Handle PPC64 function descriptor in Ada decoding
[binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <ctype.h>
23 #include "demangle.h"
24 #include "gdb_regex.h"
25 #include "frame.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcmd.h"
29 #include "expression.h"
30 #include "parser-defs.h"
31 #include "language.h"
32 #include "varobj.h"
33 #include "c-lang.h"
34 #include "inferior.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "breakpoint.h"
38 #include "gdbcore.h"
39 #include "hashtab.h"
40 #include "gdb_obstack.h"
41 #include "ada-lang.h"
42 #include "completer.h"
43 #include <sys/stat.h>
44 #include "ui-out.h"
45 #include "block.h"
46 #include "infcall.h"
47 #include "dictionary.h"
48 #include "annotate.h"
49 #include "valprint.h"
50 #include "source.h"
51 #include "observable.h"
52 #include "vec.h"
53 #include "stack.h"
54 #include "gdb_vecs.h"
55 #include "typeprint.h"
56 #include "namespace.h"
57
58 #include "psymtab.h"
59 #include "value.h"
60 #include "mi/mi-common.h"
61 #include "arch-utils.h"
62 #include "cli/cli-utils.h"
63 #include "common/function-view.h"
64 #include "common/byte-vector.h"
65 #include <algorithm>
66
67 /* Define whether or not the C operator '/' truncates towards zero for
68 differently signed operands (truncation direction is undefined in C).
69 Copied from valarith.c. */
70
71 #ifndef TRUNCATION_TOWARDS_ZERO
72 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
73 #endif
74
75 static struct type *desc_base_type (struct type *);
76
77 static struct type *desc_bounds_type (struct type *);
78
79 static struct value *desc_bounds (struct value *);
80
81 static int fat_pntr_bounds_bitpos (struct type *);
82
83 static int fat_pntr_bounds_bitsize (struct type *);
84
85 static struct type *desc_data_target_type (struct type *);
86
87 static struct value *desc_data (struct value *);
88
89 static int fat_pntr_data_bitpos (struct type *);
90
91 static int fat_pntr_data_bitsize (struct type *);
92
93 static struct value *desc_one_bound (struct value *, int, int);
94
95 static int desc_bound_bitpos (struct type *, int, int);
96
97 static int desc_bound_bitsize (struct type *, int, int);
98
99 static struct type *desc_index_type (struct type *, int);
100
101 static int desc_arity (struct type *);
102
103 static int ada_type_match (struct type *, struct type *, int);
104
105 static int ada_args_match (struct symbol *, struct value **, int);
106
107 static struct value *make_array_descriptor (struct type *, struct value *);
108
109 static void ada_add_block_symbols (struct obstack *,
110 const struct block *,
111 const lookup_name_info &lookup_name,
112 domain_enum, struct objfile *);
113
114 static void ada_add_all_symbols (struct obstack *, const struct block *,
115 const lookup_name_info &lookup_name,
116 domain_enum, int, int *);
117
118 static int is_nonfunction (struct block_symbol *, int);
119
120 static void add_defn_to_vec (struct obstack *, struct symbol *,
121 const struct block *);
122
123 static int num_defns_collected (struct obstack *);
124
125 static struct block_symbol *defns_collected (struct obstack *, int);
126
127 static struct value *resolve_subexp (expression_up *, int *, int,
128 struct type *);
129
130 static void replace_operator_with_call (expression_up *, int, int, int,
131 struct symbol *, const struct block *);
132
133 static int possible_user_operator_p (enum exp_opcode, struct value **);
134
135 static const char *ada_op_name (enum exp_opcode);
136
137 static const char *ada_decoded_op_name (enum exp_opcode);
138
139 static int numeric_type_p (struct type *);
140
141 static int integer_type_p (struct type *);
142
143 static int scalar_type_p (struct type *);
144
145 static int discrete_type_p (struct type *);
146
147 static enum ada_renaming_category parse_old_style_renaming (struct type *,
148 const char **,
149 int *,
150 const char **);
151
152 static struct symbol *find_old_style_renaming_symbol (const char *,
153 const struct block *);
154
155 static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
156 int, int);
157
158 static struct value *evaluate_subexp_type (struct expression *, int *);
159
160 static struct type *ada_find_parallel_type_with_name (struct type *,
161 const char *);
162
163 static int is_dynamic_field (struct type *, int);
164
165 static struct type *to_fixed_variant_branch_type (struct type *,
166 const gdb_byte *,
167 CORE_ADDR, struct value *);
168
169 static struct type *to_fixed_array_type (struct type *, struct value *, int);
170
171 static struct type *to_fixed_range_type (struct type *, struct value *);
172
173 static struct type *to_static_fixed_type (struct type *);
174 static struct type *static_unwrap_type (struct type *type);
175
176 static struct value *unwrap_value (struct value *);
177
178 static struct type *constrained_packed_array_type (struct type *, long *);
179
180 static struct type *decode_constrained_packed_array_type (struct type *);
181
182 static long decode_packed_array_bitsize (struct type *);
183
184 static struct value *decode_constrained_packed_array (struct value *);
185
186 static int ada_is_packed_array_type (struct type *);
187
188 static int ada_is_unconstrained_packed_array_type (struct type *);
189
190 static struct value *value_subscript_packed (struct value *, int,
191 struct value **);
192
193 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
194
195 static struct value *coerce_unspec_val_to_type (struct value *,
196 struct type *);
197
198 static int lesseq_defined_than (struct symbol *, struct symbol *);
199
200 static int equiv_types (struct type *, struct type *);
201
202 static int is_name_suffix (const char *);
203
204 static int advance_wild_match (const char **, const char *, int);
205
206 static bool wild_match (const char *name, const char *patn);
207
208 static struct value *ada_coerce_ref (struct value *);
209
210 static LONGEST pos_atr (struct value *);
211
212 static struct value *value_pos_atr (struct type *, struct value *);
213
214 static struct value *value_val_atr (struct type *, struct value *);
215
216 static struct symbol *standard_lookup (const char *, const struct block *,
217 domain_enum);
218
219 static struct value *ada_search_struct_field (const char *, struct value *, int,
220 struct type *);
221
222 static struct value *ada_value_primitive_field (struct value *, int, int,
223 struct type *);
224
225 static int find_struct_field (const char *, struct type *, int,
226 struct type **, int *, int *, int *, int *);
227
228 static int ada_resolve_function (struct block_symbol *, int,
229 struct value **, int, const char *,
230 struct type *);
231
232 static int ada_is_direct_array_type (struct type *);
233
234 static void ada_language_arch_info (struct gdbarch *,
235 struct language_arch_info *);
236
237 static struct value *ada_index_struct_field (int, struct value *, int,
238 struct type *);
239
240 static struct value *assign_aggregate (struct value *, struct value *,
241 struct expression *,
242 int *, enum noside);
243
244 static void aggregate_assign_from_choices (struct value *, struct value *,
245 struct expression *,
246 int *, LONGEST *, int *,
247 int, LONGEST, LONGEST);
248
249 static void aggregate_assign_positional (struct value *, struct value *,
250 struct expression *,
251 int *, LONGEST *, int *, int,
252 LONGEST, LONGEST);
253
254
255 static void aggregate_assign_others (struct value *, struct value *,
256 struct expression *,
257 int *, LONGEST *, int, LONGEST, LONGEST);
258
259
260 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
261
262
263 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
264 int *, enum noside);
265
266 static void ada_forward_operator_length (struct expression *, int, int *,
267 int *);
268
269 static struct type *ada_find_any_type (const char *name);
270
271 static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
272 (const lookup_name_info &lookup_name);
273
274 \f
275
276 /* The result of a symbol lookup to be stored in our symbol cache. */
277
278 struct cache_entry
279 {
280 /* The name used to perform the lookup. */
281 const char *name;
282 /* The namespace used during the lookup. */
283 domain_enum domain;
284 /* The symbol returned by the lookup, or NULL if no matching symbol
285 was found. */
286 struct symbol *sym;
287 /* The block where the symbol was found, or NULL if no matching
288 symbol was found. */
289 const struct block *block;
290 /* A pointer to the next entry with the same hash. */
291 struct cache_entry *next;
292 };
293
294 /* The Ada symbol cache, used to store the result of Ada-mode symbol
295 lookups in the course of executing the user's commands.
296
297 The cache is implemented using a simple, fixed-sized hash.
298 The size is fixed on the grounds that there are not likely to be
299 all that many symbols looked up during any given session, regardless
300 of the size of the symbol table. If we decide to go to a resizable
301 table, let's just use the stuff from libiberty instead. */
302
303 #define HASH_SIZE 1009
304
305 struct ada_symbol_cache
306 {
307 /* An obstack used to store the entries in our cache. */
308 struct obstack cache_space;
309
310 /* The root of the hash table used to implement our symbol cache. */
311 struct cache_entry *root[HASH_SIZE];
312 };
313
314 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
315
316 /* Maximum-sized dynamic type. */
317 static unsigned int varsize_limit;
318
319 static const char ada_completer_word_break_characters[] =
320 #ifdef VMS
321 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
322 #else
323 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
324 #endif
325
326 /* The name of the symbol to use to get the name of the main subprogram. */
327 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
328 = "__gnat_ada_main_program_name";
329
330 /* Limit on the number of warnings to raise per expression evaluation. */
331 static int warning_limit = 2;
332
333 /* Number of warning messages issued; reset to 0 by cleanups after
334 expression evaluation. */
335 static int warnings_issued = 0;
336
337 static const char *known_runtime_file_name_patterns[] = {
338 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
339 };
340
341 static const char *known_auxiliary_function_name_patterns[] = {
342 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
343 };
344
345 /* Maintenance-related settings for this module. */
346
347 static struct cmd_list_element *maint_set_ada_cmdlist;
348 static struct cmd_list_element *maint_show_ada_cmdlist;
349
350 /* Implement the "maintenance set ada" (prefix) command. */
351
352 static void
353 maint_set_ada_cmd (const char *args, int from_tty)
354 {
355 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
356 gdb_stdout);
357 }
358
359 /* Implement the "maintenance show ada" (prefix) command. */
360
361 static void
362 maint_show_ada_cmd (const char *args, int from_tty)
363 {
364 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
365 }
366
367 /* The "maintenance ada set/show ignore-descriptive-type" value. */
368
369 static int ada_ignore_descriptive_types_p = 0;
370
371 /* Inferior-specific data. */
372
373 /* Per-inferior data for this module. */
374
375 struct ada_inferior_data
376 {
377 /* The ada__tags__type_specific_data type, which is used when decoding
378 tagged types. With older versions of GNAT, this type was directly
379 accessible through a component ("tsd") in the object tag. But this
380 is no longer the case, so we cache it for each inferior. */
381 struct type *tsd_type;
382
383 /* The exception_support_info data. This data is used to determine
384 how to implement support for Ada exception catchpoints in a given
385 inferior. */
386 const struct exception_support_info *exception_info;
387 };
388
389 /* Our key to this module's inferior data. */
390 static const struct inferior_data *ada_inferior_data;
391
392 /* A cleanup routine for our inferior data. */
393 static void
394 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
395 {
396 struct ada_inferior_data *data;
397
398 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
399 if (data != NULL)
400 xfree (data);
401 }
402
403 /* Return our inferior data for the given inferior (INF).
404
405 This function always returns a valid pointer to an allocated
406 ada_inferior_data structure. If INF's inferior data has not
407 been previously set, this functions creates a new one with all
408 fields set to zero, sets INF's inferior to it, and then returns
409 a pointer to that newly allocated ada_inferior_data. */
410
411 static struct ada_inferior_data *
412 get_ada_inferior_data (struct inferior *inf)
413 {
414 struct ada_inferior_data *data;
415
416 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
417 if (data == NULL)
418 {
419 data = XCNEW (struct ada_inferior_data);
420 set_inferior_data (inf, ada_inferior_data, data);
421 }
422
423 return data;
424 }
425
426 /* Perform all necessary cleanups regarding our module's inferior data
427 that is required after the inferior INF just exited. */
428
429 static void
430 ada_inferior_exit (struct inferior *inf)
431 {
432 ada_inferior_data_cleanup (inf, NULL);
433 set_inferior_data (inf, ada_inferior_data, NULL);
434 }
435
436
437 /* program-space-specific data. */
438
439 /* This module's per-program-space data. */
440 struct ada_pspace_data
441 {
442 /* The Ada symbol cache. */
443 struct ada_symbol_cache *sym_cache;
444 };
445
446 /* Key to our per-program-space data. */
447 static const struct program_space_data *ada_pspace_data_handle;
448
449 /* Return this module's data for the given program space (PSPACE).
450 If not is found, add a zero'ed one now.
451
452 This function always returns a valid object. */
453
454 static struct ada_pspace_data *
455 get_ada_pspace_data (struct program_space *pspace)
456 {
457 struct ada_pspace_data *data;
458
459 data = ((struct ada_pspace_data *)
460 program_space_data (pspace, ada_pspace_data_handle));
461 if (data == NULL)
462 {
463 data = XCNEW (struct ada_pspace_data);
464 set_program_space_data (pspace, ada_pspace_data_handle, data);
465 }
466
467 return data;
468 }
469
470 /* The cleanup callback for this module's per-program-space data. */
471
472 static void
473 ada_pspace_data_cleanup (struct program_space *pspace, void *data)
474 {
475 struct ada_pspace_data *pspace_data = (struct ada_pspace_data *) data;
476
477 if (pspace_data->sym_cache != NULL)
478 ada_free_symbol_cache (pspace_data->sym_cache);
479 xfree (pspace_data);
480 }
481
482 /* Utilities */
483
484 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
485 all typedef layers have been peeled. Otherwise, return TYPE.
486
487 Normally, we really expect a typedef type to only have 1 typedef layer.
488 In other words, we really expect the target type of a typedef type to be
489 a non-typedef type. This is particularly true for Ada units, because
490 the language does not have a typedef vs not-typedef distinction.
491 In that respect, the Ada compiler has been trying to eliminate as many
492 typedef definitions in the debugging information, since they generally
493 do not bring any extra information (we still use typedef under certain
494 circumstances related mostly to the GNAT encoding).
495
496 Unfortunately, we have seen situations where the debugging information
497 generated by the compiler leads to such multiple typedef layers. For
498 instance, consider the following example with stabs:
499
500 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
501 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
502
503 This is an error in the debugging information which causes type
504 pck__float_array___XUP to be defined twice, and the second time,
505 it is defined as a typedef of a typedef.
506
507 This is on the fringe of legality as far as debugging information is
508 concerned, and certainly unexpected. But it is easy to handle these
509 situations correctly, so we can afford to be lenient in this case. */
510
511 static struct type *
512 ada_typedef_target_type (struct type *type)
513 {
514 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
515 type = TYPE_TARGET_TYPE (type);
516 return type;
517 }
518
519 /* Given DECODED_NAME a string holding a symbol name in its
520 decoded form (ie using the Ada dotted notation), returns
521 its unqualified name. */
522
523 static const char *
524 ada_unqualified_name (const char *decoded_name)
525 {
526 const char *result;
527
528 /* If the decoded name starts with '<', it means that the encoded
529 name does not follow standard naming conventions, and thus that
530 it is not your typical Ada symbol name. Trying to unqualify it
531 is therefore pointless and possibly erroneous. */
532 if (decoded_name[0] == '<')
533 return decoded_name;
534
535 result = strrchr (decoded_name, '.');
536 if (result != NULL)
537 result++; /* Skip the dot... */
538 else
539 result = decoded_name;
540
541 return result;
542 }
543
544 /* Return a string starting with '<', followed by STR, and '>'. */
545
546 static std::string
547 add_angle_brackets (const char *str)
548 {
549 return string_printf ("<%s>", str);
550 }
551
552 static const char *
553 ada_get_gdb_completer_word_break_characters (void)
554 {
555 return ada_completer_word_break_characters;
556 }
557
558 /* Print an array element index using the Ada syntax. */
559
560 static void
561 ada_print_array_index (struct value *index_value, struct ui_file *stream,
562 const struct value_print_options *options)
563 {
564 LA_VALUE_PRINT (index_value, stream, options);
565 fprintf_filtered (stream, " => ");
566 }
567
568 /* Assuming VECT points to an array of *SIZE objects of size
569 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
570 updating *SIZE as necessary and returning the (new) array. */
571
572 void *
573 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
574 {
575 if (*size < min_size)
576 {
577 *size *= 2;
578 if (*size < min_size)
579 *size = min_size;
580 vect = xrealloc (vect, *size * element_size);
581 }
582 return vect;
583 }
584
585 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
586 suffix of FIELD_NAME beginning "___". */
587
588 static int
589 field_name_match (const char *field_name, const char *target)
590 {
591 int len = strlen (target);
592
593 return
594 (strncmp (field_name, target, len) == 0
595 && (field_name[len] == '\0'
596 || (startswith (field_name + len, "___")
597 && strcmp (field_name + strlen (field_name) - 6,
598 "___XVN") != 0)));
599 }
600
601
602 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
603 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
604 and return its index. This function also handles fields whose name
605 have ___ suffixes because the compiler sometimes alters their name
606 by adding such a suffix to represent fields with certain constraints.
607 If the field could not be found, return a negative number if
608 MAYBE_MISSING is set. Otherwise raise an error. */
609
610 int
611 ada_get_field_index (const struct type *type, const char *field_name,
612 int maybe_missing)
613 {
614 int fieldno;
615 struct type *struct_type = check_typedef ((struct type *) type);
616
617 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
618 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
619 return fieldno;
620
621 if (!maybe_missing)
622 error (_("Unable to find field %s in struct %s. Aborting"),
623 field_name, TYPE_NAME (struct_type));
624
625 return -1;
626 }
627
628 /* The length of the prefix of NAME prior to any "___" suffix. */
629
630 int
631 ada_name_prefix_len (const char *name)
632 {
633 if (name == NULL)
634 return 0;
635 else
636 {
637 const char *p = strstr (name, "___");
638
639 if (p == NULL)
640 return strlen (name);
641 else
642 return p - name;
643 }
644 }
645
646 /* Return non-zero if SUFFIX is a suffix of STR.
647 Return zero if STR is null. */
648
649 static int
650 is_suffix (const char *str, const char *suffix)
651 {
652 int len1, len2;
653
654 if (str == NULL)
655 return 0;
656 len1 = strlen (str);
657 len2 = strlen (suffix);
658 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
659 }
660
661 /* The contents of value VAL, treated as a value of type TYPE. The
662 result is an lval in memory if VAL is. */
663
664 static struct value *
665 coerce_unspec_val_to_type (struct value *val, struct type *type)
666 {
667 type = ada_check_typedef (type);
668 if (value_type (val) == type)
669 return val;
670 else
671 {
672 struct value *result;
673
674 /* Make sure that the object size is not unreasonable before
675 trying to allocate some memory for it. */
676 ada_ensure_varsize_limit (type);
677
678 if (value_lazy (val)
679 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
680 result = allocate_value_lazy (type);
681 else
682 {
683 result = allocate_value (type);
684 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
685 }
686 set_value_component_location (result, val);
687 set_value_bitsize (result, value_bitsize (val));
688 set_value_bitpos (result, value_bitpos (val));
689 set_value_address (result, value_address (val));
690 return result;
691 }
692 }
693
694 static const gdb_byte *
695 cond_offset_host (const gdb_byte *valaddr, long offset)
696 {
697 if (valaddr == NULL)
698 return NULL;
699 else
700 return valaddr + offset;
701 }
702
703 static CORE_ADDR
704 cond_offset_target (CORE_ADDR address, long offset)
705 {
706 if (address == 0)
707 return 0;
708 else
709 return address + offset;
710 }
711
712 /* Issue a warning (as for the definition of warning in utils.c, but
713 with exactly one argument rather than ...), unless the limit on the
714 number of warnings has passed during the evaluation of the current
715 expression. */
716
717 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
718 provided by "complaint". */
719 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
720
721 static void
722 lim_warning (const char *format, ...)
723 {
724 va_list args;
725
726 va_start (args, format);
727 warnings_issued += 1;
728 if (warnings_issued <= warning_limit)
729 vwarning (format, args);
730
731 va_end (args);
732 }
733
734 /* Issue an error if the size of an object of type T is unreasonable,
735 i.e. if it would be a bad idea to allocate a value of this type in
736 GDB. */
737
738 void
739 ada_ensure_varsize_limit (const struct type *type)
740 {
741 if (TYPE_LENGTH (type) > varsize_limit)
742 error (_("object size is larger than varsize-limit"));
743 }
744
745 /* Maximum value of a SIZE-byte signed integer type. */
746 static LONGEST
747 max_of_size (int size)
748 {
749 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
750
751 return top_bit | (top_bit - 1);
752 }
753
754 /* Minimum value of a SIZE-byte signed integer type. */
755 static LONGEST
756 min_of_size (int size)
757 {
758 return -max_of_size (size) - 1;
759 }
760
761 /* Maximum value of a SIZE-byte unsigned integer type. */
762 static ULONGEST
763 umax_of_size (int size)
764 {
765 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
766
767 return top_bit | (top_bit - 1);
768 }
769
770 /* Maximum value of integral type T, as a signed quantity. */
771 static LONGEST
772 max_of_type (struct type *t)
773 {
774 if (TYPE_UNSIGNED (t))
775 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
776 else
777 return max_of_size (TYPE_LENGTH (t));
778 }
779
780 /* Minimum value of integral type T, as a signed quantity. */
781 static LONGEST
782 min_of_type (struct type *t)
783 {
784 if (TYPE_UNSIGNED (t))
785 return 0;
786 else
787 return min_of_size (TYPE_LENGTH (t));
788 }
789
790 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
791 LONGEST
792 ada_discrete_type_high_bound (struct type *type)
793 {
794 type = resolve_dynamic_type (type, NULL, 0);
795 switch (TYPE_CODE (type))
796 {
797 case TYPE_CODE_RANGE:
798 return TYPE_HIGH_BOUND (type);
799 case TYPE_CODE_ENUM:
800 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
801 case TYPE_CODE_BOOL:
802 return 1;
803 case TYPE_CODE_CHAR:
804 case TYPE_CODE_INT:
805 return max_of_type (type);
806 default:
807 error (_("Unexpected type in ada_discrete_type_high_bound."));
808 }
809 }
810
811 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
812 LONGEST
813 ada_discrete_type_low_bound (struct type *type)
814 {
815 type = resolve_dynamic_type (type, NULL, 0);
816 switch (TYPE_CODE (type))
817 {
818 case TYPE_CODE_RANGE:
819 return TYPE_LOW_BOUND (type);
820 case TYPE_CODE_ENUM:
821 return TYPE_FIELD_ENUMVAL (type, 0);
822 case TYPE_CODE_BOOL:
823 return 0;
824 case TYPE_CODE_CHAR:
825 case TYPE_CODE_INT:
826 return min_of_type (type);
827 default:
828 error (_("Unexpected type in ada_discrete_type_low_bound."));
829 }
830 }
831
832 /* The identity on non-range types. For range types, the underlying
833 non-range scalar type. */
834
835 static struct type *
836 get_base_type (struct type *type)
837 {
838 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
839 {
840 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
841 return type;
842 type = TYPE_TARGET_TYPE (type);
843 }
844 return type;
845 }
846
847 /* Return a decoded version of the given VALUE. This means returning
848 a value whose type is obtained by applying all the GNAT-specific
849 encondings, making the resulting type a static but standard description
850 of the initial type. */
851
852 struct value *
853 ada_get_decoded_value (struct value *value)
854 {
855 struct type *type = ada_check_typedef (value_type (value));
856
857 if (ada_is_array_descriptor_type (type)
858 || (ada_is_constrained_packed_array_type (type)
859 && TYPE_CODE (type) != TYPE_CODE_PTR))
860 {
861 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
862 value = ada_coerce_to_simple_array_ptr (value);
863 else
864 value = ada_coerce_to_simple_array (value);
865 }
866 else
867 value = ada_to_fixed_value (value);
868
869 return value;
870 }
871
872 /* Same as ada_get_decoded_value, but with the given TYPE.
873 Because there is no associated actual value for this type,
874 the resulting type might be a best-effort approximation in
875 the case of dynamic types. */
876
877 struct type *
878 ada_get_decoded_type (struct type *type)
879 {
880 type = to_static_fixed_type (type);
881 if (ada_is_constrained_packed_array_type (type))
882 type = ada_coerce_to_simple_array_type (type);
883 return type;
884 }
885
886 \f
887
888 /* Language Selection */
889
890 /* If the main program is in Ada, return language_ada, otherwise return LANG
891 (the main program is in Ada iif the adainit symbol is found). */
892
893 enum language
894 ada_update_initial_language (enum language lang)
895 {
896 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
897 (struct objfile *) NULL).minsym != NULL)
898 return language_ada;
899
900 return lang;
901 }
902
903 /* If the main procedure is written in Ada, then return its name.
904 The result is good until the next call. Return NULL if the main
905 procedure doesn't appear to be in Ada. */
906
907 char *
908 ada_main_name (void)
909 {
910 struct bound_minimal_symbol msym;
911 static gdb::unique_xmalloc_ptr<char> main_program_name;
912
913 /* For Ada, the name of the main procedure is stored in a specific
914 string constant, generated by the binder. Look for that symbol,
915 extract its address, and then read that string. If we didn't find
916 that string, then most probably the main procedure is not written
917 in Ada. */
918 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
919
920 if (msym.minsym != NULL)
921 {
922 CORE_ADDR main_program_name_addr;
923 int err_code;
924
925 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
926 if (main_program_name_addr == 0)
927 error (_("Invalid address for Ada main program name."));
928
929 target_read_string (main_program_name_addr, &main_program_name,
930 1024, &err_code);
931
932 if (err_code != 0)
933 return NULL;
934 return main_program_name.get ();
935 }
936
937 /* The main procedure doesn't seem to be in Ada. */
938 return NULL;
939 }
940 \f
941 /* Symbols */
942
943 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
944 of NULLs. */
945
946 const struct ada_opname_map ada_opname_table[] = {
947 {"Oadd", "\"+\"", BINOP_ADD},
948 {"Osubtract", "\"-\"", BINOP_SUB},
949 {"Omultiply", "\"*\"", BINOP_MUL},
950 {"Odivide", "\"/\"", BINOP_DIV},
951 {"Omod", "\"mod\"", BINOP_MOD},
952 {"Orem", "\"rem\"", BINOP_REM},
953 {"Oexpon", "\"**\"", BINOP_EXP},
954 {"Olt", "\"<\"", BINOP_LESS},
955 {"Ole", "\"<=\"", BINOP_LEQ},
956 {"Ogt", "\">\"", BINOP_GTR},
957 {"Oge", "\">=\"", BINOP_GEQ},
958 {"Oeq", "\"=\"", BINOP_EQUAL},
959 {"One", "\"/=\"", BINOP_NOTEQUAL},
960 {"Oand", "\"and\"", BINOP_BITWISE_AND},
961 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
962 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
963 {"Oconcat", "\"&\"", BINOP_CONCAT},
964 {"Oabs", "\"abs\"", UNOP_ABS},
965 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
966 {"Oadd", "\"+\"", UNOP_PLUS},
967 {"Osubtract", "\"-\"", UNOP_NEG},
968 {NULL, NULL}
969 };
970
971 /* The "encoded" form of DECODED, according to GNAT conventions. The
972 result is valid until the next call to ada_encode. If
973 THROW_ERRORS, throw an error if invalid operator name is found.
974 Otherwise, return NULL in that case. */
975
976 static char *
977 ada_encode_1 (const char *decoded, bool throw_errors)
978 {
979 static char *encoding_buffer = NULL;
980 static size_t encoding_buffer_size = 0;
981 const char *p;
982 int k;
983
984 if (decoded == NULL)
985 return NULL;
986
987 GROW_VECT (encoding_buffer, encoding_buffer_size,
988 2 * strlen (decoded) + 10);
989
990 k = 0;
991 for (p = decoded; *p != '\0'; p += 1)
992 {
993 if (*p == '.')
994 {
995 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
996 k += 2;
997 }
998 else if (*p == '"')
999 {
1000 const struct ada_opname_map *mapping;
1001
1002 for (mapping = ada_opname_table;
1003 mapping->encoded != NULL
1004 && !startswith (p, mapping->decoded); mapping += 1)
1005 ;
1006 if (mapping->encoded == NULL)
1007 {
1008 if (throw_errors)
1009 error (_("invalid Ada operator name: %s"), p);
1010 else
1011 return NULL;
1012 }
1013 strcpy (encoding_buffer + k, mapping->encoded);
1014 k += strlen (mapping->encoded);
1015 break;
1016 }
1017 else
1018 {
1019 encoding_buffer[k] = *p;
1020 k += 1;
1021 }
1022 }
1023
1024 encoding_buffer[k] = '\0';
1025 return encoding_buffer;
1026 }
1027
1028 /* The "encoded" form of DECODED, according to GNAT conventions.
1029 The result is valid until the next call to ada_encode. */
1030
1031 char *
1032 ada_encode (const char *decoded)
1033 {
1034 return ada_encode_1 (decoded, true);
1035 }
1036
1037 /* Return NAME folded to lower case, or, if surrounded by single
1038 quotes, unfolded, but with the quotes stripped away. Result good
1039 to next call. */
1040
1041 char *
1042 ada_fold_name (const char *name)
1043 {
1044 static char *fold_buffer = NULL;
1045 static size_t fold_buffer_size = 0;
1046
1047 int len = strlen (name);
1048 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
1049
1050 if (name[0] == '\'')
1051 {
1052 strncpy (fold_buffer, name + 1, len - 2);
1053 fold_buffer[len - 2] = '\000';
1054 }
1055 else
1056 {
1057 int i;
1058
1059 for (i = 0; i <= len; i += 1)
1060 fold_buffer[i] = tolower (name[i]);
1061 }
1062
1063 return fold_buffer;
1064 }
1065
1066 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1067
1068 static int
1069 is_lower_alphanum (const char c)
1070 {
1071 return (isdigit (c) || (isalpha (c) && islower (c)));
1072 }
1073
1074 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1075 This function saves in LEN the length of that same symbol name but
1076 without either of these suffixes:
1077 . .{DIGIT}+
1078 . ${DIGIT}+
1079 . ___{DIGIT}+
1080 . __{DIGIT}+.
1081
1082 These are suffixes introduced by the compiler for entities such as
1083 nested subprogram for instance, in order to avoid name clashes.
1084 They do not serve any purpose for the debugger. */
1085
1086 static void
1087 ada_remove_trailing_digits (const char *encoded, int *len)
1088 {
1089 if (*len > 1 && isdigit (encoded[*len - 1]))
1090 {
1091 int i = *len - 2;
1092
1093 while (i > 0 && isdigit (encoded[i]))
1094 i--;
1095 if (i >= 0 && encoded[i] == '.')
1096 *len = i;
1097 else if (i >= 0 && encoded[i] == '$')
1098 *len = i;
1099 else if (i >= 2 && startswith (encoded + i - 2, "___"))
1100 *len = i - 2;
1101 else if (i >= 1 && startswith (encoded + i - 1, "__"))
1102 *len = i - 1;
1103 }
1104 }
1105
1106 /* Remove the suffix introduced by the compiler for protected object
1107 subprograms. */
1108
1109 static void
1110 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1111 {
1112 /* Remove trailing N. */
1113
1114 /* Protected entry subprograms are broken into two
1115 separate subprograms: The first one is unprotected, and has
1116 a 'N' suffix; the second is the protected version, and has
1117 the 'P' suffix. The second calls the first one after handling
1118 the protection. Since the P subprograms are internally generated,
1119 we leave these names undecoded, giving the user a clue that this
1120 entity is internal. */
1121
1122 if (*len > 1
1123 && encoded[*len - 1] == 'N'
1124 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1125 *len = *len - 1;
1126 }
1127
1128 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1129
1130 static void
1131 ada_remove_Xbn_suffix (const char *encoded, int *len)
1132 {
1133 int i = *len - 1;
1134
1135 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1136 i--;
1137
1138 if (encoded[i] != 'X')
1139 return;
1140
1141 if (i == 0)
1142 return;
1143
1144 if (isalnum (encoded[i-1]))
1145 *len = i;
1146 }
1147
1148 /* If ENCODED follows the GNAT entity encoding conventions, then return
1149 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1150 replaced by ENCODED.
1151
1152 The resulting string is valid until the next call of ada_decode.
1153 If the string is unchanged by decoding, the original string pointer
1154 is returned. */
1155
1156 const char *
1157 ada_decode (const char *encoded)
1158 {
1159 int i, j;
1160 int len0;
1161 const char *p;
1162 char *decoded;
1163 int at_start_name;
1164 static char *decoding_buffer = NULL;
1165 static size_t decoding_buffer_size = 0;
1166
1167 /* With function descriptors on PPC64, the value of a symbol named
1168 ".FN", if it exists, is the entry point of the function "FN". */
1169 if (encoded[0] == '.')
1170 encoded += 1;
1171
1172 /* The name of the Ada main procedure starts with "_ada_".
1173 This prefix is not part of the decoded name, so skip this part
1174 if we see this prefix. */
1175 if (startswith (encoded, "_ada_"))
1176 encoded += 5;
1177
1178 /* If the name starts with '_', then it is not a properly encoded
1179 name, so do not attempt to decode it. Similarly, if the name
1180 starts with '<', the name should not be decoded. */
1181 if (encoded[0] == '_' || encoded[0] == '<')
1182 goto Suppress;
1183
1184 len0 = strlen (encoded);
1185
1186 ada_remove_trailing_digits (encoded, &len0);
1187 ada_remove_po_subprogram_suffix (encoded, &len0);
1188
1189 /* Remove the ___X.* suffix if present. Do not forget to verify that
1190 the suffix is located before the current "end" of ENCODED. We want
1191 to avoid re-matching parts of ENCODED that have previously been
1192 marked as discarded (by decrementing LEN0). */
1193 p = strstr (encoded, "___");
1194 if (p != NULL && p - encoded < len0 - 3)
1195 {
1196 if (p[3] == 'X')
1197 len0 = p - encoded;
1198 else
1199 goto Suppress;
1200 }
1201
1202 /* Remove any trailing TKB suffix. It tells us that this symbol
1203 is for the body of a task, but that information does not actually
1204 appear in the decoded name. */
1205
1206 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1207 len0 -= 3;
1208
1209 /* Remove any trailing TB suffix. The TB suffix is slightly different
1210 from the TKB suffix because it is used for non-anonymous task
1211 bodies. */
1212
1213 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1214 len0 -= 2;
1215
1216 /* Remove trailing "B" suffixes. */
1217 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1218
1219 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1220 len0 -= 1;
1221
1222 /* Make decoded big enough for possible expansion by operator name. */
1223
1224 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1225 decoded = decoding_buffer;
1226
1227 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1228
1229 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1230 {
1231 i = len0 - 2;
1232 while ((i >= 0 && isdigit (encoded[i]))
1233 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1234 i -= 1;
1235 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1236 len0 = i - 1;
1237 else if (encoded[i] == '$')
1238 len0 = i;
1239 }
1240
1241 /* The first few characters that are not alphabetic are not part
1242 of any encoding we use, so we can copy them over verbatim. */
1243
1244 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1245 decoded[j] = encoded[i];
1246
1247 at_start_name = 1;
1248 while (i < len0)
1249 {
1250 /* Is this a symbol function? */
1251 if (at_start_name && encoded[i] == 'O')
1252 {
1253 int k;
1254
1255 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1256 {
1257 int op_len = strlen (ada_opname_table[k].encoded);
1258 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1259 op_len - 1) == 0)
1260 && !isalnum (encoded[i + op_len]))
1261 {
1262 strcpy (decoded + j, ada_opname_table[k].decoded);
1263 at_start_name = 0;
1264 i += op_len;
1265 j += strlen (ada_opname_table[k].decoded);
1266 break;
1267 }
1268 }
1269 if (ada_opname_table[k].encoded != NULL)
1270 continue;
1271 }
1272 at_start_name = 0;
1273
1274 /* Replace "TK__" with "__", which will eventually be translated
1275 into "." (just below). */
1276
1277 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1278 i += 2;
1279
1280 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1281 be translated into "." (just below). These are internal names
1282 generated for anonymous blocks inside which our symbol is nested. */
1283
1284 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1285 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1286 && isdigit (encoded [i+4]))
1287 {
1288 int k = i + 5;
1289
1290 while (k < len0 && isdigit (encoded[k]))
1291 k++; /* Skip any extra digit. */
1292
1293 /* Double-check that the "__B_{DIGITS}+" sequence we found
1294 is indeed followed by "__". */
1295 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1296 i = k;
1297 }
1298
1299 /* Remove _E{DIGITS}+[sb] */
1300
1301 /* Just as for protected object subprograms, there are 2 categories
1302 of subprograms created by the compiler for each entry. The first
1303 one implements the actual entry code, and has a suffix following
1304 the convention above; the second one implements the barrier and
1305 uses the same convention as above, except that the 'E' is replaced
1306 by a 'B'.
1307
1308 Just as above, we do not decode the name of barrier functions
1309 to give the user a clue that the code he is debugging has been
1310 internally generated. */
1311
1312 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1313 && isdigit (encoded[i+2]))
1314 {
1315 int k = i + 3;
1316
1317 while (k < len0 && isdigit (encoded[k]))
1318 k++;
1319
1320 if (k < len0
1321 && (encoded[k] == 'b' || encoded[k] == 's'))
1322 {
1323 k++;
1324 /* Just as an extra precaution, make sure that if this
1325 suffix is followed by anything else, it is a '_'.
1326 Otherwise, we matched this sequence by accident. */
1327 if (k == len0
1328 || (k < len0 && encoded[k] == '_'))
1329 i = k;
1330 }
1331 }
1332
1333 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1334 the GNAT front-end in protected object subprograms. */
1335
1336 if (i < len0 + 3
1337 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1338 {
1339 /* Backtrack a bit up until we reach either the begining of
1340 the encoded name, or "__". Make sure that we only find
1341 digits or lowercase characters. */
1342 const char *ptr = encoded + i - 1;
1343
1344 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1345 ptr--;
1346 if (ptr < encoded
1347 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1348 i++;
1349 }
1350
1351 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1352 {
1353 /* This is a X[bn]* sequence not separated from the previous
1354 part of the name with a non-alpha-numeric character (in other
1355 words, immediately following an alpha-numeric character), then
1356 verify that it is placed at the end of the encoded name. If
1357 not, then the encoding is not valid and we should abort the
1358 decoding. Otherwise, just skip it, it is used in body-nested
1359 package names. */
1360 do
1361 i += 1;
1362 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1363 if (i < len0)
1364 goto Suppress;
1365 }
1366 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1367 {
1368 /* Replace '__' by '.'. */
1369 decoded[j] = '.';
1370 at_start_name = 1;
1371 i += 2;
1372 j += 1;
1373 }
1374 else
1375 {
1376 /* It's a character part of the decoded name, so just copy it
1377 over. */
1378 decoded[j] = encoded[i];
1379 i += 1;
1380 j += 1;
1381 }
1382 }
1383 decoded[j] = '\000';
1384
1385 /* Decoded names should never contain any uppercase character.
1386 Double-check this, and abort the decoding if we find one. */
1387
1388 for (i = 0; decoded[i] != '\0'; i += 1)
1389 if (isupper (decoded[i]) || decoded[i] == ' ')
1390 goto Suppress;
1391
1392 if (strcmp (decoded, encoded) == 0)
1393 return encoded;
1394 else
1395 return decoded;
1396
1397 Suppress:
1398 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1399 decoded = decoding_buffer;
1400 if (encoded[0] == '<')
1401 strcpy (decoded, encoded);
1402 else
1403 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1404 return decoded;
1405
1406 }
1407
1408 /* Table for keeping permanent unique copies of decoded names. Once
1409 allocated, names in this table are never released. While this is a
1410 storage leak, it should not be significant unless there are massive
1411 changes in the set of decoded names in successive versions of a
1412 symbol table loaded during a single session. */
1413 static struct htab *decoded_names_store;
1414
1415 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1416 in the language-specific part of GSYMBOL, if it has not been
1417 previously computed. Tries to save the decoded name in the same
1418 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1419 in any case, the decoded symbol has a lifetime at least that of
1420 GSYMBOL).
1421 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1422 const, but nevertheless modified to a semantically equivalent form
1423 when a decoded name is cached in it. */
1424
1425 const char *
1426 ada_decode_symbol (const struct general_symbol_info *arg)
1427 {
1428 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1429 const char **resultp =
1430 &gsymbol->language_specific.demangled_name;
1431
1432 if (!gsymbol->ada_mangled)
1433 {
1434 const char *decoded = ada_decode (gsymbol->name);
1435 struct obstack *obstack = gsymbol->language_specific.obstack;
1436
1437 gsymbol->ada_mangled = 1;
1438
1439 if (obstack != NULL)
1440 *resultp
1441 = (const char *) obstack_copy0 (obstack, decoded, strlen (decoded));
1442 else
1443 {
1444 /* Sometimes, we can't find a corresponding objfile, in
1445 which case, we put the result on the heap. Since we only
1446 decode when needed, we hope this usually does not cause a
1447 significant memory leak (FIXME). */
1448
1449 char **slot = (char **) htab_find_slot (decoded_names_store,
1450 decoded, INSERT);
1451
1452 if (*slot == NULL)
1453 *slot = xstrdup (decoded);
1454 *resultp = *slot;
1455 }
1456 }
1457
1458 return *resultp;
1459 }
1460
1461 static char *
1462 ada_la_decode (const char *encoded, int options)
1463 {
1464 return xstrdup (ada_decode (encoded));
1465 }
1466
1467 /* Implement la_sniff_from_mangled_name for Ada. */
1468
1469 static int
1470 ada_sniff_from_mangled_name (const char *mangled, char **out)
1471 {
1472 const char *demangled = ada_decode (mangled);
1473
1474 *out = NULL;
1475
1476 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
1477 {
1478 /* Set the gsymbol language to Ada, but still return 0.
1479 Two reasons for that:
1480
1481 1. For Ada, we prefer computing the symbol's decoded name
1482 on the fly rather than pre-compute it, in order to save
1483 memory (Ada projects are typically very large).
1484
1485 2. There are some areas in the definition of the GNAT
1486 encoding where, with a bit of bad luck, we might be able
1487 to decode a non-Ada symbol, generating an incorrect
1488 demangled name (Eg: names ending with "TB" for instance
1489 are identified as task bodies and so stripped from
1490 the decoded name returned).
1491
1492 Returning 1, here, but not setting *DEMANGLED, helps us get a
1493 little bit of the best of both worlds. Because we're last,
1494 we should not affect any of the other languages that were
1495 able to demangle the symbol before us; we get to correctly
1496 tag Ada symbols as such; and even if we incorrectly tagged a
1497 non-Ada symbol, which should be rare, any routing through the
1498 Ada language should be transparent (Ada tries to behave much
1499 like C/C++ with non-Ada symbols). */
1500 return 1;
1501 }
1502
1503 return 0;
1504 }
1505
1506 \f
1507
1508 /* Arrays */
1509
1510 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1511 generated by the GNAT compiler to describe the index type used
1512 for each dimension of an array, check whether it follows the latest
1513 known encoding. If not, fix it up to conform to the latest encoding.
1514 Otherwise, do nothing. This function also does nothing if
1515 INDEX_DESC_TYPE is NULL.
1516
1517 The GNAT encoding used to describle the array index type evolved a bit.
1518 Initially, the information would be provided through the name of each
1519 field of the structure type only, while the type of these fields was
1520 described as unspecified and irrelevant. The debugger was then expected
1521 to perform a global type lookup using the name of that field in order
1522 to get access to the full index type description. Because these global
1523 lookups can be very expensive, the encoding was later enhanced to make
1524 the global lookup unnecessary by defining the field type as being
1525 the full index type description.
1526
1527 The purpose of this routine is to allow us to support older versions
1528 of the compiler by detecting the use of the older encoding, and by
1529 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1530 we essentially replace each field's meaningless type by the associated
1531 index subtype). */
1532
1533 void
1534 ada_fixup_array_indexes_type (struct type *index_desc_type)
1535 {
1536 int i;
1537
1538 if (index_desc_type == NULL)
1539 return;
1540 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1541
1542 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1543 to check one field only, no need to check them all). If not, return
1544 now.
1545
1546 If our INDEX_DESC_TYPE was generated using the older encoding,
1547 the field type should be a meaningless integer type whose name
1548 is not equal to the field name. */
1549 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1550 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1551 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1552 return;
1553
1554 /* Fixup each field of INDEX_DESC_TYPE. */
1555 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1556 {
1557 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1558 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1559
1560 if (raw_type)
1561 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1562 }
1563 }
1564
1565 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1566
1567 static const char *bound_name[] = {
1568 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1569 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1570 };
1571
1572 /* Maximum number of array dimensions we are prepared to handle. */
1573
1574 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1575
1576
1577 /* The desc_* routines return primitive portions of array descriptors
1578 (fat pointers). */
1579
1580 /* The descriptor or array type, if any, indicated by TYPE; removes
1581 level of indirection, if needed. */
1582
1583 static struct type *
1584 desc_base_type (struct type *type)
1585 {
1586 if (type == NULL)
1587 return NULL;
1588 type = ada_check_typedef (type);
1589 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1590 type = ada_typedef_target_type (type);
1591
1592 if (type != NULL
1593 && (TYPE_CODE (type) == TYPE_CODE_PTR
1594 || TYPE_CODE (type) == TYPE_CODE_REF))
1595 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1596 else
1597 return type;
1598 }
1599
1600 /* True iff TYPE indicates a "thin" array pointer type. */
1601
1602 static int
1603 is_thin_pntr (struct type *type)
1604 {
1605 return
1606 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1607 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1608 }
1609
1610 /* The descriptor type for thin pointer type TYPE. */
1611
1612 static struct type *
1613 thin_descriptor_type (struct type *type)
1614 {
1615 struct type *base_type = desc_base_type (type);
1616
1617 if (base_type == NULL)
1618 return NULL;
1619 if (is_suffix (ada_type_name (base_type), "___XVE"))
1620 return base_type;
1621 else
1622 {
1623 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1624
1625 if (alt_type == NULL)
1626 return base_type;
1627 else
1628 return alt_type;
1629 }
1630 }
1631
1632 /* A pointer to the array data for thin-pointer value VAL. */
1633
1634 static struct value *
1635 thin_data_pntr (struct value *val)
1636 {
1637 struct type *type = ada_check_typedef (value_type (val));
1638 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1639
1640 data_type = lookup_pointer_type (data_type);
1641
1642 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1643 return value_cast (data_type, value_copy (val));
1644 else
1645 return value_from_longest (data_type, value_address (val));
1646 }
1647
1648 /* True iff TYPE indicates a "thick" array pointer type. */
1649
1650 static int
1651 is_thick_pntr (struct type *type)
1652 {
1653 type = desc_base_type (type);
1654 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1655 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1656 }
1657
1658 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1659 pointer to one, the type of its bounds data; otherwise, NULL. */
1660
1661 static struct type *
1662 desc_bounds_type (struct type *type)
1663 {
1664 struct type *r;
1665
1666 type = desc_base_type (type);
1667
1668 if (type == NULL)
1669 return NULL;
1670 else if (is_thin_pntr (type))
1671 {
1672 type = thin_descriptor_type (type);
1673 if (type == NULL)
1674 return NULL;
1675 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1676 if (r != NULL)
1677 return ada_check_typedef (r);
1678 }
1679 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1680 {
1681 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1682 if (r != NULL)
1683 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1684 }
1685 return NULL;
1686 }
1687
1688 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1689 one, a pointer to its bounds data. Otherwise NULL. */
1690
1691 static struct value *
1692 desc_bounds (struct value *arr)
1693 {
1694 struct type *type = ada_check_typedef (value_type (arr));
1695
1696 if (is_thin_pntr (type))
1697 {
1698 struct type *bounds_type =
1699 desc_bounds_type (thin_descriptor_type (type));
1700 LONGEST addr;
1701
1702 if (bounds_type == NULL)
1703 error (_("Bad GNAT array descriptor"));
1704
1705 /* NOTE: The following calculation is not really kosher, but
1706 since desc_type is an XVE-encoded type (and shouldn't be),
1707 the correct calculation is a real pain. FIXME (and fix GCC). */
1708 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1709 addr = value_as_long (arr);
1710 else
1711 addr = value_address (arr);
1712
1713 return
1714 value_from_longest (lookup_pointer_type (bounds_type),
1715 addr - TYPE_LENGTH (bounds_type));
1716 }
1717
1718 else if (is_thick_pntr (type))
1719 {
1720 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1721 _("Bad GNAT array descriptor"));
1722 struct type *p_bounds_type = value_type (p_bounds);
1723
1724 if (p_bounds_type
1725 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1726 {
1727 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1728
1729 if (TYPE_STUB (target_type))
1730 p_bounds = value_cast (lookup_pointer_type
1731 (ada_check_typedef (target_type)),
1732 p_bounds);
1733 }
1734 else
1735 error (_("Bad GNAT array descriptor"));
1736
1737 return p_bounds;
1738 }
1739 else
1740 return NULL;
1741 }
1742
1743 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1744 position of the field containing the address of the bounds data. */
1745
1746 static int
1747 fat_pntr_bounds_bitpos (struct type *type)
1748 {
1749 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1750 }
1751
1752 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1753 size of the field containing the address of the bounds data. */
1754
1755 static int
1756 fat_pntr_bounds_bitsize (struct type *type)
1757 {
1758 type = desc_base_type (type);
1759
1760 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1761 return TYPE_FIELD_BITSIZE (type, 1);
1762 else
1763 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1764 }
1765
1766 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1767 pointer to one, the type of its array data (a array-with-no-bounds type);
1768 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1769 data. */
1770
1771 static struct type *
1772 desc_data_target_type (struct type *type)
1773 {
1774 type = desc_base_type (type);
1775
1776 /* NOTE: The following is bogus; see comment in desc_bounds. */
1777 if (is_thin_pntr (type))
1778 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1779 else if (is_thick_pntr (type))
1780 {
1781 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1782
1783 if (data_type
1784 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1785 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1786 }
1787
1788 return NULL;
1789 }
1790
1791 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1792 its array data. */
1793
1794 static struct value *
1795 desc_data (struct value *arr)
1796 {
1797 struct type *type = value_type (arr);
1798
1799 if (is_thin_pntr (type))
1800 return thin_data_pntr (arr);
1801 else if (is_thick_pntr (type))
1802 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1803 _("Bad GNAT array descriptor"));
1804 else
1805 return NULL;
1806 }
1807
1808
1809 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1810 position of the field containing the address of the data. */
1811
1812 static int
1813 fat_pntr_data_bitpos (struct type *type)
1814 {
1815 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1816 }
1817
1818 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1819 size of the field containing the address of the data. */
1820
1821 static int
1822 fat_pntr_data_bitsize (struct type *type)
1823 {
1824 type = desc_base_type (type);
1825
1826 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1827 return TYPE_FIELD_BITSIZE (type, 0);
1828 else
1829 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1830 }
1831
1832 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1833 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1834 bound, if WHICH is 1. The first bound is I=1. */
1835
1836 static struct value *
1837 desc_one_bound (struct value *bounds, int i, int which)
1838 {
1839 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1840 _("Bad GNAT array descriptor bounds"));
1841 }
1842
1843 /* If BOUNDS is an array-bounds structure type, return the bit position
1844 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1845 bound, if WHICH is 1. The first bound is I=1. */
1846
1847 static int
1848 desc_bound_bitpos (struct type *type, int i, int which)
1849 {
1850 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1851 }
1852
1853 /* If BOUNDS is an array-bounds structure type, return the bit field size
1854 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1855 bound, if WHICH is 1. The first bound is I=1. */
1856
1857 static int
1858 desc_bound_bitsize (struct type *type, int i, int which)
1859 {
1860 type = desc_base_type (type);
1861
1862 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1863 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1864 else
1865 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1866 }
1867
1868 /* If TYPE is the type of an array-bounds structure, the type of its
1869 Ith bound (numbering from 1). Otherwise, NULL. */
1870
1871 static struct type *
1872 desc_index_type (struct type *type, int i)
1873 {
1874 type = desc_base_type (type);
1875
1876 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1877 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1878 else
1879 return NULL;
1880 }
1881
1882 /* The number of index positions in the array-bounds type TYPE.
1883 Return 0 if TYPE is NULL. */
1884
1885 static int
1886 desc_arity (struct type *type)
1887 {
1888 type = desc_base_type (type);
1889
1890 if (type != NULL)
1891 return TYPE_NFIELDS (type) / 2;
1892 return 0;
1893 }
1894
1895 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1896 an array descriptor type (representing an unconstrained array
1897 type). */
1898
1899 static int
1900 ada_is_direct_array_type (struct type *type)
1901 {
1902 if (type == NULL)
1903 return 0;
1904 type = ada_check_typedef (type);
1905 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1906 || ada_is_array_descriptor_type (type));
1907 }
1908
1909 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1910 * to one. */
1911
1912 static int
1913 ada_is_array_type (struct type *type)
1914 {
1915 while (type != NULL
1916 && (TYPE_CODE (type) == TYPE_CODE_PTR
1917 || TYPE_CODE (type) == TYPE_CODE_REF))
1918 type = TYPE_TARGET_TYPE (type);
1919 return ada_is_direct_array_type (type);
1920 }
1921
1922 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1923
1924 int
1925 ada_is_simple_array_type (struct type *type)
1926 {
1927 if (type == NULL)
1928 return 0;
1929 type = ada_check_typedef (type);
1930 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1931 || (TYPE_CODE (type) == TYPE_CODE_PTR
1932 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1933 == TYPE_CODE_ARRAY));
1934 }
1935
1936 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1937
1938 int
1939 ada_is_array_descriptor_type (struct type *type)
1940 {
1941 struct type *data_type = desc_data_target_type (type);
1942
1943 if (type == NULL)
1944 return 0;
1945 type = ada_check_typedef (type);
1946 return (data_type != NULL
1947 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1948 && desc_arity (desc_bounds_type (type)) > 0);
1949 }
1950
1951 /* Non-zero iff type is a partially mal-formed GNAT array
1952 descriptor. FIXME: This is to compensate for some problems with
1953 debugging output from GNAT. Re-examine periodically to see if it
1954 is still needed. */
1955
1956 int
1957 ada_is_bogus_array_descriptor (struct type *type)
1958 {
1959 return
1960 type != NULL
1961 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1962 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1963 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1964 && !ada_is_array_descriptor_type (type);
1965 }
1966
1967
1968 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1969 (fat pointer) returns the type of the array data described---specifically,
1970 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1971 in from the descriptor; otherwise, they are left unspecified. If
1972 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1973 returns NULL. The result is simply the type of ARR if ARR is not
1974 a descriptor. */
1975 struct type *
1976 ada_type_of_array (struct value *arr, int bounds)
1977 {
1978 if (ada_is_constrained_packed_array_type (value_type (arr)))
1979 return decode_constrained_packed_array_type (value_type (arr));
1980
1981 if (!ada_is_array_descriptor_type (value_type (arr)))
1982 return value_type (arr);
1983
1984 if (!bounds)
1985 {
1986 struct type *array_type =
1987 ada_check_typedef (desc_data_target_type (value_type (arr)));
1988
1989 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1990 TYPE_FIELD_BITSIZE (array_type, 0) =
1991 decode_packed_array_bitsize (value_type (arr));
1992
1993 return array_type;
1994 }
1995 else
1996 {
1997 struct type *elt_type;
1998 int arity;
1999 struct value *descriptor;
2000
2001 elt_type = ada_array_element_type (value_type (arr), -1);
2002 arity = ada_array_arity (value_type (arr));
2003
2004 if (elt_type == NULL || arity == 0)
2005 return ada_check_typedef (value_type (arr));
2006
2007 descriptor = desc_bounds (arr);
2008 if (value_as_long (descriptor) == 0)
2009 return NULL;
2010 while (arity > 0)
2011 {
2012 struct type *range_type = alloc_type_copy (value_type (arr));
2013 struct type *array_type = alloc_type_copy (value_type (arr));
2014 struct value *low = desc_one_bound (descriptor, arity, 0);
2015 struct value *high = desc_one_bound (descriptor, arity, 1);
2016
2017 arity -= 1;
2018 create_static_range_type (range_type, value_type (low),
2019 longest_to_int (value_as_long (low)),
2020 longest_to_int (value_as_long (high)));
2021 elt_type = create_array_type (array_type, elt_type, range_type);
2022
2023 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
2024 {
2025 /* We need to store the element packed bitsize, as well as
2026 recompute the array size, because it was previously
2027 computed based on the unpacked element size. */
2028 LONGEST lo = value_as_long (low);
2029 LONGEST hi = value_as_long (high);
2030
2031 TYPE_FIELD_BITSIZE (elt_type, 0) =
2032 decode_packed_array_bitsize (value_type (arr));
2033 /* If the array has no element, then the size is already
2034 zero, and does not need to be recomputed. */
2035 if (lo < hi)
2036 {
2037 int array_bitsize =
2038 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2039
2040 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2041 }
2042 }
2043 }
2044
2045 return lookup_pointer_type (elt_type);
2046 }
2047 }
2048
2049 /* If ARR does not represent an array, returns ARR unchanged.
2050 Otherwise, returns either a standard GDB array with bounds set
2051 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2052 GDB array. Returns NULL if ARR is a null fat pointer. */
2053
2054 struct value *
2055 ada_coerce_to_simple_array_ptr (struct value *arr)
2056 {
2057 if (ada_is_array_descriptor_type (value_type (arr)))
2058 {
2059 struct type *arrType = ada_type_of_array (arr, 1);
2060
2061 if (arrType == NULL)
2062 return NULL;
2063 return value_cast (arrType, value_copy (desc_data (arr)));
2064 }
2065 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2066 return decode_constrained_packed_array (arr);
2067 else
2068 return arr;
2069 }
2070
2071 /* If ARR does not represent an array, returns ARR unchanged.
2072 Otherwise, returns a standard GDB array describing ARR (which may
2073 be ARR itself if it already is in the proper form). */
2074
2075 struct value *
2076 ada_coerce_to_simple_array (struct value *arr)
2077 {
2078 if (ada_is_array_descriptor_type (value_type (arr)))
2079 {
2080 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
2081
2082 if (arrVal == NULL)
2083 error (_("Bounds unavailable for null array pointer."));
2084 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
2085 return value_ind (arrVal);
2086 }
2087 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2088 return decode_constrained_packed_array (arr);
2089 else
2090 return arr;
2091 }
2092
2093 /* If TYPE represents a GNAT array type, return it translated to an
2094 ordinary GDB array type (possibly with BITSIZE fields indicating
2095 packing). For other types, is the identity. */
2096
2097 struct type *
2098 ada_coerce_to_simple_array_type (struct type *type)
2099 {
2100 if (ada_is_constrained_packed_array_type (type))
2101 return decode_constrained_packed_array_type (type);
2102
2103 if (ada_is_array_descriptor_type (type))
2104 return ada_check_typedef (desc_data_target_type (type));
2105
2106 return type;
2107 }
2108
2109 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2110
2111 static int
2112 ada_is_packed_array_type (struct type *type)
2113 {
2114 if (type == NULL)
2115 return 0;
2116 type = desc_base_type (type);
2117 type = ada_check_typedef (type);
2118 return
2119 ada_type_name (type) != NULL
2120 && strstr (ada_type_name (type), "___XP") != NULL;
2121 }
2122
2123 /* Non-zero iff TYPE represents a standard GNAT constrained
2124 packed-array type. */
2125
2126 int
2127 ada_is_constrained_packed_array_type (struct type *type)
2128 {
2129 return ada_is_packed_array_type (type)
2130 && !ada_is_array_descriptor_type (type);
2131 }
2132
2133 /* Non-zero iff TYPE represents an array descriptor for a
2134 unconstrained packed-array type. */
2135
2136 static int
2137 ada_is_unconstrained_packed_array_type (struct type *type)
2138 {
2139 return ada_is_packed_array_type (type)
2140 && ada_is_array_descriptor_type (type);
2141 }
2142
2143 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2144 return the size of its elements in bits. */
2145
2146 static long
2147 decode_packed_array_bitsize (struct type *type)
2148 {
2149 const char *raw_name;
2150 const char *tail;
2151 long bits;
2152
2153 /* Access to arrays implemented as fat pointers are encoded as a typedef
2154 of the fat pointer type. We need the name of the fat pointer type
2155 to do the decoding, so strip the typedef layer. */
2156 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2157 type = ada_typedef_target_type (type);
2158
2159 raw_name = ada_type_name (ada_check_typedef (type));
2160 if (!raw_name)
2161 raw_name = ada_type_name (desc_base_type (type));
2162
2163 if (!raw_name)
2164 return 0;
2165
2166 tail = strstr (raw_name, "___XP");
2167 gdb_assert (tail != NULL);
2168
2169 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2170 {
2171 lim_warning
2172 (_("could not understand bit size information on packed array"));
2173 return 0;
2174 }
2175
2176 return bits;
2177 }
2178
2179 /* Given that TYPE is a standard GDB array type with all bounds filled
2180 in, and that the element size of its ultimate scalar constituents
2181 (that is, either its elements, or, if it is an array of arrays, its
2182 elements' elements, etc.) is *ELT_BITS, return an identical type,
2183 but with the bit sizes of its elements (and those of any
2184 constituent arrays) recorded in the BITSIZE components of its
2185 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2186 in bits.
2187
2188 Note that, for arrays whose index type has an XA encoding where
2189 a bound references a record discriminant, getting that discriminant,
2190 and therefore the actual value of that bound, is not possible
2191 because none of the given parameters gives us access to the record.
2192 This function assumes that it is OK in the context where it is being
2193 used to return an array whose bounds are still dynamic and where
2194 the length is arbitrary. */
2195
2196 static struct type *
2197 constrained_packed_array_type (struct type *type, long *elt_bits)
2198 {
2199 struct type *new_elt_type;
2200 struct type *new_type;
2201 struct type *index_type_desc;
2202 struct type *index_type;
2203 LONGEST low_bound, high_bound;
2204
2205 type = ada_check_typedef (type);
2206 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2207 return type;
2208
2209 index_type_desc = ada_find_parallel_type (type, "___XA");
2210 if (index_type_desc)
2211 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2212 NULL);
2213 else
2214 index_type = TYPE_INDEX_TYPE (type);
2215
2216 new_type = alloc_type_copy (type);
2217 new_elt_type =
2218 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2219 elt_bits);
2220 create_array_type (new_type, new_elt_type, index_type);
2221 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2222 TYPE_NAME (new_type) = ada_type_name (type);
2223
2224 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2225 && is_dynamic_type (check_typedef (index_type)))
2226 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2227 low_bound = high_bound = 0;
2228 if (high_bound < low_bound)
2229 *elt_bits = TYPE_LENGTH (new_type) = 0;
2230 else
2231 {
2232 *elt_bits *= (high_bound - low_bound + 1);
2233 TYPE_LENGTH (new_type) =
2234 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2235 }
2236
2237 TYPE_FIXED_INSTANCE (new_type) = 1;
2238 return new_type;
2239 }
2240
2241 /* The array type encoded by TYPE, where
2242 ada_is_constrained_packed_array_type (TYPE). */
2243
2244 static struct type *
2245 decode_constrained_packed_array_type (struct type *type)
2246 {
2247 const char *raw_name = ada_type_name (ada_check_typedef (type));
2248 char *name;
2249 const char *tail;
2250 struct type *shadow_type;
2251 long bits;
2252
2253 if (!raw_name)
2254 raw_name = ada_type_name (desc_base_type (type));
2255
2256 if (!raw_name)
2257 return NULL;
2258
2259 name = (char *) alloca (strlen (raw_name) + 1);
2260 tail = strstr (raw_name, "___XP");
2261 type = desc_base_type (type);
2262
2263 memcpy (name, raw_name, tail - raw_name);
2264 name[tail - raw_name] = '\000';
2265
2266 shadow_type = ada_find_parallel_type_with_name (type, name);
2267
2268 if (shadow_type == NULL)
2269 {
2270 lim_warning (_("could not find bounds information on packed array"));
2271 return NULL;
2272 }
2273 shadow_type = check_typedef (shadow_type);
2274
2275 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2276 {
2277 lim_warning (_("could not understand bounds "
2278 "information on packed array"));
2279 return NULL;
2280 }
2281
2282 bits = decode_packed_array_bitsize (type);
2283 return constrained_packed_array_type (shadow_type, &bits);
2284 }
2285
2286 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2287 array, returns a simple array that denotes that array. Its type is a
2288 standard GDB array type except that the BITSIZEs of the array
2289 target types are set to the number of bits in each element, and the
2290 type length is set appropriately. */
2291
2292 static struct value *
2293 decode_constrained_packed_array (struct value *arr)
2294 {
2295 struct type *type;
2296
2297 /* If our value is a pointer, then dereference it. Likewise if
2298 the value is a reference. Make sure that this operation does not
2299 cause the target type to be fixed, as this would indirectly cause
2300 this array to be decoded. The rest of the routine assumes that
2301 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2302 and "value_ind" routines to perform the dereferencing, as opposed
2303 to using "ada_coerce_ref" or "ada_value_ind". */
2304 arr = coerce_ref (arr);
2305 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2306 arr = value_ind (arr);
2307
2308 type = decode_constrained_packed_array_type (value_type (arr));
2309 if (type == NULL)
2310 {
2311 error (_("can't unpack array"));
2312 return NULL;
2313 }
2314
2315 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2316 && ada_is_modular_type (value_type (arr)))
2317 {
2318 /* This is a (right-justified) modular type representing a packed
2319 array with no wrapper. In order to interpret the value through
2320 the (left-justified) packed array type we just built, we must
2321 first left-justify it. */
2322 int bit_size, bit_pos;
2323 ULONGEST mod;
2324
2325 mod = ada_modulus (value_type (arr)) - 1;
2326 bit_size = 0;
2327 while (mod > 0)
2328 {
2329 bit_size += 1;
2330 mod >>= 1;
2331 }
2332 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2333 arr = ada_value_primitive_packed_val (arr, NULL,
2334 bit_pos / HOST_CHAR_BIT,
2335 bit_pos % HOST_CHAR_BIT,
2336 bit_size,
2337 type);
2338 }
2339
2340 return coerce_unspec_val_to_type (arr, type);
2341 }
2342
2343
2344 /* The value of the element of packed array ARR at the ARITY indices
2345 given in IND. ARR must be a simple array. */
2346
2347 static struct value *
2348 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2349 {
2350 int i;
2351 int bits, elt_off, bit_off;
2352 long elt_total_bit_offset;
2353 struct type *elt_type;
2354 struct value *v;
2355
2356 bits = 0;
2357 elt_total_bit_offset = 0;
2358 elt_type = ada_check_typedef (value_type (arr));
2359 for (i = 0; i < arity; i += 1)
2360 {
2361 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2362 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2363 error
2364 (_("attempt to do packed indexing of "
2365 "something other than a packed array"));
2366 else
2367 {
2368 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2369 LONGEST lowerbound, upperbound;
2370 LONGEST idx;
2371
2372 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2373 {
2374 lim_warning (_("don't know bounds of array"));
2375 lowerbound = upperbound = 0;
2376 }
2377
2378 idx = pos_atr (ind[i]);
2379 if (idx < lowerbound || idx > upperbound)
2380 lim_warning (_("packed array index %ld out of bounds"),
2381 (long) idx);
2382 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2383 elt_total_bit_offset += (idx - lowerbound) * bits;
2384 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2385 }
2386 }
2387 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2388 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2389
2390 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2391 bits, elt_type);
2392 return v;
2393 }
2394
2395 /* Non-zero iff TYPE includes negative integer values. */
2396
2397 static int
2398 has_negatives (struct type *type)
2399 {
2400 switch (TYPE_CODE (type))
2401 {
2402 default:
2403 return 0;
2404 case TYPE_CODE_INT:
2405 return !TYPE_UNSIGNED (type);
2406 case TYPE_CODE_RANGE:
2407 return TYPE_LOW_BOUND (type) < 0;
2408 }
2409 }
2410
2411 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2412 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2413 the unpacked buffer.
2414
2415 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2416 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2417
2418 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2419 zero otherwise.
2420
2421 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2422
2423 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2424
2425 static void
2426 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2427 gdb_byte *unpacked, int unpacked_len,
2428 int is_big_endian, int is_signed_type,
2429 int is_scalar)
2430 {
2431 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2432 int src_idx; /* Index into the source area */
2433 int src_bytes_left; /* Number of source bytes left to process. */
2434 int srcBitsLeft; /* Number of source bits left to move */
2435 int unusedLS; /* Number of bits in next significant
2436 byte of source that are unused */
2437
2438 int unpacked_idx; /* Index into the unpacked buffer */
2439 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2440
2441 unsigned long accum; /* Staging area for bits being transferred */
2442 int accumSize; /* Number of meaningful bits in accum */
2443 unsigned char sign;
2444
2445 /* Transmit bytes from least to most significant; delta is the direction
2446 the indices move. */
2447 int delta = is_big_endian ? -1 : 1;
2448
2449 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2450 bits from SRC. .*/
2451 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2452 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2453 bit_size, unpacked_len);
2454
2455 srcBitsLeft = bit_size;
2456 src_bytes_left = src_len;
2457 unpacked_bytes_left = unpacked_len;
2458 sign = 0;
2459
2460 if (is_big_endian)
2461 {
2462 src_idx = src_len - 1;
2463 if (is_signed_type
2464 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2465 sign = ~0;
2466
2467 unusedLS =
2468 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2469 % HOST_CHAR_BIT;
2470
2471 if (is_scalar)
2472 {
2473 accumSize = 0;
2474 unpacked_idx = unpacked_len - 1;
2475 }
2476 else
2477 {
2478 /* Non-scalar values must be aligned at a byte boundary... */
2479 accumSize =
2480 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2481 /* ... And are placed at the beginning (most-significant) bytes
2482 of the target. */
2483 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2484 unpacked_bytes_left = unpacked_idx + 1;
2485 }
2486 }
2487 else
2488 {
2489 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2490
2491 src_idx = unpacked_idx = 0;
2492 unusedLS = bit_offset;
2493 accumSize = 0;
2494
2495 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2496 sign = ~0;
2497 }
2498
2499 accum = 0;
2500 while (src_bytes_left > 0)
2501 {
2502 /* Mask for removing bits of the next source byte that are not
2503 part of the value. */
2504 unsigned int unusedMSMask =
2505 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2506 1;
2507 /* Sign-extend bits for this byte. */
2508 unsigned int signMask = sign & ~unusedMSMask;
2509
2510 accum |=
2511 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2512 accumSize += HOST_CHAR_BIT - unusedLS;
2513 if (accumSize >= HOST_CHAR_BIT)
2514 {
2515 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2516 accumSize -= HOST_CHAR_BIT;
2517 accum >>= HOST_CHAR_BIT;
2518 unpacked_bytes_left -= 1;
2519 unpacked_idx += delta;
2520 }
2521 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2522 unusedLS = 0;
2523 src_bytes_left -= 1;
2524 src_idx += delta;
2525 }
2526 while (unpacked_bytes_left > 0)
2527 {
2528 accum |= sign << accumSize;
2529 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2530 accumSize -= HOST_CHAR_BIT;
2531 if (accumSize < 0)
2532 accumSize = 0;
2533 accum >>= HOST_CHAR_BIT;
2534 unpacked_bytes_left -= 1;
2535 unpacked_idx += delta;
2536 }
2537 }
2538
2539 /* Create a new value of type TYPE from the contents of OBJ starting
2540 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2541 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2542 assigning through the result will set the field fetched from.
2543 VALADDR is ignored unless OBJ is NULL, in which case,
2544 VALADDR+OFFSET must address the start of storage containing the
2545 packed value. The value returned in this case is never an lval.
2546 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2547
2548 struct value *
2549 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2550 long offset, int bit_offset, int bit_size,
2551 struct type *type)
2552 {
2553 struct value *v;
2554 const gdb_byte *src; /* First byte containing data to unpack */
2555 gdb_byte *unpacked;
2556 const int is_scalar = is_scalar_type (type);
2557 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
2558 gdb::byte_vector staging;
2559
2560 type = ada_check_typedef (type);
2561
2562 if (obj == NULL)
2563 src = valaddr + offset;
2564 else
2565 src = value_contents (obj) + offset;
2566
2567 if (is_dynamic_type (type))
2568 {
2569 /* The length of TYPE might by dynamic, so we need to resolve
2570 TYPE in order to know its actual size, which we then use
2571 to create the contents buffer of the value we return.
2572 The difficulty is that the data containing our object is
2573 packed, and therefore maybe not at a byte boundary. So, what
2574 we do, is unpack the data into a byte-aligned buffer, and then
2575 use that buffer as our object's value for resolving the type. */
2576 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2577 staging.resize (staging_len);
2578
2579 ada_unpack_from_contents (src, bit_offset, bit_size,
2580 staging.data (), staging.size (),
2581 is_big_endian, has_negatives (type),
2582 is_scalar);
2583 type = resolve_dynamic_type (type, staging.data (), 0);
2584 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2585 {
2586 /* This happens when the length of the object is dynamic,
2587 and is actually smaller than the space reserved for it.
2588 For instance, in an array of variant records, the bit_size
2589 we're given is the array stride, which is constant and
2590 normally equal to the maximum size of its element.
2591 But, in reality, each element only actually spans a portion
2592 of that stride. */
2593 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2594 }
2595 }
2596
2597 if (obj == NULL)
2598 {
2599 v = allocate_value (type);
2600 src = valaddr + offset;
2601 }
2602 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2603 {
2604 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2605 gdb_byte *buf;
2606
2607 v = value_at (type, value_address (obj) + offset);
2608 buf = (gdb_byte *) alloca (src_len);
2609 read_memory (value_address (v), buf, src_len);
2610 src = buf;
2611 }
2612 else
2613 {
2614 v = allocate_value (type);
2615 src = value_contents (obj) + offset;
2616 }
2617
2618 if (obj != NULL)
2619 {
2620 long new_offset = offset;
2621
2622 set_value_component_location (v, obj);
2623 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2624 set_value_bitsize (v, bit_size);
2625 if (value_bitpos (v) >= HOST_CHAR_BIT)
2626 {
2627 ++new_offset;
2628 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2629 }
2630 set_value_offset (v, new_offset);
2631
2632 /* Also set the parent value. This is needed when trying to
2633 assign a new value (in inferior memory). */
2634 set_value_parent (v, obj);
2635 }
2636 else
2637 set_value_bitsize (v, bit_size);
2638 unpacked = value_contents_writeable (v);
2639
2640 if (bit_size == 0)
2641 {
2642 memset (unpacked, 0, TYPE_LENGTH (type));
2643 return v;
2644 }
2645
2646 if (staging.size () == TYPE_LENGTH (type))
2647 {
2648 /* Small short-cut: If we've unpacked the data into a buffer
2649 of the same size as TYPE's length, then we can reuse that,
2650 instead of doing the unpacking again. */
2651 memcpy (unpacked, staging.data (), staging.size ());
2652 }
2653 else
2654 ada_unpack_from_contents (src, bit_offset, bit_size,
2655 unpacked, TYPE_LENGTH (type),
2656 is_big_endian, has_negatives (type), is_scalar);
2657
2658 return v;
2659 }
2660
2661 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2662 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2663 not overlap. */
2664 static void
2665 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2666 int src_offset, int n, int bits_big_endian_p)
2667 {
2668 unsigned int accum, mask;
2669 int accum_bits, chunk_size;
2670
2671 target += targ_offset / HOST_CHAR_BIT;
2672 targ_offset %= HOST_CHAR_BIT;
2673 source += src_offset / HOST_CHAR_BIT;
2674 src_offset %= HOST_CHAR_BIT;
2675 if (bits_big_endian_p)
2676 {
2677 accum = (unsigned char) *source;
2678 source += 1;
2679 accum_bits = HOST_CHAR_BIT - src_offset;
2680
2681 while (n > 0)
2682 {
2683 int unused_right;
2684
2685 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2686 accum_bits += HOST_CHAR_BIT;
2687 source += 1;
2688 chunk_size = HOST_CHAR_BIT - targ_offset;
2689 if (chunk_size > n)
2690 chunk_size = n;
2691 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2692 mask = ((1 << chunk_size) - 1) << unused_right;
2693 *target =
2694 (*target & ~mask)
2695 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2696 n -= chunk_size;
2697 accum_bits -= chunk_size;
2698 target += 1;
2699 targ_offset = 0;
2700 }
2701 }
2702 else
2703 {
2704 accum = (unsigned char) *source >> src_offset;
2705 source += 1;
2706 accum_bits = HOST_CHAR_BIT - src_offset;
2707
2708 while (n > 0)
2709 {
2710 accum = accum + ((unsigned char) *source << accum_bits);
2711 accum_bits += HOST_CHAR_BIT;
2712 source += 1;
2713 chunk_size = HOST_CHAR_BIT - targ_offset;
2714 if (chunk_size > n)
2715 chunk_size = n;
2716 mask = ((1 << chunk_size) - 1) << targ_offset;
2717 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2718 n -= chunk_size;
2719 accum_bits -= chunk_size;
2720 accum >>= chunk_size;
2721 target += 1;
2722 targ_offset = 0;
2723 }
2724 }
2725 }
2726
2727 /* Store the contents of FROMVAL into the location of TOVAL.
2728 Return a new value with the location of TOVAL and contents of
2729 FROMVAL. Handles assignment into packed fields that have
2730 floating-point or non-scalar types. */
2731
2732 static struct value *
2733 ada_value_assign (struct value *toval, struct value *fromval)
2734 {
2735 struct type *type = value_type (toval);
2736 int bits = value_bitsize (toval);
2737
2738 toval = ada_coerce_ref (toval);
2739 fromval = ada_coerce_ref (fromval);
2740
2741 if (ada_is_direct_array_type (value_type (toval)))
2742 toval = ada_coerce_to_simple_array (toval);
2743 if (ada_is_direct_array_type (value_type (fromval)))
2744 fromval = ada_coerce_to_simple_array (fromval);
2745
2746 if (!deprecated_value_modifiable (toval))
2747 error (_("Left operand of assignment is not a modifiable lvalue."));
2748
2749 if (VALUE_LVAL (toval) == lval_memory
2750 && bits > 0
2751 && (TYPE_CODE (type) == TYPE_CODE_FLT
2752 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2753 {
2754 int len = (value_bitpos (toval)
2755 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2756 int from_size;
2757 gdb_byte *buffer = (gdb_byte *) alloca (len);
2758 struct value *val;
2759 CORE_ADDR to_addr = value_address (toval);
2760
2761 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2762 fromval = value_cast (type, fromval);
2763
2764 read_memory (to_addr, buffer, len);
2765 from_size = value_bitsize (fromval);
2766 if (from_size == 0)
2767 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2768 if (gdbarch_bits_big_endian (get_type_arch (type)))
2769 move_bits (buffer, value_bitpos (toval),
2770 value_contents (fromval), from_size - bits, bits, 1);
2771 else
2772 move_bits (buffer, value_bitpos (toval),
2773 value_contents (fromval), 0, bits, 0);
2774 write_memory_with_notification (to_addr, buffer, len);
2775
2776 val = value_copy (toval);
2777 memcpy (value_contents_raw (val), value_contents (fromval),
2778 TYPE_LENGTH (type));
2779 deprecated_set_value_type (val, type);
2780
2781 return val;
2782 }
2783
2784 return value_assign (toval, fromval);
2785 }
2786
2787
2788 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2789 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2790 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2791 COMPONENT, and not the inferior's memory. The current contents
2792 of COMPONENT are ignored.
2793
2794 Although not part of the initial design, this function also works
2795 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2796 had a null address, and COMPONENT had an address which is equal to
2797 its offset inside CONTAINER. */
2798
2799 static void
2800 value_assign_to_component (struct value *container, struct value *component,
2801 struct value *val)
2802 {
2803 LONGEST offset_in_container =
2804 (LONGEST) (value_address (component) - value_address (container));
2805 int bit_offset_in_container =
2806 value_bitpos (component) - value_bitpos (container);
2807 int bits;
2808
2809 val = value_cast (value_type (component), val);
2810
2811 if (value_bitsize (component) == 0)
2812 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2813 else
2814 bits = value_bitsize (component);
2815
2816 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2817 {
2818 int src_offset;
2819
2820 if (is_scalar_type (check_typedef (value_type (component))))
2821 src_offset
2822 = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits;
2823 else
2824 src_offset = 0;
2825 move_bits (value_contents_writeable (container) + offset_in_container,
2826 value_bitpos (container) + bit_offset_in_container,
2827 value_contents (val), src_offset, bits, 1);
2828 }
2829 else
2830 move_bits (value_contents_writeable (container) + offset_in_container,
2831 value_bitpos (container) + bit_offset_in_container,
2832 value_contents (val), 0, bits, 0);
2833 }
2834
2835 /* The value of the element of array ARR at the ARITY indices given in IND.
2836 ARR may be either a simple array, GNAT array descriptor, or pointer
2837 thereto. */
2838
2839 struct value *
2840 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2841 {
2842 int k;
2843 struct value *elt;
2844 struct type *elt_type;
2845
2846 elt = ada_coerce_to_simple_array (arr);
2847
2848 elt_type = ada_check_typedef (value_type (elt));
2849 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2850 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2851 return value_subscript_packed (elt, arity, ind);
2852
2853 for (k = 0; k < arity; k += 1)
2854 {
2855 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2856 error (_("too many subscripts (%d expected)"), k);
2857 elt = value_subscript (elt, pos_atr (ind[k]));
2858 }
2859 return elt;
2860 }
2861
2862 /* Assuming ARR is a pointer to a GDB array, the value of the element
2863 of *ARR at the ARITY indices given in IND.
2864 Does not read the entire array into memory.
2865
2866 Note: Unlike what one would expect, this function is used instead of
2867 ada_value_subscript for basically all non-packed array types. The reason
2868 for this is that a side effect of doing our own pointer arithmetics instead
2869 of relying on value_subscript is that there is no implicit typedef peeling.
2870 This is important for arrays of array accesses, where it allows us to
2871 preserve the fact that the array's element is an array access, where the
2872 access part os encoded in a typedef layer. */
2873
2874 static struct value *
2875 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2876 {
2877 int k;
2878 struct value *array_ind = ada_value_ind (arr);
2879 struct type *type
2880 = check_typedef (value_enclosing_type (array_ind));
2881
2882 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2883 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2884 return value_subscript_packed (array_ind, arity, ind);
2885
2886 for (k = 0; k < arity; k += 1)
2887 {
2888 LONGEST lwb, upb;
2889 struct value *lwb_value;
2890
2891 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2892 error (_("too many subscripts (%d expected)"), k);
2893 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2894 value_copy (arr));
2895 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2896 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2897 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
2898 type = TYPE_TARGET_TYPE (type);
2899 }
2900
2901 return value_ind (arr);
2902 }
2903
2904 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2905 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2906 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2907 this array is LOW, as per Ada rules. */
2908 static struct value *
2909 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2910 int low, int high)
2911 {
2912 struct type *type0 = ada_check_typedef (type);
2913 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
2914 struct type *index_type
2915 = create_static_range_type (NULL, base_index_type, low, high);
2916 struct type *slice_type = create_array_type_with_stride
2917 (NULL, TYPE_TARGET_TYPE (type0), index_type,
2918 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type0),
2919 TYPE_FIELD_BITSIZE (type0, 0));
2920 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2921 LONGEST base_low_pos, low_pos;
2922 CORE_ADDR base;
2923
2924 if (!discrete_position (base_index_type, low, &low_pos)
2925 || !discrete_position (base_index_type, base_low, &base_low_pos))
2926 {
2927 warning (_("unable to get positions in slice, use bounds instead"));
2928 low_pos = low;
2929 base_low_pos = base_low;
2930 }
2931
2932 base = value_as_address (array_ptr)
2933 + ((low_pos - base_low_pos)
2934 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2935 return value_at_lazy (slice_type, base);
2936 }
2937
2938
2939 static struct value *
2940 ada_value_slice (struct value *array, int low, int high)
2941 {
2942 struct type *type = ada_check_typedef (value_type (array));
2943 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2944 struct type *index_type
2945 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2946 struct type *slice_type = create_array_type_with_stride
2947 (NULL, TYPE_TARGET_TYPE (type), index_type,
2948 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type),
2949 TYPE_FIELD_BITSIZE (type, 0));
2950 LONGEST low_pos, high_pos;
2951
2952 if (!discrete_position (base_index_type, low, &low_pos)
2953 || !discrete_position (base_index_type, high, &high_pos))
2954 {
2955 warning (_("unable to get positions in slice, use bounds instead"));
2956 low_pos = low;
2957 high_pos = high;
2958 }
2959
2960 return value_cast (slice_type,
2961 value_slice (array, low, high_pos - low_pos + 1));
2962 }
2963
2964 /* If type is a record type in the form of a standard GNAT array
2965 descriptor, returns the number of dimensions for type. If arr is a
2966 simple array, returns the number of "array of"s that prefix its
2967 type designation. Otherwise, returns 0. */
2968
2969 int
2970 ada_array_arity (struct type *type)
2971 {
2972 int arity;
2973
2974 if (type == NULL)
2975 return 0;
2976
2977 type = desc_base_type (type);
2978
2979 arity = 0;
2980 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2981 return desc_arity (desc_bounds_type (type));
2982 else
2983 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2984 {
2985 arity += 1;
2986 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2987 }
2988
2989 return arity;
2990 }
2991
2992 /* If TYPE is a record type in the form of a standard GNAT array
2993 descriptor or a simple array type, returns the element type for
2994 TYPE after indexing by NINDICES indices, or by all indices if
2995 NINDICES is -1. Otherwise, returns NULL. */
2996
2997 struct type *
2998 ada_array_element_type (struct type *type, int nindices)
2999 {
3000 type = desc_base_type (type);
3001
3002 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
3003 {
3004 int k;
3005 struct type *p_array_type;
3006
3007 p_array_type = desc_data_target_type (type);
3008
3009 k = ada_array_arity (type);
3010 if (k == 0)
3011 return NULL;
3012
3013 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
3014 if (nindices >= 0 && k > nindices)
3015 k = nindices;
3016 while (k > 0 && p_array_type != NULL)
3017 {
3018 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
3019 k -= 1;
3020 }
3021 return p_array_type;
3022 }
3023 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
3024 {
3025 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
3026 {
3027 type = TYPE_TARGET_TYPE (type);
3028 nindices -= 1;
3029 }
3030 return type;
3031 }
3032
3033 return NULL;
3034 }
3035
3036 /* The type of nth index in arrays of given type (n numbering from 1).
3037 Does not examine memory. Throws an error if N is invalid or TYPE
3038 is not an array type. NAME is the name of the Ada attribute being
3039 evaluated ('range, 'first, 'last, or 'length); it is used in building
3040 the error message. */
3041
3042 static struct type *
3043 ada_index_type (struct type *type, int n, const char *name)
3044 {
3045 struct type *result_type;
3046
3047 type = desc_base_type (type);
3048
3049 if (n < 0 || n > ada_array_arity (type))
3050 error (_("invalid dimension number to '%s"), name);
3051
3052 if (ada_is_simple_array_type (type))
3053 {
3054 int i;
3055
3056 for (i = 1; i < n; i += 1)
3057 type = TYPE_TARGET_TYPE (type);
3058 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
3059 /* FIXME: The stabs type r(0,0);bound;bound in an array type
3060 has a target type of TYPE_CODE_UNDEF. We compensate here, but
3061 perhaps stabsread.c would make more sense. */
3062 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
3063 result_type = NULL;
3064 }
3065 else
3066 {
3067 result_type = desc_index_type (desc_bounds_type (type), n);
3068 if (result_type == NULL)
3069 error (_("attempt to take bound of something that is not an array"));
3070 }
3071
3072 return result_type;
3073 }
3074
3075 /* Given that arr is an array type, returns the lower bound of the
3076 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
3077 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
3078 array-descriptor type. It works for other arrays with bounds supplied
3079 by run-time quantities other than discriminants. */
3080
3081 static LONGEST
3082 ada_array_bound_from_type (struct type *arr_type, int n, int which)
3083 {
3084 struct type *type, *index_type_desc, *index_type;
3085 int i;
3086
3087 gdb_assert (which == 0 || which == 1);
3088
3089 if (ada_is_constrained_packed_array_type (arr_type))
3090 arr_type = decode_constrained_packed_array_type (arr_type);
3091
3092 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
3093 return (LONGEST) - which;
3094
3095 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3096 type = TYPE_TARGET_TYPE (arr_type);
3097 else
3098 type = arr_type;
3099
3100 if (TYPE_FIXED_INSTANCE (type))
3101 {
3102 /* The array has already been fixed, so we do not need to
3103 check the parallel ___XA type again. That encoding has
3104 already been applied, so ignore it now. */
3105 index_type_desc = NULL;
3106 }
3107 else
3108 {
3109 index_type_desc = ada_find_parallel_type (type, "___XA");
3110 ada_fixup_array_indexes_type (index_type_desc);
3111 }
3112
3113 if (index_type_desc != NULL)
3114 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3115 NULL);
3116 else
3117 {
3118 struct type *elt_type = check_typedef (type);
3119
3120 for (i = 1; i < n; i++)
3121 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3122
3123 index_type = TYPE_INDEX_TYPE (elt_type);
3124 }
3125
3126 return
3127 (LONGEST) (which == 0
3128 ? ada_discrete_type_low_bound (index_type)
3129 : ada_discrete_type_high_bound (index_type));
3130 }
3131
3132 /* Given that arr is an array value, returns the lower bound of the
3133 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3134 WHICH is 1. This routine will also work for arrays with bounds
3135 supplied by run-time quantities other than discriminants. */
3136
3137 static LONGEST
3138 ada_array_bound (struct value *arr, int n, int which)
3139 {
3140 struct type *arr_type;
3141
3142 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3143 arr = value_ind (arr);
3144 arr_type = value_enclosing_type (arr);
3145
3146 if (ada_is_constrained_packed_array_type (arr_type))
3147 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
3148 else if (ada_is_simple_array_type (arr_type))
3149 return ada_array_bound_from_type (arr_type, n, which);
3150 else
3151 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
3152 }
3153
3154 /* Given that arr is an array value, returns the length of the
3155 nth index. This routine will also work for arrays with bounds
3156 supplied by run-time quantities other than discriminants.
3157 Does not work for arrays indexed by enumeration types with representation
3158 clauses at the moment. */
3159
3160 static LONGEST
3161 ada_array_length (struct value *arr, int n)
3162 {
3163 struct type *arr_type, *index_type;
3164 int low, high;
3165
3166 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3167 arr = value_ind (arr);
3168 arr_type = value_enclosing_type (arr);
3169
3170 if (ada_is_constrained_packed_array_type (arr_type))
3171 return ada_array_length (decode_constrained_packed_array (arr), n);
3172
3173 if (ada_is_simple_array_type (arr_type))
3174 {
3175 low = ada_array_bound_from_type (arr_type, n, 0);
3176 high = ada_array_bound_from_type (arr_type, n, 1);
3177 }
3178 else
3179 {
3180 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3181 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3182 }
3183
3184 arr_type = check_typedef (arr_type);
3185 index_type = ada_index_type (arr_type, n, "length");
3186 if (index_type != NULL)
3187 {
3188 struct type *base_type;
3189 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3190 base_type = TYPE_TARGET_TYPE (index_type);
3191 else
3192 base_type = index_type;
3193
3194 low = pos_atr (value_from_longest (base_type, low));
3195 high = pos_atr (value_from_longest (base_type, high));
3196 }
3197 return high - low + 1;
3198 }
3199
3200 /* An empty array whose type is that of ARR_TYPE (an array type),
3201 with bounds LOW to LOW-1. */
3202
3203 static struct value *
3204 empty_array (struct type *arr_type, int low)
3205 {
3206 struct type *arr_type0 = ada_check_typedef (arr_type);
3207 struct type *index_type
3208 = create_static_range_type
3209 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
3210 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3211
3212 return allocate_value (create_array_type (NULL, elt_type, index_type));
3213 }
3214 \f
3215
3216 /* Name resolution */
3217
3218 /* The "decoded" name for the user-definable Ada operator corresponding
3219 to OP. */
3220
3221 static const char *
3222 ada_decoded_op_name (enum exp_opcode op)
3223 {
3224 int i;
3225
3226 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3227 {
3228 if (ada_opname_table[i].op == op)
3229 return ada_opname_table[i].decoded;
3230 }
3231 error (_("Could not find operator name for opcode"));
3232 }
3233
3234
3235 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3236 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3237 undefined namespace) and converts operators that are
3238 user-defined into appropriate function calls. If CONTEXT_TYPE is
3239 non-null, it provides a preferred result type [at the moment, only
3240 type void has any effect---causing procedures to be preferred over
3241 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3242 return type is preferred. May change (expand) *EXP. */
3243
3244 static void
3245 resolve (expression_up *expp, int void_context_p)
3246 {
3247 struct type *context_type = NULL;
3248 int pc = 0;
3249
3250 if (void_context_p)
3251 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3252
3253 resolve_subexp (expp, &pc, 1, context_type);
3254 }
3255
3256 /* Resolve the operator of the subexpression beginning at
3257 position *POS of *EXPP. "Resolving" consists of replacing
3258 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3259 with their resolutions, replacing built-in operators with
3260 function calls to user-defined operators, where appropriate, and,
3261 when DEPROCEDURE_P is non-zero, converting function-valued variables
3262 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3263 are as in ada_resolve, above. */
3264
3265 static struct value *
3266 resolve_subexp (expression_up *expp, int *pos, int deprocedure_p,
3267 struct type *context_type)
3268 {
3269 int pc = *pos;
3270 int i;
3271 struct expression *exp; /* Convenience: == *expp. */
3272 enum exp_opcode op = (*expp)->elts[pc].opcode;
3273 struct value **argvec; /* Vector of operand types (alloca'ed). */
3274 int nargs; /* Number of operands. */
3275 int oplen;
3276
3277 argvec = NULL;
3278 nargs = 0;
3279 exp = expp->get ();
3280
3281 /* Pass one: resolve operands, saving their types and updating *pos,
3282 if needed. */
3283 switch (op)
3284 {
3285 case OP_FUNCALL:
3286 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3287 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3288 *pos += 7;
3289 else
3290 {
3291 *pos += 3;
3292 resolve_subexp (expp, pos, 0, NULL);
3293 }
3294 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3295 break;
3296
3297 case UNOP_ADDR:
3298 *pos += 1;
3299 resolve_subexp (expp, pos, 0, NULL);
3300 break;
3301
3302 case UNOP_QUAL:
3303 *pos += 3;
3304 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
3305 break;
3306
3307 case OP_ATR_MODULUS:
3308 case OP_ATR_SIZE:
3309 case OP_ATR_TAG:
3310 case OP_ATR_FIRST:
3311 case OP_ATR_LAST:
3312 case OP_ATR_LENGTH:
3313 case OP_ATR_POS:
3314 case OP_ATR_VAL:
3315 case OP_ATR_MIN:
3316 case OP_ATR_MAX:
3317 case TERNOP_IN_RANGE:
3318 case BINOP_IN_BOUNDS:
3319 case UNOP_IN_RANGE:
3320 case OP_AGGREGATE:
3321 case OP_OTHERS:
3322 case OP_CHOICES:
3323 case OP_POSITIONAL:
3324 case OP_DISCRETE_RANGE:
3325 case OP_NAME:
3326 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3327 *pos += oplen;
3328 break;
3329
3330 case BINOP_ASSIGN:
3331 {
3332 struct value *arg1;
3333
3334 *pos += 1;
3335 arg1 = resolve_subexp (expp, pos, 0, NULL);
3336 if (arg1 == NULL)
3337 resolve_subexp (expp, pos, 1, NULL);
3338 else
3339 resolve_subexp (expp, pos, 1, value_type (arg1));
3340 break;
3341 }
3342
3343 case UNOP_CAST:
3344 *pos += 3;
3345 nargs = 1;
3346 break;
3347
3348 case BINOP_ADD:
3349 case BINOP_SUB:
3350 case BINOP_MUL:
3351 case BINOP_DIV:
3352 case BINOP_REM:
3353 case BINOP_MOD:
3354 case BINOP_EXP:
3355 case BINOP_CONCAT:
3356 case BINOP_LOGICAL_AND:
3357 case BINOP_LOGICAL_OR:
3358 case BINOP_BITWISE_AND:
3359 case BINOP_BITWISE_IOR:
3360 case BINOP_BITWISE_XOR:
3361
3362 case BINOP_EQUAL:
3363 case BINOP_NOTEQUAL:
3364 case BINOP_LESS:
3365 case BINOP_GTR:
3366 case BINOP_LEQ:
3367 case BINOP_GEQ:
3368
3369 case BINOP_REPEAT:
3370 case BINOP_SUBSCRIPT:
3371 case BINOP_COMMA:
3372 *pos += 1;
3373 nargs = 2;
3374 break;
3375
3376 case UNOP_NEG:
3377 case UNOP_PLUS:
3378 case UNOP_LOGICAL_NOT:
3379 case UNOP_ABS:
3380 case UNOP_IND:
3381 *pos += 1;
3382 nargs = 1;
3383 break;
3384
3385 case OP_LONG:
3386 case OP_FLOAT:
3387 case OP_VAR_VALUE:
3388 case OP_VAR_MSYM_VALUE:
3389 *pos += 4;
3390 break;
3391
3392 case OP_TYPE:
3393 case OP_BOOL:
3394 case OP_LAST:
3395 case OP_INTERNALVAR:
3396 *pos += 3;
3397 break;
3398
3399 case UNOP_MEMVAL:
3400 *pos += 3;
3401 nargs = 1;
3402 break;
3403
3404 case OP_REGISTER:
3405 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3406 break;
3407
3408 case STRUCTOP_STRUCT:
3409 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3410 nargs = 1;
3411 break;
3412
3413 case TERNOP_SLICE:
3414 *pos += 1;
3415 nargs = 3;
3416 break;
3417
3418 case OP_STRING:
3419 break;
3420
3421 default:
3422 error (_("Unexpected operator during name resolution"));
3423 }
3424
3425 argvec = XALLOCAVEC (struct value *, nargs + 1);
3426 for (i = 0; i < nargs; i += 1)
3427 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3428 argvec[i] = NULL;
3429 exp = expp->get ();
3430
3431 /* Pass two: perform any resolution on principal operator. */
3432 switch (op)
3433 {
3434 default:
3435 break;
3436
3437 case OP_VAR_VALUE:
3438 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3439 {
3440 std::vector<struct block_symbol> candidates;
3441 int n_candidates;
3442
3443 n_candidates =
3444 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3445 (exp->elts[pc + 2].symbol),
3446 exp->elts[pc + 1].block, VAR_DOMAIN,
3447 &candidates);
3448
3449 if (n_candidates > 1)
3450 {
3451 /* Types tend to get re-introduced locally, so if there
3452 are any local symbols that are not types, first filter
3453 out all types. */
3454 int j;
3455 for (j = 0; j < n_candidates; j += 1)
3456 switch (SYMBOL_CLASS (candidates[j].symbol))
3457 {
3458 case LOC_REGISTER:
3459 case LOC_ARG:
3460 case LOC_REF_ARG:
3461 case LOC_REGPARM_ADDR:
3462 case LOC_LOCAL:
3463 case LOC_COMPUTED:
3464 goto FoundNonType;
3465 default:
3466 break;
3467 }
3468 FoundNonType:
3469 if (j < n_candidates)
3470 {
3471 j = 0;
3472 while (j < n_candidates)
3473 {
3474 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3475 {
3476 candidates[j] = candidates[n_candidates - 1];
3477 n_candidates -= 1;
3478 }
3479 else
3480 j += 1;
3481 }
3482 }
3483 }
3484
3485 if (n_candidates == 0)
3486 error (_("No definition found for %s"),
3487 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3488 else if (n_candidates == 1)
3489 i = 0;
3490 else if (deprocedure_p
3491 && !is_nonfunction (candidates.data (), n_candidates))
3492 {
3493 i = ada_resolve_function
3494 (candidates.data (), n_candidates, NULL, 0,
3495 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3496 context_type);
3497 if (i < 0)
3498 error (_("Could not find a match for %s"),
3499 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3500 }
3501 else
3502 {
3503 printf_filtered (_("Multiple matches for %s\n"),
3504 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3505 user_select_syms (candidates.data (), n_candidates, 1);
3506 i = 0;
3507 }
3508
3509 exp->elts[pc + 1].block = candidates[i].block;
3510 exp->elts[pc + 2].symbol = candidates[i].symbol;
3511 innermost_block.update (candidates[i]);
3512 }
3513
3514 if (deprocedure_p
3515 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3516 == TYPE_CODE_FUNC))
3517 {
3518 replace_operator_with_call (expp, pc, 0, 0,
3519 exp->elts[pc + 2].symbol,
3520 exp->elts[pc + 1].block);
3521 exp = expp->get ();
3522 }
3523 break;
3524
3525 case OP_FUNCALL:
3526 {
3527 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3528 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3529 {
3530 std::vector<struct block_symbol> candidates;
3531 int n_candidates;
3532
3533 n_candidates =
3534 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3535 (exp->elts[pc + 5].symbol),
3536 exp->elts[pc + 4].block, VAR_DOMAIN,
3537 &candidates);
3538
3539 if (n_candidates == 1)
3540 i = 0;
3541 else
3542 {
3543 i = ada_resolve_function
3544 (candidates.data (), n_candidates,
3545 argvec, nargs,
3546 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3547 context_type);
3548 if (i < 0)
3549 error (_("Could not find a match for %s"),
3550 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3551 }
3552
3553 exp->elts[pc + 4].block = candidates[i].block;
3554 exp->elts[pc + 5].symbol = candidates[i].symbol;
3555 innermost_block.update (candidates[i]);
3556 }
3557 }
3558 break;
3559 case BINOP_ADD:
3560 case BINOP_SUB:
3561 case BINOP_MUL:
3562 case BINOP_DIV:
3563 case BINOP_REM:
3564 case BINOP_MOD:
3565 case BINOP_CONCAT:
3566 case BINOP_BITWISE_AND:
3567 case BINOP_BITWISE_IOR:
3568 case BINOP_BITWISE_XOR:
3569 case BINOP_EQUAL:
3570 case BINOP_NOTEQUAL:
3571 case BINOP_LESS:
3572 case BINOP_GTR:
3573 case BINOP_LEQ:
3574 case BINOP_GEQ:
3575 case BINOP_EXP:
3576 case UNOP_NEG:
3577 case UNOP_PLUS:
3578 case UNOP_LOGICAL_NOT:
3579 case UNOP_ABS:
3580 if (possible_user_operator_p (op, argvec))
3581 {
3582 std::vector<struct block_symbol> candidates;
3583 int n_candidates;
3584
3585 n_candidates =
3586 ada_lookup_symbol_list (ada_decoded_op_name (op),
3587 (struct block *) NULL, VAR_DOMAIN,
3588 &candidates);
3589
3590 i = ada_resolve_function (candidates.data (), n_candidates, argvec,
3591 nargs, ada_decoded_op_name (op), NULL);
3592 if (i < 0)
3593 break;
3594
3595 replace_operator_with_call (expp, pc, nargs, 1,
3596 candidates[i].symbol,
3597 candidates[i].block);
3598 exp = expp->get ();
3599 }
3600 break;
3601
3602 case OP_TYPE:
3603 case OP_REGISTER:
3604 return NULL;
3605 }
3606
3607 *pos = pc;
3608 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3609 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3610 exp->elts[pc + 1].objfile,
3611 exp->elts[pc + 2].msymbol);
3612 else
3613 return evaluate_subexp_type (exp, pos);
3614 }
3615
3616 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3617 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3618 a non-pointer. */
3619 /* The term "match" here is rather loose. The match is heuristic and
3620 liberal. */
3621
3622 static int
3623 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3624 {
3625 ftype = ada_check_typedef (ftype);
3626 atype = ada_check_typedef (atype);
3627
3628 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3629 ftype = TYPE_TARGET_TYPE (ftype);
3630 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3631 atype = TYPE_TARGET_TYPE (atype);
3632
3633 switch (TYPE_CODE (ftype))
3634 {
3635 default:
3636 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3637 case TYPE_CODE_PTR:
3638 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3639 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3640 TYPE_TARGET_TYPE (atype), 0);
3641 else
3642 return (may_deref
3643 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3644 case TYPE_CODE_INT:
3645 case TYPE_CODE_ENUM:
3646 case TYPE_CODE_RANGE:
3647 switch (TYPE_CODE (atype))
3648 {
3649 case TYPE_CODE_INT:
3650 case TYPE_CODE_ENUM:
3651 case TYPE_CODE_RANGE:
3652 return 1;
3653 default:
3654 return 0;
3655 }
3656
3657 case TYPE_CODE_ARRAY:
3658 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3659 || ada_is_array_descriptor_type (atype));
3660
3661 case TYPE_CODE_STRUCT:
3662 if (ada_is_array_descriptor_type (ftype))
3663 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3664 || ada_is_array_descriptor_type (atype));
3665 else
3666 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3667 && !ada_is_array_descriptor_type (atype));
3668
3669 case TYPE_CODE_UNION:
3670 case TYPE_CODE_FLT:
3671 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3672 }
3673 }
3674
3675 /* Return non-zero if the formals of FUNC "sufficiently match" the
3676 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3677 may also be an enumeral, in which case it is treated as a 0-
3678 argument function. */
3679
3680 static int
3681 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3682 {
3683 int i;
3684 struct type *func_type = SYMBOL_TYPE (func);
3685
3686 if (SYMBOL_CLASS (func) == LOC_CONST
3687 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3688 return (n_actuals == 0);
3689 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3690 return 0;
3691
3692 if (TYPE_NFIELDS (func_type) != n_actuals)
3693 return 0;
3694
3695 for (i = 0; i < n_actuals; i += 1)
3696 {
3697 if (actuals[i] == NULL)
3698 return 0;
3699 else
3700 {
3701 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3702 i));
3703 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3704
3705 if (!ada_type_match (ftype, atype, 1))
3706 return 0;
3707 }
3708 }
3709 return 1;
3710 }
3711
3712 /* False iff function type FUNC_TYPE definitely does not produce a value
3713 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3714 FUNC_TYPE is not a valid function type with a non-null return type
3715 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3716
3717 static int
3718 return_match (struct type *func_type, struct type *context_type)
3719 {
3720 struct type *return_type;
3721
3722 if (func_type == NULL)
3723 return 1;
3724
3725 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3726 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3727 else
3728 return_type = get_base_type (func_type);
3729 if (return_type == NULL)
3730 return 1;
3731
3732 context_type = get_base_type (context_type);
3733
3734 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3735 return context_type == NULL || return_type == context_type;
3736 else if (context_type == NULL)
3737 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3738 else
3739 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3740 }
3741
3742
3743 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3744 function (if any) that matches the types of the NARGS arguments in
3745 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3746 that returns that type, then eliminate matches that don't. If
3747 CONTEXT_TYPE is void and there is at least one match that does not
3748 return void, eliminate all matches that do.
3749
3750 Asks the user if there is more than one match remaining. Returns -1
3751 if there is no such symbol or none is selected. NAME is used
3752 solely for messages. May re-arrange and modify SYMS in
3753 the process; the index returned is for the modified vector. */
3754
3755 static int
3756 ada_resolve_function (struct block_symbol syms[],
3757 int nsyms, struct value **args, int nargs,
3758 const char *name, struct type *context_type)
3759 {
3760 int fallback;
3761 int k;
3762 int m; /* Number of hits */
3763
3764 m = 0;
3765 /* In the first pass of the loop, we only accept functions matching
3766 context_type. If none are found, we add a second pass of the loop
3767 where every function is accepted. */
3768 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3769 {
3770 for (k = 0; k < nsyms; k += 1)
3771 {
3772 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3773
3774 if (ada_args_match (syms[k].symbol, args, nargs)
3775 && (fallback || return_match (type, context_type)))
3776 {
3777 syms[m] = syms[k];
3778 m += 1;
3779 }
3780 }
3781 }
3782
3783 /* If we got multiple matches, ask the user which one to use. Don't do this
3784 interactive thing during completion, though, as the purpose of the
3785 completion is providing a list of all possible matches. Prompting the
3786 user to filter it down would be completely unexpected in this case. */
3787 if (m == 0)
3788 return -1;
3789 else if (m > 1 && !parse_completion)
3790 {
3791 printf_filtered (_("Multiple matches for %s\n"), name);
3792 user_select_syms (syms, m, 1);
3793 return 0;
3794 }
3795 return 0;
3796 }
3797
3798 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3799 in a listing of choices during disambiguation (see sort_choices, below).
3800 The idea is that overloadings of a subprogram name from the
3801 same package should sort in their source order. We settle for ordering
3802 such symbols by their trailing number (__N or $N). */
3803
3804 static int
3805 encoded_ordered_before (const char *N0, const char *N1)
3806 {
3807 if (N1 == NULL)
3808 return 0;
3809 else if (N0 == NULL)
3810 return 1;
3811 else
3812 {
3813 int k0, k1;
3814
3815 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3816 ;
3817 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3818 ;
3819 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3820 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3821 {
3822 int n0, n1;
3823
3824 n0 = k0;
3825 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3826 n0 -= 1;
3827 n1 = k1;
3828 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3829 n1 -= 1;
3830 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3831 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3832 }
3833 return (strcmp (N0, N1) < 0);
3834 }
3835 }
3836
3837 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3838 encoded names. */
3839
3840 static void
3841 sort_choices (struct block_symbol syms[], int nsyms)
3842 {
3843 int i;
3844
3845 for (i = 1; i < nsyms; i += 1)
3846 {
3847 struct block_symbol sym = syms[i];
3848 int j;
3849
3850 for (j = i - 1; j >= 0; j -= 1)
3851 {
3852 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3853 SYMBOL_LINKAGE_NAME (sym.symbol)))
3854 break;
3855 syms[j + 1] = syms[j];
3856 }
3857 syms[j + 1] = sym;
3858 }
3859 }
3860
3861 /* Whether GDB should display formals and return types for functions in the
3862 overloads selection menu. */
3863 static int print_signatures = 1;
3864
3865 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3866 all but functions, the signature is just the name of the symbol. For
3867 functions, this is the name of the function, the list of types for formals
3868 and the return type (if any). */
3869
3870 static void
3871 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3872 const struct type_print_options *flags)
3873 {
3874 struct type *type = SYMBOL_TYPE (sym);
3875
3876 fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
3877 if (!print_signatures
3878 || type == NULL
3879 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3880 return;
3881
3882 if (TYPE_NFIELDS (type) > 0)
3883 {
3884 int i;
3885
3886 fprintf_filtered (stream, " (");
3887 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3888 {
3889 if (i > 0)
3890 fprintf_filtered (stream, "; ");
3891 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3892 flags);
3893 }
3894 fprintf_filtered (stream, ")");
3895 }
3896 if (TYPE_TARGET_TYPE (type) != NULL
3897 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3898 {
3899 fprintf_filtered (stream, " return ");
3900 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3901 }
3902 }
3903
3904 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3905 by asking the user (if necessary), returning the number selected,
3906 and setting the first elements of SYMS items. Error if no symbols
3907 selected. */
3908
3909 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3910 to be re-integrated one of these days. */
3911
3912 int
3913 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3914 {
3915 int i;
3916 int *chosen = XALLOCAVEC (int , nsyms);
3917 int n_chosen;
3918 int first_choice = (max_results == 1) ? 1 : 2;
3919 const char *select_mode = multiple_symbols_select_mode ();
3920
3921 if (max_results < 1)
3922 error (_("Request to select 0 symbols!"));
3923 if (nsyms <= 1)
3924 return nsyms;
3925
3926 if (select_mode == multiple_symbols_cancel)
3927 error (_("\
3928 canceled because the command is ambiguous\n\
3929 See set/show multiple-symbol."));
3930
3931 /* If select_mode is "all", then return all possible symbols.
3932 Only do that if more than one symbol can be selected, of course.
3933 Otherwise, display the menu as usual. */
3934 if (select_mode == multiple_symbols_all && max_results > 1)
3935 return nsyms;
3936
3937 printf_unfiltered (_("[0] cancel\n"));
3938 if (max_results > 1)
3939 printf_unfiltered (_("[1] all\n"));
3940
3941 sort_choices (syms, nsyms);
3942
3943 for (i = 0; i < nsyms; i += 1)
3944 {
3945 if (syms[i].symbol == NULL)
3946 continue;
3947
3948 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3949 {
3950 struct symtab_and_line sal =
3951 find_function_start_sal (syms[i].symbol, 1);
3952
3953 printf_unfiltered ("[%d] ", i + first_choice);
3954 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3955 &type_print_raw_options);
3956 if (sal.symtab == NULL)
3957 printf_unfiltered (_(" at <no source file available>:%d\n"),
3958 sal.line);
3959 else
3960 printf_unfiltered (_(" at %s:%d\n"),
3961 symtab_to_filename_for_display (sal.symtab),
3962 sal.line);
3963 continue;
3964 }
3965 else
3966 {
3967 int is_enumeral =
3968 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3969 && SYMBOL_TYPE (syms[i].symbol) != NULL
3970 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
3971 struct symtab *symtab = NULL;
3972
3973 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3974 symtab = symbol_symtab (syms[i].symbol);
3975
3976 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3977 {
3978 printf_unfiltered ("[%d] ", i + first_choice);
3979 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3980 &type_print_raw_options);
3981 printf_unfiltered (_(" at %s:%d\n"),
3982 symtab_to_filename_for_display (symtab),
3983 SYMBOL_LINE (syms[i].symbol));
3984 }
3985 else if (is_enumeral
3986 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
3987 {
3988 printf_unfiltered (("[%d] "), i + first_choice);
3989 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3990 gdb_stdout, -1, 0, &type_print_raw_options);
3991 printf_unfiltered (_("'(%s) (enumeral)\n"),
3992 SYMBOL_PRINT_NAME (syms[i].symbol));
3993 }
3994 else
3995 {
3996 printf_unfiltered ("[%d] ", i + first_choice);
3997 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3998 &type_print_raw_options);
3999
4000 if (symtab != NULL)
4001 printf_unfiltered (is_enumeral
4002 ? _(" in %s (enumeral)\n")
4003 : _(" at %s:?\n"),
4004 symtab_to_filename_for_display (symtab));
4005 else
4006 printf_unfiltered (is_enumeral
4007 ? _(" (enumeral)\n")
4008 : _(" at ?\n"));
4009 }
4010 }
4011 }
4012
4013 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4014 "overload-choice");
4015
4016 for (i = 0; i < n_chosen; i += 1)
4017 syms[i] = syms[chosen[i]];
4018
4019 return n_chosen;
4020 }
4021
4022 /* Read and validate a set of numeric choices from the user in the
4023 range 0 .. N_CHOICES-1. Place the results in increasing
4024 order in CHOICES[0 .. N-1], and return N.
4025
4026 The user types choices as a sequence of numbers on one line
4027 separated by blanks, encoding them as follows:
4028
4029 + A choice of 0 means to cancel the selection, throwing an error.
4030 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
4031 + The user chooses k by typing k+IS_ALL_CHOICE+1.
4032
4033 The user is not allowed to choose more than MAX_RESULTS values.
4034
4035 ANNOTATION_SUFFIX, if present, is used to annotate the input
4036 prompts (for use with the -f switch). */
4037
4038 int
4039 get_selections (int *choices, int n_choices, int max_results,
4040 int is_all_choice, const char *annotation_suffix)
4041 {
4042 char *args;
4043 const char *prompt;
4044 int n_chosen;
4045 int first_choice = is_all_choice ? 2 : 1;
4046
4047 prompt = getenv ("PS2");
4048 if (prompt == NULL)
4049 prompt = "> ";
4050
4051 args = command_line_input (prompt, annotation_suffix);
4052
4053 if (args == NULL)
4054 error_no_arg (_("one or more choice numbers"));
4055
4056 n_chosen = 0;
4057
4058 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
4059 order, as given in args. Choices are validated. */
4060 while (1)
4061 {
4062 char *args2;
4063 int choice, j;
4064
4065 args = skip_spaces (args);
4066 if (*args == '\0' && n_chosen == 0)
4067 error_no_arg (_("one or more choice numbers"));
4068 else if (*args == '\0')
4069 break;
4070
4071 choice = strtol (args, &args2, 10);
4072 if (args == args2 || choice < 0
4073 || choice > n_choices + first_choice - 1)
4074 error (_("Argument must be choice number"));
4075 args = args2;
4076
4077 if (choice == 0)
4078 error (_("cancelled"));
4079
4080 if (choice < first_choice)
4081 {
4082 n_chosen = n_choices;
4083 for (j = 0; j < n_choices; j += 1)
4084 choices[j] = j;
4085 break;
4086 }
4087 choice -= first_choice;
4088
4089 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4090 {
4091 }
4092
4093 if (j < 0 || choice != choices[j])
4094 {
4095 int k;
4096
4097 for (k = n_chosen - 1; k > j; k -= 1)
4098 choices[k + 1] = choices[k];
4099 choices[j + 1] = choice;
4100 n_chosen += 1;
4101 }
4102 }
4103
4104 if (n_chosen > max_results)
4105 error (_("Select no more than %d of the above"), max_results);
4106
4107 return n_chosen;
4108 }
4109
4110 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
4111 on the function identified by SYM and BLOCK, and taking NARGS
4112 arguments. Update *EXPP as needed to hold more space. */
4113
4114 static void
4115 replace_operator_with_call (expression_up *expp, int pc, int nargs,
4116 int oplen, struct symbol *sym,
4117 const struct block *block)
4118 {
4119 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4120 symbol, -oplen for operator being replaced). */
4121 struct expression *newexp = (struct expression *)
4122 xzalloc (sizeof (struct expression)
4123 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
4124 struct expression *exp = expp->get ();
4125
4126 newexp->nelts = exp->nelts + 7 - oplen;
4127 newexp->language_defn = exp->language_defn;
4128 newexp->gdbarch = exp->gdbarch;
4129 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
4130 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4131 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
4132
4133 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4134 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4135
4136 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4137 newexp->elts[pc + 4].block = block;
4138 newexp->elts[pc + 5].symbol = sym;
4139
4140 expp->reset (newexp);
4141 }
4142
4143 /* Type-class predicates */
4144
4145 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4146 or FLOAT). */
4147
4148 static int
4149 numeric_type_p (struct type *type)
4150 {
4151 if (type == NULL)
4152 return 0;
4153 else
4154 {
4155 switch (TYPE_CODE (type))
4156 {
4157 case TYPE_CODE_INT:
4158 case TYPE_CODE_FLT:
4159 return 1;
4160 case TYPE_CODE_RANGE:
4161 return (type == TYPE_TARGET_TYPE (type)
4162 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4163 default:
4164 return 0;
4165 }
4166 }
4167 }
4168
4169 /* True iff TYPE is integral (an INT or RANGE of INTs). */
4170
4171 static int
4172 integer_type_p (struct type *type)
4173 {
4174 if (type == NULL)
4175 return 0;
4176 else
4177 {
4178 switch (TYPE_CODE (type))
4179 {
4180 case TYPE_CODE_INT:
4181 return 1;
4182 case TYPE_CODE_RANGE:
4183 return (type == TYPE_TARGET_TYPE (type)
4184 || integer_type_p (TYPE_TARGET_TYPE (type)));
4185 default:
4186 return 0;
4187 }
4188 }
4189 }
4190
4191 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
4192
4193 static int
4194 scalar_type_p (struct type *type)
4195 {
4196 if (type == NULL)
4197 return 0;
4198 else
4199 {
4200 switch (TYPE_CODE (type))
4201 {
4202 case TYPE_CODE_INT:
4203 case TYPE_CODE_RANGE:
4204 case TYPE_CODE_ENUM:
4205 case TYPE_CODE_FLT:
4206 return 1;
4207 default:
4208 return 0;
4209 }
4210 }
4211 }
4212
4213 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
4214
4215 static int
4216 discrete_type_p (struct type *type)
4217 {
4218 if (type == NULL)
4219 return 0;
4220 else
4221 {
4222 switch (TYPE_CODE (type))
4223 {
4224 case TYPE_CODE_INT:
4225 case TYPE_CODE_RANGE:
4226 case TYPE_CODE_ENUM:
4227 case TYPE_CODE_BOOL:
4228 return 1;
4229 default:
4230 return 0;
4231 }
4232 }
4233 }
4234
4235 /* Returns non-zero if OP with operands in the vector ARGS could be
4236 a user-defined function. Errs on the side of pre-defined operators
4237 (i.e., result 0). */
4238
4239 static int
4240 possible_user_operator_p (enum exp_opcode op, struct value *args[])
4241 {
4242 struct type *type0 =
4243 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
4244 struct type *type1 =
4245 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
4246
4247 if (type0 == NULL)
4248 return 0;
4249
4250 switch (op)
4251 {
4252 default:
4253 return 0;
4254
4255 case BINOP_ADD:
4256 case BINOP_SUB:
4257 case BINOP_MUL:
4258 case BINOP_DIV:
4259 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4260
4261 case BINOP_REM:
4262 case BINOP_MOD:
4263 case BINOP_BITWISE_AND:
4264 case BINOP_BITWISE_IOR:
4265 case BINOP_BITWISE_XOR:
4266 return (!(integer_type_p (type0) && integer_type_p (type1)));
4267
4268 case BINOP_EQUAL:
4269 case BINOP_NOTEQUAL:
4270 case BINOP_LESS:
4271 case BINOP_GTR:
4272 case BINOP_LEQ:
4273 case BINOP_GEQ:
4274 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4275
4276 case BINOP_CONCAT:
4277 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4278
4279 case BINOP_EXP:
4280 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4281
4282 case UNOP_NEG:
4283 case UNOP_PLUS:
4284 case UNOP_LOGICAL_NOT:
4285 case UNOP_ABS:
4286 return (!numeric_type_p (type0));
4287
4288 }
4289 }
4290 \f
4291 /* Renaming */
4292
4293 /* NOTES:
4294
4295 1. In the following, we assume that a renaming type's name may
4296 have an ___XD suffix. It would be nice if this went away at some
4297 point.
4298 2. We handle both the (old) purely type-based representation of
4299 renamings and the (new) variable-based encoding. At some point,
4300 it is devoutly to be hoped that the former goes away
4301 (FIXME: hilfinger-2007-07-09).
4302 3. Subprogram renamings are not implemented, although the XRS
4303 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4304
4305 /* If SYM encodes a renaming,
4306
4307 <renaming> renames <renamed entity>,
4308
4309 sets *LEN to the length of the renamed entity's name,
4310 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4311 the string describing the subcomponent selected from the renamed
4312 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4313 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4314 are undefined). Otherwise, returns a value indicating the category
4315 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4316 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4317 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4318 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4319 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4320 may be NULL, in which case they are not assigned.
4321
4322 [Currently, however, GCC does not generate subprogram renamings.] */
4323
4324 enum ada_renaming_category
4325 ada_parse_renaming (struct symbol *sym,
4326 const char **renamed_entity, int *len,
4327 const char **renaming_expr)
4328 {
4329 enum ada_renaming_category kind;
4330 const char *info;
4331 const char *suffix;
4332
4333 if (sym == NULL)
4334 return ADA_NOT_RENAMING;
4335 switch (SYMBOL_CLASS (sym))
4336 {
4337 default:
4338 return ADA_NOT_RENAMING;
4339 case LOC_TYPEDEF:
4340 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4341 renamed_entity, len, renaming_expr);
4342 case LOC_LOCAL:
4343 case LOC_STATIC:
4344 case LOC_COMPUTED:
4345 case LOC_OPTIMIZED_OUT:
4346 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4347 if (info == NULL)
4348 return ADA_NOT_RENAMING;
4349 switch (info[5])
4350 {
4351 case '_':
4352 kind = ADA_OBJECT_RENAMING;
4353 info += 6;
4354 break;
4355 case 'E':
4356 kind = ADA_EXCEPTION_RENAMING;
4357 info += 7;
4358 break;
4359 case 'P':
4360 kind = ADA_PACKAGE_RENAMING;
4361 info += 7;
4362 break;
4363 case 'S':
4364 kind = ADA_SUBPROGRAM_RENAMING;
4365 info += 7;
4366 break;
4367 default:
4368 return ADA_NOT_RENAMING;
4369 }
4370 }
4371
4372 if (renamed_entity != NULL)
4373 *renamed_entity = info;
4374 suffix = strstr (info, "___XE");
4375 if (suffix == NULL || suffix == info)
4376 return ADA_NOT_RENAMING;
4377 if (len != NULL)
4378 *len = strlen (info) - strlen (suffix);
4379 suffix += 5;
4380 if (renaming_expr != NULL)
4381 *renaming_expr = suffix;
4382 return kind;
4383 }
4384
4385 /* Assuming TYPE encodes a renaming according to the old encoding in
4386 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4387 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4388 ADA_NOT_RENAMING otherwise. */
4389 static enum ada_renaming_category
4390 parse_old_style_renaming (struct type *type,
4391 const char **renamed_entity, int *len,
4392 const char **renaming_expr)
4393 {
4394 enum ada_renaming_category kind;
4395 const char *name;
4396 const char *info;
4397 const char *suffix;
4398
4399 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4400 || TYPE_NFIELDS (type) != 1)
4401 return ADA_NOT_RENAMING;
4402
4403 name = TYPE_NAME (type);
4404 if (name == NULL)
4405 return ADA_NOT_RENAMING;
4406
4407 name = strstr (name, "___XR");
4408 if (name == NULL)
4409 return ADA_NOT_RENAMING;
4410 switch (name[5])
4411 {
4412 case '\0':
4413 case '_':
4414 kind = ADA_OBJECT_RENAMING;
4415 break;
4416 case 'E':
4417 kind = ADA_EXCEPTION_RENAMING;
4418 break;
4419 case 'P':
4420 kind = ADA_PACKAGE_RENAMING;
4421 break;
4422 case 'S':
4423 kind = ADA_SUBPROGRAM_RENAMING;
4424 break;
4425 default:
4426 return ADA_NOT_RENAMING;
4427 }
4428
4429 info = TYPE_FIELD_NAME (type, 0);
4430 if (info == NULL)
4431 return ADA_NOT_RENAMING;
4432 if (renamed_entity != NULL)
4433 *renamed_entity = info;
4434 suffix = strstr (info, "___XE");
4435 if (renaming_expr != NULL)
4436 *renaming_expr = suffix + 5;
4437 if (suffix == NULL || suffix == info)
4438 return ADA_NOT_RENAMING;
4439 if (len != NULL)
4440 *len = suffix - info;
4441 return kind;
4442 }
4443
4444 /* Compute the value of the given RENAMING_SYM, which is expected to
4445 be a symbol encoding a renaming expression. BLOCK is the block
4446 used to evaluate the renaming. */
4447
4448 static struct value *
4449 ada_read_renaming_var_value (struct symbol *renaming_sym,
4450 const struct block *block)
4451 {
4452 const char *sym_name;
4453
4454 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4455 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4456 return evaluate_expression (expr.get ());
4457 }
4458 \f
4459
4460 /* Evaluation: Function Calls */
4461
4462 /* Return an lvalue containing the value VAL. This is the identity on
4463 lvalues, and otherwise has the side-effect of allocating memory
4464 in the inferior where a copy of the value contents is copied. */
4465
4466 static struct value *
4467 ensure_lval (struct value *val)
4468 {
4469 if (VALUE_LVAL (val) == not_lval
4470 || VALUE_LVAL (val) == lval_internalvar)
4471 {
4472 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4473 const CORE_ADDR addr =
4474 value_as_long (value_allocate_space_in_inferior (len));
4475
4476 VALUE_LVAL (val) = lval_memory;
4477 set_value_address (val, addr);
4478 write_memory (addr, value_contents (val), len);
4479 }
4480
4481 return val;
4482 }
4483
4484 /* Return the value ACTUAL, converted to be an appropriate value for a
4485 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4486 allocating any necessary descriptors (fat pointers), or copies of
4487 values not residing in memory, updating it as needed. */
4488
4489 struct value *
4490 ada_convert_actual (struct value *actual, struct type *formal_type0)
4491 {
4492 struct type *actual_type = ada_check_typedef (value_type (actual));
4493 struct type *formal_type = ada_check_typedef (formal_type0);
4494 struct type *formal_target =
4495 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4496 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4497 struct type *actual_target =
4498 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4499 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4500
4501 if (ada_is_array_descriptor_type (formal_target)
4502 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4503 return make_array_descriptor (formal_type, actual);
4504 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4505 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4506 {
4507 struct value *result;
4508
4509 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4510 && ada_is_array_descriptor_type (actual_target))
4511 result = desc_data (actual);
4512 else if (TYPE_CODE (formal_type) != TYPE_CODE_PTR)
4513 {
4514 if (VALUE_LVAL (actual) != lval_memory)
4515 {
4516 struct value *val;
4517
4518 actual_type = ada_check_typedef (value_type (actual));
4519 val = allocate_value (actual_type);
4520 memcpy ((char *) value_contents_raw (val),
4521 (char *) value_contents (actual),
4522 TYPE_LENGTH (actual_type));
4523 actual = ensure_lval (val);
4524 }
4525 result = value_addr (actual);
4526 }
4527 else
4528 return actual;
4529 return value_cast_pointers (formal_type, result, 0);
4530 }
4531 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4532 return ada_value_ind (actual);
4533 else if (ada_is_aligner_type (formal_type))
4534 {
4535 /* We need to turn this parameter into an aligner type
4536 as well. */
4537 struct value *aligner = allocate_value (formal_type);
4538 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4539
4540 value_assign_to_component (aligner, component, actual);
4541 return aligner;
4542 }
4543
4544 return actual;
4545 }
4546
4547 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4548 type TYPE. This is usually an inefficient no-op except on some targets
4549 (such as AVR) where the representation of a pointer and an address
4550 differs. */
4551
4552 static CORE_ADDR
4553 value_pointer (struct value *value, struct type *type)
4554 {
4555 struct gdbarch *gdbarch = get_type_arch (type);
4556 unsigned len = TYPE_LENGTH (type);
4557 gdb_byte *buf = (gdb_byte *) alloca (len);
4558 CORE_ADDR addr;
4559
4560 addr = value_address (value);
4561 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4562 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4563 return addr;
4564 }
4565
4566
4567 /* Push a descriptor of type TYPE for array value ARR on the stack at
4568 *SP, updating *SP to reflect the new descriptor. Return either
4569 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4570 to-descriptor type rather than a descriptor type), a struct value *
4571 representing a pointer to this descriptor. */
4572
4573 static struct value *
4574 make_array_descriptor (struct type *type, struct value *arr)
4575 {
4576 struct type *bounds_type = desc_bounds_type (type);
4577 struct type *desc_type = desc_base_type (type);
4578 struct value *descriptor = allocate_value (desc_type);
4579 struct value *bounds = allocate_value (bounds_type);
4580 int i;
4581
4582 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4583 i > 0; i -= 1)
4584 {
4585 modify_field (value_type (bounds), value_contents_writeable (bounds),
4586 ada_array_bound (arr, i, 0),
4587 desc_bound_bitpos (bounds_type, i, 0),
4588 desc_bound_bitsize (bounds_type, i, 0));
4589 modify_field (value_type (bounds), value_contents_writeable (bounds),
4590 ada_array_bound (arr, i, 1),
4591 desc_bound_bitpos (bounds_type, i, 1),
4592 desc_bound_bitsize (bounds_type, i, 1));
4593 }
4594
4595 bounds = ensure_lval (bounds);
4596
4597 modify_field (value_type (descriptor),
4598 value_contents_writeable (descriptor),
4599 value_pointer (ensure_lval (arr),
4600 TYPE_FIELD_TYPE (desc_type, 0)),
4601 fat_pntr_data_bitpos (desc_type),
4602 fat_pntr_data_bitsize (desc_type));
4603
4604 modify_field (value_type (descriptor),
4605 value_contents_writeable (descriptor),
4606 value_pointer (bounds,
4607 TYPE_FIELD_TYPE (desc_type, 1)),
4608 fat_pntr_bounds_bitpos (desc_type),
4609 fat_pntr_bounds_bitsize (desc_type));
4610
4611 descriptor = ensure_lval (descriptor);
4612
4613 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4614 return value_addr (descriptor);
4615 else
4616 return descriptor;
4617 }
4618 \f
4619 /* Symbol Cache Module */
4620
4621 /* Performance measurements made as of 2010-01-15 indicate that
4622 this cache does bring some noticeable improvements. Depending
4623 on the type of entity being printed, the cache can make it as much
4624 as an order of magnitude faster than without it.
4625
4626 The descriptive type DWARF extension has significantly reduced
4627 the need for this cache, at least when DWARF is being used. However,
4628 even in this case, some expensive name-based symbol searches are still
4629 sometimes necessary - to find an XVZ variable, mostly. */
4630
4631 /* Initialize the contents of SYM_CACHE. */
4632
4633 static void
4634 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4635 {
4636 obstack_init (&sym_cache->cache_space);
4637 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4638 }
4639
4640 /* Free the memory used by SYM_CACHE. */
4641
4642 static void
4643 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4644 {
4645 obstack_free (&sym_cache->cache_space, NULL);
4646 xfree (sym_cache);
4647 }
4648
4649 /* Return the symbol cache associated to the given program space PSPACE.
4650 If not allocated for this PSPACE yet, allocate and initialize one. */
4651
4652 static struct ada_symbol_cache *
4653 ada_get_symbol_cache (struct program_space *pspace)
4654 {
4655 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4656
4657 if (pspace_data->sym_cache == NULL)
4658 {
4659 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4660 ada_init_symbol_cache (pspace_data->sym_cache);
4661 }
4662
4663 return pspace_data->sym_cache;
4664 }
4665
4666 /* Clear all entries from the symbol cache. */
4667
4668 static void
4669 ada_clear_symbol_cache (void)
4670 {
4671 struct ada_symbol_cache *sym_cache
4672 = ada_get_symbol_cache (current_program_space);
4673
4674 obstack_free (&sym_cache->cache_space, NULL);
4675 ada_init_symbol_cache (sym_cache);
4676 }
4677
4678 /* Search our cache for an entry matching NAME and DOMAIN.
4679 Return it if found, or NULL otherwise. */
4680
4681 static struct cache_entry **
4682 find_entry (const char *name, domain_enum domain)
4683 {
4684 struct ada_symbol_cache *sym_cache
4685 = ada_get_symbol_cache (current_program_space);
4686 int h = msymbol_hash (name) % HASH_SIZE;
4687 struct cache_entry **e;
4688
4689 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4690 {
4691 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4692 return e;
4693 }
4694 return NULL;
4695 }
4696
4697 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4698 Return 1 if found, 0 otherwise.
4699
4700 If an entry was found and SYM is not NULL, set *SYM to the entry's
4701 SYM. Same principle for BLOCK if not NULL. */
4702
4703 static int
4704 lookup_cached_symbol (const char *name, domain_enum domain,
4705 struct symbol **sym, const struct block **block)
4706 {
4707 struct cache_entry **e = find_entry (name, domain);
4708
4709 if (e == NULL)
4710 return 0;
4711 if (sym != NULL)
4712 *sym = (*e)->sym;
4713 if (block != NULL)
4714 *block = (*e)->block;
4715 return 1;
4716 }
4717
4718 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4719 in domain DOMAIN, save this result in our symbol cache. */
4720
4721 static void
4722 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4723 const struct block *block)
4724 {
4725 struct ada_symbol_cache *sym_cache
4726 = ada_get_symbol_cache (current_program_space);
4727 int h;
4728 char *copy;
4729 struct cache_entry *e;
4730
4731 /* Symbols for builtin types don't have a block.
4732 For now don't cache such symbols. */
4733 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4734 return;
4735
4736 /* If the symbol is a local symbol, then do not cache it, as a search
4737 for that symbol depends on the context. To determine whether
4738 the symbol is local or not, we check the block where we found it
4739 against the global and static blocks of its associated symtab. */
4740 if (sym
4741 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4742 GLOBAL_BLOCK) != block
4743 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4744 STATIC_BLOCK) != block)
4745 return;
4746
4747 h = msymbol_hash (name) % HASH_SIZE;
4748 e = XOBNEW (&sym_cache->cache_space, cache_entry);
4749 e->next = sym_cache->root[h];
4750 sym_cache->root[h] = e;
4751 e->name = copy
4752 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
4753 strcpy (copy, name);
4754 e->sym = sym;
4755 e->domain = domain;
4756 e->block = block;
4757 }
4758 \f
4759 /* Symbol Lookup */
4760
4761 /* Return the symbol name match type that should be used used when
4762 searching for all symbols matching LOOKUP_NAME.
4763
4764 LOOKUP_NAME is expected to be a symbol name after transformation
4765 for Ada lookups. */
4766
4767 static symbol_name_match_type
4768 name_match_type_from_name (const char *lookup_name)
4769 {
4770 return (strstr (lookup_name, "__") == NULL
4771 ? symbol_name_match_type::WILD
4772 : symbol_name_match_type::FULL);
4773 }
4774
4775 /* Return the result of a standard (literal, C-like) lookup of NAME in
4776 given DOMAIN, visible from lexical block BLOCK. */
4777
4778 static struct symbol *
4779 standard_lookup (const char *name, const struct block *block,
4780 domain_enum domain)
4781 {
4782 /* Initialize it just to avoid a GCC false warning. */
4783 struct block_symbol sym = {NULL, NULL};
4784
4785 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4786 return sym.symbol;
4787 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4788 cache_symbol (name, domain, sym.symbol, sym.block);
4789 return sym.symbol;
4790 }
4791
4792
4793 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4794 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4795 since they contend in overloading in the same way. */
4796 static int
4797 is_nonfunction (struct block_symbol syms[], int n)
4798 {
4799 int i;
4800
4801 for (i = 0; i < n; i += 1)
4802 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4803 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4804 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
4805 return 1;
4806
4807 return 0;
4808 }
4809
4810 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4811 struct types. Otherwise, they may not. */
4812
4813 static int
4814 equiv_types (struct type *type0, struct type *type1)
4815 {
4816 if (type0 == type1)
4817 return 1;
4818 if (type0 == NULL || type1 == NULL
4819 || TYPE_CODE (type0) != TYPE_CODE (type1))
4820 return 0;
4821 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4822 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4823 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4824 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4825 return 1;
4826
4827 return 0;
4828 }
4829
4830 /* True iff SYM0 represents the same entity as SYM1, or one that is
4831 no more defined than that of SYM1. */
4832
4833 static int
4834 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4835 {
4836 if (sym0 == sym1)
4837 return 1;
4838 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4839 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4840 return 0;
4841
4842 switch (SYMBOL_CLASS (sym0))
4843 {
4844 case LOC_UNDEF:
4845 return 1;
4846 case LOC_TYPEDEF:
4847 {
4848 struct type *type0 = SYMBOL_TYPE (sym0);
4849 struct type *type1 = SYMBOL_TYPE (sym1);
4850 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4851 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4852 int len0 = strlen (name0);
4853
4854 return
4855 TYPE_CODE (type0) == TYPE_CODE (type1)
4856 && (equiv_types (type0, type1)
4857 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4858 && startswith (name1 + len0, "___XV")));
4859 }
4860 case LOC_CONST:
4861 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4862 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4863 default:
4864 return 0;
4865 }
4866 }
4867
4868 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4869 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4870
4871 static void
4872 add_defn_to_vec (struct obstack *obstackp,
4873 struct symbol *sym,
4874 const struct block *block)
4875 {
4876 int i;
4877 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
4878
4879 /* Do not try to complete stub types, as the debugger is probably
4880 already scanning all symbols matching a certain name at the
4881 time when this function is called. Trying to replace the stub
4882 type by its associated full type will cause us to restart a scan
4883 which may lead to an infinite recursion. Instead, the client
4884 collecting the matching symbols will end up collecting several
4885 matches, with at least one of them complete. It can then filter
4886 out the stub ones if needed. */
4887
4888 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4889 {
4890 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4891 return;
4892 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4893 {
4894 prevDefns[i].symbol = sym;
4895 prevDefns[i].block = block;
4896 return;
4897 }
4898 }
4899
4900 {
4901 struct block_symbol info;
4902
4903 info.symbol = sym;
4904 info.block = block;
4905 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4906 }
4907 }
4908
4909 /* Number of block_symbol structures currently collected in current vector in
4910 OBSTACKP. */
4911
4912 static int
4913 num_defns_collected (struct obstack *obstackp)
4914 {
4915 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4916 }
4917
4918 /* Vector of block_symbol structures currently collected in current vector in
4919 OBSTACKP. If FINISH, close off the vector and return its final address. */
4920
4921 static struct block_symbol *
4922 defns_collected (struct obstack *obstackp, int finish)
4923 {
4924 if (finish)
4925 return (struct block_symbol *) obstack_finish (obstackp);
4926 else
4927 return (struct block_symbol *) obstack_base (obstackp);
4928 }
4929
4930 /* Return a bound minimal symbol matching NAME according to Ada
4931 decoding rules. Returns an invalid symbol if there is no such
4932 minimal symbol. Names prefixed with "standard__" are handled
4933 specially: "standard__" is first stripped off, and only static and
4934 global symbols are searched. */
4935
4936 struct bound_minimal_symbol
4937 ada_lookup_simple_minsym (const char *name)
4938 {
4939 struct bound_minimal_symbol result;
4940 struct objfile *objfile;
4941 struct minimal_symbol *msymbol;
4942
4943 memset (&result, 0, sizeof (result));
4944
4945 symbol_name_match_type match_type = name_match_type_from_name (name);
4946 lookup_name_info lookup_name (name, match_type);
4947
4948 symbol_name_matcher_ftype *match_name
4949 = ada_get_symbol_name_matcher (lookup_name);
4950
4951 ALL_MSYMBOLS (objfile, msymbol)
4952 {
4953 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL)
4954 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4955 {
4956 result.minsym = msymbol;
4957 result.objfile = objfile;
4958 break;
4959 }
4960 }
4961
4962 return result;
4963 }
4964
4965 /* For all subprograms that statically enclose the subprogram of the
4966 selected frame, add symbols matching identifier NAME in DOMAIN
4967 and their blocks to the list of data in OBSTACKP, as for
4968 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4969 with a wildcard prefix. */
4970
4971 static void
4972 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4973 const lookup_name_info &lookup_name,
4974 domain_enum domain)
4975 {
4976 }
4977
4978 /* True if TYPE is definitely an artificial type supplied to a symbol
4979 for which no debugging information was given in the symbol file. */
4980
4981 static int
4982 is_nondebugging_type (struct type *type)
4983 {
4984 const char *name = ada_type_name (type);
4985
4986 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4987 }
4988
4989 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4990 that are deemed "identical" for practical purposes.
4991
4992 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4993 types and that their number of enumerals is identical (in other
4994 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4995
4996 static int
4997 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4998 {
4999 int i;
5000
5001 /* The heuristic we use here is fairly conservative. We consider
5002 that 2 enumerate types are identical if they have the same
5003 number of enumerals and that all enumerals have the same
5004 underlying value and name. */
5005
5006 /* All enums in the type should have an identical underlying value. */
5007 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5008 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
5009 return 0;
5010
5011 /* All enumerals should also have the same name (modulo any numerical
5012 suffix). */
5013 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5014 {
5015 const char *name_1 = TYPE_FIELD_NAME (type1, i);
5016 const char *name_2 = TYPE_FIELD_NAME (type2, i);
5017 int len_1 = strlen (name_1);
5018 int len_2 = strlen (name_2);
5019
5020 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
5021 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
5022 if (len_1 != len_2
5023 || strncmp (TYPE_FIELD_NAME (type1, i),
5024 TYPE_FIELD_NAME (type2, i),
5025 len_1) != 0)
5026 return 0;
5027 }
5028
5029 return 1;
5030 }
5031
5032 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
5033 that are deemed "identical" for practical purposes. Sometimes,
5034 enumerals are not strictly identical, but their types are so similar
5035 that they can be considered identical.
5036
5037 For instance, consider the following code:
5038
5039 type Color is (Black, Red, Green, Blue, White);
5040 type RGB_Color is new Color range Red .. Blue;
5041
5042 Type RGB_Color is a subrange of an implicit type which is a copy
5043 of type Color. If we call that implicit type RGB_ColorB ("B" is
5044 for "Base Type"), then type RGB_ColorB is a copy of type Color.
5045 As a result, when an expression references any of the enumeral
5046 by name (Eg. "print green"), the expression is technically
5047 ambiguous and the user should be asked to disambiguate. But
5048 doing so would only hinder the user, since it wouldn't matter
5049 what choice he makes, the outcome would always be the same.
5050 So, for practical purposes, we consider them as the same. */
5051
5052 static int
5053 symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
5054 {
5055 int i;
5056
5057 /* Before performing a thorough comparison check of each type,
5058 we perform a series of inexpensive checks. We expect that these
5059 checks will quickly fail in the vast majority of cases, and thus
5060 help prevent the unnecessary use of a more expensive comparison.
5061 Said comparison also expects us to make some of these checks
5062 (see ada_identical_enum_types_p). */
5063
5064 /* Quick check: All symbols should have an enum type. */
5065 for (i = 0; i < syms.size (); i++)
5066 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
5067 return 0;
5068
5069 /* Quick check: They should all have the same value. */
5070 for (i = 1; i < syms.size (); i++)
5071 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
5072 return 0;
5073
5074 /* Quick check: They should all have the same number of enumerals. */
5075 for (i = 1; i < syms.size (); i++)
5076 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
5077 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
5078 return 0;
5079
5080 /* All the sanity checks passed, so we might have a set of
5081 identical enumeration types. Perform a more complete
5082 comparison of the type of each symbol. */
5083 for (i = 1; i < syms.size (); i++)
5084 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5085 SYMBOL_TYPE (syms[0].symbol)))
5086 return 0;
5087
5088 return 1;
5089 }
5090
5091 /* Remove any non-debugging symbols in SYMS that definitely
5092 duplicate other symbols in the list (The only case I know of where
5093 this happens is when object files containing stabs-in-ecoff are
5094 linked with files containing ordinary ecoff debugging symbols (or no
5095 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5096 Returns the number of items in the modified list. */
5097
5098 static int
5099 remove_extra_symbols (std::vector<struct block_symbol> *syms)
5100 {
5101 int i, j;
5102
5103 /* We should never be called with less than 2 symbols, as there
5104 cannot be any extra symbol in that case. But it's easy to
5105 handle, since we have nothing to do in that case. */
5106 if (syms->size () < 2)
5107 return syms->size ();
5108
5109 i = 0;
5110 while (i < syms->size ())
5111 {
5112 int remove_p = 0;
5113
5114 /* If two symbols have the same name and one of them is a stub type,
5115 the get rid of the stub. */
5116
5117 if (TYPE_STUB (SYMBOL_TYPE ((*syms)[i].symbol))
5118 && SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL)
5119 {
5120 for (j = 0; j < syms->size (); j++)
5121 {
5122 if (j != i
5123 && !TYPE_STUB (SYMBOL_TYPE ((*syms)[j].symbol))
5124 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
5125 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5126 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0)
5127 remove_p = 1;
5128 }
5129 }
5130
5131 /* Two symbols with the same name, same class and same address
5132 should be identical. */
5133
5134 else if (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL
5135 && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC
5136 && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol)))
5137 {
5138 for (j = 0; j < syms->size (); j += 1)
5139 {
5140 if (i != j
5141 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
5142 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5143 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0
5144 && SYMBOL_CLASS ((*syms)[i].symbol)
5145 == SYMBOL_CLASS ((*syms)[j].symbol)
5146 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
5147 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
5148 remove_p = 1;
5149 }
5150 }
5151
5152 if (remove_p)
5153 syms->erase (syms->begin () + i);
5154
5155 i += 1;
5156 }
5157
5158 /* If all the remaining symbols are identical enumerals, then
5159 just keep the first one and discard the rest.
5160
5161 Unlike what we did previously, we do not discard any entry
5162 unless they are ALL identical. This is because the symbol
5163 comparison is not a strict comparison, but rather a practical
5164 comparison. If all symbols are considered identical, then
5165 we can just go ahead and use the first one and discard the rest.
5166 But if we cannot reduce the list to a single element, we have
5167 to ask the user to disambiguate anyways. And if we have to
5168 present a multiple-choice menu, it's less confusing if the list
5169 isn't missing some choices that were identical and yet distinct. */
5170 if (symbols_are_identical_enums (*syms))
5171 syms->resize (1);
5172
5173 return syms->size ();
5174 }
5175
5176 /* Given a type that corresponds to a renaming entity, use the type name
5177 to extract the scope (package name or function name, fully qualified,
5178 and following the GNAT encoding convention) where this renaming has been
5179 defined. */
5180
5181 static std::string
5182 xget_renaming_scope (struct type *renaming_type)
5183 {
5184 /* The renaming types adhere to the following convention:
5185 <scope>__<rename>___<XR extension>.
5186 So, to extract the scope, we search for the "___XR" extension,
5187 and then backtrack until we find the first "__". */
5188
5189 const char *name = TYPE_NAME (renaming_type);
5190 const char *suffix = strstr (name, "___XR");
5191 const char *last;
5192
5193 /* Now, backtrack a bit until we find the first "__". Start looking
5194 at suffix - 3, as the <rename> part is at least one character long. */
5195
5196 for (last = suffix - 3; last > name; last--)
5197 if (last[0] == '_' && last[1] == '_')
5198 break;
5199
5200 /* Make a copy of scope and return it. */
5201 return std::string (name, last);
5202 }
5203
5204 /* Return nonzero if NAME corresponds to a package name. */
5205
5206 static int
5207 is_package_name (const char *name)
5208 {
5209 /* Here, We take advantage of the fact that no symbols are generated
5210 for packages, while symbols are generated for each function.
5211 So the condition for NAME represent a package becomes equivalent
5212 to NAME not existing in our list of symbols. There is only one
5213 small complication with library-level functions (see below). */
5214
5215 /* If it is a function that has not been defined at library level,
5216 then we should be able to look it up in the symbols. */
5217 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5218 return 0;
5219
5220 /* Library-level function names start with "_ada_". See if function
5221 "_ada_" followed by NAME can be found. */
5222
5223 /* Do a quick check that NAME does not contain "__", since library-level
5224 functions names cannot contain "__" in them. */
5225 if (strstr (name, "__") != NULL)
5226 return 0;
5227
5228 std::string fun_name = string_printf ("_ada_%s", name);
5229
5230 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
5231 }
5232
5233 /* Return nonzero if SYM corresponds to a renaming entity that is
5234 not visible from FUNCTION_NAME. */
5235
5236 static int
5237 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
5238 {
5239 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5240 return 0;
5241
5242 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
5243
5244 /* If the rename has been defined in a package, then it is visible. */
5245 if (is_package_name (scope.c_str ()))
5246 return 0;
5247
5248 /* Check that the rename is in the current function scope by checking
5249 that its name starts with SCOPE. */
5250
5251 /* If the function name starts with "_ada_", it means that it is
5252 a library-level function. Strip this prefix before doing the
5253 comparison, as the encoding for the renaming does not contain
5254 this prefix. */
5255 if (startswith (function_name, "_ada_"))
5256 function_name += 5;
5257
5258 return !startswith (function_name, scope.c_str ());
5259 }
5260
5261 /* Remove entries from SYMS that corresponds to a renaming entity that
5262 is not visible from the function associated with CURRENT_BLOCK or
5263 that is superfluous due to the presence of more specific renaming
5264 information. Places surviving symbols in the initial entries of
5265 SYMS and returns the number of surviving symbols.
5266
5267 Rationale:
5268 First, in cases where an object renaming is implemented as a
5269 reference variable, GNAT may produce both the actual reference
5270 variable and the renaming encoding. In this case, we discard the
5271 latter.
5272
5273 Second, GNAT emits a type following a specified encoding for each renaming
5274 entity. Unfortunately, STABS currently does not support the definition
5275 of types that are local to a given lexical block, so all renamings types
5276 are emitted at library level. As a consequence, if an application
5277 contains two renaming entities using the same name, and a user tries to
5278 print the value of one of these entities, the result of the ada symbol
5279 lookup will also contain the wrong renaming type.
5280
5281 This function partially covers for this limitation by attempting to
5282 remove from the SYMS list renaming symbols that should be visible
5283 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5284 method with the current information available. The implementation
5285 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5286
5287 - When the user tries to print a rename in a function while there
5288 is another rename entity defined in a package: Normally, the
5289 rename in the function has precedence over the rename in the
5290 package, so the latter should be removed from the list. This is
5291 currently not the case.
5292
5293 - This function will incorrectly remove valid renames if
5294 the CURRENT_BLOCK corresponds to a function which symbol name
5295 has been changed by an "Export" pragma. As a consequence,
5296 the user will be unable to print such rename entities. */
5297
5298 static int
5299 remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
5300 const struct block *current_block)
5301 {
5302 struct symbol *current_function;
5303 const char *current_function_name;
5304 int i;
5305 int is_new_style_renaming;
5306
5307 /* If there is both a renaming foo___XR... encoded as a variable and
5308 a simple variable foo in the same block, discard the latter.
5309 First, zero out such symbols, then compress. */
5310 is_new_style_renaming = 0;
5311 for (i = 0; i < syms->size (); i += 1)
5312 {
5313 struct symbol *sym = (*syms)[i].symbol;
5314 const struct block *block = (*syms)[i].block;
5315 const char *name;
5316 const char *suffix;
5317
5318 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5319 continue;
5320 name = SYMBOL_LINKAGE_NAME (sym);
5321 suffix = strstr (name, "___XR");
5322
5323 if (suffix != NULL)
5324 {
5325 int name_len = suffix - name;
5326 int j;
5327
5328 is_new_style_renaming = 1;
5329 for (j = 0; j < syms->size (); j += 1)
5330 if (i != j && (*syms)[j].symbol != NULL
5331 && strncmp (name, SYMBOL_LINKAGE_NAME ((*syms)[j].symbol),
5332 name_len) == 0
5333 && block == (*syms)[j].block)
5334 (*syms)[j].symbol = NULL;
5335 }
5336 }
5337 if (is_new_style_renaming)
5338 {
5339 int j, k;
5340
5341 for (j = k = 0; j < syms->size (); j += 1)
5342 if ((*syms)[j].symbol != NULL)
5343 {
5344 (*syms)[k] = (*syms)[j];
5345 k += 1;
5346 }
5347 return k;
5348 }
5349
5350 /* Extract the function name associated to CURRENT_BLOCK.
5351 Abort if unable to do so. */
5352
5353 if (current_block == NULL)
5354 return syms->size ();
5355
5356 current_function = block_linkage_function (current_block);
5357 if (current_function == NULL)
5358 return syms->size ();
5359
5360 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5361 if (current_function_name == NULL)
5362 return syms->size ();
5363
5364 /* Check each of the symbols, and remove it from the list if it is
5365 a type corresponding to a renaming that is out of the scope of
5366 the current block. */
5367
5368 i = 0;
5369 while (i < syms->size ())
5370 {
5371 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
5372 == ADA_OBJECT_RENAMING
5373 && old_renaming_is_invisible ((*syms)[i].symbol,
5374 current_function_name))
5375 syms->erase (syms->begin () + i);
5376 else
5377 i += 1;
5378 }
5379
5380 return syms->size ();
5381 }
5382
5383 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5384 whose name and domain match NAME and DOMAIN respectively.
5385 If no match was found, then extend the search to "enclosing"
5386 routines (in other words, if we're inside a nested function,
5387 search the symbols defined inside the enclosing functions).
5388 If WILD_MATCH_P is nonzero, perform the naming matching in
5389 "wild" mode (see function "wild_match" for more info).
5390
5391 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5392
5393 static void
5394 ada_add_local_symbols (struct obstack *obstackp,
5395 const lookup_name_info &lookup_name,
5396 const struct block *block, domain_enum domain)
5397 {
5398 int block_depth = 0;
5399
5400 while (block != NULL)
5401 {
5402 block_depth += 1;
5403 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5404
5405 /* If we found a non-function match, assume that's the one. */
5406 if (is_nonfunction (defns_collected (obstackp, 0),
5407 num_defns_collected (obstackp)))
5408 return;
5409
5410 block = BLOCK_SUPERBLOCK (block);
5411 }
5412
5413 /* If no luck so far, try to find NAME as a local symbol in some lexically
5414 enclosing subprogram. */
5415 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5416 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
5417 }
5418
5419 /* An object of this type is used as the user_data argument when
5420 calling the map_matching_symbols method. */
5421
5422 struct match_data
5423 {
5424 struct objfile *objfile;
5425 struct obstack *obstackp;
5426 struct symbol *arg_sym;
5427 int found_sym;
5428 };
5429
5430 /* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
5431 to a list of symbols. DATA0 is a pointer to a struct match_data *
5432 containing the obstack that collects the symbol list, the file that SYM
5433 must come from, a flag indicating whether a non-argument symbol has
5434 been found in the current block, and the last argument symbol
5435 passed in SYM within the current block (if any). When SYM is null,
5436 marking the end of a block, the argument symbol is added if no
5437 other has been found. */
5438
5439 static int
5440 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
5441 {
5442 struct match_data *data = (struct match_data *) data0;
5443
5444 if (sym == NULL)
5445 {
5446 if (!data->found_sym && data->arg_sym != NULL)
5447 add_defn_to_vec (data->obstackp,
5448 fixup_symbol_section (data->arg_sym, data->objfile),
5449 block);
5450 data->found_sym = 0;
5451 data->arg_sym = NULL;
5452 }
5453 else
5454 {
5455 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5456 return 0;
5457 else if (SYMBOL_IS_ARGUMENT (sym))
5458 data->arg_sym = sym;
5459 else
5460 {
5461 data->found_sym = 1;
5462 add_defn_to_vec (data->obstackp,
5463 fixup_symbol_section (sym, data->objfile),
5464 block);
5465 }
5466 }
5467 return 0;
5468 }
5469
5470 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5471 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5472 symbols to OBSTACKP. Return whether we found such symbols. */
5473
5474 static int
5475 ada_add_block_renamings (struct obstack *obstackp,
5476 const struct block *block,
5477 const lookup_name_info &lookup_name,
5478 domain_enum domain)
5479 {
5480 struct using_direct *renaming;
5481 int defns_mark = num_defns_collected (obstackp);
5482
5483 symbol_name_matcher_ftype *name_match
5484 = ada_get_symbol_name_matcher (lookup_name);
5485
5486 for (renaming = block_using (block);
5487 renaming != NULL;
5488 renaming = renaming->next)
5489 {
5490 const char *r_name;
5491
5492 /* Avoid infinite recursions: skip this renaming if we are actually
5493 already traversing it.
5494
5495 Currently, symbol lookup in Ada don't use the namespace machinery from
5496 C++/Fortran support: skip namespace imports that use them. */
5497 if (renaming->searched
5498 || (renaming->import_src != NULL
5499 && renaming->import_src[0] != '\0')
5500 || (renaming->import_dest != NULL
5501 && renaming->import_dest[0] != '\0'))
5502 continue;
5503 renaming->searched = 1;
5504
5505 /* TODO: here, we perform another name-based symbol lookup, which can
5506 pull its own multiple overloads. In theory, we should be able to do
5507 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5508 not a simple name. But in order to do this, we would need to enhance
5509 the DWARF reader to associate a symbol to this renaming, instead of a
5510 name. So, for now, we do something simpler: re-use the C++/Fortran
5511 namespace machinery. */
5512 r_name = (renaming->alias != NULL
5513 ? renaming->alias
5514 : renaming->declaration);
5515 if (name_match (r_name, lookup_name, NULL))
5516 {
5517 lookup_name_info decl_lookup_name (renaming->declaration,
5518 lookup_name.match_type ());
5519 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5520 1, NULL);
5521 }
5522 renaming->searched = 0;
5523 }
5524 return num_defns_collected (obstackp) != defns_mark;
5525 }
5526
5527 /* Implements compare_names, but only applying the comparision using
5528 the given CASING. */
5529
5530 static int
5531 compare_names_with_case (const char *string1, const char *string2,
5532 enum case_sensitivity casing)
5533 {
5534 while (*string1 != '\0' && *string2 != '\0')
5535 {
5536 char c1, c2;
5537
5538 if (isspace (*string1) || isspace (*string2))
5539 return strcmp_iw_ordered (string1, string2);
5540
5541 if (casing == case_sensitive_off)
5542 {
5543 c1 = tolower (*string1);
5544 c2 = tolower (*string2);
5545 }
5546 else
5547 {
5548 c1 = *string1;
5549 c2 = *string2;
5550 }
5551 if (c1 != c2)
5552 break;
5553
5554 string1 += 1;
5555 string2 += 1;
5556 }
5557
5558 switch (*string1)
5559 {
5560 case '(':
5561 return strcmp_iw_ordered (string1, string2);
5562 case '_':
5563 if (*string2 == '\0')
5564 {
5565 if (is_name_suffix (string1))
5566 return 0;
5567 else
5568 return 1;
5569 }
5570 /* FALLTHROUGH */
5571 default:
5572 if (*string2 == '(')
5573 return strcmp_iw_ordered (string1, string2);
5574 else
5575 {
5576 if (casing == case_sensitive_off)
5577 return tolower (*string1) - tolower (*string2);
5578 else
5579 return *string1 - *string2;
5580 }
5581 }
5582 }
5583
5584 /* Compare STRING1 to STRING2, with results as for strcmp.
5585 Compatible with strcmp_iw_ordered in that...
5586
5587 strcmp_iw_ordered (STRING1, STRING2) <= 0
5588
5589 ... implies...
5590
5591 compare_names (STRING1, STRING2) <= 0
5592
5593 (they may differ as to what symbols compare equal). */
5594
5595 static int
5596 compare_names (const char *string1, const char *string2)
5597 {
5598 int result;
5599
5600 /* Similar to what strcmp_iw_ordered does, we need to perform
5601 a case-insensitive comparison first, and only resort to
5602 a second, case-sensitive, comparison if the first one was
5603 not sufficient to differentiate the two strings. */
5604
5605 result = compare_names_with_case (string1, string2, case_sensitive_off);
5606 if (result == 0)
5607 result = compare_names_with_case (string1, string2, case_sensitive_on);
5608
5609 return result;
5610 }
5611
5612 /* Convenience function to get at the Ada encoded lookup name for
5613 LOOKUP_NAME, as a C string. */
5614
5615 static const char *
5616 ada_lookup_name (const lookup_name_info &lookup_name)
5617 {
5618 return lookup_name.ada ().lookup_name ().c_str ();
5619 }
5620
5621 /* Add to OBSTACKP all non-local symbols whose name and domain match
5622 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5623 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5624 symbols otherwise. */
5625
5626 static void
5627 add_nonlocal_symbols (struct obstack *obstackp,
5628 const lookup_name_info &lookup_name,
5629 domain_enum domain, int global)
5630 {
5631 struct objfile *objfile;
5632 struct compunit_symtab *cu;
5633 struct match_data data;
5634
5635 memset (&data, 0, sizeof data);
5636 data.obstackp = obstackp;
5637
5638 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5639
5640 ALL_OBJFILES (objfile)
5641 {
5642 data.objfile = objfile;
5643
5644 if (is_wild_match)
5645 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5646 domain, global,
5647 aux_add_nonlocal_symbols, &data,
5648 symbol_name_match_type::WILD,
5649 NULL);
5650 else
5651 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5652 domain, global,
5653 aux_add_nonlocal_symbols, &data,
5654 symbol_name_match_type::FULL,
5655 compare_names);
5656
5657 ALL_OBJFILE_COMPUNITS (objfile, cu)
5658 {
5659 const struct block *global_block
5660 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5661
5662 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5663 domain))
5664 data.found_sym = 1;
5665 }
5666 }
5667
5668 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5669 {
5670 const char *name = ada_lookup_name (lookup_name);
5671 std::string name1 = std::string ("<_ada_") + name + '>';
5672
5673 ALL_OBJFILES (objfile)
5674 {
5675 data.objfile = objfile;
5676 objfile->sf->qf->map_matching_symbols (objfile, name1.c_str (),
5677 domain, global,
5678 aux_add_nonlocal_symbols,
5679 &data,
5680 symbol_name_match_type::FULL,
5681 compare_names);
5682 }
5683 }
5684 }
5685
5686 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5687 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5688 returning the number of matches. Add these to OBSTACKP.
5689
5690 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5691 symbol match within the nest of blocks whose innermost member is BLOCK,
5692 is the one match returned (no other matches in that or
5693 enclosing blocks is returned). If there are any matches in or
5694 surrounding BLOCK, then these alone are returned.
5695
5696 Names prefixed with "standard__" are handled specially:
5697 "standard__" is first stripped off (by the lookup_name
5698 constructor), and only static and global symbols are searched.
5699
5700 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5701 to lookup global symbols. */
5702
5703 static void
5704 ada_add_all_symbols (struct obstack *obstackp,
5705 const struct block *block,
5706 const lookup_name_info &lookup_name,
5707 domain_enum domain,
5708 int full_search,
5709 int *made_global_lookup_p)
5710 {
5711 struct symbol *sym;
5712
5713 if (made_global_lookup_p)
5714 *made_global_lookup_p = 0;
5715
5716 /* Special case: If the user specifies a symbol name inside package
5717 Standard, do a non-wild matching of the symbol name without
5718 the "standard__" prefix. This was primarily introduced in order
5719 to allow the user to specifically access the standard exceptions
5720 using, for instance, Standard.Constraint_Error when Constraint_Error
5721 is ambiguous (due to the user defining its own Constraint_Error
5722 entity inside its program). */
5723 if (lookup_name.ada ().standard_p ())
5724 block = NULL;
5725
5726 /* Check the non-global symbols. If we have ANY match, then we're done. */
5727
5728 if (block != NULL)
5729 {
5730 if (full_search)
5731 ada_add_local_symbols (obstackp, lookup_name, block, domain);
5732 else
5733 {
5734 /* In the !full_search case we're are being called by
5735 ada_iterate_over_symbols, and we don't want to search
5736 superblocks. */
5737 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5738 }
5739 if (num_defns_collected (obstackp) > 0 || !full_search)
5740 return;
5741 }
5742
5743 /* No non-global symbols found. Check our cache to see if we have
5744 already performed this search before. If we have, then return
5745 the same result. */
5746
5747 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5748 domain, &sym, &block))
5749 {
5750 if (sym != NULL)
5751 add_defn_to_vec (obstackp, sym, block);
5752 return;
5753 }
5754
5755 if (made_global_lookup_p)
5756 *made_global_lookup_p = 1;
5757
5758 /* Search symbols from all global blocks. */
5759
5760 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
5761
5762 /* Now add symbols from all per-file blocks if we've gotten no hits
5763 (not strictly correct, but perhaps better than an error). */
5764
5765 if (num_defns_collected (obstackp) == 0)
5766 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
5767 }
5768
5769 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5770 is non-zero, enclosing scope and in global scopes, returning the number of
5771 matches.
5772 Fills *RESULTS with (SYM,BLOCK) tuples, indicating the symbols
5773 found and the blocks and symbol tables (if any) in which they were
5774 found.
5775
5776 When full_search is non-zero, any non-function/non-enumeral
5777 symbol match within the nest of blocks whose innermost member is BLOCK,
5778 is the one match returned (no other matches in that or
5779 enclosing blocks is returned). If there are any matches in or
5780 surrounding BLOCK, then these alone are returned.
5781
5782 Names prefixed with "standard__" are handled specially: "standard__"
5783 is first stripped off, and only static and global symbols are searched. */
5784
5785 static int
5786 ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5787 const struct block *block,
5788 domain_enum domain,
5789 std::vector<struct block_symbol> *results,
5790 int full_search)
5791 {
5792 int syms_from_global_search;
5793 int ndefns;
5794 auto_obstack obstack;
5795
5796 ada_add_all_symbols (&obstack, block, lookup_name,
5797 domain, full_search, &syms_from_global_search);
5798
5799 ndefns = num_defns_collected (&obstack);
5800
5801 struct block_symbol *base = defns_collected (&obstack, 1);
5802 for (int i = 0; i < ndefns; ++i)
5803 results->push_back (base[i]);
5804
5805 ndefns = remove_extra_symbols (results);
5806
5807 if (ndefns == 0 && full_search && syms_from_global_search)
5808 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
5809
5810 if (ndefns == 1 && full_search && syms_from_global_search)
5811 cache_symbol (ada_lookup_name (lookup_name), domain,
5812 (*results)[0].symbol, (*results)[0].block);
5813
5814 ndefns = remove_irrelevant_renamings (results, block);
5815
5816 return ndefns;
5817 }
5818
5819 /* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
5820 in global scopes, returning the number of matches, and filling *RESULTS
5821 with (SYM,BLOCK) tuples.
5822
5823 See ada_lookup_symbol_list_worker for further details. */
5824
5825 int
5826 ada_lookup_symbol_list (const char *name, const struct block *block,
5827 domain_enum domain,
5828 std::vector<struct block_symbol> *results)
5829 {
5830 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5831 lookup_name_info lookup_name (name, name_match_type);
5832
5833 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
5834 }
5835
5836 /* Implementation of the la_iterate_over_symbols method. */
5837
5838 static void
5839 ada_iterate_over_symbols
5840 (const struct block *block, const lookup_name_info &name,
5841 domain_enum domain,
5842 gdb::function_view<symbol_found_callback_ftype> callback)
5843 {
5844 int ndefs, i;
5845 std::vector<struct block_symbol> results;
5846
5847 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5848
5849 for (i = 0; i < ndefs; ++i)
5850 {
5851 if (!callback (&results[i]))
5852 break;
5853 }
5854 }
5855
5856 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5857 to 1, but choosing the first symbol found if there are multiple
5858 choices.
5859
5860 The result is stored in *INFO, which must be non-NULL.
5861 If no match is found, INFO->SYM is set to NULL. */
5862
5863 void
5864 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5865 domain_enum domain,
5866 struct block_symbol *info)
5867 {
5868 /* Since we already have an encoded name, wrap it in '<>' to force a
5869 verbatim match. Otherwise, if the name happens to not look like
5870 an encoded name (because it doesn't include a "__"),
5871 ada_lookup_name_info would re-encode/fold it again, and that
5872 would e.g., incorrectly lowercase object renaming names like
5873 "R28b" -> "r28b". */
5874 std::string verbatim = std::string ("<") + name + '>';
5875
5876 gdb_assert (info != NULL);
5877 *info = ada_lookup_symbol (verbatim.c_str (), block, domain, NULL);
5878 }
5879
5880 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5881 scope and in global scopes, or NULL if none. NAME is folded and
5882 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5883 choosing the first symbol if there are multiple choices.
5884 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5885
5886 struct block_symbol
5887 ada_lookup_symbol (const char *name, const struct block *block0,
5888 domain_enum domain, int *is_a_field_of_this)
5889 {
5890 if (is_a_field_of_this != NULL)
5891 *is_a_field_of_this = 0;
5892
5893 std::vector<struct block_symbol> candidates;
5894 int n_candidates;
5895
5896 n_candidates = ada_lookup_symbol_list (name, block0, domain, &candidates);
5897
5898 if (n_candidates == 0)
5899 return {};
5900
5901 block_symbol info = candidates[0];
5902 info.symbol = fixup_symbol_section (info.symbol, NULL);
5903 return info;
5904 }
5905
5906 static struct block_symbol
5907 ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5908 const char *name,
5909 const struct block *block,
5910 const domain_enum domain)
5911 {
5912 struct block_symbol sym;
5913
5914 sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5915 if (sym.symbol != NULL)
5916 return sym;
5917
5918 /* If we haven't found a match at this point, try the primitive
5919 types. In other languages, this search is performed before
5920 searching for global symbols in order to short-circuit that
5921 global-symbol search if it happens that the name corresponds
5922 to a primitive type. But we cannot do the same in Ada, because
5923 it is perfectly legitimate for a program to declare a type which
5924 has the same name as a standard type. If looking up a type in
5925 that situation, we have traditionally ignored the primitive type
5926 in favor of user-defined types. This is why, unlike most other
5927 languages, we search the primitive types this late and only after
5928 having searched the global symbols without success. */
5929
5930 if (domain == VAR_DOMAIN)
5931 {
5932 struct gdbarch *gdbarch;
5933
5934 if (block == NULL)
5935 gdbarch = target_gdbarch ();
5936 else
5937 gdbarch = block_gdbarch (block);
5938 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5939 if (sym.symbol != NULL)
5940 return sym;
5941 }
5942
5943 return (struct block_symbol) {NULL, NULL};
5944 }
5945
5946
5947 /* True iff STR is a possible encoded suffix of a normal Ada name
5948 that is to be ignored for matching purposes. Suffixes of parallel
5949 names (e.g., XVE) are not included here. Currently, the possible suffixes
5950 are given by any of the regular expressions:
5951
5952 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5953 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5954 TKB [subprogram suffix for task bodies]
5955 _E[0-9]+[bs]$ [protected object entry suffixes]
5956 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5957
5958 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5959 match is performed. This sequence is used to differentiate homonyms,
5960 is an optional part of a valid name suffix. */
5961
5962 static int
5963 is_name_suffix (const char *str)
5964 {
5965 int k;
5966 const char *matching;
5967 const int len = strlen (str);
5968
5969 /* Skip optional leading __[0-9]+. */
5970
5971 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5972 {
5973 str += 3;
5974 while (isdigit (str[0]))
5975 str += 1;
5976 }
5977
5978 /* [.$][0-9]+ */
5979
5980 if (str[0] == '.' || str[0] == '$')
5981 {
5982 matching = str + 1;
5983 while (isdigit (matching[0]))
5984 matching += 1;
5985 if (matching[0] == '\0')
5986 return 1;
5987 }
5988
5989 /* ___[0-9]+ */
5990
5991 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5992 {
5993 matching = str + 3;
5994 while (isdigit (matching[0]))
5995 matching += 1;
5996 if (matching[0] == '\0')
5997 return 1;
5998 }
5999
6000 /* "TKB" suffixes are used for subprograms implementing task bodies. */
6001
6002 if (strcmp (str, "TKB") == 0)
6003 return 1;
6004
6005 #if 0
6006 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
6007 with a N at the end. Unfortunately, the compiler uses the same
6008 convention for other internal types it creates. So treating
6009 all entity names that end with an "N" as a name suffix causes
6010 some regressions. For instance, consider the case of an enumerated
6011 type. To support the 'Image attribute, it creates an array whose
6012 name ends with N.
6013 Having a single character like this as a suffix carrying some
6014 information is a bit risky. Perhaps we should change the encoding
6015 to be something like "_N" instead. In the meantime, do not do
6016 the following check. */
6017 /* Protected Object Subprograms */
6018 if (len == 1 && str [0] == 'N')
6019 return 1;
6020 #endif
6021
6022 /* _E[0-9]+[bs]$ */
6023 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
6024 {
6025 matching = str + 3;
6026 while (isdigit (matching[0]))
6027 matching += 1;
6028 if ((matching[0] == 'b' || matching[0] == 's')
6029 && matching [1] == '\0')
6030 return 1;
6031 }
6032
6033 /* ??? We should not modify STR directly, as we are doing below. This
6034 is fine in this case, but may become problematic later if we find
6035 that this alternative did not work, and want to try matching
6036 another one from the begining of STR. Since we modified it, we
6037 won't be able to find the begining of the string anymore! */
6038 if (str[0] == 'X')
6039 {
6040 str += 1;
6041 while (str[0] != '_' && str[0] != '\0')
6042 {
6043 if (str[0] != 'n' && str[0] != 'b')
6044 return 0;
6045 str += 1;
6046 }
6047 }
6048
6049 if (str[0] == '\000')
6050 return 1;
6051
6052 if (str[0] == '_')
6053 {
6054 if (str[1] != '_' || str[2] == '\000')
6055 return 0;
6056 if (str[2] == '_')
6057 {
6058 if (strcmp (str + 3, "JM") == 0)
6059 return 1;
6060 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6061 the LJM suffix in favor of the JM one. But we will
6062 still accept LJM as a valid suffix for a reasonable
6063 amount of time, just to allow ourselves to debug programs
6064 compiled using an older version of GNAT. */
6065 if (strcmp (str + 3, "LJM") == 0)
6066 return 1;
6067 if (str[3] != 'X')
6068 return 0;
6069 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
6070 || str[4] == 'U' || str[4] == 'P')
6071 return 1;
6072 if (str[4] == 'R' && str[5] != 'T')
6073 return 1;
6074 return 0;
6075 }
6076 if (!isdigit (str[2]))
6077 return 0;
6078 for (k = 3; str[k] != '\0'; k += 1)
6079 if (!isdigit (str[k]) && str[k] != '_')
6080 return 0;
6081 return 1;
6082 }
6083 if (str[0] == '$' && isdigit (str[1]))
6084 {
6085 for (k = 2; str[k] != '\0'; k += 1)
6086 if (!isdigit (str[k]) && str[k] != '_')
6087 return 0;
6088 return 1;
6089 }
6090 return 0;
6091 }
6092
6093 /* Return non-zero if the string starting at NAME and ending before
6094 NAME_END contains no capital letters. */
6095
6096 static int
6097 is_valid_name_for_wild_match (const char *name0)
6098 {
6099 const char *decoded_name = ada_decode (name0);
6100 int i;
6101
6102 /* If the decoded name starts with an angle bracket, it means that
6103 NAME0 does not follow the GNAT encoding format. It should then
6104 not be allowed as a possible wild match. */
6105 if (decoded_name[0] == '<')
6106 return 0;
6107
6108 for (i=0; decoded_name[i] != '\0'; i++)
6109 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6110 return 0;
6111
6112 return 1;
6113 }
6114
6115 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6116 that could start a simple name. Assumes that *NAMEP points into
6117 the string beginning at NAME0. */
6118
6119 static int
6120 advance_wild_match (const char **namep, const char *name0, int target0)
6121 {
6122 const char *name = *namep;
6123
6124 while (1)
6125 {
6126 int t0, t1;
6127
6128 t0 = *name;
6129 if (t0 == '_')
6130 {
6131 t1 = name[1];
6132 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6133 {
6134 name += 1;
6135 if (name == name0 + 5 && startswith (name0, "_ada"))
6136 break;
6137 else
6138 name += 1;
6139 }
6140 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6141 || name[2] == target0))
6142 {
6143 name += 2;
6144 break;
6145 }
6146 else
6147 return 0;
6148 }
6149 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6150 name += 1;
6151 else
6152 return 0;
6153 }
6154
6155 *namep = name;
6156 return 1;
6157 }
6158
6159 /* Return true iff NAME encodes a name of the form prefix.PATN.
6160 Ignores any informational suffixes of NAME (i.e., for which
6161 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6162 simple name. */
6163
6164 static bool
6165 wild_match (const char *name, const char *patn)
6166 {
6167 const char *p;
6168 const char *name0 = name;
6169
6170 while (1)
6171 {
6172 const char *match = name;
6173
6174 if (*name == *patn)
6175 {
6176 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6177 if (*p != *name)
6178 break;
6179 if (*p == '\0' && is_name_suffix (name))
6180 return match == name0 || is_valid_name_for_wild_match (name0);
6181
6182 if (name[-1] == '_')
6183 name -= 1;
6184 }
6185 if (!advance_wild_match (&name, name0, *patn))
6186 return false;
6187 }
6188 }
6189
6190 /* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6191 any trailing suffixes that encode debugging information or leading
6192 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6193 information that is ignored). */
6194
6195 static bool
6196 full_match (const char *sym_name, const char *search_name)
6197 {
6198 size_t search_name_len = strlen (search_name);
6199
6200 if (strncmp (sym_name, search_name, search_name_len) == 0
6201 && is_name_suffix (sym_name + search_name_len))
6202 return true;
6203
6204 if (startswith (sym_name, "_ada_")
6205 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6206 && is_name_suffix (sym_name + search_name_len + 5))
6207 return true;
6208
6209 return false;
6210 }
6211
6212 /* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6213 *defn_symbols, updating the list of symbols in OBSTACKP (if
6214 necessary). OBJFILE is the section containing BLOCK. */
6215
6216 static void
6217 ada_add_block_symbols (struct obstack *obstackp,
6218 const struct block *block,
6219 const lookup_name_info &lookup_name,
6220 domain_enum domain, struct objfile *objfile)
6221 {
6222 struct block_iterator iter;
6223 /* A matching argument symbol, if any. */
6224 struct symbol *arg_sym;
6225 /* Set true when we find a matching non-argument symbol. */
6226 int found_sym;
6227 struct symbol *sym;
6228
6229 arg_sym = NULL;
6230 found_sym = 0;
6231 for (sym = block_iter_match_first (block, lookup_name, &iter);
6232 sym != NULL;
6233 sym = block_iter_match_next (lookup_name, &iter))
6234 {
6235 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6236 SYMBOL_DOMAIN (sym), domain))
6237 {
6238 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6239 {
6240 if (SYMBOL_IS_ARGUMENT (sym))
6241 arg_sym = sym;
6242 else
6243 {
6244 found_sym = 1;
6245 add_defn_to_vec (obstackp,
6246 fixup_symbol_section (sym, objfile),
6247 block);
6248 }
6249 }
6250 }
6251 }
6252
6253 /* Handle renamings. */
6254
6255 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
6256 found_sym = 1;
6257
6258 if (!found_sym && arg_sym != NULL)
6259 {
6260 add_defn_to_vec (obstackp,
6261 fixup_symbol_section (arg_sym, objfile),
6262 block);
6263 }
6264
6265 if (!lookup_name.ada ().wild_match_p ())
6266 {
6267 arg_sym = NULL;
6268 found_sym = 0;
6269 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6270 const char *name = ada_lookup_name.c_str ();
6271 size_t name_len = ada_lookup_name.size ();
6272
6273 ALL_BLOCK_SYMBOLS (block, iter, sym)
6274 {
6275 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6276 SYMBOL_DOMAIN (sym), domain))
6277 {
6278 int cmp;
6279
6280 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6281 if (cmp == 0)
6282 {
6283 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
6284 if (cmp == 0)
6285 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6286 name_len);
6287 }
6288
6289 if (cmp == 0
6290 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6291 {
6292 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6293 {
6294 if (SYMBOL_IS_ARGUMENT (sym))
6295 arg_sym = sym;
6296 else
6297 {
6298 found_sym = 1;
6299 add_defn_to_vec (obstackp,
6300 fixup_symbol_section (sym, objfile),
6301 block);
6302 }
6303 }
6304 }
6305 }
6306 }
6307
6308 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6309 They aren't parameters, right? */
6310 if (!found_sym && arg_sym != NULL)
6311 {
6312 add_defn_to_vec (obstackp,
6313 fixup_symbol_section (arg_sym, objfile),
6314 block);
6315 }
6316 }
6317 }
6318 \f
6319
6320 /* Symbol Completion */
6321
6322 /* See symtab.h. */
6323
6324 bool
6325 ada_lookup_name_info::matches
6326 (const char *sym_name,
6327 symbol_name_match_type match_type,
6328 completion_match_result *comp_match_res) const
6329 {
6330 bool match = false;
6331 const char *text = m_encoded_name.c_str ();
6332 size_t text_len = m_encoded_name.size ();
6333
6334 /* First, test against the fully qualified name of the symbol. */
6335
6336 if (strncmp (sym_name, text, text_len) == 0)
6337 match = true;
6338
6339 if (match && !m_encoded_p)
6340 {
6341 /* One needed check before declaring a positive match is to verify
6342 that iff we are doing a verbatim match, the decoded version
6343 of the symbol name starts with '<'. Otherwise, this symbol name
6344 is not a suitable completion. */
6345 const char *sym_name_copy = sym_name;
6346 bool has_angle_bracket;
6347
6348 sym_name = ada_decode (sym_name);
6349 has_angle_bracket = (sym_name[0] == '<');
6350 match = (has_angle_bracket == m_verbatim_p);
6351 sym_name = sym_name_copy;
6352 }
6353
6354 if (match && !m_verbatim_p)
6355 {
6356 /* When doing non-verbatim match, another check that needs to
6357 be done is to verify that the potentially matching symbol name
6358 does not include capital letters, because the ada-mode would
6359 not be able to understand these symbol names without the
6360 angle bracket notation. */
6361 const char *tmp;
6362
6363 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6364 if (*tmp != '\0')
6365 match = false;
6366 }
6367
6368 /* Second: Try wild matching... */
6369
6370 if (!match && m_wild_match_p)
6371 {
6372 /* Since we are doing wild matching, this means that TEXT
6373 may represent an unqualified symbol name. We therefore must
6374 also compare TEXT against the unqualified name of the symbol. */
6375 sym_name = ada_unqualified_name (ada_decode (sym_name));
6376
6377 if (strncmp (sym_name, text, text_len) == 0)
6378 match = true;
6379 }
6380
6381 /* Finally: If we found a match, prepare the result to return. */
6382
6383 if (!match)
6384 return false;
6385
6386 if (comp_match_res != NULL)
6387 {
6388 std::string &match_str = comp_match_res->match.storage ();
6389
6390 if (!m_encoded_p)
6391 match_str = ada_decode (sym_name);
6392 else
6393 {
6394 if (m_verbatim_p)
6395 match_str = add_angle_brackets (sym_name);
6396 else
6397 match_str = sym_name;
6398
6399 }
6400
6401 comp_match_res->set_match (match_str.c_str ());
6402 }
6403
6404 return true;
6405 }
6406
6407 /* Add the list of possible symbol names completing TEXT to TRACKER.
6408 WORD is the entire command on which completion is made. */
6409
6410 static void
6411 ada_collect_symbol_completion_matches (completion_tracker &tracker,
6412 complete_symbol_mode mode,
6413 symbol_name_match_type name_match_type,
6414 const char *text, const char *word,
6415 enum type_code code)
6416 {
6417 struct symbol *sym;
6418 struct compunit_symtab *s;
6419 struct minimal_symbol *msymbol;
6420 struct objfile *objfile;
6421 const struct block *b, *surrounding_static_block = 0;
6422 struct block_iterator iter;
6423
6424 gdb_assert (code == TYPE_CODE_UNDEF);
6425
6426 lookup_name_info lookup_name (text, name_match_type, true);
6427
6428 /* First, look at the partial symtab symbols. */
6429 expand_symtabs_matching (NULL,
6430 lookup_name,
6431 NULL,
6432 NULL,
6433 ALL_DOMAIN);
6434
6435 /* At this point scan through the misc symbol vectors and add each
6436 symbol you find to the list. Eventually we want to ignore
6437 anything that isn't a text symbol (everything else will be
6438 handled by the psymtab code above). */
6439
6440 ALL_MSYMBOLS (objfile, msymbol)
6441 {
6442 QUIT;
6443
6444 if (completion_skip_symbol (mode, msymbol))
6445 continue;
6446
6447 language symbol_language = MSYMBOL_LANGUAGE (msymbol);
6448
6449 /* Ada minimal symbols won't have their language set to Ada. If
6450 we let completion_list_add_name compare using the
6451 default/C-like matcher, then when completing e.g., symbols in a
6452 package named "pck", we'd match internal Ada symbols like
6453 "pckS", which are invalid in an Ada expression, unless you wrap
6454 them in '<' '>' to request a verbatim match.
6455
6456 Unfortunately, some Ada encoded names successfully demangle as
6457 C++ symbols (using an old mangling scheme), such as "name__2Xn"
6458 -> "Xn::name(void)" and thus some Ada minimal symbols end up
6459 with the wrong language set. Paper over that issue here. */
6460 if (symbol_language == language_auto
6461 || symbol_language == language_cplus)
6462 symbol_language = language_ada;
6463
6464 completion_list_add_name (tracker,
6465 symbol_language,
6466 MSYMBOL_LINKAGE_NAME (msymbol),
6467 lookup_name, text, word);
6468 }
6469
6470 /* Search upwards from currently selected frame (so that we can
6471 complete on local vars. */
6472
6473 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6474 {
6475 if (!BLOCK_SUPERBLOCK (b))
6476 surrounding_static_block = b; /* For elmin of dups */
6477
6478 ALL_BLOCK_SYMBOLS (b, iter, sym)
6479 {
6480 if (completion_skip_symbol (mode, sym))
6481 continue;
6482
6483 completion_list_add_name (tracker,
6484 SYMBOL_LANGUAGE (sym),
6485 SYMBOL_LINKAGE_NAME (sym),
6486 lookup_name, text, word);
6487 }
6488 }
6489
6490 /* Go through the symtabs and check the externs and statics for
6491 symbols which match. */
6492
6493 ALL_COMPUNITS (objfile, s)
6494 {
6495 QUIT;
6496 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6497 ALL_BLOCK_SYMBOLS (b, iter, sym)
6498 {
6499 if (completion_skip_symbol (mode, sym))
6500 continue;
6501
6502 completion_list_add_name (tracker,
6503 SYMBOL_LANGUAGE (sym),
6504 SYMBOL_LINKAGE_NAME (sym),
6505 lookup_name, text, word);
6506 }
6507 }
6508
6509 ALL_COMPUNITS (objfile, s)
6510 {
6511 QUIT;
6512 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6513 /* Don't do this block twice. */
6514 if (b == surrounding_static_block)
6515 continue;
6516 ALL_BLOCK_SYMBOLS (b, iter, sym)
6517 {
6518 if (completion_skip_symbol (mode, sym))
6519 continue;
6520
6521 completion_list_add_name (tracker,
6522 SYMBOL_LANGUAGE (sym),
6523 SYMBOL_LINKAGE_NAME (sym),
6524 lookup_name, text, word);
6525 }
6526 }
6527 }
6528
6529 /* Field Access */
6530
6531 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6532 for tagged types. */
6533
6534 static int
6535 ada_is_dispatch_table_ptr_type (struct type *type)
6536 {
6537 const char *name;
6538
6539 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6540 return 0;
6541
6542 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6543 if (name == NULL)
6544 return 0;
6545
6546 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6547 }
6548
6549 /* Return non-zero if TYPE is an interface tag. */
6550
6551 static int
6552 ada_is_interface_tag (struct type *type)
6553 {
6554 const char *name = TYPE_NAME (type);
6555
6556 if (name == NULL)
6557 return 0;
6558
6559 return (strcmp (name, "ada__tags__interface_tag") == 0);
6560 }
6561
6562 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6563 to be invisible to users. */
6564
6565 int
6566 ada_is_ignored_field (struct type *type, int field_num)
6567 {
6568 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6569 return 1;
6570
6571 /* Check the name of that field. */
6572 {
6573 const char *name = TYPE_FIELD_NAME (type, field_num);
6574
6575 /* Anonymous field names should not be printed.
6576 brobecker/2007-02-20: I don't think this can actually happen
6577 but we don't want to print the value of annonymous fields anyway. */
6578 if (name == NULL)
6579 return 1;
6580
6581 /* Normally, fields whose name start with an underscore ("_")
6582 are fields that have been internally generated by the compiler,
6583 and thus should not be printed. The "_parent" field is special,
6584 however: This is a field internally generated by the compiler
6585 for tagged types, and it contains the components inherited from
6586 the parent type. This field should not be printed as is, but
6587 should not be ignored either. */
6588 if (name[0] == '_' && !startswith (name, "_parent"))
6589 return 1;
6590 }
6591
6592 /* If this is the dispatch table of a tagged type or an interface tag,
6593 then ignore. */
6594 if (ada_is_tagged_type (type, 1)
6595 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6596 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6597 return 1;
6598
6599 /* Not a special field, so it should not be ignored. */
6600 return 0;
6601 }
6602
6603 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6604 pointer or reference type whose ultimate target has a tag field. */
6605
6606 int
6607 ada_is_tagged_type (struct type *type, int refok)
6608 {
6609 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
6610 }
6611
6612 /* True iff TYPE represents the type of X'Tag */
6613
6614 int
6615 ada_is_tag_type (struct type *type)
6616 {
6617 type = ada_check_typedef (type);
6618
6619 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6620 return 0;
6621 else
6622 {
6623 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6624
6625 return (name != NULL
6626 && strcmp (name, "ada__tags__dispatch_table") == 0);
6627 }
6628 }
6629
6630 /* The type of the tag on VAL. */
6631
6632 struct type *
6633 ada_tag_type (struct value *val)
6634 {
6635 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
6636 }
6637
6638 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6639 retired at Ada 05). */
6640
6641 static int
6642 is_ada95_tag (struct value *tag)
6643 {
6644 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6645 }
6646
6647 /* The value of the tag on VAL. */
6648
6649 struct value *
6650 ada_value_tag (struct value *val)
6651 {
6652 return ada_value_struct_elt (val, "_tag", 0);
6653 }
6654
6655 /* The value of the tag on the object of type TYPE whose contents are
6656 saved at VALADDR, if it is non-null, or is at memory address
6657 ADDRESS. */
6658
6659 static struct value *
6660 value_tag_from_contents_and_address (struct type *type,
6661 const gdb_byte *valaddr,
6662 CORE_ADDR address)
6663 {
6664 int tag_byte_offset;
6665 struct type *tag_type;
6666
6667 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6668 NULL, NULL, NULL))
6669 {
6670 const gdb_byte *valaddr1 = ((valaddr == NULL)
6671 ? NULL
6672 : valaddr + tag_byte_offset);
6673 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6674
6675 return value_from_contents_and_address (tag_type, valaddr1, address1);
6676 }
6677 return NULL;
6678 }
6679
6680 static struct type *
6681 type_from_tag (struct value *tag)
6682 {
6683 const char *type_name = ada_tag_name (tag);
6684
6685 if (type_name != NULL)
6686 return ada_find_any_type (ada_encode (type_name));
6687 return NULL;
6688 }
6689
6690 /* Given a value OBJ of a tagged type, return a value of this
6691 type at the base address of the object. The base address, as
6692 defined in Ada.Tags, it is the address of the primary tag of
6693 the object, and therefore where the field values of its full
6694 view can be fetched. */
6695
6696 struct value *
6697 ada_tag_value_at_base_address (struct value *obj)
6698 {
6699 struct value *val;
6700 LONGEST offset_to_top = 0;
6701 struct type *ptr_type, *obj_type;
6702 struct value *tag;
6703 CORE_ADDR base_address;
6704
6705 obj_type = value_type (obj);
6706
6707 /* It is the responsability of the caller to deref pointers. */
6708
6709 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6710 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6711 return obj;
6712
6713 tag = ada_value_tag (obj);
6714 if (!tag)
6715 return obj;
6716
6717 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6718
6719 if (is_ada95_tag (tag))
6720 return obj;
6721
6722 ptr_type = language_lookup_primitive_type
6723 (language_def (language_ada), target_gdbarch(), "storage_offset");
6724 ptr_type = lookup_pointer_type (ptr_type);
6725 val = value_cast (ptr_type, tag);
6726 if (!val)
6727 return obj;
6728
6729 /* It is perfectly possible that an exception be raised while
6730 trying to determine the base address, just like for the tag;
6731 see ada_tag_name for more details. We do not print the error
6732 message for the same reason. */
6733
6734 TRY
6735 {
6736 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6737 }
6738
6739 CATCH (e, RETURN_MASK_ERROR)
6740 {
6741 return obj;
6742 }
6743 END_CATCH
6744
6745 /* If offset is null, nothing to do. */
6746
6747 if (offset_to_top == 0)
6748 return obj;
6749
6750 /* -1 is a special case in Ada.Tags; however, what should be done
6751 is not quite clear from the documentation. So do nothing for
6752 now. */
6753
6754 if (offset_to_top == -1)
6755 return obj;
6756
6757 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6758 from the base address. This was however incompatible with
6759 C++ dispatch table: C++ uses a *negative* value to *add*
6760 to the base address. Ada's convention has therefore been
6761 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6762 use the same convention. Here, we support both cases by
6763 checking the sign of OFFSET_TO_TOP. */
6764
6765 if (offset_to_top > 0)
6766 offset_to_top = -offset_to_top;
6767
6768 base_address = value_address (obj) + offset_to_top;
6769 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6770
6771 /* Make sure that we have a proper tag at the new address.
6772 Otherwise, offset_to_top is bogus (which can happen when
6773 the object is not initialized yet). */
6774
6775 if (!tag)
6776 return obj;
6777
6778 obj_type = type_from_tag (tag);
6779
6780 if (!obj_type)
6781 return obj;
6782
6783 return value_from_contents_and_address (obj_type, NULL, base_address);
6784 }
6785
6786 /* Return the "ada__tags__type_specific_data" type. */
6787
6788 static struct type *
6789 ada_get_tsd_type (struct inferior *inf)
6790 {
6791 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6792
6793 if (data->tsd_type == 0)
6794 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6795 return data->tsd_type;
6796 }
6797
6798 /* Return the TSD (type-specific data) associated to the given TAG.
6799 TAG is assumed to be the tag of a tagged-type entity.
6800
6801 May return NULL if we are unable to get the TSD. */
6802
6803 static struct value *
6804 ada_get_tsd_from_tag (struct value *tag)
6805 {
6806 struct value *val;
6807 struct type *type;
6808
6809 /* First option: The TSD is simply stored as a field of our TAG.
6810 Only older versions of GNAT would use this format, but we have
6811 to test it first, because there are no visible markers for
6812 the current approach except the absence of that field. */
6813
6814 val = ada_value_struct_elt (tag, "tsd", 1);
6815 if (val)
6816 return val;
6817
6818 /* Try the second representation for the dispatch table (in which
6819 there is no explicit 'tsd' field in the referent of the tag pointer,
6820 and instead the tsd pointer is stored just before the dispatch
6821 table. */
6822
6823 type = ada_get_tsd_type (current_inferior());
6824 if (type == NULL)
6825 return NULL;
6826 type = lookup_pointer_type (lookup_pointer_type (type));
6827 val = value_cast (type, tag);
6828 if (val == NULL)
6829 return NULL;
6830 return value_ind (value_ptradd (val, -1));
6831 }
6832
6833 /* Given the TSD of a tag (type-specific data), return a string
6834 containing the name of the associated type.
6835
6836 The returned value is good until the next call. May return NULL
6837 if we are unable to determine the tag name. */
6838
6839 static char *
6840 ada_tag_name_from_tsd (struct value *tsd)
6841 {
6842 static char name[1024];
6843 char *p;
6844 struct value *val;
6845
6846 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6847 if (val == NULL)
6848 return NULL;
6849 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6850 for (p = name; *p != '\0'; p += 1)
6851 if (isalpha (*p))
6852 *p = tolower (*p);
6853 return name;
6854 }
6855
6856 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6857 a C string.
6858
6859 Return NULL if the TAG is not an Ada tag, or if we were unable to
6860 determine the name of that tag. The result is good until the next
6861 call. */
6862
6863 const char *
6864 ada_tag_name (struct value *tag)
6865 {
6866 char *name = NULL;
6867
6868 if (!ada_is_tag_type (value_type (tag)))
6869 return NULL;
6870
6871 /* It is perfectly possible that an exception be raised while trying
6872 to determine the TAG's name, even under normal circumstances:
6873 The associated variable may be uninitialized or corrupted, for
6874 instance. We do not let any exception propagate past this point.
6875 instead we return NULL.
6876
6877 We also do not print the error message either (which often is very
6878 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6879 the caller print a more meaningful message if necessary. */
6880 TRY
6881 {
6882 struct value *tsd = ada_get_tsd_from_tag (tag);
6883
6884 if (tsd != NULL)
6885 name = ada_tag_name_from_tsd (tsd);
6886 }
6887 CATCH (e, RETURN_MASK_ERROR)
6888 {
6889 }
6890 END_CATCH
6891
6892 return name;
6893 }
6894
6895 /* The parent type of TYPE, or NULL if none. */
6896
6897 struct type *
6898 ada_parent_type (struct type *type)
6899 {
6900 int i;
6901
6902 type = ada_check_typedef (type);
6903
6904 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6905 return NULL;
6906
6907 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6908 if (ada_is_parent_field (type, i))
6909 {
6910 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6911
6912 /* If the _parent field is a pointer, then dereference it. */
6913 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6914 parent_type = TYPE_TARGET_TYPE (parent_type);
6915 /* If there is a parallel XVS type, get the actual base type. */
6916 parent_type = ada_get_base_type (parent_type);
6917
6918 return ada_check_typedef (parent_type);
6919 }
6920
6921 return NULL;
6922 }
6923
6924 /* True iff field number FIELD_NUM of structure type TYPE contains the
6925 parent-type (inherited) fields of a derived type. Assumes TYPE is
6926 a structure type with at least FIELD_NUM+1 fields. */
6927
6928 int
6929 ada_is_parent_field (struct type *type, int field_num)
6930 {
6931 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6932
6933 return (name != NULL
6934 && (startswith (name, "PARENT")
6935 || startswith (name, "_parent")));
6936 }
6937
6938 /* True iff field number FIELD_NUM of structure type TYPE is a
6939 transparent wrapper field (which should be silently traversed when doing
6940 field selection and flattened when printing). Assumes TYPE is a
6941 structure type with at least FIELD_NUM+1 fields. Such fields are always
6942 structures. */
6943
6944 int
6945 ada_is_wrapper_field (struct type *type, int field_num)
6946 {
6947 const char *name = TYPE_FIELD_NAME (type, field_num);
6948
6949 if (name != NULL && strcmp (name, "RETVAL") == 0)
6950 {
6951 /* This happens in functions with "out" or "in out" parameters
6952 which are passed by copy. For such functions, GNAT describes
6953 the function's return type as being a struct where the return
6954 value is in a field called RETVAL, and where the other "out"
6955 or "in out" parameters are fields of that struct. This is not
6956 a wrapper. */
6957 return 0;
6958 }
6959
6960 return (name != NULL
6961 && (startswith (name, "PARENT")
6962 || strcmp (name, "REP") == 0
6963 || startswith (name, "_parent")
6964 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6965 }
6966
6967 /* True iff field number FIELD_NUM of structure or union type TYPE
6968 is a variant wrapper. Assumes TYPE is a structure type with at least
6969 FIELD_NUM+1 fields. */
6970
6971 int
6972 ada_is_variant_part (struct type *type, int field_num)
6973 {
6974 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6975
6976 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
6977 || (is_dynamic_field (type, field_num)
6978 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6979 == TYPE_CODE_UNION)));
6980 }
6981
6982 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6983 whose discriminants are contained in the record type OUTER_TYPE,
6984 returns the type of the controlling discriminant for the variant.
6985 May return NULL if the type could not be found. */
6986
6987 struct type *
6988 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6989 {
6990 const char *name = ada_variant_discrim_name (var_type);
6991
6992 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
6993 }
6994
6995 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6996 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6997 represents a 'when others' clause; otherwise 0. */
6998
6999 int
7000 ada_is_others_clause (struct type *type, int field_num)
7001 {
7002 const char *name = TYPE_FIELD_NAME (type, field_num);
7003
7004 return (name != NULL && name[0] == 'O');
7005 }
7006
7007 /* Assuming that TYPE0 is the type of the variant part of a record,
7008 returns the name of the discriminant controlling the variant.
7009 The value is valid until the next call to ada_variant_discrim_name. */
7010
7011 const char *
7012 ada_variant_discrim_name (struct type *type0)
7013 {
7014 static char *result = NULL;
7015 static size_t result_len = 0;
7016 struct type *type;
7017 const char *name;
7018 const char *discrim_end;
7019 const char *discrim_start;
7020
7021 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
7022 type = TYPE_TARGET_TYPE (type0);
7023 else
7024 type = type0;
7025
7026 name = ada_type_name (type);
7027
7028 if (name == NULL || name[0] == '\000')
7029 return "";
7030
7031 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
7032 discrim_end -= 1)
7033 {
7034 if (startswith (discrim_end, "___XVN"))
7035 break;
7036 }
7037 if (discrim_end == name)
7038 return "";
7039
7040 for (discrim_start = discrim_end; discrim_start != name + 3;
7041 discrim_start -= 1)
7042 {
7043 if (discrim_start == name + 1)
7044 return "";
7045 if ((discrim_start > name + 3
7046 && startswith (discrim_start - 3, "___"))
7047 || discrim_start[-1] == '.')
7048 break;
7049 }
7050
7051 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7052 strncpy (result, discrim_start, discrim_end - discrim_start);
7053 result[discrim_end - discrim_start] = '\0';
7054 return result;
7055 }
7056
7057 /* Scan STR for a subtype-encoded number, beginning at position K.
7058 Put the position of the character just past the number scanned in
7059 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7060 Return 1 if there was a valid number at the given position, and 0
7061 otherwise. A "subtype-encoded" number consists of the absolute value
7062 in decimal, followed by the letter 'm' to indicate a negative number.
7063 Assumes 0m does not occur. */
7064
7065 int
7066 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
7067 {
7068 ULONGEST RU;
7069
7070 if (!isdigit (str[k]))
7071 return 0;
7072
7073 /* Do it the hard way so as not to make any assumption about
7074 the relationship of unsigned long (%lu scan format code) and
7075 LONGEST. */
7076 RU = 0;
7077 while (isdigit (str[k]))
7078 {
7079 RU = RU * 10 + (str[k] - '0');
7080 k += 1;
7081 }
7082
7083 if (str[k] == 'm')
7084 {
7085 if (R != NULL)
7086 *R = (-(LONGEST) (RU - 1)) - 1;
7087 k += 1;
7088 }
7089 else if (R != NULL)
7090 *R = (LONGEST) RU;
7091
7092 /* NOTE on the above: Technically, C does not say what the results of
7093 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7094 number representable as a LONGEST (although either would probably work
7095 in most implementations). When RU>0, the locution in the then branch
7096 above is always equivalent to the negative of RU. */
7097
7098 if (new_k != NULL)
7099 *new_k = k;
7100 return 1;
7101 }
7102
7103 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7104 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7105 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
7106
7107 int
7108 ada_in_variant (LONGEST val, struct type *type, int field_num)
7109 {
7110 const char *name = TYPE_FIELD_NAME (type, field_num);
7111 int p;
7112
7113 p = 0;
7114 while (1)
7115 {
7116 switch (name[p])
7117 {
7118 case '\0':
7119 return 0;
7120 case 'S':
7121 {
7122 LONGEST W;
7123
7124 if (!ada_scan_number (name, p + 1, &W, &p))
7125 return 0;
7126 if (val == W)
7127 return 1;
7128 break;
7129 }
7130 case 'R':
7131 {
7132 LONGEST L, U;
7133
7134 if (!ada_scan_number (name, p + 1, &L, &p)
7135 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7136 return 0;
7137 if (val >= L && val <= U)
7138 return 1;
7139 break;
7140 }
7141 case 'O':
7142 return 1;
7143 default:
7144 return 0;
7145 }
7146 }
7147 }
7148
7149 /* FIXME: Lots of redundancy below. Try to consolidate. */
7150
7151 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7152 ARG_TYPE, extract and return the value of one of its (non-static)
7153 fields. FIELDNO says which field. Differs from value_primitive_field
7154 only in that it can handle packed values of arbitrary type. */
7155
7156 static struct value *
7157 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
7158 struct type *arg_type)
7159 {
7160 struct type *type;
7161
7162 arg_type = ada_check_typedef (arg_type);
7163 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7164
7165 /* Handle packed fields. */
7166
7167 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
7168 {
7169 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7170 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
7171
7172 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
7173 offset + bit_pos / 8,
7174 bit_pos % 8, bit_size, type);
7175 }
7176 else
7177 return value_primitive_field (arg1, offset, fieldno, arg_type);
7178 }
7179
7180 /* Find field with name NAME in object of type TYPE. If found,
7181 set the following for each argument that is non-null:
7182 - *FIELD_TYPE_P to the field's type;
7183 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7184 an object of that type;
7185 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7186 - *BIT_SIZE_P to its size in bits if the field is packed, and
7187 0 otherwise;
7188 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7189 fields up to but not including the desired field, or by the total
7190 number of fields if not found. A NULL value of NAME never
7191 matches; the function just counts visible fields in this case.
7192
7193 Notice that we need to handle when a tagged record hierarchy
7194 has some components with the same name, like in this scenario:
7195
7196 type Top_T is tagged record
7197 N : Integer := 1;
7198 U : Integer := 974;
7199 A : Integer := 48;
7200 end record;
7201
7202 type Middle_T is new Top.Top_T with record
7203 N : Character := 'a';
7204 C : Integer := 3;
7205 end record;
7206
7207 type Bottom_T is new Middle.Middle_T with record
7208 N : Float := 4.0;
7209 C : Character := '5';
7210 X : Integer := 6;
7211 A : Character := 'J';
7212 end record;
7213
7214 Let's say we now have a variable declared and initialized as follow:
7215
7216 TC : Top_A := new Bottom_T;
7217
7218 And then we use this variable to call this function
7219
7220 procedure Assign (Obj: in out Top_T; TV : Integer);
7221
7222 as follow:
7223
7224 Assign (Top_T (B), 12);
7225
7226 Now, we're in the debugger, and we're inside that procedure
7227 then and we want to print the value of obj.c:
7228
7229 Usually, the tagged record or one of the parent type owns the
7230 component to print and there's no issue but in this particular
7231 case, what does it mean to ask for Obj.C? Since the actual
7232 type for object is type Bottom_T, it could mean two things: type
7233 component C from the Middle_T view, but also component C from
7234 Bottom_T. So in that "undefined" case, when the component is
7235 not found in the non-resolved type (which includes all the
7236 components of the parent type), then resolve it and see if we
7237 get better luck once expanded.
7238
7239 In the case of homonyms in the derived tagged type, we don't
7240 guaranty anything, and pick the one that's easiest for us
7241 to program.
7242
7243 Returns 1 if found, 0 otherwise. */
7244
7245 static int
7246 find_struct_field (const char *name, struct type *type, int offset,
7247 struct type **field_type_p,
7248 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7249 int *index_p)
7250 {
7251 int i;
7252 int parent_offset = -1;
7253
7254 type = ada_check_typedef (type);
7255
7256 if (field_type_p != NULL)
7257 *field_type_p = NULL;
7258 if (byte_offset_p != NULL)
7259 *byte_offset_p = 0;
7260 if (bit_offset_p != NULL)
7261 *bit_offset_p = 0;
7262 if (bit_size_p != NULL)
7263 *bit_size_p = 0;
7264
7265 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7266 {
7267 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7268 int fld_offset = offset + bit_pos / 8;
7269 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7270
7271 if (t_field_name == NULL)
7272 continue;
7273
7274 else if (ada_is_parent_field (type, i))
7275 {
7276 /* This is a field pointing us to the parent type of a tagged
7277 type. As hinted in this function's documentation, we give
7278 preference to fields in the current record first, so what
7279 we do here is just record the index of this field before
7280 we skip it. If it turns out we couldn't find our field
7281 in the current record, then we'll get back to it and search
7282 inside it whether the field might exist in the parent. */
7283
7284 parent_offset = i;
7285 continue;
7286 }
7287
7288 else if (name != NULL && field_name_match (t_field_name, name))
7289 {
7290 int bit_size = TYPE_FIELD_BITSIZE (type, i);
7291
7292 if (field_type_p != NULL)
7293 *field_type_p = TYPE_FIELD_TYPE (type, i);
7294 if (byte_offset_p != NULL)
7295 *byte_offset_p = fld_offset;
7296 if (bit_offset_p != NULL)
7297 *bit_offset_p = bit_pos % 8;
7298 if (bit_size_p != NULL)
7299 *bit_size_p = bit_size;
7300 return 1;
7301 }
7302 else if (ada_is_wrapper_field (type, i))
7303 {
7304 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7305 field_type_p, byte_offset_p, bit_offset_p,
7306 bit_size_p, index_p))
7307 return 1;
7308 }
7309 else if (ada_is_variant_part (type, i))
7310 {
7311 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7312 fixed type?? */
7313 int j;
7314 struct type *field_type
7315 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7316
7317 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7318 {
7319 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7320 fld_offset
7321 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7322 field_type_p, byte_offset_p,
7323 bit_offset_p, bit_size_p, index_p))
7324 return 1;
7325 }
7326 }
7327 else if (index_p != NULL)
7328 *index_p += 1;
7329 }
7330
7331 /* Field not found so far. If this is a tagged type which
7332 has a parent, try finding that field in the parent now. */
7333
7334 if (parent_offset != -1)
7335 {
7336 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
7337 int fld_offset = offset + bit_pos / 8;
7338
7339 if (find_struct_field (name, TYPE_FIELD_TYPE (type, parent_offset),
7340 fld_offset, field_type_p, byte_offset_p,
7341 bit_offset_p, bit_size_p, index_p))
7342 return 1;
7343 }
7344
7345 return 0;
7346 }
7347
7348 /* Number of user-visible fields in record type TYPE. */
7349
7350 static int
7351 num_visible_fields (struct type *type)
7352 {
7353 int n;
7354
7355 n = 0;
7356 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7357 return n;
7358 }
7359
7360 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7361 and search in it assuming it has (class) type TYPE.
7362 If found, return value, else return NULL.
7363
7364 Searches recursively through wrapper fields (e.g., '_parent').
7365
7366 In the case of homonyms in the tagged types, please refer to the
7367 long explanation in find_struct_field's function documentation. */
7368
7369 static struct value *
7370 ada_search_struct_field (const char *name, struct value *arg, int offset,
7371 struct type *type)
7372 {
7373 int i;
7374 int parent_offset = -1;
7375
7376 type = ada_check_typedef (type);
7377 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7378 {
7379 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7380
7381 if (t_field_name == NULL)
7382 continue;
7383
7384 else if (ada_is_parent_field (type, i))
7385 {
7386 /* This is a field pointing us to the parent type of a tagged
7387 type. As hinted in this function's documentation, we give
7388 preference to fields in the current record first, so what
7389 we do here is just record the index of this field before
7390 we skip it. If it turns out we couldn't find our field
7391 in the current record, then we'll get back to it and search
7392 inside it whether the field might exist in the parent. */
7393
7394 parent_offset = i;
7395 continue;
7396 }
7397
7398 else if (field_name_match (t_field_name, name))
7399 return ada_value_primitive_field (arg, offset, i, type);
7400
7401 else if (ada_is_wrapper_field (type, i))
7402 {
7403 struct value *v = /* Do not let indent join lines here. */
7404 ada_search_struct_field (name, arg,
7405 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7406 TYPE_FIELD_TYPE (type, i));
7407
7408 if (v != NULL)
7409 return v;
7410 }
7411
7412 else if (ada_is_variant_part (type, i))
7413 {
7414 /* PNH: Do we ever get here? See find_struct_field. */
7415 int j;
7416 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7417 i));
7418 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7419
7420 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7421 {
7422 struct value *v = ada_search_struct_field /* Force line
7423 break. */
7424 (name, arg,
7425 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7426 TYPE_FIELD_TYPE (field_type, j));
7427
7428 if (v != NULL)
7429 return v;
7430 }
7431 }
7432 }
7433
7434 /* Field not found so far. If this is a tagged type which
7435 has a parent, try finding that field in the parent now. */
7436
7437 if (parent_offset != -1)
7438 {
7439 struct value *v = ada_search_struct_field (
7440 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
7441 TYPE_FIELD_TYPE (type, parent_offset));
7442
7443 if (v != NULL)
7444 return v;
7445 }
7446
7447 return NULL;
7448 }
7449
7450 static struct value *ada_index_struct_field_1 (int *, struct value *,
7451 int, struct type *);
7452
7453
7454 /* Return field #INDEX in ARG, where the index is that returned by
7455 * find_struct_field through its INDEX_P argument. Adjust the address
7456 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7457 * If found, return value, else return NULL. */
7458
7459 static struct value *
7460 ada_index_struct_field (int index, struct value *arg, int offset,
7461 struct type *type)
7462 {
7463 return ada_index_struct_field_1 (&index, arg, offset, type);
7464 }
7465
7466
7467 /* Auxiliary function for ada_index_struct_field. Like
7468 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7469 * *INDEX_P. */
7470
7471 static struct value *
7472 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7473 struct type *type)
7474 {
7475 int i;
7476 type = ada_check_typedef (type);
7477
7478 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7479 {
7480 if (TYPE_FIELD_NAME (type, i) == NULL)
7481 continue;
7482 else if (ada_is_wrapper_field (type, i))
7483 {
7484 struct value *v = /* Do not let indent join lines here. */
7485 ada_index_struct_field_1 (index_p, arg,
7486 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7487 TYPE_FIELD_TYPE (type, i));
7488
7489 if (v != NULL)
7490 return v;
7491 }
7492
7493 else if (ada_is_variant_part (type, i))
7494 {
7495 /* PNH: Do we ever get here? See ada_search_struct_field,
7496 find_struct_field. */
7497 error (_("Cannot assign this kind of variant record"));
7498 }
7499 else if (*index_p == 0)
7500 return ada_value_primitive_field (arg, offset, i, type);
7501 else
7502 *index_p -= 1;
7503 }
7504 return NULL;
7505 }
7506
7507 /* Given ARG, a value of type (pointer or reference to a)*
7508 structure/union, extract the component named NAME from the ultimate
7509 target structure/union and return it as a value with its
7510 appropriate type.
7511
7512 The routine searches for NAME among all members of the structure itself
7513 and (recursively) among all members of any wrapper members
7514 (e.g., '_parent').
7515
7516 If NO_ERR, then simply return NULL in case of error, rather than
7517 calling error. */
7518
7519 struct value *
7520 ada_value_struct_elt (struct value *arg, const char *name, int no_err)
7521 {
7522 struct type *t, *t1;
7523 struct value *v;
7524
7525 v = NULL;
7526 t1 = t = ada_check_typedef (value_type (arg));
7527 if (TYPE_CODE (t) == TYPE_CODE_REF)
7528 {
7529 t1 = TYPE_TARGET_TYPE (t);
7530 if (t1 == NULL)
7531 goto BadValue;
7532 t1 = ada_check_typedef (t1);
7533 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7534 {
7535 arg = coerce_ref (arg);
7536 t = t1;
7537 }
7538 }
7539
7540 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7541 {
7542 t1 = TYPE_TARGET_TYPE (t);
7543 if (t1 == NULL)
7544 goto BadValue;
7545 t1 = ada_check_typedef (t1);
7546 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7547 {
7548 arg = value_ind (arg);
7549 t = t1;
7550 }
7551 else
7552 break;
7553 }
7554
7555 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
7556 goto BadValue;
7557
7558 if (t1 == t)
7559 v = ada_search_struct_field (name, arg, 0, t);
7560 else
7561 {
7562 int bit_offset, bit_size, byte_offset;
7563 struct type *field_type;
7564 CORE_ADDR address;
7565
7566 if (TYPE_CODE (t) == TYPE_CODE_PTR)
7567 address = value_address (ada_value_ind (arg));
7568 else
7569 address = value_address (ada_coerce_ref (arg));
7570
7571 /* Check to see if this is a tagged type. We also need to handle
7572 the case where the type is a reference to a tagged type, but
7573 we have to be careful to exclude pointers to tagged types.
7574 The latter should be shown as usual (as a pointer), whereas
7575 a reference should mostly be transparent to the user. */
7576
7577 if (ada_is_tagged_type (t1, 0)
7578 || (TYPE_CODE (t1) == TYPE_CODE_REF
7579 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
7580 {
7581 /* We first try to find the searched field in the current type.
7582 If not found then let's look in the fixed type. */
7583
7584 if (!find_struct_field (name, t1, 0,
7585 &field_type, &byte_offset, &bit_offset,
7586 &bit_size, NULL))
7587 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
7588 address, NULL, 1);
7589 }
7590 else
7591 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
7592 address, NULL, 1);
7593
7594 if (find_struct_field (name, t1, 0,
7595 &field_type, &byte_offset, &bit_offset,
7596 &bit_size, NULL))
7597 {
7598 if (bit_size != 0)
7599 {
7600 if (TYPE_CODE (t) == TYPE_CODE_REF)
7601 arg = ada_coerce_ref (arg);
7602 else
7603 arg = ada_value_ind (arg);
7604 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7605 bit_offset, bit_size,
7606 field_type);
7607 }
7608 else
7609 v = value_at_lazy (field_type, address + byte_offset);
7610 }
7611 }
7612
7613 if (v != NULL || no_err)
7614 return v;
7615 else
7616 error (_("There is no member named %s."), name);
7617
7618 BadValue:
7619 if (no_err)
7620 return NULL;
7621 else
7622 error (_("Attempt to extract a component of "
7623 "a value that is not a record."));
7624 }
7625
7626 /* Return a string representation of type TYPE. */
7627
7628 static std::string
7629 type_as_string (struct type *type)
7630 {
7631 string_file tmp_stream;
7632
7633 type_print (type, "", &tmp_stream, -1);
7634
7635 return std::move (tmp_stream.string ());
7636 }
7637
7638 /* Given a type TYPE, look up the type of the component of type named NAME.
7639 If DISPP is non-null, add its byte displacement from the beginning of a
7640 structure (pointed to by a value) of type TYPE to *DISPP (does not
7641 work for packed fields).
7642
7643 Matches any field whose name has NAME as a prefix, possibly
7644 followed by "___".
7645
7646 TYPE can be either a struct or union. If REFOK, TYPE may also
7647 be a (pointer or reference)+ to a struct or union, and the
7648 ultimate target type will be searched.
7649
7650 Looks recursively into variant clauses and parent types.
7651
7652 In the case of homonyms in the tagged types, please refer to the
7653 long explanation in find_struct_field's function documentation.
7654
7655 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7656 TYPE is not a type of the right kind. */
7657
7658 static struct type *
7659 ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
7660 int noerr)
7661 {
7662 int i;
7663 int parent_offset = -1;
7664
7665 if (name == NULL)
7666 goto BadName;
7667
7668 if (refok && type != NULL)
7669 while (1)
7670 {
7671 type = ada_check_typedef (type);
7672 if (TYPE_CODE (type) != TYPE_CODE_PTR
7673 && TYPE_CODE (type) != TYPE_CODE_REF)
7674 break;
7675 type = TYPE_TARGET_TYPE (type);
7676 }
7677
7678 if (type == NULL
7679 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7680 && TYPE_CODE (type) != TYPE_CODE_UNION))
7681 {
7682 if (noerr)
7683 return NULL;
7684
7685 error (_("Type %s is not a structure or union type"),
7686 type != NULL ? type_as_string (type).c_str () : _("(null)"));
7687 }
7688
7689 type = to_static_fixed_type (type);
7690
7691 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7692 {
7693 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7694 struct type *t;
7695
7696 if (t_field_name == NULL)
7697 continue;
7698
7699 else if (ada_is_parent_field (type, i))
7700 {
7701 /* This is a field pointing us to the parent type of a tagged
7702 type. As hinted in this function's documentation, we give
7703 preference to fields in the current record first, so what
7704 we do here is just record the index of this field before
7705 we skip it. If it turns out we couldn't find our field
7706 in the current record, then we'll get back to it and search
7707 inside it whether the field might exist in the parent. */
7708
7709 parent_offset = i;
7710 continue;
7711 }
7712
7713 else if (field_name_match (t_field_name, name))
7714 return TYPE_FIELD_TYPE (type, i);
7715
7716 else if (ada_is_wrapper_field (type, i))
7717 {
7718 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7719 0, 1);
7720 if (t != NULL)
7721 return t;
7722 }
7723
7724 else if (ada_is_variant_part (type, i))
7725 {
7726 int j;
7727 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7728 i));
7729
7730 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7731 {
7732 /* FIXME pnh 2008/01/26: We check for a field that is
7733 NOT wrapped in a struct, since the compiler sometimes
7734 generates these for unchecked variant types. Revisit
7735 if the compiler changes this practice. */
7736 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7737
7738 if (v_field_name != NULL
7739 && field_name_match (v_field_name, name))
7740 t = TYPE_FIELD_TYPE (field_type, j);
7741 else
7742 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7743 j),
7744 name, 0, 1);
7745
7746 if (t != NULL)
7747 return t;
7748 }
7749 }
7750
7751 }
7752
7753 /* Field not found so far. If this is a tagged type which
7754 has a parent, try finding that field in the parent now. */
7755
7756 if (parent_offset != -1)
7757 {
7758 struct type *t;
7759
7760 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, parent_offset),
7761 name, 0, 1);
7762 if (t != NULL)
7763 return t;
7764 }
7765
7766 BadName:
7767 if (!noerr)
7768 {
7769 const char *name_str = name != NULL ? name : _("<null>");
7770
7771 error (_("Type %s has no component named %s"),
7772 type_as_string (type).c_str (), name_str);
7773 }
7774
7775 return NULL;
7776 }
7777
7778 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7779 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7780 represents an unchecked union (that is, the variant part of a
7781 record that is named in an Unchecked_Union pragma). */
7782
7783 static int
7784 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7785 {
7786 const char *discrim_name = ada_variant_discrim_name (var_type);
7787
7788 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
7789 }
7790
7791
7792 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7793 within a value of type OUTER_TYPE that is stored in GDB at
7794 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7795 numbering from 0) is applicable. Returns -1 if none are. */
7796
7797 int
7798 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7799 const gdb_byte *outer_valaddr)
7800 {
7801 int others_clause;
7802 int i;
7803 const char *discrim_name = ada_variant_discrim_name (var_type);
7804 struct value *outer;
7805 struct value *discrim;
7806 LONGEST discrim_val;
7807
7808 /* Using plain value_from_contents_and_address here causes problems
7809 because we will end up trying to resolve a type that is currently
7810 being constructed. */
7811 outer = value_from_contents_and_address_unresolved (outer_type,
7812 outer_valaddr, 0);
7813 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7814 if (discrim == NULL)
7815 return -1;
7816 discrim_val = value_as_long (discrim);
7817
7818 others_clause = -1;
7819 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7820 {
7821 if (ada_is_others_clause (var_type, i))
7822 others_clause = i;
7823 else if (ada_in_variant (discrim_val, var_type, i))
7824 return i;
7825 }
7826
7827 return others_clause;
7828 }
7829 \f
7830
7831
7832 /* Dynamic-Sized Records */
7833
7834 /* Strategy: The type ostensibly attached to a value with dynamic size
7835 (i.e., a size that is not statically recorded in the debugging
7836 data) does not accurately reflect the size or layout of the value.
7837 Our strategy is to convert these values to values with accurate,
7838 conventional types that are constructed on the fly. */
7839
7840 /* There is a subtle and tricky problem here. In general, we cannot
7841 determine the size of dynamic records without its data. However,
7842 the 'struct value' data structure, which GDB uses to represent
7843 quantities in the inferior process (the target), requires the size
7844 of the type at the time of its allocation in order to reserve space
7845 for GDB's internal copy of the data. That's why the
7846 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7847 rather than struct value*s.
7848
7849 However, GDB's internal history variables ($1, $2, etc.) are
7850 struct value*s containing internal copies of the data that are not, in
7851 general, the same as the data at their corresponding addresses in
7852 the target. Fortunately, the types we give to these values are all
7853 conventional, fixed-size types (as per the strategy described
7854 above), so that we don't usually have to perform the
7855 'to_fixed_xxx_type' conversions to look at their values.
7856 Unfortunately, there is one exception: if one of the internal
7857 history variables is an array whose elements are unconstrained
7858 records, then we will need to create distinct fixed types for each
7859 element selected. */
7860
7861 /* The upshot of all of this is that many routines take a (type, host
7862 address, target address) triple as arguments to represent a value.
7863 The host address, if non-null, is supposed to contain an internal
7864 copy of the relevant data; otherwise, the program is to consult the
7865 target at the target address. */
7866
7867 /* Assuming that VAL0 represents a pointer value, the result of
7868 dereferencing it. Differs from value_ind in its treatment of
7869 dynamic-sized types. */
7870
7871 struct value *
7872 ada_value_ind (struct value *val0)
7873 {
7874 struct value *val = value_ind (val0);
7875
7876 if (ada_is_tagged_type (value_type (val), 0))
7877 val = ada_tag_value_at_base_address (val);
7878
7879 return ada_to_fixed_value (val);
7880 }
7881
7882 /* The value resulting from dereferencing any "reference to"
7883 qualifiers on VAL0. */
7884
7885 static struct value *
7886 ada_coerce_ref (struct value *val0)
7887 {
7888 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7889 {
7890 struct value *val = val0;
7891
7892 val = coerce_ref (val);
7893
7894 if (ada_is_tagged_type (value_type (val), 0))
7895 val = ada_tag_value_at_base_address (val);
7896
7897 return ada_to_fixed_value (val);
7898 }
7899 else
7900 return val0;
7901 }
7902
7903 /* Return OFF rounded upward if necessary to a multiple of
7904 ALIGNMENT (a power of 2). */
7905
7906 static unsigned int
7907 align_value (unsigned int off, unsigned int alignment)
7908 {
7909 return (off + alignment - 1) & ~(alignment - 1);
7910 }
7911
7912 /* Return the bit alignment required for field #F of template type TYPE. */
7913
7914 static unsigned int
7915 field_alignment (struct type *type, int f)
7916 {
7917 const char *name = TYPE_FIELD_NAME (type, f);
7918 int len;
7919 int align_offset;
7920
7921 /* The field name should never be null, unless the debugging information
7922 is somehow malformed. In this case, we assume the field does not
7923 require any alignment. */
7924 if (name == NULL)
7925 return 1;
7926
7927 len = strlen (name);
7928
7929 if (!isdigit (name[len - 1]))
7930 return 1;
7931
7932 if (isdigit (name[len - 2]))
7933 align_offset = len - 2;
7934 else
7935 align_offset = len - 1;
7936
7937 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7938 return TARGET_CHAR_BIT;
7939
7940 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7941 }
7942
7943 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7944
7945 static struct symbol *
7946 ada_find_any_type_symbol (const char *name)
7947 {
7948 struct symbol *sym;
7949
7950 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7951 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7952 return sym;
7953
7954 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7955 return sym;
7956 }
7957
7958 /* Find a type named NAME. Ignores ambiguity. This routine will look
7959 solely for types defined by debug info, it will not search the GDB
7960 primitive types. */
7961
7962 static struct type *
7963 ada_find_any_type (const char *name)
7964 {
7965 struct symbol *sym = ada_find_any_type_symbol (name);
7966
7967 if (sym != NULL)
7968 return SYMBOL_TYPE (sym);
7969
7970 return NULL;
7971 }
7972
7973 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7974 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7975 symbol, in which case it is returned. Otherwise, this looks for
7976 symbols whose name is that of NAME_SYM suffixed with "___XR".
7977 Return symbol if found, and NULL otherwise. */
7978
7979 struct symbol *
7980 ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
7981 {
7982 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7983 struct symbol *sym;
7984
7985 if (strstr (name, "___XR") != NULL)
7986 return name_sym;
7987
7988 sym = find_old_style_renaming_symbol (name, block);
7989
7990 if (sym != NULL)
7991 return sym;
7992
7993 /* Not right yet. FIXME pnh 7/20/2007. */
7994 sym = ada_find_any_type_symbol (name);
7995 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7996 return sym;
7997 else
7998 return NULL;
7999 }
8000
8001 static struct symbol *
8002 find_old_style_renaming_symbol (const char *name, const struct block *block)
8003 {
8004 const struct symbol *function_sym = block_linkage_function (block);
8005 char *rename;
8006
8007 if (function_sym != NULL)
8008 {
8009 /* If the symbol is defined inside a function, NAME is not fully
8010 qualified. This means we need to prepend the function name
8011 as well as adding the ``___XR'' suffix to build the name of
8012 the associated renaming symbol. */
8013 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
8014 /* Function names sometimes contain suffixes used
8015 for instance to qualify nested subprograms. When building
8016 the XR type name, we need to make sure that this suffix is
8017 not included. So do not include any suffix in the function
8018 name length below. */
8019 int function_name_len = ada_name_prefix_len (function_name);
8020 const int rename_len = function_name_len + 2 /* "__" */
8021 + strlen (name) + 6 /* "___XR\0" */ ;
8022
8023 /* Strip the suffix if necessary. */
8024 ada_remove_trailing_digits (function_name, &function_name_len);
8025 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
8026 ada_remove_Xbn_suffix (function_name, &function_name_len);
8027
8028 /* Library-level functions are a special case, as GNAT adds
8029 a ``_ada_'' prefix to the function name to avoid namespace
8030 pollution. However, the renaming symbols themselves do not
8031 have this prefix, so we need to skip this prefix if present. */
8032 if (function_name_len > 5 /* "_ada_" */
8033 && strstr (function_name, "_ada_") == function_name)
8034 {
8035 function_name += 5;
8036 function_name_len -= 5;
8037 }
8038
8039 rename = (char *) alloca (rename_len * sizeof (char));
8040 strncpy (rename, function_name, function_name_len);
8041 xsnprintf (rename + function_name_len, rename_len - function_name_len,
8042 "__%s___XR", name);
8043 }
8044 else
8045 {
8046 const int rename_len = strlen (name) + 6;
8047
8048 rename = (char *) alloca (rename_len * sizeof (char));
8049 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
8050 }
8051
8052 return ada_find_any_type_symbol (rename);
8053 }
8054
8055 /* Because of GNAT encoding conventions, several GDB symbols may match a
8056 given type name. If the type denoted by TYPE0 is to be preferred to
8057 that of TYPE1 for purposes of type printing, return non-zero;
8058 otherwise return 0. */
8059
8060 int
8061 ada_prefer_type (struct type *type0, struct type *type1)
8062 {
8063 if (type1 == NULL)
8064 return 1;
8065 else if (type0 == NULL)
8066 return 0;
8067 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
8068 return 1;
8069 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
8070 return 0;
8071 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
8072 return 1;
8073 else if (ada_is_constrained_packed_array_type (type0))
8074 return 1;
8075 else if (ada_is_array_descriptor_type (type0)
8076 && !ada_is_array_descriptor_type (type1))
8077 return 1;
8078 else
8079 {
8080 const char *type0_name = TYPE_NAME (type0);
8081 const char *type1_name = TYPE_NAME (type1);
8082
8083 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
8084 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
8085 return 1;
8086 }
8087 return 0;
8088 }
8089
8090 /* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
8091 null. */
8092
8093 const char *
8094 ada_type_name (struct type *type)
8095 {
8096 if (type == NULL)
8097 return NULL;
8098 return TYPE_NAME (type);
8099 }
8100
8101 /* Search the list of "descriptive" types associated to TYPE for a type
8102 whose name is NAME. */
8103
8104 static struct type *
8105 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
8106 {
8107 struct type *result, *tmp;
8108
8109 if (ada_ignore_descriptive_types_p)
8110 return NULL;
8111
8112 /* If there no descriptive-type info, then there is no parallel type
8113 to be found. */
8114 if (!HAVE_GNAT_AUX_INFO (type))
8115 return NULL;
8116
8117 result = TYPE_DESCRIPTIVE_TYPE (type);
8118 while (result != NULL)
8119 {
8120 const char *result_name = ada_type_name (result);
8121
8122 if (result_name == NULL)
8123 {
8124 warning (_("unexpected null name on descriptive type"));
8125 return NULL;
8126 }
8127
8128 /* If the names match, stop. */
8129 if (strcmp (result_name, name) == 0)
8130 break;
8131
8132 /* Otherwise, look at the next item on the list, if any. */
8133 if (HAVE_GNAT_AUX_INFO (result))
8134 tmp = TYPE_DESCRIPTIVE_TYPE (result);
8135 else
8136 tmp = NULL;
8137
8138 /* If not found either, try after having resolved the typedef. */
8139 if (tmp != NULL)
8140 result = tmp;
8141 else
8142 {
8143 result = check_typedef (result);
8144 if (HAVE_GNAT_AUX_INFO (result))
8145 result = TYPE_DESCRIPTIVE_TYPE (result);
8146 else
8147 result = NULL;
8148 }
8149 }
8150
8151 /* If we didn't find a match, see whether this is a packed array. With
8152 older compilers, the descriptive type information is either absent or
8153 irrelevant when it comes to packed arrays so the above lookup fails.
8154 Fall back to using a parallel lookup by name in this case. */
8155 if (result == NULL && ada_is_constrained_packed_array_type (type))
8156 return ada_find_any_type (name);
8157
8158 return result;
8159 }
8160
8161 /* Find a parallel type to TYPE with the specified NAME, using the
8162 descriptive type taken from the debugging information, if available,
8163 and otherwise using the (slower) name-based method. */
8164
8165 static struct type *
8166 ada_find_parallel_type_with_name (struct type *type, const char *name)
8167 {
8168 struct type *result = NULL;
8169
8170 if (HAVE_GNAT_AUX_INFO (type))
8171 result = find_parallel_type_by_descriptive_type (type, name);
8172 else
8173 result = ada_find_any_type (name);
8174
8175 return result;
8176 }
8177
8178 /* Same as above, but specify the name of the parallel type by appending
8179 SUFFIX to the name of TYPE. */
8180
8181 struct type *
8182 ada_find_parallel_type (struct type *type, const char *suffix)
8183 {
8184 char *name;
8185 const char *type_name = ada_type_name (type);
8186 int len;
8187
8188 if (type_name == NULL)
8189 return NULL;
8190
8191 len = strlen (type_name);
8192
8193 name = (char *) alloca (len + strlen (suffix) + 1);
8194
8195 strcpy (name, type_name);
8196 strcpy (name + len, suffix);
8197
8198 return ada_find_parallel_type_with_name (type, name);
8199 }
8200
8201 /* If TYPE is a variable-size record type, return the corresponding template
8202 type describing its fields. Otherwise, return NULL. */
8203
8204 static struct type *
8205 dynamic_template_type (struct type *type)
8206 {
8207 type = ada_check_typedef (type);
8208
8209 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
8210 || ada_type_name (type) == NULL)
8211 return NULL;
8212 else
8213 {
8214 int len = strlen (ada_type_name (type));
8215
8216 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8217 return type;
8218 else
8219 return ada_find_parallel_type (type, "___XVE");
8220 }
8221 }
8222
8223 /* Assuming that TEMPL_TYPE is a union or struct type, returns
8224 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
8225
8226 static int
8227 is_dynamic_field (struct type *templ_type, int field_num)
8228 {
8229 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
8230
8231 return name != NULL
8232 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8233 && strstr (name, "___XVL") != NULL;
8234 }
8235
8236 /* The index of the variant field of TYPE, or -1 if TYPE does not
8237 represent a variant record type. */
8238
8239 static int
8240 variant_field_index (struct type *type)
8241 {
8242 int f;
8243
8244 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8245 return -1;
8246
8247 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8248 {
8249 if (ada_is_variant_part (type, f))
8250 return f;
8251 }
8252 return -1;
8253 }
8254
8255 /* A record type with no fields. */
8256
8257 static struct type *
8258 empty_record (struct type *templ)
8259 {
8260 struct type *type = alloc_type_copy (templ);
8261
8262 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8263 TYPE_NFIELDS (type) = 0;
8264 TYPE_FIELDS (type) = NULL;
8265 INIT_CPLUS_SPECIFIC (type);
8266 TYPE_NAME (type) = "<empty>";
8267 TYPE_LENGTH (type) = 0;
8268 return type;
8269 }
8270
8271 /* An ordinary record type (with fixed-length fields) that describes
8272 the value of type TYPE at VALADDR or ADDRESS (see comments at
8273 the beginning of this section) VAL according to GNAT conventions.
8274 DVAL0 should describe the (portion of a) record that contains any
8275 necessary discriminants. It should be NULL if value_type (VAL) is
8276 an outer-level type (i.e., as opposed to a branch of a variant.) A
8277 variant field (unless unchecked) is replaced by a particular branch
8278 of the variant.
8279
8280 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8281 length are not statically known are discarded. As a consequence,
8282 VALADDR, ADDRESS and DVAL0 are ignored.
8283
8284 NOTE: Limitations: For now, we assume that dynamic fields and
8285 variants occupy whole numbers of bytes. However, they need not be
8286 byte-aligned. */
8287
8288 struct type *
8289 ada_template_to_fixed_record_type_1 (struct type *type,
8290 const gdb_byte *valaddr,
8291 CORE_ADDR address, struct value *dval0,
8292 int keep_dynamic_fields)
8293 {
8294 struct value *mark = value_mark ();
8295 struct value *dval;
8296 struct type *rtype;
8297 int nfields, bit_len;
8298 int variant_field;
8299 long off;
8300 int fld_bit_len;
8301 int f;
8302
8303 /* Compute the number of fields in this record type that are going
8304 to be processed: unless keep_dynamic_fields, this includes only
8305 fields whose position and length are static will be processed. */
8306 if (keep_dynamic_fields)
8307 nfields = TYPE_NFIELDS (type);
8308 else
8309 {
8310 nfields = 0;
8311 while (nfields < TYPE_NFIELDS (type)
8312 && !ada_is_variant_part (type, nfields)
8313 && !is_dynamic_field (type, nfields))
8314 nfields++;
8315 }
8316
8317 rtype = alloc_type_copy (type);
8318 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8319 INIT_CPLUS_SPECIFIC (rtype);
8320 TYPE_NFIELDS (rtype) = nfields;
8321 TYPE_FIELDS (rtype) = (struct field *)
8322 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8323 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8324 TYPE_NAME (rtype) = ada_type_name (type);
8325 TYPE_FIXED_INSTANCE (rtype) = 1;
8326
8327 off = 0;
8328 bit_len = 0;
8329 variant_field = -1;
8330
8331 for (f = 0; f < nfields; f += 1)
8332 {
8333 off = align_value (off, field_alignment (type, f))
8334 + TYPE_FIELD_BITPOS (type, f);
8335 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
8336 TYPE_FIELD_BITSIZE (rtype, f) = 0;
8337
8338 if (ada_is_variant_part (type, f))
8339 {
8340 variant_field = f;
8341 fld_bit_len = 0;
8342 }
8343 else if (is_dynamic_field (type, f))
8344 {
8345 const gdb_byte *field_valaddr = valaddr;
8346 CORE_ADDR field_address = address;
8347 struct type *field_type =
8348 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8349
8350 if (dval0 == NULL)
8351 {
8352 /* rtype's length is computed based on the run-time
8353 value of discriminants. If the discriminants are not
8354 initialized, the type size may be completely bogus and
8355 GDB may fail to allocate a value for it. So check the
8356 size first before creating the value. */
8357 ada_ensure_varsize_limit (rtype);
8358 /* Using plain value_from_contents_and_address here
8359 causes problems because we will end up trying to
8360 resolve a type that is currently being
8361 constructed. */
8362 dval = value_from_contents_and_address_unresolved (rtype,
8363 valaddr,
8364 address);
8365 rtype = value_type (dval);
8366 }
8367 else
8368 dval = dval0;
8369
8370 /* If the type referenced by this field is an aligner type, we need
8371 to unwrap that aligner type, because its size might not be set.
8372 Keeping the aligner type would cause us to compute the wrong
8373 size for this field, impacting the offset of the all the fields
8374 that follow this one. */
8375 if (ada_is_aligner_type (field_type))
8376 {
8377 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8378
8379 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8380 field_address = cond_offset_target (field_address, field_offset);
8381 field_type = ada_aligned_type (field_type);
8382 }
8383
8384 field_valaddr = cond_offset_host (field_valaddr,
8385 off / TARGET_CHAR_BIT);
8386 field_address = cond_offset_target (field_address,
8387 off / TARGET_CHAR_BIT);
8388
8389 /* Get the fixed type of the field. Note that, in this case,
8390 we do not want to get the real type out of the tag: if
8391 the current field is the parent part of a tagged record,
8392 we will get the tag of the object. Clearly wrong: the real
8393 type of the parent is not the real type of the child. We
8394 would end up in an infinite loop. */
8395 field_type = ada_get_base_type (field_type);
8396 field_type = ada_to_fixed_type (field_type, field_valaddr,
8397 field_address, dval, 0);
8398 /* If the field size is already larger than the maximum
8399 object size, then the record itself will necessarily
8400 be larger than the maximum object size. We need to make
8401 this check now, because the size might be so ridiculously
8402 large (due to an uninitialized variable in the inferior)
8403 that it would cause an overflow when adding it to the
8404 record size. */
8405 ada_ensure_varsize_limit (field_type);
8406
8407 TYPE_FIELD_TYPE (rtype, f) = field_type;
8408 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8409 /* The multiplication can potentially overflow. But because
8410 the field length has been size-checked just above, and
8411 assuming that the maximum size is a reasonable value,
8412 an overflow should not happen in practice. So rather than
8413 adding overflow recovery code to this already complex code,
8414 we just assume that it's not going to happen. */
8415 fld_bit_len =
8416 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8417 }
8418 else
8419 {
8420 /* Note: If this field's type is a typedef, it is important
8421 to preserve the typedef layer.
8422
8423 Otherwise, we might be transforming a typedef to a fat
8424 pointer (encoding a pointer to an unconstrained array),
8425 into a basic fat pointer (encoding an unconstrained
8426 array). As both types are implemented using the same
8427 structure, the typedef is the only clue which allows us
8428 to distinguish between the two options. Stripping it
8429 would prevent us from printing this field appropriately. */
8430 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
8431 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8432 if (TYPE_FIELD_BITSIZE (type, f) > 0)
8433 fld_bit_len =
8434 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8435 else
8436 {
8437 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8438
8439 /* We need to be careful of typedefs when computing
8440 the length of our field. If this is a typedef,
8441 get the length of the target type, not the length
8442 of the typedef. */
8443 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8444 field_type = ada_typedef_target_type (field_type);
8445
8446 fld_bit_len =
8447 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8448 }
8449 }
8450 if (off + fld_bit_len > bit_len)
8451 bit_len = off + fld_bit_len;
8452 off += fld_bit_len;
8453 TYPE_LENGTH (rtype) =
8454 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8455 }
8456
8457 /* We handle the variant part, if any, at the end because of certain
8458 odd cases in which it is re-ordered so as NOT to be the last field of
8459 the record. This can happen in the presence of representation
8460 clauses. */
8461 if (variant_field >= 0)
8462 {
8463 struct type *branch_type;
8464
8465 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8466
8467 if (dval0 == NULL)
8468 {
8469 /* Using plain value_from_contents_and_address here causes
8470 problems because we will end up trying to resolve a type
8471 that is currently being constructed. */
8472 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8473 address);
8474 rtype = value_type (dval);
8475 }
8476 else
8477 dval = dval0;
8478
8479 branch_type =
8480 to_fixed_variant_branch_type
8481 (TYPE_FIELD_TYPE (type, variant_field),
8482 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8483 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8484 if (branch_type == NULL)
8485 {
8486 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8487 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8488 TYPE_NFIELDS (rtype) -= 1;
8489 }
8490 else
8491 {
8492 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8493 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8494 fld_bit_len =
8495 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8496 TARGET_CHAR_BIT;
8497 if (off + fld_bit_len > bit_len)
8498 bit_len = off + fld_bit_len;
8499 TYPE_LENGTH (rtype) =
8500 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8501 }
8502 }
8503
8504 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8505 should contain the alignment of that record, which should be a strictly
8506 positive value. If null or negative, then something is wrong, most
8507 probably in the debug info. In that case, we don't round up the size
8508 of the resulting type. If this record is not part of another structure,
8509 the current RTYPE length might be good enough for our purposes. */
8510 if (TYPE_LENGTH (type) <= 0)
8511 {
8512 if (TYPE_NAME (rtype))
8513 warning (_("Invalid type size for `%s' detected: %d."),
8514 TYPE_NAME (rtype), TYPE_LENGTH (type));
8515 else
8516 warning (_("Invalid type size for <unnamed> detected: %d."),
8517 TYPE_LENGTH (type));
8518 }
8519 else
8520 {
8521 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8522 TYPE_LENGTH (type));
8523 }
8524
8525 value_free_to_mark (mark);
8526 if (TYPE_LENGTH (rtype) > varsize_limit)
8527 error (_("record type with dynamic size is larger than varsize-limit"));
8528 return rtype;
8529 }
8530
8531 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8532 of 1. */
8533
8534 static struct type *
8535 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8536 CORE_ADDR address, struct value *dval0)
8537 {
8538 return ada_template_to_fixed_record_type_1 (type, valaddr,
8539 address, dval0, 1);
8540 }
8541
8542 /* An ordinary record type in which ___XVL-convention fields and
8543 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8544 static approximations, containing all possible fields. Uses
8545 no runtime values. Useless for use in values, but that's OK,
8546 since the results are used only for type determinations. Works on both
8547 structs and unions. Representation note: to save space, we memorize
8548 the result of this function in the TYPE_TARGET_TYPE of the
8549 template type. */
8550
8551 static struct type *
8552 template_to_static_fixed_type (struct type *type0)
8553 {
8554 struct type *type;
8555 int nfields;
8556 int f;
8557
8558 /* No need no do anything if the input type is already fixed. */
8559 if (TYPE_FIXED_INSTANCE (type0))
8560 return type0;
8561
8562 /* Likewise if we already have computed the static approximation. */
8563 if (TYPE_TARGET_TYPE (type0) != NULL)
8564 return TYPE_TARGET_TYPE (type0);
8565
8566 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8567 type = type0;
8568 nfields = TYPE_NFIELDS (type0);
8569
8570 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8571 recompute all over next time. */
8572 TYPE_TARGET_TYPE (type0) = type;
8573
8574 for (f = 0; f < nfields; f += 1)
8575 {
8576 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
8577 struct type *new_type;
8578
8579 if (is_dynamic_field (type0, f))
8580 {
8581 field_type = ada_check_typedef (field_type);
8582 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8583 }
8584 else
8585 new_type = static_unwrap_type (field_type);
8586
8587 if (new_type != field_type)
8588 {
8589 /* Clone TYPE0 only the first time we get a new field type. */
8590 if (type == type0)
8591 {
8592 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8593 TYPE_CODE (type) = TYPE_CODE (type0);
8594 INIT_CPLUS_SPECIFIC (type);
8595 TYPE_NFIELDS (type) = nfields;
8596 TYPE_FIELDS (type) = (struct field *)
8597 TYPE_ALLOC (type, nfields * sizeof (struct field));
8598 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8599 sizeof (struct field) * nfields);
8600 TYPE_NAME (type) = ada_type_name (type0);
8601 TYPE_FIXED_INSTANCE (type) = 1;
8602 TYPE_LENGTH (type) = 0;
8603 }
8604 TYPE_FIELD_TYPE (type, f) = new_type;
8605 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8606 }
8607 }
8608
8609 return type;
8610 }
8611
8612 /* Given an object of type TYPE whose contents are at VALADDR and
8613 whose address in memory is ADDRESS, returns a revision of TYPE,
8614 which should be a non-dynamic-sized record, in which the variant
8615 part, if any, is replaced with the appropriate branch. Looks
8616 for discriminant values in DVAL0, which can be NULL if the record
8617 contains the necessary discriminant values. */
8618
8619 static struct type *
8620 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8621 CORE_ADDR address, struct value *dval0)
8622 {
8623 struct value *mark = value_mark ();
8624 struct value *dval;
8625 struct type *rtype;
8626 struct type *branch_type;
8627 int nfields = TYPE_NFIELDS (type);
8628 int variant_field = variant_field_index (type);
8629
8630 if (variant_field == -1)
8631 return type;
8632
8633 if (dval0 == NULL)
8634 {
8635 dval = value_from_contents_and_address (type, valaddr, address);
8636 type = value_type (dval);
8637 }
8638 else
8639 dval = dval0;
8640
8641 rtype = alloc_type_copy (type);
8642 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8643 INIT_CPLUS_SPECIFIC (rtype);
8644 TYPE_NFIELDS (rtype) = nfields;
8645 TYPE_FIELDS (rtype) =
8646 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8647 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
8648 sizeof (struct field) * nfields);
8649 TYPE_NAME (rtype) = ada_type_name (type);
8650 TYPE_FIXED_INSTANCE (rtype) = 1;
8651 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8652
8653 branch_type = to_fixed_variant_branch_type
8654 (TYPE_FIELD_TYPE (type, variant_field),
8655 cond_offset_host (valaddr,
8656 TYPE_FIELD_BITPOS (type, variant_field)
8657 / TARGET_CHAR_BIT),
8658 cond_offset_target (address,
8659 TYPE_FIELD_BITPOS (type, variant_field)
8660 / TARGET_CHAR_BIT), dval);
8661 if (branch_type == NULL)
8662 {
8663 int f;
8664
8665 for (f = variant_field + 1; f < nfields; f += 1)
8666 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8667 TYPE_NFIELDS (rtype) -= 1;
8668 }
8669 else
8670 {
8671 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8672 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8673 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8674 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8675 }
8676 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
8677
8678 value_free_to_mark (mark);
8679 return rtype;
8680 }
8681
8682 /* An ordinary record type (with fixed-length fields) that describes
8683 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8684 beginning of this section]. Any necessary discriminants' values
8685 should be in DVAL, a record value; it may be NULL if the object
8686 at ADDR itself contains any necessary discriminant values.
8687 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8688 values from the record are needed. Except in the case that DVAL,
8689 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8690 unchecked) is replaced by a particular branch of the variant.
8691
8692 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8693 is questionable and may be removed. It can arise during the
8694 processing of an unconstrained-array-of-record type where all the
8695 variant branches have exactly the same size. This is because in
8696 such cases, the compiler does not bother to use the XVS convention
8697 when encoding the record. I am currently dubious of this
8698 shortcut and suspect the compiler should be altered. FIXME. */
8699
8700 static struct type *
8701 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8702 CORE_ADDR address, struct value *dval)
8703 {
8704 struct type *templ_type;
8705
8706 if (TYPE_FIXED_INSTANCE (type0))
8707 return type0;
8708
8709 templ_type = dynamic_template_type (type0);
8710
8711 if (templ_type != NULL)
8712 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8713 else if (variant_field_index (type0) >= 0)
8714 {
8715 if (dval == NULL && valaddr == NULL && address == 0)
8716 return type0;
8717 return to_record_with_fixed_variant_part (type0, valaddr, address,
8718 dval);
8719 }
8720 else
8721 {
8722 TYPE_FIXED_INSTANCE (type0) = 1;
8723 return type0;
8724 }
8725
8726 }
8727
8728 /* An ordinary record type (with fixed-length fields) that describes
8729 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8730 union type. Any necessary discriminants' values should be in DVAL,
8731 a record value. That is, this routine selects the appropriate
8732 branch of the union at ADDR according to the discriminant value
8733 indicated in the union's type name. Returns VAR_TYPE0 itself if
8734 it represents a variant subject to a pragma Unchecked_Union. */
8735
8736 static struct type *
8737 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8738 CORE_ADDR address, struct value *dval)
8739 {
8740 int which;
8741 struct type *templ_type;
8742 struct type *var_type;
8743
8744 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8745 var_type = TYPE_TARGET_TYPE (var_type0);
8746 else
8747 var_type = var_type0;
8748
8749 templ_type = ada_find_parallel_type (var_type, "___XVU");
8750
8751 if (templ_type != NULL)
8752 var_type = templ_type;
8753
8754 if (is_unchecked_variant (var_type, value_type (dval)))
8755 return var_type0;
8756 which =
8757 ada_which_variant_applies (var_type,
8758 value_type (dval), value_contents (dval));
8759
8760 if (which < 0)
8761 return empty_record (var_type);
8762 else if (is_dynamic_field (var_type, which))
8763 return to_fixed_record_type
8764 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8765 valaddr, address, dval);
8766 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8767 return
8768 to_fixed_record_type
8769 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8770 else
8771 return TYPE_FIELD_TYPE (var_type, which);
8772 }
8773
8774 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8775 ENCODING_TYPE, a type following the GNAT conventions for discrete
8776 type encodings, only carries redundant information. */
8777
8778 static int
8779 ada_is_redundant_range_encoding (struct type *range_type,
8780 struct type *encoding_type)
8781 {
8782 const char *bounds_str;
8783 int n;
8784 LONGEST lo, hi;
8785
8786 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8787
8788 if (TYPE_CODE (get_base_type (range_type))
8789 != TYPE_CODE (get_base_type (encoding_type)))
8790 {
8791 /* The compiler probably used a simple base type to describe
8792 the range type instead of the range's actual base type,
8793 expecting us to get the real base type from the encoding
8794 anyway. In this situation, the encoding cannot be ignored
8795 as redundant. */
8796 return 0;
8797 }
8798
8799 if (is_dynamic_type (range_type))
8800 return 0;
8801
8802 if (TYPE_NAME (encoding_type) == NULL)
8803 return 0;
8804
8805 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8806 if (bounds_str == NULL)
8807 return 0;
8808
8809 n = 8; /* Skip "___XDLU_". */
8810 if (!ada_scan_number (bounds_str, n, &lo, &n))
8811 return 0;
8812 if (TYPE_LOW_BOUND (range_type) != lo)
8813 return 0;
8814
8815 n += 2; /* Skip the "__" separator between the two bounds. */
8816 if (!ada_scan_number (bounds_str, n, &hi, &n))
8817 return 0;
8818 if (TYPE_HIGH_BOUND (range_type) != hi)
8819 return 0;
8820
8821 return 1;
8822 }
8823
8824 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8825 a type following the GNAT encoding for describing array type
8826 indices, only carries redundant information. */
8827
8828 static int
8829 ada_is_redundant_index_type_desc (struct type *array_type,
8830 struct type *desc_type)
8831 {
8832 struct type *this_layer = check_typedef (array_type);
8833 int i;
8834
8835 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8836 {
8837 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8838 TYPE_FIELD_TYPE (desc_type, i)))
8839 return 0;
8840 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8841 }
8842
8843 return 1;
8844 }
8845
8846 /* Assuming that TYPE0 is an array type describing the type of a value
8847 at ADDR, and that DVAL describes a record containing any
8848 discriminants used in TYPE0, returns a type for the value that
8849 contains no dynamic components (that is, no components whose sizes
8850 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8851 true, gives an error message if the resulting type's size is over
8852 varsize_limit. */
8853
8854 static struct type *
8855 to_fixed_array_type (struct type *type0, struct value *dval,
8856 int ignore_too_big)
8857 {
8858 struct type *index_type_desc;
8859 struct type *result;
8860 int constrained_packed_array_p;
8861 static const char *xa_suffix = "___XA";
8862
8863 type0 = ada_check_typedef (type0);
8864 if (TYPE_FIXED_INSTANCE (type0))
8865 return type0;
8866
8867 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8868 if (constrained_packed_array_p)
8869 type0 = decode_constrained_packed_array_type (type0);
8870
8871 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8872
8873 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8874 encoding suffixed with 'P' may still be generated. If so,
8875 it should be used to find the XA type. */
8876
8877 if (index_type_desc == NULL)
8878 {
8879 const char *type_name = ada_type_name (type0);
8880
8881 if (type_name != NULL)
8882 {
8883 const int len = strlen (type_name);
8884 char *name = (char *) alloca (len + strlen (xa_suffix));
8885
8886 if (type_name[len - 1] == 'P')
8887 {
8888 strcpy (name, type_name);
8889 strcpy (name + len - 1, xa_suffix);
8890 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8891 }
8892 }
8893 }
8894
8895 ada_fixup_array_indexes_type (index_type_desc);
8896 if (index_type_desc != NULL
8897 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8898 {
8899 /* Ignore this ___XA parallel type, as it does not bring any
8900 useful information. This allows us to avoid creating fixed
8901 versions of the array's index types, which would be identical
8902 to the original ones. This, in turn, can also help avoid
8903 the creation of fixed versions of the array itself. */
8904 index_type_desc = NULL;
8905 }
8906
8907 if (index_type_desc == NULL)
8908 {
8909 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8910
8911 /* NOTE: elt_type---the fixed version of elt_type0---should never
8912 depend on the contents of the array in properly constructed
8913 debugging data. */
8914 /* Create a fixed version of the array element type.
8915 We're not providing the address of an element here,
8916 and thus the actual object value cannot be inspected to do
8917 the conversion. This should not be a problem, since arrays of
8918 unconstrained objects are not allowed. In particular, all
8919 the elements of an array of a tagged type should all be of
8920 the same type specified in the debugging info. No need to
8921 consult the object tag. */
8922 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8923
8924 /* Make sure we always create a new array type when dealing with
8925 packed array types, since we're going to fix-up the array
8926 type length and element bitsize a little further down. */
8927 if (elt_type0 == elt_type && !constrained_packed_array_p)
8928 result = type0;
8929 else
8930 result = create_array_type (alloc_type_copy (type0),
8931 elt_type, TYPE_INDEX_TYPE (type0));
8932 }
8933 else
8934 {
8935 int i;
8936 struct type *elt_type0;
8937
8938 elt_type0 = type0;
8939 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8940 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8941
8942 /* NOTE: result---the fixed version of elt_type0---should never
8943 depend on the contents of the array in properly constructed
8944 debugging data. */
8945 /* Create a fixed version of the array element type.
8946 We're not providing the address of an element here,
8947 and thus the actual object value cannot be inspected to do
8948 the conversion. This should not be a problem, since arrays of
8949 unconstrained objects are not allowed. In particular, all
8950 the elements of an array of a tagged type should all be of
8951 the same type specified in the debugging info. No need to
8952 consult the object tag. */
8953 result =
8954 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8955
8956 elt_type0 = type0;
8957 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8958 {
8959 struct type *range_type =
8960 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8961
8962 result = create_array_type (alloc_type_copy (elt_type0),
8963 result, range_type);
8964 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8965 }
8966 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8967 error (_("array type with dynamic size is larger than varsize-limit"));
8968 }
8969
8970 /* We want to preserve the type name. This can be useful when
8971 trying to get the type name of a value that has already been
8972 printed (for instance, if the user did "print VAR; whatis $". */
8973 TYPE_NAME (result) = TYPE_NAME (type0);
8974
8975 if (constrained_packed_array_p)
8976 {
8977 /* So far, the resulting type has been created as if the original
8978 type was a regular (non-packed) array type. As a result, the
8979 bitsize of the array elements needs to be set again, and the array
8980 length needs to be recomputed based on that bitsize. */
8981 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8982 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8983
8984 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8985 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8986 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8987 TYPE_LENGTH (result)++;
8988 }
8989
8990 TYPE_FIXED_INSTANCE (result) = 1;
8991 return result;
8992 }
8993
8994
8995 /* A standard type (containing no dynamically sized components)
8996 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8997 DVAL describes a record containing any discriminants used in TYPE0,
8998 and may be NULL if there are none, or if the object of type TYPE at
8999 ADDRESS or in VALADDR contains these discriminants.
9000
9001 If CHECK_TAG is not null, in the case of tagged types, this function
9002 attempts to locate the object's tag and use it to compute the actual
9003 type. However, when ADDRESS is null, we cannot use it to determine the
9004 location of the tag, and therefore compute the tagged type's actual type.
9005 So we return the tagged type without consulting the tag. */
9006
9007 static struct type *
9008 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
9009 CORE_ADDR address, struct value *dval, int check_tag)
9010 {
9011 type = ada_check_typedef (type);
9012 switch (TYPE_CODE (type))
9013 {
9014 default:
9015 return type;
9016 case TYPE_CODE_STRUCT:
9017 {
9018 struct type *static_type = to_static_fixed_type (type);
9019 struct type *fixed_record_type =
9020 to_fixed_record_type (type, valaddr, address, NULL);
9021
9022 /* If STATIC_TYPE is a tagged type and we know the object's address,
9023 then we can determine its tag, and compute the object's actual
9024 type from there. Note that we have to use the fixed record
9025 type (the parent part of the record may have dynamic fields
9026 and the way the location of _tag is expressed may depend on
9027 them). */
9028
9029 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
9030 {
9031 struct value *tag =
9032 value_tag_from_contents_and_address
9033 (fixed_record_type,
9034 valaddr,
9035 address);
9036 struct type *real_type = type_from_tag (tag);
9037 struct value *obj =
9038 value_from_contents_and_address (fixed_record_type,
9039 valaddr,
9040 address);
9041 fixed_record_type = value_type (obj);
9042 if (real_type != NULL)
9043 return to_fixed_record_type
9044 (real_type, NULL,
9045 value_address (ada_tag_value_at_base_address (obj)), NULL);
9046 }
9047
9048 /* Check to see if there is a parallel ___XVZ variable.
9049 If there is, then it provides the actual size of our type. */
9050 else if (ada_type_name (fixed_record_type) != NULL)
9051 {
9052 const char *name = ada_type_name (fixed_record_type);
9053 char *xvz_name
9054 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
9055 bool xvz_found = false;
9056 LONGEST size;
9057
9058 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
9059 TRY
9060 {
9061 xvz_found = get_int_var_value (xvz_name, size);
9062 }
9063 CATCH (except, RETURN_MASK_ERROR)
9064 {
9065 /* We found the variable, but somehow failed to read
9066 its value. Rethrow the same error, but with a little
9067 bit more information, to help the user understand
9068 what went wrong (Eg: the variable might have been
9069 optimized out). */
9070 throw_error (except.error,
9071 _("unable to read value of %s (%s)"),
9072 xvz_name, except.message);
9073 }
9074 END_CATCH
9075
9076 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
9077 {
9078 fixed_record_type = copy_type (fixed_record_type);
9079 TYPE_LENGTH (fixed_record_type) = size;
9080
9081 /* The FIXED_RECORD_TYPE may have be a stub. We have
9082 observed this when the debugging info is STABS, and
9083 apparently it is something that is hard to fix.
9084
9085 In practice, we don't need the actual type definition
9086 at all, because the presence of the XVZ variable allows us
9087 to assume that there must be a XVS type as well, which we
9088 should be able to use later, when we need the actual type
9089 definition.
9090
9091 In the meantime, pretend that the "fixed" type we are
9092 returning is NOT a stub, because this can cause trouble
9093 when using this type to create new types targeting it.
9094 Indeed, the associated creation routines often check
9095 whether the target type is a stub and will try to replace
9096 it, thus using a type with the wrong size. This, in turn,
9097 might cause the new type to have the wrong size too.
9098 Consider the case of an array, for instance, where the size
9099 of the array is computed from the number of elements in
9100 our array multiplied by the size of its element. */
9101 TYPE_STUB (fixed_record_type) = 0;
9102 }
9103 }
9104 return fixed_record_type;
9105 }
9106 case TYPE_CODE_ARRAY:
9107 return to_fixed_array_type (type, dval, 1);
9108 case TYPE_CODE_UNION:
9109 if (dval == NULL)
9110 return type;
9111 else
9112 return to_fixed_variant_branch_type (type, valaddr, address, dval);
9113 }
9114 }
9115
9116 /* The same as ada_to_fixed_type_1, except that it preserves the type
9117 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
9118
9119 The typedef layer needs be preserved in order to differentiate between
9120 arrays and array pointers when both types are implemented using the same
9121 fat pointer. In the array pointer case, the pointer is encoded as
9122 a typedef of the pointer type. For instance, considering:
9123
9124 type String_Access is access String;
9125 S1 : String_Access := null;
9126
9127 To the debugger, S1 is defined as a typedef of type String. But
9128 to the user, it is a pointer. So if the user tries to print S1,
9129 we should not dereference the array, but print the array address
9130 instead.
9131
9132 If we didn't preserve the typedef layer, we would lose the fact that
9133 the type is to be presented as a pointer (needs de-reference before
9134 being printed). And we would also use the source-level type name. */
9135
9136 struct type *
9137 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
9138 CORE_ADDR address, struct value *dval, int check_tag)
9139
9140 {
9141 struct type *fixed_type =
9142 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
9143
9144 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
9145 then preserve the typedef layer.
9146
9147 Implementation note: We can only check the main-type portion of
9148 the TYPE and FIXED_TYPE, because eliminating the typedef layer
9149 from TYPE now returns a type that has the same instance flags
9150 as TYPE. For instance, if TYPE is a "typedef const", and its
9151 target type is a "struct", then the typedef elimination will return
9152 a "const" version of the target type. See check_typedef for more
9153 details about how the typedef layer elimination is done.
9154
9155 brobecker/2010-11-19: It seems to me that the only case where it is
9156 useful to preserve the typedef layer is when dealing with fat pointers.
9157 Perhaps, we could add a check for that and preserve the typedef layer
9158 only in that situation. But this seems unecessary so far, probably
9159 because we call check_typedef/ada_check_typedef pretty much everywhere.
9160 */
9161 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9162 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
9163 == TYPE_MAIN_TYPE (fixed_type)))
9164 return type;
9165
9166 return fixed_type;
9167 }
9168
9169 /* A standard (static-sized) type corresponding as well as possible to
9170 TYPE0, but based on no runtime data. */
9171
9172 static struct type *
9173 to_static_fixed_type (struct type *type0)
9174 {
9175 struct type *type;
9176
9177 if (type0 == NULL)
9178 return NULL;
9179
9180 if (TYPE_FIXED_INSTANCE (type0))
9181 return type0;
9182
9183 type0 = ada_check_typedef (type0);
9184
9185 switch (TYPE_CODE (type0))
9186 {
9187 default:
9188 return type0;
9189 case TYPE_CODE_STRUCT:
9190 type = dynamic_template_type (type0);
9191 if (type != NULL)
9192 return template_to_static_fixed_type (type);
9193 else
9194 return template_to_static_fixed_type (type0);
9195 case TYPE_CODE_UNION:
9196 type = ada_find_parallel_type (type0, "___XVU");
9197 if (type != NULL)
9198 return template_to_static_fixed_type (type);
9199 else
9200 return template_to_static_fixed_type (type0);
9201 }
9202 }
9203
9204 /* A static approximation of TYPE with all type wrappers removed. */
9205
9206 static struct type *
9207 static_unwrap_type (struct type *type)
9208 {
9209 if (ada_is_aligner_type (type))
9210 {
9211 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
9212 if (ada_type_name (type1) == NULL)
9213 TYPE_NAME (type1) = ada_type_name (type);
9214
9215 return static_unwrap_type (type1);
9216 }
9217 else
9218 {
9219 struct type *raw_real_type = ada_get_base_type (type);
9220
9221 if (raw_real_type == type)
9222 return type;
9223 else
9224 return to_static_fixed_type (raw_real_type);
9225 }
9226 }
9227
9228 /* In some cases, incomplete and private types require
9229 cross-references that are not resolved as records (for example,
9230 type Foo;
9231 type FooP is access Foo;
9232 V: FooP;
9233 type Foo is array ...;
9234 ). In these cases, since there is no mechanism for producing
9235 cross-references to such types, we instead substitute for FooP a
9236 stub enumeration type that is nowhere resolved, and whose tag is
9237 the name of the actual type. Call these types "non-record stubs". */
9238
9239 /* A type equivalent to TYPE that is not a non-record stub, if one
9240 exists, otherwise TYPE. */
9241
9242 struct type *
9243 ada_check_typedef (struct type *type)
9244 {
9245 if (type == NULL)
9246 return NULL;
9247
9248 /* If our type is a typedef type of a fat pointer, then we're done.
9249 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9250 what allows us to distinguish between fat pointers that represent
9251 array types, and fat pointers that represent array access types
9252 (in both cases, the compiler implements them as fat pointers). */
9253 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9254 && is_thick_pntr (ada_typedef_target_type (type)))
9255 return type;
9256
9257 type = check_typedef (type);
9258 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
9259 || !TYPE_STUB (type)
9260 || TYPE_NAME (type) == NULL)
9261 return type;
9262 else
9263 {
9264 const char *name = TYPE_NAME (type);
9265 struct type *type1 = ada_find_any_type (name);
9266
9267 if (type1 == NULL)
9268 return type;
9269
9270 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9271 stubs pointing to arrays, as we don't create symbols for array
9272 types, only for the typedef-to-array types). If that's the case,
9273 strip the typedef layer. */
9274 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9275 type1 = ada_check_typedef (type1);
9276
9277 return type1;
9278 }
9279 }
9280
9281 /* A value representing the data at VALADDR/ADDRESS as described by
9282 type TYPE0, but with a standard (static-sized) type that correctly
9283 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9284 type, then return VAL0 [this feature is simply to avoid redundant
9285 creation of struct values]. */
9286
9287 static struct value *
9288 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9289 struct value *val0)
9290 {
9291 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
9292
9293 if (type == type0 && val0 != NULL)
9294 return val0;
9295
9296 if (VALUE_LVAL (val0) != lval_memory)
9297 {
9298 /* Our value does not live in memory; it could be a convenience
9299 variable, for instance. Create a not_lval value using val0's
9300 contents. */
9301 return value_from_contents (type, value_contents (val0));
9302 }
9303
9304 return value_from_contents_and_address (type, 0, address);
9305 }
9306
9307 /* A value representing VAL, but with a standard (static-sized) type
9308 that correctly describes it. Does not necessarily create a new
9309 value. */
9310
9311 struct value *
9312 ada_to_fixed_value (struct value *val)
9313 {
9314 val = unwrap_value (val);
9315 val = ada_to_fixed_value_create (value_type (val),
9316 value_address (val),
9317 val);
9318 return val;
9319 }
9320 \f
9321
9322 /* Attributes */
9323
9324 /* Table mapping attribute numbers to names.
9325 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
9326
9327 static const char *attribute_names[] = {
9328 "<?>",
9329
9330 "first",
9331 "last",
9332 "length",
9333 "image",
9334 "max",
9335 "min",
9336 "modulus",
9337 "pos",
9338 "size",
9339 "tag",
9340 "val",
9341 0
9342 };
9343
9344 const char *
9345 ada_attribute_name (enum exp_opcode n)
9346 {
9347 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9348 return attribute_names[n - OP_ATR_FIRST + 1];
9349 else
9350 return attribute_names[0];
9351 }
9352
9353 /* Evaluate the 'POS attribute applied to ARG. */
9354
9355 static LONGEST
9356 pos_atr (struct value *arg)
9357 {
9358 struct value *val = coerce_ref (arg);
9359 struct type *type = value_type (val);
9360 LONGEST result;
9361
9362 if (!discrete_type_p (type))
9363 error (_("'POS only defined on discrete types"));
9364
9365 if (!discrete_position (type, value_as_long (val), &result))
9366 error (_("enumeration value is invalid: can't find 'POS"));
9367
9368 return result;
9369 }
9370
9371 static struct value *
9372 value_pos_atr (struct type *type, struct value *arg)
9373 {
9374 return value_from_longest (type, pos_atr (arg));
9375 }
9376
9377 /* Evaluate the TYPE'VAL attribute applied to ARG. */
9378
9379 static struct value *
9380 value_val_atr (struct type *type, struct value *arg)
9381 {
9382 if (!discrete_type_p (type))
9383 error (_("'VAL only defined on discrete types"));
9384 if (!integer_type_p (value_type (arg)))
9385 error (_("'VAL requires integral argument"));
9386
9387 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9388 {
9389 long pos = value_as_long (arg);
9390
9391 if (pos < 0 || pos >= TYPE_NFIELDS (type))
9392 error (_("argument to 'VAL out of range"));
9393 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
9394 }
9395 else
9396 return value_from_longest (type, value_as_long (arg));
9397 }
9398 \f
9399
9400 /* Evaluation */
9401
9402 /* True if TYPE appears to be an Ada character type.
9403 [At the moment, this is true only for Character and Wide_Character;
9404 It is a heuristic test that could stand improvement]. */
9405
9406 int
9407 ada_is_character_type (struct type *type)
9408 {
9409 const char *name;
9410
9411 /* If the type code says it's a character, then assume it really is,
9412 and don't check any further. */
9413 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9414 return 1;
9415
9416 /* Otherwise, assume it's a character type iff it is a discrete type
9417 with a known character type name. */
9418 name = ada_type_name (type);
9419 return (name != NULL
9420 && (TYPE_CODE (type) == TYPE_CODE_INT
9421 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9422 && (strcmp (name, "character") == 0
9423 || strcmp (name, "wide_character") == 0
9424 || strcmp (name, "wide_wide_character") == 0
9425 || strcmp (name, "unsigned char") == 0));
9426 }
9427
9428 /* True if TYPE appears to be an Ada string type. */
9429
9430 int
9431 ada_is_string_type (struct type *type)
9432 {
9433 type = ada_check_typedef (type);
9434 if (type != NULL
9435 && TYPE_CODE (type) != TYPE_CODE_PTR
9436 && (ada_is_simple_array_type (type)
9437 || ada_is_array_descriptor_type (type))
9438 && ada_array_arity (type) == 1)
9439 {
9440 struct type *elttype = ada_array_element_type (type, 1);
9441
9442 return ada_is_character_type (elttype);
9443 }
9444 else
9445 return 0;
9446 }
9447
9448 /* The compiler sometimes provides a parallel XVS type for a given
9449 PAD type. Normally, it is safe to follow the PAD type directly,
9450 but older versions of the compiler have a bug that causes the offset
9451 of its "F" field to be wrong. Following that field in that case
9452 would lead to incorrect results, but this can be worked around
9453 by ignoring the PAD type and using the associated XVS type instead.
9454
9455 Set to True if the debugger should trust the contents of PAD types.
9456 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9457 static int trust_pad_over_xvs = 1;
9458
9459 /* True if TYPE is a struct type introduced by the compiler to force the
9460 alignment of a value. Such types have a single field with a
9461 distinctive name. */
9462
9463 int
9464 ada_is_aligner_type (struct type *type)
9465 {
9466 type = ada_check_typedef (type);
9467
9468 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
9469 return 0;
9470
9471 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
9472 && TYPE_NFIELDS (type) == 1
9473 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
9474 }
9475
9476 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9477 the parallel type. */
9478
9479 struct type *
9480 ada_get_base_type (struct type *raw_type)
9481 {
9482 struct type *real_type_namer;
9483 struct type *raw_real_type;
9484
9485 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9486 return raw_type;
9487
9488 if (ada_is_aligner_type (raw_type))
9489 /* The encoding specifies that we should always use the aligner type.
9490 So, even if this aligner type has an associated XVS type, we should
9491 simply ignore it.
9492
9493 According to the compiler gurus, an XVS type parallel to an aligner
9494 type may exist because of a stabs limitation. In stabs, aligner
9495 types are empty because the field has a variable-sized type, and
9496 thus cannot actually be used as an aligner type. As a result,
9497 we need the associated parallel XVS type to decode the type.
9498 Since the policy in the compiler is to not change the internal
9499 representation based on the debugging info format, we sometimes
9500 end up having a redundant XVS type parallel to the aligner type. */
9501 return raw_type;
9502
9503 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9504 if (real_type_namer == NULL
9505 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9506 || TYPE_NFIELDS (real_type_namer) != 1)
9507 return raw_type;
9508
9509 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9510 {
9511 /* This is an older encoding form where the base type needs to be
9512 looked up by name. We prefer the newer enconding because it is
9513 more efficient. */
9514 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9515 if (raw_real_type == NULL)
9516 return raw_type;
9517 else
9518 return raw_real_type;
9519 }
9520
9521 /* The field in our XVS type is a reference to the base type. */
9522 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
9523 }
9524
9525 /* The type of value designated by TYPE, with all aligners removed. */
9526
9527 struct type *
9528 ada_aligned_type (struct type *type)
9529 {
9530 if (ada_is_aligner_type (type))
9531 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9532 else
9533 return ada_get_base_type (type);
9534 }
9535
9536
9537 /* The address of the aligned value in an object at address VALADDR
9538 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9539
9540 const gdb_byte *
9541 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9542 {
9543 if (ada_is_aligner_type (type))
9544 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
9545 valaddr +
9546 TYPE_FIELD_BITPOS (type,
9547 0) / TARGET_CHAR_BIT);
9548 else
9549 return valaddr;
9550 }
9551
9552
9553
9554 /* The printed representation of an enumeration literal with encoded
9555 name NAME. The value is good to the next call of ada_enum_name. */
9556 const char *
9557 ada_enum_name (const char *name)
9558 {
9559 static char *result;
9560 static size_t result_len = 0;
9561 const char *tmp;
9562
9563 /* First, unqualify the enumeration name:
9564 1. Search for the last '.' character. If we find one, then skip
9565 all the preceding characters, the unqualified name starts
9566 right after that dot.
9567 2. Otherwise, we may be debugging on a target where the compiler
9568 translates dots into "__". Search forward for double underscores,
9569 but stop searching when we hit an overloading suffix, which is
9570 of the form "__" followed by digits. */
9571
9572 tmp = strrchr (name, '.');
9573 if (tmp != NULL)
9574 name = tmp + 1;
9575 else
9576 {
9577 while ((tmp = strstr (name, "__")) != NULL)
9578 {
9579 if (isdigit (tmp[2]))
9580 break;
9581 else
9582 name = tmp + 2;
9583 }
9584 }
9585
9586 if (name[0] == 'Q')
9587 {
9588 int v;
9589
9590 if (name[1] == 'U' || name[1] == 'W')
9591 {
9592 if (sscanf (name + 2, "%x", &v) != 1)
9593 return name;
9594 }
9595 else
9596 return name;
9597
9598 GROW_VECT (result, result_len, 16);
9599 if (isascii (v) && isprint (v))
9600 xsnprintf (result, result_len, "'%c'", v);
9601 else if (name[1] == 'U')
9602 xsnprintf (result, result_len, "[\"%02x\"]", v);
9603 else
9604 xsnprintf (result, result_len, "[\"%04x\"]", v);
9605
9606 return result;
9607 }
9608 else
9609 {
9610 tmp = strstr (name, "__");
9611 if (tmp == NULL)
9612 tmp = strstr (name, "$");
9613 if (tmp != NULL)
9614 {
9615 GROW_VECT (result, result_len, tmp - name + 1);
9616 strncpy (result, name, tmp - name);
9617 result[tmp - name] = '\0';
9618 return result;
9619 }
9620
9621 return name;
9622 }
9623 }
9624
9625 /* Evaluate the subexpression of EXP starting at *POS as for
9626 evaluate_type, updating *POS to point just past the evaluated
9627 expression. */
9628
9629 static struct value *
9630 evaluate_subexp_type (struct expression *exp, int *pos)
9631 {
9632 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9633 }
9634
9635 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9636 value it wraps. */
9637
9638 static struct value *
9639 unwrap_value (struct value *val)
9640 {
9641 struct type *type = ada_check_typedef (value_type (val));
9642
9643 if (ada_is_aligner_type (type))
9644 {
9645 struct value *v = ada_value_struct_elt (val, "F", 0);
9646 struct type *val_type = ada_check_typedef (value_type (v));
9647
9648 if (ada_type_name (val_type) == NULL)
9649 TYPE_NAME (val_type) = ada_type_name (type);
9650
9651 return unwrap_value (v);
9652 }
9653 else
9654 {
9655 struct type *raw_real_type =
9656 ada_check_typedef (ada_get_base_type (type));
9657
9658 /* If there is no parallel XVS or XVE type, then the value is
9659 already unwrapped. Return it without further modification. */
9660 if ((type == raw_real_type)
9661 && ada_find_parallel_type (type, "___XVE") == NULL)
9662 return val;
9663
9664 return
9665 coerce_unspec_val_to_type
9666 (val, ada_to_fixed_type (raw_real_type, 0,
9667 value_address (val),
9668 NULL, 1));
9669 }
9670 }
9671
9672 static struct value *
9673 cast_from_fixed (struct type *type, struct value *arg)
9674 {
9675 struct value *scale = ada_scaling_factor (value_type (arg));
9676 arg = value_cast (value_type (scale), arg);
9677
9678 arg = value_binop (arg, scale, BINOP_MUL);
9679 return value_cast (type, arg);
9680 }
9681
9682 static struct value *
9683 cast_to_fixed (struct type *type, struct value *arg)
9684 {
9685 if (type == value_type (arg))
9686 return arg;
9687
9688 struct value *scale = ada_scaling_factor (type);
9689 if (ada_is_fixed_point_type (value_type (arg)))
9690 arg = cast_from_fixed (value_type (scale), arg);
9691 else
9692 arg = value_cast (value_type (scale), arg);
9693
9694 arg = value_binop (arg, scale, BINOP_DIV);
9695 return value_cast (type, arg);
9696 }
9697
9698 /* Given two array types T1 and T2, return nonzero iff both arrays
9699 contain the same number of elements. */
9700
9701 static int
9702 ada_same_array_size_p (struct type *t1, struct type *t2)
9703 {
9704 LONGEST lo1, hi1, lo2, hi2;
9705
9706 /* Get the array bounds in order to verify that the size of
9707 the two arrays match. */
9708 if (!get_array_bounds (t1, &lo1, &hi1)
9709 || !get_array_bounds (t2, &lo2, &hi2))
9710 error (_("unable to determine array bounds"));
9711
9712 /* To make things easier for size comparison, normalize a bit
9713 the case of empty arrays by making sure that the difference
9714 between upper bound and lower bound is always -1. */
9715 if (lo1 > hi1)
9716 hi1 = lo1 - 1;
9717 if (lo2 > hi2)
9718 hi2 = lo2 - 1;
9719
9720 return (hi1 - lo1 == hi2 - lo2);
9721 }
9722
9723 /* Assuming that VAL is an array of integrals, and TYPE represents
9724 an array with the same number of elements, but with wider integral
9725 elements, return an array "casted" to TYPE. In practice, this
9726 means that the returned array is built by casting each element
9727 of the original array into TYPE's (wider) element type. */
9728
9729 static struct value *
9730 ada_promote_array_of_integrals (struct type *type, struct value *val)
9731 {
9732 struct type *elt_type = TYPE_TARGET_TYPE (type);
9733 LONGEST lo, hi;
9734 struct value *res;
9735 LONGEST i;
9736
9737 /* Verify that both val and type are arrays of scalars, and
9738 that the size of val's elements is smaller than the size
9739 of type's element. */
9740 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9741 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9742 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9743 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9744 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9745 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9746
9747 if (!get_array_bounds (type, &lo, &hi))
9748 error (_("unable to determine array bounds"));
9749
9750 res = allocate_value (type);
9751
9752 /* Promote each array element. */
9753 for (i = 0; i < hi - lo + 1; i++)
9754 {
9755 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9756
9757 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9758 value_contents_all (elt), TYPE_LENGTH (elt_type));
9759 }
9760
9761 return res;
9762 }
9763
9764 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9765 return the converted value. */
9766
9767 static struct value *
9768 coerce_for_assign (struct type *type, struct value *val)
9769 {
9770 struct type *type2 = value_type (val);
9771
9772 if (type == type2)
9773 return val;
9774
9775 type2 = ada_check_typedef (type2);
9776 type = ada_check_typedef (type);
9777
9778 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9779 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9780 {
9781 val = ada_value_ind (val);
9782 type2 = value_type (val);
9783 }
9784
9785 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
9786 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9787 {
9788 if (!ada_same_array_size_p (type, type2))
9789 error (_("cannot assign arrays of different length"));
9790
9791 if (is_integral_type (TYPE_TARGET_TYPE (type))
9792 && is_integral_type (TYPE_TARGET_TYPE (type2))
9793 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9794 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9795 {
9796 /* Allow implicit promotion of the array elements to
9797 a wider type. */
9798 return ada_promote_array_of_integrals (type, val);
9799 }
9800
9801 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9802 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9803 error (_("Incompatible types in assignment"));
9804 deprecated_set_value_type (val, type);
9805 }
9806 return val;
9807 }
9808
9809 static struct value *
9810 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9811 {
9812 struct value *val;
9813 struct type *type1, *type2;
9814 LONGEST v, v1, v2;
9815
9816 arg1 = coerce_ref (arg1);
9817 arg2 = coerce_ref (arg2);
9818 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9819 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9820
9821 if (TYPE_CODE (type1) != TYPE_CODE_INT
9822 || TYPE_CODE (type2) != TYPE_CODE_INT)
9823 return value_binop (arg1, arg2, op);
9824
9825 switch (op)
9826 {
9827 case BINOP_MOD:
9828 case BINOP_DIV:
9829 case BINOP_REM:
9830 break;
9831 default:
9832 return value_binop (arg1, arg2, op);
9833 }
9834
9835 v2 = value_as_long (arg2);
9836 if (v2 == 0)
9837 error (_("second operand of %s must not be zero."), op_string (op));
9838
9839 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9840 return value_binop (arg1, arg2, op);
9841
9842 v1 = value_as_long (arg1);
9843 switch (op)
9844 {
9845 case BINOP_DIV:
9846 v = v1 / v2;
9847 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9848 v += v > 0 ? -1 : 1;
9849 break;
9850 case BINOP_REM:
9851 v = v1 % v2;
9852 if (v * v1 < 0)
9853 v -= v2;
9854 break;
9855 default:
9856 /* Should not reach this point. */
9857 v = 0;
9858 }
9859
9860 val = allocate_value (type1);
9861 store_unsigned_integer (value_contents_raw (val),
9862 TYPE_LENGTH (value_type (val)),
9863 gdbarch_byte_order (get_type_arch (type1)), v);
9864 return val;
9865 }
9866
9867 static int
9868 ada_value_equal (struct value *arg1, struct value *arg2)
9869 {
9870 if (ada_is_direct_array_type (value_type (arg1))
9871 || ada_is_direct_array_type (value_type (arg2)))
9872 {
9873 struct type *arg1_type, *arg2_type;
9874
9875 /* Automatically dereference any array reference before
9876 we attempt to perform the comparison. */
9877 arg1 = ada_coerce_ref (arg1);
9878 arg2 = ada_coerce_ref (arg2);
9879
9880 arg1 = ada_coerce_to_simple_array (arg1);
9881 arg2 = ada_coerce_to_simple_array (arg2);
9882
9883 arg1_type = ada_check_typedef (value_type (arg1));
9884 arg2_type = ada_check_typedef (value_type (arg2));
9885
9886 if (TYPE_CODE (arg1_type) != TYPE_CODE_ARRAY
9887 || TYPE_CODE (arg2_type) != TYPE_CODE_ARRAY)
9888 error (_("Attempt to compare array with non-array"));
9889 /* FIXME: The following works only for types whose
9890 representations use all bits (no padding or undefined bits)
9891 and do not have user-defined equality. */
9892 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9893 && memcmp (value_contents (arg1), value_contents (arg2),
9894 TYPE_LENGTH (arg1_type)) == 0);
9895 }
9896 return value_equal (arg1, arg2);
9897 }
9898
9899 /* Total number of component associations in the aggregate starting at
9900 index PC in EXP. Assumes that index PC is the start of an
9901 OP_AGGREGATE. */
9902
9903 static int
9904 num_component_specs (struct expression *exp, int pc)
9905 {
9906 int n, m, i;
9907
9908 m = exp->elts[pc + 1].longconst;
9909 pc += 3;
9910 n = 0;
9911 for (i = 0; i < m; i += 1)
9912 {
9913 switch (exp->elts[pc].opcode)
9914 {
9915 default:
9916 n += 1;
9917 break;
9918 case OP_CHOICES:
9919 n += exp->elts[pc + 1].longconst;
9920 break;
9921 }
9922 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9923 }
9924 return n;
9925 }
9926
9927 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9928 component of LHS (a simple array or a record), updating *POS past
9929 the expression, assuming that LHS is contained in CONTAINER. Does
9930 not modify the inferior's memory, nor does it modify LHS (unless
9931 LHS == CONTAINER). */
9932
9933 static void
9934 assign_component (struct value *container, struct value *lhs, LONGEST index,
9935 struct expression *exp, int *pos)
9936 {
9937 struct value *mark = value_mark ();
9938 struct value *elt;
9939 struct type *lhs_type = check_typedef (value_type (lhs));
9940
9941 if (TYPE_CODE (lhs_type) == TYPE_CODE_ARRAY)
9942 {
9943 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9944 struct value *index_val = value_from_longest (index_type, index);
9945
9946 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9947 }
9948 else
9949 {
9950 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9951 elt = ada_to_fixed_value (elt);
9952 }
9953
9954 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9955 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9956 else
9957 value_assign_to_component (container, elt,
9958 ada_evaluate_subexp (NULL, exp, pos,
9959 EVAL_NORMAL));
9960
9961 value_free_to_mark (mark);
9962 }
9963
9964 /* Assuming that LHS represents an lvalue having a record or array
9965 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9966 of that aggregate's value to LHS, advancing *POS past the
9967 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9968 lvalue containing LHS (possibly LHS itself). Does not modify
9969 the inferior's memory, nor does it modify the contents of
9970 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9971
9972 static struct value *
9973 assign_aggregate (struct value *container,
9974 struct value *lhs, struct expression *exp,
9975 int *pos, enum noside noside)
9976 {
9977 struct type *lhs_type;
9978 int n = exp->elts[*pos+1].longconst;
9979 LONGEST low_index, high_index;
9980 int num_specs;
9981 LONGEST *indices;
9982 int max_indices, num_indices;
9983 int i;
9984
9985 *pos += 3;
9986 if (noside != EVAL_NORMAL)
9987 {
9988 for (i = 0; i < n; i += 1)
9989 ada_evaluate_subexp (NULL, exp, pos, noside);
9990 return container;
9991 }
9992
9993 container = ada_coerce_ref (container);
9994 if (ada_is_direct_array_type (value_type (container)))
9995 container = ada_coerce_to_simple_array (container);
9996 lhs = ada_coerce_ref (lhs);
9997 if (!deprecated_value_modifiable (lhs))
9998 error (_("Left operand of assignment is not a modifiable lvalue."));
9999
10000 lhs_type = check_typedef (value_type (lhs));
10001 if (ada_is_direct_array_type (lhs_type))
10002 {
10003 lhs = ada_coerce_to_simple_array (lhs);
10004 lhs_type = check_typedef (value_type (lhs));
10005 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
10006 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
10007 }
10008 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
10009 {
10010 low_index = 0;
10011 high_index = num_visible_fields (lhs_type) - 1;
10012 }
10013 else
10014 error (_("Left-hand side must be array or record."));
10015
10016 num_specs = num_component_specs (exp, *pos - 3);
10017 max_indices = 4 * num_specs + 4;
10018 indices = XALLOCAVEC (LONGEST, max_indices);
10019 indices[0] = indices[1] = low_index - 1;
10020 indices[2] = indices[3] = high_index + 1;
10021 num_indices = 4;
10022
10023 for (i = 0; i < n; i += 1)
10024 {
10025 switch (exp->elts[*pos].opcode)
10026 {
10027 case OP_CHOICES:
10028 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
10029 &num_indices, max_indices,
10030 low_index, high_index);
10031 break;
10032 case OP_POSITIONAL:
10033 aggregate_assign_positional (container, lhs, exp, pos, indices,
10034 &num_indices, max_indices,
10035 low_index, high_index);
10036 break;
10037 case OP_OTHERS:
10038 if (i != n-1)
10039 error (_("Misplaced 'others' clause"));
10040 aggregate_assign_others (container, lhs, exp, pos, indices,
10041 num_indices, low_index, high_index);
10042 break;
10043 default:
10044 error (_("Internal error: bad aggregate clause"));
10045 }
10046 }
10047
10048 return container;
10049 }
10050
10051 /* Assign into the component of LHS indexed by the OP_POSITIONAL
10052 construct at *POS, updating *POS past the construct, given that
10053 the positions are relative to lower bound LOW, where HIGH is the
10054 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
10055 updating *NUM_INDICES as needed. CONTAINER is as for
10056 assign_aggregate. */
10057 static void
10058 aggregate_assign_positional (struct value *container,
10059 struct value *lhs, struct expression *exp,
10060 int *pos, LONGEST *indices, int *num_indices,
10061 int max_indices, LONGEST low, LONGEST high)
10062 {
10063 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
10064
10065 if (ind - 1 == high)
10066 warning (_("Extra components in aggregate ignored."));
10067 if (ind <= high)
10068 {
10069 add_component_interval (ind, ind, indices, num_indices, max_indices);
10070 *pos += 3;
10071 assign_component (container, lhs, ind, exp, pos);
10072 }
10073 else
10074 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10075 }
10076
10077 /* Assign into the components of LHS indexed by the OP_CHOICES
10078 construct at *POS, updating *POS past the construct, given that
10079 the allowable indices are LOW..HIGH. Record the indices assigned
10080 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
10081 needed. CONTAINER is as for assign_aggregate. */
10082 static void
10083 aggregate_assign_from_choices (struct value *container,
10084 struct value *lhs, struct expression *exp,
10085 int *pos, LONGEST *indices, int *num_indices,
10086 int max_indices, LONGEST low, LONGEST high)
10087 {
10088 int j;
10089 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
10090 int choice_pos, expr_pc;
10091 int is_array = ada_is_direct_array_type (value_type (lhs));
10092
10093 choice_pos = *pos += 3;
10094
10095 for (j = 0; j < n_choices; j += 1)
10096 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10097 expr_pc = *pos;
10098 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10099
10100 for (j = 0; j < n_choices; j += 1)
10101 {
10102 LONGEST lower, upper;
10103 enum exp_opcode op = exp->elts[choice_pos].opcode;
10104
10105 if (op == OP_DISCRETE_RANGE)
10106 {
10107 choice_pos += 1;
10108 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10109 EVAL_NORMAL));
10110 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10111 EVAL_NORMAL));
10112 }
10113 else if (is_array)
10114 {
10115 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
10116 EVAL_NORMAL));
10117 upper = lower;
10118 }
10119 else
10120 {
10121 int ind;
10122 const char *name;
10123
10124 switch (op)
10125 {
10126 case OP_NAME:
10127 name = &exp->elts[choice_pos + 2].string;
10128 break;
10129 case OP_VAR_VALUE:
10130 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
10131 break;
10132 default:
10133 error (_("Invalid record component association."));
10134 }
10135 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
10136 ind = 0;
10137 if (! find_struct_field (name, value_type (lhs), 0,
10138 NULL, NULL, NULL, NULL, &ind))
10139 error (_("Unknown component name: %s."), name);
10140 lower = upper = ind;
10141 }
10142
10143 if (lower <= upper && (lower < low || upper > high))
10144 error (_("Index in component association out of bounds."));
10145
10146 add_component_interval (lower, upper, indices, num_indices,
10147 max_indices);
10148 while (lower <= upper)
10149 {
10150 int pos1;
10151
10152 pos1 = expr_pc;
10153 assign_component (container, lhs, lower, exp, &pos1);
10154 lower += 1;
10155 }
10156 }
10157 }
10158
10159 /* Assign the value of the expression in the OP_OTHERS construct in
10160 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
10161 have not been previously assigned. The index intervals already assigned
10162 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
10163 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
10164 static void
10165 aggregate_assign_others (struct value *container,
10166 struct value *lhs, struct expression *exp,
10167 int *pos, LONGEST *indices, int num_indices,
10168 LONGEST low, LONGEST high)
10169 {
10170 int i;
10171 int expr_pc = *pos + 1;
10172
10173 for (i = 0; i < num_indices - 2; i += 2)
10174 {
10175 LONGEST ind;
10176
10177 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
10178 {
10179 int localpos;
10180
10181 localpos = expr_pc;
10182 assign_component (container, lhs, ind, exp, &localpos);
10183 }
10184 }
10185 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10186 }
10187
10188 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
10189 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10190 modifying *SIZE as needed. It is an error if *SIZE exceeds
10191 MAX_SIZE. The resulting intervals do not overlap. */
10192 static void
10193 add_component_interval (LONGEST low, LONGEST high,
10194 LONGEST* indices, int *size, int max_size)
10195 {
10196 int i, j;
10197
10198 for (i = 0; i < *size; i += 2) {
10199 if (high >= indices[i] && low <= indices[i + 1])
10200 {
10201 int kh;
10202
10203 for (kh = i + 2; kh < *size; kh += 2)
10204 if (high < indices[kh])
10205 break;
10206 if (low < indices[i])
10207 indices[i] = low;
10208 indices[i + 1] = indices[kh - 1];
10209 if (high > indices[i + 1])
10210 indices[i + 1] = high;
10211 memcpy (indices + i + 2, indices + kh, *size - kh);
10212 *size -= kh - i - 2;
10213 return;
10214 }
10215 else if (high < indices[i])
10216 break;
10217 }
10218
10219 if (*size == max_size)
10220 error (_("Internal error: miscounted aggregate components."));
10221 *size += 2;
10222 for (j = *size-1; j >= i+2; j -= 1)
10223 indices[j] = indices[j - 2];
10224 indices[i] = low;
10225 indices[i + 1] = high;
10226 }
10227
10228 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10229 is different. */
10230
10231 static struct value *
10232 ada_value_cast (struct type *type, struct value *arg2)
10233 {
10234 if (type == ada_check_typedef (value_type (arg2)))
10235 return arg2;
10236
10237 if (ada_is_fixed_point_type (type))
10238 return (cast_to_fixed (type, arg2));
10239
10240 if (ada_is_fixed_point_type (value_type (arg2)))
10241 return cast_from_fixed (type, arg2);
10242
10243 return value_cast (type, arg2);
10244 }
10245
10246 /* Evaluating Ada expressions, and printing their result.
10247 ------------------------------------------------------
10248
10249 1. Introduction:
10250 ----------------
10251
10252 We usually evaluate an Ada expression in order to print its value.
10253 We also evaluate an expression in order to print its type, which
10254 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10255 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10256 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10257 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10258 similar.
10259
10260 Evaluating expressions is a little more complicated for Ada entities
10261 than it is for entities in languages such as C. The main reason for
10262 this is that Ada provides types whose definition might be dynamic.
10263 One example of such types is variant records. Or another example
10264 would be an array whose bounds can only be known at run time.
10265
10266 The following description is a general guide as to what should be
10267 done (and what should NOT be done) in order to evaluate an expression
10268 involving such types, and when. This does not cover how the semantic
10269 information is encoded by GNAT as this is covered separatly. For the
10270 document used as the reference for the GNAT encoding, see exp_dbug.ads
10271 in the GNAT sources.
10272
10273 Ideally, we should embed each part of this description next to its
10274 associated code. Unfortunately, the amount of code is so vast right
10275 now that it's hard to see whether the code handling a particular
10276 situation might be duplicated or not. One day, when the code is
10277 cleaned up, this guide might become redundant with the comments
10278 inserted in the code, and we might want to remove it.
10279
10280 2. ``Fixing'' an Entity, the Simple Case:
10281 -----------------------------------------
10282
10283 When evaluating Ada expressions, the tricky issue is that they may
10284 reference entities whose type contents and size are not statically
10285 known. Consider for instance a variant record:
10286
10287 type Rec (Empty : Boolean := True) is record
10288 case Empty is
10289 when True => null;
10290 when False => Value : Integer;
10291 end case;
10292 end record;
10293 Yes : Rec := (Empty => False, Value => 1);
10294 No : Rec := (empty => True);
10295
10296 The size and contents of that record depends on the value of the
10297 descriminant (Rec.Empty). At this point, neither the debugging
10298 information nor the associated type structure in GDB are able to
10299 express such dynamic types. So what the debugger does is to create
10300 "fixed" versions of the type that applies to the specific object.
10301 We also informally refer to this opperation as "fixing" an object,
10302 which means creating its associated fixed type.
10303
10304 Example: when printing the value of variable "Yes" above, its fixed
10305 type would look like this:
10306
10307 type Rec is record
10308 Empty : Boolean;
10309 Value : Integer;
10310 end record;
10311
10312 On the other hand, if we printed the value of "No", its fixed type
10313 would become:
10314
10315 type Rec is record
10316 Empty : Boolean;
10317 end record;
10318
10319 Things become a little more complicated when trying to fix an entity
10320 with a dynamic type that directly contains another dynamic type,
10321 such as an array of variant records, for instance. There are
10322 two possible cases: Arrays, and records.
10323
10324 3. ``Fixing'' Arrays:
10325 ---------------------
10326
10327 The type structure in GDB describes an array in terms of its bounds,
10328 and the type of its elements. By design, all elements in the array
10329 have the same type and we cannot represent an array of variant elements
10330 using the current type structure in GDB. When fixing an array,
10331 we cannot fix the array element, as we would potentially need one
10332 fixed type per element of the array. As a result, the best we can do
10333 when fixing an array is to produce an array whose bounds and size
10334 are correct (allowing us to read it from memory), but without having
10335 touched its element type. Fixing each element will be done later,
10336 when (if) necessary.
10337
10338 Arrays are a little simpler to handle than records, because the same
10339 amount of memory is allocated for each element of the array, even if
10340 the amount of space actually used by each element differs from element
10341 to element. Consider for instance the following array of type Rec:
10342
10343 type Rec_Array is array (1 .. 2) of Rec;
10344
10345 The actual amount of memory occupied by each element might be different
10346 from element to element, depending on the value of their discriminant.
10347 But the amount of space reserved for each element in the array remains
10348 fixed regardless. So we simply need to compute that size using
10349 the debugging information available, from which we can then determine
10350 the array size (we multiply the number of elements of the array by
10351 the size of each element).
10352
10353 The simplest case is when we have an array of a constrained element
10354 type. For instance, consider the following type declarations:
10355
10356 type Bounded_String (Max_Size : Integer) is
10357 Length : Integer;
10358 Buffer : String (1 .. Max_Size);
10359 end record;
10360 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10361
10362 In this case, the compiler describes the array as an array of
10363 variable-size elements (identified by its XVS suffix) for which
10364 the size can be read in the parallel XVZ variable.
10365
10366 In the case of an array of an unconstrained element type, the compiler
10367 wraps the array element inside a private PAD type. This type should not
10368 be shown to the user, and must be "unwrap"'ed before printing. Note
10369 that we also use the adjective "aligner" in our code to designate
10370 these wrapper types.
10371
10372 In some cases, the size allocated for each element is statically
10373 known. In that case, the PAD type already has the correct size,
10374 and the array element should remain unfixed.
10375
10376 But there are cases when this size is not statically known.
10377 For instance, assuming that "Five" is an integer variable:
10378
10379 type Dynamic is array (1 .. Five) of Integer;
10380 type Wrapper (Has_Length : Boolean := False) is record
10381 Data : Dynamic;
10382 case Has_Length is
10383 when True => Length : Integer;
10384 when False => null;
10385 end case;
10386 end record;
10387 type Wrapper_Array is array (1 .. 2) of Wrapper;
10388
10389 Hello : Wrapper_Array := (others => (Has_Length => True,
10390 Data => (others => 17),
10391 Length => 1));
10392
10393
10394 The debugging info would describe variable Hello as being an
10395 array of a PAD type. The size of that PAD type is not statically
10396 known, but can be determined using a parallel XVZ variable.
10397 In that case, a copy of the PAD type with the correct size should
10398 be used for the fixed array.
10399
10400 3. ``Fixing'' record type objects:
10401 ----------------------------------
10402
10403 Things are slightly different from arrays in the case of dynamic
10404 record types. In this case, in order to compute the associated
10405 fixed type, we need to determine the size and offset of each of
10406 its components. This, in turn, requires us to compute the fixed
10407 type of each of these components.
10408
10409 Consider for instance the example:
10410
10411 type Bounded_String (Max_Size : Natural) is record
10412 Str : String (1 .. Max_Size);
10413 Length : Natural;
10414 end record;
10415 My_String : Bounded_String (Max_Size => 10);
10416
10417 In that case, the position of field "Length" depends on the size
10418 of field Str, which itself depends on the value of the Max_Size
10419 discriminant. In order to fix the type of variable My_String,
10420 we need to fix the type of field Str. Therefore, fixing a variant
10421 record requires us to fix each of its components.
10422
10423 However, if a component does not have a dynamic size, the component
10424 should not be fixed. In particular, fields that use a PAD type
10425 should not fixed. Here is an example where this might happen
10426 (assuming type Rec above):
10427
10428 type Container (Big : Boolean) is record
10429 First : Rec;
10430 After : Integer;
10431 case Big is
10432 when True => Another : Integer;
10433 when False => null;
10434 end case;
10435 end record;
10436 My_Container : Container := (Big => False,
10437 First => (Empty => True),
10438 After => 42);
10439
10440 In that example, the compiler creates a PAD type for component First,
10441 whose size is constant, and then positions the component After just
10442 right after it. The offset of component After is therefore constant
10443 in this case.
10444
10445 The debugger computes the position of each field based on an algorithm
10446 that uses, among other things, the actual position and size of the field
10447 preceding it. Let's now imagine that the user is trying to print
10448 the value of My_Container. If the type fixing was recursive, we would
10449 end up computing the offset of field After based on the size of the
10450 fixed version of field First. And since in our example First has
10451 only one actual field, the size of the fixed type is actually smaller
10452 than the amount of space allocated to that field, and thus we would
10453 compute the wrong offset of field After.
10454
10455 To make things more complicated, we need to watch out for dynamic
10456 components of variant records (identified by the ___XVL suffix in
10457 the component name). Even if the target type is a PAD type, the size
10458 of that type might not be statically known. So the PAD type needs
10459 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10460 we might end up with the wrong size for our component. This can be
10461 observed with the following type declarations:
10462
10463 type Octal is new Integer range 0 .. 7;
10464 type Octal_Array is array (Positive range <>) of Octal;
10465 pragma Pack (Octal_Array);
10466
10467 type Octal_Buffer (Size : Positive) is record
10468 Buffer : Octal_Array (1 .. Size);
10469 Length : Integer;
10470 end record;
10471
10472 In that case, Buffer is a PAD type whose size is unset and needs
10473 to be computed by fixing the unwrapped type.
10474
10475 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10476 ----------------------------------------------------------
10477
10478 Lastly, when should the sub-elements of an entity that remained unfixed
10479 thus far, be actually fixed?
10480
10481 The answer is: Only when referencing that element. For instance
10482 when selecting one component of a record, this specific component
10483 should be fixed at that point in time. Or when printing the value
10484 of a record, each component should be fixed before its value gets
10485 printed. Similarly for arrays, the element of the array should be
10486 fixed when printing each element of the array, or when extracting
10487 one element out of that array. On the other hand, fixing should
10488 not be performed on the elements when taking a slice of an array!
10489
10490 Note that one of the side effects of miscomputing the offset and
10491 size of each field is that we end up also miscomputing the size
10492 of the containing type. This can have adverse results when computing
10493 the value of an entity. GDB fetches the value of an entity based
10494 on the size of its type, and thus a wrong size causes GDB to fetch
10495 the wrong amount of memory. In the case where the computed size is
10496 too small, GDB fetches too little data to print the value of our
10497 entity. Results in this case are unpredictable, as we usually read
10498 past the buffer containing the data =:-o. */
10499
10500 /* Evaluate a subexpression of EXP, at index *POS, and return a value
10501 for that subexpression cast to TO_TYPE. Advance *POS over the
10502 subexpression. */
10503
10504 static value *
10505 ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10506 enum noside noside, struct type *to_type)
10507 {
10508 int pc = *pos;
10509
10510 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10511 || exp->elts[pc].opcode == OP_VAR_VALUE)
10512 {
10513 (*pos) += 4;
10514
10515 value *val;
10516 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10517 {
10518 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10519 return value_zero (to_type, not_lval);
10520
10521 val = evaluate_var_msym_value (noside,
10522 exp->elts[pc + 1].objfile,
10523 exp->elts[pc + 2].msymbol);
10524 }
10525 else
10526 val = evaluate_var_value (noside,
10527 exp->elts[pc + 1].block,
10528 exp->elts[pc + 2].symbol);
10529
10530 if (noside == EVAL_SKIP)
10531 return eval_skip_value (exp);
10532
10533 val = ada_value_cast (to_type, val);
10534
10535 /* Follow the Ada language semantics that do not allow taking
10536 an address of the result of a cast (view conversion in Ada). */
10537 if (VALUE_LVAL (val) == lval_memory)
10538 {
10539 if (value_lazy (val))
10540 value_fetch_lazy (val);
10541 VALUE_LVAL (val) = not_lval;
10542 }
10543 return val;
10544 }
10545
10546 value *val = evaluate_subexp (to_type, exp, pos, noside);
10547 if (noside == EVAL_SKIP)
10548 return eval_skip_value (exp);
10549 return ada_value_cast (to_type, val);
10550 }
10551
10552 /* Implement the evaluate_exp routine in the exp_descriptor structure
10553 for the Ada language. */
10554
10555 static struct value *
10556 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
10557 int *pos, enum noside noside)
10558 {
10559 enum exp_opcode op;
10560 int tem;
10561 int pc;
10562 int preeval_pos;
10563 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10564 struct type *type;
10565 int nargs, oplen;
10566 struct value **argvec;
10567
10568 pc = *pos;
10569 *pos += 1;
10570 op = exp->elts[pc].opcode;
10571
10572 switch (op)
10573 {
10574 default:
10575 *pos -= 1;
10576 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10577
10578 if (noside == EVAL_NORMAL)
10579 arg1 = unwrap_value (arg1);
10580
10581 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
10582 then we need to perform the conversion manually, because
10583 evaluate_subexp_standard doesn't do it. This conversion is
10584 necessary in Ada because the different kinds of float/fixed
10585 types in Ada have different representations.
10586
10587 Similarly, we need to perform the conversion from OP_LONG
10588 ourselves. */
10589 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
10590 arg1 = ada_value_cast (expect_type, arg1);
10591
10592 return arg1;
10593
10594 case OP_STRING:
10595 {
10596 struct value *result;
10597
10598 *pos -= 1;
10599 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10600 /* The result type will have code OP_STRING, bashed there from
10601 OP_ARRAY. Bash it back. */
10602 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10603 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
10604 return result;
10605 }
10606
10607 case UNOP_CAST:
10608 (*pos) += 2;
10609 type = exp->elts[pc + 1].type;
10610 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
10611
10612 case UNOP_QUAL:
10613 (*pos) += 2;
10614 type = exp->elts[pc + 1].type;
10615 return ada_evaluate_subexp (type, exp, pos, noside);
10616
10617 case BINOP_ASSIGN:
10618 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10619 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10620 {
10621 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10622 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10623 return arg1;
10624 return ada_value_assign (arg1, arg1);
10625 }
10626 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10627 except if the lhs of our assignment is a convenience variable.
10628 In the case of assigning to a convenience variable, the lhs
10629 should be exactly the result of the evaluation of the rhs. */
10630 type = value_type (arg1);
10631 if (VALUE_LVAL (arg1) == lval_internalvar)
10632 type = NULL;
10633 arg2 = evaluate_subexp (type, exp, pos, noside);
10634 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10635 return arg1;
10636 if (ada_is_fixed_point_type (value_type (arg1)))
10637 arg2 = cast_to_fixed (value_type (arg1), arg2);
10638 else if (ada_is_fixed_point_type (value_type (arg2)))
10639 error
10640 (_("Fixed-point values must be assigned to fixed-point variables"));
10641 else
10642 arg2 = coerce_for_assign (value_type (arg1), arg2);
10643 return ada_value_assign (arg1, arg2);
10644
10645 case BINOP_ADD:
10646 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10647 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10648 if (noside == EVAL_SKIP)
10649 goto nosideret;
10650 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10651 return (value_from_longest
10652 (value_type (arg1),
10653 value_as_long (arg1) + value_as_long (arg2)));
10654 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10655 return (value_from_longest
10656 (value_type (arg2),
10657 value_as_long (arg1) + value_as_long (arg2)));
10658 if ((ada_is_fixed_point_type (value_type (arg1))
10659 || ada_is_fixed_point_type (value_type (arg2)))
10660 && value_type (arg1) != value_type (arg2))
10661 error (_("Operands of fixed-point addition must have the same type"));
10662 /* Do the addition, and cast the result to the type of the first
10663 argument. We cannot cast the result to a reference type, so if
10664 ARG1 is a reference type, find its underlying type. */
10665 type = value_type (arg1);
10666 while (TYPE_CODE (type) == TYPE_CODE_REF)
10667 type = TYPE_TARGET_TYPE (type);
10668 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10669 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10670
10671 case BINOP_SUB:
10672 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10673 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10674 if (noside == EVAL_SKIP)
10675 goto nosideret;
10676 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10677 return (value_from_longest
10678 (value_type (arg1),
10679 value_as_long (arg1) - value_as_long (arg2)));
10680 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10681 return (value_from_longest
10682 (value_type (arg2),
10683 value_as_long (arg1) - value_as_long (arg2)));
10684 if ((ada_is_fixed_point_type (value_type (arg1))
10685 || ada_is_fixed_point_type (value_type (arg2)))
10686 && value_type (arg1) != value_type (arg2))
10687 error (_("Operands of fixed-point subtraction "
10688 "must have the same type"));
10689 /* Do the substraction, and cast the result to the type of the first
10690 argument. We cannot cast the result to a reference type, so if
10691 ARG1 is a reference type, find its underlying type. */
10692 type = value_type (arg1);
10693 while (TYPE_CODE (type) == TYPE_CODE_REF)
10694 type = TYPE_TARGET_TYPE (type);
10695 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10696 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10697
10698 case BINOP_MUL:
10699 case BINOP_DIV:
10700 case BINOP_REM:
10701 case BINOP_MOD:
10702 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10703 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10704 if (noside == EVAL_SKIP)
10705 goto nosideret;
10706 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10707 {
10708 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10709 return value_zero (value_type (arg1), not_lval);
10710 }
10711 else
10712 {
10713 type = builtin_type (exp->gdbarch)->builtin_double;
10714 if (ada_is_fixed_point_type (value_type (arg1)))
10715 arg1 = cast_from_fixed (type, arg1);
10716 if (ada_is_fixed_point_type (value_type (arg2)))
10717 arg2 = cast_from_fixed (type, arg2);
10718 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10719 return ada_value_binop (arg1, arg2, op);
10720 }
10721
10722 case BINOP_EQUAL:
10723 case BINOP_NOTEQUAL:
10724 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10725 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10726 if (noside == EVAL_SKIP)
10727 goto nosideret;
10728 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10729 tem = 0;
10730 else
10731 {
10732 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10733 tem = ada_value_equal (arg1, arg2);
10734 }
10735 if (op == BINOP_NOTEQUAL)
10736 tem = !tem;
10737 type = language_bool_type (exp->language_defn, exp->gdbarch);
10738 return value_from_longest (type, (LONGEST) tem);
10739
10740 case UNOP_NEG:
10741 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10742 if (noside == EVAL_SKIP)
10743 goto nosideret;
10744 else if (ada_is_fixed_point_type (value_type (arg1)))
10745 return value_cast (value_type (arg1), value_neg (arg1));
10746 else
10747 {
10748 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10749 return value_neg (arg1);
10750 }
10751
10752 case BINOP_LOGICAL_AND:
10753 case BINOP_LOGICAL_OR:
10754 case UNOP_LOGICAL_NOT:
10755 {
10756 struct value *val;
10757
10758 *pos -= 1;
10759 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10760 type = language_bool_type (exp->language_defn, exp->gdbarch);
10761 return value_cast (type, val);
10762 }
10763
10764 case BINOP_BITWISE_AND:
10765 case BINOP_BITWISE_IOR:
10766 case BINOP_BITWISE_XOR:
10767 {
10768 struct value *val;
10769
10770 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10771 *pos = pc;
10772 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10773
10774 return value_cast (value_type (arg1), val);
10775 }
10776
10777 case OP_VAR_VALUE:
10778 *pos -= 1;
10779
10780 if (noside == EVAL_SKIP)
10781 {
10782 *pos += 4;
10783 goto nosideret;
10784 }
10785
10786 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10787 /* Only encountered when an unresolved symbol occurs in a
10788 context other than a function call, in which case, it is
10789 invalid. */
10790 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10791 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
10792
10793 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10794 {
10795 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10796 /* Check to see if this is a tagged type. We also need to handle
10797 the case where the type is a reference to a tagged type, but
10798 we have to be careful to exclude pointers to tagged types.
10799 The latter should be shown as usual (as a pointer), whereas
10800 a reference should mostly be transparent to the user. */
10801 if (ada_is_tagged_type (type, 0)
10802 || (TYPE_CODE (type) == TYPE_CODE_REF
10803 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10804 {
10805 /* Tagged types are a little special in the fact that the real
10806 type is dynamic and can only be determined by inspecting the
10807 object's tag. This means that we need to get the object's
10808 value first (EVAL_NORMAL) and then extract the actual object
10809 type from its tag.
10810
10811 Note that we cannot skip the final step where we extract
10812 the object type from its tag, because the EVAL_NORMAL phase
10813 results in dynamic components being resolved into fixed ones.
10814 This can cause problems when trying to print the type
10815 description of tagged types whose parent has a dynamic size:
10816 We use the type name of the "_parent" component in order
10817 to print the name of the ancestor type in the type description.
10818 If that component had a dynamic size, the resolution into
10819 a fixed type would result in the loss of that type name,
10820 thus preventing us from printing the name of the ancestor
10821 type in the type description. */
10822 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10823
10824 if (TYPE_CODE (type) != TYPE_CODE_REF)
10825 {
10826 struct type *actual_type;
10827
10828 actual_type = type_from_tag (ada_value_tag (arg1));
10829 if (actual_type == NULL)
10830 /* If, for some reason, we were unable to determine
10831 the actual type from the tag, then use the static
10832 approximation that we just computed as a fallback.
10833 This can happen if the debugging information is
10834 incomplete, for instance. */
10835 actual_type = type;
10836 return value_zero (actual_type, not_lval);
10837 }
10838 else
10839 {
10840 /* In the case of a ref, ada_coerce_ref takes care
10841 of determining the actual type. But the evaluation
10842 should return a ref as it should be valid to ask
10843 for its address; so rebuild a ref after coerce. */
10844 arg1 = ada_coerce_ref (arg1);
10845 return value_ref (arg1, TYPE_CODE_REF);
10846 }
10847 }
10848
10849 /* Records and unions for which GNAT encodings have been
10850 generated need to be statically fixed as well.
10851 Otherwise, non-static fixing produces a type where
10852 all dynamic properties are removed, which prevents "ptype"
10853 from being able to completely describe the type.
10854 For instance, a case statement in a variant record would be
10855 replaced by the relevant components based on the actual
10856 value of the discriminants. */
10857 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10858 && dynamic_template_type (type) != NULL)
10859 || (TYPE_CODE (type) == TYPE_CODE_UNION
10860 && ada_find_parallel_type (type, "___XVU") != NULL))
10861 {
10862 *pos += 4;
10863 return value_zero (to_static_fixed_type (type), not_lval);
10864 }
10865 }
10866
10867 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10868 return ada_to_fixed_value (arg1);
10869
10870 case OP_FUNCALL:
10871 (*pos) += 2;
10872
10873 /* Allocate arg vector, including space for the function to be
10874 called in argvec[0] and a terminating NULL. */
10875 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10876 argvec = XALLOCAVEC (struct value *, nargs + 2);
10877
10878 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10879 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10880 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10881 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10882 else
10883 {
10884 for (tem = 0; tem <= nargs; tem += 1)
10885 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10886 argvec[tem] = 0;
10887
10888 if (noside == EVAL_SKIP)
10889 goto nosideret;
10890 }
10891
10892 if (ada_is_constrained_packed_array_type
10893 (desc_base_type (value_type (argvec[0]))))
10894 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10895 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10896 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10897 /* This is a packed array that has already been fixed, and
10898 therefore already coerced to a simple array. Nothing further
10899 to do. */
10900 ;
10901 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10902 {
10903 /* Make sure we dereference references so that all the code below
10904 feels like it's really handling the referenced value. Wrapping
10905 types (for alignment) may be there, so make sure we strip them as
10906 well. */
10907 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10908 }
10909 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10910 && VALUE_LVAL (argvec[0]) == lval_memory)
10911 argvec[0] = value_addr (argvec[0]);
10912
10913 type = ada_check_typedef (value_type (argvec[0]));
10914
10915 /* Ada allows us to implicitly dereference arrays when subscripting
10916 them. So, if this is an array typedef (encoding use for array
10917 access types encoded as fat pointers), strip it now. */
10918 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10919 type = ada_typedef_target_type (type);
10920
10921 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10922 {
10923 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
10924 {
10925 case TYPE_CODE_FUNC:
10926 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10927 break;
10928 case TYPE_CODE_ARRAY:
10929 break;
10930 case TYPE_CODE_STRUCT:
10931 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10932 argvec[0] = ada_value_ind (argvec[0]);
10933 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10934 break;
10935 default:
10936 error (_("cannot subscript or call something of type `%s'"),
10937 ada_type_name (value_type (argvec[0])));
10938 break;
10939 }
10940 }
10941
10942 switch (TYPE_CODE (type))
10943 {
10944 case TYPE_CODE_FUNC:
10945 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10946 {
10947 if (TYPE_TARGET_TYPE (type) == NULL)
10948 error_call_unknown_return_type (NULL);
10949 return allocate_value (TYPE_TARGET_TYPE (type));
10950 }
10951 return call_function_by_hand (argvec[0], NULL, nargs, argvec + 1);
10952 case TYPE_CODE_INTERNAL_FUNCTION:
10953 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10954 /* We don't know anything about what the internal
10955 function might return, but we have to return
10956 something. */
10957 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10958 not_lval);
10959 else
10960 return call_internal_function (exp->gdbarch, exp->language_defn,
10961 argvec[0], nargs, argvec + 1);
10962
10963 case TYPE_CODE_STRUCT:
10964 {
10965 int arity;
10966
10967 arity = ada_array_arity (type);
10968 type = ada_array_element_type (type, nargs);
10969 if (type == NULL)
10970 error (_("cannot subscript or call a record"));
10971 if (arity != nargs)
10972 error (_("wrong number of subscripts; expecting %d"), arity);
10973 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10974 return value_zero (ada_aligned_type (type), lval_memory);
10975 return
10976 unwrap_value (ada_value_subscript
10977 (argvec[0], nargs, argvec + 1));
10978 }
10979 case TYPE_CODE_ARRAY:
10980 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10981 {
10982 type = ada_array_element_type (type, nargs);
10983 if (type == NULL)
10984 error (_("element type of array unknown"));
10985 else
10986 return value_zero (ada_aligned_type (type), lval_memory);
10987 }
10988 return
10989 unwrap_value (ada_value_subscript
10990 (ada_coerce_to_simple_array (argvec[0]),
10991 nargs, argvec + 1));
10992 case TYPE_CODE_PTR: /* Pointer to array */
10993 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10994 {
10995 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10996 type = ada_array_element_type (type, nargs);
10997 if (type == NULL)
10998 error (_("element type of array unknown"));
10999 else
11000 return value_zero (ada_aligned_type (type), lval_memory);
11001 }
11002 return
11003 unwrap_value (ada_value_ptr_subscript (argvec[0],
11004 nargs, argvec + 1));
11005
11006 default:
11007 error (_("Attempt to index or call something other than an "
11008 "array or function"));
11009 }
11010
11011 case TERNOP_SLICE:
11012 {
11013 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11014 struct value *low_bound_val =
11015 evaluate_subexp (NULL_TYPE, exp, pos, noside);
11016 struct value *high_bound_val =
11017 evaluate_subexp (NULL_TYPE, exp, pos, noside);
11018 LONGEST low_bound;
11019 LONGEST high_bound;
11020
11021 low_bound_val = coerce_ref (low_bound_val);
11022 high_bound_val = coerce_ref (high_bound_val);
11023 low_bound = value_as_long (low_bound_val);
11024 high_bound = value_as_long (high_bound_val);
11025
11026 if (noside == EVAL_SKIP)
11027 goto nosideret;
11028
11029 /* If this is a reference to an aligner type, then remove all
11030 the aligners. */
11031 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
11032 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
11033 TYPE_TARGET_TYPE (value_type (array)) =
11034 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
11035
11036 if (ada_is_constrained_packed_array_type (value_type (array)))
11037 error (_("cannot slice a packed array"));
11038
11039 /* If this is a reference to an array or an array lvalue,
11040 convert to a pointer. */
11041 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
11042 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
11043 && VALUE_LVAL (array) == lval_memory))
11044 array = value_addr (array);
11045
11046 if (noside == EVAL_AVOID_SIDE_EFFECTS
11047 && ada_is_array_descriptor_type (ada_check_typedef
11048 (value_type (array))))
11049 return empty_array (ada_type_of_array (array, 0), low_bound);
11050
11051 array = ada_coerce_to_simple_array_ptr (array);
11052
11053 /* If we have more than one level of pointer indirection,
11054 dereference the value until we get only one level. */
11055 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
11056 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
11057 == TYPE_CODE_PTR))
11058 array = value_ind (array);
11059
11060 /* Make sure we really do have an array type before going further,
11061 to avoid a SEGV when trying to get the index type or the target
11062 type later down the road if the debug info generated by
11063 the compiler is incorrect or incomplete. */
11064 if (!ada_is_simple_array_type (value_type (array)))
11065 error (_("cannot take slice of non-array"));
11066
11067 if (TYPE_CODE (ada_check_typedef (value_type (array)))
11068 == TYPE_CODE_PTR)
11069 {
11070 struct type *type0 = ada_check_typedef (value_type (array));
11071
11072 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
11073 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
11074 else
11075 {
11076 struct type *arr_type0 =
11077 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
11078
11079 return ada_value_slice_from_ptr (array, arr_type0,
11080 longest_to_int (low_bound),
11081 longest_to_int (high_bound));
11082 }
11083 }
11084 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11085 return array;
11086 else if (high_bound < low_bound)
11087 return empty_array (value_type (array), low_bound);
11088 else
11089 return ada_value_slice (array, longest_to_int (low_bound),
11090 longest_to_int (high_bound));
11091 }
11092
11093 case UNOP_IN_RANGE:
11094 (*pos) += 2;
11095 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11096 type = check_typedef (exp->elts[pc + 1].type);
11097
11098 if (noside == EVAL_SKIP)
11099 goto nosideret;
11100
11101 switch (TYPE_CODE (type))
11102 {
11103 default:
11104 lim_warning (_("Membership test incompletely implemented; "
11105 "always returns true"));
11106 type = language_bool_type (exp->language_defn, exp->gdbarch);
11107 return value_from_longest (type, (LONGEST) 1);
11108
11109 case TYPE_CODE_RANGE:
11110 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
11111 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
11112 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11113 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11114 type = language_bool_type (exp->language_defn, exp->gdbarch);
11115 return
11116 value_from_longest (type,
11117 (value_less (arg1, arg3)
11118 || value_equal (arg1, arg3))
11119 && (value_less (arg2, arg1)
11120 || value_equal (arg2, arg1)));
11121 }
11122
11123 case BINOP_IN_BOUNDS:
11124 (*pos) += 2;
11125 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11126 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11127
11128 if (noside == EVAL_SKIP)
11129 goto nosideret;
11130
11131 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11132 {
11133 type = language_bool_type (exp->language_defn, exp->gdbarch);
11134 return value_zero (type, not_lval);
11135 }
11136
11137 tem = longest_to_int (exp->elts[pc + 1].longconst);
11138
11139 type = ada_index_type (value_type (arg2), tem, "range");
11140 if (!type)
11141 type = value_type (arg1);
11142
11143 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
11144 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
11145
11146 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11147 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11148 type = language_bool_type (exp->language_defn, exp->gdbarch);
11149 return
11150 value_from_longest (type,
11151 (value_less (arg1, arg3)
11152 || value_equal (arg1, arg3))
11153 && (value_less (arg2, arg1)
11154 || value_equal (arg2, arg1)));
11155
11156 case TERNOP_IN_RANGE:
11157 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11158 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11159 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11160
11161 if (noside == EVAL_SKIP)
11162 goto nosideret;
11163
11164 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11165 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11166 type = language_bool_type (exp->language_defn, exp->gdbarch);
11167 return
11168 value_from_longest (type,
11169 (value_less (arg1, arg3)
11170 || value_equal (arg1, arg3))
11171 && (value_less (arg2, arg1)
11172 || value_equal (arg2, arg1)));
11173
11174 case OP_ATR_FIRST:
11175 case OP_ATR_LAST:
11176 case OP_ATR_LENGTH:
11177 {
11178 struct type *type_arg;
11179
11180 if (exp->elts[*pos].opcode == OP_TYPE)
11181 {
11182 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11183 arg1 = NULL;
11184 type_arg = check_typedef (exp->elts[pc + 2].type);
11185 }
11186 else
11187 {
11188 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11189 type_arg = NULL;
11190 }
11191
11192 if (exp->elts[*pos].opcode != OP_LONG)
11193 error (_("Invalid operand to '%s"), ada_attribute_name (op));
11194 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11195 *pos += 4;
11196
11197 if (noside == EVAL_SKIP)
11198 goto nosideret;
11199
11200 if (type_arg == NULL)
11201 {
11202 arg1 = ada_coerce_ref (arg1);
11203
11204 if (ada_is_constrained_packed_array_type (value_type (arg1)))
11205 arg1 = ada_coerce_to_simple_array (arg1);
11206
11207 if (op == OP_ATR_LENGTH)
11208 type = builtin_type (exp->gdbarch)->builtin_int;
11209 else
11210 {
11211 type = ada_index_type (value_type (arg1), tem,
11212 ada_attribute_name (op));
11213 if (type == NULL)
11214 type = builtin_type (exp->gdbarch)->builtin_int;
11215 }
11216
11217 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11218 return allocate_value (type);
11219
11220 switch (op)
11221 {
11222 default: /* Should never happen. */
11223 error (_("unexpected attribute encountered"));
11224 case OP_ATR_FIRST:
11225 return value_from_longest
11226 (type, ada_array_bound (arg1, tem, 0));
11227 case OP_ATR_LAST:
11228 return value_from_longest
11229 (type, ada_array_bound (arg1, tem, 1));
11230 case OP_ATR_LENGTH:
11231 return value_from_longest
11232 (type, ada_array_length (arg1, tem));
11233 }
11234 }
11235 else if (discrete_type_p (type_arg))
11236 {
11237 struct type *range_type;
11238 const char *name = ada_type_name (type_arg);
11239
11240 range_type = NULL;
11241 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
11242 range_type = to_fixed_range_type (type_arg, NULL);
11243 if (range_type == NULL)
11244 range_type = type_arg;
11245 switch (op)
11246 {
11247 default:
11248 error (_("unexpected attribute encountered"));
11249 case OP_ATR_FIRST:
11250 return value_from_longest
11251 (range_type, ada_discrete_type_low_bound (range_type));
11252 case OP_ATR_LAST:
11253 return value_from_longest
11254 (range_type, ada_discrete_type_high_bound (range_type));
11255 case OP_ATR_LENGTH:
11256 error (_("the 'length attribute applies only to array types"));
11257 }
11258 }
11259 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
11260 error (_("unimplemented type attribute"));
11261 else
11262 {
11263 LONGEST low, high;
11264
11265 if (ada_is_constrained_packed_array_type (type_arg))
11266 type_arg = decode_constrained_packed_array_type (type_arg);
11267
11268 if (op == OP_ATR_LENGTH)
11269 type = builtin_type (exp->gdbarch)->builtin_int;
11270 else
11271 {
11272 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11273 if (type == NULL)
11274 type = builtin_type (exp->gdbarch)->builtin_int;
11275 }
11276
11277 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11278 return allocate_value (type);
11279
11280 switch (op)
11281 {
11282 default:
11283 error (_("unexpected attribute encountered"));
11284 case OP_ATR_FIRST:
11285 low = ada_array_bound_from_type (type_arg, tem, 0);
11286 return value_from_longest (type, low);
11287 case OP_ATR_LAST:
11288 high = ada_array_bound_from_type (type_arg, tem, 1);
11289 return value_from_longest (type, high);
11290 case OP_ATR_LENGTH:
11291 low = ada_array_bound_from_type (type_arg, tem, 0);
11292 high = ada_array_bound_from_type (type_arg, tem, 1);
11293 return value_from_longest (type, high - low + 1);
11294 }
11295 }
11296 }
11297
11298 case OP_ATR_TAG:
11299 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11300 if (noside == EVAL_SKIP)
11301 goto nosideret;
11302
11303 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11304 return value_zero (ada_tag_type (arg1), not_lval);
11305
11306 return ada_value_tag (arg1);
11307
11308 case OP_ATR_MIN:
11309 case OP_ATR_MAX:
11310 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11311 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11312 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11313 if (noside == EVAL_SKIP)
11314 goto nosideret;
11315 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11316 return value_zero (value_type (arg1), not_lval);
11317 else
11318 {
11319 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11320 return value_binop (arg1, arg2,
11321 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11322 }
11323
11324 case OP_ATR_MODULUS:
11325 {
11326 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
11327
11328 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11329 if (noside == EVAL_SKIP)
11330 goto nosideret;
11331
11332 if (!ada_is_modular_type (type_arg))
11333 error (_("'modulus must be applied to modular type"));
11334
11335 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11336 ada_modulus (type_arg));
11337 }
11338
11339
11340 case OP_ATR_POS:
11341 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11342 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11343 if (noside == EVAL_SKIP)
11344 goto nosideret;
11345 type = builtin_type (exp->gdbarch)->builtin_int;
11346 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11347 return value_zero (type, not_lval);
11348 else
11349 return value_pos_atr (type, arg1);
11350
11351 case OP_ATR_SIZE:
11352 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11353 type = value_type (arg1);
11354
11355 /* If the argument is a reference, then dereference its type, since
11356 the user is really asking for the size of the actual object,
11357 not the size of the pointer. */
11358 if (TYPE_CODE (type) == TYPE_CODE_REF)
11359 type = TYPE_TARGET_TYPE (type);
11360
11361 if (noside == EVAL_SKIP)
11362 goto nosideret;
11363 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11364 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
11365 else
11366 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
11367 TARGET_CHAR_BIT * TYPE_LENGTH (type));
11368
11369 case OP_ATR_VAL:
11370 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11371 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11372 type = exp->elts[pc + 2].type;
11373 if (noside == EVAL_SKIP)
11374 goto nosideret;
11375 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11376 return value_zero (type, not_lval);
11377 else
11378 return value_val_atr (type, arg1);
11379
11380 case BINOP_EXP:
11381 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11382 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11383 if (noside == EVAL_SKIP)
11384 goto nosideret;
11385 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11386 return value_zero (value_type (arg1), not_lval);
11387 else
11388 {
11389 /* For integer exponentiation operations,
11390 only promote the first argument. */
11391 if (is_integral_type (value_type (arg2)))
11392 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11393 else
11394 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11395
11396 return value_binop (arg1, arg2, op);
11397 }
11398
11399 case UNOP_PLUS:
11400 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11401 if (noside == EVAL_SKIP)
11402 goto nosideret;
11403 else
11404 return arg1;
11405
11406 case UNOP_ABS:
11407 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11408 if (noside == EVAL_SKIP)
11409 goto nosideret;
11410 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11411 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
11412 return value_neg (arg1);
11413 else
11414 return arg1;
11415
11416 case UNOP_IND:
11417 preeval_pos = *pos;
11418 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11419 if (noside == EVAL_SKIP)
11420 goto nosideret;
11421 type = ada_check_typedef (value_type (arg1));
11422 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11423 {
11424 if (ada_is_array_descriptor_type (type))
11425 /* GDB allows dereferencing GNAT array descriptors. */
11426 {
11427 struct type *arrType = ada_type_of_array (arg1, 0);
11428
11429 if (arrType == NULL)
11430 error (_("Attempt to dereference null array pointer."));
11431 return value_at_lazy (arrType, 0);
11432 }
11433 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11434 || TYPE_CODE (type) == TYPE_CODE_REF
11435 /* In C you can dereference an array to get the 1st elt. */
11436 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
11437 {
11438 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11439 only be determined by inspecting the object's tag.
11440 This means that we need to evaluate completely the
11441 expression in order to get its type. */
11442
11443 if ((TYPE_CODE (type) == TYPE_CODE_REF
11444 || TYPE_CODE (type) == TYPE_CODE_PTR)
11445 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11446 {
11447 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11448 EVAL_NORMAL);
11449 type = value_type (ada_value_ind (arg1));
11450 }
11451 else
11452 {
11453 type = to_static_fixed_type
11454 (ada_aligned_type
11455 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11456 }
11457 ada_ensure_varsize_limit (type);
11458 return value_zero (type, lval_memory);
11459 }
11460 else if (TYPE_CODE (type) == TYPE_CODE_INT)
11461 {
11462 /* GDB allows dereferencing an int. */
11463 if (expect_type == NULL)
11464 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11465 lval_memory);
11466 else
11467 {
11468 expect_type =
11469 to_static_fixed_type (ada_aligned_type (expect_type));
11470 return value_zero (expect_type, lval_memory);
11471 }
11472 }
11473 else
11474 error (_("Attempt to take contents of a non-pointer value."));
11475 }
11476 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
11477 type = ada_check_typedef (value_type (arg1));
11478
11479 if (TYPE_CODE (type) == TYPE_CODE_INT)
11480 /* GDB allows dereferencing an int. If we were given
11481 the expect_type, then use that as the target type.
11482 Otherwise, assume that the target type is an int. */
11483 {
11484 if (expect_type != NULL)
11485 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11486 arg1));
11487 else
11488 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11489 (CORE_ADDR) value_as_address (arg1));
11490 }
11491
11492 if (ada_is_array_descriptor_type (type))
11493 /* GDB allows dereferencing GNAT array descriptors. */
11494 return ada_coerce_to_simple_array (arg1);
11495 else
11496 return ada_value_ind (arg1);
11497
11498 case STRUCTOP_STRUCT:
11499 tem = longest_to_int (exp->elts[pc + 1].longconst);
11500 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
11501 preeval_pos = *pos;
11502 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11503 if (noside == EVAL_SKIP)
11504 goto nosideret;
11505 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11506 {
11507 struct type *type1 = value_type (arg1);
11508
11509 if (ada_is_tagged_type (type1, 1))
11510 {
11511 type = ada_lookup_struct_elt_type (type1,
11512 &exp->elts[pc + 2].string,
11513 1, 1);
11514
11515 /* If the field is not found, check if it exists in the
11516 extension of this object's type. This means that we
11517 need to evaluate completely the expression. */
11518
11519 if (type == NULL)
11520 {
11521 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11522 EVAL_NORMAL);
11523 arg1 = ada_value_struct_elt (arg1,
11524 &exp->elts[pc + 2].string,
11525 0);
11526 arg1 = unwrap_value (arg1);
11527 type = value_type (ada_to_fixed_value (arg1));
11528 }
11529 }
11530 else
11531 type =
11532 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11533 0);
11534
11535 return value_zero (ada_aligned_type (type), lval_memory);
11536 }
11537 else
11538 {
11539 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11540 arg1 = unwrap_value (arg1);
11541 return ada_to_fixed_value (arg1);
11542 }
11543
11544 case OP_TYPE:
11545 /* The value is not supposed to be used. This is here to make it
11546 easier to accommodate expressions that contain types. */
11547 (*pos) += 2;
11548 if (noside == EVAL_SKIP)
11549 goto nosideret;
11550 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11551 return allocate_value (exp->elts[pc + 1].type);
11552 else
11553 error (_("Attempt to use a type name as an expression"));
11554
11555 case OP_AGGREGATE:
11556 case OP_CHOICES:
11557 case OP_OTHERS:
11558 case OP_DISCRETE_RANGE:
11559 case OP_POSITIONAL:
11560 case OP_NAME:
11561 if (noside == EVAL_NORMAL)
11562 switch (op)
11563 {
11564 case OP_NAME:
11565 error (_("Undefined name, ambiguous name, or renaming used in "
11566 "component association: %s."), &exp->elts[pc+2].string);
11567 case OP_AGGREGATE:
11568 error (_("Aggregates only allowed on the right of an assignment"));
11569 default:
11570 internal_error (__FILE__, __LINE__,
11571 _("aggregate apparently mangled"));
11572 }
11573
11574 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11575 *pos += oplen - 1;
11576 for (tem = 0; tem < nargs; tem += 1)
11577 ada_evaluate_subexp (NULL, exp, pos, noside);
11578 goto nosideret;
11579 }
11580
11581 nosideret:
11582 return eval_skip_value (exp);
11583 }
11584 \f
11585
11586 /* Fixed point */
11587
11588 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
11589 type name that encodes the 'small and 'delta information.
11590 Otherwise, return NULL. */
11591
11592 static const char *
11593 fixed_type_info (struct type *type)
11594 {
11595 const char *name = ada_type_name (type);
11596 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11597
11598 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11599 {
11600 const char *tail = strstr (name, "___XF_");
11601
11602 if (tail == NULL)
11603 return NULL;
11604 else
11605 return tail + 5;
11606 }
11607 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11608 return fixed_type_info (TYPE_TARGET_TYPE (type));
11609 else
11610 return NULL;
11611 }
11612
11613 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
11614
11615 int
11616 ada_is_fixed_point_type (struct type *type)
11617 {
11618 return fixed_type_info (type) != NULL;
11619 }
11620
11621 /* Return non-zero iff TYPE represents a System.Address type. */
11622
11623 int
11624 ada_is_system_address_type (struct type *type)
11625 {
11626 return (TYPE_NAME (type)
11627 && strcmp (TYPE_NAME (type), "system__address") == 0);
11628 }
11629
11630 /* Assuming that TYPE is the representation of an Ada fixed-point
11631 type, return the target floating-point type to be used to represent
11632 of this type during internal computation. */
11633
11634 static struct type *
11635 ada_scaling_type (struct type *type)
11636 {
11637 return builtin_type (get_type_arch (type))->builtin_long_double;
11638 }
11639
11640 /* Assuming that TYPE is the representation of an Ada fixed-point
11641 type, return its delta, or NULL if the type is malformed and the
11642 delta cannot be determined. */
11643
11644 struct value *
11645 ada_delta (struct type *type)
11646 {
11647 const char *encoding = fixed_type_info (type);
11648 struct type *scale_type = ada_scaling_type (type);
11649
11650 long long num, den;
11651
11652 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11653 return nullptr;
11654 else
11655 return value_binop (value_from_longest (scale_type, num),
11656 value_from_longest (scale_type, den), BINOP_DIV);
11657 }
11658
11659 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
11660 factor ('SMALL value) associated with the type. */
11661
11662 struct value *
11663 ada_scaling_factor (struct type *type)
11664 {
11665 const char *encoding = fixed_type_info (type);
11666 struct type *scale_type = ada_scaling_type (type);
11667
11668 long long num0, den0, num1, den1;
11669 int n;
11670
11671 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
11672 &num0, &den0, &num1, &den1);
11673
11674 if (n < 2)
11675 return value_from_longest (scale_type, 1);
11676 else if (n == 4)
11677 return value_binop (value_from_longest (scale_type, num1),
11678 value_from_longest (scale_type, den1), BINOP_DIV);
11679 else
11680 return value_binop (value_from_longest (scale_type, num0),
11681 value_from_longest (scale_type, den0), BINOP_DIV);
11682 }
11683
11684 \f
11685
11686 /* Range types */
11687
11688 /* Scan STR beginning at position K for a discriminant name, and
11689 return the value of that discriminant field of DVAL in *PX. If
11690 PNEW_K is not null, put the position of the character beyond the
11691 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11692 not alter *PX and *PNEW_K if unsuccessful. */
11693
11694 static int
11695 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
11696 int *pnew_k)
11697 {
11698 static char *bound_buffer = NULL;
11699 static size_t bound_buffer_len = 0;
11700 const char *pstart, *pend, *bound;
11701 struct value *bound_val;
11702
11703 if (dval == NULL || str == NULL || str[k] == '\0')
11704 return 0;
11705
11706 pstart = str + k;
11707 pend = strstr (pstart, "__");
11708 if (pend == NULL)
11709 {
11710 bound = pstart;
11711 k += strlen (bound);
11712 }
11713 else
11714 {
11715 int len = pend - pstart;
11716
11717 /* Strip __ and beyond. */
11718 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11719 strncpy (bound_buffer, pstart, len);
11720 bound_buffer[len] = '\0';
11721
11722 bound = bound_buffer;
11723 k = pend - str;
11724 }
11725
11726 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11727 if (bound_val == NULL)
11728 return 0;
11729
11730 *px = value_as_long (bound_val);
11731 if (pnew_k != NULL)
11732 *pnew_k = k;
11733 return 1;
11734 }
11735
11736 /* Value of variable named NAME in the current environment. If
11737 no such variable found, then if ERR_MSG is null, returns 0, and
11738 otherwise causes an error with message ERR_MSG. */
11739
11740 static struct value *
11741 get_var_value (const char *name, const char *err_msg)
11742 {
11743 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
11744
11745 std::vector<struct block_symbol> syms;
11746 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11747 get_selected_block (0),
11748 VAR_DOMAIN, &syms, 1);
11749
11750 if (nsyms != 1)
11751 {
11752 if (err_msg == NULL)
11753 return 0;
11754 else
11755 error (("%s"), err_msg);
11756 }
11757
11758 return value_of_variable (syms[0].symbol, syms[0].block);
11759 }
11760
11761 /* Value of integer variable named NAME in the current environment.
11762 If no such variable is found, returns false. Otherwise, sets VALUE
11763 to the variable's value and returns true. */
11764
11765 bool
11766 get_int_var_value (const char *name, LONGEST &value)
11767 {
11768 struct value *var_val = get_var_value (name, 0);
11769
11770 if (var_val == 0)
11771 return false;
11772
11773 value = value_as_long (var_val);
11774 return true;
11775 }
11776
11777
11778 /* Return a range type whose base type is that of the range type named
11779 NAME in the current environment, and whose bounds are calculated
11780 from NAME according to the GNAT range encoding conventions.
11781 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11782 corresponding range type from debug information; fall back to using it
11783 if symbol lookup fails. If a new type must be created, allocate it
11784 like ORIG_TYPE was. The bounds information, in general, is encoded
11785 in NAME, the base type given in the named range type. */
11786
11787 static struct type *
11788 to_fixed_range_type (struct type *raw_type, struct value *dval)
11789 {
11790 const char *name;
11791 struct type *base_type;
11792 const char *subtype_info;
11793
11794 gdb_assert (raw_type != NULL);
11795 gdb_assert (TYPE_NAME (raw_type) != NULL);
11796
11797 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
11798 base_type = TYPE_TARGET_TYPE (raw_type);
11799 else
11800 base_type = raw_type;
11801
11802 name = TYPE_NAME (raw_type);
11803 subtype_info = strstr (name, "___XD");
11804 if (subtype_info == NULL)
11805 {
11806 LONGEST L = ada_discrete_type_low_bound (raw_type);
11807 LONGEST U = ada_discrete_type_high_bound (raw_type);
11808
11809 if (L < INT_MIN || U > INT_MAX)
11810 return raw_type;
11811 else
11812 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11813 L, U);
11814 }
11815 else
11816 {
11817 static char *name_buf = NULL;
11818 static size_t name_len = 0;
11819 int prefix_len = subtype_info - name;
11820 LONGEST L, U;
11821 struct type *type;
11822 const char *bounds_str;
11823 int n;
11824
11825 GROW_VECT (name_buf, name_len, prefix_len + 5);
11826 strncpy (name_buf, name, prefix_len);
11827 name_buf[prefix_len] = '\0';
11828
11829 subtype_info += 5;
11830 bounds_str = strchr (subtype_info, '_');
11831 n = 1;
11832
11833 if (*subtype_info == 'L')
11834 {
11835 if (!ada_scan_number (bounds_str, n, &L, &n)
11836 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11837 return raw_type;
11838 if (bounds_str[n] == '_')
11839 n += 2;
11840 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11841 n += 1;
11842 subtype_info += 1;
11843 }
11844 else
11845 {
11846 strcpy (name_buf + prefix_len, "___L");
11847 if (!get_int_var_value (name_buf, L))
11848 {
11849 lim_warning (_("Unknown lower bound, using 1."));
11850 L = 1;
11851 }
11852 }
11853
11854 if (*subtype_info == 'U')
11855 {
11856 if (!ada_scan_number (bounds_str, n, &U, &n)
11857 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11858 return raw_type;
11859 }
11860 else
11861 {
11862 strcpy (name_buf + prefix_len, "___U");
11863 if (!get_int_var_value (name_buf, U))
11864 {
11865 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11866 U = L;
11867 }
11868 }
11869
11870 type = create_static_range_type (alloc_type_copy (raw_type),
11871 base_type, L, U);
11872 /* create_static_range_type alters the resulting type's length
11873 to match the size of the base_type, which is not what we want.
11874 Set it back to the original range type's length. */
11875 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
11876 TYPE_NAME (type) = name;
11877 return type;
11878 }
11879 }
11880
11881 /* True iff NAME is the name of a range type. */
11882
11883 int
11884 ada_is_range_type_name (const char *name)
11885 {
11886 return (name != NULL && strstr (name, "___XD"));
11887 }
11888 \f
11889
11890 /* Modular types */
11891
11892 /* True iff TYPE is an Ada modular type. */
11893
11894 int
11895 ada_is_modular_type (struct type *type)
11896 {
11897 struct type *subranged_type = get_base_type (type);
11898
11899 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
11900 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
11901 && TYPE_UNSIGNED (subranged_type));
11902 }
11903
11904 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11905
11906 ULONGEST
11907 ada_modulus (struct type *type)
11908 {
11909 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11910 }
11911 \f
11912
11913 /* Ada exception catchpoint support:
11914 ---------------------------------
11915
11916 We support 3 kinds of exception catchpoints:
11917 . catchpoints on Ada exceptions
11918 . catchpoints on unhandled Ada exceptions
11919 . catchpoints on failed assertions
11920
11921 Exceptions raised during failed assertions, or unhandled exceptions
11922 could perfectly be caught with the general catchpoint on Ada exceptions.
11923 However, we can easily differentiate these two special cases, and having
11924 the option to distinguish these two cases from the rest can be useful
11925 to zero-in on certain situations.
11926
11927 Exception catchpoints are a specialized form of breakpoint,
11928 since they rely on inserting breakpoints inside known routines
11929 of the GNAT runtime. The implementation therefore uses a standard
11930 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11931 of breakpoint_ops.
11932
11933 Support in the runtime for exception catchpoints have been changed
11934 a few times already, and these changes affect the implementation
11935 of these catchpoints. In order to be able to support several
11936 variants of the runtime, we use a sniffer that will determine
11937 the runtime variant used by the program being debugged. */
11938
11939 /* Ada's standard exceptions.
11940
11941 The Ada 83 standard also defined Numeric_Error. But there so many
11942 situations where it was unclear from the Ada 83 Reference Manual
11943 (RM) whether Constraint_Error or Numeric_Error should be raised,
11944 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11945 Interpretation saying that anytime the RM says that Numeric_Error
11946 should be raised, the implementation may raise Constraint_Error.
11947 Ada 95 went one step further and pretty much removed Numeric_Error
11948 from the list of standard exceptions (it made it a renaming of
11949 Constraint_Error, to help preserve compatibility when compiling
11950 an Ada83 compiler). As such, we do not include Numeric_Error from
11951 this list of standard exceptions. */
11952
11953 static const char *standard_exc[] = {
11954 "constraint_error",
11955 "program_error",
11956 "storage_error",
11957 "tasking_error"
11958 };
11959
11960 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11961
11962 /* A structure that describes how to support exception catchpoints
11963 for a given executable. */
11964
11965 struct exception_support_info
11966 {
11967 /* The name of the symbol to break on in order to insert
11968 a catchpoint on exceptions. */
11969 const char *catch_exception_sym;
11970
11971 /* The name of the symbol to break on in order to insert
11972 a catchpoint on unhandled exceptions. */
11973 const char *catch_exception_unhandled_sym;
11974
11975 /* The name of the symbol to break on in order to insert
11976 a catchpoint on failed assertions. */
11977 const char *catch_assert_sym;
11978
11979 /* The name of the symbol to break on in order to insert
11980 a catchpoint on exception handling. */
11981 const char *catch_handlers_sym;
11982
11983 /* Assuming that the inferior just triggered an unhandled exception
11984 catchpoint, this function is responsible for returning the address
11985 in inferior memory where the name of that exception is stored.
11986 Return zero if the address could not be computed. */
11987 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11988 };
11989
11990 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11991 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11992
11993 /* The following exception support info structure describes how to
11994 implement exception catchpoints with the latest version of the
11995 Ada runtime (as of 2007-03-06). */
11996
11997 static const struct exception_support_info default_exception_support_info =
11998 {
11999 "__gnat_debug_raise_exception", /* catch_exception_sym */
12000 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
12001 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
12002 "__gnat_begin_handler", /* catch_handlers_sym */
12003 ada_unhandled_exception_name_addr
12004 };
12005
12006 /* The following exception support info structure describes how to
12007 implement exception catchpoints with a slightly older version
12008 of the Ada runtime. */
12009
12010 static const struct exception_support_info exception_support_info_fallback =
12011 {
12012 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
12013 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
12014 "system__assertions__raise_assert_failure", /* catch_assert_sym */
12015 "__gnat_begin_handler", /* catch_handlers_sym */
12016 ada_unhandled_exception_name_addr_from_raise
12017 };
12018
12019 /* Return nonzero if we can detect the exception support routines
12020 described in EINFO.
12021
12022 This function errors out if an abnormal situation is detected
12023 (for instance, if we find the exception support routines, but
12024 that support is found to be incomplete). */
12025
12026 static int
12027 ada_has_this_exception_support (const struct exception_support_info *einfo)
12028 {
12029 struct symbol *sym;
12030
12031 /* The symbol we're looking up is provided by a unit in the GNAT runtime
12032 that should be compiled with debugging information. As a result, we
12033 expect to find that symbol in the symtabs. */
12034
12035 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
12036 if (sym == NULL)
12037 {
12038 /* Perhaps we did not find our symbol because the Ada runtime was
12039 compiled without debugging info, or simply stripped of it.
12040 It happens on some GNU/Linux distributions for instance, where
12041 users have to install a separate debug package in order to get
12042 the runtime's debugging info. In that situation, let the user
12043 know why we cannot insert an Ada exception catchpoint.
12044
12045 Note: Just for the purpose of inserting our Ada exception
12046 catchpoint, we could rely purely on the associated minimal symbol.
12047 But we would be operating in degraded mode anyway, since we are
12048 still lacking the debugging info needed later on to extract
12049 the name of the exception being raised (this name is printed in
12050 the catchpoint message, and is also used when trying to catch
12051 a specific exception). We do not handle this case for now. */
12052 struct bound_minimal_symbol msym
12053 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
12054
12055 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
12056 error (_("Your Ada runtime appears to be missing some debugging "
12057 "information.\nCannot insert Ada exception catchpoint "
12058 "in this configuration."));
12059
12060 return 0;
12061 }
12062
12063 /* Make sure that the symbol we found corresponds to a function. */
12064
12065 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12066 error (_("Symbol \"%s\" is not a function (class = %d)"),
12067 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
12068
12069 return 1;
12070 }
12071
12072 /* Inspect the Ada runtime and determine which exception info structure
12073 should be used to provide support for exception catchpoints.
12074
12075 This function will always set the per-inferior exception_info,
12076 or raise an error. */
12077
12078 static void
12079 ada_exception_support_info_sniffer (void)
12080 {
12081 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12082
12083 /* If the exception info is already known, then no need to recompute it. */
12084 if (data->exception_info != NULL)
12085 return;
12086
12087 /* Check the latest (default) exception support info. */
12088 if (ada_has_this_exception_support (&default_exception_support_info))
12089 {
12090 data->exception_info = &default_exception_support_info;
12091 return;
12092 }
12093
12094 /* Try our fallback exception suport info. */
12095 if (ada_has_this_exception_support (&exception_support_info_fallback))
12096 {
12097 data->exception_info = &exception_support_info_fallback;
12098 return;
12099 }
12100
12101 /* Sometimes, it is normal for us to not be able to find the routine
12102 we are looking for. This happens when the program is linked with
12103 the shared version of the GNAT runtime, and the program has not been
12104 started yet. Inform the user of these two possible causes if
12105 applicable. */
12106
12107 if (ada_update_initial_language (language_unknown) != language_ada)
12108 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
12109
12110 /* If the symbol does not exist, then check that the program is
12111 already started, to make sure that shared libraries have been
12112 loaded. If it is not started, this may mean that the symbol is
12113 in a shared library. */
12114
12115 if (inferior_ptid.pid () == 0)
12116 error (_("Unable to insert catchpoint. Try to start the program first."));
12117
12118 /* At this point, we know that we are debugging an Ada program and
12119 that the inferior has been started, but we still are not able to
12120 find the run-time symbols. That can mean that we are in
12121 configurable run time mode, or that a-except as been optimized
12122 out by the linker... In any case, at this point it is not worth
12123 supporting this feature. */
12124
12125 error (_("Cannot insert Ada exception catchpoints in this configuration."));
12126 }
12127
12128 /* True iff FRAME is very likely to be that of a function that is
12129 part of the runtime system. This is all very heuristic, but is
12130 intended to be used as advice as to what frames are uninteresting
12131 to most users. */
12132
12133 static int
12134 is_known_support_routine (struct frame_info *frame)
12135 {
12136 enum language func_lang;
12137 int i;
12138 const char *fullname;
12139
12140 /* If this code does not have any debugging information (no symtab),
12141 This cannot be any user code. */
12142
12143 symtab_and_line sal = find_frame_sal (frame);
12144 if (sal.symtab == NULL)
12145 return 1;
12146
12147 /* If there is a symtab, but the associated source file cannot be
12148 located, then assume this is not user code: Selecting a frame
12149 for which we cannot display the code would not be very helpful
12150 for the user. This should also take care of case such as VxWorks
12151 where the kernel has some debugging info provided for a few units. */
12152
12153 fullname = symtab_to_fullname (sal.symtab);
12154 if (access (fullname, R_OK) != 0)
12155 return 1;
12156
12157 /* Check the unit filename againt the Ada runtime file naming.
12158 We also check the name of the objfile against the name of some
12159 known system libraries that sometimes come with debugging info
12160 too. */
12161
12162 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12163 {
12164 re_comp (known_runtime_file_name_patterns[i]);
12165 if (re_exec (lbasename (sal.symtab->filename)))
12166 return 1;
12167 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12168 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
12169 return 1;
12170 }
12171
12172 /* Check whether the function is a GNAT-generated entity. */
12173
12174 gdb::unique_xmalloc_ptr<char> func_name
12175 = find_frame_funname (frame, &func_lang, NULL);
12176 if (func_name == NULL)
12177 return 1;
12178
12179 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12180 {
12181 re_comp (known_auxiliary_function_name_patterns[i]);
12182 if (re_exec (func_name.get ()))
12183 return 1;
12184 }
12185
12186 return 0;
12187 }
12188
12189 /* Find the first frame that contains debugging information and that is not
12190 part of the Ada run-time, starting from FI and moving upward. */
12191
12192 void
12193 ada_find_printable_frame (struct frame_info *fi)
12194 {
12195 for (; fi != NULL; fi = get_prev_frame (fi))
12196 {
12197 if (!is_known_support_routine (fi))
12198 {
12199 select_frame (fi);
12200 break;
12201 }
12202 }
12203
12204 }
12205
12206 /* Assuming that the inferior just triggered an unhandled exception
12207 catchpoint, return the address in inferior memory where the name
12208 of the exception is stored.
12209
12210 Return zero if the address could not be computed. */
12211
12212 static CORE_ADDR
12213 ada_unhandled_exception_name_addr (void)
12214 {
12215 return parse_and_eval_address ("e.full_name");
12216 }
12217
12218 /* Same as ada_unhandled_exception_name_addr, except that this function
12219 should be used when the inferior uses an older version of the runtime,
12220 where the exception name needs to be extracted from a specific frame
12221 several frames up in the callstack. */
12222
12223 static CORE_ADDR
12224 ada_unhandled_exception_name_addr_from_raise (void)
12225 {
12226 int frame_level;
12227 struct frame_info *fi;
12228 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12229
12230 /* To determine the name of this exception, we need to select
12231 the frame corresponding to RAISE_SYM_NAME. This frame is
12232 at least 3 levels up, so we simply skip the first 3 frames
12233 without checking the name of their associated function. */
12234 fi = get_current_frame ();
12235 for (frame_level = 0; frame_level < 3; frame_level += 1)
12236 if (fi != NULL)
12237 fi = get_prev_frame (fi);
12238
12239 while (fi != NULL)
12240 {
12241 enum language func_lang;
12242
12243 gdb::unique_xmalloc_ptr<char> func_name
12244 = find_frame_funname (fi, &func_lang, NULL);
12245 if (func_name != NULL)
12246 {
12247 if (strcmp (func_name.get (),
12248 data->exception_info->catch_exception_sym) == 0)
12249 break; /* We found the frame we were looking for... */
12250 }
12251 fi = get_prev_frame (fi);
12252 }
12253
12254 if (fi == NULL)
12255 return 0;
12256
12257 select_frame (fi);
12258 return parse_and_eval_address ("id.full_name");
12259 }
12260
12261 /* Assuming the inferior just triggered an Ada exception catchpoint
12262 (of any type), return the address in inferior memory where the name
12263 of the exception is stored, if applicable.
12264
12265 Assumes the selected frame is the current frame.
12266
12267 Return zero if the address could not be computed, or if not relevant. */
12268
12269 static CORE_ADDR
12270 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
12271 struct breakpoint *b)
12272 {
12273 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12274
12275 switch (ex)
12276 {
12277 case ada_catch_exception:
12278 return (parse_and_eval_address ("e.full_name"));
12279 break;
12280
12281 case ada_catch_exception_unhandled:
12282 return data->exception_info->unhandled_exception_name_addr ();
12283 break;
12284
12285 case ada_catch_handlers:
12286 return 0; /* The runtimes does not provide access to the exception
12287 name. */
12288 break;
12289
12290 case ada_catch_assert:
12291 return 0; /* Exception name is not relevant in this case. */
12292 break;
12293
12294 default:
12295 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12296 break;
12297 }
12298
12299 return 0; /* Should never be reached. */
12300 }
12301
12302 /* Assuming the inferior is stopped at an exception catchpoint,
12303 return the message which was associated to the exception, if
12304 available. Return NULL if the message could not be retrieved.
12305
12306 Note: The exception message can be associated to an exception
12307 either through the use of the Raise_Exception function, or
12308 more simply (Ada 2005 and later), via:
12309
12310 raise Exception_Name with "exception message";
12311
12312 */
12313
12314 static gdb::unique_xmalloc_ptr<char>
12315 ada_exception_message_1 (void)
12316 {
12317 struct value *e_msg_val;
12318 int e_msg_len;
12319
12320 /* For runtimes that support this feature, the exception message
12321 is passed as an unbounded string argument called "message". */
12322 e_msg_val = parse_and_eval ("message");
12323 if (e_msg_val == NULL)
12324 return NULL; /* Exception message not supported. */
12325
12326 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
12327 gdb_assert (e_msg_val != NULL);
12328 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
12329
12330 /* If the message string is empty, then treat it as if there was
12331 no exception message. */
12332 if (e_msg_len <= 0)
12333 return NULL;
12334
12335 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
12336 read_memory_string (value_address (e_msg_val), e_msg.get (), e_msg_len + 1);
12337 e_msg.get ()[e_msg_len] = '\0';
12338
12339 return e_msg;
12340 }
12341
12342 /* Same as ada_exception_message_1, except that all exceptions are
12343 contained here (returning NULL instead). */
12344
12345 static gdb::unique_xmalloc_ptr<char>
12346 ada_exception_message (void)
12347 {
12348 gdb::unique_xmalloc_ptr<char> e_msg;
12349
12350 TRY
12351 {
12352 e_msg = ada_exception_message_1 ();
12353 }
12354 CATCH (e, RETURN_MASK_ERROR)
12355 {
12356 e_msg.reset (nullptr);
12357 }
12358 END_CATCH
12359
12360 return e_msg;
12361 }
12362
12363 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
12364 any error that ada_exception_name_addr_1 might cause to be thrown.
12365 When an error is intercepted, a warning with the error message is printed,
12366 and zero is returned. */
12367
12368 static CORE_ADDR
12369 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
12370 struct breakpoint *b)
12371 {
12372 CORE_ADDR result = 0;
12373
12374 TRY
12375 {
12376 result = ada_exception_name_addr_1 (ex, b);
12377 }
12378
12379 CATCH (e, RETURN_MASK_ERROR)
12380 {
12381 warning (_("failed to get exception name: %s"), e.message);
12382 return 0;
12383 }
12384 END_CATCH
12385
12386 return result;
12387 }
12388
12389 static std::string ada_exception_catchpoint_cond_string
12390 (const char *excep_string,
12391 enum ada_exception_catchpoint_kind ex);
12392
12393 /* Ada catchpoints.
12394
12395 In the case of catchpoints on Ada exceptions, the catchpoint will
12396 stop the target on every exception the program throws. When a user
12397 specifies the name of a specific exception, we translate this
12398 request into a condition expression (in text form), and then parse
12399 it into an expression stored in each of the catchpoint's locations.
12400 We then use this condition to check whether the exception that was
12401 raised is the one the user is interested in. If not, then the
12402 target is resumed again. We store the name of the requested
12403 exception, in order to be able to re-set the condition expression
12404 when symbols change. */
12405
12406 /* An instance of this type is used to represent an Ada catchpoint
12407 breakpoint location. */
12408
12409 class ada_catchpoint_location : public bp_location
12410 {
12411 public:
12412 ada_catchpoint_location (const bp_location_ops *ops, breakpoint *owner)
12413 : bp_location (ops, owner)
12414 {}
12415
12416 /* The condition that checks whether the exception that was raised
12417 is the specific exception the user specified on catchpoint
12418 creation. */
12419 expression_up excep_cond_expr;
12420 };
12421
12422 /* Implement the DTOR method in the bp_location_ops structure for all
12423 Ada exception catchpoint kinds. */
12424
12425 static void
12426 ada_catchpoint_location_dtor (struct bp_location *bl)
12427 {
12428 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
12429
12430 al->excep_cond_expr.reset ();
12431 }
12432
12433 /* The vtable to be used in Ada catchpoint locations. */
12434
12435 static const struct bp_location_ops ada_catchpoint_location_ops =
12436 {
12437 ada_catchpoint_location_dtor
12438 };
12439
12440 /* An instance of this type is used to represent an Ada catchpoint. */
12441
12442 struct ada_catchpoint : public breakpoint
12443 {
12444 /* The name of the specific exception the user specified. */
12445 std::string excep_string;
12446 };
12447
12448 /* Parse the exception condition string in the context of each of the
12449 catchpoint's locations, and store them for later evaluation. */
12450
12451 static void
12452 create_excep_cond_exprs (struct ada_catchpoint *c,
12453 enum ada_exception_catchpoint_kind ex)
12454 {
12455 struct bp_location *bl;
12456
12457 /* Nothing to do if there's no specific exception to catch. */
12458 if (c->excep_string.empty ())
12459 return;
12460
12461 /* Same if there are no locations... */
12462 if (c->loc == NULL)
12463 return;
12464
12465 /* Compute the condition expression in text form, from the specific
12466 expection we want to catch. */
12467 std::string cond_string
12468 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (), ex);
12469
12470 /* Iterate over all the catchpoint's locations, and parse an
12471 expression for each. */
12472 for (bl = c->loc; bl != NULL; bl = bl->next)
12473 {
12474 struct ada_catchpoint_location *ada_loc
12475 = (struct ada_catchpoint_location *) bl;
12476 expression_up exp;
12477
12478 if (!bl->shlib_disabled)
12479 {
12480 const char *s;
12481
12482 s = cond_string.c_str ();
12483 TRY
12484 {
12485 exp = parse_exp_1 (&s, bl->address,
12486 block_for_pc (bl->address),
12487 0);
12488 }
12489 CATCH (e, RETURN_MASK_ERROR)
12490 {
12491 warning (_("failed to reevaluate internal exception condition "
12492 "for catchpoint %d: %s"),
12493 c->number, e.message);
12494 }
12495 END_CATCH
12496 }
12497
12498 ada_loc->excep_cond_expr = std::move (exp);
12499 }
12500 }
12501
12502 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12503 structure for all exception catchpoint kinds. */
12504
12505 static struct bp_location *
12506 allocate_location_exception (enum ada_exception_catchpoint_kind ex,
12507 struct breakpoint *self)
12508 {
12509 return new ada_catchpoint_location (&ada_catchpoint_location_ops, self);
12510 }
12511
12512 /* Implement the RE_SET method in the breakpoint_ops structure for all
12513 exception catchpoint kinds. */
12514
12515 static void
12516 re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
12517 {
12518 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12519
12520 /* Call the base class's method. This updates the catchpoint's
12521 locations. */
12522 bkpt_breakpoint_ops.re_set (b);
12523
12524 /* Reparse the exception conditional expressions. One for each
12525 location. */
12526 create_excep_cond_exprs (c, ex);
12527 }
12528
12529 /* Returns true if we should stop for this breakpoint hit. If the
12530 user specified a specific exception, we only want to cause a stop
12531 if the program thrown that exception. */
12532
12533 static int
12534 should_stop_exception (const struct bp_location *bl)
12535 {
12536 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12537 const struct ada_catchpoint_location *ada_loc
12538 = (const struct ada_catchpoint_location *) bl;
12539 int stop;
12540
12541 /* With no specific exception, should always stop. */
12542 if (c->excep_string.empty ())
12543 return 1;
12544
12545 if (ada_loc->excep_cond_expr == NULL)
12546 {
12547 /* We will have a NULL expression if back when we were creating
12548 the expressions, this location's had failed to parse. */
12549 return 1;
12550 }
12551
12552 stop = 1;
12553 TRY
12554 {
12555 struct value *mark;
12556
12557 mark = value_mark ();
12558 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
12559 value_free_to_mark (mark);
12560 }
12561 CATCH (ex, RETURN_MASK_ALL)
12562 {
12563 exception_fprintf (gdb_stderr, ex,
12564 _("Error in testing exception condition:\n"));
12565 }
12566 END_CATCH
12567
12568 return stop;
12569 }
12570
12571 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12572 for all exception catchpoint kinds. */
12573
12574 static void
12575 check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12576 {
12577 bs->stop = should_stop_exception (bs->bp_location_at);
12578 }
12579
12580 /* Implement the PRINT_IT method in the breakpoint_ops structure
12581 for all exception catchpoint kinds. */
12582
12583 static enum print_stop_action
12584 print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12585 {
12586 struct ui_out *uiout = current_uiout;
12587 struct breakpoint *b = bs->breakpoint_at;
12588
12589 annotate_catchpoint (b->number);
12590
12591 if (uiout->is_mi_like_p ())
12592 {
12593 uiout->field_string ("reason",
12594 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12595 uiout->field_string ("disp", bpdisp_text (b->disposition));
12596 }
12597
12598 uiout->text (b->disposition == disp_del
12599 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12600 uiout->field_int ("bkptno", b->number);
12601 uiout->text (", ");
12602
12603 /* ada_exception_name_addr relies on the selected frame being the
12604 current frame. Need to do this here because this function may be
12605 called more than once when printing a stop, and below, we'll
12606 select the first frame past the Ada run-time (see
12607 ada_find_printable_frame). */
12608 select_frame (get_current_frame ());
12609
12610 switch (ex)
12611 {
12612 case ada_catch_exception:
12613 case ada_catch_exception_unhandled:
12614 case ada_catch_handlers:
12615 {
12616 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12617 char exception_name[256];
12618
12619 if (addr != 0)
12620 {
12621 read_memory (addr, (gdb_byte *) exception_name,
12622 sizeof (exception_name) - 1);
12623 exception_name [sizeof (exception_name) - 1] = '\0';
12624 }
12625 else
12626 {
12627 /* For some reason, we were unable to read the exception
12628 name. This could happen if the Runtime was compiled
12629 without debugging info, for instance. In that case,
12630 just replace the exception name by the generic string
12631 "exception" - it will read as "an exception" in the
12632 notification we are about to print. */
12633 memcpy (exception_name, "exception", sizeof ("exception"));
12634 }
12635 /* In the case of unhandled exception breakpoints, we print
12636 the exception name as "unhandled EXCEPTION_NAME", to make
12637 it clearer to the user which kind of catchpoint just got
12638 hit. We used ui_out_text to make sure that this extra
12639 info does not pollute the exception name in the MI case. */
12640 if (ex == ada_catch_exception_unhandled)
12641 uiout->text ("unhandled ");
12642 uiout->field_string ("exception-name", exception_name);
12643 }
12644 break;
12645 case ada_catch_assert:
12646 /* In this case, the name of the exception is not really
12647 important. Just print "failed assertion" to make it clearer
12648 that his program just hit an assertion-failure catchpoint.
12649 We used ui_out_text because this info does not belong in
12650 the MI output. */
12651 uiout->text ("failed assertion");
12652 break;
12653 }
12654
12655 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
12656 if (exception_message != NULL)
12657 {
12658 uiout->text (" (");
12659 uiout->field_string ("exception-message", exception_message.get ());
12660 uiout->text (")");
12661 }
12662
12663 uiout->text (" at ");
12664 ada_find_printable_frame (get_current_frame ());
12665
12666 return PRINT_SRC_AND_LOC;
12667 }
12668
12669 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12670 for all exception catchpoint kinds. */
12671
12672 static void
12673 print_one_exception (enum ada_exception_catchpoint_kind ex,
12674 struct breakpoint *b, struct bp_location **last_loc)
12675 {
12676 struct ui_out *uiout = current_uiout;
12677 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12678 struct value_print_options opts;
12679
12680 get_user_print_options (&opts);
12681 if (opts.addressprint)
12682 {
12683 annotate_field (4);
12684 uiout->field_core_addr ("addr", b->loc->gdbarch, b->loc->address);
12685 }
12686
12687 annotate_field (5);
12688 *last_loc = b->loc;
12689 switch (ex)
12690 {
12691 case ada_catch_exception:
12692 if (!c->excep_string.empty ())
12693 {
12694 std::string msg = string_printf (_("`%s' Ada exception"),
12695 c->excep_string.c_str ());
12696
12697 uiout->field_string ("what", msg);
12698 }
12699 else
12700 uiout->field_string ("what", "all Ada exceptions");
12701
12702 break;
12703
12704 case ada_catch_exception_unhandled:
12705 uiout->field_string ("what", "unhandled Ada exceptions");
12706 break;
12707
12708 case ada_catch_handlers:
12709 if (!c->excep_string.empty ())
12710 {
12711 uiout->field_fmt ("what",
12712 _("`%s' Ada exception handlers"),
12713 c->excep_string.c_str ());
12714 }
12715 else
12716 uiout->field_string ("what", "all Ada exceptions handlers");
12717 break;
12718
12719 case ada_catch_assert:
12720 uiout->field_string ("what", "failed Ada assertions");
12721 break;
12722
12723 default:
12724 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12725 break;
12726 }
12727 }
12728
12729 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12730 for all exception catchpoint kinds. */
12731
12732 static void
12733 print_mention_exception (enum ada_exception_catchpoint_kind ex,
12734 struct breakpoint *b)
12735 {
12736 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12737 struct ui_out *uiout = current_uiout;
12738
12739 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
12740 : _("Catchpoint "));
12741 uiout->field_int ("bkptno", b->number);
12742 uiout->text (": ");
12743
12744 switch (ex)
12745 {
12746 case ada_catch_exception:
12747 if (!c->excep_string.empty ())
12748 {
12749 std::string info = string_printf (_("`%s' Ada exception"),
12750 c->excep_string.c_str ());
12751 uiout->text (info.c_str ());
12752 }
12753 else
12754 uiout->text (_("all Ada exceptions"));
12755 break;
12756
12757 case ada_catch_exception_unhandled:
12758 uiout->text (_("unhandled Ada exceptions"));
12759 break;
12760
12761 case ada_catch_handlers:
12762 if (!c->excep_string.empty ())
12763 {
12764 std::string info
12765 = string_printf (_("`%s' Ada exception handlers"),
12766 c->excep_string.c_str ());
12767 uiout->text (info.c_str ());
12768 }
12769 else
12770 uiout->text (_("all Ada exceptions handlers"));
12771 break;
12772
12773 case ada_catch_assert:
12774 uiout->text (_("failed Ada assertions"));
12775 break;
12776
12777 default:
12778 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12779 break;
12780 }
12781 }
12782
12783 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12784 for all exception catchpoint kinds. */
12785
12786 static void
12787 print_recreate_exception (enum ada_exception_catchpoint_kind ex,
12788 struct breakpoint *b, struct ui_file *fp)
12789 {
12790 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12791
12792 switch (ex)
12793 {
12794 case ada_catch_exception:
12795 fprintf_filtered (fp, "catch exception");
12796 if (!c->excep_string.empty ())
12797 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
12798 break;
12799
12800 case ada_catch_exception_unhandled:
12801 fprintf_filtered (fp, "catch exception unhandled");
12802 break;
12803
12804 case ada_catch_handlers:
12805 fprintf_filtered (fp, "catch handlers");
12806 break;
12807
12808 case ada_catch_assert:
12809 fprintf_filtered (fp, "catch assert");
12810 break;
12811
12812 default:
12813 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12814 }
12815 print_recreate_thread (b, fp);
12816 }
12817
12818 /* Virtual table for "catch exception" breakpoints. */
12819
12820 static struct bp_location *
12821 allocate_location_catch_exception (struct breakpoint *self)
12822 {
12823 return allocate_location_exception (ada_catch_exception, self);
12824 }
12825
12826 static void
12827 re_set_catch_exception (struct breakpoint *b)
12828 {
12829 re_set_exception (ada_catch_exception, b);
12830 }
12831
12832 static void
12833 check_status_catch_exception (bpstat bs)
12834 {
12835 check_status_exception (ada_catch_exception, bs);
12836 }
12837
12838 static enum print_stop_action
12839 print_it_catch_exception (bpstat bs)
12840 {
12841 return print_it_exception (ada_catch_exception, bs);
12842 }
12843
12844 static void
12845 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
12846 {
12847 print_one_exception (ada_catch_exception, b, last_loc);
12848 }
12849
12850 static void
12851 print_mention_catch_exception (struct breakpoint *b)
12852 {
12853 print_mention_exception (ada_catch_exception, b);
12854 }
12855
12856 static void
12857 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12858 {
12859 print_recreate_exception (ada_catch_exception, b, fp);
12860 }
12861
12862 static struct breakpoint_ops catch_exception_breakpoint_ops;
12863
12864 /* Virtual table for "catch exception unhandled" breakpoints. */
12865
12866 static struct bp_location *
12867 allocate_location_catch_exception_unhandled (struct breakpoint *self)
12868 {
12869 return allocate_location_exception (ada_catch_exception_unhandled, self);
12870 }
12871
12872 static void
12873 re_set_catch_exception_unhandled (struct breakpoint *b)
12874 {
12875 re_set_exception (ada_catch_exception_unhandled, b);
12876 }
12877
12878 static void
12879 check_status_catch_exception_unhandled (bpstat bs)
12880 {
12881 check_status_exception (ada_catch_exception_unhandled, bs);
12882 }
12883
12884 static enum print_stop_action
12885 print_it_catch_exception_unhandled (bpstat bs)
12886 {
12887 return print_it_exception (ada_catch_exception_unhandled, bs);
12888 }
12889
12890 static void
12891 print_one_catch_exception_unhandled (struct breakpoint *b,
12892 struct bp_location **last_loc)
12893 {
12894 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
12895 }
12896
12897 static void
12898 print_mention_catch_exception_unhandled (struct breakpoint *b)
12899 {
12900 print_mention_exception (ada_catch_exception_unhandled, b);
12901 }
12902
12903 static void
12904 print_recreate_catch_exception_unhandled (struct breakpoint *b,
12905 struct ui_file *fp)
12906 {
12907 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
12908 }
12909
12910 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12911
12912 /* Virtual table for "catch assert" breakpoints. */
12913
12914 static struct bp_location *
12915 allocate_location_catch_assert (struct breakpoint *self)
12916 {
12917 return allocate_location_exception (ada_catch_assert, self);
12918 }
12919
12920 static void
12921 re_set_catch_assert (struct breakpoint *b)
12922 {
12923 re_set_exception (ada_catch_assert, b);
12924 }
12925
12926 static void
12927 check_status_catch_assert (bpstat bs)
12928 {
12929 check_status_exception (ada_catch_assert, bs);
12930 }
12931
12932 static enum print_stop_action
12933 print_it_catch_assert (bpstat bs)
12934 {
12935 return print_it_exception (ada_catch_assert, bs);
12936 }
12937
12938 static void
12939 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
12940 {
12941 print_one_exception (ada_catch_assert, b, last_loc);
12942 }
12943
12944 static void
12945 print_mention_catch_assert (struct breakpoint *b)
12946 {
12947 print_mention_exception (ada_catch_assert, b);
12948 }
12949
12950 static void
12951 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12952 {
12953 print_recreate_exception (ada_catch_assert, b, fp);
12954 }
12955
12956 static struct breakpoint_ops catch_assert_breakpoint_ops;
12957
12958 /* Virtual table for "catch handlers" breakpoints. */
12959
12960 static struct bp_location *
12961 allocate_location_catch_handlers (struct breakpoint *self)
12962 {
12963 return allocate_location_exception (ada_catch_handlers, self);
12964 }
12965
12966 static void
12967 re_set_catch_handlers (struct breakpoint *b)
12968 {
12969 re_set_exception (ada_catch_handlers, b);
12970 }
12971
12972 static void
12973 check_status_catch_handlers (bpstat bs)
12974 {
12975 check_status_exception (ada_catch_handlers, bs);
12976 }
12977
12978 static enum print_stop_action
12979 print_it_catch_handlers (bpstat bs)
12980 {
12981 return print_it_exception (ada_catch_handlers, bs);
12982 }
12983
12984 static void
12985 print_one_catch_handlers (struct breakpoint *b,
12986 struct bp_location **last_loc)
12987 {
12988 print_one_exception (ada_catch_handlers, b, last_loc);
12989 }
12990
12991 static void
12992 print_mention_catch_handlers (struct breakpoint *b)
12993 {
12994 print_mention_exception (ada_catch_handlers, b);
12995 }
12996
12997 static void
12998 print_recreate_catch_handlers (struct breakpoint *b,
12999 struct ui_file *fp)
13000 {
13001 print_recreate_exception (ada_catch_handlers, b, fp);
13002 }
13003
13004 static struct breakpoint_ops catch_handlers_breakpoint_ops;
13005
13006 /* Split the arguments specified in a "catch exception" command.
13007 Set EX to the appropriate catchpoint type.
13008 Set EXCEP_STRING to the name of the specific exception if
13009 specified by the user.
13010 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
13011 "catch handlers" command. False otherwise.
13012 If a condition is found at the end of the arguments, the condition
13013 expression is stored in COND_STRING (memory must be deallocated
13014 after use). Otherwise COND_STRING is set to NULL. */
13015
13016 static void
13017 catch_ada_exception_command_split (const char *args,
13018 bool is_catch_handlers_cmd,
13019 enum ada_exception_catchpoint_kind *ex,
13020 std::string *excep_string,
13021 std::string *cond_string)
13022 {
13023 std::string exception_name;
13024
13025 exception_name = extract_arg (&args);
13026 if (exception_name == "if")
13027 {
13028 /* This is not an exception name; this is the start of a condition
13029 expression for a catchpoint on all exceptions. So, "un-get"
13030 this token, and set exception_name to NULL. */
13031 exception_name.clear ();
13032 args -= 2;
13033 }
13034
13035 /* Check to see if we have a condition. */
13036
13037 args = skip_spaces (args);
13038 if (startswith (args, "if")
13039 && (isspace (args[2]) || args[2] == '\0'))
13040 {
13041 args += 2;
13042 args = skip_spaces (args);
13043
13044 if (args[0] == '\0')
13045 error (_("Condition missing after `if' keyword"));
13046 *cond_string = args;
13047
13048 args += strlen (args);
13049 }
13050
13051 /* Check that we do not have any more arguments. Anything else
13052 is unexpected. */
13053
13054 if (args[0] != '\0')
13055 error (_("Junk at end of expression"));
13056
13057 if (is_catch_handlers_cmd)
13058 {
13059 /* Catch handling of exceptions. */
13060 *ex = ada_catch_handlers;
13061 *excep_string = exception_name;
13062 }
13063 else if (exception_name.empty ())
13064 {
13065 /* Catch all exceptions. */
13066 *ex = ada_catch_exception;
13067 excep_string->clear ();
13068 }
13069 else if (exception_name == "unhandled")
13070 {
13071 /* Catch unhandled exceptions. */
13072 *ex = ada_catch_exception_unhandled;
13073 excep_string->clear ();
13074 }
13075 else
13076 {
13077 /* Catch a specific exception. */
13078 *ex = ada_catch_exception;
13079 *excep_string = exception_name;
13080 }
13081 }
13082
13083 /* Return the name of the symbol on which we should break in order to
13084 implement a catchpoint of the EX kind. */
13085
13086 static const char *
13087 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
13088 {
13089 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
13090
13091 gdb_assert (data->exception_info != NULL);
13092
13093 switch (ex)
13094 {
13095 case ada_catch_exception:
13096 return (data->exception_info->catch_exception_sym);
13097 break;
13098 case ada_catch_exception_unhandled:
13099 return (data->exception_info->catch_exception_unhandled_sym);
13100 break;
13101 case ada_catch_assert:
13102 return (data->exception_info->catch_assert_sym);
13103 break;
13104 case ada_catch_handlers:
13105 return (data->exception_info->catch_handlers_sym);
13106 break;
13107 default:
13108 internal_error (__FILE__, __LINE__,
13109 _("unexpected catchpoint kind (%d)"), ex);
13110 }
13111 }
13112
13113 /* Return the breakpoint ops "virtual table" used for catchpoints
13114 of the EX kind. */
13115
13116 static const struct breakpoint_ops *
13117 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
13118 {
13119 switch (ex)
13120 {
13121 case ada_catch_exception:
13122 return (&catch_exception_breakpoint_ops);
13123 break;
13124 case ada_catch_exception_unhandled:
13125 return (&catch_exception_unhandled_breakpoint_ops);
13126 break;
13127 case ada_catch_assert:
13128 return (&catch_assert_breakpoint_ops);
13129 break;
13130 case ada_catch_handlers:
13131 return (&catch_handlers_breakpoint_ops);
13132 break;
13133 default:
13134 internal_error (__FILE__, __LINE__,
13135 _("unexpected catchpoint kind (%d)"), ex);
13136 }
13137 }
13138
13139 /* Return the condition that will be used to match the current exception
13140 being raised with the exception that the user wants to catch. This
13141 assumes that this condition is used when the inferior just triggered
13142 an exception catchpoint.
13143 EX: the type of catchpoints used for catching Ada exceptions. */
13144
13145 static std::string
13146 ada_exception_catchpoint_cond_string (const char *excep_string,
13147 enum ada_exception_catchpoint_kind ex)
13148 {
13149 int i;
13150 bool is_standard_exc = false;
13151 std::string result;
13152
13153 if (ex == ada_catch_handlers)
13154 {
13155 /* For exception handlers catchpoints, the condition string does
13156 not use the same parameter as for the other exceptions. */
13157 result = ("long_integer (GNAT_GCC_exception_Access"
13158 "(gcc_exception).all.occurrence.id)");
13159 }
13160 else
13161 result = "long_integer (e)";
13162
13163 /* The standard exceptions are a special case. They are defined in
13164 runtime units that have been compiled without debugging info; if
13165 EXCEP_STRING is the not-fully-qualified name of a standard
13166 exception (e.g. "constraint_error") then, during the evaluation
13167 of the condition expression, the symbol lookup on this name would
13168 *not* return this standard exception. The catchpoint condition
13169 may then be set only on user-defined exceptions which have the
13170 same not-fully-qualified name (e.g. my_package.constraint_error).
13171
13172 To avoid this unexcepted behavior, these standard exceptions are
13173 systematically prefixed by "standard". This means that "catch
13174 exception constraint_error" is rewritten into "catch exception
13175 standard.constraint_error".
13176
13177 If an exception named contraint_error is defined in another package of
13178 the inferior program, then the only way to specify this exception as a
13179 breakpoint condition is to use its fully-qualified named:
13180 e.g. my_package.constraint_error. */
13181
13182 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
13183 {
13184 if (strcmp (standard_exc [i], excep_string) == 0)
13185 {
13186 is_standard_exc = true;
13187 break;
13188 }
13189 }
13190
13191 result += " = ";
13192
13193 if (is_standard_exc)
13194 string_appendf (result, "long_integer (&standard.%s)", excep_string);
13195 else
13196 string_appendf (result, "long_integer (&%s)", excep_string);
13197
13198 return result;
13199 }
13200
13201 /* Return the symtab_and_line that should be used to insert an exception
13202 catchpoint of the TYPE kind.
13203
13204 ADDR_STRING returns the name of the function where the real
13205 breakpoint that implements the catchpoints is set, depending on the
13206 type of catchpoint we need to create. */
13207
13208 static struct symtab_and_line
13209 ada_exception_sal (enum ada_exception_catchpoint_kind ex,
13210 const char **addr_string, const struct breakpoint_ops **ops)
13211 {
13212 const char *sym_name;
13213 struct symbol *sym;
13214
13215 /* First, find out which exception support info to use. */
13216 ada_exception_support_info_sniffer ();
13217
13218 /* Then lookup the function on which we will break in order to catch
13219 the Ada exceptions requested by the user. */
13220 sym_name = ada_exception_sym_name (ex);
13221 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
13222
13223 if (sym == NULL)
13224 error (_("Catchpoint symbol not found: %s"), sym_name);
13225
13226 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
13227 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
13228
13229 /* Set ADDR_STRING. */
13230 *addr_string = xstrdup (sym_name);
13231
13232 /* Set OPS. */
13233 *ops = ada_exception_breakpoint_ops (ex);
13234
13235 return find_function_start_sal (sym, 1);
13236 }
13237
13238 /* Create an Ada exception catchpoint.
13239
13240 EX_KIND is the kind of exception catchpoint to be created.
13241
13242 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
13243 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
13244 of the exception to which this catchpoint applies.
13245
13246 COND_STRING, if not empty, is the catchpoint condition.
13247
13248 TEMPFLAG, if nonzero, means that the underlying breakpoint
13249 should be temporary.
13250
13251 FROM_TTY is the usual argument passed to all commands implementations. */
13252
13253 void
13254 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
13255 enum ada_exception_catchpoint_kind ex_kind,
13256 const std::string &excep_string,
13257 const std::string &cond_string,
13258 int tempflag,
13259 int disabled,
13260 int from_tty)
13261 {
13262 const char *addr_string = NULL;
13263 const struct breakpoint_ops *ops = NULL;
13264 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
13265
13266 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint ());
13267 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string,
13268 ops, tempflag, disabled, from_tty);
13269 c->excep_string = excep_string;
13270 create_excep_cond_exprs (c.get (), ex_kind);
13271 if (!cond_string.empty ())
13272 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty);
13273 install_breakpoint (0, std::move (c), 1);
13274 }
13275
13276 /* Implement the "catch exception" command. */
13277
13278 static void
13279 catch_ada_exception_command (const char *arg_entry, int from_tty,
13280 struct cmd_list_element *command)
13281 {
13282 const char *arg = arg_entry;
13283 struct gdbarch *gdbarch = get_current_arch ();
13284 int tempflag;
13285 enum ada_exception_catchpoint_kind ex_kind;
13286 std::string excep_string;
13287 std::string cond_string;
13288
13289 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13290
13291 if (!arg)
13292 arg = "";
13293 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
13294 &cond_string);
13295 create_ada_exception_catchpoint (gdbarch, ex_kind,
13296 excep_string, cond_string,
13297 tempflag, 1 /* enabled */,
13298 from_tty);
13299 }
13300
13301 /* Implement the "catch handlers" command. */
13302
13303 static void
13304 catch_ada_handlers_command (const char *arg_entry, int from_tty,
13305 struct cmd_list_element *command)
13306 {
13307 const char *arg = arg_entry;
13308 struct gdbarch *gdbarch = get_current_arch ();
13309 int tempflag;
13310 enum ada_exception_catchpoint_kind ex_kind;
13311 std::string excep_string;
13312 std::string cond_string;
13313
13314 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13315
13316 if (!arg)
13317 arg = "";
13318 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
13319 &cond_string);
13320 create_ada_exception_catchpoint (gdbarch, ex_kind,
13321 excep_string, cond_string,
13322 tempflag, 1 /* enabled */,
13323 from_tty);
13324 }
13325
13326 /* Split the arguments specified in a "catch assert" command.
13327
13328 ARGS contains the command's arguments (or the empty string if
13329 no arguments were passed).
13330
13331 If ARGS contains a condition, set COND_STRING to that condition
13332 (the memory needs to be deallocated after use). */
13333
13334 static void
13335 catch_ada_assert_command_split (const char *args, std::string &cond_string)
13336 {
13337 args = skip_spaces (args);
13338
13339 /* Check whether a condition was provided. */
13340 if (startswith (args, "if")
13341 && (isspace (args[2]) || args[2] == '\0'))
13342 {
13343 args += 2;
13344 args = skip_spaces (args);
13345 if (args[0] == '\0')
13346 error (_("condition missing after `if' keyword"));
13347 cond_string.assign (args);
13348 }
13349
13350 /* Otherwise, there should be no other argument at the end of
13351 the command. */
13352 else if (args[0] != '\0')
13353 error (_("Junk at end of arguments."));
13354 }
13355
13356 /* Implement the "catch assert" command. */
13357
13358 static void
13359 catch_assert_command (const char *arg_entry, int from_tty,
13360 struct cmd_list_element *command)
13361 {
13362 const char *arg = arg_entry;
13363 struct gdbarch *gdbarch = get_current_arch ();
13364 int tempflag;
13365 std::string cond_string;
13366
13367 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13368
13369 if (!arg)
13370 arg = "";
13371 catch_ada_assert_command_split (arg, cond_string);
13372 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
13373 "", cond_string,
13374 tempflag, 1 /* enabled */,
13375 from_tty);
13376 }
13377
13378 /* Return non-zero if the symbol SYM is an Ada exception object. */
13379
13380 static int
13381 ada_is_exception_sym (struct symbol *sym)
13382 {
13383 const char *type_name = TYPE_NAME (SYMBOL_TYPE (sym));
13384
13385 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13386 && SYMBOL_CLASS (sym) != LOC_BLOCK
13387 && SYMBOL_CLASS (sym) != LOC_CONST
13388 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13389 && type_name != NULL && strcmp (type_name, "exception") == 0);
13390 }
13391
13392 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13393 Ada exception object. This matches all exceptions except the ones
13394 defined by the Ada language. */
13395
13396 static int
13397 ada_is_non_standard_exception_sym (struct symbol *sym)
13398 {
13399 int i;
13400
13401 if (!ada_is_exception_sym (sym))
13402 return 0;
13403
13404 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13405 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13406 return 0; /* A standard exception. */
13407
13408 /* Numeric_Error is also a standard exception, so exclude it.
13409 See the STANDARD_EXC description for more details as to why
13410 this exception is not listed in that array. */
13411 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13412 return 0;
13413
13414 return 1;
13415 }
13416
13417 /* A helper function for std::sort, comparing two struct ada_exc_info
13418 objects.
13419
13420 The comparison is determined first by exception name, and then
13421 by exception address. */
13422
13423 bool
13424 ada_exc_info::operator< (const ada_exc_info &other) const
13425 {
13426 int result;
13427
13428 result = strcmp (name, other.name);
13429 if (result < 0)
13430 return true;
13431 if (result == 0 && addr < other.addr)
13432 return true;
13433 return false;
13434 }
13435
13436 bool
13437 ada_exc_info::operator== (const ada_exc_info &other) const
13438 {
13439 return addr == other.addr && strcmp (name, other.name) == 0;
13440 }
13441
13442 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13443 routine, but keeping the first SKIP elements untouched.
13444
13445 All duplicates are also removed. */
13446
13447 static void
13448 sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
13449 int skip)
13450 {
13451 std::sort (exceptions->begin () + skip, exceptions->end ());
13452 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
13453 exceptions->end ());
13454 }
13455
13456 /* Add all exceptions defined by the Ada standard whose name match
13457 a regular expression.
13458
13459 If PREG is not NULL, then this regexp_t object is used to
13460 perform the symbol name matching. Otherwise, no name-based
13461 filtering is performed.
13462
13463 EXCEPTIONS is a vector of exceptions to which matching exceptions
13464 gets pushed. */
13465
13466 static void
13467 ada_add_standard_exceptions (compiled_regex *preg,
13468 std::vector<ada_exc_info> *exceptions)
13469 {
13470 int i;
13471
13472 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13473 {
13474 if (preg == NULL
13475 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
13476 {
13477 struct bound_minimal_symbol msymbol
13478 = ada_lookup_simple_minsym (standard_exc[i]);
13479
13480 if (msymbol.minsym != NULL)
13481 {
13482 struct ada_exc_info info
13483 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
13484
13485 exceptions->push_back (info);
13486 }
13487 }
13488 }
13489 }
13490
13491 /* Add all Ada exceptions defined locally and accessible from the given
13492 FRAME.
13493
13494 If PREG is not NULL, then this regexp_t object is used to
13495 perform the symbol name matching. Otherwise, no name-based
13496 filtering is performed.
13497
13498 EXCEPTIONS is a vector of exceptions to which matching exceptions
13499 gets pushed. */
13500
13501 static void
13502 ada_add_exceptions_from_frame (compiled_regex *preg,
13503 struct frame_info *frame,
13504 std::vector<ada_exc_info> *exceptions)
13505 {
13506 const struct block *block = get_frame_block (frame, 0);
13507
13508 while (block != 0)
13509 {
13510 struct block_iterator iter;
13511 struct symbol *sym;
13512
13513 ALL_BLOCK_SYMBOLS (block, iter, sym)
13514 {
13515 switch (SYMBOL_CLASS (sym))
13516 {
13517 case LOC_TYPEDEF:
13518 case LOC_BLOCK:
13519 case LOC_CONST:
13520 break;
13521 default:
13522 if (ada_is_exception_sym (sym))
13523 {
13524 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13525 SYMBOL_VALUE_ADDRESS (sym)};
13526
13527 exceptions->push_back (info);
13528 }
13529 }
13530 }
13531 if (BLOCK_FUNCTION (block) != NULL)
13532 break;
13533 block = BLOCK_SUPERBLOCK (block);
13534 }
13535 }
13536
13537 /* Return true if NAME matches PREG or if PREG is NULL. */
13538
13539 static bool
13540 name_matches_regex (const char *name, compiled_regex *preg)
13541 {
13542 return (preg == NULL
13543 || preg->exec (ada_decode (name), 0, NULL, 0) == 0);
13544 }
13545
13546 /* Add all exceptions defined globally whose name name match
13547 a regular expression, excluding standard exceptions.
13548
13549 The reason we exclude standard exceptions is that they need
13550 to be handled separately: Standard exceptions are defined inside
13551 a runtime unit which is normally not compiled with debugging info,
13552 and thus usually do not show up in our symbol search. However,
13553 if the unit was in fact built with debugging info, we need to
13554 exclude them because they would duplicate the entry we found
13555 during the special loop that specifically searches for those
13556 standard exceptions.
13557
13558 If PREG is not NULL, then this regexp_t object is used to
13559 perform the symbol name matching. Otherwise, no name-based
13560 filtering is performed.
13561
13562 EXCEPTIONS is a vector of exceptions to which matching exceptions
13563 gets pushed. */
13564
13565 static void
13566 ada_add_global_exceptions (compiled_regex *preg,
13567 std::vector<ada_exc_info> *exceptions)
13568 {
13569 struct objfile *objfile;
13570 struct compunit_symtab *s;
13571
13572 /* In Ada, the symbol "search name" is a linkage name, whereas the
13573 regular expression used to do the matching refers to the natural
13574 name. So match against the decoded name. */
13575 expand_symtabs_matching (NULL,
13576 lookup_name_info::match_any (),
13577 [&] (const char *search_name)
13578 {
13579 const char *decoded = ada_decode (search_name);
13580 return name_matches_regex (decoded, preg);
13581 },
13582 NULL,
13583 VARIABLES_DOMAIN);
13584
13585 ALL_COMPUNITS (objfile, s)
13586 {
13587 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13588 int i;
13589
13590 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13591 {
13592 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13593 struct block_iterator iter;
13594 struct symbol *sym;
13595
13596 ALL_BLOCK_SYMBOLS (b, iter, sym)
13597 if (ada_is_non_standard_exception_sym (sym)
13598 && name_matches_regex (SYMBOL_NATURAL_NAME (sym), preg))
13599 {
13600 struct ada_exc_info info
13601 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13602
13603 exceptions->push_back (info);
13604 }
13605 }
13606 }
13607 }
13608
13609 /* Implements ada_exceptions_list with the regular expression passed
13610 as a regex_t, rather than a string.
13611
13612 If not NULL, PREG is used to filter out exceptions whose names
13613 do not match. Otherwise, all exceptions are listed. */
13614
13615 static std::vector<ada_exc_info>
13616 ada_exceptions_list_1 (compiled_regex *preg)
13617 {
13618 std::vector<ada_exc_info> result;
13619 int prev_len;
13620
13621 /* First, list the known standard exceptions. These exceptions
13622 need to be handled separately, as they are usually defined in
13623 runtime units that have been compiled without debugging info. */
13624
13625 ada_add_standard_exceptions (preg, &result);
13626
13627 /* Next, find all exceptions whose scope is local and accessible
13628 from the currently selected frame. */
13629
13630 if (has_stack_frames ())
13631 {
13632 prev_len = result.size ();
13633 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13634 &result);
13635 if (result.size () > prev_len)
13636 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13637 }
13638
13639 /* Add all exceptions whose scope is global. */
13640
13641 prev_len = result.size ();
13642 ada_add_global_exceptions (preg, &result);
13643 if (result.size () > prev_len)
13644 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13645
13646 return result;
13647 }
13648
13649 /* Return a vector of ada_exc_info.
13650
13651 If REGEXP is NULL, all exceptions are included in the result.
13652 Otherwise, it should contain a valid regular expression,
13653 and only the exceptions whose names match that regular expression
13654 are included in the result.
13655
13656 The exceptions are sorted in the following order:
13657 - Standard exceptions (defined by the Ada language), in
13658 alphabetical order;
13659 - Exceptions only visible from the current frame, in
13660 alphabetical order;
13661 - Exceptions whose scope is global, in alphabetical order. */
13662
13663 std::vector<ada_exc_info>
13664 ada_exceptions_list (const char *regexp)
13665 {
13666 if (regexp == NULL)
13667 return ada_exceptions_list_1 (NULL);
13668
13669 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13670 return ada_exceptions_list_1 (&reg);
13671 }
13672
13673 /* Implement the "info exceptions" command. */
13674
13675 static void
13676 info_exceptions_command (const char *regexp, int from_tty)
13677 {
13678 struct gdbarch *gdbarch = get_current_arch ();
13679
13680 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
13681
13682 if (regexp != NULL)
13683 printf_filtered
13684 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13685 else
13686 printf_filtered (_("All defined Ada exceptions:\n"));
13687
13688 for (const ada_exc_info &info : exceptions)
13689 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
13690 }
13691
13692 /* Operators */
13693 /* Information about operators given special treatment in functions
13694 below. */
13695 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13696
13697 #define ADA_OPERATORS \
13698 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13699 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13700 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13701 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13702 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13703 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13704 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13705 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13706 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13707 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13708 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13709 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13710 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13711 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13712 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13713 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13714 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13715 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13716 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13717
13718 static void
13719 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13720 int *argsp)
13721 {
13722 switch (exp->elts[pc - 1].opcode)
13723 {
13724 default:
13725 operator_length_standard (exp, pc, oplenp, argsp);
13726 break;
13727
13728 #define OP_DEFN(op, len, args, binop) \
13729 case op: *oplenp = len; *argsp = args; break;
13730 ADA_OPERATORS;
13731 #undef OP_DEFN
13732
13733 case OP_AGGREGATE:
13734 *oplenp = 3;
13735 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13736 break;
13737
13738 case OP_CHOICES:
13739 *oplenp = 3;
13740 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13741 break;
13742 }
13743 }
13744
13745 /* Implementation of the exp_descriptor method operator_check. */
13746
13747 static int
13748 ada_operator_check (struct expression *exp, int pos,
13749 int (*objfile_func) (struct objfile *objfile, void *data),
13750 void *data)
13751 {
13752 const union exp_element *const elts = exp->elts;
13753 struct type *type = NULL;
13754
13755 switch (elts[pos].opcode)
13756 {
13757 case UNOP_IN_RANGE:
13758 case UNOP_QUAL:
13759 type = elts[pos + 1].type;
13760 break;
13761
13762 default:
13763 return operator_check_standard (exp, pos, objfile_func, data);
13764 }
13765
13766 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13767
13768 if (type && TYPE_OBJFILE (type)
13769 && (*objfile_func) (TYPE_OBJFILE (type), data))
13770 return 1;
13771
13772 return 0;
13773 }
13774
13775 static const char *
13776 ada_op_name (enum exp_opcode opcode)
13777 {
13778 switch (opcode)
13779 {
13780 default:
13781 return op_name_standard (opcode);
13782
13783 #define OP_DEFN(op, len, args, binop) case op: return #op;
13784 ADA_OPERATORS;
13785 #undef OP_DEFN
13786
13787 case OP_AGGREGATE:
13788 return "OP_AGGREGATE";
13789 case OP_CHOICES:
13790 return "OP_CHOICES";
13791 case OP_NAME:
13792 return "OP_NAME";
13793 }
13794 }
13795
13796 /* As for operator_length, but assumes PC is pointing at the first
13797 element of the operator, and gives meaningful results only for the
13798 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13799
13800 static void
13801 ada_forward_operator_length (struct expression *exp, int pc,
13802 int *oplenp, int *argsp)
13803 {
13804 switch (exp->elts[pc].opcode)
13805 {
13806 default:
13807 *oplenp = *argsp = 0;
13808 break;
13809
13810 #define OP_DEFN(op, len, args, binop) \
13811 case op: *oplenp = len; *argsp = args; break;
13812 ADA_OPERATORS;
13813 #undef OP_DEFN
13814
13815 case OP_AGGREGATE:
13816 *oplenp = 3;
13817 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13818 break;
13819
13820 case OP_CHOICES:
13821 *oplenp = 3;
13822 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13823 break;
13824
13825 case OP_STRING:
13826 case OP_NAME:
13827 {
13828 int len = longest_to_int (exp->elts[pc + 1].longconst);
13829
13830 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13831 *argsp = 0;
13832 break;
13833 }
13834 }
13835 }
13836
13837 static int
13838 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13839 {
13840 enum exp_opcode op = exp->elts[elt].opcode;
13841 int oplen, nargs;
13842 int pc = elt;
13843 int i;
13844
13845 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13846
13847 switch (op)
13848 {
13849 /* Ada attributes ('Foo). */
13850 case OP_ATR_FIRST:
13851 case OP_ATR_LAST:
13852 case OP_ATR_LENGTH:
13853 case OP_ATR_IMAGE:
13854 case OP_ATR_MAX:
13855 case OP_ATR_MIN:
13856 case OP_ATR_MODULUS:
13857 case OP_ATR_POS:
13858 case OP_ATR_SIZE:
13859 case OP_ATR_TAG:
13860 case OP_ATR_VAL:
13861 break;
13862
13863 case UNOP_IN_RANGE:
13864 case UNOP_QUAL:
13865 /* XXX: gdb_sprint_host_address, type_sprint */
13866 fprintf_filtered (stream, _("Type @"));
13867 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13868 fprintf_filtered (stream, " (");
13869 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13870 fprintf_filtered (stream, ")");
13871 break;
13872 case BINOP_IN_BOUNDS:
13873 fprintf_filtered (stream, " (%d)",
13874 longest_to_int (exp->elts[pc + 2].longconst));
13875 break;
13876 case TERNOP_IN_RANGE:
13877 break;
13878
13879 case OP_AGGREGATE:
13880 case OP_OTHERS:
13881 case OP_DISCRETE_RANGE:
13882 case OP_POSITIONAL:
13883 case OP_CHOICES:
13884 break;
13885
13886 case OP_NAME:
13887 case OP_STRING:
13888 {
13889 char *name = &exp->elts[elt + 2].string;
13890 int len = longest_to_int (exp->elts[elt + 1].longconst);
13891
13892 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13893 break;
13894 }
13895
13896 default:
13897 return dump_subexp_body_standard (exp, stream, elt);
13898 }
13899
13900 elt += oplen;
13901 for (i = 0; i < nargs; i += 1)
13902 elt = dump_subexp (exp, stream, elt);
13903
13904 return elt;
13905 }
13906
13907 /* The Ada extension of print_subexp (q.v.). */
13908
13909 static void
13910 ada_print_subexp (struct expression *exp, int *pos,
13911 struct ui_file *stream, enum precedence prec)
13912 {
13913 int oplen, nargs, i;
13914 int pc = *pos;
13915 enum exp_opcode op = exp->elts[pc].opcode;
13916
13917 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13918
13919 *pos += oplen;
13920 switch (op)
13921 {
13922 default:
13923 *pos -= oplen;
13924 print_subexp_standard (exp, pos, stream, prec);
13925 return;
13926
13927 case OP_VAR_VALUE:
13928 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13929 return;
13930
13931 case BINOP_IN_BOUNDS:
13932 /* XXX: sprint_subexp */
13933 print_subexp (exp, pos, stream, PREC_SUFFIX);
13934 fputs_filtered (" in ", stream);
13935 print_subexp (exp, pos, stream, PREC_SUFFIX);
13936 fputs_filtered ("'range", stream);
13937 if (exp->elts[pc + 1].longconst > 1)
13938 fprintf_filtered (stream, "(%ld)",
13939 (long) exp->elts[pc + 1].longconst);
13940 return;
13941
13942 case TERNOP_IN_RANGE:
13943 if (prec >= PREC_EQUAL)
13944 fputs_filtered ("(", stream);
13945 /* XXX: sprint_subexp */
13946 print_subexp (exp, pos, stream, PREC_SUFFIX);
13947 fputs_filtered (" in ", stream);
13948 print_subexp (exp, pos, stream, PREC_EQUAL);
13949 fputs_filtered (" .. ", stream);
13950 print_subexp (exp, pos, stream, PREC_EQUAL);
13951 if (prec >= PREC_EQUAL)
13952 fputs_filtered (")", stream);
13953 return;
13954
13955 case OP_ATR_FIRST:
13956 case OP_ATR_LAST:
13957 case OP_ATR_LENGTH:
13958 case OP_ATR_IMAGE:
13959 case OP_ATR_MAX:
13960 case OP_ATR_MIN:
13961 case OP_ATR_MODULUS:
13962 case OP_ATR_POS:
13963 case OP_ATR_SIZE:
13964 case OP_ATR_TAG:
13965 case OP_ATR_VAL:
13966 if (exp->elts[*pos].opcode == OP_TYPE)
13967 {
13968 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
13969 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13970 &type_print_raw_options);
13971 *pos += 3;
13972 }
13973 else
13974 print_subexp (exp, pos, stream, PREC_SUFFIX);
13975 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13976 if (nargs > 1)
13977 {
13978 int tem;
13979
13980 for (tem = 1; tem < nargs; tem += 1)
13981 {
13982 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13983 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13984 }
13985 fputs_filtered (")", stream);
13986 }
13987 return;
13988
13989 case UNOP_QUAL:
13990 type_print (exp->elts[pc + 1].type, "", stream, 0);
13991 fputs_filtered ("'(", stream);
13992 print_subexp (exp, pos, stream, PREC_PREFIX);
13993 fputs_filtered (")", stream);
13994 return;
13995
13996 case UNOP_IN_RANGE:
13997 /* XXX: sprint_subexp */
13998 print_subexp (exp, pos, stream, PREC_SUFFIX);
13999 fputs_filtered (" in ", stream);
14000 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
14001 &type_print_raw_options);
14002 return;
14003
14004 case OP_DISCRETE_RANGE:
14005 print_subexp (exp, pos, stream, PREC_SUFFIX);
14006 fputs_filtered ("..", stream);
14007 print_subexp (exp, pos, stream, PREC_SUFFIX);
14008 return;
14009
14010 case OP_OTHERS:
14011 fputs_filtered ("others => ", stream);
14012 print_subexp (exp, pos, stream, PREC_SUFFIX);
14013 return;
14014
14015 case OP_CHOICES:
14016 for (i = 0; i < nargs-1; i += 1)
14017 {
14018 if (i > 0)
14019 fputs_filtered ("|", stream);
14020 print_subexp (exp, pos, stream, PREC_SUFFIX);
14021 }
14022 fputs_filtered (" => ", stream);
14023 print_subexp (exp, pos, stream, PREC_SUFFIX);
14024 return;
14025
14026 case OP_POSITIONAL:
14027 print_subexp (exp, pos, stream, PREC_SUFFIX);
14028 return;
14029
14030 case OP_AGGREGATE:
14031 fputs_filtered ("(", stream);
14032 for (i = 0; i < nargs; i += 1)
14033 {
14034 if (i > 0)
14035 fputs_filtered (", ", stream);
14036 print_subexp (exp, pos, stream, PREC_SUFFIX);
14037 }
14038 fputs_filtered (")", stream);
14039 return;
14040 }
14041 }
14042
14043 /* Table mapping opcodes into strings for printing operators
14044 and precedences of the operators. */
14045
14046 static const struct op_print ada_op_print_tab[] = {
14047 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
14048 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
14049 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
14050 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
14051 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
14052 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
14053 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
14054 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
14055 {"<=", BINOP_LEQ, PREC_ORDER, 0},
14056 {">=", BINOP_GEQ, PREC_ORDER, 0},
14057 {">", BINOP_GTR, PREC_ORDER, 0},
14058 {"<", BINOP_LESS, PREC_ORDER, 0},
14059 {">>", BINOP_RSH, PREC_SHIFT, 0},
14060 {"<<", BINOP_LSH, PREC_SHIFT, 0},
14061 {"+", BINOP_ADD, PREC_ADD, 0},
14062 {"-", BINOP_SUB, PREC_ADD, 0},
14063 {"&", BINOP_CONCAT, PREC_ADD, 0},
14064 {"*", BINOP_MUL, PREC_MUL, 0},
14065 {"/", BINOP_DIV, PREC_MUL, 0},
14066 {"rem", BINOP_REM, PREC_MUL, 0},
14067 {"mod", BINOP_MOD, PREC_MUL, 0},
14068 {"**", BINOP_EXP, PREC_REPEAT, 0},
14069 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
14070 {"-", UNOP_NEG, PREC_PREFIX, 0},
14071 {"+", UNOP_PLUS, PREC_PREFIX, 0},
14072 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
14073 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
14074 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
14075 {".all", UNOP_IND, PREC_SUFFIX, 1},
14076 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
14077 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
14078 {NULL, OP_NULL, PREC_SUFFIX, 0}
14079 };
14080 \f
14081 enum ada_primitive_types {
14082 ada_primitive_type_int,
14083 ada_primitive_type_long,
14084 ada_primitive_type_short,
14085 ada_primitive_type_char,
14086 ada_primitive_type_float,
14087 ada_primitive_type_double,
14088 ada_primitive_type_void,
14089 ada_primitive_type_long_long,
14090 ada_primitive_type_long_double,
14091 ada_primitive_type_natural,
14092 ada_primitive_type_positive,
14093 ada_primitive_type_system_address,
14094 ada_primitive_type_storage_offset,
14095 nr_ada_primitive_types
14096 };
14097
14098 static void
14099 ada_language_arch_info (struct gdbarch *gdbarch,
14100 struct language_arch_info *lai)
14101 {
14102 const struct builtin_type *builtin = builtin_type (gdbarch);
14103
14104 lai->primitive_type_vector
14105 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
14106 struct type *);
14107
14108 lai->primitive_type_vector [ada_primitive_type_int]
14109 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14110 0, "integer");
14111 lai->primitive_type_vector [ada_primitive_type_long]
14112 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
14113 0, "long_integer");
14114 lai->primitive_type_vector [ada_primitive_type_short]
14115 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
14116 0, "short_integer");
14117 lai->string_char_type
14118 = lai->primitive_type_vector [ada_primitive_type_char]
14119 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
14120 lai->primitive_type_vector [ada_primitive_type_float]
14121 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
14122 "float", gdbarch_float_format (gdbarch));
14123 lai->primitive_type_vector [ada_primitive_type_double]
14124 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
14125 "long_float", gdbarch_double_format (gdbarch));
14126 lai->primitive_type_vector [ada_primitive_type_long_long]
14127 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
14128 0, "long_long_integer");
14129 lai->primitive_type_vector [ada_primitive_type_long_double]
14130 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
14131 "long_long_float", gdbarch_long_double_format (gdbarch));
14132 lai->primitive_type_vector [ada_primitive_type_natural]
14133 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14134 0, "natural");
14135 lai->primitive_type_vector [ada_primitive_type_positive]
14136 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14137 0, "positive");
14138 lai->primitive_type_vector [ada_primitive_type_void]
14139 = builtin->builtin_void;
14140
14141 lai->primitive_type_vector [ada_primitive_type_system_address]
14142 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
14143 "void"));
14144 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
14145 = "system__address";
14146
14147 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
14148 type. This is a signed integral type whose size is the same as
14149 the size of addresses. */
14150 {
14151 unsigned int addr_length = TYPE_LENGTH
14152 (lai->primitive_type_vector [ada_primitive_type_system_address]);
14153
14154 lai->primitive_type_vector [ada_primitive_type_storage_offset]
14155 = arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
14156 "storage_offset");
14157 }
14158
14159 lai->bool_type_symbol = NULL;
14160 lai->bool_type_default = builtin->builtin_bool;
14161 }
14162 \f
14163 /* Language vector */
14164
14165 /* Not really used, but needed in the ada_language_defn. */
14166
14167 static void
14168 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
14169 {
14170 ada_emit_char (c, type, stream, quoter, 1);
14171 }
14172
14173 static int
14174 parse (struct parser_state *ps)
14175 {
14176 warnings_issued = 0;
14177 return ada_parse (ps);
14178 }
14179
14180 static const struct exp_descriptor ada_exp_descriptor = {
14181 ada_print_subexp,
14182 ada_operator_length,
14183 ada_operator_check,
14184 ada_op_name,
14185 ada_dump_subexp_body,
14186 ada_evaluate_subexp
14187 };
14188
14189 /* symbol_name_matcher_ftype adapter for wild_match. */
14190
14191 static bool
14192 do_wild_match (const char *symbol_search_name,
14193 const lookup_name_info &lookup_name,
14194 completion_match_result *comp_match_res)
14195 {
14196 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
14197 }
14198
14199 /* symbol_name_matcher_ftype adapter for full_match. */
14200
14201 static bool
14202 do_full_match (const char *symbol_search_name,
14203 const lookup_name_info &lookup_name,
14204 completion_match_result *comp_match_res)
14205 {
14206 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
14207 }
14208
14209 /* Build the Ada lookup name for LOOKUP_NAME. */
14210
14211 ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
14212 {
14213 const std::string &user_name = lookup_name.name ();
14214
14215 if (user_name[0] == '<')
14216 {
14217 if (user_name.back () == '>')
14218 m_encoded_name = user_name.substr (1, user_name.size () - 2);
14219 else
14220 m_encoded_name = user_name.substr (1, user_name.size () - 1);
14221 m_encoded_p = true;
14222 m_verbatim_p = true;
14223 m_wild_match_p = false;
14224 m_standard_p = false;
14225 }
14226 else
14227 {
14228 m_verbatim_p = false;
14229
14230 m_encoded_p = user_name.find ("__") != std::string::npos;
14231
14232 if (!m_encoded_p)
14233 {
14234 const char *folded = ada_fold_name (user_name.c_str ());
14235 const char *encoded = ada_encode_1 (folded, false);
14236 if (encoded != NULL)
14237 m_encoded_name = encoded;
14238 else
14239 m_encoded_name = user_name;
14240 }
14241 else
14242 m_encoded_name = user_name;
14243
14244 /* Handle the 'package Standard' special case. See description
14245 of m_standard_p. */
14246 if (startswith (m_encoded_name.c_str (), "standard__"))
14247 {
14248 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
14249 m_standard_p = true;
14250 }
14251 else
14252 m_standard_p = false;
14253
14254 /* If the name contains a ".", then the user is entering a fully
14255 qualified entity name, and the match must not be done in wild
14256 mode. Similarly, if the user wants to complete what looks
14257 like an encoded name, the match must not be done in wild
14258 mode. Also, in the standard__ special case always do
14259 non-wild matching. */
14260 m_wild_match_p
14261 = (lookup_name.match_type () != symbol_name_match_type::FULL
14262 && !m_encoded_p
14263 && !m_standard_p
14264 && user_name.find ('.') == std::string::npos);
14265 }
14266 }
14267
14268 /* symbol_name_matcher_ftype method for Ada. This only handles
14269 completion mode. */
14270
14271 static bool
14272 ada_symbol_name_matches (const char *symbol_search_name,
14273 const lookup_name_info &lookup_name,
14274 completion_match_result *comp_match_res)
14275 {
14276 return lookup_name.ada ().matches (symbol_search_name,
14277 lookup_name.match_type (),
14278 comp_match_res);
14279 }
14280
14281 /* A name matcher that matches the symbol name exactly, with
14282 strcmp. */
14283
14284 static bool
14285 literal_symbol_name_matcher (const char *symbol_search_name,
14286 const lookup_name_info &lookup_name,
14287 completion_match_result *comp_match_res)
14288 {
14289 const std::string &name = lookup_name.name ();
14290
14291 int cmp = (lookup_name.completion_mode ()
14292 ? strncmp (symbol_search_name, name.c_str (), name.size ())
14293 : strcmp (symbol_search_name, name.c_str ()));
14294 if (cmp == 0)
14295 {
14296 if (comp_match_res != NULL)
14297 comp_match_res->set_match (symbol_search_name);
14298 return true;
14299 }
14300 else
14301 return false;
14302 }
14303
14304 /* Implement the "la_get_symbol_name_matcher" language_defn method for
14305 Ada. */
14306
14307 static symbol_name_matcher_ftype *
14308 ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
14309 {
14310 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
14311 return literal_symbol_name_matcher;
14312
14313 if (lookup_name.completion_mode ())
14314 return ada_symbol_name_matches;
14315 else
14316 {
14317 if (lookup_name.ada ().wild_match_p ())
14318 return do_wild_match;
14319 else
14320 return do_full_match;
14321 }
14322 }
14323
14324 /* Implement the "la_read_var_value" language_defn method for Ada. */
14325
14326 static struct value *
14327 ada_read_var_value (struct symbol *var, const struct block *var_block,
14328 struct frame_info *frame)
14329 {
14330 const struct block *frame_block = NULL;
14331 struct symbol *renaming_sym = NULL;
14332
14333 /* The only case where default_read_var_value is not sufficient
14334 is when VAR is a renaming... */
14335 if (frame)
14336 frame_block = get_frame_block (frame, NULL);
14337 if (frame_block)
14338 renaming_sym = ada_find_renaming_symbol (var, frame_block);
14339 if (renaming_sym != NULL)
14340 return ada_read_renaming_var_value (renaming_sym, frame_block);
14341
14342 /* This is a typical case where we expect the default_read_var_value
14343 function to work. */
14344 return default_read_var_value (var, var_block, frame);
14345 }
14346
14347 static const char *ada_extensions[] =
14348 {
14349 ".adb", ".ads", ".a", ".ada", ".dg", NULL
14350 };
14351
14352 extern const struct language_defn ada_language_defn = {
14353 "ada", /* Language name */
14354 "Ada",
14355 language_ada,
14356 range_check_off,
14357 case_sensitive_on, /* Yes, Ada is case-insensitive, but
14358 that's not quite what this means. */
14359 array_row_major,
14360 macro_expansion_no,
14361 ada_extensions,
14362 &ada_exp_descriptor,
14363 parse,
14364 resolve,
14365 ada_printchar, /* Print a character constant */
14366 ada_printstr, /* Function to print string constant */
14367 emit_char, /* Function to print single char (not used) */
14368 ada_print_type, /* Print a type using appropriate syntax */
14369 ada_print_typedef, /* Print a typedef using appropriate syntax */
14370 ada_val_print, /* Print a value using appropriate syntax */
14371 ada_value_print, /* Print a top-level value */
14372 ada_read_var_value, /* la_read_var_value */
14373 NULL, /* Language specific skip_trampoline */
14374 NULL, /* name_of_this */
14375 true, /* la_store_sym_names_in_linkage_form_p */
14376 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
14377 basic_lookup_transparent_type, /* lookup_transparent_type */
14378 ada_la_decode, /* Language specific symbol demangler */
14379 ada_sniff_from_mangled_name,
14380 NULL, /* Language specific
14381 class_name_from_physname */
14382 ada_op_print_tab, /* expression operators for printing */
14383 0, /* c-style arrays */
14384 1, /* String lower bound */
14385 ada_get_gdb_completer_word_break_characters,
14386 ada_collect_symbol_completion_matches,
14387 ada_language_arch_info,
14388 ada_print_array_index,
14389 default_pass_by_reference,
14390 c_get_string,
14391 c_watch_location_expression,
14392 ada_get_symbol_name_matcher, /* la_get_symbol_name_matcher */
14393 ada_iterate_over_symbols,
14394 default_search_name_hash,
14395 &ada_varobj_ops,
14396 NULL,
14397 NULL,
14398 LANG_MAGIC
14399 };
14400
14401 /* Command-list for the "set/show ada" prefix command. */
14402 static struct cmd_list_element *set_ada_list;
14403 static struct cmd_list_element *show_ada_list;
14404
14405 /* Implement the "set ada" prefix command. */
14406
14407 static void
14408 set_ada_command (const char *arg, int from_tty)
14409 {
14410 printf_unfiltered (_(\
14411 "\"set ada\" must be followed by the name of a setting.\n"));
14412 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
14413 }
14414
14415 /* Implement the "show ada" prefix command. */
14416
14417 static void
14418 show_ada_command (const char *args, int from_tty)
14419 {
14420 cmd_show_list (show_ada_list, from_tty, "");
14421 }
14422
14423 static void
14424 initialize_ada_catchpoint_ops (void)
14425 {
14426 struct breakpoint_ops *ops;
14427
14428 initialize_breakpoint_ops ();
14429
14430 ops = &catch_exception_breakpoint_ops;
14431 *ops = bkpt_breakpoint_ops;
14432 ops->allocate_location = allocate_location_catch_exception;
14433 ops->re_set = re_set_catch_exception;
14434 ops->check_status = check_status_catch_exception;
14435 ops->print_it = print_it_catch_exception;
14436 ops->print_one = print_one_catch_exception;
14437 ops->print_mention = print_mention_catch_exception;
14438 ops->print_recreate = print_recreate_catch_exception;
14439
14440 ops = &catch_exception_unhandled_breakpoint_ops;
14441 *ops = bkpt_breakpoint_ops;
14442 ops->allocate_location = allocate_location_catch_exception_unhandled;
14443 ops->re_set = re_set_catch_exception_unhandled;
14444 ops->check_status = check_status_catch_exception_unhandled;
14445 ops->print_it = print_it_catch_exception_unhandled;
14446 ops->print_one = print_one_catch_exception_unhandled;
14447 ops->print_mention = print_mention_catch_exception_unhandled;
14448 ops->print_recreate = print_recreate_catch_exception_unhandled;
14449
14450 ops = &catch_assert_breakpoint_ops;
14451 *ops = bkpt_breakpoint_ops;
14452 ops->allocate_location = allocate_location_catch_assert;
14453 ops->re_set = re_set_catch_assert;
14454 ops->check_status = check_status_catch_assert;
14455 ops->print_it = print_it_catch_assert;
14456 ops->print_one = print_one_catch_assert;
14457 ops->print_mention = print_mention_catch_assert;
14458 ops->print_recreate = print_recreate_catch_assert;
14459
14460 ops = &catch_handlers_breakpoint_ops;
14461 *ops = bkpt_breakpoint_ops;
14462 ops->allocate_location = allocate_location_catch_handlers;
14463 ops->re_set = re_set_catch_handlers;
14464 ops->check_status = check_status_catch_handlers;
14465 ops->print_it = print_it_catch_handlers;
14466 ops->print_one = print_one_catch_handlers;
14467 ops->print_mention = print_mention_catch_handlers;
14468 ops->print_recreate = print_recreate_catch_handlers;
14469 }
14470
14471 /* This module's 'new_objfile' observer. */
14472
14473 static void
14474 ada_new_objfile_observer (struct objfile *objfile)
14475 {
14476 ada_clear_symbol_cache ();
14477 }
14478
14479 /* This module's 'free_objfile' observer. */
14480
14481 static void
14482 ada_free_objfile_observer (struct objfile *objfile)
14483 {
14484 ada_clear_symbol_cache ();
14485 }
14486
14487 void
14488 _initialize_ada_language (void)
14489 {
14490 initialize_ada_catchpoint_ops ();
14491
14492 add_prefix_cmd ("ada", no_class, set_ada_command,
14493 _("Prefix command for changing Ada-specfic settings"),
14494 &set_ada_list, "set ada ", 0, &setlist);
14495
14496 add_prefix_cmd ("ada", no_class, show_ada_command,
14497 _("Generic command for showing Ada-specific settings."),
14498 &show_ada_list, "show ada ", 0, &showlist);
14499
14500 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14501 &trust_pad_over_xvs, _("\
14502 Enable or disable an optimization trusting PAD types over XVS types"), _("\
14503 Show whether an optimization trusting PAD types over XVS types is activated"),
14504 _("\
14505 This is related to the encoding used by the GNAT compiler. The debugger\n\
14506 should normally trust the contents of PAD types, but certain older versions\n\
14507 of GNAT have a bug that sometimes causes the information in the PAD type\n\
14508 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14509 work around this bug. It is always safe to turn this option \"off\", but\n\
14510 this incurs a slight performance penalty, so it is recommended to NOT change\n\
14511 this option to \"off\" unless necessary."),
14512 NULL, NULL, &set_ada_list, &show_ada_list);
14513
14514 add_setshow_boolean_cmd ("print-signatures", class_vars,
14515 &print_signatures, _("\
14516 Enable or disable the output of formal and return types for functions in the \
14517 overloads selection menu"), _("\
14518 Show whether the output of formal and return types for functions in the \
14519 overloads selection menu is activated"),
14520 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14521
14522 add_catch_command ("exception", _("\
14523 Catch Ada exceptions, when raised.\n\
14524 With an argument, catch only exceptions with the given name."),
14525 catch_ada_exception_command,
14526 NULL,
14527 CATCH_PERMANENT,
14528 CATCH_TEMPORARY);
14529
14530 add_catch_command ("handlers", _("\
14531 Catch Ada exceptions, when handled.\n\
14532 With an argument, catch only exceptions with the given name."),
14533 catch_ada_handlers_command,
14534 NULL,
14535 CATCH_PERMANENT,
14536 CATCH_TEMPORARY);
14537 add_catch_command ("assert", _("\
14538 Catch failed Ada assertions, when raised.\n\
14539 With an argument, catch only exceptions with the given name."),
14540 catch_assert_command,
14541 NULL,
14542 CATCH_PERMANENT,
14543 CATCH_TEMPORARY);
14544
14545 varsize_limit = 65536;
14546 add_setshow_uinteger_cmd ("varsize-limit", class_support,
14547 &varsize_limit, _("\
14548 Set the maximum number of bytes allowed in a variable-size object."), _("\
14549 Show the maximum number of bytes allowed in a variable-size object."), _("\
14550 Attempts to access an object whose size is not a compile-time constant\n\
14551 and exceeds this limit will cause an error."),
14552 NULL, NULL, &setlist, &showlist);
14553
14554 add_info ("exceptions", info_exceptions_command,
14555 _("\
14556 List all Ada exception names.\n\
14557 If a regular expression is passed as an argument, only those matching\n\
14558 the regular expression are listed."));
14559
14560 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14561 _("Set Ada maintenance-related variables."),
14562 &maint_set_ada_cmdlist, "maintenance set ada ",
14563 0/*allow-unknown*/, &maintenance_set_cmdlist);
14564
14565 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14566 _("Show Ada maintenance-related variables"),
14567 &maint_show_ada_cmdlist, "maintenance show ada ",
14568 0/*allow-unknown*/, &maintenance_show_cmdlist);
14569
14570 add_setshow_boolean_cmd
14571 ("ignore-descriptive-types", class_maintenance,
14572 &ada_ignore_descriptive_types_p,
14573 _("Set whether descriptive types generated by GNAT should be ignored."),
14574 _("Show whether descriptive types generated by GNAT should be ignored."),
14575 _("\
14576 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14577 DWARF attribute."),
14578 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14579
14580 decoded_names_store = htab_create_alloc (256, htab_hash_string, streq_hash,
14581 NULL, xcalloc, xfree);
14582
14583 /* The ada-lang observers. */
14584 gdb::observers::new_objfile.attach (ada_new_objfile_observer);
14585 gdb::observers::free_objfile.attach (ada_free_objfile_observer);
14586 gdb::observers::inferior_exit.attach (ada_inferior_exit);
14587
14588 /* Setup various context-specific data. */
14589 ada_inferior_data
14590 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
14591 ada_pspace_data_handle
14592 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
14593 }