Remove EVAL_SKIP
[binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2021 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <ctype.h>
23 #include "gdb_regex.h"
24 #include "frame.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcmd.h"
28 #include "expression.h"
29 #include "parser-defs.h"
30 #include "language.h"
31 #include "varobj.h"
32 #include "inferior.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "breakpoint.h"
36 #include "gdbcore.h"
37 #include "hashtab.h"
38 #include "gdb_obstack.h"
39 #include "ada-lang.h"
40 #include "completer.h"
41 #include "ui-out.h"
42 #include "block.h"
43 #include "infcall.h"
44 #include "annotate.h"
45 #include "valprint.h"
46 #include "source.h"
47 #include "observable.h"
48 #include "stack.h"
49 #include "typeprint.h"
50 #include "namespace.h"
51 #include "cli/cli-style.h"
52
53 #include "value.h"
54 #include "mi/mi-common.h"
55 #include "arch-utils.h"
56 #include "cli/cli-utils.h"
57 #include "gdbsupport/function-view.h"
58 #include "gdbsupport/byte-vector.h"
59 #include <algorithm>
60 #include "ada-exp.h"
61
62 /* Define whether or not the C operator '/' truncates towards zero for
63 differently signed operands (truncation direction is undefined in C).
64 Copied from valarith.c. */
65
66 #ifndef TRUNCATION_TOWARDS_ZERO
67 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
68 #endif
69
70 static struct type *desc_base_type (struct type *);
71
72 static struct type *desc_bounds_type (struct type *);
73
74 static struct value *desc_bounds (struct value *);
75
76 static int fat_pntr_bounds_bitpos (struct type *);
77
78 static int fat_pntr_bounds_bitsize (struct type *);
79
80 static struct type *desc_data_target_type (struct type *);
81
82 static struct value *desc_data (struct value *);
83
84 static int fat_pntr_data_bitpos (struct type *);
85
86 static int fat_pntr_data_bitsize (struct type *);
87
88 static struct value *desc_one_bound (struct value *, int, int);
89
90 static int desc_bound_bitpos (struct type *, int, int);
91
92 static int desc_bound_bitsize (struct type *, int, int);
93
94 static struct type *desc_index_type (struct type *, int);
95
96 static int desc_arity (struct type *);
97
98 static int ada_type_match (struct type *, struct type *, int);
99
100 static int ada_args_match (struct symbol *, struct value **, int);
101
102 static struct value *make_array_descriptor (struct type *, struct value *);
103
104 static void ada_add_block_symbols (std::vector<struct block_symbol> &,
105 const struct block *,
106 const lookup_name_info &lookup_name,
107 domain_enum, struct objfile *);
108
109 static void ada_add_all_symbols (std::vector<struct block_symbol> &,
110 const struct block *,
111 const lookup_name_info &lookup_name,
112 domain_enum, int, int *);
113
114 static int is_nonfunction (const std::vector<struct block_symbol> &);
115
116 static void add_defn_to_vec (std::vector<struct block_symbol> &,
117 struct symbol *,
118 const struct block *);
119
120 static int possible_user_operator_p (enum exp_opcode, struct value **);
121
122 static const char *ada_decoded_op_name (enum exp_opcode);
123
124 static int numeric_type_p (struct type *);
125
126 static int integer_type_p (struct type *);
127
128 static int scalar_type_p (struct type *);
129
130 static int discrete_type_p (struct type *);
131
132 static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
133 int, int);
134
135 static struct type *ada_find_parallel_type_with_name (struct type *,
136 const char *);
137
138 static int is_dynamic_field (struct type *, int);
139
140 static struct type *to_fixed_variant_branch_type (struct type *,
141 const gdb_byte *,
142 CORE_ADDR, struct value *);
143
144 static struct type *to_fixed_array_type (struct type *, struct value *, int);
145
146 static struct type *to_fixed_range_type (struct type *, struct value *);
147
148 static struct type *to_static_fixed_type (struct type *);
149 static struct type *static_unwrap_type (struct type *type);
150
151 static struct value *unwrap_value (struct value *);
152
153 static struct type *constrained_packed_array_type (struct type *, long *);
154
155 static struct type *decode_constrained_packed_array_type (struct type *);
156
157 static long decode_packed_array_bitsize (struct type *);
158
159 static struct value *decode_constrained_packed_array (struct value *);
160
161 static int ada_is_unconstrained_packed_array_type (struct type *);
162
163 static struct value *value_subscript_packed (struct value *, int,
164 struct value **);
165
166 static struct value *coerce_unspec_val_to_type (struct value *,
167 struct type *);
168
169 static int lesseq_defined_than (struct symbol *, struct symbol *);
170
171 static int equiv_types (struct type *, struct type *);
172
173 static int is_name_suffix (const char *);
174
175 static int advance_wild_match (const char **, const char *, char);
176
177 static bool wild_match (const char *name, const char *patn);
178
179 static struct value *ada_coerce_ref (struct value *);
180
181 static LONGEST pos_atr (struct value *);
182
183 static struct value *val_atr (struct type *, LONGEST);
184
185 static struct symbol *standard_lookup (const char *, const struct block *,
186 domain_enum);
187
188 static struct value *ada_search_struct_field (const char *, struct value *, int,
189 struct type *);
190
191 static int find_struct_field (const char *, struct type *, int,
192 struct type **, int *, int *, int *, int *);
193
194 static int ada_resolve_function (std::vector<struct block_symbol> &,
195 struct value **, int, const char *,
196 struct type *, int);
197
198 static int ada_is_direct_array_type (struct type *);
199
200 static struct value *ada_index_struct_field (int, struct value *, int,
201 struct type *);
202
203 static void add_component_interval (LONGEST, LONGEST, std::vector<LONGEST> &);
204
205
206 static struct type *ada_find_any_type (const char *name);
207
208 static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
209 (const lookup_name_info &lookup_name);
210
211 \f
212
213 /* The result of a symbol lookup to be stored in our symbol cache. */
214
215 struct cache_entry
216 {
217 /* The name used to perform the lookup. */
218 const char *name;
219 /* The namespace used during the lookup. */
220 domain_enum domain;
221 /* The symbol returned by the lookup, or NULL if no matching symbol
222 was found. */
223 struct symbol *sym;
224 /* The block where the symbol was found, or NULL if no matching
225 symbol was found. */
226 const struct block *block;
227 /* A pointer to the next entry with the same hash. */
228 struct cache_entry *next;
229 };
230
231 /* The Ada symbol cache, used to store the result of Ada-mode symbol
232 lookups in the course of executing the user's commands.
233
234 The cache is implemented using a simple, fixed-sized hash.
235 The size is fixed on the grounds that there are not likely to be
236 all that many symbols looked up during any given session, regardless
237 of the size of the symbol table. If we decide to go to a resizable
238 table, let's just use the stuff from libiberty instead. */
239
240 #define HASH_SIZE 1009
241
242 struct ada_symbol_cache
243 {
244 /* An obstack used to store the entries in our cache. */
245 struct auto_obstack cache_space;
246
247 /* The root of the hash table used to implement our symbol cache. */
248 struct cache_entry *root[HASH_SIZE] {};
249 };
250
251 /* Maximum-sized dynamic type. */
252 static unsigned int varsize_limit;
253
254 static const char ada_completer_word_break_characters[] =
255 #ifdef VMS
256 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
257 #else
258 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
259 #endif
260
261 /* The name of the symbol to use to get the name of the main subprogram. */
262 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
263 = "__gnat_ada_main_program_name";
264
265 /* Limit on the number of warnings to raise per expression evaluation. */
266 static int warning_limit = 2;
267
268 /* Number of warning messages issued; reset to 0 by cleanups after
269 expression evaluation. */
270 static int warnings_issued = 0;
271
272 static const char * const known_runtime_file_name_patterns[] = {
273 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
274 };
275
276 static const char * const known_auxiliary_function_name_patterns[] = {
277 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
278 };
279
280 /* Maintenance-related settings for this module. */
281
282 static struct cmd_list_element *maint_set_ada_cmdlist;
283 static struct cmd_list_element *maint_show_ada_cmdlist;
284
285 /* The "maintenance ada set/show ignore-descriptive-type" value. */
286
287 static bool ada_ignore_descriptive_types_p = false;
288
289 /* Inferior-specific data. */
290
291 /* Per-inferior data for this module. */
292
293 struct ada_inferior_data
294 {
295 /* The ada__tags__type_specific_data type, which is used when decoding
296 tagged types. With older versions of GNAT, this type was directly
297 accessible through a component ("tsd") in the object tag. But this
298 is no longer the case, so we cache it for each inferior. */
299 struct type *tsd_type = nullptr;
300
301 /* The exception_support_info data. This data is used to determine
302 how to implement support for Ada exception catchpoints in a given
303 inferior. */
304 const struct exception_support_info *exception_info = nullptr;
305 };
306
307 /* Our key to this module's inferior data. */
308 static const struct inferior_key<ada_inferior_data> ada_inferior_data;
309
310 /* Return our inferior data for the given inferior (INF).
311
312 This function always returns a valid pointer to an allocated
313 ada_inferior_data structure. If INF's inferior data has not
314 been previously set, this functions creates a new one with all
315 fields set to zero, sets INF's inferior to it, and then returns
316 a pointer to that newly allocated ada_inferior_data. */
317
318 static struct ada_inferior_data *
319 get_ada_inferior_data (struct inferior *inf)
320 {
321 struct ada_inferior_data *data;
322
323 data = ada_inferior_data.get (inf);
324 if (data == NULL)
325 data = ada_inferior_data.emplace (inf);
326
327 return data;
328 }
329
330 /* Perform all necessary cleanups regarding our module's inferior data
331 that is required after the inferior INF just exited. */
332
333 static void
334 ada_inferior_exit (struct inferior *inf)
335 {
336 ada_inferior_data.clear (inf);
337 }
338
339
340 /* program-space-specific data. */
341
342 /* This module's per-program-space data. */
343 struct ada_pspace_data
344 {
345 /* The Ada symbol cache. */
346 std::unique_ptr<ada_symbol_cache> sym_cache;
347 };
348
349 /* Key to our per-program-space data. */
350 static const struct program_space_key<ada_pspace_data> ada_pspace_data_handle;
351
352 /* Return this module's data for the given program space (PSPACE).
353 If not is found, add a zero'ed one now.
354
355 This function always returns a valid object. */
356
357 static struct ada_pspace_data *
358 get_ada_pspace_data (struct program_space *pspace)
359 {
360 struct ada_pspace_data *data;
361
362 data = ada_pspace_data_handle.get (pspace);
363 if (data == NULL)
364 data = ada_pspace_data_handle.emplace (pspace);
365
366 return data;
367 }
368
369 /* Utilities */
370
371 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
372 all typedef layers have been peeled. Otherwise, return TYPE.
373
374 Normally, we really expect a typedef type to only have 1 typedef layer.
375 In other words, we really expect the target type of a typedef type to be
376 a non-typedef type. This is particularly true for Ada units, because
377 the language does not have a typedef vs not-typedef distinction.
378 In that respect, the Ada compiler has been trying to eliminate as many
379 typedef definitions in the debugging information, since they generally
380 do not bring any extra information (we still use typedef under certain
381 circumstances related mostly to the GNAT encoding).
382
383 Unfortunately, we have seen situations where the debugging information
384 generated by the compiler leads to such multiple typedef layers. For
385 instance, consider the following example with stabs:
386
387 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
388 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
389
390 This is an error in the debugging information which causes type
391 pck__float_array___XUP to be defined twice, and the second time,
392 it is defined as a typedef of a typedef.
393
394 This is on the fringe of legality as far as debugging information is
395 concerned, and certainly unexpected. But it is easy to handle these
396 situations correctly, so we can afford to be lenient in this case. */
397
398 static struct type *
399 ada_typedef_target_type (struct type *type)
400 {
401 while (type->code () == TYPE_CODE_TYPEDEF)
402 type = TYPE_TARGET_TYPE (type);
403 return type;
404 }
405
406 /* Given DECODED_NAME a string holding a symbol name in its
407 decoded form (ie using the Ada dotted notation), returns
408 its unqualified name. */
409
410 static const char *
411 ada_unqualified_name (const char *decoded_name)
412 {
413 const char *result;
414
415 /* If the decoded name starts with '<', it means that the encoded
416 name does not follow standard naming conventions, and thus that
417 it is not your typical Ada symbol name. Trying to unqualify it
418 is therefore pointless and possibly erroneous. */
419 if (decoded_name[0] == '<')
420 return decoded_name;
421
422 result = strrchr (decoded_name, '.');
423 if (result != NULL)
424 result++; /* Skip the dot... */
425 else
426 result = decoded_name;
427
428 return result;
429 }
430
431 /* Return a string starting with '<', followed by STR, and '>'. */
432
433 static std::string
434 add_angle_brackets (const char *str)
435 {
436 return string_printf ("<%s>", str);
437 }
438
439 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
440 suffix of FIELD_NAME beginning "___". */
441
442 static int
443 field_name_match (const char *field_name, const char *target)
444 {
445 int len = strlen (target);
446
447 return
448 (strncmp (field_name, target, len) == 0
449 && (field_name[len] == '\0'
450 || (startswith (field_name + len, "___")
451 && strcmp (field_name + strlen (field_name) - 6,
452 "___XVN") != 0)));
453 }
454
455
456 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
457 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
458 and return its index. This function also handles fields whose name
459 have ___ suffixes because the compiler sometimes alters their name
460 by adding such a suffix to represent fields with certain constraints.
461 If the field could not be found, return a negative number if
462 MAYBE_MISSING is set. Otherwise raise an error. */
463
464 int
465 ada_get_field_index (const struct type *type, const char *field_name,
466 int maybe_missing)
467 {
468 int fieldno;
469 struct type *struct_type = check_typedef ((struct type *) type);
470
471 for (fieldno = 0; fieldno < struct_type->num_fields (); fieldno++)
472 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
473 return fieldno;
474
475 if (!maybe_missing)
476 error (_("Unable to find field %s in struct %s. Aborting"),
477 field_name, struct_type->name ());
478
479 return -1;
480 }
481
482 /* The length of the prefix of NAME prior to any "___" suffix. */
483
484 int
485 ada_name_prefix_len (const char *name)
486 {
487 if (name == NULL)
488 return 0;
489 else
490 {
491 const char *p = strstr (name, "___");
492
493 if (p == NULL)
494 return strlen (name);
495 else
496 return p - name;
497 }
498 }
499
500 /* Return non-zero if SUFFIX is a suffix of STR.
501 Return zero if STR is null. */
502
503 static int
504 is_suffix (const char *str, const char *suffix)
505 {
506 int len1, len2;
507
508 if (str == NULL)
509 return 0;
510 len1 = strlen (str);
511 len2 = strlen (suffix);
512 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
513 }
514
515 /* The contents of value VAL, treated as a value of type TYPE. The
516 result is an lval in memory if VAL is. */
517
518 static struct value *
519 coerce_unspec_val_to_type (struct value *val, struct type *type)
520 {
521 type = ada_check_typedef (type);
522 if (value_type (val) == type)
523 return val;
524 else
525 {
526 struct value *result;
527
528 /* Make sure that the object size is not unreasonable before
529 trying to allocate some memory for it. */
530 ada_ensure_varsize_limit (type);
531
532 if (value_optimized_out (val))
533 result = allocate_optimized_out_value (type);
534 else if (value_lazy (val)
535 /* Be careful not to make a lazy not_lval value. */
536 || (VALUE_LVAL (val) != not_lval
537 && TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val))))
538 result = allocate_value_lazy (type);
539 else
540 {
541 result = allocate_value (type);
542 value_contents_copy (result, 0, val, 0, TYPE_LENGTH (type));
543 }
544 set_value_component_location (result, val);
545 set_value_bitsize (result, value_bitsize (val));
546 set_value_bitpos (result, value_bitpos (val));
547 if (VALUE_LVAL (result) == lval_memory)
548 set_value_address (result, value_address (val));
549 return result;
550 }
551 }
552
553 static const gdb_byte *
554 cond_offset_host (const gdb_byte *valaddr, long offset)
555 {
556 if (valaddr == NULL)
557 return NULL;
558 else
559 return valaddr + offset;
560 }
561
562 static CORE_ADDR
563 cond_offset_target (CORE_ADDR address, long offset)
564 {
565 if (address == 0)
566 return 0;
567 else
568 return address + offset;
569 }
570
571 /* Issue a warning (as for the definition of warning in utils.c, but
572 with exactly one argument rather than ...), unless the limit on the
573 number of warnings has passed during the evaluation of the current
574 expression. */
575
576 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
577 provided by "complaint". */
578 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
579
580 static void
581 lim_warning (const char *format, ...)
582 {
583 va_list args;
584
585 va_start (args, format);
586 warnings_issued += 1;
587 if (warnings_issued <= warning_limit)
588 vwarning (format, args);
589
590 va_end (args);
591 }
592
593 /* Issue an error if the size of an object of type T is unreasonable,
594 i.e. if it would be a bad idea to allocate a value of this type in
595 GDB. */
596
597 void
598 ada_ensure_varsize_limit (const struct type *type)
599 {
600 if (TYPE_LENGTH (type) > varsize_limit)
601 error (_("object size is larger than varsize-limit"));
602 }
603
604 /* Maximum value of a SIZE-byte signed integer type. */
605 static LONGEST
606 max_of_size (int size)
607 {
608 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
609
610 return top_bit | (top_bit - 1);
611 }
612
613 /* Minimum value of a SIZE-byte signed integer type. */
614 static LONGEST
615 min_of_size (int size)
616 {
617 return -max_of_size (size) - 1;
618 }
619
620 /* Maximum value of a SIZE-byte unsigned integer type. */
621 static ULONGEST
622 umax_of_size (int size)
623 {
624 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
625
626 return top_bit | (top_bit - 1);
627 }
628
629 /* Maximum value of integral type T, as a signed quantity. */
630 static LONGEST
631 max_of_type (struct type *t)
632 {
633 if (t->is_unsigned ())
634 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
635 else
636 return max_of_size (TYPE_LENGTH (t));
637 }
638
639 /* Minimum value of integral type T, as a signed quantity. */
640 static LONGEST
641 min_of_type (struct type *t)
642 {
643 if (t->is_unsigned ())
644 return 0;
645 else
646 return min_of_size (TYPE_LENGTH (t));
647 }
648
649 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
650 LONGEST
651 ada_discrete_type_high_bound (struct type *type)
652 {
653 type = resolve_dynamic_type (type, {}, 0);
654 switch (type->code ())
655 {
656 case TYPE_CODE_RANGE:
657 {
658 const dynamic_prop &high = type->bounds ()->high;
659
660 if (high.kind () == PROP_CONST)
661 return high.const_val ();
662 else
663 {
664 gdb_assert (high.kind () == PROP_UNDEFINED);
665
666 /* This happens when trying to evaluate a type's dynamic bound
667 without a live target. There is nothing relevant for us to
668 return here, so return 0. */
669 return 0;
670 }
671 }
672 case TYPE_CODE_ENUM:
673 return TYPE_FIELD_ENUMVAL (type, type->num_fields () - 1);
674 case TYPE_CODE_BOOL:
675 return 1;
676 case TYPE_CODE_CHAR:
677 case TYPE_CODE_INT:
678 return max_of_type (type);
679 default:
680 error (_("Unexpected type in ada_discrete_type_high_bound."));
681 }
682 }
683
684 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
685 LONGEST
686 ada_discrete_type_low_bound (struct type *type)
687 {
688 type = resolve_dynamic_type (type, {}, 0);
689 switch (type->code ())
690 {
691 case TYPE_CODE_RANGE:
692 {
693 const dynamic_prop &low = type->bounds ()->low;
694
695 if (low.kind () == PROP_CONST)
696 return low.const_val ();
697 else
698 {
699 gdb_assert (low.kind () == PROP_UNDEFINED);
700
701 /* This happens when trying to evaluate a type's dynamic bound
702 without a live target. There is nothing relevant for us to
703 return here, so return 0. */
704 return 0;
705 }
706 }
707 case TYPE_CODE_ENUM:
708 return TYPE_FIELD_ENUMVAL (type, 0);
709 case TYPE_CODE_BOOL:
710 return 0;
711 case TYPE_CODE_CHAR:
712 case TYPE_CODE_INT:
713 return min_of_type (type);
714 default:
715 error (_("Unexpected type in ada_discrete_type_low_bound."));
716 }
717 }
718
719 /* The identity on non-range types. For range types, the underlying
720 non-range scalar type. */
721
722 static struct type *
723 get_base_type (struct type *type)
724 {
725 while (type != NULL && type->code () == TYPE_CODE_RANGE)
726 {
727 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
728 return type;
729 type = TYPE_TARGET_TYPE (type);
730 }
731 return type;
732 }
733
734 /* Return a decoded version of the given VALUE. This means returning
735 a value whose type is obtained by applying all the GNAT-specific
736 encodings, making the resulting type a static but standard description
737 of the initial type. */
738
739 struct value *
740 ada_get_decoded_value (struct value *value)
741 {
742 struct type *type = ada_check_typedef (value_type (value));
743
744 if (ada_is_array_descriptor_type (type)
745 || (ada_is_constrained_packed_array_type (type)
746 && type->code () != TYPE_CODE_PTR))
747 {
748 if (type->code () == TYPE_CODE_TYPEDEF) /* array access type. */
749 value = ada_coerce_to_simple_array_ptr (value);
750 else
751 value = ada_coerce_to_simple_array (value);
752 }
753 else
754 value = ada_to_fixed_value (value);
755
756 return value;
757 }
758
759 /* Same as ada_get_decoded_value, but with the given TYPE.
760 Because there is no associated actual value for this type,
761 the resulting type might be a best-effort approximation in
762 the case of dynamic types. */
763
764 struct type *
765 ada_get_decoded_type (struct type *type)
766 {
767 type = to_static_fixed_type (type);
768 if (ada_is_constrained_packed_array_type (type))
769 type = ada_coerce_to_simple_array_type (type);
770 return type;
771 }
772
773 \f
774
775 /* Language Selection */
776
777 /* If the main program is in Ada, return language_ada, otherwise return LANG
778 (the main program is in Ada iif the adainit symbol is found). */
779
780 static enum language
781 ada_update_initial_language (enum language lang)
782 {
783 if (lookup_minimal_symbol ("adainit", NULL, NULL).minsym != NULL)
784 return language_ada;
785
786 return lang;
787 }
788
789 /* If the main procedure is written in Ada, then return its name.
790 The result is good until the next call. Return NULL if the main
791 procedure doesn't appear to be in Ada. */
792
793 char *
794 ada_main_name (void)
795 {
796 struct bound_minimal_symbol msym;
797 static gdb::unique_xmalloc_ptr<char> main_program_name;
798
799 /* For Ada, the name of the main procedure is stored in a specific
800 string constant, generated by the binder. Look for that symbol,
801 extract its address, and then read that string. If we didn't find
802 that string, then most probably the main procedure is not written
803 in Ada. */
804 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
805
806 if (msym.minsym != NULL)
807 {
808 CORE_ADDR main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
809 if (main_program_name_addr == 0)
810 error (_("Invalid address for Ada main program name."));
811
812 main_program_name = target_read_string (main_program_name_addr, 1024);
813 return main_program_name.get ();
814 }
815
816 /* The main procedure doesn't seem to be in Ada. */
817 return NULL;
818 }
819 \f
820 /* Symbols */
821
822 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
823 of NULLs. */
824
825 const struct ada_opname_map ada_opname_table[] = {
826 {"Oadd", "\"+\"", BINOP_ADD},
827 {"Osubtract", "\"-\"", BINOP_SUB},
828 {"Omultiply", "\"*\"", BINOP_MUL},
829 {"Odivide", "\"/\"", BINOP_DIV},
830 {"Omod", "\"mod\"", BINOP_MOD},
831 {"Orem", "\"rem\"", BINOP_REM},
832 {"Oexpon", "\"**\"", BINOP_EXP},
833 {"Olt", "\"<\"", BINOP_LESS},
834 {"Ole", "\"<=\"", BINOP_LEQ},
835 {"Ogt", "\">\"", BINOP_GTR},
836 {"Oge", "\">=\"", BINOP_GEQ},
837 {"Oeq", "\"=\"", BINOP_EQUAL},
838 {"One", "\"/=\"", BINOP_NOTEQUAL},
839 {"Oand", "\"and\"", BINOP_BITWISE_AND},
840 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
841 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
842 {"Oconcat", "\"&\"", BINOP_CONCAT},
843 {"Oabs", "\"abs\"", UNOP_ABS},
844 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
845 {"Oadd", "\"+\"", UNOP_PLUS},
846 {"Osubtract", "\"-\"", UNOP_NEG},
847 {NULL, NULL}
848 };
849
850 /* The "encoded" form of DECODED, according to GNAT conventions. If
851 THROW_ERRORS, throw an error if invalid operator name is found.
852 Otherwise, return the empty string in that case. */
853
854 static std::string
855 ada_encode_1 (const char *decoded, bool throw_errors)
856 {
857 if (decoded == NULL)
858 return {};
859
860 std::string encoding_buffer;
861 for (const char *p = decoded; *p != '\0'; p += 1)
862 {
863 if (*p == '.')
864 encoding_buffer.append ("__");
865 else if (*p == '"')
866 {
867 const struct ada_opname_map *mapping;
868
869 for (mapping = ada_opname_table;
870 mapping->encoded != NULL
871 && !startswith (p, mapping->decoded); mapping += 1)
872 ;
873 if (mapping->encoded == NULL)
874 {
875 if (throw_errors)
876 error (_("invalid Ada operator name: %s"), p);
877 else
878 return {};
879 }
880 encoding_buffer.append (mapping->encoded);
881 break;
882 }
883 else
884 encoding_buffer.push_back (*p);
885 }
886
887 return encoding_buffer;
888 }
889
890 /* The "encoded" form of DECODED, according to GNAT conventions. */
891
892 std::string
893 ada_encode (const char *decoded)
894 {
895 return ada_encode_1 (decoded, true);
896 }
897
898 /* Return NAME folded to lower case, or, if surrounded by single
899 quotes, unfolded, but with the quotes stripped away. Result good
900 to next call. */
901
902 static const char *
903 ada_fold_name (gdb::string_view name)
904 {
905 static std::string fold_storage;
906
907 if (!name.empty () && name[0] == '\'')
908 fold_storage = gdb::to_string (name.substr (1, name.size () - 2));
909 else
910 {
911 fold_storage = gdb::to_string (name);
912 for (int i = 0; i < name.size (); i += 1)
913 fold_storage[i] = tolower (fold_storage[i]);
914 }
915
916 return fold_storage.c_str ();
917 }
918
919 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
920
921 static int
922 is_lower_alphanum (const char c)
923 {
924 return (isdigit (c) || (isalpha (c) && islower (c)));
925 }
926
927 /* ENCODED is the linkage name of a symbol and LEN contains its length.
928 This function saves in LEN the length of that same symbol name but
929 without either of these suffixes:
930 . .{DIGIT}+
931 . ${DIGIT}+
932 . ___{DIGIT}+
933 . __{DIGIT}+.
934
935 These are suffixes introduced by the compiler for entities such as
936 nested subprogram for instance, in order to avoid name clashes.
937 They do not serve any purpose for the debugger. */
938
939 static void
940 ada_remove_trailing_digits (const char *encoded, int *len)
941 {
942 if (*len > 1 && isdigit (encoded[*len - 1]))
943 {
944 int i = *len - 2;
945
946 while (i > 0 && isdigit (encoded[i]))
947 i--;
948 if (i >= 0 && encoded[i] == '.')
949 *len = i;
950 else if (i >= 0 && encoded[i] == '$')
951 *len = i;
952 else if (i >= 2 && startswith (encoded + i - 2, "___"))
953 *len = i - 2;
954 else if (i >= 1 && startswith (encoded + i - 1, "__"))
955 *len = i - 1;
956 }
957 }
958
959 /* Remove the suffix introduced by the compiler for protected object
960 subprograms. */
961
962 static void
963 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
964 {
965 /* Remove trailing N. */
966
967 /* Protected entry subprograms are broken into two
968 separate subprograms: The first one is unprotected, and has
969 a 'N' suffix; the second is the protected version, and has
970 the 'P' suffix. The second calls the first one after handling
971 the protection. Since the P subprograms are internally generated,
972 we leave these names undecoded, giving the user a clue that this
973 entity is internal. */
974
975 if (*len > 1
976 && encoded[*len - 1] == 'N'
977 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
978 *len = *len - 1;
979 }
980
981 /* If ENCODED follows the GNAT entity encoding conventions, then return
982 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
983 replaced by ENCODED. */
984
985 std::string
986 ada_decode (const char *encoded)
987 {
988 int i, j;
989 int len0;
990 const char *p;
991 int at_start_name;
992 std::string decoded;
993
994 /* With function descriptors on PPC64, the value of a symbol named
995 ".FN", if it exists, is the entry point of the function "FN". */
996 if (encoded[0] == '.')
997 encoded += 1;
998
999 /* The name of the Ada main procedure starts with "_ada_".
1000 This prefix is not part of the decoded name, so skip this part
1001 if we see this prefix. */
1002 if (startswith (encoded, "_ada_"))
1003 encoded += 5;
1004
1005 /* If the name starts with '_', then it is not a properly encoded
1006 name, so do not attempt to decode it. Similarly, if the name
1007 starts with '<', the name should not be decoded. */
1008 if (encoded[0] == '_' || encoded[0] == '<')
1009 goto Suppress;
1010
1011 len0 = strlen (encoded);
1012
1013 ada_remove_trailing_digits (encoded, &len0);
1014 ada_remove_po_subprogram_suffix (encoded, &len0);
1015
1016 /* Remove the ___X.* suffix if present. Do not forget to verify that
1017 the suffix is located before the current "end" of ENCODED. We want
1018 to avoid re-matching parts of ENCODED that have previously been
1019 marked as discarded (by decrementing LEN0). */
1020 p = strstr (encoded, "___");
1021 if (p != NULL && p - encoded < len0 - 3)
1022 {
1023 if (p[3] == 'X')
1024 len0 = p - encoded;
1025 else
1026 goto Suppress;
1027 }
1028
1029 /* Remove any trailing TKB suffix. It tells us that this symbol
1030 is for the body of a task, but that information does not actually
1031 appear in the decoded name. */
1032
1033 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1034 len0 -= 3;
1035
1036 /* Remove any trailing TB suffix. The TB suffix is slightly different
1037 from the TKB suffix because it is used for non-anonymous task
1038 bodies. */
1039
1040 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1041 len0 -= 2;
1042
1043 /* Remove trailing "B" suffixes. */
1044 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1045
1046 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1047 len0 -= 1;
1048
1049 /* Make decoded big enough for possible expansion by operator name. */
1050
1051 decoded.resize (2 * len0 + 1, 'X');
1052
1053 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1054
1055 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1056 {
1057 i = len0 - 2;
1058 while ((i >= 0 && isdigit (encoded[i]))
1059 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1060 i -= 1;
1061 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1062 len0 = i - 1;
1063 else if (encoded[i] == '$')
1064 len0 = i;
1065 }
1066
1067 /* The first few characters that are not alphabetic are not part
1068 of any encoding we use, so we can copy them over verbatim. */
1069
1070 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1071 decoded[j] = encoded[i];
1072
1073 at_start_name = 1;
1074 while (i < len0)
1075 {
1076 /* Is this a symbol function? */
1077 if (at_start_name && encoded[i] == 'O')
1078 {
1079 int k;
1080
1081 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1082 {
1083 int op_len = strlen (ada_opname_table[k].encoded);
1084 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1085 op_len - 1) == 0)
1086 && !isalnum (encoded[i + op_len]))
1087 {
1088 strcpy (&decoded.front() + j, ada_opname_table[k].decoded);
1089 at_start_name = 0;
1090 i += op_len;
1091 j += strlen (ada_opname_table[k].decoded);
1092 break;
1093 }
1094 }
1095 if (ada_opname_table[k].encoded != NULL)
1096 continue;
1097 }
1098 at_start_name = 0;
1099
1100 /* Replace "TK__" with "__", which will eventually be translated
1101 into "." (just below). */
1102
1103 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1104 i += 2;
1105
1106 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1107 be translated into "." (just below). These are internal names
1108 generated for anonymous blocks inside which our symbol is nested. */
1109
1110 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1111 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1112 && isdigit (encoded [i+4]))
1113 {
1114 int k = i + 5;
1115
1116 while (k < len0 && isdigit (encoded[k]))
1117 k++; /* Skip any extra digit. */
1118
1119 /* Double-check that the "__B_{DIGITS}+" sequence we found
1120 is indeed followed by "__". */
1121 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1122 i = k;
1123 }
1124
1125 /* Remove _E{DIGITS}+[sb] */
1126
1127 /* Just as for protected object subprograms, there are 2 categories
1128 of subprograms created by the compiler for each entry. The first
1129 one implements the actual entry code, and has a suffix following
1130 the convention above; the second one implements the barrier and
1131 uses the same convention as above, except that the 'E' is replaced
1132 by a 'B'.
1133
1134 Just as above, we do not decode the name of barrier functions
1135 to give the user a clue that the code he is debugging has been
1136 internally generated. */
1137
1138 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1139 && isdigit (encoded[i+2]))
1140 {
1141 int k = i + 3;
1142
1143 while (k < len0 && isdigit (encoded[k]))
1144 k++;
1145
1146 if (k < len0
1147 && (encoded[k] == 'b' || encoded[k] == 's'))
1148 {
1149 k++;
1150 /* Just as an extra precaution, make sure that if this
1151 suffix is followed by anything else, it is a '_'.
1152 Otherwise, we matched this sequence by accident. */
1153 if (k == len0
1154 || (k < len0 && encoded[k] == '_'))
1155 i = k;
1156 }
1157 }
1158
1159 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1160 the GNAT front-end in protected object subprograms. */
1161
1162 if (i < len0 + 3
1163 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1164 {
1165 /* Backtrack a bit up until we reach either the begining of
1166 the encoded name, or "__". Make sure that we only find
1167 digits or lowercase characters. */
1168 const char *ptr = encoded + i - 1;
1169
1170 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1171 ptr--;
1172 if (ptr < encoded
1173 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1174 i++;
1175 }
1176
1177 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1178 {
1179 /* This is a X[bn]* sequence not separated from the previous
1180 part of the name with a non-alpha-numeric character (in other
1181 words, immediately following an alpha-numeric character), then
1182 verify that it is placed at the end of the encoded name. If
1183 not, then the encoding is not valid and we should abort the
1184 decoding. Otherwise, just skip it, it is used in body-nested
1185 package names. */
1186 do
1187 i += 1;
1188 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1189 if (i < len0)
1190 goto Suppress;
1191 }
1192 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1193 {
1194 /* Replace '__' by '.'. */
1195 decoded[j] = '.';
1196 at_start_name = 1;
1197 i += 2;
1198 j += 1;
1199 }
1200 else
1201 {
1202 /* It's a character part of the decoded name, so just copy it
1203 over. */
1204 decoded[j] = encoded[i];
1205 i += 1;
1206 j += 1;
1207 }
1208 }
1209 decoded.resize (j);
1210
1211 /* Decoded names should never contain any uppercase character.
1212 Double-check this, and abort the decoding if we find one. */
1213
1214 for (i = 0; i < decoded.length(); ++i)
1215 if (isupper (decoded[i]) || decoded[i] == ' ')
1216 goto Suppress;
1217
1218 return decoded;
1219
1220 Suppress:
1221 if (encoded[0] == '<')
1222 decoded = encoded;
1223 else
1224 decoded = '<' + std::string(encoded) + '>';
1225 return decoded;
1226
1227 }
1228
1229 /* Table for keeping permanent unique copies of decoded names. Once
1230 allocated, names in this table are never released. While this is a
1231 storage leak, it should not be significant unless there are massive
1232 changes in the set of decoded names in successive versions of a
1233 symbol table loaded during a single session. */
1234 static struct htab *decoded_names_store;
1235
1236 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1237 in the language-specific part of GSYMBOL, if it has not been
1238 previously computed. Tries to save the decoded name in the same
1239 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1240 in any case, the decoded symbol has a lifetime at least that of
1241 GSYMBOL).
1242 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1243 const, but nevertheless modified to a semantically equivalent form
1244 when a decoded name is cached in it. */
1245
1246 const char *
1247 ada_decode_symbol (const struct general_symbol_info *arg)
1248 {
1249 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1250 const char **resultp =
1251 &gsymbol->language_specific.demangled_name;
1252
1253 if (!gsymbol->ada_mangled)
1254 {
1255 std::string decoded = ada_decode (gsymbol->linkage_name ());
1256 struct obstack *obstack = gsymbol->language_specific.obstack;
1257
1258 gsymbol->ada_mangled = 1;
1259
1260 if (obstack != NULL)
1261 *resultp = obstack_strdup (obstack, decoded.c_str ());
1262 else
1263 {
1264 /* Sometimes, we can't find a corresponding objfile, in
1265 which case, we put the result on the heap. Since we only
1266 decode when needed, we hope this usually does not cause a
1267 significant memory leak (FIXME). */
1268
1269 char **slot = (char **) htab_find_slot (decoded_names_store,
1270 decoded.c_str (), INSERT);
1271
1272 if (*slot == NULL)
1273 *slot = xstrdup (decoded.c_str ());
1274 *resultp = *slot;
1275 }
1276 }
1277
1278 return *resultp;
1279 }
1280
1281 static char *
1282 ada_la_decode (const char *encoded, int options)
1283 {
1284 return xstrdup (ada_decode (encoded).c_str ());
1285 }
1286
1287 \f
1288
1289 /* Arrays */
1290
1291 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1292 generated by the GNAT compiler to describe the index type used
1293 for each dimension of an array, check whether it follows the latest
1294 known encoding. If not, fix it up to conform to the latest encoding.
1295 Otherwise, do nothing. This function also does nothing if
1296 INDEX_DESC_TYPE is NULL.
1297
1298 The GNAT encoding used to describe the array index type evolved a bit.
1299 Initially, the information would be provided through the name of each
1300 field of the structure type only, while the type of these fields was
1301 described as unspecified and irrelevant. The debugger was then expected
1302 to perform a global type lookup using the name of that field in order
1303 to get access to the full index type description. Because these global
1304 lookups can be very expensive, the encoding was later enhanced to make
1305 the global lookup unnecessary by defining the field type as being
1306 the full index type description.
1307
1308 The purpose of this routine is to allow us to support older versions
1309 of the compiler by detecting the use of the older encoding, and by
1310 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1311 we essentially replace each field's meaningless type by the associated
1312 index subtype). */
1313
1314 void
1315 ada_fixup_array_indexes_type (struct type *index_desc_type)
1316 {
1317 int i;
1318
1319 if (index_desc_type == NULL)
1320 return;
1321 gdb_assert (index_desc_type->num_fields () > 0);
1322
1323 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1324 to check one field only, no need to check them all). If not, return
1325 now.
1326
1327 If our INDEX_DESC_TYPE was generated using the older encoding,
1328 the field type should be a meaningless integer type whose name
1329 is not equal to the field name. */
1330 if (index_desc_type->field (0).type ()->name () != NULL
1331 && strcmp (index_desc_type->field (0).type ()->name (),
1332 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1333 return;
1334
1335 /* Fixup each field of INDEX_DESC_TYPE. */
1336 for (i = 0; i < index_desc_type->num_fields (); i++)
1337 {
1338 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1339 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1340
1341 if (raw_type)
1342 index_desc_type->field (i).set_type (raw_type);
1343 }
1344 }
1345
1346 /* The desc_* routines return primitive portions of array descriptors
1347 (fat pointers). */
1348
1349 /* The descriptor or array type, if any, indicated by TYPE; removes
1350 level of indirection, if needed. */
1351
1352 static struct type *
1353 desc_base_type (struct type *type)
1354 {
1355 if (type == NULL)
1356 return NULL;
1357 type = ada_check_typedef (type);
1358 if (type->code () == TYPE_CODE_TYPEDEF)
1359 type = ada_typedef_target_type (type);
1360
1361 if (type != NULL
1362 && (type->code () == TYPE_CODE_PTR
1363 || type->code () == TYPE_CODE_REF))
1364 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1365 else
1366 return type;
1367 }
1368
1369 /* True iff TYPE indicates a "thin" array pointer type. */
1370
1371 static int
1372 is_thin_pntr (struct type *type)
1373 {
1374 return
1375 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1376 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1377 }
1378
1379 /* The descriptor type for thin pointer type TYPE. */
1380
1381 static struct type *
1382 thin_descriptor_type (struct type *type)
1383 {
1384 struct type *base_type = desc_base_type (type);
1385
1386 if (base_type == NULL)
1387 return NULL;
1388 if (is_suffix (ada_type_name (base_type), "___XVE"))
1389 return base_type;
1390 else
1391 {
1392 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1393
1394 if (alt_type == NULL)
1395 return base_type;
1396 else
1397 return alt_type;
1398 }
1399 }
1400
1401 /* A pointer to the array data for thin-pointer value VAL. */
1402
1403 static struct value *
1404 thin_data_pntr (struct value *val)
1405 {
1406 struct type *type = ada_check_typedef (value_type (val));
1407 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1408
1409 data_type = lookup_pointer_type (data_type);
1410
1411 if (type->code () == TYPE_CODE_PTR)
1412 return value_cast (data_type, value_copy (val));
1413 else
1414 return value_from_longest (data_type, value_address (val));
1415 }
1416
1417 /* True iff TYPE indicates a "thick" array pointer type. */
1418
1419 static int
1420 is_thick_pntr (struct type *type)
1421 {
1422 type = desc_base_type (type);
1423 return (type != NULL && type->code () == TYPE_CODE_STRUCT
1424 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1425 }
1426
1427 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1428 pointer to one, the type of its bounds data; otherwise, NULL. */
1429
1430 static struct type *
1431 desc_bounds_type (struct type *type)
1432 {
1433 struct type *r;
1434
1435 type = desc_base_type (type);
1436
1437 if (type == NULL)
1438 return NULL;
1439 else if (is_thin_pntr (type))
1440 {
1441 type = thin_descriptor_type (type);
1442 if (type == NULL)
1443 return NULL;
1444 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1445 if (r != NULL)
1446 return ada_check_typedef (r);
1447 }
1448 else if (type->code () == TYPE_CODE_STRUCT)
1449 {
1450 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1451 if (r != NULL)
1452 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1453 }
1454 return NULL;
1455 }
1456
1457 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1458 one, a pointer to its bounds data. Otherwise NULL. */
1459
1460 static struct value *
1461 desc_bounds (struct value *arr)
1462 {
1463 struct type *type = ada_check_typedef (value_type (arr));
1464
1465 if (is_thin_pntr (type))
1466 {
1467 struct type *bounds_type =
1468 desc_bounds_type (thin_descriptor_type (type));
1469 LONGEST addr;
1470
1471 if (bounds_type == NULL)
1472 error (_("Bad GNAT array descriptor"));
1473
1474 /* NOTE: The following calculation is not really kosher, but
1475 since desc_type is an XVE-encoded type (and shouldn't be),
1476 the correct calculation is a real pain. FIXME (and fix GCC). */
1477 if (type->code () == TYPE_CODE_PTR)
1478 addr = value_as_long (arr);
1479 else
1480 addr = value_address (arr);
1481
1482 return
1483 value_from_longest (lookup_pointer_type (bounds_type),
1484 addr - TYPE_LENGTH (bounds_type));
1485 }
1486
1487 else if (is_thick_pntr (type))
1488 {
1489 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1490 _("Bad GNAT array descriptor"));
1491 struct type *p_bounds_type = value_type (p_bounds);
1492
1493 if (p_bounds_type
1494 && p_bounds_type->code () == TYPE_CODE_PTR)
1495 {
1496 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1497
1498 if (target_type->is_stub ())
1499 p_bounds = value_cast (lookup_pointer_type
1500 (ada_check_typedef (target_type)),
1501 p_bounds);
1502 }
1503 else
1504 error (_("Bad GNAT array descriptor"));
1505
1506 return p_bounds;
1507 }
1508 else
1509 return NULL;
1510 }
1511
1512 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1513 position of the field containing the address of the bounds data. */
1514
1515 static int
1516 fat_pntr_bounds_bitpos (struct type *type)
1517 {
1518 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1519 }
1520
1521 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1522 size of the field containing the address of the bounds data. */
1523
1524 static int
1525 fat_pntr_bounds_bitsize (struct type *type)
1526 {
1527 type = desc_base_type (type);
1528
1529 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1530 return TYPE_FIELD_BITSIZE (type, 1);
1531 else
1532 return 8 * TYPE_LENGTH (ada_check_typedef (type->field (1).type ()));
1533 }
1534
1535 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1536 pointer to one, the type of its array data (a array-with-no-bounds type);
1537 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1538 data. */
1539
1540 static struct type *
1541 desc_data_target_type (struct type *type)
1542 {
1543 type = desc_base_type (type);
1544
1545 /* NOTE: The following is bogus; see comment in desc_bounds. */
1546 if (is_thin_pntr (type))
1547 return desc_base_type (thin_descriptor_type (type)->field (1).type ());
1548 else if (is_thick_pntr (type))
1549 {
1550 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1551
1552 if (data_type
1553 && ada_check_typedef (data_type)->code () == TYPE_CODE_PTR)
1554 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1555 }
1556
1557 return NULL;
1558 }
1559
1560 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1561 its array data. */
1562
1563 static struct value *
1564 desc_data (struct value *arr)
1565 {
1566 struct type *type = value_type (arr);
1567
1568 if (is_thin_pntr (type))
1569 return thin_data_pntr (arr);
1570 else if (is_thick_pntr (type))
1571 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1572 _("Bad GNAT array descriptor"));
1573 else
1574 return NULL;
1575 }
1576
1577
1578 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1579 position of the field containing the address of the data. */
1580
1581 static int
1582 fat_pntr_data_bitpos (struct type *type)
1583 {
1584 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1585 }
1586
1587 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1588 size of the field containing the address of the data. */
1589
1590 static int
1591 fat_pntr_data_bitsize (struct type *type)
1592 {
1593 type = desc_base_type (type);
1594
1595 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1596 return TYPE_FIELD_BITSIZE (type, 0);
1597 else
1598 return TARGET_CHAR_BIT * TYPE_LENGTH (type->field (0).type ());
1599 }
1600
1601 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1602 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1603 bound, if WHICH is 1. The first bound is I=1. */
1604
1605 static struct value *
1606 desc_one_bound (struct value *bounds, int i, int which)
1607 {
1608 char bound_name[20];
1609 xsnprintf (bound_name, sizeof (bound_name), "%cB%d",
1610 which ? 'U' : 'L', i - 1);
1611 return value_struct_elt (&bounds, NULL, bound_name, NULL,
1612 _("Bad GNAT array descriptor bounds"));
1613 }
1614
1615 /* If BOUNDS is an array-bounds structure type, return the bit position
1616 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1617 bound, if WHICH is 1. The first bound is I=1. */
1618
1619 static int
1620 desc_bound_bitpos (struct type *type, int i, int which)
1621 {
1622 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1623 }
1624
1625 /* If BOUNDS is an array-bounds structure type, return the bit field size
1626 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1627 bound, if WHICH is 1. The first bound is I=1. */
1628
1629 static int
1630 desc_bound_bitsize (struct type *type, int i, int which)
1631 {
1632 type = desc_base_type (type);
1633
1634 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1635 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1636 else
1637 return 8 * TYPE_LENGTH (type->field (2 * i + which - 2).type ());
1638 }
1639
1640 /* If TYPE is the type of an array-bounds structure, the type of its
1641 Ith bound (numbering from 1). Otherwise, NULL. */
1642
1643 static struct type *
1644 desc_index_type (struct type *type, int i)
1645 {
1646 type = desc_base_type (type);
1647
1648 if (type->code () == TYPE_CODE_STRUCT)
1649 {
1650 char bound_name[20];
1651 xsnprintf (bound_name, sizeof (bound_name), "LB%d", i - 1);
1652 return lookup_struct_elt_type (type, bound_name, 1);
1653 }
1654 else
1655 return NULL;
1656 }
1657
1658 /* The number of index positions in the array-bounds type TYPE.
1659 Return 0 if TYPE is NULL. */
1660
1661 static int
1662 desc_arity (struct type *type)
1663 {
1664 type = desc_base_type (type);
1665
1666 if (type != NULL)
1667 return type->num_fields () / 2;
1668 return 0;
1669 }
1670
1671 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1672 an array descriptor type (representing an unconstrained array
1673 type). */
1674
1675 static int
1676 ada_is_direct_array_type (struct type *type)
1677 {
1678 if (type == NULL)
1679 return 0;
1680 type = ada_check_typedef (type);
1681 return (type->code () == TYPE_CODE_ARRAY
1682 || ada_is_array_descriptor_type (type));
1683 }
1684
1685 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1686 * to one. */
1687
1688 static int
1689 ada_is_array_type (struct type *type)
1690 {
1691 while (type != NULL
1692 && (type->code () == TYPE_CODE_PTR
1693 || type->code () == TYPE_CODE_REF))
1694 type = TYPE_TARGET_TYPE (type);
1695 return ada_is_direct_array_type (type);
1696 }
1697
1698 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1699
1700 int
1701 ada_is_simple_array_type (struct type *type)
1702 {
1703 if (type == NULL)
1704 return 0;
1705 type = ada_check_typedef (type);
1706 return (type->code () == TYPE_CODE_ARRAY
1707 || (type->code () == TYPE_CODE_PTR
1708 && (ada_check_typedef (TYPE_TARGET_TYPE (type))->code ()
1709 == TYPE_CODE_ARRAY)));
1710 }
1711
1712 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1713
1714 int
1715 ada_is_array_descriptor_type (struct type *type)
1716 {
1717 struct type *data_type = desc_data_target_type (type);
1718
1719 if (type == NULL)
1720 return 0;
1721 type = ada_check_typedef (type);
1722 return (data_type != NULL
1723 && data_type->code () == TYPE_CODE_ARRAY
1724 && desc_arity (desc_bounds_type (type)) > 0);
1725 }
1726
1727 /* Non-zero iff type is a partially mal-formed GNAT array
1728 descriptor. FIXME: This is to compensate for some problems with
1729 debugging output from GNAT. Re-examine periodically to see if it
1730 is still needed. */
1731
1732 int
1733 ada_is_bogus_array_descriptor (struct type *type)
1734 {
1735 return
1736 type != NULL
1737 && type->code () == TYPE_CODE_STRUCT
1738 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1739 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1740 && !ada_is_array_descriptor_type (type);
1741 }
1742
1743
1744 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1745 (fat pointer) returns the type of the array data described---specifically,
1746 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1747 in from the descriptor; otherwise, they are left unspecified. If
1748 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1749 returns NULL. The result is simply the type of ARR if ARR is not
1750 a descriptor. */
1751
1752 static struct type *
1753 ada_type_of_array (struct value *arr, int bounds)
1754 {
1755 if (ada_is_constrained_packed_array_type (value_type (arr)))
1756 return decode_constrained_packed_array_type (value_type (arr));
1757
1758 if (!ada_is_array_descriptor_type (value_type (arr)))
1759 return value_type (arr);
1760
1761 if (!bounds)
1762 {
1763 struct type *array_type =
1764 ada_check_typedef (desc_data_target_type (value_type (arr)));
1765
1766 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1767 TYPE_FIELD_BITSIZE (array_type, 0) =
1768 decode_packed_array_bitsize (value_type (arr));
1769
1770 return array_type;
1771 }
1772 else
1773 {
1774 struct type *elt_type;
1775 int arity;
1776 struct value *descriptor;
1777
1778 elt_type = ada_array_element_type (value_type (arr), -1);
1779 arity = ada_array_arity (value_type (arr));
1780
1781 if (elt_type == NULL || arity == 0)
1782 return ada_check_typedef (value_type (arr));
1783
1784 descriptor = desc_bounds (arr);
1785 if (value_as_long (descriptor) == 0)
1786 return NULL;
1787 while (arity > 0)
1788 {
1789 struct type *range_type = alloc_type_copy (value_type (arr));
1790 struct type *array_type = alloc_type_copy (value_type (arr));
1791 struct value *low = desc_one_bound (descriptor, arity, 0);
1792 struct value *high = desc_one_bound (descriptor, arity, 1);
1793
1794 arity -= 1;
1795 create_static_range_type (range_type, value_type (low),
1796 longest_to_int (value_as_long (low)),
1797 longest_to_int (value_as_long (high)));
1798 elt_type = create_array_type (array_type, elt_type, range_type);
1799
1800 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1801 {
1802 /* We need to store the element packed bitsize, as well as
1803 recompute the array size, because it was previously
1804 computed based on the unpacked element size. */
1805 LONGEST lo = value_as_long (low);
1806 LONGEST hi = value_as_long (high);
1807
1808 TYPE_FIELD_BITSIZE (elt_type, 0) =
1809 decode_packed_array_bitsize (value_type (arr));
1810 /* If the array has no element, then the size is already
1811 zero, and does not need to be recomputed. */
1812 if (lo < hi)
1813 {
1814 int array_bitsize =
1815 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1816
1817 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1818 }
1819 }
1820 }
1821
1822 return lookup_pointer_type (elt_type);
1823 }
1824 }
1825
1826 /* If ARR does not represent an array, returns ARR unchanged.
1827 Otherwise, returns either a standard GDB array with bounds set
1828 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1829 GDB array. Returns NULL if ARR is a null fat pointer. */
1830
1831 struct value *
1832 ada_coerce_to_simple_array_ptr (struct value *arr)
1833 {
1834 if (ada_is_array_descriptor_type (value_type (arr)))
1835 {
1836 struct type *arrType = ada_type_of_array (arr, 1);
1837
1838 if (arrType == NULL)
1839 return NULL;
1840 return value_cast (arrType, value_copy (desc_data (arr)));
1841 }
1842 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1843 return decode_constrained_packed_array (arr);
1844 else
1845 return arr;
1846 }
1847
1848 /* If ARR does not represent an array, returns ARR unchanged.
1849 Otherwise, returns a standard GDB array describing ARR (which may
1850 be ARR itself if it already is in the proper form). */
1851
1852 struct value *
1853 ada_coerce_to_simple_array (struct value *arr)
1854 {
1855 if (ada_is_array_descriptor_type (value_type (arr)))
1856 {
1857 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1858
1859 if (arrVal == NULL)
1860 error (_("Bounds unavailable for null array pointer."));
1861 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
1862 return value_ind (arrVal);
1863 }
1864 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1865 return decode_constrained_packed_array (arr);
1866 else
1867 return arr;
1868 }
1869
1870 /* If TYPE represents a GNAT array type, return it translated to an
1871 ordinary GDB array type (possibly with BITSIZE fields indicating
1872 packing). For other types, is the identity. */
1873
1874 struct type *
1875 ada_coerce_to_simple_array_type (struct type *type)
1876 {
1877 if (ada_is_constrained_packed_array_type (type))
1878 return decode_constrained_packed_array_type (type);
1879
1880 if (ada_is_array_descriptor_type (type))
1881 return ada_check_typedef (desc_data_target_type (type));
1882
1883 return type;
1884 }
1885
1886 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1887
1888 static int
1889 ada_is_gnat_encoded_packed_array_type (struct type *type)
1890 {
1891 if (type == NULL)
1892 return 0;
1893 type = desc_base_type (type);
1894 type = ada_check_typedef (type);
1895 return
1896 ada_type_name (type) != NULL
1897 && strstr (ada_type_name (type), "___XP") != NULL;
1898 }
1899
1900 /* Non-zero iff TYPE represents a standard GNAT constrained
1901 packed-array type. */
1902
1903 int
1904 ada_is_constrained_packed_array_type (struct type *type)
1905 {
1906 return ada_is_gnat_encoded_packed_array_type (type)
1907 && !ada_is_array_descriptor_type (type);
1908 }
1909
1910 /* Non-zero iff TYPE represents an array descriptor for a
1911 unconstrained packed-array type. */
1912
1913 static int
1914 ada_is_unconstrained_packed_array_type (struct type *type)
1915 {
1916 if (!ada_is_array_descriptor_type (type))
1917 return 0;
1918
1919 if (ada_is_gnat_encoded_packed_array_type (type))
1920 return 1;
1921
1922 /* If we saw GNAT encodings, then the above code is sufficient.
1923 However, with minimal encodings, we will just have a thick
1924 pointer instead. */
1925 if (is_thick_pntr (type))
1926 {
1927 type = desc_base_type (type);
1928 /* The structure's first field is a pointer to an array, so this
1929 fetches the array type. */
1930 type = TYPE_TARGET_TYPE (type->field (0).type ());
1931 /* Now we can see if the array elements are packed. */
1932 return TYPE_FIELD_BITSIZE (type, 0) > 0;
1933 }
1934
1935 return 0;
1936 }
1937
1938 /* Return true if TYPE is a (Gnat-encoded) constrained packed array
1939 type, or if it is an ordinary (non-Gnat-encoded) packed array. */
1940
1941 static bool
1942 ada_is_any_packed_array_type (struct type *type)
1943 {
1944 return (ada_is_constrained_packed_array_type (type)
1945 || (type->code () == TYPE_CODE_ARRAY
1946 && TYPE_FIELD_BITSIZE (type, 0) % 8 != 0));
1947 }
1948
1949 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
1950 return the size of its elements in bits. */
1951
1952 static long
1953 decode_packed_array_bitsize (struct type *type)
1954 {
1955 const char *raw_name;
1956 const char *tail;
1957 long bits;
1958
1959 /* Access to arrays implemented as fat pointers are encoded as a typedef
1960 of the fat pointer type. We need the name of the fat pointer type
1961 to do the decoding, so strip the typedef layer. */
1962 if (type->code () == TYPE_CODE_TYPEDEF)
1963 type = ada_typedef_target_type (type);
1964
1965 raw_name = ada_type_name (ada_check_typedef (type));
1966 if (!raw_name)
1967 raw_name = ada_type_name (desc_base_type (type));
1968
1969 if (!raw_name)
1970 return 0;
1971
1972 tail = strstr (raw_name, "___XP");
1973 if (tail == nullptr)
1974 {
1975 gdb_assert (is_thick_pntr (type));
1976 /* The structure's first field is a pointer to an array, so this
1977 fetches the array type. */
1978 type = TYPE_TARGET_TYPE (type->field (0).type ());
1979 /* Now we can see if the array elements are packed. */
1980 return TYPE_FIELD_BITSIZE (type, 0);
1981 }
1982
1983 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1984 {
1985 lim_warning
1986 (_("could not understand bit size information on packed array"));
1987 return 0;
1988 }
1989
1990 return bits;
1991 }
1992
1993 /* Given that TYPE is a standard GDB array type with all bounds filled
1994 in, and that the element size of its ultimate scalar constituents
1995 (that is, either its elements, or, if it is an array of arrays, its
1996 elements' elements, etc.) is *ELT_BITS, return an identical type,
1997 but with the bit sizes of its elements (and those of any
1998 constituent arrays) recorded in the BITSIZE components of its
1999 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2000 in bits.
2001
2002 Note that, for arrays whose index type has an XA encoding where
2003 a bound references a record discriminant, getting that discriminant,
2004 and therefore the actual value of that bound, is not possible
2005 because none of the given parameters gives us access to the record.
2006 This function assumes that it is OK in the context where it is being
2007 used to return an array whose bounds are still dynamic and where
2008 the length is arbitrary. */
2009
2010 static struct type *
2011 constrained_packed_array_type (struct type *type, long *elt_bits)
2012 {
2013 struct type *new_elt_type;
2014 struct type *new_type;
2015 struct type *index_type_desc;
2016 struct type *index_type;
2017 LONGEST low_bound, high_bound;
2018
2019 type = ada_check_typedef (type);
2020 if (type->code () != TYPE_CODE_ARRAY)
2021 return type;
2022
2023 index_type_desc = ada_find_parallel_type (type, "___XA");
2024 if (index_type_desc)
2025 index_type = to_fixed_range_type (index_type_desc->field (0).type (),
2026 NULL);
2027 else
2028 index_type = type->index_type ();
2029
2030 new_type = alloc_type_copy (type);
2031 new_elt_type =
2032 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2033 elt_bits);
2034 create_array_type (new_type, new_elt_type, index_type);
2035 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2036 new_type->set_name (ada_type_name (type));
2037
2038 if ((check_typedef (index_type)->code () == TYPE_CODE_RANGE
2039 && is_dynamic_type (check_typedef (index_type)))
2040 || !get_discrete_bounds (index_type, &low_bound, &high_bound))
2041 low_bound = high_bound = 0;
2042 if (high_bound < low_bound)
2043 *elt_bits = TYPE_LENGTH (new_type) = 0;
2044 else
2045 {
2046 *elt_bits *= (high_bound - low_bound + 1);
2047 TYPE_LENGTH (new_type) =
2048 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2049 }
2050
2051 new_type->set_is_fixed_instance (true);
2052 return new_type;
2053 }
2054
2055 /* The array type encoded by TYPE, where
2056 ada_is_constrained_packed_array_type (TYPE). */
2057
2058 static struct type *
2059 decode_constrained_packed_array_type (struct type *type)
2060 {
2061 const char *raw_name = ada_type_name (ada_check_typedef (type));
2062 char *name;
2063 const char *tail;
2064 struct type *shadow_type;
2065 long bits;
2066
2067 if (!raw_name)
2068 raw_name = ada_type_name (desc_base_type (type));
2069
2070 if (!raw_name)
2071 return NULL;
2072
2073 name = (char *) alloca (strlen (raw_name) + 1);
2074 tail = strstr (raw_name, "___XP");
2075 type = desc_base_type (type);
2076
2077 memcpy (name, raw_name, tail - raw_name);
2078 name[tail - raw_name] = '\000';
2079
2080 shadow_type = ada_find_parallel_type_with_name (type, name);
2081
2082 if (shadow_type == NULL)
2083 {
2084 lim_warning (_("could not find bounds information on packed array"));
2085 return NULL;
2086 }
2087 shadow_type = check_typedef (shadow_type);
2088
2089 if (shadow_type->code () != TYPE_CODE_ARRAY)
2090 {
2091 lim_warning (_("could not understand bounds "
2092 "information on packed array"));
2093 return NULL;
2094 }
2095
2096 bits = decode_packed_array_bitsize (type);
2097 return constrained_packed_array_type (shadow_type, &bits);
2098 }
2099
2100 /* Helper function for decode_constrained_packed_array. Set the field
2101 bitsize on a series of packed arrays. Returns the number of
2102 elements in TYPE. */
2103
2104 static LONGEST
2105 recursively_update_array_bitsize (struct type *type)
2106 {
2107 gdb_assert (type->code () == TYPE_CODE_ARRAY);
2108
2109 LONGEST low, high;
2110 if (!get_discrete_bounds (type->index_type (), &low, &high)
2111 || low > high)
2112 return 0;
2113 LONGEST our_len = high - low + 1;
2114
2115 struct type *elt_type = TYPE_TARGET_TYPE (type);
2116 if (elt_type->code () == TYPE_CODE_ARRAY)
2117 {
2118 LONGEST elt_len = recursively_update_array_bitsize (elt_type);
2119 LONGEST elt_bitsize = elt_len * TYPE_FIELD_BITSIZE (elt_type, 0);
2120 TYPE_FIELD_BITSIZE (type, 0) = elt_bitsize;
2121
2122 TYPE_LENGTH (type) = ((our_len * elt_bitsize + HOST_CHAR_BIT - 1)
2123 / HOST_CHAR_BIT);
2124 }
2125
2126 return our_len;
2127 }
2128
2129 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2130 array, returns a simple array that denotes that array. Its type is a
2131 standard GDB array type except that the BITSIZEs of the array
2132 target types are set to the number of bits in each element, and the
2133 type length is set appropriately. */
2134
2135 static struct value *
2136 decode_constrained_packed_array (struct value *arr)
2137 {
2138 struct type *type;
2139
2140 /* If our value is a pointer, then dereference it. Likewise if
2141 the value is a reference. Make sure that this operation does not
2142 cause the target type to be fixed, as this would indirectly cause
2143 this array to be decoded. The rest of the routine assumes that
2144 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2145 and "value_ind" routines to perform the dereferencing, as opposed
2146 to using "ada_coerce_ref" or "ada_value_ind". */
2147 arr = coerce_ref (arr);
2148 if (ada_check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
2149 arr = value_ind (arr);
2150
2151 type = decode_constrained_packed_array_type (value_type (arr));
2152 if (type == NULL)
2153 {
2154 error (_("can't unpack array"));
2155 return NULL;
2156 }
2157
2158 /* Decoding the packed array type could not correctly set the field
2159 bitsizes for any dimension except the innermost, because the
2160 bounds may be variable and were not passed to that function. So,
2161 we further resolve the array bounds here and then update the
2162 sizes. */
2163 const gdb_byte *valaddr = value_contents_for_printing (arr);
2164 CORE_ADDR address = value_address (arr);
2165 gdb::array_view<const gdb_byte> view
2166 = gdb::make_array_view (valaddr, TYPE_LENGTH (type));
2167 type = resolve_dynamic_type (type, view, address);
2168 recursively_update_array_bitsize (type);
2169
2170 if (type_byte_order (value_type (arr)) == BFD_ENDIAN_BIG
2171 && ada_is_modular_type (value_type (arr)))
2172 {
2173 /* This is a (right-justified) modular type representing a packed
2174 array with no wrapper. In order to interpret the value through
2175 the (left-justified) packed array type we just built, we must
2176 first left-justify it. */
2177 int bit_size, bit_pos;
2178 ULONGEST mod;
2179
2180 mod = ada_modulus (value_type (arr)) - 1;
2181 bit_size = 0;
2182 while (mod > 0)
2183 {
2184 bit_size += 1;
2185 mod >>= 1;
2186 }
2187 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2188 arr = ada_value_primitive_packed_val (arr, NULL,
2189 bit_pos / HOST_CHAR_BIT,
2190 bit_pos % HOST_CHAR_BIT,
2191 bit_size,
2192 type);
2193 }
2194
2195 return coerce_unspec_val_to_type (arr, type);
2196 }
2197
2198
2199 /* The value of the element of packed array ARR at the ARITY indices
2200 given in IND. ARR must be a simple array. */
2201
2202 static struct value *
2203 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2204 {
2205 int i;
2206 int bits, elt_off, bit_off;
2207 long elt_total_bit_offset;
2208 struct type *elt_type;
2209 struct value *v;
2210
2211 bits = 0;
2212 elt_total_bit_offset = 0;
2213 elt_type = ada_check_typedef (value_type (arr));
2214 for (i = 0; i < arity; i += 1)
2215 {
2216 if (elt_type->code () != TYPE_CODE_ARRAY
2217 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2218 error
2219 (_("attempt to do packed indexing of "
2220 "something other than a packed array"));
2221 else
2222 {
2223 struct type *range_type = elt_type->index_type ();
2224 LONGEST lowerbound, upperbound;
2225 LONGEST idx;
2226
2227 if (!get_discrete_bounds (range_type, &lowerbound, &upperbound))
2228 {
2229 lim_warning (_("don't know bounds of array"));
2230 lowerbound = upperbound = 0;
2231 }
2232
2233 idx = pos_atr (ind[i]);
2234 if (idx < lowerbound || idx > upperbound)
2235 lim_warning (_("packed array index %ld out of bounds"),
2236 (long) idx);
2237 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2238 elt_total_bit_offset += (idx - lowerbound) * bits;
2239 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2240 }
2241 }
2242 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2243 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2244
2245 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2246 bits, elt_type);
2247 return v;
2248 }
2249
2250 /* Non-zero iff TYPE includes negative integer values. */
2251
2252 static int
2253 has_negatives (struct type *type)
2254 {
2255 switch (type->code ())
2256 {
2257 default:
2258 return 0;
2259 case TYPE_CODE_INT:
2260 return !type->is_unsigned ();
2261 case TYPE_CODE_RANGE:
2262 return type->bounds ()->low.const_val () - type->bounds ()->bias < 0;
2263 }
2264 }
2265
2266 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2267 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2268 the unpacked buffer.
2269
2270 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2271 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2272
2273 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2274 zero otherwise.
2275
2276 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2277
2278 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2279
2280 static void
2281 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2282 gdb_byte *unpacked, int unpacked_len,
2283 int is_big_endian, int is_signed_type,
2284 int is_scalar)
2285 {
2286 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2287 int src_idx; /* Index into the source area */
2288 int src_bytes_left; /* Number of source bytes left to process. */
2289 int srcBitsLeft; /* Number of source bits left to move */
2290 int unusedLS; /* Number of bits in next significant
2291 byte of source that are unused */
2292
2293 int unpacked_idx; /* Index into the unpacked buffer */
2294 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2295
2296 unsigned long accum; /* Staging area for bits being transferred */
2297 int accumSize; /* Number of meaningful bits in accum */
2298 unsigned char sign;
2299
2300 /* Transmit bytes from least to most significant; delta is the direction
2301 the indices move. */
2302 int delta = is_big_endian ? -1 : 1;
2303
2304 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2305 bits from SRC. .*/
2306 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2307 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2308 bit_size, unpacked_len);
2309
2310 srcBitsLeft = bit_size;
2311 src_bytes_left = src_len;
2312 unpacked_bytes_left = unpacked_len;
2313 sign = 0;
2314
2315 if (is_big_endian)
2316 {
2317 src_idx = src_len - 1;
2318 if (is_signed_type
2319 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2320 sign = ~0;
2321
2322 unusedLS =
2323 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2324 % HOST_CHAR_BIT;
2325
2326 if (is_scalar)
2327 {
2328 accumSize = 0;
2329 unpacked_idx = unpacked_len - 1;
2330 }
2331 else
2332 {
2333 /* Non-scalar values must be aligned at a byte boundary... */
2334 accumSize =
2335 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2336 /* ... And are placed at the beginning (most-significant) bytes
2337 of the target. */
2338 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2339 unpacked_bytes_left = unpacked_idx + 1;
2340 }
2341 }
2342 else
2343 {
2344 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2345
2346 src_idx = unpacked_idx = 0;
2347 unusedLS = bit_offset;
2348 accumSize = 0;
2349
2350 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2351 sign = ~0;
2352 }
2353
2354 accum = 0;
2355 while (src_bytes_left > 0)
2356 {
2357 /* Mask for removing bits of the next source byte that are not
2358 part of the value. */
2359 unsigned int unusedMSMask =
2360 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2361 1;
2362 /* Sign-extend bits for this byte. */
2363 unsigned int signMask = sign & ~unusedMSMask;
2364
2365 accum |=
2366 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2367 accumSize += HOST_CHAR_BIT - unusedLS;
2368 if (accumSize >= HOST_CHAR_BIT)
2369 {
2370 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2371 accumSize -= HOST_CHAR_BIT;
2372 accum >>= HOST_CHAR_BIT;
2373 unpacked_bytes_left -= 1;
2374 unpacked_idx += delta;
2375 }
2376 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2377 unusedLS = 0;
2378 src_bytes_left -= 1;
2379 src_idx += delta;
2380 }
2381 while (unpacked_bytes_left > 0)
2382 {
2383 accum |= sign << accumSize;
2384 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2385 accumSize -= HOST_CHAR_BIT;
2386 if (accumSize < 0)
2387 accumSize = 0;
2388 accum >>= HOST_CHAR_BIT;
2389 unpacked_bytes_left -= 1;
2390 unpacked_idx += delta;
2391 }
2392 }
2393
2394 /* Create a new value of type TYPE from the contents of OBJ starting
2395 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2396 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2397 assigning through the result will set the field fetched from.
2398 VALADDR is ignored unless OBJ is NULL, in which case,
2399 VALADDR+OFFSET must address the start of storage containing the
2400 packed value. The value returned in this case is never an lval.
2401 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2402
2403 struct value *
2404 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2405 long offset, int bit_offset, int bit_size,
2406 struct type *type)
2407 {
2408 struct value *v;
2409 const gdb_byte *src; /* First byte containing data to unpack */
2410 gdb_byte *unpacked;
2411 const int is_scalar = is_scalar_type (type);
2412 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
2413 gdb::byte_vector staging;
2414
2415 type = ada_check_typedef (type);
2416
2417 if (obj == NULL)
2418 src = valaddr + offset;
2419 else
2420 src = value_contents (obj) + offset;
2421
2422 if (is_dynamic_type (type))
2423 {
2424 /* The length of TYPE might by dynamic, so we need to resolve
2425 TYPE in order to know its actual size, which we then use
2426 to create the contents buffer of the value we return.
2427 The difficulty is that the data containing our object is
2428 packed, and therefore maybe not at a byte boundary. So, what
2429 we do, is unpack the data into a byte-aligned buffer, and then
2430 use that buffer as our object's value for resolving the type. */
2431 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2432 staging.resize (staging_len);
2433
2434 ada_unpack_from_contents (src, bit_offset, bit_size,
2435 staging.data (), staging.size (),
2436 is_big_endian, has_negatives (type),
2437 is_scalar);
2438 type = resolve_dynamic_type (type, staging, 0);
2439 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2440 {
2441 /* This happens when the length of the object is dynamic,
2442 and is actually smaller than the space reserved for it.
2443 For instance, in an array of variant records, the bit_size
2444 we're given is the array stride, which is constant and
2445 normally equal to the maximum size of its element.
2446 But, in reality, each element only actually spans a portion
2447 of that stride. */
2448 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2449 }
2450 }
2451
2452 if (obj == NULL)
2453 {
2454 v = allocate_value (type);
2455 src = valaddr + offset;
2456 }
2457 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2458 {
2459 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2460 gdb_byte *buf;
2461
2462 v = value_at (type, value_address (obj) + offset);
2463 buf = (gdb_byte *) alloca (src_len);
2464 read_memory (value_address (v), buf, src_len);
2465 src = buf;
2466 }
2467 else
2468 {
2469 v = allocate_value (type);
2470 src = value_contents (obj) + offset;
2471 }
2472
2473 if (obj != NULL)
2474 {
2475 long new_offset = offset;
2476
2477 set_value_component_location (v, obj);
2478 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2479 set_value_bitsize (v, bit_size);
2480 if (value_bitpos (v) >= HOST_CHAR_BIT)
2481 {
2482 ++new_offset;
2483 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2484 }
2485 set_value_offset (v, new_offset);
2486
2487 /* Also set the parent value. This is needed when trying to
2488 assign a new value (in inferior memory). */
2489 set_value_parent (v, obj);
2490 }
2491 else
2492 set_value_bitsize (v, bit_size);
2493 unpacked = value_contents_writeable (v);
2494
2495 if (bit_size == 0)
2496 {
2497 memset (unpacked, 0, TYPE_LENGTH (type));
2498 return v;
2499 }
2500
2501 if (staging.size () == TYPE_LENGTH (type))
2502 {
2503 /* Small short-cut: If we've unpacked the data into a buffer
2504 of the same size as TYPE's length, then we can reuse that,
2505 instead of doing the unpacking again. */
2506 memcpy (unpacked, staging.data (), staging.size ());
2507 }
2508 else
2509 ada_unpack_from_contents (src, bit_offset, bit_size,
2510 unpacked, TYPE_LENGTH (type),
2511 is_big_endian, has_negatives (type), is_scalar);
2512
2513 return v;
2514 }
2515
2516 /* Store the contents of FROMVAL into the location of TOVAL.
2517 Return a new value with the location of TOVAL and contents of
2518 FROMVAL. Handles assignment into packed fields that have
2519 floating-point or non-scalar types. */
2520
2521 static struct value *
2522 ada_value_assign (struct value *toval, struct value *fromval)
2523 {
2524 struct type *type = value_type (toval);
2525 int bits = value_bitsize (toval);
2526
2527 toval = ada_coerce_ref (toval);
2528 fromval = ada_coerce_ref (fromval);
2529
2530 if (ada_is_direct_array_type (value_type (toval)))
2531 toval = ada_coerce_to_simple_array (toval);
2532 if (ada_is_direct_array_type (value_type (fromval)))
2533 fromval = ada_coerce_to_simple_array (fromval);
2534
2535 if (!deprecated_value_modifiable (toval))
2536 error (_("Left operand of assignment is not a modifiable lvalue."));
2537
2538 if (VALUE_LVAL (toval) == lval_memory
2539 && bits > 0
2540 && (type->code () == TYPE_CODE_FLT
2541 || type->code () == TYPE_CODE_STRUCT))
2542 {
2543 int len = (value_bitpos (toval)
2544 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2545 int from_size;
2546 gdb_byte *buffer = (gdb_byte *) alloca (len);
2547 struct value *val;
2548 CORE_ADDR to_addr = value_address (toval);
2549
2550 if (type->code () == TYPE_CODE_FLT)
2551 fromval = value_cast (type, fromval);
2552
2553 read_memory (to_addr, buffer, len);
2554 from_size = value_bitsize (fromval);
2555 if (from_size == 0)
2556 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2557
2558 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
2559 ULONGEST from_offset = 0;
2560 if (is_big_endian && is_scalar_type (value_type (fromval)))
2561 from_offset = from_size - bits;
2562 copy_bitwise (buffer, value_bitpos (toval),
2563 value_contents (fromval), from_offset,
2564 bits, is_big_endian);
2565 write_memory_with_notification (to_addr, buffer, len);
2566
2567 val = value_copy (toval);
2568 memcpy (value_contents_raw (val), value_contents (fromval),
2569 TYPE_LENGTH (type));
2570 deprecated_set_value_type (val, type);
2571
2572 return val;
2573 }
2574
2575 return value_assign (toval, fromval);
2576 }
2577
2578
2579 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2580 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2581 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2582 COMPONENT, and not the inferior's memory. The current contents
2583 of COMPONENT are ignored.
2584
2585 Although not part of the initial design, this function also works
2586 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2587 had a null address, and COMPONENT had an address which is equal to
2588 its offset inside CONTAINER. */
2589
2590 static void
2591 value_assign_to_component (struct value *container, struct value *component,
2592 struct value *val)
2593 {
2594 LONGEST offset_in_container =
2595 (LONGEST) (value_address (component) - value_address (container));
2596 int bit_offset_in_container =
2597 value_bitpos (component) - value_bitpos (container);
2598 int bits;
2599
2600 val = value_cast (value_type (component), val);
2601
2602 if (value_bitsize (component) == 0)
2603 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2604 else
2605 bits = value_bitsize (component);
2606
2607 if (type_byte_order (value_type (container)) == BFD_ENDIAN_BIG)
2608 {
2609 int src_offset;
2610
2611 if (is_scalar_type (check_typedef (value_type (component))))
2612 src_offset
2613 = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits;
2614 else
2615 src_offset = 0;
2616 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2617 value_bitpos (container) + bit_offset_in_container,
2618 value_contents (val), src_offset, bits, 1);
2619 }
2620 else
2621 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2622 value_bitpos (container) + bit_offset_in_container,
2623 value_contents (val), 0, bits, 0);
2624 }
2625
2626 /* Determine if TYPE is an access to an unconstrained array. */
2627
2628 bool
2629 ada_is_access_to_unconstrained_array (struct type *type)
2630 {
2631 return (type->code () == TYPE_CODE_TYPEDEF
2632 && is_thick_pntr (ada_typedef_target_type (type)));
2633 }
2634
2635 /* The value of the element of array ARR at the ARITY indices given in IND.
2636 ARR may be either a simple array, GNAT array descriptor, or pointer
2637 thereto. */
2638
2639 struct value *
2640 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2641 {
2642 int k;
2643 struct value *elt;
2644 struct type *elt_type;
2645
2646 elt = ada_coerce_to_simple_array (arr);
2647
2648 elt_type = ada_check_typedef (value_type (elt));
2649 if (elt_type->code () == TYPE_CODE_ARRAY
2650 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2651 return value_subscript_packed (elt, arity, ind);
2652
2653 for (k = 0; k < arity; k += 1)
2654 {
2655 struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type);
2656
2657 if (elt_type->code () != TYPE_CODE_ARRAY)
2658 error (_("too many subscripts (%d expected)"), k);
2659
2660 elt = value_subscript (elt, pos_atr (ind[k]));
2661
2662 if (ada_is_access_to_unconstrained_array (saved_elt_type)
2663 && value_type (elt)->code () != TYPE_CODE_TYPEDEF)
2664 {
2665 /* The element is a typedef to an unconstrained array,
2666 except that the value_subscript call stripped the
2667 typedef layer. The typedef layer is GNAT's way to
2668 specify that the element is, at the source level, an
2669 access to the unconstrained array, rather than the
2670 unconstrained array. So, we need to restore that
2671 typedef layer, which we can do by forcing the element's
2672 type back to its original type. Otherwise, the returned
2673 value is going to be printed as the array, rather
2674 than as an access. Another symptom of the same issue
2675 would be that an expression trying to dereference the
2676 element would also be improperly rejected. */
2677 deprecated_set_value_type (elt, saved_elt_type);
2678 }
2679
2680 elt_type = ada_check_typedef (value_type (elt));
2681 }
2682
2683 return elt;
2684 }
2685
2686 /* Assuming ARR is a pointer to a GDB array, the value of the element
2687 of *ARR at the ARITY indices given in IND.
2688 Does not read the entire array into memory.
2689
2690 Note: Unlike what one would expect, this function is used instead of
2691 ada_value_subscript for basically all non-packed array types. The reason
2692 for this is that a side effect of doing our own pointer arithmetics instead
2693 of relying on value_subscript is that there is no implicit typedef peeling.
2694 This is important for arrays of array accesses, where it allows us to
2695 preserve the fact that the array's element is an array access, where the
2696 access part os encoded in a typedef layer. */
2697
2698 static struct value *
2699 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2700 {
2701 int k;
2702 struct value *array_ind = ada_value_ind (arr);
2703 struct type *type
2704 = check_typedef (value_enclosing_type (array_ind));
2705
2706 if (type->code () == TYPE_CODE_ARRAY
2707 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2708 return value_subscript_packed (array_ind, arity, ind);
2709
2710 for (k = 0; k < arity; k += 1)
2711 {
2712 LONGEST lwb, upb;
2713
2714 if (type->code () != TYPE_CODE_ARRAY)
2715 error (_("too many subscripts (%d expected)"), k);
2716 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2717 value_copy (arr));
2718 get_discrete_bounds (type->index_type (), &lwb, &upb);
2719 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2720 type = TYPE_TARGET_TYPE (type);
2721 }
2722
2723 return value_ind (arr);
2724 }
2725
2726 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2727 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2728 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2729 this array is LOW, as per Ada rules. */
2730 static struct value *
2731 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2732 int low, int high)
2733 {
2734 struct type *type0 = ada_check_typedef (type);
2735 struct type *base_index_type = TYPE_TARGET_TYPE (type0->index_type ());
2736 struct type *index_type
2737 = create_static_range_type (NULL, base_index_type, low, high);
2738 struct type *slice_type = create_array_type_with_stride
2739 (NULL, TYPE_TARGET_TYPE (type0), index_type,
2740 type0->dyn_prop (DYN_PROP_BYTE_STRIDE),
2741 TYPE_FIELD_BITSIZE (type0, 0));
2742 int base_low = ada_discrete_type_low_bound (type0->index_type ());
2743 gdb::optional<LONGEST> base_low_pos, low_pos;
2744 CORE_ADDR base;
2745
2746 low_pos = discrete_position (base_index_type, low);
2747 base_low_pos = discrete_position (base_index_type, base_low);
2748
2749 if (!low_pos.has_value () || !base_low_pos.has_value ())
2750 {
2751 warning (_("unable to get positions in slice, use bounds instead"));
2752 low_pos = low;
2753 base_low_pos = base_low;
2754 }
2755
2756 ULONGEST stride = TYPE_FIELD_BITSIZE (slice_type, 0) / 8;
2757 if (stride == 0)
2758 stride = TYPE_LENGTH (TYPE_TARGET_TYPE (type0));
2759
2760 base = value_as_address (array_ptr) + (*low_pos - *base_low_pos) * stride;
2761 return value_at_lazy (slice_type, base);
2762 }
2763
2764
2765 static struct value *
2766 ada_value_slice (struct value *array, int low, int high)
2767 {
2768 struct type *type = ada_check_typedef (value_type (array));
2769 struct type *base_index_type = TYPE_TARGET_TYPE (type->index_type ());
2770 struct type *index_type
2771 = create_static_range_type (NULL, type->index_type (), low, high);
2772 struct type *slice_type = create_array_type_with_stride
2773 (NULL, TYPE_TARGET_TYPE (type), index_type,
2774 type->dyn_prop (DYN_PROP_BYTE_STRIDE),
2775 TYPE_FIELD_BITSIZE (type, 0));
2776 gdb::optional<LONGEST> low_pos, high_pos;
2777
2778
2779 low_pos = discrete_position (base_index_type, low);
2780 high_pos = discrete_position (base_index_type, high);
2781
2782 if (!low_pos.has_value () || !high_pos.has_value ())
2783 {
2784 warning (_("unable to get positions in slice, use bounds instead"));
2785 low_pos = low;
2786 high_pos = high;
2787 }
2788
2789 return value_cast (slice_type,
2790 value_slice (array, low, *high_pos - *low_pos + 1));
2791 }
2792
2793 /* If type is a record type in the form of a standard GNAT array
2794 descriptor, returns the number of dimensions for type. If arr is a
2795 simple array, returns the number of "array of"s that prefix its
2796 type designation. Otherwise, returns 0. */
2797
2798 int
2799 ada_array_arity (struct type *type)
2800 {
2801 int arity;
2802
2803 if (type == NULL)
2804 return 0;
2805
2806 type = desc_base_type (type);
2807
2808 arity = 0;
2809 if (type->code () == TYPE_CODE_STRUCT)
2810 return desc_arity (desc_bounds_type (type));
2811 else
2812 while (type->code () == TYPE_CODE_ARRAY)
2813 {
2814 arity += 1;
2815 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2816 }
2817
2818 return arity;
2819 }
2820
2821 /* If TYPE is a record type in the form of a standard GNAT array
2822 descriptor or a simple array type, returns the element type for
2823 TYPE after indexing by NINDICES indices, or by all indices if
2824 NINDICES is -1. Otherwise, returns NULL. */
2825
2826 struct type *
2827 ada_array_element_type (struct type *type, int nindices)
2828 {
2829 type = desc_base_type (type);
2830
2831 if (type->code () == TYPE_CODE_STRUCT)
2832 {
2833 int k;
2834 struct type *p_array_type;
2835
2836 p_array_type = desc_data_target_type (type);
2837
2838 k = ada_array_arity (type);
2839 if (k == 0)
2840 return NULL;
2841
2842 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2843 if (nindices >= 0 && k > nindices)
2844 k = nindices;
2845 while (k > 0 && p_array_type != NULL)
2846 {
2847 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2848 k -= 1;
2849 }
2850 return p_array_type;
2851 }
2852 else if (type->code () == TYPE_CODE_ARRAY)
2853 {
2854 while (nindices != 0 && type->code () == TYPE_CODE_ARRAY)
2855 {
2856 type = TYPE_TARGET_TYPE (type);
2857 nindices -= 1;
2858 }
2859 return type;
2860 }
2861
2862 return NULL;
2863 }
2864
2865 /* See ada-lang.h. */
2866
2867 struct type *
2868 ada_index_type (struct type *type, int n, const char *name)
2869 {
2870 struct type *result_type;
2871
2872 type = desc_base_type (type);
2873
2874 if (n < 0 || n > ada_array_arity (type))
2875 error (_("invalid dimension number to '%s"), name);
2876
2877 if (ada_is_simple_array_type (type))
2878 {
2879 int i;
2880
2881 for (i = 1; i < n; i += 1)
2882 type = TYPE_TARGET_TYPE (type);
2883 result_type = TYPE_TARGET_TYPE (type->index_type ());
2884 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2885 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2886 perhaps stabsread.c would make more sense. */
2887 if (result_type && result_type->code () == TYPE_CODE_UNDEF)
2888 result_type = NULL;
2889 }
2890 else
2891 {
2892 result_type = desc_index_type (desc_bounds_type (type), n);
2893 if (result_type == NULL)
2894 error (_("attempt to take bound of something that is not an array"));
2895 }
2896
2897 return result_type;
2898 }
2899
2900 /* Given that arr is an array type, returns the lower bound of the
2901 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2902 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2903 array-descriptor type. It works for other arrays with bounds supplied
2904 by run-time quantities other than discriminants. */
2905
2906 static LONGEST
2907 ada_array_bound_from_type (struct type *arr_type, int n, int which)
2908 {
2909 struct type *type, *index_type_desc, *index_type;
2910 int i;
2911
2912 gdb_assert (which == 0 || which == 1);
2913
2914 if (ada_is_constrained_packed_array_type (arr_type))
2915 arr_type = decode_constrained_packed_array_type (arr_type);
2916
2917 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2918 return (LONGEST) - which;
2919
2920 if (arr_type->code () == TYPE_CODE_PTR)
2921 type = TYPE_TARGET_TYPE (arr_type);
2922 else
2923 type = arr_type;
2924
2925 if (type->is_fixed_instance ())
2926 {
2927 /* The array has already been fixed, so we do not need to
2928 check the parallel ___XA type again. That encoding has
2929 already been applied, so ignore it now. */
2930 index_type_desc = NULL;
2931 }
2932 else
2933 {
2934 index_type_desc = ada_find_parallel_type (type, "___XA");
2935 ada_fixup_array_indexes_type (index_type_desc);
2936 }
2937
2938 if (index_type_desc != NULL)
2939 index_type = to_fixed_range_type (index_type_desc->field (n - 1).type (),
2940 NULL);
2941 else
2942 {
2943 struct type *elt_type = check_typedef (type);
2944
2945 for (i = 1; i < n; i++)
2946 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
2947
2948 index_type = elt_type->index_type ();
2949 }
2950
2951 return
2952 (LONGEST) (which == 0
2953 ? ada_discrete_type_low_bound (index_type)
2954 : ada_discrete_type_high_bound (index_type));
2955 }
2956
2957 /* Given that arr is an array value, returns the lower bound of the
2958 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2959 WHICH is 1. This routine will also work for arrays with bounds
2960 supplied by run-time quantities other than discriminants. */
2961
2962 static LONGEST
2963 ada_array_bound (struct value *arr, int n, int which)
2964 {
2965 struct type *arr_type;
2966
2967 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
2968 arr = value_ind (arr);
2969 arr_type = value_enclosing_type (arr);
2970
2971 if (ada_is_constrained_packed_array_type (arr_type))
2972 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
2973 else if (ada_is_simple_array_type (arr_type))
2974 return ada_array_bound_from_type (arr_type, n, which);
2975 else
2976 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2977 }
2978
2979 /* Given that arr is an array value, returns the length of the
2980 nth index. This routine will also work for arrays with bounds
2981 supplied by run-time quantities other than discriminants.
2982 Does not work for arrays indexed by enumeration types with representation
2983 clauses at the moment. */
2984
2985 static LONGEST
2986 ada_array_length (struct value *arr, int n)
2987 {
2988 struct type *arr_type, *index_type;
2989 int low, high;
2990
2991 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
2992 arr = value_ind (arr);
2993 arr_type = value_enclosing_type (arr);
2994
2995 if (ada_is_constrained_packed_array_type (arr_type))
2996 return ada_array_length (decode_constrained_packed_array (arr), n);
2997
2998 if (ada_is_simple_array_type (arr_type))
2999 {
3000 low = ada_array_bound_from_type (arr_type, n, 0);
3001 high = ada_array_bound_from_type (arr_type, n, 1);
3002 }
3003 else
3004 {
3005 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3006 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3007 }
3008
3009 arr_type = check_typedef (arr_type);
3010 index_type = ada_index_type (arr_type, n, "length");
3011 if (index_type != NULL)
3012 {
3013 struct type *base_type;
3014 if (index_type->code () == TYPE_CODE_RANGE)
3015 base_type = TYPE_TARGET_TYPE (index_type);
3016 else
3017 base_type = index_type;
3018
3019 low = pos_atr (value_from_longest (base_type, low));
3020 high = pos_atr (value_from_longest (base_type, high));
3021 }
3022 return high - low + 1;
3023 }
3024
3025 /* An array whose type is that of ARR_TYPE (an array type), with
3026 bounds LOW to HIGH, but whose contents are unimportant. If HIGH is
3027 less than LOW, then LOW-1 is used. */
3028
3029 static struct value *
3030 empty_array (struct type *arr_type, int low, int high)
3031 {
3032 struct type *arr_type0 = ada_check_typedef (arr_type);
3033 struct type *index_type
3034 = create_static_range_type
3035 (NULL, TYPE_TARGET_TYPE (arr_type0->index_type ()), low,
3036 high < low ? low - 1 : high);
3037 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3038
3039 return allocate_value (create_array_type (NULL, elt_type, index_type));
3040 }
3041 \f
3042
3043 /* Name resolution */
3044
3045 /* The "decoded" name for the user-definable Ada operator corresponding
3046 to OP. */
3047
3048 static const char *
3049 ada_decoded_op_name (enum exp_opcode op)
3050 {
3051 int i;
3052
3053 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3054 {
3055 if (ada_opname_table[i].op == op)
3056 return ada_opname_table[i].decoded;
3057 }
3058 error (_("Could not find operator name for opcode"));
3059 }
3060
3061 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3062 in a listing of choices during disambiguation (see sort_choices, below).
3063 The idea is that overloadings of a subprogram name from the
3064 same package should sort in their source order. We settle for ordering
3065 such symbols by their trailing number (__N or $N). */
3066
3067 static int
3068 encoded_ordered_before (const char *N0, const char *N1)
3069 {
3070 if (N1 == NULL)
3071 return 0;
3072 else if (N0 == NULL)
3073 return 1;
3074 else
3075 {
3076 int k0, k1;
3077
3078 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3079 ;
3080 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3081 ;
3082 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3083 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3084 {
3085 int n0, n1;
3086
3087 n0 = k0;
3088 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3089 n0 -= 1;
3090 n1 = k1;
3091 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3092 n1 -= 1;
3093 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3094 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3095 }
3096 return (strcmp (N0, N1) < 0);
3097 }
3098 }
3099
3100 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3101 encoded names. */
3102
3103 static void
3104 sort_choices (struct block_symbol syms[], int nsyms)
3105 {
3106 int i;
3107
3108 for (i = 1; i < nsyms; i += 1)
3109 {
3110 struct block_symbol sym = syms[i];
3111 int j;
3112
3113 for (j = i - 1; j >= 0; j -= 1)
3114 {
3115 if (encoded_ordered_before (syms[j].symbol->linkage_name (),
3116 sym.symbol->linkage_name ()))
3117 break;
3118 syms[j + 1] = syms[j];
3119 }
3120 syms[j + 1] = sym;
3121 }
3122 }
3123
3124 /* Whether GDB should display formals and return types for functions in the
3125 overloads selection menu. */
3126 static bool print_signatures = true;
3127
3128 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3129 all but functions, the signature is just the name of the symbol. For
3130 functions, this is the name of the function, the list of types for formals
3131 and the return type (if any). */
3132
3133 static void
3134 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3135 const struct type_print_options *flags)
3136 {
3137 struct type *type = SYMBOL_TYPE (sym);
3138
3139 fprintf_filtered (stream, "%s", sym->print_name ());
3140 if (!print_signatures
3141 || type == NULL
3142 || type->code () != TYPE_CODE_FUNC)
3143 return;
3144
3145 if (type->num_fields () > 0)
3146 {
3147 int i;
3148
3149 fprintf_filtered (stream, " (");
3150 for (i = 0; i < type->num_fields (); ++i)
3151 {
3152 if (i > 0)
3153 fprintf_filtered (stream, "; ");
3154 ada_print_type (type->field (i).type (), NULL, stream, -1, 0,
3155 flags);
3156 }
3157 fprintf_filtered (stream, ")");
3158 }
3159 if (TYPE_TARGET_TYPE (type) != NULL
3160 && TYPE_TARGET_TYPE (type)->code () != TYPE_CODE_VOID)
3161 {
3162 fprintf_filtered (stream, " return ");
3163 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3164 }
3165 }
3166
3167 /* Read and validate a set of numeric choices from the user in the
3168 range 0 .. N_CHOICES-1. Place the results in increasing
3169 order in CHOICES[0 .. N-1], and return N.
3170
3171 The user types choices as a sequence of numbers on one line
3172 separated by blanks, encoding them as follows:
3173
3174 + A choice of 0 means to cancel the selection, throwing an error.
3175 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3176 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3177
3178 The user is not allowed to choose more than MAX_RESULTS values.
3179
3180 ANNOTATION_SUFFIX, if present, is used to annotate the input
3181 prompts (for use with the -f switch). */
3182
3183 static int
3184 get_selections (int *choices, int n_choices, int max_results,
3185 int is_all_choice, const char *annotation_suffix)
3186 {
3187 const char *args;
3188 const char *prompt;
3189 int n_chosen;
3190 int first_choice = is_all_choice ? 2 : 1;
3191
3192 prompt = getenv ("PS2");
3193 if (prompt == NULL)
3194 prompt = "> ";
3195
3196 args = command_line_input (prompt, annotation_suffix);
3197
3198 if (args == NULL)
3199 error_no_arg (_("one or more choice numbers"));
3200
3201 n_chosen = 0;
3202
3203 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3204 order, as given in args. Choices are validated. */
3205 while (1)
3206 {
3207 char *args2;
3208 int choice, j;
3209
3210 args = skip_spaces (args);
3211 if (*args == '\0' && n_chosen == 0)
3212 error_no_arg (_("one or more choice numbers"));
3213 else if (*args == '\0')
3214 break;
3215
3216 choice = strtol (args, &args2, 10);
3217 if (args == args2 || choice < 0
3218 || choice > n_choices + first_choice - 1)
3219 error (_("Argument must be choice number"));
3220 args = args2;
3221
3222 if (choice == 0)
3223 error (_("cancelled"));
3224
3225 if (choice < first_choice)
3226 {
3227 n_chosen = n_choices;
3228 for (j = 0; j < n_choices; j += 1)
3229 choices[j] = j;
3230 break;
3231 }
3232 choice -= first_choice;
3233
3234 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3235 {
3236 }
3237
3238 if (j < 0 || choice != choices[j])
3239 {
3240 int k;
3241
3242 for (k = n_chosen - 1; k > j; k -= 1)
3243 choices[k + 1] = choices[k];
3244 choices[j + 1] = choice;
3245 n_chosen += 1;
3246 }
3247 }
3248
3249 if (n_chosen > max_results)
3250 error (_("Select no more than %d of the above"), max_results);
3251
3252 return n_chosen;
3253 }
3254
3255 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3256 by asking the user (if necessary), returning the number selected,
3257 and setting the first elements of SYMS items. Error if no symbols
3258 selected. */
3259
3260 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3261 to be re-integrated one of these days. */
3262
3263 static int
3264 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3265 {
3266 int i;
3267 int *chosen = XALLOCAVEC (int , nsyms);
3268 int n_chosen;
3269 int first_choice = (max_results == 1) ? 1 : 2;
3270 const char *select_mode = multiple_symbols_select_mode ();
3271
3272 if (max_results < 1)
3273 error (_("Request to select 0 symbols!"));
3274 if (nsyms <= 1)
3275 return nsyms;
3276
3277 if (select_mode == multiple_symbols_cancel)
3278 error (_("\
3279 canceled because the command is ambiguous\n\
3280 See set/show multiple-symbol."));
3281
3282 /* If select_mode is "all", then return all possible symbols.
3283 Only do that if more than one symbol can be selected, of course.
3284 Otherwise, display the menu as usual. */
3285 if (select_mode == multiple_symbols_all && max_results > 1)
3286 return nsyms;
3287
3288 printf_filtered (_("[0] cancel\n"));
3289 if (max_results > 1)
3290 printf_filtered (_("[1] all\n"));
3291
3292 sort_choices (syms, nsyms);
3293
3294 for (i = 0; i < nsyms; i += 1)
3295 {
3296 if (syms[i].symbol == NULL)
3297 continue;
3298
3299 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3300 {
3301 struct symtab_and_line sal =
3302 find_function_start_sal (syms[i].symbol, 1);
3303
3304 printf_filtered ("[%d] ", i + first_choice);
3305 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3306 &type_print_raw_options);
3307 if (sal.symtab == NULL)
3308 printf_filtered (_(" at %p[<no source file available>%p]:%d\n"),
3309 metadata_style.style ().ptr (), nullptr, sal.line);
3310 else
3311 printf_filtered
3312 (_(" at %ps:%d\n"),
3313 styled_string (file_name_style.style (),
3314 symtab_to_filename_for_display (sal.symtab)),
3315 sal.line);
3316 continue;
3317 }
3318 else
3319 {
3320 int is_enumeral =
3321 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3322 && SYMBOL_TYPE (syms[i].symbol) != NULL
3323 && SYMBOL_TYPE (syms[i].symbol)->code () == TYPE_CODE_ENUM);
3324 struct symtab *symtab = NULL;
3325
3326 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3327 symtab = symbol_symtab (syms[i].symbol);
3328
3329 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3330 {
3331 printf_filtered ("[%d] ", i + first_choice);
3332 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3333 &type_print_raw_options);
3334 printf_filtered (_(" at %s:%d\n"),
3335 symtab_to_filename_for_display (symtab),
3336 SYMBOL_LINE (syms[i].symbol));
3337 }
3338 else if (is_enumeral
3339 && SYMBOL_TYPE (syms[i].symbol)->name () != NULL)
3340 {
3341 printf_filtered (("[%d] "), i + first_choice);
3342 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3343 gdb_stdout, -1, 0, &type_print_raw_options);
3344 printf_filtered (_("'(%s) (enumeral)\n"),
3345 syms[i].symbol->print_name ());
3346 }
3347 else
3348 {
3349 printf_filtered ("[%d] ", i + first_choice);
3350 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3351 &type_print_raw_options);
3352
3353 if (symtab != NULL)
3354 printf_filtered (is_enumeral
3355 ? _(" in %s (enumeral)\n")
3356 : _(" at %s:?\n"),
3357 symtab_to_filename_for_display (symtab));
3358 else
3359 printf_filtered (is_enumeral
3360 ? _(" (enumeral)\n")
3361 : _(" at ?\n"));
3362 }
3363 }
3364 }
3365
3366 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3367 "overload-choice");
3368
3369 for (i = 0; i < n_chosen; i += 1)
3370 syms[i] = syms[chosen[i]];
3371
3372 return n_chosen;
3373 }
3374
3375 /* See ada-lang.h. */
3376
3377 block_symbol
3378 ada_find_operator_symbol (enum exp_opcode op, int parse_completion,
3379 int nargs, value *argvec[])
3380 {
3381 if (possible_user_operator_p (op, argvec))
3382 {
3383 std::vector<struct block_symbol> candidates
3384 = ada_lookup_symbol_list (ada_decoded_op_name (op),
3385 NULL, VAR_DOMAIN);
3386
3387 int i = ada_resolve_function (candidates, argvec,
3388 nargs, ada_decoded_op_name (op), NULL,
3389 parse_completion);
3390 if (i >= 0)
3391 return candidates[i];
3392 }
3393 return {};
3394 }
3395
3396 /* See ada-lang.h. */
3397
3398 block_symbol
3399 ada_resolve_funcall (struct symbol *sym, const struct block *block,
3400 struct type *context_type,
3401 int parse_completion,
3402 int nargs, value *argvec[],
3403 innermost_block_tracker *tracker)
3404 {
3405 std::vector<struct block_symbol> candidates
3406 = ada_lookup_symbol_list (sym->linkage_name (), block, VAR_DOMAIN);
3407
3408 int i;
3409 if (candidates.size () == 1)
3410 i = 0;
3411 else
3412 {
3413 i = ada_resolve_function
3414 (candidates,
3415 argvec, nargs,
3416 sym->linkage_name (),
3417 context_type, parse_completion);
3418 if (i < 0)
3419 error (_("Could not find a match for %s"), sym->print_name ());
3420 }
3421
3422 tracker->update (candidates[i]);
3423 return candidates[i];
3424 }
3425
3426 /* See ada-lang.h. */
3427
3428 block_symbol
3429 ada_resolve_variable (struct symbol *sym, const struct block *block,
3430 struct type *context_type,
3431 int parse_completion,
3432 int deprocedure_p,
3433 innermost_block_tracker *tracker)
3434 {
3435 std::vector<struct block_symbol> candidates
3436 = ada_lookup_symbol_list (sym->linkage_name (), block, VAR_DOMAIN);
3437
3438 if (std::any_of (candidates.begin (),
3439 candidates.end (),
3440 [] (block_symbol &bsym)
3441 {
3442 switch (SYMBOL_CLASS (bsym.symbol))
3443 {
3444 case LOC_REGISTER:
3445 case LOC_ARG:
3446 case LOC_REF_ARG:
3447 case LOC_REGPARM_ADDR:
3448 case LOC_LOCAL:
3449 case LOC_COMPUTED:
3450 return true;
3451 default:
3452 return false;
3453 }
3454 }))
3455 {
3456 /* Types tend to get re-introduced locally, so if there
3457 are any local symbols that are not types, first filter
3458 out all types. */
3459 candidates.erase
3460 (std::remove_if
3461 (candidates.begin (),
3462 candidates.end (),
3463 [] (block_symbol &bsym)
3464 {
3465 return SYMBOL_CLASS (bsym.symbol) == LOC_TYPEDEF;
3466 }),
3467 candidates.end ());
3468 }
3469
3470 int i;
3471 if (candidates.empty ())
3472 error (_("No definition found for %s"), sym->print_name ());
3473 else if (candidates.size () == 1)
3474 i = 0;
3475 else if (deprocedure_p && !is_nonfunction (candidates))
3476 {
3477 i = ada_resolve_function
3478 (candidates, NULL, 0,
3479 sym->linkage_name (),
3480 context_type, parse_completion);
3481 if (i < 0)
3482 error (_("Could not find a match for %s"), sym->print_name ());
3483 }
3484 else
3485 {
3486 printf_filtered (_("Multiple matches for %s\n"), sym->print_name ());
3487 user_select_syms (candidates.data (), candidates.size (), 1);
3488 i = 0;
3489 }
3490
3491 tracker->update (candidates[i]);
3492 return candidates[i];
3493 }
3494
3495 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3496 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3497 a non-pointer. */
3498 /* The term "match" here is rather loose. The match is heuristic and
3499 liberal. */
3500
3501 static int
3502 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3503 {
3504 ftype = ada_check_typedef (ftype);
3505 atype = ada_check_typedef (atype);
3506
3507 if (ftype->code () == TYPE_CODE_REF)
3508 ftype = TYPE_TARGET_TYPE (ftype);
3509 if (atype->code () == TYPE_CODE_REF)
3510 atype = TYPE_TARGET_TYPE (atype);
3511
3512 switch (ftype->code ())
3513 {
3514 default:
3515 return ftype->code () == atype->code ();
3516 case TYPE_CODE_PTR:
3517 if (atype->code () == TYPE_CODE_PTR)
3518 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3519 TYPE_TARGET_TYPE (atype), 0);
3520 else
3521 return (may_deref
3522 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3523 case TYPE_CODE_INT:
3524 case TYPE_CODE_ENUM:
3525 case TYPE_CODE_RANGE:
3526 switch (atype->code ())
3527 {
3528 case TYPE_CODE_INT:
3529 case TYPE_CODE_ENUM:
3530 case TYPE_CODE_RANGE:
3531 return 1;
3532 default:
3533 return 0;
3534 }
3535
3536 case TYPE_CODE_ARRAY:
3537 return (atype->code () == TYPE_CODE_ARRAY
3538 || ada_is_array_descriptor_type (atype));
3539
3540 case TYPE_CODE_STRUCT:
3541 if (ada_is_array_descriptor_type (ftype))
3542 return (atype->code () == TYPE_CODE_ARRAY
3543 || ada_is_array_descriptor_type (atype));
3544 else
3545 return (atype->code () == TYPE_CODE_STRUCT
3546 && !ada_is_array_descriptor_type (atype));
3547
3548 case TYPE_CODE_UNION:
3549 case TYPE_CODE_FLT:
3550 return (atype->code () == ftype->code ());
3551 }
3552 }
3553
3554 /* Return non-zero if the formals of FUNC "sufficiently match" the
3555 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3556 may also be an enumeral, in which case it is treated as a 0-
3557 argument function. */
3558
3559 static int
3560 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3561 {
3562 int i;
3563 struct type *func_type = SYMBOL_TYPE (func);
3564
3565 if (SYMBOL_CLASS (func) == LOC_CONST
3566 && func_type->code () == TYPE_CODE_ENUM)
3567 return (n_actuals == 0);
3568 else if (func_type == NULL || func_type->code () != TYPE_CODE_FUNC)
3569 return 0;
3570
3571 if (func_type->num_fields () != n_actuals)
3572 return 0;
3573
3574 for (i = 0; i < n_actuals; i += 1)
3575 {
3576 if (actuals[i] == NULL)
3577 return 0;
3578 else
3579 {
3580 struct type *ftype = ada_check_typedef (func_type->field (i).type ());
3581 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3582
3583 if (!ada_type_match (ftype, atype, 1))
3584 return 0;
3585 }
3586 }
3587 return 1;
3588 }
3589
3590 /* False iff function type FUNC_TYPE definitely does not produce a value
3591 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3592 FUNC_TYPE is not a valid function type with a non-null return type
3593 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3594
3595 static int
3596 return_match (struct type *func_type, struct type *context_type)
3597 {
3598 struct type *return_type;
3599
3600 if (func_type == NULL)
3601 return 1;
3602
3603 if (func_type->code () == TYPE_CODE_FUNC)
3604 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3605 else
3606 return_type = get_base_type (func_type);
3607 if (return_type == NULL)
3608 return 1;
3609
3610 context_type = get_base_type (context_type);
3611
3612 if (return_type->code () == TYPE_CODE_ENUM)
3613 return context_type == NULL || return_type == context_type;
3614 else if (context_type == NULL)
3615 return return_type->code () != TYPE_CODE_VOID;
3616 else
3617 return return_type->code () == context_type->code ();
3618 }
3619
3620
3621 /* Returns the index in SYMS that contains the symbol for the
3622 function (if any) that matches the types of the NARGS arguments in
3623 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3624 that returns that type, then eliminate matches that don't. If
3625 CONTEXT_TYPE is void and there is at least one match that does not
3626 return void, eliminate all matches that do.
3627
3628 Asks the user if there is more than one match remaining. Returns -1
3629 if there is no such symbol or none is selected. NAME is used
3630 solely for messages. May re-arrange and modify SYMS in
3631 the process; the index returned is for the modified vector. */
3632
3633 static int
3634 ada_resolve_function (std::vector<struct block_symbol> &syms,
3635 struct value **args, int nargs,
3636 const char *name, struct type *context_type,
3637 int parse_completion)
3638 {
3639 int fallback;
3640 int k;
3641 int m; /* Number of hits */
3642
3643 m = 0;
3644 /* In the first pass of the loop, we only accept functions matching
3645 context_type. If none are found, we add a second pass of the loop
3646 where every function is accepted. */
3647 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3648 {
3649 for (k = 0; k < syms.size (); k += 1)
3650 {
3651 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3652
3653 if (ada_args_match (syms[k].symbol, args, nargs)
3654 && (fallback || return_match (type, context_type)))
3655 {
3656 syms[m] = syms[k];
3657 m += 1;
3658 }
3659 }
3660 }
3661
3662 /* If we got multiple matches, ask the user which one to use. Don't do this
3663 interactive thing during completion, though, as the purpose of the
3664 completion is providing a list of all possible matches. Prompting the
3665 user to filter it down would be completely unexpected in this case. */
3666 if (m == 0)
3667 return -1;
3668 else if (m > 1 && !parse_completion)
3669 {
3670 printf_filtered (_("Multiple matches for %s\n"), name);
3671 user_select_syms (syms.data (), m, 1);
3672 return 0;
3673 }
3674 return 0;
3675 }
3676
3677 /* Type-class predicates */
3678
3679 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3680 or FLOAT). */
3681
3682 static int
3683 numeric_type_p (struct type *type)
3684 {
3685 if (type == NULL)
3686 return 0;
3687 else
3688 {
3689 switch (type->code ())
3690 {
3691 case TYPE_CODE_INT:
3692 case TYPE_CODE_FLT:
3693 return 1;
3694 case TYPE_CODE_RANGE:
3695 return (type == TYPE_TARGET_TYPE (type)
3696 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3697 default:
3698 return 0;
3699 }
3700 }
3701 }
3702
3703 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3704
3705 static int
3706 integer_type_p (struct type *type)
3707 {
3708 if (type == NULL)
3709 return 0;
3710 else
3711 {
3712 switch (type->code ())
3713 {
3714 case TYPE_CODE_INT:
3715 return 1;
3716 case TYPE_CODE_RANGE:
3717 return (type == TYPE_TARGET_TYPE (type)
3718 || integer_type_p (TYPE_TARGET_TYPE (type)));
3719 default:
3720 return 0;
3721 }
3722 }
3723 }
3724
3725 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3726
3727 static int
3728 scalar_type_p (struct type *type)
3729 {
3730 if (type == NULL)
3731 return 0;
3732 else
3733 {
3734 switch (type->code ())
3735 {
3736 case TYPE_CODE_INT:
3737 case TYPE_CODE_RANGE:
3738 case TYPE_CODE_ENUM:
3739 case TYPE_CODE_FLT:
3740 return 1;
3741 default:
3742 return 0;
3743 }
3744 }
3745 }
3746
3747 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3748
3749 static int
3750 discrete_type_p (struct type *type)
3751 {
3752 if (type == NULL)
3753 return 0;
3754 else
3755 {
3756 switch (type->code ())
3757 {
3758 case TYPE_CODE_INT:
3759 case TYPE_CODE_RANGE:
3760 case TYPE_CODE_ENUM:
3761 case TYPE_CODE_BOOL:
3762 return 1;
3763 default:
3764 return 0;
3765 }
3766 }
3767 }
3768
3769 /* Returns non-zero if OP with operands in the vector ARGS could be
3770 a user-defined function. Errs on the side of pre-defined operators
3771 (i.e., result 0). */
3772
3773 static int
3774 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3775 {
3776 struct type *type0 =
3777 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3778 struct type *type1 =
3779 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3780
3781 if (type0 == NULL)
3782 return 0;
3783
3784 switch (op)
3785 {
3786 default:
3787 return 0;
3788
3789 case BINOP_ADD:
3790 case BINOP_SUB:
3791 case BINOP_MUL:
3792 case BINOP_DIV:
3793 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3794
3795 case BINOP_REM:
3796 case BINOP_MOD:
3797 case BINOP_BITWISE_AND:
3798 case BINOP_BITWISE_IOR:
3799 case BINOP_BITWISE_XOR:
3800 return (!(integer_type_p (type0) && integer_type_p (type1)));
3801
3802 case BINOP_EQUAL:
3803 case BINOP_NOTEQUAL:
3804 case BINOP_LESS:
3805 case BINOP_GTR:
3806 case BINOP_LEQ:
3807 case BINOP_GEQ:
3808 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3809
3810 case BINOP_CONCAT:
3811 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3812
3813 case BINOP_EXP:
3814 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3815
3816 case UNOP_NEG:
3817 case UNOP_PLUS:
3818 case UNOP_LOGICAL_NOT:
3819 case UNOP_ABS:
3820 return (!numeric_type_p (type0));
3821
3822 }
3823 }
3824 \f
3825 /* Renaming */
3826
3827 /* NOTES:
3828
3829 1. In the following, we assume that a renaming type's name may
3830 have an ___XD suffix. It would be nice if this went away at some
3831 point.
3832 2. We handle both the (old) purely type-based representation of
3833 renamings and the (new) variable-based encoding. At some point,
3834 it is devoutly to be hoped that the former goes away
3835 (FIXME: hilfinger-2007-07-09).
3836 3. Subprogram renamings are not implemented, although the XRS
3837 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3838
3839 /* If SYM encodes a renaming,
3840
3841 <renaming> renames <renamed entity>,
3842
3843 sets *LEN to the length of the renamed entity's name,
3844 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3845 the string describing the subcomponent selected from the renamed
3846 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3847 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3848 are undefined). Otherwise, returns a value indicating the category
3849 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3850 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3851 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3852 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3853 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3854 may be NULL, in which case they are not assigned.
3855
3856 [Currently, however, GCC does not generate subprogram renamings.] */
3857
3858 enum ada_renaming_category
3859 ada_parse_renaming (struct symbol *sym,
3860 const char **renamed_entity, int *len,
3861 const char **renaming_expr)
3862 {
3863 enum ada_renaming_category kind;
3864 const char *info;
3865 const char *suffix;
3866
3867 if (sym == NULL)
3868 return ADA_NOT_RENAMING;
3869 switch (SYMBOL_CLASS (sym))
3870 {
3871 default:
3872 return ADA_NOT_RENAMING;
3873 case LOC_LOCAL:
3874 case LOC_STATIC:
3875 case LOC_COMPUTED:
3876 case LOC_OPTIMIZED_OUT:
3877 info = strstr (sym->linkage_name (), "___XR");
3878 if (info == NULL)
3879 return ADA_NOT_RENAMING;
3880 switch (info[5])
3881 {
3882 case '_':
3883 kind = ADA_OBJECT_RENAMING;
3884 info += 6;
3885 break;
3886 case 'E':
3887 kind = ADA_EXCEPTION_RENAMING;
3888 info += 7;
3889 break;
3890 case 'P':
3891 kind = ADA_PACKAGE_RENAMING;
3892 info += 7;
3893 break;
3894 case 'S':
3895 kind = ADA_SUBPROGRAM_RENAMING;
3896 info += 7;
3897 break;
3898 default:
3899 return ADA_NOT_RENAMING;
3900 }
3901 }
3902
3903 if (renamed_entity != NULL)
3904 *renamed_entity = info;
3905 suffix = strstr (info, "___XE");
3906 if (suffix == NULL || suffix == info)
3907 return ADA_NOT_RENAMING;
3908 if (len != NULL)
3909 *len = strlen (info) - strlen (suffix);
3910 suffix += 5;
3911 if (renaming_expr != NULL)
3912 *renaming_expr = suffix;
3913 return kind;
3914 }
3915
3916 /* Compute the value of the given RENAMING_SYM, which is expected to
3917 be a symbol encoding a renaming expression. BLOCK is the block
3918 used to evaluate the renaming. */
3919
3920 static struct value *
3921 ada_read_renaming_var_value (struct symbol *renaming_sym,
3922 const struct block *block)
3923 {
3924 const char *sym_name;
3925
3926 sym_name = renaming_sym->linkage_name ();
3927 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
3928 return evaluate_expression (expr.get ());
3929 }
3930 \f
3931
3932 /* Evaluation: Function Calls */
3933
3934 /* Return an lvalue containing the value VAL. This is the identity on
3935 lvalues, and otherwise has the side-effect of allocating memory
3936 in the inferior where a copy of the value contents is copied. */
3937
3938 static struct value *
3939 ensure_lval (struct value *val)
3940 {
3941 if (VALUE_LVAL (val) == not_lval
3942 || VALUE_LVAL (val) == lval_internalvar)
3943 {
3944 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
3945 const CORE_ADDR addr =
3946 value_as_long (value_allocate_space_in_inferior (len));
3947
3948 VALUE_LVAL (val) = lval_memory;
3949 set_value_address (val, addr);
3950 write_memory (addr, value_contents (val), len);
3951 }
3952
3953 return val;
3954 }
3955
3956 /* Given ARG, a value of type (pointer or reference to a)*
3957 structure/union, extract the component named NAME from the ultimate
3958 target structure/union and return it as a value with its
3959 appropriate type.
3960
3961 The routine searches for NAME among all members of the structure itself
3962 and (recursively) among all members of any wrapper members
3963 (e.g., '_parent').
3964
3965 If NO_ERR, then simply return NULL in case of error, rather than
3966 calling error. */
3967
3968 static struct value *
3969 ada_value_struct_elt (struct value *arg, const char *name, int no_err)
3970 {
3971 struct type *t, *t1;
3972 struct value *v;
3973 int check_tag;
3974
3975 v = NULL;
3976 t1 = t = ada_check_typedef (value_type (arg));
3977 if (t->code () == TYPE_CODE_REF)
3978 {
3979 t1 = TYPE_TARGET_TYPE (t);
3980 if (t1 == NULL)
3981 goto BadValue;
3982 t1 = ada_check_typedef (t1);
3983 if (t1->code () == TYPE_CODE_PTR)
3984 {
3985 arg = coerce_ref (arg);
3986 t = t1;
3987 }
3988 }
3989
3990 while (t->code () == TYPE_CODE_PTR)
3991 {
3992 t1 = TYPE_TARGET_TYPE (t);
3993 if (t1 == NULL)
3994 goto BadValue;
3995 t1 = ada_check_typedef (t1);
3996 if (t1->code () == TYPE_CODE_PTR)
3997 {
3998 arg = value_ind (arg);
3999 t = t1;
4000 }
4001 else
4002 break;
4003 }
4004
4005 if (t1->code () != TYPE_CODE_STRUCT && t1->code () != TYPE_CODE_UNION)
4006 goto BadValue;
4007
4008 if (t1 == t)
4009 v = ada_search_struct_field (name, arg, 0, t);
4010 else
4011 {
4012 int bit_offset, bit_size, byte_offset;
4013 struct type *field_type;
4014 CORE_ADDR address;
4015
4016 if (t->code () == TYPE_CODE_PTR)
4017 address = value_address (ada_value_ind (arg));
4018 else
4019 address = value_address (ada_coerce_ref (arg));
4020
4021 /* Check to see if this is a tagged type. We also need to handle
4022 the case where the type is a reference to a tagged type, but
4023 we have to be careful to exclude pointers to tagged types.
4024 The latter should be shown as usual (as a pointer), whereas
4025 a reference should mostly be transparent to the user. */
4026
4027 if (ada_is_tagged_type (t1, 0)
4028 || (t1->code () == TYPE_CODE_REF
4029 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
4030 {
4031 /* We first try to find the searched field in the current type.
4032 If not found then let's look in the fixed type. */
4033
4034 if (!find_struct_field (name, t1, 0,
4035 &field_type, &byte_offset, &bit_offset,
4036 &bit_size, NULL))
4037 check_tag = 1;
4038 else
4039 check_tag = 0;
4040 }
4041 else
4042 check_tag = 0;
4043
4044 /* Convert to fixed type in all cases, so that we have proper
4045 offsets to each field in unconstrained record types. */
4046 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
4047 address, NULL, check_tag);
4048
4049 /* Resolve the dynamic type as well. */
4050 arg = value_from_contents_and_address (t1, nullptr, address);
4051 t1 = value_type (arg);
4052
4053 if (find_struct_field (name, t1, 0,
4054 &field_type, &byte_offset, &bit_offset,
4055 &bit_size, NULL))
4056 {
4057 if (bit_size != 0)
4058 {
4059 if (t->code () == TYPE_CODE_REF)
4060 arg = ada_coerce_ref (arg);
4061 else
4062 arg = ada_value_ind (arg);
4063 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
4064 bit_offset, bit_size,
4065 field_type);
4066 }
4067 else
4068 v = value_at_lazy (field_type, address + byte_offset);
4069 }
4070 }
4071
4072 if (v != NULL || no_err)
4073 return v;
4074 else
4075 error (_("There is no member named %s."), name);
4076
4077 BadValue:
4078 if (no_err)
4079 return NULL;
4080 else
4081 error (_("Attempt to extract a component of "
4082 "a value that is not a record."));
4083 }
4084
4085 /* Return the value ACTUAL, converted to be an appropriate value for a
4086 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4087 allocating any necessary descriptors (fat pointers), or copies of
4088 values not residing in memory, updating it as needed. */
4089
4090 struct value *
4091 ada_convert_actual (struct value *actual, struct type *formal_type0)
4092 {
4093 struct type *actual_type = ada_check_typedef (value_type (actual));
4094 struct type *formal_type = ada_check_typedef (formal_type0);
4095 struct type *formal_target =
4096 formal_type->code () == TYPE_CODE_PTR
4097 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4098 struct type *actual_target =
4099 actual_type->code () == TYPE_CODE_PTR
4100 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4101
4102 if (ada_is_array_descriptor_type (formal_target)
4103 && actual_target->code () == TYPE_CODE_ARRAY)
4104 return make_array_descriptor (formal_type, actual);
4105 else if (formal_type->code () == TYPE_CODE_PTR
4106 || formal_type->code () == TYPE_CODE_REF)
4107 {
4108 struct value *result;
4109
4110 if (formal_target->code () == TYPE_CODE_ARRAY
4111 && ada_is_array_descriptor_type (actual_target))
4112 result = desc_data (actual);
4113 else if (formal_type->code () != TYPE_CODE_PTR)
4114 {
4115 if (VALUE_LVAL (actual) != lval_memory)
4116 {
4117 struct value *val;
4118
4119 actual_type = ada_check_typedef (value_type (actual));
4120 val = allocate_value (actual_type);
4121 memcpy ((char *) value_contents_raw (val),
4122 (char *) value_contents (actual),
4123 TYPE_LENGTH (actual_type));
4124 actual = ensure_lval (val);
4125 }
4126 result = value_addr (actual);
4127 }
4128 else
4129 return actual;
4130 return value_cast_pointers (formal_type, result, 0);
4131 }
4132 else if (actual_type->code () == TYPE_CODE_PTR)
4133 return ada_value_ind (actual);
4134 else if (ada_is_aligner_type (formal_type))
4135 {
4136 /* We need to turn this parameter into an aligner type
4137 as well. */
4138 struct value *aligner = allocate_value (formal_type);
4139 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4140
4141 value_assign_to_component (aligner, component, actual);
4142 return aligner;
4143 }
4144
4145 return actual;
4146 }
4147
4148 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4149 type TYPE. This is usually an inefficient no-op except on some targets
4150 (such as AVR) where the representation of a pointer and an address
4151 differs. */
4152
4153 static CORE_ADDR
4154 value_pointer (struct value *value, struct type *type)
4155 {
4156 unsigned len = TYPE_LENGTH (type);
4157 gdb_byte *buf = (gdb_byte *) alloca (len);
4158 CORE_ADDR addr;
4159
4160 addr = value_address (value);
4161 gdbarch_address_to_pointer (type->arch (), type, buf, addr);
4162 addr = extract_unsigned_integer (buf, len, type_byte_order (type));
4163 return addr;
4164 }
4165
4166
4167 /* Push a descriptor of type TYPE for array value ARR on the stack at
4168 *SP, updating *SP to reflect the new descriptor. Return either
4169 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4170 to-descriptor type rather than a descriptor type), a struct value *
4171 representing a pointer to this descriptor. */
4172
4173 static struct value *
4174 make_array_descriptor (struct type *type, struct value *arr)
4175 {
4176 struct type *bounds_type = desc_bounds_type (type);
4177 struct type *desc_type = desc_base_type (type);
4178 struct value *descriptor = allocate_value (desc_type);
4179 struct value *bounds = allocate_value (bounds_type);
4180 int i;
4181
4182 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4183 i > 0; i -= 1)
4184 {
4185 modify_field (value_type (bounds), value_contents_writeable (bounds),
4186 ada_array_bound (arr, i, 0),
4187 desc_bound_bitpos (bounds_type, i, 0),
4188 desc_bound_bitsize (bounds_type, i, 0));
4189 modify_field (value_type (bounds), value_contents_writeable (bounds),
4190 ada_array_bound (arr, i, 1),
4191 desc_bound_bitpos (bounds_type, i, 1),
4192 desc_bound_bitsize (bounds_type, i, 1));
4193 }
4194
4195 bounds = ensure_lval (bounds);
4196
4197 modify_field (value_type (descriptor),
4198 value_contents_writeable (descriptor),
4199 value_pointer (ensure_lval (arr),
4200 desc_type->field (0).type ()),
4201 fat_pntr_data_bitpos (desc_type),
4202 fat_pntr_data_bitsize (desc_type));
4203
4204 modify_field (value_type (descriptor),
4205 value_contents_writeable (descriptor),
4206 value_pointer (bounds,
4207 desc_type->field (1).type ()),
4208 fat_pntr_bounds_bitpos (desc_type),
4209 fat_pntr_bounds_bitsize (desc_type));
4210
4211 descriptor = ensure_lval (descriptor);
4212
4213 if (type->code () == TYPE_CODE_PTR)
4214 return value_addr (descriptor);
4215 else
4216 return descriptor;
4217 }
4218 \f
4219 /* Symbol Cache Module */
4220
4221 /* Performance measurements made as of 2010-01-15 indicate that
4222 this cache does bring some noticeable improvements. Depending
4223 on the type of entity being printed, the cache can make it as much
4224 as an order of magnitude faster than without it.
4225
4226 The descriptive type DWARF extension has significantly reduced
4227 the need for this cache, at least when DWARF is being used. However,
4228 even in this case, some expensive name-based symbol searches are still
4229 sometimes necessary - to find an XVZ variable, mostly. */
4230
4231 /* Return the symbol cache associated to the given program space PSPACE.
4232 If not allocated for this PSPACE yet, allocate and initialize one. */
4233
4234 static struct ada_symbol_cache *
4235 ada_get_symbol_cache (struct program_space *pspace)
4236 {
4237 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4238
4239 if (pspace_data->sym_cache == nullptr)
4240 pspace_data->sym_cache.reset (new ada_symbol_cache);
4241
4242 return pspace_data->sym_cache.get ();
4243 }
4244
4245 /* Clear all entries from the symbol cache. */
4246
4247 static void
4248 ada_clear_symbol_cache ()
4249 {
4250 struct ada_pspace_data *pspace_data
4251 = get_ada_pspace_data (current_program_space);
4252
4253 if (pspace_data->sym_cache != nullptr)
4254 pspace_data->sym_cache.reset ();
4255 }
4256
4257 /* Search our cache for an entry matching NAME and DOMAIN.
4258 Return it if found, or NULL otherwise. */
4259
4260 static struct cache_entry **
4261 find_entry (const char *name, domain_enum domain)
4262 {
4263 struct ada_symbol_cache *sym_cache
4264 = ada_get_symbol_cache (current_program_space);
4265 int h = msymbol_hash (name) % HASH_SIZE;
4266 struct cache_entry **e;
4267
4268 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4269 {
4270 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4271 return e;
4272 }
4273 return NULL;
4274 }
4275
4276 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4277 Return 1 if found, 0 otherwise.
4278
4279 If an entry was found and SYM is not NULL, set *SYM to the entry's
4280 SYM. Same principle for BLOCK if not NULL. */
4281
4282 static int
4283 lookup_cached_symbol (const char *name, domain_enum domain,
4284 struct symbol **sym, const struct block **block)
4285 {
4286 struct cache_entry **e = find_entry (name, domain);
4287
4288 if (e == NULL)
4289 return 0;
4290 if (sym != NULL)
4291 *sym = (*e)->sym;
4292 if (block != NULL)
4293 *block = (*e)->block;
4294 return 1;
4295 }
4296
4297 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4298 in domain DOMAIN, save this result in our symbol cache. */
4299
4300 static void
4301 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4302 const struct block *block)
4303 {
4304 struct ada_symbol_cache *sym_cache
4305 = ada_get_symbol_cache (current_program_space);
4306 int h;
4307 struct cache_entry *e;
4308
4309 /* Symbols for builtin types don't have a block.
4310 For now don't cache such symbols. */
4311 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4312 return;
4313
4314 /* If the symbol is a local symbol, then do not cache it, as a search
4315 for that symbol depends on the context. To determine whether
4316 the symbol is local or not, we check the block where we found it
4317 against the global and static blocks of its associated symtab. */
4318 if (sym
4319 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4320 GLOBAL_BLOCK) != block
4321 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4322 STATIC_BLOCK) != block)
4323 return;
4324
4325 h = msymbol_hash (name) % HASH_SIZE;
4326 e = XOBNEW (&sym_cache->cache_space, cache_entry);
4327 e->next = sym_cache->root[h];
4328 sym_cache->root[h] = e;
4329 e->name = obstack_strdup (&sym_cache->cache_space, name);
4330 e->sym = sym;
4331 e->domain = domain;
4332 e->block = block;
4333 }
4334 \f
4335 /* Symbol Lookup */
4336
4337 /* Return the symbol name match type that should be used used when
4338 searching for all symbols matching LOOKUP_NAME.
4339
4340 LOOKUP_NAME is expected to be a symbol name after transformation
4341 for Ada lookups. */
4342
4343 static symbol_name_match_type
4344 name_match_type_from_name (const char *lookup_name)
4345 {
4346 return (strstr (lookup_name, "__") == NULL
4347 ? symbol_name_match_type::WILD
4348 : symbol_name_match_type::FULL);
4349 }
4350
4351 /* Return the result of a standard (literal, C-like) lookup of NAME in
4352 given DOMAIN, visible from lexical block BLOCK. */
4353
4354 static struct symbol *
4355 standard_lookup (const char *name, const struct block *block,
4356 domain_enum domain)
4357 {
4358 /* Initialize it just to avoid a GCC false warning. */
4359 struct block_symbol sym = {};
4360
4361 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4362 return sym.symbol;
4363 ada_lookup_encoded_symbol (name, block, domain, &sym);
4364 cache_symbol (name, domain, sym.symbol, sym.block);
4365 return sym.symbol;
4366 }
4367
4368
4369 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4370 in the symbol fields of SYMS. We treat enumerals as functions,
4371 since they contend in overloading in the same way. */
4372 static int
4373 is_nonfunction (const std::vector<struct block_symbol> &syms)
4374 {
4375 for (const block_symbol &sym : syms)
4376 if (SYMBOL_TYPE (sym.symbol)->code () != TYPE_CODE_FUNC
4377 && (SYMBOL_TYPE (sym.symbol)->code () != TYPE_CODE_ENUM
4378 || SYMBOL_CLASS (sym.symbol) != LOC_CONST))
4379 return 1;
4380
4381 return 0;
4382 }
4383
4384 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4385 struct types. Otherwise, they may not. */
4386
4387 static int
4388 equiv_types (struct type *type0, struct type *type1)
4389 {
4390 if (type0 == type1)
4391 return 1;
4392 if (type0 == NULL || type1 == NULL
4393 || type0->code () != type1->code ())
4394 return 0;
4395 if ((type0->code () == TYPE_CODE_STRUCT
4396 || type0->code () == TYPE_CODE_ENUM)
4397 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4398 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4399 return 1;
4400
4401 return 0;
4402 }
4403
4404 /* True iff SYM0 represents the same entity as SYM1, or one that is
4405 no more defined than that of SYM1. */
4406
4407 static int
4408 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4409 {
4410 if (sym0 == sym1)
4411 return 1;
4412 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4413 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4414 return 0;
4415
4416 switch (SYMBOL_CLASS (sym0))
4417 {
4418 case LOC_UNDEF:
4419 return 1;
4420 case LOC_TYPEDEF:
4421 {
4422 struct type *type0 = SYMBOL_TYPE (sym0);
4423 struct type *type1 = SYMBOL_TYPE (sym1);
4424 const char *name0 = sym0->linkage_name ();
4425 const char *name1 = sym1->linkage_name ();
4426 int len0 = strlen (name0);
4427
4428 return
4429 type0->code () == type1->code ()
4430 && (equiv_types (type0, type1)
4431 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4432 && startswith (name1 + len0, "___XV")));
4433 }
4434 case LOC_CONST:
4435 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4436 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4437
4438 case LOC_STATIC:
4439 {
4440 const char *name0 = sym0->linkage_name ();
4441 const char *name1 = sym1->linkage_name ();
4442 return (strcmp (name0, name1) == 0
4443 && SYMBOL_VALUE_ADDRESS (sym0) == SYMBOL_VALUE_ADDRESS (sym1));
4444 }
4445
4446 default:
4447 return 0;
4448 }
4449 }
4450
4451 /* Append (SYM,BLOCK) to the end of the array of struct block_symbol
4452 records in RESULT. Do nothing if SYM is a duplicate. */
4453
4454 static void
4455 add_defn_to_vec (std::vector<struct block_symbol> &result,
4456 struct symbol *sym,
4457 const struct block *block)
4458 {
4459 /* Do not try to complete stub types, as the debugger is probably
4460 already scanning all symbols matching a certain name at the
4461 time when this function is called. Trying to replace the stub
4462 type by its associated full type will cause us to restart a scan
4463 which may lead to an infinite recursion. Instead, the client
4464 collecting the matching symbols will end up collecting several
4465 matches, with at least one of them complete. It can then filter
4466 out the stub ones if needed. */
4467
4468 for (int i = result.size () - 1; i >= 0; i -= 1)
4469 {
4470 if (lesseq_defined_than (sym, result[i].symbol))
4471 return;
4472 else if (lesseq_defined_than (result[i].symbol, sym))
4473 {
4474 result[i].symbol = sym;
4475 result[i].block = block;
4476 return;
4477 }
4478 }
4479
4480 struct block_symbol info;
4481 info.symbol = sym;
4482 info.block = block;
4483 result.push_back (info);
4484 }
4485
4486 /* Return a bound minimal symbol matching NAME according to Ada
4487 decoding rules. Returns an invalid symbol if there is no such
4488 minimal symbol. Names prefixed with "standard__" are handled
4489 specially: "standard__" is first stripped off, and only static and
4490 global symbols are searched. */
4491
4492 struct bound_minimal_symbol
4493 ada_lookup_simple_minsym (const char *name)
4494 {
4495 struct bound_minimal_symbol result;
4496
4497 memset (&result, 0, sizeof (result));
4498
4499 symbol_name_match_type match_type = name_match_type_from_name (name);
4500 lookup_name_info lookup_name (name, match_type);
4501
4502 symbol_name_matcher_ftype *match_name
4503 = ada_get_symbol_name_matcher (lookup_name);
4504
4505 for (objfile *objfile : current_program_space->objfiles ())
4506 {
4507 for (minimal_symbol *msymbol : objfile->msymbols ())
4508 {
4509 if (match_name (msymbol->linkage_name (), lookup_name, NULL)
4510 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4511 {
4512 result.minsym = msymbol;
4513 result.objfile = objfile;
4514 break;
4515 }
4516 }
4517 }
4518
4519 return result;
4520 }
4521
4522 /* For all subprograms that statically enclose the subprogram of the
4523 selected frame, add symbols matching identifier NAME in DOMAIN
4524 and their blocks to the list of data in RESULT, as for
4525 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4526 with a wildcard prefix. */
4527
4528 static void
4529 add_symbols_from_enclosing_procs (std::vector<struct block_symbol> &result,
4530 const lookup_name_info &lookup_name,
4531 domain_enum domain)
4532 {
4533 }
4534
4535 /* True if TYPE is definitely an artificial type supplied to a symbol
4536 for which no debugging information was given in the symbol file. */
4537
4538 static int
4539 is_nondebugging_type (struct type *type)
4540 {
4541 const char *name = ada_type_name (type);
4542
4543 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4544 }
4545
4546 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4547 that are deemed "identical" for practical purposes.
4548
4549 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4550 types and that their number of enumerals is identical (in other
4551 words, type1->num_fields () == type2->num_fields ()). */
4552
4553 static int
4554 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4555 {
4556 int i;
4557
4558 /* The heuristic we use here is fairly conservative. We consider
4559 that 2 enumerate types are identical if they have the same
4560 number of enumerals and that all enumerals have the same
4561 underlying value and name. */
4562
4563 /* All enums in the type should have an identical underlying value. */
4564 for (i = 0; i < type1->num_fields (); i++)
4565 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
4566 return 0;
4567
4568 /* All enumerals should also have the same name (modulo any numerical
4569 suffix). */
4570 for (i = 0; i < type1->num_fields (); i++)
4571 {
4572 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4573 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4574 int len_1 = strlen (name_1);
4575 int len_2 = strlen (name_2);
4576
4577 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4578 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4579 if (len_1 != len_2
4580 || strncmp (TYPE_FIELD_NAME (type1, i),
4581 TYPE_FIELD_NAME (type2, i),
4582 len_1) != 0)
4583 return 0;
4584 }
4585
4586 return 1;
4587 }
4588
4589 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4590 that are deemed "identical" for practical purposes. Sometimes,
4591 enumerals are not strictly identical, but their types are so similar
4592 that they can be considered identical.
4593
4594 For instance, consider the following code:
4595
4596 type Color is (Black, Red, Green, Blue, White);
4597 type RGB_Color is new Color range Red .. Blue;
4598
4599 Type RGB_Color is a subrange of an implicit type which is a copy
4600 of type Color. If we call that implicit type RGB_ColorB ("B" is
4601 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4602 As a result, when an expression references any of the enumeral
4603 by name (Eg. "print green"), the expression is technically
4604 ambiguous and the user should be asked to disambiguate. But
4605 doing so would only hinder the user, since it wouldn't matter
4606 what choice he makes, the outcome would always be the same.
4607 So, for practical purposes, we consider them as the same. */
4608
4609 static int
4610 symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
4611 {
4612 int i;
4613
4614 /* Before performing a thorough comparison check of each type,
4615 we perform a series of inexpensive checks. We expect that these
4616 checks will quickly fail in the vast majority of cases, and thus
4617 help prevent the unnecessary use of a more expensive comparison.
4618 Said comparison also expects us to make some of these checks
4619 (see ada_identical_enum_types_p). */
4620
4621 /* Quick check: All symbols should have an enum type. */
4622 for (i = 0; i < syms.size (); i++)
4623 if (SYMBOL_TYPE (syms[i].symbol)->code () != TYPE_CODE_ENUM)
4624 return 0;
4625
4626 /* Quick check: They should all have the same value. */
4627 for (i = 1; i < syms.size (); i++)
4628 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
4629 return 0;
4630
4631 /* Quick check: They should all have the same number of enumerals. */
4632 for (i = 1; i < syms.size (); i++)
4633 if (SYMBOL_TYPE (syms[i].symbol)->num_fields ()
4634 != SYMBOL_TYPE (syms[0].symbol)->num_fields ())
4635 return 0;
4636
4637 /* All the sanity checks passed, so we might have a set of
4638 identical enumeration types. Perform a more complete
4639 comparison of the type of each symbol. */
4640 for (i = 1; i < syms.size (); i++)
4641 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
4642 SYMBOL_TYPE (syms[0].symbol)))
4643 return 0;
4644
4645 return 1;
4646 }
4647
4648 /* Remove any non-debugging symbols in SYMS that definitely
4649 duplicate other symbols in the list (The only case I know of where
4650 this happens is when object files containing stabs-in-ecoff are
4651 linked with files containing ordinary ecoff debugging symbols (or no
4652 debugging symbols)). Modifies SYMS to squeeze out deleted entries. */
4653
4654 static void
4655 remove_extra_symbols (std::vector<struct block_symbol> *syms)
4656 {
4657 int i, j;
4658
4659 /* We should never be called with less than 2 symbols, as there
4660 cannot be any extra symbol in that case. But it's easy to
4661 handle, since we have nothing to do in that case. */
4662 if (syms->size () < 2)
4663 return;
4664
4665 i = 0;
4666 while (i < syms->size ())
4667 {
4668 int remove_p = 0;
4669
4670 /* If two symbols have the same name and one of them is a stub type,
4671 the get rid of the stub. */
4672
4673 if (SYMBOL_TYPE ((*syms)[i].symbol)->is_stub ()
4674 && (*syms)[i].symbol->linkage_name () != NULL)
4675 {
4676 for (j = 0; j < syms->size (); j++)
4677 {
4678 if (j != i
4679 && !SYMBOL_TYPE ((*syms)[j].symbol)->is_stub ()
4680 && (*syms)[j].symbol->linkage_name () != NULL
4681 && strcmp ((*syms)[i].symbol->linkage_name (),
4682 (*syms)[j].symbol->linkage_name ()) == 0)
4683 remove_p = 1;
4684 }
4685 }
4686
4687 /* Two symbols with the same name, same class and same address
4688 should be identical. */
4689
4690 else if ((*syms)[i].symbol->linkage_name () != NULL
4691 && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC
4692 && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol)))
4693 {
4694 for (j = 0; j < syms->size (); j += 1)
4695 {
4696 if (i != j
4697 && (*syms)[j].symbol->linkage_name () != NULL
4698 && strcmp ((*syms)[i].symbol->linkage_name (),
4699 (*syms)[j].symbol->linkage_name ()) == 0
4700 && SYMBOL_CLASS ((*syms)[i].symbol)
4701 == SYMBOL_CLASS ((*syms)[j].symbol)
4702 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
4703 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
4704 remove_p = 1;
4705 }
4706 }
4707
4708 if (remove_p)
4709 syms->erase (syms->begin () + i);
4710 else
4711 i += 1;
4712 }
4713
4714 /* If all the remaining symbols are identical enumerals, then
4715 just keep the first one and discard the rest.
4716
4717 Unlike what we did previously, we do not discard any entry
4718 unless they are ALL identical. This is because the symbol
4719 comparison is not a strict comparison, but rather a practical
4720 comparison. If all symbols are considered identical, then
4721 we can just go ahead and use the first one and discard the rest.
4722 But if we cannot reduce the list to a single element, we have
4723 to ask the user to disambiguate anyways. And if we have to
4724 present a multiple-choice menu, it's less confusing if the list
4725 isn't missing some choices that were identical and yet distinct. */
4726 if (symbols_are_identical_enums (*syms))
4727 syms->resize (1);
4728 }
4729
4730 /* Given a type that corresponds to a renaming entity, use the type name
4731 to extract the scope (package name or function name, fully qualified,
4732 and following the GNAT encoding convention) where this renaming has been
4733 defined. */
4734
4735 static std::string
4736 xget_renaming_scope (struct type *renaming_type)
4737 {
4738 /* The renaming types adhere to the following convention:
4739 <scope>__<rename>___<XR extension>.
4740 So, to extract the scope, we search for the "___XR" extension,
4741 and then backtrack until we find the first "__". */
4742
4743 const char *name = renaming_type->name ();
4744 const char *suffix = strstr (name, "___XR");
4745 const char *last;
4746
4747 /* Now, backtrack a bit until we find the first "__". Start looking
4748 at suffix - 3, as the <rename> part is at least one character long. */
4749
4750 for (last = suffix - 3; last > name; last--)
4751 if (last[0] == '_' && last[1] == '_')
4752 break;
4753
4754 /* Make a copy of scope and return it. */
4755 return std::string (name, last);
4756 }
4757
4758 /* Return nonzero if NAME corresponds to a package name. */
4759
4760 static int
4761 is_package_name (const char *name)
4762 {
4763 /* Here, We take advantage of the fact that no symbols are generated
4764 for packages, while symbols are generated for each function.
4765 So the condition for NAME represent a package becomes equivalent
4766 to NAME not existing in our list of symbols. There is only one
4767 small complication with library-level functions (see below). */
4768
4769 /* If it is a function that has not been defined at library level,
4770 then we should be able to look it up in the symbols. */
4771 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4772 return 0;
4773
4774 /* Library-level function names start with "_ada_". See if function
4775 "_ada_" followed by NAME can be found. */
4776
4777 /* Do a quick check that NAME does not contain "__", since library-level
4778 functions names cannot contain "__" in them. */
4779 if (strstr (name, "__") != NULL)
4780 return 0;
4781
4782 std::string fun_name = string_printf ("_ada_%s", name);
4783
4784 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
4785 }
4786
4787 /* Return nonzero if SYM corresponds to a renaming entity that is
4788 not visible from FUNCTION_NAME. */
4789
4790 static int
4791 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
4792 {
4793 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4794 return 0;
4795
4796 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4797
4798 /* If the rename has been defined in a package, then it is visible. */
4799 if (is_package_name (scope.c_str ()))
4800 return 0;
4801
4802 /* Check that the rename is in the current function scope by checking
4803 that its name starts with SCOPE. */
4804
4805 /* If the function name starts with "_ada_", it means that it is
4806 a library-level function. Strip this prefix before doing the
4807 comparison, as the encoding for the renaming does not contain
4808 this prefix. */
4809 if (startswith (function_name, "_ada_"))
4810 function_name += 5;
4811
4812 return !startswith (function_name, scope.c_str ());
4813 }
4814
4815 /* Remove entries from SYMS that corresponds to a renaming entity that
4816 is not visible from the function associated with CURRENT_BLOCK or
4817 that is superfluous due to the presence of more specific renaming
4818 information. Places surviving symbols in the initial entries of
4819 SYMS.
4820
4821 Rationale:
4822 First, in cases where an object renaming is implemented as a
4823 reference variable, GNAT may produce both the actual reference
4824 variable and the renaming encoding. In this case, we discard the
4825 latter.
4826
4827 Second, GNAT emits a type following a specified encoding for each renaming
4828 entity. Unfortunately, STABS currently does not support the definition
4829 of types that are local to a given lexical block, so all renamings types
4830 are emitted at library level. As a consequence, if an application
4831 contains two renaming entities using the same name, and a user tries to
4832 print the value of one of these entities, the result of the ada symbol
4833 lookup will also contain the wrong renaming type.
4834
4835 This function partially covers for this limitation by attempting to
4836 remove from the SYMS list renaming symbols that should be visible
4837 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4838 method with the current information available. The implementation
4839 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4840
4841 - When the user tries to print a rename in a function while there
4842 is another rename entity defined in a package: Normally, the
4843 rename in the function has precedence over the rename in the
4844 package, so the latter should be removed from the list. This is
4845 currently not the case.
4846
4847 - This function will incorrectly remove valid renames if
4848 the CURRENT_BLOCK corresponds to a function which symbol name
4849 has been changed by an "Export" pragma. As a consequence,
4850 the user will be unable to print such rename entities. */
4851
4852 static void
4853 remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
4854 const struct block *current_block)
4855 {
4856 struct symbol *current_function;
4857 const char *current_function_name;
4858 int i;
4859 int is_new_style_renaming;
4860
4861 /* If there is both a renaming foo___XR... encoded as a variable and
4862 a simple variable foo in the same block, discard the latter.
4863 First, zero out such symbols, then compress. */
4864 is_new_style_renaming = 0;
4865 for (i = 0; i < syms->size (); i += 1)
4866 {
4867 struct symbol *sym = (*syms)[i].symbol;
4868 const struct block *block = (*syms)[i].block;
4869 const char *name;
4870 const char *suffix;
4871
4872 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4873 continue;
4874 name = sym->linkage_name ();
4875 suffix = strstr (name, "___XR");
4876
4877 if (suffix != NULL)
4878 {
4879 int name_len = suffix - name;
4880 int j;
4881
4882 is_new_style_renaming = 1;
4883 for (j = 0; j < syms->size (); j += 1)
4884 if (i != j && (*syms)[j].symbol != NULL
4885 && strncmp (name, (*syms)[j].symbol->linkage_name (),
4886 name_len) == 0
4887 && block == (*syms)[j].block)
4888 (*syms)[j].symbol = NULL;
4889 }
4890 }
4891 if (is_new_style_renaming)
4892 {
4893 int j, k;
4894
4895 for (j = k = 0; j < syms->size (); j += 1)
4896 if ((*syms)[j].symbol != NULL)
4897 {
4898 (*syms)[k] = (*syms)[j];
4899 k += 1;
4900 }
4901 syms->resize (k);
4902 return;
4903 }
4904
4905 /* Extract the function name associated to CURRENT_BLOCK.
4906 Abort if unable to do so. */
4907
4908 if (current_block == NULL)
4909 return;
4910
4911 current_function = block_linkage_function (current_block);
4912 if (current_function == NULL)
4913 return;
4914
4915 current_function_name = current_function->linkage_name ();
4916 if (current_function_name == NULL)
4917 return;
4918
4919 /* Check each of the symbols, and remove it from the list if it is
4920 a type corresponding to a renaming that is out of the scope of
4921 the current block. */
4922
4923 i = 0;
4924 while (i < syms->size ())
4925 {
4926 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
4927 == ADA_OBJECT_RENAMING
4928 && old_renaming_is_invisible ((*syms)[i].symbol,
4929 current_function_name))
4930 syms->erase (syms->begin () + i);
4931 else
4932 i += 1;
4933 }
4934 }
4935
4936 /* Add to RESULT all symbols from BLOCK (and its super-blocks)
4937 whose name and domain match NAME and DOMAIN respectively.
4938 If no match was found, then extend the search to "enclosing"
4939 routines (in other words, if we're inside a nested function,
4940 search the symbols defined inside the enclosing functions).
4941 If WILD_MATCH_P is nonzero, perform the naming matching in
4942 "wild" mode (see function "wild_match" for more info).
4943
4944 Note: This function assumes that RESULT has 0 (zero) element in it. */
4945
4946 static void
4947 ada_add_local_symbols (std::vector<struct block_symbol> &result,
4948 const lookup_name_info &lookup_name,
4949 const struct block *block, domain_enum domain)
4950 {
4951 int block_depth = 0;
4952
4953 while (block != NULL)
4954 {
4955 block_depth += 1;
4956 ada_add_block_symbols (result, block, lookup_name, domain, NULL);
4957
4958 /* If we found a non-function match, assume that's the one. */
4959 if (is_nonfunction (result))
4960 return;
4961
4962 block = BLOCK_SUPERBLOCK (block);
4963 }
4964
4965 /* If no luck so far, try to find NAME as a local symbol in some lexically
4966 enclosing subprogram. */
4967 if (result.empty () && block_depth > 2)
4968 add_symbols_from_enclosing_procs (result, lookup_name, domain);
4969 }
4970
4971 /* An object of this type is used as the user_data argument when
4972 calling the map_matching_symbols method. */
4973
4974 struct match_data
4975 {
4976 explicit match_data (std::vector<struct block_symbol> *rp)
4977 : resultp (rp)
4978 {
4979 }
4980 DISABLE_COPY_AND_ASSIGN (match_data);
4981
4982 struct objfile *objfile = nullptr;
4983 std::vector<struct block_symbol> *resultp;
4984 struct symbol *arg_sym = nullptr;
4985 bool found_sym = false;
4986 };
4987
4988 /* A callback for add_nonlocal_symbols that adds symbol, found in BSYM,
4989 to a list of symbols. DATA is a pointer to a struct match_data *
4990 containing the vector that collects the symbol list, the file that SYM
4991 must come from, a flag indicating whether a non-argument symbol has
4992 been found in the current block, and the last argument symbol
4993 passed in SYM within the current block (if any). When SYM is null,
4994 marking the end of a block, the argument symbol is added if no
4995 other has been found. */
4996
4997 static bool
4998 aux_add_nonlocal_symbols (struct block_symbol *bsym,
4999 struct match_data *data)
5000 {
5001 const struct block *block = bsym->block;
5002 struct symbol *sym = bsym->symbol;
5003
5004 if (sym == NULL)
5005 {
5006 if (!data->found_sym && data->arg_sym != NULL)
5007 add_defn_to_vec (*data->resultp,
5008 fixup_symbol_section (data->arg_sym, data->objfile),
5009 block);
5010 data->found_sym = false;
5011 data->arg_sym = NULL;
5012 }
5013 else
5014 {
5015 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5016 return true;
5017 else if (SYMBOL_IS_ARGUMENT (sym))
5018 data->arg_sym = sym;
5019 else
5020 {
5021 data->found_sym = true;
5022 add_defn_to_vec (*data->resultp,
5023 fixup_symbol_section (sym, data->objfile),
5024 block);
5025 }
5026 }
5027 return true;
5028 }
5029
5030 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5031 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5032 symbols to RESULT. Return whether we found such symbols. */
5033
5034 static int
5035 ada_add_block_renamings (std::vector<struct block_symbol> &result,
5036 const struct block *block,
5037 const lookup_name_info &lookup_name,
5038 domain_enum domain)
5039 {
5040 struct using_direct *renaming;
5041 int defns_mark = result.size ();
5042
5043 symbol_name_matcher_ftype *name_match
5044 = ada_get_symbol_name_matcher (lookup_name);
5045
5046 for (renaming = block_using (block);
5047 renaming != NULL;
5048 renaming = renaming->next)
5049 {
5050 const char *r_name;
5051
5052 /* Avoid infinite recursions: skip this renaming if we are actually
5053 already traversing it.
5054
5055 Currently, symbol lookup in Ada don't use the namespace machinery from
5056 C++/Fortran support: skip namespace imports that use them. */
5057 if (renaming->searched
5058 || (renaming->import_src != NULL
5059 && renaming->import_src[0] != '\0')
5060 || (renaming->import_dest != NULL
5061 && renaming->import_dest[0] != '\0'))
5062 continue;
5063 renaming->searched = 1;
5064
5065 /* TODO: here, we perform another name-based symbol lookup, which can
5066 pull its own multiple overloads. In theory, we should be able to do
5067 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5068 not a simple name. But in order to do this, we would need to enhance
5069 the DWARF reader to associate a symbol to this renaming, instead of a
5070 name. So, for now, we do something simpler: re-use the C++/Fortran
5071 namespace machinery. */
5072 r_name = (renaming->alias != NULL
5073 ? renaming->alias
5074 : renaming->declaration);
5075 if (name_match (r_name, lookup_name, NULL))
5076 {
5077 lookup_name_info decl_lookup_name (renaming->declaration,
5078 lookup_name.match_type ());
5079 ada_add_all_symbols (result, block, decl_lookup_name, domain,
5080 1, NULL);
5081 }
5082 renaming->searched = 0;
5083 }
5084 return result.size () != defns_mark;
5085 }
5086
5087 /* Implements compare_names, but only applying the comparision using
5088 the given CASING. */
5089
5090 static int
5091 compare_names_with_case (const char *string1, const char *string2,
5092 enum case_sensitivity casing)
5093 {
5094 while (*string1 != '\0' && *string2 != '\0')
5095 {
5096 char c1, c2;
5097
5098 if (isspace (*string1) || isspace (*string2))
5099 return strcmp_iw_ordered (string1, string2);
5100
5101 if (casing == case_sensitive_off)
5102 {
5103 c1 = tolower (*string1);
5104 c2 = tolower (*string2);
5105 }
5106 else
5107 {
5108 c1 = *string1;
5109 c2 = *string2;
5110 }
5111 if (c1 != c2)
5112 break;
5113
5114 string1 += 1;
5115 string2 += 1;
5116 }
5117
5118 switch (*string1)
5119 {
5120 case '(':
5121 return strcmp_iw_ordered (string1, string2);
5122 case '_':
5123 if (*string2 == '\0')
5124 {
5125 if (is_name_suffix (string1))
5126 return 0;
5127 else
5128 return 1;
5129 }
5130 /* FALLTHROUGH */
5131 default:
5132 if (*string2 == '(')
5133 return strcmp_iw_ordered (string1, string2);
5134 else
5135 {
5136 if (casing == case_sensitive_off)
5137 return tolower (*string1) - tolower (*string2);
5138 else
5139 return *string1 - *string2;
5140 }
5141 }
5142 }
5143
5144 /* Compare STRING1 to STRING2, with results as for strcmp.
5145 Compatible with strcmp_iw_ordered in that...
5146
5147 strcmp_iw_ordered (STRING1, STRING2) <= 0
5148
5149 ... implies...
5150
5151 compare_names (STRING1, STRING2) <= 0
5152
5153 (they may differ as to what symbols compare equal). */
5154
5155 static int
5156 compare_names (const char *string1, const char *string2)
5157 {
5158 int result;
5159
5160 /* Similar to what strcmp_iw_ordered does, we need to perform
5161 a case-insensitive comparison first, and only resort to
5162 a second, case-sensitive, comparison if the first one was
5163 not sufficient to differentiate the two strings. */
5164
5165 result = compare_names_with_case (string1, string2, case_sensitive_off);
5166 if (result == 0)
5167 result = compare_names_with_case (string1, string2, case_sensitive_on);
5168
5169 return result;
5170 }
5171
5172 /* Convenience function to get at the Ada encoded lookup name for
5173 LOOKUP_NAME, as a C string. */
5174
5175 static const char *
5176 ada_lookup_name (const lookup_name_info &lookup_name)
5177 {
5178 return lookup_name.ada ().lookup_name ().c_str ();
5179 }
5180
5181 /* Add to RESULT all non-local symbols whose name and domain match
5182 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5183 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5184 symbols otherwise. */
5185
5186 static void
5187 add_nonlocal_symbols (std::vector<struct block_symbol> &result,
5188 const lookup_name_info &lookup_name,
5189 domain_enum domain, int global)
5190 {
5191 struct match_data data (&result);
5192
5193 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5194
5195 auto callback = [&] (struct block_symbol *bsym)
5196 {
5197 return aux_add_nonlocal_symbols (bsym, &data);
5198 };
5199
5200 for (objfile *objfile : current_program_space->objfiles ())
5201 {
5202 data.objfile = objfile;
5203
5204 if (objfile->sf != nullptr)
5205 objfile->sf->qf->map_matching_symbols (objfile, lookup_name,
5206 domain, global, callback,
5207 (is_wild_match
5208 ? NULL : compare_names));
5209
5210 for (compunit_symtab *cu : objfile->compunits ())
5211 {
5212 const struct block *global_block
5213 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5214
5215 if (ada_add_block_renamings (result, global_block, lookup_name,
5216 domain))
5217 data.found_sym = true;
5218 }
5219 }
5220
5221 if (result.empty () && global && !is_wild_match)
5222 {
5223 const char *name = ada_lookup_name (lookup_name);
5224 std::string bracket_name = std::string ("<_ada_") + name + '>';
5225 lookup_name_info name1 (bracket_name, symbol_name_match_type::FULL);
5226
5227 for (objfile *objfile : current_program_space->objfiles ())
5228 {
5229 data.objfile = objfile;
5230 if (objfile->sf != nullptr)
5231 objfile->sf->qf->map_matching_symbols (objfile, name1,
5232 domain, global, callback,
5233 compare_names);
5234 }
5235 }
5236 }
5237
5238 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5239 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5240 returning the number of matches. Add these to RESULT.
5241
5242 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5243 symbol match within the nest of blocks whose innermost member is BLOCK,
5244 is the one match returned (no other matches in that or
5245 enclosing blocks is returned). If there are any matches in or
5246 surrounding BLOCK, then these alone are returned.
5247
5248 Names prefixed with "standard__" are handled specially:
5249 "standard__" is first stripped off (by the lookup_name
5250 constructor), and only static and global symbols are searched.
5251
5252 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5253 to lookup global symbols. */
5254
5255 static void
5256 ada_add_all_symbols (std::vector<struct block_symbol> &result,
5257 const struct block *block,
5258 const lookup_name_info &lookup_name,
5259 domain_enum domain,
5260 int full_search,
5261 int *made_global_lookup_p)
5262 {
5263 struct symbol *sym;
5264
5265 if (made_global_lookup_p)
5266 *made_global_lookup_p = 0;
5267
5268 /* Special case: If the user specifies a symbol name inside package
5269 Standard, do a non-wild matching of the symbol name without
5270 the "standard__" prefix. This was primarily introduced in order
5271 to allow the user to specifically access the standard exceptions
5272 using, for instance, Standard.Constraint_Error when Constraint_Error
5273 is ambiguous (due to the user defining its own Constraint_Error
5274 entity inside its program). */
5275 if (lookup_name.ada ().standard_p ())
5276 block = NULL;
5277
5278 /* Check the non-global symbols. If we have ANY match, then we're done. */
5279
5280 if (block != NULL)
5281 {
5282 if (full_search)
5283 ada_add_local_symbols (result, lookup_name, block, domain);
5284 else
5285 {
5286 /* In the !full_search case we're are being called by
5287 iterate_over_symbols, and we don't want to search
5288 superblocks. */
5289 ada_add_block_symbols (result, block, lookup_name, domain, NULL);
5290 }
5291 if (!result.empty () || !full_search)
5292 return;
5293 }
5294
5295 /* No non-global symbols found. Check our cache to see if we have
5296 already performed this search before. If we have, then return
5297 the same result. */
5298
5299 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5300 domain, &sym, &block))
5301 {
5302 if (sym != NULL)
5303 add_defn_to_vec (result, sym, block);
5304 return;
5305 }
5306
5307 if (made_global_lookup_p)
5308 *made_global_lookup_p = 1;
5309
5310 /* Search symbols from all global blocks. */
5311
5312 add_nonlocal_symbols (result, lookup_name, domain, 1);
5313
5314 /* Now add symbols from all per-file blocks if we've gotten no hits
5315 (not strictly correct, but perhaps better than an error). */
5316
5317 if (result.empty ())
5318 add_nonlocal_symbols (result, lookup_name, domain, 0);
5319 }
5320
5321 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5322 is non-zero, enclosing scope and in global scopes.
5323
5324 Returns (SYM,BLOCK) tuples, indicating the symbols found and the
5325 blocks and symbol tables (if any) in which they were found.
5326
5327 When full_search is non-zero, any non-function/non-enumeral
5328 symbol match within the nest of blocks whose innermost member is BLOCK,
5329 is the one match returned (no other matches in that or
5330 enclosing blocks is returned). If there are any matches in or
5331 surrounding BLOCK, then these alone are returned.
5332
5333 Names prefixed with "standard__" are handled specially: "standard__"
5334 is first stripped off, and only static and global symbols are searched. */
5335
5336 static std::vector<struct block_symbol>
5337 ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5338 const struct block *block,
5339 domain_enum domain,
5340 int full_search)
5341 {
5342 int syms_from_global_search;
5343 std::vector<struct block_symbol> results;
5344
5345 ada_add_all_symbols (results, block, lookup_name,
5346 domain, full_search, &syms_from_global_search);
5347
5348 remove_extra_symbols (&results);
5349
5350 if (results.empty () && full_search && syms_from_global_search)
5351 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
5352
5353 if (results.size () == 1 && full_search && syms_from_global_search)
5354 cache_symbol (ada_lookup_name (lookup_name), domain,
5355 results[0].symbol, results[0].block);
5356
5357 remove_irrelevant_renamings (&results, block);
5358 return results;
5359 }
5360
5361 /* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
5362 in global scopes, returning (SYM,BLOCK) tuples.
5363
5364 See ada_lookup_symbol_list_worker for further details. */
5365
5366 std::vector<struct block_symbol>
5367 ada_lookup_symbol_list (const char *name, const struct block *block,
5368 domain_enum domain)
5369 {
5370 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5371 lookup_name_info lookup_name (name, name_match_type);
5372
5373 return ada_lookup_symbol_list_worker (lookup_name, block, domain, 1);
5374 }
5375
5376 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5377 to 1, but choosing the first symbol found if there are multiple
5378 choices.
5379
5380 The result is stored in *INFO, which must be non-NULL.
5381 If no match is found, INFO->SYM is set to NULL. */
5382
5383 void
5384 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5385 domain_enum domain,
5386 struct block_symbol *info)
5387 {
5388 /* Since we already have an encoded name, wrap it in '<>' to force a
5389 verbatim match. Otherwise, if the name happens to not look like
5390 an encoded name (because it doesn't include a "__"),
5391 ada_lookup_name_info would re-encode/fold it again, and that
5392 would e.g., incorrectly lowercase object renaming names like
5393 "R28b" -> "r28b". */
5394 std::string verbatim = add_angle_brackets (name);
5395
5396 gdb_assert (info != NULL);
5397 *info = ada_lookup_symbol (verbatim.c_str (), block, domain);
5398 }
5399
5400 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5401 scope and in global scopes, or NULL if none. NAME is folded and
5402 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5403 choosing the first symbol if there are multiple choices. */
5404
5405 struct block_symbol
5406 ada_lookup_symbol (const char *name, const struct block *block0,
5407 domain_enum domain)
5408 {
5409 std::vector<struct block_symbol> candidates
5410 = ada_lookup_symbol_list (name, block0, domain);
5411
5412 if (candidates.empty ())
5413 return {};
5414
5415 block_symbol info = candidates[0];
5416 info.symbol = fixup_symbol_section (info.symbol, NULL);
5417 return info;
5418 }
5419
5420
5421 /* True iff STR is a possible encoded suffix of a normal Ada name
5422 that is to be ignored for matching purposes. Suffixes of parallel
5423 names (e.g., XVE) are not included here. Currently, the possible suffixes
5424 are given by any of the regular expressions:
5425
5426 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5427 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5428 TKB [subprogram suffix for task bodies]
5429 _E[0-9]+[bs]$ [protected object entry suffixes]
5430 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5431
5432 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5433 match is performed. This sequence is used to differentiate homonyms,
5434 is an optional part of a valid name suffix. */
5435
5436 static int
5437 is_name_suffix (const char *str)
5438 {
5439 int k;
5440 const char *matching;
5441 const int len = strlen (str);
5442
5443 /* Skip optional leading __[0-9]+. */
5444
5445 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5446 {
5447 str += 3;
5448 while (isdigit (str[0]))
5449 str += 1;
5450 }
5451
5452 /* [.$][0-9]+ */
5453
5454 if (str[0] == '.' || str[0] == '$')
5455 {
5456 matching = str + 1;
5457 while (isdigit (matching[0]))
5458 matching += 1;
5459 if (matching[0] == '\0')
5460 return 1;
5461 }
5462
5463 /* ___[0-9]+ */
5464
5465 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5466 {
5467 matching = str + 3;
5468 while (isdigit (matching[0]))
5469 matching += 1;
5470 if (matching[0] == '\0')
5471 return 1;
5472 }
5473
5474 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5475
5476 if (strcmp (str, "TKB") == 0)
5477 return 1;
5478
5479 #if 0
5480 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5481 with a N at the end. Unfortunately, the compiler uses the same
5482 convention for other internal types it creates. So treating
5483 all entity names that end with an "N" as a name suffix causes
5484 some regressions. For instance, consider the case of an enumerated
5485 type. To support the 'Image attribute, it creates an array whose
5486 name ends with N.
5487 Having a single character like this as a suffix carrying some
5488 information is a bit risky. Perhaps we should change the encoding
5489 to be something like "_N" instead. In the meantime, do not do
5490 the following check. */
5491 /* Protected Object Subprograms */
5492 if (len == 1 && str [0] == 'N')
5493 return 1;
5494 #endif
5495
5496 /* _E[0-9]+[bs]$ */
5497 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5498 {
5499 matching = str + 3;
5500 while (isdigit (matching[0]))
5501 matching += 1;
5502 if ((matching[0] == 'b' || matching[0] == 's')
5503 && matching [1] == '\0')
5504 return 1;
5505 }
5506
5507 /* ??? We should not modify STR directly, as we are doing below. This
5508 is fine in this case, but may become problematic later if we find
5509 that this alternative did not work, and want to try matching
5510 another one from the begining of STR. Since we modified it, we
5511 won't be able to find the begining of the string anymore! */
5512 if (str[0] == 'X')
5513 {
5514 str += 1;
5515 while (str[0] != '_' && str[0] != '\0')
5516 {
5517 if (str[0] != 'n' && str[0] != 'b')
5518 return 0;
5519 str += 1;
5520 }
5521 }
5522
5523 if (str[0] == '\000')
5524 return 1;
5525
5526 if (str[0] == '_')
5527 {
5528 if (str[1] != '_' || str[2] == '\000')
5529 return 0;
5530 if (str[2] == '_')
5531 {
5532 if (strcmp (str + 3, "JM") == 0)
5533 return 1;
5534 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5535 the LJM suffix in favor of the JM one. But we will
5536 still accept LJM as a valid suffix for a reasonable
5537 amount of time, just to allow ourselves to debug programs
5538 compiled using an older version of GNAT. */
5539 if (strcmp (str + 3, "LJM") == 0)
5540 return 1;
5541 if (str[3] != 'X')
5542 return 0;
5543 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5544 || str[4] == 'U' || str[4] == 'P')
5545 return 1;
5546 if (str[4] == 'R' && str[5] != 'T')
5547 return 1;
5548 return 0;
5549 }
5550 if (!isdigit (str[2]))
5551 return 0;
5552 for (k = 3; str[k] != '\0'; k += 1)
5553 if (!isdigit (str[k]) && str[k] != '_')
5554 return 0;
5555 return 1;
5556 }
5557 if (str[0] == '$' && isdigit (str[1]))
5558 {
5559 for (k = 2; str[k] != '\0'; k += 1)
5560 if (!isdigit (str[k]) && str[k] != '_')
5561 return 0;
5562 return 1;
5563 }
5564 return 0;
5565 }
5566
5567 /* Return non-zero if the string starting at NAME and ending before
5568 NAME_END contains no capital letters. */
5569
5570 static int
5571 is_valid_name_for_wild_match (const char *name0)
5572 {
5573 std::string decoded_name = ada_decode (name0);
5574 int i;
5575
5576 /* If the decoded name starts with an angle bracket, it means that
5577 NAME0 does not follow the GNAT encoding format. It should then
5578 not be allowed as a possible wild match. */
5579 if (decoded_name[0] == '<')
5580 return 0;
5581
5582 for (i=0; decoded_name[i] != '\0'; i++)
5583 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5584 return 0;
5585
5586 return 1;
5587 }
5588
5589 /* Advance *NAMEP to next occurrence in the string NAME0 of the TARGET0
5590 character which could start a simple name. Assumes that *NAMEP points
5591 somewhere inside the string beginning at NAME0. */
5592
5593 static int
5594 advance_wild_match (const char **namep, const char *name0, char target0)
5595 {
5596 const char *name = *namep;
5597
5598 while (1)
5599 {
5600 char t0, t1;
5601
5602 t0 = *name;
5603 if (t0 == '_')
5604 {
5605 t1 = name[1];
5606 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5607 {
5608 name += 1;
5609 if (name == name0 + 5 && startswith (name0, "_ada"))
5610 break;
5611 else
5612 name += 1;
5613 }
5614 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5615 || name[2] == target0))
5616 {
5617 name += 2;
5618 break;
5619 }
5620 else if (t1 == '_' && name[2] == 'B' && name[3] == '_')
5621 {
5622 /* Names like "pkg__B_N__name", where N is a number, are
5623 block-local. We can handle these by simply skipping
5624 the "B_" here. */
5625 name += 4;
5626 }
5627 else
5628 return 0;
5629 }
5630 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5631 name += 1;
5632 else
5633 return 0;
5634 }
5635
5636 *namep = name;
5637 return 1;
5638 }
5639
5640 /* Return true iff NAME encodes a name of the form prefix.PATN.
5641 Ignores any informational suffixes of NAME (i.e., for which
5642 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
5643 simple name. */
5644
5645 static bool
5646 wild_match (const char *name, const char *patn)
5647 {
5648 const char *p;
5649 const char *name0 = name;
5650
5651 while (1)
5652 {
5653 const char *match = name;
5654
5655 if (*name == *patn)
5656 {
5657 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5658 if (*p != *name)
5659 break;
5660 if (*p == '\0' && is_name_suffix (name))
5661 return match == name0 || is_valid_name_for_wild_match (name0);
5662
5663 if (name[-1] == '_')
5664 name -= 1;
5665 }
5666 if (!advance_wild_match (&name, name0, *patn))
5667 return false;
5668 }
5669 }
5670
5671 /* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to RESULT (if
5672 necessary). OBJFILE is the section containing BLOCK. */
5673
5674 static void
5675 ada_add_block_symbols (std::vector<struct block_symbol> &result,
5676 const struct block *block,
5677 const lookup_name_info &lookup_name,
5678 domain_enum domain, struct objfile *objfile)
5679 {
5680 struct block_iterator iter;
5681 /* A matching argument symbol, if any. */
5682 struct symbol *arg_sym;
5683 /* Set true when we find a matching non-argument symbol. */
5684 bool found_sym;
5685 struct symbol *sym;
5686
5687 arg_sym = NULL;
5688 found_sym = false;
5689 for (sym = block_iter_match_first (block, lookup_name, &iter);
5690 sym != NULL;
5691 sym = block_iter_match_next (lookup_name, &iter))
5692 {
5693 if (symbol_matches_domain (sym->language (), SYMBOL_DOMAIN (sym), domain))
5694 {
5695 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5696 {
5697 if (SYMBOL_IS_ARGUMENT (sym))
5698 arg_sym = sym;
5699 else
5700 {
5701 found_sym = true;
5702 add_defn_to_vec (result,
5703 fixup_symbol_section (sym, objfile),
5704 block);
5705 }
5706 }
5707 }
5708 }
5709
5710 /* Handle renamings. */
5711
5712 if (ada_add_block_renamings (result, block, lookup_name, domain))
5713 found_sym = true;
5714
5715 if (!found_sym && arg_sym != NULL)
5716 {
5717 add_defn_to_vec (result,
5718 fixup_symbol_section (arg_sym, objfile),
5719 block);
5720 }
5721
5722 if (!lookup_name.ada ().wild_match_p ())
5723 {
5724 arg_sym = NULL;
5725 found_sym = false;
5726 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
5727 const char *name = ada_lookup_name.c_str ();
5728 size_t name_len = ada_lookup_name.size ();
5729
5730 ALL_BLOCK_SYMBOLS (block, iter, sym)
5731 {
5732 if (symbol_matches_domain (sym->language (),
5733 SYMBOL_DOMAIN (sym), domain))
5734 {
5735 int cmp;
5736
5737 cmp = (int) '_' - (int) sym->linkage_name ()[0];
5738 if (cmp == 0)
5739 {
5740 cmp = !startswith (sym->linkage_name (), "_ada_");
5741 if (cmp == 0)
5742 cmp = strncmp (name, sym->linkage_name () + 5,
5743 name_len);
5744 }
5745
5746 if (cmp == 0
5747 && is_name_suffix (sym->linkage_name () + name_len + 5))
5748 {
5749 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5750 {
5751 if (SYMBOL_IS_ARGUMENT (sym))
5752 arg_sym = sym;
5753 else
5754 {
5755 found_sym = true;
5756 add_defn_to_vec (result,
5757 fixup_symbol_section (sym, objfile),
5758 block);
5759 }
5760 }
5761 }
5762 }
5763 }
5764
5765 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5766 They aren't parameters, right? */
5767 if (!found_sym && arg_sym != NULL)
5768 {
5769 add_defn_to_vec (result,
5770 fixup_symbol_section (arg_sym, objfile),
5771 block);
5772 }
5773 }
5774 }
5775 \f
5776
5777 /* Symbol Completion */
5778
5779 /* See symtab.h. */
5780
5781 bool
5782 ada_lookup_name_info::matches
5783 (const char *sym_name,
5784 symbol_name_match_type match_type,
5785 completion_match_result *comp_match_res) const
5786 {
5787 bool match = false;
5788 const char *text = m_encoded_name.c_str ();
5789 size_t text_len = m_encoded_name.size ();
5790
5791 /* First, test against the fully qualified name of the symbol. */
5792
5793 if (strncmp (sym_name, text, text_len) == 0)
5794 match = true;
5795
5796 std::string decoded_name = ada_decode (sym_name);
5797 if (match && !m_encoded_p)
5798 {
5799 /* One needed check before declaring a positive match is to verify
5800 that iff we are doing a verbatim match, the decoded version
5801 of the symbol name starts with '<'. Otherwise, this symbol name
5802 is not a suitable completion. */
5803
5804 bool has_angle_bracket = (decoded_name[0] == '<');
5805 match = (has_angle_bracket == m_verbatim_p);
5806 }
5807
5808 if (match && !m_verbatim_p)
5809 {
5810 /* When doing non-verbatim match, another check that needs to
5811 be done is to verify that the potentially matching symbol name
5812 does not include capital letters, because the ada-mode would
5813 not be able to understand these symbol names without the
5814 angle bracket notation. */
5815 const char *tmp;
5816
5817 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5818 if (*tmp != '\0')
5819 match = false;
5820 }
5821
5822 /* Second: Try wild matching... */
5823
5824 if (!match && m_wild_match_p)
5825 {
5826 /* Since we are doing wild matching, this means that TEXT
5827 may represent an unqualified symbol name. We therefore must
5828 also compare TEXT against the unqualified name of the symbol. */
5829 sym_name = ada_unqualified_name (decoded_name.c_str ());
5830
5831 if (strncmp (sym_name, text, text_len) == 0)
5832 match = true;
5833 }
5834
5835 /* Finally: If we found a match, prepare the result to return. */
5836
5837 if (!match)
5838 return false;
5839
5840 if (comp_match_res != NULL)
5841 {
5842 std::string &match_str = comp_match_res->match.storage ();
5843
5844 if (!m_encoded_p)
5845 match_str = ada_decode (sym_name);
5846 else
5847 {
5848 if (m_verbatim_p)
5849 match_str = add_angle_brackets (sym_name);
5850 else
5851 match_str = sym_name;
5852
5853 }
5854
5855 comp_match_res->set_match (match_str.c_str ());
5856 }
5857
5858 return true;
5859 }
5860
5861 /* Field Access */
5862
5863 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5864 for tagged types. */
5865
5866 static int
5867 ada_is_dispatch_table_ptr_type (struct type *type)
5868 {
5869 const char *name;
5870
5871 if (type->code () != TYPE_CODE_PTR)
5872 return 0;
5873
5874 name = TYPE_TARGET_TYPE (type)->name ();
5875 if (name == NULL)
5876 return 0;
5877
5878 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5879 }
5880
5881 /* Return non-zero if TYPE is an interface tag. */
5882
5883 static int
5884 ada_is_interface_tag (struct type *type)
5885 {
5886 const char *name = type->name ();
5887
5888 if (name == NULL)
5889 return 0;
5890
5891 return (strcmp (name, "ada__tags__interface_tag") == 0);
5892 }
5893
5894 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5895 to be invisible to users. */
5896
5897 int
5898 ada_is_ignored_field (struct type *type, int field_num)
5899 {
5900 if (field_num < 0 || field_num > type->num_fields ())
5901 return 1;
5902
5903 /* Check the name of that field. */
5904 {
5905 const char *name = TYPE_FIELD_NAME (type, field_num);
5906
5907 /* Anonymous field names should not be printed.
5908 brobecker/2007-02-20: I don't think this can actually happen
5909 but we don't want to print the value of anonymous fields anyway. */
5910 if (name == NULL)
5911 return 1;
5912
5913 /* Normally, fields whose name start with an underscore ("_")
5914 are fields that have been internally generated by the compiler,
5915 and thus should not be printed. The "_parent" field is special,
5916 however: This is a field internally generated by the compiler
5917 for tagged types, and it contains the components inherited from
5918 the parent type. This field should not be printed as is, but
5919 should not be ignored either. */
5920 if (name[0] == '_' && !startswith (name, "_parent"))
5921 return 1;
5922 }
5923
5924 /* If this is the dispatch table of a tagged type or an interface tag,
5925 then ignore. */
5926 if (ada_is_tagged_type (type, 1)
5927 && (ada_is_dispatch_table_ptr_type (type->field (field_num).type ())
5928 || ada_is_interface_tag (type->field (field_num).type ())))
5929 return 1;
5930
5931 /* Not a special field, so it should not be ignored. */
5932 return 0;
5933 }
5934
5935 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5936 pointer or reference type whose ultimate target has a tag field. */
5937
5938 int
5939 ada_is_tagged_type (struct type *type, int refok)
5940 {
5941 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
5942 }
5943
5944 /* True iff TYPE represents the type of X'Tag */
5945
5946 int
5947 ada_is_tag_type (struct type *type)
5948 {
5949 type = ada_check_typedef (type);
5950
5951 if (type == NULL || type->code () != TYPE_CODE_PTR)
5952 return 0;
5953 else
5954 {
5955 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5956
5957 return (name != NULL
5958 && strcmp (name, "ada__tags__dispatch_table") == 0);
5959 }
5960 }
5961
5962 /* The type of the tag on VAL. */
5963
5964 static struct type *
5965 ada_tag_type (struct value *val)
5966 {
5967 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
5968 }
5969
5970 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
5971 retired at Ada 05). */
5972
5973 static int
5974 is_ada95_tag (struct value *tag)
5975 {
5976 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
5977 }
5978
5979 /* The value of the tag on VAL. */
5980
5981 static struct value *
5982 ada_value_tag (struct value *val)
5983 {
5984 return ada_value_struct_elt (val, "_tag", 0);
5985 }
5986
5987 /* The value of the tag on the object of type TYPE whose contents are
5988 saved at VALADDR, if it is non-null, or is at memory address
5989 ADDRESS. */
5990
5991 static struct value *
5992 value_tag_from_contents_and_address (struct type *type,
5993 const gdb_byte *valaddr,
5994 CORE_ADDR address)
5995 {
5996 int tag_byte_offset;
5997 struct type *tag_type;
5998
5999 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6000 NULL, NULL, NULL))
6001 {
6002 const gdb_byte *valaddr1 = ((valaddr == NULL)
6003 ? NULL
6004 : valaddr + tag_byte_offset);
6005 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6006
6007 return value_from_contents_and_address (tag_type, valaddr1, address1);
6008 }
6009 return NULL;
6010 }
6011
6012 static struct type *
6013 type_from_tag (struct value *tag)
6014 {
6015 gdb::unique_xmalloc_ptr<char> type_name = ada_tag_name (tag);
6016
6017 if (type_name != NULL)
6018 return ada_find_any_type (ada_encode (type_name.get ()).c_str ());
6019 return NULL;
6020 }
6021
6022 /* Given a value OBJ of a tagged type, return a value of this
6023 type at the base address of the object. The base address, as
6024 defined in Ada.Tags, it is the address of the primary tag of
6025 the object, and therefore where the field values of its full
6026 view can be fetched. */
6027
6028 struct value *
6029 ada_tag_value_at_base_address (struct value *obj)
6030 {
6031 struct value *val;
6032 LONGEST offset_to_top = 0;
6033 struct type *ptr_type, *obj_type;
6034 struct value *tag;
6035 CORE_ADDR base_address;
6036
6037 obj_type = value_type (obj);
6038
6039 /* It is the responsability of the caller to deref pointers. */
6040
6041 if (obj_type->code () == TYPE_CODE_PTR || obj_type->code () == TYPE_CODE_REF)
6042 return obj;
6043
6044 tag = ada_value_tag (obj);
6045 if (!tag)
6046 return obj;
6047
6048 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6049
6050 if (is_ada95_tag (tag))
6051 return obj;
6052
6053 ptr_type = language_lookup_primitive_type
6054 (language_def (language_ada), target_gdbarch(), "storage_offset");
6055 ptr_type = lookup_pointer_type (ptr_type);
6056 val = value_cast (ptr_type, tag);
6057 if (!val)
6058 return obj;
6059
6060 /* It is perfectly possible that an exception be raised while
6061 trying to determine the base address, just like for the tag;
6062 see ada_tag_name for more details. We do not print the error
6063 message for the same reason. */
6064
6065 try
6066 {
6067 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6068 }
6069
6070 catch (const gdb_exception_error &e)
6071 {
6072 return obj;
6073 }
6074
6075 /* If offset is null, nothing to do. */
6076
6077 if (offset_to_top == 0)
6078 return obj;
6079
6080 /* -1 is a special case in Ada.Tags; however, what should be done
6081 is not quite clear from the documentation. So do nothing for
6082 now. */
6083
6084 if (offset_to_top == -1)
6085 return obj;
6086
6087 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6088 from the base address. This was however incompatible with
6089 C++ dispatch table: C++ uses a *negative* value to *add*
6090 to the base address. Ada's convention has therefore been
6091 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6092 use the same convention. Here, we support both cases by
6093 checking the sign of OFFSET_TO_TOP. */
6094
6095 if (offset_to_top > 0)
6096 offset_to_top = -offset_to_top;
6097
6098 base_address = value_address (obj) + offset_to_top;
6099 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6100
6101 /* Make sure that we have a proper tag at the new address.
6102 Otherwise, offset_to_top is bogus (which can happen when
6103 the object is not initialized yet). */
6104
6105 if (!tag)
6106 return obj;
6107
6108 obj_type = type_from_tag (tag);
6109
6110 if (!obj_type)
6111 return obj;
6112
6113 return value_from_contents_and_address (obj_type, NULL, base_address);
6114 }
6115
6116 /* Return the "ada__tags__type_specific_data" type. */
6117
6118 static struct type *
6119 ada_get_tsd_type (struct inferior *inf)
6120 {
6121 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6122
6123 if (data->tsd_type == 0)
6124 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6125 return data->tsd_type;
6126 }
6127
6128 /* Return the TSD (type-specific data) associated to the given TAG.
6129 TAG is assumed to be the tag of a tagged-type entity.
6130
6131 May return NULL if we are unable to get the TSD. */
6132
6133 static struct value *
6134 ada_get_tsd_from_tag (struct value *tag)
6135 {
6136 struct value *val;
6137 struct type *type;
6138
6139 /* First option: The TSD is simply stored as a field of our TAG.
6140 Only older versions of GNAT would use this format, but we have
6141 to test it first, because there are no visible markers for
6142 the current approach except the absence of that field. */
6143
6144 val = ada_value_struct_elt (tag, "tsd", 1);
6145 if (val)
6146 return val;
6147
6148 /* Try the second representation for the dispatch table (in which
6149 there is no explicit 'tsd' field in the referent of the tag pointer,
6150 and instead the tsd pointer is stored just before the dispatch
6151 table. */
6152
6153 type = ada_get_tsd_type (current_inferior());
6154 if (type == NULL)
6155 return NULL;
6156 type = lookup_pointer_type (lookup_pointer_type (type));
6157 val = value_cast (type, tag);
6158 if (val == NULL)
6159 return NULL;
6160 return value_ind (value_ptradd (val, -1));
6161 }
6162
6163 /* Given the TSD of a tag (type-specific data), return a string
6164 containing the name of the associated type.
6165
6166 May return NULL if we are unable to determine the tag name. */
6167
6168 static gdb::unique_xmalloc_ptr<char>
6169 ada_tag_name_from_tsd (struct value *tsd)
6170 {
6171 char *p;
6172 struct value *val;
6173
6174 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6175 if (val == NULL)
6176 return NULL;
6177 gdb::unique_xmalloc_ptr<char> buffer
6178 = target_read_string (value_as_address (val), INT_MAX);
6179 if (buffer == nullptr)
6180 return nullptr;
6181
6182 for (p = buffer.get (); *p != '\0'; ++p)
6183 {
6184 if (isalpha (*p))
6185 *p = tolower (*p);
6186 }
6187
6188 return buffer;
6189 }
6190
6191 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6192 a C string.
6193
6194 Return NULL if the TAG is not an Ada tag, or if we were unable to
6195 determine the name of that tag. */
6196
6197 gdb::unique_xmalloc_ptr<char>
6198 ada_tag_name (struct value *tag)
6199 {
6200 gdb::unique_xmalloc_ptr<char> name;
6201
6202 if (!ada_is_tag_type (value_type (tag)))
6203 return NULL;
6204
6205 /* It is perfectly possible that an exception be raised while trying
6206 to determine the TAG's name, even under normal circumstances:
6207 The associated variable may be uninitialized or corrupted, for
6208 instance. We do not let any exception propagate past this point.
6209 instead we return NULL.
6210
6211 We also do not print the error message either (which often is very
6212 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6213 the caller print a more meaningful message if necessary. */
6214 try
6215 {
6216 struct value *tsd = ada_get_tsd_from_tag (tag);
6217
6218 if (tsd != NULL)
6219 name = ada_tag_name_from_tsd (tsd);
6220 }
6221 catch (const gdb_exception_error &e)
6222 {
6223 }
6224
6225 return name;
6226 }
6227
6228 /* The parent type of TYPE, or NULL if none. */
6229
6230 struct type *
6231 ada_parent_type (struct type *type)
6232 {
6233 int i;
6234
6235 type = ada_check_typedef (type);
6236
6237 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
6238 return NULL;
6239
6240 for (i = 0; i < type->num_fields (); i += 1)
6241 if (ada_is_parent_field (type, i))
6242 {
6243 struct type *parent_type = type->field (i).type ();
6244
6245 /* If the _parent field is a pointer, then dereference it. */
6246 if (parent_type->code () == TYPE_CODE_PTR)
6247 parent_type = TYPE_TARGET_TYPE (parent_type);
6248 /* If there is a parallel XVS type, get the actual base type. */
6249 parent_type = ada_get_base_type (parent_type);
6250
6251 return ada_check_typedef (parent_type);
6252 }
6253
6254 return NULL;
6255 }
6256
6257 /* True iff field number FIELD_NUM of structure type TYPE contains the
6258 parent-type (inherited) fields of a derived type. Assumes TYPE is
6259 a structure type with at least FIELD_NUM+1 fields. */
6260
6261 int
6262 ada_is_parent_field (struct type *type, int field_num)
6263 {
6264 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6265
6266 return (name != NULL
6267 && (startswith (name, "PARENT")
6268 || startswith (name, "_parent")));
6269 }
6270
6271 /* True iff field number FIELD_NUM of structure type TYPE is a
6272 transparent wrapper field (which should be silently traversed when doing
6273 field selection and flattened when printing). Assumes TYPE is a
6274 structure type with at least FIELD_NUM+1 fields. Such fields are always
6275 structures. */
6276
6277 int
6278 ada_is_wrapper_field (struct type *type, int field_num)
6279 {
6280 const char *name = TYPE_FIELD_NAME (type, field_num);
6281
6282 if (name != NULL && strcmp (name, "RETVAL") == 0)
6283 {
6284 /* This happens in functions with "out" or "in out" parameters
6285 which are passed by copy. For such functions, GNAT describes
6286 the function's return type as being a struct where the return
6287 value is in a field called RETVAL, and where the other "out"
6288 or "in out" parameters are fields of that struct. This is not
6289 a wrapper. */
6290 return 0;
6291 }
6292
6293 return (name != NULL
6294 && (startswith (name, "PARENT")
6295 || strcmp (name, "REP") == 0
6296 || startswith (name, "_parent")
6297 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6298 }
6299
6300 /* True iff field number FIELD_NUM of structure or union type TYPE
6301 is a variant wrapper. Assumes TYPE is a structure type with at least
6302 FIELD_NUM+1 fields. */
6303
6304 int
6305 ada_is_variant_part (struct type *type, int field_num)
6306 {
6307 /* Only Ada types are eligible. */
6308 if (!ADA_TYPE_P (type))
6309 return 0;
6310
6311 struct type *field_type = type->field (field_num).type ();
6312
6313 return (field_type->code () == TYPE_CODE_UNION
6314 || (is_dynamic_field (type, field_num)
6315 && (TYPE_TARGET_TYPE (field_type)->code ()
6316 == TYPE_CODE_UNION)));
6317 }
6318
6319 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6320 whose discriminants are contained in the record type OUTER_TYPE,
6321 returns the type of the controlling discriminant for the variant.
6322 May return NULL if the type could not be found. */
6323
6324 struct type *
6325 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6326 {
6327 const char *name = ada_variant_discrim_name (var_type);
6328
6329 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
6330 }
6331
6332 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6333 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6334 represents a 'when others' clause; otherwise 0. */
6335
6336 static int
6337 ada_is_others_clause (struct type *type, int field_num)
6338 {
6339 const char *name = TYPE_FIELD_NAME (type, field_num);
6340
6341 return (name != NULL && name[0] == 'O');
6342 }
6343
6344 /* Assuming that TYPE0 is the type of the variant part of a record,
6345 returns the name of the discriminant controlling the variant.
6346 The value is valid until the next call to ada_variant_discrim_name. */
6347
6348 const char *
6349 ada_variant_discrim_name (struct type *type0)
6350 {
6351 static std::string result;
6352 struct type *type;
6353 const char *name;
6354 const char *discrim_end;
6355 const char *discrim_start;
6356
6357 if (type0->code () == TYPE_CODE_PTR)
6358 type = TYPE_TARGET_TYPE (type0);
6359 else
6360 type = type0;
6361
6362 name = ada_type_name (type);
6363
6364 if (name == NULL || name[0] == '\000')
6365 return "";
6366
6367 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6368 discrim_end -= 1)
6369 {
6370 if (startswith (discrim_end, "___XVN"))
6371 break;
6372 }
6373 if (discrim_end == name)
6374 return "";
6375
6376 for (discrim_start = discrim_end; discrim_start != name + 3;
6377 discrim_start -= 1)
6378 {
6379 if (discrim_start == name + 1)
6380 return "";
6381 if ((discrim_start > name + 3
6382 && startswith (discrim_start - 3, "___"))
6383 || discrim_start[-1] == '.')
6384 break;
6385 }
6386
6387 result = std::string (discrim_start, discrim_end - discrim_start);
6388 return result.c_str ();
6389 }
6390
6391 /* Scan STR for a subtype-encoded number, beginning at position K.
6392 Put the position of the character just past the number scanned in
6393 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6394 Return 1 if there was a valid number at the given position, and 0
6395 otherwise. A "subtype-encoded" number consists of the absolute value
6396 in decimal, followed by the letter 'm' to indicate a negative number.
6397 Assumes 0m does not occur. */
6398
6399 int
6400 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6401 {
6402 ULONGEST RU;
6403
6404 if (!isdigit (str[k]))
6405 return 0;
6406
6407 /* Do it the hard way so as not to make any assumption about
6408 the relationship of unsigned long (%lu scan format code) and
6409 LONGEST. */
6410 RU = 0;
6411 while (isdigit (str[k]))
6412 {
6413 RU = RU * 10 + (str[k] - '0');
6414 k += 1;
6415 }
6416
6417 if (str[k] == 'm')
6418 {
6419 if (R != NULL)
6420 *R = (-(LONGEST) (RU - 1)) - 1;
6421 k += 1;
6422 }
6423 else if (R != NULL)
6424 *R = (LONGEST) RU;
6425
6426 /* NOTE on the above: Technically, C does not say what the results of
6427 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6428 number representable as a LONGEST (although either would probably work
6429 in most implementations). When RU>0, the locution in the then branch
6430 above is always equivalent to the negative of RU. */
6431
6432 if (new_k != NULL)
6433 *new_k = k;
6434 return 1;
6435 }
6436
6437 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6438 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6439 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6440
6441 static int
6442 ada_in_variant (LONGEST val, struct type *type, int field_num)
6443 {
6444 const char *name = TYPE_FIELD_NAME (type, field_num);
6445 int p;
6446
6447 p = 0;
6448 while (1)
6449 {
6450 switch (name[p])
6451 {
6452 case '\0':
6453 return 0;
6454 case 'S':
6455 {
6456 LONGEST W;
6457
6458 if (!ada_scan_number (name, p + 1, &W, &p))
6459 return 0;
6460 if (val == W)
6461 return 1;
6462 break;
6463 }
6464 case 'R':
6465 {
6466 LONGEST L, U;
6467
6468 if (!ada_scan_number (name, p + 1, &L, &p)
6469 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6470 return 0;
6471 if (val >= L && val <= U)
6472 return 1;
6473 break;
6474 }
6475 case 'O':
6476 return 1;
6477 default:
6478 return 0;
6479 }
6480 }
6481 }
6482
6483 /* FIXME: Lots of redundancy below. Try to consolidate. */
6484
6485 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6486 ARG_TYPE, extract and return the value of one of its (non-static)
6487 fields. FIELDNO says which field. Differs from value_primitive_field
6488 only in that it can handle packed values of arbitrary type. */
6489
6490 struct value *
6491 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6492 struct type *arg_type)
6493 {
6494 struct type *type;
6495
6496 arg_type = ada_check_typedef (arg_type);
6497 type = arg_type->field (fieldno).type ();
6498
6499 /* Handle packed fields. It might be that the field is not packed
6500 relative to its containing structure, but the structure itself is
6501 packed; in this case we must take the bit-field path. */
6502 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0 || value_bitpos (arg1) != 0)
6503 {
6504 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6505 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6506
6507 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
6508 offset + bit_pos / 8,
6509 bit_pos % 8, bit_size, type);
6510 }
6511 else
6512 return value_primitive_field (arg1, offset, fieldno, arg_type);
6513 }
6514
6515 /* Find field with name NAME in object of type TYPE. If found,
6516 set the following for each argument that is non-null:
6517 - *FIELD_TYPE_P to the field's type;
6518 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6519 an object of that type;
6520 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6521 - *BIT_SIZE_P to its size in bits if the field is packed, and
6522 0 otherwise;
6523 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6524 fields up to but not including the desired field, or by the total
6525 number of fields if not found. A NULL value of NAME never
6526 matches; the function just counts visible fields in this case.
6527
6528 Notice that we need to handle when a tagged record hierarchy
6529 has some components with the same name, like in this scenario:
6530
6531 type Top_T is tagged record
6532 N : Integer := 1;
6533 U : Integer := 974;
6534 A : Integer := 48;
6535 end record;
6536
6537 type Middle_T is new Top.Top_T with record
6538 N : Character := 'a';
6539 C : Integer := 3;
6540 end record;
6541
6542 type Bottom_T is new Middle.Middle_T with record
6543 N : Float := 4.0;
6544 C : Character := '5';
6545 X : Integer := 6;
6546 A : Character := 'J';
6547 end record;
6548
6549 Let's say we now have a variable declared and initialized as follow:
6550
6551 TC : Top_A := new Bottom_T;
6552
6553 And then we use this variable to call this function
6554
6555 procedure Assign (Obj: in out Top_T; TV : Integer);
6556
6557 as follow:
6558
6559 Assign (Top_T (B), 12);
6560
6561 Now, we're in the debugger, and we're inside that procedure
6562 then and we want to print the value of obj.c:
6563
6564 Usually, the tagged record or one of the parent type owns the
6565 component to print and there's no issue but in this particular
6566 case, what does it mean to ask for Obj.C? Since the actual
6567 type for object is type Bottom_T, it could mean two things: type
6568 component C from the Middle_T view, but also component C from
6569 Bottom_T. So in that "undefined" case, when the component is
6570 not found in the non-resolved type (which includes all the
6571 components of the parent type), then resolve it and see if we
6572 get better luck once expanded.
6573
6574 In the case of homonyms in the derived tagged type, we don't
6575 guaranty anything, and pick the one that's easiest for us
6576 to program.
6577
6578 Returns 1 if found, 0 otherwise. */
6579
6580 static int
6581 find_struct_field (const char *name, struct type *type, int offset,
6582 struct type **field_type_p,
6583 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6584 int *index_p)
6585 {
6586 int i;
6587 int parent_offset = -1;
6588
6589 type = ada_check_typedef (type);
6590
6591 if (field_type_p != NULL)
6592 *field_type_p = NULL;
6593 if (byte_offset_p != NULL)
6594 *byte_offset_p = 0;
6595 if (bit_offset_p != NULL)
6596 *bit_offset_p = 0;
6597 if (bit_size_p != NULL)
6598 *bit_size_p = 0;
6599
6600 for (i = 0; i < type->num_fields (); i += 1)
6601 {
6602 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6603 int fld_offset = offset + bit_pos / 8;
6604 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6605
6606 if (t_field_name == NULL)
6607 continue;
6608
6609 else if (ada_is_parent_field (type, i))
6610 {
6611 /* This is a field pointing us to the parent type of a tagged
6612 type. As hinted in this function's documentation, we give
6613 preference to fields in the current record first, so what
6614 we do here is just record the index of this field before
6615 we skip it. If it turns out we couldn't find our field
6616 in the current record, then we'll get back to it and search
6617 inside it whether the field might exist in the parent. */
6618
6619 parent_offset = i;
6620 continue;
6621 }
6622
6623 else if (name != NULL && field_name_match (t_field_name, name))
6624 {
6625 int bit_size = TYPE_FIELD_BITSIZE (type, i);
6626
6627 if (field_type_p != NULL)
6628 *field_type_p = type->field (i).type ();
6629 if (byte_offset_p != NULL)
6630 *byte_offset_p = fld_offset;
6631 if (bit_offset_p != NULL)
6632 *bit_offset_p = bit_pos % 8;
6633 if (bit_size_p != NULL)
6634 *bit_size_p = bit_size;
6635 return 1;
6636 }
6637 else if (ada_is_wrapper_field (type, i))
6638 {
6639 if (find_struct_field (name, type->field (i).type (), fld_offset,
6640 field_type_p, byte_offset_p, bit_offset_p,
6641 bit_size_p, index_p))
6642 return 1;
6643 }
6644 else if (ada_is_variant_part (type, i))
6645 {
6646 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6647 fixed type?? */
6648 int j;
6649 struct type *field_type
6650 = ada_check_typedef (type->field (i).type ());
6651
6652 for (j = 0; j < field_type->num_fields (); j += 1)
6653 {
6654 if (find_struct_field (name, field_type->field (j).type (),
6655 fld_offset
6656 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6657 field_type_p, byte_offset_p,
6658 bit_offset_p, bit_size_p, index_p))
6659 return 1;
6660 }
6661 }
6662 else if (index_p != NULL)
6663 *index_p += 1;
6664 }
6665
6666 /* Field not found so far. If this is a tagged type which
6667 has a parent, try finding that field in the parent now. */
6668
6669 if (parent_offset != -1)
6670 {
6671 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
6672 int fld_offset = offset + bit_pos / 8;
6673
6674 if (find_struct_field (name, type->field (parent_offset).type (),
6675 fld_offset, field_type_p, byte_offset_p,
6676 bit_offset_p, bit_size_p, index_p))
6677 return 1;
6678 }
6679
6680 return 0;
6681 }
6682
6683 /* Number of user-visible fields in record type TYPE. */
6684
6685 static int
6686 num_visible_fields (struct type *type)
6687 {
6688 int n;
6689
6690 n = 0;
6691 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6692 return n;
6693 }
6694
6695 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
6696 and search in it assuming it has (class) type TYPE.
6697 If found, return value, else return NULL.
6698
6699 Searches recursively through wrapper fields (e.g., '_parent').
6700
6701 In the case of homonyms in the tagged types, please refer to the
6702 long explanation in find_struct_field's function documentation. */
6703
6704 static struct value *
6705 ada_search_struct_field (const char *name, struct value *arg, int offset,
6706 struct type *type)
6707 {
6708 int i;
6709 int parent_offset = -1;
6710
6711 type = ada_check_typedef (type);
6712 for (i = 0; i < type->num_fields (); i += 1)
6713 {
6714 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6715
6716 if (t_field_name == NULL)
6717 continue;
6718
6719 else if (ada_is_parent_field (type, i))
6720 {
6721 /* This is a field pointing us to the parent type of a tagged
6722 type. As hinted in this function's documentation, we give
6723 preference to fields in the current record first, so what
6724 we do here is just record the index of this field before
6725 we skip it. If it turns out we couldn't find our field
6726 in the current record, then we'll get back to it and search
6727 inside it whether the field might exist in the parent. */
6728
6729 parent_offset = i;
6730 continue;
6731 }
6732
6733 else if (field_name_match (t_field_name, name))
6734 return ada_value_primitive_field (arg, offset, i, type);
6735
6736 else if (ada_is_wrapper_field (type, i))
6737 {
6738 struct value *v = /* Do not let indent join lines here. */
6739 ada_search_struct_field (name, arg,
6740 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6741 type->field (i).type ());
6742
6743 if (v != NULL)
6744 return v;
6745 }
6746
6747 else if (ada_is_variant_part (type, i))
6748 {
6749 /* PNH: Do we ever get here? See find_struct_field. */
6750 int j;
6751 struct type *field_type = ada_check_typedef (type->field (i).type ());
6752 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6753
6754 for (j = 0; j < field_type->num_fields (); j += 1)
6755 {
6756 struct value *v = ada_search_struct_field /* Force line
6757 break. */
6758 (name, arg,
6759 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6760 field_type->field (j).type ());
6761
6762 if (v != NULL)
6763 return v;
6764 }
6765 }
6766 }
6767
6768 /* Field not found so far. If this is a tagged type which
6769 has a parent, try finding that field in the parent now. */
6770
6771 if (parent_offset != -1)
6772 {
6773 struct value *v = ada_search_struct_field (
6774 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
6775 type->field (parent_offset).type ());
6776
6777 if (v != NULL)
6778 return v;
6779 }
6780
6781 return NULL;
6782 }
6783
6784 static struct value *ada_index_struct_field_1 (int *, struct value *,
6785 int, struct type *);
6786
6787
6788 /* Return field #INDEX in ARG, where the index is that returned by
6789 * find_struct_field through its INDEX_P argument. Adjust the address
6790 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6791 * If found, return value, else return NULL. */
6792
6793 static struct value *
6794 ada_index_struct_field (int index, struct value *arg, int offset,
6795 struct type *type)
6796 {
6797 return ada_index_struct_field_1 (&index, arg, offset, type);
6798 }
6799
6800
6801 /* Auxiliary function for ada_index_struct_field. Like
6802 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6803 * *INDEX_P. */
6804
6805 static struct value *
6806 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6807 struct type *type)
6808 {
6809 int i;
6810 type = ada_check_typedef (type);
6811
6812 for (i = 0; i < type->num_fields (); i += 1)
6813 {
6814 if (TYPE_FIELD_NAME (type, i) == NULL)
6815 continue;
6816 else if (ada_is_wrapper_field (type, i))
6817 {
6818 struct value *v = /* Do not let indent join lines here. */
6819 ada_index_struct_field_1 (index_p, arg,
6820 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6821 type->field (i).type ());
6822
6823 if (v != NULL)
6824 return v;
6825 }
6826
6827 else if (ada_is_variant_part (type, i))
6828 {
6829 /* PNH: Do we ever get here? See ada_search_struct_field,
6830 find_struct_field. */
6831 error (_("Cannot assign this kind of variant record"));
6832 }
6833 else if (*index_p == 0)
6834 return ada_value_primitive_field (arg, offset, i, type);
6835 else
6836 *index_p -= 1;
6837 }
6838 return NULL;
6839 }
6840
6841 /* Return a string representation of type TYPE. */
6842
6843 static std::string
6844 type_as_string (struct type *type)
6845 {
6846 string_file tmp_stream;
6847
6848 type_print (type, "", &tmp_stream, -1);
6849
6850 return std::move (tmp_stream.string ());
6851 }
6852
6853 /* Given a type TYPE, look up the type of the component of type named NAME.
6854 If DISPP is non-null, add its byte displacement from the beginning of a
6855 structure (pointed to by a value) of type TYPE to *DISPP (does not
6856 work for packed fields).
6857
6858 Matches any field whose name has NAME as a prefix, possibly
6859 followed by "___".
6860
6861 TYPE can be either a struct or union. If REFOK, TYPE may also
6862 be a (pointer or reference)+ to a struct or union, and the
6863 ultimate target type will be searched.
6864
6865 Looks recursively into variant clauses and parent types.
6866
6867 In the case of homonyms in the tagged types, please refer to the
6868 long explanation in find_struct_field's function documentation.
6869
6870 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6871 TYPE is not a type of the right kind. */
6872
6873 static struct type *
6874 ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
6875 int noerr)
6876 {
6877 int i;
6878 int parent_offset = -1;
6879
6880 if (name == NULL)
6881 goto BadName;
6882
6883 if (refok && type != NULL)
6884 while (1)
6885 {
6886 type = ada_check_typedef (type);
6887 if (type->code () != TYPE_CODE_PTR && type->code () != TYPE_CODE_REF)
6888 break;
6889 type = TYPE_TARGET_TYPE (type);
6890 }
6891
6892 if (type == NULL
6893 || (type->code () != TYPE_CODE_STRUCT
6894 && type->code () != TYPE_CODE_UNION))
6895 {
6896 if (noerr)
6897 return NULL;
6898
6899 error (_("Type %s is not a structure or union type"),
6900 type != NULL ? type_as_string (type).c_str () : _("(null)"));
6901 }
6902
6903 type = to_static_fixed_type (type);
6904
6905 for (i = 0; i < type->num_fields (); i += 1)
6906 {
6907 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6908 struct type *t;
6909
6910 if (t_field_name == NULL)
6911 continue;
6912
6913 else if (ada_is_parent_field (type, i))
6914 {
6915 /* This is a field pointing us to the parent type of a tagged
6916 type. As hinted in this function's documentation, we give
6917 preference to fields in the current record first, so what
6918 we do here is just record the index of this field before
6919 we skip it. If it turns out we couldn't find our field
6920 in the current record, then we'll get back to it and search
6921 inside it whether the field might exist in the parent. */
6922
6923 parent_offset = i;
6924 continue;
6925 }
6926
6927 else if (field_name_match (t_field_name, name))
6928 return type->field (i).type ();
6929
6930 else if (ada_is_wrapper_field (type, i))
6931 {
6932 t = ada_lookup_struct_elt_type (type->field (i).type (), name,
6933 0, 1);
6934 if (t != NULL)
6935 return t;
6936 }
6937
6938 else if (ada_is_variant_part (type, i))
6939 {
6940 int j;
6941 struct type *field_type = ada_check_typedef (type->field (i).type ());
6942
6943 for (j = field_type->num_fields () - 1; j >= 0; j -= 1)
6944 {
6945 /* FIXME pnh 2008/01/26: We check for a field that is
6946 NOT wrapped in a struct, since the compiler sometimes
6947 generates these for unchecked variant types. Revisit
6948 if the compiler changes this practice. */
6949 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
6950
6951 if (v_field_name != NULL
6952 && field_name_match (v_field_name, name))
6953 t = field_type->field (j).type ();
6954 else
6955 t = ada_lookup_struct_elt_type (field_type->field (j).type (),
6956 name, 0, 1);
6957
6958 if (t != NULL)
6959 return t;
6960 }
6961 }
6962
6963 }
6964
6965 /* Field not found so far. If this is a tagged type which
6966 has a parent, try finding that field in the parent now. */
6967
6968 if (parent_offset != -1)
6969 {
6970 struct type *t;
6971
6972 t = ada_lookup_struct_elt_type (type->field (parent_offset).type (),
6973 name, 0, 1);
6974 if (t != NULL)
6975 return t;
6976 }
6977
6978 BadName:
6979 if (!noerr)
6980 {
6981 const char *name_str = name != NULL ? name : _("<null>");
6982
6983 error (_("Type %s has no component named %s"),
6984 type_as_string (type).c_str (), name_str);
6985 }
6986
6987 return NULL;
6988 }
6989
6990 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6991 within a value of type OUTER_TYPE, return true iff VAR_TYPE
6992 represents an unchecked union (that is, the variant part of a
6993 record that is named in an Unchecked_Union pragma). */
6994
6995 static int
6996 is_unchecked_variant (struct type *var_type, struct type *outer_type)
6997 {
6998 const char *discrim_name = ada_variant_discrim_name (var_type);
6999
7000 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
7001 }
7002
7003
7004 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7005 within OUTER, determine which variant clause (field number in VAR_TYPE,
7006 numbering from 0) is applicable. Returns -1 if none are. */
7007
7008 int
7009 ada_which_variant_applies (struct type *var_type, struct value *outer)
7010 {
7011 int others_clause;
7012 int i;
7013 const char *discrim_name = ada_variant_discrim_name (var_type);
7014 struct value *discrim;
7015 LONGEST discrim_val;
7016
7017 /* Using plain value_from_contents_and_address here causes problems
7018 because we will end up trying to resolve a type that is currently
7019 being constructed. */
7020 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7021 if (discrim == NULL)
7022 return -1;
7023 discrim_val = value_as_long (discrim);
7024
7025 others_clause = -1;
7026 for (i = 0; i < var_type->num_fields (); i += 1)
7027 {
7028 if (ada_is_others_clause (var_type, i))
7029 others_clause = i;
7030 else if (ada_in_variant (discrim_val, var_type, i))
7031 return i;
7032 }
7033
7034 return others_clause;
7035 }
7036 \f
7037
7038
7039 /* Dynamic-Sized Records */
7040
7041 /* Strategy: The type ostensibly attached to a value with dynamic size
7042 (i.e., a size that is not statically recorded in the debugging
7043 data) does not accurately reflect the size or layout of the value.
7044 Our strategy is to convert these values to values with accurate,
7045 conventional types that are constructed on the fly. */
7046
7047 /* There is a subtle and tricky problem here. In general, we cannot
7048 determine the size of dynamic records without its data. However,
7049 the 'struct value' data structure, which GDB uses to represent
7050 quantities in the inferior process (the target), requires the size
7051 of the type at the time of its allocation in order to reserve space
7052 for GDB's internal copy of the data. That's why the
7053 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7054 rather than struct value*s.
7055
7056 However, GDB's internal history variables ($1, $2, etc.) are
7057 struct value*s containing internal copies of the data that are not, in
7058 general, the same as the data at their corresponding addresses in
7059 the target. Fortunately, the types we give to these values are all
7060 conventional, fixed-size types (as per the strategy described
7061 above), so that we don't usually have to perform the
7062 'to_fixed_xxx_type' conversions to look at their values.
7063 Unfortunately, there is one exception: if one of the internal
7064 history variables is an array whose elements are unconstrained
7065 records, then we will need to create distinct fixed types for each
7066 element selected. */
7067
7068 /* The upshot of all of this is that many routines take a (type, host
7069 address, target address) triple as arguments to represent a value.
7070 The host address, if non-null, is supposed to contain an internal
7071 copy of the relevant data; otherwise, the program is to consult the
7072 target at the target address. */
7073
7074 /* Assuming that VAL0 represents a pointer value, the result of
7075 dereferencing it. Differs from value_ind in its treatment of
7076 dynamic-sized types. */
7077
7078 struct value *
7079 ada_value_ind (struct value *val0)
7080 {
7081 struct value *val = value_ind (val0);
7082
7083 if (ada_is_tagged_type (value_type (val), 0))
7084 val = ada_tag_value_at_base_address (val);
7085
7086 return ada_to_fixed_value (val);
7087 }
7088
7089 /* The value resulting from dereferencing any "reference to"
7090 qualifiers on VAL0. */
7091
7092 static struct value *
7093 ada_coerce_ref (struct value *val0)
7094 {
7095 if (value_type (val0)->code () == TYPE_CODE_REF)
7096 {
7097 struct value *val = val0;
7098
7099 val = coerce_ref (val);
7100
7101 if (ada_is_tagged_type (value_type (val), 0))
7102 val = ada_tag_value_at_base_address (val);
7103
7104 return ada_to_fixed_value (val);
7105 }
7106 else
7107 return val0;
7108 }
7109
7110 /* Return the bit alignment required for field #F of template type TYPE. */
7111
7112 static unsigned int
7113 field_alignment (struct type *type, int f)
7114 {
7115 const char *name = TYPE_FIELD_NAME (type, f);
7116 int len;
7117 int align_offset;
7118
7119 /* The field name should never be null, unless the debugging information
7120 is somehow malformed. In this case, we assume the field does not
7121 require any alignment. */
7122 if (name == NULL)
7123 return 1;
7124
7125 len = strlen (name);
7126
7127 if (!isdigit (name[len - 1]))
7128 return 1;
7129
7130 if (isdigit (name[len - 2]))
7131 align_offset = len - 2;
7132 else
7133 align_offset = len - 1;
7134
7135 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7136 return TARGET_CHAR_BIT;
7137
7138 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7139 }
7140
7141 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7142
7143 static struct symbol *
7144 ada_find_any_type_symbol (const char *name)
7145 {
7146 struct symbol *sym;
7147
7148 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7149 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7150 return sym;
7151
7152 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7153 return sym;
7154 }
7155
7156 /* Find a type named NAME. Ignores ambiguity. This routine will look
7157 solely for types defined by debug info, it will not search the GDB
7158 primitive types. */
7159
7160 static struct type *
7161 ada_find_any_type (const char *name)
7162 {
7163 struct symbol *sym = ada_find_any_type_symbol (name);
7164
7165 if (sym != NULL)
7166 return SYMBOL_TYPE (sym);
7167
7168 return NULL;
7169 }
7170
7171 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7172 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7173 symbol, in which case it is returned. Otherwise, this looks for
7174 symbols whose name is that of NAME_SYM suffixed with "___XR".
7175 Return symbol if found, and NULL otherwise. */
7176
7177 static bool
7178 ada_is_renaming_symbol (struct symbol *name_sym)
7179 {
7180 const char *name = name_sym->linkage_name ();
7181 return strstr (name, "___XR") != NULL;
7182 }
7183
7184 /* Because of GNAT encoding conventions, several GDB symbols may match a
7185 given type name. If the type denoted by TYPE0 is to be preferred to
7186 that of TYPE1 for purposes of type printing, return non-zero;
7187 otherwise return 0. */
7188
7189 int
7190 ada_prefer_type (struct type *type0, struct type *type1)
7191 {
7192 if (type1 == NULL)
7193 return 1;
7194 else if (type0 == NULL)
7195 return 0;
7196 else if (type1->code () == TYPE_CODE_VOID)
7197 return 1;
7198 else if (type0->code () == TYPE_CODE_VOID)
7199 return 0;
7200 else if (type1->name () == NULL && type0->name () != NULL)
7201 return 1;
7202 else if (ada_is_constrained_packed_array_type (type0))
7203 return 1;
7204 else if (ada_is_array_descriptor_type (type0)
7205 && !ada_is_array_descriptor_type (type1))
7206 return 1;
7207 else
7208 {
7209 const char *type0_name = type0->name ();
7210 const char *type1_name = type1->name ();
7211
7212 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7213 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7214 return 1;
7215 }
7216 return 0;
7217 }
7218
7219 /* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
7220 null. */
7221
7222 const char *
7223 ada_type_name (struct type *type)
7224 {
7225 if (type == NULL)
7226 return NULL;
7227 return type->name ();
7228 }
7229
7230 /* Search the list of "descriptive" types associated to TYPE for a type
7231 whose name is NAME. */
7232
7233 static struct type *
7234 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7235 {
7236 struct type *result, *tmp;
7237
7238 if (ada_ignore_descriptive_types_p)
7239 return NULL;
7240
7241 /* If there no descriptive-type info, then there is no parallel type
7242 to be found. */
7243 if (!HAVE_GNAT_AUX_INFO (type))
7244 return NULL;
7245
7246 result = TYPE_DESCRIPTIVE_TYPE (type);
7247 while (result != NULL)
7248 {
7249 const char *result_name = ada_type_name (result);
7250
7251 if (result_name == NULL)
7252 {
7253 warning (_("unexpected null name on descriptive type"));
7254 return NULL;
7255 }
7256
7257 /* If the names match, stop. */
7258 if (strcmp (result_name, name) == 0)
7259 break;
7260
7261 /* Otherwise, look at the next item on the list, if any. */
7262 if (HAVE_GNAT_AUX_INFO (result))
7263 tmp = TYPE_DESCRIPTIVE_TYPE (result);
7264 else
7265 tmp = NULL;
7266
7267 /* If not found either, try after having resolved the typedef. */
7268 if (tmp != NULL)
7269 result = tmp;
7270 else
7271 {
7272 result = check_typedef (result);
7273 if (HAVE_GNAT_AUX_INFO (result))
7274 result = TYPE_DESCRIPTIVE_TYPE (result);
7275 else
7276 result = NULL;
7277 }
7278 }
7279
7280 /* If we didn't find a match, see whether this is a packed array. With
7281 older compilers, the descriptive type information is either absent or
7282 irrelevant when it comes to packed arrays so the above lookup fails.
7283 Fall back to using a parallel lookup by name in this case. */
7284 if (result == NULL && ada_is_constrained_packed_array_type (type))
7285 return ada_find_any_type (name);
7286
7287 return result;
7288 }
7289
7290 /* Find a parallel type to TYPE with the specified NAME, using the
7291 descriptive type taken from the debugging information, if available,
7292 and otherwise using the (slower) name-based method. */
7293
7294 static struct type *
7295 ada_find_parallel_type_with_name (struct type *type, const char *name)
7296 {
7297 struct type *result = NULL;
7298
7299 if (HAVE_GNAT_AUX_INFO (type))
7300 result = find_parallel_type_by_descriptive_type (type, name);
7301 else
7302 result = ada_find_any_type (name);
7303
7304 return result;
7305 }
7306
7307 /* Same as above, but specify the name of the parallel type by appending
7308 SUFFIX to the name of TYPE. */
7309
7310 struct type *
7311 ada_find_parallel_type (struct type *type, const char *suffix)
7312 {
7313 char *name;
7314 const char *type_name = ada_type_name (type);
7315 int len;
7316
7317 if (type_name == NULL)
7318 return NULL;
7319
7320 len = strlen (type_name);
7321
7322 name = (char *) alloca (len + strlen (suffix) + 1);
7323
7324 strcpy (name, type_name);
7325 strcpy (name + len, suffix);
7326
7327 return ada_find_parallel_type_with_name (type, name);
7328 }
7329
7330 /* If TYPE is a variable-size record type, return the corresponding template
7331 type describing its fields. Otherwise, return NULL. */
7332
7333 static struct type *
7334 dynamic_template_type (struct type *type)
7335 {
7336 type = ada_check_typedef (type);
7337
7338 if (type == NULL || type->code () != TYPE_CODE_STRUCT
7339 || ada_type_name (type) == NULL)
7340 return NULL;
7341 else
7342 {
7343 int len = strlen (ada_type_name (type));
7344
7345 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7346 return type;
7347 else
7348 return ada_find_parallel_type (type, "___XVE");
7349 }
7350 }
7351
7352 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7353 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7354
7355 static int
7356 is_dynamic_field (struct type *templ_type, int field_num)
7357 {
7358 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
7359
7360 return name != NULL
7361 && templ_type->field (field_num).type ()->code () == TYPE_CODE_PTR
7362 && strstr (name, "___XVL") != NULL;
7363 }
7364
7365 /* The index of the variant field of TYPE, or -1 if TYPE does not
7366 represent a variant record type. */
7367
7368 static int
7369 variant_field_index (struct type *type)
7370 {
7371 int f;
7372
7373 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
7374 return -1;
7375
7376 for (f = 0; f < type->num_fields (); f += 1)
7377 {
7378 if (ada_is_variant_part (type, f))
7379 return f;
7380 }
7381 return -1;
7382 }
7383
7384 /* A record type with no fields. */
7385
7386 static struct type *
7387 empty_record (struct type *templ)
7388 {
7389 struct type *type = alloc_type_copy (templ);
7390
7391 type->set_code (TYPE_CODE_STRUCT);
7392 INIT_NONE_SPECIFIC (type);
7393 type->set_name ("<empty>");
7394 TYPE_LENGTH (type) = 0;
7395 return type;
7396 }
7397
7398 /* An ordinary record type (with fixed-length fields) that describes
7399 the value of type TYPE at VALADDR or ADDRESS (see comments at
7400 the beginning of this section) VAL according to GNAT conventions.
7401 DVAL0 should describe the (portion of a) record that contains any
7402 necessary discriminants. It should be NULL if value_type (VAL) is
7403 an outer-level type (i.e., as opposed to a branch of a variant.) A
7404 variant field (unless unchecked) is replaced by a particular branch
7405 of the variant.
7406
7407 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7408 length are not statically known are discarded. As a consequence,
7409 VALADDR, ADDRESS and DVAL0 are ignored.
7410
7411 NOTE: Limitations: For now, we assume that dynamic fields and
7412 variants occupy whole numbers of bytes. However, they need not be
7413 byte-aligned. */
7414
7415 struct type *
7416 ada_template_to_fixed_record_type_1 (struct type *type,
7417 const gdb_byte *valaddr,
7418 CORE_ADDR address, struct value *dval0,
7419 int keep_dynamic_fields)
7420 {
7421 struct value *mark = value_mark ();
7422 struct value *dval;
7423 struct type *rtype;
7424 int nfields, bit_len;
7425 int variant_field;
7426 long off;
7427 int fld_bit_len;
7428 int f;
7429
7430 /* Compute the number of fields in this record type that are going
7431 to be processed: unless keep_dynamic_fields, this includes only
7432 fields whose position and length are static will be processed. */
7433 if (keep_dynamic_fields)
7434 nfields = type->num_fields ();
7435 else
7436 {
7437 nfields = 0;
7438 while (nfields < type->num_fields ()
7439 && !ada_is_variant_part (type, nfields)
7440 && !is_dynamic_field (type, nfields))
7441 nfields++;
7442 }
7443
7444 rtype = alloc_type_copy (type);
7445 rtype->set_code (TYPE_CODE_STRUCT);
7446 INIT_NONE_SPECIFIC (rtype);
7447 rtype->set_num_fields (nfields);
7448 rtype->set_fields
7449 ((struct field *) TYPE_ZALLOC (rtype, nfields * sizeof (struct field)));
7450 rtype->set_name (ada_type_name (type));
7451 rtype->set_is_fixed_instance (true);
7452
7453 off = 0;
7454 bit_len = 0;
7455 variant_field = -1;
7456
7457 for (f = 0; f < nfields; f += 1)
7458 {
7459 off = align_up (off, field_alignment (type, f))
7460 + TYPE_FIELD_BITPOS (type, f);
7461 SET_FIELD_BITPOS (rtype->field (f), off);
7462 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7463
7464 if (ada_is_variant_part (type, f))
7465 {
7466 variant_field = f;
7467 fld_bit_len = 0;
7468 }
7469 else if (is_dynamic_field (type, f))
7470 {
7471 const gdb_byte *field_valaddr = valaddr;
7472 CORE_ADDR field_address = address;
7473 struct type *field_type =
7474 TYPE_TARGET_TYPE (type->field (f).type ());
7475
7476 if (dval0 == NULL)
7477 {
7478 /* rtype's length is computed based on the run-time
7479 value of discriminants. If the discriminants are not
7480 initialized, the type size may be completely bogus and
7481 GDB may fail to allocate a value for it. So check the
7482 size first before creating the value. */
7483 ada_ensure_varsize_limit (rtype);
7484 /* Using plain value_from_contents_and_address here
7485 causes problems because we will end up trying to
7486 resolve a type that is currently being
7487 constructed. */
7488 dval = value_from_contents_and_address_unresolved (rtype,
7489 valaddr,
7490 address);
7491 rtype = value_type (dval);
7492 }
7493 else
7494 dval = dval0;
7495
7496 /* If the type referenced by this field is an aligner type, we need
7497 to unwrap that aligner type, because its size might not be set.
7498 Keeping the aligner type would cause us to compute the wrong
7499 size for this field, impacting the offset of the all the fields
7500 that follow this one. */
7501 if (ada_is_aligner_type (field_type))
7502 {
7503 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7504
7505 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7506 field_address = cond_offset_target (field_address, field_offset);
7507 field_type = ada_aligned_type (field_type);
7508 }
7509
7510 field_valaddr = cond_offset_host (field_valaddr,
7511 off / TARGET_CHAR_BIT);
7512 field_address = cond_offset_target (field_address,
7513 off / TARGET_CHAR_BIT);
7514
7515 /* Get the fixed type of the field. Note that, in this case,
7516 we do not want to get the real type out of the tag: if
7517 the current field is the parent part of a tagged record,
7518 we will get the tag of the object. Clearly wrong: the real
7519 type of the parent is not the real type of the child. We
7520 would end up in an infinite loop. */
7521 field_type = ada_get_base_type (field_type);
7522 field_type = ada_to_fixed_type (field_type, field_valaddr,
7523 field_address, dval, 0);
7524 /* If the field size is already larger than the maximum
7525 object size, then the record itself will necessarily
7526 be larger than the maximum object size. We need to make
7527 this check now, because the size might be so ridiculously
7528 large (due to an uninitialized variable in the inferior)
7529 that it would cause an overflow when adding it to the
7530 record size. */
7531 ada_ensure_varsize_limit (field_type);
7532
7533 rtype->field (f).set_type (field_type);
7534 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7535 /* The multiplication can potentially overflow. But because
7536 the field length has been size-checked just above, and
7537 assuming that the maximum size is a reasonable value,
7538 an overflow should not happen in practice. So rather than
7539 adding overflow recovery code to this already complex code,
7540 we just assume that it's not going to happen. */
7541 fld_bit_len =
7542 TYPE_LENGTH (rtype->field (f).type ()) * TARGET_CHAR_BIT;
7543 }
7544 else
7545 {
7546 /* Note: If this field's type is a typedef, it is important
7547 to preserve the typedef layer.
7548
7549 Otherwise, we might be transforming a typedef to a fat
7550 pointer (encoding a pointer to an unconstrained array),
7551 into a basic fat pointer (encoding an unconstrained
7552 array). As both types are implemented using the same
7553 structure, the typedef is the only clue which allows us
7554 to distinguish between the two options. Stripping it
7555 would prevent us from printing this field appropriately. */
7556 rtype->field (f).set_type (type->field (f).type ());
7557 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7558 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7559 fld_bit_len =
7560 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7561 else
7562 {
7563 struct type *field_type = type->field (f).type ();
7564
7565 /* We need to be careful of typedefs when computing
7566 the length of our field. If this is a typedef,
7567 get the length of the target type, not the length
7568 of the typedef. */
7569 if (field_type->code () == TYPE_CODE_TYPEDEF)
7570 field_type = ada_typedef_target_type (field_type);
7571
7572 fld_bit_len =
7573 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7574 }
7575 }
7576 if (off + fld_bit_len > bit_len)
7577 bit_len = off + fld_bit_len;
7578 off += fld_bit_len;
7579 TYPE_LENGTH (rtype) =
7580 align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7581 }
7582
7583 /* We handle the variant part, if any, at the end because of certain
7584 odd cases in which it is re-ordered so as NOT to be the last field of
7585 the record. This can happen in the presence of representation
7586 clauses. */
7587 if (variant_field >= 0)
7588 {
7589 struct type *branch_type;
7590
7591 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7592
7593 if (dval0 == NULL)
7594 {
7595 /* Using plain value_from_contents_and_address here causes
7596 problems because we will end up trying to resolve a type
7597 that is currently being constructed. */
7598 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
7599 address);
7600 rtype = value_type (dval);
7601 }
7602 else
7603 dval = dval0;
7604
7605 branch_type =
7606 to_fixed_variant_branch_type
7607 (type->field (variant_field).type (),
7608 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7609 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7610 if (branch_type == NULL)
7611 {
7612 for (f = variant_field + 1; f < rtype->num_fields (); f += 1)
7613 rtype->field (f - 1) = rtype->field (f);
7614 rtype->set_num_fields (rtype->num_fields () - 1);
7615 }
7616 else
7617 {
7618 rtype->field (variant_field).set_type (branch_type);
7619 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7620 fld_bit_len =
7621 TYPE_LENGTH (rtype->field (variant_field).type ()) *
7622 TARGET_CHAR_BIT;
7623 if (off + fld_bit_len > bit_len)
7624 bit_len = off + fld_bit_len;
7625 TYPE_LENGTH (rtype) =
7626 align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7627 }
7628 }
7629
7630 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7631 should contain the alignment of that record, which should be a strictly
7632 positive value. If null or negative, then something is wrong, most
7633 probably in the debug info. In that case, we don't round up the size
7634 of the resulting type. If this record is not part of another structure,
7635 the current RTYPE length might be good enough for our purposes. */
7636 if (TYPE_LENGTH (type) <= 0)
7637 {
7638 if (rtype->name ())
7639 warning (_("Invalid type size for `%s' detected: %s."),
7640 rtype->name (), pulongest (TYPE_LENGTH (type)));
7641 else
7642 warning (_("Invalid type size for <unnamed> detected: %s."),
7643 pulongest (TYPE_LENGTH (type)));
7644 }
7645 else
7646 {
7647 TYPE_LENGTH (rtype) = align_up (TYPE_LENGTH (rtype),
7648 TYPE_LENGTH (type));
7649 }
7650
7651 value_free_to_mark (mark);
7652 if (TYPE_LENGTH (rtype) > varsize_limit)
7653 error (_("record type with dynamic size is larger than varsize-limit"));
7654 return rtype;
7655 }
7656
7657 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7658 of 1. */
7659
7660 static struct type *
7661 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
7662 CORE_ADDR address, struct value *dval0)
7663 {
7664 return ada_template_to_fixed_record_type_1 (type, valaddr,
7665 address, dval0, 1);
7666 }
7667
7668 /* An ordinary record type in which ___XVL-convention fields and
7669 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7670 static approximations, containing all possible fields. Uses
7671 no runtime values. Useless for use in values, but that's OK,
7672 since the results are used only for type determinations. Works on both
7673 structs and unions. Representation note: to save space, we memorize
7674 the result of this function in the TYPE_TARGET_TYPE of the
7675 template type. */
7676
7677 static struct type *
7678 template_to_static_fixed_type (struct type *type0)
7679 {
7680 struct type *type;
7681 int nfields;
7682 int f;
7683
7684 /* No need no do anything if the input type is already fixed. */
7685 if (type0->is_fixed_instance ())
7686 return type0;
7687
7688 /* Likewise if we already have computed the static approximation. */
7689 if (TYPE_TARGET_TYPE (type0) != NULL)
7690 return TYPE_TARGET_TYPE (type0);
7691
7692 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
7693 type = type0;
7694 nfields = type0->num_fields ();
7695
7696 /* Whether or not we cloned TYPE0, cache the result so that we don't do
7697 recompute all over next time. */
7698 TYPE_TARGET_TYPE (type0) = type;
7699
7700 for (f = 0; f < nfields; f += 1)
7701 {
7702 struct type *field_type = type0->field (f).type ();
7703 struct type *new_type;
7704
7705 if (is_dynamic_field (type0, f))
7706 {
7707 field_type = ada_check_typedef (field_type);
7708 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
7709 }
7710 else
7711 new_type = static_unwrap_type (field_type);
7712
7713 if (new_type != field_type)
7714 {
7715 /* Clone TYPE0 only the first time we get a new field type. */
7716 if (type == type0)
7717 {
7718 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
7719 type->set_code (type0->code ());
7720 INIT_NONE_SPECIFIC (type);
7721 type->set_num_fields (nfields);
7722
7723 field *fields =
7724 ((struct field *)
7725 TYPE_ALLOC (type, nfields * sizeof (struct field)));
7726 memcpy (fields, type0->fields (),
7727 sizeof (struct field) * nfields);
7728 type->set_fields (fields);
7729
7730 type->set_name (ada_type_name (type0));
7731 type->set_is_fixed_instance (true);
7732 TYPE_LENGTH (type) = 0;
7733 }
7734 type->field (f).set_type (new_type);
7735 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
7736 }
7737 }
7738
7739 return type;
7740 }
7741
7742 /* Given an object of type TYPE whose contents are at VALADDR and
7743 whose address in memory is ADDRESS, returns a revision of TYPE,
7744 which should be a non-dynamic-sized record, in which the variant
7745 part, if any, is replaced with the appropriate branch. Looks
7746 for discriminant values in DVAL0, which can be NULL if the record
7747 contains the necessary discriminant values. */
7748
7749 static struct type *
7750 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
7751 CORE_ADDR address, struct value *dval0)
7752 {
7753 struct value *mark = value_mark ();
7754 struct value *dval;
7755 struct type *rtype;
7756 struct type *branch_type;
7757 int nfields = type->num_fields ();
7758 int variant_field = variant_field_index (type);
7759
7760 if (variant_field == -1)
7761 return type;
7762
7763 if (dval0 == NULL)
7764 {
7765 dval = value_from_contents_and_address (type, valaddr, address);
7766 type = value_type (dval);
7767 }
7768 else
7769 dval = dval0;
7770
7771 rtype = alloc_type_copy (type);
7772 rtype->set_code (TYPE_CODE_STRUCT);
7773 INIT_NONE_SPECIFIC (rtype);
7774 rtype->set_num_fields (nfields);
7775
7776 field *fields =
7777 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7778 memcpy (fields, type->fields (), sizeof (struct field) * nfields);
7779 rtype->set_fields (fields);
7780
7781 rtype->set_name (ada_type_name (type));
7782 rtype->set_is_fixed_instance (true);
7783 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7784
7785 branch_type = to_fixed_variant_branch_type
7786 (type->field (variant_field).type (),
7787 cond_offset_host (valaddr,
7788 TYPE_FIELD_BITPOS (type, variant_field)
7789 / TARGET_CHAR_BIT),
7790 cond_offset_target (address,
7791 TYPE_FIELD_BITPOS (type, variant_field)
7792 / TARGET_CHAR_BIT), dval);
7793 if (branch_type == NULL)
7794 {
7795 int f;
7796
7797 for (f = variant_field + 1; f < nfields; f += 1)
7798 rtype->field (f - 1) = rtype->field (f);
7799 rtype->set_num_fields (rtype->num_fields () - 1);
7800 }
7801 else
7802 {
7803 rtype->field (variant_field).set_type (branch_type);
7804 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7805 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7806 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7807 }
7808 TYPE_LENGTH (rtype) -= TYPE_LENGTH (type->field (variant_field).type ());
7809
7810 value_free_to_mark (mark);
7811 return rtype;
7812 }
7813
7814 /* An ordinary record type (with fixed-length fields) that describes
7815 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7816 beginning of this section]. Any necessary discriminants' values
7817 should be in DVAL, a record value; it may be NULL if the object
7818 at ADDR itself contains any necessary discriminant values.
7819 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7820 values from the record are needed. Except in the case that DVAL,
7821 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7822 unchecked) is replaced by a particular branch of the variant.
7823
7824 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7825 is questionable and may be removed. It can arise during the
7826 processing of an unconstrained-array-of-record type where all the
7827 variant branches have exactly the same size. This is because in
7828 such cases, the compiler does not bother to use the XVS convention
7829 when encoding the record. I am currently dubious of this
7830 shortcut and suspect the compiler should be altered. FIXME. */
7831
7832 static struct type *
7833 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7834 CORE_ADDR address, struct value *dval)
7835 {
7836 struct type *templ_type;
7837
7838 if (type0->is_fixed_instance ())
7839 return type0;
7840
7841 templ_type = dynamic_template_type (type0);
7842
7843 if (templ_type != NULL)
7844 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7845 else if (variant_field_index (type0) >= 0)
7846 {
7847 if (dval == NULL && valaddr == NULL && address == 0)
7848 return type0;
7849 return to_record_with_fixed_variant_part (type0, valaddr, address,
7850 dval);
7851 }
7852 else
7853 {
7854 type0->set_is_fixed_instance (true);
7855 return type0;
7856 }
7857
7858 }
7859
7860 /* An ordinary record type (with fixed-length fields) that describes
7861 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7862 union type. Any necessary discriminants' values should be in DVAL,
7863 a record value. That is, this routine selects the appropriate
7864 branch of the union at ADDR according to the discriminant value
7865 indicated in the union's type name. Returns VAR_TYPE0 itself if
7866 it represents a variant subject to a pragma Unchecked_Union. */
7867
7868 static struct type *
7869 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7870 CORE_ADDR address, struct value *dval)
7871 {
7872 int which;
7873 struct type *templ_type;
7874 struct type *var_type;
7875
7876 if (var_type0->code () == TYPE_CODE_PTR)
7877 var_type = TYPE_TARGET_TYPE (var_type0);
7878 else
7879 var_type = var_type0;
7880
7881 templ_type = ada_find_parallel_type (var_type, "___XVU");
7882
7883 if (templ_type != NULL)
7884 var_type = templ_type;
7885
7886 if (is_unchecked_variant (var_type, value_type (dval)))
7887 return var_type0;
7888 which = ada_which_variant_applies (var_type, dval);
7889
7890 if (which < 0)
7891 return empty_record (var_type);
7892 else if (is_dynamic_field (var_type, which))
7893 return to_fixed_record_type
7894 (TYPE_TARGET_TYPE (var_type->field (which).type ()),
7895 valaddr, address, dval);
7896 else if (variant_field_index (var_type->field (which).type ()) >= 0)
7897 return
7898 to_fixed_record_type
7899 (var_type->field (which).type (), valaddr, address, dval);
7900 else
7901 return var_type->field (which).type ();
7902 }
7903
7904 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
7905 ENCODING_TYPE, a type following the GNAT conventions for discrete
7906 type encodings, only carries redundant information. */
7907
7908 static int
7909 ada_is_redundant_range_encoding (struct type *range_type,
7910 struct type *encoding_type)
7911 {
7912 const char *bounds_str;
7913 int n;
7914 LONGEST lo, hi;
7915
7916 gdb_assert (range_type->code () == TYPE_CODE_RANGE);
7917
7918 if (get_base_type (range_type)->code ()
7919 != get_base_type (encoding_type)->code ())
7920 {
7921 /* The compiler probably used a simple base type to describe
7922 the range type instead of the range's actual base type,
7923 expecting us to get the real base type from the encoding
7924 anyway. In this situation, the encoding cannot be ignored
7925 as redundant. */
7926 return 0;
7927 }
7928
7929 if (is_dynamic_type (range_type))
7930 return 0;
7931
7932 if (encoding_type->name () == NULL)
7933 return 0;
7934
7935 bounds_str = strstr (encoding_type->name (), "___XDLU_");
7936 if (bounds_str == NULL)
7937 return 0;
7938
7939 n = 8; /* Skip "___XDLU_". */
7940 if (!ada_scan_number (bounds_str, n, &lo, &n))
7941 return 0;
7942 if (range_type->bounds ()->low.const_val () != lo)
7943 return 0;
7944
7945 n += 2; /* Skip the "__" separator between the two bounds. */
7946 if (!ada_scan_number (bounds_str, n, &hi, &n))
7947 return 0;
7948 if (range_type->bounds ()->high.const_val () != hi)
7949 return 0;
7950
7951 return 1;
7952 }
7953
7954 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
7955 a type following the GNAT encoding for describing array type
7956 indices, only carries redundant information. */
7957
7958 static int
7959 ada_is_redundant_index_type_desc (struct type *array_type,
7960 struct type *desc_type)
7961 {
7962 struct type *this_layer = check_typedef (array_type);
7963 int i;
7964
7965 for (i = 0; i < desc_type->num_fields (); i++)
7966 {
7967 if (!ada_is_redundant_range_encoding (this_layer->index_type (),
7968 desc_type->field (i).type ()))
7969 return 0;
7970 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
7971 }
7972
7973 return 1;
7974 }
7975
7976 /* Assuming that TYPE0 is an array type describing the type of a value
7977 at ADDR, and that DVAL describes a record containing any
7978 discriminants used in TYPE0, returns a type for the value that
7979 contains no dynamic components (that is, no components whose sizes
7980 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7981 true, gives an error message if the resulting type's size is over
7982 varsize_limit. */
7983
7984 static struct type *
7985 to_fixed_array_type (struct type *type0, struct value *dval,
7986 int ignore_too_big)
7987 {
7988 struct type *index_type_desc;
7989 struct type *result;
7990 int constrained_packed_array_p;
7991 static const char *xa_suffix = "___XA";
7992
7993 type0 = ada_check_typedef (type0);
7994 if (type0->is_fixed_instance ())
7995 return type0;
7996
7997 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
7998 if (constrained_packed_array_p)
7999 {
8000 type0 = decode_constrained_packed_array_type (type0);
8001 if (type0 == nullptr)
8002 error (_("could not decode constrained packed array type"));
8003 }
8004
8005 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8006
8007 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8008 encoding suffixed with 'P' may still be generated. If so,
8009 it should be used to find the XA type. */
8010
8011 if (index_type_desc == NULL)
8012 {
8013 const char *type_name = ada_type_name (type0);
8014
8015 if (type_name != NULL)
8016 {
8017 const int len = strlen (type_name);
8018 char *name = (char *) alloca (len + strlen (xa_suffix));
8019
8020 if (type_name[len - 1] == 'P')
8021 {
8022 strcpy (name, type_name);
8023 strcpy (name + len - 1, xa_suffix);
8024 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8025 }
8026 }
8027 }
8028
8029 ada_fixup_array_indexes_type (index_type_desc);
8030 if (index_type_desc != NULL
8031 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8032 {
8033 /* Ignore this ___XA parallel type, as it does not bring any
8034 useful information. This allows us to avoid creating fixed
8035 versions of the array's index types, which would be identical
8036 to the original ones. This, in turn, can also help avoid
8037 the creation of fixed versions of the array itself. */
8038 index_type_desc = NULL;
8039 }
8040
8041 if (index_type_desc == NULL)
8042 {
8043 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8044
8045 /* NOTE: elt_type---the fixed version of elt_type0---should never
8046 depend on the contents of the array in properly constructed
8047 debugging data. */
8048 /* Create a fixed version of the array element type.
8049 We're not providing the address of an element here,
8050 and thus the actual object value cannot be inspected to do
8051 the conversion. This should not be a problem, since arrays of
8052 unconstrained objects are not allowed. In particular, all
8053 the elements of an array of a tagged type should all be of
8054 the same type specified in the debugging info. No need to
8055 consult the object tag. */
8056 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8057
8058 /* Make sure we always create a new array type when dealing with
8059 packed array types, since we're going to fix-up the array
8060 type length and element bitsize a little further down. */
8061 if (elt_type0 == elt_type && !constrained_packed_array_p)
8062 result = type0;
8063 else
8064 result = create_array_type (alloc_type_copy (type0),
8065 elt_type, type0->index_type ());
8066 }
8067 else
8068 {
8069 int i;
8070 struct type *elt_type0;
8071
8072 elt_type0 = type0;
8073 for (i = index_type_desc->num_fields (); i > 0; i -= 1)
8074 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8075
8076 /* NOTE: result---the fixed version of elt_type0---should never
8077 depend on the contents of the array in properly constructed
8078 debugging data. */
8079 /* Create a fixed version of the array element type.
8080 We're not providing the address of an element here,
8081 and thus the actual object value cannot be inspected to do
8082 the conversion. This should not be a problem, since arrays of
8083 unconstrained objects are not allowed. In particular, all
8084 the elements of an array of a tagged type should all be of
8085 the same type specified in the debugging info. No need to
8086 consult the object tag. */
8087 result =
8088 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8089
8090 elt_type0 = type0;
8091 for (i = index_type_desc->num_fields () - 1; i >= 0; i -= 1)
8092 {
8093 struct type *range_type =
8094 to_fixed_range_type (index_type_desc->field (i).type (), dval);
8095
8096 result = create_array_type (alloc_type_copy (elt_type0),
8097 result, range_type);
8098 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8099 }
8100 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8101 error (_("array type with dynamic size is larger than varsize-limit"));
8102 }
8103
8104 /* We want to preserve the type name. This can be useful when
8105 trying to get the type name of a value that has already been
8106 printed (for instance, if the user did "print VAR; whatis $". */
8107 result->set_name (type0->name ());
8108
8109 if (constrained_packed_array_p)
8110 {
8111 /* So far, the resulting type has been created as if the original
8112 type was a regular (non-packed) array type. As a result, the
8113 bitsize of the array elements needs to be set again, and the array
8114 length needs to be recomputed based on that bitsize. */
8115 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8116 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8117
8118 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8119 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8120 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8121 TYPE_LENGTH (result)++;
8122 }
8123
8124 result->set_is_fixed_instance (true);
8125 return result;
8126 }
8127
8128
8129 /* A standard type (containing no dynamically sized components)
8130 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8131 DVAL describes a record containing any discriminants used in TYPE0,
8132 and may be NULL if there are none, or if the object of type TYPE at
8133 ADDRESS or in VALADDR contains these discriminants.
8134
8135 If CHECK_TAG is not null, in the case of tagged types, this function
8136 attempts to locate the object's tag and use it to compute the actual
8137 type. However, when ADDRESS is null, we cannot use it to determine the
8138 location of the tag, and therefore compute the tagged type's actual type.
8139 So we return the tagged type without consulting the tag. */
8140
8141 static struct type *
8142 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8143 CORE_ADDR address, struct value *dval, int check_tag)
8144 {
8145 type = ada_check_typedef (type);
8146
8147 /* Only un-fixed types need to be handled here. */
8148 if (!HAVE_GNAT_AUX_INFO (type))
8149 return type;
8150
8151 switch (type->code ())
8152 {
8153 default:
8154 return type;
8155 case TYPE_CODE_STRUCT:
8156 {
8157 struct type *static_type = to_static_fixed_type (type);
8158 struct type *fixed_record_type =
8159 to_fixed_record_type (type, valaddr, address, NULL);
8160
8161 /* If STATIC_TYPE is a tagged type and we know the object's address,
8162 then we can determine its tag, and compute the object's actual
8163 type from there. Note that we have to use the fixed record
8164 type (the parent part of the record may have dynamic fields
8165 and the way the location of _tag is expressed may depend on
8166 them). */
8167
8168 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8169 {
8170 struct value *tag =
8171 value_tag_from_contents_and_address
8172 (fixed_record_type,
8173 valaddr,
8174 address);
8175 struct type *real_type = type_from_tag (tag);
8176 struct value *obj =
8177 value_from_contents_and_address (fixed_record_type,
8178 valaddr,
8179 address);
8180 fixed_record_type = value_type (obj);
8181 if (real_type != NULL)
8182 return to_fixed_record_type
8183 (real_type, NULL,
8184 value_address (ada_tag_value_at_base_address (obj)), NULL);
8185 }
8186
8187 /* Check to see if there is a parallel ___XVZ variable.
8188 If there is, then it provides the actual size of our type. */
8189 else if (ada_type_name (fixed_record_type) != NULL)
8190 {
8191 const char *name = ada_type_name (fixed_record_type);
8192 char *xvz_name
8193 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
8194 bool xvz_found = false;
8195 LONGEST size;
8196
8197 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8198 try
8199 {
8200 xvz_found = get_int_var_value (xvz_name, size);
8201 }
8202 catch (const gdb_exception_error &except)
8203 {
8204 /* We found the variable, but somehow failed to read
8205 its value. Rethrow the same error, but with a little
8206 bit more information, to help the user understand
8207 what went wrong (Eg: the variable might have been
8208 optimized out). */
8209 throw_error (except.error,
8210 _("unable to read value of %s (%s)"),
8211 xvz_name, except.what ());
8212 }
8213
8214 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8215 {
8216 fixed_record_type = copy_type (fixed_record_type);
8217 TYPE_LENGTH (fixed_record_type) = size;
8218
8219 /* The FIXED_RECORD_TYPE may have be a stub. We have
8220 observed this when the debugging info is STABS, and
8221 apparently it is something that is hard to fix.
8222
8223 In practice, we don't need the actual type definition
8224 at all, because the presence of the XVZ variable allows us
8225 to assume that there must be a XVS type as well, which we
8226 should be able to use later, when we need the actual type
8227 definition.
8228
8229 In the meantime, pretend that the "fixed" type we are
8230 returning is NOT a stub, because this can cause trouble
8231 when using this type to create new types targeting it.
8232 Indeed, the associated creation routines often check
8233 whether the target type is a stub and will try to replace
8234 it, thus using a type with the wrong size. This, in turn,
8235 might cause the new type to have the wrong size too.
8236 Consider the case of an array, for instance, where the size
8237 of the array is computed from the number of elements in
8238 our array multiplied by the size of its element. */
8239 fixed_record_type->set_is_stub (false);
8240 }
8241 }
8242 return fixed_record_type;
8243 }
8244 case TYPE_CODE_ARRAY:
8245 return to_fixed_array_type (type, dval, 1);
8246 case TYPE_CODE_UNION:
8247 if (dval == NULL)
8248 return type;
8249 else
8250 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8251 }
8252 }
8253
8254 /* The same as ada_to_fixed_type_1, except that it preserves the type
8255 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8256
8257 The typedef layer needs be preserved in order to differentiate between
8258 arrays and array pointers when both types are implemented using the same
8259 fat pointer. In the array pointer case, the pointer is encoded as
8260 a typedef of the pointer type. For instance, considering:
8261
8262 type String_Access is access String;
8263 S1 : String_Access := null;
8264
8265 To the debugger, S1 is defined as a typedef of type String. But
8266 to the user, it is a pointer. So if the user tries to print S1,
8267 we should not dereference the array, but print the array address
8268 instead.
8269
8270 If we didn't preserve the typedef layer, we would lose the fact that
8271 the type is to be presented as a pointer (needs de-reference before
8272 being printed). And we would also use the source-level type name. */
8273
8274 struct type *
8275 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8276 CORE_ADDR address, struct value *dval, int check_tag)
8277
8278 {
8279 struct type *fixed_type =
8280 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8281
8282 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8283 then preserve the typedef layer.
8284
8285 Implementation note: We can only check the main-type portion of
8286 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8287 from TYPE now returns a type that has the same instance flags
8288 as TYPE. For instance, if TYPE is a "typedef const", and its
8289 target type is a "struct", then the typedef elimination will return
8290 a "const" version of the target type. See check_typedef for more
8291 details about how the typedef layer elimination is done.
8292
8293 brobecker/2010-11-19: It seems to me that the only case where it is
8294 useful to preserve the typedef layer is when dealing with fat pointers.
8295 Perhaps, we could add a check for that and preserve the typedef layer
8296 only in that situation. But this seems unnecessary so far, probably
8297 because we call check_typedef/ada_check_typedef pretty much everywhere.
8298 */
8299 if (type->code () == TYPE_CODE_TYPEDEF
8300 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8301 == TYPE_MAIN_TYPE (fixed_type)))
8302 return type;
8303
8304 return fixed_type;
8305 }
8306
8307 /* A standard (static-sized) type corresponding as well as possible to
8308 TYPE0, but based on no runtime data. */
8309
8310 static struct type *
8311 to_static_fixed_type (struct type *type0)
8312 {
8313 struct type *type;
8314
8315 if (type0 == NULL)
8316 return NULL;
8317
8318 if (type0->is_fixed_instance ())
8319 return type0;
8320
8321 type0 = ada_check_typedef (type0);
8322
8323 switch (type0->code ())
8324 {
8325 default:
8326 return type0;
8327 case TYPE_CODE_STRUCT:
8328 type = dynamic_template_type (type0);
8329 if (type != NULL)
8330 return template_to_static_fixed_type (type);
8331 else
8332 return template_to_static_fixed_type (type0);
8333 case TYPE_CODE_UNION:
8334 type = ada_find_parallel_type (type0, "___XVU");
8335 if (type != NULL)
8336 return template_to_static_fixed_type (type);
8337 else
8338 return template_to_static_fixed_type (type0);
8339 }
8340 }
8341
8342 /* A static approximation of TYPE with all type wrappers removed. */
8343
8344 static struct type *
8345 static_unwrap_type (struct type *type)
8346 {
8347 if (ada_is_aligner_type (type))
8348 {
8349 struct type *type1 = ada_check_typedef (type)->field (0).type ();
8350 if (ada_type_name (type1) == NULL)
8351 type1->set_name (ada_type_name (type));
8352
8353 return static_unwrap_type (type1);
8354 }
8355 else
8356 {
8357 struct type *raw_real_type = ada_get_base_type (type);
8358
8359 if (raw_real_type == type)
8360 return type;
8361 else
8362 return to_static_fixed_type (raw_real_type);
8363 }
8364 }
8365
8366 /* In some cases, incomplete and private types require
8367 cross-references that are not resolved as records (for example,
8368 type Foo;
8369 type FooP is access Foo;
8370 V: FooP;
8371 type Foo is array ...;
8372 ). In these cases, since there is no mechanism for producing
8373 cross-references to such types, we instead substitute for FooP a
8374 stub enumeration type that is nowhere resolved, and whose tag is
8375 the name of the actual type. Call these types "non-record stubs". */
8376
8377 /* A type equivalent to TYPE that is not a non-record stub, if one
8378 exists, otherwise TYPE. */
8379
8380 struct type *
8381 ada_check_typedef (struct type *type)
8382 {
8383 if (type == NULL)
8384 return NULL;
8385
8386 /* If our type is an access to an unconstrained array, which is encoded
8387 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
8388 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8389 what allows us to distinguish between fat pointers that represent
8390 array types, and fat pointers that represent array access types
8391 (in both cases, the compiler implements them as fat pointers). */
8392 if (ada_is_access_to_unconstrained_array (type))
8393 return type;
8394
8395 type = check_typedef (type);
8396 if (type == NULL || type->code () != TYPE_CODE_ENUM
8397 || !type->is_stub ()
8398 || type->name () == NULL)
8399 return type;
8400 else
8401 {
8402 const char *name = type->name ();
8403 struct type *type1 = ada_find_any_type (name);
8404
8405 if (type1 == NULL)
8406 return type;
8407
8408 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8409 stubs pointing to arrays, as we don't create symbols for array
8410 types, only for the typedef-to-array types). If that's the case,
8411 strip the typedef layer. */
8412 if (type1->code () == TYPE_CODE_TYPEDEF)
8413 type1 = ada_check_typedef (type1);
8414
8415 return type1;
8416 }
8417 }
8418
8419 /* A value representing the data at VALADDR/ADDRESS as described by
8420 type TYPE0, but with a standard (static-sized) type that correctly
8421 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8422 type, then return VAL0 [this feature is simply to avoid redundant
8423 creation of struct values]. */
8424
8425 static struct value *
8426 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8427 struct value *val0)
8428 {
8429 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
8430
8431 if (type == type0 && val0 != NULL)
8432 return val0;
8433
8434 if (VALUE_LVAL (val0) != lval_memory)
8435 {
8436 /* Our value does not live in memory; it could be a convenience
8437 variable, for instance. Create a not_lval value using val0's
8438 contents. */
8439 return value_from_contents (type, value_contents (val0));
8440 }
8441
8442 return value_from_contents_and_address (type, 0, address);
8443 }
8444
8445 /* A value representing VAL, but with a standard (static-sized) type
8446 that correctly describes it. Does not necessarily create a new
8447 value. */
8448
8449 struct value *
8450 ada_to_fixed_value (struct value *val)
8451 {
8452 val = unwrap_value (val);
8453 val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
8454 return val;
8455 }
8456 \f
8457
8458 /* Attributes */
8459
8460 /* Table mapping attribute numbers to names.
8461 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
8462
8463 static const char * const attribute_names[] = {
8464 "<?>",
8465
8466 "first",
8467 "last",
8468 "length",
8469 "image",
8470 "max",
8471 "min",
8472 "modulus",
8473 "pos",
8474 "size",
8475 "tag",
8476 "val",
8477 0
8478 };
8479
8480 static const char *
8481 ada_attribute_name (enum exp_opcode n)
8482 {
8483 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8484 return attribute_names[n - OP_ATR_FIRST + 1];
8485 else
8486 return attribute_names[0];
8487 }
8488
8489 /* Evaluate the 'POS attribute applied to ARG. */
8490
8491 static LONGEST
8492 pos_atr (struct value *arg)
8493 {
8494 struct value *val = coerce_ref (arg);
8495 struct type *type = value_type (val);
8496
8497 if (!discrete_type_p (type))
8498 error (_("'POS only defined on discrete types"));
8499
8500 gdb::optional<LONGEST> result = discrete_position (type, value_as_long (val));
8501 if (!result.has_value ())
8502 error (_("enumeration value is invalid: can't find 'POS"));
8503
8504 return *result;
8505 }
8506
8507 struct value *
8508 ada_pos_atr (struct type *expect_type,
8509 struct expression *exp,
8510 enum noside noside, enum exp_opcode op,
8511 struct value *arg)
8512 {
8513 struct type *type = builtin_type (exp->gdbarch)->builtin_int;
8514 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8515 return value_zero (type, not_lval);
8516 return value_from_longest (type, pos_atr (arg));
8517 }
8518
8519 /* Evaluate the TYPE'VAL attribute applied to ARG. */
8520
8521 static struct value *
8522 val_atr (struct type *type, LONGEST val)
8523 {
8524 gdb_assert (discrete_type_p (type));
8525 if (type->code () == TYPE_CODE_RANGE)
8526 type = TYPE_TARGET_TYPE (type);
8527 if (type->code () == TYPE_CODE_ENUM)
8528 {
8529 if (val < 0 || val >= type->num_fields ())
8530 error (_("argument to 'VAL out of range"));
8531 val = TYPE_FIELD_ENUMVAL (type, val);
8532 }
8533 return value_from_longest (type, val);
8534 }
8535
8536 struct value *
8537 ada_val_atr (enum noside noside, struct type *type, struct value *arg)
8538 {
8539 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8540 return value_zero (type, not_lval);
8541
8542 if (!discrete_type_p (type))
8543 error (_("'VAL only defined on discrete types"));
8544 if (!integer_type_p (value_type (arg)))
8545 error (_("'VAL requires integral argument"));
8546
8547 return val_atr (type, value_as_long (arg));
8548 }
8549 \f
8550
8551 /* Evaluation */
8552
8553 /* True if TYPE appears to be an Ada character type.
8554 [At the moment, this is true only for Character and Wide_Character;
8555 It is a heuristic test that could stand improvement]. */
8556
8557 bool
8558 ada_is_character_type (struct type *type)
8559 {
8560 const char *name;
8561
8562 /* If the type code says it's a character, then assume it really is,
8563 and don't check any further. */
8564 if (type->code () == TYPE_CODE_CHAR)
8565 return true;
8566
8567 /* Otherwise, assume it's a character type iff it is a discrete type
8568 with a known character type name. */
8569 name = ada_type_name (type);
8570 return (name != NULL
8571 && (type->code () == TYPE_CODE_INT
8572 || type->code () == TYPE_CODE_RANGE)
8573 && (strcmp (name, "character") == 0
8574 || strcmp (name, "wide_character") == 0
8575 || strcmp (name, "wide_wide_character") == 0
8576 || strcmp (name, "unsigned char") == 0));
8577 }
8578
8579 /* True if TYPE appears to be an Ada string type. */
8580
8581 bool
8582 ada_is_string_type (struct type *type)
8583 {
8584 type = ada_check_typedef (type);
8585 if (type != NULL
8586 && type->code () != TYPE_CODE_PTR
8587 && (ada_is_simple_array_type (type)
8588 || ada_is_array_descriptor_type (type))
8589 && ada_array_arity (type) == 1)
8590 {
8591 struct type *elttype = ada_array_element_type (type, 1);
8592
8593 return ada_is_character_type (elttype);
8594 }
8595 else
8596 return false;
8597 }
8598
8599 /* The compiler sometimes provides a parallel XVS type for a given
8600 PAD type. Normally, it is safe to follow the PAD type directly,
8601 but older versions of the compiler have a bug that causes the offset
8602 of its "F" field to be wrong. Following that field in that case
8603 would lead to incorrect results, but this can be worked around
8604 by ignoring the PAD type and using the associated XVS type instead.
8605
8606 Set to True if the debugger should trust the contents of PAD types.
8607 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8608 static bool trust_pad_over_xvs = true;
8609
8610 /* True if TYPE is a struct type introduced by the compiler to force the
8611 alignment of a value. Such types have a single field with a
8612 distinctive name. */
8613
8614 int
8615 ada_is_aligner_type (struct type *type)
8616 {
8617 type = ada_check_typedef (type);
8618
8619 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
8620 return 0;
8621
8622 return (type->code () == TYPE_CODE_STRUCT
8623 && type->num_fields () == 1
8624 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
8625 }
8626
8627 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
8628 the parallel type. */
8629
8630 struct type *
8631 ada_get_base_type (struct type *raw_type)
8632 {
8633 struct type *real_type_namer;
8634 struct type *raw_real_type;
8635
8636 if (raw_type == NULL || raw_type->code () != TYPE_CODE_STRUCT)
8637 return raw_type;
8638
8639 if (ada_is_aligner_type (raw_type))
8640 /* The encoding specifies that we should always use the aligner type.
8641 So, even if this aligner type has an associated XVS type, we should
8642 simply ignore it.
8643
8644 According to the compiler gurus, an XVS type parallel to an aligner
8645 type may exist because of a stabs limitation. In stabs, aligner
8646 types are empty because the field has a variable-sized type, and
8647 thus cannot actually be used as an aligner type. As a result,
8648 we need the associated parallel XVS type to decode the type.
8649 Since the policy in the compiler is to not change the internal
8650 representation based on the debugging info format, we sometimes
8651 end up having a redundant XVS type parallel to the aligner type. */
8652 return raw_type;
8653
8654 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
8655 if (real_type_namer == NULL
8656 || real_type_namer->code () != TYPE_CODE_STRUCT
8657 || real_type_namer->num_fields () != 1)
8658 return raw_type;
8659
8660 if (real_type_namer->field (0).type ()->code () != TYPE_CODE_REF)
8661 {
8662 /* This is an older encoding form where the base type needs to be
8663 looked up by name. We prefer the newer encoding because it is
8664 more efficient. */
8665 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8666 if (raw_real_type == NULL)
8667 return raw_type;
8668 else
8669 return raw_real_type;
8670 }
8671
8672 /* The field in our XVS type is a reference to the base type. */
8673 return TYPE_TARGET_TYPE (real_type_namer->field (0).type ());
8674 }
8675
8676 /* The type of value designated by TYPE, with all aligners removed. */
8677
8678 struct type *
8679 ada_aligned_type (struct type *type)
8680 {
8681 if (ada_is_aligner_type (type))
8682 return ada_aligned_type (type->field (0).type ());
8683 else
8684 return ada_get_base_type (type);
8685 }
8686
8687
8688 /* The address of the aligned value in an object at address VALADDR
8689 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
8690
8691 const gdb_byte *
8692 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
8693 {
8694 if (ada_is_aligner_type (type))
8695 return ada_aligned_value_addr (type->field (0).type (),
8696 valaddr +
8697 TYPE_FIELD_BITPOS (type,
8698 0) / TARGET_CHAR_BIT);
8699 else
8700 return valaddr;
8701 }
8702
8703
8704
8705 /* The printed representation of an enumeration literal with encoded
8706 name NAME. The value is good to the next call of ada_enum_name. */
8707 const char *
8708 ada_enum_name (const char *name)
8709 {
8710 static std::string storage;
8711 const char *tmp;
8712
8713 /* First, unqualify the enumeration name:
8714 1. Search for the last '.' character. If we find one, then skip
8715 all the preceding characters, the unqualified name starts
8716 right after that dot.
8717 2. Otherwise, we may be debugging on a target where the compiler
8718 translates dots into "__". Search forward for double underscores,
8719 but stop searching when we hit an overloading suffix, which is
8720 of the form "__" followed by digits. */
8721
8722 tmp = strrchr (name, '.');
8723 if (tmp != NULL)
8724 name = tmp + 1;
8725 else
8726 {
8727 while ((tmp = strstr (name, "__")) != NULL)
8728 {
8729 if (isdigit (tmp[2]))
8730 break;
8731 else
8732 name = tmp + 2;
8733 }
8734 }
8735
8736 if (name[0] == 'Q')
8737 {
8738 int v;
8739
8740 if (name[1] == 'U' || name[1] == 'W')
8741 {
8742 if (sscanf (name + 2, "%x", &v) != 1)
8743 return name;
8744 }
8745 else if (((name[1] >= '0' && name[1] <= '9')
8746 || (name[1] >= 'a' && name[1] <= 'z'))
8747 && name[2] == '\0')
8748 {
8749 storage = string_printf ("'%c'", name[1]);
8750 return storage.c_str ();
8751 }
8752 else
8753 return name;
8754
8755 if (isascii (v) && isprint (v))
8756 storage = string_printf ("'%c'", v);
8757 else if (name[1] == 'U')
8758 storage = string_printf ("[\"%02x\"]", v);
8759 else
8760 storage = string_printf ("[\"%04x\"]", v);
8761
8762 return storage.c_str ();
8763 }
8764 else
8765 {
8766 tmp = strstr (name, "__");
8767 if (tmp == NULL)
8768 tmp = strstr (name, "$");
8769 if (tmp != NULL)
8770 {
8771 storage = std::string (name, tmp - name);
8772 return storage.c_str ();
8773 }
8774
8775 return name;
8776 }
8777 }
8778
8779 /* If VAL is wrapped in an aligner or subtype wrapper, return the
8780 value it wraps. */
8781
8782 static struct value *
8783 unwrap_value (struct value *val)
8784 {
8785 struct type *type = ada_check_typedef (value_type (val));
8786
8787 if (ada_is_aligner_type (type))
8788 {
8789 struct value *v = ada_value_struct_elt (val, "F", 0);
8790 struct type *val_type = ada_check_typedef (value_type (v));
8791
8792 if (ada_type_name (val_type) == NULL)
8793 val_type->set_name (ada_type_name (type));
8794
8795 return unwrap_value (v);
8796 }
8797 else
8798 {
8799 struct type *raw_real_type =
8800 ada_check_typedef (ada_get_base_type (type));
8801
8802 /* If there is no parallel XVS or XVE type, then the value is
8803 already unwrapped. Return it without further modification. */
8804 if ((type == raw_real_type)
8805 && ada_find_parallel_type (type, "___XVE") == NULL)
8806 return val;
8807
8808 return
8809 coerce_unspec_val_to_type
8810 (val, ada_to_fixed_type (raw_real_type, 0,
8811 value_address (val),
8812 NULL, 1));
8813 }
8814 }
8815
8816 /* Given two array types T1 and T2, return nonzero iff both arrays
8817 contain the same number of elements. */
8818
8819 static int
8820 ada_same_array_size_p (struct type *t1, struct type *t2)
8821 {
8822 LONGEST lo1, hi1, lo2, hi2;
8823
8824 /* Get the array bounds in order to verify that the size of
8825 the two arrays match. */
8826 if (!get_array_bounds (t1, &lo1, &hi1)
8827 || !get_array_bounds (t2, &lo2, &hi2))
8828 error (_("unable to determine array bounds"));
8829
8830 /* To make things easier for size comparison, normalize a bit
8831 the case of empty arrays by making sure that the difference
8832 between upper bound and lower bound is always -1. */
8833 if (lo1 > hi1)
8834 hi1 = lo1 - 1;
8835 if (lo2 > hi2)
8836 hi2 = lo2 - 1;
8837
8838 return (hi1 - lo1 == hi2 - lo2);
8839 }
8840
8841 /* Assuming that VAL is an array of integrals, and TYPE represents
8842 an array with the same number of elements, but with wider integral
8843 elements, return an array "casted" to TYPE. In practice, this
8844 means that the returned array is built by casting each element
8845 of the original array into TYPE's (wider) element type. */
8846
8847 static struct value *
8848 ada_promote_array_of_integrals (struct type *type, struct value *val)
8849 {
8850 struct type *elt_type = TYPE_TARGET_TYPE (type);
8851 LONGEST lo, hi;
8852 struct value *res;
8853 LONGEST i;
8854
8855 /* Verify that both val and type are arrays of scalars, and
8856 that the size of val's elements is smaller than the size
8857 of type's element. */
8858 gdb_assert (type->code () == TYPE_CODE_ARRAY);
8859 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
8860 gdb_assert (value_type (val)->code () == TYPE_CODE_ARRAY);
8861 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
8862 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
8863 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
8864
8865 if (!get_array_bounds (type, &lo, &hi))
8866 error (_("unable to determine array bounds"));
8867
8868 res = allocate_value (type);
8869
8870 /* Promote each array element. */
8871 for (i = 0; i < hi - lo + 1; i++)
8872 {
8873 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
8874
8875 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
8876 value_contents_all (elt), TYPE_LENGTH (elt_type));
8877 }
8878
8879 return res;
8880 }
8881
8882 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8883 return the converted value. */
8884
8885 static struct value *
8886 coerce_for_assign (struct type *type, struct value *val)
8887 {
8888 struct type *type2 = value_type (val);
8889
8890 if (type == type2)
8891 return val;
8892
8893 type2 = ada_check_typedef (type2);
8894 type = ada_check_typedef (type);
8895
8896 if (type2->code () == TYPE_CODE_PTR
8897 && type->code () == TYPE_CODE_ARRAY)
8898 {
8899 val = ada_value_ind (val);
8900 type2 = value_type (val);
8901 }
8902
8903 if (type2->code () == TYPE_CODE_ARRAY
8904 && type->code () == TYPE_CODE_ARRAY)
8905 {
8906 if (!ada_same_array_size_p (type, type2))
8907 error (_("cannot assign arrays of different length"));
8908
8909 if (is_integral_type (TYPE_TARGET_TYPE (type))
8910 && is_integral_type (TYPE_TARGET_TYPE (type2))
8911 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8912 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
8913 {
8914 /* Allow implicit promotion of the array elements to
8915 a wider type. */
8916 return ada_promote_array_of_integrals (type, val);
8917 }
8918
8919 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8920 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
8921 error (_("Incompatible types in assignment"));
8922 deprecated_set_value_type (val, type);
8923 }
8924 return val;
8925 }
8926
8927 static struct value *
8928 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8929 {
8930 struct value *val;
8931 struct type *type1, *type2;
8932 LONGEST v, v1, v2;
8933
8934 arg1 = coerce_ref (arg1);
8935 arg2 = coerce_ref (arg2);
8936 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
8937 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
8938
8939 if (type1->code () != TYPE_CODE_INT
8940 || type2->code () != TYPE_CODE_INT)
8941 return value_binop (arg1, arg2, op);
8942
8943 switch (op)
8944 {
8945 case BINOP_MOD:
8946 case BINOP_DIV:
8947 case BINOP_REM:
8948 break;
8949 default:
8950 return value_binop (arg1, arg2, op);
8951 }
8952
8953 v2 = value_as_long (arg2);
8954 if (v2 == 0)
8955 {
8956 const char *name;
8957 if (op == BINOP_MOD)
8958 name = "mod";
8959 else if (op == BINOP_DIV)
8960 name = "/";
8961 else
8962 {
8963 gdb_assert (op == BINOP_REM);
8964 name = "rem";
8965 }
8966
8967 error (_("second operand of %s must not be zero."), name);
8968 }
8969
8970 if (type1->is_unsigned () || op == BINOP_MOD)
8971 return value_binop (arg1, arg2, op);
8972
8973 v1 = value_as_long (arg1);
8974 switch (op)
8975 {
8976 case BINOP_DIV:
8977 v = v1 / v2;
8978 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8979 v += v > 0 ? -1 : 1;
8980 break;
8981 case BINOP_REM:
8982 v = v1 % v2;
8983 if (v * v1 < 0)
8984 v -= v2;
8985 break;
8986 default:
8987 /* Should not reach this point. */
8988 v = 0;
8989 }
8990
8991 val = allocate_value (type1);
8992 store_unsigned_integer (value_contents_raw (val),
8993 TYPE_LENGTH (value_type (val)),
8994 type_byte_order (type1), v);
8995 return val;
8996 }
8997
8998 static int
8999 ada_value_equal (struct value *arg1, struct value *arg2)
9000 {
9001 if (ada_is_direct_array_type (value_type (arg1))
9002 || ada_is_direct_array_type (value_type (arg2)))
9003 {
9004 struct type *arg1_type, *arg2_type;
9005
9006 /* Automatically dereference any array reference before
9007 we attempt to perform the comparison. */
9008 arg1 = ada_coerce_ref (arg1);
9009 arg2 = ada_coerce_ref (arg2);
9010
9011 arg1 = ada_coerce_to_simple_array (arg1);
9012 arg2 = ada_coerce_to_simple_array (arg2);
9013
9014 arg1_type = ada_check_typedef (value_type (arg1));
9015 arg2_type = ada_check_typedef (value_type (arg2));
9016
9017 if (arg1_type->code () != TYPE_CODE_ARRAY
9018 || arg2_type->code () != TYPE_CODE_ARRAY)
9019 error (_("Attempt to compare array with non-array"));
9020 /* FIXME: The following works only for types whose
9021 representations use all bits (no padding or undefined bits)
9022 and do not have user-defined equality. */
9023 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9024 && memcmp (value_contents (arg1), value_contents (arg2),
9025 TYPE_LENGTH (arg1_type)) == 0);
9026 }
9027 return value_equal (arg1, arg2);
9028 }
9029
9030 namespace expr
9031 {
9032
9033 bool
9034 check_objfile (const std::unique_ptr<ada_component> &comp,
9035 struct objfile *objfile)
9036 {
9037 return comp->uses_objfile (objfile);
9038 }
9039
9040 /* Assign the result of evaluating ARG starting at *POS to the INDEXth
9041 component of LHS (a simple array or a record). Does not modify the
9042 inferior's memory, nor does it modify LHS (unless LHS ==
9043 CONTAINER). */
9044
9045 static void
9046 assign_component (struct value *container, struct value *lhs, LONGEST index,
9047 struct expression *exp, operation_up &arg)
9048 {
9049 scoped_value_mark mark;
9050
9051 struct value *elt;
9052 struct type *lhs_type = check_typedef (value_type (lhs));
9053
9054 if (lhs_type->code () == TYPE_CODE_ARRAY)
9055 {
9056 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9057 struct value *index_val = value_from_longest (index_type, index);
9058
9059 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9060 }
9061 else
9062 {
9063 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9064 elt = ada_to_fixed_value (elt);
9065 }
9066
9067 ada_aggregate_operation *ag_op
9068 = dynamic_cast<ada_aggregate_operation *> (arg.get ());
9069 if (ag_op != nullptr)
9070 ag_op->assign_aggregate (container, elt, exp);
9071 else
9072 value_assign_to_component (container, elt,
9073 arg->evaluate (nullptr, exp,
9074 EVAL_NORMAL));
9075 }
9076
9077 bool
9078 ada_aggregate_component::uses_objfile (struct objfile *objfile)
9079 {
9080 for (const auto &item : m_components)
9081 if (item->uses_objfile (objfile))
9082 return true;
9083 return false;
9084 }
9085
9086 void
9087 ada_aggregate_component::dump (ui_file *stream, int depth)
9088 {
9089 fprintf_filtered (stream, _("%*sAggregate\n"), depth, "");
9090 for (const auto &item : m_components)
9091 item->dump (stream, depth + 1);
9092 }
9093
9094 void
9095 ada_aggregate_component::assign (struct value *container,
9096 struct value *lhs, struct expression *exp,
9097 std::vector<LONGEST> &indices,
9098 LONGEST low, LONGEST high)
9099 {
9100 for (auto &item : m_components)
9101 item->assign (container, lhs, exp, indices, low, high);
9102 }
9103
9104 /* Assuming that LHS represents an lvalue having a record or array
9105 type, evaluate an assignment of this aggregate's value to LHS.
9106 CONTAINER is an lvalue containing LHS (possibly LHS itself). Does
9107 not modify the inferior's memory, nor does it modify the contents
9108 of LHS (unless == CONTAINER). */
9109
9110 void
9111 ada_aggregate_operation::assign_aggregate (struct value *container,
9112 struct value *lhs,
9113 struct expression *exp)
9114 {
9115 struct type *lhs_type;
9116 LONGEST low_index, high_index;
9117
9118 container = ada_coerce_ref (container);
9119 if (ada_is_direct_array_type (value_type (container)))
9120 container = ada_coerce_to_simple_array (container);
9121 lhs = ada_coerce_ref (lhs);
9122 if (!deprecated_value_modifiable (lhs))
9123 error (_("Left operand of assignment is not a modifiable lvalue."));
9124
9125 lhs_type = check_typedef (value_type (lhs));
9126 if (ada_is_direct_array_type (lhs_type))
9127 {
9128 lhs = ada_coerce_to_simple_array (lhs);
9129 lhs_type = check_typedef (value_type (lhs));
9130 low_index = lhs_type->bounds ()->low.const_val ();
9131 high_index = lhs_type->bounds ()->high.const_val ();
9132 }
9133 else if (lhs_type->code () == TYPE_CODE_STRUCT)
9134 {
9135 low_index = 0;
9136 high_index = num_visible_fields (lhs_type) - 1;
9137 }
9138 else
9139 error (_("Left-hand side must be array or record."));
9140
9141 std::vector<LONGEST> indices (4);
9142 indices[0] = indices[1] = low_index - 1;
9143 indices[2] = indices[3] = high_index + 1;
9144
9145 std::get<0> (m_storage)->assign (container, lhs, exp, indices,
9146 low_index, high_index);
9147 }
9148
9149 bool
9150 ada_positional_component::uses_objfile (struct objfile *objfile)
9151 {
9152 return m_op->uses_objfile (objfile);
9153 }
9154
9155 void
9156 ada_positional_component::dump (ui_file *stream, int depth)
9157 {
9158 fprintf_filtered (stream, _("%*sPositional, index = %d\n"),
9159 depth, "", m_index);
9160 m_op->dump (stream, depth + 1);
9161 }
9162
9163 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9164 construct, given that the positions are relative to lower bound
9165 LOW, where HIGH is the upper bound. Record the position in
9166 INDICES. CONTAINER is as for assign_aggregate. */
9167 void
9168 ada_positional_component::assign (struct value *container,
9169 struct value *lhs, struct expression *exp,
9170 std::vector<LONGEST> &indices,
9171 LONGEST low, LONGEST high)
9172 {
9173 LONGEST ind = m_index + low;
9174
9175 if (ind - 1 == high)
9176 warning (_("Extra components in aggregate ignored."));
9177 if (ind <= high)
9178 {
9179 add_component_interval (ind, ind, indices);
9180 assign_component (container, lhs, ind, exp, m_op);
9181 }
9182 }
9183
9184 bool
9185 ada_discrete_range_association::uses_objfile (struct objfile *objfile)
9186 {
9187 return m_low->uses_objfile (objfile) || m_high->uses_objfile (objfile);
9188 }
9189
9190 void
9191 ada_discrete_range_association::dump (ui_file *stream, int depth)
9192 {
9193 fprintf_filtered (stream, _("%*sDiscrete range:\n"), depth, "");
9194 m_low->dump (stream, depth + 1);
9195 m_high->dump (stream, depth + 1);
9196 }
9197
9198 void
9199 ada_discrete_range_association::assign (struct value *container,
9200 struct value *lhs,
9201 struct expression *exp,
9202 std::vector<LONGEST> &indices,
9203 LONGEST low, LONGEST high,
9204 operation_up &op)
9205 {
9206 LONGEST lower = value_as_long (m_low->evaluate (nullptr, exp, EVAL_NORMAL));
9207 LONGEST upper = value_as_long (m_high->evaluate (nullptr, exp, EVAL_NORMAL));
9208
9209 if (lower <= upper && (lower < low || upper > high))
9210 error (_("Index in component association out of bounds."));
9211
9212 add_component_interval (lower, upper, indices);
9213 while (lower <= upper)
9214 {
9215 assign_component (container, lhs, lower, exp, op);
9216 lower += 1;
9217 }
9218 }
9219
9220 bool
9221 ada_name_association::uses_objfile (struct objfile *objfile)
9222 {
9223 return m_val->uses_objfile (objfile);
9224 }
9225
9226 void
9227 ada_name_association::dump (ui_file *stream, int depth)
9228 {
9229 fprintf_filtered (stream, _("%*sName:\n"), depth, "");
9230 m_val->dump (stream, depth + 1);
9231 }
9232
9233 void
9234 ada_name_association::assign (struct value *container,
9235 struct value *lhs,
9236 struct expression *exp,
9237 std::vector<LONGEST> &indices,
9238 LONGEST low, LONGEST high,
9239 operation_up &op)
9240 {
9241 int index;
9242
9243 if (ada_is_direct_array_type (value_type (lhs)))
9244 index = longest_to_int (value_as_long (m_val->evaluate (nullptr, exp,
9245 EVAL_NORMAL)));
9246 else
9247 {
9248 ada_string_operation *strop
9249 = dynamic_cast<ada_string_operation *> (m_val.get ());
9250
9251 const char *name;
9252 if (strop != nullptr)
9253 name = strop->get_name ();
9254 else
9255 {
9256 ada_var_value_operation *vvo
9257 = dynamic_cast<ada_var_value_operation *> (m_val.get ());
9258 if (vvo != nullptr)
9259 error (_("Invalid record component association."));
9260 name = vvo->get_symbol ()->natural_name ();
9261 }
9262
9263 index = 0;
9264 if (! find_struct_field (name, value_type (lhs), 0,
9265 NULL, NULL, NULL, NULL, &index))
9266 error (_("Unknown component name: %s."), name);
9267 }
9268
9269 add_component_interval (index, index, indices);
9270 assign_component (container, lhs, index, exp, op);
9271 }
9272
9273 bool
9274 ada_choices_component::uses_objfile (struct objfile *objfile)
9275 {
9276 if (m_op->uses_objfile (objfile))
9277 return true;
9278 for (const auto &item : m_assocs)
9279 if (item->uses_objfile (objfile))
9280 return true;
9281 return false;
9282 }
9283
9284 void
9285 ada_choices_component::dump (ui_file *stream, int depth)
9286 {
9287 fprintf_filtered (stream, _("%*sChoices:\n"), depth, "");
9288 m_op->dump (stream, depth + 1);
9289 for (const auto &item : m_assocs)
9290 item->dump (stream, depth + 1);
9291 }
9292
9293 /* Assign into the components of LHS indexed by the OP_CHOICES
9294 construct at *POS, updating *POS past the construct, given that
9295 the allowable indices are LOW..HIGH. Record the indices assigned
9296 to in INDICES. CONTAINER is as for assign_aggregate. */
9297 void
9298 ada_choices_component::assign (struct value *container,
9299 struct value *lhs, struct expression *exp,
9300 std::vector<LONGEST> &indices,
9301 LONGEST low, LONGEST high)
9302 {
9303 for (auto &item : m_assocs)
9304 item->assign (container, lhs, exp, indices, low, high, m_op);
9305 }
9306
9307 bool
9308 ada_others_component::uses_objfile (struct objfile *objfile)
9309 {
9310 return m_op->uses_objfile (objfile);
9311 }
9312
9313 void
9314 ada_others_component::dump (ui_file *stream, int depth)
9315 {
9316 fprintf_filtered (stream, _("%*sOthers:\n"), depth, "");
9317 m_op->dump (stream, depth + 1);
9318 }
9319
9320 /* Assign the value of the expression in the OP_OTHERS construct in
9321 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9322 have not been previously assigned. The index intervals already assigned
9323 are in INDICES. CONTAINER is as for assign_aggregate. */
9324 void
9325 ada_others_component::assign (struct value *container,
9326 struct value *lhs, struct expression *exp,
9327 std::vector<LONGEST> &indices,
9328 LONGEST low, LONGEST high)
9329 {
9330 int num_indices = indices.size ();
9331 for (int i = 0; i < num_indices - 2; i += 2)
9332 {
9333 for (LONGEST ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9334 assign_component (container, lhs, ind, exp, m_op);
9335 }
9336 }
9337
9338 struct value *
9339 ada_assign_operation::evaluate (struct type *expect_type,
9340 struct expression *exp,
9341 enum noside noside)
9342 {
9343 value *arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
9344
9345 ada_aggregate_operation *ag_op
9346 = dynamic_cast<ada_aggregate_operation *> (std::get<1> (m_storage).get ());
9347 if (ag_op != nullptr)
9348 {
9349 if (noside != EVAL_NORMAL)
9350 return arg1;
9351
9352 ag_op->assign_aggregate (arg1, arg1, exp);
9353 return ada_value_assign (arg1, arg1);
9354 }
9355 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9356 except if the lhs of our assignment is a convenience variable.
9357 In the case of assigning to a convenience variable, the lhs
9358 should be exactly the result of the evaluation of the rhs. */
9359 struct type *type = value_type (arg1);
9360 if (VALUE_LVAL (arg1) == lval_internalvar)
9361 type = NULL;
9362 value *arg2 = std::get<1> (m_storage)->evaluate (type, exp, noside);
9363 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9364 return arg1;
9365 if (VALUE_LVAL (arg1) == lval_internalvar)
9366 {
9367 /* Nothing. */
9368 }
9369 else
9370 arg2 = coerce_for_assign (value_type (arg1), arg2);
9371 return ada_value_assign (arg1, arg2);
9372 }
9373
9374 } /* namespace expr */
9375
9376 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
9377 [ INDICES[0] .. INDICES[1] ],... The resulting intervals do not
9378 overlap. */
9379 static void
9380 add_component_interval (LONGEST low, LONGEST high,
9381 std::vector<LONGEST> &indices)
9382 {
9383 int i, j;
9384
9385 int size = indices.size ();
9386 for (i = 0; i < size; i += 2) {
9387 if (high >= indices[i] && low <= indices[i + 1])
9388 {
9389 int kh;
9390
9391 for (kh = i + 2; kh < size; kh += 2)
9392 if (high < indices[kh])
9393 break;
9394 if (low < indices[i])
9395 indices[i] = low;
9396 indices[i + 1] = indices[kh - 1];
9397 if (high > indices[i + 1])
9398 indices[i + 1] = high;
9399 memcpy (indices.data () + i + 2, indices.data () + kh, size - kh);
9400 indices.resize (kh - i - 2);
9401 return;
9402 }
9403 else if (high < indices[i])
9404 break;
9405 }
9406
9407 indices.resize (indices.size () + 2);
9408 for (j = indices.size () - 1; j >= i + 2; j -= 1)
9409 indices[j] = indices[j - 2];
9410 indices[i] = low;
9411 indices[i + 1] = high;
9412 }
9413
9414 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9415 is different. */
9416
9417 static struct value *
9418 ada_value_cast (struct type *type, struct value *arg2)
9419 {
9420 if (type == ada_check_typedef (value_type (arg2)))
9421 return arg2;
9422
9423 return value_cast (type, arg2);
9424 }
9425
9426 /* Evaluating Ada expressions, and printing their result.
9427 ------------------------------------------------------
9428
9429 1. Introduction:
9430 ----------------
9431
9432 We usually evaluate an Ada expression in order to print its value.
9433 We also evaluate an expression in order to print its type, which
9434 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9435 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9436 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9437 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9438 similar.
9439
9440 Evaluating expressions is a little more complicated for Ada entities
9441 than it is for entities in languages such as C. The main reason for
9442 this is that Ada provides types whose definition might be dynamic.
9443 One example of such types is variant records. Or another example
9444 would be an array whose bounds can only be known at run time.
9445
9446 The following description is a general guide as to what should be
9447 done (and what should NOT be done) in order to evaluate an expression
9448 involving such types, and when. This does not cover how the semantic
9449 information is encoded by GNAT as this is covered separatly. For the
9450 document used as the reference for the GNAT encoding, see exp_dbug.ads
9451 in the GNAT sources.
9452
9453 Ideally, we should embed each part of this description next to its
9454 associated code. Unfortunately, the amount of code is so vast right
9455 now that it's hard to see whether the code handling a particular
9456 situation might be duplicated or not. One day, when the code is
9457 cleaned up, this guide might become redundant with the comments
9458 inserted in the code, and we might want to remove it.
9459
9460 2. ``Fixing'' an Entity, the Simple Case:
9461 -----------------------------------------
9462
9463 When evaluating Ada expressions, the tricky issue is that they may
9464 reference entities whose type contents and size are not statically
9465 known. Consider for instance a variant record:
9466
9467 type Rec (Empty : Boolean := True) is record
9468 case Empty is
9469 when True => null;
9470 when False => Value : Integer;
9471 end case;
9472 end record;
9473 Yes : Rec := (Empty => False, Value => 1);
9474 No : Rec := (empty => True);
9475
9476 The size and contents of that record depends on the value of the
9477 descriminant (Rec.Empty). At this point, neither the debugging
9478 information nor the associated type structure in GDB are able to
9479 express such dynamic types. So what the debugger does is to create
9480 "fixed" versions of the type that applies to the specific object.
9481 We also informally refer to this operation as "fixing" an object,
9482 which means creating its associated fixed type.
9483
9484 Example: when printing the value of variable "Yes" above, its fixed
9485 type would look like this:
9486
9487 type Rec is record
9488 Empty : Boolean;
9489 Value : Integer;
9490 end record;
9491
9492 On the other hand, if we printed the value of "No", its fixed type
9493 would become:
9494
9495 type Rec is record
9496 Empty : Boolean;
9497 end record;
9498
9499 Things become a little more complicated when trying to fix an entity
9500 with a dynamic type that directly contains another dynamic type,
9501 such as an array of variant records, for instance. There are
9502 two possible cases: Arrays, and records.
9503
9504 3. ``Fixing'' Arrays:
9505 ---------------------
9506
9507 The type structure in GDB describes an array in terms of its bounds,
9508 and the type of its elements. By design, all elements in the array
9509 have the same type and we cannot represent an array of variant elements
9510 using the current type structure in GDB. When fixing an array,
9511 we cannot fix the array element, as we would potentially need one
9512 fixed type per element of the array. As a result, the best we can do
9513 when fixing an array is to produce an array whose bounds and size
9514 are correct (allowing us to read it from memory), but without having
9515 touched its element type. Fixing each element will be done later,
9516 when (if) necessary.
9517
9518 Arrays are a little simpler to handle than records, because the same
9519 amount of memory is allocated for each element of the array, even if
9520 the amount of space actually used by each element differs from element
9521 to element. Consider for instance the following array of type Rec:
9522
9523 type Rec_Array is array (1 .. 2) of Rec;
9524
9525 The actual amount of memory occupied by each element might be different
9526 from element to element, depending on the value of their discriminant.
9527 But the amount of space reserved for each element in the array remains
9528 fixed regardless. So we simply need to compute that size using
9529 the debugging information available, from which we can then determine
9530 the array size (we multiply the number of elements of the array by
9531 the size of each element).
9532
9533 The simplest case is when we have an array of a constrained element
9534 type. For instance, consider the following type declarations:
9535
9536 type Bounded_String (Max_Size : Integer) is
9537 Length : Integer;
9538 Buffer : String (1 .. Max_Size);
9539 end record;
9540 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9541
9542 In this case, the compiler describes the array as an array of
9543 variable-size elements (identified by its XVS suffix) for which
9544 the size can be read in the parallel XVZ variable.
9545
9546 In the case of an array of an unconstrained element type, the compiler
9547 wraps the array element inside a private PAD type. This type should not
9548 be shown to the user, and must be "unwrap"'ed before printing. Note
9549 that we also use the adjective "aligner" in our code to designate
9550 these wrapper types.
9551
9552 In some cases, the size allocated for each element is statically
9553 known. In that case, the PAD type already has the correct size,
9554 and the array element should remain unfixed.
9555
9556 But there are cases when this size is not statically known.
9557 For instance, assuming that "Five" is an integer variable:
9558
9559 type Dynamic is array (1 .. Five) of Integer;
9560 type Wrapper (Has_Length : Boolean := False) is record
9561 Data : Dynamic;
9562 case Has_Length is
9563 when True => Length : Integer;
9564 when False => null;
9565 end case;
9566 end record;
9567 type Wrapper_Array is array (1 .. 2) of Wrapper;
9568
9569 Hello : Wrapper_Array := (others => (Has_Length => True,
9570 Data => (others => 17),
9571 Length => 1));
9572
9573
9574 The debugging info would describe variable Hello as being an
9575 array of a PAD type. The size of that PAD type is not statically
9576 known, but can be determined using a parallel XVZ variable.
9577 In that case, a copy of the PAD type with the correct size should
9578 be used for the fixed array.
9579
9580 3. ``Fixing'' record type objects:
9581 ----------------------------------
9582
9583 Things are slightly different from arrays in the case of dynamic
9584 record types. In this case, in order to compute the associated
9585 fixed type, we need to determine the size and offset of each of
9586 its components. This, in turn, requires us to compute the fixed
9587 type of each of these components.
9588
9589 Consider for instance the example:
9590
9591 type Bounded_String (Max_Size : Natural) is record
9592 Str : String (1 .. Max_Size);
9593 Length : Natural;
9594 end record;
9595 My_String : Bounded_String (Max_Size => 10);
9596
9597 In that case, the position of field "Length" depends on the size
9598 of field Str, which itself depends on the value of the Max_Size
9599 discriminant. In order to fix the type of variable My_String,
9600 we need to fix the type of field Str. Therefore, fixing a variant
9601 record requires us to fix each of its components.
9602
9603 However, if a component does not have a dynamic size, the component
9604 should not be fixed. In particular, fields that use a PAD type
9605 should not fixed. Here is an example where this might happen
9606 (assuming type Rec above):
9607
9608 type Container (Big : Boolean) is record
9609 First : Rec;
9610 After : Integer;
9611 case Big is
9612 when True => Another : Integer;
9613 when False => null;
9614 end case;
9615 end record;
9616 My_Container : Container := (Big => False,
9617 First => (Empty => True),
9618 After => 42);
9619
9620 In that example, the compiler creates a PAD type for component First,
9621 whose size is constant, and then positions the component After just
9622 right after it. The offset of component After is therefore constant
9623 in this case.
9624
9625 The debugger computes the position of each field based on an algorithm
9626 that uses, among other things, the actual position and size of the field
9627 preceding it. Let's now imagine that the user is trying to print
9628 the value of My_Container. If the type fixing was recursive, we would
9629 end up computing the offset of field After based on the size of the
9630 fixed version of field First. And since in our example First has
9631 only one actual field, the size of the fixed type is actually smaller
9632 than the amount of space allocated to that field, and thus we would
9633 compute the wrong offset of field After.
9634
9635 To make things more complicated, we need to watch out for dynamic
9636 components of variant records (identified by the ___XVL suffix in
9637 the component name). Even if the target type is a PAD type, the size
9638 of that type might not be statically known. So the PAD type needs
9639 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9640 we might end up with the wrong size for our component. This can be
9641 observed with the following type declarations:
9642
9643 type Octal is new Integer range 0 .. 7;
9644 type Octal_Array is array (Positive range <>) of Octal;
9645 pragma Pack (Octal_Array);
9646
9647 type Octal_Buffer (Size : Positive) is record
9648 Buffer : Octal_Array (1 .. Size);
9649 Length : Integer;
9650 end record;
9651
9652 In that case, Buffer is a PAD type whose size is unset and needs
9653 to be computed by fixing the unwrapped type.
9654
9655 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9656 ----------------------------------------------------------
9657
9658 Lastly, when should the sub-elements of an entity that remained unfixed
9659 thus far, be actually fixed?
9660
9661 The answer is: Only when referencing that element. For instance
9662 when selecting one component of a record, this specific component
9663 should be fixed at that point in time. Or when printing the value
9664 of a record, each component should be fixed before its value gets
9665 printed. Similarly for arrays, the element of the array should be
9666 fixed when printing each element of the array, or when extracting
9667 one element out of that array. On the other hand, fixing should
9668 not be performed on the elements when taking a slice of an array!
9669
9670 Note that one of the side effects of miscomputing the offset and
9671 size of each field is that we end up also miscomputing the size
9672 of the containing type. This can have adverse results when computing
9673 the value of an entity. GDB fetches the value of an entity based
9674 on the size of its type, and thus a wrong size causes GDB to fetch
9675 the wrong amount of memory. In the case where the computed size is
9676 too small, GDB fetches too little data to print the value of our
9677 entity. Results in this case are unpredictable, as we usually read
9678 past the buffer containing the data =:-o. */
9679
9680 /* A helper function for TERNOP_IN_RANGE. */
9681
9682 static value *
9683 eval_ternop_in_range (struct type *expect_type, struct expression *exp,
9684 enum noside noside,
9685 value *arg1, value *arg2, value *arg3)
9686 {
9687 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9688 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9689 struct type *type = language_bool_type (exp->language_defn, exp->gdbarch);
9690 return
9691 value_from_longest (type,
9692 (value_less (arg1, arg3)
9693 || value_equal (arg1, arg3))
9694 && (value_less (arg2, arg1)
9695 || value_equal (arg2, arg1)));
9696 }
9697
9698 /* A helper function for UNOP_NEG. */
9699
9700 value *
9701 ada_unop_neg (struct type *expect_type,
9702 struct expression *exp,
9703 enum noside noside, enum exp_opcode op,
9704 struct value *arg1)
9705 {
9706 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9707 return value_neg (arg1);
9708 }
9709
9710 /* A helper function for UNOP_IN_RANGE. */
9711
9712 value *
9713 ada_unop_in_range (struct type *expect_type,
9714 struct expression *exp,
9715 enum noside noside, enum exp_opcode op,
9716 struct value *arg1, struct type *type)
9717 {
9718 struct value *arg2, *arg3;
9719 switch (type->code ())
9720 {
9721 default:
9722 lim_warning (_("Membership test incompletely implemented; "
9723 "always returns true"));
9724 type = language_bool_type (exp->language_defn, exp->gdbarch);
9725 return value_from_longest (type, (LONGEST) 1);
9726
9727 case TYPE_CODE_RANGE:
9728 arg2 = value_from_longest (type,
9729 type->bounds ()->low.const_val ());
9730 arg3 = value_from_longest (type,
9731 type->bounds ()->high.const_val ());
9732 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9733 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9734 type = language_bool_type (exp->language_defn, exp->gdbarch);
9735 return
9736 value_from_longest (type,
9737 (value_less (arg1, arg3)
9738 || value_equal (arg1, arg3))
9739 && (value_less (arg2, arg1)
9740 || value_equal (arg2, arg1)));
9741 }
9742 }
9743
9744 /* A helper function for OP_ATR_TAG. */
9745
9746 value *
9747 ada_atr_tag (struct type *expect_type,
9748 struct expression *exp,
9749 enum noside noside, enum exp_opcode op,
9750 struct value *arg1)
9751 {
9752 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9753 return value_zero (ada_tag_type (arg1), not_lval);
9754
9755 return ada_value_tag (arg1);
9756 }
9757
9758 /* A helper function for OP_ATR_SIZE. */
9759
9760 value *
9761 ada_atr_size (struct type *expect_type,
9762 struct expression *exp,
9763 enum noside noside, enum exp_opcode op,
9764 struct value *arg1)
9765 {
9766 struct type *type = value_type (arg1);
9767
9768 /* If the argument is a reference, then dereference its type, since
9769 the user is really asking for the size of the actual object,
9770 not the size of the pointer. */
9771 if (type->code () == TYPE_CODE_REF)
9772 type = TYPE_TARGET_TYPE (type);
9773
9774 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9775 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
9776 else
9777 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
9778 TARGET_CHAR_BIT * TYPE_LENGTH (type));
9779 }
9780
9781 /* A helper function for UNOP_ABS. */
9782
9783 value *
9784 ada_abs (struct type *expect_type,
9785 struct expression *exp,
9786 enum noside noside, enum exp_opcode op,
9787 struct value *arg1)
9788 {
9789 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9790 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
9791 return value_neg (arg1);
9792 else
9793 return arg1;
9794 }
9795
9796 /* A helper function for BINOP_MUL. */
9797
9798 value *
9799 ada_mult_binop (struct type *expect_type,
9800 struct expression *exp,
9801 enum noside noside, enum exp_opcode op,
9802 struct value *arg1, struct value *arg2)
9803 {
9804 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9805 {
9806 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9807 return value_zero (value_type (arg1), not_lval);
9808 }
9809 else
9810 {
9811 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9812 return ada_value_binop (arg1, arg2, op);
9813 }
9814 }
9815
9816 /* A helper function for BINOP_EQUAL and BINOP_NOTEQUAL. */
9817
9818 value *
9819 ada_equal_binop (struct type *expect_type,
9820 struct expression *exp,
9821 enum noside noside, enum exp_opcode op,
9822 struct value *arg1, struct value *arg2)
9823 {
9824 int tem;
9825 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9826 tem = 0;
9827 else
9828 {
9829 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9830 tem = ada_value_equal (arg1, arg2);
9831 }
9832 if (op == BINOP_NOTEQUAL)
9833 tem = !tem;
9834 struct type *type = language_bool_type (exp->language_defn, exp->gdbarch);
9835 return value_from_longest (type, (LONGEST) tem);
9836 }
9837
9838 /* A helper function for TERNOP_SLICE. */
9839
9840 value *
9841 ada_ternop_slice (struct expression *exp,
9842 enum noside noside,
9843 struct value *array, struct value *low_bound_val,
9844 struct value *high_bound_val)
9845 {
9846 LONGEST low_bound;
9847 LONGEST high_bound;
9848
9849 low_bound_val = coerce_ref (low_bound_val);
9850 high_bound_val = coerce_ref (high_bound_val);
9851 low_bound = value_as_long (low_bound_val);
9852 high_bound = value_as_long (high_bound_val);
9853
9854 /* If this is a reference to an aligner type, then remove all
9855 the aligners. */
9856 if (value_type (array)->code () == TYPE_CODE_REF
9857 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
9858 TYPE_TARGET_TYPE (value_type (array)) =
9859 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
9860
9861 if (ada_is_any_packed_array_type (value_type (array)))
9862 error (_("cannot slice a packed array"));
9863
9864 /* If this is a reference to an array or an array lvalue,
9865 convert to a pointer. */
9866 if (value_type (array)->code () == TYPE_CODE_REF
9867 || (value_type (array)->code () == TYPE_CODE_ARRAY
9868 && VALUE_LVAL (array) == lval_memory))
9869 array = value_addr (array);
9870
9871 if (noside == EVAL_AVOID_SIDE_EFFECTS
9872 && ada_is_array_descriptor_type (ada_check_typedef
9873 (value_type (array))))
9874 return empty_array (ada_type_of_array (array, 0), low_bound,
9875 high_bound);
9876
9877 array = ada_coerce_to_simple_array_ptr (array);
9878
9879 /* If we have more than one level of pointer indirection,
9880 dereference the value until we get only one level. */
9881 while (value_type (array)->code () == TYPE_CODE_PTR
9882 && (TYPE_TARGET_TYPE (value_type (array))->code ()
9883 == TYPE_CODE_PTR))
9884 array = value_ind (array);
9885
9886 /* Make sure we really do have an array type before going further,
9887 to avoid a SEGV when trying to get the index type or the target
9888 type later down the road if the debug info generated by
9889 the compiler is incorrect or incomplete. */
9890 if (!ada_is_simple_array_type (value_type (array)))
9891 error (_("cannot take slice of non-array"));
9892
9893 if (ada_check_typedef (value_type (array))->code ()
9894 == TYPE_CODE_PTR)
9895 {
9896 struct type *type0 = ada_check_typedef (value_type (array));
9897
9898 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
9899 return empty_array (TYPE_TARGET_TYPE (type0), low_bound, high_bound);
9900 else
9901 {
9902 struct type *arr_type0 =
9903 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
9904
9905 return ada_value_slice_from_ptr (array, arr_type0,
9906 longest_to_int (low_bound),
9907 longest_to_int (high_bound));
9908 }
9909 }
9910 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9911 return array;
9912 else if (high_bound < low_bound)
9913 return empty_array (value_type (array), low_bound, high_bound);
9914 else
9915 return ada_value_slice (array, longest_to_int (low_bound),
9916 longest_to_int (high_bound));
9917 }
9918
9919 /* A helper function for BINOP_IN_BOUNDS. */
9920
9921 value *
9922 ada_binop_in_bounds (struct expression *exp, enum noside noside,
9923 struct value *arg1, struct value *arg2, int n)
9924 {
9925 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9926 {
9927 struct type *type = language_bool_type (exp->language_defn,
9928 exp->gdbarch);
9929 return value_zero (type, not_lval);
9930 }
9931
9932 struct type *type = ada_index_type (value_type (arg2), n, "range");
9933 if (!type)
9934 type = value_type (arg1);
9935
9936 value *arg3 = value_from_longest (type, ada_array_bound (arg2, n, 1));
9937 arg2 = value_from_longest (type, ada_array_bound (arg2, n, 0));
9938
9939 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9940 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9941 type = language_bool_type (exp->language_defn, exp->gdbarch);
9942 return value_from_longest (type,
9943 (value_less (arg1, arg3)
9944 || value_equal (arg1, arg3))
9945 && (value_less (arg2, arg1)
9946 || value_equal (arg2, arg1)));
9947 }
9948
9949 /* A helper function for some attribute operations. */
9950
9951 static value *
9952 ada_unop_atr (struct expression *exp, enum noside noside, enum exp_opcode op,
9953 struct value *arg1, struct type *type_arg, int tem)
9954 {
9955 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9956 {
9957 if (type_arg == NULL)
9958 type_arg = value_type (arg1);
9959
9960 if (ada_is_constrained_packed_array_type (type_arg))
9961 type_arg = decode_constrained_packed_array_type (type_arg);
9962
9963 if (!discrete_type_p (type_arg))
9964 {
9965 switch (op)
9966 {
9967 default: /* Should never happen. */
9968 error (_("unexpected attribute encountered"));
9969 case OP_ATR_FIRST:
9970 case OP_ATR_LAST:
9971 type_arg = ada_index_type (type_arg, tem,
9972 ada_attribute_name (op));
9973 break;
9974 case OP_ATR_LENGTH:
9975 type_arg = builtin_type (exp->gdbarch)->builtin_int;
9976 break;
9977 }
9978 }
9979
9980 return value_zero (type_arg, not_lval);
9981 }
9982 else if (type_arg == NULL)
9983 {
9984 arg1 = ada_coerce_ref (arg1);
9985
9986 if (ada_is_constrained_packed_array_type (value_type (arg1)))
9987 arg1 = ada_coerce_to_simple_array (arg1);
9988
9989 struct type *type;
9990 if (op == OP_ATR_LENGTH)
9991 type = builtin_type (exp->gdbarch)->builtin_int;
9992 else
9993 {
9994 type = ada_index_type (value_type (arg1), tem,
9995 ada_attribute_name (op));
9996 if (type == NULL)
9997 type = builtin_type (exp->gdbarch)->builtin_int;
9998 }
9999
10000 switch (op)
10001 {
10002 default: /* Should never happen. */
10003 error (_("unexpected attribute encountered"));
10004 case OP_ATR_FIRST:
10005 return value_from_longest
10006 (type, ada_array_bound (arg1, tem, 0));
10007 case OP_ATR_LAST:
10008 return value_from_longest
10009 (type, ada_array_bound (arg1, tem, 1));
10010 case OP_ATR_LENGTH:
10011 return value_from_longest
10012 (type, ada_array_length (arg1, tem));
10013 }
10014 }
10015 else if (discrete_type_p (type_arg))
10016 {
10017 struct type *range_type;
10018 const char *name = ada_type_name (type_arg);
10019
10020 range_type = NULL;
10021 if (name != NULL && type_arg->code () != TYPE_CODE_ENUM)
10022 range_type = to_fixed_range_type (type_arg, NULL);
10023 if (range_type == NULL)
10024 range_type = type_arg;
10025 switch (op)
10026 {
10027 default:
10028 error (_("unexpected attribute encountered"));
10029 case OP_ATR_FIRST:
10030 return value_from_longest
10031 (range_type, ada_discrete_type_low_bound (range_type));
10032 case OP_ATR_LAST:
10033 return value_from_longest
10034 (range_type, ada_discrete_type_high_bound (range_type));
10035 case OP_ATR_LENGTH:
10036 error (_("the 'length attribute applies only to array types"));
10037 }
10038 }
10039 else if (type_arg->code () == TYPE_CODE_FLT)
10040 error (_("unimplemented type attribute"));
10041 else
10042 {
10043 LONGEST low, high;
10044
10045 if (ada_is_constrained_packed_array_type (type_arg))
10046 type_arg = decode_constrained_packed_array_type (type_arg);
10047
10048 struct type *type;
10049 if (op == OP_ATR_LENGTH)
10050 type = builtin_type (exp->gdbarch)->builtin_int;
10051 else
10052 {
10053 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10054 if (type == NULL)
10055 type = builtin_type (exp->gdbarch)->builtin_int;
10056 }
10057
10058 switch (op)
10059 {
10060 default:
10061 error (_("unexpected attribute encountered"));
10062 case OP_ATR_FIRST:
10063 low = ada_array_bound_from_type (type_arg, tem, 0);
10064 return value_from_longest (type, low);
10065 case OP_ATR_LAST:
10066 high = ada_array_bound_from_type (type_arg, tem, 1);
10067 return value_from_longest (type, high);
10068 case OP_ATR_LENGTH:
10069 low = ada_array_bound_from_type (type_arg, tem, 0);
10070 high = ada_array_bound_from_type (type_arg, tem, 1);
10071 return value_from_longest (type, high - low + 1);
10072 }
10073 }
10074 }
10075
10076 /* A helper function for OP_ATR_MIN and OP_ATR_MAX. */
10077
10078 struct value *
10079 ada_binop_minmax (struct type *expect_type,
10080 struct expression *exp,
10081 enum noside noside, enum exp_opcode op,
10082 struct value *arg1, struct value *arg2)
10083 {
10084 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10085 return value_zero (value_type (arg1), not_lval);
10086 else
10087 {
10088 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10089 return value_binop (arg1, arg2, op);
10090 }
10091 }
10092
10093 /* A helper function for BINOP_EXP. */
10094
10095 struct value *
10096 ada_binop_exp (struct type *expect_type,
10097 struct expression *exp,
10098 enum noside noside, enum exp_opcode op,
10099 struct value *arg1, struct value *arg2)
10100 {
10101 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10102 return value_zero (value_type (arg1), not_lval);
10103 else
10104 {
10105 /* For integer exponentiation operations,
10106 only promote the first argument. */
10107 if (is_integral_type (value_type (arg2)))
10108 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10109 else
10110 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10111
10112 return value_binop (arg1, arg2, op);
10113 }
10114 }
10115
10116 namespace expr
10117 {
10118
10119 value *
10120 ada_wrapped_operation::evaluate (struct type *expect_type,
10121 struct expression *exp,
10122 enum noside noside)
10123 {
10124 value *result = std::get<0> (m_storage)->evaluate (expect_type, exp, noside);
10125 if (noside == EVAL_NORMAL)
10126 result = unwrap_value (result);
10127
10128 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
10129 then we need to perform the conversion manually, because
10130 evaluate_subexp_standard doesn't do it. This conversion is
10131 necessary in Ada because the different kinds of float/fixed
10132 types in Ada have different representations.
10133
10134 Similarly, we need to perform the conversion from OP_LONG
10135 ourselves. */
10136 if ((opcode () == OP_FLOAT || opcode () == OP_LONG) && expect_type != NULL)
10137 result = ada_value_cast (expect_type, result);
10138
10139 return result;
10140 }
10141
10142 value *
10143 ada_string_operation::evaluate (struct type *expect_type,
10144 struct expression *exp,
10145 enum noside noside)
10146 {
10147 value *result = string_operation::evaluate (expect_type, exp, noside);
10148 /* The result type will have code OP_STRING, bashed there from
10149 OP_ARRAY. Bash it back. */
10150 if (value_type (result)->code () == TYPE_CODE_STRING)
10151 value_type (result)->set_code (TYPE_CODE_ARRAY);
10152 return result;
10153 }
10154
10155 value *
10156 ada_qual_operation::evaluate (struct type *expect_type,
10157 struct expression *exp,
10158 enum noside noside)
10159 {
10160 struct type *type = std::get<1> (m_storage);
10161 return std::get<0> (m_storage)->evaluate (type, exp, noside);
10162 }
10163
10164 value *
10165 ada_ternop_range_operation::evaluate (struct type *expect_type,
10166 struct expression *exp,
10167 enum noside noside)
10168 {
10169 value *arg0 = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
10170 value *arg1 = std::get<1> (m_storage)->evaluate (nullptr, exp, noside);
10171 value *arg2 = std::get<2> (m_storage)->evaluate (nullptr, exp, noside);
10172 return eval_ternop_in_range (expect_type, exp, noside, arg0, arg1, arg2);
10173 }
10174
10175 value *
10176 ada_binop_addsub_operation::evaluate (struct type *expect_type,
10177 struct expression *exp,
10178 enum noside noside)
10179 {
10180 value *arg1 = std::get<1> (m_storage)->evaluate_with_coercion (exp, noside);
10181 value *arg2 = std::get<2> (m_storage)->evaluate_with_coercion (exp, noside);
10182
10183 auto do_op = [=] (LONGEST x, LONGEST y)
10184 {
10185 if (std::get<0> (m_storage) == BINOP_ADD)
10186 return x + y;
10187 return x - y;
10188 };
10189
10190 if (value_type (arg1)->code () == TYPE_CODE_PTR)
10191 return (value_from_longest
10192 (value_type (arg1),
10193 do_op (value_as_long (arg1), value_as_long (arg2))));
10194 if (value_type (arg2)->code () == TYPE_CODE_PTR)
10195 return (value_from_longest
10196 (value_type (arg2),
10197 do_op (value_as_long (arg1), value_as_long (arg2))));
10198 /* Preserve the original type for use by the range case below.
10199 We cannot cast the result to a reference type, so if ARG1 is
10200 a reference type, find its underlying type. */
10201 struct type *type = value_type (arg1);
10202 while (type->code () == TYPE_CODE_REF)
10203 type = TYPE_TARGET_TYPE (type);
10204 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10205 arg1 = value_binop (arg1, arg2, std::get<0> (m_storage));
10206 /* We need to special-case the result with a range.
10207 This is done for the benefit of "ptype". gdb's Ada support
10208 historically used the LHS to set the result type here, so
10209 preserve this behavior. */
10210 if (type->code () == TYPE_CODE_RANGE)
10211 arg1 = value_cast (type, arg1);
10212 return arg1;
10213 }
10214
10215 value *
10216 ada_unop_atr_operation::evaluate (struct type *expect_type,
10217 struct expression *exp,
10218 enum noside noside)
10219 {
10220 struct type *type_arg = nullptr;
10221 value *val = nullptr;
10222
10223 if (std::get<0> (m_storage)->opcode () == OP_TYPE)
10224 {
10225 value *tem = std::get<0> (m_storage)->evaluate (nullptr, exp,
10226 EVAL_AVOID_SIDE_EFFECTS);
10227 type_arg = value_type (tem);
10228 }
10229 else
10230 val = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
10231
10232 return ada_unop_atr (exp, noside, std::get<1> (m_storage),
10233 val, type_arg, std::get<2> (m_storage));
10234 }
10235
10236 value *
10237 ada_var_msym_value_operation::evaluate_for_cast (struct type *expect_type,
10238 struct expression *exp,
10239 enum noside noside)
10240 {
10241 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10242 return value_zero (expect_type, not_lval);
10243
10244 value *val = evaluate_var_msym_value (noside,
10245 std::get<1> (m_storage),
10246 std::get<0> (m_storage));
10247
10248 val = ada_value_cast (expect_type, val);
10249
10250 /* Follow the Ada language semantics that do not allow taking
10251 an address of the result of a cast (view conversion in Ada). */
10252 if (VALUE_LVAL (val) == lval_memory)
10253 {
10254 if (value_lazy (val))
10255 value_fetch_lazy (val);
10256 VALUE_LVAL (val) = not_lval;
10257 }
10258 return val;
10259 }
10260
10261 value *
10262 ada_var_value_operation::evaluate_for_cast (struct type *expect_type,
10263 struct expression *exp,
10264 enum noside noside)
10265 {
10266 value *val = evaluate_var_value (noside,
10267 std::get<1> (m_storage),
10268 std::get<0> (m_storage));
10269
10270 val = ada_value_cast (expect_type, val);
10271
10272 /* Follow the Ada language semantics that do not allow taking
10273 an address of the result of a cast (view conversion in Ada). */
10274 if (VALUE_LVAL (val) == lval_memory)
10275 {
10276 if (value_lazy (val))
10277 value_fetch_lazy (val);
10278 VALUE_LVAL (val) = not_lval;
10279 }
10280 return val;
10281 }
10282
10283 value *
10284 ada_var_value_operation::evaluate (struct type *expect_type,
10285 struct expression *exp,
10286 enum noside noside)
10287 {
10288 symbol *sym = std::get<0> (m_storage);
10289
10290 if (SYMBOL_DOMAIN (sym) == UNDEF_DOMAIN)
10291 /* Only encountered when an unresolved symbol occurs in a
10292 context other than a function call, in which case, it is
10293 invalid. */
10294 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10295 sym->print_name ());
10296
10297 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10298 {
10299 struct type *type = static_unwrap_type (SYMBOL_TYPE (sym));
10300 /* Check to see if this is a tagged type. We also need to handle
10301 the case where the type is a reference to a tagged type, but
10302 we have to be careful to exclude pointers to tagged types.
10303 The latter should be shown as usual (as a pointer), whereas
10304 a reference should mostly be transparent to the user. */
10305 if (ada_is_tagged_type (type, 0)
10306 || (type->code () == TYPE_CODE_REF
10307 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10308 {
10309 /* Tagged types are a little special in the fact that the real
10310 type is dynamic and can only be determined by inspecting the
10311 object's tag. This means that we need to get the object's
10312 value first (EVAL_NORMAL) and then extract the actual object
10313 type from its tag.
10314
10315 Note that we cannot skip the final step where we extract
10316 the object type from its tag, because the EVAL_NORMAL phase
10317 results in dynamic components being resolved into fixed ones.
10318 This can cause problems when trying to print the type
10319 description of tagged types whose parent has a dynamic size:
10320 We use the type name of the "_parent" component in order
10321 to print the name of the ancestor type in the type description.
10322 If that component had a dynamic size, the resolution into
10323 a fixed type would result in the loss of that type name,
10324 thus preventing us from printing the name of the ancestor
10325 type in the type description. */
10326 value *arg1 = var_value_operation::evaluate (nullptr, exp,
10327 EVAL_NORMAL);
10328
10329 if (type->code () != TYPE_CODE_REF)
10330 {
10331 struct type *actual_type;
10332
10333 actual_type = type_from_tag (ada_value_tag (arg1));
10334 if (actual_type == NULL)
10335 /* If, for some reason, we were unable to determine
10336 the actual type from the tag, then use the static
10337 approximation that we just computed as a fallback.
10338 This can happen if the debugging information is
10339 incomplete, for instance. */
10340 actual_type = type;
10341 return value_zero (actual_type, not_lval);
10342 }
10343 else
10344 {
10345 /* In the case of a ref, ada_coerce_ref takes care
10346 of determining the actual type. But the evaluation
10347 should return a ref as it should be valid to ask
10348 for its address; so rebuild a ref after coerce. */
10349 arg1 = ada_coerce_ref (arg1);
10350 return value_ref (arg1, TYPE_CODE_REF);
10351 }
10352 }
10353
10354 /* Records and unions for which GNAT encodings have been
10355 generated need to be statically fixed as well.
10356 Otherwise, non-static fixing produces a type where
10357 all dynamic properties are removed, which prevents "ptype"
10358 from being able to completely describe the type.
10359 For instance, a case statement in a variant record would be
10360 replaced by the relevant components based on the actual
10361 value of the discriminants. */
10362 if ((type->code () == TYPE_CODE_STRUCT
10363 && dynamic_template_type (type) != NULL)
10364 || (type->code () == TYPE_CODE_UNION
10365 && ada_find_parallel_type (type, "___XVU") != NULL))
10366 return value_zero (to_static_fixed_type (type), not_lval);
10367 }
10368
10369 value *arg1 = var_value_operation::evaluate (expect_type, exp, noside);
10370 return ada_to_fixed_value (arg1);
10371 }
10372
10373 bool
10374 ada_var_value_operation::resolve (struct expression *exp,
10375 bool deprocedure_p,
10376 bool parse_completion,
10377 innermost_block_tracker *tracker,
10378 struct type *context_type)
10379 {
10380 symbol *sym = std::get<0> (m_storage);
10381 if (SYMBOL_DOMAIN (sym) == UNDEF_DOMAIN)
10382 {
10383 block_symbol resolved
10384 = ada_resolve_variable (sym, std::get<1> (m_storage),
10385 context_type, parse_completion,
10386 deprocedure_p, tracker);
10387 std::get<0> (m_storage) = resolved.symbol;
10388 std::get<1> (m_storage) = resolved.block;
10389 }
10390
10391 if (deprocedure_p
10392 && SYMBOL_TYPE (std::get<0> (m_storage))->code () == TYPE_CODE_FUNC)
10393 return true;
10394
10395 return false;
10396 }
10397
10398 value *
10399 ada_atr_val_operation::evaluate (struct type *expect_type,
10400 struct expression *exp,
10401 enum noside noside)
10402 {
10403 value *arg = std::get<1> (m_storage)->evaluate (nullptr, exp, noside);
10404 return ada_val_atr (noside, std::get<0> (m_storage), arg);
10405 }
10406
10407 value *
10408 ada_unop_ind_operation::evaluate (struct type *expect_type,
10409 struct expression *exp,
10410 enum noside noside)
10411 {
10412 value *arg1 = std::get<0> (m_storage)->evaluate (expect_type, exp, noside);
10413
10414 struct type *type = ada_check_typedef (value_type (arg1));
10415 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10416 {
10417 if (ada_is_array_descriptor_type (type))
10418 /* GDB allows dereferencing GNAT array descriptors. */
10419 {
10420 struct type *arrType = ada_type_of_array (arg1, 0);
10421
10422 if (arrType == NULL)
10423 error (_("Attempt to dereference null array pointer."));
10424 return value_at_lazy (arrType, 0);
10425 }
10426 else if (type->code () == TYPE_CODE_PTR
10427 || type->code () == TYPE_CODE_REF
10428 /* In C you can dereference an array to get the 1st elt. */
10429 || type->code () == TYPE_CODE_ARRAY)
10430 {
10431 /* As mentioned in the OP_VAR_VALUE case, tagged types can
10432 only be determined by inspecting the object's tag.
10433 This means that we need to evaluate completely the
10434 expression in order to get its type. */
10435
10436 if ((type->code () == TYPE_CODE_REF
10437 || type->code () == TYPE_CODE_PTR)
10438 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
10439 {
10440 arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp,
10441 EVAL_NORMAL);
10442 type = value_type (ada_value_ind (arg1));
10443 }
10444 else
10445 {
10446 type = to_static_fixed_type
10447 (ada_aligned_type
10448 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10449 }
10450 ada_ensure_varsize_limit (type);
10451 return value_zero (type, lval_memory);
10452 }
10453 else if (type->code () == TYPE_CODE_INT)
10454 {
10455 /* GDB allows dereferencing an int. */
10456 if (expect_type == NULL)
10457 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10458 lval_memory);
10459 else
10460 {
10461 expect_type =
10462 to_static_fixed_type (ada_aligned_type (expect_type));
10463 return value_zero (expect_type, lval_memory);
10464 }
10465 }
10466 else
10467 error (_("Attempt to take contents of a non-pointer value."));
10468 }
10469 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
10470 type = ada_check_typedef (value_type (arg1));
10471
10472 if (type->code () == TYPE_CODE_INT)
10473 /* GDB allows dereferencing an int. If we were given
10474 the expect_type, then use that as the target type.
10475 Otherwise, assume that the target type is an int. */
10476 {
10477 if (expect_type != NULL)
10478 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10479 arg1));
10480 else
10481 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10482 (CORE_ADDR) value_as_address (arg1));
10483 }
10484
10485 if (ada_is_array_descriptor_type (type))
10486 /* GDB allows dereferencing GNAT array descriptors. */
10487 return ada_coerce_to_simple_array (arg1);
10488 else
10489 return ada_value_ind (arg1);
10490 }
10491
10492 value *
10493 ada_structop_operation::evaluate (struct type *expect_type,
10494 struct expression *exp,
10495 enum noside noside)
10496 {
10497 value *arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
10498 const char *str = std::get<1> (m_storage).c_str ();
10499 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10500 {
10501 struct type *type;
10502 struct type *type1 = value_type (arg1);
10503
10504 if (ada_is_tagged_type (type1, 1))
10505 {
10506 type = ada_lookup_struct_elt_type (type1, str, 1, 1);
10507
10508 /* If the field is not found, check if it exists in the
10509 extension of this object's type. This means that we
10510 need to evaluate completely the expression. */
10511
10512 if (type == NULL)
10513 {
10514 arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp,
10515 EVAL_NORMAL);
10516 arg1 = ada_value_struct_elt (arg1, str, 0);
10517 arg1 = unwrap_value (arg1);
10518 type = value_type (ada_to_fixed_value (arg1));
10519 }
10520 }
10521 else
10522 type = ada_lookup_struct_elt_type (type1, str, 1, 0);
10523
10524 return value_zero (ada_aligned_type (type), lval_memory);
10525 }
10526 else
10527 {
10528 arg1 = ada_value_struct_elt (arg1, str, 0);
10529 arg1 = unwrap_value (arg1);
10530 return ada_to_fixed_value (arg1);
10531 }
10532 }
10533
10534 value *
10535 ada_funcall_operation::evaluate (struct type *expect_type,
10536 struct expression *exp,
10537 enum noside noside)
10538 {
10539 const std::vector<operation_up> &args_up = std::get<1> (m_storage);
10540 int nargs = args_up.size ();
10541 std::vector<value *> argvec (nargs);
10542 operation_up &callee_op = std::get<0> (m_storage);
10543
10544 ada_var_value_operation *avv
10545 = dynamic_cast<ada_var_value_operation *> (callee_op.get ());
10546 if (avv != nullptr
10547 && SYMBOL_DOMAIN (avv->get_symbol ()) == UNDEF_DOMAIN)
10548 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10549 avv->get_symbol ()->print_name ());
10550
10551 value *callee = callee_op->evaluate (nullptr, exp, noside);
10552 for (int i = 0; i < args_up.size (); ++i)
10553 argvec[i] = args_up[i]->evaluate (nullptr, exp, noside);
10554
10555 if (ada_is_constrained_packed_array_type
10556 (desc_base_type (value_type (callee))))
10557 callee = ada_coerce_to_simple_array (callee);
10558 else if (value_type (callee)->code () == TYPE_CODE_ARRAY
10559 && TYPE_FIELD_BITSIZE (value_type (callee), 0) != 0)
10560 /* This is a packed array that has already been fixed, and
10561 therefore already coerced to a simple array. Nothing further
10562 to do. */
10563 ;
10564 else if (value_type (callee)->code () == TYPE_CODE_REF)
10565 {
10566 /* Make sure we dereference references so that all the code below
10567 feels like it's really handling the referenced value. Wrapping
10568 types (for alignment) may be there, so make sure we strip them as
10569 well. */
10570 callee = ada_to_fixed_value (coerce_ref (callee));
10571 }
10572 else if (value_type (callee)->code () == TYPE_CODE_ARRAY
10573 && VALUE_LVAL (callee) == lval_memory)
10574 callee = value_addr (callee);
10575
10576 struct type *type = ada_check_typedef (value_type (callee));
10577
10578 /* Ada allows us to implicitly dereference arrays when subscripting
10579 them. So, if this is an array typedef (encoding use for array
10580 access types encoded as fat pointers), strip it now. */
10581 if (type->code () == TYPE_CODE_TYPEDEF)
10582 type = ada_typedef_target_type (type);
10583
10584 if (type->code () == TYPE_CODE_PTR)
10585 {
10586 switch (ada_check_typedef (TYPE_TARGET_TYPE (type))->code ())
10587 {
10588 case TYPE_CODE_FUNC:
10589 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10590 break;
10591 case TYPE_CODE_ARRAY:
10592 break;
10593 case TYPE_CODE_STRUCT:
10594 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10595 callee = ada_value_ind (callee);
10596 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10597 break;
10598 default:
10599 error (_("cannot subscript or call something of type `%s'"),
10600 ada_type_name (value_type (callee)));
10601 break;
10602 }
10603 }
10604
10605 switch (type->code ())
10606 {
10607 case TYPE_CODE_FUNC:
10608 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10609 {
10610 if (TYPE_TARGET_TYPE (type) == NULL)
10611 error_call_unknown_return_type (NULL);
10612 return allocate_value (TYPE_TARGET_TYPE (type));
10613 }
10614 return call_function_by_hand (callee, NULL, argvec);
10615 case TYPE_CODE_INTERNAL_FUNCTION:
10616 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10617 /* We don't know anything about what the internal
10618 function might return, but we have to return
10619 something. */
10620 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10621 not_lval);
10622 else
10623 return call_internal_function (exp->gdbarch, exp->language_defn,
10624 callee, nargs,
10625 argvec.data ());
10626
10627 case TYPE_CODE_STRUCT:
10628 {
10629 int arity;
10630
10631 arity = ada_array_arity (type);
10632 type = ada_array_element_type (type, nargs);
10633 if (type == NULL)
10634 error (_("cannot subscript or call a record"));
10635 if (arity != nargs)
10636 error (_("wrong number of subscripts; expecting %d"), arity);
10637 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10638 return value_zero (ada_aligned_type (type), lval_memory);
10639 return
10640 unwrap_value (ada_value_subscript
10641 (callee, nargs, argvec.data ()));
10642 }
10643 case TYPE_CODE_ARRAY:
10644 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10645 {
10646 type = ada_array_element_type (type, nargs);
10647 if (type == NULL)
10648 error (_("element type of array unknown"));
10649 else
10650 return value_zero (ada_aligned_type (type), lval_memory);
10651 }
10652 return
10653 unwrap_value (ada_value_subscript
10654 (ada_coerce_to_simple_array (callee),
10655 nargs, argvec.data ()));
10656 case TYPE_CODE_PTR: /* Pointer to array */
10657 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10658 {
10659 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10660 type = ada_array_element_type (type, nargs);
10661 if (type == NULL)
10662 error (_("element type of array unknown"));
10663 else
10664 return value_zero (ada_aligned_type (type), lval_memory);
10665 }
10666 return
10667 unwrap_value (ada_value_ptr_subscript (callee, nargs,
10668 argvec.data ()));
10669
10670 default:
10671 error (_("Attempt to index or call something other than an "
10672 "array or function"));
10673 }
10674 }
10675
10676 bool
10677 ada_funcall_operation::resolve (struct expression *exp,
10678 bool deprocedure_p,
10679 bool parse_completion,
10680 innermost_block_tracker *tracker,
10681 struct type *context_type)
10682 {
10683 operation_up &callee_op = std::get<0> (m_storage);
10684
10685 ada_var_value_operation *avv
10686 = dynamic_cast<ada_var_value_operation *> (callee_op.get ());
10687 if (avv == nullptr)
10688 return false;
10689
10690 symbol *sym = avv->get_symbol ();
10691 if (SYMBOL_DOMAIN (sym) != UNDEF_DOMAIN)
10692 return false;
10693
10694 const std::vector<operation_up> &args_up = std::get<1> (m_storage);
10695 int nargs = args_up.size ();
10696 std::vector<value *> argvec (nargs);
10697
10698 for (int i = 0; i < args_up.size (); ++i)
10699 argvec[i] = args_up[i]->evaluate (nullptr, exp, EVAL_AVOID_SIDE_EFFECTS);
10700
10701 const block *block = avv->get_block ();
10702 block_symbol resolved
10703 = ada_resolve_funcall (sym, block,
10704 context_type, parse_completion,
10705 nargs, argvec.data (),
10706 tracker);
10707
10708 std::get<0> (m_storage)
10709 = make_operation<ada_var_value_operation> (resolved.symbol,
10710 resolved.block);
10711 return false;
10712 }
10713
10714 bool
10715 ada_ternop_slice_operation::resolve (struct expression *exp,
10716 bool deprocedure_p,
10717 bool parse_completion,
10718 innermost_block_tracker *tracker,
10719 struct type *context_type)
10720 {
10721 /* Historically this check was done during resolution, so we
10722 continue that here. */
10723 value *v = std::get<0> (m_storage)->evaluate (context_type, exp,
10724 EVAL_AVOID_SIDE_EFFECTS);
10725 if (ada_is_any_packed_array_type (value_type (v)))
10726 error (_("cannot slice a packed array"));
10727 return false;
10728 }
10729
10730 }
10731
10732 \f
10733
10734 /* Return non-zero iff TYPE represents a System.Address type. */
10735
10736 int
10737 ada_is_system_address_type (struct type *type)
10738 {
10739 return (type->name () && strcmp (type->name (), "system__address") == 0);
10740 }
10741
10742 \f
10743
10744 /* Range types */
10745
10746 /* Scan STR beginning at position K for a discriminant name, and
10747 return the value of that discriminant field of DVAL in *PX. If
10748 PNEW_K is not null, put the position of the character beyond the
10749 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
10750 not alter *PX and *PNEW_K if unsuccessful. */
10751
10752 static int
10753 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
10754 int *pnew_k)
10755 {
10756 static std::string storage;
10757 const char *pstart, *pend, *bound;
10758 struct value *bound_val;
10759
10760 if (dval == NULL || str == NULL || str[k] == '\0')
10761 return 0;
10762
10763 pstart = str + k;
10764 pend = strstr (pstart, "__");
10765 if (pend == NULL)
10766 {
10767 bound = pstart;
10768 k += strlen (bound);
10769 }
10770 else
10771 {
10772 int len = pend - pstart;
10773
10774 /* Strip __ and beyond. */
10775 storage = std::string (pstart, len);
10776 bound = storage.c_str ();
10777 k = pend - str;
10778 }
10779
10780 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
10781 if (bound_val == NULL)
10782 return 0;
10783
10784 *px = value_as_long (bound_val);
10785 if (pnew_k != NULL)
10786 *pnew_k = k;
10787 return 1;
10788 }
10789
10790 /* Value of variable named NAME. Only exact matches are considered.
10791 If no such variable found, then if ERR_MSG is null, returns 0, and
10792 otherwise causes an error with message ERR_MSG. */
10793
10794 static struct value *
10795 get_var_value (const char *name, const char *err_msg)
10796 {
10797 std::string quoted_name = add_angle_brackets (name);
10798
10799 lookup_name_info lookup_name (quoted_name, symbol_name_match_type::FULL);
10800
10801 std::vector<struct block_symbol> syms
10802 = ada_lookup_symbol_list_worker (lookup_name,
10803 get_selected_block (0),
10804 VAR_DOMAIN, 1);
10805
10806 if (syms.size () != 1)
10807 {
10808 if (err_msg == NULL)
10809 return 0;
10810 else
10811 error (("%s"), err_msg);
10812 }
10813
10814 return value_of_variable (syms[0].symbol, syms[0].block);
10815 }
10816
10817 /* Value of integer variable named NAME in the current environment.
10818 If no such variable is found, returns false. Otherwise, sets VALUE
10819 to the variable's value and returns true. */
10820
10821 bool
10822 get_int_var_value (const char *name, LONGEST &value)
10823 {
10824 struct value *var_val = get_var_value (name, 0);
10825
10826 if (var_val == 0)
10827 return false;
10828
10829 value = value_as_long (var_val);
10830 return true;
10831 }
10832
10833
10834 /* Return a range type whose base type is that of the range type named
10835 NAME in the current environment, and whose bounds are calculated
10836 from NAME according to the GNAT range encoding conventions.
10837 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
10838 corresponding range type from debug information; fall back to using it
10839 if symbol lookup fails. If a new type must be created, allocate it
10840 like ORIG_TYPE was. The bounds information, in general, is encoded
10841 in NAME, the base type given in the named range type. */
10842
10843 static struct type *
10844 to_fixed_range_type (struct type *raw_type, struct value *dval)
10845 {
10846 const char *name;
10847 struct type *base_type;
10848 const char *subtype_info;
10849
10850 gdb_assert (raw_type != NULL);
10851 gdb_assert (raw_type->name () != NULL);
10852
10853 if (raw_type->code () == TYPE_CODE_RANGE)
10854 base_type = TYPE_TARGET_TYPE (raw_type);
10855 else
10856 base_type = raw_type;
10857
10858 name = raw_type->name ();
10859 subtype_info = strstr (name, "___XD");
10860 if (subtype_info == NULL)
10861 {
10862 LONGEST L = ada_discrete_type_low_bound (raw_type);
10863 LONGEST U = ada_discrete_type_high_bound (raw_type);
10864
10865 if (L < INT_MIN || U > INT_MAX)
10866 return raw_type;
10867 else
10868 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
10869 L, U);
10870 }
10871 else
10872 {
10873 int prefix_len = subtype_info - name;
10874 LONGEST L, U;
10875 struct type *type;
10876 const char *bounds_str;
10877 int n;
10878
10879 subtype_info += 5;
10880 bounds_str = strchr (subtype_info, '_');
10881 n = 1;
10882
10883 if (*subtype_info == 'L')
10884 {
10885 if (!ada_scan_number (bounds_str, n, &L, &n)
10886 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
10887 return raw_type;
10888 if (bounds_str[n] == '_')
10889 n += 2;
10890 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
10891 n += 1;
10892 subtype_info += 1;
10893 }
10894 else
10895 {
10896 std::string name_buf = std::string (name, prefix_len) + "___L";
10897 if (!get_int_var_value (name_buf.c_str (), L))
10898 {
10899 lim_warning (_("Unknown lower bound, using 1."));
10900 L = 1;
10901 }
10902 }
10903
10904 if (*subtype_info == 'U')
10905 {
10906 if (!ada_scan_number (bounds_str, n, &U, &n)
10907 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
10908 return raw_type;
10909 }
10910 else
10911 {
10912 std::string name_buf = std::string (name, prefix_len) + "___U";
10913 if (!get_int_var_value (name_buf.c_str (), U))
10914 {
10915 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
10916 U = L;
10917 }
10918 }
10919
10920 type = create_static_range_type (alloc_type_copy (raw_type),
10921 base_type, L, U);
10922 /* create_static_range_type alters the resulting type's length
10923 to match the size of the base_type, which is not what we want.
10924 Set it back to the original range type's length. */
10925 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
10926 type->set_name (name);
10927 return type;
10928 }
10929 }
10930
10931 /* True iff NAME is the name of a range type. */
10932
10933 int
10934 ada_is_range_type_name (const char *name)
10935 {
10936 return (name != NULL && strstr (name, "___XD"));
10937 }
10938 \f
10939
10940 /* Modular types */
10941
10942 /* True iff TYPE is an Ada modular type. */
10943
10944 int
10945 ada_is_modular_type (struct type *type)
10946 {
10947 struct type *subranged_type = get_base_type (type);
10948
10949 return (subranged_type != NULL && type->code () == TYPE_CODE_RANGE
10950 && subranged_type->code () == TYPE_CODE_INT
10951 && subranged_type->is_unsigned ());
10952 }
10953
10954 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
10955
10956 ULONGEST
10957 ada_modulus (struct type *type)
10958 {
10959 const dynamic_prop &high = type->bounds ()->high;
10960
10961 if (high.kind () == PROP_CONST)
10962 return (ULONGEST) high.const_val () + 1;
10963
10964 /* If TYPE is unresolved, the high bound might be a location list. Return
10965 0, for lack of a better value to return. */
10966 return 0;
10967 }
10968 \f
10969
10970 /* Ada exception catchpoint support:
10971 ---------------------------------
10972
10973 We support 3 kinds of exception catchpoints:
10974 . catchpoints on Ada exceptions
10975 . catchpoints on unhandled Ada exceptions
10976 . catchpoints on failed assertions
10977
10978 Exceptions raised during failed assertions, or unhandled exceptions
10979 could perfectly be caught with the general catchpoint on Ada exceptions.
10980 However, we can easily differentiate these two special cases, and having
10981 the option to distinguish these two cases from the rest can be useful
10982 to zero-in on certain situations.
10983
10984 Exception catchpoints are a specialized form of breakpoint,
10985 since they rely on inserting breakpoints inside known routines
10986 of the GNAT runtime. The implementation therefore uses a standard
10987 breakpoint structure of the BP_BREAKPOINT type, but with its own set
10988 of breakpoint_ops.
10989
10990 Support in the runtime for exception catchpoints have been changed
10991 a few times already, and these changes affect the implementation
10992 of these catchpoints. In order to be able to support several
10993 variants of the runtime, we use a sniffer that will determine
10994 the runtime variant used by the program being debugged. */
10995
10996 /* Ada's standard exceptions.
10997
10998 The Ada 83 standard also defined Numeric_Error. But there so many
10999 situations where it was unclear from the Ada 83 Reference Manual
11000 (RM) whether Constraint_Error or Numeric_Error should be raised,
11001 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11002 Interpretation saying that anytime the RM says that Numeric_Error
11003 should be raised, the implementation may raise Constraint_Error.
11004 Ada 95 went one step further and pretty much removed Numeric_Error
11005 from the list of standard exceptions (it made it a renaming of
11006 Constraint_Error, to help preserve compatibility when compiling
11007 an Ada83 compiler). As such, we do not include Numeric_Error from
11008 this list of standard exceptions. */
11009
11010 static const char * const standard_exc[] = {
11011 "constraint_error",
11012 "program_error",
11013 "storage_error",
11014 "tasking_error"
11015 };
11016
11017 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11018
11019 /* A structure that describes how to support exception catchpoints
11020 for a given executable. */
11021
11022 struct exception_support_info
11023 {
11024 /* The name of the symbol to break on in order to insert
11025 a catchpoint on exceptions. */
11026 const char *catch_exception_sym;
11027
11028 /* The name of the symbol to break on in order to insert
11029 a catchpoint on unhandled exceptions. */
11030 const char *catch_exception_unhandled_sym;
11031
11032 /* The name of the symbol to break on in order to insert
11033 a catchpoint on failed assertions. */
11034 const char *catch_assert_sym;
11035
11036 /* The name of the symbol to break on in order to insert
11037 a catchpoint on exception handling. */
11038 const char *catch_handlers_sym;
11039
11040 /* Assuming that the inferior just triggered an unhandled exception
11041 catchpoint, this function is responsible for returning the address
11042 in inferior memory where the name of that exception is stored.
11043 Return zero if the address could not be computed. */
11044 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11045 };
11046
11047 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11048 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11049
11050 /* The following exception support info structure describes how to
11051 implement exception catchpoints with the latest version of the
11052 Ada runtime (as of 2019-08-??). */
11053
11054 static const struct exception_support_info default_exception_support_info =
11055 {
11056 "__gnat_debug_raise_exception", /* catch_exception_sym */
11057 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11058 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11059 "__gnat_begin_handler_v1", /* catch_handlers_sym */
11060 ada_unhandled_exception_name_addr
11061 };
11062
11063 /* The following exception support info structure describes how to
11064 implement exception catchpoints with an earlier version of the
11065 Ada runtime (as of 2007-03-06) using v0 of the EH ABI. */
11066
11067 static const struct exception_support_info exception_support_info_v0 =
11068 {
11069 "__gnat_debug_raise_exception", /* catch_exception_sym */
11070 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11071 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11072 "__gnat_begin_handler", /* catch_handlers_sym */
11073 ada_unhandled_exception_name_addr
11074 };
11075
11076 /* The following exception support info structure describes how to
11077 implement exception catchpoints with a slightly older version
11078 of the Ada runtime. */
11079
11080 static const struct exception_support_info exception_support_info_fallback =
11081 {
11082 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11083 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11084 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11085 "__gnat_begin_handler", /* catch_handlers_sym */
11086 ada_unhandled_exception_name_addr_from_raise
11087 };
11088
11089 /* Return nonzero if we can detect the exception support routines
11090 described in EINFO.
11091
11092 This function errors out if an abnormal situation is detected
11093 (for instance, if we find the exception support routines, but
11094 that support is found to be incomplete). */
11095
11096 static int
11097 ada_has_this_exception_support (const struct exception_support_info *einfo)
11098 {
11099 struct symbol *sym;
11100
11101 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11102 that should be compiled with debugging information. As a result, we
11103 expect to find that symbol in the symtabs. */
11104
11105 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11106 if (sym == NULL)
11107 {
11108 /* Perhaps we did not find our symbol because the Ada runtime was
11109 compiled without debugging info, or simply stripped of it.
11110 It happens on some GNU/Linux distributions for instance, where
11111 users have to install a separate debug package in order to get
11112 the runtime's debugging info. In that situation, let the user
11113 know why we cannot insert an Ada exception catchpoint.
11114
11115 Note: Just for the purpose of inserting our Ada exception
11116 catchpoint, we could rely purely on the associated minimal symbol.
11117 But we would be operating in degraded mode anyway, since we are
11118 still lacking the debugging info needed later on to extract
11119 the name of the exception being raised (this name is printed in
11120 the catchpoint message, and is also used when trying to catch
11121 a specific exception). We do not handle this case for now. */
11122 struct bound_minimal_symbol msym
11123 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11124
11125 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11126 error (_("Your Ada runtime appears to be missing some debugging "
11127 "information.\nCannot insert Ada exception catchpoint "
11128 "in this configuration."));
11129
11130 return 0;
11131 }
11132
11133 /* Make sure that the symbol we found corresponds to a function. */
11134
11135 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11136 {
11137 error (_("Symbol \"%s\" is not a function (class = %d)"),
11138 sym->linkage_name (), SYMBOL_CLASS (sym));
11139 return 0;
11140 }
11141
11142 sym = standard_lookup (einfo->catch_handlers_sym, NULL, VAR_DOMAIN);
11143 if (sym == NULL)
11144 {
11145 struct bound_minimal_symbol msym
11146 = lookup_minimal_symbol (einfo->catch_handlers_sym, NULL, NULL);
11147
11148 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11149 error (_("Your Ada runtime appears to be missing some debugging "
11150 "information.\nCannot insert Ada exception catchpoint "
11151 "in this configuration."));
11152
11153 return 0;
11154 }
11155
11156 /* Make sure that the symbol we found corresponds to a function. */
11157
11158 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11159 {
11160 error (_("Symbol \"%s\" is not a function (class = %d)"),
11161 sym->linkage_name (), SYMBOL_CLASS (sym));
11162 return 0;
11163 }
11164
11165 return 1;
11166 }
11167
11168 /* Inspect the Ada runtime and determine which exception info structure
11169 should be used to provide support for exception catchpoints.
11170
11171 This function will always set the per-inferior exception_info,
11172 or raise an error. */
11173
11174 static void
11175 ada_exception_support_info_sniffer (void)
11176 {
11177 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11178
11179 /* If the exception info is already known, then no need to recompute it. */
11180 if (data->exception_info != NULL)
11181 return;
11182
11183 /* Check the latest (default) exception support info. */
11184 if (ada_has_this_exception_support (&default_exception_support_info))
11185 {
11186 data->exception_info = &default_exception_support_info;
11187 return;
11188 }
11189
11190 /* Try the v0 exception suport info. */
11191 if (ada_has_this_exception_support (&exception_support_info_v0))
11192 {
11193 data->exception_info = &exception_support_info_v0;
11194 return;
11195 }
11196
11197 /* Try our fallback exception suport info. */
11198 if (ada_has_this_exception_support (&exception_support_info_fallback))
11199 {
11200 data->exception_info = &exception_support_info_fallback;
11201 return;
11202 }
11203
11204 /* Sometimes, it is normal for us to not be able to find the routine
11205 we are looking for. This happens when the program is linked with
11206 the shared version of the GNAT runtime, and the program has not been
11207 started yet. Inform the user of these two possible causes if
11208 applicable. */
11209
11210 if (ada_update_initial_language (language_unknown) != language_ada)
11211 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11212
11213 /* If the symbol does not exist, then check that the program is
11214 already started, to make sure that shared libraries have been
11215 loaded. If it is not started, this may mean that the symbol is
11216 in a shared library. */
11217
11218 if (inferior_ptid.pid () == 0)
11219 error (_("Unable to insert catchpoint. Try to start the program first."));
11220
11221 /* At this point, we know that we are debugging an Ada program and
11222 that the inferior has been started, but we still are not able to
11223 find the run-time symbols. That can mean that we are in
11224 configurable run time mode, or that a-except as been optimized
11225 out by the linker... In any case, at this point it is not worth
11226 supporting this feature. */
11227
11228 error (_("Cannot insert Ada exception catchpoints in this configuration."));
11229 }
11230
11231 /* True iff FRAME is very likely to be that of a function that is
11232 part of the runtime system. This is all very heuristic, but is
11233 intended to be used as advice as to what frames are uninteresting
11234 to most users. */
11235
11236 static int
11237 is_known_support_routine (struct frame_info *frame)
11238 {
11239 enum language func_lang;
11240 int i;
11241 const char *fullname;
11242
11243 /* If this code does not have any debugging information (no symtab),
11244 This cannot be any user code. */
11245
11246 symtab_and_line sal = find_frame_sal (frame);
11247 if (sal.symtab == NULL)
11248 return 1;
11249
11250 /* If there is a symtab, but the associated source file cannot be
11251 located, then assume this is not user code: Selecting a frame
11252 for which we cannot display the code would not be very helpful
11253 for the user. This should also take care of case such as VxWorks
11254 where the kernel has some debugging info provided for a few units. */
11255
11256 fullname = symtab_to_fullname (sal.symtab);
11257 if (access (fullname, R_OK) != 0)
11258 return 1;
11259
11260 /* Check the unit filename against the Ada runtime file naming.
11261 We also check the name of the objfile against the name of some
11262 known system libraries that sometimes come with debugging info
11263 too. */
11264
11265 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11266 {
11267 re_comp (known_runtime_file_name_patterns[i]);
11268 if (re_exec (lbasename (sal.symtab->filename)))
11269 return 1;
11270 if (SYMTAB_OBJFILE (sal.symtab) != NULL
11271 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
11272 return 1;
11273 }
11274
11275 /* Check whether the function is a GNAT-generated entity. */
11276
11277 gdb::unique_xmalloc_ptr<char> func_name
11278 = find_frame_funname (frame, &func_lang, NULL);
11279 if (func_name == NULL)
11280 return 1;
11281
11282 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11283 {
11284 re_comp (known_auxiliary_function_name_patterns[i]);
11285 if (re_exec (func_name.get ()))
11286 return 1;
11287 }
11288
11289 return 0;
11290 }
11291
11292 /* Find the first frame that contains debugging information and that is not
11293 part of the Ada run-time, starting from FI and moving upward. */
11294
11295 void
11296 ada_find_printable_frame (struct frame_info *fi)
11297 {
11298 for (; fi != NULL; fi = get_prev_frame (fi))
11299 {
11300 if (!is_known_support_routine (fi))
11301 {
11302 select_frame (fi);
11303 break;
11304 }
11305 }
11306
11307 }
11308
11309 /* Assuming that the inferior just triggered an unhandled exception
11310 catchpoint, return the address in inferior memory where the name
11311 of the exception is stored.
11312
11313 Return zero if the address could not be computed. */
11314
11315 static CORE_ADDR
11316 ada_unhandled_exception_name_addr (void)
11317 {
11318 return parse_and_eval_address ("e.full_name");
11319 }
11320
11321 /* Same as ada_unhandled_exception_name_addr, except that this function
11322 should be used when the inferior uses an older version of the runtime,
11323 where the exception name needs to be extracted from a specific frame
11324 several frames up in the callstack. */
11325
11326 static CORE_ADDR
11327 ada_unhandled_exception_name_addr_from_raise (void)
11328 {
11329 int frame_level;
11330 struct frame_info *fi;
11331 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11332
11333 /* To determine the name of this exception, we need to select
11334 the frame corresponding to RAISE_SYM_NAME. This frame is
11335 at least 3 levels up, so we simply skip the first 3 frames
11336 without checking the name of their associated function. */
11337 fi = get_current_frame ();
11338 for (frame_level = 0; frame_level < 3; frame_level += 1)
11339 if (fi != NULL)
11340 fi = get_prev_frame (fi);
11341
11342 while (fi != NULL)
11343 {
11344 enum language func_lang;
11345
11346 gdb::unique_xmalloc_ptr<char> func_name
11347 = find_frame_funname (fi, &func_lang, NULL);
11348 if (func_name != NULL)
11349 {
11350 if (strcmp (func_name.get (),
11351 data->exception_info->catch_exception_sym) == 0)
11352 break; /* We found the frame we were looking for... */
11353 }
11354 fi = get_prev_frame (fi);
11355 }
11356
11357 if (fi == NULL)
11358 return 0;
11359
11360 select_frame (fi);
11361 return parse_and_eval_address ("id.full_name");
11362 }
11363
11364 /* Assuming the inferior just triggered an Ada exception catchpoint
11365 (of any type), return the address in inferior memory where the name
11366 of the exception is stored, if applicable.
11367
11368 Assumes the selected frame is the current frame.
11369
11370 Return zero if the address could not be computed, or if not relevant. */
11371
11372 static CORE_ADDR
11373 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
11374 struct breakpoint *b)
11375 {
11376 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11377
11378 switch (ex)
11379 {
11380 case ada_catch_exception:
11381 return (parse_and_eval_address ("e.full_name"));
11382 break;
11383
11384 case ada_catch_exception_unhandled:
11385 return data->exception_info->unhandled_exception_name_addr ();
11386 break;
11387
11388 case ada_catch_handlers:
11389 return 0; /* The runtimes does not provide access to the exception
11390 name. */
11391 break;
11392
11393 case ada_catch_assert:
11394 return 0; /* Exception name is not relevant in this case. */
11395 break;
11396
11397 default:
11398 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11399 break;
11400 }
11401
11402 return 0; /* Should never be reached. */
11403 }
11404
11405 /* Assuming the inferior is stopped at an exception catchpoint,
11406 return the message which was associated to the exception, if
11407 available. Return NULL if the message could not be retrieved.
11408
11409 Note: The exception message can be associated to an exception
11410 either through the use of the Raise_Exception function, or
11411 more simply (Ada 2005 and later), via:
11412
11413 raise Exception_Name with "exception message";
11414
11415 */
11416
11417 static gdb::unique_xmalloc_ptr<char>
11418 ada_exception_message_1 (void)
11419 {
11420 struct value *e_msg_val;
11421 int e_msg_len;
11422
11423 /* For runtimes that support this feature, the exception message
11424 is passed as an unbounded string argument called "message". */
11425 e_msg_val = parse_and_eval ("message");
11426 if (e_msg_val == NULL)
11427 return NULL; /* Exception message not supported. */
11428
11429 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
11430 gdb_assert (e_msg_val != NULL);
11431 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
11432
11433 /* If the message string is empty, then treat it as if there was
11434 no exception message. */
11435 if (e_msg_len <= 0)
11436 return NULL;
11437
11438 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
11439 read_memory (value_address (e_msg_val), (gdb_byte *) e_msg.get (),
11440 e_msg_len);
11441 e_msg.get ()[e_msg_len] = '\0';
11442
11443 return e_msg;
11444 }
11445
11446 /* Same as ada_exception_message_1, except that all exceptions are
11447 contained here (returning NULL instead). */
11448
11449 static gdb::unique_xmalloc_ptr<char>
11450 ada_exception_message (void)
11451 {
11452 gdb::unique_xmalloc_ptr<char> e_msg;
11453
11454 try
11455 {
11456 e_msg = ada_exception_message_1 ();
11457 }
11458 catch (const gdb_exception_error &e)
11459 {
11460 e_msg.reset (nullptr);
11461 }
11462
11463 return e_msg;
11464 }
11465
11466 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
11467 any error that ada_exception_name_addr_1 might cause to be thrown.
11468 When an error is intercepted, a warning with the error message is printed,
11469 and zero is returned. */
11470
11471 static CORE_ADDR
11472 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
11473 struct breakpoint *b)
11474 {
11475 CORE_ADDR result = 0;
11476
11477 try
11478 {
11479 result = ada_exception_name_addr_1 (ex, b);
11480 }
11481
11482 catch (const gdb_exception_error &e)
11483 {
11484 warning (_("failed to get exception name: %s"), e.what ());
11485 return 0;
11486 }
11487
11488 return result;
11489 }
11490
11491 static std::string ada_exception_catchpoint_cond_string
11492 (const char *excep_string,
11493 enum ada_exception_catchpoint_kind ex);
11494
11495 /* Ada catchpoints.
11496
11497 In the case of catchpoints on Ada exceptions, the catchpoint will
11498 stop the target on every exception the program throws. When a user
11499 specifies the name of a specific exception, we translate this
11500 request into a condition expression (in text form), and then parse
11501 it into an expression stored in each of the catchpoint's locations.
11502 We then use this condition to check whether the exception that was
11503 raised is the one the user is interested in. If not, then the
11504 target is resumed again. We store the name of the requested
11505 exception, in order to be able to re-set the condition expression
11506 when symbols change. */
11507
11508 /* An instance of this type is used to represent an Ada catchpoint
11509 breakpoint location. */
11510
11511 class ada_catchpoint_location : public bp_location
11512 {
11513 public:
11514 ada_catchpoint_location (breakpoint *owner)
11515 : bp_location (owner, bp_loc_software_breakpoint)
11516 {}
11517
11518 /* The condition that checks whether the exception that was raised
11519 is the specific exception the user specified on catchpoint
11520 creation. */
11521 expression_up excep_cond_expr;
11522 };
11523
11524 /* An instance of this type is used to represent an Ada catchpoint. */
11525
11526 struct ada_catchpoint : public breakpoint
11527 {
11528 explicit ada_catchpoint (enum ada_exception_catchpoint_kind kind)
11529 : m_kind (kind)
11530 {
11531 }
11532
11533 /* The name of the specific exception the user specified. */
11534 std::string excep_string;
11535
11536 /* What kind of catchpoint this is. */
11537 enum ada_exception_catchpoint_kind m_kind;
11538 };
11539
11540 /* Parse the exception condition string in the context of each of the
11541 catchpoint's locations, and store them for later evaluation. */
11542
11543 static void
11544 create_excep_cond_exprs (struct ada_catchpoint *c,
11545 enum ada_exception_catchpoint_kind ex)
11546 {
11547 struct bp_location *bl;
11548
11549 /* Nothing to do if there's no specific exception to catch. */
11550 if (c->excep_string.empty ())
11551 return;
11552
11553 /* Same if there are no locations... */
11554 if (c->loc == NULL)
11555 return;
11556
11557 /* Compute the condition expression in text form, from the specific
11558 expection we want to catch. */
11559 std::string cond_string
11560 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (), ex);
11561
11562 /* Iterate over all the catchpoint's locations, and parse an
11563 expression for each. */
11564 for (bl = c->loc; bl != NULL; bl = bl->next)
11565 {
11566 struct ada_catchpoint_location *ada_loc
11567 = (struct ada_catchpoint_location *) bl;
11568 expression_up exp;
11569
11570 if (!bl->shlib_disabled)
11571 {
11572 const char *s;
11573
11574 s = cond_string.c_str ();
11575 try
11576 {
11577 exp = parse_exp_1 (&s, bl->address,
11578 block_for_pc (bl->address),
11579 0);
11580 }
11581 catch (const gdb_exception_error &e)
11582 {
11583 warning (_("failed to reevaluate internal exception condition "
11584 "for catchpoint %d: %s"),
11585 c->number, e.what ());
11586 }
11587 }
11588
11589 ada_loc->excep_cond_expr = std::move (exp);
11590 }
11591 }
11592
11593 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11594 structure for all exception catchpoint kinds. */
11595
11596 static struct bp_location *
11597 allocate_location_exception (struct breakpoint *self)
11598 {
11599 return new ada_catchpoint_location (self);
11600 }
11601
11602 /* Implement the RE_SET method in the breakpoint_ops structure for all
11603 exception catchpoint kinds. */
11604
11605 static void
11606 re_set_exception (struct breakpoint *b)
11607 {
11608 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11609
11610 /* Call the base class's method. This updates the catchpoint's
11611 locations. */
11612 bkpt_breakpoint_ops.re_set (b);
11613
11614 /* Reparse the exception conditional expressions. One for each
11615 location. */
11616 create_excep_cond_exprs (c, c->m_kind);
11617 }
11618
11619 /* Returns true if we should stop for this breakpoint hit. If the
11620 user specified a specific exception, we only want to cause a stop
11621 if the program thrown that exception. */
11622
11623 static int
11624 should_stop_exception (const struct bp_location *bl)
11625 {
11626 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
11627 const struct ada_catchpoint_location *ada_loc
11628 = (const struct ada_catchpoint_location *) bl;
11629 int stop;
11630
11631 struct internalvar *var = lookup_internalvar ("_ada_exception");
11632 if (c->m_kind == ada_catch_assert)
11633 clear_internalvar (var);
11634 else
11635 {
11636 try
11637 {
11638 const char *expr;
11639
11640 if (c->m_kind == ada_catch_handlers)
11641 expr = ("GNAT_GCC_exception_Access(gcc_exception)"
11642 ".all.occurrence.id");
11643 else
11644 expr = "e";
11645
11646 struct value *exc = parse_and_eval (expr);
11647 set_internalvar (var, exc);
11648 }
11649 catch (const gdb_exception_error &ex)
11650 {
11651 clear_internalvar (var);
11652 }
11653 }
11654
11655 /* With no specific exception, should always stop. */
11656 if (c->excep_string.empty ())
11657 return 1;
11658
11659 if (ada_loc->excep_cond_expr == NULL)
11660 {
11661 /* We will have a NULL expression if back when we were creating
11662 the expressions, this location's had failed to parse. */
11663 return 1;
11664 }
11665
11666 stop = 1;
11667 try
11668 {
11669 struct value *mark;
11670
11671 mark = value_mark ();
11672 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
11673 value_free_to_mark (mark);
11674 }
11675 catch (const gdb_exception &ex)
11676 {
11677 exception_fprintf (gdb_stderr, ex,
11678 _("Error in testing exception condition:\n"));
11679 }
11680
11681 return stop;
11682 }
11683
11684 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
11685 for all exception catchpoint kinds. */
11686
11687 static void
11688 check_status_exception (bpstat bs)
11689 {
11690 bs->stop = should_stop_exception (bs->bp_location_at.get ());
11691 }
11692
11693 /* Implement the PRINT_IT method in the breakpoint_ops structure
11694 for all exception catchpoint kinds. */
11695
11696 static enum print_stop_action
11697 print_it_exception (bpstat bs)
11698 {
11699 struct ui_out *uiout = current_uiout;
11700 struct breakpoint *b = bs->breakpoint_at;
11701
11702 annotate_catchpoint (b->number);
11703
11704 if (uiout->is_mi_like_p ())
11705 {
11706 uiout->field_string ("reason",
11707 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
11708 uiout->field_string ("disp", bpdisp_text (b->disposition));
11709 }
11710
11711 uiout->text (b->disposition == disp_del
11712 ? "\nTemporary catchpoint " : "\nCatchpoint ");
11713 uiout->field_signed ("bkptno", b->number);
11714 uiout->text (", ");
11715
11716 /* ada_exception_name_addr relies on the selected frame being the
11717 current frame. Need to do this here because this function may be
11718 called more than once when printing a stop, and below, we'll
11719 select the first frame past the Ada run-time (see
11720 ada_find_printable_frame). */
11721 select_frame (get_current_frame ());
11722
11723 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11724 switch (c->m_kind)
11725 {
11726 case ada_catch_exception:
11727 case ada_catch_exception_unhandled:
11728 case ada_catch_handlers:
11729 {
11730 const CORE_ADDR addr = ada_exception_name_addr (c->m_kind, b);
11731 char exception_name[256];
11732
11733 if (addr != 0)
11734 {
11735 read_memory (addr, (gdb_byte *) exception_name,
11736 sizeof (exception_name) - 1);
11737 exception_name [sizeof (exception_name) - 1] = '\0';
11738 }
11739 else
11740 {
11741 /* For some reason, we were unable to read the exception
11742 name. This could happen if the Runtime was compiled
11743 without debugging info, for instance. In that case,
11744 just replace the exception name by the generic string
11745 "exception" - it will read as "an exception" in the
11746 notification we are about to print. */
11747 memcpy (exception_name, "exception", sizeof ("exception"));
11748 }
11749 /* In the case of unhandled exception breakpoints, we print
11750 the exception name as "unhandled EXCEPTION_NAME", to make
11751 it clearer to the user which kind of catchpoint just got
11752 hit. We used ui_out_text to make sure that this extra
11753 info does not pollute the exception name in the MI case. */
11754 if (c->m_kind == ada_catch_exception_unhandled)
11755 uiout->text ("unhandled ");
11756 uiout->field_string ("exception-name", exception_name);
11757 }
11758 break;
11759 case ada_catch_assert:
11760 /* In this case, the name of the exception is not really
11761 important. Just print "failed assertion" to make it clearer
11762 that his program just hit an assertion-failure catchpoint.
11763 We used ui_out_text because this info does not belong in
11764 the MI output. */
11765 uiout->text ("failed assertion");
11766 break;
11767 }
11768
11769 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
11770 if (exception_message != NULL)
11771 {
11772 uiout->text (" (");
11773 uiout->field_string ("exception-message", exception_message.get ());
11774 uiout->text (")");
11775 }
11776
11777 uiout->text (" at ");
11778 ada_find_printable_frame (get_current_frame ());
11779
11780 return PRINT_SRC_AND_LOC;
11781 }
11782
11783 /* Implement the PRINT_ONE method in the breakpoint_ops structure
11784 for all exception catchpoint kinds. */
11785
11786 static void
11787 print_one_exception (struct breakpoint *b, struct bp_location **last_loc)
11788 {
11789 struct ui_out *uiout = current_uiout;
11790 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11791 struct value_print_options opts;
11792
11793 get_user_print_options (&opts);
11794
11795 if (opts.addressprint)
11796 uiout->field_skip ("addr");
11797
11798 annotate_field (5);
11799 switch (c->m_kind)
11800 {
11801 case ada_catch_exception:
11802 if (!c->excep_string.empty ())
11803 {
11804 std::string msg = string_printf (_("`%s' Ada exception"),
11805 c->excep_string.c_str ());
11806
11807 uiout->field_string ("what", msg);
11808 }
11809 else
11810 uiout->field_string ("what", "all Ada exceptions");
11811
11812 break;
11813
11814 case ada_catch_exception_unhandled:
11815 uiout->field_string ("what", "unhandled Ada exceptions");
11816 break;
11817
11818 case ada_catch_handlers:
11819 if (!c->excep_string.empty ())
11820 {
11821 uiout->field_fmt ("what",
11822 _("`%s' Ada exception handlers"),
11823 c->excep_string.c_str ());
11824 }
11825 else
11826 uiout->field_string ("what", "all Ada exceptions handlers");
11827 break;
11828
11829 case ada_catch_assert:
11830 uiout->field_string ("what", "failed Ada assertions");
11831 break;
11832
11833 default:
11834 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11835 break;
11836 }
11837 }
11838
11839 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
11840 for all exception catchpoint kinds. */
11841
11842 static void
11843 print_mention_exception (struct breakpoint *b)
11844 {
11845 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11846 struct ui_out *uiout = current_uiout;
11847
11848 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
11849 : _("Catchpoint "));
11850 uiout->field_signed ("bkptno", b->number);
11851 uiout->text (": ");
11852
11853 switch (c->m_kind)
11854 {
11855 case ada_catch_exception:
11856 if (!c->excep_string.empty ())
11857 {
11858 std::string info = string_printf (_("`%s' Ada exception"),
11859 c->excep_string.c_str ());
11860 uiout->text (info.c_str ());
11861 }
11862 else
11863 uiout->text (_("all Ada exceptions"));
11864 break;
11865
11866 case ada_catch_exception_unhandled:
11867 uiout->text (_("unhandled Ada exceptions"));
11868 break;
11869
11870 case ada_catch_handlers:
11871 if (!c->excep_string.empty ())
11872 {
11873 std::string info
11874 = string_printf (_("`%s' Ada exception handlers"),
11875 c->excep_string.c_str ());
11876 uiout->text (info.c_str ());
11877 }
11878 else
11879 uiout->text (_("all Ada exceptions handlers"));
11880 break;
11881
11882 case ada_catch_assert:
11883 uiout->text (_("failed Ada assertions"));
11884 break;
11885
11886 default:
11887 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11888 break;
11889 }
11890 }
11891
11892 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
11893 for all exception catchpoint kinds. */
11894
11895 static void
11896 print_recreate_exception (struct breakpoint *b, struct ui_file *fp)
11897 {
11898 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11899
11900 switch (c->m_kind)
11901 {
11902 case ada_catch_exception:
11903 fprintf_filtered (fp, "catch exception");
11904 if (!c->excep_string.empty ())
11905 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
11906 break;
11907
11908 case ada_catch_exception_unhandled:
11909 fprintf_filtered (fp, "catch exception unhandled");
11910 break;
11911
11912 case ada_catch_handlers:
11913 fprintf_filtered (fp, "catch handlers");
11914 break;
11915
11916 case ada_catch_assert:
11917 fprintf_filtered (fp, "catch assert");
11918 break;
11919
11920 default:
11921 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11922 }
11923 print_recreate_thread (b, fp);
11924 }
11925
11926 /* Virtual tables for various breakpoint types. */
11927 static struct breakpoint_ops catch_exception_breakpoint_ops;
11928 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
11929 static struct breakpoint_ops catch_assert_breakpoint_ops;
11930 static struct breakpoint_ops catch_handlers_breakpoint_ops;
11931
11932 /* See ada-lang.h. */
11933
11934 bool
11935 is_ada_exception_catchpoint (breakpoint *bp)
11936 {
11937 return (bp->ops == &catch_exception_breakpoint_ops
11938 || bp->ops == &catch_exception_unhandled_breakpoint_ops
11939 || bp->ops == &catch_assert_breakpoint_ops
11940 || bp->ops == &catch_handlers_breakpoint_ops);
11941 }
11942
11943 /* Split the arguments specified in a "catch exception" command.
11944 Set EX to the appropriate catchpoint type.
11945 Set EXCEP_STRING to the name of the specific exception if
11946 specified by the user.
11947 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
11948 "catch handlers" command. False otherwise.
11949 If a condition is found at the end of the arguments, the condition
11950 expression is stored in COND_STRING (memory must be deallocated
11951 after use). Otherwise COND_STRING is set to NULL. */
11952
11953 static void
11954 catch_ada_exception_command_split (const char *args,
11955 bool is_catch_handlers_cmd,
11956 enum ada_exception_catchpoint_kind *ex,
11957 std::string *excep_string,
11958 std::string *cond_string)
11959 {
11960 std::string exception_name;
11961
11962 exception_name = extract_arg (&args);
11963 if (exception_name == "if")
11964 {
11965 /* This is not an exception name; this is the start of a condition
11966 expression for a catchpoint on all exceptions. So, "un-get"
11967 this token, and set exception_name to NULL. */
11968 exception_name.clear ();
11969 args -= 2;
11970 }
11971
11972 /* Check to see if we have a condition. */
11973
11974 args = skip_spaces (args);
11975 if (startswith (args, "if")
11976 && (isspace (args[2]) || args[2] == '\0'))
11977 {
11978 args += 2;
11979 args = skip_spaces (args);
11980
11981 if (args[0] == '\0')
11982 error (_("Condition missing after `if' keyword"));
11983 *cond_string = args;
11984
11985 args += strlen (args);
11986 }
11987
11988 /* Check that we do not have any more arguments. Anything else
11989 is unexpected. */
11990
11991 if (args[0] != '\0')
11992 error (_("Junk at end of expression"));
11993
11994 if (is_catch_handlers_cmd)
11995 {
11996 /* Catch handling of exceptions. */
11997 *ex = ada_catch_handlers;
11998 *excep_string = exception_name;
11999 }
12000 else if (exception_name.empty ())
12001 {
12002 /* Catch all exceptions. */
12003 *ex = ada_catch_exception;
12004 excep_string->clear ();
12005 }
12006 else if (exception_name == "unhandled")
12007 {
12008 /* Catch unhandled exceptions. */
12009 *ex = ada_catch_exception_unhandled;
12010 excep_string->clear ();
12011 }
12012 else
12013 {
12014 /* Catch a specific exception. */
12015 *ex = ada_catch_exception;
12016 *excep_string = exception_name;
12017 }
12018 }
12019
12020 /* Return the name of the symbol on which we should break in order to
12021 implement a catchpoint of the EX kind. */
12022
12023 static const char *
12024 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
12025 {
12026 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12027
12028 gdb_assert (data->exception_info != NULL);
12029
12030 switch (ex)
12031 {
12032 case ada_catch_exception:
12033 return (data->exception_info->catch_exception_sym);
12034 break;
12035 case ada_catch_exception_unhandled:
12036 return (data->exception_info->catch_exception_unhandled_sym);
12037 break;
12038 case ada_catch_assert:
12039 return (data->exception_info->catch_assert_sym);
12040 break;
12041 case ada_catch_handlers:
12042 return (data->exception_info->catch_handlers_sym);
12043 break;
12044 default:
12045 internal_error (__FILE__, __LINE__,
12046 _("unexpected catchpoint kind (%d)"), ex);
12047 }
12048 }
12049
12050 /* Return the breakpoint ops "virtual table" used for catchpoints
12051 of the EX kind. */
12052
12053 static const struct breakpoint_ops *
12054 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
12055 {
12056 switch (ex)
12057 {
12058 case ada_catch_exception:
12059 return (&catch_exception_breakpoint_ops);
12060 break;
12061 case ada_catch_exception_unhandled:
12062 return (&catch_exception_unhandled_breakpoint_ops);
12063 break;
12064 case ada_catch_assert:
12065 return (&catch_assert_breakpoint_ops);
12066 break;
12067 case ada_catch_handlers:
12068 return (&catch_handlers_breakpoint_ops);
12069 break;
12070 default:
12071 internal_error (__FILE__, __LINE__,
12072 _("unexpected catchpoint kind (%d)"), ex);
12073 }
12074 }
12075
12076 /* Return the condition that will be used to match the current exception
12077 being raised with the exception that the user wants to catch. This
12078 assumes that this condition is used when the inferior just triggered
12079 an exception catchpoint.
12080 EX: the type of catchpoints used for catching Ada exceptions. */
12081
12082 static std::string
12083 ada_exception_catchpoint_cond_string (const char *excep_string,
12084 enum ada_exception_catchpoint_kind ex)
12085 {
12086 int i;
12087 bool is_standard_exc = false;
12088 std::string result;
12089
12090 if (ex == ada_catch_handlers)
12091 {
12092 /* For exception handlers catchpoints, the condition string does
12093 not use the same parameter as for the other exceptions. */
12094 result = ("long_integer (GNAT_GCC_exception_Access"
12095 "(gcc_exception).all.occurrence.id)");
12096 }
12097 else
12098 result = "long_integer (e)";
12099
12100 /* The standard exceptions are a special case. They are defined in
12101 runtime units that have been compiled without debugging info; if
12102 EXCEP_STRING is the not-fully-qualified name of a standard
12103 exception (e.g. "constraint_error") then, during the evaluation
12104 of the condition expression, the symbol lookup on this name would
12105 *not* return this standard exception. The catchpoint condition
12106 may then be set only on user-defined exceptions which have the
12107 same not-fully-qualified name (e.g. my_package.constraint_error).
12108
12109 To avoid this unexcepted behavior, these standard exceptions are
12110 systematically prefixed by "standard". This means that "catch
12111 exception constraint_error" is rewritten into "catch exception
12112 standard.constraint_error".
12113
12114 If an exception named constraint_error is defined in another package of
12115 the inferior program, then the only way to specify this exception as a
12116 breakpoint condition is to use its fully-qualified named:
12117 e.g. my_package.constraint_error. */
12118
12119 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12120 {
12121 if (strcmp (standard_exc [i], excep_string) == 0)
12122 {
12123 is_standard_exc = true;
12124 break;
12125 }
12126 }
12127
12128 result += " = ";
12129
12130 if (is_standard_exc)
12131 string_appendf (result, "long_integer (&standard.%s)", excep_string);
12132 else
12133 string_appendf (result, "long_integer (&%s)", excep_string);
12134
12135 return result;
12136 }
12137
12138 /* Return the symtab_and_line that should be used to insert an exception
12139 catchpoint of the TYPE kind.
12140
12141 ADDR_STRING returns the name of the function where the real
12142 breakpoint that implements the catchpoints is set, depending on the
12143 type of catchpoint we need to create. */
12144
12145 static struct symtab_and_line
12146 ada_exception_sal (enum ada_exception_catchpoint_kind ex,
12147 std::string *addr_string, const struct breakpoint_ops **ops)
12148 {
12149 const char *sym_name;
12150 struct symbol *sym;
12151
12152 /* First, find out which exception support info to use. */
12153 ada_exception_support_info_sniffer ();
12154
12155 /* Then lookup the function on which we will break in order to catch
12156 the Ada exceptions requested by the user. */
12157 sym_name = ada_exception_sym_name (ex);
12158 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12159
12160 if (sym == NULL)
12161 error (_("Catchpoint symbol not found: %s"), sym_name);
12162
12163 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12164 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
12165
12166 /* Set ADDR_STRING. */
12167 *addr_string = sym_name;
12168
12169 /* Set OPS. */
12170 *ops = ada_exception_breakpoint_ops (ex);
12171
12172 return find_function_start_sal (sym, 1);
12173 }
12174
12175 /* Create an Ada exception catchpoint.
12176
12177 EX_KIND is the kind of exception catchpoint to be created.
12178
12179 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
12180 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12181 of the exception to which this catchpoint applies.
12182
12183 COND_STRING, if not empty, is the catchpoint condition.
12184
12185 TEMPFLAG, if nonzero, means that the underlying breakpoint
12186 should be temporary.
12187
12188 FROM_TTY is the usual argument passed to all commands implementations. */
12189
12190 void
12191 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
12192 enum ada_exception_catchpoint_kind ex_kind,
12193 const std::string &excep_string,
12194 const std::string &cond_string,
12195 int tempflag,
12196 int disabled,
12197 int from_tty)
12198 {
12199 std::string addr_string;
12200 const struct breakpoint_ops *ops = NULL;
12201 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
12202
12203 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint (ex_kind));
12204 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string.c_str (),
12205 ops, tempflag, disabled, from_tty);
12206 c->excep_string = excep_string;
12207 create_excep_cond_exprs (c.get (), ex_kind);
12208 if (!cond_string.empty ())
12209 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty, false);
12210 install_breakpoint (0, std::move (c), 1);
12211 }
12212
12213 /* Implement the "catch exception" command. */
12214
12215 static void
12216 catch_ada_exception_command (const char *arg_entry, int from_tty,
12217 struct cmd_list_element *command)
12218 {
12219 const char *arg = arg_entry;
12220 struct gdbarch *gdbarch = get_current_arch ();
12221 int tempflag;
12222 enum ada_exception_catchpoint_kind ex_kind;
12223 std::string excep_string;
12224 std::string cond_string;
12225
12226 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12227
12228 if (!arg)
12229 arg = "";
12230 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
12231 &cond_string);
12232 create_ada_exception_catchpoint (gdbarch, ex_kind,
12233 excep_string, cond_string,
12234 tempflag, 1 /* enabled */,
12235 from_tty);
12236 }
12237
12238 /* Implement the "catch handlers" command. */
12239
12240 static void
12241 catch_ada_handlers_command (const char *arg_entry, int from_tty,
12242 struct cmd_list_element *command)
12243 {
12244 const char *arg = arg_entry;
12245 struct gdbarch *gdbarch = get_current_arch ();
12246 int tempflag;
12247 enum ada_exception_catchpoint_kind ex_kind;
12248 std::string excep_string;
12249 std::string cond_string;
12250
12251 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12252
12253 if (!arg)
12254 arg = "";
12255 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
12256 &cond_string);
12257 create_ada_exception_catchpoint (gdbarch, ex_kind,
12258 excep_string, cond_string,
12259 tempflag, 1 /* enabled */,
12260 from_tty);
12261 }
12262
12263 /* Completion function for the Ada "catch" commands. */
12264
12265 static void
12266 catch_ada_completer (struct cmd_list_element *cmd, completion_tracker &tracker,
12267 const char *text, const char *word)
12268 {
12269 std::vector<ada_exc_info> exceptions = ada_exceptions_list (NULL);
12270
12271 for (const ada_exc_info &info : exceptions)
12272 {
12273 if (startswith (info.name, word))
12274 tracker.add_completion (make_unique_xstrdup (info.name));
12275 }
12276 }
12277
12278 /* Split the arguments specified in a "catch assert" command.
12279
12280 ARGS contains the command's arguments (or the empty string if
12281 no arguments were passed).
12282
12283 If ARGS contains a condition, set COND_STRING to that condition
12284 (the memory needs to be deallocated after use). */
12285
12286 static void
12287 catch_ada_assert_command_split (const char *args, std::string &cond_string)
12288 {
12289 args = skip_spaces (args);
12290
12291 /* Check whether a condition was provided. */
12292 if (startswith (args, "if")
12293 && (isspace (args[2]) || args[2] == '\0'))
12294 {
12295 args += 2;
12296 args = skip_spaces (args);
12297 if (args[0] == '\0')
12298 error (_("condition missing after `if' keyword"));
12299 cond_string.assign (args);
12300 }
12301
12302 /* Otherwise, there should be no other argument at the end of
12303 the command. */
12304 else if (args[0] != '\0')
12305 error (_("Junk at end of arguments."));
12306 }
12307
12308 /* Implement the "catch assert" command. */
12309
12310 static void
12311 catch_assert_command (const char *arg_entry, int from_tty,
12312 struct cmd_list_element *command)
12313 {
12314 const char *arg = arg_entry;
12315 struct gdbarch *gdbarch = get_current_arch ();
12316 int tempflag;
12317 std::string cond_string;
12318
12319 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12320
12321 if (!arg)
12322 arg = "";
12323 catch_ada_assert_command_split (arg, cond_string);
12324 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
12325 "", cond_string,
12326 tempflag, 1 /* enabled */,
12327 from_tty);
12328 }
12329
12330 /* Return non-zero if the symbol SYM is an Ada exception object. */
12331
12332 static int
12333 ada_is_exception_sym (struct symbol *sym)
12334 {
12335 const char *type_name = SYMBOL_TYPE (sym)->name ();
12336
12337 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
12338 && SYMBOL_CLASS (sym) != LOC_BLOCK
12339 && SYMBOL_CLASS (sym) != LOC_CONST
12340 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
12341 && type_name != NULL && strcmp (type_name, "exception") == 0);
12342 }
12343
12344 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
12345 Ada exception object. This matches all exceptions except the ones
12346 defined by the Ada language. */
12347
12348 static int
12349 ada_is_non_standard_exception_sym (struct symbol *sym)
12350 {
12351 int i;
12352
12353 if (!ada_is_exception_sym (sym))
12354 return 0;
12355
12356 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12357 if (strcmp (sym->linkage_name (), standard_exc[i]) == 0)
12358 return 0; /* A standard exception. */
12359
12360 /* Numeric_Error is also a standard exception, so exclude it.
12361 See the STANDARD_EXC description for more details as to why
12362 this exception is not listed in that array. */
12363 if (strcmp (sym->linkage_name (), "numeric_error") == 0)
12364 return 0;
12365
12366 return 1;
12367 }
12368
12369 /* A helper function for std::sort, comparing two struct ada_exc_info
12370 objects.
12371
12372 The comparison is determined first by exception name, and then
12373 by exception address. */
12374
12375 bool
12376 ada_exc_info::operator< (const ada_exc_info &other) const
12377 {
12378 int result;
12379
12380 result = strcmp (name, other.name);
12381 if (result < 0)
12382 return true;
12383 if (result == 0 && addr < other.addr)
12384 return true;
12385 return false;
12386 }
12387
12388 bool
12389 ada_exc_info::operator== (const ada_exc_info &other) const
12390 {
12391 return addr == other.addr && strcmp (name, other.name) == 0;
12392 }
12393
12394 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
12395 routine, but keeping the first SKIP elements untouched.
12396
12397 All duplicates are also removed. */
12398
12399 static void
12400 sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
12401 int skip)
12402 {
12403 std::sort (exceptions->begin () + skip, exceptions->end ());
12404 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
12405 exceptions->end ());
12406 }
12407
12408 /* Add all exceptions defined by the Ada standard whose name match
12409 a regular expression.
12410
12411 If PREG is not NULL, then this regexp_t object is used to
12412 perform the symbol name matching. Otherwise, no name-based
12413 filtering is performed.
12414
12415 EXCEPTIONS is a vector of exceptions to which matching exceptions
12416 gets pushed. */
12417
12418 static void
12419 ada_add_standard_exceptions (compiled_regex *preg,
12420 std::vector<ada_exc_info> *exceptions)
12421 {
12422 int i;
12423
12424 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12425 {
12426 if (preg == NULL
12427 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
12428 {
12429 struct bound_minimal_symbol msymbol
12430 = ada_lookup_simple_minsym (standard_exc[i]);
12431
12432 if (msymbol.minsym != NULL)
12433 {
12434 struct ada_exc_info info
12435 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
12436
12437 exceptions->push_back (info);
12438 }
12439 }
12440 }
12441 }
12442
12443 /* Add all Ada exceptions defined locally and accessible from the given
12444 FRAME.
12445
12446 If PREG is not NULL, then this regexp_t object is used to
12447 perform the symbol name matching. Otherwise, no name-based
12448 filtering is performed.
12449
12450 EXCEPTIONS is a vector of exceptions to which matching exceptions
12451 gets pushed. */
12452
12453 static void
12454 ada_add_exceptions_from_frame (compiled_regex *preg,
12455 struct frame_info *frame,
12456 std::vector<ada_exc_info> *exceptions)
12457 {
12458 const struct block *block = get_frame_block (frame, 0);
12459
12460 while (block != 0)
12461 {
12462 struct block_iterator iter;
12463 struct symbol *sym;
12464
12465 ALL_BLOCK_SYMBOLS (block, iter, sym)
12466 {
12467 switch (SYMBOL_CLASS (sym))
12468 {
12469 case LOC_TYPEDEF:
12470 case LOC_BLOCK:
12471 case LOC_CONST:
12472 break;
12473 default:
12474 if (ada_is_exception_sym (sym))
12475 {
12476 struct ada_exc_info info = {sym->print_name (),
12477 SYMBOL_VALUE_ADDRESS (sym)};
12478
12479 exceptions->push_back (info);
12480 }
12481 }
12482 }
12483 if (BLOCK_FUNCTION (block) != NULL)
12484 break;
12485 block = BLOCK_SUPERBLOCK (block);
12486 }
12487 }
12488
12489 /* Return true if NAME matches PREG or if PREG is NULL. */
12490
12491 static bool
12492 name_matches_regex (const char *name, compiled_regex *preg)
12493 {
12494 return (preg == NULL
12495 || preg->exec (ada_decode (name).c_str (), 0, NULL, 0) == 0);
12496 }
12497
12498 /* Add all exceptions defined globally whose name name match
12499 a regular expression, excluding standard exceptions.
12500
12501 The reason we exclude standard exceptions is that they need
12502 to be handled separately: Standard exceptions are defined inside
12503 a runtime unit which is normally not compiled with debugging info,
12504 and thus usually do not show up in our symbol search. However,
12505 if the unit was in fact built with debugging info, we need to
12506 exclude them because they would duplicate the entry we found
12507 during the special loop that specifically searches for those
12508 standard exceptions.
12509
12510 If PREG is not NULL, then this regexp_t object is used to
12511 perform the symbol name matching. Otherwise, no name-based
12512 filtering is performed.
12513
12514 EXCEPTIONS is a vector of exceptions to which matching exceptions
12515 gets pushed. */
12516
12517 static void
12518 ada_add_global_exceptions (compiled_regex *preg,
12519 std::vector<ada_exc_info> *exceptions)
12520 {
12521 /* In Ada, the symbol "search name" is a linkage name, whereas the
12522 regular expression used to do the matching refers to the natural
12523 name. So match against the decoded name. */
12524 expand_symtabs_matching (NULL,
12525 lookup_name_info::match_any (),
12526 [&] (const char *search_name)
12527 {
12528 std::string decoded = ada_decode (search_name);
12529 return name_matches_regex (decoded.c_str (), preg);
12530 },
12531 NULL,
12532 VARIABLES_DOMAIN);
12533
12534 for (objfile *objfile : current_program_space->objfiles ())
12535 {
12536 for (compunit_symtab *s : objfile->compunits ())
12537 {
12538 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
12539 int i;
12540
12541 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
12542 {
12543 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
12544 struct block_iterator iter;
12545 struct symbol *sym;
12546
12547 ALL_BLOCK_SYMBOLS (b, iter, sym)
12548 if (ada_is_non_standard_exception_sym (sym)
12549 && name_matches_regex (sym->natural_name (), preg))
12550 {
12551 struct ada_exc_info info
12552 = {sym->print_name (), SYMBOL_VALUE_ADDRESS (sym)};
12553
12554 exceptions->push_back (info);
12555 }
12556 }
12557 }
12558 }
12559 }
12560
12561 /* Implements ada_exceptions_list with the regular expression passed
12562 as a regex_t, rather than a string.
12563
12564 If not NULL, PREG is used to filter out exceptions whose names
12565 do not match. Otherwise, all exceptions are listed. */
12566
12567 static std::vector<ada_exc_info>
12568 ada_exceptions_list_1 (compiled_regex *preg)
12569 {
12570 std::vector<ada_exc_info> result;
12571 int prev_len;
12572
12573 /* First, list the known standard exceptions. These exceptions
12574 need to be handled separately, as they are usually defined in
12575 runtime units that have been compiled without debugging info. */
12576
12577 ada_add_standard_exceptions (preg, &result);
12578
12579 /* Next, find all exceptions whose scope is local and accessible
12580 from the currently selected frame. */
12581
12582 if (has_stack_frames ())
12583 {
12584 prev_len = result.size ();
12585 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
12586 &result);
12587 if (result.size () > prev_len)
12588 sort_remove_dups_ada_exceptions_list (&result, prev_len);
12589 }
12590
12591 /* Add all exceptions whose scope is global. */
12592
12593 prev_len = result.size ();
12594 ada_add_global_exceptions (preg, &result);
12595 if (result.size () > prev_len)
12596 sort_remove_dups_ada_exceptions_list (&result, prev_len);
12597
12598 return result;
12599 }
12600
12601 /* Return a vector of ada_exc_info.
12602
12603 If REGEXP is NULL, all exceptions are included in the result.
12604 Otherwise, it should contain a valid regular expression,
12605 and only the exceptions whose names match that regular expression
12606 are included in the result.
12607
12608 The exceptions are sorted in the following order:
12609 - Standard exceptions (defined by the Ada language), in
12610 alphabetical order;
12611 - Exceptions only visible from the current frame, in
12612 alphabetical order;
12613 - Exceptions whose scope is global, in alphabetical order. */
12614
12615 std::vector<ada_exc_info>
12616 ada_exceptions_list (const char *regexp)
12617 {
12618 if (regexp == NULL)
12619 return ada_exceptions_list_1 (NULL);
12620
12621 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
12622 return ada_exceptions_list_1 (&reg);
12623 }
12624
12625 /* Implement the "info exceptions" command. */
12626
12627 static void
12628 info_exceptions_command (const char *regexp, int from_tty)
12629 {
12630 struct gdbarch *gdbarch = get_current_arch ();
12631
12632 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
12633
12634 if (regexp != NULL)
12635 printf_filtered
12636 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
12637 else
12638 printf_filtered (_("All defined Ada exceptions:\n"));
12639
12640 for (const ada_exc_info &info : exceptions)
12641 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
12642 }
12643
12644 \f
12645 /* Language vector */
12646
12647 /* symbol_name_matcher_ftype adapter for wild_match. */
12648
12649 static bool
12650 do_wild_match (const char *symbol_search_name,
12651 const lookup_name_info &lookup_name,
12652 completion_match_result *comp_match_res)
12653 {
12654 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
12655 }
12656
12657 /* symbol_name_matcher_ftype adapter for full_match. */
12658
12659 static bool
12660 do_full_match (const char *symbol_search_name,
12661 const lookup_name_info &lookup_name,
12662 completion_match_result *comp_match_res)
12663 {
12664 const char *lname = lookup_name.ada ().lookup_name ().c_str ();
12665
12666 /* If both symbols start with "_ada_", just let the loop below
12667 handle the comparison. However, if only the symbol name starts
12668 with "_ada_", skip the prefix and let the match proceed as
12669 usual. */
12670 if (startswith (symbol_search_name, "_ada_")
12671 && !startswith (lname, "_ada"))
12672 symbol_search_name += 5;
12673
12674 int uscore_count = 0;
12675 while (*lname != '\0')
12676 {
12677 if (*symbol_search_name != *lname)
12678 {
12679 if (*symbol_search_name == 'B' && uscore_count == 2
12680 && symbol_search_name[1] == '_')
12681 {
12682 symbol_search_name += 2;
12683 while (isdigit (*symbol_search_name))
12684 ++symbol_search_name;
12685 if (symbol_search_name[0] == '_'
12686 && symbol_search_name[1] == '_')
12687 {
12688 symbol_search_name += 2;
12689 continue;
12690 }
12691 }
12692 return false;
12693 }
12694
12695 if (*symbol_search_name == '_')
12696 ++uscore_count;
12697 else
12698 uscore_count = 0;
12699
12700 ++symbol_search_name;
12701 ++lname;
12702 }
12703
12704 return is_name_suffix (symbol_search_name);
12705 }
12706
12707 /* symbol_name_matcher_ftype for exact (verbatim) matches. */
12708
12709 static bool
12710 do_exact_match (const char *symbol_search_name,
12711 const lookup_name_info &lookup_name,
12712 completion_match_result *comp_match_res)
12713 {
12714 return strcmp (symbol_search_name, ada_lookup_name (lookup_name)) == 0;
12715 }
12716
12717 /* Build the Ada lookup name for LOOKUP_NAME. */
12718
12719 ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
12720 {
12721 gdb::string_view user_name = lookup_name.name ();
12722
12723 if (!user_name.empty () && user_name[0] == '<')
12724 {
12725 if (user_name.back () == '>')
12726 m_encoded_name
12727 = gdb::to_string (user_name.substr (1, user_name.size () - 2));
12728 else
12729 m_encoded_name
12730 = gdb::to_string (user_name.substr (1, user_name.size () - 1));
12731 m_encoded_p = true;
12732 m_verbatim_p = true;
12733 m_wild_match_p = false;
12734 m_standard_p = false;
12735 }
12736 else
12737 {
12738 m_verbatim_p = false;
12739
12740 m_encoded_p = user_name.find ("__") != gdb::string_view::npos;
12741
12742 if (!m_encoded_p)
12743 {
12744 const char *folded = ada_fold_name (user_name);
12745 m_encoded_name = ada_encode_1 (folded, false);
12746 if (m_encoded_name.empty ())
12747 m_encoded_name = gdb::to_string (user_name);
12748 }
12749 else
12750 m_encoded_name = gdb::to_string (user_name);
12751
12752 /* Handle the 'package Standard' special case. See description
12753 of m_standard_p. */
12754 if (startswith (m_encoded_name.c_str (), "standard__"))
12755 {
12756 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
12757 m_standard_p = true;
12758 }
12759 else
12760 m_standard_p = false;
12761
12762 /* If the name contains a ".", then the user is entering a fully
12763 qualified entity name, and the match must not be done in wild
12764 mode. Similarly, if the user wants to complete what looks
12765 like an encoded name, the match must not be done in wild
12766 mode. Also, in the standard__ special case always do
12767 non-wild matching. */
12768 m_wild_match_p
12769 = (lookup_name.match_type () != symbol_name_match_type::FULL
12770 && !m_encoded_p
12771 && !m_standard_p
12772 && user_name.find ('.') == std::string::npos);
12773 }
12774 }
12775
12776 /* symbol_name_matcher_ftype method for Ada. This only handles
12777 completion mode. */
12778
12779 static bool
12780 ada_symbol_name_matches (const char *symbol_search_name,
12781 const lookup_name_info &lookup_name,
12782 completion_match_result *comp_match_res)
12783 {
12784 return lookup_name.ada ().matches (symbol_search_name,
12785 lookup_name.match_type (),
12786 comp_match_res);
12787 }
12788
12789 /* A name matcher that matches the symbol name exactly, with
12790 strcmp. */
12791
12792 static bool
12793 literal_symbol_name_matcher (const char *symbol_search_name,
12794 const lookup_name_info &lookup_name,
12795 completion_match_result *comp_match_res)
12796 {
12797 gdb::string_view name_view = lookup_name.name ();
12798
12799 if (lookup_name.completion_mode ()
12800 ? (strncmp (symbol_search_name, name_view.data (),
12801 name_view.size ()) == 0)
12802 : symbol_search_name == name_view)
12803 {
12804 if (comp_match_res != NULL)
12805 comp_match_res->set_match (symbol_search_name);
12806 return true;
12807 }
12808 else
12809 return false;
12810 }
12811
12812 /* Implement the "get_symbol_name_matcher" language_defn method for
12813 Ada. */
12814
12815 static symbol_name_matcher_ftype *
12816 ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
12817 {
12818 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
12819 return literal_symbol_name_matcher;
12820
12821 if (lookup_name.completion_mode ())
12822 return ada_symbol_name_matches;
12823 else
12824 {
12825 if (lookup_name.ada ().wild_match_p ())
12826 return do_wild_match;
12827 else if (lookup_name.ada ().verbatim_p ())
12828 return do_exact_match;
12829 else
12830 return do_full_match;
12831 }
12832 }
12833
12834 /* Class representing the Ada language. */
12835
12836 class ada_language : public language_defn
12837 {
12838 public:
12839 ada_language ()
12840 : language_defn (language_ada)
12841 { /* Nothing. */ }
12842
12843 /* See language.h. */
12844
12845 const char *name () const override
12846 { return "ada"; }
12847
12848 /* See language.h. */
12849
12850 const char *natural_name () const override
12851 { return "Ada"; }
12852
12853 /* See language.h. */
12854
12855 const std::vector<const char *> &filename_extensions () const override
12856 {
12857 static const std::vector<const char *> extensions
12858 = { ".adb", ".ads", ".a", ".ada", ".dg" };
12859 return extensions;
12860 }
12861
12862 /* Print an array element index using the Ada syntax. */
12863
12864 void print_array_index (struct type *index_type,
12865 LONGEST index,
12866 struct ui_file *stream,
12867 const value_print_options *options) const override
12868 {
12869 struct value *index_value = val_atr (index_type, index);
12870
12871 value_print (index_value, stream, options);
12872 fprintf_filtered (stream, " => ");
12873 }
12874
12875 /* Implement the "read_var_value" language_defn method for Ada. */
12876
12877 struct value *read_var_value (struct symbol *var,
12878 const struct block *var_block,
12879 struct frame_info *frame) const override
12880 {
12881 /* The only case where default_read_var_value is not sufficient
12882 is when VAR is a renaming... */
12883 if (frame != nullptr)
12884 {
12885 const struct block *frame_block = get_frame_block (frame, NULL);
12886 if (frame_block != nullptr && ada_is_renaming_symbol (var))
12887 return ada_read_renaming_var_value (var, frame_block);
12888 }
12889
12890 /* This is a typical case where we expect the default_read_var_value
12891 function to work. */
12892 return language_defn::read_var_value (var, var_block, frame);
12893 }
12894
12895 /* See language.h. */
12896 void language_arch_info (struct gdbarch *gdbarch,
12897 struct language_arch_info *lai) const override
12898 {
12899 const struct builtin_type *builtin = builtin_type (gdbarch);
12900
12901 /* Helper function to allow shorter lines below. */
12902 auto add = [&] (struct type *t)
12903 {
12904 lai->add_primitive_type (t);
12905 };
12906
12907 add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12908 0, "integer"));
12909 add (arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
12910 0, "long_integer"));
12911 add (arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
12912 0, "short_integer"));
12913 struct type *char_type = arch_character_type (gdbarch, TARGET_CHAR_BIT,
12914 0, "character");
12915 lai->set_string_char_type (char_type);
12916 add (char_type);
12917 add (arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
12918 "float", gdbarch_float_format (gdbarch)));
12919 add (arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12920 "long_float", gdbarch_double_format (gdbarch)));
12921 add (arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
12922 0, "long_long_integer"));
12923 add (arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
12924 "long_long_float",
12925 gdbarch_long_double_format (gdbarch)));
12926 add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12927 0, "natural"));
12928 add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12929 0, "positive"));
12930 add (builtin->builtin_void);
12931
12932 struct type *system_addr_ptr
12933 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
12934 "void"));
12935 system_addr_ptr->set_name ("system__address");
12936 add (system_addr_ptr);
12937
12938 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
12939 type. This is a signed integral type whose size is the same as
12940 the size of addresses. */
12941 unsigned int addr_length = TYPE_LENGTH (system_addr_ptr);
12942 add (arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
12943 "storage_offset"));
12944
12945 lai->set_bool_type (builtin->builtin_bool);
12946 }
12947
12948 /* See language.h. */
12949
12950 bool iterate_over_symbols
12951 (const struct block *block, const lookup_name_info &name,
12952 domain_enum domain,
12953 gdb::function_view<symbol_found_callback_ftype> callback) const override
12954 {
12955 std::vector<struct block_symbol> results
12956 = ada_lookup_symbol_list_worker (name, block, domain, 0);
12957 for (block_symbol &sym : results)
12958 {
12959 if (!callback (&sym))
12960 return false;
12961 }
12962
12963 return true;
12964 }
12965
12966 /* See language.h. */
12967 bool sniff_from_mangled_name (const char *mangled,
12968 char **out) const override
12969 {
12970 std::string demangled = ada_decode (mangled);
12971
12972 *out = NULL;
12973
12974 if (demangled != mangled && demangled[0] != '<')
12975 {
12976 /* Set the gsymbol language to Ada, but still return 0.
12977 Two reasons for that:
12978
12979 1. For Ada, we prefer computing the symbol's decoded name
12980 on the fly rather than pre-compute it, in order to save
12981 memory (Ada projects are typically very large).
12982
12983 2. There are some areas in the definition of the GNAT
12984 encoding where, with a bit of bad luck, we might be able
12985 to decode a non-Ada symbol, generating an incorrect
12986 demangled name (Eg: names ending with "TB" for instance
12987 are identified as task bodies and so stripped from
12988 the decoded name returned).
12989
12990 Returning true, here, but not setting *DEMANGLED, helps us get
12991 a little bit of the best of both worlds. Because we're last,
12992 we should not affect any of the other languages that were
12993 able to demangle the symbol before us; we get to correctly
12994 tag Ada symbols as such; and even if we incorrectly tagged a
12995 non-Ada symbol, which should be rare, any routing through the
12996 Ada language should be transparent (Ada tries to behave much
12997 like C/C++ with non-Ada symbols). */
12998 return true;
12999 }
13000
13001 return false;
13002 }
13003
13004 /* See language.h. */
13005
13006 char *demangle_symbol (const char *mangled, int options) const override
13007 {
13008 return ada_la_decode (mangled, options);
13009 }
13010
13011 /* See language.h. */
13012
13013 void print_type (struct type *type, const char *varstring,
13014 struct ui_file *stream, int show, int level,
13015 const struct type_print_options *flags) const override
13016 {
13017 ada_print_type (type, varstring, stream, show, level, flags);
13018 }
13019
13020 /* See language.h. */
13021
13022 const char *word_break_characters (void) const override
13023 {
13024 return ada_completer_word_break_characters;
13025 }
13026
13027 /* See language.h. */
13028
13029 void collect_symbol_completion_matches (completion_tracker &tracker,
13030 complete_symbol_mode mode,
13031 symbol_name_match_type name_match_type,
13032 const char *text, const char *word,
13033 enum type_code code) const override
13034 {
13035 struct symbol *sym;
13036 const struct block *b, *surrounding_static_block = 0;
13037 struct block_iterator iter;
13038
13039 gdb_assert (code == TYPE_CODE_UNDEF);
13040
13041 lookup_name_info lookup_name (text, name_match_type, true);
13042
13043 /* First, look at the partial symtab symbols. */
13044 expand_symtabs_matching (NULL,
13045 lookup_name,
13046 NULL,
13047 NULL,
13048 ALL_DOMAIN);
13049
13050 /* At this point scan through the misc symbol vectors and add each
13051 symbol you find to the list. Eventually we want to ignore
13052 anything that isn't a text symbol (everything else will be
13053 handled by the psymtab code above). */
13054
13055 for (objfile *objfile : current_program_space->objfiles ())
13056 {
13057 for (minimal_symbol *msymbol : objfile->msymbols ())
13058 {
13059 QUIT;
13060
13061 if (completion_skip_symbol (mode, msymbol))
13062 continue;
13063
13064 language symbol_language = msymbol->language ();
13065
13066 /* Ada minimal symbols won't have their language set to Ada. If
13067 we let completion_list_add_name compare using the
13068 default/C-like matcher, then when completing e.g., symbols in a
13069 package named "pck", we'd match internal Ada symbols like
13070 "pckS", which are invalid in an Ada expression, unless you wrap
13071 them in '<' '>' to request a verbatim match.
13072
13073 Unfortunately, some Ada encoded names successfully demangle as
13074 C++ symbols (using an old mangling scheme), such as "name__2Xn"
13075 -> "Xn::name(void)" and thus some Ada minimal symbols end up
13076 with the wrong language set. Paper over that issue here. */
13077 if (symbol_language == language_auto
13078 || symbol_language == language_cplus)
13079 symbol_language = language_ada;
13080
13081 completion_list_add_name (tracker,
13082 symbol_language,
13083 msymbol->linkage_name (),
13084 lookup_name, text, word);
13085 }
13086 }
13087
13088 /* Search upwards from currently selected frame (so that we can
13089 complete on local vars. */
13090
13091 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
13092 {
13093 if (!BLOCK_SUPERBLOCK (b))
13094 surrounding_static_block = b; /* For elmin of dups */
13095
13096 ALL_BLOCK_SYMBOLS (b, iter, sym)
13097 {
13098 if (completion_skip_symbol (mode, sym))
13099 continue;
13100
13101 completion_list_add_name (tracker,
13102 sym->language (),
13103 sym->linkage_name (),
13104 lookup_name, text, word);
13105 }
13106 }
13107
13108 /* Go through the symtabs and check the externs and statics for
13109 symbols which match. */
13110
13111 for (objfile *objfile : current_program_space->objfiles ())
13112 {
13113 for (compunit_symtab *s : objfile->compunits ())
13114 {
13115 QUIT;
13116 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
13117 ALL_BLOCK_SYMBOLS (b, iter, sym)
13118 {
13119 if (completion_skip_symbol (mode, sym))
13120 continue;
13121
13122 completion_list_add_name (tracker,
13123 sym->language (),
13124 sym->linkage_name (),
13125 lookup_name, text, word);
13126 }
13127 }
13128 }
13129
13130 for (objfile *objfile : current_program_space->objfiles ())
13131 {
13132 for (compunit_symtab *s : objfile->compunits ())
13133 {
13134 QUIT;
13135 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
13136 /* Don't do this block twice. */
13137 if (b == surrounding_static_block)
13138 continue;
13139 ALL_BLOCK_SYMBOLS (b, iter, sym)
13140 {
13141 if (completion_skip_symbol (mode, sym))
13142 continue;
13143
13144 completion_list_add_name (tracker,
13145 sym->language (),
13146 sym->linkage_name (),
13147 lookup_name, text, word);
13148 }
13149 }
13150 }
13151 }
13152
13153 /* See language.h. */
13154
13155 gdb::unique_xmalloc_ptr<char> watch_location_expression
13156 (struct type *type, CORE_ADDR addr) const override
13157 {
13158 type = check_typedef (TYPE_TARGET_TYPE (check_typedef (type)));
13159 std::string name = type_to_string (type);
13160 return gdb::unique_xmalloc_ptr<char>
13161 (xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr)));
13162 }
13163
13164 /* See language.h. */
13165
13166 void value_print (struct value *val, struct ui_file *stream,
13167 const struct value_print_options *options) const override
13168 {
13169 return ada_value_print (val, stream, options);
13170 }
13171
13172 /* See language.h. */
13173
13174 void value_print_inner
13175 (struct value *val, struct ui_file *stream, int recurse,
13176 const struct value_print_options *options) const override
13177 {
13178 return ada_value_print_inner (val, stream, recurse, options);
13179 }
13180
13181 /* See language.h. */
13182
13183 struct block_symbol lookup_symbol_nonlocal
13184 (const char *name, const struct block *block,
13185 const domain_enum domain) const override
13186 {
13187 struct block_symbol sym;
13188
13189 sym = ada_lookup_symbol (name, block_static_block (block), domain);
13190 if (sym.symbol != NULL)
13191 return sym;
13192
13193 /* If we haven't found a match at this point, try the primitive
13194 types. In other languages, this search is performed before
13195 searching for global symbols in order to short-circuit that
13196 global-symbol search if it happens that the name corresponds
13197 to a primitive type. But we cannot do the same in Ada, because
13198 it is perfectly legitimate for a program to declare a type which
13199 has the same name as a standard type. If looking up a type in
13200 that situation, we have traditionally ignored the primitive type
13201 in favor of user-defined types. This is why, unlike most other
13202 languages, we search the primitive types this late and only after
13203 having searched the global symbols without success. */
13204
13205 if (domain == VAR_DOMAIN)
13206 {
13207 struct gdbarch *gdbarch;
13208
13209 if (block == NULL)
13210 gdbarch = target_gdbarch ();
13211 else
13212 gdbarch = block_gdbarch (block);
13213 sym.symbol
13214 = language_lookup_primitive_type_as_symbol (this, gdbarch, name);
13215 if (sym.symbol != NULL)
13216 return sym;
13217 }
13218
13219 return {};
13220 }
13221
13222 /* See language.h. */
13223
13224 int parser (struct parser_state *ps) const override
13225 {
13226 warnings_issued = 0;
13227 return ada_parse (ps);
13228 }
13229
13230 /* See language.h. */
13231
13232 void emitchar (int ch, struct type *chtype,
13233 struct ui_file *stream, int quoter) const override
13234 {
13235 ada_emit_char (ch, chtype, stream, quoter, 1);
13236 }
13237
13238 /* See language.h. */
13239
13240 void printchar (int ch, struct type *chtype,
13241 struct ui_file *stream) const override
13242 {
13243 ada_printchar (ch, chtype, stream);
13244 }
13245
13246 /* See language.h. */
13247
13248 void printstr (struct ui_file *stream, struct type *elttype,
13249 const gdb_byte *string, unsigned int length,
13250 const char *encoding, int force_ellipses,
13251 const struct value_print_options *options) const override
13252 {
13253 ada_printstr (stream, elttype, string, length, encoding,
13254 force_ellipses, options);
13255 }
13256
13257 /* See language.h. */
13258
13259 void print_typedef (struct type *type, struct symbol *new_symbol,
13260 struct ui_file *stream) const override
13261 {
13262 ada_print_typedef (type, new_symbol, stream);
13263 }
13264
13265 /* See language.h. */
13266
13267 bool is_string_type_p (struct type *type) const override
13268 {
13269 return ada_is_string_type (type);
13270 }
13271
13272 /* See language.h. */
13273
13274 const char *struct_too_deep_ellipsis () const override
13275 { return "(...)"; }
13276
13277 /* See language.h. */
13278
13279 bool c_style_arrays_p () const override
13280 { return false; }
13281
13282 /* See language.h. */
13283
13284 bool store_sym_names_in_linkage_form_p () const override
13285 { return true; }
13286
13287 /* See language.h. */
13288
13289 const struct lang_varobj_ops *varobj_ops () const override
13290 { return &ada_varobj_ops; }
13291
13292 protected:
13293 /* See language.h. */
13294
13295 symbol_name_matcher_ftype *get_symbol_name_matcher_inner
13296 (const lookup_name_info &lookup_name) const override
13297 {
13298 return ada_get_symbol_name_matcher (lookup_name);
13299 }
13300 };
13301
13302 /* Single instance of the Ada language class. */
13303
13304 static ada_language ada_language_defn;
13305
13306 /* Command-list for the "set/show ada" prefix command. */
13307 static struct cmd_list_element *set_ada_list;
13308 static struct cmd_list_element *show_ada_list;
13309
13310 static void
13311 initialize_ada_catchpoint_ops (void)
13312 {
13313 struct breakpoint_ops *ops;
13314
13315 initialize_breakpoint_ops ();
13316
13317 ops = &catch_exception_breakpoint_ops;
13318 *ops = bkpt_breakpoint_ops;
13319 ops->allocate_location = allocate_location_exception;
13320 ops->re_set = re_set_exception;
13321 ops->check_status = check_status_exception;
13322 ops->print_it = print_it_exception;
13323 ops->print_one = print_one_exception;
13324 ops->print_mention = print_mention_exception;
13325 ops->print_recreate = print_recreate_exception;
13326
13327 ops = &catch_exception_unhandled_breakpoint_ops;
13328 *ops = bkpt_breakpoint_ops;
13329 ops->allocate_location = allocate_location_exception;
13330 ops->re_set = re_set_exception;
13331 ops->check_status = check_status_exception;
13332 ops->print_it = print_it_exception;
13333 ops->print_one = print_one_exception;
13334 ops->print_mention = print_mention_exception;
13335 ops->print_recreate = print_recreate_exception;
13336
13337 ops = &catch_assert_breakpoint_ops;
13338 *ops = bkpt_breakpoint_ops;
13339 ops->allocate_location = allocate_location_exception;
13340 ops->re_set = re_set_exception;
13341 ops->check_status = check_status_exception;
13342 ops->print_it = print_it_exception;
13343 ops->print_one = print_one_exception;
13344 ops->print_mention = print_mention_exception;
13345 ops->print_recreate = print_recreate_exception;
13346
13347 ops = &catch_handlers_breakpoint_ops;
13348 *ops = bkpt_breakpoint_ops;
13349 ops->allocate_location = allocate_location_exception;
13350 ops->re_set = re_set_exception;
13351 ops->check_status = check_status_exception;
13352 ops->print_it = print_it_exception;
13353 ops->print_one = print_one_exception;
13354 ops->print_mention = print_mention_exception;
13355 ops->print_recreate = print_recreate_exception;
13356 }
13357
13358 /* This module's 'new_objfile' observer. */
13359
13360 static void
13361 ada_new_objfile_observer (struct objfile *objfile)
13362 {
13363 ada_clear_symbol_cache ();
13364 }
13365
13366 /* This module's 'free_objfile' observer. */
13367
13368 static void
13369 ada_free_objfile_observer (struct objfile *objfile)
13370 {
13371 ada_clear_symbol_cache ();
13372 }
13373
13374 void _initialize_ada_language ();
13375 void
13376 _initialize_ada_language ()
13377 {
13378 initialize_ada_catchpoint_ops ();
13379
13380 add_basic_prefix_cmd ("ada", no_class,
13381 _("Prefix command for changing Ada-specific settings."),
13382 &set_ada_list, "set ada ", 0, &setlist);
13383
13384 add_show_prefix_cmd ("ada", no_class,
13385 _("Generic command for showing Ada-specific settings."),
13386 &show_ada_list, "show ada ", 0, &showlist);
13387
13388 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
13389 &trust_pad_over_xvs, _("\
13390 Enable or disable an optimization trusting PAD types over XVS types."), _("\
13391 Show whether an optimization trusting PAD types over XVS types is activated."),
13392 _("\
13393 This is related to the encoding used by the GNAT compiler. The debugger\n\
13394 should normally trust the contents of PAD types, but certain older versions\n\
13395 of GNAT have a bug that sometimes causes the information in the PAD type\n\
13396 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
13397 work around this bug. It is always safe to turn this option \"off\", but\n\
13398 this incurs a slight performance penalty, so it is recommended to NOT change\n\
13399 this option to \"off\" unless necessary."),
13400 NULL, NULL, &set_ada_list, &show_ada_list);
13401
13402 add_setshow_boolean_cmd ("print-signatures", class_vars,
13403 &print_signatures, _("\
13404 Enable or disable the output of formal and return types for functions in the \
13405 overloads selection menu."), _("\
13406 Show whether the output of formal and return types for functions in the \
13407 overloads selection menu is activated."),
13408 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
13409
13410 add_catch_command ("exception", _("\
13411 Catch Ada exceptions, when raised.\n\
13412 Usage: catch exception [ARG] [if CONDITION]\n\
13413 Without any argument, stop when any Ada exception is raised.\n\
13414 If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\
13415 being raised does not have a handler (and will therefore lead to the task's\n\
13416 termination).\n\
13417 Otherwise, the catchpoint only stops when the name of the exception being\n\
13418 raised is the same as ARG.\n\
13419 CONDITION is a boolean expression that is evaluated to see whether the\n\
13420 exception should cause a stop."),
13421 catch_ada_exception_command,
13422 catch_ada_completer,
13423 CATCH_PERMANENT,
13424 CATCH_TEMPORARY);
13425
13426 add_catch_command ("handlers", _("\
13427 Catch Ada exceptions, when handled.\n\
13428 Usage: catch handlers [ARG] [if CONDITION]\n\
13429 Without any argument, stop when any Ada exception is handled.\n\
13430 With an argument, catch only exceptions with the given name.\n\
13431 CONDITION is a boolean expression that is evaluated to see whether the\n\
13432 exception should cause a stop."),
13433 catch_ada_handlers_command,
13434 catch_ada_completer,
13435 CATCH_PERMANENT,
13436 CATCH_TEMPORARY);
13437 add_catch_command ("assert", _("\
13438 Catch failed Ada assertions, when raised.\n\
13439 Usage: catch assert [if CONDITION]\n\
13440 CONDITION is a boolean expression that is evaluated to see whether the\n\
13441 exception should cause a stop."),
13442 catch_assert_command,
13443 NULL,
13444 CATCH_PERMANENT,
13445 CATCH_TEMPORARY);
13446
13447 varsize_limit = 65536;
13448 add_setshow_uinteger_cmd ("varsize-limit", class_support,
13449 &varsize_limit, _("\
13450 Set the maximum number of bytes allowed in a variable-size object."), _("\
13451 Show the maximum number of bytes allowed in a variable-size object."), _("\
13452 Attempts to access an object whose size is not a compile-time constant\n\
13453 and exceeds this limit will cause an error."),
13454 NULL, NULL, &setlist, &showlist);
13455
13456 add_info ("exceptions", info_exceptions_command,
13457 _("\
13458 List all Ada exception names.\n\
13459 Usage: info exceptions [REGEXP]\n\
13460 If a regular expression is passed as an argument, only those matching\n\
13461 the regular expression are listed."));
13462
13463 add_basic_prefix_cmd ("ada", class_maintenance,
13464 _("Set Ada maintenance-related variables."),
13465 &maint_set_ada_cmdlist, "maintenance set ada ",
13466 0/*allow-unknown*/, &maintenance_set_cmdlist);
13467
13468 add_show_prefix_cmd ("ada", class_maintenance,
13469 _("Show Ada maintenance-related variables."),
13470 &maint_show_ada_cmdlist, "maintenance show ada ",
13471 0/*allow-unknown*/, &maintenance_show_cmdlist);
13472
13473 add_setshow_boolean_cmd
13474 ("ignore-descriptive-types", class_maintenance,
13475 &ada_ignore_descriptive_types_p,
13476 _("Set whether descriptive types generated by GNAT should be ignored."),
13477 _("Show whether descriptive types generated by GNAT should be ignored."),
13478 _("\
13479 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
13480 DWARF attribute."),
13481 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
13482
13483 decoded_names_store = htab_create_alloc (256, htab_hash_string, streq_hash,
13484 NULL, xcalloc, xfree);
13485
13486 /* The ada-lang observers. */
13487 gdb::observers::new_objfile.attach (ada_new_objfile_observer);
13488 gdb::observers::free_objfile.attach (ada_free_objfile_observer);
13489 gdb::observers::inferior_exit.attach (ada_inferior_exit);
13490 }