* ada-lang.c (ada_which_variant_applies): Correctly compute
[binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger. Copyright (C)
2
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21
22 #include "defs.h"
23 #include <stdio.h>
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include <stdarg.h>
27 #include "demangle.h"
28 #include "gdb_regex.h"
29 #include "frame.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "gdbcmd.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35 #include "language.h"
36 #include "c-lang.h"
37 #include "inferior.h"
38 #include "symfile.h"
39 #include "objfiles.h"
40 #include "breakpoint.h"
41 #include "gdbcore.h"
42 #include "hashtab.h"
43 #include "gdb_obstack.h"
44 #include "ada-lang.h"
45 #include "completer.h"
46 #include "gdb_stat.h"
47 #ifdef UI_OUT
48 #include "ui-out.h"
49 #endif
50 #include "block.h"
51 #include "infcall.h"
52 #include "dictionary.h"
53 #include "exceptions.h"
54 #include "annotate.h"
55 #include "valprint.h"
56 #include "source.h"
57 #include "observer.h"
58
59 #ifndef ADA_RETAIN_DOTS
60 #define ADA_RETAIN_DOTS 0
61 #endif
62
63 /* Define whether or not the C operator '/' truncates towards zero for
64 differently signed operands (truncation direction is undefined in C).
65 Copied from valarith.c. */
66
67 #ifndef TRUNCATION_TOWARDS_ZERO
68 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
69 #endif
70
71
72 static void extract_string (CORE_ADDR addr, char *buf);
73
74 static void modify_general_field (char *, LONGEST, int, int);
75
76 static struct type *desc_base_type (struct type *);
77
78 static struct type *desc_bounds_type (struct type *);
79
80 static struct value *desc_bounds (struct value *);
81
82 static int fat_pntr_bounds_bitpos (struct type *);
83
84 static int fat_pntr_bounds_bitsize (struct type *);
85
86 static struct type *desc_data_type (struct type *);
87
88 static struct value *desc_data (struct value *);
89
90 static int fat_pntr_data_bitpos (struct type *);
91
92 static int fat_pntr_data_bitsize (struct type *);
93
94 static struct value *desc_one_bound (struct value *, int, int);
95
96 static int desc_bound_bitpos (struct type *, int, int);
97
98 static int desc_bound_bitsize (struct type *, int, int);
99
100 static struct type *desc_index_type (struct type *, int);
101
102 static int desc_arity (struct type *);
103
104 static int ada_type_match (struct type *, struct type *, int);
105
106 static int ada_args_match (struct symbol *, struct value **, int);
107
108 static struct value *ensure_lval (struct value *, CORE_ADDR *);
109
110 static struct value *convert_actual (struct value *, struct type *,
111 CORE_ADDR *);
112
113 static struct value *make_array_descriptor (struct type *, struct value *,
114 CORE_ADDR *);
115
116 static void ada_add_block_symbols (struct obstack *,
117 struct block *, const char *,
118 domain_enum, struct objfile *,
119 struct symtab *, int);
120
121 static int is_nonfunction (struct ada_symbol_info *, int);
122
123 static void add_defn_to_vec (struct obstack *, struct symbol *,
124 struct block *, struct symtab *);
125
126 static int num_defns_collected (struct obstack *);
127
128 static struct ada_symbol_info *defns_collected (struct obstack *, int);
129
130 static struct partial_symbol *ada_lookup_partial_symbol (struct partial_symtab
131 *, const char *, int,
132 domain_enum, int);
133
134 static struct symtab *symtab_for_sym (struct symbol *);
135
136 static struct value *resolve_subexp (struct expression **, int *, int,
137 struct type *);
138
139 static void replace_operator_with_call (struct expression **, int, int, int,
140 struct symbol *, struct block *);
141
142 static int possible_user_operator_p (enum exp_opcode, struct value **);
143
144 static char *ada_op_name (enum exp_opcode);
145
146 static const char *ada_decoded_op_name (enum exp_opcode);
147
148 static int numeric_type_p (struct type *);
149
150 static int integer_type_p (struct type *);
151
152 static int scalar_type_p (struct type *);
153
154 static int discrete_type_p (struct type *);
155
156 static enum ada_renaming_category parse_old_style_renaming (struct type *,
157 const char **,
158 int *,
159 const char **);
160
161 static struct symbol *find_old_style_renaming_symbol (const char *,
162 struct block *);
163
164 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
165 int, int, int *);
166
167 static struct value *evaluate_subexp (struct type *, struct expression *,
168 int *, enum noside);
169
170 static struct value *evaluate_subexp_type (struct expression *, int *);
171
172 static int is_dynamic_field (struct type *, int);
173
174 static struct type *to_fixed_variant_branch_type (struct type *,
175 const gdb_byte *,
176 CORE_ADDR, struct value *);
177
178 static struct type *to_fixed_array_type (struct type *, struct value *, int);
179
180 static struct type *to_fixed_range_type (char *, struct value *,
181 struct objfile *);
182
183 static struct type *to_static_fixed_type (struct type *);
184 static struct type *static_unwrap_type (struct type *type);
185
186 static struct value *unwrap_value (struct value *);
187
188 static struct type *packed_array_type (struct type *, long *);
189
190 static struct type *decode_packed_array_type (struct type *);
191
192 static struct value *decode_packed_array (struct value *);
193
194 static struct value *value_subscript_packed (struct value *, int,
195 struct value **);
196
197 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int);
198
199 static struct value *coerce_unspec_val_to_type (struct value *,
200 struct type *);
201
202 static struct value *get_var_value (char *, char *);
203
204 static int lesseq_defined_than (struct symbol *, struct symbol *);
205
206 static int equiv_types (struct type *, struct type *);
207
208 static int is_name_suffix (const char *);
209
210 static int wild_match (const char *, int, const char *);
211
212 static struct value *ada_coerce_ref (struct value *);
213
214 static LONGEST pos_atr (struct value *);
215
216 static struct value *value_pos_atr (struct value *);
217
218 static struct value *value_val_atr (struct type *, struct value *);
219
220 static struct symbol *standard_lookup (const char *, const struct block *,
221 domain_enum);
222
223 static struct value *ada_search_struct_field (char *, struct value *, int,
224 struct type *);
225
226 static struct value *ada_value_primitive_field (struct value *, int, int,
227 struct type *);
228
229 static int find_struct_field (char *, struct type *, int,
230 struct type **, int *, int *, int *, int *);
231
232 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
233 struct value *);
234
235 static struct value *ada_to_fixed_value (struct value *);
236
237 static int ada_resolve_function (struct ada_symbol_info *, int,
238 struct value **, int, const char *,
239 struct type *);
240
241 static struct value *ada_coerce_to_simple_array (struct value *);
242
243 static int ada_is_direct_array_type (struct type *);
244
245 static void ada_language_arch_info (struct gdbarch *,
246 struct language_arch_info *);
247
248 static void check_size (const struct type *);
249
250 static struct value *ada_index_struct_field (int, struct value *, int,
251 struct type *);
252
253 static struct value *assign_aggregate (struct value *, struct value *,
254 struct expression *, int *, enum noside);
255
256 static void aggregate_assign_from_choices (struct value *, struct value *,
257 struct expression *,
258 int *, LONGEST *, int *,
259 int, LONGEST, LONGEST);
260
261 static void aggregate_assign_positional (struct value *, struct value *,
262 struct expression *,
263 int *, LONGEST *, int *, int,
264 LONGEST, LONGEST);
265
266
267 static void aggregate_assign_others (struct value *, struct value *,
268 struct expression *,
269 int *, LONGEST *, int, LONGEST, LONGEST);
270
271
272 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
273
274
275 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
276 int *, enum noside);
277
278 static void ada_forward_operator_length (struct expression *, int, int *,
279 int *);
280 \f
281
282
283 /* Maximum-sized dynamic type. */
284 static unsigned int varsize_limit;
285
286 /* FIXME: brobecker/2003-09-17: No longer a const because it is
287 returned by a function that does not return a const char *. */
288 static char *ada_completer_word_break_characters =
289 #ifdef VMS
290 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
291 #else
292 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
293 #endif
294
295 /* The name of the symbol to use to get the name of the main subprogram. */
296 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
297 = "__gnat_ada_main_program_name";
298
299 /* Limit on the number of warnings to raise per expression evaluation. */
300 static int warning_limit = 2;
301
302 /* Number of warning messages issued; reset to 0 by cleanups after
303 expression evaluation. */
304 static int warnings_issued = 0;
305
306 static const char *known_runtime_file_name_patterns[] = {
307 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
308 };
309
310 static const char *known_auxiliary_function_name_patterns[] = {
311 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
312 };
313
314 /* Space for allocating results of ada_lookup_symbol_list. */
315 static struct obstack symbol_list_obstack;
316
317 /* Utilities */
318
319
320 static char *
321 ada_get_gdb_completer_word_break_characters (void)
322 {
323 return ada_completer_word_break_characters;
324 }
325
326 /* Print an array element index using the Ada syntax. */
327
328 static void
329 ada_print_array_index (struct value *index_value, struct ui_file *stream,
330 int format, enum val_prettyprint pretty)
331 {
332 LA_VALUE_PRINT (index_value, stream, format, pretty);
333 fprintf_filtered (stream, " => ");
334 }
335
336 /* Read the string located at ADDR from the inferior and store the
337 result into BUF. */
338
339 static void
340 extract_string (CORE_ADDR addr, char *buf)
341 {
342 int char_index = 0;
343
344 /* Loop, reading one byte at a time, until we reach the '\000'
345 end-of-string marker. */
346 do
347 {
348 target_read_memory (addr + char_index * sizeof (char),
349 buf + char_index * sizeof (char), sizeof (char));
350 char_index++;
351 }
352 while (buf[char_index - 1] != '\000');
353 }
354
355 /* Assuming VECT points to an array of *SIZE objects of size
356 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
357 updating *SIZE as necessary and returning the (new) array. */
358
359 void *
360 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
361 {
362 if (*size < min_size)
363 {
364 *size *= 2;
365 if (*size < min_size)
366 *size = min_size;
367 vect = xrealloc (vect, *size * element_size);
368 }
369 return vect;
370 }
371
372 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
373 suffix of FIELD_NAME beginning "___". */
374
375 static int
376 field_name_match (const char *field_name, const char *target)
377 {
378 int len = strlen (target);
379 return
380 (strncmp (field_name, target, len) == 0
381 && (field_name[len] == '\0'
382 || (strncmp (field_name + len, "___", 3) == 0
383 && strcmp (field_name + strlen (field_name) - 6,
384 "___XVN") != 0)));
385 }
386
387
388 /* Assuming TYPE is a TYPE_CODE_STRUCT, find the field whose name matches
389 FIELD_NAME, and return its index. This function also handles fields
390 whose name have ___ suffixes because the compiler sometimes alters
391 their name by adding such a suffix to represent fields with certain
392 constraints. If the field could not be found, return a negative
393 number if MAYBE_MISSING is set. Otherwise raise an error. */
394
395 int
396 ada_get_field_index (const struct type *type, const char *field_name,
397 int maybe_missing)
398 {
399 int fieldno;
400 for (fieldno = 0; fieldno < TYPE_NFIELDS (type); fieldno++)
401 if (field_name_match (TYPE_FIELD_NAME (type, fieldno), field_name))
402 return fieldno;
403
404 if (!maybe_missing)
405 error (_("Unable to find field %s in struct %s. Aborting"),
406 field_name, TYPE_NAME (type));
407
408 return -1;
409 }
410
411 /* The length of the prefix of NAME prior to any "___" suffix. */
412
413 int
414 ada_name_prefix_len (const char *name)
415 {
416 if (name == NULL)
417 return 0;
418 else
419 {
420 const char *p = strstr (name, "___");
421 if (p == NULL)
422 return strlen (name);
423 else
424 return p - name;
425 }
426 }
427
428 /* Return non-zero if SUFFIX is a suffix of STR.
429 Return zero if STR is null. */
430
431 static int
432 is_suffix (const char *str, const char *suffix)
433 {
434 int len1, len2;
435 if (str == NULL)
436 return 0;
437 len1 = strlen (str);
438 len2 = strlen (suffix);
439 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
440 }
441
442 /* Create a value of type TYPE whose contents come from VALADDR, if it
443 is non-null, and whose memory address (in the inferior) is
444 ADDRESS. */
445
446 struct value *
447 value_from_contents_and_address (struct type *type,
448 const gdb_byte *valaddr,
449 CORE_ADDR address)
450 {
451 struct value *v = allocate_value (type);
452 if (valaddr == NULL)
453 set_value_lazy (v, 1);
454 else
455 memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type));
456 VALUE_ADDRESS (v) = address;
457 if (address != 0)
458 VALUE_LVAL (v) = lval_memory;
459 return v;
460 }
461
462 /* The contents of value VAL, treated as a value of type TYPE. The
463 result is an lval in memory if VAL is. */
464
465 static struct value *
466 coerce_unspec_val_to_type (struct value *val, struct type *type)
467 {
468 type = ada_check_typedef (type);
469 if (value_type (val) == type)
470 return val;
471 else
472 {
473 struct value *result;
474
475 /* Make sure that the object size is not unreasonable before
476 trying to allocate some memory for it. */
477 check_size (type);
478
479 result = allocate_value (type);
480 VALUE_LVAL (result) = VALUE_LVAL (val);
481 set_value_bitsize (result, value_bitsize (val));
482 set_value_bitpos (result, value_bitpos (val));
483 VALUE_ADDRESS (result) = VALUE_ADDRESS (val) + value_offset (val);
484 if (value_lazy (val)
485 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
486 set_value_lazy (result, 1);
487 else
488 memcpy (value_contents_raw (result), value_contents (val),
489 TYPE_LENGTH (type));
490 return result;
491 }
492 }
493
494 static const gdb_byte *
495 cond_offset_host (const gdb_byte *valaddr, long offset)
496 {
497 if (valaddr == NULL)
498 return NULL;
499 else
500 return valaddr + offset;
501 }
502
503 static CORE_ADDR
504 cond_offset_target (CORE_ADDR address, long offset)
505 {
506 if (address == 0)
507 return 0;
508 else
509 return address + offset;
510 }
511
512 /* Issue a warning (as for the definition of warning in utils.c, but
513 with exactly one argument rather than ...), unless the limit on the
514 number of warnings has passed during the evaluation of the current
515 expression. */
516
517 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
518 provided by "complaint". */
519 static void lim_warning (const char *format, ...) ATTR_FORMAT (printf, 1, 2);
520
521 static void
522 lim_warning (const char *format, ...)
523 {
524 va_list args;
525 va_start (args, format);
526
527 warnings_issued += 1;
528 if (warnings_issued <= warning_limit)
529 vwarning (format, args);
530
531 va_end (args);
532 }
533
534 /* Issue an error if the size of an object of type T is unreasonable,
535 i.e. if it would be a bad idea to allocate a value of this type in
536 GDB. */
537
538 static void
539 check_size (const struct type *type)
540 {
541 if (TYPE_LENGTH (type) > varsize_limit)
542 error (_("object size is larger than varsize-limit"));
543 }
544
545
546 /* Note: would have used MAX_OF_TYPE and MIN_OF_TYPE macros from
547 gdbtypes.h, but some of the necessary definitions in that file
548 seem to have gone missing. */
549
550 /* Maximum value of a SIZE-byte signed integer type. */
551 static LONGEST
552 max_of_size (int size)
553 {
554 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
555 return top_bit | (top_bit - 1);
556 }
557
558 /* Minimum value of a SIZE-byte signed integer type. */
559 static LONGEST
560 min_of_size (int size)
561 {
562 return -max_of_size (size) - 1;
563 }
564
565 /* Maximum value of a SIZE-byte unsigned integer type. */
566 static ULONGEST
567 umax_of_size (int size)
568 {
569 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
570 return top_bit | (top_bit - 1);
571 }
572
573 /* Maximum value of integral type T, as a signed quantity. */
574 static LONGEST
575 max_of_type (struct type *t)
576 {
577 if (TYPE_UNSIGNED (t))
578 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
579 else
580 return max_of_size (TYPE_LENGTH (t));
581 }
582
583 /* Minimum value of integral type T, as a signed quantity. */
584 static LONGEST
585 min_of_type (struct type *t)
586 {
587 if (TYPE_UNSIGNED (t))
588 return 0;
589 else
590 return min_of_size (TYPE_LENGTH (t));
591 }
592
593 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
594 static struct value *
595 discrete_type_high_bound (struct type *type)
596 {
597 switch (TYPE_CODE (type))
598 {
599 case TYPE_CODE_RANGE:
600 return value_from_longest (TYPE_TARGET_TYPE (type),
601 TYPE_HIGH_BOUND (type));
602 case TYPE_CODE_ENUM:
603 return
604 value_from_longest (type,
605 TYPE_FIELD_BITPOS (type,
606 TYPE_NFIELDS (type) - 1));
607 case TYPE_CODE_INT:
608 return value_from_longest (type, max_of_type (type));
609 default:
610 error (_("Unexpected type in discrete_type_high_bound."));
611 }
612 }
613
614 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
615 static struct value *
616 discrete_type_low_bound (struct type *type)
617 {
618 switch (TYPE_CODE (type))
619 {
620 case TYPE_CODE_RANGE:
621 return value_from_longest (TYPE_TARGET_TYPE (type),
622 TYPE_LOW_BOUND (type));
623 case TYPE_CODE_ENUM:
624 return value_from_longest (type, TYPE_FIELD_BITPOS (type, 0));
625 case TYPE_CODE_INT:
626 return value_from_longest (type, min_of_type (type));
627 default:
628 error (_("Unexpected type in discrete_type_low_bound."));
629 }
630 }
631
632 /* The identity on non-range types. For range types, the underlying
633 non-range scalar type. */
634
635 static struct type *
636 base_type (struct type *type)
637 {
638 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
639 {
640 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
641 return type;
642 type = TYPE_TARGET_TYPE (type);
643 }
644 return type;
645 }
646 \f
647
648 /* Language Selection */
649
650 /* If the main program is in Ada, return language_ada, otherwise return LANG
651 (the main program is in Ada iif the adainit symbol is found).
652
653 MAIN_PST is not used. */
654
655 enum language
656 ada_update_initial_language (enum language lang,
657 struct partial_symtab *main_pst)
658 {
659 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
660 (struct objfile *) NULL) != NULL)
661 return language_ada;
662
663 return lang;
664 }
665
666 /* If the main procedure is written in Ada, then return its name.
667 The result is good until the next call. Return NULL if the main
668 procedure doesn't appear to be in Ada. */
669
670 char *
671 ada_main_name (void)
672 {
673 struct minimal_symbol *msym;
674 CORE_ADDR main_program_name_addr;
675 static char main_program_name[1024];
676
677 /* For Ada, the name of the main procedure is stored in a specific
678 string constant, generated by the binder. Look for that symbol,
679 extract its address, and then read that string. If we didn't find
680 that string, then most probably the main procedure is not written
681 in Ada. */
682 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
683
684 if (msym != NULL)
685 {
686 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
687 if (main_program_name_addr == 0)
688 error (_("Invalid address for Ada main program name."));
689
690 extract_string (main_program_name_addr, main_program_name);
691 return main_program_name;
692 }
693
694 /* The main procedure doesn't seem to be in Ada. */
695 return NULL;
696 }
697 \f
698 /* Symbols */
699
700 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
701 of NULLs. */
702
703 const struct ada_opname_map ada_opname_table[] = {
704 {"Oadd", "\"+\"", BINOP_ADD},
705 {"Osubtract", "\"-\"", BINOP_SUB},
706 {"Omultiply", "\"*\"", BINOP_MUL},
707 {"Odivide", "\"/\"", BINOP_DIV},
708 {"Omod", "\"mod\"", BINOP_MOD},
709 {"Orem", "\"rem\"", BINOP_REM},
710 {"Oexpon", "\"**\"", BINOP_EXP},
711 {"Olt", "\"<\"", BINOP_LESS},
712 {"Ole", "\"<=\"", BINOP_LEQ},
713 {"Ogt", "\">\"", BINOP_GTR},
714 {"Oge", "\">=\"", BINOP_GEQ},
715 {"Oeq", "\"=\"", BINOP_EQUAL},
716 {"One", "\"/=\"", BINOP_NOTEQUAL},
717 {"Oand", "\"and\"", BINOP_BITWISE_AND},
718 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
719 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
720 {"Oconcat", "\"&\"", BINOP_CONCAT},
721 {"Oabs", "\"abs\"", UNOP_ABS},
722 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
723 {"Oadd", "\"+\"", UNOP_PLUS},
724 {"Osubtract", "\"-\"", UNOP_NEG},
725 {NULL, NULL}
726 };
727
728 /* Return non-zero if STR should be suppressed in info listings. */
729
730 static int
731 is_suppressed_name (const char *str)
732 {
733 if (strncmp (str, "_ada_", 5) == 0)
734 str += 5;
735 if (str[0] == '_' || str[0] == '\000')
736 return 1;
737 else
738 {
739 const char *p;
740 const char *suffix = strstr (str, "___");
741 if (suffix != NULL && suffix[3] != 'X')
742 return 1;
743 if (suffix == NULL)
744 suffix = str + strlen (str);
745 for (p = suffix - 1; p != str; p -= 1)
746 if (isupper (*p))
747 {
748 int i;
749 if (p[0] == 'X' && p[-1] != '_')
750 goto OK;
751 if (*p != 'O')
752 return 1;
753 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
754 if (strncmp (ada_opname_table[i].encoded, p,
755 strlen (ada_opname_table[i].encoded)) == 0)
756 goto OK;
757 return 1;
758 OK:;
759 }
760 return 0;
761 }
762 }
763
764 /* The "encoded" form of DECODED, according to GNAT conventions.
765 The result is valid until the next call to ada_encode. */
766
767 char *
768 ada_encode (const char *decoded)
769 {
770 static char *encoding_buffer = NULL;
771 static size_t encoding_buffer_size = 0;
772 const char *p;
773 int k;
774
775 if (decoded == NULL)
776 return NULL;
777
778 GROW_VECT (encoding_buffer, encoding_buffer_size,
779 2 * strlen (decoded) + 10);
780
781 k = 0;
782 for (p = decoded; *p != '\0'; p += 1)
783 {
784 if (!ADA_RETAIN_DOTS && *p == '.')
785 {
786 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
787 k += 2;
788 }
789 else if (*p == '"')
790 {
791 const struct ada_opname_map *mapping;
792
793 for (mapping = ada_opname_table;
794 mapping->encoded != NULL
795 && strncmp (mapping->decoded, p,
796 strlen (mapping->decoded)) != 0; mapping += 1)
797 ;
798 if (mapping->encoded == NULL)
799 error (_("invalid Ada operator name: %s"), p);
800 strcpy (encoding_buffer + k, mapping->encoded);
801 k += strlen (mapping->encoded);
802 break;
803 }
804 else
805 {
806 encoding_buffer[k] = *p;
807 k += 1;
808 }
809 }
810
811 encoding_buffer[k] = '\0';
812 return encoding_buffer;
813 }
814
815 /* Return NAME folded to lower case, or, if surrounded by single
816 quotes, unfolded, but with the quotes stripped away. Result good
817 to next call. */
818
819 char *
820 ada_fold_name (const char *name)
821 {
822 static char *fold_buffer = NULL;
823 static size_t fold_buffer_size = 0;
824
825 int len = strlen (name);
826 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
827
828 if (name[0] == '\'')
829 {
830 strncpy (fold_buffer, name + 1, len - 2);
831 fold_buffer[len - 2] = '\000';
832 }
833 else
834 {
835 int i;
836 for (i = 0; i <= len; i += 1)
837 fold_buffer[i] = tolower (name[i]);
838 }
839
840 return fold_buffer;
841 }
842
843 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
844
845 static int
846 is_lower_alphanum (const char c)
847 {
848 return (isdigit (c) || (isalpha (c) && islower (c)));
849 }
850
851 /* Remove either of these suffixes:
852 . .{DIGIT}+
853 . ${DIGIT}+
854 . ___{DIGIT}+
855 . __{DIGIT}+.
856 These are suffixes introduced by the compiler for entities such as
857 nested subprogram for instance, in order to avoid name clashes.
858 They do not serve any purpose for the debugger. */
859
860 static void
861 ada_remove_trailing_digits (const char *encoded, int *len)
862 {
863 if (*len > 1 && isdigit (encoded[*len - 1]))
864 {
865 int i = *len - 2;
866 while (i > 0 && isdigit (encoded[i]))
867 i--;
868 if (i >= 0 && encoded[i] == '.')
869 *len = i;
870 else if (i >= 0 && encoded[i] == '$')
871 *len = i;
872 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
873 *len = i - 2;
874 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
875 *len = i - 1;
876 }
877 }
878
879 /* Remove the suffix introduced by the compiler for protected object
880 subprograms. */
881
882 static void
883 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
884 {
885 /* Remove trailing N. */
886
887 /* Protected entry subprograms are broken into two
888 separate subprograms: The first one is unprotected, and has
889 a 'N' suffix; the second is the protected version, and has
890 the 'P' suffix. The second calls the first one after handling
891 the protection. Since the P subprograms are internally generated,
892 we leave these names undecoded, giving the user a clue that this
893 entity is internal. */
894
895 if (*len > 1
896 && encoded[*len - 1] == 'N'
897 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
898 *len = *len - 1;
899 }
900
901 /* If ENCODED follows the GNAT entity encoding conventions, then return
902 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
903 replaced by ENCODED.
904
905 The resulting string is valid until the next call of ada_decode.
906 If the string is unchanged by decoding, the original string pointer
907 is returned. */
908
909 const char *
910 ada_decode (const char *encoded)
911 {
912 int i, j;
913 int len0;
914 const char *p;
915 char *decoded;
916 int at_start_name;
917 static char *decoding_buffer = NULL;
918 static size_t decoding_buffer_size = 0;
919
920 /* The name of the Ada main procedure starts with "_ada_".
921 This prefix is not part of the decoded name, so skip this part
922 if we see this prefix. */
923 if (strncmp (encoded, "_ada_", 5) == 0)
924 encoded += 5;
925
926 /* If the name starts with '_', then it is not a properly encoded
927 name, so do not attempt to decode it. Similarly, if the name
928 starts with '<', the name should not be decoded. */
929 if (encoded[0] == '_' || encoded[0] == '<')
930 goto Suppress;
931
932 len0 = strlen (encoded);
933
934 ada_remove_trailing_digits (encoded, &len0);
935 ada_remove_po_subprogram_suffix (encoded, &len0);
936
937 /* Remove the ___X.* suffix if present. Do not forget to verify that
938 the suffix is located before the current "end" of ENCODED. We want
939 to avoid re-matching parts of ENCODED that have previously been
940 marked as discarded (by decrementing LEN0). */
941 p = strstr (encoded, "___");
942 if (p != NULL && p - encoded < len0 - 3)
943 {
944 if (p[3] == 'X')
945 len0 = p - encoded;
946 else
947 goto Suppress;
948 }
949
950 /* Remove any trailing TKB suffix. It tells us that this symbol
951 is for the body of a task, but that information does not actually
952 appear in the decoded name. */
953
954 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
955 len0 -= 3;
956
957 /* Remove trailing "B" suffixes. */
958 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
959
960 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
961 len0 -= 1;
962
963 /* Make decoded big enough for possible expansion by operator name. */
964
965 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
966 decoded = decoding_buffer;
967
968 /* Remove trailing __{digit}+ or trailing ${digit}+. */
969
970 if (len0 > 1 && isdigit (encoded[len0 - 1]))
971 {
972 i = len0 - 2;
973 while ((i >= 0 && isdigit (encoded[i]))
974 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
975 i -= 1;
976 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
977 len0 = i - 1;
978 else if (encoded[i] == '$')
979 len0 = i;
980 }
981
982 /* The first few characters that are not alphabetic are not part
983 of any encoding we use, so we can copy them over verbatim. */
984
985 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
986 decoded[j] = encoded[i];
987
988 at_start_name = 1;
989 while (i < len0)
990 {
991 /* Is this a symbol function? */
992 if (at_start_name && encoded[i] == 'O')
993 {
994 int k;
995 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
996 {
997 int op_len = strlen (ada_opname_table[k].encoded);
998 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
999 op_len - 1) == 0)
1000 && !isalnum (encoded[i + op_len]))
1001 {
1002 strcpy (decoded + j, ada_opname_table[k].decoded);
1003 at_start_name = 0;
1004 i += op_len;
1005 j += strlen (ada_opname_table[k].decoded);
1006 break;
1007 }
1008 }
1009 if (ada_opname_table[k].encoded != NULL)
1010 continue;
1011 }
1012 at_start_name = 0;
1013
1014 /* Replace "TK__" with "__", which will eventually be translated
1015 into "." (just below). */
1016
1017 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1018 i += 2;
1019
1020 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1021 be translated into "." (just below). These are internal names
1022 generated for anonymous blocks inside which our symbol is nested. */
1023
1024 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1025 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1026 && isdigit (encoded [i+4]))
1027 {
1028 int k = i + 5;
1029
1030 while (k < len0 && isdigit (encoded[k]))
1031 k++; /* Skip any extra digit. */
1032
1033 /* Double-check that the "__B_{DIGITS}+" sequence we found
1034 is indeed followed by "__". */
1035 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1036 i = k;
1037 }
1038
1039 /* Remove _E{DIGITS}+[sb] */
1040
1041 /* Just as for protected object subprograms, there are 2 categories
1042 of subprograms created by the compiler for each entry. The first
1043 one implements the actual entry code, and has a suffix following
1044 the convention above; the second one implements the barrier and
1045 uses the same convention as above, except that the 'E' is replaced
1046 by a 'B'.
1047
1048 Just as above, we do not decode the name of barrier functions
1049 to give the user a clue that the code he is debugging has been
1050 internally generated. */
1051
1052 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1053 && isdigit (encoded[i+2]))
1054 {
1055 int k = i + 3;
1056
1057 while (k < len0 && isdigit (encoded[k]))
1058 k++;
1059
1060 if (k < len0
1061 && (encoded[k] == 'b' || encoded[k] == 's'))
1062 {
1063 k++;
1064 /* Just as an extra precaution, make sure that if this
1065 suffix is followed by anything else, it is a '_'.
1066 Otherwise, we matched this sequence by accident. */
1067 if (k == len0
1068 || (k < len0 && encoded[k] == '_'))
1069 i = k;
1070 }
1071 }
1072
1073 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1074 the GNAT front-end in protected object subprograms. */
1075
1076 if (i < len0 + 3
1077 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1078 {
1079 /* Backtrack a bit up until we reach either the begining of
1080 the encoded name, or "__". Make sure that we only find
1081 digits or lowercase characters. */
1082 const char *ptr = encoded + i - 1;
1083
1084 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1085 ptr--;
1086 if (ptr < encoded
1087 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1088 i++;
1089 }
1090
1091 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1092 {
1093 /* This is a X[bn]* sequence not separated from the previous
1094 part of the name with a non-alpha-numeric character (in other
1095 words, immediately following an alpha-numeric character), then
1096 verify that it is placed at the end of the encoded name. If
1097 not, then the encoding is not valid and we should abort the
1098 decoding. Otherwise, just skip it, it is used in body-nested
1099 package names. */
1100 do
1101 i += 1;
1102 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1103 if (i < len0)
1104 goto Suppress;
1105 }
1106 else if (!ADA_RETAIN_DOTS
1107 && i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1108 {
1109 /* Replace '__' by '.'. */
1110 decoded[j] = '.';
1111 at_start_name = 1;
1112 i += 2;
1113 j += 1;
1114 }
1115 else
1116 {
1117 /* It's a character part of the decoded name, so just copy it
1118 over. */
1119 decoded[j] = encoded[i];
1120 i += 1;
1121 j += 1;
1122 }
1123 }
1124 decoded[j] = '\000';
1125
1126 /* Decoded names should never contain any uppercase character.
1127 Double-check this, and abort the decoding if we find one. */
1128
1129 for (i = 0; decoded[i] != '\0'; i += 1)
1130 if (isupper (decoded[i]) || decoded[i] == ' ')
1131 goto Suppress;
1132
1133 if (strcmp (decoded, encoded) == 0)
1134 return encoded;
1135 else
1136 return decoded;
1137
1138 Suppress:
1139 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1140 decoded = decoding_buffer;
1141 if (encoded[0] == '<')
1142 strcpy (decoded, encoded);
1143 else
1144 sprintf (decoded, "<%s>", encoded);
1145 return decoded;
1146
1147 }
1148
1149 /* Table for keeping permanent unique copies of decoded names. Once
1150 allocated, names in this table are never released. While this is a
1151 storage leak, it should not be significant unless there are massive
1152 changes in the set of decoded names in successive versions of a
1153 symbol table loaded during a single session. */
1154 static struct htab *decoded_names_store;
1155
1156 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1157 in the language-specific part of GSYMBOL, if it has not been
1158 previously computed. Tries to save the decoded name in the same
1159 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1160 in any case, the decoded symbol has a lifetime at least that of
1161 GSYMBOL).
1162 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1163 const, but nevertheless modified to a semantically equivalent form
1164 when a decoded name is cached in it.
1165 */
1166
1167 char *
1168 ada_decode_symbol (const struct general_symbol_info *gsymbol)
1169 {
1170 char **resultp =
1171 (char **) &gsymbol->language_specific.cplus_specific.demangled_name;
1172 if (*resultp == NULL)
1173 {
1174 const char *decoded = ada_decode (gsymbol->name);
1175 if (gsymbol->bfd_section != NULL)
1176 {
1177 bfd *obfd = gsymbol->bfd_section->owner;
1178 if (obfd != NULL)
1179 {
1180 struct objfile *objf;
1181 ALL_OBJFILES (objf)
1182 {
1183 if (obfd == objf->obfd)
1184 {
1185 *resultp = obsavestring (decoded, strlen (decoded),
1186 &objf->objfile_obstack);
1187 break;
1188 }
1189 }
1190 }
1191 }
1192 /* Sometimes, we can't find a corresponding objfile, in which
1193 case, we put the result on the heap. Since we only decode
1194 when needed, we hope this usually does not cause a
1195 significant memory leak (FIXME). */
1196 if (*resultp == NULL)
1197 {
1198 char **slot = (char **) htab_find_slot (decoded_names_store,
1199 decoded, INSERT);
1200 if (*slot == NULL)
1201 *slot = xstrdup (decoded);
1202 *resultp = *slot;
1203 }
1204 }
1205
1206 return *resultp;
1207 }
1208
1209 char *
1210 ada_la_decode (const char *encoded, int options)
1211 {
1212 return xstrdup (ada_decode (encoded));
1213 }
1214
1215 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1216 suffixes that encode debugging information or leading _ada_ on
1217 SYM_NAME (see is_name_suffix commentary for the debugging
1218 information that is ignored). If WILD, then NAME need only match a
1219 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1220 either argument is NULL. */
1221
1222 int
1223 ada_match_name (const char *sym_name, const char *name, int wild)
1224 {
1225 if (sym_name == NULL || name == NULL)
1226 return 0;
1227 else if (wild)
1228 return wild_match (name, strlen (name), sym_name);
1229 else
1230 {
1231 int len_name = strlen (name);
1232 return (strncmp (sym_name, name, len_name) == 0
1233 && is_name_suffix (sym_name + len_name))
1234 || (strncmp (sym_name, "_ada_", 5) == 0
1235 && strncmp (sym_name + 5, name, len_name) == 0
1236 && is_name_suffix (sym_name + len_name + 5));
1237 }
1238 }
1239
1240 /* True (non-zero) iff, in Ada mode, the symbol SYM should be
1241 suppressed in info listings. */
1242
1243 int
1244 ada_suppress_symbol_printing (struct symbol *sym)
1245 {
1246 if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN)
1247 return 1;
1248 else
1249 return is_suppressed_name (SYMBOL_LINKAGE_NAME (sym));
1250 }
1251 \f
1252
1253 /* Arrays */
1254
1255 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1256
1257 static char *bound_name[] = {
1258 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1259 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1260 };
1261
1262 /* Maximum number of array dimensions we are prepared to handle. */
1263
1264 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1265
1266 /* Like modify_field, but allows bitpos > wordlength. */
1267
1268 static void
1269 modify_general_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
1270 {
1271 modify_field (addr + bitpos / 8, fieldval, bitpos % 8, bitsize);
1272 }
1273
1274
1275 /* The desc_* routines return primitive portions of array descriptors
1276 (fat pointers). */
1277
1278 /* The descriptor or array type, if any, indicated by TYPE; removes
1279 level of indirection, if needed. */
1280
1281 static struct type *
1282 desc_base_type (struct type *type)
1283 {
1284 if (type == NULL)
1285 return NULL;
1286 type = ada_check_typedef (type);
1287 if (type != NULL
1288 && (TYPE_CODE (type) == TYPE_CODE_PTR
1289 || TYPE_CODE (type) == TYPE_CODE_REF))
1290 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1291 else
1292 return type;
1293 }
1294
1295 /* True iff TYPE indicates a "thin" array pointer type. */
1296
1297 static int
1298 is_thin_pntr (struct type *type)
1299 {
1300 return
1301 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1302 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1303 }
1304
1305 /* The descriptor type for thin pointer type TYPE. */
1306
1307 static struct type *
1308 thin_descriptor_type (struct type *type)
1309 {
1310 struct type *base_type = desc_base_type (type);
1311 if (base_type == NULL)
1312 return NULL;
1313 if (is_suffix (ada_type_name (base_type), "___XVE"))
1314 return base_type;
1315 else
1316 {
1317 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1318 if (alt_type == NULL)
1319 return base_type;
1320 else
1321 return alt_type;
1322 }
1323 }
1324
1325 /* A pointer to the array data for thin-pointer value VAL. */
1326
1327 static struct value *
1328 thin_data_pntr (struct value *val)
1329 {
1330 struct type *type = value_type (val);
1331 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1332 return value_cast (desc_data_type (thin_descriptor_type (type)),
1333 value_copy (val));
1334 else
1335 return value_from_longest (desc_data_type (thin_descriptor_type (type)),
1336 VALUE_ADDRESS (val) + value_offset (val));
1337 }
1338
1339 /* True iff TYPE indicates a "thick" array pointer type. */
1340
1341 static int
1342 is_thick_pntr (struct type *type)
1343 {
1344 type = desc_base_type (type);
1345 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1346 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1347 }
1348
1349 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1350 pointer to one, the type of its bounds data; otherwise, NULL. */
1351
1352 static struct type *
1353 desc_bounds_type (struct type *type)
1354 {
1355 struct type *r;
1356
1357 type = desc_base_type (type);
1358
1359 if (type == NULL)
1360 return NULL;
1361 else if (is_thin_pntr (type))
1362 {
1363 type = thin_descriptor_type (type);
1364 if (type == NULL)
1365 return NULL;
1366 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1367 if (r != NULL)
1368 return ada_check_typedef (r);
1369 }
1370 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1371 {
1372 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1373 if (r != NULL)
1374 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1375 }
1376 return NULL;
1377 }
1378
1379 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1380 one, a pointer to its bounds data. Otherwise NULL. */
1381
1382 static struct value *
1383 desc_bounds (struct value *arr)
1384 {
1385 struct type *type = ada_check_typedef (value_type (arr));
1386 if (is_thin_pntr (type))
1387 {
1388 struct type *bounds_type =
1389 desc_bounds_type (thin_descriptor_type (type));
1390 LONGEST addr;
1391
1392 if (bounds_type == NULL)
1393 error (_("Bad GNAT array descriptor"));
1394
1395 /* NOTE: The following calculation is not really kosher, but
1396 since desc_type is an XVE-encoded type (and shouldn't be),
1397 the correct calculation is a real pain. FIXME (and fix GCC). */
1398 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1399 addr = value_as_long (arr);
1400 else
1401 addr = VALUE_ADDRESS (arr) + value_offset (arr);
1402
1403 return
1404 value_from_longest (lookup_pointer_type (bounds_type),
1405 addr - TYPE_LENGTH (bounds_type));
1406 }
1407
1408 else if (is_thick_pntr (type))
1409 return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1410 _("Bad GNAT array descriptor"));
1411 else
1412 return NULL;
1413 }
1414
1415 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1416 position of the field containing the address of the bounds data. */
1417
1418 static int
1419 fat_pntr_bounds_bitpos (struct type *type)
1420 {
1421 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1422 }
1423
1424 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1425 size of the field containing the address of the bounds data. */
1426
1427 static int
1428 fat_pntr_bounds_bitsize (struct type *type)
1429 {
1430 type = desc_base_type (type);
1431
1432 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1433 return TYPE_FIELD_BITSIZE (type, 1);
1434 else
1435 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1436 }
1437
1438 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1439 pointer to one, the type of its array data (a
1440 pointer-to-array-with-no-bounds type); otherwise, NULL. Use
1441 ada_type_of_array to get an array type with bounds data. */
1442
1443 static struct type *
1444 desc_data_type (struct type *type)
1445 {
1446 type = desc_base_type (type);
1447
1448 /* NOTE: The following is bogus; see comment in desc_bounds. */
1449 if (is_thin_pntr (type))
1450 return lookup_pointer_type
1451 (desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1)));
1452 else if (is_thick_pntr (type))
1453 return lookup_struct_elt_type (type, "P_ARRAY", 1);
1454 else
1455 return NULL;
1456 }
1457
1458 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1459 its array data. */
1460
1461 static struct value *
1462 desc_data (struct value *arr)
1463 {
1464 struct type *type = value_type (arr);
1465 if (is_thin_pntr (type))
1466 return thin_data_pntr (arr);
1467 else if (is_thick_pntr (type))
1468 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1469 _("Bad GNAT array descriptor"));
1470 else
1471 return NULL;
1472 }
1473
1474
1475 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1476 position of the field containing the address of the data. */
1477
1478 static int
1479 fat_pntr_data_bitpos (struct type *type)
1480 {
1481 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1482 }
1483
1484 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1485 size of the field containing the address of the data. */
1486
1487 static int
1488 fat_pntr_data_bitsize (struct type *type)
1489 {
1490 type = desc_base_type (type);
1491
1492 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1493 return TYPE_FIELD_BITSIZE (type, 0);
1494 else
1495 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1496 }
1497
1498 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1499 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1500 bound, if WHICH is 1. The first bound is I=1. */
1501
1502 static struct value *
1503 desc_one_bound (struct value *bounds, int i, int which)
1504 {
1505 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1506 _("Bad GNAT array descriptor bounds"));
1507 }
1508
1509 /* If BOUNDS is an array-bounds structure type, return the bit position
1510 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1511 bound, if WHICH is 1. The first bound is I=1. */
1512
1513 static int
1514 desc_bound_bitpos (struct type *type, int i, int which)
1515 {
1516 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1517 }
1518
1519 /* If BOUNDS is an array-bounds structure type, return the bit field size
1520 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1521 bound, if WHICH is 1. The first bound is I=1. */
1522
1523 static int
1524 desc_bound_bitsize (struct type *type, int i, int which)
1525 {
1526 type = desc_base_type (type);
1527
1528 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1529 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1530 else
1531 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1532 }
1533
1534 /* If TYPE is the type of an array-bounds structure, the type of its
1535 Ith bound (numbering from 1). Otherwise, NULL. */
1536
1537 static struct type *
1538 desc_index_type (struct type *type, int i)
1539 {
1540 type = desc_base_type (type);
1541
1542 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1543 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1544 else
1545 return NULL;
1546 }
1547
1548 /* The number of index positions in the array-bounds type TYPE.
1549 Return 0 if TYPE is NULL. */
1550
1551 static int
1552 desc_arity (struct type *type)
1553 {
1554 type = desc_base_type (type);
1555
1556 if (type != NULL)
1557 return TYPE_NFIELDS (type) / 2;
1558 return 0;
1559 }
1560
1561 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1562 an array descriptor type (representing an unconstrained array
1563 type). */
1564
1565 static int
1566 ada_is_direct_array_type (struct type *type)
1567 {
1568 if (type == NULL)
1569 return 0;
1570 type = ada_check_typedef (type);
1571 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1572 || ada_is_array_descriptor_type (type));
1573 }
1574
1575 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1576 * to one. */
1577
1578 int
1579 ada_is_array_type (struct type *type)
1580 {
1581 while (type != NULL
1582 && (TYPE_CODE (type) == TYPE_CODE_PTR
1583 || TYPE_CODE (type) == TYPE_CODE_REF))
1584 type = TYPE_TARGET_TYPE (type);
1585 return ada_is_direct_array_type (type);
1586 }
1587
1588 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1589
1590 int
1591 ada_is_simple_array_type (struct type *type)
1592 {
1593 if (type == NULL)
1594 return 0;
1595 type = ada_check_typedef (type);
1596 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1597 || (TYPE_CODE (type) == TYPE_CODE_PTR
1598 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
1599 }
1600
1601 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1602
1603 int
1604 ada_is_array_descriptor_type (struct type *type)
1605 {
1606 struct type *data_type = desc_data_type (type);
1607
1608 if (type == NULL)
1609 return 0;
1610 type = ada_check_typedef (type);
1611 return
1612 data_type != NULL
1613 && ((TYPE_CODE (data_type) == TYPE_CODE_PTR
1614 && TYPE_TARGET_TYPE (data_type) != NULL
1615 && TYPE_CODE (TYPE_TARGET_TYPE (data_type)) == TYPE_CODE_ARRAY)
1616 || TYPE_CODE (data_type) == TYPE_CODE_ARRAY)
1617 && desc_arity (desc_bounds_type (type)) > 0;
1618 }
1619
1620 /* Non-zero iff type is a partially mal-formed GNAT array
1621 descriptor. FIXME: This is to compensate for some problems with
1622 debugging output from GNAT. Re-examine periodically to see if it
1623 is still needed. */
1624
1625 int
1626 ada_is_bogus_array_descriptor (struct type *type)
1627 {
1628 return
1629 type != NULL
1630 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1631 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1632 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1633 && !ada_is_array_descriptor_type (type);
1634 }
1635
1636
1637 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1638 (fat pointer) returns the type of the array data described---specifically,
1639 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1640 in from the descriptor; otherwise, they are left unspecified. If
1641 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1642 returns NULL. The result is simply the type of ARR if ARR is not
1643 a descriptor. */
1644 struct type *
1645 ada_type_of_array (struct value *arr, int bounds)
1646 {
1647 if (ada_is_packed_array_type (value_type (arr)))
1648 return decode_packed_array_type (value_type (arr));
1649
1650 if (!ada_is_array_descriptor_type (value_type (arr)))
1651 return value_type (arr);
1652
1653 if (!bounds)
1654 return
1655 ada_check_typedef (TYPE_TARGET_TYPE (desc_data_type (value_type (arr))));
1656 else
1657 {
1658 struct type *elt_type;
1659 int arity;
1660 struct value *descriptor;
1661 struct objfile *objf = TYPE_OBJFILE (value_type (arr));
1662
1663 elt_type = ada_array_element_type (value_type (arr), -1);
1664 arity = ada_array_arity (value_type (arr));
1665
1666 if (elt_type == NULL || arity == 0)
1667 return ada_check_typedef (value_type (arr));
1668
1669 descriptor = desc_bounds (arr);
1670 if (value_as_long (descriptor) == 0)
1671 return NULL;
1672 while (arity > 0)
1673 {
1674 struct type *range_type = alloc_type (objf);
1675 struct type *array_type = alloc_type (objf);
1676 struct value *low = desc_one_bound (descriptor, arity, 0);
1677 struct value *high = desc_one_bound (descriptor, arity, 1);
1678 arity -= 1;
1679
1680 create_range_type (range_type, value_type (low),
1681 longest_to_int (value_as_long (low)),
1682 longest_to_int (value_as_long (high)));
1683 elt_type = create_array_type (array_type, elt_type, range_type);
1684 }
1685
1686 return lookup_pointer_type (elt_type);
1687 }
1688 }
1689
1690 /* If ARR does not represent an array, returns ARR unchanged.
1691 Otherwise, returns either a standard GDB array with bounds set
1692 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1693 GDB array. Returns NULL if ARR is a null fat pointer. */
1694
1695 struct value *
1696 ada_coerce_to_simple_array_ptr (struct value *arr)
1697 {
1698 if (ada_is_array_descriptor_type (value_type (arr)))
1699 {
1700 struct type *arrType = ada_type_of_array (arr, 1);
1701 if (arrType == NULL)
1702 return NULL;
1703 return value_cast (arrType, value_copy (desc_data (arr)));
1704 }
1705 else if (ada_is_packed_array_type (value_type (arr)))
1706 return decode_packed_array (arr);
1707 else
1708 return arr;
1709 }
1710
1711 /* If ARR does not represent an array, returns ARR unchanged.
1712 Otherwise, returns a standard GDB array describing ARR (which may
1713 be ARR itself if it already is in the proper form). */
1714
1715 static struct value *
1716 ada_coerce_to_simple_array (struct value *arr)
1717 {
1718 if (ada_is_array_descriptor_type (value_type (arr)))
1719 {
1720 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1721 if (arrVal == NULL)
1722 error (_("Bounds unavailable for null array pointer."));
1723 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1724 return value_ind (arrVal);
1725 }
1726 else if (ada_is_packed_array_type (value_type (arr)))
1727 return decode_packed_array (arr);
1728 else
1729 return arr;
1730 }
1731
1732 /* If TYPE represents a GNAT array type, return it translated to an
1733 ordinary GDB array type (possibly with BITSIZE fields indicating
1734 packing). For other types, is the identity. */
1735
1736 struct type *
1737 ada_coerce_to_simple_array_type (struct type *type)
1738 {
1739 struct value *mark = value_mark ();
1740 struct value *dummy = value_from_longest (builtin_type_long, 0);
1741 struct type *result;
1742 deprecated_set_value_type (dummy, type);
1743 result = ada_type_of_array (dummy, 0);
1744 value_free_to_mark (mark);
1745 return result;
1746 }
1747
1748 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1749
1750 int
1751 ada_is_packed_array_type (struct type *type)
1752 {
1753 if (type == NULL)
1754 return 0;
1755 type = desc_base_type (type);
1756 type = ada_check_typedef (type);
1757 return
1758 ada_type_name (type) != NULL
1759 && strstr (ada_type_name (type), "___XP") != NULL;
1760 }
1761
1762 /* Given that TYPE is a standard GDB array type with all bounds filled
1763 in, and that the element size of its ultimate scalar constituents
1764 (that is, either its elements, or, if it is an array of arrays, its
1765 elements' elements, etc.) is *ELT_BITS, return an identical type,
1766 but with the bit sizes of its elements (and those of any
1767 constituent arrays) recorded in the BITSIZE components of its
1768 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1769 in bits. */
1770
1771 static struct type *
1772 packed_array_type (struct type *type, long *elt_bits)
1773 {
1774 struct type *new_elt_type;
1775 struct type *new_type;
1776 LONGEST low_bound, high_bound;
1777
1778 type = ada_check_typedef (type);
1779 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1780 return type;
1781
1782 new_type = alloc_type (TYPE_OBJFILE (type));
1783 new_elt_type = packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
1784 elt_bits);
1785 create_array_type (new_type, new_elt_type, TYPE_FIELD_TYPE (type, 0));
1786 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
1787 TYPE_NAME (new_type) = ada_type_name (type);
1788
1789 if (get_discrete_bounds (TYPE_FIELD_TYPE (type, 0),
1790 &low_bound, &high_bound) < 0)
1791 low_bound = high_bound = 0;
1792 if (high_bound < low_bound)
1793 *elt_bits = TYPE_LENGTH (new_type) = 0;
1794 else
1795 {
1796 *elt_bits *= (high_bound - low_bound + 1);
1797 TYPE_LENGTH (new_type) =
1798 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
1799 }
1800
1801 TYPE_FLAGS (new_type) |= TYPE_FLAG_FIXED_INSTANCE;
1802 return new_type;
1803 }
1804
1805 /* The array type encoded by TYPE, where ada_is_packed_array_type (TYPE). */
1806
1807 static struct type *
1808 decode_packed_array_type (struct type *type)
1809 {
1810 struct symbol *sym;
1811 struct block **blocks;
1812 char *raw_name = ada_type_name (ada_check_typedef (type));
1813 char *name;
1814 char *tail;
1815 struct type *shadow_type;
1816 long bits;
1817 int i, n;
1818
1819 if (!raw_name)
1820 raw_name = ada_type_name (desc_base_type (type));
1821
1822 if (!raw_name)
1823 return NULL;
1824
1825 name = (char *) alloca (strlen (raw_name) + 1);
1826 tail = strstr (raw_name, "___XP");
1827 type = desc_base_type (type);
1828
1829 memcpy (name, raw_name, tail - raw_name);
1830 name[tail - raw_name] = '\000';
1831
1832 sym = standard_lookup (name, get_selected_block (0), VAR_DOMAIN);
1833 if (sym == NULL || SYMBOL_TYPE (sym) == NULL)
1834 {
1835 lim_warning (_("could not find bounds information on packed array"));
1836 return NULL;
1837 }
1838 shadow_type = SYMBOL_TYPE (sym);
1839
1840 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
1841 {
1842 lim_warning (_("could not understand bounds information on packed array"));
1843 return NULL;
1844 }
1845
1846 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1847 {
1848 lim_warning
1849 (_("could not understand bit size information on packed array"));
1850 return NULL;
1851 }
1852
1853 return packed_array_type (shadow_type, &bits);
1854 }
1855
1856 /* Given that ARR is a struct value *indicating a GNAT packed array,
1857 returns a simple array that denotes that array. Its type is a
1858 standard GDB array type except that the BITSIZEs of the array
1859 target types are set to the number of bits in each element, and the
1860 type length is set appropriately. */
1861
1862 static struct value *
1863 decode_packed_array (struct value *arr)
1864 {
1865 struct type *type;
1866
1867 arr = ada_coerce_ref (arr);
1868 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
1869 arr = ada_value_ind (arr);
1870
1871 type = decode_packed_array_type (value_type (arr));
1872 if (type == NULL)
1873 {
1874 error (_("can't unpack array"));
1875 return NULL;
1876 }
1877
1878 if (BITS_BIG_ENDIAN && ada_is_modular_type (value_type (arr)))
1879 {
1880 /* This is a (right-justified) modular type representing a packed
1881 array with no wrapper. In order to interpret the value through
1882 the (left-justified) packed array type we just built, we must
1883 first left-justify it. */
1884 int bit_size, bit_pos;
1885 ULONGEST mod;
1886
1887 mod = ada_modulus (value_type (arr)) - 1;
1888 bit_size = 0;
1889 while (mod > 0)
1890 {
1891 bit_size += 1;
1892 mod >>= 1;
1893 }
1894 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
1895 arr = ada_value_primitive_packed_val (arr, NULL,
1896 bit_pos / HOST_CHAR_BIT,
1897 bit_pos % HOST_CHAR_BIT,
1898 bit_size,
1899 type);
1900 }
1901
1902 return coerce_unspec_val_to_type (arr, type);
1903 }
1904
1905
1906 /* The value of the element of packed array ARR at the ARITY indices
1907 given in IND. ARR must be a simple array. */
1908
1909 static struct value *
1910 value_subscript_packed (struct value *arr, int arity, struct value **ind)
1911 {
1912 int i;
1913 int bits, elt_off, bit_off;
1914 long elt_total_bit_offset;
1915 struct type *elt_type;
1916 struct value *v;
1917
1918 bits = 0;
1919 elt_total_bit_offset = 0;
1920 elt_type = ada_check_typedef (value_type (arr));
1921 for (i = 0; i < arity; i += 1)
1922 {
1923 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
1924 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
1925 error
1926 (_("attempt to do packed indexing of something other than a packed array"));
1927 else
1928 {
1929 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
1930 LONGEST lowerbound, upperbound;
1931 LONGEST idx;
1932
1933 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
1934 {
1935 lim_warning (_("don't know bounds of array"));
1936 lowerbound = upperbound = 0;
1937 }
1938
1939 idx = value_as_long (value_pos_atr (ind[i]));
1940 if (idx < lowerbound || idx > upperbound)
1941 lim_warning (_("packed array index %ld out of bounds"), (long) idx);
1942 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
1943 elt_total_bit_offset += (idx - lowerbound) * bits;
1944 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
1945 }
1946 }
1947 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
1948 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
1949
1950 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
1951 bits, elt_type);
1952 return v;
1953 }
1954
1955 /* Non-zero iff TYPE includes negative integer values. */
1956
1957 static int
1958 has_negatives (struct type *type)
1959 {
1960 switch (TYPE_CODE (type))
1961 {
1962 default:
1963 return 0;
1964 case TYPE_CODE_INT:
1965 return !TYPE_UNSIGNED (type);
1966 case TYPE_CODE_RANGE:
1967 return TYPE_LOW_BOUND (type) < 0;
1968 }
1969 }
1970
1971
1972 /* Create a new value of type TYPE from the contents of OBJ starting
1973 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
1974 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
1975 assigning through the result will set the field fetched from.
1976 VALADDR is ignored unless OBJ is NULL, in which case,
1977 VALADDR+OFFSET must address the start of storage containing the
1978 packed value. The value returned in this case is never an lval.
1979 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
1980
1981 struct value *
1982 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
1983 long offset, int bit_offset, int bit_size,
1984 struct type *type)
1985 {
1986 struct value *v;
1987 int src, /* Index into the source area */
1988 targ, /* Index into the target area */
1989 srcBitsLeft, /* Number of source bits left to move */
1990 nsrc, ntarg, /* Number of source and target bytes */
1991 unusedLS, /* Number of bits in next significant
1992 byte of source that are unused */
1993 accumSize; /* Number of meaningful bits in accum */
1994 unsigned char *bytes; /* First byte containing data to unpack */
1995 unsigned char *unpacked;
1996 unsigned long accum; /* Staging area for bits being transferred */
1997 unsigned char sign;
1998 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
1999 /* Transmit bytes from least to most significant; delta is the direction
2000 the indices move. */
2001 int delta = BITS_BIG_ENDIAN ? -1 : 1;
2002
2003 type = ada_check_typedef (type);
2004
2005 if (obj == NULL)
2006 {
2007 v = allocate_value (type);
2008 bytes = (unsigned char *) (valaddr + offset);
2009 }
2010 else if (value_lazy (obj))
2011 {
2012 v = value_at (type,
2013 VALUE_ADDRESS (obj) + value_offset (obj) + offset);
2014 bytes = (unsigned char *) alloca (len);
2015 read_memory (VALUE_ADDRESS (v), bytes, len);
2016 }
2017 else
2018 {
2019 v = allocate_value (type);
2020 bytes = (unsigned char *) value_contents (obj) + offset;
2021 }
2022
2023 if (obj != NULL)
2024 {
2025 VALUE_LVAL (v) = VALUE_LVAL (obj);
2026 if (VALUE_LVAL (obj) == lval_internalvar)
2027 VALUE_LVAL (v) = lval_internalvar_component;
2028 VALUE_ADDRESS (v) = VALUE_ADDRESS (obj) + value_offset (obj) + offset;
2029 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2030 set_value_bitsize (v, bit_size);
2031 if (value_bitpos (v) >= HOST_CHAR_BIT)
2032 {
2033 VALUE_ADDRESS (v) += 1;
2034 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2035 }
2036 }
2037 else
2038 set_value_bitsize (v, bit_size);
2039 unpacked = (unsigned char *) value_contents (v);
2040
2041 srcBitsLeft = bit_size;
2042 nsrc = len;
2043 ntarg = TYPE_LENGTH (type);
2044 sign = 0;
2045 if (bit_size == 0)
2046 {
2047 memset (unpacked, 0, TYPE_LENGTH (type));
2048 return v;
2049 }
2050 else if (BITS_BIG_ENDIAN)
2051 {
2052 src = len - 1;
2053 if (has_negatives (type)
2054 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2055 sign = ~0;
2056
2057 unusedLS =
2058 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2059 % HOST_CHAR_BIT;
2060
2061 switch (TYPE_CODE (type))
2062 {
2063 case TYPE_CODE_ARRAY:
2064 case TYPE_CODE_UNION:
2065 case TYPE_CODE_STRUCT:
2066 /* Non-scalar values must be aligned at a byte boundary... */
2067 accumSize =
2068 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2069 /* ... And are placed at the beginning (most-significant) bytes
2070 of the target. */
2071 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2072 break;
2073 default:
2074 accumSize = 0;
2075 targ = TYPE_LENGTH (type) - 1;
2076 break;
2077 }
2078 }
2079 else
2080 {
2081 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2082
2083 src = targ = 0;
2084 unusedLS = bit_offset;
2085 accumSize = 0;
2086
2087 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2088 sign = ~0;
2089 }
2090
2091 accum = 0;
2092 while (nsrc > 0)
2093 {
2094 /* Mask for removing bits of the next source byte that are not
2095 part of the value. */
2096 unsigned int unusedMSMask =
2097 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2098 1;
2099 /* Sign-extend bits for this byte. */
2100 unsigned int signMask = sign & ~unusedMSMask;
2101 accum |=
2102 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2103 accumSize += HOST_CHAR_BIT - unusedLS;
2104 if (accumSize >= HOST_CHAR_BIT)
2105 {
2106 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2107 accumSize -= HOST_CHAR_BIT;
2108 accum >>= HOST_CHAR_BIT;
2109 ntarg -= 1;
2110 targ += delta;
2111 }
2112 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2113 unusedLS = 0;
2114 nsrc -= 1;
2115 src += delta;
2116 }
2117 while (ntarg > 0)
2118 {
2119 accum |= sign << accumSize;
2120 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2121 accumSize -= HOST_CHAR_BIT;
2122 accum >>= HOST_CHAR_BIT;
2123 ntarg -= 1;
2124 targ += delta;
2125 }
2126
2127 return v;
2128 }
2129
2130 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2131 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2132 not overlap. */
2133 static void
2134 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2135 int src_offset, int n)
2136 {
2137 unsigned int accum, mask;
2138 int accum_bits, chunk_size;
2139
2140 target += targ_offset / HOST_CHAR_BIT;
2141 targ_offset %= HOST_CHAR_BIT;
2142 source += src_offset / HOST_CHAR_BIT;
2143 src_offset %= HOST_CHAR_BIT;
2144 if (BITS_BIG_ENDIAN)
2145 {
2146 accum = (unsigned char) *source;
2147 source += 1;
2148 accum_bits = HOST_CHAR_BIT - src_offset;
2149
2150 while (n > 0)
2151 {
2152 int unused_right;
2153 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2154 accum_bits += HOST_CHAR_BIT;
2155 source += 1;
2156 chunk_size = HOST_CHAR_BIT - targ_offset;
2157 if (chunk_size > n)
2158 chunk_size = n;
2159 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2160 mask = ((1 << chunk_size) - 1) << unused_right;
2161 *target =
2162 (*target & ~mask)
2163 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2164 n -= chunk_size;
2165 accum_bits -= chunk_size;
2166 target += 1;
2167 targ_offset = 0;
2168 }
2169 }
2170 else
2171 {
2172 accum = (unsigned char) *source >> src_offset;
2173 source += 1;
2174 accum_bits = HOST_CHAR_BIT - src_offset;
2175
2176 while (n > 0)
2177 {
2178 accum = accum + ((unsigned char) *source << accum_bits);
2179 accum_bits += HOST_CHAR_BIT;
2180 source += 1;
2181 chunk_size = HOST_CHAR_BIT - targ_offset;
2182 if (chunk_size > n)
2183 chunk_size = n;
2184 mask = ((1 << chunk_size) - 1) << targ_offset;
2185 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2186 n -= chunk_size;
2187 accum_bits -= chunk_size;
2188 accum >>= chunk_size;
2189 target += 1;
2190 targ_offset = 0;
2191 }
2192 }
2193 }
2194
2195 /* Store the contents of FROMVAL into the location of TOVAL.
2196 Return a new value with the location of TOVAL and contents of
2197 FROMVAL. Handles assignment into packed fields that have
2198 floating-point or non-scalar types. */
2199
2200 static struct value *
2201 ada_value_assign (struct value *toval, struct value *fromval)
2202 {
2203 struct type *type = value_type (toval);
2204 int bits = value_bitsize (toval);
2205
2206 toval = ada_coerce_ref (toval);
2207 fromval = ada_coerce_ref (fromval);
2208
2209 if (ada_is_direct_array_type (value_type (toval)))
2210 toval = ada_coerce_to_simple_array (toval);
2211 if (ada_is_direct_array_type (value_type (fromval)))
2212 fromval = ada_coerce_to_simple_array (fromval);
2213
2214 if (!deprecated_value_modifiable (toval))
2215 error (_("Left operand of assignment is not a modifiable lvalue."));
2216
2217 if (VALUE_LVAL (toval) == lval_memory
2218 && bits > 0
2219 && (TYPE_CODE (type) == TYPE_CODE_FLT
2220 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2221 {
2222 int len = (value_bitpos (toval)
2223 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2224 char *buffer = (char *) alloca (len);
2225 struct value *val;
2226 CORE_ADDR to_addr = VALUE_ADDRESS (toval) + value_offset (toval);
2227
2228 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2229 fromval = value_cast (type, fromval);
2230
2231 read_memory (to_addr, buffer, len);
2232 if (BITS_BIG_ENDIAN)
2233 move_bits (buffer, value_bitpos (toval),
2234 value_contents (fromval),
2235 TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT -
2236 bits, bits);
2237 else
2238 move_bits (buffer, value_bitpos (toval), value_contents (fromval),
2239 0, bits);
2240 write_memory (to_addr, buffer, len);
2241 if (deprecated_memory_changed_hook)
2242 deprecated_memory_changed_hook (to_addr, len);
2243
2244 val = value_copy (toval);
2245 memcpy (value_contents_raw (val), value_contents (fromval),
2246 TYPE_LENGTH (type));
2247 deprecated_set_value_type (val, type);
2248
2249 return val;
2250 }
2251
2252 return value_assign (toval, fromval);
2253 }
2254
2255
2256 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2257 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2258 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2259 * COMPONENT, and not the inferior's memory. The current contents
2260 * of COMPONENT are ignored. */
2261 static void
2262 value_assign_to_component (struct value *container, struct value *component,
2263 struct value *val)
2264 {
2265 LONGEST offset_in_container =
2266 (LONGEST) (VALUE_ADDRESS (component) + value_offset (component)
2267 - VALUE_ADDRESS (container) - value_offset (container));
2268 int bit_offset_in_container =
2269 value_bitpos (component) - value_bitpos (container);
2270 int bits;
2271
2272 val = value_cast (value_type (component), val);
2273
2274 if (value_bitsize (component) == 0)
2275 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2276 else
2277 bits = value_bitsize (component);
2278
2279 if (BITS_BIG_ENDIAN)
2280 move_bits (value_contents_writeable (container) + offset_in_container,
2281 value_bitpos (container) + bit_offset_in_container,
2282 value_contents (val),
2283 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2284 bits);
2285 else
2286 move_bits (value_contents_writeable (container) + offset_in_container,
2287 value_bitpos (container) + bit_offset_in_container,
2288 value_contents (val), 0, bits);
2289 }
2290
2291 /* The value of the element of array ARR at the ARITY indices given in IND.
2292 ARR may be either a simple array, GNAT array descriptor, or pointer
2293 thereto. */
2294
2295 struct value *
2296 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2297 {
2298 int k;
2299 struct value *elt;
2300 struct type *elt_type;
2301
2302 elt = ada_coerce_to_simple_array (arr);
2303
2304 elt_type = ada_check_typedef (value_type (elt));
2305 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2306 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2307 return value_subscript_packed (elt, arity, ind);
2308
2309 for (k = 0; k < arity; k += 1)
2310 {
2311 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2312 error (_("too many subscripts (%d expected)"), k);
2313 elt = value_subscript (elt, value_pos_atr (ind[k]));
2314 }
2315 return elt;
2316 }
2317
2318 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2319 value of the element of *ARR at the ARITY indices given in
2320 IND. Does not read the entire array into memory. */
2321
2322 struct value *
2323 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2324 struct value **ind)
2325 {
2326 int k;
2327
2328 for (k = 0; k < arity; k += 1)
2329 {
2330 LONGEST lwb, upb;
2331 struct value *idx;
2332
2333 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2334 error (_("too many subscripts (%d expected)"), k);
2335 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2336 value_copy (arr));
2337 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2338 idx = value_pos_atr (ind[k]);
2339 if (lwb != 0)
2340 idx = value_sub (idx, value_from_longest (builtin_type_int, lwb));
2341 arr = value_add (arr, idx);
2342 type = TYPE_TARGET_TYPE (type);
2343 }
2344
2345 return value_ind (arr);
2346 }
2347
2348 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2349 actual type of ARRAY_PTR is ignored), returns a reference to
2350 the Ada slice of HIGH-LOW+1 elements starting at index LOW. The lower
2351 bound of this array is LOW, as per Ada rules. */
2352 static struct value *
2353 ada_value_slice_ptr (struct value *array_ptr, struct type *type,
2354 int low, int high)
2355 {
2356 CORE_ADDR base = value_as_address (array_ptr)
2357 + ((low - TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)))
2358 * TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
2359 struct type *index_type =
2360 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
2361 low, high);
2362 struct type *slice_type =
2363 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2364 return value_from_pointer (lookup_reference_type (slice_type), base);
2365 }
2366
2367
2368 static struct value *
2369 ada_value_slice (struct value *array, int low, int high)
2370 {
2371 struct type *type = value_type (array);
2372 struct type *index_type =
2373 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2374 struct type *slice_type =
2375 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2376 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2377 }
2378
2379 /* If type is a record type in the form of a standard GNAT array
2380 descriptor, returns the number of dimensions for type. If arr is a
2381 simple array, returns the number of "array of"s that prefix its
2382 type designation. Otherwise, returns 0. */
2383
2384 int
2385 ada_array_arity (struct type *type)
2386 {
2387 int arity;
2388
2389 if (type == NULL)
2390 return 0;
2391
2392 type = desc_base_type (type);
2393
2394 arity = 0;
2395 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2396 return desc_arity (desc_bounds_type (type));
2397 else
2398 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2399 {
2400 arity += 1;
2401 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2402 }
2403
2404 return arity;
2405 }
2406
2407 /* If TYPE is a record type in the form of a standard GNAT array
2408 descriptor or a simple array type, returns the element type for
2409 TYPE after indexing by NINDICES indices, or by all indices if
2410 NINDICES is -1. Otherwise, returns NULL. */
2411
2412 struct type *
2413 ada_array_element_type (struct type *type, int nindices)
2414 {
2415 type = desc_base_type (type);
2416
2417 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2418 {
2419 int k;
2420 struct type *p_array_type;
2421
2422 p_array_type = desc_data_type (type);
2423
2424 k = ada_array_arity (type);
2425 if (k == 0)
2426 return NULL;
2427
2428 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2429 if (nindices >= 0 && k > nindices)
2430 k = nindices;
2431 p_array_type = TYPE_TARGET_TYPE (p_array_type);
2432 while (k > 0 && p_array_type != NULL)
2433 {
2434 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2435 k -= 1;
2436 }
2437 return p_array_type;
2438 }
2439 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2440 {
2441 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2442 {
2443 type = TYPE_TARGET_TYPE (type);
2444 nindices -= 1;
2445 }
2446 return type;
2447 }
2448
2449 return NULL;
2450 }
2451
2452 /* The type of nth index in arrays of given type (n numbering from 1).
2453 Does not examine memory. */
2454
2455 struct type *
2456 ada_index_type (struct type *type, int n)
2457 {
2458 struct type *result_type;
2459
2460 type = desc_base_type (type);
2461
2462 if (n > ada_array_arity (type))
2463 return NULL;
2464
2465 if (ada_is_simple_array_type (type))
2466 {
2467 int i;
2468
2469 for (i = 1; i < n; i += 1)
2470 type = TYPE_TARGET_TYPE (type);
2471 result_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 0));
2472 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2473 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2474 perhaps stabsread.c would make more sense. */
2475 if (result_type == NULL || TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2476 result_type = builtin_type_int;
2477
2478 return result_type;
2479 }
2480 else
2481 return desc_index_type (desc_bounds_type (type), n);
2482 }
2483
2484 /* Given that arr is an array type, returns the lower bound of the
2485 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2486 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2487 array-descriptor type. If TYPEP is non-null, *TYPEP is set to the
2488 bounds type. It works for other arrays with bounds supplied by
2489 run-time quantities other than discriminants. */
2490
2491 static LONGEST
2492 ada_array_bound_from_type (struct type * arr_type, int n, int which,
2493 struct type ** typep)
2494 {
2495 struct type *type;
2496 struct type *index_type_desc;
2497
2498 if (ada_is_packed_array_type (arr_type))
2499 arr_type = decode_packed_array_type (arr_type);
2500
2501 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2502 {
2503 if (typep != NULL)
2504 *typep = builtin_type_int;
2505 return (LONGEST) - which;
2506 }
2507
2508 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2509 type = TYPE_TARGET_TYPE (arr_type);
2510 else
2511 type = arr_type;
2512
2513 index_type_desc = ada_find_parallel_type (type, "___XA");
2514 if (index_type_desc == NULL)
2515 {
2516 struct type *index_type;
2517
2518 while (n > 1)
2519 {
2520 type = TYPE_TARGET_TYPE (type);
2521 n -= 1;
2522 }
2523
2524 index_type = TYPE_INDEX_TYPE (type);
2525 if (typep != NULL)
2526 *typep = index_type;
2527
2528 /* The index type is either a range type or an enumerated type.
2529 For the range type, we have some macros that allow us to
2530 extract the value of the low and high bounds. But they
2531 do now work for enumerated types. The expressions used
2532 below work for both range and enum types. */
2533 return
2534 (LONGEST) (which == 0
2535 ? TYPE_FIELD_BITPOS (index_type, 0)
2536 : TYPE_FIELD_BITPOS (index_type,
2537 TYPE_NFIELDS (index_type) - 1));
2538 }
2539 else
2540 {
2541 struct type *index_type =
2542 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, n - 1),
2543 NULL, TYPE_OBJFILE (arr_type));
2544
2545 if (typep != NULL)
2546 *typep = index_type;
2547
2548 return
2549 (LONGEST) (which == 0
2550 ? TYPE_LOW_BOUND (index_type)
2551 : TYPE_HIGH_BOUND (index_type));
2552 }
2553 }
2554
2555 /* Given that arr is an array value, returns the lower bound of the
2556 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2557 WHICH is 1. This routine will also work for arrays with bounds
2558 supplied by run-time quantities other than discriminants. */
2559
2560 struct value *
2561 ada_array_bound (struct value *arr, int n, int which)
2562 {
2563 struct type *arr_type = value_type (arr);
2564
2565 if (ada_is_packed_array_type (arr_type))
2566 return ada_array_bound (decode_packed_array (arr), n, which);
2567 else if (ada_is_simple_array_type (arr_type))
2568 {
2569 struct type *type;
2570 LONGEST v = ada_array_bound_from_type (arr_type, n, which, &type);
2571 return value_from_longest (type, v);
2572 }
2573 else
2574 return desc_one_bound (desc_bounds (arr), n, which);
2575 }
2576
2577 /* Given that arr is an array value, returns the length of the
2578 nth index. This routine will also work for arrays with bounds
2579 supplied by run-time quantities other than discriminants.
2580 Does not work for arrays indexed by enumeration types with representation
2581 clauses at the moment. */
2582
2583 struct value *
2584 ada_array_length (struct value *arr, int n)
2585 {
2586 struct type *arr_type = ada_check_typedef (value_type (arr));
2587
2588 if (ada_is_packed_array_type (arr_type))
2589 return ada_array_length (decode_packed_array (arr), n);
2590
2591 if (ada_is_simple_array_type (arr_type))
2592 {
2593 struct type *type;
2594 LONGEST v =
2595 ada_array_bound_from_type (arr_type, n, 1, &type) -
2596 ada_array_bound_from_type (arr_type, n, 0, NULL) + 1;
2597 return value_from_longest (type, v);
2598 }
2599 else
2600 return
2601 value_from_longest (builtin_type_int,
2602 value_as_long (desc_one_bound (desc_bounds (arr),
2603 n, 1))
2604 - value_as_long (desc_one_bound (desc_bounds (arr),
2605 n, 0)) + 1);
2606 }
2607
2608 /* An empty array whose type is that of ARR_TYPE (an array type),
2609 with bounds LOW to LOW-1. */
2610
2611 static struct value *
2612 empty_array (struct type *arr_type, int low)
2613 {
2614 struct type *index_type =
2615 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
2616 low, low - 1);
2617 struct type *elt_type = ada_array_element_type (arr_type, 1);
2618 return allocate_value (create_array_type (NULL, elt_type, index_type));
2619 }
2620 \f
2621
2622 /* Name resolution */
2623
2624 /* The "decoded" name for the user-definable Ada operator corresponding
2625 to OP. */
2626
2627 static const char *
2628 ada_decoded_op_name (enum exp_opcode op)
2629 {
2630 int i;
2631
2632 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2633 {
2634 if (ada_opname_table[i].op == op)
2635 return ada_opname_table[i].decoded;
2636 }
2637 error (_("Could not find operator name for opcode"));
2638 }
2639
2640
2641 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2642 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2643 undefined namespace) and converts operators that are
2644 user-defined into appropriate function calls. If CONTEXT_TYPE is
2645 non-null, it provides a preferred result type [at the moment, only
2646 type void has any effect---causing procedures to be preferred over
2647 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2648 return type is preferred. May change (expand) *EXP. */
2649
2650 static void
2651 resolve (struct expression **expp, int void_context_p)
2652 {
2653 int pc;
2654 pc = 0;
2655 resolve_subexp (expp, &pc, 1, void_context_p ? builtin_type_void : NULL);
2656 }
2657
2658 /* Resolve the operator of the subexpression beginning at
2659 position *POS of *EXPP. "Resolving" consists of replacing
2660 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2661 with their resolutions, replacing built-in operators with
2662 function calls to user-defined operators, where appropriate, and,
2663 when DEPROCEDURE_P is non-zero, converting function-valued variables
2664 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2665 are as in ada_resolve, above. */
2666
2667 static struct value *
2668 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2669 struct type *context_type)
2670 {
2671 int pc = *pos;
2672 int i;
2673 struct expression *exp; /* Convenience: == *expp. */
2674 enum exp_opcode op = (*expp)->elts[pc].opcode;
2675 struct value **argvec; /* Vector of operand types (alloca'ed). */
2676 int nargs; /* Number of operands. */
2677 int oplen;
2678
2679 argvec = NULL;
2680 nargs = 0;
2681 exp = *expp;
2682
2683 /* Pass one: resolve operands, saving their types and updating *pos,
2684 if needed. */
2685 switch (op)
2686 {
2687 case OP_FUNCALL:
2688 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2689 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2690 *pos += 7;
2691 else
2692 {
2693 *pos += 3;
2694 resolve_subexp (expp, pos, 0, NULL);
2695 }
2696 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2697 break;
2698
2699 case UNOP_ADDR:
2700 *pos += 1;
2701 resolve_subexp (expp, pos, 0, NULL);
2702 break;
2703
2704 case UNOP_QUAL:
2705 *pos += 3;
2706 resolve_subexp (expp, pos, 1, exp->elts[pc + 1].type);
2707 break;
2708
2709 case OP_ATR_MODULUS:
2710 case OP_ATR_SIZE:
2711 case OP_ATR_TAG:
2712 case OP_ATR_FIRST:
2713 case OP_ATR_LAST:
2714 case OP_ATR_LENGTH:
2715 case OP_ATR_POS:
2716 case OP_ATR_VAL:
2717 case OP_ATR_MIN:
2718 case OP_ATR_MAX:
2719 case TERNOP_IN_RANGE:
2720 case BINOP_IN_BOUNDS:
2721 case UNOP_IN_RANGE:
2722 case OP_AGGREGATE:
2723 case OP_OTHERS:
2724 case OP_CHOICES:
2725 case OP_POSITIONAL:
2726 case OP_DISCRETE_RANGE:
2727 case OP_NAME:
2728 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2729 *pos += oplen;
2730 break;
2731
2732 case BINOP_ASSIGN:
2733 {
2734 struct value *arg1;
2735
2736 *pos += 1;
2737 arg1 = resolve_subexp (expp, pos, 0, NULL);
2738 if (arg1 == NULL)
2739 resolve_subexp (expp, pos, 1, NULL);
2740 else
2741 resolve_subexp (expp, pos, 1, value_type (arg1));
2742 break;
2743 }
2744
2745 case UNOP_CAST:
2746 *pos += 3;
2747 nargs = 1;
2748 break;
2749
2750 case BINOP_ADD:
2751 case BINOP_SUB:
2752 case BINOP_MUL:
2753 case BINOP_DIV:
2754 case BINOP_REM:
2755 case BINOP_MOD:
2756 case BINOP_EXP:
2757 case BINOP_CONCAT:
2758 case BINOP_LOGICAL_AND:
2759 case BINOP_LOGICAL_OR:
2760 case BINOP_BITWISE_AND:
2761 case BINOP_BITWISE_IOR:
2762 case BINOP_BITWISE_XOR:
2763
2764 case BINOP_EQUAL:
2765 case BINOP_NOTEQUAL:
2766 case BINOP_LESS:
2767 case BINOP_GTR:
2768 case BINOP_LEQ:
2769 case BINOP_GEQ:
2770
2771 case BINOP_REPEAT:
2772 case BINOP_SUBSCRIPT:
2773 case BINOP_COMMA:
2774 *pos += 1;
2775 nargs = 2;
2776 break;
2777
2778 case UNOP_NEG:
2779 case UNOP_PLUS:
2780 case UNOP_LOGICAL_NOT:
2781 case UNOP_ABS:
2782 case UNOP_IND:
2783 *pos += 1;
2784 nargs = 1;
2785 break;
2786
2787 case OP_LONG:
2788 case OP_DOUBLE:
2789 case OP_VAR_VALUE:
2790 *pos += 4;
2791 break;
2792
2793 case OP_TYPE:
2794 case OP_BOOL:
2795 case OP_LAST:
2796 case OP_INTERNALVAR:
2797 *pos += 3;
2798 break;
2799
2800 case UNOP_MEMVAL:
2801 *pos += 3;
2802 nargs = 1;
2803 break;
2804
2805 case OP_REGISTER:
2806 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2807 break;
2808
2809 case STRUCTOP_STRUCT:
2810 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2811 nargs = 1;
2812 break;
2813
2814 case TERNOP_SLICE:
2815 *pos += 1;
2816 nargs = 3;
2817 break;
2818
2819 case OP_STRING:
2820 break;
2821
2822 default:
2823 error (_("Unexpected operator during name resolution"));
2824 }
2825
2826 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
2827 for (i = 0; i < nargs; i += 1)
2828 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
2829 argvec[i] = NULL;
2830 exp = *expp;
2831
2832 /* Pass two: perform any resolution on principal operator. */
2833 switch (op)
2834 {
2835 default:
2836 break;
2837
2838 case OP_VAR_VALUE:
2839 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
2840 {
2841 struct ada_symbol_info *candidates;
2842 int n_candidates;
2843
2844 n_candidates =
2845 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2846 (exp->elts[pc + 2].symbol),
2847 exp->elts[pc + 1].block, VAR_DOMAIN,
2848 &candidates);
2849
2850 if (n_candidates > 1)
2851 {
2852 /* Types tend to get re-introduced locally, so if there
2853 are any local symbols that are not types, first filter
2854 out all types. */
2855 int j;
2856 for (j = 0; j < n_candidates; j += 1)
2857 switch (SYMBOL_CLASS (candidates[j].sym))
2858 {
2859 case LOC_REGISTER:
2860 case LOC_ARG:
2861 case LOC_REF_ARG:
2862 case LOC_REGPARM:
2863 case LOC_REGPARM_ADDR:
2864 case LOC_LOCAL:
2865 case LOC_LOCAL_ARG:
2866 case LOC_BASEREG:
2867 case LOC_BASEREG_ARG:
2868 case LOC_COMPUTED:
2869 case LOC_COMPUTED_ARG:
2870 goto FoundNonType;
2871 default:
2872 break;
2873 }
2874 FoundNonType:
2875 if (j < n_candidates)
2876 {
2877 j = 0;
2878 while (j < n_candidates)
2879 {
2880 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
2881 {
2882 candidates[j] = candidates[n_candidates - 1];
2883 n_candidates -= 1;
2884 }
2885 else
2886 j += 1;
2887 }
2888 }
2889 }
2890
2891 if (n_candidates == 0)
2892 error (_("No definition found for %s"),
2893 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2894 else if (n_candidates == 1)
2895 i = 0;
2896 else if (deprocedure_p
2897 && !is_nonfunction (candidates, n_candidates))
2898 {
2899 i = ada_resolve_function
2900 (candidates, n_candidates, NULL, 0,
2901 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
2902 context_type);
2903 if (i < 0)
2904 error (_("Could not find a match for %s"),
2905 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2906 }
2907 else
2908 {
2909 printf_filtered (_("Multiple matches for %s\n"),
2910 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2911 user_select_syms (candidates, n_candidates, 1);
2912 i = 0;
2913 }
2914
2915 exp->elts[pc + 1].block = candidates[i].block;
2916 exp->elts[pc + 2].symbol = candidates[i].sym;
2917 if (innermost_block == NULL
2918 || contained_in (candidates[i].block, innermost_block))
2919 innermost_block = candidates[i].block;
2920 }
2921
2922 if (deprocedure_p
2923 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
2924 == TYPE_CODE_FUNC))
2925 {
2926 replace_operator_with_call (expp, pc, 0, 0,
2927 exp->elts[pc + 2].symbol,
2928 exp->elts[pc + 1].block);
2929 exp = *expp;
2930 }
2931 break;
2932
2933 case OP_FUNCALL:
2934 {
2935 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2936 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2937 {
2938 struct ada_symbol_info *candidates;
2939 int n_candidates;
2940
2941 n_candidates =
2942 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2943 (exp->elts[pc + 5].symbol),
2944 exp->elts[pc + 4].block, VAR_DOMAIN,
2945 &candidates);
2946 if (n_candidates == 1)
2947 i = 0;
2948 else
2949 {
2950 i = ada_resolve_function
2951 (candidates, n_candidates,
2952 argvec, nargs,
2953 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
2954 context_type);
2955 if (i < 0)
2956 error (_("Could not find a match for %s"),
2957 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
2958 }
2959
2960 exp->elts[pc + 4].block = candidates[i].block;
2961 exp->elts[pc + 5].symbol = candidates[i].sym;
2962 if (innermost_block == NULL
2963 || contained_in (candidates[i].block, innermost_block))
2964 innermost_block = candidates[i].block;
2965 }
2966 }
2967 break;
2968 case BINOP_ADD:
2969 case BINOP_SUB:
2970 case BINOP_MUL:
2971 case BINOP_DIV:
2972 case BINOP_REM:
2973 case BINOP_MOD:
2974 case BINOP_CONCAT:
2975 case BINOP_BITWISE_AND:
2976 case BINOP_BITWISE_IOR:
2977 case BINOP_BITWISE_XOR:
2978 case BINOP_EQUAL:
2979 case BINOP_NOTEQUAL:
2980 case BINOP_LESS:
2981 case BINOP_GTR:
2982 case BINOP_LEQ:
2983 case BINOP_GEQ:
2984 case BINOP_EXP:
2985 case UNOP_NEG:
2986 case UNOP_PLUS:
2987 case UNOP_LOGICAL_NOT:
2988 case UNOP_ABS:
2989 if (possible_user_operator_p (op, argvec))
2990 {
2991 struct ada_symbol_info *candidates;
2992 int n_candidates;
2993
2994 n_candidates =
2995 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
2996 (struct block *) NULL, VAR_DOMAIN,
2997 &candidates);
2998 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
2999 ada_decoded_op_name (op), NULL);
3000 if (i < 0)
3001 break;
3002
3003 replace_operator_with_call (expp, pc, nargs, 1,
3004 candidates[i].sym, candidates[i].block);
3005 exp = *expp;
3006 }
3007 break;
3008
3009 case OP_TYPE:
3010 case OP_REGISTER:
3011 return NULL;
3012 }
3013
3014 *pos = pc;
3015 return evaluate_subexp_type (exp, pos);
3016 }
3017
3018 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3019 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3020 a non-pointer. A type of 'void' (which is never a valid expression type)
3021 by convention matches anything. */
3022 /* The term "match" here is rather loose. The match is heuristic and
3023 liberal. FIXME: TOO liberal, in fact. */
3024
3025 static int
3026 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3027 {
3028 ftype = ada_check_typedef (ftype);
3029 atype = ada_check_typedef (atype);
3030
3031 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3032 ftype = TYPE_TARGET_TYPE (ftype);
3033 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3034 atype = TYPE_TARGET_TYPE (atype);
3035
3036 if (TYPE_CODE (ftype) == TYPE_CODE_VOID
3037 || TYPE_CODE (atype) == TYPE_CODE_VOID)
3038 return 1;
3039
3040 switch (TYPE_CODE (ftype))
3041 {
3042 default:
3043 return 1;
3044 case TYPE_CODE_PTR:
3045 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3046 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3047 TYPE_TARGET_TYPE (atype), 0);
3048 else
3049 return (may_deref
3050 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3051 case TYPE_CODE_INT:
3052 case TYPE_CODE_ENUM:
3053 case TYPE_CODE_RANGE:
3054 switch (TYPE_CODE (atype))
3055 {
3056 case TYPE_CODE_INT:
3057 case TYPE_CODE_ENUM:
3058 case TYPE_CODE_RANGE:
3059 return 1;
3060 default:
3061 return 0;
3062 }
3063
3064 case TYPE_CODE_ARRAY:
3065 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3066 || ada_is_array_descriptor_type (atype));
3067
3068 case TYPE_CODE_STRUCT:
3069 if (ada_is_array_descriptor_type (ftype))
3070 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3071 || ada_is_array_descriptor_type (atype));
3072 else
3073 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3074 && !ada_is_array_descriptor_type (atype));
3075
3076 case TYPE_CODE_UNION:
3077 case TYPE_CODE_FLT:
3078 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3079 }
3080 }
3081
3082 /* Return non-zero if the formals of FUNC "sufficiently match" the
3083 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3084 may also be an enumeral, in which case it is treated as a 0-
3085 argument function. */
3086
3087 static int
3088 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3089 {
3090 int i;
3091 struct type *func_type = SYMBOL_TYPE (func);
3092
3093 if (SYMBOL_CLASS (func) == LOC_CONST
3094 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3095 return (n_actuals == 0);
3096 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3097 return 0;
3098
3099 if (TYPE_NFIELDS (func_type) != n_actuals)
3100 return 0;
3101
3102 for (i = 0; i < n_actuals; i += 1)
3103 {
3104 if (actuals[i] == NULL)
3105 return 0;
3106 else
3107 {
3108 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, i));
3109 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3110
3111 if (!ada_type_match (ftype, atype, 1))
3112 return 0;
3113 }
3114 }
3115 return 1;
3116 }
3117
3118 /* False iff function type FUNC_TYPE definitely does not produce a value
3119 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3120 FUNC_TYPE is not a valid function type with a non-null return type
3121 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3122
3123 static int
3124 return_match (struct type *func_type, struct type *context_type)
3125 {
3126 struct type *return_type;
3127
3128 if (func_type == NULL)
3129 return 1;
3130
3131 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3132 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3133 else
3134 return_type = base_type (func_type);
3135 if (return_type == NULL)
3136 return 1;
3137
3138 context_type = base_type (context_type);
3139
3140 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3141 return context_type == NULL || return_type == context_type;
3142 else if (context_type == NULL)
3143 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3144 else
3145 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3146 }
3147
3148
3149 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3150 function (if any) that matches the types of the NARGS arguments in
3151 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3152 that returns that type, then eliminate matches that don't. If
3153 CONTEXT_TYPE is void and there is at least one match that does not
3154 return void, eliminate all matches that do.
3155
3156 Asks the user if there is more than one match remaining. Returns -1
3157 if there is no such symbol or none is selected. NAME is used
3158 solely for messages. May re-arrange and modify SYMS in
3159 the process; the index returned is for the modified vector. */
3160
3161 static int
3162 ada_resolve_function (struct ada_symbol_info syms[],
3163 int nsyms, struct value **args, int nargs,
3164 const char *name, struct type *context_type)
3165 {
3166 int k;
3167 int m; /* Number of hits */
3168 struct type *fallback;
3169 struct type *return_type;
3170
3171 return_type = context_type;
3172 if (context_type == NULL)
3173 fallback = builtin_type_void;
3174 else
3175 fallback = NULL;
3176
3177 m = 0;
3178 while (1)
3179 {
3180 for (k = 0; k < nsyms; k += 1)
3181 {
3182 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3183
3184 if (ada_args_match (syms[k].sym, args, nargs)
3185 && return_match (type, return_type))
3186 {
3187 syms[m] = syms[k];
3188 m += 1;
3189 }
3190 }
3191 if (m > 0 || return_type == fallback)
3192 break;
3193 else
3194 return_type = fallback;
3195 }
3196
3197 if (m == 0)
3198 return -1;
3199 else if (m > 1)
3200 {
3201 printf_filtered (_("Multiple matches for %s\n"), name);
3202 user_select_syms (syms, m, 1);
3203 return 0;
3204 }
3205 return 0;
3206 }
3207
3208 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3209 in a listing of choices during disambiguation (see sort_choices, below).
3210 The idea is that overloadings of a subprogram name from the
3211 same package should sort in their source order. We settle for ordering
3212 such symbols by their trailing number (__N or $N). */
3213
3214 static int
3215 encoded_ordered_before (char *N0, char *N1)
3216 {
3217 if (N1 == NULL)
3218 return 0;
3219 else if (N0 == NULL)
3220 return 1;
3221 else
3222 {
3223 int k0, k1;
3224 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3225 ;
3226 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3227 ;
3228 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3229 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3230 {
3231 int n0, n1;
3232 n0 = k0;
3233 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3234 n0 -= 1;
3235 n1 = k1;
3236 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3237 n1 -= 1;
3238 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3239 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3240 }
3241 return (strcmp (N0, N1) < 0);
3242 }
3243 }
3244
3245 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3246 encoded names. */
3247
3248 static void
3249 sort_choices (struct ada_symbol_info syms[], int nsyms)
3250 {
3251 int i;
3252 for (i = 1; i < nsyms; i += 1)
3253 {
3254 struct ada_symbol_info sym = syms[i];
3255 int j;
3256
3257 for (j = i - 1; j >= 0; j -= 1)
3258 {
3259 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3260 SYMBOL_LINKAGE_NAME (sym.sym)))
3261 break;
3262 syms[j + 1] = syms[j];
3263 }
3264 syms[j + 1] = sym;
3265 }
3266 }
3267
3268 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3269 by asking the user (if necessary), returning the number selected,
3270 and setting the first elements of SYMS items. Error if no symbols
3271 selected. */
3272
3273 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3274 to be re-integrated one of these days. */
3275
3276 int
3277 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3278 {
3279 int i;
3280 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3281 int n_chosen;
3282 int first_choice = (max_results == 1) ? 1 : 2;
3283
3284 if (max_results < 1)
3285 error (_("Request to select 0 symbols!"));
3286 if (nsyms <= 1)
3287 return nsyms;
3288
3289 printf_unfiltered (_("[0] cancel\n"));
3290 if (max_results > 1)
3291 printf_unfiltered (_("[1] all\n"));
3292
3293 sort_choices (syms, nsyms);
3294
3295 for (i = 0; i < nsyms; i += 1)
3296 {
3297 if (syms[i].sym == NULL)
3298 continue;
3299
3300 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3301 {
3302 struct symtab_and_line sal =
3303 find_function_start_sal (syms[i].sym, 1);
3304 if (sal.symtab == NULL)
3305 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3306 i + first_choice,
3307 SYMBOL_PRINT_NAME (syms[i].sym),
3308 sal.line);
3309 else
3310 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3311 SYMBOL_PRINT_NAME (syms[i].sym),
3312 sal.symtab->filename, sal.line);
3313 continue;
3314 }
3315 else
3316 {
3317 int is_enumeral =
3318 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3319 && SYMBOL_TYPE (syms[i].sym) != NULL
3320 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3321 struct symtab *symtab = symtab_for_sym (syms[i].sym);
3322
3323 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3324 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3325 i + first_choice,
3326 SYMBOL_PRINT_NAME (syms[i].sym),
3327 symtab->filename, SYMBOL_LINE (syms[i].sym));
3328 else if (is_enumeral
3329 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3330 {
3331 printf_unfiltered (("[%d] "), i + first_choice);
3332 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3333 gdb_stdout, -1, 0);
3334 printf_unfiltered (_("'(%s) (enumeral)\n"),
3335 SYMBOL_PRINT_NAME (syms[i].sym));
3336 }
3337 else if (symtab != NULL)
3338 printf_unfiltered (is_enumeral
3339 ? _("[%d] %s in %s (enumeral)\n")
3340 : _("[%d] %s at %s:?\n"),
3341 i + first_choice,
3342 SYMBOL_PRINT_NAME (syms[i].sym),
3343 symtab->filename);
3344 else
3345 printf_unfiltered (is_enumeral
3346 ? _("[%d] %s (enumeral)\n")
3347 : _("[%d] %s at ?\n"),
3348 i + first_choice,
3349 SYMBOL_PRINT_NAME (syms[i].sym));
3350 }
3351 }
3352
3353 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3354 "overload-choice");
3355
3356 for (i = 0; i < n_chosen; i += 1)
3357 syms[i] = syms[chosen[i]];
3358
3359 return n_chosen;
3360 }
3361
3362 /* Read and validate a set of numeric choices from the user in the
3363 range 0 .. N_CHOICES-1. Place the results in increasing
3364 order in CHOICES[0 .. N-1], and return N.
3365
3366 The user types choices as a sequence of numbers on one line
3367 separated by blanks, encoding them as follows:
3368
3369 + A choice of 0 means to cancel the selection, throwing an error.
3370 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3371 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3372
3373 The user is not allowed to choose more than MAX_RESULTS values.
3374
3375 ANNOTATION_SUFFIX, if present, is used to annotate the input
3376 prompts (for use with the -f switch). */
3377
3378 int
3379 get_selections (int *choices, int n_choices, int max_results,
3380 int is_all_choice, char *annotation_suffix)
3381 {
3382 char *args;
3383 const char *prompt;
3384 int n_chosen;
3385 int first_choice = is_all_choice ? 2 : 1;
3386
3387 prompt = getenv ("PS2");
3388 if (prompt == NULL)
3389 prompt = ">";
3390
3391 printf_unfiltered (("%s "), prompt);
3392 gdb_flush (gdb_stdout);
3393
3394 args = command_line_input ((char *) NULL, 0, annotation_suffix);
3395
3396 if (args == NULL)
3397 error_no_arg (_("one or more choice numbers"));
3398
3399 n_chosen = 0;
3400
3401 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3402 order, as given in args. Choices are validated. */
3403 while (1)
3404 {
3405 char *args2;
3406 int choice, j;
3407
3408 while (isspace (*args))
3409 args += 1;
3410 if (*args == '\0' && n_chosen == 0)
3411 error_no_arg (_("one or more choice numbers"));
3412 else if (*args == '\0')
3413 break;
3414
3415 choice = strtol (args, &args2, 10);
3416 if (args == args2 || choice < 0
3417 || choice > n_choices + first_choice - 1)
3418 error (_("Argument must be choice number"));
3419 args = args2;
3420
3421 if (choice == 0)
3422 error (_("cancelled"));
3423
3424 if (choice < first_choice)
3425 {
3426 n_chosen = n_choices;
3427 for (j = 0; j < n_choices; j += 1)
3428 choices[j] = j;
3429 break;
3430 }
3431 choice -= first_choice;
3432
3433 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3434 {
3435 }
3436
3437 if (j < 0 || choice != choices[j])
3438 {
3439 int k;
3440 for (k = n_chosen - 1; k > j; k -= 1)
3441 choices[k + 1] = choices[k];
3442 choices[j + 1] = choice;
3443 n_chosen += 1;
3444 }
3445 }
3446
3447 if (n_chosen > max_results)
3448 error (_("Select no more than %d of the above"), max_results);
3449
3450 return n_chosen;
3451 }
3452
3453 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3454 on the function identified by SYM and BLOCK, and taking NARGS
3455 arguments. Update *EXPP as needed to hold more space. */
3456
3457 static void
3458 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3459 int oplen, struct symbol *sym,
3460 struct block *block)
3461 {
3462 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3463 symbol, -oplen for operator being replaced). */
3464 struct expression *newexp = (struct expression *)
3465 xmalloc (sizeof (struct expression)
3466 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3467 struct expression *exp = *expp;
3468
3469 newexp->nelts = exp->nelts + 7 - oplen;
3470 newexp->language_defn = exp->language_defn;
3471 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3472 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3473 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3474
3475 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3476 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3477
3478 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3479 newexp->elts[pc + 4].block = block;
3480 newexp->elts[pc + 5].symbol = sym;
3481
3482 *expp = newexp;
3483 xfree (exp);
3484 }
3485
3486 /* Type-class predicates */
3487
3488 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3489 or FLOAT). */
3490
3491 static int
3492 numeric_type_p (struct type *type)
3493 {
3494 if (type == NULL)
3495 return 0;
3496 else
3497 {
3498 switch (TYPE_CODE (type))
3499 {
3500 case TYPE_CODE_INT:
3501 case TYPE_CODE_FLT:
3502 return 1;
3503 case TYPE_CODE_RANGE:
3504 return (type == TYPE_TARGET_TYPE (type)
3505 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3506 default:
3507 return 0;
3508 }
3509 }
3510 }
3511
3512 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3513
3514 static int
3515 integer_type_p (struct type *type)
3516 {
3517 if (type == NULL)
3518 return 0;
3519 else
3520 {
3521 switch (TYPE_CODE (type))
3522 {
3523 case TYPE_CODE_INT:
3524 return 1;
3525 case TYPE_CODE_RANGE:
3526 return (type == TYPE_TARGET_TYPE (type)
3527 || integer_type_p (TYPE_TARGET_TYPE (type)));
3528 default:
3529 return 0;
3530 }
3531 }
3532 }
3533
3534 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3535
3536 static int
3537 scalar_type_p (struct type *type)
3538 {
3539 if (type == NULL)
3540 return 0;
3541 else
3542 {
3543 switch (TYPE_CODE (type))
3544 {
3545 case TYPE_CODE_INT:
3546 case TYPE_CODE_RANGE:
3547 case TYPE_CODE_ENUM:
3548 case TYPE_CODE_FLT:
3549 return 1;
3550 default:
3551 return 0;
3552 }
3553 }
3554 }
3555
3556 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3557
3558 static int
3559 discrete_type_p (struct type *type)
3560 {
3561 if (type == NULL)
3562 return 0;
3563 else
3564 {
3565 switch (TYPE_CODE (type))
3566 {
3567 case TYPE_CODE_INT:
3568 case TYPE_CODE_RANGE:
3569 case TYPE_CODE_ENUM:
3570 return 1;
3571 default:
3572 return 0;
3573 }
3574 }
3575 }
3576
3577 /* Returns non-zero if OP with operands in the vector ARGS could be
3578 a user-defined function. Errs on the side of pre-defined operators
3579 (i.e., result 0). */
3580
3581 static int
3582 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3583 {
3584 struct type *type0 =
3585 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3586 struct type *type1 =
3587 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3588
3589 if (type0 == NULL)
3590 return 0;
3591
3592 switch (op)
3593 {
3594 default:
3595 return 0;
3596
3597 case BINOP_ADD:
3598 case BINOP_SUB:
3599 case BINOP_MUL:
3600 case BINOP_DIV:
3601 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3602
3603 case BINOP_REM:
3604 case BINOP_MOD:
3605 case BINOP_BITWISE_AND:
3606 case BINOP_BITWISE_IOR:
3607 case BINOP_BITWISE_XOR:
3608 return (!(integer_type_p (type0) && integer_type_p (type1)));
3609
3610 case BINOP_EQUAL:
3611 case BINOP_NOTEQUAL:
3612 case BINOP_LESS:
3613 case BINOP_GTR:
3614 case BINOP_LEQ:
3615 case BINOP_GEQ:
3616 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3617
3618 case BINOP_CONCAT:
3619 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3620
3621 case BINOP_EXP:
3622 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3623
3624 case UNOP_NEG:
3625 case UNOP_PLUS:
3626 case UNOP_LOGICAL_NOT:
3627 case UNOP_ABS:
3628 return (!numeric_type_p (type0));
3629
3630 }
3631 }
3632 \f
3633 /* Renaming */
3634
3635 /* NOTES:
3636
3637 1. In the following, we assume that a renaming type's name may
3638 have an ___XD suffix. It would be nice if this went away at some
3639 point.
3640 2. We handle both the (old) purely type-based representation of
3641 renamings and the (new) variable-based encoding. At some point,
3642 it is devoutly to be hoped that the former goes away
3643 (FIXME: hilfinger-2007-07-09).
3644 3. Subprogram renamings are not implemented, although the XRS
3645 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3646
3647 /* If SYM encodes a renaming,
3648
3649 <renaming> renames <renamed entity>,
3650
3651 sets *LEN to the length of the renamed entity's name,
3652 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3653 the string describing the subcomponent selected from the renamed
3654 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3655 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3656 are undefined). Otherwise, returns a value indicating the category
3657 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3658 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3659 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3660 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3661 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3662 may be NULL, in which case they are not assigned.
3663
3664 [Currently, however, GCC does not generate subprogram renamings.] */
3665
3666 enum ada_renaming_category
3667 ada_parse_renaming (struct symbol *sym,
3668 const char **renamed_entity, int *len,
3669 const char **renaming_expr)
3670 {
3671 enum ada_renaming_category kind;
3672 const char *info;
3673 const char *suffix;
3674
3675 if (sym == NULL)
3676 return ADA_NOT_RENAMING;
3677 switch (SYMBOL_CLASS (sym))
3678 {
3679 default:
3680 return ADA_NOT_RENAMING;
3681 case LOC_TYPEDEF:
3682 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3683 renamed_entity, len, renaming_expr);
3684 case LOC_LOCAL:
3685 case LOC_STATIC:
3686 case LOC_COMPUTED:
3687 case LOC_OPTIMIZED_OUT:
3688 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3689 if (info == NULL)
3690 return ADA_NOT_RENAMING;
3691 switch (info[5])
3692 {
3693 case '_':
3694 kind = ADA_OBJECT_RENAMING;
3695 info += 6;
3696 break;
3697 case 'E':
3698 kind = ADA_EXCEPTION_RENAMING;
3699 info += 7;
3700 break;
3701 case 'P':
3702 kind = ADA_PACKAGE_RENAMING;
3703 info += 7;
3704 break;
3705 case 'S':
3706 kind = ADA_SUBPROGRAM_RENAMING;
3707 info += 7;
3708 break;
3709 default:
3710 return ADA_NOT_RENAMING;
3711 }
3712 }
3713
3714 if (renamed_entity != NULL)
3715 *renamed_entity = info;
3716 suffix = strstr (info, "___XE");
3717 if (suffix == NULL || suffix == info)
3718 return ADA_NOT_RENAMING;
3719 if (len != NULL)
3720 *len = strlen (info) - strlen (suffix);
3721 suffix += 5;
3722 if (renaming_expr != NULL)
3723 *renaming_expr = suffix;
3724 return kind;
3725 }
3726
3727 /* Assuming TYPE encodes a renaming according to the old encoding in
3728 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3729 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3730 ADA_NOT_RENAMING otherwise. */
3731 static enum ada_renaming_category
3732 parse_old_style_renaming (struct type *type,
3733 const char **renamed_entity, int *len,
3734 const char **renaming_expr)
3735 {
3736 enum ada_renaming_category kind;
3737 const char *name;
3738 const char *info;
3739 const char *suffix;
3740
3741 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
3742 || TYPE_NFIELDS (type) != 1)
3743 return ADA_NOT_RENAMING;
3744
3745 name = type_name_no_tag (type);
3746 if (name == NULL)
3747 return ADA_NOT_RENAMING;
3748
3749 name = strstr (name, "___XR");
3750 if (name == NULL)
3751 return ADA_NOT_RENAMING;
3752 switch (name[5])
3753 {
3754 case '\0':
3755 case '_':
3756 kind = ADA_OBJECT_RENAMING;
3757 break;
3758 case 'E':
3759 kind = ADA_EXCEPTION_RENAMING;
3760 break;
3761 case 'P':
3762 kind = ADA_PACKAGE_RENAMING;
3763 break;
3764 case 'S':
3765 kind = ADA_SUBPROGRAM_RENAMING;
3766 break;
3767 default:
3768 return ADA_NOT_RENAMING;
3769 }
3770
3771 info = TYPE_FIELD_NAME (type, 0);
3772 if (info == NULL)
3773 return ADA_NOT_RENAMING;
3774 if (renamed_entity != NULL)
3775 *renamed_entity = info;
3776 suffix = strstr (info, "___XE");
3777 if (renaming_expr != NULL)
3778 *renaming_expr = suffix + 5;
3779 if (suffix == NULL || suffix == info)
3780 return ADA_NOT_RENAMING;
3781 if (len != NULL)
3782 *len = suffix - info;
3783 return kind;
3784 }
3785
3786 \f
3787
3788 /* Evaluation: Function Calls */
3789
3790 /* Return an lvalue containing the value VAL. This is the identity on
3791 lvalues, and otherwise has the side-effect of pushing a copy of VAL
3792 on the stack, using and updating *SP as the stack pointer, and
3793 returning an lvalue whose VALUE_ADDRESS points to the copy. */
3794
3795 static struct value *
3796 ensure_lval (struct value *val, CORE_ADDR *sp)
3797 {
3798 if (! VALUE_LVAL (val))
3799 {
3800 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
3801
3802 /* The following is taken from the structure-return code in
3803 call_function_by_hand. FIXME: Therefore, some refactoring seems
3804 indicated. */
3805 if (gdbarch_inner_than (current_gdbarch, 1, 2))
3806 {
3807 /* Stack grows downward. Align SP and VALUE_ADDRESS (val) after
3808 reserving sufficient space. */
3809 *sp -= len;
3810 if (gdbarch_frame_align_p (current_gdbarch))
3811 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3812 VALUE_ADDRESS (val) = *sp;
3813 }
3814 else
3815 {
3816 /* Stack grows upward. Align the frame, allocate space, and
3817 then again, re-align the frame. */
3818 if (gdbarch_frame_align_p (current_gdbarch))
3819 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3820 VALUE_ADDRESS (val) = *sp;
3821 *sp += len;
3822 if (gdbarch_frame_align_p (current_gdbarch))
3823 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3824 }
3825
3826 write_memory (VALUE_ADDRESS (val), value_contents_raw (val), len);
3827 }
3828
3829 return val;
3830 }
3831
3832 /* Return the value ACTUAL, converted to be an appropriate value for a
3833 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3834 allocating any necessary descriptors (fat pointers), or copies of
3835 values not residing in memory, updating it as needed. */
3836
3837 static struct value *
3838 convert_actual (struct value *actual, struct type *formal_type0,
3839 CORE_ADDR *sp)
3840 {
3841 struct type *actual_type = ada_check_typedef (value_type (actual));
3842 struct type *formal_type = ada_check_typedef (formal_type0);
3843 struct type *formal_target =
3844 TYPE_CODE (formal_type) == TYPE_CODE_PTR
3845 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
3846 struct type *actual_target =
3847 TYPE_CODE (actual_type) == TYPE_CODE_PTR
3848 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
3849
3850 if (ada_is_array_descriptor_type (formal_target)
3851 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
3852 return make_array_descriptor (formal_type, actual, sp);
3853 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR)
3854 {
3855 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
3856 && ada_is_array_descriptor_type (actual_target))
3857 return desc_data (actual);
3858 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
3859 {
3860 if (VALUE_LVAL (actual) != lval_memory)
3861 {
3862 struct value *val;
3863 actual_type = ada_check_typedef (value_type (actual));
3864 val = allocate_value (actual_type);
3865 memcpy ((char *) value_contents_raw (val),
3866 (char *) value_contents (actual),
3867 TYPE_LENGTH (actual_type));
3868 actual = ensure_lval (val, sp);
3869 }
3870 return value_addr (actual);
3871 }
3872 }
3873 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
3874 return ada_value_ind (actual);
3875
3876 return actual;
3877 }
3878
3879
3880 /* Push a descriptor of type TYPE for array value ARR on the stack at
3881 *SP, updating *SP to reflect the new descriptor. Return either
3882 an lvalue representing the new descriptor, or (if TYPE is a pointer-
3883 to-descriptor type rather than a descriptor type), a struct value *
3884 representing a pointer to this descriptor. */
3885
3886 static struct value *
3887 make_array_descriptor (struct type *type, struct value *arr, CORE_ADDR *sp)
3888 {
3889 struct type *bounds_type = desc_bounds_type (type);
3890 struct type *desc_type = desc_base_type (type);
3891 struct value *descriptor = allocate_value (desc_type);
3892 struct value *bounds = allocate_value (bounds_type);
3893 int i;
3894
3895 for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1)
3896 {
3897 modify_general_field (value_contents_writeable (bounds),
3898 value_as_long (ada_array_bound (arr, i, 0)),
3899 desc_bound_bitpos (bounds_type, i, 0),
3900 desc_bound_bitsize (bounds_type, i, 0));
3901 modify_general_field (value_contents_writeable (bounds),
3902 value_as_long (ada_array_bound (arr, i, 1)),
3903 desc_bound_bitpos (bounds_type, i, 1),
3904 desc_bound_bitsize (bounds_type, i, 1));
3905 }
3906
3907 bounds = ensure_lval (bounds, sp);
3908
3909 modify_general_field (value_contents_writeable (descriptor),
3910 VALUE_ADDRESS (ensure_lval (arr, sp)),
3911 fat_pntr_data_bitpos (desc_type),
3912 fat_pntr_data_bitsize (desc_type));
3913
3914 modify_general_field (value_contents_writeable (descriptor),
3915 VALUE_ADDRESS (bounds),
3916 fat_pntr_bounds_bitpos (desc_type),
3917 fat_pntr_bounds_bitsize (desc_type));
3918
3919 descriptor = ensure_lval (descriptor, sp);
3920
3921 if (TYPE_CODE (type) == TYPE_CODE_PTR)
3922 return value_addr (descriptor);
3923 else
3924 return descriptor;
3925 }
3926
3927
3928 /* Assuming a dummy frame has been established on the target, perform any
3929 conversions needed for calling function FUNC on the NARGS actual
3930 parameters in ARGS, other than standard C conversions. Does
3931 nothing if FUNC does not have Ada-style prototype data, or if NARGS
3932 does not match the number of arguments expected. Use *SP as a
3933 stack pointer for additional data that must be pushed, updating its
3934 value as needed. */
3935
3936 void
3937 ada_convert_actuals (struct value *func, int nargs, struct value *args[],
3938 CORE_ADDR *sp)
3939 {
3940 int i;
3941
3942 if (TYPE_NFIELDS (value_type (func)) == 0
3943 || nargs != TYPE_NFIELDS (value_type (func)))
3944 return;
3945
3946 for (i = 0; i < nargs; i += 1)
3947 args[i] =
3948 convert_actual (args[i], TYPE_FIELD_TYPE (value_type (func), i), sp);
3949 }
3950 \f
3951 /* Dummy definitions for an experimental caching module that is not
3952 * used in the public sources. */
3953
3954 static int
3955 lookup_cached_symbol (const char *name, domain_enum namespace,
3956 struct symbol **sym, struct block **block,
3957 struct symtab **symtab)
3958 {
3959 return 0;
3960 }
3961
3962 static void
3963 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
3964 struct block *block, struct symtab *symtab)
3965 {
3966 }
3967 \f
3968 /* Symbol Lookup */
3969
3970 /* Return the result of a standard (literal, C-like) lookup of NAME in
3971 given DOMAIN, visible from lexical block BLOCK. */
3972
3973 static struct symbol *
3974 standard_lookup (const char *name, const struct block *block,
3975 domain_enum domain)
3976 {
3977 struct symbol *sym;
3978 struct symtab *symtab;
3979
3980 if (lookup_cached_symbol (name, domain, &sym, NULL, NULL))
3981 return sym;
3982 sym =
3983 lookup_symbol_in_language (name, block, domain, language_c, 0, &symtab);
3984 cache_symbol (name, domain, sym, block_found, symtab);
3985 return sym;
3986 }
3987
3988
3989 /* Non-zero iff there is at least one non-function/non-enumeral symbol
3990 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
3991 since they contend in overloading in the same way. */
3992 static int
3993 is_nonfunction (struct ada_symbol_info syms[], int n)
3994 {
3995 int i;
3996
3997 for (i = 0; i < n; i += 1)
3998 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
3999 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4000 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
4001 return 1;
4002
4003 return 0;
4004 }
4005
4006 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4007 struct types. Otherwise, they may not. */
4008
4009 static int
4010 equiv_types (struct type *type0, struct type *type1)
4011 {
4012 if (type0 == type1)
4013 return 1;
4014 if (type0 == NULL || type1 == NULL
4015 || TYPE_CODE (type0) != TYPE_CODE (type1))
4016 return 0;
4017 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4018 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4019 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4020 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4021 return 1;
4022
4023 return 0;
4024 }
4025
4026 /* True iff SYM0 represents the same entity as SYM1, or one that is
4027 no more defined than that of SYM1. */
4028
4029 static int
4030 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4031 {
4032 if (sym0 == sym1)
4033 return 1;
4034 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4035 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4036 return 0;
4037
4038 switch (SYMBOL_CLASS (sym0))
4039 {
4040 case LOC_UNDEF:
4041 return 1;
4042 case LOC_TYPEDEF:
4043 {
4044 struct type *type0 = SYMBOL_TYPE (sym0);
4045 struct type *type1 = SYMBOL_TYPE (sym1);
4046 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4047 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4048 int len0 = strlen (name0);
4049 return
4050 TYPE_CODE (type0) == TYPE_CODE (type1)
4051 && (equiv_types (type0, type1)
4052 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4053 && strncmp (name1 + len0, "___XV", 5) == 0));
4054 }
4055 case LOC_CONST:
4056 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4057 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4058 default:
4059 return 0;
4060 }
4061 }
4062
4063 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4064 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4065
4066 static void
4067 add_defn_to_vec (struct obstack *obstackp,
4068 struct symbol *sym,
4069 struct block *block, struct symtab *symtab)
4070 {
4071 int i;
4072 size_t tmp;
4073 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4074
4075 /* Do not try to complete stub types, as the debugger is probably
4076 already scanning all symbols matching a certain name at the
4077 time when this function is called. Trying to replace the stub
4078 type by its associated full type will cause us to restart a scan
4079 which may lead to an infinite recursion. Instead, the client
4080 collecting the matching symbols will end up collecting several
4081 matches, with at least one of them complete. It can then filter
4082 out the stub ones if needed. */
4083
4084 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4085 {
4086 if (lesseq_defined_than (sym, prevDefns[i].sym))
4087 return;
4088 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4089 {
4090 prevDefns[i].sym = sym;
4091 prevDefns[i].block = block;
4092 prevDefns[i].symtab = symtab;
4093 return;
4094 }
4095 }
4096
4097 {
4098 struct ada_symbol_info info;
4099
4100 info.sym = sym;
4101 info.block = block;
4102 info.symtab = symtab;
4103 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4104 }
4105 }
4106
4107 /* Number of ada_symbol_info structures currently collected in
4108 current vector in *OBSTACKP. */
4109
4110 static int
4111 num_defns_collected (struct obstack *obstackp)
4112 {
4113 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4114 }
4115
4116 /* Vector of ada_symbol_info structures currently collected in current
4117 vector in *OBSTACKP. If FINISH, close off the vector and return
4118 its final address. */
4119
4120 static struct ada_symbol_info *
4121 defns_collected (struct obstack *obstackp, int finish)
4122 {
4123 if (finish)
4124 return obstack_finish (obstackp);
4125 else
4126 return (struct ada_symbol_info *) obstack_base (obstackp);
4127 }
4128
4129 /* Look, in partial_symtab PST, for symbol NAME in given namespace.
4130 Check the global symbols if GLOBAL, the static symbols if not.
4131 Do wild-card match if WILD. */
4132
4133 static struct partial_symbol *
4134 ada_lookup_partial_symbol (struct partial_symtab *pst, const char *name,
4135 int global, domain_enum namespace, int wild)
4136 {
4137 struct partial_symbol **start;
4138 int name_len = strlen (name);
4139 int length = (global ? pst->n_global_syms : pst->n_static_syms);
4140 int i;
4141
4142 if (length == 0)
4143 {
4144 return (NULL);
4145 }
4146
4147 start = (global ?
4148 pst->objfile->global_psymbols.list + pst->globals_offset :
4149 pst->objfile->static_psymbols.list + pst->statics_offset);
4150
4151 if (wild)
4152 {
4153 for (i = 0; i < length; i += 1)
4154 {
4155 struct partial_symbol *psym = start[i];
4156
4157 if (SYMBOL_DOMAIN (psym) == namespace
4158 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (psym)))
4159 return psym;
4160 }
4161 return NULL;
4162 }
4163 else
4164 {
4165 if (global)
4166 {
4167 int U;
4168 i = 0;
4169 U = length - 1;
4170 while (U - i > 4)
4171 {
4172 int M = (U + i) >> 1;
4173 struct partial_symbol *psym = start[M];
4174 if (SYMBOL_LINKAGE_NAME (psym)[0] < name[0])
4175 i = M + 1;
4176 else if (SYMBOL_LINKAGE_NAME (psym)[0] > name[0])
4177 U = M - 1;
4178 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), name) < 0)
4179 i = M + 1;
4180 else
4181 U = M;
4182 }
4183 }
4184 else
4185 i = 0;
4186
4187 while (i < length)
4188 {
4189 struct partial_symbol *psym = start[i];
4190
4191 if (SYMBOL_DOMAIN (psym) == namespace)
4192 {
4193 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym), name_len);
4194
4195 if (cmp < 0)
4196 {
4197 if (global)
4198 break;
4199 }
4200 else if (cmp == 0
4201 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4202 + name_len))
4203 return psym;
4204 }
4205 i += 1;
4206 }
4207
4208 if (global)
4209 {
4210 int U;
4211 i = 0;
4212 U = length - 1;
4213 while (U - i > 4)
4214 {
4215 int M = (U + i) >> 1;
4216 struct partial_symbol *psym = start[M];
4217 if (SYMBOL_LINKAGE_NAME (psym)[0] < '_')
4218 i = M + 1;
4219 else if (SYMBOL_LINKAGE_NAME (psym)[0] > '_')
4220 U = M - 1;
4221 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), "_ada_") < 0)
4222 i = M + 1;
4223 else
4224 U = M;
4225 }
4226 }
4227 else
4228 i = 0;
4229
4230 while (i < length)
4231 {
4232 struct partial_symbol *psym = start[i];
4233
4234 if (SYMBOL_DOMAIN (psym) == namespace)
4235 {
4236 int cmp;
4237
4238 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (psym)[0];
4239 if (cmp == 0)
4240 {
4241 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (psym), 5);
4242 if (cmp == 0)
4243 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym) + 5,
4244 name_len);
4245 }
4246
4247 if (cmp < 0)
4248 {
4249 if (global)
4250 break;
4251 }
4252 else if (cmp == 0
4253 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4254 + name_len + 5))
4255 return psym;
4256 }
4257 i += 1;
4258 }
4259 }
4260 return NULL;
4261 }
4262
4263 /* Find a symbol table containing symbol SYM or NULL if none. */
4264
4265 static struct symtab *
4266 symtab_for_sym (struct symbol *sym)
4267 {
4268 struct symtab *s;
4269 struct objfile *objfile;
4270 struct block *b;
4271 struct symbol *tmp_sym;
4272 struct dict_iterator iter;
4273 int j;
4274
4275 ALL_PRIMARY_SYMTABS (objfile, s)
4276 {
4277 switch (SYMBOL_CLASS (sym))
4278 {
4279 case LOC_CONST:
4280 case LOC_STATIC:
4281 case LOC_TYPEDEF:
4282 case LOC_REGISTER:
4283 case LOC_LABEL:
4284 case LOC_BLOCK:
4285 case LOC_CONST_BYTES:
4286 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4287 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4288 return s;
4289 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4290 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4291 return s;
4292 break;
4293 default:
4294 break;
4295 }
4296 switch (SYMBOL_CLASS (sym))
4297 {
4298 case LOC_REGISTER:
4299 case LOC_ARG:
4300 case LOC_REF_ARG:
4301 case LOC_REGPARM:
4302 case LOC_REGPARM_ADDR:
4303 case LOC_LOCAL:
4304 case LOC_TYPEDEF:
4305 case LOC_LOCAL_ARG:
4306 case LOC_BASEREG:
4307 case LOC_BASEREG_ARG:
4308 case LOC_COMPUTED:
4309 case LOC_COMPUTED_ARG:
4310 for (j = FIRST_LOCAL_BLOCK;
4311 j < BLOCKVECTOR_NBLOCKS (BLOCKVECTOR (s)); j += 1)
4312 {
4313 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), j);
4314 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4315 return s;
4316 }
4317 break;
4318 default:
4319 break;
4320 }
4321 }
4322 return NULL;
4323 }
4324
4325 /* Return a minimal symbol matching NAME according to Ada decoding
4326 rules. Returns NULL if there is no such minimal symbol. Names
4327 prefixed with "standard__" are handled specially: "standard__" is
4328 first stripped off, and only static and global symbols are searched. */
4329
4330 struct minimal_symbol *
4331 ada_lookup_simple_minsym (const char *name)
4332 {
4333 struct objfile *objfile;
4334 struct minimal_symbol *msymbol;
4335 int wild_match;
4336
4337 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4338 {
4339 name += sizeof ("standard__") - 1;
4340 wild_match = 0;
4341 }
4342 else
4343 wild_match = (strstr (name, "__") == NULL);
4344
4345 ALL_MSYMBOLS (objfile, msymbol)
4346 {
4347 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4348 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4349 return msymbol;
4350 }
4351
4352 return NULL;
4353 }
4354
4355 /* For all subprograms that statically enclose the subprogram of the
4356 selected frame, add symbols matching identifier NAME in DOMAIN
4357 and their blocks to the list of data in OBSTACKP, as for
4358 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4359 wildcard prefix. */
4360
4361 static void
4362 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4363 const char *name, domain_enum namespace,
4364 int wild_match)
4365 {
4366 }
4367
4368 /* True if TYPE is definitely an artificial type supplied to a symbol
4369 for which no debugging information was given in the symbol file. */
4370
4371 static int
4372 is_nondebugging_type (struct type *type)
4373 {
4374 char *name = ada_type_name (type);
4375 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4376 }
4377
4378 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4379 duplicate other symbols in the list (The only case I know of where
4380 this happens is when object files containing stabs-in-ecoff are
4381 linked with files containing ordinary ecoff debugging symbols (or no
4382 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4383 Returns the number of items in the modified list. */
4384
4385 static int
4386 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4387 {
4388 int i, j;
4389
4390 i = 0;
4391 while (i < nsyms)
4392 {
4393 if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4394 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4395 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4396 {
4397 for (j = 0; j < nsyms; j += 1)
4398 {
4399 if (i != j
4400 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4401 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4402 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4403 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4404 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4405 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4406 {
4407 int k;
4408 for (k = i + 1; k < nsyms; k += 1)
4409 syms[k - 1] = syms[k];
4410 nsyms -= 1;
4411 goto NextSymbol;
4412 }
4413 }
4414 }
4415 i += 1;
4416 NextSymbol:
4417 ;
4418 }
4419 return nsyms;
4420 }
4421
4422 /* Given a type that corresponds to a renaming entity, use the type name
4423 to extract the scope (package name or function name, fully qualified,
4424 and following the GNAT encoding convention) where this renaming has been
4425 defined. The string returned needs to be deallocated after use. */
4426
4427 static char *
4428 xget_renaming_scope (struct type *renaming_type)
4429 {
4430 /* The renaming types adhere to the following convention:
4431 <scope>__<rename>___<XR extension>.
4432 So, to extract the scope, we search for the "___XR" extension,
4433 and then backtrack until we find the first "__". */
4434
4435 const char *name = type_name_no_tag (renaming_type);
4436 char *suffix = strstr (name, "___XR");
4437 char *last;
4438 int scope_len;
4439 char *scope;
4440
4441 /* Now, backtrack a bit until we find the first "__". Start looking
4442 at suffix - 3, as the <rename> part is at least one character long. */
4443
4444 for (last = suffix - 3; last > name; last--)
4445 if (last[0] == '_' && last[1] == '_')
4446 break;
4447
4448 /* Make a copy of scope and return it. */
4449
4450 scope_len = last - name;
4451 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4452
4453 strncpy (scope, name, scope_len);
4454 scope[scope_len] = '\0';
4455
4456 return scope;
4457 }
4458
4459 /* Return nonzero if NAME corresponds to a package name. */
4460
4461 static int
4462 is_package_name (const char *name)
4463 {
4464 /* Here, We take advantage of the fact that no symbols are generated
4465 for packages, while symbols are generated for each function.
4466 So the condition for NAME represent a package becomes equivalent
4467 to NAME not existing in our list of symbols. There is only one
4468 small complication with library-level functions (see below). */
4469
4470 char *fun_name;
4471
4472 /* If it is a function that has not been defined at library level,
4473 then we should be able to look it up in the symbols. */
4474 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4475 return 0;
4476
4477 /* Library-level function names start with "_ada_". See if function
4478 "_ada_" followed by NAME can be found. */
4479
4480 /* Do a quick check that NAME does not contain "__", since library-level
4481 functions names cannot contain "__" in them. */
4482 if (strstr (name, "__") != NULL)
4483 return 0;
4484
4485 fun_name = xstrprintf ("_ada_%s", name);
4486
4487 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4488 }
4489
4490 /* Return nonzero if SYM corresponds to a renaming entity that is
4491 not visible from FUNCTION_NAME. */
4492
4493 static int
4494 old_renaming_is_invisible (const struct symbol *sym, char *function_name)
4495 {
4496 char *scope;
4497
4498 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4499 return 0;
4500
4501 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4502
4503 make_cleanup (xfree, scope);
4504
4505 /* If the rename has been defined in a package, then it is visible. */
4506 if (is_package_name (scope))
4507 return 0;
4508
4509 /* Check that the rename is in the current function scope by checking
4510 that its name starts with SCOPE. */
4511
4512 /* If the function name starts with "_ada_", it means that it is
4513 a library-level function. Strip this prefix before doing the
4514 comparison, as the encoding for the renaming does not contain
4515 this prefix. */
4516 if (strncmp (function_name, "_ada_", 5) == 0)
4517 function_name += 5;
4518
4519 return (strncmp (function_name, scope, strlen (scope)) != 0);
4520 }
4521
4522 /* Remove entries from SYMS that corresponds to a renaming entity that
4523 is not visible from the function associated with CURRENT_BLOCK or
4524 that is superfluous due to the presence of more specific renaming
4525 information. Places surviving symbols in the initial entries of
4526 SYMS and returns the number of surviving symbols.
4527
4528 Rationale:
4529 First, in cases where an object renaming is implemented as a
4530 reference variable, GNAT may produce both the actual reference
4531 variable and the renaming encoding. In this case, we discard the
4532 latter.
4533
4534 Second, GNAT emits a type following a specified encoding for each renaming
4535 entity. Unfortunately, STABS currently does not support the definition
4536 of types that are local to a given lexical block, so all renamings types
4537 are emitted at library level. As a consequence, if an application
4538 contains two renaming entities using the same name, and a user tries to
4539 print the value of one of these entities, the result of the ada symbol
4540 lookup will also contain the wrong renaming type.
4541
4542 This function partially covers for this limitation by attempting to
4543 remove from the SYMS list renaming symbols that should be visible
4544 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4545 method with the current information available. The implementation
4546 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4547
4548 - When the user tries to print a rename in a function while there
4549 is another rename entity defined in a package: Normally, the
4550 rename in the function has precedence over the rename in the
4551 package, so the latter should be removed from the list. This is
4552 currently not the case.
4553
4554 - This function will incorrectly remove valid renames if
4555 the CURRENT_BLOCK corresponds to a function which symbol name
4556 has been changed by an "Export" pragma. As a consequence,
4557 the user will be unable to print such rename entities. */
4558
4559 static int
4560 remove_irrelevant_renamings (struct ada_symbol_info *syms,
4561 int nsyms, const struct block *current_block)
4562 {
4563 struct symbol *current_function;
4564 char *current_function_name;
4565 int i;
4566 int is_new_style_renaming;
4567
4568 /* If there is both a renaming foo___XR... encoded as a variable and
4569 a simple variable foo in the same block, discard the latter.
4570 First, zero out such symbols, then compress. */
4571 is_new_style_renaming = 0;
4572 for (i = 0; i < nsyms; i += 1)
4573 {
4574 struct symbol *sym = syms[i].sym;
4575 struct block *block = syms[i].block;
4576 const char *name;
4577 const char *suffix;
4578
4579 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4580 continue;
4581 name = SYMBOL_LINKAGE_NAME (sym);
4582 suffix = strstr (name, "___XR");
4583
4584 if (suffix != NULL)
4585 {
4586 int name_len = suffix - name;
4587 int j;
4588 is_new_style_renaming = 1;
4589 for (j = 0; j < nsyms; j += 1)
4590 if (i != j && syms[j].sym != NULL
4591 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4592 name_len) == 0
4593 && block == syms[j].block)
4594 syms[j].sym = NULL;
4595 }
4596 }
4597 if (is_new_style_renaming)
4598 {
4599 int j, k;
4600
4601 for (j = k = 0; j < nsyms; j += 1)
4602 if (syms[j].sym != NULL)
4603 {
4604 syms[k] = syms[j];
4605 k += 1;
4606 }
4607 return k;
4608 }
4609
4610 /* Extract the function name associated to CURRENT_BLOCK.
4611 Abort if unable to do so. */
4612
4613 if (current_block == NULL)
4614 return nsyms;
4615
4616 current_function = block_function (current_block);
4617 if (current_function == NULL)
4618 return nsyms;
4619
4620 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4621 if (current_function_name == NULL)
4622 return nsyms;
4623
4624 /* Check each of the symbols, and remove it from the list if it is
4625 a type corresponding to a renaming that is out of the scope of
4626 the current block. */
4627
4628 i = 0;
4629 while (i < nsyms)
4630 {
4631 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4632 == ADA_OBJECT_RENAMING
4633 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4634 {
4635 int j;
4636 for (j = i + 1; j < nsyms; j += 1)
4637 syms[j - 1] = syms[j];
4638 nsyms -= 1;
4639 }
4640 else
4641 i += 1;
4642 }
4643
4644 return nsyms;
4645 }
4646
4647 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4648 scope and in global scopes, returning the number of matches. Sets
4649 *RESULTS to point to a vector of (SYM,BLOCK,SYMTAB) triples,
4650 indicating the symbols found and the blocks and symbol tables (if
4651 any) in which they were found. This vector are transient---good only to
4652 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4653 symbol match within the nest of blocks whose innermost member is BLOCK0,
4654 is the one match returned (no other matches in that or
4655 enclosing blocks is returned). If there are any matches in or
4656 surrounding BLOCK0, then these alone are returned. Otherwise, the
4657 search extends to global and file-scope (static) symbol tables.
4658 Names prefixed with "standard__" are handled specially: "standard__"
4659 is first stripped off, and only static and global symbols are searched. */
4660
4661 int
4662 ada_lookup_symbol_list (const char *name0, const struct block *block0,
4663 domain_enum namespace,
4664 struct ada_symbol_info **results)
4665 {
4666 struct symbol *sym;
4667 struct symtab *s;
4668 struct partial_symtab *ps;
4669 struct blockvector *bv;
4670 struct objfile *objfile;
4671 struct block *block;
4672 const char *name;
4673 struct minimal_symbol *msymbol;
4674 int wild_match;
4675 int cacheIfUnique;
4676 int block_depth;
4677 int ndefns;
4678
4679 obstack_free (&symbol_list_obstack, NULL);
4680 obstack_init (&symbol_list_obstack);
4681
4682 cacheIfUnique = 0;
4683
4684 /* Search specified block and its superiors. */
4685
4686 wild_match = (strstr (name0, "__") == NULL);
4687 name = name0;
4688 block = (struct block *) block0; /* FIXME: No cast ought to be
4689 needed, but adding const will
4690 have a cascade effect. */
4691 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4692 {
4693 wild_match = 0;
4694 block = NULL;
4695 name = name0 + sizeof ("standard__") - 1;
4696 }
4697
4698 block_depth = 0;
4699 while (block != NULL)
4700 {
4701 block_depth += 1;
4702 ada_add_block_symbols (&symbol_list_obstack, block, name,
4703 namespace, NULL, NULL, wild_match);
4704
4705 /* If we found a non-function match, assume that's the one. */
4706 if (is_nonfunction (defns_collected (&symbol_list_obstack, 0),
4707 num_defns_collected (&symbol_list_obstack)))
4708 goto done;
4709
4710 block = BLOCK_SUPERBLOCK (block);
4711 }
4712
4713 /* If no luck so far, try to find NAME as a local symbol in some lexically
4714 enclosing subprogram. */
4715 if (num_defns_collected (&symbol_list_obstack) == 0 && block_depth > 2)
4716 add_symbols_from_enclosing_procs (&symbol_list_obstack,
4717 name, namespace, wild_match);
4718
4719 /* If we found ANY matches among non-global symbols, we're done. */
4720
4721 if (num_defns_collected (&symbol_list_obstack) > 0)
4722 goto done;
4723
4724 cacheIfUnique = 1;
4725 if (lookup_cached_symbol (name0, namespace, &sym, &block, &s))
4726 {
4727 if (sym != NULL)
4728 add_defn_to_vec (&symbol_list_obstack, sym, block, s);
4729 goto done;
4730 }
4731
4732 /* Now add symbols from all global blocks: symbol tables, minimal symbol
4733 tables, and psymtab's. */
4734
4735 ALL_PRIMARY_SYMTABS (objfile, s)
4736 {
4737 QUIT;
4738 bv = BLOCKVECTOR (s);
4739 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4740 ada_add_block_symbols (&symbol_list_obstack, block, name, namespace,
4741 objfile, s, wild_match);
4742 }
4743
4744 if (namespace == VAR_DOMAIN)
4745 {
4746 ALL_MSYMBOLS (objfile, msymbol)
4747 {
4748 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match))
4749 {
4750 switch (MSYMBOL_TYPE (msymbol))
4751 {
4752 case mst_solib_trampoline:
4753 break;
4754 default:
4755 s = find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol));
4756 if (s != NULL)
4757 {
4758 int ndefns0 = num_defns_collected (&symbol_list_obstack);
4759 QUIT;
4760 bv = BLOCKVECTOR (s);
4761 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4762 ada_add_block_symbols (&symbol_list_obstack, block,
4763 SYMBOL_LINKAGE_NAME (msymbol),
4764 namespace, objfile, s, wild_match);
4765
4766 if (num_defns_collected (&symbol_list_obstack) == ndefns0)
4767 {
4768 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4769 ada_add_block_symbols (&symbol_list_obstack, block,
4770 SYMBOL_LINKAGE_NAME (msymbol),
4771 namespace, objfile, s,
4772 wild_match);
4773 }
4774 }
4775 }
4776 }
4777 }
4778 }
4779
4780 ALL_PSYMTABS (objfile, ps)
4781 {
4782 QUIT;
4783 if (!ps->readin
4784 && ada_lookup_partial_symbol (ps, name, 1, namespace, wild_match))
4785 {
4786 s = PSYMTAB_TO_SYMTAB (ps);
4787 if (!s->primary)
4788 continue;
4789 bv = BLOCKVECTOR (s);
4790 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4791 ada_add_block_symbols (&symbol_list_obstack, block, name,
4792 namespace, objfile, s, wild_match);
4793 }
4794 }
4795
4796 /* Now add symbols from all per-file blocks if we've gotten no hits
4797 (Not strictly correct, but perhaps better than an error).
4798 Do the symtabs first, then check the psymtabs. */
4799
4800 if (num_defns_collected (&symbol_list_obstack) == 0)
4801 {
4802
4803 ALL_PRIMARY_SYMTABS (objfile, s)
4804 {
4805 QUIT;
4806 bv = BLOCKVECTOR (s);
4807 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4808 ada_add_block_symbols (&symbol_list_obstack, block, name, namespace,
4809 objfile, s, wild_match);
4810 }
4811
4812 ALL_PSYMTABS (objfile, ps)
4813 {
4814 QUIT;
4815 if (!ps->readin
4816 && ada_lookup_partial_symbol (ps, name, 0, namespace, wild_match))
4817 {
4818 s = PSYMTAB_TO_SYMTAB (ps);
4819 bv = BLOCKVECTOR (s);
4820 if (!s->primary)
4821 continue;
4822 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4823 ada_add_block_symbols (&symbol_list_obstack, block, name,
4824 namespace, objfile, s, wild_match);
4825 }
4826 }
4827 }
4828
4829 done:
4830 ndefns = num_defns_collected (&symbol_list_obstack);
4831 *results = defns_collected (&symbol_list_obstack, 1);
4832
4833 ndefns = remove_extra_symbols (*results, ndefns);
4834
4835 if (ndefns == 0)
4836 cache_symbol (name0, namespace, NULL, NULL, NULL);
4837
4838 if (ndefns == 1 && cacheIfUnique)
4839 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block,
4840 (*results)[0].symtab);
4841
4842 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
4843
4844 return ndefns;
4845 }
4846
4847 struct symbol *
4848 ada_lookup_encoded_symbol (const char *name, const struct block *block0,
4849 domain_enum namespace,
4850 struct block **block_found, struct symtab **symtab)
4851 {
4852 struct ada_symbol_info *candidates;
4853 int n_candidates;
4854
4855 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates);
4856
4857 if (n_candidates == 0)
4858 return NULL;
4859
4860 if (block_found != NULL)
4861 *block_found = candidates[0].block;
4862
4863 if (symtab != NULL)
4864 {
4865 *symtab = candidates[0].symtab;
4866 if (*symtab == NULL && candidates[0].block != NULL)
4867 {
4868 struct objfile *objfile;
4869 struct symtab *s;
4870 struct block *b;
4871 struct blockvector *bv;
4872
4873 /* Search the list of symtabs for one which contains the
4874 address of the start of this block. */
4875 ALL_PRIMARY_SYMTABS (objfile, s)
4876 {
4877 bv = BLOCKVECTOR (s);
4878 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4879 if (BLOCK_START (b) <= BLOCK_START (candidates[0].block)
4880 && BLOCK_END (b) > BLOCK_START (candidates[0].block))
4881 {
4882 *symtab = s;
4883 return fixup_symbol_section (candidates[0].sym, objfile);
4884 }
4885 }
4886 /* FIXME: brobecker/2004-11-12: I think that we should never
4887 reach this point. I don't see a reason why we would not
4888 find a symtab for a given block, so I suggest raising an
4889 internal_error exception here. Otherwise, we end up
4890 returning a symbol but no symtab, which certain parts of
4891 the code that rely (indirectly) on this function do not
4892 expect, eventually causing a SEGV. */
4893 return fixup_symbol_section (candidates[0].sym, NULL);
4894 }
4895 }
4896 return candidates[0].sym;
4897 }
4898
4899 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4900 scope and in global scopes, or NULL if none. NAME is folded and
4901 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4902 choosing the first symbol if there are multiple choices.
4903 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4904 table in which the symbol was found (in both cases, these
4905 assignments occur only if the pointers are non-null). */
4906 struct symbol *
4907 ada_lookup_symbol (const char *name, const struct block *block0,
4908 domain_enum namespace, int *is_a_field_of_this,
4909 struct symtab **symtab)
4910 {
4911 if (is_a_field_of_this != NULL)
4912 *is_a_field_of_this = 0;
4913
4914 return
4915 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
4916 block0, namespace, NULL, symtab);
4917 }
4918
4919 static struct symbol *
4920 ada_lookup_symbol_nonlocal (const char *name,
4921 const char *linkage_name,
4922 const struct block *block,
4923 const domain_enum domain, struct symtab **symtab)
4924 {
4925 if (linkage_name == NULL)
4926 linkage_name = name;
4927 return ada_lookup_symbol (linkage_name, block_static_block (block), domain,
4928 NULL, symtab);
4929 }
4930
4931
4932 /* True iff STR is a possible encoded suffix of a normal Ada name
4933 that is to be ignored for matching purposes. Suffixes of parallel
4934 names (e.g., XVE) are not included here. Currently, the possible suffixes
4935 are given by either of the regular expression:
4936
4937 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
4938 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4939 _E[0-9]+[bs]$ [protected object entry suffixes]
4940 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
4941
4942 Also, any leading "__[0-9]+" sequence is skipped before the suffix
4943 match is performed. This sequence is used to differentiate homonyms,
4944 is an optional part of a valid name suffix. */
4945
4946 static int
4947 is_name_suffix (const char *str)
4948 {
4949 int k;
4950 const char *matching;
4951 const int len = strlen (str);
4952
4953 /* Skip optional leading __[0-9]+. */
4954
4955 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4956 {
4957 str += 3;
4958 while (isdigit (str[0]))
4959 str += 1;
4960 }
4961
4962 /* [.$][0-9]+ */
4963
4964 if (str[0] == '.' || str[0] == '$')
4965 {
4966 matching = str + 1;
4967 while (isdigit (matching[0]))
4968 matching += 1;
4969 if (matching[0] == '\0')
4970 return 1;
4971 }
4972
4973 /* ___[0-9]+ */
4974
4975 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
4976 {
4977 matching = str + 3;
4978 while (isdigit (matching[0]))
4979 matching += 1;
4980 if (matching[0] == '\0')
4981 return 1;
4982 }
4983
4984 #if 0
4985 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
4986 with a N at the end. Unfortunately, the compiler uses the same
4987 convention for other internal types it creates. So treating
4988 all entity names that end with an "N" as a name suffix causes
4989 some regressions. For instance, consider the case of an enumerated
4990 type. To support the 'Image attribute, it creates an array whose
4991 name ends with N.
4992 Having a single character like this as a suffix carrying some
4993 information is a bit risky. Perhaps we should change the encoding
4994 to be something like "_N" instead. In the meantime, do not do
4995 the following check. */
4996 /* Protected Object Subprograms */
4997 if (len == 1 && str [0] == 'N')
4998 return 1;
4999 #endif
5000
5001 /* _E[0-9]+[bs]$ */
5002 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5003 {
5004 matching = str + 3;
5005 while (isdigit (matching[0]))
5006 matching += 1;
5007 if ((matching[0] == 'b' || matching[0] == 's')
5008 && matching [1] == '\0')
5009 return 1;
5010 }
5011
5012 /* ??? We should not modify STR directly, as we are doing below. This
5013 is fine in this case, but may become problematic later if we find
5014 that this alternative did not work, and want to try matching
5015 another one from the begining of STR. Since we modified it, we
5016 won't be able to find the begining of the string anymore! */
5017 if (str[0] == 'X')
5018 {
5019 str += 1;
5020 while (str[0] != '_' && str[0] != '\0')
5021 {
5022 if (str[0] != 'n' && str[0] != 'b')
5023 return 0;
5024 str += 1;
5025 }
5026 }
5027
5028 if (str[0] == '\000')
5029 return 1;
5030
5031 if (str[0] == '_')
5032 {
5033 if (str[1] != '_' || str[2] == '\000')
5034 return 0;
5035 if (str[2] == '_')
5036 {
5037 if (strcmp (str + 3, "JM") == 0)
5038 return 1;
5039 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5040 the LJM suffix in favor of the JM one. But we will
5041 still accept LJM as a valid suffix for a reasonable
5042 amount of time, just to allow ourselves to debug programs
5043 compiled using an older version of GNAT. */
5044 if (strcmp (str + 3, "LJM") == 0)
5045 return 1;
5046 if (str[3] != 'X')
5047 return 0;
5048 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5049 || str[4] == 'U' || str[4] == 'P')
5050 return 1;
5051 if (str[4] == 'R' && str[5] != 'T')
5052 return 1;
5053 return 0;
5054 }
5055 if (!isdigit (str[2]))
5056 return 0;
5057 for (k = 3; str[k] != '\0'; k += 1)
5058 if (!isdigit (str[k]) && str[k] != '_')
5059 return 0;
5060 return 1;
5061 }
5062 if (str[0] == '$' && isdigit (str[1]))
5063 {
5064 for (k = 2; str[k] != '\0'; k += 1)
5065 if (!isdigit (str[k]) && str[k] != '_')
5066 return 0;
5067 return 1;
5068 }
5069 return 0;
5070 }
5071
5072 /* Return nonzero if the given string starts with a dot ('.')
5073 followed by zero or more digits.
5074
5075 Note: brobecker/2003-11-10: A forward declaration has not been
5076 added at the begining of this file yet, because this function
5077 is only used to work around a problem found during wild matching
5078 when trying to match minimal symbol names against symbol names
5079 obtained from dwarf-2 data. This function is therefore currently
5080 only used in wild_match() and is likely to be deleted when the
5081 problem in dwarf-2 is fixed. */
5082
5083 static int
5084 is_dot_digits_suffix (const char *str)
5085 {
5086 if (str[0] != '.')
5087 return 0;
5088
5089 str++;
5090 while (isdigit (str[0]))
5091 str++;
5092 return (str[0] == '\0');
5093 }
5094
5095 /* Return non-zero if the string starting at NAME and ending before
5096 NAME_END contains no capital letters. */
5097
5098 static int
5099 is_valid_name_for_wild_match (const char *name0)
5100 {
5101 const char *decoded_name = ada_decode (name0);
5102 int i;
5103
5104 for (i=0; decoded_name[i] != '\0'; i++)
5105 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5106 return 0;
5107
5108 return 1;
5109 }
5110
5111 /* True if NAME represents a name of the form A1.A2....An, n>=1 and
5112 PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores
5113 informational suffixes of NAME (i.e., for which is_name_suffix is
5114 true). */
5115
5116 static int
5117 wild_match (const char *patn0, int patn_len, const char *name0)
5118 {
5119 int name_len;
5120 char *name;
5121 char *name_start;
5122 char *patn;
5123
5124 /* FIXME: brobecker/2003-11-10: For some reason, the symbol name
5125 stored in the symbol table for nested function names is sometimes
5126 different from the name of the associated entity stored in
5127 the dwarf-2 data: This is the case for nested subprograms, where
5128 the minimal symbol name contains a trailing ".[:digit:]+" suffix,
5129 while the symbol name from the dwarf-2 data does not.
5130
5131 Although the DWARF-2 standard documents that entity names stored
5132 in the dwarf-2 data should be identical to the name as seen in
5133 the source code, GNAT takes a different approach as we already use
5134 a special encoding mechanism to convey the information so that
5135 a C debugger can still use the information generated to debug
5136 Ada programs. A corollary is that the symbol names in the dwarf-2
5137 data should match the names found in the symbol table. I therefore
5138 consider this issue as a compiler defect.
5139
5140 Until the compiler is properly fixed, we work-around the problem
5141 by ignoring such suffixes during the match. We do so by making
5142 a copy of PATN0 and NAME0, and then by stripping such a suffix
5143 if present. We then perform the match on the resulting strings. */
5144 {
5145 char *dot;
5146 name_len = strlen (name0);
5147
5148 name = name_start = (char *) alloca ((name_len + 1) * sizeof (char));
5149 strcpy (name, name0);
5150 dot = strrchr (name, '.');
5151 if (dot != NULL && is_dot_digits_suffix (dot))
5152 *dot = '\0';
5153
5154 patn = (char *) alloca ((patn_len + 1) * sizeof (char));
5155 strncpy (patn, patn0, patn_len);
5156 patn[patn_len] = '\0';
5157 dot = strrchr (patn, '.');
5158 if (dot != NULL && is_dot_digits_suffix (dot))
5159 {
5160 *dot = '\0';
5161 patn_len = dot - patn;
5162 }
5163 }
5164
5165 /* Now perform the wild match. */
5166
5167 name_len = strlen (name);
5168 if (name_len >= patn_len + 5 && strncmp (name, "_ada_", 5) == 0
5169 && strncmp (patn, name + 5, patn_len) == 0
5170 && is_name_suffix (name + patn_len + 5))
5171 return 1;
5172
5173 while (name_len >= patn_len)
5174 {
5175 if (strncmp (patn, name, patn_len) == 0
5176 && is_name_suffix (name + patn_len))
5177 return (name == name_start || is_valid_name_for_wild_match (name0));
5178 do
5179 {
5180 name += 1;
5181 name_len -= 1;
5182 }
5183 while (name_len > 0
5184 && name[0] != '.' && (name[0] != '_' || name[1] != '_'));
5185 if (name_len <= 0)
5186 return 0;
5187 if (name[0] == '_')
5188 {
5189 if (!islower (name[2]))
5190 return 0;
5191 name += 2;
5192 name_len -= 2;
5193 }
5194 else
5195 {
5196 if (!islower (name[1]))
5197 return 0;
5198 name += 1;
5199 name_len -= 1;
5200 }
5201 }
5202
5203 return 0;
5204 }
5205
5206
5207 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5208 vector *defn_symbols, updating the list of symbols in OBSTACKP
5209 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5210 OBJFILE is the section containing BLOCK.
5211 SYMTAB is recorded with each symbol added. */
5212
5213 static void
5214 ada_add_block_symbols (struct obstack *obstackp,
5215 struct block *block, const char *name,
5216 domain_enum domain, struct objfile *objfile,
5217 struct symtab *symtab, int wild)
5218 {
5219 struct dict_iterator iter;
5220 int name_len = strlen (name);
5221 /* A matching argument symbol, if any. */
5222 struct symbol *arg_sym;
5223 /* Set true when we find a matching non-argument symbol. */
5224 int found_sym;
5225 struct symbol *sym;
5226
5227 arg_sym = NULL;
5228 found_sym = 0;
5229 if (wild)
5230 {
5231 struct symbol *sym;
5232 ALL_BLOCK_SYMBOLS (block, iter, sym)
5233 {
5234 if (SYMBOL_DOMAIN (sym) == domain
5235 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (sym)))
5236 {
5237 switch (SYMBOL_CLASS (sym))
5238 {
5239 case LOC_ARG:
5240 case LOC_LOCAL_ARG:
5241 case LOC_REF_ARG:
5242 case LOC_REGPARM:
5243 case LOC_REGPARM_ADDR:
5244 case LOC_BASEREG_ARG:
5245 case LOC_COMPUTED_ARG:
5246 arg_sym = sym;
5247 break;
5248 case LOC_UNRESOLVED:
5249 continue;
5250 default:
5251 found_sym = 1;
5252 add_defn_to_vec (obstackp,
5253 fixup_symbol_section (sym, objfile),
5254 block, symtab);
5255 break;
5256 }
5257 }
5258 }
5259 }
5260 else
5261 {
5262 ALL_BLOCK_SYMBOLS (block, iter, sym)
5263 {
5264 if (SYMBOL_DOMAIN (sym) == domain)
5265 {
5266 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym), name_len);
5267 if (cmp == 0
5268 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len))
5269 {
5270 switch (SYMBOL_CLASS (sym))
5271 {
5272 case LOC_ARG:
5273 case LOC_LOCAL_ARG:
5274 case LOC_REF_ARG:
5275 case LOC_REGPARM:
5276 case LOC_REGPARM_ADDR:
5277 case LOC_BASEREG_ARG:
5278 case LOC_COMPUTED_ARG:
5279 arg_sym = sym;
5280 break;
5281 case LOC_UNRESOLVED:
5282 break;
5283 default:
5284 found_sym = 1;
5285 add_defn_to_vec (obstackp,
5286 fixup_symbol_section (sym, objfile),
5287 block, symtab);
5288 break;
5289 }
5290 }
5291 }
5292 }
5293 }
5294
5295 if (!found_sym && arg_sym != NULL)
5296 {
5297 add_defn_to_vec (obstackp,
5298 fixup_symbol_section (arg_sym, objfile),
5299 block, symtab);
5300 }
5301
5302 if (!wild)
5303 {
5304 arg_sym = NULL;
5305 found_sym = 0;
5306
5307 ALL_BLOCK_SYMBOLS (block, iter, sym)
5308 {
5309 if (SYMBOL_DOMAIN (sym) == domain)
5310 {
5311 int cmp;
5312
5313 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5314 if (cmp == 0)
5315 {
5316 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5317 if (cmp == 0)
5318 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5319 name_len);
5320 }
5321
5322 if (cmp == 0
5323 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5324 {
5325 switch (SYMBOL_CLASS (sym))
5326 {
5327 case LOC_ARG:
5328 case LOC_LOCAL_ARG:
5329 case LOC_REF_ARG:
5330 case LOC_REGPARM:
5331 case LOC_REGPARM_ADDR:
5332 case LOC_BASEREG_ARG:
5333 case LOC_COMPUTED_ARG:
5334 arg_sym = sym;
5335 break;
5336 case LOC_UNRESOLVED:
5337 break;
5338 default:
5339 found_sym = 1;
5340 add_defn_to_vec (obstackp,
5341 fixup_symbol_section (sym, objfile),
5342 block, symtab);
5343 break;
5344 }
5345 }
5346 }
5347 }
5348
5349 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5350 They aren't parameters, right? */
5351 if (!found_sym && arg_sym != NULL)
5352 {
5353 add_defn_to_vec (obstackp,
5354 fixup_symbol_section (arg_sym, objfile),
5355 block, symtab);
5356 }
5357 }
5358 }
5359 \f
5360 /* Field Access */
5361
5362 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5363 for tagged types. */
5364
5365 static int
5366 ada_is_dispatch_table_ptr_type (struct type *type)
5367 {
5368 char *name;
5369
5370 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5371 return 0;
5372
5373 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5374 if (name == NULL)
5375 return 0;
5376
5377 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5378 }
5379
5380 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5381 to be invisible to users. */
5382
5383 int
5384 ada_is_ignored_field (struct type *type, int field_num)
5385 {
5386 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5387 return 1;
5388
5389 /* Check the name of that field. */
5390 {
5391 const char *name = TYPE_FIELD_NAME (type, field_num);
5392
5393 /* Anonymous field names should not be printed.
5394 brobecker/2007-02-20: I don't think this can actually happen
5395 but we don't want to print the value of annonymous fields anyway. */
5396 if (name == NULL)
5397 return 1;
5398
5399 /* A field named "_parent" is internally generated by GNAT for
5400 tagged types, and should not be printed either. */
5401 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5402 return 1;
5403 }
5404
5405 /* If this is the dispatch table of a tagged type, then ignore. */
5406 if (ada_is_tagged_type (type, 1)
5407 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5408 return 1;
5409
5410 /* Not a special field, so it should not be ignored. */
5411 return 0;
5412 }
5413
5414 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5415 pointer or reference type whose ultimate target has a tag field. */
5416
5417 int
5418 ada_is_tagged_type (struct type *type, int refok)
5419 {
5420 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5421 }
5422
5423 /* True iff TYPE represents the type of X'Tag */
5424
5425 int
5426 ada_is_tag_type (struct type *type)
5427 {
5428 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5429 return 0;
5430 else
5431 {
5432 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5433 return (name != NULL
5434 && strcmp (name, "ada__tags__dispatch_table") == 0);
5435 }
5436 }
5437
5438 /* The type of the tag on VAL. */
5439
5440 struct type *
5441 ada_tag_type (struct value *val)
5442 {
5443 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
5444 }
5445
5446 /* The value of the tag on VAL. */
5447
5448 struct value *
5449 ada_value_tag (struct value *val)
5450 {
5451 return ada_value_struct_elt (val, "_tag", 0);
5452 }
5453
5454 /* The value of the tag on the object of type TYPE whose contents are
5455 saved at VALADDR, if it is non-null, or is at memory address
5456 ADDRESS. */
5457
5458 static struct value *
5459 value_tag_from_contents_and_address (struct type *type,
5460 const gdb_byte *valaddr,
5461 CORE_ADDR address)
5462 {
5463 int tag_byte_offset, dummy1, dummy2;
5464 struct type *tag_type;
5465 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
5466 NULL, NULL, NULL))
5467 {
5468 const gdb_byte *valaddr1 = ((valaddr == NULL)
5469 ? NULL
5470 : valaddr + tag_byte_offset);
5471 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
5472
5473 return value_from_contents_and_address (tag_type, valaddr1, address1);
5474 }
5475 return NULL;
5476 }
5477
5478 static struct type *
5479 type_from_tag (struct value *tag)
5480 {
5481 const char *type_name = ada_tag_name (tag);
5482 if (type_name != NULL)
5483 return ada_find_any_type (ada_encode (type_name));
5484 return NULL;
5485 }
5486
5487 struct tag_args
5488 {
5489 struct value *tag;
5490 char *name;
5491 };
5492
5493
5494 static int ada_tag_name_1 (void *);
5495 static int ada_tag_name_2 (struct tag_args *);
5496
5497 /* Wrapper function used by ada_tag_name. Given a struct tag_args*
5498 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5499 The value stored in ARGS->name is valid until the next call to
5500 ada_tag_name_1. */
5501
5502 static int
5503 ada_tag_name_1 (void *args0)
5504 {
5505 struct tag_args *args = (struct tag_args *) args0;
5506 static char name[1024];
5507 char *p;
5508 struct value *val;
5509 args->name = NULL;
5510 val = ada_value_struct_elt (args->tag, "tsd", 1);
5511 if (val == NULL)
5512 return ada_tag_name_2 (args);
5513 val = ada_value_struct_elt (val, "expanded_name", 1);
5514 if (val == NULL)
5515 return 0;
5516 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5517 for (p = name; *p != '\0'; p += 1)
5518 if (isalpha (*p))
5519 *p = tolower (*p);
5520 args->name = name;
5521 return 0;
5522 }
5523
5524 /* Utility function for ada_tag_name_1 that tries the second
5525 representation for the dispatch table (in which there is no
5526 explicit 'tsd' field in the referent of the tag pointer, and instead
5527 the tsd pointer is stored just before the dispatch table. */
5528
5529 static int
5530 ada_tag_name_2 (struct tag_args *args)
5531 {
5532 struct type *info_type;
5533 static char name[1024];
5534 char *p;
5535 struct value *val, *valp;
5536
5537 args->name = NULL;
5538 info_type = ada_find_any_type ("ada__tags__type_specific_data");
5539 if (info_type == NULL)
5540 return 0;
5541 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5542 valp = value_cast (info_type, args->tag);
5543 if (valp == NULL)
5544 return 0;
5545 val = value_ind (value_add (valp, value_from_longest (builtin_type_int, -1)));
5546 if (val == NULL)
5547 return 0;
5548 val = ada_value_struct_elt (val, "expanded_name", 1);
5549 if (val == NULL)
5550 return 0;
5551 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5552 for (p = name; *p != '\0'; p += 1)
5553 if (isalpha (*p))
5554 *p = tolower (*p);
5555 args->name = name;
5556 return 0;
5557 }
5558
5559 /* The type name of the dynamic type denoted by the 'tag value TAG, as
5560 * a C string. */
5561
5562 const char *
5563 ada_tag_name (struct value *tag)
5564 {
5565 struct tag_args args;
5566 if (!ada_is_tag_type (value_type (tag)))
5567 return NULL;
5568 args.tag = tag;
5569 args.name = NULL;
5570 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5571 return args.name;
5572 }
5573
5574 /* The parent type of TYPE, or NULL if none. */
5575
5576 struct type *
5577 ada_parent_type (struct type *type)
5578 {
5579 int i;
5580
5581 type = ada_check_typedef (type);
5582
5583 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5584 return NULL;
5585
5586 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5587 if (ada_is_parent_field (type, i))
5588 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5589
5590 return NULL;
5591 }
5592
5593 /* True iff field number FIELD_NUM of structure type TYPE contains the
5594 parent-type (inherited) fields of a derived type. Assumes TYPE is
5595 a structure type with at least FIELD_NUM+1 fields. */
5596
5597 int
5598 ada_is_parent_field (struct type *type, int field_num)
5599 {
5600 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5601 return (name != NULL
5602 && (strncmp (name, "PARENT", 6) == 0
5603 || strncmp (name, "_parent", 7) == 0));
5604 }
5605
5606 /* True iff field number FIELD_NUM of structure type TYPE is a
5607 transparent wrapper field (which should be silently traversed when doing
5608 field selection and flattened when printing). Assumes TYPE is a
5609 structure type with at least FIELD_NUM+1 fields. Such fields are always
5610 structures. */
5611
5612 int
5613 ada_is_wrapper_field (struct type *type, int field_num)
5614 {
5615 const char *name = TYPE_FIELD_NAME (type, field_num);
5616 return (name != NULL
5617 && (strncmp (name, "PARENT", 6) == 0
5618 || strcmp (name, "REP") == 0
5619 || strncmp (name, "_parent", 7) == 0
5620 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
5621 }
5622
5623 /* True iff field number FIELD_NUM of structure or union type TYPE
5624 is a variant wrapper. Assumes TYPE is a structure type with at least
5625 FIELD_NUM+1 fields. */
5626
5627 int
5628 ada_is_variant_part (struct type *type, int field_num)
5629 {
5630 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5631 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
5632 || (is_dynamic_field (type, field_num)
5633 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5634 == TYPE_CODE_UNION)));
5635 }
5636
5637 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
5638 whose discriminants are contained in the record type OUTER_TYPE,
5639 returns the type of the controlling discriminant for the variant. */
5640
5641 struct type *
5642 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
5643 {
5644 char *name = ada_variant_discrim_name (var_type);
5645 struct type *type =
5646 ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
5647 if (type == NULL)
5648 return builtin_type_int;
5649 else
5650 return type;
5651 }
5652
5653 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
5654 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
5655 represents a 'when others' clause; otherwise 0. */
5656
5657 int
5658 ada_is_others_clause (struct type *type, int field_num)
5659 {
5660 const char *name = TYPE_FIELD_NAME (type, field_num);
5661 return (name != NULL && name[0] == 'O');
5662 }
5663
5664 /* Assuming that TYPE0 is the type of the variant part of a record,
5665 returns the name of the discriminant controlling the variant.
5666 The value is valid until the next call to ada_variant_discrim_name. */
5667
5668 char *
5669 ada_variant_discrim_name (struct type *type0)
5670 {
5671 static char *result = NULL;
5672 static size_t result_len = 0;
5673 struct type *type;
5674 const char *name;
5675 const char *discrim_end;
5676 const char *discrim_start;
5677
5678 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5679 type = TYPE_TARGET_TYPE (type0);
5680 else
5681 type = type0;
5682
5683 name = ada_type_name (type);
5684
5685 if (name == NULL || name[0] == '\000')
5686 return "";
5687
5688 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
5689 discrim_end -= 1)
5690 {
5691 if (strncmp (discrim_end, "___XVN", 6) == 0)
5692 break;
5693 }
5694 if (discrim_end == name)
5695 return "";
5696
5697 for (discrim_start = discrim_end; discrim_start != name + 3;
5698 discrim_start -= 1)
5699 {
5700 if (discrim_start == name + 1)
5701 return "";
5702 if ((discrim_start > name + 3
5703 && strncmp (discrim_start - 3, "___", 3) == 0)
5704 || discrim_start[-1] == '.')
5705 break;
5706 }
5707
5708 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
5709 strncpy (result, discrim_start, discrim_end - discrim_start);
5710 result[discrim_end - discrim_start] = '\0';
5711 return result;
5712 }
5713
5714 /* Scan STR for a subtype-encoded number, beginning at position K.
5715 Put the position of the character just past the number scanned in
5716 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
5717 Return 1 if there was a valid number at the given position, and 0
5718 otherwise. A "subtype-encoded" number consists of the absolute value
5719 in decimal, followed by the letter 'm' to indicate a negative number.
5720 Assumes 0m does not occur. */
5721
5722 int
5723 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
5724 {
5725 ULONGEST RU;
5726
5727 if (!isdigit (str[k]))
5728 return 0;
5729
5730 /* Do it the hard way so as not to make any assumption about
5731 the relationship of unsigned long (%lu scan format code) and
5732 LONGEST. */
5733 RU = 0;
5734 while (isdigit (str[k]))
5735 {
5736 RU = RU * 10 + (str[k] - '0');
5737 k += 1;
5738 }
5739
5740 if (str[k] == 'm')
5741 {
5742 if (R != NULL)
5743 *R = (-(LONGEST) (RU - 1)) - 1;
5744 k += 1;
5745 }
5746 else if (R != NULL)
5747 *R = (LONGEST) RU;
5748
5749 /* NOTE on the above: Technically, C does not say what the results of
5750 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
5751 number representable as a LONGEST (although either would probably work
5752 in most implementations). When RU>0, the locution in the then branch
5753 above is always equivalent to the negative of RU. */
5754
5755 if (new_k != NULL)
5756 *new_k = k;
5757 return 1;
5758 }
5759
5760 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
5761 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
5762 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
5763
5764 int
5765 ada_in_variant (LONGEST val, struct type *type, int field_num)
5766 {
5767 const char *name = TYPE_FIELD_NAME (type, field_num);
5768 int p;
5769
5770 p = 0;
5771 while (1)
5772 {
5773 switch (name[p])
5774 {
5775 case '\0':
5776 return 0;
5777 case 'S':
5778 {
5779 LONGEST W;
5780 if (!ada_scan_number (name, p + 1, &W, &p))
5781 return 0;
5782 if (val == W)
5783 return 1;
5784 break;
5785 }
5786 case 'R':
5787 {
5788 LONGEST L, U;
5789 if (!ada_scan_number (name, p + 1, &L, &p)
5790 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
5791 return 0;
5792 if (val >= L && val <= U)
5793 return 1;
5794 break;
5795 }
5796 case 'O':
5797 return 1;
5798 default:
5799 return 0;
5800 }
5801 }
5802 }
5803
5804 /* FIXME: Lots of redundancy below. Try to consolidate. */
5805
5806 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
5807 ARG_TYPE, extract and return the value of one of its (non-static)
5808 fields. FIELDNO says which field. Differs from value_primitive_field
5809 only in that it can handle packed values of arbitrary type. */
5810
5811 static struct value *
5812 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
5813 struct type *arg_type)
5814 {
5815 struct type *type;
5816
5817 arg_type = ada_check_typedef (arg_type);
5818 type = TYPE_FIELD_TYPE (arg_type, fieldno);
5819
5820 /* Handle packed fields. */
5821
5822 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
5823 {
5824 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
5825 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
5826
5827 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
5828 offset + bit_pos / 8,
5829 bit_pos % 8, bit_size, type);
5830 }
5831 else
5832 return value_primitive_field (arg1, offset, fieldno, arg_type);
5833 }
5834
5835 /* Find field with name NAME in object of type TYPE. If found,
5836 set the following for each argument that is non-null:
5837 - *FIELD_TYPE_P to the field's type;
5838 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
5839 an object of that type;
5840 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
5841 - *BIT_SIZE_P to its size in bits if the field is packed, and
5842 0 otherwise;
5843 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
5844 fields up to but not including the desired field, or by the total
5845 number of fields if not found. A NULL value of NAME never
5846 matches; the function just counts visible fields in this case.
5847
5848 Returns 1 if found, 0 otherwise. */
5849
5850 static int
5851 find_struct_field (char *name, struct type *type, int offset,
5852 struct type **field_type_p,
5853 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
5854 int *index_p)
5855 {
5856 int i;
5857
5858 type = ada_check_typedef (type);
5859
5860 if (field_type_p != NULL)
5861 *field_type_p = NULL;
5862 if (byte_offset_p != NULL)
5863 *byte_offset_p = 0;
5864 if (bit_offset_p != NULL)
5865 *bit_offset_p = 0;
5866 if (bit_size_p != NULL)
5867 *bit_size_p = 0;
5868
5869 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5870 {
5871 int bit_pos = TYPE_FIELD_BITPOS (type, i);
5872 int fld_offset = offset + bit_pos / 8;
5873 char *t_field_name = TYPE_FIELD_NAME (type, i);
5874
5875 if (t_field_name == NULL)
5876 continue;
5877
5878 else if (name != NULL && field_name_match (t_field_name, name))
5879 {
5880 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5881 if (field_type_p != NULL)
5882 *field_type_p = TYPE_FIELD_TYPE (type, i);
5883 if (byte_offset_p != NULL)
5884 *byte_offset_p = fld_offset;
5885 if (bit_offset_p != NULL)
5886 *bit_offset_p = bit_pos % 8;
5887 if (bit_size_p != NULL)
5888 *bit_size_p = bit_size;
5889 return 1;
5890 }
5891 else if (ada_is_wrapper_field (type, i))
5892 {
5893 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
5894 field_type_p, byte_offset_p, bit_offset_p,
5895 bit_size_p, index_p))
5896 return 1;
5897 }
5898 else if (ada_is_variant_part (type, i))
5899 {
5900 /* PNH: Wait. Do we ever execute this section, or is ARG always of
5901 fixed type?? */
5902 int j;
5903 struct type *field_type
5904 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5905
5906 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
5907 {
5908 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
5909 fld_offset
5910 + TYPE_FIELD_BITPOS (field_type, j) / 8,
5911 field_type_p, byte_offset_p,
5912 bit_offset_p, bit_size_p, index_p))
5913 return 1;
5914 }
5915 }
5916 else if (index_p != NULL)
5917 *index_p += 1;
5918 }
5919 return 0;
5920 }
5921
5922 /* Number of user-visible fields in record type TYPE. */
5923
5924 static int
5925 num_visible_fields (struct type *type)
5926 {
5927 int n;
5928 n = 0;
5929 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
5930 return n;
5931 }
5932
5933 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
5934 and search in it assuming it has (class) type TYPE.
5935 If found, return value, else return NULL.
5936
5937 Searches recursively through wrapper fields (e.g., '_parent'). */
5938
5939 static struct value *
5940 ada_search_struct_field (char *name, struct value *arg, int offset,
5941 struct type *type)
5942 {
5943 int i;
5944 type = ada_check_typedef (type);
5945
5946 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5947 {
5948 char *t_field_name = TYPE_FIELD_NAME (type, i);
5949
5950 if (t_field_name == NULL)
5951 continue;
5952
5953 else if (field_name_match (t_field_name, name))
5954 return ada_value_primitive_field (arg, offset, i, type);
5955
5956 else if (ada_is_wrapper_field (type, i))
5957 {
5958 struct value *v = /* Do not let indent join lines here. */
5959 ada_search_struct_field (name, arg,
5960 offset + TYPE_FIELD_BITPOS (type, i) / 8,
5961 TYPE_FIELD_TYPE (type, i));
5962 if (v != NULL)
5963 return v;
5964 }
5965
5966 else if (ada_is_variant_part (type, i))
5967 {
5968 /* PNH: Do we ever get here? See find_struct_field. */
5969 int j;
5970 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5971 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
5972
5973 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
5974 {
5975 struct value *v = ada_search_struct_field /* Force line break. */
5976 (name, arg,
5977 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
5978 TYPE_FIELD_TYPE (field_type, j));
5979 if (v != NULL)
5980 return v;
5981 }
5982 }
5983 }
5984 return NULL;
5985 }
5986
5987 static struct value *ada_index_struct_field_1 (int *, struct value *,
5988 int, struct type *);
5989
5990
5991 /* Return field #INDEX in ARG, where the index is that returned by
5992 * find_struct_field through its INDEX_P argument. Adjust the address
5993 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
5994 * If found, return value, else return NULL. */
5995
5996 static struct value *
5997 ada_index_struct_field (int index, struct value *arg, int offset,
5998 struct type *type)
5999 {
6000 return ada_index_struct_field_1 (&index, arg, offset, type);
6001 }
6002
6003
6004 /* Auxiliary function for ada_index_struct_field. Like
6005 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6006 * *INDEX_P. */
6007
6008 static struct value *
6009 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6010 struct type *type)
6011 {
6012 int i;
6013 type = ada_check_typedef (type);
6014
6015 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6016 {
6017 if (TYPE_FIELD_NAME (type, i) == NULL)
6018 continue;
6019 else if (ada_is_wrapper_field (type, i))
6020 {
6021 struct value *v = /* Do not let indent join lines here. */
6022 ada_index_struct_field_1 (index_p, arg,
6023 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6024 TYPE_FIELD_TYPE (type, i));
6025 if (v != NULL)
6026 return v;
6027 }
6028
6029 else if (ada_is_variant_part (type, i))
6030 {
6031 /* PNH: Do we ever get here? See ada_search_struct_field,
6032 find_struct_field. */
6033 error (_("Cannot assign this kind of variant record"));
6034 }
6035 else if (*index_p == 0)
6036 return ada_value_primitive_field (arg, offset, i, type);
6037 else
6038 *index_p -= 1;
6039 }
6040 return NULL;
6041 }
6042
6043 /* Given ARG, a value of type (pointer or reference to a)*
6044 structure/union, extract the component named NAME from the ultimate
6045 target structure/union and return it as a value with its
6046 appropriate type. If ARG is a pointer or reference and the field
6047 is not packed, returns a reference to the field, otherwise the
6048 value of the field (an lvalue if ARG is an lvalue).
6049
6050 The routine searches for NAME among all members of the structure itself
6051 and (recursively) among all members of any wrapper members
6052 (e.g., '_parent').
6053
6054 If NO_ERR, then simply return NULL in case of error, rather than
6055 calling error. */
6056
6057 struct value *
6058 ada_value_struct_elt (struct value *arg, char *name, int no_err)
6059 {
6060 struct type *t, *t1;
6061 struct value *v;
6062
6063 v = NULL;
6064 t1 = t = ada_check_typedef (value_type (arg));
6065 if (TYPE_CODE (t) == TYPE_CODE_REF)
6066 {
6067 t1 = TYPE_TARGET_TYPE (t);
6068 if (t1 == NULL)
6069 goto BadValue;
6070 t1 = ada_check_typedef (t1);
6071 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6072 {
6073 arg = coerce_ref (arg);
6074 t = t1;
6075 }
6076 }
6077
6078 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6079 {
6080 t1 = TYPE_TARGET_TYPE (t);
6081 if (t1 == NULL)
6082 goto BadValue;
6083 t1 = ada_check_typedef (t1);
6084 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6085 {
6086 arg = value_ind (arg);
6087 t = t1;
6088 }
6089 else
6090 break;
6091 }
6092
6093 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
6094 goto BadValue;
6095
6096 if (t1 == t)
6097 v = ada_search_struct_field (name, arg, 0, t);
6098 else
6099 {
6100 int bit_offset, bit_size, byte_offset;
6101 struct type *field_type;
6102 CORE_ADDR address;
6103
6104 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6105 address = value_as_address (arg);
6106 else
6107 address = unpack_pointer (t, value_contents (arg));
6108
6109 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
6110 if (find_struct_field (name, t1, 0,
6111 &field_type, &byte_offset, &bit_offset,
6112 &bit_size, NULL))
6113 {
6114 if (bit_size != 0)
6115 {
6116 if (TYPE_CODE (t) == TYPE_CODE_REF)
6117 arg = ada_coerce_ref (arg);
6118 else
6119 arg = ada_value_ind (arg);
6120 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6121 bit_offset, bit_size,
6122 field_type);
6123 }
6124 else
6125 v = value_from_pointer (lookup_reference_type (field_type),
6126 address + byte_offset);
6127 }
6128 }
6129
6130 if (v != NULL || no_err)
6131 return v;
6132 else
6133 error (_("There is no member named %s."), name);
6134
6135 BadValue:
6136 if (no_err)
6137 return NULL;
6138 else
6139 error (_("Attempt to extract a component of a value that is not a record."));
6140 }
6141
6142 /* Given a type TYPE, look up the type of the component of type named NAME.
6143 If DISPP is non-null, add its byte displacement from the beginning of a
6144 structure (pointed to by a value) of type TYPE to *DISPP (does not
6145 work for packed fields).
6146
6147 Matches any field whose name has NAME as a prefix, possibly
6148 followed by "___".
6149
6150 TYPE can be either a struct or union. If REFOK, TYPE may also
6151 be a (pointer or reference)+ to a struct or union, and the
6152 ultimate target type will be searched.
6153
6154 Looks recursively into variant clauses and parent types.
6155
6156 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6157 TYPE is not a type of the right kind. */
6158
6159 static struct type *
6160 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6161 int noerr, int *dispp)
6162 {
6163 int i;
6164
6165 if (name == NULL)
6166 goto BadName;
6167
6168 if (refok && type != NULL)
6169 while (1)
6170 {
6171 type = ada_check_typedef (type);
6172 if (TYPE_CODE (type) != TYPE_CODE_PTR
6173 && TYPE_CODE (type) != TYPE_CODE_REF)
6174 break;
6175 type = TYPE_TARGET_TYPE (type);
6176 }
6177
6178 if (type == NULL
6179 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6180 && TYPE_CODE (type) != TYPE_CODE_UNION))
6181 {
6182 if (noerr)
6183 return NULL;
6184 else
6185 {
6186 target_terminal_ours ();
6187 gdb_flush (gdb_stdout);
6188 if (type == NULL)
6189 error (_("Type (null) is not a structure or union type"));
6190 else
6191 {
6192 /* XXX: type_sprint */
6193 fprintf_unfiltered (gdb_stderr, _("Type "));
6194 type_print (type, "", gdb_stderr, -1);
6195 error (_(" is not a structure or union type"));
6196 }
6197 }
6198 }
6199
6200 type = to_static_fixed_type (type);
6201
6202 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6203 {
6204 char *t_field_name = TYPE_FIELD_NAME (type, i);
6205 struct type *t;
6206 int disp;
6207
6208 if (t_field_name == NULL)
6209 continue;
6210
6211 else if (field_name_match (t_field_name, name))
6212 {
6213 if (dispp != NULL)
6214 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
6215 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6216 }
6217
6218 else if (ada_is_wrapper_field (type, i))
6219 {
6220 disp = 0;
6221 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6222 0, 1, &disp);
6223 if (t != NULL)
6224 {
6225 if (dispp != NULL)
6226 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6227 return t;
6228 }
6229 }
6230
6231 else if (ada_is_variant_part (type, i))
6232 {
6233 int j;
6234 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6235
6236 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6237 {
6238 disp = 0;
6239 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
6240 name, 0, 1, &disp);
6241 if (t != NULL)
6242 {
6243 if (dispp != NULL)
6244 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6245 return t;
6246 }
6247 }
6248 }
6249
6250 }
6251
6252 BadName:
6253 if (!noerr)
6254 {
6255 target_terminal_ours ();
6256 gdb_flush (gdb_stdout);
6257 if (name == NULL)
6258 {
6259 /* XXX: type_sprint */
6260 fprintf_unfiltered (gdb_stderr, _("Type "));
6261 type_print (type, "", gdb_stderr, -1);
6262 error (_(" has no component named <null>"));
6263 }
6264 else
6265 {
6266 /* XXX: type_sprint */
6267 fprintf_unfiltered (gdb_stderr, _("Type "));
6268 type_print (type, "", gdb_stderr, -1);
6269 error (_(" has no component named %s"), name);
6270 }
6271 }
6272
6273 return NULL;
6274 }
6275
6276 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6277 within a value of type OUTER_TYPE that is stored in GDB at
6278 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6279 numbering from 0) is applicable. Returns -1 if none are. */
6280
6281 int
6282 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
6283 const gdb_byte *outer_valaddr)
6284 {
6285 int others_clause;
6286 int i;
6287 char *discrim_name = ada_variant_discrim_name (var_type);
6288 struct value *outer;
6289 struct value *discrim;
6290 LONGEST discrim_val;
6291
6292 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6293 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6294 if (discrim == NULL)
6295 return -1;
6296 discrim_val = value_as_long (discrim);
6297
6298 others_clause = -1;
6299 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6300 {
6301 if (ada_is_others_clause (var_type, i))
6302 others_clause = i;
6303 else if (ada_in_variant (discrim_val, var_type, i))
6304 return i;
6305 }
6306
6307 return others_clause;
6308 }
6309 \f
6310
6311
6312 /* Dynamic-Sized Records */
6313
6314 /* Strategy: The type ostensibly attached to a value with dynamic size
6315 (i.e., a size that is not statically recorded in the debugging
6316 data) does not accurately reflect the size or layout of the value.
6317 Our strategy is to convert these values to values with accurate,
6318 conventional types that are constructed on the fly. */
6319
6320 /* There is a subtle and tricky problem here. In general, we cannot
6321 determine the size of dynamic records without its data. However,
6322 the 'struct value' data structure, which GDB uses to represent
6323 quantities in the inferior process (the target), requires the size
6324 of the type at the time of its allocation in order to reserve space
6325 for GDB's internal copy of the data. That's why the
6326 'to_fixed_xxx_type' routines take (target) addresses as parameters,
6327 rather than struct value*s.
6328
6329 However, GDB's internal history variables ($1, $2, etc.) are
6330 struct value*s containing internal copies of the data that are not, in
6331 general, the same as the data at their corresponding addresses in
6332 the target. Fortunately, the types we give to these values are all
6333 conventional, fixed-size types (as per the strategy described
6334 above), so that we don't usually have to perform the
6335 'to_fixed_xxx_type' conversions to look at their values.
6336 Unfortunately, there is one exception: if one of the internal
6337 history variables is an array whose elements are unconstrained
6338 records, then we will need to create distinct fixed types for each
6339 element selected. */
6340
6341 /* The upshot of all of this is that many routines take a (type, host
6342 address, target address) triple as arguments to represent a value.
6343 The host address, if non-null, is supposed to contain an internal
6344 copy of the relevant data; otherwise, the program is to consult the
6345 target at the target address. */
6346
6347 /* Assuming that VAL0 represents a pointer value, the result of
6348 dereferencing it. Differs from value_ind in its treatment of
6349 dynamic-sized types. */
6350
6351 struct value *
6352 ada_value_ind (struct value *val0)
6353 {
6354 struct value *val = unwrap_value (value_ind (val0));
6355 return ada_to_fixed_value (val);
6356 }
6357
6358 /* The value resulting from dereferencing any "reference to"
6359 qualifiers on VAL0. */
6360
6361 static struct value *
6362 ada_coerce_ref (struct value *val0)
6363 {
6364 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
6365 {
6366 struct value *val = val0;
6367 val = coerce_ref (val);
6368 val = unwrap_value (val);
6369 return ada_to_fixed_value (val);
6370 }
6371 else
6372 return val0;
6373 }
6374
6375 /* Return OFF rounded upward if necessary to a multiple of
6376 ALIGNMENT (a power of 2). */
6377
6378 static unsigned int
6379 align_value (unsigned int off, unsigned int alignment)
6380 {
6381 return (off + alignment - 1) & ~(alignment - 1);
6382 }
6383
6384 /* Return the bit alignment required for field #F of template type TYPE. */
6385
6386 static unsigned int
6387 field_alignment (struct type *type, int f)
6388 {
6389 const char *name = TYPE_FIELD_NAME (type, f);
6390 int len;
6391 int align_offset;
6392
6393 /* The field name should never be null, unless the debugging information
6394 is somehow malformed. In this case, we assume the field does not
6395 require any alignment. */
6396 if (name == NULL)
6397 return 1;
6398
6399 len = strlen (name);
6400
6401 if (!isdigit (name[len - 1]))
6402 return 1;
6403
6404 if (isdigit (name[len - 2]))
6405 align_offset = len - 2;
6406 else
6407 align_offset = len - 1;
6408
6409 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
6410 return TARGET_CHAR_BIT;
6411
6412 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6413 }
6414
6415 /* Find a symbol named NAME. Ignores ambiguity. */
6416
6417 struct symbol *
6418 ada_find_any_symbol (const char *name)
6419 {
6420 struct symbol *sym;
6421
6422 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6423 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6424 return sym;
6425
6426 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6427 return sym;
6428 }
6429
6430 /* Find a type named NAME. Ignores ambiguity. */
6431
6432 struct type *
6433 ada_find_any_type (const char *name)
6434 {
6435 struct symbol *sym = ada_find_any_symbol (name);
6436
6437 if (sym != NULL)
6438 return SYMBOL_TYPE (sym);
6439
6440 return NULL;
6441 }
6442
6443 /* Given NAME and an associated BLOCK, search all symbols for
6444 NAME suffixed with "___XR", which is the ``renaming'' symbol
6445 associated to NAME. Return this symbol if found, return
6446 NULL otherwise. */
6447
6448 struct symbol *
6449 ada_find_renaming_symbol (const char *name, struct block *block)
6450 {
6451 struct symbol *sym;
6452
6453 sym = find_old_style_renaming_symbol (name, block);
6454
6455 if (sym != NULL)
6456 return sym;
6457
6458 /* Not right yet. FIXME pnh 7/20/2007. */
6459 sym = ada_find_any_symbol (name);
6460 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
6461 return sym;
6462 else
6463 return NULL;
6464 }
6465
6466 static struct symbol *
6467 find_old_style_renaming_symbol (const char *name, struct block *block)
6468 {
6469 const struct symbol *function_sym = block_function (block);
6470 char *rename;
6471
6472 if (function_sym != NULL)
6473 {
6474 /* If the symbol is defined inside a function, NAME is not fully
6475 qualified. This means we need to prepend the function name
6476 as well as adding the ``___XR'' suffix to build the name of
6477 the associated renaming symbol. */
6478 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
6479 /* Function names sometimes contain suffixes used
6480 for instance to qualify nested subprograms. When building
6481 the XR type name, we need to make sure that this suffix is
6482 not included. So do not include any suffix in the function
6483 name length below. */
6484 const int function_name_len = ada_name_prefix_len (function_name);
6485 const int rename_len = function_name_len + 2 /* "__" */
6486 + strlen (name) + 6 /* "___XR\0" */ ;
6487
6488 /* Strip the suffix if necessary. */
6489 function_name[function_name_len] = '\0';
6490
6491 /* Library-level functions are a special case, as GNAT adds
6492 a ``_ada_'' prefix to the function name to avoid namespace
6493 pollution. However, the renaming symbols themselves do not
6494 have this prefix, so we need to skip this prefix if present. */
6495 if (function_name_len > 5 /* "_ada_" */
6496 && strstr (function_name, "_ada_") == function_name)
6497 function_name = function_name + 5;
6498
6499 rename = (char *) alloca (rename_len * sizeof (char));
6500 sprintf (rename, "%s__%s___XR", function_name, name);
6501 }
6502 else
6503 {
6504 const int rename_len = strlen (name) + 6;
6505 rename = (char *) alloca (rename_len * sizeof (char));
6506 sprintf (rename, "%s___XR", name);
6507 }
6508
6509 return ada_find_any_symbol (rename);
6510 }
6511
6512 /* Because of GNAT encoding conventions, several GDB symbols may match a
6513 given type name. If the type denoted by TYPE0 is to be preferred to
6514 that of TYPE1 for purposes of type printing, return non-zero;
6515 otherwise return 0. */
6516
6517 int
6518 ada_prefer_type (struct type *type0, struct type *type1)
6519 {
6520 if (type1 == NULL)
6521 return 1;
6522 else if (type0 == NULL)
6523 return 0;
6524 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6525 return 1;
6526 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6527 return 0;
6528 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6529 return 1;
6530 else if (ada_is_packed_array_type (type0))
6531 return 1;
6532 else if (ada_is_array_descriptor_type (type0)
6533 && !ada_is_array_descriptor_type (type1))
6534 return 1;
6535 else
6536 {
6537 const char *type0_name = type_name_no_tag (type0);
6538 const char *type1_name = type_name_no_tag (type1);
6539
6540 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
6541 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
6542 return 1;
6543 }
6544 return 0;
6545 }
6546
6547 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
6548 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6549
6550 char *
6551 ada_type_name (struct type *type)
6552 {
6553 if (type == NULL)
6554 return NULL;
6555 else if (TYPE_NAME (type) != NULL)
6556 return TYPE_NAME (type);
6557 else
6558 return TYPE_TAG_NAME (type);
6559 }
6560
6561 /* Find a parallel type to TYPE whose name is formed by appending
6562 SUFFIX to the name of TYPE. */
6563
6564 struct type *
6565 ada_find_parallel_type (struct type *type, const char *suffix)
6566 {
6567 static char *name;
6568 static size_t name_len = 0;
6569 int len;
6570 char *typename = ada_type_name (type);
6571
6572 if (typename == NULL)
6573 return NULL;
6574
6575 len = strlen (typename);
6576
6577 GROW_VECT (name, name_len, len + strlen (suffix) + 1);
6578
6579 strcpy (name, typename);
6580 strcpy (name + len, suffix);
6581
6582 return ada_find_any_type (name);
6583 }
6584
6585
6586 /* If TYPE is a variable-size record type, return the corresponding template
6587 type describing its fields. Otherwise, return NULL. */
6588
6589 static struct type *
6590 dynamic_template_type (struct type *type)
6591 {
6592 type = ada_check_typedef (type);
6593
6594 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
6595 || ada_type_name (type) == NULL)
6596 return NULL;
6597 else
6598 {
6599 int len = strlen (ada_type_name (type));
6600 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
6601 return type;
6602 else
6603 return ada_find_parallel_type (type, "___XVE");
6604 }
6605 }
6606
6607 /* Assuming that TEMPL_TYPE is a union or struct type, returns
6608 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
6609
6610 static int
6611 is_dynamic_field (struct type *templ_type, int field_num)
6612 {
6613 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
6614 return name != NULL
6615 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
6616 && strstr (name, "___XVL") != NULL;
6617 }
6618
6619 /* The index of the variant field of TYPE, or -1 if TYPE does not
6620 represent a variant record type. */
6621
6622 static int
6623 variant_field_index (struct type *type)
6624 {
6625 int f;
6626
6627 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6628 return -1;
6629
6630 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
6631 {
6632 if (ada_is_variant_part (type, f))
6633 return f;
6634 }
6635 return -1;
6636 }
6637
6638 /* A record type with no fields. */
6639
6640 static struct type *
6641 empty_record (struct objfile *objfile)
6642 {
6643 struct type *type = alloc_type (objfile);
6644 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6645 TYPE_NFIELDS (type) = 0;
6646 TYPE_FIELDS (type) = NULL;
6647 TYPE_NAME (type) = "<empty>";
6648 TYPE_TAG_NAME (type) = NULL;
6649 TYPE_FLAGS (type) = 0;
6650 TYPE_LENGTH (type) = 0;
6651 return type;
6652 }
6653
6654 /* An ordinary record type (with fixed-length fields) that describes
6655 the value of type TYPE at VALADDR or ADDRESS (see comments at
6656 the beginning of this section) VAL according to GNAT conventions.
6657 DVAL0 should describe the (portion of a) record that contains any
6658 necessary discriminants. It should be NULL if value_type (VAL) is
6659 an outer-level type (i.e., as opposed to a branch of a variant.) A
6660 variant field (unless unchecked) is replaced by a particular branch
6661 of the variant.
6662
6663 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
6664 length are not statically known are discarded. As a consequence,
6665 VALADDR, ADDRESS and DVAL0 are ignored.
6666
6667 NOTE: Limitations: For now, we assume that dynamic fields and
6668 variants occupy whole numbers of bytes. However, they need not be
6669 byte-aligned. */
6670
6671 struct type *
6672 ada_template_to_fixed_record_type_1 (struct type *type,
6673 const gdb_byte *valaddr,
6674 CORE_ADDR address, struct value *dval0,
6675 int keep_dynamic_fields)
6676 {
6677 struct value *mark = value_mark ();
6678 struct value *dval;
6679 struct type *rtype;
6680 int nfields, bit_len;
6681 int variant_field;
6682 long off;
6683 int fld_bit_len, bit_incr;
6684 int f;
6685
6686 /* Compute the number of fields in this record type that are going
6687 to be processed: unless keep_dynamic_fields, this includes only
6688 fields whose position and length are static will be processed. */
6689 if (keep_dynamic_fields)
6690 nfields = TYPE_NFIELDS (type);
6691 else
6692 {
6693 nfields = 0;
6694 while (nfields < TYPE_NFIELDS (type)
6695 && !ada_is_variant_part (type, nfields)
6696 && !is_dynamic_field (type, nfields))
6697 nfields++;
6698 }
6699
6700 rtype = alloc_type (TYPE_OBJFILE (type));
6701 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6702 INIT_CPLUS_SPECIFIC (rtype);
6703 TYPE_NFIELDS (rtype) = nfields;
6704 TYPE_FIELDS (rtype) = (struct field *)
6705 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6706 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
6707 TYPE_NAME (rtype) = ada_type_name (type);
6708 TYPE_TAG_NAME (rtype) = NULL;
6709 TYPE_FLAGS (rtype) |= TYPE_FLAG_FIXED_INSTANCE;
6710
6711 off = 0;
6712 bit_len = 0;
6713 variant_field = -1;
6714
6715 for (f = 0; f < nfields; f += 1)
6716 {
6717 off = align_value (off, field_alignment (type, f))
6718 + TYPE_FIELD_BITPOS (type, f);
6719 TYPE_FIELD_BITPOS (rtype, f) = off;
6720 TYPE_FIELD_BITSIZE (rtype, f) = 0;
6721
6722 if (ada_is_variant_part (type, f))
6723 {
6724 variant_field = f;
6725 fld_bit_len = bit_incr = 0;
6726 }
6727 else if (is_dynamic_field (type, f))
6728 {
6729 if (dval0 == NULL)
6730 dval = value_from_contents_and_address (rtype, valaddr, address);
6731 else
6732 dval = dval0;
6733
6734 /* Get the fixed type of the field. Note that, in this case, we
6735 do not want to get the real type out of the tag: if the current
6736 field is the parent part of a tagged record, we will get the
6737 tag of the object. Clearly wrong: the real type of the parent
6738 is not the real type of the child. We would end up in an infinite
6739 loop. */
6740 TYPE_FIELD_TYPE (rtype, f) =
6741 ada_to_fixed_type
6742 (ada_get_base_type
6743 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f))),
6744 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6745 cond_offset_target (address, off / TARGET_CHAR_BIT), dval, 0);
6746 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6747 bit_incr = fld_bit_len =
6748 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
6749 }
6750 else
6751 {
6752 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
6753 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6754 if (TYPE_FIELD_BITSIZE (type, f) > 0)
6755 bit_incr = fld_bit_len =
6756 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
6757 else
6758 bit_incr = fld_bit_len =
6759 TYPE_LENGTH (TYPE_FIELD_TYPE (type, f)) * TARGET_CHAR_BIT;
6760 }
6761 if (off + fld_bit_len > bit_len)
6762 bit_len = off + fld_bit_len;
6763 off += bit_incr;
6764 TYPE_LENGTH (rtype) =
6765 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6766 }
6767
6768 /* We handle the variant part, if any, at the end because of certain
6769 odd cases in which it is re-ordered so as NOT the last field of
6770 the record. This can happen in the presence of representation
6771 clauses. */
6772 if (variant_field >= 0)
6773 {
6774 struct type *branch_type;
6775
6776 off = TYPE_FIELD_BITPOS (rtype, variant_field);
6777
6778 if (dval0 == NULL)
6779 dval = value_from_contents_and_address (rtype, valaddr, address);
6780 else
6781 dval = dval0;
6782
6783 branch_type =
6784 to_fixed_variant_branch_type
6785 (TYPE_FIELD_TYPE (type, variant_field),
6786 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6787 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
6788 if (branch_type == NULL)
6789 {
6790 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
6791 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6792 TYPE_NFIELDS (rtype) -= 1;
6793 }
6794 else
6795 {
6796 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6797 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6798 fld_bit_len =
6799 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
6800 TARGET_CHAR_BIT;
6801 if (off + fld_bit_len > bit_len)
6802 bit_len = off + fld_bit_len;
6803 TYPE_LENGTH (rtype) =
6804 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6805 }
6806 }
6807
6808 /* According to exp_dbug.ads, the size of TYPE for variable-size records
6809 should contain the alignment of that record, which should be a strictly
6810 positive value. If null or negative, then something is wrong, most
6811 probably in the debug info. In that case, we don't round up the size
6812 of the resulting type. If this record is not part of another structure,
6813 the current RTYPE length might be good enough for our purposes. */
6814 if (TYPE_LENGTH (type) <= 0)
6815 {
6816 if (TYPE_NAME (rtype))
6817 warning (_("Invalid type size for `%s' detected: %d."),
6818 TYPE_NAME (rtype), TYPE_LENGTH (type));
6819 else
6820 warning (_("Invalid type size for <unnamed> detected: %d."),
6821 TYPE_LENGTH (type));
6822 }
6823 else
6824 {
6825 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
6826 TYPE_LENGTH (type));
6827 }
6828
6829 value_free_to_mark (mark);
6830 if (TYPE_LENGTH (rtype) > varsize_limit)
6831 error (_("record type with dynamic size is larger than varsize-limit"));
6832 return rtype;
6833 }
6834
6835 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
6836 of 1. */
6837
6838 static struct type *
6839 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
6840 CORE_ADDR address, struct value *dval0)
6841 {
6842 return ada_template_to_fixed_record_type_1 (type, valaddr,
6843 address, dval0, 1);
6844 }
6845
6846 /* An ordinary record type in which ___XVL-convention fields and
6847 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
6848 static approximations, containing all possible fields. Uses
6849 no runtime values. Useless for use in values, but that's OK,
6850 since the results are used only for type determinations. Works on both
6851 structs and unions. Representation note: to save space, we memorize
6852 the result of this function in the TYPE_TARGET_TYPE of the
6853 template type. */
6854
6855 static struct type *
6856 template_to_static_fixed_type (struct type *type0)
6857 {
6858 struct type *type;
6859 int nfields;
6860 int f;
6861
6862 if (TYPE_TARGET_TYPE (type0) != NULL)
6863 return TYPE_TARGET_TYPE (type0);
6864
6865 nfields = TYPE_NFIELDS (type0);
6866 type = type0;
6867
6868 for (f = 0; f < nfields; f += 1)
6869 {
6870 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
6871 struct type *new_type;
6872
6873 if (is_dynamic_field (type0, f))
6874 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
6875 else
6876 new_type = static_unwrap_type (field_type);
6877 if (type == type0 && new_type != field_type)
6878 {
6879 TYPE_TARGET_TYPE (type0) = type = alloc_type (TYPE_OBJFILE (type0));
6880 TYPE_CODE (type) = TYPE_CODE (type0);
6881 INIT_CPLUS_SPECIFIC (type);
6882 TYPE_NFIELDS (type) = nfields;
6883 TYPE_FIELDS (type) = (struct field *)
6884 TYPE_ALLOC (type, nfields * sizeof (struct field));
6885 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
6886 sizeof (struct field) * nfields);
6887 TYPE_NAME (type) = ada_type_name (type0);
6888 TYPE_TAG_NAME (type) = NULL;
6889 TYPE_FLAGS (type) |= TYPE_FLAG_FIXED_INSTANCE;
6890 TYPE_LENGTH (type) = 0;
6891 }
6892 TYPE_FIELD_TYPE (type, f) = new_type;
6893 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
6894 }
6895 return type;
6896 }
6897
6898 /* Given an object of type TYPE whose contents are at VALADDR and
6899 whose address in memory is ADDRESS, returns a revision of TYPE --
6900 a non-dynamic-sized record with a variant part -- in which
6901 the variant part is replaced with the appropriate branch. Looks
6902 for discriminant values in DVAL0, which can be NULL if the record
6903 contains the necessary discriminant values. */
6904
6905 static struct type *
6906 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
6907 CORE_ADDR address, struct value *dval0)
6908 {
6909 struct value *mark = value_mark ();
6910 struct value *dval;
6911 struct type *rtype;
6912 struct type *branch_type;
6913 int nfields = TYPE_NFIELDS (type);
6914 int variant_field = variant_field_index (type);
6915
6916 if (variant_field == -1)
6917 return type;
6918
6919 if (dval0 == NULL)
6920 dval = value_from_contents_and_address (type, valaddr, address);
6921 else
6922 dval = dval0;
6923
6924 rtype = alloc_type (TYPE_OBJFILE (type));
6925 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6926 INIT_CPLUS_SPECIFIC (rtype);
6927 TYPE_NFIELDS (rtype) = nfields;
6928 TYPE_FIELDS (rtype) =
6929 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6930 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
6931 sizeof (struct field) * nfields);
6932 TYPE_NAME (rtype) = ada_type_name (type);
6933 TYPE_TAG_NAME (rtype) = NULL;
6934 TYPE_FLAGS (rtype) |= TYPE_FLAG_FIXED_INSTANCE;
6935 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
6936
6937 branch_type = to_fixed_variant_branch_type
6938 (TYPE_FIELD_TYPE (type, variant_field),
6939 cond_offset_host (valaddr,
6940 TYPE_FIELD_BITPOS (type, variant_field)
6941 / TARGET_CHAR_BIT),
6942 cond_offset_target (address,
6943 TYPE_FIELD_BITPOS (type, variant_field)
6944 / TARGET_CHAR_BIT), dval);
6945 if (branch_type == NULL)
6946 {
6947 int f;
6948 for (f = variant_field + 1; f < nfields; f += 1)
6949 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6950 TYPE_NFIELDS (rtype) -= 1;
6951 }
6952 else
6953 {
6954 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6955 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6956 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
6957 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
6958 }
6959 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
6960
6961 value_free_to_mark (mark);
6962 return rtype;
6963 }
6964
6965 /* An ordinary record type (with fixed-length fields) that describes
6966 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
6967 beginning of this section]. Any necessary discriminants' values
6968 should be in DVAL, a record value; it may be NULL if the object
6969 at ADDR itself contains any necessary discriminant values.
6970 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
6971 values from the record are needed. Except in the case that DVAL,
6972 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
6973 unchecked) is replaced by a particular branch of the variant.
6974
6975 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
6976 is questionable and may be removed. It can arise during the
6977 processing of an unconstrained-array-of-record type where all the
6978 variant branches have exactly the same size. This is because in
6979 such cases, the compiler does not bother to use the XVS convention
6980 when encoding the record. I am currently dubious of this
6981 shortcut and suspect the compiler should be altered. FIXME. */
6982
6983 static struct type *
6984 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
6985 CORE_ADDR address, struct value *dval)
6986 {
6987 struct type *templ_type;
6988
6989 if (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE)
6990 return type0;
6991
6992 templ_type = dynamic_template_type (type0);
6993
6994 if (templ_type != NULL)
6995 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
6996 else if (variant_field_index (type0) >= 0)
6997 {
6998 if (dval == NULL && valaddr == NULL && address == 0)
6999 return type0;
7000 return to_record_with_fixed_variant_part (type0, valaddr, address,
7001 dval);
7002 }
7003 else
7004 {
7005 TYPE_FLAGS (type0) |= TYPE_FLAG_FIXED_INSTANCE;
7006 return type0;
7007 }
7008
7009 }
7010
7011 /* An ordinary record type (with fixed-length fields) that describes
7012 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7013 union type. Any necessary discriminants' values should be in DVAL,
7014 a record value. That is, this routine selects the appropriate
7015 branch of the union at ADDR according to the discriminant value
7016 indicated in the union's type name. */
7017
7018 static struct type *
7019 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7020 CORE_ADDR address, struct value *dval)
7021 {
7022 int which;
7023 struct type *templ_type;
7024 struct type *var_type;
7025
7026 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7027 var_type = TYPE_TARGET_TYPE (var_type0);
7028 else
7029 var_type = var_type0;
7030
7031 templ_type = ada_find_parallel_type (var_type, "___XVU");
7032
7033 if (templ_type != NULL)
7034 var_type = templ_type;
7035
7036 which =
7037 ada_which_variant_applies (var_type,
7038 value_type (dval), value_contents (dval));
7039
7040 if (which < 0)
7041 return empty_record (TYPE_OBJFILE (var_type));
7042 else if (is_dynamic_field (var_type, which))
7043 return to_fixed_record_type
7044 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7045 valaddr, address, dval);
7046 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
7047 return
7048 to_fixed_record_type
7049 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
7050 else
7051 return TYPE_FIELD_TYPE (var_type, which);
7052 }
7053
7054 /* Assuming that TYPE0 is an array type describing the type of a value
7055 at ADDR, and that DVAL describes a record containing any
7056 discriminants used in TYPE0, returns a type for the value that
7057 contains no dynamic components (that is, no components whose sizes
7058 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7059 true, gives an error message if the resulting type's size is over
7060 varsize_limit. */
7061
7062 static struct type *
7063 to_fixed_array_type (struct type *type0, struct value *dval,
7064 int ignore_too_big)
7065 {
7066 struct type *index_type_desc;
7067 struct type *result;
7068
7069 if (ada_is_packed_array_type (type0) /* revisit? */
7070 || (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE))
7071 return type0;
7072
7073 index_type_desc = ada_find_parallel_type (type0, "___XA");
7074 if (index_type_desc == NULL)
7075 {
7076 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
7077 /* NOTE: elt_type---the fixed version of elt_type0---should never
7078 depend on the contents of the array in properly constructed
7079 debugging data. */
7080 /* Create a fixed version of the array element type.
7081 We're not providing the address of an element here,
7082 and thus the actual object value cannot be inspected to do
7083 the conversion. This should not be a problem, since arrays of
7084 unconstrained objects are not allowed. In particular, all
7085 the elements of an array of a tagged type should all be of
7086 the same type specified in the debugging info. No need to
7087 consult the object tag. */
7088 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
7089
7090 if (elt_type0 == elt_type)
7091 result = type0;
7092 else
7093 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
7094 elt_type, TYPE_INDEX_TYPE (type0));
7095 }
7096 else
7097 {
7098 int i;
7099 struct type *elt_type0;
7100
7101 elt_type0 = type0;
7102 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
7103 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7104
7105 /* NOTE: result---the fixed version of elt_type0---should never
7106 depend on the contents of the array in properly constructed
7107 debugging data. */
7108 /* Create a fixed version of the array element type.
7109 We're not providing the address of an element here,
7110 and thus the actual object value cannot be inspected to do
7111 the conversion. This should not be a problem, since arrays of
7112 unconstrained objects are not allowed. In particular, all
7113 the elements of an array of a tagged type should all be of
7114 the same type specified in the debugging info. No need to
7115 consult the object tag. */
7116 result =
7117 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
7118 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
7119 {
7120 struct type *range_type =
7121 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, i),
7122 dval, TYPE_OBJFILE (type0));
7123 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
7124 result, range_type);
7125 }
7126 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
7127 error (_("array type with dynamic size is larger than varsize-limit"));
7128 }
7129
7130 TYPE_FLAGS (result) |= TYPE_FLAG_FIXED_INSTANCE;
7131 return result;
7132 }
7133
7134
7135 /* A standard type (containing no dynamically sized components)
7136 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7137 DVAL describes a record containing any discriminants used in TYPE0,
7138 and may be NULL if there are none, or if the object of type TYPE at
7139 ADDRESS or in VALADDR contains these discriminants.
7140
7141 If CHECK_TAG is not null, in the case of tagged types, this function
7142 attempts to locate the object's tag and use it to compute the actual
7143 type. However, when ADDRESS is null, we cannot use it to determine the
7144 location of the tag, and therefore compute the tagged type's actual type.
7145 So we return the tagged type without consulting the tag. */
7146
7147 static struct type *
7148 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
7149 CORE_ADDR address, struct value *dval, int check_tag)
7150 {
7151 type = ada_check_typedef (type);
7152 switch (TYPE_CODE (type))
7153 {
7154 default:
7155 return type;
7156 case TYPE_CODE_STRUCT:
7157 {
7158 struct type *static_type = to_static_fixed_type (type);
7159 struct type *fixed_record_type =
7160 to_fixed_record_type (type, valaddr, address, NULL);
7161 /* If STATIC_TYPE is a tagged type and we know the object's address,
7162 then we can determine its tag, and compute the object's actual
7163 type from there. Note that we have to use the fixed record
7164 type (the parent part of the record may have dynamic fields
7165 and the way the location of _tag is expressed may depend on
7166 them). */
7167
7168 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
7169 {
7170 struct type *real_type =
7171 type_from_tag (value_tag_from_contents_and_address
7172 (fixed_record_type,
7173 valaddr,
7174 address));
7175 if (real_type != NULL)
7176 return to_fixed_record_type (real_type, valaddr, address, NULL);
7177 }
7178 return fixed_record_type;
7179 }
7180 case TYPE_CODE_ARRAY:
7181 return to_fixed_array_type (type, dval, 1);
7182 case TYPE_CODE_UNION:
7183 if (dval == NULL)
7184 return type;
7185 else
7186 return to_fixed_variant_branch_type (type, valaddr, address, dval);
7187 }
7188 }
7189
7190 /* The same as ada_to_fixed_type_1, except that it preserves the type
7191 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
7192 ada_to_fixed_type_1 would return the type referenced by TYPE. */
7193
7194 struct type *
7195 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
7196 CORE_ADDR address, struct value *dval, int check_tag)
7197
7198 {
7199 struct type *fixed_type =
7200 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
7201
7202 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
7203 && TYPE_TARGET_TYPE (type) == fixed_type)
7204 return type;
7205
7206 return fixed_type;
7207 }
7208
7209 /* A standard (static-sized) type corresponding as well as possible to
7210 TYPE0, but based on no runtime data. */
7211
7212 static struct type *
7213 to_static_fixed_type (struct type *type0)
7214 {
7215 struct type *type;
7216
7217 if (type0 == NULL)
7218 return NULL;
7219
7220 if (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE)
7221 return type0;
7222
7223 type0 = ada_check_typedef (type0);
7224
7225 switch (TYPE_CODE (type0))
7226 {
7227 default:
7228 return type0;
7229 case TYPE_CODE_STRUCT:
7230 type = dynamic_template_type (type0);
7231 if (type != NULL)
7232 return template_to_static_fixed_type (type);
7233 else
7234 return template_to_static_fixed_type (type0);
7235 case TYPE_CODE_UNION:
7236 type = ada_find_parallel_type (type0, "___XVU");
7237 if (type != NULL)
7238 return template_to_static_fixed_type (type);
7239 else
7240 return template_to_static_fixed_type (type0);
7241 }
7242 }
7243
7244 /* A static approximation of TYPE with all type wrappers removed. */
7245
7246 static struct type *
7247 static_unwrap_type (struct type *type)
7248 {
7249 if (ada_is_aligner_type (type))
7250 {
7251 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
7252 if (ada_type_name (type1) == NULL)
7253 TYPE_NAME (type1) = ada_type_name (type);
7254
7255 return static_unwrap_type (type1);
7256 }
7257 else
7258 {
7259 struct type *raw_real_type = ada_get_base_type (type);
7260 if (raw_real_type == type)
7261 return type;
7262 else
7263 return to_static_fixed_type (raw_real_type);
7264 }
7265 }
7266
7267 /* In some cases, incomplete and private types require
7268 cross-references that are not resolved as records (for example,
7269 type Foo;
7270 type FooP is access Foo;
7271 V: FooP;
7272 type Foo is array ...;
7273 ). In these cases, since there is no mechanism for producing
7274 cross-references to such types, we instead substitute for FooP a
7275 stub enumeration type that is nowhere resolved, and whose tag is
7276 the name of the actual type. Call these types "non-record stubs". */
7277
7278 /* A type equivalent to TYPE that is not a non-record stub, if one
7279 exists, otherwise TYPE. */
7280
7281 struct type *
7282 ada_check_typedef (struct type *type)
7283 {
7284 if (type == NULL)
7285 return NULL;
7286
7287 CHECK_TYPEDEF (type);
7288 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
7289 || !TYPE_STUB (type)
7290 || TYPE_TAG_NAME (type) == NULL)
7291 return type;
7292 else
7293 {
7294 char *name = TYPE_TAG_NAME (type);
7295 struct type *type1 = ada_find_any_type (name);
7296 return (type1 == NULL) ? type : type1;
7297 }
7298 }
7299
7300 /* A value representing the data at VALADDR/ADDRESS as described by
7301 type TYPE0, but with a standard (static-sized) type that correctly
7302 describes it. If VAL0 is not NULL and TYPE0 already is a standard
7303 type, then return VAL0 [this feature is simply to avoid redundant
7304 creation of struct values]. */
7305
7306 static struct value *
7307 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
7308 struct value *val0)
7309 {
7310 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
7311 if (type == type0 && val0 != NULL)
7312 return val0;
7313 else
7314 return value_from_contents_and_address (type, 0, address);
7315 }
7316
7317 /* A value representing VAL, but with a standard (static-sized) type
7318 that correctly describes it. Does not necessarily create a new
7319 value. */
7320
7321 static struct value *
7322 ada_to_fixed_value (struct value *val)
7323 {
7324 return ada_to_fixed_value_create (value_type (val),
7325 VALUE_ADDRESS (val) + value_offset (val),
7326 val);
7327 }
7328
7329 /* A value representing VAL, but with a standard (static-sized) type
7330 chosen to approximate the real type of VAL as well as possible, but
7331 without consulting any runtime values. For Ada dynamic-sized
7332 types, therefore, the type of the result is likely to be inaccurate. */
7333
7334 struct value *
7335 ada_to_static_fixed_value (struct value *val)
7336 {
7337 struct type *type =
7338 to_static_fixed_type (static_unwrap_type (value_type (val)));
7339 if (type == value_type (val))
7340 return val;
7341 else
7342 return coerce_unspec_val_to_type (val, type);
7343 }
7344 \f
7345
7346 /* Attributes */
7347
7348 /* Table mapping attribute numbers to names.
7349 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
7350
7351 static const char *attribute_names[] = {
7352 "<?>",
7353
7354 "first",
7355 "last",
7356 "length",
7357 "image",
7358 "max",
7359 "min",
7360 "modulus",
7361 "pos",
7362 "size",
7363 "tag",
7364 "val",
7365 0
7366 };
7367
7368 const char *
7369 ada_attribute_name (enum exp_opcode n)
7370 {
7371 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7372 return attribute_names[n - OP_ATR_FIRST + 1];
7373 else
7374 return attribute_names[0];
7375 }
7376
7377 /* Evaluate the 'POS attribute applied to ARG. */
7378
7379 static LONGEST
7380 pos_atr (struct value *arg)
7381 {
7382 struct type *type = value_type (arg);
7383
7384 if (!discrete_type_p (type))
7385 error (_("'POS only defined on discrete types"));
7386
7387 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7388 {
7389 int i;
7390 LONGEST v = value_as_long (arg);
7391
7392 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7393 {
7394 if (v == TYPE_FIELD_BITPOS (type, i))
7395 return i;
7396 }
7397 error (_("enumeration value is invalid: can't find 'POS"));
7398 }
7399 else
7400 return value_as_long (arg);
7401 }
7402
7403 static struct value *
7404 value_pos_atr (struct value *arg)
7405 {
7406 return value_from_longest (builtin_type_int, pos_atr (arg));
7407 }
7408
7409 /* Evaluate the TYPE'VAL attribute applied to ARG. */
7410
7411 static struct value *
7412 value_val_atr (struct type *type, struct value *arg)
7413 {
7414 if (!discrete_type_p (type))
7415 error (_("'VAL only defined on discrete types"));
7416 if (!integer_type_p (value_type (arg)))
7417 error (_("'VAL requires integral argument"));
7418
7419 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7420 {
7421 long pos = value_as_long (arg);
7422 if (pos < 0 || pos >= TYPE_NFIELDS (type))
7423 error (_("argument to 'VAL out of range"));
7424 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
7425 }
7426 else
7427 return value_from_longest (type, value_as_long (arg));
7428 }
7429 \f
7430
7431 /* Evaluation */
7432
7433 /* True if TYPE appears to be an Ada character type.
7434 [At the moment, this is true only for Character and Wide_Character;
7435 It is a heuristic test that could stand improvement]. */
7436
7437 int
7438 ada_is_character_type (struct type *type)
7439 {
7440 const char *name;
7441
7442 /* If the type code says it's a character, then assume it really is,
7443 and don't check any further. */
7444 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
7445 return 1;
7446
7447 /* Otherwise, assume it's a character type iff it is a discrete type
7448 with a known character type name. */
7449 name = ada_type_name (type);
7450 return (name != NULL
7451 && (TYPE_CODE (type) == TYPE_CODE_INT
7452 || TYPE_CODE (type) == TYPE_CODE_RANGE)
7453 && (strcmp (name, "character") == 0
7454 || strcmp (name, "wide_character") == 0
7455 || strcmp (name, "wide_wide_character") == 0
7456 || strcmp (name, "unsigned char") == 0));
7457 }
7458
7459 /* True if TYPE appears to be an Ada string type. */
7460
7461 int
7462 ada_is_string_type (struct type *type)
7463 {
7464 type = ada_check_typedef (type);
7465 if (type != NULL
7466 && TYPE_CODE (type) != TYPE_CODE_PTR
7467 && (ada_is_simple_array_type (type)
7468 || ada_is_array_descriptor_type (type))
7469 && ada_array_arity (type) == 1)
7470 {
7471 struct type *elttype = ada_array_element_type (type, 1);
7472
7473 return ada_is_character_type (elttype);
7474 }
7475 else
7476 return 0;
7477 }
7478
7479
7480 /* True if TYPE is a struct type introduced by the compiler to force the
7481 alignment of a value. Such types have a single field with a
7482 distinctive name. */
7483
7484 int
7485 ada_is_aligner_type (struct type *type)
7486 {
7487 type = ada_check_typedef (type);
7488
7489 /* If we can find a parallel XVS type, then the XVS type should
7490 be used instead of this type. And hence, this is not an aligner
7491 type. */
7492 if (ada_find_parallel_type (type, "___XVS") != NULL)
7493 return 0;
7494
7495 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
7496 && TYPE_NFIELDS (type) == 1
7497 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
7498 }
7499
7500 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
7501 the parallel type. */
7502
7503 struct type *
7504 ada_get_base_type (struct type *raw_type)
7505 {
7506 struct type *real_type_namer;
7507 struct type *raw_real_type;
7508
7509 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
7510 return raw_type;
7511
7512 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
7513 if (real_type_namer == NULL
7514 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
7515 || TYPE_NFIELDS (real_type_namer) != 1)
7516 return raw_type;
7517
7518 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
7519 if (raw_real_type == NULL)
7520 return raw_type;
7521 else
7522 return raw_real_type;
7523 }
7524
7525 /* The type of value designated by TYPE, with all aligners removed. */
7526
7527 struct type *
7528 ada_aligned_type (struct type *type)
7529 {
7530 if (ada_is_aligner_type (type))
7531 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
7532 else
7533 return ada_get_base_type (type);
7534 }
7535
7536
7537 /* The address of the aligned value in an object at address VALADDR
7538 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
7539
7540 const gdb_byte *
7541 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
7542 {
7543 if (ada_is_aligner_type (type))
7544 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
7545 valaddr +
7546 TYPE_FIELD_BITPOS (type,
7547 0) / TARGET_CHAR_BIT);
7548 else
7549 return valaddr;
7550 }
7551
7552
7553
7554 /* The printed representation of an enumeration literal with encoded
7555 name NAME. The value is good to the next call of ada_enum_name. */
7556 const char *
7557 ada_enum_name (const char *name)
7558 {
7559 static char *result;
7560 static size_t result_len = 0;
7561 char *tmp;
7562
7563 /* First, unqualify the enumeration name:
7564 1. Search for the last '.' character. If we find one, then skip
7565 all the preceeding characters, the unqualified name starts
7566 right after that dot.
7567 2. Otherwise, we may be debugging on a target where the compiler
7568 translates dots into "__". Search forward for double underscores,
7569 but stop searching when we hit an overloading suffix, which is
7570 of the form "__" followed by digits. */
7571
7572 tmp = strrchr (name, '.');
7573 if (tmp != NULL)
7574 name = tmp + 1;
7575 else
7576 {
7577 while ((tmp = strstr (name, "__")) != NULL)
7578 {
7579 if (isdigit (tmp[2]))
7580 break;
7581 else
7582 name = tmp + 2;
7583 }
7584 }
7585
7586 if (name[0] == 'Q')
7587 {
7588 int v;
7589 if (name[1] == 'U' || name[1] == 'W')
7590 {
7591 if (sscanf (name + 2, "%x", &v) != 1)
7592 return name;
7593 }
7594 else
7595 return name;
7596
7597 GROW_VECT (result, result_len, 16);
7598 if (isascii (v) && isprint (v))
7599 sprintf (result, "'%c'", v);
7600 else if (name[1] == 'U')
7601 sprintf (result, "[\"%02x\"]", v);
7602 else
7603 sprintf (result, "[\"%04x\"]", v);
7604
7605 return result;
7606 }
7607 else
7608 {
7609 tmp = strstr (name, "__");
7610 if (tmp == NULL)
7611 tmp = strstr (name, "$");
7612 if (tmp != NULL)
7613 {
7614 GROW_VECT (result, result_len, tmp - name + 1);
7615 strncpy (result, name, tmp - name);
7616 result[tmp - name] = '\0';
7617 return result;
7618 }
7619
7620 return name;
7621 }
7622 }
7623
7624 static struct value *
7625 evaluate_subexp (struct type *expect_type, struct expression *exp, int *pos,
7626 enum noside noside)
7627 {
7628 return (*exp->language_defn->la_exp_desc->evaluate_exp)
7629 (expect_type, exp, pos, noside);
7630 }
7631
7632 /* Evaluate the subexpression of EXP starting at *POS as for
7633 evaluate_type, updating *POS to point just past the evaluated
7634 expression. */
7635
7636 static struct value *
7637 evaluate_subexp_type (struct expression *exp, int *pos)
7638 {
7639 return (*exp->language_defn->la_exp_desc->evaluate_exp)
7640 (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
7641 }
7642
7643 /* If VAL is wrapped in an aligner or subtype wrapper, return the
7644 value it wraps. */
7645
7646 static struct value *
7647 unwrap_value (struct value *val)
7648 {
7649 struct type *type = ada_check_typedef (value_type (val));
7650 if (ada_is_aligner_type (type))
7651 {
7652 struct value *v = value_struct_elt (&val, NULL, "F",
7653 NULL, "internal structure");
7654 struct type *val_type = ada_check_typedef (value_type (v));
7655 if (ada_type_name (val_type) == NULL)
7656 TYPE_NAME (val_type) = ada_type_name (type);
7657
7658 return unwrap_value (v);
7659 }
7660 else
7661 {
7662 struct type *raw_real_type =
7663 ada_check_typedef (ada_get_base_type (type));
7664
7665 if (type == raw_real_type)
7666 return val;
7667
7668 return
7669 coerce_unspec_val_to_type
7670 (val, ada_to_fixed_type (raw_real_type, 0,
7671 VALUE_ADDRESS (val) + value_offset (val),
7672 NULL, 1));
7673 }
7674 }
7675
7676 static struct value *
7677 cast_to_fixed (struct type *type, struct value *arg)
7678 {
7679 LONGEST val;
7680
7681 if (type == value_type (arg))
7682 return arg;
7683 else if (ada_is_fixed_point_type (value_type (arg)))
7684 val = ada_float_to_fixed (type,
7685 ada_fixed_to_float (value_type (arg),
7686 value_as_long (arg)));
7687 else
7688 {
7689 DOUBLEST argd =
7690 value_as_double (value_cast (builtin_type_double, value_copy (arg)));
7691 val = ada_float_to_fixed (type, argd);
7692 }
7693
7694 return value_from_longest (type, val);
7695 }
7696
7697 static struct value *
7698 cast_from_fixed_to_double (struct value *arg)
7699 {
7700 DOUBLEST val = ada_fixed_to_float (value_type (arg),
7701 value_as_long (arg));
7702 return value_from_double (builtin_type_double, val);
7703 }
7704
7705 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
7706 return the converted value. */
7707
7708 static struct value *
7709 coerce_for_assign (struct type *type, struct value *val)
7710 {
7711 struct type *type2 = value_type (val);
7712 if (type == type2)
7713 return val;
7714
7715 type2 = ada_check_typedef (type2);
7716 type = ada_check_typedef (type);
7717
7718 if (TYPE_CODE (type2) == TYPE_CODE_PTR
7719 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7720 {
7721 val = ada_value_ind (val);
7722 type2 = value_type (val);
7723 }
7724
7725 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
7726 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7727 {
7728 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
7729 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
7730 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
7731 error (_("Incompatible types in assignment"));
7732 deprecated_set_value_type (val, type);
7733 }
7734 return val;
7735 }
7736
7737 static struct value *
7738 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
7739 {
7740 struct value *val;
7741 struct type *type1, *type2;
7742 LONGEST v, v1, v2;
7743
7744 arg1 = coerce_ref (arg1);
7745 arg2 = coerce_ref (arg2);
7746 type1 = base_type (ada_check_typedef (value_type (arg1)));
7747 type2 = base_type (ada_check_typedef (value_type (arg2)));
7748
7749 if (TYPE_CODE (type1) != TYPE_CODE_INT
7750 || TYPE_CODE (type2) != TYPE_CODE_INT)
7751 return value_binop (arg1, arg2, op);
7752
7753 switch (op)
7754 {
7755 case BINOP_MOD:
7756 case BINOP_DIV:
7757 case BINOP_REM:
7758 break;
7759 default:
7760 return value_binop (arg1, arg2, op);
7761 }
7762
7763 v2 = value_as_long (arg2);
7764 if (v2 == 0)
7765 error (_("second operand of %s must not be zero."), op_string (op));
7766
7767 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
7768 return value_binop (arg1, arg2, op);
7769
7770 v1 = value_as_long (arg1);
7771 switch (op)
7772 {
7773 case BINOP_DIV:
7774 v = v1 / v2;
7775 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
7776 v += v > 0 ? -1 : 1;
7777 break;
7778 case BINOP_REM:
7779 v = v1 % v2;
7780 if (v * v1 < 0)
7781 v -= v2;
7782 break;
7783 default:
7784 /* Should not reach this point. */
7785 v = 0;
7786 }
7787
7788 val = allocate_value (type1);
7789 store_unsigned_integer (value_contents_raw (val),
7790 TYPE_LENGTH (value_type (val)), v);
7791 return val;
7792 }
7793
7794 static int
7795 ada_value_equal (struct value *arg1, struct value *arg2)
7796 {
7797 if (ada_is_direct_array_type (value_type (arg1))
7798 || ada_is_direct_array_type (value_type (arg2)))
7799 {
7800 /* Automatically dereference any array reference before
7801 we attempt to perform the comparison. */
7802 arg1 = ada_coerce_ref (arg1);
7803 arg2 = ada_coerce_ref (arg2);
7804
7805 arg1 = ada_coerce_to_simple_array (arg1);
7806 arg2 = ada_coerce_to_simple_array (arg2);
7807 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
7808 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
7809 error (_("Attempt to compare array with non-array"));
7810 /* FIXME: The following works only for types whose
7811 representations use all bits (no padding or undefined bits)
7812 and do not have user-defined equality. */
7813 return
7814 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
7815 && memcmp (value_contents (arg1), value_contents (arg2),
7816 TYPE_LENGTH (value_type (arg1))) == 0;
7817 }
7818 return value_equal (arg1, arg2);
7819 }
7820
7821 /* Total number of component associations in the aggregate starting at
7822 index PC in EXP. Assumes that index PC is the start of an
7823 OP_AGGREGATE. */
7824
7825 static int
7826 num_component_specs (struct expression *exp, int pc)
7827 {
7828 int n, m, i;
7829 m = exp->elts[pc + 1].longconst;
7830 pc += 3;
7831 n = 0;
7832 for (i = 0; i < m; i += 1)
7833 {
7834 switch (exp->elts[pc].opcode)
7835 {
7836 default:
7837 n += 1;
7838 break;
7839 case OP_CHOICES:
7840 n += exp->elts[pc + 1].longconst;
7841 break;
7842 }
7843 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
7844 }
7845 return n;
7846 }
7847
7848 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
7849 component of LHS (a simple array or a record), updating *POS past
7850 the expression, assuming that LHS is contained in CONTAINER. Does
7851 not modify the inferior's memory, nor does it modify LHS (unless
7852 LHS == CONTAINER). */
7853
7854 static void
7855 assign_component (struct value *container, struct value *lhs, LONGEST index,
7856 struct expression *exp, int *pos)
7857 {
7858 struct value *mark = value_mark ();
7859 struct value *elt;
7860 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
7861 {
7862 struct value *index_val = value_from_longest (builtin_type_int, index);
7863 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
7864 }
7865 else
7866 {
7867 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
7868 elt = ada_to_fixed_value (unwrap_value (elt));
7869 }
7870
7871 if (exp->elts[*pos].opcode == OP_AGGREGATE)
7872 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
7873 else
7874 value_assign_to_component (container, elt,
7875 ada_evaluate_subexp (NULL, exp, pos,
7876 EVAL_NORMAL));
7877
7878 value_free_to_mark (mark);
7879 }
7880
7881 /* Assuming that LHS represents an lvalue having a record or array
7882 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
7883 of that aggregate's value to LHS, advancing *POS past the
7884 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
7885 lvalue containing LHS (possibly LHS itself). Does not modify
7886 the inferior's memory, nor does it modify the contents of
7887 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
7888
7889 static struct value *
7890 assign_aggregate (struct value *container,
7891 struct value *lhs, struct expression *exp,
7892 int *pos, enum noside noside)
7893 {
7894 struct type *lhs_type;
7895 int n = exp->elts[*pos+1].longconst;
7896 LONGEST low_index, high_index;
7897 int num_specs;
7898 LONGEST *indices;
7899 int max_indices, num_indices;
7900 int is_array_aggregate;
7901 int i;
7902 struct value *mark = value_mark ();
7903
7904 *pos += 3;
7905 if (noside != EVAL_NORMAL)
7906 {
7907 int i;
7908 for (i = 0; i < n; i += 1)
7909 ada_evaluate_subexp (NULL, exp, pos, noside);
7910 return container;
7911 }
7912
7913 container = ada_coerce_ref (container);
7914 if (ada_is_direct_array_type (value_type (container)))
7915 container = ada_coerce_to_simple_array (container);
7916 lhs = ada_coerce_ref (lhs);
7917 if (!deprecated_value_modifiable (lhs))
7918 error (_("Left operand of assignment is not a modifiable lvalue."));
7919
7920 lhs_type = value_type (lhs);
7921 if (ada_is_direct_array_type (lhs_type))
7922 {
7923 lhs = ada_coerce_to_simple_array (lhs);
7924 lhs_type = value_type (lhs);
7925 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
7926 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
7927 is_array_aggregate = 1;
7928 }
7929 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
7930 {
7931 low_index = 0;
7932 high_index = num_visible_fields (lhs_type) - 1;
7933 is_array_aggregate = 0;
7934 }
7935 else
7936 error (_("Left-hand side must be array or record."));
7937
7938 num_specs = num_component_specs (exp, *pos - 3);
7939 max_indices = 4 * num_specs + 4;
7940 indices = alloca (max_indices * sizeof (indices[0]));
7941 indices[0] = indices[1] = low_index - 1;
7942 indices[2] = indices[3] = high_index + 1;
7943 num_indices = 4;
7944
7945 for (i = 0; i < n; i += 1)
7946 {
7947 switch (exp->elts[*pos].opcode)
7948 {
7949 case OP_CHOICES:
7950 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
7951 &num_indices, max_indices,
7952 low_index, high_index);
7953 break;
7954 case OP_POSITIONAL:
7955 aggregate_assign_positional (container, lhs, exp, pos, indices,
7956 &num_indices, max_indices,
7957 low_index, high_index);
7958 break;
7959 case OP_OTHERS:
7960 if (i != n-1)
7961 error (_("Misplaced 'others' clause"));
7962 aggregate_assign_others (container, lhs, exp, pos, indices,
7963 num_indices, low_index, high_index);
7964 break;
7965 default:
7966 error (_("Internal error: bad aggregate clause"));
7967 }
7968 }
7969
7970 return container;
7971 }
7972
7973 /* Assign into the component of LHS indexed by the OP_POSITIONAL
7974 construct at *POS, updating *POS past the construct, given that
7975 the positions are relative to lower bound LOW, where HIGH is the
7976 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
7977 updating *NUM_INDICES as needed. CONTAINER is as for
7978 assign_aggregate. */
7979 static void
7980 aggregate_assign_positional (struct value *container,
7981 struct value *lhs, struct expression *exp,
7982 int *pos, LONGEST *indices, int *num_indices,
7983 int max_indices, LONGEST low, LONGEST high)
7984 {
7985 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
7986
7987 if (ind - 1 == high)
7988 warning (_("Extra components in aggregate ignored."));
7989 if (ind <= high)
7990 {
7991 add_component_interval (ind, ind, indices, num_indices, max_indices);
7992 *pos += 3;
7993 assign_component (container, lhs, ind, exp, pos);
7994 }
7995 else
7996 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
7997 }
7998
7999 /* Assign into the components of LHS indexed by the OP_CHOICES
8000 construct at *POS, updating *POS past the construct, given that
8001 the allowable indices are LOW..HIGH. Record the indices assigned
8002 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
8003 needed. CONTAINER is as for assign_aggregate. */
8004 static void
8005 aggregate_assign_from_choices (struct value *container,
8006 struct value *lhs, struct expression *exp,
8007 int *pos, LONGEST *indices, int *num_indices,
8008 int max_indices, LONGEST low, LONGEST high)
8009 {
8010 int j;
8011 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8012 int choice_pos, expr_pc;
8013 int is_array = ada_is_direct_array_type (value_type (lhs));
8014
8015 choice_pos = *pos += 3;
8016
8017 for (j = 0; j < n_choices; j += 1)
8018 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8019 expr_pc = *pos;
8020 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8021
8022 for (j = 0; j < n_choices; j += 1)
8023 {
8024 LONGEST lower, upper;
8025 enum exp_opcode op = exp->elts[choice_pos].opcode;
8026 if (op == OP_DISCRETE_RANGE)
8027 {
8028 choice_pos += 1;
8029 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8030 EVAL_NORMAL));
8031 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8032 EVAL_NORMAL));
8033 }
8034 else if (is_array)
8035 {
8036 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8037 EVAL_NORMAL));
8038 upper = lower;
8039 }
8040 else
8041 {
8042 int ind;
8043 char *name;
8044 switch (op)
8045 {
8046 case OP_NAME:
8047 name = &exp->elts[choice_pos + 2].string;
8048 break;
8049 case OP_VAR_VALUE:
8050 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8051 break;
8052 default:
8053 error (_("Invalid record component association."));
8054 }
8055 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8056 ind = 0;
8057 if (! find_struct_field (name, value_type (lhs), 0,
8058 NULL, NULL, NULL, NULL, &ind))
8059 error (_("Unknown component name: %s."), name);
8060 lower = upper = ind;
8061 }
8062
8063 if (lower <= upper && (lower < low || upper > high))
8064 error (_("Index in component association out of bounds."));
8065
8066 add_component_interval (lower, upper, indices, num_indices,
8067 max_indices);
8068 while (lower <= upper)
8069 {
8070 int pos1;
8071 pos1 = expr_pc;
8072 assign_component (container, lhs, lower, exp, &pos1);
8073 lower += 1;
8074 }
8075 }
8076 }
8077
8078 /* Assign the value of the expression in the OP_OTHERS construct in
8079 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8080 have not been previously assigned. The index intervals already assigned
8081 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
8082 OP_OTHERS clause. CONTAINER is as for assign_aggregate*/
8083 static void
8084 aggregate_assign_others (struct value *container,
8085 struct value *lhs, struct expression *exp,
8086 int *pos, LONGEST *indices, int num_indices,
8087 LONGEST low, LONGEST high)
8088 {
8089 int i;
8090 int expr_pc = *pos+1;
8091
8092 for (i = 0; i < num_indices - 2; i += 2)
8093 {
8094 LONGEST ind;
8095 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
8096 {
8097 int pos;
8098 pos = expr_pc;
8099 assign_component (container, lhs, ind, exp, &pos);
8100 }
8101 }
8102 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8103 }
8104
8105 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
8106 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
8107 modifying *SIZE as needed. It is an error if *SIZE exceeds
8108 MAX_SIZE. The resulting intervals do not overlap. */
8109 static void
8110 add_component_interval (LONGEST low, LONGEST high,
8111 LONGEST* indices, int *size, int max_size)
8112 {
8113 int i, j;
8114 for (i = 0; i < *size; i += 2) {
8115 if (high >= indices[i] && low <= indices[i + 1])
8116 {
8117 int kh;
8118 for (kh = i + 2; kh < *size; kh += 2)
8119 if (high < indices[kh])
8120 break;
8121 if (low < indices[i])
8122 indices[i] = low;
8123 indices[i + 1] = indices[kh - 1];
8124 if (high > indices[i + 1])
8125 indices[i + 1] = high;
8126 memcpy (indices + i + 2, indices + kh, *size - kh);
8127 *size -= kh - i - 2;
8128 return;
8129 }
8130 else if (high < indices[i])
8131 break;
8132 }
8133
8134 if (*size == max_size)
8135 error (_("Internal error: miscounted aggregate components."));
8136 *size += 2;
8137 for (j = *size-1; j >= i+2; j -= 1)
8138 indices[j] = indices[j - 2];
8139 indices[i] = low;
8140 indices[i + 1] = high;
8141 }
8142
8143 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
8144 is different. */
8145
8146 static struct value *
8147 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
8148 {
8149 if (type == ada_check_typedef (value_type (arg2)))
8150 return arg2;
8151
8152 if (ada_is_fixed_point_type (type))
8153 return (cast_to_fixed (type, arg2));
8154
8155 if (ada_is_fixed_point_type (value_type (arg2)))
8156 return value_cast (type, cast_from_fixed_to_double (arg2));
8157
8158 return value_cast (type, arg2);
8159 }
8160
8161 static struct value *
8162 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
8163 int *pos, enum noside noside)
8164 {
8165 enum exp_opcode op;
8166 int tem, tem2, tem3;
8167 int pc;
8168 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
8169 struct type *type;
8170 int nargs, oplen;
8171 struct value **argvec;
8172
8173 pc = *pos;
8174 *pos += 1;
8175 op = exp->elts[pc].opcode;
8176
8177 switch (op)
8178 {
8179 default:
8180 *pos -= 1;
8181 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8182 arg1 = unwrap_value (arg1);
8183
8184 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
8185 then we need to perform the conversion manually, because
8186 evaluate_subexp_standard doesn't do it. This conversion is
8187 necessary in Ada because the different kinds of float/fixed
8188 types in Ada have different representations.
8189
8190 Similarly, we need to perform the conversion from OP_LONG
8191 ourselves. */
8192 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
8193 arg1 = ada_value_cast (expect_type, arg1, noside);
8194
8195 return arg1;
8196
8197 case OP_STRING:
8198 {
8199 struct value *result;
8200 *pos -= 1;
8201 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
8202 /* The result type will have code OP_STRING, bashed there from
8203 OP_ARRAY. Bash it back. */
8204 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
8205 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
8206 return result;
8207 }
8208
8209 case UNOP_CAST:
8210 (*pos) += 2;
8211 type = exp->elts[pc + 1].type;
8212 arg1 = evaluate_subexp (type, exp, pos, noside);
8213 if (noside == EVAL_SKIP)
8214 goto nosideret;
8215 arg1 = ada_value_cast (type, arg1, noside);
8216 return arg1;
8217
8218 case UNOP_QUAL:
8219 (*pos) += 2;
8220 type = exp->elts[pc + 1].type;
8221 return ada_evaluate_subexp (type, exp, pos, noside);
8222
8223 case BINOP_ASSIGN:
8224 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8225 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8226 {
8227 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
8228 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8229 return arg1;
8230 return ada_value_assign (arg1, arg1);
8231 }
8232 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
8233 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8234 return arg1;
8235 if (ada_is_fixed_point_type (value_type (arg1)))
8236 arg2 = cast_to_fixed (value_type (arg1), arg2);
8237 else if (ada_is_fixed_point_type (value_type (arg2)))
8238 error
8239 (_("Fixed-point values must be assigned to fixed-point variables"));
8240 else
8241 arg2 = coerce_for_assign (value_type (arg1), arg2);
8242 return ada_value_assign (arg1, arg2);
8243
8244 case BINOP_ADD:
8245 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8246 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8247 if (noside == EVAL_SKIP)
8248 goto nosideret;
8249 if ((ada_is_fixed_point_type (value_type (arg1))
8250 || ada_is_fixed_point_type (value_type (arg2)))
8251 && value_type (arg1) != value_type (arg2))
8252 error (_("Operands of fixed-point addition must have the same type"));
8253 /* Do the addition, and cast the result to the type of the first
8254 argument. We cannot cast the result to a reference type, so if
8255 ARG1 is a reference type, find its underlying type. */
8256 type = value_type (arg1);
8257 while (TYPE_CODE (type) == TYPE_CODE_REF)
8258 type = TYPE_TARGET_TYPE (type);
8259 return value_cast (type, value_add (arg1, arg2));
8260
8261 case BINOP_SUB:
8262 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8263 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8264 if (noside == EVAL_SKIP)
8265 goto nosideret;
8266 if ((ada_is_fixed_point_type (value_type (arg1))
8267 || ada_is_fixed_point_type (value_type (arg2)))
8268 && value_type (arg1) != value_type (arg2))
8269 error (_("Operands of fixed-point subtraction must have the same type"));
8270 /* Do the substraction, and cast the result to the type of the first
8271 argument. We cannot cast the result to a reference type, so if
8272 ARG1 is a reference type, find its underlying type. */
8273 type = value_type (arg1);
8274 while (TYPE_CODE (type) == TYPE_CODE_REF)
8275 type = TYPE_TARGET_TYPE (type);
8276 return value_cast (type, value_sub (arg1, arg2));
8277
8278 case BINOP_MUL:
8279 case BINOP_DIV:
8280 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8281 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8282 if (noside == EVAL_SKIP)
8283 goto nosideret;
8284 else if (noside == EVAL_AVOID_SIDE_EFFECTS
8285 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
8286 return value_zero (value_type (arg1), not_lval);
8287 else
8288 {
8289 if (ada_is_fixed_point_type (value_type (arg1)))
8290 arg1 = cast_from_fixed_to_double (arg1);
8291 if (ada_is_fixed_point_type (value_type (arg2)))
8292 arg2 = cast_from_fixed_to_double (arg2);
8293 return ada_value_binop (arg1, arg2, op);
8294 }
8295
8296 case BINOP_REM:
8297 case BINOP_MOD:
8298 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8299 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8300 if (noside == EVAL_SKIP)
8301 goto nosideret;
8302 else if (noside == EVAL_AVOID_SIDE_EFFECTS
8303 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
8304 return value_zero (value_type (arg1), not_lval);
8305 else
8306 return ada_value_binop (arg1, arg2, op);
8307
8308 case BINOP_EQUAL:
8309 case BINOP_NOTEQUAL:
8310 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8311 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
8312 if (noside == EVAL_SKIP)
8313 goto nosideret;
8314 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8315 tem = 0;
8316 else
8317 tem = ada_value_equal (arg1, arg2);
8318 if (op == BINOP_NOTEQUAL)
8319 tem = !tem;
8320 return value_from_longest (LA_BOOL_TYPE, (LONGEST) tem);
8321
8322 case UNOP_NEG:
8323 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8324 if (noside == EVAL_SKIP)
8325 goto nosideret;
8326 else if (ada_is_fixed_point_type (value_type (arg1)))
8327 return value_cast (value_type (arg1), value_neg (arg1));
8328 else
8329 return value_neg (arg1);
8330
8331 case BINOP_LOGICAL_AND:
8332 case BINOP_LOGICAL_OR:
8333 case UNOP_LOGICAL_NOT:
8334 {
8335 struct value *val;
8336
8337 *pos -= 1;
8338 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8339 return value_cast (LA_BOOL_TYPE, val);
8340 }
8341
8342 case BINOP_BITWISE_AND:
8343 case BINOP_BITWISE_IOR:
8344 case BINOP_BITWISE_XOR:
8345 {
8346 struct value *val;
8347
8348 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8349 *pos = pc;
8350 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8351
8352 return value_cast (value_type (arg1), val);
8353 }
8354
8355 case OP_VAR_VALUE:
8356 *pos -= 1;
8357
8358 /* Tagged types are a little special in the fact that the real type
8359 is dynamic and can only be determined by inspecting the object
8360 value. So even if we're support to do an EVAL_AVOID_SIDE_EFFECTS
8361 evaluation, we force an EVAL_NORMAL evaluation for tagged types. */
8362 if (noside == EVAL_AVOID_SIDE_EFFECTS
8363 && ada_is_tagged_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol), 1))
8364 noside = EVAL_NORMAL;
8365
8366 if (noside == EVAL_SKIP)
8367 {
8368 *pos += 4;
8369 goto nosideret;
8370 }
8371 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
8372 /* Only encountered when an unresolved symbol occurs in a
8373 context other than a function call, in which case, it is
8374 invalid. */
8375 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8376 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
8377 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8378 {
8379 *pos += 4;
8380 return value_zero
8381 (to_static_fixed_type
8382 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
8383 not_lval);
8384 }
8385 else
8386 {
8387 arg1 =
8388 unwrap_value (evaluate_subexp_standard
8389 (expect_type, exp, pos, noside));
8390 return ada_to_fixed_value (arg1);
8391 }
8392
8393 case OP_FUNCALL:
8394 (*pos) += 2;
8395
8396 /* Allocate arg vector, including space for the function to be
8397 called in argvec[0] and a terminating NULL. */
8398 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8399 argvec =
8400 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
8401
8402 if (exp->elts[*pos].opcode == OP_VAR_VALUE
8403 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
8404 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8405 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
8406 else
8407 {
8408 for (tem = 0; tem <= nargs; tem += 1)
8409 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8410 argvec[tem] = 0;
8411
8412 if (noside == EVAL_SKIP)
8413 goto nosideret;
8414 }
8415
8416 if (ada_is_packed_array_type (desc_base_type (value_type (argvec[0]))))
8417 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
8418 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
8419 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
8420 && VALUE_LVAL (argvec[0]) == lval_memory))
8421 argvec[0] = value_addr (argvec[0]);
8422
8423 type = ada_check_typedef (value_type (argvec[0]));
8424 if (TYPE_CODE (type) == TYPE_CODE_PTR)
8425 {
8426 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
8427 {
8428 case TYPE_CODE_FUNC:
8429 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8430 break;
8431 case TYPE_CODE_ARRAY:
8432 break;
8433 case TYPE_CODE_STRUCT:
8434 if (noside != EVAL_AVOID_SIDE_EFFECTS)
8435 argvec[0] = ada_value_ind (argvec[0]);
8436 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8437 break;
8438 default:
8439 error (_("cannot subscript or call something of type `%s'"),
8440 ada_type_name (value_type (argvec[0])));
8441 break;
8442 }
8443 }
8444
8445 switch (TYPE_CODE (type))
8446 {
8447 case TYPE_CODE_FUNC:
8448 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8449 return allocate_value (TYPE_TARGET_TYPE (type));
8450 return call_function_by_hand (argvec[0], nargs, argvec + 1);
8451 case TYPE_CODE_STRUCT:
8452 {
8453 int arity;
8454
8455 arity = ada_array_arity (type);
8456 type = ada_array_element_type (type, nargs);
8457 if (type == NULL)
8458 error (_("cannot subscript or call a record"));
8459 if (arity != nargs)
8460 error (_("wrong number of subscripts; expecting %d"), arity);
8461 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8462 return value_zero (ada_aligned_type (type), lval_memory);
8463 return
8464 unwrap_value (ada_value_subscript
8465 (argvec[0], nargs, argvec + 1));
8466 }
8467 case TYPE_CODE_ARRAY:
8468 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8469 {
8470 type = ada_array_element_type (type, nargs);
8471 if (type == NULL)
8472 error (_("element type of array unknown"));
8473 else
8474 return value_zero (ada_aligned_type (type), lval_memory);
8475 }
8476 return
8477 unwrap_value (ada_value_subscript
8478 (ada_coerce_to_simple_array (argvec[0]),
8479 nargs, argvec + 1));
8480 case TYPE_CODE_PTR: /* Pointer to array */
8481 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
8482 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8483 {
8484 type = ada_array_element_type (type, nargs);
8485 if (type == NULL)
8486 error (_("element type of array unknown"));
8487 else
8488 return value_zero (ada_aligned_type (type), lval_memory);
8489 }
8490 return
8491 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
8492 nargs, argvec + 1));
8493
8494 default:
8495 error (_("Attempt to index or call something other than an "
8496 "array or function"));
8497 }
8498
8499 case TERNOP_SLICE:
8500 {
8501 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8502 struct value *low_bound_val =
8503 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8504 struct value *high_bound_val =
8505 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8506 LONGEST low_bound;
8507 LONGEST high_bound;
8508 low_bound_val = coerce_ref (low_bound_val);
8509 high_bound_val = coerce_ref (high_bound_val);
8510 low_bound = pos_atr (low_bound_val);
8511 high_bound = pos_atr (high_bound_val);
8512
8513 if (noside == EVAL_SKIP)
8514 goto nosideret;
8515
8516 /* If this is a reference to an aligner type, then remove all
8517 the aligners. */
8518 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8519 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
8520 TYPE_TARGET_TYPE (value_type (array)) =
8521 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
8522
8523 if (ada_is_packed_array_type (value_type (array)))
8524 error (_("cannot slice a packed array"));
8525
8526 /* If this is a reference to an array or an array lvalue,
8527 convert to a pointer. */
8528 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8529 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
8530 && VALUE_LVAL (array) == lval_memory))
8531 array = value_addr (array);
8532
8533 if (noside == EVAL_AVOID_SIDE_EFFECTS
8534 && ada_is_array_descriptor_type (ada_check_typedef
8535 (value_type (array))))
8536 return empty_array (ada_type_of_array (array, 0), low_bound);
8537
8538 array = ada_coerce_to_simple_array_ptr (array);
8539
8540 /* If we have more than one level of pointer indirection,
8541 dereference the value until we get only one level. */
8542 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
8543 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
8544 == TYPE_CODE_PTR))
8545 array = value_ind (array);
8546
8547 /* Make sure we really do have an array type before going further,
8548 to avoid a SEGV when trying to get the index type or the target
8549 type later down the road if the debug info generated by
8550 the compiler is incorrect or incomplete. */
8551 if (!ada_is_simple_array_type (value_type (array)))
8552 error (_("cannot take slice of non-array"));
8553
8554 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
8555 {
8556 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
8557 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
8558 low_bound);
8559 else
8560 {
8561 struct type *arr_type0 =
8562 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
8563 NULL, 1);
8564 return ada_value_slice_ptr (array, arr_type0,
8565 longest_to_int (low_bound),
8566 longest_to_int (high_bound));
8567 }
8568 }
8569 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8570 return array;
8571 else if (high_bound < low_bound)
8572 return empty_array (value_type (array), low_bound);
8573 else
8574 return ada_value_slice (array, longest_to_int (low_bound),
8575 longest_to_int (high_bound));
8576 }
8577
8578 case UNOP_IN_RANGE:
8579 (*pos) += 2;
8580 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8581 type = exp->elts[pc + 1].type;
8582
8583 if (noside == EVAL_SKIP)
8584 goto nosideret;
8585
8586 switch (TYPE_CODE (type))
8587 {
8588 default:
8589 lim_warning (_("Membership test incompletely implemented; "
8590 "always returns true"));
8591 return value_from_longest (builtin_type_int, (LONGEST) 1);
8592
8593 case TYPE_CODE_RANGE:
8594 arg2 = value_from_longest (builtin_type_int, TYPE_LOW_BOUND (type));
8595 arg3 = value_from_longest (builtin_type_int,
8596 TYPE_HIGH_BOUND (type));
8597 return
8598 value_from_longest (builtin_type_int,
8599 (value_less (arg1, arg3)
8600 || value_equal (arg1, arg3))
8601 && (value_less (arg2, arg1)
8602 || value_equal (arg2, arg1)));
8603 }
8604
8605 case BINOP_IN_BOUNDS:
8606 (*pos) += 2;
8607 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8608 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8609
8610 if (noside == EVAL_SKIP)
8611 goto nosideret;
8612
8613 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8614 return value_zero (builtin_type_int, not_lval);
8615
8616 tem = longest_to_int (exp->elts[pc + 1].longconst);
8617
8618 if (tem < 1 || tem > ada_array_arity (value_type (arg2)))
8619 error (_("invalid dimension number to 'range"));
8620
8621 arg3 = ada_array_bound (arg2, tem, 1);
8622 arg2 = ada_array_bound (arg2, tem, 0);
8623
8624 return
8625 value_from_longest (builtin_type_int,
8626 (value_less (arg1, arg3)
8627 || value_equal (arg1, arg3))
8628 && (value_less (arg2, arg1)
8629 || value_equal (arg2, arg1)));
8630
8631 case TERNOP_IN_RANGE:
8632 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8633 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8634 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8635
8636 if (noside == EVAL_SKIP)
8637 goto nosideret;
8638
8639 return
8640 value_from_longest (builtin_type_int,
8641 (value_less (arg1, arg3)
8642 || value_equal (arg1, arg3))
8643 && (value_less (arg2, arg1)
8644 || value_equal (arg2, arg1)));
8645
8646 case OP_ATR_FIRST:
8647 case OP_ATR_LAST:
8648 case OP_ATR_LENGTH:
8649 {
8650 struct type *type_arg;
8651 if (exp->elts[*pos].opcode == OP_TYPE)
8652 {
8653 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8654 arg1 = NULL;
8655 type_arg = exp->elts[pc + 2].type;
8656 }
8657 else
8658 {
8659 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8660 type_arg = NULL;
8661 }
8662
8663 if (exp->elts[*pos].opcode != OP_LONG)
8664 error (_("Invalid operand to '%s"), ada_attribute_name (op));
8665 tem = longest_to_int (exp->elts[*pos + 2].longconst);
8666 *pos += 4;
8667
8668 if (noside == EVAL_SKIP)
8669 goto nosideret;
8670
8671 if (type_arg == NULL)
8672 {
8673 arg1 = ada_coerce_ref (arg1);
8674
8675 if (ada_is_packed_array_type (value_type (arg1)))
8676 arg1 = ada_coerce_to_simple_array (arg1);
8677
8678 if (tem < 1 || tem > ada_array_arity (value_type (arg1)))
8679 error (_("invalid dimension number to '%s"),
8680 ada_attribute_name (op));
8681
8682 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8683 {
8684 type = ada_index_type (value_type (arg1), tem);
8685 if (type == NULL)
8686 error
8687 (_("attempt to take bound of something that is not an array"));
8688 return allocate_value (type);
8689 }
8690
8691 switch (op)
8692 {
8693 default: /* Should never happen. */
8694 error (_("unexpected attribute encountered"));
8695 case OP_ATR_FIRST:
8696 return ada_array_bound (arg1, tem, 0);
8697 case OP_ATR_LAST:
8698 return ada_array_bound (arg1, tem, 1);
8699 case OP_ATR_LENGTH:
8700 return ada_array_length (arg1, tem);
8701 }
8702 }
8703 else if (discrete_type_p (type_arg))
8704 {
8705 struct type *range_type;
8706 char *name = ada_type_name (type_arg);
8707 range_type = NULL;
8708 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
8709 range_type =
8710 to_fixed_range_type (name, NULL, TYPE_OBJFILE (type_arg));
8711 if (range_type == NULL)
8712 range_type = type_arg;
8713 switch (op)
8714 {
8715 default:
8716 error (_("unexpected attribute encountered"));
8717 case OP_ATR_FIRST:
8718 return discrete_type_low_bound (range_type);
8719 case OP_ATR_LAST:
8720 return discrete_type_high_bound (range_type);
8721 case OP_ATR_LENGTH:
8722 error (_("the 'length attribute applies only to array types"));
8723 }
8724 }
8725 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
8726 error (_("unimplemented type attribute"));
8727 else
8728 {
8729 LONGEST low, high;
8730
8731 if (ada_is_packed_array_type (type_arg))
8732 type_arg = decode_packed_array_type (type_arg);
8733
8734 if (tem < 1 || tem > ada_array_arity (type_arg))
8735 error (_("invalid dimension number to '%s"),
8736 ada_attribute_name (op));
8737
8738 type = ada_index_type (type_arg, tem);
8739 if (type == NULL)
8740 error
8741 (_("attempt to take bound of something that is not an array"));
8742 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8743 return allocate_value (type);
8744
8745 switch (op)
8746 {
8747 default:
8748 error (_("unexpected attribute encountered"));
8749 case OP_ATR_FIRST:
8750 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
8751 return value_from_longest (type, low);
8752 case OP_ATR_LAST:
8753 high = ada_array_bound_from_type (type_arg, tem, 1, &type);
8754 return value_from_longest (type, high);
8755 case OP_ATR_LENGTH:
8756 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
8757 high = ada_array_bound_from_type (type_arg, tem, 1, NULL);
8758 return value_from_longest (type, high - low + 1);
8759 }
8760 }
8761 }
8762
8763 case OP_ATR_TAG:
8764 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8765 if (noside == EVAL_SKIP)
8766 goto nosideret;
8767
8768 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8769 return value_zero (ada_tag_type (arg1), not_lval);
8770
8771 return ada_value_tag (arg1);
8772
8773 case OP_ATR_MIN:
8774 case OP_ATR_MAX:
8775 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8776 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8777 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8778 if (noside == EVAL_SKIP)
8779 goto nosideret;
8780 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8781 return value_zero (value_type (arg1), not_lval);
8782 else
8783 return value_binop (arg1, arg2,
8784 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
8785
8786 case OP_ATR_MODULUS:
8787 {
8788 struct type *type_arg = exp->elts[pc + 2].type;
8789 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8790
8791 if (noside == EVAL_SKIP)
8792 goto nosideret;
8793
8794 if (!ada_is_modular_type (type_arg))
8795 error (_("'modulus must be applied to modular type"));
8796
8797 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
8798 ada_modulus (type_arg));
8799 }
8800
8801
8802 case OP_ATR_POS:
8803 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8804 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8805 if (noside == EVAL_SKIP)
8806 goto nosideret;
8807 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8808 return value_zero (builtin_type_int, not_lval);
8809 else
8810 return value_pos_atr (arg1);
8811
8812 case OP_ATR_SIZE:
8813 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8814 if (noside == EVAL_SKIP)
8815 goto nosideret;
8816 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8817 return value_zero (builtin_type_int, not_lval);
8818 else
8819 return value_from_longest (builtin_type_int,
8820 TARGET_CHAR_BIT
8821 * TYPE_LENGTH (value_type (arg1)));
8822
8823 case OP_ATR_VAL:
8824 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8825 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8826 type = exp->elts[pc + 2].type;
8827 if (noside == EVAL_SKIP)
8828 goto nosideret;
8829 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8830 return value_zero (type, not_lval);
8831 else
8832 return value_val_atr (type, arg1);
8833
8834 case BINOP_EXP:
8835 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8836 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8837 if (noside == EVAL_SKIP)
8838 goto nosideret;
8839 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8840 return value_zero (value_type (arg1), not_lval);
8841 else
8842 return value_binop (arg1, arg2, op);
8843
8844 case UNOP_PLUS:
8845 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8846 if (noside == EVAL_SKIP)
8847 goto nosideret;
8848 else
8849 return arg1;
8850
8851 case UNOP_ABS:
8852 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8853 if (noside == EVAL_SKIP)
8854 goto nosideret;
8855 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
8856 return value_neg (arg1);
8857 else
8858 return arg1;
8859
8860 case UNOP_IND:
8861 if (expect_type && TYPE_CODE (expect_type) == TYPE_CODE_PTR)
8862 expect_type = TYPE_TARGET_TYPE (ada_check_typedef (expect_type));
8863 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
8864 if (noside == EVAL_SKIP)
8865 goto nosideret;
8866 type = ada_check_typedef (value_type (arg1));
8867 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8868 {
8869 if (ada_is_array_descriptor_type (type))
8870 /* GDB allows dereferencing GNAT array descriptors. */
8871 {
8872 struct type *arrType = ada_type_of_array (arg1, 0);
8873 if (arrType == NULL)
8874 error (_("Attempt to dereference null array pointer."));
8875 return value_at_lazy (arrType, 0);
8876 }
8877 else if (TYPE_CODE (type) == TYPE_CODE_PTR
8878 || TYPE_CODE (type) == TYPE_CODE_REF
8879 /* In C you can dereference an array to get the 1st elt. */
8880 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
8881 {
8882 type = to_static_fixed_type
8883 (ada_aligned_type
8884 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
8885 check_size (type);
8886 return value_zero (type, lval_memory);
8887 }
8888 else if (TYPE_CODE (type) == TYPE_CODE_INT)
8889 /* GDB allows dereferencing an int. */
8890 return value_zero (builtin_type_int, lval_memory);
8891 else
8892 error (_("Attempt to take contents of a non-pointer value."));
8893 }
8894 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
8895 type = ada_check_typedef (value_type (arg1));
8896
8897 if (ada_is_array_descriptor_type (type))
8898 /* GDB allows dereferencing GNAT array descriptors. */
8899 return ada_coerce_to_simple_array (arg1);
8900 else
8901 return ada_value_ind (arg1);
8902
8903 case STRUCTOP_STRUCT:
8904 tem = longest_to_int (exp->elts[pc + 1].longconst);
8905 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
8906 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8907 if (noside == EVAL_SKIP)
8908 goto nosideret;
8909 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8910 {
8911 struct type *type1 = value_type (arg1);
8912 if (ada_is_tagged_type (type1, 1))
8913 {
8914 type = ada_lookup_struct_elt_type (type1,
8915 &exp->elts[pc + 2].string,
8916 1, 1, NULL);
8917 if (type == NULL)
8918 /* In this case, we assume that the field COULD exist
8919 in some extension of the type. Return an object of
8920 "type" void, which will match any formal
8921 (see ada_type_match). */
8922 return value_zero (builtin_type_void, lval_memory);
8923 }
8924 else
8925 type =
8926 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
8927 0, NULL);
8928
8929 return value_zero (ada_aligned_type (type), lval_memory);
8930 }
8931 else
8932 return
8933 ada_to_fixed_value (unwrap_value
8934 (ada_value_struct_elt
8935 (arg1, &exp->elts[pc + 2].string, 0)));
8936 case OP_TYPE:
8937 /* The value is not supposed to be used. This is here to make it
8938 easier to accommodate expressions that contain types. */
8939 (*pos) += 2;
8940 if (noside == EVAL_SKIP)
8941 goto nosideret;
8942 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8943 return allocate_value (exp->elts[pc + 1].type);
8944 else
8945 error (_("Attempt to use a type name as an expression"));
8946
8947 case OP_AGGREGATE:
8948 case OP_CHOICES:
8949 case OP_OTHERS:
8950 case OP_DISCRETE_RANGE:
8951 case OP_POSITIONAL:
8952 case OP_NAME:
8953 if (noside == EVAL_NORMAL)
8954 switch (op)
8955 {
8956 case OP_NAME:
8957 error (_("Undefined name, ambiguous name, or renaming used in "
8958 "component association: %s."), &exp->elts[pc+2].string);
8959 case OP_AGGREGATE:
8960 error (_("Aggregates only allowed on the right of an assignment"));
8961 default:
8962 internal_error (__FILE__, __LINE__, _("aggregate apparently mangled"));
8963 }
8964
8965 ada_forward_operator_length (exp, pc, &oplen, &nargs);
8966 *pos += oplen - 1;
8967 for (tem = 0; tem < nargs; tem += 1)
8968 ada_evaluate_subexp (NULL, exp, pos, noside);
8969 goto nosideret;
8970 }
8971
8972 nosideret:
8973 return value_from_longest (builtin_type_long, (LONGEST) 1);
8974 }
8975 \f
8976
8977 /* Fixed point */
8978
8979 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
8980 type name that encodes the 'small and 'delta information.
8981 Otherwise, return NULL. */
8982
8983 static const char *
8984 fixed_type_info (struct type *type)
8985 {
8986 const char *name = ada_type_name (type);
8987 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
8988
8989 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
8990 {
8991 const char *tail = strstr (name, "___XF_");
8992 if (tail == NULL)
8993 return NULL;
8994 else
8995 return tail + 5;
8996 }
8997 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
8998 return fixed_type_info (TYPE_TARGET_TYPE (type));
8999 else
9000 return NULL;
9001 }
9002
9003 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
9004
9005 int
9006 ada_is_fixed_point_type (struct type *type)
9007 {
9008 return fixed_type_info (type) != NULL;
9009 }
9010
9011 /* Return non-zero iff TYPE represents a System.Address type. */
9012
9013 int
9014 ada_is_system_address_type (struct type *type)
9015 {
9016 return (TYPE_NAME (type)
9017 && strcmp (TYPE_NAME (type), "system__address") == 0);
9018 }
9019
9020 /* Assuming that TYPE is the representation of an Ada fixed-point
9021 type, return its delta, or -1 if the type is malformed and the
9022 delta cannot be determined. */
9023
9024 DOUBLEST
9025 ada_delta (struct type *type)
9026 {
9027 const char *encoding = fixed_type_info (type);
9028 long num, den;
9029
9030 if (sscanf (encoding, "_%ld_%ld", &num, &den) < 2)
9031 return -1.0;
9032 else
9033 return (DOUBLEST) num / (DOUBLEST) den;
9034 }
9035
9036 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
9037 factor ('SMALL value) associated with the type. */
9038
9039 static DOUBLEST
9040 scaling_factor (struct type *type)
9041 {
9042 const char *encoding = fixed_type_info (type);
9043 unsigned long num0, den0, num1, den1;
9044 int n;
9045
9046 n = sscanf (encoding, "_%lu_%lu_%lu_%lu", &num0, &den0, &num1, &den1);
9047
9048 if (n < 2)
9049 return 1.0;
9050 else if (n == 4)
9051 return (DOUBLEST) num1 / (DOUBLEST) den1;
9052 else
9053 return (DOUBLEST) num0 / (DOUBLEST) den0;
9054 }
9055
9056
9057 /* Assuming that X is the representation of a value of fixed-point
9058 type TYPE, return its floating-point equivalent. */
9059
9060 DOUBLEST
9061 ada_fixed_to_float (struct type *type, LONGEST x)
9062 {
9063 return (DOUBLEST) x *scaling_factor (type);
9064 }
9065
9066 /* The representation of a fixed-point value of type TYPE
9067 corresponding to the value X. */
9068
9069 LONGEST
9070 ada_float_to_fixed (struct type *type, DOUBLEST x)
9071 {
9072 return (LONGEST) (x / scaling_factor (type) + 0.5);
9073 }
9074
9075
9076 /* VAX floating formats */
9077
9078 /* Non-zero iff TYPE represents one of the special VAX floating-point
9079 types. */
9080
9081 int
9082 ada_is_vax_floating_type (struct type *type)
9083 {
9084 int name_len =
9085 (ada_type_name (type) == NULL) ? 0 : strlen (ada_type_name (type));
9086 return
9087 name_len > 6
9088 && (TYPE_CODE (type) == TYPE_CODE_INT
9089 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9090 && strncmp (ada_type_name (type) + name_len - 6, "___XF", 5) == 0;
9091 }
9092
9093 /* The type of special VAX floating-point type this is, assuming
9094 ada_is_vax_floating_point. */
9095
9096 int
9097 ada_vax_float_type_suffix (struct type *type)
9098 {
9099 return ada_type_name (type)[strlen (ada_type_name (type)) - 1];
9100 }
9101
9102 /* A value representing the special debugging function that outputs
9103 VAX floating-point values of the type represented by TYPE. Assumes
9104 ada_is_vax_floating_type (TYPE). */
9105
9106 struct value *
9107 ada_vax_float_print_function (struct type *type)
9108 {
9109 switch (ada_vax_float_type_suffix (type))
9110 {
9111 case 'F':
9112 return get_var_value ("DEBUG_STRING_F", 0);
9113 case 'D':
9114 return get_var_value ("DEBUG_STRING_D", 0);
9115 case 'G':
9116 return get_var_value ("DEBUG_STRING_G", 0);
9117 default:
9118 error (_("invalid VAX floating-point type"));
9119 }
9120 }
9121 \f
9122
9123 /* Range types */
9124
9125 /* Scan STR beginning at position K for a discriminant name, and
9126 return the value of that discriminant field of DVAL in *PX. If
9127 PNEW_K is not null, put the position of the character beyond the
9128 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
9129 not alter *PX and *PNEW_K if unsuccessful. */
9130
9131 static int
9132 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
9133 int *pnew_k)
9134 {
9135 static char *bound_buffer = NULL;
9136 static size_t bound_buffer_len = 0;
9137 char *bound;
9138 char *pend;
9139 struct value *bound_val;
9140
9141 if (dval == NULL || str == NULL || str[k] == '\0')
9142 return 0;
9143
9144 pend = strstr (str + k, "__");
9145 if (pend == NULL)
9146 {
9147 bound = str + k;
9148 k += strlen (bound);
9149 }
9150 else
9151 {
9152 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
9153 bound = bound_buffer;
9154 strncpy (bound_buffer, str + k, pend - (str + k));
9155 bound[pend - (str + k)] = '\0';
9156 k = pend - str;
9157 }
9158
9159 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
9160 if (bound_val == NULL)
9161 return 0;
9162
9163 *px = value_as_long (bound_val);
9164 if (pnew_k != NULL)
9165 *pnew_k = k;
9166 return 1;
9167 }
9168
9169 /* Value of variable named NAME in the current environment. If
9170 no such variable found, then if ERR_MSG is null, returns 0, and
9171 otherwise causes an error with message ERR_MSG. */
9172
9173 static struct value *
9174 get_var_value (char *name, char *err_msg)
9175 {
9176 struct ada_symbol_info *syms;
9177 int nsyms;
9178
9179 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
9180 &syms);
9181
9182 if (nsyms != 1)
9183 {
9184 if (err_msg == NULL)
9185 return 0;
9186 else
9187 error (("%s"), err_msg);
9188 }
9189
9190 return value_of_variable (syms[0].sym, syms[0].block);
9191 }
9192
9193 /* Value of integer variable named NAME in the current environment. If
9194 no such variable found, returns 0, and sets *FLAG to 0. If
9195 successful, sets *FLAG to 1. */
9196
9197 LONGEST
9198 get_int_var_value (char *name, int *flag)
9199 {
9200 struct value *var_val = get_var_value (name, 0);
9201
9202 if (var_val == 0)
9203 {
9204 if (flag != NULL)
9205 *flag = 0;
9206 return 0;
9207 }
9208 else
9209 {
9210 if (flag != NULL)
9211 *flag = 1;
9212 return value_as_long (var_val);
9213 }
9214 }
9215
9216
9217 /* Return a range type whose base type is that of the range type named
9218 NAME in the current environment, and whose bounds are calculated
9219 from NAME according to the GNAT range encoding conventions.
9220 Extract discriminant values, if needed, from DVAL. If a new type
9221 must be created, allocate in OBJFILE's space. The bounds
9222 information, in general, is encoded in NAME, the base type given in
9223 the named range type. */
9224
9225 static struct type *
9226 to_fixed_range_type (char *name, struct value *dval, struct objfile *objfile)
9227 {
9228 struct type *raw_type = ada_find_any_type (name);
9229 struct type *base_type;
9230 char *subtype_info;
9231
9232 if (raw_type == NULL)
9233 base_type = builtin_type_int;
9234 else if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
9235 base_type = TYPE_TARGET_TYPE (raw_type);
9236 else
9237 base_type = raw_type;
9238
9239 subtype_info = strstr (name, "___XD");
9240 if (subtype_info == NULL)
9241 return raw_type;
9242 else
9243 {
9244 static char *name_buf = NULL;
9245 static size_t name_len = 0;
9246 int prefix_len = subtype_info - name;
9247 LONGEST L, U;
9248 struct type *type;
9249 char *bounds_str;
9250 int n;
9251
9252 GROW_VECT (name_buf, name_len, prefix_len + 5);
9253 strncpy (name_buf, name, prefix_len);
9254 name_buf[prefix_len] = '\0';
9255
9256 subtype_info += 5;
9257 bounds_str = strchr (subtype_info, '_');
9258 n = 1;
9259
9260 if (*subtype_info == 'L')
9261 {
9262 if (!ada_scan_number (bounds_str, n, &L, &n)
9263 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
9264 return raw_type;
9265 if (bounds_str[n] == '_')
9266 n += 2;
9267 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
9268 n += 1;
9269 subtype_info += 1;
9270 }
9271 else
9272 {
9273 int ok;
9274 strcpy (name_buf + prefix_len, "___L");
9275 L = get_int_var_value (name_buf, &ok);
9276 if (!ok)
9277 {
9278 lim_warning (_("Unknown lower bound, using 1."));
9279 L = 1;
9280 }
9281 }
9282
9283 if (*subtype_info == 'U')
9284 {
9285 if (!ada_scan_number (bounds_str, n, &U, &n)
9286 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
9287 return raw_type;
9288 }
9289 else
9290 {
9291 int ok;
9292 strcpy (name_buf + prefix_len, "___U");
9293 U = get_int_var_value (name_buf, &ok);
9294 if (!ok)
9295 {
9296 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
9297 U = L;
9298 }
9299 }
9300
9301 if (objfile == NULL)
9302 objfile = TYPE_OBJFILE (base_type);
9303 type = create_range_type (alloc_type (objfile), base_type, L, U);
9304 TYPE_NAME (type) = name;
9305 return type;
9306 }
9307 }
9308
9309 /* True iff NAME is the name of a range type. */
9310
9311 int
9312 ada_is_range_type_name (const char *name)
9313 {
9314 return (name != NULL && strstr (name, "___XD"));
9315 }
9316 \f
9317
9318 /* Modular types */
9319
9320 /* True iff TYPE is an Ada modular type. */
9321
9322 int
9323 ada_is_modular_type (struct type *type)
9324 {
9325 struct type *subranged_type = base_type (type);
9326
9327 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
9328 && TYPE_CODE (subranged_type) != TYPE_CODE_ENUM
9329 && TYPE_UNSIGNED (subranged_type));
9330 }
9331
9332 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
9333
9334 ULONGEST
9335 ada_modulus (struct type * type)
9336 {
9337 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
9338 }
9339 \f
9340
9341 /* Ada exception catchpoint support:
9342 ---------------------------------
9343
9344 We support 3 kinds of exception catchpoints:
9345 . catchpoints on Ada exceptions
9346 . catchpoints on unhandled Ada exceptions
9347 . catchpoints on failed assertions
9348
9349 Exceptions raised during failed assertions, or unhandled exceptions
9350 could perfectly be caught with the general catchpoint on Ada exceptions.
9351 However, we can easily differentiate these two special cases, and having
9352 the option to distinguish these two cases from the rest can be useful
9353 to zero-in on certain situations.
9354
9355 Exception catchpoints are a specialized form of breakpoint,
9356 since they rely on inserting breakpoints inside known routines
9357 of the GNAT runtime. The implementation therefore uses a standard
9358 breakpoint structure of the BP_BREAKPOINT type, but with its own set
9359 of breakpoint_ops.
9360
9361 Support in the runtime for exception catchpoints have been changed
9362 a few times already, and these changes affect the implementation
9363 of these catchpoints. In order to be able to support several
9364 variants of the runtime, we use a sniffer that will determine
9365 the runtime variant used by the program being debugged.
9366
9367 At this time, we do not support the use of conditions on Ada exception
9368 catchpoints. The COND and COND_STRING fields are therefore set
9369 to NULL (most of the time, see below).
9370
9371 Conditions where EXP_STRING, COND, and COND_STRING are used:
9372
9373 When a user specifies the name of a specific exception in the case
9374 of catchpoints on Ada exceptions, we store the name of that exception
9375 in the EXP_STRING. We then translate this request into an actual
9376 condition stored in COND_STRING, and then parse it into an expression
9377 stored in COND. */
9378
9379 /* The different types of catchpoints that we introduced for catching
9380 Ada exceptions. */
9381
9382 enum exception_catchpoint_kind
9383 {
9384 ex_catch_exception,
9385 ex_catch_exception_unhandled,
9386 ex_catch_assert
9387 };
9388
9389 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
9390
9391 /* A structure that describes how to support exception catchpoints
9392 for a given executable. */
9393
9394 struct exception_support_info
9395 {
9396 /* The name of the symbol to break on in order to insert
9397 a catchpoint on exceptions. */
9398 const char *catch_exception_sym;
9399
9400 /* The name of the symbol to break on in order to insert
9401 a catchpoint on unhandled exceptions. */
9402 const char *catch_exception_unhandled_sym;
9403
9404 /* The name of the symbol to break on in order to insert
9405 a catchpoint on failed assertions. */
9406 const char *catch_assert_sym;
9407
9408 /* Assuming that the inferior just triggered an unhandled exception
9409 catchpoint, this function is responsible for returning the address
9410 in inferior memory where the name of that exception is stored.
9411 Return zero if the address could not be computed. */
9412 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
9413 };
9414
9415 static CORE_ADDR ada_unhandled_exception_name_addr (void);
9416 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
9417
9418 /* The following exception support info structure describes how to
9419 implement exception catchpoints with the latest version of the
9420 Ada runtime (as of 2007-03-06). */
9421
9422 static const struct exception_support_info default_exception_support_info =
9423 {
9424 "__gnat_debug_raise_exception", /* catch_exception_sym */
9425 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9426 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9427 ada_unhandled_exception_name_addr
9428 };
9429
9430 /* The following exception support info structure describes how to
9431 implement exception catchpoints with a slightly older version
9432 of the Ada runtime. */
9433
9434 static const struct exception_support_info exception_support_info_fallback =
9435 {
9436 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
9437 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9438 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9439 ada_unhandled_exception_name_addr_from_raise
9440 };
9441
9442 /* For each executable, we sniff which exception info structure to use
9443 and cache it in the following global variable. */
9444
9445 static const struct exception_support_info *exception_info = NULL;
9446
9447 /* Inspect the Ada runtime and determine which exception info structure
9448 should be used to provide support for exception catchpoints.
9449
9450 This function will always set exception_info, or raise an error. */
9451
9452 static void
9453 ada_exception_support_info_sniffer (void)
9454 {
9455 struct symbol *sym;
9456
9457 /* If the exception info is already known, then no need to recompute it. */
9458 if (exception_info != NULL)
9459 return;
9460
9461 /* Check the latest (default) exception support info. */
9462 sym = standard_lookup (default_exception_support_info.catch_exception_sym,
9463 NULL, VAR_DOMAIN);
9464 if (sym != NULL)
9465 {
9466 exception_info = &default_exception_support_info;
9467 return;
9468 }
9469
9470 /* Try our fallback exception suport info. */
9471 sym = standard_lookup (exception_support_info_fallback.catch_exception_sym,
9472 NULL, VAR_DOMAIN);
9473 if (sym != NULL)
9474 {
9475 exception_info = &exception_support_info_fallback;
9476 return;
9477 }
9478
9479 /* Sometimes, it is normal for us to not be able to find the routine
9480 we are looking for. This happens when the program is linked with
9481 the shared version of the GNAT runtime, and the program has not been
9482 started yet. Inform the user of these two possible causes if
9483 applicable. */
9484
9485 if (ada_update_initial_language (language_unknown, NULL) != language_ada)
9486 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
9487
9488 /* If the symbol does not exist, then check that the program is
9489 already started, to make sure that shared libraries have been
9490 loaded. If it is not started, this may mean that the symbol is
9491 in a shared library. */
9492
9493 if (ptid_get_pid (inferior_ptid) == 0)
9494 error (_("Unable to insert catchpoint. Try to start the program first."));
9495
9496 /* At this point, we know that we are debugging an Ada program and
9497 that the inferior has been started, but we still are not able to
9498 find the run-time symbols. That can mean that we are in
9499 configurable run time mode, or that a-except as been optimized
9500 out by the linker... In any case, at this point it is not worth
9501 supporting this feature. */
9502
9503 error (_("Cannot insert catchpoints in this configuration."));
9504 }
9505
9506 /* An observer of "executable_changed" events.
9507 Its role is to clear certain cached values that need to be recomputed
9508 each time a new executable is loaded by GDB. */
9509
9510 static void
9511 ada_executable_changed_observer (void *unused)
9512 {
9513 /* If the executable changed, then it is possible that the Ada runtime
9514 is different. So we need to invalidate the exception support info
9515 cache. */
9516 exception_info = NULL;
9517 }
9518
9519 /* Return the name of the function at PC, NULL if could not find it.
9520 This function only checks the debugging information, not the symbol
9521 table. */
9522
9523 static char *
9524 function_name_from_pc (CORE_ADDR pc)
9525 {
9526 char *func_name;
9527
9528 if (!find_pc_partial_function (pc, &func_name, NULL, NULL))
9529 return NULL;
9530
9531 return func_name;
9532 }
9533
9534 /* True iff FRAME is very likely to be that of a function that is
9535 part of the runtime system. This is all very heuristic, but is
9536 intended to be used as advice as to what frames are uninteresting
9537 to most users. */
9538
9539 static int
9540 is_known_support_routine (struct frame_info *frame)
9541 {
9542 struct symtab_and_line sal;
9543 char *func_name;
9544 int i;
9545
9546 /* If this code does not have any debugging information (no symtab),
9547 This cannot be any user code. */
9548
9549 find_frame_sal (frame, &sal);
9550 if (sal.symtab == NULL)
9551 return 1;
9552
9553 /* If there is a symtab, but the associated source file cannot be
9554 located, then assume this is not user code: Selecting a frame
9555 for which we cannot display the code would not be very helpful
9556 for the user. This should also take care of case such as VxWorks
9557 where the kernel has some debugging info provided for a few units. */
9558
9559 if (symtab_to_fullname (sal.symtab) == NULL)
9560 return 1;
9561
9562 /* Check the unit filename againt the Ada runtime file naming.
9563 We also check the name of the objfile against the name of some
9564 known system libraries that sometimes come with debugging info
9565 too. */
9566
9567 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
9568 {
9569 re_comp (known_runtime_file_name_patterns[i]);
9570 if (re_exec (sal.symtab->filename))
9571 return 1;
9572 if (sal.symtab->objfile != NULL
9573 && re_exec (sal.symtab->objfile->name))
9574 return 1;
9575 }
9576
9577 /* Check whether the function is a GNAT-generated entity. */
9578
9579 func_name = function_name_from_pc (get_frame_address_in_block (frame));
9580 if (func_name == NULL)
9581 return 1;
9582
9583 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
9584 {
9585 re_comp (known_auxiliary_function_name_patterns[i]);
9586 if (re_exec (func_name))
9587 return 1;
9588 }
9589
9590 return 0;
9591 }
9592
9593 /* Find the first frame that contains debugging information and that is not
9594 part of the Ada run-time, starting from FI and moving upward. */
9595
9596 static void
9597 ada_find_printable_frame (struct frame_info *fi)
9598 {
9599 for (; fi != NULL; fi = get_prev_frame (fi))
9600 {
9601 if (!is_known_support_routine (fi))
9602 {
9603 select_frame (fi);
9604 break;
9605 }
9606 }
9607
9608 }
9609
9610 /* Assuming that the inferior just triggered an unhandled exception
9611 catchpoint, return the address in inferior memory where the name
9612 of the exception is stored.
9613
9614 Return zero if the address could not be computed. */
9615
9616 static CORE_ADDR
9617 ada_unhandled_exception_name_addr (void)
9618 {
9619 return parse_and_eval_address ("e.full_name");
9620 }
9621
9622 /* Same as ada_unhandled_exception_name_addr, except that this function
9623 should be used when the inferior uses an older version of the runtime,
9624 where the exception name needs to be extracted from a specific frame
9625 several frames up in the callstack. */
9626
9627 static CORE_ADDR
9628 ada_unhandled_exception_name_addr_from_raise (void)
9629 {
9630 int frame_level;
9631 struct frame_info *fi;
9632
9633 /* To determine the name of this exception, we need to select
9634 the frame corresponding to RAISE_SYM_NAME. This frame is
9635 at least 3 levels up, so we simply skip the first 3 frames
9636 without checking the name of their associated function. */
9637 fi = get_current_frame ();
9638 for (frame_level = 0; frame_level < 3; frame_level += 1)
9639 if (fi != NULL)
9640 fi = get_prev_frame (fi);
9641
9642 while (fi != NULL)
9643 {
9644 const char *func_name =
9645 function_name_from_pc (get_frame_address_in_block (fi));
9646 if (func_name != NULL
9647 && strcmp (func_name, exception_info->catch_exception_sym) == 0)
9648 break; /* We found the frame we were looking for... */
9649 fi = get_prev_frame (fi);
9650 }
9651
9652 if (fi == NULL)
9653 return 0;
9654
9655 select_frame (fi);
9656 return parse_and_eval_address ("id.full_name");
9657 }
9658
9659 /* Assuming the inferior just triggered an Ada exception catchpoint
9660 (of any type), return the address in inferior memory where the name
9661 of the exception is stored, if applicable.
9662
9663 Return zero if the address could not be computed, or if not relevant. */
9664
9665 static CORE_ADDR
9666 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
9667 struct breakpoint *b)
9668 {
9669 switch (ex)
9670 {
9671 case ex_catch_exception:
9672 return (parse_and_eval_address ("e.full_name"));
9673 break;
9674
9675 case ex_catch_exception_unhandled:
9676 return exception_info->unhandled_exception_name_addr ();
9677 break;
9678
9679 case ex_catch_assert:
9680 return 0; /* Exception name is not relevant in this case. */
9681 break;
9682
9683 default:
9684 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
9685 break;
9686 }
9687
9688 return 0; /* Should never be reached. */
9689 }
9690
9691 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
9692 any error that ada_exception_name_addr_1 might cause to be thrown.
9693 When an error is intercepted, a warning with the error message is printed,
9694 and zero is returned. */
9695
9696 static CORE_ADDR
9697 ada_exception_name_addr (enum exception_catchpoint_kind ex,
9698 struct breakpoint *b)
9699 {
9700 struct gdb_exception e;
9701 CORE_ADDR result = 0;
9702
9703 TRY_CATCH (e, RETURN_MASK_ERROR)
9704 {
9705 result = ada_exception_name_addr_1 (ex, b);
9706 }
9707
9708 if (e.reason < 0)
9709 {
9710 warning (_("failed to get exception name: %s"), e.message);
9711 return 0;
9712 }
9713
9714 return result;
9715 }
9716
9717 /* Implement the PRINT_IT method in the breakpoint_ops structure
9718 for all exception catchpoint kinds. */
9719
9720 static enum print_stop_action
9721 print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
9722 {
9723 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
9724 char exception_name[256];
9725
9726 if (addr != 0)
9727 {
9728 read_memory (addr, exception_name, sizeof (exception_name) - 1);
9729 exception_name [sizeof (exception_name) - 1] = '\0';
9730 }
9731
9732 ada_find_printable_frame (get_current_frame ());
9733
9734 annotate_catchpoint (b->number);
9735 switch (ex)
9736 {
9737 case ex_catch_exception:
9738 if (addr != 0)
9739 printf_filtered (_("\nCatchpoint %d, %s at "),
9740 b->number, exception_name);
9741 else
9742 printf_filtered (_("\nCatchpoint %d, exception at "), b->number);
9743 break;
9744 case ex_catch_exception_unhandled:
9745 if (addr != 0)
9746 printf_filtered (_("\nCatchpoint %d, unhandled %s at "),
9747 b->number, exception_name);
9748 else
9749 printf_filtered (_("\nCatchpoint %d, unhandled exception at "),
9750 b->number);
9751 break;
9752 case ex_catch_assert:
9753 printf_filtered (_("\nCatchpoint %d, failed assertion at "),
9754 b->number);
9755 break;
9756 }
9757
9758 return PRINT_SRC_AND_LOC;
9759 }
9760
9761 /* Implement the PRINT_ONE method in the breakpoint_ops structure
9762 for all exception catchpoint kinds. */
9763
9764 static void
9765 print_one_exception (enum exception_catchpoint_kind ex,
9766 struct breakpoint *b, CORE_ADDR *last_addr)
9767 {
9768 if (addressprint)
9769 {
9770 annotate_field (4);
9771 ui_out_field_core_addr (uiout, "addr", b->loc->address);
9772 }
9773
9774 annotate_field (5);
9775 *last_addr = b->loc->address;
9776 switch (ex)
9777 {
9778 case ex_catch_exception:
9779 if (b->exp_string != NULL)
9780 {
9781 char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
9782
9783 ui_out_field_string (uiout, "what", msg);
9784 xfree (msg);
9785 }
9786 else
9787 ui_out_field_string (uiout, "what", "all Ada exceptions");
9788
9789 break;
9790
9791 case ex_catch_exception_unhandled:
9792 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
9793 break;
9794
9795 case ex_catch_assert:
9796 ui_out_field_string (uiout, "what", "failed Ada assertions");
9797 break;
9798
9799 default:
9800 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
9801 break;
9802 }
9803 }
9804
9805 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
9806 for all exception catchpoint kinds. */
9807
9808 static void
9809 print_mention_exception (enum exception_catchpoint_kind ex,
9810 struct breakpoint *b)
9811 {
9812 switch (ex)
9813 {
9814 case ex_catch_exception:
9815 if (b->exp_string != NULL)
9816 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
9817 b->number, b->exp_string);
9818 else
9819 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
9820
9821 break;
9822
9823 case ex_catch_exception_unhandled:
9824 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
9825 b->number);
9826 break;
9827
9828 case ex_catch_assert:
9829 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
9830 break;
9831
9832 default:
9833 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
9834 break;
9835 }
9836 }
9837
9838 /* Virtual table for "catch exception" breakpoints. */
9839
9840 static enum print_stop_action
9841 print_it_catch_exception (struct breakpoint *b)
9842 {
9843 return print_it_exception (ex_catch_exception, b);
9844 }
9845
9846 static void
9847 print_one_catch_exception (struct breakpoint *b, CORE_ADDR *last_addr)
9848 {
9849 print_one_exception (ex_catch_exception, b, last_addr);
9850 }
9851
9852 static void
9853 print_mention_catch_exception (struct breakpoint *b)
9854 {
9855 print_mention_exception (ex_catch_exception, b);
9856 }
9857
9858 static struct breakpoint_ops catch_exception_breakpoint_ops =
9859 {
9860 print_it_catch_exception,
9861 print_one_catch_exception,
9862 print_mention_catch_exception
9863 };
9864
9865 /* Virtual table for "catch exception unhandled" breakpoints. */
9866
9867 static enum print_stop_action
9868 print_it_catch_exception_unhandled (struct breakpoint *b)
9869 {
9870 return print_it_exception (ex_catch_exception_unhandled, b);
9871 }
9872
9873 static void
9874 print_one_catch_exception_unhandled (struct breakpoint *b, CORE_ADDR *last_addr)
9875 {
9876 print_one_exception (ex_catch_exception_unhandled, b, last_addr);
9877 }
9878
9879 static void
9880 print_mention_catch_exception_unhandled (struct breakpoint *b)
9881 {
9882 print_mention_exception (ex_catch_exception_unhandled, b);
9883 }
9884
9885 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
9886 print_it_catch_exception_unhandled,
9887 print_one_catch_exception_unhandled,
9888 print_mention_catch_exception_unhandled
9889 };
9890
9891 /* Virtual table for "catch assert" breakpoints. */
9892
9893 static enum print_stop_action
9894 print_it_catch_assert (struct breakpoint *b)
9895 {
9896 return print_it_exception (ex_catch_assert, b);
9897 }
9898
9899 static void
9900 print_one_catch_assert (struct breakpoint *b, CORE_ADDR *last_addr)
9901 {
9902 print_one_exception (ex_catch_assert, b, last_addr);
9903 }
9904
9905 static void
9906 print_mention_catch_assert (struct breakpoint *b)
9907 {
9908 print_mention_exception (ex_catch_assert, b);
9909 }
9910
9911 static struct breakpoint_ops catch_assert_breakpoint_ops = {
9912 print_it_catch_assert,
9913 print_one_catch_assert,
9914 print_mention_catch_assert
9915 };
9916
9917 /* Return non-zero if B is an Ada exception catchpoint. */
9918
9919 int
9920 ada_exception_catchpoint_p (struct breakpoint *b)
9921 {
9922 return (b->ops == &catch_exception_breakpoint_ops
9923 || b->ops == &catch_exception_unhandled_breakpoint_ops
9924 || b->ops == &catch_assert_breakpoint_ops);
9925 }
9926
9927 /* Return a newly allocated copy of the first space-separated token
9928 in ARGSP, and then adjust ARGSP to point immediately after that
9929 token.
9930
9931 Return NULL if ARGPS does not contain any more tokens. */
9932
9933 static char *
9934 ada_get_next_arg (char **argsp)
9935 {
9936 char *args = *argsp;
9937 char *end;
9938 char *result;
9939
9940 /* Skip any leading white space. */
9941
9942 while (isspace (*args))
9943 args++;
9944
9945 if (args[0] == '\0')
9946 return NULL; /* No more arguments. */
9947
9948 /* Find the end of the current argument. */
9949
9950 end = args;
9951 while (*end != '\0' && !isspace (*end))
9952 end++;
9953
9954 /* Adjust ARGSP to point to the start of the next argument. */
9955
9956 *argsp = end;
9957
9958 /* Make a copy of the current argument and return it. */
9959
9960 result = xmalloc (end - args + 1);
9961 strncpy (result, args, end - args);
9962 result[end - args] = '\0';
9963
9964 return result;
9965 }
9966
9967 /* Split the arguments specified in a "catch exception" command.
9968 Set EX to the appropriate catchpoint type.
9969 Set EXP_STRING to the name of the specific exception if
9970 specified by the user. */
9971
9972 static void
9973 catch_ada_exception_command_split (char *args,
9974 enum exception_catchpoint_kind *ex,
9975 char **exp_string)
9976 {
9977 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
9978 char *exception_name;
9979
9980 exception_name = ada_get_next_arg (&args);
9981 make_cleanup (xfree, exception_name);
9982
9983 /* Check that we do not have any more arguments. Anything else
9984 is unexpected. */
9985
9986 while (isspace (*args))
9987 args++;
9988
9989 if (args[0] != '\0')
9990 error (_("Junk at end of expression"));
9991
9992 discard_cleanups (old_chain);
9993
9994 if (exception_name == NULL)
9995 {
9996 /* Catch all exceptions. */
9997 *ex = ex_catch_exception;
9998 *exp_string = NULL;
9999 }
10000 else if (strcmp (exception_name, "unhandled") == 0)
10001 {
10002 /* Catch unhandled exceptions. */
10003 *ex = ex_catch_exception_unhandled;
10004 *exp_string = NULL;
10005 }
10006 else
10007 {
10008 /* Catch a specific exception. */
10009 *ex = ex_catch_exception;
10010 *exp_string = exception_name;
10011 }
10012 }
10013
10014 /* Return the name of the symbol on which we should break in order to
10015 implement a catchpoint of the EX kind. */
10016
10017 static const char *
10018 ada_exception_sym_name (enum exception_catchpoint_kind ex)
10019 {
10020 gdb_assert (exception_info != NULL);
10021
10022 switch (ex)
10023 {
10024 case ex_catch_exception:
10025 return (exception_info->catch_exception_sym);
10026 break;
10027 case ex_catch_exception_unhandled:
10028 return (exception_info->catch_exception_unhandled_sym);
10029 break;
10030 case ex_catch_assert:
10031 return (exception_info->catch_assert_sym);
10032 break;
10033 default:
10034 internal_error (__FILE__, __LINE__,
10035 _("unexpected catchpoint kind (%d)"), ex);
10036 }
10037 }
10038
10039 /* Return the breakpoint ops "virtual table" used for catchpoints
10040 of the EX kind. */
10041
10042 static struct breakpoint_ops *
10043 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
10044 {
10045 switch (ex)
10046 {
10047 case ex_catch_exception:
10048 return (&catch_exception_breakpoint_ops);
10049 break;
10050 case ex_catch_exception_unhandled:
10051 return (&catch_exception_unhandled_breakpoint_ops);
10052 break;
10053 case ex_catch_assert:
10054 return (&catch_assert_breakpoint_ops);
10055 break;
10056 default:
10057 internal_error (__FILE__, __LINE__,
10058 _("unexpected catchpoint kind (%d)"), ex);
10059 }
10060 }
10061
10062 /* Return the condition that will be used to match the current exception
10063 being raised with the exception that the user wants to catch. This
10064 assumes that this condition is used when the inferior just triggered
10065 an exception catchpoint.
10066
10067 The string returned is a newly allocated string that needs to be
10068 deallocated later. */
10069
10070 static char *
10071 ada_exception_catchpoint_cond_string (const char *exp_string)
10072 {
10073 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
10074 }
10075
10076 /* Return the expression corresponding to COND_STRING evaluated at SAL. */
10077
10078 static struct expression *
10079 ada_parse_catchpoint_condition (char *cond_string,
10080 struct symtab_and_line sal)
10081 {
10082 return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
10083 }
10084
10085 /* Return the symtab_and_line that should be used to insert an exception
10086 catchpoint of the TYPE kind.
10087
10088 EX_STRING should contain the name of a specific exception
10089 that the catchpoint should catch, or NULL otherwise.
10090
10091 The idea behind all the remaining parameters is that their names match
10092 the name of certain fields in the breakpoint structure that are used to
10093 handle exception catchpoints. This function returns the value to which
10094 these fields should be set, depending on the type of catchpoint we need
10095 to create.
10096
10097 If COND and COND_STRING are both non-NULL, any value they might
10098 hold will be free'ed, and then replaced by newly allocated ones.
10099 These parameters are left untouched otherwise. */
10100
10101 static struct symtab_and_line
10102 ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
10103 char **addr_string, char **cond_string,
10104 struct expression **cond, struct breakpoint_ops **ops)
10105 {
10106 const char *sym_name;
10107 struct symbol *sym;
10108 struct symtab_and_line sal;
10109
10110 /* First, find out which exception support info to use. */
10111 ada_exception_support_info_sniffer ();
10112
10113 /* Then lookup the function on which we will break in order to catch
10114 the Ada exceptions requested by the user. */
10115
10116 sym_name = ada_exception_sym_name (ex);
10117 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
10118
10119 /* The symbol we're looking up is provided by a unit in the GNAT runtime
10120 that should be compiled with debugging information. As a result, we
10121 expect to find that symbol in the symtabs. If we don't find it, then
10122 the target most likely does not support Ada exceptions, or we cannot
10123 insert exception breakpoints yet, because the GNAT runtime hasn't been
10124 loaded yet. */
10125
10126 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
10127 in such a way that no debugging information is produced for the symbol
10128 we are looking for. In this case, we could search the minimal symbols
10129 as a fall-back mechanism. This would still be operating in degraded
10130 mode, however, as we would still be missing the debugging information
10131 that is needed in order to extract the name of the exception being
10132 raised (this name is printed in the catchpoint message, and is also
10133 used when trying to catch a specific exception). We do not handle
10134 this case for now. */
10135
10136 if (sym == NULL)
10137 error (_("Unable to break on '%s' in this configuration."), sym_name);
10138
10139 /* Make sure that the symbol we found corresponds to a function. */
10140 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
10141 error (_("Symbol \"%s\" is not a function (class = %d)"),
10142 sym_name, SYMBOL_CLASS (sym));
10143
10144 sal = find_function_start_sal (sym, 1);
10145
10146 /* Set ADDR_STRING. */
10147
10148 *addr_string = xstrdup (sym_name);
10149
10150 /* Set the COND and COND_STRING (if not NULL). */
10151
10152 if (cond_string != NULL && cond != NULL)
10153 {
10154 if (*cond_string != NULL)
10155 {
10156 xfree (*cond_string);
10157 *cond_string = NULL;
10158 }
10159 if (*cond != NULL)
10160 {
10161 xfree (*cond);
10162 *cond = NULL;
10163 }
10164 if (exp_string != NULL)
10165 {
10166 *cond_string = ada_exception_catchpoint_cond_string (exp_string);
10167 *cond = ada_parse_catchpoint_condition (*cond_string, sal);
10168 }
10169 }
10170
10171 /* Set OPS. */
10172 *ops = ada_exception_breakpoint_ops (ex);
10173
10174 return sal;
10175 }
10176
10177 /* Parse the arguments (ARGS) of the "catch exception" command.
10178
10179 Set TYPE to the appropriate exception catchpoint type.
10180 If the user asked the catchpoint to catch only a specific
10181 exception, then save the exception name in ADDR_STRING.
10182
10183 See ada_exception_sal for a description of all the remaining
10184 function arguments of this function. */
10185
10186 struct symtab_and_line
10187 ada_decode_exception_location (char *args, char **addr_string,
10188 char **exp_string, char **cond_string,
10189 struct expression **cond,
10190 struct breakpoint_ops **ops)
10191 {
10192 enum exception_catchpoint_kind ex;
10193
10194 catch_ada_exception_command_split (args, &ex, exp_string);
10195 return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
10196 cond, ops);
10197 }
10198
10199 struct symtab_and_line
10200 ada_decode_assert_location (char *args, char **addr_string,
10201 struct breakpoint_ops **ops)
10202 {
10203 /* Check that no argument where provided at the end of the command. */
10204
10205 if (args != NULL)
10206 {
10207 while (isspace (*args))
10208 args++;
10209 if (*args != '\0')
10210 error (_("Junk at end of arguments."));
10211 }
10212
10213 return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
10214 ops);
10215 }
10216
10217 /* Operators */
10218 /* Information about operators given special treatment in functions
10219 below. */
10220 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
10221
10222 #define ADA_OPERATORS \
10223 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
10224 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
10225 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
10226 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
10227 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
10228 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
10229 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
10230 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
10231 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
10232 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
10233 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
10234 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
10235 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
10236 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
10237 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
10238 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
10239 OP_DEFN (OP_OTHERS, 1, 1, 0) \
10240 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
10241 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
10242
10243 static void
10244 ada_operator_length (struct expression *exp, int pc, int *oplenp, int *argsp)
10245 {
10246 switch (exp->elts[pc - 1].opcode)
10247 {
10248 default:
10249 operator_length_standard (exp, pc, oplenp, argsp);
10250 break;
10251
10252 #define OP_DEFN(op, len, args, binop) \
10253 case op: *oplenp = len; *argsp = args; break;
10254 ADA_OPERATORS;
10255 #undef OP_DEFN
10256
10257 case OP_AGGREGATE:
10258 *oplenp = 3;
10259 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
10260 break;
10261
10262 case OP_CHOICES:
10263 *oplenp = 3;
10264 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
10265 break;
10266 }
10267 }
10268
10269 static char *
10270 ada_op_name (enum exp_opcode opcode)
10271 {
10272 switch (opcode)
10273 {
10274 default:
10275 return op_name_standard (opcode);
10276
10277 #define OP_DEFN(op, len, args, binop) case op: return #op;
10278 ADA_OPERATORS;
10279 #undef OP_DEFN
10280
10281 case OP_AGGREGATE:
10282 return "OP_AGGREGATE";
10283 case OP_CHOICES:
10284 return "OP_CHOICES";
10285 case OP_NAME:
10286 return "OP_NAME";
10287 }
10288 }
10289
10290 /* As for operator_length, but assumes PC is pointing at the first
10291 element of the operator, and gives meaningful results only for the
10292 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
10293
10294 static void
10295 ada_forward_operator_length (struct expression *exp, int pc,
10296 int *oplenp, int *argsp)
10297 {
10298 switch (exp->elts[pc].opcode)
10299 {
10300 default:
10301 *oplenp = *argsp = 0;
10302 break;
10303
10304 #define OP_DEFN(op, len, args, binop) \
10305 case op: *oplenp = len; *argsp = args; break;
10306 ADA_OPERATORS;
10307 #undef OP_DEFN
10308
10309 case OP_AGGREGATE:
10310 *oplenp = 3;
10311 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
10312 break;
10313
10314 case OP_CHOICES:
10315 *oplenp = 3;
10316 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
10317 break;
10318
10319 case OP_STRING:
10320 case OP_NAME:
10321 {
10322 int len = longest_to_int (exp->elts[pc + 1].longconst);
10323 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
10324 *argsp = 0;
10325 break;
10326 }
10327 }
10328 }
10329
10330 static int
10331 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
10332 {
10333 enum exp_opcode op = exp->elts[elt].opcode;
10334 int oplen, nargs;
10335 int pc = elt;
10336 int i;
10337
10338 ada_forward_operator_length (exp, elt, &oplen, &nargs);
10339
10340 switch (op)
10341 {
10342 /* Ada attributes ('Foo). */
10343 case OP_ATR_FIRST:
10344 case OP_ATR_LAST:
10345 case OP_ATR_LENGTH:
10346 case OP_ATR_IMAGE:
10347 case OP_ATR_MAX:
10348 case OP_ATR_MIN:
10349 case OP_ATR_MODULUS:
10350 case OP_ATR_POS:
10351 case OP_ATR_SIZE:
10352 case OP_ATR_TAG:
10353 case OP_ATR_VAL:
10354 break;
10355
10356 case UNOP_IN_RANGE:
10357 case UNOP_QUAL:
10358 /* XXX: gdb_sprint_host_address, type_sprint */
10359 fprintf_filtered (stream, _("Type @"));
10360 gdb_print_host_address (exp->elts[pc + 1].type, stream);
10361 fprintf_filtered (stream, " (");
10362 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
10363 fprintf_filtered (stream, ")");
10364 break;
10365 case BINOP_IN_BOUNDS:
10366 fprintf_filtered (stream, " (%d)",
10367 longest_to_int (exp->elts[pc + 2].longconst));
10368 break;
10369 case TERNOP_IN_RANGE:
10370 break;
10371
10372 case OP_AGGREGATE:
10373 case OP_OTHERS:
10374 case OP_DISCRETE_RANGE:
10375 case OP_POSITIONAL:
10376 case OP_CHOICES:
10377 break;
10378
10379 case OP_NAME:
10380 case OP_STRING:
10381 {
10382 char *name = &exp->elts[elt + 2].string;
10383 int len = longest_to_int (exp->elts[elt + 1].longconst);
10384 fprintf_filtered (stream, "Text: `%.*s'", len, name);
10385 break;
10386 }
10387
10388 default:
10389 return dump_subexp_body_standard (exp, stream, elt);
10390 }
10391
10392 elt += oplen;
10393 for (i = 0; i < nargs; i += 1)
10394 elt = dump_subexp (exp, stream, elt);
10395
10396 return elt;
10397 }
10398
10399 /* The Ada extension of print_subexp (q.v.). */
10400
10401 static void
10402 ada_print_subexp (struct expression *exp, int *pos,
10403 struct ui_file *stream, enum precedence prec)
10404 {
10405 int oplen, nargs, i;
10406 int pc = *pos;
10407 enum exp_opcode op = exp->elts[pc].opcode;
10408
10409 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10410
10411 *pos += oplen;
10412 switch (op)
10413 {
10414 default:
10415 *pos -= oplen;
10416 print_subexp_standard (exp, pos, stream, prec);
10417 return;
10418
10419 case OP_VAR_VALUE:
10420 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
10421 return;
10422
10423 case BINOP_IN_BOUNDS:
10424 /* XXX: sprint_subexp */
10425 print_subexp (exp, pos, stream, PREC_SUFFIX);
10426 fputs_filtered (" in ", stream);
10427 print_subexp (exp, pos, stream, PREC_SUFFIX);
10428 fputs_filtered ("'range", stream);
10429 if (exp->elts[pc + 1].longconst > 1)
10430 fprintf_filtered (stream, "(%ld)",
10431 (long) exp->elts[pc + 1].longconst);
10432 return;
10433
10434 case TERNOP_IN_RANGE:
10435 if (prec >= PREC_EQUAL)
10436 fputs_filtered ("(", stream);
10437 /* XXX: sprint_subexp */
10438 print_subexp (exp, pos, stream, PREC_SUFFIX);
10439 fputs_filtered (" in ", stream);
10440 print_subexp (exp, pos, stream, PREC_EQUAL);
10441 fputs_filtered (" .. ", stream);
10442 print_subexp (exp, pos, stream, PREC_EQUAL);
10443 if (prec >= PREC_EQUAL)
10444 fputs_filtered (")", stream);
10445 return;
10446
10447 case OP_ATR_FIRST:
10448 case OP_ATR_LAST:
10449 case OP_ATR_LENGTH:
10450 case OP_ATR_IMAGE:
10451 case OP_ATR_MAX:
10452 case OP_ATR_MIN:
10453 case OP_ATR_MODULUS:
10454 case OP_ATR_POS:
10455 case OP_ATR_SIZE:
10456 case OP_ATR_TAG:
10457 case OP_ATR_VAL:
10458 if (exp->elts[*pos].opcode == OP_TYPE)
10459 {
10460 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
10461 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
10462 *pos += 3;
10463 }
10464 else
10465 print_subexp (exp, pos, stream, PREC_SUFFIX);
10466 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
10467 if (nargs > 1)
10468 {
10469 int tem;
10470 for (tem = 1; tem < nargs; tem += 1)
10471 {
10472 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
10473 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
10474 }
10475 fputs_filtered (")", stream);
10476 }
10477 return;
10478
10479 case UNOP_QUAL:
10480 type_print (exp->elts[pc + 1].type, "", stream, 0);
10481 fputs_filtered ("'(", stream);
10482 print_subexp (exp, pos, stream, PREC_PREFIX);
10483 fputs_filtered (")", stream);
10484 return;
10485
10486 case UNOP_IN_RANGE:
10487 /* XXX: sprint_subexp */
10488 print_subexp (exp, pos, stream, PREC_SUFFIX);
10489 fputs_filtered (" in ", stream);
10490 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
10491 return;
10492
10493 case OP_DISCRETE_RANGE:
10494 print_subexp (exp, pos, stream, PREC_SUFFIX);
10495 fputs_filtered ("..", stream);
10496 print_subexp (exp, pos, stream, PREC_SUFFIX);
10497 return;
10498
10499 case OP_OTHERS:
10500 fputs_filtered ("others => ", stream);
10501 print_subexp (exp, pos, stream, PREC_SUFFIX);
10502 return;
10503
10504 case OP_CHOICES:
10505 for (i = 0; i < nargs-1; i += 1)
10506 {
10507 if (i > 0)
10508 fputs_filtered ("|", stream);
10509 print_subexp (exp, pos, stream, PREC_SUFFIX);
10510 }
10511 fputs_filtered (" => ", stream);
10512 print_subexp (exp, pos, stream, PREC_SUFFIX);
10513 return;
10514
10515 case OP_POSITIONAL:
10516 print_subexp (exp, pos, stream, PREC_SUFFIX);
10517 return;
10518
10519 case OP_AGGREGATE:
10520 fputs_filtered ("(", stream);
10521 for (i = 0; i < nargs; i += 1)
10522 {
10523 if (i > 0)
10524 fputs_filtered (", ", stream);
10525 print_subexp (exp, pos, stream, PREC_SUFFIX);
10526 }
10527 fputs_filtered (")", stream);
10528 return;
10529 }
10530 }
10531
10532 /* Table mapping opcodes into strings for printing operators
10533 and precedences of the operators. */
10534
10535 static const struct op_print ada_op_print_tab[] = {
10536 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
10537 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
10538 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
10539 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
10540 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
10541 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
10542 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
10543 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
10544 {"<=", BINOP_LEQ, PREC_ORDER, 0},
10545 {">=", BINOP_GEQ, PREC_ORDER, 0},
10546 {">", BINOP_GTR, PREC_ORDER, 0},
10547 {"<", BINOP_LESS, PREC_ORDER, 0},
10548 {">>", BINOP_RSH, PREC_SHIFT, 0},
10549 {"<<", BINOP_LSH, PREC_SHIFT, 0},
10550 {"+", BINOP_ADD, PREC_ADD, 0},
10551 {"-", BINOP_SUB, PREC_ADD, 0},
10552 {"&", BINOP_CONCAT, PREC_ADD, 0},
10553 {"*", BINOP_MUL, PREC_MUL, 0},
10554 {"/", BINOP_DIV, PREC_MUL, 0},
10555 {"rem", BINOP_REM, PREC_MUL, 0},
10556 {"mod", BINOP_MOD, PREC_MUL, 0},
10557 {"**", BINOP_EXP, PREC_REPEAT, 0},
10558 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
10559 {"-", UNOP_NEG, PREC_PREFIX, 0},
10560 {"+", UNOP_PLUS, PREC_PREFIX, 0},
10561 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
10562 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
10563 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
10564 {".all", UNOP_IND, PREC_SUFFIX, 1},
10565 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
10566 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
10567 {NULL, 0, 0, 0}
10568 };
10569 \f
10570 enum ada_primitive_types {
10571 ada_primitive_type_int,
10572 ada_primitive_type_long,
10573 ada_primitive_type_short,
10574 ada_primitive_type_char,
10575 ada_primitive_type_float,
10576 ada_primitive_type_double,
10577 ada_primitive_type_void,
10578 ada_primitive_type_long_long,
10579 ada_primitive_type_long_double,
10580 ada_primitive_type_natural,
10581 ada_primitive_type_positive,
10582 ada_primitive_type_system_address,
10583 nr_ada_primitive_types
10584 };
10585
10586 static void
10587 ada_language_arch_info (struct gdbarch *gdbarch,
10588 struct language_arch_info *lai)
10589 {
10590 const struct builtin_type *builtin = builtin_type (gdbarch);
10591 lai->primitive_type_vector
10592 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
10593 struct type *);
10594 lai->primitive_type_vector [ada_primitive_type_int] =
10595 init_type (TYPE_CODE_INT,
10596 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
10597 0, "integer", (struct objfile *) NULL);
10598 lai->primitive_type_vector [ada_primitive_type_long] =
10599 init_type (TYPE_CODE_INT,
10600 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
10601 0, "long_integer", (struct objfile *) NULL);
10602 lai->primitive_type_vector [ada_primitive_type_short] =
10603 init_type (TYPE_CODE_INT,
10604 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
10605 0, "short_integer", (struct objfile *) NULL);
10606 lai->string_char_type =
10607 lai->primitive_type_vector [ada_primitive_type_char] =
10608 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10609 0, "character", (struct objfile *) NULL);
10610 lai->primitive_type_vector [ada_primitive_type_float] =
10611 init_type (TYPE_CODE_FLT,
10612 gdbarch_float_bit (gdbarch)/ TARGET_CHAR_BIT,
10613 0, "float", (struct objfile *) NULL);
10614 lai->primitive_type_vector [ada_primitive_type_double] =
10615 init_type (TYPE_CODE_FLT,
10616 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
10617 0, "long_float", (struct objfile *) NULL);
10618 lai->primitive_type_vector [ada_primitive_type_long_long] =
10619 init_type (TYPE_CODE_INT,
10620 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
10621 0, "long_long_integer", (struct objfile *) NULL);
10622 lai->primitive_type_vector [ada_primitive_type_long_double] =
10623 init_type (TYPE_CODE_FLT,
10624 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
10625 0, "long_long_float", (struct objfile *) NULL);
10626 lai->primitive_type_vector [ada_primitive_type_natural] =
10627 init_type (TYPE_CODE_INT,
10628 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
10629 0, "natural", (struct objfile *) NULL);
10630 lai->primitive_type_vector [ada_primitive_type_positive] =
10631 init_type (TYPE_CODE_INT,
10632 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
10633 0, "positive", (struct objfile *) NULL);
10634 lai->primitive_type_vector [ada_primitive_type_void] = builtin->builtin_void;
10635
10636 lai->primitive_type_vector [ada_primitive_type_system_address] =
10637 lookup_pointer_type (init_type (TYPE_CODE_VOID, 1, 0, "void",
10638 (struct objfile *) NULL));
10639 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
10640 = "system__address";
10641 }
10642 \f
10643 /* Language vector */
10644
10645 /* Not really used, but needed in the ada_language_defn. */
10646
10647 static void
10648 emit_char (int c, struct ui_file *stream, int quoter)
10649 {
10650 ada_emit_char (c, stream, quoter, 1);
10651 }
10652
10653 static int
10654 parse (void)
10655 {
10656 warnings_issued = 0;
10657 return ada_parse ();
10658 }
10659
10660 static const struct exp_descriptor ada_exp_descriptor = {
10661 ada_print_subexp,
10662 ada_operator_length,
10663 ada_op_name,
10664 ada_dump_subexp_body,
10665 ada_evaluate_subexp
10666 };
10667
10668 const struct language_defn ada_language_defn = {
10669 "ada", /* Language name */
10670 language_ada,
10671 range_check_off,
10672 type_check_off,
10673 case_sensitive_on, /* Yes, Ada is case-insensitive, but
10674 that's not quite what this means. */
10675 array_row_major,
10676 &ada_exp_descriptor,
10677 parse,
10678 ada_error,
10679 resolve,
10680 ada_printchar, /* Print a character constant */
10681 ada_printstr, /* Function to print string constant */
10682 emit_char, /* Function to print single char (not used) */
10683 ada_print_type, /* Print a type using appropriate syntax */
10684 ada_val_print, /* Print a value using appropriate syntax */
10685 ada_value_print, /* Print a top-level value */
10686 NULL, /* Language specific skip_trampoline */
10687 NULL, /* value_of_this */
10688 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
10689 basic_lookup_transparent_type, /* lookup_transparent_type */
10690 ada_la_decode, /* Language specific symbol demangler */
10691 NULL, /* Language specific class_name_from_physname */
10692 ada_op_print_tab, /* expression operators for printing */
10693 0, /* c-style arrays */
10694 1, /* String lower bound */
10695 ada_get_gdb_completer_word_break_characters,
10696 ada_language_arch_info,
10697 ada_print_array_index,
10698 default_pass_by_reference,
10699 LANG_MAGIC
10700 };
10701
10702 void
10703 _initialize_ada_language (void)
10704 {
10705 add_language (&ada_language_defn);
10706
10707 varsize_limit = 65536;
10708
10709 obstack_init (&symbol_list_obstack);
10710
10711 decoded_names_store = htab_create_alloc
10712 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
10713 NULL, xcalloc, xfree);
10714
10715 observer_attach_executable_changed (ada_executable_changed_observer);
10716 }