(Ada) crash assigning to record component which is an array
[binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <ctype.h>
23 #include "demangle.h"
24 #include "gdb_regex.h"
25 #include "frame.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcmd.h"
29 #include "expression.h"
30 #include "parser-defs.h"
31 #include "language.h"
32 #include "varobj.h"
33 #include "c-lang.h"
34 #include "inferior.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "breakpoint.h"
38 #include "gdbcore.h"
39 #include "hashtab.h"
40 #include "gdb_obstack.h"
41 #include "ada-lang.h"
42 #include "completer.h"
43 #include <sys/stat.h>
44 #include "ui-out.h"
45 #include "block.h"
46 #include "infcall.h"
47 #include "dictionary.h"
48 #include "annotate.h"
49 #include "valprint.h"
50 #include "source.h"
51 #include "observer.h"
52 #include "vec.h"
53 #include "stack.h"
54 #include "gdb_vecs.h"
55 #include "typeprint.h"
56 #include "namespace.h"
57
58 #include "psymtab.h"
59 #include "value.h"
60 #include "mi/mi-common.h"
61 #include "arch-utils.h"
62 #include "cli/cli-utils.h"
63 #include "common/function-view.h"
64 #include "common/byte-vector.h"
65 #include <algorithm>
66
67 /* Define whether or not the C operator '/' truncates towards zero for
68 differently signed operands (truncation direction is undefined in C).
69 Copied from valarith.c. */
70
71 #ifndef TRUNCATION_TOWARDS_ZERO
72 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
73 #endif
74
75 static struct type *desc_base_type (struct type *);
76
77 static struct type *desc_bounds_type (struct type *);
78
79 static struct value *desc_bounds (struct value *);
80
81 static int fat_pntr_bounds_bitpos (struct type *);
82
83 static int fat_pntr_bounds_bitsize (struct type *);
84
85 static struct type *desc_data_target_type (struct type *);
86
87 static struct value *desc_data (struct value *);
88
89 static int fat_pntr_data_bitpos (struct type *);
90
91 static int fat_pntr_data_bitsize (struct type *);
92
93 static struct value *desc_one_bound (struct value *, int, int);
94
95 static int desc_bound_bitpos (struct type *, int, int);
96
97 static int desc_bound_bitsize (struct type *, int, int);
98
99 static struct type *desc_index_type (struct type *, int);
100
101 static int desc_arity (struct type *);
102
103 static int ada_type_match (struct type *, struct type *, int);
104
105 static int ada_args_match (struct symbol *, struct value **, int);
106
107 static struct value *make_array_descriptor (struct type *, struct value *);
108
109 static void ada_add_block_symbols (struct obstack *,
110 const struct block *,
111 const lookup_name_info &lookup_name,
112 domain_enum, struct objfile *);
113
114 static void ada_add_all_symbols (struct obstack *, const struct block *,
115 const lookup_name_info &lookup_name,
116 domain_enum, int, int *);
117
118 static int is_nonfunction (struct block_symbol *, int);
119
120 static void add_defn_to_vec (struct obstack *, struct symbol *,
121 const struct block *);
122
123 static int num_defns_collected (struct obstack *);
124
125 static struct block_symbol *defns_collected (struct obstack *, int);
126
127 static struct value *resolve_subexp (struct expression **, int *, int,
128 struct type *);
129
130 static void replace_operator_with_call (struct expression **, int, int, int,
131 struct symbol *, const struct block *);
132
133 static int possible_user_operator_p (enum exp_opcode, struct value **);
134
135 static const char *ada_op_name (enum exp_opcode);
136
137 static const char *ada_decoded_op_name (enum exp_opcode);
138
139 static int numeric_type_p (struct type *);
140
141 static int integer_type_p (struct type *);
142
143 static int scalar_type_p (struct type *);
144
145 static int discrete_type_p (struct type *);
146
147 static enum ada_renaming_category parse_old_style_renaming (struct type *,
148 const char **,
149 int *,
150 const char **);
151
152 static struct symbol *find_old_style_renaming_symbol (const char *,
153 const struct block *);
154
155 static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
156 int, int);
157
158 static struct value *evaluate_subexp_type (struct expression *, int *);
159
160 static struct type *ada_find_parallel_type_with_name (struct type *,
161 const char *);
162
163 static int is_dynamic_field (struct type *, int);
164
165 static struct type *to_fixed_variant_branch_type (struct type *,
166 const gdb_byte *,
167 CORE_ADDR, struct value *);
168
169 static struct type *to_fixed_array_type (struct type *, struct value *, int);
170
171 static struct type *to_fixed_range_type (struct type *, struct value *);
172
173 static struct type *to_static_fixed_type (struct type *);
174 static struct type *static_unwrap_type (struct type *type);
175
176 static struct value *unwrap_value (struct value *);
177
178 static struct type *constrained_packed_array_type (struct type *, long *);
179
180 static struct type *decode_constrained_packed_array_type (struct type *);
181
182 static long decode_packed_array_bitsize (struct type *);
183
184 static struct value *decode_constrained_packed_array (struct value *);
185
186 static int ada_is_packed_array_type (struct type *);
187
188 static int ada_is_unconstrained_packed_array_type (struct type *);
189
190 static struct value *value_subscript_packed (struct value *, int,
191 struct value **);
192
193 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
194
195 static struct value *coerce_unspec_val_to_type (struct value *,
196 struct type *);
197
198 static int lesseq_defined_than (struct symbol *, struct symbol *);
199
200 static int equiv_types (struct type *, struct type *);
201
202 static int is_name_suffix (const char *);
203
204 static int advance_wild_match (const char **, const char *, int);
205
206 static bool wild_match (const char *name, const char *patn);
207
208 static struct value *ada_coerce_ref (struct value *);
209
210 static LONGEST pos_atr (struct value *);
211
212 static struct value *value_pos_atr (struct type *, struct value *);
213
214 static struct value *value_val_atr (struct type *, struct value *);
215
216 static struct symbol *standard_lookup (const char *, const struct block *,
217 domain_enum);
218
219 static struct value *ada_search_struct_field (const char *, struct value *, int,
220 struct type *);
221
222 static struct value *ada_value_primitive_field (struct value *, int, int,
223 struct type *);
224
225 static int find_struct_field (const char *, struct type *, int,
226 struct type **, int *, int *, int *, int *);
227
228 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
229 struct value *);
230
231 static int ada_resolve_function (struct block_symbol *, int,
232 struct value **, int, const char *,
233 struct type *);
234
235 static int ada_is_direct_array_type (struct type *);
236
237 static void ada_language_arch_info (struct gdbarch *,
238 struct language_arch_info *);
239
240 static struct value *ada_index_struct_field (int, struct value *, int,
241 struct type *);
242
243 static struct value *assign_aggregate (struct value *, struct value *,
244 struct expression *,
245 int *, enum noside);
246
247 static void aggregate_assign_from_choices (struct value *, struct value *,
248 struct expression *,
249 int *, LONGEST *, int *,
250 int, LONGEST, LONGEST);
251
252 static void aggregate_assign_positional (struct value *, struct value *,
253 struct expression *,
254 int *, LONGEST *, int *, int,
255 LONGEST, LONGEST);
256
257
258 static void aggregate_assign_others (struct value *, struct value *,
259 struct expression *,
260 int *, LONGEST *, int, LONGEST, LONGEST);
261
262
263 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
264
265
266 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
267 int *, enum noside);
268
269 static void ada_forward_operator_length (struct expression *, int, int *,
270 int *);
271
272 static struct type *ada_find_any_type (const char *name);
273
274 static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
275 (const lookup_name_info &lookup_name);
276
277 \f
278
279 /* The result of a symbol lookup to be stored in our symbol cache. */
280
281 struct cache_entry
282 {
283 /* The name used to perform the lookup. */
284 const char *name;
285 /* The namespace used during the lookup. */
286 domain_enum domain;
287 /* The symbol returned by the lookup, or NULL if no matching symbol
288 was found. */
289 struct symbol *sym;
290 /* The block where the symbol was found, or NULL if no matching
291 symbol was found. */
292 const struct block *block;
293 /* A pointer to the next entry with the same hash. */
294 struct cache_entry *next;
295 };
296
297 /* The Ada symbol cache, used to store the result of Ada-mode symbol
298 lookups in the course of executing the user's commands.
299
300 The cache is implemented using a simple, fixed-sized hash.
301 The size is fixed on the grounds that there are not likely to be
302 all that many symbols looked up during any given session, regardless
303 of the size of the symbol table. If we decide to go to a resizable
304 table, let's just use the stuff from libiberty instead. */
305
306 #define HASH_SIZE 1009
307
308 struct ada_symbol_cache
309 {
310 /* An obstack used to store the entries in our cache. */
311 struct obstack cache_space;
312
313 /* The root of the hash table used to implement our symbol cache. */
314 struct cache_entry *root[HASH_SIZE];
315 };
316
317 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
318
319 /* Maximum-sized dynamic type. */
320 static unsigned int varsize_limit;
321
322 static const char ada_completer_word_break_characters[] =
323 #ifdef VMS
324 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
325 #else
326 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
327 #endif
328
329 /* The name of the symbol to use to get the name of the main subprogram. */
330 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
331 = "__gnat_ada_main_program_name";
332
333 /* Limit on the number of warnings to raise per expression evaluation. */
334 static int warning_limit = 2;
335
336 /* Number of warning messages issued; reset to 0 by cleanups after
337 expression evaluation. */
338 static int warnings_issued = 0;
339
340 static const char *known_runtime_file_name_patterns[] = {
341 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
342 };
343
344 static const char *known_auxiliary_function_name_patterns[] = {
345 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
346 };
347
348 /* Maintenance-related settings for this module. */
349
350 static struct cmd_list_element *maint_set_ada_cmdlist;
351 static struct cmd_list_element *maint_show_ada_cmdlist;
352
353 /* Implement the "maintenance set ada" (prefix) command. */
354
355 static void
356 maint_set_ada_cmd (const char *args, int from_tty)
357 {
358 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
359 gdb_stdout);
360 }
361
362 /* Implement the "maintenance show ada" (prefix) command. */
363
364 static void
365 maint_show_ada_cmd (const char *args, int from_tty)
366 {
367 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
368 }
369
370 /* The "maintenance ada set/show ignore-descriptive-type" value. */
371
372 static int ada_ignore_descriptive_types_p = 0;
373
374 /* Inferior-specific data. */
375
376 /* Per-inferior data for this module. */
377
378 struct ada_inferior_data
379 {
380 /* The ada__tags__type_specific_data type, which is used when decoding
381 tagged types. With older versions of GNAT, this type was directly
382 accessible through a component ("tsd") in the object tag. But this
383 is no longer the case, so we cache it for each inferior. */
384 struct type *tsd_type;
385
386 /* The exception_support_info data. This data is used to determine
387 how to implement support for Ada exception catchpoints in a given
388 inferior. */
389 const struct exception_support_info *exception_info;
390 };
391
392 /* Our key to this module's inferior data. */
393 static const struct inferior_data *ada_inferior_data;
394
395 /* A cleanup routine for our inferior data. */
396 static void
397 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
398 {
399 struct ada_inferior_data *data;
400
401 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
402 if (data != NULL)
403 xfree (data);
404 }
405
406 /* Return our inferior data for the given inferior (INF).
407
408 This function always returns a valid pointer to an allocated
409 ada_inferior_data structure. If INF's inferior data has not
410 been previously set, this functions creates a new one with all
411 fields set to zero, sets INF's inferior to it, and then returns
412 a pointer to that newly allocated ada_inferior_data. */
413
414 static struct ada_inferior_data *
415 get_ada_inferior_data (struct inferior *inf)
416 {
417 struct ada_inferior_data *data;
418
419 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
420 if (data == NULL)
421 {
422 data = XCNEW (struct ada_inferior_data);
423 set_inferior_data (inf, ada_inferior_data, data);
424 }
425
426 return data;
427 }
428
429 /* Perform all necessary cleanups regarding our module's inferior data
430 that is required after the inferior INF just exited. */
431
432 static void
433 ada_inferior_exit (struct inferior *inf)
434 {
435 ada_inferior_data_cleanup (inf, NULL);
436 set_inferior_data (inf, ada_inferior_data, NULL);
437 }
438
439
440 /* program-space-specific data. */
441
442 /* This module's per-program-space data. */
443 struct ada_pspace_data
444 {
445 /* The Ada symbol cache. */
446 struct ada_symbol_cache *sym_cache;
447 };
448
449 /* Key to our per-program-space data. */
450 static const struct program_space_data *ada_pspace_data_handle;
451
452 /* Return this module's data for the given program space (PSPACE).
453 If not is found, add a zero'ed one now.
454
455 This function always returns a valid object. */
456
457 static struct ada_pspace_data *
458 get_ada_pspace_data (struct program_space *pspace)
459 {
460 struct ada_pspace_data *data;
461
462 data = ((struct ada_pspace_data *)
463 program_space_data (pspace, ada_pspace_data_handle));
464 if (data == NULL)
465 {
466 data = XCNEW (struct ada_pspace_data);
467 set_program_space_data (pspace, ada_pspace_data_handle, data);
468 }
469
470 return data;
471 }
472
473 /* The cleanup callback for this module's per-program-space data. */
474
475 static void
476 ada_pspace_data_cleanup (struct program_space *pspace, void *data)
477 {
478 struct ada_pspace_data *pspace_data = (struct ada_pspace_data *) data;
479
480 if (pspace_data->sym_cache != NULL)
481 ada_free_symbol_cache (pspace_data->sym_cache);
482 xfree (pspace_data);
483 }
484
485 /* Utilities */
486
487 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
488 all typedef layers have been peeled. Otherwise, return TYPE.
489
490 Normally, we really expect a typedef type to only have 1 typedef layer.
491 In other words, we really expect the target type of a typedef type to be
492 a non-typedef type. This is particularly true for Ada units, because
493 the language does not have a typedef vs not-typedef distinction.
494 In that respect, the Ada compiler has been trying to eliminate as many
495 typedef definitions in the debugging information, since they generally
496 do not bring any extra information (we still use typedef under certain
497 circumstances related mostly to the GNAT encoding).
498
499 Unfortunately, we have seen situations where the debugging information
500 generated by the compiler leads to such multiple typedef layers. For
501 instance, consider the following example with stabs:
502
503 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
504 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
505
506 This is an error in the debugging information which causes type
507 pck__float_array___XUP to be defined twice, and the second time,
508 it is defined as a typedef of a typedef.
509
510 This is on the fringe of legality as far as debugging information is
511 concerned, and certainly unexpected. But it is easy to handle these
512 situations correctly, so we can afford to be lenient in this case. */
513
514 static struct type *
515 ada_typedef_target_type (struct type *type)
516 {
517 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
518 type = TYPE_TARGET_TYPE (type);
519 return type;
520 }
521
522 /* Given DECODED_NAME a string holding a symbol name in its
523 decoded form (ie using the Ada dotted notation), returns
524 its unqualified name. */
525
526 static const char *
527 ada_unqualified_name (const char *decoded_name)
528 {
529 const char *result;
530
531 /* If the decoded name starts with '<', it means that the encoded
532 name does not follow standard naming conventions, and thus that
533 it is not your typical Ada symbol name. Trying to unqualify it
534 is therefore pointless and possibly erroneous. */
535 if (decoded_name[0] == '<')
536 return decoded_name;
537
538 result = strrchr (decoded_name, '.');
539 if (result != NULL)
540 result++; /* Skip the dot... */
541 else
542 result = decoded_name;
543
544 return result;
545 }
546
547 /* Return a string starting with '<', followed by STR, and '>'.
548 The result is good until the next call. */
549
550 static char *
551 add_angle_brackets (const char *str)
552 {
553 static char *result = NULL;
554
555 xfree (result);
556 result = xstrprintf ("<%s>", str);
557 return result;
558 }
559
560 static const char *
561 ada_get_gdb_completer_word_break_characters (void)
562 {
563 return ada_completer_word_break_characters;
564 }
565
566 /* Print an array element index using the Ada syntax. */
567
568 static void
569 ada_print_array_index (struct value *index_value, struct ui_file *stream,
570 const struct value_print_options *options)
571 {
572 LA_VALUE_PRINT (index_value, stream, options);
573 fprintf_filtered (stream, " => ");
574 }
575
576 /* Assuming VECT points to an array of *SIZE objects of size
577 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
578 updating *SIZE as necessary and returning the (new) array. */
579
580 void *
581 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
582 {
583 if (*size < min_size)
584 {
585 *size *= 2;
586 if (*size < min_size)
587 *size = min_size;
588 vect = xrealloc (vect, *size * element_size);
589 }
590 return vect;
591 }
592
593 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
594 suffix of FIELD_NAME beginning "___". */
595
596 static int
597 field_name_match (const char *field_name, const char *target)
598 {
599 int len = strlen (target);
600
601 return
602 (strncmp (field_name, target, len) == 0
603 && (field_name[len] == '\0'
604 || (startswith (field_name + len, "___")
605 && strcmp (field_name + strlen (field_name) - 6,
606 "___XVN") != 0)));
607 }
608
609
610 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
611 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
612 and return its index. This function also handles fields whose name
613 have ___ suffixes because the compiler sometimes alters their name
614 by adding such a suffix to represent fields with certain constraints.
615 If the field could not be found, return a negative number if
616 MAYBE_MISSING is set. Otherwise raise an error. */
617
618 int
619 ada_get_field_index (const struct type *type, const char *field_name,
620 int maybe_missing)
621 {
622 int fieldno;
623 struct type *struct_type = check_typedef ((struct type *) type);
624
625 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
626 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
627 return fieldno;
628
629 if (!maybe_missing)
630 error (_("Unable to find field %s in struct %s. Aborting"),
631 field_name, TYPE_NAME (struct_type));
632
633 return -1;
634 }
635
636 /* The length of the prefix of NAME prior to any "___" suffix. */
637
638 int
639 ada_name_prefix_len (const char *name)
640 {
641 if (name == NULL)
642 return 0;
643 else
644 {
645 const char *p = strstr (name, "___");
646
647 if (p == NULL)
648 return strlen (name);
649 else
650 return p - name;
651 }
652 }
653
654 /* Return non-zero if SUFFIX is a suffix of STR.
655 Return zero if STR is null. */
656
657 static int
658 is_suffix (const char *str, const char *suffix)
659 {
660 int len1, len2;
661
662 if (str == NULL)
663 return 0;
664 len1 = strlen (str);
665 len2 = strlen (suffix);
666 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
667 }
668
669 /* The contents of value VAL, treated as a value of type TYPE. The
670 result is an lval in memory if VAL is. */
671
672 static struct value *
673 coerce_unspec_val_to_type (struct value *val, struct type *type)
674 {
675 type = ada_check_typedef (type);
676 if (value_type (val) == type)
677 return val;
678 else
679 {
680 struct value *result;
681
682 /* Make sure that the object size is not unreasonable before
683 trying to allocate some memory for it. */
684 ada_ensure_varsize_limit (type);
685
686 if (value_lazy (val)
687 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
688 result = allocate_value_lazy (type);
689 else
690 {
691 result = allocate_value (type);
692 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
693 }
694 set_value_component_location (result, val);
695 set_value_bitsize (result, value_bitsize (val));
696 set_value_bitpos (result, value_bitpos (val));
697 set_value_address (result, value_address (val));
698 return result;
699 }
700 }
701
702 static const gdb_byte *
703 cond_offset_host (const gdb_byte *valaddr, long offset)
704 {
705 if (valaddr == NULL)
706 return NULL;
707 else
708 return valaddr + offset;
709 }
710
711 static CORE_ADDR
712 cond_offset_target (CORE_ADDR address, long offset)
713 {
714 if (address == 0)
715 return 0;
716 else
717 return address + offset;
718 }
719
720 /* Issue a warning (as for the definition of warning in utils.c, but
721 with exactly one argument rather than ...), unless the limit on the
722 number of warnings has passed during the evaluation of the current
723 expression. */
724
725 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
726 provided by "complaint". */
727 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
728
729 static void
730 lim_warning (const char *format, ...)
731 {
732 va_list args;
733
734 va_start (args, format);
735 warnings_issued += 1;
736 if (warnings_issued <= warning_limit)
737 vwarning (format, args);
738
739 va_end (args);
740 }
741
742 /* Issue an error if the size of an object of type T is unreasonable,
743 i.e. if it would be a bad idea to allocate a value of this type in
744 GDB. */
745
746 void
747 ada_ensure_varsize_limit (const struct type *type)
748 {
749 if (TYPE_LENGTH (type) > varsize_limit)
750 error (_("object size is larger than varsize-limit"));
751 }
752
753 /* Maximum value of a SIZE-byte signed integer type. */
754 static LONGEST
755 max_of_size (int size)
756 {
757 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
758
759 return top_bit | (top_bit - 1);
760 }
761
762 /* Minimum value of a SIZE-byte signed integer type. */
763 static LONGEST
764 min_of_size (int size)
765 {
766 return -max_of_size (size) - 1;
767 }
768
769 /* Maximum value of a SIZE-byte unsigned integer type. */
770 static ULONGEST
771 umax_of_size (int size)
772 {
773 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
774
775 return top_bit | (top_bit - 1);
776 }
777
778 /* Maximum value of integral type T, as a signed quantity. */
779 static LONGEST
780 max_of_type (struct type *t)
781 {
782 if (TYPE_UNSIGNED (t))
783 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
784 else
785 return max_of_size (TYPE_LENGTH (t));
786 }
787
788 /* Minimum value of integral type T, as a signed quantity. */
789 static LONGEST
790 min_of_type (struct type *t)
791 {
792 if (TYPE_UNSIGNED (t))
793 return 0;
794 else
795 return min_of_size (TYPE_LENGTH (t));
796 }
797
798 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
799 LONGEST
800 ada_discrete_type_high_bound (struct type *type)
801 {
802 type = resolve_dynamic_type (type, NULL, 0);
803 switch (TYPE_CODE (type))
804 {
805 case TYPE_CODE_RANGE:
806 return TYPE_HIGH_BOUND (type);
807 case TYPE_CODE_ENUM:
808 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
809 case TYPE_CODE_BOOL:
810 return 1;
811 case TYPE_CODE_CHAR:
812 case TYPE_CODE_INT:
813 return max_of_type (type);
814 default:
815 error (_("Unexpected type in ada_discrete_type_high_bound."));
816 }
817 }
818
819 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
820 LONGEST
821 ada_discrete_type_low_bound (struct type *type)
822 {
823 type = resolve_dynamic_type (type, NULL, 0);
824 switch (TYPE_CODE (type))
825 {
826 case TYPE_CODE_RANGE:
827 return TYPE_LOW_BOUND (type);
828 case TYPE_CODE_ENUM:
829 return TYPE_FIELD_ENUMVAL (type, 0);
830 case TYPE_CODE_BOOL:
831 return 0;
832 case TYPE_CODE_CHAR:
833 case TYPE_CODE_INT:
834 return min_of_type (type);
835 default:
836 error (_("Unexpected type in ada_discrete_type_low_bound."));
837 }
838 }
839
840 /* The identity on non-range types. For range types, the underlying
841 non-range scalar type. */
842
843 static struct type *
844 get_base_type (struct type *type)
845 {
846 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
847 {
848 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
849 return type;
850 type = TYPE_TARGET_TYPE (type);
851 }
852 return type;
853 }
854
855 /* Return a decoded version of the given VALUE. This means returning
856 a value whose type is obtained by applying all the GNAT-specific
857 encondings, making the resulting type a static but standard description
858 of the initial type. */
859
860 struct value *
861 ada_get_decoded_value (struct value *value)
862 {
863 struct type *type = ada_check_typedef (value_type (value));
864
865 if (ada_is_array_descriptor_type (type)
866 || (ada_is_constrained_packed_array_type (type)
867 && TYPE_CODE (type) != TYPE_CODE_PTR))
868 {
869 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
870 value = ada_coerce_to_simple_array_ptr (value);
871 else
872 value = ada_coerce_to_simple_array (value);
873 }
874 else
875 value = ada_to_fixed_value (value);
876
877 return value;
878 }
879
880 /* Same as ada_get_decoded_value, but with the given TYPE.
881 Because there is no associated actual value for this type,
882 the resulting type might be a best-effort approximation in
883 the case of dynamic types. */
884
885 struct type *
886 ada_get_decoded_type (struct type *type)
887 {
888 type = to_static_fixed_type (type);
889 if (ada_is_constrained_packed_array_type (type))
890 type = ada_coerce_to_simple_array_type (type);
891 return type;
892 }
893
894 \f
895
896 /* Language Selection */
897
898 /* If the main program is in Ada, return language_ada, otherwise return LANG
899 (the main program is in Ada iif the adainit symbol is found). */
900
901 enum language
902 ada_update_initial_language (enum language lang)
903 {
904 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
905 (struct objfile *) NULL).minsym != NULL)
906 return language_ada;
907
908 return lang;
909 }
910
911 /* If the main procedure is written in Ada, then return its name.
912 The result is good until the next call. Return NULL if the main
913 procedure doesn't appear to be in Ada. */
914
915 char *
916 ada_main_name (void)
917 {
918 struct bound_minimal_symbol msym;
919 static char *main_program_name = NULL;
920
921 /* For Ada, the name of the main procedure is stored in a specific
922 string constant, generated by the binder. Look for that symbol,
923 extract its address, and then read that string. If we didn't find
924 that string, then most probably the main procedure is not written
925 in Ada. */
926 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
927
928 if (msym.minsym != NULL)
929 {
930 CORE_ADDR main_program_name_addr;
931 int err_code;
932
933 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
934 if (main_program_name_addr == 0)
935 error (_("Invalid address for Ada main program name."));
936
937 xfree (main_program_name);
938 target_read_string (main_program_name_addr, &main_program_name,
939 1024, &err_code);
940
941 if (err_code != 0)
942 return NULL;
943 return main_program_name;
944 }
945
946 /* The main procedure doesn't seem to be in Ada. */
947 return NULL;
948 }
949 \f
950 /* Symbols */
951
952 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
953 of NULLs. */
954
955 const struct ada_opname_map ada_opname_table[] = {
956 {"Oadd", "\"+\"", BINOP_ADD},
957 {"Osubtract", "\"-\"", BINOP_SUB},
958 {"Omultiply", "\"*\"", BINOP_MUL},
959 {"Odivide", "\"/\"", BINOP_DIV},
960 {"Omod", "\"mod\"", BINOP_MOD},
961 {"Orem", "\"rem\"", BINOP_REM},
962 {"Oexpon", "\"**\"", BINOP_EXP},
963 {"Olt", "\"<\"", BINOP_LESS},
964 {"Ole", "\"<=\"", BINOP_LEQ},
965 {"Ogt", "\">\"", BINOP_GTR},
966 {"Oge", "\">=\"", BINOP_GEQ},
967 {"Oeq", "\"=\"", BINOP_EQUAL},
968 {"One", "\"/=\"", BINOP_NOTEQUAL},
969 {"Oand", "\"and\"", BINOP_BITWISE_AND},
970 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
971 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
972 {"Oconcat", "\"&\"", BINOP_CONCAT},
973 {"Oabs", "\"abs\"", UNOP_ABS},
974 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
975 {"Oadd", "\"+\"", UNOP_PLUS},
976 {"Osubtract", "\"-\"", UNOP_NEG},
977 {NULL, NULL}
978 };
979
980 /* The "encoded" form of DECODED, according to GNAT conventions. The
981 result is valid until the next call to ada_encode. If
982 THROW_ERRORS, throw an error if invalid operator name is found.
983 Otherwise, return NULL in that case. */
984
985 static char *
986 ada_encode_1 (const char *decoded, bool throw_errors)
987 {
988 static char *encoding_buffer = NULL;
989 static size_t encoding_buffer_size = 0;
990 const char *p;
991 int k;
992
993 if (decoded == NULL)
994 return NULL;
995
996 GROW_VECT (encoding_buffer, encoding_buffer_size,
997 2 * strlen (decoded) + 10);
998
999 k = 0;
1000 for (p = decoded; *p != '\0'; p += 1)
1001 {
1002 if (*p == '.')
1003 {
1004 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
1005 k += 2;
1006 }
1007 else if (*p == '"')
1008 {
1009 const struct ada_opname_map *mapping;
1010
1011 for (mapping = ada_opname_table;
1012 mapping->encoded != NULL
1013 && !startswith (p, mapping->decoded); mapping += 1)
1014 ;
1015 if (mapping->encoded == NULL)
1016 {
1017 if (throw_errors)
1018 error (_("invalid Ada operator name: %s"), p);
1019 else
1020 return NULL;
1021 }
1022 strcpy (encoding_buffer + k, mapping->encoded);
1023 k += strlen (mapping->encoded);
1024 break;
1025 }
1026 else
1027 {
1028 encoding_buffer[k] = *p;
1029 k += 1;
1030 }
1031 }
1032
1033 encoding_buffer[k] = '\0';
1034 return encoding_buffer;
1035 }
1036
1037 /* The "encoded" form of DECODED, according to GNAT conventions.
1038 The result is valid until the next call to ada_encode. */
1039
1040 char *
1041 ada_encode (const char *decoded)
1042 {
1043 return ada_encode_1 (decoded, true);
1044 }
1045
1046 /* Return NAME folded to lower case, or, if surrounded by single
1047 quotes, unfolded, but with the quotes stripped away. Result good
1048 to next call. */
1049
1050 char *
1051 ada_fold_name (const char *name)
1052 {
1053 static char *fold_buffer = NULL;
1054 static size_t fold_buffer_size = 0;
1055
1056 int len = strlen (name);
1057 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
1058
1059 if (name[0] == '\'')
1060 {
1061 strncpy (fold_buffer, name + 1, len - 2);
1062 fold_buffer[len - 2] = '\000';
1063 }
1064 else
1065 {
1066 int i;
1067
1068 for (i = 0; i <= len; i += 1)
1069 fold_buffer[i] = tolower (name[i]);
1070 }
1071
1072 return fold_buffer;
1073 }
1074
1075 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1076
1077 static int
1078 is_lower_alphanum (const char c)
1079 {
1080 return (isdigit (c) || (isalpha (c) && islower (c)));
1081 }
1082
1083 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1084 This function saves in LEN the length of that same symbol name but
1085 without either of these suffixes:
1086 . .{DIGIT}+
1087 . ${DIGIT}+
1088 . ___{DIGIT}+
1089 . __{DIGIT}+.
1090
1091 These are suffixes introduced by the compiler for entities such as
1092 nested subprogram for instance, in order to avoid name clashes.
1093 They do not serve any purpose for the debugger. */
1094
1095 static void
1096 ada_remove_trailing_digits (const char *encoded, int *len)
1097 {
1098 if (*len > 1 && isdigit (encoded[*len - 1]))
1099 {
1100 int i = *len - 2;
1101
1102 while (i > 0 && isdigit (encoded[i]))
1103 i--;
1104 if (i >= 0 && encoded[i] == '.')
1105 *len = i;
1106 else if (i >= 0 && encoded[i] == '$')
1107 *len = i;
1108 else if (i >= 2 && startswith (encoded + i - 2, "___"))
1109 *len = i - 2;
1110 else if (i >= 1 && startswith (encoded + i - 1, "__"))
1111 *len = i - 1;
1112 }
1113 }
1114
1115 /* Remove the suffix introduced by the compiler for protected object
1116 subprograms. */
1117
1118 static void
1119 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1120 {
1121 /* Remove trailing N. */
1122
1123 /* Protected entry subprograms are broken into two
1124 separate subprograms: The first one is unprotected, and has
1125 a 'N' suffix; the second is the protected version, and has
1126 the 'P' suffix. The second calls the first one after handling
1127 the protection. Since the P subprograms are internally generated,
1128 we leave these names undecoded, giving the user a clue that this
1129 entity is internal. */
1130
1131 if (*len > 1
1132 && encoded[*len - 1] == 'N'
1133 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1134 *len = *len - 1;
1135 }
1136
1137 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1138
1139 static void
1140 ada_remove_Xbn_suffix (const char *encoded, int *len)
1141 {
1142 int i = *len - 1;
1143
1144 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1145 i--;
1146
1147 if (encoded[i] != 'X')
1148 return;
1149
1150 if (i == 0)
1151 return;
1152
1153 if (isalnum (encoded[i-1]))
1154 *len = i;
1155 }
1156
1157 /* If ENCODED follows the GNAT entity encoding conventions, then return
1158 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1159 replaced by ENCODED.
1160
1161 The resulting string is valid until the next call of ada_decode.
1162 If the string is unchanged by decoding, the original string pointer
1163 is returned. */
1164
1165 const char *
1166 ada_decode (const char *encoded)
1167 {
1168 int i, j;
1169 int len0;
1170 const char *p;
1171 char *decoded;
1172 int at_start_name;
1173 static char *decoding_buffer = NULL;
1174 static size_t decoding_buffer_size = 0;
1175
1176 /* The name of the Ada main procedure starts with "_ada_".
1177 This prefix is not part of the decoded name, so skip this part
1178 if we see this prefix. */
1179 if (startswith (encoded, "_ada_"))
1180 encoded += 5;
1181
1182 /* If the name starts with '_', then it is not a properly encoded
1183 name, so do not attempt to decode it. Similarly, if the name
1184 starts with '<', the name should not be decoded. */
1185 if (encoded[0] == '_' || encoded[0] == '<')
1186 goto Suppress;
1187
1188 len0 = strlen (encoded);
1189
1190 ada_remove_trailing_digits (encoded, &len0);
1191 ada_remove_po_subprogram_suffix (encoded, &len0);
1192
1193 /* Remove the ___X.* suffix if present. Do not forget to verify that
1194 the suffix is located before the current "end" of ENCODED. We want
1195 to avoid re-matching parts of ENCODED that have previously been
1196 marked as discarded (by decrementing LEN0). */
1197 p = strstr (encoded, "___");
1198 if (p != NULL && p - encoded < len0 - 3)
1199 {
1200 if (p[3] == 'X')
1201 len0 = p - encoded;
1202 else
1203 goto Suppress;
1204 }
1205
1206 /* Remove any trailing TKB suffix. It tells us that this symbol
1207 is for the body of a task, but that information does not actually
1208 appear in the decoded name. */
1209
1210 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1211 len0 -= 3;
1212
1213 /* Remove any trailing TB suffix. The TB suffix is slightly different
1214 from the TKB suffix because it is used for non-anonymous task
1215 bodies. */
1216
1217 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1218 len0 -= 2;
1219
1220 /* Remove trailing "B" suffixes. */
1221 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1222
1223 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1224 len0 -= 1;
1225
1226 /* Make decoded big enough for possible expansion by operator name. */
1227
1228 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1229 decoded = decoding_buffer;
1230
1231 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1232
1233 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1234 {
1235 i = len0 - 2;
1236 while ((i >= 0 && isdigit (encoded[i]))
1237 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1238 i -= 1;
1239 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1240 len0 = i - 1;
1241 else if (encoded[i] == '$')
1242 len0 = i;
1243 }
1244
1245 /* The first few characters that are not alphabetic are not part
1246 of any encoding we use, so we can copy them over verbatim. */
1247
1248 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1249 decoded[j] = encoded[i];
1250
1251 at_start_name = 1;
1252 while (i < len0)
1253 {
1254 /* Is this a symbol function? */
1255 if (at_start_name && encoded[i] == 'O')
1256 {
1257 int k;
1258
1259 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1260 {
1261 int op_len = strlen (ada_opname_table[k].encoded);
1262 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1263 op_len - 1) == 0)
1264 && !isalnum (encoded[i + op_len]))
1265 {
1266 strcpy (decoded + j, ada_opname_table[k].decoded);
1267 at_start_name = 0;
1268 i += op_len;
1269 j += strlen (ada_opname_table[k].decoded);
1270 break;
1271 }
1272 }
1273 if (ada_opname_table[k].encoded != NULL)
1274 continue;
1275 }
1276 at_start_name = 0;
1277
1278 /* Replace "TK__" with "__", which will eventually be translated
1279 into "." (just below). */
1280
1281 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1282 i += 2;
1283
1284 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1285 be translated into "." (just below). These are internal names
1286 generated for anonymous blocks inside which our symbol is nested. */
1287
1288 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1289 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1290 && isdigit (encoded [i+4]))
1291 {
1292 int k = i + 5;
1293
1294 while (k < len0 && isdigit (encoded[k]))
1295 k++; /* Skip any extra digit. */
1296
1297 /* Double-check that the "__B_{DIGITS}+" sequence we found
1298 is indeed followed by "__". */
1299 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1300 i = k;
1301 }
1302
1303 /* Remove _E{DIGITS}+[sb] */
1304
1305 /* Just as for protected object subprograms, there are 2 categories
1306 of subprograms created by the compiler for each entry. The first
1307 one implements the actual entry code, and has a suffix following
1308 the convention above; the second one implements the barrier and
1309 uses the same convention as above, except that the 'E' is replaced
1310 by a 'B'.
1311
1312 Just as above, we do not decode the name of barrier functions
1313 to give the user a clue that the code he is debugging has been
1314 internally generated. */
1315
1316 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1317 && isdigit (encoded[i+2]))
1318 {
1319 int k = i + 3;
1320
1321 while (k < len0 && isdigit (encoded[k]))
1322 k++;
1323
1324 if (k < len0
1325 && (encoded[k] == 'b' || encoded[k] == 's'))
1326 {
1327 k++;
1328 /* Just as an extra precaution, make sure that if this
1329 suffix is followed by anything else, it is a '_'.
1330 Otherwise, we matched this sequence by accident. */
1331 if (k == len0
1332 || (k < len0 && encoded[k] == '_'))
1333 i = k;
1334 }
1335 }
1336
1337 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1338 the GNAT front-end in protected object subprograms. */
1339
1340 if (i < len0 + 3
1341 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1342 {
1343 /* Backtrack a bit up until we reach either the begining of
1344 the encoded name, or "__". Make sure that we only find
1345 digits or lowercase characters. */
1346 const char *ptr = encoded + i - 1;
1347
1348 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1349 ptr--;
1350 if (ptr < encoded
1351 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1352 i++;
1353 }
1354
1355 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1356 {
1357 /* This is a X[bn]* sequence not separated from the previous
1358 part of the name with a non-alpha-numeric character (in other
1359 words, immediately following an alpha-numeric character), then
1360 verify that it is placed at the end of the encoded name. If
1361 not, then the encoding is not valid and we should abort the
1362 decoding. Otherwise, just skip it, it is used in body-nested
1363 package names. */
1364 do
1365 i += 1;
1366 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1367 if (i < len0)
1368 goto Suppress;
1369 }
1370 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1371 {
1372 /* Replace '__' by '.'. */
1373 decoded[j] = '.';
1374 at_start_name = 1;
1375 i += 2;
1376 j += 1;
1377 }
1378 else
1379 {
1380 /* It's a character part of the decoded name, so just copy it
1381 over. */
1382 decoded[j] = encoded[i];
1383 i += 1;
1384 j += 1;
1385 }
1386 }
1387 decoded[j] = '\000';
1388
1389 /* Decoded names should never contain any uppercase character.
1390 Double-check this, and abort the decoding if we find one. */
1391
1392 for (i = 0; decoded[i] != '\0'; i += 1)
1393 if (isupper (decoded[i]) || decoded[i] == ' ')
1394 goto Suppress;
1395
1396 if (strcmp (decoded, encoded) == 0)
1397 return encoded;
1398 else
1399 return decoded;
1400
1401 Suppress:
1402 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1403 decoded = decoding_buffer;
1404 if (encoded[0] == '<')
1405 strcpy (decoded, encoded);
1406 else
1407 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1408 return decoded;
1409
1410 }
1411
1412 /* Table for keeping permanent unique copies of decoded names. Once
1413 allocated, names in this table are never released. While this is a
1414 storage leak, it should not be significant unless there are massive
1415 changes in the set of decoded names in successive versions of a
1416 symbol table loaded during a single session. */
1417 static struct htab *decoded_names_store;
1418
1419 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1420 in the language-specific part of GSYMBOL, if it has not been
1421 previously computed. Tries to save the decoded name in the same
1422 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1423 in any case, the decoded symbol has a lifetime at least that of
1424 GSYMBOL).
1425 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1426 const, but nevertheless modified to a semantically equivalent form
1427 when a decoded name is cached in it. */
1428
1429 const char *
1430 ada_decode_symbol (const struct general_symbol_info *arg)
1431 {
1432 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1433 const char **resultp =
1434 &gsymbol->language_specific.demangled_name;
1435
1436 if (!gsymbol->ada_mangled)
1437 {
1438 const char *decoded = ada_decode (gsymbol->name);
1439 struct obstack *obstack = gsymbol->language_specific.obstack;
1440
1441 gsymbol->ada_mangled = 1;
1442
1443 if (obstack != NULL)
1444 *resultp
1445 = (const char *) obstack_copy0 (obstack, decoded, strlen (decoded));
1446 else
1447 {
1448 /* Sometimes, we can't find a corresponding objfile, in
1449 which case, we put the result on the heap. Since we only
1450 decode when needed, we hope this usually does not cause a
1451 significant memory leak (FIXME). */
1452
1453 char **slot = (char **) htab_find_slot (decoded_names_store,
1454 decoded, INSERT);
1455
1456 if (*slot == NULL)
1457 *slot = xstrdup (decoded);
1458 *resultp = *slot;
1459 }
1460 }
1461
1462 return *resultp;
1463 }
1464
1465 static char *
1466 ada_la_decode (const char *encoded, int options)
1467 {
1468 return xstrdup (ada_decode (encoded));
1469 }
1470
1471 /* Implement la_sniff_from_mangled_name for Ada. */
1472
1473 static int
1474 ada_sniff_from_mangled_name (const char *mangled, char **out)
1475 {
1476 const char *demangled = ada_decode (mangled);
1477
1478 *out = NULL;
1479
1480 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
1481 {
1482 /* Set the gsymbol language to Ada, but still return 0.
1483 Two reasons for that:
1484
1485 1. For Ada, we prefer computing the symbol's decoded name
1486 on the fly rather than pre-compute it, in order to save
1487 memory (Ada projects are typically very large).
1488
1489 2. There are some areas in the definition of the GNAT
1490 encoding where, with a bit of bad luck, we might be able
1491 to decode a non-Ada symbol, generating an incorrect
1492 demangled name (Eg: names ending with "TB" for instance
1493 are identified as task bodies and so stripped from
1494 the decoded name returned).
1495
1496 Returning 1, here, but not setting *DEMANGLED, helps us get a
1497 little bit of the best of both worlds. Because we're last,
1498 we should not affect any of the other languages that were
1499 able to demangle the symbol before us; we get to correctly
1500 tag Ada symbols as such; and even if we incorrectly tagged a
1501 non-Ada symbol, which should be rare, any routing through the
1502 Ada language should be transparent (Ada tries to behave much
1503 like C/C++ with non-Ada symbols). */
1504 return 1;
1505 }
1506
1507 return 0;
1508 }
1509
1510 \f
1511
1512 /* Arrays */
1513
1514 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1515 generated by the GNAT compiler to describe the index type used
1516 for each dimension of an array, check whether it follows the latest
1517 known encoding. If not, fix it up to conform to the latest encoding.
1518 Otherwise, do nothing. This function also does nothing if
1519 INDEX_DESC_TYPE is NULL.
1520
1521 The GNAT encoding used to describle the array index type evolved a bit.
1522 Initially, the information would be provided through the name of each
1523 field of the structure type only, while the type of these fields was
1524 described as unspecified and irrelevant. The debugger was then expected
1525 to perform a global type lookup using the name of that field in order
1526 to get access to the full index type description. Because these global
1527 lookups can be very expensive, the encoding was later enhanced to make
1528 the global lookup unnecessary by defining the field type as being
1529 the full index type description.
1530
1531 The purpose of this routine is to allow us to support older versions
1532 of the compiler by detecting the use of the older encoding, and by
1533 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1534 we essentially replace each field's meaningless type by the associated
1535 index subtype). */
1536
1537 void
1538 ada_fixup_array_indexes_type (struct type *index_desc_type)
1539 {
1540 int i;
1541
1542 if (index_desc_type == NULL)
1543 return;
1544 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1545
1546 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1547 to check one field only, no need to check them all). If not, return
1548 now.
1549
1550 If our INDEX_DESC_TYPE was generated using the older encoding,
1551 the field type should be a meaningless integer type whose name
1552 is not equal to the field name. */
1553 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1554 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1555 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1556 return;
1557
1558 /* Fixup each field of INDEX_DESC_TYPE. */
1559 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1560 {
1561 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1562 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1563
1564 if (raw_type)
1565 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1566 }
1567 }
1568
1569 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1570
1571 static const char *bound_name[] = {
1572 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1573 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1574 };
1575
1576 /* Maximum number of array dimensions we are prepared to handle. */
1577
1578 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1579
1580
1581 /* The desc_* routines return primitive portions of array descriptors
1582 (fat pointers). */
1583
1584 /* The descriptor or array type, if any, indicated by TYPE; removes
1585 level of indirection, if needed. */
1586
1587 static struct type *
1588 desc_base_type (struct type *type)
1589 {
1590 if (type == NULL)
1591 return NULL;
1592 type = ada_check_typedef (type);
1593 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1594 type = ada_typedef_target_type (type);
1595
1596 if (type != NULL
1597 && (TYPE_CODE (type) == TYPE_CODE_PTR
1598 || TYPE_CODE (type) == TYPE_CODE_REF))
1599 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1600 else
1601 return type;
1602 }
1603
1604 /* True iff TYPE indicates a "thin" array pointer type. */
1605
1606 static int
1607 is_thin_pntr (struct type *type)
1608 {
1609 return
1610 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1611 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1612 }
1613
1614 /* The descriptor type for thin pointer type TYPE. */
1615
1616 static struct type *
1617 thin_descriptor_type (struct type *type)
1618 {
1619 struct type *base_type = desc_base_type (type);
1620
1621 if (base_type == NULL)
1622 return NULL;
1623 if (is_suffix (ada_type_name (base_type), "___XVE"))
1624 return base_type;
1625 else
1626 {
1627 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1628
1629 if (alt_type == NULL)
1630 return base_type;
1631 else
1632 return alt_type;
1633 }
1634 }
1635
1636 /* A pointer to the array data for thin-pointer value VAL. */
1637
1638 static struct value *
1639 thin_data_pntr (struct value *val)
1640 {
1641 struct type *type = ada_check_typedef (value_type (val));
1642 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1643
1644 data_type = lookup_pointer_type (data_type);
1645
1646 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1647 return value_cast (data_type, value_copy (val));
1648 else
1649 return value_from_longest (data_type, value_address (val));
1650 }
1651
1652 /* True iff TYPE indicates a "thick" array pointer type. */
1653
1654 static int
1655 is_thick_pntr (struct type *type)
1656 {
1657 type = desc_base_type (type);
1658 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1659 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1660 }
1661
1662 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1663 pointer to one, the type of its bounds data; otherwise, NULL. */
1664
1665 static struct type *
1666 desc_bounds_type (struct type *type)
1667 {
1668 struct type *r;
1669
1670 type = desc_base_type (type);
1671
1672 if (type == NULL)
1673 return NULL;
1674 else if (is_thin_pntr (type))
1675 {
1676 type = thin_descriptor_type (type);
1677 if (type == NULL)
1678 return NULL;
1679 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1680 if (r != NULL)
1681 return ada_check_typedef (r);
1682 }
1683 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1684 {
1685 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1686 if (r != NULL)
1687 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1688 }
1689 return NULL;
1690 }
1691
1692 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1693 one, a pointer to its bounds data. Otherwise NULL. */
1694
1695 static struct value *
1696 desc_bounds (struct value *arr)
1697 {
1698 struct type *type = ada_check_typedef (value_type (arr));
1699
1700 if (is_thin_pntr (type))
1701 {
1702 struct type *bounds_type =
1703 desc_bounds_type (thin_descriptor_type (type));
1704 LONGEST addr;
1705
1706 if (bounds_type == NULL)
1707 error (_("Bad GNAT array descriptor"));
1708
1709 /* NOTE: The following calculation is not really kosher, but
1710 since desc_type is an XVE-encoded type (and shouldn't be),
1711 the correct calculation is a real pain. FIXME (and fix GCC). */
1712 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1713 addr = value_as_long (arr);
1714 else
1715 addr = value_address (arr);
1716
1717 return
1718 value_from_longest (lookup_pointer_type (bounds_type),
1719 addr - TYPE_LENGTH (bounds_type));
1720 }
1721
1722 else if (is_thick_pntr (type))
1723 {
1724 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1725 _("Bad GNAT array descriptor"));
1726 struct type *p_bounds_type = value_type (p_bounds);
1727
1728 if (p_bounds_type
1729 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1730 {
1731 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1732
1733 if (TYPE_STUB (target_type))
1734 p_bounds = value_cast (lookup_pointer_type
1735 (ada_check_typedef (target_type)),
1736 p_bounds);
1737 }
1738 else
1739 error (_("Bad GNAT array descriptor"));
1740
1741 return p_bounds;
1742 }
1743 else
1744 return NULL;
1745 }
1746
1747 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1748 position of the field containing the address of the bounds data. */
1749
1750 static int
1751 fat_pntr_bounds_bitpos (struct type *type)
1752 {
1753 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1754 }
1755
1756 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1757 size of the field containing the address of the bounds data. */
1758
1759 static int
1760 fat_pntr_bounds_bitsize (struct type *type)
1761 {
1762 type = desc_base_type (type);
1763
1764 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1765 return TYPE_FIELD_BITSIZE (type, 1);
1766 else
1767 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1768 }
1769
1770 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1771 pointer to one, the type of its array data (a array-with-no-bounds type);
1772 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1773 data. */
1774
1775 static struct type *
1776 desc_data_target_type (struct type *type)
1777 {
1778 type = desc_base_type (type);
1779
1780 /* NOTE: The following is bogus; see comment in desc_bounds. */
1781 if (is_thin_pntr (type))
1782 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1783 else if (is_thick_pntr (type))
1784 {
1785 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1786
1787 if (data_type
1788 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1789 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1790 }
1791
1792 return NULL;
1793 }
1794
1795 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1796 its array data. */
1797
1798 static struct value *
1799 desc_data (struct value *arr)
1800 {
1801 struct type *type = value_type (arr);
1802
1803 if (is_thin_pntr (type))
1804 return thin_data_pntr (arr);
1805 else if (is_thick_pntr (type))
1806 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1807 _("Bad GNAT array descriptor"));
1808 else
1809 return NULL;
1810 }
1811
1812
1813 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1814 position of the field containing the address of the data. */
1815
1816 static int
1817 fat_pntr_data_bitpos (struct type *type)
1818 {
1819 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1820 }
1821
1822 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1823 size of the field containing the address of the data. */
1824
1825 static int
1826 fat_pntr_data_bitsize (struct type *type)
1827 {
1828 type = desc_base_type (type);
1829
1830 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1831 return TYPE_FIELD_BITSIZE (type, 0);
1832 else
1833 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1834 }
1835
1836 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1837 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1838 bound, if WHICH is 1. The first bound is I=1. */
1839
1840 static struct value *
1841 desc_one_bound (struct value *bounds, int i, int which)
1842 {
1843 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1844 _("Bad GNAT array descriptor bounds"));
1845 }
1846
1847 /* If BOUNDS is an array-bounds structure type, return the bit position
1848 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1849 bound, if WHICH is 1. The first bound is I=1. */
1850
1851 static int
1852 desc_bound_bitpos (struct type *type, int i, int which)
1853 {
1854 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1855 }
1856
1857 /* If BOUNDS is an array-bounds structure type, return the bit field size
1858 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1859 bound, if WHICH is 1. The first bound is I=1. */
1860
1861 static int
1862 desc_bound_bitsize (struct type *type, int i, int which)
1863 {
1864 type = desc_base_type (type);
1865
1866 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1867 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1868 else
1869 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1870 }
1871
1872 /* If TYPE is the type of an array-bounds structure, the type of its
1873 Ith bound (numbering from 1). Otherwise, NULL. */
1874
1875 static struct type *
1876 desc_index_type (struct type *type, int i)
1877 {
1878 type = desc_base_type (type);
1879
1880 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1881 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1882 else
1883 return NULL;
1884 }
1885
1886 /* The number of index positions in the array-bounds type TYPE.
1887 Return 0 if TYPE is NULL. */
1888
1889 static int
1890 desc_arity (struct type *type)
1891 {
1892 type = desc_base_type (type);
1893
1894 if (type != NULL)
1895 return TYPE_NFIELDS (type) / 2;
1896 return 0;
1897 }
1898
1899 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1900 an array descriptor type (representing an unconstrained array
1901 type). */
1902
1903 static int
1904 ada_is_direct_array_type (struct type *type)
1905 {
1906 if (type == NULL)
1907 return 0;
1908 type = ada_check_typedef (type);
1909 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1910 || ada_is_array_descriptor_type (type));
1911 }
1912
1913 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1914 * to one. */
1915
1916 static int
1917 ada_is_array_type (struct type *type)
1918 {
1919 while (type != NULL
1920 && (TYPE_CODE (type) == TYPE_CODE_PTR
1921 || TYPE_CODE (type) == TYPE_CODE_REF))
1922 type = TYPE_TARGET_TYPE (type);
1923 return ada_is_direct_array_type (type);
1924 }
1925
1926 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1927
1928 int
1929 ada_is_simple_array_type (struct type *type)
1930 {
1931 if (type == NULL)
1932 return 0;
1933 type = ada_check_typedef (type);
1934 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1935 || (TYPE_CODE (type) == TYPE_CODE_PTR
1936 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1937 == TYPE_CODE_ARRAY));
1938 }
1939
1940 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1941
1942 int
1943 ada_is_array_descriptor_type (struct type *type)
1944 {
1945 struct type *data_type = desc_data_target_type (type);
1946
1947 if (type == NULL)
1948 return 0;
1949 type = ada_check_typedef (type);
1950 return (data_type != NULL
1951 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1952 && desc_arity (desc_bounds_type (type)) > 0);
1953 }
1954
1955 /* Non-zero iff type is a partially mal-formed GNAT array
1956 descriptor. FIXME: This is to compensate for some problems with
1957 debugging output from GNAT. Re-examine periodically to see if it
1958 is still needed. */
1959
1960 int
1961 ada_is_bogus_array_descriptor (struct type *type)
1962 {
1963 return
1964 type != NULL
1965 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1966 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1967 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1968 && !ada_is_array_descriptor_type (type);
1969 }
1970
1971
1972 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1973 (fat pointer) returns the type of the array data described---specifically,
1974 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1975 in from the descriptor; otherwise, they are left unspecified. If
1976 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1977 returns NULL. The result is simply the type of ARR if ARR is not
1978 a descriptor. */
1979 struct type *
1980 ada_type_of_array (struct value *arr, int bounds)
1981 {
1982 if (ada_is_constrained_packed_array_type (value_type (arr)))
1983 return decode_constrained_packed_array_type (value_type (arr));
1984
1985 if (!ada_is_array_descriptor_type (value_type (arr)))
1986 return value_type (arr);
1987
1988 if (!bounds)
1989 {
1990 struct type *array_type =
1991 ada_check_typedef (desc_data_target_type (value_type (arr)));
1992
1993 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1994 TYPE_FIELD_BITSIZE (array_type, 0) =
1995 decode_packed_array_bitsize (value_type (arr));
1996
1997 return array_type;
1998 }
1999 else
2000 {
2001 struct type *elt_type;
2002 int arity;
2003 struct value *descriptor;
2004
2005 elt_type = ada_array_element_type (value_type (arr), -1);
2006 arity = ada_array_arity (value_type (arr));
2007
2008 if (elt_type == NULL || arity == 0)
2009 return ada_check_typedef (value_type (arr));
2010
2011 descriptor = desc_bounds (arr);
2012 if (value_as_long (descriptor) == 0)
2013 return NULL;
2014 while (arity > 0)
2015 {
2016 struct type *range_type = alloc_type_copy (value_type (arr));
2017 struct type *array_type = alloc_type_copy (value_type (arr));
2018 struct value *low = desc_one_bound (descriptor, arity, 0);
2019 struct value *high = desc_one_bound (descriptor, arity, 1);
2020
2021 arity -= 1;
2022 create_static_range_type (range_type, value_type (low),
2023 longest_to_int (value_as_long (low)),
2024 longest_to_int (value_as_long (high)));
2025 elt_type = create_array_type (array_type, elt_type, range_type);
2026
2027 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
2028 {
2029 /* We need to store the element packed bitsize, as well as
2030 recompute the array size, because it was previously
2031 computed based on the unpacked element size. */
2032 LONGEST lo = value_as_long (low);
2033 LONGEST hi = value_as_long (high);
2034
2035 TYPE_FIELD_BITSIZE (elt_type, 0) =
2036 decode_packed_array_bitsize (value_type (arr));
2037 /* If the array has no element, then the size is already
2038 zero, and does not need to be recomputed. */
2039 if (lo < hi)
2040 {
2041 int array_bitsize =
2042 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2043
2044 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2045 }
2046 }
2047 }
2048
2049 return lookup_pointer_type (elt_type);
2050 }
2051 }
2052
2053 /* If ARR does not represent an array, returns ARR unchanged.
2054 Otherwise, returns either a standard GDB array with bounds set
2055 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2056 GDB array. Returns NULL if ARR is a null fat pointer. */
2057
2058 struct value *
2059 ada_coerce_to_simple_array_ptr (struct value *arr)
2060 {
2061 if (ada_is_array_descriptor_type (value_type (arr)))
2062 {
2063 struct type *arrType = ada_type_of_array (arr, 1);
2064
2065 if (arrType == NULL)
2066 return NULL;
2067 return value_cast (arrType, value_copy (desc_data (arr)));
2068 }
2069 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2070 return decode_constrained_packed_array (arr);
2071 else
2072 return arr;
2073 }
2074
2075 /* If ARR does not represent an array, returns ARR unchanged.
2076 Otherwise, returns a standard GDB array describing ARR (which may
2077 be ARR itself if it already is in the proper form). */
2078
2079 struct value *
2080 ada_coerce_to_simple_array (struct value *arr)
2081 {
2082 if (ada_is_array_descriptor_type (value_type (arr)))
2083 {
2084 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
2085
2086 if (arrVal == NULL)
2087 error (_("Bounds unavailable for null array pointer."));
2088 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
2089 return value_ind (arrVal);
2090 }
2091 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2092 return decode_constrained_packed_array (arr);
2093 else
2094 return arr;
2095 }
2096
2097 /* If TYPE represents a GNAT array type, return it translated to an
2098 ordinary GDB array type (possibly with BITSIZE fields indicating
2099 packing). For other types, is the identity. */
2100
2101 struct type *
2102 ada_coerce_to_simple_array_type (struct type *type)
2103 {
2104 if (ada_is_constrained_packed_array_type (type))
2105 return decode_constrained_packed_array_type (type);
2106
2107 if (ada_is_array_descriptor_type (type))
2108 return ada_check_typedef (desc_data_target_type (type));
2109
2110 return type;
2111 }
2112
2113 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2114
2115 static int
2116 ada_is_packed_array_type (struct type *type)
2117 {
2118 if (type == NULL)
2119 return 0;
2120 type = desc_base_type (type);
2121 type = ada_check_typedef (type);
2122 return
2123 ada_type_name (type) != NULL
2124 && strstr (ada_type_name (type), "___XP") != NULL;
2125 }
2126
2127 /* Non-zero iff TYPE represents a standard GNAT constrained
2128 packed-array type. */
2129
2130 int
2131 ada_is_constrained_packed_array_type (struct type *type)
2132 {
2133 return ada_is_packed_array_type (type)
2134 && !ada_is_array_descriptor_type (type);
2135 }
2136
2137 /* Non-zero iff TYPE represents an array descriptor for a
2138 unconstrained packed-array type. */
2139
2140 static int
2141 ada_is_unconstrained_packed_array_type (struct type *type)
2142 {
2143 return ada_is_packed_array_type (type)
2144 && ada_is_array_descriptor_type (type);
2145 }
2146
2147 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2148 return the size of its elements in bits. */
2149
2150 static long
2151 decode_packed_array_bitsize (struct type *type)
2152 {
2153 const char *raw_name;
2154 const char *tail;
2155 long bits;
2156
2157 /* Access to arrays implemented as fat pointers are encoded as a typedef
2158 of the fat pointer type. We need the name of the fat pointer type
2159 to do the decoding, so strip the typedef layer. */
2160 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2161 type = ada_typedef_target_type (type);
2162
2163 raw_name = ada_type_name (ada_check_typedef (type));
2164 if (!raw_name)
2165 raw_name = ada_type_name (desc_base_type (type));
2166
2167 if (!raw_name)
2168 return 0;
2169
2170 tail = strstr (raw_name, "___XP");
2171 gdb_assert (tail != NULL);
2172
2173 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2174 {
2175 lim_warning
2176 (_("could not understand bit size information on packed array"));
2177 return 0;
2178 }
2179
2180 return bits;
2181 }
2182
2183 /* Given that TYPE is a standard GDB array type with all bounds filled
2184 in, and that the element size of its ultimate scalar constituents
2185 (that is, either its elements, or, if it is an array of arrays, its
2186 elements' elements, etc.) is *ELT_BITS, return an identical type,
2187 but with the bit sizes of its elements (and those of any
2188 constituent arrays) recorded in the BITSIZE components of its
2189 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2190 in bits.
2191
2192 Note that, for arrays whose index type has an XA encoding where
2193 a bound references a record discriminant, getting that discriminant,
2194 and therefore the actual value of that bound, is not possible
2195 because none of the given parameters gives us access to the record.
2196 This function assumes that it is OK in the context where it is being
2197 used to return an array whose bounds are still dynamic and where
2198 the length is arbitrary. */
2199
2200 static struct type *
2201 constrained_packed_array_type (struct type *type, long *elt_bits)
2202 {
2203 struct type *new_elt_type;
2204 struct type *new_type;
2205 struct type *index_type_desc;
2206 struct type *index_type;
2207 LONGEST low_bound, high_bound;
2208
2209 type = ada_check_typedef (type);
2210 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2211 return type;
2212
2213 index_type_desc = ada_find_parallel_type (type, "___XA");
2214 if (index_type_desc)
2215 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2216 NULL);
2217 else
2218 index_type = TYPE_INDEX_TYPE (type);
2219
2220 new_type = alloc_type_copy (type);
2221 new_elt_type =
2222 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2223 elt_bits);
2224 create_array_type (new_type, new_elt_type, index_type);
2225 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2226 TYPE_NAME (new_type) = ada_type_name (type);
2227
2228 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2229 && is_dynamic_type (check_typedef (index_type)))
2230 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2231 low_bound = high_bound = 0;
2232 if (high_bound < low_bound)
2233 *elt_bits = TYPE_LENGTH (new_type) = 0;
2234 else
2235 {
2236 *elt_bits *= (high_bound - low_bound + 1);
2237 TYPE_LENGTH (new_type) =
2238 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2239 }
2240
2241 TYPE_FIXED_INSTANCE (new_type) = 1;
2242 return new_type;
2243 }
2244
2245 /* The array type encoded by TYPE, where
2246 ada_is_constrained_packed_array_type (TYPE). */
2247
2248 static struct type *
2249 decode_constrained_packed_array_type (struct type *type)
2250 {
2251 const char *raw_name = ada_type_name (ada_check_typedef (type));
2252 char *name;
2253 const char *tail;
2254 struct type *shadow_type;
2255 long bits;
2256
2257 if (!raw_name)
2258 raw_name = ada_type_name (desc_base_type (type));
2259
2260 if (!raw_name)
2261 return NULL;
2262
2263 name = (char *) alloca (strlen (raw_name) + 1);
2264 tail = strstr (raw_name, "___XP");
2265 type = desc_base_type (type);
2266
2267 memcpy (name, raw_name, tail - raw_name);
2268 name[tail - raw_name] = '\000';
2269
2270 shadow_type = ada_find_parallel_type_with_name (type, name);
2271
2272 if (shadow_type == NULL)
2273 {
2274 lim_warning (_("could not find bounds information on packed array"));
2275 return NULL;
2276 }
2277 shadow_type = check_typedef (shadow_type);
2278
2279 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2280 {
2281 lim_warning (_("could not understand bounds "
2282 "information on packed array"));
2283 return NULL;
2284 }
2285
2286 bits = decode_packed_array_bitsize (type);
2287 return constrained_packed_array_type (shadow_type, &bits);
2288 }
2289
2290 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2291 array, returns a simple array that denotes that array. Its type is a
2292 standard GDB array type except that the BITSIZEs of the array
2293 target types are set to the number of bits in each element, and the
2294 type length is set appropriately. */
2295
2296 static struct value *
2297 decode_constrained_packed_array (struct value *arr)
2298 {
2299 struct type *type;
2300
2301 /* If our value is a pointer, then dereference it. Likewise if
2302 the value is a reference. Make sure that this operation does not
2303 cause the target type to be fixed, as this would indirectly cause
2304 this array to be decoded. The rest of the routine assumes that
2305 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2306 and "value_ind" routines to perform the dereferencing, as opposed
2307 to using "ada_coerce_ref" or "ada_value_ind". */
2308 arr = coerce_ref (arr);
2309 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2310 arr = value_ind (arr);
2311
2312 type = decode_constrained_packed_array_type (value_type (arr));
2313 if (type == NULL)
2314 {
2315 error (_("can't unpack array"));
2316 return NULL;
2317 }
2318
2319 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2320 && ada_is_modular_type (value_type (arr)))
2321 {
2322 /* This is a (right-justified) modular type representing a packed
2323 array with no wrapper. In order to interpret the value through
2324 the (left-justified) packed array type we just built, we must
2325 first left-justify it. */
2326 int bit_size, bit_pos;
2327 ULONGEST mod;
2328
2329 mod = ada_modulus (value_type (arr)) - 1;
2330 bit_size = 0;
2331 while (mod > 0)
2332 {
2333 bit_size += 1;
2334 mod >>= 1;
2335 }
2336 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2337 arr = ada_value_primitive_packed_val (arr, NULL,
2338 bit_pos / HOST_CHAR_BIT,
2339 bit_pos % HOST_CHAR_BIT,
2340 bit_size,
2341 type);
2342 }
2343
2344 return coerce_unspec_val_to_type (arr, type);
2345 }
2346
2347
2348 /* The value of the element of packed array ARR at the ARITY indices
2349 given in IND. ARR must be a simple array. */
2350
2351 static struct value *
2352 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2353 {
2354 int i;
2355 int bits, elt_off, bit_off;
2356 long elt_total_bit_offset;
2357 struct type *elt_type;
2358 struct value *v;
2359
2360 bits = 0;
2361 elt_total_bit_offset = 0;
2362 elt_type = ada_check_typedef (value_type (arr));
2363 for (i = 0; i < arity; i += 1)
2364 {
2365 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2366 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2367 error
2368 (_("attempt to do packed indexing of "
2369 "something other than a packed array"));
2370 else
2371 {
2372 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2373 LONGEST lowerbound, upperbound;
2374 LONGEST idx;
2375
2376 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2377 {
2378 lim_warning (_("don't know bounds of array"));
2379 lowerbound = upperbound = 0;
2380 }
2381
2382 idx = pos_atr (ind[i]);
2383 if (idx < lowerbound || idx > upperbound)
2384 lim_warning (_("packed array index %ld out of bounds"),
2385 (long) idx);
2386 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2387 elt_total_bit_offset += (idx - lowerbound) * bits;
2388 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2389 }
2390 }
2391 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2392 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2393
2394 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2395 bits, elt_type);
2396 return v;
2397 }
2398
2399 /* Non-zero iff TYPE includes negative integer values. */
2400
2401 static int
2402 has_negatives (struct type *type)
2403 {
2404 switch (TYPE_CODE (type))
2405 {
2406 default:
2407 return 0;
2408 case TYPE_CODE_INT:
2409 return !TYPE_UNSIGNED (type);
2410 case TYPE_CODE_RANGE:
2411 return TYPE_LOW_BOUND (type) < 0;
2412 }
2413 }
2414
2415 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2416 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2417 the unpacked buffer.
2418
2419 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2420 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2421
2422 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2423 zero otherwise.
2424
2425 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2426
2427 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2428
2429 static void
2430 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2431 gdb_byte *unpacked, int unpacked_len,
2432 int is_big_endian, int is_signed_type,
2433 int is_scalar)
2434 {
2435 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2436 int src_idx; /* Index into the source area */
2437 int src_bytes_left; /* Number of source bytes left to process. */
2438 int srcBitsLeft; /* Number of source bits left to move */
2439 int unusedLS; /* Number of bits in next significant
2440 byte of source that are unused */
2441
2442 int unpacked_idx; /* Index into the unpacked buffer */
2443 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2444
2445 unsigned long accum; /* Staging area for bits being transferred */
2446 int accumSize; /* Number of meaningful bits in accum */
2447 unsigned char sign;
2448
2449 /* Transmit bytes from least to most significant; delta is the direction
2450 the indices move. */
2451 int delta = is_big_endian ? -1 : 1;
2452
2453 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2454 bits from SRC. .*/
2455 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2456 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2457 bit_size, unpacked_len);
2458
2459 srcBitsLeft = bit_size;
2460 src_bytes_left = src_len;
2461 unpacked_bytes_left = unpacked_len;
2462 sign = 0;
2463
2464 if (is_big_endian)
2465 {
2466 src_idx = src_len - 1;
2467 if (is_signed_type
2468 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2469 sign = ~0;
2470
2471 unusedLS =
2472 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2473 % HOST_CHAR_BIT;
2474
2475 if (is_scalar)
2476 {
2477 accumSize = 0;
2478 unpacked_idx = unpacked_len - 1;
2479 }
2480 else
2481 {
2482 /* Non-scalar values must be aligned at a byte boundary... */
2483 accumSize =
2484 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2485 /* ... And are placed at the beginning (most-significant) bytes
2486 of the target. */
2487 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2488 unpacked_bytes_left = unpacked_idx + 1;
2489 }
2490 }
2491 else
2492 {
2493 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2494
2495 src_idx = unpacked_idx = 0;
2496 unusedLS = bit_offset;
2497 accumSize = 0;
2498
2499 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2500 sign = ~0;
2501 }
2502
2503 accum = 0;
2504 while (src_bytes_left > 0)
2505 {
2506 /* Mask for removing bits of the next source byte that are not
2507 part of the value. */
2508 unsigned int unusedMSMask =
2509 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2510 1;
2511 /* Sign-extend bits for this byte. */
2512 unsigned int signMask = sign & ~unusedMSMask;
2513
2514 accum |=
2515 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2516 accumSize += HOST_CHAR_BIT - unusedLS;
2517 if (accumSize >= HOST_CHAR_BIT)
2518 {
2519 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2520 accumSize -= HOST_CHAR_BIT;
2521 accum >>= HOST_CHAR_BIT;
2522 unpacked_bytes_left -= 1;
2523 unpacked_idx += delta;
2524 }
2525 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2526 unusedLS = 0;
2527 src_bytes_left -= 1;
2528 src_idx += delta;
2529 }
2530 while (unpacked_bytes_left > 0)
2531 {
2532 accum |= sign << accumSize;
2533 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2534 accumSize -= HOST_CHAR_BIT;
2535 if (accumSize < 0)
2536 accumSize = 0;
2537 accum >>= HOST_CHAR_BIT;
2538 unpacked_bytes_left -= 1;
2539 unpacked_idx += delta;
2540 }
2541 }
2542
2543 /* Create a new value of type TYPE from the contents of OBJ starting
2544 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2545 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2546 assigning through the result will set the field fetched from.
2547 VALADDR is ignored unless OBJ is NULL, in which case,
2548 VALADDR+OFFSET must address the start of storage containing the
2549 packed value. The value returned in this case is never an lval.
2550 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2551
2552 struct value *
2553 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2554 long offset, int bit_offset, int bit_size,
2555 struct type *type)
2556 {
2557 struct value *v;
2558 const gdb_byte *src; /* First byte containing data to unpack */
2559 gdb_byte *unpacked;
2560 const int is_scalar = is_scalar_type (type);
2561 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
2562 gdb::byte_vector staging;
2563
2564 type = ada_check_typedef (type);
2565
2566 if (obj == NULL)
2567 src = valaddr + offset;
2568 else
2569 src = value_contents (obj) + offset;
2570
2571 if (is_dynamic_type (type))
2572 {
2573 /* The length of TYPE might by dynamic, so we need to resolve
2574 TYPE in order to know its actual size, which we then use
2575 to create the contents buffer of the value we return.
2576 The difficulty is that the data containing our object is
2577 packed, and therefore maybe not at a byte boundary. So, what
2578 we do, is unpack the data into a byte-aligned buffer, and then
2579 use that buffer as our object's value for resolving the type. */
2580 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2581 staging.resize (staging_len);
2582
2583 ada_unpack_from_contents (src, bit_offset, bit_size,
2584 staging.data (), staging.size (),
2585 is_big_endian, has_negatives (type),
2586 is_scalar);
2587 type = resolve_dynamic_type (type, staging.data (), 0);
2588 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2589 {
2590 /* This happens when the length of the object is dynamic,
2591 and is actually smaller than the space reserved for it.
2592 For instance, in an array of variant records, the bit_size
2593 we're given is the array stride, which is constant and
2594 normally equal to the maximum size of its element.
2595 But, in reality, each element only actually spans a portion
2596 of that stride. */
2597 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2598 }
2599 }
2600
2601 if (obj == NULL)
2602 {
2603 v = allocate_value (type);
2604 src = valaddr + offset;
2605 }
2606 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2607 {
2608 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2609 gdb_byte *buf;
2610
2611 v = value_at (type, value_address (obj) + offset);
2612 buf = (gdb_byte *) alloca (src_len);
2613 read_memory (value_address (v), buf, src_len);
2614 src = buf;
2615 }
2616 else
2617 {
2618 v = allocate_value (type);
2619 src = value_contents (obj) + offset;
2620 }
2621
2622 if (obj != NULL)
2623 {
2624 long new_offset = offset;
2625
2626 set_value_component_location (v, obj);
2627 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2628 set_value_bitsize (v, bit_size);
2629 if (value_bitpos (v) >= HOST_CHAR_BIT)
2630 {
2631 ++new_offset;
2632 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2633 }
2634 set_value_offset (v, new_offset);
2635
2636 /* Also set the parent value. This is needed when trying to
2637 assign a new value (in inferior memory). */
2638 set_value_parent (v, obj);
2639 }
2640 else
2641 set_value_bitsize (v, bit_size);
2642 unpacked = value_contents_writeable (v);
2643
2644 if (bit_size == 0)
2645 {
2646 memset (unpacked, 0, TYPE_LENGTH (type));
2647 return v;
2648 }
2649
2650 if (staging.size () == TYPE_LENGTH (type))
2651 {
2652 /* Small short-cut: If we've unpacked the data into a buffer
2653 of the same size as TYPE's length, then we can reuse that,
2654 instead of doing the unpacking again. */
2655 memcpy (unpacked, staging.data (), staging.size ());
2656 }
2657 else
2658 ada_unpack_from_contents (src, bit_offset, bit_size,
2659 unpacked, TYPE_LENGTH (type),
2660 is_big_endian, has_negatives (type), is_scalar);
2661
2662 return v;
2663 }
2664
2665 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2666 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2667 not overlap. */
2668 static void
2669 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2670 int src_offset, int n, int bits_big_endian_p)
2671 {
2672 unsigned int accum, mask;
2673 int accum_bits, chunk_size;
2674
2675 target += targ_offset / HOST_CHAR_BIT;
2676 targ_offset %= HOST_CHAR_BIT;
2677 source += src_offset / HOST_CHAR_BIT;
2678 src_offset %= HOST_CHAR_BIT;
2679 if (bits_big_endian_p)
2680 {
2681 accum = (unsigned char) *source;
2682 source += 1;
2683 accum_bits = HOST_CHAR_BIT - src_offset;
2684
2685 while (n > 0)
2686 {
2687 int unused_right;
2688
2689 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2690 accum_bits += HOST_CHAR_BIT;
2691 source += 1;
2692 chunk_size = HOST_CHAR_BIT - targ_offset;
2693 if (chunk_size > n)
2694 chunk_size = n;
2695 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2696 mask = ((1 << chunk_size) - 1) << unused_right;
2697 *target =
2698 (*target & ~mask)
2699 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2700 n -= chunk_size;
2701 accum_bits -= chunk_size;
2702 target += 1;
2703 targ_offset = 0;
2704 }
2705 }
2706 else
2707 {
2708 accum = (unsigned char) *source >> src_offset;
2709 source += 1;
2710 accum_bits = HOST_CHAR_BIT - src_offset;
2711
2712 while (n > 0)
2713 {
2714 accum = accum + ((unsigned char) *source << accum_bits);
2715 accum_bits += HOST_CHAR_BIT;
2716 source += 1;
2717 chunk_size = HOST_CHAR_BIT - targ_offset;
2718 if (chunk_size > n)
2719 chunk_size = n;
2720 mask = ((1 << chunk_size) - 1) << targ_offset;
2721 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2722 n -= chunk_size;
2723 accum_bits -= chunk_size;
2724 accum >>= chunk_size;
2725 target += 1;
2726 targ_offset = 0;
2727 }
2728 }
2729 }
2730
2731 /* Store the contents of FROMVAL into the location of TOVAL.
2732 Return a new value with the location of TOVAL and contents of
2733 FROMVAL. Handles assignment into packed fields that have
2734 floating-point or non-scalar types. */
2735
2736 static struct value *
2737 ada_value_assign (struct value *toval, struct value *fromval)
2738 {
2739 struct type *type = value_type (toval);
2740 int bits = value_bitsize (toval);
2741
2742 toval = ada_coerce_ref (toval);
2743 fromval = ada_coerce_ref (fromval);
2744
2745 if (ada_is_direct_array_type (value_type (toval)))
2746 toval = ada_coerce_to_simple_array (toval);
2747 if (ada_is_direct_array_type (value_type (fromval)))
2748 fromval = ada_coerce_to_simple_array (fromval);
2749
2750 if (!deprecated_value_modifiable (toval))
2751 error (_("Left operand of assignment is not a modifiable lvalue."));
2752
2753 if (VALUE_LVAL (toval) == lval_memory
2754 && bits > 0
2755 && (TYPE_CODE (type) == TYPE_CODE_FLT
2756 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2757 {
2758 int len = (value_bitpos (toval)
2759 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2760 int from_size;
2761 gdb_byte *buffer = (gdb_byte *) alloca (len);
2762 struct value *val;
2763 CORE_ADDR to_addr = value_address (toval);
2764
2765 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2766 fromval = value_cast (type, fromval);
2767
2768 read_memory (to_addr, buffer, len);
2769 from_size = value_bitsize (fromval);
2770 if (from_size == 0)
2771 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2772 if (gdbarch_bits_big_endian (get_type_arch (type)))
2773 move_bits (buffer, value_bitpos (toval),
2774 value_contents (fromval), from_size - bits, bits, 1);
2775 else
2776 move_bits (buffer, value_bitpos (toval),
2777 value_contents (fromval), 0, bits, 0);
2778 write_memory_with_notification (to_addr, buffer, len);
2779
2780 val = value_copy (toval);
2781 memcpy (value_contents_raw (val), value_contents (fromval),
2782 TYPE_LENGTH (type));
2783 deprecated_set_value_type (val, type);
2784
2785 return val;
2786 }
2787
2788 return value_assign (toval, fromval);
2789 }
2790
2791
2792 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2793 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2794 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2795 COMPONENT, and not the inferior's memory. The current contents
2796 of COMPONENT are ignored.
2797
2798 Although not part of the initial design, this function also works
2799 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2800 had a null address, and COMPONENT had an address which is equal to
2801 its offset inside CONTAINER. */
2802
2803 static void
2804 value_assign_to_component (struct value *container, struct value *component,
2805 struct value *val)
2806 {
2807 LONGEST offset_in_container =
2808 (LONGEST) (value_address (component) - value_address (container));
2809 int bit_offset_in_container =
2810 value_bitpos (component) - value_bitpos (container);
2811 int bits;
2812
2813 val = value_cast (value_type (component), val);
2814
2815 if (value_bitsize (component) == 0)
2816 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2817 else
2818 bits = value_bitsize (component);
2819
2820 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2821 move_bits (value_contents_writeable (container) + offset_in_container,
2822 value_bitpos (container) + bit_offset_in_container,
2823 value_contents (val),
2824 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2825 bits, 1);
2826 else
2827 move_bits (value_contents_writeable (container) + offset_in_container,
2828 value_bitpos (container) + bit_offset_in_container,
2829 value_contents (val), 0, bits, 0);
2830 }
2831
2832 /* The value of the element of array ARR at the ARITY indices given in IND.
2833 ARR may be either a simple array, GNAT array descriptor, or pointer
2834 thereto. */
2835
2836 struct value *
2837 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2838 {
2839 int k;
2840 struct value *elt;
2841 struct type *elt_type;
2842
2843 elt = ada_coerce_to_simple_array (arr);
2844
2845 elt_type = ada_check_typedef (value_type (elt));
2846 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2847 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2848 return value_subscript_packed (elt, arity, ind);
2849
2850 for (k = 0; k < arity; k += 1)
2851 {
2852 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2853 error (_("too many subscripts (%d expected)"), k);
2854 elt = value_subscript (elt, pos_atr (ind[k]));
2855 }
2856 return elt;
2857 }
2858
2859 /* Assuming ARR is a pointer to a GDB array, the value of the element
2860 of *ARR at the ARITY indices given in IND.
2861 Does not read the entire array into memory.
2862
2863 Note: Unlike what one would expect, this function is used instead of
2864 ada_value_subscript for basically all non-packed array types. The reason
2865 for this is that a side effect of doing our own pointer arithmetics instead
2866 of relying on value_subscript is that there is no implicit typedef peeling.
2867 This is important for arrays of array accesses, where it allows us to
2868 preserve the fact that the array's element is an array access, where the
2869 access part os encoded in a typedef layer. */
2870
2871 static struct value *
2872 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2873 {
2874 int k;
2875 struct value *array_ind = ada_value_ind (arr);
2876 struct type *type
2877 = check_typedef (value_enclosing_type (array_ind));
2878
2879 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2880 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2881 return value_subscript_packed (array_ind, arity, ind);
2882
2883 for (k = 0; k < arity; k += 1)
2884 {
2885 LONGEST lwb, upb;
2886 struct value *lwb_value;
2887
2888 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2889 error (_("too many subscripts (%d expected)"), k);
2890 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2891 value_copy (arr));
2892 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2893 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2894 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
2895 type = TYPE_TARGET_TYPE (type);
2896 }
2897
2898 return value_ind (arr);
2899 }
2900
2901 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2902 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2903 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2904 this array is LOW, as per Ada rules. */
2905 static struct value *
2906 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2907 int low, int high)
2908 {
2909 struct type *type0 = ada_check_typedef (type);
2910 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
2911 struct type *index_type
2912 = create_static_range_type (NULL, base_index_type, low, high);
2913 struct type *slice_type =
2914 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
2915 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2916 LONGEST base_low_pos, low_pos;
2917 CORE_ADDR base;
2918
2919 if (!discrete_position (base_index_type, low, &low_pos)
2920 || !discrete_position (base_index_type, base_low, &base_low_pos))
2921 {
2922 warning (_("unable to get positions in slice, use bounds instead"));
2923 low_pos = low;
2924 base_low_pos = base_low;
2925 }
2926
2927 base = value_as_address (array_ptr)
2928 + ((low_pos - base_low_pos)
2929 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2930 return value_at_lazy (slice_type, base);
2931 }
2932
2933
2934 static struct value *
2935 ada_value_slice (struct value *array, int low, int high)
2936 {
2937 struct type *type = ada_check_typedef (value_type (array));
2938 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2939 struct type *index_type
2940 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2941 struct type *slice_type =
2942 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2943 LONGEST low_pos, high_pos;
2944
2945 if (!discrete_position (base_index_type, low, &low_pos)
2946 || !discrete_position (base_index_type, high, &high_pos))
2947 {
2948 warning (_("unable to get positions in slice, use bounds instead"));
2949 low_pos = low;
2950 high_pos = high;
2951 }
2952
2953 return value_cast (slice_type,
2954 value_slice (array, low, high_pos - low_pos + 1));
2955 }
2956
2957 /* If type is a record type in the form of a standard GNAT array
2958 descriptor, returns the number of dimensions for type. If arr is a
2959 simple array, returns the number of "array of"s that prefix its
2960 type designation. Otherwise, returns 0. */
2961
2962 int
2963 ada_array_arity (struct type *type)
2964 {
2965 int arity;
2966
2967 if (type == NULL)
2968 return 0;
2969
2970 type = desc_base_type (type);
2971
2972 arity = 0;
2973 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2974 return desc_arity (desc_bounds_type (type));
2975 else
2976 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2977 {
2978 arity += 1;
2979 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2980 }
2981
2982 return arity;
2983 }
2984
2985 /* If TYPE is a record type in the form of a standard GNAT array
2986 descriptor or a simple array type, returns the element type for
2987 TYPE after indexing by NINDICES indices, or by all indices if
2988 NINDICES is -1. Otherwise, returns NULL. */
2989
2990 struct type *
2991 ada_array_element_type (struct type *type, int nindices)
2992 {
2993 type = desc_base_type (type);
2994
2995 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2996 {
2997 int k;
2998 struct type *p_array_type;
2999
3000 p_array_type = desc_data_target_type (type);
3001
3002 k = ada_array_arity (type);
3003 if (k == 0)
3004 return NULL;
3005
3006 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
3007 if (nindices >= 0 && k > nindices)
3008 k = nindices;
3009 while (k > 0 && p_array_type != NULL)
3010 {
3011 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
3012 k -= 1;
3013 }
3014 return p_array_type;
3015 }
3016 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
3017 {
3018 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
3019 {
3020 type = TYPE_TARGET_TYPE (type);
3021 nindices -= 1;
3022 }
3023 return type;
3024 }
3025
3026 return NULL;
3027 }
3028
3029 /* The type of nth index in arrays of given type (n numbering from 1).
3030 Does not examine memory. Throws an error if N is invalid or TYPE
3031 is not an array type. NAME is the name of the Ada attribute being
3032 evaluated ('range, 'first, 'last, or 'length); it is used in building
3033 the error message. */
3034
3035 static struct type *
3036 ada_index_type (struct type *type, int n, const char *name)
3037 {
3038 struct type *result_type;
3039
3040 type = desc_base_type (type);
3041
3042 if (n < 0 || n > ada_array_arity (type))
3043 error (_("invalid dimension number to '%s"), name);
3044
3045 if (ada_is_simple_array_type (type))
3046 {
3047 int i;
3048
3049 for (i = 1; i < n; i += 1)
3050 type = TYPE_TARGET_TYPE (type);
3051 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
3052 /* FIXME: The stabs type r(0,0);bound;bound in an array type
3053 has a target type of TYPE_CODE_UNDEF. We compensate here, but
3054 perhaps stabsread.c would make more sense. */
3055 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
3056 result_type = NULL;
3057 }
3058 else
3059 {
3060 result_type = desc_index_type (desc_bounds_type (type), n);
3061 if (result_type == NULL)
3062 error (_("attempt to take bound of something that is not an array"));
3063 }
3064
3065 return result_type;
3066 }
3067
3068 /* Given that arr is an array type, returns the lower bound of the
3069 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
3070 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
3071 array-descriptor type. It works for other arrays with bounds supplied
3072 by run-time quantities other than discriminants. */
3073
3074 static LONGEST
3075 ada_array_bound_from_type (struct type *arr_type, int n, int which)
3076 {
3077 struct type *type, *index_type_desc, *index_type;
3078 int i;
3079
3080 gdb_assert (which == 0 || which == 1);
3081
3082 if (ada_is_constrained_packed_array_type (arr_type))
3083 arr_type = decode_constrained_packed_array_type (arr_type);
3084
3085 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
3086 return (LONGEST) - which;
3087
3088 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3089 type = TYPE_TARGET_TYPE (arr_type);
3090 else
3091 type = arr_type;
3092
3093 if (TYPE_FIXED_INSTANCE (type))
3094 {
3095 /* The array has already been fixed, so we do not need to
3096 check the parallel ___XA type again. That encoding has
3097 already been applied, so ignore it now. */
3098 index_type_desc = NULL;
3099 }
3100 else
3101 {
3102 index_type_desc = ada_find_parallel_type (type, "___XA");
3103 ada_fixup_array_indexes_type (index_type_desc);
3104 }
3105
3106 if (index_type_desc != NULL)
3107 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3108 NULL);
3109 else
3110 {
3111 struct type *elt_type = check_typedef (type);
3112
3113 for (i = 1; i < n; i++)
3114 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3115
3116 index_type = TYPE_INDEX_TYPE (elt_type);
3117 }
3118
3119 return
3120 (LONGEST) (which == 0
3121 ? ada_discrete_type_low_bound (index_type)
3122 : ada_discrete_type_high_bound (index_type));
3123 }
3124
3125 /* Given that arr is an array value, returns the lower bound of the
3126 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3127 WHICH is 1. This routine will also work for arrays with bounds
3128 supplied by run-time quantities other than discriminants. */
3129
3130 static LONGEST
3131 ada_array_bound (struct value *arr, int n, int which)
3132 {
3133 struct type *arr_type;
3134
3135 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3136 arr = value_ind (arr);
3137 arr_type = value_enclosing_type (arr);
3138
3139 if (ada_is_constrained_packed_array_type (arr_type))
3140 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
3141 else if (ada_is_simple_array_type (arr_type))
3142 return ada_array_bound_from_type (arr_type, n, which);
3143 else
3144 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
3145 }
3146
3147 /* Given that arr is an array value, returns the length of the
3148 nth index. This routine will also work for arrays with bounds
3149 supplied by run-time quantities other than discriminants.
3150 Does not work for arrays indexed by enumeration types with representation
3151 clauses at the moment. */
3152
3153 static LONGEST
3154 ada_array_length (struct value *arr, int n)
3155 {
3156 struct type *arr_type, *index_type;
3157 int low, high;
3158
3159 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3160 arr = value_ind (arr);
3161 arr_type = value_enclosing_type (arr);
3162
3163 if (ada_is_constrained_packed_array_type (arr_type))
3164 return ada_array_length (decode_constrained_packed_array (arr), n);
3165
3166 if (ada_is_simple_array_type (arr_type))
3167 {
3168 low = ada_array_bound_from_type (arr_type, n, 0);
3169 high = ada_array_bound_from_type (arr_type, n, 1);
3170 }
3171 else
3172 {
3173 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3174 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3175 }
3176
3177 arr_type = check_typedef (arr_type);
3178 index_type = TYPE_INDEX_TYPE (arr_type);
3179 if (index_type != NULL)
3180 {
3181 struct type *base_type;
3182 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3183 base_type = TYPE_TARGET_TYPE (index_type);
3184 else
3185 base_type = index_type;
3186
3187 low = pos_atr (value_from_longest (base_type, low));
3188 high = pos_atr (value_from_longest (base_type, high));
3189 }
3190 return high - low + 1;
3191 }
3192
3193 /* An empty array whose type is that of ARR_TYPE (an array type),
3194 with bounds LOW to LOW-1. */
3195
3196 static struct value *
3197 empty_array (struct type *arr_type, int low)
3198 {
3199 struct type *arr_type0 = ada_check_typedef (arr_type);
3200 struct type *index_type
3201 = create_static_range_type
3202 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
3203 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3204
3205 return allocate_value (create_array_type (NULL, elt_type, index_type));
3206 }
3207 \f
3208
3209 /* Name resolution */
3210
3211 /* The "decoded" name for the user-definable Ada operator corresponding
3212 to OP. */
3213
3214 static const char *
3215 ada_decoded_op_name (enum exp_opcode op)
3216 {
3217 int i;
3218
3219 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3220 {
3221 if (ada_opname_table[i].op == op)
3222 return ada_opname_table[i].decoded;
3223 }
3224 error (_("Could not find operator name for opcode"));
3225 }
3226
3227
3228 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3229 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3230 undefined namespace) and converts operators that are
3231 user-defined into appropriate function calls. If CONTEXT_TYPE is
3232 non-null, it provides a preferred result type [at the moment, only
3233 type void has any effect---causing procedures to be preferred over
3234 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3235 return type is preferred. May change (expand) *EXP. */
3236
3237 static void
3238 resolve (struct expression **expp, int void_context_p)
3239 {
3240 struct type *context_type = NULL;
3241 int pc = 0;
3242
3243 if (void_context_p)
3244 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3245
3246 resolve_subexp (expp, &pc, 1, context_type);
3247 }
3248
3249 /* Resolve the operator of the subexpression beginning at
3250 position *POS of *EXPP. "Resolving" consists of replacing
3251 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3252 with their resolutions, replacing built-in operators with
3253 function calls to user-defined operators, where appropriate, and,
3254 when DEPROCEDURE_P is non-zero, converting function-valued variables
3255 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3256 are as in ada_resolve, above. */
3257
3258 static struct value *
3259 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
3260 struct type *context_type)
3261 {
3262 int pc = *pos;
3263 int i;
3264 struct expression *exp; /* Convenience: == *expp. */
3265 enum exp_opcode op = (*expp)->elts[pc].opcode;
3266 struct value **argvec; /* Vector of operand types (alloca'ed). */
3267 int nargs; /* Number of operands. */
3268 int oplen;
3269 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3270
3271 argvec = NULL;
3272 nargs = 0;
3273 exp = *expp;
3274
3275 /* Pass one: resolve operands, saving their types and updating *pos,
3276 if needed. */
3277 switch (op)
3278 {
3279 case OP_FUNCALL:
3280 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3281 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3282 *pos += 7;
3283 else
3284 {
3285 *pos += 3;
3286 resolve_subexp (expp, pos, 0, NULL);
3287 }
3288 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3289 break;
3290
3291 case UNOP_ADDR:
3292 *pos += 1;
3293 resolve_subexp (expp, pos, 0, NULL);
3294 break;
3295
3296 case UNOP_QUAL:
3297 *pos += 3;
3298 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
3299 break;
3300
3301 case OP_ATR_MODULUS:
3302 case OP_ATR_SIZE:
3303 case OP_ATR_TAG:
3304 case OP_ATR_FIRST:
3305 case OP_ATR_LAST:
3306 case OP_ATR_LENGTH:
3307 case OP_ATR_POS:
3308 case OP_ATR_VAL:
3309 case OP_ATR_MIN:
3310 case OP_ATR_MAX:
3311 case TERNOP_IN_RANGE:
3312 case BINOP_IN_BOUNDS:
3313 case UNOP_IN_RANGE:
3314 case OP_AGGREGATE:
3315 case OP_OTHERS:
3316 case OP_CHOICES:
3317 case OP_POSITIONAL:
3318 case OP_DISCRETE_RANGE:
3319 case OP_NAME:
3320 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3321 *pos += oplen;
3322 break;
3323
3324 case BINOP_ASSIGN:
3325 {
3326 struct value *arg1;
3327
3328 *pos += 1;
3329 arg1 = resolve_subexp (expp, pos, 0, NULL);
3330 if (arg1 == NULL)
3331 resolve_subexp (expp, pos, 1, NULL);
3332 else
3333 resolve_subexp (expp, pos, 1, value_type (arg1));
3334 break;
3335 }
3336
3337 case UNOP_CAST:
3338 *pos += 3;
3339 nargs = 1;
3340 break;
3341
3342 case BINOP_ADD:
3343 case BINOP_SUB:
3344 case BINOP_MUL:
3345 case BINOP_DIV:
3346 case BINOP_REM:
3347 case BINOP_MOD:
3348 case BINOP_EXP:
3349 case BINOP_CONCAT:
3350 case BINOP_LOGICAL_AND:
3351 case BINOP_LOGICAL_OR:
3352 case BINOP_BITWISE_AND:
3353 case BINOP_BITWISE_IOR:
3354 case BINOP_BITWISE_XOR:
3355
3356 case BINOP_EQUAL:
3357 case BINOP_NOTEQUAL:
3358 case BINOP_LESS:
3359 case BINOP_GTR:
3360 case BINOP_LEQ:
3361 case BINOP_GEQ:
3362
3363 case BINOP_REPEAT:
3364 case BINOP_SUBSCRIPT:
3365 case BINOP_COMMA:
3366 *pos += 1;
3367 nargs = 2;
3368 break;
3369
3370 case UNOP_NEG:
3371 case UNOP_PLUS:
3372 case UNOP_LOGICAL_NOT:
3373 case UNOP_ABS:
3374 case UNOP_IND:
3375 *pos += 1;
3376 nargs = 1;
3377 break;
3378
3379 case OP_LONG:
3380 case OP_FLOAT:
3381 case OP_VAR_VALUE:
3382 case OP_VAR_MSYM_VALUE:
3383 *pos += 4;
3384 break;
3385
3386 case OP_TYPE:
3387 case OP_BOOL:
3388 case OP_LAST:
3389 case OP_INTERNALVAR:
3390 *pos += 3;
3391 break;
3392
3393 case UNOP_MEMVAL:
3394 *pos += 3;
3395 nargs = 1;
3396 break;
3397
3398 case OP_REGISTER:
3399 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3400 break;
3401
3402 case STRUCTOP_STRUCT:
3403 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3404 nargs = 1;
3405 break;
3406
3407 case TERNOP_SLICE:
3408 *pos += 1;
3409 nargs = 3;
3410 break;
3411
3412 case OP_STRING:
3413 break;
3414
3415 default:
3416 error (_("Unexpected operator during name resolution"));
3417 }
3418
3419 argvec = XALLOCAVEC (struct value *, nargs + 1);
3420 for (i = 0; i < nargs; i += 1)
3421 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3422 argvec[i] = NULL;
3423 exp = *expp;
3424
3425 /* Pass two: perform any resolution on principal operator. */
3426 switch (op)
3427 {
3428 default:
3429 break;
3430
3431 case OP_VAR_VALUE:
3432 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3433 {
3434 struct block_symbol *candidates;
3435 int n_candidates;
3436
3437 n_candidates =
3438 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3439 (exp->elts[pc + 2].symbol),
3440 exp->elts[pc + 1].block, VAR_DOMAIN,
3441 &candidates);
3442 make_cleanup (xfree, candidates);
3443
3444 if (n_candidates > 1)
3445 {
3446 /* Types tend to get re-introduced locally, so if there
3447 are any local symbols that are not types, first filter
3448 out all types. */
3449 int j;
3450 for (j = 0; j < n_candidates; j += 1)
3451 switch (SYMBOL_CLASS (candidates[j].symbol))
3452 {
3453 case LOC_REGISTER:
3454 case LOC_ARG:
3455 case LOC_REF_ARG:
3456 case LOC_REGPARM_ADDR:
3457 case LOC_LOCAL:
3458 case LOC_COMPUTED:
3459 goto FoundNonType;
3460 default:
3461 break;
3462 }
3463 FoundNonType:
3464 if (j < n_candidates)
3465 {
3466 j = 0;
3467 while (j < n_candidates)
3468 {
3469 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3470 {
3471 candidates[j] = candidates[n_candidates - 1];
3472 n_candidates -= 1;
3473 }
3474 else
3475 j += 1;
3476 }
3477 }
3478 }
3479
3480 if (n_candidates == 0)
3481 error (_("No definition found for %s"),
3482 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3483 else if (n_candidates == 1)
3484 i = 0;
3485 else if (deprocedure_p
3486 && !is_nonfunction (candidates, n_candidates))
3487 {
3488 i = ada_resolve_function
3489 (candidates, n_candidates, NULL, 0,
3490 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3491 context_type);
3492 if (i < 0)
3493 error (_("Could not find a match for %s"),
3494 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3495 }
3496 else
3497 {
3498 printf_filtered (_("Multiple matches for %s\n"),
3499 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3500 user_select_syms (candidates, n_candidates, 1);
3501 i = 0;
3502 }
3503
3504 exp->elts[pc + 1].block = candidates[i].block;
3505 exp->elts[pc + 2].symbol = candidates[i].symbol;
3506 if (innermost_block == NULL
3507 || contained_in (candidates[i].block, innermost_block))
3508 innermost_block = candidates[i].block;
3509 }
3510
3511 if (deprocedure_p
3512 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3513 == TYPE_CODE_FUNC))
3514 {
3515 replace_operator_with_call (expp, pc, 0, 0,
3516 exp->elts[pc + 2].symbol,
3517 exp->elts[pc + 1].block);
3518 exp = *expp;
3519 }
3520 break;
3521
3522 case OP_FUNCALL:
3523 {
3524 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3525 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3526 {
3527 struct block_symbol *candidates;
3528 int n_candidates;
3529
3530 n_candidates =
3531 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3532 (exp->elts[pc + 5].symbol),
3533 exp->elts[pc + 4].block, VAR_DOMAIN,
3534 &candidates);
3535 make_cleanup (xfree, candidates);
3536
3537 if (n_candidates == 1)
3538 i = 0;
3539 else
3540 {
3541 i = ada_resolve_function
3542 (candidates, n_candidates,
3543 argvec, nargs,
3544 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3545 context_type);
3546 if (i < 0)
3547 error (_("Could not find a match for %s"),
3548 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3549 }
3550
3551 exp->elts[pc + 4].block = candidates[i].block;
3552 exp->elts[pc + 5].symbol = candidates[i].symbol;
3553 if (innermost_block == NULL
3554 || contained_in (candidates[i].block, innermost_block))
3555 innermost_block = candidates[i].block;
3556 }
3557 }
3558 break;
3559 case BINOP_ADD:
3560 case BINOP_SUB:
3561 case BINOP_MUL:
3562 case BINOP_DIV:
3563 case BINOP_REM:
3564 case BINOP_MOD:
3565 case BINOP_CONCAT:
3566 case BINOP_BITWISE_AND:
3567 case BINOP_BITWISE_IOR:
3568 case BINOP_BITWISE_XOR:
3569 case BINOP_EQUAL:
3570 case BINOP_NOTEQUAL:
3571 case BINOP_LESS:
3572 case BINOP_GTR:
3573 case BINOP_LEQ:
3574 case BINOP_GEQ:
3575 case BINOP_EXP:
3576 case UNOP_NEG:
3577 case UNOP_PLUS:
3578 case UNOP_LOGICAL_NOT:
3579 case UNOP_ABS:
3580 if (possible_user_operator_p (op, argvec))
3581 {
3582 struct block_symbol *candidates;
3583 int n_candidates;
3584
3585 n_candidates =
3586 ada_lookup_symbol_list (ada_decoded_op_name (op),
3587 (struct block *) NULL, VAR_DOMAIN,
3588 &candidates);
3589 make_cleanup (xfree, candidates);
3590
3591 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3592 ada_decoded_op_name (op), NULL);
3593 if (i < 0)
3594 break;
3595
3596 replace_operator_with_call (expp, pc, nargs, 1,
3597 candidates[i].symbol,
3598 candidates[i].block);
3599 exp = *expp;
3600 }
3601 break;
3602
3603 case OP_TYPE:
3604 case OP_REGISTER:
3605 do_cleanups (old_chain);
3606 return NULL;
3607 }
3608
3609 *pos = pc;
3610 do_cleanups (old_chain);
3611 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3612 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3613 exp->elts[pc + 1].objfile,
3614 exp->elts[pc + 2].msymbol);
3615 else
3616 return evaluate_subexp_type (exp, pos);
3617 }
3618
3619 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3620 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3621 a non-pointer. */
3622 /* The term "match" here is rather loose. The match is heuristic and
3623 liberal. */
3624
3625 static int
3626 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3627 {
3628 ftype = ada_check_typedef (ftype);
3629 atype = ada_check_typedef (atype);
3630
3631 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3632 ftype = TYPE_TARGET_TYPE (ftype);
3633 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3634 atype = TYPE_TARGET_TYPE (atype);
3635
3636 switch (TYPE_CODE (ftype))
3637 {
3638 default:
3639 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3640 case TYPE_CODE_PTR:
3641 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3642 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3643 TYPE_TARGET_TYPE (atype), 0);
3644 else
3645 return (may_deref
3646 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3647 case TYPE_CODE_INT:
3648 case TYPE_CODE_ENUM:
3649 case TYPE_CODE_RANGE:
3650 switch (TYPE_CODE (atype))
3651 {
3652 case TYPE_CODE_INT:
3653 case TYPE_CODE_ENUM:
3654 case TYPE_CODE_RANGE:
3655 return 1;
3656 default:
3657 return 0;
3658 }
3659
3660 case TYPE_CODE_ARRAY:
3661 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3662 || ada_is_array_descriptor_type (atype));
3663
3664 case TYPE_CODE_STRUCT:
3665 if (ada_is_array_descriptor_type (ftype))
3666 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3667 || ada_is_array_descriptor_type (atype));
3668 else
3669 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3670 && !ada_is_array_descriptor_type (atype));
3671
3672 case TYPE_CODE_UNION:
3673 case TYPE_CODE_FLT:
3674 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3675 }
3676 }
3677
3678 /* Return non-zero if the formals of FUNC "sufficiently match" the
3679 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3680 may also be an enumeral, in which case it is treated as a 0-
3681 argument function. */
3682
3683 static int
3684 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3685 {
3686 int i;
3687 struct type *func_type = SYMBOL_TYPE (func);
3688
3689 if (SYMBOL_CLASS (func) == LOC_CONST
3690 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3691 return (n_actuals == 0);
3692 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3693 return 0;
3694
3695 if (TYPE_NFIELDS (func_type) != n_actuals)
3696 return 0;
3697
3698 for (i = 0; i < n_actuals; i += 1)
3699 {
3700 if (actuals[i] == NULL)
3701 return 0;
3702 else
3703 {
3704 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3705 i));
3706 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3707
3708 if (!ada_type_match (ftype, atype, 1))
3709 return 0;
3710 }
3711 }
3712 return 1;
3713 }
3714
3715 /* False iff function type FUNC_TYPE definitely does not produce a value
3716 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3717 FUNC_TYPE is not a valid function type with a non-null return type
3718 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3719
3720 static int
3721 return_match (struct type *func_type, struct type *context_type)
3722 {
3723 struct type *return_type;
3724
3725 if (func_type == NULL)
3726 return 1;
3727
3728 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3729 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3730 else
3731 return_type = get_base_type (func_type);
3732 if (return_type == NULL)
3733 return 1;
3734
3735 context_type = get_base_type (context_type);
3736
3737 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3738 return context_type == NULL || return_type == context_type;
3739 else if (context_type == NULL)
3740 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3741 else
3742 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3743 }
3744
3745
3746 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3747 function (if any) that matches the types of the NARGS arguments in
3748 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3749 that returns that type, then eliminate matches that don't. If
3750 CONTEXT_TYPE is void and there is at least one match that does not
3751 return void, eliminate all matches that do.
3752
3753 Asks the user if there is more than one match remaining. Returns -1
3754 if there is no such symbol or none is selected. NAME is used
3755 solely for messages. May re-arrange and modify SYMS in
3756 the process; the index returned is for the modified vector. */
3757
3758 static int
3759 ada_resolve_function (struct block_symbol syms[],
3760 int nsyms, struct value **args, int nargs,
3761 const char *name, struct type *context_type)
3762 {
3763 int fallback;
3764 int k;
3765 int m; /* Number of hits */
3766
3767 m = 0;
3768 /* In the first pass of the loop, we only accept functions matching
3769 context_type. If none are found, we add a second pass of the loop
3770 where every function is accepted. */
3771 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3772 {
3773 for (k = 0; k < nsyms; k += 1)
3774 {
3775 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3776
3777 if (ada_args_match (syms[k].symbol, args, nargs)
3778 && (fallback || return_match (type, context_type)))
3779 {
3780 syms[m] = syms[k];
3781 m += 1;
3782 }
3783 }
3784 }
3785
3786 /* If we got multiple matches, ask the user which one to use. Don't do this
3787 interactive thing during completion, though, as the purpose of the
3788 completion is providing a list of all possible matches. Prompting the
3789 user to filter it down would be completely unexpected in this case. */
3790 if (m == 0)
3791 return -1;
3792 else if (m > 1 && !parse_completion)
3793 {
3794 printf_filtered (_("Multiple matches for %s\n"), name);
3795 user_select_syms (syms, m, 1);
3796 return 0;
3797 }
3798 return 0;
3799 }
3800
3801 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3802 in a listing of choices during disambiguation (see sort_choices, below).
3803 The idea is that overloadings of a subprogram name from the
3804 same package should sort in their source order. We settle for ordering
3805 such symbols by their trailing number (__N or $N). */
3806
3807 static int
3808 encoded_ordered_before (const char *N0, const char *N1)
3809 {
3810 if (N1 == NULL)
3811 return 0;
3812 else if (N0 == NULL)
3813 return 1;
3814 else
3815 {
3816 int k0, k1;
3817
3818 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3819 ;
3820 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3821 ;
3822 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3823 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3824 {
3825 int n0, n1;
3826
3827 n0 = k0;
3828 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3829 n0 -= 1;
3830 n1 = k1;
3831 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3832 n1 -= 1;
3833 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3834 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3835 }
3836 return (strcmp (N0, N1) < 0);
3837 }
3838 }
3839
3840 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3841 encoded names. */
3842
3843 static void
3844 sort_choices (struct block_symbol syms[], int nsyms)
3845 {
3846 int i;
3847
3848 for (i = 1; i < nsyms; i += 1)
3849 {
3850 struct block_symbol sym = syms[i];
3851 int j;
3852
3853 for (j = i - 1; j >= 0; j -= 1)
3854 {
3855 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3856 SYMBOL_LINKAGE_NAME (sym.symbol)))
3857 break;
3858 syms[j + 1] = syms[j];
3859 }
3860 syms[j + 1] = sym;
3861 }
3862 }
3863
3864 /* Whether GDB should display formals and return types for functions in the
3865 overloads selection menu. */
3866 static int print_signatures = 1;
3867
3868 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3869 all but functions, the signature is just the name of the symbol. For
3870 functions, this is the name of the function, the list of types for formals
3871 and the return type (if any). */
3872
3873 static void
3874 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3875 const struct type_print_options *flags)
3876 {
3877 struct type *type = SYMBOL_TYPE (sym);
3878
3879 fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
3880 if (!print_signatures
3881 || type == NULL
3882 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3883 return;
3884
3885 if (TYPE_NFIELDS (type) > 0)
3886 {
3887 int i;
3888
3889 fprintf_filtered (stream, " (");
3890 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3891 {
3892 if (i > 0)
3893 fprintf_filtered (stream, "; ");
3894 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3895 flags);
3896 }
3897 fprintf_filtered (stream, ")");
3898 }
3899 if (TYPE_TARGET_TYPE (type) != NULL
3900 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3901 {
3902 fprintf_filtered (stream, " return ");
3903 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3904 }
3905 }
3906
3907 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3908 by asking the user (if necessary), returning the number selected,
3909 and setting the first elements of SYMS items. Error if no symbols
3910 selected. */
3911
3912 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3913 to be re-integrated one of these days. */
3914
3915 int
3916 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3917 {
3918 int i;
3919 int *chosen = XALLOCAVEC (int , nsyms);
3920 int n_chosen;
3921 int first_choice = (max_results == 1) ? 1 : 2;
3922 const char *select_mode = multiple_symbols_select_mode ();
3923
3924 if (max_results < 1)
3925 error (_("Request to select 0 symbols!"));
3926 if (nsyms <= 1)
3927 return nsyms;
3928
3929 if (select_mode == multiple_symbols_cancel)
3930 error (_("\
3931 canceled because the command is ambiguous\n\
3932 See set/show multiple-symbol."));
3933
3934 /* If select_mode is "all", then return all possible symbols.
3935 Only do that if more than one symbol can be selected, of course.
3936 Otherwise, display the menu as usual. */
3937 if (select_mode == multiple_symbols_all && max_results > 1)
3938 return nsyms;
3939
3940 printf_unfiltered (_("[0] cancel\n"));
3941 if (max_results > 1)
3942 printf_unfiltered (_("[1] all\n"));
3943
3944 sort_choices (syms, nsyms);
3945
3946 for (i = 0; i < nsyms; i += 1)
3947 {
3948 if (syms[i].symbol == NULL)
3949 continue;
3950
3951 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3952 {
3953 struct symtab_and_line sal =
3954 find_function_start_sal (syms[i].symbol, 1);
3955
3956 printf_unfiltered ("[%d] ", i + first_choice);
3957 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3958 &type_print_raw_options);
3959 if (sal.symtab == NULL)
3960 printf_unfiltered (_(" at <no source file available>:%d\n"),
3961 sal.line);
3962 else
3963 printf_unfiltered (_(" at %s:%d\n"),
3964 symtab_to_filename_for_display (sal.symtab),
3965 sal.line);
3966 continue;
3967 }
3968 else
3969 {
3970 int is_enumeral =
3971 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3972 && SYMBOL_TYPE (syms[i].symbol) != NULL
3973 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
3974 struct symtab *symtab = NULL;
3975
3976 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3977 symtab = symbol_symtab (syms[i].symbol);
3978
3979 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3980 {
3981 printf_unfiltered ("[%d] ", i + first_choice);
3982 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3983 &type_print_raw_options);
3984 printf_unfiltered (_(" at %s:%d\n"),
3985 symtab_to_filename_for_display (symtab),
3986 SYMBOL_LINE (syms[i].symbol));
3987 }
3988 else if (is_enumeral
3989 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
3990 {
3991 printf_unfiltered (("[%d] "), i + first_choice);
3992 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3993 gdb_stdout, -1, 0, &type_print_raw_options);
3994 printf_unfiltered (_("'(%s) (enumeral)\n"),
3995 SYMBOL_PRINT_NAME (syms[i].symbol));
3996 }
3997 else
3998 {
3999 printf_unfiltered ("[%d] ", i + first_choice);
4000 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
4001 &type_print_raw_options);
4002
4003 if (symtab != NULL)
4004 printf_unfiltered (is_enumeral
4005 ? _(" in %s (enumeral)\n")
4006 : _(" at %s:?\n"),
4007 symtab_to_filename_for_display (symtab));
4008 else
4009 printf_unfiltered (is_enumeral
4010 ? _(" (enumeral)\n")
4011 : _(" at ?\n"));
4012 }
4013 }
4014 }
4015
4016 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4017 "overload-choice");
4018
4019 for (i = 0; i < n_chosen; i += 1)
4020 syms[i] = syms[chosen[i]];
4021
4022 return n_chosen;
4023 }
4024
4025 /* Read and validate a set of numeric choices from the user in the
4026 range 0 .. N_CHOICES-1. Place the results in increasing
4027 order in CHOICES[0 .. N-1], and return N.
4028
4029 The user types choices as a sequence of numbers on one line
4030 separated by blanks, encoding them as follows:
4031
4032 + A choice of 0 means to cancel the selection, throwing an error.
4033 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
4034 + The user chooses k by typing k+IS_ALL_CHOICE+1.
4035
4036 The user is not allowed to choose more than MAX_RESULTS values.
4037
4038 ANNOTATION_SUFFIX, if present, is used to annotate the input
4039 prompts (for use with the -f switch). */
4040
4041 int
4042 get_selections (int *choices, int n_choices, int max_results,
4043 int is_all_choice, const char *annotation_suffix)
4044 {
4045 char *args;
4046 const char *prompt;
4047 int n_chosen;
4048 int first_choice = is_all_choice ? 2 : 1;
4049
4050 prompt = getenv ("PS2");
4051 if (prompt == NULL)
4052 prompt = "> ";
4053
4054 args = command_line_input (prompt, 0, annotation_suffix);
4055
4056 if (args == NULL)
4057 error_no_arg (_("one or more choice numbers"));
4058
4059 n_chosen = 0;
4060
4061 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
4062 order, as given in args. Choices are validated. */
4063 while (1)
4064 {
4065 char *args2;
4066 int choice, j;
4067
4068 args = skip_spaces (args);
4069 if (*args == '\0' && n_chosen == 0)
4070 error_no_arg (_("one or more choice numbers"));
4071 else if (*args == '\0')
4072 break;
4073
4074 choice = strtol (args, &args2, 10);
4075 if (args == args2 || choice < 0
4076 || choice > n_choices + first_choice - 1)
4077 error (_("Argument must be choice number"));
4078 args = args2;
4079
4080 if (choice == 0)
4081 error (_("cancelled"));
4082
4083 if (choice < first_choice)
4084 {
4085 n_chosen = n_choices;
4086 for (j = 0; j < n_choices; j += 1)
4087 choices[j] = j;
4088 break;
4089 }
4090 choice -= first_choice;
4091
4092 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4093 {
4094 }
4095
4096 if (j < 0 || choice != choices[j])
4097 {
4098 int k;
4099
4100 for (k = n_chosen - 1; k > j; k -= 1)
4101 choices[k + 1] = choices[k];
4102 choices[j + 1] = choice;
4103 n_chosen += 1;
4104 }
4105 }
4106
4107 if (n_chosen > max_results)
4108 error (_("Select no more than %d of the above"), max_results);
4109
4110 return n_chosen;
4111 }
4112
4113 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
4114 on the function identified by SYM and BLOCK, and taking NARGS
4115 arguments. Update *EXPP as needed to hold more space. */
4116
4117 static void
4118 replace_operator_with_call (struct expression **expp, int pc, int nargs,
4119 int oplen, struct symbol *sym,
4120 const struct block *block)
4121 {
4122 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4123 symbol, -oplen for operator being replaced). */
4124 struct expression *newexp = (struct expression *)
4125 xzalloc (sizeof (struct expression)
4126 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
4127 struct expression *exp = *expp;
4128
4129 newexp->nelts = exp->nelts + 7 - oplen;
4130 newexp->language_defn = exp->language_defn;
4131 newexp->gdbarch = exp->gdbarch;
4132 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
4133 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4134 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
4135
4136 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4137 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4138
4139 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4140 newexp->elts[pc + 4].block = block;
4141 newexp->elts[pc + 5].symbol = sym;
4142
4143 *expp = newexp;
4144 xfree (exp);
4145 }
4146
4147 /* Type-class predicates */
4148
4149 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4150 or FLOAT). */
4151
4152 static int
4153 numeric_type_p (struct type *type)
4154 {
4155 if (type == NULL)
4156 return 0;
4157 else
4158 {
4159 switch (TYPE_CODE (type))
4160 {
4161 case TYPE_CODE_INT:
4162 case TYPE_CODE_FLT:
4163 return 1;
4164 case TYPE_CODE_RANGE:
4165 return (type == TYPE_TARGET_TYPE (type)
4166 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4167 default:
4168 return 0;
4169 }
4170 }
4171 }
4172
4173 /* True iff TYPE is integral (an INT or RANGE of INTs). */
4174
4175 static int
4176 integer_type_p (struct type *type)
4177 {
4178 if (type == NULL)
4179 return 0;
4180 else
4181 {
4182 switch (TYPE_CODE (type))
4183 {
4184 case TYPE_CODE_INT:
4185 return 1;
4186 case TYPE_CODE_RANGE:
4187 return (type == TYPE_TARGET_TYPE (type)
4188 || integer_type_p (TYPE_TARGET_TYPE (type)));
4189 default:
4190 return 0;
4191 }
4192 }
4193 }
4194
4195 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
4196
4197 static int
4198 scalar_type_p (struct type *type)
4199 {
4200 if (type == NULL)
4201 return 0;
4202 else
4203 {
4204 switch (TYPE_CODE (type))
4205 {
4206 case TYPE_CODE_INT:
4207 case TYPE_CODE_RANGE:
4208 case TYPE_CODE_ENUM:
4209 case TYPE_CODE_FLT:
4210 return 1;
4211 default:
4212 return 0;
4213 }
4214 }
4215 }
4216
4217 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
4218
4219 static int
4220 discrete_type_p (struct type *type)
4221 {
4222 if (type == NULL)
4223 return 0;
4224 else
4225 {
4226 switch (TYPE_CODE (type))
4227 {
4228 case TYPE_CODE_INT:
4229 case TYPE_CODE_RANGE:
4230 case TYPE_CODE_ENUM:
4231 case TYPE_CODE_BOOL:
4232 return 1;
4233 default:
4234 return 0;
4235 }
4236 }
4237 }
4238
4239 /* Returns non-zero if OP with operands in the vector ARGS could be
4240 a user-defined function. Errs on the side of pre-defined operators
4241 (i.e., result 0). */
4242
4243 static int
4244 possible_user_operator_p (enum exp_opcode op, struct value *args[])
4245 {
4246 struct type *type0 =
4247 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
4248 struct type *type1 =
4249 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
4250
4251 if (type0 == NULL)
4252 return 0;
4253
4254 switch (op)
4255 {
4256 default:
4257 return 0;
4258
4259 case BINOP_ADD:
4260 case BINOP_SUB:
4261 case BINOP_MUL:
4262 case BINOP_DIV:
4263 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4264
4265 case BINOP_REM:
4266 case BINOP_MOD:
4267 case BINOP_BITWISE_AND:
4268 case BINOP_BITWISE_IOR:
4269 case BINOP_BITWISE_XOR:
4270 return (!(integer_type_p (type0) && integer_type_p (type1)));
4271
4272 case BINOP_EQUAL:
4273 case BINOP_NOTEQUAL:
4274 case BINOP_LESS:
4275 case BINOP_GTR:
4276 case BINOP_LEQ:
4277 case BINOP_GEQ:
4278 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4279
4280 case BINOP_CONCAT:
4281 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4282
4283 case BINOP_EXP:
4284 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4285
4286 case UNOP_NEG:
4287 case UNOP_PLUS:
4288 case UNOP_LOGICAL_NOT:
4289 case UNOP_ABS:
4290 return (!numeric_type_p (type0));
4291
4292 }
4293 }
4294 \f
4295 /* Renaming */
4296
4297 /* NOTES:
4298
4299 1. In the following, we assume that a renaming type's name may
4300 have an ___XD suffix. It would be nice if this went away at some
4301 point.
4302 2. We handle both the (old) purely type-based representation of
4303 renamings and the (new) variable-based encoding. At some point,
4304 it is devoutly to be hoped that the former goes away
4305 (FIXME: hilfinger-2007-07-09).
4306 3. Subprogram renamings are not implemented, although the XRS
4307 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4308
4309 /* If SYM encodes a renaming,
4310
4311 <renaming> renames <renamed entity>,
4312
4313 sets *LEN to the length of the renamed entity's name,
4314 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4315 the string describing the subcomponent selected from the renamed
4316 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4317 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4318 are undefined). Otherwise, returns a value indicating the category
4319 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4320 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4321 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4322 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4323 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4324 may be NULL, in which case they are not assigned.
4325
4326 [Currently, however, GCC does not generate subprogram renamings.] */
4327
4328 enum ada_renaming_category
4329 ada_parse_renaming (struct symbol *sym,
4330 const char **renamed_entity, int *len,
4331 const char **renaming_expr)
4332 {
4333 enum ada_renaming_category kind;
4334 const char *info;
4335 const char *suffix;
4336
4337 if (sym == NULL)
4338 return ADA_NOT_RENAMING;
4339 switch (SYMBOL_CLASS (sym))
4340 {
4341 default:
4342 return ADA_NOT_RENAMING;
4343 case LOC_TYPEDEF:
4344 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4345 renamed_entity, len, renaming_expr);
4346 case LOC_LOCAL:
4347 case LOC_STATIC:
4348 case LOC_COMPUTED:
4349 case LOC_OPTIMIZED_OUT:
4350 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4351 if (info == NULL)
4352 return ADA_NOT_RENAMING;
4353 switch (info[5])
4354 {
4355 case '_':
4356 kind = ADA_OBJECT_RENAMING;
4357 info += 6;
4358 break;
4359 case 'E':
4360 kind = ADA_EXCEPTION_RENAMING;
4361 info += 7;
4362 break;
4363 case 'P':
4364 kind = ADA_PACKAGE_RENAMING;
4365 info += 7;
4366 break;
4367 case 'S':
4368 kind = ADA_SUBPROGRAM_RENAMING;
4369 info += 7;
4370 break;
4371 default:
4372 return ADA_NOT_RENAMING;
4373 }
4374 }
4375
4376 if (renamed_entity != NULL)
4377 *renamed_entity = info;
4378 suffix = strstr (info, "___XE");
4379 if (suffix == NULL || suffix == info)
4380 return ADA_NOT_RENAMING;
4381 if (len != NULL)
4382 *len = strlen (info) - strlen (suffix);
4383 suffix += 5;
4384 if (renaming_expr != NULL)
4385 *renaming_expr = suffix;
4386 return kind;
4387 }
4388
4389 /* Assuming TYPE encodes a renaming according to the old encoding in
4390 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4391 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4392 ADA_NOT_RENAMING otherwise. */
4393 static enum ada_renaming_category
4394 parse_old_style_renaming (struct type *type,
4395 const char **renamed_entity, int *len,
4396 const char **renaming_expr)
4397 {
4398 enum ada_renaming_category kind;
4399 const char *name;
4400 const char *info;
4401 const char *suffix;
4402
4403 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4404 || TYPE_NFIELDS (type) != 1)
4405 return ADA_NOT_RENAMING;
4406
4407 name = type_name_no_tag (type);
4408 if (name == NULL)
4409 return ADA_NOT_RENAMING;
4410
4411 name = strstr (name, "___XR");
4412 if (name == NULL)
4413 return ADA_NOT_RENAMING;
4414 switch (name[5])
4415 {
4416 case '\0':
4417 case '_':
4418 kind = ADA_OBJECT_RENAMING;
4419 break;
4420 case 'E':
4421 kind = ADA_EXCEPTION_RENAMING;
4422 break;
4423 case 'P':
4424 kind = ADA_PACKAGE_RENAMING;
4425 break;
4426 case 'S':
4427 kind = ADA_SUBPROGRAM_RENAMING;
4428 break;
4429 default:
4430 return ADA_NOT_RENAMING;
4431 }
4432
4433 info = TYPE_FIELD_NAME (type, 0);
4434 if (info == NULL)
4435 return ADA_NOT_RENAMING;
4436 if (renamed_entity != NULL)
4437 *renamed_entity = info;
4438 suffix = strstr (info, "___XE");
4439 if (renaming_expr != NULL)
4440 *renaming_expr = suffix + 5;
4441 if (suffix == NULL || suffix == info)
4442 return ADA_NOT_RENAMING;
4443 if (len != NULL)
4444 *len = suffix - info;
4445 return kind;
4446 }
4447
4448 /* Compute the value of the given RENAMING_SYM, which is expected to
4449 be a symbol encoding a renaming expression. BLOCK is the block
4450 used to evaluate the renaming. */
4451
4452 static struct value *
4453 ada_read_renaming_var_value (struct symbol *renaming_sym,
4454 const struct block *block)
4455 {
4456 const char *sym_name;
4457
4458 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4459 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4460 return evaluate_expression (expr.get ());
4461 }
4462 \f
4463
4464 /* Evaluation: Function Calls */
4465
4466 /* Return an lvalue containing the value VAL. This is the identity on
4467 lvalues, and otherwise has the side-effect of allocating memory
4468 in the inferior where a copy of the value contents is copied. */
4469
4470 static struct value *
4471 ensure_lval (struct value *val)
4472 {
4473 if (VALUE_LVAL (val) == not_lval
4474 || VALUE_LVAL (val) == lval_internalvar)
4475 {
4476 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4477 const CORE_ADDR addr =
4478 value_as_long (value_allocate_space_in_inferior (len));
4479
4480 VALUE_LVAL (val) = lval_memory;
4481 set_value_address (val, addr);
4482 write_memory (addr, value_contents (val), len);
4483 }
4484
4485 return val;
4486 }
4487
4488 /* Return the value ACTUAL, converted to be an appropriate value for a
4489 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4490 allocating any necessary descriptors (fat pointers), or copies of
4491 values not residing in memory, updating it as needed. */
4492
4493 struct value *
4494 ada_convert_actual (struct value *actual, struct type *formal_type0)
4495 {
4496 struct type *actual_type = ada_check_typedef (value_type (actual));
4497 struct type *formal_type = ada_check_typedef (formal_type0);
4498 struct type *formal_target =
4499 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4500 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4501 struct type *actual_target =
4502 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4503 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4504
4505 if (ada_is_array_descriptor_type (formal_target)
4506 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4507 return make_array_descriptor (formal_type, actual);
4508 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4509 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4510 {
4511 struct value *result;
4512
4513 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4514 && ada_is_array_descriptor_type (actual_target))
4515 result = desc_data (actual);
4516 else if (TYPE_CODE (formal_type) != TYPE_CODE_PTR)
4517 {
4518 if (VALUE_LVAL (actual) != lval_memory)
4519 {
4520 struct value *val;
4521
4522 actual_type = ada_check_typedef (value_type (actual));
4523 val = allocate_value (actual_type);
4524 memcpy ((char *) value_contents_raw (val),
4525 (char *) value_contents (actual),
4526 TYPE_LENGTH (actual_type));
4527 actual = ensure_lval (val);
4528 }
4529 result = value_addr (actual);
4530 }
4531 else
4532 return actual;
4533 return value_cast_pointers (formal_type, result, 0);
4534 }
4535 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4536 return ada_value_ind (actual);
4537 else if (ada_is_aligner_type (formal_type))
4538 {
4539 /* We need to turn this parameter into an aligner type
4540 as well. */
4541 struct value *aligner = allocate_value (formal_type);
4542 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4543
4544 value_assign_to_component (aligner, component, actual);
4545 return aligner;
4546 }
4547
4548 return actual;
4549 }
4550
4551 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4552 type TYPE. This is usually an inefficient no-op except on some targets
4553 (such as AVR) where the representation of a pointer and an address
4554 differs. */
4555
4556 static CORE_ADDR
4557 value_pointer (struct value *value, struct type *type)
4558 {
4559 struct gdbarch *gdbarch = get_type_arch (type);
4560 unsigned len = TYPE_LENGTH (type);
4561 gdb_byte *buf = (gdb_byte *) alloca (len);
4562 CORE_ADDR addr;
4563
4564 addr = value_address (value);
4565 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4566 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4567 return addr;
4568 }
4569
4570
4571 /* Push a descriptor of type TYPE for array value ARR on the stack at
4572 *SP, updating *SP to reflect the new descriptor. Return either
4573 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4574 to-descriptor type rather than a descriptor type), a struct value *
4575 representing a pointer to this descriptor. */
4576
4577 static struct value *
4578 make_array_descriptor (struct type *type, struct value *arr)
4579 {
4580 struct type *bounds_type = desc_bounds_type (type);
4581 struct type *desc_type = desc_base_type (type);
4582 struct value *descriptor = allocate_value (desc_type);
4583 struct value *bounds = allocate_value (bounds_type);
4584 int i;
4585
4586 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4587 i > 0; i -= 1)
4588 {
4589 modify_field (value_type (bounds), value_contents_writeable (bounds),
4590 ada_array_bound (arr, i, 0),
4591 desc_bound_bitpos (bounds_type, i, 0),
4592 desc_bound_bitsize (bounds_type, i, 0));
4593 modify_field (value_type (bounds), value_contents_writeable (bounds),
4594 ada_array_bound (arr, i, 1),
4595 desc_bound_bitpos (bounds_type, i, 1),
4596 desc_bound_bitsize (bounds_type, i, 1));
4597 }
4598
4599 bounds = ensure_lval (bounds);
4600
4601 modify_field (value_type (descriptor),
4602 value_contents_writeable (descriptor),
4603 value_pointer (ensure_lval (arr),
4604 TYPE_FIELD_TYPE (desc_type, 0)),
4605 fat_pntr_data_bitpos (desc_type),
4606 fat_pntr_data_bitsize (desc_type));
4607
4608 modify_field (value_type (descriptor),
4609 value_contents_writeable (descriptor),
4610 value_pointer (bounds,
4611 TYPE_FIELD_TYPE (desc_type, 1)),
4612 fat_pntr_bounds_bitpos (desc_type),
4613 fat_pntr_bounds_bitsize (desc_type));
4614
4615 descriptor = ensure_lval (descriptor);
4616
4617 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4618 return value_addr (descriptor);
4619 else
4620 return descriptor;
4621 }
4622 \f
4623 /* Symbol Cache Module */
4624
4625 /* Performance measurements made as of 2010-01-15 indicate that
4626 this cache does bring some noticeable improvements. Depending
4627 on the type of entity being printed, the cache can make it as much
4628 as an order of magnitude faster than without it.
4629
4630 The descriptive type DWARF extension has significantly reduced
4631 the need for this cache, at least when DWARF is being used. However,
4632 even in this case, some expensive name-based symbol searches are still
4633 sometimes necessary - to find an XVZ variable, mostly. */
4634
4635 /* Initialize the contents of SYM_CACHE. */
4636
4637 static void
4638 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4639 {
4640 obstack_init (&sym_cache->cache_space);
4641 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4642 }
4643
4644 /* Free the memory used by SYM_CACHE. */
4645
4646 static void
4647 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4648 {
4649 obstack_free (&sym_cache->cache_space, NULL);
4650 xfree (sym_cache);
4651 }
4652
4653 /* Return the symbol cache associated to the given program space PSPACE.
4654 If not allocated for this PSPACE yet, allocate and initialize one. */
4655
4656 static struct ada_symbol_cache *
4657 ada_get_symbol_cache (struct program_space *pspace)
4658 {
4659 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4660
4661 if (pspace_data->sym_cache == NULL)
4662 {
4663 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4664 ada_init_symbol_cache (pspace_data->sym_cache);
4665 }
4666
4667 return pspace_data->sym_cache;
4668 }
4669
4670 /* Clear all entries from the symbol cache. */
4671
4672 static void
4673 ada_clear_symbol_cache (void)
4674 {
4675 struct ada_symbol_cache *sym_cache
4676 = ada_get_symbol_cache (current_program_space);
4677
4678 obstack_free (&sym_cache->cache_space, NULL);
4679 ada_init_symbol_cache (sym_cache);
4680 }
4681
4682 /* Search our cache for an entry matching NAME and DOMAIN.
4683 Return it if found, or NULL otherwise. */
4684
4685 static struct cache_entry **
4686 find_entry (const char *name, domain_enum domain)
4687 {
4688 struct ada_symbol_cache *sym_cache
4689 = ada_get_symbol_cache (current_program_space);
4690 int h = msymbol_hash (name) % HASH_SIZE;
4691 struct cache_entry **e;
4692
4693 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4694 {
4695 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4696 return e;
4697 }
4698 return NULL;
4699 }
4700
4701 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4702 Return 1 if found, 0 otherwise.
4703
4704 If an entry was found and SYM is not NULL, set *SYM to the entry's
4705 SYM. Same principle for BLOCK if not NULL. */
4706
4707 static int
4708 lookup_cached_symbol (const char *name, domain_enum domain,
4709 struct symbol **sym, const struct block **block)
4710 {
4711 struct cache_entry **e = find_entry (name, domain);
4712
4713 if (e == NULL)
4714 return 0;
4715 if (sym != NULL)
4716 *sym = (*e)->sym;
4717 if (block != NULL)
4718 *block = (*e)->block;
4719 return 1;
4720 }
4721
4722 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4723 in domain DOMAIN, save this result in our symbol cache. */
4724
4725 static void
4726 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4727 const struct block *block)
4728 {
4729 struct ada_symbol_cache *sym_cache
4730 = ada_get_symbol_cache (current_program_space);
4731 int h;
4732 char *copy;
4733 struct cache_entry *e;
4734
4735 /* Symbols for builtin types don't have a block.
4736 For now don't cache such symbols. */
4737 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4738 return;
4739
4740 /* If the symbol is a local symbol, then do not cache it, as a search
4741 for that symbol depends on the context. To determine whether
4742 the symbol is local or not, we check the block where we found it
4743 against the global and static blocks of its associated symtab. */
4744 if (sym
4745 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4746 GLOBAL_BLOCK) != block
4747 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4748 STATIC_BLOCK) != block)
4749 return;
4750
4751 h = msymbol_hash (name) % HASH_SIZE;
4752 e = (struct cache_entry *) obstack_alloc (&sym_cache->cache_space,
4753 sizeof (*e));
4754 e->next = sym_cache->root[h];
4755 sym_cache->root[h] = e;
4756 e->name = copy
4757 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
4758 strcpy (copy, name);
4759 e->sym = sym;
4760 e->domain = domain;
4761 e->block = block;
4762 }
4763 \f
4764 /* Symbol Lookup */
4765
4766 /* Return the symbol name match type that should be used used when
4767 searching for all symbols matching LOOKUP_NAME.
4768
4769 LOOKUP_NAME is expected to be a symbol name after transformation
4770 for Ada lookups (see ada_name_for_lookup). */
4771
4772 static symbol_name_match_type
4773 name_match_type_from_name (const char *lookup_name)
4774 {
4775 return (strstr (lookup_name, "__") == NULL
4776 ? symbol_name_match_type::WILD
4777 : symbol_name_match_type::FULL);
4778 }
4779
4780 /* Return the result of a standard (literal, C-like) lookup of NAME in
4781 given DOMAIN, visible from lexical block BLOCK. */
4782
4783 static struct symbol *
4784 standard_lookup (const char *name, const struct block *block,
4785 domain_enum domain)
4786 {
4787 /* Initialize it just to avoid a GCC false warning. */
4788 struct block_symbol sym = {NULL, NULL};
4789
4790 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4791 return sym.symbol;
4792 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4793 cache_symbol (name, domain, sym.symbol, sym.block);
4794 return sym.symbol;
4795 }
4796
4797
4798 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4799 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4800 since they contend in overloading in the same way. */
4801 static int
4802 is_nonfunction (struct block_symbol syms[], int n)
4803 {
4804 int i;
4805
4806 for (i = 0; i < n; i += 1)
4807 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4808 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4809 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
4810 return 1;
4811
4812 return 0;
4813 }
4814
4815 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4816 struct types. Otherwise, they may not. */
4817
4818 static int
4819 equiv_types (struct type *type0, struct type *type1)
4820 {
4821 if (type0 == type1)
4822 return 1;
4823 if (type0 == NULL || type1 == NULL
4824 || TYPE_CODE (type0) != TYPE_CODE (type1))
4825 return 0;
4826 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4827 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4828 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4829 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4830 return 1;
4831
4832 return 0;
4833 }
4834
4835 /* True iff SYM0 represents the same entity as SYM1, or one that is
4836 no more defined than that of SYM1. */
4837
4838 static int
4839 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4840 {
4841 if (sym0 == sym1)
4842 return 1;
4843 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4844 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4845 return 0;
4846
4847 switch (SYMBOL_CLASS (sym0))
4848 {
4849 case LOC_UNDEF:
4850 return 1;
4851 case LOC_TYPEDEF:
4852 {
4853 struct type *type0 = SYMBOL_TYPE (sym0);
4854 struct type *type1 = SYMBOL_TYPE (sym1);
4855 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4856 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4857 int len0 = strlen (name0);
4858
4859 return
4860 TYPE_CODE (type0) == TYPE_CODE (type1)
4861 && (equiv_types (type0, type1)
4862 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4863 && startswith (name1 + len0, "___XV")));
4864 }
4865 case LOC_CONST:
4866 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4867 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4868 default:
4869 return 0;
4870 }
4871 }
4872
4873 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4874 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4875
4876 static void
4877 add_defn_to_vec (struct obstack *obstackp,
4878 struct symbol *sym,
4879 const struct block *block)
4880 {
4881 int i;
4882 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
4883
4884 /* Do not try to complete stub types, as the debugger is probably
4885 already scanning all symbols matching a certain name at the
4886 time when this function is called. Trying to replace the stub
4887 type by its associated full type will cause us to restart a scan
4888 which may lead to an infinite recursion. Instead, the client
4889 collecting the matching symbols will end up collecting several
4890 matches, with at least one of them complete. It can then filter
4891 out the stub ones if needed. */
4892
4893 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4894 {
4895 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4896 return;
4897 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4898 {
4899 prevDefns[i].symbol = sym;
4900 prevDefns[i].block = block;
4901 return;
4902 }
4903 }
4904
4905 {
4906 struct block_symbol info;
4907
4908 info.symbol = sym;
4909 info.block = block;
4910 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4911 }
4912 }
4913
4914 /* Number of block_symbol structures currently collected in current vector in
4915 OBSTACKP. */
4916
4917 static int
4918 num_defns_collected (struct obstack *obstackp)
4919 {
4920 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4921 }
4922
4923 /* Vector of block_symbol structures currently collected in current vector in
4924 OBSTACKP. If FINISH, close off the vector and return its final address. */
4925
4926 static struct block_symbol *
4927 defns_collected (struct obstack *obstackp, int finish)
4928 {
4929 if (finish)
4930 return (struct block_symbol *) obstack_finish (obstackp);
4931 else
4932 return (struct block_symbol *) obstack_base (obstackp);
4933 }
4934
4935 /* Return a bound minimal symbol matching NAME according to Ada
4936 decoding rules. Returns an invalid symbol if there is no such
4937 minimal symbol. Names prefixed with "standard__" are handled
4938 specially: "standard__" is first stripped off, and only static and
4939 global symbols are searched. */
4940
4941 struct bound_minimal_symbol
4942 ada_lookup_simple_minsym (const char *name)
4943 {
4944 struct bound_minimal_symbol result;
4945 struct objfile *objfile;
4946 struct minimal_symbol *msymbol;
4947
4948 memset (&result, 0, sizeof (result));
4949
4950 symbol_name_match_type match_type = name_match_type_from_name (name);
4951 lookup_name_info lookup_name (name, match_type);
4952
4953 symbol_name_matcher_ftype *match_name
4954 = ada_get_symbol_name_matcher (lookup_name);
4955
4956 ALL_MSYMBOLS (objfile, msymbol)
4957 {
4958 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL)
4959 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4960 {
4961 result.minsym = msymbol;
4962 result.objfile = objfile;
4963 break;
4964 }
4965 }
4966
4967 return result;
4968 }
4969
4970 /* For all subprograms that statically enclose the subprogram of the
4971 selected frame, add symbols matching identifier NAME in DOMAIN
4972 and their blocks to the list of data in OBSTACKP, as for
4973 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4974 with a wildcard prefix. */
4975
4976 static void
4977 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4978 const lookup_name_info &lookup_name,
4979 domain_enum domain)
4980 {
4981 }
4982
4983 /* True if TYPE is definitely an artificial type supplied to a symbol
4984 for which no debugging information was given in the symbol file. */
4985
4986 static int
4987 is_nondebugging_type (struct type *type)
4988 {
4989 const char *name = ada_type_name (type);
4990
4991 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4992 }
4993
4994 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4995 that are deemed "identical" for practical purposes.
4996
4997 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4998 types and that their number of enumerals is identical (in other
4999 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
5000
5001 static int
5002 ada_identical_enum_types_p (struct type *type1, struct type *type2)
5003 {
5004 int i;
5005
5006 /* The heuristic we use here is fairly conservative. We consider
5007 that 2 enumerate types are identical if they have the same
5008 number of enumerals and that all enumerals have the same
5009 underlying value and name. */
5010
5011 /* All enums in the type should have an identical underlying value. */
5012 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5013 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
5014 return 0;
5015
5016 /* All enumerals should also have the same name (modulo any numerical
5017 suffix). */
5018 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5019 {
5020 const char *name_1 = TYPE_FIELD_NAME (type1, i);
5021 const char *name_2 = TYPE_FIELD_NAME (type2, i);
5022 int len_1 = strlen (name_1);
5023 int len_2 = strlen (name_2);
5024
5025 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
5026 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
5027 if (len_1 != len_2
5028 || strncmp (TYPE_FIELD_NAME (type1, i),
5029 TYPE_FIELD_NAME (type2, i),
5030 len_1) != 0)
5031 return 0;
5032 }
5033
5034 return 1;
5035 }
5036
5037 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
5038 that are deemed "identical" for practical purposes. Sometimes,
5039 enumerals are not strictly identical, but their types are so similar
5040 that they can be considered identical.
5041
5042 For instance, consider the following code:
5043
5044 type Color is (Black, Red, Green, Blue, White);
5045 type RGB_Color is new Color range Red .. Blue;
5046
5047 Type RGB_Color is a subrange of an implicit type which is a copy
5048 of type Color. If we call that implicit type RGB_ColorB ("B" is
5049 for "Base Type"), then type RGB_ColorB is a copy of type Color.
5050 As a result, when an expression references any of the enumeral
5051 by name (Eg. "print green"), the expression is technically
5052 ambiguous and the user should be asked to disambiguate. But
5053 doing so would only hinder the user, since it wouldn't matter
5054 what choice he makes, the outcome would always be the same.
5055 So, for practical purposes, we consider them as the same. */
5056
5057 static int
5058 symbols_are_identical_enums (struct block_symbol *syms, int nsyms)
5059 {
5060 int i;
5061
5062 /* Before performing a thorough comparison check of each type,
5063 we perform a series of inexpensive checks. We expect that these
5064 checks will quickly fail in the vast majority of cases, and thus
5065 help prevent the unnecessary use of a more expensive comparison.
5066 Said comparison also expects us to make some of these checks
5067 (see ada_identical_enum_types_p). */
5068
5069 /* Quick check: All symbols should have an enum type. */
5070 for (i = 0; i < nsyms; i++)
5071 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
5072 return 0;
5073
5074 /* Quick check: They should all have the same value. */
5075 for (i = 1; i < nsyms; i++)
5076 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
5077 return 0;
5078
5079 /* Quick check: They should all have the same number of enumerals. */
5080 for (i = 1; i < nsyms; i++)
5081 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
5082 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
5083 return 0;
5084
5085 /* All the sanity checks passed, so we might have a set of
5086 identical enumeration types. Perform a more complete
5087 comparison of the type of each symbol. */
5088 for (i = 1; i < nsyms; i++)
5089 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5090 SYMBOL_TYPE (syms[0].symbol)))
5091 return 0;
5092
5093 return 1;
5094 }
5095
5096 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
5097 duplicate other symbols in the list (The only case I know of where
5098 this happens is when object files containing stabs-in-ecoff are
5099 linked with files containing ordinary ecoff debugging symbols (or no
5100 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5101 Returns the number of items in the modified list. */
5102
5103 static int
5104 remove_extra_symbols (struct block_symbol *syms, int nsyms)
5105 {
5106 int i, j;
5107
5108 /* We should never be called with less than 2 symbols, as there
5109 cannot be any extra symbol in that case. But it's easy to
5110 handle, since we have nothing to do in that case. */
5111 if (nsyms < 2)
5112 return nsyms;
5113
5114 i = 0;
5115 while (i < nsyms)
5116 {
5117 int remove_p = 0;
5118
5119 /* If two symbols have the same name and one of them is a stub type,
5120 the get rid of the stub. */
5121
5122 if (TYPE_STUB (SYMBOL_TYPE (syms[i].symbol))
5123 && SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL)
5124 {
5125 for (j = 0; j < nsyms; j++)
5126 {
5127 if (j != i
5128 && !TYPE_STUB (SYMBOL_TYPE (syms[j].symbol))
5129 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5130 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5131 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0)
5132 remove_p = 1;
5133 }
5134 }
5135
5136 /* Two symbols with the same name, same class and same address
5137 should be identical. */
5138
5139 else if (SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL
5140 && SYMBOL_CLASS (syms[i].symbol) == LOC_STATIC
5141 && is_nondebugging_type (SYMBOL_TYPE (syms[i].symbol)))
5142 {
5143 for (j = 0; j < nsyms; j += 1)
5144 {
5145 if (i != j
5146 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5147 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5148 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0
5149 && SYMBOL_CLASS (syms[i].symbol)
5150 == SYMBOL_CLASS (syms[j].symbol)
5151 && SYMBOL_VALUE_ADDRESS (syms[i].symbol)
5152 == SYMBOL_VALUE_ADDRESS (syms[j].symbol))
5153 remove_p = 1;
5154 }
5155 }
5156
5157 if (remove_p)
5158 {
5159 for (j = i + 1; j < nsyms; j += 1)
5160 syms[j - 1] = syms[j];
5161 nsyms -= 1;
5162 }
5163
5164 i += 1;
5165 }
5166
5167 /* If all the remaining symbols are identical enumerals, then
5168 just keep the first one and discard the rest.
5169
5170 Unlike what we did previously, we do not discard any entry
5171 unless they are ALL identical. This is because the symbol
5172 comparison is not a strict comparison, but rather a practical
5173 comparison. If all symbols are considered identical, then
5174 we can just go ahead and use the first one and discard the rest.
5175 But if we cannot reduce the list to a single element, we have
5176 to ask the user to disambiguate anyways. And if we have to
5177 present a multiple-choice menu, it's less confusing if the list
5178 isn't missing some choices that were identical and yet distinct. */
5179 if (symbols_are_identical_enums (syms, nsyms))
5180 nsyms = 1;
5181
5182 return nsyms;
5183 }
5184
5185 /* Given a type that corresponds to a renaming entity, use the type name
5186 to extract the scope (package name or function name, fully qualified,
5187 and following the GNAT encoding convention) where this renaming has been
5188 defined. The string returned needs to be deallocated after use. */
5189
5190 static char *
5191 xget_renaming_scope (struct type *renaming_type)
5192 {
5193 /* The renaming types adhere to the following convention:
5194 <scope>__<rename>___<XR extension>.
5195 So, to extract the scope, we search for the "___XR" extension,
5196 and then backtrack until we find the first "__". */
5197
5198 const char *name = type_name_no_tag (renaming_type);
5199 const char *suffix = strstr (name, "___XR");
5200 const char *last;
5201 int scope_len;
5202 char *scope;
5203
5204 /* Now, backtrack a bit until we find the first "__". Start looking
5205 at suffix - 3, as the <rename> part is at least one character long. */
5206
5207 for (last = suffix - 3; last > name; last--)
5208 if (last[0] == '_' && last[1] == '_')
5209 break;
5210
5211 /* Make a copy of scope and return it. */
5212
5213 scope_len = last - name;
5214 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
5215
5216 strncpy (scope, name, scope_len);
5217 scope[scope_len] = '\0';
5218
5219 return scope;
5220 }
5221
5222 /* Return nonzero if NAME corresponds to a package name. */
5223
5224 static int
5225 is_package_name (const char *name)
5226 {
5227 /* Here, We take advantage of the fact that no symbols are generated
5228 for packages, while symbols are generated for each function.
5229 So the condition for NAME represent a package becomes equivalent
5230 to NAME not existing in our list of symbols. There is only one
5231 small complication with library-level functions (see below). */
5232
5233 char *fun_name;
5234
5235 /* If it is a function that has not been defined at library level,
5236 then we should be able to look it up in the symbols. */
5237 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5238 return 0;
5239
5240 /* Library-level function names start with "_ada_". See if function
5241 "_ada_" followed by NAME can be found. */
5242
5243 /* Do a quick check that NAME does not contain "__", since library-level
5244 functions names cannot contain "__" in them. */
5245 if (strstr (name, "__") != NULL)
5246 return 0;
5247
5248 fun_name = xstrprintf ("_ada_%s", name);
5249
5250 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
5251 }
5252
5253 /* Return nonzero if SYM corresponds to a renaming entity that is
5254 not visible from FUNCTION_NAME. */
5255
5256 static int
5257 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
5258 {
5259 char *scope;
5260 struct cleanup *old_chain;
5261
5262 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5263 return 0;
5264
5265 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
5266 old_chain = make_cleanup (xfree, scope);
5267
5268 /* If the rename has been defined in a package, then it is visible. */
5269 if (is_package_name (scope))
5270 {
5271 do_cleanups (old_chain);
5272 return 0;
5273 }
5274
5275 /* Check that the rename is in the current function scope by checking
5276 that its name starts with SCOPE. */
5277
5278 /* If the function name starts with "_ada_", it means that it is
5279 a library-level function. Strip this prefix before doing the
5280 comparison, as the encoding for the renaming does not contain
5281 this prefix. */
5282 if (startswith (function_name, "_ada_"))
5283 function_name += 5;
5284
5285 {
5286 int is_invisible = !startswith (function_name, scope);
5287
5288 do_cleanups (old_chain);
5289 return is_invisible;
5290 }
5291 }
5292
5293 /* Remove entries from SYMS that corresponds to a renaming entity that
5294 is not visible from the function associated with CURRENT_BLOCK or
5295 that is superfluous due to the presence of more specific renaming
5296 information. Places surviving symbols in the initial entries of
5297 SYMS and returns the number of surviving symbols.
5298
5299 Rationale:
5300 First, in cases where an object renaming is implemented as a
5301 reference variable, GNAT may produce both the actual reference
5302 variable and the renaming encoding. In this case, we discard the
5303 latter.
5304
5305 Second, GNAT emits a type following a specified encoding for each renaming
5306 entity. Unfortunately, STABS currently does not support the definition
5307 of types that are local to a given lexical block, so all renamings types
5308 are emitted at library level. As a consequence, if an application
5309 contains two renaming entities using the same name, and a user tries to
5310 print the value of one of these entities, the result of the ada symbol
5311 lookup will also contain the wrong renaming type.
5312
5313 This function partially covers for this limitation by attempting to
5314 remove from the SYMS list renaming symbols that should be visible
5315 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5316 method with the current information available. The implementation
5317 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5318
5319 - When the user tries to print a rename in a function while there
5320 is another rename entity defined in a package: Normally, the
5321 rename in the function has precedence over the rename in the
5322 package, so the latter should be removed from the list. This is
5323 currently not the case.
5324
5325 - This function will incorrectly remove valid renames if
5326 the CURRENT_BLOCK corresponds to a function which symbol name
5327 has been changed by an "Export" pragma. As a consequence,
5328 the user will be unable to print such rename entities. */
5329
5330 static int
5331 remove_irrelevant_renamings (struct block_symbol *syms,
5332 int nsyms, const struct block *current_block)
5333 {
5334 struct symbol *current_function;
5335 const char *current_function_name;
5336 int i;
5337 int is_new_style_renaming;
5338
5339 /* If there is both a renaming foo___XR... encoded as a variable and
5340 a simple variable foo in the same block, discard the latter.
5341 First, zero out such symbols, then compress. */
5342 is_new_style_renaming = 0;
5343 for (i = 0; i < nsyms; i += 1)
5344 {
5345 struct symbol *sym = syms[i].symbol;
5346 const struct block *block = syms[i].block;
5347 const char *name;
5348 const char *suffix;
5349
5350 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5351 continue;
5352 name = SYMBOL_LINKAGE_NAME (sym);
5353 suffix = strstr (name, "___XR");
5354
5355 if (suffix != NULL)
5356 {
5357 int name_len = suffix - name;
5358 int j;
5359
5360 is_new_style_renaming = 1;
5361 for (j = 0; j < nsyms; j += 1)
5362 if (i != j && syms[j].symbol != NULL
5363 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].symbol),
5364 name_len) == 0
5365 && block == syms[j].block)
5366 syms[j].symbol = NULL;
5367 }
5368 }
5369 if (is_new_style_renaming)
5370 {
5371 int j, k;
5372
5373 for (j = k = 0; j < nsyms; j += 1)
5374 if (syms[j].symbol != NULL)
5375 {
5376 syms[k] = syms[j];
5377 k += 1;
5378 }
5379 return k;
5380 }
5381
5382 /* Extract the function name associated to CURRENT_BLOCK.
5383 Abort if unable to do so. */
5384
5385 if (current_block == NULL)
5386 return nsyms;
5387
5388 current_function = block_linkage_function (current_block);
5389 if (current_function == NULL)
5390 return nsyms;
5391
5392 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5393 if (current_function_name == NULL)
5394 return nsyms;
5395
5396 /* Check each of the symbols, and remove it from the list if it is
5397 a type corresponding to a renaming that is out of the scope of
5398 the current block. */
5399
5400 i = 0;
5401 while (i < nsyms)
5402 {
5403 if (ada_parse_renaming (syms[i].symbol, NULL, NULL, NULL)
5404 == ADA_OBJECT_RENAMING
5405 && old_renaming_is_invisible (syms[i].symbol, current_function_name))
5406 {
5407 int j;
5408
5409 for (j = i + 1; j < nsyms; j += 1)
5410 syms[j - 1] = syms[j];
5411 nsyms -= 1;
5412 }
5413 else
5414 i += 1;
5415 }
5416
5417 return nsyms;
5418 }
5419
5420 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5421 whose name and domain match NAME and DOMAIN respectively.
5422 If no match was found, then extend the search to "enclosing"
5423 routines (in other words, if we're inside a nested function,
5424 search the symbols defined inside the enclosing functions).
5425 If WILD_MATCH_P is nonzero, perform the naming matching in
5426 "wild" mode (see function "wild_match" for more info).
5427
5428 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5429
5430 static void
5431 ada_add_local_symbols (struct obstack *obstackp,
5432 const lookup_name_info &lookup_name,
5433 const struct block *block, domain_enum domain)
5434 {
5435 int block_depth = 0;
5436
5437 while (block != NULL)
5438 {
5439 block_depth += 1;
5440 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5441
5442 /* If we found a non-function match, assume that's the one. */
5443 if (is_nonfunction (defns_collected (obstackp, 0),
5444 num_defns_collected (obstackp)))
5445 return;
5446
5447 block = BLOCK_SUPERBLOCK (block);
5448 }
5449
5450 /* If no luck so far, try to find NAME as a local symbol in some lexically
5451 enclosing subprogram. */
5452 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5453 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
5454 }
5455
5456 /* An object of this type is used as the user_data argument when
5457 calling the map_matching_symbols method. */
5458
5459 struct match_data
5460 {
5461 struct objfile *objfile;
5462 struct obstack *obstackp;
5463 struct symbol *arg_sym;
5464 int found_sym;
5465 };
5466
5467 /* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
5468 to a list of symbols. DATA0 is a pointer to a struct match_data *
5469 containing the obstack that collects the symbol list, the file that SYM
5470 must come from, a flag indicating whether a non-argument symbol has
5471 been found in the current block, and the last argument symbol
5472 passed in SYM within the current block (if any). When SYM is null,
5473 marking the end of a block, the argument symbol is added if no
5474 other has been found. */
5475
5476 static int
5477 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
5478 {
5479 struct match_data *data = (struct match_data *) data0;
5480
5481 if (sym == NULL)
5482 {
5483 if (!data->found_sym && data->arg_sym != NULL)
5484 add_defn_to_vec (data->obstackp,
5485 fixup_symbol_section (data->arg_sym, data->objfile),
5486 block);
5487 data->found_sym = 0;
5488 data->arg_sym = NULL;
5489 }
5490 else
5491 {
5492 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5493 return 0;
5494 else if (SYMBOL_IS_ARGUMENT (sym))
5495 data->arg_sym = sym;
5496 else
5497 {
5498 data->found_sym = 1;
5499 add_defn_to_vec (data->obstackp,
5500 fixup_symbol_section (sym, data->objfile),
5501 block);
5502 }
5503 }
5504 return 0;
5505 }
5506
5507 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5508 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5509 symbols to OBSTACKP. Return whether we found such symbols. */
5510
5511 static int
5512 ada_add_block_renamings (struct obstack *obstackp,
5513 const struct block *block,
5514 const lookup_name_info &lookup_name,
5515 domain_enum domain)
5516 {
5517 struct using_direct *renaming;
5518 int defns_mark = num_defns_collected (obstackp);
5519
5520 symbol_name_matcher_ftype *name_match
5521 = ada_get_symbol_name_matcher (lookup_name);
5522
5523 for (renaming = block_using (block);
5524 renaming != NULL;
5525 renaming = renaming->next)
5526 {
5527 const char *r_name;
5528
5529 /* Avoid infinite recursions: skip this renaming if we are actually
5530 already traversing it.
5531
5532 Currently, symbol lookup in Ada don't use the namespace machinery from
5533 C++/Fortran support: skip namespace imports that use them. */
5534 if (renaming->searched
5535 || (renaming->import_src != NULL
5536 && renaming->import_src[0] != '\0')
5537 || (renaming->import_dest != NULL
5538 && renaming->import_dest[0] != '\0'))
5539 continue;
5540 renaming->searched = 1;
5541
5542 /* TODO: here, we perform another name-based symbol lookup, which can
5543 pull its own multiple overloads. In theory, we should be able to do
5544 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5545 not a simple name. But in order to do this, we would need to enhance
5546 the DWARF reader to associate a symbol to this renaming, instead of a
5547 name. So, for now, we do something simpler: re-use the C++/Fortran
5548 namespace machinery. */
5549 r_name = (renaming->alias != NULL
5550 ? renaming->alias
5551 : renaming->declaration);
5552 if (name_match (r_name, lookup_name, NULL))
5553 {
5554 lookup_name_info decl_lookup_name (renaming->declaration,
5555 lookup_name.match_type ());
5556 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5557 1, NULL);
5558 }
5559 renaming->searched = 0;
5560 }
5561 return num_defns_collected (obstackp) != defns_mark;
5562 }
5563
5564 /* Implements compare_names, but only applying the comparision using
5565 the given CASING. */
5566
5567 static int
5568 compare_names_with_case (const char *string1, const char *string2,
5569 enum case_sensitivity casing)
5570 {
5571 while (*string1 != '\0' && *string2 != '\0')
5572 {
5573 char c1, c2;
5574
5575 if (isspace (*string1) || isspace (*string2))
5576 return strcmp_iw_ordered (string1, string2);
5577
5578 if (casing == case_sensitive_off)
5579 {
5580 c1 = tolower (*string1);
5581 c2 = tolower (*string2);
5582 }
5583 else
5584 {
5585 c1 = *string1;
5586 c2 = *string2;
5587 }
5588 if (c1 != c2)
5589 break;
5590
5591 string1 += 1;
5592 string2 += 1;
5593 }
5594
5595 switch (*string1)
5596 {
5597 case '(':
5598 return strcmp_iw_ordered (string1, string2);
5599 case '_':
5600 if (*string2 == '\0')
5601 {
5602 if (is_name_suffix (string1))
5603 return 0;
5604 else
5605 return 1;
5606 }
5607 /* FALLTHROUGH */
5608 default:
5609 if (*string2 == '(')
5610 return strcmp_iw_ordered (string1, string2);
5611 else
5612 {
5613 if (casing == case_sensitive_off)
5614 return tolower (*string1) - tolower (*string2);
5615 else
5616 return *string1 - *string2;
5617 }
5618 }
5619 }
5620
5621 /* Compare STRING1 to STRING2, with results as for strcmp.
5622 Compatible with strcmp_iw_ordered in that...
5623
5624 strcmp_iw_ordered (STRING1, STRING2) <= 0
5625
5626 ... implies...
5627
5628 compare_names (STRING1, STRING2) <= 0
5629
5630 (they may differ as to what symbols compare equal). */
5631
5632 static int
5633 compare_names (const char *string1, const char *string2)
5634 {
5635 int result;
5636
5637 /* Similar to what strcmp_iw_ordered does, we need to perform
5638 a case-insensitive comparison first, and only resort to
5639 a second, case-sensitive, comparison if the first one was
5640 not sufficient to differentiate the two strings. */
5641
5642 result = compare_names_with_case (string1, string2, case_sensitive_off);
5643 if (result == 0)
5644 result = compare_names_with_case (string1, string2, case_sensitive_on);
5645
5646 return result;
5647 }
5648
5649 /* Convenience function to get at the Ada encoded lookup name for
5650 LOOKUP_NAME, as a C string. */
5651
5652 static const char *
5653 ada_lookup_name (const lookup_name_info &lookup_name)
5654 {
5655 return lookup_name.ada ().lookup_name ().c_str ();
5656 }
5657
5658 /* Add to OBSTACKP all non-local symbols whose name and domain match
5659 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5660 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5661 symbols otherwise. */
5662
5663 static void
5664 add_nonlocal_symbols (struct obstack *obstackp,
5665 const lookup_name_info &lookup_name,
5666 domain_enum domain, int global)
5667 {
5668 struct objfile *objfile;
5669 struct compunit_symtab *cu;
5670 struct match_data data;
5671
5672 memset (&data, 0, sizeof data);
5673 data.obstackp = obstackp;
5674
5675 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5676
5677 ALL_OBJFILES (objfile)
5678 {
5679 data.objfile = objfile;
5680
5681 if (is_wild_match)
5682 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5683 domain, global,
5684 aux_add_nonlocal_symbols, &data,
5685 symbol_name_match_type::WILD,
5686 NULL);
5687 else
5688 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5689 domain, global,
5690 aux_add_nonlocal_symbols, &data,
5691 symbol_name_match_type::FULL,
5692 compare_names);
5693
5694 ALL_OBJFILE_COMPUNITS (objfile, cu)
5695 {
5696 const struct block *global_block
5697 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5698
5699 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5700 domain))
5701 data.found_sym = 1;
5702 }
5703 }
5704
5705 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5706 {
5707 const char *name = ada_lookup_name (lookup_name);
5708 std::string name1 = std::string ("<_ada_") + name + '>';
5709
5710 ALL_OBJFILES (objfile)
5711 {
5712 data.objfile = objfile;
5713 objfile->sf->qf->map_matching_symbols (objfile, name1.c_str (),
5714 domain, global,
5715 aux_add_nonlocal_symbols,
5716 &data,
5717 symbol_name_match_type::FULL,
5718 compare_names);
5719 }
5720 }
5721 }
5722
5723 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5724 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5725 returning the number of matches. Add these to OBSTACKP.
5726
5727 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5728 symbol match within the nest of blocks whose innermost member is BLOCK,
5729 is the one match returned (no other matches in that or
5730 enclosing blocks is returned). If there are any matches in or
5731 surrounding BLOCK, then these alone are returned.
5732
5733 Names prefixed with "standard__" are handled specially:
5734 "standard__" is first stripped off (by the lookup_name
5735 constructor), and only static and global symbols are searched.
5736
5737 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5738 to lookup global symbols. */
5739
5740 static void
5741 ada_add_all_symbols (struct obstack *obstackp,
5742 const struct block *block,
5743 const lookup_name_info &lookup_name,
5744 domain_enum domain,
5745 int full_search,
5746 int *made_global_lookup_p)
5747 {
5748 struct symbol *sym;
5749
5750 if (made_global_lookup_p)
5751 *made_global_lookup_p = 0;
5752
5753 /* Special case: If the user specifies a symbol name inside package
5754 Standard, do a non-wild matching of the symbol name without
5755 the "standard__" prefix. This was primarily introduced in order
5756 to allow the user to specifically access the standard exceptions
5757 using, for instance, Standard.Constraint_Error when Constraint_Error
5758 is ambiguous (due to the user defining its own Constraint_Error
5759 entity inside its program). */
5760 if (lookup_name.ada ().standard_p ())
5761 block = NULL;
5762
5763 /* Check the non-global symbols. If we have ANY match, then we're done. */
5764
5765 if (block != NULL)
5766 {
5767 if (full_search)
5768 ada_add_local_symbols (obstackp, lookup_name, block, domain);
5769 else
5770 {
5771 /* In the !full_search case we're are being called by
5772 ada_iterate_over_symbols, and we don't want to search
5773 superblocks. */
5774 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5775 }
5776 if (num_defns_collected (obstackp) > 0 || !full_search)
5777 return;
5778 }
5779
5780 /* No non-global symbols found. Check our cache to see if we have
5781 already performed this search before. If we have, then return
5782 the same result. */
5783
5784 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5785 domain, &sym, &block))
5786 {
5787 if (sym != NULL)
5788 add_defn_to_vec (obstackp, sym, block);
5789 return;
5790 }
5791
5792 if (made_global_lookup_p)
5793 *made_global_lookup_p = 1;
5794
5795 /* Search symbols from all global blocks. */
5796
5797 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
5798
5799 /* Now add symbols from all per-file blocks if we've gotten no hits
5800 (not strictly correct, but perhaps better than an error). */
5801
5802 if (num_defns_collected (obstackp) == 0)
5803 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
5804 }
5805
5806 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5807 is non-zero, enclosing scope and in global scopes, returning the number of
5808 matches.
5809 Sets *RESULTS to point to a newly allocated vector of (SYM,BLOCK) tuples,
5810 indicating the symbols found and the blocks and symbol tables (if
5811 any) in which they were found. This vector should be freed when
5812 no longer useful.
5813
5814 When full_search is non-zero, any non-function/non-enumeral
5815 symbol match within the nest of blocks whose innermost member is BLOCK,
5816 is the one match returned (no other matches in that or
5817 enclosing blocks is returned). If there are any matches in or
5818 surrounding BLOCK, then these alone are returned.
5819
5820 Names prefixed with "standard__" are handled specially: "standard__"
5821 is first stripped off, and only static and global symbols are searched. */
5822
5823 static int
5824 ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5825 const struct block *block,
5826 domain_enum domain,
5827 struct block_symbol **results,
5828 int full_search)
5829 {
5830 int syms_from_global_search;
5831 int ndefns;
5832 int results_size;
5833 auto_obstack obstack;
5834
5835 ada_add_all_symbols (&obstack, block, lookup_name,
5836 domain, full_search, &syms_from_global_search);
5837
5838 ndefns = num_defns_collected (&obstack);
5839
5840 results_size = obstack_object_size (&obstack);
5841 *results = (struct block_symbol *) malloc (results_size);
5842 memcpy (*results, defns_collected (&obstack, 1), results_size);
5843
5844 ndefns = remove_extra_symbols (*results, ndefns);
5845
5846 if (ndefns == 0 && full_search && syms_from_global_search)
5847 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
5848
5849 if (ndefns == 1 && full_search && syms_from_global_search)
5850 cache_symbol (ada_lookup_name (lookup_name), domain,
5851 (*results)[0].symbol, (*results)[0].block);
5852
5853 ndefns = remove_irrelevant_renamings (*results, ndefns, block);
5854
5855 return ndefns;
5856 }
5857
5858 /* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
5859 in global scopes, returning the number of matches, and setting *RESULTS
5860 to a newly-allocated vector of (SYM,BLOCK) tuples. This newly-allocated
5861 vector should be freed when no longer useful.
5862
5863 See ada_lookup_symbol_list_worker for further details. */
5864
5865 int
5866 ada_lookup_symbol_list (const char *name, const struct block *block,
5867 domain_enum domain, struct block_symbol **results)
5868 {
5869 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5870 lookup_name_info lookup_name (name, name_match_type);
5871
5872 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
5873 }
5874
5875 /* Implementation of the la_iterate_over_symbols method. */
5876
5877 static void
5878 ada_iterate_over_symbols
5879 (const struct block *block, const lookup_name_info &name,
5880 domain_enum domain,
5881 gdb::function_view<symbol_found_callback_ftype> callback)
5882 {
5883 int ndefs, i;
5884 struct block_symbol *results;
5885 struct cleanup *old_chain;
5886
5887 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5888 old_chain = make_cleanup (xfree, results);
5889
5890 for (i = 0; i < ndefs; ++i)
5891 {
5892 if (!callback (results[i].symbol))
5893 break;
5894 }
5895
5896 do_cleanups (old_chain);
5897 }
5898
5899 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5900 to 1, but choosing the first symbol found if there are multiple
5901 choices.
5902
5903 The result is stored in *INFO, which must be non-NULL.
5904 If no match is found, INFO->SYM is set to NULL. */
5905
5906 void
5907 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5908 domain_enum domain,
5909 struct block_symbol *info)
5910 {
5911 struct block_symbol *candidates;
5912 int n_candidates;
5913 struct cleanup *old_chain;
5914
5915 /* Since we already have an encoded name, wrap it in '<>' to force a
5916 verbatim match. Otherwise, if the name happens to not look like
5917 an encoded name (because it doesn't include a "__"),
5918 ada_lookup_name_info would re-encode/fold it again, and that
5919 would e.g., incorrectly lowercase object renaming names like
5920 "R28b" -> "r28b". */
5921 std::string verbatim = std::string ("<") + name + '>';
5922
5923 gdb_assert (info != NULL);
5924 memset (info, 0, sizeof (struct block_symbol));
5925
5926 n_candidates = ada_lookup_symbol_list (verbatim.c_str (), block,
5927 domain, &candidates);
5928 old_chain = make_cleanup (xfree, candidates);
5929
5930 if (n_candidates == 0)
5931 {
5932 do_cleanups (old_chain);
5933 return;
5934 }
5935
5936 *info = candidates[0];
5937 info->symbol = fixup_symbol_section (info->symbol, NULL);
5938
5939 do_cleanups (old_chain);
5940 }
5941
5942 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5943 scope and in global scopes, or NULL if none. NAME is folded and
5944 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5945 choosing the first symbol if there are multiple choices.
5946 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5947
5948 struct block_symbol
5949 ada_lookup_symbol (const char *name, const struct block *block0,
5950 domain_enum domain, int *is_a_field_of_this)
5951 {
5952 struct block_symbol info;
5953
5954 if (is_a_field_of_this != NULL)
5955 *is_a_field_of_this = 0;
5956
5957 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5958 block0, domain, &info);
5959 return info;
5960 }
5961
5962 static struct block_symbol
5963 ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5964 const char *name,
5965 const struct block *block,
5966 const domain_enum domain)
5967 {
5968 struct block_symbol sym;
5969
5970 sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5971 if (sym.symbol != NULL)
5972 return sym;
5973
5974 /* If we haven't found a match at this point, try the primitive
5975 types. In other languages, this search is performed before
5976 searching for global symbols in order to short-circuit that
5977 global-symbol search if it happens that the name corresponds
5978 to a primitive type. But we cannot do the same in Ada, because
5979 it is perfectly legitimate for a program to declare a type which
5980 has the same name as a standard type. If looking up a type in
5981 that situation, we have traditionally ignored the primitive type
5982 in favor of user-defined types. This is why, unlike most other
5983 languages, we search the primitive types this late and only after
5984 having searched the global symbols without success. */
5985
5986 if (domain == VAR_DOMAIN)
5987 {
5988 struct gdbarch *gdbarch;
5989
5990 if (block == NULL)
5991 gdbarch = target_gdbarch ();
5992 else
5993 gdbarch = block_gdbarch (block);
5994 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5995 if (sym.symbol != NULL)
5996 return sym;
5997 }
5998
5999 return (struct block_symbol) {NULL, NULL};
6000 }
6001
6002
6003 /* True iff STR is a possible encoded suffix of a normal Ada name
6004 that is to be ignored for matching purposes. Suffixes of parallel
6005 names (e.g., XVE) are not included here. Currently, the possible suffixes
6006 are given by any of the regular expressions:
6007
6008 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
6009 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
6010 TKB [subprogram suffix for task bodies]
6011 _E[0-9]+[bs]$ [protected object entry suffixes]
6012 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
6013
6014 Also, any leading "__[0-9]+" sequence is skipped before the suffix
6015 match is performed. This sequence is used to differentiate homonyms,
6016 is an optional part of a valid name suffix. */
6017
6018 static int
6019 is_name_suffix (const char *str)
6020 {
6021 int k;
6022 const char *matching;
6023 const int len = strlen (str);
6024
6025 /* Skip optional leading __[0-9]+. */
6026
6027 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
6028 {
6029 str += 3;
6030 while (isdigit (str[0]))
6031 str += 1;
6032 }
6033
6034 /* [.$][0-9]+ */
6035
6036 if (str[0] == '.' || str[0] == '$')
6037 {
6038 matching = str + 1;
6039 while (isdigit (matching[0]))
6040 matching += 1;
6041 if (matching[0] == '\0')
6042 return 1;
6043 }
6044
6045 /* ___[0-9]+ */
6046
6047 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
6048 {
6049 matching = str + 3;
6050 while (isdigit (matching[0]))
6051 matching += 1;
6052 if (matching[0] == '\0')
6053 return 1;
6054 }
6055
6056 /* "TKB" suffixes are used for subprograms implementing task bodies. */
6057
6058 if (strcmp (str, "TKB") == 0)
6059 return 1;
6060
6061 #if 0
6062 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
6063 with a N at the end. Unfortunately, the compiler uses the same
6064 convention for other internal types it creates. So treating
6065 all entity names that end with an "N" as a name suffix causes
6066 some regressions. For instance, consider the case of an enumerated
6067 type. To support the 'Image attribute, it creates an array whose
6068 name ends with N.
6069 Having a single character like this as a suffix carrying some
6070 information is a bit risky. Perhaps we should change the encoding
6071 to be something like "_N" instead. In the meantime, do not do
6072 the following check. */
6073 /* Protected Object Subprograms */
6074 if (len == 1 && str [0] == 'N')
6075 return 1;
6076 #endif
6077
6078 /* _E[0-9]+[bs]$ */
6079 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
6080 {
6081 matching = str + 3;
6082 while (isdigit (matching[0]))
6083 matching += 1;
6084 if ((matching[0] == 'b' || matching[0] == 's')
6085 && matching [1] == '\0')
6086 return 1;
6087 }
6088
6089 /* ??? We should not modify STR directly, as we are doing below. This
6090 is fine in this case, but may become problematic later if we find
6091 that this alternative did not work, and want to try matching
6092 another one from the begining of STR. Since we modified it, we
6093 won't be able to find the begining of the string anymore! */
6094 if (str[0] == 'X')
6095 {
6096 str += 1;
6097 while (str[0] != '_' && str[0] != '\0')
6098 {
6099 if (str[0] != 'n' && str[0] != 'b')
6100 return 0;
6101 str += 1;
6102 }
6103 }
6104
6105 if (str[0] == '\000')
6106 return 1;
6107
6108 if (str[0] == '_')
6109 {
6110 if (str[1] != '_' || str[2] == '\000')
6111 return 0;
6112 if (str[2] == '_')
6113 {
6114 if (strcmp (str + 3, "JM") == 0)
6115 return 1;
6116 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6117 the LJM suffix in favor of the JM one. But we will
6118 still accept LJM as a valid suffix for a reasonable
6119 amount of time, just to allow ourselves to debug programs
6120 compiled using an older version of GNAT. */
6121 if (strcmp (str + 3, "LJM") == 0)
6122 return 1;
6123 if (str[3] != 'X')
6124 return 0;
6125 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
6126 || str[4] == 'U' || str[4] == 'P')
6127 return 1;
6128 if (str[4] == 'R' && str[5] != 'T')
6129 return 1;
6130 return 0;
6131 }
6132 if (!isdigit (str[2]))
6133 return 0;
6134 for (k = 3; str[k] != '\0'; k += 1)
6135 if (!isdigit (str[k]) && str[k] != '_')
6136 return 0;
6137 return 1;
6138 }
6139 if (str[0] == '$' && isdigit (str[1]))
6140 {
6141 for (k = 2; str[k] != '\0'; k += 1)
6142 if (!isdigit (str[k]) && str[k] != '_')
6143 return 0;
6144 return 1;
6145 }
6146 return 0;
6147 }
6148
6149 /* Return non-zero if the string starting at NAME and ending before
6150 NAME_END contains no capital letters. */
6151
6152 static int
6153 is_valid_name_for_wild_match (const char *name0)
6154 {
6155 const char *decoded_name = ada_decode (name0);
6156 int i;
6157
6158 /* If the decoded name starts with an angle bracket, it means that
6159 NAME0 does not follow the GNAT encoding format. It should then
6160 not be allowed as a possible wild match. */
6161 if (decoded_name[0] == '<')
6162 return 0;
6163
6164 for (i=0; decoded_name[i] != '\0'; i++)
6165 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6166 return 0;
6167
6168 return 1;
6169 }
6170
6171 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6172 that could start a simple name. Assumes that *NAMEP points into
6173 the string beginning at NAME0. */
6174
6175 static int
6176 advance_wild_match (const char **namep, const char *name0, int target0)
6177 {
6178 const char *name = *namep;
6179
6180 while (1)
6181 {
6182 int t0, t1;
6183
6184 t0 = *name;
6185 if (t0 == '_')
6186 {
6187 t1 = name[1];
6188 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6189 {
6190 name += 1;
6191 if (name == name0 + 5 && startswith (name0, "_ada"))
6192 break;
6193 else
6194 name += 1;
6195 }
6196 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6197 || name[2] == target0))
6198 {
6199 name += 2;
6200 break;
6201 }
6202 else
6203 return 0;
6204 }
6205 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6206 name += 1;
6207 else
6208 return 0;
6209 }
6210
6211 *namep = name;
6212 return 1;
6213 }
6214
6215 /* Return true iff NAME encodes a name of the form prefix.PATN.
6216 Ignores any informational suffixes of NAME (i.e., for which
6217 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6218 simple name. */
6219
6220 static bool
6221 wild_match (const char *name, const char *patn)
6222 {
6223 const char *p;
6224 const char *name0 = name;
6225
6226 while (1)
6227 {
6228 const char *match = name;
6229
6230 if (*name == *patn)
6231 {
6232 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6233 if (*p != *name)
6234 break;
6235 if (*p == '\0' && is_name_suffix (name))
6236 return match == name0 || is_valid_name_for_wild_match (name0);
6237
6238 if (name[-1] == '_')
6239 name -= 1;
6240 }
6241 if (!advance_wild_match (&name, name0, *patn))
6242 return false;
6243 }
6244 }
6245
6246 /* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6247 any trailing suffixes that encode debugging information or leading
6248 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6249 information that is ignored). */
6250
6251 static bool
6252 full_match (const char *sym_name, const char *search_name)
6253 {
6254 size_t search_name_len = strlen (search_name);
6255
6256 if (strncmp (sym_name, search_name, search_name_len) == 0
6257 && is_name_suffix (sym_name + search_name_len))
6258 return true;
6259
6260 if (startswith (sym_name, "_ada_")
6261 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6262 && is_name_suffix (sym_name + search_name_len + 5))
6263 return true;
6264
6265 return false;
6266 }
6267
6268 /* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6269 *defn_symbols, updating the list of symbols in OBSTACKP (if
6270 necessary). OBJFILE is the section containing BLOCK. */
6271
6272 static void
6273 ada_add_block_symbols (struct obstack *obstackp,
6274 const struct block *block,
6275 const lookup_name_info &lookup_name,
6276 domain_enum domain, struct objfile *objfile)
6277 {
6278 struct block_iterator iter;
6279 /* A matching argument symbol, if any. */
6280 struct symbol *arg_sym;
6281 /* Set true when we find a matching non-argument symbol. */
6282 int found_sym;
6283 struct symbol *sym;
6284
6285 arg_sym = NULL;
6286 found_sym = 0;
6287 for (sym = block_iter_match_first (block, lookup_name, &iter);
6288 sym != NULL;
6289 sym = block_iter_match_next (lookup_name, &iter))
6290 {
6291 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6292 SYMBOL_DOMAIN (sym), domain))
6293 {
6294 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6295 {
6296 if (SYMBOL_IS_ARGUMENT (sym))
6297 arg_sym = sym;
6298 else
6299 {
6300 found_sym = 1;
6301 add_defn_to_vec (obstackp,
6302 fixup_symbol_section (sym, objfile),
6303 block);
6304 }
6305 }
6306 }
6307 }
6308
6309 /* Handle renamings. */
6310
6311 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
6312 found_sym = 1;
6313
6314 if (!found_sym && arg_sym != NULL)
6315 {
6316 add_defn_to_vec (obstackp,
6317 fixup_symbol_section (arg_sym, objfile),
6318 block);
6319 }
6320
6321 if (!lookup_name.ada ().wild_match_p ())
6322 {
6323 arg_sym = NULL;
6324 found_sym = 0;
6325 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6326 const char *name = ada_lookup_name.c_str ();
6327 size_t name_len = ada_lookup_name.size ();
6328
6329 ALL_BLOCK_SYMBOLS (block, iter, sym)
6330 {
6331 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6332 SYMBOL_DOMAIN (sym), domain))
6333 {
6334 int cmp;
6335
6336 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6337 if (cmp == 0)
6338 {
6339 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
6340 if (cmp == 0)
6341 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6342 name_len);
6343 }
6344
6345 if (cmp == 0
6346 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6347 {
6348 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6349 {
6350 if (SYMBOL_IS_ARGUMENT (sym))
6351 arg_sym = sym;
6352 else
6353 {
6354 found_sym = 1;
6355 add_defn_to_vec (obstackp,
6356 fixup_symbol_section (sym, objfile),
6357 block);
6358 }
6359 }
6360 }
6361 }
6362 }
6363
6364 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6365 They aren't parameters, right? */
6366 if (!found_sym && arg_sym != NULL)
6367 {
6368 add_defn_to_vec (obstackp,
6369 fixup_symbol_section (arg_sym, objfile),
6370 block);
6371 }
6372 }
6373 }
6374 \f
6375
6376 /* Symbol Completion */
6377
6378 /* See symtab.h. */
6379
6380 bool
6381 ada_lookup_name_info::matches
6382 (const char *sym_name,
6383 symbol_name_match_type match_type,
6384 completion_match_result *comp_match_res) const
6385 {
6386 bool match = false;
6387 const char *text = m_encoded_name.c_str ();
6388 size_t text_len = m_encoded_name.size ();
6389
6390 /* First, test against the fully qualified name of the symbol. */
6391
6392 if (strncmp (sym_name, text, text_len) == 0)
6393 match = true;
6394
6395 if (match && !m_encoded_p)
6396 {
6397 /* One needed check before declaring a positive match is to verify
6398 that iff we are doing a verbatim match, the decoded version
6399 of the symbol name starts with '<'. Otherwise, this symbol name
6400 is not a suitable completion. */
6401 const char *sym_name_copy = sym_name;
6402 bool has_angle_bracket;
6403
6404 sym_name = ada_decode (sym_name);
6405 has_angle_bracket = (sym_name[0] == '<');
6406 match = (has_angle_bracket == m_verbatim_p);
6407 sym_name = sym_name_copy;
6408 }
6409
6410 if (match && !m_verbatim_p)
6411 {
6412 /* When doing non-verbatim match, another check that needs to
6413 be done is to verify that the potentially matching symbol name
6414 does not include capital letters, because the ada-mode would
6415 not be able to understand these symbol names without the
6416 angle bracket notation. */
6417 const char *tmp;
6418
6419 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6420 if (*tmp != '\0')
6421 match = false;
6422 }
6423
6424 /* Second: Try wild matching... */
6425
6426 if (!match && m_wild_match_p)
6427 {
6428 /* Since we are doing wild matching, this means that TEXT
6429 may represent an unqualified symbol name. We therefore must
6430 also compare TEXT against the unqualified name of the symbol. */
6431 sym_name = ada_unqualified_name (ada_decode (sym_name));
6432
6433 if (strncmp (sym_name, text, text_len) == 0)
6434 match = true;
6435 }
6436
6437 /* Finally: If we found a match, prepare the result to return. */
6438
6439 if (!match)
6440 return false;
6441
6442 if (comp_match_res != NULL)
6443 {
6444 std::string &match_str = comp_match_res->match.storage ();
6445
6446 if (!m_encoded_p)
6447 match_str = ada_decode (sym_name);
6448 else
6449 {
6450 if (m_verbatim_p)
6451 match_str = add_angle_brackets (sym_name);
6452 else
6453 match_str = sym_name;
6454
6455 }
6456
6457 comp_match_res->set_match (match_str.c_str ());
6458 }
6459
6460 return true;
6461 }
6462
6463 /* Add the list of possible symbol names completing TEXT to TRACKER.
6464 WORD is the entire command on which completion is made. */
6465
6466 static void
6467 ada_collect_symbol_completion_matches (completion_tracker &tracker,
6468 complete_symbol_mode mode,
6469 symbol_name_match_type name_match_type,
6470 const char *text, const char *word,
6471 enum type_code code)
6472 {
6473 struct symbol *sym;
6474 struct compunit_symtab *s;
6475 struct minimal_symbol *msymbol;
6476 struct objfile *objfile;
6477 const struct block *b, *surrounding_static_block = 0;
6478 struct block_iterator iter;
6479 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
6480
6481 gdb_assert (code == TYPE_CODE_UNDEF);
6482
6483 lookup_name_info lookup_name (text, name_match_type, true);
6484
6485 /* First, look at the partial symtab symbols. */
6486 expand_symtabs_matching (NULL,
6487 lookup_name,
6488 NULL,
6489 NULL,
6490 ALL_DOMAIN);
6491
6492 /* At this point scan through the misc symbol vectors and add each
6493 symbol you find to the list. Eventually we want to ignore
6494 anything that isn't a text symbol (everything else will be
6495 handled by the psymtab code above). */
6496
6497 ALL_MSYMBOLS (objfile, msymbol)
6498 {
6499 QUIT;
6500
6501 if (completion_skip_symbol (mode, msymbol))
6502 continue;
6503
6504 completion_list_add_name (tracker,
6505 MSYMBOL_LANGUAGE (msymbol),
6506 MSYMBOL_LINKAGE_NAME (msymbol),
6507 lookup_name, text, word);
6508 }
6509
6510 /* Search upwards from currently selected frame (so that we can
6511 complete on local vars. */
6512
6513 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6514 {
6515 if (!BLOCK_SUPERBLOCK (b))
6516 surrounding_static_block = b; /* For elmin of dups */
6517
6518 ALL_BLOCK_SYMBOLS (b, iter, sym)
6519 {
6520 if (completion_skip_symbol (mode, sym))
6521 continue;
6522
6523 completion_list_add_name (tracker,
6524 SYMBOL_LANGUAGE (sym),
6525 SYMBOL_LINKAGE_NAME (sym),
6526 lookup_name, text, word);
6527 }
6528 }
6529
6530 /* Go through the symtabs and check the externs and statics for
6531 symbols which match. */
6532
6533 ALL_COMPUNITS (objfile, s)
6534 {
6535 QUIT;
6536 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6537 ALL_BLOCK_SYMBOLS (b, iter, sym)
6538 {
6539 if (completion_skip_symbol (mode, sym))
6540 continue;
6541
6542 completion_list_add_name (tracker,
6543 SYMBOL_LANGUAGE (sym),
6544 SYMBOL_LINKAGE_NAME (sym),
6545 lookup_name, text, word);
6546 }
6547 }
6548
6549 ALL_COMPUNITS (objfile, s)
6550 {
6551 QUIT;
6552 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6553 /* Don't do this block twice. */
6554 if (b == surrounding_static_block)
6555 continue;
6556 ALL_BLOCK_SYMBOLS (b, iter, sym)
6557 {
6558 if (completion_skip_symbol (mode, sym))
6559 continue;
6560
6561 completion_list_add_name (tracker,
6562 SYMBOL_LANGUAGE (sym),
6563 SYMBOL_LINKAGE_NAME (sym),
6564 lookup_name, text, word);
6565 }
6566 }
6567
6568 do_cleanups (old_chain);
6569 }
6570
6571 /* Field Access */
6572
6573 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6574 for tagged types. */
6575
6576 static int
6577 ada_is_dispatch_table_ptr_type (struct type *type)
6578 {
6579 const char *name;
6580
6581 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6582 return 0;
6583
6584 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6585 if (name == NULL)
6586 return 0;
6587
6588 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6589 }
6590
6591 /* Return non-zero if TYPE is an interface tag. */
6592
6593 static int
6594 ada_is_interface_tag (struct type *type)
6595 {
6596 const char *name = TYPE_NAME (type);
6597
6598 if (name == NULL)
6599 return 0;
6600
6601 return (strcmp (name, "ada__tags__interface_tag") == 0);
6602 }
6603
6604 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6605 to be invisible to users. */
6606
6607 int
6608 ada_is_ignored_field (struct type *type, int field_num)
6609 {
6610 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6611 return 1;
6612
6613 /* Check the name of that field. */
6614 {
6615 const char *name = TYPE_FIELD_NAME (type, field_num);
6616
6617 /* Anonymous field names should not be printed.
6618 brobecker/2007-02-20: I don't think this can actually happen
6619 but we don't want to print the value of annonymous fields anyway. */
6620 if (name == NULL)
6621 return 1;
6622
6623 /* Normally, fields whose name start with an underscore ("_")
6624 are fields that have been internally generated by the compiler,
6625 and thus should not be printed. The "_parent" field is special,
6626 however: This is a field internally generated by the compiler
6627 for tagged types, and it contains the components inherited from
6628 the parent type. This field should not be printed as is, but
6629 should not be ignored either. */
6630 if (name[0] == '_' && !startswith (name, "_parent"))
6631 return 1;
6632 }
6633
6634 /* If this is the dispatch table of a tagged type or an interface tag,
6635 then ignore. */
6636 if (ada_is_tagged_type (type, 1)
6637 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6638 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6639 return 1;
6640
6641 /* Not a special field, so it should not be ignored. */
6642 return 0;
6643 }
6644
6645 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6646 pointer or reference type whose ultimate target has a tag field. */
6647
6648 int
6649 ada_is_tagged_type (struct type *type, int refok)
6650 {
6651 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
6652 }
6653
6654 /* True iff TYPE represents the type of X'Tag */
6655
6656 int
6657 ada_is_tag_type (struct type *type)
6658 {
6659 type = ada_check_typedef (type);
6660
6661 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6662 return 0;
6663 else
6664 {
6665 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6666
6667 return (name != NULL
6668 && strcmp (name, "ada__tags__dispatch_table") == 0);
6669 }
6670 }
6671
6672 /* The type of the tag on VAL. */
6673
6674 struct type *
6675 ada_tag_type (struct value *val)
6676 {
6677 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
6678 }
6679
6680 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6681 retired at Ada 05). */
6682
6683 static int
6684 is_ada95_tag (struct value *tag)
6685 {
6686 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6687 }
6688
6689 /* The value of the tag on VAL. */
6690
6691 struct value *
6692 ada_value_tag (struct value *val)
6693 {
6694 return ada_value_struct_elt (val, "_tag", 0);
6695 }
6696
6697 /* The value of the tag on the object of type TYPE whose contents are
6698 saved at VALADDR, if it is non-null, or is at memory address
6699 ADDRESS. */
6700
6701 static struct value *
6702 value_tag_from_contents_and_address (struct type *type,
6703 const gdb_byte *valaddr,
6704 CORE_ADDR address)
6705 {
6706 int tag_byte_offset;
6707 struct type *tag_type;
6708
6709 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6710 NULL, NULL, NULL))
6711 {
6712 const gdb_byte *valaddr1 = ((valaddr == NULL)
6713 ? NULL
6714 : valaddr + tag_byte_offset);
6715 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6716
6717 return value_from_contents_and_address (tag_type, valaddr1, address1);
6718 }
6719 return NULL;
6720 }
6721
6722 static struct type *
6723 type_from_tag (struct value *tag)
6724 {
6725 const char *type_name = ada_tag_name (tag);
6726
6727 if (type_name != NULL)
6728 return ada_find_any_type (ada_encode (type_name));
6729 return NULL;
6730 }
6731
6732 /* Given a value OBJ of a tagged type, return a value of this
6733 type at the base address of the object. The base address, as
6734 defined in Ada.Tags, it is the address of the primary tag of
6735 the object, and therefore where the field values of its full
6736 view can be fetched. */
6737
6738 struct value *
6739 ada_tag_value_at_base_address (struct value *obj)
6740 {
6741 struct value *val;
6742 LONGEST offset_to_top = 0;
6743 struct type *ptr_type, *obj_type;
6744 struct value *tag;
6745 CORE_ADDR base_address;
6746
6747 obj_type = value_type (obj);
6748
6749 /* It is the responsability of the caller to deref pointers. */
6750
6751 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6752 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6753 return obj;
6754
6755 tag = ada_value_tag (obj);
6756 if (!tag)
6757 return obj;
6758
6759 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6760
6761 if (is_ada95_tag (tag))
6762 return obj;
6763
6764 ptr_type = language_lookup_primitive_type
6765 (language_def (language_ada), target_gdbarch(), "storage_offset");
6766 ptr_type = lookup_pointer_type (ptr_type);
6767 val = value_cast (ptr_type, tag);
6768 if (!val)
6769 return obj;
6770
6771 /* It is perfectly possible that an exception be raised while
6772 trying to determine the base address, just like for the tag;
6773 see ada_tag_name for more details. We do not print the error
6774 message for the same reason. */
6775
6776 TRY
6777 {
6778 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6779 }
6780
6781 CATCH (e, RETURN_MASK_ERROR)
6782 {
6783 return obj;
6784 }
6785 END_CATCH
6786
6787 /* If offset is null, nothing to do. */
6788
6789 if (offset_to_top == 0)
6790 return obj;
6791
6792 /* -1 is a special case in Ada.Tags; however, what should be done
6793 is not quite clear from the documentation. So do nothing for
6794 now. */
6795
6796 if (offset_to_top == -1)
6797 return obj;
6798
6799 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6800 from the base address. This was however incompatible with
6801 C++ dispatch table: C++ uses a *negative* value to *add*
6802 to the base address. Ada's convention has therefore been
6803 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6804 use the same convention. Here, we support both cases by
6805 checking the sign of OFFSET_TO_TOP. */
6806
6807 if (offset_to_top > 0)
6808 offset_to_top = -offset_to_top;
6809
6810 base_address = value_address (obj) + offset_to_top;
6811 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6812
6813 /* Make sure that we have a proper tag at the new address.
6814 Otherwise, offset_to_top is bogus (which can happen when
6815 the object is not initialized yet). */
6816
6817 if (!tag)
6818 return obj;
6819
6820 obj_type = type_from_tag (tag);
6821
6822 if (!obj_type)
6823 return obj;
6824
6825 return value_from_contents_and_address (obj_type, NULL, base_address);
6826 }
6827
6828 /* Return the "ada__tags__type_specific_data" type. */
6829
6830 static struct type *
6831 ada_get_tsd_type (struct inferior *inf)
6832 {
6833 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6834
6835 if (data->tsd_type == 0)
6836 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6837 return data->tsd_type;
6838 }
6839
6840 /* Return the TSD (type-specific data) associated to the given TAG.
6841 TAG is assumed to be the tag of a tagged-type entity.
6842
6843 May return NULL if we are unable to get the TSD. */
6844
6845 static struct value *
6846 ada_get_tsd_from_tag (struct value *tag)
6847 {
6848 struct value *val;
6849 struct type *type;
6850
6851 /* First option: The TSD is simply stored as a field of our TAG.
6852 Only older versions of GNAT would use this format, but we have
6853 to test it first, because there are no visible markers for
6854 the current approach except the absence of that field. */
6855
6856 val = ada_value_struct_elt (tag, "tsd", 1);
6857 if (val)
6858 return val;
6859
6860 /* Try the second representation for the dispatch table (in which
6861 there is no explicit 'tsd' field in the referent of the tag pointer,
6862 and instead the tsd pointer is stored just before the dispatch
6863 table. */
6864
6865 type = ada_get_tsd_type (current_inferior());
6866 if (type == NULL)
6867 return NULL;
6868 type = lookup_pointer_type (lookup_pointer_type (type));
6869 val = value_cast (type, tag);
6870 if (val == NULL)
6871 return NULL;
6872 return value_ind (value_ptradd (val, -1));
6873 }
6874
6875 /* Given the TSD of a tag (type-specific data), return a string
6876 containing the name of the associated type.
6877
6878 The returned value is good until the next call. May return NULL
6879 if we are unable to determine the tag name. */
6880
6881 static char *
6882 ada_tag_name_from_tsd (struct value *tsd)
6883 {
6884 static char name[1024];
6885 char *p;
6886 struct value *val;
6887
6888 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6889 if (val == NULL)
6890 return NULL;
6891 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6892 for (p = name; *p != '\0'; p += 1)
6893 if (isalpha (*p))
6894 *p = tolower (*p);
6895 return name;
6896 }
6897
6898 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6899 a C string.
6900
6901 Return NULL if the TAG is not an Ada tag, or if we were unable to
6902 determine the name of that tag. The result is good until the next
6903 call. */
6904
6905 const char *
6906 ada_tag_name (struct value *tag)
6907 {
6908 char *name = NULL;
6909
6910 if (!ada_is_tag_type (value_type (tag)))
6911 return NULL;
6912
6913 /* It is perfectly possible that an exception be raised while trying
6914 to determine the TAG's name, even under normal circumstances:
6915 The associated variable may be uninitialized or corrupted, for
6916 instance. We do not let any exception propagate past this point.
6917 instead we return NULL.
6918
6919 We also do not print the error message either (which often is very
6920 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6921 the caller print a more meaningful message if necessary. */
6922 TRY
6923 {
6924 struct value *tsd = ada_get_tsd_from_tag (tag);
6925
6926 if (tsd != NULL)
6927 name = ada_tag_name_from_tsd (tsd);
6928 }
6929 CATCH (e, RETURN_MASK_ERROR)
6930 {
6931 }
6932 END_CATCH
6933
6934 return name;
6935 }
6936
6937 /* The parent type of TYPE, or NULL if none. */
6938
6939 struct type *
6940 ada_parent_type (struct type *type)
6941 {
6942 int i;
6943
6944 type = ada_check_typedef (type);
6945
6946 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6947 return NULL;
6948
6949 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6950 if (ada_is_parent_field (type, i))
6951 {
6952 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6953
6954 /* If the _parent field is a pointer, then dereference it. */
6955 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6956 parent_type = TYPE_TARGET_TYPE (parent_type);
6957 /* If there is a parallel XVS type, get the actual base type. */
6958 parent_type = ada_get_base_type (parent_type);
6959
6960 return ada_check_typedef (parent_type);
6961 }
6962
6963 return NULL;
6964 }
6965
6966 /* True iff field number FIELD_NUM of structure type TYPE contains the
6967 parent-type (inherited) fields of a derived type. Assumes TYPE is
6968 a structure type with at least FIELD_NUM+1 fields. */
6969
6970 int
6971 ada_is_parent_field (struct type *type, int field_num)
6972 {
6973 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6974
6975 return (name != NULL
6976 && (startswith (name, "PARENT")
6977 || startswith (name, "_parent")));
6978 }
6979
6980 /* True iff field number FIELD_NUM of structure type TYPE is a
6981 transparent wrapper field (which should be silently traversed when doing
6982 field selection and flattened when printing). Assumes TYPE is a
6983 structure type with at least FIELD_NUM+1 fields. Such fields are always
6984 structures. */
6985
6986 int
6987 ada_is_wrapper_field (struct type *type, int field_num)
6988 {
6989 const char *name = TYPE_FIELD_NAME (type, field_num);
6990
6991 if (name != NULL && strcmp (name, "RETVAL") == 0)
6992 {
6993 /* This happens in functions with "out" or "in out" parameters
6994 which are passed by copy. For such functions, GNAT describes
6995 the function's return type as being a struct where the return
6996 value is in a field called RETVAL, and where the other "out"
6997 or "in out" parameters are fields of that struct. This is not
6998 a wrapper. */
6999 return 0;
7000 }
7001
7002 return (name != NULL
7003 && (startswith (name, "PARENT")
7004 || strcmp (name, "REP") == 0
7005 || startswith (name, "_parent")
7006 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
7007 }
7008
7009 /* True iff field number FIELD_NUM of structure or union type TYPE
7010 is a variant wrapper. Assumes TYPE is a structure type with at least
7011 FIELD_NUM+1 fields. */
7012
7013 int
7014 ada_is_variant_part (struct type *type, int field_num)
7015 {
7016 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
7017
7018 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
7019 || (is_dynamic_field (type, field_num)
7020 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
7021 == TYPE_CODE_UNION)));
7022 }
7023
7024 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
7025 whose discriminants are contained in the record type OUTER_TYPE,
7026 returns the type of the controlling discriminant for the variant.
7027 May return NULL if the type could not be found. */
7028
7029 struct type *
7030 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
7031 {
7032 const char *name = ada_variant_discrim_name (var_type);
7033
7034 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
7035 }
7036
7037 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
7038 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
7039 represents a 'when others' clause; otherwise 0. */
7040
7041 int
7042 ada_is_others_clause (struct type *type, int field_num)
7043 {
7044 const char *name = TYPE_FIELD_NAME (type, field_num);
7045
7046 return (name != NULL && name[0] == 'O');
7047 }
7048
7049 /* Assuming that TYPE0 is the type of the variant part of a record,
7050 returns the name of the discriminant controlling the variant.
7051 The value is valid until the next call to ada_variant_discrim_name. */
7052
7053 const char *
7054 ada_variant_discrim_name (struct type *type0)
7055 {
7056 static char *result = NULL;
7057 static size_t result_len = 0;
7058 struct type *type;
7059 const char *name;
7060 const char *discrim_end;
7061 const char *discrim_start;
7062
7063 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
7064 type = TYPE_TARGET_TYPE (type0);
7065 else
7066 type = type0;
7067
7068 name = ada_type_name (type);
7069
7070 if (name == NULL || name[0] == '\000')
7071 return "";
7072
7073 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
7074 discrim_end -= 1)
7075 {
7076 if (startswith (discrim_end, "___XVN"))
7077 break;
7078 }
7079 if (discrim_end == name)
7080 return "";
7081
7082 for (discrim_start = discrim_end; discrim_start != name + 3;
7083 discrim_start -= 1)
7084 {
7085 if (discrim_start == name + 1)
7086 return "";
7087 if ((discrim_start > name + 3
7088 && startswith (discrim_start - 3, "___"))
7089 || discrim_start[-1] == '.')
7090 break;
7091 }
7092
7093 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7094 strncpy (result, discrim_start, discrim_end - discrim_start);
7095 result[discrim_end - discrim_start] = '\0';
7096 return result;
7097 }
7098
7099 /* Scan STR for a subtype-encoded number, beginning at position K.
7100 Put the position of the character just past the number scanned in
7101 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7102 Return 1 if there was a valid number at the given position, and 0
7103 otherwise. A "subtype-encoded" number consists of the absolute value
7104 in decimal, followed by the letter 'm' to indicate a negative number.
7105 Assumes 0m does not occur. */
7106
7107 int
7108 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
7109 {
7110 ULONGEST RU;
7111
7112 if (!isdigit (str[k]))
7113 return 0;
7114
7115 /* Do it the hard way so as not to make any assumption about
7116 the relationship of unsigned long (%lu scan format code) and
7117 LONGEST. */
7118 RU = 0;
7119 while (isdigit (str[k]))
7120 {
7121 RU = RU * 10 + (str[k] - '0');
7122 k += 1;
7123 }
7124
7125 if (str[k] == 'm')
7126 {
7127 if (R != NULL)
7128 *R = (-(LONGEST) (RU - 1)) - 1;
7129 k += 1;
7130 }
7131 else if (R != NULL)
7132 *R = (LONGEST) RU;
7133
7134 /* NOTE on the above: Technically, C does not say what the results of
7135 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7136 number representable as a LONGEST (although either would probably work
7137 in most implementations). When RU>0, the locution in the then branch
7138 above is always equivalent to the negative of RU. */
7139
7140 if (new_k != NULL)
7141 *new_k = k;
7142 return 1;
7143 }
7144
7145 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7146 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7147 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
7148
7149 int
7150 ada_in_variant (LONGEST val, struct type *type, int field_num)
7151 {
7152 const char *name = TYPE_FIELD_NAME (type, field_num);
7153 int p;
7154
7155 p = 0;
7156 while (1)
7157 {
7158 switch (name[p])
7159 {
7160 case '\0':
7161 return 0;
7162 case 'S':
7163 {
7164 LONGEST W;
7165
7166 if (!ada_scan_number (name, p + 1, &W, &p))
7167 return 0;
7168 if (val == W)
7169 return 1;
7170 break;
7171 }
7172 case 'R':
7173 {
7174 LONGEST L, U;
7175
7176 if (!ada_scan_number (name, p + 1, &L, &p)
7177 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7178 return 0;
7179 if (val >= L && val <= U)
7180 return 1;
7181 break;
7182 }
7183 case 'O':
7184 return 1;
7185 default:
7186 return 0;
7187 }
7188 }
7189 }
7190
7191 /* FIXME: Lots of redundancy below. Try to consolidate. */
7192
7193 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7194 ARG_TYPE, extract and return the value of one of its (non-static)
7195 fields. FIELDNO says which field. Differs from value_primitive_field
7196 only in that it can handle packed values of arbitrary type. */
7197
7198 static struct value *
7199 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
7200 struct type *arg_type)
7201 {
7202 struct type *type;
7203
7204 arg_type = ada_check_typedef (arg_type);
7205 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7206
7207 /* Handle packed fields. */
7208
7209 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
7210 {
7211 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7212 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
7213
7214 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
7215 offset + bit_pos / 8,
7216 bit_pos % 8, bit_size, type);
7217 }
7218 else
7219 return value_primitive_field (arg1, offset, fieldno, arg_type);
7220 }
7221
7222 /* Find field with name NAME in object of type TYPE. If found,
7223 set the following for each argument that is non-null:
7224 - *FIELD_TYPE_P to the field's type;
7225 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7226 an object of that type;
7227 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7228 - *BIT_SIZE_P to its size in bits if the field is packed, and
7229 0 otherwise;
7230 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7231 fields up to but not including the desired field, or by the total
7232 number of fields if not found. A NULL value of NAME never
7233 matches; the function just counts visible fields in this case.
7234
7235 Notice that we need to handle when a tagged record hierarchy
7236 has some components with the same name, like in this scenario:
7237
7238 type Top_T is tagged record
7239 N : Integer := 1;
7240 U : Integer := 974;
7241 A : Integer := 48;
7242 end record;
7243
7244 type Middle_T is new Top.Top_T with record
7245 N : Character := 'a';
7246 C : Integer := 3;
7247 end record;
7248
7249 type Bottom_T is new Middle.Middle_T with record
7250 N : Float := 4.0;
7251 C : Character := '5';
7252 X : Integer := 6;
7253 A : Character := 'J';
7254 end record;
7255
7256 Let's say we now have a variable declared and initialized as follow:
7257
7258 TC : Top_A := new Bottom_T;
7259
7260 And then we use this variable to call this function
7261
7262 procedure Assign (Obj: in out Top_T; TV : Integer);
7263
7264 as follow:
7265
7266 Assign (Top_T (B), 12);
7267
7268 Now, we're in the debugger, and we're inside that procedure
7269 then and we want to print the value of obj.c:
7270
7271 Usually, the tagged record or one of the parent type owns the
7272 component to print and there's no issue but in this particular
7273 case, what does it mean to ask for Obj.C? Since the actual
7274 type for object is type Bottom_T, it could mean two things: type
7275 component C from the Middle_T view, but also component C from
7276 Bottom_T. So in that "undefined" case, when the component is
7277 not found in the non-resolved type (which includes all the
7278 components of the parent type), then resolve it and see if we
7279 get better luck once expanded.
7280
7281 In the case of homonyms in the derived tagged type, we don't
7282 guaranty anything, and pick the one that's easiest for us
7283 to program.
7284
7285 Returns 1 if found, 0 otherwise. */
7286
7287 static int
7288 find_struct_field (const char *name, struct type *type, int offset,
7289 struct type **field_type_p,
7290 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7291 int *index_p)
7292 {
7293 int i;
7294 int parent_offset = -1;
7295
7296 type = ada_check_typedef (type);
7297
7298 if (field_type_p != NULL)
7299 *field_type_p = NULL;
7300 if (byte_offset_p != NULL)
7301 *byte_offset_p = 0;
7302 if (bit_offset_p != NULL)
7303 *bit_offset_p = 0;
7304 if (bit_size_p != NULL)
7305 *bit_size_p = 0;
7306
7307 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7308 {
7309 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7310 int fld_offset = offset + bit_pos / 8;
7311 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7312
7313 if (t_field_name == NULL)
7314 continue;
7315
7316 else if (ada_is_parent_field (type, i))
7317 {
7318 /* This is a field pointing us to the parent type of a tagged
7319 type. As hinted in this function's documentation, we give
7320 preference to fields in the current record first, so what
7321 we do here is just record the index of this field before
7322 we skip it. If it turns out we couldn't find our field
7323 in the current record, then we'll get back to it and search
7324 inside it whether the field might exist in the parent. */
7325
7326 parent_offset = i;
7327 continue;
7328 }
7329
7330 else if (name != NULL && field_name_match (t_field_name, name))
7331 {
7332 int bit_size = TYPE_FIELD_BITSIZE (type, i);
7333
7334 if (field_type_p != NULL)
7335 *field_type_p = TYPE_FIELD_TYPE (type, i);
7336 if (byte_offset_p != NULL)
7337 *byte_offset_p = fld_offset;
7338 if (bit_offset_p != NULL)
7339 *bit_offset_p = bit_pos % 8;
7340 if (bit_size_p != NULL)
7341 *bit_size_p = bit_size;
7342 return 1;
7343 }
7344 else if (ada_is_wrapper_field (type, i))
7345 {
7346 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7347 field_type_p, byte_offset_p, bit_offset_p,
7348 bit_size_p, index_p))
7349 return 1;
7350 }
7351 else if (ada_is_variant_part (type, i))
7352 {
7353 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7354 fixed type?? */
7355 int j;
7356 struct type *field_type
7357 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7358
7359 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7360 {
7361 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7362 fld_offset
7363 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7364 field_type_p, byte_offset_p,
7365 bit_offset_p, bit_size_p, index_p))
7366 return 1;
7367 }
7368 }
7369 else if (index_p != NULL)
7370 *index_p += 1;
7371 }
7372
7373 /* Field not found so far. If this is a tagged type which
7374 has a parent, try finding that field in the parent now. */
7375
7376 if (parent_offset != -1)
7377 {
7378 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
7379 int fld_offset = offset + bit_pos / 8;
7380
7381 if (find_struct_field (name, TYPE_FIELD_TYPE (type, parent_offset),
7382 fld_offset, field_type_p, byte_offset_p,
7383 bit_offset_p, bit_size_p, index_p))
7384 return 1;
7385 }
7386
7387 return 0;
7388 }
7389
7390 /* Number of user-visible fields in record type TYPE. */
7391
7392 static int
7393 num_visible_fields (struct type *type)
7394 {
7395 int n;
7396
7397 n = 0;
7398 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7399 return n;
7400 }
7401
7402 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7403 and search in it assuming it has (class) type TYPE.
7404 If found, return value, else return NULL.
7405
7406 Searches recursively through wrapper fields (e.g., '_parent').
7407
7408 In the case of homonyms in the tagged types, please refer to the
7409 long explanation in find_struct_field's function documentation. */
7410
7411 static struct value *
7412 ada_search_struct_field (const char *name, struct value *arg, int offset,
7413 struct type *type)
7414 {
7415 int i;
7416 int parent_offset = -1;
7417
7418 type = ada_check_typedef (type);
7419 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7420 {
7421 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7422
7423 if (t_field_name == NULL)
7424 continue;
7425
7426 else if (ada_is_parent_field (type, i))
7427 {
7428 /* This is a field pointing us to the parent type of a tagged
7429 type. As hinted in this function's documentation, we give
7430 preference to fields in the current record first, so what
7431 we do here is just record the index of this field before
7432 we skip it. If it turns out we couldn't find our field
7433 in the current record, then we'll get back to it and search
7434 inside it whether the field might exist in the parent. */
7435
7436 parent_offset = i;
7437 continue;
7438 }
7439
7440 else if (field_name_match (t_field_name, name))
7441 return ada_value_primitive_field (arg, offset, i, type);
7442
7443 else if (ada_is_wrapper_field (type, i))
7444 {
7445 struct value *v = /* Do not let indent join lines here. */
7446 ada_search_struct_field (name, arg,
7447 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7448 TYPE_FIELD_TYPE (type, i));
7449
7450 if (v != NULL)
7451 return v;
7452 }
7453
7454 else if (ada_is_variant_part (type, i))
7455 {
7456 /* PNH: Do we ever get here? See find_struct_field. */
7457 int j;
7458 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7459 i));
7460 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7461
7462 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7463 {
7464 struct value *v = ada_search_struct_field /* Force line
7465 break. */
7466 (name, arg,
7467 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7468 TYPE_FIELD_TYPE (field_type, j));
7469
7470 if (v != NULL)
7471 return v;
7472 }
7473 }
7474 }
7475
7476 /* Field not found so far. If this is a tagged type which
7477 has a parent, try finding that field in the parent now. */
7478
7479 if (parent_offset != -1)
7480 {
7481 struct value *v = ada_search_struct_field (
7482 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
7483 TYPE_FIELD_TYPE (type, parent_offset));
7484
7485 if (v != NULL)
7486 return v;
7487 }
7488
7489 return NULL;
7490 }
7491
7492 static struct value *ada_index_struct_field_1 (int *, struct value *,
7493 int, struct type *);
7494
7495
7496 /* Return field #INDEX in ARG, where the index is that returned by
7497 * find_struct_field through its INDEX_P argument. Adjust the address
7498 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7499 * If found, return value, else return NULL. */
7500
7501 static struct value *
7502 ada_index_struct_field (int index, struct value *arg, int offset,
7503 struct type *type)
7504 {
7505 return ada_index_struct_field_1 (&index, arg, offset, type);
7506 }
7507
7508
7509 /* Auxiliary function for ada_index_struct_field. Like
7510 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7511 * *INDEX_P. */
7512
7513 static struct value *
7514 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7515 struct type *type)
7516 {
7517 int i;
7518 type = ada_check_typedef (type);
7519
7520 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7521 {
7522 if (TYPE_FIELD_NAME (type, i) == NULL)
7523 continue;
7524 else if (ada_is_wrapper_field (type, i))
7525 {
7526 struct value *v = /* Do not let indent join lines here. */
7527 ada_index_struct_field_1 (index_p, arg,
7528 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7529 TYPE_FIELD_TYPE (type, i));
7530
7531 if (v != NULL)
7532 return v;
7533 }
7534
7535 else if (ada_is_variant_part (type, i))
7536 {
7537 /* PNH: Do we ever get here? See ada_search_struct_field,
7538 find_struct_field. */
7539 error (_("Cannot assign this kind of variant record"));
7540 }
7541 else if (*index_p == 0)
7542 return ada_value_primitive_field (arg, offset, i, type);
7543 else
7544 *index_p -= 1;
7545 }
7546 return NULL;
7547 }
7548
7549 /* Given ARG, a value of type (pointer or reference to a)*
7550 structure/union, extract the component named NAME from the ultimate
7551 target structure/union and return it as a value with its
7552 appropriate type.
7553
7554 The routine searches for NAME among all members of the structure itself
7555 and (recursively) among all members of any wrapper members
7556 (e.g., '_parent').
7557
7558 If NO_ERR, then simply return NULL in case of error, rather than
7559 calling error. */
7560
7561 struct value *
7562 ada_value_struct_elt (struct value *arg, const char *name, int no_err)
7563 {
7564 struct type *t, *t1;
7565 struct value *v;
7566
7567 v = NULL;
7568 t1 = t = ada_check_typedef (value_type (arg));
7569 if (TYPE_CODE (t) == TYPE_CODE_REF)
7570 {
7571 t1 = TYPE_TARGET_TYPE (t);
7572 if (t1 == NULL)
7573 goto BadValue;
7574 t1 = ada_check_typedef (t1);
7575 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7576 {
7577 arg = coerce_ref (arg);
7578 t = t1;
7579 }
7580 }
7581
7582 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7583 {
7584 t1 = TYPE_TARGET_TYPE (t);
7585 if (t1 == NULL)
7586 goto BadValue;
7587 t1 = ada_check_typedef (t1);
7588 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7589 {
7590 arg = value_ind (arg);
7591 t = t1;
7592 }
7593 else
7594 break;
7595 }
7596
7597 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
7598 goto BadValue;
7599
7600 if (t1 == t)
7601 v = ada_search_struct_field (name, arg, 0, t);
7602 else
7603 {
7604 int bit_offset, bit_size, byte_offset;
7605 struct type *field_type;
7606 CORE_ADDR address;
7607
7608 if (TYPE_CODE (t) == TYPE_CODE_PTR)
7609 address = value_address (ada_value_ind (arg));
7610 else
7611 address = value_address (ada_coerce_ref (arg));
7612
7613 /* Check to see if this is a tagged type. We also need to handle
7614 the case where the type is a reference to a tagged type, but
7615 we have to be careful to exclude pointers to tagged types.
7616 The latter should be shown as usual (as a pointer), whereas
7617 a reference should mostly be transparent to the user. */
7618
7619 if (ada_is_tagged_type (t1, 0)
7620 || (TYPE_CODE (t1) == TYPE_CODE_REF
7621 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
7622 {
7623 /* We first try to find the searched field in the current type.
7624 If not found then let's look in the fixed type. */
7625
7626 if (!find_struct_field (name, t1, 0,
7627 &field_type, &byte_offset, &bit_offset,
7628 &bit_size, NULL))
7629 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
7630 address, NULL, 1);
7631 }
7632 else
7633 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
7634 address, NULL, 1);
7635
7636 if (find_struct_field (name, t1, 0,
7637 &field_type, &byte_offset, &bit_offset,
7638 &bit_size, NULL))
7639 {
7640 if (bit_size != 0)
7641 {
7642 if (TYPE_CODE (t) == TYPE_CODE_REF)
7643 arg = ada_coerce_ref (arg);
7644 else
7645 arg = ada_value_ind (arg);
7646 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7647 bit_offset, bit_size,
7648 field_type);
7649 }
7650 else
7651 v = value_at_lazy (field_type, address + byte_offset);
7652 }
7653 }
7654
7655 if (v != NULL || no_err)
7656 return v;
7657 else
7658 error (_("There is no member named %s."), name);
7659
7660 BadValue:
7661 if (no_err)
7662 return NULL;
7663 else
7664 error (_("Attempt to extract a component of "
7665 "a value that is not a record."));
7666 }
7667
7668 /* Return a string representation of type TYPE. */
7669
7670 static std::string
7671 type_as_string (struct type *type)
7672 {
7673 string_file tmp_stream;
7674
7675 type_print (type, "", &tmp_stream, -1);
7676
7677 return std::move (tmp_stream.string ());
7678 }
7679
7680 /* Given a type TYPE, look up the type of the component of type named NAME.
7681 If DISPP is non-null, add its byte displacement from the beginning of a
7682 structure (pointed to by a value) of type TYPE to *DISPP (does not
7683 work for packed fields).
7684
7685 Matches any field whose name has NAME as a prefix, possibly
7686 followed by "___".
7687
7688 TYPE can be either a struct or union. If REFOK, TYPE may also
7689 be a (pointer or reference)+ to a struct or union, and the
7690 ultimate target type will be searched.
7691
7692 Looks recursively into variant clauses and parent types.
7693
7694 In the case of homonyms in the tagged types, please refer to the
7695 long explanation in find_struct_field's function documentation.
7696
7697 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7698 TYPE is not a type of the right kind. */
7699
7700 static struct type *
7701 ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
7702 int noerr)
7703 {
7704 int i;
7705 int parent_offset = -1;
7706
7707 if (name == NULL)
7708 goto BadName;
7709
7710 if (refok && type != NULL)
7711 while (1)
7712 {
7713 type = ada_check_typedef (type);
7714 if (TYPE_CODE (type) != TYPE_CODE_PTR
7715 && TYPE_CODE (type) != TYPE_CODE_REF)
7716 break;
7717 type = TYPE_TARGET_TYPE (type);
7718 }
7719
7720 if (type == NULL
7721 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7722 && TYPE_CODE (type) != TYPE_CODE_UNION))
7723 {
7724 if (noerr)
7725 return NULL;
7726
7727 error (_("Type %s is not a structure or union type"),
7728 type != NULL ? type_as_string (type).c_str () : _("(null)"));
7729 }
7730
7731 type = to_static_fixed_type (type);
7732
7733 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7734 {
7735 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7736 struct type *t;
7737
7738 if (t_field_name == NULL)
7739 continue;
7740
7741 else if (ada_is_parent_field (type, i))
7742 {
7743 /* This is a field pointing us to the parent type of a tagged
7744 type. As hinted in this function's documentation, we give
7745 preference to fields in the current record first, so what
7746 we do here is just record the index of this field before
7747 we skip it. If it turns out we couldn't find our field
7748 in the current record, then we'll get back to it and search
7749 inside it whether the field might exist in the parent. */
7750
7751 parent_offset = i;
7752 continue;
7753 }
7754
7755 else if (field_name_match (t_field_name, name))
7756 return TYPE_FIELD_TYPE (type, i);
7757
7758 else if (ada_is_wrapper_field (type, i))
7759 {
7760 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7761 0, 1);
7762 if (t != NULL)
7763 return t;
7764 }
7765
7766 else if (ada_is_variant_part (type, i))
7767 {
7768 int j;
7769 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7770 i));
7771
7772 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7773 {
7774 /* FIXME pnh 2008/01/26: We check for a field that is
7775 NOT wrapped in a struct, since the compiler sometimes
7776 generates these for unchecked variant types. Revisit
7777 if the compiler changes this practice. */
7778 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7779
7780 if (v_field_name != NULL
7781 && field_name_match (v_field_name, name))
7782 t = TYPE_FIELD_TYPE (field_type, j);
7783 else
7784 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7785 j),
7786 name, 0, 1);
7787
7788 if (t != NULL)
7789 return t;
7790 }
7791 }
7792
7793 }
7794
7795 /* Field not found so far. If this is a tagged type which
7796 has a parent, try finding that field in the parent now. */
7797
7798 if (parent_offset != -1)
7799 {
7800 struct type *t;
7801
7802 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, parent_offset),
7803 name, 0, 1);
7804 if (t != NULL)
7805 return t;
7806 }
7807
7808 BadName:
7809 if (!noerr)
7810 {
7811 const char *name_str = name != NULL ? name : _("<null>");
7812
7813 error (_("Type %s has no component named %s"),
7814 type_as_string (type).c_str (), name_str);
7815 }
7816
7817 return NULL;
7818 }
7819
7820 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7821 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7822 represents an unchecked union (that is, the variant part of a
7823 record that is named in an Unchecked_Union pragma). */
7824
7825 static int
7826 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7827 {
7828 const char *discrim_name = ada_variant_discrim_name (var_type);
7829
7830 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
7831 }
7832
7833
7834 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7835 within a value of type OUTER_TYPE that is stored in GDB at
7836 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7837 numbering from 0) is applicable. Returns -1 if none are. */
7838
7839 int
7840 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7841 const gdb_byte *outer_valaddr)
7842 {
7843 int others_clause;
7844 int i;
7845 const char *discrim_name = ada_variant_discrim_name (var_type);
7846 struct value *outer;
7847 struct value *discrim;
7848 LONGEST discrim_val;
7849
7850 /* Using plain value_from_contents_and_address here causes problems
7851 because we will end up trying to resolve a type that is currently
7852 being constructed. */
7853 outer = value_from_contents_and_address_unresolved (outer_type,
7854 outer_valaddr, 0);
7855 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7856 if (discrim == NULL)
7857 return -1;
7858 discrim_val = value_as_long (discrim);
7859
7860 others_clause = -1;
7861 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7862 {
7863 if (ada_is_others_clause (var_type, i))
7864 others_clause = i;
7865 else if (ada_in_variant (discrim_val, var_type, i))
7866 return i;
7867 }
7868
7869 return others_clause;
7870 }
7871 \f
7872
7873
7874 /* Dynamic-Sized Records */
7875
7876 /* Strategy: The type ostensibly attached to a value with dynamic size
7877 (i.e., a size that is not statically recorded in the debugging
7878 data) does not accurately reflect the size or layout of the value.
7879 Our strategy is to convert these values to values with accurate,
7880 conventional types that are constructed on the fly. */
7881
7882 /* There is a subtle and tricky problem here. In general, we cannot
7883 determine the size of dynamic records without its data. However,
7884 the 'struct value' data structure, which GDB uses to represent
7885 quantities in the inferior process (the target), requires the size
7886 of the type at the time of its allocation in order to reserve space
7887 for GDB's internal copy of the data. That's why the
7888 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7889 rather than struct value*s.
7890
7891 However, GDB's internal history variables ($1, $2, etc.) are
7892 struct value*s containing internal copies of the data that are not, in
7893 general, the same as the data at their corresponding addresses in
7894 the target. Fortunately, the types we give to these values are all
7895 conventional, fixed-size types (as per the strategy described
7896 above), so that we don't usually have to perform the
7897 'to_fixed_xxx_type' conversions to look at their values.
7898 Unfortunately, there is one exception: if one of the internal
7899 history variables is an array whose elements are unconstrained
7900 records, then we will need to create distinct fixed types for each
7901 element selected. */
7902
7903 /* The upshot of all of this is that many routines take a (type, host
7904 address, target address) triple as arguments to represent a value.
7905 The host address, if non-null, is supposed to contain an internal
7906 copy of the relevant data; otherwise, the program is to consult the
7907 target at the target address. */
7908
7909 /* Assuming that VAL0 represents a pointer value, the result of
7910 dereferencing it. Differs from value_ind in its treatment of
7911 dynamic-sized types. */
7912
7913 struct value *
7914 ada_value_ind (struct value *val0)
7915 {
7916 struct value *val = value_ind (val0);
7917
7918 if (ada_is_tagged_type (value_type (val), 0))
7919 val = ada_tag_value_at_base_address (val);
7920
7921 return ada_to_fixed_value (val);
7922 }
7923
7924 /* The value resulting from dereferencing any "reference to"
7925 qualifiers on VAL0. */
7926
7927 static struct value *
7928 ada_coerce_ref (struct value *val0)
7929 {
7930 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7931 {
7932 struct value *val = val0;
7933
7934 val = coerce_ref (val);
7935
7936 if (ada_is_tagged_type (value_type (val), 0))
7937 val = ada_tag_value_at_base_address (val);
7938
7939 return ada_to_fixed_value (val);
7940 }
7941 else
7942 return val0;
7943 }
7944
7945 /* Return OFF rounded upward if necessary to a multiple of
7946 ALIGNMENT (a power of 2). */
7947
7948 static unsigned int
7949 align_value (unsigned int off, unsigned int alignment)
7950 {
7951 return (off + alignment - 1) & ~(alignment - 1);
7952 }
7953
7954 /* Return the bit alignment required for field #F of template type TYPE. */
7955
7956 static unsigned int
7957 field_alignment (struct type *type, int f)
7958 {
7959 const char *name = TYPE_FIELD_NAME (type, f);
7960 int len;
7961 int align_offset;
7962
7963 /* The field name should never be null, unless the debugging information
7964 is somehow malformed. In this case, we assume the field does not
7965 require any alignment. */
7966 if (name == NULL)
7967 return 1;
7968
7969 len = strlen (name);
7970
7971 if (!isdigit (name[len - 1]))
7972 return 1;
7973
7974 if (isdigit (name[len - 2]))
7975 align_offset = len - 2;
7976 else
7977 align_offset = len - 1;
7978
7979 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7980 return TARGET_CHAR_BIT;
7981
7982 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7983 }
7984
7985 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7986
7987 static struct symbol *
7988 ada_find_any_type_symbol (const char *name)
7989 {
7990 struct symbol *sym;
7991
7992 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7993 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7994 return sym;
7995
7996 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7997 return sym;
7998 }
7999
8000 /* Find a type named NAME. Ignores ambiguity. This routine will look
8001 solely for types defined by debug info, it will not search the GDB
8002 primitive types. */
8003
8004 static struct type *
8005 ada_find_any_type (const char *name)
8006 {
8007 struct symbol *sym = ada_find_any_type_symbol (name);
8008
8009 if (sym != NULL)
8010 return SYMBOL_TYPE (sym);
8011
8012 return NULL;
8013 }
8014
8015 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
8016 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
8017 symbol, in which case it is returned. Otherwise, this looks for
8018 symbols whose name is that of NAME_SYM suffixed with "___XR".
8019 Return symbol if found, and NULL otherwise. */
8020
8021 struct symbol *
8022 ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
8023 {
8024 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
8025 struct symbol *sym;
8026
8027 if (strstr (name, "___XR") != NULL)
8028 return name_sym;
8029
8030 sym = find_old_style_renaming_symbol (name, block);
8031
8032 if (sym != NULL)
8033 return sym;
8034
8035 /* Not right yet. FIXME pnh 7/20/2007. */
8036 sym = ada_find_any_type_symbol (name);
8037 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
8038 return sym;
8039 else
8040 return NULL;
8041 }
8042
8043 static struct symbol *
8044 find_old_style_renaming_symbol (const char *name, const struct block *block)
8045 {
8046 const struct symbol *function_sym = block_linkage_function (block);
8047 char *rename;
8048
8049 if (function_sym != NULL)
8050 {
8051 /* If the symbol is defined inside a function, NAME is not fully
8052 qualified. This means we need to prepend the function name
8053 as well as adding the ``___XR'' suffix to build the name of
8054 the associated renaming symbol. */
8055 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
8056 /* Function names sometimes contain suffixes used
8057 for instance to qualify nested subprograms. When building
8058 the XR type name, we need to make sure that this suffix is
8059 not included. So do not include any suffix in the function
8060 name length below. */
8061 int function_name_len = ada_name_prefix_len (function_name);
8062 const int rename_len = function_name_len + 2 /* "__" */
8063 + strlen (name) + 6 /* "___XR\0" */ ;
8064
8065 /* Strip the suffix if necessary. */
8066 ada_remove_trailing_digits (function_name, &function_name_len);
8067 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
8068 ada_remove_Xbn_suffix (function_name, &function_name_len);
8069
8070 /* Library-level functions are a special case, as GNAT adds
8071 a ``_ada_'' prefix to the function name to avoid namespace
8072 pollution. However, the renaming symbols themselves do not
8073 have this prefix, so we need to skip this prefix if present. */
8074 if (function_name_len > 5 /* "_ada_" */
8075 && strstr (function_name, "_ada_") == function_name)
8076 {
8077 function_name += 5;
8078 function_name_len -= 5;
8079 }
8080
8081 rename = (char *) alloca (rename_len * sizeof (char));
8082 strncpy (rename, function_name, function_name_len);
8083 xsnprintf (rename + function_name_len, rename_len - function_name_len,
8084 "__%s___XR", name);
8085 }
8086 else
8087 {
8088 const int rename_len = strlen (name) + 6;
8089
8090 rename = (char *) alloca (rename_len * sizeof (char));
8091 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
8092 }
8093
8094 return ada_find_any_type_symbol (rename);
8095 }
8096
8097 /* Because of GNAT encoding conventions, several GDB symbols may match a
8098 given type name. If the type denoted by TYPE0 is to be preferred to
8099 that of TYPE1 for purposes of type printing, return non-zero;
8100 otherwise return 0. */
8101
8102 int
8103 ada_prefer_type (struct type *type0, struct type *type1)
8104 {
8105 if (type1 == NULL)
8106 return 1;
8107 else if (type0 == NULL)
8108 return 0;
8109 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
8110 return 1;
8111 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
8112 return 0;
8113 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
8114 return 1;
8115 else if (ada_is_constrained_packed_array_type (type0))
8116 return 1;
8117 else if (ada_is_array_descriptor_type (type0)
8118 && !ada_is_array_descriptor_type (type1))
8119 return 1;
8120 else
8121 {
8122 const char *type0_name = type_name_no_tag (type0);
8123 const char *type1_name = type_name_no_tag (type1);
8124
8125 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
8126 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
8127 return 1;
8128 }
8129 return 0;
8130 }
8131
8132 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
8133 null, its TYPE_TAG_NAME. Null if TYPE is null. */
8134
8135 const char *
8136 ada_type_name (struct type *type)
8137 {
8138 if (type == NULL)
8139 return NULL;
8140 else if (TYPE_NAME (type) != NULL)
8141 return TYPE_NAME (type);
8142 else
8143 return TYPE_TAG_NAME (type);
8144 }
8145
8146 /* Search the list of "descriptive" types associated to TYPE for a type
8147 whose name is NAME. */
8148
8149 static struct type *
8150 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
8151 {
8152 struct type *result, *tmp;
8153
8154 if (ada_ignore_descriptive_types_p)
8155 return NULL;
8156
8157 /* If there no descriptive-type info, then there is no parallel type
8158 to be found. */
8159 if (!HAVE_GNAT_AUX_INFO (type))
8160 return NULL;
8161
8162 result = TYPE_DESCRIPTIVE_TYPE (type);
8163 while (result != NULL)
8164 {
8165 const char *result_name = ada_type_name (result);
8166
8167 if (result_name == NULL)
8168 {
8169 warning (_("unexpected null name on descriptive type"));
8170 return NULL;
8171 }
8172
8173 /* If the names match, stop. */
8174 if (strcmp (result_name, name) == 0)
8175 break;
8176
8177 /* Otherwise, look at the next item on the list, if any. */
8178 if (HAVE_GNAT_AUX_INFO (result))
8179 tmp = TYPE_DESCRIPTIVE_TYPE (result);
8180 else
8181 tmp = NULL;
8182
8183 /* If not found either, try after having resolved the typedef. */
8184 if (tmp != NULL)
8185 result = tmp;
8186 else
8187 {
8188 result = check_typedef (result);
8189 if (HAVE_GNAT_AUX_INFO (result))
8190 result = TYPE_DESCRIPTIVE_TYPE (result);
8191 else
8192 result = NULL;
8193 }
8194 }
8195
8196 /* If we didn't find a match, see whether this is a packed array. With
8197 older compilers, the descriptive type information is either absent or
8198 irrelevant when it comes to packed arrays so the above lookup fails.
8199 Fall back to using a parallel lookup by name in this case. */
8200 if (result == NULL && ada_is_constrained_packed_array_type (type))
8201 return ada_find_any_type (name);
8202
8203 return result;
8204 }
8205
8206 /* Find a parallel type to TYPE with the specified NAME, using the
8207 descriptive type taken from the debugging information, if available,
8208 and otherwise using the (slower) name-based method. */
8209
8210 static struct type *
8211 ada_find_parallel_type_with_name (struct type *type, const char *name)
8212 {
8213 struct type *result = NULL;
8214
8215 if (HAVE_GNAT_AUX_INFO (type))
8216 result = find_parallel_type_by_descriptive_type (type, name);
8217 else
8218 result = ada_find_any_type (name);
8219
8220 return result;
8221 }
8222
8223 /* Same as above, but specify the name of the parallel type by appending
8224 SUFFIX to the name of TYPE. */
8225
8226 struct type *
8227 ada_find_parallel_type (struct type *type, const char *suffix)
8228 {
8229 char *name;
8230 const char *type_name = ada_type_name (type);
8231 int len;
8232
8233 if (type_name == NULL)
8234 return NULL;
8235
8236 len = strlen (type_name);
8237
8238 name = (char *) alloca (len + strlen (suffix) + 1);
8239
8240 strcpy (name, type_name);
8241 strcpy (name + len, suffix);
8242
8243 return ada_find_parallel_type_with_name (type, name);
8244 }
8245
8246 /* If TYPE is a variable-size record type, return the corresponding template
8247 type describing its fields. Otherwise, return NULL. */
8248
8249 static struct type *
8250 dynamic_template_type (struct type *type)
8251 {
8252 type = ada_check_typedef (type);
8253
8254 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
8255 || ada_type_name (type) == NULL)
8256 return NULL;
8257 else
8258 {
8259 int len = strlen (ada_type_name (type));
8260
8261 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8262 return type;
8263 else
8264 return ada_find_parallel_type (type, "___XVE");
8265 }
8266 }
8267
8268 /* Assuming that TEMPL_TYPE is a union or struct type, returns
8269 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
8270
8271 static int
8272 is_dynamic_field (struct type *templ_type, int field_num)
8273 {
8274 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
8275
8276 return name != NULL
8277 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8278 && strstr (name, "___XVL") != NULL;
8279 }
8280
8281 /* The index of the variant field of TYPE, or -1 if TYPE does not
8282 represent a variant record type. */
8283
8284 static int
8285 variant_field_index (struct type *type)
8286 {
8287 int f;
8288
8289 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8290 return -1;
8291
8292 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8293 {
8294 if (ada_is_variant_part (type, f))
8295 return f;
8296 }
8297 return -1;
8298 }
8299
8300 /* A record type with no fields. */
8301
8302 static struct type *
8303 empty_record (struct type *templ)
8304 {
8305 struct type *type = alloc_type_copy (templ);
8306
8307 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8308 TYPE_NFIELDS (type) = 0;
8309 TYPE_FIELDS (type) = NULL;
8310 INIT_CPLUS_SPECIFIC (type);
8311 TYPE_NAME (type) = "<empty>";
8312 TYPE_TAG_NAME (type) = NULL;
8313 TYPE_LENGTH (type) = 0;
8314 return type;
8315 }
8316
8317 /* An ordinary record type (with fixed-length fields) that describes
8318 the value of type TYPE at VALADDR or ADDRESS (see comments at
8319 the beginning of this section) VAL according to GNAT conventions.
8320 DVAL0 should describe the (portion of a) record that contains any
8321 necessary discriminants. It should be NULL if value_type (VAL) is
8322 an outer-level type (i.e., as opposed to a branch of a variant.) A
8323 variant field (unless unchecked) is replaced by a particular branch
8324 of the variant.
8325
8326 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8327 length are not statically known are discarded. As a consequence,
8328 VALADDR, ADDRESS and DVAL0 are ignored.
8329
8330 NOTE: Limitations: For now, we assume that dynamic fields and
8331 variants occupy whole numbers of bytes. However, they need not be
8332 byte-aligned. */
8333
8334 struct type *
8335 ada_template_to_fixed_record_type_1 (struct type *type,
8336 const gdb_byte *valaddr,
8337 CORE_ADDR address, struct value *dval0,
8338 int keep_dynamic_fields)
8339 {
8340 struct value *mark = value_mark ();
8341 struct value *dval;
8342 struct type *rtype;
8343 int nfields, bit_len;
8344 int variant_field;
8345 long off;
8346 int fld_bit_len;
8347 int f;
8348
8349 /* Compute the number of fields in this record type that are going
8350 to be processed: unless keep_dynamic_fields, this includes only
8351 fields whose position and length are static will be processed. */
8352 if (keep_dynamic_fields)
8353 nfields = TYPE_NFIELDS (type);
8354 else
8355 {
8356 nfields = 0;
8357 while (nfields < TYPE_NFIELDS (type)
8358 && !ada_is_variant_part (type, nfields)
8359 && !is_dynamic_field (type, nfields))
8360 nfields++;
8361 }
8362
8363 rtype = alloc_type_copy (type);
8364 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8365 INIT_CPLUS_SPECIFIC (rtype);
8366 TYPE_NFIELDS (rtype) = nfields;
8367 TYPE_FIELDS (rtype) = (struct field *)
8368 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8369 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8370 TYPE_NAME (rtype) = ada_type_name (type);
8371 TYPE_TAG_NAME (rtype) = NULL;
8372 TYPE_FIXED_INSTANCE (rtype) = 1;
8373
8374 off = 0;
8375 bit_len = 0;
8376 variant_field = -1;
8377
8378 for (f = 0; f < nfields; f += 1)
8379 {
8380 off = align_value (off, field_alignment (type, f))
8381 + TYPE_FIELD_BITPOS (type, f);
8382 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
8383 TYPE_FIELD_BITSIZE (rtype, f) = 0;
8384
8385 if (ada_is_variant_part (type, f))
8386 {
8387 variant_field = f;
8388 fld_bit_len = 0;
8389 }
8390 else if (is_dynamic_field (type, f))
8391 {
8392 const gdb_byte *field_valaddr = valaddr;
8393 CORE_ADDR field_address = address;
8394 struct type *field_type =
8395 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8396
8397 if (dval0 == NULL)
8398 {
8399 /* rtype's length is computed based on the run-time
8400 value of discriminants. If the discriminants are not
8401 initialized, the type size may be completely bogus and
8402 GDB may fail to allocate a value for it. So check the
8403 size first before creating the value. */
8404 ada_ensure_varsize_limit (rtype);
8405 /* Using plain value_from_contents_and_address here
8406 causes problems because we will end up trying to
8407 resolve a type that is currently being
8408 constructed. */
8409 dval = value_from_contents_and_address_unresolved (rtype,
8410 valaddr,
8411 address);
8412 rtype = value_type (dval);
8413 }
8414 else
8415 dval = dval0;
8416
8417 /* If the type referenced by this field is an aligner type, we need
8418 to unwrap that aligner type, because its size might not be set.
8419 Keeping the aligner type would cause us to compute the wrong
8420 size for this field, impacting the offset of the all the fields
8421 that follow this one. */
8422 if (ada_is_aligner_type (field_type))
8423 {
8424 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8425
8426 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8427 field_address = cond_offset_target (field_address, field_offset);
8428 field_type = ada_aligned_type (field_type);
8429 }
8430
8431 field_valaddr = cond_offset_host (field_valaddr,
8432 off / TARGET_CHAR_BIT);
8433 field_address = cond_offset_target (field_address,
8434 off / TARGET_CHAR_BIT);
8435
8436 /* Get the fixed type of the field. Note that, in this case,
8437 we do not want to get the real type out of the tag: if
8438 the current field is the parent part of a tagged record,
8439 we will get the tag of the object. Clearly wrong: the real
8440 type of the parent is not the real type of the child. We
8441 would end up in an infinite loop. */
8442 field_type = ada_get_base_type (field_type);
8443 field_type = ada_to_fixed_type (field_type, field_valaddr,
8444 field_address, dval, 0);
8445 /* If the field size is already larger than the maximum
8446 object size, then the record itself will necessarily
8447 be larger than the maximum object size. We need to make
8448 this check now, because the size might be so ridiculously
8449 large (due to an uninitialized variable in the inferior)
8450 that it would cause an overflow when adding it to the
8451 record size. */
8452 ada_ensure_varsize_limit (field_type);
8453
8454 TYPE_FIELD_TYPE (rtype, f) = field_type;
8455 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8456 /* The multiplication can potentially overflow. But because
8457 the field length has been size-checked just above, and
8458 assuming that the maximum size is a reasonable value,
8459 an overflow should not happen in practice. So rather than
8460 adding overflow recovery code to this already complex code,
8461 we just assume that it's not going to happen. */
8462 fld_bit_len =
8463 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8464 }
8465 else
8466 {
8467 /* Note: If this field's type is a typedef, it is important
8468 to preserve the typedef layer.
8469
8470 Otherwise, we might be transforming a typedef to a fat
8471 pointer (encoding a pointer to an unconstrained array),
8472 into a basic fat pointer (encoding an unconstrained
8473 array). As both types are implemented using the same
8474 structure, the typedef is the only clue which allows us
8475 to distinguish between the two options. Stripping it
8476 would prevent us from printing this field appropriately. */
8477 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
8478 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8479 if (TYPE_FIELD_BITSIZE (type, f) > 0)
8480 fld_bit_len =
8481 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8482 else
8483 {
8484 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8485
8486 /* We need to be careful of typedefs when computing
8487 the length of our field. If this is a typedef,
8488 get the length of the target type, not the length
8489 of the typedef. */
8490 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8491 field_type = ada_typedef_target_type (field_type);
8492
8493 fld_bit_len =
8494 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8495 }
8496 }
8497 if (off + fld_bit_len > bit_len)
8498 bit_len = off + fld_bit_len;
8499 off += fld_bit_len;
8500 TYPE_LENGTH (rtype) =
8501 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8502 }
8503
8504 /* We handle the variant part, if any, at the end because of certain
8505 odd cases in which it is re-ordered so as NOT to be the last field of
8506 the record. This can happen in the presence of representation
8507 clauses. */
8508 if (variant_field >= 0)
8509 {
8510 struct type *branch_type;
8511
8512 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8513
8514 if (dval0 == NULL)
8515 {
8516 /* Using plain value_from_contents_and_address here causes
8517 problems because we will end up trying to resolve a type
8518 that is currently being constructed. */
8519 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8520 address);
8521 rtype = value_type (dval);
8522 }
8523 else
8524 dval = dval0;
8525
8526 branch_type =
8527 to_fixed_variant_branch_type
8528 (TYPE_FIELD_TYPE (type, variant_field),
8529 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8530 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8531 if (branch_type == NULL)
8532 {
8533 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8534 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8535 TYPE_NFIELDS (rtype) -= 1;
8536 }
8537 else
8538 {
8539 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8540 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8541 fld_bit_len =
8542 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8543 TARGET_CHAR_BIT;
8544 if (off + fld_bit_len > bit_len)
8545 bit_len = off + fld_bit_len;
8546 TYPE_LENGTH (rtype) =
8547 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8548 }
8549 }
8550
8551 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8552 should contain the alignment of that record, which should be a strictly
8553 positive value. If null or negative, then something is wrong, most
8554 probably in the debug info. In that case, we don't round up the size
8555 of the resulting type. If this record is not part of another structure,
8556 the current RTYPE length might be good enough for our purposes. */
8557 if (TYPE_LENGTH (type) <= 0)
8558 {
8559 if (TYPE_NAME (rtype))
8560 warning (_("Invalid type size for `%s' detected: %d."),
8561 TYPE_NAME (rtype), TYPE_LENGTH (type));
8562 else
8563 warning (_("Invalid type size for <unnamed> detected: %d."),
8564 TYPE_LENGTH (type));
8565 }
8566 else
8567 {
8568 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8569 TYPE_LENGTH (type));
8570 }
8571
8572 value_free_to_mark (mark);
8573 if (TYPE_LENGTH (rtype) > varsize_limit)
8574 error (_("record type with dynamic size is larger than varsize-limit"));
8575 return rtype;
8576 }
8577
8578 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8579 of 1. */
8580
8581 static struct type *
8582 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8583 CORE_ADDR address, struct value *dval0)
8584 {
8585 return ada_template_to_fixed_record_type_1 (type, valaddr,
8586 address, dval0, 1);
8587 }
8588
8589 /* An ordinary record type in which ___XVL-convention fields and
8590 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8591 static approximations, containing all possible fields. Uses
8592 no runtime values. Useless for use in values, but that's OK,
8593 since the results are used only for type determinations. Works on both
8594 structs and unions. Representation note: to save space, we memorize
8595 the result of this function in the TYPE_TARGET_TYPE of the
8596 template type. */
8597
8598 static struct type *
8599 template_to_static_fixed_type (struct type *type0)
8600 {
8601 struct type *type;
8602 int nfields;
8603 int f;
8604
8605 /* No need no do anything if the input type is already fixed. */
8606 if (TYPE_FIXED_INSTANCE (type0))
8607 return type0;
8608
8609 /* Likewise if we already have computed the static approximation. */
8610 if (TYPE_TARGET_TYPE (type0) != NULL)
8611 return TYPE_TARGET_TYPE (type0);
8612
8613 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8614 type = type0;
8615 nfields = TYPE_NFIELDS (type0);
8616
8617 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8618 recompute all over next time. */
8619 TYPE_TARGET_TYPE (type0) = type;
8620
8621 for (f = 0; f < nfields; f += 1)
8622 {
8623 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
8624 struct type *new_type;
8625
8626 if (is_dynamic_field (type0, f))
8627 {
8628 field_type = ada_check_typedef (field_type);
8629 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8630 }
8631 else
8632 new_type = static_unwrap_type (field_type);
8633
8634 if (new_type != field_type)
8635 {
8636 /* Clone TYPE0 only the first time we get a new field type. */
8637 if (type == type0)
8638 {
8639 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8640 TYPE_CODE (type) = TYPE_CODE (type0);
8641 INIT_CPLUS_SPECIFIC (type);
8642 TYPE_NFIELDS (type) = nfields;
8643 TYPE_FIELDS (type) = (struct field *)
8644 TYPE_ALLOC (type, nfields * sizeof (struct field));
8645 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8646 sizeof (struct field) * nfields);
8647 TYPE_NAME (type) = ada_type_name (type0);
8648 TYPE_TAG_NAME (type) = NULL;
8649 TYPE_FIXED_INSTANCE (type) = 1;
8650 TYPE_LENGTH (type) = 0;
8651 }
8652 TYPE_FIELD_TYPE (type, f) = new_type;
8653 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8654 }
8655 }
8656
8657 return type;
8658 }
8659
8660 /* Given an object of type TYPE whose contents are at VALADDR and
8661 whose address in memory is ADDRESS, returns a revision of TYPE,
8662 which should be a non-dynamic-sized record, in which the variant
8663 part, if any, is replaced with the appropriate branch. Looks
8664 for discriminant values in DVAL0, which can be NULL if the record
8665 contains the necessary discriminant values. */
8666
8667 static struct type *
8668 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8669 CORE_ADDR address, struct value *dval0)
8670 {
8671 struct value *mark = value_mark ();
8672 struct value *dval;
8673 struct type *rtype;
8674 struct type *branch_type;
8675 int nfields = TYPE_NFIELDS (type);
8676 int variant_field = variant_field_index (type);
8677
8678 if (variant_field == -1)
8679 return type;
8680
8681 if (dval0 == NULL)
8682 {
8683 dval = value_from_contents_and_address (type, valaddr, address);
8684 type = value_type (dval);
8685 }
8686 else
8687 dval = dval0;
8688
8689 rtype = alloc_type_copy (type);
8690 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8691 INIT_CPLUS_SPECIFIC (rtype);
8692 TYPE_NFIELDS (rtype) = nfields;
8693 TYPE_FIELDS (rtype) =
8694 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8695 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
8696 sizeof (struct field) * nfields);
8697 TYPE_NAME (rtype) = ada_type_name (type);
8698 TYPE_TAG_NAME (rtype) = NULL;
8699 TYPE_FIXED_INSTANCE (rtype) = 1;
8700 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8701
8702 branch_type = to_fixed_variant_branch_type
8703 (TYPE_FIELD_TYPE (type, variant_field),
8704 cond_offset_host (valaddr,
8705 TYPE_FIELD_BITPOS (type, variant_field)
8706 / TARGET_CHAR_BIT),
8707 cond_offset_target (address,
8708 TYPE_FIELD_BITPOS (type, variant_field)
8709 / TARGET_CHAR_BIT), dval);
8710 if (branch_type == NULL)
8711 {
8712 int f;
8713
8714 for (f = variant_field + 1; f < nfields; f += 1)
8715 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8716 TYPE_NFIELDS (rtype) -= 1;
8717 }
8718 else
8719 {
8720 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8721 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8722 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8723 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8724 }
8725 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
8726
8727 value_free_to_mark (mark);
8728 return rtype;
8729 }
8730
8731 /* An ordinary record type (with fixed-length fields) that describes
8732 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8733 beginning of this section]. Any necessary discriminants' values
8734 should be in DVAL, a record value; it may be NULL if the object
8735 at ADDR itself contains any necessary discriminant values.
8736 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8737 values from the record are needed. Except in the case that DVAL,
8738 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8739 unchecked) is replaced by a particular branch of the variant.
8740
8741 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8742 is questionable and may be removed. It can arise during the
8743 processing of an unconstrained-array-of-record type where all the
8744 variant branches have exactly the same size. This is because in
8745 such cases, the compiler does not bother to use the XVS convention
8746 when encoding the record. I am currently dubious of this
8747 shortcut and suspect the compiler should be altered. FIXME. */
8748
8749 static struct type *
8750 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8751 CORE_ADDR address, struct value *dval)
8752 {
8753 struct type *templ_type;
8754
8755 if (TYPE_FIXED_INSTANCE (type0))
8756 return type0;
8757
8758 templ_type = dynamic_template_type (type0);
8759
8760 if (templ_type != NULL)
8761 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8762 else if (variant_field_index (type0) >= 0)
8763 {
8764 if (dval == NULL && valaddr == NULL && address == 0)
8765 return type0;
8766 return to_record_with_fixed_variant_part (type0, valaddr, address,
8767 dval);
8768 }
8769 else
8770 {
8771 TYPE_FIXED_INSTANCE (type0) = 1;
8772 return type0;
8773 }
8774
8775 }
8776
8777 /* An ordinary record type (with fixed-length fields) that describes
8778 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8779 union type. Any necessary discriminants' values should be in DVAL,
8780 a record value. That is, this routine selects the appropriate
8781 branch of the union at ADDR according to the discriminant value
8782 indicated in the union's type name. Returns VAR_TYPE0 itself if
8783 it represents a variant subject to a pragma Unchecked_Union. */
8784
8785 static struct type *
8786 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8787 CORE_ADDR address, struct value *dval)
8788 {
8789 int which;
8790 struct type *templ_type;
8791 struct type *var_type;
8792
8793 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8794 var_type = TYPE_TARGET_TYPE (var_type0);
8795 else
8796 var_type = var_type0;
8797
8798 templ_type = ada_find_parallel_type (var_type, "___XVU");
8799
8800 if (templ_type != NULL)
8801 var_type = templ_type;
8802
8803 if (is_unchecked_variant (var_type, value_type (dval)))
8804 return var_type0;
8805 which =
8806 ada_which_variant_applies (var_type,
8807 value_type (dval), value_contents (dval));
8808
8809 if (which < 0)
8810 return empty_record (var_type);
8811 else if (is_dynamic_field (var_type, which))
8812 return to_fixed_record_type
8813 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8814 valaddr, address, dval);
8815 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8816 return
8817 to_fixed_record_type
8818 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8819 else
8820 return TYPE_FIELD_TYPE (var_type, which);
8821 }
8822
8823 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8824 ENCODING_TYPE, a type following the GNAT conventions for discrete
8825 type encodings, only carries redundant information. */
8826
8827 static int
8828 ada_is_redundant_range_encoding (struct type *range_type,
8829 struct type *encoding_type)
8830 {
8831 const char *bounds_str;
8832 int n;
8833 LONGEST lo, hi;
8834
8835 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8836
8837 if (TYPE_CODE (get_base_type (range_type))
8838 != TYPE_CODE (get_base_type (encoding_type)))
8839 {
8840 /* The compiler probably used a simple base type to describe
8841 the range type instead of the range's actual base type,
8842 expecting us to get the real base type from the encoding
8843 anyway. In this situation, the encoding cannot be ignored
8844 as redundant. */
8845 return 0;
8846 }
8847
8848 if (is_dynamic_type (range_type))
8849 return 0;
8850
8851 if (TYPE_NAME (encoding_type) == NULL)
8852 return 0;
8853
8854 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8855 if (bounds_str == NULL)
8856 return 0;
8857
8858 n = 8; /* Skip "___XDLU_". */
8859 if (!ada_scan_number (bounds_str, n, &lo, &n))
8860 return 0;
8861 if (TYPE_LOW_BOUND (range_type) != lo)
8862 return 0;
8863
8864 n += 2; /* Skip the "__" separator between the two bounds. */
8865 if (!ada_scan_number (bounds_str, n, &hi, &n))
8866 return 0;
8867 if (TYPE_HIGH_BOUND (range_type) != hi)
8868 return 0;
8869
8870 return 1;
8871 }
8872
8873 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8874 a type following the GNAT encoding for describing array type
8875 indices, only carries redundant information. */
8876
8877 static int
8878 ada_is_redundant_index_type_desc (struct type *array_type,
8879 struct type *desc_type)
8880 {
8881 struct type *this_layer = check_typedef (array_type);
8882 int i;
8883
8884 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8885 {
8886 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8887 TYPE_FIELD_TYPE (desc_type, i)))
8888 return 0;
8889 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8890 }
8891
8892 return 1;
8893 }
8894
8895 /* Assuming that TYPE0 is an array type describing the type of a value
8896 at ADDR, and that DVAL describes a record containing any
8897 discriminants used in TYPE0, returns a type for the value that
8898 contains no dynamic components (that is, no components whose sizes
8899 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8900 true, gives an error message if the resulting type's size is over
8901 varsize_limit. */
8902
8903 static struct type *
8904 to_fixed_array_type (struct type *type0, struct value *dval,
8905 int ignore_too_big)
8906 {
8907 struct type *index_type_desc;
8908 struct type *result;
8909 int constrained_packed_array_p;
8910 static const char *xa_suffix = "___XA";
8911
8912 type0 = ada_check_typedef (type0);
8913 if (TYPE_FIXED_INSTANCE (type0))
8914 return type0;
8915
8916 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8917 if (constrained_packed_array_p)
8918 type0 = decode_constrained_packed_array_type (type0);
8919
8920 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8921
8922 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8923 encoding suffixed with 'P' may still be generated. If so,
8924 it should be used to find the XA type. */
8925
8926 if (index_type_desc == NULL)
8927 {
8928 const char *type_name = ada_type_name (type0);
8929
8930 if (type_name != NULL)
8931 {
8932 const int len = strlen (type_name);
8933 char *name = (char *) alloca (len + strlen (xa_suffix));
8934
8935 if (type_name[len - 1] == 'P')
8936 {
8937 strcpy (name, type_name);
8938 strcpy (name + len - 1, xa_suffix);
8939 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8940 }
8941 }
8942 }
8943
8944 ada_fixup_array_indexes_type (index_type_desc);
8945 if (index_type_desc != NULL
8946 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8947 {
8948 /* Ignore this ___XA parallel type, as it does not bring any
8949 useful information. This allows us to avoid creating fixed
8950 versions of the array's index types, which would be identical
8951 to the original ones. This, in turn, can also help avoid
8952 the creation of fixed versions of the array itself. */
8953 index_type_desc = NULL;
8954 }
8955
8956 if (index_type_desc == NULL)
8957 {
8958 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8959
8960 /* NOTE: elt_type---the fixed version of elt_type0---should never
8961 depend on the contents of the array in properly constructed
8962 debugging data. */
8963 /* Create a fixed version of the array element type.
8964 We're not providing the address of an element here,
8965 and thus the actual object value cannot be inspected to do
8966 the conversion. This should not be a problem, since arrays of
8967 unconstrained objects are not allowed. In particular, all
8968 the elements of an array of a tagged type should all be of
8969 the same type specified in the debugging info. No need to
8970 consult the object tag. */
8971 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8972
8973 /* Make sure we always create a new array type when dealing with
8974 packed array types, since we're going to fix-up the array
8975 type length and element bitsize a little further down. */
8976 if (elt_type0 == elt_type && !constrained_packed_array_p)
8977 result = type0;
8978 else
8979 result = create_array_type (alloc_type_copy (type0),
8980 elt_type, TYPE_INDEX_TYPE (type0));
8981 }
8982 else
8983 {
8984 int i;
8985 struct type *elt_type0;
8986
8987 elt_type0 = type0;
8988 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8989 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8990
8991 /* NOTE: result---the fixed version of elt_type0---should never
8992 depend on the contents of the array in properly constructed
8993 debugging data. */
8994 /* Create a fixed version of the array element type.
8995 We're not providing the address of an element here,
8996 and thus the actual object value cannot be inspected to do
8997 the conversion. This should not be a problem, since arrays of
8998 unconstrained objects are not allowed. In particular, all
8999 the elements of an array of a tagged type should all be of
9000 the same type specified in the debugging info. No need to
9001 consult the object tag. */
9002 result =
9003 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
9004
9005 elt_type0 = type0;
9006 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
9007 {
9008 struct type *range_type =
9009 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
9010
9011 result = create_array_type (alloc_type_copy (elt_type0),
9012 result, range_type);
9013 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
9014 }
9015 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
9016 error (_("array type with dynamic size is larger than varsize-limit"));
9017 }
9018
9019 /* We want to preserve the type name. This can be useful when
9020 trying to get the type name of a value that has already been
9021 printed (for instance, if the user did "print VAR; whatis $". */
9022 TYPE_NAME (result) = TYPE_NAME (type0);
9023
9024 if (constrained_packed_array_p)
9025 {
9026 /* So far, the resulting type has been created as if the original
9027 type was a regular (non-packed) array type. As a result, the
9028 bitsize of the array elements needs to be set again, and the array
9029 length needs to be recomputed based on that bitsize. */
9030 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
9031 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
9032
9033 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
9034 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
9035 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
9036 TYPE_LENGTH (result)++;
9037 }
9038
9039 TYPE_FIXED_INSTANCE (result) = 1;
9040 return result;
9041 }
9042
9043
9044 /* A standard type (containing no dynamically sized components)
9045 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
9046 DVAL describes a record containing any discriminants used in TYPE0,
9047 and may be NULL if there are none, or if the object of type TYPE at
9048 ADDRESS or in VALADDR contains these discriminants.
9049
9050 If CHECK_TAG is not null, in the case of tagged types, this function
9051 attempts to locate the object's tag and use it to compute the actual
9052 type. However, when ADDRESS is null, we cannot use it to determine the
9053 location of the tag, and therefore compute the tagged type's actual type.
9054 So we return the tagged type without consulting the tag. */
9055
9056 static struct type *
9057 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
9058 CORE_ADDR address, struct value *dval, int check_tag)
9059 {
9060 type = ada_check_typedef (type);
9061 switch (TYPE_CODE (type))
9062 {
9063 default:
9064 return type;
9065 case TYPE_CODE_STRUCT:
9066 {
9067 struct type *static_type = to_static_fixed_type (type);
9068 struct type *fixed_record_type =
9069 to_fixed_record_type (type, valaddr, address, NULL);
9070
9071 /* If STATIC_TYPE is a tagged type and we know the object's address,
9072 then we can determine its tag, and compute the object's actual
9073 type from there. Note that we have to use the fixed record
9074 type (the parent part of the record may have dynamic fields
9075 and the way the location of _tag is expressed may depend on
9076 them). */
9077
9078 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
9079 {
9080 struct value *tag =
9081 value_tag_from_contents_and_address
9082 (fixed_record_type,
9083 valaddr,
9084 address);
9085 struct type *real_type = type_from_tag (tag);
9086 struct value *obj =
9087 value_from_contents_and_address (fixed_record_type,
9088 valaddr,
9089 address);
9090 fixed_record_type = value_type (obj);
9091 if (real_type != NULL)
9092 return to_fixed_record_type
9093 (real_type, NULL,
9094 value_address (ada_tag_value_at_base_address (obj)), NULL);
9095 }
9096
9097 /* Check to see if there is a parallel ___XVZ variable.
9098 If there is, then it provides the actual size of our type. */
9099 else if (ada_type_name (fixed_record_type) != NULL)
9100 {
9101 const char *name = ada_type_name (fixed_record_type);
9102 char *xvz_name
9103 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
9104 LONGEST size;
9105
9106 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
9107 if (get_int_var_value (xvz_name, size)
9108 && TYPE_LENGTH (fixed_record_type) != size)
9109 {
9110 fixed_record_type = copy_type (fixed_record_type);
9111 TYPE_LENGTH (fixed_record_type) = size;
9112
9113 /* The FIXED_RECORD_TYPE may have be a stub. We have
9114 observed this when the debugging info is STABS, and
9115 apparently it is something that is hard to fix.
9116
9117 In practice, we don't need the actual type definition
9118 at all, because the presence of the XVZ variable allows us
9119 to assume that there must be a XVS type as well, which we
9120 should be able to use later, when we need the actual type
9121 definition.
9122
9123 In the meantime, pretend that the "fixed" type we are
9124 returning is NOT a stub, because this can cause trouble
9125 when using this type to create new types targeting it.
9126 Indeed, the associated creation routines often check
9127 whether the target type is a stub and will try to replace
9128 it, thus using a type with the wrong size. This, in turn,
9129 might cause the new type to have the wrong size too.
9130 Consider the case of an array, for instance, where the size
9131 of the array is computed from the number of elements in
9132 our array multiplied by the size of its element. */
9133 TYPE_STUB (fixed_record_type) = 0;
9134 }
9135 }
9136 return fixed_record_type;
9137 }
9138 case TYPE_CODE_ARRAY:
9139 return to_fixed_array_type (type, dval, 1);
9140 case TYPE_CODE_UNION:
9141 if (dval == NULL)
9142 return type;
9143 else
9144 return to_fixed_variant_branch_type (type, valaddr, address, dval);
9145 }
9146 }
9147
9148 /* The same as ada_to_fixed_type_1, except that it preserves the type
9149 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
9150
9151 The typedef layer needs be preserved in order to differentiate between
9152 arrays and array pointers when both types are implemented using the same
9153 fat pointer. In the array pointer case, the pointer is encoded as
9154 a typedef of the pointer type. For instance, considering:
9155
9156 type String_Access is access String;
9157 S1 : String_Access := null;
9158
9159 To the debugger, S1 is defined as a typedef of type String. But
9160 to the user, it is a pointer. So if the user tries to print S1,
9161 we should not dereference the array, but print the array address
9162 instead.
9163
9164 If we didn't preserve the typedef layer, we would lose the fact that
9165 the type is to be presented as a pointer (needs de-reference before
9166 being printed). And we would also use the source-level type name. */
9167
9168 struct type *
9169 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
9170 CORE_ADDR address, struct value *dval, int check_tag)
9171
9172 {
9173 struct type *fixed_type =
9174 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
9175
9176 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
9177 then preserve the typedef layer.
9178
9179 Implementation note: We can only check the main-type portion of
9180 the TYPE and FIXED_TYPE, because eliminating the typedef layer
9181 from TYPE now returns a type that has the same instance flags
9182 as TYPE. For instance, if TYPE is a "typedef const", and its
9183 target type is a "struct", then the typedef elimination will return
9184 a "const" version of the target type. See check_typedef for more
9185 details about how the typedef layer elimination is done.
9186
9187 brobecker/2010-11-19: It seems to me that the only case where it is
9188 useful to preserve the typedef layer is when dealing with fat pointers.
9189 Perhaps, we could add a check for that and preserve the typedef layer
9190 only in that situation. But this seems unecessary so far, probably
9191 because we call check_typedef/ada_check_typedef pretty much everywhere.
9192 */
9193 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9194 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
9195 == TYPE_MAIN_TYPE (fixed_type)))
9196 return type;
9197
9198 return fixed_type;
9199 }
9200
9201 /* A standard (static-sized) type corresponding as well as possible to
9202 TYPE0, but based on no runtime data. */
9203
9204 static struct type *
9205 to_static_fixed_type (struct type *type0)
9206 {
9207 struct type *type;
9208
9209 if (type0 == NULL)
9210 return NULL;
9211
9212 if (TYPE_FIXED_INSTANCE (type0))
9213 return type0;
9214
9215 type0 = ada_check_typedef (type0);
9216
9217 switch (TYPE_CODE (type0))
9218 {
9219 default:
9220 return type0;
9221 case TYPE_CODE_STRUCT:
9222 type = dynamic_template_type (type0);
9223 if (type != NULL)
9224 return template_to_static_fixed_type (type);
9225 else
9226 return template_to_static_fixed_type (type0);
9227 case TYPE_CODE_UNION:
9228 type = ada_find_parallel_type (type0, "___XVU");
9229 if (type != NULL)
9230 return template_to_static_fixed_type (type);
9231 else
9232 return template_to_static_fixed_type (type0);
9233 }
9234 }
9235
9236 /* A static approximation of TYPE with all type wrappers removed. */
9237
9238 static struct type *
9239 static_unwrap_type (struct type *type)
9240 {
9241 if (ada_is_aligner_type (type))
9242 {
9243 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
9244 if (ada_type_name (type1) == NULL)
9245 TYPE_NAME (type1) = ada_type_name (type);
9246
9247 return static_unwrap_type (type1);
9248 }
9249 else
9250 {
9251 struct type *raw_real_type = ada_get_base_type (type);
9252
9253 if (raw_real_type == type)
9254 return type;
9255 else
9256 return to_static_fixed_type (raw_real_type);
9257 }
9258 }
9259
9260 /* In some cases, incomplete and private types require
9261 cross-references that are not resolved as records (for example,
9262 type Foo;
9263 type FooP is access Foo;
9264 V: FooP;
9265 type Foo is array ...;
9266 ). In these cases, since there is no mechanism for producing
9267 cross-references to such types, we instead substitute for FooP a
9268 stub enumeration type that is nowhere resolved, and whose tag is
9269 the name of the actual type. Call these types "non-record stubs". */
9270
9271 /* A type equivalent to TYPE that is not a non-record stub, if one
9272 exists, otherwise TYPE. */
9273
9274 struct type *
9275 ada_check_typedef (struct type *type)
9276 {
9277 if (type == NULL)
9278 return NULL;
9279
9280 /* If our type is a typedef type of a fat pointer, then we're done.
9281 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9282 what allows us to distinguish between fat pointers that represent
9283 array types, and fat pointers that represent array access types
9284 (in both cases, the compiler implements them as fat pointers). */
9285 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9286 && is_thick_pntr (ada_typedef_target_type (type)))
9287 return type;
9288
9289 type = check_typedef (type);
9290 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
9291 || !TYPE_STUB (type)
9292 || TYPE_TAG_NAME (type) == NULL)
9293 return type;
9294 else
9295 {
9296 const char *name = TYPE_TAG_NAME (type);
9297 struct type *type1 = ada_find_any_type (name);
9298
9299 if (type1 == NULL)
9300 return type;
9301
9302 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9303 stubs pointing to arrays, as we don't create symbols for array
9304 types, only for the typedef-to-array types). If that's the case,
9305 strip the typedef layer. */
9306 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9307 type1 = ada_check_typedef (type1);
9308
9309 return type1;
9310 }
9311 }
9312
9313 /* A value representing the data at VALADDR/ADDRESS as described by
9314 type TYPE0, but with a standard (static-sized) type that correctly
9315 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9316 type, then return VAL0 [this feature is simply to avoid redundant
9317 creation of struct values]. */
9318
9319 static struct value *
9320 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9321 struct value *val0)
9322 {
9323 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
9324
9325 if (type == type0 && val0 != NULL)
9326 return val0;
9327 else
9328 return value_from_contents_and_address (type, 0, address);
9329 }
9330
9331 /* A value representing VAL, but with a standard (static-sized) type
9332 that correctly describes it. Does not necessarily create a new
9333 value. */
9334
9335 struct value *
9336 ada_to_fixed_value (struct value *val)
9337 {
9338 val = unwrap_value (val);
9339 val = ada_to_fixed_value_create (value_type (val),
9340 value_address (val),
9341 val);
9342 return val;
9343 }
9344 \f
9345
9346 /* Attributes */
9347
9348 /* Table mapping attribute numbers to names.
9349 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
9350
9351 static const char *attribute_names[] = {
9352 "<?>",
9353
9354 "first",
9355 "last",
9356 "length",
9357 "image",
9358 "max",
9359 "min",
9360 "modulus",
9361 "pos",
9362 "size",
9363 "tag",
9364 "val",
9365 0
9366 };
9367
9368 const char *
9369 ada_attribute_name (enum exp_opcode n)
9370 {
9371 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9372 return attribute_names[n - OP_ATR_FIRST + 1];
9373 else
9374 return attribute_names[0];
9375 }
9376
9377 /* Evaluate the 'POS attribute applied to ARG. */
9378
9379 static LONGEST
9380 pos_atr (struct value *arg)
9381 {
9382 struct value *val = coerce_ref (arg);
9383 struct type *type = value_type (val);
9384 LONGEST result;
9385
9386 if (!discrete_type_p (type))
9387 error (_("'POS only defined on discrete types"));
9388
9389 if (!discrete_position (type, value_as_long (val), &result))
9390 error (_("enumeration value is invalid: can't find 'POS"));
9391
9392 return result;
9393 }
9394
9395 static struct value *
9396 value_pos_atr (struct type *type, struct value *arg)
9397 {
9398 return value_from_longest (type, pos_atr (arg));
9399 }
9400
9401 /* Evaluate the TYPE'VAL attribute applied to ARG. */
9402
9403 static struct value *
9404 value_val_atr (struct type *type, struct value *arg)
9405 {
9406 if (!discrete_type_p (type))
9407 error (_("'VAL only defined on discrete types"));
9408 if (!integer_type_p (value_type (arg)))
9409 error (_("'VAL requires integral argument"));
9410
9411 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9412 {
9413 long pos = value_as_long (arg);
9414
9415 if (pos < 0 || pos >= TYPE_NFIELDS (type))
9416 error (_("argument to 'VAL out of range"));
9417 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
9418 }
9419 else
9420 return value_from_longest (type, value_as_long (arg));
9421 }
9422 \f
9423
9424 /* Evaluation */
9425
9426 /* True if TYPE appears to be an Ada character type.
9427 [At the moment, this is true only for Character and Wide_Character;
9428 It is a heuristic test that could stand improvement]. */
9429
9430 int
9431 ada_is_character_type (struct type *type)
9432 {
9433 const char *name;
9434
9435 /* If the type code says it's a character, then assume it really is,
9436 and don't check any further. */
9437 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9438 return 1;
9439
9440 /* Otherwise, assume it's a character type iff it is a discrete type
9441 with a known character type name. */
9442 name = ada_type_name (type);
9443 return (name != NULL
9444 && (TYPE_CODE (type) == TYPE_CODE_INT
9445 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9446 && (strcmp (name, "character") == 0
9447 || strcmp (name, "wide_character") == 0
9448 || strcmp (name, "wide_wide_character") == 0
9449 || strcmp (name, "unsigned char") == 0));
9450 }
9451
9452 /* True if TYPE appears to be an Ada string type. */
9453
9454 int
9455 ada_is_string_type (struct type *type)
9456 {
9457 type = ada_check_typedef (type);
9458 if (type != NULL
9459 && TYPE_CODE (type) != TYPE_CODE_PTR
9460 && (ada_is_simple_array_type (type)
9461 || ada_is_array_descriptor_type (type))
9462 && ada_array_arity (type) == 1)
9463 {
9464 struct type *elttype = ada_array_element_type (type, 1);
9465
9466 return ada_is_character_type (elttype);
9467 }
9468 else
9469 return 0;
9470 }
9471
9472 /* The compiler sometimes provides a parallel XVS type for a given
9473 PAD type. Normally, it is safe to follow the PAD type directly,
9474 but older versions of the compiler have a bug that causes the offset
9475 of its "F" field to be wrong. Following that field in that case
9476 would lead to incorrect results, but this can be worked around
9477 by ignoring the PAD type and using the associated XVS type instead.
9478
9479 Set to True if the debugger should trust the contents of PAD types.
9480 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9481 static int trust_pad_over_xvs = 1;
9482
9483 /* True if TYPE is a struct type introduced by the compiler to force the
9484 alignment of a value. Such types have a single field with a
9485 distinctive name. */
9486
9487 int
9488 ada_is_aligner_type (struct type *type)
9489 {
9490 type = ada_check_typedef (type);
9491
9492 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
9493 return 0;
9494
9495 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
9496 && TYPE_NFIELDS (type) == 1
9497 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
9498 }
9499
9500 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9501 the parallel type. */
9502
9503 struct type *
9504 ada_get_base_type (struct type *raw_type)
9505 {
9506 struct type *real_type_namer;
9507 struct type *raw_real_type;
9508
9509 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9510 return raw_type;
9511
9512 if (ada_is_aligner_type (raw_type))
9513 /* The encoding specifies that we should always use the aligner type.
9514 So, even if this aligner type has an associated XVS type, we should
9515 simply ignore it.
9516
9517 According to the compiler gurus, an XVS type parallel to an aligner
9518 type may exist because of a stabs limitation. In stabs, aligner
9519 types are empty because the field has a variable-sized type, and
9520 thus cannot actually be used as an aligner type. As a result,
9521 we need the associated parallel XVS type to decode the type.
9522 Since the policy in the compiler is to not change the internal
9523 representation based on the debugging info format, we sometimes
9524 end up having a redundant XVS type parallel to the aligner type. */
9525 return raw_type;
9526
9527 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9528 if (real_type_namer == NULL
9529 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9530 || TYPE_NFIELDS (real_type_namer) != 1)
9531 return raw_type;
9532
9533 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9534 {
9535 /* This is an older encoding form where the base type needs to be
9536 looked up by name. We prefer the newer enconding because it is
9537 more efficient. */
9538 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9539 if (raw_real_type == NULL)
9540 return raw_type;
9541 else
9542 return raw_real_type;
9543 }
9544
9545 /* The field in our XVS type is a reference to the base type. */
9546 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
9547 }
9548
9549 /* The type of value designated by TYPE, with all aligners removed. */
9550
9551 struct type *
9552 ada_aligned_type (struct type *type)
9553 {
9554 if (ada_is_aligner_type (type))
9555 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9556 else
9557 return ada_get_base_type (type);
9558 }
9559
9560
9561 /* The address of the aligned value in an object at address VALADDR
9562 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9563
9564 const gdb_byte *
9565 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9566 {
9567 if (ada_is_aligner_type (type))
9568 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
9569 valaddr +
9570 TYPE_FIELD_BITPOS (type,
9571 0) / TARGET_CHAR_BIT);
9572 else
9573 return valaddr;
9574 }
9575
9576
9577
9578 /* The printed representation of an enumeration literal with encoded
9579 name NAME. The value is good to the next call of ada_enum_name. */
9580 const char *
9581 ada_enum_name (const char *name)
9582 {
9583 static char *result;
9584 static size_t result_len = 0;
9585 const char *tmp;
9586
9587 /* First, unqualify the enumeration name:
9588 1. Search for the last '.' character. If we find one, then skip
9589 all the preceding characters, the unqualified name starts
9590 right after that dot.
9591 2. Otherwise, we may be debugging on a target where the compiler
9592 translates dots into "__". Search forward for double underscores,
9593 but stop searching when we hit an overloading suffix, which is
9594 of the form "__" followed by digits. */
9595
9596 tmp = strrchr (name, '.');
9597 if (tmp != NULL)
9598 name = tmp + 1;
9599 else
9600 {
9601 while ((tmp = strstr (name, "__")) != NULL)
9602 {
9603 if (isdigit (tmp[2]))
9604 break;
9605 else
9606 name = tmp + 2;
9607 }
9608 }
9609
9610 if (name[0] == 'Q')
9611 {
9612 int v;
9613
9614 if (name[1] == 'U' || name[1] == 'W')
9615 {
9616 if (sscanf (name + 2, "%x", &v) != 1)
9617 return name;
9618 }
9619 else
9620 return name;
9621
9622 GROW_VECT (result, result_len, 16);
9623 if (isascii (v) && isprint (v))
9624 xsnprintf (result, result_len, "'%c'", v);
9625 else if (name[1] == 'U')
9626 xsnprintf (result, result_len, "[\"%02x\"]", v);
9627 else
9628 xsnprintf (result, result_len, "[\"%04x\"]", v);
9629
9630 return result;
9631 }
9632 else
9633 {
9634 tmp = strstr (name, "__");
9635 if (tmp == NULL)
9636 tmp = strstr (name, "$");
9637 if (tmp != NULL)
9638 {
9639 GROW_VECT (result, result_len, tmp - name + 1);
9640 strncpy (result, name, tmp - name);
9641 result[tmp - name] = '\0';
9642 return result;
9643 }
9644
9645 return name;
9646 }
9647 }
9648
9649 /* Evaluate the subexpression of EXP starting at *POS as for
9650 evaluate_type, updating *POS to point just past the evaluated
9651 expression. */
9652
9653 static struct value *
9654 evaluate_subexp_type (struct expression *exp, int *pos)
9655 {
9656 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9657 }
9658
9659 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9660 value it wraps. */
9661
9662 static struct value *
9663 unwrap_value (struct value *val)
9664 {
9665 struct type *type = ada_check_typedef (value_type (val));
9666
9667 if (ada_is_aligner_type (type))
9668 {
9669 struct value *v = ada_value_struct_elt (val, "F", 0);
9670 struct type *val_type = ada_check_typedef (value_type (v));
9671
9672 if (ada_type_name (val_type) == NULL)
9673 TYPE_NAME (val_type) = ada_type_name (type);
9674
9675 return unwrap_value (v);
9676 }
9677 else
9678 {
9679 struct type *raw_real_type =
9680 ada_check_typedef (ada_get_base_type (type));
9681
9682 /* If there is no parallel XVS or XVE type, then the value is
9683 already unwrapped. Return it without further modification. */
9684 if ((type == raw_real_type)
9685 && ada_find_parallel_type (type, "___XVE") == NULL)
9686 return val;
9687
9688 return
9689 coerce_unspec_val_to_type
9690 (val, ada_to_fixed_type (raw_real_type, 0,
9691 value_address (val),
9692 NULL, 1));
9693 }
9694 }
9695
9696 static struct value *
9697 cast_from_fixed (struct type *type, struct value *arg)
9698 {
9699 struct value *scale = ada_scaling_factor (value_type (arg));
9700 arg = value_cast (value_type (scale), arg);
9701
9702 arg = value_binop (arg, scale, BINOP_MUL);
9703 return value_cast (type, arg);
9704 }
9705
9706 static struct value *
9707 cast_to_fixed (struct type *type, struct value *arg)
9708 {
9709 if (type == value_type (arg))
9710 return arg;
9711
9712 struct value *scale = ada_scaling_factor (type);
9713 if (ada_is_fixed_point_type (value_type (arg)))
9714 arg = cast_from_fixed (value_type (scale), arg);
9715 else
9716 arg = value_cast (value_type (scale), arg);
9717
9718 arg = value_binop (arg, scale, BINOP_DIV);
9719 return value_cast (type, arg);
9720 }
9721
9722 /* Given two array types T1 and T2, return nonzero iff both arrays
9723 contain the same number of elements. */
9724
9725 static int
9726 ada_same_array_size_p (struct type *t1, struct type *t2)
9727 {
9728 LONGEST lo1, hi1, lo2, hi2;
9729
9730 /* Get the array bounds in order to verify that the size of
9731 the two arrays match. */
9732 if (!get_array_bounds (t1, &lo1, &hi1)
9733 || !get_array_bounds (t2, &lo2, &hi2))
9734 error (_("unable to determine array bounds"));
9735
9736 /* To make things easier for size comparison, normalize a bit
9737 the case of empty arrays by making sure that the difference
9738 between upper bound and lower bound is always -1. */
9739 if (lo1 > hi1)
9740 hi1 = lo1 - 1;
9741 if (lo2 > hi2)
9742 hi2 = lo2 - 1;
9743
9744 return (hi1 - lo1 == hi2 - lo2);
9745 }
9746
9747 /* Assuming that VAL is an array of integrals, and TYPE represents
9748 an array with the same number of elements, but with wider integral
9749 elements, return an array "casted" to TYPE. In practice, this
9750 means that the returned array is built by casting each element
9751 of the original array into TYPE's (wider) element type. */
9752
9753 static struct value *
9754 ada_promote_array_of_integrals (struct type *type, struct value *val)
9755 {
9756 struct type *elt_type = TYPE_TARGET_TYPE (type);
9757 LONGEST lo, hi;
9758 struct value *res;
9759 LONGEST i;
9760
9761 /* Verify that both val and type are arrays of scalars, and
9762 that the size of val's elements is smaller than the size
9763 of type's element. */
9764 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9765 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9766 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9767 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9768 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9769 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9770
9771 if (!get_array_bounds (type, &lo, &hi))
9772 error (_("unable to determine array bounds"));
9773
9774 res = allocate_value (type);
9775
9776 /* Promote each array element. */
9777 for (i = 0; i < hi - lo + 1; i++)
9778 {
9779 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9780
9781 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9782 value_contents_all (elt), TYPE_LENGTH (elt_type));
9783 }
9784
9785 return res;
9786 }
9787
9788 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9789 return the converted value. */
9790
9791 static struct value *
9792 coerce_for_assign (struct type *type, struct value *val)
9793 {
9794 struct type *type2 = value_type (val);
9795
9796 if (type == type2)
9797 return val;
9798
9799 type2 = ada_check_typedef (type2);
9800 type = ada_check_typedef (type);
9801
9802 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9803 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9804 {
9805 val = ada_value_ind (val);
9806 type2 = value_type (val);
9807 }
9808
9809 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
9810 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9811 {
9812 if (!ada_same_array_size_p (type, type2))
9813 error (_("cannot assign arrays of different length"));
9814
9815 if (is_integral_type (TYPE_TARGET_TYPE (type))
9816 && is_integral_type (TYPE_TARGET_TYPE (type2))
9817 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9818 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9819 {
9820 /* Allow implicit promotion of the array elements to
9821 a wider type. */
9822 return ada_promote_array_of_integrals (type, val);
9823 }
9824
9825 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9826 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9827 error (_("Incompatible types in assignment"));
9828 deprecated_set_value_type (val, type);
9829 }
9830 return val;
9831 }
9832
9833 static struct value *
9834 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9835 {
9836 struct value *val;
9837 struct type *type1, *type2;
9838 LONGEST v, v1, v2;
9839
9840 arg1 = coerce_ref (arg1);
9841 arg2 = coerce_ref (arg2);
9842 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9843 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9844
9845 if (TYPE_CODE (type1) != TYPE_CODE_INT
9846 || TYPE_CODE (type2) != TYPE_CODE_INT)
9847 return value_binop (arg1, arg2, op);
9848
9849 switch (op)
9850 {
9851 case BINOP_MOD:
9852 case BINOP_DIV:
9853 case BINOP_REM:
9854 break;
9855 default:
9856 return value_binop (arg1, arg2, op);
9857 }
9858
9859 v2 = value_as_long (arg2);
9860 if (v2 == 0)
9861 error (_("second operand of %s must not be zero."), op_string (op));
9862
9863 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9864 return value_binop (arg1, arg2, op);
9865
9866 v1 = value_as_long (arg1);
9867 switch (op)
9868 {
9869 case BINOP_DIV:
9870 v = v1 / v2;
9871 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9872 v += v > 0 ? -1 : 1;
9873 break;
9874 case BINOP_REM:
9875 v = v1 % v2;
9876 if (v * v1 < 0)
9877 v -= v2;
9878 break;
9879 default:
9880 /* Should not reach this point. */
9881 v = 0;
9882 }
9883
9884 val = allocate_value (type1);
9885 store_unsigned_integer (value_contents_raw (val),
9886 TYPE_LENGTH (value_type (val)),
9887 gdbarch_byte_order (get_type_arch (type1)), v);
9888 return val;
9889 }
9890
9891 static int
9892 ada_value_equal (struct value *arg1, struct value *arg2)
9893 {
9894 if (ada_is_direct_array_type (value_type (arg1))
9895 || ada_is_direct_array_type (value_type (arg2)))
9896 {
9897 struct type *arg1_type, *arg2_type;
9898
9899 /* Automatically dereference any array reference before
9900 we attempt to perform the comparison. */
9901 arg1 = ada_coerce_ref (arg1);
9902 arg2 = ada_coerce_ref (arg2);
9903
9904 arg1 = ada_coerce_to_simple_array (arg1);
9905 arg2 = ada_coerce_to_simple_array (arg2);
9906
9907 arg1_type = ada_check_typedef (value_type (arg1));
9908 arg2_type = ada_check_typedef (value_type (arg2));
9909
9910 if (TYPE_CODE (arg1_type) != TYPE_CODE_ARRAY
9911 || TYPE_CODE (arg2_type) != TYPE_CODE_ARRAY)
9912 error (_("Attempt to compare array with non-array"));
9913 /* FIXME: The following works only for types whose
9914 representations use all bits (no padding or undefined bits)
9915 and do not have user-defined equality. */
9916 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9917 && memcmp (value_contents (arg1), value_contents (arg2),
9918 TYPE_LENGTH (arg1_type)) == 0);
9919 }
9920 return value_equal (arg1, arg2);
9921 }
9922
9923 /* Total number of component associations in the aggregate starting at
9924 index PC in EXP. Assumes that index PC is the start of an
9925 OP_AGGREGATE. */
9926
9927 static int
9928 num_component_specs (struct expression *exp, int pc)
9929 {
9930 int n, m, i;
9931
9932 m = exp->elts[pc + 1].longconst;
9933 pc += 3;
9934 n = 0;
9935 for (i = 0; i < m; i += 1)
9936 {
9937 switch (exp->elts[pc].opcode)
9938 {
9939 default:
9940 n += 1;
9941 break;
9942 case OP_CHOICES:
9943 n += exp->elts[pc + 1].longconst;
9944 break;
9945 }
9946 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9947 }
9948 return n;
9949 }
9950
9951 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9952 component of LHS (a simple array or a record), updating *POS past
9953 the expression, assuming that LHS is contained in CONTAINER. Does
9954 not modify the inferior's memory, nor does it modify LHS (unless
9955 LHS == CONTAINER). */
9956
9957 static void
9958 assign_component (struct value *container, struct value *lhs, LONGEST index,
9959 struct expression *exp, int *pos)
9960 {
9961 struct value *mark = value_mark ();
9962 struct value *elt;
9963 struct type *lhs_type = check_typedef (value_type (lhs));
9964
9965 if (TYPE_CODE (lhs_type) == TYPE_CODE_ARRAY)
9966 {
9967 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9968 struct value *index_val = value_from_longest (index_type, index);
9969
9970 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9971 }
9972 else
9973 {
9974 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9975 elt = ada_to_fixed_value (elt);
9976 }
9977
9978 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9979 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9980 else
9981 value_assign_to_component (container, elt,
9982 ada_evaluate_subexp (NULL, exp, pos,
9983 EVAL_NORMAL));
9984
9985 value_free_to_mark (mark);
9986 }
9987
9988 /* Assuming that LHS represents an lvalue having a record or array
9989 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9990 of that aggregate's value to LHS, advancing *POS past the
9991 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9992 lvalue containing LHS (possibly LHS itself). Does not modify
9993 the inferior's memory, nor does it modify the contents of
9994 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9995
9996 static struct value *
9997 assign_aggregate (struct value *container,
9998 struct value *lhs, struct expression *exp,
9999 int *pos, enum noside noside)
10000 {
10001 struct type *lhs_type;
10002 int n = exp->elts[*pos+1].longconst;
10003 LONGEST low_index, high_index;
10004 int num_specs;
10005 LONGEST *indices;
10006 int max_indices, num_indices;
10007 int i;
10008
10009 *pos += 3;
10010 if (noside != EVAL_NORMAL)
10011 {
10012 for (i = 0; i < n; i += 1)
10013 ada_evaluate_subexp (NULL, exp, pos, noside);
10014 return container;
10015 }
10016
10017 container = ada_coerce_ref (container);
10018 if (ada_is_direct_array_type (value_type (container)))
10019 container = ada_coerce_to_simple_array (container);
10020 lhs = ada_coerce_ref (lhs);
10021 if (!deprecated_value_modifiable (lhs))
10022 error (_("Left operand of assignment is not a modifiable lvalue."));
10023
10024 lhs_type = check_typedef (value_type (lhs));
10025 if (ada_is_direct_array_type (lhs_type))
10026 {
10027 lhs = ada_coerce_to_simple_array (lhs);
10028 lhs_type = check_typedef (value_type (lhs));
10029 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
10030 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
10031 }
10032 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
10033 {
10034 low_index = 0;
10035 high_index = num_visible_fields (lhs_type) - 1;
10036 }
10037 else
10038 error (_("Left-hand side must be array or record."));
10039
10040 num_specs = num_component_specs (exp, *pos - 3);
10041 max_indices = 4 * num_specs + 4;
10042 indices = XALLOCAVEC (LONGEST, max_indices);
10043 indices[0] = indices[1] = low_index - 1;
10044 indices[2] = indices[3] = high_index + 1;
10045 num_indices = 4;
10046
10047 for (i = 0; i < n; i += 1)
10048 {
10049 switch (exp->elts[*pos].opcode)
10050 {
10051 case OP_CHOICES:
10052 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
10053 &num_indices, max_indices,
10054 low_index, high_index);
10055 break;
10056 case OP_POSITIONAL:
10057 aggregate_assign_positional (container, lhs, exp, pos, indices,
10058 &num_indices, max_indices,
10059 low_index, high_index);
10060 break;
10061 case OP_OTHERS:
10062 if (i != n-1)
10063 error (_("Misplaced 'others' clause"));
10064 aggregate_assign_others (container, lhs, exp, pos, indices,
10065 num_indices, low_index, high_index);
10066 break;
10067 default:
10068 error (_("Internal error: bad aggregate clause"));
10069 }
10070 }
10071
10072 return container;
10073 }
10074
10075 /* Assign into the component of LHS indexed by the OP_POSITIONAL
10076 construct at *POS, updating *POS past the construct, given that
10077 the positions are relative to lower bound LOW, where HIGH is the
10078 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
10079 updating *NUM_INDICES as needed. CONTAINER is as for
10080 assign_aggregate. */
10081 static void
10082 aggregate_assign_positional (struct value *container,
10083 struct value *lhs, struct expression *exp,
10084 int *pos, LONGEST *indices, int *num_indices,
10085 int max_indices, LONGEST low, LONGEST high)
10086 {
10087 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
10088
10089 if (ind - 1 == high)
10090 warning (_("Extra components in aggregate ignored."));
10091 if (ind <= high)
10092 {
10093 add_component_interval (ind, ind, indices, num_indices, max_indices);
10094 *pos += 3;
10095 assign_component (container, lhs, ind, exp, pos);
10096 }
10097 else
10098 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10099 }
10100
10101 /* Assign into the components of LHS indexed by the OP_CHOICES
10102 construct at *POS, updating *POS past the construct, given that
10103 the allowable indices are LOW..HIGH. Record the indices assigned
10104 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
10105 needed. CONTAINER is as for assign_aggregate. */
10106 static void
10107 aggregate_assign_from_choices (struct value *container,
10108 struct value *lhs, struct expression *exp,
10109 int *pos, LONGEST *indices, int *num_indices,
10110 int max_indices, LONGEST low, LONGEST high)
10111 {
10112 int j;
10113 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
10114 int choice_pos, expr_pc;
10115 int is_array = ada_is_direct_array_type (value_type (lhs));
10116
10117 choice_pos = *pos += 3;
10118
10119 for (j = 0; j < n_choices; j += 1)
10120 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10121 expr_pc = *pos;
10122 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10123
10124 for (j = 0; j < n_choices; j += 1)
10125 {
10126 LONGEST lower, upper;
10127 enum exp_opcode op = exp->elts[choice_pos].opcode;
10128
10129 if (op == OP_DISCRETE_RANGE)
10130 {
10131 choice_pos += 1;
10132 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10133 EVAL_NORMAL));
10134 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10135 EVAL_NORMAL));
10136 }
10137 else if (is_array)
10138 {
10139 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
10140 EVAL_NORMAL));
10141 upper = lower;
10142 }
10143 else
10144 {
10145 int ind;
10146 const char *name;
10147
10148 switch (op)
10149 {
10150 case OP_NAME:
10151 name = &exp->elts[choice_pos + 2].string;
10152 break;
10153 case OP_VAR_VALUE:
10154 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
10155 break;
10156 default:
10157 error (_("Invalid record component association."));
10158 }
10159 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
10160 ind = 0;
10161 if (! find_struct_field (name, value_type (lhs), 0,
10162 NULL, NULL, NULL, NULL, &ind))
10163 error (_("Unknown component name: %s."), name);
10164 lower = upper = ind;
10165 }
10166
10167 if (lower <= upper && (lower < low || upper > high))
10168 error (_("Index in component association out of bounds."));
10169
10170 add_component_interval (lower, upper, indices, num_indices,
10171 max_indices);
10172 while (lower <= upper)
10173 {
10174 int pos1;
10175
10176 pos1 = expr_pc;
10177 assign_component (container, lhs, lower, exp, &pos1);
10178 lower += 1;
10179 }
10180 }
10181 }
10182
10183 /* Assign the value of the expression in the OP_OTHERS construct in
10184 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
10185 have not been previously assigned. The index intervals already assigned
10186 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
10187 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
10188 static void
10189 aggregate_assign_others (struct value *container,
10190 struct value *lhs, struct expression *exp,
10191 int *pos, LONGEST *indices, int num_indices,
10192 LONGEST low, LONGEST high)
10193 {
10194 int i;
10195 int expr_pc = *pos + 1;
10196
10197 for (i = 0; i < num_indices - 2; i += 2)
10198 {
10199 LONGEST ind;
10200
10201 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
10202 {
10203 int localpos;
10204
10205 localpos = expr_pc;
10206 assign_component (container, lhs, ind, exp, &localpos);
10207 }
10208 }
10209 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10210 }
10211
10212 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
10213 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10214 modifying *SIZE as needed. It is an error if *SIZE exceeds
10215 MAX_SIZE. The resulting intervals do not overlap. */
10216 static void
10217 add_component_interval (LONGEST low, LONGEST high,
10218 LONGEST* indices, int *size, int max_size)
10219 {
10220 int i, j;
10221
10222 for (i = 0; i < *size; i += 2) {
10223 if (high >= indices[i] && low <= indices[i + 1])
10224 {
10225 int kh;
10226
10227 for (kh = i + 2; kh < *size; kh += 2)
10228 if (high < indices[kh])
10229 break;
10230 if (low < indices[i])
10231 indices[i] = low;
10232 indices[i + 1] = indices[kh - 1];
10233 if (high > indices[i + 1])
10234 indices[i + 1] = high;
10235 memcpy (indices + i + 2, indices + kh, *size - kh);
10236 *size -= kh - i - 2;
10237 return;
10238 }
10239 else if (high < indices[i])
10240 break;
10241 }
10242
10243 if (*size == max_size)
10244 error (_("Internal error: miscounted aggregate components."));
10245 *size += 2;
10246 for (j = *size-1; j >= i+2; j -= 1)
10247 indices[j] = indices[j - 2];
10248 indices[i] = low;
10249 indices[i + 1] = high;
10250 }
10251
10252 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10253 is different. */
10254
10255 static struct value *
10256 ada_value_cast (struct type *type, struct value *arg2)
10257 {
10258 if (type == ada_check_typedef (value_type (arg2)))
10259 return arg2;
10260
10261 if (ada_is_fixed_point_type (type))
10262 return (cast_to_fixed (type, arg2));
10263
10264 if (ada_is_fixed_point_type (value_type (arg2)))
10265 return cast_from_fixed (type, arg2);
10266
10267 return value_cast (type, arg2);
10268 }
10269
10270 /* Evaluating Ada expressions, and printing their result.
10271 ------------------------------------------------------
10272
10273 1. Introduction:
10274 ----------------
10275
10276 We usually evaluate an Ada expression in order to print its value.
10277 We also evaluate an expression in order to print its type, which
10278 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10279 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10280 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10281 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10282 similar.
10283
10284 Evaluating expressions is a little more complicated for Ada entities
10285 than it is for entities in languages such as C. The main reason for
10286 this is that Ada provides types whose definition might be dynamic.
10287 One example of such types is variant records. Or another example
10288 would be an array whose bounds can only be known at run time.
10289
10290 The following description is a general guide as to what should be
10291 done (and what should NOT be done) in order to evaluate an expression
10292 involving such types, and when. This does not cover how the semantic
10293 information is encoded by GNAT as this is covered separatly. For the
10294 document used as the reference for the GNAT encoding, see exp_dbug.ads
10295 in the GNAT sources.
10296
10297 Ideally, we should embed each part of this description next to its
10298 associated code. Unfortunately, the amount of code is so vast right
10299 now that it's hard to see whether the code handling a particular
10300 situation might be duplicated or not. One day, when the code is
10301 cleaned up, this guide might become redundant with the comments
10302 inserted in the code, and we might want to remove it.
10303
10304 2. ``Fixing'' an Entity, the Simple Case:
10305 -----------------------------------------
10306
10307 When evaluating Ada expressions, the tricky issue is that they may
10308 reference entities whose type contents and size are not statically
10309 known. Consider for instance a variant record:
10310
10311 type Rec (Empty : Boolean := True) is record
10312 case Empty is
10313 when True => null;
10314 when False => Value : Integer;
10315 end case;
10316 end record;
10317 Yes : Rec := (Empty => False, Value => 1);
10318 No : Rec := (empty => True);
10319
10320 The size and contents of that record depends on the value of the
10321 descriminant (Rec.Empty). At this point, neither the debugging
10322 information nor the associated type structure in GDB are able to
10323 express such dynamic types. So what the debugger does is to create
10324 "fixed" versions of the type that applies to the specific object.
10325 We also informally refer to this opperation as "fixing" an object,
10326 which means creating its associated fixed type.
10327
10328 Example: when printing the value of variable "Yes" above, its fixed
10329 type would look like this:
10330
10331 type Rec is record
10332 Empty : Boolean;
10333 Value : Integer;
10334 end record;
10335
10336 On the other hand, if we printed the value of "No", its fixed type
10337 would become:
10338
10339 type Rec is record
10340 Empty : Boolean;
10341 end record;
10342
10343 Things become a little more complicated when trying to fix an entity
10344 with a dynamic type that directly contains another dynamic type,
10345 such as an array of variant records, for instance. There are
10346 two possible cases: Arrays, and records.
10347
10348 3. ``Fixing'' Arrays:
10349 ---------------------
10350
10351 The type structure in GDB describes an array in terms of its bounds,
10352 and the type of its elements. By design, all elements in the array
10353 have the same type and we cannot represent an array of variant elements
10354 using the current type structure in GDB. When fixing an array,
10355 we cannot fix the array element, as we would potentially need one
10356 fixed type per element of the array. As a result, the best we can do
10357 when fixing an array is to produce an array whose bounds and size
10358 are correct (allowing us to read it from memory), but without having
10359 touched its element type. Fixing each element will be done later,
10360 when (if) necessary.
10361
10362 Arrays are a little simpler to handle than records, because the same
10363 amount of memory is allocated for each element of the array, even if
10364 the amount of space actually used by each element differs from element
10365 to element. Consider for instance the following array of type Rec:
10366
10367 type Rec_Array is array (1 .. 2) of Rec;
10368
10369 The actual amount of memory occupied by each element might be different
10370 from element to element, depending on the value of their discriminant.
10371 But the amount of space reserved for each element in the array remains
10372 fixed regardless. So we simply need to compute that size using
10373 the debugging information available, from which we can then determine
10374 the array size (we multiply the number of elements of the array by
10375 the size of each element).
10376
10377 The simplest case is when we have an array of a constrained element
10378 type. For instance, consider the following type declarations:
10379
10380 type Bounded_String (Max_Size : Integer) is
10381 Length : Integer;
10382 Buffer : String (1 .. Max_Size);
10383 end record;
10384 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10385
10386 In this case, the compiler describes the array as an array of
10387 variable-size elements (identified by its XVS suffix) for which
10388 the size can be read in the parallel XVZ variable.
10389
10390 In the case of an array of an unconstrained element type, the compiler
10391 wraps the array element inside a private PAD type. This type should not
10392 be shown to the user, and must be "unwrap"'ed before printing. Note
10393 that we also use the adjective "aligner" in our code to designate
10394 these wrapper types.
10395
10396 In some cases, the size allocated for each element is statically
10397 known. In that case, the PAD type already has the correct size,
10398 and the array element should remain unfixed.
10399
10400 But there are cases when this size is not statically known.
10401 For instance, assuming that "Five" is an integer variable:
10402
10403 type Dynamic is array (1 .. Five) of Integer;
10404 type Wrapper (Has_Length : Boolean := False) is record
10405 Data : Dynamic;
10406 case Has_Length is
10407 when True => Length : Integer;
10408 when False => null;
10409 end case;
10410 end record;
10411 type Wrapper_Array is array (1 .. 2) of Wrapper;
10412
10413 Hello : Wrapper_Array := (others => (Has_Length => True,
10414 Data => (others => 17),
10415 Length => 1));
10416
10417
10418 The debugging info would describe variable Hello as being an
10419 array of a PAD type. The size of that PAD type is not statically
10420 known, but can be determined using a parallel XVZ variable.
10421 In that case, a copy of the PAD type with the correct size should
10422 be used for the fixed array.
10423
10424 3. ``Fixing'' record type objects:
10425 ----------------------------------
10426
10427 Things are slightly different from arrays in the case of dynamic
10428 record types. In this case, in order to compute the associated
10429 fixed type, we need to determine the size and offset of each of
10430 its components. This, in turn, requires us to compute the fixed
10431 type of each of these components.
10432
10433 Consider for instance the example:
10434
10435 type Bounded_String (Max_Size : Natural) is record
10436 Str : String (1 .. Max_Size);
10437 Length : Natural;
10438 end record;
10439 My_String : Bounded_String (Max_Size => 10);
10440
10441 In that case, the position of field "Length" depends on the size
10442 of field Str, which itself depends on the value of the Max_Size
10443 discriminant. In order to fix the type of variable My_String,
10444 we need to fix the type of field Str. Therefore, fixing a variant
10445 record requires us to fix each of its components.
10446
10447 However, if a component does not have a dynamic size, the component
10448 should not be fixed. In particular, fields that use a PAD type
10449 should not fixed. Here is an example where this might happen
10450 (assuming type Rec above):
10451
10452 type Container (Big : Boolean) is record
10453 First : Rec;
10454 After : Integer;
10455 case Big is
10456 when True => Another : Integer;
10457 when False => null;
10458 end case;
10459 end record;
10460 My_Container : Container := (Big => False,
10461 First => (Empty => True),
10462 After => 42);
10463
10464 In that example, the compiler creates a PAD type for component First,
10465 whose size is constant, and then positions the component After just
10466 right after it. The offset of component After is therefore constant
10467 in this case.
10468
10469 The debugger computes the position of each field based on an algorithm
10470 that uses, among other things, the actual position and size of the field
10471 preceding it. Let's now imagine that the user is trying to print
10472 the value of My_Container. If the type fixing was recursive, we would
10473 end up computing the offset of field After based on the size of the
10474 fixed version of field First. And since in our example First has
10475 only one actual field, the size of the fixed type is actually smaller
10476 than the amount of space allocated to that field, and thus we would
10477 compute the wrong offset of field After.
10478
10479 To make things more complicated, we need to watch out for dynamic
10480 components of variant records (identified by the ___XVL suffix in
10481 the component name). Even if the target type is a PAD type, the size
10482 of that type might not be statically known. So the PAD type needs
10483 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10484 we might end up with the wrong size for our component. This can be
10485 observed with the following type declarations:
10486
10487 type Octal is new Integer range 0 .. 7;
10488 type Octal_Array is array (Positive range <>) of Octal;
10489 pragma Pack (Octal_Array);
10490
10491 type Octal_Buffer (Size : Positive) is record
10492 Buffer : Octal_Array (1 .. Size);
10493 Length : Integer;
10494 end record;
10495
10496 In that case, Buffer is a PAD type whose size is unset and needs
10497 to be computed by fixing the unwrapped type.
10498
10499 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10500 ----------------------------------------------------------
10501
10502 Lastly, when should the sub-elements of an entity that remained unfixed
10503 thus far, be actually fixed?
10504
10505 The answer is: Only when referencing that element. For instance
10506 when selecting one component of a record, this specific component
10507 should be fixed at that point in time. Or when printing the value
10508 of a record, each component should be fixed before its value gets
10509 printed. Similarly for arrays, the element of the array should be
10510 fixed when printing each element of the array, or when extracting
10511 one element out of that array. On the other hand, fixing should
10512 not be performed on the elements when taking a slice of an array!
10513
10514 Note that one of the side effects of miscomputing the offset and
10515 size of each field is that we end up also miscomputing the size
10516 of the containing type. This can have adverse results when computing
10517 the value of an entity. GDB fetches the value of an entity based
10518 on the size of its type, and thus a wrong size causes GDB to fetch
10519 the wrong amount of memory. In the case where the computed size is
10520 too small, GDB fetches too little data to print the value of our
10521 entity. Results in this case are unpredictable, as we usually read
10522 past the buffer containing the data =:-o. */
10523
10524 /* Evaluate a subexpression of EXP, at index *POS, and return a value
10525 for that subexpression cast to TO_TYPE. Advance *POS over the
10526 subexpression. */
10527
10528 static value *
10529 ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10530 enum noside noside, struct type *to_type)
10531 {
10532 int pc = *pos;
10533
10534 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10535 || exp->elts[pc].opcode == OP_VAR_VALUE)
10536 {
10537 (*pos) += 4;
10538
10539 value *val;
10540 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10541 {
10542 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10543 return value_zero (to_type, not_lval);
10544
10545 val = evaluate_var_msym_value (noside,
10546 exp->elts[pc + 1].objfile,
10547 exp->elts[pc + 2].msymbol);
10548 }
10549 else
10550 val = evaluate_var_value (noside,
10551 exp->elts[pc + 1].block,
10552 exp->elts[pc + 2].symbol);
10553
10554 if (noside == EVAL_SKIP)
10555 return eval_skip_value (exp);
10556
10557 val = ada_value_cast (to_type, val);
10558
10559 /* Follow the Ada language semantics that do not allow taking
10560 an address of the result of a cast (view conversion in Ada). */
10561 if (VALUE_LVAL (val) == lval_memory)
10562 {
10563 if (value_lazy (val))
10564 value_fetch_lazy (val);
10565 VALUE_LVAL (val) = not_lval;
10566 }
10567 return val;
10568 }
10569
10570 value *val = evaluate_subexp (to_type, exp, pos, noside);
10571 if (noside == EVAL_SKIP)
10572 return eval_skip_value (exp);
10573 return ada_value_cast (to_type, val);
10574 }
10575
10576 /* Implement the evaluate_exp routine in the exp_descriptor structure
10577 for the Ada language. */
10578
10579 static struct value *
10580 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
10581 int *pos, enum noside noside)
10582 {
10583 enum exp_opcode op;
10584 int tem;
10585 int pc;
10586 int preeval_pos;
10587 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10588 struct type *type;
10589 int nargs, oplen;
10590 struct value **argvec;
10591
10592 pc = *pos;
10593 *pos += 1;
10594 op = exp->elts[pc].opcode;
10595
10596 switch (op)
10597 {
10598 default:
10599 *pos -= 1;
10600 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10601
10602 if (noside == EVAL_NORMAL)
10603 arg1 = unwrap_value (arg1);
10604
10605 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
10606 then we need to perform the conversion manually, because
10607 evaluate_subexp_standard doesn't do it. This conversion is
10608 necessary in Ada because the different kinds of float/fixed
10609 types in Ada have different representations.
10610
10611 Similarly, we need to perform the conversion from OP_LONG
10612 ourselves. */
10613 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
10614 arg1 = ada_value_cast (expect_type, arg1);
10615
10616 return arg1;
10617
10618 case OP_STRING:
10619 {
10620 struct value *result;
10621
10622 *pos -= 1;
10623 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10624 /* The result type will have code OP_STRING, bashed there from
10625 OP_ARRAY. Bash it back. */
10626 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10627 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
10628 return result;
10629 }
10630
10631 case UNOP_CAST:
10632 (*pos) += 2;
10633 type = exp->elts[pc + 1].type;
10634 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
10635
10636 case UNOP_QUAL:
10637 (*pos) += 2;
10638 type = exp->elts[pc + 1].type;
10639 return ada_evaluate_subexp (type, exp, pos, noside);
10640
10641 case BINOP_ASSIGN:
10642 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10643 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10644 {
10645 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10646 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10647 return arg1;
10648 return ada_value_assign (arg1, arg1);
10649 }
10650 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10651 except if the lhs of our assignment is a convenience variable.
10652 In the case of assigning to a convenience variable, the lhs
10653 should be exactly the result of the evaluation of the rhs. */
10654 type = value_type (arg1);
10655 if (VALUE_LVAL (arg1) == lval_internalvar)
10656 type = NULL;
10657 arg2 = evaluate_subexp (type, exp, pos, noside);
10658 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10659 return arg1;
10660 if (ada_is_fixed_point_type (value_type (arg1)))
10661 arg2 = cast_to_fixed (value_type (arg1), arg2);
10662 else if (ada_is_fixed_point_type (value_type (arg2)))
10663 error
10664 (_("Fixed-point values must be assigned to fixed-point variables"));
10665 else
10666 arg2 = coerce_for_assign (value_type (arg1), arg2);
10667 return ada_value_assign (arg1, arg2);
10668
10669 case BINOP_ADD:
10670 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10671 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10672 if (noside == EVAL_SKIP)
10673 goto nosideret;
10674 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10675 return (value_from_longest
10676 (value_type (arg1),
10677 value_as_long (arg1) + value_as_long (arg2)));
10678 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10679 return (value_from_longest
10680 (value_type (arg2),
10681 value_as_long (arg1) + value_as_long (arg2)));
10682 if ((ada_is_fixed_point_type (value_type (arg1))
10683 || ada_is_fixed_point_type (value_type (arg2)))
10684 && value_type (arg1) != value_type (arg2))
10685 error (_("Operands of fixed-point addition must have the same type"));
10686 /* Do the addition, and cast the result to the type of the first
10687 argument. We cannot cast the result to a reference type, so if
10688 ARG1 is a reference type, find its underlying type. */
10689 type = value_type (arg1);
10690 while (TYPE_CODE (type) == TYPE_CODE_REF)
10691 type = TYPE_TARGET_TYPE (type);
10692 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10693 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10694
10695 case BINOP_SUB:
10696 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10697 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10698 if (noside == EVAL_SKIP)
10699 goto nosideret;
10700 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10701 return (value_from_longest
10702 (value_type (arg1),
10703 value_as_long (arg1) - value_as_long (arg2)));
10704 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10705 return (value_from_longest
10706 (value_type (arg2),
10707 value_as_long (arg1) - value_as_long (arg2)));
10708 if ((ada_is_fixed_point_type (value_type (arg1))
10709 || ada_is_fixed_point_type (value_type (arg2)))
10710 && value_type (arg1) != value_type (arg2))
10711 error (_("Operands of fixed-point subtraction "
10712 "must have the same type"));
10713 /* Do the substraction, and cast the result to the type of the first
10714 argument. We cannot cast the result to a reference type, so if
10715 ARG1 is a reference type, find its underlying type. */
10716 type = value_type (arg1);
10717 while (TYPE_CODE (type) == TYPE_CODE_REF)
10718 type = TYPE_TARGET_TYPE (type);
10719 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10720 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10721
10722 case BINOP_MUL:
10723 case BINOP_DIV:
10724 case BINOP_REM:
10725 case BINOP_MOD:
10726 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10727 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10728 if (noside == EVAL_SKIP)
10729 goto nosideret;
10730 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10731 {
10732 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10733 return value_zero (value_type (arg1), not_lval);
10734 }
10735 else
10736 {
10737 type = builtin_type (exp->gdbarch)->builtin_double;
10738 if (ada_is_fixed_point_type (value_type (arg1)))
10739 arg1 = cast_from_fixed (type, arg1);
10740 if (ada_is_fixed_point_type (value_type (arg2)))
10741 arg2 = cast_from_fixed (type, arg2);
10742 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10743 return ada_value_binop (arg1, arg2, op);
10744 }
10745
10746 case BINOP_EQUAL:
10747 case BINOP_NOTEQUAL:
10748 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10749 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10750 if (noside == EVAL_SKIP)
10751 goto nosideret;
10752 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10753 tem = 0;
10754 else
10755 {
10756 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10757 tem = ada_value_equal (arg1, arg2);
10758 }
10759 if (op == BINOP_NOTEQUAL)
10760 tem = !tem;
10761 type = language_bool_type (exp->language_defn, exp->gdbarch);
10762 return value_from_longest (type, (LONGEST) tem);
10763
10764 case UNOP_NEG:
10765 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10766 if (noside == EVAL_SKIP)
10767 goto nosideret;
10768 else if (ada_is_fixed_point_type (value_type (arg1)))
10769 return value_cast (value_type (arg1), value_neg (arg1));
10770 else
10771 {
10772 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10773 return value_neg (arg1);
10774 }
10775
10776 case BINOP_LOGICAL_AND:
10777 case BINOP_LOGICAL_OR:
10778 case UNOP_LOGICAL_NOT:
10779 {
10780 struct value *val;
10781
10782 *pos -= 1;
10783 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10784 type = language_bool_type (exp->language_defn, exp->gdbarch);
10785 return value_cast (type, val);
10786 }
10787
10788 case BINOP_BITWISE_AND:
10789 case BINOP_BITWISE_IOR:
10790 case BINOP_BITWISE_XOR:
10791 {
10792 struct value *val;
10793
10794 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10795 *pos = pc;
10796 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10797
10798 return value_cast (value_type (arg1), val);
10799 }
10800
10801 case OP_VAR_VALUE:
10802 *pos -= 1;
10803
10804 if (noside == EVAL_SKIP)
10805 {
10806 *pos += 4;
10807 goto nosideret;
10808 }
10809
10810 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10811 /* Only encountered when an unresolved symbol occurs in a
10812 context other than a function call, in which case, it is
10813 invalid. */
10814 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10815 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
10816
10817 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10818 {
10819 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10820 /* Check to see if this is a tagged type. We also need to handle
10821 the case where the type is a reference to a tagged type, but
10822 we have to be careful to exclude pointers to tagged types.
10823 The latter should be shown as usual (as a pointer), whereas
10824 a reference should mostly be transparent to the user. */
10825 if (ada_is_tagged_type (type, 0)
10826 || (TYPE_CODE (type) == TYPE_CODE_REF
10827 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10828 {
10829 /* Tagged types are a little special in the fact that the real
10830 type is dynamic and can only be determined by inspecting the
10831 object's tag. This means that we need to get the object's
10832 value first (EVAL_NORMAL) and then extract the actual object
10833 type from its tag.
10834
10835 Note that we cannot skip the final step where we extract
10836 the object type from its tag, because the EVAL_NORMAL phase
10837 results in dynamic components being resolved into fixed ones.
10838 This can cause problems when trying to print the type
10839 description of tagged types whose parent has a dynamic size:
10840 We use the type name of the "_parent" component in order
10841 to print the name of the ancestor type in the type description.
10842 If that component had a dynamic size, the resolution into
10843 a fixed type would result in the loss of that type name,
10844 thus preventing us from printing the name of the ancestor
10845 type in the type description. */
10846 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10847
10848 if (TYPE_CODE (type) != TYPE_CODE_REF)
10849 {
10850 struct type *actual_type;
10851
10852 actual_type = type_from_tag (ada_value_tag (arg1));
10853 if (actual_type == NULL)
10854 /* If, for some reason, we were unable to determine
10855 the actual type from the tag, then use the static
10856 approximation that we just computed as a fallback.
10857 This can happen if the debugging information is
10858 incomplete, for instance. */
10859 actual_type = type;
10860 return value_zero (actual_type, not_lval);
10861 }
10862 else
10863 {
10864 /* In the case of a ref, ada_coerce_ref takes care
10865 of determining the actual type. But the evaluation
10866 should return a ref as it should be valid to ask
10867 for its address; so rebuild a ref after coerce. */
10868 arg1 = ada_coerce_ref (arg1);
10869 return value_ref (arg1, TYPE_CODE_REF);
10870 }
10871 }
10872
10873 /* Records and unions for which GNAT encodings have been
10874 generated need to be statically fixed as well.
10875 Otherwise, non-static fixing produces a type where
10876 all dynamic properties are removed, which prevents "ptype"
10877 from being able to completely describe the type.
10878 For instance, a case statement in a variant record would be
10879 replaced by the relevant components based on the actual
10880 value of the discriminants. */
10881 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10882 && dynamic_template_type (type) != NULL)
10883 || (TYPE_CODE (type) == TYPE_CODE_UNION
10884 && ada_find_parallel_type (type, "___XVU") != NULL))
10885 {
10886 *pos += 4;
10887 return value_zero (to_static_fixed_type (type), not_lval);
10888 }
10889 }
10890
10891 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10892 return ada_to_fixed_value (arg1);
10893
10894 case OP_FUNCALL:
10895 (*pos) += 2;
10896
10897 /* Allocate arg vector, including space for the function to be
10898 called in argvec[0] and a terminating NULL. */
10899 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10900 argvec = XALLOCAVEC (struct value *, nargs + 2);
10901
10902 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10903 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10904 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10905 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10906 else
10907 {
10908 for (tem = 0; tem <= nargs; tem += 1)
10909 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10910 argvec[tem] = 0;
10911
10912 if (noside == EVAL_SKIP)
10913 goto nosideret;
10914 }
10915
10916 if (ada_is_constrained_packed_array_type
10917 (desc_base_type (value_type (argvec[0]))))
10918 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10919 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10920 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10921 /* This is a packed array that has already been fixed, and
10922 therefore already coerced to a simple array. Nothing further
10923 to do. */
10924 ;
10925 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10926 {
10927 /* Make sure we dereference references so that all the code below
10928 feels like it's really handling the referenced value. Wrapping
10929 types (for alignment) may be there, so make sure we strip them as
10930 well. */
10931 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10932 }
10933 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10934 && VALUE_LVAL (argvec[0]) == lval_memory)
10935 argvec[0] = value_addr (argvec[0]);
10936
10937 type = ada_check_typedef (value_type (argvec[0]));
10938
10939 /* Ada allows us to implicitly dereference arrays when subscripting
10940 them. So, if this is an array typedef (encoding use for array
10941 access types encoded as fat pointers), strip it now. */
10942 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10943 type = ada_typedef_target_type (type);
10944
10945 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10946 {
10947 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
10948 {
10949 case TYPE_CODE_FUNC:
10950 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10951 break;
10952 case TYPE_CODE_ARRAY:
10953 break;
10954 case TYPE_CODE_STRUCT:
10955 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10956 argvec[0] = ada_value_ind (argvec[0]);
10957 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10958 break;
10959 default:
10960 error (_("cannot subscript or call something of type `%s'"),
10961 ada_type_name (value_type (argvec[0])));
10962 break;
10963 }
10964 }
10965
10966 switch (TYPE_CODE (type))
10967 {
10968 case TYPE_CODE_FUNC:
10969 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10970 {
10971 if (TYPE_TARGET_TYPE (type) == NULL)
10972 error_call_unknown_return_type (NULL);
10973 return allocate_value (TYPE_TARGET_TYPE (type));
10974 }
10975 return call_function_by_hand (argvec[0], NULL, nargs, argvec + 1);
10976 case TYPE_CODE_INTERNAL_FUNCTION:
10977 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10978 /* We don't know anything about what the internal
10979 function might return, but we have to return
10980 something. */
10981 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10982 not_lval);
10983 else
10984 return call_internal_function (exp->gdbarch, exp->language_defn,
10985 argvec[0], nargs, argvec + 1);
10986
10987 case TYPE_CODE_STRUCT:
10988 {
10989 int arity;
10990
10991 arity = ada_array_arity (type);
10992 type = ada_array_element_type (type, nargs);
10993 if (type == NULL)
10994 error (_("cannot subscript or call a record"));
10995 if (arity != nargs)
10996 error (_("wrong number of subscripts; expecting %d"), arity);
10997 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10998 return value_zero (ada_aligned_type (type), lval_memory);
10999 return
11000 unwrap_value (ada_value_subscript
11001 (argvec[0], nargs, argvec + 1));
11002 }
11003 case TYPE_CODE_ARRAY:
11004 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11005 {
11006 type = ada_array_element_type (type, nargs);
11007 if (type == NULL)
11008 error (_("element type of array unknown"));
11009 else
11010 return value_zero (ada_aligned_type (type), lval_memory);
11011 }
11012 return
11013 unwrap_value (ada_value_subscript
11014 (ada_coerce_to_simple_array (argvec[0]),
11015 nargs, argvec + 1));
11016 case TYPE_CODE_PTR: /* Pointer to array */
11017 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11018 {
11019 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
11020 type = ada_array_element_type (type, nargs);
11021 if (type == NULL)
11022 error (_("element type of array unknown"));
11023 else
11024 return value_zero (ada_aligned_type (type), lval_memory);
11025 }
11026 return
11027 unwrap_value (ada_value_ptr_subscript (argvec[0],
11028 nargs, argvec + 1));
11029
11030 default:
11031 error (_("Attempt to index or call something other than an "
11032 "array or function"));
11033 }
11034
11035 case TERNOP_SLICE:
11036 {
11037 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11038 struct value *low_bound_val =
11039 evaluate_subexp (NULL_TYPE, exp, pos, noside);
11040 struct value *high_bound_val =
11041 evaluate_subexp (NULL_TYPE, exp, pos, noside);
11042 LONGEST low_bound;
11043 LONGEST high_bound;
11044
11045 low_bound_val = coerce_ref (low_bound_val);
11046 high_bound_val = coerce_ref (high_bound_val);
11047 low_bound = value_as_long (low_bound_val);
11048 high_bound = value_as_long (high_bound_val);
11049
11050 if (noside == EVAL_SKIP)
11051 goto nosideret;
11052
11053 /* If this is a reference to an aligner type, then remove all
11054 the aligners. */
11055 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
11056 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
11057 TYPE_TARGET_TYPE (value_type (array)) =
11058 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
11059
11060 if (ada_is_constrained_packed_array_type (value_type (array)))
11061 error (_("cannot slice a packed array"));
11062
11063 /* If this is a reference to an array or an array lvalue,
11064 convert to a pointer. */
11065 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
11066 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
11067 && VALUE_LVAL (array) == lval_memory))
11068 array = value_addr (array);
11069
11070 if (noside == EVAL_AVOID_SIDE_EFFECTS
11071 && ada_is_array_descriptor_type (ada_check_typedef
11072 (value_type (array))))
11073 return empty_array (ada_type_of_array (array, 0), low_bound);
11074
11075 array = ada_coerce_to_simple_array_ptr (array);
11076
11077 /* If we have more than one level of pointer indirection,
11078 dereference the value until we get only one level. */
11079 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
11080 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
11081 == TYPE_CODE_PTR))
11082 array = value_ind (array);
11083
11084 /* Make sure we really do have an array type before going further,
11085 to avoid a SEGV when trying to get the index type or the target
11086 type later down the road if the debug info generated by
11087 the compiler is incorrect or incomplete. */
11088 if (!ada_is_simple_array_type (value_type (array)))
11089 error (_("cannot take slice of non-array"));
11090
11091 if (TYPE_CODE (ada_check_typedef (value_type (array)))
11092 == TYPE_CODE_PTR)
11093 {
11094 struct type *type0 = ada_check_typedef (value_type (array));
11095
11096 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
11097 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
11098 else
11099 {
11100 struct type *arr_type0 =
11101 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
11102
11103 return ada_value_slice_from_ptr (array, arr_type0,
11104 longest_to_int (low_bound),
11105 longest_to_int (high_bound));
11106 }
11107 }
11108 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11109 return array;
11110 else if (high_bound < low_bound)
11111 return empty_array (value_type (array), low_bound);
11112 else
11113 return ada_value_slice (array, longest_to_int (low_bound),
11114 longest_to_int (high_bound));
11115 }
11116
11117 case UNOP_IN_RANGE:
11118 (*pos) += 2;
11119 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11120 type = check_typedef (exp->elts[pc + 1].type);
11121
11122 if (noside == EVAL_SKIP)
11123 goto nosideret;
11124
11125 switch (TYPE_CODE (type))
11126 {
11127 default:
11128 lim_warning (_("Membership test incompletely implemented; "
11129 "always returns true"));
11130 type = language_bool_type (exp->language_defn, exp->gdbarch);
11131 return value_from_longest (type, (LONGEST) 1);
11132
11133 case TYPE_CODE_RANGE:
11134 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
11135 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
11136 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11137 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11138 type = language_bool_type (exp->language_defn, exp->gdbarch);
11139 return
11140 value_from_longest (type,
11141 (value_less (arg1, arg3)
11142 || value_equal (arg1, arg3))
11143 && (value_less (arg2, arg1)
11144 || value_equal (arg2, arg1)));
11145 }
11146
11147 case BINOP_IN_BOUNDS:
11148 (*pos) += 2;
11149 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11150 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11151
11152 if (noside == EVAL_SKIP)
11153 goto nosideret;
11154
11155 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11156 {
11157 type = language_bool_type (exp->language_defn, exp->gdbarch);
11158 return value_zero (type, not_lval);
11159 }
11160
11161 tem = longest_to_int (exp->elts[pc + 1].longconst);
11162
11163 type = ada_index_type (value_type (arg2), tem, "range");
11164 if (!type)
11165 type = value_type (arg1);
11166
11167 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
11168 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
11169
11170 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11171 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11172 type = language_bool_type (exp->language_defn, exp->gdbarch);
11173 return
11174 value_from_longest (type,
11175 (value_less (arg1, arg3)
11176 || value_equal (arg1, arg3))
11177 && (value_less (arg2, arg1)
11178 || value_equal (arg2, arg1)));
11179
11180 case TERNOP_IN_RANGE:
11181 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11182 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11183 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11184
11185 if (noside == EVAL_SKIP)
11186 goto nosideret;
11187
11188 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11189 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11190 type = language_bool_type (exp->language_defn, exp->gdbarch);
11191 return
11192 value_from_longest (type,
11193 (value_less (arg1, arg3)
11194 || value_equal (arg1, arg3))
11195 && (value_less (arg2, arg1)
11196 || value_equal (arg2, arg1)));
11197
11198 case OP_ATR_FIRST:
11199 case OP_ATR_LAST:
11200 case OP_ATR_LENGTH:
11201 {
11202 struct type *type_arg;
11203
11204 if (exp->elts[*pos].opcode == OP_TYPE)
11205 {
11206 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11207 arg1 = NULL;
11208 type_arg = check_typedef (exp->elts[pc + 2].type);
11209 }
11210 else
11211 {
11212 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11213 type_arg = NULL;
11214 }
11215
11216 if (exp->elts[*pos].opcode != OP_LONG)
11217 error (_("Invalid operand to '%s"), ada_attribute_name (op));
11218 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11219 *pos += 4;
11220
11221 if (noside == EVAL_SKIP)
11222 goto nosideret;
11223
11224 if (type_arg == NULL)
11225 {
11226 arg1 = ada_coerce_ref (arg1);
11227
11228 if (ada_is_constrained_packed_array_type (value_type (arg1)))
11229 arg1 = ada_coerce_to_simple_array (arg1);
11230
11231 if (op == OP_ATR_LENGTH)
11232 type = builtin_type (exp->gdbarch)->builtin_int;
11233 else
11234 {
11235 type = ada_index_type (value_type (arg1), tem,
11236 ada_attribute_name (op));
11237 if (type == NULL)
11238 type = builtin_type (exp->gdbarch)->builtin_int;
11239 }
11240
11241 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11242 return allocate_value (type);
11243
11244 switch (op)
11245 {
11246 default: /* Should never happen. */
11247 error (_("unexpected attribute encountered"));
11248 case OP_ATR_FIRST:
11249 return value_from_longest
11250 (type, ada_array_bound (arg1, tem, 0));
11251 case OP_ATR_LAST:
11252 return value_from_longest
11253 (type, ada_array_bound (arg1, tem, 1));
11254 case OP_ATR_LENGTH:
11255 return value_from_longest
11256 (type, ada_array_length (arg1, tem));
11257 }
11258 }
11259 else if (discrete_type_p (type_arg))
11260 {
11261 struct type *range_type;
11262 const char *name = ada_type_name (type_arg);
11263
11264 range_type = NULL;
11265 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
11266 range_type = to_fixed_range_type (type_arg, NULL);
11267 if (range_type == NULL)
11268 range_type = type_arg;
11269 switch (op)
11270 {
11271 default:
11272 error (_("unexpected attribute encountered"));
11273 case OP_ATR_FIRST:
11274 return value_from_longest
11275 (range_type, ada_discrete_type_low_bound (range_type));
11276 case OP_ATR_LAST:
11277 return value_from_longest
11278 (range_type, ada_discrete_type_high_bound (range_type));
11279 case OP_ATR_LENGTH:
11280 error (_("the 'length attribute applies only to array types"));
11281 }
11282 }
11283 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
11284 error (_("unimplemented type attribute"));
11285 else
11286 {
11287 LONGEST low, high;
11288
11289 if (ada_is_constrained_packed_array_type (type_arg))
11290 type_arg = decode_constrained_packed_array_type (type_arg);
11291
11292 if (op == OP_ATR_LENGTH)
11293 type = builtin_type (exp->gdbarch)->builtin_int;
11294 else
11295 {
11296 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11297 if (type == NULL)
11298 type = builtin_type (exp->gdbarch)->builtin_int;
11299 }
11300
11301 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11302 return allocate_value (type);
11303
11304 switch (op)
11305 {
11306 default:
11307 error (_("unexpected attribute encountered"));
11308 case OP_ATR_FIRST:
11309 low = ada_array_bound_from_type (type_arg, tem, 0);
11310 return value_from_longest (type, low);
11311 case OP_ATR_LAST:
11312 high = ada_array_bound_from_type (type_arg, tem, 1);
11313 return value_from_longest (type, high);
11314 case OP_ATR_LENGTH:
11315 low = ada_array_bound_from_type (type_arg, tem, 0);
11316 high = ada_array_bound_from_type (type_arg, tem, 1);
11317 return value_from_longest (type, high - low + 1);
11318 }
11319 }
11320 }
11321
11322 case OP_ATR_TAG:
11323 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11324 if (noside == EVAL_SKIP)
11325 goto nosideret;
11326
11327 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11328 return value_zero (ada_tag_type (arg1), not_lval);
11329
11330 return ada_value_tag (arg1);
11331
11332 case OP_ATR_MIN:
11333 case OP_ATR_MAX:
11334 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11335 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11336 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11337 if (noside == EVAL_SKIP)
11338 goto nosideret;
11339 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11340 return value_zero (value_type (arg1), not_lval);
11341 else
11342 {
11343 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11344 return value_binop (arg1, arg2,
11345 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11346 }
11347
11348 case OP_ATR_MODULUS:
11349 {
11350 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
11351
11352 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11353 if (noside == EVAL_SKIP)
11354 goto nosideret;
11355
11356 if (!ada_is_modular_type (type_arg))
11357 error (_("'modulus must be applied to modular type"));
11358
11359 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11360 ada_modulus (type_arg));
11361 }
11362
11363
11364 case OP_ATR_POS:
11365 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11366 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11367 if (noside == EVAL_SKIP)
11368 goto nosideret;
11369 type = builtin_type (exp->gdbarch)->builtin_int;
11370 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11371 return value_zero (type, not_lval);
11372 else
11373 return value_pos_atr (type, arg1);
11374
11375 case OP_ATR_SIZE:
11376 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11377 type = value_type (arg1);
11378
11379 /* If the argument is a reference, then dereference its type, since
11380 the user is really asking for the size of the actual object,
11381 not the size of the pointer. */
11382 if (TYPE_CODE (type) == TYPE_CODE_REF)
11383 type = TYPE_TARGET_TYPE (type);
11384
11385 if (noside == EVAL_SKIP)
11386 goto nosideret;
11387 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11388 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
11389 else
11390 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
11391 TARGET_CHAR_BIT * TYPE_LENGTH (type));
11392
11393 case OP_ATR_VAL:
11394 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11395 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11396 type = exp->elts[pc + 2].type;
11397 if (noside == EVAL_SKIP)
11398 goto nosideret;
11399 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11400 return value_zero (type, not_lval);
11401 else
11402 return value_val_atr (type, arg1);
11403
11404 case BINOP_EXP:
11405 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11406 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11407 if (noside == EVAL_SKIP)
11408 goto nosideret;
11409 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11410 return value_zero (value_type (arg1), not_lval);
11411 else
11412 {
11413 /* For integer exponentiation operations,
11414 only promote the first argument. */
11415 if (is_integral_type (value_type (arg2)))
11416 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11417 else
11418 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11419
11420 return value_binop (arg1, arg2, op);
11421 }
11422
11423 case UNOP_PLUS:
11424 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11425 if (noside == EVAL_SKIP)
11426 goto nosideret;
11427 else
11428 return arg1;
11429
11430 case UNOP_ABS:
11431 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11432 if (noside == EVAL_SKIP)
11433 goto nosideret;
11434 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11435 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
11436 return value_neg (arg1);
11437 else
11438 return arg1;
11439
11440 case UNOP_IND:
11441 preeval_pos = *pos;
11442 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11443 if (noside == EVAL_SKIP)
11444 goto nosideret;
11445 type = ada_check_typedef (value_type (arg1));
11446 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11447 {
11448 if (ada_is_array_descriptor_type (type))
11449 /* GDB allows dereferencing GNAT array descriptors. */
11450 {
11451 struct type *arrType = ada_type_of_array (arg1, 0);
11452
11453 if (arrType == NULL)
11454 error (_("Attempt to dereference null array pointer."));
11455 return value_at_lazy (arrType, 0);
11456 }
11457 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11458 || TYPE_CODE (type) == TYPE_CODE_REF
11459 /* In C you can dereference an array to get the 1st elt. */
11460 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
11461 {
11462 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11463 only be determined by inspecting the object's tag.
11464 This means that we need to evaluate completely the
11465 expression in order to get its type. */
11466
11467 if ((TYPE_CODE (type) == TYPE_CODE_REF
11468 || TYPE_CODE (type) == TYPE_CODE_PTR)
11469 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11470 {
11471 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11472 EVAL_NORMAL);
11473 type = value_type (ada_value_ind (arg1));
11474 }
11475 else
11476 {
11477 type = to_static_fixed_type
11478 (ada_aligned_type
11479 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11480 }
11481 ada_ensure_varsize_limit (type);
11482 return value_zero (type, lval_memory);
11483 }
11484 else if (TYPE_CODE (type) == TYPE_CODE_INT)
11485 {
11486 /* GDB allows dereferencing an int. */
11487 if (expect_type == NULL)
11488 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11489 lval_memory);
11490 else
11491 {
11492 expect_type =
11493 to_static_fixed_type (ada_aligned_type (expect_type));
11494 return value_zero (expect_type, lval_memory);
11495 }
11496 }
11497 else
11498 error (_("Attempt to take contents of a non-pointer value."));
11499 }
11500 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
11501 type = ada_check_typedef (value_type (arg1));
11502
11503 if (TYPE_CODE (type) == TYPE_CODE_INT)
11504 /* GDB allows dereferencing an int. If we were given
11505 the expect_type, then use that as the target type.
11506 Otherwise, assume that the target type is an int. */
11507 {
11508 if (expect_type != NULL)
11509 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11510 arg1));
11511 else
11512 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11513 (CORE_ADDR) value_as_address (arg1));
11514 }
11515
11516 if (ada_is_array_descriptor_type (type))
11517 /* GDB allows dereferencing GNAT array descriptors. */
11518 return ada_coerce_to_simple_array (arg1);
11519 else
11520 return ada_value_ind (arg1);
11521
11522 case STRUCTOP_STRUCT:
11523 tem = longest_to_int (exp->elts[pc + 1].longconst);
11524 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
11525 preeval_pos = *pos;
11526 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11527 if (noside == EVAL_SKIP)
11528 goto nosideret;
11529 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11530 {
11531 struct type *type1 = value_type (arg1);
11532
11533 if (ada_is_tagged_type (type1, 1))
11534 {
11535 type = ada_lookup_struct_elt_type (type1,
11536 &exp->elts[pc + 2].string,
11537 1, 1);
11538
11539 /* If the field is not found, check if it exists in the
11540 extension of this object's type. This means that we
11541 need to evaluate completely the expression. */
11542
11543 if (type == NULL)
11544 {
11545 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11546 EVAL_NORMAL);
11547 arg1 = ada_value_struct_elt (arg1,
11548 &exp->elts[pc + 2].string,
11549 0);
11550 arg1 = unwrap_value (arg1);
11551 type = value_type (ada_to_fixed_value (arg1));
11552 }
11553 }
11554 else
11555 type =
11556 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11557 0);
11558
11559 return value_zero (ada_aligned_type (type), lval_memory);
11560 }
11561 else
11562 {
11563 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11564 arg1 = unwrap_value (arg1);
11565 return ada_to_fixed_value (arg1);
11566 }
11567
11568 case OP_TYPE:
11569 /* The value is not supposed to be used. This is here to make it
11570 easier to accommodate expressions that contain types. */
11571 (*pos) += 2;
11572 if (noside == EVAL_SKIP)
11573 goto nosideret;
11574 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11575 return allocate_value (exp->elts[pc + 1].type);
11576 else
11577 error (_("Attempt to use a type name as an expression"));
11578
11579 case OP_AGGREGATE:
11580 case OP_CHOICES:
11581 case OP_OTHERS:
11582 case OP_DISCRETE_RANGE:
11583 case OP_POSITIONAL:
11584 case OP_NAME:
11585 if (noside == EVAL_NORMAL)
11586 switch (op)
11587 {
11588 case OP_NAME:
11589 error (_("Undefined name, ambiguous name, or renaming used in "
11590 "component association: %s."), &exp->elts[pc+2].string);
11591 case OP_AGGREGATE:
11592 error (_("Aggregates only allowed on the right of an assignment"));
11593 default:
11594 internal_error (__FILE__, __LINE__,
11595 _("aggregate apparently mangled"));
11596 }
11597
11598 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11599 *pos += oplen - 1;
11600 for (tem = 0; tem < nargs; tem += 1)
11601 ada_evaluate_subexp (NULL, exp, pos, noside);
11602 goto nosideret;
11603 }
11604
11605 nosideret:
11606 return eval_skip_value (exp);
11607 }
11608 \f
11609
11610 /* Fixed point */
11611
11612 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
11613 type name that encodes the 'small and 'delta information.
11614 Otherwise, return NULL. */
11615
11616 static const char *
11617 fixed_type_info (struct type *type)
11618 {
11619 const char *name = ada_type_name (type);
11620 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11621
11622 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11623 {
11624 const char *tail = strstr (name, "___XF_");
11625
11626 if (tail == NULL)
11627 return NULL;
11628 else
11629 return tail + 5;
11630 }
11631 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11632 return fixed_type_info (TYPE_TARGET_TYPE (type));
11633 else
11634 return NULL;
11635 }
11636
11637 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
11638
11639 int
11640 ada_is_fixed_point_type (struct type *type)
11641 {
11642 return fixed_type_info (type) != NULL;
11643 }
11644
11645 /* Return non-zero iff TYPE represents a System.Address type. */
11646
11647 int
11648 ada_is_system_address_type (struct type *type)
11649 {
11650 return (TYPE_NAME (type)
11651 && strcmp (TYPE_NAME (type), "system__address") == 0);
11652 }
11653
11654 /* Assuming that TYPE is the representation of an Ada fixed-point
11655 type, return the target floating-point type to be used to represent
11656 of this type during internal computation. */
11657
11658 static struct type *
11659 ada_scaling_type (struct type *type)
11660 {
11661 return builtin_type (get_type_arch (type))->builtin_long_double;
11662 }
11663
11664 /* Assuming that TYPE is the representation of an Ada fixed-point
11665 type, return its delta, or NULL if the type is malformed and the
11666 delta cannot be determined. */
11667
11668 struct value *
11669 ada_delta (struct type *type)
11670 {
11671 const char *encoding = fixed_type_info (type);
11672 struct type *scale_type = ada_scaling_type (type);
11673
11674 long long num, den;
11675
11676 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11677 return nullptr;
11678 else
11679 return value_binop (value_from_longest (scale_type, num),
11680 value_from_longest (scale_type, den), BINOP_DIV);
11681 }
11682
11683 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
11684 factor ('SMALL value) associated with the type. */
11685
11686 struct value *
11687 ada_scaling_factor (struct type *type)
11688 {
11689 const char *encoding = fixed_type_info (type);
11690 struct type *scale_type = ada_scaling_type (type);
11691
11692 long long num0, den0, num1, den1;
11693 int n;
11694
11695 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
11696 &num0, &den0, &num1, &den1);
11697
11698 if (n < 2)
11699 return value_from_longest (scale_type, 1);
11700 else if (n == 4)
11701 return value_binop (value_from_longest (scale_type, num1),
11702 value_from_longest (scale_type, den1), BINOP_DIV);
11703 else
11704 return value_binop (value_from_longest (scale_type, num0),
11705 value_from_longest (scale_type, den0), BINOP_DIV);
11706 }
11707
11708 \f
11709
11710 /* Range types */
11711
11712 /* Scan STR beginning at position K for a discriminant name, and
11713 return the value of that discriminant field of DVAL in *PX. If
11714 PNEW_K is not null, put the position of the character beyond the
11715 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11716 not alter *PX and *PNEW_K if unsuccessful. */
11717
11718 static int
11719 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
11720 int *pnew_k)
11721 {
11722 static char *bound_buffer = NULL;
11723 static size_t bound_buffer_len = 0;
11724 const char *pstart, *pend, *bound;
11725 struct value *bound_val;
11726
11727 if (dval == NULL || str == NULL || str[k] == '\0')
11728 return 0;
11729
11730 pstart = str + k;
11731 pend = strstr (pstart, "__");
11732 if (pend == NULL)
11733 {
11734 bound = pstart;
11735 k += strlen (bound);
11736 }
11737 else
11738 {
11739 int len = pend - pstart;
11740
11741 /* Strip __ and beyond. */
11742 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11743 strncpy (bound_buffer, pstart, len);
11744 bound_buffer[len] = '\0';
11745
11746 bound = bound_buffer;
11747 k = pend - str;
11748 }
11749
11750 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11751 if (bound_val == NULL)
11752 return 0;
11753
11754 *px = value_as_long (bound_val);
11755 if (pnew_k != NULL)
11756 *pnew_k = k;
11757 return 1;
11758 }
11759
11760 /* Value of variable named NAME in the current environment. If
11761 no such variable found, then if ERR_MSG is null, returns 0, and
11762 otherwise causes an error with message ERR_MSG. */
11763
11764 static struct value *
11765 get_var_value (const char *name, const char *err_msg)
11766 {
11767 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
11768
11769 struct block_symbol *syms;
11770 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11771 get_selected_block (0),
11772 VAR_DOMAIN, &syms, 1);
11773 struct cleanup *old_chain = make_cleanup (xfree, syms);
11774
11775 if (nsyms != 1)
11776 {
11777 do_cleanups (old_chain);
11778 if (err_msg == NULL)
11779 return 0;
11780 else
11781 error (("%s"), err_msg);
11782 }
11783
11784 struct value *result = value_of_variable (syms[0].symbol, syms[0].block);
11785 do_cleanups (old_chain);
11786 return result;
11787 }
11788
11789 /* Value of integer variable named NAME in the current environment.
11790 If no such variable is found, returns false. Otherwise, sets VALUE
11791 to the variable's value and returns true. */
11792
11793 bool
11794 get_int_var_value (const char *name, LONGEST &value)
11795 {
11796 struct value *var_val = get_var_value (name, 0);
11797
11798 if (var_val == 0)
11799 return false;
11800
11801 value = value_as_long (var_val);
11802 return true;
11803 }
11804
11805
11806 /* Return a range type whose base type is that of the range type named
11807 NAME in the current environment, and whose bounds are calculated
11808 from NAME according to the GNAT range encoding conventions.
11809 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11810 corresponding range type from debug information; fall back to using it
11811 if symbol lookup fails. If a new type must be created, allocate it
11812 like ORIG_TYPE was. The bounds information, in general, is encoded
11813 in NAME, the base type given in the named range type. */
11814
11815 static struct type *
11816 to_fixed_range_type (struct type *raw_type, struct value *dval)
11817 {
11818 const char *name;
11819 struct type *base_type;
11820 const char *subtype_info;
11821
11822 gdb_assert (raw_type != NULL);
11823 gdb_assert (TYPE_NAME (raw_type) != NULL);
11824
11825 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
11826 base_type = TYPE_TARGET_TYPE (raw_type);
11827 else
11828 base_type = raw_type;
11829
11830 name = TYPE_NAME (raw_type);
11831 subtype_info = strstr (name, "___XD");
11832 if (subtype_info == NULL)
11833 {
11834 LONGEST L = ada_discrete_type_low_bound (raw_type);
11835 LONGEST U = ada_discrete_type_high_bound (raw_type);
11836
11837 if (L < INT_MIN || U > INT_MAX)
11838 return raw_type;
11839 else
11840 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11841 L, U);
11842 }
11843 else
11844 {
11845 static char *name_buf = NULL;
11846 static size_t name_len = 0;
11847 int prefix_len = subtype_info - name;
11848 LONGEST L, U;
11849 struct type *type;
11850 const char *bounds_str;
11851 int n;
11852
11853 GROW_VECT (name_buf, name_len, prefix_len + 5);
11854 strncpy (name_buf, name, prefix_len);
11855 name_buf[prefix_len] = '\0';
11856
11857 subtype_info += 5;
11858 bounds_str = strchr (subtype_info, '_');
11859 n = 1;
11860
11861 if (*subtype_info == 'L')
11862 {
11863 if (!ada_scan_number (bounds_str, n, &L, &n)
11864 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11865 return raw_type;
11866 if (bounds_str[n] == '_')
11867 n += 2;
11868 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11869 n += 1;
11870 subtype_info += 1;
11871 }
11872 else
11873 {
11874 strcpy (name_buf + prefix_len, "___L");
11875 if (!get_int_var_value (name_buf, L))
11876 {
11877 lim_warning (_("Unknown lower bound, using 1."));
11878 L = 1;
11879 }
11880 }
11881
11882 if (*subtype_info == 'U')
11883 {
11884 if (!ada_scan_number (bounds_str, n, &U, &n)
11885 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11886 return raw_type;
11887 }
11888 else
11889 {
11890 strcpy (name_buf + prefix_len, "___U");
11891 if (!get_int_var_value (name_buf, U))
11892 {
11893 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11894 U = L;
11895 }
11896 }
11897
11898 type = create_static_range_type (alloc_type_copy (raw_type),
11899 base_type, L, U);
11900 /* create_static_range_type alters the resulting type's length
11901 to match the size of the base_type, which is not what we want.
11902 Set it back to the original range type's length. */
11903 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
11904 TYPE_NAME (type) = name;
11905 return type;
11906 }
11907 }
11908
11909 /* True iff NAME is the name of a range type. */
11910
11911 int
11912 ada_is_range_type_name (const char *name)
11913 {
11914 return (name != NULL && strstr (name, "___XD"));
11915 }
11916 \f
11917
11918 /* Modular types */
11919
11920 /* True iff TYPE is an Ada modular type. */
11921
11922 int
11923 ada_is_modular_type (struct type *type)
11924 {
11925 struct type *subranged_type = get_base_type (type);
11926
11927 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
11928 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
11929 && TYPE_UNSIGNED (subranged_type));
11930 }
11931
11932 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11933
11934 ULONGEST
11935 ada_modulus (struct type *type)
11936 {
11937 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11938 }
11939 \f
11940
11941 /* Ada exception catchpoint support:
11942 ---------------------------------
11943
11944 We support 3 kinds of exception catchpoints:
11945 . catchpoints on Ada exceptions
11946 . catchpoints on unhandled Ada exceptions
11947 . catchpoints on failed assertions
11948
11949 Exceptions raised during failed assertions, or unhandled exceptions
11950 could perfectly be caught with the general catchpoint on Ada exceptions.
11951 However, we can easily differentiate these two special cases, and having
11952 the option to distinguish these two cases from the rest can be useful
11953 to zero-in on certain situations.
11954
11955 Exception catchpoints are a specialized form of breakpoint,
11956 since they rely on inserting breakpoints inside known routines
11957 of the GNAT runtime. The implementation therefore uses a standard
11958 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11959 of breakpoint_ops.
11960
11961 Support in the runtime for exception catchpoints have been changed
11962 a few times already, and these changes affect the implementation
11963 of these catchpoints. In order to be able to support several
11964 variants of the runtime, we use a sniffer that will determine
11965 the runtime variant used by the program being debugged. */
11966
11967 /* Ada's standard exceptions.
11968
11969 The Ada 83 standard also defined Numeric_Error. But there so many
11970 situations where it was unclear from the Ada 83 Reference Manual
11971 (RM) whether Constraint_Error or Numeric_Error should be raised,
11972 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11973 Interpretation saying that anytime the RM says that Numeric_Error
11974 should be raised, the implementation may raise Constraint_Error.
11975 Ada 95 went one step further and pretty much removed Numeric_Error
11976 from the list of standard exceptions (it made it a renaming of
11977 Constraint_Error, to help preserve compatibility when compiling
11978 an Ada83 compiler). As such, we do not include Numeric_Error from
11979 this list of standard exceptions. */
11980
11981 static const char *standard_exc[] = {
11982 "constraint_error",
11983 "program_error",
11984 "storage_error",
11985 "tasking_error"
11986 };
11987
11988 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11989
11990 /* A structure that describes how to support exception catchpoints
11991 for a given executable. */
11992
11993 struct exception_support_info
11994 {
11995 /* The name of the symbol to break on in order to insert
11996 a catchpoint on exceptions. */
11997 const char *catch_exception_sym;
11998
11999 /* The name of the symbol to break on in order to insert
12000 a catchpoint on unhandled exceptions. */
12001 const char *catch_exception_unhandled_sym;
12002
12003 /* The name of the symbol to break on in order to insert
12004 a catchpoint on failed assertions. */
12005 const char *catch_assert_sym;
12006
12007 /* Assuming that the inferior just triggered an unhandled exception
12008 catchpoint, this function is responsible for returning the address
12009 in inferior memory where the name of that exception is stored.
12010 Return zero if the address could not be computed. */
12011 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
12012 };
12013
12014 static CORE_ADDR ada_unhandled_exception_name_addr (void);
12015 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
12016
12017 /* The following exception support info structure describes how to
12018 implement exception catchpoints with the latest version of the
12019 Ada runtime (as of 2007-03-06). */
12020
12021 static const struct exception_support_info default_exception_support_info =
12022 {
12023 "__gnat_debug_raise_exception", /* catch_exception_sym */
12024 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
12025 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
12026 ada_unhandled_exception_name_addr
12027 };
12028
12029 /* The following exception support info structure describes how to
12030 implement exception catchpoints with a slightly older version
12031 of the Ada runtime. */
12032
12033 static const struct exception_support_info exception_support_info_fallback =
12034 {
12035 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
12036 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
12037 "system__assertions__raise_assert_failure", /* catch_assert_sym */
12038 ada_unhandled_exception_name_addr_from_raise
12039 };
12040
12041 /* Return nonzero if we can detect the exception support routines
12042 described in EINFO.
12043
12044 This function errors out if an abnormal situation is detected
12045 (for instance, if we find the exception support routines, but
12046 that support is found to be incomplete). */
12047
12048 static int
12049 ada_has_this_exception_support (const struct exception_support_info *einfo)
12050 {
12051 struct symbol *sym;
12052
12053 /* The symbol we're looking up is provided by a unit in the GNAT runtime
12054 that should be compiled with debugging information. As a result, we
12055 expect to find that symbol in the symtabs. */
12056
12057 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
12058 if (sym == NULL)
12059 {
12060 /* Perhaps we did not find our symbol because the Ada runtime was
12061 compiled without debugging info, or simply stripped of it.
12062 It happens on some GNU/Linux distributions for instance, where
12063 users have to install a separate debug package in order to get
12064 the runtime's debugging info. In that situation, let the user
12065 know why we cannot insert an Ada exception catchpoint.
12066
12067 Note: Just for the purpose of inserting our Ada exception
12068 catchpoint, we could rely purely on the associated minimal symbol.
12069 But we would be operating in degraded mode anyway, since we are
12070 still lacking the debugging info needed later on to extract
12071 the name of the exception being raised (this name is printed in
12072 the catchpoint message, and is also used when trying to catch
12073 a specific exception). We do not handle this case for now. */
12074 struct bound_minimal_symbol msym
12075 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
12076
12077 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
12078 error (_("Your Ada runtime appears to be missing some debugging "
12079 "information.\nCannot insert Ada exception catchpoint "
12080 "in this configuration."));
12081
12082 return 0;
12083 }
12084
12085 /* Make sure that the symbol we found corresponds to a function. */
12086
12087 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12088 error (_("Symbol \"%s\" is not a function (class = %d)"),
12089 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
12090
12091 return 1;
12092 }
12093
12094 /* Inspect the Ada runtime and determine which exception info structure
12095 should be used to provide support for exception catchpoints.
12096
12097 This function will always set the per-inferior exception_info,
12098 or raise an error. */
12099
12100 static void
12101 ada_exception_support_info_sniffer (void)
12102 {
12103 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12104
12105 /* If the exception info is already known, then no need to recompute it. */
12106 if (data->exception_info != NULL)
12107 return;
12108
12109 /* Check the latest (default) exception support info. */
12110 if (ada_has_this_exception_support (&default_exception_support_info))
12111 {
12112 data->exception_info = &default_exception_support_info;
12113 return;
12114 }
12115
12116 /* Try our fallback exception suport info. */
12117 if (ada_has_this_exception_support (&exception_support_info_fallback))
12118 {
12119 data->exception_info = &exception_support_info_fallback;
12120 return;
12121 }
12122
12123 /* Sometimes, it is normal for us to not be able to find the routine
12124 we are looking for. This happens when the program is linked with
12125 the shared version of the GNAT runtime, and the program has not been
12126 started yet. Inform the user of these two possible causes if
12127 applicable. */
12128
12129 if (ada_update_initial_language (language_unknown) != language_ada)
12130 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
12131
12132 /* If the symbol does not exist, then check that the program is
12133 already started, to make sure that shared libraries have been
12134 loaded. If it is not started, this may mean that the symbol is
12135 in a shared library. */
12136
12137 if (ptid_get_pid (inferior_ptid) == 0)
12138 error (_("Unable to insert catchpoint. Try to start the program first."));
12139
12140 /* At this point, we know that we are debugging an Ada program and
12141 that the inferior has been started, but we still are not able to
12142 find the run-time symbols. That can mean that we are in
12143 configurable run time mode, or that a-except as been optimized
12144 out by the linker... In any case, at this point it is not worth
12145 supporting this feature. */
12146
12147 error (_("Cannot insert Ada exception catchpoints in this configuration."));
12148 }
12149
12150 /* True iff FRAME is very likely to be that of a function that is
12151 part of the runtime system. This is all very heuristic, but is
12152 intended to be used as advice as to what frames are uninteresting
12153 to most users. */
12154
12155 static int
12156 is_known_support_routine (struct frame_info *frame)
12157 {
12158 enum language func_lang;
12159 int i;
12160 const char *fullname;
12161
12162 /* If this code does not have any debugging information (no symtab),
12163 This cannot be any user code. */
12164
12165 symtab_and_line sal = find_frame_sal (frame);
12166 if (sal.symtab == NULL)
12167 return 1;
12168
12169 /* If there is a symtab, but the associated source file cannot be
12170 located, then assume this is not user code: Selecting a frame
12171 for which we cannot display the code would not be very helpful
12172 for the user. This should also take care of case such as VxWorks
12173 where the kernel has some debugging info provided for a few units. */
12174
12175 fullname = symtab_to_fullname (sal.symtab);
12176 if (access (fullname, R_OK) != 0)
12177 return 1;
12178
12179 /* Check the unit filename againt the Ada runtime file naming.
12180 We also check the name of the objfile against the name of some
12181 known system libraries that sometimes come with debugging info
12182 too. */
12183
12184 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12185 {
12186 re_comp (known_runtime_file_name_patterns[i]);
12187 if (re_exec (lbasename (sal.symtab->filename)))
12188 return 1;
12189 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12190 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
12191 return 1;
12192 }
12193
12194 /* Check whether the function is a GNAT-generated entity. */
12195
12196 gdb::unique_xmalloc_ptr<char> func_name
12197 = find_frame_funname (frame, &func_lang, NULL);
12198 if (func_name == NULL)
12199 return 1;
12200
12201 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12202 {
12203 re_comp (known_auxiliary_function_name_patterns[i]);
12204 if (re_exec (func_name.get ()))
12205 return 1;
12206 }
12207
12208 return 0;
12209 }
12210
12211 /* Find the first frame that contains debugging information and that is not
12212 part of the Ada run-time, starting from FI and moving upward. */
12213
12214 void
12215 ada_find_printable_frame (struct frame_info *fi)
12216 {
12217 for (; fi != NULL; fi = get_prev_frame (fi))
12218 {
12219 if (!is_known_support_routine (fi))
12220 {
12221 select_frame (fi);
12222 break;
12223 }
12224 }
12225
12226 }
12227
12228 /* Assuming that the inferior just triggered an unhandled exception
12229 catchpoint, return the address in inferior memory where the name
12230 of the exception is stored.
12231
12232 Return zero if the address could not be computed. */
12233
12234 static CORE_ADDR
12235 ada_unhandled_exception_name_addr (void)
12236 {
12237 return parse_and_eval_address ("e.full_name");
12238 }
12239
12240 /* Same as ada_unhandled_exception_name_addr, except that this function
12241 should be used when the inferior uses an older version of the runtime,
12242 where the exception name needs to be extracted from a specific frame
12243 several frames up in the callstack. */
12244
12245 static CORE_ADDR
12246 ada_unhandled_exception_name_addr_from_raise (void)
12247 {
12248 int frame_level;
12249 struct frame_info *fi;
12250 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12251
12252 /* To determine the name of this exception, we need to select
12253 the frame corresponding to RAISE_SYM_NAME. This frame is
12254 at least 3 levels up, so we simply skip the first 3 frames
12255 without checking the name of their associated function. */
12256 fi = get_current_frame ();
12257 for (frame_level = 0; frame_level < 3; frame_level += 1)
12258 if (fi != NULL)
12259 fi = get_prev_frame (fi);
12260
12261 while (fi != NULL)
12262 {
12263 enum language func_lang;
12264
12265 gdb::unique_xmalloc_ptr<char> func_name
12266 = find_frame_funname (fi, &func_lang, NULL);
12267 if (func_name != NULL)
12268 {
12269 if (strcmp (func_name.get (),
12270 data->exception_info->catch_exception_sym) == 0)
12271 break; /* We found the frame we were looking for... */
12272 fi = get_prev_frame (fi);
12273 }
12274 }
12275
12276 if (fi == NULL)
12277 return 0;
12278
12279 select_frame (fi);
12280 return parse_and_eval_address ("id.full_name");
12281 }
12282
12283 /* Assuming the inferior just triggered an Ada exception catchpoint
12284 (of any type), return the address in inferior memory where the name
12285 of the exception is stored, if applicable.
12286
12287 Assumes the selected frame is the current frame.
12288
12289 Return zero if the address could not be computed, or if not relevant. */
12290
12291 static CORE_ADDR
12292 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
12293 struct breakpoint *b)
12294 {
12295 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12296
12297 switch (ex)
12298 {
12299 case ada_catch_exception:
12300 return (parse_and_eval_address ("e.full_name"));
12301 break;
12302
12303 case ada_catch_exception_unhandled:
12304 return data->exception_info->unhandled_exception_name_addr ();
12305 break;
12306
12307 case ada_catch_assert:
12308 return 0; /* Exception name is not relevant in this case. */
12309 break;
12310
12311 default:
12312 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12313 break;
12314 }
12315
12316 return 0; /* Should never be reached. */
12317 }
12318
12319 /* Assuming the inferior is stopped at an exception catchpoint,
12320 return the message which was associated to the exception, if
12321 available. Return NULL if the message could not be retrieved.
12322
12323 The caller must xfree the string after use.
12324
12325 Note: The exception message can be associated to an exception
12326 either through the use of the Raise_Exception function, or
12327 more simply (Ada 2005 and later), via:
12328
12329 raise Exception_Name with "exception message";
12330
12331 */
12332
12333 static char *
12334 ada_exception_message_1 (void)
12335 {
12336 struct value *e_msg_val;
12337 char *e_msg = NULL;
12338 int e_msg_len;
12339 struct cleanup *cleanups;
12340
12341 /* For runtimes that support this feature, the exception message
12342 is passed as an unbounded string argument called "message". */
12343 e_msg_val = parse_and_eval ("message");
12344 if (e_msg_val == NULL)
12345 return NULL; /* Exception message not supported. */
12346
12347 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
12348 gdb_assert (e_msg_val != NULL);
12349 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
12350
12351 /* If the message string is empty, then treat it as if there was
12352 no exception message. */
12353 if (e_msg_len <= 0)
12354 return NULL;
12355
12356 e_msg = (char *) xmalloc (e_msg_len + 1);
12357 cleanups = make_cleanup (xfree, e_msg);
12358 read_memory_string (value_address (e_msg_val), e_msg, e_msg_len + 1);
12359 e_msg[e_msg_len] = '\0';
12360
12361 discard_cleanups (cleanups);
12362 return e_msg;
12363 }
12364
12365 /* Same as ada_exception_message_1, except that all exceptions are
12366 contained here (returning NULL instead). */
12367
12368 static char *
12369 ada_exception_message (void)
12370 {
12371 char *e_msg = NULL; /* Avoid a spurious uninitialized warning. */
12372
12373 TRY
12374 {
12375 e_msg = ada_exception_message_1 ();
12376 }
12377 CATCH (e, RETURN_MASK_ERROR)
12378 {
12379 e_msg = NULL;
12380 }
12381 END_CATCH
12382
12383 return e_msg;
12384 }
12385
12386 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
12387 any error that ada_exception_name_addr_1 might cause to be thrown.
12388 When an error is intercepted, a warning with the error message is printed,
12389 and zero is returned. */
12390
12391 static CORE_ADDR
12392 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
12393 struct breakpoint *b)
12394 {
12395 CORE_ADDR result = 0;
12396
12397 TRY
12398 {
12399 result = ada_exception_name_addr_1 (ex, b);
12400 }
12401
12402 CATCH (e, RETURN_MASK_ERROR)
12403 {
12404 warning (_("failed to get exception name: %s"), e.message);
12405 return 0;
12406 }
12407 END_CATCH
12408
12409 return result;
12410 }
12411
12412 static char *ada_exception_catchpoint_cond_string (const char *excep_string);
12413
12414 /* Ada catchpoints.
12415
12416 In the case of catchpoints on Ada exceptions, the catchpoint will
12417 stop the target on every exception the program throws. When a user
12418 specifies the name of a specific exception, we translate this
12419 request into a condition expression (in text form), and then parse
12420 it into an expression stored in each of the catchpoint's locations.
12421 We then use this condition to check whether the exception that was
12422 raised is the one the user is interested in. If not, then the
12423 target is resumed again. We store the name of the requested
12424 exception, in order to be able to re-set the condition expression
12425 when symbols change. */
12426
12427 /* An instance of this type is used to represent an Ada catchpoint
12428 breakpoint location. */
12429
12430 class ada_catchpoint_location : public bp_location
12431 {
12432 public:
12433 ada_catchpoint_location (const bp_location_ops *ops, breakpoint *owner)
12434 : bp_location (ops, owner)
12435 {}
12436
12437 /* The condition that checks whether the exception that was raised
12438 is the specific exception the user specified on catchpoint
12439 creation. */
12440 expression_up excep_cond_expr;
12441 };
12442
12443 /* Implement the DTOR method in the bp_location_ops structure for all
12444 Ada exception catchpoint kinds. */
12445
12446 static void
12447 ada_catchpoint_location_dtor (struct bp_location *bl)
12448 {
12449 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
12450
12451 al->excep_cond_expr.reset ();
12452 }
12453
12454 /* The vtable to be used in Ada catchpoint locations. */
12455
12456 static const struct bp_location_ops ada_catchpoint_location_ops =
12457 {
12458 ada_catchpoint_location_dtor
12459 };
12460
12461 /* An instance of this type is used to represent an Ada catchpoint. */
12462
12463 struct ada_catchpoint : public breakpoint
12464 {
12465 ~ada_catchpoint () override;
12466
12467 /* The name of the specific exception the user specified. */
12468 char *excep_string;
12469 };
12470
12471 /* Parse the exception condition string in the context of each of the
12472 catchpoint's locations, and store them for later evaluation. */
12473
12474 static void
12475 create_excep_cond_exprs (struct ada_catchpoint *c)
12476 {
12477 struct cleanup *old_chain;
12478 struct bp_location *bl;
12479 char *cond_string;
12480
12481 /* Nothing to do if there's no specific exception to catch. */
12482 if (c->excep_string == NULL)
12483 return;
12484
12485 /* Same if there are no locations... */
12486 if (c->loc == NULL)
12487 return;
12488
12489 /* Compute the condition expression in text form, from the specific
12490 expection we want to catch. */
12491 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
12492 old_chain = make_cleanup (xfree, cond_string);
12493
12494 /* Iterate over all the catchpoint's locations, and parse an
12495 expression for each. */
12496 for (bl = c->loc; bl != NULL; bl = bl->next)
12497 {
12498 struct ada_catchpoint_location *ada_loc
12499 = (struct ada_catchpoint_location *) bl;
12500 expression_up exp;
12501
12502 if (!bl->shlib_disabled)
12503 {
12504 const char *s;
12505
12506 s = cond_string;
12507 TRY
12508 {
12509 exp = parse_exp_1 (&s, bl->address,
12510 block_for_pc (bl->address),
12511 0);
12512 }
12513 CATCH (e, RETURN_MASK_ERROR)
12514 {
12515 warning (_("failed to reevaluate internal exception condition "
12516 "for catchpoint %d: %s"),
12517 c->number, e.message);
12518 }
12519 END_CATCH
12520 }
12521
12522 ada_loc->excep_cond_expr = std::move (exp);
12523 }
12524
12525 do_cleanups (old_chain);
12526 }
12527
12528 /* ada_catchpoint destructor. */
12529
12530 ada_catchpoint::~ada_catchpoint ()
12531 {
12532 xfree (this->excep_string);
12533 }
12534
12535 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12536 structure for all exception catchpoint kinds. */
12537
12538 static struct bp_location *
12539 allocate_location_exception (enum ada_exception_catchpoint_kind ex,
12540 struct breakpoint *self)
12541 {
12542 return new ada_catchpoint_location (&ada_catchpoint_location_ops, self);
12543 }
12544
12545 /* Implement the RE_SET method in the breakpoint_ops structure for all
12546 exception catchpoint kinds. */
12547
12548 static void
12549 re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
12550 {
12551 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12552
12553 /* Call the base class's method. This updates the catchpoint's
12554 locations. */
12555 bkpt_breakpoint_ops.re_set (b);
12556
12557 /* Reparse the exception conditional expressions. One for each
12558 location. */
12559 create_excep_cond_exprs (c);
12560 }
12561
12562 /* Returns true if we should stop for this breakpoint hit. If the
12563 user specified a specific exception, we only want to cause a stop
12564 if the program thrown that exception. */
12565
12566 static int
12567 should_stop_exception (const struct bp_location *bl)
12568 {
12569 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12570 const struct ada_catchpoint_location *ada_loc
12571 = (const struct ada_catchpoint_location *) bl;
12572 int stop;
12573
12574 /* With no specific exception, should always stop. */
12575 if (c->excep_string == NULL)
12576 return 1;
12577
12578 if (ada_loc->excep_cond_expr == NULL)
12579 {
12580 /* We will have a NULL expression if back when we were creating
12581 the expressions, this location's had failed to parse. */
12582 return 1;
12583 }
12584
12585 stop = 1;
12586 TRY
12587 {
12588 struct value *mark;
12589
12590 mark = value_mark ();
12591 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
12592 value_free_to_mark (mark);
12593 }
12594 CATCH (ex, RETURN_MASK_ALL)
12595 {
12596 exception_fprintf (gdb_stderr, ex,
12597 _("Error in testing exception condition:\n"));
12598 }
12599 END_CATCH
12600
12601 return stop;
12602 }
12603
12604 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12605 for all exception catchpoint kinds. */
12606
12607 static void
12608 check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12609 {
12610 bs->stop = should_stop_exception (bs->bp_location_at);
12611 }
12612
12613 /* Implement the PRINT_IT method in the breakpoint_ops structure
12614 for all exception catchpoint kinds. */
12615
12616 static enum print_stop_action
12617 print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12618 {
12619 struct ui_out *uiout = current_uiout;
12620 struct breakpoint *b = bs->breakpoint_at;
12621 char *exception_message;
12622
12623 annotate_catchpoint (b->number);
12624
12625 if (uiout->is_mi_like_p ())
12626 {
12627 uiout->field_string ("reason",
12628 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12629 uiout->field_string ("disp", bpdisp_text (b->disposition));
12630 }
12631
12632 uiout->text (b->disposition == disp_del
12633 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12634 uiout->field_int ("bkptno", b->number);
12635 uiout->text (", ");
12636
12637 /* ada_exception_name_addr relies on the selected frame being the
12638 current frame. Need to do this here because this function may be
12639 called more than once when printing a stop, and below, we'll
12640 select the first frame past the Ada run-time (see
12641 ada_find_printable_frame). */
12642 select_frame (get_current_frame ());
12643
12644 switch (ex)
12645 {
12646 case ada_catch_exception:
12647 case ada_catch_exception_unhandled:
12648 {
12649 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12650 char exception_name[256];
12651
12652 if (addr != 0)
12653 {
12654 read_memory (addr, (gdb_byte *) exception_name,
12655 sizeof (exception_name) - 1);
12656 exception_name [sizeof (exception_name) - 1] = '\0';
12657 }
12658 else
12659 {
12660 /* For some reason, we were unable to read the exception
12661 name. This could happen if the Runtime was compiled
12662 without debugging info, for instance. In that case,
12663 just replace the exception name by the generic string
12664 "exception" - it will read as "an exception" in the
12665 notification we are about to print. */
12666 memcpy (exception_name, "exception", sizeof ("exception"));
12667 }
12668 /* In the case of unhandled exception breakpoints, we print
12669 the exception name as "unhandled EXCEPTION_NAME", to make
12670 it clearer to the user which kind of catchpoint just got
12671 hit. We used ui_out_text to make sure that this extra
12672 info does not pollute the exception name in the MI case. */
12673 if (ex == ada_catch_exception_unhandled)
12674 uiout->text ("unhandled ");
12675 uiout->field_string ("exception-name", exception_name);
12676 }
12677 break;
12678 case ada_catch_assert:
12679 /* In this case, the name of the exception is not really
12680 important. Just print "failed assertion" to make it clearer
12681 that his program just hit an assertion-failure catchpoint.
12682 We used ui_out_text because this info does not belong in
12683 the MI output. */
12684 uiout->text ("failed assertion");
12685 break;
12686 }
12687
12688 exception_message = ada_exception_message ();
12689 if (exception_message != NULL)
12690 {
12691 struct cleanup *cleanups = make_cleanup (xfree, exception_message);
12692
12693 uiout->text (" (");
12694 uiout->field_string ("exception-message", exception_message);
12695 uiout->text (")");
12696
12697 do_cleanups (cleanups);
12698 }
12699
12700 uiout->text (" at ");
12701 ada_find_printable_frame (get_current_frame ());
12702
12703 return PRINT_SRC_AND_LOC;
12704 }
12705
12706 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12707 for all exception catchpoint kinds. */
12708
12709 static void
12710 print_one_exception (enum ada_exception_catchpoint_kind ex,
12711 struct breakpoint *b, struct bp_location **last_loc)
12712 {
12713 struct ui_out *uiout = current_uiout;
12714 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12715 struct value_print_options opts;
12716
12717 get_user_print_options (&opts);
12718 if (opts.addressprint)
12719 {
12720 annotate_field (4);
12721 uiout->field_core_addr ("addr", b->loc->gdbarch, b->loc->address);
12722 }
12723
12724 annotate_field (5);
12725 *last_loc = b->loc;
12726 switch (ex)
12727 {
12728 case ada_catch_exception:
12729 if (c->excep_string != NULL)
12730 {
12731 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12732
12733 uiout->field_string ("what", msg);
12734 xfree (msg);
12735 }
12736 else
12737 uiout->field_string ("what", "all Ada exceptions");
12738
12739 break;
12740
12741 case ada_catch_exception_unhandled:
12742 uiout->field_string ("what", "unhandled Ada exceptions");
12743 break;
12744
12745 case ada_catch_assert:
12746 uiout->field_string ("what", "failed Ada assertions");
12747 break;
12748
12749 default:
12750 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12751 break;
12752 }
12753 }
12754
12755 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12756 for all exception catchpoint kinds. */
12757
12758 static void
12759 print_mention_exception (enum ada_exception_catchpoint_kind ex,
12760 struct breakpoint *b)
12761 {
12762 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12763 struct ui_out *uiout = current_uiout;
12764
12765 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
12766 : _("Catchpoint "));
12767 uiout->field_int ("bkptno", b->number);
12768 uiout->text (": ");
12769
12770 switch (ex)
12771 {
12772 case ada_catch_exception:
12773 if (c->excep_string != NULL)
12774 {
12775 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12776 struct cleanup *old_chain = make_cleanup (xfree, info);
12777
12778 uiout->text (info);
12779 do_cleanups (old_chain);
12780 }
12781 else
12782 uiout->text (_("all Ada exceptions"));
12783 break;
12784
12785 case ada_catch_exception_unhandled:
12786 uiout->text (_("unhandled Ada exceptions"));
12787 break;
12788
12789 case ada_catch_assert:
12790 uiout->text (_("failed Ada assertions"));
12791 break;
12792
12793 default:
12794 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12795 break;
12796 }
12797 }
12798
12799 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12800 for all exception catchpoint kinds. */
12801
12802 static void
12803 print_recreate_exception (enum ada_exception_catchpoint_kind ex,
12804 struct breakpoint *b, struct ui_file *fp)
12805 {
12806 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12807
12808 switch (ex)
12809 {
12810 case ada_catch_exception:
12811 fprintf_filtered (fp, "catch exception");
12812 if (c->excep_string != NULL)
12813 fprintf_filtered (fp, " %s", c->excep_string);
12814 break;
12815
12816 case ada_catch_exception_unhandled:
12817 fprintf_filtered (fp, "catch exception unhandled");
12818 break;
12819
12820 case ada_catch_assert:
12821 fprintf_filtered (fp, "catch assert");
12822 break;
12823
12824 default:
12825 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12826 }
12827 print_recreate_thread (b, fp);
12828 }
12829
12830 /* Virtual table for "catch exception" breakpoints. */
12831
12832 static struct bp_location *
12833 allocate_location_catch_exception (struct breakpoint *self)
12834 {
12835 return allocate_location_exception (ada_catch_exception, self);
12836 }
12837
12838 static void
12839 re_set_catch_exception (struct breakpoint *b)
12840 {
12841 re_set_exception (ada_catch_exception, b);
12842 }
12843
12844 static void
12845 check_status_catch_exception (bpstat bs)
12846 {
12847 check_status_exception (ada_catch_exception, bs);
12848 }
12849
12850 static enum print_stop_action
12851 print_it_catch_exception (bpstat bs)
12852 {
12853 return print_it_exception (ada_catch_exception, bs);
12854 }
12855
12856 static void
12857 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
12858 {
12859 print_one_exception (ada_catch_exception, b, last_loc);
12860 }
12861
12862 static void
12863 print_mention_catch_exception (struct breakpoint *b)
12864 {
12865 print_mention_exception (ada_catch_exception, b);
12866 }
12867
12868 static void
12869 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12870 {
12871 print_recreate_exception (ada_catch_exception, b, fp);
12872 }
12873
12874 static struct breakpoint_ops catch_exception_breakpoint_ops;
12875
12876 /* Virtual table for "catch exception unhandled" breakpoints. */
12877
12878 static struct bp_location *
12879 allocate_location_catch_exception_unhandled (struct breakpoint *self)
12880 {
12881 return allocate_location_exception (ada_catch_exception_unhandled, self);
12882 }
12883
12884 static void
12885 re_set_catch_exception_unhandled (struct breakpoint *b)
12886 {
12887 re_set_exception (ada_catch_exception_unhandled, b);
12888 }
12889
12890 static void
12891 check_status_catch_exception_unhandled (bpstat bs)
12892 {
12893 check_status_exception (ada_catch_exception_unhandled, bs);
12894 }
12895
12896 static enum print_stop_action
12897 print_it_catch_exception_unhandled (bpstat bs)
12898 {
12899 return print_it_exception (ada_catch_exception_unhandled, bs);
12900 }
12901
12902 static void
12903 print_one_catch_exception_unhandled (struct breakpoint *b,
12904 struct bp_location **last_loc)
12905 {
12906 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
12907 }
12908
12909 static void
12910 print_mention_catch_exception_unhandled (struct breakpoint *b)
12911 {
12912 print_mention_exception (ada_catch_exception_unhandled, b);
12913 }
12914
12915 static void
12916 print_recreate_catch_exception_unhandled (struct breakpoint *b,
12917 struct ui_file *fp)
12918 {
12919 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
12920 }
12921
12922 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12923
12924 /* Virtual table for "catch assert" breakpoints. */
12925
12926 static struct bp_location *
12927 allocate_location_catch_assert (struct breakpoint *self)
12928 {
12929 return allocate_location_exception (ada_catch_assert, self);
12930 }
12931
12932 static void
12933 re_set_catch_assert (struct breakpoint *b)
12934 {
12935 re_set_exception (ada_catch_assert, b);
12936 }
12937
12938 static void
12939 check_status_catch_assert (bpstat bs)
12940 {
12941 check_status_exception (ada_catch_assert, bs);
12942 }
12943
12944 static enum print_stop_action
12945 print_it_catch_assert (bpstat bs)
12946 {
12947 return print_it_exception (ada_catch_assert, bs);
12948 }
12949
12950 static void
12951 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
12952 {
12953 print_one_exception (ada_catch_assert, b, last_loc);
12954 }
12955
12956 static void
12957 print_mention_catch_assert (struct breakpoint *b)
12958 {
12959 print_mention_exception (ada_catch_assert, b);
12960 }
12961
12962 static void
12963 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12964 {
12965 print_recreate_exception (ada_catch_assert, b, fp);
12966 }
12967
12968 static struct breakpoint_ops catch_assert_breakpoint_ops;
12969
12970 /* Return a newly allocated copy of the first space-separated token
12971 in ARGSP, and then adjust ARGSP to point immediately after that
12972 token.
12973
12974 Return NULL if ARGPS does not contain any more tokens. */
12975
12976 static char *
12977 ada_get_next_arg (const char **argsp)
12978 {
12979 const char *args = *argsp;
12980 const char *end;
12981 char *result;
12982
12983 args = skip_spaces (args);
12984 if (args[0] == '\0')
12985 return NULL; /* No more arguments. */
12986
12987 /* Find the end of the current argument. */
12988
12989 end = skip_to_space (args);
12990
12991 /* Adjust ARGSP to point to the start of the next argument. */
12992
12993 *argsp = end;
12994
12995 /* Make a copy of the current argument and return it. */
12996
12997 result = (char *) xmalloc (end - args + 1);
12998 strncpy (result, args, end - args);
12999 result[end - args] = '\0';
13000
13001 return result;
13002 }
13003
13004 /* Split the arguments specified in a "catch exception" command.
13005 Set EX to the appropriate catchpoint type.
13006 Set EXCEP_STRING to the name of the specific exception if
13007 specified by the user.
13008 If a condition is found at the end of the arguments, the condition
13009 expression is stored in COND_STRING (memory must be deallocated
13010 after use). Otherwise COND_STRING is set to NULL. */
13011
13012 static void
13013 catch_ada_exception_command_split (const char *args,
13014 enum ada_exception_catchpoint_kind *ex,
13015 char **excep_string,
13016 char **cond_string)
13017 {
13018 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
13019 char *exception_name;
13020 char *cond = NULL;
13021
13022 exception_name = ada_get_next_arg (&args);
13023 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
13024 {
13025 /* This is not an exception name; this is the start of a condition
13026 expression for a catchpoint on all exceptions. So, "un-get"
13027 this token, and set exception_name to NULL. */
13028 xfree (exception_name);
13029 exception_name = NULL;
13030 args -= 2;
13031 }
13032 make_cleanup (xfree, exception_name);
13033
13034 /* Check to see if we have a condition. */
13035
13036 args = skip_spaces (args);
13037 if (startswith (args, "if")
13038 && (isspace (args[2]) || args[2] == '\0'))
13039 {
13040 args += 2;
13041 args = skip_spaces (args);
13042
13043 if (args[0] == '\0')
13044 error (_("Condition missing after `if' keyword"));
13045 cond = xstrdup (args);
13046 make_cleanup (xfree, cond);
13047
13048 args += strlen (args);
13049 }
13050
13051 /* Check that we do not have any more arguments. Anything else
13052 is unexpected. */
13053
13054 if (args[0] != '\0')
13055 error (_("Junk at end of expression"));
13056
13057 discard_cleanups (old_chain);
13058
13059 if (exception_name == NULL)
13060 {
13061 /* Catch all exceptions. */
13062 *ex = ada_catch_exception;
13063 *excep_string = NULL;
13064 }
13065 else if (strcmp (exception_name, "unhandled") == 0)
13066 {
13067 /* Catch unhandled exceptions. */
13068 *ex = ada_catch_exception_unhandled;
13069 *excep_string = NULL;
13070 }
13071 else
13072 {
13073 /* Catch a specific exception. */
13074 *ex = ada_catch_exception;
13075 *excep_string = exception_name;
13076 }
13077 *cond_string = cond;
13078 }
13079
13080 /* Return the name of the symbol on which we should break in order to
13081 implement a catchpoint of the EX kind. */
13082
13083 static const char *
13084 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
13085 {
13086 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
13087
13088 gdb_assert (data->exception_info != NULL);
13089
13090 switch (ex)
13091 {
13092 case ada_catch_exception:
13093 return (data->exception_info->catch_exception_sym);
13094 break;
13095 case ada_catch_exception_unhandled:
13096 return (data->exception_info->catch_exception_unhandled_sym);
13097 break;
13098 case ada_catch_assert:
13099 return (data->exception_info->catch_assert_sym);
13100 break;
13101 default:
13102 internal_error (__FILE__, __LINE__,
13103 _("unexpected catchpoint kind (%d)"), ex);
13104 }
13105 }
13106
13107 /* Return the breakpoint ops "virtual table" used for catchpoints
13108 of the EX kind. */
13109
13110 static const struct breakpoint_ops *
13111 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
13112 {
13113 switch (ex)
13114 {
13115 case ada_catch_exception:
13116 return (&catch_exception_breakpoint_ops);
13117 break;
13118 case ada_catch_exception_unhandled:
13119 return (&catch_exception_unhandled_breakpoint_ops);
13120 break;
13121 case ada_catch_assert:
13122 return (&catch_assert_breakpoint_ops);
13123 break;
13124 default:
13125 internal_error (__FILE__, __LINE__,
13126 _("unexpected catchpoint kind (%d)"), ex);
13127 }
13128 }
13129
13130 /* Return the condition that will be used to match the current exception
13131 being raised with the exception that the user wants to catch. This
13132 assumes that this condition is used when the inferior just triggered
13133 an exception catchpoint.
13134
13135 The string returned is a newly allocated string that needs to be
13136 deallocated later. */
13137
13138 static char *
13139 ada_exception_catchpoint_cond_string (const char *excep_string)
13140 {
13141 int i;
13142
13143 /* The standard exceptions are a special case. They are defined in
13144 runtime units that have been compiled without debugging info; if
13145 EXCEP_STRING is the not-fully-qualified name of a standard
13146 exception (e.g. "constraint_error") then, during the evaluation
13147 of the condition expression, the symbol lookup on this name would
13148 *not* return this standard exception. The catchpoint condition
13149 may then be set only on user-defined exceptions which have the
13150 same not-fully-qualified name (e.g. my_package.constraint_error).
13151
13152 To avoid this unexcepted behavior, these standard exceptions are
13153 systematically prefixed by "standard". This means that "catch
13154 exception constraint_error" is rewritten into "catch exception
13155 standard.constraint_error".
13156
13157 If an exception named contraint_error is defined in another package of
13158 the inferior program, then the only way to specify this exception as a
13159 breakpoint condition is to use its fully-qualified named:
13160 e.g. my_package.constraint_error. */
13161
13162 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
13163 {
13164 if (strcmp (standard_exc [i], excep_string) == 0)
13165 {
13166 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
13167 excep_string);
13168 }
13169 }
13170 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
13171 }
13172
13173 /* Return the symtab_and_line that should be used to insert an exception
13174 catchpoint of the TYPE kind.
13175
13176 EXCEP_STRING should contain the name of a specific exception that
13177 the catchpoint should catch, or NULL otherwise.
13178
13179 ADDR_STRING returns the name of the function where the real
13180 breakpoint that implements the catchpoints is set, depending on the
13181 type of catchpoint we need to create. */
13182
13183 static struct symtab_and_line
13184 ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string,
13185 const char **addr_string, const struct breakpoint_ops **ops)
13186 {
13187 const char *sym_name;
13188 struct symbol *sym;
13189
13190 /* First, find out which exception support info to use. */
13191 ada_exception_support_info_sniffer ();
13192
13193 /* Then lookup the function on which we will break in order to catch
13194 the Ada exceptions requested by the user. */
13195 sym_name = ada_exception_sym_name (ex);
13196 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
13197
13198 /* We can assume that SYM is not NULL at this stage. If the symbol
13199 did not exist, ada_exception_support_info_sniffer would have
13200 raised an exception.
13201
13202 Also, ada_exception_support_info_sniffer should have already
13203 verified that SYM is a function symbol. */
13204 gdb_assert (sym != NULL);
13205 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
13206
13207 /* Set ADDR_STRING. */
13208 *addr_string = xstrdup (sym_name);
13209
13210 /* Set OPS. */
13211 *ops = ada_exception_breakpoint_ops (ex);
13212
13213 return find_function_start_sal (sym, 1);
13214 }
13215
13216 /* Create an Ada exception catchpoint.
13217
13218 EX_KIND is the kind of exception catchpoint to be created.
13219
13220 If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
13221 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
13222 of the exception to which this catchpoint applies. When not NULL,
13223 the string must be allocated on the heap, and its deallocation
13224 is no longer the responsibility of the caller.
13225
13226 COND_STRING, if not NULL, is the catchpoint condition. This string
13227 must be allocated on the heap, and its deallocation is no longer
13228 the responsibility of the caller.
13229
13230 TEMPFLAG, if nonzero, means that the underlying breakpoint
13231 should be temporary.
13232
13233 FROM_TTY is the usual argument passed to all commands implementations. */
13234
13235 void
13236 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
13237 enum ada_exception_catchpoint_kind ex_kind,
13238 char *excep_string,
13239 char *cond_string,
13240 int tempflag,
13241 int disabled,
13242 int from_tty)
13243 {
13244 const char *addr_string = NULL;
13245 const struct breakpoint_ops *ops = NULL;
13246 struct symtab_and_line sal
13247 = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops);
13248
13249 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint ());
13250 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string,
13251 ops, tempflag, disabled, from_tty);
13252 c->excep_string = excep_string;
13253 create_excep_cond_exprs (c.get ());
13254 if (cond_string != NULL)
13255 set_breakpoint_condition (c.get (), cond_string, from_tty);
13256 install_breakpoint (0, std::move (c), 1);
13257 }
13258
13259 /* Implement the "catch exception" command. */
13260
13261 static void
13262 catch_ada_exception_command (const char *arg_entry, int from_tty,
13263 struct cmd_list_element *command)
13264 {
13265 const char *arg = arg_entry;
13266 struct gdbarch *gdbarch = get_current_arch ();
13267 int tempflag;
13268 enum ada_exception_catchpoint_kind ex_kind;
13269 char *excep_string = NULL;
13270 char *cond_string = NULL;
13271
13272 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13273
13274 if (!arg)
13275 arg = "";
13276 catch_ada_exception_command_split (arg, &ex_kind, &excep_string,
13277 &cond_string);
13278 create_ada_exception_catchpoint (gdbarch, ex_kind,
13279 excep_string, cond_string,
13280 tempflag, 1 /* enabled */,
13281 from_tty);
13282 }
13283
13284 /* Split the arguments specified in a "catch assert" command.
13285
13286 ARGS contains the command's arguments (or the empty string if
13287 no arguments were passed).
13288
13289 If ARGS contains a condition, set COND_STRING to that condition
13290 (the memory needs to be deallocated after use). */
13291
13292 static void
13293 catch_ada_assert_command_split (const char *args, char **cond_string)
13294 {
13295 args = skip_spaces (args);
13296
13297 /* Check whether a condition was provided. */
13298 if (startswith (args, "if")
13299 && (isspace (args[2]) || args[2] == '\0'))
13300 {
13301 args += 2;
13302 args = skip_spaces (args);
13303 if (args[0] == '\0')
13304 error (_("condition missing after `if' keyword"));
13305 *cond_string = xstrdup (args);
13306 }
13307
13308 /* Otherwise, there should be no other argument at the end of
13309 the command. */
13310 else if (args[0] != '\0')
13311 error (_("Junk at end of arguments."));
13312 }
13313
13314 /* Implement the "catch assert" command. */
13315
13316 static void
13317 catch_assert_command (const char *arg_entry, int from_tty,
13318 struct cmd_list_element *command)
13319 {
13320 const char *arg = arg_entry;
13321 struct gdbarch *gdbarch = get_current_arch ();
13322 int tempflag;
13323 char *cond_string = NULL;
13324
13325 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13326
13327 if (!arg)
13328 arg = "";
13329 catch_ada_assert_command_split (arg, &cond_string);
13330 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
13331 NULL, cond_string,
13332 tempflag, 1 /* enabled */,
13333 from_tty);
13334 }
13335
13336 /* Return non-zero if the symbol SYM is an Ada exception object. */
13337
13338 static int
13339 ada_is_exception_sym (struct symbol *sym)
13340 {
13341 const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
13342
13343 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13344 && SYMBOL_CLASS (sym) != LOC_BLOCK
13345 && SYMBOL_CLASS (sym) != LOC_CONST
13346 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13347 && type_name != NULL && strcmp (type_name, "exception") == 0);
13348 }
13349
13350 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13351 Ada exception object. This matches all exceptions except the ones
13352 defined by the Ada language. */
13353
13354 static int
13355 ada_is_non_standard_exception_sym (struct symbol *sym)
13356 {
13357 int i;
13358
13359 if (!ada_is_exception_sym (sym))
13360 return 0;
13361
13362 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13363 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13364 return 0; /* A standard exception. */
13365
13366 /* Numeric_Error is also a standard exception, so exclude it.
13367 See the STANDARD_EXC description for more details as to why
13368 this exception is not listed in that array. */
13369 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13370 return 0;
13371
13372 return 1;
13373 }
13374
13375 /* A helper function for std::sort, comparing two struct ada_exc_info
13376 objects.
13377
13378 The comparison is determined first by exception name, and then
13379 by exception address. */
13380
13381 bool
13382 ada_exc_info::operator< (const ada_exc_info &other) const
13383 {
13384 int result;
13385
13386 result = strcmp (name, other.name);
13387 if (result < 0)
13388 return true;
13389 if (result == 0 && addr < other.addr)
13390 return true;
13391 return false;
13392 }
13393
13394 bool
13395 ada_exc_info::operator== (const ada_exc_info &other) const
13396 {
13397 return addr == other.addr && strcmp (name, other.name) == 0;
13398 }
13399
13400 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13401 routine, but keeping the first SKIP elements untouched.
13402
13403 All duplicates are also removed. */
13404
13405 static void
13406 sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
13407 int skip)
13408 {
13409 std::sort (exceptions->begin () + skip, exceptions->end ());
13410 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
13411 exceptions->end ());
13412 }
13413
13414 /* Add all exceptions defined by the Ada standard whose name match
13415 a regular expression.
13416
13417 If PREG is not NULL, then this regexp_t object is used to
13418 perform the symbol name matching. Otherwise, no name-based
13419 filtering is performed.
13420
13421 EXCEPTIONS is a vector of exceptions to which matching exceptions
13422 gets pushed. */
13423
13424 static void
13425 ada_add_standard_exceptions (compiled_regex *preg,
13426 std::vector<ada_exc_info> *exceptions)
13427 {
13428 int i;
13429
13430 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13431 {
13432 if (preg == NULL
13433 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
13434 {
13435 struct bound_minimal_symbol msymbol
13436 = ada_lookup_simple_minsym (standard_exc[i]);
13437
13438 if (msymbol.minsym != NULL)
13439 {
13440 struct ada_exc_info info
13441 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
13442
13443 exceptions->push_back (info);
13444 }
13445 }
13446 }
13447 }
13448
13449 /* Add all Ada exceptions defined locally and accessible from the given
13450 FRAME.
13451
13452 If PREG is not NULL, then this regexp_t object is used to
13453 perform the symbol name matching. Otherwise, no name-based
13454 filtering is performed.
13455
13456 EXCEPTIONS is a vector of exceptions to which matching exceptions
13457 gets pushed. */
13458
13459 static void
13460 ada_add_exceptions_from_frame (compiled_regex *preg,
13461 struct frame_info *frame,
13462 std::vector<ada_exc_info> *exceptions)
13463 {
13464 const struct block *block = get_frame_block (frame, 0);
13465
13466 while (block != 0)
13467 {
13468 struct block_iterator iter;
13469 struct symbol *sym;
13470
13471 ALL_BLOCK_SYMBOLS (block, iter, sym)
13472 {
13473 switch (SYMBOL_CLASS (sym))
13474 {
13475 case LOC_TYPEDEF:
13476 case LOC_BLOCK:
13477 case LOC_CONST:
13478 break;
13479 default:
13480 if (ada_is_exception_sym (sym))
13481 {
13482 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13483 SYMBOL_VALUE_ADDRESS (sym)};
13484
13485 exceptions->push_back (info);
13486 }
13487 }
13488 }
13489 if (BLOCK_FUNCTION (block) != NULL)
13490 break;
13491 block = BLOCK_SUPERBLOCK (block);
13492 }
13493 }
13494
13495 /* Return true if NAME matches PREG or if PREG is NULL. */
13496
13497 static bool
13498 name_matches_regex (const char *name, compiled_regex *preg)
13499 {
13500 return (preg == NULL
13501 || preg->exec (ada_decode (name), 0, NULL, 0) == 0);
13502 }
13503
13504 /* Add all exceptions defined globally whose name name match
13505 a regular expression, excluding standard exceptions.
13506
13507 The reason we exclude standard exceptions is that they need
13508 to be handled separately: Standard exceptions are defined inside
13509 a runtime unit which is normally not compiled with debugging info,
13510 and thus usually do not show up in our symbol search. However,
13511 if the unit was in fact built with debugging info, we need to
13512 exclude them because they would duplicate the entry we found
13513 during the special loop that specifically searches for those
13514 standard exceptions.
13515
13516 If PREG is not NULL, then this regexp_t object is used to
13517 perform the symbol name matching. Otherwise, no name-based
13518 filtering is performed.
13519
13520 EXCEPTIONS is a vector of exceptions to which matching exceptions
13521 gets pushed. */
13522
13523 static void
13524 ada_add_global_exceptions (compiled_regex *preg,
13525 std::vector<ada_exc_info> *exceptions)
13526 {
13527 struct objfile *objfile;
13528 struct compunit_symtab *s;
13529
13530 /* In Ada, the symbol "search name" is a linkage name, whereas the
13531 regular expression used to do the matching refers to the natural
13532 name. So match against the decoded name. */
13533 expand_symtabs_matching (NULL,
13534 lookup_name_info::match_any (),
13535 [&] (const char *search_name)
13536 {
13537 const char *decoded = ada_decode (search_name);
13538 return name_matches_regex (decoded, preg);
13539 },
13540 NULL,
13541 VARIABLES_DOMAIN);
13542
13543 ALL_COMPUNITS (objfile, s)
13544 {
13545 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13546 int i;
13547
13548 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13549 {
13550 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13551 struct block_iterator iter;
13552 struct symbol *sym;
13553
13554 ALL_BLOCK_SYMBOLS (b, iter, sym)
13555 if (ada_is_non_standard_exception_sym (sym)
13556 && name_matches_regex (SYMBOL_NATURAL_NAME (sym), preg))
13557 {
13558 struct ada_exc_info info
13559 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13560
13561 exceptions->push_back (info);
13562 }
13563 }
13564 }
13565 }
13566
13567 /* Implements ada_exceptions_list with the regular expression passed
13568 as a regex_t, rather than a string.
13569
13570 If not NULL, PREG is used to filter out exceptions whose names
13571 do not match. Otherwise, all exceptions are listed. */
13572
13573 static std::vector<ada_exc_info>
13574 ada_exceptions_list_1 (compiled_regex *preg)
13575 {
13576 std::vector<ada_exc_info> result;
13577 int prev_len;
13578
13579 /* First, list the known standard exceptions. These exceptions
13580 need to be handled separately, as they are usually defined in
13581 runtime units that have been compiled without debugging info. */
13582
13583 ada_add_standard_exceptions (preg, &result);
13584
13585 /* Next, find all exceptions whose scope is local and accessible
13586 from the currently selected frame. */
13587
13588 if (has_stack_frames ())
13589 {
13590 prev_len = result.size ();
13591 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13592 &result);
13593 if (result.size () > prev_len)
13594 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13595 }
13596
13597 /* Add all exceptions whose scope is global. */
13598
13599 prev_len = result.size ();
13600 ada_add_global_exceptions (preg, &result);
13601 if (result.size () > prev_len)
13602 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13603
13604 return result;
13605 }
13606
13607 /* Return a vector of ada_exc_info.
13608
13609 If REGEXP is NULL, all exceptions are included in the result.
13610 Otherwise, it should contain a valid regular expression,
13611 and only the exceptions whose names match that regular expression
13612 are included in the result.
13613
13614 The exceptions are sorted in the following order:
13615 - Standard exceptions (defined by the Ada language), in
13616 alphabetical order;
13617 - Exceptions only visible from the current frame, in
13618 alphabetical order;
13619 - Exceptions whose scope is global, in alphabetical order. */
13620
13621 std::vector<ada_exc_info>
13622 ada_exceptions_list (const char *regexp)
13623 {
13624 if (regexp == NULL)
13625 return ada_exceptions_list_1 (NULL);
13626
13627 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13628 return ada_exceptions_list_1 (&reg);
13629 }
13630
13631 /* Implement the "info exceptions" command. */
13632
13633 static void
13634 info_exceptions_command (const char *regexp, int from_tty)
13635 {
13636 struct gdbarch *gdbarch = get_current_arch ();
13637
13638 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
13639
13640 if (regexp != NULL)
13641 printf_filtered
13642 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13643 else
13644 printf_filtered (_("All defined Ada exceptions:\n"));
13645
13646 for (const ada_exc_info &info : exceptions)
13647 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
13648 }
13649
13650 /* Operators */
13651 /* Information about operators given special treatment in functions
13652 below. */
13653 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13654
13655 #define ADA_OPERATORS \
13656 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13657 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13658 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13659 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13660 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13661 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13662 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13663 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13664 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13665 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13666 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13667 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13668 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13669 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13670 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13671 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13672 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13673 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13674 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13675
13676 static void
13677 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13678 int *argsp)
13679 {
13680 switch (exp->elts[pc - 1].opcode)
13681 {
13682 default:
13683 operator_length_standard (exp, pc, oplenp, argsp);
13684 break;
13685
13686 #define OP_DEFN(op, len, args, binop) \
13687 case op: *oplenp = len; *argsp = args; break;
13688 ADA_OPERATORS;
13689 #undef OP_DEFN
13690
13691 case OP_AGGREGATE:
13692 *oplenp = 3;
13693 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13694 break;
13695
13696 case OP_CHOICES:
13697 *oplenp = 3;
13698 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13699 break;
13700 }
13701 }
13702
13703 /* Implementation of the exp_descriptor method operator_check. */
13704
13705 static int
13706 ada_operator_check (struct expression *exp, int pos,
13707 int (*objfile_func) (struct objfile *objfile, void *data),
13708 void *data)
13709 {
13710 const union exp_element *const elts = exp->elts;
13711 struct type *type = NULL;
13712
13713 switch (elts[pos].opcode)
13714 {
13715 case UNOP_IN_RANGE:
13716 case UNOP_QUAL:
13717 type = elts[pos + 1].type;
13718 break;
13719
13720 default:
13721 return operator_check_standard (exp, pos, objfile_func, data);
13722 }
13723
13724 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13725
13726 if (type && TYPE_OBJFILE (type)
13727 && (*objfile_func) (TYPE_OBJFILE (type), data))
13728 return 1;
13729
13730 return 0;
13731 }
13732
13733 static const char *
13734 ada_op_name (enum exp_opcode opcode)
13735 {
13736 switch (opcode)
13737 {
13738 default:
13739 return op_name_standard (opcode);
13740
13741 #define OP_DEFN(op, len, args, binop) case op: return #op;
13742 ADA_OPERATORS;
13743 #undef OP_DEFN
13744
13745 case OP_AGGREGATE:
13746 return "OP_AGGREGATE";
13747 case OP_CHOICES:
13748 return "OP_CHOICES";
13749 case OP_NAME:
13750 return "OP_NAME";
13751 }
13752 }
13753
13754 /* As for operator_length, but assumes PC is pointing at the first
13755 element of the operator, and gives meaningful results only for the
13756 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13757
13758 static void
13759 ada_forward_operator_length (struct expression *exp, int pc,
13760 int *oplenp, int *argsp)
13761 {
13762 switch (exp->elts[pc].opcode)
13763 {
13764 default:
13765 *oplenp = *argsp = 0;
13766 break;
13767
13768 #define OP_DEFN(op, len, args, binop) \
13769 case op: *oplenp = len; *argsp = args; break;
13770 ADA_OPERATORS;
13771 #undef OP_DEFN
13772
13773 case OP_AGGREGATE:
13774 *oplenp = 3;
13775 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13776 break;
13777
13778 case OP_CHOICES:
13779 *oplenp = 3;
13780 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13781 break;
13782
13783 case OP_STRING:
13784 case OP_NAME:
13785 {
13786 int len = longest_to_int (exp->elts[pc + 1].longconst);
13787
13788 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13789 *argsp = 0;
13790 break;
13791 }
13792 }
13793 }
13794
13795 static int
13796 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13797 {
13798 enum exp_opcode op = exp->elts[elt].opcode;
13799 int oplen, nargs;
13800 int pc = elt;
13801 int i;
13802
13803 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13804
13805 switch (op)
13806 {
13807 /* Ada attributes ('Foo). */
13808 case OP_ATR_FIRST:
13809 case OP_ATR_LAST:
13810 case OP_ATR_LENGTH:
13811 case OP_ATR_IMAGE:
13812 case OP_ATR_MAX:
13813 case OP_ATR_MIN:
13814 case OP_ATR_MODULUS:
13815 case OP_ATR_POS:
13816 case OP_ATR_SIZE:
13817 case OP_ATR_TAG:
13818 case OP_ATR_VAL:
13819 break;
13820
13821 case UNOP_IN_RANGE:
13822 case UNOP_QUAL:
13823 /* XXX: gdb_sprint_host_address, type_sprint */
13824 fprintf_filtered (stream, _("Type @"));
13825 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13826 fprintf_filtered (stream, " (");
13827 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13828 fprintf_filtered (stream, ")");
13829 break;
13830 case BINOP_IN_BOUNDS:
13831 fprintf_filtered (stream, " (%d)",
13832 longest_to_int (exp->elts[pc + 2].longconst));
13833 break;
13834 case TERNOP_IN_RANGE:
13835 break;
13836
13837 case OP_AGGREGATE:
13838 case OP_OTHERS:
13839 case OP_DISCRETE_RANGE:
13840 case OP_POSITIONAL:
13841 case OP_CHOICES:
13842 break;
13843
13844 case OP_NAME:
13845 case OP_STRING:
13846 {
13847 char *name = &exp->elts[elt + 2].string;
13848 int len = longest_to_int (exp->elts[elt + 1].longconst);
13849
13850 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13851 break;
13852 }
13853
13854 default:
13855 return dump_subexp_body_standard (exp, stream, elt);
13856 }
13857
13858 elt += oplen;
13859 for (i = 0; i < nargs; i += 1)
13860 elt = dump_subexp (exp, stream, elt);
13861
13862 return elt;
13863 }
13864
13865 /* The Ada extension of print_subexp (q.v.). */
13866
13867 static void
13868 ada_print_subexp (struct expression *exp, int *pos,
13869 struct ui_file *stream, enum precedence prec)
13870 {
13871 int oplen, nargs, i;
13872 int pc = *pos;
13873 enum exp_opcode op = exp->elts[pc].opcode;
13874
13875 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13876
13877 *pos += oplen;
13878 switch (op)
13879 {
13880 default:
13881 *pos -= oplen;
13882 print_subexp_standard (exp, pos, stream, prec);
13883 return;
13884
13885 case OP_VAR_VALUE:
13886 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13887 return;
13888
13889 case BINOP_IN_BOUNDS:
13890 /* XXX: sprint_subexp */
13891 print_subexp (exp, pos, stream, PREC_SUFFIX);
13892 fputs_filtered (" in ", stream);
13893 print_subexp (exp, pos, stream, PREC_SUFFIX);
13894 fputs_filtered ("'range", stream);
13895 if (exp->elts[pc + 1].longconst > 1)
13896 fprintf_filtered (stream, "(%ld)",
13897 (long) exp->elts[pc + 1].longconst);
13898 return;
13899
13900 case TERNOP_IN_RANGE:
13901 if (prec >= PREC_EQUAL)
13902 fputs_filtered ("(", stream);
13903 /* XXX: sprint_subexp */
13904 print_subexp (exp, pos, stream, PREC_SUFFIX);
13905 fputs_filtered (" in ", stream);
13906 print_subexp (exp, pos, stream, PREC_EQUAL);
13907 fputs_filtered (" .. ", stream);
13908 print_subexp (exp, pos, stream, PREC_EQUAL);
13909 if (prec >= PREC_EQUAL)
13910 fputs_filtered (")", stream);
13911 return;
13912
13913 case OP_ATR_FIRST:
13914 case OP_ATR_LAST:
13915 case OP_ATR_LENGTH:
13916 case OP_ATR_IMAGE:
13917 case OP_ATR_MAX:
13918 case OP_ATR_MIN:
13919 case OP_ATR_MODULUS:
13920 case OP_ATR_POS:
13921 case OP_ATR_SIZE:
13922 case OP_ATR_TAG:
13923 case OP_ATR_VAL:
13924 if (exp->elts[*pos].opcode == OP_TYPE)
13925 {
13926 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
13927 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13928 &type_print_raw_options);
13929 *pos += 3;
13930 }
13931 else
13932 print_subexp (exp, pos, stream, PREC_SUFFIX);
13933 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13934 if (nargs > 1)
13935 {
13936 int tem;
13937
13938 for (tem = 1; tem < nargs; tem += 1)
13939 {
13940 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13941 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13942 }
13943 fputs_filtered (")", stream);
13944 }
13945 return;
13946
13947 case UNOP_QUAL:
13948 type_print (exp->elts[pc + 1].type, "", stream, 0);
13949 fputs_filtered ("'(", stream);
13950 print_subexp (exp, pos, stream, PREC_PREFIX);
13951 fputs_filtered (")", stream);
13952 return;
13953
13954 case UNOP_IN_RANGE:
13955 /* XXX: sprint_subexp */
13956 print_subexp (exp, pos, stream, PREC_SUFFIX);
13957 fputs_filtered (" in ", stream);
13958 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13959 &type_print_raw_options);
13960 return;
13961
13962 case OP_DISCRETE_RANGE:
13963 print_subexp (exp, pos, stream, PREC_SUFFIX);
13964 fputs_filtered ("..", stream);
13965 print_subexp (exp, pos, stream, PREC_SUFFIX);
13966 return;
13967
13968 case OP_OTHERS:
13969 fputs_filtered ("others => ", stream);
13970 print_subexp (exp, pos, stream, PREC_SUFFIX);
13971 return;
13972
13973 case OP_CHOICES:
13974 for (i = 0; i < nargs-1; i += 1)
13975 {
13976 if (i > 0)
13977 fputs_filtered ("|", stream);
13978 print_subexp (exp, pos, stream, PREC_SUFFIX);
13979 }
13980 fputs_filtered (" => ", stream);
13981 print_subexp (exp, pos, stream, PREC_SUFFIX);
13982 return;
13983
13984 case OP_POSITIONAL:
13985 print_subexp (exp, pos, stream, PREC_SUFFIX);
13986 return;
13987
13988 case OP_AGGREGATE:
13989 fputs_filtered ("(", stream);
13990 for (i = 0; i < nargs; i += 1)
13991 {
13992 if (i > 0)
13993 fputs_filtered (", ", stream);
13994 print_subexp (exp, pos, stream, PREC_SUFFIX);
13995 }
13996 fputs_filtered (")", stream);
13997 return;
13998 }
13999 }
14000
14001 /* Table mapping opcodes into strings for printing operators
14002 and precedences of the operators. */
14003
14004 static const struct op_print ada_op_print_tab[] = {
14005 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
14006 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
14007 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
14008 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
14009 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
14010 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
14011 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
14012 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
14013 {"<=", BINOP_LEQ, PREC_ORDER, 0},
14014 {">=", BINOP_GEQ, PREC_ORDER, 0},
14015 {">", BINOP_GTR, PREC_ORDER, 0},
14016 {"<", BINOP_LESS, PREC_ORDER, 0},
14017 {">>", BINOP_RSH, PREC_SHIFT, 0},
14018 {"<<", BINOP_LSH, PREC_SHIFT, 0},
14019 {"+", BINOP_ADD, PREC_ADD, 0},
14020 {"-", BINOP_SUB, PREC_ADD, 0},
14021 {"&", BINOP_CONCAT, PREC_ADD, 0},
14022 {"*", BINOP_MUL, PREC_MUL, 0},
14023 {"/", BINOP_DIV, PREC_MUL, 0},
14024 {"rem", BINOP_REM, PREC_MUL, 0},
14025 {"mod", BINOP_MOD, PREC_MUL, 0},
14026 {"**", BINOP_EXP, PREC_REPEAT, 0},
14027 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
14028 {"-", UNOP_NEG, PREC_PREFIX, 0},
14029 {"+", UNOP_PLUS, PREC_PREFIX, 0},
14030 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
14031 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
14032 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
14033 {".all", UNOP_IND, PREC_SUFFIX, 1},
14034 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
14035 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
14036 {NULL, OP_NULL, PREC_SUFFIX, 0}
14037 };
14038 \f
14039 enum ada_primitive_types {
14040 ada_primitive_type_int,
14041 ada_primitive_type_long,
14042 ada_primitive_type_short,
14043 ada_primitive_type_char,
14044 ada_primitive_type_float,
14045 ada_primitive_type_double,
14046 ada_primitive_type_void,
14047 ada_primitive_type_long_long,
14048 ada_primitive_type_long_double,
14049 ada_primitive_type_natural,
14050 ada_primitive_type_positive,
14051 ada_primitive_type_system_address,
14052 ada_primitive_type_storage_offset,
14053 nr_ada_primitive_types
14054 };
14055
14056 static void
14057 ada_language_arch_info (struct gdbarch *gdbarch,
14058 struct language_arch_info *lai)
14059 {
14060 const struct builtin_type *builtin = builtin_type (gdbarch);
14061
14062 lai->primitive_type_vector
14063 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
14064 struct type *);
14065
14066 lai->primitive_type_vector [ada_primitive_type_int]
14067 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14068 0, "integer");
14069 lai->primitive_type_vector [ada_primitive_type_long]
14070 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
14071 0, "long_integer");
14072 lai->primitive_type_vector [ada_primitive_type_short]
14073 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
14074 0, "short_integer");
14075 lai->string_char_type
14076 = lai->primitive_type_vector [ada_primitive_type_char]
14077 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
14078 lai->primitive_type_vector [ada_primitive_type_float]
14079 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
14080 "float", gdbarch_float_format (gdbarch));
14081 lai->primitive_type_vector [ada_primitive_type_double]
14082 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
14083 "long_float", gdbarch_double_format (gdbarch));
14084 lai->primitive_type_vector [ada_primitive_type_long_long]
14085 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
14086 0, "long_long_integer");
14087 lai->primitive_type_vector [ada_primitive_type_long_double]
14088 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
14089 "long_long_float", gdbarch_long_double_format (gdbarch));
14090 lai->primitive_type_vector [ada_primitive_type_natural]
14091 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14092 0, "natural");
14093 lai->primitive_type_vector [ada_primitive_type_positive]
14094 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14095 0, "positive");
14096 lai->primitive_type_vector [ada_primitive_type_void]
14097 = builtin->builtin_void;
14098
14099 lai->primitive_type_vector [ada_primitive_type_system_address]
14100 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
14101 "void"));
14102 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
14103 = "system__address";
14104
14105 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
14106 type. This is a signed integral type whose size is the same as
14107 the size of addresses. */
14108 {
14109 unsigned int addr_length = TYPE_LENGTH
14110 (lai->primitive_type_vector [ada_primitive_type_system_address]);
14111
14112 lai->primitive_type_vector [ada_primitive_type_storage_offset]
14113 = arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
14114 "storage_offset");
14115 }
14116
14117 lai->bool_type_symbol = NULL;
14118 lai->bool_type_default = builtin->builtin_bool;
14119 }
14120 \f
14121 /* Language vector */
14122
14123 /* Not really used, but needed in the ada_language_defn. */
14124
14125 static void
14126 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
14127 {
14128 ada_emit_char (c, type, stream, quoter, 1);
14129 }
14130
14131 static int
14132 parse (struct parser_state *ps)
14133 {
14134 warnings_issued = 0;
14135 return ada_parse (ps);
14136 }
14137
14138 static const struct exp_descriptor ada_exp_descriptor = {
14139 ada_print_subexp,
14140 ada_operator_length,
14141 ada_operator_check,
14142 ada_op_name,
14143 ada_dump_subexp_body,
14144 ada_evaluate_subexp
14145 };
14146
14147 /* symbol_name_matcher_ftype adapter for wild_match. */
14148
14149 static bool
14150 do_wild_match (const char *symbol_search_name,
14151 const lookup_name_info &lookup_name,
14152 completion_match_result *comp_match_res)
14153 {
14154 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
14155 }
14156
14157 /* symbol_name_matcher_ftype adapter for full_match. */
14158
14159 static bool
14160 do_full_match (const char *symbol_search_name,
14161 const lookup_name_info &lookup_name,
14162 completion_match_result *comp_match_res)
14163 {
14164 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
14165 }
14166
14167 /* Build the Ada lookup name for LOOKUP_NAME. */
14168
14169 ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
14170 {
14171 const std::string &user_name = lookup_name.name ();
14172
14173 if (user_name[0] == '<')
14174 {
14175 if (user_name.back () == '>')
14176 m_encoded_name = user_name.substr (1, user_name.size () - 2);
14177 else
14178 m_encoded_name = user_name.substr (1, user_name.size () - 1);
14179 m_encoded_p = true;
14180 m_verbatim_p = true;
14181 m_wild_match_p = false;
14182 m_standard_p = false;
14183 }
14184 else
14185 {
14186 m_verbatim_p = false;
14187
14188 m_encoded_p = user_name.find ("__") != std::string::npos;
14189
14190 if (!m_encoded_p)
14191 {
14192 const char *folded = ada_fold_name (user_name.c_str ());
14193 const char *encoded = ada_encode_1 (folded, false);
14194 if (encoded != NULL)
14195 m_encoded_name = encoded;
14196 else
14197 m_encoded_name = user_name;
14198 }
14199 else
14200 m_encoded_name = user_name;
14201
14202 /* Handle the 'package Standard' special case. See description
14203 of m_standard_p. */
14204 if (startswith (m_encoded_name.c_str (), "standard__"))
14205 {
14206 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
14207 m_standard_p = true;
14208 }
14209 else
14210 m_standard_p = false;
14211
14212 /* If the name contains a ".", then the user is entering a fully
14213 qualified entity name, and the match must not be done in wild
14214 mode. Similarly, if the user wants to complete what looks
14215 like an encoded name, the match must not be done in wild
14216 mode. Also, in the standard__ special case always do
14217 non-wild matching. */
14218 m_wild_match_p
14219 = (lookup_name.match_type () != symbol_name_match_type::FULL
14220 && !m_encoded_p
14221 && !m_standard_p
14222 && user_name.find ('.') == std::string::npos);
14223 }
14224 }
14225
14226 /* symbol_name_matcher_ftype method for Ada. This only handles
14227 completion mode. */
14228
14229 static bool
14230 ada_symbol_name_matches (const char *symbol_search_name,
14231 const lookup_name_info &lookup_name,
14232 completion_match_result *comp_match_res)
14233 {
14234 return lookup_name.ada ().matches (symbol_search_name,
14235 lookup_name.match_type (),
14236 comp_match_res);
14237 }
14238
14239 /* Implement the "la_get_symbol_name_matcher" language_defn method for
14240 Ada. */
14241
14242 static symbol_name_matcher_ftype *
14243 ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
14244 {
14245 if (lookup_name.completion_mode ())
14246 return ada_symbol_name_matches;
14247 else
14248 {
14249 if (lookup_name.ada ().wild_match_p ())
14250 return do_wild_match;
14251 else
14252 return do_full_match;
14253 }
14254 }
14255
14256 /* Implement the "la_read_var_value" language_defn method for Ada. */
14257
14258 static struct value *
14259 ada_read_var_value (struct symbol *var, const struct block *var_block,
14260 struct frame_info *frame)
14261 {
14262 const struct block *frame_block = NULL;
14263 struct symbol *renaming_sym = NULL;
14264
14265 /* The only case where default_read_var_value is not sufficient
14266 is when VAR is a renaming... */
14267 if (frame)
14268 frame_block = get_frame_block (frame, NULL);
14269 if (frame_block)
14270 renaming_sym = ada_find_renaming_symbol (var, frame_block);
14271 if (renaming_sym != NULL)
14272 return ada_read_renaming_var_value (renaming_sym, frame_block);
14273
14274 /* This is a typical case where we expect the default_read_var_value
14275 function to work. */
14276 return default_read_var_value (var, var_block, frame);
14277 }
14278
14279 static const char *ada_extensions[] =
14280 {
14281 ".adb", ".ads", ".a", ".ada", ".dg", NULL
14282 };
14283
14284 extern const struct language_defn ada_language_defn = {
14285 "ada", /* Language name */
14286 "Ada",
14287 language_ada,
14288 range_check_off,
14289 case_sensitive_on, /* Yes, Ada is case-insensitive, but
14290 that's not quite what this means. */
14291 array_row_major,
14292 macro_expansion_no,
14293 ada_extensions,
14294 &ada_exp_descriptor,
14295 parse,
14296 ada_yyerror,
14297 resolve,
14298 ada_printchar, /* Print a character constant */
14299 ada_printstr, /* Function to print string constant */
14300 emit_char, /* Function to print single char (not used) */
14301 ada_print_type, /* Print a type using appropriate syntax */
14302 ada_print_typedef, /* Print a typedef using appropriate syntax */
14303 ada_val_print, /* Print a value using appropriate syntax */
14304 ada_value_print, /* Print a top-level value */
14305 ada_read_var_value, /* la_read_var_value */
14306 NULL, /* Language specific skip_trampoline */
14307 NULL, /* name_of_this */
14308 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
14309 basic_lookup_transparent_type, /* lookup_transparent_type */
14310 ada_la_decode, /* Language specific symbol demangler */
14311 ada_sniff_from_mangled_name,
14312 NULL, /* Language specific
14313 class_name_from_physname */
14314 ada_op_print_tab, /* expression operators for printing */
14315 0, /* c-style arrays */
14316 1, /* String lower bound */
14317 ada_get_gdb_completer_word_break_characters,
14318 ada_collect_symbol_completion_matches,
14319 ada_language_arch_info,
14320 ada_print_array_index,
14321 default_pass_by_reference,
14322 c_get_string,
14323 c_watch_location_expression,
14324 ada_get_symbol_name_matcher, /* la_get_symbol_name_matcher */
14325 ada_iterate_over_symbols,
14326 default_search_name_hash,
14327 &ada_varobj_ops,
14328 NULL,
14329 NULL,
14330 LANG_MAGIC
14331 };
14332
14333 /* Command-list for the "set/show ada" prefix command. */
14334 static struct cmd_list_element *set_ada_list;
14335 static struct cmd_list_element *show_ada_list;
14336
14337 /* Implement the "set ada" prefix command. */
14338
14339 static void
14340 set_ada_command (const char *arg, int from_tty)
14341 {
14342 printf_unfiltered (_(\
14343 "\"set ada\" must be followed by the name of a setting.\n"));
14344 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
14345 }
14346
14347 /* Implement the "show ada" prefix command. */
14348
14349 static void
14350 show_ada_command (const char *args, int from_tty)
14351 {
14352 cmd_show_list (show_ada_list, from_tty, "");
14353 }
14354
14355 static void
14356 initialize_ada_catchpoint_ops (void)
14357 {
14358 struct breakpoint_ops *ops;
14359
14360 initialize_breakpoint_ops ();
14361
14362 ops = &catch_exception_breakpoint_ops;
14363 *ops = bkpt_breakpoint_ops;
14364 ops->allocate_location = allocate_location_catch_exception;
14365 ops->re_set = re_set_catch_exception;
14366 ops->check_status = check_status_catch_exception;
14367 ops->print_it = print_it_catch_exception;
14368 ops->print_one = print_one_catch_exception;
14369 ops->print_mention = print_mention_catch_exception;
14370 ops->print_recreate = print_recreate_catch_exception;
14371
14372 ops = &catch_exception_unhandled_breakpoint_ops;
14373 *ops = bkpt_breakpoint_ops;
14374 ops->allocate_location = allocate_location_catch_exception_unhandled;
14375 ops->re_set = re_set_catch_exception_unhandled;
14376 ops->check_status = check_status_catch_exception_unhandled;
14377 ops->print_it = print_it_catch_exception_unhandled;
14378 ops->print_one = print_one_catch_exception_unhandled;
14379 ops->print_mention = print_mention_catch_exception_unhandled;
14380 ops->print_recreate = print_recreate_catch_exception_unhandled;
14381
14382 ops = &catch_assert_breakpoint_ops;
14383 *ops = bkpt_breakpoint_ops;
14384 ops->allocate_location = allocate_location_catch_assert;
14385 ops->re_set = re_set_catch_assert;
14386 ops->check_status = check_status_catch_assert;
14387 ops->print_it = print_it_catch_assert;
14388 ops->print_one = print_one_catch_assert;
14389 ops->print_mention = print_mention_catch_assert;
14390 ops->print_recreate = print_recreate_catch_assert;
14391 }
14392
14393 /* This module's 'new_objfile' observer. */
14394
14395 static void
14396 ada_new_objfile_observer (struct objfile *objfile)
14397 {
14398 ada_clear_symbol_cache ();
14399 }
14400
14401 /* This module's 'free_objfile' observer. */
14402
14403 static void
14404 ada_free_objfile_observer (struct objfile *objfile)
14405 {
14406 ada_clear_symbol_cache ();
14407 }
14408
14409 void
14410 _initialize_ada_language (void)
14411 {
14412 initialize_ada_catchpoint_ops ();
14413
14414 add_prefix_cmd ("ada", no_class, set_ada_command,
14415 _("Prefix command for changing Ada-specfic settings"),
14416 &set_ada_list, "set ada ", 0, &setlist);
14417
14418 add_prefix_cmd ("ada", no_class, show_ada_command,
14419 _("Generic command for showing Ada-specific settings."),
14420 &show_ada_list, "show ada ", 0, &showlist);
14421
14422 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14423 &trust_pad_over_xvs, _("\
14424 Enable or disable an optimization trusting PAD types over XVS types"), _("\
14425 Show whether an optimization trusting PAD types over XVS types is activated"),
14426 _("\
14427 This is related to the encoding used by the GNAT compiler. The debugger\n\
14428 should normally trust the contents of PAD types, but certain older versions\n\
14429 of GNAT have a bug that sometimes causes the information in the PAD type\n\
14430 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14431 work around this bug. It is always safe to turn this option \"off\", but\n\
14432 this incurs a slight performance penalty, so it is recommended to NOT change\n\
14433 this option to \"off\" unless necessary."),
14434 NULL, NULL, &set_ada_list, &show_ada_list);
14435
14436 add_setshow_boolean_cmd ("print-signatures", class_vars,
14437 &print_signatures, _("\
14438 Enable or disable the output of formal and return types for functions in the \
14439 overloads selection menu"), _("\
14440 Show whether the output of formal and return types for functions in the \
14441 overloads selection menu is activated"),
14442 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14443
14444 add_catch_command ("exception", _("\
14445 Catch Ada exceptions, when raised.\n\
14446 With an argument, catch only exceptions with the given name."),
14447 catch_ada_exception_command,
14448 NULL,
14449 CATCH_PERMANENT,
14450 CATCH_TEMPORARY);
14451 add_catch_command ("assert", _("\
14452 Catch failed Ada assertions, when raised.\n\
14453 With an argument, catch only exceptions with the given name."),
14454 catch_assert_command,
14455 NULL,
14456 CATCH_PERMANENT,
14457 CATCH_TEMPORARY);
14458
14459 varsize_limit = 65536;
14460
14461 add_info ("exceptions", info_exceptions_command,
14462 _("\
14463 List all Ada exception names.\n\
14464 If a regular expression is passed as an argument, only those matching\n\
14465 the regular expression are listed."));
14466
14467 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14468 _("Set Ada maintenance-related variables."),
14469 &maint_set_ada_cmdlist, "maintenance set ada ",
14470 0/*allow-unknown*/, &maintenance_set_cmdlist);
14471
14472 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14473 _("Show Ada maintenance-related variables"),
14474 &maint_show_ada_cmdlist, "maintenance show ada ",
14475 0/*allow-unknown*/, &maintenance_show_cmdlist);
14476
14477 add_setshow_boolean_cmd
14478 ("ignore-descriptive-types", class_maintenance,
14479 &ada_ignore_descriptive_types_p,
14480 _("Set whether descriptive types generated by GNAT should be ignored."),
14481 _("Show whether descriptive types generated by GNAT should be ignored."),
14482 _("\
14483 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14484 DWARF attribute."),
14485 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14486
14487 decoded_names_store = htab_create_alloc
14488 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
14489 NULL, xcalloc, xfree);
14490
14491 /* The ada-lang observers. */
14492 observer_attach_new_objfile (ada_new_objfile_observer);
14493 observer_attach_free_objfile (ada_free_objfile_observer);
14494 observer_attach_inferior_exit (ada_inferior_exit);
14495
14496 /* Setup various context-specific data. */
14497 ada_inferior_data
14498 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
14499 ada_pspace_data_handle
14500 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
14501 }