Defer Ada character literal resolution
[binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2021 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <ctype.h>
23 #include "gdb_regex.h"
24 #include "frame.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcmd.h"
28 #include "expression.h"
29 #include "parser-defs.h"
30 #include "language.h"
31 #include "varobj.h"
32 #include "inferior.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "breakpoint.h"
36 #include "gdbcore.h"
37 #include "hashtab.h"
38 #include "gdb_obstack.h"
39 #include "ada-lang.h"
40 #include "completer.h"
41 #include "ui-out.h"
42 #include "block.h"
43 #include "infcall.h"
44 #include "annotate.h"
45 #include "valprint.h"
46 #include "source.h"
47 #include "observable.h"
48 #include "stack.h"
49 #include "typeprint.h"
50 #include "namespace.h"
51 #include "cli/cli-style.h"
52 #include "cli/cli-decode.h"
53
54 #include "value.h"
55 #include "mi/mi-common.h"
56 #include "arch-utils.h"
57 #include "cli/cli-utils.h"
58 #include "gdbsupport/function-view.h"
59 #include "gdbsupport/byte-vector.h"
60 #include <algorithm>
61 #include "ada-exp.h"
62
63 /* Define whether or not the C operator '/' truncates towards zero for
64 differently signed operands (truncation direction is undefined in C).
65 Copied from valarith.c. */
66
67 #ifndef TRUNCATION_TOWARDS_ZERO
68 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
69 #endif
70
71 static struct type *desc_base_type (struct type *);
72
73 static struct type *desc_bounds_type (struct type *);
74
75 static struct value *desc_bounds (struct value *);
76
77 static int fat_pntr_bounds_bitpos (struct type *);
78
79 static int fat_pntr_bounds_bitsize (struct type *);
80
81 static struct type *desc_data_target_type (struct type *);
82
83 static struct value *desc_data (struct value *);
84
85 static int fat_pntr_data_bitpos (struct type *);
86
87 static int fat_pntr_data_bitsize (struct type *);
88
89 static struct value *desc_one_bound (struct value *, int, int);
90
91 static int desc_bound_bitpos (struct type *, int, int);
92
93 static int desc_bound_bitsize (struct type *, int, int);
94
95 static struct type *desc_index_type (struct type *, int);
96
97 static int desc_arity (struct type *);
98
99 static int ada_args_match (struct symbol *, struct value **, int);
100
101 static struct value *make_array_descriptor (struct type *, struct value *);
102
103 static void ada_add_block_symbols (std::vector<struct block_symbol> &,
104 const struct block *,
105 const lookup_name_info &lookup_name,
106 domain_enum, struct objfile *);
107
108 static void ada_add_all_symbols (std::vector<struct block_symbol> &,
109 const struct block *,
110 const lookup_name_info &lookup_name,
111 domain_enum, int, int *);
112
113 static int is_nonfunction (const std::vector<struct block_symbol> &);
114
115 static void add_defn_to_vec (std::vector<struct block_symbol> &,
116 struct symbol *,
117 const struct block *);
118
119 static int possible_user_operator_p (enum exp_opcode, struct value **);
120
121 static const char *ada_decoded_op_name (enum exp_opcode);
122
123 static int numeric_type_p (struct type *);
124
125 static int integer_type_p (struct type *);
126
127 static int scalar_type_p (struct type *);
128
129 static int discrete_type_p (struct type *);
130
131 static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
132 int, int);
133
134 static struct type *ada_find_parallel_type_with_name (struct type *,
135 const char *);
136
137 static int is_dynamic_field (struct type *, int);
138
139 static struct type *to_fixed_variant_branch_type (struct type *,
140 const gdb_byte *,
141 CORE_ADDR, struct value *);
142
143 static struct type *to_fixed_array_type (struct type *, struct value *, int);
144
145 static struct type *to_fixed_range_type (struct type *, struct value *);
146
147 static struct type *to_static_fixed_type (struct type *);
148 static struct type *static_unwrap_type (struct type *type);
149
150 static struct value *unwrap_value (struct value *);
151
152 static struct type *constrained_packed_array_type (struct type *, long *);
153
154 static struct type *decode_constrained_packed_array_type (struct type *);
155
156 static long decode_packed_array_bitsize (struct type *);
157
158 static struct value *decode_constrained_packed_array (struct value *);
159
160 static int ada_is_unconstrained_packed_array_type (struct type *);
161
162 static struct value *value_subscript_packed (struct value *, int,
163 struct value **);
164
165 static struct value *coerce_unspec_val_to_type (struct value *,
166 struct type *);
167
168 static int lesseq_defined_than (struct symbol *, struct symbol *);
169
170 static int equiv_types (struct type *, struct type *);
171
172 static int is_name_suffix (const char *);
173
174 static int advance_wild_match (const char **, const char *, char);
175
176 static bool wild_match (const char *name, const char *patn);
177
178 static struct value *ada_coerce_ref (struct value *);
179
180 static LONGEST pos_atr (struct value *);
181
182 static struct value *val_atr (struct type *, LONGEST);
183
184 static struct symbol *standard_lookup (const char *, const struct block *,
185 domain_enum);
186
187 static struct value *ada_search_struct_field (const char *, struct value *, int,
188 struct type *);
189
190 static int find_struct_field (const char *, struct type *, int,
191 struct type **, int *, int *, int *, int *);
192
193 static int ada_resolve_function (std::vector<struct block_symbol> &,
194 struct value **, int, const char *,
195 struct type *, bool);
196
197 static int ada_is_direct_array_type (struct type *);
198
199 static struct value *ada_index_struct_field (int, struct value *, int,
200 struct type *);
201
202 static void add_component_interval (LONGEST, LONGEST, std::vector<LONGEST> &);
203
204
205 static struct type *ada_find_any_type (const char *name);
206
207 static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
208 (const lookup_name_info &lookup_name);
209
210 \f
211
212 /* The result of a symbol lookup to be stored in our symbol cache. */
213
214 struct cache_entry
215 {
216 /* The name used to perform the lookup. */
217 const char *name;
218 /* The namespace used during the lookup. */
219 domain_enum domain;
220 /* The symbol returned by the lookup, or NULL if no matching symbol
221 was found. */
222 struct symbol *sym;
223 /* The block where the symbol was found, or NULL if no matching
224 symbol was found. */
225 const struct block *block;
226 /* A pointer to the next entry with the same hash. */
227 struct cache_entry *next;
228 };
229
230 /* The Ada symbol cache, used to store the result of Ada-mode symbol
231 lookups in the course of executing the user's commands.
232
233 The cache is implemented using a simple, fixed-sized hash.
234 The size is fixed on the grounds that there are not likely to be
235 all that many symbols looked up during any given session, regardless
236 of the size of the symbol table. If we decide to go to a resizable
237 table, let's just use the stuff from libiberty instead. */
238
239 #define HASH_SIZE 1009
240
241 struct ada_symbol_cache
242 {
243 /* An obstack used to store the entries in our cache. */
244 struct auto_obstack cache_space;
245
246 /* The root of the hash table used to implement our symbol cache. */
247 struct cache_entry *root[HASH_SIZE] {};
248 };
249
250 /* Maximum-sized dynamic type. */
251 static unsigned int varsize_limit;
252
253 static const char ada_completer_word_break_characters[] =
254 #ifdef VMS
255 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
256 #else
257 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
258 #endif
259
260 /* The name of the symbol to use to get the name of the main subprogram. */
261 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
262 = "__gnat_ada_main_program_name";
263
264 /* Limit on the number of warnings to raise per expression evaluation. */
265 static int warning_limit = 2;
266
267 /* Number of warning messages issued; reset to 0 by cleanups after
268 expression evaluation. */
269 static int warnings_issued = 0;
270
271 static const char * const known_runtime_file_name_patterns[] = {
272 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
273 };
274
275 static const char * const known_auxiliary_function_name_patterns[] = {
276 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
277 };
278
279 /* Maintenance-related settings for this module. */
280
281 static struct cmd_list_element *maint_set_ada_cmdlist;
282 static struct cmd_list_element *maint_show_ada_cmdlist;
283
284 /* The "maintenance ada set/show ignore-descriptive-type" value. */
285
286 static bool ada_ignore_descriptive_types_p = false;
287
288 /* Inferior-specific data. */
289
290 /* Per-inferior data for this module. */
291
292 struct ada_inferior_data
293 {
294 /* The ada__tags__type_specific_data type, which is used when decoding
295 tagged types. With older versions of GNAT, this type was directly
296 accessible through a component ("tsd") in the object tag. But this
297 is no longer the case, so we cache it for each inferior. */
298 struct type *tsd_type = nullptr;
299
300 /* The exception_support_info data. This data is used to determine
301 how to implement support for Ada exception catchpoints in a given
302 inferior. */
303 const struct exception_support_info *exception_info = nullptr;
304 };
305
306 /* Our key to this module's inferior data. */
307 static const struct inferior_key<ada_inferior_data> ada_inferior_data;
308
309 /* Return our inferior data for the given inferior (INF).
310
311 This function always returns a valid pointer to an allocated
312 ada_inferior_data structure. If INF's inferior data has not
313 been previously set, this functions creates a new one with all
314 fields set to zero, sets INF's inferior to it, and then returns
315 a pointer to that newly allocated ada_inferior_data. */
316
317 static struct ada_inferior_data *
318 get_ada_inferior_data (struct inferior *inf)
319 {
320 struct ada_inferior_data *data;
321
322 data = ada_inferior_data.get (inf);
323 if (data == NULL)
324 data = ada_inferior_data.emplace (inf);
325
326 return data;
327 }
328
329 /* Perform all necessary cleanups regarding our module's inferior data
330 that is required after the inferior INF just exited. */
331
332 static void
333 ada_inferior_exit (struct inferior *inf)
334 {
335 ada_inferior_data.clear (inf);
336 }
337
338
339 /* program-space-specific data. */
340
341 /* This module's per-program-space data. */
342 struct ada_pspace_data
343 {
344 /* The Ada symbol cache. */
345 std::unique_ptr<ada_symbol_cache> sym_cache;
346 };
347
348 /* Key to our per-program-space data. */
349 static const struct program_space_key<ada_pspace_data> ada_pspace_data_handle;
350
351 /* Return this module's data for the given program space (PSPACE).
352 If not is found, add a zero'ed one now.
353
354 This function always returns a valid object. */
355
356 static struct ada_pspace_data *
357 get_ada_pspace_data (struct program_space *pspace)
358 {
359 struct ada_pspace_data *data;
360
361 data = ada_pspace_data_handle.get (pspace);
362 if (data == NULL)
363 data = ada_pspace_data_handle.emplace (pspace);
364
365 return data;
366 }
367
368 /* Utilities */
369
370 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
371 all typedef layers have been peeled. Otherwise, return TYPE.
372
373 Normally, we really expect a typedef type to only have 1 typedef layer.
374 In other words, we really expect the target type of a typedef type to be
375 a non-typedef type. This is particularly true for Ada units, because
376 the language does not have a typedef vs not-typedef distinction.
377 In that respect, the Ada compiler has been trying to eliminate as many
378 typedef definitions in the debugging information, since they generally
379 do not bring any extra information (we still use typedef under certain
380 circumstances related mostly to the GNAT encoding).
381
382 Unfortunately, we have seen situations where the debugging information
383 generated by the compiler leads to such multiple typedef layers. For
384 instance, consider the following example with stabs:
385
386 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
387 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
388
389 This is an error in the debugging information which causes type
390 pck__float_array___XUP to be defined twice, and the second time,
391 it is defined as a typedef of a typedef.
392
393 This is on the fringe of legality as far as debugging information is
394 concerned, and certainly unexpected. But it is easy to handle these
395 situations correctly, so we can afford to be lenient in this case. */
396
397 static struct type *
398 ada_typedef_target_type (struct type *type)
399 {
400 while (type->code () == TYPE_CODE_TYPEDEF)
401 type = TYPE_TARGET_TYPE (type);
402 return type;
403 }
404
405 /* Given DECODED_NAME a string holding a symbol name in its
406 decoded form (ie using the Ada dotted notation), returns
407 its unqualified name. */
408
409 static const char *
410 ada_unqualified_name (const char *decoded_name)
411 {
412 const char *result;
413
414 /* If the decoded name starts with '<', it means that the encoded
415 name does not follow standard naming conventions, and thus that
416 it is not your typical Ada symbol name. Trying to unqualify it
417 is therefore pointless and possibly erroneous. */
418 if (decoded_name[0] == '<')
419 return decoded_name;
420
421 result = strrchr (decoded_name, '.');
422 if (result != NULL)
423 result++; /* Skip the dot... */
424 else
425 result = decoded_name;
426
427 return result;
428 }
429
430 /* Return a string starting with '<', followed by STR, and '>'. */
431
432 static std::string
433 add_angle_brackets (const char *str)
434 {
435 return string_printf ("<%s>", str);
436 }
437
438 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
439 suffix of FIELD_NAME beginning "___". */
440
441 static int
442 field_name_match (const char *field_name, const char *target)
443 {
444 int len = strlen (target);
445
446 return
447 (strncmp (field_name, target, len) == 0
448 && (field_name[len] == '\0'
449 || (startswith (field_name + len, "___")
450 && strcmp (field_name + strlen (field_name) - 6,
451 "___XVN") != 0)));
452 }
453
454
455 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
456 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
457 and return its index. This function also handles fields whose name
458 have ___ suffixes because the compiler sometimes alters their name
459 by adding such a suffix to represent fields with certain constraints.
460 If the field could not be found, return a negative number if
461 MAYBE_MISSING is set. Otherwise raise an error. */
462
463 int
464 ada_get_field_index (const struct type *type, const char *field_name,
465 int maybe_missing)
466 {
467 int fieldno;
468 struct type *struct_type = check_typedef ((struct type *) type);
469
470 for (fieldno = 0; fieldno < struct_type->num_fields (); fieldno++)
471 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
472 return fieldno;
473
474 if (!maybe_missing)
475 error (_("Unable to find field %s in struct %s. Aborting"),
476 field_name, struct_type->name ());
477
478 return -1;
479 }
480
481 /* The length of the prefix of NAME prior to any "___" suffix. */
482
483 int
484 ada_name_prefix_len (const char *name)
485 {
486 if (name == NULL)
487 return 0;
488 else
489 {
490 const char *p = strstr (name, "___");
491
492 if (p == NULL)
493 return strlen (name);
494 else
495 return p - name;
496 }
497 }
498
499 /* Return non-zero if SUFFIX is a suffix of STR.
500 Return zero if STR is null. */
501
502 static int
503 is_suffix (const char *str, const char *suffix)
504 {
505 int len1, len2;
506
507 if (str == NULL)
508 return 0;
509 len1 = strlen (str);
510 len2 = strlen (suffix);
511 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
512 }
513
514 /* The contents of value VAL, treated as a value of type TYPE. The
515 result is an lval in memory if VAL is. */
516
517 static struct value *
518 coerce_unspec_val_to_type (struct value *val, struct type *type)
519 {
520 type = ada_check_typedef (type);
521 if (value_type (val) == type)
522 return val;
523 else
524 {
525 struct value *result;
526
527 /* Make sure that the object size is not unreasonable before
528 trying to allocate some memory for it. */
529 ada_ensure_varsize_limit (type);
530
531 if (value_optimized_out (val))
532 result = allocate_optimized_out_value (type);
533 else if (value_lazy (val)
534 /* Be careful not to make a lazy not_lval value. */
535 || (VALUE_LVAL (val) != not_lval
536 && TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val))))
537 result = allocate_value_lazy (type);
538 else
539 {
540 result = allocate_value (type);
541 value_contents_copy (result, 0, val, 0, TYPE_LENGTH (type));
542 }
543 set_value_component_location (result, val);
544 set_value_bitsize (result, value_bitsize (val));
545 set_value_bitpos (result, value_bitpos (val));
546 if (VALUE_LVAL (result) == lval_memory)
547 set_value_address (result, value_address (val));
548 return result;
549 }
550 }
551
552 static const gdb_byte *
553 cond_offset_host (const gdb_byte *valaddr, long offset)
554 {
555 if (valaddr == NULL)
556 return NULL;
557 else
558 return valaddr + offset;
559 }
560
561 static CORE_ADDR
562 cond_offset_target (CORE_ADDR address, long offset)
563 {
564 if (address == 0)
565 return 0;
566 else
567 return address + offset;
568 }
569
570 /* Issue a warning (as for the definition of warning in utils.c, but
571 with exactly one argument rather than ...), unless the limit on the
572 number of warnings has passed during the evaluation of the current
573 expression. */
574
575 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
576 provided by "complaint". */
577 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
578
579 static void
580 lim_warning (const char *format, ...)
581 {
582 va_list args;
583
584 va_start (args, format);
585 warnings_issued += 1;
586 if (warnings_issued <= warning_limit)
587 vwarning (format, args);
588
589 va_end (args);
590 }
591
592 /* Issue an error if the size of an object of type T is unreasonable,
593 i.e. if it would be a bad idea to allocate a value of this type in
594 GDB. */
595
596 void
597 ada_ensure_varsize_limit (const struct type *type)
598 {
599 if (TYPE_LENGTH (type) > varsize_limit)
600 error (_("object size is larger than varsize-limit"));
601 }
602
603 /* Maximum value of a SIZE-byte signed integer type. */
604 static LONGEST
605 max_of_size (int size)
606 {
607 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
608
609 return top_bit | (top_bit - 1);
610 }
611
612 /* Minimum value of a SIZE-byte signed integer type. */
613 static LONGEST
614 min_of_size (int size)
615 {
616 return -max_of_size (size) - 1;
617 }
618
619 /* Maximum value of a SIZE-byte unsigned integer type. */
620 static ULONGEST
621 umax_of_size (int size)
622 {
623 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
624
625 return top_bit | (top_bit - 1);
626 }
627
628 /* Maximum value of integral type T, as a signed quantity. */
629 static LONGEST
630 max_of_type (struct type *t)
631 {
632 if (t->is_unsigned ())
633 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
634 else
635 return max_of_size (TYPE_LENGTH (t));
636 }
637
638 /* Minimum value of integral type T, as a signed quantity. */
639 static LONGEST
640 min_of_type (struct type *t)
641 {
642 if (t->is_unsigned ())
643 return 0;
644 else
645 return min_of_size (TYPE_LENGTH (t));
646 }
647
648 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
649 LONGEST
650 ada_discrete_type_high_bound (struct type *type)
651 {
652 type = resolve_dynamic_type (type, {}, 0);
653 switch (type->code ())
654 {
655 case TYPE_CODE_RANGE:
656 {
657 const dynamic_prop &high = type->bounds ()->high;
658
659 if (high.kind () == PROP_CONST)
660 return high.const_val ();
661 else
662 {
663 gdb_assert (high.kind () == PROP_UNDEFINED);
664
665 /* This happens when trying to evaluate a type's dynamic bound
666 without a live target. There is nothing relevant for us to
667 return here, so return 0. */
668 return 0;
669 }
670 }
671 case TYPE_CODE_ENUM:
672 return TYPE_FIELD_ENUMVAL (type, type->num_fields () - 1);
673 case TYPE_CODE_BOOL:
674 return 1;
675 case TYPE_CODE_CHAR:
676 case TYPE_CODE_INT:
677 return max_of_type (type);
678 default:
679 error (_("Unexpected type in ada_discrete_type_high_bound."));
680 }
681 }
682
683 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
684 LONGEST
685 ada_discrete_type_low_bound (struct type *type)
686 {
687 type = resolve_dynamic_type (type, {}, 0);
688 switch (type->code ())
689 {
690 case TYPE_CODE_RANGE:
691 {
692 const dynamic_prop &low = type->bounds ()->low;
693
694 if (low.kind () == PROP_CONST)
695 return low.const_val ();
696 else
697 {
698 gdb_assert (low.kind () == PROP_UNDEFINED);
699
700 /* This happens when trying to evaluate a type's dynamic bound
701 without a live target. There is nothing relevant for us to
702 return here, so return 0. */
703 return 0;
704 }
705 }
706 case TYPE_CODE_ENUM:
707 return TYPE_FIELD_ENUMVAL (type, 0);
708 case TYPE_CODE_BOOL:
709 return 0;
710 case TYPE_CODE_CHAR:
711 case TYPE_CODE_INT:
712 return min_of_type (type);
713 default:
714 error (_("Unexpected type in ada_discrete_type_low_bound."));
715 }
716 }
717
718 /* The identity on non-range types. For range types, the underlying
719 non-range scalar type. */
720
721 static struct type *
722 get_base_type (struct type *type)
723 {
724 while (type != NULL && type->code () == TYPE_CODE_RANGE)
725 {
726 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
727 return type;
728 type = TYPE_TARGET_TYPE (type);
729 }
730 return type;
731 }
732
733 /* Return a decoded version of the given VALUE. This means returning
734 a value whose type is obtained by applying all the GNAT-specific
735 encodings, making the resulting type a static but standard description
736 of the initial type. */
737
738 struct value *
739 ada_get_decoded_value (struct value *value)
740 {
741 struct type *type = ada_check_typedef (value_type (value));
742
743 if (ada_is_array_descriptor_type (type)
744 || (ada_is_constrained_packed_array_type (type)
745 && type->code () != TYPE_CODE_PTR))
746 {
747 if (type->code () == TYPE_CODE_TYPEDEF) /* array access type. */
748 value = ada_coerce_to_simple_array_ptr (value);
749 else
750 value = ada_coerce_to_simple_array (value);
751 }
752 else
753 value = ada_to_fixed_value (value);
754
755 return value;
756 }
757
758 /* Same as ada_get_decoded_value, but with the given TYPE.
759 Because there is no associated actual value for this type,
760 the resulting type might be a best-effort approximation in
761 the case of dynamic types. */
762
763 struct type *
764 ada_get_decoded_type (struct type *type)
765 {
766 type = to_static_fixed_type (type);
767 if (ada_is_constrained_packed_array_type (type))
768 type = ada_coerce_to_simple_array_type (type);
769 return type;
770 }
771
772 \f
773
774 /* Language Selection */
775
776 /* If the main program is in Ada, return language_ada, otherwise return LANG
777 (the main program is in Ada iif the adainit symbol is found). */
778
779 static enum language
780 ada_update_initial_language (enum language lang)
781 {
782 if (lookup_minimal_symbol ("adainit", NULL, NULL).minsym != NULL)
783 return language_ada;
784
785 return lang;
786 }
787
788 /* If the main procedure is written in Ada, then return its name.
789 The result is good until the next call. Return NULL if the main
790 procedure doesn't appear to be in Ada. */
791
792 char *
793 ada_main_name (void)
794 {
795 struct bound_minimal_symbol msym;
796 static gdb::unique_xmalloc_ptr<char> main_program_name;
797
798 /* For Ada, the name of the main procedure is stored in a specific
799 string constant, generated by the binder. Look for that symbol,
800 extract its address, and then read that string. If we didn't find
801 that string, then most probably the main procedure is not written
802 in Ada. */
803 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
804
805 if (msym.minsym != NULL)
806 {
807 CORE_ADDR main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
808 if (main_program_name_addr == 0)
809 error (_("Invalid address for Ada main program name."));
810
811 main_program_name = target_read_string (main_program_name_addr, 1024);
812 return main_program_name.get ();
813 }
814
815 /* The main procedure doesn't seem to be in Ada. */
816 return NULL;
817 }
818 \f
819 /* Symbols */
820
821 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
822 of NULLs. */
823
824 const struct ada_opname_map ada_opname_table[] = {
825 {"Oadd", "\"+\"", BINOP_ADD},
826 {"Osubtract", "\"-\"", BINOP_SUB},
827 {"Omultiply", "\"*\"", BINOP_MUL},
828 {"Odivide", "\"/\"", BINOP_DIV},
829 {"Omod", "\"mod\"", BINOP_MOD},
830 {"Orem", "\"rem\"", BINOP_REM},
831 {"Oexpon", "\"**\"", BINOP_EXP},
832 {"Olt", "\"<\"", BINOP_LESS},
833 {"Ole", "\"<=\"", BINOP_LEQ},
834 {"Ogt", "\">\"", BINOP_GTR},
835 {"Oge", "\">=\"", BINOP_GEQ},
836 {"Oeq", "\"=\"", BINOP_EQUAL},
837 {"One", "\"/=\"", BINOP_NOTEQUAL},
838 {"Oand", "\"and\"", BINOP_BITWISE_AND},
839 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
840 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
841 {"Oconcat", "\"&\"", BINOP_CONCAT},
842 {"Oabs", "\"abs\"", UNOP_ABS},
843 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
844 {"Oadd", "\"+\"", UNOP_PLUS},
845 {"Osubtract", "\"-\"", UNOP_NEG},
846 {NULL, NULL}
847 };
848
849 /* The "encoded" form of DECODED, according to GNAT conventions. If
850 THROW_ERRORS, throw an error if invalid operator name is found.
851 Otherwise, return the empty string in that case. */
852
853 static std::string
854 ada_encode_1 (const char *decoded, bool throw_errors)
855 {
856 if (decoded == NULL)
857 return {};
858
859 std::string encoding_buffer;
860 for (const char *p = decoded; *p != '\0'; p += 1)
861 {
862 if (*p == '.')
863 encoding_buffer.append ("__");
864 else if (*p == '"')
865 {
866 const struct ada_opname_map *mapping;
867
868 for (mapping = ada_opname_table;
869 mapping->encoded != NULL
870 && !startswith (p, mapping->decoded); mapping += 1)
871 ;
872 if (mapping->encoded == NULL)
873 {
874 if (throw_errors)
875 error (_("invalid Ada operator name: %s"), p);
876 else
877 return {};
878 }
879 encoding_buffer.append (mapping->encoded);
880 break;
881 }
882 else
883 encoding_buffer.push_back (*p);
884 }
885
886 return encoding_buffer;
887 }
888
889 /* The "encoded" form of DECODED, according to GNAT conventions. */
890
891 std::string
892 ada_encode (const char *decoded)
893 {
894 return ada_encode_1 (decoded, true);
895 }
896
897 /* Return NAME folded to lower case, or, if surrounded by single
898 quotes, unfolded, but with the quotes stripped away. Result good
899 to next call. */
900
901 static const char *
902 ada_fold_name (gdb::string_view name)
903 {
904 static std::string fold_storage;
905
906 if (!name.empty () && name[0] == '\'')
907 fold_storage = gdb::to_string (name.substr (1, name.size () - 2));
908 else
909 {
910 fold_storage = gdb::to_string (name);
911 for (int i = 0; i < name.size (); i += 1)
912 fold_storage[i] = tolower (fold_storage[i]);
913 }
914
915 return fold_storage.c_str ();
916 }
917
918 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
919
920 static int
921 is_lower_alphanum (const char c)
922 {
923 return (isdigit (c) || (isalpha (c) && islower (c)));
924 }
925
926 /* ENCODED is the linkage name of a symbol and LEN contains its length.
927 This function saves in LEN the length of that same symbol name but
928 without either of these suffixes:
929 . .{DIGIT}+
930 . ${DIGIT}+
931 . ___{DIGIT}+
932 . __{DIGIT}+.
933
934 These are suffixes introduced by the compiler for entities such as
935 nested subprogram for instance, in order to avoid name clashes.
936 They do not serve any purpose for the debugger. */
937
938 static void
939 ada_remove_trailing_digits (const char *encoded, int *len)
940 {
941 if (*len > 1 && isdigit (encoded[*len - 1]))
942 {
943 int i = *len - 2;
944
945 while (i > 0 && isdigit (encoded[i]))
946 i--;
947 if (i >= 0 && encoded[i] == '.')
948 *len = i;
949 else if (i >= 0 && encoded[i] == '$')
950 *len = i;
951 else if (i >= 2 && startswith (encoded + i - 2, "___"))
952 *len = i - 2;
953 else if (i >= 1 && startswith (encoded + i - 1, "__"))
954 *len = i - 1;
955 }
956 }
957
958 /* Remove the suffix introduced by the compiler for protected object
959 subprograms. */
960
961 static void
962 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
963 {
964 /* Remove trailing N. */
965
966 /* Protected entry subprograms are broken into two
967 separate subprograms: The first one is unprotected, and has
968 a 'N' suffix; the second is the protected version, and has
969 the 'P' suffix. The second calls the first one after handling
970 the protection. Since the P subprograms are internally generated,
971 we leave these names undecoded, giving the user a clue that this
972 entity is internal. */
973
974 if (*len > 1
975 && encoded[*len - 1] == 'N'
976 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
977 *len = *len - 1;
978 }
979
980 /* See ada-lang.h. */
981
982 std::string
983 ada_decode (const char *encoded, bool wrap)
984 {
985 int i, j;
986 int len0;
987 const char *p;
988 int at_start_name;
989 std::string decoded;
990
991 /* With function descriptors on PPC64, the value of a symbol named
992 ".FN", if it exists, is the entry point of the function "FN". */
993 if (encoded[0] == '.')
994 encoded += 1;
995
996 /* The name of the Ada main procedure starts with "_ada_".
997 This prefix is not part of the decoded name, so skip this part
998 if we see this prefix. */
999 if (startswith (encoded, "_ada_"))
1000 encoded += 5;
1001
1002 /* If the name starts with '_', then it is not a properly encoded
1003 name, so do not attempt to decode it. Similarly, if the name
1004 starts with '<', the name should not be decoded. */
1005 if (encoded[0] == '_' || encoded[0] == '<')
1006 goto Suppress;
1007
1008 len0 = strlen (encoded);
1009
1010 ada_remove_trailing_digits (encoded, &len0);
1011 ada_remove_po_subprogram_suffix (encoded, &len0);
1012
1013 /* Remove the ___X.* suffix if present. Do not forget to verify that
1014 the suffix is located before the current "end" of ENCODED. We want
1015 to avoid re-matching parts of ENCODED that have previously been
1016 marked as discarded (by decrementing LEN0). */
1017 p = strstr (encoded, "___");
1018 if (p != NULL && p - encoded < len0 - 3)
1019 {
1020 if (p[3] == 'X')
1021 len0 = p - encoded;
1022 else
1023 goto Suppress;
1024 }
1025
1026 /* Remove any trailing TKB suffix. It tells us that this symbol
1027 is for the body of a task, but that information does not actually
1028 appear in the decoded name. */
1029
1030 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1031 len0 -= 3;
1032
1033 /* Remove any trailing TB suffix. The TB suffix is slightly different
1034 from the TKB suffix because it is used for non-anonymous task
1035 bodies. */
1036
1037 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1038 len0 -= 2;
1039
1040 /* Remove trailing "B" suffixes. */
1041 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1042
1043 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1044 len0 -= 1;
1045
1046 /* Make decoded big enough for possible expansion by operator name. */
1047
1048 decoded.resize (2 * len0 + 1, 'X');
1049
1050 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1051
1052 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1053 {
1054 i = len0 - 2;
1055 while ((i >= 0 && isdigit (encoded[i]))
1056 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1057 i -= 1;
1058 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1059 len0 = i - 1;
1060 else if (encoded[i] == '$')
1061 len0 = i;
1062 }
1063
1064 /* The first few characters that are not alphabetic are not part
1065 of any encoding we use, so we can copy them over verbatim. */
1066
1067 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1068 decoded[j] = encoded[i];
1069
1070 at_start_name = 1;
1071 while (i < len0)
1072 {
1073 /* Is this a symbol function? */
1074 if (at_start_name && encoded[i] == 'O')
1075 {
1076 int k;
1077
1078 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1079 {
1080 int op_len = strlen (ada_opname_table[k].encoded);
1081 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1082 op_len - 1) == 0)
1083 && !isalnum (encoded[i + op_len]))
1084 {
1085 strcpy (&decoded.front() + j, ada_opname_table[k].decoded);
1086 at_start_name = 0;
1087 i += op_len;
1088 j += strlen (ada_opname_table[k].decoded);
1089 break;
1090 }
1091 }
1092 if (ada_opname_table[k].encoded != NULL)
1093 continue;
1094 }
1095 at_start_name = 0;
1096
1097 /* Replace "TK__" with "__", which will eventually be translated
1098 into "." (just below). */
1099
1100 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1101 i += 2;
1102
1103 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1104 be translated into "." (just below). These are internal names
1105 generated for anonymous blocks inside which our symbol is nested. */
1106
1107 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1108 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1109 && isdigit (encoded [i+4]))
1110 {
1111 int k = i + 5;
1112
1113 while (k < len0 && isdigit (encoded[k]))
1114 k++; /* Skip any extra digit. */
1115
1116 /* Double-check that the "__B_{DIGITS}+" sequence we found
1117 is indeed followed by "__". */
1118 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1119 i = k;
1120 }
1121
1122 /* Remove _E{DIGITS}+[sb] */
1123
1124 /* Just as for protected object subprograms, there are 2 categories
1125 of subprograms created by the compiler for each entry. The first
1126 one implements the actual entry code, and has a suffix following
1127 the convention above; the second one implements the barrier and
1128 uses the same convention as above, except that the 'E' is replaced
1129 by a 'B'.
1130
1131 Just as above, we do not decode the name of barrier functions
1132 to give the user a clue that the code he is debugging has been
1133 internally generated. */
1134
1135 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1136 && isdigit (encoded[i+2]))
1137 {
1138 int k = i + 3;
1139
1140 while (k < len0 && isdigit (encoded[k]))
1141 k++;
1142
1143 if (k < len0
1144 && (encoded[k] == 'b' || encoded[k] == 's'))
1145 {
1146 k++;
1147 /* Just as an extra precaution, make sure that if this
1148 suffix is followed by anything else, it is a '_'.
1149 Otherwise, we matched this sequence by accident. */
1150 if (k == len0
1151 || (k < len0 && encoded[k] == '_'))
1152 i = k;
1153 }
1154 }
1155
1156 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1157 the GNAT front-end in protected object subprograms. */
1158
1159 if (i < len0 + 3
1160 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1161 {
1162 /* Backtrack a bit up until we reach either the begining of
1163 the encoded name, or "__". Make sure that we only find
1164 digits or lowercase characters. */
1165 const char *ptr = encoded + i - 1;
1166
1167 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1168 ptr--;
1169 if (ptr < encoded
1170 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1171 i++;
1172 }
1173
1174 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1175 {
1176 /* This is a X[bn]* sequence not separated from the previous
1177 part of the name with a non-alpha-numeric character (in other
1178 words, immediately following an alpha-numeric character), then
1179 verify that it is placed at the end of the encoded name. If
1180 not, then the encoding is not valid and we should abort the
1181 decoding. Otherwise, just skip it, it is used in body-nested
1182 package names. */
1183 do
1184 i += 1;
1185 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1186 if (i < len0)
1187 goto Suppress;
1188 }
1189 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1190 {
1191 /* Replace '__' by '.'. */
1192 decoded[j] = '.';
1193 at_start_name = 1;
1194 i += 2;
1195 j += 1;
1196 }
1197 else
1198 {
1199 /* It's a character part of the decoded name, so just copy it
1200 over. */
1201 decoded[j] = encoded[i];
1202 i += 1;
1203 j += 1;
1204 }
1205 }
1206 decoded.resize (j);
1207
1208 /* Decoded names should never contain any uppercase character.
1209 Double-check this, and abort the decoding if we find one. */
1210
1211 for (i = 0; i < decoded.length(); ++i)
1212 if (isupper (decoded[i]) || decoded[i] == ' ')
1213 goto Suppress;
1214
1215 return decoded;
1216
1217 Suppress:
1218 if (!wrap)
1219 return {};
1220
1221 if (encoded[0] == '<')
1222 decoded = encoded;
1223 else
1224 decoded = '<' + std::string(encoded) + '>';
1225 return decoded;
1226 }
1227
1228 /* Table for keeping permanent unique copies of decoded names. Once
1229 allocated, names in this table are never released. While this is a
1230 storage leak, it should not be significant unless there are massive
1231 changes in the set of decoded names in successive versions of a
1232 symbol table loaded during a single session. */
1233 static struct htab *decoded_names_store;
1234
1235 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1236 in the language-specific part of GSYMBOL, if it has not been
1237 previously computed. Tries to save the decoded name in the same
1238 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1239 in any case, the decoded symbol has a lifetime at least that of
1240 GSYMBOL).
1241 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1242 const, but nevertheless modified to a semantically equivalent form
1243 when a decoded name is cached in it. */
1244
1245 const char *
1246 ada_decode_symbol (const struct general_symbol_info *arg)
1247 {
1248 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1249 const char **resultp =
1250 &gsymbol->language_specific.demangled_name;
1251
1252 if (!gsymbol->ada_mangled)
1253 {
1254 std::string decoded = ada_decode (gsymbol->linkage_name ());
1255 struct obstack *obstack = gsymbol->language_specific.obstack;
1256
1257 gsymbol->ada_mangled = 1;
1258
1259 if (obstack != NULL)
1260 *resultp = obstack_strdup (obstack, decoded.c_str ());
1261 else
1262 {
1263 /* Sometimes, we can't find a corresponding objfile, in
1264 which case, we put the result on the heap. Since we only
1265 decode when needed, we hope this usually does not cause a
1266 significant memory leak (FIXME). */
1267
1268 char **slot = (char **) htab_find_slot (decoded_names_store,
1269 decoded.c_str (), INSERT);
1270
1271 if (*slot == NULL)
1272 *slot = xstrdup (decoded.c_str ());
1273 *resultp = *slot;
1274 }
1275 }
1276
1277 return *resultp;
1278 }
1279
1280 static char *
1281 ada_la_decode (const char *encoded, int options)
1282 {
1283 return xstrdup (ada_decode (encoded).c_str ());
1284 }
1285
1286 \f
1287
1288 /* Arrays */
1289
1290 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1291 generated by the GNAT compiler to describe the index type used
1292 for each dimension of an array, check whether it follows the latest
1293 known encoding. If not, fix it up to conform to the latest encoding.
1294 Otherwise, do nothing. This function also does nothing if
1295 INDEX_DESC_TYPE is NULL.
1296
1297 The GNAT encoding used to describe the array index type evolved a bit.
1298 Initially, the information would be provided through the name of each
1299 field of the structure type only, while the type of these fields was
1300 described as unspecified and irrelevant. The debugger was then expected
1301 to perform a global type lookup using the name of that field in order
1302 to get access to the full index type description. Because these global
1303 lookups can be very expensive, the encoding was later enhanced to make
1304 the global lookup unnecessary by defining the field type as being
1305 the full index type description.
1306
1307 The purpose of this routine is to allow us to support older versions
1308 of the compiler by detecting the use of the older encoding, and by
1309 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1310 we essentially replace each field's meaningless type by the associated
1311 index subtype). */
1312
1313 void
1314 ada_fixup_array_indexes_type (struct type *index_desc_type)
1315 {
1316 int i;
1317
1318 if (index_desc_type == NULL)
1319 return;
1320 gdb_assert (index_desc_type->num_fields () > 0);
1321
1322 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1323 to check one field only, no need to check them all). If not, return
1324 now.
1325
1326 If our INDEX_DESC_TYPE was generated using the older encoding,
1327 the field type should be a meaningless integer type whose name
1328 is not equal to the field name. */
1329 if (index_desc_type->field (0).type ()->name () != NULL
1330 && strcmp (index_desc_type->field (0).type ()->name (),
1331 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1332 return;
1333
1334 /* Fixup each field of INDEX_DESC_TYPE. */
1335 for (i = 0; i < index_desc_type->num_fields (); i++)
1336 {
1337 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1338 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1339
1340 if (raw_type)
1341 index_desc_type->field (i).set_type (raw_type);
1342 }
1343 }
1344
1345 /* The desc_* routines return primitive portions of array descriptors
1346 (fat pointers). */
1347
1348 /* The descriptor or array type, if any, indicated by TYPE; removes
1349 level of indirection, if needed. */
1350
1351 static struct type *
1352 desc_base_type (struct type *type)
1353 {
1354 if (type == NULL)
1355 return NULL;
1356 type = ada_check_typedef (type);
1357 if (type->code () == TYPE_CODE_TYPEDEF)
1358 type = ada_typedef_target_type (type);
1359
1360 if (type != NULL
1361 && (type->code () == TYPE_CODE_PTR
1362 || type->code () == TYPE_CODE_REF))
1363 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1364 else
1365 return type;
1366 }
1367
1368 /* True iff TYPE indicates a "thin" array pointer type. */
1369
1370 static int
1371 is_thin_pntr (struct type *type)
1372 {
1373 return
1374 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1375 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1376 }
1377
1378 /* The descriptor type for thin pointer type TYPE. */
1379
1380 static struct type *
1381 thin_descriptor_type (struct type *type)
1382 {
1383 struct type *base_type = desc_base_type (type);
1384
1385 if (base_type == NULL)
1386 return NULL;
1387 if (is_suffix (ada_type_name (base_type), "___XVE"))
1388 return base_type;
1389 else
1390 {
1391 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1392
1393 if (alt_type == NULL)
1394 return base_type;
1395 else
1396 return alt_type;
1397 }
1398 }
1399
1400 /* A pointer to the array data for thin-pointer value VAL. */
1401
1402 static struct value *
1403 thin_data_pntr (struct value *val)
1404 {
1405 struct type *type = ada_check_typedef (value_type (val));
1406 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1407
1408 data_type = lookup_pointer_type (data_type);
1409
1410 if (type->code () == TYPE_CODE_PTR)
1411 return value_cast (data_type, value_copy (val));
1412 else
1413 return value_from_longest (data_type, value_address (val));
1414 }
1415
1416 /* True iff TYPE indicates a "thick" array pointer type. */
1417
1418 static int
1419 is_thick_pntr (struct type *type)
1420 {
1421 type = desc_base_type (type);
1422 return (type != NULL && type->code () == TYPE_CODE_STRUCT
1423 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1424 }
1425
1426 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1427 pointer to one, the type of its bounds data; otherwise, NULL. */
1428
1429 static struct type *
1430 desc_bounds_type (struct type *type)
1431 {
1432 struct type *r;
1433
1434 type = desc_base_type (type);
1435
1436 if (type == NULL)
1437 return NULL;
1438 else if (is_thin_pntr (type))
1439 {
1440 type = thin_descriptor_type (type);
1441 if (type == NULL)
1442 return NULL;
1443 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1444 if (r != NULL)
1445 return ada_check_typedef (r);
1446 }
1447 else if (type->code () == TYPE_CODE_STRUCT)
1448 {
1449 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1450 if (r != NULL)
1451 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1452 }
1453 return NULL;
1454 }
1455
1456 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1457 one, a pointer to its bounds data. Otherwise NULL. */
1458
1459 static struct value *
1460 desc_bounds (struct value *arr)
1461 {
1462 struct type *type = ada_check_typedef (value_type (arr));
1463
1464 if (is_thin_pntr (type))
1465 {
1466 struct type *bounds_type =
1467 desc_bounds_type (thin_descriptor_type (type));
1468 LONGEST addr;
1469
1470 if (bounds_type == NULL)
1471 error (_("Bad GNAT array descriptor"));
1472
1473 /* NOTE: The following calculation is not really kosher, but
1474 since desc_type is an XVE-encoded type (and shouldn't be),
1475 the correct calculation is a real pain. FIXME (and fix GCC). */
1476 if (type->code () == TYPE_CODE_PTR)
1477 addr = value_as_long (arr);
1478 else
1479 addr = value_address (arr);
1480
1481 return
1482 value_from_longest (lookup_pointer_type (bounds_type),
1483 addr - TYPE_LENGTH (bounds_type));
1484 }
1485
1486 else if (is_thick_pntr (type))
1487 {
1488 struct value *p_bounds = value_struct_elt (&arr, {}, "P_BOUNDS", NULL,
1489 _("Bad GNAT array descriptor"));
1490 struct type *p_bounds_type = value_type (p_bounds);
1491
1492 if (p_bounds_type
1493 && p_bounds_type->code () == TYPE_CODE_PTR)
1494 {
1495 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1496
1497 if (target_type->is_stub ())
1498 p_bounds = value_cast (lookup_pointer_type
1499 (ada_check_typedef (target_type)),
1500 p_bounds);
1501 }
1502 else
1503 error (_("Bad GNAT array descriptor"));
1504
1505 return p_bounds;
1506 }
1507 else
1508 return NULL;
1509 }
1510
1511 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1512 position of the field containing the address of the bounds data. */
1513
1514 static int
1515 fat_pntr_bounds_bitpos (struct type *type)
1516 {
1517 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1518 }
1519
1520 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1521 size of the field containing the address of the bounds data. */
1522
1523 static int
1524 fat_pntr_bounds_bitsize (struct type *type)
1525 {
1526 type = desc_base_type (type);
1527
1528 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1529 return TYPE_FIELD_BITSIZE (type, 1);
1530 else
1531 return 8 * TYPE_LENGTH (ada_check_typedef (type->field (1).type ()));
1532 }
1533
1534 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1535 pointer to one, the type of its array data (a array-with-no-bounds type);
1536 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1537 data. */
1538
1539 static struct type *
1540 desc_data_target_type (struct type *type)
1541 {
1542 type = desc_base_type (type);
1543
1544 /* NOTE: The following is bogus; see comment in desc_bounds. */
1545 if (is_thin_pntr (type))
1546 return desc_base_type (thin_descriptor_type (type)->field (1).type ());
1547 else if (is_thick_pntr (type))
1548 {
1549 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1550
1551 if (data_type
1552 && ada_check_typedef (data_type)->code () == TYPE_CODE_PTR)
1553 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1554 }
1555
1556 return NULL;
1557 }
1558
1559 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1560 its array data. */
1561
1562 static struct value *
1563 desc_data (struct value *arr)
1564 {
1565 struct type *type = value_type (arr);
1566
1567 if (is_thin_pntr (type))
1568 return thin_data_pntr (arr);
1569 else if (is_thick_pntr (type))
1570 return value_struct_elt (&arr, {}, "P_ARRAY", NULL,
1571 _("Bad GNAT array descriptor"));
1572 else
1573 return NULL;
1574 }
1575
1576
1577 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1578 position of the field containing the address of the data. */
1579
1580 static int
1581 fat_pntr_data_bitpos (struct type *type)
1582 {
1583 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1584 }
1585
1586 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1587 size of the field containing the address of the data. */
1588
1589 static int
1590 fat_pntr_data_bitsize (struct type *type)
1591 {
1592 type = desc_base_type (type);
1593
1594 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1595 return TYPE_FIELD_BITSIZE (type, 0);
1596 else
1597 return TARGET_CHAR_BIT * TYPE_LENGTH (type->field (0).type ());
1598 }
1599
1600 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1601 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1602 bound, if WHICH is 1. The first bound is I=1. */
1603
1604 static struct value *
1605 desc_one_bound (struct value *bounds, int i, int which)
1606 {
1607 char bound_name[20];
1608 xsnprintf (bound_name, sizeof (bound_name), "%cB%d",
1609 which ? 'U' : 'L', i - 1);
1610 return value_struct_elt (&bounds, {}, bound_name, NULL,
1611 _("Bad GNAT array descriptor bounds"));
1612 }
1613
1614 /* If BOUNDS is an array-bounds structure type, return the bit position
1615 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1616 bound, if WHICH is 1. The first bound is I=1. */
1617
1618 static int
1619 desc_bound_bitpos (struct type *type, int i, int which)
1620 {
1621 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1622 }
1623
1624 /* If BOUNDS is an array-bounds structure type, return the bit field size
1625 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1626 bound, if WHICH is 1. The first bound is I=1. */
1627
1628 static int
1629 desc_bound_bitsize (struct type *type, int i, int which)
1630 {
1631 type = desc_base_type (type);
1632
1633 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1634 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1635 else
1636 return 8 * TYPE_LENGTH (type->field (2 * i + which - 2).type ());
1637 }
1638
1639 /* If TYPE is the type of an array-bounds structure, the type of its
1640 Ith bound (numbering from 1). Otherwise, NULL. */
1641
1642 static struct type *
1643 desc_index_type (struct type *type, int i)
1644 {
1645 type = desc_base_type (type);
1646
1647 if (type->code () == TYPE_CODE_STRUCT)
1648 {
1649 char bound_name[20];
1650 xsnprintf (bound_name, sizeof (bound_name), "LB%d", i - 1);
1651 return lookup_struct_elt_type (type, bound_name, 1);
1652 }
1653 else
1654 return NULL;
1655 }
1656
1657 /* The number of index positions in the array-bounds type TYPE.
1658 Return 0 if TYPE is NULL. */
1659
1660 static int
1661 desc_arity (struct type *type)
1662 {
1663 type = desc_base_type (type);
1664
1665 if (type != NULL)
1666 return type->num_fields () / 2;
1667 return 0;
1668 }
1669
1670 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1671 an array descriptor type (representing an unconstrained array
1672 type). */
1673
1674 static int
1675 ada_is_direct_array_type (struct type *type)
1676 {
1677 if (type == NULL)
1678 return 0;
1679 type = ada_check_typedef (type);
1680 return (type->code () == TYPE_CODE_ARRAY
1681 || ada_is_array_descriptor_type (type));
1682 }
1683
1684 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1685 * to one. */
1686
1687 static int
1688 ada_is_array_type (struct type *type)
1689 {
1690 while (type != NULL
1691 && (type->code () == TYPE_CODE_PTR
1692 || type->code () == TYPE_CODE_REF))
1693 type = TYPE_TARGET_TYPE (type);
1694 return ada_is_direct_array_type (type);
1695 }
1696
1697 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1698
1699 int
1700 ada_is_simple_array_type (struct type *type)
1701 {
1702 if (type == NULL)
1703 return 0;
1704 type = ada_check_typedef (type);
1705 return (type->code () == TYPE_CODE_ARRAY
1706 || (type->code () == TYPE_CODE_PTR
1707 && (ada_check_typedef (TYPE_TARGET_TYPE (type))->code ()
1708 == TYPE_CODE_ARRAY)));
1709 }
1710
1711 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1712
1713 int
1714 ada_is_array_descriptor_type (struct type *type)
1715 {
1716 struct type *data_type = desc_data_target_type (type);
1717
1718 if (type == NULL)
1719 return 0;
1720 type = ada_check_typedef (type);
1721 return (data_type != NULL
1722 && data_type->code () == TYPE_CODE_ARRAY
1723 && desc_arity (desc_bounds_type (type)) > 0);
1724 }
1725
1726 /* Non-zero iff type is a partially mal-formed GNAT array
1727 descriptor. FIXME: This is to compensate for some problems with
1728 debugging output from GNAT. Re-examine periodically to see if it
1729 is still needed. */
1730
1731 int
1732 ada_is_bogus_array_descriptor (struct type *type)
1733 {
1734 return
1735 type != NULL
1736 && type->code () == TYPE_CODE_STRUCT
1737 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1738 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1739 && !ada_is_array_descriptor_type (type);
1740 }
1741
1742
1743 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1744 (fat pointer) returns the type of the array data described---specifically,
1745 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1746 in from the descriptor; otherwise, they are left unspecified. If
1747 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1748 returns NULL. The result is simply the type of ARR if ARR is not
1749 a descriptor. */
1750
1751 static struct type *
1752 ada_type_of_array (struct value *arr, int bounds)
1753 {
1754 if (ada_is_constrained_packed_array_type (value_type (arr)))
1755 return decode_constrained_packed_array_type (value_type (arr));
1756
1757 if (!ada_is_array_descriptor_type (value_type (arr)))
1758 return value_type (arr);
1759
1760 if (!bounds)
1761 {
1762 struct type *array_type =
1763 ada_check_typedef (desc_data_target_type (value_type (arr)));
1764
1765 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1766 TYPE_FIELD_BITSIZE (array_type, 0) =
1767 decode_packed_array_bitsize (value_type (arr));
1768
1769 return array_type;
1770 }
1771 else
1772 {
1773 struct type *elt_type;
1774 int arity;
1775 struct value *descriptor;
1776
1777 elt_type = ada_array_element_type (value_type (arr), -1);
1778 arity = ada_array_arity (value_type (arr));
1779
1780 if (elt_type == NULL || arity == 0)
1781 return ada_check_typedef (value_type (arr));
1782
1783 descriptor = desc_bounds (arr);
1784 if (value_as_long (descriptor) == 0)
1785 return NULL;
1786 while (arity > 0)
1787 {
1788 struct type *range_type = alloc_type_copy (value_type (arr));
1789 struct type *array_type = alloc_type_copy (value_type (arr));
1790 struct value *low = desc_one_bound (descriptor, arity, 0);
1791 struct value *high = desc_one_bound (descriptor, arity, 1);
1792
1793 arity -= 1;
1794 create_static_range_type (range_type, value_type (low),
1795 longest_to_int (value_as_long (low)),
1796 longest_to_int (value_as_long (high)));
1797 elt_type = create_array_type (array_type, elt_type, range_type);
1798
1799 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1800 {
1801 /* We need to store the element packed bitsize, as well as
1802 recompute the array size, because it was previously
1803 computed based on the unpacked element size. */
1804 LONGEST lo = value_as_long (low);
1805 LONGEST hi = value_as_long (high);
1806
1807 TYPE_FIELD_BITSIZE (elt_type, 0) =
1808 decode_packed_array_bitsize (value_type (arr));
1809 /* If the array has no element, then the size is already
1810 zero, and does not need to be recomputed. */
1811 if (lo < hi)
1812 {
1813 int array_bitsize =
1814 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1815
1816 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1817 }
1818 }
1819 }
1820
1821 return lookup_pointer_type (elt_type);
1822 }
1823 }
1824
1825 /* If ARR does not represent an array, returns ARR unchanged.
1826 Otherwise, returns either a standard GDB array with bounds set
1827 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1828 GDB array. Returns NULL if ARR is a null fat pointer. */
1829
1830 struct value *
1831 ada_coerce_to_simple_array_ptr (struct value *arr)
1832 {
1833 if (ada_is_array_descriptor_type (value_type (arr)))
1834 {
1835 struct type *arrType = ada_type_of_array (arr, 1);
1836
1837 if (arrType == NULL)
1838 return NULL;
1839 return value_cast (arrType, value_copy (desc_data (arr)));
1840 }
1841 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1842 return decode_constrained_packed_array (arr);
1843 else
1844 return arr;
1845 }
1846
1847 /* If ARR does not represent an array, returns ARR unchanged.
1848 Otherwise, returns a standard GDB array describing ARR (which may
1849 be ARR itself if it already is in the proper form). */
1850
1851 struct value *
1852 ada_coerce_to_simple_array (struct value *arr)
1853 {
1854 if (ada_is_array_descriptor_type (value_type (arr)))
1855 {
1856 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1857
1858 if (arrVal == NULL)
1859 error (_("Bounds unavailable for null array pointer."));
1860 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
1861 return value_ind (arrVal);
1862 }
1863 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1864 return decode_constrained_packed_array (arr);
1865 else
1866 return arr;
1867 }
1868
1869 /* If TYPE represents a GNAT array type, return it translated to an
1870 ordinary GDB array type (possibly with BITSIZE fields indicating
1871 packing). For other types, is the identity. */
1872
1873 struct type *
1874 ada_coerce_to_simple_array_type (struct type *type)
1875 {
1876 if (ada_is_constrained_packed_array_type (type))
1877 return decode_constrained_packed_array_type (type);
1878
1879 if (ada_is_array_descriptor_type (type))
1880 return ada_check_typedef (desc_data_target_type (type));
1881
1882 return type;
1883 }
1884
1885 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1886
1887 static int
1888 ada_is_gnat_encoded_packed_array_type (struct type *type)
1889 {
1890 if (type == NULL)
1891 return 0;
1892 type = desc_base_type (type);
1893 type = ada_check_typedef (type);
1894 return
1895 ada_type_name (type) != NULL
1896 && strstr (ada_type_name (type), "___XP") != NULL;
1897 }
1898
1899 /* Non-zero iff TYPE represents a standard GNAT constrained
1900 packed-array type. */
1901
1902 int
1903 ada_is_constrained_packed_array_type (struct type *type)
1904 {
1905 return ada_is_gnat_encoded_packed_array_type (type)
1906 && !ada_is_array_descriptor_type (type);
1907 }
1908
1909 /* Non-zero iff TYPE represents an array descriptor for a
1910 unconstrained packed-array type. */
1911
1912 static int
1913 ada_is_unconstrained_packed_array_type (struct type *type)
1914 {
1915 if (!ada_is_array_descriptor_type (type))
1916 return 0;
1917
1918 if (ada_is_gnat_encoded_packed_array_type (type))
1919 return 1;
1920
1921 /* If we saw GNAT encodings, then the above code is sufficient.
1922 However, with minimal encodings, we will just have a thick
1923 pointer instead. */
1924 if (is_thick_pntr (type))
1925 {
1926 type = desc_base_type (type);
1927 /* The structure's first field is a pointer to an array, so this
1928 fetches the array type. */
1929 type = TYPE_TARGET_TYPE (type->field (0).type ());
1930 /* Now we can see if the array elements are packed. */
1931 return TYPE_FIELD_BITSIZE (type, 0) > 0;
1932 }
1933
1934 return 0;
1935 }
1936
1937 /* Return true if TYPE is a (Gnat-encoded) constrained packed array
1938 type, or if it is an ordinary (non-Gnat-encoded) packed array. */
1939
1940 static bool
1941 ada_is_any_packed_array_type (struct type *type)
1942 {
1943 return (ada_is_constrained_packed_array_type (type)
1944 || (type->code () == TYPE_CODE_ARRAY
1945 && TYPE_FIELD_BITSIZE (type, 0) % 8 != 0));
1946 }
1947
1948 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
1949 return the size of its elements in bits. */
1950
1951 static long
1952 decode_packed_array_bitsize (struct type *type)
1953 {
1954 const char *raw_name;
1955 const char *tail;
1956 long bits;
1957
1958 /* Access to arrays implemented as fat pointers are encoded as a typedef
1959 of the fat pointer type. We need the name of the fat pointer type
1960 to do the decoding, so strip the typedef layer. */
1961 if (type->code () == TYPE_CODE_TYPEDEF)
1962 type = ada_typedef_target_type (type);
1963
1964 raw_name = ada_type_name (ada_check_typedef (type));
1965 if (!raw_name)
1966 raw_name = ada_type_name (desc_base_type (type));
1967
1968 if (!raw_name)
1969 return 0;
1970
1971 tail = strstr (raw_name, "___XP");
1972 if (tail == nullptr)
1973 {
1974 gdb_assert (is_thick_pntr (type));
1975 /* The structure's first field is a pointer to an array, so this
1976 fetches the array type. */
1977 type = TYPE_TARGET_TYPE (type->field (0).type ());
1978 /* Now we can see if the array elements are packed. */
1979 return TYPE_FIELD_BITSIZE (type, 0);
1980 }
1981
1982 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1983 {
1984 lim_warning
1985 (_("could not understand bit size information on packed array"));
1986 return 0;
1987 }
1988
1989 return bits;
1990 }
1991
1992 /* Given that TYPE is a standard GDB array type with all bounds filled
1993 in, and that the element size of its ultimate scalar constituents
1994 (that is, either its elements, or, if it is an array of arrays, its
1995 elements' elements, etc.) is *ELT_BITS, return an identical type,
1996 but with the bit sizes of its elements (and those of any
1997 constituent arrays) recorded in the BITSIZE components of its
1998 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1999 in bits.
2000
2001 Note that, for arrays whose index type has an XA encoding where
2002 a bound references a record discriminant, getting that discriminant,
2003 and therefore the actual value of that bound, is not possible
2004 because none of the given parameters gives us access to the record.
2005 This function assumes that it is OK in the context where it is being
2006 used to return an array whose bounds are still dynamic and where
2007 the length is arbitrary. */
2008
2009 static struct type *
2010 constrained_packed_array_type (struct type *type, long *elt_bits)
2011 {
2012 struct type *new_elt_type;
2013 struct type *new_type;
2014 struct type *index_type_desc;
2015 struct type *index_type;
2016 LONGEST low_bound, high_bound;
2017
2018 type = ada_check_typedef (type);
2019 if (type->code () != TYPE_CODE_ARRAY)
2020 return type;
2021
2022 index_type_desc = ada_find_parallel_type (type, "___XA");
2023 if (index_type_desc)
2024 index_type = to_fixed_range_type (index_type_desc->field (0).type (),
2025 NULL);
2026 else
2027 index_type = type->index_type ();
2028
2029 new_type = alloc_type_copy (type);
2030 new_elt_type =
2031 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2032 elt_bits);
2033 create_array_type (new_type, new_elt_type, index_type);
2034 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2035 new_type->set_name (ada_type_name (type));
2036
2037 if ((check_typedef (index_type)->code () == TYPE_CODE_RANGE
2038 && is_dynamic_type (check_typedef (index_type)))
2039 || !get_discrete_bounds (index_type, &low_bound, &high_bound))
2040 low_bound = high_bound = 0;
2041 if (high_bound < low_bound)
2042 *elt_bits = TYPE_LENGTH (new_type) = 0;
2043 else
2044 {
2045 *elt_bits *= (high_bound - low_bound + 1);
2046 TYPE_LENGTH (new_type) =
2047 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2048 }
2049
2050 new_type->set_is_fixed_instance (true);
2051 return new_type;
2052 }
2053
2054 /* The array type encoded by TYPE, where
2055 ada_is_constrained_packed_array_type (TYPE). */
2056
2057 static struct type *
2058 decode_constrained_packed_array_type (struct type *type)
2059 {
2060 const char *raw_name = ada_type_name (ada_check_typedef (type));
2061 char *name;
2062 const char *tail;
2063 struct type *shadow_type;
2064 long bits;
2065
2066 if (!raw_name)
2067 raw_name = ada_type_name (desc_base_type (type));
2068
2069 if (!raw_name)
2070 return NULL;
2071
2072 name = (char *) alloca (strlen (raw_name) + 1);
2073 tail = strstr (raw_name, "___XP");
2074 type = desc_base_type (type);
2075
2076 memcpy (name, raw_name, tail - raw_name);
2077 name[tail - raw_name] = '\000';
2078
2079 shadow_type = ada_find_parallel_type_with_name (type, name);
2080
2081 if (shadow_type == NULL)
2082 {
2083 lim_warning (_("could not find bounds information on packed array"));
2084 return NULL;
2085 }
2086 shadow_type = check_typedef (shadow_type);
2087
2088 if (shadow_type->code () != TYPE_CODE_ARRAY)
2089 {
2090 lim_warning (_("could not understand bounds "
2091 "information on packed array"));
2092 return NULL;
2093 }
2094
2095 bits = decode_packed_array_bitsize (type);
2096 return constrained_packed_array_type (shadow_type, &bits);
2097 }
2098
2099 /* Helper function for decode_constrained_packed_array. Set the field
2100 bitsize on a series of packed arrays. Returns the number of
2101 elements in TYPE. */
2102
2103 static LONGEST
2104 recursively_update_array_bitsize (struct type *type)
2105 {
2106 gdb_assert (type->code () == TYPE_CODE_ARRAY);
2107
2108 LONGEST low, high;
2109 if (!get_discrete_bounds (type->index_type (), &low, &high)
2110 || low > high)
2111 return 0;
2112 LONGEST our_len = high - low + 1;
2113
2114 struct type *elt_type = TYPE_TARGET_TYPE (type);
2115 if (elt_type->code () == TYPE_CODE_ARRAY)
2116 {
2117 LONGEST elt_len = recursively_update_array_bitsize (elt_type);
2118 LONGEST elt_bitsize = elt_len * TYPE_FIELD_BITSIZE (elt_type, 0);
2119 TYPE_FIELD_BITSIZE (type, 0) = elt_bitsize;
2120
2121 TYPE_LENGTH (type) = ((our_len * elt_bitsize + HOST_CHAR_BIT - 1)
2122 / HOST_CHAR_BIT);
2123 }
2124
2125 return our_len;
2126 }
2127
2128 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2129 array, returns a simple array that denotes that array. Its type is a
2130 standard GDB array type except that the BITSIZEs of the array
2131 target types are set to the number of bits in each element, and the
2132 type length is set appropriately. */
2133
2134 static struct value *
2135 decode_constrained_packed_array (struct value *arr)
2136 {
2137 struct type *type;
2138
2139 /* If our value is a pointer, then dereference it. Likewise if
2140 the value is a reference. Make sure that this operation does not
2141 cause the target type to be fixed, as this would indirectly cause
2142 this array to be decoded. The rest of the routine assumes that
2143 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2144 and "value_ind" routines to perform the dereferencing, as opposed
2145 to using "ada_coerce_ref" or "ada_value_ind". */
2146 arr = coerce_ref (arr);
2147 if (ada_check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
2148 arr = value_ind (arr);
2149
2150 type = decode_constrained_packed_array_type (value_type (arr));
2151 if (type == NULL)
2152 {
2153 error (_("can't unpack array"));
2154 return NULL;
2155 }
2156
2157 /* Decoding the packed array type could not correctly set the field
2158 bitsizes for any dimension except the innermost, because the
2159 bounds may be variable and were not passed to that function. So,
2160 we further resolve the array bounds here and then update the
2161 sizes. */
2162 const gdb_byte *valaddr = value_contents_for_printing (arr);
2163 CORE_ADDR address = value_address (arr);
2164 gdb::array_view<const gdb_byte> view
2165 = gdb::make_array_view (valaddr, TYPE_LENGTH (type));
2166 type = resolve_dynamic_type (type, view, address);
2167 recursively_update_array_bitsize (type);
2168
2169 if (type_byte_order (value_type (arr)) == BFD_ENDIAN_BIG
2170 && ada_is_modular_type (value_type (arr)))
2171 {
2172 /* This is a (right-justified) modular type representing a packed
2173 array with no wrapper. In order to interpret the value through
2174 the (left-justified) packed array type we just built, we must
2175 first left-justify it. */
2176 int bit_size, bit_pos;
2177 ULONGEST mod;
2178
2179 mod = ada_modulus (value_type (arr)) - 1;
2180 bit_size = 0;
2181 while (mod > 0)
2182 {
2183 bit_size += 1;
2184 mod >>= 1;
2185 }
2186 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2187 arr = ada_value_primitive_packed_val (arr, NULL,
2188 bit_pos / HOST_CHAR_BIT,
2189 bit_pos % HOST_CHAR_BIT,
2190 bit_size,
2191 type);
2192 }
2193
2194 return coerce_unspec_val_to_type (arr, type);
2195 }
2196
2197
2198 /* The value of the element of packed array ARR at the ARITY indices
2199 given in IND. ARR must be a simple array. */
2200
2201 static struct value *
2202 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2203 {
2204 int i;
2205 int bits, elt_off, bit_off;
2206 long elt_total_bit_offset;
2207 struct type *elt_type;
2208 struct value *v;
2209
2210 bits = 0;
2211 elt_total_bit_offset = 0;
2212 elt_type = ada_check_typedef (value_type (arr));
2213 for (i = 0; i < arity; i += 1)
2214 {
2215 if (elt_type->code () != TYPE_CODE_ARRAY
2216 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2217 error
2218 (_("attempt to do packed indexing of "
2219 "something other than a packed array"));
2220 else
2221 {
2222 struct type *range_type = elt_type->index_type ();
2223 LONGEST lowerbound, upperbound;
2224 LONGEST idx;
2225
2226 if (!get_discrete_bounds (range_type, &lowerbound, &upperbound))
2227 {
2228 lim_warning (_("don't know bounds of array"));
2229 lowerbound = upperbound = 0;
2230 }
2231
2232 idx = pos_atr (ind[i]);
2233 if (idx < lowerbound || idx > upperbound)
2234 lim_warning (_("packed array index %ld out of bounds"),
2235 (long) idx);
2236 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2237 elt_total_bit_offset += (idx - lowerbound) * bits;
2238 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2239 }
2240 }
2241 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2242 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2243
2244 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2245 bits, elt_type);
2246 return v;
2247 }
2248
2249 /* Non-zero iff TYPE includes negative integer values. */
2250
2251 static int
2252 has_negatives (struct type *type)
2253 {
2254 switch (type->code ())
2255 {
2256 default:
2257 return 0;
2258 case TYPE_CODE_INT:
2259 return !type->is_unsigned ();
2260 case TYPE_CODE_RANGE:
2261 return type->bounds ()->low.const_val () - type->bounds ()->bias < 0;
2262 }
2263 }
2264
2265 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2266 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2267 the unpacked buffer.
2268
2269 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2270 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2271
2272 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2273 zero otherwise.
2274
2275 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2276
2277 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2278
2279 static void
2280 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2281 gdb_byte *unpacked, int unpacked_len,
2282 int is_big_endian, int is_signed_type,
2283 int is_scalar)
2284 {
2285 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2286 int src_idx; /* Index into the source area */
2287 int src_bytes_left; /* Number of source bytes left to process. */
2288 int srcBitsLeft; /* Number of source bits left to move */
2289 int unusedLS; /* Number of bits in next significant
2290 byte of source that are unused */
2291
2292 int unpacked_idx; /* Index into the unpacked buffer */
2293 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2294
2295 unsigned long accum; /* Staging area for bits being transferred */
2296 int accumSize; /* Number of meaningful bits in accum */
2297 unsigned char sign;
2298
2299 /* Transmit bytes from least to most significant; delta is the direction
2300 the indices move. */
2301 int delta = is_big_endian ? -1 : 1;
2302
2303 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2304 bits from SRC. .*/
2305 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2306 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2307 bit_size, unpacked_len);
2308
2309 srcBitsLeft = bit_size;
2310 src_bytes_left = src_len;
2311 unpacked_bytes_left = unpacked_len;
2312 sign = 0;
2313
2314 if (is_big_endian)
2315 {
2316 src_idx = src_len - 1;
2317 if (is_signed_type
2318 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2319 sign = ~0;
2320
2321 unusedLS =
2322 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2323 % HOST_CHAR_BIT;
2324
2325 if (is_scalar)
2326 {
2327 accumSize = 0;
2328 unpacked_idx = unpacked_len - 1;
2329 }
2330 else
2331 {
2332 /* Non-scalar values must be aligned at a byte boundary... */
2333 accumSize =
2334 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2335 /* ... And are placed at the beginning (most-significant) bytes
2336 of the target. */
2337 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2338 unpacked_bytes_left = unpacked_idx + 1;
2339 }
2340 }
2341 else
2342 {
2343 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2344
2345 src_idx = unpacked_idx = 0;
2346 unusedLS = bit_offset;
2347 accumSize = 0;
2348
2349 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2350 sign = ~0;
2351 }
2352
2353 accum = 0;
2354 while (src_bytes_left > 0)
2355 {
2356 /* Mask for removing bits of the next source byte that are not
2357 part of the value. */
2358 unsigned int unusedMSMask =
2359 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2360 1;
2361 /* Sign-extend bits for this byte. */
2362 unsigned int signMask = sign & ~unusedMSMask;
2363
2364 accum |=
2365 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2366 accumSize += HOST_CHAR_BIT - unusedLS;
2367 if (accumSize >= HOST_CHAR_BIT)
2368 {
2369 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2370 accumSize -= HOST_CHAR_BIT;
2371 accum >>= HOST_CHAR_BIT;
2372 unpacked_bytes_left -= 1;
2373 unpacked_idx += delta;
2374 }
2375 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2376 unusedLS = 0;
2377 src_bytes_left -= 1;
2378 src_idx += delta;
2379 }
2380 while (unpacked_bytes_left > 0)
2381 {
2382 accum |= sign << accumSize;
2383 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2384 accumSize -= HOST_CHAR_BIT;
2385 if (accumSize < 0)
2386 accumSize = 0;
2387 accum >>= HOST_CHAR_BIT;
2388 unpacked_bytes_left -= 1;
2389 unpacked_idx += delta;
2390 }
2391 }
2392
2393 /* Create a new value of type TYPE from the contents of OBJ starting
2394 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2395 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2396 assigning through the result will set the field fetched from.
2397 VALADDR is ignored unless OBJ is NULL, in which case,
2398 VALADDR+OFFSET must address the start of storage containing the
2399 packed value. The value returned in this case is never an lval.
2400 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2401
2402 struct value *
2403 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2404 long offset, int bit_offset, int bit_size,
2405 struct type *type)
2406 {
2407 struct value *v;
2408 const gdb_byte *src; /* First byte containing data to unpack */
2409 gdb_byte *unpacked;
2410 const int is_scalar = is_scalar_type (type);
2411 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
2412 gdb::byte_vector staging;
2413
2414 type = ada_check_typedef (type);
2415
2416 if (obj == NULL)
2417 src = valaddr + offset;
2418 else
2419 src = value_contents (obj) + offset;
2420
2421 if (is_dynamic_type (type))
2422 {
2423 /* The length of TYPE might by dynamic, so we need to resolve
2424 TYPE in order to know its actual size, which we then use
2425 to create the contents buffer of the value we return.
2426 The difficulty is that the data containing our object is
2427 packed, and therefore maybe not at a byte boundary. So, what
2428 we do, is unpack the data into a byte-aligned buffer, and then
2429 use that buffer as our object's value for resolving the type. */
2430 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2431 staging.resize (staging_len);
2432
2433 ada_unpack_from_contents (src, bit_offset, bit_size,
2434 staging.data (), staging.size (),
2435 is_big_endian, has_negatives (type),
2436 is_scalar);
2437 type = resolve_dynamic_type (type, staging, 0);
2438 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2439 {
2440 /* This happens when the length of the object is dynamic,
2441 and is actually smaller than the space reserved for it.
2442 For instance, in an array of variant records, the bit_size
2443 we're given is the array stride, which is constant and
2444 normally equal to the maximum size of its element.
2445 But, in reality, each element only actually spans a portion
2446 of that stride. */
2447 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2448 }
2449 }
2450
2451 if (obj == NULL)
2452 {
2453 v = allocate_value (type);
2454 src = valaddr + offset;
2455 }
2456 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2457 {
2458 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2459 gdb_byte *buf;
2460
2461 v = value_at (type, value_address (obj) + offset);
2462 buf = (gdb_byte *) alloca (src_len);
2463 read_memory (value_address (v), buf, src_len);
2464 src = buf;
2465 }
2466 else
2467 {
2468 v = allocate_value (type);
2469 src = value_contents (obj) + offset;
2470 }
2471
2472 if (obj != NULL)
2473 {
2474 long new_offset = offset;
2475
2476 set_value_component_location (v, obj);
2477 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2478 set_value_bitsize (v, bit_size);
2479 if (value_bitpos (v) >= HOST_CHAR_BIT)
2480 {
2481 ++new_offset;
2482 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2483 }
2484 set_value_offset (v, new_offset);
2485
2486 /* Also set the parent value. This is needed when trying to
2487 assign a new value (in inferior memory). */
2488 set_value_parent (v, obj);
2489 }
2490 else
2491 set_value_bitsize (v, bit_size);
2492 unpacked = value_contents_writeable (v);
2493
2494 if (bit_size == 0)
2495 {
2496 memset (unpacked, 0, TYPE_LENGTH (type));
2497 return v;
2498 }
2499
2500 if (staging.size () == TYPE_LENGTH (type))
2501 {
2502 /* Small short-cut: If we've unpacked the data into a buffer
2503 of the same size as TYPE's length, then we can reuse that,
2504 instead of doing the unpacking again. */
2505 memcpy (unpacked, staging.data (), staging.size ());
2506 }
2507 else
2508 ada_unpack_from_contents (src, bit_offset, bit_size,
2509 unpacked, TYPE_LENGTH (type),
2510 is_big_endian, has_negatives (type), is_scalar);
2511
2512 return v;
2513 }
2514
2515 /* Store the contents of FROMVAL into the location of TOVAL.
2516 Return a new value with the location of TOVAL and contents of
2517 FROMVAL. Handles assignment into packed fields that have
2518 floating-point or non-scalar types. */
2519
2520 static struct value *
2521 ada_value_assign (struct value *toval, struct value *fromval)
2522 {
2523 struct type *type = value_type (toval);
2524 int bits = value_bitsize (toval);
2525
2526 toval = ada_coerce_ref (toval);
2527 fromval = ada_coerce_ref (fromval);
2528
2529 if (ada_is_direct_array_type (value_type (toval)))
2530 toval = ada_coerce_to_simple_array (toval);
2531 if (ada_is_direct_array_type (value_type (fromval)))
2532 fromval = ada_coerce_to_simple_array (fromval);
2533
2534 if (!deprecated_value_modifiable (toval))
2535 error (_("Left operand of assignment is not a modifiable lvalue."));
2536
2537 if (VALUE_LVAL (toval) == lval_memory
2538 && bits > 0
2539 && (type->code () == TYPE_CODE_FLT
2540 || type->code () == TYPE_CODE_STRUCT))
2541 {
2542 int len = (value_bitpos (toval)
2543 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2544 int from_size;
2545 gdb_byte *buffer = (gdb_byte *) alloca (len);
2546 struct value *val;
2547 CORE_ADDR to_addr = value_address (toval);
2548
2549 if (type->code () == TYPE_CODE_FLT)
2550 fromval = value_cast (type, fromval);
2551
2552 read_memory (to_addr, buffer, len);
2553 from_size = value_bitsize (fromval);
2554 if (from_size == 0)
2555 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2556
2557 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
2558 ULONGEST from_offset = 0;
2559 if (is_big_endian && is_scalar_type (value_type (fromval)))
2560 from_offset = from_size - bits;
2561 copy_bitwise (buffer, value_bitpos (toval),
2562 value_contents (fromval), from_offset,
2563 bits, is_big_endian);
2564 write_memory_with_notification (to_addr, buffer, len);
2565
2566 val = value_copy (toval);
2567 memcpy (value_contents_raw (val), value_contents (fromval),
2568 TYPE_LENGTH (type));
2569 deprecated_set_value_type (val, type);
2570
2571 return val;
2572 }
2573
2574 return value_assign (toval, fromval);
2575 }
2576
2577
2578 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2579 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2580 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2581 COMPONENT, and not the inferior's memory. The current contents
2582 of COMPONENT are ignored.
2583
2584 Although not part of the initial design, this function also works
2585 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2586 had a null address, and COMPONENT had an address which is equal to
2587 its offset inside CONTAINER. */
2588
2589 static void
2590 value_assign_to_component (struct value *container, struct value *component,
2591 struct value *val)
2592 {
2593 LONGEST offset_in_container =
2594 (LONGEST) (value_address (component) - value_address (container));
2595 int bit_offset_in_container =
2596 value_bitpos (component) - value_bitpos (container);
2597 int bits;
2598
2599 val = value_cast (value_type (component), val);
2600
2601 if (value_bitsize (component) == 0)
2602 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2603 else
2604 bits = value_bitsize (component);
2605
2606 if (type_byte_order (value_type (container)) == BFD_ENDIAN_BIG)
2607 {
2608 int src_offset;
2609
2610 if (is_scalar_type (check_typedef (value_type (component))))
2611 src_offset
2612 = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits;
2613 else
2614 src_offset = 0;
2615 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2616 value_bitpos (container) + bit_offset_in_container,
2617 value_contents (val), src_offset, bits, 1);
2618 }
2619 else
2620 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2621 value_bitpos (container) + bit_offset_in_container,
2622 value_contents (val), 0, bits, 0);
2623 }
2624
2625 /* Determine if TYPE is an access to an unconstrained array. */
2626
2627 bool
2628 ada_is_access_to_unconstrained_array (struct type *type)
2629 {
2630 return (type->code () == TYPE_CODE_TYPEDEF
2631 && is_thick_pntr (ada_typedef_target_type (type)));
2632 }
2633
2634 /* The value of the element of array ARR at the ARITY indices given in IND.
2635 ARR may be either a simple array, GNAT array descriptor, or pointer
2636 thereto. */
2637
2638 struct value *
2639 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2640 {
2641 int k;
2642 struct value *elt;
2643 struct type *elt_type;
2644
2645 elt = ada_coerce_to_simple_array (arr);
2646
2647 elt_type = ada_check_typedef (value_type (elt));
2648 if (elt_type->code () == TYPE_CODE_ARRAY
2649 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2650 return value_subscript_packed (elt, arity, ind);
2651
2652 for (k = 0; k < arity; k += 1)
2653 {
2654 struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type);
2655
2656 if (elt_type->code () != TYPE_CODE_ARRAY)
2657 error (_("too many subscripts (%d expected)"), k);
2658
2659 elt = value_subscript (elt, pos_atr (ind[k]));
2660
2661 if (ada_is_access_to_unconstrained_array (saved_elt_type)
2662 && value_type (elt)->code () != TYPE_CODE_TYPEDEF)
2663 {
2664 /* The element is a typedef to an unconstrained array,
2665 except that the value_subscript call stripped the
2666 typedef layer. The typedef layer is GNAT's way to
2667 specify that the element is, at the source level, an
2668 access to the unconstrained array, rather than the
2669 unconstrained array. So, we need to restore that
2670 typedef layer, which we can do by forcing the element's
2671 type back to its original type. Otherwise, the returned
2672 value is going to be printed as the array, rather
2673 than as an access. Another symptom of the same issue
2674 would be that an expression trying to dereference the
2675 element would also be improperly rejected. */
2676 deprecated_set_value_type (elt, saved_elt_type);
2677 }
2678
2679 elt_type = ada_check_typedef (value_type (elt));
2680 }
2681
2682 return elt;
2683 }
2684
2685 /* Assuming ARR is a pointer to a GDB array, the value of the element
2686 of *ARR at the ARITY indices given in IND.
2687 Does not read the entire array into memory.
2688
2689 Note: Unlike what one would expect, this function is used instead of
2690 ada_value_subscript for basically all non-packed array types. The reason
2691 for this is that a side effect of doing our own pointer arithmetics instead
2692 of relying on value_subscript is that there is no implicit typedef peeling.
2693 This is important for arrays of array accesses, where it allows us to
2694 preserve the fact that the array's element is an array access, where the
2695 access part os encoded in a typedef layer. */
2696
2697 static struct value *
2698 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2699 {
2700 int k;
2701 struct value *array_ind = ada_value_ind (arr);
2702 struct type *type
2703 = check_typedef (value_enclosing_type (array_ind));
2704
2705 if (type->code () == TYPE_CODE_ARRAY
2706 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2707 return value_subscript_packed (array_ind, arity, ind);
2708
2709 for (k = 0; k < arity; k += 1)
2710 {
2711 LONGEST lwb, upb;
2712
2713 if (type->code () != TYPE_CODE_ARRAY)
2714 error (_("too many subscripts (%d expected)"), k);
2715 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2716 value_copy (arr));
2717 get_discrete_bounds (type->index_type (), &lwb, &upb);
2718 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2719 type = TYPE_TARGET_TYPE (type);
2720 }
2721
2722 return value_ind (arr);
2723 }
2724
2725 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2726 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2727 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2728 this array is LOW, as per Ada rules. */
2729 static struct value *
2730 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2731 int low, int high)
2732 {
2733 struct type *type0 = ada_check_typedef (type);
2734 struct type *base_index_type = TYPE_TARGET_TYPE (type0->index_type ());
2735 struct type *index_type
2736 = create_static_range_type (NULL, base_index_type, low, high);
2737 struct type *slice_type = create_array_type_with_stride
2738 (NULL, TYPE_TARGET_TYPE (type0), index_type,
2739 type0->dyn_prop (DYN_PROP_BYTE_STRIDE),
2740 TYPE_FIELD_BITSIZE (type0, 0));
2741 int base_low = ada_discrete_type_low_bound (type0->index_type ());
2742 gdb::optional<LONGEST> base_low_pos, low_pos;
2743 CORE_ADDR base;
2744
2745 low_pos = discrete_position (base_index_type, low);
2746 base_low_pos = discrete_position (base_index_type, base_low);
2747
2748 if (!low_pos.has_value () || !base_low_pos.has_value ())
2749 {
2750 warning (_("unable to get positions in slice, use bounds instead"));
2751 low_pos = low;
2752 base_low_pos = base_low;
2753 }
2754
2755 ULONGEST stride = TYPE_FIELD_BITSIZE (slice_type, 0) / 8;
2756 if (stride == 0)
2757 stride = TYPE_LENGTH (TYPE_TARGET_TYPE (type0));
2758
2759 base = value_as_address (array_ptr) + (*low_pos - *base_low_pos) * stride;
2760 return value_at_lazy (slice_type, base);
2761 }
2762
2763
2764 static struct value *
2765 ada_value_slice (struct value *array, int low, int high)
2766 {
2767 struct type *type = ada_check_typedef (value_type (array));
2768 struct type *base_index_type = TYPE_TARGET_TYPE (type->index_type ());
2769 struct type *index_type
2770 = create_static_range_type (NULL, type->index_type (), low, high);
2771 struct type *slice_type = create_array_type_with_stride
2772 (NULL, TYPE_TARGET_TYPE (type), index_type,
2773 type->dyn_prop (DYN_PROP_BYTE_STRIDE),
2774 TYPE_FIELD_BITSIZE (type, 0));
2775 gdb::optional<LONGEST> low_pos, high_pos;
2776
2777
2778 low_pos = discrete_position (base_index_type, low);
2779 high_pos = discrete_position (base_index_type, high);
2780
2781 if (!low_pos.has_value () || !high_pos.has_value ())
2782 {
2783 warning (_("unable to get positions in slice, use bounds instead"));
2784 low_pos = low;
2785 high_pos = high;
2786 }
2787
2788 return value_cast (slice_type,
2789 value_slice (array, low, *high_pos - *low_pos + 1));
2790 }
2791
2792 /* If type is a record type in the form of a standard GNAT array
2793 descriptor, returns the number of dimensions for type. If arr is a
2794 simple array, returns the number of "array of"s that prefix its
2795 type designation. Otherwise, returns 0. */
2796
2797 int
2798 ada_array_arity (struct type *type)
2799 {
2800 int arity;
2801
2802 if (type == NULL)
2803 return 0;
2804
2805 type = desc_base_type (type);
2806
2807 arity = 0;
2808 if (type->code () == TYPE_CODE_STRUCT)
2809 return desc_arity (desc_bounds_type (type));
2810 else
2811 while (type->code () == TYPE_CODE_ARRAY)
2812 {
2813 arity += 1;
2814 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2815 }
2816
2817 return arity;
2818 }
2819
2820 /* If TYPE is a record type in the form of a standard GNAT array
2821 descriptor or a simple array type, returns the element type for
2822 TYPE after indexing by NINDICES indices, or by all indices if
2823 NINDICES is -1. Otherwise, returns NULL. */
2824
2825 struct type *
2826 ada_array_element_type (struct type *type, int nindices)
2827 {
2828 type = desc_base_type (type);
2829
2830 if (type->code () == TYPE_CODE_STRUCT)
2831 {
2832 int k;
2833 struct type *p_array_type;
2834
2835 p_array_type = desc_data_target_type (type);
2836
2837 k = ada_array_arity (type);
2838 if (k == 0)
2839 return NULL;
2840
2841 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2842 if (nindices >= 0 && k > nindices)
2843 k = nindices;
2844 while (k > 0 && p_array_type != NULL)
2845 {
2846 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2847 k -= 1;
2848 }
2849 return p_array_type;
2850 }
2851 else if (type->code () == TYPE_CODE_ARRAY)
2852 {
2853 while (nindices != 0 && type->code () == TYPE_CODE_ARRAY)
2854 {
2855 type = TYPE_TARGET_TYPE (type);
2856 nindices -= 1;
2857 }
2858 return type;
2859 }
2860
2861 return NULL;
2862 }
2863
2864 /* See ada-lang.h. */
2865
2866 struct type *
2867 ada_index_type (struct type *type, int n, const char *name)
2868 {
2869 struct type *result_type;
2870
2871 type = desc_base_type (type);
2872
2873 if (n < 0 || n > ada_array_arity (type))
2874 error (_("invalid dimension number to '%s"), name);
2875
2876 if (ada_is_simple_array_type (type))
2877 {
2878 int i;
2879
2880 for (i = 1; i < n; i += 1)
2881 {
2882 type = ada_check_typedef (type);
2883 type = TYPE_TARGET_TYPE (type);
2884 }
2885 result_type = TYPE_TARGET_TYPE (ada_check_typedef (type)->index_type ());
2886 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2887 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2888 perhaps stabsread.c would make more sense. */
2889 if (result_type && result_type->code () == TYPE_CODE_UNDEF)
2890 result_type = NULL;
2891 }
2892 else
2893 {
2894 result_type = desc_index_type (desc_bounds_type (type), n);
2895 if (result_type == NULL)
2896 error (_("attempt to take bound of something that is not an array"));
2897 }
2898
2899 return result_type;
2900 }
2901
2902 /* Given that arr is an array type, returns the lower bound of the
2903 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2904 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2905 array-descriptor type. It works for other arrays with bounds supplied
2906 by run-time quantities other than discriminants. */
2907
2908 static LONGEST
2909 ada_array_bound_from_type (struct type *arr_type, int n, int which)
2910 {
2911 struct type *type, *index_type_desc, *index_type;
2912 int i;
2913
2914 gdb_assert (which == 0 || which == 1);
2915
2916 if (ada_is_constrained_packed_array_type (arr_type))
2917 arr_type = decode_constrained_packed_array_type (arr_type);
2918
2919 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2920 return (LONGEST) - which;
2921
2922 if (arr_type->code () == TYPE_CODE_PTR)
2923 type = TYPE_TARGET_TYPE (arr_type);
2924 else
2925 type = arr_type;
2926
2927 if (type->is_fixed_instance ())
2928 {
2929 /* The array has already been fixed, so we do not need to
2930 check the parallel ___XA type again. That encoding has
2931 already been applied, so ignore it now. */
2932 index_type_desc = NULL;
2933 }
2934 else
2935 {
2936 index_type_desc = ada_find_parallel_type (type, "___XA");
2937 ada_fixup_array_indexes_type (index_type_desc);
2938 }
2939
2940 if (index_type_desc != NULL)
2941 index_type = to_fixed_range_type (index_type_desc->field (n - 1).type (),
2942 NULL);
2943 else
2944 {
2945 struct type *elt_type = check_typedef (type);
2946
2947 for (i = 1; i < n; i++)
2948 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
2949
2950 index_type = elt_type->index_type ();
2951 }
2952
2953 return
2954 (LONGEST) (which == 0
2955 ? ada_discrete_type_low_bound (index_type)
2956 : ada_discrete_type_high_bound (index_type));
2957 }
2958
2959 /* Given that arr is an array value, returns the lower bound of the
2960 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2961 WHICH is 1. This routine will also work for arrays with bounds
2962 supplied by run-time quantities other than discriminants. */
2963
2964 static LONGEST
2965 ada_array_bound (struct value *arr, int n, int which)
2966 {
2967 struct type *arr_type;
2968
2969 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
2970 arr = value_ind (arr);
2971 arr_type = value_enclosing_type (arr);
2972
2973 if (ada_is_constrained_packed_array_type (arr_type))
2974 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
2975 else if (ada_is_simple_array_type (arr_type))
2976 return ada_array_bound_from_type (arr_type, n, which);
2977 else
2978 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2979 }
2980
2981 /* Given that arr is an array value, returns the length of the
2982 nth index. This routine will also work for arrays with bounds
2983 supplied by run-time quantities other than discriminants.
2984 Does not work for arrays indexed by enumeration types with representation
2985 clauses at the moment. */
2986
2987 static LONGEST
2988 ada_array_length (struct value *arr, int n)
2989 {
2990 struct type *arr_type, *index_type;
2991 int low, high;
2992
2993 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
2994 arr = value_ind (arr);
2995 arr_type = value_enclosing_type (arr);
2996
2997 if (ada_is_constrained_packed_array_type (arr_type))
2998 return ada_array_length (decode_constrained_packed_array (arr), n);
2999
3000 if (ada_is_simple_array_type (arr_type))
3001 {
3002 low = ada_array_bound_from_type (arr_type, n, 0);
3003 high = ada_array_bound_from_type (arr_type, n, 1);
3004 }
3005 else
3006 {
3007 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3008 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3009 }
3010
3011 arr_type = check_typedef (arr_type);
3012 index_type = ada_index_type (arr_type, n, "length");
3013 if (index_type != NULL)
3014 {
3015 struct type *base_type;
3016 if (index_type->code () == TYPE_CODE_RANGE)
3017 base_type = TYPE_TARGET_TYPE (index_type);
3018 else
3019 base_type = index_type;
3020
3021 low = pos_atr (value_from_longest (base_type, low));
3022 high = pos_atr (value_from_longest (base_type, high));
3023 }
3024 return high - low + 1;
3025 }
3026
3027 /* An array whose type is that of ARR_TYPE (an array type), with
3028 bounds LOW to HIGH, but whose contents are unimportant. If HIGH is
3029 less than LOW, then LOW-1 is used. */
3030
3031 static struct value *
3032 empty_array (struct type *arr_type, int low, int high)
3033 {
3034 struct type *arr_type0 = ada_check_typedef (arr_type);
3035 struct type *index_type
3036 = create_static_range_type
3037 (NULL, TYPE_TARGET_TYPE (arr_type0->index_type ()), low,
3038 high < low ? low - 1 : high);
3039 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3040
3041 return allocate_value (create_array_type (NULL, elt_type, index_type));
3042 }
3043 \f
3044
3045 /* Name resolution */
3046
3047 /* The "decoded" name for the user-definable Ada operator corresponding
3048 to OP. */
3049
3050 static const char *
3051 ada_decoded_op_name (enum exp_opcode op)
3052 {
3053 int i;
3054
3055 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3056 {
3057 if (ada_opname_table[i].op == op)
3058 return ada_opname_table[i].decoded;
3059 }
3060 error (_("Could not find operator name for opcode"));
3061 }
3062
3063 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3064 in a listing of choices during disambiguation (see sort_choices, below).
3065 The idea is that overloadings of a subprogram name from the
3066 same package should sort in their source order. We settle for ordering
3067 such symbols by their trailing number (__N or $N). */
3068
3069 static int
3070 encoded_ordered_before (const char *N0, const char *N1)
3071 {
3072 if (N1 == NULL)
3073 return 0;
3074 else if (N0 == NULL)
3075 return 1;
3076 else
3077 {
3078 int k0, k1;
3079
3080 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3081 ;
3082 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3083 ;
3084 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3085 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3086 {
3087 int n0, n1;
3088
3089 n0 = k0;
3090 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3091 n0 -= 1;
3092 n1 = k1;
3093 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3094 n1 -= 1;
3095 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3096 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3097 }
3098 return (strcmp (N0, N1) < 0);
3099 }
3100 }
3101
3102 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3103 encoded names. */
3104
3105 static void
3106 sort_choices (struct block_symbol syms[], int nsyms)
3107 {
3108 int i;
3109
3110 for (i = 1; i < nsyms; i += 1)
3111 {
3112 struct block_symbol sym = syms[i];
3113 int j;
3114
3115 for (j = i - 1; j >= 0; j -= 1)
3116 {
3117 if (encoded_ordered_before (syms[j].symbol->linkage_name (),
3118 sym.symbol->linkage_name ()))
3119 break;
3120 syms[j + 1] = syms[j];
3121 }
3122 syms[j + 1] = sym;
3123 }
3124 }
3125
3126 /* Whether GDB should display formals and return types for functions in the
3127 overloads selection menu. */
3128 static bool print_signatures = true;
3129
3130 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3131 all but functions, the signature is just the name of the symbol. For
3132 functions, this is the name of the function, the list of types for formals
3133 and the return type (if any). */
3134
3135 static void
3136 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3137 const struct type_print_options *flags)
3138 {
3139 struct type *type = SYMBOL_TYPE (sym);
3140
3141 fprintf_filtered (stream, "%s", sym->print_name ());
3142 if (!print_signatures
3143 || type == NULL
3144 || type->code () != TYPE_CODE_FUNC)
3145 return;
3146
3147 if (type->num_fields () > 0)
3148 {
3149 int i;
3150
3151 fprintf_filtered (stream, " (");
3152 for (i = 0; i < type->num_fields (); ++i)
3153 {
3154 if (i > 0)
3155 fprintf_filtered (stream, "; ");
3156 ada_print_type (type->field (i).type (), NULL, stream, -1, 0,
3157 flags);
3158 }
3159 fprintf_filtered (stream, ")");
3160 }
3161 if (TYPE_TARGET_TYPE (type) != NULL
3162 && TYPE_TARGET_TYPE (type)->code () != TYPE_CODE_VOID)
3163 {
3164 fprintf_filtered (stream, " return ");
3165 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3166 }
3167 }
3168
3169 /* Read and validate a set of numeric choices from the user in the
3170 range 0 .. N_CHOICES-1. Place the results in increasing
3171 order in CHOICES[0 .. N-1], and return N.
3172
3173 The user types choices as a sequence of numbers on one line
3174 separated by blanks, encoding them as follows:
3175
3176 + A choice of 0 means to cancel the selection, throwing an error.
3177 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3178 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3179
3180 The user is not allowed to choose more than MAX_RESULTS values.
3181
3182 ANNOTATION_SUFFIX, if present, is used to annotate the input
3183 prompts (for use with the -f switch). */
3184
3185 static int
3186 get_selections (int *choices, int n_choices, int max_results,
3187 int is_all_choice, const char *annotation_suffix)
3188 {
3189 const char *args;
3190 const char *prompt;
3191 int n_chosen;
3192 int first_choice = is_all_choice ? 2 : 1;
3193
3194 prompt = getenv ("PS2");
3195 if (prompt == NULL)
3196 prompt = "> ";
3197
3198 args = command_line_input (prompt, annotation_suffix);
3199
3200 if (args == NULL)
3201 error_no_arg (_("one or more choice numbers"));
3202
3203 n_chosen = 0;
3204
3205 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3206 order, as given in args. Choices are validated. */
3207 while (1)
3208 {
3209 char *args2;
3210 int choice, j;
3211
3212 args = skip_spaces (args);
3213 if (*args == '\0' && n_chosen == 0)
3214 error_no_arg (_("one or more choice numbers"));
3215 else if (*args == '\0')
3216 break;
3217
3218 choice = strtol (args, &args2, 10);
3219 if (args == args2 || choice < 0
3220 || choice > n_choices + first_choice - 1)
3221 error (_("Argument must be choice number"));
3222 args = args2;
3223
3224 if (choice == 0)
3225 error (_("cancelled"));
3226
3227 if (choice < first_choice)
3228 {
3229 n_chosen = n_choices;
3230 for (j = 0; j < n_choices; j += 1)
3231 choices[j] = j;
3232 break;
3233 }
3234 choice -= first_choice;
3235
3236 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3237 {
3238 }
3239
3240 if (j < 0 || choice != choices[j])
3241 {
3242 int k;
3243
3244 for (k = n_chosen - 1; k > j; k -= 1)
3245 choices[k + 1] = choices[k];
3246 choices[j + 1] = choice;
3247 n_chosen += 1;
3248 }
3249 }
3250
3251 if (n_chosen > max_results)
3252 error (_("Select no more than %d of the above"), max_results);
3253
3254 return n_chosen;
3255 }
3256
3257 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3258 by asking the user (if necessary), returning the number selected,
3259 and setting the first elements of SYMS items. Error if no symbols
3260 selected. */
3261
3262 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3263 to be re-integrated one of these days. */
3264
3265 static int
3266 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3267 {
3268 int i;
3269 int *chosen = XALLOCAVEC (int , nsyms);
3270 int n_chosen;
3271 int first_choice = (max_results == 1) ? 1 : 2;
3272 const char *select_mode = multiple_symbols_select_mode ();
3273
3274 if (max_results < 1)
3275 error (_("Request to select 0 symbols!"));
3276 if (nsyms <= 1)
3277 return nsyms;
3278
3279 if (select_mode == multiple_symbols_cancel)
3280 error (_("\
3281 canceled because the command is ambiguous\n\
3282 See set/show multiple-symbol."));
3283
3284 /* If select_mode is "all", then return all possible symbols.
3285 Only do that if more than one symbol can be selected, of course.
3286 Otherwise, display the menu as usual. */
3287 if (select_mode == multiple_symbols_all && max_results > 1)
3288 return nsyms;
3289
3290 printf_filtered (_("[0] cancel\n"));
3291 if (max_results > 1)
3292 printf_filtered (_("[1] all\n"));
3293
3294 sort_choices (syms, nsyms);
3295
3296 for (i = 0; i < nsyms; i += 1)
3297 {
3298 if (syms[i].symbol == NULL)
3299 continue;
3300
3301 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3302 {
3303 struct symtab_and_line sal =
3304 find_function_start_sal (syms[i].symbol, 1);
3305
3306 printf_filtered ("[%d] ", i + first_choice);
3307 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3308 &type_print_raw_options);
3309 if (sal.symtab == NULL)
3310 printf_filtered (_(" at %p[<no source file available>%p]:%d\n"),
3311 metadata_style.style ().ptr (), nullptr, sal.line);
3312 else
3313 printf_filtered
3314 (_(" at %ps:%d\n"),
3315 styled_string (file_name_style.style (),
3316 symtab_to_filename_for_display (sal.symtab)),
3317 sal.line);
3318 continue;
3319 }
3320 else
3321 {
3322 int is_enumeral =
3323 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3324 && SYMBOL_TYPE (syms[i].symbol) != NULL
3325 && SYMBOL_TYPE (syms[i].symbol)->code () == TYPE_CODE_ENUM);
3326 struct symtab *symtab = NULL;
3327
3328 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3329 symtab = symbol_symtab (syms[i].symbol);
3330
3331 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3332 {
3333 printf_filtered ("[%d] ", i + first_choice);
3334 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3335 &type_print_raw_options);
3336 printf_filtered (_(" at %s:%d\n"),
3337 symtab_to_filename_for_display (symtab),
3338 SYMBOL_LINE (syms[i].symbol));
3339 }
3340 else if (is_enumeral
3341 && SYMBOL_TYPE (syms[i].symbol)->name () != NULL)
3342 {
3343 printf_filtered (("[%d] "), i + first_choice);
3344 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3345 gdb_stdout, -1, 0, &type_print_raw_options);
3346 printf_filtered (_("'(%s) (enumeral)\n"),
3347 syms[i].symbol->print_name ());
3348 }
3349 else
3350 {
3351 printf_filtered ("[%d] ", i + first_choice);
3352 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3353 &type_print_raw_options);
3354
3355 if (symtab != NULL)
3356 printf_filtered (is_enumeral
3357 ? _(" in %s (enumeral)\n")
3358 : _(" at %s:?\n"),
3359 symtab_to_filename_for_display (symtab));
3360 else
3361 printf_filtered (is_enumeral
3362 ? _(" (enumeral)\n")
3363 : _(" at ?\n"));
3364 }
3365 }
3366 }
3367
3368 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3369 "overload-choice");
3370
3371 for (i = 0; i < n_chosen; i += 1)
3372 syms[i] = syms[chosen[i]];
3373
3374 return n_chosen;
3375 }
3376
3377 /* See ada-lang.h. */
3378
3379 block_symbol
3380 ada_find_operator_symbol (enum exp_opcode op, bool parse_completion,
3381 int nargs, value *argvec[])
3382 {
3383 if (possible_user_operator_p (op, argvec))
3384 {
3385 std::vector<struct block_symbol> candidates
3386 = ada_lookup_symbol_list (ada_decoded_op_name (op),
3387 NULL, VAR_DOMAIN);
3388
3389 int i = ada_resolve_function (candidates, argvec,
3390 nargs, ada_decoded_op_name (op), NULL,
3391 parse_completion);
3392 if (i >= 0)
3393 return candidates[i];
3394 }
3395 return {};
3396 }
3397
3398 /* See ada-lang.h. */
3399
3400 block_symbol
3401 ada_resolve_funcall (struct symbol *sym, const struct block *block,
3402 struct type *context_type,
3403 bool parse_completion,
3404 int nargs, value *argvec[],
3405 innermost_block_tracker *tracker)
3406 {
3407 std::vector<struct block_symbol> candidates
3408 = ada_lookup_symbol_list (sym->linkage_name (), block, VAR_DOMAIN);
3409
3410 int i;
3411 if (candidates.size () == 1)
3412 i = 0;
3413 else
3414 {
3415 i = ada_resolve_function
3416 (candidates,
3417 argvec, nargs,
3418 sym->linkage_name (),
3419 context_type, parse_completion);
3420 if (i < 0)
3421 error (_("Could not find a match for %s"), sym->print_name ());
3422 }
3423
3424 tracker->update (candidates[i]);
3425 return candidates[i];
3426 }
3427
3428 /* See ada-lang.h. */
3429
3430 block_symbol
3431 ada_resolve_variable (struct symbol *sym, const struct block *block,
3432 struct type *context_type,
3433 bool parse_completion,
3434 int deprocedure_p,
3435 innermost_block_tracker *tracker)
3436 {
3437 std::vector<struct block_symbol> candidates
3438 = ada_lookup_symbol_list (sym->linkage_name (), block, VAR_DOMAIN);
3439
3440 if (std::any_of (candidates.begin (),
3441 candidates.end (),
3442 [] (block_symbol &bsym)
3443 {
3444 switch (SYMBOL_CLASS (bsym.symbol))
3445 {
3446 case LOC_REGISTER:
3447 case LOC_ARG:
3448 case LOC_REF_ARG:
3449 case LOC_REGPARM_ADDR:
3450 case LOC_LOCAL:
3451 case LOC_COMPUTED:
3452 return true;
3453 default:
3454 return false;
3455 }
3456 }))
3457 {
3458 /* Types tend to get re-introduced locally, so if there
3459 are any local symbols that are not types, first filter
3460 out all types. */
3461 candidates.erase
3462 (std::remove_if
3463 (candidates.begin (),
3464 candidates.end (),
3465 [] (block_symbol &bsym)
3466 {
3467 return SYMBOL_CLASS (bsym.symbol) == LOC_TYPEDEF;
3468 }),
3469 candidates.end ());
3470 }
3471
3472 int i;
3473 if (candidates.empty ())
3474 error (_("No definition found for %s"), sym->print_name ());
3475 else if (candidates.size () == 1)
3476 i = 0;
3477 else if (deprocedure_p && !is_nonfunction (candidates))
3478 {
3479 i = ada_resolve_function
3480 (candidates, NULL, 0,
3481 sym->linkage_name (),
3482 context_type, parse_completion);
3483 if (i < 0)
3484 error (_("Could not find a match for %s"), sym->print_name ());
3485 }
3486 else
3487 {
3488 printf_filtered (_("Multiple matches for %s\n"), sym->print_name ());
3489 user_select_syms (candidates.data (), candidates.size (), 1);
3490 i = 0;
3491 }
3492
3493 tracker->update (candidates[i]);
3494 return candidates[i];
3495 }
3496
3497 /* Return non-zero if formal type FTYPE matches actual type ATYPE. */
3498 /* The term "match" here is rather loose. The match is heuristic and
3499 liberal. */
3500
3501 static int
3502 ada_type_match (struct type *ftype, struct type *atype)
3503 {
3504 ftype = ada_check_typedef (ftype);
3505 atype = ada_check_typedef (atype);
3506
3507 if (ftype->code () == TYPE_CODE_REF)
3508 ftype = TYPE_TARGET_TYPE (ftype);
3509 if (atype->code () == TYPE_CODE_REF)
3510 atype = TYPE_TARGET_TYPE (atype);
3511
3512 switch (ftype->code ())
3513 {
3514 default:
3515 return ftype->code () == atype->code ();
3516 case TYPE_CODE_PTR:
3517 if (atype->code () != TYPE_CODE_PTR)
3518 return 0;
3519 atype = TYPE_TARGET_TYPE (atype);
3520 /* This can only happen if the actual argument is 'null'. */
3521 if (atype->code () == TYPE_CODE_INT && TYPE_LENGTH (atype) == 0)
3522 return 1;
3523 return ada_type_match (TYPE_TARGET_TYPE (ftype), atype);
3524 case TYPE_CODE_INT:
3525 case TYPE_CODE_ENUM:
3526 case TYPE_CODE_RANGE:
3527 switch (atype->code ())
3528 {
3529 case TYPE_CODE_INT:
3530 case TYPE_CODE_ENUM:
3531 case TYPE_CODE_RANGE:
3532 return 1;
3533 default:
3534 return 0;
3535 }
3536
3537 case TYPE_CODE_ARRAY:
3538 return (atype->code () == TYPE_CODE_ARRAY
3539 || ada_is_array_descriptor_type (atype));
3540
3541 case TYPE_CODE_STRUCT:
3542 if (ada_is_array_descriptor_type (ftype))
3543 return (atype->code () == TYPE_CODE_ARRAY
3544 || ada_is_array_descriptor_type (atype));
3545 else
3546 return (atype->code () == TYPE_CODE_STRUCT
3547 && !ada_is_array_descriptor_type (atype));
3548
3549 case TYPE_CODE_UNION:
3550 case TYPE_CODE_FLT:
3551 return (atype->code () == ftype->code ());
3552 }
3553 }
3554
3555 /* Return non-zero if the formals of FUNC "sufficiently match" the
3556 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3557 may also be an enumeral, in which case it is treated as a 0-
3558 argument function. */
3559
3560 static int
3561 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3562 {
3563 int i;
3564 struct type *func_type = SYMBOL_TYPE (func);
3565
3566 if (SYMBOL_CLASS (func) == LOC_CONST
3567 && func_type->code () == TYPE_CODE_ENUM)
3568 return (n_actuals == 0);
3569 else if (func_type == NULL || func_type->code () != TYPE_CODE_FUNC)
3570 return 0;
3571
3572 if (func_type->num_fields () != n_actuals)
3573 return 0;
3574
3575 for (i = 0; i < n_actuals; i += 1)
3576 {
3577 if (actuals[i] == NULL)
3578 return 0;
3579 else
3580 {
3581 struct type *ftype = ada_check_typedef (func_type->field (i).type ());
3582 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3583
3584 if (!ada_type_match (ftype, atype))
3585 return 0;
3586 }
3587 }
3588 return 1;
3589 }
3590
3591 /* False iff function type FUNC_TYPE definitely does not produce a value
3592 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3593 FUNC_TYPE is not a valid function type with a non-null return type
3594 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3595
3596 static int
3597 return_match (struct type *func_type, struct type *context_type)
3598 {
3599 struct type *return_type;
3600
3601 if (func_type == NULL)
3602 return 1;
3603
3604 if (func_type->code () == TYPE_CODE_FUNC)
3605 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3606 else
3607 return_type = get_base_type (func_type);
3608 if (return_type == NULL)
3609 return 1;
3610
3611 context_type = get_base_type (context_type);
3612
3613 if (return_type->code () == TYPE_CODE_ENUM)
3614 return context_type == NULL || return_type == context_type;
3615 else if (context_type == NULL)
3616 return return_type->code () != TYPE_CODE_VOID;
3617 else
3618 return return_type->code () == context_type->code ();
3619 }
3620
3621
3622 /* Returns the index in SYMS that contains the symbol for the
3623 function (if any) that matches the types of the NARGS arguments in
3624 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3625 that returns that type, then eliminate matches that don't. If
3626 CONTEXT_TYPE is void and there is at least one match that does not
3627 return void, eliminate all matches that do.
3628
3629 Asks the user if there is more than one match remaining. Returns -1
3630 if there is no such symbol or none is selected. NAME is used
3631 solely for messages. May re-arrange and modify SYMS in
3632 the process; the index returned is for the modified vector. */
3633
3634 static int
3635 ada_resolve_function (std::vector<struct block_symbol> &syms,
3636 struct value **args, int nargs,
3637 const char *name, struct type *context_type,
3638 bool parse_completion)
3639 {
3640 int fallback;
3641 int k;
3642 int m; /* Number of hits */
3643
3644 m = 0;
3645 /* In the first pass of the loop, we only accept functions matching
3646 context_type. If none are found, we add a second pass of the loop
3647 where every function is accepted. */
3648 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3649 {
3650 for (k = 0; k < syms.size (); k += 1)
3651 {
3652 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3653
3654 if (ada_args_match (syms[k].symbol, args, nargs)
3655 && (fallback || return_match (type, context_type)))
3656 {
3657 syms[m] = syms[k];
3658 m += 1;
3659 }
3660 }
3661 }
3662
3663 /* If we got multiple matches, ask the user which one to use. Don't do this
3664 interactive thing during completion, though, as the purpose of the
3665 completion is providing a list of all possible matches. Prompting the
3666 user to filter it down would be completely unexpected in this case. */
3667 if (m == 0)
3668 return -1;
3669 else if (m > 1 && !parse_completion)
3670 {
3671 printf_filtered (_("Multiple matches for %s\n"), name);
3672 user_select_syms (syms.data (), m, 1);
3673 return 0;
3674 }
3675 return 0;
3676 }
3677
3678 /* Type-class predicates */
3679
3680 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3681 or FLOAT). */
3682
3683 static int
3684 numeric_type_p (struct type *type)
3685 {
3686 if (type == NULL)
3687 return 0;
3688 else
3689 {
3690 switch (type->code ())
3691 {
3692 case TYPE_CODE_INT:
3693 case TYPE_CODE_FLT:
3694 case TYPE_CODE_FIXED_POINT:
3695 return 1;
3696 case TYPE_CODE_RANGE:
3697 return (type == TYPE_TARGET_TYPE (type)
3698 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3699 default:
3700 return 0;
3701 }
3702 }
3703 }
3704
3705 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3706
3707 static int
3708 integer_type_p (struct type *type)
3709 {
3710 if (type == NULL)
3711 return 0;
3712 else
3713 {
3714 switch (type->code ())
3715 {
3716 case TYPE_CODE_INT:
3717 return 1;
3718 case TYPE_CODE_RANGE:
3719 return (type == TYPE_TARGET_TYPE (type)
3720 || integer_type_p (TYPE_TARGET_TYPE (type)));
3721 default:
3722 return 0;
3723 }
3724 }
3725 }
3726
3727 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3728
3729 static int
3730 scalar_type_p (struct type *type)
3731 {
3732 if (type == NULL)
3733 return 0;
3734 else
3735 {
3736 switch (type->code ())
3737 {
3738 case TYPE_CODE_INT:
3739 case TYPE_CODE_RANGE:
3740 case TYPE_CODE_ENUM:
3741 case TYPE_CODE_FLT:
3742 case TYPE_CODE_FIXED_POINT:
3743 return 1;
3744 default:
3745 return 0;
3746 }
3747 }
3748 }
3749
3750 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3751
3752 static int
3753 discrete_type_p (struct type *type)
3754 {
3755 if (type == NULL)
3756 return 0;
3757 else
3758 {
3759 switch (type->code ())
3760 {
3761 case TYPE_CODE_INT:
3762 case TYPE_CODE_RANGE:
3763 case TYPE_CODE_ENUM:
3764 case TYPE_CODE_BOOL:
3765 return 1;
3766 default:
3767 return 0;
3768 }
3769 }
3770 }
3771
3772 /* Returns non-zero if OP with operands in the vector ARGS could be
3773 a user-defined function. Errs on the side of pre-defined operators
3774 (i.e., result 0). */
3775
3776 static int
3777 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3778 {
3779 struct type *type0 =
3780 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3781 struct type *type1 =
3782 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3783
3784 if (type0 == NULL)
3785 return 0;
3786
3787 switch (op)
3788 {
3789 default:
3790 return 0;
3791
3792 case BINOP_ADD:
3793 case BINOP_SUB:
3794 case BINOP_MUL:
3795 case BINOP_DIV:
3796 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3797
3798 case BINOP_REM:
3799 case BINOP_MOD:
3800 case BINOP_BITWISE_AND:
3801 case BINOP_BITWISE_IOR:
3802 case BINOP_BITWISE_XOR:
3803 return (!(integer_type_p (type0) && integer_type_p (type1)));
3804
3805 case BINOP_EQUAL:
3806 case BINOP_NOTEQUAL:
3807 case BINOP_LESS:
3808 case BINOP_GTR:
3809 case BINOP_LEQ:
3810 case BINOP_GEQ:
3811 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3812
3813 case BINOP_CONCAT:
3814 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3815
3816 case BINOP_EXP:
3817 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3818
3819 case UNOP_NEG:
3820 case UNOP_PLUS:
3821 case UNOP_LOGICAL_NOT:
3822 case UNOP_ABS:
3823 return (!numeric_type_p (type0));
3824
3825 }
3826 }
3827 \f
3828 /* Renaming */
3829
3830 /* NOTES:
3831
3832 1. In the following, we assume that a renaming type's name may
3833 have an ___XD suffix. It would be nice if this went away at some
3834 point.
3835 2. We handle both the (old) purely type-based representation of
3836 renamings and the (new) variable-based encoding. At some point,
3837 it is devoutly to be hoped that the former goes away
3838 (FIXME: hilfinger-2007-07-09).
3839 3. Subprogram renamings are not implemented, although the XRS
3840 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3841
3842 /* If SYM encodes a renaming,
3843
3844 <renaming> renames <renamed entity>,
3845
3846 sets *LEN to the length of the renamed entity's name,
3847 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3848 the string describing the subcomponent selected from the renamed
3849 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3850 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3851 are undefined). Otherwise, returns a value indicating the category
3852 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3853 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3854 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3855 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3856 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3857 may be NULL, in which case they are not assigned.
3858
3859 [Currently, however, GCC does not generate subprogram renamings.] */
3860
3861 enum ada_renaming_category
3862 ada_parse_renaming (struct symbol *sym,
3863 const char **renamed_entity, int *len,
3864 const char **renaming_expr)
3865 {
3866 enum ada_renaming_category kind;
3867 const char *info;
3868 const char *suffix;
3869
3870 if (sym == NULL)
3871 return ADA_NOT_RENAMING;
3872 switch (SYMBOL_CLASS (sym))
3873 {
3874 default:
3875 return ADA_NOT_RENAMING;
3876 case LOC_LOCAL:
3877 case LOC_STATIC:
3878 case LOC_COMPUTED:
3879 case LOC_OPTIMIZED_OUT:
3880 info = strstr (sym->linkage_name (), "___XR");
3881 if (info == NULL)
3882 return ADA_NOT_RENAMING;
3883 switch (info[5])
3884 {
3885 case '_':
3886 kind = ADA_OBJECT_RENAMING;
3887 info += 6;
3888 break;
3889 case 'E':
3890 kind = ADA_EXCEPTION_RENAMING;
3891 info += 7;
3892 break;
3893 case 'P':
3894 kind = ADA_PACKAGE_RENAMING;
3895 info += 7;
3896 break;
3897 case 'S':
3898 kind = ADA_SUBPROGRAM_RENAMING;
3899 info += 7;
3900 break;
3901 default:
3902 return ADA_NOT_RENAMING;
3903 }
3904 }
3905
3906 if (renamed_entity != NULL)
3907 *renamed_entity = info;
3908 suffix = strstr (info, "___XE");
3909 if (suffix == NULL || suffix == info)
3910 return ADA_NOT_RENAMING;
3911 if (len != NULL)
3912 *len = strlen (info) - strlen (suffix);
3913 suffix += 5;
3914 if (renaming_expr != NULL)
3915 *renaming_expr = suffix;
3916 return kind;
3917 }
3918
3919 /* Compute the value of the given RENAMING_SYM, which is expected to
3920 be a symbol encoding a renaming expression. BLOCK is the block
3921 used to evaluate the renaming. */
3922
3923 static struct value *
3924 ada_read_renaming_var_value (struct symbol *renaming_sym,
3925 const struct block *block)
3926 {
3927 const char *sym_name;
3928
3929 sym_name = renaming_sym->linkage_name ();
3930 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
3931 return evaluate_expression (expr.get ());
3932 }
3933 \f
3934
3935 /* Evaluation: Function Calls */
3936
3937 /* Return an lvalue containing the value VAL. This is the identity on
3938 lvalues, and otherwise has the side-effect of allocating memory
3939 in the inferior where a copy of the value contents is copied. */
3940
3941 static struct value *
3942 ensure_lval (struct value *val)
3943 {
3944 if (VALUE_LVAL (val) == not_lval
3945 || VALUE_LVAL (val) == lval_internalvar)
3946 {
3947 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
3948 const CORE_ADDR addr =
3949 value_as_long (value_allocate_space_in_inferior (len));
3950
3951 VALUE_LVAL (val) = lval_memory;
3952 set_value_address (val, addr);
3953 write_memory (addr, value_contents (val), len);
3954 }
3955
3956 return val;
3957 }
3958
3959 /* Given ARG, a value of type (pointer or reference to a)*
3960 structure/union, extract the component named NAME from the ultimate
3961 target structure/union and return it as a value with its
3962 appropriate type.
3963
3964 The routine searches for NAME among all members of the structure itself
3965 and (recursively) among all members of any wrapper members
3966 (e.g., '_parent').
3967
3968 If NO_ERR, then simply return NULL in case of error, rather than
3969 calling error. */
3970
3971 static struct value *
3972 ada_value_struct_elt (struct value *arg, const char *name, int no_err)
3973 {
3974 struct type *t, *t1;
3975 struct value *v;
3976 int check_tag;
3977
3978 v = NULL;
3979 t1 = t = ada_check_typedef (value_type (arg));
3980 if (t->code () == TYPE_CODE_REF)
3981 {
3982 t1 = TYPE_TARGET_TYPE (t);
3983 if (t1 == NULL)
3984 goto BadValue;
3985 t1 = ada_check_typedef (t1);
3986 if (t1->code () == TYPE_CODE_PTR)
3987 {
3988 arg = coerce_ref (arg);
3989 t = t1;
3990 }
3991 }
3992
3993 while (t->code () == TYPE_CODE_PTR)
3994 {
3995 t1 = TYPE_TARGET_TYPE (t);
3996 if (t1 == NULL)
3997 goto BadValue;
3998 t1 = ada_check_typedef (t1);
3999 if (t1->code () == TYPE_CODE_PTR)
4000 {
4001 arg = value_ind (arg);
4002 t = t1;
4003 }
4004 else
4005 break;
4006 }
4007
4008 if (t1->code () != TYPE_CODE_STRUCT && t1->code () != TYPE_CODE_UNION)
4009 goto BadValue;
4010
4011 if (t1 == t)
4012 v = ada_search_struct_field (name, arg, 0, t);
4013 else
4014 {
4015 int bit_offset, bit_size, byte_offset;
4016 struct type *field_type;
4017 CORE_ADDR address;
4018
4019 if (t->code () == TYPE_CODE_PTR)
4020 address = value_address (ada_value_ind (arg));
4021 else
4022 address = value_address (ada_coerce_ref (arg));
4023
4024 /* Check to see if this is a tagged type. We also need to handle
4025 the case where the type is a reference to a tagged type, but
4026 we have to be careful to exclude pointers to tagged types.
4027 The latter should be shown as usual (as a pointer), whereas
4028 a reference should mostly be transparent to the user. */
4029
4030 if (ada_is_tagged_type (t1, 0)
4031 || (t1->code () == TYPE_CODE_REF
4032 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
4033 {
4034 /* We first try to find the searched field in the current type.
4035 If not found then let's look in the fixed type. */
4036
4037 if (!find_struct_field (name, t1, 0,
4038 &field_type, &byte_offset, &bit_offset,
4039 &bit_size, NULL))
4040 check_tag = 1;
4041 else
4042 check_tag = 0;
4043 }
4044 else
4045 check_tag = 0;
4046
4047 /* Convert to fixed type in all cases, so that we have proper
4048 offsets to each field in unconstrained record types. */
4049 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
4050 address, NULL, check_tag);
4051
4052 /* Resolve the dynamic type as well. */
4053 arg = value_from_contents_and_address (t1, nullptr, address);
4054 t1 = value_type (arg);
4055
4056 if (find_struct_field (name, t1, 0,
4057 &field_type, &byte_offset, &bit_offset,
4058 &bit_size, NULL))
4059 {
4060 if (bit_size != 0)
4061 {
4062 if (t->code () == TYPE_CODE_REF)
4063 arg = ada_coerce_ref (arg);
4064 else
4065 arg = ada_value_ind (arg);
4066 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
4067 bit_offset, bit_size,
4068 field_type);
4069 }
4070 else
4071 v = value_at_lazy (field_type, address + byte_offset);
4072 }
4073 }
4074
4075 if (v != NULL || no_err)
4076 return v;
4077 else
4078 error (_("There is no member named %s."), name);
4079
4080 BadValue:
4081 if (no_err)
4082 return NULL;
4083 else
4084 error (_("Attempt to extract a component of "
4085 "a value that is not a record."));
4086 }
4087
4088 /* Return the value ACTUAL, converted to be an appropriate value for a
4089 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4090 allocating any necessary descriptors (fat pointers), or copies of
4091 values not residing in memory, updating it as needed. */
4092
4093 struct value *
4094 ada_convert_actual (struct value *actual, struct type *formal_type0)
4095 {
4096 struct type *actual_type = ada_check_typedef (value_type (actual));
4097 struct type *formal_type = ada_check_typedef (formal_type0);
4098 struct type *formal_target =
4099 formal_type->code () == TYPE_CODE_PTR
4100 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4101 struct type *actual_target =
4102 actual_type->code () == TYPE_CODE_PTR
4103 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4104
4105 if (ada_is_array_descriptor_type (formal_target)
4106 && actual_target->code () == TYPE_CODE_ARRAY)
4107 return make_array_descriptor (formal_type, actual);
4108 else if (formal_type->code () == TYPE_CODE_PTR
4109 || formal_type->code () == TYPE_CODE_REF)
4110 {
4111 struct value *result;
4112
4113 if (formal_target->code () == TYPE_CODE_ARRAY
4114 && ada_is_array_descriptor_type (actual_target))
4115 result = desc_data (actual);
4116 else if (formal_type->code () != TYPE_CODE_PTR)
4117 {
4118 if (VALUE_LVAL (actual) != lval_memory)
4119 {
4120 struct value *val;
4121
4122 actual_type = ada_check_typedef (value_type (actual));
4123 val = allocate_value (actual_type);
4124 memcpy ((char *) value_contents_raw (val),
4125 (char *) value_contents (actual),
4126 TYPE_LENGTH (actual_type));
4127 actual = ensure_lval (val);
4128 }
4129 result = value_addr (actual);
4130 }
4131 else
4132 return actual;
4133 return value_cast_pointers (formal_type, result, 0);
4134 }
4135 else if (actual_type->code () == TYPE_CODE_PTR)
4136 return ada_value_ind (actual);
4137 else if (ada_is_aligner_type (formal_type))
4138 {
4139 /* We need to turn this parameter into an aligner type
4140 as well. */
4141 struct value *aligner = allocate_value (formal_type);
4142 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4143
4144 value_assign_to_component (aligner, component, actual);
4145 return aligner;
4146 }
4147
4148 return actual;
4149 }
4150
4151 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4152 type TYPE. This is usually an inefficient no-op except on some targets
4153 (such as AVR) where the representation of a pointer and an address
4154 differs. */
4155
4156 static CORE_ADDR
4157 value_pointer (struct value *value, struct type *type)
4158 {
4159 unsigned len = TYPE_LENGTH (type);
4160 gdb_byte *buf = (gdb_byte *) alloca (len);
4161 CORE_ADDR addr;
4162
4163 addr = value_address (value);
4164 gdbarch_address_to_pointer (type->arch (), type, buf, addr);
4165 addr = extract_unsigned_integer (buf, len, type_byte_order (type));
4166 return addr;
4167 }
4168
4169
4170 /* Push a descriptor of type TYPE for array value ARR on the stack at
4171 *SP, updating *SP to reflect the new descriptor. Return either
4172 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4173 to-descriptor type rather than a descriptor type), a struct value *
4174 representing a pointer to this descriptor. */
4175
4176 static struct value *
4177 make_array_descriptor (struct type *type, struct value *arr)
4178 {
4179 struct type *bounds_type = desc_bounds_type (type);
4180 struct type *desc_type = desc_base_type (type);
4181 struct value *descriptor = allocate_value (desc_type);
4182 struct value *bounds = allocate_value (bounds_type);
4183 int i;
4184
4185 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4186 i > 0; i -= 1)
4187 {
4188 modify_field (value_type (bounds), value_contents_writeable (bounds),
4189 ada_array_bound (arr, i, 0),
4190 desc_bound_bitpos (bounds_type, i, 0),
4191 desc_bound_bitsize (bounds_type, i, 0));
4192 modify_field (value_type (bounds), value_contents_writeable (bounds),
4193 ada_array_bound (arr, i, 1),
4194 desc_bound_bitpos (bounds_type, i, 1),
4195 desc_bound_bitsize (bounds_type, i, 1));
4196 }
4197
4198 bounds = ensure_lval (bounds);
4199
4200 modify_field (value_type (descriptor),
4201 value_contents_writeable (descriptor),
4202 value_pointer (ensure_lval (arr),
4203 desc_type->field (0).type ()),
4204 fat_pntr_data_bitpos (desc_type),
4205 fat_pntr_data_bitsize (desc_type));
4206
4207 modify_field (value_type (descriptor),
4208 value_contents_writeable (descriptor),
4209 value_pointer (bounds,
4210 desc_type->field (1).type ()),
4211 fat_pntr_bounds_bitpos (desc_type),
4212 fat_pntr_bounds_bitsize (desc_type));
4213
4214 descriptor = ensure_lval (descriptor);
4215
4216 if (type->code () == TYPE_CODE_PTR)
4217 return value_addr (descriptor);
4218 else
4219 return descriptor;
4220 }
4221 \f
4222 /* Symbol Cache Module */
4223
4224 /* Performance measurements made as of 2010-01-15 indicate that
4225 this cache does bring some noticeable improvements. Depending
4226 on the type of entity being printed, the cache can make it as much
4227 as an order of magnitude faster than without it.
4228
4229 The descriptive type DWARF extension has significantly reduced
4230 the need for this cache, at least when DWARF is being used. However,
4231 even in this case, some expensive name-based symbol searches are still
4232 sometimes necessary - to find an XVZ variable, mostly. */
4233
4234 /* Return the symbol cache associated to the given program space PSPACE.
4235 If not allocated for this PSPACE yet, allocate and initialize one. */
4236
4237 static struct ada_symbol_cache *
4238 ada_get_symbol_cache (struct program_space *pspace)
4239 {
4240 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4241
4242 if (pspace_data->sym_cache == nullptr)
4243 pspace_data->sym_cache.reset (new ada_symbol_cache);
4244
4245 return pspace_data->sym_cache.get ();
4246 }
4247
4248 /* Clear all entries from the symbol cache. */
4249
4250 static void
4251 ada_clear_symbol_cache ()
4252 {
4253 struct ada_pspace_data *pspace_data
4254 = get_ada_pspace_data (current_program_space);
4255
4256 if (pspace_data->sym_cache != nullptr)
4257 pspace_data->sym_cache.reset ();
4258 }
4259
4260 /* Search our cache for an entry matching NAME and DOMAIN.
4261 Return it if found, or NULL otherwise. */
4262
4263 static struct cache_entry **
4264 find_entry (const char *name, domain_enum domain)
4265 {
4266 struct ada_symbol_cache *sym_cache
4267 = ada_get_symbol_cache (current_program_space);
4268 int h = msymbol_hash (name) % HASH_SIZE;
4269 struct cache_entry **e;
4270
4271 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4272 {
4273 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4274 return e;
4275 }
4276 return NULL;
4277 }
4278
4279 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4280 Return 1 if found, 0 otherwise.
4281
4282 If an entry was found and SYM is not NULL, set *SYM to the entry's
4283 SYM. Same principle for BLOCK if not NULL. */
4284
4285 static int
4286 lookup_cached_symbol (const char *name, domain_enum domain,
4287 struct symbol **sym, const struct block **block)
4288 {
4289 struct cache_entry **e = find_entry (name, domain);
4290
4291 if (e == NULL)
4292 return 0;
4293 if (sym != NULL)
4294 *sym = (*e)->sym;
4295 if (block != NULL)
4296 *block = (*e)->block;
4297 return 1;
4298 }
4299
4300 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4301 in domain DOMAIN, save this result in our symbol cache. */
4302
4303 static void
4304 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4305 const struct block *block)
4306 {
4307 struct ada_symbol_cache *sym_cache
4308 = ada_get_symbol_cache (current_program_space);
4309 int h;
4310 struct cache_entry *e;
4311
4312 /* Symbols for builtin types don't have a block.
4313 For now don't cache such symbols. */
4314 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4315 return;
4316
4317 /* If the symbol is a local symbol, then do not cache it, as a search
4318 for that symbol depends on the context. To determine whether
4319 the symbol is local or not, we check the block where we found it
4320 against the global and static blocks of its associated symtab. */
4321 if (sym
4322 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4323 GLOBAL_BLOCK) != block
4324 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4325 STATIC_BLOCK) != block)
4326 return;
4327
4328 h = msymbol_hash (name) % HASH_SIZE;
4329 e = XOBNEW (&sym_cache->cache_space, cache_entry);
4330 e->next = sym_cache->root[h];
4331 sym_cache->root[h] = e;
4332 e->name = obstack_strdup (&sym_cache->cache_space, name);
4333 e->sym = sym;
4334 e->domain = domain;
4335 e->block = block;
4336 }
4337 \f
4338 /* Symbol Lookup */
4339
4340 /* Return the symbol name match type that should be used used when
4341 searching for all symbols matching LOOKUP_NAME.
4342
4343 LOOKUP_NAME is expected to be a symbol name after transformation
4344 for Ada lookups. */
4345
4346 static symbol_name_match_type
4347 name_match_type_from_name (const char *lookup_name)
4348 {
4349 return (strstr (lookup_name, "__") == NULL
4350 ? symbol_name_match_type::WILD
4351 : symbol_name_match_type::FULL);
4352 }
4353
4354 /* Return the result of a standard (literal, C-like) lookup of NAME in
4355 given DOMAIN, visible from lexical block BLOCK. */
4356
4357 static struct symbol *
4358 standard_lookup (const char *name, const struct block *block,
4359 domain_enum domain)
4360 {
4361 /* Initialize it just to avoid a GCC false warning. */
4362 struct block_symbol sym = {};
4363
4364 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4365 return sym.symbol;
4366 ada_lookup_encoded_symbol (name, block, domain, &sym);
4367 cache_symbol (name, domain, sym.symbol, sym.block);
4368 return sym.symbol;
4369 }
4370
4371
4372 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4373 in the symbol fields of SYMS. We treat enumerals as functions,
4374 since they contend in overloading in the same way. */
4375 static int
4376 is_nonfunction (const std::vector<struct block_symbol> &syms)
4377 {
4378 for (const block_symbol &sym : syms)
4379 if (SYMBOL_TYPE (sym.symbol)->code () != TYPE_CODE_FUNC
4380 && (SYMBOL_TYPE (sym.symbol)->code () != TYPE_CODE_ENUM
4381 || SYMBOL_CLASS (sym.symbol) != LOC_CONST))
4382 return 1;
4383
4384 return 0;
4385 }
4386
4387 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4388 struct types. Otherwise, they may not. */
4389
4390 static int
4391 equiv_types (struct type *type0, struct type *type1)
4392 {
4393 if (type0 == type1)
4394 return 1;
4395 if (type0 == NULL || type1 == NULL
4396 || type0->code () != type1->code ())
4397 return 0;
4398 if ((type0->code () == TYPE_CODE_STRUCT
4399 || type0->code () == TYPE_CODE_ENUM)
4400 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4401 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4402 return 1;
4403
4404 return 0;
4405 }
4406
4407 /* True iff SYM0 represents the same entity as SYM1, or one that is
4408 no more defined than that of SYM1. */
4409
4410 static int
4411 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4412 {
4413 if (sym0 == sym1)
4414 return 1;
4415 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4416 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4417 return 0;
4418
4419 switch (SYMBOL_CLASS (sym0))
4420 {
4421 case LOC_UNDEF:
4422 return 1;
4423 case LOC_TYPEDEF:
4424 {
4425 struct type *type0 = SYMBOL_TYPE (sym0);
4426 struct type *type1 = SYMBOL_TYPE (sym1);
4427 const char *name0 = sym0->linkage_name ();
4428 const char *name1 = sym1->linkage_name ();
4429 int len0 = strlen (name0);
4430
4431 return
4432 type0->code () == type1->code ()
4433 && (equiv_types (type0, type1)
4434 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4435 && startswith (name1 + len0, "___XV")));
4436 }
4437 case LOC_CONST:
4438 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4439 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4440
4441 case LOC_STATIC:
4442 {
4443 const char *name0 = sym0->linkage_name ();
4444 const char *name1 = sym1->linkage_name ();
4445 return (strcmp (name0, name1) == 0
4446 && SYMBOL_VALUE_ADDRESS (sym0) == SYMBOL_VALUE_ADDRESS (sym1));
4447 }
4448
4449 default:
4450 return 0;
4451 }
4452 }
4453
4454 /* Append (SYM,BLOCK) to the end of the array of struct block_symbol
4455 records in RESULT. Do nothing if SYM is a duplicate. */
4456
4457 static void
4458 add_defn_to_vec (std::vector<struct block_symbol> &result,
4459 struct symbol *sym,
4460 const struct block *block)
4461 {
4462 /* Do not try to complete stub types, as the debugger is probably
4463 already scanning all symbols matching a certain name at the
4464 time when this function is called. Trying to replace the stub
4465 type by its associated full type will cause us to restart a scan
4466 which may lead to an infinite recursion. Instead, the client
4467 collecting the matching symbols will end up collecting several
4468 matches, with at least one of them complete. It can then filter
4469 out the stub ones if needed. */
4470
4471 for (int i = result.size () - 1; i >= 0; i -= 1)
4472 {
4473 if (lesseq_defined_than (sym, result[i].symbol))
4474 return;
4475 else if (lesseq_defined_than (result[i].symbol, sym))
4476 {
4477 result[i].symbol = sym;
4478 result[i].block = block;
4479 return;
4480 }
4481 }
4482
4483 struct block_symbol info;
4484 info.symbol = sym;
4485 info.block = block;
4486 result.push_back (info);
4487 }
4488
4489 /* Return a bound minimal symbol matching NAME according to Ada
4490 decoding rules. Returns an invalid symbol if there is no such
4491 minimal symbol. Names prefixed with "standard__" are handled
4492 specially: "standard__" is first stripped off, and only static and
4493 global symbols are searched. */
4494
4495 struct bound_minimal_symbol
4496 ada_lookup_simple_minsym (const char *name)
4497 {
4498 struct bound_minimal_symbol result;
4499
4500 memset (&result, 0, sizeof (result));
4501
4502 symbol_name_match_type match_type = name_match_type_from_name (name);
4503 lookup_name_info lookup_name (name, match_type);
4504
4505 symbol_name_matcher_ftype *match_name
4506 = ada_get_symbol_name_matcher (lookup_name);
4507
4508 for (objfile *objfile : current_program_space->objfiles ())
4509 {
4510 for (minimal_symbol *msymbol : objfile->msymbols ())
4511 {
4512 if (match_name (msymbol->linkage_name (), lookup_name, NULL)
4513 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4514 {
4515 result.minsym = msymbol;
4516 result.objfile = objfile;
4517 break;
4518 }
4519 }
4520 }
4521
4522 return result;
4523 }
4524
4525 /* True if TYPE is definitely an artificial type supplied to a symbol
4526 for which no debugging information was given in the symbol file. */
4527
4528 static int
4529 is_nondebugging_type (struct type *type)
4530 {
4531 const char *name = ada_type_name (type);
4532
4533 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4534 }
4535
4536 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4537 that are deemed "identical" for practical purposes.
4538
4539 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4540 types and that their number of enumerals is identical (in other
4541 words, type1->num_fields () == type2->num_fields ()). */
4542
4543 static int
4544 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4545 {
4546 int i;
4547
4548 /* The heuristic we use here is fairly conservative. We consider
4549 that 2 enumerate types are identical if they have the same
4550 number of enumerals and that all enumerals have the same
4551 underlying value and name. */
4552
4553 /* All enums in the type should have an identical underlying value. */
4554 for (i = 0; i < type1->num_fields (); i++)
4555 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
4556 return 0;
4557
4558 /* All enumerals should also have the same name (modulo any numerical
4559 suffix). */
4560 for (i = 0; i < type1->num_fields (); i++)
4561 {
4562 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4563 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4564 int len_1 = strlen (name_1);
4565 int len_2 = strlen (name_2);
4566
4567 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4568 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4569 if (len_1 != len_2
4570 || strncmp (TYPE_FIELD_NAME (type1, i),
4571 TYPE_FIELD_NAME (type2, i),
4572 len_1) != 0)
4573 return 0;
4574 }
4575
4576 return 1;
4577 }
4578
4579 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4580 that are deemed "identical" for practical purposes. Sometimes,
4581 enumerals are not strictly identical, but their types are so similar
4582 that they can be considered identical.
4583
4584 For instance, consider the following code:
4585
4586 type Color is (Black, Red, Green, Blue, White);
4587 type RGB_Color is new Color range Red .. Blue;
4588
4589 Type RGB_Color is a subrange of an implicit type which is a copy
4590 of type Color. If we call that implicit type RGB_ColorB ("B" is
4591 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4592 As a result, when an expression references any of the enumeral
4593 by name (Eg. "print green"), the expression is technically
4594 ambiguous and the user should be asked to disambiguate. But
4595 doing so would only hinder the user, since it wouldn't matter
4596 what choice he makes, the outcome would always be the same.
4597 So, for practical purposes, we consider them as the same. */
4598
4599 static int
4600 symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
4601 {
4602 int i;
4603
4604 /* Before performing a thorough comparison check of each type,
4605 we perform a series of inexpensive checks. We expect that these
4606 checks will quickly fail in the vast majority of cases, and thus
4607 help prevent the unnecessary use of a more expensive comparison.
4608 Said comparison also expects us to make some of these checks
4609 (see ada_identical_enum_types_p). */
4610
4611 /* Quick check: All symbols should have an enum type. */
4612 for (i = 0; i < syms.size (); i++)
4613 if (SYMBOL_TYPE (syms[i].symbol)->code () != TYPE_CODE_ENUM)
4614 return 0;
4615
4616 /* Quick check: They should all have the same value. */
4617 for (i = 1; i < syms.size (); i++)
4618 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
4619 return 0;
4620
4621 /* Quick check: They should all have the same number of enumerals. */
4622 for (i = 1; i < syms.size (); i++)
4623 if (SYMBOL_TYPE (syms[i].symbol)->num_fields ()
4624 != SYMBOL_TYPE (syms[0].symbol)->num_fields ())
4625 return 0;
4626
4627 /* All the sanity checks passed, so we might have a set of
4628 identical enumeration types. Perform a more complete
4629 comparison of the type of each symbol. */
4630 for (i = 1; i < syms.size (); i++)
4631 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
4632 SYMBOL_TYPE (syms[0].symbol)))
4633 return 0;
4634
4635 return 1;
4636 }
4637
4638 /* Remove any non-debugging symbols in SYMS that definitely
4639 duplicate other symbols in the list (The only case I know of where
4640 this happens is when object files containing stabs-in-ecoff are
4641 linked with files containing ordinary ecoff debugging symbols (or no
4642 debugging symbols)). Modifies SYMS to squeeze out deleted entries. */
4643
4644 static void
4645 remove_extra_symbols (std::vector<struct block_symbol> *syms)
4646 {
4647 int i, j;
4648
4649 /* We should never be called with less than 2 symbols, as there
4650 cannot be any extra symbol in that case. But it's easy to
4651 handle, since we have nothing to do in that case. */
4652 if (syms->size () < 2)
4653 return;
4654
4655 i = 0;
4656 while (i < syms->size ())
4657 {
4658 int remove_p = 0;
4659
4660 /* If two symbols have the same name and one of them is a stub type,
4661 the get rid of the stub. */
4662
4663 if (SYMBOL_TYPE ((*syms)[i].symbol)->is_stub ()
4664 && (*syms)[i].symbol->linkage_name () != NULL)
4665 {
4666 for (j = 0; j < syms->size (); j++)
4667 {
4668 if (j != i
4669 && !SYMBOL_TYPE ((*syms)[j].symbol)->is_stub ()
4670 && (*syms)[j].symbol->linkage_name () != NULL
4671 && strcmp ((*syms)[i].symbol->linkage_name (),
4672 (*syms)[j].symbol->linkage_name ()) == 0)
4673 remove_p = 1;
4674 }
4675 }
4676
4677 /* Two symbols with the same name, same class and same address
4678 should be identical. */
4679
4680 else if ((*syms)[i].symbol->linkage_name () != NULL
4681 && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC
4682 && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol)))
4683 {
4684 for (j = 0; j < syms->size (); j += 1)
4685 {
4686 if (i != j
4687 && (*syms)[j].symbol->linkage_name () != NULL
4688 && strcmp ((*syms)[i].symbol->linkage_name (),
4689 (*syms)[j].symbol->linkage_name ()) == 0
4690 && SYMBOL_CLASS ((*syms)[i].symbol)
4691 == SYMBOL_CLASS ((*syms)[j].symbol)
4692 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
4693 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
4694 remove_p = 1;
4695 }
4696 }
4697
4698 if (remove_p)
4699 syms->erase (syms->begin () + i);
4700 else
4701 i += 1;
4702 }
4703
4704 /* If all the remaining symbols are identical enumerals, then
4705 just keep the first one and discard the rest.
4706
4707 Unlike what we did previously, we do not discard any entry
4708 unless they are ALL identical. This is because the symbol
4709 comparison is not a strict comparison, but rather a practical
4710 comparison. If all symbols are considered identical, then
4711 we can just go ahead and use the first one and discard the rest.
4712 But if we cannot reduce the list to a single element, we have
4713 to ask the user to disambiguate anyways. And if we have to
4714 present a multiple-choice menu, it's less confusing if the list
4715 isn't missing some choices that were identical and yet distinct. */
4716 if (symbols_are_identical_enums (*syms))
4717 syms->resize (1);
4718 }
4719
4720 /* Given a type that corresponds to a renaming entity, use the type name
4721 to extract the scope (package name or function name, fully qualified,
4722 and following the GNAT encoding convention) where this renaming has been
4723 defined. */
4724
4725 static std::string
4726 xget_renaming_scope (struct type *renaming_type)
4727 {
4728 /* The renaming types adhere to the following convention:
4729 <scope>__<rename>___<XR extension>.
4730 So, to extract the scope, we search for the "___XR" extension,
4731 and then backtrack until we find the first "__". */
4732
4733 const char *name = renaming_type->name ();
4734 const char *suffix = strstr (name, "___XR");
4735 const char *last;
4736
4737 /* Now, backtrack a bit until we find the first "__". Start looking
4738 at suffix - 3, as the <rename> part is at least one character long. */
4739
4740 for (last = suffix - 3; last > name; last--)
4741 if (last[0] == '_' && last[1] == '_')
4742 break;
4743
4744 /* Make a copy of scope and return it. */
4745 return std::string (name, last);
4746 }
4747
4748 /* Return nonzero if NAME corresponds to a package name. */
4749
4750 static int
4751 is_package_name (const char *name)
4752 {
4753 /* Here, We take advantage of the fact that no symbols are generated
4754 for packages, while symbols are generated for each function.
4755 So the condition for NAME represent a package becomes equivalent
4756 to NAME not existing in our list of symbols. There is only one
4757 small complication with library-level functions (see below). */
4758
4759 /* If it is a function that has not been defined at library level,
4760 then we should be able to look it up in the symbols. */
4761 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4762 return 0;
4763
4764 /* Library-level function names start with "_ada_". See if function
4765 "_ada_" followed by NAME can be found. */
4766
4767 /* Do a quick check that NAME does not contain "__", since library-level
4768 functions names cannot contain "__" in them. */
4769 if (strstr (name, "__") != NULL)
4770 return 0;
4771
4772 std::string fun_name = string_printf ("_ada_%s", name);
4773
4774 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
4775 }
4776
4777 /* Return nonzero if SYM corresponds to a renaming entity that is
4778 not visible from FUNCTION_NAME. */
4779
4780 static int
4781 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
4782 {
4783 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4784 return 0;
4785
4786 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4787
4788 /* If the rename has been defined in a package, then it is visible. */
4789 if (is_package_name (scope.c_str ()))
4790 return 0;
4791
4792 /* Check that the rename is in the current function scope by checking
4793 that its name starts with SCOPE. */
4794
4795 /* If the function name starts with "_ada_", it means that it is
4796 a library-level function. Strip this prefix before doing the
4797 comparison, as the encoding for the renaming does not contain
4798 this prefix. */
4799 if (startswith (function_name, "_ada_"))
4800 function_name += 5;
4801
4802 return !startswith (function_name, scope.c_str ());
4803 }
4804
4805 /* Remove entries from SYMS that corresponds to a renaming entity that
4806 is not visible from the function associated with CURRENT_BLOCK or
4807 that is superfluous due to the presence of more specific renaming
4808 information. Places surviving symbols in the initial entries of
4809 SYMS.
4810
4811 Rationale:
4812 First, in cases where an object renaming is implemented as a
4813 reference variable, GNAT may produce both the actual reference
4814 variable and the renaming encoding. In this case, we discard the
4815 latter.
4816
4817 Second, GNAT emits a type following a specified encoding for each renaming
4818 entity. Unfortunately, STABS currently does not support the definition
4819 of types that are local to a given lexical block, so all renamings types
4820 are emitted at library level. As a consequence, if an application
4821 contains two renaming entities using the same name, and a user tries to
4822 print the value of one of these entities, the result of the ada symbol
4823 lookup will also contain the wrong renaming type.
4824
4825 This function partially covers for this limitation by attempting to
4826 remove from the SYMS list renaming symbols that should be visible
4827 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4828 method with the current information available. The implementation
4829 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4830
4831 - When the user tries to print a rename in a function while there
4832 is another rename entity defined in a package: Normally, the
4833 rename in the function has precedence over the rename in the
4834 package, so the latter should be removed from the list. This is
4835 currently not the case.
4836
4837 - This function will incorrectly remove valid renames if
4838 the CURRENT_BLOCK corresponds to a function which symbol name
4839 has been changed by an "Export" pragma. As a consequence,
4840 the user will be unable to print such rename entities. */
4841
4842 static void
4843 remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
4844 const struct block *current_block)
4845 {
4846 struct symbol *current_function;
4847 const char *current_function_name;
4848 int i;
4849 int is_new_style_renaming;
4850
4851 /* If there is both a renaming foo___XR... encoded as a variable and
4852 a simple variable foo in the same block, discard the latter.
4853 First, zero out such symbols, then compress. */
4854 is_new_style_renaming = 0;
4855 for (i = 0; i < syms->size (); i += 1)
4856 {
4857 struct symbol *sym = (*syms)[i].symbol;
4858 const struct block *block = (*syms)[i].block;
4859 const char *name;
4860 const char *suffix;
4861
4862 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4863 continue;
4864 name = sym->linkage_name ();
4865 suffix = strstr (name, "___XR");
4866
4867 if (suffix != NULL)
4868 {
4869 int name_len = suffix - name;
4870 int j;
4871
4872 is_new_style_renaming = 1;
4873 for (j = 0; j < syms->size (); j += 1)
4874 if (i != j && (*syms)[j].symbol != NULL
4875 && strncmp (name, (*syms)[j].symbol->linkage_name (),
4876 name_len) == 0
4877 && block == (*syms)[j].block)
4878 (*syms)[j].symbol = NULL;
4879 }
4880 }
4881 if (is_new_style_renaming)
4882 {
4883 int j, k;
4884
4885 for (j = k = 0; j < syms->size (); j += 1)
4886 if ((*syms)[j].symbol != NULL)
4887 {
4888 (*syms)[k] = (*syms)[j];
4889 k += 1;
4890 }
4891 syms->resize (k);
4892 return;
4893 }
4894
4895 /* Extract the function name associated to CURRENT_BLOCK.
4896 Abort if unable to do so. */
4897
4898 if (current_block == NULL)
4899 return;
4900
4901 current_function = block_linkage_function (current_block);
4902 if (current_function == NULL)
4903 return;
4904
4905 current_function_name = current_function->linkage_name ();
4906 if (current_function_name == NULL)
4907 return;
4908
4909 /* Check each of the symbols, and remove it from the list if it is
4910 a type corresponding to a renaming that is out of the scope of
4911 the current block. */
4912
4913 i = 0;
4914 while (i < syms->size ())
4915 {
4916 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
4917 == ADA_OBJECT_RENAMING
4918 && old_renaming_is_invisible ((*syms)[i].symbol,
4919 current_function_name))
4920 syms->erase (syms->begin () + i);
4921 else
4922 i += 1;
4923 }
4924 }
4925
4926 /* Add to RESULT all symbols from BLOCK (and its super-blocks)
4927 whose name and domain match LOOKUP_NAME and DOMAIN respectively.
4928
4929 Note: This function assumes that RESULT is empty. */
4930
4931 static void
4932 ada_add_local_symbols (std::vector<struct block_symbol> &result,
4933 const lookup_name_info &lookup_name,
4934 const struct block *block, domain_enum domain)
4935 {
4936 while (block != NULL)
4937 {
4938 ada_add_block_symbols (result, block, lookup_name, domain, NULL);
4939
4940 /* If we found a non-function match, assume that's the one. */
4941 if (is_nonfunction (result))
4942 return;
4943
4944 block = BLOCK_SUPERBLOCK (block);
4945 }
4946 }
4947
4948 /* An object of this type is used as the callback argument when
4949 calling the map_matching_symbols method. */
4950
4951 struct match_data
4952 {
4953 explicit match_data (std::vector<struct block_symbol> *rp)
4954 : resultp (rp)
4955 {
4956 }
4957 DISABLE_COPY_AND_ASSIGN (match_data);
4958
4959 bool operator() (struct block_symbol *bsym);
4960
4961 struct objfile *objfile = nullptr;
4962 std::vector<struct block_symbol> *resultp;
4963 struct symbol *arg_sym = nullptr;
4964 bool found_sym = false;
4965 };
4966
4967 /* A callback for add_nonlocal_symbols that adds symbol, found in
4968 BSYM, to a list of symbols. */
4969
4970 bool
4971 match_data::operator() (struct block_symbol *bsym)
4972 {
4973 const struct block *block = bsym->block;
4974 struct symbol *sym = bsym->symbol;
4975
4976 if (sym == NULL)
4977 {
4978 if (!found_sym && arg_sym != NULL)
4979 add_defn_to_vec (*resultp,
4980 fixup_symbol_section (arg_sym, objfile),
4981 block);
4982 found_sym = false;
4983 arg_sym = NULL;
4984 }
4985 else
4986 {
4987 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4988 return true;
4989 else if (SYMBOL_IS_ARGUMENT (sym))
4990 arg_sym = sym;
4991 else
4992 {
4993 found_sym = true;
4994 add_defn_to_vec (*resultp,
4995 fixup_symbol_section (sym, objfile),
4996 block);
4997 }
4998 }
4999 return true;
5000 }
5001
5002 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5003 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5004 symbols to RESULT. Return whether we found such symbols. */
5005
5006 static int
5007 ada_add_block_renamings (std::vector<struct block_symbol> &result,
5008 const struct block *block,
5009 const lookup_name_info &lookup_name,
5010 domain_enum domain)
5011 {
5012 struct using_direct *renaming;
5013 int defns_mark = result.size ();
5014
5015 symbol_name_matcher_ftype *name_match
5016 = ada_get_symbol_name_matcher (lookup_name);
5017
5018 for (renaming = block_using (block);
5019 renaming != NULL;
5020 renaming = renaming->next)
5021 {
5022 const char *r_name;
5023
5024 /* Avoid infinite recursions: skip this renaming if we are actually
5025 already traversing it.
5026
5027 Currently, symbol lookup in Ada don't use the namespace machinery from
5028 C++/Fortran support: skip namespace imports that use them. */
5029 if (renaming->searched
5030 || (renaming->import_src != NULL
5031 && renaming->import_src[0] != '\0')
5032 || (renaming->import_dest != NULL
5033 && renaming->import_dest[0] != '\0'))
5034 continue;
5035 renaming->searched = 1;
5036
5037 /* TODO: here, we perform another name-based symbol lookup, which can
5038 pull its own multiple overloads. In theory, we should be able to do
5039 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5040 not a simple name. But in order to do this, we would need to enhance
5041 the DWARF reader to associate a symbol to this renaming, instead of a
5042 name. So, for now, we do something simpler: re-use the C++/Fortran
5043 namespace machinery. */
5044 r_name = (renaming->alias != NULL
5045 ? renaming->alias
5046 : renaming->declaration);
5047 if (name_match (r_name, lookup_name, NULL))
5048 {
5049 lookup_name_info decl_lookup_name (renaming->declaration,
5050 lookup_name.match_type ());
5051 ada_add_all_symbols (result, block, decl_lookup_name, domain,
5052 1, NULL);
5053 }
5054 renaming->searched = 0;
5055 }
5056 return result.size () != defns_mark;
5057 }
5058
5059 /* Implements compare_names, but only applying the comparision using
5060 the given CASING. */
5061
5062 static int
5063 compare_names_with_case (const char *string1, const char *string2,
5064 enum case_sensitivity casing)
5065 {
5066 while (*string1 != '\0' && *string2 != '\0')
5067 {
5068 char c1, c2;
5069
5070 if (isspace (*string1) || isspace (*string2))
5071 return strcmp_iw_ordered (string1, string2);
5072
5073 if (casing == case_sensitive_off)
5074 {
5075 c1 = tolower (*string1);
5076 c2 = tolower (*string2);
5077 }
5078 else
5079 {
5080 c1 = *string1;
5081 c2 = *string2;
5082 }
5083 if (c1 != c2)
5084 break;
5085
5086 string1 += 1;
5087 string2 += 1;
5088 }
5089
5090 switch (*string1)
5091 {
5092 case '(':
5093 return strcmp_iw_ordered (string1, string2);
5094 case '_':
5095 if (*string2 == '\0')
5096 {
5097 if (is_name_suffix (string1))
5098 return 0;
5099 else
5100 return 1;
5101 }
5102 /* FALLTHROUGH */
5103 default:
5104 if (*string2 == '(')
5105 return strcmp_iw_ordered (string1, string2);
5106 else
5107 {
5108 if (casing == case_sensitive_off)
5109 return tolower (*string1) - tolower (*string2);
5110 else
5111 return *string1 - *string2;
5112 }
5113 }
5114 }
5115
5116 /* Compare STRING1 to STRING2, with results as for strcmp.
5117 Compatible with strcmp_iw_ordered in that...
5118
5119 strcmp_iw_ordered (STRING1, STRING2) <= 0
5120
5121 ... implies...
5122
5123 compare_names (STRING1, STRING2) <= 0
5124
5125 (they may differ as to what symbols compare equal). */
5126
5127 static int
5128 compare_names (const char *string1, const char *string2)
5129 {
5130 int result;
5131
5132 /* Similar to what strcmp_iw_ordered does, we need to perform
5133 a case-insensitive comparison first, and only resort to
5134 a second, case-sensitive, comparison if the first one was
5135 not sufficient to differentiate the two strings. */
5136
5137 result = compare_names_with_case (string1, string2, case_sensitive_off);
5138 if (result == 0)
5139 result = compare_names_with_case (string1, string2, case_sensitive_on);
5140
5141 return result;
5142 }
5143
5144 /* Convenience function to get at the Ada encoded lookup name for
5145 LOOKUP_NAME, as a C string. */
5146
5147 static const char *
5148 ada_lookup_name (const lookup_name_info &lookup_name)
5149 {
5150 return lookup_name.ada ().lookup_name ().c_str ();
5151 }
5152
5153 /* A helper for add_nonlocal_symbols. Call expand_matching_symbols
5154 for OBJFILE, then walk the objfile's symtabs and update the
5155 results. */
5156
5157 static void
5158 map_matching_symbols (struct objfile *objfile,
5159 const lookup_name_info &lookup_name,
5160 bool is_wild_match,
5161 domain_enum domain,
5162 int global,
5163 match_data &data)
5164 {
5165 data.objfile = objfile;
5166 objfile->expand_matching_symbols (lookup_name, domain, global,
5167 is_wild_match ? nullptr : compare_names);
5168
5169 const int block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
5170 for (compunit_symtab *symtab : objfile->compunits ())
5171 {
5172 const struct block *block
5173 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (symtab), block_kind);
5174 if (!iterate_over_symbols_terminated (block, lookup_name,
5175 domain, data))
5176 break;
5177 }
5178 }
5179
5180 /* Add to RESULT all non-local symbols whose name and domain match
5181 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5182 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5183 symbols otherwise. */
5184
5185 static void
5186 add_nonlocal_symbols (std::vector<struct block_symbol> &result,
5187 const lookup_name_info &lookup_name,
5188 domain_enum domain, int global)
5189 {
5190 struct match_data data (&result);
5191
5192 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5193
5194 for (objfile *objfile : current_program_space->objfiles ())
5195 {
5196 map_matching_symbols (objfile, lookup_name, is_wild_match, domain,
5197 global, data);
5198
5199 for (compunit_symtab *cu : objfile->compunits ())
5200 {
5201 const struct block *global_block
5202 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5203
5204 if (ada_add_block_renamings (result, global_block, lookup_name,
5205 domain))
5206 data.found_sym = true;
5207 }
5208 }
5209
5210 if (result.empty () && global && !is_wild_match)
5211 {
5212 const char *name = ada_lookup_name (lookup_name);
5213 std::string bracket_name = std::string ("<_ada_") + name + '>';
5214 lookup_name_info name1 (bracket_name, symbol_name_match_type::FULL);
5215
5216 for (objfile *objfile : current_program_space->objfiles ())
5217 map_matching_symbols (objfile, name1, false, domain, global, data);
5218 }
5219 }
5220
5221 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5222 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5223 returning the number of matches. Add these to RESULT.
5224
5225 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5226 symbol match within the nest of blocks whose innermost member is BLOCK,
5227 is the one match returned (no other matches in that or
5228 enclosing blocks is returned). If there are any matches in or
5229 surrounding BLOCK, then these alone are returned.
5230
5231 Names prefixed with "standard__" are handled specially:
5232 "standard__" is first stripped off (by the lookup_name
5233 constructor), and only static and global symbols are searched.
5234
5235 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5236 to lookup global symbols. */
5237
5238 static void
5239 ada_add_all_symbols (std::vector<struct block_symbol> &result,
5240 const struct block *block,
5241 const lookup_name_info &lookup_name,
5242 domain_enum domain,
5243 int full_search,
5244 int *made_global_lookup_p)
5245 {
5246 struct symbol *sym;
5247
5248 if (made_global_lookup_p)
5249 *made_global_lookup_p = 0;
5250
5251 /* Special case: If the user specifies a symbol name inside package
5252 Standard, do a non-wild matching of the symbol name without
5253 the "standard__" prefix. This was primarily introduced in order
5254 to allow the user to specifically access the standard exceptions
5255 using, for instance, Standard.Constraint_Error when Constraint_Error
5256 is ambiguous (due to the user defining its own Constraint_Error
5257 entity inside its program). */
5258 if (lookup_name.ada ().standard_p ())
5259 block = NULL;
5260
5261 /* Check the non-global symbols. If we have ANY match, then we're done. */
5262
5263 if (block != NULL)
5264 {
5265 if (full_search)
5266 ada_add_local_symbols (result, lookup_name, block, domain);
5267 else
5268 {
5269 /* In the !full_search case we're are being called by
5270 iterate_over_symbols, and we don't want to search
5271 superblocks. */
5272 ada_add_block_symbols (result, block, lookup_name, domain, NULL);
5273 }
5274 if (!result.empty () || !full_search)
5275 return;
5276 }
5277
5278 /* No non-global symbols found. Check our cache to see if we have
5279 already performed this search before. If we have, then return
5280 the same result. */
5281
5282 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5283 domain, &sym, &block))
5284 {
5285 if (sym != NULL)
5286 add_defn_to_vec (result, sym, block);
5287 return;
5288 }
5289
5290 if (made_global_lookup_p)
5291 *made_global_lookup_p = 1;
5292
5293 /* Search symbols from all global blocks. */
5294
5295 add_nonlocal_symbols (result, lookup_name, domain, 1);
5296
5297 /* Now add symbols from all per-file blocks if we've gotten no hits
5298 (not strictly correct, but perhaps better than an error). */
5299
5300 if (result.empty ())
5301 add_nonlocal_symbols (result, lookup_name, domain, 0);
5302 }
5303
5304 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5305 is non-zero, enclosing scope and in global scopes.
5306
5307 Returns (SYM,BLOCK) tuples, indicating the symbols found and the
5308 blocks and symbol tables (if any) in which they were found.
5309
5310 When full_search is non-zero, any non-function/non-enumeral
5311 symbol match within the nest of blocks whose innermost member is BLOCK,
5312 is the one match returned (no other matches in that or
5313 enclosing blocks is returned). If there are any matches in or
5314 surrounding BLOCK, then these alone are returned.
5315
5316 Names prefixed with "standard__" are handled specially: "standard__"
5317 is first stripped off, and only static and global symbols are searched. */
5318
5319 static std::vector<struct block_symbol>
5320 ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5321 const struct block *block,
5322 domain_enum domain,
5323 int full_search)
5324 {
5325 int syms_from_global_search;
5326 std::vector<struct block_symbol> results;
5327
5328 ada_add_all_symbols (results, block, lookup_name,
5329 domain, full_search, &syms_from_global_search);
5330
5331 remove_extra_symbols (&results);
5332
5333 if (results.empty () && full_search && syms_from_global_search)
5334 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
5335
5336 if (results.size () == 1 && full_search && syms_from_global_search)
5337 cache_symbol (ada_lookup_name (lookup_name), domain,
5338 results[0].symbol, results[0].block);
5339
5340 remove_irrelevant_renamings (&results, block);
5341 return results;
5342 }
5343
5344 /* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
5345 in global scopes, returning (SYM,BLOCK) tuples.
5346
5347 See ada_lookup_symbol_list_worker for further details. */
5348
5349 std::vector<struct block_symbol>
5350 ada_lookup_symbol_list (const char *name, const struct block *block,
5351 domain_enum domain)
5352 {
5353 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5354 lookup_name_info lookup_name (name, name_match_type);
5355
5356 return ada_lookup_symbol_list_worker (lookup_name, block, domain, 1);
5357 }
5358
5359 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5360 to 1, but choosing the first symbol found if there are multiple
5361 choices.
5362
5363 The result is stored in *INFO, which must be non-NULL.
5364 If no match is found, INFO->SYM is set to NULL. */
5365
5366 void
5367 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5368 domain_enum domain,
5369 struct block_symbol *info)
5370 {
5371 /* Since we already have an encoded name, wrap it in '<>' to force a
5372 verbatim match. Otherwise, if the name happens to not look like
5373 an encoded name (because it doesn't include a "__"),
5374 ada_lookup_name_info would re-encode/fold it again, and that
5375 would e.g., incorrectly lowercase object renaming names like
5376 "R28b" -> "r28b". */
5377 std::string verbatim = add_angle_brackets (name);
5378
5379 gdb_assert (info != NULL);
5380 *info = ada_lookup_symbol (verbatim.c_str (), block, domain);
5381 }
5382
5383 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5384 scope and in global scopes, or NULL if none. NAME is folded and
5385 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5386 choosing the first symbol if there are multiple choices. */
5387
5388 struct block_symbol
5389 ada_lookup_symbol (const char *name, const struct block *block0,
5390 domain_enum domain)
5391 {
5392 std::vector<struct block_symbol> candidates
5393 = ada_lookup_symbol_list (name, block0, domain);
5394
5395 if (candidates.empty ())
5396 return {};
5397
5398 block_symbol info = candidates[0];
5399 info.symbol = fixup_symbol_section (info.symbol, NULL);
5400 return info;
5401 }
5402
5403
5404 /* True iff STR is a possible encoded suffix of a normal Ada name
5405 that is to be ignored for matching purposes. Suffixes of parallel
5406 names (e.g., XVE) are not included here. Currently, the possible suffixes
5407 are given by any of the regular expressions:
5408
5409 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5410 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5411 TKB [subprogram suffix for task bodies]
5412 _E[0-9]+[bs]$ [protected object entry suffixes]
5413 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5414
5415 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5416 match is performed. This sequence is used to differentiate homonyms,
5417 is an optional part of a valid name suffix. */
5418
5419 static int
5420 is_name_suffix (const char *str)
5421 {
5422 int k;
5423 const char *matching;
5424 const int len = strlen (str);
5425
5426 /* Skip optional leading __[0-9]+. */
5427
5428 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5429 {
5430 str += 3;
5431 while (isdigit (str[0]))
5432 str += 1;
5433 }
5434
5435 /* [.$][0-9]+ */
5436
5437 if (str[0] == '.' || str[0] == '$')
5438 {
5439 matching = str + 1;
5440 while (isdigit (matching[0]))
5441 matching += 1;
5442 if (matching[0] == '\0')
5443 return 1;
5444 }
5445
5446 /* ___[0-9]+ */
5447
5448 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5449 {
5450 matching = str + 3;
5451 while (isdigit (matching[0]))
5452 matching += 1;
5453 if (matching[0] == '\0')
5454 return 1;
5455 }
5456
5457 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5458
5459 if (strcmp (str, "TKB") == 0)
5460 return 1;
5461
5462 #if 0
5463 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5464 with a N at the end. Unfortunately, the compiler uses the same
5465 convention for other internal types it creates. So treating
5466 all entity names that end with an "N" as a name suffix causes
5467 some regressions. For instance, consider the case of an enumerated
5468 type. To support the 'Image attribute, it creates an array whose
5469 name ends with N.
5470 Having a single character like this as a suffix carrying some
5471 information is a bit risky. Perhaps we should change the encoding
5472 to be something like "_N" instead. In the meantime, do not do
5473 the following check. */
5474 /* Protected Object Subprograms */
5475 if (len == 1 && str [0] == 'N')
5476 return 1;
5477 #endif
5478
5479 /* _E[0-9]+[bs]$ */
5480 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5481 {
5482 matching = str + 3;
5483 while (isdigit (matching[0]))
5484 matching += 1;
5485 if ((matching[0] == 'b' || matching[0] == 's')
5486 && matching [1] == '\0')
5487 return 1;
5488 }
5489
5490 /* ??? We should not modify STR directly, as we are doing below. This
5491 is fine in this case, but may become problematic later if we find
5492 that this alternative did not work, and want to try matching
5493 another one from the begining of STR. Since we modified it, we
5494 won't be able to find the begining of the string anymore! */
5495 if (str[0] == 'X')
5496 {
5497 str += 1;
5498 while (str[0] != '_' && str[0] != '\0')
5499 {
5500 if (str[0] != 'n' && str[0] != 'b')
5501 return 0;
5502 str += 1;
5503 }
5504 }
5505
5506 if (str[0] == '\000')
5507 return 1;
5508
5509 if (str[0] == '_')
5510 {
5511 if (str[1] != '_' || str[2] == '\000')
5512 return 0;
5513 if (str[2] == '_')
5514 {
5515 if (strcmp (str + 3, "JM") == 0)
5516 return 1;
5517 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5518 the LJM suffix in favor of the JM one. But we will
5519 still accept LJM as a valid suffix for a reasonable
5520 amount of time, just to allow ourselves to debug programs
5521 compiled using an older version of GNAT. */
5522 if (strcmp (str + 3, "LJM") == 0)
5523 return 1;
5524 if (str[3] != 'X')
5525 return 0;
5526 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5527 || str[4] == 'U' || str[4] == 'P')
5528 return 1;
5529 if (str[4] == 'R' && str[5] != 'T')
5530 return 1;
5531 return 0;
5532 }
5533 if (!isdigit (str[2]))
5534 return 0;
5535 for (k = 3; str[k] != '\0'; k += 1)
5536 if (!isdigit (str[k]) && str[k] != '_')
5537 return 0;
5538 return 1;
5539 }
5540 if (str[0] == '$' && isdigit (str[1]))
5541 {
5542 for (k = 2; str[k] != '\0'; k += 1)
5543 if (!isdigit (str[k]) && str[k] != '_')
5544 return 0;
5545 return 1;
5546 }
5547 return 0;
5548 }
5549
5550 /* Return non-zero if the string starting at NAME and ending before
5551 NAME_END contains no capital letters. */
5552
5553 static int
5554 is_valid_name_for_wild_match (const char *name0)
5555 {
5556 std::string decoded_name = ada_decode (name0);
5557 int i;
5558
5559 /* If the decoded name starts with an angle bracket, it means that
5560 NAME0 does not follow the GNAT encoding format. It should then
5561 not be allowed as a possible wild match. */
5562 if (decoded_name[0] == '<')
5563 return 0;
5564
5565 for (i=0; decoded_name[i] != '\0'; i++)
5566 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5567 return 0;
5568
5569 return 1;
5570 }
5571
5572 /* Advance *NAMEP to next occurrence in the string NAME0 of the TARGET0
5573 character which could start a simple name. Assumes that *NAMEP points
5574 somewhere inside the string beginning at NAME0. */
5575
5576 static int
5577 advance_wild_match (const char **namep, const char *name0, char target0)
5578 {
5579 const char *name = *namep;
5580
5581 while (1)
5582 {
5583 char t0, t1;
5584
5585 t0 = *name;
5586 if (t0 == '_')
5587 {
5588 t1 = name[1];
5589 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5590 {
5591 name += 1;
5592 if (name == name0 + 5 && startswith (name0, "_ada"))
5593 break;
5594 else
5595 name += 1;
5596 }
5597 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5598 || name[2] == target0))
5599 {
5600 name += 2;
5601 break;
5602 }
5603 else if (t1 == '_' && name[2] == 'B' && name[3] == '_')
5604 {
5605 /* Names like "pkg__B_N__name", where N is a number, are
5606 block-local. We can handle these by simply skipping
5607 the "B_" here. */
5608 name += 4;
5609 }
5610 else
5611 return 0;
5612 }
5613 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5614 name += 1;
5615 else
5616 return 0;
5617 }
5618
5619 *namep = name;
5620 return 1;
5621 }
5622
5623 /* Return true iff NAME encodes a name of the form prefix.PATN.
5624 Ignores any informational suffixes of NAME (i.e., for which
5625 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
5626 simple name. */
5627
5628 static bool
5629 wild_match (const char *name, const char *patn)
5630 {
5631 const char *p;
5632 const char *name0 = name;
5633
5634 while (1)
5635 {
5636 const char *match = name;
5637
5638 if (*name == *patn)
5639 {
5640 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5641 if (*p != *name)
5642 break;
5643 if (*p == '\0' && is_name_suffix (name))
5644 return match == name0 || is_valid_name_for_wild_match (name0);
5645
5646 if (name[-1] == '_')
5647 name -= 1;
5648 }
5649 if (!advance_wild_match (&name, name0, *patn))
5650 return false;
5651 }
5652 }
5653
5654 /* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to RESULT (if
5655 necessary). OBJFILE is the section containing BLOCK. */
5656
5657 static void
5658 ada_add_block_symbols (std::vector<struct block_symbol> &result,
5659 const struct block *block,
5660 const lookup_name_info &lookup_name,
5661 domain_enum domain, struct objfile *objfile)
5662 {
5663 struct block_iterator iter;
5664 /* A matching argument symbol, if any. */
5665 struct symbol *arg_sym;
5666 /* Set true when we find a matching non-argument symbol. */
5667 bool found_sym;
5668 struct symbol *sym;
5669
5670 arg_sym = NULL;
5671 found_sym = false;
5672 for (sym = block_iter_match_first (block, lookup_name, &iter);
5673 sym != NULL;
5674 sym = block_iter_match_next (lookup_name, &iter))
5675 {
5676 if (symbol_matches_domain (sym->language (), SYMBOL_DOMAIN (sym), domain))
5677 {
5678 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5679 {
5680 if (SYMBOL_IS_ARGUMENT (sym))
5681 arg_sym = sym;
5682 else
5683 {
5684 found_sym = true;
5685 add_defn_to_vec (result,
5686 fixup_symbol_section (sym, objfile),
5687 block);
5688 }
5689 }
5690 }
5691 }
5692
5693 /* Handle renamings. */
5694
5695 if (ada_add_block_renamings (result, block, lookup_name, domain))
5696 found_sym = true;
5697
5698 if (!found_sym && arg_sym != NULL)
5699 {
5700 add_defn_to_vec (result,
5701 fixup_symbol_section (arg_sym, objfile),
5702 block);
5703 }
5704
5705 if (!lookup_name.ada ().wild_match_p ())
5706 {
5707 arg_sym = NULL;
5708 found_sym = false;
5709 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
5710 const char *name = ada_lookup_name.c_str ();
5711 size_t name_len = ada_lookup_name.size ();
5712
5713 ALL_BLOCK_SYMBOLS (block, iter, sym)
5714 {
5715 if (symbol_matches_domain (sym->language (),
5716 SYMBOL_DOMAIN (sym), domain))
5717 {
5718 int cmp;
5719
5720 cmp = (int) '_' - (int) sym->linkage_name ()[0];
5721 if (cmp == 0)
5722 {
5723 cmp = !startswith (sym->linkage_name (), "_ada_");
5724 if (cmp == 0)
5725 cmp = strncmp (name, sym->linkage_name () + 5,
5726 name_len);
5727 }
5728
5729 if (cmp == 0
5730 && is_name_suffix (sym->linkage_name () + name_len + 5))
5731 {
5732 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5733 {
5734 if (SYMBOL_IS_ARGUMENT (sym))
5735 arg_sym = sym;
5736 else
5737 {
5738 found_sym = true;
5739 add_defn_to_vec (result,
5740 fixup_symbol_section (sym, objfile),
5741 block);
5742 }
5743 }
5744 }
5745 }
5746 }
5747
5748 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5749 They aren't parameters, right? */
5750 if (!found_sym && arg_sym != NULL)
5751 {
5752 add_defn_to_vec (result,
5753 fixup_symbol_section (arg_sym, objfile),
5754 block);
5755 }
5756 }
5757 }
5758 \f
5759
5760 /* Symbol Completion */
5761
5762 /* See symtab.h. */
5763
5764 bool
5765 ada_lookup_name_info::matches
5766 (const char *sym_name,
5767 symbol_name_match_type match_type,
5768 completion_match_result *comp_match_res) const
5769 {
5770 bool match = false;
5771 const char *text = m_encoded_name.c_str ();
5772 size_t text_len = m_encoded_name.size ();
5773
5774 /* First, test against the fully qualified name of the symbol. */
5775
5776 if (strncmp (sym_name, text, text_len) == 0)
5777 match = true;
5778
5779 std::string decoded_name = ada_decode (sym_name);
5780 if (match && !m_encoded_p)
5781 {
5782 /* One needed check before declaring a positive match is to verify
5783 that iff we are doing a verbatim match, the decoded version
5784 of the symbol name starts with '<'. Otherwise, this symbol name
5785 is not a suitable completion. */
5786
5787 bool has_angle_bracket = (decoded_name[0] == '<');
5788 match = (has_angle_bracket == m_verbatim_p);
5789 }
5790
5791 if (match && !m_verbatim_p)
5792 {
5793 /* When doing non-verbatim match, another check that needs to
5794 be done is to verify that the potentially matching symbol name
5795 does not include capital letters, because the ada-mode would
5796 not be able to understand these symbol names without the
5797 angle bracket notation. */
5798 const char *tmp;
5799
5800 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5801 if (*tmp != '\0')
5802 match = false;
5803 }
5804
5805 /* Second: Try wild matching... */
5806
5807 if (!match && m_wild_match_p)
5808 {
5809 /* Since we are doing wild matching, this means that TEXT
5810 may represent an unqualified symbol name. We therefore must
5811 also compare TEXT against the unqualified name of the symbol. */
5812 sym_name = ada_unqualified_name (decoded_name.c_str ());
5813
5814 if (strncmp (sym_name, text, text_len) == 0)
5815 match = true;
5816 }
5817
5818 /* Finally: If we found a match, prepare the result to return. */
5819
5820 if (!match)
5821 return false;
5822
5823 if (comp_match_res != NULL)
5824 {
5825 std::string &match_str = comp_match_res->match.storage ();
5826
5827 if (!m_encoded_p)
5828 match_str = ada_decode (sym_name);
5829 else
5830 {
5831 if (m_verbatim_p)
5832 match_str = add_angle_brackets (sym_name);
5833 else
5834 match_str = sym_name;
5835
5836 }
5837
5838 comp_match_res->set_match (match_str.c_str ());
5839 }
5840
5841 return true;
5842 }
5843
5844 /* Field Access */
5845
5846 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5847 for tagged types. */
5848
5849 static int
5850 ada_is_dispatch_table_ptr_type (struct type *type)
5851 {
5852 const char *name;
5853
5854 if (type->code () != TYPE_CODE_PTR)
5855 return 0;
5856
5857 name = TYPE_TARGET_TYPE (type)->name ();
5858 if (name == NULL)
5859 return 0;
5860
5861 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5862 }
5863
5864 /* Return non-zero if TYPE is an interface tag. */
5865
5866 static int
5867 ada_is_interface_tag (struct type *type)
5868 {
5869 const char *name = type->name ();
5870
5871 if (name == NULL)
5872 return 0;
5873
5874 return (strcmp (name, "ada__tags__interface_tag") == 0);
5875 }
5876
5877 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5878 to be invisible to users. */
5879
5880 int
5881 ada_is_ignored_field (struct type *type, int field_num)
5882 {
5883 if (field_num < 0 || field_num > type->num_fields ())
5884 return 1;
5885
5886 /* Check the name of that field. */
5887 {
5888 const char *name = TYPE_FIELD_NAME (type, field_num);
5889
5890 /* Anonymous field names should not be printed.
5891 brobecker/2007-02-20: I don't think this can actually happen
5892 but we don't want to print the value of anonymous fields anyway. */
5893 if (name == NULL)
5894 return 1;
5895
5896 /* Normally, fields whose name start with an underscore ("_")
5897 are fields that have been internally generated by the compiler,
5898 and thus should not be printed. The "_parent" field is special,
5899 however: This is a field internally generated by the compiler
5900 for tagged types, and it contains the components inherited from
5901 the parent type. This field should not be printed as is, but
5902 should not be ignored either. */
5903 if (name[0] == '_' && !startswith (name, "_parent"))
5904 return 1;
5905 }
5906
5907 /* If this is the dispatch table of a tagged type or an interface tag,
5908 then ignore. */
5909 if (ada_is_tagged_type (type, 1)
5910 && (ada_is_dispatch_table_ptr_type (type->field (field_num).type ())
5911 || ada_is_interface_tag (type->field (field_num).type ())))
5912 return 1;
5913
5914 /* Not a special field, so it should not be ignored. */
5915 return 0;
5916 }
5917
5918 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5919 pointer or reference type whose ultimate target has a tag field. */
5920
5921 int
5922 ada_is_tagged_type (struct type *type, int refok)
5923 {
5924 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
5925 }
5926
5927 /* True iff TYPE represents the type of X'Tag */
5928
5929 int
5930 ada_is_tag_type (struct type *type)
5931 {
5932 type = ada_check_typedef (type);
5933
5934 if (type == NULL || type->code () != TYPE_CODE_PTR)
5935 return 0;
5936 else
5937 {
5938 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5939
5940 return (name != NULL
5941 && strcmp (name, "ada__tags__dispatch_table") == 0);
5942 }
5943 }
5944
5945 /* The type of the tag on VAL. */
5946
5947 static struct type *
5948 ada_tag_type (struct value *val)
5949 {
5950 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
5951 }
5952
5953 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
5954 retired at Ada 05). */
5955
5956 static int
5957 is_ada95_tag (struct value *tag)
5958 {
5959 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
5960 }
5961
5962 /* The value of the tag on VAL. */
5963
5964 static struct value *
5965 ada_value_tag (struct value *val)
5966 {
5967 return ada_value_struct_elt (val, "_tag", 0);
5968 }
5969
5970 /* The value of the tag on the object of type TYPE whose contents are
5971 saved at VALADDR, if it is non-null, or is at memory address
5972 ADDRESS. */
5973
5974 static struct value *
5975 value_tag_from_contents_and_address (struct type *type,
5976 const gdb_byte *valaddr,
5977 CORE_ADDR address)
5978 {
5979 int tag_byte_offset;
5980 struct type *tag_type;
5981
5982 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
5983 NULL, NULL, NULL))
5984 {
5985 const gdb_byte *valaddr1 = ((valaddr == NULL)
5986 ? NULL
5987 : valaddr + tag_byte_offset);
5988 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
5989
5990 return value_from_contents_and_address (tag_type, valaddr1, address1);
5991 }
5992 return NULL;
5993 }
5994
5995 static struct type *
5996 type_from_tag (struct value *tag)
5997 {
5998 gdb::unique_xmalloc_ptr<char> type_name = ada_tag_name (tag);
5999
6000 if (type_name != NULL)
6001 return ada_find_any_type (ada_encode (type_name.get ()).c_str ());
6002 return NULL;
6003 }
6004
6005 /* Given a value OBJ of a tagged type, return a value of this
6006 type at the base address of the object. The base address, as
6007 defined in Ada.Tags, it is the address of the primary tag of
6008 the object, and therefore where the field values of its full
6009 view can be fetched. */
6010
6011 struct value *
6012 ada_tag_value_at_base_address (struct value *obj)
6013 {
6014 struct value *val;
6015 LONGEST offset_to_top = 0;
6016 struct type *ptr_type, *obj_type;
6017 struct value *tag;
6018 CORE_ADDR base_address;
6019
6020 obj_type = value_type (obj);
6021
6022 /* It is the responsability of the caller to deref pointers. */
6023
6024 if (obj_type->code () == TYPE_CODE_PTR || obj_type->code () == TYPE_CODE_REF)
6025 return obj;
6026
6027 tag = ada_value_tag (obj);
6028 if (!tag)
6029 return obj;
6030
6031 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6032
6033 if (is_ada95_tag (tag))
6034 return obj;
6035
6036 ptr_type = language_lookup_primitive_type
6037 (language_def (language_ada), target_gdbarch(), "storage_offset");
6038 ptr_type = lookup_pointer_type (ptr_type);
6039 val = value_cast (ptr_type, tag);
6040 if (!val)
6041 return obj;
6042
6043 /* It is perfectly possible that an exception be raised while
6044 trying to determine the base address, just like for the tag;
6045 see ada_tag_name for more details. We do not print the error
6046 message for the same reason. */
6047
6048 try
6049 {
6050 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6051 }
6052
6053 catch (const gdb_exception_error &e)
6054 {
6055 return obj;
6056 }
6057
6058 /* If offset is null, nothing to do. */
6059
6060 if (offset_to_top == 0)
6061 return obj;
6062
6063 /* -1 is a special case in Ada.Tags; however, what should be done
6064 is not quite clear from the documentation. So do nothing for
6065 now. */
6066
6067 if (offset_to_top == -1)
6068 return obj;
6069
6070 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6071 from the base address. This was however incompatible with
6072 C++ dispatch table: C++ uses a *negative* value to *add*
6073 to the base address. Ada's convention has therefore been
6074 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6075 use the same convention. Here, we support both cases by
6076 checking the sign of OFFSET_TO_TOP. */
6077
6078 if (offset_to_top > 0)
6079 offset_to_top = -offset_to_top;
6080
6081 base_address = value_address (obj) + offset_to_top;
6082 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6083
6084 /* Make sure that we have a proper tag at the new address.
6085 Otherwise, offset_to_top is bogus (which can happen when
6086 the object is not initialized yet). */
6087
6088 if (!tag)
6089 return obj;
6090
6091 obj_type = type_from_tag (tag);
6092
6093 if (!obj_type)
6094 return obj;
6095
6096 return value_from_contents_and_address (obj_type, NULL, base_address);
6097 }
6098
6099 /* Return the "ada__tags__type_specific_data" type. */
6100
6101 static struct type *
6102 ada_get_tsd_type (struct inferior *inf)
6103 {
6104 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6105
6106 if (data->tsd_type == 0)
6107 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6108 return data->tsd_type;
6109 }
6110
6111 /* Return the TSD (type-specific data) associated to the given TAG.
6112 TAG is assumed to be the tag of a tagged-type entity.
6113
6114 May return NULL if we are unable to get the TSD. */
6115
6116 static struct value *
6117 ada_get_tsd_from_tag (struct value *tag)
6118 {
6119 struct value *val;
6120 struct type *type;
6121
6122 /* First option: The TSD is simply stored as a field of our TAG.
6123 Only older versions of GNAT would use this format, but we have
6124 to test it first, because there are no visible markers for
6125 the current approach except the absence of that field. */
6126
6127 val = ada_value_struct_elt (tag, "tsd", 1);
6128 if (val)
6129 return val;
6130
6131 /* Try the second representation for the dispatch table (in which
6132 there is no explicit 'tsd' field in the referent of the tag pointer,
6133 and instead the tsd pointer is stored just before the dispatch
6134 table. */
6135
6136 type = ada_get_tsd_type (current_inferior());
6137 if (type == NULL)
6138 return NULL;
6139 type = lookup_pointer_type (lookup_pointer_type (type));
6140 val = value_cast (type, tag);
6141 if (val == NULL)
6142 return NULL;
6143 return value_ind (value_ptradd (val, -1));
6144 }
6145
6146 /* Given the TSD of a tag (type-specific data), return a string
6147 containing the name of the associated type.
6148
6149 May return NULL if we are unable to determine the tag name. */
6150
6151 static gdb::unique_xmalloc_ptr<char>
6152 ada_tag_name_from_tsd (struct value *tsd)
6153 {
6154 char *p;
6155 struct value *val;
6156
6157 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6158 if (val == NULL)
6159 return NULL;
6160 gdb::unique_xmalloc_ptr<char> buffer
6161 = target_read_string (value_as_address (val), INT_MAX);
6162 if (buffer == nullptr)
6163 return nullptr;
6164
6165 for (p = buffer.get (); *p != '\0'; ++p)
6166 {
6167 if (isalpha (*p))
6168 *p = tolower (*p);
6169 }
6170
6171 return buffer;
6172 }
6173
6174 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6175 a C string.
6176
6177 Return NULL if the TAG is not an Ada tag, or if we were unable to
6178 determine the name of that tag. */
6179
6180 gdb::unique_xmalloc_ptr<char>
6181 ada_tag_name (struct value *tag)
6182 {
6183 gdb::unique_xmalloc_ptr<char> name;
6184
6185 if (!ada_is_tag_type (value_type (tag)))
6186 return NULL;
6187
6188 /* It is perfectly possible that an exception be raised while trying
6189 to determine the TAG's name, even under normal circumstances:
6190 The associated variable may be uninitialized or corrupted, for
6191 instance. We do not let any exception propagate past this point.
6192 instead we return NULL.
6193
6194 We also do not print the error message either (which often is very
6195 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6196 the caller print a more meaningful message if necessary. */
6197 try
6198 {
6199 struct value *tsd = ada_get_tsd_from_tag (tag);
6200
6201 if (tsd != NULL)
6202 name = ada_tag_name_from_tsd (tsd);
6203 }
6204 catch (const gdb_exception_error &e)
6205 {
6206 }
6207
6208 return name;
6209 }
6210
6211 /* The parent type of TYPE, or NULL if none. */
6212
6213 struct type *
6214 ada_parent_type (struct type *type)
6215 {
6216 int i;
6217
6218 type = ada_check_typedef (type);
6219
6220 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
6221 return NULL;
6222
6223 for (i = 0; i < type->num_fields (); i += 1)
6224 if (ada_is_parent_field (type, i))
6225 {
6226 struct type *parent_type = type->field (i).type ();
6227
6228 /* If the _parent field is a pointer, then dereference it. */
6229 if (parent_type->code () == TYPE_CODE_PTR)
6230 parent_type = TYPE_TARGET_TYPE (parent_type);
6231 /* If there is a parallel XVS type, get the actual base type. */
6232 parent_type = ada_get_base_type (parent_type);
6233
6234 return ada_check_typedef (parent_type);
6235 }
6236
6237 return NULL;
6238 }
6239
6240 /* True iff field number FIELD_NUM of structure type TYPE contains the
6241 parent-type (inherited) fields of a derived type. Assumes TYPE is
6242 a structure type with at least FIELD_NUM+1 fields. */
6243
6244 int
6245 ada_is_parent_field (struct type *type, int field_num)
6246 {
6247 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6248
6249 return (name != NULL
6250 && (startswith (name, "PARENT")
6251 || startswith (name, "_parent")));
6252 }
6253
6254 /* True iff field number FIELD_NUM of structure type TYPE is a
6255 transparent wrapper field (which should be silently traversed when doing
6256 field selection and flattened when printing). Assumes TYPE is a
6257 structure type with at least FIELD_NUM+1 fields. Such fields are always
6258 structures. */
6259
6260 int
6261 ada_is_wrapper_field (struct type *type, int field_num)
6262 {
6263 const char *name = TYPE_FIELD_NAME (type, field_num);
6264
6265 if (name != NULL && strcmp (name, "RETVAL") == 0)
6266 {
6267 /* This happens in functions with "out" or "in out" parameters
6268 which are passed by copy. For such functions, GNAT describes
6269 the function's return type as being a struct where the return
6270 value is in a field called RETVAL, and where the other "out"
6271 or "in out" parameters are fields of that struct. This is not
6272 a wrapper. */
6273 return 0;
6274 }
6275
6276 return (name != NULL
6277 && (startswith (name, "PARENT")
6278 || strcmp (name, "REP") == 0
6279 || startswith (name, "_parent")
6280 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6281 }
6282
6283 /* True iff field number FIELD_NUM of structure or union type TYPE
6284 is a variant wrapper. Assumes TYPE is a structure type with at least
6285 FIELD_NUM+1 fields. */
6286
6287 int
6288 ada_is_variant_part (struct type *type, int field_num)
6289 {
6290 /* Only Ada types are eligible. */
6291 if (!ADA_TYPE_P (type))
6292 return 0;
6293
6294 struct type *field_type = type->field (field_num).type ();
6295
6296 return (field_type->code () == TYPE_CODE_UNION
6297 || (is_dynamic_field (type, field_num)
6298 && (TYPE_TARGET_TYPE (field_type)->code ()
6299 == TYPE_CODE_UNION)));
6300 }
6301
6302 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6303 whose discriminants are contained in the record type OUTER_TYPE,
6304 returns the type of the controlling discriminant for the variant.
6305 May return NULL if the type could not be found. */
6306
6307 struct type *
6308 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6309 {
6310 const char *name = ada_variant_discrim_name (var_type);
6311
6312 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
6313 }
6314
6315 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6316 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6317 represents a 'when others' clause; otherwise 0. */
6318
6319 static int
6320 ada_is_others_clause (struct type *type, int field_num)
6321 {
6322 const char *name = TYPE_FIELD_NAME (type, field_num);
6323
6324 return (name != NULL && name[0] == 'O');
6325 }
6326
6327 /* Assuming that TYPE0 is the type of the variant part of a record,
6328 returns the name of the discriminant controlling the variant.
6329 The value is valid until the next call to ada_variant_discrim_name. */
6330
6331 const char *
6332 ada_variant_discrim_name (struct type *type0)
6333 {
6334 static std::string result;
6335 struct type *type;
6336 const char *name;
6337 const char *discrim_end;
6338 const char *discrim_start;
6339
6340 if (type0->code () == TYPE_CODE_PTR)
6341 type = TYPE_TARGET_TYPE (type0);
6342 else
6343 type = type0;
6344
6345 name = ada_type_name (type);
6346
6347 if (name == NULL || name[0] == '\000')
6348 return "";
6349
6350 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6351 discrim_end -= 1)
6352 {
6353 if (startswith (discrim_end, "___XVN"))
6354 break;
6355 }
6356 if (discrim_end == name)
6357 return "";
6358
6359 for (discrim_start = discrim_end; discrim_start != name + 3;
6360 discrim_start -= 1)
6361 {
6362 if (discrim_start == name + 1)
6363 return "";
6364 if ((discrim_start > name + 3
6365 && startswith (discrim_start - 3, "___"))
6366 || discrim_start[-1] == '.')
6367 break;
6368 }
6369
6370 result = std::string (discrim_start, discrim_end - discrim_start);
6371 return result.c_str ();
6372 }
6373
6374 /* Scan STR for a subtype-encoded number, beginning at position K.
6375 Put the position of the character just past the number scanned in
6376 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6377 Return 1 if there was a valid number at the given position, and 0
6378 otherwise. A "subtype-encoded" number consists of the absolute value
6379 in decimal, followed by the letter 'm' to indicate a negative number.
6380 Assumes 0m does not occur. */
6381
6382 int
6383 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6384 {
6385 ULONGEST RU;
6386
6387 if (!isdigit (str[k]))
6388 return 0;
6389
6390 /* Do it the hard way so as not to make any assumption about
6391 the relationship of unsigned long (%lu scan format code) and
6392 LONGEST. */
6393 RU = 0;
6394 while (isdigit (str[k]))
6395 {
6396 RU = RU * 10 + (str[k] - '0');
6397 k += 1;
6398 }
6399
6400 if (str[k] == 'm')
6401 {
6402 if (R != NULL)
6403 *R = (-(LONGEST) (RU - 1)) - 1;
6404 k += 1;
6405 }
6406 else if (R != NULL)
6407 *R = (LONGEST) RU;
6408
6409 /* NOTE on the above: Technically, C does not say what the results of
6410 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6411 number representable as a LONGEST (although either would probably work
6412 in most implementations). When RU>0, the locution in the then branch
6413 above is always equivalent to the negative of RU. */
6414
6415 if (new_k != NULL)
6416 *new_k = k;
6417 return 1;
6418 }
6419
6420 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6421 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6422 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6423
6424 static int
6425 ada_in_variant (LONGEST val, struct type *type, int field_num)
6426 {
6427 const char *name = TYPE_FIELD_NAME (type, field_num);
6428 int p;
6429
6430 p = 0;
6431 while (1)
6432 {
6433 switch (name[p])
6434 {
6435 case '\0':
6436 return 0;
6437 case 'S':
6438 {
6439 LONGEST W;
6440
6441 if (!ada_scan_number (name, p + 1, &W, &p))
6442 return 0;
6443 if (val == W)
6444 return 1;
6445 break;
6446 }
6447 case 'R':
6448 {
6449 LONGEST L, U;
6450
6451 if (!ada_scan_number (name, p + 1, &L, &p)
6452 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6453 return 0;
6454 if (val >= L && val <= U)
6455 return 1;
6456 break;
6457 }
6458 case 'O':
6459 return 1;
6460 default:
6461 return 0;
6462 }
6463 }
6464 }
6465
6466 /* FIXME: Lots of redundancy below. Try to consolidate. */
6467
6468 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6469 ARG_TYPE, extract and return the value of one of its (non-static)
6470 fields. FIELDNO says which field. Differs from value_primitive_field
6471 only in that it can handle packed values of arbitrary type. */
6472
6473 struct value *
6474 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6475 struct type *arg_type)
6476 {
6477 struct type *type;
6478
6479 arg_type = ada_check_typedef (arg_type);
6480 type = arg_type->field (fieldno).type ();
6481
6482 /* Handle packed fields. It might be that the field is not packed
6483 relative to its containing structure, but the structure itself is
6484 packed; in this case we must take the bit-field path. */
6485 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0 || value_bitpos (arg1) != 0)
6486 {
6487 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6488 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6489
6490 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
6491 offset + bit_pos / 8,
6492 bit_pos % 8, bit_size, type);
6493 }
6494 else
6495 return value_primitive_field (arg1, offset, fieldno, arg_type);
6496 }
6497
6498 /* Find field with name NAME in object of type TYPE. If found,
6499 set the following for each argument that is non-null:
6500 - *FIELD_TYPE_P to the field's type;
6501 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6502 an object of that type;
6503 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6504 - *BIT_SIZE_P to its size in bits if the field is packed, and
6505 0 otherwise;
6506 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6507 fields up to but not including the desired field, or by the total
6508 number of fields if not found. A NULL value of NAME never
6509 matches; the function just counts visible fields in this case.
6510
6511 Notice that we need to handle when a tagged record hierarchy
6512 has some components with the same name, like in this scenario:
6513
6514 type Top_T is tagged record
6515 N : Integer := 1;
6516 U : Integer := 974;
6517 A : Integer := 48;
6518 end record;
6519
6520 type Middle_T is new Top.Top_T with record
6521 N : Character := 'a';
6522 C : Integer := 3;
6523 end record;
6524
6525 type Bottom_T is new Middle.Middle_T with record
6526 N : Float := 4.0;
6527 C : Character := '5';
6528 X : Integer := 6;
6529 A : Character := 'J';
6530 end record;
6531
6532 Let's say we now have a variable declared and initialized as follow:
6533
6534 TC : Top_A := new Bottom_T;
6535
6536 And then we use this variable to call this function
6537
6538 procedure Assign (Obj: in out Top_T; TV : Integer);
6539
6540 as follow:
6541
6542 Assign (Top_T (B), 12);
6543
6544 Now, we're in the debugger, and we're inside that procedure
6545 then and we want to print the value of obj.c:
6546
6547 Usually, the tagged record or one of the parent type owns the
6548 component to print and there's no issue but in this particular
6549 case, what does it mean to ask for Obj.C? Since the actual
6550 type for object is type Bottom_T, it could mean two things: type
6551 component C from the Middle_T view, but also component C from
6552 Bottom_T. So in that "undefined" case, when the component is
6553 not found in the non-resolved type (which includes all the
6554 components of the parent type), then resolve it and see if we
6555 get better luck once expanded.
6556
6557 In the case of homonyms in the derived tagged type, we don't
6558 guaranty anything, and pick the one that's easiest for us
6559 to program.
6560
6561 Returns 1 if found, 0 otherwise. */
6562
6563 static int
6564 find_struct_field (const char *name, struct type *type, int offset,
6565 struct type **field_type_p,
6566 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6567 int *index_p)
6568 {
6569 int i;
6570 int parent_offset = -1;
6571
6572 type = ada_check_typedef (type);
6573
6574 if (field_type_p != NULL)
6575 *field_type_p = NULL;
6576 if (byte_offset_p != NULL)
6577 *byte_offset_p = 0;
6578 if (bit_offset_p != NULL)
6579 *bit_offset_p = 0;
6580 if (bit_size_p != NULL)
6581 *bit_size_p = 0;
6582
6583 for (i = 0; i < type->num_fields (); i += 1)
6584 {
6585 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6586 int fld_offset = offset + bit_pos / 8;
6587 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6588
6589 if (t_field_name == NULL)
6590 continue;
6591
6592 else if (ada_is_parent_field (type, i))
6593 {
6594 /* This is a field pointing us to the parent type of a tagged
6595 type. As hinted in this function's documentation, we give
6596 preference to fields in the current record first, so what
6597 we do here is just record the index of this field before
6598 we skip it. If it turns out we couldn't find our field
6599 in the current record, then we'll get back to it and search
6600 inside it whether the field might exist in the parent. */
6601
6602 parent_offset = i;
6603 continue;
6604 }
6605
6606 else if (name != NULL && field_name_match (t_field_name, name))
6607 {
6608 int bit_size = TYPE_FIELD_BITSIZE (type, i);
6609
6610 if (field_type_p != NULL)
6611 *field_type_p = type->field (i).type ();
6612 if (byte_offset_p != NULL)
6613 *byte_offset_p = fld_offset;
6614 if (bit_offset_p != NULL)
6615 *bit_offset_p = bit_pos % 8;
6616 if (bit_size_p != NULL)
6617 *bit_size_p = bit_size;
6618 return 1;
6619 }
6620 else if (ada_is_wrapper_field (type, i))
6621 {
6622 if (find_struct_field (name, type->field (i).type (), fld_offset,
6623 field_type_p, byte_offset_p, bit_offset_p,
6624 bit_size_p, index_p))
6625 return 1;
6626 }
6627 else if (ada_is_variant_part (type, i))
6628 {
6629 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6630 fixed type?? */
6631 int j;
6632 struct type *field_type
6633 = ada_check_typedef (type->field (i).type ());
6634
6635 for (j = 0; j < field_type->num_fields (); j += 1)
6636 {
6637 if (find_struct_field (name, field_type->field (j).type (),
6638 fld_offset
6639 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6640 field_type_p, byte_offset_p,
6641 bit_offset_p, bit_size_p, index_p))
6642 return 1;
6643 }
6644 }
6645 else if (index_p != NULL)
6646 *index_p += 1;
6647 }
6648
6649 /* Field not found so far. If this is a tagged type which
6650 has a parent, try finding that field in the parent now. */
6651
6652 if (parent_offset != -1)
6653 {
6654 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
6655 int fld_offset = offset + bit_pos / 8;
6656
6657 if (find_struct_field (name, type->field (parent_offset).type (),
6658 fld_offset, field_type_p, byte_offset_p,
6659 bit_offset_p, bit_size_p, index_p))
6660 return 1;
6661 }
6662
6663 return 0;
6664 }
6665
6666 /* Number of user-visible fields in record type TYPE. */
6667
6668 static int
6669 num_visible_fields (struct type *type)
6670 {
6671 int n;
6672
6673 n = 0;
6674 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6675 return n;
6676 }
6677
6678 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
6679 and search in it assuming it has (class) type TYPE.
6680 If found, return value, else return NULL.
6681
6682 Searches recursively through wrapper fields (e.g., '_parent').
6683
6684 In the case of homonyms in the tagged types, please refer to the
6685 long explanation in find_struct_field's function documentation. */
6686
6687 static struct value *
6688 ada_search_struct_field (const char *name, struct value *arg, int offset,
6689 struct type *type)
6690 {
6691 int i;
6692 int parent_offset = -1;
6693
6694 type = ada_check_typedef (type);
6695 for (i = 0; i < type->num_fields (); i += 1)
6696 {
6697 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6698
6699 if (t_field_name == NULL)
6700 continue;
6701
6702 else if (ada_is_parent_field (type, i))
6703 {
6704 /* This is a field pointing us to the parent type of a tagged
6705 type. As hinted in this function's documentation, we give
6706 preference to fields in the current record first, so what
6707 we do here is just record the index of this field before
6708 we skip it. If it turns out we couldn't find our field
6709 in the current record, then we'll get back to it and search
6710 inside it whether the field might exist in the parent. */
6711
6712 parent_offset = i;
6713 continue;
6714 }
6715
6716 else if (field_name_match (t_field_name, name))
6717 return ada_value_primitive_field (arg, offset, i, type);
6718
6719 else if (ada_is_wrapper_field (type, i))
6720 {
6721 struct value *v = /* Do not let indent join lines here. */
6722 ada_search_struct_field (name, arg,
6723 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6724 type->field (i).type ());
6725
6726 if (v != NULL)
6727 return v;
6728 }
6729
6730 else if (ada_is_variant_part (type, i))
6731 {
6732 /* PNH: Do we ever get here? See find_struct_field. */
6733 int j;
6734 struct type *field_type = ada_check_typedef (type->field (i).type ());
6735 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6736
6737 for (j = 0; j < field_type->num_fields (); j += 1)
6738 {
6739 struct value *v = ada_search_struct_field /* Force line
6740 break. */
6741 (name, arg,
6742 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6743 field_type->field (j).type ());
6744
6745 if (v != NULL)
6746 return v;
6747 }
6748 }
6749 }
6750
6751 /* Field not found so far. If this is a tagged type which
6752 has a parent, try finding that field in the parent now. */
6753
6754 if (parent_offset != -1)
6755 {
6756 struct value *v = ada_search_struct_field (
6757 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
6758 type->field (parent_offset).type ());
6759
6760 if (v != NULL)
6761 return v;
6762 }
6763
6764 return NULL;
6765 }
6766
6767 static struct value *ada_index_struct_field_1 (int *, struct value *,
6768 int, struct type *);
6769
6770
6771 /* Return field #INDEX in ARG, where the index is that returned by
6772 * find_struct_field through its INDEX_P argument. Adjust the address
6773 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6774 * If found, return value, else return NULL. */
6775
6776 static struct value *
6777 ada_index_struct_field (int index, struct value *arg, int offset,
6778 struct type *type)
6779 {
6780 return ada_index_struct_field_1 (&index, arg, offset, type);
6781 }
6782
6783
6784 /* Auxiliary function for ada_index_struct_field. Like
6785 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6786 * *INDEX_P. */
6787
6788 static struct value *
6789 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6790 struct type *type)
6791 {
6792 int i;
6793 type = ada_check_typedef (type);
6794
6795 for (i = 0; i < type->num_fields (); i += 1)
6796 {
6797 if (TYPE_FIELD_NAME (type, i) == NULL)
6798 continue;
6799 else if (ada_is_wrapper_field (type, i))
6800 {
6801 struct value *v = /* Do not let indent join lines here. */
6802 ada_index_struct_field_1 (index_p, arg,
6803 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6804 type->field (i).type ());
6805
6806 if (v != NULL)
6807 return v;
6808 }
6809
6810 else if (ada_is_variant_part (type, i))
6811 {
6812 /* PNH: Do we ever get here? See ada_search_struct_field,
6813 find_struct_field. */
6814 error (_("Cannot assign this kind of variant record"));
6815 }
6816 else if (*index_p == 0)
6817 return ada_value_primitive_field (arg, offset, i, type);
6818 else
6819 *index_p -= 1;
6820 }
6821 return NULL;
6822 }
6823
6824 /* Return a string representation of type TYPE. */
6825
6826 static std::string
6827 type_as_string (struct type *type)
6828 {
6829 string_file tmp_stream;
6830
6831 type_print (type, "", &tmp_stream, -1);
6832
6833 return std::move (tmp_stream.string ());
6834 }
6835
6836 /* Given a type TYPE, look up the type of the component of type named NAME.
6837 If DISPP is non-null, add its byte displacement from the beginning of a
6838 structure (pointed to by a value) of type TYPE to *DISPP (does not
6839 work for packed fields).
6840
6841 Matches any field whose name has NAME as a prefix, possibly
6842 followed by "___".
6843
6844 TYPE can be either a struct or union. If REFOK, TYPE may also
6845 be a (pointer or reference)+ to a struct or union, and the
6846 ultimate target type will be searched.
6847
6848 Looks recursively into variant clauses and parent types.
6849
6850 In the case of homonyms in the tagged types, please refer to the
6851 long explanation in find_struct_field's function documentation.
6852
6853 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6854 TYPE is not a type of the right kind. */
6855
6856 static struct type *
6857 ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
6858 int noerr)
6859 {
6860 int i;
6861 int parent_offset = -1;
6862
6863 if (name == NULL)
6864 goto BadName;
6865
6866 if (refok && type != NULL)
6867 while (1)
6868 {
6869 type = ada_check_typedef (type);
6870 if (type->code () != TYPE_CODE_PTR && type->code () != TYPE_CODE_REF)
6871 break;
6872 type = TYPE_TARGET_TYPE (type);
6873 }
6874
6875 if (type == NULL
6876 || (type->code () != TYPE_CODE_STRUCT
6877 && type->code () != TYPE_CODE_UNION))
6878 {
6879 if (noerr)
6880 return NULL;
6881
6882 error (_("Type %s is not a structure or union type"),
6883 type != NULL ? type_as_string (type).c_str () : _("(null)"));
6884 }
6885
6886 type = to_static_fixed_type (type);
6887
6888 for (i = 0; i < type->num_fields (); i += 1)
6889 {
6890 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6891 struct type *t;
6892
6893 if (t_field_name == NULL)
6894 continue;
6895
6896 else if (ada_is_parent_field (type, i))
6897 {
6898 /* This is a field pointing us to the parent type of a tagged
6899 type. As hinted in this function's documentation, we give
6900 preference to fields in the current record first, so what
6901 we do here is just record the index of this field before
6902 we skip it. If it turns out we couldn't find our field
6903 in the current record, then we'll get back to it and search
6904 inside it whether the field might exist in the parent. */
6905
6906 parent_offset = i;
6907 continue;
6908 }
6909
6910 else if (field_name_match (t_field_name, name))
6911 return type->field (i).type ();
6912
6913 else if (ada_is_wrapper_field (type, i))
6914 {
6915 t = ada_lookup_struct_elt_type (type->field (i).type (), name,
6916 0, 1);
6917 if (t != NULL)
6918 return t;
6919 }
6920
6921 else if (ada_is_variant_part (type, i))
6922 {
6923 int j;
6924 struct type *field_type = ada_check_typedef (type->field (i).type ());
6925
6926 for (j = field_type->num_fields () - 1; j >= 0; j -= 1)
6927 {
6928 /* FIXME pnh 2008/01/26: We check for a field that is
6929 NOT wrapped in a struct, since the compiler sometimes
6930 generates these for unchecked variant types. Revisit
6931 if the compiler changes this practice. */
6932 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
6933
6934 if (v_field_name != NULL
6935 && field_name_match (v_field_name, name))
6936 t = field_type->field (j).type ();
6937 else
6938 t = ada_lookup_struct_elt_type (field_type->field (j).type (),
6939 name, 0, 1);
6940
6941 if (t != NULL)
6942 return t;
6943 }
6944 }
6945
6946 }
6947
6948 /* Field not found so far. If this is a tagged type which
6949 has a parent, try finding that field in the parent now. */
6950
6951 if (parent_offset != -1)
6952 {
6953 struct type *t;
6954
6955 t = ada_lookup_struct_elt_type (type->field (parent_offset).type (),
6956 name, 0, 1);
6957 if (t != NULL)
6958 return t;
6959 }
6960
6961 BadName:
6962 if (!noerr)
6963 {
6964 const char *name_str = name != NULL ? name : _("<null>");
6965
6966 error (_("Type %s has no component named %s"),
6967 type_as_string (type).c_str (), name_str);
6968 }
6969
6970 return NULL;
6971 }
6972
6973 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6974 within a value of type OUTER_TYPE, return true iff VAR_TYPE
6975 represents an unchecked union (that is, the variant part of a
6976 record that is named in an Unchecked_Union pragma). */
6977
6978 static int
6979 is_unchecked_variant (struct type *var_type, struct type *outer_type)
6980 {
6981 const char *discrim_name = ada_variant_discrim_name (var_type);
6982
6983 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
6984 }
6985
6986
6987 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6988 within OUTER, determine which variant clause (field number in VAR_TYPE,
6989 numbering from 0) is applicable. Returns -1 if none are. */
6990
6991 int
6992 ada_which_variant_applies (struct type *var_type, struct value *outer)
6993 {
6994 int others_clause;
6995 int i;
6996 const char *discrim_name = ada_variant_discrim_name (var_type);
6997 struct value *discrim;
6998 LONGEST discrim_val;
6999
7000 /* Using plain value_from_contents_and_address here causes problems
7001 because we will end up trying to resolve a type that is currently
7002 being constructed. */
7003 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7004 if (discrim == NULL)
7005 return -1;
7006 discrim_val = value_as_long (discrim);
7007
7008 others_clause = -1;
7009 for (i = 0; i < var_type->num_fields (); i += 1)
7010 {
7011 if (ada_is_others_clause (var_type, i))
7012 others_clause = i;
7013 else if (ada_in_variant (discrim_val, var_type, i))
7014 return i;
7015 }
7016
7017 return others_clause;
7018 }
7019 \f
7020
7021
7022 /* Dynamic-Sized Records */
7023
7024 /* Strategy: The type ostensibly attached to a value with dynamic size
7025 (i.e., a size that is not statically recorded in the debugging
7026 data) does not accurately reflect the size or layout of the value.
7027 Our strategy is to convert these values to values with accurate,
7028 conventional types that are constructed on the fly. */
7029
7030 /* There is a subtle and tricky problem here. In general, we cannot
7031 determine the size of dynamic records without its data. However,
7032 the 'struct value' data structure, which GDB uses to represent
7033 quantities in the inferior process (the target), requires the size
7034 of the type at the time of its allocation in order to reserve space
7035 for GDB's internal copy of the data. That's why the
7036 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7037 rather than struct value*s.
7038
7039 However, GDB's internal history variables ($1, $2, etc.) are
7040 struct value*s containing internal copies of the data that are not, in
7041 general, the same as the data at their corresponding addresses in
7042 the target. Fortunately, the types we give to these values are all
7043 conventional, fixed-size types (as per the strategy described
7044 above), so that we don't usually have to perform the
7045 'to_fixed_xxx_type' conversions to look at their values.
7046 Unfortunately, there is one exception: if one of the internal
7047 history variables is an array whose elements are unconstrained
7048 records, then we will need to create distinct fixed types for each
7049 element selected. */
7050
7051 /* The upshot of all of this is that many routines take a (type, host
7052 address, target address) triple as arguments to represent a value.
7053 The host address, if non-null, is supposed to contain an internal
7054 copy of the relevant data; otherwise, the program is to consult the
7055 target at the target address. */
7056
7057 /* Assuming that VAL0 represents a pointer value, the result of
7058 dereferencing it. Differs from value_ind in its treatment of
7059 dynamic-sized types. */
7060
7061 struct value *
7062 ada_value_ind (struct value *val0)
7063 {
7064 struct value *val = value_ind (val0);
7065
7066 if (ada_is_tagged_type (value_type (val), 0))
7067 val = ada_tag_value_at_base_address (val);
7068
7069 return ada_to_fixed_value (val);
7070 }
7071
7072 /* The value resulting from dereferencing any "reference to"
7073 qualifiers on VAL0. */
7074
7075 static struct value *
7076 ada_coerce_ref (struct value *val0)
7077 {
7078 if (value_type (val0)->code () == TYPE_CODE_REF)
7079 {
7080 struct value *val = val0;
7081
7082 val = coerce_ref (val);
7083
7084 if (ada_is_tagged_type (value_type (val), 0))
7085 val = ada_tag_value_at_base_address (val);
7086
7087 return ada_to_fixed_value (val);
7088 }
7089 else
7090 return val0;
7091 }
7092
7093 /* Return the bit alignment required for field #F of template type TYPE. */
7094
7095 static unsigned int
7096 field_alignment (struct type *type, int f)
7097 {
7098 const char *name = TYPE_FIELD_NAME (type, f);
7099 int len;
7100 int align_offset;
7101
7102 /* The field name should never be null, unless the debugging information
7103 is somehow malformed. In this case, we assume the field does not
7104 require any alignment. */
7105 if (name == NULL)
7106 return 1;
7107
7108 len = strlen (name);
7109
7110 if (!isdigit (name[len - 1]))
7111 return 1;
7112
7113 if (isdigit (name[len - 2]))
7114 align_offset = len - 2;
7115 else
7116 align_offset = len - 1;
7117
7118 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7119 return TARGET_CHAR_BIT;
7120
7121 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7122 }
7123
7124 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7125
7126 static struct symbol *
7127 ada_find_any_type_symbol (const char *name)
7128 {
7129 struct symbol *sym;
7130
7131 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7132 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7133 return sym;
7134
7135 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7136 return sym;
7137 }
7138
7139 /* Find a type named NAME. Ignores ambiguity. This routine will look
7140 solely for types defined by debug info, it will not search the GDB
7141 primitive types. */
7142
7143 static struct type *
7144 ada_find_any_type (const char *name)
7145 {
7146 struct symbol *sym = ada_find_any_type_symbol (name);
7147
7148 if (sym != NULL)
7149 return SYMBOL_TYPE (sym);
7150
7151 return NULL;
7152 }
7153
7154 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7155 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7156 symbol, in which case it is returned. Otherwise, this looks for
7157 symbols whose name is that of NAME_SYM suffixed with "___XR".
7158 Return symbol if found, and NULL otherwise. */
7159
7160 static bool
7161 ada_is_renaming_symbol (struct symbol *name_sym)
7162 {
7163 const char *name = name_sym->linkage_name ();
7164 return strstr (name, "___XR") != NULL;
7165 }
7166
7167 /* Because of GNAT encoding conventions, several GDB symbols may match a
7168 given type name. If the type denoted by TYPE0 is to be preferred to
7169 that of TYPE1 for purposes of type printing, return non-zero;
7170 otherwise return 0. */
7171
7172 int
7173 ada_prefer_type (struct type *type0, struct type *type1)
7174 {
7175 if (type1 == NULL)
7176 return 1;
7177 else if (type0 == NULL)
7178 return 0;
7179 else if (type1->code () == TYPE_CODE_VOID)
7180 return 1;
7181 else if (type0->code () == TYPE_CODE_VOID)
7182 return 0;
7183 else if (type1->name () == NULL && type0->name () != NULL)
7184 return 1;
7185 else if (ada_is_constrained_packed_array_type (type0))
7186 return 1;
7187 else if (ada_is_array_descriptor_type (type0)
7188 && !ada_is_array_descriptor_type (type1))
7189 return 1;
7190 else
7191 {
7192 const char *type0_name = type0->name ();
7193 const char *type1_name = type1->name ();
7194
7195 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7196 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7197 return 1;
7198 }
7199 return 0;
7200 }
7201
7202 /* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
7203 null. */
7204
7205 const char *
7206 ada_type_name (struct type *type)
7207 {
7208 if (type == NULL)
7209 return NULL;
7210 return type->name ();
7211 }
7212
7213 /* Search the list of "descriptive" types associated to TYPE for a type
7214 whose name is NAME. */
7215
7216 static struct type *
7217 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7218 {
7219 struct type *result, *tmp;
7220
7221 if (ada_ignore_descriptive_types_p)
7222 return NULL;
7223
7224 /* If there no descriptive-type info, then there is no parallel type
7225 to be found. */
7226 if (!HAVE_GNAT_AUX_INFO (type))
7227 return NULL;
7228
7229 result = TYPE_DESCRIPTIVE_TYPE (type);
7230 while (result != NULL)
7231 {
7232 const char *result_name = ada_type_name (result);
7233
7234 if (result_name == NULL)
7235 {
7236 warning (_("unexpected null name on descriptive type"));
7237 return NULL;
7238 }
7239
7240 /* If the names match, stop. */
7241 if (strcmp (result_name, name) == 0)
7242 break;
7243
7244 /* Otherwise, look at the next item on the list, if any. */
7245 if (HAVE_GNAT_AUX_INFO (result))
7246 tmp = TYPE_DESCRIPTIVE_TYPE (result);
7247 else
7248 tmp = NULL;
7249
7250 /* If not found either, try after having resolved the typedef. */
7251 if (tmp != NULL)
7252 result = tmp;
7253 else
7254 {
7255 result = check_typedef (result);
7256 if (HAVE_GNAT_AUX_INFO (result))
7257 result = TYPE_DESCRIPTIVE_TYPE (result);
7258 else
7259 result = NULL;
7260 }
7261 }
7262
7263 /* If we didn't find a match, see whether this is a packed array. With
7264 older compilers, the descriptive type information is either absent or
7265 irrelevant when it comes to packed arrays so the above lookup fails.
7266 Fall back to using a parallel lookup by name in this case. */
7267 if (result == NULL && ada_is_constrained_packed_array_type (type))
7268 return ada_find_any_type (name);
7269
7270 return result;
7271 }
7272
7273 /* Find a parallel type to TYPE with the specified NAME, using the
7274 descriptive type taken from the debugging information, if available,
7275 and otherwise using the (slower) name-based method. */
7276
7277 static struct type *
7278 ada_find_parallel_type_with_name (struct type *type, const char *name)
7279 {
7280 struct type *result = NULL;
7281
7282 if (HAVE_GNAT_AUX_INFO (type))
7283 result = find_parallel_type_by_descriptive_type (type, name);
7284 else
7285 result = ada_find_any_type (name);
7286
7287 return result;
7288 }
7289
7290 /* Same as above, but specify the name of the parallel type by appending
7291 SUFFIX to the name of TYPE. */
7292
7293 struct type *
7294 ada_find_parallel_type (struct type *type, const char *suffix)
7295 {
7296 char *name;
7297 const char *type_name = ada_type_name (type);
7298 int len;
7299
7300 if (type_name == NULL)
7301 return NULL;
7302
7303 len = strlen (type_name);
7304
7305 name = (char *) alloca (len + strlen (suffix) + 1);
7306
7307 strcpy (name, type_name);
7308 strcpy (name + len, suffix);
7309
7310 return ada_find_parallel_type_with_name (type, name);
7311 }
7312
7313 /* If TYPE is a variable-size record type, return the corresponding template
7314 type describing its fields. Otherwise, return NULL. */
7315
7316 static struct type *
7317 dynamic_template_type (struct type *type)
7318 {
7319 type = ada_check_typedef (type);
7320
7321 if (type == NULL || type->code () != TYPE_CODE_STRUCT
7322 || ada_type_name (type) == NULL)
7323 return NULL;
7324 else
7325 {
7326 int len = strlen (ada_type_name (type));
7327
7328 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7329 return type;
7330 else
7331 return ada_find_parallel_type (type, "___XVE");
7332 }
7333 }
7334
7335 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7336 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7337
7338 static int
7339 is_dynamic_field (struct type *templ_type, int field_num)
7340 {
7341 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
7342
7343 return name != NULL
7344 && templ_type->field (field_num).type ()->code () == TYPE_CODE_PTR
7345 && strstr (name, "___XVL") != NULL;
7346 }
7347
7348 /* The index of the variant field of TYPE, or -1 if TYPE does not
7349 represent a variant record type. */
7350
7351 static int
7352 variant_field_index (struct type *type)
7353 {
7354 int f;
7355
7356 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
7357 return -1;
7358
7359 for (f = 0; f < type->num_fields (); f += 1)
7360 {
7361 if (ada_is_variant_part (type, f))
7362 return f;
7363 }
7364 return -1;
7365 }
7366
7367 /* A record type with no fields. */
7368
7369 static struct type *
7370 empty_record (struct type *templ)
7371 {
7372 struct type *type = alloc_type_copy (templ);
7373
7374 type->set_code (TYPE_CODE_STRUCT);
7375 INIT_NONE_SPECIFIC (type);
7376 type->set_name ("<empty>");
7377 TYPE_LENGTH (type) = 0;
7378 return type;
7379 }
7380
7381 /* An ordinary record type (with fixed-length fields) that describes
7382 the value of type TYPE at VALADDR or ADDRESS (see comments at
7383 the beginning of this section) VAL according to GNAT conventions.
7384 DVAL0 should describe the (portion of a) record that contains any
7385 necessary discriminants. It should be NULL if value_type (VAL) is
7386 an outer-level type (i.e., as opposed to a branch of a variant.) A
7387 variant field (unless unchecked) is replaced by a particular branch
7388 of the variant.
7389
7390 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7391 length are not statically known are discarded. As a consequence,
7392 VALADDR, ADDRESS and DVAL0 are ignored.
7393
7394 NOTE: Limitations: For now, we assume that dynamic fields and
7395 variants occupy whole numbers of bytes. However, they need not be
7396 byte-aligned. */
7397
7398 struct type *
7399 ada_template_to_fixed_record_type_1 (struct type *type,
7400 const gdb_byte *valaddr,
7401 CORE_ADDR address, struct value *dval0,
7402 int keep_dynamic_fields)
7403 {
7404 struct value *mark = value_mark ();
7405 struct value *dval;
7406 struct type *rtype;
7407 int nfields, bit_len;
7408 int variant_field;
7409 long off;
7410 int fld_bit_len;
7411 int f;
7412
7413 /* Compute the number of fields in this record type that are going
7414 to be processed: unless keep_dynamic_fields, this includes only
7415 fields whose position and length are static will be processed. */
7416 if (keep_dynamic_fields)
7417 nfields = type->num_fields ();
7418 else
7419 {
7420 nfields = 0;
7421 while (nfields < type->num_fields ()
7422 && !ada_is_variant_part (type, nfields)
7423 && !is_dynamic_field (type, nfields))
7424 nfields++;
7425 }
7426
7427 rtype = alloc_type_copy (type);
7428 rtype->set_code (TYPE_CODE_STRUCT);
7429 INIT_NONE_SPECIFIC (rtype);
7430 rtype->set_num_fields (nfields);
7431 rtype->set_fields
7432 ((struct field *) TYPE_ZALLOC (rtype, nfields * sizeof (struct field)));
7433 rtype->set_name (ada_type_name (type));
7434 rtype->set_is_fixed_instance (true);
7435
7436 off = 0;
7437 bit_len = 0;
7438 variant_field = -1;
7439
7440 for (f = 0; f < nfields; f += 1)
7441 {
7442 off = align_up (off, field_alignment (type, f))
7443 + TYPE_FIELD_BITPOS (type, f);
7444 SET_FIELD_BITPOS (rtype->field (f), off);
7445 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7446
7447 if (ada_is_variant_part (type, f))
7448 {
7449 variant_field = f;
7450 fld_bit_len = 0;
7451 }
7452 else if (is_dynamic_field (type, f))
7453 {
7454 const gdb_byte *field_valaddr = valaddr;
7455 CORE_ADDR field_address = address;
7456 struct type *field_type =
7457 TYPE_TARGET_TYPE (type->field (f).type ());
7458
7459 if (dval0 == NULL)
7460 {
7461 /* rtype's length is computed based on the run-time
7462 value of discriminants. If the discriminants are not
7463 initialized, the type size may be completely bogus and
7464 GDB may fail to allocate a value for it. So check the
7465 size first before creating the value. */
7466 ada_ensure_varsize_limit (rtype);
7467 /* Using plain value_from_contents_and_address here
7468 causes problems because we will end up trying to
7469 resolve a type that is currently being
7470 constructed. */
7471 dval = value_from_contents_and_address_unresolved (rtype,
7472 valaddr,
7473 address);
7474 rtype = value_type (dval);
7475 }
7476 else
7477 dval = dval0;
7478
7479 /* If the type referenced by this field is an aligner type, we need
7480 to unwrap that aligner type, because its size might not be set.
7481 Keeping the aligner type would cause us to compute the wrong
7482 size for this field, impacting the offset of the all the fields
7483 that follow this one. */
7484 if (ada_is_aligner_type (field_type))
7485 {
7486 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7487
7488 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7489 field_address = cond_offset_target (field_address, field_offset);
7490 field_type = ada_aligned_type (field_type);
7491 }
7492
7493 field_valaddr = cond_offset_host (field_valaddr,
7494 off / TARGET_CHAR_BIT);
7495 field_address = cond_offset_target (field_address,
7496 off / TARGET_CHAR_BIT);
7497
7498 /* Get the fixed type of the field. Note that, in this case,
7499 we do not want to get the real type out of the tag: if
7500 the current field is the parent part of a tagged record,
7501 we will get the tag of the object. Clearly wrong: the real
7502 type of the parent is not the real type of the child. We
7503 would end up in an infinite loop. */
7504 field_type = ada_get_base_type (field_type);
7505 field_type = ada_to_fixed_type (field_type, field_valaddr,
7506 field_address, dval, 0);
7507 /* If the field size is already larger than the maximum
7508 object size, then the record itself will necessarily
7509 be larger than the maximum object size. We need to make
7510 this check now, because the size might be so ridiculously
7511 large (due to an uninitialized variable in the inferior)
7512 that it would cause an overflow when adding it to the
7513 record size. */
7514 ada_ensure_varsize_limit (field_type);
7515
7516 rtype->field (f).set_type (field_type);
7517 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7518 /* The multiplication can potentially overflow. But because
7519 the field length has been size-checked just above, and
7520 assuming that the maximum size is a reasonable value,
7521 an overflow should not happen in practice. So rather than
7522 adding overflow recovery code to this already complex code,
7523 we just assume that it's not going to happen. */
7524 fld_bit_len =
7525 TYPE_LENGTH (rtype->field (f).type ()) * TARGET_CHAR_BIT;
7526 }
7527 else
7528 {
7529 /* Note: If this field's type is a typedef, it is important
7530 to preserve the typedef layer.
7531
7532 Otherwise, we might be transforming a typedef to a fat
7533 pointer (encoding a pointer to an unconstrained array),
7534 into a basic fat pointer (encoding an unconstrained
7535 array). As both types are implemented using the same
7536 structure, the typedef is the only clue which allows us
7537 to distinguish between the two options. Stripping it
7538 would prevent us from printing this field appropriately. */
7539 rtype->field (f).set_type (type->field (f).type ());
7540 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7541 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7542 fld_bit_len =
7543 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7544 else
7545 {
7546 struct type *field_type = type->field (f).type ();
7547
7548 /* We need to be careful of typedefs when computing
7549 the length of our field. If this is a typedef,
7550 get the length of the target type, not the length
7551 of the typedef. */
7552 if (field_type->code () == TYPE_CODE_TYPEDEF)
7553 field_type = ada_typedef_target_type (field_type);
7554
7555 fld_bit_len =
7556 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7557 }
7558 }
7559 if (off + fld_bit_len > bit_len)
7560 bit_len = off + fld_bit_len;
7561 off += fld_bit_len;
7562 TYPE_LENGTH (rtype) =
7563 align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7564 }
7565
7566 /* We handle the variant part, if any, at the end because of certain
7567 odd cases in which it is re-ordered so as NOT to be the last field of
7568 the record. This can happen in the presence of representation
7569 clauses. */
7570 if (variant_field >= 0)
7571 {
7572 struct type *branch_type;
7573
7574 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7575
7576 if (dval0 == NULL)
7577 {
7578 /* Using plain value_from_contents_and_address here causes
7579 problems because we will end up trying to resolve a type
7580 that is currently being constructed. */
7581 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
7582 address);
7583 rtype = value_type (dval);
7584 }
7585 else
7586 dval = dval0;
7587
7588 branch_type =
7589 to_fixed_variant_branch_type
7590 (type->field (variant_field).type (),
7591 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7592 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7593 if (branch_type == NULL)
7594 {
7595 for (f = variant_field + 1; f < rtype->num_fields (); f += 1)
7596 rtype->field (f - 1) = rtype->field (f);
7597 rtype->set_num_fields (rtype->num_fields () - 1);
7598 }
7599 else
7600 {
7601 rtype->field (variant_field).set_type (branch_type);
7602 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7603 fld_bit_len =
7604 TYPE_LENGTH (rtype->field (variant_field).type ()) *
7605 TARGET_CHAR_BIT;
7606 if (off + fld_bit_len > bit_len)
7607 bit_len = off + fld_bit_len;
7608 TYPE_LENGTH (rtype) =
7609 align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7610 }
7611 }
7612
7613 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7614 should contain the alignment of that record, which should be a strictly
7615 positive value. If null or negative, then something is wrong, most
7616 probably in the debug info. In that case, we don't round up the size
7617 of the resulting type. If this record is not part of another structure,
7618 the current RTYPE length might be good enough for our purposes. */
7619 if (TYPE_LENGTH (type) <= 0)
7620 {
7621 if (rtype->name ())
7622 warning (_("Invalid type size for `%s' detected: %s."),
7623 rtype->name (), pulongest (TYPE_LENGTH (type)));
7624 else
7625 warning (_("Invalid type size for <unnamed> detected: %s."),
7626 pulongest (TYPE_LENGTH (type)));
7627 }
7628 else
7629 {
7630 TYPE_LENGTH (rtype) = align_up (TYPE_LENGTH (rtype),
7631 TYPE_LENGTH (type));
7632 }
7633
7634 value_free_to_mark (mark);
7635 if (TYPE_LENGTH (rtype) > varsize_limit)
7636 error (_("record type with dynamic size is larger than varsize-limit"));
7637 return rtype;
7638 }
7639
7640 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7641 of 1. */
7642
7643 static struct type *
7644 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
7645 CORE_ADDR address, struct value *dval0)
7646 {
7647 return ada_template_to_fixed_record_type_1 (type, valaddr,
7648 address, dval0, 1);
7649 }
7650
7651 /* An ordinary record type in which ___XVL-convention fields and
7652 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7653 static approximations, containing all possible fields. Uses
7654 no runtime values. Useless for use in values, but that's OK,
7655 since the results are used only for type determinations. Works on both
7656 structs and unions. Representation note: to save space, we memorize
7657 the result of this function in the TYPE_TARGET_TYPE of the
7658 template type. */
7659
7660 static struct type *
7661 template_to_static_fixed_type (struct type *type0)
7662 {
7663 struct type *type;
7664 int nfields;
7665 int f;
7666
7667 /* No need no do anything if the input type is already fixed. */
7668 if (type0->is_fixed_instance ())
7669 return type0;
7670
7671 /* Likewise if we already have computed the static approximation. */
7672 if (TYPE_TARGET_TYPE (type0) != NULL)
7673 return TYPE_TARGET_TYPE (type0);
7674
7675 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
7676 type = type0;
7677 nfields = type0->num_fields ();
7678
7679 /* Whether or not we cloned TYPE0, cache the result so that we don't do
7680 recompute all over next time. */
7681 TYPE_TARGET_TYPE (type0) = type;
7682
7683 for (f = 0; f < nfields; f += 1)
7684 {
7685 struct type *field_type = type0->field (f).type ();
7686 struct type *new_type;
7687
7688 if (is_dynamic_field (type0, f))
7689 {
7690 field_type = ada_check_typedef (field_type);
7691 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
7692 }
7693 else
7694 new_type = static_unwrap_type (field_type);
7695
7696 if (new_type != field_type)
7697 {
7698 /* Clone TYPE0 only the first time we get a new field type. */
7699 if (type == type0)
7700 {
7701 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
7702 type->set_code (type0->code ());
7703 INIT_NONE_SPECIFIC (type);
7704 type->set_num_fields (nfields);
7705
7706 field *fields =
7707 ((struct field *)
7708 TYPE_ALLOC (type, nfields * sizeof (struct field)));
7709 memcpy (fields, type0->fields (),
7710 sizeof (struct field) * nfields);
7711 type->set_fields (fields);
7712
7713 type->set_name (ada_type_name (type0));
7714 type->set_is_fixed_instance (true);
7715 TYPE_LENGTH (type) = 0;
7716 }
7717 type->field (f).set_type (new_type);
7718 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
7719 }
7720 }
7721
7722 return type;
7723 }
7724
7725 /* Given an object of type TYPE whose contents are at VALADDR and
7726 whose address in memory is ADDRESS, returns a revision of TYPE,
7727 which should be a non-dynamic-sized record, in which the variant
7728 part, if any, is replaced with the appropriate branch. Looks
7729 for discriminant values in DVAL0, which can be NULL if the record
7730 contains the necessary discriminant values. */
7731
7732 static struct type *
7733 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
7734 CORE_ADDR address, struct value *dval0)
7735 {
7736 struct value *mark = value_mark ();
7737 struct value *dval;
7738 struct type *rtype;
7739 struct type *branch_type;
7740 int nfields = type->num_fields ();
7741 int variant_field = variant_field_index (type);
7742
7743 if (variant_field == -1)
7744 return type;
7745
7746 if (dval0 == NULL)
7747 {
7748 dval = value_from_contents_and_address (type, valaddr, address);
7749 type = value_type (dval);
7750 }
7751 else
7752 dval = dval0;
7753
7754 rtype = alloc_type_copy (type);
7755 rtype->set_code (TYPE_CODE_STRUCT);
7756 INIT_NONE_SPECIFIC (rtype);
7757 rtype->set_num_fields (nfields);
7758
7759 field *fields =
7760 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7761 memcpy (fields, type->fields (), sizeof (struct field) * nfields);
7762 rtype->set_fields (fields);
7763
7764 rtype->set_name (ada_type_name (type));
7765 rtype->set_is_fixed_instance (true);
7766 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7767
7768 branch_type = to_fixed_variant_branch_type
7769 (type->field (variant_field).type (),
7770 cond_offset_host (valaddr,
7771 TYPE_FIELD_BITPOS (type, variant_field)
7772 / TARGET_CHAR_BIT),
7773 cond_offset_target (address,
7774 TYPE_FIELD_BITPOS (type, variant_field)
7775 / TARGET_CHAR_BIT), dval);
7776 if (branch_type == NULL)
7777 {
7778 int f;
7779
7780 for (f = variant_field + 1; f < nfields; f += 1)
7781 rtype->field (f - 1) = rtype->field (f);
7782 rtype->set_num_fields (rtype->num_fields () - 1);
7783 }
7784 else
7785 {
7786 rtype->field (variant_field).set_type (branch_type);
7787 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7788 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7789 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7790 }
7791 TYPE_LENGTH (rtype) -= TYPE_LENGTH (type->field (variant_field).type ());
7792
7793 value_free_to_mark (mark);
7794 return rtype;
7795 }
7796
7797 /* An ordinary record type (with fixed-length fields) that describes
7798 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7799 beginning of this section]. Any necessary discriminants' values
7800 should be in DVAL, a record value; it may be NULL if the object
7801 at ADDR itself contains any necessary discriminant values.
7802 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7803 values from the record are needed. Except in the case that DVAL,
7804 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7805 unchecked) is replaced by a particular branch of the variant.
7806
7807 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7808 is questionable and may be removed. It can arise during the
7809 processing of an unconstrained-array-of-record type where all the
7810 variant branches have exactly the same size. This is because in
7811 such cases, the compiler does not bother to use the XVS convention
7812 when encoding the record. I am currently dubious of this
7813 shortcut and suspect the compiler should be altered. FIXME. */
7814
7815 static struct type *
7816 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7817 CORE_ADDR address, struct value *dval)
7818 {
7819 struct type *templ_type;
7820
7821 if (type0->is_fixed_instance ())
7822 return type0;
7823
7824 templ_type = dynamic_template_type (type0);
7825
7826 if (templ_type != NULL)
7827 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7828 else if (variant_field_index (type0) >= 0)
7829 {
7830 if (dval == NULL && valaddr == NULL && address == 0)
7831 return type0;
7832 return to_record_with_fixed_variant_part (type0, valaddr, address,
7833 dval);
7834 }
7835 else
7836 {
7837 type0->set_is_fixed_instance (true);
7838 return type0;
7839 }
7840
7841 }
7842
7843 /* An ordinary record type (with fixed-length fields) that describes
7844 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7845 union type. Any necessary discriminants' values should be in DVAL,
7846 a record value. That is, this routine selects the appropriate
7847 branch of the union at ADDR according to the discriminant value
7848 indicated in the union's type name. Returns VAR_TYPE0 itself if
7849 it represents a variant subject to a pragma Unchecked_Union. */
7850
7851 static struct type *
7852 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7853 CORE_ADDR address, struct value *dval)
7854 {
7855 int which;
7856 struct type *templ_type;
7857 struct type *var_type;
7858
7859 if (var_type0->code () == TYPE_CODE_PTR)
7860 var_type = TYPE_TARGET_TYPE (var_type0);
7861 else
7862 var_type = var_type0;
7863
7864 templ_type = ada_find_parallel_type (var_type, "___XVU");
7865
7866 if (templ_type != NULL)
7867 var_type = templ_type;
7868
7869 if (is_unchecked_variant (var_type, value_type (dval)))
7870 return var_type0;
7871 which = ada_which_variant_applies (var_type, dval);
7872
7873 if (which < 0)
7874 return empty_record (var_type);
7875 else if (is_dynamic_field (var_type, which))
7876 return to_fixed_record_type
7877 (TYPE_TARGET_TYPE (var_type->field (which).type ()),
7878 valaddr, address, dval);
7879 else if (variant_field_index (var_type->field (which).type ()) >= 0)
7880 return
7881 to_fixed_record_type
7882 (var_type->field (which).type (), valaddr, address, dval);
7883 else
7884 return var_type->field (which).type ();
7885 }
7886
7887 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
7888 ENCODING_TYPE, a type following the GNAT conventions for discrete
7889 type encodings, only carries redundant information. */
7890
7891 static int
7892 ada_is_redundant_range_encoding (struct type *range_type,
7893 struct type *encoding_type)
7894 {
7895 const char *bounds_str;
7896 int n;
7897 LONGEST lo, hi;
7898
7899 gdb_assert (range_type->code () == TYPE_CODE_RANGE);
7900
7901 if (get_base_type (range_type)->code ()
7902 != get_base_type (encoding_type)->code ())
7903 {
7904 /* The compiler probably used a simple base type to describe
7905 the range type instead of the range's actual base type,
7906 expecting us to get the real base type from the encoding
7907 anyway. In this situation, the encoding cannot be ignored
7908 as redundant. */
7909 return 0;
7910 }
7911
7912 if (is_dynamic_type (range_type))
7913 return 0;
7914
7915 if (encoding_type->name () == NULL)
7916 return 0;
7917
7918 bounds_str = strstr (encoding_type->name (), "___XDLU_");
7919 if (bounds_str == NULL)
7920 return 0;
7921
7922 n = 8; /* Skip "___XDLU_". */
7923 if (!ada_scan_number (bounds_str, n, &lo, &n))
7924 return 0;
7925 if (range_type->bounds ()->low.const_val () != lo)
7926 return 0;
7927
7928 n += 2; /* Skip the "__" separator between the two bounds. */
7929 if (!ada_scan_number (bounds_str, n, &hi, &n))
7930 return 0;
7931 if (range_type->bounds ()->high.const_val () != hi)
7932 return 0;
7933
7934 return 1;
7935 }
7936
7937 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
7938 a type following the GNAT encoding for describing array type
7939 indices, only carries redundant information. */
7940
7941 static int
7942 ada_is_redundant_index_type_desc (struct type *array_type,
7943 struct type *desc_type)
7944 {
7945 struct type *this_layer = check_typedef (array_type);
7946 int i;
7947
7948 for (i = 0; i < desc_type->num_fields (); i++)
7949 {
7950 if (!ada_is_redundant_range_encoding (this_layer->index_type (),
7951 desc_type->field (i).type ()))
7952 return 0;
7953 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
7954 }
7955
7956 return 1;
7957 }
7958
7959 /* Assuming that TYPE0 is an array type describing the type of a value
7960 at ADDR, and that DVAL describes a record containing any
7961 discriminants used in TYPE0, returns a type for the value that
7962 contains no dynamic components (that is, no components whose sizes
7963 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7964 true, gives an error message if the resulting type's size is over
7965 varsize_limit. */
7966
7967 static struct type *
7968 to_fixed_array_type (struct type *type0, struct value *dval,
7969 int ignore_too_big)
7970 {
7971 struct type *index_type_desc;
7972 struct type *result;
7973 int constrained_packed_array_p;
7974 static const char *xa_suffix = "___XA";
7975
7976 type0 = ada_check_typedef (type0);
7977 if (type0->is_fixed_instance ())
7978 return type0;
7979
7980 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
7981 if (constrained_packed_array_p)
7982 {
7983 type0 = decode_constrained_packed_array_type (type0);
7984 if (type0 == nullptr)
7985 error (_("could not decode constrained packed array type"));
7986 }
7987
7988 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
7989
7990 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
7991 encoding suffixed with 'P' may still be generated. If so,
7992 it should be used to find the XA type. */
7993
7994 if (index_type_desc == NULL)
7995 {
7996 const char *type_name = ada_type_name (type0);
7997
7998 if (type_name != NULL)
7999 {
8000 const int len = strlen (type_name);
8001 char *name = (char *) alloca (len + strlen (xa_suffix));
8002
8003 if (type_name[len - 1] == 'P')
8004 {
8005 strcpy (name, type_name);
8006 strcpy (name + len - 1, xa_suffix);
8007 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8008 }
8009 }
8010 }
8011
8012 ada_fixup_array_indexes_type (index_type_desc);
8013 if (index_type_desc != NULL
8014 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8015 {
8016 /* Ignore this ___XA parallel type, as it does not bring any
8017 useful information. This allows us to avoid creating fixed
8018 versions of the array's index types, which would be identical
8019 to the original ones. This, in turn, can also help avoid
8020 the creation of fixed versions of the array itself. */
8021 index_type_desc = NULL;
8022 }
8023
8024 if (index_type_desc == NULL)
8025 {
8026 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8027
8028 /* NOTE: elt_type---the fixed version of elt_type0---should never
8029 depend on the contents of the array in properly constructed
8030 debugging data. */
8031 /* Create a fixed version of the array element type.
8032 We're not providing the address of an element here,
8033 and thus the actual object value cannot be inspected to do
8034 the conversion. This should not be a problem, since arrays of
8035 unconstrained objects are not allowed. In particular, all
8036 the elements of an array of a tagged type should all be of
8037 the same type specified in the debugging info. No need to
8038 consult the object tag. */
8039 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8040
8041 /* Make sure we always create a new array type when dealing with
8042 packed array types, since we're going to fix-up the array
8043 type length and element bitsize a little further down. */
8044 if (elt_type0 == elt_type && !constrained_packed_array_p)
8045 result = type0;
8046 else
8047 result = create_array_type (alloc_type_copy (type0),
8048 elt_type, type0->index_type ());
8049 }
8050 else
8051 {
8052 int i;
8053 struct type *elt_type0;
8054
8055 elt_type0 = type0;
8056 for (i = index_type_desc->num_fields (); i > 0; i -= 1)
8057 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8058
8059 /* NOTE: result---the fixed version of elt_type0---should never
8060 depend on the contents of the array in properly constructed
8061 debugging data. */
8062 /* Create a fixed version of the array element type.
8063 We're not providing the address of an element here,
8064 and thus the actual object value cannot be inspected to do
8065 the conversion. This should not be a problem, since arrays of
8066 unconstrained objects are not allowed. In particular, all
8067 the elements of an array of a tagged type should all be of
8068 the same type specified in the debugging info. No need to
8069 consult the object tag. */
8070 result =
8071 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8072
8073 elt_type0 = type0;
8074 for (i = index_type_desc->num_fields () - 1; i >= 0; i -= 1)
8075 {
8076 struct type *range_type =
8077 to_fixed_range_type (index_type_desc->field (i).type (), dval);
8078
8079 result = create_array_type (alloc_type_copy (elt_type0),
8080 result, range_type);
8081 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8082 }
8083 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8084 error (_("array type with dynamic size is larger than varsize-limit"));
8085 }
8086
8087 /* We want to preserve the type name. This can be useful when
8088 trying to get the type name of a value that has already been
8089 printed (for instance, if the user did "print VAR; whatis $". */
8090 result->set_name (type0->name ());
8091
8092 if (constrained_packed_array_p)
8093 {
8094 /* So far, the resulting type has been created as if the original
8095 type was a regular (non-packed) array type. As a result, the
8096 bitsize of the array elements needs to be set again, and the array
8097 length needs to be recomputed based on that bitsize. */
8098 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8099 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8100
8101 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8102 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8103 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8104 TYPE_LENGTH (result)++;
8105 }
8106
8107 result->set_is_fixed_instance (true);
8108 return result;
8109 }
8110
8111
8112 /* A standard type (containing no dynamically sized components)
8113 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8114 DVAL describes a record containing any discriminants used in TYPE0,
8115 and may be NULL if there are none, or if the object of type TYPE at
8116 ADDRESS or in VALADDR contains these discriminants.
8117
8118 If CHECK_TAG is not null, in the case of tagged types, this function
8119 attempts to locate the object's tag and use it to compute the actual
8120 type. However, when ADDRESS is null, we cannot use it to determine the
8121 location of the tag, and therefore compute the tagged type's actual type.
8122 So we return the tagged type without consulting the tag. */
8123
8124 static struct type *
8125 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8126 CORE_ADDR address, struct value *dval, int check_tag)
8127 {
8128 type = ada_check_typedef (type);
8129
8130 /* Only un-fixed types need to be handled here. */
8131 if (!HAVE_GNAT_AUX_INFO (type))
8132 return type;
8133
8134 switch (type->code ())
8135 {
8136 default:
8137 return type;
8138 case TYPE_CODE_STRUCT:
8139 {
8140 struct type *static_type = to_static_fixed_type (type);
8141 struct type *fixed_record_type =
8142 to_fixed_record_type (type, valaddr, address, NULL);
8143
8144 /* If STATIC_TYPE is a tagged type and we know the object's address,
8145 then we can determine its tag, and compute the object's actual
8146 type from there. Note that we have to use the fixed record
8147 type (the parent part of the record may have dynamic fields
8148 and the way the location of _tag is expressed may depend on
8149 them). */
8150
8151 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8152 {
8153 struct value *tag =
8154 value_tag_from_contents_and_address
8155 (fixed_record_type,
8156 valaddr,
8157 address);
8158 struct type *real_type = type_from_tag (tag);
8159 struct value *obj =
8160 value_from_contents_and_address (fixed_record_type,
8161 valaddr,
8162 address);
8163 fixed_record_type = value_type (obj);
8164 if (real_type != NULL)
8165 return to_fixed_record_type
8166 (real_type, NULL,
8167 value_address (ada_tag_value_at_base_address (obj)), NULL);
8168 }
8169
8170 /* Check to see if there is a parallel ___XVZ variable.
8171 If there is, then it provides the actual size of our type. */
8172 else if (ada_type_name (fixed_record_type) != NULL)
8173 {
8174 const char *name = ada_type_name (fixed_record_type);
8175 char *xvz_name
8176 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
8177 bool xvz_found = false;
8178 LONGEST size;
8179
8180 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8181 try
8182 {
8183 xvz_found = get_int_var_value (xvz_name, size);
8184 }
8185 catch (const gdb_exception_error &except)
8186 {
8187 /* We found the variable, but somehow failed to read
8188 its value. Rethrow the same error, but with a little
8189 bit more information, to help the user understand
8190 what went wrong (Eg: the variable might have been
8191 optimized out). */
8192 throw_error (except.error,
8193 _("unable to read value of %s (%s)"),
8194 xvz_name, except.what ());
8195 }
8196
8197 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8198 {
8199 fixed_record_type = copy_type (fixed_record_type);
8200 TYPE_LENGTH (fixed_record_type) = size;
8201
8202 /* The FIXED_RECORD_TYPE may have be a stub. We have
8203 observed this when the debugging info is STABS, and
8204 apparently it is something that is hard to fix.
8205
8206 In practice, we don't need the actual type definition
8207 at all, because the presence of the XVZ variable allows us
8208 to assume that there must be a XVS type as well, which we
8209 should be able to use later, when we need the actual type
8210 definition.
8211
8212 In the meantime, pretend that the "fixed" type we are
8213 returning is NOT a stub, because this can cause trouble
8214 when using this type to create new types targeting it.
8215 Indeed, the associated creation routines often check
8216 whether the target type is a stub and will try to replace
8217 it, thus using a type with the wrong size. This, in turn,
8218 might cause the new type to have the wrong size too.
8219 Consider the case of an array, for instance, where the size
8220 of the array is computed from the number of elements in
8221 our array multiplied by the size of its element. */
8222 fixed_record_type->set_is_stub (false);
8223 }
8224 }
8225 return fixed_record_type;
8226 }
8227 case TYPE_CODE_ARRAY:
8228 return to_fixed_array_type (type, dval, 1);
8229 case TYPE_CODE_UNION:
8230 if (dval == NULL)
8231 return type;
8232 else
8233 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8234 }
8235 }
8236
8237 /* The same as ada_to_fixed_type_1, except that it preserves the type
8238 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8239
8240 The typedef layer needs be preserved in order to differentiate between
8241 arrays and array pointers when both types are implemented using the same
8242 fat pointer. In the array pointer case, the pointer is encoded as
8243 a typedef of the pointer type. For instance, considering:
8244
8245 type String_Access is access String;
8246 S1 : String_Access := null;
8247
8248 To the debugger, S1 is defined as a typedef of type String. But
8249 to the user, it is a pointer. So if the user tries to print S1,
8250 we should not dereference the array, but print the array address
8251 instead.
8252
8253 If we didn't preserve the typedef layer, we would lose the fact that
8254 the type is to be presented as a pointer (needs de-reference before
8255 being printed). And we would also use the source-level type name. */
8256
8257 struct type *
8258 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8259 CORE_ADDR address, struct value *dval, int check_tag)
8260
8261 {
8262 struct type *fixed_type =
8263 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8264
8265 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8266 then preserve the typedef layer.
8267
8268 Implementation note: We can only check the main-type portion of
8269 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8270 from TYPE now returns a type that has the same instance flags
8271 as TYPE. For instance, if TYPE is a "typedef const", and its
8272 target type is a "struct", then the typedef elimination will return
8273 a "const" version of the target type. See check_typedef for more
8274 details about how the typedef layer elimination is done.
8275
8276 brobecker/2010-11-19: It seems to me that the only case where it is
8277 useful to preserve the typedef layer is when dealing with fat pointers.
8278 Perhaps, we could add a check for that and preserve the typedef layer
8279 only in that situation. But this seems unnecessary so far, probably
8280 because we call check_typedef/ada_check_typedef pretty much everywhere.
8281 */
8282 if (type->code () == TYPE_CODE_TYPEDEF
8283 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8284 == TYPE_MAIN_TYPE (fixed_type)))
8285 return type;
8286
8287 return fixed_type;
8288 }
8289
8290 /* A standard (static-sized) type corresponding as well as possible to
8291 TYPE0, but based on no runtime data. */
8292
8293 static struct type *
8294 to_static_fixed_type (struct type *type0)
8295 {
8296 struct type *type;
8297
8298 if (type0 == NULL)
8299 return NULL;
8300
8301 if (type0->is_fixed_instance ())
8302 return type0;
8303
8304 type0 = ada_check_typedef (type0);
8305
8306 switch (type0->code ())
8307 {
8308 default:
8309 return type0;
8310 case TYPE_CODE_STRUCT:
8311 type = dynamic_template_type (type0);
8312 if (type != NULL)
8313 return template_to_static_fixed_type (type);
8314 else
8315 return template_to_static_fixed_type (type0);
8316 case TYPE_CODE_UNION:
8317 type = ada_find_parallel_type (type0, "___XVU");
8318 if (type != NULL)
8319 return template_to_static_fixed_type (type);
8320 else
8321 return template_to_static_fixed_type (type0);
8322 }
8323 }
8324
8325 /* A static approximation of TYPE with all type wrappers removed. */
8326
8327 static struct type *
8328 static_unwrap_type (struct type *type)
8329 {
8330 if (ada_is_aligner_type (type))
8331 {
8332 struct type *type1 = ada_check_typedef (type)->field (0).type ();
8333 if (ada_type_name (type1) == NULL)
8334 type1->set_name (ada_type_name (type));
8335
8336 return static_unwrap_type (type1);
8337 }
8338 else
8339 {
8340 struct type *raw_real_type = ada_get_base_type (type);
8341
8342 if (raw_real_type == type)
8343 return type;
8344 else
8345 return to_static_fixed_type (raw_real_type);
8346 }
8347 }
8348
8349 /* In some cases, incomplete and private types require
8350 cross-references that are not resolved as records (for example,
8351 type Foo;
8352 type FooP is access Foo;
8353 V: FooP;
8354 type Foo is array ...;
8355 ). In these cases, since there is no mechanism for producing
8356 cross-references to such types, we instead substitute for FooP a
8357 stub enumeration type that is nowhere resolved, and whose tag is
8358 the name of the actual type. Call these types "non-record stubs". */
8359
8360 /* A type equivalent to TYPE that is not a non-record stub, if one
8361 exists, otherwise TYPE. */
8362
8363 struct type *
8364 ada_check_typedef (struct type *type)
8365 {
8366 if (type == NULL)
8367 return NULL;
8368
8369 /* If our type is an access to an unconstrained array, which is encoded
8370 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
8371 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8372 what allows us to distinguish between fat pointers that represent
8373 array types, and fat pointers that represent array access types
8374 (in both cases, the compiler implements them as fat pointers). */
8375 if (ada_is_access_to_unconstrained_array (type))
8376 return type;
8377
8378 type = check_typedef (type);
8379 if (type == NULL || type->code () != TYPE_CODE_ENUM
8380 || !type->is_stub ()
8381 || type->name () == NULL)
8382 return type;
8383 else
8384 {
8385 const char *name = type->name ();
8386 struct type *type1 = ada_find_any_type (name);
8387
8388 if (type1 == NULL)
8389 return type;
8390
8391 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8392 stubs pointing to arrays, as we don't create symbols for array
8393 types, only for the typedef-to-array types). If that's the case,
8394 strip the typedef layer. */
8395 if (type1->code () == TYPE_CODE_TYPEDEF)
8396 type1 = ada_check_typedef (type1);
8397
8398 return type1;
8399 }
8400 }
8401
8402 /* A value representing the data at VALADDR/ADDRESS as described by
8403 type TYPE0, but with a standard (static-sized) type that correctly
8404 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8405 type, then return VAL0 [this feature is simply to avoid redundant
8406 creation of struct values]. */
8407
8408 static struct value *
8409 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8410 struct value *val0)
8411 {
8412 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
8413
8414 if (type == type0 && val0 != NULL)
8415 return val0;
8416
8417 if (VALUE_LVAL (val0) != lval_memory)
8418 {
8419 /* Our value does not live in memory; it could be a convenience
8420 variable, for instance. Create a not_lval value using val0's
8421 contents. */
8422 return value_from_contents (type, value_contents (val0));
8423 }
8424
8425 return value_from_contents_and_address (type, 0, address);
8426 }
8427
8428 /* A value representing VAL, but with a standard (static-sized) type
8429 that correctly describes it. Does not necessarily create a new
8430 value. */
8431
8432 struct value *
8433 ada_to_fixed_value (struct value *val)
8434 {
8435 val = unwrap_value (val);
8436 val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
8437 return val;
8438 }
8439 \f
8440
8441 /* Attributes */
8442
8443 /* Table mapping attribute numbers to names.
8444 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
8445
8446 static const char * const attribute_names[] = {
8447 "<?>",
8448
8449 "first",
8450 "last",
8451 "length",
8452 "image",
8453 "max",
8454 "min",
8455 "modulus",
8456 "pos",
8457 "size",
8458 "tag",
8459 "val",
8460 0
8461 };
8462
8463 static const char *
8464 ada_attribute_name (enum exp_opcode n)
8465 {
8466 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8467 return attribute_names[n - OP_ATR_FIRST + 1];
8468 else
8469 return attribute_names[0];
8470 }
8471
8472 /* Evaluate the 'POS attribute applied to ARG. */
8473
8474 static LONGEST
8475 pos_atr (struct value *arg)
8476 {
8477 struct value *val = coerce_ref (arg);
8478 struct type *type = value_type (val);
8479
8480 if (!discrete_type_p (type))
8481 error (_("'POS only defined on discrete types"));
8482
8483 gdb::optional<LONGEST> result = discrete_position (type, value_as_long (val));
8484 if (!result.has_value ())
8485 error (_("enumeration value is invalid: can't find 'POS"));
8486
8487 return *result;
8488 }
8489
8490 struct value *
8491 ada_pos_atr (struct type *expect_type,
8492 struct expression *exp,
8493 enum noside noside, enum exp_opcode op,
8494 struct value *arg)
8495 {
8496 struct type *type = builtin_type (exp->gdbarch)->builtin_int;
8497 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8498 return value_zero (type, not_lval);
8499 return value_from_longest (type, pos_atr (arg));
8500 }
8501
8502 /* Evaluate the TYPE'VAL attribute applied to ARG. */
8503
8504 static struct value *
8505 val_atr (struct type *type, LONGEST val)
8506 {
8507 gdb_assert (discrete_type_p (type));
8508 if (type->code () == TYPE_CODE_RANGE)
8509 type = TYPE_TARGET_TYPE (type);
8510 if (type->code () == TYPE_CODE_ENUM)
8511 {
8512 if (val < 0 || val >= type->num_fields ())
8513 error (_("argument to 'VAL out of range"));
8514 val = TYPE_FIELD_ENUMVAL (type, val);
8515 }
8516 return value_from_longest (type, val);
8517 }
8518
8519 struct value *
8520 ada_val_atr (enum noside noside, struct type *type, struct value *arg)
8521 {
8522 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8523 return value_zero (type, not_lval);
8524
8525 if (!discrete_type_p (type))
8526 error (_("'VAL only defined on discrete types"));
8527 if (!integer_type_p (value_type (arg)))
8528 error (_("'VAL requires integral argument"));
8529
8530 return val_atr (type, value_as_long (arg));
8531 }
8532 \f
8533
8534 /* Evaluation */
8535
8536 /* True if TYPE appears to be an Ada character type.
8537 [At the moment, this is true only for Character and Wide_Character;
8538 It is a heuristic test that could stand improvement]. */
8539
8540 bool
8541 ada_is_character_type (struct type *type)
8542 {
8543 const char *name;
8544
8545 /* If the type code says it's a character, then assume it really is,
8546 and don't check any further. */
8547 if (type->code () == TYPE_CODE_CHAR)
8548 return true;
8549
8550 /* Otherwise, assume it's a character type iff it is a discrete type
8551 with a known character type name. */
8552 name = ada_type_name (type);
8553 return (name != NULL
8554 && (type->code () == TYPE_CODE_INT
8555 || type->code () == TYPE_CODE_RANGE)
8556 && (strcmp (name, "character") == 0
8557 || strcmp (name, "wide_character") == 0
8558 || strcmp (name, "wide_wide_character") == 0
8559 || strcmp (name, "unsigned char") == 0));
8560 }
8561
8562 /* True if TYPE appears to be an Ada string type. */
8563
8564 bool
8565 ada_is_string_type (struct type *type)
8566 {
8567 type = ada_check_typedef (type);
8568 if (type != NULL
8569 && type->code () != TYPE_CODE_PTR
8570 && (ada_is_simple_array_type (type)
8571 || ada_is_array_descriptor_type (type))
8572 && ada_array_arity (type) == 1)
8573 {
8574 struct type *elttype = ada_array_element_type (type, 1);
8575
8576 return ada_is_character_type (elttype);
8577 }
8578 else
8579 return false;
8580 }
8581
8582 /* The compiler sometimes provides a parallel XVS type for a given
8583 PAD type. Normally, it is safe to follow the PAD type directly,
8584 but older versions of the compiler have a bug that causes the offset
8585 of its "F" field to be wrong. Following that field in that case
8586 would lead to incorrect results, but this can be worked around
8587 by ignoring the PAD type and using the associated XVS type instead.
8588
8589 Set to True if the debugger should trust the contents of PAD types.
8590 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8591 static bool trust_pad_over_xvs = true;
8592
8593 /* True if TYPE is a struct type introduced by the compiler to force the
8594 alignment of a value. Such types have a single field with a
8595 distinctive name. */
8596
8597 int
8598 ada_is_aligner_type (struct type *type)
8599 {
8600 type = ada_check_typedef (type);
8601
8602 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
8603 return 0;
8604
8605 return (type->code () == TYPE_CODE_STRUCT
8606 && type->num_fields () == 1
8607 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
8608 }
8609
8610 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
8611 the parallel type. */
8612
8613 struct type *
8614 ada_get_base_type (struct type *raw_type)
8615 {
8616 struct type *real_type_namer;
8617 struct type *raw_real_type;
8618
8619 if (raw_type == NULL || raw_type->code () != TYPE_CODE_STRUCT)
8620 return raw_type;
8621
8622 if (ada_is_aligner_type (raw_type))
8623 /* The encoding specifies that we should always use the aligner type.
8624 So, even if this aligner type has an associated XVS type, we should
8625 simply ignore it.
8626
8627 According to the compiler gurus, an XVS type parallel to an aligner
8628 type may exist because of a stabs limitation. In stabs, aligner
8629 types are empty because the field has a variable-sized type, and
8630 thus cannot actually be used as an aligner type. As a result,
8631 we need the associated parallel XVS type to decode the type.
8632 Since the policy in the compiler is to not change the internal
8633 representation based on the debugging info format, we sometimes
8634 end up having a redundant XVS type parallel to the aligner type. */
8635 return raw_type;
8636
8637 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
8638 if (real_type_namer == NULL
8639 || real_type_namer->code () != TYPE_CODE_STRUCT
8640 || real_type_namer->num_fields () != 1)
8641 return raw_type;
8642
8643 if (real_type_namer->field (0).type ()->code () != TYPE_CODE_REF)
8644 {
8645 /* This is an older encoding form where the base type needs to be
8646 looked up by name. We prefer the newer encoding because it is
8647 more efficient. */
8648 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8649 if (raw_real_type == NULL)
8650 return raw_type;
8651 else
8652 return raw_real_type;
8653 }
8654
8655 /* The field in our XVS type is a reference to the base type. */
8656 return TYPE_TARGET_TYPE (real_type_namer->field (0).type ());
8657 }
8658
8659 /* The type of value designated by TYPE, with all aligners removed. */
8660
8661 struct type *
8662 ada_aligned_type (struct type *type)
8663 {
8664 if (ada_is_aligner_type (type))
8665 return ada_aligned_type (type->field (0).type ());
8666 else
8667 return ada_get_base_type (type);
8668 }
8669
8670
8671 /* The address of the aligned value in an object at address VALADDR
8672 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
8673
8674 const gdb_byte *
8675 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
8676 {
8677 if (ada_is_aligner_type (type))
8678 return ada_aligned_value_addr (type->field (0).type (),
8679 valaddr +
8680 TYPE_FIELD_BITPOS (type,
8681 0) / TARGET_CHAR_BIT);
8682 else
8683 return valaddr;
8684 }
8685
8686
8687
8688 /* The printed representation of an enumeration literal with encoded
8689 name NAME. The value is good to the next call of ada_enum_name. */
8690 const char *
8691 ada_enum_name (const char *name)
8692 {
8693 static std::string storage;
8694 const char *tmp;
8695
8696 /* First, unqualify the enumeration name:
8697 1. Search for the last '.' character. If we find one, then skip
8698 all the preceding characters, the unqualified name starts
8699 right after that dot.
8700 2. Otherwise, we may be debugging on a target where the compiler
8701 translates dots into "__". Search forward for double underscores,
8702 but stop searching when we hit an overloading suffix, which is
8703 of the form "__" followed by digits. */
8704
8705 tmp = strrchr (name, '.');
8706 if (tmp != NULL)
8707 name = tmp + 1;
8708 else
8709 {
8710 while ((tmp = strstr (name, "__")) != NULL)
8711 {
8712 if (isdigit (tmp[2]))
8713 break;
8714 else
8715 name = tmp + 2;
8716 }
8717 }
8718
8719 if (name[0] == 'Q')
8720 {
8721 int v;
8722
8723 if (name[1] == 'U' || name[1] == 'W')
8724 {
8725 if (sscanf (name + 2, "%x", &v) != 1)
8726 return name;
8727 }
8728 else if (((name[1] >= '0' && name[1] <= '9')
8729 || (name[1] >= 'a' && name[1] <= 'z'))
8730 && name[2] == '\0')
8731 {
8732 storage = string_printf ("'%c'", name[1]);
8733 return storage.c_str ();
8734 }
8735 else
8736 return name;
8737
8738 if (isascii (v) && isprint (v))
8739 storage = string_printf ("'%c'", v);
8740 else if (name[1] == 'U')
8741 storage = string_printf ("[\"%02x\"]", v);
8742 else
8743 storage = string_printf ("[\"%04x\"]", v);
8744
8745 return storage.c_str ();
8746 }
8747 else
8748 {
8749 tmp = strstr (name, "__");
8750 if (tmp == NULL)
8751 tmp = strstr (name, "$");
8752 if (tmp != NULL)
8753 {
8754 storage = std::string (name, tmp - name);
8755 return storage.c_str ();
8756 }
8757
8758 return name;
8759 }
8760 }
8761
8762 /* If VAL is wrapped in an aligner or subtype wrapper, return the
8763 value it wraps. */
8764
8765 static struct value *
8766 unwrap_value (struct value *val)
8767 {
8768 struct type *type = ada_check_typedef (value_type (val));
8769
8770 if (ada_is_aligner_type (type))
8771 {
8772 struct value *v = ada_value_struct_elt (val, "F", 0);
8773 struct type *val_type = ada_check_typedef (value_type (v));
8774
8775 if (ada_type_name (val_type) == NULL)
8776 val_type->set_name (ada_type_name (type));
8777
8778 return unwrap_value (v);
8779 }
8780 else
8781 {
8782 struct type *raw_real_type =
8783 ada_check_typedef (ada_get_base_type (type));
8784
8785 /* If there is no parallel XVS or XVE type, then the value is
8786 already unwrapped. Return it without further modification. */
8787 if ((type == raw_real_type)
8788 && ada_find_parallel_type (type, "___XVE") == NULL)
8789 return val;
8790
8791 return
8792 coerce_unspec_val_to_type
8793 (val, ada_to_fixed_type (raw_real_type, 0,
8794 value_address (val),
8795 NULL, 1));
8796 }
8797 }
8798
8799 /* Given two array types T1 and T2, return nonzero iff both arrays
8800 contain the same number of elements. */
8801
8802 static int
8803 ada_same_array_size_p (struct type *t1, struct type *t2)
8804 {
8805 LONGEST lo1, hi1, lo2, hi2;
8806
8807 /* Get the array bounds in order to verify that the size of
8808 the two arrays match. */
8809 if (!get_array_bounds (t1, &lo1, &hi1)
8810 || !get_array_bounds (t2, &lo2, &hi2))
8811 error (_("unable to determine array bounds"));
8812
8813 /* To make things easier for size comparison, normalize a bit
8814 the case of empty arrays by making sure that the difference
8815 between upper bound and lower bound is always -1. */
8816 if (lo1 > hi1)
8817 hi1 = lo1 - 1;
8818 if (lo2 > hi2)
8819 hi2 = lo2 - 1;
8820
8821 return (hi1 - lo1 == hi2 - lo2);
8822 }
8823
8824 /* Assuming that VAL is an array of integrals, and TYPE represents
8825 an array with the same number of elements, but with wider integral
8826 elements, return an array "casted" to TYPE. In practice, this
8827 means that the returned array is built by casting each element
8828 of the original array into TYPE's (wider) element type. */
8829
8830 static struct value *
8831 ada_promote_array_of_integrals (struct type *type, struct value *val)
8832 {
8833 struct type *elt_type = TYPE_TARGET_TYPE (type);
8834 LONGEST lo, hi;
8835 struct value *res;
8836 LONGEST i;
8837
8838 /* Verify that both val and type are arrays of scalars, and
8839 that the size of val's elements is smaller than the size
8840 of type's element. */
8841 gdb_assert (type->code () == TYPE_CODE_ARRAY);
8842 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
8843 gdb_assert (value_type (val)->code () == TYPE_CODE_ARRAY);
8844 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
8845 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
8846 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
8847
8848 if (!get_array_bounds (type, &lo, &hi))
8849 error (_("unable to determine array bounds"));
8850
8851 res = allocate_value (type);
8852
8853 /* Promote each array element. */
8854 for (i = 0; i < hi - lo + 1; i++)
8855 {
8856 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
8857
8858 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
8859 value_contents_all (elt), TYPE_LENGTH (elt_type));
8860 }
8861
8862 return res;
8863 }
8864
8865 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8866 return the converted value. */
8867
8868 static struct value *
8869 coerce_for_assign (struct type *type, struct value *val)
8870 {
8871 struct type *type2 = value_type (val);
8872
8873 if (type == type2)
8874 return val;
8875
8876 type2 = ada_check_typedef (type2);
8877 type = ada_check_typedef (type);
8878
8879 if (type2->code () == TYPE_CODE_PTR
8880 && type->code () == TYPE_CODE_ARRAY)
8881 {
8882 val = ada_value_ind (val);
8883 type2 = value_type (val);
8884 }
8885
8886 if (type2->code () == TYPE_CODE_ARRAY
8887 && type->code () == TYPE_CODE_ARRAY)
8888 {
8889 if (!ada_same_array_size_p (type, type2))
8890 error (_("cannot assign arrays of different length"));
8891
8892 if (is_integral_type (TYPE_TARGET_TYPE (type))
8893 && is_integral_type (TYPE_TARGET_TYPE (type2))
8894 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8895 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
8896 {
8897 /* Allow implicit promotion of the array elements to
8898 a wider type. */
8899 return ada_promote_array_of_integrals (type, val);
8900 }
8901
8902 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8903 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
8904 error (_("Incompatible types in assignment"));
8905 deprecated_set_value_type (val, type);
8906 }
8907 return val;
8908 }
8909
8910 static struct value *
8911 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8912 {
8913 struct value *val;
8914 struct type *type1, *type2;
8915 LONGEST v, v1, v2;
8916
8917 arg1 = coerce_ref (arg1);
8918 arg2 = coerce_ref (arg2);
8919 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
8920 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
8921
8922 if (type1->code () != TYPE_CODE_INT
8923 || type2->code () != TYPE_CODE_INT)
8924 return value_binop (arg1, arg2, op);
8925
8926 switch (op)
8927 {
8928 case BINOP_MOD:
8929 case BINOP_DIV:
8930 case BINOP_REM:
8931 break;
8932 default:
8933 return value_binop (arg1, arg2, op);
8934 }
8935
8936 v2 = value_as_long (arg2);
8937 if (v2 == 0)
8938 {
8939 const char *name;
8940 if (op == BINOP_MOD)
8941 name = "mod";
8942 else if (op == BINOP_DIV)
8943 name = "/";
8944 else
8945 {
8946 gdb_assert (op == BINOP_REM);
8947 name = "rem";
8948 }
8949
8950 error (_("second operand of %s must not be zero."), name);
8951 }
8952
8953 if (type1->is_unsigned () || op == BINOP_MOD)
8954 return value_binop (arg1, arg2, op);
8955
8956 v1 = value_as_long (arg1);
8957 switch (op)
8958 {
8959 case BINOP_DIV:
8960 v = v1 / v2;
8961 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8962 v += v > 0 ? -1 : 1;
8963 break;
8964 case BINOP_REM:
8965 v = v1 % v2;
8966 if (v * v1 < 0)
8967 v -= v2;
8968 break;
8969 default:
8970 /* Should not reach this point. */
8971 v = 0;
8972 }
8973
8974 val = allocate_value (type1);
8975 store_unsigned_integer (value_contents_raw (val),
8976 TYPE_LENGTH (value_type (val)),
8977 type_byte_order (type1), v);
8978 return val;
8979 }
8980
8981 static int
8982 ada_value_equal (struct value *arg1, struct value *arg2)
8983 {
8984 if (ada_is_direct_array_type (value_type (arg1))
8985 || ada_is_direct_array_type (value_type (arg2)))
8986 {
8987 struct type *arg1_type, *arg2_type;
8988
8989 /* Automatically dereference any array reference before
8990 we attempt to perform the comparison. */
8991 arg1 = ada_coerce_ref (arg1);
8992 arg2 = ada_coerce_ref (arg2);
8993
8994 arg1 = ada_coerce_to_simple_array (arg1);
8995 arg2 = ada_coerce_to_simple_array (arg2);
8996
8997 arg1_type = ada_check_typedef (value_type (arg1));
8998 arg2_type = ada_check_typedef (value_type (arg2));
8999
9000 if (arg1_type->code () != TYPE_CODE_ARRAY
9001 || arg2_type->code () != TYPE_CODE_ARRAY)
9002 error (_("Attempt to compare array with non-array"));
9003 /* FIXME: The following works only for types whose
9004 representations use all bits (no padding or undefined bits)
9005 and do not have user-defined equality. */
9006 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9007 && memcmp (value_contents (arg1), value_contents (arg2),
9008 TYPE_LENGTH (arg1_type)) == 0);
9009 }
9010 return value_equal (arg1, arg2);
9011 }
9012
9013 namespace expr
9014 {
9015
9016 bool
9017 check_objfile (const std::unique_ptr<ada_component> &comp,
9018 struct objfile *objfile)
9019 {
9020 return comp->uses_objfile (objfile);
9021 }
9022
9023 /* Assign the result of evaluating ARG starting at *POS to the INDEXth
9024 component of LHS (a simple array or a record). Does not modify the
9025 inferior's memory, nor does it modify LHS (unless LHS ==
9026 CONTAINER). */
9027
9028 static void
9029 assign_component (struct value *container, struct value *lhs, LONGEST index,
9030 struct expression *exp, operation_up &arg)
9031 {
9032 scoped_value_mark mark;
9033
9034 struct value *elt;
9035 struct type *lhs_type = check_typedef (value_type (lhs));
9036
9037 if (lhs_type->code () == TYPE_CODE_ARRAY)
9038 {
9039 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9040 struct value *index_val = value_from_longest (index_type, index);
9041
9042 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9043 }
9044 else
9045 {
9046 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9047 elt = ada_to_fixed_value (elt);
9048 }
9049
9050 ada_aggregate_operation *ag_op
9051 = dynamic_cast<ada_aggregate_operation *> (arg.get ());
9052 if (ag_op != nullptr)
9053 ag_op->assign_aggregate (container, elt, exp);
9054 else
9055 value_assign_to_component (container, elt,
9056 arg->evaluate (nullptr, exp,
9057 EVAL_NORMAL));
9058 }
9059
9060 bool
9061 ada_aggregate_component::uses_objfile (struct objfile *objfile)
9062 {
9063 for (const auto &item : m_components)
9064 if (item->uses_objfile (objfile))
9065 return true;
9066 return false;
9067 }
9068
9069 void
9070 ada_aggregate_component::dump (ui_file *stream, int depth)
9071 {
9072 fprintf_filtered (stream, _("%*sAggregate\n"), depth, "");
9073 for (const auto &item : m_components)
9074 item->dump (stream, depth + 1);
9075 }
9076
9077 void
9078 ada_aggregate_component::assign (struct value *container,
9079 struct value *lhs, struct expression *exp,
9080 std::vector<LONGEST> &indices,
9081 LONGEST low, LONGEST high)
9082 {
9083 for (auto &item : m_components)
9084 item->assign (container, lhs, exp, indices, low, high);
9085 }
9086
9087 /* See ada-exp.h. */
9088
9089 value *
9090 ada_aggregate_operation::assign_aggregate (struct value *container,
9091 struct value *lhs,
9092 struct expression *exp)
9093 {
9094 struct type *lhs_type;
9095 LONGEST low_index, high_index;
9096
9097 container = ada_coerce_ref (container);
9098 if (ada_is_direct_array_type (value_type (container)))
9099 container = ada_coerce_to_simple_array (container);
9100 lhs = ada_coerce_ref (lhs);
9101 if (!deprecated_value_modifiable (lhs))
9102 error (_("Left operand of assignment is not a modifiable lvalue."));
9103
9104 lhs_type = check_typedef (value_type (lhs));
9105 if (ada_is_direct_array_type (lhs_type))
9106 {
9107 lhs = ada_coerce_to_simple_array (lhs);
9108 lhs_type = check_typedef (value_type (lhs));
9109 low_index = lhs_type->bounds ()->low.const_val ();
9110 high_index = lhs_type->bounds ()->high.const_val ();
9111 }
9112 else if (lhs_type->code () == TYPE_CODE_STRUCT)
9113 {
9114 low_index = 0;
9115 high_index = num_visible_fields (lhs_type) - 1;
9116 }
9117 else
9118 error (_("Left-hand side must be array or record."));
9119
9120 std::vector<LONGEST> indices (4);
9121 indices[0] = indices[1] = low_index - 1;
9122 indices[2] = indices[3] = high_index + 1;
9123
9124 std::get<0> (m_storage)->assign (container, lhs, exp, indices,
9125 low_index, high_index);
9126
9127 return container;
9128 }
9129
9130 bool
9131 ada_positional_component::uses_objfile (struct objfile *objfile)
9132 {
9133 return m_op->uses_objfile (objfile);
9134 }
9135
9136 void
9137 ada_positional_component::dump (ui_file *stream, int depth)
9138 {
9139 fprintf_filtered (stream, _("%*sPositional, index = %d\n"),
9140 depth, "", m_index);
9141 m_op->dump (stream, depth + 1);
9142 }
9143
9144 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9145 construct, given that the positions are relative to lower bound
9146 LOW, where HIGH is the upper bound. Record the position in
9147 INDICES. CONTAINER is as for assign_aggregate. */
9148 void
9149 ada_positional_component::assign (struct value *container,
9150 struct value *lhs, struct expression *exp,
9151 std::vector<LONGEST> &indices,
9152 LONGEST low, LONGEST high)
9153 {
9154 LONGEST ind = m_index + low;
9155
9156 if (ind - 1 == high)
9157 warning (_("Extra components in aggregate ignored."));
9158 if (ind <= high)
9159 {
9160 add_component_interval (ind, ind, indices);
9161 assign_component (container, lhs, ind, exp, m_op);
9162 }
9163 }
9164
9165 bool
9166 ada_discrete_range_association::uses_objfile (struct objfile *objfile)
9167 {
9168 return m_low->uses_objfile (objfile) || m_high->uses_objfile (objfile);
9169 }
9170
9171 void
9172 ada_discrete_range_association::dump (ui_file *stream, int depth)
9173 {
9174 fprintf_filtered (stream, _("%*sDiscrete range:\n"), depth, "");
9175 m_low->dump (stream, depth + 1);
9176 m_high->dump (stream, depth + 1);
9177 }
9178
9179 void
9180 ada_discrete_range_association::assign (struct value *container,
9181 struct value *lhs,
9182 struct expression *exp,
9183 std::vector<LONGEST> &indices,
9184 LONGEST low, LONGEST high,
9185 operation_up &op)
9186 {
9187 LONGEST lower = value_as_long (m_low->evaluate (nullptr, exp, EVAL_NORMAL));
9188 LONGEST upper = value_as_long (m_high->evaluate (nullptr, exp, EVAL_NORMAL));
9189
9190 if (lower <= upper && (lower < low || upper > high))
9191 error (_("Index in component association out of bounds."));
9192
9193 add_component_interval (lower, upper, indices);
9194 while (lower <= upper)
9195 {
9196 assign_component (container, lhs, lower, exp, op);
9197 lower += 1;
9198 }
9199 }
9200
9201 bool
9202 ada_name_association::uses_objfile (struct objfile *objfile)
9203 {
9204 return m_val->uses_objfile (objfile);
9205 }
9206
9207 void
9208 ada_name_association::dump (ui_file *stream, int depth)
9209 {
9210 fprintf_filtered (stream, _("%*sName:\n"), depth, "");
9211 m_val->dump (stream, depth + 1);
9212 }
9213
9214 void
9215 ada_name_association::assign (struct value *container,
9216 struct value *lhs,
9217 struct expression *exp,
9218 std::vector<LONGEST> &indices,
9219 LONGEST low, LONGEST high,
9220 operation_up &op)
9221 {
9222 int index;
9223
9224 if (ada_is_direct_array_type (value_type (lhs)))
9225 index = longest_to_int (value_as_long (m_val->evaluate (nullptr, exp,
9226 EVAL_NORMAL)));
9227 else
9228 {
9229 ada_string_operation *strop
9230 = dynamic_cast<ada_string_operation *> (m_val.get ());
9231
9232 const char *name;
9233 if (strop != nullptr)
9234 name = strop->get_name ();
9235 else
9236 {
9237 ada_var_value_operation *vvo
9238 = dynamic_cast<ada_var_value_operation *> (m_val.get ());
9239 if (vvo != nullptr)
9240 error (_("Invalid record component association."));
9241 name = vvo->get_symbol ()->natural_name ();
9242 }
9243
9244 index = 0;
9245 if (! find_struct_field (name, value_type (lhs), 0,
9246 NULL, NULL, NULL, NULL, &index))
9247 error (_("Unknown component name: %s."), name);
9248 }
9249
9250 add_component_interval (index, index, indices);
9251 assign_component (container, lhs, index, exp, op);
9252 }
9253
9254 bool
9255 ada_choices_component::uses_objfile (struct objfile *objfile)
9256 {
9257 if (m_op->uses_objfile (objfile))
9258 return true;
9259 for (const auto &item : m_assocs)
9260 if (item->uses_objfile (objfile))
9261 return true;
9262 return false;
9263 }
9264
9265 void
9266 ada_choices_component::dump (ui_file *stream, int depth)
9267 {
9268 fprintf_filtered (stream, _("%*sChoices:\n"), depth, "");
9269 m_op->dump (stream, depth + 1);
9270 for (const auto &item : m_assocs)
9271 item->dump (stream, depth + 1);
9272 }
9273
9274 /* Assign into the components of LHS indexed by the OP_CHOICES
9275 construct at *POS, updating *POS past the construct, given that
9276 the allowable indices are LOW..HIGH. Record the indices assigned
9277 to in INDICES. CONTAINER is as for assign_aggregate. */
9278 void
9279 ada_choices_component::assign (struct value *container,
9280 struct value *lhs, struct expression *exp,
9281 std::vector<LONGEST> &indices,
9282 LONGEST low, LONGEST high)
9283 {
9284 for (auto &item : m_assocs)
9285 item->assign (container, lhs, exp, indices, low, high, m_op);
9286 }
9287
9288 bool
9289 ada_others_component::uses_objfile (struct objfile *objfile)
9290 {
9291 return m_op->uses_objfile (objfile);
9292 }
9293
9294 void
9295 ada_others_component::dump (ui_file *stream, int depth)
9296 {
9297 fprintf_filtered (stream, _("%*sOthers:\n"), depth, "");
9298 m_op->dump (stream, depth + 1);
9299 }
9300
9301 /* Assign the value of the expression in the OP_OTHERS construct in
9302 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9303 have not been previously assigned. The index intervals already assigned
9304 are in INDICES. CONTAINER is as for assign_aggregate. */
9305 void
9306 ada_others_component::assign (struct value *container,
9307 struct value *lhs, struct expression *exp,
9308 std::vector<LONGEST> &indices,
9309 LONGEST low, LONGEST high)
9310 {
9311 int num_indices = indices.size ();
9312 for (int i = 0; i < num_indices - 2; i += 2)
9313 {
9314 for (LONGEST ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9315 assign_component (container, lhs, ind, exp, m_op);
9316 }
9317 }
9318
9319 struct value *
9320 ada_assign_operation::evaluate (struct type *expect_type,
9321 struct expression *exp,
9322 enum noside noside)
9323 {
9324 value *arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
9325
9326 ada_aggregate_operation *ag_op
9327 = dynamic_cast<ada_aggregate_operation *> (std::get<1> (m_storage).get ());
9328 if (ag_op != nullptr)
9329 {
9330 if (noside != EVAL_NORMAL)
9331 return arg1;
9332
9333 arg1 = ag_op->assign_aggregate (arg1, arg1, exp);
9334 return ada_value_assign (arg1, arg1);
9335 }
9336 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9337 except if the lhs of our assignment is a convenience variable.
9338 In the case of assigning to a convenience variable, the lhs
9339 should be exactly the result of the evaluation of the rhs. */
9340 struct type *type = value_type (arg1);
9341 if (VALUE_LVAL (arg1) == lval_internalvar)
9342 type = NULL;
9343 value *arg2 = std::get<1> (m_storage)->evaluate (type, exp, noside);
9344 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9345 return arg1;
9346 if (VALUE_LVAL (arg1) == lval_internalvar)
9347 {
9348 /* Nothing. */
9349 }
9350 else
9351 arg2 = coerce_for_assign (value_type (arg1), arg2);
9352 return ada_value_assign (arg1, arg2);
9353 }
9354
9355 } /* namespace expr */
9356
9357 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
9358 [ INDICES[0] .. INDICES[1] ],... The resulting intervals do not
9359 overlap. */
9360 static void
9361 add_component_interval (LONGEST low, LONGEST high,
9362 std::vector<LONGEST> &indices)
9363 {
9364 int i, j;
9365
9366 int size = indices.size ();
9367 for (i = 0; i < size; i += 2) {
9368 if (high >= indices[i] && low <= indices[i + 1])
9369 {
9370 int kh;
9371
9372 for (kh = i + 2; kh < size; kh += 2)
9373 if (high < indices[kh])
9374 break;
9375 if (low < indices[i])
9376 indices[i] = low;
9377 indices[i + 1] = indices[kh - 1];
9378 if (high > indices[i + 1])
9379 indices[i + 1] = high;
9380 memcpy (indices.data () + i + 2, indices.data () + kh, size - kh);
9381 indices.resize (kh - i - 2);
9382 return;
9383 }
9384 else if (high < indices[i])
9385 break;
9386 }
9387
9388 indices.resize (indices.size () + 2);
9389 for (j = indices.size () - 1; j >= i + 2; j -= 1)
9390 indices[j] = indices[j - 2];
9391 indices[i] = low;
9392 indices[i + 1] = high;
9393 }
9394
9395 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9396 is different. */
9397
9398 static struct value *
9399 ada_value_cast (struct type *type, struct value *arg2)
9400 {
9401 if (type == ada_check_typedef (value_type (arg2)))
9402 return arg2;
9403
9404 return value_cast (type, arg2);
9405 }
9406
9407 /* Evaluating Ada expressions, and printing their result.
9408 ------------------------------------------------------
9409
9410 1. Introduction:
9411 ----------------
9412
9413 We usually evaluate an Ada expression in order to print its value.
9414 We also evaluate an expression in order to print its type, which
9415 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9416 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9417 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9418 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9419 similar.
9420
9421 Evaluating expressions is a little more complicated for Ada entities
9422 than it is for entities in languages such as C. The main reason for
9423 this is that Ada provides types whose definition might be dynamic.
9424 One example of such types is variant records. Or another example
9425 would be an array whose bounds can only be known at run time.
9426
9427 The following description is a general guide as to what should be
9428 done (and what should NOT be done) in order to evaluate an expression
9429 involving such types, and when. This does not cover how the semantic
9430 information is encoded by GNAT as this is covered separatly. For the
9431 document used as the reference for the GNAT encoding, see exp_dbug.ads
9432 in the GNAT sources.
9433
9434 Ideally, we should embed each part of this description next to its
9435 associated code. Unfortunately, the amount of code is so vast right
9436 now that it's hard to see whether the code handling a particular
9437 situation might be duplicated or not. One day, when the code is
9438 cleaned up, this guide might become redundant with the comments
9439 inserted in the code, and we might want to remove it.
9440
9441 2. ``Fixing'' an Entity, the Simple Case:
9442 -----------------------------------------
9443
9444 When evaluating Ada expressions, the tricky issue is that they may
9445 reference entities whose type contents and size are not statically
9446 known. Consider for instance a variant record:
9447
9448 type Rec (Empty : Boolean := True) is record
9449 case Empty is
9450 when True => null;
9451 when False => Value : Integer;
9452 end case;
9453 end record;
9454 Yes : Rec := (Empty => False, Value => 1);
9455 No : Rec := (empty => True);
9456
9457 The size and contents of that record depends on the value of the
9458 descriminant (Rec.Empty). At this point, neither the debugging
9459 information nor the associated type structure in GDB are able to
9460 express such dynamic types. So what the debugger does is to create
9461 "fixed" versions of the type that applies to the specific object.
9462 We also informally refer to this operation as "fixing" an object,
9463 which means creating its associated fixed type.
9464
9465 Example: when printing the value of variable "Yes" above, its fixed
9466 type would look like this:
9467
9468 type Rec is record
9469 Empty : Boolean;
9470 Value : Integer;
9471 end record;
9472
9473 On the other hand, if we printed the value of "No", its fixed type
9474 would become:
9475
9476 type Rec is record
9477 Empty : Boolean;
9478 end record;
9479
9480 Things become a little more complicated when trying to fix an entity
9481 with a dynamic type that directly contains another dynamic type,
9482 such as an array of variant records, for instance. There are
9483 two possible cases: Arrays, and records.
9484
9485 3. ``Fixing'' Arrays:
9486 ---------------------
9487
9488 The type structure in GDB describes an array in terms of its bounds,
9489 and the type of its elements. By design, all elements in the array
9490 have the same type and we cannot represent an array of variant elements
9491 using the current type structure in GDB. When fixing an array,
9492 we cannot fix the array element, as we would potentially need one
9493 fixed type per element of the array. As a result, the best we can do
9494 when fixing an array is to produce an array whose bounds and size
9495 are correct (allowing us to read it from memory), but without having
9496 touched its element type. Fixing each element will be done later,
9497 when (if) necessary.
9498
9499 Arrays are a little simpler to handle than records, because the same
9500 amount of memory is allocated for each element of the array, even if
9501 the amount of space actually used by each element differs from element
9502 to element. Consider for instance the following array of type Rec:
9503
9504 type Rec_Array is array (1 .. 2) of Rec;
9505
9506 The actual amount of memory occupied by each element might be different
9507 from element to element, depending on the value of their discriminant.
9508 But the amount of space reserved for each element in the array remains
9509 fixed regardless. So we simply need to compute that size using
9510 the debugging information available, from which we can then determine
9511 the array size (we multiply the number of elements of the array by
9512 the size of each element).
9513
9514 The simplest case is when we have an array of a constrained element
9515 type. For instance, consider the following type declarations:
9516
9517 type Bounded_String (Max_Size : Integer) is
9518 Length : Integer;
9519 Buffer : String (1 .. Max_Size);
9520 end record;
9521 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9522
9523 In this case, the compiler describes the array as an array of
9524 variable-size elements (identified by its XVS suffix) for which
9525 the size can be read in the parallel XVZ variable.
9526
9527 In the case of an array of an unconstrained element type, the compiler
9528 wraps the array element inside a private PAD type. This type should not
9529 be shown to the user, and must be "unwrap"'ed before printing. Note
9530 that we also use the adjective "aligner" in our code to designate
9531 these wrapper types.
9532
9533 In some cases, the size allocated for each element is statically
9534 known. In that case, the PAD type already has the correct size,
9535 and the array element should remain unfixed.
9536
9537 But there are cases when this size is not statically known.
9538 For instance, assuming that "Five" is an integer variable:
9539
9540 type Dynamic is array (1 .. Five) of Integer;
9541 type Wrapper (Has_Length : Boolean := False) is record
9542 Data : Dynamic;
9543 case Has_Length is
9544 when True => Length : Integer;
9545 when False => null;
9546 end case;
9547 end record;
9548 type Wrapper_Array is array (1 .. 2) of Wrapper;
9549
9550 Hello : Wrapper_Array := (others => (Has_Length => True,
9551 Data => (others => 17),
9552 Length => 1));
9553
9554
9555 The debugging info would describe variable Hello as being an
9556 array of a PAD type. The size of that PAD type is not statically
9557 known, but can be determined using a parallel XVZ variable.
9558 In that case, a copy of the PAD type with the correct size should
9559 be used for the fixed array.
9560
9561 3. ``Fixing'' record type objects:
9562 ----------------------------------
9563
9564 Things are slightly different from arrays in the case of dynamic
9565 record types. In this case, in order to compute the associated
9566 fixed type, we need to determine the size and offset of each of
9567 its components. This, in turn, requires us to compute the fixed
9568 type of each of these components.
9569
9570 Consider for instance the example:
9571
9572 type Bounded_String (Max_Size : Natural) is record
9573 Str : String (1 .. Max_Size);
9574 Length : Natural;
9575 end record;
9576 My_String : Bounded_String (Max_Size => 10);
9577
9578 In that case, the position of field "Length" depends on the size
9579 of field Str, which itself depends on the value of the Max_Size
9580 discriminant. In order to fix the type of variable My_String,
9581 we need to fix the type of field Str. Therefore, fixing a variant
9582 record requires us to fix each of its components.
9583
9584 However, if a component does not have a dynamic size, the component
9585 should not be fixed. In particular, fields that use a PAD type
9586 should not fixed. Here is an example where this might happen
9587 (assuming type Rec above):
9588
9589 type Container (Big : Boolean) is record
9590 First : Rec;
9591 After : Integer;
9592 case Big is
9593 when True => Another : Integer;
9594 when False => null;
9595 end case;
9596 end record;
9597 My_Container : Container := (Big => False,
9598 First => (Empty => True),
9599 After => 42);
9600
9601 In that example, the compiler creates a PAD type for component First,
9602 whose size is constant, and then positions the component After just
9603 right after it. The offset of component After is therefore constant
9604 in this case.
9605
9606 The debugger computes the position of each field based on an algorithm
9607 that uses, among other things, the actual position and size of the field
9608 preceding it. Let's now imagine that the user is trying to print
9609 the value of My_Container. If the type fixing was recursive, we would
9610 end up computing the offset of field After based on the size of the
9611 fixed version of field First. And since in our example First has
9612 only one actual field, the size of the fixed type is actually smaller
9613 than the amount of space allocated to that field, and thus we would
9614 compute the wrong offset of field After.
9615
9616 To make things more complicated, we need to watch out for dynamic
9617 components of variant records (identified by the ___XVL suffix in
9618 the component name). Even if the target type is a PAD type, the size
9619 of that type might not be statically known. So the PAD type needs
9620 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9621 we might end up with the wrong size for our component. This can be
9622 observed with the following type declarations:
9623
9624 type Octal is new Integer range 0 .. 7;
9625 type Octal_Array is array (Positive range <>) of Octal;
9626 pragma Pack (Octal_Array);
9627
9628 type Octal_Buffer (Size : Positive) is record
9629 Buffer : Octal_Array (1 .. Size);
9630 Length : Integer;
9631 end record;
9632
9633 In that case, Buffer is a PAD type whose size is unset and needs
9634 to be computed by fixing the unwrapped type.
9635
9636 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9637 ----------------------------------------------------------
9638
9639 Lastly, when should the sub-elements of an entity that remained unfixed
9640 thus far, be actually fixed?
9641
9642 The answer is: Only when referencing that element. For instance
9643 when selecting one component of a record, this specific component
9644 should be fixed at that point in time. Or when printing the value
9645 of a record, each component should be fixed before its value gets
9646 printed. Similarly for arrays, the element of the array should be
9647 fixed when printing each element of the array, or when extracting
9648 one element out of that array. On the other hand, fixing should
9649 not be performed on the elements when taking a slice of an array!
9650
9651 Note that one of the side effects of miscomputing the offset and
9652 size of each field is that we end up also miscomputing the size
9653 of the containing type. This can have adverse results when computing
9654 the value of an entity. GDB fetches the value of an entity based
9655 on the size of its type, and thus a wrong size causes GDB to fetch
9656 the wrong amount of memory. In the case where the computed size is
9657 too small, GDB fetches too little data to print the value of our
9658 entity. Results in this case are unpredictable, as we usually read
9659 past the buffer containing the data =:-o. */
9660
9661 /* A helper function for TERNOP_IN_RANGE. */
9662
9663 static value *
9664 eval_ternop_in_range (struct type *expect_type, struct expression *exp,
9665 enum noside noside,
9666 value *arg1, value *arg2, value *arg3)
9667 {
9668 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9669 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9670 struct type *type = language_bool_type (exp->language_defn, exp->gdbarch);
9671 return
9672 value_from_longest (type,
9673 (value_less (arg1, arg3)
9674 || value_equal (arg1, arg3))
9675 && (value_less (arg2, arg1)
9676 || value_equal (arg2, arg1)));
9677 }
9678
9679 /* A helper function for UNOP_NEG. */
9680
9681 value *
9682 ada_unop_neg (struct type *expect_type,
9683 struct expression *exp,
9684 enum noside noside, enum exp_opcode op,
9685 struct value *arg1)
9686 {
9687 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9688 return value_neg (arg1);
9689 }
9690
9691 /* A helper function for UNOP_IN_RANGE. */
9692
9693 value *
9694 ada_unop_in_range (struct type *expect_type,
9695 struct expression *exp,
9696 enum noside noside, enum exp_opcode op,
9697 struct value *arg1, struct type *type)
9698 {
9699 struct value *arg2, *arg3;
9700 switch (type->code ())
9701 {
9702 default:
9703 lim_warning (_("Membership test incompletely implemented; "
9704 "always returns true"));
9705 type = language_bool_type (exp->language_defn, exp->gdbarch);
9706 return value_from_longest (type, (LONGEST) 1);
9707
9708 case TYPE_CODE_RANGE:
9709 arg2 = value_from_longest (type,
9710 type->bounds ()->low.const_val ());
9711 arg3 = value_from_longest (type,
9712 type->bounds ()->high.const_val ());
9713 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9714 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9715 type = language_bool_type (exp->language_defn, exp->gdbarch);
9716 return
9717 value_from_longest (type,
9718 (value_less (arg1, arg3)
9719 || value_equal (arg1, arg3))
9720 && (value_less (arg2, arg1)
9721 || value_equal (arg2, arg1)));
9722 }
9723 }
9724
9725 /* A helper function for OP_ATR_TAG. */
9726
9727 value *
9728 ada_atr_tag (struct type *expect_type,
9729 struct expression *exp,
9730 enum noside noside, enum exp_opcode op,
9731 struct value *arg1)
9732 {
9733 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9734 return value_zero (ada_tag_type (arg1), not_lval);
9735
9736 return ada_value_tag (arg1);
9737 }
9738
9739 /* A helper function for OP_ATR_SIZE. */
9740
9741 value *
9742 ada_atr_size (struct type *expect_type,
9743 struct expression *exp,
9744 enum noside noside, enum exp_opcode op,
9745 struct value *arg1)
9746 {
9747 struct type *type = value_type (arg1);
9748
9749 /* If the argument is a reference, then dereference its type, since
9750 the user is really asking for the size of the actual object,
9751 not the size of the pointer. */
9752 if (type->code () == TYPE_CODE_REF)
9753 type = TYPE_TARGET_TYPE (type);
9754
9755 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9756 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
9757 else
9758 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
9759 TARGET_CHAR_BIT * TYPE_LENGTH (type));
9760 }
9761
9762 /* A helper function for UNOP_ABS. */
9763
9764 value *
9765 ada_abs (struct type *expect_type,
9766 struct expression *exp,
9767 enum noside noside, enum exp_opcode op,
9768 struct value *arg1)
9769 {
9770 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9771 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
9772 return value_neg (arg1);
9773 else
9774 return arg1;
9775 }
9776
9777 /* A helper function for BINOP_MUL. */
9778
9779 value *
9780 ada_mult_binop (struct type *expect_type,
9781 struct expression *exp,
9782 enum noside noside, enum exp_opcode op,
9783 struct value *arg1, struct value *arg2)
9784 {
9785 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9786 {
9787 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9788 return value_zero (value_type (arg1), not_lval);
9789 }
9790 else
9791 {
9792 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9793 return ada_value_binop (arg1, arg2, op);
9794 }
9795 }
9796
9797 /* A helper function for BINOP_EQUAL and BINOP_NOTEQUAL. */
9798
9799 value *
9800 ada_equal_binop (struct type *expect_type,
9801 struct expression *exp,
9802 enum noside noside, enum exp_opcode op,
9803 struct value *arg1, struct value *arg2)
9804 {
9805 int tem;
9806 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9807 tem = 0;
9808 else
9809 {
9810 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9811 tem = ada_value_equal (arg1, arg2);
9812 }
9813 if (op == BINOP_NOTEQUAL)
9814 tem = !tem;
9815 struct type *type = language_bool_type (exp->language_defn, exp->gdbarch);
9816 return value_from_longest (type, (LONGEST) tem);
9817 }
9818
9819 /* A helper function for TERNOP_SLICE. */
9820
9821 value *
9822 ada_ternop_slice (struct expression *exp,
9823 enum noside noside,
9824 struct value *array, struct value *low_bound_val,
9825 struct value *high_bound_val)
9826 {
9827 LONGEST low_bound;
9828 LONGEST high_bound;
9829
9830 low_bound_val = coerce_ref (low_bound_val);
9831 high_bound_val = coerce_ref (high_bound_val);
9832 low_bound = value_as_long (low_bound_val);
9833 high_bound = value_as_long (high_bound_val);
9834
9835 /* If this is a reference to an aligner type, then remove all
9836 the aligners. */
9837 if (value_type (array)->code () == TYPE_CODE_REF
9838 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
9839 TYPE_TARGET_TYPE (value_type (array)) =
9840 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
9841
9842 if (ada_is_any_packed_array_type (value_type (array)))
9843 error (_("cannot slice a packed array"));
9844
9845 /* If this is a reference to an array or an array lvalue,
9846 convert to a pointer. */
9847 if (value_type (array)->code () == TYPE_CODE_REF
9848 || (value_type (array)->code () == TYPE_CODE_ARRAY
9849 && VALUE_LVAL (array) == lval_memory))
9850 array = value_addr (array);
9851
9852 if (noside == EVAL_AVOID_SIDE_EFFECTS
9853 && ada_is_array_descriptor_type (ada_check_typedef
9854 (value_type (array))))
9855 return empty_array (ada_type_of_array (array, 0), low_bound,
9856 high_bound);
9857
9858 array = ada_coerce_to_simple_array_ptr (array);
9859
9860 /* If we have more than one level of pointer indirection,
9861 dereference the value until we get only one level. */
9862 while (value_type (array)->code () == TYPE_CODE_PTR
9863 && (TYPE_TARGET_TYPE (value_type (array))->code ()
9864 == TYPE_CODE_PTR))
9865 array = value_ind (array);
9866
9867 /* Make sure we really do have an array type before going further,
9868 to avoid a SEGV when trying to get the index type or the target
9869 type later down the road if the debug info generated by
9870 the compiler is incorrect or incomplete. */
9871 if (!ada_is_simple_array_type (value_type (array)))
9872 error (_("cannot take slice of non-array"));
9873
9874 if (ada_check_typedef (value_type (array))->code ()
9875 == TYPE_CODE_PTR)
9876 {
9877 struct type *type0 = ada_check_typedef (value_type (array));
9878
9879 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
9880 return empty_array (TYPE_TARGET_TYPE (type0), low_bound, high_bound);
9881 else
9882 {
9883 struct type *arr_type0 =
9884 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
9885
9886 return ada_value_slice_from_ptr (array, arr_type0,
9887 longest_to_int (low_bound),
9888 longest_to_int (high_bound));
9889 }
9890 }
9891 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9892 return array;
9893 else if (high_bound < low_bound)
9894 return empty_array (value_type (array), low_bound, high_bound);
9895 else
9896 return ada_value_slice (array, longest_to_int (low_bound),
9897 longest_to_int (high_bound));
9898 }
9899
9900 /* A helper function for BINOP_IN_BOUNDS. */
9901
9902 value *
9903 ada_binop_in_bounds (struct expression *exp, enum noside noside,
9904 struct value *arg1, struct value *arg2, int n)
9905 {
9906 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9907 {
9908 struct type *type = language_bool_type (exp->language_defn,
9909 exp->gdbarch);
9910 return value_zero (type, not_lval);
9911 }
9912
9913 struct type *type = ada_index_type (value_type (arg2), n, "range");
9914 if (!type)
9915 type = value_type (arg1);
9916
9917 value *arg3 = value_from_longest (type, ada_array_bound (arg2, n, 1));
9918 arg2 = value_from_longest (type, ada_array_bound (arg2, n, 0));
9919
9920 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9921 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9922 type = language_bool_type (exp->language_defn, exp->gdbarch);
9923 return value_from_longest (type,
9924 (value_less (arg1, arg3)
9925 || value_equal (arg1, arg3))
9926 && (value_less (arg2, arg1)
9927 || value_equal (arg2, arg1)));
9928 }
9929
9930 /* A helper function for some attribute operations. */
9931
9932 static value *
9933 ada_unop_atr (struct expression *exp, enum noside noside, enum exp_opcode op,
9934 struct value *arg1, struct type *type_arg, int tem)
9935 {
9936 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9937 {
9938 if (type_arg == NULL)
9939 type_arg = value_type (arg1);
9940
9941 if (ada_is_constrained_packed_array_type (type_arg))
9942 type_arg = decode_constrained_packed_array_type (type_arg);
9943
9944 if (!discrete_type_p (type_arg))
9945 {
9946 switch (op)
9947 {
9948 default: /* Should never happen. */
9949 error (_("unexpected attribute encountered"));
9950 case OP_ATR_FIRST:
9951 case OP_ATR_LAST:
9952 type_arg = ada_index_type (type_arg, tem,
9953 ada_attribute_name (op));
9954 break;
9955 case OP_ATR_LENGTH:
9956 type_arg = builtin_type (exp->gdbarch)->builtin_int;
9957 break;
9958 }
9959 }
9960
9961 return value_zero (type_arg, not_lval);
9962 }
9963 else if (type_arg == NULL)
9964 {
9965 arg1 = ada_coerce_ref (arg1);
9966
9967 if (ada_is_constrained_packed_array_type (value_type (arg1)))
9968 arg1 = ada_coerce_to_simple_array (arg1);
9969
9970 struct type *type;
9971 if (op == OP_ATR_LENGTH)
9972 type = builtin_type (exp->gdbarch)->builtin_int;
9973 else
9974 {
9975 type = ada_index_type (value_type (arg1), tem,
9976 ada_attribute_name (op));
9977 if (type == NULL)
9978 type = builtin_type (exp->gdbarch)->builtin_int;
9979 }
9980
9981 switch (op)
9982 {
9983 default: /* Should never happen. */
9984 error (_("unexpected attribute encountered"));
9985 case OP_ATR_FIRST:
9986 return value_from_longest
9987 (type, ada_array_bound (arg1, tem, 0));
9988 case OP_ATR_LAST:
9989 return value_from_longest
9990 (type, ada_array_bound (arg1, tem, 1));
9991 case OP_ATR_LENGTH:
9992 return value_from_longest
9993 (type, ada_array_length (arg1, tem));
9994 }
9995 }
9996 else if (discrete_type_p (type_arg))
9997 {
9998 struct type *range_type;
9999 const char *name = ada_type_name (type_arg);
10000
10001 range_type = NULL;
10002 if (name != NULL && type_arg->code () != TYPE_CODE_ENUM)
10003 range_type = to_fixed_range_type (type_arg, NULL);
10004 if (range_type == NULL)
10005 range_type = type_arg;
10006 switch (op)
10007 {
10008 default:
10009 error (_("unexpected attribute encountered"));
10010 case OP_ATR_FIRST:
10011 return value_from_longest
10012 (range_type, ada_discrete_type_low_bound (range_type));
10013 case OP_ATR_LAST:
10014 return value_from_longest
10015 (range_type, ada_discrete_type_high_bound (range_type));
10016 case OP_ATR_LENGTH:
10017 error (_("the 'length attribute applies only to array types"));
10018 }
10019 }
10020 else if (type_arg->code () == TYPE_CODE_FLT)
10021 error (_("unimplemented type attribute"));
10022 else
10023 {
10024 LONGEST low, high;
10025
10026 if (ada_is_constrained_packed_array_type (type_arg))
10027 type_arg = decode_constrained_packed_array_type (type_arg);
10028
10029 struct type *type;
10030 if (op == OP_ATR_LENGTH)
10031 type = builtin_type (exp->gdbarch)->builtin_int;
10032 else
10033 {
10034 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10035 if (type == NULL)
10036 type = builtin_type (exp->gdbarch)->builtin_int;
10037 }
10038
10039 switch (op)
10040 {
10041 default:
10042 error (_("unexpected attribute encountered"));
10043 case OP_ATR_FIRST:
10044 low = ada_array_bound_from_type (type_arg, tem, 0);
10045 return value_from_longest (type, low);
10046 case OP_ATR_LAST:
10047 high = ada_array_bound_from_type (type_arg, tem, 1);
10048 return value_from_longest (type, high);
10049 case OP_ATR_LENGTH:
10050 low = ada_array_bound_from_type (type_arg, tem, 0);
10051 high = ada_array_bound_from_type (type_arg, tem, 1);
10052 return value_from_longest (type, high - low + 1);
10053 }
10054 }
10055 }
10056
10057 /* A helper function for OP_ATR_MIN and OP_ATR_MAX. */
10058
10059 struct value *
10060 ada_binop_minmax (struct type *expect_type,
10061 struct expression *exp,
10062 enum noside noside, enum exp_opcode op,
10063 struct value *arg1, struct value *arg2)
10064 {
10065 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10066 return value_zero (value_type (arg1), not_lval);
10067 else
10068 {
10069 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10070 return value_binop (arg1, arg2, op);
10071 }
10072 }
10073
10074 /* A helper function for BINOP_EXP. */
10075
10076 struct value *
10077 ada_binop_exp (struct type *expect_type,
10078 struct expression *exp,
10079 enum noside noside, enum exp_opcode op,
10080 struct value *arg1, struct value *arg2)
10081 {
10082 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10083 return value_zero (value_type (arg1), not_lval);
10084 else
10085 {
10086 /* For integer exponentiation operations,
10087 only promote the first argument. */
10088 if (is_integral_type (value_type (arg2)))
10089 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10090 else
10091 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10092
10093 return value_binop (arg1, arg2, op);
10094 }
10095 }
10096
10097 namespace expr
10098 {
10099
10100 /* See ada-exp.h. */
10101
10102 operation_up
10103 ada_resolvable::replace (operation_up &&owner,
10104 struct expression *exp,
10105 bool deprocedure_p,
10106 bool parse_completion,
10107 innermost_block_tracker *tracker,
10108 struct type *context_type)
10109 {
10110 if (resolve (exp, deprocedure_p, parse_completion, tracker, context_type))
10111 return (make_operation<ada_funcall_operation>
10112 (std::move (owner),
10113 std::vector<operation_up> ()));
10114 return std::move (owner);
10115 }
10116
10117 /* Convert the character literal whose ASCII value would be VAL to the
10118 appropriate value of type TYPE, if there is a translation.
10119 Otherwise return VAL. Hence, in an enumeration type ('A', 'B'),
10120 the literal 'A' (VAL == 65), returns 0. */
10121
10122 static LONGEST
10123 convert_char_literal (struct type *type, LONGEST val)
10124 {
10125 char name[7];
10126 int f;
10127
10128 if (type == NULL)
10129 return val;
10130 type = check_typedef (type);
10131 if (type->code () != TYPE_CODE_ENUM)
10132 return val;
10133
10134 if ((val >= 'a' && val <= 'z') || (val >= '0' && val <= '9'))
10135 xsnprintf (name, sizeof (name), "Q%c", (int) val);
10136 else
10137 xsnprintf (name, sizeof (name), "QU%02x", (int) val);
10138 size_t len = strlen (name);
10139 for (f = 0; f < type->num_fields (); f += 1)
10140 {
10141 /* Check the suffix because an enum constant in a package will
10142 have a name like "pkg__QUxx". This is safe enough because we
10143 already have the correct type, and because mangling means
10144 there can't be clashes. */
10145 const char *ename = TYPE_FIELD_NAME (type, f);
10146 size_t elen = strlen (ename);
10147
10148 if (elen >= len && strcmp (name, ename + elen - len) == 0)
10149 return TYPE_FIELD_ENUMVAL (type, f);
10150 }
10151 return val;
10152 }
10153
10154 /* See ada-exp.h. */
10155
10156 operation_up
10157 ada_char_operation::replace (operation_up &&owner,
10158 struct expression *exp,
10159 bool deprocedure_p,
10160 bool parse_completion,
10161 innermost_block_tracker *tracker,
10162 struct type *context_type)
10163 {
10164 operation_up result = std::move (owner);
10165
10166 if (context_type != nullptr && context_type->code () == TYPE_CODE_ENUM)
10167 {
10168 gdb_assert (result.get () == this);
10169 std::get<0> (m_storage) = context_type;
10170 std::get<1> (m_storage)
10171 = convert_char_literal (context_type, std::get<1> (m_storage));
10172 }
10173
10174 return make_operation<ada_wrapped_operation> (std::move (result));
10175 }
10176
10177 value *
10178 ada_wrapped_operation::evaluate (struct type *expect_type,
10179 struct expression *exp,
10180 enum noside noside)
10181 {
10182 value *result = std::get<0> (m_storage)->evaluate (expect_type, exp, noside);
10183 if (noside == EVAL_NORMAL)
10184 result = unwrap_value (result);
10185
10186 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
10187 then we need to perform the conversion manually, because
10188 evaluate_subexp_standard doesn't do it. This conversion is
10189 necessary in Ada because the different kinds of float/fixed
10190 types in Ada have different representations.
10191
10192 Similarly, we need to perform the conversion from OP_LONG
10193 ourselves. */
10194 if ((opcode () == OP_FLOAT || opcode () == OP_LONG) && expect_type != NULL)
10195 result = ada_value_cast (expect_type, result);
10196
10197 return result;
10198 }
10199
10200 value *
10201 ada_string_operation::evaluate (struct type *expect_type,
10202 struct expression *exp,
10203 enum noside noside)
10204 {
10205 value *result = string_operation::evaluate (expect_type, exp, noside);
10206 /* The result type will have code OP_STRING, bashed there from
10207 OP_ARRAY. Bash it back. */
10208 if (value_type (result)->code () == TYPE_CODE_STRING)
10209 value_type (result)->set_code (TYPE_CODE_ARRAY);
10210 return result;
10211 }
10212
10213 value *
10214 ada_qual_operation::evaluate (struct type *expect_type,
10215 struct expression *exp,
10216 enum noside noside)
10217 {
10218 struct type *type = std::get<1> (m_storage);
10219 return std::get<0> (m_storage)->evaluate (type, exp, noside);
10220 }
10221
10222 value *
10223 ada_ternop_range_operation::evaluate (struct type *expect_type,
10224 struct expression *exp,
10225 enum noside noside)
10226 {
10227 value *arg0 = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
10228 value *arg1 = std::get<1> (m_storage)->evaluate (nullptr, exp, noside);
10229 value *arg2 = std::get<2> (m_storage)->evaluate (nullptr, exp, noside);
10230 return eval_ternop_in_range (expect_type, exp, noside, arg0, arg1, arg2);
10231 }
10232
10233 value *
10234 ada_binop_addsub_operation::evaluate (struct type *expect_type,
10235 struct expression *exp,
10236 enum noside noside)
10237 {
10238 value *arg1 = std::get<1> (m_storage)->evaluate_with_coercion (exp, noside);
10239 value *arg2 = std::get<2> (m_storage)->evaluate_with_coercion (exp, noside);
10240
10241 auto do_op = [=] (LONGEST x, LONGEST y)
10242 {
10243 if (std::get<0> (m_storage) == BINOP_ADD)
10244 return x + y;
10245 return x - y;
10246 };
10247
10248 if (value_type (arg1)->code () == TYPE_CODE_PTR)
10249 return (value_from_longest
10250 (value_type (arg1),
10251 do_op (value_as_long (arg1), value_as_long (arg2))));
10252 if (value_type (arg2)->code () == TYPE_CODE_PTR)
10253 return (value_from_longest
10254 (value_type (arg2),
10255 do_op (value_as_long (arg1), value_as_long (arg2))));
10256 /* Preserve the original type for use by the range case below.
10257 We cannot cast the result to a reference type, so if ARG1 is
10258 a reference type, find its underlying type. */
10259 struct type *type = value_type (arg1);
10260 while (type->code () == TYPE_CODE_REF)
10261 type = TYPE_TARGET_TYPE (type);
10262 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10263 arg1 = value_binop (arg1, arg2, std::get<0> (m_storage));
10264 /* We need to special-case the result with a range.
10265 This is done for the benefit of "ptype". gdb's Ada support
10266 historically used the LHS to set the result type here, so
10267 preserve this behavior. */
10268 if (type->code () == TYPE_CODE_RANGE)
10269 arg1 = value_cast (type, arg1);
10270 return arg1;
10271 }
10272
10273 value *
10274 ada_unop_atr_operation::evaluate (struct type *expect_type,
10275 struct expression *exp,
10276 enum noside noside)
10277 {
10278 struct type *type_arg = nullptr;
10279 value *val = nullptr;
10280
10281 if (std::get<0> (m_storage)->opcode () == OP_TYPE)
10282 {
10283 value *tem = std::get<0> (m_storage)->evaluate (nullptr, exp,
10284 EVAL_AVOID_SIDE_EFFECTS);
10285 type_arg = value_type (tem);
10286 }
10287 else
10288 val = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
10289
10290 return ada_unop_atr (exp, noside, std::get<1> (m_storage),
10291 val, type_arg, std::get<2> (m_storage));
10292 }
10293
10294 value *
10295 ada_var_msym_value_operation::evaluate_for_cast (struct type *expect_type,
10296 struct expression *exp,
10297 enum noside noside)
10298 {
10299 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10300 return value_zero (expect_type, not_lval);
10301
10302 const bound_minimal_symbol &b = std::get<0> (m_storage);
10303 value *val = evaluate_var_msym_value (noside, b.objfile, b.minsym);
10304
10305 val = ada_value_cast (expect_type, val);
10306
10307 /* Follow the Ada language semantics that do not allow taking
10308 an address of the result of a cast (view conversion in Ada). */
10309 if (VALUE_LVAL (val) == lval_memory)
10310 {
10311 if (value_lazy (val))
10312 value_fetch_lazy (val);
10313 VALUE_LVAL (val) = not_lval;
10314 }
10315 return val;
10316 }
10317
10318 value *
10319 ada_var_value_operation::evaluate_for_cast (struct type *expect_type,
10320 struct expression *exp,
10321 enum noside noside)
10322 {
10323 value *val = evaluate_var_value (noside,
10324 std::get<0> (m_storage).block,
10325 std::get<0> (m_storage).symbol);
10326
10327 val = ada_value_cast (expect_type, val);
10328
10329 /* Follow the Ada language semantics that do not allow taking
10330 an address of the result of a cast (view conversion in Ada). */
10331 if (VALUE_LVAL (val) == lval_memory)
10332 {
10333 if (value_lazy (val))
10334 value_fetch_lazy (val);
10335 VALUE_LVAL (val) = not_lval;
10336 }
10337 return val;
10338 }
10339
10340 value *
10341 ada_var_value_operation::evaluate (struct type *expect_type,
10342 struct expression *exp,
10343 enum noside noside)
10344 {
10345 symbol *sym = std::get<0> (m_storage).symbol;
10346
10347 if (SYMBOL_DOMAIN (sym) == UNDEF_DOMAIN)
10348 /* Only encountered when an unresolved symbol occurs in a
10349 context other than a function call, in which case, it is
10350 invalid. */
10351 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10352 sym->print_name ());
10353
10354 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10355 {
10356 struct type *type = static_unwrap_type (SYMBOL_TYPE (sym));
10357 /* Check to see if this is a tagged type. We also need to handle
10358 the case where the type is a reference to a tagged type, but
10359 we have to be careful to exclude pointers to tagged types.
10360 The latter should be shown as usual (as a pointer), whereas
10361 a reference should mostly be transparent to the user. */
10362 if (ada_is_tagged_type (type, 0)
10363 || (type->code () == TYPE_CODE_REF
10364 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10365 {
10366 /* Tagged types are a little special in the fact that the real
10367 type is dynamic and can only be determined by inspecting the
10368 object's tag. This means that we need to get the object's
10369 value first (EVAL_NORMAL) and then extract the actual object
10370 type from its tag.
10371
10372 Note that we cannot skip the final step where we extract
10373 the object type from its tag, because the EVAL_NORMAL phase
10374 results in dynamic components being resolved into fixed ones.
10375 This can cause problems when trying to print the type
10376 description of tagged types whose parent has a dynamic size:
10377 We use the type name of the "_parent" component in order
10378 to print the name of the ancestor type in the type description.
10379 If that component had a dynamic size, the resolution into
10380 a fixed type would result in the loss of that type name,
10381 thus preventing us from printing the name of the ancestor
10382 type in the type description. */
10383 value *arg1 = evaluate (nullptr, exp, EVAL_NORMAL);
10384
10385 if (type->code () != TYPE_CODE_REF)
10386 {
10387 struct type *actual_type;
10388
10389 actual_type = type_from_tag (ada_value_tag (arg1));
10390 if (actual_type == NULL)
10391 /* If, for some reason, we were unable to determine
10392 the actual type from the tag, then use the static
10393 approximation that we just computed as a fallback.
10394 This can happen if the debugging information is
10395 incomplete, for instance. */
10396 actual_type = type;
10397 return value_zero (actual_type, not_lval);
10398 }
10399 else
10400 {
10401 /* In the case of a ref, ada_coerce_ref takes care
10402 of determining the actual type. But the evaluation
10403 should return a ref as it should be valid to ask
10404 for its address; so rebuild a ref after coerce. */
10405 arg1 = ada_coerce_ref (arg1);
10406 return value_ref (arg1, TYPE_CODE_REF);
10407 }
10408 }
10409
10410 /* Records and unions for which GNAT encodings have been
10411 generated need to be statically fixed as well.
10412 Otherwise, non-static fixing produces a type where
10413 all dynamic properties are removed, which prevents "ptype"
10414 from being able to completely describe the type.
10415 For instance, a case statement in a variant record would be
10416 replaced by the relevant components based on the actual
10417 value of the discriminants. */
10418 if ((type->code () == TYPE_CODE_STRUCT
10419 && dynamic_template_type (type) != NULL)
10420 || (type->code () == TYPE_CODE_UNION
10421 && ada_find_parallel_type (type, "___XVU") != NULL))
10422 return value_zero (to_static_fixed_type (type), not_lval);
10423 }
10424
10425 value *arg1 = var_value_operation::evaluate (expect_type, exp, noside);
10426 return ada_to_fixed_value (arg1);
10427 }
10428
10429 bool
10430 ada_var_value_operation::resolve (struct expression *exp,
10431 bool deprocedure_p,
10432 bool parse_completion,
10433 innermost_block_tracker *tracker,
10434 struct type *context_type)
10435 {
10436 symbol *sym = std::get<0> (m_storage).symbol;
10437 if (SYMBOL_DOMAIN (sym) == UNDEF_DOMAIN)
10438 {
10439 block_symbol resolved
10440 = ada_resolve_variable (sym, std::get<0> (m_storage).block,
10441 context_type, parse_completion,
10442 deprocedure_p, tracker);
10443 std::get<0> (m_storage) = resolved;
10444 }
10445
10446 if (deprocedure_p
10447 && (SYMBOL_TYPE (std::get<0> (m_storage).symbol)->code ()
10448 == TYPE_CODE_FUNC))
10449 return true;
10450
10451 return false;
10452 }
10453
10454 value *
10455 ada_atr_val_operation::evaluate (struct type *expect_type,
10456 struct expression *exp,
10457 enum noside noside)
10458 {
10459 value *arg = std::get<1> (m_storage)->evaluate (nullptr, exp, noside);
10460 return ada_val_atr (noside, std::get<0> (m_storage), arg);
10461 }
10462
10463 value *
10464 ada_unop_ind_operation::evaluate (struct type *expect_type,
10465 struct expression *exp,
10466 enum noside noside)
10467 {
10468 value *arg1 = std::get<0> (m_storage)->evaluate (expect_type, exp, noside);
10469
10470 struct type *type = ada_check_typedef (value_type (arg1));
10471 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10472 {
10473 if (ada_is_array_descriptor_type (type))
10474 /* GDB allows dereferencing GNAT array descriptors. */
10475 {
10476 struct type *arrType = ada_type_of_array (arg1, 0);
10477
10478 if (arrType == NULL)
10479 error (_("Attempt to dereference null array pointer."));
10480 return value_at_lazy (arrType, 0);
10481 }
10482 else if (type->code () == TYPE_CODE_PTR
10483 || type->code () == TYPE_CODE_REF
10484 /* In C you can dereference an array to get the 1st elt. */
10485 || type->code () == TYPE_CODE_ARRAY)
10486 {
10487 /* As mentioned in the OP_VAR_VALUE case, tagged types can
10488 only be determined by inspecting the object's tag.
10489 This means that we need to evaluate completely the
10490 expression in order to get its type. */
10491
10492 if ((type->code () == TYPE_CODE_REF
10493 || type->code () == TYPE_CODE_PTR)
10494 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
10495 {
10496 arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp,
10497 EVAL_NORMAL);
10498 type = value_type (ada_value_ind (arg1));
10499 }
10500 else
10501 {
10502 type = to_static_fixed_type
10503 (ada_aligned_type
10504 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10505 }
10506 ada_ensure_varsize_limit (type);
10507 return value_zero (type, lval_memory);
10508 }
10509 else if (type->code () == TYPE_CODE_INT)
10510 {
10511 /* GDB allows dereferencing an int. */
10512 if (expect_type == NULL)
10513 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10514 lval_memory);
10515 else
10516 {
10517 expect_type =
10518 to_static_fixed_type (ada_aligned_type (expect_type));
10519 return value_zero (expect_type, lval_memory);
10520 }
10521 }
10522 else
10523 error (_("Attempt to take contents of a non-pointer value."));
10524 }
10525 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
10526 type = ada_check_typedef (value_type (arg1));
10527
10528 if (type->code () == TYPE_CODE_INT)
10529 /* GDB allows dereferencing an int. If we were given
10530 the expect_type, then use that as the target type.
10531 Otherwise, assume that the target type is an int. */
10532 {
10533 if (expect_type != NULL)
10534 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10535 arg1));
10536 else
10537 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10538 (CORE_ADDR) value_as_address (arg1));
10539 }
10540
10541 struct type *target_type = (to_static_fixed_type
10542 (ada_aligned_type
10543 (ada_check_typedef (TYPE_TARGET_TYPE (type)))));
10544 ada_ensure_varsize_limit (target_type);
10545
10546 if (ada_is_array_descriptor_type (type))
10547 /* GDB allows dereferencing GNAT array descriptors. */
10548 return ada_coerce_to_simple_array (arg1);
10549 else
10550 return ada_value_ind (arg1);
10551 }
10552
10553 value *
10554 ada_structop_operation::evaluate (struct type *expect_type,
10555 struct expression *exp,
10556 enum noside noside)
10557 {
10558 value *arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
10559 const char *str = std::get<1> (m_storage).c_str ();
10560 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10561 {
10562 struct type *type;
10563 struct type *type1 = value_type (arg1);
10564
10565 if (ada_is_tagged_type (type1, 1))
10566 {
10567 type = ada_lookup_struct_elt_type (type1, str, 1, 1);
10568
10569 /* If the field is not found, check if it exists in the
10570 extension of this object's type. This means that we
10571 need to evaluate completely the expression. */
10572
10573 if (type == NULL)
10574 {
10575 arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp,
10576 EVAL_NORMAL);
10577 arg1 = ada_value_struct_elt (arg1, str, 0);
10578 arg1 = unwrap_value (arg1);
10579 type = value_type (ada_to_fixed_value (arg1));
10580 }
10581 }
10582 else
10583 type = ada_lookup_struct_elt_type (type1, str, 1, 0);
10584
10585 return value_zero (ada_aligned_type (type), lval_memory);
10586 }
10587 else
10588 {
10589 arg1 = ada_value_struct_elt (arg1, str, 0);
10590 arg1 = unwrap_value (arg1);
10591 return ada_to_fixed_value (arg1);
10592 }
10593 }
10594
10595 value *
10596 ada_funcall_operation::evaluate (struct type *expect_type,
10597 struct expression *exp,
10598 enum noside noside)
10599 {
10600 const std::vector<operation_up> &args_up = std::get<1> (m_storage);
10601 int nargs = args_up.size ();
10602 std::vector<value *> argvec (nargs);
10603 operation_up &callee_op = std::get<0> (m_storage);
10604
10605 ada_var_value_operation *avv
10606 = dynamic_cast<ada_var_value_operation *> (callee_op.get ());
10607 if (avv != nullptr
10608 && SYMBOL_DOMAIN (avv->get_symbol ()) == UNDEF_DOMAIN)
10609 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10610 avv->get_symbol ()->print_name ());
10611
10612 value *callee = callee_op->evaluate (nullptr, exp, noside);
10613 for (int i = 0; i < args_up.size (); ++i)
10614 argvec[i] = args_up[i]->evaluate (nullptr, exp, noside);
10615
10616 if (ada_is_constrained_packed_array_type
10617 (desc_base_type (value_type (callee))))
10618 callee = ada_coerce_to_simple_array (callee);
10619 else if (value_type (callee)->code () == TYPE_CODE_ARRAY
10620 && TYPE_FIELD_BITSIZE (value_type (callee), 0) != 0)
10621 /* This is a packed array that has already been fixed, and
10622 therefore already coerced to a simple array. Nothing further
10623 to do. */
10624 ;
10625 else if (value_type (callee)->code () == TYPE_CODE_REF)
10626 {
10627 /* Make sure we dereference references so that all the code below
10628 feels like it's really handling the referenced value. Wrapping
10629 types (for alignment) may be there, so make sure we strip them as
10630 well. */
10631 callee = ada_to_fixed_value (coerce_ref (callee));
10632 }
10633 else if (value_type (callee)->code () == TYPE_CODE_ARRAY
10634 && VALUE_LVAL (callee) == lval_memory)
10635 callee = value_addr (callee);
10636
10637 struct type *type = ada_check_typedef (value_type (callee));
10638
10639 /* Ada allows us to implicitly dereference arrays when subscripting
10640 them. So, if this is an array typedef (encoding use for array
10641 access types encoded as fat pointers), strip it now. */
10642 if (type->code () == TYPE_CODE_TYPEDEF)
10643 type = ada_typedef_target_type (type);
10644
10645 if (type->code () == TYPE_CODE_PTR)
10646 {
10647 switch (ada_check_typedef (TYPE_TARGET_TYPE (type))->code ())
10648 {
10649 case TYPE_CODE_FUNC:
10650 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10651 break;
10652 case TYPE_CODE_ARRAY:
10653 break;
10654 case TYPE_CODE_STRUCT:
10655 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10656 callee = ada_value_ind (callee);
10657 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10658 break;
10659 default:
10660 error (_("cannot subscript or call something of type `%s'"),
10661 ada_type_name (value_type (callee)));
10662 break;
10663 }
10664 }
10665
10666 switch (type->code ())
10667 {
10668 case TYPE_CODE_FUNC:
10669 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10670 {
10671 if (TYPE_TARGET_TYPE (type) == NULL)
10672 error_call_unknown_return_type (NULL);
10673 return allocate_value (TYPE_TARGET_TYPE (type));
10674 }
10675 return call_function_by_hand (callee, NULL, argvec);
10676 case TYPE_CODE_INTERNAL_FUNCTION:
10677 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10678 /* We don't know anything about what the internal
10679 function might return, but we have to return
10680 something. */
10681 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10682 not_lval);
10683 else
10684 return call_internal_function (exp->gdbarch, exp->language_defn,
10685 callee, nargs,
10686 argvec.data ());
10687
10688 case TYPE_CODE_STRUCT:
10689 {
10690 int arity;
10691
10692 arity = ada_array_arity (type);
10693 type = ada_array_element_type (type, nargs);
10694 if (type == NULL)
10695 error (_("cannot subscript or call a record"));
10696 if (arity != nargs)
10697 error (_("wrong number of subscripts; expecting %d"), arity);
10698 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10699 return value_zero (ada_aligned_type (type), lval_memory);
10700 return
10701 unwrap_value (ada_value_subscript
10702 (callee, nargs, argvec.data ()));
10703 }
10704 case TYPE_CODE_ARRAY:
10705 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10706 {
10707 type = ada_array_element_type (type, nargs);
10708 if (type == NULL)
10709 error (_("element type of array unknown"));
10710 else
10711 return value_zero (ada_aligned_type (type), lval_memory);
10712 }
10713 return
10714 unwrap_value (ada_value_subscript
10715 (ada_coerce_to_simple_array (callee),
10716 nargs, argvec.data ()));
10717 case TYPE_CODE_PTR: /* Pointer to array */
10718 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10719 {
10720 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10721 type = ada_array_element_type (type, nargs);
10722 if (type == NULL)
10723 error (_("element type of array unknown"));
10724 else
10725 return value_zero (ada_aligned_type (type), lval_memory);
10726 }
10727 return
10728 unwrap_value (ada_value_ptr_subscript (callee, nargs,
10729 argvec.data ()));
10730
10731 default:
10732 error (_("Attempt to index or call something other than an "
10733 "array or function"));
10734 }
10735 }
10736
10737 bool
10738 ada_funcall_operation::resolve (struct expression *exp,
10739 bool deprocedure_p,
10740 bool parse_completion,
10741 innermost_block_tracker *tracker,
10742 struct type *context_type)
10743 {
10744 operation_up &callee_op = std::get<0> (m_storage);
10745
10746 ada_var_value_operation *avv
10747 = dynamic_cast<ada_var_value_operation *> (callee_op.get ());
10748 if (avv == nullptr)
10749 return false;
10750
10751 symbol *sym = avv->get_symbol ();
10752 if (SYMBOL_DOMAIN (sym) != UNDEF_DOMAIN)
10753 return false;
10754
10755 const std::vector<operation_up> &args_up = std::get<1> (m_storage);
10756 int nargs = args_up.size ();
10757 std::vector<value *> argvec (nargs);
10758
10759 for (int i = 0; i < args_up.size (); ++i)
10760 argvec[i] = args_up[i]->evaluate (nullptr, exp, EVAL_AVOID_SIDE_EFFECTS);
10761
10762 const block *block = avv->get_block ();
10763 block_symbol resolved
10764 = ada_resolve_funcall (sym, block,
10765 context_type, parse_completion,
10766 nargs, argvec.data (),
10767 tracker);
10768
10769 std::get<0> (m_storage)
10770 = make_operation<ada_var_value_operation> (resolved);
10771 return false;
10772 }
10773
10774 bool
10775 ada_ternop_slice_operation::resolve (struct expression *exp,
10776 bool deprocedure_p,
10777 bool parse_completion,
10778 innermost_block_tracker *tracker,
10779 struct type *context_type)
10780 {
10781 /* Historically this check was done during resolution, so we
10782 continue that here. */
10783 value *v = std::get<0> (m_storage)->evaluate (context_type, exp,
10784 EVAL_AVOID_SIDE_EFFECTS);
10785 if (ada_is_any_packed_array_type (value_type (v)))
10786 error (_("cannot slice a packed array"));
10787 return false;
10788 }
10789
10790 }
10791
10792 \f
10793
10794 /* Return non-zero iff TYPE represents a System.Address type. */
10795
10796 int
10797 ada_is_system_address_type (struct type *type)
10798 {
10799 return (type->name () && strcmp (type->name (), "system__address") == 0);
10800 }
10801
10802 \f
10803
10804 /* Range types */
10805
10806 /* Scan STR beginning at position K for a discriminant name, and
10807 return the value of that discriminant field of DVAL in *PX. If
10808 PNEW_K is not null, put the position of the character beyond the
10809 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
10810 not alter *PX and *PNEW_K if unsuccessful. */
10811
10812 static int
10813 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
10814 int *pnew_k)
10815 {
10816 static std::string storage;
10817 const char *pstart, *pend, *bound;
10818 struct value *bound_val;
10819
10820 if (dval == NULL || str == NULL || str[k] == '\0')
10821 return 0;
10822
10823 pstart = str + k;
10824 pend = strstr (pstart, "__");
10825 if (pend == NULL)
10826 {
10827 bound = pstart;
10828 k += strlen (bound);
10829 }
10830 else
10831 {
10832 int len = pend - pstart;
10833
10834 /* Strip __ and beyond. */
10835 storage = std::string (pstart, len);
10836 bound = storage.c_str ();
10837 k = pend - str;
10838 }
10839
10840 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
10841 if (bound_val == NULL)
10842 return 0;
10843
10844 *px = value_as_long (bound_val);
10845 if (pnew_k != NULL)
10846 *pnew_k = k;
10847 return 1;
10848 }
10849
10850 /* Value of variable named NAME. Only exact matches are considered.
10851 If no such variable found, then if ERR_MSG is null, returns 0, and
10852 otherwise causes an error with message ERR_MSG. */
10853
10854 static struct value *
10855 get_var_value (const char *name, const char *err_msg)
10856 {
10857 std::string quoted_name = add_angle_brackets (name);
10858
10859 lookup_name_info lookup_name (quoted_name, symbol_name_match_type::FULL);
10860
10861 std::vector<struct block_symbol> syms
10862 = ada_lookup_symbol_list_worker (lookup_name,
10863 get_selected_block (0),
10864 VAR_DOMAIN, 1);
10865
10866 if (syms.size () != 1)
10867 {
10868 if (err_msg == NULL)
10869 return 0;
10870 else
10871 error (("%s"), err_msg);
10872 }
10873
10874 return value_of_variable (syms[0].symbol, syms[0].block);
10875 }
10876
10877 /* Value of integer variable named NAME in the current environment.
10878 If no such variable is found, returns false. Otherwise, sets VALUE
10879 to the variable's value and returns true. */
10880
10881 bool
10882 get_int_var_value (const char *name, LONGEST &value)
10883 {
10884 struct value *var_val = get_var_value (name, 0);
10885
10886 if (var_val == 0)
10887 return false;
10888
10889 value = value_as_long (var_val);
10890 return true;
10891 }
10892
10893
10894 /* Return a range type whose base type is that of the range type named
10895 NAME in the current environment, and whose bounds are calculated
10896 from NAME according to the GNAT range encoding conventions.
10897 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
10898 corresponding range type from debug information; fall back to using it
10899 if symbol lookup fails. If a new type must be created, allocate it
10900 like ORIG_TYPE was. The bounds information, in general, is encoded
10901 in NAME, the base type given in the named range type. */
10902
10903 static struct type *
10904 to_fixed_range_type (struct type *raw_type, struct value *dval)
10905 {
10906 const char *name;
10907 struct type *base_type;
10908 const char *subtype_info;
10909
10910 gdb_assert (raw_type != NULL);
10911 gdb_assert (raw_type->name () != NULL);
10912
10913 if (raw_type->code () == TYPE_CODE_RANGE)
10914 base_type = TYPE_TARGET_TYPE (raw_type);
10915 else
10916 base_type = raw_type;
10917
10918 name = raw_type->name ();
10919 subtype_info = strstr (name, "___XD");
10920 if (subtype_info == NULL)
10921 {
10922 LONGEST L = ada_discrete_type_low_bound (raw_type);
10923 LONGEST U = ada_discrete_type_high_bound (raw_type);
10924
10925 if (L < INT_MIN || U > INT_MAX)
10926 return raw_type;
10927 else
10928 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
10929 L, U);
10930 }
10931 else
10932 {
10933 int prefix_len = subtype_info - name;
10934 LONGEST L, U;
10935 struct type *type;
10936 const char *bounds_str;
10937 int n;
10938
10939 subtype_info += 5;
10940 bounds_str = strchr (subtype_info, '_');
10941 n = 1;
10942
10943 if (*subtype_info == 'L')
10944 {
10945 if (!ada_scan_number (bounds_str, n, &L, &n)
10946 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
10947 return raw_type;
10948 if (bounds_str[n] == '_')
10949 n += 2;
10950 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
10951 n += 1;
10952 subtype_info += 1;
10953 }
10954 else
10955 {
10956 std::string name_buf = std::string (name, prefix_len) + "___L";
10957 if (!get_int_var_value (name_buf.c_str (), L))
10958 {
10959 lim_warning (_("Unknown lower bound, using 1."));
10960 L = 1;
10961 }
10962 }
10963
10964 if (*subtype_info == 'U')
10965 {
10966 if (!ada_scan_number (bounds_str, n, &U, &n)
10967 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
10968 return raw_type;
10969 }
10970 else
10971 {
10972 std::string name_buf = std::string (name, prefix_len) + "___U";
10973 if (!get_int_var_value (name_buf.c_str (), U))
10974 {
10975 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
10976 U = L;
10977 }
10978 }
10979
10980 type = create_static_range_type (alloc_type_copy (raw_type),
10981 base_type, L, U);
10982 /* create_static_range_type alters the resulting type's length
10983 to match the size of the base_type, which is not what we want.
10984 Set it back to the original range type's length. */
10985 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
10986 type->set_name (name);
10987 return type;
10988 }
10989 }
10990
10991 /* True iff NAME is the name of a range type. */
10992
10993 int
10994 ada_is_range_type_name (const char *name)
10995 {
10996 return (name != NULL && strstr (name, "___XD"));
10997 }
10998 \f
10999
11000 /* Modular types */
11001
11002 /* True iff TYPE is an Ada modular type. */
11003
11004 int
11005 ada_is_modular_type (struct type *type)
11006 {
11007 struct type *subranged_type = get_base_type (type);
11008
11009 return (subranged_type != NULL && type->code () == TYPE_CODE_RANGE
11010 && subranged_type->code () == TYPE_CODE_INT
11011 && subranged_type->is_unsigned ());
11012 }
11013
11014 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11015
11016 ULONGEST
11017 ada_modulus (struct type *type)
11018 {
11019 const dynamic_prop &high = type->bounds ()->high;
11020
11021 if (high.kind () == PROP_CONST)
11022 return (ULONGEST) high.const_val () + 1;
11023
11024 /* If TYPE is unresolved, the high bound might be a location list. Return
11025 0, for lack of a better value to return. */
11026 return 0;
11027 }
11028 \f
11029
11030 /* Ada exception catchpoint support:
11031 ---------------------------------
11032
11033 We support 3 kinds of exception catchpoints:
11034 . catchpoints on Ada exceptions
11035 . catchpoints on unhandled Ada exceptions
11036 . catchpoints on failed assertions
11037
11038 Exceptions raised during failed assertions, or unhandled exceptions
11039 could perfectly be caught with the general catchpoint on Ada exceptions.
11040 However, we can easily differentiate these two special cases, and having
11041 the option to distinguish these two cases from the rest can be useful
11042 to zero-in on certain situations.
11043
11044 Exception catchpoints are a specialized form of breakpoint,
11045 since they rely on inserting breakpoints inside known routines
11046 of the GNAT runtime. The implementation therefore uses a standard
11047 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11048 of breakpoint_ops.
11049
11050 Support in the runtime for exception catchpoints have been changed
11051 a few times already, and these changes affect the implementation
11052 of these catchpoints. In order to be able to support several
11053 variants of the runtime, we use a sniffer that will determine
11054 the runtime variant used by the program being debugged. */
11055
11056 /* Ada's standard exceptions.
11057
11058 The Ada 83 standard also defined Numeric_Error. But there so many
11059 situations where it was unclear from the Ada 83 Reference Manual
11060 (RM) whether Constraint_Error or Numeric_Error should be raised,
11061 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11062 Interpretation saying that anytime the RM says that Numeric_Error
11063 should be raised, the implementation may raise Constraint_Error.
11064 Ada 95 went one step further and pretty much removed Numeric_Error
11065 from the list of standard exceptions (it made it a renaming of
11066 Constraint_Error, to help preserve compatibility when compiling
11067 an Ada83 compiler). As such, we do not include Numeric_Error from
11068 this list of standard exceptions. */
11069
11070 static const char * const standard_exc[] = {
11071 "constraint_error",
11072 "program_error",
11073 "storage_error",
11074 "tasking_error"
11075 };
11076
11077 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11078
11079 /* A structure that describes how to support exception catchpoints
11080 for a given executable. */
11081
11082 struct exception_support_info
11083 {
11084 /* The name of the symbol to break on in order to insert
11085 a catchpoint on exceptions. */
11086 const char *catch_exception_sym;
11087
11088 /* The name of the symbol to break on in order to insert
11089 a catchpoint on unhandled exceptions. */
11090 const char *catch_exception_unhandled_sym;
11091
11092 /* The name of the symbol to break on in order to insert
11093 a catchpoint on failed assertions. */
11094 const char *catch_assert_sym;
11095
11096 /* The name of the symbol to break on in order to insert
11097 a catchpoint on exception handling. */
11098 const char *catch_handlers_sym;
11099
11100 /* Assuming that the inferior just triggered an unhandled exception
11101 catchpoint, this function is responsible for returning the address
11102 in inferior memory where the name of that exception is stored.
11103 Return zero if the address could not be computed. */
11104 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11105 };
11106
11107 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11108 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11109
11110 /* The following exception support info structure describes how to
11111 implement exception catchpoints with the latest version of the
11112 Ada runtime (as of 2019-08-??). */
11113
11114 static const struct exception_support_info default_exception_support_info =
11115 {
11116 "__gnat_debug_raise_exception", /* catch_exception_sym */
11117 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11118 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11119 "__gnat_begin_handler_v1", /* catch_handlers_sym */
11120 ada_unhandled_exception_name_addr
11121 };
11122
11123 /* The following exception support info structure describes how to
11124 implement exception catchpoints with an earlier version of the
11125 Ada runtime (as of 2007-03-06) using v0 of the EH ABI. */
11126
11127 static const struct exception_support_info exception_support_info_v0 =
11128 {
11129 "__gnat_debug_raise_exception", /* catch_exception_sym */
11130 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11131 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11132 "__gnat_begin_handler", /* catch_handlers_sym */
11133 ada_unhandled_exception_name_addr
11134 };
11135
11136 /* The following exception support info structure describes how to
11137 implement exception catchpoints with a slightly older version
11138 of the Ada runtime. */
11139
11140 static const struct exception_support_info exception_support_info_fallback =
11141 {
11142 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11143 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11144 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11145 "__gnat_begin_handler", /* catch_handlers_sym */
11146 ada_unhandled_exception_name_addr_from_raise
11147 };
11148
11149 /* Return nonzero if we can detect the exception support routines
11150 described in EINFO.
11151
11152 This function errors out if an abnormal situation is detected
11153 (for instance, if we find the exception support routines, but
11154 that support is found to be incomplete). */
11155
11156 static int
11157 ada_has_this_exception_support (const struct exception_support_info *einfo)
11158 {
11159 struct symbol *sym;
11160
11161 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11162 that should be compiled with debugging information. As a result, we
11163 expect to find that symbol in the symtabs. */
11164
11165 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11166 if (sym == NULL)
11167 {
11168 /* Perhaps we did not find our symbol because the Ada runtime was
11169 compiled without debugging info, or simply stripped of it.
11170 It happens on some GNU/Linux distributions for instance, where
11171 users have to install a separate debug package in order to get
11172 the runtime's debugging info. In that situation, let the user
11173 know why we cannot insert an Ada exception catchpoint.
11174
11175 Note: Just for the purpose of inserting our Ada exception
11176 catchpoint, we could rely purely on the associated minimal symbol.
11177 But we would be operating in degraded mode anyway, since we are
11178 still lacking the debugging info needed later on to extract
11179 the name of the exception being raised (this name is printed in
11180 the catchpoint message, and is also used when trying to catch
11181 a specific exception). We do not handle this case for now. */
11182 struct bound_minimal_symbol msym
11183 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11184
11185 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11186 error (_("Your Ada runtime appears to be missing some debugging "
11187 "information.\nCannot insert Ada exception catchpoint "
11188 "in this configuration."));
11189
11190 return 0;
11191 }
11192
11193 /* Make sure that the symbol we found corresponds to a function. */
11194
11195 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11196 {
11197 error (_("Symbol \"%s\" is not a function (class = %d)"),
11198 sym->linkage_name (), SYMBOL_CLASS (sym));
11199 return 0;
11200 }
11201
11202 sym = standard_lookup (einfo->catch_handlers_sym, NULL, VAR_DOMAIN);
11203 if (sym == NULL)
11204 {
11205 struct bound_minimal_symbol msym
11206 = lookup_minimal_symbol (einfo->catch_handlers_sym, NULL, NULL);
11207
11208 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11209 error (_("Your Ada runtime appears to be missing some debugging "
11210 "information.\nCannot insert Ada exception catchpoint "
11211 "in this configuration."));
11212
11213 return 0;
11214 }
11215
11216 /* Make sure that the symbol we found corresponds to a function. */
11217
11218 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11219 {
11220 error (_("Symbol \"%s\" is not a function (class = %d)"),
11221 sym->linkage_name (), SYMBOL_CLASS (sym));
11222 return 0;
11223 }
11224
11225 return 1;
11226 }
11227
11228 /* Inspect the Ada runtime and determine which exception info structure
11229 should be used to provide support for exception catchpoints.
11230
11231 This function will always set the per-inferior exception_info,
11232 or raise an error. */
11233
11234 static void
11235 ada_exception_support_info_sniffer (void)
11236 {
11237 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11238
11239 /* If the exception info is already known, then no need to recompute it. */
11240 if (data->exception_info != NULL)
11241 return;
11242
11243 /* Check the latest (default) exception support info. */
11244 if (ada_has_this_exception_support (&default_exception_support_info))
11245 {
11246 data->exception_info = &default_exception_support_info;
11247 return;
11248 }
11249
11250 /* Try the v0 exception suport info. */
11251 if (ada_has_this_exception_support (&exception_support_info_v0))
11252 {
11253 data->exception_info = &exception_support_info_v0;
11254 return;
11255 }
11256
11257 /* Try our fallback exception suport info. */
11258 if (ada_has_this_exception_support (&exception_support_info_fallback))
11259 {
11260 data->exception_info = &exception_support_info_fallback;
11261 return;
11262 }
11263
11264 /* Sometimes, it is normal for us to not be able to find the routine
11265 we are looking for. This happens when the program is linked with
11266 the shared version of the GNAT runtime, and the program has not been
11267 started yet. Inform the user of these two possible causes if
11268 applicable. */
11269
11270 if (ada_update_initial_language (language_unknown) != language_ada)
11271 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11272
11273 /* If the symbol does not exist, then check that the program is
11274 already started, to make sure that shared libraries have been
11275 loaded. If it is not started, this may mean that the symbol is
11276 in a shared library. */
11277
11278 if (inferior_ptid.pid () == 0)
11279 error (_("Unable to insert catchpoint. Try to start the program first."));
11280
11281 /* At this point, we know that we are debugging an Ada program and
11282 that the inferior has been started, but we still are not able to
11283 find the run-time symbols. That can mean that we are in
11284 configurable run time mode, or that a-except as been optimized
11285 out by the linker... In any case, at this point it is not worth
11286 supporting this feature. */
11287
11288 error (_("Cannot insert Ada exception catchpoints in this configuration."));
11289 }
11290
11291 /* True iff FRAME is very likely to be that of a function that is
11292 part of the runtime system. This is all very heuristic, but is
11293 intended to be used as advice as to what frames are uninteresting
11294 to most users. */
11295
11296 static int
11297 is_known_support_routine (struct frame_info *frame)
11298 {
11299 enum language func_lang;
11300 int i;
11301 const char *fullname;
11302
11303 /* If this code does not have any debugging information (no symtab),
11304 This cannot be any user code. */
11305
11306 symtab_and_line sal = find_frame_sal (frame);
11307 if (sal.symtab == NULL)
11308 return 1;
11309
11310 /* If there is a symtab, but the associated source file cannot be
11311 located, then assume this is not user code: Selecting a frame
11312 for which we cannot display the code would not be very helpful
11313 for the user. This should also take care of case such as VxWorks
11314 where the kernel has some debugging info provided for a few units. */
11315
11316 fullname = symtab_to_fullname (sal.symtab);
11317 if (access (fullname, R_OK) != 0)
11318 return 1;
11319
11320 /* Check the unit filename against the Ada runtime file naming.
11321 We also check the name of the objfile against the name of some
11322 known system libraries that sometimes come with debugging info
11323 too. */
11324
11325 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11326 {
11327 re_comp (known_runtime_file_name_patterns[i]);
11328 if (re_exec (lbasename (sal.symtab->filename)))
11329 return 1;
11330 if (SYMTAB_OBJFILE (sal.symtab) != NULL
11331 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
11332 return 1;
11333 }
11334
11335 /* Check whether the function is a GNAT-generated entity. */
11336
11337 gdb::unique_xmalloc_ptr<char> func_name
11338 = find_frame_funname (frame, &func_lang, NULL);
11339 if (func_name == NULL)
11340 return 1;
11341
11342 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11343 {
11344 re_comp (known_auxiliary_function_name_patterns[i]);
11345 if (re_exec (func_name.get ()))
11346 return 1;
11347 }
11348
11349 return 0;
11350 }
11351
11352 /* Find the first frame that contains debugging information and that is not
11353 part of the Ada run-time, starting from FI and moving upward. */
11354
11355 void
11356 ada_find_printable_frame (struct frame_info *fi)
11357 {
11358 for (; fi != NULL; fi = get_prev_frame (fi))
11359 {
11360 if (!is_known_support_routine (fi))
11361 {
11362 select_frame (fi);
11363 break;
11364 }
11365 }
11366
11367 }
11368
11369 /* Assuming that the inferior just triggered an unhandled exception
11370 catchpoint, return the address in inferior memory where the name
11371 of the exception is stored.
11372
11373 Return zero if the address could not be computed. */
11374
11375 static CORE_ADDR
11376 ada_unhandled_exception_name_addr (void)
11377 {
11378 return parse_and_eval_address ("e.full_name");
11379 }
11380
11381 /* Same as ada_unhandled_exception_name_addr, except that this function
11382 should be used when the inferior uses an older version of the runtime,
11383 where the exception name needs to be extracted from a specific frame
11384 several frames up in the callstack. */
11385
11386 static CORE_ADDR
11387 ada_unhandled_exception_name_addr_from_raise (void)
11388 {
11389 int frame_level;
11390 struct frame_info *fi;
11391 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11392
11393 /* To determine the name of this exception, we need to select
11394 the frame corresponding to RAISE_SYM_NAME. This frame is
11395 at least 3 levels up, so we simply skip the first 3 frames
11396 without checking the name of their associated function. */
11397 fi = get_current_frame ();
11398 for (frame_level = 0; frame_level < 3; frame_level += 1)
11399 if (fi != NULL)
11400 fi = get_prev_frame (fi);
11401
11402 while (fi != NULL)
11403 {
11404 enum language func_lang;
11405
11406 gdb::unique_xmalloc_ptr<char> func_name
11407 = find_frame_funname (fi, &func_lang, NULL);
11408 if (func_name != NULL)
11409 {
11410 if (strcmp (func_name.get (),
11411 data->exception_info->catch_exception_sym) == 0)
11412 break; /* We found the frame we were looking for... */
11413 }
11414 fi = get_prev_frame (fi);
11415 }
11416
11417 if (fi == NULL)
11418 return 0;
11419
11420 select_frame (fi);
11421 return parse_and_eval_address ("id.full_name");
11422 }
11423
11424 /* Assuming the inferior just triggered an Ada exception catchpoint
11425 (of any type), return the address in inferior memory where the name
11426 of the exception is stored, if applicable.
11427
11428 Assumes the selected frame is the current frame.
11429
11430 Return zero if the address could not be computed, or if not relevant. */
11431
11432 static CORE_ADDR
11433 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
11434 struct breakpoint *b)
11435 {
11436 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11437
11438 switch (ex)
11439 {
11440 case ada_catch_exception:
11441 return (parse_and_eval_address ("e.full_name"));
11442 break;
11443
11444 case ada_catch_exception_unhandled:
11445 return data->exception_info->unhandled_exception_name_addr ();
11446 break;
11447
11448 case ada_catch_handlers:
11449 return 0; /* The runtimes does not provide access to the exception
11450 name. */
11451 break;
11452
11453 case ada_catch_assert:
11454 return 0; /* Exception name is not relevant in this case. */
11455 break;
11456
11457 default:
11458 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11459 break;
11460 }
11461
11462 return 0; /* Should never be reached. */
11463 }
11464
11465 /* Assuming the inferior is stopped at an exception catchpoint,
11466 return the message which was associated to the exception, if
11467 available. Return NULL if the message could not be retrieved.
11468
11469 Note: The exception message can be associated to an exception
11470 either through the use of the Raise_Exception function, or
11471 more simply (Ada 2005 and later), via:
11472
11473 raise Exception_Name with "exception message";
11474
11475 */
11476
11477 static gdb::unique_xmalloc_ptr<char>
11478 ada_exception_message_1 (void)
11479 {
11480 struct value *e_msg_val;
11481 int e_msg_len;
11482
11483 /* For runtimes that support this feature, the exception message
11484 is passed as an unbounded string argument called "message". */
11485 e_msg_val = parse_and_eval ("message");
11486 if (e_msg_val == NULL)
11487 return NULL; /* Exception message not supported. */
11488
11489 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
11490 gdb_assert (e_msg_val != NULL);
11491 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
11492
11493 /* If the message string is empty, then treat it as if there was
11494 no exception message. */
11495 if (e_msg_len <= 0)
11496 return NULL;
11497
11498 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
11499 read_memory (value_address (e_msg_val), (gdb_byte *) e_msg.get (),
11500 e_msg_len);
11501 e_msg.get ()[e_msg_len] = '\0';
11502
11503 return e_msg;
11504 }
11505
11506 /* Same as ada_exception_message_1, except that all exceptions are
11507 contained here (returning NULL instead). */
11508
11509 static gdb::unique_xmalloc_ptr<char>
11510 ada_exception_message (void)
11511 {
11512 gdb::unique_xmalloc_ptr<char> e_msg;
11513
11514 try
11515 {
11516 e_msg = ada_exception_message_1 ();
11517 }
11518 catch (const gdb_exception_error &e)
11519 {
11520 e_msg.reset (nullptr);
11521 }
11522
11523 return e_msg;
11524 }
11525
11526 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
11527 any error that ada_exception_name_addr_1 might cause to be thrown.
11528 When an error is intercepted, a warning with the error message is printed,
11529 and zero is returned. */
11530
11531 static CORE_ADDR
11532 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
11533 struct breakpoint *b)
11534 {
11535 CORE_ADDR result = 0;
11536
11537 try
11538 {
11539 result = ada_exception_name_addr_1 (ex, b);
11540 }
11541
11542 catch (const gdb_exception_error &e)
11543 {
11544 warning (_("failed to get exception name: %s"), e.what ());
11545 return 0;
11546 }
11547
11548 return result;
11549 }
11550
11551 static std::string ada_exception_catchpoint_cond_string
11552 (const char *excep_string,
11553 enum ada_exception_catchpoint_kind ex);
11554
11555 /* Ada catchpoints.
11556
11557 In the case of catchpoints on Ada exceptions, the catchpoint will
11558 stop the target on every exception the program throws. When a user
11559 specifies the name of a specific exception, we translate this
11560 request into a condition expression (in text form), and then parse
11561 it into an expression stored in each of the catchpoint's locations.
11562 We then use this condition to check whether the exception that was
11563 raised is the one the user is interested in. If not, then the
11564 target is resumed again. We store the name of the requested
11565 exception, in order to be able to re-set the condition expression
11566 when symbols change. */
11567
11568 /* An instance of this type is used to represent an Ada catchpoint
11569 breakpoint location. */
11570
11571 class ada_catchpoint_location : public bp_location
11572 {
11573 public:
11574 ada_catchpoint_location (breakpoint *owner)
11575 : bp_location (owner, bp_loc_software_breakpoint)
11576 {}
11577
11578 /* The condition that checks whether the exception that was raised
11579 is the specific exception the user specified on catchpoint
11580 creation. */
11581 expression_up excep_cond_expr;
11582 };
11583
11584 /* An instance of this type is used to represent an Ada catchpoint. */
11585
11586 struct ada_catchpoint : public breakpoint
11587 {
11588 explicit ada_catchpoint (enum ada_exception_catchpoint_kind kind)
11589 : m_kind (kind)
11590 {
11591 }
11592
11593 /* The name of the specific exception the user specified. */
11594 std::string excep_string;
11595
11596 /* What kind of catchpoint this is. */
11597 enum ada_exception_catchpoint_kind m_kind;
11598 };
11599
11600 /* Parse the exception condition string in the context of each of the
11601 catchpoint's locations, and store them for later evaluation. */
11602
11603 static void
11604 create_excep_cond_exprs (struct ada_catchpoint *c,
11605 enum ada_exception_catchpoint_kind ex)
11606 {
11607 /* Nothing to do if there's no specific exception to catch. */
11608 if (c->excep_string.empty ())
11609 return;
11610
11611 /* Same if there are no locations... */
11612 if (c->loc == NULL)
11613 return;
11614
11615 /* Compute the condition expression in text form, from the specific
11616 expection we want to catch. */
11617 std::string cond_string
11618 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (), ex);
11619
11620 /* Iterate over all the catchpoint's locations, and parse an
11621 expression for each. */
11622 for (bp_location *bl : c->locations ())
11623 {
11624 struct ada_catchpoint_location *ada_loc
11625 = (struct ada_catchpoint_location *) bl;
11626 expression_up exp;
11627
11628 if (!bl->shlib_disabled)
11629 {
11630 const char *s;
11631
11632 s = cond_string.c_str ();
11633 try
11634 {
11635 exp = parse_exp_1 (&s, bl->address,
11636 block_for_pc (bl->address),
11637 0);
11638 }
11639 catch (const gdb_exception_error &e)
11640 {
11641 warning (_("failed to reevaluate internal exception condition "
11642 "for catchpoint %d: %s"),
11643 c->number, e.what ());
11644 }
11645 }
11646
11647 ada_loc->excep_cond_expr = std::move (exp);
11648 }
11649 }
11650
11651 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11652 structure for all exception catchpoint kinds. */
11653
11654 static struct bp_location *
11655 allocate_location_exception (struct breakpoint *self)
11656 {
11657 return new ada_catchpoint_location (self);
11658 }
11659
11660 /* Implement the RE_SET method in the breakpoint_ops structure for all
11661 exception catchpoint kinds. */
11662
11663 static void
11664 re_set_exception (struct breakpoint *b)
11665 {
11666 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11667
11668 /* Call the base class's method. This updates the catchpoint's
11669 locations. */
11670 bkpt_breakpoint_ops.re_set (b);
11671
11672 /* Reparse the exception conditional expressions. One for each
11673 location. */
11674 create_excep_cond_exprs (c, c->m_kind);
11675 }
11676
11677 /* Returns true if we should stop for this breakpoint hit. If the
11678 user specified a specific exception, we only want to cause a stop
11679 if the program thrown that exception. */
11680
11681 static int
11682 should_stop_exception (const struct bp_location *bl)
11683 {
11684 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
11685 const struct ada_catchpoint_location *ada_loc
11686 = (const struct ada_catchpoint_location *) bl;
11687 int stop;
11688
11689 struct internalvar *var = lookup_internalvar ("_ada_exception");
11690 if (c->m_kind == ada_catch_assert)
11691 clear_internalvar (var);
11692 else
11693 {
11694 try
11695 {
11696 const char *expr;
11697
11698 if (c->m_kind == ada_catch_handlers)
11699 expr = ("GNAT_GCC_exception_Access(gcc_exception)"
11700 ".all.occurrence.id");
11701 else
11702 expr = "e";
11703
11704 struct value *exc = parse_and_eval (expr);
11705 set_internalvar (var, exc);
11706 }
11707 catch (const gdb_exception_error &ex)
11708 {
11709 clear_internalvar (var);
11710 }
11711 }
11712
11713 /* With no specific exception, should always stop. */
11714 if (c->excep_string.empty ())
11715 return 1;
11716
11717 if (ada_loc->excep_cond_expr == NULL)
11718 {
11719 /* We will have a NULL expression if back when we were creating
11720 the expressions, this location's had failed to parse. */
11721 return 1;
11722 }
11723
11724 stop = 1;
11725 try
11726 {
11727 struct value *mark;
11728
11729 mark = value_mark ();
11730 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
11731 value_free_to_mark (mark);
11732 }
11733 catch (const gdb_exception &ex)
11734 {
11735 exception_fprintf (gdb_stderr, ex,
11736 _("Error in testing exception condition:\n"));
11737 }
11738
11739 return stop;
11740 }
11741
11742 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
11743 for all exception catchpoint kinds. */
11744
11745 static void
11746 check_status_exception (bpstat bs)
11747 {
11748 bs->stop = should_stop_exception (bs->bp_location_at.get ());
11749 }
11750
11751 /* Implement the PRINT_IT method in the breakpoint_ops structure
11752 for all exception catchpoint kinds. */
11753
11754 static enum print_stop_action
11755 print_it_exception (bpstat bs)
11756 {
11757 struct ui_out *uiout = current_uiout;
11758 struct breakpoint *b = bs->breakpoint_at;
11759
11760 annotate_catchpoint (b->number);
11761
11762 if (uiout->is_mi_like_p ())
11763 {
11764 uiout->field_string ("reason",
11765 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
11766 uiout->field_string ("disp", bpdisp_text (b->disposition));
11767 }
11768
11769 uiout->text (b->disposition == disp_del
11770 ? "\nTemporary catchpoint " : "\nCatchpoint ");
11771 uiout->field_signed ("bkptno", b->number);
11772 uiout->text (", ");
11773
11774 /* ada_exception_name_addr relies on the selected frame being the
11775 current frame. Need to do this here because this function may be
11776 called more than once when printing a stop, and below, we'll
11777 select the first frame past the Ada run-time (see
11778 ada_find_printable_frame). */
11779 select_frame (get_current_frame ());
11780
11781 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11782 switch (c->m_kind)
11783 {
11784 case ada_catch_exception:
11785 case ada_catch_exception_unhandled:
11786 case ada_catch_handlers:
11787 {
11788 const CORE_ADDR addr = ada_exception_name_addr (c->m_kind, b);
11789 char exception_name[256];
11790
11791 if (addr != 0)
11792 {
11793 read_memory (addr, (gdb_byte *) exception_name,
11794 sizeof (exception_name) - 1);
11795 exception_name [sizeof (exception_name) - 1] = '\0';
11796 }
11797 else
11798 {
11799 /* For some reason, we were unable to read the exception
11800 name. This could happen if the Runtime was compiled
11801 without debugging info, for instance. In that case,
11802 just replace the exception name by the generic string
11803 "exception" - it will read as "an exception" in the
11804 notification we are about to print. */
11805 memcpy (exception_name, "exception", sizeof ("exception"));
11806 }
11807 /* In the case of unhandled exception breakpoints, we print
11808 the exception name as "unhandled EXCEPTION_NAME", to make
11809 it clearer to the user which kind of catchpoint just got
11810 hit. We used ui_out_text to make sure that this extra
11811 info does not pollute the exception name in the MI case. */
11812 if (c->m_kind == ada_catch_exception_unhandled)
11813 uiout->text ("unhandled ");
11814 uiout->field_string ("exception-name", exception_name);
11815 }
11816 break;
11817 case ada_catch_assert:
11818 /* In this case, the name of the exception is not really
11819 important. Just print "failed assertion" to make it clearer
11820 that his program just hit an assertion-failure catchpoint.
11821 We used ui_out_text because this info does not belong in
11822 the MI output. */
11823 uiout->text ("failed assertion");
11824 break;
11825 }
11826
11827 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
11828 if (exception_message != NULL)
11829 {
11830 uiout->text (" (");
11831 uiout->field_string ("exception-message", exception_message.get ());
11832 uiout->text (")");
11833 }
11834
11835 uiout->text (" at ");
11836 ada_find_printable_frame (get_current_frame ());
11837
11838 return PRINT_SRC_AND_LOC;
11839 }
11840
11841 /* Implement the PRINT_ONE method in the breakpoint_ops structure
11842 for all exception catchpoint kinds. */
11843
11844 static void
11845 print_one_exception (struct breakpoint *b, struct bp_location **last_loc)
11846 {
11847 struct ui_out *uiout = current_uiout;
11848 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11849 struct value_print_options opts;
11850
11851 get_user_print_options (&opts);
11852
11853 if (opts.addressprint)
11854 uiout->field_skip ("addr");
11855
11856 annotate_field (5);
11857 switch (c->m_kind)
11858 {
11859 case ada_catch_exception:
11860 if (!c->excep_string.empty ())
11861 {
11862 std::string msg = string_printf (_("`%s' Ada exception"),
11863 c->excep_string.c_str ());
11864
11865 uiout->field_string ("what", msg);
11866 }
11867 else
11868 uiout->field_string ("what", "all Ada exceptions");
11869
11870 break;
11871
11872 case ada_catch_exception_unhandled:
11873 uiout->field_string ("what", "unhandled Ada exceptions");
11874 break;
11875
11876 case ada_catch_handlers:
11877 if (!c->excep_string.empty ())
11878 {
11879 uiout->field_fmt ("what",
11880 _("`%s' Ada exception handlers"),
11881 c->excep_string.c_str ());
11882 }
11883 else
11884 uiout->field_string ("what", "all Ada exceptions handlers");
11885 break;
11886
11887 case ada_catch_assert:
11888 uiout->field_string ("what", "failed Ada assertions");
11889 break;
11890
11891 default:
11892 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11893 break;
11894 }
11895 }
11896
11897 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
11898 for all exception catchpoint kinds. */
11899
11900 static void
11901 print_mention_exception (struct breakpoint *b)
11902 {
11903 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11904 struct ui_out *uiout = current_uiout;
11905
11906 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
11907 : _("Catchpoint "));
11908 uiout->field_signed ("bkptno", b->number);
11909 uiout->text (": ");
11910
11911 switch (c->m_kind)
11912 {
11913 case ada_catch_exception:
11914 if (!c->excep_string.empty ())
11915 {
11916 std::string info = string_printf (_("`%s' Ada exception"),
11917 c->excep_string.c_str ());
11918 uiout->text (info);
11919 }
11920 else
11921 uiout->text (_("all Ada exceptions"));
11922 break;
11923
11924 case ada_catch_exception_unhandled:
11925 uiout->text (_("unhandled Ada exceptions"));
11926 break;
11927
11928 case ada_catch_handlers:
11929 if (!c->excep_string.empty ())
11930 {
11931 std::string info
11932 = string_printf (_("`%s' Ada exception handlers"),
11933 c->excep_string.c_str ());
11934 uiout->text (info);
11935 }
11936 else
11937 uiout->text (_("all Ada exceptions handlers"));
11938 break;
11939
11940 case ada_catch_assert:
11941 uiout->text (_("failed Ada assertions"));
11942 break;
11943
11944 default:
11945 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11946 break;
11947 }
11948 }
11949
11950 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
11951 for all exception catchpoint kinds. */
11952
11953 static void
11954 print_recreate_exception (struct breakpoint *b, struct ui_file *fp)
11955 {
11956 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11957
11958 switch (c->m_kind)
11959 {
11960 case ada_catch_exception:
11961 fprintf_filtered (fp, "catch exception");
11962 if (!c->excep_string.empty ())
11963 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
11964 break;
11965
11966 case ada_catch_exception_unhandled:
11967 fprintf_filtered (fp, "catch exception unhandled");
11968 break;
11969
11970 case ada_catch_handlers:
11971 fprintf_filtered (fp, "catch handlers");
11972 break;
11973
11974 case ada_catch_assert:
11975 fprintf_filtered (fp, "catch assert");
11976 break;
11977
11978 default:
11979 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11980 }
11981 print_recreate_thread (b, fp);
11982 }
11983
11984 /* Virtual tables for various breakpoint types. */
11985 static struct breakpoint_ops catch_exception_breakpoint_ops;
11986 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
11987 static struct breakpoint_ops catch_assert_breakpoint_ops;
11988 static struct breakpoint_ops catch_handlers_breakpoint_ops;
11989
11990 /* See ada-lang.h. */
11991
11992 bool
11993 is_ada_exception_catchpoint (breakpoint *bp)
11994 {
11995 return (bp->ops == &catch_exception_breakpoint_ops
11996 || bp->ops == &catch_exception_unhandled_breakpoint_ops
11997 || bp->ops == &catch_assert_breakpoint_ops
11998 || bp->ops == &catch_handlers_breakpoint_ops);
11999 }
12000
12001 /* Split the arguments specified in a "catch exception" command.
12002 Set EX to the appropriate catchpoint type.
12003 Set EXCEP_STRING to the name of the specific exception if
12004 specified by the user.
12005 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
12006 "catch handlers" command. False otherwise.
12007 If a condition is found at the end of the arguments, the condition
12008 expression is stored in COND_STRING (memory must be deallocated
12009 after use). Otherwise COND_STRING is set to NULL. */
12010
12011 static void
12012 catch_ada_exception_command_split (const char *args,
12013 bool is_catch_handlers_cmd,
12014 enum ada_exception_catchpoint_kind *ex,
12015 std::string *excep_string,
12016 std::string *cond_string)
12017 {
12018 std::string exception_name;
12019
12020 exception_name = extract_arg (&args);
12021 if (exception_name == "if")
12022 {
12023 /* This is not an exception name; this is the start of a condition
12024 expression for a catchpoint on all exceptions. So, "un-get"
12025 this token, and set exception_name to NULL. */
12026 exception_name.clear ();
12027 args -= 2;
12028 }
12029
12030 /* Check to see if we have a condition. */
12031
12032 args = skip_spaces (args);
12033 if (startswith (args, "if")
12034 && (isspace (args[2]) || args[2] == '\0'))
12035 {
12036 args += 2;
12037 args = skip_spaces (args);
12038
12039 if (args[0] == '\0')
12040 error (_("Condition missing after `if' keyword"));
12041 *cond_string = args;
12042
12043 args += strlen (args);
12044 }
12045
12046 /* Check that we do not have any more arguments. Anything else
12047 is unexpected. */
12048
12049 if (args[0] != '\0')
12050 error (_("Junk at end of expression"));
12051
12052 if (is_catch_handlers_cmd)
12053 {
12054 /* Catch handling of exceptions. */
12055 *ex = ada_catch_handlers;
12056 *excep_string = exception_name;
12057 }
12058 else if (exception_name.empty ())
12059 {
12060 /* Catch all exceptions. */
12061 *ex = ada_catch_exception;
12062 excep_string->clear ();
12063 }
12064 else if (exception_name == "unhandled")
12065 {
12066 /* Catch unhandled exceptions. */
12067 *ex = ada_catch_exception_unhandled;
12068 excep_string->clear ();
12069 }
12070 else
12071 {
12072 /* Catch a specific exception. */
12073 *ex = ada_catch_exception;
12074 *excep_string = exception_name;
12075 }
12076 }
12077
12078 /* Return the name of the symbol on which we should break in order to
12079 implement a catchpoint of the EX kind. */
12080
12081 static const char *
12082 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
12083 {
12084 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12085
12086 gdb_assert (data->exception_info != NULL);
12087
12088 switch (ex)
12089 {
12090 case ada_catch_exception:
12091 return (data->exception_info->catch_exception_sym);
12092 break;
12093 case ada_catch_exception_unhandled:
12094 return (data->exception_info->catch_exception_unhandled_sym);
12095 break;
12096 case ada_catch_assert:
12097 return (data->exception_info->catch_assert_sym);
12098 break;
12099 case ada_catch_handlers:
12100 return (data->exception_info->catch_handlers_sym);
12101 break;
12102 default:
12103 internal_error (__FILE__, __LINE__,
12104 _("unexpected catchpoint kind (%d)"), ex);
12105 }
12106 }
12107
12108 /* Return the breakpoint ops "virtual table" used for catchpoints
12109 of the EX kind. */
12110
12111 static const struct breakpoint_ops *
12112 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
12113 {
12114 switch (ex)
12115 {
12116 case ada_catch_exception:
12117 return (&catch_exception_breakpoint_ops);
12118 break;
12119 case ada_catch_exception_unhandled:
12120 return (&catch_exception_unhandled_breakpoint_ops);
12121 break;
12122 case ada_catch_assert:
12123 return (&catch_assert_breakpoint_ops);
12124 break;
12125 case ada_catch_handlers:
12126 return (&catch_handlers_breakpoint_ops);
12127 break;
12128 default:
12129 internal_error (__FILE__, __LINE__,
12130 _("unexpected catchpoint kind (%d)"), ex);
12131 }
12132 }
12133
12134 /* Return the condition that will be used to match the current exception
12135 being raised with the exception that the user wants to catch. This
12136 assumes that this condition is used when the inferior just triggered
12137 an exception catchpoint.
12138 EX: the type of catchpoints used for catching Ada exceptions. */
12139
12140 static std::string
12141 ada_exception_catchpoint_cond_string (const char *excep_string,
12142 enum ada_exception_catchpoint_kind ex)
12143 {
12144 int i;
12145 bool is_standard_exc = false;
12146 std::string result;
12147
12148 if (ex == ada_catch_handlers)
12149 {
12150 /* For exception handlers catchpoints, the condition string does
12151 not use the same parameter as for the other exceptions. */
12152 result = ("long_integer (GNAT_GCC_exception_Access"
12153 "(gcc_exception).all.occurrence.id)");
12154 }
12155 else
12156 result = "long_integer (e)";
12157
12158 /* The standard exceptions are a special case. They are defined in
12159 runtime units that have been compiled without debugging info; if
12160 EXCEP_STRING is the not-fully-qualified name of a standard
12161 exception (e.g. "constraint_error") then, during the evaluation
12162 of the condition expression, the symbol lookup on this name would
12163 *not* return this standard exception. The catchpoint condition
12164 may then be set only on user-defined exceptions which have the
12165 same not-fully-qualified name (e.g. my_package.constraint_error).
12166
12167 To avoid this unexcepted behavior, these standard exceptions are
12168 systematically prefixed by "standard". This means that "catch
12169 exception constraint_error" is rewritten into "catch exception
12170 standard.constraint_error".
12171
12172 If an exception named constraint_error is defined in another package of
12173 the inferior program, then the only way to specify this exception as a
12174 breakpoint condition is to use its fully-qualified named:
12175 e.g. my_package.constraint_error. */
12176
12177 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12178 {
12179 if (strcmp (standard_exc [i], excep_string) == 0)
12180 {
12181 is_standard_exc = true;
12182 break;
12183 }
12184 }
12185
12186 result += " = ";
12187
12188 if (is_standard_exc)
12189 string_appendf (result, "long_integer (&standard.%s)", excep_string);
12190 else
12191 string_appendf (result, "long_integer (&%s)", excep_string);
12192
12193 return result;
12194 }
12195
12196 /* Return the symtab_and_line that should be used to insert an exception
12197 catchpoint of the TYPE kind.
12198
12199 ADDR_STRING returns the name of the function where the real
12200 breakpoint that implements the catchpoints is set, depending on the
12201 type of catchpoint we need to create. */
12202
12203 static struct symtab_and_line
12204 ada_exception_sal (enum ada_exception_catchpoint_kind ex,
12205 std::string *addr_string, const struct breakpoint_ops **ops)
12206 {
12207 const char *sym_name;
12208 struct symbol *sym;
12209
12210 /* First, find out which exception support info to use. */
12211 ada_exception_support_info_sniffer ();
12212
12213 /* Then lookup the function on which we will break in order to catch
12214 the Ada exceptions requested by the user. */
12215 sym_name = ada_exception_sym_name (ex);
12216 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12217
12218 if (sym == NULL)
12219 error (_("Catchpoint symbol not found: %s"), sym_name);
12220
12221 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12222 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
12223
12224 /* Set ADDR_STRING. */
12225 *addr_string = sym_name;
12226
12227 /* Set OPS. */
12228 *ops = ada_exception_breakpoint_ops (ex);
12229
12230 return find_function_start_sal (sym, 1);
12231 }
12232
12233 /* Create an Ada exception catchpoint.
12234
12235 EX_KIND is the kind of exception catchpoint to be created.
12236
12237 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
12238 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12239 of the exception to which this catchpoint applies.
12240
12241 COND_STRING, if not empty, is the catchpoint condition.
12242
12243 TEMPFLAG, if nonzero, means that the underlying breakpoint
12244 should be temporary.
12245
12246 FROM_TTY is the usual argument passed to all commands implementations. */
12247
12248 void
12249 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
12250 enum ada_exception_catchpoint_kind ex_kind,
12251 const std::string &excep_string,
12252 const std::string &cond_string,
12253 int tempflag,
12254 int disabled,
12255 int from_tty)
12256 {
12257 std::string addr_string;
12258 const struct breakpoint_ops *ops = NULL;
12259 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
12260
12261 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint (ex_kind));
12262 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string.c_str (),
12263 ops, tempflag, disabled, from_tty);
12264 c->excep_string = excep_string;
12265 create_excep_cond_exprs (c.get (), ex_kind);
12266 if (!cond_string.empty ())
12267 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty, false);
12268 install_breakpoint (0, std::move (c), 1);
12269 }
12270
12271 /* Implement the "catch exception" command. */
12272
12273 static void
12274 catch_ada_exception_command (const char *arg_entry, int from_tty,
12275 struct cmd_list_element *command)
12276 {
12277 const char *arg = arg_entry;
12278 struct gdbarch *gdbarch = get_current_arch ();
12279 int tempflag;
12280 enum ada_exception_catchpoint_kind ex_kind;
12281 std::string excep_string;
12282 std::string cond_string;
12283
12284 tempflag = command->context () == CATCH_TEMPORARY;
12285
12286 if (!arg)
12287 arg = "";
12288 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
12289 &cond_string);
12290 create_ada_exception_catchpoint (gdbarch, ex_kind,
12291 excep_string, cond_string,
12292 tempflag, 1 /* enabled */,
12293 from_tty);
12294 }
12295
12296 /* Implement the "catch handlers" command. */
12297
12298 static void
12299 catch_ada_handlers_command (const char *arg_entry, int from_tty,
12300 struct cmd_list_element *command)
12301 {
12302 const char *arg = arg_entry;
12303 struct gdbarch *gdbarch = get_current_arch ();
12304 int tempflag;
12305 enum ada_exception_catchpoint_kind ex_kind;
12306 std::string excep_string;
12307 std::string cond_string;
12308
12309 tempflag = command->context () == CATCH_TEMPORARY;
12310
12311 if (!arg)
12312 arg = "";
12313 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
12314 &cond_string);
12315 create_ada_exception_catchpoint (gdbarch, ex_kind,
12316 excep_string, cond_string,
12317 tempflag, 1 /* enabled */,
12318 from_tty);
12319 }
12320
12321 /* Completion function for the Ada "catch" commands. */
12322
12323 static void
12324 catch_ada_completer (struct cmd_list_element *cmd, completion_tracker &tracker,
12325 const char *text, const char *word)
12326 {
12327 std::vector<ada_exc_info> exceptions = ada_exceptions_list (NULL);
12328
12329 for (const ada_exc_info &info : exceptions)
12330 {
12331 if (startswith (info.name, word))
12332 tracker.add_completion (make_unique_xstrdup (info.name));
12333 }
12334 }
12335
12336 /* Split the arguments specified in a "catch assert" command.
12337
12338 ARGS contains the command's arguments (or the empty string if
12339 no arguments were passed).
12340
12341 If ARGS contains a condition, set COND_STRING to that condition
12342 (the memory needs to be deallocated after use). */
12343
12344 static void
12345 catch_ada_assert_command_split (const char *args, std::string &cond_string)
12346 {
12347 args = skip_spaces (args);
12348
12349 /* Check whether a condition was provided. */
12350 if (startswith (args, "if")
12351 && (isspace (args[2]) || args[2] == '\0'))
12352 {
12353 args += 2;
12354 args = skip_spaces (args);
12355 if (args[0] == '\0')
12356 error (_("condition missing after `if' keyword"));
12357 cond_string.assign (args);
12358 }
12359
12360 /* Otherwise, there should be no other argument at the end of
12361 the command. */
12362 else if (args[0] != '\0')
12363 error (_("Junk at end of arguments."));
12364 }
12365
12366 /* Implement the "catch assert" command. */
12367
12368 static void
12369 catch_assert_command (const char *arg_entry, int from_tty,
12370 struct cmd_list_element *command)
12371 {
12372 const char *arg = arg_entry;
12373 struct gdbarch *gdbarch = get_current_arch ();
12374 int tempflag;
12375 std::string cond_string;
12376
12377 tempflag = command->context () == CATCH_TEMPORARY;
12378
12379 if (!arg)
12380 arg = "";
12381 catch_ada_assert_command_split (arg, cond_string);
12382 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
12383 "", cond_string,
12384 tempflag, 1 /* enabled */,
12385 from_tty);
12386 }
12387
12388 /* Return non-zero if the symbol SYM is an Ada exception object. */
12389
12390 static int
12391 ada_is_exception_sym (struct symbol *sym)
12392 {
12393 const char *type_name = SYMBOL_TYPE (sym)->name ();
12394
12395 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
12396 && SYMBOL_CLASS (sym) != LOC_BLOCK
12397 && SYMBOL_CLASS (sym) != LOC_CONST
12398 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
12399 && type_name != NULL && strcmp (type_name, "exception") == 0);
12400 }
12401
12402 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
12403 Ada exception object. This matches all exceptions except the ones
12404 defined by the Ada language. */
12405
12406 static int
12407 ada_is_non_standard_exception_sym (struct symbol *sym)
12408 {
12409 int i;
12410
12411 if (!ada_is_exception_sym (sym))
12412 return 0;
12413
12414 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12415 if (strcmp (sym->linkage_name (), standard_exc[i]) == 0)
12416 return 0; /* A standard exception. */
12417
12418 /* Numeric_Error is also a standard exception, so exclude it.
12419 See the STANDARD_EXC description for more details as to why
12420 this exception is not listed in that array. */
12421 if (strcmp (sym->linkage_name (), "numeric_error") == 0)
12422 return 0;
12423
12424 return 1;
12425 }
12426
12427 /* A helper function for std::sort, comparing two struct ada_exc_info
12428 objects.
12429
12430 The comparison is determined first by exception name, and then
12431 by exception address. */
12432
12433 bool
12434 ada_exc_info::operator< (const ada_exc_info &other) const
12435 {
12436 int result;
12437
12438 result = strcmp (name, other.name);
12439 if (result < 0)
12440 return true;
12441 if (result == 0 && addr < other.addr)
12442 return true;
12443 return false;
12444 }
12445
12446 bool
12447 ada_exc_info::operator== (const ada_exc_info &other) const
12448 {
12449 return addr == other.addr && strcmp (name, other.name) == 0;
12450 }
12451
12452 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
12453 routine, but keeping the first SKIP elements untouched.
12454
12455 All duplicates are also removed. */
12456
12457 static void
12458 sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
12459 int skip)
12460 {
12461 std::sort (exceptions->begin () + skip, exceptions->end ());
12462 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
12463 exceptions->end ());
12464 }
12465
12466 /* Add all exceptions defined by the Ada standard whose name match
12467 a regular expression.
12468
12469 If PREG is not NULL, then this regexp_t object is used to
12470 perform the symbol name matching. Otherwise, no name-based
12471 filtering is performed.
12472
12473 EXCEPTIONS is a vector of exceptions to which matching exceptions
12474 gets pushed. */
12475
12476 static void
12477 ada_add_standard_exceptions (compiled_regex *preg,
12478 std::vector<ada_exc_info> *exceptions)
12479 {
12480 int i;
12481
12482 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12483 {
12484 if (preg == NULL
12485 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
12486 {
12487 struct bound_minimal_symbol msymbol
12488 = ada_lookup_simple_minsym (standard_exc[i]);
12489
12490 if (msymbol.minsym != NULL)
12491 {
12492 struct ada_exc_info info
12493 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
12494
12495 exceptions->push_back (info);
12496 }
12497 }
12498 }
12499 }
12500
12501 /* Add all Ada exceptions defined locally and accessible from the given
12502 FRAME.
12503
12504 If PREG is not NULL, then this regexp_t object is used to
12505 perform the symbol name matching. Otherwise, no name-based
12506 filtering is performed.
12507
12508 EXCEPTIONS is a vector of exceptions to which matching exceptions
12509 gets pushed. */
12510
12511 static void
12512 ada_add_exceptions_from_frame (compiled_regex *preg,
12513 struct frame_info *frame,
12514 std::vector<ada_exc_info> *exceptions)
12515 {
12516 const struct block *block = get_frame_block (frame, 0);
12517
12518 while (block != 0)
12519 {
12520 struct block_iterator iter;
12521 struct symbol *sym;
12522
12523 ALL_BLOCK_SYMBOLS (block, iter, sym)
12524 {
12525 switch (SYMBOL_CLASS (sym))
12526 {
12527 case LOC_TYPEDEF:
12528 case LOC_BLOCK:
12529 case LOC_CONST:
12530 break;
12531 default:
12532 if (ada_is_exception_sym (sym))
12533 {
12534 struct ada_exc_info info = {sym->print_name (),
12535 SYMBOL_VALUE_ADDRESS (sym)};
12536
12537 exceptions->push_back (info);
12538 }
12539 }
12540 }
12541 if (BLOCK_FUNCTION (block) != NULL)
12542 break;
12543 block = BLOCK_SUPERBLOCK (block);
12544 }
12545 }
12546
12547 /* Return true if NAME matches PREG or if PREG is NULL. */
12548
12549 static bool
12550 name_matches_regex (const char *name, compiled_regex *preg)
12551 {
12552 return (preg == NULL
12553 || preg->exec (ada_decode (name).c_str (), 0, NULL, 0) == 0);
12554 }
12555
12556 /* Add all exceptions defined globally whose name name match
12557 a regular expression, excluding standard exceptions.
12558
12559 The reason we exclude standard exceptions is that they need
12560 to be handled separately: Standard exceptions are defined inside
12561 a runtime unit which is normally not compiled with debugging info,
12562 and thus usually do not show up in our symbol search. However,
12563 if the unit was in fact built with debugging info, we need to
12564 exclude them because they would duplicate the entry we found
12565 during the special loop that specifically searches for those
12566 standard exceptions.
12567
12568 If PREG is not NULL, then this regexp_t object is used to
12569 perform the symbol name matching. Otherwise, no name-based
12570 filtering is performed.
12571
12572 EXCEPTIONS is a vector of exceptions to which matching exceptions
12573 gets pushed. */
12574
12575 static void
12576 ada_add_global_exceptions (compiled_regex *preg,
12577 std::vector<ada_exc_info> *exceptions)
12578 {
12579 /* In Ada, the symbol "search name" is a linkage name, whereas the
12580 regular expression used to do the matching refers to the natural
12581 name. So match against the decoded name. */
12582 expand_symtabs_matching (NULL,
12583 lookup_name_info::match_any (),
12584 [&] (const char *search_name)
12585 {
12586 std::string decoded = ada_decode (search_name);
12587 return name_matches_regex (decoded.c_str (), preg);
12588 },
12589 NULL,
12590 SEARCH_GLOBAL_BLOCK | SEARCH_STATIC_BLOCK,
12591 VARIABLES_DOMAIN);
12592
12593 for (objfile *objfile : current_program_space->objfiles ())
12594 {
12595 for (compunit_symtab *s : objfile->compunits ())
12596 {
12597 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
12598 int i;
12599
12600 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
12601 {
12602 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
12603 struct block_iterator iter;
12604 struct symbol *sym;
12605
12606 ALL_BLOCK_SYMBOLS (b, iter, sym)
12607 if (ada_is_non_standard_exception_sym (sym)
12608 && name_matches_regex (sym->natural_name (), preg))
12609 {
12610 struct ada_exc_info info
12611 = {sym->print_name (), SYMBOL_VALUE_ADDRESS (sym)};
12612
12613 exceptions->push_back (info);
12614 }
12615 }
12616 }
12617 }
12618 }
12619
12620 /* Implements ada_exceptions_list with the regular expression passed
12621 as a regex_t, rather than a string.
12622
12623 If not NULL, PREG is used to filter out exceptions whose names
12624 do not match. Otherwise, all exceptions are listed. */
12625
12626 static std::vector<ada_exc_info>
12627 ada_exceptions_list_1 (compiled_regex *preg)
12628 {
12629 std::vector<ada_exc_info> result;
12630 int prev_len;
12631
12632 /* First, list the known standard exceptions. These exceptions
12633 need to be handled separately, as they are usually defined in
12634 runtime units that have been compiled without debugging info. */
12635
12636 ada_add_standard_exceptions (preg, &result);
12637
12638 /* Next, find all exceptions whose scope is local and accessible
12639 from the currently selected frame. */
12640
12641 if (has_stack_frames ())
12642 {
12643 prev_len = result.size ();
12644 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
12645 &result);
12646 if (result.size () > prev_len)
12647 sort_remove_dups_ada_exceptions_list (&result, prev_len);
12648 }
12649
12650 /* Add all exceptions whose scope is global. */
12651
12652 prev_len = result.size ();
12653 ada_add_global_exceptions (preg, &result);
12654 if (result.size () > prev_len)
12655 sort_remove_dups_ada_exceptions_list (&result, prev_len);
12656
12657 return result;
12658 }
12659
12660 /* Return a vector of ada_exc_info.
12661
12662 If REGEXP is NULL, all exceptions are included in the result.
12663 Otherwise, it should contain a valid regular expression,
12664 and only the exceptions whose names match that regular expression
12665 are included in the result.
12666
12667 The exceptions are sorted in the following order:
12668 - Standard exceptions (defined by the Ada language), in
12669 alphabetical order;
12670 - Exceptions only visible from the current frame, in
12671 alphabetical order;
12672 - Exceptions whose scope is global, in alphabetical order. */
12673
12674 std::vector<ada_exc_info>
12675 ada_exceptions_list (const char *regexp)
12676 {
12677 if (regexp == NULL)
12678 return ada_exceptions_list_1 (NULL);
12679
12680 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
12681 return ada_exceptions_list_1 (&reg);
12682 }
12683
12684 /* Implement the "info exceptions" command. */
12685
12686 static void
12687 info_exceptions_command (const char *regexp, int from_tty)
12688 {
12689 struct gdbarch *gdbarch = get_current_arch ();
12690
12691 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
12692
12693 if (regexp != NULL)
12694 printf_filtered
12695 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
12696 else
12697 printf_filtered (_("All defined Ada exceptions:\n"));
12698
12699 for (const ada_exc_info &info : exceptions)
12700 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
12701 }
12702
12703 \f
12704 /* Language vector */
12705
12706 /* symbol_name_matcher_ftype adapter for wild_match. */
12707
12708 static bool
12709 do_wild_match (const char *symbol_search_name,
12710 const lookup_name_info &lookup_name,
12711 completion_match_result *comp_match_res)
12712 {
12713 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
12714 }
12715
12716 /* symbol_name_matcher_ftype adapter for full_match. */
12717
12718 static bool
12719 do_full_match (const char *symbol_search_name,
12720 const lookup_name_info &lookup_name,
12721 completion_match_result *comp_match_res)
12722 {
12723 const char *lname = lookup_name.ada ().lookup_name ().c_str ();
12724
12725 /* If both symbols start with "_ada_", just let the loop below
12726 handle the comparison. However, if only the symbol name starts
12727 with "_ada_", skip the prefix and let the match proceed as
12728 usual. */
12729 if (startswith (symbol_search_name, "_ada_")
12730 && !startswith (lname, "_ada"))
12731 symbol_search_name += 5;
12732
12733 int uscore_count = 0;
12734 while (*lname != '\0')
12735 {
12736 if (*symbol_search_name != *lname)
12737 {
12738 if (*symbol_search_name == 'B' && uscore_count == 2
12739 && symbol_search_name[1] == '_')
12740 {
12741 symbol_search_name += 2;
12742 while (isdigit (*symbol_search_name))
12743 ++symbol_search_name;
12744 if (symbol_search_name[0] == '_'
12745 && symbol_search_name[1] == '_')
12746 {
12747 symbol_search_name += 2;
12748 continue;
12749 }
12750 }
12751 return false;
12752 }
12753
12754 if (*symbol_search_name == '_')
12755 ++uscore_count;
12756 else
12757 uscore_count = 0;
12758
12759 ++symbol_search_name;
12760 ++lname;
12761 }
12762
12763 return is_name_suffix (symbol_search_name);
12764 }
12765
12766 /* symbol_name_matcher_ftype for exact (verbatim) matches. */
12767
12768 static bool
12769 do_exact_match (const char *symbol_search_name,
12770 const lookup_name_info &lookup_name,
12771 completion_match_result *comp_match_res)
12772 {
12773 return strcmp (symbol_search_name, ada_lookup_name (lookup_name)) == 0;
12774 }
12775
12776 /* Build the Ada lookup name for LOOKUP_NAME. */
12777
12778 ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
12779 {
12780 gdb::string_view user_name = lookup_name.name ();
12781
12782 if (!user_name.empty () && user_name[0] == '<')
12783 {
12784 if (user_name.back () == '>')
12785 m_encoded_name
12786 = gdb::to_string (user_name.substr (1, user_name.size () - 2));
12787 else
12788 m_encoded_name
12789 = gdb::to_string (user_name.substr (1, user_name.size () - 1));
12790 m_encoded_p = true;
12791 m_verbatim_p = true;
12792 m_wild_match_p = false;
12793 m_standard_p = false;
12794 }
12795 else
12796 {
12797 m_verbatim_p = false;
12798
12799 m_encoded_p = user_name.find ("__") != gdb::string_view::npos;
12800
12801 if (!m_encoded_p)
12802 {
12803 const char *folded = ada_fold_name (user_name);
12804 m_encoded_name = ada_encode_1 (folded, false);
12805 if (m_encoded_name.empty ())
12806 m_encoded_name = gdb::to_string (user_name);
12807 }
12808 else
12809 m_encoded_name = gdb::to_string (user_name);
12810
12811 /* Handle the 'package Standard' special case. See description
12812 of m_standard_p. */
12813 if (startswith (m_encoded_name.c_str (), "standard__"))
12814 {
12815 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
12816 m_standard_p = true;
12817 }
12818 else
12819 m_standard_p = false;
12820
12821 /* If the name contains a ".", then the user is entering a fully
12822 qualified entity name, and the match must not be done in wild
12823 mode. Similarly, if the user wants to complete what looks
12824 like an encoded name, the match must not be done in wild
12825 mode. Also, in the standard__ special case always do
12826 non-wild matching. */
12827 m_wild_match_p
12828 = (lookup_name.match_type () != symbol_name_match_type::FULL
12829 && !m_encoded_p
12830 && !m_standard_p
12831 && user_name.find ('.') == std::string::npos);
12832 }
12833 }
12834
12835 /* symbol_name_matcher_ftype method for Ada. This only handles
12836 completion mode. */
12837
12838 static bool
12839 ada_symbol_name_matches (const char *symbol_search_name,
12840 const lookup_name_info &lookup_name,
12841 completion_match_result *comp_match_res)
12842 {
12843 return lookup_name.ada ().matches (symbol_search_name,
12844 lookup_name.match_type (),
12845 comp_match_res);
12846 }
12847
12848 /* A name matcher that matches the symbol name exactly, with
12849 strcmp. */
12850
12851 static bool
12852 literal_symbol_name_matcher (const char *symbol_search_name,
12853 const lookup_name_info &lookup_name,
12854 completion_match_result *comp_match_res)
12855 {
12856 gdb::string_view name_view = lookup_name.name ();
12857
12858 if (lookup_name.completion_mode ()
12859 ? (strncmp (symbol_search_name, name_view.data (),
12860 name_view.size ()) == 0)
12861 : symbol_search_name == name_view)
12862 {
12863 if (comp_match_res != NULL)
12864 comp_match_res->set_match (symbol_search_name);
12865 return true;
12866 }
12867 else
12868 return false;
12869 }
12870
12871 /* Implement the "get_symbol_name_matcher" language_defn method for
12872 Ada. */
12873
12874 static symbol_name_matcher_ftype *
12875 ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
12876 {
12877 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
12878 return literal_symbol_name_matcher;
12879
12880 if (lookup_name.completion_mode ())
12881 return ada_symbol_name_matches;
12882 else
12883 {
12884 if (lookup_name.ada ().wild_match_p ())
12885 return do_wild_match;
12886 else if (lookup_name.ada ().verbatim_p ())
12887 return do_exact_match;
12888 else
12889 return do_full_match;
12890 }
12891 }
12892
12893 /* Class representing the Ada language. */
12894
12895 class ada_language : public language_defn
12896 {
12897 public:
12898 ada_language ()
12899 : language_defn (language_ada)
12900 { /* Nothing. */ }
12901
12902 /* See language.h. */
12903
12904 const char *name () const override
12905 { return "ada"; }
12906
12907 /* See language.h. */
12908
12909 const char *natural_name () const override
12910 { return "Ada"; }
12911
12912 /* See language.h. */
12913
12914 const std::vector<const char *> &filename_extensions () const override
12915 {
12916 static const std::vector<const char *> extensions
12917 = { ".adb", ".ads", ".a", ".ada", ".dg" };
12918 return extensions;
12919 }
12920
12921 /* Print an array element index using the Ada syntax. */
12922
12923 void print_array_index (struct type *index_type,
12924 LONGEST index,
12925 struct ui_file *stream,
12926 const value_print_options *options) const override
12927 {
12928 struct value *index_value = val_atr (index_type, index);
12929
12930 value_print (index_value, stream, options);
12931 fprintf_filtered (stream, " => ");
12932 }
12933
12934 /* Implement the "read_var_value" language_defn method for Ada. */
12935
12936 struct value *read_var_value (struct symbol *var,
12937 const struct block *var_block,
12938 struct frame_info *frame) const override
12939 {
12940 /* The only case where default_read_var_value is not sufficient
12941 is when VAR is a renaming... */
12942 if (frame != nullptr)
12943 {
12944 const struct block *frame_block = get_frame_block (frame, NULL);
12945 if (frame_block != nullptr && ada_is_renaming_symbol (var))
12946 return ada_read_renaming_var_value (var, frame_block);
12947 }
12948
12949 /* This is a typical case where we expect the default_read_var_value
12950 function to work. */
12951 return language_defn::read_var_value (var, var_block, frame);
12952 }
12953
12954 /* See language.h. */
12955 void language_arch_info (struct gdbarch *gdbarch,
12956 struct language_arch_info *lai) const override
12957 {
12958 const struct builtin_type *builtin = builtin_type (gdbarch);
12959
12960 /* Helper function to allow shorter lines below. */
12961 auto add = [&] (struct type *t)
12962 {
12963 lai->add_primitive_type (t);
12964 };
12965
12966 add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12967 0, "integer"));
12968 add (arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
12969 0, "long_integer"));
12970 add (arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
12971 0, "short_integer"));
12972 struct type *char_type = arch_character_type (gdbarch, TARGET_CHAR_BIT,
12973 0, "character");
12974 lai->set_string_char_type (char_type);
12975 add (char_type);
12976 add (arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
12977 "float", gdbarch_float_format (gdbarch)));
12978 add (arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12979 "long_float", gdbarch_double_format (gdbarch)));
12980 add (arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
12981 0, "long_long_integer"));
12982 add (arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
12983 "long_long_float",
12984 gdbarch_long_double_format (gdbarch)));
12985 add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12986 0, "natural"));
12987 add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12988 0, "positive"));
12989 add (builtin->builtin_void);
12990
12991 struct type *system_addr_ptr
12992 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
12993 "void"));
12994 system_addr_ptr->set_name ("system__address");
12995 add (system_addr_ptr);
12996
12997 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
12998 type. This is a signed integral type whose size is the same as
12999 the size of addresses. */
13000 unsigned int addr_length = TYPE_LENGTH (system_addr_ptr);
13001 add (arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
13002 "storage_offset"));
13003
13004 lai->set_bool_type (builtin->builtin_bool);
13005 }
13006
13007 /* See language.h. */
13008
13009 bool iterate_over_symbols
13010 (const struct block *block, const lookup_name_info &name,
13011 domain_enum domain,
13012 gdb::function_view<symbol_found_callback_ftype> callback) const override
13013 {
13014 std::vector<struct block_symbol> results
13015 = ada_lookup_symbol_list_worker (name, block, domain, 0);
13016 for (block_symbol &sym : results)
13017 {
13018 if (!callback (&sym))
13019 return false;
13020 }
13021
13022 return true;
13023 }
13024
13025 /* See language.h. */
13026 bool sniff_from_mangled_name (const char *mangled,
13027 char **out) const override
13028 {
13029 std::string demangled = ada_decode (mangled);
13030
13031 *out = NULL;
13032
13033 if (demangled != mangled && demangled[0] != '<')
13034 {
13035 /* Set the gsymbol language to Ada, but still return 0.
13036 Two reasons for that:
13037
13038 1. For Ada, we prefer computing the symbol's decoded name
13039 on the fly rather than pre-compute it, in order to save
13040 memory (Ada projects are typically very large).
13041
13042 2. There are some areas in the definition of the GNAT
13043 encoding where, with a bit of bad luck, we might be able
13044 to decode a non-Ada symbol, generating an incorrect
13045 demangled name (Eg: names ending with "TB" for instance
13046 are identified as task bodies and so stripped from
13047 the decoded name returned).
13048
13049 Returning true, here, but not setting *DEMANGLED, helps us get
13050 a little bit of the best of both worlds. Because we're last,
13051 we should not affect any of the other languages that were
13052 able to demangle the symbol before us; we get to correctly
13053 tag Ada symbols as such; and even if we incorrectly tagged a
13054 non-Ada symbol, which should be rare, any routing through the
13055 Ada language should be transparent (Ada tries to behave much
13056 like C/C++ with non-Ada symbols). */
13057 return true;
13058 }
13059
13060 return false;
13061 }
13062
13063 /* See language.h. */
13064
13065 char *demangle_symbol (const char *mangled, int options) const override
13066 {
13067 return ada_la_decode (mangled, options);
13068 }
13069
13070 /* See language.h. */
13071
13072 void print_type (struct type *type, const char *varstring,
13073 struct ui_file *stream, int show, int level,
13074 const struct type_print_options *flags) const override
13075 {
13076 ada_print_type (type, varstring, stream, show, level, flags);
13077 }
13078
13079 /* See language.h. */
13080
13081 const char *word_break_characters (void) const override
13082 {
13083 return ada_completer_word_break_characters;
13084 }
13085
13086 /* See language.h. */
13087
13088 void collect_symbol_completion_matches (completion_tracker &tracker,
13089 complete_symbol_mode mode,
13090 symbol_name_match_type name_match_type,
13091 const char *text, const char *word,
13092 enum type_code code) const override
13093 {
13094 struct symbol *sym;
13095 const struct block *b, *surrounding_static_block = 0;
13096 struct block_iterator iter;
13097
13098 gdb_assert (code == TYPE_CODE_UNDEF);
13099
13100 lookup_name_info lookup_name (text, name_match_type, true);
13101
13102 /* First, look at the partial symtab symbols. */
13103 expand_symtabs_matching (NULL,
13104 lookup_name,
13105 NULL,
13106 NULL,
13107 SEARCH_GLOBAL_BLOCK | SEARCH_STATIC_BLOCK,
13108 ALL_DOMAIN);
13109
13110 /* At this point scan through the misc symbol vectors and add each
13111 symbol you find to the list. Eventually we want to ignore
13112 anything that isn't a text symbol (everything else will be
13113 handled by the psymtab code above). */
13114
13115 for (objfile *objfile : current_program_space->objfiles ())
13116 {
13117 for (minimal_symbol *msymbol : objfile->msymbols ())
13118 {
13119 QUIT;
13120
13121 if (completion_skip_symbol (mode, msymbol))
13122 continue;
13123
13124 language symbol_language = msymbol->language ();
13125
13126 /* Ada minimal symbols won't have their language set to Ada. If
13127 we let completion_list_add_name compare using the
13128 default/C-like matcher, then when completing e.g., symbols in a
13129 package named "pck", we'd match internal Ada symbols like
13130 "pckS", which are invalid in an Ada expression, unless you wrap
13131 them in '<' '>' to request a verbatim match.
13132
13133 Unfortunately, some Ada encoded names successfully demangle as
13134 C++ symbols (using an old mangling scheme), such as "name__2Xn"
13135 -> "Xn::name(void)" and thus some Ada minimal symbols end up
13136 with the wrong language set. Paper over that issue here. */
13137 if (symbol_language == language_auto
13138 || symbol_language == language_cplus)
13139 symbol_language = language_ada;
13140
13141 completion_list_add_name (tracker,
13142 symbol_language,
13143 msymbol->linkage_name (),
13144 lookup_name, text, word);
13145 }
13146 }
13147
13148 /* Search upwards from currently selected frame (so that we can
13149 complete on local vars. */
13150
13151 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
13152 {
13153 if (!BLOCK_SUPERBLOCK (b))
13154 surrounding_static_block = b; /* For elmin of dups */
13155
13156 ALL_BLOCK_SYMBOLS (b, iter, sym)
13157 {
13158 if (completion_skip_symbol (mode, sym))
13159 continue;
13160
13161 completion_list_add_name (tracker,
13162 sym->language (),
13163 sym->linkage_name (),
13164 lookup_name, text, word);
13165 }
13166 }
13167
13168 /* Go through the symtabs and check the externs and statics for
13169 symbols which match. */
13170
13171 for (objfile *objfile : current_program_space->objfiles ())
13172 {
13173 for (compunit_symtab *s : objfile->compunits ())
13174 {
13175 QUIT;
13176 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
13177 ALL_BLOCK_SYMBOLS (b, iter, sym)
13178 {
13179 if (completion_skip_symbol (mode, sym))
13180 continue;
13181
13182 completion_list_add_name (tracker,
13183 sym->language (),
13184 sym->linkage_name (),
13185 lookup_name, text, word);
13186 }
13187 }
13188 }
13189
13190 for (objfile *objfile : current_program_space->objfiles ())
13191 {
13192 for (compunit_symtab *s : objfile->compunits ())
13193 {
13194 QUIT;
13195 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
13196 /* Don't do this block twice. */
13197 if (b == surrounding_static_block)
13198 continue;
13199 ALL_BLOCK_SYMBOLS (b, iter, sym)
13200 {
13201 if (completion_skip_symbol (mode, sym))
13202 continue;
13203
13204 completion_list_add_name (tracker,
13205 sym->language (),
13206 sym->linkage_name (),
13207 lookup_name, text, word);
13208 }
13209 }
13210 }
13211 }
13212
13213 /* See language.h. */
13214
13215 gdb::unique_xmalloc_ptr<char> watch_location_expression
13216 (struct type *type, CORE_ADDR addr) const override
13217 {
13218 type = check_typedef (TYPE_TARGET_TYPE (check_typedef (type)));
13219 std::string name = type_to_string (type);
13220 return gdb::unique_xmalloc_ptr<char>
13221 (xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr)));
13222 }
13223
13224 /* See language.h. */
13225
13226 void value_print (struct value *val, struct ui_file *stream,
13227 const struct value_print_options *options) const override
13228 {
13229 return ada_value_print (val, stream, options);
13230 }
13231
13232 /* See language.h. */
13233
13234 void value_print_inner
13235 (struct value *val, struct ui_file *stream, int recurse,
13236 const struct value_print_options *options) const override
13237 {
13238 return ada_value_print_inner (val, stream, recurse, options);
13239 }
13240
13241 /* See language.h. */
13242
13243 struct block_symbol lookup_symbol_nonlocal
13244 (const char *name, const struct block *block,
13245 const domain_enum domain) const override
13246 {
13247 struct block_symbol sym;
13248
13249 sym = ada_lookup_symbol (name, block_static_block (block), domain);
13250 if (sym.symbol != NULL)
13251 return sym;
13252
13253 /* If we haven't found a match at this point, try the primitive
13254 types. In other languages, this search is performed before
13255 searching for global symbols in order to short-circuit that
13256 global-symbol search if it happens that the name corresponds
13257 to a primitive type. But we cannot do the same in Ada, because
13258 it is perfectly legitimate for a program to declare a type which
13259 has the same name as a standard type. If looking up a type in
13260 that situation, we have traditionally ignored the primitive type
13261 in favor of user-defined types. This is why, unlike most other
13262 languages, we search the primitive types this late and only after
13263 having searched the global symbols without success. */
13264
13265 if (domain == VAR_DOMAIN)
13266 {
13267 struct gdbarch *gdbarch;
13268
13269 if (block == NULL)
13270 gdbarch = target_gdbarch ();
13271 else
13272 gdbarch = block_gdbarch (block);
13273 sym.symbol
13274 = language_lookup_primitive_type_as_symbol (this, gdbarch, name);
13275 if (sym.symbol != NULL)
13276 return sym;
13277 }
13278
13279 return {};
13280 }
13281
13282 /* See language.h. */
13283
13284 int parser (struct parser_state *ps) const override
13285 {
13286 warnings_issued = 0;
13287 return ada_parse (ps);
13288 }
13289
13290 /* See language.h. */
13291
13292 void emitchar (int ch, struct type *chtype,
13293 struct ui_file *stream, int quoter) const override
13294 {
13295 ada_emit_char (ch, chtype, stream, quoter, 1);
13296 }
13297
13298 /* See language.h. */
13299
13300 void printchar (int ch, struct type *chtype,
13301 struct ui_file *stream) const override
13302 {
13303 ada_printchar (ch, chtype, stream);
13304 }
13305
13306 /* See language.h. */
13307
13308 void printstr (struct ui_file *stream, struct type *elttype,
13309 const gdb_byte *string, unsigned int length,
13310 const char *encoding, int force_ellipses,
13311 const struct value_print_options *options) const override
13312 {
13313 ada_printstr (stream, elttype, string, length, encoding,
13314 force_ellipses, options);
13315 }
13316
13317 /* See language.h. */
13318
13319 void print_typedef (struct type *type, struct symbol *new_symbol,
13320 struct ui_file *stream) const override
13321 {
13322 ada_print_typedef (type, new_symbol, stream);
13323 }
13324
13325 /* See language.h. */
13326
13327 bool is_string_type_p (struct type *type) const override
13328 {
13329 return ada_is_string_type (type);
13330 }
13331
13332 /* See language.h. */
13333
13334 const char *struct_too_deep_ellipsis () const override
13335 { return "(...)"; }
13336
13337 /* See language.h. */
13338
13339 bool c_style_arrays_p () const override
13340 { return false; }
13341
13342 /* See language.h. */
13343
13344 bool store_sym_names_in_linkage_form_p () const override
13345 { return true; }
13346
13347 /* See language.h. */
13348
13349 const struct lang_varobj_ops *varobj_ops () const override
13350 { return &ada_varobj_ops; }
13351
13352 protected:
13353 /* See language.h. */
13354
13355 symbol_name_matcher_ftype *get_symbol_name_matcher_inner
13356 (const lookup_name_info &lookup_name) const override
13357 {
13358 return ada_get_symbol_name_matcher (lookup_name);
13359 }
13360 };
13361
13362 /* Single instance of the Ada language class. */
13363
13364 static ada_language ada_language_defn;
13365
13366 /* Command-list for the "set/show ada" prefix command. */
13367 static struct cmd_list_element *set_ada_list;
13368 static struct cmd_list_element *show_ada_list;
13369
13370 static void
13371 initialize_ada_catchpoint_ops (void)
13372 {
13373 struct breakpoint_ops *ops;
13374
13375 initialize_breakpoint_ops ();
13376
13377 ops = &catch_exception_breakpoint_ops;
13378 *ops = bkpt_breakpoint_ops;
13379 ops->allocate_location = allocate_location_exception;
13380 ops->re_set = re_set_exception;
13381 ops->check_status = check_status_exception;
13382 ops->print_it = print_it_exception;
13383 ops->print_one = print_one_exception;
13384 ops->print_mention = print_mention_exception;
13385 ops->print_recreate = print_recreate_exception;
13386
13387 ops = &catch_exception_unhandled_breakpoint_ops;
13388 *ops = bkpt_breakpoint_ops;
13389 ops->allocate_location = allocate_location_exception;
13390 ops->re_set = re_set_exception;
13391 ops->check_status = check_status_exception;
13392 ops->print_it = print_it_exception;
13393 ops->print_one = print_one_exception;
13394 ops->print_mention = print_mention_exception;
13395 ops->print_recreate = print_recreate_exception;
13396
13397 ops = &catch_assert_breakpoint_ops;
13398 *ops = bkpt_breakpoint_ops;
13399 ops->allocate_location = allocate_location_exception;
13400 ops->re_set = re_set_exception;
13401 ops->check_status = check_status_exception;
13402 ops->print_it = print_it_exception;
13403 ops->print_one = print_one_exception;
13404 ops->print_mention = print_mention_exception;
13405 ops->print_recreate = print_recreate_exception;
13406
13407 ops = &catch_handlers_breakpoint_ops;
13408 *ops = bkpt_breakpoint_ops;
13409 ops->allocate_location = allocate_location_exception;
13410 ops->re_set = re_set_exception;
13411 ops->check_status = check_status_exception;
13412 ops->print_it = print_it_exception;
13413 ops->print_one = print_one_exception;
13414 ops->print_mention = print_mention_exception;
13415 ops->print_recreate = print_recreate_exception;
13416 }
13417
13418 /* This module's 'new_objfile' observer. */
13419
13420 static void
13421 ada_new_objfile_observer (struct objfile *objfile)
13422 {
13423 ada_clear_symbol_cache ();
13424 }
13425
13426 /* This module's 'free_objfile' observer. */
13427
13428 static void
13429 ada_free_objfile_observer (struct objfile *objfile)
13430 {
13431 ada_clear_symbol_cache ();
13432 }
13433
13434 void _initialize_ada_language ();
13435 void
13436 _initialize_ada_language ()
13437 {
13438 initialize_ada_catchpoint_ops ();
13439
13440 add_basic_prefix_cmd ("ada", no_class,
13441 _("Prefix command for changing Ada-specific settings."),
13442 &set_ada_list, 0, &setlist);
13443
13444 add_show_prefix_cmd ("ada", no_class,
13445 _("Generic command for showing Ada-specific settings."),
13446 &show_ada_list, 0, &showlist);
13447
13448 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
13449 &trust_pad_over_xvs, _("\
13450 Enable or disable an optimization trusting PAD types over XVS types."), _("\
13451 Show whether an optimization trusting PAD types over XVS types is activated."),
13452 _("\
13453 This is related to the encoding used by the GNAT compiler. The debugger\n\
13454 should normally trust the contents of PAD types, but certain older versions\n\
13455 of GNAT have a bug that sometimes causes the information in the PAD type\n\
13456 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
13457 work around this bug. It is always safe to turn this option \"off\", but\n\
13458 this incurs a slight performance penalty, so it is recommended to NOT change\n\
13459 this option to \"off\" unless necessary."),
13460 NULL, NULL, &set_ada_list, &show_ada_list);
13461
13462 add_setshow_boolean_cmd ("print-signatures", class_vars,
13463 &print_signatures, _("\
13464 Enable or disable the output of formal and return types for functions in the \
13465 overloads selection menu."), _("\
13466 Show whether the output of formal and return types for functions in the \
13467 overloads selection menu is activated."),
13468 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
13469
13470 add_catch_command ("exception", _("\
13471 Catch Ada exceptions, when raised.\n\
13472 Usage: catch exception [ARG] [if CONDITION]\n\
13473 Without any argument, stop when any Ada exception is raised.\n\
13474 If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\
13475 being raised does not have a handler (and will therefore lead to the task's\n\
13476 termination).\n\
13477 Otherwise, the catchpoint only stops when the name of the exception being\n\
13478 raised is the same as ARG.\n\
13479 CONDITION is a boolean expression that is evaluated to see whether the\n\
13480 exception should cause a stop."),
13481 catch_ada_exception_command,
13482 catch_ada_completer,
13483 CATCH_PERMANENT,
13484 CATCH_TEMPORARY);
13485
13486 add_catch_command ("handlers", _("\
13487 Catch Ada exceptions, when handled.\n\
13488 Usage: catch handlers [ARG] [if CONDITION]\n\
13489 Without any argument, stop when any Ada exception is handled.\n\
13490 With an argument, catch only exceptions with the given name.\n\
13491 CONDITION is a boolean expression that is evaluated to see whether the\n\
13492 exception should cause a stop."),
13493 catch_ada_handlers_command,
13494 catch_ada_completer,
13495 CATCH_PERMANENT,
13496 CATCH_TEMPORARY);
13497 add_catch_command ("assert", _("\
13498 Catch failed Ada assertions, when raised.\n\
13499 Usage: catch assert [if CONDITION]\n\
13500 CONDITION is a boolean expression that is evaluated to see whether the\n\
13501 exception should cause a stop."),
13502 catch_assert_command,
13503 NULL,
13504 CATCH_PERMANENT,
13505 CATCH_TEMPORARY);
13506
13507 varsize_limit = 65536;
13508 add_setshow_uinteger_cmd ("varsize-limit", class_support,
13509 &varsize_limit, _("\
13510 Set the maximum number of bytes allowed in a variable-size object."), _("\
13511 Show the maximum number of bytes allowed in a variable-size object."), _("\
13512 Attempts to access an object whose size is not a compile-time constant\n\
13513 and exceeds this limit will cause an error."),
13514 NULL, NULL, &setlist, &showlist);
13515
13516 add_info ("exceptions", info_exceptions_command,
13517 _("\
13518 List all Ada exception names.\n\
13519 Usage: info exceptions [REGEXP]\n\
13520 If a regular expression is passed as an argument, only those matching\n\
13521 the regular expression are listed."));
13522
13523 add_basic_prefix_cmd ("ada", class_maintenance,
13524 _("Set Ada maintenance-related variables."),
13525 &maint_set_ada_cmdlist,
13526 0/*allow-unknown*/, &maintenance_set_cmdlist);
13527
13528 add_show_prefix_cmd ("ada", class_maintenance,
13529 _("Show Ada maintenance-related variables."),
13530 &maint_show_ada_cmdlist,
13531 0/*allow-unknown*/, &maintenance_show_cmdlist);
13532
13533 add_setshow_boolean_cmd
13534 ("ignore-descriptive-types", class_maintenance,
13535 &ada_ignore_descriptive_types_p,
13536 _("Set whether descriptive types generated by GNAT should be ignored."),
13537 _("Show whether descriptive types generated by GNAT should be ignored."),
13538 _("\
13539 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
13540 DWARF attribute."),
13541 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
13542
13543 decoded_names_store = htab_create_alloc (256, htab_hash_string,
13544 htab_eq_string,
13545 NULL, xcalloc, xfree);
13546
13547 /* The ada-lang observers. */
13548 gdb::observers::new_objfile.attach (ada_new_objfile_observer, "ada-lang");
13549 gdb::observers::free_objfile.attach (ada_free_objfile_observer, "ada-lang");
13550 gdb::observers::inferior_exit.attach (ada_inferior_exit, "ada-lang");
13551 }