* ada-lang.c (ada_index_type): Make static. Add NAME argument.
[binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger. Copyright (C)
2
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007, 2008,
4 2009 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21
22 #include "defs.h"
23 #include <stdio.h>
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include <stdarg.h>
27 #include "demangle.h"
28 #include "gdb_regex.h"
29 #include "frame.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "gdbcmd.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35 #include "language.h"
36 #include "c-lang.h"
37 #include "inferior.h"
38 #include "symfile.h"
39 #include "objfiles.h"
40 #include "breakpoint.h"
41 #include "gdbcore.h"
42 #include "hashtab.h"
43 #include "gdb_obstack.h"
44 #include "ada-lang.h"
45 #include "completer.h"
46 #include "gdb_stat.h"
47 #ifdef UI_OUT
48 #include "ui-out.h"
49 #endif
50 #include "block.h"
51 #include "infcall.h"
52 #include "dictionary.h"
53 #include "exceptions.h"
54 #include "annotate.h"
55 #include "valprint.h"
56 #include "source.h"
57 #include "observer.h"
58 #include "vec.h"
59
60 /* Define whether or not the C operator '/' truncates towards zero for
61 differently signed operands (truncation direction is undefined in C).
62 Copied from valarith.c. */
63
64 #ifndef TRUNCATION_TOWARDS_ZERO
65 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
66 #endif
67
68 static void extract_string (CORE_ADDR addr, char *buf);
69
70 static void modify_general_field (char *, LONGEST, int, int);
71
72 static struct type *desc_base_type (struct type *);
73
74 static struct type *desc_bounds_type (struct type *);
75
76 static struct value *desc_bounds (struct value *);
77
78 static int fat_pntr_bounds_bitpos (struct type *);
79
80 static int fat_pntr_bounds_bitsize (struct type *);
81
82 static struct type *desc_data_target_type (struct type *);
83
84 static struct value *desc_data (struct value *);
85
86 static int fat_pntr_data_bitpos (struct type *);
87
88 static int fat_pntr_data_bitsize (struct type *);
89
90 static struct value *desc_one_bound (struct value *, int, int);
91
92 static int desc_bound_bitpos (struct type *, int, int);
93
94 static int desc_bound_bitsize (struct type *, int, int);
95
96 static struct type *desc_index_type (struct type *, int);
97
98 static int desc_arity (struct type *);
99
100 static int ada_type_match (struct type *, struct type *, int);
101
102 static int ada_args_match (struct symbol *, struct value **, int);
103
104 static struct value *ensure_lval (struct value *, CORE_ADDR *);
105
106 static struct value *convert_actual (struct value *, struct type *,
107 CORE_ADDR *);
108
109 static struct value *make_array_descriptor (struct type *, struct value *,
110 CORE_ADDR *);
111
112 static void ada_add_block_symbols (struct obstack *,
113 struct block *, const char *,
114 domain_enum, struct objfile *, int);
115
116 static int is_nonfunction (struct ada_symbol_info *, int);
117
118 static void add_defn_to_vec (struct obstack *, struct symbol *,
119 struct block *);
120
121 static int num_defns_collected (struct obstack *);
122
123 static struct ada_symbol_info *defns_collected (struct obstack *, int);
124
125 static struct partial_symbol *ada_lookup_partial_symbol (struct partial_symtab
126 *, const char *, int,
127 domain_enum, int);
128
129 static struct value *resolve_subexp (struct expression **, int *, int,
130 struct type *);
131
132 static void replace_operator_with_call (struct expression **, int, int, int,
133 struct symbol *, struct block *);
134
135 static int possible_user_operator_p (enum exp_opcode, struct value **);
136
137 static char *ada_op_name (enum exp_opcode);
138
139 static const char *ada_decoded_op_name (enum exp_opcode);
140
141 static int numeric_type_p (struct type *);
142
143 static int integer_type_p (struct type *);
144
145 static int scalar_type_p (struct type *);
146
147 static int discrete_type_p (struct type *);
148
149 static enum ada_renaming_category parse_old_style_renaming (struct type *,
150 const char **,
151 int *,
152 const char **);
153
154 static struct symbol *find_old_style_renaming_symbol (const char *,
155 struct block *);
156
157 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
158 int, int, int *);
159
160 static struct value *evaluate_subexp_type (struct expression *, int *);
161
162 static int is_dynamic_field (struct type *, int);
163
164 static struct type *to_fixed_variant_branch_type (struct type *,
165 const gdb_byte *,
166 CORE_ADDR, struct value *);
167
168 static struct type *to_fixed_array_type (struct type *, struct value *, int);
169
170 static struct type *to_fixed_range_type (char *, struct value *,
171 struct objfile *);
172
173 static struct type *to_static_fixed_type (struct type *);
174 static struct type *static_unwrap_type (struct type *type);
175
176 static struct value *unwrap_value (struct value *);
177
178 static struct type *packed_array_type (struct type *, long *);
179
180 static struct type *decode_packed_array_type (struct type *);
181
182 static struct value *decode_packed_array (struct value *);
183
184 static struct value *value_subscript_packed (struct value *, int,
185 struct value **);
186
187 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int);
188
189 static struct value *coerce_unspec_val_to_type (struct value *,
190 struct type *);
191
192 static struct value *get_var_value (char *, char *);
193
194 static int lesseq_defined_than (struct symbol *, struct symbol *);
195
196 static int equiv_types (struct type *, struct type *);
197
198 static int is_name_suffix (const char *);
199
200 static int wild_match (const char *, int, const char *);
201
202 static struct value *ada_coerce_ref (struct value *);
203
204 static LONGEST pos_atr (struct value *);
205
206 static struct value *value_pos_atr (struct type *, struct value *);
207
208 static struct value *value_val_atr (struct type *, struct value *);
209
210 static struct symbol *standard_lookup (const char *, const struct block *,
211 domain_enum);
212
213 static struct value *ada_search_struct_field (char *, struct value *, int,
214 struct type *);
215
216 static struct value *ada_value_primitive_field (struct value *, int, int,
217 struct type *);
218
219 static int find_struct_field (char *, struct type *, int,
220 struct type **, int *, int *, int *, int *);
221
222 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
223 struct value *);
224
225 static struct value *ada_to_fixed_value (struct value *);
226
227 static int ada_resolve_function (struct ada_symbol_info *, int,
228 struct value **, int, const char *,
229 struct type *);
230
231 static struct value *ada_coerce_to_simple_array (struct value *);
232
233 static int ada_is_direct_array_type (struct type *);
234
235 static void ada_language_arch_info (struct gdbarch *,
236 struct language_arch_info *);
237
238 static void check_size (const struct type *);
239
240 static struct value *ada_index_struct_field (int, struct value *, int,
241 struct type *);
242
243 static struct value *assign_aggregate (struct value *, struct value *,
244 struct expression *, int *, enum noside);
245
246 static void aggregate_assign_from_choices (struct value *, struct value *,
247 struct expression *,
248 int *, LONGEST *, int *,
249 int, LONGEST, LONGEST);
250
251 static void aggregate_assign_positional (struct value *, struct value *,
252 struct expression *,
253 int *, LONGEST *, int *, int,
254 LONGEST, LONGEST);
255
256
257 static void aggregate_assign_others (struct value *, struct value *,
258 struct expression *,
259 int *, LONGEST *, int, LONGEST, LONGEST);
260
261
262 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
263
264
265 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
266 int *, enum noside);
267
268 static void ada_forward_operator_length (struct expression *, int, int *,
269 int *);
270 \f
271
272
273 /* Maximum-sized dynamic type. */
274 static unsigned int varsize_limit;
275
276 /* FIXME: brobecker/2003-09-17: No longer a const because it is
277 returned by a function that does not return a const char *. */
278 static char *ada_completer_word_break_characters =
279 #ifdef VMS
280 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
281 #else
282 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
283 #endif
284
285 /* The name of the symbol to use to get the name of the main subprogram. */
286 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
287 = "__gnat_ada_main_program_name";
288
289 /* Limit on the number of warnings to raise per expression evaluation. */
290 static int warning_limit = 2;
291
292 /* Number of warning messages issued; reset to 0 by cleanups after
293 expression evaluation. */
294 static int warnings_issued = 0;
295
296 static const char *known_runtime_file_name_patterns[] = {
297 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
298 };
299
300 static const char *known_auxiliary_function_name_patterns[] = {
301 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
302 };
303
304 /* Space for allocating results of ada_lookup_symbol_list. */
305 static struct obstack symbol_list_obstack;
306
307 /* Utilities */
308
309 /* Given DECODED_NAME a string holding a symbol name in its
310 decoded form (ie using the Ada dotted notation), returns
311 its unqualified name. */
312
313 static const char *
314 ada_unqualified_name (const char *decoded_name)
315 {
316 const char *result = strrchr (decoded_name, '.');
317
318 if (result != NULL)
319 result++; /* Skip the dot... */
320 else
321 result = decoded_name;
322
323 return result;
324 }
325
326 /* Return a string starting with '<', followed by STR, and '>'.
327 The result is good until the next call. */
328
329 static char *
330 add_angle_brackets (const char *str)
331 {
332 static char *result = NULL;
333
334 xfree (result);
335 result = xstrprintf ("<%s>", str);
336 return result;
337 }
338
339 static char *
340 ada_get_gdb_completer_word_break_characters (void)
341 {
342 return ada_completer_word_break_characters;
343 }
344
345 /* Print an array element index using the Ada syntax. */
346
347 static void
348 ada_print_array_index (struct value *index_value, struct ui_file *stream,
349 const struct value_print_options *options)
350 {
351 LA_VALUE_PRINT (index_value, stream, options);
352 fprintf_filtered (stream, " => ");
353 }
354
355 /* Read the string located at ADDR from the inferior and store the
356 result into BUF. */
357
358 static void
359 extract_string (CORE_ADDR addr, char *buf)
360 {
361 int char_index = 0;
362
363 /* Loop, reading one byte at a time, until we reach the '\000'
364 end-of-string marker. */
365 do
366 {
367 target_read_memory (addr + char_index * sizeof (char),
368 buf + char_index * sizeof (char), sizeof (char));
369 char_index++;
370 }
371 while (buf[char_index - 1] != '\000');
372 }
373
374 /* Assuming VECT points to an array of *SIZE objects of size
375 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
376 updating *SIZE as necessary and returning the (new) array. */
377
378 void *
379 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
380 {
381 if (*size < min_size)
382 {
383 *size *= 2;
384 if (*size < min_size)
385 *size = min_size;
386 vect = xrealloc (vect, *size * element_size);
387 }
388 return vect;
389 }
390
391 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
392 suffix of FIELD_NAME beginning "___". */
393
394 static int
395 field_name_match (const char *field_name, const char *target)
396 {
397 int len = strlen (target);
398 return
399 (strncmp (field_name, target, len) == 0
400 && (field_name[len] == '\0'
401 || (strncmp (field_name + len, "___", 3) == 0
402 && strcmp (field_name + strlen (field_name) - 6,
403 "___XVN") != 0)));
404 }
405
406
407 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
408 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
409 and return its index. This function also handles fields whose name
410 have ___ suffixes because the compiler sometimes alters their name
411 by adding such a suffix to represent fields with certain constraints.
412 If the field could not be found, return a negative number if
413 MAYBE_MISSING is set. Otherwise raise an error. */
414
415 int
416 ada_get_field_index (const struct type *type, const char *field_name,
417 int maybe_missing)
418 {
419 int fieldno;
420 struct type *struct_type = check_typedef ((struct type *) type);
421
422 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
423 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
424 return fieldno;
425
426 if (!maybe_missing)
427 error (_("Unable to find field %s in struct %s. Aborting"),
428 field_name, TYPE_NAME (struct_type));
429
430 return -1;
431 }
432
433 /* The length of the prefix of NAME prior to any "___" suffix. */
434
435 int
436 ada_name_prefix_len (const char *name)
437 {
438 if (name == NULL)
439 return 0;
440 else
441 {
442 const char *p = strstr (name, "___");
443 if (p == NULL)
444 return strlen (name);
445 else
446 return p - name;
447 }
448 }
449
450 /* Return non-zero if SUFFIX is a suffix of STR.
451 Return zero if STR is null. */
452
453 static int
454 is_suffix (const char *str, const char *suffix)
455 {
456 int len1, len2;
457 if (str == NULL)
458 return 0;
459 len1 = strlen (str);
460 len2 = strlen (suffix);
461 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
462 }
463
464 /* The contents of value VAL, treated as a value of type TYPE. The
465 result is an lval in memory if VAL is. */
466
467 static struct value *
468 coerce_unspec_val_to_type (struct value *val, struct type *type)
469 {
470 type = ada_check_typedef (type);
471 if (value_type (val) == type)
472 return val;
473 else
474 {
475 struct value *result;
476
477 /* Make sure that the object size is not unreasonable before
478 trying to allocate some memory for it. */
479 check_size (type);
480
481 result = allocate_value (type);
482 set_value_component_location (result, val);
483 set_value_bitsize (result, value_bitsize (val));
484 set_value_bitpos (result, value_bitpos (val));
485 set_value_address (result, value_address (val));
486 if (value_lazy (val)
487 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
488 set_value_lazy (result, 1);
489 else
490 memcpy (value_contents_raw (result), value_contents (val),
491 TYPE_LENGTH (type));
492 return result;
493 }
494 }
495
496 static const gdb_byte *
497 cond_offset_host (const gdb_byte *valaddr, long offset)
498 {
499 if (valaddr == NULL)
500 return NULL;
501 else
502 return valaddr + offset;
503 }
504
505 static CORE_ADDR
506 cond_offset_target (CORE_ADDR address, long offset)
507 {
508 if (address == 0)
509 return 0;
510 else
511 return address + offset;
512 }
513
514 /* Issue a warning (as for the definition of warning in utils.c, but
515 with exactly one argument rather than ...), unless the limit on the
516 number of warnings has passed during the evaluation of the current
517 expression. */
518
519 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
520 provided by "complaint". */
521 static void lim_warning (const char *format, ...) ATTR_FORMAT (printf, 1, 2);
522
523 static void
524 lim_warning (const char *format, ...)
525 {
526 va_list args;
527 va_start (args, format);
528
529 warnings_issued += 1;
530 if (warnings_issued <= warning_limit)
531 vwarning (format, args);
532
533 va_end (args);
534 }
535
536 /* Issue an error if the size of an object of type T is unreasonable,
537 i.e. if it would be a bad idea to allocate a value of this type in
538 GDB. */
539
540 static void
541 check_size (const struct type *type)
542 {
543 if (TYPE_LENGTH (type) > varsize_limit)
544 error (_("object size is larger than varsize-limit"));
545 }
546
547
548 /* Note: would have used MAX_OF_TYPE and MIN_OF_TYPE macros from
549 gdbtypes.h, but some of the necessary definitions in that file
550 seem to have gone missing. */
551
552 /* Maximum value of a SIZE-byte signed integer type. */
553 static LONGEST
554 max_of_size (int size)
555 {
556 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
557 return top_bit | (top_bit - 1);
558 }
559
560 /* Minimum value of a SIZE-byte signed integer type. */
561 static LONGEST
562 min_of_size (int size)
563 {
564 return -max_of_size (size) - 1;
565 }
566
567 /* Maximum value of a SIZE-byte unsigned integer type. */
568 static ULONGEST
569 umax_of_size (int size)
570 {
571 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
572 return top_bit | (top_bit - 1);
573 }
574
575 /* Maximum value of integral type T, as a signed quantity. */
576 static LONGEST
577 max_of_type (struct type *t)
578 {
579 if (TYPE_UNSIGNED (t))
580 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
581 else
582 return max_of_size (TYPE_LENGTH (t));
583 }
584
585 /* Minimum value of integral type T, as a signed quantity. */
586 static LONGEST
587 min_of_type (struct type *t)
588 {
589 if (TYPE_UNSIGNED (t))
590 return 0;
591 else
592 return min_of_size (TYPE_LENGTH (t));
593 }
594
595 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
596 static LONGEST
597 discrete_type_high_bound (struct type *type)
598 {
599 switch (TYPE_CODE (type))
600 {
601 case TYPE_CODE_RANGE:
602 return TYPE_HIGH_BOUND (type);
603 case TYPE_CODE_ENUM:
604 return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1);
605 case TYPE_CODE_BOOL:
606 return 1;
607 case TYPE_CODE_CHAR:
608 case TYPE_CODE_INT:
609 return max_of_type (type);
610 default:
611 error (_("Unexpected type in discrete_type_high_bound."));
612 }
613 }
614
615 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
616 static LONGEST
617 discrete_type_low_bound (struct type *type)
618 {
619 switch (TYPE_CODE (type))
620 {
621 case TYPE_CODE_RANGE:
622 return TYPE_LOW_BOUND (type);
623 case TYPE_CODE_ENUM:
624 return TYPE_FIELD_BITPOS (type, 0);
625 case TYPE_CODE_BOOL:
626 return 0;
627 case TYPE_CODE_CHAR:
628 case TYPE_CODE_INT:
629 return min_of_type (type);
630 default:
631 error (_("Unexpected type in discrete_type_low_bound."));
632 }
633 }
634
635 /* The identity on non-range types. For range types, the underlying
636 non-range scalar type. */
637
638 static struct type *
639 base_type (struct type *type)
640 {
641 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
642 {
643 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
644 return type;
645 type = TYPE_TARGET_TYPE (type);
646 }
647 return type;
648 }
649 \f
650
651 /* Language Selection */
652
653 /* If the main program is in Ada, return language_ada, otherwise return LANG
654 (the main program is in Ada iif the adainit symbol is found).
655
656 MAIN_PST is not used. */
657
658 enum language
659 ada_update_initial_language (enum language lang,
660 struct partial_symtab *main_pst)
661 {
662 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
663 (struct objfile *) NULL) != NULL)
664 return language_ada;
665
666 return lang;
667 }
668
669 /* If the main procedure is written in Ada, then return its name.
670 The result is good until the next call. Return NULL if the main
671 procedure doesn't appear to be in Ada. */
672
673 char *
674 ada_main_name (void)
675 {
676 struct minimal_symbol *msym;
677 static char *main_program_name = NULL;
678
679 /* For Ada, the name of the main procedure is stored in a specific
680 string constant, generated by the binder. Look for that symbol,
681 extract its address, and then read that string. If we didn't find
682 that string, then most probably the main procedure is not written
683 in Ada. */
684 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
685
686 if (msym != NULL)
687 {
688 CORE_ADDR main_program_name_addr;
689 int err_code;
690
691 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
692 if (main_program_name_addr == 0)
693 error (_("Invalid address for Ada main program name."));
694
695 xfree (main_program_name);
696 target_read_string (main_program_name_addr, &main_program_name,
697 1024, &err_code);
698
699 if (err_code != 0)
700 return NULL;
701 return main_program_name;
702 }
703
704 /* The main procedure doesn't seem to be in Ada. */
705 return NULL;
706 }
707 \f
708 /* Symbols */
709
710 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
711 of NULLs. */
712
713 const struct ada_opname_map ada_opname_table[] = {
714 {"Oadd", "\"+\"", BINOP_ADD},
715 {"Osubtract", "\"-\"", BINOP_SUB},
716 {"Omultiply", "\"*\"", BINOP_MUL},
717 {"Odivide", "\"/\"", BINOP_DIV},
718 {"Omod", "\"mod\"", BINOP_MOD},
719 {"Orem", "\"rem\"", BINOP_REM},
720 {"Oexpon", "\"**\"", BINOP_EXP},
721 {"Olt", "\"<\"", BINOP_LESS},
722 {"Ole", "\"<=\"", BINOP_LEQ},
723 {"Ogt", "\">\"", BINOP_GTR},
724 {"Oge", "\">=\"", BINOP_GEQ},
725 {"Oeq", "\"=\"", BINOP_EQUAL},
726 {"One", "\"/=\"", BINOP_NOTEQUAL},
727 {"Oand", "\"and\"", BINOP_BITWISE_AND},
728 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
729 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
730 {"Oconcat", "\"&\"", BINOP_CONCAT},
731 {"Oabs", "\"abs\"", UNOP_ABS},
732 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
733 {"Oadd", "\"+\"", UNOP_PLUS},
734 {"Osubtract", "\"-\"", UNOP_NEG},
735 {NULL, NULL}
736 };
737
738 /* The "encoded" form of DECODED, according to GNAT conventions.
739 The result is valid until the next call to ada_encode. */
740
741 char *
742 ada_encode (const char *decoded)
743 {
744 static char *encoding_buffer = NULL;
745 static size_t encoding_buffer_size = 0;
746 const char *p;
747 int k;
748
749 if (decoded == NULL)
750 return NULL;
751
752 GROW_VECT (encoding_buffer, encoding_buffer_size,
753 2 * strlen (decoded) + 10);
754
755 k = 0;
756 for (p = decoded; *p != '\0'; p += 1)
757 {
758 if (*p == '.')
759 {
760 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
761 k += 2;
762 }
763 else if (*p == '"')
764 {
765 const struct ada_opname_map *mapping;
766
767 for (mapping = ada_opname_table;
768 mapping->encoded != NULL
769 && strncmp (mapping->decoded, p,
770 strlen (mapping->decoded)) != 0; mapping += 1)
771 ;
772 if (mapping->encoded == NULL)
773 error (_("invalid Ada operator name: %s"), p);
774 strcpy (encoding_buffer + k, mapping->encoded);
775 k += strlen (mapping->encoded);
776 break;
777 }
778 else
779 {
780 encoding_buffer[k] = *p;
781 k += 1;
782 }
783 }
784
785 encoding_buffer[k] = '\0';
786 return encoding_buffer;
787 }
788
789 /* Return NAME folded to lower case, or, if surrounded by single
790 quotes, unfolded, but with the quotes stripped away. Result good
791 to next call. */
792
793 char *
794 ada_fold_name (const char *name)
795 {
796 static char *fold_buffer = NULL;
797 static size_t fold_buffer_size = 0;
798
799 int len = strlen (name);
800 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
801
802 if (name[0] == '\'')
803 {
804 strncpy (fold_buffer, name + 1, len - 2);
805 fold_buffer[len - 2] = '\000';
806 }
807 else
808 {
809 int i;
810 for (i = 0; i <= len; i += 1)
811 fold_buffer[i] = tolower (name[i]);
812 }
813
814 return fold_buffer;
815 }
816
817 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
818
819 static int
820 is_lower_alphanum (const char c)
821 {
822 return (isdigit (c) || (isalpha (c) && islower (c)));
823 }
824
825 /* Remove either of these suffixes:
826 . .{DIGIT}+
827 . ${DIGIT}+
828 . ___{DIGIT}+
829 . __{DIGIT}+.
830 These are suffixes introduced by the compiler for entities such as
831 nested subprogram for instance, in order to avoid name clashes.
832 They do not serve any purpose for the debugger. */
833
834 static void
835 ada_remove_trailing_digits (const char *encoded, int *len)
836 {
837 if (*len > 1 && isdigit (encoded[*len - 1]))
838 {
839 int i = *len - 2;
840 while (i > 0 && isdigit (encoded[i]))
841 i--;
842 if (i >= 0 && encoded[i] == '.')
843 *len = i;
844 else if (i >= 0 && encoded[i] == '$')
845 *len = i;
846 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
847 *len = i - 2;
848 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
849 *len = i - 1;
850 }
851 }
852
853 /* Remove the suffix introduced by the compiler for protected object
854 subprograms. */
855
856 static void
857 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
858 {
859 /* Remove trailing N. */
860
861 /* Protected entry subprograms are broken into two
862 separate subprograms: The first one is unprotected, and has
863 a 'N' suffix; the second is the protected version, and has
864 the 'P' suffix. The second calls the first one after handling
865 the protection. Since the P subprograms are internally generated,
866 we leave these names undecoded, giving the user a clue that this
867 entity is internal. */
868
869 if (*len > 1
870 && encoded[*len - 1] == 'N'
871 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
872 *len = *len - 1;
873 }
874
875 /* If ENCODED follows the GNAT entity encoding conventions, then return
876 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
877 replaced by ENCODED.
878
879 The resulting string is valid until the next call of ada_decode.
880 If the string is unchanged by decoding, the original string pointer
881 is returned. */
882
883 const char *
884 ada_decode (const char *encoded)
885 {
886 int i, j;
887 int len0;
888 const char *p;
889 char *decoded;
890 int at_start_name;
891 static char *decoding_buffer = NULL;
892 static size_t decoding_buffer_size = 0;
893
894 /* The name of the Ada main procedure starts with "_ada_".
895 This prefix is not part of the decoded name, so skip this part
896 if we see this prefix. */
897 if (strncmp (encoded, "_ada_", 5) == 0)
898 encoded += 5;
899
900 /* If the name starts with '_', then it is not a properly encoded
901 name, so do not attempt to decode it. Similarly, if the name
902 starts with '<', the name should not be decoded. */
903 if (encoded[0] == '_' || encoded[0] == '<')
904 goto Suppress;
905
906 len0 = strlen (encoded);
907
908 ada_remove_trailing_digits (encoded, &len0);
909 ada_remove_po_subprogram_suffix (encoded, &len0);
910
911 /* Remove the ___X.* suffix if present. Do not forget to verify that
912 the suffix is located before the current "end" of ENCODED. We want
913 to avoid re-matching parts of ENCODED that have previously been
914 marked as discarded (by decrementing LEN0). */
915 p = strstr (encoded, "___");
916 if (p != NULL && p - encoded < len0 - 3)
917 {
918 if (p[3] == 'X')
919 len0 = p - encoded;
920 else
921 goto Suppress;
922 }
923
924 /* Remove any trailing TKB suffix. It tells us that this symbol
925 is for the body of a task, but that information does not actually
926 appear in the decoded name. */
927
928 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
929 len0 -= 3;
930
931 /* Remove trailing "B" suffixes. */
932 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
933
934 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
935 len0 -= 1;
936
937 /* Make decoded big enough for possible expansion by operator name. */
938
939 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
940 decoded = decoding_buffer;
941
942 /* Remove trailing __{digit}+ or trailing ${digit}+. */
943
944 if (len0 > 1 && isdigit (encoded[len0 - 1]))
945 {
946 i = len0 - 2;
947 while ((i >= 0 && isdigit (encoded[i]))
948 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
949 i -= 1;
950 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
951 len0 = i - 1;
952 else if (encoded[i] == '$')
953 len0 = i;
954 }
955
956 /* The first few characters that are not alphabetic are not part
957 of any encoding we use, so we can copy them over verbatim. */
958
959 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
960 decoded[j] = encoded[i];
961
962 at_start_name = 1;
963 while (i < len0)
964 {
965 /* Is this a symbol function? */
966 if (at_start_name && encoded[i] == 'O')
967 {
968 int k;
969 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
970 {
971 int op_len = strlen (ada_opname_table[k].encoded);
972 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
973 op_len - 1) == 0)
974 && !isalnum (encoded[i + op_len]))
975 {
976 strcpy (decoded + j, ada_opname_table[k].decoded);
977 at_start_name = 0;
978 i += op_len;
979 j += strlen (ada_opname_table[k].decoded);
980 break;
981 }
982 }
983 if (ada_opname_table[k].encoded != NULL)
984 continue;
985 }
986 at_start_name = 0;
987
988 /* Replace "TK__" with "__", which will eventually be translated
989 into "." (just below). */
990
991 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
992 i += 2;
993
994 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
995 be translated into "." (just below). These are internal names
996 generated for anonymous blocks inside which our symbol is nested. */
997
998 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
999 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1000 && isdigit (encoded [i+4]))
1001 {
1002 int k = i + 5;
1003
1004 while (k < len0 && isdigit (encoded[k]))
1005 k++; /* Skip any extra digit. */
1006
1007 /* Double-check that the "__B_{DIGITS}+" sequence we found
1008 is indeed followed by "__". */
1009 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1010 i = k;
1011 }
1012
1013 /* Remove _E{DIGITS}+[sb] */
1014
1015 /* Just as for protected object subprograms, there are 2 categories
1016 of subprograms created by the compiler for each entry. The first
1017 one implements the actual entry code, and has a suffix following
1018 the convention above; the second one implements the barrier and
1019 uses the same convention as above, except that the 'E' is replaced
1020 by a 'B'.
1021
1022 Just as above, we do not decode the name of barrier functions
1023 to give the user a clue that the code he is debugging has been
1024 internally generated. */
1025
1026 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1027 && isdigit (encoded[i+2]))
1028 {
1029 int k = i + 3;
1030
1031 while (k < len0 && isdigit (encoded[k]))
1032 k++;
1033
1034 if (k < len0
1035 && (encoded[k] == 'b' || encoded[k] == 's'))
1036 {
1037 k++;
1038 /* Just as an extra precaution, make sure that if this
1039 suffix is followed by anything else, it is a '_'.
1040 Otherwise, we matched this sequence by accident. */
1041 if (k == len0
1042 || (k < len0 && encoded[k] == '_'))
1043 i = k;
1044 }
1045 }
1046
1047 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1048 the GNAT front-end in protected object subprograms. */
1049
1050 if (i < len0 + 3
1051 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1052 {
1053 /* Backtrack a bit up until we reach either the begining of
1054 the encoded name, or "__". Make sure that we only find
1055 digits or lowercase characters. */
1056 const char *ptr = encoded + i - 1;
1057
1058 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1059 ptr--;
1060 if (ptr < encoded
1061 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1062 i++;
1063 }
1064
1065 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1066 {
1067 /* This is a X[bn]* sequence not separated from the previous
1068 part of the name with a non-alpha-numeric character (in other
1069 words, immediately following an alpha-numeric character), then
1070 verify that it is placed at the end of the encoded name. If
1071 not, then the encoding is not valid and we should abort the
1072 decoding. Otherwise, just skip it, it is used in body-nested
1073 package names. */
1074 do
1075 i += 1;
1076 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1077 if (i < len0)
1078 goto Suppress;
1079 }
1080 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1081 {
1082 /* Replace '__' by '.'. */
1083 decoded[j] = '.';
1084 at_start_name = 1;
1085 i += 2;
1086 j += 1;
1087 }
1088 else
1089 {
1090 /* It's a character part of the decoded name, so just copy it
1091 over. */
1092 decoded[j] = encoded[i];
1093 i += 1;
1094 j += 1;
1095 }
1096 }
1097 decoded[j] = '\000';
1098
1099 /* Decoded names should never contain any uppercase character.
1100 Double-check this, and abort the decoding if we find one. */
1101
1102 for (i = 0; decoded[i] != '\0'; i += 1)
1103 if (isupper (decoded[i]) || decoded[i] == ' ')
1104 goto Suppress;
1105
1106 if (strcmp (decoded, encoded) == 0)
1107 return encoded;
1108 else
1109 return decoded;
1110
1111 Suppress:
1112 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1113 decoded = decoding_buffer;
1114 if (encoded[0] == '<')
1115 strcpy (decoded, encoded);
1116 else
1117 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1118 return decoded;
1119
1120 }
1121
1122 /* Table for keeping permanent unique copies of decoded names. Once
1123 allocated, names in this table are never released. While this is a
1124 storage leak, it should not be significant unless there are massive
1125 changes in the set of decoded names in successive versions of a
1126 symbol table loaded during a single session. */
1127 static struct htab *decoded_names_store;
1128
1129 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1130 in the language-specific part of GSYMBOL, if it has not been
1131 previously computed. Tries to save the decoded name in the same
1132 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1133 in any case, the decoded symbol has a lifetime at least that of
1134 GSYMBOL).
1135 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1136 const, but nevertheless modified to a semantically equivalent form
1137 when a decoded name is cached in it.
1138 */
1139
1140 char *
1141 ada_decode_symbol (const struct general_symbol_info *gsymbol)
1142 {
1143 char **resultp =
1144 (char **) &gsymbol->language_specific.cplus_specific.demangled_name;
1145 if (*resultp == NULL)
1146 {
1147 const char *decoded = ada_decode (gsymbol->name);
1148 if (gsymbol->obj_section != NULL)
1149 {
1150 struct objfile *objf = gsymbol->obj_section->objfile;
1151 *resultp = obsavestring (decoded, strlen (decoded),
1152 &objf->objfile_obstack);
1153 }
1154 /* Sometimes, we can't find a corresponding objfile, in which
1155 case, we put the result on the heap. Since we only decode
1156 when needed, we hope this usually does not cause a
1157 significant memory leak (FIXME). */
1158 if (*resultp == NULL)
1159 {
1160 char **slot = (char **) htab_find_slot (decoded_names_store,
1161 decoded, INSERT);
1162 if (*slot == NULL)
1163 *slot = xstrdup (decoded);
1164 *resultp = *slot;
1165 }
1166 }
1167
1168 return *resultp;
1169 }
1170
1171 static char *
1172 ada_la_decode (const char *encoded, int options)
1173 {
1174 return xstrdup (ada_decode (encoded));
1175 }
1176
1177 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1178 suffixes that encode debugging information or leading _ada_ on
1179 SYM_NAME (see is_name_suffix commentary for the debugging
1180 information that is ignored). If WILD, then NAME need only match a
1181 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1182 either argument is NULL. */
1183
1184 static int
1185 ada_match_name (const char *sym_name, const char *name, int wild)
1186 {
1187 if (sym_name == NULL || name == NULL)
1188 return 0;
1189 else if (wild)
1190 return wild_match (name, strlen (name), sym_name);
1191 else
1192 {
1193 int len_name = strlen (name);
1194 return (strncmp (sym_name, name, len_name) == 0
1195 && is_name_suffix (sym_name + len_name))
1196 || (strncmp (sym_name, "_ada_", 5) == 0
1197 && strncmp (sym_name + 5, name, len_name) == 0
1198 && is_name_suffix (sym_name + len_name + 5));
1199 }
1200 }
1201 \f
1202
1203 /* Arrays */
1204
1205 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1206
1207 static char *bound_name[] = {
1208 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1209 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1210 };
1211
1212 /* Maximum number of array dimensions we are prepared to handle. */
1213
1214 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1215
1216 /* Like modify_field, but allows bitpos > wordlength. */
1217
1218 static void
1219 modify_general_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
1220 {
1221 modify_field (addr + bitpos / 8, fieldval, bitpos % 8, bitsize);
1222 }
1223
1224
1225 /* The desc_* routines return primitive portions of array descriptors
1226 (fat pointers). */
1227
1228 /* The descriptor or array type, if any, indicated by TYPE; removes
1229 level of indirection, if needed. */
1230
1231 static struct type *
1232 desc_base_type (struct type *type)
1233 {
1234 if (type == NULL)
1235 return NULL;
1236 type = ada_check_typedef (type);
1237 if (type != NULL
1238 && (TYPE_CODE (type) == TYPE_CODE_PTR
1239 || TYPE_CODE (type) == TYPE_CODE_REF))
1240 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1241 else
1242 return type;
1243 }
1244
1245 /* True iff TYPE indicates a "thin" array pointer type. */
1246
1247 static int
1248 is_thin_pntr (struct type *type)
1249 {
1250 return
1251 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1252 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1253 }
1254
1255 /* The descriptor type for thin pointer type TYPE. */
1256
1257 static struct type *
1258 thin_descriptor_type (struct type *type)
1259 {
1260 struct type *base_type = desc_base_type (type);
1261 if (base_type == NULL)
1262 return NULL;
1263 if (is_suffix (ada_type_name (base_type), "___XVE"))
1264 return base_type;
1265 else
1266 {
1267 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1268 if (alt_type == NULL)
1269 return base_type;
1270 else
1271 return alt_type;
1272 }
1273 }
1274
1275 /* A pointer to the array data for thin-pointer value VAL. */
1276
1277 static struct value *
1278 thin_data_pntr (struct value *val)
1279 {
1280 struct type *type = value_type (val);
1281 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1282 data_type = lookup_pointer_type (data_type);
1283
1284 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1285 return value_cast (data_type, value_copy (val));
1286 else
1287 return value_from_longest (data_type, value_address (val));
1288 }
1289
1290 /* True iff TYPE indicates a "thick" array pointer type. */
1291
1292 static int
1293 is_thick_pntr (struct type *type)
1294 {
1295 type = desc_base_type (type);
1296 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1297 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1298 }
1299
1300 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1301 pointer to one, the type of its bounds data; otherwise, NULL. */
1302
1303 static struct type *
1304 desc_bounds_type (struct type *type)
1305 {
1306 struct type *r;
1307
1308 type = desc_base_type (type);
1309
1310 if (type == NULL)
1311 return NULL;
1312 else if (is_thin_pntr (type))
1313 {
1314 type = thin_descriptor_type (type);
1315 if (type == NULL)
1316 return NULL;
1317 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1318 if (r != NULL)
1319 return ada_check_typedef (r);
1320 }
1321 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1322 {
1323 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1324 if (r != NULL)
1325 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1326 }
1327 return NULL;
1328 }
1329
1330 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1331 one, a pointer to its bounds data. Otherwise NULL. */
1332
1333 static struct value *
1334 desc_bounds (struct value *arr)
1335 {
1336 struct type *type = ada_check_typedef (value_type (arr));
1337 if (is_thin_pntr (type))
1338 {
1339 struct type *bounds_type =
1340 desc_bounds_type (thin_descriptor_type (type));
1341 LONGEST addr;
1342
1343 if (bounds_type == NULL)
1344 error (_("Bad GNAT array descriptor"));
1345
1346 /* NOTE: The following calculation is not really kosher, but
1347 since desc_type is an XVE-encoded type (and shouldn't be),
1348 the correct calculation is a real pain. FIXME (and fix GCC). */
1349 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1350 addr = value_as_long (arr);
1351 else
1352 addr = value_address (arr);
1353
1354 return
1355 value_from_longest (lookup_pointer_type (bounds_type),
1356 addr - TYPE_LENGTH (bounds_type));
1357 }
1358
1359 else if (is_thick_pntr (type))
1360 return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1361 _("Bad GNAT array descriptor"));
1362 else
1363 return NULL;
1364 }
1365
1366 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1367 position of the field containing the address of the bounds data. */
1368
1369 static int
1370 fat_pntr_bounds_bitpos (struct type *type)
1371 {
1372 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1373 }
1374
1375 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1376 size of the field containing the address of the bounds data. */
1377
1378 static int
1379 fat_pntr_bounds_bitsize (struct type *type)
1380 {
1381 type = desc_base_type (type);
1382
1383 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1384 return TYPE_FIELD_BITSIZE (type, 1);
1385 else
1386 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1387 }
1388
1389 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1390 pointer to one, the type of its array data (a array-with-no-bounds type);
1391 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1392 data. */
1393
1394 static struct type *
1395 desc_data_target_type (struct type *type)
1396 {
1397 type = desc_base_type (type);
1398
1399 /* NOTE: The following is bogus; see comment in desc_bounds. */
1400 if (is_thin_pntr (type))
1401 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1402 else if (is_thick_pntr (type))
1403 {
1404 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1405
1406 if (data_type
1407 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1408 return TYPE_TARGET_TYPE (data_type);
1409 }
1410
1411 return NULL;
1412 }
1413
1414 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1415 its array data. */
1416
1417 static struct value *
1418 desc_data (struct value *arr)
1419 {
1420 struct type *type = value_type (arr);
1421 if (is_thin_pntr (type))
1422 return thin_data_pntr (arr);
1423 else if (is_thick_pntr (type))
1424 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1425 _("Bad GNAT array descriptor"));
1426 else
1427 return NULL;
1428 }
1429
1430
1431 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1432 position of the field containing the address of the data. */
1433
1434 static int
1435 fat_pntr_data_bitpos (struct type *type)
1436 {
1437 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1438 }
1439
1440 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1441 size of the field containing the address of the data. */
1442
1443 static int
1444 fat_pntr_data_bitsize (struct type *type)
1445 {
1446 type = desc_base_type (type);
1447
1448 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1449 return TYPE_FIELD_BITSIZE (type, 0);
1450 else
1451 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1452 }
1453
1454 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1455 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1456 bound, if WHICH is 1. The first bound is I=1. */
1457
1458 static struct value *
1459 desc_one_bound (struct value *bounds, int i, int which)
1460 {
1461 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1462 _("Bad GNAT array descriptor bounds"));
1463 }
1464
1465 /* If BOUNDS is an array-bounds structure type, return the bit position
1466 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1467 bound, if WHICH is 1. The first bound is I=1. */
1468
1469 static int
1470 desc_bound_bitpos (struct type *type, int i, int which)
1471 {
1472 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1473 }
1474
1475 /* If BOUNDS is an array-bounds structure type, return the bit field size
1476 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1477 bound, if WHICH is 1. The first bound is I=1. */
1478
1479 static int
1480 desc_bound_bitsize (struct type *type, int i, int which)
1481 {
1482 type = desc_base_type (type);
1483
1484 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1485 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1486 else
1487 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1488 }
1489
1490 /* If TYPE is the type of an array-bounds structure, the type of its
1491 Ith bound (numbering from 1). Otherwise, NULL. */
1492
1493 static struct type *
1494 desc_index_type (struct type *type, int i)
1495 {
1496 type = desc_base_type (type);
1497
1498 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1499 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1500 else
1501 return NULL;
1502 }
1503
1504 /* The number of index positions in the array-bounds type TYPE.
1505 Return 0 if TYPE is NULL. */
1506
1507 static int
1508 desc_arity (struct type *type)
1509 {
1510 type = desc_base_type (type);
1511
1512 if (type != NULL)
1513 return TYPE_NFIELDS (type) / 2;
1514 return 0;
1515 }
1516
1517 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1518 an array descriptor type (representing an unconstrained array
1519 type). */
1520
1521 static int
1522 ada_is_direct_array_type (struct type *type)
1523 {
1524 if (type == NULL)
1525 return 0;
1526 type = ada_check_typedef (type);
1527 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1528 || ada_is_array_descriptor_type (type));
1529 }
1530
1531 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1532 * to one. */
1533
1534 static int
1535 ada_is_array_type (struct type *type)
1536 {
1537 while (type != NULL
1538 && (TYPE_CODE (type) == TYPE_CODE_PTR
1539 || TYPE_CODE (type) == TYPE_CODE_REF))
1540 type = TYPE_TARGET_TYPE (type);
1541 return ada_is_direct_array_type (type);
1542 }
1543
1544 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1545
1546 int
1547 ada_is_simple_array_type (struct type *type)
1548 {
1549 if (type == NULL)
1550 return 0;
1551 type = ada_check_typedef (type);
1552 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1553 || (TYPE_CODE (type) == TYPE_CODE_PTR
1554 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
1555 }
1556
1557 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1558
1559 int
1560 ada_is_array_descriptor_type (struct type *type)
1561 {
1562 struct type *data_type = desc_data_target_type (type);
1563
1564 if (type == NULL)
1565 return 0;
1566 type = ada_check_typedef (type);
1567 return (data_type != NULL
1568 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1569 && desc_arity (desc_bounds_type (type)) > 0);
1570 }
1571
1572 /* Non-zero iff type is a partially mal-formed GNAT array
1573 descriptor. FIXME: This is to compensate for some problems with
1574 debugging output from GNAT. Re-examine periodically to see if it
1575 is still needed. */
1576
1577 int
1578 ada_is_bogus_array_descriptor (struct type *type)
1579 {
1580 return
1581 type != NULL
1582 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1583 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1584 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1585 && !ada_is_array_descriptor_type (type);
1586 }
1587
1588
1589 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1590 (fat pointer) returns the type of the array data described---specifically,
1591 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1592 in from the descriptor; otherwise, they are left unspecified. If
1593 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1594 returns NULL. The result is simply the type of ARR if ARR is not
1595 a descriptor. */
1596 struct type *
1597 ada_type_of_array (struct value *arr, int bounds)
1598 {
1599 if (ada_is_packed_array_type (value_type (arr)))
1600 return decode_packed_array_type (value_type (arr));
1601
1602 if (!ada_is_array_descriptor_type (value_type (arr)))
1603 return value_type (arr);
1604
1605 if (!bounds)
1606 return
1607 ada_check_typedef (desc_data_target_type (value_type (arr)));
1608 else
1609 {
1610 struct type *elt_type;
1611 int arity;
1612 struct value *descriptor;
1613 struct objfile *objf = TYPE_OBJFILE (value_type (arr));
1614
1615 elt_type = ada_array_element_type (value_type (arr), -1);
1616 arity = ada_array_arity (value_type (arr));
1617
1618 if (elt_type == NULL || arity == 0)
1619 return ada_check_typedef (value_type (arr));
1620
1621 descriptor = desc_bounds (arr);
1622 if (value_as_long (descriptor) == 0)
1623 return NULL;
1624 while (arity > 0)
1625 {
1626 struct type *range_type = alloc_type (objf);
1627 struct type *array_type = alloc_type (objf);
1628 struct value *low = desc_one_bound (descriptor, arity, 0);
1629 struct value *high = desc_one_bound (descriptor, arity, 1);
1630 arity -= 1;
1631
1632 create_range_type (range_type, value_type (low),
1633 longest_to_int (value_as_long (low)),
1634 longest_to_int (value_as_long (high)));
1635 elt_type = create_array_type (array_type, elt_type, range_type);
1636 }
1637
1638 return lookup_pointer_type (elt_type);
1639 }
1640 }
1641
1642 /* If ARR does not represent an array, returns ARR unchanged.
1643 Otherwise, returns either a standard GDB array with bounds set
1644 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1645 GDB array. Returns NULL if ARR is a null fat pointer. */
1646
1647 struct value *
1648 ada_coerce_to_simple_array_ptr (struct value *arr)
1649 {
1650 if (ada_is_array_descriptor_type (value_type (arr)))
1651 {
1652 struct type *arrType = ada_type_of_array (arr, 1);
1653 if (arrType == NULL)
1654 return NULL;
1655 return value_cast (arrType, value_copy (desc_data (arr)));
1656 }
1657 else if (ada_is_packed_array_type (value_type (arr)))
1658 return decode_packed_array (arr);
1659 else
1660 return arr;
1661 }
1662
1663 /* If ARR does not represent an array, returns ARR unchanged.
1664 Otherwise, returns a standard GDB array describing ARR (which may
1665 be ARR itself if it already is in the proper form). */
1666
1667 static struct value *
1668 ada_coerce_to_simple_array (struct value *arr)
1669 {
1670 if (ada_is_array_descriptor_type (value_type (arr)))
1671 {
1672 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1673 if (arrVal == NULL)
1674 error (_("Bounds unavailable for null array pointer."));
1675 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1676 return value_ind (arrVal);
1677 }
1678 else if (ada_is_packed_array_type (value_type (arr)))
1679 return decode_packed_array (arr);
1680 else
1681 return arr;
1682 }
1683
1684 /* If TYPE represents a GNAT array type, return it translated to an
1685 ordinary GDB array type (possibly with BITSIZE fields indicating
1686 packing). For other types, is the identity. */
1687
1688 struct type *
1689 ada_coerce_to_simple_array_type (struct type *type)
1690 {
1691 if (ada_is_packed_array_type (type))
1692 return decode_packed_array_type (type);
1693
1694 if (ada_is_array_descriptor_type (type))
1695 return ada_check_typedef (desc_data_target_type (type));
1696
1697 return type;
1698 }
1699
1700 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1701
1702 int
1703 ada_is_packed_array_type (struct type *type)
1704 {
1705 if (type == NULL)
1706 return 0;
1707 type = desc_base_type (type);
1708 type = ada_check_typedef (type);
1709 return
1710 ada_type_name (type) != NULL
1711 && strstr (ada_type_name (type), "___XP") != NULL;
1712 }
1713
1714 /* Given that TYPE is a standard GDB array type with all bounds filled
1715 in, and that the element size of its ultimate scalar constituents
1716 (that is, either its elements, or, if it is an array of arrays, its
1717 elements' elements, etc.) is *ELT_BITS, return an identical type,
1718 but with the bit sizes of its elements (and those of any
1719 constituent arrays) recorded in the BITSIZE components of its
1720 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1721 in bits. */
1722
1723 static struct type *
1724 packed_array_type (struct type *type, long *elt_bits)
1725 {
1726 struct type *new_elt_type;
1727 struct type *new_type;
1728 LONGEST low_bound, high_bound;
1729
1730 type = ada_check_typedef (type);
1731 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1732 return type;
1733
1734 new_type = alloc_type (TYPE_OBJFILE (type));
1735 new_elt_type = packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
1736 elt_bits);
1737 create_array_type (new_type, new_elt_type, TYPE_INDEX_TYPE (type));
1738 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
1739 TYPE_NAME (new_type) = ada_type_name (type);
1740
1741 if (get_discrete_bounds (TYPE_INDEX_TYPE (type),
1742 &low_bound, &high_bound) < 0)
1743 low_bound = high_bound = 0;
1744 if (high_bound < low_bound)
1745 *elt_bits = TYPE_LENGTH (new_type) = 0;
1746 else
1747 {
1748 *elt_bits *= (high_bound - low_bound + 1);
1749 TYPE_LENGTH (new_type) =
1750 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
1751 }
1752
1753 TYPE_FIXED_INSTANCE (new_type) = 1;
1754 return new_type;
1755 }
1756
1757 /* The array type encoded by TYPE, where ada_is_packed_array_type (TYPE). */
1758
1759 static struct type *
1760 decode_packed_array_type (struct type *type)
1761 {
1762 struct symbol *sym;
1763 struct block **blocks;
1764 char *raw_name = ada_type_name (ada_check_typedef (type));
1765 char *name;
1766 char *tail;
1767 struct type *shadow_type;
1768 long bits;
1769 int i, n;
1770
1771 if (!raw_name)
1772 raw_name = ada_type_name (desc_base_type (type));
1773
1774 if (!raw_name)
1775 return NULL;
1776
1777 name = (char *) alloca (strlen (raw_name) + 1);
1778 tail = strstr (raw_name, "___XP");
1779 type = desc_base_type (type);
1780
1781 memcpy (name, raw_name, tail - raw_name);
1782 name[tail - raw_name] = '\000';
1783
1784 sym = standard_lookup (name, get_selected_block (0), VAR_DOMAIN);
1785 if (sym == NULL || SYMBOL_TYPE (sym) == NULL)
1786 {
1787 lim_warning (_("could not find bounds information on packed array"));
1788 return NULL;
1789 }
1790 shadow_type = SYMBOL_TYPE (sym);
1791 CHECK_TYPEDEF (shadow_type);
1792
1793 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
1794 {
1795 lim_warning (_("could not understand bounds information on packed array"));
1796 return NULL;
1797 }
1798
1799 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1800 {
1801 lim_warning
1802 (_("could not understand bit size information on packed array"));
1803 return NULL;
1804 }
1805
1806 return packed_array_type (shadow_type, &bits);
1807 }
1808
1809 /* Given that ARR is a struct value *indicating a GNAT packed array,
1810 returns a simple array that denotes that array. Its type is a
1811 standard GDB array type except that the BITSIZEs of the array
1812 target types are set to the number of bits in each element, and the
1813 type length is set appropriately. */
1814
1815 static struct value *
1816 decode_packed_array (struct value *arr)
1817 {
1818 struct type *type;
1819
1820 arr = ada_coerce_ref (arr);
1821
1822 /* If our value is a pointer, then dererence it. Make sure that
1823 this operation does not cause the target type to be fixed, as
1824 this would indirectly cause this array to be decoded. The rest
1825 of the routine assumes that the array hasn't been decoded yet,
1826 so we use the basic "value_ind" routine to perform the dereferencing,
1827 as opposed to using "ada_value_ind". */
1828 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
1829 arr = value_ind (arr);
1830
1831 type = decode_packed_array_type (value_type (arr));
1832 if (type == NULL)
1833 {
1834 error (_("can't unpack array"));
1835 return NULL;
1836 }
1837
1838 if (gdbarch_bits_big_endian (current_gdbarch)
1839 && ada_is_modular_type (value_type (arr)))
1840 {
1841 /* This is a (right-justified) modular type representing a packed
1842 array with no wrapper. In order to interpret the value through
1843 the (left-justified) packed array type we just built, we must
1844 first left-justify it. */
1845 int bit_size, bit_pos;
1846 ULONGEST mod;
1847
1848 mod = ada_modulus (value_type (arr)) - 1;
1849 bit_size = 0;
1850 while (mod > 0)
1851 {
1852 bit_size += 1;
1853 mod >>= 1;
1854 }
1855 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
1856 arr = ada_value_primitive_packed_val (arr, NULL,
1857 bit_pos / HOST_CHAR_BIT,
1858 bit_pos % HOST_CHAR_BIT,
1859 bit_size,
1860 type);
1861 }
1862
1863 return coerce_unspec_val_to_type (arr, type);
1864 }
1865
1866
1867 /* The value of the element of packed array ARR at the ARITY indices
1868 given in IND. ARR must be a simple array. */
1869
1870 static struct value *
1871 value_subscript_packed (struct value *arr, int arity, struct value **ind)
1872 {
1873 int i;
1874 int bits, elt_off, bit_off;
1875 long elt_total_bit_offset;
1876 struct type *elt_type;
1877 struct value *v;
1878
1879 bits = 0;
1880 elt_total_bit_offset = 0;
1881 elt_type = ada_check_typedef (value_type (arr));
1882 for (i = 0; i < arity; i += 1)
1883 {
1884 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
1885 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
1886 error
1887 (_("attempt to do packed indexing of something other than a packed array"));
1888 else
1889 {
1890 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
1891 LONGEST lowerbound, upperbound;
1892 LONGEST idx;
1893
1894 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
1895 {
1896 lim_warning (_("don't know bounds of array"));
1897 lowerbound = upperbound = 0;
1898 }
1899
1900 idx = pos_atr (ind[i]);
1901 if (idx < lowerbound || idx > upperbound)
1902 lim_warning (_("packed array index %ld out of bounds"), (long) idx);
1903 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
1904 elt_total_bit_offset += (idx - lowerbound) * bits;
1905 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
1906 }
1907 }
1908 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
1909 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
1910
1911 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
1912 bits, elt_type);
1913 return v;
1914 }
1915
1916 /* Non-zero iff TYPE includes negative integer values. */
1917
1918 static int
1919 has_negatives (struct type *type)
1920 {
1921 switch (TYPE_CODE (type))
1922 {
1923 default:
1924 return 0;
1925 case TYPE_CODE_INT:
1926 return !TYPE_UNSIGNED (type);
1927 case TYPE_CODE_RANGE:
1928 return TYPE_LOW_BOUND (type) < 0;
1929 }
1930 }
1931
1932
1933 /* Create a new value of type TYPE from the contents of OBJ starting
1934 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
1935 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
1936 assigning through the result will set the field fetched from.
1937 VALADDR is ignored unless OBJ is NULL, in which case,
1938 VALADDR+OFFSET must address the start of storage containing the
1939 packed value. The value returned in this case is never an lval.
1940 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
1941
1942 struct value *
1943 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
1944 long offset, int bit_offset, int bit_size,
1945 struct type *type)
1946 {
1947 struct value *v;
1948 int src, /* Index into the source area */
1949 targ, /* Index into the target area */
1950 srcBitsLeft, /* Number of source bits left to move */
1951 nsrc, ntarg, /* Number of source and target bytes */
1952 unusedLS, /* Number of bits in next significant
1953 byte of source that are unused */
1954 accumSize; /* Number of meaningful bits in accum */
1955 unsigned char *bytes; /* First byte containing data to unpack */
1956 unsigned char *unpacked;
1957 unsigned long accum; /* Staging area for bits being transferred */
1958 unsigned char sign;
1959 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
1960 /* Transmit bytes from least to most significant; delta is the direction
1961 the indices move. */
1962 int delta = gdbarch_bits_big_endian (current_gdbarch) ? -1 : 1;
1963
1964 type = ada_check_typedef (type);
1965
1966 if (obj == NULL)
1967 {
1968 v = allocate_value (type);
1969 bytes = (unsigned char *) (valaddr + offset);
1970 }
1971 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
1972 {
1973 v = value_at (type,
1974 value_address (obj) + offset);
1975 bytes = (unsigned char *) alloca (len);
1976 read_memory (value_address (v), bytes, len);
1977 }
1978 else
1979 {
1980 v = allocate_value (type);
1981 bytes = (unsigned char *) value_contents (obj) + offset;
1982 }
1983
1984 if (obj != NULL)
1985 {
1986 CORE_ADDR new_addr;
1987 set_value_component_location (v, obj);
1988 new_addr = value_address (obj) + offset;
1989 set_value_bitpos (v, bit_offset + value_bitpos (obj));
1990 set_value_bitsize (v, bit_size);
1991 if (value_bitpos (v) >= HOST_CHAR_BIT)
1992 {
1993 ++new_addr;
1994 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
1995 }
1996 set_value_address (v, new_addr);
1997 }
1998 else
1999 set_value_bitsize (v, bit_size);
2000 unpacked = (unsigned char *) value_contents (v);
2001
2002 srcBitsLeft = bit_size;
2003 nsrc = len;
2004 ntarg = TYPE_LENGTH (type);
2005 sign = 0;
2006 if (bit_size == 0)
2007 {
2008 memset (unpacked, 0, TYPE_LENGTH (type));
2009 return v;
2010 }
2011 else if (gdbarch_bits_big_endian (current_gdbarch))
2012 {
2013 src = len - 1;
2014 if (has_negatives (type)
2015 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2016 sign = ~0;
2017
2018 unusedLS =
2019 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2020 % HOST_CHAR_BIT;
2021
2022 switch (TYPE_CODE (type))
2023 {
2024 case TYPE_CODE_ARRAY:
2025 case TYPE_CODE_UNION:
2026 case TYPE_CODE_STRUCT:
2027 /* Non-scalar values must be aligned at a byte boundary... */
2028 accumSize =
2029 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2030 /* ... And are placed at the beginning (most-significant) bytes
2031 of the target. */
2032 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2033 ntarg = targ + 1;
2034 break;
2035 default:
2036 accumSize = 0;
2037 targ = TYPE_LENGTH (type) - 1;
2038 break;
2039 }
2040 }
2041 else
2042 {
2043 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2044
2045 src = targ = 0;
2046 unusedLS = bit_offset;
2047 accumSize = 0;
2048
2049 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2050 sign = ~0;
2051 }
2052
2053 accum = 0;
2054 while (nsrc > 0)
2055 {
2056 /* Mask for removing bits of the next source byte that are not
2057 part of the value. */
2058 unsigned int unusedMSMask =
2059 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2060 1;
2061 /* Sign-extend bits for this byte. */
2062 unsigned int signMask = sign & ~unusedMSMask;
2063 accum |=
2064 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2065 accumSize += HOST_CHAR_BIT - unusedLS;
2066 if (accumSize >= HOST_CHAR_BIT)
2067 {
2068 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2069 accumSize -= HOST_CHAR_BIT;
2070 accum >>= HOST_CHAR_BIT;
2071 ntarg -= 1;
2072 targ += delta;
2073 }
2074 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2075 unusedLS = 0;
2076 nsrc -= 1;
2077 src += delta;
2078 }
2079 while (ntarg > 0)
2080 {
2081 accum |= sign << accumSize;
2082 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2083 accumSize -= HOST_CHAR_BIT;
2084 accum >>= HOST_CHAR_BIT;
2085 ntarg -= 1;
2086 targ += delta;
2087 }
2088
2089 return v;
2090 }
2091
2092 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2093 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2094 not overlap. */
2095 static void
2096 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2097 int src_offset, int n)
2098 {
2099 unsigned int accum, mask;
2100 int accum_bits, chunk_size;
2101
2102 target += targ_offset / HOST_CHAR_BIT;
2103 targ_offset %= HOST_CHAR_BIT;
2104 source += src_offset / HOST_CHAR_BIT;
2105 src_offset %= HOST_CHAR_BIT;
2106 if (gdbarch_bits_big_endian (current_gdbarch))
2107 {
2108 accum = (unsigned char) *source;
2109 source += 1;
2110 accum_bits = HOST_CHAR_BIT - src_offset;
2111
2112 while (n > 0)
2113 {
2114 int unused_right;
2115 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2116 accum_bits += HOST_CHAR_BIT;
2117 source += 1;
2118 chunk_size = HOST_CHAR_BIT - targ_offset;
2119 if (chunk_size > n)
2120 chunk_size = n;
2121 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2122 mask = ((1 << chunk_size) - 1) << unused_right;
2123 *target =
2124 (*target & ~mask)
2125 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2126 n -= chunk_size;
2127 accum_bits -= chunk_size;
2128 target += 1;
2129 targ_offset = 0;
2130 }
2131 }
2132 else
2133 {
2134 accum = (unsigned char) *source >> src_offset;
2135 source += 1;
2136 accum_bits = HOST_CHAR_BIT - src_offset;
2137
2138 while (n > 0)
2139 {
2140 accum = accum + ((unsigned char) *source << accum_bits);
2141 accum_bits += HOST_CHAR_BIT;
2142 source += 1;
2143 chunk_size = HOST_CHAR_BIT - targ_offset;
2144 if (chunk_size > n)
2145 chunk_size = n;
2146 mask = ((1 << chunk_size) - 1) << targ_offset;
2147 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2148 n -= chunk_size;
2149 accum_bits -= chunk_size;
2150 accum >>= chunk_size;
2151 target += 1;
2152 targ_offset = 0;
2153 }
2154 }
2155 }
2156
2157 /* Store the contents of FROMVAL into the location of TOVAL.
2158 Return a new value with the location of TOVAL and contents of
2159 FROMVAL. Handles assignment into packed fields that have
2160 floating-point or non-scalar types. */
2161
2162 static struct value *
2163 ada_value_assign (struct value *toval, struct value *fromval)
2164 {
2165 struct type *type = value_type (toval);
2166 int bits = value_bitsize (toval);
2167
2168 toval = ada_coerce_ref (toval);
2169 fromval = ada_coerce_ref (fromval);
2170
2171 if (ada_is_direct_array_type (value_type (toval)))
2172 toval = ada_coerce_to_simple_array (toval);
2173 if (ada_is_direct_array_type (value_type (fromval)))
2174 fromval = ada_coerce_to_simple_array (fromval);
2175
2176 if (!deprecated_value_modifiable (toval))
2177 error (_("Left operand of assignment is not a modifiable lvalue."));
2178
2179 if (VALUE_LVAL (toval) == lval_memory
2180 && bits > 0
2181 && (TYPE_CODE (type) == TYPE_CODE_FLT
2182 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2183 {
2184 int len = (value_bitpos (toval)
2185 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2186 int from_size;
2187 char *buffer = (char *) alloca (len);
2188 struct value *val;
2189 CORE_ADDR to_addr = value_address (toval);
2190
2191 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2192 fromval = value_cast (type, fromval);
2193
2194 read_memory (to_addr, buffer, len);
2195 from_size = value_bitsize (fromval);
2196 if (from_size == 0)
2197 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2198 if (gdbarch_bits_big_endian (current_gdbarch))
2199 move_bits (buffer, value_bitpos (toval),
2200 value_contents (fromval), from_size - bits, bits);
2201 else
2202 move_bits (buffer, value_bitpos (toval), value_contents (fromval),
2203 0, bits);
2204 write_memory (to_addr, buffer, len);
2205 if (deprecated_memory_changed_hook)
2206 deprecated_memory_changed_hook (to_addr, len);
2207
2208 val = value_copy (toval);
2209 memcpy (value_contents_raw (val), value_contents (fromval),
2210 TYPE_LENGTH (type));
2211 deprecated_set_value_type (val, type);
2212
2213 return val;
2214 }
2215
2216 return value_assign (toval, fromval);
2217 }
2218
2219
2220 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2221 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2222 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2223 * COMPONENT, and not the inferior's memory. The current contents
2224 * of COMPONENT are ignored. */
2225 static void
2226 value_assign_to_component (struct value *container, struct value *component,
2227 struct value *val)
2228 {
2229 LONGEST offset_in_container =
2230 (LONGEST) (value_address (component) - value_address (container));
2231 int bit_offset_in_container =
2232 value_bitpos (component) - value_bitpos (container);
2233 int bits;
2234
2235 val = value_cast (value_type (component), val);
2236
2237 if (value_bitsize (component) == 0)
2238 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2239 else
2240 bits = value_bitsize (component);
2241
2242 if (gdbarch_bits_big_endian (current_gdbarch))
2243 move_bits (value_contents_writeable (container) + offset_in_container,
2244 value_bitpos (container) + bit_offset_in_container,
2245 value_contents (val),
2246 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2247 bits);
2248 else
2249 move_bits (value_contents_writeable (container) + offset_in_container,
2250 value_bitpos (container) + bit_offset_in_container,
2251 value_contents (val), 0, bits);
2252 }
2253
2254 /* The value of the element of array ARR at the ARITY indices given in IND.
2255 ARR may be either a simple array, GNAT array descriptor, or pointer
2256 thereto. */
2257
2258 struct value *
2259 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2260 {
2261 int k;
2262 struct value *elt;
2263 struct type *elt_type;
2264
2265 elt = ada_coerce_to_simple_array (arr);
2266
2267 elt_type = ada_check_typedef (value_type (elt));
2268 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2269 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2270 return value_subscript_packed (elt, arity, ind);
2271
2272 for (k = 0; k < arity; k += 1)
2273 {
2274 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2275 error (_("too many subscripts (%d expected)"), k);
2276 elt = value_subscript (elt, pos_atr (ind[k]));
2277 }
2278 return elt;
2279 }
2280
2281 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2282 value of the element of *ARR at the ARITY indices given in
2283 IND. Does not read the entire array into memory. */
2284
2285 static struct value *
2286 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2287 struct value **ind)
2288 {
2289 int k;
2290
2291 for (k = 0; k < arity; k += 1)
2292 {
2293 LONGEST lwb, upb;
2294
2295 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2296 error (_("too many subscripts (%d expected)"), k);
2297 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2298 value_copy (arr));
2299 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2300 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2301 type = TYPE_TARGET_TYPE (type);
2302 }
2303
2304 return value_ind (arr);
2305 }
2306
2307 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2308 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2309 elements starting at index LOW. The lower bound of this array is LOW, as
2310 per Ada rules. */
2311 static struct value *
2312 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2313 int low, int high)
2314 {
2315 CORE_ADDR base = value_as_address (array_ptr)
2316 + ((low - TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)))
2317 * TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
2318 struct type *index_type =
2319 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
2320 low, high);
2321 struct type *slice_type =
2322 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2323 return value_at_lazy (slice_type, base);
2324 }
2325
2326
2327 static struct value *
2328 ada_value_slice (struct value *array, int low, int high)
2329 {
2330 struct type *type = value_type (array);
2331 struct type *index_type =
2332 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2333 struct type *slice_type =
2334 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2335 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2336 }
2337
2338 /* If type is a record type in the form of a standard GNAT array
2339 descriptor, returns the number of dimensions for type. If arr is a
2340 simple array, returns the number of "array of"s that prefix its
2341 type designation. Otherwise, returns 0. */
2342
2343 int
2344 ada_array_arity (struct type *type)
2345 {
2346 int arity;
2347
2348 if (type == NULL)
2349 return 0;
2350
2351 type = desc_base_type (type);
2352
2353 arity = 0;
2354 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2355 return desc_arity (desc_bounds_type (type));
2356 else
2357 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2358 {
2359 arity += 1;
2360 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2361 }
2362
2363 return arity;
2364 }
2365
2366 /* If TYPE is a record type in the form of a standard GNAT array
2367 descriptor or a simple array type, returns the element type for
2368 TYPE after indexing by NINDICES indices, or by all indices if
2369 NINDICES is -1. Otherwise, returns NULL. */
2370
2371 struct type *
2372 ada_array_element_type (struct type *type, int nindices)
2373 {
2374 type = desc_base_type (type);
2375
2376 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2377 {
2378 int k;
2379 struct type *p_array_type;
2380
2381 p_array_type = desc_data_target_type (type);
2382
2383 k = ada_array_arity (type);
2384 if (k == 0)
2385 return NULL;
2386
2387 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2388 if (nindices >= 0 && k > nindices)
2389 k = nindices;
2390 while (k > 0 && p_array_type != NULL)
2391 {
2392 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2393 k -= 1;
2394 }
2395 return p_array_type;
2396 }
2397 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2398 {
2399 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2400 {
2401 type = TYPE_TARGET_TYPE (type);
2402 nindices -= 1;
2403 }
2404 return type;
2405 }
2406
2407 return NULL;
2408 }
2409
2410 /* The type of nth index in arrays of given type (n numbering from 1).
2411 Does not examine memory. */
2412
2413 static struct type *
2414 ada_index_type (struct type *type, int n, const char *name)
2415 {
2416 struct type *result_type;
2417
2418 type = desc_base_type (type);
2419
2420 if (n < 0 || n > ada_array_arity (type))
2421 error (_("invalid dimension number to '%s"), name);
2422
2423 if (ada_is_simple_array_type (type))
2424 {
2425 int i;
2426
2427 for (i = 1; i < n; i += 1)
2428 type = TYPE_TARGET_TYPE (type);
2429 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2430 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2431 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2432 perhaps stabsread.c would make more sense. */
2433 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2434 result_type = NULL;
2435 }
2436 else
2437 {
2438 result_type = desc_index_type (desc_bounds_type (type), n);
2439 if (result_type == NULL)
2440 error (_("attempt to take bound of something that is not an array"));
2441 }
2442
2443 return result_type;
2444 }
2445
2446 /* Given that arr is an array type, returns the lower bound of the
2447 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2448 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2449 array-descriptor type. It works for other arrays with bounds supplied
2450 by run-time quantities other than discriminants. */
2451
2452 static LONGEST
2453 ada_array_bound_from_type (struct type * arr_type, int n, int which)
2454 {
2455 struct type *type, *index_type_desc, *index_type;
2456 LONGEST retval;
2457
2458 gdb_assert (which == 0 || which == 1);
2459
2460 if (ada_is_packed_array_type (arr_type))
2461 arr_type = decode_packed_array_type (arr_type);
2462
2463 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2464 return (LONGEST) - which;
2465
2466 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2467 type = TYPE_TARGET_TYPE (arr_type);
2468 else
2469 type = arr_type;
2470
2471 index_type_desc = ada_find_parallel_type (type, "___XA");
2472 if (index_type_desc != NULL)
2473 index_type = to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, n - 1),
2474 NULL, TYPE_OBJFILE (arr_type));
2475 else
2476 {
2477 while (n > 1)
2478 {
2479 type = TYPE_TARGET_TYPE (type);
2480 n -= 1;
2481 }
2482
2483 index_type = TYPE_INDEX_TYPE (type);
2484 }
2485
2486 switch (TYPE_CODE (index_type))
2487 {
2488 case TYPE_CODE_RANGE:
2489 retval = which == 0 ? TYPE_LOW_BOUND (index_type)
2490 : TYPE_HIGH_BOUND (index_type);
2491 break;
2492 case TYPE_CODE_ENUM:
2493 retval = which == 0 ? TYPE_FIELD_BITPOS (index_type, 0)
2494 : TYPE_FIELD_BITPOS (index_type,
2495 TYPE_NFIELDS (index_type) - 1);
2496 break;
2497 default:
2498 internal_error (__FILE__, __LINE__, _("invalid type code of index type"));
2499 }
2500
2501 return retval;
2502 }
2503
2504 /* Given that arr is an array value, returns the lower bound of the
2505 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2506 WHICH is 1. This routine will also work for arrays with bounds
2507 supplied by run-time quantities other than discriminants. */
2508
2509 static LONGEST
2510 ada_array_bound (struct value *arr, int n, int which)
2511 {
2512 struct type *arr_type = value_type (arr);
2513
2514 if (ada_is_packed_array_type (arr_type))
2515 return ada_array_bound (decode_packed_array (arr), n, which);
2516 else if (ada_is_simple_array_type (arr_type))
2517 return ada_array_bound_from_type (arr_type, n, which);
2518 else
2519 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2520 }
2521
2522 /* Given that arr is an array value, returns the length of the
2523 nth index. This routine will also work for arrays with bounds
2524 supplied by run-time quantities other than discriminants.
2525 Does not work for arrays indexed by enumeration types with representation
2526 clauses at the moment. */
2527
2528 static LONGEST
2529 ada_array_length (struct value *arr, int n)
2530 {
2531 struct type *arr_type = ada_check_typedef (value_type (arr));
2532
2533 if (ada_is_packed_array_type (arr_type))
2534 return ada_array_length (decode_packed_array (arr), n);
2535
2536 if (ada_is_simple_array_type (arr_type))
2537 return (ada_array_bound_from_type (arr_type, n, 1)
2538 - ada_array_bound_from_type (arr_type, n, 0) + 1);
2539 else
2540 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2541 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
2542 }
2543
2544 /* An empty array whose type is that of ARR_TYPE (an array type),
2545 with bounds LOW to LOW-1. */
2546
2547 static struct value *
2548 empty_array (struct type *arr_type, int low)
2549 {
2550 struct type *index_type =
2551 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
2552 low, low - 1);
2553 struct type *elt_type = ada_array_element_type (arr_type, 1);
2554 return allocate_value (create_array_type (NULL, elt_type, index_type));
2555 }
2556 \f
2557
2558 /* Name resolution */
2559
2560 /* The "decoded" name for the user-definable Ada operator corresponding
2561 to OP. */
2562
2563 static const char *
2564 ada_decoded_op_name (enum exp_opcode op)
2565 {
2566 int i;
2567
2568 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2569 {
2570 if (ada_opname_table[i].op == op)
2571 return ada_opname_table[i].decoded;
2572 }
2573 error (_("Could not find operator name for opcode"));
2574 }
2575
2576
2577 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2578 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2579 undefined namespace) and converts operators that are
2580 user-defined into appropriate function calls. If CONTEXT_TYPE is
2581 non-null, it provides a preferred result type [at the moment, only
2582 type void has any effect---causing procedures to be preferred over
2583 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2584 return type is preferred. May change (expand) *EXP. */
2585
2586 static void
2587 resolve (struct expression **expp, int void_context_p)
2588 {
2589 int pc;
2590 pc = 0;
2591 resolve_subexp (expp, &pc, 1, void_context_p ? builtin_type_void : NULL);
2592 }
2593
2594 /* Resolve the operator of the subexpression beginning at
2595 position *POS of *EXPP. "Resolving" consists of replacing
2596 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2597 with their resolutions, replacing built-in operators with
2598 function calls to user-defined operators, where appropriate, and,
2599 when DEPROCEDURE_P is non-zero, converting function-valued variables
2600 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2601 are as in ada_resolve, above. */
2602
2603 static struct value *
2604 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2605 struct type *context_type)
2606 {
2607 int pc = *pos;
2608 int i;
2609 struct expression *exp; /* Convenience: == *expp. */
2610 enum exp_opcode op = (*expp)->elts[pc].opcode;
2611 struct value **argvec; /* Vector of operand types (alloca'ed). */
2612 int nargs; /* Number of operands. */
2613 int oplen;
2614
2615 argvec = NULL;
2616 nargs = 0;
2617 exp = *expp;
2618
2619 /* Pass one: resolve operands, saving their types and updating *pos,
2620 if needed. */
2621 switch (op)
2622 {
2623 case OP_FUNCALL:
2624 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2625 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2626 *pos += 7;
2627 else
2628 {
2629 *pos += 3;
2630 resolve_subexp (expp, pos, 0, NULL);
2631 }
2632 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2633 break;
2634
2635 case UNOP_ADDR:
2636 *pos += 1;
2637 resolve_subexp (expp, pos, 0, NULL);
2638 break;
2639
2640 case UNOP_QUAL:
2641 *pos += 3;
2642 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
2643 break;
2644
2645 case OP_ATR_MODULUS:
2646 case OP_ATR_SIZE:
2647 case OP_ATR_TAG:
2648 case OP_ATR_FIRST:
2649 case OP_ATR_LAST:
2650 case OP_ATR_LENGTH:
2651 case OP_ATR_POS:
2652 case OP_ATR_VAL:
2653 case OP_ATR_MIN:
2654 case OP_ATR_MAX:
2655 case TERNOP_IN_RANGE:
2656 case BINOP_IN_BOUNDS:
2657 case UNOP_IN_RANGE:
2658 case OP_AGGREGATE:
2659 case OP_OTHERS:
2660 case OP_CHOICES:
2661 case OP_POSITIONAL:
2662 case OP_DISCRETE_RANGE:
2663 case OP_NAME:
2664 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2665 *pos += oplen;
2666 break;
2667
2668 case BINOP_ASSIGN:
2669 {
2670 struct value *arg1;
2671
2672 *pos += 1;
2673 arg1 = resolve_subexp (expp, pos, 0, NULL);
2674 if (arg1 == NULL)
2675 resolve_subexp (expp, pos, 1, NULL);
2676 else
2677 resolve_subexp (expp, pos, 1, value_type (arg1));
2678 break;
2679 }
2680
2681 case UNOP_CAST:
2682 *pos += 3;
2683 nargs = 1;
2684 break;
2685
2686 case BINOP_ADD:
2687 case BINOP_SUB:
2688 case BINOP_MUL:
2689 case BINOP_DIV:
2690 case BINOP_REM:
2691 case BINOP_MOD:
2692 case BINOP_EXP:
2693 case BINOP_CONCAT:
2694 case BINOP_LOGICAL_AND:
2695 case BINOP_LOGICAL_OR:
2696 case BINOP_BITWISE_AND:
2697 case BINOP_BITWISE_IOR:
2698 case BINOP_BITWISE_XOR:
2699
2700 case BINOP_EQUAL:
2701 case BINOP_NOTEQUAL:
2702 case BINOP_LESS:
2703 case BINOP_GTR:
2704 case BINOP_LEQ:
2705 case BINOP_GEQ:
2706
2707 case BINOP_REPEAT:
2708 case BINOP_SUBSCRIPT:
2709 case BINOP_COMMA:
2710 *pos += 1;
2711 nargs = 2;
2712 break;
2713
2714 case UNOP_NEG:
2715 case UNOP_PLUS:
2716 case UNOP_LOGICAL_NOT:
2717 case UNOP_ABS:
2718 case UNOP_IND:
2719 *pos += 1;
2720 nargs = 1;
2721 break;
2722
2723 case OP_LONG:
2724 case OP_DOUBLE:
2725 case OP_VAR_VALUE:
2726 *pos += 4;
2727 break;
2728
2729 case OP_TYPE:
2730 case OP_BOOL:
2731 case OP_LAST:
2732 case OP_INTERNALVAR:
2733 *pos += 3;
2734 break;
2735
2736 case UNOP_MEMVAL:
2737 *pos += 3;
2738 nargs = 1;
2739 break;
2740
2741 case OP_REGISTER:
2742 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2743 break;
2744
2745 case STRUCTOP_STRUCT:
2746 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2747 nargs = 1;
2748 break;
2749
2750 case TERNOP_SLICE:
2751 *pos += 1;
2752 nargs = 3;
2753 break;
2754
2755 case OP_STRING:
2756 break;
2757
2758 default:
2759 error (_("Unexpected operator during name resolution"));
2760 }
2761
2762 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
2763 for (i = 0; i < nargs; i += 1)
2764 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
2765 argvec[i] = NULL;
2766 exp = *expp;
2767
2768 /* Pass two: perform any resolution on principal operator. */
2769 switch (op)
2770 {
2771 default:
2772 break;
2773
2774 case OP_VAR_VALUE:
2775 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
2776 {
2777 struct ada_symbol_info *candidates;
2778 int n_candidates;
2779
2780 n_candidates =
2781 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2782 (exp->elts[pc + 2].symbol),
2783 exp->elts[pc + 1].block, VAR_DOMAIN,
2784 &candidates);
2785
2786 if (n_candidates > 1)
2787 {
2788 /* Types tend to get re-introduced locally, so if there
2789 are any local symbols that are not types, first filter
2790 out all types. */
2791 int j;
2792 for (j = 0; j < n_candidates; j += 1)
2793 switch (SYMBOL_CLASS (candidates[j].sym))
2794 {
2795 case LOC_REGISTER:
2796 case LOC_ARG:
2797 case LOC_REF_ARG:
2798 case LOC_REGPARM_ADDR:
2799 case LOC_LOCAL:
2800 case LOC_COMPUTED:
2801 goto FoundNonType;
2802 default:
2803 break;
2804 }
2805 FoundNonType:
2806 if (j < n_candidates)
2807 {
2808 j = 0;
2809 while (j < n_candidates)
2810 {
2811 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
2812 {
2813 candidates[j] = candidates[n_candidates - 1];
2814 n_candidates -= 1;
2815 }
2816 else
2817 j += 1;
2818 }
2819 }
2820 }
2821
2822 if (n_candidates == 0)
2823 error (_("No definition found for %s"),
2824 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2825 else if (n_candidates == 1)
2826 i = 0;
2827 else if (deprocedure_p
2828 && !is_nonfunction (candidates, n_candidates))
2829 {
2830 i = ada_resolve_function
2831 (candidates, n_candidates, NULL, 0,
2832 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
2833 context_type);
2834 if (i < 0)
2835 error (_("Could not find a match for %s"),
2836 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2837 }
2838 else
2839 {
2840 printf_filtered (_("Multiple matches for %s\n"),
2841 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2842 user_select_syms (candidates, n_candidates, 1);
2843 i = 0;
2844 }
2845
2846 exp->elts[pc + 1].block = candidates[i].block;
2847 exp->elts[pc + 2].symbol = candidates[i].sym;
2848 if (innermost_block == NULL
2849 || contained_in (candidates[i].block, innermost_block))
2850 innermost_block = candidates[i].block;
2851 }
2852
2853 if (deprocedure_p
2854 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
2855 == TYPE_CODE_FUNC))
2856 {
2857 replace_operator_with_call (expp, pc, 0, 0,
2858 exp->elts[pc + 2].symbol,
2859 exp->elts[pc + 1].block);
2860 exp = *expp;
2861 }
2862 break;
2863
2864 case OP_FUNCALL:
2865 {
2866 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2867 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2868 {
2869 struct ada_symbol_info *candidates;
2870 int n_candidates;
2871
2872 n_candidates =
2873 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2874 (exp->elts[pc + 5].symbol),
2875 exp->elts[pc + 4].block, VAR_DOMAIN,
2876 &candidates);
2877 if (n_candidates == 1)
2878 i = 0;
2879 else
2880 {
2881 i = ada_resolve_function
2882 (candidates, n_candidates,
2883 argvec, nargs,
2884 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
2885 context_type);
2886 if (i < 0)
2887 error (_("Could not find a match for %s"),
2888 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
2889 }
2890
2891 exp->elts[pc + 4].block = candidates[i].block;
2892 exp->elts[pc + 5].symbol = candidates[i].sym;
2893 if (innermost_block == NULL
2894 || contained_in (candidates[i].block, innermost_block))
2895 innermost_block = candidates[i].block;
2896 }
2897 }
2898 break;
2899 case BINOP_ADD:
2900 case BINOP_SUB:
2901 case BINOP_MUL:
2902 case BINOP_DIV:
2903 case BINOP_REM:
2904 case BINOP_MOD:
2905 case BINOP_CONCAT:
2906 case BINOP_BITWISE_AND:
2907 case BINOP_BITWISE_IOR:
2908 case BINOP_BITWISE_XOR:
2909 case BINOP_EQUAL:
2910 case BINOP_NOTEQUAL:
2911 case BINOP_LESS:
2912 case BINOP_GTR:
2913 case BINOP_LEQ:
2914 case BINOP_GEQ:
2915 case BINOP_EXP:
2916 case UNOP_NEG:
2917 case UNOP_PLUS:
2918 case UNOP_LOGICAL_NOT:
2919 case UNOP_ABS:
2920 if (possible_user_operator_p (op, argvec))
2921 {
2922 struct ada_symbol_info *candidates;
2923 int n_candidates;
2924
2925 n_candidates =
2926 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
2927 (struct block *) NULL, VAR_DOMAIN,
2928 &candidates);
2929 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
2930 ada_decoded_op_name (op), NULL);
2931 if (i < 0)
2932 break;
2933
2934 replace_operator_with_call (expp, pc, nargs, 1,
2935 candidates[i].sym, candidates[i].block);
2936 exp = *expp;
2937 }
2938 break;
2939
2940 case OP_TYPE:
2941 case OP_REGISTER:
2942 return NULL;
2943 }
2944
2945 *pos = pc;
2946 return evaluate_subexp_type (exp, pos);
2947 }
2948
2949 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
2950 MAY_DEREF is non-zero, the formal may be a pointer and the actual
2951 a non-pointer. A type of 'void' (which is never a valid expression type)
2952 by convention matches anything. */
2953 /* The term "match" here is rather loose. The match is heuristic and
2954 liberal. FIXME: TOO liberal, in fact. */
2955
2956 static int
2957 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
2958 {
2959 ftype = ada_check_typedef (ftype);
2960 atype = ada_check_typedef (atype);
2961
2962 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
2963 ftype = TYPE_TARGET_TYPE (ftype);
2964 if (TYPE_CODE (atype) == TYPE_CODE_REF)
2965 atype = TYPE_TARGET_TYPE (atype);
2966
2967 if (TYPE_CODE (ftype) == TYPE_CODE_VOID
2968 || TYPE_CODE (atype) == TYPE_CODE_VOID)
2969 return 1;
2970
2971 switch (TYPE_CODE (ftype))
2972 {
2973 default:
2974 return 1;
2975 case TYPE_CODE_PTR:
2976 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
2977 return ada_type_match (TYPE_TARGET_TYPE (ftype),
2978 TYPE_TARGET_TYPE (atype), 0);
2979 else
2980 return (may_deref
2981 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
2982 case TYPE_CODE_INT:
2983 case TYPE_CODE_ENUM:
2984 case TYPE_CODE_RANGE:
2985 switch (TYPE_CODE (atype))
2986 {
2987 case TYPE_CODE_INT:
2988 case TYPE_CODE_ENUM:
2989 case TYPE_CODE_RANGE:
2990 return 1;
2991 default:
2992 return 0;
2993 }
2994
2995 case TYPE_CODE_ARRAY:
2996 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
2997 || ada_is_array_descriptor_type (atype));
2998
2999 case TYPE_CODE_STRUCT:
3000 if (ada_is_array_descriptor_type (ftype))
3001 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3002 || ada_is_array_descriptor_type (atype));
3003 else
3004 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3005 && !ada_is_array_descriptor_type (atype));
3006
3007 case TYPE_CODE_UNION:
3008 case TYPE_CODE_FLT:
3009 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3010 }
3011 }
3012
3013 /* Return non-zero if the formals of FUNC "sufficiently match" the
3014 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3015 may also be an enumeral, in which case it is treated as a 0-
3016 argument function. */
3017
3018 static int
3019 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3020 {
3021 int i;
3022 struct type *func_type = SYMBOL_TYPE (func);
3023
3024 if (SYMBOL_CLASS (func) == LOC_CONST
3025 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3026 return (n_actuals == 0);
3027 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3028 return 0;
3029
3030 if (TYPE_NFIELDS (func_type) != n_actuals)
3031 return 0;
3032
3033 for (i = 0; i < n_actuals; i += 1)
3034 {
3035 if (actuals[i] == NULL)
3036 return 0;
3037 else
3038 {
3039 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, i));
3040 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3041
3042 if (!ada_type_match (ftype, atype, 1))
3043 return 0;
3044 }
3045 }
3046 return 1;
3047 }
3048
3049 /* False iff function type FUNC_TYPE definitely does not produce a value
3050 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3051 FUNC_TYPE is not a valid function type with a non-null return type
3052 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3053
3054 static int
3055 return_match (struct type *func_type, struct type *context_type)
3056 {
3057 struct type *return_type;
3058
3059 if (func_type == NULL)
3060 return 1;
3061
3062 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3063 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3064 else
3065 return_type = base_type (func_type);
3066 if (return_type == NULL)
3067 return 1;
3068
3069 context_type = base_type (context_type);
3070
3071 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3072 return context_type == NULL || return_type == context_type;
3073 else if (context_type == NULL)
3074 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3075 else
3076 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3077 }
3078
3079
3080 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3081 function (if any) that matches the types of the NARGS arguments in
3082 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3083 that returns that type, then eliminate matches that don't. If
3084 CONTEXT_TYPE is void and there is at least one match that does not
3085 return void, eliminate all matches that do.
3086
3087 Asks the user if there is more than one match remaining. Returns -1
3088 if there is no such symbol or none is selected. NAME is used
3089 solely for messages. May re-arrange and modify SYMS in
3090 the process; the index returned is for the modified vector. */
3091
3092 static int
3093 ada_resolve_function (struct ada_symbol_info syms[],
3094 int nsyms, struct value **args, int nargs,
3095 const char *name, struct type *context_type)
3096 {
3097 int k;
3098 int m; /* Number of hits */
3099 struct type *fallback;
3100 struct type *return_type;
3101
3102 return_type = context_type;
3103 if (context_type == NULL)
3104 fallback = builtin_type_void;
3105 else
3106 fallback = NULL;
3107
3108 m = 0;
3109 while (1)
3110 {
3111 for (k = 0; k < nsyms; k += 1)
3112 {
3113 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3114
3115 if (ada_args_match (syms[k].sym, args, nargs)
3116 && return_match (type, return_type))
3117 {
3118 syms[m] = syms[k];
3119 m += 1;
3120 }
3121 }
3122 if (m > 0 || return_type == fallback)
3123 break;
3124 else
3125 return_type = fallback;
3126 }
3127
3128 if (m == 0)
3129 return -1;
3130 else if (m > 1)
3131 {
3132 printf_filtered (_("Multiple matches for %s\n"), name);
3133 user_select_syms (syms, m, 1);
3134 return 0;
3135 }
3136 return 0;
3137 }
3138
3139 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3140 in a listing of choices during disambiguation (see sort_choices, below).
3141 The idea is that overloadings of a subprogram name from the
3142 same package should sort in their source order. We settle for ordering
3143 such symbols by their trailing number (__N or $N). */
3144
3145 static int
3146 encoded_ordered_before (char *N0, char *N1)
3147 {
3148 if (N1 == NULL)
3149 return 0;
3150 else if (N0 == NULL)
3151 return 1;
3152 else
3153 {
3154 int k0, k1;
3155 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3156 ;
3157 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3158 ;
3159 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3160 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3161 {
3162 int n0, n1;
3163 n0 = k0;
3164 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3165 n0 -= 1;
3166 n1 = k1;
3167 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3168 n1 -= 1;
3169 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3170 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3171 }
3172 return (strcmp (N0, N1) < 0);
3173 }
3174 }
3175
3176 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3177 encoded names. */
3178
3179 static void
3180 sort_choices (struct ada_symbol_info syms[], int nsyms)
3181 {
3182 int i;
3183 for (i = 1; i < nsyms; i += 1)
3184 {
3185 struct ada_symbol_info sym = syms[i];
3186 int j;
3187
3188 for (j = i - 1; j >= 0; j -= 1)
3189 {
3190 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3191 SYMBOL_LINKAGE_NAME (sym.sym)))
3192 break;
3193 syms[j + 1] = syms[j];
3194 }
3195 syms[j + 1] = sym;
3196 }
3197 }
3198
3199 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3200 by asking the user (if necessary), returning the number selected,
3201 and setting the first elements of SYMS items. Error if no symbols
3202 selected. */
3203
3204 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3205 to be re-integrated one of these days. */
3206
3207 int
3208 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3209 {
3210 int i;
3211 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3212 int n_chosen;
3213 int first_choice = (max_results == 1) ? 1 : 2;
3214 const char *select_mode = multiple_symbols_select_mode ();
3215
3216 if (max_results < 1)
3217 error (_("Request to select 0 symbols!"));
3218 if (nsyms <= 1)
3219 return nsyms;
3220
3221 if (select_mode == multiple_symbols_cancel)
3222 error (_("\
3223 canceled because the command is ambiguous\n\
3224 See set/show multiple-symbol."));
3225
3226 /* If select_mode is "all", then return all possible symbols.
3227 Only do that if more than one symbol can be selected, of course.
3228 Otherwise, display the menu as usual. */
3229 if (select_mode == multiple_symbols_all && max_results > 1)
3230 return nsyms;
3231
3232 printf_unfiltered (_("[0] cancel\n"));
3233 if (max_results > 1)
3234 printf_unfiltered (_("[1] all\n"));
3235
3236 sort_choices (syms, nsyms);
3237
3238 for (i = 0; i < nsyms; i += 1)
3239 {
3240 if (syms[i].sym == NULL)
3241 continue;
3242
3243 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3244 {
3245 struct symtab_and_line sal =
3246 find_function_start_sal (syms[i].sym, 1);
3247 if (sal.symtab == NULL)
3248 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3249 i + first_choice,
3250 SYMBOL_PRINT_NAME (syms[i].sym),
3251 sal.line);
3252 else
3253 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3254 SYMBOL_PRINT_NAME (syms[i].sym),
3255 sal.symtab->filename, sal.line);
3256 continue;
3257 }
3258 else
3259 {
3260 int is_enumeral =
3261 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3262 && SYMBOL_TYPE (syms[i].sym) != NULL
3263 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3264 struct symtab *symtab = syms[i].sym->symtab;
3265
3266 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3267 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3268 i + first_choice,
3269 SYMBOL_PRINT_NAME (syms[i].sym),
3270 symtab->filename, SYMBOL_LINE (syms[i].sym));
3271 else if (is_enumeral
3272 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3273 {
3274 printf_unfiltered (("[%d] "), i + first_choice);
3275 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3276 gdb_stdout, -1, 0);
3277 printf_unfiltered (_("'(%s) (enumeral)\n"),
3278 SYMBOL_PRINT_NAME (syms[i].sym));
3279 }
3280 else if (symtab != NULL)
3281 printf_unfiltered (is_enumeral
3282 ? _("[%d] %s in %s (enumeral)\n")
3283 : _("[%d] %s at %s:?\n"),
3284 i + first_choice,
3285 SYMBOL_PRINT_NAME (syms[i].sym),
3286 symtab->filename);
3287 else
3288 printf_unfiltered (is_enumeral
3289 ? _("[%d] %s (enumeral)\n")
3290 : _("[%d] %s at ?\n"),
3291 i + first_choice,
3292 SYMBOL_PRINT_NAME (syms[i].sym));
3293 }
3294 }
3295
3296 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3297 "overload-choice");
3298
3299 for (i = 0; i < n_chosen; i += 1)
3300 syms[i] = syms[chosen[i]];
3301
3302 return n_chosen;
3303 }
3304
3305 /* Read and validate a set of numeric choices from the user in the
3306 range 0 .. N_CHOICES-1. Place the results in increasing
3307 order in CHOICES[0 .. N-1], and return N.
3308
3309 The user types choices as a sequence of numbers on one line
3310 separated by blanks, encoding them as follows:
3311
3312 + A choice of 0 means to cancel the selection, throwing an error.
3313 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3314 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3315
3316 The user is not allowed to choose more than MAX_RESULTS values.
3317
3318 ANNOTATION_SUFFIX, if present, is used to annotate the input
3319 prompts (for use with the -f switch). */
3320
3321 int
3322 get_selections (int *choices, int n_choices, int max_results,
3323 int is_all_choice, char *annotation_suffix)
3324 {
3325 char *args;
3326 char *prompt;
3327 int n_chosen;
3328 int first_choice = is_all_choice ? 2 : 1;
3329
3330 prompt = getenv ("PS2");
3331 if (prompt == NULL)
3332 prompt = "> ";
3333
3334 args = command_line_input (prompt, 0, annotation_suffix);
3335
3336 if (args == NULL)
3337 error_no_arg (_("one or more choice numbers"));
3338
3339 n_chosen = 0;
3340
3341 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3342 order, as given in args. Choices are validated. */
3343 while (1)
3344 {
3345 char *args2;
3346 int choice, j;
3347
3348 while (isspace (*args))
3349 args += 1;
3350 if (*args == '\0' && n_chosen == 0)
3351 error_no_arg (_("one or more choice numbers"));
3352 else if (*args == '\0')
3353 break;
3354
3355 choice = strtol (args, &args2, 10);
3356 if (args == args2 || choice < 0
3357 || choice > n_choices + first_choice - 1)
3358 error (_("Argument must be choice number"));
3359 args = args2;
3360
3361 if (choice == 0)
3362 error (_("cancelled"));
3363
3364 if (choice < first_choice)
3365 {
3366 n_chosen = n_choices;
3367 for (j = 0; j < n_choices; j += 1)
3368 choices[j] = j;
3369 break;
3370 }
3371 choice -= first_choice;
3372
3373 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3374 {
3375 }
3376
3377 if (j < 0 || choice != choices[j])
3378 {
3379 int k;
3380 for (k = n_chosen - 1; k > j; k -= 1)
3381 choices[k + 1] = choices[k];
3382 choices[j + 1] = choice;
3383 n_chosen += 1;
3384 }
3385 }
3386
3387 if (n_chosen > max_results)
3388 error (_("Select no more than %d of the above"), max_results);
3389
3390 return n_chosen;
3391 }
3392
3393 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3394 on the function identified by SYM and BLOCK, and taking NARGS
3395 arguments. Update *EXPP as needed to hold more space. */
3396
3397 static void
3398 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3399 int oplen, struct symbol *sym,
3400 struct block *block)
3401 {
3402 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3403 symbol, -oplen for operator being replaced). */
3404 struct expression *newexp = (struct expression *)
3405 xmalloc (sizeof (struct expression)
3406 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3407 struct expression *exp = *expp;
3408
3409 newexp->nelts = exp->nelts + 7 - oplen;
3410 newexp->language_defn = exp->language_defn;
3411 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3412 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3413 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3414
3415 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3416 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3417
3418 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3419 newexp->elts[pc + 4].block = block;
3420 newexp->elts[pc + 5].symbol = sym;
3421
3422 *expp = newexp;
3423 xfree (exp);
3424 }
3425
3426 /* Type-class predicates */
3427
3428 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3429 or FLOAT). */
3430
3431 static int
3432 numeric_type_p (struct type *type)
3433 {
3434 if (type == NULL)
3435 return 0;
3436 else
3437 {
3438 switch (TYPE_CODE (type))
3439 {
3440 case TYPE_CODE_INT:
3441 case TYPE_CODE_FLT:
3442 return 1;
3443 case TYPE_CODE_RANGE:
3444 return (type == TYPE_TARGET_TYPE (type)
3445 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3446 default:
3447 return 0;
3448 }
3449 }
3450 }
3451
3452 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3453
3454 static int
3455 integer_type_p (struct type *type)
3456 {
3457 if (type == NULL)
3458 return 0;
3459 else
3460 {
3461 switch (TYPE_CODE (type))
3462 {
3463 case TYPE_CODE_INT:
3464 return 1;
3465 case TYPE_CODE_RANGE:
3466 return (type == TYPE_TARGET_TYPE (type)
3467 || integer_type_p (TYPE_TARGET_TYPE (type)));
3468 default:
3469 return 0;
3470 }
3471 }
3472 }
3473
3474 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3475
3476 static int
3477 scalar_type_p (struct type *type)
3478 {
3479 if (type == NULL)
3480 return 0;
3481 else
3482 {
3483 switch (TYPE_CODE (type))
3484 {
3485 case TYPE_CODE_INT:
3486 case TYPE_CODE_RANGE:
3487 case TYPE_CODE_ENUM:
3488 case TYPE_CODE_FLT:
3489 return 1;
3490 default:
3491 return 0;
3492 }
3493 }
3494 }
3495
3496 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3497
3498 static int
3499 discrete_type_p (struct type *type)
3500 {
3501 if (type == NULL)
3502 return 0;
3503 else
3504 {
3505 switch (TYPE_CODE (type))
3506 {
3507 case TYPE_CODE_INT:
3508 case TYPE_CODE_RANGE:
3509 case TYPE_CODE_ENUM:
3510 return 1;
3511 default:
3512 return 0;
3513 }
3514 }
3515 }
3516
3517 /* Returns non-zero if OP with operands in the vector ARGS could be
3518 a user-defined function. Errs on the side of pre-defined operators
3519 (i.e., result 0). */
3520
3521 static int
3522 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3523 {
3524 struct type *type0 =
3525 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3526 struct type *type1 =
3527 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3528
3529 if (type0 == NULL)
3530 return 0;
3531
3532 switch (op)
3533 {
3534 default:
3535 return 0;
3536
3537 case BINOP_ADD:
3538 case BINOP_SUB:
3539 case BINOP_MUL:
3540 case BINOP_DIV:
3541 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3542
3543 case BINOP_REM:
3544 case BINOP_MOD:
3545 case BINOP_BITWISE_AND:
3546 case BINOP_BITWISE_IOR:
3547 case BINOP_BITWISE_XOR:
3548 return (!(integer_type_p (type0) && integer_type_p (type1)));
3549
3550 case BINOP_EQUAL:
3551 case BINOP_NOTEQUAL:
3552 case BINOP_LESS:
3553 case BINOP_GTR:
3554 case BINOP_LEQ:
3555 case BINOP_GEQ:
3556 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3557
3558 case BINOP_CONCAT:
3559 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3560
3561 case BINOP_EXP:
3562 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3563
3564 case UNOP_NEG:
3565 case UNOP_PLUS:
3566 case UNOP_LOGICAL_NOT:
3567 case UNOP_ABS:
3568 return (!numeric_type_p (type0));
3569
3570 }
3571 }
3572 \f
3573 /* Renaming */
3574
3575 /* NOTES:
3576
3577 1. In the following, we assume that a renaming type's name may
3578 have an ___XD suffix. It would be nice if this went away at some
3579 point.
3580 2. We handle both the (old) purely type-based representation of
3581 renamings and the (new) variable-based encoding. At some point,
3582 it is devoutly to be hoped that the former goes away
3583 (FIXME: hilfinger-2007-07-09).
3584 3. Subprogram renamings are not implemented, although the XRS
3585 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3586
3587 /* If SYM encodes a renaming,
3588
3589 <renaming> renames <renamed entity>,
3590
3591 sets *LEN to the length of the renamed entity's name,
3592 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3593 the string describing the subcomponent selected from the renamed
3594 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3595 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3596 are undefined). Otherwise, returns a value indicating the category
3597 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3598 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3599 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3600 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3601 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3602 may be NULL, in which case they are not assigned.
3603
3604 [Currently, however, GCC does not generate subprogram renamings.] */
3605
3606 enum ada_renaming_category
3607 ada_parse_renaming (struct symbol *sym,
3608 const char **renamed_entity, int *len,
3609 const char **renaming_expr)
3610 {
3611 enum ada_renaming_category kind;
3612 const char *info;
3613 const char *suffix;
3614
3615 if (sym == NULL)
3616 return ADA_NOT_RENAMING;
3617 switch (SYMBOL_CLASS (sym))
3618 {
3619 default:
3620 return ADA_NOT_RENAMING;
3621 case LOC_TYPEDEF:
3622 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3623 renamed_entity, len, renaming_expr);
3624 case LOC_LOCAL:
3625 case LOC_STATIC:
3626 case LOC_COMPUTED:
3627 case LOC_OPTIMIZED_OUT:
3628 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3629 if (info == NULL)
3630 return ADA_NOT_RENAMING;
3631 switch (info[5])
3632 {
3633 case '_':
3634 kind = ADA_OBJECT_RENAMING;
3635 info += 6;
3636 break;
3637 case 'E':
3638 kind = ADA_EXCEPTION_RENAMING;
3639 info += 7;
3640 break;
3641 case 'P':
3642 kind = ADA_PACKAGE_RENAMING;
3643 info += 7;
3644 break;
3645 case 'S':
3646 kind = ADA_SUBPROGRAM_RENAMING;
3647 info += 7;
3648 break;
3649 default:
3650 return ADA_NOT_RENAMING;
3651 }
3652 }
3653
3654 if (renamed_entity != NULL)
3655 *renamed_entity = info;
3656 suffix = strstr (info, "___XE");
3657 if (suffix == NULL || suffix == info)
3658 return ADA_NOT_RENAMING;
3659 if (len != NULL)
3660 *len = strlen (info) - strlen (suffix);
3661 suffix += 5;
3662 if (renaming_expr != NULL)
3663 *renaming_expr = suffix;
3664 return kind;
3665 }
3666
3667 /* Assuming TYPE encodes a renaming according to the old encoding in
3668 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3669 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3670 ADA_NOT_RENAMING otherwise. */
3671 static enum ada_renaming_category
3672 parse_old_style_renaming (struct type *type,
3673 const char **renamed_entity, int *len,
3674 const char **renaming_expr)
3675 {
3676 enum ada_renaming_category kind;
3677 const char *name;
3678 const char *info;
3679 const char *suffix;
3680
3681 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
3682 || TYPE_NFIELDS (type) != 1)
3683 return ADA_NOT_RENAMING;
3684
3685 name = type_name_no_tag (type);
3686 if (name == NULL)
3687 return ADA_NOT_RENAMING;
3688
3689 name = strstr (name, "___XR");
3690 if (name == NULL)
3691 return ADA_NOT_RENAMING;
3692 switch (name[5])
3693 {
3694 case '\0':
3695 case '_':
3696 kind = ADA_OBJECT_RENAMING;
3697 break;
3698 case 'E':
3699 kind = ADA_EXCEPTION_RENAMING;
3700 break;
3701 case 'P':
3702 kind = ADA_PACKAGE_RENAMING;
3703 break;
3704 case 'S':
3705 kind = ADA_SUBPROGRAM_RENAMING;
3706 break;
3707 default:
3708 return ADA_NOT_RENAMING;
3709 }
3710
3711 info = TYPE_FIELD_NAME (type, 0);
3712 if (info == NULL)
3713 return ADA_NOT_RENAMING;
3714 if (renamed_entity != NULL)
3715 *renamed_entity = info;
3716 suffix = strstr (info, "___XE");
3717 if (renaming_expr != NULL)
3718 *renaming_expr = suffix + 5;
3719 if (suffix == NULL || suffix == info)
3720 return ADA_NOT_RENAMING;
3721 if (len != NULL)
3722 *len = suffix - info;
3723 return kind;
3724 }
3725
3726 \f
3727
3728 /* Evaluation: Function Calls */
3729
3730 /* Return an lvalue containing the value VAL. This is the identity on
3731 lvalues, and otherwise has the side-effect of pushing a copy of VAL
3732 on the stack, using and updating *SP as the stack pointer, and
3733 returning an lvalue whose value_address points to the copy. */
3734
3735 static struct value *
3736 ensure_lval (struct value *val, CORE_ADDR *sp)
3737 {
3738 if (! VALUE_LVAL (val))
3739 {
3740 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
3741
3742 /* The following is taken from the structure-return code in
3743 call_function_by_hand. FIXME: Therefore, some refactoring seems
3744 indicated. */
3745 if (gdbarch_inner_than (current_gdbarch, 1, 2))
3746 {
3747 /* Stack grows downward. Align SP and value_address (val) after
3748 reserving sufficient space. */
3749 *sp -= len;
3750 if (gdbarch_frame_align_p (current_gdbarch))
3751 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3752 set_value_address (val, *sp);
3753 }
3754 else
3755 {
3756 /* Stack grows upward. Align the frame, allocate space, and
3757 then again, re-align the frame. */
3758 if (gdbarch_frame_align_p (current_gdbarch))
3759 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3760 set_value_address (val, *sp);
3761 *sp += len;
3762 if (gdbarch_frame_align_p (current_gdbarch))
3763 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3764 }
3765 VALUE_LVAL (val) = lval_memory;
3766
3767 write_memory (value_address (val), value_contents_raw (val), len);
3768 }
3769
3770 return val;
3771 }
3772
3773 /* Return the value ACTUAL, converted to be an appropriate value for a
3774 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3775 allocating any necessary descriptors (fat pointers), or copies of
3776 values not residing in memory, updating it as needed. */
3777
3778 struct value *
3779 ada_convert_actual (struct value *actual, struct type *formal_type0,
3780 CORE_ADDR *sp)
3781 {
3782 struct type *actual_type = ada_check_typedef (value_type (actual));
3783 struct type *formal_type = ada_check_typedef (formal_type0);
3784 struct type *formal_target =
3785 TYPE_CODE (formal_type) == TYPE_CODE_PTR
3786 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
3787 struct type *actual_target =
3788 TYPE_CODE (actual_type) == TYPE_CODE_PTR
3789 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
3790
3791 if (ada_is_array_descriptor_type (formal_target)
3792 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
3793 return make_array_descriptor (formal_type, actual, sp);
3794 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
3795 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
3796 {
3797 struct value *result;
3798 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
3799 && ada_is_array_descriptor_type (actual_target))
3800 result = desc_data (actual);
3801 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
3802 {
3803 if (VALUE_LVAL (actual) != lval_memory)
3804 {
3805 struct value *val;
3806 actual_type = ada_check_typedef (value_type (actual));
3807 val = allocate_value (actual_type);
3808 memcpy ((char *) value_contents_raw (val),
3809 (char *) value_contents (actual),
3810 TYPE_LENGTH (actual_type));
3811 actual = ensure_lval (val, sp);
3812 }
3813 result = value_addr (actual);
3814 }
3815 else
3816 return actual;
3817 return value_cast_pointers (formal_type, result);
3818 }
3819 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
3820 return ada_value_ind (actual);
3821
3822 return actual;
3823 }
3824
3825
3826 /* Push a descriptor of type TYPE for array value ARR on the stack at
3827 *SP, updating *SP to reflect the new descriptor. Return either
3828 an lvalue representing the new descriptor, or (if TYPE is a pointer-
3829 to-descriptor type rather than a descriptor type), a struct value *
3830 representing a pointer to this descriptor. */
3831
3832 static struct value *
3833 make_array_descriptor (struct type *type, struct value *arr, CORE_ADDR *sp)
3834 {
3835 struct type *bounds_type = desc_bounds_type (type);
3836 struct type *desc_type = desc_base_type (type);
3837 struct value *descriptor = allocate_value (desc_type);
3838 struct value *bounds = allocate_value (bounds_type);
3839 int i;
3840
3841 for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1)
3842 {
3843 modify_general_field (value_contents_writeable (bounds),
3844 ada_array_bound (arr, i, 0),
3845 desc_bound_bitpos (bounds_type, i, 0),
3846 desc_bound_bitsize (bounds_type, i, 0));
3847 modify_general_field (value_contents_writeable (bounds),
3848 ada_array_bound (arr, i, 1),
3849 desc_bound_bitpos (bounds_type, i, 1),
3850 desc_bound_bitsize (bounds_type, i, 1));
3851 }
3852
3853 bounds = ensure_lval (bounds, sp);
3854
3855 modify_general_field (value_contents_writeable (descriptor),
3856 value_address (ensure_lval (arr, sp)),
3857 fat_pntr_data_bitpos (desc_type),
3858 fat_pntr_data_bitsize (desc_type));
3859
3860 modify_general_field (value_contents_writeable (descriptor),
3861 value_address (bounds),
3862 fat_pntr_bounds_bitpos (desc_type),
3863 fat_pntr_bounds_bitsize (desc_type));
3864
3865 descriptor = ensure_lval (descriptor, sp);
3866
3867 if (TYPE_CODE (type) == TYPE_CODE_PTR)
3868 return value_addr (descriptor);
3869 else
3870 return descriptor;
3871 }
3872 \f
3873 /* Dummy definitions for an experimental caching module that is not
3874 * used in the public sources. */
3875
3876 static int
3877 lookup_cached_symbol (const char *name, domain_enum namespace,
3878 struct symbol **sym, struct block **block)
3879 {
3880 return 0;
3881 }
3882
3883 static void
3884 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
3885 struct block *block)
3886 {
3887 }
3888 \f
3889 /* Symbol Lookup */
3890
3891 /* Return the result of a standard (literal, C-like) lookup of NAME in
3892 given DOMAIN, visible from lexical block BLOCK. */
3893
3894 static struct symbol *
3895 standard_lookup (const char *name, const struct block *block,
3896 domain_enum domain)
3897 {
3898 struct symbol *sym;
3899
3900 if (lookup_cached_symbol (name, domain, &sym, NULL))
3901 return sym;
3902 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
3903 cache_symbol (name, domain, sym, block_found);
3904 return sym;
3905 }
3906
3907
3908 /* Non-zero iff there is at least one non-function/non-enumeral symbol
3909 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
3910 since they contend in overloading in the same way. */
3911 static int
3912 is_nonfunction (struct ada_symbol_info syms[], int n)
3913 {
3914 int i;
3915
3916 for (i = 0; i < n; i += 1)
3917 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
3918 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
3919 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
3920 return 1;
3921
3922 return 0;
3923 }
3924
3925 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
3926 struct types. Otherwise, they may not. */
3927
3928 static int
3929 equiv_types (struct type *type0, struct type *type1)
3930 {
3931 if (type0 == type1)
3932 return 1;
3933 if (type0 == NULL || type1 == NULL
3934 || TYPE_CODE (type0) != TYPE_CODE (type1))
3935 return 0;
3936 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
3937 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
3938 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
3939 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
3940 return 1;
3941
3942 return 0;
3943 }
3944
3945 /* True iff SYM0 represents the same entity as SYM1, or one that is
3946 no more defined than that of SYM1. */
3947
3948 static int
3949 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
3950 {
3951 if (sym0 == sym1)
3952 return 1;
3953 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
3954 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
3955 return 0;
3956
3957 switch (SYMBOL_CLASS (sym0))
3958 {
3959 case LOC_UNDEF:
3960 return 1;
3961 case LOC_TYPEDEF:
3962 {
3963 struct type *type0 = SYMBOL_TYPE (sym0);
3964 struct type *type1 = SYMBOL_TYPE (sym1);
3965 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
3966 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
3967 int len0 = strlen (name0);
3968 return
3969 TYPE_CODE (type0) == TYPE_CODE (type1)
3970 && (equiv_types (type0, type1)
3971 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
3972 && strncmp (name1 + len0, "___XV", 5) == 0));
3973 }
3974 case LOC_CONST:
3975 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
3976 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
3977 default:
3978 return 0;
3979 }
3980 }
3981
3982 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
3983 records in OBSTACKP. Do nothing if SYM is a duplicate. */
3984
3985 static void
3986 add_defn_to_vec (struct obstack *obstackp,
3987 struct symbol *sym,
3988 struct block *block)
3989 {
3990 int i;
3991 size_t tmp;
3992 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
3993
3994 /* Do not try to complete stub types, as the debugger is probably
3995 already scanning all symbols matching a certain name at the
3996 time when this function is called. Trying to replace the stub
3997 type by its associated full type will cause us to restart a scan
3998 which may lead to an infinite recursion. Instead, the client
3999 collecting the matching symbols will end up collecting several
4000 matches, with at least one of them complete. It can then filter
4001 out the stub ones if needed. */
4002
4003 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4004 {
4005 if (lesseq_defined_than (sym, prevDefns[i].sym))
4006 return;
4007 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4008 {
4009 prevDefns[i].sym = sym;
4010 prevDefns[i].block = block;
4011 return;
4012 }
4013 }
4014
4015 {
4016 struct ada_symbol_info info;
4017
4018 info.sym = sym;
4019 info.block = block;
4020 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4021 }
4022 }
4023
4024 /* Number of ada_symbol_info structures currently collected in
4025 current vector in *OBSTACKP. */
4026
4027 static int
4028 num_defns_collected (struct obstack *obstackp)
4029 {
4030 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4031 }
4032
4033 /* Vector of ada_symbol_info structures currently collected in current
4034 vector in *OBSTACKP. If FINISH, close off the vector and return
4035 its final address. */
4036
4037 static struct ada_symbol_info *
4038 defns_collected (struct obstack *obstackp, int finish)
4039 {
4040 if (finish)
4041 return obstack_finish (obstackp);
4042 else
4043 return (struct ada_symbol_info *) obstack_base (obstackp);
4044 }
4045
4046 /* Look, in partial_symtab PST, for symbol NAME in given namespace.
4047 Check the global symbols if GLOBAL, the static symbols if not.
4048 Do wild-card match if WILD. */
4049
4050 static struct partial_symbol *
4051 ada_lookup_partial_symbol (struct partial_symtab *pst, const char *name,
4052 int global, domain_enum namespace, int wild)
4053 {
4054 struct partial_symbol **start;
4055 int name_len = strlen (name);
4056 int length = (global ? pst->n_global_syms : pst->n_static_syms);
4057 int i;
4058
4059 if (length == 0)
4060 {
4061 return (NULL);
4062 }
4063
4064 start = (global ?
4065 pst->objfile->global_psymbols.list + pst->globals_offset :
4066 pst->objfile->static_psymbols.list + pst->statics_offset);
4067
4068 if (wild)
4069 {
4070 for (i = 0; i < length; i += 1)
4071 {
4072 struct partial_symbol *psym = start[i];
4073
4074 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4075 SYMBOL_DOMAIN (psym), namespace)
4076 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (psym)))
4077 return psym;
4078 }
4079 return NULL;
4080 }
4081 else
4082 {
4083 if (global)
4084 {
4085 int U;
4086 i = 0;
4087 U = length - 1;
4088 while (U - i > 4)
4089 {
4090 int M = (U + i) >> 1;
4091 struct partial_symbol *psym = start[M];
4092 if (SYMBOL_LINKAGE_NAME (psym)[0] < name[0])
4093 i = M + 1;
4094 else if (SYMBOL_LINKAGE_NAME (psym)[0] > name[0])
4095 U = M - 1;
4096 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), name) < 0)
4097 i = M + 1;
4098 else
4099 U = M;
4100 }
4101 }
4102 else
4103 i = 0;
4104
4105 while (i < length)
4106 {
4107 struct partial_symbol *psym = start[i];
4108
4109 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4110 SYMBOL_DOMAIN (psym), namespace))
4111 {
4112 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym), name_len);
4113
4114 if (cmp < 0)
4115 {
4116 if (global)
4117 break;
4118 }
4119 else if (cmp == 0
4120 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4121 + name_len))
4122 return psym;
4123 }
4124 i += 1;
4125 }
4126
4127 if (global)
4128 {
4129 int U;
4130 i = 0;
4131 U = length - 1;
4132 while (U - i > 4)
4133 {
4134 int M = (U + i) >> 1;
4135 struct partial_symbol *psym = start[M];
4136 if (SYMBOL_LINKAGE_NAME (psym)[0] < '_')
4137 i = M + 1;
4138 else if (SYMBOL_LINKAGE_NAME (psym)[0] > '_')
4139 U = M - 1;
4140 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), "_ada_") < 0)
4141 i = M + 1;
4142 else
4143 U = M;
4144 }
4145 }
4146 else
4147 i = 0;
4148
4149 while (i < length)
4150 {
4151 struct partial_symbol *psym = start[i];
4152
4153 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4154 SYMBOL_DOMAIN (psym), namespace))
4155 {
4156 int cmp;
4157
4158 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (psym)[0];
4159 if (cmp == 0)
4160 {
4161 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (psym), 5);
4162 if (cmp == 0)
4163 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym) + 5,
4164 name_len);
4165 }
4166
4167 if (cmp < 0)
4168 {
4169 if (global)
4170 break;
4171 }
4172 else if (cmp == 0
4173 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4174 + name_len + 5))
4175 return psym;
4176 }
4177 i += 1;
4178 }
4179 }
4180 return NULL;
4181 }
4182
4183 /* Return a minimal symbol matching NAME according to Ada decoding
4184 rules. Returns NULL if there is no such minimal symbol. Names
4185 prefixed with "standard__" are handled specially: "standard__" is
4186 first stripped off, and only static and global symbols are searched. */
4187
4188 struct minimal_symbol *
4189 ada_lookup_simple_minsym (const char *name)
4190 {
4191 struct objfile *objfile;
4192 struct minimal_symbol *msymbol;
4193 int wild_match;
4194
4195 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4196 {
4197 name += sizeof ("standard__") - 1;
4198 wild_match = 0;
4199 }
4200 else
4201 wild_match = (strstr (name, "__") == NULL);
4202
4203 ALL_MSYMBOLS (objfile, msymbol)
4204 {
4205 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4206 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4207 return msymbol;
4208 }
4209
4210 return NULL;
4211 }
4212
4213 /* For all subprograms that statically enclose the subprogram of the
4214 selected frame, add symbols matching identifier NAME in DOMAIN
4215 and their blocks to the list of data in OBSTACKP, as for
4216 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4217 wildcard prefix. */
4218
4219 static void
4220 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4221 const char *name, domain_enum namespace,
4222 int wild_match)
4223 {
4224 }
4225
4226 /* True if TYPE is definitely an artificial type supplied to a symbol
4227 for which no debugging information was given in the symbol file. */
4228
4229 static int
4230 is_nondebugging_type (struct type *type)
4231 {
4232 char *name = ada_type_name (type);
4233 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4234 }
4235
4236 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4237 duplicate other symbols in the list (The only case I know of where
4238 this happens is when object files containing stabs-in-ecoff are
4239 linked with files containing ordinary ecoff debugging symbols (or no
4240 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4241 Returns the number of items in the modified list. */
4242
4243 static int
4244 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4245 {
4246 int i, j;
4247
4248 i = 0;
4249 while (i < nsyms)
4250 {
4251 int remove = 0;
4252
4253 /* If two symbols have the same name and one of them is a stub type,
4254 the get rid of the stub. */
4255
4256 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4257 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4258 {
4259 for (j = 0; j < nsyms; j++)
4260 {
4261 if (j != i
4262 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4263 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4264 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4265 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4266 remove = 1;
4267 }
4268 }
4269
4270 /* Two symbols with the same name, same class and same address
4271 should be identical. */
4272
4273 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4274 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4275 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4276 {
4277 for (j = 0; j < nsyms; j += 1)
4278 {
4279 if (i != j
4280 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4281 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4282 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4283 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4284 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4285 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4286 remove = 1;
4287 }
4288 }
4289
4290 if (remove)
4291 {
4292 for (j = i + 1; j < nsyms; j += 1)
4293 syms[j - 1] = syms[j];
4294 nsyms -= 1;
4295 }
4296
4297 i += 1;
4298 }
4299 return nsyms;
4300 }
4301
4302 /* Given a type that corresponds to a renaming entity, use the type name
4303 to extract the scope (package name or function name, fully qualified,
4304 and following the GNAT encoding convention) where this renaming has been
4305 defined. The string returned needs to be deallocated after use. */
4306
4307 static char *
4308 xget_renaming_scope (struct type *renaming_type)
4309 {
4310 /* The renaming types adhere to the following convention:
4311 <scope>__<rename>___<XR extension>.
4312 So, to extract the scope, we search for the "___XR" extension,
4313 and then backtrack until we find the first "__". */
4314
4315 const char *name = type_name_no_tag (renaming_type);
4316 char *suffix = strstr (name, "___XR");
4317 char *last;
4318 int scope_len;
4319 char *scope;
4320
4321 /* Now, backtrack a bit until we find the first "__". Start looking
4322 at suffix - 3, as the <rename> part is at least one character long. */
4323
4324 for (last = suffix - 3; last > name; last--)
4325 if (last[0] == '_' && last[1] == '_')
4326 break;
4327
4328 /* Make a copy of scope and return it. */
4329
4330 scope_len = last - name;
4331 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4332
4333 strncpy (scope, name, scope_len);
4334 scope[scope_len] = '\0';
4335
4336 return scope;
4337 }
4338
4339 /* Return nonzero if NAME corresponds to a package name. */
4340
4341 static int
4342 is_package_name (const char *name)
4343 {
4344 /* Here, We take advantage of the fact that no symbols are generated
4345 for packages, while symbols are generated for each function.
4346 So the condition for NAME represent a package becomes equivalent
4347 to NAME not existing in our list of symbols. There is only one
4348 small complication with library-level functions (see below). */
4349
4350 char *fun_name;
4351
4352 /* If it is a function that has not been defined at library level,
4353 then we should be able to look it up in the symbols. */
4354 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4355 return 0;
4356
4357 /* Library-level function names start with "_ada_". See if function
4358 "_ada_" followed by NAME can be found. */
4359
4360 /* Do a quick check that NAME does not contain "__", since library-level
4361 functions names cannot contain "__" in them. */
4362 if (strstr (name, "__") != NULL)
4363 return 0;
4364
4365 fun_name = xstrprintf ("_ada_%s", name);
4366
4367 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4368 }
4369
4370 /* Return nonzero if SYM corresponds to a renaming entity that is
4371 not visible from FUNCTION_NAME. */
4372
4373 static int
4374 old_renaming_is_invisible (const struct symbol *sym, char *function_name)
4375 {
4376 char *scope;
4377
4378 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4379 return 0;
4380
4381 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4382
4383 make_cleanup (xfree, scope);
4384
4385 /* If the rename has been defined in a package, then it is visible. */
4386 if (is_package_name (scope))
4387 return 0;
4388
4389 /* Check that the rename is in the current function scope by checking
4390 that its name starts with SCOPE. */
4391
4392 /* If the function name starts with "_ada_", it means that it is
4393 a library-level function. Strip this prefix before doing the
4394 comparison, as the encoding for the renaming does not contain
4395 this prefix. */
4396 if (strncmp (function_name, "_ada_", 5) == 0)
4397 function_name += 5;
4398
4399 return (strncmp (function_name, scope, strlen (scope)) != 0);
4400 }
4401
4402 /* Remove entries from SYMS that corresponds to a renaming entity that
4403 is not visible from the function associated with CURRENT_BLOCK or
4404 that is superfluous due to the presence of more specific renaming
4405 information. Places surviving symbols in the initial entries of
4406 SYMS and returns the number of surviving symbols.
4407
4408 Rationale:
4409 First, in cases where an object renaming is implemented as a
4410 reference variable, GNAT may produce both the actual reference
4411 variable and the renaming encoding. In this case, we discard the
4412 latter.
4413
4414 Second, GNAT emits a type following a specified encoding for each renaming
4415 entity. Unfortunately, STABS currently does not support the definition
4416 of types that are local to a given lexical block, so all renamings types
4417 are emitted at library level. As a consequence, if an application
4418 contains two renaming entities using the same name, and a user tries to
4419 print the value of one of these entities, the result of the ada symbol
4420 lookup will also contain the wrong renaming type.
4421
4422 This function partially covers for this limitation by attempting to
4423 remove from the SYMS list renaming symbols that should be visible
4424 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4425 method with the current information available. The implementation
4426 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4427
4428 - When the user tries to print a rename in a function while there
4429 is another rename entity defined in a package: Normally, the
4430 rename in the function has precedence over the rename in the
4431 package, so the latter should be removed from the list. This is
4432 currently not the case.
4433
4434 - This function will incorrectly remove valid renames if
4435 the CURRENT_BLOCK corresponds to a function which symbol name
4436 has been changed by an "Export" pragma. As a consequence,
4437 the user will be unable to print such rename entities. */
4438
4439 static int
4440 remove_irrelevant_renamings (struct ada_symbol_info *syms,
4441 int nsyms, const struct block *current_block)
4442 {
4443 struct symbol *current_function;
4444 char *current_function_name;
4445 int i;
4446 int is_new_style_renaming;
4447
4448 /* If there is both a renaming foo___XR... encoded as a variable and
4449 a simple variable foo in the same block, discard the latter.
4450 First, zero out such symbols, then compress. */
4451 is_new_style_renaming = 0;
4452 for (i = 0; i < nsyms; i += 1)
4453 {
4454 struct symbol *sym = syms[i].sym;
4455 struct block *block = syms[i].block;
4456 const char *name;
4457 const char *suffix;
4458
4459 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4460 continue;
4461 name = SYMBOL_LINKAGE_NAME (sym);
4462 suffix = strstr (name, "___XR");
4463
4464 if (suffix != NULL)
4465 {
4466 int name_len = suffix - name;
4467 int j;
4468 is_new_style_renaming = 1;
4469 for (j = 0; j < nsyms; j += 1)
4470 if (i != j && syms[j].sym != NULL
4471 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4472 name_len) == 0
4473 && block == syms[j].block)
4474 syms[j].sym = NULL;
4475 }
4476 }
4477 if (is_new_style_renaming)
4478 {
4479 int j, k;
4480
4481 for (j = k = 0; j < nsyms; j += 1)
4482 if (syms[j].sym != NULL)
4483 {
4484 syms[k] = syms[j];
4485 k += 1;
4486 }
4487 return k;
4488 }
4489
4490 /* Extract the function name associated to CURRENT_BLOCK.
4491 Abort if unable to do so. */
4492
4493 if (current_block == NULL)
4494 return nsyms;
4495
4496 current_function = block_linkage_function (current_block);
4497 if (current_function == NULL)
4498 return nsyms;
4499
4500 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4501 if (current_function_name == NULL)
4502 return nsyms;
4503
4504 /* Check each of the symbols, and remove it from the list if it is
4505 a type corresponding to a renaming that is out of the scope of
4506 the current block. */
4507
4508 i = 0;
4509 while (i < nsyms)
4510 {
4511 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4512 == ADA_OBJECT_RENAMING
4513 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4514 {
4515 int j;
4516 for (j = i + 1; j < nsyms; j += 1)
4517 syms[j - 1] = syms[j];
4518 nsyms -= 1;
4519 }
4520 else
4521 i += 1;
4522 }
4523
4524 return nsyms;
4525 }
4526
4527 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4528 whose name and domain match NAME and DOMAIN respectively.
4529 If no match was found, then extend the search to "enclosing"
4530 routines (in other words, if we're inside a nested function,
4531 search the symbols defined inside the enclosing functions).
4532
4533 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4534
4535 static void
4536 ada_add_local_symbols (struct obstack *obstackp, const char *name,
4537 struct block *block, domain_enum domain,
4538 int wild_match)
4539 {
4540 int block_depth = 0;
4541
4542 while (block != NULL)
4543 {
4544 block_depth += 1;
4545 ada_add_block_symbols (obstackp, block, name, domain, NULL, wild_match);
4546
4547 /* If we found a non-function match, assume that's the one. */
4548 if (is_nonfunction (defns_collected (obstackp, 0),
4549 num_defns_collected (obstackp)))
4550 return;
4551
4552 block = BLOCK_SUPERBLOCK (block);
4553 }
4554
4555 /* If no luck so far, try to find NAME as a local symbol in some lexically
4556 enclosing subprogram. */
4557 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4558 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match);
4559 }
4560
4561 /* Add to OBSTACKP all non-local symbols whose name and domain match
4562 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
4563 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
4564
4565 static void
4566 ada_add_non_local_symbols (struct obstack *obstackp, const char *name,
4567 domain_enum domain, int global,
4568 int wild_match)
4569 {
4570 struct objfile *objfile;
4571 struct partial_symtab *ps;
4572
4573 ALL_PSYMTABS (objfile, ps)
4574 {
4575 QUIT;
4576 if (ps->readin
4577 || ada_lookup_partial_symbol (ps, name, global, domain, wild_match))
4578 {
4579 struct symtab *s = PSYMTAB_TO_SYMTAB (ps);
4580 const int block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
4581
4582 if (s == NULL || !s->primary)
4583 continue;
4584 ada_add_block_symbols (obstackp,
4585 BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), block_kind),
4586 name, domain, objfile, wild_match);
4587 }
4588 }
4589 }
4590
4591 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4592 scope and in global scopes, returning the number of matches. Sets
4593 *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4594 indicating the symbols found and the blocks and symbol tables (if
4595 any) in which they were found. This vector are transient---good only to
4596 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4597 symbol match within the nest of blocks whose innermost member is BLOCK0,
4598 is the one match returned (no other matches in that or
4599 enclosing blocks is returned). If there are any matches in or
4600 surrounding BLOCK0, then these alone are returned. Otherwise, the
4601 search extends to global and file-scope (static) symbol tables.
4602 Names prefixed with "standard__" are handled specially: "standard__"
4603 is first stripped off, and only static and global symbols are searched. */
4604
4605 int
4606 ada_lookup_symbol_list (const char *name0, const struct block *block0,
4607 domain_enum namespace,
4608 struct ada_symbol_info **results)
4609 {
4610 struct symbol *sym;
4611 struct block *block;
4612 const char *name;
4613 int wild_match;
4614 int cacheIfUnique;
4615 int ndefns;
4616
4617 obstack_free (&symbol_list_obstack, NULL);
4618 obstack_init (&symbol_list_obstack);
4619
4620 cacheIfUnique = 0;
4621
4622 /* Search specified block and its superiors. */
4623
4624 wild_match = (strstr (name0, "__") == NULL);
4625 name = name0;
4626 block = (struct block *) block0; /* FIXME: No cast ought to be
4627 needed, but adding const will
4628 have a cascade effect. */
4629
4630 /* Special case: If the user specifies a symbol name inside package
4631 Standard, do a non-wild matching of the symbol name without
4632 the "standard__" prefix. This was primarily introduced in order
4633 to allow the user to specifically access the standard exceptions
4634 using, for instance, Standard.Constraint_Error when Constraint_Error
4635 is ambiguous (due to the user defining its own Constraint_Error
4636 entity inside its program). */
4637 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4638 {
4639 wild_match = 0;
4640 block = NULL;
4641 name = name0 + sizeof ("standard__") - 1;
4642 }
4643
4644 /* Check the non-global symbols. If we have ANY match, then we're done. */
4645
4646 ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
4647 wild_match);
4648 if (num_defns_collected (&symbol_list_obstack) > 0)
4649 goto done;
4650
4651 /* No non-global symbols found. Check our cache to see if we have
4652 already performed this search before. If we have, then return
4653 the same result. */
4654
4655 cacheIfUnique = 1;
4656 if (lookup_cached_symbol (name0, namespace, &sym, &block))
4657 {
4658 if (sym != NULL)
4659 add_defn_to_vec (&symbol_list_obstack, sym, block);
4660 goto done;
4661 }
4662
4663 /* Search symbols from all global blocks. */
4664
4665 ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 1,
4666 wild_match);
4667
4668 /* Now add symbols from all per-file blocks if we've gotten no hits
4669 (not strictly correct, but perhaps better than an error). */
4670
4671 if (num_defns_collected (&symbol_list_obstack) == 0)
4672 ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 0,
4673 wild_match);
4674
4675 done:
4676 ndefns = num_defns_collected (&symbol_list_obstack);
4677 *results = defns_collected (&symbol_list_obstack, 1);
4678
4679 ndefns = remove_extra_symbols (*results, ndefns);
4680
4681 if (ndefns == 0)
4682 cache_symbol (name0, namespace, NULL, NULL);
4683
4684 if (ndefns == 1 && cacheIfUnique)
4685 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
4686
4687 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
4688
4689 return ndefns;
4690 }
4691
4692 struct symbol *
4693 ada_lookup_encoded_symbol (const char *name, const struct block *block0,
4694 domain_enum namespace, struct block **block_found)
4695 {
4696 struct ada_symbol_info *candidates;
4697 int n_candidates;
4698
4699 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates);
4700
4701 if (n_candidates == 0)
4702 return NULL;
4703
4704 if (block_found != NULL)
4705 *block_found = candidates[0].block;
4706
4707 return fixup_symbol_section (candidates[0].sym, NULL);
4708 }
4709
4710 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4711 scope and in global scopes, or NULL if none. NAME is folded and
4712 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4713 choosing the first symbol if there are multiple choices.
4714 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4715 table in which the symbol was found (in both cases, these
4716 assignments occur only if the pointers are non-null). */
4717 struct symbol *
4718 ada_lookup_symbol (const char *name, const struct block *block0,
4719 domain_enum namespace, int *is_a_field_of_this)
4720 {
4721 if (is_a_field_of_this != NULL)
4722 *is_a_field_of_this = 0;
4723
4724 return
4725 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
4726 block0, namespace, NULL);
4727 }
4728
4729 static struct symbol *
4730 ada_lookup_symbol_nonlocal (const char *name,
4731 const char *linkage_name,
4732 const struct block *block,
4733 const domain_enum domain)
4734 {
4735 if (linkage_name == NULL)
4736 linkage_name = name;
4737 return ada_lookup_symbol (linkage_name, block_static_block (block), domain,
4738 NULL);
4739 }
4740
4741
4742 /* True iff STR is a possible encoded suffix of a normal Ada name
4743 that is to be ignored for matching purposes. Suffixes of parallel
4744 names (e.g., XVE) are not included here. Currently, the possible suffixes
4745 are given by any of the regular expressions:
4746
4747 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
4748 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4749 _E[0-9]+[bs]$ [protected object entry suffixes]
4750 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
4751
4752 Also, any leading "__[0-9]+" sequence is skipped before the suffix
4753 match is performed. This sequence is used to differentiate homonyms,
4754 is an optional part of a valid name suffix. */
4755
4756 static int
4757 is_name_suffix (const char *str)
4758 {
4759 int k;
4760 const char *matching;
4761 const int len = strlen (str);
4762
4763 /* Skip optional leading __[0-9]+. */
4764
4765 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4766 {
4767 str += 3;
4768 while (isdigit (str[0]))
4769 str += 1;
4770 }
4771
4772 /* [.$][0-9]+ */
4773
4774 if (str[0] == '.' || str[0] == '$')
4775 {
4776 matching = str + 1;
4777 while (isdigit (matching[0]))
4778 matching += 1;
4779 if (matching[0] == '\0')
4780 return 1;
4781 }
4782
4783 /* ___[0-9]+ */
4784
4785 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
4786 {
4787 matching = str + 3;
4788 while (isdigit (matching[0]))
4789 matching += 1;
4790 if (matching[0] == '\0')
4791 return 1;
4792 }
4793
4794 #if 0
4795 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
4796 with a N at the end. Unfortunately, the compiler uses the same
4797 convention for other internal types it creates. So treating
4798 all entity names that end with an "N" as a name suffix causes
4799 some regressions. For instance, consider the case of an enumerated
4800 type. To support the 'Image attribute, it creates an array whose
4801 name ends with N.
4802 Having a single character like this as a suffix carrying some
4803 information is a bit risky. Perhaps we should change the encoding
4804 to be something like "_N" instead. In the meantime, do not do
4805 the following check. */
4806 /* Protected Object Subprograms */
4807 if (len == 1 && str [0] == 'N')
4808 return 1;
4809 #endif
4810
4811 /* _E[0-9]+[bs]$ */
4812 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
4813 {
4814 matching = str + 3;
4815 while (isdigit (matching[0]))
4816 matching += 1;
4817 if ((matching[0] == 'b' || matching[0] == 's')
4818 && matching [1] == '\0')
4819 return 1;
4820 }
4821
4822 /* ??? We should not modify STR directly, as we are doing below. This
4823 is fine in this case, but may become problematic later if we find
4824 that this alternative did not work, and want to try matching
4825 another one from the begining of STR. Since we modified it, we
4826 won't be able to find the begining of the string anymore! */
4827 if (str[0] == 'X')
4828 {
4829 str += 1;
4830 while (str[0] != '_' && str[0] != '\0')
4831 {
4832 if (str[0] != 'n' && str[0] != 'b')
4833 return 0;
4834 str += 1;
4835 }
4836 }
4837
4838 if (str[0] == '\000')
4839 return 1;
4840
4841 if (str[0] == '_')
4842 {
4843 if (str[1] != '_' || str[2] == '\000')
4844 return 0;
4845 if (str[2] == '_')
4846 {
4847 if (strcmp (str + 3, "JM") == 0)
4848 return 1;
4849 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
4850 the LJM suffix in favor of the JM one. But we will
4851 still accept LJM as a valid suffix for a reasonable
4852 amount of time, just to allow ourselves to debug programs
4853 compiled using an older version of GNAT. */
4854 if (strcmp (str + 3, "LJM") == 0)
4855 return 1;
4856 if (str[3] != 'X')
4857 return 0;
4858 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
4859 || str[4] == 'U' || str[4] == 'P')
4860 return 1;
4861 if (str[4] == 'R' && str[5] != 'T')
4862 return 1;
4863 return 0;
4864 }
4865 if (!isdigit (str[2]))
4866 return 0;
4867 for (k = 3; str[k] != '\0'; k += 1)
4868 if (!isdigit (str[k]) && str[k] != '_')
4869 return 0;
4870 return 1;
4871 }
4872 if (str[0] == '$' && isdigit (str[1]))
4873 {
4874 for (k = 2; str[k] != '\0'; k += 1)
4875 if (!isdigit (str[k]) && str[k] != '_')
4876 return 0;
4877 return 1;
4878 }
4879 return 0;
4880 }
4881
4882 /* Return non-zero if the string starting at NAME and ending before
4883 NAME_END contains no capital letters. */
4884
4885 static int
4886 is_valid_name_for_wild_match (const char *name0)
4887 {
4888 const char *decoded_name = ada_decode (name0);
4889 int i;
4890
4891 /* If the decoded name starts with an angle bracket, it means that
4892 NAME0 does not follow the GNAT encoding format. It should then
4893 not be allowed as a possible wild match. */
4894 if (decoded_name[0] == '<')
4895 return 0;
4896
4897 for (i=0; decoded_name[i] != '\0'; i++)
4898 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
4899 return 0;
4900
4901 return 1;
4902 }
4903
4904 /* True if NAME represents a name of the form A1.A2....An, n>=1 and
4905 PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores
4906 informational suffixes of NAME (i.e., for which is_name_suffix is
4907 true). */
4908
4909 static int
4910 wild_match (const char *patn0, int patn_len, const char *name0)
4911 {
4912 char* match;
4913 const char* start;
4914 start = name0;
4915 while (1)
4916 {
4917 match = strstr (start, patn0);
4918 if (match == NULL)
4919 return 0;
4920 if ((match == name0
4921 || match[-1] == '.'
4922 || (match > name0 + 1 && match[-1] == '_' && match[-2] == '_')
4923 || (match == name0 + 5 && strncmp ("_ada_", name0, 5) == 0))
4924 && is_name_suffix (match + patn_len))
4925 return (match == name0 || is_valid_name_for_wild_match (name0));
4926 start = match + 1;
4927 }
4928 }
4929
4930 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
4931 vector *defn_symbols, updating the list of symbols in OBSTACKP
4932 (if necessary). If WILD, treat as NAME with a wildcard prefix.
4933 OBJFILE is the section containing BLOCK.
4934 SYMTAB is recorded with each symbol added. */
4935
4936 static void
4937 ada_add_block_symbols (struct obstack *obstackp,
4938 struct block *block, const char *name,
4939 domain_enum domain, struct objfile *objfile,
4940 int wild)
4941 {
4942 struct dict_iterator iter;
4943 int name_len = strlen (name);
4944 /* A matching argument symbol, if any. */
4945 struct symbol *arg_sym;
4946 /* Set true when we find a matching non-argument symbol. */
4947 int found_sym;
4948 struct symbol *sym;
4949
4950 arg_sym = NULL;
4951 found_sym = 0;
4952 if (wild)
4953 {
4954 struct symbol *sym;
4955 ALL_BLOCK_SYMBOLS (block, iter, sym)
4956 {
4957 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
4958 SYMBOL_DOMAIN (sym), domain)
4959 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (sym)))
4960 {
4961 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4962 continue;
4963 else if (SYMBOL_IS_ARGUMENT (sym))
4964 arg_sym = sym;
4965 else
4966 {
4967 found_sym = 1;
4968 add_defn_to_vec (obstackp,
4969 fixup_symbol_section (sym, objfile),
4970 block);
4971 }
4972 }
4973 }
4974 }
4975 else
4976 {
4977 ALL_BLOCK_SYMBOLS (block, iter, sym)
4978 {
4979 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
4980 SYMBOL_DOMAIN (sym), domain))
4981 {
4982 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym), name_len);
4983 if (cmp == 0
4984 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len))
4985 {
4986 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
4987 {
4988 if (SYMBOL_IS_ARGUMENT (sym))
4989 arg_sym = sym;
4990 else
4991 {
4992 found_sym = 1;
4993 add_defn_to_vec (obstackp,
4994 fixup_symbol_section (sym, objfile),
4995 block);
4996 }
4997 }
4998 }
4999 }
5000 }
5001 }
5002
5003 if (!found_sym && arg_sym != NULL)
5004 {
5005 add_defn_to_vec (obstackp,
5006 fixup_symbol_section (arg_sym, objfile),
5007 block);
5008 }
5009
5010 if (!wild)
5011 {
5012 arg_sym = NULL;
5013 found_sym = 0;
5014
5015 ALL_BLOCK_SYMBOLS (block, iter, sym)
5016 {
5017 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5018 SYMBOL_DOMAIN (sym), domain))
5019 {
5020 int cmp;
5021
5022 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5023 if (cmp == 0)
5024 {
5025 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5026 if (cmp == 0)
5027 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5028 name_len);
5029 }
5030
5031 if (cmp == 0
5032 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5033 {
5034 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5035 {
5036 if (SYMBOL_IS_ARGUMENT (sym))
5037 arg_sym = sym;
5038 else
5039 {
5040 found_sym = 1;
5041 add_defn_to_vec (obstackp,
5042 fixup_symbol_section (sym, objfile),
5043 block);
5044 }
5045 }
5046 }
5047 }
5048 }
5049
5050 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5051 They aren't parameters, right? */
5052 if (!found_sym && arg_sym != NULL)
5053 {
5054 add_defn_to_vec (obstackp,
5055 fixup_symbol_section (arg_sym, objfile),
5056 block);
5057 }
5058 }
5059 }
5060 \f
5061
5062 /* Symbol Completion */
5063
5064 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
5065 name in a form that's appropriate for the completion. The result
5066 does not need to be deallocated, but is only good until the next call.
5067
5068 TEXT_LEN is equal to the length of TEXT.
5069 Perform a wild match if WILD_MATCH is set.
5070 ENCODED should be set if TEXT represents the start of a symbol name
5071 in its encoded form. */
5072
5073 static const char *
5074 symbol_completion_match (const char *sym_name,
5075 const char *text, int text_len,
5076 int wild_match, int encoded)
5077 {
5078 char *result;
5079 const int verbatim_match = (text[0] == '<');
5080 int match = 0;
5081
5082 if (verbatim_match)
5083 {
5084 /* Strip the leading angle bracket. */
5085 text = text + 1;
5086 text_len--;
5087 }
5088
5089 /* First, test against the fully qualified name of the symbol. */
5090
5091 if (strncmp (sym_name, text, text_len) == 0)
5092 match = 1;
5093
5094 if (match && !encoded)
5095 {
5096 /* One needed check before declaring a positive match is to verify
5097 that iff we are doing a verbatim match, the decoded version
5098 of the symbol name starts with '<'. Otherwise, this symbol name
5099 is not a suitable completion. */
5100 const char *sym_name_copy = sym_name;
5101 int has_angle_bracket;
5102
5103 sym_name = ada_decode (sym_name);
5104 has_angle_bracket = (sym_name[0] == '<');
5105 match = (has_angle_bracket == verbatim_match);
5106 sym_name = sym_name_copy;
5107 }
5108
5109 if (match && !verbatim_match)
5110 {
5111 /* When doing non-verbatim match, another check that needs to
5112 be done is to verify that the potentially matching symbol name
5113 does not include capital letters, because the ada-mode would
5114 not be able to understand these symbol names without the
5115 angle bracket notation. */
5116 const char *tmp;
5117
5118 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5119 if (*tmp != '\0')
5120 match = 0;
5121 }
5122
5123 /* Second: Try wild matching... */
5124
5125 if (!match && wild_match)
5126 {
5127 /* Since we are doing wild matching, this means that TEXT
5128 may represent an unqualified symbol name. We therefore must
5129 also compare TEXT against the unqualified name of the symbol. */
5130 sym_name = ada_unqualified_name (ada_decode (sym_name));
5131
5132 if (strncmp (sym_name, text, text_len) == 0)
5133 match = 1;
5134 }
5135
5136 /* Finally: If we found a mach, prepare the result to return. */
5137
5138 if (!match)
5139 return NULL;
5140
5141 if (verbatim_match)
5142 sym_name = add_angle_brackets (sym_name);
5143
5144 if (!encoded)
5145 sym_name = ada_decode (sym_name);
5146
5147 return sym_name;
5148 }
5149
5150 typedef char *char_ptr;
5151 DEF_VEC_P (char_ptr);
5152
5153 /* A companion function to ada_make_symbol_completion_list().
5154 Check if SYM_NAME represents a symbol which name would be suitable
5155 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5156 it is appended at the end of the given string vector SV.
5157
5158 ORIG_TEXT is the string original string from the user command
5159 that needs to be completed. WORD is the entire command on which
5160 completion should be performed. These two parameters are used to
5161 determine which part of the symbol name should be added to the
5162 completion vector.
5163 if WILD_MATCH is set, then wild matching is performed.
5164 ENCODED should be set if TEXT represents a symbol name in its
5165 encoded formed (in which case the completion should also be
5166 encoded). */
5167
5168 static void
5169 symbol_completion_add (VEC(char_ptr) **sv,
5170 const char *sym_name,
5171 const char *text, int text_len,
5172 const char *orig_text, const char *word,
5173 int wild_match, int encoded)
5174 {
5175 const char *match = symbol_completion_match (sym_name, text, text_len,
5176 wild_match, encoded);
5177 char *completion;
5178
5179 if (match == NULL)
5180 return;
5181
5182 /* We found a match, so add the appropriate completion to the given
5183 string vector. */
5184
5185 if (word == orig_text)
5186 {
5187 completion = xmalloc (strlen (match) + 5);
5188 strcpy (completion, match);
5189 }
5190 else if (word > orig_text)
5191 {
5192 /* Return some portion of sym_name. */
5193 completion = xmalloc (strlen (match) + 5);
5194 strcpy (completion, match + (word - orig_text));
5195 }
5196 else
5197 {
5198 /* Return some of ORIG_TEXT plus sym_name. */
5199 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5200 strncpy (completion, word, orig_text - word);
5201 completion[orig_text - word] = '\0';
5202 strcat (completion, match);
5203 }
5204
5205 VEC_safe_push (char_ptr, *sv, completion);
5206 }
5207
5208 /* Return a list of possible symbol names completing TEXT0. The list
5209 is NULL terminated. WORD is the entire command on which completion
5210 is made. */
5211
5212 static char **
5213 ada_make_symbol_completion_list (char *text0, char *word)
5214 {
5215 char *text;
5216 int text_len;
5217 int wild_match;
5218 int encoded;
5219 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
5220 struct symbol *sym;
5221 struct symtab *s;
5222 struct partial_symtab *ps;
5223 struct minimal_symbol *msymbol;
5224 struct objfile *objfile;
5225 struct block *b, *surrounding_static_block = 0;
5226 int i;
5227 struct dict_iterator iter;
5228
5229 if (text0[0] == '<')
5230 {
5231 text = xstrdup (text0);
5232 make_cleanup (xfree, text);
5233 text_len = strlen (text);
5234 wild_match = 0;
5235 encoded = 1;
5236 }
5237 else
5238 {
5239 text = xstrdup (ada_encode (text0));
5240 make_cleanup (xfree, text);
5241 text_len = strlen (text);
5242 for (i = 0; i < text_len; i++)
5243 text[i] = tolower (text[i]);
5244
5245 encoded = (strstr (text0, "__") != NULL);
5246 /* If the name contains a ".", then the user is entering a fully
5247 qualified entity name, and the match must not be done in wild
5248 mode. Similarly, if the user wants to complete what looks like
5249 an encoded name, the match must not be done in wild mode. */
5250 wild_match = (strchr (text0, '.') == NULL && !encoded);
5251 }
5252
5253 /* First, look at the partial symtab symbols. */
5254 ALL_PSYMTABS (objfile, ps)
5255 {
5256 struct partial_symbol **psym;
5257
5258 /* If the psymtab's been read in we'll get it when we search
5259 through the blockvector. */
5260 if (ps->readin)
5261 continue;
5262
5263 for (psym = objfile->global_psymbols.list + ps->globals_offset;
5264 psym < (objfile->global_psymbols.list + ps->globals_offset
5265 + ps->n_global_syms); psym++)
5266 {
5267 QUIT;
5268 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym),
5269 text, text_len, text0, word,
5270 wild_match, encoded);
5271 }
5272
5273 for (psym = objfile->static_psymbols.list + ps->statics_offset;
5274 psym < (objfile->static_psymbols.list + ps->statics_offset
5275 + ps->n_static_syms); psym++)
5276 {
5277 QUIT;
5278 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym),
5279 text, text_len, text0, word,
5280 wild_match, encoded);
5281 }
5282 }
5283
5284 /* At this point scan through the misc symbol vectors and add each
5285 symbol you find to the list. Eventually we want to ignore
5286 anything that isn't a text symbol (everything else will be
5287 handled by the psymtab code above). */
5288
5289 ALL_MSYMBOLS (objfile, msymbol)
5290 {
5291 QUIT;
5292 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
5293 text, text_len, text0, word, wild_match, encoded);
5294 }
5295
5296 /* Search upwards from currently selected frame (so that we can
5297 complete on local vars. */
5298
5299 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5300 {
5301 if (!BLOCK_SUPERBLOCK (b))
5302 surrounding_static_block = b; /* For elmin of dups */
5303
5304 ALL_BLOCK_SYMBOLS (b, iter, sym)
5305 {
5306 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5307 text, text_len, text0, word,
5308 wild_match, encoded);
5309 }
5310 }
5311
5312 /* Go through the symtabs and check the externs and statics for
5313 symbols which match. */
5314
5315 ALL_SYMTABS (objfile, s)
5316 {
5317 QUIT;
5318 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5319 ALL_BLOCK_SYMBOLS (b, iter, sym)
5320 {
5321 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5322 text, text_len, text0, word,
5323 wild_match, encoded);
5324 }
5325 }
5326
5327 ALL_SYMTABS (objfile, s)
5328 {
5329 QUIT;
5330 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5331 /* Don't do this block twice. */
5332 if (b == surrounding_static_block)
5333 continue;
5334 ALL_BLOCK_SYMBOLS (b, iter, sym)
5335 {
5336 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5337 text, text_len, text0, word,
5338 wild_match, encoded);
5339 }
5340 }
5341
5342 /* Append the closing NULL entry. */
5343 VEC_safe_push (char_ptr, completions, NULL);
5344
5345 /* Make a copy of the COMPLETIONS VEC before we free it, and then
5346 return the copy. It's unfortunate that we have to make a copy
5347 of an array that we're about to destroy, but there is nothing much
5348 we can do about it. Fortunately, it's typically not a very large
5349 array. */
5350 {
5351 const size_t completions_size =
5352 VEC_length (char_ptr, completions) * sizeof (char *);
5353 char **result = malloc (completions_size);
5354
5355 memcpy (result, VEC_address (char_ptr, completions), completions_size);
5356
5357 VEC_free (char_ptr, completions);
5358 return result;
5359 }
5360 }
5361
5362 /* Field Access */
5363
5364 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5365 for tagged types. */
5366
5367 static int
5368 ada_is_dispatch_table_ptr_type (struct type *type)
5369 {
5370 char *name;
5371
5372 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5373 return 0;
5374
5375 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5376 if (name == NULL)
5377 return 0;
5378
5379 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5380 }
5381
5382 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5383 to be invisible to users. */
5384
5385 int
5386 ada_is_ignored_field (struct type *type, int field_num)
5387 {
5388 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5389 return 1;
5390
5391 /* Check the name of that field. */
5392 {
5393 const char *name = TYPE_FIELD_NAME (type, field_num);
5394
5395 /* Anonymous field names should not be printed.
5396 brobecker/2007-02-20: I don't think this can actually happen
5397 but we don't want to print the value of annonymous fields anyway. */
5398 if (name == NULL)
5399 return 1;
5400
5401 /* A field named "_parent" is internally generated by GNAT for
5402 tagged types, and should not be printed either. */
5403 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5404 return 1;
5405 }
5406
5407 /* If this is the dispatch table of a tagged type, then ignore. */
5408 if (ada_is_tagged_type (type, 1)
5409 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5410 return 1;
5411
5412 /* Not a special field, so it should not be ignored. */
5413 return 0;
5414 }
5415
5416 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5417 pointer or reference type whose ultimate target has a tag field. */
5418
5419 int
5420 ada_is_tagged_type (struct type *type, int refok)
5421 {
5422 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5423 }
5424
5425 /* True iff TYPE represents the type of X'Tag */
5426
5427 int
5428 ada_is_tag_type (struct type *type)
5429 {
5430 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5431 return 0;
5432 else
5433 {
5434 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5435 return (name != NULL
5436 && strcmp (name, "ada__tags__dispatch_table") == 0);
5437 }
5438 }
5439
5440 /* The type of the tag on VAL. */
5441
5442 struct type *
5443 ada_tag_type (struct value *val)
5444 {
5445 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
5446 }
5447
5448 /* The value of the tag on VAL. */
5449
5450 struct value *
5451 ada_value_tag (struct value *val)
5452 {
5453 return ada_value_struct_elt (val, "_tag", 0);
5454 }
5455
5456 /* The value of the tag on the object of type TYPE whose contents are
5457 saved at VALADDR, if it is non-null, or is at memory address
5458 ADDRESS. */
5459
5460 static struct value *
5461 value_tag_from_contents_and_address (struct type *type,
5462 const gdb_byte *valaddr,
5463 CORE_ADDR address)
5464 {
5465 int tag_byte_offset, dummy1, dummy2;
5466 struct type *tag_type;
5467 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
5468 NULL, NULL, NULL))
5469 {
5470 const gdb_byte *valaddr1 = ((valaddr == NULL)
5471 ? NULL
5472 : valaddr + tag_byte_offset);
5473 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
5474
5475 return value_from_contents_and_address (tag_type, valaddr1, address1);
5476 }
5477 return NULL;
5478 }
5479
5480 static struct type *
5481 type_from_tag (struct value *tag)
5482 {
5483 const char *type_name = ada_tag_name (tag);
5484 if (type_name != NULL)
5485 return ada_find_any_type (ada_encode (type_name));
5486 return NULL;
5487 }
5488
5489 struct tag_args
5490 {
5491 struct value *tag;
5492 char *name;
5493 };
5494
5495
5496 static int ada_tag_name_1 (void *);
5497 static int ada_tag_name_2 (struct tag_args *);
5498
5499 /* Wrapper function used by ada_tag_name. Given a struct tag_args*
5500 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5501 The value stored in ARGS->name is valid until the next call to
5502 ada_tag_name_1. */
5503
5504 static int
5505 ada_tag_name_1 (void *args0)
5506 {
5507 struct tag_args *args = (struct tag_args *) args0;
5508 static char name[1024];
5509 char *p;
5510 struct value *val;
5511 args->name = NULL;
5512 val = ada_value_struct_elt (args->tag, "tsd", 1);
5513 if (val == NULL)
5514 return ada_tag_name_2 (args);
5515 val = ada_value_struct_elt (val, "expanded_name", 1);
5516 if (val == NULL)
5517 return 0;
5518 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5519 for (p = name; *p != '\0'; p += 1)
5520 if (isalpha (*p))
5521 *p = tolower (*p);
5522 args->name = name;
5523 return 0;
5524 }
5525
5526 /* Utility function for ada_tag_name_1 that tries the second
5527 representation for the dispatch table (in which there is no
5528 explicit 'tsd' field in the referent of the tag pointer, and instead
5529 the tsd pointer is stored just before the dispatch table. */
5530
5531 static int
5532 ada_tag_name_2 (struct tag_args *args)
5533 {
5534 struct type *info_type;
5535 static char name[1024];
5536 char *p;
5537 struct value *val, *valp;
5538
5539 args->name = NULL;
5540 info_type = ada_find_any_type ("ada__tags__type_specific_data");
5541 if (info_type == NULL)
5542 return 0;
5543 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5544 valp = value_cast (info_type, args->tag);
5545 if (valp == NULL)
5546 return 0;
5547 val = value_ind (value_ptradd (valp, -1));
5548 if (val == NULL)
5549 return 0;
5550 val = ada_value_struct_elt (val, "expanded_name", 1);
5551 if (val == NULL)
5552 return 0;
5553 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5554 for (p = name; *p != '\0'; p += 1)
5555 if (isalpha (*p))
5556 *p = tolower (*p);
5557 args->name = name;
5558 return 0;
5559 }
5560
5561 /* The type name of the dynamic type denoted by the 'tag value TAG, as
5562 * a C string. */
5563
5564 const char *
5565 ada_tag_name (struct value *tag)
5566 {
5567 struct tag_args args;
5568 if (!ada_is_tag_type (value_type (tag)))
5569 return NULL;
5570 args.tag = tag;
5571 args.name = NULL;
5572 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5573 return args.name;
5574 }
5575
5576 /* The parent type of TYPE, or NULL if none. */
5577
5578 struct type *
5579 ada_parent_type (struct type *type)
5580 {
5581 int i;
5582
5583 type = ada_check_typedef (type);
5584
5585 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5586 return NULL;
5587
5588 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5589 if (ada_is_parent_field (type, i))
5590 {
5591 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
5592
5593 /* If the _parent field is a pointer, then dereference it. */
5594 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
5595 parent_type = TYPE_TARGET_TYPE (parent_type);
5596 /* If there is a parallel XVS type, get the actual base type. */
5597 parent_type = ada_get_base_type (parent_type);
5598
5599 return ada_check_typedef (parent_type);
5600 }
5601
5602 return NULL;
5603 }
5604
5605 /* True iff field number FIELD_NUM of structure type TYPE contains the
5606 parent-type (inherited) fields of a derived type. Assumes TYPE is
5607 a structure type with at least FIELD_NUM+1 fields. */
5608
5609 int
5610 ada_is_parent_field (struct type *type, int field_num)
5611 {
5612 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5613 return (name != NULL
5614 && (strncmp (name, "PARENT", 6) == 0
5615 || strncmp (name, "_parent", 7) == 0));
5616 }
5617
5618 /* True iff field number FIELD_NUM of structure type TYPE is a
5619 transparent wrapper field (which should be silently traversed when doing
5620 field selection and flattened when printing). Assumes TYPE is a
5621 structure type with at least FIELD_NUM+1 fields. Such fields are always
5622 structures. */
5623
5624 int
5625 ada_is_wrapper_field (struct type *type, int field_num)
5626 {
5627 const char *name = TYPE_FIELD_NAME (type, field_num);
5628 return (name != NULL
5629 && (strncmp (name, "PARENT", 6) == 0
5630 || strcmp (name, "REP") == 0
5631 || strncmp (name, "_parent", 7) == 0
5632 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
5633 }
5634
5635 /* True iff field number FIELD_NUM of structure or union type TYPE
5636 is a variant wrapper. Assumes TYPE is a structure type with at least
5637 FIELD_NUM+1 fields. */
5638
5639 int
5640 ada_is_variant_part (struct type *type, int field_num)
5641 {
5642 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5643 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
5644 || (is_dynamic_field (type, field_num)
5645 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5646 == TYPE_CODE_UNION)));
5647 }
5648
5649 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
5650 whose discriminants are contained in the record type OUTER_TYPE,
5651 returns the type of the controlling discriminant for the variant. */
5652
5653 struct type *
5654 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
5655 {
5656 char *name = ada_variant_discrim_name (var_type);
5657 struct type *type =
5658 ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
5659 if (type == NULL)
5660 return builtin_type_int32;
5661 else
5662 return type;
5663 }
5664
5665 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
5666 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
5667 represents a 'when others' clause; otherwise 0. */
5668
5669 int
5670 ada_is_others_clause (struct type *type, int field_num)
5671 {
5672 const char *name = TYPE_FIELD_NAME (type, field_num);
5673 return (name != NULL && name[0] == 'O');
5674 }
5675
5676 /* Assuming that TYPE0 is the type of the variant part of a record,
5677 returns the name of the discriminant controlling the variant.
5678 The value is valid until the next call to ada_variant_discrim_name. */
5679
5680 char *
5681 ada_variant_discrim_name (struct type *type0)
5682 {
5683 static char *result = NULL;
5684 static size_t result_len = 0;
5685 struct type *type;
5686 const char *name;
5687 const char *discrim_end;
5688 const char *discrim_start;
5689
5690 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5691 type = TYPE_TARGET_TYPE (type0);
5692 else
5693 type = type0;
5694
5695 name = ada_type_name (type);
5696
5697 if (name == NULL || name[0] == '\000')
5698 return "";
5699
5700 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
5701 discrim_end -= 1)
5702 {
5703 if (strncmp (discrim_end, "___XVN", 6) == 0)
5704 break;
5705 }
5706 if (discrim_end == name)
5707 return "";
5708
5709 for (discrim_start = discrim_end; discrim_start != name + 3;
5710 discrim_start -= 1)
5711 {
5712 if (discrim_start == name + 1)
5713 return "";
5714 if ((discrim_start > name + 3
5715 && strncmp (discrim_start - 3, "___", 3) == 0)
5716 || discrim_start[-1] == '.')
5717 break;
5718 }
5719
5720 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
5721 strncpy (result, discrim_start, discrim_end - discrim_start);
5722 result[discrim_end - discrim_start] = '\0';
5723 return result;
5724 }
5725
5726 /* Scan STR for a subtype-encoded number, beginning at position K.
5727 Put the position of the character just past the number scanned in
5728 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
5729 Return 1 if there was a valid number at the given position, and 0
5730 otherwise. A "subtype-encoded" number consists of the absolute value
5731 in decimal, followed by the letter 'm' to indicate a negative number.
5732 Assumes 0m does not occur. */
5733
5734 int
5735 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
5736 {
5737 ULONGEST RU;
5738
5739 if (!isdigit (str[k]))
5740 return 0;
5741
5742 /* Do it the hard way so as not to make any assumption about
5743 the relationship of unsigned long (%lu scan format code) and
5744 LONGEST. */
5745 RU = 0;
5746 while (isdigit (str[k]))
5747 {
5748 RU = RU * 10 + (str[k] - '0');
5749 k += 1;
5750 }
5751
5752 if (str[k] == 'm')
5753 {
5754 if (R != NULL)
5755 *R = (-(LONGEST) (RU - 1)) - 1;
5756 k += 1;
5757 }
5758 else if (R != NULL)
5759 *R = (LONGEST) RU;
5760
5761 /* NOTE on the above: Technically, C does not say what the results of
5762 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
5763 number representable as a LONGEST (although either would probably work
5764 in most implementations). When RU>0, the locution in the then branch
5765 above is always equivalent to the negative of RU. */
5766
5767 if (new_k != NULL)
5768 *new_k = k;
5769 return 1;
5770 }
5771
5772 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
5773 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
5774 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
5775
5776 int
5777 ada_in_variant (LONGEST val, struct type *type, int field_num)
5778 {
5779 const char *name = TYPE_FIELD_NAME (type, field_num);
5780 int p;
5781
5782 p = 0;
5783 while (1)
5784 {
5785 switch (name[p])
5786 {
5787 case '\0':
5788 return 0;
5789 case 'S':
5790 {
5791 LONGEST W;
5792 if (!ada_scan_number (name, p + 1, &W, &p))
5793 return 0;
5794 if (val == W)
5795 return 1;
5796 break;
5797 }
5798 case 'R':
5799 {
5800 LONGEST L, U;
5801 if (!ada_scan_number (name, p + 1, &L, &p)
5802 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
5803 return 0;
5804 if (val >= L && val <= U)
5805 return 1;
5806 break;
5807 }
5808 case 'O':
5809 return 1;
5810 default:
5811 return 0;
5812 }
5813 }
5814 }
5815
5816 /* FIXME: Lots of redundancy below. Try to consolidate. */
5817
5818 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
5819 ARG_TYPE, extract and return the value of one of its (non-static)
5820 fields. FIELDNO says which field. Differs from value_primitive_field
5821 only in that it can handle packed values of arbitrary type. */
5822
5823 static struct value *
5824 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
5825 struct type *arg_type)
5826 {
5827 struct type *type;
5828
5829 arg_type = ada_check_typedef (arg_type);
5830 type = TYPE_FIELD_TYPE (arg_type, fieldno);
5831
5832 /* Handle packed fields. */
5833
5834 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
5835 {
5836 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
5837 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
5838
5839 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
5840 offset + bit_pos / 8,
5841 bit_pos % 8, bit_size, type);
5842 }
5843 else
5844 return value_primitive_field (arg1, offset, fieldno, arg_type);
5845 }
5846
5847 /* Find field with name NAME in object of type TYPE. If found,
5848 set the following for each argument that is non-null:
5849 - *FIELD_TYPE_P to the field's type;
5850 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
5851 an object of that type;
5852 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
5853 - *BIT_SIZE_P to its size in bits if the field is packed, and
5854 0 otherwise;
5855 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
5856 fields up to but not including the desired field, or by the total
5857 number of fields if not found. A NULL value of NAME never
5858 matches; the function just counts visible fields in this case.
5859
5860 Returns 1 if found, 0 otherwise. */
5861
5862 static int
5863 find_struct_field (char *name, struct type *type, int offset,
5864 struct type **field_type_p,
5865 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
5866 int *index_p)
5867 {
5868 int i;
5869
5870 type = ada_check_typedef (type);
5871
5872 if (field_type_p != NULL)
5873 *field_type_p = NULL;
5874 if (byte_offset_p != NULL)
5875 *byte_offset_p = 0;
5876 if (bit_offset_p != NULL)
5877 *bit_offset_p = 0;
5878 if (bit_size_p != NULL)
5879 *bit_size_p = 0;
5880
5881 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5882 {
5883 int bit_pos = TYPE_FIELD_BITPOS (type, i);
5884 int fld_offset = offset + bit_pos / 8;
5885 char *t_field_name = TYPE_FIELD_NAME (type, i);
5886
5887 if (t_field_name == NULL)
5888 continue;
5889
5890 else if (name != NULL && field_name_match (t_field_name, name))
5891 {
5892 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5893 if (field_type_p != NULL)
5894 *field_type_p = TYPE_FIELD_TYPE (type, i);
5895 if (byte_offset_p != NULL)
5896 *byte_offset_p = fld_offset;
5897 if (bit_offset_p != NULL)
5898 *bit_offset_p = bit_pos % 8;
5899 if (bit_size_p != NULL)
5900 *bit_size_p = bit_size;
5901 return 1;
5902 }
5903 else if (ada_is_wrapper_field (type, i))
5904 {
5905 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
5906 field_type_p, byte_offset_p, bit_offset_p,
5907 bit_size_p, index_p))
5908 return 1;
5909 }
5910 else if (ada_is_variant_part (type, i))
5911 {
5912 /* PNH: Wait. Do we ever execute this section, or is ARG always of
5913 fixed type?? */
5914 int j;
5915 struct type *field_type
5916 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5917
5918 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
5919 {
5920 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
5921 fld_offset
5922 + TYPE_FIELD_BITPOS (field_type, j) / 8,
5923 field_type_p, byte_offset_p,
5924 bit_offset_p, bit_size_p, index_p))
5925 return 1;
5926 }
5927 }
5928 else if (index_p != NULL)
5929 *index_p += 1;
5930 }
5931 return 0;
5932 }
5933
5934 /* Number of user-visible fields in record type TYPE. */
5935
5936 static int
5937 num_visible_fields (struct type *type)
5938 {
5939 int n;
5940 n = 0;
5941 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
5942 return n;
5943 }
5944
5945 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
5946 and search in it assuming it has (class) type TYPE.
5947 If found, return value, else return NULL.
5948
5949 Searches recursively through wrapper fields (e.g., '_parent'). */
5950
5951 static struct value *
5952 ada_search_struct_field (char *name, struct value *arg, int offset,
5953 struct type *type)
5954 {
5955 int i;
5956 type = ada_check_typedef (type);
5957
5958 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5959 {
5960 char *t_field_name = TYPE_FIELD_NAME (type, i);
5961
5962 if (t_field_name == NULL)
5963 continue;
5964
5965 else if (field_name_match (t_field_name, name))
5966 return ada_value_primitive_field (arg, offset, i, type);
5967
5968 else if (ada_is_wrapper_field (type, i))
5969 {
5970 struct value *v = /* Do not let indent join lines here. */
5971 ada_search_struct_field (name, arg,
5972 offset + TYPE_FIELD_BITPOS (type, i) / 8,
5973 TYPE_FIELD_TYPE (type, i));
5974 if (v != NULL)
5975 return v;
5976 }
5977
5978 else if (ada_is_variant_part (type, i))
5979 {
5980 /* PNH: Do we ever get here? See find_struct_field. */
5981 int j;
5982 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5983 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
5984
5985 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
5986 {
5987 struct value *v = ada_search_struct_field /* Force line break. */
5988 (name, arg,
5989 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
5990 TYPE_FIELD_TYPE (field_type, j));
5991 if (v != NULL)
5992 return v;
5993 }
5994 }
5995 }
5996 return NULL;
5997 }
5998
5999 static struct value *ada_index_struct_field_1 (int *, struct value *,
6000 int, struct type *);
6001
6002
6003 /* Return field #INDEX in ARG, where the index is that returned by
6004 * find_struct_field through its INDEX_P argument. Adjust the address
6005 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6006 * If found, return value, else return NULL. */
6007
6008 static struct value *
6009 ada_index_struct_field (int index, struct value *arg, int offset,
6010 struct type *type)
6011 {
6012 return ada_index_struct_field_1 (&index, arg, offset, type);
6013 }
6014
6015
6016 /* Auxiliary function for ada_index_struct_field. Like
6017 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6018 * *INDEX_P. */
6019
6020 static struct value *
6021 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6022 struct type *type)
6023 {
6024 int i;
6025 type = ada_check_typedef (type);
6026
6027 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6028 {
6029 if (TYPE_FIELD_NAME (type, i) == NULL)
6030 continue;
6031 else if (ada_is_wrapper_field (type, i))
6032 {
6033 struct value *v = /* Do not let indent join lines here. */
6034 ada_index_struct_field_1 (index_p, arg,
6035 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6036 TYPE_FIELD_TYPE (type, i));
6037 if (v != NULL)
6038 return v;
6039 }
6040
6041 else if (ada_is_variant_part (type, i))
6042 {
6043 /* PNH: Do we ever get here? See ada_search_struct_field,
6044 find_struct_field. */
6045 error (_("Cannot assign this kind of variant record"));
6046 }
6047 else if (*index_p == 0)
6048 return ada_value_primitive_field (arg, offset, i, type);
6049 else
6050 *index_p -= 1;
6051 }
6052 return NULL;
6053 }
6054
6055 /* Given ARG, a value of type (pointer or reference to a)*
6056 structure/union, extract the component named NAME from the ultimate
6057 target structure/union and return it as a value with its
6058 appropriate type.
6059
6060 The routine searches for NAME among all members of the structure itself
6061 and (recursively) among all members of any wrapper members
6062 (e.g., '_parent').
6063
6064 If NO_ERR, then simply return NULL in case of error, rather than
6065 calling error. */
6066
6067 struct value *
6068 ada_value_struct_elt (struct value *arg, char *name, int no_err)
6069 {
6070 struct type *t, *t1;
6071 struct value *v;
6072
6073 v = NULL;
6074 t1 = t = ada_check_typedef (value_type (arg));
6075 if (TYPE_CODE (t) == TYPE_CODE_REF)
6076 {
6077 t1 = TYPE_TARGET_TYPE (t);
6078 if (t1 == NULL)
6079 goto BadValue;
6080 t1 = ada_check_typedef (t1);
6081 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6082 {
6083 arg = coerce_ref (arg);
6084 t = t1;
6085 }
6086 }
6087
6088 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6089 {
6090 t1 = TYPE_TARGET_TYPE (t);
6091 if (t1 == NULL)
6092 goto BadValue;
6093 t1 = ada_check_typedef (t1);
6094 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6095 {
6096 arg = value_ind (arg);
6097 t = t1;
6098 }
6099 else
6100 break;
6101 }
6102
6103 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
6104 goto BadValue;
6105
6106 if (t1 == t)
6107 v = ada_search_struct_field (name, arg, 0, t);
6108 else
6109 {
6110 int bit_offset, bit_size, byte_offset;
6111 struct type *field_type;
6112 CORE_ADDR address;
6113
6114 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6115 address = value_as_address (arg);
6116 else
6117 address = unpack_pointer (t, value_contents (arg));
6118
6119 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
6120 if (find_struct_field (name, t1, 0,
6121 &field_type, &byte_offset, &bit_offset,
6122 &bit_size, NULL))
6123 {
6124 if (bit_size != 0)
6125 {
6126 if (TYPE_CODE (t) == TYPE_CODE_REF)
6127 arg = ada_coerce_ref (arg);
6128 else
6129 arg = ada_value_ind (arg);
6130 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6131 bit_offset, bit_size,
6132 field_type);
6133 }
6134 else
6135 v = value_at_lazy (field_type, address + byte_offset);
6136 }
6137 }
6138
6139 if (v != NULL || no_err)
6140 return v;
6141 else
6142 error (_("There is no member named %s."), name);
6143
6144 BadValue:
6145 if (no_err)
6146 return NULL;
6147 else
6148 error (_("Attempt to extract a component of a value that is not a record."));
6149 }
6150
6151 /* Given a type TYPE, look up the type of the component of type named NAME.
6152 If DISPP is non-null, add its byte displacement from the beginning of a
6153 structure (pointed to by a value) of type TYPE to *DISPP (does not
6154 work for packed fields).
6155
6156 Matches any field whose name has NAME as a prefix, possibly
6157 followed by "___".
6158
6159 TYPE can be either a struct or union. If REFOK, TYPE may also
6160 be a (pointer or reference)+ to a struct or union, and the
6161 ultimate target type will be searched.
6162
6163 Looks recursively into variant clauses and parent types.
6164
6165 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6166 TYPE is not a type of the right kind. */
6167
6168 static struct type *
6169 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6170 int noerr, int *dispp)
6171 {
6172 int i;
6173
6174 if (name == NULL)
6175 goto BadName;
6176
6177 if (refok && type != NULL)
6178 while (1)
6179 {
6180 type = ada_check_typedef (type);
6181 if (TYPE_CODE (type) != TYPE_CODE_PTR
6182 && TYPE_CODE (type) != TYPE_CODE_REF)
6183 break;
6184 type = TYPE_TARGET_TYPE (type);
6185 }
6186
6187 if (type == NULL
6188 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6189 && TYPE_CODE (type) != TYPE_CODE_UNION))
6190 {
6191 if (noerr)
6192 return NULL;
6193 else
6194 {
6195 target_terminal_ours ();
6196 gdb_flush (gdb_stdout);
6197 if (type == NULL)
6198 error (_("Type (null) is not a structure or union type"));
6199 else
6200 {
6201 /* XXX: type_sprint */
6202 fprintf_unfiltered (gdb_stderr, _("Type "));
6203 type_print (type, "", gdb_stderr, -1);
6204 error (_(" is not a structure or union type"));
6205 }
6206 }
6207 }
6208
6209 type = to_static_fixed_type (type);
6210
6211 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6212 {
6213 char *t_field_name = TYPE_FIELD_NAME (type, i);
6214 struct type *t;
6215 int disp;
6216
6217 if (t_field_name == NULL)
6218 continue;
6219
6220 else if (field_name_match (t_field_name, name))
6221 {
6222 if (dispp != NULL)
6223 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
6224 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6225 }
6226
6227 else if (ada_is_wrapper_field (type, i))
6228 {
6229 disp = 0;
6230 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6231 0, 1, &disp);
6232 if (t != NULL)
6233 {
6234 if (dispp != NULL)
6235 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6236 return t;
6237 }
6238 }
6239
6240 else if (ada_is_variant_part (type, i))
6241 {
6242 int j;
6243 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6244
6245 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6246 {
6247 /* FIXME pnh 2008/01/26: We check for a field that is
6248 NOT wrapped in a struct, since the compiler sometimes
6249 generates these for unchecked variant types. Revisit
6250 if the compiler changes this practice. */
6251 char *v_field_name = TYPE_FIELD_NAME (field_type, j);
6252 disp = 0;
6253 if (v_field_name != NULL
6254 && field_name_match (v_field_name, name))
6255 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6256 else
6257 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
6258 name, 0, 1, &disp);
6259
6260 if (t != NULL)
6261 {
6262 if (dispp != NULL)
6263 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6264 return t;
6265 }
6266 }
6267 }
6268
6269 }
6270
6271 BadName:
6272 if (!noerr)
6273 {
6274 target_terminal_ours ();
6275 gdb_flush (gdb_stdout);
6276 if (name == NULL)
6277 {
6278 /* XXX: type_sprint */
6279 fprintf_unfiltered (gdb_stderr, _("Type "));
6280 type_print (type, "", gdb_stderr, -1);
6281 error (_(" has no component named <null>"));
6282 }
6283 else
6284 {
6285 /* XXX: type_sprint */
6286 fprintf_unfiltered (gdb_stderr, _("Type "));
6287 type_print (type, "", gdb_stderr, -1);
6288 error (_(" has no component named %s"), name);
6289 }
6290 }
6291
6292 return NULL;
6293 }
6294
6295 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6296 within a value of type OUTER_TYPE, return true iff VAR_TYPE
6297 represents an unchecked union (that is, the variant part of a
6298 record that is named in an Unchecked_Union pragma). */
6299
6300 static int
6301 is_unchecked_variant (struct type *var_type, struct type *outer_type)
6302 {
6303 char *discrim_name = ada_variant_discrim_name (var_type);
6304 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
6305 == NULL);
6306 }
6307
6308
6309 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6310 within a value of type OUTER_TYPE that is stored in GDB at
6311 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6312 numbering from 0) is applicable. Returns -1 if none are. */
6313
6314 int
6315 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
6316 const gdb_byte *outer_valaddr)
6317 {
6318 int others_clause;
6319 int i;
6320 char *discrim_name = ada_variant_discrim_name (var_type);
6321 struct value *outer;
6322 struct value *discrim;
6323 LONGEST discrim_val;
6324
6325 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6326 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6327 if (discrim == NULL)
6328 return -1;
6329 discrim_val = value_as_long (discrim);
6330
6331 others_clause = -1;
6332 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6333 {
6334 if (ada_is_others_clause (var_type, i))
6335 others_clause = i;
6336 else if (ada_in_variant (discrim_val, var_type, i))
6337 return i;
6338 }
6339
6340 return others_clause;
6341 }
6342 \f
6343
6344
6345 /* Dynamic-Sized Records */
6346
6347 /* Strategy: The type ostensibly attached to a value with dynamic size
6348 (i.e., a size that is not statically recorded in the debugging
6349 data) does not accurately reflect the size or layout of the value.
6350 Our strategy is to convert these values to values with accurate,
6351 conventional types that are constructed on the fly. */
6352
6353 /* There is a subtle and tricky problem here. In general, we cannot
6354 determine the size of dynamic records without its data. However,
6355 the 'struct value' data structure, which GDB uses to represent
6356 quantities in the inferior process (the target), requires the size
6357 of the type at the time of its allocation in order to reserve space
6358 for GDB's internal copy of the data. That's why the
6359 'to_fixed_xxx_type' routines take (target) addresses as parameters,
6360 rather than struct value*s.
6361
6362 However, GDB's internal history variables ($1, $2, etc.) are
6363 struct value*s containing internal copies of the data that are not, in
6364 general, the same as the data at their corresponding addresses in
6365 the target. Fortunately, the types we give to these values are all
6366 conventional, fixed-size types (as per the strategy described
6367 above), so that we don't usually have to perform the
6368 'to_fixed_xxx_type' conversions to look at their values.
6369 Unfortunately, there is one exception: if one of the internal
6370 history variables is an array whose elements are unconstrained
6371 records, then we will need to create distinct fixed types for each
6372 element selected. */
6373
6374 /* The upshot of all of this is that many routines take a (type, host
6375 address, target address) triple as arguments to represent a value.
6376 The host address, if non-null, is supposed to contain an internal
6377 copy of the relevant data; otherwise, the program is to consult the
6378 target at the target address. */
6379
6380 /* Assuming that VAL0 represents a pointer value, the result of
6381 dereferencing it. Differs from value_ind in its treatment of
6382 dynamic-sized types. */
6383
6384 struct value *
6385 ada_value_ind (struct value *val0)
6386 {
6387 struct value *val = unwrap_value (value_ind (val0));
6388 return ada_to_fixed_value (val);
6389 }
6390
6391 /* The value resulting from dereferencing any "reference to"
6392 qualifiers on VAL0. */
6393
6394 static struct value *
6395 ada_coerce_ref (struct value *val0)
6396 {
6397 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
6398 {
6399 struct value *val = val0;
6400 val = coerce_ref (val);
6401 val = unwrap_value (val);
6402 return ada_to_fixed_value (val);
6403 }
6404 else
6405 return val0;
6406 }
6407
6408 /* Return OFF rounded upward if necessary to a multiple of
6409 ALIGNMENT (a power of 2). */
6410
6411 static unsigned int
6412 align_value (unsigned int off, unsigned int alignment)
6413 {
6414 return (off + alignment - 1) & ~(alignment - 1);
6415 }
6416
6417 /* Return the bit alignment required for field #F of template type TYPE. */
6418
6419 static unsigned int
6420 field_alignment (struct type *type, int f)
6421 {
6422 const char *name = TYPE_FIELD_NAME (type, f);
6423 int len;
6424 int align_offset;
6425
6426 /* The field name should never be null, unless the debugging information
6427 is somehow malformed. In this case, we assume the field does not
6428 require any alignment. */
6429 if (name == NULL)
6430 return 1;
6431
6432 len = strlen (name);
6433
6434 if (!isdigit (name[len - 1]))
6435 return 1;
6436
6437 if (isdigit (name[len - 2]))
6438 align_offset = len - 2;
6439 else
6440 align_offset = len - 1;
6441
6442 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
6443 return TARGET_CHAR_BIT;
6444
6445 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6446 }
6447
6448 /* Find a symbol named NAME. Ignores ambiguity. */
6449
6450 struct symbol *
6451 ada_find_any_symbol (const char *name)
6452 {
6453 struct symbol *sym;
6454
6455 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6456 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6457 return sym;
6458
6459 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6460 return sym;
6461 }
6462
6463 /* Find a type named NAME. Ignores ambiguity. This routine will look
6464 solely for types defined by debug info, it will not search the GDB
6465 primitive types. */
6466
6467 struct type *
6468 ada_find_any_type (const char *name)
6469 {
6470 struct symbol *sym = ada_find_any_symbol (name);
6471
6472 if (sym != NULL)
6473 return SYMBOL_TYPE (sym);
6474
6475 return NULL;
6476 }
6477
6478 /* Given NAME and an associated BLOCK, search all symbols for
6479 NAME suffixed with "___XR", which is the ``renaming'' symbol
6480 associated to NAME. Return this symbol if found, return
6481 NULL otherwise. */
6482
6483 struct symbol *
6484 ada_find_renaming_symbol (const char *name, struct block *block)
6485 {
6486 struct symbol *sym;
6487
6488 sym = find_old_style_renaming_symbol (name, block);
6489
6490 if (sym != NULL)
6491 return sym;
6492
6493 /* Not right yet. FIXME pnh 7/20/2007. */
6494 sym = ada_find_any_symbol (name);
6495 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
6496 return sym;
6497 else
6498 return NULL;
6499 }
6500
6501 static struct symbol *
6502 find_old_style_renaming_symbol (const char *name, struct block *block)
6503 {
6504 const struct symbol *function_sym = block_linkage_function (block);
6505 char *rename;
6506
6507 if (function_sym != NULL)
6508 {
6509 /* If the symbol is defined inside a function, NAME is not fully
6510 qualified. This means we need to prepend the function name
6511 as well as adding the ``___XR'' suffix to build the name of
6512 the associated renaming symbol. */
6513 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
6514 /* Function names sometimes contain suffixes used
6515 for instance to qualify nested subprograms. When building
6516 the XR type name, we need to make sure that this suffix is
6517 not included. So do not include any suffix in the function
6518 name length below. */
6519 const int function_name_len = ada_name_prefix_len (function_name);
6520 const int rename_len = function_name_len + 2 /* "__" */
6521 + strlen (name) + 6 /* "___XR\0" */ ;
6522
6523 /* Strip the suffix if necessary. */
6524 function_name[function_name_len] = '\0';
6525
6526 /* Library-level functions are a special case, as GNAT adds
6527 a ``_ada_'' prefix to the function name to avoid namespace
6528 pollution. However, the renaming symbols themselves do not
6529 have this prefix, so we need to skip this prefix if present. */
6530 if (function_name_len > 5 /* "_ada_" */
6531 && strstr (function_name, "_ada_") == function_name)
6532 function_name = function_name + 5;
6533
6534 rename = (char *) alloca (rename_len * sizeof (char));
6535 xsnprintf (rename, rename_len * sizeof (char), "%s__%s___XR",
6536 function_name, name);
6537 }
6538 else
6539 {
6540 const int rename_len = strlen (name) + 6;
6541 rename = (char *) alloca (rename_len * sizeof (char));
6542 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
6543 }
6544
6545 return ada_find_any_symbol (rename);
6546 }
6547
6548 /* Because of GNAT encoding conventions, several GDB symbols may match a
6549 given type name. If the type denoted by TYPE0 is to be preferred to
6550 that of TYPE1 for purposes of type printing, return non-zero;
6551 otherwise return 0. */
6552
6553 int
6554 ada_prefer_type (struct type *type0, struct type *type1)
6555 {
6556 if (type1 == NULL)
6557 return 1;
6558 else if (type0 == NULL)
6559 return 0;
6560 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6561 return 1;
6562 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6563 return 0;
6564 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6565 return 1;
6566 else if (ada_is_packed_array_type (type0))
6567 return 1;
6568 else if (ada_is_array_descriptor_type (type0)
6569 && !ada_is_array_descriptor_type (type1))
6570 return 1;
6571 else
6572 {
6573 const char *type0_name = type_name_no_tag (type0);
6574 const char *type1_name = type_name_no_tag (type1);
6575
6576 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
6577 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
6578 return 1;
6579 }
6580 return 0;
6581 }
6582
6583 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
6584 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6585
6586 char *
6587 ada_type_name (struct type *type)
6588 {
6589 if (type == NULL)
6590 return NULL;
6591 else if (TYPE_NAME (type) != NULL)
6592 return TYPE_NAME (type);
6593 else
6594 return TYPE_TAG_NAME (type);
6595 }
6596
6597 /* Find a parallel type to TYPE whose name is formed by appending
6598 SUFFIX to the name of TYPE. */
6599
6600 struct type *
6601 ada_find_parallel_type (struct type *type, const char *suffix)
6602 {
6603 static char *name;
6604 static size_t name_len = 0;
6605 int len;
6606 char *typename = ada_type_name (type);
6607
6608 if (typename == NULL)
6609 return NULL;
6610
6611 len = strlen (typename);
6612
6613 GROW_VECT (name, name_len, len + strlen (suffix) + 1);
6614
6615 strcpy (name, typename);
6616 strcpy (name + len, suffix);
6617
6618 return ada_find_any_type (name);
6619 }
6620
6621
6622 /* If TYPE is a variable-size record type, return the corresponding template
6623 type describing its fields. Otherwise, return NULL. */
6624
6625 static struct type *
6626 dynamic_template_type (struct type *type)
6627 {
6628 type = ada_check_typedef (type);
6629
6630 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
6631 || ada_type_name (type) == NULL)
6632 return NULL;
6633 else
6634 {
6635 int len = strlen (ada_type_name (type));
6636 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
6637 return type;
6638 else
6639 return ada_find_parallel_type (type, "___XVE");
6640 }
6641 }
6642
6643 /* Assuming that TEMPL_TYPE is a union or struct type, returns
6644 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
6645
6646 static int
6647 is_dynamic_field (struct type *templ_type, int field_num)
6648 {
6649 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
6650 return name != NULL
6651 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
6652 && strstr (name, "___XVL") != NULL;
6653 }
6654
6655 /* The index of the variant field of TYPE, or -1 if TYPE does not
6656 represent a variant record type. */
6657
6658 static int
6659 variant_field_index (struct type *type)
6660 {
6661 int f;
6662
6663 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6664 return -1;
6665
6666 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
6667 {
6668 if (ada_is_variant_part (type, f))
6669 return f;
6670 }
6671 return -1;
6672 }
6673
6674 /* A record type with no fields. */
6675
6676 static struct type *
6677 empty_record (struct objfile *objfile)
6678 {
6679 struct type *type = alloc_type (objfile);
6680 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6681 TYPE_NFIELDS (type) = 0;
6682 TYPE_FIELDS (type) = NULL;
6683 INIT_CPLUS_SPECIFIC (type);
6684 TYPE_NAME (type) = "<empty>";
6685 TYPE_TAG_NAME (type) = NULL;
6686 TYPE_LENGTH (type) = 0;
6687 return type;
6688 }
6689
6690 /* An ordinary record type (with fixed-length fields) that describes
6691 the value of type TYPE at VALADDR or ADDRESS (see comments at
6692 the beginning of this section) VAL according to GNAT conventions.
6693 DVAL0 should describe the (portion of a) record that contains any
6694 necessary discriminants. It should be NULL if value_type (VAL) is
6695 an outer-level type (i.e., as opposed to a branch of a variant.) A
6696 variant field (unless unchecked) is replaced by a particular branch
6697 of the variant.
6698
6699 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
6700 length are not statically known are discarded. As a consequence,
6701 VALADDR, ADDRESS and DVAL0 are ignored.
6702
6703 NOTE: Limitations: For now, we assume that dynamic fields and
6704 variants occupy whole numbers of bytes. However, they need not be
6705 byte-aligned. */
6706
6707 struct type *
6708 ada_template_to_fixed_record_type_1 (struct type *type,
6709 const gdb_byte *valaddr,
6710 CORE_ADDR address, struct value *dval0,
6711 int keep_dynamic_fields)
6712 {
6713 struct value *mark = value_mark ();
6714 struct value *dval;
6715 struct type *rtype;
6716 int nfields, bit_len;
6717 int variant_field;
6718 long off;
6719 int fld_bit_len, bit_incr;
6720 int f;
6721
6722 /* Compute the number of fields in this record type that are going
6723 to be processed: unless keep_dynamic_fields, this includes only
6724 fields whose position and length are static will be processed. */
6725 if (keep_dynamic_fields)
6726 nfields = TYPE_NFIELDS (type);
6727 else
6728 {
6729 nfields = 0;
6730 while (nfields < TYPE_NFIELDS (type)
6731 && !ada_is_variant_part (type, nfields)
6732 && !is_dynamic_field (type, nfields))
6733 nfields++;
6734 }
6735
6736 rtype = alloc_type (TYPE_OBJFILE (type));
6737 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6738 INIT_CPLUS_SPECIFIC (rtype);
6739 TYPE_NFIELDS (rtype) = nfields;
6740 TYPE_FIELDS (rtype) = (struct field *)
6741 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6742 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
6743 TYPE_NAME (rtype) = ada_type_name (type);
6744 TYPE_TAG_NAME (rtype) = NULL;
6745 TYPE_FIXED_INSTANCE (rtype) = 1;
6746
6747 off = 0;
6748 bit_len = 0;
6749 variant_field = -1;
6750
6751 for (f = 0; f < nfields; f += 1)
6752 {
6753 off = align_value (off, field_alignment (type, f))
6754 + TYPE_FIELD_BITPOS (type, f);
6755 TYPE_FIELD_BITPOS (rtype, f) = off;
6756 TYPE_FIELD_BITSIZE (rtype, f) = 0;
6757
6758 if (ada_is_variant_part (type, f))
6759 {
6760 variant_field = f;
6761 fld_bit_len = bit_incr = 0;
6762 }
6763 else if (is_dynamic_field (type, f))
6764 {
6765 const gdb_byte *field_valaddr = valaddr;
6766 CORE_ADDR field_address = address;
6767 struct type *field_type =
6768 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
6769
6770 if (dval0 == NULL)
6771 {
6772 /* rtype's length is computed based on the run-time
6773 value of discriminants. If the discriminants are not
6774 initialized, the type size may be completely bogus and
6775 GDB may fail to allocate a value for it. So check the
6776 size first before creating the value. */
6777 check_size (rtype);
6778 dval = value_from_contents_and_address (rtype, valaddr, address);
6779 }
6780 else
6781 dval = dval0;
6782
6783 /* If the type referenced by this field is an aligner type, we need
6784 to unwrap that aligner type, because its size might not be set.
6785 Keeping the aligner type would cause us to compute the wrong
6786 size for this field, impacting the offset of the all the fields
6787 that follow this one. */
6788 if (ada_is_aligner_type (field_type))
6789 {
6790 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
6791
6792 field_valaddr = cond_offset_host (field_valaddr, field_offset);
6793 field_address = cond_offset_target (field_address, field_offset);
6794 field_type = ada_aligned_type (field_type);
6795 }
6796
6797 field_valaddr = cond_offset_host (field_valaddr,
6798 off / TARGET_CHAR_BIT);
6799 field_address = cond_offset_target (field_address,
6800 off / TARGET_CHAR_BIT);
6801
6802 /* Get the fixed type of the field. Note that, in this case,
6803 we do not want to get the real type out of the tag: if
6804 the current field is the parent part of a tagged record,
6805 we will get the tag of the object. Clearly wrong: the real
6806 type of the parent is not the real type of the child. We
6807 would end up in an infinite loop. */
6808 field_type = ada_get_base_type (field_type);
6809 field_type = ada_to_fixed_type (field_type, field_valaddr,
6810 field_address, dval, 0);
6811
6812 TYPE_FIELD_TYPE (rtype, f) = field_type;
6813 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6814 bit_incr = fld_bit_len =
6815 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
6816 }
6817 else
6818 {
6819 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
6820 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6821 if (TYPE_FIELD_BITSIZE (type, f) > 0)
6822 bit_incr = fld_bit_len =
6823 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
6824 else
6825 bit_incr = fld_bit_len =
6826 TYPE_LENGTH (TYPE_FIELD_TYPE (type, f)) * TARGET_CHAR_BIT;
6827 }
6828 if (off + fld_bit_len > bit_len)
6829 bit_len = off + fld_bit_len;
6830 off += bit_incr;
6831 TYPE_LENGTH (rtype) =
6832 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6833 }
6834
6835 /* We handle the variant part, if any, at the end because of certain
6836 odd cases in which it is re-ordered so as NOT to be the last field of
6837 the record. This can happen in the presence of representation
6838 clauses. */
6839 if (variant_field >= 0)
6840 {
6841 struct type *branch_type;
6842
6843 off = TYPE_FIELD_BITPOS (rtype, variant_field);
6844
6845 if (dval0 == NULL)
6846 dval = value_from_contents_and_address (rtype, valaddr, address);
6847 else
6848 dval = dval0;
6849
6850 branch_type =
6851 to_fixed_variant_branch_type
6852 (TYPE_FIELD_TYPE (type, variant_field),
6853 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6854 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
6855 if (branch_type == NULL)
6856 {
6857 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
6858 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6859 TYPE_NFIELDS (rtype) -= 1;
6860 }
6861 else
6862 {
6863 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6864 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6865 fld_bit_len =
6866 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
6867 TARGET_CHAR_BIT;
6868 if (off + fld_bit_len > bit_len)
6869 bit_len = off + fld_bit_len;
6870 TYPE_LENGTH (rtype) =
6871 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6872 }
6873 }
6874
6875 /* According to exp_dbug.ads, the size of TYPE for variable-size records
6876 should contain the alignment of that record, which should be a strictly
6877 positive value. If null or negative, then something is wrong, most
6878 probably in the debug info. In that case, we don't round up the size
6879 of the resulting type. If this record is not part of another structure,
6880 the current RTYPE length might be good enough for our purposes. */
6881 if (TYPE_LENGTH (type) <= 0)
6882 {
6883 if (TYPE_NAME (rtype))
6884 warning (_("Invalid type size for `%s' detected: %d."),
6885 TYPE_NAME (rtype), TYPE_LENGTH (type));
6886 else
6887 warning (_("Invalid type size for <unnamed> detected: %d."),
6888 TYPE_LENGTH (type));
6889 }
6890 else
6891 {
6892 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
6893 TYPE_LENGTH (type));
6894 }
6895
6896 value_free_to_mark (mark);
6897 if (TYPE_LENGTH (rtype) > varsize_limit)
6898 error (_("record type with dynamic size is larger than varsize-limit"));
6899 return rtype;
6900 }
6901
6902 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
6903 of 1. */
6904
6905 static struct type *
6906 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
6907 CORE_ADDR address, struct value *dval0)
6908 {
6909 return ada_template_to_fixed_record_type_1 (type, valaddr,
6910 address, dval0, 1);
6911 }
6912
6913 /* An ordinary record type in which ___XVL-convention fields and
6914 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
6915 static approximations, containing all possible fields. Uses
6916 no runtime values. Useless for use in values, but that's OK,
6917 since the results are used only for type determinations. Works on both
6918 structs and unions. Representation note: to save space, we memorize
6919 the result of this function in the TYPE_TARGET_TYPE of the
6920 template type. */
6921
6922 static struct type *
6923 template_to_static_fixed_type (struct type *type0)
6924 {
6925 struct type *type;
6926 int nfields;
6927 int f;
6928
6929 if (TYPE_TARGET_TYPE (type0) != NULL)
6930 return TYPE_TARGET_TYPE (type0);
6931
6932 nfields = TYPE_NFIELDS (type0);
6933 type = type0;
6934
6935 for (f = 0; f < nfields; f += 1)
6936 {
6937 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
6938 struct type *new_type;
6939
6940 if (is_dynamic_field (type0, f))
6941 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
6942 else
6943 new_type = static_unwrap_type (field_type);
6944 if (type == type0 && new_type != field_type)
6945 {
6946 TYPE_TARGET_TYPE (type0) = type = alloc_type (TYPE_OBJFILE (type0));
6947 TYPE_CODE (type) = TYPE_CODE (type0);
6948 INIT_CPLUS_SPECIFIC (type);
6949 TYPE_NFIELDS (type) = nfields;
6950 TYPE_FIELDS (type) = (struct field *)
6951 TYPE_ALLOC (type, nfields * sizeof (struct field));
6952 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
6953 sizeof (struct field) * nfields);
6954 TYPE_NAME (type) = ada_type_name (type0);
6955 TYPE_TAG_NAME (type) = NULL;
6956 TYPE_FIXED_INSTANCE (type) = 1;
6957 TYPE_LENGTH (type) = 0;
6958 }
6959 TYPE_FIELD_TYPE (type, f) = new_type;
6960 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
6961 }
6962 return type;
6963 }
6964
6965 /* Given an object of type TYPE whose contents are at VALADDR and
6966 whose address in memory is ADDRESS, returns a revision of TYPE,
6967 which should be a non-dynamic-sized record, in which the variant
6968 part, if any, is replaced with the appropriate branch. Looks
6969 for discriminant values in DVAL0, which can be NULL if the record
6970 contains the necessary discriminant values. */
6971
6972 static struct type *
6973 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
6974 CORE_ADDR address, struct value *dval0)
6975 {
6976 struct value *mark = value_mark ();
6977 struct value *dval;
6978 struct type *rtype;
6979 struct type *branch_type;
6980 int nfields = TYPE_NFIELDS (type);
6981 int variant_field = variant_field_index (type);
6982
6983 if (variant_field == -1)
6984 return type;
6985
6986 if (dval0 == NULL)
6987 dval = value_from_contents_and_address (type, valaddr, address);
6988 else
6989 dval = dval0;
6990
6991 rtype = alloc_type (TYPE_OBJFILE (type));
6992 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6993 INIT_CPLUS_SPECIFIC (rtype);
6994 TYPE_NFIELDS (rtype) = nfields;
6995 TYPE_FIELDS (rtype) =
6996 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6997 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
6998 sizeof (struct field) * nfields);
6999 TYPE_NAME (rtype) = ada_type_name (type);
7000 TYPE_TAG_NAME (rtype) = NULL;
7001 TYPE_FIXED_INSTANCE (rtype) = 1;
7002 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7003
7004 branch_type = to_fixed_variant_branch_type
7005 (TYPE_FIELD_TYPE (type, variant_field),
7006 cond_offset_host (valaddr,
7007 TYPE_FIELD_BITPOS (type, variant_field)
7008 / TARGET_CHAR_BIT),
7009 cond_offset_target (address,
7010 TYPE_FIELD_BITPOS (type, variant_field)
7011 / TARGET_CHAR_BIT), dval);
7012 if (branch_type == NULL)
7013 {
7014 int f;
7015 for (f = variant_field + 1; f < nfields; f += 1)
7016 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7017 TYPE_NFIELDS (rtype) -= 1;
7018 }
7019 else
7020 {
7021 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7022 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7023 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7024 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7025 }
7026 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
7027
7028 value_free_to_mark (mark);
7029 return rtype;
7030 }
7031
7032 /* An ordinary record type (with fixed-length fields) that describes
7033 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7034 beginning of this section]. Any necessary discriminants' values
7035 should be in DVAL, a record value; it may be NULL if the object
7036 at ADDR itself contains any necessary discriminant values.
7037 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7038 values from the record are needed. Except in the case that DVAL,
7039 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7040 unchecked) is replaced by a particular branch of the variant.
7041
7042 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7043 is questionable and may be removed. It can arise during the
7044 processing of an unconstrained-array-of-record type where all the
7045 variant branches have exactly the same size. This is because in
7046 such cases, the compiler does not bother to use the XVS convention
7047 when encoding the record. I am currently dubious of this
7048 shortcut and suspect the compiler should be altered. FIXME. */
7049
7050 static struct type *
7051 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7052 CORE_ADDR address, struct value *dval)
7053 {
7054 struct type *templ_type;
7055
7056 if (TYPE_FIXED_INSTANCE (type0))
7057 return type0;
7058
7059 templ_type = dynamic_template_type (type0);
7060
7061 if (templ_type != NULL)
7062 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7063 else if (variant_field_index (type0) >= 0)
7064 {
7065 if (dval == NULL && valaddr == NULL && address == 0)
7066 return type0;
7067 return to_record_with_fixed_variant_part (type0, valaddr, address,
7068 dval);
7069 }
7070 else
7071 {
7072 TYPE_FIXED_INSTANCE (type0) = 1;
7073 return type0;
7074 }
7075
7076 }
7077
7078 /* An ordinary record type (with fixed-length fields) that describes
7079 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7080 union type. Any necessary discriminants' values should be in DVAL,
7081 a record value. That is, this routine selects the appropriate
7082 branch of the union at ADDR according to the discriminant value
7083 indicated in the union's type name. Returns VAR_TYPE0 itself if
7084 it represents a variant subject to a pragma Unchecked_Union. */
7085
7086 static struct type *
7087 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7088 CORE_ADDR address, struct value *dval)
7089 {
7090 int which;
7091 struct type *templ_type;
7092 struct type *var_type;
7093
7094 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7095 var_type = TYPE_TARGET_TYPE (var_type0);
7096 else
7097 var_type = var_type0;
7098
7099 templ_type = ada_find_parallel_type (var_type, "___XVU");
7100
7101 if (templ_type != NULL)
7102 var_type = templ_type;
7103
7104 if (is_unchecked_variant (var_type, value_type (dval)))
7105 return var_type0;
7106 which =
7107 ada_which_variant_applies (var_type,
7108 value_type (dval), value_contents (dval));
7109
7110 if (which < 0)
7111 return empty_record (TYPE_OBJFILE (var_type));
7112 else if (is_dynamic_field (var_type, which))
7113 return to_fixed_record_type
7114 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7115 valaddr, address, dval);
7116 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
7117 return
7118 to_fixed_record_type
7119 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
7120 else
7121 return TYPE_FIELD_TYPE (var_type, which);
7122 }
7123
7124 /* Assuming that TYPE0 is an array type describing the type of a value
7125 at ADDR, and that DVAL describes a record containing any
7126 discriminants used in TYPE0, returns a type for the value that
7127 contains no dynamic components (that is, no components whose sizes
7128 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7129 true, gives an error message if the resulting type's size is over
7130 varsize_limit. */
7131
7132 static struct type *
7133 to_fixed_array_type (struct type *type0, struct value *dval,
7134 int ignore_too_big)
7135 {
7136 struct type *index_type_desc;
7137 struct type *result;
7138 int packed_array_p;
7139
7140 if (TYPE_FIXED_INSTANCE (type0))
7141 return type0;
7142
7143 packed_array_p = ada_is_packed_array_type (type0);
7144 if (packed_array_p)
7145 type0 = decode_packed_array_type (type0);
7146
7147 index_type_desc = ada_find_parallel_type (type0, "___XA");
7148 if (index_type_desc == NULL)
7149 {
7150 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
7151 /* NOTE: elt_type---the fixed version of elt_type0---should never
7152 depend on the contents of the array in properly constructed
7153 debugging data. */
7154 /* Create a fixed version of the array element type.
7155 We're not providing the address of an element here,
7156 and thus the actual object value cannot be inspected to do
7157 the conversion. This should not be a problem, since arrays of
7158 unconstrained objects are not allowed. In particular, all
7159 the elements of an array of a tagged type should all be of
7160 the same type specified in the debugging info. No need to
7161 consult the object tag. */
7162 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
7163
7164 /* Make sure we always create a new array type when dealing with
7165 packed array types, since we're going to fix-up the array
7166 type length and element bitsize a little further down. */
7167 if (elt_type0 == elt_type && !packed_array_p)
7168 result = type0;
7169 else
7170 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
7171 elt_type, TYPE_INDEX_TYPE (type0));
7172 }
7173 else
7174 {
7175 int i;
7176 struct type *elt_type0;
7177
7178 elt_type0 = type0;
7179 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
7180 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7181
7182 /* NOTE: result---the fixed version of elt_type0---should never
7183 depend on the contents of the array in properly constructed
7184 debugging data. */
7185 /* Create a fixed version of the array element type.
7186 We're not providing the address of an element here,
7187 and thus the actual object value cannot be inspected to do
7188 the conversion. This should not be a problem, since arrays of
7189 unconstrained objects are not allowed. In particular, all
7190 the elements of an array of a tagged type should all be of
7191 the same type specified in the debugging info. No need to
7192 consult the object tag. */
7193 result =
7194 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
7195 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
7196 {
7197 struct type *range_type =
7198 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, i),
7199 dval, TYPE_OBJFILE (type0));
7200 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
7201 result, range_type);
7202 }
7203 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
7204 error (_("array type with dynamic size is larger than varsize-limit"));
7205 }
7206
7207 if (packed_array_p)
7208 {
7209 /* So far, the resulting type has been created as if the original
7210 type was a regular (non-packed) array type. As a result, the
7211 bitsize of the array elements needs to be set again, and the array
7212 length needs to be recomputed based on that bitsize. */
7213 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
7214 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
7215
7216 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
7217 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
7218 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
7219 TYPE_LENGTH (result)++;
7220 }
7221
7222 TYPE_FIXED_INSTANCE (result) = 1;
7223 return result;
7224 }
7225
7226
7227 /* A standard type (containing no dynamically sized components)
7228 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7229 DVAL describes a record containing any discriminants used in TYPE0,
7230 and may be NULL if there are none, or if the object of type TYPE at
7231 ADDRESS or in VALADDR contains these discriminants.
7232
7233 If CHECK_TAG is not null, in the case of tagged types, this function
7234 attempts to locate the object's tag and use it to compute the actual
7235 type. However, when ADDRESS is null, we cannot use it to determine the
7236 location of the tag, and therefore compute the tagged type's actual type.
7237 So we return the tagged type without consulting the tag. */
7238
7239 static struct type *
7240 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
7241 CORE_ADDR address, struct value *dval, int check_tag)
7242 {
7243 type = ada_check_typedef (type);
7244 switch (TYPE_CODE (type))
7245 {
7246 default:
7247 return type;
7248 case TYPE_CODE_STRUCT:
7249 {
7250 struct type *static_type = to_static_fixed_type (type);
7251 struct type *fixed_record_type =
7252 to_fixed_record_type (type, valaddr, address, NULL);
7253 /* If STATIC_TYPE is a tagged type and we know the object's address,
7254 then we can determine its tag, and compute the object's actual
7255 type from there. Note that we have to use the fixed record
7256 type (the parent part of the record may have dynamic fields
7257 and the way the location of _tag is expressed may depend on
7258 them). */
7259
7260 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
7261 {
7262 struct type *real_type =
7263 type_from_tag (value_tag_from_contents_and_address
7264 (fixed_record_type,
7265 valaddr,
7266 address));
7267 if (real_type != NULL)
7268 return to_fixed_record_type (real_type, valaddr, address, NULL);
7269 }
7270
7271 /* Check to see if there is a parallel ___XVZ variable.
7272 If there is, then it provides the actual size of our type. */
7273 else if (ada_type_name (fixed_record_type) != NULL)
7274 {
7275 char *name = ada_type_name (fixed_record_type);
7276 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
7277 int xvz_found = 0;
7278 LONGEST size;
7279
7280 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
7281 size = get_int_var_value (xvz_name, &xvz_found);
7282 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
7283 {
7284 fixed_record_type = copy_type (fixed_record_type);
7285 TYPE_LENGTH (fixed_record_type) = size;
7286
7287 /* The FIXED_RECORD_TYPE may have be a stub. We have
7288 observed this when the debugging info is STABS, and
7289 apparently it is something that is hard to fix.
7290
7291 In practice, we don't need the actual type definition
7292 at all, because the presence of the XVZ variable allows us
7293 to assume that there must be a XVS type as well, which we
7294 should be able to use later, when we need the actual type
7295 definition.
7296
7297 In the meantime, pretend that the "fixed" type we are
7298 returning is NOT a stub, because this can cause trouble
7299 when using this type to create new types targeting it.
7300 Indeed, the associated creation routines often check
7301 whether the target type is a stub and will try to replace
7302 it, thus using a type with the wrong size. This, in turn,
7303 might cause the new type to have the wrong size too.
7304 Consider the case of an array, for instance, where the size
7305 of the array is computed from the number of elements in
7306 our array multiplied by the size of its element. */
7307 TYPE_STUB (fixed_record_type) = 0;
7308 }
7309 }
7310 return fixed_record_type;
7311 }
7312 case TYPE_CODE_ARRAY:
7313 return to_fixed_array_type (type, dval, 1);
7314 case TYPE_CODE_UNION:
7315 if (dval == NULL)
7316 return type;
7317 else
7318 return to_fixed_variant_branch_type (type, valaddr, address, dval);
7319 }
7320 }
7321
7322 /* The same as ada_to_fixed_type_1, except that it preserves the type
7323 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
7324 ada_to_fixed_type_1 would return the type referenced by TYPE. */
7325
7326 struct type *
7327 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
7328 CORE_ADDR address, struct value *dval, int check_tag)
7329
7330 {
7331 struct type *fixed_type =
7332 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
7333
7334 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
7335 && TYPE_TARGET_TYPE (type) == fixed_type)
7336 return type;
7337
7338 return fixed_type;
7339 }
7340
7341 /* A standard (static-sized) type corresponding as well as possible to
7342 TYPE0, but based on no runtime data. */
7343
7344 static struct type *
7345 to_static_fixed_type (struct type *type0)
7346 {
7347 struct type *type;
7348
7349 if (type0 == NULL)
7350 return NULL;
7351
7352 if (TYPE_FIXED_INSTANCE (type0))
7353 return type0;
7354
7355 type0 = ada_check_typedef (type0);
7356
7357 switch (TYPE_CODE (type0))
7358 {
7359 default:
7360 return type0;
7361 case TYPE_CODE_STRUCT:
7362 type = dynamic_template_type (type0);
7363 if (type != NULL)
7364 return template_to_static_fixed_type (type);
7365 else
7366 return template_to_static_fixed_type (type0);
7367 case TYPE_CODE_UNION:
7368 type = ada_find_parallel_type (type0, "___XVU");
7369 if (type != NULL)
7370 return template_to_static_fixed_type (type);
7371 else
7372 return template_to_static_fixed_type (type0);
7373 }
7374 }
7375
7376 /* A static approximation of TYPE with all type wrappers removed. */
7377
7378 static struct type *
7379 static_unwrap_type (struct type *type)
7380 {
7381 if (ada_is_aligner_type (type))
7382 {
7383 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
7384 if (ada_type_name (type1) == NULL)
7385 TYPE_NAME (type1) = ada_type_name (type);
7386
7387 return static_unwrap_type (type1);
7388 }
7389 else
7390 {
7391 struct type *raw_real_type = ada_get_base_type (type);
7392 if (raw_real_type == type)
7393 return type;
7394 else
7395 return to_static_fixed_type (raw_real_type);
7396 }
7397 }
7398
7399 /* In some cases, incomplete and private types require
7400 cross-references that are not resolved as records (for example,
7401 type Foo;
7402 type FooP is access Foo;
7403 V: FooP;
7404 type Foo is array ...;
7405 ). In these cases, since there is no mechanism for producing
7406 cross-references to such types, we instead substitute for FooP a
7407 stub enumeration type that is nowhere resolved, and whose tag is
7408 the name of the actual type. Call these types "non-record stubs". */
7409
7410 /* A type equivalent to TYPE that is not a non-record stub, if one
7411 exists, otherwise TYPE. */
7412
7413 struct type *
7414 ada_check_typedef (struct type *type)
7415 {
7416 if (type == NULL)
7417 return NULL;
7418
7419 CHECK_TYPEDEF (type);
7420 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
7421 || !TYPE_STUB (type)
7422 || TYPE_TAG_NAME (type) == NULL)
7423 return type;
7424 else
7425 {
7426 char *name = TYPE_TAG_NAME (type);
7427 struct type *type1 = ada_find_any_type (name);
7428 return (type1 == NULL) ? type : type1;
7429 }
7430 }
7431
7432 /* A value representing the data at VALADDR/ADDRESS as described by
7433 type TYPE0, but with a standard (static-sized) type that correctly
7434 describes it. If VAL0 is not NULL and TYPE0 already is a standard
7435 type, then return VAL0 [this feature is simply to avoid redundant
7436 creation of struct values]. */
7437
7438 static struct value *
7439 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
7440 struct value *val0)
7441 {
7442 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
7443 if (type == type0 && val0 != NULL)
7444 return val0;
7445 else
7446 return value_from_contents_and_address (type, 0, address);
7447 }
7448
7449 /* A value representing VAL, but with a standard (static-sized) type
7450 that correctly describes it. Does not necessarily create a new
7451 value. */
7452
7453 static struct value *
7454 ada_to_fixed_value (struct value *val)
7455 {
7456 return ada_to_fixed_value_create (value_type (val),
7457 value_address (val),
7458 val);
7459 }
7460
7461 /* A value representing VAL, but with a standard (static-sized) type
7462 chosen to approximate the real type of VAL as well as possible, but
7463 without consulting any runtime values. For Ada dynamic-sized
7464 types, therefore, the type of the result is likely to be inaccurate. */
7465
7466 static struct value *
7467 ada_to_static_fixed_value (struct value *val)
7468 {
7469 struct type *type =
7470 to_static_fixed_type (static_unwrap_type (value_type (val)));
7471 if (type == value_type (val))
7472 return val;
7473 else
7474 return coerce_unspec_val_to_type (val, type);
7475 }
7476 \f
7477
7478 /* Attributes */
7479
7480 /* Table mapping attribute numbers to names.
7481 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
7482
7483 static const char *attribute_names[] = {
7484 "<?>",
7485
7486 "first",
7487 "last",
7488 "length",
7489 "image",
7490 "max",
7491 "min",
7492 "modulus",
7493 "pos",
7494 "size",
7495 "tag",
7496 "val",
7497 0
7498 };
7499
7500 const char *
7501 ada_attribute_name (enum exp_opcode n)
7502 {
7503 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7504 return attribute_names[n - OP_ATR_FIRST + 1];
7505 else
7506 return attribute_names[0];
7507 }
7508
7509 /* Evaluate the 'POS attribute applied to ARG. */
7510
7511 static LONGEST
7512 pos_atr (struct value *arg)
7513 {
7514 struct value *val = coerce_ref (arg);
7515 struct type *type = value_type (val);
7516
7517 if (!discrete_type_p (type))
7518 error (_("'POS only defined on discrete types"));
7519
7520 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7521 {
7522 int i;
7523 LONGEST v = value_as_long (val);
7524
7525 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7526 {
7527 if (v == TYPE_FIELD_BITPOS (type, i))
7528 return i;
7529 }
7530 error (_("enumeration value is invalid: can't find 'POS"));
7531 }
7532 else
7533 return value_as_long (val);
7534 }
7535
7536 static struct value *
7537 value_pos_atr (struct type *type, struct value *arg)
7538 {
7539 return value_from_longest (type, pos_atr (arg));
7540 }
7541
7542 /* Evaluate the TYPE'VAL attribute applied to ARG. */
7543
7544 static struct value *
7545 value_val_atr (struct type *type, struct value *arg)
7546 {
7547 if (!discrete_type_p (type))
7548 error (_("'VAL only defined on discrete types"));
7549 if (!integer_type_p (value_type (arg)))
7550 error (_("'VAL requires integral argument"));
7551
7552 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7553 {
7554 long pos = value_as_long (arg);
7555 if (pos < 0 || pos >= TYPE_NFIELDS (type))
7556 error (_("argument to 'VAL out of range"));
7557 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
7558 }
7559 else
7560 return value_from_longest (type, value_as_long (arg));
7561 }
7562 \f
7563
7564 /* Evaluation */
7565
7566 /* True if TYPE appears to be an Ada character type.
7567 [At the moment, this is true only for Character and Wide_Character;
7568 It is a heuristic test that could stand improvement]. */
7569
7570 int
7571 ada_is_character_type (struct type *type)
7572 {
7573 const char *name;
7574
7575 /* If the type code says it's a character, then assume it really is,
7576 and don't check any further. */
7577 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
7578 return 1;
7579
7580 /* Otherwise, assume it's a character type iff it is a discrete type
7581 with a known character type name. */
7582 name = ada_type_name (type);
7583 return (name != NULL
7584 && (TYPE_CODE (type) == TYPE_CODE_INT
7585 || TYPE_CODE (type) == TYPE_CODE_RANGE)
7586 && (strcmp (name, "character") == 0
7587 || strcmp (name, "wide_character") == 0
7588 || strcmp (name, "wide_wide_character") == 0
7589 || strcmp (name, "unsigned char") == 0));
7590 }
7591
7592 /* True if TYPE appears to be an Ada string type. */
7593
7594 int
7595 ada_is_string_type (struct type *type)
7596 {
7597 type = ada_check_typedef (type);
7598 if (type != NULL
7599 && TYPE_CODE (type) != TYPE_CODE_PTR
7600 && (ada_is_simple_array_type (type)
7601 || ada_is_array_descriptor_type (type))
7602 && ada_array_arity (type) == 1)
7603 {
7604 struct type *elttype = ada_array_element_type (type, 1);
7605
7606 return ada_is_character_type (elttype);
7607 }
7608 else
7609 return 0;
7610 }
7611
7612
7613 /* True if TYPE is a struct type introduced by the compiler to force the
7614 alignment of a value. Such types have a single field with a
7615 distinctive name. */
7616
7617 int
7618 ada_is_aligner_type (struct type *type)
7619 {
7620 type = ada_check_typedef (type);
7621
7622 /* If we can find a parallel XVS type, then the XVS type should
7623 be used instead of this type. And hence, this is not an aligner
7624 type. */
7625 if (ada_find_parallel_type (type, "___XVS") != NULL)
7626 return 0;
7627
7628 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
7629 && TYPE_NFIELDS (type) == 1
7630 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
7631 }
7632
7633 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
7634 the parallel type. */
7635
7636 struct type *
7637 ada_get_base_type (struct type *raw_type)
7638 {
7639 struct type *real_type_namer;
7640 struct type *raw_real_type;
7641
7642 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
7643 return raw_type;
7644
7645 if (ada_is_aligner_type (raw_type))
7646 /* The encoding specifies that we should always use the aligner type.
7647 So, even if this aligner type has an associated XVS type, we should
7648 simply ignore it.
7649
7650 According to the compiler gurus, an XVS type parallel to an aligner
7651 type may exist because of a stabs limitation. In stabs, aligner
7652 types are empty because the field has a variable-sized type, and
7653 thus cannot actually be used as an aligner type. As a result,
7654 we need the associated parallel XVS type to decode the type.
7655 Since the policy in the compiler is to not change the internal
7656 representation based on the debugging info format, we sometimes
7657 end up having a redundant XVS type parallel to the aligner type. */
7658 return raw_type;
7659
7660 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
7661 if (real_type_namer == NULL
7662 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
7663 || TYPE_NFIELDS (real_type_namer) != 1)
7664 return raw_type;
7665
7666 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
7667 if (raw_real_type == NULL)
7668 return raw_type;
7669 else
7670 return raw_real_type;
7671 }
7672
7673 /* The type of value designated by TYPE, with all aligners removed. */
7674
7675 struct type *
7676 ada_aligned_type (struct type *type)
7677 {
7678 if (ada_is_aligner_type (type))
7679 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
7680 else
7681 return ada_get_base_type (type);
7682 }
7683
7684
7685 /* The address of the aligned value in an object at address VALADDR
7686 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
7687
7688 const gdb_byte *
7689 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
7690 {
7691 if (ada_is_aligner_type (type))
7692 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
7693 valaddr +
7694 TYPE_FIELD_BITPOS (type,
7695 0) / TARGET_CHAR_BIT);
7696 else
7697 return valaddr;
7698 }
7699
7700
7701
7702 /* The printed representation of an enumeration literal with encoded
7703 name NAME. The value is good to the next call of ada_enum_name. */
7704 const char *
7705 ada_enum_name (const char *name)
7706 {
7707 static char *result;
7708 static size_t result_len = 0;
7709 char *tmp;
7710
7711 /* First, unqualify the enumeration name:
7712 1. Search for the last '.' character. If we find one, then skip
7713 all the preceeding characters, the unqualified name starts
7714 right after that dot.
7715 2. Otherwise, we may be debugging on a target where the compiler
7716 translates dots into "__". Search forward for double underscores,
7717 but stop searching when we hit an overloading suffix, which is
7718 of the form "__" followed by digits. */
7719
7720 tmp = strrchr (name, '.');
7721 if (tmp != NULL)
7722 name = tmp + 1;
7723 else
7724 {
7725 while ((tmp = strstr (name, "__")) != NULL)
7726 {
7727 if (isdigit (tmp[2]))
7728 break;
7729 else
7730 name = tmp + 2;
7731 }
7732 }
7733
7734 if (name[0] == 'Q')
7735 {
7736 int v;
7737 if (name[1] == 'U' || name[1] == 'W')
7738 {
7739 if (sscanf (name + 2, "%x", &v) != 1)
7740 return name;
7741 }
7742 else
7743 return name;
7744
7745 GROW_VECT (result, result_len, 16);
7746 if (isascii (v) && isprint (v))
7747 xsnprintf (result, result_len, "'%c'", v);
7748 else if (name[1] == 'U')
7749 xsnprintf (result, result_len, "[\"%02x\"]", v);
7750 else
7751 xsnprintf (result, result_len, "[\"%04x\"]", v);
7752
7753 return result;
7754 }
7755 else
7756 {
7757 tmp = strstr (name, "__");
7758 if (tmp == NULL)
7759 tmp = strstr (name, "$");
7760 if (tmp != NULL)
7761 {
7762 GROW_VECT (result, result_len, tmp - name + 1);
7763 strncpy (result, name, tmp - name);
7764 result[tmp - name] = '\0';
7765 return result;
7766 }
7767
7768 return name;
7769 }
7770 }
7771
7772 /* Evaluate the subexpression of EXP starting at *POS as for
7773 evaluate_type, updating *POS to point just past the evaluated
7774 expression. */
7775
7776 static struct value *
7777 evaluate_subexp_type (struct expression *exp, int *pos)
7778 {
7779 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
7780 }
7781
7782 /* If VAL is wrapped in an aligner or subtype wrapper, return the
7783 value it wraps. */
7784
7785 static struct value *
7786 unwrap_value (struct value *val)
7787 {
7788 struct type *type = ada_check_typedef (value_type (val));
7789 if (ada_is_aligner_type (type))
7790 {
7791 struct value *v = ada_value_struct_elt (val, "F", 0);
7792 struct type *val_type = ada_check_typedef (value_type (v));
7793 if (ada_type_name (val_type) == NULL)
7794 TYPE_NAME (val_type) = ada_type_name (type);
7795
7796 return unwrap_value (v);
7797 }
7798 else
7799 {
7800 struct type *raw_real_type =
7801 ada_check_typedef (ada_get_base_type (type));
7802
7803 if (type == raw_real_type)
7804 return val;
7805
7806 return
7807 coerce_unspec_val_to_type
7808 (val, ada_to_fixed_type (raw_real_type, 0,
7809 value_address (val),
7810 NULL, 1));
7811 }
7812 }
7813
7814 static struct value *
7815 cast_to_fixed (struct type *type, struct value *arg)
7816 {
7817 LONGEST val;
7818
7819 if (type == value_type (arg))
7820 return arg;
7821 else if (ada_is_fixed_point_type (value_type (arg)))
7822 val = ada_float_to_fixed (type,
7823 ada_fixed_to_float (value_type (arg),
7824 value_as_long (arg)));
7825 else
7826 {
7827 DOUBLEST argd = value_as_double (arg);
7828 val = ada_float_to_fixed (type, argd);
7829 }
7830
7831 return value_from_longest (type, val);
7832 }
7833
7834 static struct value *
7835 cast_from_fixed (struct type *type, struct value *arg)
7836 {
7837 DOUBLEST val = ada_fixed_to_float (value_type (arg),
7838 value_as_long (arg));
7839 return value_from_double (type, val);
7840 }
7841
7842 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
7843 return the converted value. */
7844
7845 static struct value *
7846 coerce_for_assign (struct type *type, struct value *val)
7847 {
7848 struct type *type2 = value_type (val);
7849 if (type == type2)
7850 return val;
7851
7852 type2 = ada_check_typedef (type2);
7853 type = ada_check_typedef (type);
7854
7855 if (TYPE_CODE (type2) == TYPE_CODE_PTR
7856 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7857 {
7858 val = ada_value_ind (val);
7859 type2 = value_type (val);
7860 }
7861
7862 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
7863 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7864 {
7865 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
7866 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
7867 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
7868 error (_("Incompatible types in assignment"));
7869 deprecated_set_value_type (val, type);
7870 }
7871 return val;
7872 }
7873
7874 static struct value *
7875 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
7876 {
7877 struct value *val;
7878 struct type *type1, *type2;
7879 LONGEST v, v1, v2;
7880
7881 arg1 = coerce_ref (arg1);
7882 arg2 = coerce_ref (arg2);
7883 type1 = base_type (ada_check_typedef (value_type (arg1)));
7884 type2 = base_type (ada_check_typedef (value_type (arg2)));
7885
7886 if (TYPE_CODE (type1) != TYPE_CODE_INT
7887 || TYPE_CODE (type2) != TYPE_CODE_INT)
7888 return value_binop (arg1, arg2, op);
7889
7890 switch (op)
7891 {
7892 case BINOP_MOD:
7893 case BINOP_DIV:
7894 case BINOP_REM:
7895 break;
7896 default:
7897 return value_binop (arg1, arg2, op);
7898 }
7899
7900 v2 = value_as_long (arg2);
7901 if (v2 == 0)
7902 error (_("second operand of %s must not be zero."), op_string (op));
7903
7904 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
7905 return value_binop (arg1, arg2, op);
7906
7907 v1 = value_as_long (arg1);
7908 switch (op)
7909 {
7910 case BINOP_DIV:
7911 v = v1 / v2;
7912 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
7913 v += v > 0 ? -1 : 1;
7914 break;
7915 case BINOP_REM:
7916 v = v1 % v2;
7917 if (v * v1 < 0)
7918 v -= v2;
7919 break;
7920 default:
7921 /* Should not reach this point. */
7922 v = 0;
7923 }
7924
7925 val = allocate_value (type1);
7926 store_unsigned_integer (value_contents_raw (val),
7927 TYPE_LENGTH (value_type (val)), v);
7928 return val;
7929 }
7930
7931 static int
7932 ada_value_equal (struct value *arg1, struct value *arg2)
7933 {
7934 if (ada_is_direct_array_type (value_type (arg1))
7935 || ada_is_direct_array_type (value_type (arg2)))
7936 {
7937 /* Automatically dereference any array reference before
7938 we attempt to perform the comparison. */
7939 arg1 = ada_coerce_ref (arg1);
7940 arg2 = ada_coerce_ref (arg2);
7941
7942 arg1 = ada_coerce_to_simple_array (arg1);
7943 arg2 = ada_coerce_to_simple_array (arg2);
7944 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
7945 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
7946 error (_("Attempt to compare array with non-array"));
7947 /* FIXME: The following works only for types whose
7948 representations use all bits (no padding or undefined bits)
7949 and do not have user-defined equality. */
7950 return
7951 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
7952 && memcmp (value_contents (arg1), value_contents (arg2),
7953 TYPE_LENGTH (value_type (arg1))) == 0;
7954 }
7955 return value_equal (arg1, arg2);
7956 }
7957
7958 /* Total number of component associations in the aggregate starting at
7959 index PC in EXP. Assumes that index PC is the start of an
7960 OP_AGGREGATE. */
7961
7962 static int
7963 num_component_specs (struct expression *exp, int pc)
7964 {
7965 int n, m, i;
7966 m = exp->elts[pc + 1].longconst;
7967 pc += 3;
7968 n = 0;
7969 for (i = 0; i < m; i += 1)
7970 {
7971 switch (exp->elts[pc].opcode)
7972 {
7973 default:
7974 n += 1;
7975 break;
7976 case OP_CHOICES:
7977 n += exp->elts[pc + 1].longconst;
7978 break;
7979 }
7980 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
7981 }
7982 return n;
7983 }
7984
7985 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
7986 component of LHS (a simple array or a record), updating *POS past
7987 the expression, assuming that LHS is contained in CONTAINER. Does
7988 not modify the inferior's memory, nor does it modify LHS (unless
7989 LHS == CONTAINER). */
7990
7991 static void
7992 assign_component (struct value *container, struct value *lhs, LONGEST index,
7993 struct expression *exp, int *pos)
7994 {
7995 struct value *mark = value_mark ();
7996 struct value *elt;
7997 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
7998 {
7999 struct value *index_val = value_from_longest (builtin_type_int32, index);
8000 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8001 }
8002 else
8003 {
8004 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
8005 elt = ada_to_fixed_value (unwrap_value (elt));
8006 }
8007
8008 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8009 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8010 else
8011 value_assign_to_component (container, elt,
8012 ada_evaluate_subexp (NULL, exp, pos,
8013 EVAL_NORMAL));
8014
8015 value_free_to_mark (mark);
8016 }
8017
8018 /* Assuming that LHS represents an lvalue having a record or array
8019 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8020 of that aggregate's value to LHS, advancing *POS past the
8021 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8022 lvalue containing LHS (possibly LHS itself). Does not modify
8023 the inferior's memory, nor does it modify the contents of
8024 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
8025
8026 static struct value *
8027 assign_aggregate (struct value *container,
8028 struct value *lhs, struct expression *exp,
8029 int *pos, enum noside noside)
8030 {
8031 struct type *lhs_type;
8032 int n = exp->elts[*pos+1].longconst;
8033 LONGEST low_index, high_index;
8034 int num_specs;
8035 LONGEST *indices;
8036 int max_indices, num_indices;
8037 int is_array_aggregate;
8038 int i;
8039 struct value *mark = value_mark ();
8040
8041 *pos += 3;
8042 if (noside != EVAL_NORMAL)
8043 {
8044 int i;
8045 for (i = 0; i < n; i += 1)
8046 ada_evaluate_subexp (NULL, exp, pos, noside);
8047 return container;
8048 }
8049
8050 container = ada_coerce_ref (container);
8051 if (ada_is_direct_array_type (value_type (container)))
8052 container = ada_coerce_to_simple_array (container);
8053 lhs = ada_coerce_ref (lhs);
8054 if (!deprecated_value_modifiable (lhs))
8055 error (_("Left operand of assignment is not a modifiable lvalue."));
8056
8057 lhs_type = value_type (lhs);
8058 if (ada_is_direct_array_type (lhs_type))
8059 {
8060 lhs = ada_coerce_to_simple_array (lhs);
8061 lhs_type = value_type (lhs);
8062 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8063 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8064 is_array_aggregate = 1;
8065 }
8066 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8067 {
8068 low_index = 0;
8069 high_index = num_visible_fields (lhs_type) - 1;
8070 is_array_aggregate = 0;
8071 }
8072 else
8073 error (_("Left-hand side must be array or record."));
8074
8075 num_specs = num_component_specs (exp, *pos - 3);
8076 max_indices = 4 * num_specs + 4;
8077 indices = alloca (max_indices * sizeof (indices[0]));
8078 indices[0] = indices[1] = low_index - 1;
8079 indices[2] = indices[3] = high_index + 1;
8080 num_indices = 4;
8081
8082 for (i = 0; i < n; i += 1)
8083 {
8084 switch (exp->elts[*pos].opcode)
8085 {
8086 case OP_CHOICES:
8087 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8088 &num_indices, max_indices,
8089 low_index, high_index);
8090 break;
8091 case OP_POSITIONAL:
8092 aggregate_assign_positional (container, lhs, exp, pos, indices,
8093 &num_indices, max_indices,
8094 low_index, high_index);
8095 break;
8096 case OP_OTHERS:
8097 if (i != n-1)
8098 error (_("Misplaced 'others' clause"));
8099 aggregate_assign_others (container, lhs, exp, pos, indices,
8100 num_indices, low_index, high_index);
8101 break;
8102 default:
8103 error (_("Internal error: bad aggregate clause"));
8104 }
8105 }
8106
8107 return container;
8108 }
8109
8110 /* Assign into the component of LHS indexed by the OP_POSITIONAL
8111 construct at *POS, updating *POS past the construct, given that
8112 the positions are relative to lower bound LOW, where HIGH is the
8113 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8114 updating *NUM_INDICES as needed. CONTAINER is as for
8115 assign_aggregate. */
8116 static void
8117 aggregate_assign_positional (struct value *container,
8118 struct value *lhs, struct expression *exp,
8119 int *pos, LONGEST *indices, int *num_indices,
8120 int max_indices, LONGEST low, LONGEST high)
8121 {
8122 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8123
8124 if (ind - 1 == high)
8125 warning (_("Extra components in aggregate ignored."));
8126 if (ind <= high)
8127 {
8128 add_component_interval (ind, ind, indices, num_indices, max_indices);
8129 *pos += 3;
8130 assign_component (container, lhs, ind, exp, pos);
8131 }
8132 else
8133 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8134 }
8135
8136 /* Assign into the components of LHS indexed by the OP_CHOICES
8137 construct at *POS, updating *POS past the construct, given that
8138 the allowable indices are LOW..HIGH. Record the indices assigned
8139 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
8140 needed. CONTAINER is as for assign_aggregate. */
8141 static void
8142 aggregate_assign_from_choices (struct value *container,
8143 struct value *lhs, struct expression *exp,
8144 int *pos, LONGEST *indices, int *num_indices,
8145 int max_indices, LONGEST low, LONGEST high)
8146 {
8147 int j;
8148 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8149 int choice_pos, expr_pc;
8150 int is_array = ada_is_direct_array_type (value_type (lhs));
8151
8152 choice_pos = *pos += 3;
8153
8154 for (j = 0; j < n_choices; j += 1)
8155 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8156 expr_pc = *pos;
8157 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8158
8159 for (j = 0; j < n_choices; j += 1)
8160 {
8161 LONGEST lower, upper;
8162 enum exp_opcode op = exp->elts[choice_pos].opcode;
8163 if (op == OP_DISCRETE_RANGE)
8164 {
8165 choice_pos += 1;
8166 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8167 EVAL_NORMAL));
8168 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8169 EVAL_NORMAL));
8170 }
8171 else if (is_array)
8172 {
8173 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8174 EVAL_NORMAL));
8175 upper = lower;
8176 }
8177 else
8178 {
8179 int ind;
8180 char *name;
8181 switch (op)
8182 {
8183 case OP_NAME:
8184 name = &exp->elts[choice_pos + 2].string;
8185 break;
8186 case OP_VAR_VALUE:
8187 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8188 break;
8189 default:
8190 error (_("Invalid record component association."));
8191 }
8192 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8193 ind = 0;
8194 if (! find_struct_field (name, value_type (lhs), 0,
8195 NULL, NULL, NULL, NULL, &ind))
8196 error (_("Unknown component name: %s."), name);
8197 lower = upper = ind;
8198 }
8199
8200 if (lower <= upper && (lower < low || upper > high))
8201 error (_("Index in component association out of bounds."));
8202
8203 add_component_interval (lower, upper, indices, num_indices,
8204 max_indices);
8205 while (lower <= upper)
8206 {
8207 int pos1;
8208 pos1 = expr_pc;
8209 assign_component (container, lhs, lower, exp, &pos1);
8210 lower += 1;
8211 }
8212 }
8213 }
8214
8215 /* Assign the value of the expression in the OP_OTHERS construct in
8216 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8217 have not been previously assigned. The index intervals already assigned
8218 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
8219 OP_OTHERS clause. CONTAINER is as for assign_aggregate*/
8220 static void
8221 aggregate_assign_others (struct value *container,
8222 struct value *lhs, struct expression *exp,
8223 int *pos, LONGEST *indices, int num_indices,
8224 LONGEST low, LONGEST high)
8225 {
8226 int i;
8227 int expr_pc = *pos+1;
8228
8229 for (i = 0; i < num_indices - 2; i += 2)
8230 {
8231 LONGEST ind;
8232 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
8233 {
8234 int pos;
8235 pos = expr_pc;
8236 assign_component (container, lhs, ind, exp, &pos);
8237 }
8238 }
8239 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8240 }
8241
8242 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
8243 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
8244 modifying *SIZE as needed. It is an error if *SIZE exceeds
8245 MAX_SIZE. The resulting intervals do not overlap. */
8246 static void
8247 add_component_interval (LONGEST low, LONGEST high,
8248 LONGEST* indices, int *size, int max_size)
8249 {
8250 int i, j;
8251 for (i = 0; i < *size; i += 2) {
8252 if (high >= indices[i] && low <= indices[i + 1])
8253 {
8254 int kh;
8255 for (kh = i + 2; kh < *size; kh += 2)
8256 if (high < indices[kh])
8257 break;
8258 if (low < indices[i])
8259 indices[i] = low;
8260 indices[i + 1] = indices[kh - 1];
8261 if (high > indices[i + 1])
8262 indices[i + 1] = high;
8263 memcpy (indices + i + 2, indices + kh, *size - kh);
8264 *size -= kh - i - 2;
8265 return;
8266 }
8267 else if (high < indices[i])
8268 break;
8269 }
8270
8271 if (*size == max_size)
8272 error (_("Internal error: miscounted aggregate components."));
8273 *size += 2;
8274 for (j = *size-1; j >= i+2; j -= 1)
8275 indices[j] = indices[j - 2];
8276 indices[i] = low;
8277 indices[i + 1] = high;
8278 }
8279
8280 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
8281 is different. */
8282
8283 static struct value *
8284 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
8285 {
8286 if (type == ada_check_typedef (value_type (arg2)))
8287 return arg2;
8288
8289 if (ada_is_fixed_point_type (type))
8290 return (cast_to_fixed (type, arg2));
8291
8292 if (ada_is_fixed_point_type (value_type (arg2)))
8293 return cast_from_fixed (type, arg2);
8294
8295 return value_cast (type, arg2);
8296 }
8297
8298 /* Evaluating Ada expressions, and printing their result.
8299 ------------------------------------------------------
8300
8301 We usually evaluate an Ada expression in order to print its value.
8302 We also evaluate an expression in order to print its type, which
8303 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
8304 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
8305 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
8306 the evaluation compared to the EVAL_NORMAL, but is otherwise very
8307 similar.
8308
8309 Evaluating expressions is a little more complicated for Ada entities
8310 than it is for entities in languages such as C. The main reason for
8311 this is that Ada provides types whose definition might be dynamic.
8312 One example of such types is variant records. Or another example
8313 would be an array whose bounds can only be known at run time.
8314
8315 The following description is a general guide as to what should be
8316 done (and what should NOT be done) in order to evaluate an expression
8317 involving such types, and when. This does not cover how the semantic
8318 information is encoded by GNAT as this is covered separatly. For the
8319 document used as the reference for the GNAT encoding, see exp_dbug.ads
8320 in the GNAT sources.
8321
8322 Ideally, we should embed each part of this description next to its
8323 associated code. Unfortunately, the amount of code is so vast right
8324 now that it's hard to see whether the code handling a particular
8325 situation might be duplicated or not. One day, when the code is
8326 cleaned up, this guide might become redundant with the comments
8327 inserted in the code, and we might want to remove it.
8328
8329 When evaluating Ada expressions, the tricky issue is that they may
8330 reference entities whose type contents and size are not statically
8331 known. Consider for instance a variant record:
8332
8333 type Rec (Empty : Boolean := True) is record
8334 case Empty is
8335 when True => null;
8336 when False => Value : Integer;
8337 end case;
8338 end record;
8339 Yes : Rec := (Empty => False, Value => 1);
8340 No : Rec := (empty => True);
8341
8342 The size and contents of that record depends on the value of the
8343 descriminant (Rec.Empty). At this point, neither the debugging
8344 information nor the associated type structure in GDB are able to
8345 express such dynamic types. So what the debugger does is to create
8346 "fixed" versions of the type that applies to the specific object.
8347 We also informally refer to this opperation as "fixing" an object,
8348 which means creating its associated fixed type.
8349
8350 Example: when printing the value of variable "Yes" above, its fixed
8351 type would look like this:
8352
8353 type Rec is record
8354 Empty : Boolean;
8355 Value : Integer;
8356 end record;
8357
8358 On the other hand, if we printed the value of "No", its fixed type
8359 would become:
8360
8361 type Rec is record
8362 Empty : Boolean;
8363 end record;
8364
8365 Things become a little more complicated when trying to fix an entity
8366 with a dynamic type that directly contains another dynamic type,
8367 such as an array of variant records, for instance. There are
8368 two possible cases: Arrays, and records.
8369
8370 Arrays are a little simpler to handle, because the same amount of
8371 memory is allocated for each element of the array, even if the amount
8372 of space used by each element changes from element to element.
8373 Consider for instance the following array of type Rec:
8374
8375 type Rec_Array is array (1 .. 2) of Rec;
8376
8377 The type structure in GDB describes an array in terms of its
8378 bounds, and the type of its elements. By design, all elements
8379 in the array have the same type. So we cannot use a fixed type
8380 for the array elements in this case, since the fixed type depends
8381 on the actual value of each element.
8382
8383 Fortunately, what happens in practice is that each element of
8384 the array has the same size, which is the maximum size that
8385 might be needed in order to hold an object of the element type.
8386 And the compiler shows it in the debugging information by wrapping
8387 the array element inside a private PAD type. This type should not
8388 be shown to the user, and must be "unwrap"'ed before printing. Note
8389 that we also use the adjective "aligner" in our code to designate
8390 these wrapper types.
8391
8392 These wrapper types should have a constant size, which is the size
8393 of each element of the array. In the case when the size is statically
8394 known, the PAD type will already have the right size, and the array
8395 element type should remain unfixed. But there are cases when
8396 this size is not statically known. For instance, assuming that
8397 "Five" is an integer variable:
8398
8399 type Dynamic is array (1 .. Five) of Integer;
8400 type Wrapper (Has_Length : Boolean := False) is record
8401 Data : Dynamic;
8402 case Has_Length is
8403 when True => Length : Integer;
8404 when False => null;
8405 end case;
8406 end record;
8407 type Wrapper_Array is array (1 .. 2) of Wrapper;
8408
8409 Hello : Wrapper_Array := (others => (Has_Length => True,
8410 Data => (others => 17),
8411 Length => 1));
8412
8413
8414 The debugging info would describe variable Hello as being an
8415 array of a PAD type. The size of that PAD type is not statically
8416 known, but can be determined using a parallel XVZ variable.
8417 In that case, a copy of the PAD type with the correct size should
8418 be used for the fixed array.
8419
8420 However, things are slightly different in the case of dynamic
8421 record types. In this case, in order to compute the associated
8422 fixed type, we need to determine the size and offset of each of
8423 its components. This, in turn, requires us to compute the fixed
8424 type of each of these components.
8425
8426 Consider for instance the example:
8427
8428 type Bounded_String (Max_Size : Natural) is record
8429 Str : String (1 .. Max_Size);
8430 Length : Natural;
8431 end record;
8432 My_String : Bounded_String (Max_Size => 10);
8433
8434 In that case, the position of field "Length" depends on the size
8435 of field Str, which itself depends on the value of the Max_Size
8436 discriminant. In order to fix the type of variable My_String,
8437 we need to fix the type of field Str. Therefore, fixing a variant
8438 record requires us to fix each of its components.
8439
8440 However, if a component does not have a dynamic size, the component
8441 should not be fixed. In particular, fields that use a PAD type
8442 should not fixed. Here is an example where this might happen
8443 (assuming type Rec above):
8444
8445 type Container (Big : Boolean) is record
8446 First : Rec;
8447 After : Integer;
8448 case Big is
8449 when True => Another : Integer;
8450 when False => null;
8451 end case;
8452 end record;
8453 My_Container : Container := (Big => False,
8454 First => (Empty => True),
8455 After => 42);
8456
8457 In that example, the compiler creates a PAD type for component First,
8458 whose size is constant, and then positions the component After just
8459 right after it. The offset of component After is therefore constant
8460 in this case.
8461
8462 The debugger computes the position of each field based on an algorithm
8463 that uses, among other things, the actual position and size of the field
8464 preceding it. Let's now imagine that the user is trying to print the
8465 value of My_Container. If the type fixing was recursive, we would
8466 end up computing the offset of field After based on the size of the
8467 fixed version of field First. And since in our example First has
8468 only one actual field, the size of the fixed type is actually smaller
8469 than the amount of space allocated to that field, and thus we would
8470 compute the wrong offset of field After.
8471
8472 Unfortunately, we need to watch out for dynamic components of variant
8473 records (identified by the ___XVL suffix in the component name).
8474 Even if the target type is a PAD type, the size of that type might
8475 not be statically known. So the PAD type needs to be unwrapped and
8476 the resulting type needs to be fixed. Otherwise, we might end up
8477 with the wrong size for our component. This can be observed with
8478 the following type declarations:
8479
8480 type Octal is new Integer range 0 .. 7;
8481 type Octal_Array is array (Positive range <>) of Octal;
8482 pragma Pack (Octal_Array);
8483
8484 type Octal_Buffer (Size : Positive) is record
8485 Buffer : Octal_Array (1 .. Size);
8486 Length : Integer;
8487 end record;
8488
8489 In that case, Buffer is a PAD type whose size is unset and needs
8490 to be computed by fixing the unwrapped type.
8491
8492 Lastly, when should the sub-elements of a type that remained unfixed
8493 thus far, be actually fixed?
8494
8495 The answer is: Only when referencing that element. For instance
8496 when selecting one component of a record, this specific component
8497 should be fixed at that point in time. Or when printing the value
8498 of a record, each component should be fixed before its value gets
8499 printed. Similarly for arrays, the element of the array should be
8500 fixed when printing each element of the array, or when extracting
8501 one element out of that array. On the other hand, fixing should
8502 not be performed on the elements when taking a slice of an array!
8503
8504 Note that one of the side-effects of miscomputing the offset and
8505 size of each field is that we end up also miscomputing the size
8506 of the containing type. This can have adverse results when computing
8507 the value of an entity. GDB fetches the value of an entity based
8508 on the size of its type, and thus a wrong size causes GDB to fetch
8509 the wrong amount of memory. In the case where the computed size is
8510 too small, GDB fetches too little data to print the value of our
8511 entiry. Results in this case as unpredicatble, as we usually read
8512 past the buffer containing the data =:-o. */
8513
8514 /* Implement the evaluate_exp routine in the exp_descriptor structure
8515 for the Ada language. */
8516
8517 static struct value *
8518 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
8519 int *pos, enum noside noside)
8520 {
8521 enum exp_opcode op;
8522 int tem, tem2, tem3;
8523 int pc;
8524 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
8525 struct type *type;
8526 int nargs, oplen;
8527 struct value **argvec;
8528
8529 pc = *pos;
8530 *pos += 1;
8531 op = exp->elts[pc].opcode;
8532
8533 switch (op)
8534 {
8535 default:
8536 *pos -= 1;
8537 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8538 arg1 = unwrap_value (arg1);
8539
8540 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
8541 then we need to perform the conversion manually, because
8542 evaluate_subexp_standard doesn't do it. This conversion is
8543 necessary in Ada because the different kinds of float/fixed
8544 types in Ada have different representations.
8545
8546 Similarly, we need to perform the conversion from OP_LONG
8547 ourselves. */
8548 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
8549 arg1 = ada_value_cast (expect_type, arg1, noside);
8550
8551 return arg1;
8552
8553 case OP_STRING:
8554 {
8555 struct value *result;
8556 *pos -= 1;
8557 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
8558 /* The result type will have code OP_STRING, bashed there from
8559 OP_ARRAY. Bash it back. */
8560 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
8561 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
8562 return result;
8563 }
8564
8565 case UNOP_CAST:
8566 (*pos) += 2;
8567 type = exp->elts[pc + 1].type;
8568 arg1 = evaluate_subexp (type, exp, pos, noside);
8569 if (noside == EVAL_SKIP)
8570 goto nosideret;
8571 arg1 = ada_value_cast (type, arg1, noside);
8572 return arg1;
8573
8574 case UNOP_QUAL:
8575 (*pos) += 2;
8576 type = exp->elts[pc + 1].type;
8577 return ada_evaluate_subexp (type, exp, pos, noside);
8578
8579 case BINOP_ASSIGN:
8580 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8581 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8582 {
8583 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
8584 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8585 return arg1;
8586 return ada_value_assign (arg1, arg1);
8587 }
8588 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
8589 except if the lhs of our assignment is a convenience variable.
8590 In the case of assigning to a convenience variable, the lhs
8591 should be exactly the result of the evaluation of the rhs. */
8592 type = value_type (arg1);
8593 if (VALUE_LVAL (arg1) == lval_internalvar)
8594 type = NULL;
8595 arg2 = evaluate_subexp (type, exp, pos, noside);
8596 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8597 return arg1;
8598 if (ada_is_fixed_point_type (value_type (arg1)))
8599 arg2 = cast_to_fixed (value_type (arg1), arg2);
8600 else if (ada_is_fixed_point_type (value_type (arg2)))
8601 error
8602 (_("Fixed-point values must be assigned to fixed-point variables"));
8603 else
8604 arg2 = coerce_for_assign (value_type (arg1), arg2);
8605 return ada_value_assign (arg1, arg2);
8606
8607 case BINOP_ADD:
8608 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8609 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8610 if (noside == EVAL_SKIP)
8611 goto nosideret;
8612 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
8613 return (value_from_longest
8614 (value_type (arg1),
8615 value_as_long (arg1) + value_as_long (arg2)));
8616 if ((ada_is_fixed_point_type (value_type (arg1))
8617 || ada_is_fixed_point_type (value_type (arg2)))
8618 && value_type (arg1) != value_type (arg2))
8619 error (_("Operands of fixed-point addition must have the same type"));
8620 /* Do the addition, and cast the result to the type of the first
8621 argument. We cannot cast the result to a reference type, so if
8622 ARG1 is a reference type, find its underlying type. */
8623 type = value_type (arg1);
8624 while (TYPE_CODE (type) == TYPE_CODE_REF)
8625 type = TYPE_TARGET_TYPE (type);
8626 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8627 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
8628
8629 case BINOP_SUB:
8630 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8631 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8632 if (noside == EVAL_SKIP)
8633 goto nosideret;
8634 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
8635 return (value_from_longest
8636 (value_type (arg1),
8637 value_as_long (arg1) - value_as_long (arg2)));
8638 if ((ada_is_fixed_point_type (value_type (arg1))
8639 || ada_is_fixed_point_type (value_type (arg2)))
8640 && value_type (arg1) != value_type (arg2))
8641 error (_("Operands of fixed-point subtraction must have the same type"));
8642 /* Do the substraction, and cast the result to the type of the first
8643 argument. We cannot cast the result to a reference type, so if
8644 ARG1 is a reference type, find its underlying type. */
8645 type = value_type (arg1);
8646 while (TYPE_CODE (type) == TYPE_CODE_REF)
8647 type = TYPE_TARGET_TYPE (type);
8648 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8649 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
8650
8651 case BINOP_MUL:
8652 case BINOP_DIV:
8653 case BINOP_REM:
8654 case BINOP_MOD:
8655 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8656 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8657 if (noside == EVAL_SKIP)
8658 goto nosideret;
8659 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8660 {
8661 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8662 return value_zero (value_type (arg1), not_lval);
8663 }
8664 else
8665 {
8666 type = builtin_type (exp->gdbarch)->builtin_double;
8667 if (ada_is_fixed_point_type (value_type (arg1)))
8668 arg1 = cast_from_fixed (type, arg1);
8669 if (ada_is_fixed_point_type (value_type (arg2)))
8670 arg2 = cast_from_fixed (type, arg2);
8671 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8672 return ada_value_binop (arg1, arg2, op);
8673 }
8674
8675 case BINOP_EQUAL:
8676 case BINOP_NOTEQUAL:
8677 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8678 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
8679 if (noside == EVAL_SKIP)
8680 goto nosideret;
8681 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8682 tem = 0;
8683 else
8684 {
8685 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8686 tem = ada_value_equal (arg1, arg2);
8687 }
8688 if (op == BINOP_NOTEQUAL)
8689 tem = !tem;
8690 type = language_bool_type (exp->language_defn, exp->gdbarch);
8691 return value_from_longest (type, (LONGEST) tem);
8692
8693 case UNOP_NEG:
8694 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8695 if (noside == EVAL_SKIP)
8696 goto nosideret;
8697 else if (ada_is_fixed_point_type (value_type (arg1)))
8698 return value_cast (value_type (arg1), value_neg (arg1));
8699 else
8700 {
8701 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
8702 return value_neg (arg1);
8703 }
8704
8705 case BINOP_LOGICAL_AND:
8706 case BINOP_LOGICAL_OR:
8707 case UNOP_LOGICAL_NOT:
8708 {
8709 struct value *val;
8710
8711 *pos -= 1;
8712 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8713 type = language_bool_type (exp->language_defn, exp->gdbarch);
8714 return value_cast (type, val);
8715 }
8716
8717 case BINOP_BITWISE_AND:
8718 case BINOP_BITWISE_IOR:
8719 case BINOP_BITWISE_XOR:
8720 {
8721 struct value *val;
8722
8723 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8724 *pos = pc;
8725 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8726
8727 return value_cast (value_type (arg1), val);
8728 }
8729
8730 case OP_VAR_VALUE:
8731 *pos -= 1;
8732
8733 if (noside == EVAL_SKIP)
8734 {
8735 *pos += 4;
8736 goto nosideret;
8737 }
8738 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
8739 /* Only encountered when an unresolved symbol occurs in a
8740 context other than a function call, in which case, it is
8741 invalid. */
8742 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8743 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
8744 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8745 {
8746 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
8747 if (ada_is_tagged_type (type, 0))
8748 {
8749 /* Tagged types are a little special in the fact that the real
8750 type is dynamic and can only be determined by inspecting the
8751 object's tag. This means that we need to get the object's
8752 value first (EVAL_NORMAL) and then extract the actual object
8753 type from its tag.
8754
8755 Note that we cannot skip the final step where we extract
8756 the object type from its tag, because the EVAL_NORMAL phase
8757 results in dynamic components being resolved into fixed ones.
8758 This can cause problems when trying to print the type
8759 description of tagged types whose parent has a dynamic size:
8760 We use the type name of the "_parent" component in order
8761 to print the name of the ancestor type in the type description.
8762 If that component had a dynamic size, the resolution into
8763 a fixed type would result in the loss of that type name,
8764 thus preventing us from printing the name of the ancestor
8765 type in the type description. */
8766 struct type *actual_type;
8767
8768 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
8769 actual_type = type_from_tag (ada_value_tag (arg1));
8770 if (actual_type == NULL)
8771 /* If, for some reason, we were unable to determine
8772 the actual type from the tag, then use the static
8773 approximation that we just computed as a fallback.
8774 This can happen if the debugging information is
8775 incomplete, for instance. */
8776 actual_type = type;
8777
8778 return value_zero (actual_type, not_lval);
8779 }
8780
8781 *pos += 4;
8782 return value_zero
8783 (to_static_fixed_type
8784 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
8785 not_lval);
8786 }
8787 else
8788 {
8789 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8790 arg1 = unwrap_value (arg1);
8791 return ada_to_fixed_value (arg1);
8792 }
8793
8794 case OP_FUNCALL:
8795 (*pos) += 2;
8796
8797 /* Allocate arg vector, including space for the function to be
8798 called in argvec[0] and a terminating NULL. */
8799 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8800 argvec =
8801 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
8802
8803 if (exp->elts[*pos].opcode == OP_VAR_VALUE
8804 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
8805 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8806 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
8807 else
8808 {
8809 for (tem = 0; tem <= nargs; tem += 1)
8810 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8811 argvec[tem] = 0;
8812
8813 if (noside == EVAL_SKIP)
8814 goto nosideret;
8815 }
8816
8817 if (ada_is_packed_array_type (desc_base_type (value_type (argvec[0]))))
8818 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
8819 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
8820 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
8821 /* This is a packed array that has already been fixed, and
8822 therefore already coerced to a simple array. Nothing further
8823 to do. */
8824 ;
8825 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
8826 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
8827 && VALUE_LVAL (argvec[0]) == lval_memory))
8828 argvec[0] = value_addr (argvec[0]);
8829
8830 type = ada_check_typedef (value_type (argvec[0]));
8831 if (TYPE_CODE (type) == TYPE_CODE_PTR)
8832 {
8833 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
8834 {
8835 case TYPE_CODE_FUNC:
8836 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8837 break;
8838 case TYPE_CODE_ARRAY:
8839 break;
8840 case TYPE_CODE_STRUCT:
8841 if (noside != EVAL_AVOID_SIDE_EFFECTS)
8842 argvec[0] = ada_value_ind (argvec[0]);
8843 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8844 break;
8845 default:
8846 error (_("cannot subscript or call something of type `%s'"),
8847 ada_type_name (value_type (argvec[0])));
8848 break;
8849 }
8850 }
8851
8852 switch (TYPE_CODE (type))
8853 {
8854 case TYPE_CODE_FUNC:
8855 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8856 return allocate_value (TYPE_TARGET_TYPE (type));
8857 return call_function_by_hand (argvec[0], nargs, argvec + 1);
8858 case TYPE_CODE_STRUCT:
8859 {
8860 int arity;
8861
8862 arity = ada_array_arity (type);
8863 type = ada_array_element_type (type, nargs);
8864 if (type == NULL)
8865 error (_("cannot subscript or call a record"));
8866 if (arity != nargs)
8867 error (_("wrong number of subscripts; expecting %d"), arity);
8868 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8869 return value_zero (ada_aligned_type (type), lval_memory);
8870 return
8871 unwrap_value (ada_value_subscript
8872 (argvec[0], nargs, argvec + 1));
8873 }
8874 case TYPE_CODE_ARRAY:
8875 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8876 {
8877 type = ada_array_element_type (type, nargs);
8878 if (type == NULL)
8879 error (_("element type of array unknown"));
8880 else
8881 return value_zero (ada_aligned_type (type), lval_memory);
8882 }
8883 return
8884 unwrap_value (ada_value_subscript
8885 (ada_coerce_to_simple_array (argvec[0]),
8886 nargs, argvec + 1));
8887 case TYPE_CODE_PTR: /* Pointer to array */
8888 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
8889 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8890 {
8891 type = ada_array_element_type (type, nargs);
8892 if (type == NULL)
8893 error (_("element type of array unknown"));
8894 else
8895 return value_zero (ada_aligned_type (type), lval_memory);
8896 }
8897 return
8898 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
8899 nargs, argvec + 1));
8900
8901 default:
8902 error (_("Attempt to index or call something other than an "
8903 "array or function"));
8904 }
8905
8906 case TERNOP_SLICE:
8907 {
8908 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8909 struct value *low_bound_val =
8910 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8911 struct value *high_bound_val =
8912 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8913 LONGEST low_bound;
8914 LONGEST high_bound;
8915 low_bound_val = coerce_ref (low_bound_val);
8916 high_bound_val = coerce_ref (high_bound_val);
8917 low_bound = pos_atr (low_bound_val);
8918 high_bound = pos_atr (high_bound_val);
8919
8920 if (noside == EVAL_SKIP)
8921 goto nosideret;
8922
8923 /* If this is a reference to an aligner type, then remove all
8924 the aligners. */
8925 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8926 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
8927 TYPE_TARGET_TYPE (value_type (array)) =
8928 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
8929
8930 if (ada_is_packed_array_type (value_type (array)))
8931 error (_("cannot slice a packed array"));
8932
8933 /* If this is a reference to an array or an array lvalue,
8934 convert to a pointer. */
8935 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8936 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
8937 && VALUE_LVAL (array) == lval_memory))
8938 array = value_addr (array);
8939
8940 if (noside == EVAL_AVOID_SIDE_EFFECTS
8941 && ada_is_array_descriptor_type (ada_check_typedef
8942 (value_type (array))))
8943 return empty_array (ada_type_of_array (array, 0), low_bound);
8944
8945 array = ada_coerce_to_simple_array_ptr (array);
8946
8947 /* If we have more than one level of pointer indirection,
8948 dereference the value until we get only one level. */
8949 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
8950 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
8951 == TYPE_CODE_PTR))
8952 array = value_ind (array);
8953
8954 /* Make sure we really do have an array type before going further,
8955 to avoid a SEGV when trying to get the index type or the target
8956 type later down the road if the debug info generated by
8957 the compiler is incorrect or incomplete. */
8958 if (!ada_is_simple_array_type (value_type (array)))
8959 error (_("cannot take slice of non-array"));
8960
8961 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
8962 {
8963 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
8964 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
8965 low_bound);
8966 else
8967 {
8968 struct type *arr_type0 =
8969 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
8970 NULL, 1);
8971 return ada_value_slice_from_ptr (array, arr_type0,
8972 longest_to_int (low_bound),
8973 longest_to_int (high_bound));
8974 }
8975 }
8976 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8977 return array;
8978 else if (high_bound < low_bound)
8979 return empty_array (value_type (array), low_bound);
8980 else
8981 return ada_value_slice (array, longest_to_int (low_bound),
8982 longest_to_int (high_bound));
8983 }
8984
8985 case UNOP_IN_RANGE:
8986 (*pos) += 2;
8987 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8988 type = check_typedef (exp->elts[pc + 1].type);
8989
8990 if (noside == EVAL_SKIP)
8991 goto nosideret;
8992
8993 switch (TYPE_CODE (type))
8994 {
8995 default:
8996 lim_warning (_("Membership test incompletely implemented; "
8997 "always returns true"));
8998 type = language_bool_type (exp->language_defn, exp->gdbarch);
8999 return value_from_longest (type, (LONGEST) 1);
9000
9001 case TYPE_CODE_RANGE:
9002 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
9003 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
9004 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9005 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9006 type = language_bool_type (exp->language_defn, exp->gdbarch);
9007 return
9008 value_from_longest (type,
9009 (value_less (arg1, arg3)
9010 || value_equal (arg1, arg3))
9011 && (value_less (arg2, arg1)
9012 || value_equal (arg2, arg1)));
9013 }
9014
9015 case BINOP_IN_BOUNDS:
9016 (*pos) += 2;
9017 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9018 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9019
9020 if (noside == EVAL_SKIP)
9021 goto nosideret;
9022
9023 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9024 {
9025 type = language_bool_type (exp->language_defn, exp->gdbarch);
9026 return value_zero (type, not_lval);
9027 }
9028
9029 tem = longest_to_int (exp->elts[pc + 1].longconst);
9030
9031 type = ada_index_type (value_type (arg2), tem, "range");
9032 if (!type)
9033 type = value_type (arg1);
9034
9035 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
9036 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
9037
9038 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9039 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9040 type = language_bool_type (exp->language_defn, exp->gdbarch);
9041 return
9042 value_from_longest (type,
9043 (value_less (arg1, arg3)
9044 || value_equal (arg1, arg3))
9045 && (value_less (arg2, arg1)
9046 || value_equal (arg2, arg1)));
9047
9048 case TERNOP_IN_RANGE:
9049 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9050 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9051 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9052
9053 if (noside == EVAL_SKIP)
9054 goto nosideret;
9055
9056 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9057 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9058 type = language_bool_type (exp->language_defn, exp->gdbarch);
9059 return
9060 value_from_longest (type,
9061 (value_less (arg1, arg3)
9062 || value_equal (arg1, arg3))
9063 && (value_less (arg2, arg1)
9064 || value_equal (arg2, arg1)));
9065
9066 case OP_ATR_FIRST:
9067 case OP_ATR_LAST:
9068 case OP_ATR_LENGTH:
9069 {
9070 struct type *type_arg;
9071 if (exp->elts[*pos].opcode == OP_TYPE)
9072 {
9073 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9074 arg1 = NULL;
9075 type_arg = check_typedef (exp->elts[pc + 2].type);
9076 }
9077 else
9078 {
9079 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9080 type_arg = NULL;
9081 }
9082
9083 if (exp->elts[*pos].opcode != OP_LONG)
9084 error (_("Invalid operand to '%s"), ada_attribute_name (op));
9085 tem = longest_to_int (exp->elts[*pos + 2].longconst);
9086 *pos += 4;
9087
9088 if (noside == EVAL_SKIP)
9089 goto nosideret;
9090
9091 if (type_arg == NULL)
9092 {
9093 arg1 = ada_coerce_ref (arg1);
9094
9095 if (ada_is_packed_array_type (value_type (arg1)))
9096 arg1 = ada_coerce_to_simple_array (arg1);
9097
9098 type = ada_index_type (value_type (arg1), tem,
9099 ada_attribute_name (op));
9100 if (type == NULL)
9101 type = builtin_type (exp->gdbarch)->builtin_int;
9102
9103 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9104 return allocate_value (type);
9105
9106 switch (op)
9107 {
9108 default: /* Should never happen. */
9109 error (_("unexpected attribute encountered"));
9110 case OP_ATR_FIRST:
9111 return value_from_longest
9112 (type, ada_array_bound (arg1, tem, 0));
9113 case OP_ATR_LAST:
9114 return value_from_longest
9115 (type, ada_array_bound (arg1, tem, 1));
9116 case OP_ATR_LENGTH:
9117 return value_from_longest
9118 (type, ada_array_length (arg1, tem));
9119 }
9120 }
9121 else if (discrete_type_p (type_arg))
9122 {
9123 struct type *range_type;
9124 char *name = ada_type_name (type_arg);
9125 range_type = NULL;
9126 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
9127 range_type =
9128 to_fixed_range_type (name, NULL, TYPE_OBJFILE (type_arg));
9129 if (range_type == NULL)
9130 range_type = type_arg;
9131 switch (op)
9132 {
9133 default:
9134 error (_("unexpected attribute encountered"));
9135 case OP_ATR_FIRST:
9136 return value_from_longest
9137 (range_type, discrete_type_low_bound (range_type));
9138 case OP_ATR_LAST:
9139 return value_from_longest
9140 (range_type, discrete_type_high_bound (range_type));
9141 case OP_ATR_LENGTH:
9142 error (_("the 'length attribute applies only to array types"));
9143 }
9144 }
9145 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
9146 error (_("unimplemented type attribute"));
9147 else
9148 {
9149 LONGEST low, high;
9150
9151 if (ada_is_packed_array_type (type_arg))
9152 type_arg = decode_packed_array_type (type_arg);
9153
9154 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
9155 if (type == NULL)
9156 type = builtin_type (exp->gdbarch)->builtin_int;
9157
9158 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9159 return allocate_value (type);
9160
9161 switch (op)
9162 {
9163 default:
9164 error (_("unexpected attribute encountered"));
9165 case OP_ATR_FIRST:
9166 low = ada_array_bound_from_type (type_arg, tem, 0);
9167 return value_from_longest (type, low);
9168 case OP_ATR_LAST:
9169 high = ada_array_bound_from_type (type_arg, tem, 1);
9170 return value_from_longest (type, high);
9171 case OP_ATR_LENGTH:
9172 low = ada_array_bound_from_type (type_arg, tem, 0);
9173 high = ada_array_bound_from_type (type_arg, tem, 1);
9174 return value_from_longest (type, high - low + 1);
9175 }
9176 }
9177 }
9178
9179 case OP_ATR_TAG:
9180 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9181 if (noside == EVAL_SKIP)
9182 goto nosideret;
9183
9184 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9185 return value_zero (ada_tag_type (arg1), not_lval);
9186
9187 return ada_value_tag (arg1);
9188
9189 case OP_ATR_MIN:
9190 case OP_ATR_MAX:
9191 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9192 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9193 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9194 if (noside == EVAL_SKIP)
9195 goto nosideret;
9196 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9197 return value_zero (value_type (arg1), not_lval);
9198 else
9199 {
9200 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9201 return value_binop (arg1, arg2,
9202 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
9203 }
9204
9205 case OP_ATR_MODULUS:
9206 {
9207 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
9208 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9209
9210 if (noside == EVAL_SKIP)
9211 goto nosideret;
9212
9213 if (!ada_is_modular_type (type_arg))
9214 error (_("'modulus must be applied to modular type"));
9215
9216 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
9217 ada_modulus (type_arg));
9218 }
9219
9220
9221 case OP_ATR_POS:
9222 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9223 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9224 if (noside == EVAL_SKIP)
9225 goto nosideret;
9226 type = builtin_type (exp->gdbarch)->builtin_int;
9227 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9228 return value_zero (type, not_lval);
9229 else
9230 return value_pos_atr (type, arg1);
9231
9232 case OP_ATR_SIZE:
9233 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9234 type = value_type (arg1);
9235
9236 /* If the argument is a reference, then dereference its type, since
9237 the user is really asking for the size of the actual object,
9238 not the size of the pointer. */
9239 if (TYPE_CODE (type) == TYPE_CODE_REF)
9240 type = TYPE_TARGET_TYPE (type);
9241
9242 if (noside == EVAL_SKIP)
9243 goto nosideret;
9244 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9245 return value_zero (builtin_type_int32, not_lval);
9246 else
9247 return value_from_longest (builtin_type_int32,
9248 TARGET_CHAR_BIT * TYPE_LENGTH (type));
9249
9250 case OP_ATR_VAL:
9251 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9252 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9253 type = exp->elts[pc + 2].type;
9254 if (noside == EVAL_SKIP)
9255 goto nosideret;
9256 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9257 return value_zero (type, not_lval);
9258 else
9259 return value_val_atr (type, arg1);
9260
9261 case BINOP_EXP:
9262 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9263 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9264 if (noside == EVAL_SKIP)
9265 goto nosideret;
9266 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9267 return value_zero (value_type (arg1), not_lval);
9268 else
9269 {
9270 /* For integer exponentiation operations,
9271 only promote the first argument. */
9272 if (is_integral_type (value_type (arg2)))
9273 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9274 else
9275 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9276
9277 return value_binop (arg1, arg2, op);
9278 }
9279
9280 case UNOP_PLUS:
9281 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9282 if (noside == EVAL_SKIP)
9283 goto nosideret;
9284 else
9285 return arg1;
9286
9287 case UNOP_ABS:
9288 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9289 if (noside == EVAL_SKIP)
9290 goto nosideret;
9291 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9292 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
9293 return value_neg (arg1);
9294 else
9295 return arg1;
9296
9297 case UNOP_IND:
9298 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9299 if (noside == EVAL_SKIP)
9300 goto nosideret;
9301 type = ada_check_typedef (value_type (arg1));
9302 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9303 {
9304 if (ada_is_array_descriptor_type (type))
9305 /* GDB allows dereferencing GNAT array descriptors. */
9306 {
9307 struct type *arrType = ada_type_of_array (arg1, 0);
9308 if (arrType == NULL)
9309 error (_("Attempt to dereference null array pointer."));
9310 return value_at_lazy (arrType, 0);
9311 }
9312 else if (TYPE_CODE (type) == TYPE_CODE_PTR
9313 || TYPE_CODE (type) == TYPE_CODE_REF
9314 /* In C you can dereference an array to get the 1st elt. */
9315 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
9316 {
9317 type = to_static_fixed_type
9318 (ada_aligned_type
9319 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
9320 check_size (type);
9321 return value_zero (type, lval_memory);
9322 }
9323 else if (TYPE_CODE (type) == TYPE_CODE_INT)
9324 {
9325 /* GDB allows dereferencing an int. */
9326 if (expect_type == NULL)
9327 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
9328 lval_memory);
9329 else
9330 {
9331 expect_type =
9332 to_static_fixed_type (ada_aligned_type (expect_type));
9333 return value_zero (expect_type, lval_memory);
9334 }
9335 }
9336 else
9337 error (_("Attempt to take contents of a non-pointer value."));
9338 }
9339 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
9340 type = ada_check_typedef (value_type (arg1));
9341
9342 if (TYPE_CODE (type) == TYPE_CODE_INT)
9343 /* GDB allows dereferencing an int. If we were given
9344 the expect_type, then use that as the target type.
9345 Otherwise, assume that the target type is an int. */
9346 {
9347 if (expect_type != NULL)
9348 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
9349 arg1));
9350 else
9351 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
9352 (CORE_ADDR) value_as_address (arg1));
9353 }
9354
9355 if (ada_is_array_descriptor_type (type))
9356 /* GDB allows dereferencing GNAT array descriptors. */
9357 return ada_coerce_to_simple_array (arg1);
9358 else
9359 return ada_value_ind (arg1);
9360
9361 case STRUCTOP_STRUCT:
9362 tem = longest_to_int (exp->elts[pc + 1].longconst);
9363 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
9364 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9365 if (noside == EVAL_SKIP)
9366 goto nosideret;
9367 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9368 {
9369 struct type *type1 = value_type (arg1);
9370 if (ada_is_tagged_type (type1, 1))
9371 {
9372 type = ada_lookup_struct_elt_type (type1,
9373 &exp->elts[pc + 2].string,
9374 1, 1, NULL);
9375 if (type == NULL)
9376 /* In this case, we assume that the field COULD exist
9377 in some extension of the type. Return an object of
9378 "type" void, which will match any formal
9379 (see ada_type_match). */
9380 return value_zero (builtin_type_void, lval_memory);
9381 }
9382 else
9383 type =
9384 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
9385 0, NULL);
9386
9387 return value_zero (ada_aligned_type (type), lval_memory);
9388 }
9389 else
9390 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
9391 arg1 = unwrap_value (arg1);
9392 return ada_to_fixed_value (arg1);
9393
9394 case OP_TYPE:
9395 /* The value is not supposed to be used. This is here to make it
9396 easier to accommodate expressions that contain types. */
9397 (*pos) += 2;
9398 if (noside == EVAL_SKIP)
9399 goto nosideret;
9400 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9401 return allocate_value (exp->elts[pc + 1].type);
9402 else
9403 error (_("Attempt to use a type name as an expression"));
9404
9405 case OP_AGGREGATE:
9406 case OP_CHOICES:
9407 case OP_OTHERS:
9408 case OP_DISCRETE_RANGE:
9409 case OP_POSITIONAL:
9410 case OP_NAME:
9411 if (noside == EVAL_NORMAL)
9412 switch (op)
9413 {
9414 case OP_NAME:
9415 error (_("Undefined name, ambiguous name, or renaming used in "
9416 "component association: %s."), &exp->elts[pc+2].string);
9417 case OP_AGGREGATE:
9418 error (_("Aggregates only allowed on the right of an assignment"));
9419 default:
9420 internal_error (__FILE__, __LINE__, _("aggregate apparently mangled"));
9421 }
9422
9423 ada_forward_operator_length (exp, pc, &oplen, &nargs);
9424 *pos += oplen - 1;
9425 for (tem = 0; tem < nargs; tem += 1)
9426 ada_evaluate_subexp (NULL, exp, pos, noside);
9427 goto nosideret;
9428 }
9429
9430 nosideret:
9431 return value_from_longest (builtin_type_int8, (LONGEST) 1);
9432 }
9433 \f
9434
9435 /* Fixed point */
9436
9437 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
9438 type name that encodes the 'small and 'delta information.
9439 Otherwise, return NULL. */
9440
9441 static const char *
9442 fixed_type_info (struct type *type)
9443 {
9444 const char *name = ada_type_name (type);
9445 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
9446
9447 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
9448 {
9449 const char *tail = strstr (name, "___XF_");
9450 if (tail == NULL)
9451 return NULL;
9452 else
9453 return tail + 5;
9454 }
9455 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
9456 return fixed_type_info (TYPE_TARGET_TYPE (type));
9457 else
9458 return NULL;
9459 }
9460
9461 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
9462
9463 int
9464 ada_is_fixed_point_type (struct type *type)
9465 {
9466 return fixed_type_info (type) != NULL;
9467 }
9468
9469 /* Return non-zero iff TYPE represents a System.Address type. */
9470
9471 int
9472 ada_is_system_address_type (struct type *type)
9473 {
9474 return (TYPE_NAME (type)
9475 && strcmp (TYPE_NAME (type), "system__address") == 0);
9476 }
9477
9478 /* Assuming that TYPE is the representation of an Ada fixed-point
9479 type, return its delta, or -1 if the type is malformed and the
9480 delta cannot be determined. */
9481
9482 DOUBLEST
9483 ada_delta (struct type *type)
9484 {
9485 const char *encoding = fixed_type_info (type);
9486 DOUBLEST num, den;
9487
9488 /* Strictly speaking, num and den are encoded as integer. However,
9489 they may not fit into a long, and they will have to be converted
9490 to DOUBLEST anyway. So scan them as DOUBLEST. */
9491 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
9492 &num, &den) < 2)
9493 return -1.0;
9494 else
9495 return num / den;
9496 }
9497
9498 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
9499 factor ('SMALL value) associated with the type. */
9500
9501 static DOUBLEST
9502 scaling_factor (struct type *type)
9503 {
9504 const char *encoding = fixed_type_info (type);
9505 DOUBLEST num0, den0, num1, den1;
9506 int n;
9507
9508 /* Strictly speaking, num's and den's are encoded as integer. However,
9509 they may not fit into a long, and they will have to be converted
9510 to DOUBLEST anyway. So scan them as DOUBLEST. */
9511 n = sscanf (encoding,
9512 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
9513 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
9514 &num0, &den0, &num1, &den1);
9515
9516 if (n < 2)
9517 return 1.0;
9518 else if (n == 4)
9519 return num1 / den1;
9520 else
9521 return num0 / den0;
9522 }
9523
9524
9525 /* Assuming that X is the representation of a value of fixed-point
9526 type TYPE, return its floating-point equivalent. */
9527
9528 DOUBLEST
9529 ada_fixed_to_float (struct type *type, LONGEST x)
9530 {
9531 return (DOUBLEST) x *scaling_factor (type);
9532 }
9533
9534 /* The representation of a fixed-point value of type TYPE
9535 corresponding to the value X. */
9536
9537 LONGEST
9538 ada_float_to_fixed (struct type *type, DOUBLEST x)
9539 {
9540 return (LONGEST) (x / scaling_factor (type) + 0.5);
9541 }
9542
9543
9544 /* VAX floating formats */
9545
9546 /* Non-zero iff TYPE represents one of the special VAX floating-point
9547 types. */
9548
9549 int
9550 ada_is_vax_floating_type (struct type *type)
9551 {
9552 int name_len =
9553 (ada_type_name (type) == NULL) ? 0 : strlen (ada_type_name (type));
9554 return
9555 name_len > 6
9556 && (TYPE_CODE (type) == TYPE_CODE_INT
9557 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9558 && strncmp (ada_type_name (type) + name_len - 6, "___XF", 5) == 0;
9559 }
9560
9561 /* The type of special VAX floating-point type this is, assuming
9562 ada_is_vax_floating_point. */
9563
9564 int
9565 ada_vax_float_type_suffix (struct type *type)
9566 {
9567 return ada_type_name (type)[strlen (ada_type_name (type)) - 1];
9568 }
9569
9570 /* A value representing the special debugging function that outputs
9571 VAX floating-point values of the type represented by TYPE. Assumes
9572 ada_is_vax_floating_type (TYPE). */
9573
9574 struct value *
9575 ada_vax_float_print_function (struct type *type)
9576 {
9577 switch (ada_vax_float_type_suffix (type))
9578 {
9579 case 'F':
9580 return get_var_value ("DEBUG_STRING_F", 0);
9581 case 'D':
9582 return get_var_value ("DEBUG_STRING_D", 0);
9583 case 'G':
9584 return get_var_value ("DEBUG_STRING_G", 0);
9585 default:
9586 error (_("invalid VAX floating-point type"));
9587 }
9588 }
9589 \f
9590
9591 /* Range types */
9592
9593 /* Scan STR beginning at position K for a discriminant name, and
9594 return the value of that discriminant field of DVAL in *PX. If
9595 PNEW_K is not null, put the position of the character beyond the
9596 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
9597 not alter *PX and *PNEW_K if unsuccessful. */
9598
9599 static int
9600 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
9601 int *pnew_k)
9602 {
9603 static char *bound_buffer = NULL;
9604 static size_t bound_buffer_len = 0;
9605 char *bound;
9606 char *pend;
9607 struct value *bound_val;
9608
9609 if (dval == NULL || str == NULL || str[k] == '\0')
9610 return 0;
9611
9612 pend = strstr (str + k, "__");
9613 if (pend == NULL)
9614 {
9615 bound = str + k;
9616 k += strlen (bound);
9617 }
9618 else
9619 {
9620 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
9621 bound = bound_buffer;
9622 strncpy (bound_buffer, str + k, pend - (str + k));
9623 bound[pend - (str + k)] = '\0';
9624 k = pend - str;
9625 }
9626
9627 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
9628 if (bound_val == NULL)
9629 return 0;
9630
9631 *px = value_as_long (bound_val);
9632 if (pnew_k != NULL)
9633 *pnew_k = k;
9634 return 1;
9635 }
9636
9637 /* Value of variable named NAME in the current environment. If
9638 no such variable found, then if ERR_MSG is null, returns 0, and
9639 otherwise causes an error with message ERR_MSG. */
9640
9641 static struct value *
9642 get_var_value (char *name, char *err_msg)
9643 {
9644 struct ada_symbol_info *syms;
9645 int nsyms;
9646
9647 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
9648 &syms);
9649
9650 if (nsyms != 1)
9651 {
9652 if (err_msg == NULL)
9653 return 0;
9654 else
9655 error (("%s"), err_msg);
9656 }
9657
9658 return value_of_variable (syms[0].sym, syms[0].block);
9659 }
9660
9661 /* Value of integer variable named NAME in the current environment. If
9662 no such variable found, returns 0, and sets *FLAG to 0. If
9663 successful, sets *FLAG to 1. */
9664
9665 LONGEST
9666 get_int_var_value (char *name, int *flag)
9667 {
9668 struct value *var_val = get_var_value (name, 0);
9669
9670 if (var_val == 0)
9671 {
9672 if (flag != NULL)
9673 *flag = 0;
9674 return 0;
9675 }
9676 else
9677 {
9678 if (flag != NULL)
9679 *flag = 1;
9680 return value_as_long (var_val);
9681 }
9682 }
9683
9684
9685 /* Return a range type whose base type is that of the range type named
9686 NAME in the current environment, and whose bounds are calculated
9687 from NAME according to the GNAT range encoding conventions.
9688 Extract discriminant values, if needed, from DVAL. If a new type
9689 must be created, allocate in OBJFILE's space. The bounds
9690 information, in general, is encoded in NAME, the base type given in
9691 the named range type. */
9692
9693 static struct type *
9694 to_fixed_range_type (char *name, struct value *dval, struct objfile *objfile)
9695 {
9696 struct type *raw_type = ada_find_any_type (name);
9697 struct type *base_type;
9698 char *subtype_info;
9699
9700 /* Also search primitive types if type symbol could not be found. */
9701 if (raw_type == NULL)
9702 raw_type = language_lookup_primitive_type_by_name
9703 (language_def (language_ada), current_gdbarch, name);
9704
9705 if (raw_type == NULL)
9706 base_type = builtin_type_int32;
9707 else if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
9708 base_type = TYPE_TARGET_TYPE (raw_type);
9709 else
9710 base_type = raw_type;
9711
9712 subtype_info = strstr (name, "___XD");
9713 if (subtype_info == NULL)
9714 {
9715 LONGEST L = discrete_type_low_bound (raw_type);
9716 LONGEST U = discrete_type_high_bound (raw_type);
9717 if (L < INT_MIN || U > INT_MAX)
9718 return raw_type;
9719 else
9720 return create_range_type (alloc_type (objfile), raw_type,
9721 discrete_type_low_bound (raw_type),
9722 discrete_type_high_bound (raw_type));
9723 }
9724 else
9725 {
9726 static char *name_buf = NULL;
9727 static size_t name_len = 0;
9728 int prefix_len = subtype_info - name;
9729 LONGEST L, U;
9730 struct type *type;
9731 char *bounds_str;
9732 int n;
9733
9734 GROW_VECT (name_buf, name_len, prefix_len + 5);
9735 strncpy (name_buf, name, prefix_len);
9736 name_buf[prefix_len] = '\0';
9737
9738 subtype_info += 5;
9739 bounds_str = strchr (subtype_info, '_');
9740 n = 1;
9741
9742 if (*subtype_info == 'L')
9743 {
9744 if (!ada_scan_number (bounds_str, n, &L, &n)
9745 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
9746 return raw_type;
9747 if (bounds_str[n] == '_')
9748 n += 2;
9749 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
9750 n += 1;
9751 subtype_info += 1;
9752 }
9753 else
9754 {
9755 int ok;
9756 strcpy (name_buf + prefix_len, "___L");
9757 L = get_int_var_value (name_buf, &ok);
9758 if (!ok)
9759 {
9760 lim_warning (_("Unknown lower bound, using 1."));
9761 L = 1;
9762 }
9763 }
9764
9765 if (*subtype_info == 'U')
9766 {
9767 if (!ada_scan_number (bounds_str, n, &U, &n)
9768 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
9769 return raw_type;
9770 }
9771 else
9772 {
9773 int ok;
9774 strcpy (name_buf + prefix_len, "___U");
9775 U = get_int_var_value (name_buf, &ok);
9776 if (!ok)
9777 {
9778 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
9779 U = L;
9780 }
9781 }
9782
9783 if (objfile == NULL)
9784 objfile = TYPE_OBJFILE (base_type);
9785 type = create_range_type (alloc_type (objfile), base_type, L, U);
9786 TYPE_NAME (type) = name;
9787 return type;
9788 }
9789 }
9790
9791 /* True iff NAME is the name of a range type. */
9792
9793 int
9794 ada_is_range_type_name (const char *name)
9795 {
9796 return (name != NULL && strstr (name, "___XD"));
9797 }
9798 \f
9799
9800 /* Modular types */
9801
9802 /* True iff TYPE is an Ada modular type. */
9803
9804 int
9805 ada_is_modular_type (struct type *type)
9806 {
9807 struct type *subranged_type = base_type (type);
9808
9809 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
9810 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
9811 && TYPE_UNSIGNED (subranged_type));
9812 }
9813
9814 /* Try to determine the lower and upper bounds of the given modular type
9815 using the type name only. Return non-zero and set L and U as the lower
9816 and upper bounds (respectively) if successful. */
9817
9818 int
9819 ada_modulus_from_name (struct type *type, ULONGEST *modulus)
9820 {
9821 char *name = ada_type_name (type);
9822 char *suffix;
9823 int k;
9824 LONGEST U;
9825
9826 if (name == NULL)
9827 return 0;
9828
9829 /* Discrete type bounds are encoded using an __XD suffix. In our case,
9830 we are looking for static bounds, which means an __XDLU suffix.
9831 Moreover, we know that the lower bound of modular types is always
9832 zero, so the actual suffix should start with "__XDLU_0__", and
9833 then be followed by the upper bound value. */
9834 suffix = strstr (name, "__XDLU_0__");
9835 if (suffix == NULL)
9836 return 0;
9837 k = 10;
9838 if (!ada_scan_number (suffix, k, &U, NULL))
9839 return 0;
9840
9841 *modulus = (ULONGEST) U + 1;
9842 return 1;
9843 }
9844
9845 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
9846
9847 ULONGEST
9848 ada_modulus (struct type *type)
9849 {
9850 ULONGEST modulus;
9851
9852 /* Normally, the modulus of a modular type is equal to the value of
9853 its upper bound + 1. However, the upper bound is currently stored
9854 as an int, which is not always big enough to hold the actual bound
9855 value. To workaround this, try to take advantage of the encoding
9856 that GNAT uses with with discrete types. To avoid some unnecessary
9857 parsing, we do this only when the size of TYPE is greater than
9858 the size of the field holding the bound. */
9859 if (TYPE_LENGTH (type) > sizeof (TYPE_HIGH_BOUND (type))
9860 && ada_modulus_from_name (type, &modulus))
9861 return modulus;
9862
9863 return (ULONGEST) (unsigned int) TYPE_HIGH_BOUND (type) + 1;
9864 }
9865 \f
9866
9867 /* Ada exception catchpoint support:
9868 ---------------------------------
9869
9870 We support 3 kinds of exception catchpoints:
9871 . catchpoints on Ada exceptions
9872 . catchpoints on unhandled Ada exceptions
9873 . catchpoints on failed assertions
9874
9875 Exceptions raised during failed assertions, or unhandled exceptions
9876 could perfectly be caught with the general catchpoint on Ada exceptions.
9877 However, we can easily differentiate these two special cases, and having
9878 the option to distinguish these two cases from the rest can be useful
9879 to zero-in on certain situations.
9880
9881 Exception catchpoints are a specialized form of breakpoint,
9882 since they rely on inserting breakpoints inside known routines
9883 of the GNAT runtime. The implementation therefore uses a standard
9884 breakpoint structure of the BP_BREAKPOINT type, but with its own set
9885 of breakpoint_ops.
9886
9887 Support in the runtime for exception catchpoints have been changed
9888 a few times already, and these changes affect the implementation
9889 of these catchpoints. In order to be able to support several
9890 variants of the runtime, we use a sniffer that will determine
9891 the runtime variant used by the program being debugged.
9892
9893 At this time, we do not support the use of conditions on Ada exception
9894 catchpoints. The COND and COND_STRING fields are therefore set
9895 to NULL (most of the time, see below).
9896
9897 Conditions where EXP_STRING, COND, and COND_STRING are used:
9898
9899 When a user specifies the name of a specific exception in the case
9900 of catchpoints on Ada exceptions, we store the name of that exception
9901 in the EXP_STRING. We then translate this request into an actual
9902 condition stored in COND_STRING, and then parse it into an expression
9903 stored in COND. */
9904
9905 /* The different types of catchpoints that we introduced for catching
9906 Ada exceptions. */
9907
9908 enum exception_catchpoint_kind
9909 {
9910 ex_catch_exception,
9911 ex_catch_exception_unhandled,
9912 ex_catch_assert
9913 };
9914
9915 /* Ada's standard exceptions. */
9916
9917 static char *standard_exc[] = {
9918 "constraint_error",
9919 "program_error",
9920 "storage_error",
9921 "tasking_error"
9922 };
9923
9924 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
9925
9926 /* A structure that describes how to support exception catchpoints
9927 for a given executable. */
9928
9929 struct exception_support_info
9930 {
9931 /* The name of the symbol to break on in order to insert
9932 a catchpoint on exceptions. */
9933 const char *catch_exception_sym;
9934
9935 /* The name of the symbol to break on in order to insert
9936 a catchpoint on unhandled exceptions. */
9937 const char *catch_exception_unhandled_sym;
9938
9939 /* The name of the symbol to break on in order to insert
9940 a catchpoint on failed assertions. */
9941 const char *catch_assert_sym;
9942
9943 /* Assuming that the inferior just triggered an unhandled exception
9944 catchpoint, this function is responsible for returning the address
9945 in inferior memory where the name of that exception is stored.
9946 Return zero if the address could not be computed. */
9947 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
9948 };
9949
9950 static CORE_ADDR ada_unhandled_exception_name_addr (void);
9951 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
9952
9953 /* The following exception support info structure describes how to
9954 implement exception catchpoints with the latest version of the
9955 Ada runtime (as of 2007-03-06). */
9956
9957 static const struct exception_support_info default_exception_support_info =
9958 {
9959 "__gnat_debug_raise_exception", /* catch_exception_sym */
9960 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9961 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9962 ada_unhandled_exception_name_addr
9963 };
9964
9965 /* The following exception support info structure describes how to
9966 implement exception catchpoints with a slightly older version
9967 of the Ada runtime. */
9968
9969 static const struct exception_support_info exception_support_info_fallback =
9970 {
9971 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
9972 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9973 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9974 ada_unhandled_exception_name_addr_from_raise
9975 };
9976
9977 /* For each executable, we sniff which exception info structure to use
9978 and cache it in the following global variable. */
9979
9980 static const struct exception_support_info *exception_info = NULL;
9981
9982 /* Inspect the Ada runtime and determine which exception info structure
9983 should be used to provide support for exception catchpoints.
9984
9985 This function will always set exception_info, or raise an error. */
9986
9987 static void
9988 ada_exception_support_info_sniffer (void)
9989 {
9990 struct symbol *sym;
9991
9992 /* If the exception info is already known, then no need to recompute it. */
9993 if (exception_info != NULL)
9994 return;
9995
9996 /* Check the latest (default) exception support info. */
9997 sym = standard_lookup (default_exception_support_info.catch_exception_sym,
9998 NULL, VAR_DOMAIN);
9999 if (sym != NULL)
10000 {
10001 exception_info = &default_exception_support_info;
10002 return;
10003 }
10004
10005 /* Try our fallback exception suport info. */
10006 sym = standard_lookup (exception_support_info_fallback.catch_exception_sym,
10007 NULL, VAR_DOMAIN);
10008 if (sym != NULL)
10009 {
10010 exception_info = &exception_support_info_fallback;
10011 return;
10012 }
10013
10014 /* Sometimes, it is normal for us to not be able to find the routine
10015 we are looking for. This happens when the program is linked with
10016 the shared version of the GNAT runtime, and the program has not been
10017 started yet. Inform the user of these two possible causes if
10018 applicable. */
10019
10020 if (ada_update_initial_language (language_unknown, NULL) != language_ada)
10021 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
10022
10023 /* If the symbol does not exist, then check that the program is
10024 already started, to make sure that shared libraries have been
10025 loaded. If it is not started, this may mean that the symbol is
10026 in a shared library. */
10027
10028 if (ptid_get_pid (inferior_ptid) == 0)
10029 error (_("Unable to insert catchpoint. Try to start the program first."));
10030
10031 /* At this point, we know that we are debugging an Ada program and
10032 that the inferior has been started, but we still are not able to
10033 find the run-time symbols. That can mean that we are in
10034 configurable run time mode, or that a-except as been optimized
10035 out by the linker... In any case, at this point it is not worth
10036 supporting this feature. */
10037
10038 error (_("Cannot insert catchpoints in this configuration."));
10039 }
10040
10041 /* An observer of "executable_changed" events.
10042 Its role is to clear certain cached values that need to be recomputed
10043 each time a new executable is loaded by GDB. */
10044
10045 static void
10046 ada_executable_changed_observer (void)
10047 {
10048 /* If the executable changed, then it is possible that the Ada runtime
10049 is different. So we need to invalidate the exception support info
10050 cache. */
10051 exception_info = NULL;
10052 }
10053
10054 /* Return the name of the function at PC, NULL if could not find it.
10055 This function only checks the debugging information, not the symbol
10056 table. */
10057
10058 static char *
10059 function_name_from_pc (CORE_ADDR pc)
10060 {
10061 char *func_name;
10062
10063 if (!find_pc_partial_function (pc, &func_name, NULL, NULL))
10064 return NULL;
10065
10066 return func_name;
10067 }
10068
10069 /* True iff FRAME is very likely to be that of a function that is
10070 part of the runtime system. This is all very heuristic, but is
10071 intended to be used as advice as to what frames are uninteresting
10072 to most users. */
10073
10074 static int
10075 is_known_support_routine (struct frame_info *frame)
10076 {
10077 struct symtab_and_line sal;
10078 char *func_name;
10079 int i;
10080
10081 /* If this code does not have any debugging information (no symtab),
10082 This cannot be any user code. */
10083
10084 find_frame_sal (frame, &sal);
10085 if (sal.symtab == NULL)
10086 return 1;
10087
10088 /* If there is a symtab, but the associated source file cannot be
10089 located, then assume this is not user code: Selecting a frame
10090 for which we cannot display the code would not be very helpful
10091 for the user. This should also take care of case such as VxWorks
10092 where the kernel has some debugging info provided for a few units. */
10093
10094 if (symtab_to_fullname (sal.symtab) == NULL)
10095 return 1;
10096
10097 /* Check the unit filename againt the Ada runtime file naming.
10098 We also check the name of the objfile against the name of some
10099 known system libraries that sometimes come with debugging info
10100 too. */
10101
10102 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
10103 {
10104 re_comp (known_runtime_file_name_patterns[i]);
10105 if (re_exec (sal.symtab->filename))
10106 return 1;
10107 if (sal.symtab->objfile != NULL
10108 && re_exec (sal.symtab->objfile->name))
10109 return 1;
10110 }
10111
10112 /* Check whether the function is a GNAT-generated entity. */
10113
10114 func_name = function_name_from_pc (get_frame_address_in_block (frame));
10115 if (func_name == NULL)
10116 return 1;
10117
10118 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
10119 {
10120 re_comp (known_auxiliary_function_name_patterns[i]);
10121 if (re_exec (func_name))
10122 return 1;
10123 }
10124
10125 return 0;
10126 }
10127
10128 /* Find the first frame that contains debugging information and that is not
10129 part of the Ada run-time, starting from FI and moving upward. */
10130
10131 void
10132 ada_find_printable_frame (struct frame_info *fi)
10133 {
10134 for (; fi != NULL; fi = get_prev_frame (fi))
10135 {
10136 if (!is_known_support_routine (fi))
10137 {
10138 select_frame (fi);
10139 break;
10140 }
10141 }
10142
10143 }
10144
10145 /* Assuming that the inferior just triggered an unhandled exception
10146 catchpoint, return the address in inferior memory where the name
10147 of the exception is stored.
10148
10149 Return zero if the address could not be computed. */
10150
10151 static CORE_ADDR
10152 ada_unhandled_exception_name_addr (void)
10153 {
10154 return parse_and_eval_address ("e.full_name");
10155 }
10156
10157 /* Same as ada_unhandled_exception_name_addr, except that this function
10158 should be used when the inferior uses an older version of the runtime,
10159 where the exception name needs to be extracted from a specific frame
10160 several frames up in the callstack. */
10161
10162 static CORE_ADDR
10163 ada_unhandled_exception_name_addr_from_raise (void)
10164 {
10165 int frame_level;
10166 struct frame_info *fi;
10167
10168 /* To determine the name of this exception, we need to select
10169 the frame corresponding to RAISE_SYM_NAME. This frame is
10170 at least 3 levels up, so we simply skip the first 3 frames
10171 without checking the name of their associated function. */
10172 fi = get_current_frame ();
10173 for (frame_level = 0; frame_level < 3; frame_level += 1)
10174 if (fi != NULL)
10175 fi = get_prev_frame (fi);
10176
10177 while (fi != NULL)
10178 {
10179 const char *func_name =
10180 function_name_from_pc (get_frame_address_in_block (fi));
10181 if (func_name != NULL
10182 && strcmp (func_name, exception_info->catch_exception_sym) == 0)
10183 break; /* We found the frame we were looking for... */
10184 fi = get_prev_frame (fi);
10185 }
10186
10187 if (fi == NULL)
10188 return 0;
10189
10190 select_frame (fi);
10191 return parse_and_eval_address ("id.full_name");
10192 }
10193
10194 /* Assuming the inferior just triggered an Ada exception catchpoint
10195 (of any type), return the address in inferior memory where the name
10196 of the exception is stored, if applicable.
10197
10198 Return zero if the address could not be computed, or if not relevant. */
10199
10200 static CORE_ADDR
10201 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
10202 struct breakpoint *b)
10203 {
10204 switch (ex)
10205 {
10206 case ex_catch_exception:
10207 return (parse_and_eval_address ("e.full_name"));
10208 break;
10209
10210 case ex_catch_exception_unhandled:
10211 return exception_info->unhandled_exception_name_addr ();
10212 break;
10213
10214 case ex_catch_assert:
10215 return 0; /* Exception name is not relevant in this case. */
10216 break;
10217
10218 default:
10219 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10220 break;
10221 }
10222
10223 return 0; /* Should never be reached. */
10224 }
10225
10226 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
10227 any error that ada_exception_name_addr_1 might cause to be thrown.
10228 When an error is intercepted, a warning with the error message is printed,
10229 and zero is returned. */
10230
10231 static CORE_ADDR
10232 ada_exception_name_addr (enum exception_catchpoint_kind ex,
10233 struct breakpoint *b)
10234 {
10235 struct gdb_exception e;
10236 CORE_ADDR result = 0;
10237
10238 TRY_CATCH (e, RETURN_MASK_ERROR)
10239 {
10240 result = ada_exception_name_addr_1 (ex, b);
10241 }
10242
10243 if (e.reason < 0)
10244 {
10245 warning (_("failed to get exception name: %s"), e.message);
10246 return 0;
10247 }
10248
10249 return result;
10250 }
10251
10252 /* Implement the PRINT_IT method in the breakpoint_ops structure
10253 for all exception catchpoint kinds. */
10254
10255 static enum print_stop_action
10256 print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
10257 {
10258 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
10259 char exception_name[256];
10260
10261 if (addr != 0)
10262 {
10263 read_memory (addr, exception_name, sizeof (exception_name) - 1);
10264 exception_name [sizeof (exception_name) - 1] = '\0';
10265 }
10266
10267 ada_find_printable_frame (get_current_frame ());
10268
10269 annotate_catchpoint (b->number);
10270 switch (ex)
10271 {
10272 case ex_catch_exception:
10273 if (addr != 0)
10274 printf_filtered (_("\nCatchpoint %d, %s at "),
10275 b->number, exception_name);
10276 else
10277 printf_filtered (_("\nCatchpoint %d, exception at "), b->number);
10278 break;
10279 case ex_catch_exception_unhandled:
10280 if (addr != 0)
10281 printf_filtered (_("\nCatchpoint %d, unhandled %s at "),
10282 b->number, exception_name);
10283 else
10284 printf_filtered (_("\nCatchpoint %d, unhandled exception at "),
10285 b->number);
10286 break;
10287 case ex_catch_assert:
10288 printf_filtered (_("\nCatchpoint %d, failed assertion at "),
10289 b->number);
10290 break;
10291 }
10292
10293 return PRINT_SRC_AND_LOC;
10294 }
10295
10296 /* Implement the PRINT_ONE method in the breakpoint_ops structure
10297 for all exception catchpoint kinds. */
10298
10299 static void
10300 print_one_exception (enum exception_catchpoint_kind ex,
10301 struct breakpoint *b, CORE_ADDR *last_addr)
10302 {
10303 struct value_print_options opts;
10304
10305 get_user_print_options (&opts);
10306 if (opts.addressprint)
10307 {
10308 annotate_field (4);
10309 ui_out_field_core_addr (uiout, "addr", b->loc->address);
10310 }
10311
10312 annotate_field (5);
10313 *last_addr = b->loc->address;
10314 switch (ex)
10315 {
10316 case ex_catch_exception:
10317 if (b->exp_string != NULL)
10318 {
10319 char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
10320
10321 ui_out_field_string (uiout, "what", msg);
10322 xfree (msg);
10323 }
10324 else
10325 ui_out_field_string (uiout, "what", "all Ada exceptions");
10326
10327 break;
10328
10329 case ex_catch_exception_unhandled:
10330 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
10331 break;
10332
10333 case ex_catch_assert:
10334 ui_out_field_string (uiout, "what", "failed Ada assertions");
10335 break;
10336
10337 default:
10338 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10339 break;
10340 }
10341 }
10342
10343 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
10344 for all exception catchpoint kinds. */
10345
10346 static void
10347 print_mention_exception (enum exception_catchpoint_kind ex,
10348 struct breakpoint *b)
10349 {
10350 switch (ex)
10351 {
10352 case ex_catch_exception:
10353 if (b->exp_string != NULL)
10354 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
10355 b->number, b->exp_string);
10356 else
10357 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
10358
10359 break;
10360
10361 case ex_catch_exception_unhandled:
10362 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
10363 b->number);
10364 break;
10365
10366 case ex_catch_assert:
10367 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
10368 break;
10369
10370 default:
10371 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10372 break;
10373 }
10374 }
10375
10376 /* Virtual table for "catch exception" breakpoints. */
10377
10378 static enum print_stop_action
10379 print_it_catch_exception (struct breakpoint *b)
10380 {
10381 return print_it_exception (ex_catch_exception, b);
10382 }
10383
10384 static void
10385 print_one_catch_exception (struct breakpoint *b, CORE_ADDR *last_addr)
10386 {
10387 print_one_exception (ex_catch_exception, b, last_addr);
10388 }
10389
10390 static void
10391 print_mention_catch_exception (struct breakpoint *b)
10392 {
10393 print_mention_exception (ex_catch_exception, b);
10394 }
10395
10396 static struct breakpoint_ops catch_exception_breakpoint_ops =
10397 {
10398 NULL, /* insert */
10399 NULL, /* remove */
10400 NULL, /* breakpoint_hit */
10401 print_it_catch_exception,
10402 print_one_catch_exception,
10403 print_mention_catch_exception
10404 };
10405
10406 /* Virtual table for "catch exception unhandled" breakpoints. */
10407
10408 static enum print_stop_action
10409 print_it_catch_exception_unhandled (struct breakpoint *b)
10410 {
10411 return print_it_exception (ex_catch_exception_unhandled, b);
10412 }
10413
10414 static void
10415 print_one_catch_exception_unhandled (struct breakpoint *b, CORE_ADDR *last_addr)
10416 {
10417 print_one_exception (ex_catch_exception_unhandled, b, last_addr);
10418 }
10419
10420 static void
10421 print_mention_catch_exception_unhandled (struct breakpoint *b)
10422 {
10423 print_mention_exception (ex_catch_exception_unhandled, b);
10424 }
10425
10426 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
10427 NULL, /* insert */
10428 NULL, /* remove */
10429 NULL, /* breakpoint_hit */
10430 print_it_catch_exception_unhandled,
10431 print_one_catch_exception_unhandled,
10432 print_mention_catch_exception_unhandled
10433 };
10434
10435 /* Virtual table for "catch assert" breakpoints. */
10436
10437 static enum print_stop_action
10438 print_it_catch_assert (struct breakpoint *b)
10439 {
10440 return print_it_exception (ex_catch_assert, b);
10441 }
10442
10443 static void
10444 print_one_catch_assert (struct breakpoint *b, CORE_ADDR *last_addr)
10445 {
10446 print_one_exception (ex_catch_assert, b, last_addr);
10447 }
10448
10449 static void
10450 print_mention_catch_assert (struct breakpoint *b)
10451 {
10452 print_mention_exception (ex_catch_assert, b);
10453 }
10454
10455 static struct breakpoint_ops catch_assert_breakpoint_ops = {
10456 NULL, /* insert */
10457 NULL, /* remove */
10458 NULL, /* breakpoint_hit */
10459 print_it_catch_assert,
10460 print_one_catch_assert,
10461 print_mention_catch_assert
10462 };
10463
10464 /* Return non-zero if B is an Ada exception catchpoint. */
10465
10466 int
10467 ada_exception_catchpoint_p (struct breakpoint *b)
10468 {
10469 return (b->ops == &catch_exception_breakpoint_ops
10470 || b->ops == &catch_exception_unhandled_breakpoint_ops
10471 || b->ops == &catch_assert_breakpoint_ops);
10472 }
10473
10474 /* Return a newly allocated copy of the first space-separated token
10475 in ARGSP, and then adjust ARGSP to point immediately after that
10476 token.
10477
10478 Return NULL if ARGPS does not contain any more tokens. */
10479
10480 static char *
10481 ada_get_next_arg (char **argsp)
10482 {
10483 char *args = *argsp;
10484 char *end;
10485 char *result;
10486
10487 /* Skip any leading white space. */
10488
10489 while (isspace (*args))
10490 args++;
10491
10492 if (args[0] == '\0')
10493 return NULL; /* No more arguments. */
10494
10495 /* Find the end of the current argument. */
10496
10497 end = args;
10498 while (*end != '\0' && !isspace (*end))
10499 end++;
10500
10501 /* Adjust ARGSP to point to the start of the next argument. */
10502
10503 *argsp = end;
10504
10505 /* Make a copy of the current argument and return it. */
10506
10507 result = xmalloc (end - args + 1);
10508 strncpy (result, args, end - args);
10509 result[end - args] = '\0';
10510
10511 return result;
10512 }
10513
10514 /* Split the arguments specified in a "catch exception" command.
10515 Set EX to the appropriate catchpoint type.
10516 Set EXP_STRING to the name of the specific exception if
10517 specified by the user. */
10518
10519 static void
10520 catch_ada_exception_command_split (char *args,
10521 enum exception_catchpoint_kind *ex,
10522 char **exp_string)
10523 {
10524 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
10525 char *exception_name;
10526
10527 exception_name = ada_get_next_arg (&args);
10528 make_cleanup (xfree, exception_name);
10529
10530 /* Check that we do not have any more arguments. Anything else
10531 is unexpected. */
10532
10533 while (isspace (*args))
10534 args++;
10535
10536 if (args[0] != '\0')
10537 error (_("Junk at end of expression"));
10538
10539 discard_cleanups (old_chain);
10540
10541 if (exception_name == NULL)
10542 {
10543 /* Catch all exceptions. */
10544 *ex = ex_catch_exception;
10545 *exp_string = NULL;
10546 }
10547 else if (strcmp (exception_name, "unhandled") == 0)
10548 {
10549 /* Catch unhandled exceptions. */
10550 *ex = ex_catch_exception_unhandled;
10551 *exp_string = NULL;
10552 }
10553 else
10554 {
10555 /* Catch a specific exception. */
10556 *ex = ex_catch_exception;
10557 *exp_string = exception_name;
10558 }
10559 }
10560
10561 /* Return the name of the symbol on which we should break in order to
10562 implement a catchpoint of the EX kind. */
10563
10564 static const char *
10565 ada_exception_sym_name (enum exception_catchpoint_kind ex)
10566 {
10567 gdb_assert (exception_info != NULL);
10568
10569 switch (ex)
10570 {
10571 case ex_catch_exception:
10572 return (exception_info->catch_exception_sym);
10573 break;
10574 case ex_catch_exception_unhandled:
10575 return (exception_info->catch_exception_unhandled_sym);
10576 break;
10577 case ex_catch_assert:
10578 return (exception_info->catch_assert_sym);
10579 break;
10580 default:
10581 internal_error (__FILE__, __LINE__,
10582 _("unexpected catchpoint kind (%d)"), ex);
10583 }
10584 }
10585
10586 /* Return the breakpoint ops "virtual table" used for catchpoints
10587 of the EX kind. */
10588
10589 static struct breakpoint_ops *
10590 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
10591 {
10592 switch (ex)
10593 {
10594 case ex_catch_exception:
10595 return (&catch_exception_breakpoint_ops);
10596 break;
10597 case ex_catch_exception_unhandled:
10598 return (&catch_exception_unhandled_breakpoint_ops);
10599 break;
10600 case ex_catch_assert:
10601 return (&catch_assert_breakpoint_ops);
10602 break;
10603 default:
10604 internal_error (__FILE__, __LINE__,
10605 _("unexpected catchpoint kind (%d)"), ex);
10606 }
10607 }
10608
10609 /* Return the condition that will be used to match the current exception
10610 being raised with the exception that the user wants to catch. This
10611 assumes that this condition is used when the inferior just triggered
10612 an exception catchpoint.
10613
10614 The string returned is a newly allocated string that needs to be
10615 deallocated later. */
10616
10617 static char *
10618 ada_exception_catchpoint_cond_string (const char *exp_string)
10619 {
10620 int i;
10621
10622 /* The standard exceptions are a special case. They are defined in
10623 runtime units that have been compiled without debugging info; if
10624 EXP_STRING is the not-fully-qualified name of a standard
10625 exception (e.g. "constraint_error") then, during the evaluation
10626 of the condition expression, the symbol lookup on this name would
10627 *not* return this standard exception. The catchpoint condition
10628 may then be set only on user-defined exceptions which have the
10629 same not-fully-qualified name (e.g. my_package.constraint_error).
10630
10631 To avoid this unexcepted behavior, these standard exceptions are
10632 systematically prefixed by "standard". This means that "catch
10633 exception constraint_error" is rewritten into "catch exception
10634 standard.constraint_error".
10635
10636 If an exception named contraint_error is defined in another package of
10637 the inferior program, then the only way to specify this exception as a
10638 breakpoint condition is to use its fully-qualified named:
10639 e.g. my_package.constraint_error. */
10640
10641 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
10642 {
10643 if (strcmp (standard_exc [i], exp_string) == 0)
10644 {
10645 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
10646 exp_string);
10647 }
10648 }
10649 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
10650 }
10651
10652 /* Return the expression corresponding to COND_STRING evaluated at SAL. */
10653
10654 static struct expression *
10655 ada_parse_catchpoint_condition (char *cond_string,
10656 struct symtab_and_line sal)
10657 {
10658 return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
10659 }
10660
10661 /* Return the symtab_and_line that should be used to insert an exception
10662 catchpoint of the TYPE kind.
10663
10664 EX_STRING should contain the name of a specific exception
10665 that the catchpoint should catch, or NULL otherwise.
10666
10667 The idea behind all the remaining parameters is that their names match
10668 the name of certain fields in the breakpoint structure that are used to
10669 handle exception catchpoints. This function returns the value to which
10670 these fields should be set, depending on the type of catchpoint we need
10671 to create.
10672
10673 If COND and COND_STRING are both non-NULL, any value they might
10674 hold will be free'ed, and then replaced by newly allocated ones.
10675 These parameters are left untouched otherwise. */
10676
10677 static struct symtab_and_line
10678 ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
10679 char **addr_string, char **cond_string,
10680 struct expression **cond, struct breakpoint_ops **ops)
10681 {
10682 const char *sym_name;
10683 struct symbol *sym;
10684 struct symtab_and_line sal;
10685
10686 /* First, find out which exception support info to use. */
10687 ada_exception_support_info_sniffer ();
10688
10689 /* Then lookup the function on which we will break in order to catch
10690 the Ada exceptions requested by the user. */
10691
10692 sym_name = ada_exception_sym_name (ex);
10693 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
10694
10695 /* The symbol we're looking up is provided by a unit in the GNAT runtime
10696 that should be compiled with debugging information. As a result, we
10697 expect to find that symbol in the symtabs. If we don't find it, then
10698 the target most likely does not support Ada exceptions, or we cannot
10699 insert exception breakpoints yet, because the GNAT runtime hasn't been
10700 loaded yet. */
10701
10702 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
10703 in such a way that no debugging information is produced for the symbol
10704 we are looking for. In this case, we could search the minimal symbols
10705 as a fall-back mechanism. This would still be operating in degraded
10706 mode, however, as we would still be missing the debugging information
10707 that is needed in order to extract the name of the exception being
10708 raised (this name is printed in the catchpoint message, and is also
10709 used when trying to catch a specific exception). We do not handle
10710 this case for now. */
10711
10712 if (sym == NULL)
10713 error (_("Unable to break on '%s' in this configuration."), sym_name);
10714
10715 /* Make sure that the symbol we found corresponds to a function. */
10716 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
10717 error (_("Symbol \"%s\" is not a function (class = %d)"),
10718 sym_name, SYMBOL_CLASS (sym));
10719
10720 sal = find_function_start_sal (sym, 1);
10721
10722 /* Set ADDR_STRING. */
10723
10724 *addr_string = xstrdup (sym_name);
10725
10726 /* Set the COND and COND_STRING (if not NULL). */
10727
10728 if (cond_string != NULL && cond != NULL)
10729 {
10730 if (*cond_string != NULL)
10731 {
10732 xfree (*cond_string);
10733 *cond_string = NULL;
10734 }
10735 if (*cond != NULL)
10736 {
10737 xfree (*cond);
10738 *cond = NULL;
10739 }
10740 if (exp_string != NULL)
10741 {
10742 *cond_string = ada_exception_catchpoint_cond_string (exp_string);
10743 *cond = ada_parse_catchpoint_condition (*cond_string, sal);
10744 }
10745 }
10746
10747 /* Set OPS. */
10748 *ops = ada_exception_breakpoint_ops (ex);
10749
10750 return sal;
10751 }
10752
10753 /* Parse the arguments (ARGS) of the "catch exception" command.
10754
10755 Set TYPE to the appropriate exception catchpoint type.
10756 If the user asked the catchpoint to catch only a specific
10757 exception, then save the exception name in ADDR_STRING.
10758
10759 See ada_exception_sal for a description of all the remaining
10760 function arguments of this function. */
10761
10762 struct symtab_and_line
10763 ada_decode_exception_location (char *args, char **addr_string,
10764 char **exp_string, char **cond_string,
10765 struct expression **cond,
10766 struct breakpoint_ops **ops)
10767 {
10768 enum exception_catchpoint_kind ex;
10769
10770 catch_ada_exception_command_split (args, &ex, exp_string);
10771 return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
10772 cond, ops);
10773 }
10774
10775 struct symtab_and_line
10776 ada_decode_assert_location (char *args, char **addr_string,
10777 struct breakpoint_ops **ops)
10778 {
10779 /* Check that no argument where provided at the end of the command. */
10780
10781 if (args != NULL)
10782 {
10783 while (isspace (*args))
10784 args++;
10785 if (*args != '\0')
10786 error (_("Junk at end of arguments."));
10787 }
10788
10789 return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
10790 ops);
10791 }
10792
10793 /* Operators */
10794 /* Information about operators given special treatment in functions
10795 below. */
10796 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
10797
10798 #define ADA_OPERATORS \
10799 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
10800 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
10801 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
10802 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
10803 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
10804 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
10805 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
10806 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
10807 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
10808 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
10809 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
10810 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
10811 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
10812 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
10813 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
10814 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
10815 OP_DEFN (OP_OTHERS, 1, 1, 0) \
10816 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
10817 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
10818
10819 static void
10820 ada_operator_length (struct expression *exp, int pc, int *oplenp, int *argsp)
10821 {
10822 switch (exp->elts[pc - 1].opcode)
10823 {
10824 default:
10825 operator_length_standard (exp, pc, oplenp, argsp);
10826 break;
10827
10828 #define OP_DEFN(op, len, args, binop) \
10829 case op: *oplenp = len; *argsp = args; break;
10830 ADA_OPERATORS;
10831 #undef OP_DEFN
10832
10833 case OP_AGGREGATE:
10834 *oplenp = 3;
10835 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
10836 break;
10837
10838 case OP_CHOICES:
10839 *oplenp = 3;
10840 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
10841 break;
10842 }
10843 }
10844
10845 static char *
10846 ada_op_name (enum exp_opcode opcode)
10847 {
10848 switch (opcode)
10849 {
10850 default:
10851 return op_name_standard (opcode);
10852
10853 #define OP_DEFN(op, len, args, binop) case op: return #op;
10854 ADA_OPERATORS;
10855 #undef OP_DEFN
10856
10857 case OP_AGGREGATE:
10858 return "OP_AGGREGATE";
10859 case OP_CHOICES:
10860 return "OP_CHOICES";
10861 case OP_NAME:
10862 return "OP_NAME";
10863 }
10864 }
10865
10866 /* As for operator_length, but assumes PC is pointing at the first
10867 element of the operator, and gives meaningful results only for the
10868 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
10869
10870 static void
10871 ada_forward_operator_length (struct expression *exp, int pc,
10872 int *oplenp, int *argsp)
10873 {
10874 switch (exp->elts[pc].opcode)
10875 {
10876 default:
10877 *oplenp = *argsp = 0;
10878 break;
10879
10880 #define OP_DEFN(op, len, args, binop) \
10881 case op: *oplenp = len; *argsp = args; break;
10882 ADA_OPERATORS;
10883 #undef OP_DEFN
10884
10885 case OP_AGGREGATE:
10886 *oplenp = 3;
10887 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
10888 break;
10889
10890 case OP_CHOICES:
10891 *oplenp = 3;
10892 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
10893 break;
10894
10895 case OP_STRING:
10896 case OP_NAME:
10897 {
10898 int len = longest_to_int (exp->elts[pc + 1].longconst);
10899 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
10900 *argsp = 0;
10901 break;
10902 }
10903 }
10904 }
10905
10906 static int
10907 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
10908 {
10909 enum exp_opcode op = exp->elts[elt].opcode;
10910 int oplen, nargs;
10911 int pc = elt;
10912 int i;
10913
10914 ada_forward_operator_length (exp, elt, &oplen, &nargs);
10915
10916 switch (op)
10917 {
10918 /* Ada attributes ('Foo). */
10919 case OP_ATR_FIRST:
10920 case OP_ATR_LAST:
10921 case OP_ATR_LENGTH:
10922 case OP_ATR_IMAGE:
10923 case OP_ATR_MAX:
10924 case OP_ATR_MIN:
10925 case OP_ATR_MODULUS:
10926 case OP_ATR_POS:
10927 case OP_ATR_SIZE:
10928 case OP_ATR_TAG:
10929 case OP_ATR_VAL:
10930 break;
10931
10932 case UNOP_IN_RANGE:
10933 case UNOP_QUAL:
10934 /* XXX: gdb_sprint_host_address, type_sprint */
10935 fprintf_filtered (stream, _("Type @"));
10936 gdb_print_host_address (exp->elts[pc + 1].type, stream);
10937 fprintf_filtered (stream, " (");
10938 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
10939 fprintf_filtered (stream, ")");
10940 break;
10941 case BINOP_IN_BOUNDS:
10942 fprintf_filtered (stream, " (%d)",
10943 longest_to_int (exp->elts[pc + 2].longconst));
10944 break;
10945 case TERNOP_IN_RANGE:
10946 break;
10947
10948 case OP_AGGREGATE:
10949 case OP_OTHERS:
10950 case OP_DISCRETE_RANGE:
10951 case OP_POSITIONAL:
10952 case OP_CHOICES:
10953 break;
10954
10955 case OP_NAME:
10956 case OP_STRING:
10957 {
10958 char *name = &exp->elts[elt + 2].string;
10959 int len = longest_to_int (exp->elts[elt + 1].longconst);
10960 fprintf_filtered (stream, "Text: `%.*s'", len, name);
10961 break;
10962 }
10963
10964 default:
10965 return dump_subexp_body_standard (exp, stream, elt);
10966 }
10967
10968 elt += oplen;
10969 for (i = 0; i < nargs; i += 1)
10970 elt = dump_subexp (exp, stream, elt);
10971
10972 return elt;
10973 }
10974
10975 /* The Ada extension of print_subexp (q.v.). */
10976
10977 static void
10978 ada_print_subexp (struct expression *exp, int *pos,
10979 struct ui_file *stream, enum precedence prec)
10980 {
10981 int oplen, nargs, i;
10982 int pc = *pos;
10983 enum exp_opcode op = exp->elts[pc].opcode;
10984
10985 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10986
10987 *pos += oplen;
10988 switch (op)
10989 {
10990 default:
10991 *pos -= oplen;
10992 print_subexp_standard (exp, pos, stream, prec);
10993 return;
10994
10995 case OP_VAR_VALUE:
10996 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
10997 return;
10998
10999 case BINOP_IN_BOUNDS:
11000 /* XXX: sprint_subexp */
11001 print_subexp (exp, pos, stream, PREC_SUFFIX);
11002 fputs_filtered (" in ", stream);
11003 print_subexp (exp, pos, stream, PREC_SUFFIX);
11004 fputs_filtered ("'range", stream);
11005 if (exp->elts[pc + 1].longconst > 1)
11006 fprintf_filtered (stream, "(%ld)",
11007 (long) exp->elts[pc + 1].longconst);
11008 return;
11009
11010 case TERNOP_IN_RANGE:
11011 if (prec >= PREC_EQUAL)
11012 fputs_filtered ("(", stream);
11013 /* XXX: sprint_subexp */
11014 print_subexp (exp, pos, stream, PREC_SUFFIX);
11015 fputs_filtered (" in ", stream);
11016 print_subexp (exp, pos, stream, PREC_EQUAL);
11017 fputs_filtered (" .. ", stream);
11018 print_subexp (exp, pos, stream, PREC_EQUAL);
11019 if (prec >= PREC_EQUAL)
11020 fputs_filtered (")", stream);
11021 return;
11022
11023 case OP_ATR_FIRST:
11024 case OP_ATR_LAST:
11025 case OP_ATR_LENGTH:
11026 case OP_ATR_IMAGE:
11027 case OP_ATR_MAX:
11028 case OP_ATR_MIN:
11029 case OP_ATR_MODULUS:
11030 case OP_ATR_POS:
11031 case OP_ATR_SIZE:
11032 case OP_ATR_TAG:
11033 case OP_ATR_VAL:
11034 if (exp->elts[*pos].opcode == OP_TYPE)
11035 {
11036 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
11037 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
11038 *pos += 3;
11039 }
11040 else
11041 print_subexp (exp, pos, stream, PREC_SUFFIX);
11042 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
11043 if (nargs > 1)
11044 {
11045 int tem;
11046 for (tem = 1; tem < nargs; tem += 1)
11047 {
11048 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
11049 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
11050 }
11051 fputs_filtered (")", stream);
11052 }
11053 return;
11054
11055 case UNOP_QUAL:
11056 type_print (exp->elts[pc + 1].type, "", stream, 0);
11057 fputs_filtered ("'(", stream);
11058 print_subexp (exp, pos, stream, PREC_PREFIX);
11059 fputs_filtered (")", stream);
11060 return;
11061
11062 case UNOP_IN_RANGE:
11063 /* XXX: sprint_subexp */
11064 print_subexp (exp, pos, stream, PREC_SUFFIX);
11065 fputs_filtered (" in ", stream);
11066 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
11067 return;
11068
11069 case OP_DISCRETE_RANGE:
11070 print_subexp (exp, pos, stream, PREC_SUFFIX);
11071 fputs_filtered ("..", stream);
11072 print_subexp (exp, pos, stream, PREC_SUFFIX);
11073 return;
11074
11075 case OP_OTHERS:
11076 fputs_filtered ("others => ", stream);
11077 print_subexp (exp, pos, stream, PREC_SUFFIX);
11078 return;
11079
11080 case OP_CHOICES:
11081 for (i = 0; i < nargs-1; i += 1)
11082 {
11083 if (i > 0)
11084 fputs_filtered ("|", stream);
11085 print_subexp (exp, pos, stream, PREC_SUFFIX);
11086 }
11087 fputs_filtered (" => ", stream);
11088 print_subexp (exp, pos, stream, PREC_SUFFIX);
11089 return;
11090
11091 case OP_POSITIONAL:
11092 print_subexp (exp, pos, stream, PREC_SUFFIX);
11093 return;
11094
11095 case OP_AGGREGATE:
11096 fputs_filtered ("(", stream);
11097 for (i = 0; i < nargs; i += 1)
11098 {
11099 if (i > 0)
11100 fputs_filtered (", ", stream);
11101 print_subexp (exp, pos, stream, PREC_SUFFIX);
11102 }
11103 fputs_filtered (")", stream);
11104 return;
11105 }
11106 }
11107
11108 /* Table mapping opcodes into strings for printing operators
11109 and precedences of the operators. */
11110
11111 static const struct op_print ada_op_print_tab[] = {
11112 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
11113 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
11114 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
11115 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
11116 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
11117 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
11118 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
11119 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
11120 {"<=", BINOP_LEQ, PREC_ORDER, 0},
11121 {">=", BINOP_GEQ, PREC_ORDER, 0},
11122 {">", BINOP_GTR, PREC_ORDER, 0},
11123 {"<", BINOP_LESS, PREC_ORDER, 0},
11124 {">>", BINOP_RSH, PREC_SHIFT, 0},
11125 {"<<", BINOP_LSH, PREC_SHIFT, 0},
11126 {"+", BINOP_ADD, PREC_ADD, 0},
11127 {"-", BINOP_SUB, PREC_ADD, 0},
11128 {"&", BINOP_CONCAT, PREC_ADD, 0},
11129 {"*", BINOP_MUL, PREC_MUL, 0},
11130 {"/", BINOP_DIV, PREC_MUL, 0},
11131 {"rem", BINOP_REM, PREC_MUL, 0},
11132 {"mod", BINOP_MOD, PREC_MUL, 0},
11133 {"**", BINOP_EXP, PREC_REPEAT, 0},
11134 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
11135 {"-", UNOP_NEG, PREC_PREFIX, 0},
11136 {"+", UNOP_PLUS, PREC_PREFIX, 0},
11137 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
11138 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
11139 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
11140 {".all", UNOP_IND, PREC_SUFFIX, 1},
11141 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
11142 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
11143 {NULL, 0, 0, 0}
11144 };
11145 \f
11146 enum ada_primitive_types {
11147 ada_primitive_type_int,
11148 ada_primitive_type_long,
11149 ada_primitive_type_short,
11150 ada_primitive_type_char,
11151 ada_primitive_type_float,
11152 ada_primitive_type_double,
11153 ada_primitive_type_void,
11154 ada_primitive_type_long_long,
11155 ada_primitive_type_long_double,
11156 ada_primitive_type_natural,
11157 ada_primitive_type_positive,
11158 ada_primitive_type_system_address,
11159 nr_ada_primitive_types
11160 };
11161
11162 static void
11163 ada_language_arch_info (struct gdbarch *gdbarch,
11164 struct language_arch_info *lai)
11165 {
11166 const struct builtin_type *builtin = builtin_type (gdbarch);
11167 lai->primitive_type_vector
11168 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
11169 struct type *);
11170 lai->primitive_type_vector [ada_primitive_type_int] =
11171 init_type (TYPE_CODE_INT,
11172 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
11173 0, "integer", (struct objfile *) NULL);
11174 lai->primitive_type_vector [ada_primitive_type_long] =
11175 init_type (TYPE_CODE_INT,
11176 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
11177 0, "long_integer", (struct objfile *) NULL);
11178 lai->primitive_type_vector [ada_primitive_type_short] =
11179 init_type (TYPE_CODE_INT,
11180 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
11181 0, "short_integer", (struct objfile *) NULL);
11182 lai->string_char_type =
11183 lai->primitive_type_vector [ada_primitive_type_char] =
11184 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
11185 0, "character", (struct objfile *) NULL);
11186 lai->primitive_type_vector [ada_primitive_type_float] =
11187 init_type (TYPE_CODE_FLT,
11188 gdbarch_float_bit (gdbarch)/ TARGET_CHAR_BIT,
11189 0, "float", (struct objfile *) NULL);
11190 lai->primitive_type_vector [ada_primitive_type_double] =
11191 init_type (TYPE_CODE_FLT,
11192 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
11193 0, "long_float", (struct objfile *) NULL);
11194 lai->primitive_type_vector [ada_primitive_type_long_long] =
11195 init_type (TYPE_CODE_INT,
11196 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
11197 0, "long_long_integer", (struct objfile *) NULL);
11198 lai->primitive_type_vector [ada_primitive_type_long_double] =
11199 init_type (TYPE_CODE_FLT,
11200 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
11201 0, "long_long_float", (struct objfile *) NULL);
11202 lai->primitive_type_vector [ada_primitive_type_natural] =
11203 init_type (TYPE_CODE_INT,
11204 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
11205 0, "natural", (struct objfile *) NULL);
11206 lai->primitive_type_vector [ada_primitive_type_positive] =
11207 init_type (TYPE_CODE_INT,
11208 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
11209 0, "positive", (struct objfile *) NULL);
11210 lai->primitive_type_vector [ada_primitive_type_void] = builtin->builtin_void;
11211
11212 lai->primitive_type_vector [ada_primitive_type_system_address] =
11213 lookup_pointer_type (init_type (TYPE_CODE_VOID, 1, 0, "void",
11214 (struct objfile *) NULL));
11215 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
11216 = "system__address";
11217
11218 lai->bool_type_symbol = NULL;
11219 lai->bool_type_default = builtin->builtin_bool;
11220 }
11221 \f
11222 /* Language vector */
11223
11224 /* Not really used, but needed in the ada_language_defn. */
11225
11226 static void
11227 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
11228 {
11229 ada_emit_char (c, type, stream, quoter, 1);
11230 }
11231
11232 static int
11233 parse (void)
11234 {
11235 warnings_issued = 0;
11236 return ada_parse ();
11237 }
11238
11239 static const struct exp_descriptor ada_exp_descriptor = {
11240 ada_print_subexp,
11241 ada_operator_length,
11242 ada_op_name,
11243 ada_dump_subexp_body,
11244 ada_evaluate_subexp
11245 };
11246
11247 const struct language_defn ada_language_defn = {
11248 "ada", /* Language name */
11249 language_ada,
11250 range_check_off,
11251 type_check_off,
11252 case_sensitive_on, /* Yes, Ada is case-insensitive, but
11253 that's not quite what this means. */
11254 array_row_major,
11255 macro_expansion_no,
11256 &ada_exp_descriptor,
11257 parse,
11258 ada_error,
11259 resolve,
11260 ada_printchar, /* Print a character constant */
11261 ada_printstr, /* Function to print string constant */
11262 emit_char, /* Function to print single char (not used) */
11263 ada_print_type, /* Print a type using appropriate syntax */
11264 default_print_typedef, /* Print a typedef using appropriate syntax */
11265 ada_val_print, /* Print a value using appropriate syntax */
11266 ada_value_print, /* Print a top-level value */
11267 NULL, /* Language specific skip_trampoline */
11268 NULL, /* name_of_this */
11269 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
11270 basic_lookup_transparent_type, /* lookup_transparent_type */
11271 ada_la_decode, /* Language specific symbol demangler */
11272 NULL, /* Language specific class_name_from_physname */
11273 ada_op_print_tab, /* expression operators for printing */
11274 0, /* c-style arrays */
11275 1, /* String lower bound */
11276 ada_get_gdb_completer_word_break_characters,
11277 ada_make_symbol_completion_list,
11278 ada_language_arch_info,
11279 ada_print_array_index,
11280 default_pass_by_reference,
11281 c_get_string,
11282 LANG_MAGIC
11283 };
11284
11285 /* Provide a prototype to silence -Wmissing-prototypes. */
11286 extern initialize_file_ftype _initialize_ada_language;
11287
11288 void
11289 _initialize_ada_language (void)
11290 {
11291 add_language (&ada_language_defn);
11292
11293 varsize_limit = 65536;
11294
11295 obstack_init (&symbol_list_obstack);
11296
11297 decoded_names_store = htab_create_alloc
11298 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
11299 NULL, xcalloc, xfree);
11300
11301 observer_attach_executable_changed (ada_executable_changed_observer);
11302 }