* ada-lang.c (ada_evaluate_subexp) [BINOP_ASSIGN]: Do not force
[binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger. Copyright (C)
2
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21
22 #include "defs.h"
23 #include <stdio.h>
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include <stdarg.h>
27 #include "demangle.h"
28 #include "gdb_regex.h"
29 #include "frame.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "gdbcmd.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35 #include "language.h"
36 #include "c-lang.h"
37 #include "inferior.h"
38 #include "symfile.h"
39 #include "objfiles.h"
40 #include "breakpoint.h"
41 #include "gdbcore.h"
42 #include "hashtab.h"
43 #include "gdb_obstack.h"
44 #include "ada-lang.h"
45 #include "completer.h"
46 #include "gdb_stat.h"
47 #ifdef UI_OUT
48 #include "ui-out.h"
49 #endif
50 #include "block.h"
51 #include "infcall.h"
52 #include "dictionary.h"
53 #include "exceptions.h"
54 #include "annotate.h"
55 #include "valprint.h"
56 #include "source.h"
57 #include "observer.h"
58 #include "vec.h"
59
60 #ifndef ADA_RETAIN_DOTS
61 #define ADA_RETAIN_DOTS 0
62 #endif
63
64 /* Define whether or not the C operator '/' truncates towards zero for
65 differently signed operands (truncation direction is undefined in C).
66 Copied from valarith.c. */
67
68 #ifndef TRUNCATION_TOWARDS_ZERO
69 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
70 #endif
71
72 static void extract_string (CORE_ADDR addr, char *buf);
73
74 static void modify_general_field (char *, LONGEST, int, int);
75
76 static struct type *desc_base_type (struct type *);
77
78 static struct type *desc_bounds_type (struct type *);
79
80 static struct value *desc_bounds (struct value *);
81
82 static int fat_pntr_bounds_bitpos (struct type *);
83
84 static int fat_pntr_bounds_bitsize (struct type *);
85
86 static struct type *desc_data_type (struct type *);
87
88 static struct value *desc_data (struct value *);
89
90 static int fat_pntr_data_bitpos (struct type *);
91
92 static int fat_pntr_data_bitsize (struct type *);
93
94 static struct value *desc_one_bound (struct value *, int, int);
95
96 static int desc_bound_bitpos (struct type *, int, int);
97
98 static int desc_bound_bitsize (struct type *, int, int);
99
100 static struct type *desc_index_type (struct type *, int);
101
102 static int desc_arity (struct type *);
103
104 static int ada_type_match (struct type *, struct type *, int);
105
106 static int ada_args_match (struct symbol *, struct value **, int);
107
108 static struct value *ensure_lval (struct value *, CORE_ADDR *);
109
110 static struct value *convert_actual (struct value *, struct type *,
111 CORE_ADDR *);
112
113 static struct value *make_array_descriptor (struct type *, struct value *,
114 CORE_ADDR *);
115
116 static void ada_add_block_symbols (struct obstack *,
117 struct block *, const char *,
118 domain_enum, struct objfile *,
119 struct symtab *, int);
120
121 static int is_nonfunction (struct ada_symbol_info *, int);
122
123 static void add_defn_to_vec (struct obstack *, struct symbol *,
124 struct block *, struct symtab *);
125
126 static int num_defns_collected (struct obstack *);
127
128 static struct ada_symbol_info *defns_collected (struct obstack *, int);
129
130 static struct partial_symbol *ada_lookup_partial_symbol (struct partial_symtab
131 *, const char *, int,
132 domain_enum, int);
133
134 static struct symtab *symtab_for_sym (struct symbol *);
135
136 static struct value *resolve_subexp (struct expression **, int *, int,
137 struct type *);
138
139 static void replace_operator_with_call (struct expression **, int, int, int,
140 struct symbol *, struct block *);
141
142 static int possible_user_operator_p (enum exp_opcode, struct value **);
143
144 static char *ada_op_name (enum exp_opcode);
145
146 static const char *ada_decoded_op_name (enum exp_opcode);
147
148 static int numeric_type_p (struct type *);
149
150 static int integer_type_p (struct type *);
151
152 static int scalar_type_p (struct type *);
153
154 static int discrete_type_p (struct type *);
155
156 static enum ada_renaming_category parse_old_style_renaming (struct type *,
157 const char **,
158 int *,
159 const char **);
160
161 static struct symbol *find_old_style_renaming_symbol (const char *,
162 struct block *);
163
164 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
165 int, int, int *);
166
167 static struct value *evaluate_subexp (struct type *, struct expression *,
168 int *, enum noside);
169
170 static struct value *evaluate_subexp_type (struct expression *, int *);
171
172 static int is_dynamic_field (struct type *, int);
173
174 static struct type *to_fixed_variant_branch_type (struct type *,
175 const gdb_byte *,
176 CORE_ADDR, struct value *);
177
178 static struct type *to_fixed_array_type (struct type *, struct value *, int);
179
180 static struct type *to_fixed_range_type (char *, struct value *,
181 struct objfile *);
182
183 static struct type *to_static_fixed_type (struct type *);
184 static struct type *static_unwrap_type (struct type *type);
185
186 static struct value *unwrap_value (struct value *);
187
188 static struct type *packed_array_type (struct type *, long *);
189
190 static struct type *decode_packed_array_type (struct type *);
191
192 static struct value *decode_packed_array (struct value *);
193
194 static struct value *value_subscript_packed (struct value *, int,
195 struct value **);
196
197 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int);
198
199 static struct value *coerce_unspec_val_to_type (struct value *,
200 struct type *);
201
202 static struct value *get_var_value (char *, char *);
203
204 static int lesseq_defined_than (struct symbol *, struct symbol *);
205
206 static int equiv_types (struct type *, struct type *);
207
208 static int is_name_suffix (const char *);
209
210 static int wild_match (const char *, int, const char *);
211
212 static struct value *ada_coerce_ref (struct value *);
213
214 static LONGEST pos_atr (struct value *);
215
216 static struct value *value_pos_atr (struct value *);
217
218 static struct value *value_val_atr (struct type *, struct value *);
219
220 static struct symbol *standard_lookup (const char *, const struct block *,
221 domain_enum);
222
223 static struct value *ada_search_struct_field (char *, struct value *, int,
224 struct type *);
225
226 static struct value *ada_value_primitive_field (struct value *, int, int,
227 struct type *);
228
229 static int find_struct_field (char *, struct type *, int,
230 struct type **, int *, int *, int *, int *);
231
232 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
233 struct value *);
234
235 static struct value *ada_to_fixed_value (struct value *);
236
237 static int ada_resolve_function (struct ada_symbol_info *, int,
238 struct value **, int, const char *,
239 struct type *);
240
241 static struct value *ada_coerce_to_simple_array (struct value *);
242
243 static int ada_is_direct_array_type (struct type *);
244
245 static void ada_language_arch_info (struct gdbarch *,
246 struct language_arch_info *);
247
248 static void check_size (const struct type *);
249
250 static struct value *ada_index_struct_field (int, struct value *, int,
251 struct type *);
252
253 static struct value *assign_aggregate (struct value *, struct value *,
254 struct expression *, int *, enum noside);
255
256 static void aggregate_assign_from_choices (struct value *, struct value *,
257 struct expression *,
258 int *, LONGEST *, int *,
259 int, LONGEST, LONGEST);
260
261 static void aggregate_assign_positional (struct value *, struct value *,
262 struct expression *,
263 int *, LONGEST *, int *, int,
264 LONGEST, LONGEST);
265
266
267 static void aggregate_assign_others (struct value *, struct value *,
268 struct expression *,
269 int *, LONGEST *, int, LONGEST, LONGEST);
270
271
272 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
273
274
275 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
276 int *, enum noside);
277
278 static void ada_forward_operator_length (struct expression *, int, int *,
279 int *);
280 \f
281
282
283 /* Maximum-sized dynamic type. */
284 static unsigned int varsize_limit;
285
286 /* FIXME: brobecker/2003-09-17: No longer a const because it is
287 returned by a function that does not return a const char *. */
288 static char *ada_completer_word_break_characters =
289 #ifdef VMS
290 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
291 #else
292 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
293 #endif
294
295 /* The name of the symbol to use to get the name of the main subprogram. */
296 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
297 = "__gnat_ada_main_program_name";
298
299 /* Limit on the number of warnings to raise per expression evaluation. */
300 static int warning_limit = 2;
301
302 /* Number of warning messages issued; reset to 0 by cleanups after
303 expression evaluation. */
304 static int warnings_issued = 0;
305
306 static const char *known_runtime_file_name_patterns[] = {
307 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
308 };
309
310 static const char *known_auxiliary_function_name_patterns[] = {
311 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
312 };
313
314 /* Space for allocating results of ada_lookup_symbol_list. */
315 static struct obstack symbol_list_obstack;
316
317 /* Utilities */
318
319 /* Given DECODED_NAME a string holding a symbol name in its
320 decoded form (ie using the Ada dotted notation), returns
321 its unqualified name. */
322
323 static const char *
324 ada_unqualified_name (const char *decoded_name)
325 {
326 const char *result = strrchr (decoded_name, '.');
327
328 if (result != NULL)
329 result++; /* Skip the dot... */
330 else
331 result = decoded_name;
332
333 return result;
334 }
335
336 /* Return a string starting with '<', followed by STR, and '>'.
337 The result is good until the next call. */
338
339 static char *
340 add_angle_brackets (const char *str)
341 {
342 static char *result = NULL;
343
344 xfree (result);
345 result = (char *) xmalloc ((strlen (str) + 3) * sizeof (char));
346
347 sprintf (result, "<%s>", str);
348 return result;
349 }
350
351 static char *
352 ada_get_gdb_completer_word_break_characters (void)
353 {
354 return ada_completer_word_break_characters;
355 }
356
357 /* Print an array element index using the Ada syntax. */
358
359 static void
360 ada_print_array_index (struct value *index_value, struct ui_file *stream,
361 int format, enum val_prettyprint pretty)
362 {
363 LA_VALUE_PRINT (index_value, stream, format, pretty);
364 fprintf_filtered (stream, " => ");
365 }
366
367 /* Read the string located at ADDR from the inferior and store the
368 result into BUF. */
369
370 static void
371 extract_string (CORE_ADDR addr, char *buf)
372 {
373 int char_index = 0;
374
375 /* Loop, reading one byte at a time, until we reach the '\000'
376 end-of-string marker. */
377 do
378 {
379 target_read_memory (addr + char_index * sizeof (char),
380 buf + char_index * sizeof (char), sizeof (char));
381 char_index++;
382 }
383 while (buf[char_index - 1] != '\000');
384 }
385
386 /* Assuming VECT points to an array of *SIZE objects of size
387 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
388 updating *SIZE as necessary and returning the (new) array. */
389
390 void *
391 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
392 {
393 if (*size < min_size)
394 {
395 *size *= 2;
396 if (*size < min_size)
397 *size = min_size;
398 vect = xrealloc (vect, *size * element_size);
399 }
400 return vect;
401 }
402
403 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
404 suffix of FIELD_NAME beginning "___". */
405
406 static int
407 field_name_match (const char *field_name, const char *target)
408 {
409 int len = strlen (target);
410 return
411 (strncmp (field_name, target, len) == 0
412 && (field_name[len] == '\0'
413 || (strncmp (field_name + len, "___", 3) == 0
414 && strcmp (field_name + strlen (field_name) - 6,
415 "___XVN") != 0)));
416 }
417
418
419 /* Assuming TYPE is a TYPE_CODE_STRUCT, find the field whose name matches
420 FIELD_NAME, and return its index. This function also handles fields
421 whose name have ___ suffixes because the compiler sometimes alters
422 their name by adding such a suffix to represent fields with certain
423 constraints. If the field could not be found, return a negative
424 number if MAYBE_MISSING is set. Otherwise raise an error. */
425
426 int
427 ada_get_field_index (const struct type *type, const char *field_name,
428 int maybe_missing)
429 {
430 int fieldno;
431 for (fieldno = 0; fieldno < TYPE_NFIELDS (type); fieldno++)
432 if (field_name_match (TYPE_FIELD_NAME (type, fieldno), field_name))
433 return fieldno;
434
435 if (!maybe_missing)
436 error (_("Unable to find field %s in struct %s. Aborting"),
437 field_name, TYPE_NAME (type));
438
439 return -1;
440 }
441
442 /* The length of the prefix of NAME prior to any "___" suffix. */
443
444 int
445 ada_name_prefix_len (const char *name)
446 {
447 if (name == NULL)
448 return 0;
449 else
450 {
451 const char *p = strstr (name, "___");
452 if (p == NULL)
453 return strlen (name);
454 else
455 return p - name;
456 }
457 }
458
459 /* Return non-zero if SUFFIX is a suffix of STR.
460 Return zero if STR is null. */
461
462 static int
463 is_suffix (const char *str, const char *suffix)
464 {
465 int len1, len2;
466 if (str == NULL)
467 return 0;
468 len1 = strlen (str);
469 len2 = strlen (suffix);
470 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
471 }
472
473 /* Create a value of type TYPE whose contents come from VALADDR, if it
474 is non-null, and whose memory address (in the inferior) is
475 ADDRESS. */
476
477 struct value *
478 value_from_contents_and_address (struct type *type,
479 const gdb_byte *valaddr,
480 CORE_ADDR address)
481 {
482 struct value *v = allocate_value (type);
483 if (valaddr == NULL)
484 set_value_lazy (v, 1);
485 else
486 memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type));
487 VALUE_ADDRESS (v) = address;
488 if (address != 0)
489 VALUE_LVAL (v) = lval_memory;
490 return v;
491 }
492
493 /* The contents of value VAL, treated as a value of type TYPE. The
494 result is an lval in memory if VAL is. */
495
496 static struct value *
497 coerce_unspec_val_to_type (struct value *val, struct type *type)
498 {
499 type = ada_check_typedef (type);
500 if (value_type (val) == type)
501 return val;
502 else
503 {
504 struct value *result;
505
506 /* Make sure that the object size is not unreasonable before
507 trying to allocate some memory for it. */
508 check_size (type);
509
510 result = allocate_value (type);
511 VALUE_LVAL (result) = VALUE_LVAL (val);
512 set_value_bitsize (result, value_bitsize (val));
513 set_value_bitpos (result, value_bitpos (val));
514 VALUE_ADDRESS (result) = VALUE_ADDRESS (val) + value_offset (val);
515 if (value_lazy (val)
516 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
517 set_value_lazy (result, 1);
518 else
519 memcpy (value_contents_raw (result), value_contents (val),
520 TYPE_LENGTH (type));
521 return result;
522 }
523 }
524
525 static const gdb_byte *
526 cond_offset_host (const gdb_byte *valaddr, long offset)
527 {
528 if (valaddr == NULL)
529 return NULL;
530 else
531 return valaddr + offset;
532 }
533
534 static CORE_ADDR
535 cond_offset_target (CORE_ADDR address, long offset)
536 {
537 if (address == 0)
538 return 0;
539 else
540 return address + offset;
541 }
542
543 /* Issue a warning (as for the definition of warning in utils.c, but
544 with exactly one argument rather than ...), unless the limit on the
545 number of warnings has passed during the evaluation of the current
546 expression. */
547
548 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
549 provided by "complaint". */
550 static void lim_warning (const char *format, ...) ATTR_FORMAT (printf, 1, 2);
551
552 static void
553 lim_warning (const char *format, ...)
554 {
555 va_list args;
556 va_start (args, format);
557
558 warnings_issued += 1;
559 if (warnings_issued <= warning_limit)
560 vwarning (format, args);
561
562 va_end (args);
563 }
564
565 /* Issue an error if the size of an object of type T is unreasonable,
566 i.e. if it would be a bad idea to allocate a value of this type in
567 GDB. */
568
569 static void
570 check_size (const struct type *type)
571 {
572 if (TYPE_LENGTH (type) > varsize_limit)
573 error (_("object size is larger than varsize-limit"));
574 }
575
576
577 /* Note: would have used MAX_OF_TYPE and MIN_OF_TYPE macros from
578 gdbtypes.h, but some of the necessary definitions in that file
579 seem to have gone missing. */
580
581 /* Maximum value of a SIZE-byte signed integer type. */
582 static LONGEST
583 max_of_size (int size)
584 {
585 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
586 return top_bit | (top_bit - 1);
587 }
588
589 /* Minimum value of a SIZE-byte signed integer type. */
590 static LONGEST
591 min_of_size (int size)
592 {
593 return -max_of_size (size) - 1;
594 }
595
596 /* Maximum value of a SIZE-byte unsigned integer type. */
597 static ULONGEST
598 umax_of_size (int size)
599 {
600 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
601 return top_bit | (top_bit - 1);
602 }
603
604 /* Maximum value of integral type T, as a signed quantity. */
605 static LONGEST
606 max_of_type (struct type *t)
607 {
608 if (TYPE_UNSIGNED (t))
609 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
610 else
611 return max_of_size (TYPE_LENGTH (t));
612 }
613
614 /* Minimum value of integral type T, as a signed quantity. */
615 static LONGEST
616 min_of_type (struct type *t)
617 {
618 if (TYPE_UNSIGNED (t))
619 return 0;
620 else
621 return min_of_size (TYPE_LENGTH (t));
622 }
623
624 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
625 static struct value *
626 discrete_type_high_bound (struct type *type)
627 {
628 switch (TYPE_CODE (type))
629 {
630 case TYPE_CODE_RANGE:
631 return value_from_longest (TYPE_TARGET_TYPE (type),
632 TYPE_HIGH_BOUND (type));
633 case TYPE_CODE_ENUM:
634 return
635 value_from_longest (type,
636 TYPE_FIELD_BITPOS (type,
637 TYPE_NFIELDS (type) - 1));
638 case TYPE_CODE_INT:
639 return value_from_longest (type, max_of_type (type));
640 default:
641 error (_("Unexpected type in discrete_type_high_bound."));
642 }
643 }
644
645 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
646 static struct value *
647 discrete_type_low_bound (struct type *type)
648 {
649 switch (TYPE_CODE (type))
650 {
651 case TYPE_CODE_RANGE:
652 return value_from_longest (TYPE_TARGET_TYPE (type),
653 TYPE_LOW_BOUND (type));
654 case TYPE_CODE_ENUM:
655 return value_from_longest (type, TYPE_FIELD_BITPOS (type, 0));
656 case TYPE_CODE_INT:
657 return value_from_longest (type, min_of_type (type));
658 default:
659 error (_("Unexpected type in discrete_type_low_bound."));
660 }
661 }
662
663 /* The identity on non-range types. For range types, the underlying
664 non-range scalar type. */
665
666 static struct type *
667 base_type (struct type *type)
668 {
669 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
670 {
671 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
672 return type;
673 type = TYPE_TARGET_TYPE (type);
674 }
675 return type;
676 }
677 \f
678
679 /* Language Selection */
680
681 /* If the main program is in Ada, return language_ada, otherwise return LANG
682 (the main program is in Ada iif the adainit symbol is found).
683
684 MAIN_PST is not used. */
685
686 enum language
687 ada_update_initial_language (enum language lang,
688 struct partial_symtab *main_pst)
689 {
690 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
691 (struct objfile *) NULL) != NULL)
692 return language_ada;
693
694 return lang;
695 }
696
697 /* If the main procedure is written in Ada, then return its name.
698 The result is good until the next call. Return NULL if the main
699 procedure doesn't appear to be in Ada. */
700
701 char *
702 ada_main_name (void)
703 {
704 struct minimal_symbol *msym;
705 CORE_ADDR main_program_name_addr;
706 static char main_program_name[1024];
707
708 /* For Ada, the name of the main procedure is stored in a specific
709 string constant, generated by the binder. Look for that symbol,
710 extract its address, and then read that string. If we didn't find
711 that string, then most probably the main procedure is not written
712 in Ada. */
713 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
714
715 if (msym != NULL)
716 {
717 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
718 if (main_program_name_addr == 0)
719 error (_("Invalid address for Ada main program name."));
720
721 extract_string (main_program_name_addr, main_program_name);
722 return main_program_name;
723 }
724
725 /* The main procedure doesn't seem to be in Ada. */
726 return NULL;
727 }
728 \f
729 /* Symbols */
730
731 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
732 of NULLs. */
733
734 const struct ada_opname_map ada_opname_table[] = {
735 {"Oadd", "\"+\"", BINOP_ADD},
736 {"Osubtract", "\"-\"", BINOP_SUB},
737 {"Omultiply", "\"*\"", BINOP_MUL},
738 {"Odivide", "\"/\"", BINOP_DIV},
739 {"Omod", "\"mod\"", BINOP_MOD},
740 {"Orem", "\"rem\"", BINOP_REM},
741 {"Oexpon", "\"**\"", BINOP_EXP},
742 {"Olt", "\"<\"", BINOP_LESS},
743 {"Ole", "\"<=\"", BINOP_LEQ},
744 {"Ogt", "\">\"", BINOP_GTR},
745 {"Oge", "\">=\"", BINOP_GEQ},
746 {"Oeq", "\"=\"", BINOP_EQUAL},
747 {"One", "\"/=\"", BINOP_NOTEQUAL},
748 {"Oand", "\"and\"", BINOP_BITWISE_AND},
749 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
750 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
751 {"Oconcat", "\"&\"", BINOP_CONCAT},
752 {"Oabs", "\"abs\"", UNOP_ABS},
753 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
754 {"Oadd", "\"+\"", UNOP_PLUS},
755 {"Osubtract", "\"-\"", UNOP_NEG},
756 {NULL, NULL}
757 };
758
759 /* Return non-zero if STR should be suppressed in info listings. */
760
761 static int
762 is_suppressed_name (const char *str)
763 {
764 if (strncmp (str, "_ada_", 5) == 0)
765 str += 5;
766 if (str[0] == '_' || str[0] == '\000')
767 return 1;
768 else
769 {
770 const char *p;
771 const char *suffix = strstr (str, "___");
772 if (suffix != NULL && suffix[3] != 'X')
773 return 1;
774 if (suffix == NULL)
775 suffix = str + strlen (str);
776 for (p = suffix - 1; p != str; p -= 1)
777 if (isupper (*p))
778 {
779 int i;
780 if (p[0] == 'X' && p[-1] != '_')
781 goto OK;
782 if (*p != 'O')
783 return 1;
784 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
785 if (strncmp (ada_opname_table[i].encoded, p,
786 strlen (ada_opname_table[i].encoded)) == 0)
787 goto OK;
788 return 1;
789 OK:;
790 }
791 return 0;
792 }
793 }
794
795 /* The "encoded" form of DECODED, according to GNAT conventions.
796 The result is valid until the next call to ada_encode. */
797
798 char *
799 ada_encode (const char *decoded)
800 {
801 static char *encoding_buffer = NULL;
802 static size_t encoding_buffer_size = 0;
803 const char *p;
804 int k;
805
806 if (decoded == NULL)
807 return NULL;
808
809 GROW_VECT (encoding_buffer, encoding_buffer_size,
810 2 * strlen (decoded) + 10);
811
812 k = 0;
813 for (p = decoded; *p != '\0'; p += 1)
814 {
815 if (!ADA_RETAIN_DOTS && *p == '.')
816 {
817 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
818 k += 2;
819 }
820 else if (*p == '"')
821 {
822 const struct ada_opname_map *mapping;
823
824 for (mapping = ada_opname_table;
825 mapping->encoded != NULL
826 && strncmp (mapping->decoded, p,
827 strlen (mapping->decoded)) != 0; mapping += 1)
828 ;
829 if (mapping->encoded == NULL)
830 error (_("invalid Ada operator name: %s"), p);
831 strcpy (encoding_buffer + k, mapping->encoded);
832 k += strlen (mapping->encoded);
833 break;
834 }
835 else
836 {
837 encoding_buffer[k] = *p;
838 k += 1;
839 }
840 }
841
842 encoding_buffer[k] = '\0';
843 return encoding_buffer;
844 }
845
846 /* Return NAME folded to lower case, or, if surrounded by single
847 quotes, unfolded, but with the quotes stripped away. Result good
848 to next call. */
849
850 char *
851 ada_fold_name (const char *name)
852 {
853 static char *fold_buffer = NULL;
854 static size_t fold_buffer_size = 0;
855
856 int len = strlen (name);
857 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
858
859 if (name[0] == '\'')
860 {
861 strncpy (fold_buffer, name + 1, len - 2);
862 fold_buffer[len - 2] = '\000';
863 }
864 else
865 {
866 int i;
867 for (i = 0; i <= len; i += 1)
868 fold_buffer[i] = tolower (name[i]);
869 }
870
871 return fold_buffer;
872 }
873
874 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
875
876 static int
877 is_lower_alphanum (const char c)
878 {
879 return (isdigit (c) || (isalpha (c) && islower (c)));
880 }
881
882 /* Remove either of these suffixes:
883 . .{DIGIT}+
884 . ${DIGIT}+
885 . ___{DIGIT}+
886 . __{DIGIT}+.
887 These are suffixes introduced by the compiler for entities such as
888 nested subprogram for instance, in order to avoid name clashes.
889 They do not serve any purpose for the debugger. */
890
891 static void
892 ada_remove_trailing_digits (const char *encoded, int *len)
893 {
894 if (*len > 1 && isdigit (encoded[*len - 1]))
895 {
896 int i = *len - 2;
897 while (i > 0 && isdigit (encoded[i]))
898 i--;
899 if (i >= 0 && encoded[i] == '.')
900 *len = i;
901 else if (i >= 0 && encoded[i] == '$')
902 *len = i;
903 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
904 *len = i - 2;
905 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
906 *len = i - 1;
907 }
908 }
909
910 /* Remove the suffix introduced by the compiler for protected object
911 subprograms. */
912
913 static void
914 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
915 {
916 /* Remove trailing N. */
917
918 /* Protected entry subprograms are broken into two
919 separate subprograms: The first one is unprotected, and has
920 a 'N' suffix; the second is the protected version, and has
921 the 'P' suffix. The second calls the first one after handling
922 the protection. Since the P subprograms are internally generated,
923 we leave these names undecoded, giving the user a clue that this
924 entity is internal. */
925
926 if (*len > 1
927 && encoded[*len - 1] == 'N'
928 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
929 *len = *len - 1;
930 }
931
932 /* If ENCODED follows the GNAT entity encoding conventions, then return
933 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
934 replaced by ENCODED.
935
936 The resulting string is valid until the next call of ada_decode.
937 If the string is unchanged by decoding, the original string pointer
938 is returned. */
939
940 const char *
941 ada_decode (const char *encoded)
942 {
943 int i, j;
944 int len0;
945 const char *p;
946 char *decoded;
947 int at_start_name;
948 static char *decoding_buffer = NULL;
949 static size_t decoding_buffer_size = 0;
950
951 /* The name of the Ada main procedure starts with "_ada_".
952 This prefix is not part of the decoded name, so skip this part
953 if we see this prefix. */
954 if (strncmp (encoded, "_ada_", 5) == 0)
955 encoded += 5;
956
957 /* If the name starts with '_', then it is not a properly encoded
958 name, so do not attempt to decode it. Similarly, if the name
959 starts with '<', the name should not be decoded. */
960 if (encoded[0] == '_' || encoded[0] == '<')
961 goto Suppress;
962
963 len0 = strlen (encoded);
964
965 ada_remove_trailing_digits (encoded, &len0);
966 ada_remove_po_subprogram_suffix (encoded, &len0);
967
968 /* Remove the ___X.* suffix if present. Do not forget to verify that
969 the suffix is located before the current "end" of ENCODED. We want
970 to avoid re-matching parts of ENCODED that have previously been
971 marked as discarded (by decrementing LEN0). */
972 p = strstr (encoded, "___");
973 if (p != NULL && p - encoded < len0 - 3)
974 {
975 if (p[3] == 'X')
976 len0 = p - encoded;
977 else
978 goto Suppress;
979 }
980
981 /* Remove any trailing TKB suffix. It tells us that this symbol
982 is for the body of a task, but that information does not actually
983 appear in the decoded name. */
984
985 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
986 len0 -= 3;
987
988 /* Remove trailing "B" suffixes. */
989 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
990
991 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
992 len0 -= 1;
993
994 /* Make decoded big enough for possible expansion by operator name. */
995
996 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
997 decoded = decoding_buffer;
998
999 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1000
1001 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1002 {
1003 i = len0 - 2;
1004 while ((i >= 0 && isdigit (encoded[i]))
1005 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1006 i -= 1;
1007 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1008 len0 = i - 1;
1009 else if (encoded[i] == '$')
1010 len0 = i;
1011 }
1012
1013 /* The first few characters that are not alphabetic are not part
1014 of any encoding we use, so we can copy them over verbatim. */
1015
1016 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1017 decoded[j] = encoded[i];
1018
1019 at_start_name = 1;
1020 while (i < len0)
1021 {
1022 /* Is this a symbol function? */
1023 if (at_start_name && encoded[i] == 'O')
1024 {
1025 int k;
1026 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1027 {
1028 int op_len = strlen (ada_opname_table[k].encoded);
1029 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1030 op_len - 1) == 0)
1031 && !isalnum (encoded[i + op_len]))
1032 {
1033 strcpy (decoded + j, ada_opname_table[k].decoded);
1034 at_start_name = 0;
1035 i += op_len;
1036 j += strlen (ada_opname_table[k].decoded);
1037 break;
1038 }
1039 }
1040 if (ada_opname_table[k].encoded != NULL)
1041 continue;
1042 }
1043 at_start_name = 0;
1044
1045 /* Replace "TK__" with "__", which will eventually be translated
1046 into "." (just below). */
1047
1048 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1049 i += 2;
1050
1051 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1052 be translated into "." (just below). These are internal names
1053 generated for anonymous blocks inside which our symbol is nested. */
1054
1055 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1056 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1057 && isdigit (encoded [i+4]))
1058 {
1059 int k = i + 5;
1060
1061 while (k < len0 && isdigit (encoded[k]))
1062 k++; /* Skip any extra digit. */
1063
1064 /* Double-check that the "__B_{DIGITS}+" sequence we found
1065 is indeed followed by "__". */
1066 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1067 i = k;
1068 }
1069
1070 /* Remove _E{DIGITS}+[sb] */
1071
1072 /* Just as for protected object subprograms, there are 2 categories
1073 of subprograms created by the compiler for each entry. The first
1074 one implements the actual entry code, and has a suffix following
1075 the convention above; the second one implements the barrier and
1076 uses the same convention as above, except that the 'E' is replaced
1077 by a 'B'.
1078
1079 Just as above, we do not decode the name of barrier functions
1080 to give the user a clue that the code he is debugging has been
1081 internally generated. */
1082
1083 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1084 && isdigit (encoded[i+2]))
1085 {
1086 int k = i + 3;
1087
1088 while (k < len0 && isdigit (encoded[k]))
1089 k++;
1090
1091 if (k < len0
1092 && (encoded[k] == 'b' || encoded[k] == 's'))
1093 {
1094 k++;
1095 /* Just as an extra precaution, make sure that if this
1096 suffix is followed by anything else, it is a '_'.
1097 Otherwise, we matched this sequence by accident. */
1098 if (k == len0
1099 || (k < len0 && encoded[k] == '_'))
1100 i = k;
1101 }
1102 }
1103
1104 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1105 the GNAT front-end in protected object subprograms. */
1106
1107 if (i < len0 + 3
1108 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1109 {
1110 /* Backtrack a bit up until we reach either the begining of
1111 the encoded name, or "__". Make sure that we only find
1112 digits or lowercase characters. */
1113 const char *ptr = encoded + i - 1;
1114
1115 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1116 ptr--;
1117 if (ptr < encoded
1118 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1119 i++;
1120 }
1121
1122 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1123 {
1124 /* This is a X[bn]* sequence not separated from the previous
1125 part of the name with a non-alpha-numeric character (in other
1126 words, immediately following an alpha-numeric character), then
1127 verify that it is placed at the end of the encoded name. If
1128 not, then the encoding is not valid and we should abort the
1129 decoding. Otherwise, just skip it, it is used in body-nested
1130 package names. */
1131 do
1132 i += 1;
1133 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1134 if (i < len0)
1135 goto Suppress;
1136 }
1137 else if (!ADA_RETAIN_DOTS
1138 && i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1139 {
1140 /* Replace '__' by '.'. */
1141 decoded[j] = '.';
1142 at_start_name = 1;
1143 i += 2;
1144 j += 1;
1145 }
1146 else
1147 {
1148 /* It's a character part of the decoded name, so just copy it
1149 over. */
1150 decoded[j] = encoded[i];
1151 i += 1;
1152 j += 1;
1153 }
1154 }
1155 decoded[j] = '\000';
1156
1157 /* Decoded names should never contain any uppercase character.
1158 Double-check this, and abort the decoding if we find one. */
1159
1160 for (i = 0; decoded[i] != '\0'; i += 1)
1161 if (isupper (decoded[i]) || decoded[i] == ' ')
1162 goto Suppress;
1163
1164 if (strcmp (decoded, encoded) == 0)
1165 return encoded;
1166 else
1167 return decoded;
1168
1169 Suppress:
1170 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1171 decoded = decoding_buffer;
1172 if (encoded[0] == '<')
1173 strcpy (decoded, encoded);
1174 else
1175 sprintf (decoded, "<%s>", encoded);
1176 return decoded;
1177
1178 }
1179
1180 /* Table for keeping permanent unique copies of decoded names. Once
1181 allocated, names in this table are never released. While this is a
1182 storage leak, it should not be significant unless there are massive
1183 changes in the set of decoded names in successive versions of a
1184 symbol table loaded during a single session. */
1185 static struct htab *decoded_names_store;
1186
1187 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1188 in the language-specific part of GSYMBOL, if it has not been
1189 previously computed. Tries to save the decoded name in the same
1190 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1191 in any case, the decoded symbol has a lifetime at least that of
1192 GSYMBOL).
1193 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1194 const, but nevertheless modified to a semantically equivalent form
1195 when a decoded name is cached in it.
1196 */
1197
1198 char *
1199 ada_decode_symbol (const struct general_symbol_info *gsymbol)
1200 {
1201 char **resultp =
1202 (char **) &gsymbol->language_specific.cplus_specific.demangled_name;
1203 if (*resultp == NULL)
1204 {
1205 const char *decoded = ada_decode (gsymbol->name);
1206 if (gsymbol->bfd_section != NULL)
1207 {
1208 bfd *obfd = gsymbol->bfd_section->owner;
1209 if (obfd != NULL)
1210 {
1211 struct objfile *objf;
1212 ALL_OBJFILES (objf)
1213 {
1214 if (obfd == objf->obfd)
1215 {
1216 *resultp = obsavestring (decoded, strlen (decoded),
1217 &objf->objfile_obstack);
1218 break;
1219 }
1220 }
1221 }
1222 }
1223 /* Sometimes, we can't find a corresponding objfile, in which
1224 case, we put the result on the heap. Since we only decode
1225 when needed, we hope this usually does not cause a
1226 significant memory leak (FIXME). */
1227 if (*resultp == NULL)
1228 {
1229 char **slot = (char **) htab_find_slot (decoded_names_store,
1230 decoded, INSERT);
1231 if (*slot == NULL)
1232 *slot = xstrdup (decoded);
1233 *resultp = *slot;
1234 }
1235 }
1236
1237 return *resultp;
1238 }
1239
1240 char *
1241 ada_la_decode (const char *encoded, int options)
1242 {
1243 return xstrdup (ada_decode (encoded));
1244 }
1245
1246 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1247 suffixes that encode debugging information or leading _ada_ on
1248 SYM_NAME (see is_name_suffix commentary for the debugging
1249 information that is ignored). If WILD, then NAME need only match a
1250 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1251 either argument is NULL. */
1252
1253 int
1254 ada_match_name (const char *sym_name, const char *name, int wild)
1255 {
1256 if (sym_name == NULL || name == NULL)
1257 return 0;
1258 else if (wild)
1259 return wild_match (name, strlen (name), sym_name);
1260 else
1261 {
1262 int len_name = strlen (name);
1263 return (strncmp (sym_name, name, len_name) == 0
1264 && is_name_suffix (sym_name + len_name))
1265 || (strncmp (sym_name, "_ada_", 5) == 0
1266 && strncmp (sym_name + 5, name, len_name) == 0
1267 && is_name_suffix (sym_name + len_name + 5));
1268 }
1269 }
1270
1271 /* True (non-zero) iff, in Ada mode, the symbol SYM should be
1272 suppressed in info listings. */
1273
1274 int
1275 ada_suppress_symbol_printing (struct symbol *sym)
1276 {
1277 if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN)
1278 return 1;
1279 else
1280 return is_suppressed_name (SYMBOL_LINKAGE_NAME (sym));
1281 }
1282 \f
1283
1284 /* Arrays */
1285
1286 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1287
1288 static char *bound_name[] = {
1289 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1290 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1291 };
1292
1293 /* Maximum number of array dimensions we are prepared to handle. */
1294
1295 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1296
1297 /* Like modify_field, but allows bitpos > wordlength. */
1298
1299 static void
1300 modify_general_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
1301 {
1302 modify_field (addr + bitpos / 8, fieldval, bitpos % 8, bitsize);
1303 }
1304
1305
1306 /* The desc_* routines return primitive portions of array descriptors
1307 (fat pointers). */
1308
1309 /* The descriptor or array type, if any, indicated by TYPE; removes
1310 level of indirection, if needed. */
1311
1312 static struct type *
1313 desc_base_type (struct type *type)
1314 {
1315 if (type == NULL)
1316 return NULL;
1317 type = ada_check_typedef (type);
1318 if (type != NULL
1319 && (TYPE_CODE (type) == TYPE_CODE_PTR
1320 || TYPE_CODE (type) == TYPE_CODE_REF))
1321 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1322 else
1323 return type;
1324 }
1325
1326 /* True iff TYPE indicates a "thin" array pointer type. */
1327
1328 static int
1329 is_thin_pntr (struct type *type)
1330 {
1331 return
1332 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1333 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1334 }
1335
1336 /* The descriptor type for thin pointer type TYPE. */
1337
1338 static struct type *
1339 thin_descriptor_type (struct type *type)
1340 {
1341 struct type *base_type = desc_base_type (type);
1342 if (base_type == NULL)
1343 return NULL;
1344 if (is_suffix (ada_type_name (base_type), "___XVE"))
1345 return base_type;
1346 else
1347 {
1348 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1349 if (alt_type == NULL)
1350 return base_type;
1351 else
1352 return alt_type;
1353 }
1354 }
1355
1356 /* A pointer to the array data for thin-pointer value VAL. */
1357
1358 static struct value *
1359 thin_data_pntr (struct value *val)
1360 {
1361 struct type *type = value_type (val);
1362 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1363 return value_cast (desc_data_type (thin_descriptor_type (type)),
1364 value_copy (val));
1365 else
1366 return value_from_longest (desc_data_type (thin_descriptor_type (type)),
1367 VALUE_ADDRESS (val) + value_offset (val));
1368 }
1369
1370 /* True iff TYPE indicates a "thick" array pointer type. */
1371
1372 static int
1373 is_thick_pntr (struct type *type)
1374 {
1375 type = desc_base_type (type);
1376 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1377 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1378 }
1379
1380 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1381 pointer to one, the type of its bounds data; otherwise, NULL. */
1382
1383 static struct type *
1384 desc_bounds_type (struct type *type)
1385 {
1386 struct type *r;
1387
1388 type = desc_base_type (type);
1389
1390 if (type == NULL)
1391 return NULL;
1392 else if (is_thin_pntr (type))
1393 {
1394 type = thin_descriptor_type (type);
1395 if (type == NULL)
1396 return NULL;
1397 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1398 if (r != NULL)
1399 return ada_check_typedef (r);
1400 }
1401 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1402 {
1403 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1404 if (r != NULL)
1405 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1406 }
1407 return NULL;
1408 }
1409
1410 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1411 one, a pointer to its bounds data. Otherwise NULL. */
1412
1413 static struct value *
1414 desc_bounds (struct value *arr)
1415 {
1416 struct type *type = ada_check_typedef (value_type (arr));
1417 if (is_thin_pntr (type))
1418 {
1419 struct type *bounds_type =
1420 desc_bounds_type (thin_descriptor_type (type));
1421 LONGEST addr;
1422
1423 if (bounds_type == NULL)
1424 error (_("Bad GNAT array descriptor"));
1425
1426 /* NOTE: The following calculation is not really kosher, but
1427 since desc_type is an XVE-encoded type (and shouldn't be),
1428 the correct calculation is a real pain. FIXME (and fix GCC). */
1429 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1430 addr = value_as_long (arr);
1431 else
1432 addr = VALUE_ADDRESS (arr) + value_offset (arr);
1433
1434 return
1435 value_from_longest (lookup_pointer_type (bounds_type),
1436 addr - TYPE_LENGTH (bounds_type));
1437 }
1438
1439 else if (is_thick_pntr (type))
1440 return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1441 _("Bad GNAT array descriptor"));
1442 else
1443 return NULL;
1444 }
1445
1446 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1447 position of the field containing the address of the bounds data. */
1448
1449 static int
1450 fat_pntr_bounds_bitpos (struct type *type)
1451 {
1452 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1453 }
1454
1455 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1456 size of the field containing the address of the bounds data. */
1457
1458 static int
1459 fat_pntr_bounds_bitsize (struct type *type)
1460 {
1461 type = desc_base_type (type);
1462
1463 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1464 return TYPE_FIELD_BITSIZE (type, 1);
1465 else
1466 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1467 }
1468
1469 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1470 pointer to one, the type of its array data (a
1471 pointer-to-array-with-no-bounds type); otherwise, NULL. Use
1472 ada_type_of_array to get an array type with bounds data. */
1473
1474 static struct type *
1475 desc_data_type (struct type *type)
1476 {
1477 type = desc_base_type (type);
1478
1479 /* NOTE: The following is bogus; see comment in desc_bounds. */
1480 if (is_thin_pntr (type))
1481 return lookup_pointer_type
1482 (desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1)));
1483 else if (is_thick_pntr (type))
1484 return lookup_struct_elt_type (type, "P_ARRAY", 1);
1485 else
1486 return NULL;
1487 }
1488
1489 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1490 its array data. */
1491
1492 static struct value *
1493 desc_data (struct value *arr)
1494 {
1495 struct type *type = value_type (arr);
1496 if (is_thin_pntr (type))
1497 return thin_data_pntr (arr);
1498 else if (is_thick_pntr (type))
1499 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1500 _("Bad GNAT array descriptor"));
1501 else
1502 return NULL;
1503 }
1504
1505
1506 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1507 position of the field containing the address of the data. */
1508
1509 static int
1510 fat_pntr_data_bitpos (struct type *type)
1511 {
1512 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1513 }
1514
1515 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1516 size of the field containing the address of the data. */
1517
1518 static int
1519 fat_pntr_data_bitsize (struct type *type)
1520 {
1521 type = desc_base_type (type);
1522
1523 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1524 return TYPE_FIELD_BITSIZE (type, 0);
1525 else
1526 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1527 }
1528
1529 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1530 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1531 bound, if WHICH is 1. The first bound is I=1. */
1532
1533 static struct value *
1534 desc_one_bound (struct value *bounds, int i, int which)
1535 {
1536 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1537 _("Bad GNAT array descriptor bounds"));
1538 }
1539
1540 /* If BOUNDS is an array-bounds structure type, return the bit position
1541 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1542 bound, if WHICH is 1. The first bound is I=1. */
1543
1544 static int
1545 desc_bound_bitpos (struct type *type, int i, int which)
1546 {
1547 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1548 }
1549
1550 /* If BOUNDS is an array-bounds structure type, return the bit field size
1551 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1552 bound, if WHICH is 1. The first bound is I=1. */
1553
1554 static int
1555 desc_bound_bitsize (struct type *type, int i, int which)
1556 {
1557 type = desc_base_type (type);
1558
1559 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1560 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1561 else
1562 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1563 }
1564
1565 /* If TYPE is the type of an array-bounds structure, the type of its
1566 Ith bound (numbering from 1). Otherwise, NULL. */
1567
1568 static struct type *
1569 desc_index_type (struct type *type, int i)
1570 {
1571 type = desc_base_type (type);
1572
1573 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1574 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1575 else
1576 return NULL;
1577 }
1578
1579 /* The number of index positions in the array-bounds type TYPE.
1580 Return 0 if TYPE is NULL. */
1581
1582 static int
1583 desc_arity (struct type *type)
1584 {
1585 type = desc_base_type (type);
1586
1587 if (type != NULL)
1588 return TYPE_NFIELDS (type) / 2;
1589 return 0;
1590 }
1591
1592 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1593 an array descriptor type (representing an unconstrained array
1594 type). */
1595
1596 static int
1597 ada_is_direct_array_type (struct type *type)
1598 {
1599 if (type == NULL)
1600 return 0;
1601 type = ada_check_typedef (type);
1602 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1603 || ada_is_array_descriptor_type (type));
1604 }
1605
1606 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1607 * to one. */
1608
1609 int
1610 ada_is_array_type (struct type *type)
1611 {
1612 while (type != NULL
1613 && (TYPE_CODE (type) == TYPE_CODE_PTR
1614 || TYPE_CODE (type) == TYPE_CODE_REF))
1615 type = TYPE_TARGET_TYPE (type);
1616 return ada_is_direct_array_type (type);
1617 }
1618
1619 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1620
1621 int
1622 ada_is_simple_array_type (struct type *type)
1623 {
1624 if (type == NULL)
1625 return 0;
1626 type = ada_check_typedef (type);
1627 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1628 || (TYPE_CODE (type) == TYPE_CODE_PTR
1629 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
1630 }
1631
1632 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1633
1634 int
1635 ada_is_array_descriptor_type (struct type *type)
1636 {
1637 struct type *data_type = desc_data_type (type);
1638
1639 if (type == NULL)
1640 return 0;
1641 type = ada_check_typedef (type);
1642 return
1643 data_type != NULL
1644 && ((TYPE_CODE (data_type) == TYPE_CODE_PTR
1645 && TYPE_TARGET_TYPE (data_type) != NULL
1646 && TYPE_CODE (TYPE_TARGET_TYPE (data_type)) == TYPE_CODE_ARRAY)
1647 || TYPE_CODE (data_type) == TYPE_CODE_ARRAY)
1648 && desc_arity (desc_bounds_type (type)) > 0;
1649 }
1650
1651 /* Non-zero iff type is a partially mal-formed GNAT array
1652 descriptor. FIXME: This is to compensate for some problems with
1653 debugging output from GNAT. Re-examine periodically to see if it
1654 is still needed. */
1655
1656 int
1657 ada_is_bogus_array_descriptor (struct type *type)
1658 {
1659 return
1660 type != NULL
1661 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1662 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1663 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1664 && !ada_is_array_descriptor_type (type);
1665 }
1666
1667
1668 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1669 (fat pointer) returns the type of the array data described---specifically,
1670 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1671 in from the descriptor; otherwise, they are left unspecified. If
1672 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1673 returns NULL. The result is simply the type of ARR if ARR is not
1674 a descriptor. */
1675 struct type *
1676 ada_type_of_array (struct value *arr, int bounds)
1677 {
1678 if (ada_is_packed_array_type (value_type (arr)))
1679 return decode_packed_array_type (value_type (arr));
1680
1681 if (!ada_is_array_descriptor_type (value_type (arr)))
1682 return value_type (arr);
1683
1684 if (!bounds)
1685 return
1686 ada_check_typedef (TYPE_TARGET_TYPE (desc_data_type (value_type (arr))));
1687 else
1688 {
1689 struct type *elt_type;
1690 int arity;
1691 struct value *descriptor;
1692 struct objfile *objf = TYPE_OBJFILE (value_type (arr));
1693
1694 elt_type = ada_array_element_type (value_type (arr), -1);
1695 arity = ada_array_arity (value_type (arr));
1696
1697 if (elt_type == NULL || arity == 0)
1698 return ada_check_typedef (value_type (arr));
1699
1700 descriptor = desc_bounds (arr);
1701 if (value_as_long (descriptor) == 0)
1702 return NULL;
1703 while (arity > 0)
1704 {
1705 struct type *range_type = alloc_type (objf);
1706 struct type *array_type = alloc_type (objf);
1707 struct value *low = desc_one_bound (descriptor, arity, 0);
1708 struct value *high = desc_one_bound (descriptor, arity, 1);
1709 arity -= 1;
1710
1711 create_range_type (range_type, value_type (low),
1712 longest_to_int (value_as_long (low)),
1713 longest_to_int (value_as_long (high)));
1714 elt_type = create_array_type (array_type, elt_type, range_type);
1715 }
1716
1717 return lookup_pointer_type (elt_type);
1718 }
1719 }
1720
1721 /* If ARR does not represent an array, returns ARR unchanged.
1722 Otherwise, returns either a standard GDB array with bounds set
1723 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1724 GDB array. Returns NULL if ARR is a null fat pointer. */
1725
1726 struct value *
1727 ada_coerce_to_simple_array_ptr (struct value *arr)
1728 {
1729 if (ada_is_array_descriptor_type (value_type (arr)))
1730 {
1731 struct type *arrType = ada_type_of_array (arr, 1);
1732 if (arrType == NULL)
1733 return NULL;
1734 return value_cast (arrType, value_copy (desc_data (arr)));
1735 }
1736 else if (ada_is_packed_array_type (value_type (arr)))
1737 return decode_packed_array (arr);
1738 else
1739 return arr;
1740 }
1741
1742 /* If ARR does not represent an array, returns ARR unchanged.
1743 Otherwise, returns a standard GDB array describing ARR (which may
1744 be ARR itself if it already is in the proper form). */
1745
1746 static struct value *
1747 ada_coerce_to_simple_array (struct value *arr)
1748 {
1749 if (ada_is_array_descriptor_type (value_type (arr)))
1750 {
1751 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1752 if (arrVal == NULL)
1753 error (_("Bounds unavailable for null array pointer."));
1754 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1755 return value_ind (arrVal);
1756 }
1757 else if (ada_is_packed_array_type (value_type (arr)))
1758 return decode_packed_array (arr);
1759 else
1760 return arr;
1761 }
1762
1763 /* If TYPE represents a GNAT array type, return it translated to an
1764 ordinary GDB array type (possibly with BITSIZE fields indicating
1765 packing). For other types, is the identity. */
1766
1767 struct type *
1768 ada_coerce_to_simple_array_type (struct type *type)
1769 {
1770 struct value *mark = value_mark ();
1771 struct value *dummy = value_from_longest (builtin_type_long, 0);
1772 struct type *result;
1773 deprecated_set_value_type (dummy, type);
1774 result = ada_type_of_array (dummy, 0);
1775 value_free_to_mark (mark);
1776 return result;
1777 }
1778
1779 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1780
1781 int
1782 ada_is_packed_array_type (struct type *type)
1783 {
1784 if (type == NULL)
1785 return 0;
1786 type = desc_base_type (type);
1787 type = ada_check_typedef (type);
1788 return
1789 ada_type_name (type) != NULL
1790 && strstr (ada_type_name (type), "___XP") != NULL;
1791 }
1792
1793 /* Given that TYPE is a standard GDB array type with all bounds filled
1794 in, and that the element size of its ultimate scalar constituents
1795 (that is, either its elements, or, if it is an array of arrays, its
1796 elements' elements, etc.) is *ELT_BITS, return an identical type,
1797 but with the bit sizes of its elements (and those of any
1798 constituent arrays) recorded in the BITSIZE components of its
1799 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1800 in bits. */
1801
1802 static struct type *
1803 packed_array_type (struct type *type, long *elt_bits)
1804 {
1805 struct type *new_elt_type;
1806 struct type *new_type;
1807 LONGEST low_bound, high_bound;
1808
1809 type = ada_check_typedef (type);
1810 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1811 return type;
1812
1813 new_type = alloc_type (TYPE_OBJFILE (type));
1814 new_elt_type = packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
1815 elt_bits);
1816 create_array_type (new_type, new_elt_type, TYPE_FIELD_TYPE (type, 0));
1817 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
1818 TYPE_NAME (new_type) = ada_type_name (type);
1819
1820 if (get_discrete_bounds (TYPE_FIELD_TYPE (type, 0),
1821 &low_bound, &high_bound) < 0)
1822 low_bound = high_bound = 0;
1823 if (high_bound < low_bound)
1824 *elt_bits = TYPE_LENGTH (new_type) = 0;
1825 else
1826 {
1827 *elt_bits *= (high_bound - low_bound + 1);
1828 TYPE_LENGTH (new_type) =
1829 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
1830 }
1831
1832 TYPE_FLAGS (new_type) |= TYPE_FLAG_FIXED_INSTANCE;
1833 return new_type;
1834 }
1835
1836 /* The array type encoded by TYPE, where ada_is_packed_array_type (TYPE). */
1837
1838 static struct type *
1839 decode_packed_array_type (struct type *type)
1840 {
1841 struct symbol *sym;
1842 struct block **blocks;
1843 char *raw_name = ada_type_name (ada_check_typedef (type));
1844 char *name;
1845 char *tail;
1846 struct type *shadow_type;
1847 long bits;
1848 int i, n;
1849
1850 if (!raw_name)
1851 raw_name = ada_type_name (desc_base_type (type));
1852
1853 if (!raw_name)
1854 return NULL;
1855
1856 name = (char *) alloca (strlen (raw_name) + 1);
1857 tail = strstr (raw_name, "___XP");
1858 type = desc_base_type (type);
1859
1860 memcpy (name, raw_name, tail - raw_name);
1861 name[tail - raw_name] = '\000';
1862
1863 sym = standard_lookup (name, get_selected_block (0), VAR_DOMAIN);
1864 if (sym == NULL || SYMBOL_TYPE (sym) == NULL)
1865 {
1866 lim_warning (_("could not find bounds information on packed array"));
1867 return NULL;
1868 }
1869 shadow_type = SYMBOL_TYPE (sym);
1870
1871 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
1872 {
1873 lim_warning (_("could not understand bounds information on packed array"));
1874 return NULL;
1875 }
1876
1877 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1878 {
1879 lim_warning
1880 (_("could not understand bit size information on packed array"));
1881 return NULL;
1882 }
1883
1884 return packed_array_type (shadow_type, &bits);
1885 }
1886
1887 /* Given that ARR is a struct value *indicating a GNAT packed array,
1888 returns a simple array that denotes that array. Its type is a
1889 standard GDB array type except that the BITSIZEs of the array
1890 target types are set to the number of bits in each element, and the
1891 type length is set appropriately. */
1892
1893 static struct value *
1894 decode_packed_array (struct value *arr)
1895 {
1896 struct type *type;
1897
1898 arr = ada_coerce_ref (arr);
1899 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
1900 arr = ada_value_ind (arr);
1901
1902 type = decode_packed_array_type (value_type (arr));
1903 if (type == NULL)
1904 {
1905 error (_("can't unpack array"));
1906 return NULL;
1907 }
1908
1909 if (gdbarch_bits_big_endian (current_gdbarch)
1910 && ada_is_modular_type (value_type (arr)))
1911 {
1912 /* This is a (right-justified) modular type representing a packed
1913 array with no wrapper. In order to interpret the value through
1914 the (left-justified) packed array type we just built, we must
1915 first left-justify it. */
1916 int bit_size, bit_pos;
1917 ULONGEST mod;
1918
1919 mod = ada_modulus (value_type (arr)) - 1;
1920 bit_size = 0;
1921 while (mod > 0)
1922 {
1923 bit_size += 1;
1924 mod >>= 1;
1925 }
1926 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
1927 arr = ada_value_primitive_packed_val (arr, NULL,
1928 bit_pos / HOST_CHAR_BIT,
1929 bit_pos % HOST_CHAR_BIT,
1930 bit_size,
1931 type);
1932 }
1933
1934 return coerce_unspec_val_to_type (arr, type);
1935 }
1936
1937
1938 /* The value of the element of packed array ARR at the ARITY indices
1939 given in IND. ARR must be a simple array. */
1940
1941 static struct value *
1942 value_subscript_packed (struct value *arr, int arity, struct value **ind)
1943 {
1944 int i;
1945 int bits, elt_off, bit_off;
1946 long elt_total_bit_offset;
1947 struct type *elt_type;
1948 struct value *v;
1949
1950 bits = 0;
1951 elt_total_bit_offset = 0;
1952 elt_type = ada_check_typedef (value_type (arr));
1953 for (i = 0; i < arity; i += 1)
1954 {
1955 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
1956 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
1957 error
1958 (_("attempt to do packed indexing of something other than a packed array"));
1959 else
1960 {
1961 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
1962 LONGEST lowerbound, upperbound;
1963 LONGEST idx;
1964
1965 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
1966 {
1967 lim_warning (_("don't know bounds of array"));
1968 lowerbound = upperbound = 0;
1969 }
1970
1971 idx = value_as_long (value_pos_atr (ind[i]));
1972 if (idx < lowerbound || idx > upperbound)
1973 lim_warning (_("packed array index %ld out of bounds"), (long) idx);
1974 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
1975 elt_total_bit_offset += (idx - lowerbound) * bits;
1976 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
1977 }
1978 }
1979 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
1980 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
1981
1982 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
1983 bits, elt_type);
1984 return v;
1985 }
1986
1987 /* Non-zero iff TYPE includes negative integer values. */
1988
1989 static int
1990 has_negatives (struct type *type)
1991 {
1992 switch (TYPE_CODE (type))
1993 {
1994 default:
1995 return 0;
1996 case TYPE_CODE_INT:
1997 return !TYPE_UNSIGNED (type);
1998 case TYPE_CODE_RANGE:
1999 return TYPE_LOW_BOUND (type) < 0;
2000 }
2001 }
2002
2003
2004 /* Create a new value of type TYPE from the contents of OBJ starting
2005 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2006 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2007 assigning through the result will set the field fetched from.
2008 VALADDR is ignored unless OBJ is NULL, in which case,
2009 VALADDR+OFFSET must address the start of storage containing the
2010 packed value. The value returned in this case is never an lval.
2011 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2012
2013 struct value *
2014 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2015 long offset, int bit_offset, int bit_size,
2016 struct type *type)
2017 {
2018 struct value *v;
2019 int src, /* Index into the source area */
2020 targ, /* Index into the target area */
2021 srcBitsLeft, /* Number of source bits left to move */
2022 nsrc, ntarg, /* Number of source and target bytes */
2023 unusedLS, /* Number of bits in next significant
2024 byte of source that are unused */
2025 accumSize; /* Number of meaningful bits in accum */
2026 unsigned char *bytes; /* First byte containing data to unpack */
2027 unsigned char *unpacked;
2028 unsigned long accum; /* Staging area for bits being transferred */
2029 unsigned char sign;
2030 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2031 /* Transmit bytes from least to most significant; delta is the direction
2032 the indices move. */
2033 int delta = gdbarch_bits_big_endian (current_gdbarch) ? -1 : 1;
2034
2035 type = ada_check_typedef (type);
2036
2037 if (obj == NULL)
2038 {
2039 v = allocate_value (type);
2040 bytes = (unsigned char *) (valaddr + offset);
2041 }
2042 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2043 {
2044 v = value_at (type,
2045 VALUE_ADDRESS (obj) + value_offset (obj) + offset);
2046 bytes = (unsigned char *) alloca (len);
2047 read_memory (VALUE_ADDRESS (v), bytes, len);
2048 }
2049 else
2050 {
2051 v = allocate_value (type);
2052 bytes = (unsigned char *) value_contents (obj) + offset;
2053 }
2054
2055 if (obj != NULL)
2056 {
2057 VALUE_LVAL (v) = VALUE_LVAL (obj);
2058 if (VALUE_LVAL (obj) == lval_internalvar)
2059 VALUE_LVAL (v) = lval_internalvar_component;
2060 VALUE_ADDRESS (v) = VALUE_ADDRESS (obj) + value_offset (obj) + offset;
2061 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2062 set_value_bitsize (v, bit_size);
2063 if (value_bitpos (v) >= HOST_CHAR_BIT)
2064 {
2065 VALUE_ADDRESS (v) += 1;
2066 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2067 }
2068 }
2069 else
2070 set_value_bitsize (v, bit_size);
2071 unpacked = (unsigned char *) value_contents (v);
2072
2073 srcBitsLeft = bit_size;
2074 nsrc = len;
2075 ntarg = TYPE_LENGTH (type);
2076 sign = 0;
2077 if (bit_size == 0)
2078 {
2079 memset (unpacked, 0, TYPE_LENGTH (type));
2080 return v;
2081 }
2082 else if (gdbarch_bits_big_endian (current_gdbarch))
2083 {
2084 src = len - 1;
2085 if (has_negatives (type)
2086 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2087 sign = ~0;
2088
2089 unusedLS =
2090 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2091 % HOST_CHAR_BIT;
2092
2093 switch (TYPE_CODE (type))
2094 {
2095 case TYPE_CODE_ARRAY:
2096 case TYPE_CODE_UNION:
2097 case TYPE_CODE_STRUCT:
2098 /* Non-scalar values must be aligned at a byte boundary... */
2099 accumSize =
2100 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2101 /* ... And are placed at the beginning (most-significant) bytes
2102 of the target. */
2103 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2104 break;
2105 default:
2106 accumSize = 0;
2107 targ = TYPE_LENGTH (type) - 1;
2108 break;
2109 }
2110 }
2111 else
2112 {
2113 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2114
2115 src = targ = 0;
2116 unusedLS = bit_offset;
2117 accumSize = 0;
2118
2119 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2120 sign = ~0;
2121 }
2122
2123 accum = 0;
2124 while (nsrc > 0)
2125 {
2126 /* Mask for removing bits of the next source byte that are not
2127 part of the value. */
2128 unsigned int unusedMSMask =
2129 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2130 1;
2131 /* Sign-extend bits for this byte. */
2132 unsigned int signMask = sign & ~unusedMSMask;
2133 accum |=
2134 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2135 accumSize += HOST_CHAR_BIT - unusedLS;
2136 if (accumSize >= HOST_CHAR_BIT)
2137 {
2138 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2139 accumSize -= HOST_CHAR_BIT;
2140 accum >>= HOST_CHAR_BIT;
2141 ntarg -= 1;
2142 targ += delta;
2143 }
2144 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2145 unusedLS = 0;
2146 nsrc -= 1;
2147 src += delta;
2148 }
2149 while (ntarg > 0)
2150 {
2151 accum |= sign << accumSize;
2152 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2153 accumSize -= HOST_CHAR_BIT;
2154 accum >>= HOST_CHAR_BIT;
2155 ntarg -= 1;
2156 targ += delta;
2157 }
2158
2159 return v;
2160 }
2161
2162 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2163 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2164 not overlap. */
2165 static void
2166 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2167 int src_offset, int n)
2168 {
2169 unsigned int accum, mask;
2170 int accum_bits, chunk_size;
2171
2172 target += targ_offset / HOST_CHAR_BIT;
2173 targ_offset %= HOST_CHAR_BIT;
2174 source += src_offset / HOST_CHAR_BIT;
2175 src_offset %= HOST_CHAR_BIT;
2176 if (gdbarch_bits_big_endian (current_gdbarch))
2177 {
2178 accum = (unsigned char) *source;
2179 source += 1;
2180 accum_bits = HOST_CHAR_BIT - src_offset;
2181
2182 while (n > 0)
2183 {
2184 int unused_right;
2185 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2186 accum_bits += HOST_CHAR_BIT;
2187 source += 1;
2188 chunk_size = HOST_CHAR_BIT - targ_offset;
2189 if (chunk_size > n)
2190 chunk_size = n;
2191 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2192 mask = ((1 << chunk_size) - 1) << unused_right;
2193 *target =
2194 (*target & ~mask)
2195 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2196 n -= chunk_size;
2197 accum_bits -= chunk_size;
2198 target += 1;
2199 targ_offset = 0;
2200 }
2201 }
2202 else
2203 {
2204 accum = (unsigned char) *source >> src_offset;
2205 source += 1;
2206 accum_bits = HOST_CHAR_BIT - src_offset;
2207
2208 while (n > 0)
2209 {
2210 accum = accum + ((unsigned char) *source << accum_bits);
2211 accum_bits += HOST_CHAR_BIT;
2212 source += 1;
2213 chunk_size = HOST_CHAR_BIT - targ_offset;
2214 if (chunk_size > n)
2215 chunk_size = n;
2216 mask = ((1 << chunk_size) - 1) << targ_offset;
2217 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2218 n -= chunk_size;
2219 accum_bits -= chunk_size;
2220 accum >>= chunk_size;
2221 target += 1;
2222 targ_offset = 0;
2223 }
2224 }
2225 }
2226
2227 /* Store the contents of FROMVAL into the location of TOVAL.
2228 Return a new value with the location of TOVAL and contents of
2229 FROMVAL. Handles assignment into packed fields that have
2230 floating-point or non-scalar types. */
2231
2232 static struct value *
2233 ada_value_assign (struct value *toval, struct value *fromval)
2234 {
2235 struct type *type = value_type (toval);
2236 int bits = value_bitsize (toval);
2237
2238 toval = ada_coerce_ref (toval);
2239 fromval = ada_coerce_ref (fromval);
2240
2241 if (ada_is_direct_array_type (value_type (toval)))
2242 toval = ada_coerce_to_simple_array (toval);
2243 if (ada_is_direct_array_type (value_type (fromval)))
2244 fromval = ada_coerce_to_simple_array (fromval);
2245
2246 if (!deprecated_value_modifiable (toval))
2247 error (_("Left operand of assignment is not a modifiable lvalue."));
2248
2249 if (VALUE_LVAL (toval) == lval_memory
2250 && bits > 0
2251 && (TYPE_CODE (type) == TYPE_CODE_FLT
2252 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2253 {
2254 int len = (value_bitpos (toval)
2255 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2256 char *buffer = (char *) alloca (len);
2257 struct value *val;
2258 CORE_ADDR to_addr = VALUE_ADDRESS (toval) + value_offset (toval);
2259
2260 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2261 fromval = value_cast (type, fromval);
2262
2263 read_memory (to_addr, buffer, len);
2264 if (gdbarch_bits_big_endian (current_gdbarch))
2265 move_bits (buffer, value_bitpos (toval),
2266 value_contents (fromval),
2267 TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT -
2268 bits, bits);
2269 else
2270 move_bits (buffer, value_bitpos (toval), value_contents (fromval),
2271 0, bits);
2272 write_memory (to_addr, buffer, len);
2273 if (deprecated_memory_changed_hook)
2274 deprecated_memory_changed_hook (to_addr, len);
2275
2276 val = value_copy (toval);
2277 memcpy (value_contents_raw (val), value_contents (fromval),
2278 TYPE_LENGTH (type));
2279 deprecated_set_value_type (val, type);
2280
2281 return val;
2282 }
2283
2284 return value_assign (toval, fromval);
2285 }
2286
2287
2288 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2289 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2290 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2291 * COMPONENT, and not the inferior's memory. The current contents
2292 * of COMPONENT are ignored. */
2293 static void
2294 value_assign_to_component (struct value *container, struct value *component,
2295 struct value *val)
2296 {
2297 LONGEST offset_in_container =
2298 (LONGEST) (VALUE_ADDRESS (component) + value_offset (component)
2299 - VALUE_ADDRESS (container) - value_offset (container));
2300 int bit_offset_in_container =
2301 value_bitpos (component) - value_bitpos (container);
2302 int bits;
2303
2304 val = value_cast (value_type (component), val);
2305
2306 if (value_bitsize (component) == 0)
2307 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2308 else
2309 bits = value_bitsize (component);
2310
2311 if (gdbarch_bits_big_endian (current_gdbarch))
2312 move_bits (value_contents_writeable (container) + offset_in_container,
2313 value_bitpos (container) + bit_offset_in_container,
2314 value_contents (val),
2315 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2316 bits);
2317 else
2318 move_bits (value_contents_writeable (container) + offset_in_container,
2319 value_bitpos (container) + bit_offset_in_container,
2320 value_contents (val), 0, bits);
2321 }
2322
2323 /* The value of the element of array ARR at the ARITY indices given in IND.
2324 ARR may be either a simple array, GNAT array descriptor, or pointer
2325 thereto. */
2326
2327 struct value *
2328 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2329 {
2330 int k;
2331 struct value *elt;
2332 struct type *elt_type;
2333
2334 elt = ada_coerce_to_simple_array (arr);
2335
2336 elt_type = ada_check_typedef (value_type (elt));
2337 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2338 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2339 return value_subscript_packed (elt, arity, ind);
2340
2341 for (k = 0; k < arity; k += 1)
2342 {
2343 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2344 error (_("too many subscripts (%d expected)"), k);
2345 elt = value_subscript (elt, value_pos_atr (ind[k]));
2346 }
2347 return elt;
2348 }
2349
2350 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2351 value of the element of *ARR at the ARITY indices given in
2352 IND. Does not read the entire array into memory. */
2353
2354 struct value *
2355 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2356 struct value **ind)
2357 {
2358 int k;
2359
2360 for (k = 0; k < arity; k += 1)
2361 {
2362 LONGEST lwb, upb;
2363 struct value *idx;
2364
2365 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2366 error (_("too many subscripts (%d expected)"), k);
2367 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2368 value_copy (arr));
2369 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2370 idx = value_pos_atr (ind[k]);
2371 if (lwb != 0)
2372 idx = value_sub (idx, value_from_longest (builtin_type_int, lwb));
2373 arr = value_add (arr, idx);
2374 type = TYPE_TARGET_TYPE (type);
2375 }
2376
2377 return value_ind (arr);
2378 }
2379
2380 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2381 actual type of ARRAY_PTR is ignored), returns a reference to
2382 the Ada slice of HIGH-LOW+1 elements starting at index LOW. The lower
2383 bound of this array is LOW, as per Ada rules. */
2384 static struct value *
2385 ada_value_slice_ptr (struct value *array_ptr, struct type *type,
2386 int low, int high)
2387 {
2388 CORE_ADDR base = value_as_address (array_ptr)
2389 + ((low - TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)))
2390 * TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
2391 struct type *index_type =
2392 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
2393 low, high);
2394 struct type *slice_type =
2395 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2396 return value_from_pointer (lookup_reference_type (slice_type), base);
2397 }
2398
2399
2400 static struct value *
2401 ada_value_slice (struct value *array, int low, int high)
2402 {
2403 struct type *type = value_type (array);
2404 struct type *index_type =
2405 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2406 struct type *slice_type =
2407 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2408 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2409 }
2410
2411 /* If type is a record type in the form of a standard GNAT array
2412 descriptor, returns the number of dimensions for type. If arr is a
2413 simple array, returns the number of "array of"s that prefix its
2414 type designation. Otherwise, returns 0. */
2415
2416 int
2417 ada_array_arity (struct type *type)
2418 {
2419 int arity;
2420
2421 if (type == NULL)
2422 return 0;
2423
2424 type = desc_base_type (type);
2425
2426 arity = 0;
2427 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2428 return desc_arity (desc_bounds_type (type));
2429 else
2430 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2431 {
2432 arity += 1;
2433 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2434 }
2435
2436 return arity;
2437 }
2438
2439 /* If TYPE is a record type in the form of a standard GNAT array
2440 descriptor or a simple array type, returns the element type for
2441 TYPE after indexing by NINDICES indices, or by all indices if
2442 NINDICES is -1. Otherwise, returns NULL. */
2443
2444 struct type *
2445 ada_array_element_type (struct type *type, int nindices)
2446 {
2447 type = desc_base_type (type);
2448
2449 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2450 {
2451 int k;
2452 struct type *p_array_type;
2453
2454 p_array_type = desc_data_type (type);
2455
2456 k = ada_array_arity (type);
2457 if (k == 0)
2458 return NULL;
2459
2460 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2461 if (nindices >= 0 && k > nindices)
2462 k = nindices;
2463 p_array_type = TYPE_TARGET_TYPE (p_array_type);
2464 while (k > 0 && p_array_type != NULL)
2465 {
2466 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2467 k -= 1;
2468 }
2469 return p_array_type;
2470 }
2471 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2472 {
2473 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2474 {
2475 type = TYPE_TARGET_TYPE (type);
2476 nindices -= 1;
2477 }
2478 return type;
2479 }
2480
2481 return NULL;
2482 }
2483
2484 /* The type of nth index in arrays of given type (n numbering from 1).
2485 Does not examine memory. */
2486
2487 struct type *
2488 ada_index_type (struct type *type, int n)
2489 {
2490 struct type *result_type;
2491
2492 type = desc_base_type (type);
2493
2494 if (n > ada_array_arity (type))
2495 return NULL;
2496
2497 if (ada_is_simple_array_type (type))
2498 {
2499 int i;
2500
2501 for (i = 1; i < n; i += 1)
2502 type = TYPE_TARGET_TYPE (type);
2503 result_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 0));
2504 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2505 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2506 perhaps stabsread.c would make more sense. */
2507 if (result_type == NULL || TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2508 result_type = builtin_type_int;
2509
2510 return result_type;
2511 }
2512 else
2513 return desc_index_type (desc_bounds_type (type), n);
2514 }
2515
2516 /* Given that arr is an array type, returns the lower bound of the
2517 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2518 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2519 array-descriptor type. If TYPEP is non-null, *TYPEP is set to the
2520 bounds type. It works for other arrays with bounds supplied by
2521 run-time quantities other than discriminants. */
2522
2523 static LONGEST
2524 ada_array_bound_from_type (struct type * arr_type, int n, int which,
2525 struct type ** typep)
2526 {
2527 struct type *type;
2528 struct type *index_type_desc;
2529
2530 if (ada_is_packed_array_type (arr_type))
2531 arr_type = decode_packed_array_type (arr_type);
2532
2533 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2534 {
2535 if (typep != NULL)
2536 *typep = builtin_type_int;
2537 return (LONGEST) - which;
2538 }
2539
2540 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2541 type = TYPE_TARGET_TYPE (arr_type);
2542 else
2543 type = arr_type;
2544
2545 index_type_desc = ada_find_parallel_type (type, "___XA");
2546 if (index_type_desc == NULL)
2547 {
2548 struct type *index_type;
2549
2550 while (n > 1)
2551 {
2552 type = TYPE_TARGET_TYPE (type);
2553 n -= 1;
2554 }
2555
2556 index_type = TYPE_INDEX_TYPE (type);
2557 if (typep != NULL)
2558 *typep = index_type;
2559
2560 /* The index type is either a range type or an enumerated type.
2561 For the range type, we have some macros that allow us to
2562 extract the value of the low and high bounds. But they
2563 do now work for enumerated types. The expressions used
2564 below work for both range and enum types. */
2565 return
2566 (LONGEST) (which == 0
2567 ? TYPE_FIELD_BITPOS (index_type, 0)
2568 : TYPE_FIELD_BITPOS (index_type,
2569 TYPE_NFIELDS (index_type) - 1));
2570 }
2571 else
2572 {
2573 struct type *index_type =
2574 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, n - 1),
2575 NULL, TYPE_OBJFILE (arr_type));
2576
2577 if (typep != NULL)
2578 *typep = index_type;
2579
2580 return
2581 (LONGEST) (which == 0
2582 ? TYPE_LOW_BOUND (index_type)
2583 : TYPE_HIGH_BOUND (index_type));
2584 }
2585 }
2586
2587 /* Given that arr is an array value, returns the lower bound of the
2588 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2589 WHICH is 1. This routine will also work for arrays with bounds
2590 supplied by run-time quantities other than discriminants. */
2591
2592 struct value *
2593 ada_array_bound (struct value *arr, int n, int which)
2594 {
2595 struct type *arr_type = value_type (arr);
2596
2597 if (ada_is_packed_array_type (arr_type))
2598 return ada_array_bound (decode_packed_array (arr), n, which);
2599 else if (ada_is_simple_array_type (arr_type))
2600 {
2601 struct type *type;
2602 LONGEST v = ada_array_bound_from_type (arr_type, n, which, &type);
2603 return value_from_longest (type, v);
2604 }
2605 else
2606 return desc_one_bound (desc_bounds (arr), n, which);
2607 }
2608
2609 /* Given that arr is an array value, returns the length of the
2610 nth index. This routine will also work for arrays with bounds
2611 supplied by run-time quantities other than discriminants.
2612 Does not work for arrays indexed by enumeration types with representation
2613 clauses at the moment. */
2614
2615 struct value *
2616 ada_array_length (struct value *arr, int n)
2617 {
2618 struct type *arr_type = ada_check_typedef (value_type (arr));
2619
2620 if (ada_is_packed_array_type (arr_type))
2621 return ada_array_length (decode_packed_array (arr), n);
2622
2623 if (ada_is_simple_array_type (arr_type))
2624 {
2625 struct type *type;
2626 LONGEST v =
2627 ada_array_bound_from_type (arr_type, n, 1, &type) -
2628 ada_array_bound_from_type (arr_type, n, 0, NULL) + 1;
2629 return value_from_longest (type, v);
2630 }
2631 else
2632 return
2633 value_from_longest (builtin_type_int,
2634 value_as_long (desc_one_bound (desc_bounds (arr),
2635 n, 1))
2636 - value_as_long (desc_one_bound (desc_bounds (arr),
2637 n, 0)) + 1);
2638 }
2639
2640 /* An empty array whose type is that of ARR_TYPE (an array type),
2641 with bounds LOW to LOW-1. */
2642
2643 static struct value *
2644 empty_array (struct type *arr_type, int low)
2645 {
2646 struct type *index_type =
2647 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
2648 low, low - 1);
2649 struct type *elt_type = ada_array_element_type (arr_type, 1);
2650 return allocate_value (create_array_type (NULL, elt_type, index_type));
2651 }
2652 \f
2653
2654 /* Name resolution */
2655
2656 /* The "decoded" name for the user-definable Ada operator corresponding
2657 to OP. */
2658
2659 static const char *
2660 ada_decoded_op_name (enum exp_opcode op)
2661 {
2662 int i;
2663
2664 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2665 {
2666 if (ada_opname_table[i].op == op)
2667 return ada_opname_table[i].decoded;
2668 }
2669 error (_("Could not find operator name for opcode"));
2670 }
2671
2672
2673 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2674 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2675 undefined namespace) and converts operators that are
2676 user-defined into appropriate function calls. If CONTEXT_TYPE is
2677 non-null, it provides a preferred result type [at the moment, only
2678 type void has any effect---causing procedures to be preferred over
2679 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2680 return type is preferred. May change (expand) *EXP. */
2681
2682 static void
2683 resolve (struct expression **expp, int void_context_p)
2684 {
2685 int pc;
2686 pc = 0;
2687 resolve_subexp (expp, &pc, 1, void_context_p ? builtin_type_void : NULL);
2688 }
2689
2690 /* Resolve the operator of the subexpression beginning at
2691 position *POS of *EXPP. "Resolving" consists of replacing
2692 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2693 with their resolutions, replacing built-in operators with
2694 function calls to user-defined operators, where appropriate, and,
2695 when DEPROCEDURE_P is non-zero, converting function-valued variables
2696 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2697 are as in ada_resolve, above. */
2698
2699 static struct value *
2700 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2701 struct type *context_type)
2702 {
2703 int pc = *pos;
2704 int i;
2705 struct expression *exp; /* Convenience: == *expp. */
2706 enum exp_opcode op = (*expp)->elts[pc].opcode;
2707 struct value **argvec; /* Vector of operand types (alloca'ed). */
2708 int nargs; /* Number of operands. */
2709 int oplen;
2710
2711 argvec = NULL;
2712 nargs = 0;
2713 exp = *expp;
2714
2715 /* Pass one: resolve operands, saving their types and updating *pos,
2716 if needed. */
2717 switch (op)
2718 {
2719 case OP_FUNCALL:
2720 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2721 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2722 *pos += 7;
2723 else
2724 {
2725 *pos += 3;
2726 resolve_subexp (expp, pos, 0, NULL);
2727 }
2728 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2729 break;
2730
2731 case UNOP_ADDR:
2732 *pos += 1;
2733 resolve_subexp (expp, pos, 0, NULL);
2734 break;
2735
2736 case UNOP_QUAL:
2737 *pos += 3;
2738 resolve_subexp (expp, pos, 1, exp->elts[pc + 1].type);
2739 break;
2740
2741 case OP_ATR_MODULUS:
2742 case OP_ATR_SIZE:
2743 case OP_ATR_TAG:
2744 case OP_ATR_FIRST:
2745 case OP_ATR_LAST:
2746 case OP_ATR_LENGTH:
2747 case OP_ATR_POS:
2748 case OP_ATR_VAL:
2749 case OP_ATR_MIN:
2750 case OP_ATR_MAX:
2751 case TERNOP_IN_RANGE:
2752 case BINOP_IN_BOUNDS:
2753 case UNOP_IN_RANGE:
2754 case OP_AGGREGATE:
2755 case OP_OTHERS:
2756 case OP_CHOICES:
2757 case OP_POSITIONAL:
2758 case OP_DISCRETE_RANGE:
2759 case OP_NAME:
2760 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2761 *pos += oplen;
2762 break;
2763
2764 case BINOP_ASSIGN:
2765 {
2766 struct value *arg1;
2767
2768 *pos += 1;
2769 arg1 = resolve_subexp (expp, pos, 0, NULL);
2770 if (arg1 == NULL)
2771 resolve_subexp (expp, pos, 1, NULL);
2772 else
2773 resolve_subexp (expp, pos, 1, value_type (arg1));
2774 break;
2775 }
2776
2777 case UNOP_CAST:
2778 *pos += 3;
2779 nargs = 1;
2780 break;
2781
2782 case BINOP_ADD:
2783 case BINOP_SUB:
2784 case BINOP_MUL:
2785 case BINOP_DIV:
2786 case BINOP_REM:
2787 case BINOP_MOD:
2788 case BINOP_EXP:
2789 case BINOP_CONCAT:
2790 case BINOP_LOGICAL_AND:
2791 case BINOP_LOGICAL_OR:
2792 case BINOP_BITWISE_AND:
2793 case BINOP_BITWISE_IOR:
2794 case BINOP_BITWISE_XOR:
2795
2796 case BINOP_EQUAL:
2797 case BINOP_NOTEQUAL:
2798 case BINOP_LESS:
2799 case BINOP_GTR:
2800 case BINOP_LEQ:
2801 case BINOP_GEQ:
2802
2803 case BINOP_REPEAT:
2804 case BINOP_SUBSCRIPT:
2805 case BINOP_COMMA:
2806 *pos += 1;
2807 nargs = 2;
2808 break;
2809
2810 case UNOP_NEG:
2811 case UNOP_PLUS:
2812 case UNOP_LOGICAL_NOT:
2813 case UNOP_ABS:
2814 case UNOP_IND:
2815 *pos += 1;
2816 nargs = 1;
2817 break;
2818
2819 case OP_LONG:
2820 case OP_DOUBLE:
2821 case OP_VAR_VALUE:
2822 *pos += 4;
2823 break;
2824
2825 case OP_TYPE:
2826 case OP_BOOL:
2827 case OP_LAST:
2828 case OP_INTERNALVAR:
2829 *pos += 3;
2830 break;
2831
2832 case UNOP_MEMVAL:
2833 *pos += 3;
2834 nargs = 1;
2835 break;
2836
2837 case OP_REGISTER:
2838 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2839 break;
2840
2841 case STRUCTOP_STRUCT:
2842 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2843 nargs = 1;
2844 break;
2845
2846 case TERNOP_SLICE:
2847 *pos += 1;
2848 nargs = 3;
2849 break;
2850
2851 case OP_STRING:
2852 break;
2853
2854 default:
2855 error (_("Unexpected operator during name resolution"));
2856 }
2857
2858 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
2859 for (i = 0; i < nargs; i += 1)
2860 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
2861 argvec[i] = NULL;
2862 exp = *expp;
2863
2864 /* Pass two: perform any resolution on principal operator. */
2865 switch (op)
2866 {
2867 default:
2868 break;
2869
2870 case OP_VAR_VALUE:
2871 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
2872 {
2873 struct ada_symbol_info *candidates;
2874 int n_candidates;
2875
2876 n_candidates =
2877 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2878 (exp->elts[pc + 2].symbol),
2879 exp->elts[pc + 1].block, VAR_DOMAIN,
2880 &candidates);
2881
2882 if (n_candidates > 1)
2883 {
2884 /* Types tend to get re-introduced locally, so if there
2885 are any local symbols that are not types, first filter
2886 out all types. */
2887 int j;
2888 for (j = 0; j < n_candidates; j += 1)
2889 switch (SYMBOL_CLASS (candidates[j].sym))
2890 {
2891 case LOC_REGISTER:
2892 case LOC_ARG:
2893 case LOC_REF_ARG:
2894 case LOC_REGPARM:
2895 case LOC_REGPARM_ADDR:
2896 case LOC_LOCAL:
2897 case LOC_LOCAL_ARG:
2898 case LOC_BASEREG:
2899 case LOC_BASEREG_ARG:
2900 case LOC_COMPUTED:
2901 case LOC_COMPUTED_ARG:
2902 goto FoundNonType;
2903 default:
2904 break;
2905 }
2906 FoundNonType:
2907 if (j < n_candidates)
2908 {
2909 j = 0;
2910 while (j < n_candidates)
2911 {
2912 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
2913 {
2914 candidates[j] = candidates[n_candidates - 1];
2915 n_candidates -= 1;
2916 }
2917 else
2918 j += 1;
2919 }
2920 }
2921 }
2922
2923 if (n_candidates == 0)
2924 error (_("No definition found for %s"),
2925 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2926 else if (n_candidates == 1)
2927 i = 0;
2928 else if (deprocedure_p
2929 && !is_nonfunction (candidates, n_candidates))
2930 {
2931 i = ada_resolve_function
2932 (candidates, n_candidates, NULL, 0,
2933 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
2934 context_type);
2935 if (i < 0)
2936 error (_("Could not find a match for %s"),
2937 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2938 }
2939 else
2940 {
2941 printf_filtered (_("Multiple matches for %s\n"),
2942 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2943 user_select_syms (candidates, n_candidates, 1);
2944 i = 0;
2945 }
2946
2947 exp->elts[pc + 1].block = candidates[i].block;
2948 exp->elts[pc + 2].symbol = candidates[i].sym;
2949 if (innermost_block == NULL
2950 || contained_in (candidates[i].block, innermost_block))
2951 innermost_block = candidates[i].block;
2952 }
2953
2954 if (deprocedure_p
2955 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
2956 == TYPE_CODE_FUNC))
2957 {
2958 replace_operator_with_call (expp, pc, 0, 0,
2959 exp->elts[pc + 2].symbol,
2960 exp->elts[pc + 1].block);
2961 exp = *expp;
2962 }
2963 break;
2964
2965 case OP_FUNCALL:
2966 {
2967 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2968 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2969 {
2970 struct ada_symbol_info *candidates;
2971 int n_candidates;
2972
2973 n_candidates =
2974 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2975 (exp->elts[pc + 5].symbol),
2976 exp->elts[pc + 4].block, VAR_DOMAIN,
2977 &candidates);
2978 if (n_candidates == 1)
2979 i = 0;
2980 else
2981 {
2982 i = ada_resolve_function
2983 (candidates, n_candidates,
2984 argvec, nargs,
2985 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
2986 context_type);
2987 if (i < 0)
2988 error (_("Could not find a match for %s"),
2989 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
2990 }
2991
2992 exp->elts[pc + 4].block = candidates[i].block;
2993 exp->elts[pc + 5].symbol = candidates[i].sym;
2994 if (innermost_block == NULL
2995 || contained_in (candidates[i].block, innermost_block))
2996 innermost_block = candidates[i].block;
2997 }
2998 }
2999 break;
3000 case BINOP_ADD:
3001 case BINOP_SUB:
3002 case BINOP_MUL:
3003 case BINOP_DIV:
3004 case BINOP_REM:
3005 case BINOP_MOD:
3006 case BINOP_CONCAT:
3007 case BINOP_BITWISE_AND:
3008 case BINOP_BITWISE_IOR:
3009 case BINOP_BITWISE_XOR:
3010 case BINOP_EQUAL:
3011 case BINOP_NOTEQUAL:
3012 case BINOP_LESS:
3013 case BINOP_GTR:
3014 case BINOP_LEQ:
3015 case BINOP_GEQ:
3016 case BINOP_EXP:
3017 case UNOP_NEG:
3018 case UNOP_PLUS:
3019 case UNOP_LOGICAL_NOT:
3020 case UNOP_ABS:
3021 if (possible_user_operator_p (op, argvec))
3022 {
3023 struct ada_symbol_info *candidates;
3024 int n_candidates;
3025
3026 n_candidates =
3027 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3028 (struct block *) NULL, VAR_DOMAIN,
3029 &candidates);
3030 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3031 ada_decoded_op_name (op), NULL);
3032 if (i < 0)
3033 break;
3034
3035 replace_operator_with_call (expp, pc, nargs, 1,
3036 candidates[i].sym, candidates[i].block);
3037 exp = *expp;
3038 }
3039 break;
3040
3041 case OP_TYPE:
3042 case OP_REGISTER:
3043 return NULL;
3044 }
3045
3046 *pos = pc;
3047 return evaluate_subexp_type (exp, pos);
3048 }
3049
3050 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3051 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3052 a non-pointer. A type of 'void' (which is never a valid expression type)
3053 by convention matches anything. */
3054 /* The term "match" here is rather loose. The match is heuristic and
3055 liberal. FIXME: TOO liberal, in fact. */
3056
3057 static int
3058 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3059 {
3060 ftype = ada_check_typedef (ftype);
3061 atype = ada_check_typedef (atype);
3062
3063 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3064 ftype = TYPE_TARGET_TYPE (ftype);
3065 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3066 atype = TYPE_TARGET_TYPE (atype);
3067
3068 if (TYPE_CODE (ftype) == TYPE_CODE_VOID
3069 || TYPE_CODE (atype) == TYPE_CODE_VOID)
3070 return 1;
3071
3072 switch (TYPE_CODE (ftype))
3073 {
3074 default:
3075 return 1;
3076 case TYPE_CODE_PTR:
3077 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3078 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3079 TYPE_TARGET_TYPE (atype), 0);
3080 else
3081 return (may_deref
3082 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3083 case TYPE_CODE_INT:
3084 case TYPE_CODE_ENUM:
3085 case TYPE_CODE_RANGE:
3086 switch (TYPE_CODE (atype))
3087 {
3088 case TYPE_CODE_INT:
3089 case TYPE_CODE_ENUM:
3090 case TYPE_CODE_RANGE:
3091 return 1;
3092 default:
3093 return 0;
3094 }
3095
3096 case TYPE_CODE_ARRAY:
3097 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3098 || ada_is_array_descriptor_type (atype));
3099
3100 case TYPE_CODE_STRUCT:
3101 if (ada_is_array_descriptor_type (ftype))
3102 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3103 || ada_is_array_descriptor_type (atype));
3104 else
3105 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3106 && !ada_is_array_descriptor_type (atype));
3107
3108 case TYPE_CODE_UNION:
3109 case TYPE_CODE_FLT:
3110 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3111 }
3112 }
3113
3114 /* Return non-zero if the formals of FUNC "sufficiently match" the
3115 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3116 may also be an enumeral, in which case it is treated as a 0-
3117 argument function. */
3118
3119 static int
3120 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3121 {
3122 int i;
3123 struct type *func_type = SYMBOL_TYPE (func);
3124
3125 if (SYMBOL_CLASS (func) == LOC_CONST
3126 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3127 return (n_actuals == 0);
3128 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3129 return 0;
3130
3131 if (TYPE_NFIELDS (func_type) != n_actuals)
3132 return 0;
3133
3134 for (i = 0; i < n_actuals; i += 1)
3135 {
3136 if (actuals[i] == NULL)
3137 return 0;
3138 else
3139 {
3140 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, i));
3141 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3142
3143 if (!ada_type_match (ftype, atype, 1))
3144 return 0;
3145 }
3146 }
3147 return 1;
3148 }
3149
3150 /* False iff function type FUNC_TYPE definitely does not produce a value
3151 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3152 FUNC_TYPE is not a valid function type with a non-null return type
3153 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3154
3155 static int
3156 return_match (struct type *func_type, struct type *context_type)
3157 {
3158 struct type *return_type;
3159
3160 if (func_type == NULL)
3161 return 1;
3162
3163 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3164 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3165 else
3166 return_type = base_type (func_type);
3167 if (return_type == NULL)
3168 return 1;
3169
3170 context_type = base_type (context_type);
3171
3172 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3173 return context_type == NULL || return_type == context_type;
3174 else if (context_type == NULL)
3175 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3176 else
3177 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3178 }
3179
3180
3181 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3182 function (if any) that matches the types of the NARGS arguments in
3183 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3184 that returns that type, then eliminate matches that don't. If
3185 CONTEXT_TYPE is void and there is at least one match that does not
3186 return void, eliminate all matches that do.
3187
3188 Asks the user if there is more than one match remaining. Returns -1
3189 if there is no such symbol or none is selected. NAME is used
3190 solely for messages. May re-arrange and modify SYMS in
3191 the process; the index returned is for the modified vector. */
3192
3193 static int
3194 ada_resolve_function (struct ada_symbol_info syms[],
3195 int nsyms, struct value **args, int nargs,
3196 const char *name, struct type *context_type)
3197 {
3198 int k;
3199 int m; /* Number of hits */
3200 struct type *fallback;
3201 struct type *return_type;
3202
3203 return_type = context_type;
3204 if (context_type == NULL)
3205 fallback = builtin_type_void;
3206 else
3207 fallback = NULL;
3208
3209 m = 0;
3210 while (1)
3211 {
3212 for (k = 0; k < nsyms; k += 1)
3213 {
3214 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3215
3216 if (ada_args_match (syms[k].sym, args, nargs)
3217 && return_match (type, return_type))
3218 {
3219 syms[m] = syms[k];
3220 m += 1;
3221 }
3222 }
3223 if (m > 0 || return_type == fallback)
3224 break;
3225 else
3226 return_type = fallback;
3227 }
3228
3229 if (m == 0)
3230 return -1;
3231 else if (m > 1)
3232 {
3233 printf_filtered (_("Multiple matches for %s\n"), name);
3234 user_select_syms (syms, m, 1);
3235 return 0;
3236 }
3237 return 0;
3238 }
3239
3240 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3241 in a listing of choices during disambiguation (see sort_choices, below).
3242 The idea is that overloadings of a subprogram name from the
3243 same package should sort in their source order. We settle for ordering
3244 such symbols by their trailing number (__N or $N). */
3245
3246 static int
3247 encoded_ordered_before (char *N0, char *N1)
3248 {
3249 if (N1 == NULL)
3250 return 0;
3251 else if (N0 == NULL)
3252 return 1;
3253 else
3254 {
3255 int k0, k1;
3256 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3257 ;
3258 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3259 ;
3260 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3261 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3262 {
3263 int n0, n1;
3264 n0 = k0;
3265 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3266 n0 -= 1;
3267 n1 = k1;
3268 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3269 n1 -= 1;
3270 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3271 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3272 }
3273 return (strcmp (N0, N1) < 0);
3274 }
3275 }
3276
3277 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3278 encoded names. */
3279
3280 static void
3281 sort_choices (struct ada_symbol_info syms[], int nsyms)
3282 {
3283 int i;
3284 for (i = 1; i < nsyms; i += 1)
3285 {
3286 struct ada_symbol_info sym = syms[i];
3287 int j;
3288
3289 for (j = i - 1; j >= 0; j -= 1)
3290 {
3291 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3292 SYMBOL_LINKAGE_NAME (sym.sym)))
3293 break;
3294 syms[j + 1] = syms[j];
3295 }
3296 syms[j + 1] = sym;
3297 }
3298 }
3299
3300 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3301 by asking the user (if necessary), returning the number selected,
3302 and setting the first elements of SYMS items. Error if no symbols
3303 selected. */
3304
3305 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3306 to be re-integrated one of these days. */
3307
3308 int
3309 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3310 {
3311 int i;
3312 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3313 int n_chosen;
3314 int first_choice = (max_results == 1) ? 1 : 2;
3315 const char *select_mode = multiple_symbols_select_mode ();
3316
3317 if (max_results < 1)
3318 error (_("Request to select 0 symbols!"));
3319 if (nsyms <= 1)
3320 return nsyms;
3321
3322 if (select_mode == multiple_symbols_cancel)
3323 error (_("\
3324 canceled because the command is ambiguous\n\
3325 See set/show multiple-symbol."));
3326
3327 /* If select_mode is "all", then return all possible symbols.
3328 Only do that if more than one symbol can be selected, of course.
3329 Otherwise, display the menu as usual. */
3330 if (select_mode == multiple_symbols_all && max_results > 1)
3331 return nsyms;
3332
3333 printf_unfiltered (_("[0] cancel\n"));
3334 if (max_results > 1)
3335 printf_unfiltered (_("[1] all\n"));
3336
3337 sort_choices (syms, nsyms);
3338
3339 for (i = 0; i < nsyms; i += 1)
3340 {
3341 if (syms[i].sym == NULL)
3342 continue;
3343
3344 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3345 {
3346 struct symtab_and_line sal =
3347 find_function_start_sal (syms[i].sym, 1);
3348 if (sal.symtab == NULL)
3349 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3350 i + first_choice,
3351 SYMBOL_PRINT_NAME (syms[i].sym),
3352 sal.line);
3353 else
3354 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3355 SYMBOL_PRINT_NAME (syms[i].sym),
3356 sal.symtab->filename, sal.line);
3357 continue;
3358 }
3359 else
3360 {
3361 int is_enumeral =
3362 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3363 && SYMBOL_TYPE (syms[i].sym) != NULL
3364 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3365 struct symtab *symtab = symtab_for_sym (syms[i].sym);
3366
3367 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3368 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3369 i + first_choice,
3370 SYMBOL_PRINT_NAME (syms[i].sym),
3371 symtab->filename, SYMBOL_LINE (syms[i].sym));
3372 else if (is_enumeral
3373 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3374 {
3375 printf_unfiltered (("[%d] "), i + first_choice);
3376 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3377 gdb_stdout, -1, 0);
3378 printf_unfiltered (_("'(%s) (enumeral)\n"),
3379 SYMBOL_PRINT_NAME (syms[i].sym));
3380 }
3381 else if (symtab != NULL)
3382 printf_unfiltered (is_enumeral
3383 ? _("[%d] %s in %s (enumeral)\n")
3384 : _("[%d] %s at %s:?\n"),
3385 i + first_choice,
3386 SYMBOL_PRINT_NAME (syms[i].sym),
3387 symtab->filename);
3388 else
3389 printf_unfiltered (is_enumeral
3390 ? _("[%d] %s (enumeral)\n")
3391 : _("[%d] %s at ?\n"),
3392 i + first_choice,
3393 SYMBOL_PRINT_NAME (syms[i].sym));
3394 }
3395 }
3396
3397 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3398 "overload-choice");
3399
3400 for (i = 0; i < n_chosen; i += 1)
3401 syms[i] = syms[chosen[i]];
3402
3403 return n_chosen;
3404 }
3405
3406 /* Read and validate a set of numeric choices from the user in the
3407 range 0 .. N_CHOICES-1. Place the results in increasing
3408 order in CHOICES[0 .. N-1], and return N.
3409
3410 The user types choices as a sequence of numbers on one line
3411 separated by blanks, encoding them as follows:
3412
3413 + A choice of 0 means to cancel the selection, throwing an error.
3414 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3415 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3416
3417 The user is not allowed to choose more than MAX_RESULTS values.
3418
3419 ANNOTATION_SUFFIX, if present, is used to annotate the input
3420 prompts (for use with the -f switch). */
3421
3422 int
3423 get_selections (int *choices, int n_choices, int max_results,
3424 int is_all_choice, char *annotation_suffix)
3425 {
3426 char *args;
3427 char *prompt;
3428 int n_chosen;
3429 int first_choice = is_all_choice ? 2 : 1;
3430
3431 prompt = getenv ("PS2");
3432 if (prompt == NULL)
3433 prompt = "> ";
3434
3435 args = command_line_input (prompt, 0, annotation_suffix);
3436
3437 if (args == NULL)
3438 error_no_arg (_("one or more choice numbers"));
3439
3440 n_chosen = 0;
3441
3442 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3443 order, as given in args. Choices are validated. */
3444 while (1)
3445 {
3446 char *args2;
3447 int choice, j;
3448
3449 while (isspace (*args))
3450 args += 1;
3451 if (*args == '\0' && n_chosen == 0)
3452 error_no_arg (_("one or more choice numbers"));
3453 else if (*args == '\0')
3454 break;
3455
3456 choice = strtol (args, &args2, 10);
3457 if (args == args2 || choice < 0
3458 || choice > n_choices + first_choice - 1)
3459 error (_("Argument must be choice number"));
3460 args = args2;
3461
3462 if (choice == 0)
3463 error (_("cancelled"));
3464
3465 if (choice < first_choice)
3466 {
3467 n_chosen = n_choices;
3468 for (j = 0; j < n_choices; j += 1)
3469 choices[j] = j;
3470 break;
3471 }
3472 choice -= first_choice;
3473
3474 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3475 {
3476 }
3477
3478 if (j < 0 || choice != choices[j])
3479 {
3480 int k;
3481 for (k = n_chosen - 1; k > j; k -= 1)
3482 choices[k + 1] = choices[k];
3483 choices[j + 1] = choice;
3484 n_chosen += 1;
3485 }
3486 }
3487
3488 if (n_chosen > max_results)
3489 error (_("Select no more than %d of the above"), max_results);
3490
3491 return n_chosen;
3492 }
3493
3494 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3495 on the function identified by SYM and BLOCK, and taking NARGS
3496 arguments. Update *EXPP as needed to hold more space. */
3497
3498 static void
3499 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3500 int oplen, struct symbol *sym,
3501 struct block *block)
3502 {
3503 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3504 symbol, -oplen for operator being replaced). */
3505 struct expression *newexp = (struct expression *)
3506 xmalloc (sizeof (struct expression)
3507 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3508 struct expression *exp = *expp;
3509
3510 newexp->nelts = exp->nelts + 7 - oplen;
3511 newexp->language_defn = exp->language_defn;
3512 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3513 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3514 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3515
3516 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3517 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3518
3519 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3520 newexp->elts[pc + 4].block = block;
3521 newexp->elts[pc + 5].symbol = sym;
3522
3523 *expp = newexp;
3524 xfree (exp);
3525 }
3526
3527 /* Type-class predicates */
3528
3529 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3530 or FLOAT). */
3531
3532 static int
3533 numeric_type_p (struct type *type)
3534 {
3535 if (type == NULL)
3536 return 0;
3537 else
3538 {
3539 switch (TYPE_CODE (type))
3540 {
3541 case TYPE_CODE_INT:
3542 case TYPE_CODE_FLT:
3543 return 1;
3544 case TYPE_CODE_RANGE:
3545 return (type == TYPE_TARGET_TYPE (type)
3546 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3547 default:
3548 return 0;
3549 }
3550 }
3551 }
3552
3553 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3554
3555 static int
3556 integer_type_p (struct type *type)
3557 {
3558 if (type == NULL)
3559 return 0;
3560 else
3561 {
3562 switch (TYPE_CODE (type))
3563 {
3564 case TYPE_CODE_INT:
3565 return 1;
3566 case TYPE_CODE_RANGE:
3567 return (type == TYPE_TARGET_TYPE (type)
3568 || integer_type_p (TYPE_TARGET_TYPE (type)));
3569 default:
3570 return 0;
3571 }
3572 }
3573 }
3574
3575 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3576
3577 static int
3578 scalar_type_p (struct type *type)
3579 {
3580 if (type == NULL)
3581 return 0;
3582 else
3583 {
3584 switch (TYPE_CODE (type))
3585 {
3586 case TYPE_CODE_INT:
3587 case TYPE_CODE_RANGE:
3588 case TYPE_CODE_ENUM:
3589 case TYPE_CODE_FLT:
3590 return 1;
3591 default:
3592 return 0;
3593 }
3594 }
3595 }
3596
3597 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3598
3599 static int
3600 discrete_type_p (struct type *type)
3601 {
3602 if (type == NULL)
3603 return 0;
3604 else
3605 {
3606 switch (TYPE_CODE (type))
3607 {
3608 case TYPE_CODE_INT:
3609 case TYPE_CODE_RANGE:
3610 case TYPE_CODE_ENUM:
3611 return 1;
3612 default:
3613 return 0;
3614 }
3615 }
3616 }
3617
3618 /* Returns non-zero if OP with operands in the vector ARGS could be
3619 a user-defined function. Errs on the side of pre-defined operators
3620 (i.e., result 0). */
3621
3622 static int
3623 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3624 {
3625 struct type *type0 =
3626 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3627 struct type *type1 =
3628 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3629
3630 if (type0 == NULL)
3631 return 0;
3632
3633 switch (op)
3634 {
3635 default:
3636 return 0;
3637
3638 case BINOP_ADD:
3639 case BINOP_SUB:
3640 case BINOP_MUL:
3641 case BINOP_DIV:
3642 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3643
3644 case BINOP_REM:
3645 case BINOP_MOD:
3646 case BINOP_BITWISE_AND:
3647 case BINOP_BITWISE_IOR:
3648 case BINOP_BITWISE_XOR:
3649 return (!(integer_type_p (type0) && integer_type_p (type1)));
3650
3651 case BINOP_EQUAL:
3652 case BINOP_NOTEQUAL:
3653 case BINOP_LESS:
3654 case BINOP_GTR:
3655 case BINOP_LEQ:
3656 case BINOP_GEQ:
3657 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3658
3659 case BINOP_CONCAT:
3660 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3661
3662 case BINOP_EXP:
3663 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3664
3665 case UNOP_NEG:
3666 case UNOP_PLUS:
3667 case UNOP_LOGICAL_NOT:
3668 case UNOP_ABS:
3669 return (!numeric_type_p (type0));
3670
3671 }
3672 }
3673 \f
3674 /* Renaming */
3675
3676 /* NOTES:
3677
3678 1. In the following, we assume that a renaming type's name may
3679 have an ___XD suffix. It would be nice if this went away at some
3680 point.
3681 2. We handle both the (old) purely type-based representation of
3682 renamings and the (new) variable-based encoding. At some point,
3683 it is devoutly to be hoped that the former goes away
3684 (FIXME: hilfinger-2007-07-09).
3685 3. Subprogram renamings are not implemented, although the XRS
3686 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3687
3688 /* If SYM encodes a renaming,
3689
3690 <renaming> renames <renamed entity>,
3691
3692 sets *LEN to the length of the renamed entity's name,
3693 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3694 the string describing the subcomponent selected from the renamed
3695 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3696 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3697 are undefined). Otherwise, returns a value indicating the category
3698 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3699 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3700 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3701 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3702 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3703 may be NULL, in which case they are not assigned.
3704
3705 [Currently, however, GCC does not generate subprogram renamings.] */
3706
3707 enum ada_renaming_category
3708 ada_parse_renaming (struct symbol *sym,
3709 const char **renamed_entity, int *len,
3710 const char **renaming_expr)
3711 {
3712 enum ada_renaming_category kind;
3713 const char *info;
3714 const char *suffix;
3715
3716 if (sym == NULL)
3717 return ADA_NOT_RENAMING;
3718 switch (SYMBOL_CLASS (sym))
3719 {
3720 default:
3721 return ADA_NOT_RENAMING;
3722 case LOC_TYPEDEF:
3723 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3724 renamed_entity, len, renaming_expr);
3725 case LOC_LOCAL:
3726 case LOC_STATIC:
3727 case LOC_COMPUTED:
3728 case LOC_OPTIMIZED_OUT:
3729 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3730 if (info == NULL)
3731 return ADA_NOT_RENAMING;
3732 switch (info[5])
3733 {
3734 case '_':
3735 kind = ADA_OBJECT_RENAMING;
3736 info += 6;
3737 break;
3738 case 'E':
3739 kind = ADA_EXCEPTION_RENAMING;
3740 info += 7;
3741 break;
3742 case 'P':
3743 kind = ADA_PACKAGE_RENAMING;
3744 info += 7;
3745 break;
3746 case 'S':
3747 kind = ADA_SUBPROGRAM_RENAMING;
3748 info += 7;
3749 break;
3750 default:
3751 return ADA_NOT_RENAMING;
3752 }
3753 }
3754
3755 if (renamed_entity != NULL)
3756 *renamed_entity = info;
3757 suffix = strstr (info, "___XE");
3758 if (suffix == NULL || suffix == info)
3759 return ADA_NOT_RENAMING;
3760 if (len != NULL)
3761 *len = strlen (info) - strlen (suffix);
3762 suffix += 5;
3763 if (renaming_expr != NULL)
3764 *renaming_expr = suffix;
3765 return kind;
3766 }
3767
3768 /* Assuming TYPE encodes a renaming according to the old encoding in
3769 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3770 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3771 ADA_NOT_RENAMING otherwise. */
3772 static enum ada_renaming_category
3773 parse_old_style_renaming (struct type *type,
3774 const char **renamed_entity, int *len,
3775 const char **renaming_expr)
3776 {
3777 enum ada_renaming_category kind;
3778 const char *name;
3779 const char *info;
3780 const char *suffix;
3781
3782 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
3783 || TYPE_NFIELDS (type) != 1)
3784 return ADA_NOT_RENAMING;
3785
3786 name = type_name_no_tag (type);
3787 if (name == NULL)
3788 return ADA_NOT_RENAMING;
3789
3790 name = strstr (name, "___XR");
3791 if (name == NULL)
3792 return ADA_NOT_RENAMING;
3793 switch (name[5])
3794 {
3795 case '\0':
3796 case '_':
3797 kind = ADA_OBJECT_RENAMING;
3798 break;
3799 case 'E':
3800 kind = ADA_EXCEPTION_RENAMING;
3801 break;
3802 case 'P':
3803 kind = ADA_PACKAGE_RENAMING;
3804 break;
3805 case 'S':
3806 kind = ADA_SUBPROGRAM_RENAMING;
3807 break;
3808 default:
3809 return ADA_NOT_RENAMING;
3810 }
3811
3812 info = TYPE_FIELD_NAME (type, 0);
3813 if (info == NULL)
3814 return ADA_NOT_RENAMING;
3815 if (renamed_entity != NULL)
3816 *renamed_entity = info;
3817 suffix = strstr (info, "___XE");
3818 if (renaming_expr != NULL)
3819 *renaming_expr = suffix + 5;
3820 if (suffix == NULL || suffix == info)
3821 return ADA_NOT_RENAMING;
3822 if (len != NULL)
3823 *len = suffix - info;
3824 return kind;
3825 }
3826
3827 \f
3828
3829 /* Evaluation: Function Calls */
3830
3831 /* Return an lvalue containing the value VAL. This is the identity on
3832 lvalues, and otherwise has the side-effect of pushing a copy of VAL
3833 on the stack, using and updating *SP as the stack pointer, and
3834 returning an lvalue whose VALUE_ADDRESS points to the copy. */
3835
3836 static struct value *
3837 ensure_lval (struct value *val, CORE_ADDR *sp)
3838 {
3839 if (! VALUE_LVAL (val))
3840 {
3841 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
3842
3843 /* The following is taken from the structure-return code in
3844 call_function_by_hand. FIXME: Therefore, some refactoring seems
3845 indicated. */
3846 if (gdbarch_inner_than (current_gdbarch, 1, 2))
3847 {
3848 /* Stack grows downward. Align SP and VALUE_ADDRESS (val) after
3849 reserving sufficient space. */
3850 *sp -= len;
3851 if (gdbarch_frame_align_p (current_gdbarch))
3852 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3853 VALUE_ADDRESS (val) = *sp;
3854 }
3855 else
3856 {
3857 /* Stack grows upward. Align the frame, allocate space, and
3858 then again, re-align the frame. */
3859 if (gdbarch_frame_align_p (current_gdbarch))
3860 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3861 VALUE_ADDRESS (val) = *sp;
3862 *sp += len;
3863 if (gdbarch_frame_align_p (current_gdbarch))
3864 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3865 }
3866 VALUE_LVAL (val) = lval_memory;
3867
3868 write_memory (VALUE_ADDRESS (val), value_contents_raw (val), len);
3869 }
3870
3871 return val;
3872 }
3873
3874 /* Return the value ACTUAL, converted to be an appropriate value for a
3875 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3876 allocating any necessary descriptors (fat pointers), or copies of
3877 values not residing in memory, updating it as needed. */
3878
3879 struct value *
3880 ada_convert_actual (struct value *actual, struct type *formal_type0,
3881 CORE_ADDR *sp)
3882 {
3883 struct type *actual_type = ada_check_typedef (value_type (actual));
3884 struct type *formal_type = ada_check_typedef (formal_type0);
3885 struct type *formal_target =
3886 TYPE_CODE (formal_type) == TYPE_CODE_PTR
3887 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
3888 struct type *actual_target =
3889 TYPE_CODE (actual_type) == TYPE_CODE_PTR
3890 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
3891
3892 if (ada_is_array_descriptor_type (formal_target)
3893 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
3894 return make_array_descriptor (formal_type, actual, sp);
3895 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
3896 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
3897 {
3898 struct value *result;
3899 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
3900 && ada_is_array_descriptor_type (actual_target))
3901 result = desc_data (actual);
3902 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
3903 {
3904 if (VALUE_LVAL (actual) != lval_memory)
3905 {
3906 struct value *val;
3907 actual_type = ada_check_typedef (value_type (actual));
3908 val = allocate_value (actual_type);
3909 memcpy ((char *) value_contents_raw (val),
3910 (char *) value_contents (actual),
3911 TYPE_LENGTH (actual_type));
3912 actual = ensure_lval (val, sp);
3913 }
3914 result = value_addr (actual);
3915 }
3916 else
3917 return actual;
3918 return value_cast_pointers (formal_type, result);
3919 }
3920 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
3921 return ada_value_ind (actual);
3922
3923 return actual;
3924 }
3925
3926
3927 /* Push a descriptor of type TYPE for array value ARR on the stack at
3928 *SP, updating *SP to reflect the new descriptor. Return either
3929 an lvalue representing the new descriptor, or (if TYPE is a pointer-
3930 to-descriptor type rather than a descriptor type), a struct value *
3931 representing a pointer to this descriptor. */
3932
3933 static struct value *
3934 make_array_descriptor (struct type *type, struct value *arr, CORE_ADDR *sp)
3935 {
3936 struct type *bounds_type = desc_bounds_type (type);
3937 struct type *desc_type = desc_base_type (type);
3938 struct value *descriptor = allocate_value (desc_type);
3939 struct value *bounds = allocate_value (bounds_type);
3940 int i;
3941
3942 for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1)
3943 {
3944 modify_general_field (value_contents_writeable (bounds),
3945 value_as_long (ada_array_bound (arr, i, 0)),
3946 desc_bound_bitpos (bounds_type, i, 0),
3947 desc_bound_bitsize (bounds_type, i, 0));
3948 modify_general_field (value_contents_writeable (bounds),
3949 value_as_long (ada_array_bound (arr, i, 1)),
3950 desc_bound_bitpos (bounds_type, i, 1),
3951 desc_bound_bitsize (bounds_type, i, 1));
3952 }
3953
3954 bounds = ensure_lval (bounds, sp);
3955
3956 modify_general_field (value_contents_writeable (descriptor),
3957 VALUE_ADDRESS (ensure_lval (arr, sp)),
3958 fat_pntr_data_bitpos (desc_type),
3959 fat_pntr_data_bitsize (desc_type));
3960
3961 modify_general_field (value_contents_writeable (descriptor),
3962 VALUE_ADDRESS (bounds),
3963 fat_pntr_bounds_bitpos (desc_type),
3964 fat_pntr_bounds_bitsize (desc_type));
3965
3966 descriptor = ensure_lval (descriptor, sp);
3967
3968 if (TYPE_CODE (type) == TYPE_CODE_PTR)
3969 return value_addr (descriptor);
3970 else
3971 return descriptor;
3972 }
3973 \f
3974 /* Dummy definitions for an experimental caching module that is not
3975 * used in the public sources. */
3976
3977 static int
3978 lookup_cached_symbol (const char *name, domain_enum namespace,
3979 struct symbol **sym, struct block **block,
3980 struct symtab **symtab)
3981 {
3982 return 0;
3983 }
3984
3985 static void
3986 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
3987 struct block *block, struct symtab *symtab)
3988 {
3989 }
3990 \f
3991 /* Symbol Lookup */
3992
3993 /* Return the result of a standard (literal, C-like) lookup of NAME in
3994 given DOMAIN, visible from lexical block BLOCK. */
3995
3996 static struct symbol *
3997 standard_lookup (const char *name, const struct block *block,
3998 domain_enum domain)
3999 {
4000 struct symbol *sym;
4001 struct symtab *symtab;
4002
4003 if (lookup_cached_symbol (name, domain, &sym, NULL, NULL))
4004 return sym;
4005 sym =
4006 lookup_symbol_in_language (name, block, domain, language_c, 0, &symtab);
4007 cache_symbol (name, domain, sym, block_found, symtab);
4008 return sym;
4009 }
4010
4011
4012 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4013 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4014 since they contend in overloading in the same way. */
4015 static int
4016 is_nonfunction (struct ada_symbol_info syms[], int n)
4017 {
4018 int i;
4019
4020 for (i = 0; i < n; i += 1)
4021 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4022 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4023 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
4024 return 1;
4025
4026 return 0;
4027 }
4028
4029 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4030 struct types. Otherwise, they may not. */
4031
4032 static int
4033 equiv_types (struct type *type0, struct type *type1)
4034 {
4035 if (type0 == type1)
4036 return 1;
4037 if (type0 == NULL || type1 == NULL
4038 || TYPE_CODE (type0) != TYPE_CODE (type1))
4039 return 0;
4040 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4041 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4042 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4043 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4044 return 1;
4045
4046 return 0;
4047 }
4048
4049 /* True iff SYM0 represents the same entity as SYM1, or one that is
4050 no more defined than that of SYM1. */
4051
4052 static int
4053 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4054 {
4055 if (sym0 == sym1)
4056 return 1;
4057 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4058 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4059 return 0;
4060
4061 switch (SYMBOL_CLASS (sym0))
4062 {
4063 case LOC_UNDEF:
4064 return 1;
4065 case LOC_TYPEDEF:
4066 {
4067 struct type *type0 = SYMBOL_TYPE (sym0);
4068 struct type *type1 = SYMBOL_TYPE (sym1);
4069 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4070 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4071 int len0 = strlen (name0);
4072 return
4073 TYPE_CODE (type0) == TYPE_CODE (type1)
4074 && (equiv_types (type0, type1)
4075 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4076 && strncmp (name1 + len0, "___XV", 5) == 0));
4077 }
4078 case LOC_CONST:
4079 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4080 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4081 default:
4082 return 0;
4083 }
4084 }
4085
4086 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4087 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4088
4089 static void
4090 add_defn_to_vec (struct obstack *obstackp,
4091 struct symbol *sym,
4092 struct block *block, struct symtab *symtab)
4093 {
4094 int i;
4095 size_t tmp;
4096 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4097
4098 /* Do not try to complete stub types, as the debugger is probably
4099 already scanning all symbols matching a certain name at the
4100 time when this function is called. Trying to replace the stub
4101 type by its associated full type will cause us to restart a scan
4102 which may lead to an infinite recursion. Instead, the client
4103 collecting the matching symbols will end up collecting several
4104 matches, with at least one of them complete. It can then filter
4105 out the stub ones if needed. */
4106
4107 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4108 {
4109 if (lesseq_defined_than (sym, prevDefns[i].sym))
4110 return;
4111 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4112 {
4113 prevDefns[i].sym = sym;
4114 prevDefns[i].block = block;
4115 prevDefns[i].symtab = symtab;
4116 return;
4117 }
4118 }
4119
4120 {
4121 struct ada_symbol_info info;
4122
4123 info.sym = sym;
4124 info.block = block;
4125 info.symtab = symtab;
4126 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4127 }
4128 }
4129
4130 /* Number of ada_symbol_info structures currently collected in
4131 current vector in *OBSTACKP. */
4132
4133 static int
4134 num_defns_collected (struct obstack *obstackp)
4135 {
4136 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4137 }
4138
4139 /* Vector of ada_symbol_info structures currently collected in current
4140 vector in *OBSTACKP. If FINISH, close off the vector and return
4141 its final address. */
4142
4143 static struct ada_symbol_info *
4144 defns_collected (struct obstack *obstackp, int finish)
4145 {
4146 if (finish)
4147 return obstack_finish (obstackp);
4148 else
4149 return (struct ada_symbol_info *) obstack_base (obstackp);
4150 }
4151
4152 /* Look, in partial_symtab PST, for symbol NAME in given namespace.
4153 Check the global symbols if GLOBAL, the static symbols if not.
4154 Do wild-card match if WILD. */
4155
4156 static struct partial_symbol *
4157 ada_lookup_partial_symbol (struct partial_symtab *pst, const char *name,
4158 int global, domain_enum namespace, int wild)
4159 {
4160 struct partial_symbol **start;
4161 int name_len = strlen (name);
4162 int length = (global ? pst->n_global_syms : pst->n_static_syms);
4163 int i;
4164
4165 if (length == 0)
4166 {
4167 return (NULL);
4168 }
4169
4170 start = (global ?
4171 pst->objfile->global_psymbols.list + pst->globals_offset :
4172 pst->objfile->static_psymbols.list + pst->statics_offset);
4173
4174 if (wild)
4175 {
4176 for (i = 0; i < length; i += 1)
4177 {
4178 struct partial_symbol *psym = start[i];
4179
4180 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4181 SYMBOL_DOMAIN (psym), namespace)
4182 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (psym)))
4183 return psym;
4184 }
4185 return NULL;
4186 }
4187 else
4188 {
4189 if (global)
4190 {
4191 int U;
4192 i = 0;
4193 U = length - 1;
4194 while (U - i > 4)
4195 {
4196 int M = (U + i) >> 1;
4197 struct partial_symbol *psym = start[M];
4198 if (SYMBOL_LINKAGE_NAME (psym)[0] < name[0])
4199 i = M + 1;
4200 else if (SYMBOL_LINKAGE_NAME (psym)[0] > name[0])
4201 U = M - 1;
4202 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), name) < 0)
4203 i = M + 1;
4204 else
4205 U = M;
4206 }
4207 }
4208 else
4209 i = 0;
4210
4211 while (i < length)
4212 {
4213 struct partial_symbol *psym = start[i];
4214
4215 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4216 SYMBOL_DOMAIN (psym), namespace))
4217 {
4218 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym), name_len);
4219
4220 if (cmp < 0)
4221 {
4222 if (global)
4223 break;
4224 }
4225 else if (cmp == 0
4226 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4227 + name_len))
4228 return psym;
4229 }
4230 i += 1;
4231 }
4232
4233 if (global)
4234 {
4235 int U;
4236 i = 0;
4237 U = length - 1;
4238 while (U - i > 4)
4239 {
4240 int M = (U + i) >> 1;
4241 struct partial_symbol *psym = start[M];
4242 if (SYMBOL_LINKAGE_NAME (psym)[0] < '_')
4243 i = M + 1;
4244 else if (SYMBOL_LINKAGE_NAME (psym)[0] > '_')
4245 U = M - 1;
4246 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), "_ada_") < 0)
4247 i = M + 1;
4248 else
4249 U = M;
4250 }
4251 }
4252 else
4253 i = 0;
4254
4255 while (i < length)
4256 {
4257 struct partial_symbol *psym = start[i];
4258
4259 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4260 SYMBOL_DOMAIN (psym), namespace))
4261 {
4262 int cmp;
4263
4264 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (psym)[0];
4265 if (cmp == 0)
4266 {
4267 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (psym), 5);
4268 if (cmp == 0)
4269 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym) + 5,
4270 name_len);
4271 }
4272
4273 if (cmp < 0)
4274 {
4275 if (global)
4276 break;
4277 }
4278 else if (cmp == 0
4279 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4280 + name_len + 5))
4281 return psym;
4282 }
4283 i += 1;
4284 }
4285 }
4286 return NULL;
4287 }
4288
4289 /* Find a symbol table containing symbol SYM or NULL if none. */
4290
4291 static struct symtab *
4292 symtab_for_sym (struct symbol *sym)
4293 {
4294 struct symtab *s;
4295 struct objfile *objfile;
4296 struct block *b;
4297 struct symbol *tmp_sym;
4298 struct dict_iterator iter;
4299 int j;
4300
4301 ALL_PRIMARY_SYMTABS (objfile, s)
4302 {
4303 switch (SYMBOL_CLASS (sym))
4304 {
4305 case LOC_CONST:
4306 case LOC_STATIC:
4307 case LOC_TYPEDEF:
4308 case LOC_REGISTER:
4309 case LOC_LABEL:
4310 case LOC_BLOCK:
4311 case LOC_CONST_BYTES:
4312 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4313 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4314 return s;
4315 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4316 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4317 return s;
4318 break;
4319 default:
4320 break;
4321 }
4322 switch (SYMBOL_CLASS (sym))
4323 {
4324 case LOC_REGISTER:
4325 case LOC_ARG:
4326 case LOC_REF_ARG:
4327 case LOC_REGPARM:
4328 case LOC_REGPARM_ADDR:
4329 case LOC_LOCAL:
4330 case LOC_TYPEDEF:
4331 case LOC_LOCAL_ARG:
4332 case LOC_BASEREG:
4333 case LOC_BASEREG_ARG:
4334 case LOC_COMPUTED:
4335 case LOC_COMPUTED_ARG:
4336 for (j = FIRST_LOCAL_BLOCK;
4337 j < BLOCKVECTOR_NBLOCKS (BLOCKVECTOR (s)); j += 1)
4338 {
4339 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), j);
4340 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4341 return s;
4342 }
4343 break;
4344 default:
4345 break;
4346 }
4347 }
4348 return NULL;
4349 }
4350
4351 /* Return a minimal symbol matching NAME according to Ada decoding
4352 rules. Returns NULL if there is no such minimal symbol. Names
4353 prefixed with "standard__" are handled specially: "standard__" is
4354 first stripped off, and only static and global symbols are searched. */
4355
4356 struct minimal_symbol *
4357 ada_lookup_simple_minsym (const char *name)
4358 {
4359 struct objfile *objfile;
4360 struct minimal_symbol *msymbol;
4361 int wild_match;
4362
4363 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4364 {
4365 name += sizeof ("standard__") - 1;
4366 wild_match = 0;
4367 }
4368 else
4369 wild_match = (strstr (name, "__") == NULL);
4370
4371 ALL_MSYMBOLS (objfile, msymbol)
4372 {
4373 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4374 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4375 return msymbol;
4376 }
4377
4378 return NULL;
4379 }
4380
4381 /* For all subprograms that statically enclose the subprogram of the
4382 selected frame, add symbols matching identifier NAME in DOMAIN
4383 and their blocks to the list of data in OBSTACKP, as for
4384 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4385 wildcard prefix. */
4386
4387 static void
4388 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4389 const char *name, domain_enum namespace,
4390 int wild_match)
4391 {
4392 }
4393
4394 /* True if TYPE is definitely an artificial type supplied to a symbol
4395 for which no debugging information was given in the symbol file. */
4396
4397 static int
4398 is_nondebugging_type (struct type *type)
4399 {
4400 char *name = ada_type_name (type);
4401 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4402 }
4403
4404 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4405 duplicate other symbols in the list (The only case I know of where
4406 this happens is when object files containing stabs-in-ecoff are
4407 linked with files containing ordinary ecoff debugging symbols (or no
4408 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4409 Returns the number of items in the modified list. */
4410
4411 static int
4412 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4413 {
4414 int i, j;
4415
4416 i = 0;
4417 while (i < nsyms)
4418 {
4419 if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4420 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4421 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4422 {
4423 for (j = 0; j < nsyms; j += 1)
4424 {
4425 if (i != j
4426 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4427 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4428 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4429 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4430 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4431 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4432 {
4433 int k;
4434 for (k = i + 1; k < nsyms; k += 1)
4435 syms[k - 1] = syms[k];
4436 nsyms -= 1;
4437 goto NextSymbol;
4438 }
4439 }
4440 }
4441 i += 1;
4442 NextSymbol:
4443 ;
4444 }
4445 return nsyms;
4446 }
4447
4448 /* Given a type that corresponds to a renaming entity, use the type name
4449 to extract the scope (package name or function name, fully qualified,
4450 and following the GNAT encoding convention) where this renaming has been
4451 defined. The string returned needs to be deallocated after use. */
4452
4453 static char *
4454 xget_renaming_scope (struct type *renaming_type)
4455 {
4456 /* The renaming types adhere to the following convention:
4457 <scope>__<rename>___<XR extension>.
4458 So, to extract the scope, we search for the "___XR" extension,
4459 and then backtrack until we find the first "__". */
4460
4461 const char *name = type_name_no_tag (renaming_type);
4462 char *suffix = strstr (name, "___XR");
4463 char *last;
4464 int scope_len;
4465 char *scope;
4466
4467 /* Now, backtrack a bit until we find the first "__". Start looking
4468 at suffix - 3, as the <rename> part is at least one character long. */
4469
4470 for (last = suffix - 3; last > name; last--)
4471 if (last[0] == '_' && last[1] == '_')
4472 break;
4473
4474 /* Make a copy of scope and return it. */
4475
4476 scope_len = last - name;
4477 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4478
4479 strncpy (scope, name, scope_len);
4480 scope[scope_len] = '\0';
4481
4482 return scope;
4483 }
4484
4485 /* Return nonzero if NAME corresponds to a package name. */
4486
4487 static int
4488 is_package_name (const char *name)
4489 {
4490 /* Here, We take advantage of the fact that no symbols are generated
4491 for packages, while symbols are generated for each function.
4492 So the condition for NAME represent a package becomes equivalent
4493 to NAME not existing in our list of symbols. There is only one
4494 small complication with library-level functions (see below). */
4495
4496 char *fun_name;
4497
4498 /* If it is a function that has not been defined at library level,
4499 then we should be able to look it up in the symbols. */
4500 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4501 return 0;
4502
4503 /* Library-level function names start with "_ada_". See if function
4504 "_ada_" followed by NAME can be found. */
4505
4506 /* Do a quick check that NAME does not contain "__", since library-level
4507 functions names cannot contain "__" in them. */
4508 if (strstr (name, "__") != NULL)
4509 return 0;
4510
4511 fun_name = xstrprintf ("_ada_%s", name);
4512
4513 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4514 }
4515
4516 /* Return nonzero if SYM corresponds to a renaming entity that is
4517 not visible from FUNCTION_NAME. */
4518
4519 static int
4520 old_renaming_is_invisible (const struct symbol *sym, char *function_name)
4521 {
4522 char *scope;
4523
4524 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4525 return 0;
4526
4527 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4528
4529 make_cleanup (xfree, scope);
4530
4531 /* If the rename has been defined in a package, then it is visible. */
4532 if (is_package_name (scope))
4533 return 0;
4534
4535 /* Check that the rename is in the current function scope by checking
4536 that its name starts with SCOPE. */
4537
4538 /* If the function name starts with "_ada_", it means that it is
4539 a library-level function. Strip this prefix before doing the
4540 comparison, as the encoding for the renaming does not contain
4541 this prefix. */
4542 if (strncmp (function_name, "_ada_", 5) == 0)
4543 function_name += 5;
4544
4545 return (strncmp (function_name, scope, strlen (scope)) != 0);
4546 }
4547
4548 /* Remove entries from SYMS that corresponds to a renaming entity that
4549 is not visible from the function associated with CURRENT_BLOCK or
4550 that is superfluous due to the presence of more specific renaming
4551 information. Places surviving symbols in the initial entries of
4552 SYMS and returns the number of surviving symbols.
4553
4554 Rationale:
4555 First, in cases where an object renaming is implemented as a
4556 reference variable, GNAT may produce both the actual reference
4557 variable and the renaming encoding. In this case, we discard the
4558 latter.
4559
4560 Second, GNAT emits a type following a specified encoding for each renaming
4561 entity. Unfortunately, STABS currently does not support the definition
4562 of types that are local to a given lexical block, so all renamings types
4563 are emitted at library level. As a consequence, if an application
4564 contains two renaming entities using the same name, and a user tries to
4565 print the value of one of these entities, the result of the ada symbol
4566 lookup will also contain the wrong renaming type.
4567
4568 This function partially covers for this limitation by attempting to
4569 remove from the SYMS list renaming symbols that should be visible
4570 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4571 method with the current information available. The implementation
4572 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4573
4574 - When the user tries to print a rename in a function while there
4575 is another rename entity defined in a package: Normally, the
4576 rename in the function has precedence over the rename in the
4577 package, so the latter should be removed from the list. This is
4578 currently not the case.
4579
4580 - This function will incorrectly remove valid renames if
4581 the CURRENT_BLOCK corresponds to a function which symbol name
4582 has been changed by an "Export" pragma. As a consequence,
4583 the user will be unable to print such rename entities. */
4584
4585 static int
4586 remove_irrelevant_renamings (struct ada_symbol_info *syms,
4587 int nsyms, const struct block *current_block)
4588 {
4589 struct symbol *current_function;
4590 char *current_function_name;
4591 int i;
4592 int is_new_style_renaming;
4593
4594 /* If there is both a renaming foo___XR... encoded as a variable and
4595 a simple variable foo in the same block, discard the latter.
4596 First, zero out such symbols, then compress. */
4597 is_new_style_renaming = 0;
4598 for (i = 0; i < nsyms; i += 1)
4599 {
4600 struct symbol *sym = syms[i].sym;
4601 struct block *block = syms[i].block;
4602 const char *name;
4603 const char *suffix;
4604
4605 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4606 continue;
4607 name = SYMBOL_LINKAGE_NAME (sym);
4608 suffix = strstr (name, "___XR");
4609
4610 if (suffix != NULL)
4611 {
4612 int name_len = suffix - name;
4613 int j;
4614 is_new_style_renaming = 1;
4615 for (j = 0; j < nsyms; j += 1)
4616 if (i != j && syms[j].sym != NULL
4617 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4618 name_len) == 0
4619 && block == syms[j].block)
4620 syms[j].sym = NULL;
4621 }
4622 }
4623 if (is_new_style_renaming)
4624 {
4625 int j, k;
4626
4627 for (j = k = 0; j < nsyms; j += 1)
4628 if (syms[j].sym != NULL)
4629 {
4630 syms[k] = syms[j];
4631 k += 1;
4632 }
4633 return k;
4634 }
4635
4636 /* Extract the function name associated to CURRENT_BLOCK.
4637 Abort if unable to do so. */
4638
4639 if (current_block == NULL)
4640 return nsyms;
4641
4642 current_function = block_function (current_block);
4643 if (current_function == NULL)
4644 return nsyms;
4645
4646 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4647 if (current_function_name == NULL)
4648 return nsyms;
4649
4650 /* Check each of the symbols, and remove it from the list if it is
4651 a type corresponding to a renaming that is out of the scope of
4652 the current block. */
4653
4654 i = 0;
4655 while (i < nsyms)
4656 {
4657 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4658 == ADA_OBJECT_RENAMING
4659 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4660 {
4661 int j;
4662 for (j = i + 1; j < nsyms; j += 1)
4663 syms[j - 1] = syms[j];
4664 nsyms -= 1;
4665 }
4666 else
4667 i += 1;
4668 }
4669
4670 return nsyms;
4671 }
4672
4673 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4674 scope and in global scopes, returning the number of matches. Sets
4675 *RESULTS to point to a vector of (SYM,BLOCK,SYMTAB) triples,
4676 indicating the symbols found and the blocks and symbol tables (if
4677 any) in which they were found. This vector are transient---good only to
4678 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4679 symbol match within the nest of blocks whose innermost member is BLOCK0,
4680 is the one match returned (no other matches in that or
4681 enclosing blocks is returned). If there are any matches in or
4682 surrounding BLOCK0, then these alone are returned. Otherwise, the
4683 search extends to global and file-scope (static) symbol tables.
4684 Names prefixed with "standard__" are handled specially: "standard__"
4685 is first stripped off, and only static and global symbols are searched. */
4686
4687 int
4688 ada_lookup_symbol_list (const char *name0, const struct block *block0,
4689 domain_enum namespace,
4690 struct ada_symbol_info **results)
4691 {
4692 struct symbol *sym;
4693 struct symtab *s;
4694 struct partial_symtab *ps;
4695 struct blockvector *bv;
4696 struct objfile *objfile;
4697 struct block *block;
4698 const char *name;
4699 struct minimal_symbol *msymbol;
4700 int wild_match;
4701 int cacheIfUnique;
4702 int block_depth;
4703 int ndefns;
4704
4705 obstack_free (&symbol_list_obstack, NULL);
4706 obstack_init (&symbol_list_obstack);
4707
4708 cacheIfUnique = 0;
4709
4710 /* Search specified block and its superiors. */
4711
4712 wild_match = (strstr (name0, "__") == NULL);
4713 name = name0;
4714 block = (struct block *) block0; /* FIXME: No cast ought to be
4715 needed, but adding const will
4716 have a cascade effect. */
4717 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4718 {
4719 wild_match = 0;
4720 block = NULL;
4721 name = name0 + sizeof ("standard__") - 1;
4722 }
4723
4724 block_depth = 0;
4725 while (block != NULL)
4726 {
4727 block_depth += 1;
4728 ada_add_block_symbols (&symbol_list_obstack, block, name,
4729 namespace, NULL, NULL, wild_match);
4730
4731 /* If we found a non-function match, assume that's the one. */
4732 if (is_nonfunction (defns_collected (&symbol_list_obstack, 0),
4733 num_defns_collected (&symbol_list_obstack)))
4734 goto done;
4735
4736 block = BLOCK_SUPERBLOCK (block);
4737 }
4738
4739 /* If no luck so far, try to find NAME as a local symbol in some lexically
4740 enclosing subprogram. */
4741 if (num_defns_collected (&symbol_list_obstack) == 0 && block_depth > 2)
4742 add_symbols_from_enclosing_procs (&symbol_list_obstack,
4743 name, namespace, wild_match);
4744
4745 /* If we found ANY matches among non-global symbols, we're done. */
4746
4747 if (num_defns_collected (&symbol_list_obstack) > 0)
4748 goto done;
4749
4750 cacheIfUnique = 1;
4751 if (lookup_cached_symbol (name0, namespace, &sym, &block, &s))
4752 {
4753 if (sym != NULL)
4754 add_defn_to_vec (&symbol_list_obstack, sym, block, s);
4755 goto done;
4756 }
4757
4758 /* Now add symbols from all global blocks: symbol tables, minimal symbol
4759 tables, and psymtab's. */
4760
4761 ALL_PRIMARY_SYMTABS (objfile, s)
4762 {
4763 QUIT;
4764 bv = BLOCKVECTOR (s);
4765 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4766 ada_add_block_symbols (&symbol_list_obstack, block, name, namespace,
4767 objfile, s, wild_match);
4768 }
4769
4770 if (namespace == VAR_DOMAIN)
4771 {
4772 ALL_MSYMBOLS (objfile, msymbol)
4773 {
4774 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match))
4775 {
4776 switch (MSYMBOL_TYPE (msymbol))
4777 {
4778 case mst_solib_trampoline:
4779 break;
4780 default:
4781 s = find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol));
4782 if (s != NULL)
4783 {
4784 int ndefns0 = num_defns_collected (&symbol_list_obstack);
4785 QUIT;
4786 bv = BLOCKVECTOR (s);
4787 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4788 ada_add_block_symbols (&symbol_list_obstack, block,
4789 SYMBOL_LINKAGE_NAME (msymbol),
4790 namespace, objfile, s, wild_match);
4791
4792 if (num_defns_collected (&symbol_list_obstack) == ndefns0)
4793 {
4794 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4795 ada_add_block_symbols (&symbol_list_obstack, block,
4796 SYMBOL_LINKAGE_NAME (msymbol),
4797 namespace, objfile, s,
4798 wild_match);
4799 }
4800 }
4801 }
4802 }
4803 }
4804 }
4805
4806 ALL_PSYMTABS (objfile, ps)
4807 {
4808 QUIT;
4809 if (!ps->readin
4810 && ada_lookup_partial_symbol (ps, name, 1, namespace, wild_match))
4811 {
4812 s = PSYMTAB_TO_SYMTAB (ps);
4813 if (!s->primary)
4814 continue;
4815 bv = BLOCKVECTOR (s);
4816 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4817 ada_add_block_symbols (&symbol_list_obstack, block, name,
4818 namespace, objfile, s, wild_match);
4819 }
4820 }
4821
4822 /* Now add symbols from all per-file blocks if we've gotten no hits
4823 (Not strictly correct, but perhaps better than an error).
4824 Do the symtabs first, then check the psymtabs. */
4825
4826 if (num_defns_collected (&symbol_list_obstack) == 0)
4827 {
4828
4829 ALL_PRIMARY_SYMTABS (objfile, s)
4830 {
4831 QUIT;
4832 bv = BLOCKVECTOR (s);
4833 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4834 ada_add_block_symbols (&symbol_list_obstack, block, name, namespace,
4835 objfile, s, wild_match);
4836 }
4837
4838 ALL_PSYMTABS (objfile, ps)
4839 {
4840 QUIT;
4841 if (!ps->readin
4842 && ada_lookup_partial_symbol (ps, name, 0, namespace, wild_match))
4843 {
4844 s = PSYMTAB_TO_SYMTAB (ps);
4845 bv = BLOCKVECTOR (s);
4846 if (!s->primary)
4847 continue;
4848 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4849 ada_add_block_symbols (&symbol_list_obstack, block, name,
4850 namespace, objfile, s, wild_match);
4851 }
4852 }
4853 }
4854
4855 done:
4856 ndefns = num_defns_collected (&symbol_list_obstack);
4857 *results = defns_collected (&symbol_list_obstack, 1);
4858
4859 ndefns = remove_extra_symbols (*results, ndefns);
4860
4861 if (ndefns == 0)
4862 cache_symbol (name0, namespace, NULL, NULL, NULL);
4863
4864 if (ndefns == 1 && cacheIfUnique)
4865 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block,
4866 (*results)[0].symtab);
4867
4868 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
4869
4870 return ndefns;
4871 }
4872
4873 struct symbol *
4874 ada_lookup_encoded_symbol (const char *name, const struct block *block0,
4875 domain_enum namespace,
4876 struct block **block_found, struct symtab **symtab)
4877 {
4878 struct ada_symbol_info *candidates;
4879 int n_candidates;
4880
4881 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates);
4882
4883 if (n_candidates == 0)
4884 return NULL;
4885
4886 if (block_found != NULL)
4887 *block_found = candidates[0].block;
4888
4889 if (symtab != NULL)
4890 {
4891 *symtab = candidates[0].symtab;
4892 if (*symtab == NULL && candidates[0].block != NULL)
4893 {
4894 struct objfile *objfile;
4895 struct symtab *s;
4896 struct block *b;
4897 struct blockvector *bv;
4898
4899 /* Search the list of symtabs for one which contains the
4900 address of the start of this block. */
4901 ALL_PRIMARY_SYMTABS (objfile, s)
4902 {
4903 bv = BLOCKVECTOR (s);
4904 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4905 if (BLOCK_START (b) <= BLOCK_START (candidates[0].block)
4906 && BLOCK_END (b) > BLOCK_START (candidates[0].block))
4907 {
4908 *symtab = s;
4909 return fixup_symbol_section (candidates[0].sym, objfile);
4910 }
4911 }
4912 /* FIXME: brobecker/2004-11-12: I think that we should never
4913 reach this point. I don't see a reason why we would not
4914 find a symtab for a given block, so I suggest raising an
4915 internal_error exception here. Otherwise, we end up
4916 returning a symbol but no symtab, which certain parts of
4917 the code that rely (indirectly) on this function do not
4918 expect, eventually causing a SEGV. */
4919 return fixup_symbol_section (candidates[0].sym, NULL);
4920 }
4921 }
4922 return candidates[0].sym;
4923 }
4924
4925 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4926 scope and in global scopes, or NULL if none. NAME is folded and
4927 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4928 choosing the first symbol if there are multiple choices.
4929 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4930 table in which the symbol was found (in both cases, these
4931 assignments occur only if the pointers are non-null). */
4932 struct symbol *
4933 ada_lookup_symbol (const char *name, const struct block *block0,
4934 domain_enum namespace, int *is_a_field_of_this,
4935 struct symtab **symtab)
4936 {
4937 if (is_a_field_of_this != NULL)
4938 *is_a_field_of_this = 0;
4939
4940 return
4941 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
4942 block0, namespace, NULL, symtab);
4943 }
4944
4945 static struct symbol *
4946 ada_lookup_symbol_nonlocal (const char *name,
4947 const char *linkage_name,
4948 const struct block *block,
4949 const domain_enum domain, struct symtab **symtab)
4950 {
4951 if (linkage_name == NULL)
4952 linkage_name = name;
4953 return ada_lookup_symbol (linkage_name, block_static_block (block), domain,
4954 NULL, symtab);
4955 }
4956
4957
4958 /* True iff STR is a possible encoded suffix of a normal Ada name
4959 that is to be ignored for matching purposes. Suffixes of parallel
4960 names (e.g., XVE) are not included here. Currently, the possible suffixes
4961 are given by either of the regular expression:
4962
4963 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
4964 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4965 _E[0-9]+[bs]$ [protected object entry suffixes]
4966 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
4967
4968 Also, any leading "__[0-9]+" sequence is skipped before the suffix
4969 match is performed. This sequence is used to differentiate homonyms,
4970 is an optional part of a valid name suffix. */
4971
4972 static int
4973 is_name_suffix (const char *str)
4974 {
4975 int k;
4976 const char *matching;
4977 const int len = strlen (str);
4978
4979 /* Skip optional leading __[0-9]+. */
4980
4981 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4982 {
4983 str += 3;
4984 while (isdigit (str[0]))
4985 str += 1;
4986 }
4987
4988 /* [.$][0-9]+ */
4989
4990 if (str[0] == '.' || str[0] == '$')
4991 {
4992 matching = str + 1;
4993 while (isdigit (matching[0]))
4994 matching += 1;
4995 if (matching[0] == '\0')
4996 return 1;
4997 }
4998
4999 /* ___[0-9]+ */
5000
5001 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5002 {
5003 matching = str + 3;
5004 while (isdigit (matching[0]))
5005 matching += 1;
5006 if (matching[0] == '\0')
5007 return 1;
5008 }
5009
5010 #if 0
5011 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5012 with a N at the end. Unfortunately, the compiler uses the same
5013 convention for other internal types it creates. So treating
5014 all entity names that end with an "N" as a name suffix causes
5015 some regressions. For instance, consider the case of an enumerated
5016 type. To support the 'Image attribute, it creates an array whose
5017 name ends with N.
5018 Having a single character like this as a suffix carrying some
5019 information is a bit risky. Perhaps we should change the encoding
5020 to be something like "_N" instead. In the meantime, do not do
5021 the following check. */
5022 /* Protected Object Subprograms */
5023 if (len == 1 && str [0] == 'N')
5024 return 1;
5025 #endif
5026
5027 /* _E[0-9]+[bs]$ */
5028 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5029 {
5030 matching = str + 3;
5031 while (isdigit (matching[0]))
5032 matching += 1;
5033 if ((matching[0] == 'b' || matching[0] == 's')
5034 && matching [1] == '\0')
5035 return 1;
5036 }
5037
5038 /* ??? We should not modify STR directly, as we are doing below. This
5039 is fine in this case, but may become problematic later if we find
5040 that this alternative did not work, and want to try matching
5041 another one from the begining of STR. Since we modified it, we
5042 won't be able to find the begining of the string anymore! */
5043 if (str[0] == 'X')
5044 {
5045 str += 1;
5046 while (str[0] != '_' && str[0] != '\0')
5047 {
5048 if (str[0] != 'n' && str[0] != 'b')
5049 return 0;
5050 str += 1;
5051 }
5052 }
5053
5054 if (str[0] == '\000')
5055 return 1;
5056
5057 if (str[0] == '_')
5058 {
5059 if (str[1] != '_' || str[2] == '\000')
5060 return 0;
5061 if (str[2] == '_')
5062 {
5063 if (strcmp (str + 3, "JM") == 0)
5064 return 1;
5065 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5066 the LJM suffix in favor of the JM one. But we will
5067 still accept LJM as a valid suffix for a reasonable
5068 amount of time, just to allow ourselves to debug programs
5069 compiled using an older version of GNAT. */
5070 if (strcmp (str + 3, "LJM") == 0)
5071 return 1;
5072 if (str[3] != 'X')
5073 return 0;
5074 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5075 || str[4] == 'U' || str[4] == 'P')
5076 return 1;
5077 if (str[4] == 'R' && str[5] != 'T')
5078 return 1;
5079 return 0;
5080 }
5081 if (!isdigit (str[2]))
5082 return 0;
5083 for (k = 3; str[k] != '\0'; k += 1)
5084 if (!isdigit (str[k]) && str[k] != '_')
5085 return 0;
5086 return 1;
5087 }
5088 if (str[0] == '$' && isdigit (str[1]))
5089 {
5090 for (k = 2; str[k] != '\0'; k += 1)
5091 if (!isdigit (str[k]) && str[k] != '_')
5092 return 0;
5093 return 1;
5094 }
5095 return 0;
5096 }
5097
5098 /* Return nonzero if the given string starts with a dot ('.')
5099 followed by zero or more digits.
5100
5101 Note: brobecker/2003-11-10: A forward declaration has not been
5102 added at the begining of this file yet, because this function
5103 is only used to work around a problem found during wild matching
5104 when trying to match minimal symbol names against symbol names
5105 obtained from dwarf-2 data. This function is therefore currently
5106 only used in wild_match() and is likely to be deleted when the
5107 problem in dwarf-2 is fixed. */
5108
5109 static int
5110 is_dot_digits_suffix (const char *str)
5111 {
5112 if (str[0] != '.')
5113 return 0;
5114
5115 str++;
5116 while (isdigit (str[0]))
5117 str++;
5118 return (str[0] == '\0');
5119 }
5120
5121 /* Return non-zero if the string starting at NAME and ending before
5122 NAME_END contains no capital letters. */
5123
5124 static int
5125 is_valid_name_for_wild_match (const char *name0)
5126 {
5127 const char *decoded_name = ada_decode (name0);
5128 int i;
5129
5130 for (i=0; decoded_name[i] != '\0'; i++)
5131 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5132 return 0;
5133
5134 return 1;
5135 }
5136
5137 /* True if NAME represents a name of the form A1.A2....An, n>=1 and
5138 PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores
5139 informational suffixes of NAME (i.e., for which is_name_suffix is
5140 true). */
5141
5142 static int
5143 wild_match (const char *patn0, int patn_len, const char *name0)
5144 {
5145 int name_len;
5146 char *name;
5147 char *name_start;
5148 char *patn;
5149
5150 /* FIXME: brobecker/2003-11-10: For some reason, the symbol name
5151 stored in the symbol table for nested function names is sometimes
5152 different from the name of the associated entity stored in
5153 the dwarf-2 data: This is the case for nested subprograms, where
5154 the minimal symbol name contains a trailing ".[:digit:]+" suffix,
5155 while the symbol name from the dwarf-2 data does not.
5156
5157 Although the DWARF-2 standard documents that entity names stored
5158 in the dwarf-2 data should be identical to the name as seen in
5159 the source code, GNAT takes a different approach as we already use
5160 a special encoding mechanism to convey the information so that
5161 a C debugger can still use the information generated to debug
5162 Ada programs. A corollary is that the symbol names in the dwarf-2
5163 data should match the names found in the symbol table. I therefore
5164 consider this issue as a compiler defect.
5165
5166 Until the compiler is properly fixed, we work-around the problem
5167 by ignoring such suffixes during the match. We do so by making
5168 a copy of PATN0 and NAME0, and then by stripping such a suffix
5169 if present. We then perform the match on the resulting strings. */
5170 {
5171 char *dot;
5172 name_len = strlen (name0);
5173
5174 name = name_start = (char *) alloca ((name_len + 1) * sizeof (char));
5175 strcpy (name, name0);
5176 dot = strrchr (name, '.');
5177 if (dot != NULL && is_dot_digits_suffix (dot))
5178 *dot = '\0';
5179
5180 patn = (char *) alloca ((patn_len + 1) * sizeof (char));
5181 strncpy (patn, patn0, patn_len);
5182 patn[patn_len] = '\0';
5183 dot = strrchr (patn, '.');
5184 if (dot != NULL && is_dot_digits_suffix (dot))
5185 {
5186 *dot = '\0';
5187 patn_len = dot - patn;
5188 }
5189 }
5190
5191 /* Now perform the wild match. */
5192
5193 name_len = strlen (name);
5194 if (name_len >= patn_len + 5 && strncmp (name, "_ada_", 5) == 0
5195 && strncmp (patn, name + 5, patn_len) == 0
5196 && is_name_suffix (name + patn_len + 5))
5197 return 1;
5198
5199 while (name_len >= patn_len)
5200 {
5201 if (strncmp (patn, name, patn_len) == 0
5202 && is_name_suffix (name + patn_len))
5203 return (name == name_start || is_valid_name_for_wild_match (name0));
5204 do
5205 {
5206 name += 1;
5207 name_len -= 1;
5208 }
5209 while (name_len > 0
5210 && name[0] != '.' && (name[0] != '_' || name[1] != '_'));
5211 if (name_len <= 0)
5212 return 0;
5213 if (name[0] == '_')
5214 {
5215 if (!islower (name[2]))
5216 return 0;
5217 name += 2;
5218 name_len -= 2;
5219 }
5220 else
5221 {
5222 if (!islower (name[1]))
5223 return 0;
5224 name += 1;
5225 name_len -= 1;
5226 }
5227 }
5228
5229 return 0;
5230 }
5231
5232
5233 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5234 vector *defn_symbols, updating the list of symbols in OBSTACKP
5235 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5236 OBJFILE is the section containing BLOCK.
5237 SYMTAB is recorded with each symbol added. */
5238
5239 static void
5240 ada_add_block_symbols (struct obstack *obstackp,
5241 struct block *block, const char *name,
5242 domain_enum domain, struct objfile *objfile,
5243 struct symtab *symtab, int wild)
5244 {
5245 struct dict_iterator iter;
5246 int name_len = strlen (name);
5247 /* A matching argument symbol, if any. */
5248 struct symbol *arg_sym;
5249 /* Set true when we find a matching non-argument symbol. */
5250 int found_sym;
5251 struct symbol *sym;
5252
5253 arg_sym = NULL;
5254 found_sym = 0;
5255 if (wild)
5256 {
5257 struct symbol *sym;
5258 ALL_BLOCK_SYMBOLS (block, iter, sym)
5259 {
5260 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5261 SYMBOL_DOMAIN (sym), domain)
5262 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (sym)))
5263 {
5264 switch (SYMBOL_CLASS (sym))
5265 {
5266 case LOC_ARG:
5267 case LOC_LOCAL_ARG:
5268 case LOC_REF_ARG:
5269 case LOC_REGPARM:
5270 case LOC_REGPARM_ADDR:
5271 case LOC_BASEREG_ARG:
5272 case LOC_COMPUTED_ARG:
5273 arg_sym = sym;
5274 break;
5275 case LOC_UNRESOLVED:
5276 continue;
5277 default:
5278 found_sym = 1;
5279 add_defn_to_vec (obstackp,
5280 fixup_symbol_section (sym, objfile),
5281 block, symtab);
5282 break;
5283 }
5284 }
5285 }
5286 }
5287 else
5288 {
5289 ALL_BLOCK_SYMBOLS (block, iter, sym)
5290 {
5291 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5292 SYMBOL_DOMAIN (sym), domain))
5293 {
5294 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym), name_len);
5295 if (cmp == 0
5296 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len))
5297 {
5298 switch (SYMBOL_CLASS (sym))
5299 {
5300 case LOC_ARG:
5301 case LOC_LOCAL_ARG:
5302 case LOC_REF_ARG:
5303 case LOC_REGPARM:
5304 case LOC_REGPARM_ADDR:
5305 case LOC_BASEREG_ARG:
5306 case LOC_COMPUTED_ARG:
5307 arg_sym = sym;
5308 break;
5309 case LOC_UNRESOLVED:
5310 break;
5311 default:
5312 found_sym = 1;
5313 add_defn_to_vec (obstackp,
5314 fixup_symbol_section (sym, objfile),
5315 block, symtab);
5316 break;
5317 }
5318 }
5319 }
5320 }
5321 }
5322
5323 if (!found_sym && arg_sym != NULL)
5324 {
5325 add_defn_to_vec (obstackp,
5326 fixup_symbol_section (arg_sym, objfile),
5327 block, symtab);
5328 }
5329
5330 if (!wild)
5331 {
5332 arg_sym = NULL;
5333 found_sym = 0;
5334
5335 ALL_BLOCK_SYMBOLS (block, iter, sym)
5336 {
5337 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5338 SYMBOL_DOMAIN (sym), domain))
5339 {
5340 int cmp;
5341
5342 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5343 if (cmp == 0)
5344 {
5345 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5346 if (cmp == 0)
5347 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5348 name_len);
5349 }
5350
5351 if (cmp == 0
5352 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5353 {
5354 switch (SYMBOL_CLASS (sym))
5355 {
5356 case LOC_ARG:
5357 case LOC_LOCAL_ARG:
5358 case LOC_REF_ARG:
5359 case LOC_REGPARM:
5360 case LOC_REGPARM_ADDR:
5361 case LOC_BASEREG_ARG:
5362 case LOC_COMPUTED_ARG:
5363 arg_sym = sym;
5364 break;
5365 case LOC_UNRESOLVED:
5366 break;
5367 default:
5368 found_sym = 1;
5369 add_defn_to_vec (obstackp,
5370 fixup_symbol_section (sym, objfile),
5371 block, symtab);
5372 break;
5373 }
5374 }
5375 }
5376 }
5377
5378 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5379 They aren't parameters, right? */
5380 if (!found_sym && arg_sym != NULL)
5381 {
5382 add_defn_to_vec (obstackp,
5383 fixup_symbol_section (arg_sym, objfile),
5384 block, symtab);
5385 }
5386 }
5387 }
5388 \f
5389
5390 /* Symbol Completion */
5391
5392 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
5393 name in a form that's appropriate for the completion. The result
5394 does not need to be deallocated, but is only good until the next call.
5395
5396 TEXT_LEN is equal to the length of TEXT.
5397 Perform a wild match if WILD_MATCH is set.
5398 ENCODED should be set if TEXT represents the start of a symbol name
5399 in its encoded form. */
5400
5401 static const char *
5402 symbol_completion_match (const char *sym_name,
5403 const char *text, int text_len,
5404 int wild_match, int encoded)
5405 {
5406 char *result;
5407 const int verbatim_match = (text[0] == '<');
5408 int match = 0;
5409
5410 if (verbatim_match)
5411 {
5412 /* Strip the leading angle bracket. */
5413 text = text + 1;
5414 text_len--;
5415 }
5416
5417 /* First, test against the fully qualified name of the symbol. */
5418
5419 if (strncmp (sym_name, text, text_len) == 0)
5420 match = 1;
5421
5422 if (match && !encoded)
5423 {
5424 /* One needed check before declaring a positive match is to verify
5425 that iff we are doing a verbatim match, the decoded version
5426 of the symbol name starts with '<'. Otherwise, this symbol name
5427 is not a suitable completion. */
5428 const char *sym_name_copy = sym_name;
5429 int has_angle_bracket;
5430
5431 sym_name = ada_decode (sym_name);
5432 has_angle_bracket = (sym_name[0] == '<');
5433 match = (has_angle_bracket == verbatim_match);
5434 sym_name = sym_name_copy;
5435 }
5436
5437 if (match && !verbatim_match)
5438 {
5439 /* When doing non-verbatim match, another check that needs to
5440 be done is to verify that the potentially matching symbol name
5441 does not include capital letters, because the ada-mode would
5442 not be able to understand these symbol names without the
5443 angle bracket notation. */
5444 const char *tmp;
5445
5446 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5447 if (*tmp != '\0')
5448 match = 0;
5449 }
5450
5451 /* Second: Try wild matching... */
5452
5453 if (!match && wild_match)
5454 {
5455 /* Since we are doing wild matching, this means that TEXT
5456 may represent an unqualified symbol name. We therefore must
5457 also compare TEXT against the unqualified name of the symbol. */
5458 sym_name = ada_unqualified_name (ada_decode (sym_name));
5459
5460 if (strncmp (sym_name, text, text_len) == 0)
5461 match = 1;
5462 }
5463
5464 /* Finally: If we found a mach, prepare the result to return. */
5465
5466 if (!match)
5467 return NULL;
5468
5469 if (verbatim_match)
5470 sym_name = add_angle_brackets (sym_name);
5471
5472 if (!encoded)
5473 sym_name = ada_decode (sym_name);
5474
5475 return sym_name;
5476 }
5477
5478 typedef char *char_ptr;
5479 DEF_VEC_P (char_ptr);
5480
5481 /* A companion function to ada_make_symbol_completion_list().
5482 Check if SYM_NAME represents a symbol which name would be suitable
5483 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5484 it is appended at the end of the given string vector SV.
5485
5486 ORIG_TEXT is the string original string from the user command
5487 that needs to be completed. WORD is the entire command on which
5488 completion should be performed. These two parameters are used to
5489 determine which part of the symbol name should be added to the
5490 completion vector.
5491 if WILD_MATCH is set, then wild matching is performed.
5492 ENCODED should be set if TEXT represents a symbol name in its
5493 encoded formed (in which case the completion should also be
5494 encoded). */
5495
5496 static void
5497 symbol_completion_add (VEC(char_ptr) **sv,
5498 const char *sym_name,
5499 const char *text, int text_len,
5500 const char *orig_text, const char *word,
5501 int wild_match, int encoded)
5502 {
5503 const char *match = symbol_completion_match (sym_name, text, text_len,
5504 wild_match, encoded);
5505 char *completion;
5506
5507 if (match == NULL)
5508 return;
5509
5510 /* We found a match, so add the appropriate completion to the given
5511 string vector. */
5512
5513 if (word == orig_text)
5514 {
5515 completion = xmalloc (strlen (match) + 5);
5516 strcpy (completion, match);
5517 }
5518 else if (word > orig_text)
5519 {
5520 /* Return some portion of sym_name. */
5521 completion = xmalloc (strlen (match) + 5);
5522 strcpy (completion, match + (word - orig_text));
5523 }
5524 else
5525 {
5526 /* Return some of ORIG_TEXT plus sym_name. */
5527 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5528 strncpy (completion, word, orig_text - word);
5529 completion[orig_text - word] = '\0';
5530 strcat (completion, match);
5531 }
5532
5533 VEC_safe_push (char_ptr, *sv, completion);
5534 }
5535
5536 /* Return a list of possible symbol names completing TEXT0. The list
5537 is NULL terminated. WORD is the entire command on which completion
5538 is made. */
5539
5540 static char **
5541 ada_make_symbol_completion_list (char *text0, char *word)
5542 {
5543 char *text;
5544 int text_len;
5545 int wild_match;
5546 int encoded;
5547 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
5548 struct symbol *sym;
5549 struct symtab *s;
5550 struct partial_symtab *ps;
5551 struct minimal_symbol *msymbol;
5552 struct objfile *objfile;
5553 struct block *b, *surrounding_static_block = 0;
5554 int i;
5555 struct dict_iterator iter;
5556
5557 if (text0[0] == '<')
5558 {
5559 text = xstrdup (text0);
5560 make_cleanup (xfree, text);
5561 text_len = strlen (text);
5562 wild_match = 0;
5563 encoded = 1;
5564 }
5565 else
5566 {
5567 text = xstrdup (ada_encode (text0));
5568 make_cleanup (xfree, text);
5569 text_len = strlen (text);
5570 for (i = 0; i < text_len; i++)
5571 text[i] = tolower (text[i]);
5572
5573 encoded = (strstr (text0, "__") != NULL);
5574 /* If the name contains a ".", then the user is entering a fully
5575 qualified entity name, and the match must not be done in wild
5576 mode. Similarly, if the user wants to complete what looks like
5577 an encoded name, the match must not be done in wild mode. */
5578 wild_match = (strchr (text0, '.') == NULL && !encoded);
5579 }
5580
5581 /* First, look at the partial symtab symbols. */
5582 ALL_PSYMTABS (objfile, ps)
5583 {
5584 struct partial_symbol **psym;
5585
5586 /* If the psymtab's been read in we'll get it when we search
5587 through the blockvector. */
5588 if (ps->readin)
5589 continue;
5590
5591 for (psym = objfile->global_psymbols.list + ps->globals_offset;
5592 psym < (objfile->global_psymbols.list + ps->globals_offset
5593 + ps->n_global_syms); psym++)
5594 {
5595 QUIT;
5596 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym),
5597 text, text_len, text0, word,
5598 wild_match, encoded);
5599 }
5600
5601 for (psym = objfile->static_psymbols.list + ps->statics_offset;
5602 psym < (objfile->static_psymbols.list + ps->statics_offset
5603 + ps->n_static_syms); psym++)
5604 {
5605 QUIT;
5606 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym),
5607 text, text_len, text0, word,
5608 wild_match, encoded);
5609 }
5610 }
5611
5612 /* At this point scan through the misc symbol vectors and add each
5613 symbol you find to the list. Eventually we want to ignore
5614 anything that isn't a text symbol (everything else will be
5615 handled by the psymtab code above). */
5616
5617 ALL_MSYMBOLS (objfile, msymbol)
5618 {
5619 QUIT;
5620 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
5621 text, text_len, text0, word, wild_match, encoded);
5622 }
5623
5624 /* Search upwards from currently selected frame (so that we can
5625 complete on local vars. */
5626
5627 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5628 {
5629 if (!BLOCK_SUPERBLOCK (b))
5630 surrounding_static_block = b; /* For elmin of dups */
5631
5632 ALL_BLOCK_SYMBOLS (b, iter, sym)
5633 {
5634 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5635 text, text_len, text0, word,
5636 wild_match, encoded);
5637 }
5638 }
5639
5640 /* Go through the symtabs and check the externs and statics for
5641 symbols which match. */
5642
5643 ALL_SYMTABS (objfile, s)
5644 {
5645 QUIT;
5646 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5647 ALL_BLOCK_SYMBOLS (b, iter, sym)
5648 {
5649 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5650 text, text_len, text0, word,
5651 wild_match, encoded);
5652 }
5653 }
5654
5655 ALL_SYMTABS (objfile, s)
5656 {
5657 QUIT;
5658 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5659 /* Don't do this block twice. */
5660 if (b == surrounding_static_block)
5661 continue;
5662 ALL_BLOCK_SYMBOLS (b, iter, sym)
5663 {
5664 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5665 text, text_len, text0, word,
5666 wild_match, encoded);
5667 }
5668 }
5669
5670 /* Append the closing NULL entry. */
5671 VEC_safe_push (char_ptr, completions, NULL);
5672
5673 /* Make a copy of the COMPLETIONS VEC before we free it, and then
5674 return the copy. It's unfortunate that we have to make a copy
5675 of an array that we're about to destroy, but there is nothing much
5676 we can do about it. Fortunately, it's typically not a very large
5677 array. */
5678 {
5679 const size_t completions_size =
5680 VEC_length (char_ptr, completions) * sizeof (char *);
5681 char **result = malloc (completions_size);
5682
5683 memcpy (result, VEC_address (char_ptr, completions), completions_size);
5684
5685 VEC_free (char_ptr, completions);
5686 return result;
5687 }
5688 }
5689
5690 /* Field Access */
5691
5692 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5693 for tagged types. */
5694
5695 static int
5696 ada_is_dispatch_table_ptr_type (struct type *type)
5697 {
5698 char *name;
5699
5700 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5701 return 0;
5702
5703 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5704 if (name == NULL)
5705 return 0;
5706
5707 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5708 }
5709
5710 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5711 to be invisible to users. */
5712
5713 int
5714 ada_is_ignored_field (struct type *type, int field_num)
5715 {
5716 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5717 return 1;
5718
5719 /* Check the name of that field. */
5720 {
5721 const char *name = TYPE_FIELD_NAME (type, field_num);
5722
5723 /* Anonymous field names should not be printed.
5724 brobecker/2007-02-20: I don't think this can actually happen
5725 but we don't want to print the value of annonymous fields anyway. */
5726 if (name == NULL)
5727 return 1;
5728
5729 /* A field named "_parent" is internally generated by GNAT for
5730 tagged types, and should not be printed either. */
5731 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5732 return 1;
5733 }
5734
5735 /* If this is the dispatch table of a tagged type, then ignore. */
5736 if (ada_is_tagged_type (type, 1)
5737 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5738 return 1;
5739
5740 /* Not a special field, so it should not be ignored. */
5741 return 0;
5742 }
5743
5744 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5745 pointer or reference type whose ultimate target has a tag field. */
5746
5747 int
5748 ada_is_tagged_type (struct type *type, int refok)
5749 {
5750 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5751 }
5752
5753 /* True iff TYPE represents the type of X'Tag */
5754
5755 int
5756 ada_is_tag_type (struct type *type)
5757 {
5758 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5759 return 0;
5760 else
5761 {
5762 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5763 return (name != NULL
5764 && strcmp (name, "ada__tags__dispatch_table") == 0);
5765 }
5766 }
5767
5768 /* The type of the tag on VAL. */
5769
5770 struct type *
5771 ada_tag_type (struct value *val)
5772 {
5773 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
5774 }
5775
5776 /* The value of the tag on VAL. */
5777
5778 struct value *
5779 ada_value_tag (struct value *val)
5780 {
5781 return ada_value_struct_elt (val, "_tag", 0);
5782 }
5783
5784 /* The value of the tag on the object of type TYPE whose contents are
5785 saved at VALADDR, if it is non-null, or is at memory address
5786 ADDRESS. */
5787
5788 static struct value *
5789 value_tag_from_contents_and_address (struct type *type,
5790 const gdb_byte *valaddr,
5791 CORE_ADDR address)
5792 {
5793 int tag_byte_offset, dummy1, dummy2;
5794 struct type *tag_type;
5795 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
5796 NULL, NULL, NULL))
5797 {
5798 const gdb_byte *valaddr1 = ((valaddr == NULL)
5799 ? NULL
5800 : valaddr + tag_byte_offset);
5801 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
5802
5803 return value_from_contents_and_address (tag_type, valaddr1, address1);
5804 }
5805 return NULL;
5806 }
5807
5808 static struct type *
5809 type_from_tag (struct value *tag)
5810 {
5811 const char *type_name = ada_tag_name (tag);
5812 if (type_name != NULL)
5813 return ada_find_any_type (ada_encode (type_name));
5814 return NULL;
5815 }
5816
5817 struct tag_args
5818 {
5819 struct value *tag;
5820 char *name;
5821 };
5822
5823
5824 static int ada_tag_name_1 (void *);
5825 static int ada_tag_name_2 (struct tag_args *);
5826
5827 /* Wrapper function used by ada_tag_name. Given a struct tag_args*
5828 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5829 The value stored in ARGS->name is valid until the next call to
5830 ada_tag_name_1. */
5831
5832 static int
5833 ada_tag_name_1 (void *args0)
5834 {
5835 struct tag_args *args = (struct tag_args *) args0;
5836 static char name[1024];
5837 char *p;
5838 struct value *val;
5839 args->name = NULL;
5840 val = ada_value_struct_elt (args->tag, "tsd", 1);
5841 if (val == NULL)
5842 return ada_tag_name_2 (args);
5843 val = ada_value_struct_elt (val, "expanded_name", 1);
5844 if (val == NULL)
5845 return 0;
5846 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5847 for (p = name; *p != '\0'; p += 1)
5848 if (isalpha (*p))
5849 *p = tolower (*p);
5850 args->name = name;
5851 return 0;
5852 }
5853
5854 /* Utility function for ada_tag_name_1 that tries the second
5855 representation for the dispatch table (in which there is no
5856 explicit 'tsd' field in the referent of the tag pointer, and instead
5857 the tsd pointer is stored just before the dispatch table. */
5858
5859 static int
5860 ada_tag_name_2 (struct tag_args *args)
5861 {
5862 struct type *info_type;
5863 static char name[1024];
5864 char *p;
5865 struct value *val, *valp;
5866
5867 args->name = NULL;
5868 info_type = ada_find_any_type ("ada__tags__type_specific_data");
5869 if (info_type == NULL)
5870 return 0;
5871 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5872 valp = value_cast (info_type, args->tag);
5873 if (valp == NULL)
5874 return 0;
5875 val = value_ind (value_add (valp, value_from_longest (builtin_type_int, -1)));
5876 if (val == NULL)
5877 return 0;
5878 val = ada_value_struct_elt (val, "expanded_name", 1);
5879 if (val == NULL)
5880 return 0;
5881 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5882 for (p = name; *p != '\0'; p += 1)
5883 if (isalpha (*p))
5884 *p = tolower (*p);
5885 args->name = name;
5886 return 0;
5887 }
5888
5889 /* The type name of the dynamic type denoted by the 'tag value TAG, as
5890 * a C string. */
5891
5892 const char *
5893 ada_tag_name (struct value *tag)
5894 {
5895 struct tag_args args;
5896 if (!ada_is_tag_type (value_type (tag)))
5897 return NULL;
5898 args.tag = tag;
5899 args.name = NULL;
5900 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5901 return args.name;
5902 }
5903
5904 /* The parent type of TYPE, or NULL if none. */
5905
5906 struct type *
5907 ada_parent_type (struct type *type)
5908 {
5909 int i;
5910
5911 type = ada_check_typedef (type);
5912
5913 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5914 return NULL;
5915
5916 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5917 if (ada_is_parent_field (type, i))
5918 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5919
5920 return NULL;
5921 }
5922
5923 /* True iff field number FIELD_NUM of structure type TYPE contains the
5924 parent-type (inherited) fields of a derived type. Assumes TYPE is
5925 a structure type with at least FIELD_NUM+1 fields. */
5926
5927 int
5928 ada_is_parent_field (struct type *type, int field_num)
5929 {
5930 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5931 return (name != NULL
5932 && (strncmp (name, "PARENT", 6) == 0
5933 || strncmp (name, "_parent", 7) == 0));
5934 }
5935
5936 /* True iff field number FIELD_NUM of structure type TYPE is a
5937 transparent wrapper field (which should be silently traversed when doing
5938 field selection and flattened when printing). Assumes TYPE is a
5939 structure type with at least FIELD_NUM+1 fields. Such fields are always
5940 structures. */
5941
5942 int
5943 ada_is_wrapper_field (struct type *type, int field_num)
5944 {
5945 const char *name = TYPE_FIELD_NAME (type, field_num);
5946 return (name != NULL
5947 && (strncmp (name, "PARENT", 6) == 0
5948 || strcmp (name, "REP") == 0
5949 || strncmp (name, "_parent", 7) == 0
5950 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
5951 }
5952
5953 /* True iff field number FIELD_NUM of structure or union type TYPE
5954 is a variant wrapper. Assumes TYPE is a structure type with at least
5955 FIELD_NUM+1 fields. */
5956
5957 int
5958 ada_is_variant_part (struct type *type, int field_num)
5959 {
5960 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5961 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
5962 || (is_dynamic_field (type, field_num)
5963 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5964 == TYPE_CODE_UNION)));
5965 }
5966
5967 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
5968 whose discriminants are contained in the record type OUTER_TYPE,
5969 returns the type of the controlling discriminant for the variant. */
5970
5971 struct type *
5972 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
5973 {
5974 char *name = ada_variant_discrim_name (var_type);
5975 struct type *type =
5976 ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
5977 if (type == NULL)
5978 return builtin_type_int;
5979 else
5980 return type;
5981 }
5982
5983 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
5984 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
5985 represents a 'when others' clause; otherwise 0. */
5986
5987 int
5988 ada_is_others_clause (struct type *type, int field_num)
5989 {
5990 const char *name = TYPE_FIELD_NAME (type, field_num);
5991 return (name != NULL && name[0] == 'O');
5992 }
5993
5994 /* Assuming that TYPE0 is the type of the variant part of a record,
5995 returns the name of the discriminant controlling the variant.
5996 The value is valid until the next call to ada_variant_discrim_name. */
5997
5998 char *
5999 ada_variant_discrim_name (struct type *type0)
6000 {
6001 static char *result = NULL;
6002 static size_t result_len = 0;
6003 struct type *type;
6004 const char *name;
6005 const char *discrim_end;
6006 const char *discrim_start;
6007
6008 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6009 type = TYPE_TARGET_TYPE (type0);
6010 else
6011 type = type0;
6012
6013 name = ada_type_name (type);
6014
6015 if (name == NULL || name[0] == '\000')
6016 return "";
6017
6018 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6019 discrim_end -= 1)
6020 {
6021 if (strncmp (discrim_end, "___XVN", 6) == 0)
6022 break;
6023 }
6024 if (discrim_end == name)
6025 return "";
6026
6027 for (discrim_start = discrim_end; discrim_start != name + 3;
6028 discrim_start -= 1)
6029 {
6030 if (discrim_start == name + 1)
6031 return "";
6032 if ((discrim_start > name + 3
6033 && strncmp (discrim_start - 3, "___", 3) == 0)
6034 || discrim_start[-1] == '.')
6035 break;
6036 }
6037
6038 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6039 strncpy (result, discrim_start, discrim_end - discrim_start);
6040 result[discrim_end - discrim_start] = '\0';
6041 return result;
6042 }
6043
6044 /* Scan STR for a subtype-encoded number, beginning at position K.
6045 Put the position of the character just past the number scanned in
6046 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6047 Return 1 if there was a valid number at the given position, and 0
6048 otherwise. A "subtype-encoded" number consists of the absolute value
6049 in decimal, followed by the letter 'm' to indicate a negative number.
6050 Assumes 0m does not occur. */
6051
6052 int
6053 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6054 {
6055 ULONGEST RU;
6056
6057 if (!isdigit (str[k]))
6058 return 0;
6059
6060 /* Do it the hard way so as not to make any assumption about
6061 the relationship of unsigned long (%lu scan format code) and
6062 LONGEST. */
6063 RU = 0;
6064 while (isdigit (str[k]))
6065 {
6066 RU = RU * 10 + (str[k] - '0');
6067 k += 1;
6068 }
6069
6070 if (str[k] == 'm')
6071 {
6072 if (R != NULL)
6073 *R = (-(LONGEST) (RU - 1)) - 1;
6074 k += 1;
6075 }
6076 else if (R != NULL)
6077 *R = (LONGEST) RU;
6078
6079 /* NOTE on the above: Technically, C does not say what the results of
6080 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6081 number representable as a LONGEST (although either would probably work
6082 in most implementations). When RU>0, the locution in the then branch
6083 above is always equivalent to the negative of RU. */
6084
6085 if (new_k != NULL)
6086 *new_k = k;
6087 return 1;
6088 }
6089
6090 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6091 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6092 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6093
6094 int
6095 ada_in_variant (LONGEST val, struct type *type, int field_num)
6096 {
6097 const char *name = TYPE_FIELD_NAME (type, field_num);
6098 int p;
6099
6100 p = 0;
6101 while (1)
6102 {
6103 switch (name[p])
6104 {
6105 case '\0':
6106 return 0;
6107 case 'S':
6108 {
6109 LONGEST W;
6110 if (!ada_scan_number (name, p + 1, &W, &p))
6111 return 0;
6112 if (val == W)
6113 return 1;
6114 break;
6115 }
6116 case 'R':
6117 {
6118 LONGEST L, U;
6119 if (!ada_scan_number (name, p + 1, &L, &p)
6120 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6121 return 0;
6122 if (val >= L && val <= U)
6123 return 1;
6124 break;
6125 }
6126 case 'O':
6127 return 1;
6128 default:
6129 return 0;
6130 }
6131 }
6132 }
6133
6134 /* FIXME: Lots of redundancy below. Try to consolidate. */
6135
6136 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6137 ARG_TYPE, extract and return the value of one of its (non-static)
6138 fields. FIELDNO says which field. Differs from value_primitive_field
6139 only in that it can handle packed values of arbitrary type. */
6140
6141 static struct value *
6142 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6143 struct type *arg_type)
6144 {
6145 struct type *type;
6146
6147 arg_type = ada_check_typedef (arg_type);
6148 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6149
6150 /* Handle packed fields. */
6151
6152 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6153 {
6154 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6155 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6156
6157 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
6158 offset + bit_pos / 8,
6159 bit_pos % 8, bit_size, type);
6160 }
6161 else
6162 return value_primitive_field (arg1, offset, fieldno, arg_type);
6163 }
6164
6165 /* Find field with name NAME in object of type TYPE. If found,
6166 set the following for each argument that is non-null:
6167 - *FIELD_TYPE_P to the field's type;
6168 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6169 an object of that type;
6170 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6171 - *BIT_SIZE_P to its size in bits if the field is packed, and
6172 0 otherwise;
6173 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6174 fields up to but not including the desired field, or by the total
6175 number of fields if not found. A NULL value of NAME never
6176 matches; the function just counts visible fields in this case.
6177
6178 Returns 1 if found, 0 otherwise. */
6179
6180 static int
6181 find_struct_field (char *name, struct type *type, int offset,
6182 struct type **field_type_p,
6183 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6184 int *index_p)
6185 {
6186 int i;
6187
6188 type = ada_check_typedef (type);
6189
6190 if (field_type_p != NULL)
6191 *field_type_p = NULL;
6192 if (byte_offset_p != NULL)
6193 *byte_offset_p = 0;
6194 if (bit_offset_p != NULL)
6195 *bit_offset_p = 0;
6196 if (bit_size_p != NULL)
6197 *bit_size_p = 0;
6198
6199 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6200 {
6201 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6202 int fld_offset = offset + bit_pos / 8;
6203 char *t_field_name = TYPE_FIELD_NAME (type, i);
6204
6205 if (t_field_name == NULL)
6206 continue;
6207
6208 else if (name != NULL && field_name_match (t_field_name, name))
6209 {
6210 int bit_size = TYPE_FIELD_BITSIZE (type, i);
6211 if (field_type_p != NULL)
6212 *field_type_p = TYPE_FIELD_TYPE (type, i);
6213 if (byte_offset_p != NULL)
6214 *byte_offset_p = fld_offset;
6215 if (bit_offset_p != NULL)
6216 *bit_offset_p = bit_pos % 8;
6217 if (bit_size_p != NULL)
6218 *bit_size_p = bit_size;
6219 return 1;
6220 }
6221 else if (ada_is_wrapper_field (type, i))
6222 {
6223 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6224 field_type_p, byte_offset_p, bit_offset_p,
6225 bit_size_p, index_p))
6226 return 1;
6227 }
6228 else if (ada_is_variant_part (type, i))
6229 {
6230 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6231 fixed type?? */
6232 int j;
6233 struct type *field_type
6234 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6235
6236 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6237 {
6238 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6239 fld_offset
6240 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6241 field_type_p, byte_offset_p,
6242 bit_offset_p, bit_size_p, index_p))
6243 return 1;
6244 }
6245 }
6246 else if (index_p != NULL)
6247 *index_p += 1;
6248 }
6249 return 0;
6250 }
6251
6252 /* Number of user-visible fields in record type TYPE. */
6253
6254 static int
6255 num_visible_fields (struct type *type)
6256 {
6257 int n;
6258 n = 0;
6259 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6260 return n;
6261 }
6262
6263 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
6264 and search in it assuming it has (class) type TYPE.
6265 If found, return value, else return NULL.
6266
6267 Searches recursively through wrapper fields (e.g., '_parent'). */
6268
6269 static struct value *
6270 ada_search_struct_field (char *name, struct value *arg, int offset,
6271 struct type *type)
6272 {
6273 int i;
6274 type = ada_check_typedef (type);
6275
6276 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6277 {
6278 char *t_field_name = TYPE_FIELD_NAME (type, i);
6279
6280 if (t_field_name == NULL)
6281 continue;
6282
6283 else if (field_name_match (t_field_name, name))
6284 return ada_value_primitive_field (arg, offset, i, type);
6285
6286 else if (ada_is_wrapper_field (type, i))
6287 {
6288 struct value *v = /* Do not let indent join lines here. */
6289 ada_search_struct_field (name, arg,
6290 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6291 TYPE_FIELD_TYPE (type, i));
6292 if (v != NULL)
6293 return v;
6294 }
6295
6296 else if (ada_is_variant_part (type, i))
6297 {
6298 /* PNH: Do we ever get here? See find_struct_field. */
6299 int j;
6300 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6301 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6302
6303 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6304 {
6305 struct value *v = ada_search_struct_field /* Force line break. */
6306 (name, arg,
6307 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6308 TYPE_FIELD_TYPE (field_type, j));
6309 if (v != NULL)
6310 return v;
6311 }
6312 }
6313 }
6314 return NULL;
6315 }
6316
6317 static struct value *ada_index_struct_field_1 (int *, struct value *,
6318 int, struct type *);
6319
6320
6321 /* Return field #INDEX in ARG, where the index is that returned by
6322 * find_struct_field through its INDEX_P argument. Adjust the address
6323 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6324 * If found, return value, else return NULL. */
6325
6326 static struct value *
6327 ada_index_struct_field (int index, struct value *arg, int offset,
6328 struct type *type)
6329 {
6330 return ada_index_struct_field_1 (&index, arg, offset, type);
6331 }
6332
6333
6334 /* Auxiliary function for ada_index_struct_field. Like
6335 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6336 * *INDEX_P. */
6337
6338 static struct value *
6339 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6340 struct type *type)
6341 {
6342 int i;
6343 type = ada_check_typedef (type);
6344
6345 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6346 {
6347 if (TYPE_FIELD_NAME (type, i) == NULL)
6348 continue;
6349 else if (ada_is_wrapper_field (type, i))
6350 {
6351 struct value *v = /* Do not let indent join lines here. */
6352 ada_index_struct_field_1 (index_p, arg,
6353 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6354 TYPE_FIELD_TYPE (type, i));
6355 if (v != NULL)
6356 return v;
6357 }
6358
6359 else if (ada_is_variant_part (type, i))
6360 {
6361 /* PNH: Do we ever get here? See ada_search_struct_field,
6362 find_struct_field. */
6363 error (_("Cannot assign this kind of variant record"));
6364 }
6365 else if (*index_p == 0)
6366 return ada_value_primitive_field (arg, offset, i, type);
6367 else
6368 *index_p -= 1;
6369 }
6370 return NULL;
6371 }
6372
6373 /* Given ARG, a value of type (pointer or reference to a)*
6374 structure/union, extract the component named NAME from the ultimate
6375 target structure/union and return it as a value with its
6376 appropriate type. If ARG is a pointer or reference and the field
6377 is not packed, returns a reference to the field, otherwise the
6378 value of the field (an lvalue if ARG is an lvalue).
6379
6380 The routine searches for NAME among all members of the structure itself
6381 and (recursively) among all members of any wrapper members
6382 (e.g., '_parent').
6383
6384 If NO_ERR, then simply return NULL in case of error, rather than
6385 calling error. */
6386
6387 struct value *
6388 ada_value_struct_elt (struct value *arg, char *name, int no_err)
6389 {
6390 struct type *t, *t1;
6391 struct value *v;
6392
6393 v = NULL;
6394 t1 = t = ada_check_typedef (value_type (arg));
6395 if (TYPE_CODE (t) == TYPE_CODE_REF)
6396 {
6397 t1 = TYPE_TARGET_TYPE (t);
6398 if (t1 == NULL)
6399 goto BadValue;
6400 t1 = ada_check_typedef (t1);
6401 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6402 {
6403 arg = coerce_ref (arg);
6404 t = t1;
6405 }
6406 }
6407
6408 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6409 {
6410 t1 = TYPE_TARGET_TYPE (t);
6411 if (t1 == NULL)
6412 goto BadValue;
6413 t1 = ada_check_typedef (t1);
6414 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6415 {
6416 arg = value_ind (arg);
6417 t = t1;
6418 }
6419 else
6420 break;
6421 }
6422
6423 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
6424 goto BadValue;
6425
6426 if (t1 == t)
6427 v = ada_search_struct_field (name, arg, 0, t);
6428 else
6429 {
6430 int bit_offset, bit_size, byte_offset;
6431 struct type *field_type;
6432 CORE_ADDR address;
6433
6434 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6435 address = value_as_address (arg);
6436 else
6437 address = unpack_pointer (t, value_contents (arg));
6438
6439 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
6440 if (find_struct_field (name, t1, 0,
6441 &field_type, &byte_offset, &bit_offset,
6442 &bit_size, NULL))
6443 {
6444 if (bit_size != 0)
6445 {
6446 if (TYPE_CODE (t) == TYPE_CODE_REF)
6447 arg = ada_coerce_ref (arg);
6448 else
6449 arg = ada_value_ind (arg);
6450 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6451 bit_offset, bit_size,
6452 field_type);
6453 }
6454 else
6455 v = value_from_pointer (lookup_reference_type (field_type),
6456 address + byte_offset);
6457 }
6458 }
6459
6460 if (v != NULL || no_err)
6461 return v;
6462 else
6463 error (_("There is no member named %s."), name);
6464
6465 BadValue:
6466 if (no_err)
6467 return NULL;
6468 else
6469 error (_("Attempt to extract a component of a value that is not a record."));
6470 }
6471
6472 /* Given a type TYPE, look up the type of the component of type named NAME.
6473 If DISPP is non-null, add its byte displacement from the beginning of a
6474 structure (pointed to by a value) of type TYPE to *DISPP (does not
6475 work for packed fields).
6476
6477 Matches any field whose name has NAME as a prefix, possibly
6478 followed by "___".
6479
6480 TYPE can be either a struct or union. If REFOK, TYPE may also
6481 be a (pointer or reference)+ to a struct or union, and the
6482 ultimate target type will be searched.
6483
6484 Looks recursively into variant clauses and parent types.
6485
6486 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6487 TYPE is not a type of the right kind. */
6488
6489 static struct type *
6490 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6491 int noerr, int *dispp)
6492 {
6493 int i;
6494
6495 if (name == NULL)
6496 goto BadName;
6497
6498 if (refok && type != NULL)
6499 while (1)
6500 {
6501 type = ada_check_typedef (type);
6502 if (TYPE_CODE (type) != TYPE_CODE_PTR
6503 && TYPE_CODE (type) != TYPE_CODE_REF)
6504 break;
6505 type = TYPE_TARGET_TYPE (type);
6506 }
6507
6508 if (type == NULL
6509 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6510 && TYPE_CODE (type) != TYPE_CODE_UNION))
6511 {
6512 if (noerr)
6513 return NULL;
6514 else
6515 {
6516 target_terminal_ours ();
6517 gdb_flush (gdb_stdout);
6518 if (type == NULL)
6519 error (_("Type (null) is not a structure or union type"));
6520 else
6521 {
6522 /* XXX: type_sprint */
6523 fprintf_unfiltered (gdb_stderr, _("Type "));
6524 type_print (type, "", gdb_stderr, -1);
6525 error (_(" is not a structure or union type"));
6526 }
6527 }
6528 }
6529
6530 type = to_static_fixed_type (type);
6531
6532 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6533 {
6534 char *t_field_name = TYPE_FIELD_NAME (type, i);
6535 struct type *t;
6536 int disp;
6537
6538 if (t_field_name == NULL)
6539 continue;
6540
6541 else if (field_name_match (t_field_name, name))
6542 {
6543 if (dispp != NULL)
6544 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
6545 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6546 }
6547
6548 else if (ada_is_wrapper_field (type, i))
6549 {
6550 disp = 0;
6551 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6552 0, 1, &disp);
6553 if (t != NULL)
6554 {
6555 if (dispp != NULL)
6556 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6557 return t;
6558 }
6559 }
6560
6561 else if (ada_is_variant_part (type, i))
6562 {
6563 int j;
6564 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6565
6566 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6567 {
6568 disp = 0;
6569 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
6570 name, 0, 1, &disp);
6571 if (t != NULL)
6572 {
6573 if (dispp != NULL)
6574 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6575 return t;
6576 }
6577 }
6578 }
6579
6580 }
6581
6582 BadName:
6583 if (!noerr)
6584 {
6585 target_terminal_ours ();
6586 gdb_flush (gdb_stdout);
6587 if (name == NULL)
6588 {
6589 /* XXX: type_sprint */
6590 fprintf_unfiltered (gdb_stderr, _("Type "));
6591 type_print (type, "", gdb_stderr, -1);
6592 error (_(" has no component named <null>"));
6593 }
6594 else
6595 {
6596 /* XXX: type_sprint */
6597 fprintf_unfiltered (gdb_stderr, _("Type "));
6598 type_print (type, "", gdb_stderr, -1);
6599 error (_(" has no component named %s"), name);
6600 }
6601 }
6602
6603 return NULL;
6604 }
6605
6606 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6607 within a value of type OUTER_TYPE that is stored in GDB at
6608 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6609 numbering from 0) is applicable. Returns -1 if none are. */
6610
6611 int
6612 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
6613 const gdb_byte *outer_valaddr)
6614 {
6615 int others_clause;
6616 int i;
6617 char *discrim_name = ada_variant_discrim_name (var_type);
6618 struct value *outer;
6619 struct value *discrim;
6620 LONGEST discrim_val;
6621
6622 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6623 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6624 if (discrim == NULL)
6625 return -1;
6626 discrim_val = value_as_long (discrim);
6627
6628 others_clause = -1;
6629 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6630 {
6631 if (ada_is_others_clause (var_type, i))
6632 others_clause = i;
6633 else if (ada_in_variant (discrim_val, var_type, i))
6634 return i;
6635 }
6636
6637 return others_clause;
6638 }
6639 \f
6640
6641
6642 /* Dynamic-Sized Records */
6643
6644 /* Strategy: The type ostensibly attached to a value with dynamic size
6645 (i.e., a size that is not statically recorded in the debugging
6646 data) does not accurately reflect the size or layout of the value.
6647 Our strategy is to convert these values to values with accurate,
6648 conventional types that are constructed on the fly. */
6649
6650 /* There is a subtle and tricky problem here. In general, we cannot
6651 determine the size of dynamic records without its data. However,
6652 the 'struct value' data structure, which GDB uses to represent
6653 quantities in the inferior process (the target), requires the size
6654 of the type at the time of its allocation in order to reserve space
6655 for GDB's internal copy of the data. That's why the
6656 'to_fixed_xxx_type' routines take (target) addresses as parameters,
6657 rather than struct value*s.
6658
6659 However, GDB's internal history variables ($1, $2, etc.) are
6660 struct value*s containing internal copies of the data that are not, in
6661 general, the same as the data at their corresponding addresses in
6662 the target. Fortunately, the types we give to these values are all
6663 conventional, fixed-size types (as per the strategy described
6664 above), so that we don't usually have to perform the
6665 'to_fixed_xxx_type' conversions to look at their values.
6666 Unfortunately, there is one exception: if one of the internal
6667 history variables is an array whose elements are unconstrained
6668 records, then we will need to create distinct fixed types for each
6669 element selected. */
6670
6671 /* The upshot of all of this is that many routines take a (type, host
6672 address, target address) triple as arguments to represent a value.
6673 The host address, if non-null, is supposed to contain an internal
6674 copy of the relevant data; otherwise, the program is to consult the
6675 target at the target address. */
6676
6677 /* Assuming that VAL0 represents a pointer value, the result of
6678 dereferencing it. Differs from value_ind in its treatment of
6679 dynamic-sized types. */
6680
6681 struct value *
6682 ada_value_ind (struct value *val0)
6683 {
6684 struct value *val = unwrap_value (value_ind (val0));
6685 return ada_to_fixed_value (val);
6686 }
6687
6688 /* The value resulting from dereferencing any "reference to"
6689 qualifiers on VAL0. */
6690
6691 static struct value *
6692 ada_coerce_ref (struct value *val0)
6693 {
6694 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
6695 {
6696 struct value *val = val0;
6697 val = coerce_ref (val);
6698 val = unwrap_value (val);
6699 return ada_to_fixed_value (val);
6700 }
6701 else
6702 return val0;
6703 }
6704
6705 /* Return OFF rounded upward if necessary to a multiple of
6706 ALIGNMENT (a power of 2). */
6707
6708 static unsigned int
6709 align_value (unsigned int off, unsigned int alignment)
6710 {
6711 return (off + alignment - 1) & ~(alignment - 1);
6712 }
6713
6714 /* Return the bit alignment required for field #F of template type TYPE. */
6715
6716 static unsigned int
6717 field_alignment (struct type *type, int f)
6718 {
6719 const char *name = TYPE_FIELD_NAME (type, f);
6720 int len;
6721 int align_offset;
6722
6723 /* The field name should never be null, unless the debugging information
6724 is somehow malformed. In this case, we assume the field does not
6725 require any alignment. */
6726 if (name == NULL)
6727 return 1;
6728
6729 len = strlen (name);
6730
6731 if (!isdigit (name[len - 1]))
6732 return 1;
6733
6734 if (isdigit (name[len - 2]))
6735 align_offset = len - 2;
6736 else
6737 align_offset = len - 1;
6738
6739 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
6740 return TARGET_CHAR_BIT;
6741
6742 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6743 }
6744
6745 /* Find a symbol named NAME. Ignores ambiguity. */
6746
6747 struct symbol *
6748 ada_find_any_symbol (const char *name)
6749 {
6750 struct symbol *sym;
6751
6752 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6753 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6754 return sym;
6755
6756 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6757 return sym;
6758 }
6759
6760 /* Find a type named NAME. Ignores ambiguity. */
6761
6762 struct type *
6763 ada_find_any_type (const char *name)
6764 {
6765 struct symbol *sym = ada_find_any_symbol (name);
6766
6767 if (sym != NULL)
6768 return SYMBOL_TYPE (sym);
6769
6770 return NULL;
6771 }
6772
6773 /* Given NAME and an associated BLOCK, search all symbols for
6774 NAME suffixed with "___XR", which is the ``renaming'' symbol
6775 associated to NAME. Return this symbol if found, return
6776 NULL otherwise. */
6777
6778 struct symbol *
6779 ada_find_renaming_symbol (const char *name, struct block *block)
6780 {
6781 struct symbol *sym;
6782
6783 sym = find_old_style_renaming_symbol (name, block);
6784
6785 if (sym != NULL)
6786 return sym;
6787
6788 /* Not right yet. FIXME pnh 7/20/2007. */
6789 sym = ada_find_any_symbol (name);
6790 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
6791 return sym;
6792 else
6793 return NULL;
6794 }
6795
6796 static struct symbol *
6797 find_old_style_renaming_symbol (const char *name, struct block *block)
6798 {
6799 const struct symbol *function_sym = block_function (block);
6800 char *rename;
6801
6802 if (function_sym != NULL)
6803 {
6804 /* If the symbol is defined inside a function, NAME is not fully
6805 qualified. This means we need to prepend the function name
6806 as well as adding the ``___XR'' suffix to build the name of
6807 the associated renaming symbol. */
6808 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
6809 /* Function names sometimes contain suffixes used
6810 for instance to qualify nested subprograms. When building
6811 the XR type name, we need to make sure that this suffix is
6812 not included. So do not include any suffix in the function
6813 name length below. */
6814 const int function_name_len = ada_name_prefix_len (function_name);
6815 const int rename_len = function_name_len + 2 /* "__" */
6816 + strlen (name) + 6 /* "___XR\0" */ ;
6817
6818 /* Strip the suffix if necessary. */
6819 function_name[function_name_len] = '\0';
6820
6821 /* Library-level functions are a special case, as GNAT adds
6822 a ``_ada_'' prefix to the function name to avoid namespace
6823 pollution. However, the renaming symbols themselves do not
6824 have this prefix, so we need to skip this prefix if present. */
6825 if (function_name_len > 5 /* "_ada_" */
6826 && strstr (function_name, "_ada_") == function_name)
6827 function_name = function_name + 5;
6828
6829 rename = (char *) alloca (rename_len * sizeof (char));
6830 sprintf (rename, "%s__%s___XR", function_name, name);
6831 }
6832 else
6833 {
6834 const int rename_len = strlen (name) + 6;
6835 rename = (char *) alloca (rename_len * sizeof (char));
6836 sprintf (rename, "%s___XR", name);
6837 }
6838
6839 return ada_find_any_symbol (rename);
6840 }
6841
6842 /* Because of GNAT encoding conventions, several GDB symbols may match a
6843 given type name. If the type denoted by TYPE0 is to be preferred to
6844 that of TYPE1 for purposes of type printing, return non-zero;
6845 otherwise return 0. */
6846
6847 int
6848 ada_prefer_type (struct type *type0, struct type *type1)
6849 {
6850 if (type1 == NULL)
6851 return 1;
6852 else if (type0 == NULL)
6853 return 0;
6854 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6855 return 1;
6856 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6857 return 0;
6858 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6859 return 1;
6860 else if (ada_is_packed_array_type (type0))
6861 return 1;
6862 else if (ada_is_array_descriptor_type (type0)
6863 && !ada_is_array_descriptor_type (type1))
6864 return 1;
6865 else
6866 {
6867 const char *type0_name = type_name_no_tag (type0);
6868 const char *type1_name = type_name_no_tag (type1);
6869
6870 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
6871 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
6872 return 1;
6873 }
6874 return 0;
6875 }
6876
6877 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
6878 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6879
6880 char *
6881 ada_type_name (struct type *type)
6882 {
6883 if (type == NULL)
6884 return NULL;
6885 else if (TYPE_NAME (type) != NULL)
6886 return TYPE_NAME (type);
6887 else
6888 return TYPE_TAG_NAME (type);
6889 }
6890
6891 /* Find a parallel type to TYPE whose name is formed by appending
6892 SUFFIX to the name of TYPE. */
6893
6894 struct type *
6895 ada_find_parallel_type (struct type *type, const char *suffix)
6896 {
6897 static char *name;
6898 static size_t name_len = 0;
6899 int len;
6900 char *typename = ada_type_name (type);
6901
6902 if (typename == NULL)
6903 return NULL;
6904
6905 len = strlen (typename);
6906
6907 GROW_VECT (name, name_len, len + strlen (suffix) + 1);
6908
6909 strcpy (name, typename);
6910 strcpy (name + len, suffix);
6911
6912 return ada_find_any_type (name);
6913 }
6914
6915
6916 /* If TYPE is a variable-size record type, return the corresponding template
6917 type describing its fields. Otherwise, return NULL. */
6918
6919 static struct type *
6920 dynamic_template_type (struct type *type)
6921 {
6922 type = ada_check_typedef (type);
6923
6924 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
6925 || ada_type_name (type) == NULL)
6926 return NULL;
6927 else
6928 {
6929 int len = strlen (ada_type_name (type));
6930 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
6931 return type;
6932 else
6933 return ada_find_parallel_type (type, "___XVE");
6934 }
6935 }
6936
6937 /* Assuming that TEMPL_TYPE is a union or struct type, returns
6938 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
6939
6940 static int
6941 is_dynamic_field (struct type *templ_type, int field_num)
6942 {
6943 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
6944 return name != NULL
6945 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
6946 && strstr (name, "___XVL") != NULL;
6947 }
6948
6949 /* The index of the variant field of TYPE, or -1 if TYPE does not
6950 represent a variant record type. */
6951
6952 static int
6953 variant_field_index (struct type *type)
6954 {
6955 int f;
6956
6957 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6958 return -1;
6959
6960 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
6961 {
6962 if (ada_is_variant_part (type, f))
6963 return f;
6964 }
6965 return -1;
6966 }
6967
6968 /* A record type with no fields. */
6969
6970 static struct type *
6971 empty_record (struct objfile *objfile)
6972 {
6973 struct type *type = alloc_type (objfile);
6974 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6975 TYPE_NFIELDS (type) = 0;
6976 TYPE_FIELDS (type) = NULL;
6977 TYPE_NAME (type) = "<empty>";
6978 TYPE_TAG_NAME (type) = NULL;
6979 TYPE_FLAGS (type) = 0;
6980 TYPE_LENGTH (type) = 0;
6981 return type;
6982 }
6983
6984 /* An ordinary record type (with fixed-length fields) that describes
6985 the value of type TYPE at VALADDR or ADDRESS (see comments at
6986 the beginning of this section) VAL according to GNAT conventions.
6987 DVAL0 should describe the (portion of a) record that contains any
6988 necessary discriminants. It should be NULL if value_type (VAL) is
6989 an outer-level type (i.e., as opposed to a branch of a variant.) A
6990 variant field (unless unchecked) is replaced by a particular branch
6991 of the variant.
6992
6993 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
6994 length are not statically known are discarded. As a consequence,
6995 VALADDR, ADDRESS and DVAL0 are ignored.
6996
6997 NOTE: Limitations: For now, we assume that dynamic fields and
6998 variants occupy whole numbers of bytes. However, they need not be
6999 byte-aligned. */
7000
7001 struct type *
7002 ada_template_to_fixed_record_type_1 (struct type *type,
7003 const gdb_byte *valaddr,
7004 CORE_ADDR address, struct value *dval0,
7005 int keep_dynamic_fields)
7006 {
7007 struct value *mark = value_mark ();
7008 struct value *dval;
7009 struct type *rtype;
7010 int nfields, bit_len;
7011 int variant_field;
7012 long off;
7013 int fld_bit_len, bit_incr;
7014 int f;
7015
7016 /* Compute the number of fields in this record type that are going
7017 to be processed: unless keep_dynamic_fields, this includes only
7018 fields whose position and length are static will be processed. */
7019 if (keep_dynamic_fields)
7020 nfields = TYPE_NFIELDS (type);
7021 else
7022 {
7023 nfields = 0;
7024 while (nfields < TYPE_NFIELDS (type)
7025 && !ada_is_variant_part (type, nfields)
7026 && !is_dynamic_field (type, nfields))
7027 nfields++;
7028 }
7029
7030 rtype = alloc_type (TYPE_OBJFILE (type));
7031 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7032 INIT_CPLUS_SPECIFIC (rtype);
7033 TYPE_NFIELDS (rtype) = nfields;
7034 TYPE_FIELDS (rtype) = (struct field *)
7035 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7036 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7037 TYPE_NAME (rtype) = ada_type_name (type);
7038 TYPE_TAG_NAME (rtype) = NULL;
7039 TYPE_FLAGS (rtype) |= TYPE_FLAG_FIXED_INSTANCE;
7040
7041 off = 0;
7042 bit_len = 0;
7043 variant_field = -1;
7044
7045 for (f = 0; f < nfields; f += 1)
7046 {
7047 off = align_value (off, field_alignment (type, f))
7048 + TYPE_FIELD_BITPOS (type, f);
7049 TYPE_FIELD_BITPOS (rtype, f) = off;
7050 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7051
7052 if (ada_is_variant_part (type, f))
7053 {
7054 variant_field = f;
7055 fld_bit_len = bit_incr = 0;
7056 }
7057 else if (is_dynamic_field (type, f))
7058 {
7059 if (dval0 == NULL)
7060 dval = value_from_contents_and_address (rtype, valaddr, address);
7061 else
7062 dval = dval0;
7063
7064 /* Get the fixed type of the field. Note that, in this case, we
7065 do not want to get the real type out of the tag: if the current
7066 field is the parent part of a tagged record, we will get the
7067 tag of the object. Clearly wrong: the real type of the parent
7068 is not the real type of the child. We would end up in an infinite
7069 loop. */
7070 TYPE_FIELD_TYPE (rtype, f) =
7071 ada_to_fixed_type
7072 (ada_get_base_type
7073 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f))),
7074 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7075 cond_offset_target (address, off / TARGET_CHAR_BIT), dval, 0);
7076 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7077 bit_incr = fld_bit_len =
7078 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7079 }
7080 else
7081 {
7082 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
7083 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7084 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7085 bit_incr = fld_bit_len =
7086 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7087 else
7088 bit_incr = fld_bit_len =
7089 TYPE_LENGTH (TYPE_FIELD_TYPE (type, f)) * TARGET_CHAR_BIT;
7090 }
7091 if (off + fld_bit_len > bit_len)
7092 bit_len = off + fld_bit_len;
7093 off += bit_incr;
7094 TYPE_LENGTH (rtype) =
7095 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7096 }
7097
7098 /* We handle the variant part, if any, at the end because of certain
7099 odd cases in which it is re-ordered so as NOT the last field of
7100 the record. This can happen in the presence of representation
7101 clauses. */
7102 if (variant_field >= 0)
7103 {
7104 struct type *branch_type;
7105
7106 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7107
7108 if (dval0 == NULL)
7109 dval = value_from_contents_and_address (rtype, valaddr, address);
7110 else
7111 dval = dval0;
7112
7113 branch_type =
7114 to_fixed_variant_branch_type
7115 (TYPE_FIELD_TYPE (type, variant_field),
7116 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7117 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7118 if (branch_type == NULL)
7119 {
7120 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
7121 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7122 TYPE_NFIELDS (rtype) -= 1;
7123 }
7124 else
7125 {
7126 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7127 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7128 fld_bit_len =
7129 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
7130 TARGET_CHAR_BIT;
7131 if (off + fld_bit_len > bit_len)
7132 bit_len = off + fld_bit_len;
7133 TYPE_LENGTH (rtype) =
7134 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7135 }
7136 }
7137
7138 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7139 should contain the alignment of that record, which should be a strictly
7140 positive value. If null or negative, then something is wrong, most
7141 probably in the debug info. In that case, we don't round up the size
7142 of the resulting type. If this record is not part of another structure,
7143 the current RTYPE length might be good enough for our purposes. */
7144 if (TYPE_LENGTH (type) <= 0)
7145 {
7146 if (TYPE_NAME (rtype))
7147 warning (_("Invalid type size for `%s' detected: %d."),
7148 TYPE_NAME (rtype), TYPE_LENGTH (type));
7149 else
7150 warning (_("Invalid type size for <unnamed> detected: %d."),
7151 TYPE_LENGTH (type));
7152 }
7153 else
7154 {
7155 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
7156 TYPE_LENGTH (type));
7157 }
7158
7159 value_free_to_mark (mark);
7160 if (TYPE_LENGTH (rtype) > varsize_limit)
7161 error (_("record type with dynamic size is larger than varsize-limit"));
7162 return rtype;
7163 }
7164
7165 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7166 of 1. */
7167
7168 static struct type *
7169 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
7170 CORE_ADDR address, struct value *dval0)
7171 {
7172 return ada_template_to_fixed_record_type_1 (type, valaddr,
7173 address, dval0, 1);
7174 }
7175
7176 /* An ordinary record type in which ___XVL-convention fields and
7177 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7178 static approximations, containing all possible fields. Uses
7179 no runtime values. Useless for use in values, but that's OK,
7180 since the results are used only for type determinations. Works on both
7181 structs and unions. Representation note: to save space, we memorize
7182 the result of this function in the TYPE_TARGET_TYPE of the
7183 template type. */
7184
7185 static struct type *
7186 template_to_static_fixed_type (struct type *type0)
7187 {
7188 struct type *type;
7189 int nfields;
7190 int f;
7191
7192 if (TYPE_TARGET_TYPE (type0) != NULL)
7193 return TYPE_TARGET_TYPE (type0);
7194
7195 nfields = TYPE_NFIELDS (type0);
7196 type = type0;
7197
7198 for (f = 0; f < nfields; f += 1)
7199 {
7200 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
7201 struct type *new_type;
7202
7203 if (is_dynamic_field (type0, f))
7204 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
7205 else
7206 new_type = static_unwrap_type (field_type);
7207 if (type == type0 && new_type != field_type)
7208 {
7209 TYPE_TARGET_TYPE (type0) = type = alloc_type (TYPE_OBJFILE (type0));
7210 TYPE_CODE (type) = TYPE_CODE (type0);
7211 INIT_CPLUS_SPECIFIC (type);
7212 TYPE_NFIELDS (type) = nfields;
7213 TYPE_FIELDS (type) = (struct field *)
7214 TYPE_ALLOC (type, nfields * sizeof (struct field));
7215 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7216 sizeof (struct field) * nfields);
7217 TYPE_NAME (type) = ada_type_name (type0);
7218 TYPE_TAG_NAME (type) = NULL;
7219 TYPE_FLAGS (type) |= TYPE_FLAG_FIXED_INSTANCE;
7220 TYPE_LENGTH (type) = 0;
7221 }
7222 TYPE_FIELD_TYPE (type, f) = new_type;
7223 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
7224 }
7225 return type;
7226 }
7227
7228 /* Given an object of type TYPE whose contents are at VALADDR and
7229 whose address in memory is ADDRESS, returns a revision of TYPE --
7230 a non-dynamic-sized record with a variant part -- in which
7231 the variant part is replaced with the appropriate branch. Looks
7232 for discriminant values in DVAL0, which can be NULL if the record
7233 contains the necessary discriminant values. */
7234
7235 static struct type *
7236 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
7237 CORE_ADDR address, struct value *dval0)
7238 {
7239 struct value *mark = value_mark ();
7240 struct value *dval;
7241 struct type *rtype;
7242 struct type *branch_type;
7243 int nfields = TYPE_NFIELDS (type);
7244 int variant_field = variant_field_index (type);
7245
7246 if (variant_field == -1)
7247 return type;
7248
7249 if (dval0 == NULL)
7250 dval = value_from_contents_and_address (type, valaddr, address);
7251 else
7252 dval = dval0;
7253
7254 rtype = alloc_type (TYPE_OBJFILE (type));
7255 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7256 INIT_CPLUS_SPECIFIC (rtype);
7257 TYPE_NFIELDS (rtype) = nfields;
7258 TYPE_FIELDS (rtype) =
7259 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7260 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
7261 sizeof (struct field) * nfields);
7262 TYPE_NAME (rtype) = ada_type_name (type);
7263 TYPE_TAG_NAME (rtype) = NULL;
7264 TYPE_FLAGS (rtype) |= TYPE_FLAG_FIXED_INSTANCE;
7265 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7266
7267 branch_type = to_fixed_variant_branch_type
7268 (TYPE_FIELD_TYPE (type, variant_field),
7269 cond_offset_host (valaddr,
7270 TYPE_FIELD_BITPOS (type, variant_field)
7271 / TARGET_CHAR_BIT),
7272 cond_offset_target (address,
7273 TYPE_FIELD_BITPOS (type, variant_field)
7274 / TARGET_CHAR_BIT), dval);
7275 if (branch_type == NULL)
7276 {
7277 int f;
7278 for (f = variant_field + 1; f < nfields; f += 1)
7279 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7280 TYPE_NFIELDS (rtype) -= 1;
7281 }
7282 else
7283 {
7284 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7285 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7286 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7287 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7288 }
7289 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
7290
7291 value_free_to_mark (mark);
7292 return rtype;
7293 }
7294
7295 /* An ordinary record type (with fixed-length fields) that describes
7296 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7297 beginning of this section]. Any necessary discriminants' values
7298 should be in DVAL, a record value; it may be NULL if the object
7299 at ADDR itself contains any necessary discriminant values.
7300 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7301 values from the record are needed. Except in the case that DVAL,
7302 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7303 unchecked) is replaced by a particular branch of the variant.
7304
7305 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7306 is questionable and may be removed. It can arise during the
7307 processing of an unconstrained-array-of-record type where all the
7308 variant branches have exactly the same size. This is because in
7309 such cases, the compiler does not bother to use the XVS convention
7310 when encoding the record. I am currently dubious of this
7311 shortcut and suspect the compiler should be altered. FIXME. */
7312
7313 static struct type *
7314 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7315 CORE_ADDR address, struct value *dval)
7316 {
7317 struct type *templ_type;
7318
7319 if (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE)
7320 return type0;
7321
7322 templ_type = dynamic_template_type (type0);
7323
7324 if (templ_type != NULL)
7325 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7326 else if (variant_field_index (type0) >= 0)
7327 {
7328 if (dval == NULL && valaddr == NULL && address == 0)
7329 return type0;
7330 return to_record_with_fixed_variant_part (type0, valaddr, address,
7331 dval);
7332 }
7333 else
7334 {
7335 TYPE_FLAGS (type0) |= TYPE_FLAG_FIXED_INSTANCE;
7336 return type0;
7337 }
7338
7339 }
7340
7341 /* An ordinary record type (with fixed-length fields) that describes
7342 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7343 union type. Any necessary discriminants' values should be in DVAL,
7344 a record value. That is, this routine selects the appropriate
7345 branch of the union at ADDR according to the discriminant value
7346 indicated in the union's type name. */
7347
7348 static struct type *
7349 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7350 CORE_ADDR address, struct value *dval)
7351 {
7352 int which;
7353 struct type *templ_type;
7354 struct type *var_type;
7355
7356 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7357 var_type = TYPE_TARGET_TYPE (var_type0);
7358 else
7359 var_type = var_type0;
7360
7361 templ_type = ada_find_parallel_type (var_type, "___XVU");
7362
7363 if (templ_type != NULL)
7364 var_type = templ_type;
7365
7366 which =
7367 ada_which_variant_applies (var_type,
7368 value_type (dval), value_contents (dval));
7369
7370 if (which < 0)
7371 return empty_record (TYPE_OBJFILE (var_type));
7372 else if (is_dynamic_field (var_type, which))
7373 return to_fixed_record_type
7374 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7375 valaddr, address, dval);
7376 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
7377 return
7378 to_fixed_record_type
7379 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
7380 else
7381 return TYPE_FIELD_TYPE (var_type, which);
7382 }
7383
7384 /* Assuming that TYPE0 is an array type describing the type of a value
7385 at ADDR, and that DVAL describes a record containing any
7386 discriminants used in TYPE0, returns a type for the value that
7387 contains no dynamic components (that is, no components whose sizes
7388 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7389 true, gives an error message if the resulting type's size is over
7390 varsize_limit. */
7391
7392 static struct type *
7393 to_fixed_array_type (struct type *type0, struct value *dval,
7394 int ignore_too_big)
7395 {
7396 struct type *index_type_desc;
7397 struct type *result;
7398
7399 if (ada_is_packed_array_type (type0) /* revisit? */
7400 || (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE))
7401 return type0;
7402
7403 index_type_desc = ada_find_parallel_type (type0, "___XA");
7404 if (index_type_desc == NULL)
7405 {
7406 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
7407 /* NOTE: elt_type---the fixed version of elt_type0---should never
7408 depend on the contents of the array in properly constructed
7409 debugging data. */
7410 /* Create a fixed version of the array element type.
7411 We're not providing the address of an element here,
7412 and thus the actual object value cannot be inspected to do
7413 the conversion. This should not be a problem, since arrays of
7414 unconstrained objects are not allowed. In particular, all
7415 the elements of an array of a tagged type should all be of
7416 the same type specified in the debugging info. No need to
7417 consult the object tag. */
7418 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
7419
7420 if (elt_type0 == elt_type)
7421 result = type0;
7422 else
7423 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
7424 elt_type, TYPE_INDEX_TYPE (type0));
7425 }
7426 else
7427 {
7428 int i;
7429 struct type *elt_type0;
7430
7431 elt_type0 = type0;
7432 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
7433 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7434
7435 /* NOTE: result---the fixed version of elt_type0---should never
7436 depend on the contents of the array in properly constructed
7437 debugging data. */
7438 /* Create a fixed version of the array element type.
7439 We're not providing the address of an element here,
7440 and thus the actual object value cannot be inspected to do
7441 the conversion. This should not be a problem, since arrays of
7442 unconstrained objects are not allowed. In particular, all
7443 the elements of an array of a tagged type should all be of
7444 the same type specified in the debugging info. No need to
7445 consult the object tag. */
7446 result =
7447 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
7448 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
7449 {
7450 struct type *range_type =
7451 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, i),
7452 dval, TYPE_OBJFILE (type0));
7453 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
7454 result, range_type);
7455 }
7456 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
7457 error (_("array type with dynamic size is larger than varsize-limit"));
7458 }
7459
7460 TYPE_FLAGS (result) |= TYPE_FLAG_FIXED_INSTANCE;
7461 return result;
7462 }
7463
7464
7465 /* A standard type (containing no dynamically sized components)
7466 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7467 DVAL describes a record containing any discriminants used in TYPE0,
7468 and may be NULL if there are none, or if the object of type TYPE at
7469 ADDRESS or in VALADDR contains these discriminants.
7470
7471 If CHECK_TAG is not null, in the case of tagged types, this function
7472 attempts to locate the object's tag and use it to compute the actual
7473 type. However, when ADDRESS is null, we cannot use it to determine the
7474 location of the tag, and therefore compute the tagged type's actual type.
7475 So we return the tagged type without consulting the tag. */
7476
7477 static struct type *
7478 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
7479 CORE_ADDR address, struct value *dval, int check_tag)
7480 {
7481 type = ada_check_typedef (type);
7482 switch (TYPE_CODE (type))
7483 {
7484 default:
7485 return type;
7486 case TYPE_CODE_STRUCT:
7487 {
7488 struct type *static_type = to_static_fixed_type (type);
7489 struct type *fixed_record_type =
7490 to_fixed_record_type (type, valaddr, address, NULL);
7491 /* If STATIC_TYPE is a tagged type and we know the object's address,
7492 then we can determine its tag, and compute the object's actual
7493 type from there. Note that we have to use the fixed record
7494 type (the parent part of the record may have dynamic fields
7495 and the way the location of _tag is expressed may depend on
7496 them). */
7497
7498 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
7499 {
7500 struct type *real_type =
7501 type_from_tag (value_tag_from_contents_and_address
7502 (fixed_record_type,
7503 valaddr,
7504 address));
7505 if (real_type != NULL)
7506 return to_fixed_record_type (real_type, valaddr, address, NULL);
7507 }
7508 return fixed_record_type;
7509 }
7510 case TYPE_CODE_ARRAY:
7511 return to_fixed_array_type (type, dval, 1);
7512 case TYPE_CODE_UNION:
7513 if (dval == NULL)
7514 return type;
7515 else
7516 return to_fixed_variant_branch_type (type, valaddr, address, dval);
7517 }
7518 }
7519
7520 /* The same as ada_to_fixed_type_1, except that it preserves the type
7521 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
7522 ada_to_fixed_type_1 would return the type referenced by TYPE. */
7523
7524 struct type *
7525 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
7526 CORE_ADDR address, struct value *dval, int check_tag)
7527
7528 {
7529 struct type *fixed_type =
7530 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
7531
7532 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
7533 && TYPE_TARGET_TYPE (type) == fixed_type)
7534 return type;
7535
7536 return fixed_type;
7537 }
7538
7539 /* A standard (static-sized) type corresponding as well as possible to
7540 TYPE0, but based on no runtime data. */
7541
7542 static struct type *
7543 to_static_fixed_type (struct type *type0)
7544 {
7545 struct type *type;
7546
7547 if (type0 == NULL)
7548 return NULL;
7549
7550 if (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE)
7551 return type0;
7552
7553 type0 = ada_check_typedef (type0);
7554
7555 switch (TYPE_CODE (type0))
7556 {
7557 default:
7558 return type0;
7559 case TYPE_CODE_STRUCT:
7560 type = dynamic_template_type (type0);
7561 if (type != NULL)
7562 return template_to_static_fixed_type (type);
7563 else
7564 return template_to_static_fixed_type (type0);
7565 case TYPE_CODE_UNION:
7566 type = ada_find_parallel_type (type0, "___XVU");
7567 if (type != NULL)
7568 return template_to_static_fixed_type (type);
7569 else
7570 return template_to_static_fixed_type (type0);
7571 }
7572 }
7573
7574 /* A static approximation of TYPE with all type wrappers removed. */
7575
7576 static struct type *
7577 static_unwrap_type (struct type *type)
7578 {
7579 if (ada_is_aligner_type (type))
7580 {
7581 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
7582 if (ada_type_name (type1) == NULL)
7583 TYPE_NAME (type1) = ada_type_name (type);
7584
7585 return static_unwrap_type (type1);
7586 }
7587 else
7588 {
7589 struct type *raw_real_type = ada_get_base_type (type);
7590 if (raw_real_type == type)
7591 return type;
7592 else
7593 return to_static_fixed_type (raw_real_type);
7594 }
7595 }
7596
7597 /* In some cases, incomplete and private types require
7598 cross-references that are not resolved as records (for example,
7599 type Foo;
7600 type FooP is access Foo;
7601 V: FooP;
7602 type Foo is array ...;
7603 ). In these cases, since there is no mechanism for producing
7604 cross-references to such types, we instead substitute for FooP a
7605 stub enumeration type that is nowhere resolved, and whose tag is
7606 the name of the actual type. Call these types "non-record stubs". */
7607
7608 /* A type equivalent to TYPE that is not a non-record stub, if one
7609 exists, otherwise TYPE. */
7610
7611 struct type *
7612 ada_check_typedef (struct type *type)
7613 {
7614 if (type == NULL)
7615 return NULL;
7616
7617 CHECK_TYPEDEF (type);
7618 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
7619 || !TYPE_STUB (type)
7620 || TYPE_TAG_NAME (type) == NULL)
7621 return type;
7622 else
7623 {
7624 char *name = TYPE_TAG_NAME (type);
7625 struct type *type1 = ada_find_any_type (name);
7626 return (type1 == NULL) ? type : type1;
7627 }
7628 }
7629
7630 /* A value representing the data at VALADDR/ADDRESS as described by
7631 type TYPE0, but with a standard (static-sized) type that correctly
7632 describes it. If VAL0 is not NULL and TYPE0 already is a standard
7633 type, then return VAL0 [this feature is simply to avoid redundant
7634 creation of struct values]. */
7635
7636 static struct value *
7637 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
7638 struct value *val0)
7639 {
7640 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
7641 if (type == type0 && val0 != NULL)
7642 return val0;
7643 else
7644 return value_from_contents_and_address (type, 0, address);
7645 }
7646
7647 /* A value representing VAL, but with a standard (static-sized) type
7648 that correctly describes it. Does not necessarily create a new
7649 value. */
7650
7651 static struct value *
7652 ada_to_fixed_value (struct value *val)
7653 {
7654 return ada_to_fixed_value_create (value_type (val),
7655 VALUE_ADDRESS (val) + value_offset (val),
7656 val);
7657 }
7658
7659 /* A value representing VAL, but with a standard (static-sized) type
7660 chosen to approximate the real type of VAL as well as possible, but
7661 without consulting any runtime values. For Ada dynamic-sized
7662 types, therefore, the type of the result is likely to be inaccurate. */
7663
7664 struct value *
7665 ada_to_static_fixed_value (struct value *val)
7666 {
7667 struct type *type =
7668 to_static_fixed_type (static_unwrap_type (value_type (val)));
7669 if (type == value_type (val))
7670 return val;
7671 else
7672 return coerce_unspec_val_to_type (val, type);
7673 }
7674 \f
7675
7676 /* Attributes */
7677
7678 /* Table mapping attribute numbers to names.
7679 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
7680
7681 static const char *attribute_names[] = {
7682 "<?>",
7683
7684 "first",
7685 "last",
7686 "length",
7687 "image",
7688 "max",
7689 "min",
7690 "modulus",
7691 "pos",
7692 "size",
7693 "tag",
7694 "val",
7695 0
7696 };
7697
7698 const char *
7699 ada_attribute_name (enum exp_opcode n)
7700 {
7701 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7702 return attribute_names[n - OP_ATR_FIRST + 1];
7703 else
7704 return attribute_names[0];
7705 }
7706
7707 /* Evaluate the 'POS attribute applied to ARG. */
7708
7709 static LONGEST
7710 pos_atr (struct value *arg)
7711 {
7712 struct type *type = value_type (arg);
7713
7714 if (!discrete_type_p (type))
7715 error (_("'POS only defined on discrete types"));
7716
7717 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7718 {
7719 int i;
7720 LONGEST v = value_as_long (arg);
7721
7722 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7723 {
7724 if (v == TYPE_FIELD_BITPOS (type, i))
7725 return i;
7726 }
7727 error (_("enumeration value is invalid: can't find 'POS"));
7728 }
7729 else
7730 return value_as_long (arg);
7731 }
7732
7733 static struct value *
7734 value_pos_atr (struct value *arg)
7735 {
7736 return value_from_longest (builtin_type_int, pos_atr (arg));
7737 }
7738
7739 /* Evaluate the TYPE'VAL attribute applied to ARG. */
7740
7741 static struct value *
7742 value_val_atr (struct type *type, struct value *arg)
7743 {
7744 if (!discrete_type_p (type))
7745 error (_("'VAL only defined on discrete types"));
7746 if (!integer_type_p (value_type (arg)))
7747 error (_("'VAL requires integral argument"));
7748
7749 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7750 {
7751 long pos = value_as_long (arg);
7752 if (pos < 0 || pos >= TYPE_NFIELDS (type))
7753 error (_("argument to 'VAL out of range"));
7754 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
7755 }
7756 else
7757 return value_from_longest (type, value_as_long (arg));
7758 }
7759 \f
7760
7761 /* Evaluation */
7762
7763 /* True if TYPE appears to be an Ada character type.
7764 [At the moment, this is true only for Character and Wide_Character;
7765 It is a heuristic test that could stand improvement]. */
7766
7767 int
7768 ada_is_character_type (struct type *type)
7769 {
7770 const char *name;
7771
7772 /* If the type code says it's a character, then assume it really is,
7773 and don't check any further. */
7774 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
7775 return 1;
7776
7777 /* Otherwise, assume it's a character type iff it is a discrete type
7778 with a known character type name. */
7779 name = ada_type_name (type);
7780 return (name != NULL
7781 && (TYPE_CODE (type) == TYPE_CODE_INT
7782 || TYPE_CODE (type) == TYPE_CODE_RANGE)
7783 && (strcmp (name, "character") == 0
7784 || strcmp (name, "wide_character") == 0
7785 || strcmp (name, "wide_wide_character") == 0
7786 || strcmp (name, "unsigned char") == 0));
7787 }
7788
7789 /* True if TYPE appears to be an Ada string type. */
7790
7791 int
7792 ada_is_string_type (struct type *type)
7793 {
7794 type = ada_check_typedef (type);
7795 if (type != NULL
7796 && TYPE_CODE (type) != TYPE_CODE_PTR
7797 && (ada_is_simple_array_type (type)
7798 || ada_is_array_descriptor_type (type))
7799 && ada_array_arity (type) == 1)
7800 {
7801 struct type *elttype = ada_array_element_type (type, 1);
7802
7803 return ada_is_character_type (elttype);
7804 }
7805 else
7806 return 0;
7807 }
7808
7809
7810 /* True if TYPE is a struct type introduced by the compiler to force the
7811 alignment of a value. Such types have a single field with a
7812 distinctive name. */
7813
7814 int
7815 ada_is_aligner_type (struct type *type)
7816 {
7817 type = ada_check_typedef (type);
7818
7819 /* If we can find a parallel XVS type, then the XVS type should
7820 be used instead of this type. And hence, this is not an aligner
7821 type. */
7822 if (ada_find_parallel_type (type, "___XVS") != NULL)
7823 return 0;
7824
7825 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
7826 && TYPE_NFIELDS (type) == 1
7827 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
7828 }
7829
7830 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
7831 the parallel type. */
7832
7833 struct type *
7834 ada_get_base_type (struct type *raw_type)
7835 {
7836 struct type *real_type_namer;
7837 struct type *raw_real_type;
7838
7839 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
7840 return raw_type;
7841
7842 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
7843 if (real_type_namer == NULL
7844 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
7845 || TYPE_NFIELDS (real_type_namer) != 1)
7846 return raw_type;
7847
7848 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
7849 if (raw_real_type == NULL)
7850 return raw_type;
7851 else
7852 return raw_real_type;
7853 }
7854
7855 /* The type of value designated by TYPE, with all aligners removed. */
7856
7857 struct type *
7858 ada_aligned_type (struct type *type)
7859 {
7860 if (ada_is_aligner_type (type))
7861 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
7862 else
7863 return ada_get_base_type (type);
7864 }
7865
7866
7867 /* The address of the aligned value in an object at address VALADDR
7868 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
7869
7870 const gdb_byte *
7871 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
7872 {
7873 if (ada_is_aligner_type (type))
7874 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
7875 valaddr +
7876 TYPE_FIELD_BITPOS (type,
7877 0) / TARGET_CHAR_BIT);
7878 else
7879 return valaddr;
7880 }
7881
7882
7883
7884 /* The printed representation of an enumeration literal with encoded
7885 name NAME. The value is good to the next call of ada_enum_name. */
7886 const char *
7887 ada_enum_name (const char *name)
7888 {
7889 static char *result;
7890 static size_t result_len = 0;
7891 char *tmp;
7892
7893 /* First, unqualify the enumeration name:
7894 1. Search for the last '.' character. If we find one, then skip
7895 all the preceeding characters, the unqualified name starts
7896 right after that dot.
7897 2. Otherwise, we may be debugging on a target where the compiler
7898 translates dots into "__". Search forward for double underscores,
7899 but stop searching when we hit an overloading suffix, which is
7900 of the form "__" followed by digits. */
7901
7902 tmp = strrchr (name, '.');
7903 if (tmp != NULL)
7904 name = tmp + 1;
7905 else
7906 {
7907 while ((tmp = strstr (name, "__")) != NULL)
7908 {
7909 if (isdigit (tmp[2]))
7910 break;
7911 else
7912 name = tmp + 2;
7913 }
7914 }
7915
7916 if (name[0] == 'Q')
7917 {
7918 int v;
7919 if (name[1] == 'U' || name[1] == 'W')
7920 {
7921 if (sscanf (name + 2, "%x", &v) != 1)
7922 return name;
7923 }
7924 else
7925 return name;
7926
7927 GROW_VECT (result, result_len, 16);
7928 if (isascii (v) && isprint (v))
7929 sprintf (result, "'%c'", v);
7930 else if (name[1] == 'U')
7931 sprintf (result, "[\"%02x\"]", v);
7932 else
7933 sprintf (result, "[\"%04x\"]", v);
7934
7935 return result;
7936 }
7937 else
7938 {
7939 tmp = strstr (name, "__");
7940 if (tmp == NULL)
7941 tmp = strstr (name, "$");
7942 if (tmp != NULL)
7943 {
7944 GROW_VECT (result, result_len, tmp - name + 1);
7945 strncpy (result, name, tmp - name);
7946 result[tmp - name] = '\0';
7947 return result;
7948 }
7949
7950 return name;
7951 }
7952 }
7953
7954 static struct value *
7955 evaluate_subexp (struct type *expect_type, struct expression *exp, int *pos,
7956 enum noside noside)
7957 {
7958 return (*exp->language_defn->la_exp_desc->evaluate_exp)
7959 (expect_type, exp, pos, noside);
7960 }
7961
7962 /* Evaluate the subexpression of EXP starting at *POS as for
7963 evaluate_type, updating *POS to point just past the evaluated
7964 expression. */
7965
7966 static struct value *
7967 evaluate_subexp_type (struct expression *exp, int *pos)
7968 {
7969 return (*exp->language_defn->la_exp_desc->evaluate_exp)
7970 (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
7971 }
7972
7973 /* If VAL is wrapped in an aligner or subtype wrapper, return the
7974 value it wraps. */
7975
7976 static struct value *
7977 unwrap_value (struct value *val)
7978 {
7979 struct type *type = ada_check_typedef (value_type (val));
7980 if (ada_is_aligner_type (type))
7981 {
7982 struct value *v = ada_value_struct_elt (val, "F", 0);
7983 struct type *val_type = ada_check_typedef (value_type (v));
7984 if (ada_type_name (val_type) == NULL)
7985 TYPE_NAME (val_type) = ada_type_name (type);
7986
7987 return unwrap_value (v);
7988 }
7989 else
7990 {
7991 struct type *raw_real_type =
7992 ada_check_typedef (ada_get_base_type (type));
7993
7994 if (type == raw_real_type)
7995 return val;
7996
7997 return
7998 coerce_unspec_val_to_type
7999 (val, ada_to_fixed_type (raw_real_type, 0,
8000 VALUE_ADDRESS (val) + value_offset (val),
8001 NULL, 1));
8002 }
8003 }
8004
8005 static struct value *
8006 cast_to_fixed (struct type *type, struct value *arg)
8007 {
8008 LONGEST val;
8009
8010 if (type == value_type (arg))
8011 return arg;
8012 else if (ada_is_fixed_point_type (value_type (arg)))
8013 val = ada_float_to_fixed (type,
8014 ada_fixed_to_float (value_type (arg),
8015 value_as_long (arg)));
8016 else
8017 {
8018 DOUBLEST argd =
8019 value_as_double (value_cast (builtin_type_double, value_copy (arg)));
8020 val = ada_float_to_fixed (type, argd);
8021 }
8022
8023 return value_from_longest (type, val);
8024 }
8025
8026 static struct value *
8027 cast_from_fixed_to_double (struct value *arg)
8028 {
8029 DOUBLEST val = ada_fixed_to_float (value_type (arg),
8030 value_as_long (arg));
8031 return value_from_double (builtin_type_double, val);
8032 }
8033
8034 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8035 return the converted value. */
8036
8037 static struct value *
8038 coerce_for_assign (struct type *type, struct value *val)
8039 {
8040 struct type *type2 = value_type (val);
8041 if (type == type2)
8042 return val;
8043
8044 type2 = ada_check_typedef (type2);
8045 type = ada_check_typedef (type);
8046
8047 if (TYPE_CODE (type2) == TYPE_CODE_PTR
8048 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8049 {
8050 val = ada_value_ind (val);
8051 type2 = value_type (val);
8052 }
8053
8054 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
8055 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8056 {
8057 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
8058 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8059 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
8060 error (_("Incompatible types in assignment"));
8061 deprecated_set_value_type (val, type);
8062 }
8063 return val;
8064 }
8065
8066 static struct value *
8067 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8068 {
8069 struct value *val;
8070 struct type *type1, *type2;
8071 LONGEST v, v1, v2;
8072
8073 arg1 = coerce_ref (arg1);
8074 arg2 = coerce_ref (arg2);
8075 type1 = base_type (ada_check_typedef (value_type (arg1)));
8076 type2 = base_type (ada_check_typedef (value_type (arg2)));
8077
8078 if (TYPE_CODE (type1) != TYPE_CODE_INT
8079 || TYPE_CODE (type2) != TYPE_CODE_INT)
8080 return value_binop (arg1, arg2, op);
8081
8082 switch (op)
8083 {
8084 case BINOP_MOD:
8085 case BINOP_DIV:
8086 case BINOP_REM:
8087 break;
8088 default:
8089 return value_binop (arg1, arg2, op);
8090 }
8091
8092 v2 = value_as_long (arg2);
8093 if (v2 == 0)
8094 error (_("second operand of %s must not be zero."), op_string (op));
8095
8096 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
8097 return value_binop (arg1, arg2, op);
8098
8099 v1 = value_as_long (arg1);
8100 switch (op)
8101 {
8102 case BINOP_DIV:
8103 v = v1 / v2;
8104 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8105 v += v > 0 ? -1 : 1;
8106 break;
8107 case BINOP_REM:
8108 v = v1 % v2;
8109 if (v * v1 < 0)
8110 v -= v2;
8111 break;
8112 default:
8113 /* Should not reach this point. */
8114 v = 0;
8115 }
8116
8117 val = allocate_value (type1);
8118 store_unsigned_integer (value_contents_raw (val),
8119 TYPE_LENGTH (value_type (val)), v);
8120 return val;
8121 }
8122
8123 static int
8124 ada_value_equal (struct value *arg1, struct value *arg2)
8125 {
8126 if (ada_is_direct_array_type (value_type (arg1))
8127 || ada_is_direct_array_type (value_type (arg2)))
8128 {
8129 /* Automatically dereference any array reference before
8130 we attempt to perform the comparison. */
8131 arg1 = ada_coerce_ref (arg1);
8132 arg2 = ada_coerce_ref (arg2);
8133
8134 arg1 = ada_coerce_to_simple_array (arg1);
8135 arg2 = ada_coerce_to_simple_array (arg2);
8136 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
8137 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
8138 error (_("Attempt to compare array with non-array"));
8139 /* FIXME: The following works only for types whose
8140 representations use all bits (no padding or undefined bits)
8141 and do not have user-defined equality. */
8142 return
8143 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
8144 && memcmp (value_contents (arg1), value_contents (arg2),
8145 TYPE_LENGTH (value_type (arg1))) == 0;
8146 }
8147 return value_equal (arg1, arg2);
8148 }
8149
8150 /* Total number of component associations in the aggregate starting at
8151 index PC in EXP. Assumes that index PC is the start of an
8152 OP_AGGREGATE. */
8153
8154 static int
8155 num_component_specs (struct expression *exp, int pc)
8156 {
8157 int n, m, i;
8158 m = exp->elts[pc + 1].longconst;
8159 pc += 3;
8160 n = 0;
8161 for (i = 0; i < m; i += 1)
8162 {
8163 switch (exp->elts[pc].opcode)
8164 {
8165 default:
8166 n += 1;
8167 break;
8168 case OP_CHOICES:
8169 n += exp->elts[pc + 1].longconst;
8170 break;
8171 }
8172 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
8173 }
8174 return n;
8175 }
8176
8177 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
8178 component of LHS (a simple array or a record), updating *POS past
8179 the expression, assuming that LHS is contained in CONTAINER. Does
8180 not modify the inferior's memory, nor does it modify LHS (unless
8181 LHS == CONTAINER). */
8182
8183 static void
8184 assign_component (struct value *container, struct value *lhs, LONGEST index,
8185 struct expression *exp, int *pos)
8186 {
8187 struct value *mark = value_mark ();
8188 struct value *elt;
8189 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8190 {
8191 struct value *index_val = value_from_longest (builtin_type_int, index);
8192 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8193 }
8194 else
8195 {
8196 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
8197 elt = ada_to_fixed_value (unwrap_value (elt));
8198 }
8199
8200 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8201 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8202 else
8203 value_assign_to_component (container, elt,
8204 ada_evaluate_subexp (NULL, exp, pos,
8205 EVAL_NORMAL));
8206
8207 value_free_to_mark (mark);
8208 }
8209
8210 /* Assuming that LHS represents an lvalue having a record or array
8211 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8212 of that aggregate's value to LHS, advancing *POS past the
8213 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8214 lvalue containing LHS (possibly LHS itself). Does not modify
8215 the inferior's memory, nor does it modify the contents of
8216 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
8217
8218 static struct value *
8219 assign_aggregate (struct value *container,
8220 struct value *lhs, struct expression *exp,
8221 int *pos, enum noside noside)
8222 {
8223 struct type *lhs_type;
8224 int n = exp->elts[*pos+1].longconst;
8225 LONGEST low_index, high_index;
8226 int num_specs;
8227 LONGEST *indices;
8228 int max_indices, num_indices;
8229 int is_array_aggregate;
8230 int i;
8231 struct value *mark = value_mark ();
8232
8233 *pos += 3;
8234 if (noside != EVAL_NORMAL)
8235 {
8236 int i;
8237 for (i = 0; i < n; i += 1)
8238 ada_evaluate_subexp (NULL, exp, pos, noside);
8239 return container;
8240 }
8241
8242 container = ada_coerce_ref (container);
8243 if (ada_is_direct_array_type (value_type (container)))
8244 container = ada_coerce_to_simple_array (container);
8245 lhs = ada_coerce_ref (lhs);
8246 if (!deprecated_value_modifiable (lhs))
8247 error (_("Left operand of assignment is not a modifiable lvalue."));
8248
8249 lhs_type = value_type (lhs);
8250 if (ada_is_direct_array_type (lhs_type))
8251 {
8252 lhs = ada_coerce_to_simple_array (lhs);
8253 lhs_type = value_type (lhs);
8254 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8255 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8256 is_array_aggregate = 1;
8257 }
8258 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8259 {
8260 low_index = 0;
8261 high_index = num_visible_fields (lhs_type) - 1;
8262 is_array_aggregate = 0;
8263 }
8264 else
8265 error (_("Left-hand side must be array or record."));
8266
8267 num_specs = num_component_specs (exp, *pos - 3);
8268 max_indices = 4 * num_specs + 4;
8269 indices = alloca (max_indices * sizeof (indices[0]));
8270 indices[0] = indices[1] = low_index - 1;
8271 indices[2] = indices[3] = high_index + 1;
8272 num_indices = 4;
8273
8274 for (i = 0; i < n; i += 1)
8275 {
8276 switch (exp->elts[*pos].opcode)
8277 {
8278 case OP_CHOICES:
8279 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8280 &num_indices, max_indices,
8281 low_index, high_index);
8282 break;
8283 case OP_POSITIONAL:
8284 aggregate_assign_positional (container, lhs, exp, pos, indices,
8285 &num_indices, max_indices,
8286 low_index, high_index);
8287 break;
8288 case OP_OTHERS:
8289 if (i != n-1)
8290 error (_("Misplaced 'others' clause"));
8291 aggregate_assign_others (container, lhs, exp, pos, indices,
8292 num_indices, low_index, high_index);
8293 break;
8294 default:
8295 error (_("Internal error: bad aggregate clause"));
8296 }
8297 }
8298
8299 return container;
8300 }
8301
8302 /* Assign into the component of LHS indexed by the OP_POSITIONAL
8303 construct at *POS, updating *POS past the construct, given that
8304 the positions are relative to lower bound LOW, where HIGH is the
8305 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8306 updating *NUM_INDICES as needed. CONTAINER is as for
8307 assign_aggregate. */
8308 static void
8309 aggregate_assign_positional (struct value *container,
8310 struct value *lhs, struct expression *exp,
8311 int *pos, LONGEST *indices, int *num_indices,
8312 int max_indices, LONGEST low, LONGEST high)
8313 {
8314 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8315
8316 if (ind - 1 == high)
8317 warning (_("Extra components in aggregate ignored."));
8318 if (ind <= high)
8319 {
8320 add_component_interval (ind, ind, indices, num_indices, max_indices);
8321 *pos += 3;
8322 assign_component (container, lhs, ind, exp, pos);
8323 }
8324 else
8325 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8326 }
8327
8328 /* Assign into the components of LHS indexed by the OP_CHOICES
8329 construct at *POS, updating *POS past the construct, given that
8330 the allowable indices are LOW..HIGH. Record the indices assigned
8331 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
8332 needed. CONTAINER is as for assign_aggregate. */
8333 static void
8334 aggregate_assign_from_choices (struct value *container,
8335 struct value *lhs, struct expression *exp,
8336 int *pos, LONGEST *indices, int *num_indices,
8337 int max_indices, LONGEST low, LONGEST high)
8338 {
8339 int j;
8340 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8341 int choice_pos, expr_pc;
8342 int is_array = ada_is_direct_array_type (value_type (lhs));
8343
8344 choice_pos = *pos += 3;
8345
8346 for (j = 0; j < n_choices; j += 1)
8347 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8348 expr_pc = *pos;
8349 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8350
8351 for (j = 0; j < n_choices; j += 1)
8352 {
8353 LONGEST lower, upper;
8354 enum exp_opcode op = exp->elts[choice_pos].opcode;
8355 if (op == OP_DISCRETE_RANGE)
8356 {
8357 choice_pos += 1;
8358 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8359 EVAL_NORMAL));
8360 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8361 EVAL_NORMAL));
8362 }
8363 else if (is_array)
8364 {
8365 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8366 EVAL_NORMAL));
8367 upper = lower;
8368 }
8369 else
8370 {
8371 int ind;
8372 char *name;
8373 switch (op)
8374 {
8375 case OP_NAME:
8376 name = &exp->elts[choice_pos + 2].string;
8377 break;
8378 case OP_VAR_VALUE:
8379 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8380 break;
8381 default:
8382 error (_("Invalid record component association."));
8383 }
8384 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8385 ind = 0;
8386 if (! find_struct_field (name, value_type (lhs), 0,
8387 NULL, NULL, NULL, NULL, &ind))
8388 error (_("Unknown component name: %s."), name);
8389 lower = upper = ind;
8390 }
8391
8392 if (lower <= upper && (lower < low || upper > high))
8393 error (_("Index in component association out of bounds."));
8394
8395 add_component_interval (lower, upper, indices, num_indices,
8396 max_indices);
8397 while (lower <= upper)
8398 {
8399 int pos1;
8400 pos1 = expr_pc;
8401 assign_component (container, lhs, lower, exp, &pos1);
8402 lower += 1;
8403 }
8404 }
8405 }
8406
8407 /* Assign the value of the expression in the OP_OTHERS construct in
8408 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8409 have not been previously assigned. The index intervals already assigned
8410 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
8411 OP_OTHERS clause. CONTAINER is as for assign_aggregate*/
8412 static void
8413 aggregate_assign_others (struct value *container,
8414 struct value *lhs, struct expression *exp,
8415 int *pos, LONGEST *indices, int num_indices,
8416 LONGEST low, LONGEST high)
8417 {
8418 int i;
8419 int expr_pc = *pos+1;
8420
8421 for (i = 0; i < num_indices - 2; i += 2)
8422 {
8423 LONGEST ind;
8424 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
8425 {
8426 int pos;
8427 pos = expr_pc;
8428 assign_component (container, lhs, ind, exp, &pos);
8429 }
8430 }
8431 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8432 }
8433
8434 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
8435 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
8436 modifying *SIZE as needed. It is an error if *SIZE exceeds
8437 MAX_SIZE. The resulting intervals do not overlap. */
8438 static void
8439 add_component_interval (LONGEST low, LONGEST high,
8440 LONGEST* indices, int *size, int max_size)
8441 {
8442 int i, j;
8443 for (i = 0; i < *size; i += 2) {
8444 if (high >= indices[i] && low <= indices[i + 1])
8445 {
8446 int kh;
8447 for (kh = i + 2; kh < *size; kh += 2)
8448 if (high < indices[kh])
8449 break;
8450 if (low < indices[i])
8451 indices[i] = low;
8452 indices[i + 1] = indices[kh - 1];
8453 if (high > indices[i + 1])
8454 indices[i + 1] = high;
8455 memcpy (indices + i + 2, indices + kh, *size - kh);
8456 *size -= kh - i - 2;
8457 return;
8458 }
8459 else if (high < indices[i])
8460 break;
8461 }
8462
8463 if (*size == max_size)
8464 error (_("Internal error: miscounted aggregate components."));
8465 *size += 2;
8466 for (j = *size-1; j >= i+2; j -= 1)
8467 indices[j] = indices[j - 2];
8468 indices[i] = low;
8469 indices[i + 1] = high;
8470 }
8471
8472 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
8473 is different. */
8474
8475 static struct value *
8476 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
8477 {
8478 if (type == ada_check_typedef (value_type (arg2)))
8479 return arg2;
8480
8481 if (ada_is_fixed_point_type (type))
8482 return (cast_to_fixed (type, arg2));
8483
8484 if (ada_is_fixed_point_type (value_type (arg2)))
8485 return value_cast (type, cast_from_fixed_to_double (arg2));
8486
8487 return value_cast (type, arg2);
8488 }
8489
8490 static struct value *
8491 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
8492 int *pos, enum noside noside)
8493 {
8494 enum exp_opcode op;
8495 int tem, tem2, tem3;
8496 int pc;
8497 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
8498 struct type *type;
8499 int nargs, oplen;
8500 struct value **argvec;
8501
8502 pc = *pos;
8503 *pos += 1;
8504 op = exp->elts[pc].opcode;
8505
8506 switch (op)
8507 {
8508 default:
8509 *pos -= 1;
8510 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8511 arg1 = unwrap_value (arg1);
8512
8513 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
8514 then we need to perform the conversion manually, because
8515 evaluate_subexp_standard doesn't do it. This conversion is
8516 necessary in Ada because the different kinds of float/fixed
8517 types in Ada have different representations.
8518
8519 Similarly, we need to perform the conversion from OP_LONG
8520 ourselves. */
8521 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
8522 arg1 = ada_value_cast (expect_type, arg1, noside);
8523
8524 return arg1;
8525
8526 case OP_STRING:
8527 {
8528 struct value *result;
8529 *pos -= 1;
8530 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
8531 /* The result type will have code OP_STRING, bashed there from
8532 OP_ARRAY. Bash it back. */
8533 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
8534 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
8535 return result;
8536 }
8537
8538 case UNOP_CAST:
8539 (*pos) += 2;
8540 type = exp->elts[pc + 1].type;
8541 arg1 = evaluate_subexp (type, exp, pos, noside);
8542 if (noside == EVAL_SKIP)
8543 goto nosideret;
8544 arg1 = ada_value_cast (type, arg1, noside);
8545 return arg1;
8546
8547 case UNOP_QUAL:
8548 (*pos) += 2;
8549 type = exp->elts[pc + 1].type;
8550 return ada_evaluate_subexp (type, exp, pos, noside);
8551
8552 case BINOP_ASSIGN:
8553 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8554 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8555 {
8556 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
8557 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8558 return arg1;
8559 return ada_value_assign (arg1, arg1);
8560 }
8561 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
8562 except if the lhs of our assignment is a convenience variable.
8563 In the case of assigning to a convenience variable, the lhs
8564 should be exactly the result of the evaluation of the rhs. */
8565 type = value_type (arg1);
8566 if (VALUE_LVAL (arg1) == lval_internalvar)
8567 type = NULL;
8568 arg2 = evaluate_subexp (type, exp, pos, noside);
8569 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8570 return arg1;
8571 if (ada_is_fixed_point_type (value_type (arg1)))
8572 arg2 = cast_to_fixed (value_type (arg1), arg2);
8573 else if (ada_is_fixed_point_type (value_type (arg2)))
8574 error
8575 (_("Fixed-point values must be assigned to fixed-point variables"));
8576 else
8577 arg2 = coerce_for_assign (value_type (arg1), arg2);
8578 return ada_value_assign (arg1, arg2);
8579
8580 case BINOP_ADD:
8581 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8582 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8583 if (noside == EVAL_SKIP)
8584 goto nosideret;
8585 if ((ada_is_fixed_point_type (value_type (arg1))
8586 || ada_is_fixed_point_type (value_type (arg2)))
8587 && value_type (arg1) != value_type (arg2))
8588 error (_("Operands of fixed-point addition must have the same type"));
8589 /* Do the addition, and cast the result to the type of the first
8590 argument. We cannot cast the result to a reference type, so if
8591 ARG1 is a reference type, find its underlying type. */
8592 type = value_type (arg1);
8593 while (TYPE_CODE (type) == TYPE_CODE_REF)
8594 type = TYPE_TARGET_TYPE (type);
8595 return value_cast (type, value_add (arg1, arg2));
8596
8597 case BINOP_SUB:
8598 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8599 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8600 if (noside == EVAL_SKIP)
8601 goto nosideret;
8602 if ((ada_is_fixed_point_type (value_type (arg1))
8603 || ada_is_fixed_point_type (value_type (arg2)))
8604 && value_type (arg1) != value_type (arg2))
8605 error (_("Operands of fixed-point subtraction must have the same type"));
8606 /* Do the substraction, and cast the result to the type of the first
8607 argument. We cannot cast the result to a reference type, so if
8608 ARG1 is a reference type, find its underlying type. */
8609 type = value_type (arg1);
8610 while (TYPE_CODE (type) == TYPE_CODE_REF)
8611 type = TYPE_TARGET_TYPE (type);
8612 return value_cast (type, value_sub (arg1, arg2));
8613
8614 case BINOP_MUL:
8615 case BINOP_DIV:
8616 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8617 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8618 if (noside == EVAL_SKIP)
8619 goto nosideret;
8620 else if (noside == EVAL_AVOID_SIDE_EFFECTS
8621 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
8622 return value_zero (value_type (arg1), not_lval);
8623 else
8624 {
8625 if (ada_is_fixed_point_type (value_type (arg1)))
8626 arg1 = cast_from_fixed_to_double (arg1);
8627 if (ada_is_fixed_point_type (value_type (arg2)))
8628 arg2 = cast_from_fixed_to_double (arg2);
8629 return ada_value_binop (arg1, arg2, op);
8630 }
8631
8632 case BINOP_REM:
8633 case BINOP_MOD:
8634 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8635 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8636 if (noside == EVAL_SKIP)
8637 goto nosideret;
8638 else if (noside == EVAL_AVOID_SIDE_EFFECTS
8639 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
8640 return value_zero (value_type (arg1), not_lval);
8641 else
8642 return ada_value_binop (arg1, arg2, op);
8643
8644 case BINOP_EQUAL:
8645 case BINOP_NOTEQUAL:
8646 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8647 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
8648 if (noside == EVAL_SKIP)
8649 goto nosideret;
8650 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8651 tem = 0;
8652 else
8653 tem = ada_value_equal (arg1, arg2);
8654 if (op == BINOP_NOTEQUAL)
8655 tem = !tem;
8656 return value_from_longest (LA_BOOL_TYPE, (LONGEST) tem);
8657
8658 case UNOP_NEG:
8659 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8660 if (noside == EVAL_SKIP)
8661 goto nosideret;
8662 else if (ada_is_fixed_point_type (value_type (arg1)))
8663 return value_cast (value_type (arg1), value_neg (arg1));
8664 else
8665 return value_neg (arg1);
8666
8667 case BINOP_LOGICAL_AND:
8668 case BINOP_LOGICAL_OR:
8669 case UNOP_LOGICAL_NOT:
8670 {
8671 struct value *val;
8672
8673 *pos -= 1;
8674 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8675 return value_cast (LA_BOOL_TYPE, val);
8676 }
8677
8678 case BINOP_BITWISE_AND:
8679 case BINOP_BITWISE_IOR:
8680 case BINOP_BITWISE_XOR:
8681 {
8682 struct value *val;
8683
8684 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8685 *pos = pc;
8686 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8687
8688 return value_cast (value_type (arg1), val);
8689 }
8690
8691 case OP_VAR_VALUE:
8692 *pos -= 1;
8693
8694 /* Tagged types are a little special in the fact that the real type
8695 is dynamic and can only be determined by inspecting the object
8696 value. So even if we're support to do an EVAL_AVOID_SIDE_EFFECTS
8697 evaluation, we force an EVAL_NORMAL evaluation for tagged types. */
8698 if (noside == EVAL_AVOID_SIDE_EFFECTS
8699 && ada_is_tagged_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol), 1))
8700 noside = EVAL_NORMAL;
8701
8702 if (noside == EVAL_SKIP)
8703 {
8704 *pos += 4;
8705 goto nosideret;
8706 }
8707 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
8708 /* Only encountered when an unresolved symbol occurs in a
8709 context other than a function call, in which case, it is
8710 invalid. */
8711 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8712 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
8713 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8714 {
8715 *pos += 4;
8716 return value_zero
8717 (to_static_fixed_type
8718 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
8719 not_lval);
8720 }
8721 else
8722 {
8723 arg1 =
8724 unwrap_value (evaluate_subexp_standard
8725 (expect_type, exp, pos, noside));
8726 return ada_to_fixed_value (arg1);
8727 }
8728
8729 case OP_FUNCALL:
8730 (*pos) += 2;
8731
8732 /* Allocate arg vector, including space for the function to be
8733 called in argvec[0] and a terminating NULL. */
8734 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8735 argvec =
8736 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
8737
8738 if (exp->elts[*pos].opcode == OP_VAR_VALUE
8739 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
8740 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8741 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
8742 else
8743 {
8744 for (tem = 0; tem <= nargs; tem += 1)
8745 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8746 argvec[tem] = 0;
8747
8748 if (noside == EVAL_SKIP)
8749 goto nosideret;
8750 }
8751
8752 if (ada_is_packed_array_type (desc_base_type (value_type (argvec[0]))))
8753 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
8754 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
8755 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
8756 && VALUE_LVAL (argvec[0]) == lval_memory))
8757 argvec[0] = value_addr (argvec[0]);
8758
8759 type = ada_check_typedef (value_type (argvec[0]));
8760 if (TYPE_CODE (type) == TYPE_CODE_PTR)
8761 {
8762 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
8763 {
8764 case TYPE_CODE_FUNC:
8765 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8766 break;
8767 case TYPE_CODE_ARRAY:
8768 break;
8769 case TYPE_CODE_STRUCT:
8770 if (noside != EVAL_AVOID_SIDE_EFFECTS)
8771 argvec[0] = ada_value_ind (argvec[0]);
8772 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8773 break;
8774 default:
8775 error (_("cannot subscript or call something of type `%s'"),
8776 ada_type_name (value_type (argvec[0])));
8777 break;
8778 }
8779 }
8780
8781 switch (TYPE_CODE (type))
8782 {
8783 case TYPE_CODE_FUNC:
8784 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8785 return allocate_value (TYPE_TARGET_TYPE (type));
8786 return call_function_by_hand (argvec[0], nargs, argvec + 1);
8787 case TYPE_CODE_STRUCT:
8788 {
8789 int arity;
8790
8791 arity = ada_array_arity (type);
8792 type = ada_array_element_type (type, nargs);
8793 if (type == NULL)
8794 error (_("cannot subscript or call a record"));
8795 if (arity != nargs)
8796 error (_("wrong number of subscripts; expecting %d"), arity);
8797 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8798 return value_zero (ada_aligned_type (type), lval_memory);
8799 return
8800 unwrap_value (ada_value_subscript
8801 (argvec[0], nargs, argvec + 1));
8802 }
8803 case TYPE_CODE_ARRAY:
8804 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8805 {
8806 type = ada_array_element_type (type, nargs);
8807 if (type == NULL)
8808 error (_("element type of array unknown"));
8809 else
8810 return value_zero (ada_aligned_type (type), lval_memory);
8811 }
8812 return
8813 unwrap_value (ada_value_subscript
8814 (ada_coerce_to_simple_array (argvec[0]),
8815 nargs, argvec + 1));
8816 case TYPE_CODE_PTR: /* Pointer to array */
8817 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
8818 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8819 {
8820 type = ada_array_element_type (type, nargs);
8821 if (type == NULL)
8822 error (_("element type of array unknown"));
8823 else
8824 return value_zero (ada_aligned_type (type), lval_memory);
8825 }
8826 return
8827 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
8828 nargs, argvec + 1));
8829
8830 default:
8831 error (_("Attempt to index or call something other than an "
8832 "array or function"));
8833 }
8834
8835 case TERNOP_SLICE:
8836 {
8837 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8838 struct value *low_bound_val =
8839 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8840 struct value *high_bound_val =
8841 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8842 LONGEST low_bound;
8843 LONGEST high_bound;
8844 low_bound_val = coerce_ref (low_bound_val);
8845 high_bound_val = coerce_ref (high_bound_val);
8846 low_bound = pos_atr (low_bound_val);
8847 high_bound = pos_atr (high_bound_val);
8848
8849 if (noside == EVAL_SKIP)
8850 goto nosideret;
8851
8852 /* If this is a reference to an aligner type, then remove all
8853 the aligners. */
8854 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8855 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
8856 TYPE_TARGET_TYPE (value_type (array)) =
8857 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
8858
8859 if (ada_is_packed_array_type (value_type (array)))
8860 error (_("cannot slice a packed array"));
8861
8862 /* If this is a reference to an array or an array lvalue,
8863 convert to a pointer. */
8864 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8865 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
8866 && VALUE_LVAL (array) == lval_memory))
8867 array = value_addr (array);
8868
8869 if (noside == EVAL_AVOID_SIDE_EFFECTS
8870 && ada_is_array_descriptor_type (ada_check_typedef
8871 (value_type (array))))
8872 return empty_array (ada_type_of_array (array, 0), low_bound);
8873
8874 array = ada_coerce_to_simple_array_ptr (array);
8875
8876 /* If we have more than one level of pointer indirection,
8877 dereference the value until we get only one level. */
8878 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
8879 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
8880 == TYPE_CODE_PTR))
8881 array = value_ind (array);
8882
8883 /* Make sure we really do have an array type before going further,
8884 to avoid a SEGV when trying to get the index type or the target
8885 type later down the road if the debug info generated by
8886 the compiler is incorrect or incomplete. */
8887 if (!ada_is_simple_array_type (value_type (array)))
8888 error (_("cannot take slice of non-array"));
8889
8890 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
8891 {
8892 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
8893 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
8894 low_bound);
8895 else
8896 {
8897 struct type *arr_type0 =
8898 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
8899 NULL, 1);
8900 return ada_value_slice_ptr (array, arr_type0,
8901 longest_to_int (low_bound),
8902 longest_to_int (high_bound));
8903 }
8904 }
8905 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8906 return array;
8907 else if (high_bound < low_bound)
8908 return empty_array (value_type (array), low_bound);
8909 else
8910 return ada_value_slice (array, longest_to_int (low_bound),
8911 longest_to_int (high_bound));
8912 }
8913
8914 case UNOP_IN_RANGE:
8915 (*pos) += 2;
8916 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8917 type = exp->elts[pc + 1].type;
8918
8919 if (noside == EVAL_SKIP)
8920 goto nosideret;
8921
8922 switch (TYPE_CODE (type))
8923 {
8924 default:
8925 lim_warning (_("Membership test incompletely implemented; "
8926 "always returns true"));
8927 return value_from_longest (builtin_type_int, (LONGEST) 1);
8928
8929 case TYPE_CODE_RANGE:
8930 arg2 = value_from_longest (builtin_type_int, TYPE_LOW_BOUND (type));
8931 arg3 = value_from_longest (builtin_type_int,
8932 TYPE_HIGH_BOUND (type));
8933 return
8934 value_from_longest (builtin_type_int,
8935 (value_less (arg1, arg3)
8936 || value_equal (arg1, arg3))
8937 && (value_less (arg2, arg1)
8938 || value_equal (arg2, arg1)));
8939 }
8940
8941 case BINOP_IN_BOUNDS:
8942 (*pos) += 2;
8943 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8944 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8945
8946 if (noside == EVAL_SKIP)
8947 goto nosideret;
8948
8949 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8950 return value_zero (builtin_type_int, not_lval);
8951
8952 tem = longest_to_int (exp->elts[pc + 1].longconst);
8953
8954 if (tem < 1 || tem > ada_array_arity (value_type (arg2)))
8955 error (_("invalid dimension number to 'range"));
8956
8957 arg3 = ada_array_bound (arg2, tem, 1);
8958 arg2 = ada_array_bound (arg2, tem, 0);
8959
8960 return
8961 value_from_longest (builtin_type_int,
8962 (value_less (arg1, arg3)
8963 || value_equal (arg1, arg3))
8964 && (value_less (arg2, arg1)
8965 || value_equal (arg2, arg1)));
8966
8967 case TERNOP_IN_RANGE:
8968 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8969 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8970 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8971
8972 if (noside == EVAL_SKIP)
8973 goto nosideret;
8974
8975 return
8976 value_from_longest (builtin_type_int,
8977 (value_less (arg1, arg3)
8978 || value_equal (arg1, arg3))
8979 && (value_less (arg2, arg1)
8980 || value_equal (arg2, arg1)));
8981
8982 case OP_ATR_FIRST:
8983 case OP_ATR_LAST:
8984 case OP_ATR_LENGTH:
8985 {
8986 struct type *type_arg;
8987 if (exp->elts[*pos].opcode == OP_TYPE)
8988 {
8989 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8990 arg1 = NULL;
8991 type_arg = exp->elts[pc + 2].type;
8992 }
8993 else
8994 {
8995 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8996 type_arg = NULL;
8997 }
8998
8999 if (exp->elts[*pos].opcode != OP_LONG)
9000 error (_("Invalid operand to '%s"), ada_attribute_name (op));
9001 tem = longest_to_int (exp->elts[*pos + 2].longconst);
9002 *pos += 4;
9003
9004 if (noside == EVAL_SKIP)
9005 goto nosideret;
9006
9007 if (type_arg == NULL)
9008 {
9009 arg1 = ada_coerce_ref (arg1);
9010
9011 if (ada_is_packed_array_type (value_type (arg1)))
9012 arg1 = ada_coerce_to_simple_array (arg1);
9013
9014 if (tem < 1 || tem > ada_array_arity (value_type (arg1)))
9015 error (_("invalid dimension number to '%s"),
9016 ada_attribute_name (op));
9017
9018 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9019 {
9020 type = ada_index_type (value_type (arg1), tem);
9021 if (type == NULL)
9022 error
9023 (_("attempt to take bound of something that is not an array"));
9024 return allocate_value (type);
9025 }
9026
9027 switch (op)
9028 {
9029 default: /* Should never happen. */
9030 error (_("unexpected attribute encountered"));
9031 case OP_ATR_FIRST:
9032 return ada_array_bound (arg1, tem, 0);
9033 case OP_ATR_LAST:
9034 return ada_array_bound (arg1, tem, 1);
9035 case OP_ATR_LENGTH:
9036 return ada_array_length (arg1, tem);
9037 }
9038 }
9039 else if (discrete_type_p (type_arg))
9040 {
9041 struct type *range_type;
9042 char *name = ada_type_name (type_arg);
9043 range_type = NULL;
9044 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
9045 range_type =
9046 to_fixed_range_type (name, NULL, TYPE_OBJFILE (type_arg));
9047 if (range_type == NULL)
9048 range_type = type_arg;
9049 switch (op)
9050 {
9051 default:
9052 error (_("unexpected attribute encountered"));
9053 case OP_ATR_FIRST:
9054 return discrete_type_low_bound (range_type);
9055 case OP_ATR_LAST:
9056 return discrete_type_high_bound (range_type);
9057 case OP_ATR_LENGTH:
9058 error (_("the 'length attribute applies only to array types"));
9059 }
9060 }
9061 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
9062 error (_("unimplemented type attribute"));
9063 else
9064 {
9065 LONGEST low, high;
9066
9067 if (ada_is_packed_array_type (type_arg))
9068 type_arg = decode_packed_array_type (type_arg);
9069
9070 if (tem < 1 || tem > ada_array_arity (type_arg))
9071 error (_("invalid dimension number to '%s"),
9072 ada_attribute_name (op));
9073
9074 type = ada_index_type (type_arg, tem);
9075 if (type == NULL)
9076 error
9077 (_("attempt to take bound of something that is not an array"));
9078 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9079 return allocate_value (type);
9080
9081 switch (op)
9082 {
9083 default:
9084 error (_("unexpected attribute encountered"));
9085 case OP_ATR_FIRST:
9086 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
9087 return value_from_longest (type, low);
9088 case OP_ATR_LAST:
9089 high = ada_array_bound_from_type (type_arg, tem, 1, &type);
9090 return value_from_longest (type, high);
9091 case OP_ATR_LENGTH:
9092 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
9093 high = ada_array_bound_from_type (type_arg, tem, 1, NULL);
9094 return value_from_longest (type, high - low + 1);
9095 }
9096 }
9097 }
9098
9099 case OP_ATR_TAG:
9100 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9101 if (noside == EVAL_SKIP)
9102 goto nosideret;
9103
9104 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9105 return value_zero (ada_tag_type (arg1), not_lval);
9106
9107 return ada_value_tag (arg1);
9108
9109 case OP_ATR_MIN:
9110 case OP_ATR_MAX:
9111 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9112 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9113 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9114 if (noside == EVAL_SKIP)
9115 goto nosideret;
9116 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9117 return value_zero (value_type (arg1), not_lval);
9118 else
9119 return value_binop (arg1, arg2,
9120 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
9121
9122 case OP_ATR_MODULUS:
9123 {
9124 struct type *type_arg = exp->elts[pc + 2].type;
9125 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9126
9127 if (noside == EVAL_SKIP)
9128 goto nosideret;
9129
9130 if (!ada_is_modular_type (type_arg))
9131 error (_("'modulus must be applied to modular type"));
9132
9133 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
9134 ada_modulus (type_arg));
9135 }
9136
9137
9138 case OP_ATR_POS:
9139 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9140 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9141 if (noside == EVAL_SKIP)
9142 goto nosideret;
9143 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9144 return value_zero (builtin_type_int, not_lval);
9145 else
9146 return value_pos_atr (arg1);
9147
9148 case OP_ATR_SIZE:
9149 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9150 if (noside == EVAL_SKIP)
9151 goto nosideret;
9152 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9153 return value_zero (builtin_type_int, not_lval);
9154 else
9155 return value_from_longest (builtin_type_int,
9156 TARGET_CHAR_BIT
9157 * TYPE_LENGTH (value_type (arg1)));
9158
9159 case OP_ATR_VAL:
9160 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9161 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9162 type = exp->elts[pc + 2].type;
9163 if (noside == EVAL_SKIP)
9164 goto nosideret;
9165 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9166 return value_zero (type, not_lval);
9167 else
9168 return value_val_atr (type, arg1);
9169
9170 case BINOP_EXP:
9171 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9172 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9173 if (noside == EVAL_SKIP)
9174 goto nosideret;
9175 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9176 return value_zero (value_type (arg1), not_lval);
9177 else
9178 return value_binop (arg1, arg2, op);
9179
9180 case UNOP_PLUS:
9181 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9182 if (noside == EVAL_SKIP)
9183 goto nosideret;
9184 else
9185 return arg1;
9186
9187 case UNOP_ABS:
9188 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9189 if (noside == EVAL_SKIP)
9190 goto nosideret;
9191 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
9192 return value_neg (arg1);
9193 else
9194 return arg1;
9195
9196 case UNOP_IND:
9197 if (expect_type && TYPE_CODE (expect_type) == TYPE_CODE_PTR)
9198 expect_type = TYPE_TARGET_TYPE (ada_check_typedef (expect_type));
9199 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
9200 if (noside == EVAL_SKIP)
9201 goto nosideret;
9202 type = ada_check_typedef (value_type (arg1));
9203 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9204 {
9205 if (ada_is_array_descriptor_type (type))
9206 /* GDB allows dereferencing GNAT array descriptors. */
9207 {
9208 struct type *arrType = ada_type_of_array (arg1, 0);
9209 if (arrType == NULL)
9210 error (_("Attempt to dereference null array pointer."));
9211 return value_at_lazy (arrType, 0);
9212 }
9213 else if (TYPE_CODE (type) == TYPE_CODE_PTR
9214 || TYPE_CODE (type) == TYPE_CODE_REF
9215 /* In C you can dereference an array to get the 1st elt. */
9216 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
9217 {
9218 type = to_static_fixed_type
9219 (ada_aligned_type
9220 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
9221 check_size (type);
9222 return value_zero (type, lval_memory);
9223 }
9224 else if (TYPE_CODE (type) == TYPE_CODE_INT)
9225 /* GDB allows dereferencing an int. */
9226 return value_zero (builtin_type_int, lval_memory);
9227 else
9228 error (_("Attempt to take contents of a non-pointer value."));
9229 }
9230 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
9231 type = ada_check_typedef (value_type (arg1));
9232
9233 if (ada_is_array_descriptor_type (type))
9234 /* GDB allows dereferencing GNAT array descriptors. */
9235 return ada_coerce_to_simple_array (arg1);
9236 else
9237 return ada_value_ind (arg1);
9238
9239 case STRUCTOP_STRUCT:
9240 tem = longest_to_int (exp->elts[pc + 1].longconst);
9241 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
9242 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9243 if (noside == EVAL_SKIP)
9244 goto nosideret;
9245 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9246 {
9247 struct type *type1 = value_type (arg1);
9248 if (ada_is_tagged_type (type1, 1))
9249 {
9250 type = ada_lookup_struct_elt_type (type1,
9251 &exp->elts[pc + 2].string,
9252 1, 1, NULL);
9253 if (type == NULL)
9254 /* In this case, we assume that the field COULD exist
9255 in some extension of the type. Return an object of
9256 "type" void, which will match any formal
9257 (see ada_type_match). */
9258 return value_zero (builtin_type_void, lval_memory);
9259 }
9260 else
9261 type =
9262 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
9263 0, NULL);
9264
9265 return value_zero (ada_aligned_type (type), lval_memory);
9266 }
9267 else
9268 return
9269 ada_to_fixed_value (unwrap_value
9270 (ada_value_struct_elt
9271 (arg1, &exp->elts[pc + 2].string, 0)));
9272 case OP_TYPE:
9273 /* The value is not supposed to be used. This is here to make it
9274 easier to accommodate expressions that contain types. */
9275 (*pos) += 2;
9276 if (noside == EVAL_SKIP)
9277 goto nosideret;
9278 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9279 return allocate_value (exp->elts[pc + 1].type);
9280 else
9281 error (_("Attempt to use a type name as an expression"));
9282
9283 case OP_AGGREGATE:
9284 case OP_CHOICES:
9285 case OP_OTHERS:
9286 case OP_DISCRETE_RANGE:
9287 case OP_POSITIONAL:
9288 case OP_NAME:
9289 if (noside == EVAL_NORMAL)
9290 switch (op)
9291 {
9292 case OP_NAME:
9293 error (_("Undefined name, ambiguous name, or renaming used in "
9294 "component association: %s."), &exp->elts[pc+2].string);
9295 case OP_AGGREGATE:
9296 error (_("Aggregates only allowed on the right of an assignment"));
9297 default:
9298 internal_error (__FILE__, __LINE__, _("aggregate apparently mangled"));
9299 }
9300
9301 ada_forward_operator_length (exp, pc, &oplen, &nargs);
9302 *pos += oplen - 1;
9303 for (tem = 0; tem < nargs; tem += 1)
9304 ada_evaluate_subexp (NULL, exp, pos, noside);
9305 goto nosideret;
9306 }
9307
9308 nosideret:
9309 return value_from_longest (builtin_type_long, (LONGEST) 1);
9310 }
9311 \f
9312
9313 /* Fixed point */
9314
9315 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
9316 type name that encodes the 'small and 'delta information.
9317 Otherwise, return NULL. */
9318
9319 static const char *
9320 fixed_type_info (struct type *type)
9321 {
9322 const char *name = ada_type_name (type);
9323 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
9324
9325 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
9326 {
9327 const char *tail = strstr (name, "___XF_");
9328 if (tail == NULL)
9329 return NULL;
9330 else
9331 return tail + 5;
9332 }
9333 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
9334 return fixed_type_info (TYPE_TARGET_TYPE (type));
9335 else
9336 return NULL;
9337 }
9338
9339 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
9340
9341 int
9342 ada_is_fixed_point_type (struct type *type)
9343 {
9344 return fixed_type_info (type) != NULL;
9345 }
9346
9347 /* Return non-zero iff TYPE represents a System.Address type. */
9348
9349 int
9350 ada_is_system_address_type (struct type *type)
9351 {
9352 return (TYPE_NAME (type)
9353 && strcmp (TYPE_NAME (type), "system__address") == 0);
9354 }
9355
9356 /* Assuming that TYPE is the representation of an Ada fixed-point
9357 type, return its delta, or -1 if the type is malformed and the
9358 delta cannot be determined. */
9359
9360 DOUBLEST
9361 ada_delta (struct type *type)
9362 {
9363 const char *encoding = fixed_type_info (type);
9364 long num, den;
9365
9366 if (sscanf (encoding, "_%ld_%ld", &num, &den) < 2)
9367 return -1.0;
9368 else
9369 return (DOUBLEST) num / (DOUBLEST) den;
9370 }
9371
9372 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
9373 factor ('SMALL value) associated with the type. */
9374
9375 static DOUBLEST
9376 scaling_factor (struct type *type)
9377 {
9378 const char *encoding = fixed_type_info (type);
9379 unsigned long num0, den0, num1, den1;
9380 int n;
9381
9382 n = sscanf (encoding, "_%lu_%lu_%lu_%lu", &num0, &den0, &num1, &den1);
9383
9384 if (n < 2)
9385 return 1.0;
9386 else if (n == 4)
9387 return (DOUBLEST) num1 / (DOUBLEST) den1;
9388 else
9389 return (DOUBLEST) num0 / (DOUBLEST) den0;
9390 }
9391
9392
9393 /* Assuming that X is the representation of a value of fixed-point
9394 type TYPE, return its floating-point equivalent. */
9395
9396 DOUBLEST
9397 ada_fixed_to_float (struct type *type, LONGEST x)
9398 {
9399 return (DOUBLEST) x *scaling_factor (type);
9400 }
9401
9402 /* The representation of a fixed-point value of type TYPE
9403 corresponding to the value X. */
9404
9405 LONGEST
9406 ada_float_to_fixed (struct type *type, DOUBLEST x)
9407 {
9408 return (LONGEST) (x / scaling_factor (type) + 0.5);
9409 }
9410
9411
9412 /* VAX floating formats */
9413
9414 /* Non-zero iff TYPE represents one of the special VAX floating-point
9415 types. */
9416
9417 int
9418 ada_is_vax_floating_type (struct type *type)
9419 {
9420 int name_len =
9421 (ada_type_name (type) == NULL) ? 0 : strlen (ada_type_name (type));
9422 return
9423 name_len > 6
9424 && (TYPE_CODE (type) == TYPE_CODE_INT
9425 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9426 && strncmp (ada_type_name (type) + name_len - 6, "___XF", 5) == 0;
9427 }
9428
9429 /* The type of special VAX floating-point type this is, assuming
9430 ada_is_vax_floating_point. */
9431
9432 int
9433 ada_vax_float_type_suffix (struct type *type)
9434 {
9435 return ada_type_name (type)[strlen (ada_type_name (type)) - 1];
9436 }
9437
9438 /* A value representing the special debugging function that outputs
9439 VAX floating-point values of the type represented by TYPE. Assumes
9440 ada_is_vax_floating_type (TYPE). */
9441
9442 struct value *
9443 ada_vax_float_print_function (struct type *type)
9444 {
9445 switch (ada_vax_float_type_suffix (type))
9446 {
9447 case 'F':
9448 return get_var_value ("DEBUG_STRING_F", 0);
9449 case 'D':
9450 return get_var_value ("DEBUG_STRING_D", 0);
9451 case 'G':
9452 return get_var_value ("DEBUG_STRING_G", 0);
9453 default:
9454 error (_("invalid VAX floating-point type"));
9455 }
9456 }
9457 \f
9458
9459 /* Range types */
9460
9461 /* Scan STR beginning at position K for a discriminant name, and
9462 return the value of that discriminant field of DVAL in *PX. If
9463 PNEW_K is not null, put the position of the character beyond the
9464 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
9465 not alter *PX and *PNEW_K if unsuccessful. */
9466
9467 static int
9468 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
9469 int *pnew_k)
9470 {
9471 static char *bound_buffer = NULL;
9472 static size_t bound_buffer_len = 0;
9473 char *bound;
9474 char *pend;
9475 struct value *bound_val;
9476
9477 if (dval == NULL || str == NULL || str[k] == '\0')
9478 return 0;
9479
9480 pend = strstr (str + k, "__");
9481 if (pend == NULL)
9482 {
9483 bound = str + k;
9484 k += strlen (bound);
9485 }
9486 else
9487 {
9488 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
9489 bound = bound_buffer;
9490 strncpy (bound_buffer, str + k, pend - (str + k));
9491 bound[pend - (str + k)] = '\0';
9492 k = pend - str;
9493 }
9494
9495 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
9496 if (bound_val == NULL)
9497 return 0;
9498
9499 *px = value_as_long (bound_val);
9500 if (pnew_k != NULL)
9501 *pnew_k = k;
9502 return 1;
9503 }
9504
9505 /* Value of variable named NAME in the current environment. If
9506 no such variable found, then if ERR_MSG is null, returns 0, and
9507 otherwise causes an error with message ERR_MSG. */
9508
9509 static struct value *
9510 get_var_value (char *name, char *err_msg)
9511 {
9512 struct ada_symbol_info *syms;
9513 int nsyms;
9514
9515 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
9516 &syms);
9517
9518 if (nsyms != 1)
9519 {
9520 if (err_msg == NULL)
9521 return 0;
9522 else
9523 error (("%s"), err_msg);
9524 }
9525
9526 return value_of_variable (syms[0].sym, syms[0].block);
9527 }
9528
9529 /* Value of integer variable named NAME in the current environment. If
9530 no such variable found, returns 0, and sets *FLAG to 0. If
9531 successful, sets *FLAG to 1. */
9532
9533 LONGEST
9534 get_int_var_value (char *name, int *flag)
9535 {
9536 struct value *var_val = get_var_value (name, 0);
9537
9538 if (var_val == 0)
9539 {
9540 if (flag != NULL)
9541 *flag = 0;
9542 return 0;
9543 }
9544 else
9545 {
9546 if (flag != NULL)
9547 *flag = 1;
9548 return value_as_long (var_val);
9549 }
9550 }
9551
9552
9553 /* Return a range type whose base type is that of the range type named
9554 NAME in the current environment, and whose bounds are calculated
9555 from NAME according to the GNAT range encoding conventions.
9556 Extract discriminant values, if needed, from DVAL. If a new type
9557 must be created, allocate in OBJFILE's space. The bounds
9558 information, in general, is encoded in NAME, the base type given in
9559 the named range type. */
9560
9561 static struct type *
9562 to_fixed_range_type (char *name, struct value *dval, struct objfile *objfile)
9563 {
9564 struct type *raw_type = ada_find_any_type (name);
9565 struct type *base_type;
9566 char *subtype_info;
9567
9568 if (raw_type == NULL)
9569 base_type = builtin_type_int;
9570 else if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
9571 base_type = TYPE_TARGET_TYPE (raw_type);
9572 else
9573 base_type = raw_type;
9574
9575 subtype_info = strstr (name, "___XD");
9576 if (subtype_info == NULL)
9577 return raw_type;
9578 else
9579 {
9580 static char *name_buf = NULL;
9581 static size_t name_len = 0;
9582 int prefix_len = subtype_info - name;
9583 LONGEST L, U;
9584 struct type *type;
9585 char *bounds_str;
9586 int n;
9587
9588 GROW_VECT (name_buf, name_len, prefix_len + 5);
9589 strncpy (name_buf, name, prefix_len);
9590 name_buf[prefix_len] = '\0';
9591
9592 subtype_info += 5;
9593 bounds_str = strchr (subtype_info, '_');
9594 n = 1;
9595
9596 if (*subtype_info == 'L')
9597 {
9598 if (!ada_scan_number (bounds_str, n, &L, &n)
9599 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
9600 return raw_type;
9601 if (bounds_str[n] == '_')
9602 n += 2;
9603 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
9604 n += 1;
9605 subtype_info += 1;
9606 }
9607 else
9608 {
9609 int ok;
9610 strcpy (name_buf + prefix_len, "___L");
9611 L = get_int_var_value (name_buf, &ok);
9612 if (!ok)
9613 {
9614 lim_warning (_("Unknown lower bound, using 1."));
9615 L = 1;
9616 }
9617 }
9618
9619 if (*subtype_info == 'U')
9620 {
9621 if (!ada_scan_number (bounds_str, n, &U, &n)
9622 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
9623 return raw_type;
9624 }
9625 else
9626 {
9627 int ok;
9628 strcpy (name_buf + prefix_len, "___U");
9629 U = get_int_var_value (name_buf, &ok);
9630 if (!ok)
9631 {
9632 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
9633 U = L;
9634 }
9635 }
9636
9637 if (objfile == NULL)
9638 objfile = TYPE_OBJFILE (base_type);
9639 type = create_range_type (alloc_type (objfile), base_type, L, U);
9640 TYPE_NAME (type) = name;
9641 return type;
9642 }
9643 }
9644
9645 /* True iff NAME is the name of a range type. */
9646
9647 int
9648 ada_is_range_type_name (const char *name)
9649 {
9650 return (name != NULL && strstr (name, "___XD"));
9651 }
9652 \f
9653
9654 /* Modular types */
9655
9656 /* True iff TYPE is an Ada modular type. */
9657
9658 int
9659 ada_is_modular_type (struct type *type)
9660 {
9661 struct type *subranged_type = base_type (type);
9662
9663 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
9664 && TYPE_CODE (subranged_type) != TYPE_CODE_ENUM
9665 && TYPE_UNSIGNED (subranged_type));
9666 }
9667
9668 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
9669
9670 ULONGEST
9671 ada_modulus (struct type * type)
9672 {
9673 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
9674 }
9675 \f
9676
9677 /* Ada exception catchpoint support:
9678 ---------------------------------
9679
9680 We support 3 kinds of exception catchpoints:
9681 . catchpoints on Ada exceptions
9682 . catchpoints on unhandled Ada exceptions
9683 . catchpoints on failed assertions
9684
9685 Exceptions raised during failed assertions, or unhandled exceptions
9686 could perfectly be caught with the general catchpoint on Ada exceptions.
9687 However, we can easily differentiate these two special cases, and having
9688 the option to distinguish these two cases from the rest can be useful
9689 to zero-in on certain situations.
9690
9691 Exception catchpoints are a specialized form of breakpoint,
9692 since they rely on inserting breakpoints inside known routines
9693 of the GNAT runtime. The implementation therefore uses a standard
9694 breakpoint structure of the BP_BREAKPOINT type, but with its own set
9695 of breakpoint_ops.
9696
9697 Support in the runtime for exception catchpoints have been changed
9698 a few times already, and these changes affect the implementation
9699 of these catchpoints. In order to be able to support several
9700 variants of the runtime, we use a sniffer that will determine
9701 the runtime variant used by the program being debugged.
9702
9703 At this time, we do not support the use of conditions on Ada exception
9704 catchpoints. The COND and COND_STRING fields are therefore set
9705 to NULL (most of the time, see below).
9706
9707 Conditions where EXP_STRING, COND, and COND_STRING are used:
9708
9709 When a user specifies the name of a specific exception in the case
9710 of catchpoints on Ada exceptions, we store the name of that exception
9711 in the EXP_STRING. We then translate this request into an actual
9712 condition stored in COND_STRING, and then parse it into an expression
9713 stored in COND. */
9714
9715 /* The different types of catchpoints that we introduced for catching
9716 Ada exceptions. */
9717
9718 enum exception_catchpoint_kind
9719 {
9720 ex_catch_exception,
9721 ex_catch_exception_unhandled,
9722 ex_catch_assert
9723 };
9724
9725 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
9726
9727 /* A structure that describes how to support exception catchpoints
9728 for a given executable. */
9729
9730 struct exception_support_info
9731 {
9732 /* The name of the symbol to break on in order to insert
9733 a catchpoint on exceptions. */
9734 const char *catch_exception_sym;
9735
9736 /* The name of the symbol to break on in order to insert
9737 a catchpoint on unhandled exceptions. */
9738 const char *catch_exception_unhandled_sym;
9739
9740 /* The name of the symbol to break on in order to insert
9741 a catchpoint on failed assertions. */
9742 const char *catch_assert_sym;
9743
9744 /* Assuming that the inferior just triggered an unhandled exception
9745 catchpoint, this function is responsible for returning the address
9746 in inferior memory where the name of that exception is stored.
9747 Return zero if the address could not be computed. */
9748 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
9749 };
9750
9751 static CORE_ADDR ada_unhandled_exception_name_addr (void);
9752 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
9753
9754 /* The following exception support info structure describes how to
9755 implement exception catchpoints with the latest version of the
9756 Ada runtime (as of 2007-03-06). */
9757
9758 static const struct exception_support_info default_exception_support_info =
9759 {
9760 "__gnat_debug_raise_exception", /* catch_exception_sym */
9761 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9762 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9763 ada_unhandled_exception_name_addr
9764 };
9765
9766 /* The following exception support info structure describes how to
9767 implement exception catchpoints with a slightly older version
9768 of the Ada runtime. */
9769
9770 static const struct exception_support_info exception_support_info_fallback =
9771 {
9772 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
9773 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9774 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9775 ada_unhandled_exception_name_addr_from_raise
9776 };
9777
9778 /* For each executable, we sniff which exception info structure to use
9779 and cache it in the following global variable. */
9780
9781 static const struct exception_support_info *exception_info = NULL;
9782
9783 /* Inspect the Ada runtime and determine which exception info structure
9784 should be used to provide support for exception catchpoints.
9785
9786 This function will always set exception_info, or raise an error. */
9787
9788 static void
9789 ada_exception_support_info_sniffer (void)
9790 {
9791 struct symbol *sym;
9792
9793 /* If the exception info is already known, then no need to recompute it. */
9794 if (exception_info != NULL)
9795 return;
9796
9797 /* Check the latest (default) exception support info. */
9798 sym = standard_lookup (default_exception_support_info.catch_exception_sym,
9799 NULL, VAR_DOMAIN);
9800 if (sym != NULL)
9801 {
9802 exception_info = &default_exception_support_info;
9803 return;
9804 }
9805
9806 /* Try our fallback exception suport info. */
9807 sym = standard_lookup (exception_support_info_fallback.catch_exception_sym,
9808 NULL, VAR_DOMAIN);
9809 if (sym != NULL)
9810 {
9811 exception_info = &exception_support_info_fallback;
9812 return;
9813 }
9814
9815 /* Sometimes, it is normal for us to not be able to find the routine
9816 we are looking for. This happens when the program is linked with
9817 the shared version of the GNAT runtime, and the program has not been
9818 started yet. Inform the user of these two possible causes if
9819 applicable. */
9820
9821 if (ada_update_initial_language (language_unknown, NULL) != language_ada)
9822 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
9823
9824 /* If the symbol does not exist, then check that the program is
9825 already started, to make sure that shared libraries have been
9826 loaded. If it is not started, this may mean that the symbol is
9827 in a shared library. */
9828
9829 if (ptid_get_pid (inferior_ptid) == 0)
9830 error (_("Unable to insert catchpoint. Try to start the program first."));
9831
9832 /* At this point, we know that we are debugging an Ada program and
9833 that the inferior has been started, but we still are not able to
9834 find the run-time symbols. That can mean that we are in
9835 configurable run time mode, or that a-except as been optimized
9836 out by the linker... In any case, at this point it is not worth
9837 supporting this feature. */
9838
9839 error (_("Cannot insert catchpoints in this configuration."));
9840 }
9841
9842 /* An observer of "executable_changed" events.
9843 Its role is to clear certain cached values that need to be recomputed
9844 each time a new executable is loaded by GDB. */
9845
9846 static void
9847 ada_executable_changed_observer (void *unused)
9848 {
9849 /* If the executable changed, then it is possible that the Ada runtime
9850 is different. So we need to invalidate the exception support info
9851 cache. */
9852 exception_info = NULL;
9853 }
9854
9855 /* Return the name of the function at PC, NULL if could not find it.
9856 This function only checks the debugging information, not the symbol
9857 table. */
9858
9859 static char *
9860 function_name_from_pc (CORE_ADDR pc)
9861 {
9862 char *func_name;
9863
9864 if (!find_pc_partial_function (pc, &func_name, NULL, NULL))
9865 return NULL;
9866
9867 return func_name;
9868 }
9869
9870 /* True iff FRAME is very likely to be that of a function that is
9871 part of the runtime system. This is all very heuristic, but is
9872 intended to be used as advice as to what frames are uninteresting
9873 to most users. */
9874
9875 static int
9876 is_known_support_routine (struct frame_info *frame)
9877 {
9878 struct symtab_and_line sal;
9879 char *func_name;
9880 int i;
9881
9882 /* If this code does not have any debugging information (no symtab),
9883 This cannot be any user code. */
9884
9885 find_frame_sal (frame, &sal);
9886 if (sal.symtab == NULL)
9887 return 1;
9888
9889 /* If there is a symtab, but the associated source file cannot be
9890 located, then assume this is not user code: Selecting a frame
9891 for which we cannot display the code would not be very helpful
9892 for the user. This should also take care of case such as VxWorks
9893 where the kernel has some debugging info provided for a few units. */
9894
9895 if (symtab_to_fullname (sal.symtab) == NULL)
9896 return 1;
9897
9898 /* Check the unit filename againt the Ada runtime file naming.
9899 We also check the name of the objfile against the name of some
9900 known system libraries that sometimes come with debugging info
9901 too. */
9902
9903 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
9904 {
9905 re_comp (known_runtime_file_name_patterns[i]);
9906 if (re_exec (sal.symtab->filename))
9907 return 1;
9908 if (sal.symtab->objfile != NULL
9909 && re_exec (sal.symtab->objfile->name))
9910 return 1;
9911 }
9912
9913 /* Check whether the function is a GNAT-generated entity. */
9914
9915 func_name = function_name_from_pc (get_frame_address_in_block (frame));
9916 if (func_name == NULL)
9917 return 1;
9918
9919 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
9920 {
9921 re_comp (known_auxiliary_function_name_patterns[i]);
9922 if (re_exec (func_name))
9923 return 1;
9924 }
9925
9926 return 0;
9927 }
9928
9929 /* Find the first frame that contains debugging information and that is not
9930 part of the Ada run-time, starting from FI and moving upward. */
9931
9932 static void
9933 ada_find_printable_frame (struct frame_info *fi)
9934 {
9935 for (; fi != NULL; fi = get_prev_frame (fi))
9936 {
9937 if (!is_known_support_routine (fi))
9938 {
9939 select_frame (fi);
9940 break;
9941 }
9942 }
9943
9944 }
9945
9946 /* Assuming that the inferior just triggered an unhandled exception
9947 catchpoint, return the address in inferior memory where the name
9948 of the exception is stored.
9949
9950 Return zero if the address could not be computed. */
9951
9952 static CORE_ADDR
9953 ada_unhandled_exception_name_addr (void)
9954 {
9955 return parse_and_eval_address ("e.full_name");
9956 }
9957
9958 /* Same as ada_unhandled_exception_name_addr, except that this function
9959 should be used when the inferior uses an older version of the runtime,
9960 where the exception name needs to be extracted from a specific frame
9961 several frames up in the callstack. */
9962
9963 static CORE_ADDR
9964 ada_unhandled_exception_name_addr_from_raise (void)
9965 {
9966 int frame_level;
9967 struct frame_info *fi;
9968
9969 /* To determine the name of this exception, we need to select
9970 the frame corresponding to RAISE_SYM_NAME. This frame is
9971 at least 3 levels up, so we simply skip the first 3 frames
9972 without checking the name of their associated function. */
9973 fi = get_current_frame ();
9974 for (frame_level = 0; frame_level < 3; frame_level += 1)
9975 if (fi != NULL)
9976 fi = get_prev_frame (fi);
9977
9978 while (fi != NULL)
9979 {
9980 const char *func_name =
9981 function_name_from_pc (get_frame_address_in_block (fi));
9982 if (func_name != NULL
9983 && strcmp (func_name, exception_info->catch_exception_sym) == 0)
9984 break; /* We found the frame we were looking for... */
9985 fi = get_prev_frame (fi);
9986 }
9987
9988 if (fi == NULL)
9989 return 0;
9990
9991 select_frame (fi);
9992 return parse_and_eval_address ("id.full_name");
9993 }
9994
9995 /* Assuming the inferior just triggered an Ada exception catchpoint
9996 (of any type), return the address in inferior memory where the name
9997 of the exception is stored, if applicable.
9998
9999 Return zero if the address could not be computed, or if not relevant. */
10000
10001 static CORE_ADDR
10002 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
10003 struct breakpoint *b)
10004 {
10005 switch (ex)
10006 {
10007 case ex_catch_exception:
10008 return (parse_and_eval_address ("e.full_name"));
10009 break;
10010
10011 case ex_catch_exception_unhandled:
10012 return exception_info->unhandled_exception_name_addr ();
10013 break;
10014
10015 case ex_catch_assert:
10016 return 0; /* Exception name is not relevant in this case. */
10017 break;
10018
10019 default:
10020 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10021 break;
10022 }
10023
10024 return 0; /* Should never be reached. */
10025 }
10026
10027 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
10028 any error that ada_exception_name_addr_1 might cause to be thrown.
10029 When an error is intercepted, a warning with the error message is printed,
10030 and zero is returned. */
10031
10032 static CORE_ADDR
10033 ada_exception_name_addr (enum exception_catchpoint_kind ex,
10034 struct breakpoint *b)
10035 {
10036 struct gdb_exception e;
10037 CORE_ADDR result = 0;
10038
10039 TRY_CATCH (e, RETURN_MASK_ERROR)
10040 {
10041 result = ada_exception_name_addr_1 (ex, b);
10042 }
10043
10044 if (e.reason < 0)
10045 {
10046 warning (_("failed to get exception name: %s"), e.message);
10047 return 0;
10048 }
10049
10050 return result;
10051 }
10052
10053 /* Implement the PRINT_IT method in the breakpoint_ops structure
10054 for all exception catchpoint kinds. */
10055
10056 static enum print_stop_action
10057 print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
10058 {
10059 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
10060 char exception_name[256];
10061
10062 if (addr != 0)
10063 {
10064 read_memory (addr, exception_name, sizeof (exception_name) - 1);
10065 exception_name [sizeof (exception_name) - 1] = '\0';
10066 }
10067
10068 ada_find_printable_frame (get_current_frame ());
10069
10070 annotate_catchpoint (b->number);
10071 switch (ex)
10072 {
10073 case ex_catch_exception:
10074 if (addr != 0)
10075 printf_filtered (_("\nCatchpoint %d, %s at "),
10076 b->number, exception_name);
10077 else
10078 printf_filtered (_("\nCatchpoint %d, exception at "), b->number);
10079 break;
10080 case ex_catch_exception_unhandled:
10081 if (addr != 0)
10082 printf_filtered (_("\nCatchpoint %d, unhandled %s at "),
10083 b->number, exception_name);
10084 else
10085 printf_filtered (_("\nCatchpoint %d, unhandled exception at "),
10086 b->number);
10087 break;
10088 case ex_catch_assert:
10089 printf_filtered (_("\nCatchpoint %d, failed assertion at "),
10090 b->number);
10091 break;
10092 }
10093
10094 return PRINT_SRC_AND_LOC;
10095 }
10096
10097 /* Implement the PRINT_ONE method in the breakpoint_ops structure
10098 for all exception catchpoint kinds. */
10099
10100 static void
10101 print_one_exception (enum exception_catchpoint_kind ex,
10102 struct breakpoint *b, CORE_ADDR *last_addr)
10103 {
10104 if (addressprint)
10105 {
10106 annotate_field (4);
10107 ui_out_field_core_addr (uiout, "addr", b->loc->address);
10108 }
10109
10110 annotate_field (5);
10111 *last_addr = b->loc->address;
10112 switch (ex)
10113 {
10114 case ex_catch_exception:
10115 if (b->exp_string != NULL)
10116 {
10117 char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
10118
10119 ui_out_field_string (uiout, "what", msg);
10120 xfree (msg);
10121 }
10122 else
10123 ui_out_field_string (uiout, "what", "all Ada exceptions");
10124
10125 break;
10126
10127 case ex_catch_exception_unhandled:
10128 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
10129 break;
10130
10131 case ex_catch_assert:
10132 ui_out_field_string (uiout, "what", "failed Ada assertions");
10133 break;
10134
10135 default:
10136 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10137 break;
10138 }
10139 }
10140
10141 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
10142 for all exception catchpoint kinds. */
10143
10144 static void
10145 print_mention_exception (enum exception_catchpoint_kind ex,
10146 struct breakpoint *b)
10147 {
10148 switch (ex)
10149 {
10150 case ex_catch_exception:
10151 if (b->exp_string != NULL)
10152 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
10153 b->number, b->exp_string);
10154 else
10155 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
10156
10157 break;
10158
10159 case ex_catch_exception_unhandled:
10160 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
10161 b->number);
10162 break;
10163
10164 case ex_catch_assert:
10165 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
10166 break;
10167
10168 default:
10169 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10170 break;
10171 }
10172 }
10173
10174 /* Virtual table for "catch exception" breakpoints. */
10175
10176 static enum print_stop_action
10177 print_it_catch_exception (struct breakpoint *b)
10178 {
10179 return print_it_exception (ex_catch_exception, b);
10180 }
10181
10182 static void
10183 print_one_catch_exception (struct breakpoint *b, CORE_ADDR *last_addr)
10184 {
10185 print_one_exception (ex_catch_exception, b, last_addr);
10186 }
10187
10188 static void
10189 print_mention_catch_exception (struct breakpoint *b)
10190 {
10191 print_mention_exception (ex_catch_exception, b);
10192 }
10193
10194 static struct breakpoint_ops catch_exception_breakpoint_ops =
10195 {
10196 print_it_catch_exception,
10197 print_one_catch_exception,
10198 print_mention_catch_exception
10199 };
10200
10201 /* Virtual table for "catch exception unhandled" breakpoints. */
10202
10203 static enum print_stop_action
10204 print_it_catch_exception_unhandled (struct breakpoint *b)
10205 {
10206 return print_it_exception (ex_catch_exception_unhandled, b);
10207 }
10208
10209 static void
10210 print_one_catch_exception_unhandled (struct breakpoint *b, CORE_ADDR *last_addr)
10211 {
10212 print_one_exception (ex_catch_exception_unhandled, b, last_addr);
10213 }
10214
10215 static void
10216 print_mention_catch_exception_unhandled (struct breakpoint *b)
10217 {
10218 print_mention_exception (ex_catch_exception_unhandled, b);
10219 }
10220
10221 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
10222 print_it_catch_exception_unhandled,
10223 print_one_catch_exception_unhandled,
10224 print_mention_catch_exception_unhandled
10225 };
10226
10227 /* Virtual table for "catch assert" breakpoints. */
10228
10229 static enum print_stop_action
10230 print_it_catch_assert (struct breakpoint *b)
10231 {
10232 return print_it_exception (ex_catch_assert, b);
10233 }
10234
10235 static void
10236 print_one_catch_assert (struct breakpoint *b, CORE_ADDR *last_addr)
10237 {
10238 print_one_exception (ex_catch_assert, b, last_addr);
10239 }
10240
10241 static void
10242 print_mention_catch_assert (struct breakpoint *b)
10243 {
10244 print_mention_exception (ex_catch_assert, b);
10245 }
10246
10247 static struct breakpoint_ops catch_assert_breakpoint_ops = {
10248 print_it_catch_assert,
10249 print_one_catch_assert,
10250 print_mention_catch_assert
10251 };
10252
10253 /* Return non-zero if B is an Ada exception catchpoint. */
10254
10255 int
10256 ada_exception_catchpoint_p (struct breakpoint *b)
10257 {
10258 return (b->ops == &catch_exception_breakpoint_ops
10259 || b->ops == &catch_exception_unhandled_breakpoint_ops
10260 || b->ops == &catch_assert_breakpoint_ops);
10261 }
10262
10263 /* Return a newly allocated copy of the first space-separated token
10264 in ARGSP, and then adjust ARGSP to point immediately after that
10265 token.
10266
10267 Return NULL if ARGPS does not contain any more tokens. */
10268
10269 static char *
10270 ada_get_next_arg (char **argsp)
10271 {
10272 char *args = *argsp;
10273 char *end;
10274 char *result;
10275
10276 /* Skip any leading white space. */
10277
10278 while (isspace (*args))
10279 args++;
10280
10281 if (args[0] == '\0')
10282 return NULL; /* No more arguments. */
10283
10284 /* Find the end of the current argument. */
10285
10286 end = args;
10287 while (*end != '\0' && !isspace (*end))
10288 end++;
10289
10290 /* Adjust ARGSP to point to the start of the next argument. */
10291
10292 *argsp = end;
10293
10294 /* Make a copy of the current argument and return it. */
10295
10296 result = xmalloc (end - args + 1);
10297 strncpy (result, args, end - args);
10298 result[end - args] = '\0';
10299
10300 return result;
10301 }
10302
10303 /* Split the arguments specified in a "catch exception" command.
10304 Set EX to the appropriate catchpoint type.
10305 Set EXP_STRING to the name of the specific exception if
10306 specified by the user. */
10307
10308 static void
10309 catch_ada_exception_command_split (char *args,
10310 enum exception_catchpoint_kind *ex,
10311 char **exp_string)
10312 {
10313 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
10314 char *exception_name;
10315
10316 exception_name = ada_get_next_arg (&args);
10317 make_cleanup (xfree, exception_name);
10318
10319 /* Check that we do not have any more arguments. Anything else
10320 is unexpected. */
10321
10322 while (isspace (*args))
10323 args++;
10324
10325 if (args[0] != '\0')
10326 error (_("Junk at end of expression"));
10327
10328 discard_cleanups (old_chain);
10329
10330 if (exception_name == NULL)
10331 {
10332 /* Catch all exceptions. */
10333 *ex = ex_catch_exception;
10334 *exp_string = NULL;
10335 }
10336 else if (strcmp (exception_name, "unhandled") == 0)
10337 {
10338 /* Catch unhandled exceptions. */
10339 *ex = ex_catch_exception_unhandled;
10340 *exp_string = NULL;
10341 }
10342 else
10343 {
10344 /* Catch a specific exception. */
10345 *ex = ex_catch_exception;
10346 *exp_string = exception_name;
10347 }
10348 }
10349
10350 /* Return the name of the symbol on which we should break in order to
10351 implement a catchpoint of the EX kind. */
10352
10353 static const char *
10354 ada_exception_sym_name (enum exception_catchpoint_kind ex)
10355 {
10356 gdb_assert (exception_info != NULL);
10357
10358 switch (ex)
10359 {
10360 case ex_catch_exception:
10361 return (exception_info->catch_exception_sym);
10362 break;
10363 case ex_catch_exception_unhandled:
10364 return (exception_info->catch_exception_unhandled_sym);
10365 break;
10366 case ex_catch_assert:
10367 return (exception_info->catch_assert_sym);
10368 break;
10369 default:
10370 internal_error (__FILE__, __LINE__,
10371 _("unexpected catchpoint kind (%d)"), ex);
10372 }
10373 }
10374
10375 /* Return the breakpoint ops "virtual table" used for catchpoints
10376 of the EX kind. */
10377
10378 static struct breakpoint_ops *
10379 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
10380 {
10381 switch (ex)
10382 {
10383 case ex_catch_exception:
10384 return (&catch_exception_breakpoint_ops);
10385 break;
10386 case ex_catch_exception_unhandled:
10387 return (&catch_exception_unhandled_breakpoint_ops);
10388 break;
10389 case ex_catch_assert:
10390 return (&catch_assert_breakpoint_ops);
10391 break;
10392 default:
10393 internal_error (__FILE__, __LINE__,
10394 _("unexpected catchpoint kind (%d)"), ex);
10395 }
10396 }
10397
10398 /* Return the condition that will be used to match the current exception
10399 being raised with the exception that the user wants to catch. This
10400 assumes that this condition is used when the inferior just triggered
10401 an exception catchpoint.
10402
10403 The string returned is a newly allocated string that needs to be
10404 deallocated later. */
10405
10406 static char *
10407 ada_exception_catchpoint_cond_string (const char *exp_string)
10408 {
10409 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
10410 }
10411
10412 /* Return the expression corresponding to COND_STRING evaluated at SAL. */
10413
10414 static struct expression *
10415 ada_parse_catchpoint_condition (char *cond_string,
10416 struct symtab_and_line sal)
10417 {
10418 return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
10419 }
10420
10421 /* Return the symtab_and_line that should be used to insert an exception
10422 catchpoint of the TYPE kind.
10423
10424 EX_STRING should contain the name of a specific exception
10425 that the catchpoint should catch, or NULL otherwise.
10426
10427 The idea behind all the remaining parameters is that their names match
10428 the name of certain fields in the breakpoint structure that are used to
10429 handle exception catchpoints. This function returns the value to which
10430 these fields should be set, depending on the type of catchpoint we need
10431 to create.
10432
10433 If COND and COND_STRING are both non-NULL, any value they might
10434 hold will be free'ed, and then replaced by newly allocated ones.
10435 These parameters are left untouched otherwise. */
10436
10437 static struct symtab_and_line
10438 ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
10439 char **addr_string, char **cond_string,
10440 struct expression **cond, struct breakpoint_ops **ops)
10441 {
10442 const char *sym_name;
10443 struct symbol *sym;
10444 struct symtab_and_line sal;
10445
10446 /* First, find out which exception support info to use. */
10447 ada_exception_support_info_sniffer ();
10448
10449 /* Then lookup the function on which we will break in order to catch
10450 the Ada exceptions requested by the user. */
10451
10452 sym_name = ada_exception_sym_name (ex);
10453 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
10454
10455 /* The symbol we're looking up is provided by a unit in the GNAT runtime
10456 that should be compiled with debugging information. As a result, we
10457 expect to find that symbol in the symtabs. If we don't find it, then
10458 the target most likely does not support Ada exceptions, or we cannot
10459 insert exception breakpoints yet, because the GNAT runtime hasn't been
10460 loaded yet. */
10461
10462 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
10463 in such a way that no debugging information is produced for the symbol
10464 we are looking for. In this case, we could search the minimal symbols
10465 as a fall-back mechanism. This would still be operating in degraded
10466 mode, however, as we would still be missing the debugging information
10467 that is needed in order to extract the name of the exception being
10468 raised (this name is printed in the catchpoint message, and is also
10469 used when trying to catch a specific exception). We do not handle
10470 this case for now. */
10471
10472 if (sym == NULL)
10473 error (_("Unable to break on '%s' in this configuration."), sym_name);
10474
10475 /* Make sure that the symbol we found corresponds to a function. */
10476 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
10477 error (_("Symbol \"%s\" is not a function (class = %d)"),
10478 sym_name, SYMBOL_CLASS (sym));
10479
10480 sal = find_function_start_sal (sym, 1);
10481
10482 /* Set ADDR_STRING. */
10483
10484 *addr_string = xstrdup (sym_name);
10485
10486 /* Set the COND and COND_STRING (if not NULL). */
10487
10488 if (cond_string != NULL && cond != NULL)
10489 {
10490 if (*cond_string != NULL)
10491 {
10492 xfree (*cond_string);
10493 *cond_string = NULL;
10494 }
10495 if (*cond != NULL)
10496 {
10497 xfree (*cond);
10498 *cond = NULL;
10499 }
10500 if (exp_string != NULL)
10501 {
10502 *cond_string = ada_exception_catchpoint_cond_string (exp_string);
10503 *cond = ada_parse_catchpoint_condition (*cond_string, sal);
10504 }
10505 }
10506
10507 /* Set OPS. */
10508 *ops = ada_exception_breakpoint_ops (ex);
10509
10510 return sal;
10511 }
10512
10513 /* Parse the arguments (ARGS) of the "catch exception" command.
10514
10515 Set TYPE to the appropriate exception catchpoint type.
10516 If the user asked the catchpoint to catch only a specific
10517 exception, then save the exception name in ADDR_STRING.
10518
10519 See ada_exception_sal for a description of all the remaining
10520 function arguments of this function. */
10521
10522 struct symtab_and_line
10523 ada_decode_exception_location (char *args, char **addr_string,
10524 char **exp_string, char **cond_string,
10525 struct expression **cond,
10526 struct breakpoint_ops **ops)
10527 {
10528 enum exception_catchpoint_kind ex;
10529
10530 catch_ada_exception_command_split (args, &ex, exp_string);
10531 return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
10532 cond, ops);
10533 }
10534
10535 struct symtab_and_line
10536 ada_decode_assert_location (char *args, char **addr_string,
10537 struct breakpoint_ops **ops)
10538 {
10539 /* Check that no argument where provided at the end of the command. */
10540
10541 if (args != NULL)
10542 {
10543 while (isspace (*args))
10544 args++;
10545 if (*args != '\0')
10546 error (_("Junk at end of arguments."));
10547 }
10548
10549 return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
10550 ops);
10551 }
10552
10553 /* Operators */
10554 /* Information about operators given special treatment in functions
10555 below. */
10556 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
10557
10558 #define ADA_OPERATORS \
10559 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
10560 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
10561 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
10562 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
10563 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
10564 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
10565 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
10566 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
10567 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
10568 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
10569 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
10570 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
10571 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
10572 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
10573 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
10574 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
10575 OP_DEFN (OP_OTHERS, 1, 1, 0) \
10576 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
10577 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
10578
10579 static void
10580 ada_operator_length (struct expression *exp, int pc, int *oplenp, int *argsp)
10581 {
10582 switch (exp->elts[pc - 1].opcode)
10583 {
10584 default:
10585 operator_length_standard (exp, pc, oplenp, argsp);
10586 break;
10587
10588 #define OP_DEFN(op, len, args, binop) \
10589 case op: *oplenp = len; *argsp = args; break;
10590 ADA_OPERATORS;
10591 #undef OP_DEFN
10592
10593 case OP_AGGREGATE:
10594 *oplenp = 3;
10595 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
10596 break;
10597
10598 case OP_CHOICES:
10599 *oplenp = 3;
10600 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
10601 break;
10602 }
10603 }
10604
10605 static char *
10606 ada_op_name (enum exp_opcode opcode)
10607 {
10608 switch (opcode)
10609 {
10610 default:
10611 return op_name_standard (opcode);
10612
10613 #define OP_DEFN(op, len, args, binop) case op: return #op;
10614 ADA_OPERATORS;
10615 #undef OP_DEFN
10616
10617 case OP_AGGREGATE:
10618 return "OP_AGGREGATE";
10619 case OP_CHOICES:
10620 return "OP_CHOICES";
10621 case OP_NAME:
10622 return "OP_NAME";
10623 }
10624 }
10625
10626 /* As for operator_length, but assumes PC is pointing at the first
10627 element of the operator, and gives meaningful results only for the
10628 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
10629
10630 static void
10631 ada_forward_operator_length (struct expression *exp, int pc,
10632 int *oplenp, int *argsp)
10633 {
10634 switch (exp->elts[pc].opcode)
10635 {
10636 default:
10637 *oplenp = *argsp = 0;
10638 break;
10639
10640 #define OP_DEFN(op, len, args, binop) \
10641 case op: *oplenp = len; *argsp = args; break;
10642 ADA_OPERATORS;
10643 #undef OP_DEFN
10644
10645 case OP_AGGREGATE:
10646 *oplenp = 3;
10647 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
10648 break;
10649
10650 case OP_CHOICES:
10651 *oplenp = 3;
10652 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
10653 break;
10654
10655 case OP_STRING:
10656 case OP_NAME:
10657 {
10658 int len = longest_to_int (exp->elts[pc + 1].longconst);
10659 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
10660 *argsp = 0;
10661 break;
10662 }
10663 }
10664 }
10665
10666 static int
10667 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
10668 {
10669 enum exp_opcode op = exp->elts[elt].opcode;
10670 int oplen, nargs;
10671 int pc = elt;
10672 int i;
10673
10674 ada_forward_operator_length (exp, elt, &oplen, &nargs);
10675
10676 switch (op)
10677 {
10678 /* Ada attributes ('Foo). */
10679 case OP_ATR_FIRST:
10680 case OP_ATR_LAST:
10681 case OP_ATR_LENGTH:
10682 case OP_ATR_IMAGE:
10683 case OP_ATR_MAX:
10684 case OP_ATR_MIN:
10685 case OP_ATR_MODULUS:
10686 case OP_ATR_POS:
10687 case OP_ATR_SIZE:
10688 case OP_ATR_TAG:
10689 case OP_ATR_VAL:
10690 break;
10691
10692 case UNOP_IN_RANGE:
10693 case UNOP_QUAL:
10694 /* XXX: gdb_sprint_host_address, type_sprint */
10695 fprintf_filtered (stream, _("Type @"));
10696 gdb_print_host_address (exp->elts[pc + 1].type, stream);
10697 fprintf_filtered (stream, " (");
10698 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
10699 fprintf_filtered (stream, ")");
10700 break;
10701 case BINOP_IN_BOUNDS:
10702 fprintf_filtered (stream, " (%d)",
10703 longest_to_int (exp->elts[pc + 2].longconst));
10704 break;
10705 case TERNOP_IN_RANGE:
10706 break;
10707
10708 case OP_AGGREGATE:
10709 case OP_OTHERS:
10710 case OP_DISCRETE_RANGE:
10711 case OP_POSITIONAL:
10712 case OP_CHOICES:
10713 break;
10714
10715 case OP_NAME:
10716 case OP_STRING:
10717 {
10718 char *name = &exp->elts[elt + 2].string;
10719 int len = longest_to_int (exp->elts[elt + 1].longconst);
10720 fprintf_filtered (stream, "Text: `%.*s'", len, name);
10721 break;
10722 }
10723
10724 default:
10725 return dump_subexp_body_standard (exp, stream, elt);
10726 }
10727
10728 elt += oplen;
10729 for (i = 0; i < nargs; i += 1)
10730 elt = dump_subexp (exp, stream, elt);
10731
10732 return elt;
10733 }
10734
10735 /* The Ada extension of print_subexp (q.v.). */
10736
10737 static void
10738 ada_print_subexp (struct expression *exp, int *pos,
10739 struct ui_file *stream, enum precedence prec)
10740 {
10741 int oplen, nargs, i;
10742 int pc = *pos;
10743 enum exp_opcode op = exp->elts[pc].opcode;
10744
10745 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10746
10747 *pos += oplen;
10748 switch (op)
10749 {
10750 default:
10751 *pos -= oplen;
10752 print_subexp_standard (exp, pos, stream, prec);
10753 return;
10754
10755 case OP_VAR_VALUE:
10756 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
10757 return;
10758
10759 case BINOP_IN_BOUNDS:
10760 /* XXX: sprint_subexp */
10761 print_subexp (exp, pos, stream, PREC_SUFFIX);
10762 fputs_filtered (" in ", stream);
10763 print_subexp (exp, pos, stream, PREC_SUFFIX);
10764 fputs_filtered ("'range", stream);
10765 if (exp->elts[pc + 1].longconst > 1)
10766 fprintf_filtered (stream, "(%ld)",
10767 (long) exp->elts[pc + 1].longconst);
10768 return;
10769
10770 case TERNOP_IN_RANGE:
10771 if (prec >= PREC_EQUAL)
10772 fputs_filtered ("(", stream);
10773 /* XXX: sprint_subexp */
10774 print_subexp (exp, pos, stream, PREC_SUFFIX);
10775 fputs_filtered (" in ", stream);
10776 print_subexp (exp, pos, stream, PREC_EQUAL);
10777 fputs_filtered (" .. ", stream);
10778 print_subexp (exp, pos, stream, PREC_EQUAL);
10779 if (prec >= PREC_EQUAL)
10780 fputs_filtered (")", stream);
10781 return;
10782
10783 case OP_ATR_FIRST:
10784 case OP_ATR_LAST:
10785 case OP_ATR_LENGTH:
10786 case OP_ATR_IMAGE:
10787 case OP_ATR_MAX:
10788 case OP_ATR_MIN:
10789 case OP_ATR_MODULUS:
10790 case OP_ATR_POS:
10791 case OP_ATR_SIZE:
10792 case OP_ATR_TAG:
10793 case OP_ATR_VAL:
10794 if (exp->elts[*pos].opcode == OP_TYPE)
10795 {
10796 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
10797 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
10798 *pos += 3;
10799 }
10800 else
10801 print_subexp (exp, pos, stream, PREC_SUFFIX);
10802 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
10803 if (nargs > 1)
10804 {
10805 int tem;
10806 for (tem = 1; tem < nargs; tem += 1)
10807 {
10808 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
10809 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
10810 }
10811 fputs_filtered (")", stream);
10812 }
10813 return;
10814
10815 case UNOP_QUAL:
10816 type_print (exp->elts[pc + 1].type, "", stream, 0);
10817 fputs_filtered ("'(", stream);
10818 print_subexp (exp, pos, stream, PREC_PREFIX);
10819 fputs_filtered (")", stream);
10820 return;
10821
10822 case UNOP_IN_RANGE:
10823 /* XXX: sprint_subexp */
10824 print_subexp (exp, pos, stream, PREC_SUFFIX);
10825 fputs_filtered (" in ", stream);
10826 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
10827 return;
10828
10829 case OP_DISCRETE_RANGE:
10830 print_subexp (exp, pos, stream, PREC_SUFFIX);
10831 fputs_filtered ("..", stream);
10832 print_subexp (exp, pos, stream, PREC_SUFFIX);
10833 return;
10834
10835 case OP_OTHERS:
10836 fputs_filtered ("others => ", stream);
10837 print_subexp (exp, pos, stream, PREC_SUFFIX);
10838 return;
10839
10840 case OP_CHOICES:
10841 for (i = 0; i < nargs-1; i += 1)
10842 {
10843 if (i > 0)
10844 fputs_filtered ("|", stream);
10845 print_subexp (exp, pos, stream, PREC_SUFFIX);
10846 }
10847 fputs_filtered (" => ", stream);
10848 print_subexp (exp, pos, stream, PREC_SUFFIX);
10849 return;
10850
10851 case OP_POSITIONAL:
10852 print_subexp (exp, pos, stream, PREC_SUFFIX);
10853 return;
10854
10855 case OP_AGGREGATE:
10856 fputs_filtered ("(", stream);
10857 for (i = 0; i < nargs; i += 1)
10858 {
10859 if (i > 0)
10860 fputs_filtered (", ", stream);
10861 print_subexp (exp, pos, stream, PREC_SUFFIX);
10862 }
10863 fputs_filtered (")", stream);
10864 return;
10865 }
10866 }
10867
10868 /* Table mapping opcodes into strings for printing operators
10869 and precedences of the operators. */
10870
10871 static const struct op_print ada_op_print_tab[] = {
10872 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
10873 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
10874 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
10875 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
10876 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
10877 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
10878 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
10879 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
10880 {"<=", BINOP_LEQ, PREC_ORDER, 0},
10881 {">=", BINOP_GEQ, PREC_ORDER, 0},
10882 {">", BINOP_GTR, PREC_ORDER, 0},
10883 {"<", BINOP_LESS, PREC_ORDER, 0},
10884 {">>", BINOP_RSH, PREC_SHIFT, 0},
10885 {"<<", BINOP_LSH, PREC_SHIFT, 0},
10886 {"+", BINOP_ADD, PREC_ADD, 0},
10887 {"-", BINOP_SUB, PREC_ADD, 0},
10888 {"&", BINOP_CONCAT, PREC_ADD, 0},
10889 {"*", BINOP_MUL, PREC_MUL, 0},
10890 {"/", BINOP_DIV, PREC_MUL, 0},
10891 {"rem", BINOP_REM, PREC_MUL, 0},
10892 {"mod", BINOP_MOD, PREC_MUL, 0},
10893 {"**", BINOP_EXP, PREC_REPEAT, 0},
10894 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
10895 {"-", UNOP_NEG, PREC_PREFIX, 0},
10896 {"+", UNOP_PLUS, PREC_PREFIX, 0},
10897 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
10898 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
10899 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
10900 {".all", UNOP_IND, PREC_SUFFIX, 1},
10901 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
10902 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
10903 {NULL, 0, 0, 0}
10904 };
10905 \f
10906 enum ada_primitive_types {
10907 ada_primitive_type_int,
10908 ada_primitive_type_long,
10909 ada_primitive_type_short,
10910 ada_primitive_type_char,
10911 ada_primitive_type_float,
10912 ada_primitive_type_double,
10913 ada_primitive_type_void,
10914 ada_primitive_type_long_long,
10915 ada_primitive_type_long_double,
10916 ada_primitive_type_natural,
10917 ada_primitive_type_positive,
10918 ada_primitive_type_system_address,
10919 nr_ada_primitive_types
10920 };
10921
10922 static void
10923 ada_language_arch_info (struct gdbarch *gdbarch,
10924 struct language_arch_info *lai)
10925 {
10926 const struct builtin_type *builtin = builtin_type (gdbarch);
10927 lai->primitive_type_vector
10928 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
10929 struct type *);
10930 lai->primitive_type_vector [ada_primitive_type_int] =
10931 init_type (TYPE_CODE_INT,
10932 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
10933 0, "integer", (struct objfile *) NULL);
10934 lai->primitive_type_vector [ada_primitive_type_long] =
10935 init_type (TYPE_CODE_INT,
10936 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
10937 0, "long_integer", (struct objfile *) NULL);
10938 lai->primitive_type_vector [ada_primitive_type_short] =
10939 init_type (TYPE_CODE_INT,
10940 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
10941 0, "short_integer", (struct objfile *) NULL);
10942 lai->string_char_type =
10943 lai->primitive_type_vector [ada_primitive_type_char] =
10944 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10945 0, "character", (struct objfile *) NULL);
10946 lai->primitive_type_vector [ada_primitive_type_float] =
10947 init_type (TYPE_CODE_FLT,
10948 gdbarch_float_bit (gdbarch)/ TARGET_CHAR_BIT,
10949 0, "float", (struct objfile *) NULL);
10950 lai->primitive_type_vector [ada_primitive_type_double] =
10951 init_type (TYPE_CODE_FLT,
10952 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
10953 0, "long_float", (struct objfile *) NULL);
10954 lai->primitive_type_vector [ada_primitive_type_long_long] =
10955 init_type (TYPE_CODE_INT,
10956 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
10957 0, "long_long_integer", (struct objfile *) NULL);
10958 lai->primitive_type_vector [ada_primitive_type_long_double] =
10959 init_type (TYPE_CODE_FLT,
10960 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
10961 0, "long_long_float", (struct objfile *) NULL);
10962 lai->primitive_type_vector [ada_primitive_type_natural] =
10963 init_type (TYPE_CODE_INT,
10964 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
10965 0, "natural", (struct objfile *) NULL);
10966 lai->primitive_type_vector [ada_primitive_type_positive] =
10967 init_type (TYPE_CODE_INT,
10968 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
10969 0, "positive", (struct objfile *) NULL);
10970 lai->primitive_type_vector [ada_primitive_type_void] = builtin->builtin_void;
10971
10972 lai->primitive_type_vector [ada_primitive_type_system_address] =
10973 lookup_pointer_type (init_type (TYPE_CODE_VOID, 1, 0, "void",
10974 (struct objfile *) NULL));
10975 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
10976 = "system__address";
10977 }
10978 \f
10979 /* Language vector */
10980
10981 /* Not really used, but needed in the ada_language_defn. */
10982
10983 static void
10984 emit_char (int c, struct ui_file *stream, int quoter)
10985 {
10986 ada_emit_char (c, stream, quoter, 1);
10987 }
10988
10989 static int
10990 parse (void)
10991 {
10992 warnings_issued = 0;
10993 return ada_parse ();
10994 }
10995
10996 static const struct exp_descriptor ada_exp_descriptor = {
10997 ada_print_subexp,
10998 ada_operator_length,
10999 ada_op_name,
11000 ada_dump_subexp_body,
11001 ada_evaluate_subexp
11002 };
11003
11004 const struct language_defn ada_language_defn = {
11005 "ada", /* Language name */
11006 language_ada,
11007 range_check_off,
11008 type_check_off,
11009 case_sensitive_on, /* Yes, Ada is case-insensitive, but
11010 that's not quite what this means. */
11011 array_row_major,
11012 &ada_exp_descriptor,
11013 parse,
11014 ada_error,
11015 resolve,
11016 ada_printchar, /* Print a character constant */
11017 ada_printstr, /* Function to print string constant */
11018 emit_char, /* Function to print single char (not used) */
11019 ada_print_type, /* Print a type using appropriate syntax */
11020 ada_val_print, /* Print a value using appropriate syntax */
11021 ada_value_print, /* Print a top-level value */
11022 NULL, /* Language specific skip_trampoline */
11023 NULL, /* name_of_this */
11024 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
11025 basic_lookup_transparent_type, /* lookup_transparent_type */
11026 ada_la_decode, /* Language specific symbol demangler */
11027 NULL, /* Language specific class_name_from_physname */
11028 ada_op_print_tab, /* expression operators for printing */
11029 0, /* c-style arrays */
11030 1, /* String lower bound */
11031 ada_get_gdb_completer_word_break_characters,
11032 ada_make_symbol_completion_list,
11033 ada_language_arch_info,
11034 ada_print_array_index,
11035 default_pass_by_reference,
11036 LANG_MAGIC
11037 };
11038
11039 void
11040 _initialize_ada_language (void)
11041 {
11042 add_language (&ada_language_defn);
11043
11044 varsize_limit = 65536;
11045
11046 obstack_init (&symbol_list_obstack);
11047
11048 decoded_names_store = htab_create_alloc
11049 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
11050 NULL, xcalloc, xfree);
11051
11052 observer_attach_executable_changed (ada_executable_changed_observer);
11053 }