* ada-lang.c (ada_value_struct_elt, to_fixed_array_type)
[binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger. Copyright (C)
2
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21
22 #include "defs.h"
23 #include <stdio.h>
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include <stdarg.h>
27 #include "demangle.h"
28 #include "gdb_regex.h"
29 #include "frame.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "gdbcmd.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35 #include "language.h"
36 #include "c-lang.h"
37 #include "inferior.h"
38 #include "symfile.h"
39 #include "objfiles.h"
40 #include "breakpoint.h"
41 #include "gdbcore.h"
42 #include "hashtab.h"
43 #include "gdb_obstack.h"
44 #include "ada-lang.h"
45 #include "completer.h"
46 #include "gdb_stat.h"
47 #ifdef UI_OUT
48 #include "ui-out.h"
49 #endif
50 #include "block.h"
51 #include "infcall.h"
52 #include "dictionary.h"
53 #include "exceptions.h"
54 #include "annotate.h"
55 #include "valprint.h"
56 #include "source.h"
57 #include "observer.h"
58
59 #ifndef ADA_RETAIN_DOTS
60 #define ADA_RETAIN_DOTS 0
61 #endif
62
63 /* Define whether or not the C operator '/' truncates towards zero for
64 differently signed operands (truncation direction is undefined in C).
65 Copied from valarith.c. */
66
67 #ifndef TRUNCATION_TOWARDS_ZERO
68 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
69 #endif
70
71
72 static void extract_string (CORE_ADDR addr, char *buf);
73
74 static void modify_general_field (char *, LONGEST, int, int);
75
76 static struct type *desc_base_type (struct type *);
77
78 static struct type *desc_bounds_type (struct type *);
79
80 static struct value *desc_bounds (struct value *);
81
82 static int fat_pntr_bounds_bitpos (struct type *);
83
84 static int fat_pntr_bounds_bitsize (struct type *);
85
86 static struct type *desc_data_type (struct type *);
87
88 static struct value *desc_data (struct value *);
89
90 static int fat_pntr_data_bitpos (struct type *);
91
92 static int fat_pntr_data_bitsize (struct type *);
93
94 static struct value *desc_one_bound (struct value *, int, int);
95
96 static int desc_bound_bitpos (struct type *, int, int);
97
98 static int desc_bound_bitsize (struct type *, int, int);
99
100 static struct type *desc_index_type (struct type *, int);
101
102 static int desc_arity (struct type *);
103
104 static int ada_type_match (struct type *, struct type *, int);
105
106 static int ada_args_match (struct symbol *, struct value **, int);
107
108 static struct value *ensure_lval (struct value *, CORE_ADDR *);
109
110 static struct value *convert_actual (struct value *, struct type *,
111 CORE_ADDR *);
112
113 static struct value *make_array_descriptor (struct type *, struct value *,
114 CORE_ADDR *);
115
116 static void ada_add_block_symbols (struct obstack *,
117 struct block *, const char *,
118 domain_enum, struct objfile *,
119 struct symtab *, int);
120
121 static int is_nonfunction (struct ada_symbol_info *, int);
122
123 static void add_defn_to_vec (struct obstack *, struct symbol *,
124 struct block *, struct symtab *);
125
126 static int num_defns_collected (struct obstack *);
127
128 static struct ada_symbol_info *defns_collected (struct obstack *, int);
129
130 static struct partial_symbol *ada_lookup_partial_symbol (struct partial_symtab
131 *, const char *, int,
132 domain_enum, int);
133
134 static struct symtab *symtab_for_sym (struct symbol *);
135
136 static struct value *resolve_subexp (struct expression **, int *, int,
137 struct type *);
138
139 static void replace_operator_with_call (struct expression **, int, int, int,
140 struct symbol *, struct block *);
141
142 static int possible_user_operator_p (enum exp_opcode, struct value **);
143
144 static char *ada_op_name (enum exp_opcode);
145
146 static const char *ada_decoded_op_name (enum exp_opcode);
147
148 static int numeric_type_p (struct type *);
149
150 static int integer_type_p (struct type *);
151
152 static int scalar_type_p (struct type *);
153
154 static int discrete_type_p (struct type *);
155
156 static enum ada_renaming_category parse_old_style_renaming (struct type *,
157 const char **,
158 int *,
159 const char **);
160
161 static struct symbol *find_old_style_renaming_symbol (const char *,
162 struct block *);
163
164 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
165 int, int, int *);
166
167 static struct value *evaluate_subexp (struct type *, struct expression *,
168 int *, enum noside);
169
170 static struct value *evaluate_subexp_type (struct expression *, int *);
171
172 static int is_dynamic_field (struct type *, int);
173
174 static struct type *to_fixed_variant_branch_type (struct type *,
175 const gdb_byte *,
176 CORE_ADDR, struct value *);
177
178 static struct type *to_fixed_array_type (struct type *, struct value *, int);
179
180 static struct type *to_fixed_range_type (char *, struct value *,
181 struct objfile *);
182
183 static struct type *to_static_fixed_type (struct type *);
184
185 static struct value *unwrap_value (struct value *);
186
187 static struct type *packed_array_type (struct type *, long *);
188
189 static struct type *decode_packed_array_type (struct type *);
190
191 static struct value *decode_packed_array (struct value *);
192
193 static struct value *value_subscript_packed (struct value *, int,
194 struct value **);
195
196 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int);
197
198 static struct value *coerce_unspec_val_to_type (struct value *,
199 struct type *);
200
201 static struct value *get_var_value (char *, char *);
202
203 static int lesseq_defined_than (struct symbol *, struct symbol *);
204
205 static int equiv_types (struct type *, struct type *);
206
207 static int is_name_suffix (const char *);
208
209 static int wild_match (const char *, int, const char *);
210
211 static struct value *ada_coerce_ref (struct value *);
212
213 static LONGEST pos_atr (struct value *);
214
215 static struct value *value_pos_atr (struct value *);
216
217 static struct value *value_val_atr (struct type *, struct value *);
218
219 static struct symbol *standard_lookup (const char *, const struct block *,
220 domain_enum);
221
222 static struct value *ada_search_struct_field (char *, struct value *, int,
223 struct type *);
224
225 static struct value *ada_value_primitive_field (struct value *, int, int,
226 struct type *);
227
228 static int find_struct_field (char *, struct type *, int,
229 struct type **, int *, int *, int *, int *);
230
231 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
232 struct value *);
233
234 static struct value *ada_to_fixed_value (struct value *);
235
236 static int ada_resolve_function (struct ada_symbol_info *, int,
237 struct value **, int, const char *,
238 struct type *);
239
240 static struct value *ada_coerce_to_simple_array (struct value *);
241
242 static int ada_is_direct_array_type (struct type *);
243
244 static void ada_language_arch_info (struct gdbarch *,
245 struct language_arch_info *);
246
247 static void check_size (const struct type *);
248
249 static struct value *ada_index_struct_field (int, struct value *, int,
250 struct type *);
251
252 static struct value *assign_aggregate (struct value *, struct value *,
253 struct expression *, int *, enum noside);
254
255 static void aggregate_assign_from_choices (struct value *, struct value *,
256 struct expression *,
257 int *, LONGEST *, int *,
258 int, LONGEST, LONGEST);
259
260 static void aggregate_assign_positional (struct value *, struct value *,
261 struct expression *,
262 int *, LONGEST *, int *, int,
263 LONGEST, LONGEST);
264
265
266 static void aggregate_assign_others (struct value *, struct value *,
267 struct expression *,
268 int *, LONGEST *, int, LONGEST, LONGEST);
269
270
271 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
272
273
274 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
275 int *, enum noside);
276
277 static void ada_forward_operator_length (struct expression *, int, int *,
278 int *);
279 \f
280
281
282 /* Maximum-sized dynamic type. */
283 static unsigned int varsize_limit;
284
285 /* FIXME: brobecker/2003-09-17: No longer a const because it is
286 returned by a function that does not return a const char *. */
287 static char *ada_completer_word_break_characters =
288 #ifdef VMS
289 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
290 #else
291 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
292 #endif
293
294 /* The name of the symbol to use to get the name of the main subprogram. */
295 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
296 = "__gnat_ada_main_program_name";
297
298 /* Limit on the number of warnings to raise per expression evaluation. */
299 static int warning_limit = 2;
300
301 /* Number of warning messages issued; reset to 0 by cleanups after
302 expression evaluation. */
303 static int warnings_issued = 0;
304
305 static const char *known_runtime_file_name_patterns[] = {
306 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
307 };
308
309 static const char *known_auxiliary_function_name_patterns[] = {
310 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
311 };
312
313 /* Space for allocating results of ada_lookup_symbol_list. */
314 static struct obstack symbol_list_obstack;
315
316 /* Utilities */
317
318
319 static char *
320 ada_get_gdb_completer_word_break_characters (void)
321 {
322 return ada_completer_word_break_characters;
323 }
324
325 /* Print an array element index using the Ada syntax. */
326
327 static void
328 ada_print_array_index (struct value *index_value, struct ui_file *stream,
329 int format, enum val_prettyprint pretty)
330 {
331 LA_VALUE_PRINT (index_value, stream, format, pretty);
332 fprintf_filtered (stream, " => ");
333 }
334
335 /* Read the string located at ADDR from the inferior and store the
336 result into BUF. */
337
338 static void
339 extract_string (CORE_ADDR addr, char *buf)
340 {
341 int char_index = 0;
342
343 /* Loop, reading one byte at a time, until we reach the '\000'
344 end-of-string marker. */
345 do
346 {
347 target_read_memory (addr + char_index * sizeof (char),
348 buf + char_index * sizeof (char), sizeof (char));
349 char_index++;
350 }
351 while (buf[char_index - 1] != '\000');
352 }
353
354 /* Assuming VECT points to an array of *SIZE objects of size
355 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
356 updating *SIZE as necessary and returning the (new) array. */
357
358 void *
359 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
360 {
361 if (*size < min_size)
362 {
363 *size *= 2;
364 if (*size < min_size)
365 *size = min_size;
366 vect = xrealloc (vect, *size * element_size);
367 }
368 return vect;
369 }
370
371 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
372 suffix of FIELD_NAME beginning "___". */
373
374 static int
375 field_name_match (const char *field_name, const char *target)
376 {
377 int len = strlen (target);
378 return
379 (strncmp (field_name, target, len) == 0
380 && (field_name[len] == '\0'
381 || (strncmp (field_name + len, "___", 3) == 0
382 && strcmp (field_name + strlen (field_name) - 6,
383 "___XVN") != 0)));
384 }
385
386
387 /* Assuming TYPE is a TYPE_CODE_STRUCT, find the field whose name matches
388 FIELD_NAME, and return its index. This function also handles fields
389 whose name have ___ suffixes because the compiler sometimes alters
390 their name by adding such a suffix to represent fields with certain
391 constraints. If the field could not be found, return a negative
392 number if MAYBE_MISSING is set. Otherwise raise an error. */
393
394 int
395 ada_get_field_index (const struct type *type, const char *field_name,
396 int maybe_missing)
397 {
398 int fieldno;
399 for (fieldno = 0; fieldno < TYPE_NFIELDS (type); fieldno++)
400 if (field_name_match (TYPE_FIELD_NAME (type, fieldno), field_name))
401 return fieldno;
402
403 if (!maybe_missing)
404 error (_("Unable to find field %s in struct %s. Aborting"),
405 field_name, TYPE_NAME (type));
406
407 return -1;
408 }
409
410 /* The length of the prefix of NAME prior to any "___" suffix. */
411
412 int
413 ada_name_prefix_len (const char *name)
414 {
415 if (name == NULL)
416 return 0;
417 else
418 {
419 const char *p = strstr (name, "___");
420 if (p == NULL)
421 return strlen (name);
422 else
423 return p - name;
424 }
425 }
426
427 /* Return non-zero if SUFFIX is a suffix of STR.
428 Return zero if STR is null. */
429
430 static int
431 is_suffix (const char *str, const char *suffix)
432 {
433 int len1, len2;
434 if (str == NULL)
435 return 0;
436 len1 = strlen (str);
437 len2 = strlen (suffix);
438 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
439 }
440
441 /* Create a value of type TYPE whose contents come from VALADDR, if it
442 is non-null, and whose memory address (in the inferior) is
443 ADDRESS. */
444
445 struct value *
446 value_from_contents_and_address (struct type *type,
447 const gdb_byte *valaddr,
448 CORE_ADDR address)
449 {
450 struct value *v = allocate_value (type);
451 if (valaddr == NULL)
452 set_value_lazy (v, 1);
453 else
454 memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type));
455 VALUE_ADDRESS (v) = address;
456 if (address != 0)
457 VALUE_LVAL (v) = lval_memory;
458 return v;
459 }
460
461 /* The contents of value VAL, treated as a value of type TYPE. The
462 result is an lval in memory if VAL is. */
463
464 static struct value *
465 coerce_unspec_val_to_type (struct value *val, struct type *type)
466 {
467 type = ada_check_typedef (type);
468 if (value_type (val) == type)
469 return val;
470 else
471 {
472 struct value *result;
473
474 /* Make sure that the object size is not unreasonable before
475 trying to allocate some memory for it. */
476 check_size (type);
477
478 result = allocate_value (type);
479 VALUE_LVAL (result) = VALUE_LVAL (val);
480 set_value_bitsize (result, value_bitsize (val));
481 set_value_bitpos (result, value_bitpos (val));
482 VALUE_ADDRESS (result) = VALUE_ADDRESS (val) + value_offset (val);
483 if (value_lazy (val)
484 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
485 set_value_lazy (result, 1);
486 else
487 memcpy (value_contents_raw (result), value_contents (val),
488 TYPE_LENGTH (type));
489 return result;
490 }
491 }
492
493 static const gdb_byte *
494 cond_offset_host (const gdb_byte *valaddr, long offset)
495 {
496 if (valaddr == NULL)
497 return NULL;
498 else
499 return valaddr + offset;
500 }
501
502 static CORE_ADDR
503 cond_offset_target (CORE_ADDR address, long offset)
504 {
505 if (address == 0)
506 return 0;
507 else
508 return address + offset;
509 }
510
511 /* Issue a warning (as for the definition of warning in utils.c, but
512 with exactly one argument rather than ...), unless the limit on the
513 number of warnings has passed during the evaluation of the current
514 expression. */
515
516 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
517 provided by "complaint". */
518 static void lim_warning (const char *format, ...) ATTR_FORMAT (printf, 1, 2);
519
520 static void
521 lim_warning (const char *format, ...)
522 {
523 va_list args;
524 va_start (args, format);
525
526 warnings_issued += 1;
527 if (warnings_issued <= warning_limit)
528 vwarning (format, args);
529
530 va_end (args);
531 }
532
533 /* Issue an error if the size of an object of type T is unreasonable,
534 i.e. if it would be a bad idea to allocate a value of this type in
535 GDB. */
536
537 static void
538 check_size (const struct type *type)
539 {
540 if (TYPE_LENGTH (type) > varsize_limit)
541 error (_("object size is larger than varsize-limit"));
542 }
543
544
545 /* Note: would have used MAX_OF_TYPE and MIN_OF_TYPE macros from
546 gdbtypes.h, but some of the necessary definitions in that file
547 seem to have gone missing. */
548
549 /* Maximum value of a SIZE-byte signed integer type. */
550 static LONGEST
551 max_of_size (int size)
552 {
553 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
554 return top_bit | (top_bit - 1);
555 }
556
557 /* Minimum value of a SIZE-byte signed integer type. */
558 static LONGEST
559 min_of_size (int size)
560 {
561 return -max_of_size (size) - 1;
562 }
563
564 /* Maximum value of a SIZE-byte unsigned integer type. */
565 static ULONGEST
566 umax_of_size (int size)
567 {
568 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
569 return top_bit | (top_bit - 1);
570 }
571
572 /* Maximum value of integral type T, as a signed quantity. */
573 static LONGEST
574 max_of_type (struct type *t)
575 {
576 if (TYPE_UNSIGNED (t))
577 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
578 else
579 return max_of_size (TYPE_LENGTH (t));
580 }
581
582 /* Minimum value of integral type T, as a signed quantity. */
583 static LONGEST
584 min_of_type (struct type *t)
585 {
586 if (TYPE_UNSIGNED (t))
587 return 0;
588 else
589 return min_of_size (TYPE_LENGTH (t));
590 }
591
592 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
593 static struct value *
594 discrete_type_high_bound (struct type *type)
595 {
596 switch (TYPE_CODE (type))
597 {
598 case TYPE_CODE_RANGE:
599 return value_from_longest (TYPE_TARGET_TYPE (type),
600 TYPE_HIGH_BOUND (type));
601 case TYPE_CODE_ENUM:
602 return
603 value_from_longest (type,
604 TYPE_FIELD_BITPOS (type,
605 TYPE_NFIELDS (type) - 1));
606 case TYPE_CODE_INT:
607 return value_from_longest (type, max_of_type (type));
608 default:
609 error (_("Unexpected type in discrete_type_high_bound."));
610 }
611 }
612
613 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
614 static struct value *
615 discrete_type_low_bound (struct type *type)
616 {
617 switch (TYPE_CODE (type))
618 {
619 case TYPE_CODE_RANGE:
620 return value_from_longest (TYPE_TARGET_TYPE (type),
621 TYPE_LOW_BOUND (type));
622 case TYPE_CODE_ENUM:
623 return value_from_longest (type, TYPE_FIELD_BITPOS (type, 0));
624 case TYPE_CODE_INT:
625 return value_from_longest (type, min_of_type (type));
626 default:
627 error (_("Unexpected type in discrete_type_low_bound."));
628 }
629 }
630
631 /* The identity on non-range types. For range types, the underlying
632 non-range scalar type. */
633
634 static struct type *
635 base_type (struct type *type)
636 {
637 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
638 {
639 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
640 return type;
641 type = TYPE_TARGET_TYPE (type);
642 }
643 return type;
644 }
645 \f
646
647 /* Language Selection */
648
649 /* If the main program is in Ada, return language_ada, otherwise return LANG
650 (the main program is in Ada iif the adainit symbol is found).
651
652 MAIN_PST is not used. */
653
654 enum language
655 ada_update_initial_language (enum language lang,
656 struct partial_symtab *main_pst)
657 {
658 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
659 (struct objfile *) NULL) != NULL)
660 return language_ada;
661
662 return lang;
663 }
664
665 /* If the main procedure is written in Ada, then return its name.
666 The result is good until the next call. Return NULL if the main
667 procedure doesn't appear to be in Ada. */
668
669 char *
670 ada_main_name (void)
671 {
672 struct minimal_symbol *msym;
673 CORE_ADDR main_program_name_addr;
674 static char main_program_name[1024];
675
676 /* For Ada, the name of the main procedure is stored in a specific
677 string constant, generated by the binder. Look for that symbol,
678 extract its address, and then read that string. If we didn't find
679 that string, then most probably the main procedure is not written
680 in Ada. */
681 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
682
683 if (msym != NULL)
684 {
685 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
686 if (main_program_name_addr == 0)
687 error (_("Invalid address for Ada main program name."));
688
689 extract_string (main_program_name_addr, main_program_name);
690 return main_program_name;
691 }
692
693 /* The main procedure doesn't seem to be in Ada. */
694 return NULL;
695 }
696 \f
697 /* Symbols */
698
699 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
700 of NULLs. */
701
702 const struct ada_opname_map ada_opname_table[] = {
703 {"Oadd", "\"+\"", BINOP_ADD},
704 {"Osubtract", "\"-\"", BINOP_SUB},
705 {"Omultiply", "\"*\"", BINOP_MUL},
706 {"Odivide", "\"/\"", BINOP_DIV},
707 {"Omod", "\"mod\"", BINOP_MOD},
708 {"Orem", "\"rem\"", BINOP_REM},
709 {"Oexpon", "\"**\"", BINOP_EXP},
710 {"Olt", "\"<\"", BINOP_LESS},
711 {"Ole", "\"<=\"", BINOP_LEQ},
712 {"Ogt", "\">\"", BINOP_GTR},
713 {"Oge", "\">=\"", BINOP_GEQ},
714 {"Oeq", "\"=\"", BINOP_EQUAL},
715 {"One", "\"/=\"", BINOP_NOTEQUAL},
716 {"Oand", "\"and\"", BINOP_BITWISE_AND},
717 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
718 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
719 {"Oconcat", "\"&\"", BINOP_CONCAT},
720 {"Oabs", "\"abs\"", UNOP_ABS},
721 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
722 {"Oadd", "\"+\"", UNOP_PLUS},
723 {"Osubtract", "\"-\"", UNOP_NEG},
724 {NULL, NULL}
725 };
726
727 /* Return non-zero if STR should be suppressed in info listings. */
728
729 static int
730 is_suppressed_name (const char *str)
731 {
732 if (strncmp (str, "_ada_", 5) == 0)
733 str += 5;
734 if (str[0] == '_' || str[0] == '\000')
735 return 1;
736 else
737 {
738 const char *p;
739 const char *suffix = strstr (str, "___");
740 if (suffix != NULL && suffix[3] != 'X')
741 return 1;
742 if (suffix == NULL)
743 suffix = str + strlen (str);
744 for (p = suffix - 1; p != str; p -= 1)
745 if (isupper (*p))
746 {
747 int i;
748 if (p[0] == 'X' && p[-1] != '_')
749 goto OK;
750 if (*p != 'O')
751 return 1;
752 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
753 if (strncmp (ada_opname_table[i].encoded, p,
754 strlen (ada_opname_table[i].encoded)) == 0)
755 goto OK;
756 return 1;
757 OK:;
758 }
759 return 0;
760 }
761 }
762
763 /* The "encoded" form of DECODED, according to GNAT conventions.
764 The result is valid until the next call to ada_encode. */
765
766 char *
767 ada_encode (const char *decoded)
768 {
769 static char *encoding_buffer = NULL;
770 static size_t encoding_buffer_size = 0;
771 const char *p;
772 int k;
773
774 if (decoded == NULL)
775 return NULL;
776
777 GROW_VECT (encoding_buffer, encoding_buffer_size,
778 2 * strlen (decoded) + 10);
779
780 k = 0;
781 for (p = decoded; *p != '\0'; p += 1)
782 {
783 if (!ADA_RETAIN_DOTS && *p == '.')
784 {
785 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
786 k += 2;
787 }
788 else if (*p == '"')
789 {
790 const struct ada_opname_map *mapping;
791
792 for (mapping = ada_opname_table;
793 mapping->encoded != NULL
794 && strncmp (mapping->decoded, p,
795 strlen (mapping->decoded)) != 0; mapping += 1)
796 ;
797 if (mapping->encoded == NULL)
798 error (_("invalid Ada operator name: %s"), p);
799 strcpy (encoding_buffer + k, mapping->encoded);
800 k += strlen (mapping->encoded);
801 break;
802 }
803 else
804 {
805 encoding_buffer[k] = *p;
806 k += 1;
807 }
808 }
809
810 encoding_buffer[k] = '\0';
811 return encoding_buffer;
812 }
813
814 /* Return NAME folded to lower case, or, if surrounded by single
815 quotes, unfolded, but with the quotes stripped away. Result good
816 to next call. */
817
818 char *
819 ada_fold_name (const char *name)
820 {
821 static char *fold_buffer = NULL;
822 static size_t fold_buffer_size = 0;
823
824 int len = strlen (name);
825 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
826
827 if (name[0] == '\'')
828 {
829 strncpy (fold_buffer, name + 1, len - 2);
830 fold_buffer[len - 2] = '\000';
831 }
832 else
833 {
834 int i;
835 for (i = 0; i <= len; i += 1)
836 fold_buffer[i] = tolower (name[i]);
837 }
838
839 return fold_buffer;
840 }
841
842 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
843
844 static int
845 is_lower_alphanum (const char c)
846 {
847 return (isdigit (c) || (isalpha (c) && islower (c)));
848 }
849
850 /* Remove either of these suffixes:
851 . .{DIGIT}+
852 . ${DIGIT}+
853 . ___{DIGIT}+
854 . __{DIGIT}+.
855 These are suffixes introduced by the compiler for entities such as
856 nested subprogram for instance, in order to avoid name clashes.
857 They do not serve any purpose for the debugger. */
858
859 static void
860 ada_remove_trailing_digits (const char *encoded, int *len)
861 {
862 if (*len > 1 && isdigit (encoded[*len - 1]))
863 {
864 int i = *len - 2;
865 while (i > 0 && isdigit (encoded[i]))
866 i--;
867 if (i >= 0 && encoded[i] == '.')
868 *len = i;
869 else if (i >= 0 && encoded[i] == '$')
870 *len = i;
871 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
872 *len = i - 2;
873 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
874 *len = i - 1;
875 }
876 }
877
878 /* Remove the suffix introduced by the compiler for protected object
879 subprograms. */
880
881 static void
882 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
883 {
884 /* Remove trailing N. */
885
886 /* Protected entry subprograms are broken into two
887 separate subprograms: The first one is unprotected, and has
888 a 'N' suffix; the second is the protected version, and has
889 the 'P' suffix. The second calls the first one after handling
890 the protection. Since the P subprograms are internally generated,
891 we leave these names undecoded, giving the user a clue that this
892 entity is internal. */
893
894 if (*len > 1
895 && encoded[*len - 1] == 'N'
896 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
897 *len = *len - 1;
898 }
899
900 /* If ENCODED follows the GNAT entity encoding conventions, then return
901 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
902 replaced by ENCODED.
903
904 The resulting string is valid until the next call of ada_decode.
905 If the string is unchanged by decoding, the original string pointer
906 is returned. */
907
908 const char *
909 ada_decode (const char *encoded)
910 {
911 int i, j;
912 int len0;
913 const char *p;
914 char *decoded;
915 int at_start_name;
916 static char *decoding_buffer = NULL;
917 static size_t decoding_buffer_size = 0;
918
919 /* The name of the Ada main procedure starts with "_ada_".
920 This prefix is not part of the decoded name, so skip this part
921 if we see this prefix. */
922 if (strncmp (encoded, "_ada_", 5) == 0)
923 encoded += 5;
924
925 /* If the name starts with '_', then it is not a properly encoded
926 name, so do not attempt to decode it. Similarly, if the name
927 starts with '<', the name should not be decoded. */
928 if (encoded[0] == '_' || encoded[0] == '<')
929 goto Suppress;
930
931 len0 = strlen (encoded);
932
933 ada_remove_trailing_digits (encoded, &len0);
934 ada_remove_po_subprogram_suffix (encoded, &len0);
935
936 /* Remove the ___X.* suffix if present. Do not forget to verify that
937 the suffix is located before the current "end" of ENCODED. We want
938 to avoid re-matching parts of ENCODED that have previously been
939 marked as discarded (by decrementing LEN0). */
940 p = strstr (encoded, "___");
941 if (p != NULL && p - encoded < len0 - 3)
942 {
943 if (p[3] == 'X')
944 len0 = p - encoded;
945 else
946 goto Suppress;
947 }
948
949 /* Remove any trailing TKB suffix. It tells us that this symbol
950 is for the body of a task, but that information does not actually
951 appear in the decoded name. */
952
953 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
954 len0 -= 3;
955
956 /* Remove trailing "B" suffixes. */
957 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
958
959 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
960 len0 -= 1;
961
962 /* Make decoded big enough for possible expansion by operator name. */
963
964 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
965 decoded = decoding_buffer;
966
967 /* Remove trailing __{digit}+ or trailing ${digit}+. */
968
969 if (len0 > 1 && isdigit (encoded[len0 - 1]))
970 {
971 i = len0 - 2;
972 while ((i >= 0 && isdigit (encoded[i]))
973 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
974 i -= 1;
975 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
976 len0 = i - 1;
977 else if (encoded[i] == '$')
978 len0 = i;
979 }
980
981 /* The first few characters that are not alphabetic are not part
982 of any encoding we use, so we can copy them over verbatim. */
983
984 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
985 decoded[j] = encoded[i];
986
987 at_start_name = 1;
988 while (i < len0)
989 {
990 /* Is this a symbol function? */
991 if (at_start_name && encoded[i] == 'O')
992 {
993 int k;
994 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
995 {
996 int op_len = strlen (ada_opname_table[k].encoded);
997 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
998 op_len - 1) == 0)
999 && !isalnum (encoded[i + op_len]))
1000 {
1001 strcpy (decoded + j, ada_opname_table[k].decoded);
1002 at_start_name = 0;
1003 i += op_len;
1004 j += strlen (ada_opname_table[k].decoded);
1005 break;
1006 }
1007 }
1008 if (ada_opname_table[k].encoded != NULL)
1009 continue;
1010 }
1011 at_start_name = 0;
1012
1013 /* Replace "TK__" with "__", which will eventually be translated
1014 into "." (just below). */
1015
1016 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1017 i += 2;
1018
1019 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1020 be translated into "." (just below). These are internal names
1021 generated for anonymous blocks inside which our symbol is nested. */
1022
1023 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1024 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1025 && isdigit (encoded [i+4]))
1026 {
1027 int k = i + 5;
1028
1029 while (k < len0 && isdigit (encoded[k]))
1030 k++; /* Skip any extra digit. */
1031
1032 /* Double-check that the "__B_{DIGITS}+" sequence we found
1033 is indeed followed by "__". */
1034 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1035 i = k;
1036 }
1037
1038 /* Remove _E{DIGITS}+[sb] */
1039
1040 /* Just as for protected object subprograms, there are 2 categories
1041 of subprograms created by the compiler for each entry. The first
1042 one implements the actual entry code, and has a suffix following
1043 the convention above; the second one implements the barrier and
1044 uses the same convention as above, except that the 'E' is replaced
1045 by a 'B'.
1046
1047 Just as above, we do not decode the name of barrier functions
1048 to give the user a clue that the code he is debugging has been
1049 internally generated. */
1050
1051 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1052 && isdigit (encoded[i+2]))
1053 {
1054 int k = i + 3;
1055
1056 while (k < len0 && isdigit (encoded[k]))
1057 k++;
1058
1059 if (k < len0
1060 && (encoded[k] == 'b' || encoded[k] == 's'))
1061 {
1062 k++;
1063 /* Just as an extra precaution, make sure that if this
1064 suffix is followed by anything else, it is a '_'.
1065 Otherwise, we matched this sequence by accident. */
1066 if (k == len0
1067 || (k < len0 && encoded[k] == '_'))
1068 i = k;
1069 }
1070 }
1071
1072 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1073 the GNAT front-end in protected object subprograms. */
1074
1075 if (i < len0 + 3
1076 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1077 {
1078 /* Backtrack a bit up until we reach either the begining of
1079 the encoded name, or "__". Make sure that we only find
1080 digits or lowercase characters. */
1081 const char *ptr = encoded + i - 1;
1082
1083 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1084 ptr--;
1085 if (ptr < encoded
1086 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1087 i++;
1088 }
1089
1090 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1091 {
1092 /* This is a X[bn]* sequence not separated from the previous
1093 part of the name with a non-alpha-numeric character (in other
1094 words, immediately following an alpha-numeric character), then
1095 verify that it is placed at the end of the encoded name. If
1096 not, then the encoding is not valid and we should abort the
1097 decoding. Otherwise, just skip it, it is used in body-nested
1098 package names. */
1099 do
1100 i += 1;
1101 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1102 if (i < len0)
1103 goto Suppress;
1104 }
1105 else if (!ADA_RETAIN_DOTS
1106 && i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1107 {
1108 /* Replace '__' by '.'. */
1109 decoded[j] = '.';
1110 at_start_name = 1;
1111 i += 2;
1112 j += 1;
1113 }
1114 else
1115 {
1116 /* It's a character part of the decoded name, so just copy it
1117 over. */
1118 decoded[j] = encoded[i];
1119 i += 1;
1120 j += 1;
1121 }
1122 }
1123 decoded[j] = '\000';
1124
1125 /* Decoded names should never contain any uppercase character.
1126 Double-check this, and abort the decoding if we find one. */
1127
1128 for (i = 0; decoded[i] != '\0'; i += 1)
1129 if (isupper (decoded[i]) || decoded[i] == ' ')
1130 goto Suppress;
1131
1132 if (strcmp (decoded, encoded) == 0)
1133 return encoded;
1134 else
1135 return decoded;
1136
1137 Suppress:
1138 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1139 decoded = decoding_buffer;
1140 if (encoded[0] == '<')
1141 strcpy (decoded, encoded);
1142 else
1143 sprintf (decoded, "<%s>", encoded);
1144 return decoded;
1145
1146 }
1147
1148 /* Table for keeping permanent unique copies of decoded names. Once
1149 allocated, names in this table are never released. While this is a
1150 storage leak, it should not be significant unless there are massive
1151 changes in the set of decoded names in successive versions of a
1152 symbol table loaded during a single session. */
1153 static struct htab *decoded_names_store;
1154
1155 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1156 in the language-specific part of GSYMBOL, if it has not been
1157 previously computed. Tries to save the decoded name in the same
1158 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1159 in any case, the decoded symbol has a lifetime at least that of
1160 GSYMBOL).
1161 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1162 const, but nevertheless modified to a semantically equivalent form
1163 when a decoded name is cached in it.
1164 */
1165
1166 char *
1167 ada_decode_symbol (const struct general_symbol_info *gsymbol)
1168 {
1169 char **resultp =
1170 (char **) &gsymbol->language_specific.cplus_specific.demangled_name;
1171 if (*resultp == NULL)
1172 {
1173 const char *decoded = ada_decode (gsymbol->name);
1174 if (gsymbol->bfd_section != NULL)
1175 {
1176 bfd *obfd = gsymbol->bfd_section->owner;
1177 if (obfd != NULL)
1178 {
1179 struct objfile *objf;
1180 ALL_OBJFILES (objf)
1181 {
1182 if (obfd == objf->obfd)
1183 {
1184 *resultp = obsavestring (decoded, strlen (decoded),
1185 &objf->objfile_obstack);
1186 break;
1187 }
1188 }
1189 }
1190 }
1191 /* Sometimes, we can't find a corresponding objfile, in which
1192 case, we put the result on the heap. Since we only decode
1193 when needed, we hope this usually does not cause a
1194 significant memory leak (FIXME). */
1195 if (*resultp == NULL)
1196 {
1197 char **slot = (char **) htab_find_slot (decoded_names_store,
1198 decoded, INSERT);
1199 if (*slot == NULL)
1200 *slot = xstrdup (decoded);
1201 *resultp = *slot;
1202 }
1203 }
1204
1205 return *resultp;
1206 }
1207
1208 char *
1209 ada_la_decode (const char *encoded, int options)
1210 {
1211 return xstrdup (ada_decode (encoded));
1212 }
1213
1214 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1215 suffixes that encode debugging information or leading _ada_ on
1216 SYM_NAME (see is_name_suffix commentary for the debugging
1217 information that is ignored). If WILD, then NAME need only match a
1218 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1219 either argument is NULL. */
1220
1221 int
1222 ada_match_name (const char *sym_name, const char *name, int wild)
1223 {
1224 if (sym_name == NULL || name == NULL)
1225 return 0;
1226 else if (wild)
1227 return wild_match (name, strlen (name), sym_name);
1228 else
1229 {
1230 int len_name = strlen (name);
1231 return (strncmp (sym_name, name, len_name) == 0
1232 && is_name_suffix (sym_name + len_name))
1233 || (strncmp (sym_name, "_ada_", 5) == 0
1234 && strncmp (sym_name + 5, name, len_name) == 0
1235 && is_name_suffix (sym_name + len_name + 5));
1236 }
1237 }
1238
1239 /* True (non-zero) iff, in Ada mode, the symbol SYM should be
1240 suppressed in info listings. */
1241
1242 int
1243 ada_suppress_symbol_printing (struct symbol *sym)
1244 {
1245 if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN)
1246 return 1;
1247 else
1248 return is_suppressed_name (SYMBOL_LINKAGE_NAME (sym));
1249 }
1250 \f
1251
1252 /* Arrays */
1253
1254 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1255
1256 static char *bound_name[] = {
1257 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1258 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1259 };
1260
1261 /* Maximum number of array dimensions we are prepared to handle. */
1262
1263 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1264
1265 /* Like modify_field, but allows bitpos > wordlength. */
1266
1267 static void
1268 modify_general_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
1269 {
1270 modify_field (addr + bitpos / 8, fieldval, bitpos % 8, bitsize);
1271 }
1272
1273
1274 /* The desc_* routines return primitive portions of array descriptors
1275 (fat pointers). */
1276
1277 /* The descriptor or array type, if any, indicated by TYPE; removes
1278 level of indirection, if needed. */
1279
1280 static struct type *
1281 desc_base_type (struct type *type)
1282 {
1283 if (type == NULL)
1284 return NULL;
1285 type = ada_check_typedef (type);
1286 if (type != NULL
1287 && (TYPE_CODE (type) == TYPE_CODE_PTR
1288 || TYPE_CODE (type) == TYPE_CODE_REF))
1289 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1290 else
1291 return type;
1292 }
1293
1294 /* True iff TYPE indicates a "thin" array pointer type. */
1295
1296 static int
1297 is_thin_pntr (struct type *type)
1298 {
1299 return
1300 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1301 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1302 }
1303
1304 /* The descriptor type for thin pointer type TYPE. */
1305
1306 static struct type *
1307 thin_descriptor_type (struct type *type)
1308 {
1309 struct type *base_type = desc_base_type (type);
1310 if (base_type == NULL)
1311 return NULL;
1312 if (is_suffix (ada_type_name (base_type), "___XVE"))
1313 return base_type;
1314 else
1315 {
1316 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1317 if (alt_type == NULL)
1318 return base_type;
1319 else
1320 return alt_type;
1321 }
1322 }
1323
1324 /* A pointer to the array data for thin-pointer value VAL. */
1325
1326 static struct value *
1327 thin_data_pntr (struct value *val)
1328 {
1329 struct type *type = value_type (val);
1330 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1331 return value_cast (desc_data_type (thin_descriptor_type (type)),
1332 value_copy (val));
1333 else
1334 return value_from_longest (desc_data_type (thin_descriptor_type (type)),
1335 VALUE_ADDRESS (val) + value_offset (val));
1336 }
1337
1338 /* True iff TYPE indicates a "thick" array pointer type. */
1339
1340 static int
1341 is_thick_pntr (struct type *type)
1342 {
1343 type = desc_base_type (type);
1344 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1345 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1346 }
1347
1348 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1349 pointer to one, the type of its bounds data; otherwise, NULL. */
1350
1351 static struct type *
1352 desc_bounds_type (struct type *type)
1353 {
1354 struct type *r;
1355
1356 type = desc_base_type (type);
1357
1358 if (type == NULL)
1359 return NULL;
1360 else if (is_thin_pntr (type))
1361 {
1362 type = thin_descriptor_type (type);
1363 if (type == NULL)
1364 return NULL;
1365 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1366 if (r != NULL)
1367 return ada_check_typedef (r);
1368 }
1369 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1370 {
1371 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1372 if (r != NULL)
1373 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1374 }
1375 return NULL;
1376 }
1377
1378 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1379 one, a pointer to its bounds data. Otherwise NULL. */
1380
1381 static struct value *
1382 desc_bounds (struct value *arr)
1383 {
1384 struct type *type = ada_check_typedef (value_type (arr));
1385 if (is_thin_pntr (type))
1386 {
1387 struct type *bounds_type =
1388 desc_bounds_type (thin_descriptor_type (type));
1389 LONGEST addr;
1390
1391 if (bounds_type == NULL)
1392 error (_("Bad GNAT array descriptor"));
1393
1394 /* NOTE: The following calculation is not really kosher, but
1395 since desc_type is an XVE-encoded type (and shouldn't be),
1396 the correct calculation is a real pain. FIXME (and fix GCC). */
1397 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1398 addr = value_as_long (arr);
1399 else
1400 addr = VALUE_ADDRESS (arr) + value_offset (arr);
1401
1402 return
1403 value_from_longest (lookup_pointer_type (bounds_type),
1404 addr - TYPE_LENGTH (bounds_type));
1405 }
1406
1407 else if (is_thick_pntr (type))
1408 return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1409 _("Bad GNAT array descriptor"));
1410 else
1411 return NULL;
1412 }
1413
1414 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1415 position of the field containing the address of the bounds data. */
1416
1417 static int
1418 fat_pntr_bounds_bitpos (struct type *type)
1419 {
1420 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1421 }
1422
1423 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1424 size of the field containing the address of the bounds data. */
1425
1426 static int
1427 fat_pntr_bounds_bitsize (struct type *type)
1428 {
1429 type = desc_base_type (type);
1430
1431 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1432 return TYPE_FIELD_BITSIZE (type, 1);
1433 else
1434 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1435 }
1436
1437 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1438 pointer to one, the type of its array data (a
1439 pointer-to-array-with-no-bounds type); otherwise, NULL. Use
1440 ada_type_of_array to get an array type with bounds data. */
1441
1442 static struct type *
1443 desc_data_type (struct type *type)
1444 {
1445 type = desc_base_type (type);
1446
1447 /* NOTE: The following is bogus; see comment in desc_bounds. */
1448 if (is_thin_pntr (type))
1449 return lookup_pointer_type
1450 (desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1)));
1451 else if (is_thick_pntr (type))
1452 return lookup_struct_elt_type (type, "P_ARRAY", 1);
1453 else
1454 return NULL;
1455 }
1456
1457 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1458 its array data. */
1459
1460 static struct value *
1461 desc_data (struct value *arr)
1462 {
1463 struct type *type = value_type (arr);
1464 if (is_thin_pntr (type))
1465 return thin_data_pntr (arr);
1466 else if (is_thick_pntr (type))
1467 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1468 _("Bad GNAT array descriptor"));
1469 else
1470 return NULL;
1471 }
1472
1473
1474 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1475 position of the field containing the address of the data. */
1476
1477 static int
1478 fat_pntr_data_bitpos (struct type *type)
1479 {
1480 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1481 }
1482
1483 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1484 size of the field containing the address of the data. */
1485
1486 static int
1487 fat_pntr_data_bitsize (struct type *type)
1488 {
1489 type = desc_base_type (type);
1490
1491 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1492 return TYPE_FIELD_BITSIZE (type, 0);
1493 else
1494 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1495 }
1496
1497 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1498 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1499 bound, if WHICH is 1. The first bound is I=1. */
1500
1501 static struct value *
1502 desc_one_bound (struct value *bounds, int i, int which)
1503 {
1504 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1505 _("Bad GNAT array descriptor bounds"));
1506 }
1507
1508 /* If BOUNDS is an array-bounds structure type, return the bit position
1509 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1510 bound, if WHICH is 1. The first bound is I=1. */
1511
1512 static int
1513 desc_bound_bitpos (struct type *type, int i, int which)
1514 {
1515 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1516 }
1517
1518 /* If BOUNDS is an array-bounds structure type, return the bit field size
1519 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1520 bound, if WHICH is 1. The first bound is I=1. */
1521
1522 static int
1523 desc_bound_bitsize (struct type *type, int i, int which)
1524 {
1525 type = desc_base_type (type);
1526
1527 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1528 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1529 else
1530 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1531 }
1532
1533 /* If TYPE is the type of an array-bounds structure, the type of its
1534 Ith bound (numbering from 1). Otherwise, NULL. */
1535
1536 static struct type *
1537 desc_index_type (struct type *type, int i)
1538 {
1539 type = desc_base_type (type);
1540
1541 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1542 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1543 else
1544 return NULL;
1545 }
1546
1547 /* The number of index positions in the array-bounds type TYPE.
1548 Return 0 if TYPE is NULL. */
1549
1550 static int
1551 desc_arity (struct type *type)
1552 {
1553 type = desc_base_type (type);
1554
1555 if (type != NULL)
1556 return TYPE_NFIELDS (type) / 2;
1557 return 0;
1558 }
1559
1560 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1561 an array descriptor type (representing an unconstrained array
1562 type). */
1563
1564 static int
1565 ada_is_direct_array_type (struct type *type)
1566 {
1567 if (type == NULL)
1568 return 0;
1569 type = ada_check_typedef (type);
1570 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1571 || ada_is_array_descriptor_type (type));
1572 }
1573
1574 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1575 * to one. */
1576
1577 int
1578 ada_is_array_type (struct type *type)
1579 {
1580 while (type != NULL
1581 && (TYPE_CODE (type) == TYPE_CODE_PTR
1582 || TYPE_CODE (type) == TYPE_CODE_REF))
1583 type = TYPE_TARGET_TYPE (type);
1584 return ada_is_direct_array_type (type);
1585 }
1586
1587 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1588
1589 int
1590 ada_is_simple_array_type (struct type *type)
1591 {
1592 if (type == NULL)
1593 return 0;
1594 type = ada_check_typedef (type);
1595 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1596 || (TYPE_CODE (type) == TYPE_CODE_PTR
1597 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
1598 }
1599
1600 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1601
1602 int
1603 ada_is_array_descriptor_type (struct type *type)
1604 {
1605 struct type *data_type = desc_data_type (type);
1606
1607 if (type == NULL)
1608 return 0;
1609 type = ada_check_typedef (type);
1610 return
1611 data_type != NULL
1612 && ((TYPE_CODE (data_type) == TYPE_CODE_PTR
1613 && TYPE_TARGET_TYPE (data_type) != NULL
1614 && TYPE_CODE (TYPE_TARGET_TYPE (data_type)) == TYPE_CODE_ARRAY)
1615 || TYPE_CODE (data_type) == TYPE_CODE_ARRAY)
1616 && desc_arity (desc_bounds_type (type)) > 0;
1617 }
1618
1619 /* Non-zero iff type is a partially mal-formed GNAT array
1620 descriptor. FIXME: This is to compensate for some problems with
1621 debugging output from GNAT. Re-examine periodically to see if it
1622 is still needed. */
1623
1624 int
1625 ada_is_bogus_array_descriptor (struct type *type)
1626 {
1627 return
1628 type != NULL
1629 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1630 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1631 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1632 && !ada_is_array_descriptor_type (type);
1633 }
1634
1635
1636 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1637 (fat pointer) returns the type of the array data described---specifically,
1638 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1639 in from the descriptor; otherwise, they are left unspecified. If
1640 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1641 returns NULL. The result is simply the type of ARR if ARR is not
1642 a descriptor. */
1643 struct type *
1644 ada_type_of_array (struct value *arr, int bounds)
1645 {
1646 if (ada_is_packed_array_type (value_type (arr)))
1647 return decode_packed_array_type (value_type (arr));
1648
1649 if (!ada_is_array_descriptor_type (value_type (arr)))
1650 return value_type (arr);
1651
1652 if (!bounds)
1653 return
1654 ada_check_typedef (TYPE_TARGET_TYPE (desc_data_type (value_type (arr))));
1655 else
1656 {
1657 struct type *elt_type;
1658 int arity;
1659 struct value *descriptor;
1660 struct objfile *objf = TYPE_OBJFILE (value_type (arr));
1661
1662 elt_type = ada_array_element_type (value_type (arr), -1);
1663 arity = ada_array_arity (value_type (arr));
1664
1665 if (elt_type == NULL || arity == 0)
1666 return ada_check_typedef (value_type (arr));
1667
1668 descriptor = desc_bounds (arr);
1669 if (value_as_long (descriptor) == 0)
1670 return NULL;
1671 while (arity > 0)
1672 {
1673 struct type *range_type = alloc_type (objf);
1674 struct type *array_type = alloc_type (objf);
1675 struct value *low = desc_one_bound (descriptor, arity, 0);
1676 struct value *high = desc_one_bound (descriptor, arity, 1);
1677 arity -= 1;
1678
1679 create_range_type (range_type, value_type (low),
1680 longest_to_int (value_as_long (low)),
1681 longest_to_int (value_as_long (high)));
1682 elt_type = create_array_type (array_type, elt_type, range_type);
1683 }
1684
1685 return lookup_pointer_type (elt_type);
1686 }
1687 }
1688
1689 /* If ARR does not represent an array, returns ARR unchanged.
1690 Otherwise, returns either a standard GDB array with bounds set
1691 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1692 GDB array. Returns NULL if ARR is a null fat pointer. */
1693
1694 struct value *
1695 ada_coerce_to_simple_array_ptr (struct value *arr)
1696 {
1697 if (ada_is_array_descriptor_type (value_type (arr)))
1698 {
1699 struct type *arrType = ada_type_of_array (arr, 1);
1700 if (arrType == NULL)
1701 return NULL;
1702 return value_cast (arrType, value_copy (desc_data (arr)));
1703 }
1704 else if (ada_is_packed_array_type (value_type (arr)))
1705 return decode_packed_array (arr);
1706 else
1707 return arr;
1708 }
1709
1710 /* If ARR does not represent an array, returns ARR unchanged.
1711 Otherwise, returns a standard GDB array describing ARR (which may
1712 be ARR itself if it already is in the proper form). */
1713
1714 static struct value *
1715 ada_coerce_to_simple_array (struct value *arr)
1716 {
1717 if (ada_is_array_descriptor_type (value_type (arr)))
1718 {
1719 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1720 if (arrVal == NULL)
1721 error (_("Bounds unavailable for null array pointer."));
1722 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1723 return value_ind (arrVal);
1724 }
1725 else if (ada_is_packed_array_type (value_type (arr)))
1726 return decode_packed_array (arr);
1727 else
1728 return arr;
1729 }
1730
1731 /* If TYPE represents a GNAT array type, return it translated to an
1732 ordinary GDB array type (possibly with BITSIZE fields indicating
1733 packing). For other types, is the identity. */
1734
1735 struct type *
1736 ada_coerce_to_simple_array_type (struct type *type)
1737 {
1738 struct value *mark = value_mark ();
1739 struct value *dummy = value_from_longest (builtin_type_long, 0);
1740 struct type *result;
1741 deprecated_set_value_type (dummy, type);
1742 result = ada_type_of_array (dummy, 0);
1743 value_free_to_mark (mark);
1744 return result;
1745 }
1746
1747 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1748
1749 int
1750 ada_is_packed_array_type (struct type *type)
1751 {
1752 if (type == NULL)
1753 return 0;
1754 type = desc_base_type (type);
1755 type = ada_check_typedef (type);
1756 return
1757 ada_type_name (type) != NULL
1758 && strstr (ada_type_name (type), "___XP") != NULL;
1759 }
1760
1761 /* Given that TYPE is a standard GDB array type with all bounds filled
1762 in, and that the element size of its ultimate scalar constituents
1763 (that is, either its elements, or, if it is an array of arrays, its
1764 elements' elements, etc.) is *ELT_BITS, return an identical type,
1765 but with the bit sizes of its elements (and those of any
1766 constituent arrays) recorded in the BITSIZE components of its
1767 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1768 in bits. */
1769
1770 static struct type *
1771 packed_array_type (struct type *type, long *elt_bits)
1772 {
1773 struct type *new_elt_type;
1774 struct type *new_type;
1775 LONGEST low_bound, high_bound;
1776
1777 type = ada_check_typedef (type);
1778 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1779 return type;
1780
1781 new_type = alloc_type (TYPE_OBJFILE (type));
1782 new_elt_type = packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
1783 elt_bits);
1784 create_array_type (new_type, new_elt_type, TYPE_FIELD_TYPE (type, 0));
1785 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
1786 TYPE_NAME (new_type) = ada_type_name (type);
1787
1788 if (get_discrete_bounds (TYPE_FIELD_TYPE (type, 0),
1789 &low_bound, &high_bound) < 0)
1790 low_bound = high_bound = 0;
1791 if (high_bound < low_bound)
1792 *elt_bits = TYPE_LENGTH (new_type) = 0;
1793 else
1794 {
1795 *elt_bits *= (high_bound - low_bound + 1);
1796 TYPE_LENGTH (new_type) =
1797 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
1798 }
1799
1800 TYPE_FLAGS (new_type) |= TYPE_FLAG_FIXED_INSTANCE;
1801 return new_type;
1802 }
1803
1804 /* The array type encoded by TYPE, where ada_is_packed_array_type (TYPE). */
1805
1806 static struct type *
1807 decode_packed_array_type (struct type *type)
1808 {
1809 struct symbol *sym;
1810 struct block **blocks;
1811 const char *raw_name = ada_type_name (ada_check_typedef (type));
1812 char *name = (char *) alloca (strlen (raw_name) + 1);
1813 char *tail = strstr (raw_name, "___XP");
1814 struct type *shadow_type;
1815 long bits;
1816 int i, n;
1817
1818 type = desc_base_type (type);
1819
1820 memcpy (name, raw_name, tail - raw_name);
1821 name[tail - raw_name] = '\000';
1822
1823 sym = standard_lookup (name, get_selected_block (0), VAR_DOMAIN);
1824 if (sym == NULL || SYMBOL_TYPE (sym) == NULL)
1825 {
1826 lim_warning (_("could not find bounds information on packed array"));
1827 return NULL;
1828 }
1829 shadow_type = SYMBOL_TYPE (sym);
1830
1831 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
1832 {
1833 lim_warning (_("could not understand bounds information on packed array"));
1834 return NULL;
1835 }
1836
1837 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1838 {
1839 lim_warning
1840 (_("could not understand bit size information on packed array"));
1841 return NULL;
1842 }
1843
1844 return packed_array_type (shadow_type, &bits);
1845 }
1846
1847 /* Given that ARR is a struct value *indicating a GNAT packed array,
1848 returns a simple array that denotes that array. Its type is a
1849 standard GDB array type except that the BITSIZEs of the array
1850 target types are set to the number of bits in each element, and the
1851 type length is set appropriately. */
1852
1853 static struct value *
1854 decode_packed_array (struct value *arr)
1855 {
1856 struct type *type;
1857
1858 arr = ada_coerce_ref (arr);
1859 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
1860 arr = ada_value_ind (arr);
1861
1862 type = decode_packed_array_type (value_type (arr));
1863 if (type == NULL)
1864 {
1865 error (_("can't unpack array"));
1866 return NULL;
1867 }
1868
1869 if (BITS_BIG_ENDIAN && ada_is_modular_type (value_type (arr)))
1870 {
1871 /* This is a (right-justified) modular type representing a packed
1872 array with no wrapper. In order to interpret the value through
1873 the (left-justified) packed array type we just built, we must
1874 first left-justify it. */
1875 int bit_size, bit_pos;
1876 ULONGEST mod;
1877
1878 mod = ada_modulus (value_type (arr)) - 1;
1879 bit_size = 0;
1880 while (mod > 0)
1881 {
1882 bit_size += 1;
1883 mod >>= 1;
1884 }
1885 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
1886 arr = ada_value_primitive_packed_val (arr, NULL,
1887 bit_pos / HOST_CHAR_BIT,
1888 bit_pos % HOST_CHAR_BIT,
1889 bit_size,
1890 type);
1891 }
1892
1893 return coerce_unspec_val_to_type (arr, type);
1894 }
1895
1896
1897 /* The value of the element of packed array ARR at the ARITY indices
1898 given in IND. ARR must be a simple array. */
1899
1900 static struct value *
1901 value_subscript_packed (struct value *arr, int arity, struct value **ind)
1902 {
1903 int i;
1904 int bits, elt_off, bit_off;
1905 long elt_total_bit_offset;
1906 struct type *elt_type;
1907 struct value *v;
1908
1909 bits = 0;
1910 elt_total_bit_offset = 0;
1911 elt_type = ada_check_typedef (value_type (arr));
1912 for (i = 0; i < arity; i += 1)
1913 {
1914 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
1915 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
1916 error
1917 (_("attempt to do packed indexing of something other than a packed array"));
1918 else
1919 {
1920 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
1921 LONGEST lowerbound, upperbound;
1922 LONGEST idx;
1923
1924 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
1925 {
1926 lim_warning (_("don't know bounds of array"));
1927 lowerbound = upperbound = 0;
1928 }
1929
1930 idx = value_as_long (value_pos_atr (ind[i]));
1931 if (idx < lowerbound || idx > upperbound)
1932 lim_warning (_("packed array index %ld out of bounds"), (long) idx);
1933 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
1934 elt_total_bit_offset += (idx - lowerbound) * bits;
1935 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
1936 }
1937 }
1938 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
1939 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
1940
1941 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
1942 bits, elt_type);
1943 return v;
1944 }
1945
1946 /* Non-zero iff TYPE includes negative integer values. */
1947
1948 static int
1949 has_negatives (struct type *type)
1950 {
1951 switch (TYPE_CODE (type))
1952 {
1953 default:
1954 return 0;
1955 case TYPE_CODE_INT:
1956 return !TYPE_UNSIGNED (type);
1957 case TYPE_CODE_RANGE:
1958 return TYPE_LOW_BOUND (type) < 0;
1959 }
1960 }
1961
1962
1963 /* Create a new value of type TYPE from the contents of OBJ starting
1964 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
1965 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
1966 assigning through the result will set the field fetched from.
1967 VALADDR is ignored unless OBJ is NULL, in which case,
1968 VALADDR+OFFSET must address the start of storage containing the
1969 packed value. The value returned in this case is never an lval.
1970 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
1971
1972 struct value *
1973 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
1974 long offset, int bit_offset, int bit_size,
1975 struct type *type)
1976 {
1977 struct value *v;
1978 int src, /* Index into the source area */
1979 targ, /* Index into the target area */
1980 srcBitsLeft, /* Number of source bits left to move */
1981 nsrc, ntarg, /* Number of source and target bytes */
1982 unusedLS, /* Number of bits in next significant
1983 byte of source that are unused */
1984 accumSize; /* Number of meaningful bits in accum */
1985 unsigned char *bytes; /* First byte containing data to unpack */
1986 unsigned char *unpacked;
1987 unsigned long accum; /* Staging area for bits being transferred */
1988 unsigned char sign;
1989 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
1990 /* Transmit bytes from least to most significant; delta is the direction
1991 the indices move. */
1992 int delta = BITS_BIG_ENDIAN ? -1 : 1;
1993
1994 type = ada_check_typedef (type);
1995
1996 if (obj == NULL)
1997 {
1998 v = allocate_value (type);
1999 bytes = (unsigned char *) (valaddr + offset);
2000 }
2001 else if (value_lazy (obj))
2002 {
2003 v = value_at (type,
2004 VALUE_ADDRESS (obj) + value_offset (obj) + offset);
2005 bytes = (unsigned char *) alloca (len);
2006 read_memory (VALUE_ADDRESS (v), bytes, len);
2007 }
2008 else
2009 {
2010 v = allocate_value (type);
2011 bytes = (unsigned char *) value_contents (obj) + offset;
2012 }
2013
2014 if (obj != NULL)
2015 {
2016 VALUE_LVAL (v) = VALUE_LVAL (obj);
2017 if (VALUE_LVAL (obj) == lval_internalvar)
2018 VALUE_LVAL (v) = lval_internalvar_component;
2019 VALUE_ADDRESS (v) = VALUE_ADDRESS (obj) + value_offset (obj) + offset;
2020 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2021 set_value_bitsize (v, bit_size);
2022 if (value_bitpos (v) >= HOST_CHAR_BIT)
2023 {
2024 VALUE_ADDRESS (v) += 1;
2025 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2026 }
2027 }
2028 else
2029 set_value_bitsize (v, bit_size);
2030 unpacked = (unsigned char *) value_contents (v);
2031
2032 srcBitsLeft = bit_size;
2033 nsrc = len;
2034 ntarg = TYPE_LENGTH (type);
2035 sign = 0;
2036 if (bit_size == 0)
2037 {
2038 memset (unpacked, 0, TYPE_LENGTH (type));
2039 return v;
2040 }
2041 else if (BITS_BIG_ENDIAN)
2042 {
2043 src = len - 1;
2044 if (has_negatives (type)
2045 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2046 sign = ~0;
2047
2048 unusedLS =
2049 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2050 % HOST_CHAR_BIT;
2051
2052 switch (TYPE_CODE (type))
2053 {
2054 case TYPE_CODE_ARRAY:
2055 case TYPE_CODE_UNION:
2056 case TYPE_CODE_STRUCT:
2057 /* Non-scalar values must be aligned at a byte boundary... */
2058 accumSize =
2059 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2060 /* ... And are placed at the beginning (most-significant) bytes
2061 of the target. */
2062 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2063 break;
2064 default:
2065 accumSize = 0;
2066 targ = TYPE_LENGTH (type) - 1;
2067 break;
2068 }
2069 }
2070 else
2071 {
2072 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2073
2074 src = targ = 0;
2075 unusedLS = bit_offset;
2076 accumSize = 0;
2077
2078 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2079 sign = ~0;
2080 }
2081
2082 accum = 0;
2083 while (nsrc > 0)
2084 {
2085 /* Mask for removing bits of the next source byte that are not
2086 part of the value. */
2087 unsigned int unusedMSMask =
2088 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2089 1;
2090 /* Sign-extend bits for this byte. */
2091 unsigned int signMask = sign & ~unusedMSMask;
2092 accum |=
2093 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2094 accumSize += HOST_CHAR_BIT - unusedLS;
2095 if (accumSize >= HOST_CHAR_BIT)
2096 {
2097 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2098 accumSize -= HOST_CHAR_BIT;
2099 accum >>= HOST_CHAR_BIT;
2100 ntarg -= 1;
2101 targ += delta;
2102 }
2103 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2104 unusedLS = 0;
2105 nsrc -= 1;
2106 src += delta;
2107 }
2108 while (ntarg > 0)
2109 {
2110 accum |= sign << accumSize;
2111 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2112 accumSize -= HOST_CHAR_BIT;
2113 accum >>= HOST_CHAR_BIT;
2114 ntarg -= 1;
2115 targ += delta;
2116 }
2117
2118 return v;
2119 }
2120
2121 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2122 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2123 not overlap. */
2124 static void
2125 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2126 int src_offset, int n)
2127 {
2128 unsigned int accum, mask;
2129 int accum_bits, chunk_size;
2130
2131 target += targ_offset / HOST_CHAR_BIT;
2132 targ_offset %= HOST_CHAR_BIT;
2133 source += src_offset / HOST_CHAR_BIT;
2134 src_offset %= HOST_CHAR_BIT;
2135 if (BITS_BIG_ENDIAN)
2136 {
2137 accum = (unsigned char) *source;
2138 source += 1;
2139 accum_bits = HOST_CHAR_BIT - src_offset;
2140
2141 while (n > 0)
2142 {
2143 int unused_right;
2144 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2145 accum_bits += HOST_CHAR_BIT;
2146 source += 1;
2147 chunk_size = HOST_CHAR_BIT - targ_offset;
2148 if (chunk_size > n)
2149 chunk_size = n;
2150 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2151 mask = ((1 << chunk_size) - 1) << unused_right;
2152 *target =
2153 (*target & ~mask)
2154 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2155 n -= chunk_size;
2156 accum_bits -= chunk_size;
2157 target += 1;
2158 targ_offset = 0;
2159 }
2160 }
2161 else
2162 {
2163 accum = (unsigned char) *source >> src_offset;
2164 source += 1;
2165 accum_bits = HOST_CHAR_BIT - src_offset;
2166
2167 while (n > 0)
2168 {
2169 accum = accum + ((unsigned char) *source << accum_bits);
2170 accum_bits += HOST_CHAR_BIT;
2171 source += 1;
2172 chunk_size = HOST_CHAR_BIT - targ_offset;
2173 if (chunk_size > n)
2174 chunk_size = n;
2175 mask = ((1 << chunk_size) - 1) << targ_offset;
2176 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2177 n -= chunk_size;
2178 accum_bits -= chunk_size;
2179 accum >>= chunk_size;
2180 target += 1;
2181 targ_offset = 0;
2182 }
2183 }
2184 }
2185
2186 /* Store the contents of FROMVAL into the location of TOVAL.
2187 Return a new value with the location of TOVAL and contents of
2188 FROMVAL. Handles assignment into packed fields that have
2189 floating-point or non-scalar types. */
2190
2191 static struct value *
2192 ada_value_assign (struct value *toval, struct value *fromval)
2193 {
2194 struct type *type = value_type (toval);
2195 int bits = value_bitsize (toval);
2196
2197 toval = ada_coerce_ref (toval);
2198 fromval = ada_coerce_ref (fromval);
2199
2200 if (ada_is_direct_array_type (value_type (toval)))
2201 toval = ada_coerce_to_simple_array (toval);
2202 if (ada_is_direct_array_type (value_type (fromval)))
2203 fromval = ada_coerce_to_simple_array (fromval);
2204
2205 if (!deprecated_value_modifiable (toval))
2206 error (_("Left operand of assignment is not a modifiable lvalue."));
2207
2208 if (VALUE_LVAL (toval) == lval_memory
2209 && bits > 0
2210 && (TYPE_CODE (type) == TYPE_CODE_FLT
2211 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2212 {
2213 int len = (value_bitpos (toval)
2214 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2215 char *buffer = (char *) alloca (len);
2216 struct value *val;
2217 CORE_ADDR to_addr = VALUE_ADDRESS (toval) + value_offset (toval);
2218
2219 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2220 fromval = value_cast (type, fromval);
2221
2222 read_memory (to_addr, buffer, len);
2223 if (BITS_BIG_ENDIAN)
2224 move_bits (buffer, value_bitpos (toval),
2225 value_contents (fromval),
2226 TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT -
2227 bits, bits);
2228 else
2229 move_bits (buffer, value_bitpos (toval), value_contents (fromval),
2230 0, bits);
2231 write_memory (to_addr, buffer, len);
2232 if (deprecated_memory_changed_hook)
2233 deprecated_memory_changed_hook (to_addr, len);
2234
2235 val = value_copy (toval);
2236 memcpy (value_contents_raw (val), value_contents (fromval),
2237 TYPE_LENGTH (type));
2238 deprecated_set_value_type (val, type);
2239
2240 return val;
2241 }
2242
2243 return value_assign (toval, fromval);
2244 }
2245
2246
2247 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2248 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2249 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2250 * COMPONENT, and not the inferior's memory. The current contents
2251 * of COMPONENT are ignored. */
2252 static void
2253 value_assign_to_component (struct value *container, struct value *component,
2254 struct value *val)
2255 {
2256 LONGEST offset_in_container =
2257 (LONGEST) (VALUE_ADDRESS (component) + value_offset (component)
2258 - VALUE_ADDRESS (container) - value_offset (container));
2259 int bit_offset_in_container =
2260 value_bitpos (component) - value_bitpos (container);
2261 int bits;
2262
2263 val = value_cast (value_type (component), val);
2264
2265 if (value_bitsize (component) == 0)
2266 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2267 else
2268 bits = value_bitsize (component);
2269
2270 if (BITS_BIG_ENDIAN)
2271 move_bits (value_contents_writeable (container) + offset_in_container,
2272 value_bitpos (container) + bit_offset_in_container,
2273 value_contents (val),
2274 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2275 bits);
2276 else
2277 move_bits (value_contents_writeable (container) + offset_in_container,
2278 value_bitpos (container) + bit_offset_in_container,
2279 value_contents (val), 0, bits);
2280 }
2281
2282 /* The value of the element of array ARR at the ARITY indices given in IND.
2283 ARR may be either a simple array, GNAT array descriptor, or pointer
2284 thereto. */
2285
2286 struct value *
2287 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2288 {
2289 int k;
2290 struct value *elt;
2291 struct type *elt_type;
2292
2293 elt = ada_coerce_to_simple_array (arr);
2294
2295 elt_type = ada_check_typedef (value_type (elt));
2296 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2297 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2298 return value_subscript_packed (elt, arity, ind);
2299
2300 for (k = 0; k < arity; k += 1)
2301 {
2302 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2303 error (_("too many subscripts (%d expected)"), k);
2304 elt = value_subscript (elt, value_pos_atr (ind[k]));
2305 }
2306 return elt;
2307 }
2308
2309 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2310 value of the element of *ARR at the ARITY indices given in
2311 IND. Does not read the entire array into memory. */
2312
2313 struct value *
2314 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2315 struct value **ind)
2316 {
2317 int k;
2318
2319 for (k = 0; k < arity; k += 1)
2320 {
2321 LONGEST lwb, upb;
2322 struct value *idx;
2323
2324 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2325 error (_("too many subscripts (%d expected)"), k);
2326 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2327 value_copy (arr));
2328 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2329 idx = value_pos_atr (ind[k]);
2330 if (lwb != 0)
2331 idx = value_sub (idx, value_from_longest (builtin_type_int, lwb));
2332 arr = value_add (arr, idx);
2333 type = TYPE_TARGET_TYPE (type);
2334 }
2335
2336 return value_ind (arr);
2337 }
2338
2339 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2340 actual type of ARRAY_PTR is ignored), returns a reference to
2341 the Ada slice of HIGH-LOW+1 elements starting at index LOW. The lower
2342 bound of this array is LOW, as per Ada rules. */
2343 static struct value *
2344 ada_value_slice_ptr (struct value *array_ptr, struct type *type,
2345 int low, int high)
2346 {
2347 CORE_ADDR base = value_as_address (array_ptr)
2348 + ((low - TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)))
2349 * TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
2350 struct type *index_type =
2351 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
2352 low, high);
2353 struct type *slice_type =
2354 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2355 return value_from_pointer (lookup_reference_type (slice_type), base);
2356 }
2357
2358
2359 static struct value *
2360 ada_value_slice (struct value *array, int low, int high)
2361 {
2362 struct type *type = value_type (array);
2363 struct type *index_type =
2364 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2365 struct type *slice_type =
2366 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2367 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2368 }
2369
2370 /* If type is a record type in the form of a standard GNAT array
2371 descriptor, returns the number of dimensions for type. If arr is a
2372 simple array, returns the number of "array of"s that prefix its
2373 type designation. Otherwise, returns 0. */
2374
2375 int
2376 ada_array_arity (struct type *type)
2377 {
2378 int arity;
2379
2380 if (type == NULL)
2381 return 0;
2382
2383 type = desc_base_type (type);
2384
2385 arity = 0;
2386 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2387 return desc_arity (desc_bounds_type (type));
2388 else
2389 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2390 {
2391 arity += 1;
2392 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2393 }
2394
2395 return arity;
2396 }
2397
2398 /* If TYPE is a record type in the form of a standard GNAT array
2399 descriptor or a simple array type, returns the element type for
2400 TYPE after indexing by NINDICES indices, or by all indices if
2401 NINDICES is -1. Otherwise, returns NULL. */
2402
2403 struct type *
2404 ada_array_element_type (struct type *type, int nindices)
2405 {
2406 type = desc_base_type (type);
2407
2408 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2409 {
2410 int k;
2411 struct type *p_array_type;
2412
2413 p_array_type = desc_data_type (type);
2414
2415 k = ada_array_arity (type);
2416 if (k == 0)
2417 return NULL;
2418
2419 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2420 if (nindices >= 0 && k > nindices)
2421 k = nindices;
2422 p_array_type = TYPE_TARGET_TYPE (p_array_type);
2423 while (k > 0 && p_array_type != NULL)
2424 {
2425 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2426 k -= 1;
2427 }
2428 return p_array_type;
2429 }
2430 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2431 {
2432 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2433 {
2434 type = TYPE_TARGET_TYPE (type);
2435 nindices -= 1;
2436 }
2437 return type;
2438 }
2439
2440 return NULL;
2441 }
2442
2443 /* The type of nth index in arrays of given type (n numbering from 1).
2444 Does not examine memory. */
2445
2446 struct type *
2447 ada_index_type (struct type *type, int n)
2448 {
2449 struct type *result_type;
2450
2451 type = desc_base_type (type);
2452
2453 if (n > ada_array_arity (type))
2454 return NULL;
2455
2456 if (ada_is_simple_array_type (type))
2457 {
2458 int i;
2459
2460 for (i = 1; i < n; i += 1)
2461 type = TYPE_TARGET_TYPE (type);
2462 result_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 0));
2463 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2464 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2465 perhaps stabsread.c would make more sense. */
2466 if (result_type == NULL || TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2467 result_type = builtin_type_int;
2468
2469 return result_type;
2470 }
2471 else
2472 return desc_index_type (desc_bounds_type (type), n);
2473 }
2474
2475 /* Given that arr is an array type, returns the lower bound of the
2476 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2477 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2478 array-descriptor type. If TYPEP is non-null, *TYPEP is set to the
2479 bounds type. It works for other arrays with bounds supplied by
2480 run-time quantities other than discriminants. */
2481
2482 LONGEST
2483 ada_array_bound_from_type (struct type * arr_type, int n, int which,
2484 struct type ** typep)
2485 {
2486 struct type *type;
2487 struct type *index_type_desc;
2488
2489 if (ada_is_packed_array_type (arr_type))
2490 arr_type = decode_packed_array_type (arr_type);
2491
2492 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2493 {
2494 if (typep != NULL)
2495 *typep = builtin_type_int;
2496 return (LONGEST) - which;
2497 }
2498
2499 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2500 type = TYPE_TARGET_TYPE (arr_type);
2501 else
2502 type = arr_type;
2503
2504 index_type_desc = ada_find_parallel_type (type, "___XA");
2505 if (index_type_desc == NULL)
2506 {
2507 struct type *range_type;
2508 struct type *index_type;
2509
2510 while (n > 1)
2511 {
2512 type = TYPE_TARGET_TYPE (type);
2513 n -= 1;
2514 }
2515
2516 range_type = TYPE_INDEX_TYPE (type);
2517 index_type = TYPE_TARGET_TYPE (range_type);
2518 if (TYPE_CODE (index_type) == TYPE_CODE_UNDEF)
2519 index_type = builtin_type_long;
2520 if (typep != NULL)
2521 *typep = index_type;
2522 return
2523 (LONGEST) (which == 0
2524 ? TYPE_LOW_BOUND (range_type)
2525 : TYPE_HIGH_BOUND (range_type));
2526 }
2527 else
2528 {
2529 struct type *index_type =
2530 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, n - 1),
2531 NULL, TYPE_OBJFILE (arr_type));
2532 if (typep != NULL)
2533 *typep = TYPE_TARGET_TYPE (index_type);
2534 return
2535 (LONGEST) (which == 0
2536 ? TYPE_LOW_BOUND (index_type)
2537 : TYPE_HIGH_BOUND (index_type));
2538 }
2539 }
2540
2541 /* Given that arr is an array value, returns the lower bound of the
2542 nth index (numbering from 1) if which is 0, and the upper bound if
2543 which is 1. This routine will also work for arrays with bounds
2544 supplied by run-time quantities other than discriminants. */
2545
2546 struct value *
2547 ada_array_bound (struct value *arr, int n, int which)
2548 {
2549 struct type *arr_type = value_type (arr);
2550
2551 if (ada_is_packed_array_type (arr_type))
2552 return ada_array_bound (decode_packed_array (arr), n, which);
2553 else if (ada_is_simple_array_type (arr_type))
2554 {
2555 struct type *type;
2556 LONGEST v = ada_array_bound_from_type (arr_type, n, which, &type);
2557 return value_from_longest (type, v);
2558 }
2559 else
2560 return desc_one_bound (desc_bounds (arr), n, which);
2561 }
2562
2563 /* Given that arr is an array value, returns the length of the
2564 nth index. This routine will also work for arrays with bounds
2565 supplied by run-time quantities other than discriminants.
2566 Does not work for arrays indexed by enumeration types with representation
2567 clauses at the moment. */
2568
2569 struct value *
2570 ada_array_length (struct value *arr, int n)
2571 {
2572 struct type *arr_type = ada_check_typedef (value_type (arr));
2573
2574 if (ada_is_packed_array_type (arr_type))
2575 return ada_array_length (decode_packed_array (arr), n);
2576
2577 if (ada_is_simple_array_type (arr_type))
2578 {
2579 struct type *type;
2580 LONGEST v =
2581 ada_array_bound_from_type (arr_type, n, 1, &type) -
2582 ada_array_bound_from_type (arr_type, n, 0, NULL) + 1;
2583 return value_from_longest (type, v);
2584 }
2585 else
2586 return
2587 value_from_longest (builtin_type_int,
2588 value_as_long (desc_one_bound (desc_bounds (arr),
2589 n, 1))
2590 - value_as_long (desc_one_bound (desc_bounds (arr),
2591 n, 0)) + 1);
2592 }
2593
2594 /* An empty array whose type is that of ARR_TYPE (an array type),
2595 with bounds LOW to LOW-1. */
2596
2597 static struct value *
2598 empty_array (struct type *arr_type, int low)
2599 {
2600 struct type *index_type =
2601 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
2602 low, low - 1);
2603 struct type *elt_type = ada_array_element_type (arr_type, 1);
2604 return allocate_value (create_array_type (NULL, elt_type, index_type));
2605 }
2606 \f
2607
2608 /* Name resolution */
2609
2610 /* The "decoded" name for the user-definable Ada operator corresponding
2611 to OP. */
2612
2613 static const char *
2614 ada_decoded_op_name (enum exp_opcode op)
2615 {
2616 int i;
2617
2618 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2619 {
2620 if (ada_opname_table[i].op == op)
2621 return ada_opname_table[i].decoded;
2622 }
2623 error (_("Could not find operator name for opcode"));
2624 }
2625
2626
2627 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2628 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2629 undefined namespace) and converts operators that are
2630 user-defined into appropriate function calls. If CONTEXT_TYPE is
2631 non-null, it provides a preferred result type [at the moment, only
2632 type void has any effect---causing procedures to be preferred over
2633 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2634 return type is preferred. May change (expand) *EXP. */
2635
2636 static void
2637 resolve (struct expression **expp, int void_context_p)
2638 {
2639 int pc;
2640 pc = 0;
2641 resolve_subexp (expp, &pc, 1, void_context_p ? builtin_type_void : NULL);
2642 }
2643
2644 /* Resolve the operator of the subexpression beginning at
2645 position *POS of *EXPP. "Resolving" consists of replacing
2646 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2647 with their resolutions, replacing built-in operators with
2648 function calls to user-defined operators, where appropriate, and,
2649 when DEPROCEDURE_P is non-zero, converting function-valued variables
2650 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2651 are as in ada_resolve, above. */
2652
2653 static struct value *
2654 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2655 struct type *context_type)
2656 {
2657 int pc = *pos;
2658 int i;
2659 struct expression *exp; /* Convenience: == *expp. */
2660 enum exp_opcode op = (*expp)->elts[pc].opcode;
2661 struct value **argvec; /* Vector of operand types (alloca'ed). */
2662 int nargs; /* Number of operands. */
2663 int oplen;
2664
2665 argvec = NULL;
2666 nargs = 0;
2667 exp = *expp;
2668
2669 /* Pass one: resolve operands, saving their types and updating *pos,
2670 if needed. */
2671 switch (op)
2672 {
2673 case OP_FUNCALL:
2674 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2675 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2676 *pos += 7;
2677 else
2678 {
2679 *pos += 3;
2680 resolve_subexp (expp, pos, 0, NULL);
2681 }
2682 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2683 break;
2684
2685 case UNOP_ADDR:
2686 *pos += 1;
2687 resolve_subexp (expp, pos, 0, NULL);
2688 break;
2689
2690 case UNOP_QUAL:
2691 *pos += 3;
2692 resolve_subexp (expp, pos, 1, exp->elts[pc + 1].type);
2693 break;
2694
2695 case OP_ATR_MODULUS:
2696 case OP_ATR_SIZE:
2697 case OP_ATR_TAG:
2698 case OP_ATR_FIRST:
2699 case OP_ATR_LAST:
2700 case OP_ATR_LENGTH:
2701 case OP_ATR_POS:
2702 case OP_ATR_VAL:
2703 case OP_ATR_MIN:
2704 case OP_ATR_MAX:
2705 case TERNOP_IN_RANGE:
2706 case BINOP_IN_BOUNDS:
2707 case UNOP_IN_RANGE:
2708 case OP_AGGREGATE:
2709 case OP_OTHERS:
2710 case OP_CHOICES:
2711 case OP_POSITIONAL:
2712 case OP_DISCRETE_RANGE:
2713 case OP_NAME:
2714 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2715 *pos += oplen;
2716 break;
2717
2718 case BINOP_ASSIGN:
2719 {
2720 struct value *arg1;
2721
2722 *pos += 1;
2723 arg1 = resolve_subexp (expp, pos, 0, NULL);
2724 if (arg1 == NULL)
2725 resolve_subexp (expp, pos, 1, NULL);
2726 else
2727 resolve_subexp (expp, pos, 1, value_type (arg1));
2728 break;
2729 }
2730
2731 case UNOP_CAST:
2732 *pos += 3;
2733 nargs = 1;
2734 break;
2735
2736 case BINOP_ADD:
2737 case BINOP_SUB:
2738 case BINOP_MUL:
2739 case BINOP_DIV:
2740 case BINOP_REM:
2741 case BINOP_MOD:
2742 case BINOP_EXP:
2743 case BINOP_CONCAT:
2744 case BINOP_LOGICAL_AND:
2745 case BINOP_LOGICAL_OR:
2746 case BINOP_BITWISE_AND:
2747 case BINOP_BITWISE_IOR:
2748 case BINOP_BITWISE_XOR:
2749
2750 case BINOP_EQUAL:
2751 case BINOP_NOTEQUAL:
2752 case BINOP_LESS:
2753 case BINOP_GTR:
2754 case BINOP_LEQ:
2755 case BINOP_GEQ:
2756
2757 case BINOP_REPEAT:
2758 case BINOP_SUBSCRIPT:
2759 case BINOP_COMMA:
2760 *pos += 1;
2761 nargs = 2;
2762 break;
2763
2764 case UNOP_NEG:
2765 case UNOP_PLUS:
2766 case UNOP_LOGICAL_NOT:
2767 case UNOP_ABS:
2768 case UNOP_IND:
2769 *pos += 1;
2770 nargs = 1;
2771 break;
2772
2773 case OP_LONG:
2774 case OP_DOUBLE:
2775 case OP_VAR_VALUE:
2776 *pos += 4;
2777 break;
2778
2779 case OP_TYPE:
2780 case OP_BOOL:
2781 case OP_LAST:
2782 case OP_INTERNALVAR:
2783 *pos += 3;
2784 break;
2785
2786 case UNOP_MEMVAL:
2787 *pos += 3;
2788 nargs = 1;
2789 break;
2790
2791 case OP_REGISTER:
2792 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2793 break;
2794
2795 case STRUCTOP_STRUCT:
2796 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2797 nargs = 1;
2798 break;
2799
2800 case TERNOP_SLICE:
2801 *pos += 1;
2802 nargs = 3;
2803 break;
2804
2805 case OP_STRING:
2806 break;
2807
2808 default:
2809 error (_("Unexpected operator during name resolution"));
2810 }
2811
2812 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
2813 for (i = 0; i < nargs; i += 1)
2814 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
2815 argvec[i] = NULL;
2816 exp = *expp;
2817
2818 /* Pass two: perform any resolution on principal operator. */
2819 switch (op)
2820 {
2821 default:
2822 break;
2823
2824 case OP_VAR_VALUE:
2825 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
2826 {
2827 struct ada_symbol_info *candidates;
2828 int n_candidates;
2829
2830 n_candidates =
2831 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2832 (exp->elts[pc + 2].symbol),
2833 exp->elts[pc + 1].block, VAR_DOMAIN,
2834 &candidates);
2835
2836 if (n_candidates > 1)
2837 {
2838 /* Types tend to get re-introduced locally, so if there
2839 are any local symbols that are not types, first filter
2840 out all types. */
2841 int j;
2842 for (j = 0; j < n_candidates; j += 1)
2843 switch (SYMBOL_CLASS (candidates[j].sym))
2844 {
2845 case LOC_REGISTER:
2846 case LOC_ARG:
2847 case LOC_REF_ARG:
2848 case LOC_REGPARM:
2849 case LOC_REGPARM_ADDR:
2850 case LOC_LOCAL:
2851 case LOC_LOCAL_ARG:
2852 case LOC_BASEREG:
2853 case LOC_BASEREG_ARG:
2854 case LOC_COMPUTED:
2855 case LOC_COMPUTED_ARG:
2856 goto FoundNonType;
2857 default:
2858 break;
2859 }
2860 FoundNonType:
2861 if (j < n_candidates)
2862 {
2863 j = 0;
2864 while (j < n_candidates)
2865 {
2866 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
2867 {
2868 candidates[j] = candidates[n_candidates - 1];
2869 n_candidates -= 1;
2870 }
2871 else
2872 j += 1;
2873 }
2874 }
2875 }
2876
2877 if (n_candidates == 0)
2878 error (_("No definition found for %s"),
2879 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2880 else if (n_candidates == 1)
2881 i = 0;
2882 else if (deprocedure_p
2883 && !is_nonfunction (candidates, n_candidates))
2884 {
2885 i = ada_resolve_function
2886 (candidates, n_candidates, NULL, 0,
2887 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
2888 context_type);
2889 if (i < 0)
2890 error (_("Could not find a match for %s"),
2891 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2892 }
2893 else
2894 {
2895 printf_filtered (_("Multiple matches for %s\n"),
2896 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2897 user_select_syms (candidates, n_candidates, 1);
2898 i = 0;
2899 }
2900
2901 exp->elts[pc + 1].block = candidates[i].block;
2902 exp->elts[pc + 2].symbol = candidates[i].sym;
2903 if (innermost_block == NULL
2904 || contained_in (candidates[i].block, innermost_block))
2905 innermost_block = candidates[i].block;
2906 }
2907
2908 if (deprocedure_p
2909 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
2910 == TYPE_CODE_FUNC))
2911 {
2912 replace_operator_with_call (expp, pc, 0, 0,
2913 exp->elts[pc + 2].symbol,
2914 exp->elts[pc + 1].block);
2915 exp = *expp;
2916 }
2917 break;
2918
2919 case OP_FUNCALL:
2920 {
2921 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2922 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2923 {
2924 struct ada_symbol_info *candidates;
2925 int n_candidates;
2926
2927 n_candidates =
2928 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2929 (exp->elts[pc + 5].symbol),
2930 exp->elts[pc + 4].block, VAR_DOMAIN,
2931 &candidates);
2932 if (n_candidates == 1)
2933 i = 0;
2934 else
2935 {
2936 i = ada_resolve_function
2937 (candidates, n_candidates,
2938 argvec, nargs,
2939 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
2940 context_type);
2941 if (i < 0)
2942 error (_("Could not find a match for %s"),
2943 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
2944 }
2945
2946 exp->elts[pc + 4].block = candidates[i].block;
2947 exp->elts[pc + 5].symbol = candidates[i].sym;
2948 if (innermost_block == NULL
2949 || contained_in (candidates[i].block, innermost_block))
2950 innermost_block = candidates[i].block;
2951 }
2952 }
2953 break;
2954 case BINOP_ADD:
2955 case BINOP_SUB:
2956 case BINOP_MUL:
2957 case BINOP_DIV:
2958 case BINOP_REM:
2959 case BINOP_MOD:
2960 case BINOP_CONCAT:
2961 case BINOP_BITWISE_AND:
2962 case BINOP_BITWISE_IOR:
2963 case BINOP_BITWISE_XOR:
2964 case BINOP_EQUAL:
2965 case BINOP_NOTEQUAL:
2966 case BINOP_LESS:
2967 case BINOP_GTR:
2968 case BINOP_LEQ:
2969 case BINOP_GEQ:
2970 case BINOP_EXP:
2971 case UNOP_NEG:
2972 case UNOP_PLUS:
2973 case UNOP_LOGICAL_NOT:
2974 case UNOP_ABS:
2975 if (possible_user_operator_p (op, argvec))
2976 {
2977 struct ada_symbol_info *candidates;
2978 int n_candidates;
2979
2980 n_candidates =
2981 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
2982 (struct block *) NULL, VAR_DOMAIN,
2983 &candidates);
2984 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
2985 ada_decoded_op_name (op), NULL);
2986 if (i < 0)
2987 break;
2988
2989 replace_operator_with_call (expp, pc, nargs, 1,
2990 candidates[i].sym, candidates[i].block);
2991 exp = *expp;
2992 }
2993 break;
2994
2995 case OP_TYPE:
2996 return NULL;
2997 }
2998
2999 *pos = pc;
3000 return evaluate_subexp_type (exp, pos);
3001 }
3002
3003 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3004 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3005 a non-pointer. A type of 'void' (which is never a valid expression type)
3006 by convention matches anything. */
3007 /* The term "match" here is rather loose. The match is heuristic and
3008 liberal. FIXME: TOO liberal, in fact. */
3009
3010 static int
3011 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3012 {
3013 ftype = ada_check_typedef (ftype);
3014 atype = ada_check_typedef (atype);
3015
3016 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3017 ftype = TYPE_TARGET_TYPE (ftype);
3018 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3019 atype = TYPE_TARGET_TYPE (atype);
3020
3021 if (TYPE_CODE (ftype) == TYPE_CODE_VOID
3022 || TYPE_CODE (atype) == TYPE_CODE_VOID)
3023 return 1;
3024
3025 switch (TYPE_CODE (ftype))
3026 {
3027 default:
3028 return 1;
3029 case TYPE_CODE_PTR:
3030 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3031 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3032 TYPE_TARGET_TYPE (atype), 0);
3033 else
3034 return (may_deref
3035 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3036 case TYPE_CODE_INT:
3037 case TYPE_CODE_ENUM:
3038 case TYPE_CODE_RANGE:
3039 switch (TYPE_CODE (atype))
3040 {
3041 case TYPE_CODE_INT:
3042 case TYPE_CODE_ENUM:
3043 case TYPE_CODE_RANGE:
3044 return 1;
3045 default:
3046 return 0;
3047 }
3048
3049 case TYPE_CODE_ARRAY:
3050 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3051 || ada_is_array_descriptor_type (atype));
3052
3053 case TYPE_CODE_STRUCT:
3054 if (ada_is_array_descriptor_type (ftype))
3055 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3056 || ada_is_array_descriptor_type (atype));
3057 else
3058 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3059 && !ada_is_array_descriptor_type (atype));
3060
3061 case TYPE_CODE_UNION:
3062 case TYPE_CODE_FLT:
3063 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3064 }
3065 }
3066
3067 /* Return non-zero if the formals of FUNC "sufficiently match" the
3068 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3069 may also be an enumeral, in which case it is treated as a 0-
3070 argument function. */
3071
3072 static int
3073 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3074 {
3075 int i;
3076 struct type *func_type = SYMBOL_TYPE (func);
3077
3078 if (SYMBOL_CLASS (func) == LOC_CONST
3079 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3080 return (n_actuals == 0);
3081 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3082 return 0;
3083
3084 if (TYPE_NFIELDS (func_type) != n_actuals)
3085 return 0;
3086
3087 for (i = 0; i < n_actuals; i += 1)
3088 {
3089 if (actuals[i] == NULL)
3090 return 0;
3091 else
3092 {
3093 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, i));
3094 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3095
3096 if (!ada_type_match (ftype, atype, 1))
3097 return 0;
3098 }
3099 }
3100 return 1;
3101 }
3102
3103 /* False iff function type FUNC_TYPE definitely does not produce a value
3104 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3105 FUNC_TYPE is not a valid function type with a non-null return type
3106 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3107
3108 static int
3109 return_match (struct type *func_type, struct type *context_type)
3110 {
3111 struct type *return_type;
3112
3113 if (func_type == NULL)
3114 return 1;
3115
3116 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3117 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3118 else
3119 return_type = base_type (func_type);
3120 if (return_type == NULL)
3121 return 1;
3122
3123 context_type = base_type (context_type);
3124
3125 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3126 return context_type == NULL || return_type == context_type;
3127 else if (context_type == NULL)
3128 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3129 else
3130 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3131 }
3132
3133
3134 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3135 function (if any) that matches the types of the NARGS arguments in
3136 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3137 that returns that type, then eliminate matches that don't. If
3138 CONTEXT_TYPE is void and there is at least one match that does not
3139 return void, eliminate all matches that do.
3140
3141 Asks the user if there is more than one match remaining. Returns -1
3142 if there is no such symbol or none is selected. NAME is used
3143 solely for messages. May re-arrange and modify SYMS in
3144 the process; the index returned is for the modified vector. */
3145
3146 static int
3147 ada_resolve_function (struct ada_symbol_info syms[],
3148 int nsyms, struct value **args, int nargs,
3149 const char *name, struct type *context_type)
3150 {
3151 int k;
3152 int m; /* Number of hits */
3153 struct type *fallback;
3154 struct type *return_type;
3155
3156 return_type = context_type;
3157 if (context_type == NULL)
3158 fallback = builtin_type_void;
3159 else
3160 fallback = NULL;
3161
3162 m = 0;
3163 while (1)
3164 {
3165 for (k = 0; k < nsyms; k += 1)
3166 {
3167 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3168
3169 if (ada_args_match (syms[k].sym, args, nargs)
3170 && return_match (type, return_type))
3171 {
3172 syms[m] = syms[k];
3173 m += 1;
3174 }
3175 }
3176 if (m > 0 || return_type == fallback)
3177 break;
3178 else
3179 return_type = fallback;
3180 }
3181
3182 if (m == 0)
3183 return -1;
3184 else if (m > 1)
3185 {
3186 printf_filtered (_("Multiple matches for %s\n"), name);
3187 user_select_syms (syms, m, 1);
3188 return 0;
3189 }
3190 return 0;
3191 }
3192
3193 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3194 in a listing of choices during disambiguation (see sort_choices, below).
3195 The idea is that overloadings of a subprogram name from the
3196 same package should sort in their source order. We settle for ordering
3197 such symbols by their trailing number (__N or $N). */
3198
3199 static int
3200 encoded_ordered_before (char *N0, char *N1)
3201 {
3202 if (N1 == NULL)
3203 return 0;
3204 else if (N0 == NULL)
3205 return 1;
3206 else
3207 {
3208 int k0, k1;
3209 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3210 ;
3211 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3212 ;
3213 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3214 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3215 {
3216 int n0, n1;
3217 n0 = k0;
3218 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3219 n0 -= 1;
3220 n1 = k1;
3221 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3222 n1 -= 1;
3223 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3224 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3225 }
3226 return (strcmp (N0, N1) < 0);
3227 }
3228 }
3229
3230 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3231 encoded names. */
3232
3233 static void
3234 sort_choices (struct ada_symbol_info syms[], int nsyms)
3235 {
3236 int i;
3237 for (i = 1; i < nsyms; i += 1)
3238 {
3239 struct ada_symbol_info sym = syms[i];
3240 int j;
3241
3242 for (j = i - 1; j >= 0; j -= 1)
3243 {
3244 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3245 SYMBOL_LINKAGE_NAME (sym.sym)))
3246 break;
3247 syms[j + 1] = syms[j];
3248 }
3249 syms[j + 1] = sym;
3250 }
3251 }
3252
3253 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3254 by asking the user (if necessary), returning the number selected,
3255 and setting the first elements of SYMS items. Error if no symbols
3256 selected. */
3257
3258 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3259 to be re-integrated one of these days. */
3260
3261 int
3262 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3263 {
3264 int i;
3265 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3266 int n_chosen;
3267 int first_choice = (max_results == 1) ? 1 : 2;
3268
3269 if (max_results < 1)
3270 error (_("Request to select 0 symbols!"));
3271 if (nsyms <= 1)
3272 return nsyms;
3273
3274 printf_unfiltered (_("[0] cancel\n"));
3275 if (max_results > 1)
3276 printf_unfiltered (_("[1] all\n"));
3277
3278 sort_choices (syms, nsyms);
3279
3280 for (i = 0; i < nsyms; i += 1)
3281 {
3282 if (syms[i].sym == NULL)
3283 continue;
3284
3285 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3286 {
3287 struct symtab_and_line sal =
3288 find_function_start_sal (syms[i].sym, 1);
3289 if (sal.symtab == NULL)
3290 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3291 i + first_choice,
3292 SYMBOL_PRINT_NAME (syms[i].sym),
3293 sal.line);
3294 else
3295 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3296 SYMBOL_PRINT_NAME (syms[i].sym),
3297 sal.symtab->filename, sal.line);
3298 continue;
3299 }
3300 else
3301 {
3302 int is_enumeral =
3303 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3304 && SYMBOL_TYPE (syms[i].sym) != NULL
3305 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3306 struct symtab *symtab = symtab_for_sym (syms[i].sym);
3307
3308 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3309 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3310 i + first_choice,
3311 SYMBOL_PRINT_NAME (syms[i].sym),
3312 symtab->filename, SYMBOL_LINE (syms[i].sym));
3313 else if (is_enumeral
3314 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3315 {
3316 printf_unfiltered (("[%d] "), i + first_choice);
3317 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3318 gdb_stdout, -1, 0);
3319 printf_unfiltered (_("'(%s) (enumeral)\n"),
3320 SYMBOL_PRINT_NAME (syms[i].sym));
3321 }
3322 else if (symtab != NULL)
3323 printf_unfiltered (is_enumeral
3324 ? _("[%d] %s in %s (enumeral)\n")
3325 : _("[%d] %s at %s:?\n"),
3326 i + first_choice,
3327 SYMBOL_PRINT_NAME (syms[i].sym),
3328 symtab->filename);
3329 else
3330 printf_unfiltered (is_enumeral
3331 ? _("[%d] %s (enumeral)\n")
3332 : _("[%d] %s at ?\n"),
3333 i + first_choice,
3334 SYMBOL_PRINT_NAME (syms[i].sym));
3335 }
3336 }
3337
3338 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3339 "overload-choice");
3340
3341 for (i = 0; i < n_chosen; i += 1)
3342 syms[i] = syms[chosen[i]];
3343
3344 return n_chosen;
3345 }
3346
3347 /* Read and validate a set of numeric choices from the user in the
3348 range 0 .. N_CHOICES-1. Place the results in increasing
3349 order in CHOICES[0 .. N-1], and return N.
3350
3351 The user types choices as a sequence of numbers on one line
3352 separated by blanks, encoding them as follows:
3353
3354 + A choice of 0 means to cancel the selection, throwing an error.
3355 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3356 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3357
3358 The user is not allowed to choose more than MAX_RESULTS values.
3359
3360 ANNOTATION_SUFFIX, if present, is used to annotate the input
3361 prompts (for use with the -f switch). */
3362
3363 int
3364 get_selections (int *choices, int n_choices, int max_results,
3365 int is_all_choice, char *annotation_suffix)
3366 {
3367 char *args;
3368 const char *prompt;
3369 int n_chosen;
3370 int first_choice = is_all_choice ? 2 : 1;
3371
3372 prompt = getenv ("PS2");
3373 if (prompt == NULL)
3374 prompt = ">";
3375
3376 printf_unfiltered (("%s "), prompt);
3377 gdb_flush (gdb_stdout);
3378
3379 args = command_line_input ((char *) NULL, 0, annotation_suffix);
3380
3381 if (args == NULL)
3382 error_no_arg (_("one or more choice numbers"));
3383
3384 n_chosen = 0;
3385
3386 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3387 order, as given in args. Choices are validated. */
3388 while (1)
3389 {
3390 char *args2;
3391 int choice, j;
3392
3393 while (isspace (*args))
3394 args += 1;
3395 if (*args == '\0' && n_chosen == 0)
3396 error_no_arg (_("one or more choice numbers"));
3397 else if (*args == '\0')
3398 break;
3399
3400 choice = strtol (args, &args2, 10);
3401 if (args == args2 || choice < 0
3402 || choice > n_choices + first_choice - 1)
3403 error (_("Argument must be choice number"));
3404 args = args2;
3405
3406 if (choice == 0)
3407 error (_("cancelled"));
3408
3409 if (choice < first_choice)
3410 {
3411 n_chosen = n_choices;
3412 for (j = 0; j < n_choices; j += 1)
3413 choices[j] = j;
3414 break;
3415 }
3416 choice -= first_choice;
3417
3418 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3419 {
3420 }
3421
3422 if (j < 0 || choice != choices[j])
3423 {
3424 int k;
3425 for (k = n_chosen - 1; k > j; k -= 1)
3426 choices[k + 1] = choices[k];
3427 choices[j + 1] = choice;
3428 n_chosen += 1;
3429 }
3430 }
3431
3432 if (n_chosen > max_results)
3433 error (_("Select no more than %d of the above"), max_results);
3434
3435 return n_chosen;
3436 }
3437
3438 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3439 on the function identified by SYM and BLOCK, and taking NARGS
3440 arguments. Update *EXPP as needed to hold more space. */
3441
3442 static void
3443 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3444 int oplen, struct symbol *sym,
3445 struct block *block)
3446 {
3447 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3448 symbol, -oplen for operator being replaced). */
3449 struct expression *newexp = (struct expression *)
3450 xmalloc (sizeof (struct expression)
3451 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3452 struct expression *exp = *expp;
3453
3454 newexp->nelts = exp->nelts + 7 - oplen;
3455 newexp->language_defn = exp->language_defn;
3456 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3457 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3458 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3459
3460 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3461 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3462
3463 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3464 newexp->elts[pc + 4].block = block;
3465 newexp->elts[pc + 5].symbol = sym;
3466
3467 *expp = newexp;
3468 xfree (exp);
3469 }
3470
3471 /* Type-class predicates */
3472
3473 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3474 or FLOAT). */
3475
3476 static int
3477 numeric_type_p (struct type *type)
3478 {
3479 if (type == NULL)
3480 return 0;
3481 else
3482 {
3483 switch (TYPE_CODE (type))
3484 {
3485 case TYPE_CODE_INT:
3486 case TYPE_CODE_FLT:
3487 return 1;
3488 case TYPE_CODE_RANGE:
3489 return (type == TYPE_TARGET_TYPE (type)
3490 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3491 default:
3492 return 0;
3493 }
3494 }
3495 }
3496
3497 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3498
3499 static int
3500 integer_type_p (struct type *type)
3501 {
3502 if (type == NULL)
3503 return 0;
3504 else
3505 {
3506 switch (TYPE_CODE (type))
3507 {
3508 case TYPE_CODE_INT:
3509 return 1;
3510 case TYPE_CODE_RANGE:
3511 return (type == TYPE_TARGET_TYPE (type)
3512 || integer_type_p (TYPE_TARGET_TYPE (type)));
3513 default:
3514 return 0;
3515 }
3516 }
3517 }
3518
3519 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3520
3521 static int
3522 scalar_type_p (struct type *type)
3523 {
3524 if (type == NULL)
3525 return 0;
3526 else
3527 {
3528 switch (TYPE_CODE (type))
3529 {
3530 case TYPE_CODE_INT:
3531 case TYPE_CODE_RANGE:
3532 case TYPE_CODE_ENUM:
3533 case TYPE_CODE_FLT:
3534 return 1;
3535 default:
3536 return 0;
3537 }
3538 }
3539 }
3540
3541 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3542
3543 static int
3544 discrete_type_p (struct type *type)
3545 {
3546 if (type == NULL)
3547 return 0;
3548 else
3549 {
3550 switch (TYPE_CODE (type))
3551 {
3552 case TYPE_CODE_INT:
3553 case TYPE_CODE_RANGE:
3554 case TYPE_CODE_ENUM:
3555 return 1;
3556 default:
3557 return 0;
3558 }
3559 }
3560 }
3561
3562 /* Returns non-zero if OP with operands in the vector ARGS could be
3563 a user-defined function. Errs on the side of pre-defined operators
3564 (i.e., result 0). */
3565
3566 static int
3567 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3568 {
3569 struct type *type0 =
3570 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3571 struct type *type1 =
3572 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3573
3574 if (type0 == NULL)
3575 return 0;
3576
3577 switch (op)
3578 {
3579 default:
3580 return 0;
3581
3582 case BINOP_ADD:
3583 case BINOP_SUB:
3584 case BINOP_MUL:
3585 case BINOP_DIV:
3586 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3587
3588 case BINOP_REM:
3589 case BINOP_MOD:
3590 case BINOP_BITWISE_AND:
3591 case BINOP_BITWISE_IOR:
3592 case BINOP_BITWISE_XOR:
3593 return (!(integer_type_p (type0) && integer_type_p (type1)));
3594
3595 case BINOP_EQUAL:
3596 case BINOP_NOTEQUAL:
3597 case BINOP_LESS:
3598 case BINOP_GTR:
3599 case BINOP_LEQ:
3600 case BINOP_GEQ:
3601 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3602
3603 case BINOP_CONCAT:
3604 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3605
3606 case BINOP_EXP:
3607 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3608
3609 case UNOP_NEG:
3610 case UNOP_PLUS:
3611 case UNOP_LOGICAL_NOT:
3612 case UNOP_ABS:
3613 return (!numeric_type_p (type0));
3614
3615 }
3616 }
3617 \f
3618 /* Renaming */
3619
3620 /* NOTES:
3621
3622 1. In the following, we assume that a renaming type's name may
3623 have an ___XD suffix. It would be nice if this went away at some
3624 point.
3625 2. We handle both the (old) purely type-based representation of
3626 renamings and the (new) variable-based encoding. At some point,
3627 it is devoutly to be hoped that the former goes away
3628 (FIXME: hilfinger-2007-07-09).
3629 3. Subprogram renamings are not implemented, although the XRS
3630 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3631
3632 /* If SYM encodes a renaming,
3633
3634 <renaming> renames <renamed entity>,
3635
3636 sets *LEN to the length of the renamed entity's name,
3637 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3638 the string describing the subcomponent selected from the renamed
3639 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3640 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3641 are undefined). Otherwise, returns a value indicating the category
3642 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3643 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3644 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3645 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3646 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3647 may be NULL, in which case they are not assigned.
3648
3649 [Currently, however, GCC does not generate subprogram renamings.] */
3650
3651 enum ada_renaming_category
3652 ada_parse_renaming (struct symbol *sym,
3653 const char **renamed_entity, int *len,
3654 const char **renaming_expr)
3655 {
3656 enum ada_renaming_category kind;
3657 const char *info;
3658 const char *suffix;
3659
3660 if (sym == NULL)
3661 return ADA_NOT_RENAMING;
3662 switch (SYMBOL_CLASS (sym))
3663 {
3664 default:
3665 return ADA_NOT_RENAMING;
3666 case LOC_TYPEDEF:
3667 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3668 renamed_entity, len, renaming_expr);
3669 case LOC_LOCAL:
3670 case LOC_STATIC:
3671 case LOC_COMPUTED:
3672 case LOC_OPTIMIZED_OUT:
3673 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3674 if (info == NULL)
3675 return ADA_NOT_RENAMING;
3676 switch (info[5])
3677 {
3678 case '_':
3679 kind = ADA_OBJECT_RENAMING;
3680 info += 6;
3681 break;
3682 case 'E':
3683 kind = ADA_EXCEPTION_RENAMING;
3684 info += 7;
3685 break;
3686 case 'P':
3687 kind = ADA_PACKAGE_RENAMING;
3688 info += 7;
3689 break;
3690 case 'S':
3691 kind = ADA_SUBPROGRAM_RENAMING;
3692 info += 7;
3693 break;
3694 default:
3695 return ADA_NOT_RENAMING;
3696 }
3697 }
3698
3699 if (renamed_entity != NULL)
3700 *renamed_entity = info;
3701 suffix = strstr (info, "___XE");
3702 if (suffix == NULL || suffix == info)
3703 return ADA_NOT_RENAMING;
3704 if (len != NULL)
3705 *len = strlen (info) - strlen (suffix);
3706 suffix += 5;
3707 if (renaming_expr != NULL)
3708 *renaming_expr = suffix;
3709 return kind;
3710 }
3711
3712 /* Assuming TYPE encodes a renaming according to the old encoding in
3713 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3714 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3715 ADA_NOT_RENAMING otherwise. */
3716 static enum ada_renaming_category
3717 parse_old_style_renaming (struct type *type,
3718 const char **renamed_entity, int *len,
3719 const char **renaming_expr)
3720 {
3721 enum ada_renaming_category kind;
3722 const char *name;
3723 const char *info;
3724 const char *suffix;
3725
3726 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
3727 || TYPE_NFIELDS (type) != 1)
3728 return ADA_NOT_RENAMING;
3729
3730 name = type_name_no_tag (type);
3731 if (name == NULL)
3732 return ADA_NOT_RENAMING;
3733
3734 name = strstr (name, "___XR");
3735 if (name == NULL)
3736 return ADA_NOT_RENAMING;
3737 switch (name[5])
3738 {
3739 case '\0':
3740 case '_':
3741 kind = ADA_OBJECT_RENAMING;
3742 break;
3743 case 'E':
3744 kind = ADA_EXCEPTION_RENAMING;
3745 break;
3746 case 'P':
3747 kind = ADA_PACKAGE_RENAMING;
3748 break;
3749 case 'S':
3750 kind = ADA_SUBPROGRAM_RENAMING;
3751 break;
3752 default:
3753 return ADA_NOT_RENAMING;
3754 }
3755
3756 info = TYPE_FIELD_NAME (type, 0);
3757 if (info == NULL)
3758 return ADA_NOT_RENAMING;
3759 if (renamed_entity != NULL)
3760 *renamed_entity = info;
3761 suffix = strstr (info, "___XE");
3762 if (renaming_expr != NULL)
3763 *renaming_expr = suffix + 5;
3764 if (suffix == NULL || suffix == info)
3765 return ADA_NOT_RENAMING;
3766 if (len != NULL)
3767 *len = suffix - info;
3768 return kind;
3769 }
3770
3771 \f
3772
3773 /* Evaluation: Function Calls */
3774
3775 /* Return an lvalue containing the value VAL. This is the identity on
3776 lvalues, and otherwise has the side-effect of pushing a copy of VAL
3777 on the stack, using and updating *SP as the stack pointer, and
3778 returning an lvalue whose VALUE_ADDRESS points to the copy. */
3779
3780 static struct value *
3781 ensure_lval (struct value *val, CORE_ADDR *sp)
3782 {
3783 if (! VALUE_LVAL (val))
3784 {
3785 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
3786
3787 /* The following is taken from the structure-return code in
3788 call_function_by_hand. FIXME: Therefore, some refactoring seems
3789 indicated. */
3790 if (gdbarch_inner_than (current_gdbarch, 1, 2))
3791 {
3792 /* Stack grows downward. Align SP and VALUE_ADDRESS (val) after
3793 reserving sufficient space. */
3794 *sp -= len;
3795 if (gdbarch_frame_align_p (current_gdbarch))
3796 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3797 VALUE_ADDRESS (val) = *sp;
3798 }
3799 else
3800 {
3801 /* Stack grows upward. Align the frame, allocate space, and
3802 then again, re-align the frame. */
3803 if (gdbarch_frame_align_p (current_gdbarch))
3804 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3805 VALUE_ADDRESS (val) = *sp;
3806 *sp += len;
3807 if (gdbarch_frame_align_p (current_gdbarch))
3808 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3809 }
3810
3811 write_memory (VALUE_ADDRESS (val), value_contents_raw (val), len);
3812 }
3813
3814 return val;
3815 }
3816
3817 /* Return the value ACTUAL, converted to be an appropriate value for a
3818 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3819 allocating any necessary descriptors (fat pointers), or copies of
3820 values not residing in memory, updating it as needed. */
3821
3822 static struct value *
3823 convert_actual (struct value *actual, struct type *formal_type0,
3824 CORE_ADDR *sp)
3825 {
3826 struct type *actual_type = ada_check_typedef (value_type (actual));
3827 struct type *formal_type = ada_check_typedef (formal_type0);
3828 struct type *formal_target =
3829 TYPE_CODE (formal_type) == TYPE_CODE_PTR
3830 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
3831 struct type *actual_target =
3832 TYPE_CODE (actual_type) == TYPE_CODE_PTR
3833 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
3834
3835 if (ada_is_array_descriptor_type (formal_target)
3836 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
3837 return make_array_descriptor (formal_type, actual, sp);
3838 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR)
3839 {
3840 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
3841 && ada_is_array_descriptor_type (actual_target))
3842 return desc_data (actual);
3843 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
3844 {
3845 if (VALUE_LVAL (actual) != lval_memory)
3846 {
3847 struct value *val;
3848 actual_type = ada_check_typedef (value_type (actual));
3849 val = allocate_value (actual_type);
3850 memcpy ((char *) value_contents_raw (val),
3851 (char *) value_contents (actual),
3852 TYPE_LENGTH (actual_type));
3853 actual = ensure_lval (val, sp);
3854 }
3855 return value_addr (actual);
3856 }
3857 }
3858 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
3859 return ada_value_ind (actual);
3860
3861 return actual;
3862 }
3863
3864
3865 /* Push a descriptor of type TYPE for array value ARR on the stack at
3866 *SP, updating *SP to reflect the new descriptor. Return either
3867 an lvalue representing the new descriptor, or (if TYPE is a pointer-
3868 to-descriptor type rather than a descriptor type), a struct value *
3869 representing a pointer to this descriptor. */
3870
3871 static struct value *
3872 make_array_descriptor (struct type *type, struct value *arr, CORE_ADDR *sp)
3873 {
3874 struct type *bounds_type = desc_bounds_type (type);
3875 struct type *desc_type = desc_base_type (type);
3876 struct value *descriptor = allocate_value (desc_type);
3877 struct value *bounds = allocate_value (bounds_type);
3878 int i;
3879
3880 for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1)
3881 {
3882 modify_general_field (value_contents_writeable (bounds),
3883 value_as_long (ada_array_bound (arr, i, 0)),
3884 desc_bound_bitpos (bounds_type, i, 0),
3885 desc_bound_bitsize (bounds_type, i, 0));
3886 modify_general_field (value_contents_writeable (bounds),
3887 value_as_long (ada_array_bound (arr, i, 1)),
3888 desc_bound_bitpos (bounds_type, i, 1),
3889 desc_bound_bitsize (bounds_type, i, 1));
3890 }
3891
3892 bounds = ensure_lval (bounds, sp);
3893
3894 modify_general_field (value_contents_writeable (descriptor),
3895 VALUE_ADDRESS (ensure_lval (arr, sp)),
3896 fat_pntr_data_bitpos (desc_type),
3897 fat_pntr_data_bitsize (desc_type));
3898
3899 modify_general_field (value_contents_writeable (descriptor),
3900 VALUE_ADDRESS (bounds),
3901 fat_pntr_bounds_bitpos (desc_type),
3902 fat_pntr_bounds_bitsize (desc_type));
3903
3904 descriptor = ensure_lval (descriptor, sp);
3905
3906 if (TYPE_CODE (type) == TYPE_CODE_PTR)
3907 return value_addr (descriptor);
3908 else
3909 return descriptor;
3910 }
3911
3912
3913 /* Assuming a dummy frame has been established on the target, perform any
3914 conversions needed for calling function FUNC on the NARGS actual
3915 parameters in ARGS, other than standard C conversions. Does
3916 nothing if FUNC does not have Ada-style prototype data, or if NARGS
3917 does not match the number of arguments expected. Use *SP as a
3918 stack pointer for additional data that must be pushed, updating its
3919 value as needed. */
3920
3921 void
3922 ada_convert_actuals (struct value *func, int nargs, struct value *args[],
3923 CORE_ADDR *sp)
3924 {
3925 int i;
3926
3927 if (TYPE_NFIELDS (value_type (func)) == 0
3928 || nargs != TYPE_NFIELDS (value_type (func)))
3929 return;
3930
3931 for (i = 0; i < nargs; i += 1)
3932 args[i] =
3933 convert_actual (args[i], TYPE_FIELD_TYPE (value_type (func), i), sp);
3934 }
3935 \f
3936 /* Dummy definitions for an experimental caching module that is not
3937 * used in the public sources. */
3938
3939 static int
3940 lookup_cached_symbol (const char *name, domain_enum namespace,
3941 struct symbol **sym, struct block **block,
3942 struct symtab **symtab)
3943 {
3944 return 0;
3945 }
3946
3947 static void
3948 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
3949 struct block *block, struct symtab *symtab)
3950 {
3951 }
3952 \f
3953 /* Symbol Lookup */
3954
3955 /* Return the result of a standard (literal, C-like) lookup of NAME in
3956 given DOMAIN, visible from lexical block BLOCK. */
3957
3958 static struct symbol *
3959 standard_lookup (const char *name, const struct block *block,
3960 domain_enum domain)
3961 {
3962 struct symbol *sym;
3963 struct symtab *symtab;
3964
3965 if (lookup_cached_symbol (name, domain, &sym, NULL, NULL))
3966 return sym;
3967 sym =
3968 lookup_symbol_in_language (name, block, domain, language_c, 0, &symtab);
3969 cache_symbol (name, domain, sym, block_found, symtab);
3970 return sym;
3971 }
3972
3973
3974 /* Non-zero iff there is at least one non-function/non-enumeral symbol
3975 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
3976 since they contend in overloading in the same way. */
3977 static int
3978 is_nonfunction (struct ada_symbol_info syms[], int n)
3979 {
3980 int i;
3981
3982 for (i = 0; i < n; i += 1)
3983 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
3984 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
3985 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
3986 return 1;
3987
3988 return 0;
3989 }
3990
3991 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
3992 struct types. Otherwise, they may not. */
3993
3994 static int
3995 equiv_types (struct type *type0, struct type *type1)
3996 {
3997 if (type0 == type1)
3998 return 1;
3999 if (type0 == NULL || type1 == NULL
4000 || TYPE_CODE (type0) != TYPE_CODE (type1))
4001 return 0;
4002 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4003 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4004 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4005 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4006 return 1;
4007
4008 return 0;
4009 }
4010
4011 /* True iff SYM0 represents the same entity as SYM1, or one that is
4012 no more defined than that of SYM1. */
4013
4014 static int
4015 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4016 {
4017 if (sym0 == sym1)
4018 return 1;
4019 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4020 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4021 return 0;
4022
4023 switch (SYMBOL_CLASS (sym0))
4024 {
4025 case LOC_UNDEF:
4026 return 1;
4027 case LOC_TYPEDEF:
4028 {
4029 struct type *type0 = SYMBOL_TYPE (sym0);
4030 struct type *type1 = SYMBOL_TYPE (sym1);
4031 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4032 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4033 int len0 = strlen (name0);
4034 return
4035 TYPE_CODE (type0) == TYPE_CODE (type1)
4036 && (equiv_types (type0, type1)
4037 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4038 && strncmp (name1 + len0, "___XV", 5) == 0));
4039 }
4040 case LOC_CONST:
4041 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4042 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4043 default:
4044 return 0;
4045 }
4046 }
4047
4048 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4049 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4050
4051 static void
4052 add_defn_to_vec (struct obstack *obstackp,
4053 struct symbol *sym,
4054 struct block *block, struct symtab *symtab)
4055 {
4056 int i;
4057 size_t tmp;
4058 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4059
4060 /* Do not try to complete stub types, as the debugger is probably
4061 already scanning all symbols matching a certain name at the
4062 time when this function is called. Trying to replace the stub
4063 type by its associated full type will cause us to restart a scan
4064 which may lead to an infinite recursion. Instead, the client
4065 collecting the matching symbols will end up collecting several
4066 matches, with at least one of them complete. It can then filter
4067 out the stub ones if needed. */
4068
4069 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4070 {
4071 if (lesseq_defined_than (sym, prevDefns[i].sym))
4072 return;
4073 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4074 {
4075 prevDefns[i].sym = sym;
4076 prevDefns[i].block = block;
4077 prevDefns[i].symtab = symtab;
4078 return;
4079 }
4080 }
4081
4082 {
4083 struct ada_symbol_info info;
4084
4085 info.sym = sym;
4086 info.block = block;
4087 info.symtab = symtab;
4088 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4089 }
4090 }
4091
4092 /* Number of ada_symbol_info structures currently collected in
4093 current vector in *OBSTACKP. */
4094
4095 static int
4096 num_defns_collected (struct obstack *obstackp)
4097 {
4098 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4099 }
4100
4101 /* Vector of ada_symbol_info structures currently collected in current
4102 vector in *OBSTACKP. If FINISH, close off the vector and return
4103 its final address. */
4104
4105 static struct ada_symbol_info *
4106 defns_collected (struct obstack *obstackp, int finish)
4107 {
4108 if (finish)
4109 return obstack_finish (obstackp);
4110 else
4111 return (struct ada_symbol_info *) obstack_base (obstackp);
4112 }
4113
4114 /* Look, in partial_symtab PST, for symbol NAME in given namespace.
4115 Check the global symbols if GLOBAL, the static symbols if not.
4116 Do wild-card match if WILD. */
4117
4118 static struct partial_symbol *
4119 ada_lookup_partial_symbol (struct partial_symtab *pst, const char *name,
4120 int global, domain_enum namespace, int wild)
4121 {
4122 struct partial_symbol **start;
4123 int name_len = strlen (name);
4124 int length = (global ? pst->n_global_syms : pst->n_static_syms);
4125 int i;
4126
4127 if (length == 0)
4128 {
4129 return (NULL);
4130 }
4131
4132 start = (global ?
4133 pst->objfile->global_psymbols.list + pst->globals_offset :
4134 pst->objfile->static_psymbols.list + pst->statics_offset);
4135
4136 if (wild)
4137 {
4138 for (i = 0; i < length; i += 1)
4139 {
4140 struct partial_symbol *psym = start[i];
4141
4142 if (SYMBOL_DOMAIN (psym) == namespace
4143 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (psym)))
4144 return psym;
4145 }
4146 return NULL;
4147 }
4148 else
4149 {
4150 if (global)
4151 {
4152 int U;
4153 i = 0;
4154 U = length - 1;
4155 while (U - i > 4)
4156 {
4157 int M = (U + i) >> 1;
4158 struct partial_symbol *psym = start[M];
4159 if (SYMBOL_LINKAGE_NAME (psym)[0] < name[0])
4160 i = M + 1;
4161 else if (SYMBOL_LINKAGE_NAME (psym)[0] > name[0])
4162 U = M - 1;
4163 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), name) < 0)
4164 i = M + 1;
4165 else
4166 U = M;
4167 }
4168 }
4169 else
4170 i = 0;
4171
4172 while (i < length)
4173 {
4174 struct partial_symbol *psym = start[i];
4175
4176 if (SYMBOL_DOMAIN (psym) == namespace)
4177 {
4178 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym), name_len);
4179
4180 if (cmp < 0)
4181 {
4182 if (global)
4183 break;
4184 }
4185 else if (cmp == 0
4186 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4187 + name_len))
4188 return psym;
4189 }
4190 i += 1;
4191 }
4192
4193 if (global)
4194 {
4195 int U;
4196 i = 0;
4197 U = length - 1;
4198 while (U - i > 4)
4199 {
4200 int M = (U + i) >> 1;
4201 struct partial_symbol *psym = start[M];
4202 if (SYMBOL_LINKAGE_NAME (psym)[0] < '_')
4203 i = M + 1;
4204 else if (SYMBOL_LINKAGE_NAME (psym)[0] > '_')
4205 U = M - 1;
4206 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), "_ada_") < 0)
4207 i = M + 1;
4208 else
4209 U = M;
4210 }
4211 }
4212 else
4213 i = 0;
4214
4215 while (i < length)
4216 {
4217 struct partial_symbol *psym = start[i];
4218
4219 if (SYMBOL_DOMAIN (psym) == namespace)
4220 {
4221 int cmp;
4222
4223 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (psym)[0];
4224 if (cmp == 0)
4225 {
4226 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (psym), 5);
4227 if (cmp == 0)
4228 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym) + 5,
4229 name_len);
4230 }
4231
4232 if (cmp < 0)
4233 {
4234 if (global)
4235 break;
4236 }
4237 else if (cmp == 0
4238 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4239 + name_len + 5))
4240 return psym;
4241 }
4242 i += 1;
4243 }
4244 }
4245 return NULL;
4246 }
4247
4248 /* Find a symbol table containing symbol SYM or NULL if none. */
4249
4250 static struct symtab *
4251 symtab_for_sym (struct symbol *sym)
4252 {
4253 struct symtab *s;
4254 struct objfile *objfile;
4255 struct block *b;
4256 struct symbol *tmp_sym;
4257 struct dict_iterator iter;
4258 int j;
4259
4260 ALL_PRIMARY_SYMTABS (objfile, s)
4261 {
4262 switch (SYMBOL_CLASS (sym))
4263 {
4264 case LOC_CONST:
4265 case LOC_STATIC:
4266 case LOC_TYPEDEF:
4267 case LOC_REGISTER:
4268 case LOC_LABEL:
4269 case LOC_BLOCK:
4270 case LOC_CONST_BYTES:
4271 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4272 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4273 return s;
4274 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4275 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4276 return s;
4277 break;
4278 default:
4279 break;
4280 }
4281 switch (SYMBOL_CLASS (sym))
4282 {
4283 case LOC_REGISTER:
4284 case LOC_ARG:
4285 case LOC_REF_ARG:
4286 case LOC_REGPARM:
4287 case LOC_REGPARM_ADDR:
4288 case LOC_LOCAL:
4289 case LOC_TYPEDEF:
4290 case LOC_LOCAL_ARG:
4291 case LOC_BASEREG:
4292 case LOC_BASEREG_ARG:
4293 case LOC_COMPUTED:
4294 case LOC_COMPUTED_ARG:
4295 for (j = FIRST_LOCAL_BLOCK;
4296 j < BLOCKVECTOR_NBLOCKS (BLOCKVECTOR (s)); j += 1)
4297 {
4298 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), j);
4299 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4300 return s;
4301 }
4302 break;
4303 default:
4304 break;
4305 }
4306 }
4307 return NULL;
4308 }
4309
4310 /* Return a minimal symbol matching NAME according to Ada decoding
4311 rules. Returns NULL if there is no such minimal symbol. Names
4312 prefixed with "standard__" are handled specially: "standard__" is
4313 first stripped off, and only static and global symbols are searched. */
4314
4315 struct minimal_symbol *
4316 ada_lookup_simple_minsym (const char *name)
4317 {
4318 struct objfile *objfile;
4319 struct minimal_symbol *msymbol;
4320 int wild_match;
4321
4322 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4323 {
4324 name += sizeof ("standard__") - 1;
4325 wild_match = 0;
4326 }
4327 else
4328 wild_match = (strstr (name, "__") == NULL);
4329
4330 ALL_MSYMBOLS (objfile, msymbol)
4331 {
4332 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4333 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4334 return msymbol;
4335 }
4336
4337 return NULL;
4338 }
4339
4340 /* For all subprograms that statically enclose the subprogram of the
4341 selected frame, add symbols matching identifier NAME in DOMAIN
4342 and their blocks to the list of data in OBSTACKP, as for
4343 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4344 wildcard prefix. */
4345
4346 static void
4347 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4348 const char *name, domain_enum namespace,
4349 int wild_match)
4350 {
4351 }
4352
4353 /* True if TYPE is definitely an artificial type supplied to a symbol
4354 for which no debugging information was given in the symbol file. */
4355
4356 static int
4357 is_nondebugging_type (struct type *type)
4358 {
4359 char *name = ada_type_name (type);
4360 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4361 }
4362
4363 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4364 duplicate other symbols in the list (The only case I know of where
4365 this happens is when object files containing stabs-in-ecoff are
4366 linked with files containing ordinary ecoff debugging symbols (or no
4367 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4368 Returns the number of items in the modified list. */
4369
4370 static int
4371 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4372 {
4373 int i, j;
4374
4375 i = 0;
4376 while (i < nsyms)
4377 {
4378 if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4379 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4380 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4381 {
4382 for (j = 0; j < nsyms; j += 1)
4383 {
4384 if (i != j
4385 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4386 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4387 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4388 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4389 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4390 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4391 {
4392 int k;
4393 for (k = i + 1; k < nsyms; k += 1)
4394 syms[k - 1] = syms[k];
4395 nsyms -= 1;
4396 goto NextSymbol;
4397 }
4398 }
4399 }
4400 i += 1;
4401 NextSymbol:
4402 ;
4403 }
4404 return nsyms;
4405 }
4406
4407 /* Given a type that corresponds to a renaming entity, use the type name
4408 to extract the scope (package name or function name, fully qualified,
4409 and following the GNAT encoding convention) where this renaming has been
4410 defined. The string returned needs to be deallocated after use. */
4411
4412 static char *
4413 xget_renaming_scope (struct type *renaming_type)
4414 {
4415 /* The renaming types adhere to the following convention:
4416 <scope>__<rename>___<XR extension>.
4417 So, to extract the scope, we search for the "___XR" extension,
4418 and then backtrack until we find the first "__". */
4419
4420 const char *name = type_name_no_tag (renaming_type);
4421 char *suffix = strstr (name, "___XR");
4422 char *last;
4423 int scope_len;
4424 char *scope;
4425
4426 /* Now, backtrack a bit until we find the first "__". Start looking
4427 at suffix - 3, as the <rename> part is at least one character long. */
4428
4429 for (last = suffix - 3; last > name; last--)
4430 if (last[0] == '_' && last[1] == '_')
4431 break;
4432
4433 /* Make a copy of scope and return it. */
4434
4435 scope_len = last - name;
4436 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4437
4438 strncpy (scope, name, scope_len);
4439 scope[scope_len] = '\0';
4440
4441 return scope;
4442 }
4443
4444 /* Return nonzero if NAME corresponds to a package name. */
4445
4446 static int
4447 is_package_name (const char *name)
4448 {
4449 /* Here, We take advantage of the fact that no symbols are generated
4450 for packages, while symbols are generated for each function.
4451 So the condition for NAME represent a package becomes equivalent
4452 to NAME not existing in our list of symbols. There is only one
4453 small complication with library-level functions (see below). */
4454
4455 char *fun_name;
4456
4457 /* If it is a function that has not been defined at library level,
4458 then we should be able to look it up in the symbols. */
4459 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4460 return 0;
4461
4462 /* Library-level function names start with "_ada_". See if function
4463 "_ada_" followed by NAME can be found. */
4464
4465 /* Do a quick check that NAME does not contain "__", since library-level
4466 functions names cannot contain "__" in them. */
4467 if (strstr (name, "__") != NULL)
4468 return 0;
4469
4470 fun_name = xstrprintf ("_ada_%s", name);
4471
4472 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4473 }
4474
4475 /* Return nonzero if SYM corresponds to a renaming entity that is
4476 not visible from FUNCTION_NAME. */
4477
4478 static int
4479 old_renaming_is_invisible (const struct symbol *sym, char *function_name)
4480 {
4481 char *scope;
4482
4483 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4484 return 0;
4485
4486 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4487
4488 make_cleanup (xfree, scope);
4489
4490 /* If the rename has been defined in a package, then it is visible. */
4491 if (is_package_name (scope))
4492 return 0;
4493
4494 /* Check that the rename is in the current function scope by checking
4495 that its name starts with SCOPE. */
4496
4497 /* If the function name starts with "_ada_", it means that it is
4498 a library-level function. Strip this prefix before doing the
4499 comparison, as the encoding for the renaming does not contain
4500 this prefix. */
4501 if (strncmp (function_name, "_ada_", 5) == 0)
4502 function_name += 5;
4503
4504 return (strncmp (function_name, scope, strlen (scope)) != 0);
4505 }
4506
4507 /* Remove entries from SYMS that corresponds to a renaming entity that
4508 is not visible from the function associated with CURRENT_BLOCK or
4509 that is superfluous due to the presence of more specific renaming
4510 information. Places surviving symbols in the initial entries of
4511 SYMS and returns the number of surviving symbols.
4512
4513 Rationale:
4514 First, in cases where an object renaming is implemented as a
4515 reference variable, GNAT may produce both the actual reference
4516 variable and the renaming encoding. In this case, we discard the
4517 latter.
4518
4519 Second, GNAT emits a type following a specified encoding for each renaming
4520 entity. Unfortunately, STABS currently does not support the definition
4521 of types that are local to a given lexical block, so all renamings types
4522 are emitted at library level. As a consequence, if an application
4523 contains two renaming entities using the same name, and a user tries to
4524 print the value of one of these entities, the result of the ada symbol
4525 lookup will also contain the wrong renaming type.
4526
4527 This function partially covers for this limitation by attempting to
4528 remove from the SYMS list renaming symbols that should be visible
4529 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4530 method with the current information available. The implementation
4531 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4532
4533 - When the user tries to print a rename in a function while there
4534 is another rename entity defined in a package: Normally, the
4535 rename in the function has precedence over the rename in the
4536 package, so the latter should be removed from the list. This is
4537 currently not the case.
4538
4539 - This function will incorrectly remove valid renames if
4540 the CURRENT_BLOCK corresponds to a function which symbol name
4541 has been changed by an "Export" pragma. As a consequence,
4542 the user will be unable to print such rename entities. */
4543
4544 static int
4545 remove_irrelevant_renamings (struct ada_symbol_info *syms,
4546 int nsyms, const struct block *current_block)
4547 {
4548 struct symbol *current_function;
4549 char *current_function_name;
4550 int i;
4551 int is_new_style_renaming;
4552
4553 /* If there is both a renaming foo___XR... encoded as a variable and
4554 a simple variable foo in the same block, discard the latter.
4555 First, zero out such symbols, then compress. */
4556 is_new_style_renaming = 0;
4557 for (i = 0; i < nsyms; i += 1)
4558 {
4559 struct symbol *sym = syms[i].sym;
4560 struct block *block = syms[i].block;
4561 const char *name;
4562 const char *suffix;
4563
4564 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4565 continue;
4566 name = SYMBOL_LINKAGE_NAME (sym);
4567 suffix = strstr (name, "___XR");
4568
4569 if (suffix != NULL)
4570 {
4571 int name_len = suffix - name;
4572 int j;
4573 is_new_style_renaming = 1;
4574 for (j = 0; j < nsyms; j += 1)
4575 if (i != j && syms[j].sym != NULL
4576 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4577 name_len) == 0
4578 && block == syms[j].block)
4579 syms[j].sym = NULL;
4580 }
4581 }
4582 if (is_new_style_renaming)
4583 {
4584 int j, k;
4585
4586 for (j = k = 0; j < nsyms; j += 1)
4587 if (syms[j].sym != NULL)
4588 {
4589 syms[k] = syms[j];
4590 k += 1;
4591 }
4592 return k;
4593 }
4594
4595 /* Extract the function name associated to CURRENT_BLOCK.
4596 Abort if unable to do so. */
4597
4598 if (current_block == NULL)
4599 return nsyms;
4600
4601 current_function = block_function (current_block);
4602 if (current_function == NULL)
4603 return nsyms;
4604
4605 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4606 if (current_function_name == NULL)
4607 return nsyms;
4608
4609 /* Check each of the symbols, and remove it from the list if it is
4610 a type corresponding to a renaming that is out of the scope of
4611 the current block. */
4612
4613 i = 0;
4614 while (i < nsyms)
4615 {
4616 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4617 == ADA_OBJECT_RENAMING
4618 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4619 {
4620 int j;
4621 for (j = i + 1; j < nsyms; j += 1)
4622 syms[j - 1] = syms[j];
4623 nsyms -= 1;
4624 }
4625 else
4626 i += 1;
4627 }
4628
4629 return nsyms;
4630 }
4631
4632 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4633 scope and in global scopes, returning the number of matches. Sets
4634 *RESULTS to point to a vector of (SYM,BLOCK,SYMTAB) triples,
4635 indicating the symbols found and the blocks and symbol tables (if
4636 any) in which they were found. This vector are transient---good only to
4637 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4638 symbol match within the nest of blocks whose innermost member is BLOCK0,
4639 is the one match returned (no other matches in that or
4640 enclosing blocks is returned). If there are any matches in or
4641 surrounding BLOCK0, then these alone are returned. Otherwise, the
4642 search extends to global and file-scope (static) symbol tables.
4643 Names prefixed with "standard__" are handled specially: "standard__"
4644 is first stripped off, and only static and global symbols are searched. */
4645
4646 int
4647 ada_lookup_symbol_list (const char *name0, const struct block *block0,
4648 domain_enum namespace,
4649 struct ada_symbol_info **results)
4650 {
4651 struct symbol *sym;
4652 struct symtab *s;
4653 struct partial_symtab *ps;
4654 struct blockvector *bv;
4655 struct objfile *objfile;
4656 struct block *block;
4657 const char *name;
4658 struct minimal_symbol *msymbol;
4659 int wild_match;
4660 int cacheIfUnique;
4661 int block_depth;
4662 int ndefns;
4663
4664 obstack_free (&symbol_list_obstack, NULL);
4665 obstack_init (&symbol_list_obstack);
4666
4667 cacheIfUnique = 0;
4668
4669 /* Search specified block and its superiors. */
4670
4671 wild_match = (strstr (name0, "__") == NULL);
4672 name = name0;
4673 block = (struct block *) block0; /* FIXME: No cast ought to be
4674 needed, but adding const will
4675 have a cascade effect. */
4676 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4677 {
4678 wild_match = 0;
4679 block = NULL;
4680 name = name0 + sizeof ("standard__") - 1;
4681 }
4682
4683 block_depth = 0;
4684 while (block != NULL)
4685 {
4686 block_depth += 1;
4687 ada_add_block_symbols (&symbol_list_obstack, block, name,
4688 namespace, NULL, NULL, wild_match);
4689
4690 /* If we found a non-function match, assume that's the one. */
4691 if (is_nonfunction (defns_collected (&symbol_list_obstack, 0),
4692 num_defns_collected (&symbol_list_obstack)))
4693 goto done;
4694
4695 block = BLOCK_SUPERBLOCK (block);
4696 }
4697
4698 /* If no luck so far, try to find NAME as a local symbol in some lexically
4699 enclosing subprogram. */
4700 if (num_defns_collected (&symbol_list_obstack) == 0 && block_depth > 2)
4701 add_symbols_from_enclosing_procs (&symbol_list_obstack,
4702 name, namespace, wild_match);
4703
4704 /* If we found ANY matches among non-global symbols, we're done. */
4705
4706 if (num_defns_collected (&symbol_list_obstack) > 0)
4707 goto done;
4708
4709 cacheIfUnique = 1;
4710 if (lookup_cached_symbol (name0, namespace, &sym, &block, &s))
4711 {
4712 if (sym != NULL)
4713 add_defn_to_vec (&symbol_list_obstack, sym, block, s);
4714 goto done;
4715 }
4716
4717 /* Now add symbols from all global blocks: symbol tables, minimal symbol
4718 tables, and psymtab's. */
4719
4720 ALL_PRIMARY_SYMTABS (objfile, s)
4721 {
4722 QUIT;
4723 bv = BLOCKVECTOR (s);
4724 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4725 ada_add_block_symbols (&symbol_list_obstack, block, name, namespace,
4726 objfile, s, wild_match);
4727 }
4728
4729 if (namespace == VAR_DOMAIN)
4730 {
4731 ALL_MSYMBOLS (objfile, msymbol)
4732 {
4733 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match))
4734 {
4735 switch (MSYMBOL_TYPE (msymbol))
4736 {
4737 case mst_solib_trampoline:
4738 break;
4739 default:
4740 s = find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol));
4741 if (s != NULL)
4742 {
4743 int ndefns0 = num_defns_collected (&symbol_list_obstack);
4744 QUIT;
4745 bv = BLOCKVECTOR (s);
4746 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4747 ada_add_block_symbols (&symbol_list_obstack, block,
4748 SYMBOL_LINKAGE_NAME (msymbol),
4749 namespace, objfile, s, wild_match);
4750
4751 if (num_defns_collected (&symbol_list_obstack) == ndefns0)
4752 {
4753 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4754 ada_add_block_symbols (&symbol_list_obstack, block,
4755 SYMBOL_LINKAGE_NAME (msymbol),
4756 namespace, objfile, s,
4757 wild_match);
4758 }
4759 }
4760 }
4761 }
4762 }
4763 }
4764
4765 ALL_PSYMTABS (objfile, ps)
4766 {
4767 QUIT;
4768 if (!ps->readin
4769 && ada_lookup_partial_symbol (ps, name, 1, namespace, wild_match))
4770 {
4771 s = PSYMTAB_TO_SYMTAB (ps);
4772 if (!s->primary)
4773 continue;
4774 bv = BLOCKVECTOR (s);
4775 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4776 ada_add_block_symbols (&symbol_list_obstack, block, name,
4777 namespace, objfile, s, wild_match);
4778 }
4779 }
4780
4781 /* Now add symbols from all per-file blocks if we've gotten no hits
4782 (Not strictly correct, but perhaps better than an error).
4783 Do the symtabs first, then check the psymtabs. */
4784
4785 if (num_defns_collected (&symbol_list_obstack) == 0)
4786 {
4787
4788 ALL_PRIMARY_SYMTABS (objfile, s)
4789 {
4790 QUIT;
4791 bv = BLOCKVECTOR (s);
4792 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4793 ada_add_block_symbols (&symbol_list_obstack, block, name, namespace,
4794 objfile, s, wild_match);
4795 }
4796
4797 ALL_PSYMTABS (objfile, ps)
4798 {
4799 QUIT;
4800 if (!ps->readin
4801 && ada_lookup_partial_symbol (ps, name, 0, namespace, wild_match))
4802 {
4803 s = PSYMTAB_TO_SYMTAB (ps);
4804 bv = BLOCKVECTOR (s);
4805 if (!s->primary)
4806 continue;
4807 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4808 ada_add_block_symbols (&symbol_list_obstack, block, name,
4809 namespace, objfile, s, wild_match);
4810 }
4811 }
4812 }
4813
4814 done:
4815 ndefns = num_defns_collected (&symbol_list_obstack);
4816 *results = defns_collected (&symbol_list_obstack, 1);
4817
4818 ndefns = remove_extra_symbols (*results, ndefns);
4819
4820 if (ndefns == 0)
4821 cache_symbol (name0, namespace, NULL, NULL, NULL);
4822
4823 if (ndefns == 1 && cacheIfUnique)
4824 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block,
4825 (*results)[0].symtab);
4826
4827 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
4828
4829 return ndefns;
4830 }
4831
4832 struct symbol *
4833 ada_lookup_encoded_symbol (const char *name, const struct block *block0,
4834 domain_enum namespace,
4835 struct block **block_found, struct symtab **symtab)
4836 {
4837 struct ada_symbol_info *candidates;
4838 int n_candidates;
4839
4840 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates);
4841
4842 if (n_candidates == 0)
4843 return NULL;
4844
4845 if (block_found != NULL)
4846 *block_found = candidates[0].block;
4847
4848 if (symtab != NULL)
4849 {
4850 *symtab = candidates[0].symtab;
4851 if (*symtab == NULL && candidates[0].block != NULL)
4852 {
4853 struct objfile *objfile;
4854 struct symtab *s;
4855 struct block *b;
4856 struct blockvector *bv;
4857
4858 /* Search the list of symtabs for one which contains the
4859 address of the start of this block. */
4860 ALL_PRIMARY_SYMTABS (objfile, s)
4861 {
4862 bv = BLOCKVECTOR (s);
4863 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4864 if (BLOCK_START (b) <= BLOCK_START (candidates[0].block)
4865 && BLOCK_END (b) > BLOCK_START (candidates[0].block))
4866 {
4867 *symtab = s;
4868 return fixup_symbol_section (candidates[0].sym, objfile);
4869 }
4870 }
4871 /* FIXME: brobecker/2004-11-12: I think that we should never
4872 reach this point. I don't see a reason why we would not
4873 find a symtab for a given block, so I suggest raising an
4874 internal_error exception here. Otherwise, we end up
4875 returning a symbol but no symtab, which certain parts of
4876 the code that rely (indirectly) on this function do not
4877 expect, eventually causing a SEGV. */
4878 return fixup_symbol_section (candidates[0].sym, NULL);
4879 }
4880 }
4881 return candidates[0].sym;
4882 }
4883
4884 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4885 scope and in global scopes, or NULL if none. NAME is folded and
4886 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4887 choosing the first symbol if there are multiple choices.
4888 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4889 table in which the symbol was found (in both cases, these
4890 assignments occur only if the pointers are non-null). */
4891 struct symbol *
4892 ada_lookup_symbol (const char *name, const struct block *block0,
4893 domain_enum namespace, int *is_a_field_of_this,
4894 struct symtab **symtab)
4895 {
4896 if (is_a_field_of_this != NULL)
4897 *is_a_field_of_this = 0;
4898
4899 return
4900 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
4901 block0, namespace, NULL, symtab);
4902 }
4903
4904 static struct symbol *
4905 ada_lookup_symbol_nonlocal (const char *name,
4906 const char *linkage_name,
4907 const struct block *block,
4908 const domain_enum domain, struct symtab **symtab)
4909 {
4910 if (linkage_name == NULL)
4911 linkage_name = name;
4912 return ada_lookup_symbol (linkage_name, block_static_block (block), domain,
4913 NULL, symtab);
4914 }
4915
4916
4917 /* True iff STR is a possible encoded suffix of a normal Ada name
4918 that is to be ignored for matching purposes. Suffixes of parallel
4919 names (e.g., XVE) are not included here. Currently, the possible suffixes
4920 are given by either of the regular expression:
4921
4922 (__[0-9]+)?[.$][0-9]+ [nested subprogram suffix, on platforms such
4923 as GNU/Linux]
4924 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4925 _E[0-9]+[bs]$ [protected object entry suffixes]
4926 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
4927 */
4928
4929 static int
4930 is_name_suffix (const char *str)
4931 {
4932 int k;
4933 const char *matching;
4934 const int len = strlen (str);
4935
4936 /* (__[0-9]+)?\.[0-9]+ */
4937 matching = str;
4938 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4939 {
4940 matching += 3;
4941 while (isdigit (matching[0]))
4942 matching += 1;
4943 if (matching[0] == '\0')
4944 return 1;
4945 }
4946
4947 if (matching[0] == '.' || matching[0] == '$')
4948 {
4949 matching += 1;
4950 while (isdigit (matching[0]))
4951 matching += 1;
4952 if (matching[0] == '\0')
4953 return 1;
4954 }
4955
4956 /* ___[0-9]+ */
4957 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
4958 {
4959 matching = str + 3;
4960 while (isdigit (matching[0]))
4961 matching += 1;
4962 if (matching[0] == '\0')
4963 return 1;
4964 }
4965
4966 #if 0
4967 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
4968 with a N at the end. Unfortunately, the compiler uses the same
4969 convention for other internal types it creates. So treating
4970 all entity names that end with an "N" as a name suffix causes
4971 some regressions. For instance, consider the case of an enumerated
4972 type. To support the 'Image attribute, it creates an array whose
4973 name ends with N.
4974 Having a single character like this as a suffix carrying some
4975 information is a bit risky. Perhaps we should change the encoding
4976 to be something like "_N" instead. In the meantime, do not do
4977 the following check. */
4978 /* Protected Object Subprograms */
4979 if (len == 1 && str [0] == 'N')
4980 return 1;
4981 #endif
4982
4983 /* _E[0-9]+[bs]$ */
4984 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
4985 {
4986 matching = str + 3;
4987 while (isdigit (matching[0]))
4988 matching += 1;
4989 if ((matching[0] == 'b' || matching[0] == 's')
4990 && matching [1] == '\0')
4991 return 1;
4992 }
4993
4994 /* ??? We should not modify STR directly, as we are doing below. This
4995 is fine in this case, but may become problematic later if we find
4996 that this alternative did not work, and want to try matching
4997 another one from the begining of STR. Since we modified it, we
4998 won't be able to find the begining of the string anymore! */
4999 if (str[0] == 'X')
5000 {
5001 str += 1;
5002 while (str[0] != '_' && str[0] != '\0')
5003 {
5004 if (str[0] != 'n' && str[0] != 'b')
5005 return 0;
5006 str += 1;
5007 }
5008 }
5009 if (str[0] == '\000')
5010 return 1;
5011 if (str[0] == '_')
5012 {
5013 if (str[1] != '_' || str[2] == '\000')
5014 return 0;
5015 if (str[2] == '_')
5016 {
5017 if (strcmp (str + 3, "JM") == 0)
5018 return 1;
5019 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5020 the LJM suffix in favor of the JM one. But we will
5021 still accept LJM as a valid suffix for a reasonable
5022 amount of time, just to allow ourselves to debug programs
5023 compiled using an older version of GNAT. */
5024 if (strcmp (str + 3, "LJM") == 0)
5025 return 1;
5026 if (str[3] != 'X')
5027 return 0;
5028 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5029 || str[4] == 'U' || str[4] == 'P')
5030 return 1;
5031 if (str[4] == 'R' && str[5] != 'T')
5032 return 1;
5033 return 0;
5034 }
5035 if (!isdigit (str[2]))
5036 return 0;
5037 for (k = 3; str[k] != '\0'; k += 1)
5038 if (!isdigit (str[k]) && str[k] != '_')
5039 return 0;
5040 return 1;
5041 }
5042 if (str[0] == '$' && isdigit (str[1]))
5043 {
5044 for (k = 2; str[k] != '\0'; k += 1)
5045 if (!isdigit (str[k]) && str[k] != '_')
5046 return 0;
5047 return 1;
5048 }
5049 return 0;
5050 }
5051
5052 /* Return nonzero if the given string starts with a dot ('.')
5053 followed by zero or more digits.
5054
5055 Note: brobecker/2003-11-10: A forward declaration has not been
5056 added at the begining of this file yet, because this function
5057 is only used to work around a problem found during wild matching
5058 when trying to match minimal symbol names against symbol names
5059 obtained from dwarf-2 data. This function is therefore currently
5060 only used in wild_match() and is likely to be deleted when the
5061 problem in dwarf-2 is fixed. */
5062
5063 static int
5064 is_dot_digits_suffix (const char *str)
5065 {
5066 if (str[0] != '.')
5067 return 0;
5068
5069 str++;
5070 while (isdigit (str[0]))
5071 str++;
5072 return (str[0] == '\0');
5073 }
5074
5075 /* Return non-zero if the string starting at NAME and ending before
5076 NAME_END contains no capital letters. */
5077
5078 static int
5079 is_valid_name_for_wild_match (const char *name0)
5080 {
5081 const char *decoded_name = ada_decode (name0);
5082 int i;
5083
5084 for (i=0; decoded_name[i] != '\0'; i++)
5085 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5086 return 0;
5087
5088 return 1;
5089 }
5090
5091 /* True if NAME represents a name of the form A1.A2....An, n>=1 and
5092 PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores
5093 informational suffixes of NAME (i.e., for which is_name_suffix is
5094 true). */
5095
5096 static int
5097 wild_match (const char *patn0, int patn_len, const char *name0)
5098 {
5099 int name_len;
5100 char *name;
5101 char *name_start;
5102 char *patn;
5103
5104 /* FIXME: brobecker/2003-11-10: For some reason, the symbol name
5105 stored in the symbol table for nested function names is sometimes
5106 different from the name of the associated entity stored in
5107 the dwarf-2 data: This is the case for nested subprograms, where
5108 the minimal symbol name contains a trailing ".[:digit:]+" suffix,
5109 while the symbol name from the dwarf-2 data does not.
5110
5111 Although the DWARF-2 standard documents that entity names stored
5112 in the dwarf-2 data should be identical to the name as seen in
5113 the source code, GNAT takes a different approach as we already use
5114 a special encoding mechanism to convey the information so that
5115 a C debugger can still use the information generated to debug
5116 Ada programs. A corollary is that the symbol names in the dwarf-2
5117 data should match the names found in the symbol table. I therefore
5118 consider this issue as a compiler defect.
5119
5120 Until the compiler is properly fixed, we work-around the problem
5121 by ignoring such suffixes during the match. We do so by making
5122 a copy of PATN0 and NAME0, and then by stripping such a suffix
5123 if present. We then perform the match on the resulting strings. */
5124 {
5125 char *dot;
5126 name_len = strlen (name0);
5127
5128 name = name_start = (char *) alloca ((name_len + 1) * sizeof (char));
5129 strcpy (name, name0);
5130 dot = strrchr (name, '.');
5131 if (dot != NULL && is_dot_digits_suffix (dot))
5132 *dot = '\0';
5133
5134 patn = (char *) alloca ((patn_len + 1) * sizeof (char));
5135 strncpy (patn, patn0, patn_len);
5136 patn[patn_len] = '\0';
5137 dot = strrchr (patn, '.');
5138 if (dot != NULL && is_dot_digits_suffix (dot))
5139 {
5140 *dot = '\0';
5141 patn_len = dot - patn;
5142 }
5143 }
5144
5145 /* Now perform the wild match. */
5146
5147 name_len = strlen (name);
5148 if (name_len >= patn_len + 5 && strncmp (name, "_ada_", 5) == 0
5149 && strncmp (patn, name + 5, patn_len) == 0
5150 && is_name_suffix (name + patn_len + 5))
5151 return 1;
5152
5153 while (name_len >= patn_len)
5154 {
5155 if (strncmp (patn, name, patn_len) == 0
5156 && is_name_suffix (name + patn_len))
5157 return (name == name_start || is_valid_name_for_wild_match (name0));
5158 do
5159 {
5160 name += 1;
5161 name_len -= 1;
5162 }
5163 while (name_len > 0
5164 && name[0] != '.' && (name[0] != '_' || name[1] != '_'));
5165 if (name_len <= 0)
5166 return 0;
5167 if (name[0] == '_')
5168 {
5169 if (!islower (name[2]))
5170 return 0;
5171 name += 2;
5172 name_len -= 2;
5173 }
5174 else
5175 {
5176 if (!islower (name[1]))
5177 return 0;
5178 name += 1;
5179 name_len -= 1;
5180 }
5181 }
5182
5183 return 0;
5184 }
5185
5186
5187 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5188 vector *defn_symbols, updating the list of symbols in OBSTACKP
5189 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5190 OBJFILE is the section containing BLOCK.
5191 SYMTAB is recorded with each symbol added. */
5192
5193 static void
5194 ada_add_block_symbols (struct obstack *obstackp,
5195 struct block *block, const char *name,
5196 domain_enum domain, struct objfile *objfile,
5197 struct symtab *symtab, int wild)
5198 {
5199 struct dict_iterator iter;
5200 int name_len = strlen (name);
5201 /* A matching argument symbol, if any. */
5202 struct symbol *arg_sym;
5203 /* Set true when we find a matching non-argument symbol. */
5204 int found_sym;
5205 struct symbol *sym;
5206
5207 arg_sym = NULL;
5208 found_sym = 0;
5209 if (wild)
5210 {
5211 struct symbol *sym;
5212 ALL_BLOCK_SYMBOLS (block, iter, sym)
5213 {
5214 if (SYMBOL_DOMAIN (sym) == domain
5215 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (sym)))
5216 {
5217 switch (SYMBOL_CLASS (sym))
5218 {
5219 case LOC_ARG:
5220 case LOC_LOCAL_ARG:
5221 case LOC_REF_ARG:
5222 case LOC_REGPARM:
5223 case LOC_REGPARM_ADDR:
5224 case LOC_BASEREG_ARG:
5225 case LOC_COMPUTED_ARG:
5226 arg_sym = sym;
5227 break;
5228 case LOC_UNRESOLVED:
5229 continue;
5230 default:
5231 found_sym = 1;
5232 add_defn_to_vec (obstackp,
5233 fixup_symbol_section (sym, objfile),
5234 block, symtab);
5235 break;
5236 }
5237 }
5238 }
5239 }
5240 else
5241 {
5242 ALL_BLOCK_SYMBOLS (block, iter, sym)
5243 {
5244 if (SYMBOL_DOMAIN (sym) == domain)
5245 {
5246 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym), name_len);
5247 if (cmp == 0
5248 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len))
5249 {
5250 switch (SYMBOL_CLASS (sym))
5251 {
5252 case LOC_ARG:
5253 case LOC_LOCAL_ARG:
5254 case LOC_REF_ARG:
5255 case LOC_REGPARM:
5256 case LOC_REGPARM_ADDR:
5257 case LOC_BASEREG_ARG:
5258 case LOC_COMPUTED_ARG:
5259 arg_sym = sym;
5260 break;
5261 case LOC_UNRESOLVED:
5262 break;
5263 default:
5264 found_sym = 1;
5265 add_defn_to_vec (obstackp,
5266 fixup_symbol_section (sym, objfile),
5267 block, symtab);
5268 break;
5269 }
5270 }
5271 }
5272 }
5273 }
5274
5275 if (!found_sym && arg_sym != NULL)
5276 {
5277 add_defn_to_vec (obstackp,
5278 fixup_symbol_section (arg_sym, objfile),
5279 block, symtab);
5280 }
5281
5282 if (!wild)
5283 {
5284 arg_sym = NULL;
5285 found_sym = 0;
5286
5287 ALL_BLOCK_SYMBOLS (block, iter, sym)
5288 {
5289 if (SYMBOL_DOMAIN (sym) == domain)
5290 {
5291 int cmp;
5292
5293 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5294 if (cmp == 0)
5295 {
5296 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5297 if (cmp == 0)
5298 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5299 name_len);
5300 }
5301
5302 if (cmp == 0
5303 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5304 {
5305 switch (SYMBOL_CLASS (sym))
5306 {
5307 case LOC_ARG:
5308 case LOC_LOCAL_ARG:
5309 case LOC_REF_ARG:
5310 case LOC_REGPARM:
5311 case LOC_REGPARM_ADDR:
5312 case LOC_BASEREG_ARG:
5313 case LOC_COMPUTED_ARG:
5314 arg_sym = sym;
5315 break;
5316 case LOC_UNRESOLVED:
5317 break;
5318 default:
5319 found_sym = 1;
5320 add_defn_to_vec (obstackp,
5321 fixup_symbol_section (sym, objfile),
5322 block, symtab);
5323 break;
5324 }
5325 }
5326 }
5327 }
5328
5329 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5330 They aren't parameters, right? */
5331 if (!found_sym && arg_sym != NULL)
5332 {
5333 add_defn_to_vec (obstackp,
5334 fixup_symbol_section (arg_sym, objfile),
5335 block, symtab);
5336 }
5337 }
5338 }
5339 \f
5340 /* Field Access */
5341
5342 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5343 for tagged types. */
5344
5345 static int
5346 ada_is_dispatch_table_ptr_type (struct type *type)
5347 {
5348 char *name;
5349
5350 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5351 return 0;
5352
5353 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5354 if (name == NULL)
5355 return 0;
5356
5357 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5358 }
5359
5360 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5361 to be invisible to users. */
5362
5363 int
5364 ada_is_ignored_field (struct type *type, int field_num)
5365 {
5366 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5367 return 1;
5368
5369 /* Check the name of that field. */
5370 {
5371 const char *name = TYPE_FIELD_NAME (type, field_num);
5372
5373 /* Anonymous field names should not be printed.
5374 brobecker/2007-02-20: I don't think this can actually happen
5375 but we don't want to print the value of annonymous fields anyway. */
5376 if (name == NULL)
5377 return 1;
5378
5379 /* A field named "_parent" is internally generated by GNAT for
5380 tagged types, and should not be printed either. */
5381 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5382 return 1;
5383 }
5384
5385 /* If this is the dispatch table of a tagged type, then ignore. */
5386 if (ada_is_tagged_type (type, 1)
5387 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5388 return 1;
5389
5390 /* Not a special field, so it should not be ignored. */
5391 return 0;
5392 }
5393
5394 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5395 pointer or reference type whose ultimate target has a tag field. */
5396
5397 int
5398 ada_is_tagged_type (struct type *type, int refok)
5399 {
5400 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5401 }
5402
5403 /* True iff TYPE represents the type of X'Tag */
5404
5405 int
5406 ada_is_tag_type (struct type *type)
5407 {
5408 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5409 return 0;
5410 else
5411 {
5412 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5413 return (name != NULL
5414 && strcmp (name, "ada__tags__dispatch_table") == 0);
5415 }
5416 }
5417
5418 /* The type of the tag on VAL. */
5419
5420 struct type *
5421 ada_tag_type (struct value *val)
5422 {
5423 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
5424 }
5425
5426 /* The value of the tag on VAL. */
5427
5428 struct value *
5429 ada_value_tag (struct value *val)
5430 {
5431 return ada_value_struct_elt (val, "_tag", 0);
5432 }
5433
5434 /* The value of the tag on the object of type TYPE whose contents are
5435 saved at VALADDR, if it is non-null, or is at memory address
5436 ADDRESS. */
5437
5438 static struct value *
5439 value_tag_from_contents_and_address (struct type *type,
5440 const gdb_byte *valaddr,
5441 CORE_ADDR address)
5442 {
5443 int tag_byte_offset, dummy1, dummy2;
5444 struct type *tag_type;
5445 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
5446 NULL, NULL, NULL))
5447 {
5448 const gdb_byte *valaddr1 = ((valaddr == NULL)
5449 ? NULL
5450 : valaddr + tag_byte_offset);
5451 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
5452
5453 return value_from_contents_and_address (tag_type, valaddr1, address1);
5454 }
5455 return NULL;
5456 }
5457
5458 static struct type *
5459 type_from_tag (struct value *tag)
5460 {
5461 const char *type_name = ada_tag_name (tag);
5462 if (type_name != NULL)
5463 return ada_find_any_type (ada_encode (type_name));
5464 return NULL;
5465 }
5466
5467 struct tag_args
5468 {
5469 struct value *tag;
5470 char *name;
5471 };
5472
5473
5474 static int ada_tag_name_1 (void *);
5475 static int ada_tag_name_2 (struct tag_args *);
5476
5477 /* Wrapper function used by ada_tag_name. Given a struct tag_args*
5478 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5479 The value stored in ARGS->name is valid until the next call to
5480 ada_tag_name_1. */
5481
5482 static int
5483 ada_tag_name_1 (void *args0)
5484 {
5485 struct tag_args *args = (struct tag_args *) args0;
5486 static char name[1024];
5487 char *p;
5488 struct value *val;
5489 args->name = NULL;
5490 val = ada_value_struct_elt (args->tag, "tsd", 1);
5491 if (val == NULL)
5492 return ada_tag_name_2 (args);
5493 val = ada_value_struct_elt (val, "expanded_name", 1);
5494 if (val == NULL)
5495 return 0;
5496 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5497 for (p = name; *p != '\0'; p += 1)
5498 if (isalpha (*p))
5499 *p = tolower (*p);
5500 args->name = name;
5501 return 0;
5502 }
5503
5504 /* Utility function for ada_tag_name_1 that tries the second
5505 representation for the dispatch table (in which there is no
5506 explicit 'tsd' field in the referent of the tag pointer, and instead
5507 the tsd pointer is stored just before the dispatch table. */
5508
5509 static int
5510 ada_tag_name_2 (struct tag_args *args)
5511 {
5512 struct type *info_type;
5513 static char name[1024];
5514 char *p;
5515 struct value *val, *valp;
5516
5517 args->name = NULL;
5518 info_type = ada_find_any_type ("ada__tags__type_specific_data");
5519 if (info_type == NULL)
5520 return 0;
5521 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5522 valp = value_cast (info_type, args->tag);
5523 if (valp == NULL)
5524 return 0;
5525 val = value_ind (value_add (valp, value_from_longest (builtin_type_int, -1)));
5526 if (val == NULL)
5527 return 0;
5528 val = ada_value_struct_elt (val, "expanded_name", 1);
5529 if (val == NULL)
5530 return 0;
5531 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5532 for (p = name; *p != '\0'; p += 1)
5533 if (isalpha (*p))
5534 *p = tolower (*p);
5535 args->name = name;
5536 return 0;
5537 }
5538
5539 /* The type name of the dynamic type denoted by the 'tag value TAG, as
5540 * a C string. */
5541
5542 const char *
5543 ada_tag_name (struct value *tag)
5544 {
5545 struct tag_args args;
5546 if (!ada_is_tag_type (value_type (tag)))
5547 return NULL;
5548 args.tag = tag;
5549 args.name = NULL;
5550 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5551 return args.name;
5552 }
5553
5554 /* The parent type of TYPE, or NULL if none. */
5555
5556 struct type *
5557 ada_parent_type (struct type *type)
5558 {
5559 int i;
5560
5561 type = ada_check_typedef (type);
5562
5563 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5564 return NULL;
5565
5566 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5567 if (ada_is_parent_field (type, i))
5568 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5569
5570 return NULL;
5571 }
5572
5573 /* True iff field number FIELD_NUM of structure type TYPE contains the
5574 parent-type (inherited) fields of a derived type. Assumes TYPE is
5575 a structure type with at least FIELD_NUM+1 fields. */
5576
5577 int
5578 ada_is_parent_field (struct type *type, int field_num)
5579 {
5580 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5581 return (name != NULL
5582 && (strncmp (name, "PARENT", 6) == 0
5583 || strncmp (name, "_parent", 7) == 0));
5584 }
5585
5586 /* True iff field number FIELD_NUM of structure type TYPE is a
5587 transparent wrapper field (which should be silently traversed when doing
5588 field selection and flattened when printing). Assumes TYPE is a
5589 structure type with at least FIELD_NUM+1 fields. Such fields are always
5590 structures. */
5591
5592 int
5593 ada_is_wrapper_field (struct type *type, int field_num)
5594 {
5595 const char *name = TYPE_FIELD_NAME (type, field_num);
5596 return (name != NULL
5597 && (strncmp (name, "PARENT", 6) == 0
5598 || strcmp (name, "REP") == 0
5599 || strncmp (name, "_parent", 7) == 0
5600 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
5601 }
5602
5603 /* True iff field number FIELD_NUM of structure or union type TYPE
5604 is a variant wrapper. Assumes TYPE is a structure type with at least
5605 FIELD_NUM+1 fields. */
5606
5607 int
5608 ada_is_variant_part (struct type *type, int field_num)
5609 {
5610 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5611 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
5612 || (is_dynamic_field (type, field_num)
5613 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5614 == TYPE_CODE_UNION)));
5615 }
5616
5617 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
5618 whose discriminants are contained in the record type OUTER_TYPE,
5619 returns the type of the controlling discriminant for the variant. */
5620
5621 struct type *
5622 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
5623 {
5624 char *name = ada_variant_discrim_name (var_type);
5625 struct type *type =
5626 ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
5627 if (type == NULL)
5628 return builtin_type_int;
5629 else
5630 return type;
5631 }
5632
5633 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
5634 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
5635 represents a 'when others' clause; otherwise 0. */
5636
5637 int
5638 ada_is_others_clause (struct type *type, int field_num)
5639 {
5640 const char *name = TYPE_FIELD_NAME (type, field_num);
5641 return (name != NULL && name[0] == 'O');
5642 }
5643
5644 /* Assuming that TYPE0 is the type of the variant part of a record,
5645 returns the name of the discriminant controlling the variant.
5646 The value is valid until the next call to ada_variant_discrim_name. */
5647
5648 char *
5649 ada_variant_discrim_name (struct type *type0)
5650 {
5651 static char *result = NULL;
5652 static size_t result_len = 0;
5653 struct type *type;
5654 const char *name;
5655 const char *discrim_end;
5656 const char *discrim_start;
5657
5658 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5659 type = TYPE_TARGET_TYPE (type0);
5660 else
5661 type = type0;
5662
5663 name = ada_type_name (type);
5664
5665 if (name == NULL || name[0] == '\000')
5666 return "";
5667
5668 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
5669 discrim_end -= 1)
5670 {
5671 if (strncmp (discrim_end, "___XVN", 6) == 0)
5672 break;
5673 }
5674 if (discrim_end == name)
5675 return "";
5676
5677 for (discrim_start = discrim_end; discrim_start != name + 3;
5678 discrim_start -= 1)
5679 {
5680 if (discrim_start == name + 1)
5681 return "";
5682 if ((discrim_start > name + 3
5683 && strncmp (discrim_start - 3, "___", 3) == 0)
5684 || discrim_start[-1] == '.')
5685 break;
5686 }
5687
5688 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
5689 strncpy (result, discrim_start, discrim_end - discrim_start);
5690 result[discrim_end - discrim_start] = '\0';
5691 return result;
5692 }
5693
5694 /* Scan STR for a subtype-encoded number, beginning at position K.
5695 Put the position of the character just past the number scanned in
5696 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
5697 Return 1 if there was a valid number at the given position, and 0
5698 otherwise. A "subtype-encoded" number consists of the absolute value
5699 in decimal, followed by the letter 'm' to indicate a negative number.
5700 Assumes 0m does not occur. */
5701
5702 int
5703 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
5704 {
5705 ULONGEST RU;
5706
5707 if (!isdigit (str[k]))
5708 return 0;
5709
5710 /* Do it the hard way so as not to make any assumption about
5711 the relationship of unsigned long (%lu scan format code) and
5712 LONGEST. */
5713 RU = 0;
5714 while (isdigit (str[k]))
5715 {
5716 RU = RU * 10 + (str[k] - '0');
5717 k += 1;
5718 }
5719
5720 if (str[k] == 'm')
5721 {
5722 if (R != NULL)
5723 *R = (-(LONGEST) (RU - 1)) - 1;
5724 k += 1;
5725 }
5726 else if (R != NULL)
5727 *R = (LONGEST) RU;
5728
5729 /* NOTE on the above: Technically, C does not say what the results of
5730 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
5731 number representable as a LONGEST (although either would probably work
5732 in most implementations). When RU>0, the locution in the then branch
5733 above is always equivalent to the negative of RU. */
5734
5735 if (new_k != NULL)
5736 *new_k = k;
5737 return 1;
5738 }
5739
5740 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
5741 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
5742 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
5743
5744 int
5745 ada_in_variant (LONGEST val, struct type *type, int field_num)
5746 {
5747 const char *name = TYPE_FIELD_NAME (type, field_num);
5748 int p;
5749
5750 p = 0;
5751 while (1)
5752 {
5753 switch (name[p])
5754 {
5755 case '\0':
5756 return 0;
5757 case 'S':
5758 {
5759 LONGEST W;
5760 if (!ada_scan_number (name, p + 1, &W, &p))
5761 return 0;
5762 if (val == W)
5763 return 1;
5764 break;
5765 }
5766 case 'R':
5767 {
5768 LONGEST L, U;
5769 if (!ada_scan_number (name, p + 1, &L, &p)
5770 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
5771 return 0;
5772 if (val >= L && val <= U)
5773 return 1;
5774 break;
5775 }
5776 case 'O':
5777 return 1;
5778 default:
5779 return 0;
5780 }
5781 }
5782 }
5783
5784 /* FIXME: Lots of redundancy below. Try to consolidate. */
5785
5786 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
5787 ARG_TYPE, extract and return the value of one of its (non-static)
5788 fields. FIELDNO says which field. Differs from value_primitive_field
5789 only in that it can handle packed values of arbitrary type. */
5790
5791 static struct value *
5792 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
5793 struct type *arg_type)
5794 {
5795 struct type *type;
5796
5797 arg_type = ada_check_typedef (arg_type);
5798 type = TYPE_FIELD_TYPE (arg_type, fieldno);
5799
5800 /* Handle packed fields. */
5801
5802 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
5803 {
5804 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
5805 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
5806
5807 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
5808 offset + bit_pos / 8,
5809 bit_pos % 8, bit_size, type);
5810 }
5811 else
5812 return value_primitive_field (arg1, offset, fieldno, arg_type);
5813 }
5814
5815 /* Find field with name NAME in object of type TYPE. If found,
5816 set the following for each argument that is non-null:
5817 - *FIELD_TYPE_P to the field's type;
5818 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
5819 an object of that type;
5820 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
5821 - *BIT_SIZE_P to its size in bits if the field is packed, and
5822 0 otherwise;
5823 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
5824 fields up to but not including the desired field, or by the total
5825 number of fields if not found. A NULL value of NAME never
5826 matches; the function just counts visible fields in this case.
5827
5828 Returns 1 if found, 0 otherwise. */
5829
5830 static int
5831 find_struct_field (char *name, struct type *type, int offset,
5832 struct type **field_type_p,
5833 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
5834 int *index_p)
5835 {
5836 int i;
5837
5838 type = ada_check_typedef (type);
5839
5840 if (field_type_p != NULL)
5841 *field_type_p = NULL;
5842 if (byte_offset_p != NULL)
5843 *byte_offset_p = 0;
5844 if (bit_offset_p != NULL)
5845 *bit_offset_p = 0;
5846 if (bit_size_p != NULL)
5847 *bit_size_p = 0;
5848
5849 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5850 {
5851 int bit_pos = TYPE_FIELD_BITPOS (type, i);
5852 int fld_offset = offset + bit_pos / 8;
5853 char *t_field_name = TYPE_FIELD_NAME (type, i);
5854
5855 if (t_field_name == NULL)
5856 continue;
5857
5858 else if (name != NULL && field_name_match (t_field_name, name))
5859 {
5860 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5861 if (field_type_p != NULL)
5862 *field_type_p = TYPE_FIELD_TYPE (type, i);
5863 if (byte_offset_p != NULL)
5864 *byte_offset_p = fld_offset;
5865 if (bit_offset_p != NULL)
5866 *bit_offset_p = bit_pos % 8;
5867 if (bit_size_p != NULL)
5868 *bit_size_p = bit_size;
5869 return 1;
5870 }
5871 else if (ada_is_wrapper_field (type, i))
5872 {
5873 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
5874 field_type_p, byte_offset_p, bit_offset_p,
5875 bit_size_p, index_p))
5876 return 1;
5877 }
5878 else if (ada_is_variant_part (type, i))
5879 {
5880 /* PNH: Wait. Do we ever execute this section, or is ARG always of
5881 fixed type?? */
5882 int j;
5883 struct type *field_type
5884 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5885
5886 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
5887 {
5888 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
5889 fld_offset
5890 + TYPE_FIELD_BITPOS (field_type, j) / 8,
5891 field_type_p, byte_offset_p,
5892 bit_offset_p, bit_size_p, index_p))
5893 return 1;
5894 }
5895 }
5896 else if (index_p != NULL)
5897 *index_p += 1;
5898 }
5899 return 0;
5900 }
5901
5902 /* Number of user-visible fields in record type TYPE. */
5903
5904 static int
5905 num_visible_fields (struct type *type)
5906 {
5907 int n;
5908 n = 0;
5909 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
5910 return n;
5911 }
5912
5913 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
5914 and search in it assuming it has (class) type TYPE.
5915 If found, return value, else return NULL.
5916
5917 Searches recursively through wrapper fields (e.g., '_parent'). */
5918
5919 static struct value *
5920 ada_search_struct_field (char *name, struct value *arg, int offset,
5921 struct type *type)
5922 {
5923 int i;
5924 type = ada_check_typedef (type);
5925
5926 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5927 {
5928 char *t_field_name = TYPE_FIELD_NAME (type, i);
5929
5930 if (t_field_name == NULL)
5931 continue;
5932
5933 else if (field_name_match (t_field_name, name))
5934 return ada_value_primitive_field (arg, offset, i, type);
5935
5936 else if (ada_is_wrapper_field (type, i))
5937 {
5938 struct value *v = /* Do not let indent join lines here. */
5939 ada_search_struct_field (name, arg,
5940 offset + TYPE_FIELD_BITPOS (type, i) / 8,
5941 TYPE_FIELD_TYPE (type, i));
5942 if (v != NULL)
5943 return v;
5944 }
5945
5946 else if (ada_is_variant_part (type, i))
5947 {
5948 /* PNH: Do we ever get here? See find_struct_field. */
5949 int j;
5950 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5951 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
5952
5953 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
5954 {
5955 struct value *v = ada_search_struct_field /* Force line break. */
5956 (name, arg,
5957 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
5958 TYPE_FIELD_TYPE (field_type, j));
5959 if (v != NULL)
5960 return v;
5961 }
5962 }
5963 }
5964 return NULL;
5965 }
5966
5967 static struct value *ada_index_struct_field_1 (int *, struct value *,
5968 int, struct type *);
5969
5970
5971 /* Return field #INDEX in ARG, where the index is that returned by
5972 * find_struct_field through its INDEX_P argument. Adjust the address
5973 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
5974 * If found, return value, else return NULL. */
5975
5976 static struct value *
5977 ada_index_struct_field (int index, struct value *arg, int offset,
5978 struct type *type)
5979 {
5980 return ada_index_struct_field_1 (&index, arg, offset, type);
5981 }
5982
5983
5984 /* Auxiliary function for ada_index_struct_field. Like
5985 * ada_index_struct_field, but takes index from *INDEX_P and modifies
5986 * *INDEX_P. */
5987
5988 static struct value *
5989 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
5990 struct type *type)
5991 {
5992 int i;
5993 type = ada_check_typedef (type);
5994
5995 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5996 {
5997 if (TYPE_FIELD_NAME (type, i) == NULL)
5998 continue;
5999 else if (ada_is_wrapper_field (type, i))
6000 {
6001 struct value *v = /* Do not let indent join lines here. */
6002 ada_index_struct_field_1 (index_p, arg,
6003 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6004 TYPE_FIELD_TYPE (type, i));
6005 if (v != NULL)
6006 return v;
6007 }
6008
6009 else if (ada_is_variant_part (type, i))
6010 {
6011 /* PNH: Do we ever get here? See ada_search_struct_field,
6012 find_struct_field. */
6013 error (_("Cannot assign this kind of variant record"));
6014 }
6015 else if (*index_p == 0)
6016 return ada_value_primitive_field (arg, offset, i, type);
6017 else
6018 *index_p -= 1;
6019 }
6020 return NULL;
6021 }
6022
6023 /* Given ARG, a value of type (pointer or reference to a)*
6024 structure/union, extract the component named NAME from the ultimate
6025 target structure/union and return it as a value with its
6026 appropriate type. If ARG is a pointer or reference and the field
6027 is not packed, returns a reference to the field, otherwise the
6028 value of the field (an lvalue if ARG is an lvalue).
6029
6030 The routine searches for NAME among all members of the structure itself
6031 and (recursively) among all members of any wrapper members
6032 (e.g., '_parent').
6033
6034 If NO_ERR, then simply return NULL in case of error, rather than
6035 calling error. */
6036
6037 struct value *
6038 ada_value_struct_elt (struct value *arg, char *name, int no_err)
6039 {
6040 struct type *t, *t1;
6041 struct value *v;
6042
6043 v = NULL;
6044 t1 = t = ada_check_typedef (value_type (arg));
6045 if (TYPE_CODE (t) == TYPE_CODE_REF)
6046 {
6047 t1 = TYPE_TARGET_TYPE (t);
6048 if (t1 == NULL)
6049 goto BadValue;
6050 t1 = ada_check_typedef (t1);
6051 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6052 {
6053 arg = coerce_ref (arg);
6054 t = t1;
6055 }
6056 }
6057
6058 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6059 {
6060 t1 = TYPE_TARGET_TYPE (t);
6061 if (t1 == NULL)
6062 goto BadValue;
6063 t1 = ada_check_typedef (t1);
6064 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6065 {
6066 arg = value_ind (arg);
6067 t = t1;
6068 }
6069 else
6070 break;
6071 }
6072
6073 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
6074 goto BadValue;
6075
6076 if (t1 == t)
6077 v = ada_search_struct_field (name, arg, 0, t);
6078 else
6079 {
6080 int bit_offset, bit_size, byte_offset;
6081 struct type *field_type;
6082 CORE_ADDR address;
6083
6084 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6085 address = value_as_address (arg);
6086 else
6087 address = unpack_pointer (t, value_contents (arg));
6088
6089 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
6090 if (find_struct_field (name, t1, 0,
6091 &field_type, &byte_offset, &bit_offset,
6092 &bit_size, NULL))
6093 {
6094 if (bit_size != 0)
6095 {
6096 if (TYPE_CODE (t) == TYPE_CODE_REF)
6097 arg = ada_coerce_ref (arg);
6098 else
6099 arg = ada_value_ind (arg);
6100 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6101 bit_offset, bit_size,
6102 field_type);
6103 }
6104 else
6105 v = value_from_pointer (lookup_reference_type (field_type),
6106 address + byte_offset);
6107 }
6108 }
6109
6110 if (v != NULL || no_err)
6111 return v;
6112 else
6113 error (_("There is no member named %s."), name);
6114
6115 BadValue:
6116 if (no_err)
6117 return NULL;
6118 else
6119 error (_("Attempt to extract a component of a value that is not a record."));
6120 }
6121
6122 /* Given a type TYPE, look up the type of the component of type named NAME.
6123 If DISPP is non-null, add its byte displacement from the beginning of a
6124 structure (pointed to by a value) of type TYPE to *DISPP (does not
6125 work for packed fields).
6126
6127 Matches any field whose name has NAME as a prefix, possibly
6128 followed by "___".
6129
6130 TYPE can be either a struct or union. If REFOK, TYPE may also
6131 be a (pointer or reference)+ to a struct or union, and the
6132 ultimate target type will be searched.
6133
6134 Looks recursively into variant clauses and parent types.
6135
6136 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6137 TYPE is not a type of the right kind. */
6138
6139 static struct type *
6140 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6141 int noerr, int *dispp)
6142 {
6143 int i;
6144
6145 if (name == NULL)
6146 goto BadName;
6147
6148 if (refok && type != NULL)
6149 while (1)
6150 {
6151 type = ada_check_typedef (type);
6152 if (TYPE_CODE (type) != TYPE_CODE_PTR
6153 && TYPE_CODE (type) != TYPE_CODE_REF)
6154 break;
6155 type = TYPE_TARGET_TYPE (type);
6156 }
6157
6158 if (type == NULL
6159 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6160 && TYPE_CODE (type) != TYPE_CODE_UNION))
6161 {
6162 if (noerr)
6163 return NULL;
6164 else
6165 {
6166 target_terminal_ours ();
6167 gdb_flush (gdb_stdout);
6168 if (type == NULL)
6169 error (_("Type (null) is not a structure or union type"));
6170 else
6171 {
6172 /* XXX: type_sprint */
6173 fprintf_unfiltered (gdb_stderr, _("Type "));
6174 type_print (type, "", gdb_stderr, -1);
6175 error (_(" is not a structure or union type"));
6176 }
6177 }
6178 }
6179
6180 type = to_static_fixed_type (type);
6181
6182 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6183 {
6184 char *t_field_name = TYPE_FIELD_NAME (type, i);
6185 struct type *t;
6186 int disp;
6187
6188 if (t_field_name == NULL)
6189 continue;
6190
6191 else if (field_name_match (t_field_name, name))
6192 {
6193 if (dispp != NULL)
6194 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
6195 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6196 }
6197
6198 else if (ada_is_wrapper_field (type, i))
6199 {
6200 disp = 0;
6201 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6202 0, 1, &disp);
6203 if (t != NULL)
6204 {
6205 if (dispp != NULL)
6206 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6207 return t;
6208 }
6209 }
6210
6211 else if (ada_is_variant_part (type, i))
6212 {
6213 int j;
6214 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6215
6216 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6217 {
6218 disp = 0;
6219 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
6220 name, 0, 1, &disp);
6221 if (t != NULL)
6222 {
6223 if (dispp != NULL)
6224 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6225 return t;
6226 }
6227 }
6228 }
6229
6230 }
6231
6232 BadName:
6233 if (!noerr)
6234 {
6235 target_terminal_ours ();
6236 gdb_flush (gdb_stdout);
6237 if (name == NULL)
6238 {
6239 /* XXX: type_sprint */
6240 fprintf_unfiltered (gdb_stderr, _("Type "));
6241 type_print (type, "", gdb_stderr, -1);
6242 error (_(" has no component named <null>"));
6243 }
6244 else
6245 {
6246 /* XXX: type_sprint */
6247 fprintf_unfiltered (gdb_stderr, _("Type "));
6248 type_print (type, "", gdb_stderr, -1);
6249 error (_(" has no component named %s"), name);
6250 }
6251 }
6252
6253 return NULL;
6254 }
6255
6256 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6257 within a value of type OUTER_TYPE that is stored in GDB at
6258 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6259 numbering from 0) is applicable. Returns -1 if none are. */
6260
6261 int
6262 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
6263 const gdb_byte *outer_valaddr)
6264 {
6265 int others_clause;
6266 int i;
6267 int disp;
6268 struct type *discrim_type;
6269 char *discrim_name = ada_variant_discrim_name (var_type);
6270 LONGEST discrim_val;
6271
6272 disp = 0;
6273 discrim_type =
6274 ada_lookup_struct_elt_type (outer_type, discrim_name, 1, 1, &disp);
6275 if (discrim_type == NULL)
6276 return -1;
6277 discrim_val = unpack_long (discrim_type, outer_valaddr + disp);
6278
6279 others_clause = -1;
6280 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6281 {
6282 if (ada_is_others_clause (var_type, i))
6283 others_clause = i;
6284 else if (ada_in_variant (discrim_val, var_type, i))
6285 return i;
6286 }
6287
6288 return others_clause;
6289 }
6290 \f
6291
6292
6293 /* Dynamic-Sized Records */
6294
6295 /* Strategy: The type ostensibly attached to a value with dynamic size
6296 (i.e., a size that is not statically recorded in the debugging
6297 data) does not accurately reflect the size or layout of the value.
6298 Our strategy is to convert these values to values with accurate,
6299 conventional types that are constructed on the fly. */
6300
6301 /* There is a subtle and tricky problem here. In general, we cannot
6302 determine the size of dynamic records without its data. However,
6303 the 'struct value' data structure, which GDB uses to represent
6304 quantities in the inferior process (the target), requires the size
6305 of the type at the time of its allocation in order to reserve space
6306 for GDB's internal copy of the data. That's why the
6307 'to_fixed_xxx_type' routines take (target) addresses as parameters,
6308 rather than struct value*s.
6309
6310 However, GDB's internal history variables ($1, $2, etc.) are
6311 struct value*s containing internal copies of the data that are not, in
6312 general, the same as the data at their corresponding addresses in
6313 the target. Fortunately, the types we give to these values are all
6314 conventional, fixed-size types (as per the strategy described
6315 above), so that we don't usually have to perform the
6316 'to_fixed_xxx_type' conversions to look at their values.
6317 Unfortunately, there is one exception: if one of the internal
6318 history variables is an array whose elements are unconstrained
6319 records, then we will need to create distinct fixed types for each
6320 element selected. */
6321
6322 /* The upshot of all of this is that many routines take a (type, host
6323 address, target address) triple as arguments to represent a value.
6324 The host address, if non-null, is supposed to contain an internal
6325 copy of the relevant data; otherwise, the program is to consult the
6326 target at the target address. */
6327
6328 /* Assuming that VAL0 represents a pointer value, the result of
6329 dereferencing it. Differs from value_ind in its treatment of
6330 dynamic-sized types. */
6331
6332 struct value *
6333 ada_value_ind (struct value *val0)
6334 {
6335 struct value *val = unwrap_value (value_ind (val0));
6336 return ada_to_fixed_value (val);
6337 }
6338
6339 /* The value resulting from dereferencing any "reference to"
6340 qualifiers on VAL0. */
6341
6342 static struct value *
6343 ada_coerce_ref (struct value *val0)
6344 {
6345 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
6346 {
6347 struct value *val = val0;
6348 val = coerce_ref (val);
6349 val = unwrap_value (val);
6350 return ada_to_fixed_value (val);
6351 }
6352 else
6353 return val0;
6354 }
6355
6356 /* Return OFF rounded upward if necessary to a multiple of
6357 ALIGNMENT (a power of 2). */
6358
6359 static unsigned int
6360 align_value (unsigned int off, unsigned int alignment)
6361 {
6362 return (off + alignment - 1) & ~(alignment - 1);
6363 }
6364
6365 /* Return the bit alignment required for field #F of template type TYPE. */
6366
6367 static unsigned int
6368 field_alignment (struct type *type, int f)
6369 {
6370 const char *name = TYPE_FIELD_NAME (type, f);
6371 int len;
6372 int align_offset;
6373
6374 /* The field name should never be null, unless the debugging information
6375 is somehow malformed. In this case, we assume the field does not
6376 require any alignment. */
6377 if (name == NULL)
6378 return 1;
6379
6380 len = strlen (name);
6381
6382 if (!isdigit (name[len - 1]))
6383 return 1;
6384
6385 if (isdigit (name[len - 2]))
6386 align_offset = len - 2;
6387 else
6388 align_offset = len - 1;
6389
6390 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
6391 return TARGET_CHAR_BIT;
6392
6393 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6394 }
6395
6396 /* Find a symbol named NAME. Ignores ambiguity. */
6397
6398 struct symbol *
6399 ada_find_any_symbol (const char *name)
6400 {
6401 struct symbol *sym;
6402
6403 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6404 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6405 return sym;
6406
6407 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6408 return sym;
6409 }
6410
6411 /* Find a type named NAME. Ignores ambiguity. */
6412
6413 struct type *
6414 ada_find_any_type (const char *name)
6415 {
6416 struct symbol *sym = ada_find_any_symbol (name);
6417
6418 if (sym != NULL)
6419 return SYMBOL_TYPE (sym);
6420
6421 return NULL;
6422 }
6423
6424 /* Given NAME and an associated BLOCK, search all symbols for
6425 NAME suffixed with "___XR", which is the ``renaming'' symbol
6426 associated to NAME. Return this symbol if found, return
6427 NULL otherwise. */
6428
6429 struct symbol *
6430 ada_find_renaming_symbol (const char *name, struct block *block)
6431 {
6432 struct symbol *sym;
6433
6434 sym = find_old_style_renaming_symbol (name, block);
6435
6436 if (sym != NULL)
6437 return sym;
6438
6439 /* Not right yet. FIXME pnh 7/20/2007. */
6440 sym = ada_find_any_symbol (name);
6441 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
6442 return sym;
6443 else
6444 return NULL;
6445 }
6446
6447 static struct symbol *
6448 find_old_style_renaming_symbol (const char *name, struct block *block)
6449 {
6450 const struct symbol *function_sym = block_function (block);
6451 char *rename;
6452
6453 if (function_sym != NULL)
6454 {
6455 /* If the symbol is defined inside a function, NAME is not fully
6456 qualified. This means we need to prepend the function name
6457 as well as adding the ``___XR'' suffix to build the name of
6458 the associated renaming symbol. */
6459 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
6460 /* Function names sometimes contain suffixes used
6461 for instance to qualify nested subprograms. When building
6462 the XR type name, we need to make sure that this suffix is
6463 not included. So do not include any suffix in the function
6464 name length below. */
6465 const int function_name_len = ada_name_prefix_len (function_name);
6466 const int rename_len = function_name_len + 2 /* "__" */
6467 + strlen (name) + 6 /* "___XR\0" */ ;
6468
6469 /* Strip the suffix if necessary. */
6470 function_name[function_name_len] = '\0';
6471
6472 /* Library-level functions are a special case, as GNAT adds
6473 a ``_ada_'' prefix to the function name to avoid namespace
6474 pollution. However, the renaming symbols themselves do not
6475 have this prefix, so we need to skip this prefix if present. */
6476 if (function_name_len > 5 /* "_ada_" */
6477 && strstr (function_name, "_ada_") == function_name)
6478 function_name = function_name + 5;
6479
6480 rename = (char *) alloca (rename_len * sizeof (char));
6481 sprintf (rename, "%s__%s___XR", function_name, name);
6482 }
6483 else
6484 {
6485 const int rename_len = strlen (name) + 6;
6486 rename = (char *) alloca (rename_len * sizeof (char));
6487 sprintf (rename, "%s___XR", name);
6488 }
6489
6490 return ada_find_any_symbol (rename);
6491 }
6492
6493 /* Because of GNAT encoding conventions, several GDB symbols may match a
6494 given type name. If the type denoted by TYPE0 is to be preferred to
6495 that of TYPE1 for purposes of type printing, return non-zero;
6496 otherwise return 0. */
6497
6498 int
6499 ada_prefer_type (struct type *type0, struct type *type1)
6500 {
6501 if (type1 == NULL)
6502 return 1;
6503 else if (type0 == NULL)
6504 return 0;
6505 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6506 return 1;
6507 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6508 return 0;
6509 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6510 return 1;
6511 else if (ada_is_packed_array_type (type0))
6512 return 1;
6513 else if (ada_is_array_descriptor_type (type0)
6514 && !ada_is_array_descriptor_type (type1))
6515 return 1;
6516 else
6517 {
6518 const char *type0_name = type_name_no_tag (type0);
6519 const char *type1_name = type_name_no_tag (type1);
6520
6521 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
6522 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
6523 return 1;
6524 }
6525 return 0;
6526 }
6527
6528 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
6529 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6530
6531 char *
6532 ada_type_name (struct type *type)
6533 {
6534 if (type == NULL)
6535 return NULL;
6536 else if (TYPE_NAME (type) != NULL)
6537 return TYPE_NAME (type);
6538 else
6539 return TYPE_TAG_NAME (type);
6540 }
6541
6542 /* Find a parallel type to TYPE whose name is formed by appending
6543 SUFFIX to the name of TYPE. */
6544
6545 struct type *
6546 ada_find_parallel_type (struct type *type, const char *suffix)
6547 {
6548 static char *name;
6549 static size_t name_len = 0;
6550 int len;
6551 char *typename = ada_type_name (type);
6552
6553 if (typename == NULL)
6554 return NULL;
6555
6556 len = strlen (typename);
6557
6558 GROW_VECT (name, name_len, len + strlen (suffix) + 1);
6559
6560 strcpy (name, typename);
6561 strcpy (name + len, suffix);
6562
6563 return ada_find_any_type (name);
6564 }
6565
6566
6567 /* If TYPE is a variable-size record type, return the corresponding template
6568 type describing its fields. Otherwise, return NULL. */
6569
6570 static struct type *
6571 dynamic_template_type (struct type *type)
6572 {
6573 type = ada_check_typedef (type);
6574
6575 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
6576 || ada_type_name (type) == NULL)
6577 return NULL;
6578 else
6579 {
6580 int len = strlen (ada_type_name (type));
6581 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
6582 return type;
6583 else
6584 return ada_find_parallel_type (type, "___XVE");
6585 }
6586 }
6587
6588 /* Assuming that TEMPL_TYPE is a union or struct type, returns
6589 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
6590
6591 static int
6592 is_dynamic_field (struct type *templ_type, int field_num)
6593 {
6594 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
6595 return name != NULL
6596 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
6597 && strstr (name, "___XVL") != NULL;
6598 }
6599
6600 /* The index of the variant field of TYPE, or -1 if TYPE does not
6601 represent a variant record type. */
6602
6603 static int
6604 variant_field_index (struct type *type)
6605 {
6606 int f;
6607
6608 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6609 return -1;
6610
6611 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
6612 {
6613 if (ada_is_variant_part (type, f))
6614 return f;
6615 }
6616 return -1;
6617 }
6618
6619 /* A record type with no fields. */
6620
6621 static struct type *
6622 empty_record (struct objfile *objfile)
6623 {
6624 struct type *type = alloc_type (objfile);
6625 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6626 TYPE_NFIELDS (type) = 0;
6627 TYPE_FIELDS (type) = NULL;
6628 TYPE_NAME (type) = "<empty>";
6629 TYPE_TAG_NAME (type) = NULL;
6630 TYPE_FLAGS (type) = 0;
6631 TYPE_LENGTH (type) = 0;
6632 return type;
6633 }
6634
6635 /* An ordinary record type (with fixed-length fields) that describes
6636 the value of type TYPE at VALADDR or ADDRESS (see comments at
6637 the beginning of this section) VAL according to GNAT conventions.
6638 DVAL0 should describe the (portion of a) record that contains any
6639 necessary discriminants. It should be NULL if value_type (VAL) is
6640 an outer-level type (i.e., as opposed to a branch of a variant.) A
6641 variant field (unless unchecked) is replaced by a particular branch
6642 of the variant.
6643
6644 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
6645 length are not statically known are discarded. As a consequence,
6646 VALADDR, ADDRESS and DVAL0 are ignored.
6647
6648 NOTE: Limitations: For now, we assume that dynamic fields and
6649 variants occupy whole numbers of bytes. However, they need not be
6650 byte-aligned. */
6651
6652 struct type *
6653 ada_template_to_fixed_record_type_1 (struct type *type,
6654 const gdb_byte *valaddr,
6655 CORE_ADDR address, struct value *dval0,
6656 int keep_dynamic_fields)
6657 {
6658 struct value *mark = value_mark ();
6659 struct value *dval;
6660 struct type *rtype;
6661 int nfields, bit_len;
6662 int variant_field;
6663 long off;
6664 int fld_bit_len, bit_incr;
6665 int f;
6666
6667 /* Compute the number of fields in this record type that are going
6668 to be processed: unless keep_dynamic_fields, this includes only
6669 fields whose position and length are static will be processed. */
6670 if (keep_dynamic_fields)
6671 nfields = TYPE_NFIELDS (type);
6672 else
6673 {
6674 nfields = 0;
6675 while (nfields < TYPE_NFIELDS (type)
6676 && !ada_is_variant_part (type, nfields)
6677 && !is_dynamic_field (type, nfields))
6678 nfields++;
6679 }
6680
6681 rtype = alloc_type (TYPE_OBJFILE (type));
6682 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6683 INIT_CPLUS_SPECIFIC (rtype);
6684 TYPE_NFIELDS (rtype) = nfields;
6685 TYPE_FIELDS (rtype) = (struct field *)
6686 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6687 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
6688 TYPE_NAME (rtype) = ada_type_name (type);
6689 TYPE_TAG_NAME (rtype) = NULL;
6690 TYPE_FLAGS (rtype) |= TYPE_FLAG_FIXED_INSTANCE;
6691
6692 off = 0;
6693 bit_len = 0;
6694 variant_field = -1;
6695
6696 for (f = 0; f < nfields; f += 1)
6697 {
6698 off = align_value (off, field_alignment (type, f))
6699 + TYPE_FIELD_BITPOS (type, f);
6700 TYPE_FIELD_BITPOS (rtype, f) = off;
6701 TYPE_FIELD_BITSIZE (rtype, f) = 0;
6702
6703 if (ada_is_variant_part (type, f))
6704 {
6705 variant_field = f;
6706 fld_bit_len = bit_incr = 0;
6707 }
6708 else if (is_dynamic_field (type, f))
6709 {
6710 if (dval0 == NULL)
6711 dval = value_from_contents_and_address (rtype, valaddr, address);
6712 else
6713 dval = dval0;
6714
6715 /* Get the fixed type of the field. Note that, in this case, we
6716 do not want to get the real type out of the tag: if the current
6717 field is the parent part of a tagged record, we will get the
6718 tag of the object. Clearly wrong: the real type of the parent
6719 is not the real type of the child. We would end up in an infinite
6720 loop. */
6721 TYPE_FIELD_TYPE (rtype, f) =
6722 ada_to_fixed_type
6723 (ada_get_base_type
6724 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f))),
6725 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6726 cond_offset_target (address, off / TARGET_CHAR_BIT), dval, 0);
6727 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6728 bit_incr = fld_bit_len =
6729 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
6730 }
6731 else
6732 {
6733 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
6734 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6735 if (TYPE_FIELD_BITSIZE (type, f) > 0)
6736 bit_incr = fld_bit_len =
6737 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
6738 else
6739 bit_incr = fld_bit_len =
6740 TYPE_LENGTH (TYPE_FIELD_TYPE (type, f)) * TARGET_CHAR_BIT;
6741 }
6742 if (off + fld_bit_len > bit_len)
6743 bit_len = off + fld_bit_len;
6744 off += bit_incr;
6745 TYPE_LENGTH (rtype) =
6746 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6747 }
6748
6749 /* We handle the variant part, if any, at the end because of certain
6750 odd cases in which it is re-ordered so as NOT the last field of
6751 the record. This can happen in the presence of representation
6752 clauses. */
6753 if (variant_field >= 0)
6754 {
6755 struct type *branch_type;
6756
6757 off = TYPE_FIELD_BITPOS (rtype, variant_field);
6758
6759 if (dval0 == NULL)
6760 dval = value_from_contents_and_address (rtype, valaddr, address);
6761 else
6762 dval = dval0;
6763
6764 branch_type =
6765 to_fixed_variant_branch_type
6766 (TYPE_FIELD_TYPE (type, variant_field),
6767 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6768 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
6769 if (branch_type == NULL)
6770 {
6771 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
6772 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6773 TYPE_NFIELDS (rtype) -= 1;
6774 }
6775 else
6776 {
6777 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6778 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6779 fld_bit_len =
6780 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
6781 TARGET_CHAR_BIT;
6782 if (off + fld_bit_len > bit_len)
6783 bit_len = off + fld_bit_len;
6784 TYPE_LENGTH (rtype) =
6785 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6786 }
6787 }
6788
6789 /* According to exp_dbug.ads, the size of TYPE for variable-size records
6790 should contain the alignment of that record, which should be a strictly
6791 positive value. If null or negative, then something is wrong, most
6792 probably in the debug info. In that case, we don't round up the size
6793 of the resulting type. If this record is not part of another structure,
6794 the current RTYPE length might be good enough for our purposes. */
6795 if (TYPE_LENGTH (type) <= 0)
6796 {
6797 if (TYPE_NAME (rtype))
6798 warning (_("Invalid type size for `%s' detected: %d."),
6799 TYPE_NAME (rtype), TYPE_LENGTH (type));
6800 else
6801 warning (_("Invalid type size for <unnamed> detected: %d."),
6802 TYPE_LENGTH (type));
6803 }
6804 else
6805 {
6806 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
6807 TYPE_LENGTH (type));
6808 }
6809
6810 value_free_to_mark (mark);
6811 if (TYPE_LENGTH (rtype) > varsize_limit)
6812 error (_("record type with dynamic size is larger than varsize-limit"));
6813 return rtype;
6814 }
6815
6816 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
6817 of 1. */
6818
6819 static struct type *
6820 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
6821 CORE_ADDR address, struct value *dval0)
6822 {
6823 return ada_template_to_fixed_record_type_1 (type, valaddr,
6824 address, dval0, 1);
6825 }
6826
6827 /* An ordinary record type in which ___XVL-convention fields and
6828 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
6829 static approximations, containing all possible fields. Uses
6830 no runtime values. Useless for use in values, but that's OK,
6831 since the results are used only for type determinations. Works on both
6832 structs and unions. Representation note: to save space, we memorize
6833 the result of this function in the TYPE_TARGET_TYPE of the
6834 template type. */
6835
6836 static struct type *
6837 template_to_static_fixed_type (struct type *type0)
6838 {
6839 struct type *type;
6840 int nfields;
6841 int f;
6842
6843 if (TYPE_TARGET_TYPE (type0) != NULL)
6844 return TYPE_TARGET_TYPE (type0);
6845
6846 nfields = TYPE_NFIELDS (type0);
6847 type = type0;
6848
6849 for (f = 0; f < nfields; f += 1)
6850 {
6851 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
6852 struct type *new_type;
6853
6854 if (is_dynamic_field (type0, f))
6855 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
6856 else
6857 new_type = to_static_fixed_type (field_type);
6858 if (type == type0 && new_type != field_type)
6859 {
6860 TYPE_TARGET_TYPE (type0) = type = alloc_type (TYPE_OBJFILE (type0));
6861 TYPE_CODE (type) = TYPE_CODE (type0);
6862 INIT_CPLUS_SPECIFIC (type);
6863 TYPE_NFIELDS (type) = nfields;
6864 TYPE_FIELDS (type) = (struct field *)
6865 TYPE_ALLOC (type, nfields * sizeof (struct field));
6866 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
6867 sizeof (struct field) * nfields);
6868 TYPE_NAME (type) = ada_type_name (type0);
6869 TYPE_TAG_NAME (type) = NULL;
6870 TYPE_FLAGS (type) |= TYPE_FLAG_FIXED_INSTANCE;
6871 TYPE_LENGTH (type) = 0;
6872 }
6873 TYPE_FIELD_TYPE (type, f) = new_type;
6874 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
6875 }
6876 return type;
6877 }
6878
6879 /* Given an object of type TYPE whose contents are at VALADDR and
6880 whose address in memory is ADDRESS, returns a revision of TYPE --
6881 a non-dynamic-sized record with a variant part -- in which
6882 the variant part is replaced with the appropriate branch. Looks
6883 for discriminant values in DVAL0, which can be NULL if the record
6884 contains the necessary discriminant values. */
6885
6886 static struct type *
6887 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
6888 CORE_ADDR address, struct value *dval0)
6889 {
6890 struct value *mark = value_mark ();
6891 struct value *dval;
6892 struct type *rtype;
6893 struct type *branch_type;
6894 int nfields = TYPE_NFIELDS (type);
6895 int variant_field = variant_field_index (type);
6896
6897 if (variant_field == -1)
6898 return type;
6899
6900 if (dval0 == NULL)
6901 dval = value_from_contents_and_address (type, valaddr, address);
6902 else
6903 dval = dval0;
6904
6905 rtype = alloc_type (TYPE_OBJFILE (type));
6906 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6907 INIT_CPLUS_SPECIFIC (rtype);
6908 TYPE_NFIELDS (rtype) = nfields;
6909 TYPE_FIELDS (rtype) =
6910 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6911 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
6912 sizeof (struct field) * nfields);
6913 TYPE_NAME (rtype) = ada_type_name (type);
6914 TYPE_TAG_NAME (rtype) = NULL;
6915 TYPE_FLAGS (rtype) |= TYPE_FLAG_FIXED_INSTANCE;
6916 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
6917
6918 branch_type = to_fixed_variant_branch_type
6919 (TYPE_FIELD_TYPE (type, variant_field),
6920 cond_offset_host (valaddr,
6921 TYPE_FIELD_BITPOS (type, variant_field)
6922 / TARGET_CHAR_BIT),
6923 cond_offset_target (address,
6924 TYPE_FIELD_BITPOS (type, variant_field)
6925 / TARGET_CHAR_BIT), dval);
6926 if (branch_type == NULL)
6927 {
6928 int f;
6929 for (f = variant_field + 1; f < nfields; f += 1)
6930 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6931 TYPE_NFIELDS (rtype) -= 1;
6932 }
6933 else
6934 {
6935 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6936 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6937 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
6938 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
6939 }
6940 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
6941
6942 value_free_to_mark (mark);
6943 return rtype;
6944 }
6945
6946 /* An ordinary record type (with fixed-length fields) that describes
6947 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
6948 beginning of this section]. Any necessary discriminants' values
6949 should be in DVAL, a record value; it may be NULL if the object
6950 at ADDR itself contains any necessary discriminant values.
6951 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
6952 values from the record are needed. Except in the case that DVAL,
6953 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
6954 unchecked) is replaced by a particular branch of the variant.
6955
6956 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
6957 is questionable and may be removed. It can arise during the
6958 processing of an unconstrained-array-of-record type where all the
6959 variant branches have exactly the same size. This is because in
6960 such cases, the compiler does not bother to use the XVS convention
6961 when encoding the record. I am currently dubious of this
6962 shortcut and suspect the compiler should be altered. FIXME. */
6963
6964 static struct type *
6965 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
6966 CORE_ADDR address, struct value *dval)
6967 {
6968 struct type *templ_type;
6969
6970 if (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE)
6971 return type0;
6972
6973 templ_type = dynamic_template_type (type0);
6974
6975 if (templ_type != NULL)
6976 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
6977 else if (variant_field_index (type0) >= 0)
6978 {
6979 if (dval == NULL && valaddr == NULL && address == 0)
6980 return type0;
6981 return to_record_with_fixed_variant_part (type0, valaddr, address,
6982 dval);
6983 }
6984 else
6985 {
6986 TYPE_FLAGS (type0) |= TYPE_FLAG_FIXED_INSTANCE;
6987 return type0;
6988 }
6989
6990 }
6991
6992 /* An ordinary record type (with fixed-length fields) that describes
6993 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
6994 union type. Any necessary discriminants' values should be in DVAL,
6995 a record value. That is, this routine selects the appropriate
6996 branch of the union at ADDR according to the discriminant value
6997 indicated in the union's type name. */
6998
6999 static struct type *
7000 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7001 CORE_ADDR address, struct value *dval)
7002 {
7003 int which;
7004 struct type *templ_type;
7005 struct type *var_type;
7006
7007 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7008 var_type = TYPE_TARGET_TYPE (var_type0);
7009 else
7010 var_type = var_type0;
7011
7012 templ_type = ada_find_parallel_type (var_type, "___XVU");
7013
7014 if (templ_type != NULL)
7015 var_type = templ_type;
7016
7017 which =
7018 ada_which_variant_applies (var_type,
7019 value_type (dval), value_contents (dval));
7020
7021 if (which < 0)
7022 return empty_record (TYPE_OBJFILE (var_type));
7023 else if (is_dynamic_field (var_type, which))
7024 return to_fixed_record_type
7025 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7026 valaddr, address, dval);
7027 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
7028 return
7029 to_fixed_record_type
7030 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
7031 else
7032 return TYPE_FIELD_TYPE (var_type, which);
7033 }
7034
7035 /* Assuming that TYPE0 is an array type describing the type of a value
7036 at ADDR, and that DVAL describes a record containing any
7037 discriminants used in TYPE0, returns a type for the value that
7038 contains no dynamic components (that is, no components whose sizes
7039 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7040 true, gives an error message if the resulting type's size is over
7041 varsize_limit. */
7042
7043 static struct type *
7044 to_fixed_array_type (struct type *type0, struct value *dval,
7045 int ignore_too_big)
7046 {
7047 struct type *index_type_desc;
7048 struct type *result;
7049
7050 if (ada_is_packed_array_type (type0) /* revisit? */
7051 || (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE))
7052 return type0;
7053
7054 index_type_desc = ada_find_parallel_type (type0, "___XA");
7055 if (index_type_desc == NULL)
7056 {
7057 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
7058 /* NOTE: elt_type---the fixed version of elt_type0---should never
7059 depend on the contents of the array in properly constructed
7060 debugging data. */
7061 /* Create a fixed version of the array element type.
7062 We're not providing the address of an element here,
7063 and thus the actual object value cannot be inspected to do
7064 the conversion. This should not be a problem, since arrays of
7065 unconstrained objects are not allowed. In particular, all
7066 the elements of an array of a tagged type should all be of
7067 the same type specified in the debugging info. No need to
7068 consult the object tag. */
7069 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
7070
7071 if (elt_type0 == elt_type)
7072 result = type0;
7073 else
7074 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
7075 elt_type, TYPE_INDEX_TYPE (type0));
7076 }
7077 else
7078 {
7079 int i;
7080 struct type *elt_type0;
7081
7082 elt_type0 = type0;
7083 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
7084 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7085
7086 /* NOTE: result---the fixed version of elt_type0---should never
7087 depend on the contents of the array in properly constructed
7088 debugging data. */
7089 /* Create a fixed version of the array element type.
7090 We're not providing the address of an element here,
7091 and thus the actual object value cannot be inspected to do
7092 the conversion. This should not be a problem, since arrays of
7093 unconstrained objects are not allowed. In particular, all
7094 the elements of an array of a tagged type should all be of
7095 the same type specified in the debugging info. No need to
7096 consult the object tag. */
7097 result =
7098 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
7099 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
7100 {
7101 struct type *range_type =
7102 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, i),
7103 dval, TYPE_OBJFILE (type0));
7104 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
7105 result, range_type);
7106 }
7107 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
7108 error (_("array type with dynamic size is larger than varsize-limit"));
7109 }
7110
7111 TYPE_FLAGS (result) |= TYPE_FLAG_FIXED_INSTANCE;
7112 return result;
7113 }
7114
7115
7116 /* A standard type (containing no dynamically sized components)
7117 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7118 DVAL describes a record containing any discriminants used in TYPE0,
7119 and may be NULL if there are none, or if the object of type TYPE at
7120 ADDRESS or in VALADDR contains these discriminants.
7121
7122 If CHECK_TAG is not null, in the case of tagged types, this function
7123 attempts to locate the object's tag and use it to compute the actual
7124 type. However, when ADDRESS is null, we cannot use it to determine the
7125 location of the tag, and therefore compute the tagged type's actual type.
7126 So we return the tagged type without consulting the tag. */
7127
7128 struct type *
7129 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
7130 CORE_ADDR address, struct value *dval, int check_tag)
7131 {
7132 type = ada_check_typedef (type);
7133 switch (TYPE_CODE (type))
7134 {
7135 default:
7136 return type;
7137 case TYPE_CODE_STRUCT:
7138 {
7139 struct type *static_type = to_static_fixed_type (type);
7140 struct type *fixed_record_type =
7141 to_fixed_record_type (type, valaddr, address, NULL);
7142 /* If STATIC_TYPE is a tagged type and we know the object's address,
7143 then we can determine its tag, and compute the object's actual
7144 type from there. Note that we have to use the fixed record
7145 type (the parent part of the record may have dynamic fields
7146 and the way the location of _tag is expressed may depend on
7147 them). */
7148
7149 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
7150 {
7151 struct type *real_type =
7152 type_from_tag (value_tag_from_contents_and_address
7153 (fixed_record_type,
7154 valaddr,
7155 address));
7156 if (real_type != NULL)
7157 return to_fixed_record_type (real_type, valaddr, address, NULL);
7158 }
7159 return fixed_record_type;
7160 }
7161 case TYPE_CODE_ARRAY:
7162 return to_fixed_array_type (type, dval, 1);
7163 case TYPE_CODE_UNION:
7164 if (dval == NULL)
7165 return type;
7166 else
7167 return to_fixed_variant_branch_type (type, valaddr, address, dval);
7168 }
7169 }
7170
7171 /* A standard (static-sized) type corresponding as well as possible to
7172 TYPE0, but based on no runtime data. */
7173
7174 static struct type *
7175 to_static_fixed_type (struct type *type0)
7176 {
7177 struct type *type;
7178
7179 if (type0 == NULL)
7180 return NULL;
7181
7182 if (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE)
7183 return type0;
7184
7185 type0 = ada_check_typedef (type0);
7186
7187 switch (TYPE_CODE (type0))
7188 {
7189 default:
7190 return type0;
7191 case TYPE_CODE_STRUCT:
7192 type = dynamic_template_type (type0);
7193 if (type != NULL)
7194 return template_to_static_fixed_type (type);
7195 else
7196 return template_to_static_fixed_type (type0);
7197 case TYPE_CODE_UNION:
7198 type = ada_find_parallel_type (type0, "___XVU");
7199 if (type != NULL)
7200 return template_to_static_fixed_type (type);
7201 else
7202 return template_to_static_fixed_type (type0);
7203 }
7204 }
7205
7206 /* A static approximation of TYPE with all type wrappers removed. */
7207
7208 static struct type *
7209 static_unwrap_type (struct type *type)
7210 {
7211 if (ada_is_aligner_type (type))
7212 {
7213 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
7214 if (ada_type_name (type1) == NULL)
7215 TYPE_NAME (type1) = ada_type_name (type);
7216
7217 return static_unwrap_type (type1);
7218 }
7219 else
7220 {
7221 struct type *raw_real_type = ada_get_base_type (type);
7222 if (raw_real_type == type)
7223 return type;
7224 else
7225 return to_static_fixed_type (raw_real_type);
7226 }
7227 }
7228
7229 /* In some cases, incomplete and private types require
7230 cross-references that are not resolved as records (for example,
7231 type Foo;
7232 type FooP is access Foo;
7233 V: FooP;
7234 type Foo is array ...;
7235 ). In these cases, since there is no mechanism for producing
7236 cross-references to such types, we instead substitute for FooP a
7237 stub enumeration type that is nowhere resolved, and whose tag is
7238 the name of the actual type. Call these types "non-record stubs". */
7239
7240 /* A type equivalent to TYPE that is not a non-record stub, if one
7241 exists, otherwise TYPE. */
7242
7243 struct type *
7244 ada_check_typedef (struct type *type)
7245 {
7246 CHECK_TYPEDEF (type);
7247 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
7248 || !TYPE_STUB (type)
7249 || TYPE_TAG_NAME (type) == NULL)
7250 return type;
7251 else
7252 {
7253 char *name = TYPE_TAG_NAME (type);
7254 struct type *type1 = ada_find_any_type (name);
7255 return (type1 == NULL) ? type : type1;
7256 }
7257 }
7258
7259 /* A value representing the data at VALADDR/ADDRESS as described by
7260 type TYPE0, but with a standard (static-sized) type that correctly
7261 describes it. If VAL0 is not NULL and TYPE0 already is a standard
7262 type, then return VAL0 [this feature is simply to avoid redundant
7263 creation of struct values]. */
7264
7265 static struct value *
7266 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
7267 struct value *val0)
7268 {
7269 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
7270 if (type == type0 && val0 != NULL)
7271 return val0;
7272 else
7273 return value_from_contents_and_address (type, 0, address);
7274 }
7275
7276 /* A value representing VAL, but with a standard (static-sized) type
7277 that correctly describes it. Does not necessarily create a new
7278 value. */
7279
7280 static struct value *
7281 ada_to_fixed_value (struct value *val)
7282 {
7283 return ada_to_fixed_value_create (value_type (val),
7284 VALUE_ADDRESS (val) + value_offset (val),
7285 val);
7286 }
7287
7288 /* A value representing VAL, but with a standard (static-sized) type
7289 chosen to approximate the real type of VAL as well as possible, but
7290 without consulting any runtime values. For Ada dynamic-sized
7291 types, therefore, the type of the result is likely to be inaccurate. */
7292
7293 struct value *
7294 ada_to_static_fixed_value (struct value *val)
7295 {
7296 struct type *type =
7297 to_static_fixed_type (static_unwrap_type (value_type (val)));
7298 if (type == value_type (val))
7299 return val;
7300 else
7301 return coerce_unspec_val_to_type (val, type);
7302 }
7303 \f
7304
7305 /* Attributes */
7306
7307 /* Table mapping attribute numbers to names.
7308 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
7309
7310 static const char *attribute_names[] = {
7311 "<?>",
7312
7313 "first",
7314 "last",
7315 "length",
7316 "image",
7317 "max",
7318 "min",
7319 "modulus",
7320 "pos",
7321 "size",
7322 "tag",
7323 "val",
7324 0
7325 };
7326
7327 const char *
7328 ada_attribute_name (enum exp_opcode n)
7329 {
7330 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7331 return attribute_names[n - OP_ATR_FIRST + 1];
7332 else
7333 return attribute_names[0];
7334 }
7335
7336 /* Evaluate the 'POS attribute applied to ARG. */
7337
7338 static LONGEST
7339 pos_atr (struct value *arg)
7340 {
7341 struct type *type = value_type (arg);
7342
7343 if (!discrete_type_p (type))
7344 error (_("'POS only defined on discrete types"));
7345
7346 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7347 {
7348 int i;
7349 LONGEST v = value_as_long (arg);
7350
7351 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7352 {
7353 if (v == TYPE_FIELD_BITPOS (type, i))
7354 return i;
7355 }
7356 error (_("enumeration value is invalid: can't find 'POS"));
7357 }
7358 else
7359 return value_as_long (arg);
7360 }
7361
7362 static struct value *
7363 value_pos_atr (struct value *arg)
7364 {
7365 return value_from_longest (builtin_type_int, pos_atr (arg));
7366 }
7367
7368 /* Evaluate the TYPE'VAL attribute applied to ARG. */
7369
7370 static struct value *
7371 value_val_atr (struct type *type, struct value *arg)
7372 {
7373 if (!discrete_type_p (type))
7374 error (_("'VAL only defined on discrete types"));
7375 if (!integer_type_p (value_type (arg)))
7376 error (_("'VAL requires integral argument"));
7377
7378 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7379 {
7380 long pos = value_as_long (arg);
7381 if (pos < 0 || pos >= TYPE_NFIELDS (type))
7382 error (_("argument to 'VAL out of range"));
7383 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
7384 }
7385 else
7386 return value_from_longest (type, value_as_long (arg));
7387 }
7388 \f
7389
7390 /* Evaluation */
7391
7392 /* True if TYPE appears to be an Ada character type.
7393 [At the moment, this is true only for Character and Wide_Character;
7394 It is a heuristic test that could stand improvement]. */
7395
7396 int
7397 ada_is_character_type (struct type *type)
7398 {
7399 const char *name;
7400
7401 /* If the type code says it's a character, then assume it really is,
7402 and don't check any further. */
7403 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
7404 return 1;
7405
7406 /* Otherwise, assume it's a character type iff it is a discrete type
7407 with a known character type name. */
7408 name = ada_type_name (type);
7409 return (name != NULL
7410 && (TYPE_CODE (type) == TYPE_CODE_INT
7411 || TYPE_CODE (type) == TYPE_CODE_RANGE)
7412 && (strcmp (name, "character") == 0
7413 || strcmp (name, "wide_character") == 0
7414 || strcmp (name, "wide_wide_character") == 0
7415 || strcmp (name, "unsigned char") == 0));
7416 }
7417
7418 /* True if TYPE appears to be an Ada string type. */
7419
7420 int
7421 ada_is_string_type (struct type *type)
7422 {
7423 type = ada_check_typedef (type);
7424 if (type != NULL
7425 && TYPE_CODE (type) != TYPE_CODE_PTR
7426 && (ada_is_simple_array_type (type)
7427 || ada_is_array_descriptor_type (type))
7428 && ada_array_arity (type) == 1)
7429 {
7430 struct type *elttype = ada_array_element_type (type, 1);
7431
7432 return ada_is_character_type (elttype);
7433 }
7434 else
7435 return 0;
7436 }
7437
7438
7439 /* True if TYPE is a struct type introduced by the compiler to force the
7440 alignment of a value. Such types have a single field with a
7441 distinctive name. */
7442
7443 int
7444 ada_is_aligner_type (struct type *type)
7445 {
7446 type = ada_check_typedef (type);
7447
7448 /* If we can find a parallel XVS type, then the XVS type should
7449 be used instead of this type. And hence, this is not an aligner
7450 type. */
7451 if (ada_find_parallel_type (type, "___XVS") != NULL)
7452 return 0;
7453
7454 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
7455 && TYPE_NFIELDS (type) == 1
7456 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
7457 }
7458
7459 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
7460 the parallel type. */
7461
7462 struct type *
7463 ada_get_base_type (struct type *raw_type)
7464 {
7465 struct type *real_type_namer;
7466 struct type *raw_real_type;
7467
7468 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
7469 return raw_type;
7470
7471 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
7472 if (real_type_namer == NULL
7473 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
7474 || TYPE_NFIELDS (real_type_namer) != 1)
7475 return raw_type;
7476
7477 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
7478 if (raw_real_type == NULL)
7479 return raw_type;
7480 else
7481 return raw_real_type;
7482 }
7483
7484 /* The type of value designated by TYPE, with all aligners removed. */
7485
7486 struct type *
7487 ada_aligned_type (struct type *type)
7488 {
7489 if (ada_is_aligner_type (type))
7490 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
7491 else
7492 return ada_get_base_type (type);
7493 }
7494
7495
7496 /* The address of the aligned value in an object at address VALADDR
7497 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
7498
7499 const gdb_byte *
7500 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
7501 {
7502 if (ada_is_aligner_type (type))
7503 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
7504 valaddr +
7505 TYPE_FIELD_BITPOS (type,
7506 0) / TARGET_CHAR_BIT);
7507 else
7508 return valaddr;
7509 }
7510
7511
7512
7513 /* The printed representation of an enumeration literal with encoded
7514 name NAME. The value is good to the next call of ada_enum_name. */
7515 const char *
7516 ada_enum_name (const char *name)
7517 {
7518 static char *result;
7519 static size_t result_len = 0;
7520 char *tmp;
7521
7522 /* First, unqualify the enumeration name:
7523 1. Search for the last '.' character. If we find one, then skip
7524 all the preceeding characters, the unqualified name starts
7525 right after that dot.
7526 2. Otherwise, we may be debugging on a target where the compiler
7527 translates dots into "__". Search forward for double underscores,
7528 but stop searching when we hit an overloading suffix, which is
7529 of the form "__" followed by digits. */
7530
7531 tmp = strrchr (name, '.');
7532 if (tmp != NULL)
7533 name = tmp + 1;
7534 else
7535 {
7536 while ((tmp = strstr (name, "__")) != NULL)
7537 {
7538 if (isdigit (tmp[2]))
7539 break;
7540 else
7541 name = tmp + 2;
7542 }
7543 }
7544
7545 if (name[0] == 'Q')
7546 {
7547 int v;
7548 if (name[1] == 'U' || name[1] == 'W')
7549 {
7550 if (sscanf (name + 2, "%x", &v) != 1)
7551 return name;
7552 }
7553 else
7554 return name;
7555
7556 GROW_VECT (result, result_len, 16);
7557 if (isascii (v) && isprint (v))
7558 sprintf (result, "'%c'", v);
7559 else if (name[1] == 'U')
7560 sprintf (result, "[\"%02x\"]", v);
7561 else
7562 sprintf (result, "[\"%04x\"]", v);
7563
7564 return result;
7565 }
7566 else
7567 {
7568 tmp = strstr (name, "__");
7569 if (tmp == NULL)
7570 tmp = strstr (name, "$");
7571 if (tmp != NULL)
7572 {
7573 GROW_VECT (result, result_len, tmp - name + 1);
7574 strncpy (result, name, tmp - name);
7575 result[tmp - name] = '\0';
7576 return result;
7577 }
7578
7579 return name;
7580 }
7581 }
7582
7583 static struct value *
7584 evaluate_subexp (struct type *expect_type, struct expression *exp, int *pos,
7585 enum noside noside)
7586 {
7587 return (*exp->language_defn->la_exp_desc->evaluate_exp)
7588 (expect_type, exp, pos, noside);
7589 }
7590
7591 /* Evaluate the subexpression of EXP starting at *POS as for
7592 evaluate_type, updating *POS to point just past the evaluated
7593 expression. */
7594
7595 static struct value *
7596 evaluate_subexp_type (struct expression *exp, int *pos)
7597 {
7598 return (*exp->language_defn->la_exp_desc->evaluate_exp)
7599 (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
7600 }
7601
7602 /* If VAL is wrapped in an aligner or subtype wrapper, return the
7603 value it wraps. */
7604
7605 static struct value *
7606 unwrap_value (struct value *val)
7607 {
7608 struct type *type = ada_check_typedef (value_type (val));
7609 if (ada_is_aligner_type (type))
7610 {
7611 struct value *v = value_struct_elt (&val, NULL, "F",
7612 NULL, "internal structure");
7613 struct type *val_type = ada_check_typedef (value_type (v));
7614 if (ada_type_name (val_type) == NULL)
7615 TYPE_NAME (val_type) = ada_type_name (type);
7616
7617 return unwrap_value (v);
7618 }
7619 else
7620 {
7621 struct type *raw_real_type =
7622 ada_check_typedef (ada_get_base_type (type));
7623
7624 if (type == raw_real_type)
7625 return val;
7626
7627 return
7628 coerce_unspec_val_to_type
7629 (val, ada_to_fixed_type (raw_real_type, 0,
7630 VALUE_ADDRESS (val) + value_offset (val),
7631 NULL, 1));
7632 }
7633 }
7634
7635 static struct value *
7636 cast_to_fixed (struct type *type, struct value *arg)
7637 {
7638 LONGEST val;
7639
7640 if (type == value_type (arg))
7641 return arg;
7642 else if (ada_is_fixed_point_type (value_type (arg)))
7643 val = ada_float_to_fixed (type,
7644 ada_fixed_to_float (value_type (arg),
7645 value_as_long (arg)));
7646 else
7647 {
7648 DOUBLEST argd =
7649 value_as_double (value_cast (builtin_type_double, value_copy (arg)));
7650 val = ada_float_to_fixed (type, argd);
7651 }
7652
7653 return value_from_longest (type, val);
7654 }
7655
7656 static struct value *
7657 cast_from_fixed_to_double (struct value *arg)
7658 {
7659 DOUBLEST val = ada_fixed_to_float (value_type (arg),
7660 value_as_long (arg));
7661 return value_from_double (builtin_type_double, val);
7662 }
7663
7664 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
7665 return the converted value. */
7666
7667 static struct value *
7668 coerce_for_assign (struct type *type, struct value *val)
7669 {
7670 struct type *type2 = value_type (val);
7671 if (type == type2)
7672 return val;
7673
7674 type2 = ada_check_typedef (type2);
7675 type = ada_check_typedef (type);
7676
7677 if (TYPE_CODE (type2) == TYPE_CODE_PTR
7678 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7679 {
7680 val = ada_value_ind (val);
7681 type2 = value_type (val);
7682 }
7683
7684 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
7685 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7686 {
7687 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
7688 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
7689 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
7690 error (_("Incompatible types in assignment"));
7691 deprecated_set_value_type (val, type);
7692 }
7693 return val;
7694 }
7695
7696 static struct value *
7697 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
7698 {
7699 struct value *val;
7700 struct type *type1, *type2;
7701 LONGEST v, v1, v2;
7702
7703 arg1 = coerce_ref (arg1);
7704 arg2 = coerce_ref (arg2);
7705 type1 = base_type (ada_check_typedef (value_type (arg1)));
7706 type2 = base_type (ada_check_typedef (value_type (arg2)));
7707
7708 if (TYPE_CODE (type1) != TYPE_CODE_INT
7709 || TYPE_CODE (type2) != TYPE_CODE_INT)
7710 return value_binop (arg1, arg2, op);
7711
7712 switch (op)
7713 {
7714 case BINOP_MOD:
7715 case BINOP_DIV:
7716 case BINOP_REM:
7717 break;
7718 default:
7719 return value_binop (arg1, arg2, op);
7720 }
7721
7722 v2 = value_as_long (arg2);
7723 if (v2 == 0)
7724 error (_("second operand of %s must not be zero."), op_string (op));
7725
7726 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
7727 return value_binop (arg1, arg2, op);
7728
7729 v1 = value_as_long (arg1);
7730 switch (op)
7731 {
7732 case BINOP_DIV:
7733 v = v1 / v2;
7734 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
7735 v += v > 0 ? -1 : 1;
7736 break;
7737 case BINOP_REM:
7738 v = v1 % v2;
7739 if (v * v1 < 0)
7740 v -= v2;
7741 break;
7742 default:
7743 /* Should not reach this point. */
7744 v = 0;
7745 }
7746
7747 val = allocate_value (type1);
7748 store_unsigned_integer (value_contents_raw (val),
7749 TYPE_LENGTH (value_type (val)), v);
7750 return val;
7751 }
7752
7753 static int
7754 ada_value_equal (struct value *arg1, struct value *arg2)
7755 {
7756 if (ada_is_direct_array_type (value_type (arg1))
7757 || ada_is_direct_array_type (value_type (arg2)))
7758 {
7759 /* Automatically dereference any array reference before
7760 we attempt to perform the comparison. */
7761 arg1 = ada_coerce_ref (arg1);
7762 arg2 = ada_coerce_ref (arg2);
7763
7764 arg1 = ada_coerce_to_simple_array (arg1);
7765 arg2 = ada_coerce_to_simple_array (arg2);
7766 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
7767 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
7768 error (_("Attempt to compare array with non-array"));
7769 /* FIXME: The following works only for types whose
7770 representations use all bits (no padding or undefined bits)
7771 and do not have user-defined equality. */
7772 return
7773 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
7774 && memcmp (value_contents (arg1), value_contents (arg2),
7775 TYPE_LENGTH (value_type (arg1))) == 0;
7776 }
7777 return value_equal (arg1, arg2);
7778 }
7779
7780 /* Total number of component associations in the aggregate starting at
7781 index PC in EXP. Assumes that index PC is the start of an
7782 OP_AGGREGATE. */
7783
7784 static int
7785 num_component_specs (struct expression *exp, int pc)
7786 {
7787 int n, m, i;
7788 m = exp->elts[pc + 1].longconst;
7789 pc += 3;
7790 n = 0;
7791 for (i = 0; i < m; i += 1)
7792 {
7793 switch (exp->elts[pc].opcode)
7794 {
7795 default:
7796 n += 1;
7797 break;
7798 case OP_CHOICES:
7799 n += exp->elts[pc + 1].longconst;
7800 break;
7801 }
7802 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
7803 }
7804 return n;
7805 }
7806
7807 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
7808 component of LHS (a simple array or a record), updating *POS past
7809 the expression, assuming that LHS is contained in CONTAINER. Does
7810 not modify the inferior's memory, nor does it modify LHS (unless
7811 LHS == CONTAINER). */
7812
7813 static void
7814 assign_component (struct value *container, struct value *lhs, LONGEST index,
7815 struct expression *exp, int *pos)
7816 {
7817 struct value *mark = value_mark ();
7818 struct value *elt;
7819 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
7820 {
7821 struct value *index_val = value_from_longest (builtin_type_int, index);
7822 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
7823 }
7824 else
7825 {
7826 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
7827 elt = ada_to_fixed_value (unwrap_value (elt));
7828 }
7829
7830 if (exp->elts[*pos].opcode == OP_AGGREGATE)
7831 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
7832 else
7833 value_assign_to_component (container, elt,
7834 ada_evaluate_subexp (NULL, exp, pos,
7835 EVAL_NORMAL));
7836
7837 value_free_to_mark (mark);
7838 }
7839
7840 /* Assuming that LHS represents an lvalue having a record or array
7841 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
7842 of that aggregate's value to LHS, advancing *POS past the
7843 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
7844 lvalue containing LHS (possibly LHS itself). Does not modify
7845 the inferior's memory, nor does it modify the contents of
7846 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
7847
7848 static struct value *
7849 assign_aggregate (struct value *container,
7850 struct value *lhs, struct expression *exp,
7851 int *pos, enum noside noside)
7852 {
7853 struct type *lhs_type;
7854 int n = exp->elts[*pos+1].longconst;
7855 LONGEST low_index, high_index;
7856 int num_specs;
7857 LONGEST *indices;
7858 int max_indices, num_indices;
7859 int is_array_aggregate;
7860 int i;
7861 struct value *mark = value_mark ();
7862
7863 *pos += 3;
7864 if (noside != EVAL_NORMAL)
7865 {
7866 int i;
7867 for (i = 0; i < n; i += 1)
7868 ada_evaluate_subexp (NULL, exp, pos, noside);
7869 return container;
7870 }
7871
7872 container = ada_coerce_ref (container);
7873 if (ada_is_direct_array_type (value_type (container)))
7874 container = ada_coerce_to_simple_array (container);
7875 lhs = ada_coerce_ref (lhs);
7876 if (!deprecated_value_modifiable (lhs))
7877 error (_("Left operand of assignment is not a modifiable lvalue."));
7878
7879 lhs_type = value_type (lhs);
7880 if (ada_is_direct_array_type (lhs_type))
7881 {
7882 lhs = ada_coerce_to_simple_array (lhs);
7883 lhs_type = value_type (lhs);
7884 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
7885 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
7886 is_array_aggregate = 1;
7887 }
7888 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
7889 {
7890 low_index = 0;
7891 high_index = num_visible_fields (lhs_type) - 1;
7892 is_array_aggregate = 0;
7893 }
7894 else
7895 error (_("Left-hand side must be array or record."));
7896
7897 num_specs = num_component_specs (exp, *pos - 3);
7898 max_indices = 4 * num_specs + 4;
7899 indices = alloca (max_indices * sizeof (indices[0]));
7900 indices[0] = indices[1] = low_index - 1;
7901 indices[2] = indices[3] = high_index + 1;
7902 num_indices = 4;
7903
7904 for (i = 0; i < n; i += 1)
7905 {
7906 switch (exp->elts[*pos].opcode)
7907 {
7908 case OP_CHOICES:
7909 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
7910 &num_indices, max_indices,
7911 low_index, high_index);
7912 break;
7913 case OP_POSITIONAL:
7914 aggregate_assign_positional (container, lhs, exp, pos, indices,
7915 &num_indices, max_indices,
7916 low_index, high_index);
7917 break;
7918 case OP_OTHERS:
7919 if (i != n-1)
7920 error (_("Misplaced 'others' clause"));
7921 aggregate_assign_others (container, lhs, exp, pos, indices,
7922 num_indices, low_index, high_index);
7923 break;
7924 default:
7925 error (_("Internal error: bad aggregate clause"));
7926 }
7927 }
7928
7929 return container;
7930 }
7931
7932 /* Assign into the component of LHS indexed by the OP_POSITIONAL
7933 construct at *POS, updating *POS past the construct, given that
7934 the positions are relative to lower bound LOW, where HIGH is the
7935 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
7936 updating *NUM_INDICES as needed. CONTAINER is as for
7937 assign_aggregate. */
7938 static void
7939 aggregate_assign_positional (struct value *container,
7940 struct value *lhs, struct expression *exp,
7941 int *pos, LONGEST *indices, int *num_indices,
7942 int max_indices, LONGEST low, LONGEST high)
7943 {
7944 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
7945
7946 if (ind - 1 == high)
7947 warning (_("Extra components in aggregate ignored."));
7948 if (ind <= high)
7949 {
7950 add_component_interval (ind, ind, indices, num_indices, max_indices);
7951 *pos += 3;
7952 assign_component (container, lhs, ind, exp, pos);
7953 }
7954 else
7955 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
7956 }
7957
7958 /* Assign into the components of LHS indexed by the OP_CHOICES
7959 construct at *POS, updating *POS past the construct, given that
7960 the allowable indices are LOW..HIGH. Record the indices assigned
7961 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
7962 needed. CONTAINER is as for assign_aggregate. */
7963 static void
7964 aggregate_assign_from_choices (struct value *container,
7965 struct value *lhs, struct expression *exp,
7966 int *pos, LONGEST *indices, int *num_indices,
7967 int max_indices, LONGEST low, LONGEST high)
7968 {
7969 int j;
7970 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
7971 int choice_pos, expr_pc;
7972 int is_array = ada_is_direct_array_type (value_type (lhs));
7973
7974 choice_pos = *pos += 3;
7975
7976 for (j = 0; j < n_choices; j += 1)
7977 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
7978 expr_pc = *pos;
7979 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
7980
7981 for (j = 0; j < n_choices; j += 1)
7982 {
7983 LONGEST lower, upper;
7984 enum exp_opcode op = exp->elts[choice_pos].opcode;
7985 if (op == OP_DISCRETE_RANGE)
7986 {
7987 choice_pos += 1;
7988 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
7989 EVAL_NORMAL));
7990 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
7991 EVAL_NORMAL));
7992 }
7993 else if (is_array)
7994 {
7995 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
7996 EVAL_NORMAL));
7997 upper = lower;
7998 }
7999 else
8000 {
8001 int ind;
8002 char *name;
8003 switch (op)
8004 {
8005 case OP_NAME:
8006 name = &exp->elts[choice_pos + 2].string;
8007 break;
8008 case OP_VAR_VALUE:
8009 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8010 break;
8011 default:
8012 error (_("Invalid record component association."));
8013 }
8014 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8015 ind = 0;
8016 if (! find_struct_field (name, value_type (lhs), 0,
8017 NULL, NULL, NULL, NULL, &ind))
8018 error (_("Unknown component name: %s."), name);
8019 lower = upper = ind;
8020 }
8021
8022 if (lower <= upper && (lower < low || upper > high))
8023 error (_("Index in component association out of bounds."));
8024
8025 add_component_interval (lower, upper, indices, num_indices,
8026 max_indices);
8027 while (lower <= upper)
8028 {
8029 int pos1;
8030 pos1 = expr_pc;
8031 assign_component (container, lhs, lower, exp, &pos1);
8032 lower += 1;
8033 }
8034 }
8035 }
8036
8037 /* Assign the value of the expression in the OP_OTHERS construct in
8038 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8039 have not been previously assigned. The index intervals already assigned
8040 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
8041 OP_OTHERS clause. CONTAINER is as for assign_aggregate*/
8042 static void
8043 aggregate_assign_others (struct value *container,
8044 struct value *lhs, struct expression *exp,
8045 int *pos, LONGEST *indices, int num_indices,
8046 LONGEST low, LONGEST high)
8047 {
8048 int i;
8049 int expr_pc = *pos+1;
8050
8051 for (i = 0; i < num_indices - 2; i += 2)
8052 {
8053 LONGEST ind;
8054 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
8055 {
8056 int pos;
8057 pos = expr_pc;
8058 assign_component (container, lhs, ind, exp, &pos);
8059 }
8060 }
8061 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8062 }
8063
8064 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
8065 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
8066 modifying *SIZE as needed. It is an error if *SIZE exceeds
8067 MAX_SIZE. The resulting intervals do not overlap. */
8068 static void
8069 add_component_interval (LONGEST low, LONGEST high,
8070 LONGEST* indices, int *size, int max_size)
8071 {
8072 int i, j;
8073 for (i = 0; i < *size; i += 2) {
8074 if (high >= indices[i] && low <= indices[i + 1])
8075 {
8076 int kh;
8077 for (kh = i + 2; kh < *size; kh += 2)
8078 if (high < indices[kh])
8079 break;
8080 if (low < indices[i])
8081 indices[i] = low;
8082 indices[i + 1] = indices[kh - 1];
8083 if (high > indices[i + 1])
8084 indices[i + 1] = high;
8085 memcpy (indices + i + 2, indices + kh, *size - kh);
8086 *size -= kh - i - 2;
8087 return;
8088 }
8089 else if (high < indices[i])
8090 break;
8091 }
8092
8093 if (*size == max_size)
8094 error (_("Internal error: miscounted aggregate components."));
8095 *size += 2;
8096 for (j = *size-1; j >= i+2; j -= 1)
8097 indices[j] = indices[j - 2];
8098 indices[i] = low;
8099 indices[i + 1] = high;
8100 }
8101
8102 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
8103 is different. */
8104
8105 static struct value *
8106 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
8107 {
8108 if (type == ada_check_typedef (value_type (arg2)))
8109 return arg2;
8110
8111 if (ada_is_fixed_point_type (type))
8112 return (cast_to_fixed (type, arg2));
8113
8114 if (ada_is_fixed_point_type (value_type (arg2)))
8115 return value_cast (type, cast_from_fixed_to_double (arg2));
8116
8117 return value_cast (type, arg2);
8118 }
8119
8120 static struct value *
8121 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
8122 int *pos, enum noside noside)
8123 {
8124 enum exp_opcode op;
8125 int tem, tem2, tem3;
8126 int pc;
8127 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
8128 struct type *type;
8129 int nargs, oplen;
8130 struct value **argvec;
8131
8132 pc = *pos;
8133 *pos += 1;
8134 op = exp->elts[pc].opcode;
8135
8136 switch (op)
8137 {
8138 default:
8139 *pos -= 1;
8140 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8141 arg1 = unwrap_value (arg1);
8142
8143 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
8144 then we need to perform the conversion manually, because
8145 evaluate_subexp_standard doesn't do it. This conversion is
8146 necessary in Ada because the different kinds of float/fixed
8147 types in Ada have different representations.
8148
8149 Similarly, we need to perform the conversion from OP_LONG
8150 ourselves. */
8151 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
8152 arg1 = ada_value_cast (expect_type, arg1, noside);
8153
8154 return arg1;
8155
8156 case OP_STRING:
8157 {
8158 struct value *result;
8159 *pos -= 1;
8160 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
8161 /* The result type will have code OP_STRING, bashed there from
8162 OP_ARRAY. Bash it back. */
8163 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
8164 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
8165 return result;
8166 }
8167
8168 case UNOP_CAST:
8169 (*pos) += 2;
8170 type = exp->elts[pc + 1].type;
8171 arg1 = evaluate_subexp (type, exp, pos, noside);
8172 if (noside == EVAL_SKIP)
8173 goto nosideret;
8174 arg1 = ada_value_cast (type, arg1, noside);
8175 return arg1;
8176
8177 case UNOP_QUAL:
8178 (*pos) += 2;
8179 type = exp->elts[pc + 1].type;
8180 return ada_evaluate_subexp (type, exp, pos, noside);
8181
8182 case BINOP_ASSIGN:
8183 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8184 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8185 {
8186 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
8187 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8188 return arg1;
8189 return ada_value_assign (arg1, arg1);
8190 }
8191 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
8192 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8193 return arg1;
8194 if (ada_is_fixed_point_type (value_type (arg1)))
8195 arg2 = cast_to_fixed (value_type (arg1), arg2);
8196 else if (ada_is_fixed_point_type (value_type (arg2)))
8197 error
8198 (_("Fixed-point values must be assigned to fixed-point variables"));
8199 else
8200 arg2 = coerce_for_assign (value_type (arg1), arg2);
8201 return ada_value_assign (arg1, arg2);
8202
8203 case BINOP_ADD:
8204 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8205 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8206 if (noside == EVAL_SKIP)
8207 goto nosideret;
8208 if ((ada_is_fixed_point_type (value_type (arg1))
8209 || ada_is_fixed_point_type (value_type (arg2)))
8210 && value_type (arg1) != value_type (arg2))
8211 error (_("Operands of fixed-point addition must have the same type"));
8212 /* Do the addition, and cast the result to the type of the first
8213 argument. We cannot cast the result to a reference type, so if
8214 ARG1 is a reference type, find its underlying type. */
8215 type = value_type (arg1);
8216 while (TYPE_CODE (type) == TYPE_CODE_REF)
8217 type = TYPE_TARGET_TYPE (type);
8218 return value_cast (type, value_add (arg1, arg2));
8219
8220 case BINOP_SUB:
8221 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8222 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8223 if (noside == EVAL_SKIP)
8224 goto nosideret;
8225 if ((ada_is_fixed_point_type (value_type (arg1))
8226 || ada_is_fixed_point_type (value_type (arg2)))
8227 && value_type (arg1) != value_type (arg2))
8228 error (_("Operands of fixed-point subtraction must have the same type"));
8229 /* Do the substraction, and cast the result to the type of the first
8230 argument. We cannot cast the result to a reference type, so if
8231 ARG1 is a reference type, find its underlying type. */
8232 type = value_type (arg1);
8233 while (TYPE_CODE (type) == TYPE_CODE_REF)
8234 type = TYPE_TARGET_TYPE (type);
8235 return value_cast (type, value_sub (arg1, arg2));
8236
8237 case BINOP_MUL:
8238 case BINOP_DIV:
8239 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8240 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8241 if (noside == EVAL_SKIP)
8242 goto nosideret;
8243 else if (noside == EVAL_AVOID_SIDE_EFFECTS
8244 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
8245 return value_zero (value_type (arg1), not_lval);
8246 else
8247 {
8248 if (ada_is_fixed_point_type (value_type (arg1)))
8249 arg1 = cast_from_fixed_to_double (arg1);
8250 if (ada_is_fixed_point_type (value_type (arg2)))
8251 arg2 = cast_from_fixed_to_double (arg2);
8252 return ada_value_binop (arg1, arg2, op);
8253 }
8254
8255 case BINOP_REM:
8256 case BINOP_MOD:
8257 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8258 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8259 if (noside == EVAL_SKIP)
8260 goto nosideret;
8261 else if (noside == EVAL_AVOID_SIDE_EFFECTS
8262 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
8263 return value_zero (value_type (arg1), not_lval);
8264 else
8265 return ada_value_binop (arg1, arg2, op);
8266
8267 case BINOP_EQUAL:
8268 case BINOP_NOTEQUAL:
8269 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8270 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
8271 if (noside == EVAL_SKIP)
8272 goto nosideret;
8273 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8274 tem = 0;
8275 else
8276 tem = ada_value_equal (arg1, arg2);
8277 if (op == BINOP_NOTEQUAL)
8278 tem = !tem;
8279 return value_from_longest (LA_BOOL_TYPE, (LONGEST) tem);
8280
8281 case UNOP_NEG:
8282 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8283 if (noside == EVAL_SKIP)
8284 goto nosideret;
8285 else if (ada_is_fixed_point_type (value_type (arg1)))
8286 return value_cast (value_type (arg1), value_neg (arg1));
8287 else
8288 return value_neg (arg1);
8289
8290 case BINOP_LOGICAL_AND:
8291 case BINOP_LOGICAL_OR:
8292 case UNOP_LOGICAL_NOT:
8293 {
8294 struct value *val;
8295
8296 *pos -= 1;
8297 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8298 return value_cast (LA_BOOL_TYPE, val);
8299 }
8300
8301 case BINOP_BITWISE_AND:
8302 case BINOP_BITWISE_IOR:
8303 case BINOP_BITWISE_XOR:
8304 {
8305 struct value *val;
8306
8307 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8308 *pos = pc;
8309 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8310
8311 return value_cast (value_type (arg1), val);
8312 }
8313
8314 case OP_VAR_VALUE:
8315 *pos -= 1;
8316 if (noside == EVAL_SKIP)
8317 {
8318 *pos += 4;
8319 goto nosideret;
8320 }
8321 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
8322 /* Only encountered when an unresolved symbol occurs in a
8323 context other than a function call, in which case, it is
8324 invalid. */
8325 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8326 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
8327 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8328 {
8329 *pos += 4;
8330 return value_zero
8331 (to_static_fixed_type
8332 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
8333 not_lval);
8334 }
8335 else
8336 {
8337 arg1 =
8338 unwrap_value (evaluate_subexp_standard
8339 (expect_type, exp, pos, noside));
8340 return ada_to_fixed_value (arg1);
8341 }
8342
8343 case OP_FUNCALL:
8344 (*pos) += 2;
8345
8346 /* Allocate arg vector, including space for the function to be
8347 called in argvec[0] and a terminating NULL. */
8348 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8349 argvec =
8350 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
8351
8352 if (exp->elts[*pos].opcode == OP_VAR_VALUE
8353 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
8354 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8355 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
8356 else
8357 {
8358 for (tem = 0; tem <= nargs; tem += 1)
8359 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8360 argvec[tem] = 0;
8361
8362 if (noside == EVAL_SKIP)
8363 goto nosideret;
8364 }
8365
8366 if (ada_is_packed_array_type (desc_base_type (value_type (argvec[0]))))
8367 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
8368 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
8369 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
8370 && VALUE_LVAL (argvec[0]) == lval_memory))
8371 argvec[0] = value_addr (argvec[0]);
8372
8373 type = ada_check_typedef (value_type (argvec[0]));
8374 if (TYPE_CODE (type) == TYPE_CODE_PTR)
8375 {
8376 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
8377 {
8378 case TYPE_CODE_FUNC:
8379 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8380 break;
8381 case TYPE_CODE_ARRAY:
8382 break;
8383 case TYPE_CODE_STRUCT:
8384 if (noside != EVAL_AVOID_SIDE_EFFECTS)
8385 argvec[0] = ada_value_ind (argvec[0]);
8386 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8387 break;
8388 default:
8389 error (_("cannot subscript or call something of type `%s'"),
8390 ada_type_name (value_type (argvec[0])));
8391 break;
8392 }
8393 }
8394
8395 switch (TYPE_CODE (type))
8396 {
8397 case TYPE_CODE_FUNC:
8398 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8399 return allocate_value (TYPE_TARGET_TYPE (type));
8400 return call_function_by_hand (argvec[0], nargs, argvec + 1);
8401 case TYPE_CODE_STRUCT:
8402 {
8403 int arity;
8404
8405 arity = ada_array_arity (type);
8406 type = ada_array_element_type (type, nargs);
8407 if (type == NULL)
8408 error (_("cannot subscript or call a record"));
8409 if (arity != nargs)
8410 error (_("wrong number of subscripts; expecting %d"), arity);
8411 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8412 return value_zero (ada_aligned_type (type), lval_memory);
8413 return
8414 unwrap_value (ada_value_subscript
8415 (argvec[0], nargs, argvec + 1));
8416 }
8417 case TYPE_CODE_ARRAY:
8418 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8419 {
8420 type = ada_array_element_type (type, nargs);
8421 if (type == NULL)
8422 error (_("element type of array unknown"));
8423 else
8424 return value_zero (ada_aligned_type (type), lval_memory);
8425 }
8426 return
8427 unwrap_value (ada_value_subscript
8428 (ada_coerce_to_simple_array (argvec[0]),
8429 nargs, argvec + 1));
8430 case TYPE_CODE_PTR: /* Pointer to array */
8431 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
8432 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8433 {
8434 type = ada_array_element_type (type, nargs);
8435 if (type == NULL)
8436 error (_("element type of array unknown"));
8437 else
8438 return value_zero (ada_aligned_type (type), lval_memory);
8439 }
8440 return
8441 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
8442 nargs, argvec + 1));
8443
8444 default:
8445 error (_("Attempt to index or call something other than an "
8446 "array or function"));
8447 }
8448
8449 case TERNOP_SLICE:
8450 {
8451 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8452 struct value *low_bound_val =
8453 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8454 struct value *high_bound_val =
8455 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8456 LONGEST low_bound;
8457 LONGEST high_bound;
8458 low_bound_val = coerce_ref (low_bound_val);
8459 high_bound_val = coerce_ref (high_bound_val);
8460 low_bound = pos_atr (low_bound_val);
8461 high_bound = pos_atr (high_bound_val);
8462
8463 if (noside == EVAL_SKIP)
8464 goto nosideret;
8465
8466 /* If this is a reference to an aligner type, then remove all
8467 the aligners. */
8468 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8469 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
8470 TYPE_TARGET_TYPE (value_type (array)) =
8471 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
8472
8473 if (ada_is_packed_array_type (value_type (array)))
8474 error (_("cannot slice a packed array"));
8475
8476 /* If this is a reference to an array or an array lvalue,
8477 convert to a pointer. */
8478 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8479 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
8480 && VALUE_LVAL (array) == lval_memory))
8481 array = value_addr (array);
8482
8483 if (noside == EVAL_AVOID_SIDE_EFFECTS
8484 && ada_is_array_descriptor_type (ada_check_typedef
8485 (value_type (array))))
8486 return empty_array (ada_type_of_array (array, 0), low_bound);
8487
8488 array = ada_coerce_to_simple_array_ptr (array);
8489
8490 /* If we have more than one level of pointer indirection,
8491 dereference the value until we get only one level. */
8492 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
8493 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
8494 == TYPE_CODE_PTR))
8495 array = value_ind (array);
8496
8497 /* Make sure we really do have an array type before going further,
8498 to avoid a SEGV when trying to get the index type or the target
8499 type later down the road if the debug info generated by
8500 the compiler is incorrect or incomplete. */
8501 if (!ada_is_simple_array_type (value_type (array)))
8502 error (_("cannot take slice of non-array"));
8503
8504 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
8505 {
8506 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
8507 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
8508 low_bound);
8509 else
8510 {
8511 struct type *arr_type0 =
8512 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
8513 NULL, 1);
8514 return ada_value_slice_ptr (array, arr_type0,
8515 longest_to_int (low_bound),
8516 longest_to_int (high_bound));
8517 }
8518 }
8519 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8520 return array;
8521 else if (high_bound < low_bound)
8522 return empty_array (value_type (array), low_bound);
8523 else
8524 return ada_value_slice (array, longest_to_int (low_bound),
8525 longest_to_int (high_bound));
8526 }
8527
8528 case UNOP_IN_RANGE:
8529 (*pos) += 2;
8530 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8531 type = exp->elts[pc + 1].type;
8532
8533 if (noside == EVAL_SKIP)
8534 goto nosideret;
8535
8536 switch (TYPE_CODE (type))
8537 {
8538 default:
8539 lim_warning (_("Membership test incompletely implemented; "
8540 "always returns true"));
8541 return value_from_longest (builtin_type_int, (LONGEST) 1);
8542
8543 case TYPE_CODE_RANGE:
8544 arg2 = value_from_longest (builtin_type_int, TYPE_LOW_BOUND (type));
8545 arg3 = value_from_longest (builtin_type_int,
8546 TYPE_HIGH_BOUND (type));
8547 return
8548 value_from_longest (builtin_type_int,
8549 (value_less (arg1, arg3)
8550 || value_equal (arg1, arg3))
8551 && (value_less (arg2, arg1)
8552 || value_equal (arg2, arg1)));
8553 }
8554
8555 case BINOP_IN_BOUNDS:
8556 (*pos) += 2;
8557 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8558 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8559
8560 if (noside == EVAL_SKIP)
8561 goto nosideret;
8562
8563 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8564 return value_zero (builtin_type_int, not_lval);
8565
8566 tem = longest_to_int (exp->elts[pc + 1].longconst);
8567
8568 if (tem < 1 || tem > ada_array_arity (value_type (arg2)))
8569 error (_("invalid dimension number to 'range"));
8570
8571 arg3 = ada_array_bound (arg2, tem, 1);
8572 arg2 = ada_array_bound (arg2, tem, 0);
8573
8574 return
8575 value_from_longest (builtin_type_int,
8576 (value_less (arg1, arg3)
8577 || value_equal (arg1, arg3))
8578 && (value_less (arg2, arg1)
8579 || value_equal (arg2, arg1)));
8580
8581 case TERNOP_IN_RANGE:
8582 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8583 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8584 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8585
8586 if (noside == EVAL_SKIP)
8587 goto nosideret;
8588
8589 return
8590 value_from_longest (builtin_type_int,
8591 (value_less (arg1, arg3)
8592 || value_equal (arg1, arg3))
8593 && (value_less (arg2, arg1)
8594 || value_equal (arg2, arg1)));
8595
8596 case OP_ATR_FIRST:
8597 case OP_ATR_LAST:
8598 case OP_ATR_LENGTH:
8599 {
8600 struct type *type_arg;
8601 if (exp->elts[*pos].opcode == OP_TYPE)
8602 {
8603 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8604 arg1 = NULL;
8605 type_arg = exp->elts[pc + 2].type;
8606 }
8607 else
8608 {
8609 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8610 type_arg = NULL;
8611 }
8612
8613 if (exp->elts[*pos].opcode != OP_LONG)
8614 error (_("Invalid operand to '%s"), ada_attribute_name (op));
8615 tem = longest_to_int (exp->elts[*pos + 2].longconst);
8616 *pos += 4;
8617
8618 if (noside == EVAL_SKIP)
8619 goto nosideret;
8620
8621 if (type_arg == NULL)
8622 {
8623 arg1 = ada_coerce_ref (arg1);
8624
8625 if (ada_is_packed_array_type (value_type (arg1)))
8626 arg1 = ada_coerce_to_simple_array (arg1);
8627
8628 if (tem < 1 || tem > ada_array_arity (value_type (arg1)))
8629 error (_("invalid dimension number to '%s"),
8630 ada_attribute_name (op));
8631
8632 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8633 {
8634 type = ada_index_type (value_type (arg1), tem);
8635 if (type == NULL)
8636 error
8637 (_("attempt to take bound of something that is not an array"));
8638 return allocate_value (type);
8639 }
8640
8641 switch (op)
8642 {
8643 default: /* Should never happen. */
8644 error (_("unexpected attribute encountered"));
8645 case OP_ATR_FIRST:
8646 return ada_array_bound (arg1, tem, 0);
8647 case OP_ATR_LAST:
8648 return ada_array_bound (arg1, tem, 1);
8649 case OP_ATR_LENGTH:
8650 return ada_array_length (arg1, tem);
8651 }
8652 }
8653 else if (discrete_type_p (type_arg))
8654 {
8655 struct type *range_type;
8656 char *name = ada_type_name (type_arg);
8657 range_type = NULL;
8658 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
8659 range_type =
8660 to_fixed_range_type (name, NULL, TYPE_OBJFILE (type_arg));
8661 if (range_type == NULL)
8662 range_type = type_arg;
8663 switch (op)
8664 {
8665 default:
8666 error (_("unexpected attribute encountered"));
8667 case OP_ATR_FIRST:
8668 return discrete_type_low_bound (range_type);
8669 case OP_ATR_LAST:
8670 return discrete_type_high_bound (range_type);
8671 case OP_ATR_LENGTH:
8672 error (_("the 'length attribute applies only to array types"));
8673 }
8674 }
8675 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
8676 error (_("unimplemented type attribute"));
8677 else
8678 {
8679 LONGEST low, high;
8680
8681 if (ada_is_packed_array_type (type_arg))
8682 type_arg = decode_packed_array_type (type_arg);
8683
8684 if (tem < 1 || tem > ada_array_arity (type_arg))
8685 error (_("invalid dimension number to '%s"),
8686 ada_attribute_name (op));
8687
8688 type = ada_index_type (type_arg, tem);
8689 if (type == NULL)
8690 error
8691 (_("attempt to take bound of something that is not an array"));
8692 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8693 return allocate_value (type);
8694
8695 switch (op)
8696 {
8697 default:
8698 error (_("unexpected attribute encountered"));
8699 case OP_ATR_FIRST:
8700 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
8701 return value_from_longest (type, low);
8702 case OP_ATR_LAST:
8703 high = ada_array_bound_from_type (type_arg, tem, 1, &type);
8704 return value_from_longest (type, high);
8705 case OP_ATR_LENGTH:
8706 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
8707 high = ada_array_bound_from_type (type_arg, tem, 1, NULL);
8708 return value_from_longest (type, high - low + 1);
8709 }
8710 }
8711 }
8712
8713 case OP_ATR_TAG:
8714 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8715 if (noside == EVAL_SKIP)
8716 goto nosideret;
8717
8718 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8719 return value_zero (ada_tag_type (arg1), not_lval);
8720
8721 return ada_value_tag (arg1);
8722
8723 case OP_ATR_MIN:
8724 case OP_ATR_MAX:
8725 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8726 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8727 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8728 if (noside == EVAL_SKIP)
8729 goto nosideret;
8730 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8731 return value_zero (value_type (arg1), not_lval);
8732 else
8733 return value_binop (arg1, arg2,
8734 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
8735
8736 case OP_ATR_MODULUS:
8737 {
8738 struct type *type_arg = exp->elts[pc + 2].type;
8739 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8740
8741 if (noside == EVAL_SKIP)
8742 goto nosideret;
8743
8744 if (!ada_is_modular_type (type_arg))
8745 error (_("'modulus must be applied to modular type"));
8746
8747 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
8748 ada_modulus (type_arg));
8749 }
8750
8751
8752 case OP_ATR_POS:
8753 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8754 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8755 if (noside == EVAL_SKIP)
8756 goto nosideret;
8757 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8758 return value_zero (builtin_type_int, not_lval);
8759 else
8760 return value_pos_atr (arg1);
8761
8762 case OP_ATR_SIZE:
8763 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8764 if (noside == EVAL_SKIP)
8765 goto nosideret;
8766 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8767 return value_zero (builtin_type_int, not_lval);
8768 else
8769 return value_from_longest (builtin_type_int,
8770 TARGET_CHAR_BIT
8771 * TYPE_LENGTH (value_type (arg1)));
8772
8773 case OP_ATR_VAL:
8774 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8775 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8776 type = exp->elts[pc + 2].type;
8777 if (noside == EVAL_SKIP)
8778 goto nosideret;
8779 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8780 return value_zero (type, not_lval);
8781 else
8782 return value_val_atr (type, arg1);
8783
8784 case BINOP_EXP:
8785 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8786 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8787 if (noside == EVAL_SKIP)
8788 goto nosideret;
8789 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8790 return value_zero (value_type (arg1), not_lval);
8791 else
8792 return value_binop (arg1, arg2, op);
8793
8794 case UNOP_PLUS:
8795 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8796 if (noside == EVAL_SKIP)
8797 goto nosideret;
8798 else
8799 return arg1;
8800
8801 case UNOP_ABS:
8802 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8803 if (noside == EVAL_SKIP)
8804 goto nosideret;
8805 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
8806 return value_neg (arg1);
8807 else
8808 return arg1;
8809
8810 case UNOP_IND:
8811 if (expect_type && TYPE_CODE (expect_type) == TYPE_CODE_PTR)
8812 expect_type = TYPE_TARGET_TYPE (ada_check_typedef (expect_type));
8813 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
8814 if (noside == EVAL_SKIP)
8815 goto nosideret;
8816 type = ada_check_typedef (value_type (arg1));
8817 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8818 {
8819 if (ada_is_array_descriptor_type (type))
8820 /* GDB allows dereferencing GNAT array descriptors. */
8821 {
8822 struct type *arrType = ada_type_of_array (arg1, 0);
8823 if (arrType == NULL)
8824 error (_("Attempt to dereference null array pointer."));
8825 return value_at_lazy (arrType, 0);
8826 }
8827 else if (TYPE_CODE (type) == TYPE_CODE_PTR
8828 || TYPE_CODE (type) == TYPE_CODE_REF
8829 /* In C you can dereference an array to get the 1st elt. */
8830 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
8831 {
8832 type = to_static_fixed_type
8833 (ada_aligned_type
8834 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
8835 check_size (type);
8836 return value_zero (type, lval_memory);
8837 }
8838 else if (TYPE_CODE (type) == TYPE_CODE_INT)
8839 /* GDB allows dereferencing an int. */
8840 return value_zero (builtin_type_int, lval_memory);
8841 else
8842 error (_("Attempt to take contents of a non-pointer value."));
8843 }
8844 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
8845 type = ada_check_typedef (value_type (arg1));
8846
8847 if (ada_is_array_descriptor_type (type))
8848 /* GDB allows dereferencing GNAT array descriptors. */
8849 return ada_coerce_to_simple_array (arg1);
8850 else
8851 return ada_value_ind (arg1);
8852
8853 case STRUCTOP_STRUCT:
8854 tem = longest_to_int (exp->elts[pc + 1].longconst);
8855 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
8856 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8857 if (noside == EVAL_SKIP)
8858 goto nosideret;
8859 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8860 {
8861 struct type *type1 = value_type (arg1);
8862 if (ada_is_tagged_type (type1, 1))
8863 {
8864 type = ada_lookup_struct_elt_type (type1,
8865 &exp->elts[pc + 2].string,
8866 1, 1, NULL);
8867 if (type == NULL)
8868 /* In this case, we assume that the field COULD exist
8869 in some extension of the type. Return an object of
8870 "type" void, which will match any formal
8871 (see ada_type_match). */
8872 return value_zero (builtin_type_void, lval_memory);
8873 }
8874 else
8875 type =
8876 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
8877 0, NULL);
8878
8879 return value_zero (ada_aligned_type (type), lval_memory);
8880 }
8881 else
8882 return
8883 ada_to_fixed_value (unwrap_value
8884 (ada_value_struct_elt
8885 (arg1, &exp->elts[pc + 2].string, 0)));
8886 case OP_TYPE:
8887 /* The value is not supposed to be used. This is here to make it
8888 easier to accommodate expressions that contain types. */
8889 (*pos) += 2;
8890 if (noside == EVAL_SKIP)
8891 goto nosideret;
8892 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8893 return allocate_value (exp->elts[pc + 1].type);
8894 else
8895 error (_("Attempt to use a type name as an expression"));
8896
8897 case OP_AGGREGATE:
8898 case OP_CHOICES:
8899 case OP_OTHERS:
8900 case OP_DISCRETE_RANGE:
8901 case OP_POSITIONAL:
8902 case OP_NAME:
8903 if (noside == EVAL_NORMAL)
8904 switch (op)
8905 {
8906 case OP_NAME:
8907 error (_("Undefined name, ambiguous name, or renaming used in "
8908 "component association: %s."), &exp->elts[pc+2].string);
8909 case OP_AGGREGATE:
8910 error (_("Aggregates only allowed on the right of an assignment"));
8911 default:
8912 internal_error (__FILE__, __LINE__, _("aggregate apparently mangled"));
8913 }
8914
8915 ada_forward_operator_length (exp, pc, &oplen, &nargs);
8916 *pos += oplen - 1;
8917 for (tem = 0; tem < nargs; tem += 1)
8918 ada_evaluate_subexp (NULL, exp, pos, noside);
8919 goto nosideret;
8920 }
8921
8922 nosideret:
8923 return value_from_longest (builtin_type_long, (LONGEST) 1);
8924 }
8925 \f
8926
8927 /* Fixed point */
8928
8929 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
8930 type name that encodes the 'small and 'delta information.
8931 Otherwise, return NULL. */
8932
8933 static const char *
8934 fixed_type_info (struct type *type)
8935 {
8936 const char *name = ada_type_name (type);
8937 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
8938
8939 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
8940 {
8941 const char *tail = strstr (name, "___XF_");
8942 if (tail == NULL)
8943 return NULL;
8944 else
8945 return tail + 5;
8946 }
8947 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
8948 return fixed_type_info (TYPE_TARGET_TYPE (type));
8949 else
8950 return NULL;
8951 }
8952
8953 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
8954
8955 int
8956 ada_is_fixed_point_type (struct type *type)
8957 {
8958 return fixed_type_info (type) != NULL;
8959 }
8960
8961 /* Return non-zero iff TYPE represents a System.Address type. */
8962
8963 int
8964 ada_is_system_address_type (struct type *type)
8965 {
8966 return (TYPE_NAME (type)
8967 && strcmp (TYPE_NAME (type), "system__address") == 0);
8968 }
8969
8970 /* Assuming that TYPE is the representation of an Ada fixed-point
8971 type, return its delta, or -1 if the type is malformed and the
8972 delta cannot be determined. */
8973
8974 DOUBLEST
8975 ada_delta (struct type *type)
8976 {
8977 const char *encoding = fixed_type_info (type);
8978 long num, den;
8979
8980 if (sscanf (encoding, "_%ld_%ld", &num, &den) < 2)
8981 return -1.0;
8982 else
8983 return (DOUBLEST) num / (DOUBLEST) den;
8984 }
8985
8986 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
8987 factor ('SMALL value) associated with the type. */
8988
8989 static DOUBLEST
8990 scaling_factor (struct type *type)
8991 {
8992 const char *encoding = fixed_type_info (type);
8993 unsigned long num0, den0, num1, den1;
8994 int n;
8995
8996 n = sscanf (encoding, "_%lu_%lu_%lu_%lu", &num0, &den0, &num1, &den1);
8997
8998 if (n < 2)
8999 return 1.0;
9000 else if (n == 4)
9001 return (DOUBLEST) num1 / (DOUBLEST) den1;
9002 else
9003 return (DOUBLEST) num0 / (DOUBLEST) den0;
9004 }
9005
9006
9007 /* Assuming that X is the representation of a value of fixed-point
9008 type TYPE, return its floating-point equivalent. */
9009
9010 DOUBLEST
9011 ada_fixed_to_float (struct type *type, LONGEST x)
9012 {
9013 return (DOUBLEST) x *scaling_factor (type);
9014 }
9015
9016 /* The representation of a fixed-point value of type TYPE
9017 corresponding to the value X. */
9018
9019 LONGEST
9020 ada_float_to_fixed (struct type *type, DOUBLEST x)
9021 {
9022 return (LONGEST) (x / scaling_factor (type) + 0.5);
9023 }
9024
9025
9026 /* VAX floating formats */
9027
9028 /* Non-zero iff TYPE represents one of the special VAX floating-point
9029 types. */
9030
9031 int
9032 ada_is_vax_floating_type (struct type *type)
9033 {
9034 int name_len =
9035 (ada_type_name (type) == NULL) ? 0 : strlen (ada_type_name (type));
9036 return
9037 name_len > 6
9038 && (TYPE_CODE (type) == TYPE_CODE_INT
9039 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9040 && strncmp (ada_type_name (type) + name_len - 6, "___XF", 5) == 0;
9041 }
9042
9043 /* The type of special VAX floating-point type this is, assuming
9044 ada_is_vax_floating_point. */
9045
9046 int
9047 ada_vax_float_type_suffix (struct type *type)
9048 {
9049 return ada_type_name (type)[strlen (ada_type_name (type)) - 1];
9050 }
9051
9052 /* A value representing the special debugging function that outputs
9053 VAX floating-point values of the type represented by TYPE. Assumes
9054 ada_is_vax_floating_type (TYPE). */
9055
9056 struct value *
9057 ada_vax_float_print_function (struct type *type)
9058 {
9059 switch (ada_vax_float_type_suffix (type))
9060 {
9061 case 'F':
9062 return get_var_value ("DEBUG_STRING_F", 0);
9063 case 'D':
9064 return get_var_value ("DEBUG_STRING_D", 0);
9065 case 'G':
9066 return get_var_value ("DEBUG_STRING_G", 0);
9067 default:
9068 error (_("invalid VAX floating-point type"));
9069 }
9070 }
9071 \f
9072
9073 /* Range types */
9074
9075 /* Scan STR beginning at position K for a discriminant name, and
9076 return the value of that discriminant field of DVAL in *PX. If
9077 PNEW_K is not null, put the position of the character beyond the
9078 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
9079 not alter *PX and *PNEW_K if unsuccessful. */
9080
9081 static int
9082 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
9083 int *pnew_k)
9084 {
9085 static char *bound_buffer = NULL;
9086 static size_t bound_buffer_len = 0;
9087 char *bound;
9088 char *pend;
9089 struct value *bound_val;
9090
9091 if (dval == NULL || str == NULL || str[k] == '\0')
9092 return 0;
9093
9094 pend = strstr (str + k, "__");
9095 if (pend == NULL)
9096 {
9097 bound = str + k;
9098 k += strlen (bound);
9099 }
9100 else
9101 {
9102 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
9103 bound = bound_buffer;
9104 strncpy (bound_buffer, str + k, pend - (str + k));
9105 bound[pend - (str + k)] = '\0';
9106 k = pend - str;
9107 }
9108
9109 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
9110 if (bound_val == NULL)
9111 return 0;
9112
9113 *px = value_as_long (bound_val);
9114 if (pnew_k != NULL)
9115 *pnew_k = k;
9116 return 1;
9117 }
9118
9119 /* Value of variable named NAME in the current environment. If
9120 no such variable found, then if ERR_MSG is null, returns 0, and
9121 otherwise causes an error with message ERR_MSG. */
9122
9123 static struct value *
9124 get_var_value (char *name, char *err_msg)
9125 {
9126 struct ada_symbol_info *syms;
9127 int nsyms;
9128
9129 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
9130 &syms);
9131
9132 if (nsyms != 1)
9133 {
9134 if (err_msg == NULL)
9135 return 0;
9136 else
9137 error (("%s"), err_msg);
9138 }
9139
9140 return value_of_variable (syms[0].sym, syms[0].block);
9141 }
9142
9143 /* Value of integer variable named NAME in the current environment. If
9144 no such variable found, returns 0, and sets *FLAG to 0. If
9145 successful, sets *FLAG to 1. */
9146
9147 LONGEST
9148 get_int_var_value (char *name, int *flag)
9149 {
9150 struct value *var_val = get_var_value (name, 0);
9151
9152 if (var_val == 0)
9153 {
9154 if (flag != NULL)
9155 *flag = 0;
9156 return 0;
9157 }
9158 else
9159 {
9160 if (flag != NULL)
9161 *flag = 1;
9162 return value_as_long (var_val);
9163 }
9164 }
9165
9166
9167 /* Return a range type whose base type is that of the range type named
9168 NAME in the current environment, and whose bounds are calculated
9169 from NAME according to the GNAT range encoding conventions.
9170 Extract discriminant values, if needed, from DVAL. If a new type
9171 must be created, allocate in OBJFILE's space. The bounds
9172 information, in general, is encoded in NAME, the base type given in
9173 the named range type. */
9174
9175 static struct type *
9176 to_fixed_range_type (char *name, struct value *dval, struct objfile *objfile)
9177 {
9178 struct type *raw_type = ada_find_any_type (name);
9179 struct type *base_type;
9180 char *subtype_info;
9181
9182 if (raw_type == NULL)
9183 base_type = builtin_type_int;
9184 else if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
9185 base_type = TYPE_TARGET_TYPE (raw_type);
9186 else
9187 base_type = raw_type;
9188
9189 subtype_info = strstr (name, "___XD");
9190 if (subtype_info == NULL)
9191 return raw_type;
9192 else
9193 {
9194 static char *name_buf = NULL;
9195 static size_t name_len = 0;
9196 int prefix_len = subtype_info - name;
9197 LONGEST L, U;
9198 struct type *type;
9199 char *bounds_str;
9200 int n;
9201
9202 GROW_VECT (name_buf, name_len, prefix_len + 5);
9203 strncpy (name_buf, name, prefix_len);
9204 name_buf[prefix_len] = '\0';
9205
9206 subtype_info += 5;
9207 bounds_str = strchr (subtype_info, '_');
9208 n = 1;
9209
9210 if (*subtype_info == 'L')
9211 {
9212 if (!ada_scan_number (bounds_str, n, &L, &n)
9213 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
9214 return raw_type;
9215 if (bounds_str[n] == '_')
9216 n += 2;
9217 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
9218 n += 1;
9219 subtype_info += 1;
9220 }
9221 else
9222 {
9223 int ok;
9224 strcpy (name_buf + prefix_len, "___L");
9225 L = get_int_var_value (name_buf, &ok);
9226 if (!ok)
9227 {
9228 lim_warning (_("Unknown lower bound, using 1."));
9229 L = 1;
9230 }
9231 }
9232
9233 if (*subtype_info == 'U')
9234 {
9235 if (!ada_scan_number (bounds_str, n, &U, &n)
9236 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
9237 return raw_type;
9238 }
9239 else
9240 {
9241 int ok;
9242 strcpy (name_buf + prefix_len, "___U");
9243 U = get_int_var_value (name_buf, &ok);
9244 if (!ok)
9245 {
9246 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
9247 U = L;
9248 }
9249 }
9250
9251 if (objfile == NULL)
9252 objfile = TYPE_OBJFILE (base_type);
9253 type = create_range_type (alloc_type (objfile), base_type, L, U);
9254 TYPE_NAME (type) = name;
9255 return type;
9256 }
9257 }
9258
9259 /* True iff NAME is the name of a range type. */
9260
9261 int
9262 ada_is_range_type_name (const char *name)
9263 {
9264 return (name != NULL && strstr (name, "___XD"));
9265 }
9266 \f
9267
9268 /* Modular types */
9269
9270 /* True iff TYPE is an Ada modular type. */
9271
9272 int
9273 ada_is_modular_type (struct type *type)
9274 {
9275 struct type *subranged_type = base_type (type);
9276
9277 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
9278 && TYPE_CODE (subranged_type) != TYPE_CODE_ENUM
9279 && TYPE_UNSIGNED (subranged_type));
9280 }
9281
9282 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
9283
9284 ULONGEST
9285 ada_modulus (struct type * type)
9286 {
9287 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
9288 }
9289 \f
9290
9291 /* Ada exception catchpoint support:
9292 ---------------------------------
9293
9294 We support 3 kinds of exception catchpoints:
9295 . catchpoints on Ada exceptions
9296 . catchpoints on unhandled Ada exceptions
9297 . catchpoints on failed assertions
9298
9299 Exceptions raised during failed assertions, or unhandled exceptions
9300 could perfectly be caught with the general catchpoint on Ada exceptions.
9301 However, we can easily differentiate these two special cases, and having
9302 the option to distinguish these two cases from the rest can be useful
9303 to zero-in on certain situations.
9304
9305 Exception catchpoints are a specialized form of breakpoint,
9306 since they rely on inserting breakpoints inside known routines
9307 of the GNAT runtime. The implementation therefore uses a standard
9308 breakpoint structure of the BP_BREAKPOINT type, but with its own set
9309 of breakpoint_ops.
9310
9311 Support in the runtime for exception catchpoints have been changed
9312 a few times already, and these changes affect the implementation
9313 of these catchpoints. In order to be able to support several
9314 variants of the runtime, we use a sniffer that will determine
9315 the runtime variant used by the program being debugged.
9316
9317 At this time, we do not support the use of conditions on Ada exception
9318 catchpoints. The COND and COND_STRING fields are therefore set
9319 to NULL (most of the time, see below).
9320
9321 Conditions where EXP_STRING, COND, and COND_STRING are used:
9322
9323 When a user specifies the name of a specific exception in the case
9324 of catchpoints on Ada exceptions, we store the name of that exception
9325 in the EXP_STRING. We then translate this request into an actual
9326 condition stored in COND_STRING, and then parse it into an expression
9327 stored in COND. */
9328
9329 /* The different types of catchpoints that we introduced for catching
9330 Ada exceptions. */
9331
9332 enum exception_catchpoint_kind
9333 {
9334 ex_catch_exception,
9335 ex_catch_exception_unhandled,
9336 ex_catch_assert
9337 };
9338
9339 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
9340
9341 /* A structure that describes how to support exception catchpoints
9342 for a given executable. */
9343
9344 struct exception_support_info
9345 {
9346 /* The name of the symbol to break on in order to insert
9347 a catchpoint on exceptions. */
9348 const char *catch_exception_sym;
9349
9350 /* The name of the symbol to break on in order to insert
9351 a catchpoint on unhandled exceptions. */
9352 const char *catch_exception_unhandled_sym;
9353
9354 /* The name of the symbol to break on in order to insert
9355 a catchpoint on failed assertions. */
9356 const char *catch_assert_sym;
9357
9358 /* Assuming that the inferior just triggered an unhandled exception
9359 catchpoint, this function is responsible for returning the address
9360 in inferior memory where the name of that exception is stored.
9361 Return zero if the address could not be computed. */
9362 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
9363 };
9364
9365 static CORE_ADDR ada_unhandled_exception_name_addr (void);
9366 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
9367
9368 /* The following exception support info structure describes how to
9369 implement exception catchpoints with the latest version of the
9370 Ada runtime (as of 2007-03-06). */
9371
9372 static const struct exception_support_info default_exception_support_info =
9373 {
9374 "__gnat_debug_raise_exception", /* catch_exception_sym */
9375 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9376 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9377 ada_unhandled_exception_name_addr
9378 };
9379
9380 /* The following exception support info structure describes how to
9381 implement exception catchpoints with a slightly older version
9382 of the Ada runtime. */
9383
9384 static const struct exception_support_info exception_support_info_fallback =
9385 {
9386 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
9387 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9388 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9389 ada_unhandled_exception_name_addr_from_raise
9390 };
9391
9392 /* For each executable, we sniff which exception info structure to use
9393 and cache it in the following global variable. */
9394
9395 static const struct exception_support_info *exception_info = NULL;
9396
9397 /* Inspect the Ada runtime and determine which exception info structure
9398 should be used to provide support for exception catchpoints.
9399
9400 This function will always set exception_info, or raise an error. */
9401
9402 static void
9403 ada_exception_support_info_sniffer (void)
9404 {
9405 struct symbol *sym;
9406
9407 /* If the exception info is already known, then no need to recompute it. */
9408 if (exception_info != NULL)
9409 return;
9410
9411 /* Check the latest (default) exception support info. */
9412 sym = standard_lookup (default_exception_support_info.catch_exception_sym,
9413 NULL, VAR_DOMAIN);
9414 if (sym != NULL)
9415 {
9416 exception_info = &default_exception_support_info;
9417 return;
9418 }
9419
9420 /* Try our fallback exception suport info. */
9421 sym = standard_lookup (exception_support_info_fallback.catch_exception_sym,
9422 NULL, VAR_DOMAIN);
9423 if (sym != NULL)
9424 {
9425 exception_info = &exception_support_info_fallback;
9426 return;
9427 }
9428
9429 /* Sometimes, it is normal for us to not be able to find the routine
9430 we are looking for. This happens when the program is linked with
9431 the shared version of the GNAT runtime, and the program has not been
9432 started yet. Inform the user of these two possible causes if
9433 applicable. */
9434
9435 if (ada_update_initial_language (language_unknown, NULL) != language_ada)
9436 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
9437
9438 /* If the symbol does not exist, then check that the program is
9439 already started, to make sure that shared libraries have been
9440 loaded. If it is not started, this may mean that the symbol is
9441 in a shared library. */
9442
9443 if (ptid_get_pid (inferior_ptid) == 0)
9444 error (_("Unable to insert catchpoint. Try to start the program first."));
9445
9446 /* At this point, we know that we are debugging an Ada program and
9447 that the inferior has been started, but we still are not able to
9448 find the run-time symbols. That can mean that we are in
9449 configurable run time mode, or that a-except as been optimized
9450 out by the linker... In any case, at this point it is not worth
9451 supporting this feature. */
9452
9453 error (_("Cannot insert catchpoints in this configuration."));
9454 }
9455
9456 /* An observer of "executable_changed" events.
9457 Its role is to clear certain cached values that need to be recomputed
9458 each time a new executable is loaded by GDB. */
9459
9460 static void
9461 ada_executable_changed_observer (void *unused)
9462 {
9463 /* If the executable changed, then it is possible that the Ada runtime
9464 is different. So we need to invalidate the exception support info
9465 cache. */
9466 exception_info = NULL;
9467 }
9468
9469 /* Return the name of the function at PC, NULL if could not find it.
9470 This function only checks the debugging information, not the symbol
9471 table. */
9472
9473 static char *
9474 function_name_from_pc (CORE_ADDR pc)
9475 {
9476 char *func_name;
9477
9478 if (!find_pc_partial_function (pc, &func_name, NULL, NULL))
9479 return NULL;
9480
9481 return func_name;
9482 }
9483
9484 /* True iff FRAME is very likely to be that of a function that is
9485 part of the runtime system. This is all very heuristic, but is
9486 intended to be used as advice as to what frames are uninteresting
9487 to most users. */
9488
9489 static int
9490 is_known_support_routine (struct frame_info *frame)
9491 {
9492 struct symtab_and_line sal;
9493 char *func_name;
9494 int i;
9495
9496 /* If this code does not have any debugging information (no symtab),
9497 This cannot be any user code. */
9498
9499 find_frame_sal (frame, &sal);
9500 if (sal.symtab == NULL)
9501 return 1;
9502
9503 /* If there is a symtab, but the associated source file cannot be
9504 located, then assume this is not user code: Selecting a frame
9505 for which we cannot display the code would not be very helpful
9506 for the user. This should also take care of case such as VxWorks
9507 where the kernel has some debugging info provided for a few units. */
9508
9509 if (symtab_to_fullname (sal.symtab) == NULL)
9510 return 1;
9511
9512 /* Check the unit filename againt the Ada runtime file naming.
9513 We also check the name of the objfile against the name of some
9514 known system libraries that sometimes come with debugging info
9515 too. */
9516
9517 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
9518 {
9519 re_comp (known_runtime_file_name_patterns[i]);
9520 if (re_exec (sal.symtab->filename))
9521 return 1;
9522 if (sal.symtab->objfile != NULL
9523 && re_exec (sal.symtab->objfile->name))
9524 return 1;
9525 }
9526
9527 /* Check whether the function is a GNAT-generated entity. */
9528
9529 func_name = function_name_from_pc (get_frame_address_in_block (frame));
9530 if (func_name == NULL)
9531 return 1;
9532
9533 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
9534 {
9535 re_comp (known_auxiliary_function_name_patterns[i]);
9536 if (re_exec (func_name))
9537 return 1;
9538 }
9539
9540 return 0;
9541 }
9542
9543 /* Find the first frame that contains debugging information and that is not
9544 part of the Ada run-time, starting from FI and moving upward. */
9545
9546 static void
9547 ada_find_printable_frame (struct frame_info *fi)
9548 {
9549 for (; fi != NULL; fi = get_prev_frame (fi))
9550 {
9551 if (!is_known_support_routine (fi))
9552 {
9553 select_frame (fi);
9554 break;
9555 }
9556 }
9557
9558 }
9559
9560 /* Assuming that the inferior just triggered an unhandled exception
9561 catchpoint, return the address in inferior memory where the name
9562 of the exception is stored.
9563
9564 Return zero if the address could not be computed. */
9565
9566 static CORE_ADDR
9567 ada_unhandled_exception_name_addr (void)
9568 {
9569 return parse_and_eval_address ("e.full_name");
9570 }
9571
9572 /* Same as ada_unhandled_exception_name_addr, except that this function
9573 should be used when the inferior uses an older version of the runtime,
9574 where the exception name needs to be extracted from a specific frame
9575 several frames up in the callstack. */
9576
9577 static CORE_ADDR
9578 ada_unhandled_exception_name_addr_from_raise (void)
9579 {
9580 int frame_level;
9581 struct frame_info *fi;
9582
9583 /* To determine the name of this exception, we need to select
9584 the frame corresponding to RAISE_SYM_NAME. This frame is
9585 at least 3 levels up, so we simply skip the first 3 frames
9586 without checking the name of their associated function. */
9587 fi = get_current_frame ();
9588 for (frame_level = 0; frame_level < 3; frame_level += 1)
9589 if (fi != NULL)
9590 fi = get_prev_frame (fi);
9591
9592 while (fi != NULL)
9593 {
9594 const char *func_name =
9595 function_name_from_pc (get_frame_address_in_block (fi));
9596 if (func_name != NULL
9597 && strcmp (func_name, exception_info->catch_exception_sym) == 0)
9598 break; /* We found the frame we were looking for... */
9599 fi = get_prev_frame (fi);
9600 }
9601
9602 if (fi == NULL)
9603 return 0;
9604
9605 select_frame (fi);
9606 return parse_and_eval_address ("id.full_name");
9607 }
9608
9609 /* Assuming the inferior just triggered an Ada exception catchpoint
9610 (of any type), return the address in inferior memory where the name
9611 of the exception is stored, if applicable.
9612
9613 Return zero if the address could not be computed, or if not relevant. */
9614
9615 static CORE_ADDR
9616 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
9617 struct breakpoint *b)
9618 {
9619 switch (ex)
9620 {
9621 case ex_catch_exception:
9622 return (parse_and_eval_address ("e.full_name"));
9623 break;
9624
9625 case ex_catch_exception_unhandled:
9626 return exception_info->unhandled_exception_name_addr ();
9627 break;
9628
9629 case ex_catch_assert:
9630 return 0; /* Exception name is not relevant in this case. */
9631 break;
9632
9633 default:
9634 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
9635 break;
9636 }
9637
9638 return 0; /* Should never be reached. */
9639 }
9640
9641 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
9642 any error that ada_exception_name_addr_1 might cause to be thrown.
9643 When an error is intercepted, a warning with the error message is printed,
9644 and zero is returned. */
9645
9646 static CORE_ADDR
9647 ada_exception_name_addr (enum exception_catchpoint_kind ex,
9648 struct breakpoint *b)
9649 {
9650 struct gdb_exception e;
9651 CORE_ADDR result = 0;
9652
9653 TRY_CATCH (e, RETURN_MASK_ERROR)
9654 {
9655 result = ada_exception_name_addr_1 (ex, b);
9656 }
9657
9658 if (e.reason < 0)
9659 {
9660 warning (_("failed to get exception name: %s"), e.message);
9661 return 0;
9662 }
9663
9664 return result;
9665 }
9666
9667 /* Implement the PRINT_IT method in the breakpoint_ops structure
9668 for all exception catchpoint kinds. */
9669
9670 static enum print_stop_action
9671 print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
9672 {
9673 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
9674 char exception_name[256];
9675
9676 if (addr != 0)
9677 {
9678 read_memory (addr, exception_name, sizeof (exception_name) - 1);
9679 exception_name [sizeof (exception_name) - 1] = '\0';
9680 }
9681
9682 ada_find_printable_frame (get_current_frame ());
9683
9684 annotate_catchpoint (b->number);
9685 switch (ex)
9686 {
9687 case ex_catch_exception:
9688 if (addr != 0)
9689 printf_filtered (_("\nCatchpoint %d, %s at "),
9690 b->number, exception_name);
9691 else
9692 printf_filtered (_("\nCatchpoint %d, exception at "), b->number);
9693 break;
9694 case ex_catch_exception_unhandled:
9695 if (addr != 0)
9696 printf_filtered (_("\nCatchpoint %d, unhandled %s at "),
9697 b->number, exception_name);
9698 else
9699 printf_filtered (_("\nCatchpoint %d, unhandled exception at "),
9700 b->number);
9701 break;
9702 case ex_catch_assert:
9703 printf_filtered (_("\nCatchpoint %d, failed assertion at "),
9704 b->number);
9705 break;
9706 }
9707
9708 return PRINT_SRC_AND_LOC;
9709 }
9710
9711 /* Implement the PRINT_ONE method in the breakpoint_ops structure
9712 for all exception catchpoint kinds. */
9713
9714 static void
9715 print_one_exception (enum exception_catchpoint_kind ex,
9716 struct breakpoint *b, CORE_ADDR *last_addr)
9717 {
9718 if (addressprint)
9719 {
9720 annotate_field (4);
9721 ui_out_field_core_addr (uiout, "addr", b->loc->address);
9722 }
9723
9724 annotate_field (5);
9725 *last_addr = b->loc->address;
9726 switch (ex)
9727 {
9728 case ex_catch_exception:
9729 if (b->exp_string != NULL)
9730 {
9731 char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
9732
9733 ui_out_field_string (uiout, "what", msg);
9734 xfree (msg);
9735 }
9736 else
9737 ui_out_field_string (uiout, "what", "all Ada exceptions");
9738
9739 break;
9740
9741 case ex_catch_exception_unhandled:
9742 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
9743 break;
9744
9745 case ex_catch_assert:
9746 ui_out_field_string (uiout, "what", "failed Ada assertions");
9747 break;
9748
9749 default:
9750 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
9751 break;
9752 }
9753 }
9754
9755 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
9756 for all exception catchpoint kinds. */
9757
9758 static void
9759 print_mention_exception (enum exception_catchpoint_kind ex,
9760 struct breakpoint *b)
9761 {
9762 switch (ex)
9763 {
9764 case ex_catch_exception:
9765 if (b->exp_string != NULL)
9766 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
9767 b->number, b->exp_string);
9768 else
9769 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
9770
9771 break;
9772
9773 case ex_catch_exception_unhandled:
9774 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
9775 b->number);
9776 break;
9777
9778 case ex_catch_assert:
9779 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
9780 break;
9781
9782 default:
9783 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
9784 break;
9785 }
9786 }
9787
9788 /* Virtual table for "catch exception" breakpoints. */
9789
9790 static enum print_stop_action
9791 print_it_catch_exception (struct breakpoint *b)
9792 {
9793 return print_it_exception (ex_catch_exception, b);
9794 }
9795
9796 static void
9797 print_one_catch_exception (struct breakpoint *b, CORE_ADDR *last_addr)
9798 {
9799 print_one_exception (ex_catch_exception, b, last_addr);
9800 }
9801
9802 static void
9803 print_mention_catch_exception (struct breakpoint *b)
9804 {
9805 print_mention_exception (ex_catch_exception, b);
9806 }
9807
9808 static struct breakpoint_ops catch_exception_breakpoint_ops =
9809 {
9810 print_it_catch_exception,
9811 print_one_catch_exception,
9812 print_mention_catch_exception
9813 };
9814
9815 /* Virtual table for "catch exception unhandled" breakpoints. */
9816
9817 static enum print_stop_action
9818 print_it_catch_exception_unhandled (struct breakpoint *b)
9819 {
9820 return print_it_exception (ex_catch_exception_unhandled, b);
9821 }
9822
9823 static void
9824 print_one_catch_exception_unhandled (struct breakpoint *b, CORE_ADDR *last_addr)
9825 {
9826 print_one_exception (ex_catch_exception_unhandled, b, last_addr);
9827 }
9828
9829 static void
9830 print_mention_catch_exception_unhandled (struct breakpoint *b)
9831 {
9832 print_mention_exception (ex_catch_exception_unhandled, b);
9833 }
9834
9835 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
9836 print_it_catch_exception_unhandled,
9837 print_one_catch_exception_unhandled,
9838 print_mention_catch_exception_unhandled
9839 };
9840
9841 /* Virtual table for "catch assert" breakpoints. */
9842
9843 static enum print_stop_action
9844 print_it_catch_assert (struct breakpoint *b)
9845 {
9846 return print_it_exception (ex_catch_assert, b);
9847 }
9848
9849 static void
9850 print_one_catch_assert (struct breakpoint *b, CORE_ADDR *last_addr)
9851 {
9852 print_one_exception (ex_catch_assert, b, last_addr);
9853 }
9854
9855 static void
9856 print_mention_catch_assert (struct breakpoint *b)
9857 {
9858 print_mention_exception (ex_catch_assert, b);
9859 }
9860
9861 static struct breakpoint_ops catch_assert_breakpoint_ops = {
9862 print_it_catch_assert,
9863 print_one_catch_assert,
9864 print_mention_catch_assert
9865 };
9866
9867 /* Return non-zero if B is an Ada exception catchpoint. */
9868
9869 int
9870 ada_exception_catchpoint_p (struct breakpoint *b)
9871 {
9872 return (b->ops == &catch_exception_breakpoint_ops
9873 || b->ops == &catch_exception_unhandled_breakpoint_ops
9874 || b->ops == &catch_assert_breakpoint_ops);
9875 }
9876
9877 /* Return a newly allocated copy of the first space-separated token
9878 in ARGSP, and then adjust ARGSP to point immediately after that
9879 token.
9880
9881 Return NULL if ARGPS does not contain any more tokens. */
9882
9883 static char *
9884 ada_get_next_arg (char **argsp)
9885 {
9886 char *args = *argsp;
9887 char *end;
9888 char *result;
9889
9890 /* Skip any leading white space. */
9891
9892 while (isspace (*args))
9893 args++;
9894
9895 if (args[0] == '\0')
9896 return NULL; /* No more arguments. */
9897
9898 /* Find the end of the current argument. */
9899
9900 end = args;
9901 while (*end != '\0' && !isspace (*end))
9902 end++;
9903
9904 /* Adjust ARGSP to point to the start of the next argument. */
9905
9906 *argsp = end;
9907
9908 /* Make a copy of the current argument and return it. */
9909
9910 result = xmalloc (end - args + 1);
9911 strncpy (result, args, end - args);
9912 result[end - args] = '\0';
9913
9914 return result;
9915 }
9916
9917 /* Split the arguments specified in a "catch exception" command.
9918 Set EX to the appropriate catchpoint type.
9919 Set EXP_STRING to the name of the specific exception if
9920 specified by the user. */
9921
9922 static void
9923 catch_ada_exception_command_split (char *args,
9924 enum exception_catchpoint_kind *ex,
9925 char **exp_string)
9926 {
9927 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
9928 char *exception_name;
9929
9930 exception_name = ada_get_next_arg (&args);
9931 make_cleanup (xfree, exception_name);
9932
9933 /* Check that we do not have any more arguments. Anything else
9934 is unexpected. */
9935
9936 while (isspace (*args))
9937 args++;
9938
9939 if (args[0] != '\0')
9940 error (_("Junk at end of expression"));
9941
9942 discard_cleanups (old_chain);
9943
9944 if (exception_name == NULL)
9945 {
9946 /* Catch all exceptions. */
9947 *ex = ex_catch_exception;
9948 *exp_string = NULL;
9949 }
9950 else if (strcmp (exception_name, "unhandled") == 0)
9951 {
9952 /* Catch unhandled exceptions. */
9953 *ex = ex_catch_exception_unhandled;
9954 *exp_string = NULL;
9955 }
9956 else
9957 {
9958 /* Catch a specific exception. */
9959 *ex = ex_catch_exception;
9960 *exp_string = exception_name;
9961 }
9962 }
9963
9964 /* Return the name of the symbol on which we should break in order to
9965 implement a catchpoint of the EX kind. */
9966
9967 static const char *
9968 ada_exception_sym_name (enum exception_catchpoint_kind ex)
9969 {
9970 gdb_assert (exception_info != NULL);
9971
9972 switch (ex)
9973 {
9974 case ex_catch_exception:
9975 return (exception_info->catch_exception_sym);
9976 break;
9977 case ex_catch_exception_unhandled:
9978 return (exception_info->catch_exception_unhandled_sym);
9979 break;
9980 case ex_catch_assert:
9981 return (exception_info->catch_assert_sym);
9982 break;
9983 default:
9984 internal_error (__FILE__, __LINE__,
9985 _("unexpected catchpoint kind (%d)"), ex);
9986 }
9987 }
9988
9989 /* Return the breakpoint ops "virtual table" used for catchpoints
9990 of the EX kind. */
9991
9992 static struct breakpoint_ops *
9993 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
9994 {
9995 switch (ex)
9996 {
9997 case ex_catch_exception:
9998 return (&catch_exception_breakpoint_ops);
9999 break;
10000 case ex_catch_exception_unhandled:
10001 return (&catch_exception_unhandled_breakpoint_ops);
10002 break;
10003 case ex_catch_assert:
10004 return (&catch_assert_breakpoint_ops);
10005 break;
10006 default:
10007 internal_error (__FILE__, __LINE__,
10008 _("unexpected catchpoint kind (%d)"), ex);
10009 }
10010 }
10011
10012 /* Return the condition that will be used to match the current exception
10013 being raised with the exception that the user wants to catch. This
10014 assumes that this condition is used when the inferior just triggered
10015 an exception catchpoint.
10016
10017 The string returned is a newly allocated string that needs to be
10018 deallocated later. */
10019
10020 static char *
10021 ada_exception_catchpoint_cond_string (const char *exp_string)
10022 {
10023 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
10024 }
10025
10026 /* Return the expression corresponding to COND_STRING evaluated at SAL. */
10027
10028 static struct expression *
10029 ada_parse_catchpoint_condition (char *cond_string,
10030 struct symtab_and_line sal)
10031 {
10032 return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
10033 }
10034
10035 /* Return the symtab_and_line that should be used to insert an exception
10036 catchpoint of the TYPE kind.
10037
10038 EX_STRING should contain the name of a specific exception
10039 that the catchpoint should catch, or NULL otherwise.
10040
10041 The idea behind all the remaining parameters is that their names match
10042 the name of certain fields in the breakpoint structure that are used to
10043 handle exception catchpoints. This function returns the value to which
10044 these fields should be set, depending on the type of catchpoint we need
10045 to create.
10046
10047 If COND and COND_STRING are both non-NULL, any value they might
10048 hold will be free'ed, and then replaced by newly allocated ones.
10049 These parameters are left untouched otherwise. */
10050
10051 static struct symtab_and_line
10052 ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
10053 char **addr_string, char **cond_string,
10054 struct expression **cond, struct breakpoint_ops **ops)
10055 {
10056 const char *sym_name;
10057 struct symbol *sym;
10058 struct symtab_and_line sal;
10059
10060 /* First, find out which exception support info to use. */
10061 ada_exception_support_info_sniffer ();
10062
10063 /* Then lookup the function on which we will break in order to catch
10064 the Ada exceptions requested by the user. */
10065
10066 sym_name = ada_exception_sym_name (ex);
10067 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
10068
10069 /* The symbol we're looking up is provided by a unit in the GNAT runtime
10070 that should be compiled with debugging information. As a result, we
10071 expect to find that symbol in the symtabs. If we don't find it, then
10072 the target most likely does not support Ada exceptions, or we cannot
10073 insert exception breakpoints yet, because the GNAT runtime hasn't been
10074 loaded yet. */
10075
10076 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
10077 in such a way that no debugging information is produced for the symbol
10078 we are looking for. In this case, we could search the minimal symbols
10079 as a fall-back mechanism. This would still be operating in degraded
10080 mode, however, as we would still be missing the debugging information
10081 that is needed in order to extract the name of the exception being
10082 raised (this name is printed in the catchpoint message, and is also
10083 used when trying to catch a specific exception). We do not handle
10084 this case for now. */
10085
10086 if (sym == NULL)
10087 error (_("Unable to break on '%s' in this configuration."), sym_name);
10088
10089 /* Make sure that the symbol we found corresponds to a function. */
10090 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
10091 error (_("Symbol \"%s\" is not a function (class = %d)"),
10092 sym_name, SYMBOL_CLASS (sym));
10093
10094 sal = find_function_start_sal (sym, 1);
10095
10096 /* Set ADDR_STRING. */
10097
10098 *addr_string = xstrdup (sym_name);
10099
10100 /* Set the COND and COND_STRING (if not NULL). */
10101
10102 if (cond_string != NULL && cond != NULL)
10103 {
10104 if (*cond_string != NULL)
10105 {
10106 xfree (*cond_string);
10107 *cond_string = NULL;
10108 }
10109 if (*cond != NULL)
10110 {
10111 xfree (*cond);
10112 *cond = NULL;
10113 }
10114 if (exp_string != NULL)
10115 {
10116 *cond_string = ada_exception_catchpoint_cond_string (exp_string);
10117 *cond = ada_parse_catchpoint_condition (*cond_string, sal);
10118 }
10119 }
10120
10121 /* Set OPS. */
10122 *ops = ada_exception_breakpoint_ops (ex);
10123
10124 return sal;
10125 }
10126
10127 /* Parse the arguments (ARGS) of the "catch exception" command.
10128
10129 Set TYPE to the appropriate exception catchpoint type.
10130 If the user asked the catchpoint to catch only a specific
10131 exception, then save the exception name in ADDR_STRING.
10132
10133 See ada_exception_sal for a description of all the remaining
10134 function arguments of this function. */
10135
10136 struct symtab_and_line
10137 ada_decode_exception_location (char *args, char **addr_string,
10138 char **exp_string, char **cond_string,
10139 struct expression **cond,
10140 struct breakpoint_ops **ops)
10141 {
10142 enum exception_catchpoint_kind ex;
10143
10144 catch_ada_exception_command_split (args, &ex, exp_string);
10145 return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
10146 cond, ops);
10147 }
10148
10149 struct symtab_and_line
10150 ada_decode_assert_location (char *args, char **addr_string,
10151 struct breakpoint_ops **ops)
10152 {
10153 /* Check that no argument where provided at the end of the command. */
10154
10155 if (args != NULL)
10156 {
10157 while (isspace (*args))
10158 args++;
10159 if (*args != '\0')
10160 error (_("Junk at end of arguments."));
10161 }
10162
10163 return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
10164 ops);
10165 }
10166
10167 /* Operators */
10168 /* Information about operators given special treatment in functions
10169 below. */
10170 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
10171
10172 #define ADA_OPERATORS \
10173 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
10174 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
10175 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
10176 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
10177 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
10178 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
10179 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
10180 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
10181 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
10182 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
10183 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
10184 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
10185 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
10186 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
10187 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
10188 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
10189 OP_DEFN (OP_OTHERS, 1, 1, 0) \
10190 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
10191 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
10192
10193 static void
10194 ada_operator_length (struct expression *exp, int pc, int *oplenp, int *argsp)
10195 {
10196 switch (exp->elts[pc - 1].opcode)
10197 {
10198 default:
10199 operator_length_standard (exp, pc, oplenp, argsp);
10200 break;
10201
10202 #define OP_DEFN(op, len, args, binop) \
10203 case op: *oplenp = len; *argsp = args; break;
10204 ADA_OPERATORS;
10205 #undef OP_DEFN
10206
10207 case OP_AGGREGATE:
10208 *oplenp = 3;
10209 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
10210 break;
10211
10212 case OP_CHOICES:
10213 *oplenp = 3;
10214 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
10215 break;
10216 }
10217 }
10218
10219 static char *
10220 ada_op_name (enum exp_opcode opcode)
10221 {
10222 switch (opcode)
10223 {
10224 default:
10225 return op_name_standard (opcode);
10226
10227 #define OP_DEFN(op, len, args, binop) case op: return #op;
10228 ADA_OPERATORS;
10229 #undef OP_DEFN
10230
10231 case OP_AGGREGATE:
10232 return "OP_AGGREGATE";
10233 case OP_CHOICES:
10234 return "OP_CHOICES";
10235 case OP_NAME:
10236 return "OP_NAME";
10237 }
10238 }
10239
10240 /* As for operator_length, but assumes PC is pointing at the first
10241 element of the operator, and gives meaningful results only for the
10242 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
10243
10244 static void
10245 ada_forward_operator_length (struct expression *exp, int pc,
10246 int *oplenp, int *argsp)
10247 {
10248 switch (exp->elts[pc].opcode)
10249 {
10250 default:
10251 *oplenp = *argsp = 0;
10252 break;
10253
10254 #define OP_DEFN(op, len, args, binop) \
10255 case op: *oplenp = len; *argsp = args; break;
10256 ADA_OPERATORS;
10257 #undef OP_DEFN
10258
10259 case OP_AGGREGATE:
10260 *oplenp = 3;
10261 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
10262 break;
10263
10264 case OP_CHOICES:
10265 *oplenp = 3;
10266 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
10267 break;
10268
10269 case OP_STRING:
10270 case OP_NAME:
10271 {
10272 int len = longest_to_int (exp->elts[pc + 1].longconst);
10273 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
10274 *argsp = 0;
10275 break;
10276 }
10277 }
10278 }
10279
10280 static int
10281 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
10282 {
10283 enum exp_opcode op = exp->elts[elt].opcode;
10284 int oplen, nargs;
10285 int pc = elt;
10286 int i;
10287
10288 ada_forward_operator_length (exp, elt, &oplen, &nargs);
10289
10290 switch (op)
10291 {
10292 /* Ada attributes ('Foo). */
10293 case OP_ATR_FIRST:
10294 case OP_ATR_LAST:
10295 case OP_ATR_LENGTH:
10296 case OP_ATR_IMAGE:
10297 case OP_ATR_MAX:
10298 case OP_ATR_MIN:
10299 case OP_ATR_MODULUS:
10300 case OP_ATR_POS:
10301 case OP_ATR_SIZE:
10302 case OP_ATR_TAG:
10303 case OP_ATR_VAL:
10304 break;
10305
10306 case UNOP_IN_RANGE:
10307 case UNOP_QUAL:
10308 /* XXX: gdb_sprint_host_address, type_sprint */
10309 fprintf_filtered (stream, _("Type @"));
10310 gdb_print_host_address (exp->elts[pc + 1].type, stream);
10311 fprintf_filtered (stream, " (");
10312 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
10313 fprintf_filtered (stream, ")");
10314 break;
10315 case BINOP_IN_BOUNDS:
10316 fprintf_filtered (stream, " (%d)",
10317 longest_to_int (exp->elts[pc + 2].longconst));
10318 break;
10319 case TERNOP_IN_RANGE:
10320 break;
10321
10322 case OP_AGGREGATE:
10323 case OP_OTHERS:
10324 case OP_DISCRETE_RANGE:
10325 case OP_POSITIONAL:
10326 case OP_CHOICES:
10327 break;
10328
10329 case OP_NAME:
10330 case OP_STRING:
10331 {
10332 char *name = &exp->elts[elt + 2].string;
10333 int len = longest_to_int (exp->elts[elt + 1].longconst);
10334 fprintf_filtered (stream, "Text: `%.*s'", len, name);
10335 break;
10336 }
10337
10338 default:
10339 return dump_subexp_body_standard (exp, stream, elt);
10340 }
10341
10342 elt += oplen;
10343 for (i = 0; i < nargs; i += 1)
10344 elt = dump_subexp (exp, stream, elt);
10345
10346 return elt;
10347 }
10348
10349 /* The Ada extension of print_subexp (q.v.). */
10350
10351 static void
10352 ada_print_subexp (struct expression *exp, int *pos,
10353 struct ui_file *stream, enum precedence prec)
10354 {
10355 int oplen, nargs, i;
10356 int pc = *pos;
10357 enum exp_opcode op = exp->elts[pc].opcode;
10358
10359 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10360
10361 *pos += oplen;
10362 switch (op)
10363 {
10364 default:
10365 *pos -= oplen;
10366 print_subexp_standard (exp, pos, stream, prec);
10367 return;
10368
10369 case OP_VAR_VALUE:
10370 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
10371 return;
10372
10373 case BINOP_IN_BOUNDS:
10374 /* XXX: sprint_subexp */
10375 print_subexp (exp, pos, stream, PREC_SUFFIX);
10376 fputs_filtered (" in ", stream);
10377 print_subexp (exp, pos, stream, PREC_SUFFIX);
10378 fputs_filtered ("'range", stream);
10379 if (exp->elts[pc + 1].longconst > 1)
10380 fprintf_filtered (stream, "(%ld)",
10381 (long) exp->elts[pc + 1].longconst);
10382 return;
10383
10384 case TERNOP_IN_RANGE:
10385 if (prec >= PREC_EQUAL)
10386 fputs_filtered ("(", stream);
10387 /* XXX: sprint_subexp */
10388 print_subexp (exp, pos, stream, PREC_SUFFIX);
10389 fputs_filtered (" in ", stream);
10390 print_subexp (exp, pos, stream, PREC_EQUAL);
10391 fputs_filtered (" .. ", stream);
10392 print_subexp (exp, pos, stream, PREC_EQUAL);
10393 if (prec >= PREC_EQUAL)
10394 fputs_filtered (")", stream);
10395 return;
10396
10397 case OP_ATR_FIRST:
10398 case OP_ATR_LAST:
10399 case OP_ATR_LENGTH:
10400 case OP_ATR_IMAGE:
10401 case OP_ATR_MAX:
10402 case OP_ATR_MIN:
10403 case OP_ATR_MODULUS:
10404 case OP_ATR_POS:
10405 case OP_ATR_SIZE:
10406 case OP_ATR_TAG:
10407 case OP_ATR_VAL:
10408 if (exp->elts[*pos].opcode == OP_TYPE)
10409 {
10410 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
10411 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
10412 *pos += 3;
10413 }
10414 else
10415 print_subexp (exp, pos, stream, PREC_SUFFIX);
10416 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
10417 if (nargs > 1)
10418 {
10419 int tem;
10420 for (tem = 1; tem < nargs; tem += 1)
10421 {
10422 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
10423 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
10424 }
10425 fputs_filtered (")", stream);
10426 }
10427 return;
10428
10429 case UNOP_QUAL:
10430 type_print (exp->elts[pc + 1].type, "", stream, 0);
10431 fputs_filtered ("'(", stream);
10432 print_subexp (exp, pos, stream, PREC_PREFIX);
10433 fputs_filtered (")", stream);
10434 return;
10435
10436 case UNOP_IN_RANGE:
10437 /* XXX: sprint_subexp */
10438 print_subexp (exp, pos, stream, PREC_SUFFIX);
10439 fputs_filtered (" in ", stream);
10440 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
10441 return;
10442
10443 case OP_DISCRETE_RANGE:
10444 print_subexp (exp, pos, stream, PREC_SUFFIX);
10445 fputs_filtered ("..", stream);
10446 print_subexp (exp, pos, stream, PREC_SUFFIX);
10447 return;
10448
10449 case OP_OTHERS:
10450 fputs_filtered ("others => ", stream);
10451 print_subexp (exp, pos, stream, PREC_SUFFIX);
10452 return;
10453
10454 case OP_CHOICES:
10455 for (i = 0; i < nargs-1; i += 1)
10456 {
10457 if (i > 0)
10458 fputs_filtered ("|", stream);
10459 print_subexp (exp, pos, stream, PREC_SUFFIX);
10460 }
10461 fputs_filtered (" => ", stream);
10462 print_subexp (exp, pos, stream, PREC_SUFFIX);
10463 return;
10464
10465 case OP_POSITIONAL:
10466 print_subexp (exp, pos, stream, PREC_SUFFIX);
10467 return;
10468
10469 case OP_AGGREGATE:
10470 fputs_filtered ("(", stream);
10471 for (i = 0; i < nargs; i += 1)
10472 {
10473 if (i > 0)
10474 fputs_filtered (", ", stream);
10475 print_subexp (exp, pos, stream, PREC_SUFFIX);
10476 }
10477 fputs_filtered (")", stream);
10478 return;
10479 }
10480 }
10481
10482 /* Table mapping opcodes into strings for printing operators
10483 and precedences of the operators. */
10484
10485 static const struct op_print ada_op_print_tab[] = {
10486 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
10487 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
10488 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
10489 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
10490 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
10491 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
10492 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
10493 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
10494 {"<=", BINOP_LEQ, PREC_ORDER, 0},
10495 {">=", BINOP_GEQ, PREC_ORDER, 0},
10496 {">", BINOP_GTR, PREC_ORDER, 0},
10497 {"<", BINOP_LESS, PREC_ORDER, 0},
10498 {">>", BINOP_RSH, PREC_SHIFT, 0},
10499 {"<<", BINOP_LSH, PREC_SHIFT, 0},
10500 {"+", BINOP_ADD, PREC_ADD, 0},
10501 {"-", BINOP_SUB, PREC_ADD, 0},
10502 {"&", BINOP_CONCAT, PREC_ADD, 0},
10503 {"*", BINOP_MUL, PREC_MUL, 0},
10504 {"/", BINOP_DIV, PREC_MUL, 0},
10505 {"rem", BINOP_REM, PREC_MUL, 0},
10506 {"mod", BINOP_MOD, PREC_MUL, 0},
10507 {"**", BINOP_EXP, PREC_REPEAT, 0},
10508 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
10509 {"-", UNOP_NEG, PREC_PREFIX, 0},
10510 {"+", UNOP_PLUS, PREC_PREFIX, 0},
10511 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
10512 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
10513 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
10514 {".all", UNOP_IND, PREC_SUFFIX, 1},
10515 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
10516 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
10517 {NULL, 0, 0, 0}
10518 };
10519 \f
10520 enum ada_primitive_types {
10521 ada_primitive_type_int,
10522 ada_primitive_type_long,
10523 ada_primitive_type_short,
10524 ada_primitive_type_char,
10525 ada_primitive_type_float,
10526 ada_primitive_type_double,
10527 ada_primitive_type_void,
10528 ada_primitive_type_long_long,
10529 ada_primitive_type_long_double,
10530 ada_primitive_type_natural,
10531 ada_primitive_type_positive,
10532 ada_primitive_type_system_address,
10533 nr_ada_primitive_types
10534 };
10535
10536 static void
10537 ada_language_arch_info (struct gdbarch *gdbarch,
10538 struct language_arch_info *lai)
10539 {
10540 const struct builtin_type *builtin = builtin_type (gdbarch);
10541 lai->primitive_type_vector
10542 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
10543 struct type *);
10544 lai->primitive_type_vector [ada_primitive_type_int] =
10545 init_type (TYPE_CODE_INT,
10546 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
10547 0, "integer", (struct objfile *) NULL);
10548 lai->primitive_type_vector [ada_primitive_type_long] =
10549 init_type (TYPE_CODE_INT,
10550 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
10551 0, "long_integer", (struct objfile *) NULL);
10552 lai->primitive_type_vector [ada_primitive_type_short] =
10553 init_type (TYPE_CODE_INT,
10554 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
10555 0, "short_integer", (struct objfile *) NULL);
10556 lai->string_char_type =
10557 lai->primitive_type_vector [ada_primitive_type_char] =
10558 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10559 0, "character", (struct objfile *) NULL);
10560 lai->primitive_type_vector [ada_primitive_type_float] =
10561 init_type (TYPE_CODE_FLT,
10562 gdbarch_float_bit (gdbarch)/ TARGET_CHAR_BIT,
10563 0, "float", (struct objfile *) NULL);
10564 lai->primitive_type_vector [ada_primitive_type_double] =
10565 init_type (TYPE_CODE_FLT,
10566 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
10567 0, "long_float", (struct objfile *) NULL);
10568 lai->primitive_type_vector [ada_primitive_type_long_long] =
10569 init_type (TYPE_CODE_INT,
10570 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
10571 0, "long_long_integer", (struct objfile *) NULL);
10572 lai->primitive_type_vector [ada_primitive_type_long_double] =
10573 init_type (TYPE_CODE_FLT,
10574 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
10575 0, "long_long_float", (struct objfile *) NULL);
10576 lai->primitive_type_vector [ada_primitive_type_natural] =
10577 init_type (TYPE_CODE_INT,
10578 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
10579 0, "natural", (struct objfile *) NULL);
10580 lai->primitive_type_vector [ada_primitive_type_positive] =
10581 init_type (TYPE_CODE_INT,
10582 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
10583 0, "positive", (struct objfile *) NULL);
10584 lai->primitive_type_vector [ada_primitive_type_void] = builtin->builtin_void;
10585
10586 lai->primitive_type_vector [ada_primitive_type_system_address] =
10587 lookup_pointer_type (init_type (TYPE_CODE_VOID, 1, 0, "void",
10588 (struct objfile *) NULL));
10589 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
10590 = "system__address";
10591 }
10592 \f
10593 /* Language vector */
10594
10595 /* Not really used, but needed in the ada_language_defn. */
10596
10597 static void
10598 emit_char (int c, struct ui_file *stream, int quoter)
10599 {
10600 ada_emit_char (c, stream, quoter, 1);
10601 }
10602
10603 static int
10604 parse (void)
10605 {
10606 warnings_issued = 0;
10607 return ada_parse ();
10608 }
10609
10610 static const struct exp_descriptor ada_exp_descriptor = {
10611 ada_print_subexp,
10612 ada_operator_length,
10613 ada_op_name,
10614 ada_dump_subexp_body,
10615 ada_evaluate_subexp
10616 };
10617
10618 const struct language_defn ada_language_defn = {
10619 "ada", /* Language name */
10620 language_ada,
10621 range_check_off,
10622 type_check_off,
10623 case_sensitive_on, /* Yes, Ada is case-insensitive, but
10624 that's not quite what this means. */
10625 array_row_major,
10626 &ada_exp_descriptor,
10627 parse,
10628 ada_error,
10629 resolve,
10630 ada_printchar, /* Print a character constant */
10631 ada_printstr, /* Function to print string constant */
10632 emit_char, /* Function to print single char (not used) */
10633 ada_print_type, /* Print a type using appropriate syntax */
10634 ada_val_print, /* Print a value using appropriate syntax */
10635 ada_value_print, /* Print a top-level value */
10636 NULL, /* Language specific skip_trampoline */
10637 NULL, /* value_of_this */
10638 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
10639 basic_lookup_transparent_type, /* lookup_transparent_type */
10640 ada_la_decode, /* Language specific symbol demangler */
10641 NULL, /* Language specific class_name_from_physname */
10642 ada_op_print_tab, /* expression operators for printing */
10643 0, /* c-style arrays */
10644 1, /* String lower bound */
10645 ada_get_gdb_completer_word_break_characters,
10646 ada_language_arch_info,
10647 ada_print_array_index,
10648 default_pass_by_reference,
10649 LANG_MAGIC
10650 };
10651
10652 void
10653 _initialize_ada_language (void)
10654 {
10655 add_language (&ada_language_defn);
10656
10657 varsize_limit = 65536;
10658
10659 obstack_init (&symbol_list_obstack);
10660
10661 decoded_names_store = htab_create_alloc
10662 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
10663 NULL, xcalloc, xfree);
10664
10665 observer_attach_executable_changed (ada_executable_changed_observer);
10666 }