
8132 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8133 type, then return VAL0 [this feature is simply to avoid redundant
8134 creation of struct values]. */
8135
8136 static struct value *
8137 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8138 struct value *val0)
8139 {
8140 struct type *type = ada_to_fixed_type (type0, 0, address, NULL);
8141 if (type == type0 && val0 != NULL)
8142 return val0;
8143 else
8144 return value_from_contents_and_address (type, 0, address);
8145 }
8146
8147 /* A value representing VAL, but with a standard (static-sized) type
8148 that correctly describes it. Does not necessarily create a new
8149 value. */
8150
8151 static struct value *
8152 ada_to_fixed_value (struct value *val)
8153 {
8154 return ada_to_fixed_value_create (VALUE_TYPE (val),
8155 VALUE_ADDRESS (val) + VALUE_OFFSET (val),
8156 val);
8157 }
8158
8159 /* If the PC is pointing inside a function prologue, then re-adjust it
8160 past this prologue. */
8161
8162 static void
8163 adjust_pc_past_prologue (CORE_ADDR *pc)
8164 {
8165 struct symbol *func_sym = find_pc_function (*pc);
8166
8167 if (func_sym)
8168 {
8169 const struct symtab_and_line sal = find_function_start_sal (func_sym, 1);
8170
8171 if (*pc <= sal.pc)
8172 *pc = sal.pc;
8173 }
8174 }
8175
8176 /* A value representing VAL, but with a standard (static-sized) type
8177 chosen to approximate the real type of VAL as well as possible, but
8178 without consulting any runtime values. For Ada dynamic-sized
8179 types, therefore, the type of the result is likely to be inaccurate. */
8180
8181 struct value *
8182 ada_to_static_fixed_value (struct value *val)
8183 {
8184 struct type *type =
8185 to_static_fixed_type (static_unwrap_type (VALUE_TYPE (val)));
8186 if (type == VALUE_TYPE (val))
8187 return val;
8188 else
8189 return coerce_unspec_val_to_type (val, type);
8190 }
8191 \f
8192
8193 /* Attributes */
8194
8195 /* Table mapping attribute numbers to names.
8196 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
8197
8198 static const char *attribute_names[] = {
8199 "<?>",
8200
8201 "first",
8202 "last",
8203 "length",
8204 "image",
8205 "max",
8206 "min",
8207 "modulus",
8208 "pos",
8209 "size",
8210 "tag",
8211 "val",
8212 0
8213 };
8214
8215 const char *
8216 ada_attribute_name (enum exp_opcode n)
8217 {
8218 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8219 return attribute_names[n - OP_ATR_FIRST + 1];
8220 else
8221 return attribute_names[0];
8222 }
8223
8224 /* Evaluate the 'POS attribute applied to ARG. */
8225
8226 static LONGEST
8227 pos_atr (struct value *arg)
8228 {
8229 struct type *type = VALUE_TYPE (arg);
8230
8231 if (!discrete_type_p (type))
8232 error ("'POS only defined on discrete types");
8233
8234 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8235 {
8236 int i;
8237 LONGEST v = value_as_long (arg);
8238
8239 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
8240 {
8241 if (v == TYPE_FIELD_BITPOS (type, i))
8242 return i;
8243 }
8244 error ("enumeration value is invalid: can't find 'POS");
8245 }
8246 else
8247 return value_as_long (arg);
8248 }
8249
8250 static struct value *
8251 value_pos_atr (struct value *arg)
8252 {
8253 return value_from_longest (builtin_type_ada_int, pos_atr (arg));
8254 }
8255
8256 /* Evaluate the TYPE'VAL attribute applied to ARG. */
8257
8258 static struct value *
8259 value_val_atr (struct type *type, struct value *arg)
8260 {
8261 if (!discrete_type_p (type))
8262 error ("'VAL only defined on discrete types");
8263 if (!integer_type_p (VALUE_TYPE (arg)))
8264 error ("'VAL requires integral argument");
8265
8266 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8267 {
8268 long pos = value_as_long (arg);
8269 if (pos < 0 || pos >= TYPE_NFIELDS (type))
8270 error ("argument to 'VAL out of range");
8271 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
8272 }
8273 else
8274 return value_from_longest (type, value_as_long (arg));
8275 }
8276 \f
8277
8278 /* Evaluation */
8279
8280 /* True if TYPE appears to be an Ada character type.
8281 [At the moment, this is true only for Character and Wide_Character;
8282 It is a heuristic test that could stand improvement]. */
8283
8284 int
8285 ada_is_character_type (struct type *type)
8286 {
8287 const char *name = ada_type_name (type);
8288 return
8289 name != NULL
8290 && (TYPE_CODE (type) == TYPE_CODE_CHAR
8291 || TYPE_CODE (type) == TYPE_CODE_INT
8292 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8293 && (strcmp (name, "character") == 0
8294 || strcmp (name, "wide_character") == 0
8295 || strcmp (name, "unsigned char") == 0);
8296 }
8297
8298 /* True if TYPE appears to be an Ada string type. */
8299
8300 int
8301 ada_is_string_type (struct type *type)
8302 {
8303 CHECK_TYPEDEF (type);
8304 if (type != NULL
8305 && TYPE_CODE (type) != TYPE_CODE_PTR
8306 && (ada_is_simple_array_type (type) || ada_is_array_descriptor_type (type))
8307 && ada_array_arity (type) == 1)
8308 {
8309 struct type *elttype = ada_array_element_type (type, 1);
8310
8311 return ada_is_character_type (elttype);
8312 }
8313 else
8314 return 0;
8315 }
8316
8317
8318 /* True if TYPE is a struct type introduced by the compiler to force the
8319 alignment of a value. Such types have a single field with a
8320 distinctive name. */
8321
8322 int
8323 ada_is_aligner_type (struct type *type)
8324 {
8325 CHECK_TYPEDEF (type);
8326 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
8327 && TYPE_NFIELDS (type) == 1
8328 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
8329 }
8330
8331 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
8332 the parallel type. */
8333
8334 struct type *
8335 ada_get_base_type (struct type *raw_type)
8336 {
8337 struct type *real_type_namer;
8338 struct type *raw_real_type;
8339
8340 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
8341 return raw_type;
8342
8343 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
8344 if (real_type_namer == NULL
8345 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
8346 || TYPE_NFIELDS (real_type_namer) != 1)
8347 return raw_type;
8348
8349 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8350 if (raw_real_type == NULL)
8351 return raw_type;
8352 else
8353 return raw_real_type;
8354 }
8355
8356 /* The type of value designated by TYPE, with all aligners removed. */
8357
8358 struct type *
8359 ada_aligned_type (struct type *type)
8360 {
8361 if (ada_is_aligner_type (type))
8362 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
8363 else
8364 return ada_get_base_type (type);
8365 }
8366
8367
8368 /* The address of the aligned value in an object at address VALADDR
8369 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
8370
8371 char *
8372 ada_aligned_value_addr (struct type *type, char *valaddr)
8373 {
8374 if (ada_is_aligner_type (type))
8375 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
8376 valaddr +
8377 TYPE_FIELD_BITPOS (type,
8378 0) / TARGET_CHAR_BIT);
8379 else
8380 return valaddr;
8381 }
8382
8383
8384
8385 /* The printed representation of an enumeration literal with encoded
8386 name NAME. The value is good to the next call of ada_enum_name. */
8387 const char *
8388 ada_enum_name (const char *name)
8389 {
8390 static char *result;
8391 static size_t result_len = 0;
8392 char *tmp;
8393
8394 /* First, unqualify the enumeration name:
8395 1. Search for the last '.' character. If we find one, then skip
8396 all the preceeding characters, the unqualified name starts
8397 right after that dot.
8398 2. Otherwise, we may be debugging on a target where the compiler
8399 translates dots into "__". Search forward for double underscores,
8400 but stop searching when we hit an overloading suffix, which is
8401 of the form "__" followed by digits. */
8402
8403 if ((tmp = strrchr (name, '.')) != NULL)
8404 name = tmp + 1;
8405 else
8406 {
8407 while ((tmp = strstr (name, "__")) != NULL)
8408 {
8409 if (isdigit (tmp[2]))
8410 break;
8411 else
8412 name = tmp + 2;
8413 }
8414 }
8415
8416 if (name[0] == 'Q')
8417 {
8418 int v;
8419 if (name[1] == 'U' || name[1] == 'W')
8420 {
8421 if (sscanf (name + 2, "%x", &v) != 1)
8422 return name;
8423 }
8424 else
8425 return name;
8426
8427 GROW_VECT (result, result_len, 16);
8428 if (isascii (v) && isprint (v))
8429 sprintf (result, "'%c'", v);
8430 else if (name[1] == 'U')
8431 sprintf (result, "[\"%02x\"]", v);
8432 else
8433 sprintf (result, "[\"%04x\"]", v);
8434
8435 return result;
8436 }
8437 else
8438 {
8439 if ((tmp = strstr (name, "__")) != NULL
8440 || (tmp = strstr (name, "$")) != NULL)
8441 {
8442 GROW_VECT (result, result_len, tmp - name + 1);
8443 strncpy (result, name, tmp - name);
8444 result[tmp - name] = '\0';
8445 return result;
8446 }
8447
8448 return name;
8449 }
8450 }
8451
8452 static struct value *
8453 evaluate_subexp (struct type *expect_type, struct expression *exp, int *pos,
8454 enum noside noside)
8455 {
8456 return (*exp->language_defn->la_exp_desc->evaluate_exp)
8457 (expect_type, exp, pos, noside);
8458 }
8459
8460 /* Evaluate the subexpression of EXP starting at *POS as for
8461 evaluate_type, updating *POS to point just past the evaluated
8462 expression. */
8463
8464 static struct value *
8465 evaluate_subexp_type (struct expression *exp, int *pos)
8466 {
8467 return (*exp->language_defn->la_exp_desc->evaluate_exp)
8468 (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8469 }
8470
8471 /* If VAL is wrapped in an aligner or subtype wrapper, return the
8472 value it wraps. */
8473
8474 static struct value *
8475 unwrap_value (struct value *val)
8476 {
8477 struct type *type = check_typedef (VALUE_TYPE (val));
8478 if (ada_is_aligner_type (type))
8479 {
8480 struct value *v = value_struct_elt (&val, NULL, "F",
8481 NULL, "internal structure");
8482 struct type *val_type = check_typedef (VALUE_TYPE (v));
8483 if (ada_type_name (val_type) == NULL)
8484 TYPE_NAME (val_type) = ada_type_name (type);
8485
8486 return unwrap_value (v);
8487 }
8488 else
8489 {
8490 struct type *raw_real_type =
8491 ada_completed_type (ada_get_base_type (type));
8492
8493 if (type == raw_real_type)
8494 return val;
8495
8496 return
8497 coerce_unspec_val_to_type
8498 (val, ada_to_fixed_type (raw_real_type, 0,
8499 VALUE_ADDRESS (val) + VALUE_OFFSET (val),
8500 NULL));
8501 }
8502 }
8503
8504 static struct value *
8505 cast_to_fixed (struct type *type, struct value *arg)
8506 {
8507 LONGEST val;
8508
8509 if (type == VALUE_TYPE (arg))
8510 return arg;
8511 else if (ada_is_fixed_point_type (VALUE_TYPE (arg)))
8512 val = ada_float_to_fixed (type,
8513 ada_fixed_to_float (VALUE_TYPE (arg),
8514 value_as_long (arg)));
8515 else
8516 {
8517 DOUBLEST argd =
8518 value_as_double (value_cast (builtin_type_double, value_copy (arg)));
8519 val = ada_float_to_fixed (type, argd);
8520 }
8521
8522 return value_from_longest (type, val);
8523 }
8524
8525 static struct value *
8526 cast_from_fixed_to_double (struct value *arg)
8527 {
8528 DOUBLEST val = ada_fixed_to_float (VALUE_TYPE (arg),
8529 value_as_long (arg));
8530 return value_from_double (builtin_type_double, val);
8531 }
8532
8533 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8534 return the converted value. */
8535
8536 static struct value *
8537 coerce_for_assign (struct type *type, struct value *val)
8538 {
8539 struct type *type2 = VALUE_TYPE (val);
8540 if (type == type2)
8541 return val;
8542
8543 CHECK_TYPEDEF (type2);
8544 CHECK_TYPEDEF (type);
8545
8546 if (TYPE_CODE (type2) == TYPE_CODE_PTR
8547 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8548 {
8549 val = ada_value_ind (val);
8550 type2 = VALUE_TYPE (val);
8551 }
8552
8553 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
8554 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8555 {
8556 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
8557 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8558 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
8559 error ("Incompatible types in assignment");
8560 VALUE_TYPE (val) = type;
8561 }
8562 return val;
8563 }
8564
8565 static struct value *
8566 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8567 {
8568 struct value *val;
8569 struct type *type1, *type2;
8570 LONGEST v, v1, v2;
8571
8572 COERCE_REF (arg1);
8573 COERCE_REF (arg2);
8574 type1 = base_type (check_typedef (VALUE_TYPE (arg1)));
8575 type2 = base_type (check_typedef (VALUE_TYPE (arg2)));
8576
8577 if (TYPE_CODE (type1) != TYPE_CODE_INT || TYPE_CODE (type2) != TYPE_CODE_INT)
8578 return value_binop (arg1, arg2, op);
8579
8580 switch (op)
8581 {
8582 case BINOP_MOD:
8583 case BINOP_DIV:
8584 case BINOP_REM:
8585 break;
8586 default:
8587 return value_binop (arg1, arg2, op);
8588 }
8589
8590 v2 = value_as_long (arg2);
8591 if (v2 == 0)
8592 error ("second operand of %s must not be zero.", op_string (op));
8593
8594 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
8595 return value_binop (arg1, arg2, op);
8596
8597 v1 = value_as_long (arg1);
8598 switch (op)
8599 {
8600 case BINOP_DIV:
8601 v = v1 / v2;
8602 if (! TRUNCATION_TOWARDS_ZERO && v1 * (v1%v2) < 0)
8603 v += v > 0 ? -1 : 1;
8604 break;
8605 case BINOP_REM:
8606 v = v1 % v2;
8607 if (v*v1 < 0)
8608 v -= v2;
8609 break;
8610 default:
8611 /* Should not reach this point. */
8612 v = 0;
8613 }
8614
8615 val = allocate_value (type1);
8616 store_unsigned_integer (VALUE_CONTENTS_RAW (val),
8617 TYPE_LENGTH (VALUE_TYPE (val)),
8618 v);
8619 return val;
8620 }
8621
8622 static int
8623 ada_value_equal (struct value *arg1, struct value *arg2)
8624 {
8625 if (ada_is_direct_array_type (VALUE_TYPE (arg1))
8626 || ada_is_direct_array_type (VALUE_TYPE (arg2)))
8627 {
8628 arg1 = ada_coerce_to_simple_array (arg1);
8629 arg2 = ada_coerce_to_simple_array (arg2);
8630 if (TYPE_CODE (VALUE_TYPE (arg1)) != TYPE_CODE_ARRAY
8631 || TYPE_CODE (VALUE_TYPE (arg2)) != TYPE_CODE_ARRAY)
8632 error ("Attempt to compare array with non-array");
8633 /* FIXME: The following works only for types whose
8634 representations use all bits (no padding or undefined bits)
8635 and do not have user-defined equality. */
8636 return
8637 TYPE_LENGTH (VALUE_TYPE (arg1)) == TYPE_LENGTH (VALUE_TYPE (arg2))
8638 && memcmp (VALUE_CONTENTS (arg1), VALUE_CONTENTS (arg2),
8639 TYPE_LENGTH (VALUE_TYPE (arg1))) == 0;
8640 }
8641 return value_equal (arg1, arg2);
8642 }
8643
8644 struct value *
8645 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
8646 int *pos, enum noside noside)
8647 {
8648 enum exp_opcode op;
8649 int tem, tem2, tem3;
8650 int pc;
8651 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
8652 struct type *type;
8653 int nargs;
8654 struct value **argvec;
8655
8656 pc = *pos;
8657 *pos += 1;
8658 op = exp->elts[pc].opcode;
8659
8660 switch (op)
8661 {
8662 default:
8663 *pos -= 1;
8664 return
8665 unwrap_value (evaluate_subexp_standard
8666 (expect_type, exp, pos, noside));
8667
8668 case OP_STRING:
8669 {
8670 struct value *result;
8671 *pos -= 1;
8672 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
8673 /* The result type will have code OP_STRING, bashed there from
8674 OP_ARRAY. Bash it back. */
8675 if (TYPE_CODE (VALUE_TYPE (result)) == TYPE_CODE_STRING)
8676 TYPE_CODE (VALUE_TYPE (result)) = TYPE_CODE_ARRAY;
8677 return result;
8678 }
8679
8680 case UNOP_CAST:
8681 (*pos) += 2;
8682 type = exp->elts[pc + 1].type;
8683 arg1 = evaluate_subexp (type, exp, pos, noside);
8684 if (noside == EVAL_SKIP)
8685 goto nosideret;
8686 if (type != check_typedef (VALUE_TYPE (arg1)))
8687 {
8688 if (ada_is_fixed_point_type (type))
8689 arg1 = cast_to_fixed (type, arg1);
8690 else if (ada_is_fixed_point_type (VALUE_TYPE (arg1)))
8691 arg1 = value_cast (type, cast_from_fixed_to_double (arg1));
8692 else if (VALUE_LVAL (arg1) == lval_memory)
8693 {
8694 /* This is in case of the really obscure (and undocumented,
8695 but apparently expected) case of (Foo) Bar.all, where Bar
8696 is an integer constant and Foo is a dynamic-sized type.
8697 If we don't do this, ARG1 will simply be relabeled with
8698 TYPE. */
8699 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8700 return value_zero (to_static_fixed_type (type), not_lval);
8701 arg1 =
8702 ada_to_fixed_value_create
8703 (type, VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1), 0);
8704 }
8705 else
8706 arg1 = value_cast (type, arg1);
8707 }
8708 return arg1;
8709
8710 case UNOP_QUAL:
8711 (*pos) += 2;
8712 type = exp->elts[pc + 1].type;
8713 return ada_evaluate_subexp (type, exp, pos, noside);
8714
8715 case BINOP_ASSIGN:
8716 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8717 arg2 = evaluate_subexp (VALUE_TYPE (arg1), exp, pos, noside);
8718 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8719 return arg1;
8720 if (ada_is_fixed_point_type (VALUE_TYPE (arg1)))
8721 arg2 = cast_to_fixed (VALUE_TYPE (arg1), arg2);
8722 else if (ada_is_fixed_point_type (VALUE_TYPE (arg2)))
8723 error
8724 ("Fixed-point values must be assigned to fixed-point variables");
8725 else
8726 arg2 = coerce_for_assign (VALUE_TYPE (arg1), arg2);
8727 return ada_value_assign (arg1, arg2);
8728
8729 case BINOP_ADD:
8730 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8731 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8732 if (noside == EVAL_SKIP)
8733 goto nosideret;
8734 if ((ada_is_fixed_point_type (VALUE_TYPE (arg1))
8735 || ada_is_fixed_point_type (VALUE_TYPE (arg2)))
8736 && VALUE_TYPE (arg1) != VALUE_TYPE (arg2))
8737 error
8738 ("Operands of fixed-point addition must have the same type");
8739 return value_cast (VALUE_TYPE (arg1), value_add (arg1, arg2));
8740
8741 case BINOP_SUB:
8742 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8743 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8744 if (noside == EVAL_SKIP)
8745 goto nosideret;
8746 if ((ada_is_fixed_point_type (VALUE_TYPE (arg1))
8747 || ada_is_fixed_point_type (VALUE_TYPE (arg2)))
8748 && VALUE_TYPE (arg1) != VALUE_TYPE (arg2))
8749 error
8750 ("Operands of fixed-point subtraction must have the same type");
8751 return value_cast (VALUE_TYPE (arg1), value_sub (arg1, arg2));
8752
8753 case BINOP_MUL:
8754 case BINOP_DIV:
8755 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8756 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8757 if (noside == EVAL_SKIP)
8758 goto nosideret;
8759 else if (noside == EVAL_AVOID_SIDE_EFFECTS
8760 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
8761 return value_zero (VALUE_TYPE (arg1), not_lval);
8762 else
8763 {
8764 if (ada_is_fixed_point_type (VALUE_TYPE (arg1)))
8765 arg1 = cast_from_fixed_to_double (arg1);
8766 if (ada_is_fixed_point_type (VALUE_TYPE (arg2)))
8767 arg2 = cast_from_fixed_to_double (arg2);
8768 return ada_value_binop (arg1, arg2, op);
8769 }
8770
8771 case BINOP_REM:
8772 case BINOP_MOD:
8773 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8774 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8775 if (noside == EVAL_SKIP)
8776 goto nosideret;
8777 else if (noside == EVAL_AVOID_SIDE_EFFECTS
8778 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
8779 return value_zero (VALUE_TYPE (arg1), not_lval);
8780 else
8781 return ada_value_binop (arg1, arg2, op);
8782
8783 case BINOP_EQUAL:
8784 case BINOP_NOTEQUAL:
8785 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8786 arg2 = evaluate_subexp (VALUE_TYPE (arg1), exp, pos, noside);
8787 if (noside == EVAL_SKIP)
8788 goto nosideret;
8789 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8790 tem = 0;
8791 else
8792 tem = ada_value_equal (arg1, arg2);
8793 if (op == BINOP_NOTEQUAL)
8794 tem = ! tem;
8795 return value_from_longest (LA_BOOL_TYPE, (LONGEST) tem);
8796
8797 case UNOP_NEG:
8798 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8799 if (noside == EVAL_SKIP)
8800 goto nosideret;
8801 else if (ada_is_fixed_point_type (VALUE_TYPE (arg1)))
8802 return value_cast (VALUE_TYPE (arg1), value_neg (arg1));
8803 else
8804 return value_neg (arg1);
8805
8806 case OP_VAR_VALUE:
8807 *pos -= 1;
8808 if (noside == EVAL_SKIP)
8809 {
8810 *pos += 4;
8811 goto nosideret;
8812 }
8813 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
8814 /* Only encountered when an unresolved symbol occurs in a
8815 context other than a function call, in which case, it is
8816 illegal. */
8817 error ("Unexpected unresolved symbol, %s, during evaluation",
8818 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
8819 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8820 {
8821 *pos += 4;
8822 return value_zero
8823 (to_static_fixed_type
8824 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
8825 not_lval);
8826 }
8827 else
8828 {
8829 arg1 =
8830 unwrap_value (evaluate_subexp_standard
8831 (expect_type, exp, pos, noside));
8832 return ada_to_fixed_value (arg1);
8833 }
8834
8835 case OP_FUNCALL:
8836 (*pos) += 2;
8837
8838 /* Allocate arg vector, including space for the function to be
8839 called in argvec[0] and a terminating NULL. */
8840 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8841 argvec =
8842 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
8843
8844 if (exp->elts[*pos].opcode == OP_VAR_VALUE
8845 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
8846 error ("Unexpected unresolved symbol, %s, during evaluation",
8847 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
8848 else
8849 {
8850 for (tem = 0; tem <= nargs; tem += 1)
8851 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8852 argvec[tem] = 0;
8853
8854 if (noside == EVAL_SKIP)
8855 goto nosideret;
8856 }
8857
8858 if (ada_is_packed_array_type (desc_base_type (VALUE_TYPE (argvec[0]))))
8859 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
8860 else if (TYPE_CODE (VALUE_TYPE (argvec[0])) == TYPE_CODE_REF
8861 || (TYPE_CODE (VALUE_TYPE (argvec[0])) == TYPE_CODE_ARRAY
8862 && VALUE_LVAL (argvec[0]) == lval_memory))
8863 argvec[0] = value_addr (argvec[0]);
8864
8865 type = check_typedef (VALUE_TYPE (argvec[0]));
8866 if (TYPE_CODE (type) == TYPE_CODE_PTR)
8867 {
8868 switch (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (type))))
8869 {
8870 case TYPE_CODE_FUNC:
8871 type = check_typedef (TYPE_TARGET_TYPE (type));
8872 break;
8873 case TYPE_CODE_ARRAY:
8874 break;
8875 case TYPE_CODE_STRUCT:
8876 if (noside != EVAL_AVOID_SIDE_EFFECTS)
8877 argvec[0] = ada_value_ind (argvec[0]);
8878 type = check_typedef (TYPE_TARGET_TYPE (type));
8879 break;
8880 default:
8881 error ("cannot subscript or call something of type `%s'",
8882 ada_type_name (VALUE_TYPE (argvec[0])));
8883 break;
8884 }
8885 }
8886
8887 switch (TYPE_CODE (type))
8888 {
8889 case TYPE_CODE_FUNC:
8890 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8891 return allocate_value (TYPE_TARGET_TYPE (type));
8892 return call_function_by_hand (argvec[0], nargs, argvec + 1);
8893 case TYPE_CODE_STRUCT:
8894 {
8895 int arity;
8896
8897 /* Make sure to use the parallel ___XVS type if any.
8898 Otherwise, we won't be able to find the array arity
8899 and element type. */
8900 type = ada_get_base_type (type);
8901
8902 arity = ada_array_arity (type);
8903 type = ada_array_element_type (type, nargs);
8904 if (type == NULL)
8905 error ("cannot subscript or call a record");
8906 if (arity != nargs)
8907 error ("wrong number of subscripts; expecting %d", arity);
8908 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8909 return allocate_value (ada_aligned_type (type));
8910 return
8911 unwrap_value (ada_value_subscript
8912 (argvec[0], nargs, argvec + 1));
8913 }
8914 case TYPE_CODE_ARRAY:
8915 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8916 {
8917 type = ada_array_element_type (type, nargs);
8918 if (type == NULL)
8919 error ("element type of array unknown");
8920 else
8921 return allocate_value (ada_aligned_type (type));
8922 }
8923 return
8924 unwrap_value (ada_value_subscript
8925 (ada_coerce_to_simple_array (argvec[0]),
8926 nargs, argvec + 1));
8927 case TYPE_CODE_PTR: /* Pointer to array */
8928 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
8929 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8930 {
8931 type = ada_array_element_type (type, nargs);
8932 if (type == NULL)
8933 error ("element type of array unknown");
8934 else
8935 return allocate_value (ada_aligned_type (type));
8936 }
8937 return
8938 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
8939 nargs, argvec + 1));
8940
8941 default:
8942 error ("Internal error in evaluate_subexp");
8943 }
8944
8945 case TERNOP_SLICE:
8946 {
8947 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8948 struct value *low_bound_val =
8949 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8950 LONGEST low_bound = pos_atr (low_bound_val);
8951 LONGEST high_bound
8952 = pos_atr (evaluate_subexp (NULL_TYPE, exp, pos, noside));
8953 if (noside == EVAL_SKIP)
8954 goto nosideret;
8955
8956 /* If this is a reference type or a pointer type, and
8957 the target type has an XVS parallel type, then get
8958 the real target type. */
8959 if (TYPE_CODE (VALUE_TYPE (array)) == TYPE_CODE_REF
8960 || TYPE_CODE (VALUE_TYPE (array)) == TYPE_CODE_PTR)
8961 TYPE_TARGET_TYPE (VALUE_TYPE (array)) =
8962 ada_get_base_type (TYPE_TARGET_TYPE (VALUE_TYPE (array)));
8963
8964 /* If this is a reference to an aligner type, then remove all
8965 the aligners. */
8966 if (TYPE_CODE (VALUE_TYPE (array)) == TYPE_CODE_REF
8967 && ada_is_aligner_type (TYPE_TARGET_TYPE (VALUE_TYPE (array))))
8968 TYPE_TARGET_TYPE (VALUE_TYPE (array)) =
8969 ada_aligned_type (TYPE_TARGET_TYPE (VALUE_TYPE (array)));
8970
8971 if (ada_is_packed_array_type (VALUE_TYPE (array)))
8972 error ("cannot slice a packed array");
8973
8974 /* If this is a reference to an array or an array lvalue,
8975 convert to a pointer. */
8976 if (TYPE_CODE (VALUE_TYPE (array)) == TYPE_CODE_REF
8977 || (TYPE_CODE (VALUE_TYPE (array)) == TYPE_CODE_ARRAY
8978 && VALUE_LVAL (array) == lval_memory))
8979 array = value_addr (array);
8980
8981 if (noside == EVAL_AVOID_SIDE_EFFECTS &&
8982 ada_is_array_descriptor_type (check_typedef (VALUE_TYPE (array))))
8983 {
8984 /* Try dereferencing the array, in case it is an access
8985 to array. */
8986 struct type *arrType = ada_type_of_array (array, 0);
8987 if (arrType != NULL)
8988 array = value_at_lazy (arrType, 0, NULL);
8989 }
8990
8991 array = ada_coerce_to_simple_array_ptr (array);
8992
8993 /* When EVAL_AVOID_SIDE_EFFECTS, we may get the bounds wrong,
8994 but only in contexts where the value is not being requested
8995 (FIXME?). */
8996 if (TYPE_CODE (VALUE_TYPE (array)) == TYPE_CODE_PTR)
8997 {
8998 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8999 return ada_value_ind (array);
9000 else if (high_bound < low_bound)
9001 return empty_array (TYPE_TARGET_TYPE (VALUE_TYPE (array)),
9002 low_bound);
9003 else
9004 {
9005 struct type *arr_type0 =
9006 to_fixed_array_type (TYPE_TARGET_TYPE (VALUE_TYPE (array)),
9007 NULL, 1);
9008 struct value *item0 =
9009 ada_value_ptr_subscript (array, arr_type0, 1,
9010 &low_bound_val);
9011 struct value *slice =
9012 value_repeat (item0, high_bound - low_bound + 1);
9013 struct type *arr_type1 = VALUE_TYPE (slice);
9014 TYPE_LOW_BOUND (TYPE_INDEX_TYPE (arr_type1)) = low_bound;
9015 TYPE_HIGH_BOUND (TYPE_INDEX_TYPE (arr_type1)) += low_bound;
9016 return slice;
9017 }
9018 }
9019 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9020 return array;
9021 else if (high_bound < low_bound)
9022 return empty_array (VALUE_TYPE (array), low_bound);
9023 else
9024 return value_slice (array, low_bound, high_bound - low_bound + 1);
9025 }
9026
9027 case UNOP_IN_RANGE:
9028 (*pos) += 2;
9029 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9030 type = exp->elts[pc + 1].type;
9031
9032 if (noside == EVAL_SKIP)
9033 goto nosideret;
9034
9035 switch (TYPE_CODE (type))
9036 {
9037 default:
9038 lim_warning ("Membership test incompletely implemented; "
9039 "always returns true", 0);
9040 return value_from_longest (builtin_type_int, (LONGEST) 1);
9041
9042 case TYPE_CODE_RANGE:
9043 arg2 = value_from_longest (builtin_type_int,
9044 TYPE_LOW_BOUND (type));
9045 arg3 = value_from_longest (builtin_type_int,
9046 TYPE_HIGH_BOUND (type));
9047 return
9048 value_from_longest (builtin_type_int,
9049 (value_less (arg1, arg3)
9050 || value_equal (arg1, arg3))
9051 && (value_less (arg2, arg1)
9052 || value_equal (arg2, arg1)));
9053 }
9054
9055 case BINOP_IN_BOUNDS:
9056 (*pos) += 2;
9057 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9058 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9059
9060 if (noside == EVAL_SKIP)
9061 goto nosideret;
9062
9063 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9064 return value_zero (builtin_type_int, not_lval);
9065
9066 tem = longest_to_int (exp->elts[pc + 1].longconst);
9067
9068 if (tem < 1 || tem > ada_array_arity (VALUE_TYPE (arg2)))
9069 error ("invalid dimension number to '%s", "range");
9070
9071 arg3 = ada_array_bound (arg2, tem, 1);
9072 arg2 = ada_array_bound (arg2, tem, 0);
9073
9074 return
9075 value_from_longest (builtin_type_int,
9076 (value_less (arg1, arg3)
9077 || value_equal (arg1, arg3))
9078 && (value_less (arg2, arg1)
9079 || value_equal (arg2, arg1)));
9080
9081 case TERNOP_IN_RANGE:
9082 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9083 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9084 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9085
9086 if (noside == EVAL_SKIP)
9087 goto nosideret;
9088
9089 return
9090 value_from_longest (builtin_type_int,
9091 (value_less (arg1, arg3)
9092 || value_equal (arg1, arg3))
9093 && (value_less (arg2, arg1)
9094 || value_equal (arg2, arg1)));
9095
9096 case OP_ATR_FIRST:
9097 case OP_ATR_LAST:
9098 case OP_ATR_LENGTH:
9099 {
9100 struct type *type_arg;
9101 if (exp->elts[*pos].opcode == OP_TYPE)
9102 {
9103 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9104 arg1 = NULL;
9105 type_arg = exp->elts[pc + 2].type;
9106 }
9107 else
9108 {
9109 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9110 type_arg = NULL;
9111 }
9112
9113 if (exp->elts[*pos].opcode != OP_LONG)
9114 error ("illegal operand to '%s", ada_attribute_name (op));
9115 tem = longest_to_int (exp->elts[*pos + 2].longconst);
9116 *pos += 4;
9117
9118 if (noside == EVAL_SKIP)
9119 goto nosideret;
9120
9121 if (type_arg == NULL)
9122 {
9123 arg1 = ada_coerce_ref (arg1);
9124
9125 if (ada_is_packed_array_type (VALUE_TYPE (arg1)))
9126 arg1 = ada_coerce_to_simple_array (arg1);
9127
9128 if (tem < 1 || tem > ada_array_arity (VALUE_TYPE (arg1)))
9129 error ("invalid dimension number to '%s",
9130 ada_attribute_name (op));
9131
9132 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9133 {
9134 type = ada_index_type (VALUE_TYPE (arg1), tem);
9135 if (type == NULL)
9136 error
9137 ("attempt to take bound of something that is not an array");
9138 return allocate_value (type);
9139 }
9140
9141 switch (op)
9142 {
9143 default: /* Should never happen. */
9144 error ("unexpected attribute encountered");
9145 case OP_ATR_FIRST:
9146 return ada_array_bound (arg1, tem, 0);
9147 case OP_ATR_LAST:
9148 return ada_array_bound (arg1, tem, 1);
9149 case OP_ATR_LENGTH:
9150 return ada_array_length (arg1, tem);
9151 }
9152 }
9153 else if (discrete_type_p (type_arg))
9154 {
9155 struct type *range_type;
9156 char *name = ada_type_name (type_arg);
9157 range_type = NULL;
9158 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
9159 range_type =
9160 to_fixed_range_type (name, NULL, TYPE_OBJFILE (type_arg));
9161 if (range_type == NULL)
9162 range_type = type_arg;
9163 switch (op)
9164 {
9165 default:
9166 error ("unexpected attribute encountered");
9167 case OP_ATR_FIRST:
9168 return discrete_type_low_bound (range_type);
9169 case OP_ATR_LAST:
9170 return discrete_type_high_bound (range_type);
9171 case OP_ATR_LENGTH:
9172 error ("the 'length attribute applies only to array types");
9173 }
9174 }
9175 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
9176 error ("unimplemented type attribute");
9177 else
9178 {
9179 LONGEST low, high;
9180
9181 if (ada_is_packed_array_type (type_arg))
9182 type_arg = decode_packed_array_type (type_arg);
9183
9184 if (tem < 1 || tem > ada_array_arity (type_arg))
9185 error ("invalid dimension number to '%s",
9186 ada_attribute_name (op));
9187
9188 type = ada_index_type (type_arg, tem);
9189 if (type == NULL)
9190 error ("attempt to take bound of something that is not an array");
9191 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9192 return allocate_value (type);
9193
9194 switch (op)
9195 {
9196 default:
9197 error ("unexpected attribute encountered");
9198 case OP_ATR_FIRST:
9199 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
9200 return value_from_longest (type, low);
9201 case OP_ATR_LAST:
9202 high =
9203 ada_array_bound_from_type (type_arg, tem, 1, &type);
9204 return value_from_longest (type, high);
9205 case OP_ATR_LENGTH:
9206 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
9207 high = ada_array_bound_from_type (type_arg, tem, 1, NULL);
9208 return value_from_longest (type, high - low + 1);
9209 }
9210 }
9211 }
9212
9213 case OP_ATR_TAG:
9214 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9215 if (noside == EVAL_SKIP)
9216 goto nosideret;
9217
9218 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9219 return value_zero (ada_tag_type (arg1), not_lval);
9220
9221 return ada_value_tag (arg1);
9222
9223 case OP_ATR_MIN:
9224 case OP_ATR_MAX:
9225 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9226 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9227 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9228 if (noside == EVAL_SKIP)
9229 goto nosideret;
9230 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9231 return value_zero (VALUE_TYPE (arg1), not_lval);
9232 else
9233 return value_binop (arg1, arg2,
9234 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
9235
9236 case OP_ATR_MODULUS:
9237 {
9238 struct type *type_arg = exp->elts[pc + 2].type;
9239 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9240
9241 if (noside == EVAL_SKIP)
9242 goto nosideret;
9243
9244 if (!ada_is_modular_type (type_arg))
9245 error ("'modulus must be applied to modular type");
9246
9247 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
9248 ada_modulus (type_arg));
9249 }
9250
9251
9252 case OP_ATR_POS:
9253 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9254 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9255 if (noside == EVAL_SKIP)
9256 goto nosideret;
9257 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9258 return value_zero (builtin_type_ada_int, not_lval);
9259 else
9260 return value_pos_atr (arg1);
9261
9262 case OP_ATR_SIZE:
9263 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9264 if (noside == EVAL_SKIP)
9265 goto nosideret;
9266 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9267 return value_zero (builtin_type_ada_int, not_lval);
9268 else
9269 return value_from_longest (builtin_type_ada_int,
9270 TARGET_CHAR_BIT
9271 * TYPE_LENGTH (VALUE_TYPE (arg1)));
9272
9273 case OP_ATR_VAL:
9274 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9275 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9276 type = exp->elts[pc + 2].type;
9277 if (noside == EVAL_SKIP)
9278 goto nosideret;
9279 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9280 return value_zero (type, not_lval);
9281 else
9282 return value_val_atr (type, arg1);
9283
9284 case BINOP_EXP:
9285 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9286 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9287 if (noside == EVAL_SKIP)
9288 goto nosideret;
9289 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9290 return value_zero (VALUE_TYPE (arg1), not_lval);
9291 else
9292 return value_binop (arg1, arg2, op);
9293
9294 case UNOP_PLUS:
9295 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9296 if (noside == EVAL_SKIP)
9297 goto nosideret;
9298 else
9299 return arg1;
9300
9301 case UNOP_ABS:
9302 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9303 if (noside == EVAL_SKIP)
9304 goto nosideret;
9305 if (value_less (arg1, value_zero (VALUE_TYPE (arg1), not_lval)))
9306 return value_neg (arg1);
9307 else
9308 return arg1;
9309
9310 case UNOP_IND:
9311 if (expect_type && TYPE_CODE (expect_type) == TYPE_CODE_PTR)
9312 expect_type = TYPE_TARGET_TYPE (check_typedef (expect_type));
9313 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
9314 if (noside == EVAL_SKIP)
9315 goto nosideret;
9316 type = check_typedef (VALUE_TYPE (arg1));
9317 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9318 {
9319 if (ada_is_array_descriptor_type (type))
9320 /* GDB allows dereferencing GNAT array descriptors. */
9321 {
9322 struct type *arrType = ada_type_of_array (arg1, 0);
9323 if (arrType == NULL)
9324 error ("Attempt to dereference null array pointer.");
9325 return value_at_lazy (arrType, 0, NULL);
9326 }
9327 else if (TYPE_CODE (type) == TYPE_CODE_PTR
9328 || TYPE_CODE (type) == TYPE_CODE_REF
9329 /* In C you can dereference an array to get the 1st elt. */
9330 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
9331 return
9332 value_zero
9333 (to_static_fixed_type
9334 (ada_aligned_type (check_typedef (TYPE_TARGET_TYPE (type)))),
9335 lval_memory);
9336 else if (TYPE_CODE (type) == TYPE_CODE_INT)
9337 /* GDB allows dereferencing an int. */
9338 return value_zero (builtin_type_int, lval_memory);
9339 else
9340 error ("Attempt to take contents of a non-pointer value.");
9341 }
9342 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
9343 type = check_typedef (VALUE_TYPE (arg1));
9344
9345 if (ada_is_array_descriptor_type (type))
9346 /* GDB allows dereferencing GNAT array descriptors. */
9347 return ada_coerce_to_simple_array (arg1);
9348 else
9349 return ada_value_ind (arg1);
9350
9351 case STRUCTOP_STRUCT:
9352 tem = longest_to_int (exp->elts[pc + 1].longconst);
9353 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
9354 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9355 if (noside == EVAL_SKIP)
9356 goto nosideret;
9357 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9358 {
9359 struct type *type1 = VALUE_TYPE (arg1);
9360 if (ada_is_tagged_type (type1, 1))
9361 {
9362 type = ada_lookup_struct_elt_type (type1,
9363 &exp->elts[pc + 2].string,
9364 1, 1, NULL);
9365 if (type == NULL)
9366 /* In this case, we assume that the field COULD exist
9367 in some extension of the type. Return an object of
9368 "type" void, which will match any formal
9369 (see ada_type_match). */
9370 return value_zero (builtin_type_void, lval_memory);
9371 }
9372 else
9373 type = ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string,
9374 1, 0, NULL);
9375
9376 return value_zero (ada_aligned_type (type), lval_memory);
9377 }
9378 else
9379 return
9380 ada_to_fixed_value (unwrap_value
9381 (ada_value_struct_elt
9382 (arg1, &exp->elts[pc + 2].string, "record")));
9383 case OP_TYPE:
9384 /* The value is not supposed to be used. This is here to make it
9385 easier to accommodate expressions that contain types. */
9386 (*pos) += 2;
9387 if (noside == EVAL_SKIP)
9388 goto nosideret;
9389 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9390 return allocate_value (builtin_type_void);
9391 else
9392 error ("Attempt to use a type name as an expression");
9393 }
9394
9395 nosideret:
9396 return value_from_longest (builtin_type_long, (LONGEST) 1);
9397 }
9398 \f
9399
9400 /* Fixed point */
9401
9402 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
9403 type name that encodes the 'small and 'delta information.
9404 Otherwise, return NULL. */
9405
9406 static const char *
9407 fixed_type_info (struct type *type)
9408 {
9409 const char *name = ada_type_name (type);
9410 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
9411
9412 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
9413 {
9414 const char *tail = strstr (name, "___XF_");
9415 if (tail == NULL)
9416 return NULL;
9417 else
9418 return tail + 5;
9419 }
9420 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
9421 return fixed_type_info (TYPE_TARGET_TYPE (type));
9422 else
9423 return NULL;
9424 }
9425
9426 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
9427
9428 int
9429 ada_is_fixed_point_type (struct type *type)
9430 {
9431 return fixed_type_info (type) != NULL;
9432 }
9433
9434 /* Return non-zero iff TYPE represents a System.Address type. */
9435
9436 int
9437 ada_is_system_address_type (struct type *type)
9438 {
9439 return (TYPE_NAME (type)
9440 && strcmp (TYPE_NAME (type), "system__address") == 0);
9441 }
9442
9443 /* Assuming that TYPE is the representation of an Ada fixed-point
9444 type, return its delta, or -1 if the type is malformed and the
9445 delta cannot be determined. */
9446
9447 DOUBLEST
9448 ada_delta (struct type *type)
9449 {
9450 const char *encoding = fixed_type_info (type);
9451 long num, den;
9452
9453 if (sscanf (encoding, "_%ld_%ld", &num, &den) < 2)
9454 return -1.0;
9455 else
9456 return (DOUBLEST) num / (DOUBLEST) den;
9457 }
9458
9459 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
9460 factor ('SMALL value) associated with the type. */
9461
9462 static DOUBLEST
9463 scaling_factor (struct type *type)
9464 {
9465 const char *encoding = fixed_type_info (type);
9466 unsigned long num0, den0, num1, den1;
9467 int n;
9468
9469 n = sscanf (encoding, "_%lu_%lu_%lu_%lu", &num0, &den0, &num1, &den1);
9470
9471 if (n < 2)
9472 return 1.0;
9473 else if (n == 4)
9474 return (DOUBLEST) num1 / (DOUBLEST) den1;
9475 else
9476 return (DOUBLEST) num0 / (DOUBLEST) den0;
9477 }
9478
9479
9480 /* Assuming that X is the representation of a value of fixed-point
9481 type TYPE, return its floating-point equivalent. */
9482
9483 DOUBLEST
9484 ada_fixed_to_float (struct type *type, LONGEST x)
9485 {
9486 return (DOUBLEST) x *scaling_factor (type);
9487 }
9488
9489 /* The representation of a fixed-point value of type TYPE
9490 corresponding to the value X. */
9491
9492 LONGEST
9493 ada_float_to_fixed (struct type *type, DOUBLEST x)
9494 {
9495 return (LONGEST) (x / scaling_factor (type) + 0.5);
9496 }
9497
9498
9499 /* VAX floating formats */
9500
9501 /* Non-zero iff TYPE represents one of the special VAX floating-point
9502 types. */
9503
9504 int
9505 ada_is_vax_floating_type (struct type *type)
9506 {
9507 int name_len =
9508 (ada_type_name (type) == NULL) ? 0 : strlen (ada_type_name (type));
9509 return
9510 name_len > 6
9511 && (TYPE_CODE (type) == TYPE_CODE_INT
9512 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9513 && strncmp (ada_type_name (type) + name_len - 6, "___XF", 5) == 0;
9514 }
9515
9516 /* The type of special VAX floating-point type this is, assuming
9517 ada_is_vax_floating_point. */
9518
9519 int
9520 ada_vax_float_type_suffix (struct type *type)
9521 {
9522 return ada_type_name (type)[strlen (ada_type_name (type)) - 1];
9523 }
9524
9525 /* A value representing the special debugging function that outputs
9526 VAX floating-point values of the type represented by TYPE. Assumes
9527 ada_is_vax_floating_type (TYPE). */
9528
9529 struct value *
9530 ada_vax_float_print_function (struct type *type)
9531 {
9532 switch (ada_vax_float_type_suffix (type))
9533 {
9534 case 'F':
9535 return get_var_value ("DEBUG_STRING_F", 0);
9536 case 'D':
9537 return get_var_value ("DEBUG_STRING_D", 0);
9538 case 'G':
9539 return get_var_value ("DEBUG_STRING_G", 0);
9540 default:
9541 error ("invalid VAX floating-point type");
9542 }
9543 }
9544 \f
9545
9546 /* Range types */
9547
9548 /* Scan STR beginning at position K for a discriminant name, and
9549 return the value of that discriminant field of DVAL in *PX. If
9550 PNEW_K is not null, put the position of the character beyond the
9551 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
9552 not alter *PX and *PNEW_K if unsuccessful. */
9553
9554 static int
9555 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
9556 int *pnew_k)
9557 {
9558 static char *bound_buffer = NULL;
9559 static size_t bound_buffer_len = 0;
9560 char *bound;
9561 char *pend;
9562 struct value *bound_val;
9563
9564 if (dval == NULL || str == NULL || str[k] == '\0')
9565 return 0;
9566
9567 pend = strstr (str + k, "__");
9568 if (pend == NULL)
9569 {
9570 bound = str + k;
9571 k += strlen (bound);
9572 }
9573 else
9574 {
9575 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
9576 bound = bound_buffer;
9577 strncpy (bound_buffer, str + k, pend - (str + k));
9578 bound[pend - (str + k)] = '\0';
9579 k = pend - str;
9580 }
9581
9582 bound_val = ada_search_struct_field (bound, dval, 0, VALUE_TYPE (dval));
9583 if (bound_val == NULL)
9584 return 0;
9585
9586 *px = value_as_long (bound_val);
9587 if (pnew_k != NULL)
9588 *pnew_k = k;
9589 return 1;
9590 }
9591
9592 /* Value of variable named NAME in the current environment. If
9593 no such variable found, then if ERR_MSG is null, returns 0, and
9594 otherwise causes an error with message ERR_MSG. */
9595
9596 static struct value *
9597 get_var_value (char *name, char *err_msg)
9598 {
9599 struct ada_symbol_info *syms;
9600 int nsyms;
9601
9602 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
9603 &syms);
9604
9605 if (nsyms != 1)
9606 {
9607 if (err_msg == NULL)
9608 return 0;
9609 else
9610 error ("%s", err_msg);
9611 }
9612
9613 return value_of_variable (syms[0].sym, syms[0].block);
9614 }
9615
9616 /* Value of integer variable named NAME in the current environment. If
9617 no such variable found, returns 0, and sets *FLAG to 0. If
9618 successful, sets *FLAG to 1. */
9619
9620 LONGEST
9621 get_int_var_value (char *name, int *flag)
9622 {
9623 struct value *var_val = get_var_value (name, 0);
9624
9625 if (var_val == 0)
9626 {
9627 if (flag != NULL)
9628 *flag = 0;
9629 return 0;
9630 }
9631 else
9632 {
9633 if (flag != NULL)
9634 *flag = 1;
9635 return value_as_long (var_val);
9636 }
9637 }
9638
9639
9640 /* Return a range type whose base type is that of the range type named
9641 NAME in the current environment, and whose bounds are calculated
9642 from NAME according to the GNAT range encoding conventions.
9643 Extract discriminant values, if needed, from DVAL. If a new type
9644 must be created, allocate in OBJFILE's space. The bounds
9645 information, in general, is encoded in NAME, the base type given in
9646 the named range type. */
9647
9648 static struct type *
9649 to_fixed_range_type (char *name, struct value *dval, struct objfile *objfile)
9650 {
9651 struct type *raw_type = ada_find_any_type (name);
9652 struct type *base_type;
9653 char *subtype_info;
9654
9655 if (raw_type == NULL)
9656 base_type = builtin_type_int;
9657 else if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
9658 base_type = TYPE_TARGET_TYPE (raw_type);
9659 else
9660 base_type = raw_type;
9661
9662 subtype_info = strstr (name, "___XD");
9663 if (subtype_info == NULL)
9664 return raw_type;
9665 else
9666 {
9667 static char *name_buf = NULL;
9668 static size_t name_len = 0;
9669 int prefix_len = subtype_info - name;
9670 LONGEST L, U;
9671 struct type *type;
9672 char *bounds_str;
9673 int n;
9674
9675 GROW_VECT (name_buf, name_len, prefix_len + 5);
9676 strncpy (name_buf, name, prefix_len);
9677 name_buf[prefix_len] = '\0';
9678
9679 subtype_info += 5;
9680 bounds_str = strchr (subtype_info, '_');
9681 n = 1;
9682
9683 if (*subtype_info == 'L')
9684 {
9685 if (!ada_scan_number (bounds_str, n, &L, &n)
9686 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
9687 return raw_type;
9688 if (bounds_str[n] == '_')
9689 n += 2;
9690 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
9691 n += 1;
9692 subtype_info += 1;
9693 }
9694 else
9695 {
9696 int ok;
9697 strcpy (name_buf + prefix_len, "___L");
9698 L = get_int_var_value (name_buf, &ok);
9699 if (!ok)
9700 {
9701 lim_warning ("Unknown lower bound, using 1.", 1);
9702 L = 1;
9703 }
9704 }
9705
9706 if (*subtype_info == 'U')
9707 {
9708 if (!ada_scan_number (bounds_str, n, &U, &n)
9709 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
9710 return raw_type;
9711 }
9712 else
9713 {
9714 int ok;
9715 strcpy (name_buf + prefix_len, "___U");
9716 U = get_int_var_value (name_buf, &ok);
9717 if (!ok)
9718 {
9719 lim_warning ("Unknown upper bound, using %ld.", (long) L);
9720 U = L;
9721 }
9722 }
9723
9724 if (objfile == NULL)
9725 objfile = TYPE_OBJFILE (base_type);
9726 type = create_range_type (alloc_type (objfile), base_type, L, U);
9727 TYPE_NAME (type) = name;
9728 return type;
9729 }
9730 }
9731
9732 /* True iff NAME is the name of a range type. */
9733
9734 int
9735 ada_is_range_type_name (const char *name)
9736 {
9737 return (name != NULL && strstr (name, "___XD"));
9738 }
9739 \f
9740
9741 /* Modular types */
9742
9743 /* True iff TYPE is an Ada modular type. */
9744
9745 int
9746 ada_is_modular_type (struct type *type)
9747 {
9748 struct type *subranged_type = base_type (type);
9749
9750 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
9751 && TYPE_CODE (subranged_type) != TYPE_CODE_ENUM
9752 && TYPE_UNSIGNED (subranged_type));
9753 }
9754
9755 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
9756
9757 LONGEST
9758 ada_modulus (struct type * type)
9759 {
9760 return TYPE_HIGH_BOUND (type) + 1;
9761 }
9762 \f
9763 /* Operators */
9764 /* Information about operators given special treatment in functions
9765 below. */
9766 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
9767
9768 #define ADA_OPERATORS \
9769 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
9770 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
9771 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
9772 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
9773 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
9774 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
9775 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
9776 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
9777 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
9778 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
9779 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
9780 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
9781 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
9782 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
9783 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
9784 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0)
9785
9786 static void
9787 ada_operator_length (struct expression *exp, int pc, int *oplenp, int *argsp)
9788 {
9789 switch (exp->elts[pc - 1].opcode)
9790 {
9791 default:
9792 operator_length_standard (exp, pc, oplenp, argsp);
9793 break;
9794
9795 #define OP_DEFN(op, len, args, binop) \
9796 case op: *oplenp = len; *argsp = args; break;
9797 ADA_OPERATORS;
9798 #undef OP_DEFN
9799 }
9800 }
9801
9802 static char *
9803 ada_op_name (enum exp_opcode opcode)
9804 {
9805 switch (opcode)
9806 {
9807 default:
9808 return op_name_standard (opcode);
9809 #define OP_DEFN(op, len, args, binop) case op: return #op;
9810 ADA_OPERATORS;
9811 #undef OP_DEFN
9812 }
9813 }
9814
9815 /* As for operator_length, but assumes PC is pointing at the first
9816 element of the operator, and gives meaningful results only for the
9817 Ada-specific operators. */
9818
9819 static void
9820 ada_forward_operator_length (struct expression *exp, int pc,
9821 int *oplenp, int *argsp)
9822 {
9823 switch (exp->elts[pc].opcode)
9824 {
9825 default:
9826 *oplenp = *argsp = 0;
9827 break;
9828 #define OP_DEFN(op, len, args, binop) \
9829 case op: *oplenp = len; *argsp = args; break;
9830 ADA_OPERATORS;
9831 #undef OP_DEFN
9832 }
9833 }
9834
9835 static int
9836 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
9837 {
9838 enum exp_opcode op = exp->elts[elt].opcode;
9839 int oplen, nargs;
9840 int pc = elt;
9841 int i;
9842
9843 ada_forward_operator_length (exp, elt, &oplen, &nargs);
9844
9845 switch (op)
9846 {
9847 /* Ada attributes ('Foo). */
9848 case OP_ATR_FIRST:
9849 case OP_ATR_LAST:
9850 case OP_ATR_LENGTH:
9851 case OP_ATR_IMAGE:
9852 case OP_ATR_MAX:
9853 case OP_ATR_MIN:
9854 case OP_ATR_MODULUS:
9855 case OP_ATR_POS:
9856 case OP_ATR_SIZE:
9857 case OP_ATR_TAG:
9858 case OP_ATR_VAL:
9859 break;
9860
9861 case UNOP_IN_RANGE:
9862 case UNOP_QUAL:
9863 fprintf_filtered (stream, "Type @");
9864 gdb_print_host_address (exp->elts[pc + 1].type, stream);
9865 fprintf_filtered (stream, " (");
9866 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
9867 fprintf_filtered (stream, ")");
9868 break;
9869 case BINOP_IN_BOUNDS:
9870 fprintf_filtered (stream, " (%d)", (int) exp->elts[pc + 2].longconst);
9871 break;
9872 case TERNOP_IN_RANGE:
9873 break;
9874
9875 default:
9876 return dump_subexp_body_standard (exp, stream, elt);
9877 }
9878
9879 elt += oplen;
9880 for (i = 0; i < nargs; i += 1)
9881 elt = dump_subexp (exp, stream, elt);
9882
9883 return elt;
9884 }
9885
9886 /* The Ada extension of print_subexp (q.v.). */
9887
9888 static void
9889 ada_print_subexp (struct expression *exp, int *pos,
9890 struct ui_file *stream, enum precedence prec)
9891 {
9892 int oplen, nargs;
9893 int pc = *pos;
9894 enum exp_opcode op = exp->elts[pc].opcode;
9895
9896 ada_forward_operator_length (exp, pc, &oplen, &nargs);
9897
9898 switch (op)
9899 {
9900 default:
9901 print_subexp_standard (exp, pos, stream, prec);
9902 return;
9903
9904 case OP_VAR_VALUE:
9905 *pos += oplen;
9906 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
9907 return;
9908
9909 case BINOP_IN_BOUNDS:
9910 *pos += oplen;
9911 print_subexp (exp, pos, stream, PREC_SUFFIX);
9912 fputs_filtered (" in ", stream);
9913 print_subexp (exp, pos, stream, PREC_SUFFIX);
9914 fputs_filtered ("'range", stream);
9915 if (exp->elts[pc + 1].longconst > 1)
9916 fprintf_filtered (stream, "(%ld)", (long) exp->elts[pc + 1].longconst);
9917 return;
9918
9919 case TERNOP_IN_RANGE:
9920 *pos += oplen;
9921 if (prec >= PREC_EQUAL)
9922 fputs_filtered ("(", stream);
9923 print_subexp (exp, pos, stream, PREC_SUFFIX);
9924 fputs_filtered (" in ", stream);
9925 print_subexp (exp, pos, stream, PREC_EQUAL);
9926 fputs_filtered (" .. ", stream);
9927 print_subexp (exp, pos, stream, PREC_EQUAL);
9928 if (prec >= PREC_EQUAL)
9929 fputs_filtered (")", stream);
9930 return;
9931
9932 case OP_ATR_FIRST:
9933 case OP_ATR_LAST:
9934 case OP_ATR_LENGTH:
9935 case OP_ATR_IMAGE:
9936 case OP_ATR_MAX:
9937 case OP_ATR_MIN:
9938 case OP_ATR_MODULUS:
9939 case OP_ATR_POS:
9940 case OP_ATR_SIZE:
9941 case OP_ATR_TAG:
9942 case OP_ATR_VAL:
9943 *pos += oplen;
9944 if (exp->elts[*pos].opcode == OP_TYPE)
9945 {
9946 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
9947 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
9948 *pos += 3;
9949 }
9950 else
9951 print_subexp (exp, pos, stream, PREC_SUFFIX);
9952 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
9953 if (nargs > 1)
9954 {
9955 int tem;
9956 for (tem = 1; tem < nargs; tem += 1)
9957 {
9958 fputs_filtered ( (tem == 1) ? " (" : ", ", stream);
9959 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
9960 }
9961 fputs_filtered (")", stream);
9962 }
9963 return;
9964
9965 case UNOP_QUAL:
9966 *pos += oplen;
9967 type_print (exp->elts[pc + 1].type, "", stream, 0);
9968 fputs_filtered ("'(", stream);
9969 print_subexp (exp, pos, stream, PREC_PREFIX);
9970 fputs_filtered (")", stream);
9971 return;
9972
9973 case UNOP_IN_RANGE:
9974 *pos += oplen;
9975 print_subexp (exp, pos, stream, PREC_SUFFIX);
9976 fputs_filtered (" in ", stream);
9977 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
9978 return;
9979 }
9980 }
9981
9982 /* Table mapping opcodes into strings for printing operators
9983 and precedences of the operators. */
9984
9985 static const struct op_print ada_op_print_tab[] = {
9986 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
9987 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
9988 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
9989 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
9990 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
9991 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
9992 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
9993 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
9994 {"<=", BINOP_LEQ, PREC_ORDER, 0},
9995 {">=", BINOP_GEQ, PREC_ORDER, 0},
9996 {">", BINOP_GTR, PREC_ORDER, 0},
9997 {"<", BINOP_LESS, PREC_ORDER, 0},
9998 {">>", BINOP_RSH, PREC_SHIFT, 0},
9999 {"<<", BINOP_LSH, PREC_SHIFT, 0},
10000 {"+", BINOP_ADD, PREC_ADD, 0},
10001 {"-", BINOP_SUB, PREC_ADD, 0},
10002 {"&", BINOP_CONCAT, PREC_ADD, 0},
10003 {"*", BINOP_MUL, PREC_MUL, 0},
10004 {"/", BINOP_DIV, PREC_MUL, 0},
10005 {"rem", BINOP_REM, PREC_MUL, 0},
10006 {"mod", BINOP_MOD, PREC_MUL, 0},
10007 {"**", BINOP_EXP, PREC_REPEAT, 0},
10008 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
10009 {"-", UNOP_NEG, PREC_PREFIX, 0},
10010 {"+", UNOP_PLUS, PREC_PREFIX, 0},
10011 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
10012 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
10013 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
10014 {".all", UNOP_IND, PREC_SUFFIX, 1},
10015 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
10016 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
10017 {NULL, 0, 0, 0}
10018 };
10019 \f
10020 /* Assorted Types and Interfaces */
10021
10022 struct type *builtin_type_ada_int;
10023 struct type *builtin_type_ada_short;
10024 struct type *builtin_type_ada_long;
10025 struct type *builtin_type_ada_long_long;
10026 struct type *builtin_type_ada_char;
10027 struct type *builtin_type_ada_float;
10028 struct type *builtin_type_ada_double;
10029 struct type *builtin_type_ada_long_double;
10030 struct type *builtin_type_ada_natural;
10031 struct type *builtin_type_ada_positive;
10032 struct type *builtin_type_ada_system_address;
10033
10034 struct type **const (ada_builtin_types[]) =
10035 {
10036 &builtin_type_ada_int,
10037 &builtin_type_ada_long,
10038 &builtin_type_ada_short,
10039 &builtin_type_ada_char,
10040 &builtin_type_ada_float,
10041 &builtin_type_ada_double,
10042 &builtin_type_ada_long_long,
10043 &builtin_type_ada_long_double,
10044 &builtin_type_ada_natural, &builtin_type_ada_positive,
10045 /* The following types are carried over from C for convenience. */
10046 &builtin_type_int,
10047 &builtin_type_long,
10048 &builtin_type_short,
10049 &builtin_type_char,
10050 &builtin_type_float,
10051 &builtin_type_double,
10052 &builtin_type_long_long,
10053 &builtin_type_void,
10054 &builtin_type_signed_char,
10055 &builtin_type_unsigned_char,
10056 &builtin_type_unsigned_short,
10057 &builtin_type_unsigned_int,
10058 &builtin_type_unsigned_long,
10059 &builtin_type_unsigned_long_long,
10060 &builtin_type_long_double,
10061 &builtin_type_complex,
10062 &builtin_type_double_complex,
10063 0
10064 };
10065
10066 /* Not really used, but needed in the ada_language_defn. */
10067
10068 static void
10069 emit_char (int c, struct ui_file *stream, int quoter)
10070 {
10071 ada_emit_char (c, stream, quoter, 1);
10072 }
10073
10074 static int
10075 parse ()
10076 {
10077 warnings_issued = 0;
10078 return ada_parse ();
10079 }
10080
10081 static const struct exp_descriptor ada_exp_descriptor =
10082 {
10083 ada_print_subexp,
10084 ada_operator_length,
10085 ada_op_name,
10086 ada_dump_subexp_body,
10087 ada_evaluate_subexp
10088 };
10089
10090 const struct language_defn ada_language_defn = {
10091 "ada", /* Language name */
10092 language_ada,
10093 ada_builtin_types,
10094 range_check_off,
10095 type_check_off,
10096 case_sensitive_on, /* Yes, Ada is case-insensitive, but
10097 that's not quite what this means. */
10098 #ifdef GNAT_GDB
10099 ada_lookup_symbol,
10100 ada_lookup_minimal_symbol,
10101 #endif
10102 &ada_exp_descriptor,
10103 parse,
10104 ada_error,
10105 resolve,
10106 ada_printchar, /* Print a character constant */
10107 ada_printstr, /* Function to print string constant */
10108 emit_char, /* Function to print single char (not used) */
10109 ada_create_fundamental_type, /* Create fundamental type in this language */
10110 ada_print_type, /* Print a type using appropriate syntax */
10111 ada_val_print, /* Print a value using appropriate syntax */
10112 ada_value_print, /* Print a top-level value */
10113 NULL, /* Language specific skip_trampoline */
10114 NULL, /* value_of_this */
10115 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
10116 basic_lookup_transparent_type,/* lookup_transparent_type */
10117 ada_la_decode, /* Language specific symbol demangler */
10118 {"", "", "", ""}, /* Binary format info */
10119 #if 0
10120 {"8#%lo#", "8#", "o", "#"}, /* Octal format info */
10121 {"%ld", "", "d", ""}, /* Decimal format info */
10122 {"16#%lx#", "16#", "x", "#"}, /* Hex format info */
10123 #else
10124 /* Copied from c-lang.c. */
10125 {"0%lo", "0", "o", ""}, /* Octal format info */
10126 {"%ld", "", "d", ""}, /* Decimal format info */
10127 {"0x%lx", "0x", "x", ""}, /* Hex format info */
10128 #endif
10129 ada_op_print_tab, /* expression operators for printing */
10130 0, /* c-style arrays */
10131 1, /* String lower bound */
10132 &builtin_type_ada_char,
10133 ada_get_gdb_completer_word_break_characters,
10134 #ifdef GNAT_GDB
10135 ada_translate_error_message, /* Substitute Ada-specific terminology
10136 in errors and warnings. */
10137 #endif
10138 LANG_MAGIC
10139 };
10140
10141 static void
10142 build_ada_types (void) {
10143 builtin_type_ada_int =
10144 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
10145 0, "integer", (struct objfile *) NULL);
10146 builtin_type_ada_long =
10147 init_type (TYPE_CODE_INT, TARGET_LONG_BIT / TARGET_CHAR_BIT,
10148 0, "long_integer", (struct objfile *) NULL);
10149 builtin_type_ada_short =
10150 init_type (TYPE_CODE_INT, TARGET_SHORT_BIT / TARGET_CHAR_BIT,
10151 0, "short_integer", (struct objfile *) NULL);
10152 builtin_type_ada_char =
10153 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10154 0, "character", (struct objfile *) NULL);
10155 builtin_type_ada_float =
10156 init_type (TYPE_CODE_FLT, TARGET_FLOAT_BIT / TARGET_CHAR_BIT,
10157 0, "float", (struct objfile *) NULL);
10158 builtin_type_ada_double =
10159 init_type (TYPE_CODE_FLT, TARGET_DOUBLE_BIT / TARGET_CHAR_BIT,
10160 0, "long_float", (struct objfile *) NULL);
10161 builtin_type_ada_long_long =
10162 init_type (TYPE_CODE_INT, TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT,
10163 0, "long_long_integer", (struct objfile *) NULL);
10164 builtin_type_ada_long_double =
10165 init_type (TYPE_CODE_FLT, TARGET_LONG_DOUBLE_BIT / TARGET_CHAR_BIT,
10166 0, "long_long_float", (struct objfile *) NULL);
10167 builtin_type_ada_natural =
10168 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
10169 0, "natural", (struct objfile *) NULL);
10170 builtin_type_ada_positive =
10171 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
10172 0, "positive", (struct objfile *) NULL);
10173
10174
10175 builtin_type_ada_system_address =
10176 lookup_pointer_type (init_type (TYPE_CODE_VOID, 1, 0, "void",
10177 (struct objfile *) NULL));
10178 TYPE_NAME (builtin_type_ada_system_address) = "system__address";
10179 }
10180
10181 void
10182 _initialize_ada_language (void)
10183 {
10184
10185 build_ada_types ();
10186 deprecated_register_gdbarch_swap (NULL, 0, build_ada_types);
10187 add_language (&ada_language_defn);
10188
10189 #ifdef GNAT_GDB
10190 add_show_from_set
10191 (add_set_cmd ("varsize-limit", class_support, var_uinteger,
10192 (char *) &varsize_limit,
10193 "Set maximum bytes in dynamic-sized object.",
10194 &setlist), &showlist);
10195 #endif
10196 varsize_limit = 65536;
10197
10198 obstack_init (&symbol_list_obstack);
10199 obstack_init (&cache_space);
10200
10201 decoded_names_store = htab_create_alloc_ex
10202 (256, htab_hash_string, (int (*) (const void *, const void *)) streq,
10203 NULL, NULL, xmcalloc, xmfree);
10204 }
10205
10206 /* Create a fundamental Ada type using default reasonable for the current
10207 target machine.
10208
10209 Some object/debugging file formats (DWARF version 1, COFF, etc) do not
10210 define fundamental types such as "int" or "double". Others (stabs or
10211 DWARF version 2, etc) do define fundamental types. For the formats which
10212 don't provide fundamental types, gdb can create such types using this
10213 function.
10214
10215 FIXME: Some compilers distinguish explicitly signed integral types
10216 (signed short, signed int, signed long) from "regular" integral types
10217 (short, int, long) in the debugging information. There is some dis-
10218 agreement as to how useful this feature is. In particular, gcc does
10219 not support this. Also, only some debugging formats allow the
10220 distinction to be passed on to a debugger. For now, we always just
10221 use "short", "int", or "long" as the type name, for both the implicit
10222 and explicitly signed types. This also makes life easier for the
10223 gdb test suite since we don't have to account for the differences
10224 in output depending upon what the compiler and debugging format
10225 support. We will probably have to re-examine the issue when gdb
10226 starts taking it's fundamental type information directly from the
10227 debugging information supplied by the compiler. fnf@cygnus.com */
10228
10229 static struct type *
10230 ada_create_fundamental_type (struct objfile *objfile, int typeid)
10231 {
10232 struct type *type = NULL;
10233
10234 switch (typeid)
10235 {
10236 default:
10237 /* FIXME: For now, if we are asked to produce a type not in this
10238 language, create the equivalent of a C integer type with the
10239 name "<?type?>". When all the dust settles from the type
10240 reconstruction work, this should probably become an error. */
10241 type = init_type (TYPE_CODE_INT,
10242 TARGET_INT_BIT / TARGET_CHAR_BIT,
10243 0, "<?type?>", objfile);
10244 warning ("internal error: no Ada fundamental type %d", typeid);
10245 break;
10246 case FT_VOID:
10247 type = init_type (TYPE_CODE_VOID,
10248 TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10249 0, "void", objfile);
10250 break;
10251 case FT_CHAR:
10252 type = init_type (TYPE_CODE_INT,
10253 TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10254 0, "character", objfile);
10255 break;
10256 case FT_SIGNED_CHAR:
10257 type = init_type (TYPE_CODE_INT,
10258 TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10259 0, "signed char", objfile);
10260 break;
10261 case FT_UNSIGNED_CHAR:
10262 type = init_type (TYPE_CODE_INT,
10263 TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10264 TYPE_FLAG_UNSIGNED, "unsigned char", objfile);
10265 break;
10266 case FT_SHORT:
10267 type = init_type (TYPE_CODE_INT,
10268 TARGET_SHORT_BIT / TARGET_CHAR_BIT,
10269 0, "short_integer", objfile);
10270 break;
10271 case FT_SIGNED_SHORT:
10272 type = init_type (TYPE_CODE_INT,
10273 TARGET_SHORT_BIT / TARGET_CHAR_BIT,
10274 0, "short_integer", objfile);
10275 break;
10276 case FT_UNSIGNED_SHORT:
10277 type = init_type (TYPE_CODE_INT,
10278 TARGET_SHORT_BIT / TARGET_CHAR_BIT,
10279 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
10280 break;
10281 case FT_INTEGER:
10282 type = init_type (TYPE_CODE_INT,
10283 TARGET_INT_BIT / TARGET_CHAR_BIT,
10284 0, "integer", objfile);
10285 break;
10286 case FT_SIGNED_INTEGER:
10287 type = init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT, 0, "integer", objfile); /* FIXME -fnf */
10288 break;
10289 case FT_UNSIGNED_INTEGER:
10290 type = init_type (TYPE_CODE_INT,
10291 TARGET_INT_BIT / TARGET_CHAR_BIT,
10292 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
10293 break;
10294 case FT_LONG:
10295 type = init_type (TYPE_CODE_INT,
10296 TARGET_LONG_BIT / TARGET_CHAR_BIT,
10297 0, "long_integer", objfile);
10298 break;
10299 case FT_SIGNED_LONG:
10300 type = init_type (TYPE_CODE_INT,
10301 TARGET_LONG_BIT / TARGET_CHAR_BIT,
10302 0, "long_integer", objfile);
10303 break;
10304 case FT_UNSIGNED_LONG:
10305 type = init_type (TYPE_CODE_INT,
10306 TARGET_LONG_BIT / TARGET_CHAR_BIT,
10307 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
10308 break;
10309 case FT_LONG_LONG:
10310 type = init_type (TYPE_CODE_INT,
10311 TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT,
10312 0, "long_long_integer", objfile);
10313 break;
10314 case FT_SIGNED_LONG_LONG:
10315 type = init_type (TYPE_CODE_INT,
10316 TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT,
10317 0, "long_long_integer", objfile);
10318 break;
10319 case FT_UNSIGNED_LONG_LONG:
10320 type = init_type (TYPE_CODE_INT,
10321 TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT,
10322 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
10323 break;
10324 case FT_FLOAT:
10325 type = init_type (TYPE_CODE_FLT,
10326 TARGET_FLOAT_BIT / TARGET_CHAR_BIT,
10327 0, "float", objfile);
10328 break;
10329 case FT_DBL_PREC_FLOAT:
10330 type = init_type (TYPE_CODE_FLT,
10331 TARGET_DOUBLE_BIT / TARGET_CHAR_BIT,
10332 0, "long_float", objfile);
10333 break;
10334 case FT_EXT_PREC_FLOAT:
10335 type = init_type (TYPE_CODE_FLT,
10336 TARGET_LONG_DOUBLE_BIT / TARGET_CHAR_BIT,
10337 0, "long_long_float", objfile);
10338 break;
10339 }
10340 return (type);
10341 }
10342
10343 void
10344 ada_dump_symtab (struct symtab *s)
10345 {
10346 int i;
10347 fprintf (stderr, "New symtab: [\n");
10348 fprintf (stderr, " Name: %s/%s;\n",
10349 s->dirname ? s->dirname : "?", s->filename ? s->filename : "?");
10350 fprintf (stderr, " Format: %s;\n", s->debugformat);
10351 if (s->linetable != NULL)
10352 {
10353 fprintf (stderr, " Line table (section %d):\n", s->block_line_section);
10354 for (i = 0; i < s->linetable->nitems; i += 1)
10355 {
10356 struct linetable_entry *e = s->linetable->item + i;
10357 fprintf (stderr, " %4ld: %8lx\n", (long) e->line, (long) e->pc);
10358 }
10359 }
10360 fprintf (stderr, "]\n");
10361 }