* language.h (struct language_defn): Remove SYMTAB parameter from
[binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger. Copyright (C)
2
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21
22 #include "defs.h"
23 #include <stdio.h>
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include <stdarg.h>
27 #include "demangle.h"
28 #include "gdb_regex.h"
29 #include "frame.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "gdbcmd.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35 #include "language.h"
36 #include "c-lang.h"
37 #include "inferior.h"
38 #include "symfile.h"
39 #include "objfiles.h"
40 #include "breakpoint.h"
41 #include "gdbcore.h"
42 #include "hashtab.h"
43 #include "gdb_obstack.h"
44 #include "ada-lang.h"
45 #include "completer.h"
46 #include "gdb_stat.h"
47 #ifdef UI_OUT
48 #include "ui-out.h"
49 #endif
50 #include "block.h"
51 #include "infcall.h"
52 #include "dictionary.h"
53 #include "exceptions.h"
54 #include "annotate.h"
55 #include "valprint.h"
56 #include "source.h"
57 #include "observer.h"
58 #include "vec.h"
59
60 #ifndef ADA_RETAIN_DOTS
61 #define ADA_RETAIN_DOTS 0
62 #endif
63
64 /* Define whether or not the C operator '/' truncates towards zero for
65 differently signed operands (truncation direction is undefined in C).
66 Copied from valarith.c. */
67
68 #ifndef TRUNCATION_TOWARDS_ZERO
69 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
70 #endif
71
72 static void extract_string (CORE_ADDR addr, char *buf);
73
74 static void modify_general_field (char *, LONGEST, int, int);
75
76 static struct type *desc_base_type (struct type *);
77
78 static struct type *desc_bounds_type (struct type *);
79
80 static struct value *desc_bounds (struct value *);
81
82 static int fat_pntr_bounds_bitpos (struct type *);
83
84 static int fat_pntr_bounds_bitsize (struct type *);
85
86 static struct type *desc_data_type (struct type *);
87
88 static struct value *desc_data (struct value *);
89
90 static int fat_pntr_data_bitpos (struct type *);
91
92 static int fat_pntr_data_bitsize (struct type *);
93
94 static struct value *desc_one_bound (struct value *, int, int);
95
96 static int desc_bound_bitpos (struct type *, int, int);
97
98 static int desc_bound_bitsize (struct type *, int, int);
99
100 static struct type *desc_index_type (struct type *, int);
101
102 static int desc_arity (struct type *);
103
104 static int ada_type_match (struct type *, struct type *, int);
105
106 static int ada_args_match (struct symbol *, struct value **, int);
107
108 static struct value *ensure_lval (struct value *, CORE_ADDR *);
109
110 static struct value *convert_actual (struct value *, struct type *,
111 CORE_ADDR *);
112
113 static struct value *make_array_descriptor (struct type *, struct value *,
114 CORE_ADDR *);
115
116 static void ada_add_block_symbols (struct obstack *,
117 struct block *, const char *,
118 domain_enum, struct objfile *,
119 struct symtab *, int);
120
121 static int is_nonfunction (struct ada_symbol_info *, int);
122
123 static void add_defn_to_vec (struct obstack *, struct symbol *,
124 struct block *, struct symtab *);
125
126 static int num_defns_collected (struct obstack *);
127
128 static struct ada_symbol_info *defns_collected (struct obstack *, int);
129
130 static struct partial_symbol *ada_lookup_partial_symbol (struct partial_symtab
131 *, const char *, int,
132 domain_enum, int);
133
134 static struct symtab *symtab_for_sym (struct symbol *);
135
136 static struct value *resolve_subexp (struct expression **, int *, int,
137 struct type *);
138
139 static void replace_operator_with_call (struct expression **, int, int, int,
140 struct symbol *, struct block *);
141
142 static int possible_user_operator_p (enum exp_opcode, struct value **);
143
144 static char *ada_op_name (enum exp_opcode);
145
146 static const char *ada_decoded_op_name (enum exp_opcode);
147
148 static int numeric_type_p (struct type *);
149
150 static int integer_type_p (struct type *);
151
152 static int scalar_type_p (struct type *);
153
154 static int discrete_type_p (struct type *);
155
156 static enum ada_renaming_category parse_old_style_renaming (struct type *,
157 const char **,
158 int *,
159 const char **);
160
161 static struct symbol *find_old_style_renaming_symbol (const char *,
162 struct block *);
163
164 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
165 int, int, int *);
166
167 static struct value *evaluate_subexp (struct type *, struct expression *,
168 int *, enum noside);
169
170 static struct value *evaluate_subexp_type (struct expression *, int *);
171
172 static int is_dynamic_field (struct type *, int);
173
174 static struct type *to_fixed_variant_branch_type (struct type *,
175 const gdb_byte *,
176 CORE_ADDR, struct value *);
177
178 static struct type *to_fixed_array_type (struct type *, struct value *, int);
179
180 static struct type *to_fixed_range_type (char *, struct value *,
181 struct objfile *);
182
183 static struct type *to_static_fixed_type (struct type *);
184 static struct type *static_unwrap_type (struct type *type);
185
186 static struct value *unwrap_value (struct value *);
187
188 static struct type *packed_array_type (struct type *, long *);
189
190 static struct type *decode_packed_array_type (struct type *);
191
192 static struct value *decode_packed_array (struct value *);
193
194 static struct value *value_subscript_packed (struct value *, int,
195 struct value **);
196
197 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int);
198
199 static struct value *coerce_unspec_val_to_type (struct value *,
200 struct type *);
201
202 static struct value *get_var_value (char *, char *);
203
204 static int lesseq_defined_than (struct symbol *, struct symbol *);
205
206 static int equiv_types (struct type *, struct type *);
207
208 static int is_name_suffix (const char *);
209
210 static int wild_match (const char *, int, const char *);
211
212 static struct value *ada_coerce_ref (struct value *);
213
214 static LONGEST pos_atr (struct value *);
215
216 static struct value *value_pos_atr (struct value *);
217
218 static struct value *value_val_atr (struct type *, struct value *);
219
220 static struct symbol *standard_lookup (const char *, const struct block *,
221 domain_enum);
222
223 static struct value *ada_search_struct_field (char *, struct value *, int,
224 struct type *);
225
226 static struct value *ada_value_primitive_field (struct value *, int, int,
227 struct type *);
228
229 static int find_struct_field (char *, struct type *, int,
230 struct type **, int *, int *, int *, int *);
231
232 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
233 struct value *);
234
235 static struct value *ada_to_fixed_value (struct value *);
236
237 static int ada_resolve_function (struct ada_symbol_info *, int,
238 struct value **, int, const char *,
239 struct type *);
240
241 static struct value *ada_coerce_to_simple_array (struct value *);
242
243 static int ada_is_direct_array_type (struct type *);
244
245 static void ada_language_arch_info (struct gdbarch *,
246 struct language_arch_info *);
247
248 static void check_size (const struct type *);
249
250 static struct value *ada_index_struct_field (int, struct value *, int,
251 struct type *);
252
253 static struct value *assign_aggregate (struct value *, struct value *,
254 struct expression *, int *, enum noside);
255
256 static void aggregate_assign_from_choices (struct value *, struct value *,
257 struct expression *,
258 int *, LONGEST *, int *,
259 int, LONGEST, LONGEST);
260
261 static void aggregate_assign_positional (struct value *, struct value *,
262 struct expression *,
263 int *, LONGEST *, int *, int,
264 LONGEST, LONGEST);
265
266
267 static void aggregate_assign_others (struct value *, struct value *,
268 struct expression *,
269 int *, LONGEST *, int, LONGEST, LONGEST);
270
271
272 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
273
274
275 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
276 int *, enum noside);
277
278 static void ada_forward_operator_length (struct expression *, int, int *,
279 int *);
280 \f
281
282
283 /* Maximum-sized dynamic type. */
284 static unsigned int varsize_limit;
285
286 /* FIXME: brobecker/2003-09-17: No longer a const because it is
287 returned by a function that does not return a const char *. */
288 static char *ada_completer_word_break_characters =
289 #ifdef VMS
290 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
291 #else
292 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
293 #endif
294
295 /* The name of the symbol to use to get the name of the main subprogram. */
296 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
297 = "__gnat_ada_main_program_name";
298
299 /* Limit on the number of warnings to raise per expression evaluation. */
300 static int warning_limit = 2;
301
302 /* Number of warning messages issued; reset to 0 by cleanups after
303 expression evaluation. */
304 static int warnings_issued = 0;
305
306 static const char *known_runtime_file_name_patterns[] = {
307 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
308 };
309
310 static const char *known_auxiliary_function_name_patterns[] = {
311 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
312 };
313
314 /* Space for allocating results of ada_lookup_symbol_list. */
315 static struct obstack symbol_list_obstack;
316
317 /* Utilities */
318
319 /* Given DECODED_NAME a string holding a symbol name in its
320 decoded form (ie using the Ada dotted notation), returns
321 its unqualified name. */
322
323 static const char *
324 ada_unqualified_name (const char *decoded_name)
325 {
326 const char *result = strrchr (decoded_name, '.');
327
328 if (result != NULL)
329 result++; /* Skip the dot... */
330 else
331 result = decoded_name;
332
333 return result;
334 }
335
336 /* Return a string starting with '<', followed by STR, and '>'.
337 The result is good until the next call. */
338
339 static char *
340 add_angle_brackets (const char *str)
341 {
342 static char *result = NULL;
343
344 xfree (result);
345 result = (char *) xmalloc ((strlen (str) + 3) * sizeof (char));
346
347 sprintf (result, "<%s>", str);
348 return result;
349 }
350
351 static char *
352 ada_get_gdb_completer_word_break_characters (void)
353 {
354 return ada_completer_word_break_characters;
355 }
356
357 /* Print an array element index using the Ada syntax. */
358
359 static void
360 ada_print_array_index (struct value *index_value, struct ui_file *stream,
361 int format, enum val_prettyprint pretty)
362 {
363 LA_VALUE_PRINT (index_value, stream, format, pretty);
364 fprintf_filtered (stream, " => ");
365 }
366
367 /* Read the string located at ADDR from the inferior and store the
368 result into BUF. */
369
370 static void
371 extract_string (CORE_ADDR addr, char *buf)
372 {
373 int char_index = 0;
374
375 /* Loop, reading one byte at a time, until we reach the '\000'
376 end-of-string marker. */
377 do
378 {
379 target_read_memory (addr + char_index * sizeof (char),
380 buf + char_index * sizeof (char), sizeof (char));
381 char_index++;
382 }
383 while (buf[char_index - 1] != '\000');
384 }
385
386 /* Assuming VECT points to an array of *SIZE objects of size
387 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
388 updating *SIZE as necessary and returning the (new) array. */
389
390 void *
391 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
392 {
393 if (*size < min_size)
394 {
395 *size *= 2;
396 if (*size < min_size)
397 *size = min_size;
398 vect = xrealloc (vect, *size * element_size);
399 }
400 return vect;
401 }
402
403 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
404 suffix of FIELD_NAME beginning "___". */
405
406 static int
407 field_name_match (const char *field_name, const char *target)
408 {
409 int len = strlen (target);
410 return
411 (strncmp (field_name, target, len) == 0
412 && (field_name[len] == '\0'
413 || (strncmp (field_name + len, "___", 3) == 0
414 && strcmp (field_name + strlen (field_name) - 6,
415 "___XVN") != 0)));
416 }
417
418
419 /* Assuming TYPE is a TYPE_CODE_STRUCT, find the field whose name matches
420 FIELD_NAME, and return its index. This function also handles fields
421 whose name have ___ suffixes because the compiler sometimes alters
422 their name by adding such a suffix to represent fields with certain
423 constraints. If the field could not be found, return a negative
424 number if MAYBE_MISSING is set. Otherwise raise an error. */
425
426 int
427 ada_get_field_index (const struct type *type, const char *field_name,
428 int maybe_missing)
429 {
430 int fieldno;
431 for (fieldno = 0; fieldno < TYPE_NFIELDS (type); fieldno++)
432 if (field_name_match (TYPE_FIELD_NAME (type, fieldno), field_name))
433 return fieldno;
434
435 if (!maybe_missing)
436 error (_("Unable to find field %s in struct %s. Aborting"),
437 field_name, TYPE_NAME (type));
438
439 return -1;
440 }
441
442 /* The length of the prefix of NAME prior to any "___" suffix. */
443
444 int
445 ada_name_prefix_len (const char *name)
446 {
447 if (name == NULL)
448 return 0;
449 else
450 {
451 const char *p = strstr (name, "___");
452 if (p == NULL)
453 return strlen (name);
454 else
455 return p - name;
456 }
457 }
458
459 /* Return non-zero if SUFFIX is a suffix of STR.
460 Return zero if STR is null. */
461
462 static int
463 is_suffix (const char *str, const char *suffix)
464 {
465 int len1, len2;
466 if (str == NULL)
467 return 0;
468 len1 = strlen (str);
469 len2 = strlen (suffix);
470 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
471 }
472
473 /* Create a value of type TYPE whose contents come from VALADDR, if it
474 is non-null, and whose memory address (in the inferior) is
475 ADDRESS. */
476
477 struct value *
478 value_from_contents_and_address (struct type *type,
479 const gdb_byte *valaddr,
480 CORE_ADDR address)
481 {
482 struct value *v = allocate_value (type);
483 if (valaddr == NULL)
484 set_value_lazy (v, 1);
485 else
486 memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type));
487 VALUE_ADDRESS (v) = address;
488 if (address != 0)
489 VALUE_LVAL (v) = lval_memory;
490 return v;
491 }
492
493 /* The contents of value VAL, treated as a value of type TYPE. The
494 result is an lval in memory if VAL is. */
495
496 static struct value *
497 coerce_unspec_val_to_type (struct value *val, struct type *type)
498 {
499 type = ada_check_typedef (type);
500 if (value_type (val) == type)
501 return val;
502 else
503 {
504 struct value *result;
505
506 /* Make sure that the object size is not unreasonable before
507 trying to allocate some memory for it. */
508 check_size (type);
509
510 result = allocate_value (type);
511 VALUE_LVAL (result) = VALUE_LVAL (val);
512 set_value_bitsize (result, value_bitsize (val));
513 set_value_bitpos (result, value_bitpos (val));
514 VALUE_ADDRESS (result) = VALUE_ADDRESS (val) + value_offset (val);
515 if (value_lazy (val)
516 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
517 set_value_lazy (result, 1);
518 else
519 memcpy (value_contents_raw (result), value_contents (val),
520 TYPE_LENGTH (type));
521 return result;
522 }
523 }
524
525 static const gdb_byte *
526 cond_offset_host (const gdb_byte *valaddr, long offset)
527 {
528 if (valaddr == NULL)
529 return NULL;
530 else
531 return valaddr + offset;
532 }
533
534 static CORE_ADDR
535 cond_offset_target (CORE_ADDR address, long offset)
536 {
537 if (address == 0)
538 return 0;
539 else
540 return address + offset;
541 }
542
543 /* Issue a warning (as for the definition of warning in utils.c, but
544 with exactly one argument rather than ...), unless the limit on the
545 number of warnings has passed during the evaluation of the current
546 expression. */
547
548 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
549 provided by "complaint". */
550 static void lim_warning (const char *format, ...) ATTR_FORMAT (printf, 1, 2);
551
552 static void
553 lim_warning (const char *format, ...)
554 {
555 va_list args;
556 va_start (args, format);
557
558 warnings_issued += 1;
559 if (warnings_issued <= warning_limit)
560 vwarning (format, args);
561
562 va_end (args);
563 }
564
565 /* Issue an error if the size of an object of type T is unreasonable,
566 i.e. if it would be a bad idea to allocate a value of this type in
567 GDB. */
568
569 static void
570 check_size (const struct type *type)
571 {
572 if (TYPE_LENGTH (type) > varsize_limit)
573 error (_("object size is larger than varsize-limit"));
574 }
575
576
577 /* Note: would have used MAX_OF_TYPE and MIN_OF_TYPE macros from
578 gdbtypes.h, but some of the necessary definitions in that file
579 seem to have gone missing. */
580
581 /* Maximum value of a SIZE-byte signed integer type. */
582 static LONGEST
583 max_of_size (int size)
584 {
585 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
586 return top_bit | (top_bit - 1);
587 }
588
589 /* Minimum value of a SIZE-byte signed integer type. */
590 static LONGEST
591 min_of_size (int size)
592 {
593 return -max_of_size (size) - 1;
594 }
595
596 /* Maximum value of a SIZE-byte unsigned integer type. */
597 static ULONGEST
598 umax_of_size (int size)
599 {
600 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
601 return top_bit | (top_bit - 1);
602 }
603
604 /* Maximum value of integral type T, as a signed quantity. */
605 static LONGEST
606 max_of_type (struct type *t)
607 {
608 if (TYPE_UNSIGNED (t))
609 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
610 else
611 return max_of_size (TYPE_LENGTH (t));
612 }
613
614 /* Minimum value of integral type T, as a signed quantity. */
615 static LONGEST
616 min_of_type (struct type *t)
617 {
618 if (TYPE_UNSIGNED (t))
619 return 0;
620 else
621 return min_of_size (TYPE_LENGTH (t));
622 }
623
624 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
625 static struct value *
626 discrete_type_high_bound (struct type *type)
627 {
628 switch (TYPE_CODE (type))
629 {
630 case TYPE_CODE_RANGE:
631 return value_from_longest (TYPE_TARGET_TYPE (type),
632 TYPE_HIGH_BOUND (type));
633 case TYPE_CODE_ENUM:
634 return
635 value_from_longest (type,
636 TYPE_FIELD_BITPOS (type,
637 TYPE_NFIELDS (type) - 1));
638 case TYPE_CODE_INT:
639 return value_from_longest (type, max_of_type (type));
640 default:
641 error (_("Unexpected type in discrete_type_high_bound."));
642 }
643 }
644
645 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
646 static struct value *
647 discrete_type_low_bound (struct type *type)
648 {
649 switch (TYPE_CODE (type))
650 {
651 case TYPE_CODE_RANGE:
652 return value_from_longest (TYPE_TARGET_TYPE (type),
653 TYPE_LOW_BOUND (type));
654 case TYPE_CODE_ENUM:
655 return value_from_longest (type, TYPE_FIELD_BITPOS (type, 0));
656 case TYPE_CODE_INT:
657 return value_from_longest (type, min_of_type (type));
658 default:
659 error (_("Unexpected type in discrete_type_low_bound."));
660 }
661 }
662
663 /* The identity on non-range types. For range types, the underlying
664 non-range scalar type. */
665
666 static struct type *
667 base_type (struct type *type)
668 {
669 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
670 {
671 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
672 return type;
673 type = TYPE_TARGET_TYPE (type);
674 }
675 return type;
676 }
677 \f
678
679 /* Language Selection */
680
681 /* If the main program is in Ada, return language_ada, otherwise return LANG
682 (the main program is in Ada iif the adainit symbol is found).
683
684 MAIN_PST is not used. */
685
686 enum language
687 ada_update_initial_language (enum language lang,
688 struct partial_symtab *main_pst)
689 {
690 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
691 (struct objfile *) NULL) != NULL)
692 return language_ada;
693
694 return lang;
695 }
696
697 /* If the main procedure is written in Ada, then return its name.
698 The result is good until the next call. Return NULL if the main
699 procedure doesn't appear to be in Ada. */
700
701 char *
702 ada_main_name (void)
703 {
704 struct minimal_symbol *msym;
705 CORE_ADDR main_program_name_addr;
706 static char main_program_name[1024];
707
708 /* For Ada, the name of the main procedure is stored in a specific
709 string constant, generated by the binder. Look for that symbol,
710 extract its address, and then read that string. If we didn't find
711 that string, then most probably the main procedure is not written
712 in Ada. */
713 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
714
715 if (msym != NULL)
716 {
717 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
718 if (main_program_name_addr == 0)
719 error (_("Invalid address for Ada main program name."));
720
721 extract_string (main_program_name_addr, main_program_name);
722 return main_program_name;
723 }
724
725 /* The main procedure doesn't seem to be in Ada. */
726 return NULL;
727 }
728 \f
729 /* Symbols */
730
731 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
732 of NULLs. */
733
734 const struct ada_opname_map ada_opname_table[] = {
735 {"Oadd", "\"+\"", BINOP_ADD},
736 {"Osubtract", "\"-\"", BINOP_SUB},
737 {"Omultiply", "\"*\"", BINOP_MUL},
738 {"Odivide", "\"/\"", BINOP_DIV},
739 {"Omod", "\"mod\"", BINOP_MOD},
740 {"Orem", "\"rem\"", BINOP_REM},
741 {"Oexpon", "\"**\"", BINOP_EXP},
742 {"Olt", "\"<\"", BINOP_LESS},
743 {"Ole", "\"<=\"", BINOP_LEQ},
744 {"Ogt", "\">\"", BINOP_GTR},
745 {"Oge", "\">=\"", BINOP_GEQ},
746 {"Oeq", "\"=\"", BINOP_EQUAL},
747 {"One", "\"/=\"", BINOP_NOTEQUAL},
748 {"Oand", "\"and\"", BINOP_BITWISE_AND},
749 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
750 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
751 {"Oconcat", "\"&\"", BINOP_CONCAT},
752 {"Oabs", "\"abs\"", UNOP_ABS},
753 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
754 {"Oadd", "\"+\"", UNOP_PLUS},
755 {"Osubtract", "\"-\"", UNOP_NEG},
756 {NULL, NULL}
757 };
758
759 /* Return non-zero if STR should be suppressed in info listings. */
760
761 static int
762 is_suppressed_name (const char *str)
763 {
764 if (strncmp (str, "_ada_", 5) == 0)
765 str += 5;
766 if (str[0] == '_' || str[0] == '\000')
767 return 1;
768 else
769 {
770 const char *p;
771 const char *suffix = strstr (str, "___");
772 if (suffix != NULL && suffix[3] != 'X')
773 return 1;
774 if (suffix == NULL)
775 suffix = str + strlen (str);
776 for (p = suffix - 1; p != str; p -= 1)
777 if (isupper (*p))
778 {
779 int i;
780 if (p[0] == 'X' && p[-1] != '_')
781 goto OK;
782 if (*p != 'O')
783 return 1;
784 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
785 if (strncmp (ada_opname_table[i].encoded, p,
786 strlen (ada_opname_table[i].encoded)) == 0)
787 goto OK;
788 return 1;
789 OK:;
790 }
791 return 0;
792 }
793 }
794
795 /* The "encoded" form of DECODED, according to GNAT conventions.
796 The result is valid until the next call to ada_encode. */
797
798 char *
799 ada_encode (const char *decoded)
800 {
801 static char *encoding_buffer = NULL;
802 static size_t encoding_buffer_size = 0;
803 const char *p;
804 int k;
805
806 if (decoded == NULL)
807 return NULL;
808
809 GROW_VECT (encoding_buffer, encoding_buffer_size,
810 2 * strlen (decoded) + 10);
811
812 k = 0;
813 for (p = decoded; *p != '\0'; p += 1)
814 {
815 if (!ADA_RETAIN_DOTS && *p == '.')
816 {
817 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
818 k += 2;
819 }
820 else if (*p == '"')
821 {
822 const struct ada_opname_map *mapping;
823
824 for (mapping = ada_opname_table;
825 mapping->encoded != NULL
826 && strncmp (mapping->decoded, p,
827 strlen (mapping->decoded)) != 0; mapping += 1)
828 ;
829 if (mapping->encoded == NULL)
830 error (_("invalid Ada operator name: %s"), p);
831 strcpy (encoding_buffer + k, mapping->encoded);
832 k += strlen (mapping->encoded);
833 break;
834 }
835 else
836 {
837 encoding_buffer[k] = *p;
838 k += 1;
839 }
840 }
841
842 encoding_buffer[k] = '\0';
843 return encoding_buffer;
844 }
845
846 /* Return NAME folded to lower case, or, if surrounded by single
847 quotes, unfolded, but with the quotes stripped away. Result good
848 to next call. */
849
850 char *
851 ada_fold_name (const char *name)
852 {
853 static char *fold_buffer = NULL;
854 static size_t fold_buffer_size = 0;
855
856 int len = strlen (name);
857 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
858
859 if (name[0] == '\'')
860 {
861 strncpy (fold_buffer, name + 1, len - 2);
862 fold_buffer[len - 2] = '\000';
863 }
864 else
865 {
866 int i;
867 for (i = 0; i <= len; i += 1)
868 fold_buffer[i] = tolower (name[i]);
869 }
870
871 return fold_buffer;
872 }
873
874 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
875
876 static int
877 is_lower_alphanum (const char c)
878 {
879 return (isdigit (c) || (isalpha (c) && islower (c)));
880 }
881
882 /* Remove either of these suffixes:
883 . .{DIGIT}+
884 . ${DIGIT}+
885 . ___{DIGIT}+
886 . __{DIGIT}+.
887 These are suffixes introduced by the compiler for entities such as
888 nested subprogram for instance, in order to avoid name clashes.
889 They do not serve any purpose for the debugger. */
890
891 static void
892 ada_remove_trailing_digits (const char *encoded, int *len)
893 {
894 if (*len > 1 && isdigit (encoded[*len - 1]))
895 {
896 int i = *len - 2;
897 while (i > 0 && isdigit (encoded[i]))
898 i--;
899 if (i >= 0 && encoded[i] == '.')
900 *len = i;
901 else if (i >= 0 && encoded[i] == '$')
902 *len = i;
903 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
904 *len = i - 2;
905 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
906 *len = i - 1;
907 }
908 }
909
910 /* Remove the suffix introduced by the compiler for protected object
911 subprograms. */
912
913 static void
914 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
915 {
916 /* Remove trailing N. */
917
918 /* Protected entry subprograms are broken into two
919 separate subprograms: The first one is unprotected, and has
920 a 'N' suffix; the second is the protected version, and has
921 the 'P' suffix. The second calls the first one after handling
922 the protection. Since the P subprograms are internally generated,
923 we leave these names undecoded, giving the user a clue that this
924 entity is internal. */
925
926 if (*len > 1
927 && encoded[*len - 1] == 'N'
928 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
929 *len = *len - 1;
930 }
931
932 /* If ENCODED follows the GNAT entity encoding conventions, then return
933 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
934 replaced by ENCODED.
935
936 The resulting string is valid until the next call of ada_decode.
937 If the string is unchanged by decoding, the original string pointer
938 is returned. */
939
940 const char *
941 ada_decode (const char *encoded)
942 {
943 int i, j;
944 int len0;
945 const char *p;
946 char *decoded;
947 int at_start_name;
948 static char *decoding_buffer = NULL;
949 static size_t decoding_buffer_size = 0;
950
951 /* The name of the Ada main procedure starts with "_ada_".
952 This prefix is not part of the decoded name, so skip this part
953 if we see this prefix. */
954 if (strncmp (encoded, "_ada_", 5) == 0)
955 encoded += 5;
956
957 /* If the name starts with '_', then it is not a properly encoded
958 name, so do not attempt to decode it. Similarly, if the name
959 starts with '<', the name should not be decoded. */
960 if (encoded[0] == '_' || encoded[0] == '<')
961 goto Suppress;
962
963 len0 = strlen (encoded);
964
965 ada_remove_trailing_digits (encoded, &len0);
966 ada_remove_po_subprogram_suffix (encoded, &len0);
967
968 /* Remove the ___X.* suffix if present. Do not forget to verify that
969 the suffix is located before the current "end" of ENCODED. We want
970 to avoid re-matching parts of ENCODED that have previously been
971 marked as discarded (by decrementing LEN0). */
972 p = strstr (encoded, "___");
973 if (p != NULL && p - encoded < len0 - 3)
974 {
975 if (p[3] == 'X')
976 len0 = p - encoded;
977 else
978 goto Suppress;
979 }
980
981 /* Remove any trailing TKB suffix. It tells us that this symbol
982 is for the body of a task, but that information does not actually
983 appear in the decoded name. */
984
985 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
986 len0 -= 3;
987
988 /* Remove trailing "B" suffixes. */
989 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
990
991 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
992 len0 -= 1;
993
994 /* Make decoded big enough for possible expansion by operator name. */
995
996 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
997 decoded = decoding_buffer;
998
999 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1000
1001 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1002 {
1003 i = len0 - 2;
1004 while ((i >= 0 && isdigit (encoded[i]))
1005 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1006 i -= 1;
1007 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1008 len0 = i - 1;
1009 else if (encoded[i] == '$')
1010 len0 = i;
1011 }
1012
1013 /* The first few characters that are not alphabetic are not part
1014 of any encoding we use, so we can copy them over verbatim. */
1015
1016 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1017 decoded[j] = encoded[i];
1018
1019 at_start_name = 1;
1020 while (i < len0)
1021 {
1022 /* Is this a symbol function? */
1023 if (at_start_name && encoded[i] == 'O')
1024 {
1025 int k;
1026 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1027 {
1028 int op_len = strlen (ada_opname_table[k].encoded);
1029 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1030 op_len - 1) == 0)
1031 && !isalnum (encoded[i + op_len]))
1032 {
1033 strcpy (decoded + j, ada_opname_table[k].decoded);
1034 at_start_name = 0;
1035 i += op_len;
1036 j += strlen (ada_opname_table[k].decoded);
1037 break;
1038 }
1039 }
1040 if (ada_opname_table[k].encoded != NULL)
1041 continue;
1042 }
1043 at_start_name = 0;
1044
1045 /* Replace "TK__" with "__", which will eventually be translated
1046 into "." (just below). */
1047
1048 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1049 i += 2;
1050
1051 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1052 be translated into "." (just below). These are internal names
1053 generated for anonymous blocks inside which our symbol is nested. */
1054
1055 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1056 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1057 && isdigit (encoded [i+4]))
1058 {
1059 int k = i + 5;
1060
1061 while (k < len0 && isdigit (encoded[k]))
1062 k++; /* Skip any extra digit. */
1063
1064 /* Double-check that the "__B_{DIGITS}+" sequence we found
1065 is indeed followed by "__". */
1066 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1067 i = k;
1068 }
1069
1070 /* Remove _E{DIGITS}+[sb] */
1071
1072 /* Just as for protected object subprograms, there are 2 categories
1073 of subprograms created by the compiler for each entry. The first
1074 one implements the actual entry code, and has a suffix following
1075 the convention above; the second one implements the barrier and
1076 uses the same convention as above, except that the 'E' is replaced
1077 by a 'B'.
1078
1079 Just as above, we do not decode the name of barrier functions
1080 to give the user a clue that the code he is debugging has been
1081 internally generated. */
1082
1083 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1084 && isdigit (encoded[i+2]))
1085 {
1086 int k = i + 3;
1087
1088 while (k < len0 && isdigit (encoded[k]))
1089 k++;
1090
1091 if (k < len0
1092 && (encoded[k] == 'b' || encoded[k] == 's'))
1093 {
1094 k++;
1095 /* Just as an extra precaution, make sure that if this
1096 suffix is followed by anything else, it is a '_'.
1097 Otherwise, we matched this sequence by accident. */
1098 if (k == len0
1099 || (k < len0 && encoded[k] == '_'))
1100 i = k;
1101 }
1102 }
1103
1104 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1105 the GNAT front-end in protected object subprograms. */
1106
1107 if (i < len0 + 3
1108 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1109 {
1110 /* Backtrack a bit up until we reach either the begining of
1111 the encoded name, or "__". Make sure that we only find
1112 digits or lowercase characters. */
1113 const char *ptr = encoded + i - 1;
1114
1115 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1116 ptr--;
1117 if (ptr < encoded
1118 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1119 i++;
1120 }
1121
1122 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1123 {
1124 /* This is a X[bn]* sequence not separated from the previous
1125 part of the name with a non-alpha-numeric character (in other
1126 words, immediately following an alpha-numeric character), then
1127 verify that it is placed at the end of the encoded name. If
1128 not, then the encoding is not valid and we should abort the
1129 decoding. Otherwise, just skip it, it is used in body-nested
1130 package names. */
1131 do
1132 i += 1;
1133 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1134 if (i < len0)
1135 goto Suppress;
1136 }
1137 else if (!ADA_RETAIN_DOTS
1138 && i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1139 {
1140 /* Replace '__' by '.'. */
1141 decoded[j] = '.';
1142 at_start_name = 1;
1143 i += 2;
1144 j += 1;
1145 }
1146 else
1147 {
1148 /* It's a character part of the decoded name, so just copy it
1149 over. */
1150 decoded[j] = encoded[i];
1151 i += 1;
1152 j += 1;
1153 }
1154 }
1155 decoded[j] = '\000';
1156
1157 /* Decoded names should never contain any uppercase character.
1158 Double-check this, and abort the decoding if we find one. */
1159
1160 for (i = 0; decoded[i] != '\0'; i += 1)
1161 if (isupper (decoded[i]) || decoded[i] == ' ')
1162 goto Suppress;
1163
1164 if (strcmp (decoded, encoded) == 0)
1165 return encoded;
1166 else
1167 return decoded;
1168
1169 Suppress:
1170 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1171 decoded = decoding_buffer;
1172 if (encoded[0] == '<')
1173 strcpy (decoded, encoded);
1174 else
1175 sprintf (decoded, "<%s>", encoded);
1176 return decoded;
1177
1178 }
1179
1180 /* Table for keeping permanent unique copies of decoded names. Once
1181 allocated, names in this table are never released. While this is a
1182 storage leak, it should not be significant unless there are massive
1183 changes in the set of decoded names in successive versions of a
1184 symbol table loaded during a single session. */
1185 static struct htab *decoded_names_store;
1186
1187 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1188 in the language-specific part of GSYMBOL, if it has not been
1189 previously computed. Tries to save the decoded name in the same
1190 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1191 in any case, the decoded symbol has a lifetime at least that of
1192 GSYMBOL).
1193 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1194 const, but nevertheless modified to a semantically equivalent form
1195 when a decoded name is cached in it.
1196 */
1197
1198 char *
1199 ada_decode_symbol (const struct general_symbol_info *gsymbol)
1200 {
1201 char **resultp =
1202 (char **) &gsymbol->language_specific.cplus_specific.demangled_name;
1203 if (*resultp == NULL)
1204 {
1205 const char *decoded = ada_decode (gsymbol->name);
1206 if (gsymbol->bfd_section != NULL)
1207 {
1208 bfd *obfd = gsymbol->bfd_section->owner;
1209 if (obfd != NULL)
1210 {
1211 struct objfile *objf;
1212 ALL_OBJFILES (objf)
1213 {
1214 if (obfd == objf->obfd)
1215 {
1216 *resultp = obsavestring (decoded, strlen (decoded),
1217 &objf->objfile_obstack);
1218 break;
1219 }
1220 }
1221 }
1222 }
1223 /* Sometimes, we can't find a corresponding objfile, in which
1224 case, we put the result on the heap. Since we only decode
1225 when needed, we hope this usually does not cause a
1226 significant memory leak (FIXME). */
1227 if (*resultp == NULL)
1228 {
1229 char **slot = (char **) htab_find_slot (decoded_names_store,
1230 decoded, INSERT);
1231 if (*slot == NULL)
1232 *slot = xstrdup (decoded);
1233 *resultp = *slot;
1234 }
1235 }
1236
1237 return *resultp;
1238 }
1239
1240 char *
1241 ada_la_decode (const char *encoded, int options)
1242 {
1243 return xstrdup (ada_decode (encoded));
1244 }
1245
1246 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1247 suffixes that encode debugging information or leading _ada_ on
1248 SYM_NAME (see is_name_suffix commentary for the debugging
1249 information that is ignored). If WILD, then NAME need only match a
1250 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1251 either argument is NULL. */
1252
1253 int
1254 ada_match_name (const char *sym_name, const char *name, int wild)
1255 {
1256 if (sym_name == NULL || name == NULL)
1257 return 0;
1258 else if (wild)
1259 return wild_match (name, strlen (name), sym_name);
1260 else
1261 {
1262 int len_name = strlen (name);
1263 return (strncmp (sym_name, name, len_name) == 0
1264 && is_name_suffix (sym_name + len_name))
1265 || (strncmp (sym_name, "_ada_", 5) == 0
1266 && strncmp (sym_name + 5, name, len_name) == 0
1267 && is_name_suffix (sym_name + len_name + 5));
1268 }
1269 }
1270
1271 /* True (non-zero) iff, in Ada mode, the symbol SYM should be
1272 suppressed in info listings. */
1273
1274 int
1275 ada_suppress_symbol_printing (struct symbol *sym)
1276 {
1277 if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN)
1278 return 1;
1279 else
1280 return is_suppressed_name (SYMBOL_LINKAGE_NAME (sym));
1281 }
1282 \f
1283
1284 /* Arrays */
1285
1286 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1287
1288 static char *bound_name[] = {
1289 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1290 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1291 };
1292
1293 /* Maximum number of array dimensions we are prepared to handle. */
1294
1295 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1296
1297 /* Like modify_field, but allows bitpos > wordlength. */
1298
1299 static void
1300 modify_general_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
1301 {
1302 modify_field (addr + bitpos / 8, fieldval, bitpos % 8, bitsize);
1303 }
1304
1305
1306 /* The desc_* routines return primitive portions of array descriptors
1307 (fat pointers). */
1308
1309 /* The descriptor or array type, if any, indicated by TYPE; removes
1310 level of indirection, if needed. */
1311
1312 static struct type *
1313 desc_base_type (struct type *type)
1314 {
1315 if (type == NULL)
1316 return NULL;
1317 type = ada_check_typedef (type);
1318 if (type != NULL
1319 && (TYPE_CODE (type) == TYPE_CODE_PTR
1320 || TYPE_CODE (type) == TYPE_CODE_REF))
1321 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1322 else
1323 return type;
1324 }
1325
1326 /* True iff TYPE indicates a "thin" array pointer type. */
1327
1328 static int
1329 is_thin_pntr (struct type *type)
1330 {
1331 return
1332 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1333 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1334 }
1335
1336 /* The descriptor type for thin pointer type TYPE. */
1337
1338 static struct type *
1339 thin_descriptor_type (struct type *type)
1340 {
1341 struct type *base_type = desc_base_type (type);
1342 if (base_type == NULL)
1343 return NULL;
1344 if (is_suffix (ada_type_name (base_type), "___XVE"))
1345 return base_type;
1346 else
1347 {
1348 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1349 if (alt_type == NULL)
1350 return base_type;
1351 else
1352 return alt_type;
1353 }
1354 }
1355
1356 /* A pointer to the array data for thin-pointer value VAL. */
1357
1358 static struct value *
1359 thin_data_pntr (struct value *val)
1360 {
1361 struct type *type = value_type (val);
1362 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1363 return value_cast (desc_data_type (thin_descriptor_type (type)),
1364 value_copy (val));
1365 else
1366 return value_from_longest (desc_data_type (thin_descriptor_type (type)),
1367 VALUE_ADDRESS (val) + value_offset (val));
1368 }
1369
1370 /* True iff TYPE indicates a "thick" array pointer type. */
1371
1372 static int
1373 is_thick_pntr (struct type *type)
1374 {
1375 type = desc_base_type (type);
1376 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1377 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1378 }
1379
1380 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1381 pointer to one, the type of its bounds data; otherwise, NULL. */
1382
1383 static struct type *
1384 desc_bounds_type (struct type *type)
1385 {
1386 struct type *r;
1387
1388 type = desc_base_type (type);
1389
1390 if (type == NULL)
1391 return NULL;
1392 else if (is_thin_pntr (type))
1393 {
1394 type = thin_descriptor_type (type);
1395 if (type == NULL)
1396 return NULL;
1397 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1398 if (r != NULL)
1399 return ada_check_typedef (r);
1400 }
1401 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1402 {
1403 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1404 if (r != NULL)
1405 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1406 }
1407 return NULL;
1408 }
1409
1410 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1411 one, a pointer to its bounds data. Otherwise NULL. */
1412
1413 static struct value *
1414 desc_bounds (struct value *arr)
1415 {
1416 struct type *type = ada_check_typedef (value_type (arr));
1417 if (is_thin_pntr (type))
1418 {
1419 struct type *bounds_type =
1420 desc_bounds_type (thin_descriptor_type (type));
1421 LONGEST addr;
1422
1423 if (bounds_type == NULL)
1424 error (_("Bad GNAT array descriptor"));
1425
1426 /* NOTE: The following calculation is not really kosher, but
1427 since desc_type is an XVE-encoded type (and shouldn't be),
1428 the correct calculation is a real pain. FIXME (and fix GCC). */
1429 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1430 addr = value_as_long (arr);
1431 else
1432 addr = VALUE_ADDRESS (arr) + value_offset (arr);
1433
1434 return
1435 value_from_longest (lookup_pointer_type (bounds_type),
1436 addr - TYPE_LENGTH (bounds_type));
1437 }
1438
1439 else if (is_thick_pntr (type))
1440 return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1441 _("Bad GNAT array descriptor"));
1442 else
1443 return NULL;
1444 }
1445
1446 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1447 position of the field containing the address of the bounds data. */
1448
1449 static int
1450 fat_pntr_bounds_bitpos (struct type *type)
1451 {
1452 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1453 }
1454
1455 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1456 size of the field containing the address of the bounds data. */
1457
1458 static int
1459 fat_pntr_bounds_bitsize (struct type *type)
1460 {
1461 type = desc_base_type (type);
1462
1463 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1464 return TYPE_FIELD_BITSIZE (type, 1);
1465 else
1466 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1467 }
1468
1469 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1470 pointer to one, the type of its array data (a
1471 pointer-to-array-with-no-bounds type); otherwise, NULL. Use
1472 ada_type_of_array to get an array type with bounds data. */
1473
1474 static struct type *
1475 desc_data_type (struct type *type)
1476 {
1477 type = desc_base_type (type);
1478
1479 /* NOTE: The following is bogus; see comment in desc_bounds. */
1480 if (is_thin_pntr (type))
1481 return lookup_pointer_type
1482 (desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1)));
1483 else if (is_thick_pntr (type))
1484 return lookup_struct_elt_type (type, "P_ARRAY", 1);
1485 else
1486 return NULL;
1487 }
1488
1489 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1490 its array data. */
1491
1492 static struct value *
1493 desc_data (struct value *arr)
1494 {
1495 struct type *type = value_type (arr);
1496 if (is_thin_pntr (type))
1497 return thin_data_pntr (arr);
1498 else if (is_thick_pntr (type))
1499 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1500 _("Bad GNAT array descriptor"));
1501 else
1502 return NULL;
1503 }
1504
1505
1506 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1507 position of the field containing the address of the data. */
1508
1509 static int
1510 fat_pntr_data_bitpos (struct type *type)
1511 {
1512 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1513 }
1514
1515 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1516 size of the field containing the address of the data. */
1517
1518 static int
1519 fat_pntr_data_bitsize (struct type *type)
1520 {
1521 type = desc_base_type (type);
1522
1523 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1524 return TYPE_FIELD_BITSIZE (type, 0);
1525 else
1526 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1527 }
1528
1529 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1530 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1531 bound, if WHICH is 1. The first bound is I=1. */
1532
1533 static struct value *
1534 desc_one_bound (struct value *bounds, int i, int which)
1535 {
1536 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1537 _("Bad GNAT array descriptor bounds"));
1538 }
1539
1540 /* If BOUNDS is an array-bounds structure type, return the bit position
1541 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1542 bound, if WHICH is 1. The first bound is I=1. */
1543
1544 static int
1545 desc_bound_bitpos (struct type *type, int i, int which)
1546 {
1547 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1548 }
1549
1550 /* If BOUNDS is an array-bounds structure type, return the bit field size
1551 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1552 bound, if WHICH is 1. The first bound is I=1. */
1553
1554 static int
1555 desc_bound_bitsize (struct type *type, int i, int which)
1556 {
1557 type = desc_base_type (type);
1558
1559 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1560 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1561 else
1562 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1563 }
1564
1565 /* If TYPE is the type of an array-bounds structure, the type of its
1566 Ith bound (numbering from 1). Otherwise, NULL. */
1567
1568 static struct type *
1569 desc_index_type (struct type *type, int i)
1570 {
1571 type = desc_base_type (type);
1572
1573 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1574 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1575 else
1576 return NULL;
1577 }
1578
1579 /* The number of index positions in the array-bounds type TYPE.
1580 Return 0 if TYPE is NULL. */
1581
1582 static int
1583 desc_arity (struct type *type)
1584 {
1585 type = desc_base_type (type);
1586
1587 if (type != NULL)
1588 return TYPE_NFIELDS (type) / 2;
1589 return 0;
1590 }
1591
1592 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1593 an array descriptor type (representing an unconstrained array
1594 type). */
1595
1596 static int
1597 ada_is_direct_array_type (struct type *type)
1598 {
1599 if (type == NULL)
1600 return 0;
1601 type = ada_check_typedef (type);
1602 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1603 || ada_is_array_descriptor_type (type));
1604 }
1605
1606 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1607 * to one. */
1608
1609 int
1610 ada_is_array_type (struct type *type)
1611 {
1612 while (type != NULL
1613 && (TYPE_CODE (type) == TYPE_CODE_PTR
1614 || TYPE_CODE (type) == TYPE_CODE_REF))
1615 type = TYPE_TARGET_TYPE (type);
1616 return ada_is_direct_array_type (type);
1617 }
1618
1619 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1620
1621 int
1622 ada_is_simple_array_type (struct type *type)
1623 {
1624 if (type == NULL)
1625 return 0;
1626 type = ada_check_typedef (type);
1627 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1628 || (TYPE_CODE (type) == TYPE_CODE_PTR
1629 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
1630 }
1631
1632 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1633
1634 int
1635 ada_is_array_descriptor_type (struct type *type)
1636 {
1637 struct type *data_type = desc_data_type (type);
1638
1639 if (type == NULL)
1640 return 0;
1641 type = ada_check_typedef (type);
1642 return
1643 data_type != NULL
1644 && ((TYPE_CODE (data_type) == TYPE_CODE_PTR
1645 && TYPE_TARGET_TYPE (data_type) != NULL
1646 && TYPE_CODE (TYPE_TARGET_TYPE (data_type)) == TYPE_CODE_ARRAY)
1647 || TYPE_CODE (data_type) == TYPE_CODE_ARRAY)
1648 && desc_arity (desc_bounds_type (type)) > 0;
1649 }
1650
1651 /* Non-zero iff type is a partially mal-formed GNAT array
1652 descriptor. FIXME: This is to compensate for some problems with
1653 debugging output from GNAT. Re-examine periodically to see if it
1654 is still needed. */
1655
1656 int
1657 ada_is_bogus_array_descriptor (struct type *type)
1658 {
1659 return
1660 type != NULL
1661 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1662 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1663 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1664 && !ada_is_array_descriptor_type (type);
1665 }
1666
1667
1668 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1669 (fat pointer) returns the type of the array data described---specifically,
1670 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1671 in from the descriptor; otherwise, they are left unspecified. If
1672 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1673 returns NULL. The result is simply the type of ARR if ARR is not
1674 a descriptor. */
1675 struct type *
1676 ada_type_of_array (struct value *arr, int bounds)
1677 {
1678 if (ada_is_packed_array_type (value_type (arr)))
1679 return decode_packed_array_type (value_type (arr));
1680
1681 if (!ada_is_array_descriptor_type (value_type (arr)))
1682 return value_type (arr);
1683
1684 if (!bounds)
1685 return
1686 ada_check_typedef (TYPE_TARGET_TYPE (desc_data_type (value_type (arr))));
1687 else
1688 {
1689 struct type *elt_type;
1690 int arity;
1691 struct value *descriptor;
1692 struct objfile *objf = TYPE_OBJFILE (value_type (arr));
1693
1694 elt_type = ada_array_element_type (value_type (arr), -1);
1695 arity = ada_array_arity (value_type (arr));
1696
1697 if (elt_type == NULL || arity == 0)
1698 return ada_check_typedef (value_type (arr));
1699
1700 descriptor = desc_bounds (arr);
1701 if (value_as_long (descriptor) == 0)
1702 return NULL;
1703 while (arity > 0)
1704 {
1705 struct type *range_type = alloc_type (objf);
1706 struct type *array_type = alloc_type (objf);
1707 struct value *low = desc_one_bound (descriptor, arity, 0);
1708 struct value *high = desc_one_bound (descriptor, arity, 1);
1709 arity -= 1;
1710
1711 create_range_type (range_type, value_type (low),
1712 longest_to_int (value_as_long (low)),
1713 longest_to_int (value_as_long (high)));
1714 elt_type = create_array_type (array_type, elt_type, range_type);
1715 }
1716
1717 return lookup_pointer_type (elt_type);
1718 }
1719 }
1720
1721 /* If ARR does not represent an array, returns ARR unchanged.
1722 Otherwise, returns either a standard GDB array with bounds set
1723 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1724 GDB array. Returns NULL if ARR is a null fat pointer. */
1725
1726 struct value *
1727 ada_coerce_to_simple_array_ptr (struct value *arr)
1728 {
1729 if (ada_is_array_descriptor_type (value_type (arr)))
1730 {
1731 struct type *arrType = ada_type_of_array (arr, 1);
1732 if (arrType == NULL)
1733 return NULL;
1734 return value_cast (arrType, value_copy (desc_data (arr)));
1735 }
1736 else if (ada_is_packed_array_type (value_type (arr)))
1737 return decode_packed_array (arr);
1738 else
1739 return arr;
1740 }
1741
1742 /* If ARR does not represent an array, returns ARR unchanged.
1743 Otherwise, returns a standard GDB array describing ARR (which may
1744 be ARR itself if it already is in the proper form). */
1745
1746 static struct value *
1747 ada_coerce_to_simple_array (struct value *arr)
1748 {
1749 if (ada_is_array_descriptor_type (value_type (arr)))
1750 {
1751 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1752 if (arrVal == NULL)
1753 error (_("Bounds unavailable for null array pointer."));
1754 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1755 return value_ind (arrVal);
1756 }
1757 else if (ada_is_packed_array_type (value_type (arr)))
1758 return decode_packed_array (arr);
1759 else
1760 return arr;
1761 }
1762
1763 /* If TYPE represents a GNAT array type, return it translated to an
1764 ordinary GDB array type (possibly with BITSIZE fields indicating
1765 packing). For other types, is the identity. */
1766
1767 struct type *
1768 ada_coerce_to_simple_array_type (struct type *type)
1769 {
1770 struct value *mark = value_mark ();
1771 struct value *dummy = value_from_longest (builtin_type_long, 0);
1772 struct type *result;
1773 deprecated_set_value_type (dummy, type);
1774 result = ada_type_of_array (dummy, 0);
1775 value_free_to_mark (mark);
1776 return result;
1777 }
1778
1779 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1780
1781 int
1782 ada_is_packed_array_type (struct type *type)
1783 {
1784 if (type == NULL)
1785 return 0;
1786 type = desc_base_type (type);
1787 type = ada_check_typedef (type);
1788 return
1789 ada_type_name (type) != NULL
1790 && strstr (ada_type_name (type), "___XP") != NULL;
1791 }
1792
1793 /* Given that TYPE is a standard GDB array type with all bounds filled
1794 in, and that the element size of its ultimate scalar constituents
1795 (that is, either its elements, or, if it is an array of arrays, its
1796 elements' elements, etc.) is *ELT_BITS, return an identical type,
1797 but with the bit sizes of its elements (and those of any
1798 constituent arrays) recorded in the BITSIZE components of its
1799 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1800 in bits. */
1801
1802 static struct type *
1803 packed_array_type (struct type *type, long *elt_bits)
1804 {
1805 struct type *new_elt_type;
1806 struct type *new_type;
1807 LONGEST low_bound, high_bound;
1808
1809 type = ada_check_typedef (type);
1810 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1811 return type;
1812
1813 new_type = alloc_type (TYPE_OBJFILE (type));
1814 new_elt_type = packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
1815 elt_bits);
1816 create_array_type (new_type, new_elt_type, TYPE_FIELD_TYPE (type, 0));
1817 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
1818 TYPE_NAME (new_type) = ada_type_name (type);
1819
1820 if (get_discrete_bounds (TYPE_FIELD_TYPE (type, 0),
1821 &low_bound, &high_bound) < 0)
1822 low_bound = high_bound = 0;
1823 if (high_bound < low_bound)
1824 *elt_bits = TYPE_LENGTH (new_type) = 0;
1825 else
1826 {
1827 *elt_bits *= (high_bound - low_bound + 1);
1828 TYPE_LENGTH (new_type) =
1829 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
1830 }
1831
1832 TYPE_FLAGS (new_type) |= TYPE_FLAG_FIXED_INSTANCE;
1833 return new_type;
1834 }
1835
1836 /* The array type encoded by TYPE, where ada_is_packed_array_type (TYPE). */
1837
1838 static struct type *
1839 decode_packed_array_type (struct type *type)
1840 {
1841 struct symbol *sym;
1842 struct block **blocks;
1843 char *raw_name = ada_type_name (ada_check_typedef (type));
1844 char *name;
1845 char *tail;
1846 struct type *shadow_type;
1847 long bits;
1848 int i, n;
1849
1850 if (!raw_name)
1851 raw_name = ada_type_name (desc_base_type (type));
1852
1853 if (!raw_name)
1854 return NULL;
1855
1856 name = (char *) alloca (strlen (raw_name) + 1);
1857 tail = strstr (raw_name, "___XP");
1858 type = desc_base_type (type);
1859
1860 memcpy (name, raw_name, tail - raw_name);
1861 name[tail - raw_name] = '\000';
1862
1863 sym = standard_lookup (name, get_selected_block (0), VAR_DOMAIN);
1864 if (sym == NULL || SYMBOL_TYPE (sym) == NULL)
1865 {
1866 lim_warning (_("could not find bounds information on packed array"));
1867 return NULL;
1868 }
1869 shadow_type = SYMBOL_TYPE (sym);
1870
1871 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
1872 {
1873 lim_warning (_("could not understand bounds information on packed array"));
1874 return NULL;
1875 }
1876
1877 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1878 {
1879 lim_warning
1880 (_("could not understand bit size information on packed array"));
1881 return NULL;
1882 }
1883
1884 return packed_array_type (shadow_type, &bits);
1885 }
1886
1887 /* Given that ARR is a struct value *indicating a GNAT packed array,
1888 returns a simple array that denotes that array. Its type is a
1889 standard GDB array type except that the BITSIZEs of the array
1890 target types are set to the number of bits in each element, and the
1891 type length is set appropriately. */
1892
1893 static struct value *
1894 decode_packed_array (struct value *arr)
1895 {
1896 struct type *type;
1897
1898 arr = ada_coerce_ref (arr);
1899 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
1900 arr = ada_value_ind (arr);
1901
1902 type = decode_packed_array_type (value_type (arr));
1903 if (type == NULL)
1904 {
1905 error (_("can't unpack array"));
1906 return NULL;
1907 }
1908
1909 if (gdbarch_bits_big_endian (current_gdbarch)
1910 && ada_is_modular_type (value_type (arr)))
1911 {
1912 /* This is a (right-justified) modular type representing a packed
1913 array with no wrapper. In order to interpret the value through
1914 the (left-justified) packed array type we just built, we must
1915 first left-justify it. */
1916 int bit_size, bit_pos;
1917 ULONGEST mod;
1918
1919 mod = ada_modulus (value_type (arr)) - 1;
1920 bit_size = 0;
1921 while (mod > 0)
1922 {
1923 bit_size += 1;
1924 mod >>= 1;
1925 }
1926 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
1927 arr = ada_value_primitive_packed_val (arr, NULL,
1928 bit_pos / HOST_CHAR_BIT,
1929 bit_pos % HOST_CHAR_BIT,
1930 bit_size,
1931 type);
1932 }
1933
1934 return coerce_unspec_val_to_type (arr, type);
1935 }
1936
1937
1938 /* The value of the element of packed array ARR at the ARITY indices
1939 given in IND. ARR must be a simple array. */
1940
1941 static struct value *
1942 value_subscript_packed (struct value *arr, int arity, struct value **ind)
1943 {
1944 int i;
1945 int bits, elt_off, bit_off;
1946 long elt_total_bit_offset;
1947 struct type *elt_type;
1948 struct value *v;
1949
1950 bits = 0;
1951 elt_total_bit_offset = 0;
1952 elt_type = ada_check_typedef (value_type (arr));
1953 for (i = 0; i < arity; i += 1)
1954 {
1955 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
1956 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
1957 error
1958 (_("attempt to do packed indexing of something other than a packed array"));
1959 else
1960 {
1961 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
1962 LONGEST lowerbound, upperbound;
1963 LONGEST idx;
1964
1965 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
1966 {
1967 lim_warning (_("don't know bounds of array"));
1968 lowerbound = upperbound = 0;
1969 }
1970
1971 idx = value_as_long (value_pos_atr (ind[i]));
1972 if (idx < lowerbound || idx > upperbound)
1973 lim_warning (_("packed array index %ld out of bounds"), (long) idx);
1974 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
1975 elt_total_bit_offset += (idx - lowerbound) * bits;
1976 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
1977 }
1978 }
1979 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
1980 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
1981
1982 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
1983 bits, elt_type);
1984 return v;
1985 }
1986
1987 /* Non-zero iff TYPE includes negative integer values. */
1988
1989 static int
1990 has_negatives (struct type *type)
1991 {
1992 switch (TYPE_CODE (type))
1993 {
1994 default:
1995 return 0;
1996 case TYPE_CODE_INT:
1997 return !TYPE_UNSIGNED (type);
1998 case TYPE_CODE_RANGE:
1999 return TYPE_LOW_BOUND (type) < 0;
2000 }
2001 }
2002
2003
2004 /* Create a new value of type TYPE from the contents of OBJ starting
2005 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2006 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2007 assigning through the result will set the field fetched from.
2008 VALADDR is ignored unless OBJ is NULL, in which case,
2009 VALADDR+OFFSET must address the start of storage containing the
2010 packed value. The value returned in this case is never an lval.
2011 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2012
2013 struct value *
2014 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2015 long offset, int bit_offset, int bit_size,
2016 struct type *type)
2017 {
2018 struct value *v;
2019 int src, /* Index into the source area */
2020 targ, /* Index into the target area */
2021 srcBitsLeft, /* Number of source bits left to move */
2022 nsrc, ntarg, /* Number of source and target bytes */
2023 unusedLS, /* Number of bits in next significant
2024 byte of source that are unused */
2025 accumSize; /* Number of meaningful bits in accum */
2026 unsigned char *bytes; /* First byte containing data to unpack */
2027 unsigned char *unpacked;
2028 unsigned long accum; /* Staging area for bits being transferred */
2029 unsigned char sign;
2030 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2031 /* Transmit bytes from least to most significant; delta is the direction
2032 the indices move. */
2033 int delta = gdbarch_bits_big_endian (current_gdbarch) ? -1 : 1;
2034
2035 type = ada_check_typedef (type);
2036
2037 if (obj == NULL)
2038 {
2039 v = allocate_value (type);
2040 bytes = (unsigned char *) (valaddr + offset);
2041 }
2042 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2043 {
2044 v = value_at (type,
2045 VALUE_ADDRESS (obj) + value_offset (obj) + offset);
2046 bytes = (unsigned char *) alloca (len);
2047 read_memory (VALUE_ADDRESS (v), bytes, len);
2048 }
2049 else
2050 {
2051 v = allocate_value (type);
2052 bytes = (unsigned char *) value_contents (obj) + offset;
2053 }
2054
2055 if (obj != NULL)
2056 {
2057 VALUE_LVAL (v) = VALUE_LVAL (obj);
2058 if (VALUE_LVAL (obj) == lval_internalvar)
2059 VALUE_LVAL (v) = lval_internalvar_component;
2060 VALUE_ADDRESS (v) = VALUE_ADDRESS (obj) + value_offset (obj) + offset;
2061 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2062 set_value_bitsize (v, bit_size);
2063 if (value_bitpos (v) >= HOST_CHAR_BIT)
2064 {
2065 VALUE_ADDRESS (v) += 1;
2066 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2067 }
2068 }
2069 else
2070 set_value_bitsize (v, bit_size);
2071 unpacked = (unsigned char *) value_contents (v);
2072
2073 srcBitsLeft = bit_size;
2074 nsrc = len;
2075 ntarg = TYPE_LENGTH (type);
2076 sign = 0;
2077 if (bit_size == 0)
2078 {
2079 memset (unpacked, 0, TYPE_LENGTH (type));
2080 return v;
2081 }
2082 else if (gdbarch_bits_big_endian (current_gdbarch))
2083 {
2084 src = len - 1;
2085 if (has_negatives (type)
2086 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2087 sign = ~0;
2088
2089 unusedLS =
2090 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2091 % HOST_CHAR_BIT;
2092
2093 switch (TYPE_CODE (type))
2094 {
2095 case TYPE_CODE_ARRAY:
2096 case TYPE_CODE_UNION:
2097 case TYPE_CODE_STRUCT:
2098 /* Non-scalar values must be aligned at a byte boundary... */
2099 accumSize =
2100 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2101 /* ... And are placed at the beginning (most-significant) bytes
2102 of the target. */
2103 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2104 break;
2105 default:
2106 accumSize = 0;
2107 targ = TYPE_LENGTH (type) - 1;
2108 break;
2109 }
2110 }
2111 else
2112 {
2113 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2114
2115 src = targ = 0;
2116 unusedLS = bit_offset;
2117 accumSize = 0;
2118
2119 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2120 sign = ~0;
2121 }
2122
2123 accum = 0;
2124 while (nsrc > 0)
2125 {
2126 /* Mask for removing bits of the next source byte that are not
2127 part of the value. */
2128 unsigned int unusedMSMask =
2129 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2130 1;
2131 /* Sign-extend bits for this byte. */
2132 unsigned int signMask = sign & ~unusedMSMask;
2133 accum |=
2134 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2135 accumSize += HOST_CHAR_BIT - unusedLS;
2136 if (accumSize >= HOST_CHAR_BIT)
2137 {
2138 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2139 accumSize -= HOST_CHAR_BIT;
2140 accum >>= HOST_CHAR_BIT;
2141 ntarg -= 1;
2142 targ += delta;
2143 }
2144 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2145 unusedLS = 0;
2146 nsrc -= 1;
2147 src += delta;
2148 }
2149 while (ntarg > 0)
2150 {
2151 accum |= sign << accumSize;
2152 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2153 accumSize -= HOST_CHAR_BIT;
2154 accum >>= HOST_CHAR_BIT;
2155 ntarg -= 1;
2156 targ += delta;
2157 }
2158
2159 return v;
2160 }
2161
2162 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2163 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2164 not overlap. */
2165 static void
2166 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2167 int src_offset, int n)
2168 {
2169 unsigned int accum, mask;
2170 int accum_bits, chunk_size;
2171
2172 target += targ_offset / HOST_CHAR_BIT;
2173 targ_offset %= HOST_CHAR_BIT;
2174 source += src_offset / HOST_CHAR_BIT;
2175 src_offset %= HOST_CHAR_BIT;
2176 if (gdbarch_bits_big_endian (current_gdbarch))
2177 {
2178 accum = (unsigned char) *source;
2179 source += 1;
2180 accum_bits = HOST_CHAR_BIT - src_offset;
2181
2182 while (n > 0)
2183 {
2184 int unused_right;
2185 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2186 accum_bits += HOST_CHAR_BIT;
2187 source += 1;
2188 chunk_size = HOST_CHAR_BIT - targ_offset;
2189 if (chunk_size > n)
2190 chunk_size = n;
2191 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2192 mask = ((1 << chunk_size) - 1) << unused_right;
2193 *target =
2194 (*target & ~mask)
2195 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2196 n -= chunk_size;
2197 accum_bits -= chunk_size;
2198 target += 1;
2199 targ_offset = 0;
2200 }
2201 }
2202 else
2203 {
2204 accum = (unsigned char) *source >> src_offset;
2205 source += 1;
2206 accum_bits = HOST_CHAR_BIT - src_offset;
2207
2208 while (n > 0)
2209 {
2210 accum = accum + ((unsigned char) *source << accum_bits);
2211 accum_bits += HOST_CHAR_BIT;
2212 source += 1;
2213 chunk_size = HOST_CHAR_BIT - targ_offset;
2214 if (chunk_size > n)
2215 chunk_size = n;
2216 mask = ((1 << chunk_size) - 1) << targ_offset;
2217 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2218 n -= chunk_size;
2219 accum_bits -= chunk_size;
2220 accum >>= chunk_size;
2221 target += 1;
2222 targ_offset = 0;
2223 }
2224 }
2225 }
2226
2227 /* Store the contents of FROMVAL into the location of TOVAL.
2228 Return a new value with the location of TOVAL and contents of
2229 FROMVAL. Handles assignment into packed fields that have
2230 floating-point or non-scalar types. */
2231
2232 static struct value *
2233 ada_value_assign (struct value *toval, struct value *fromval)
2234 {
2235 struct type *type = value_type (toval);
2236 int bits = value_bitsize (toval);
2237
2238 toval = ada_coerce_ref (toval);
2239 fromval = ada_coerce_ref (fromval);
2240
2241 if (ada_is_direct_array_type (value_type (toval)))
2242 toval = ada_coerce_to_simple_array (toval);
2243 if (ada_is_direct_array_type (value_type (fromval)))
2244 fromval = ada_coerce_to_simple_array (fromval);
2245
2246 if (!deprecated_value_modifiable (toval))
2247 error (_("Left operand of assignment is not a modifiable lvalue."));
2248
2249 if (VALUE_LVAL (toval) == lval_memory
2250 && bits > 0
2251 && (TYPE_CODE (type) == TYPE_CODE_FLT
2252 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2253 {
2254 int len = (value_bitpos (toval)
2255 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2256 char *buffer = (char *) alloca (len);
2257 struct value *val;
2258 CORE_ADDR to_addr = VALUE_ADDRESS (toval) + value_offset (toval);
2259
2260 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2261 fromval = value_cast (type, fromval);
2262
2263 read_memory (to_addr, buffer, len);
2264 if (gdbarch_bits_big_endian (current_gdbarch))
2265 move_bits (buffer, value_bitpos (toval),
2266 value_contents (fromval),
2267 TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT -
2268 bits, bits);
2269 else
2270 move_bits (buffer, value_bitpos (toval), value_contents (fromval),
2271 0, bits);
2272 write_memory (to_addr, buffer, len);
2273 if (deprecated_memory_changed_hook)
2274 deprecated_memory_changed_hook (to_addr, len);
2275
2276 val = value_copy (toval);
2277 memcpy (value_contents_raw (val), value_contents (fromval),
2278 TYPE_LENGTH (type));
2279 deprecated_set_value_type (val, type);
2280
2281 return val;
2282 }
2283
2284 return value_assign (toval, fromval);
2285 }
2286
2287
2288 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2289 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2290 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2291 * COMPONENT, and not the inferior's memory. The current contents
2292 * of COMPONENT are ignored. */
2293 static void
2294 value_assign_to_component (struct value *container, struct value *component,
2295 struct value *val)
2296 {
2297 LONGEST offset_in_container =
2298 (LONGEST) (VALUE_ADDRESS (component) + value_offset (component)
2299 - VALUE_ADDRESS (container) - value_offset (container));
2300 int bit_offset_in_container =
2301 value_bitpos (component) - value_bitpos (container);
2302 int bits;
2303
2304 val = value_cast (value_type (component), val);
2305
2306 if (value_bitsize (component) == 0)
2307 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2308 else
2309 bits = value_bitsize (component);
2310
2311 if (gdbarch_bits_big_endian (current_gdbarch))
2312 move_bits (value_contents_writeable (container) + offset_in_container,
2313 value_bitpos (container) + bit_offset_in_container,
2314 value_contents (val),
2315 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2316 bits);
2317 else
2318 move_bits (value_contents_writeable (container) + offset_in_container,
2319 value_bitpos (container) + bit_offset_in_container,
2320 value_contents (val), 0, bits);
2321 }
2322
2323 /* The value of the element of array ARR at the ARITY indices given in IND.
2324 ARR may be either a simple array, GNAT array descriptor, or pointer
2325 thereto. */
2326
2327 struct value *
2328 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2329 {
2330 int k;
2331 struct value *elt;
2332 struct type *elt_type;
2333
2334 elt = ada_coerce_to_simple_array (arr);
2335
2336 elt_type = ada_check_typedef (value_type (elt));
2337 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2338 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2339 return value_subscript_packed (elt, arity, ind);
2340
2341 for (k = 0; k < arity; k += 1)
2342 {
2343 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2344 error (_("too many subscripts (%d expected)"), k);
2345 elt = value_subscript (elt, value_pos_atr (ind[k]));
2346 }
2347 return elt;
2348 }
2349
2350 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2351 value of the element of *ARR at the ARITY indices given in
2352 IND. Does not read the entire array into memory. */
2353
2354 struct value *
2355 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2356 struct value **ind)
2357 {
2358 int k;
2359
2360 for (k = 0; k < arity; k += 1)
2361 {
2362 LONGEST lwb, upb;
2363 struct value *idx;
2364
2365 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2366 error (_("too many subscripts (%d expected)"), k);
2367 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2368 value_copy (arr));
2369 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2370 idx = value_pos_atr (ind[k]);
2371 if (lwb != 0)
2372 idx = value_sub (idx, value_from_longest (builtin_type_int, lwb));
2373 arr = value_add (arr, idx);
2374 type = TYPE_TARGET_TYPE (type);
2375 }
2376
2377 return value_ind (arr);
2378 }
2379
2380 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2381 actual type of ARRAY_PTR is ignored), returns a reference to
2382 the Ada slice of HIGH-LOW+1 elements starting at index LOW. The lower
2383 bound of this array is LOW, as per Ada rules. */
2384 static struct value *
2385 ada_value_slice_ptr (struct value *array_ptr, struct type *type,
2386 int low, int high)
2387 {
2388 CORE_ADDR base = value_as_address (array_ptr)
2389 + ((low - TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)))
2390 * TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
2391 struct type *index_type =
2392 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
2393 low, high);
2394 struct type *slice_type =
2395 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2396 return value_from_pointer (lookup_reference_type (slice_type), base);
2397 }
2398
2399
2400 static struct value *
2401 ada_value_slice (struct value *array, int low, int high)
2402 {
2403 struct type *type = value_type (array);
2404 struct type *index_type =
2405 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2406 struct type *slice_type =
2407 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2408 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2409 }
2410
2411 /* If type is a record type in the form of a standard GNAT array
2412 descriptor, returns the number of dimensions for type. If arr is a
2413 simple array, returns the number of "array of"s that prefix its
2414 type designation. Otherwise, returns 0. */
2415
2416 int
2417 ada_array_arity (struct type *type)
2418 {
2419 int arity;
2420
2421 if (type == NULL)
2422 return 0;
2423
2424 type = desc_base_type (type);
2425
2426 arity = 0;
2427 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2428 return desc_arity (desc_bounds_type (type));
2429 else
2430 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2431 {
2432 arity += 1;
2433 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2434 }
2435
2436 return arity;
2437 }
2438
2439 /* If TYPE is a record type in the form of a standard GNAT array
2440 descriptor or a simple array type, returns the element type for
2441 TYPE after indexing by NINDICES indices, or by all indices if
2442 NINDICES is -1. Otherwise, returns NULL. */
2443
2444 struct type *
2445 ada_array_element_type (struct type *type, int nindices)
2446 {
2447 type = desc_base_type (type);
2448
2449 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2450 {
2451 int k;
2452 struct type *p_array_type;
2453
2454 p_array_type = desc_data_type (type);
2455
2456 k = ada_array_arity (type);
2457 if (k == 0)
2458 return NULL;
2459
2460 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2461 if (nindices >= 0 && k > nindices)
2462 k = nindices;
2463 p_array_type = TYPE_TARGET_TYPE (p_array_type);
2464 while (k > 0 && p_array_type != NULL)
2465 {
2466 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2467 k -= 1;
2468 }
2469 return p_array_type;
2470 }
2471 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2472 {
2473 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2474 {
2475 type = TYPE_TARGET_TYPE (type);
2476 nindices -= 1;
2477 }
2478 return type;
2479 }
2480
2481 return NULL;
2482 }
2483
2484 /* The type of nth index in arrays of given type (n numbering from 1).
2485 Does not examine memory. */
2486
2487 struct type *
2488 ada_index_type (struct type *type, int n)
2489 {
2490 struct type *result_type;
2491
2492 type = desc_base_type (type);
2493
2494 if (n > ada_array_arity (type))
2495 return NULL;
2496
2497 if (ada_is_simple_array_type (type))
2498 {
2499 int i;
2500
2501 for (i = 1; i < n; i += 1)
2502 type = TYPE_TARGET_TYPE (type);
2503 result_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 0));
2504 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2505 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2506 perhaps stabsread.c would make more sense. */
2507 if (result_type == NULL || TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2508 result_type = builtin_type_int;
2509
2510 return result_type;
2511 }
2512 else
2513 return desc_index_type (desc_bounds_type (type), n);
2514 }
2515
2516 /* Given that arr is an array type, returns the lower bound of the
2517 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2518 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2519 array-descriptor type. If TYPEP is non-null, *TYPEP is set to the
2520 bounds type. It works for other arrays with bounds supplied by
2521 run-time quantities other than discriminants. */
2522
2523 static LONGEST
2524 ada_array_bound_from_type (struct type * arr_type, int n, int which,
2525 struct type ** typep)
2526 {
2527 struct type *type;
2528 struct type *index_type_desc;
2529
2530 if (ada_is_packed_array_type (arr_type))
2531 arr_type = decode_packed_array_type (arr_type);
2532
2533 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2534 {
2535 if (typep != NULL)
2536 *typep = builtin_type_int;
2537 return (LONGEST) - which;
2538 }
2539
2540 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2541 type = TYPE_TARGET_TYPE (arr_type);
2542 else
2543 type = arr_type;
2544
2545 index_type_desc = ada_find_parallel_type (type, "___XA");
2546 if (index_type_desc == NULL)
2547 {
2548 struct type *index_type;
2549
2550 while (n > 1)
2551 {
2552 type = TYPE_TARGET_TYPE (type);
2553 n -= 1;
2554 }
2555
2556 index_type = TYPE_INDEX_TYPE (type);
2557 if (typep != NULL)
2558 *typep = index_type;
2559
2560 /* The index type is either a range type or an enumerated type.
2561 For the range type, we have some macros that allow us to
2562 extract the value of the low and high bounds. But they
2563 do now work for enumerated types. The expressions used
2564 below work for both range and enum types. */
2565 return
2566 (LONGEST) (which == 0
2567 ? TYPE_FIELD_BITPOS (index_type, 0)
2568 : TYPE_FIELD_BITPOS (index_type,
2569 TYPE_NFIELDS (index_type) - 1));
2570 }
2571 else
2572 {
2573 struct type *index_type =
2574 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, n - 1),
2575 NULL, TYPE_OBJFILE (arr_type));
2576
2577 if (typep != NULL)
2578 *typep = index_type;
2579
2580 return
2581 (LONGEST) (which == 0
2582 ? TYPE_LOW_BOUND (index_type)
2583 : TYPE_HIGH_BOUND (index_type));
2584 }
2585 }
2586
2587 /* Given that arr is an array value, returns the lower bound of the
2588 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2589 WHICH is 1. This routine will also work for arrays with bounds
2590 supplied by run-time quantities other than discriminants. */
2591
2592 struct value *
2593 ada_array_bound (struct value *arr, int n, int which)
2594 {
2595 struct type *arr_type = value_type (arr);
2596
2597 if (ada_is_packed_array_type (arr_type))
2598 return ada_array_bound (decode_packed_array (arr), n, which);
2599 else if (ada_is_simple_array_type (arr_type))
2600 {
2601 struct type *type;
2602 LONGEST v = ada_array_bound_from_type (arr_type, n, which, &type);
2603 return value_from_longest (type, v);
2604 }
2605 else
2606 return desc_one_bound (desc_bounds (arr), n, which);
2607 }
2608
2609 /* Given that arr is an array value, returns the length of the
2610 nth index. This routine will also work for arrays with bounds
2611 supplied by run-time quantities other than discriminants.
2612 Does not work for arrays indexed by enumeration types with representation
2613 clauses at the moment. */
2614
2615 struct value *
2616 ada_array_length (struct value *arr, int n)
2617 {
2618 struct type *arr_type = ada_check_typedef (value_type (arr));
2619
2620 if (ada_is_packed_array_type (arr_type))
2621 return ada_array_length (decode_packed_array (arr), n);
2622
2623 if (ada_is_simple_array_type (arr_type))
2624 {
2625 struct type *type;
2626 LONGEST v =
2627 ada_array_bound_from_type (arr_type, n, 1, &type) -
2628 ada_array_bound_from_type (arr_type, n, 0, NULL) + 1;
2629 return value_from_longest (type, v);
2630 }
2631 else
2632 return
2633 value_from_longest (builtin_type_int,
2634 value_as_long (desc_one_bound (desc_bounds (arr),
2635 n, 1))
2636 - value_as_long (desc_one_bound (desc_bounds (arr),
2637 n, 0)) + 1);
2638 }
2639
2640 /* An empty array whose type is that of ARR_TYPE (an array type),
2641 with bounds LOW to LOW-1. */
2642
2643 static struct value *
2644 empty_array (struct type *arr_type, int low)
2645 {
2646 struct type *index_type =
2647 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
2648 low, low - 1);
2649 struct type *elt_type = ada_array_element_type (arr_type, 1);
2650 return allocate_value (create_array_type (NULL, elt_type, index_type));
2651 }
2652 \f
2653
2654 /* Name resolution */
2655
2656 /* The "decoded" name for the user-definable Ada operator corresponding
2657 to OP. */
2658
2659 static const char *
2660 ada_decoded_op_name (enum exp_opcode op)
2661 {
2662 int i;
2663
2664 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2665 {
2666 if (ada_opname_table[i].op == op)
2667 return ada_opname_table[i].decoded;
2668 }
2669 error (_("Could not find operator name for opcode"));
2670 }
2671
2672
2673 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2674 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2675 undefined namespace) and converts operators that are
2676 user-defined into appropriate function calls. If CONTEXT_TYPE is
2677 non-null, it provides a preferred result type [at the moment, only
2678 type void has any effect---causing procedures to be preferred over
2679 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2680 return type is preferred. May change (expand) *EXP. */
2681
2682 static void
2683 resolve (struct expression **expp, int void_context_p)
2684 {
2685 int pc;
2686 pc = 0;
2687 resolve_subexp (expp, &pc, 1, void_context_p ? builtin_type_void : NULL);
2688 }
2689
2690 /* Resolve the operator of the subexpression beginning at
2691 position *POS of *EXPP. "Resolving" consists of replacing
2692 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2693 with their resolutions, replacing built-in operators with
2694 function calls to user-defined operators, where appropriate, and,
2695 when DEPROCEDURE_P is non-zero, converting function-valued variables
2696 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2697 are as in ada_resolve, above. */
2698
2699 static struct value *
2700 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2701 struct type *context_type)
2702 {
2703 int pc = *pos;
2704 int i;
2705 struct expression *exp; /* Convenience: == *expp. */
2706 enum exp_opcode op = (*expp)->elts[pc].opcode;
2707 struct value **argvec; /* Vector of operand types (alloca'ed). */
2708 int nargs; /* Number of operands. */
2709 int oplen;
2710
2711 argvec = NULL;
2712 nargs = 0;
2713 exp = *expp;
2714
2715 /* Pass one: resolve operands, saving their types and updating *pos,
2716 if needed. */
2717 switch (op)
2718 {
2719 case OP_FUNCALL:
2720 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2721 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2722 *pos += 7;
2723 else
2724 {
2725 *pos += 3;
2726 resolve_subexp (expp, pos, 0, NULL);
2727 }
2728 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2729 break;
2730
2731 case UNOP_ADDR:
2732 *pos += 1;
2733 resolve_subexp (expp, pos, 0, NULL);
2734 break;
2735
2736 case UNOP_QUAL:
2737 *pos += 3;
2738 resolve_subexp (expp, pos, 1, exp->elts[pc + 1].type);
2739 break;
2740
2741 case OP_ATR_MODULUS:
2742 case OP_ATR_SIZE:
2743 case OP_ATR_TAG:
2744 case OP_ATR_FIRST:
2745 case OP_ATR_LAST:
2746 case OP_ATR_LENGTH:
2747 case OP_ATR_POS:
2748 case OP_ATR_VAL:
2749 case OP_ATR_MIN:
2750 case OP_ATR_MAX:
2751 case TERNOP_IN_RANGE:
2752 case BINOP_IN_BOUNDS:
2753 case UNOP_IN_RANGE:
2754 case OP_AGGREGATE:
2755 case OP_OTHERS:
2756 case OP_CHOICES:
2757 case OP_POSITIONAL:
2758 case OP_DISCRETE_RANGE:
2759 case OP_NAME:
2760 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2761 *pos += oplen;
2762 break;
2763
2764 case BINOP_ASSIGN:
2765 {
2766 struct value *arg1;
2767
2768 *pos += 1;
2769 arg1 = resolve_subexp (expp, pos, 0, NULL);
2770 if (arg1 == NULL)
2771 resolve_subexp (expp, pos, 1, NULL);
2772 else
2773 resolve_subexp (expp, pos, 1, value_type (arg1));
2774 break;
2775 }
2776
2777 case UNOP_CAST:
2778 *pos += 3;
2779 nargs = 1;
2780 break;
2781
2782 case BINOP_ADD:
2783 case BINOP_SUB:
2784 case BINOP_MUL:
2785 case BINOP_DIV:
2786 case BINOP_REM:
2787 case BINOP_MOD:
2788 case BINOP_EXP:
2789 case BINOP_CONCAT:
2790 case BINOP_LOGICAL_AND:
2791 case BINOP_LOGICAL_OR:
2792 case BINOP_BITWISE_AND:
2793 case BINOP_BITWISE_IOR:
2794 case BINOP_BITWISE_XOR:
2795
2796 case BINOP_EQUAL:
2797 case BINOP_NOTEQUAL:
2798 case BINOP_LESS:
2799 case BINOP_GTR:
2800 case BINOP_LEQ:
2801 case BINOP_GEQ:
2802
2803 case BINOP_REPEAT:
2804 case BINOP_SUBSCRIPT:
2805 case BINOP_COMMA:
2806 *pos += 1;
2807 nargs = 2;
2808 break;
2809
2810 case UNOP_NEG:
2811 case UNOP_PLUS:
2812 case UNOP_LOGICAL_NOT:
2813 case UNOP_ABS:
2814 case UNOP_IND:
2815 *pos += 1;
2816 nargs = 1;
2817 break;
2818
2819 case OP_LONG:
2820 case OP_DOUBLE:
2821 case OP_VAR_VALUE:
2822 *pos += 4;
2823 break;
2824
2825 case OP_TYPE:
2826 case OP_BOOL:
2827 case OP_LAST:
2828 case OP_INTERNALVAR:
2829 *pos += 3;
2830 break;
2831
2832 case UNOP_MEMVAL:
2833 *pos += 3;
2834 nargs = 1;
2835 break;
2836
2837 case OP_REGISTER:
2838 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2839 break;
2840
2841 case STRUCTOP_STRUCT:
2842 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2843 nargs = 1;
2844 break;
2845
2846 case TERNOP_SLICE:
2847 *pos += 1;
2848 nargs = 3;
2849 break;
2850
2851 case OP_STRING:
2852 break;
2853
2854 default:
2855 error (_("Unexpected operator during name resolution"));
2856 }
2857
2858 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
2859 for (i = 0; i < nargs; i += 1)
2860 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
2861 argvec[i] = NULL;
2862 exp = *expp;
2863
2864 /* Pass two: perform any resolution on principal operator. */
2865 switch (op)
2866 {
2867 default:
2868 break;
2869
2870 case OP_VAR_VALUE:
2871 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
2872 {
2873 struct ada_symbol_info *candidates;
2874 int n_candidates;
2875
2876 n_candidates =
2877 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2878 (exp->elts[pc + 2].symbol),
2879 exp->elts[pc + 1].block, VAR_DOMAIN,
2880 &candidates);
2881
2882 if (n_candidates > 1)
2883 {
2884 /* Types tend to get re-introduced locally, so if there
2885 are any local symbols that are not types, first filter
2886 out all types. */
2887 int j;
2888 for (j = 0; j < n_candidates; j += 1)
2889 switch (SYMBOL_CLASS (candidates[j].sym))
2890 {
2891 case LOC_REGISTER:
2892 case LOC_ARG:
2893 case LOC_REF_ARG:
2894 case LOC_REGPARM:
2895 case LOC_REGPARM_ADDR:
2896 case LOC_LOCAL:
2897 case LOC_LOCAL_ARG:
2898 case LOC_BASEREG:
2899 case LOC_BASEREG_ARG:
2900 case LOC_COMPUTED:
2901 case LOC_COMPUTED_ARG:
2902 goto FoundNonType;
2903 default:
2904 break;
2905 }
2906 FoundNonType:
2907 if (j < n_candidates)
2908 {
2909 j = 0;
2910 while (j < n_candidates)
2911 {
2912 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
2913 {
2914 candidates[j] = candidates[n_candidates - 1];
2915 n_candidates -= 1;
2916 }
2917 else
2918 j += 1;
2919 }
2920 }
2921 }
2922
2923 if (n_candidates == 0)
2924 error (_("No definition found for %s"),
2925 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2926 else if (n_candidates == 1)
2927 i = 0;
2928 else if (deprocedure_p
2929 && !is_nonfunction (candidates, n_candidates))
2930 {
2931 i = ada_resolve_function
2932 (candidates, n_candidates, NULL, 0,
2933 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
2934 context_type);
2935 if (i < 0)
2936 error (_("Could not find a match for %s"),
2937 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2938 }
2939 else
2940 {
2941 printf_filtered (_("Multiple matches for %s\n"),
2942 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2943 user_select_syms (candidates, n_candidates, 1);
2944 i = 0;
2945 }
2946
2947 exp->elts[pc + 1].block = candidates[i].block;
2948 exp->elts[pc + 2].symbol = candidates[i].sym;
2949 if (innermost_block == NULL
2950 || contained_in (candidates[i].block, innermost_block))
2951 innermost_block = candidates[i].block;
2952 }
2953
2954 if (deprocedure_p
2955 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
2956 == TYPE_CODE_FUNC))
2957 {
2958 replace_operator_with_call (expp, pc, 0, 0,
2959 exp->elts[pc + 2].symbol,
2960 exp->elts[pc + 1].block);
2961 exp = *expp;
2962 }
2963 break;
2964
2965 case OP_FUNCALL:
2966 {
2967 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2968 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2969 {
2970 struct ada_symbol_info *candidates;
2971 int n_candidates;
2972
2973 n_candidates =
2974 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2975 (exp->elts[pc + 5].symbol),
2976 exp->elts[pc + 4].block, VAR_DOMAIN,
2977 &candidates);
2978 if (n_candidates == 1)
2979 i = 0;
2980 else
2981 {
2982 i = ada_resolve_function
2983 (candidates, n_candidates,
2984 argvec, nargs,
2985 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
2986 context_type);
2987 if (i < 0)
2988 error (_("Could not find a match for %s"),
2989 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
2990 }
2991
2992 exp->elts[pc + 4].block = candidates[i].block;
2993 exp->elts[pc + 5].symbol = candidates[i].sym;
2994 if (innermost_block == NULL
2995 || contained_in (candidates[i].block, innermost_block))
2996 innermost_block = candidates[i].block;
2997 }
2998 }
2999 break;
3000 case BINOP_ADD:
3001 case BINOP_SUB:
3002 case BINOP_MUL:
3003 case BINOP_DIV:
3004 case BINOP_REM:
3005 case BINOP_MOD:
3006 case BINOP_CONCAT:
3007 case BINOP_BITWISE_AND:
3008 case BINOP_BITWISE_IOR:
3009 case BINOP_BITWISE_XOR:
3010 case BINOP_EQUAL:
3011 case BINOP_NOTEQUAL:
3012 case BINOP_LESS:
3013 case BINOP_GTR:
3014 case BINOP_LEQ:
3015 case BINOP_GEQ:
3016 case BINOP_EXP:
3017 case UNOP_NEG:
3018 case UNOP_PLUS:
3019 case UNOP_LOGICAL_NOT:
3020 case UNOP_ABS:
3021 if (possible_user_operator_p (op, argvec))
3022 {
3023 struct ada_symbol_info *candidates;
3024 int n_candidates;
3025
3026 n_candidates =
3027 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3028 (struct block *) NULL, VAR_DOMAIN,
3029 &candidates);
3030 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3031 ada_decoded_op_name (op), NULL);
3032 if (i < 0)
3033 break;
3034
3035 replace_operator_with_call (expp, pc, nargs, 1,
3036 candidates[i].sym, candidates[i].block);
3037 exp = *expp;
3038 }
3039 break;
3040
3041 case OP_TYPE:
3042 case OP_REGISTER:
3043 return NULL;
3044 }
3045
3046 *pos = pc;
3047 return evaluate_subexp_type (exp, pos);
3048 }
3049
3050 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3051 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3052 a non-pointer. A type of 'void' (which is never a valid expression type)
3053 by convention matches anything. */
3054 /* The term "match" here is rather loose. The match is heuristic and
3055 liberal. FIXME: TOO liberal, in fact. */
3056
3057 static int
3058 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3059 {
3060 ftype = ada_check_typedef (ftype);
3061 atype = ada_check_typedef (atype);
3062
3063 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3064 ftype = TYPE_TARGET_TYPE (ftype);
3065 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3066 atype = TYPE_TARGET_TYPE (atype);
3067
3068 if (TYPE_CODE (ftype) == TYPE_CODE_VOID
3069 || TYPE_CODE (atype) == TYPE_CODE_VOID)
3070 return 1;
3071
3072 switch (TYPE_CODE (ftype))
3073 {
3074 default:
3075 return 1;
3076 case TYPE_CODE_PTR:
3077 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3078 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3079 TYPE_TARGET_TYPE (atype), 0);
3080 else
3081 return (may_deref
3082 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3083 case TYPE_CODE_INT:
3084 case TYPE_CODE_ENUM:
3085 case TYPE_CODE_RANGE:
3086 switch (TYPE_CODE (atype))
3087 {
3088 case TYPE_CODE_INT:
3089 case TYPE_CODE_ENUM:
3090 case TYPE_CODE_RANGE:
3091 return 1;
3092 default:
3093 return 0;
3094 }
3095
3096 case TYPE_CODE_ARRAY:
3097 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3098 || ada_is_array_descriptor_type (atype));
3099
3100 case TYPE_CODE_STRUCT:
3101 if (ada_is_array_descriptor_type (ftype))
3102 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3103 || ada_is_array_descriptor_type (atype));
3104 else
3105 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3106 && !ada_is_array_descriptor_type (atype));
3107
3108 case TYPE_CODE_UNION:
3109 case TYPE_CODE_FLT:
3110 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3111 }
3112 }
3113
3114 /* Return non-zero if the formals of FUNC "sufficiently match" the
3115 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3116 may also be an enumeral, in which case it is treated as a 0-
3117 argument function. */
3118
3119 static int
3120 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3121 {
3122 int i;
3123 struct type *func_type = SYMBOL_TYPE (func);
3124
3125 if (SYMBOL_CLASS (func) == LOC_CONST
3126 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3127 return (n_actuals == 0);
3128 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3129 return 0;
3130
3131 if (TYPE_NFIELDS (func_type) != n_actuals)
3132 return 0;
3133
3134 for (i = 0; i < n_actuals; i += 1)
3135 {
3136 if (actuals[i] == NULL)
3137 return 0;
3138 else
3139 {
3140 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, i));
3141 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3142
3143 if (!ada_type_match (ftype, atype, 1))
3144 return 0;
3145 }
3146 }
3147 return 1;
3148 }
3149
3150 /* False iff function type FUNC_TYPE definitely does not produce a value
3151 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3152 FUNC_TYPE is not a valid function type with a non-null return type
3153 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3154
3155 static int
3156 return_match (struct type *func_type, struct type *context_type)
3157 {
3158 struct type *return_type;
3159
3160 if (func_type == NULL)
3161 return 1;
3162
3163 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3164 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3165 else
3166 return_type = base_type (func_type);
3167 if (return_type == NULL)
3168 return 1;
3169
3170 context_type = base_type (context_type);
3171
3172 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3173 return context_type == NULL || return_type == context_type;
3174 else if (context_type == NULL)
3175 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3176 else
3177 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3178 }
3179
3180
3181 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3182 function (if any) that matches the types of the NARGS arguments in
3183 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3184 that returns that type, then eliminate matches that don't. If
3185 CONTEXT_TYPE is void and there is at least one match that does not
3186 return void, eliminate all matches that do.
3187
3188 Asks the user if there is more than one match remaining. Returns -1
3189 if there is no such symbol or none is selected. NAME is used
3190 solely for messages. May re-arrange and modify SYMS in
3191 the process; the index returned is for the modified vector. */
3192
3193 static int
3194 ada_resolve_function (struct ada_symbol_info syms[],
3195 int nsyms, struct value **args, int nargs,
3196 const char *name, struct type *context_type)
3197 {
3198 int k;
3199 int m; /* Number of hits */
3200 struct type *fallback;
3201 struct type *return_type;
3202
3203 return_type = context_type;
3204 if (context_type == NULL)
3205 fallback = builtin_type_void;
3206 else
3207 fallback = NULL;
3208
3209 m = 0;
3210 while (1)
3211 {
3212 for (k = 0; k < nsyms; k += 1)
3213 {
3214 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3215
3216 if (ada_args_match (syms[k].sym, args, nargs)
3217 && return_match (type, return_type))
3218 {
3219 syms[m] = syms[k];
3220 m += 1;
3221 }
3222 }
3223 if (m > 0 || return_type == fallback)
3224 break;
3225 else
3226 return_type = fallback;
3227 }
3228
3229 if (m == 0)
3230 return -1;
3231 else if (m > 1)
3232 {
3233 printf_filtered (_("Multiple matches for %s\n"), name);
3234 user_select_syms (syms, m, 1);
3235 return 0;
3236 }
3237 return 0;
3238 }
3239
3240 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3241 in a listing of choices during disambiguation (see sort_choices, below).
3242 The idea is that overloadings of a subprogram name from the
3243 same package should sort in their source order. We settle for ordering
3244 such symbols by their trailing number (__N or $N). */
3245
3246 static int
3247 encoded_ordered_before (char *N0, char *N1)
3248 {
3249 if (N1 == NULL)
3250 return 0;
3251 else if (N0 == NULL)
3252 return 1;
3253 else
3254 {
3255 int k0, k1;
3256 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3257 ;
3258 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3259 ;
3260 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3261 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3262 {
3263 int n0, n1;
3264 n0 = k0;
3265 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3266 n0 -= 1;
3267 n1 = k1;
3268 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3269 n1 -= 1;
3270 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3271 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3272 }
3273 return (strcmp (N0, N1) < 0);
3274 }
3275 }
3276
3277 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3278 encoded names. */
3279
3280 static void
3281 sort_choices (struct ada_symbol_info syms[], int nsyms)
3282 {
3283 int i;
3284 for (i = 1; i < nsyms; i += 1)
3285 {
3286 struct ada_symbol_info sym = syms[i];
3287 int j;
3288
3289 for (j = i - 1; j >= 0; j -= 1)
3290 {
3291 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3292 SYMBOL_LINKAGE_NAME (sym.sym)))
3293 break;
3294 syms[j + 1] = syms[j];
3295 }
3296 syms[j + 1] = sym;
3297 }
3298 }
3299
3300 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3301 by asking the user (if necessary), returning the number selected,
3302 and setting the first elements of SYMS items. Error if no symbols
3303 selected. */
3304
3305 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3306 to be re-integrated one of these days. */
3307
3308 int
3309 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3310 {
3311 int i;
3312 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3313 int n_chosen;
3314 int first_choice = (max_results == 1) ? 1 : 2;
3315 const char *select_mode = multiple_symbols_select_mode ();
3316
3317 if (max_results < 1)
3318 error (_("Request to select 0 symbols!"));
3319 if (nsyms <= 1)
3320 return nsyms;
3321
3322 if (select_mode == multiple_symbols_cancel)
3323 error (_("\
3324 canceled because the command is ambiguous\n\
3325 See set/show multiple-symbol."));
3326
3327 /* If select_mode is "all", then return all possible symbols.
3328 Only do that if more than one symbol can be selected, of course.
3329 Otherwise, display the menu as usual. */
3330 if (select_mode == multiple_symbols_all && max_results > 1)
3331 return nsyms;
3332
3333 printf_unfiltered (_("[0] cancel\n"));
3334 if (max_results > 1)
3335 printf_unfiltered (_("[1] all\n"));
3336
3337 sort_choices (syms, nsyms);
3338
3339 for (i = 0; i < nsyms; i += 1)
3340 {
3341 if (syms[i].sym == NULL)
3342 continue;
3343
3344 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3345 {
3346 struct symtab_and_line sal =
3347 find_function_start_sal (syms[i].sym, 1);
3348 if (sal.symtab == NULL)
3349 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3350 i + first_choice,
3351 SYMBOL_PRINT_NAME (syms[i].sym),
3352 sal.line);
3353 else
3354 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3355 SYMBOL_PRINT_NAME (syms[i].sym),
3356 sal.symtab->filename, sal.line);
3357 continue;
3358 }
3359 else
3360 {
3361 int is_enumeral =
3362 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3363 && SYMBOL_TYPE (syms[i].sym) != NULL
3364 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3365 struct symtab *symtab = symtab_for_sym (syms[i].sym);
3366
3367 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3368 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3369 i + first_choice,
3370 SYMBOL_PRINT_NAME (syms[i].sym),
3371 symtab->filename, SYMBOL_LINE (syms[i].sym));
3372 else if (is_enumeral
3373 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3374 {
3375 printf_unfiltered (("[%d] "), i + first_choice);
3376 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3377 gdb_stdout, -1, 0);
3378 printf_unfiltered (_("'(%s) (enumeral)\n"),
3379 SYMBOL_PRINT_NAME (syms[i].sym));
3380 }
3381 else if (symtab != NULL)
3382 printf_unfiltered (is_enumeral
3383 ? _("[%d] %s in %s (enumeral)\n")
3384 : _("[%d] %s at %s:?\n"),
3385 i + first_choice,
3386 SYMBOL_PRINT_NAME (syms[i].sym),
3387 symtab->filename);
3388 else
3389 printf_unfiltered (is_enumeral
3390 ? _("[%d] %s (enumeral)\n")
3391 : _("[%d] %s at ?\n"),
3392 i + first_choice,
3393 SYMBOL_PRINT_NAME (syms[i].sym));
3394 }
3395 }
3396
3397 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3398 "overload-choice");
3399
3400 for (i = 0; i < n_chosen; i += 1)
3401 syms[i] = syms[chosen[i]];
3402
3403 return n_chosen;
3404 }
3405
3406 /* Read and validate a set of numeric choices from the user in the
3407 range 0 .. N_CHOICES-1. Place the results in increasing
3408 order in CHOICES[0 .. N-1], and return N.
3409
3410 The user types choices as a sequence of numbers on one line
3411 separated by blanks, encoding them as follows:
3412
3413 + A choice of 0 means to cancel the selection, throwing an error.
3414 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3415 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3416
3417 The user is not allowed to choose more than MAX_RESULTS values.
3418
3419 ANNOTATION_SUFFIX, if present, is used to annotate the input
3420 prompts (for use with the -f switch). */
3421
3422 int
3423 get_selections (int *choices, int n_choices, int max_results,
3424 int is_all_choice, char *annotation_suffix)
3425 {
3426 char *args;
3427 char *prompt;
3428 int n_chosen;
3429 int first_choice = is_all_choice ? 2 : 1;
3430
3431 prompt = getenv ("PS2");
3432 if (prompt == NULL)
3433 prompt = "> ";
3434
3435 args = command_line_input (prompt, 0, annotation_suffix);
3436
3437 if (args == NULL)
3438 error_no_arg (_("one or more choice numbers"));
3439
3440 n_chosen = 0;
3441
3442 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3443 order, as given in args. Choices are validated. */
3444 while (1)
3445 {
3446 char *args2;
3447 int choice, j;
3448
3449 while (isspace (*args))
3450 args += 1;
3451 if (*args == '\0' && n_chosen == 0)
3452 error_no_arg (_("one or more choice numbers"));
3453 else if (*args == '\0')
3454 break;
3455
3456 choice = strtol (args, &args2, 10);
3457 if (args == args2 || choice < 0
3458 || choice > n_choices + first_choice - 1)
3459 error (_("Argument must be choice number"));
3460 args = args2;
3461
3462 if (choice == 0)
3463 error (_("cancelled"));
3464
3465 if (choice < first_choice)
3466 {
3467 n_chosen = n_choices;
3468 for (j = 0; j < n_choices; j += 1)
3469 choices[j] = j;
3470 break;
3471 }
3472 choice -= first_choice;
3473
3474 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3475 {
3476 }
3477
3478 if (j < 0 || choice != choices[j])
3479 {
3480 int k;
3481 for (k = n_chosen - 1; k > j; k -= 1)
3482 choices[k + 1] = choices[k];
3483 choices[j + 1] = choice;
3484 n_chosen += 1;
3485 }
3486 }
3487
3488 if (n_chosen > max_results)
3489 error (_("Select no more than %d of the above"), max_results);
3490
3491 return n_chosen;
3492 }
3493
3494 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3495 on the function identified by SYM and BLOCK, and taking NARGS
3496 arguments. Update *EXPP as needed to hold more space. */
3497
3498 static void
3499 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3500 int oplen, struct symbol *sym,
3501 struct block *block)
3502 {
3503 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3504 symbol, -oplen for operator being replaced). */
3505 struct expression *newexp = (struct expression *)
3506 xmalloc (sizeof (struct expression)
3507 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3508 struct expression *exp = *expp;
3509
3510 newexp->nelts = exp->nelts + 7 - oplen;
3511 newexp->language_defn = exp->language_defn;
3512 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3513 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3514 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3515
3516 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3517 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3518
3519 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3520 newexp->elts[pc + 4].block = block;
3521 newexp->elts[pc + 5].symbol = sym;
3522
3523 *expp = newexp;
3524 xfree (exp);
3525 }
3526
3527 /* Type-class predicates */
3528
3529 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3530 or FLOAT). */
3531
3532 static int
3533 numeric_type_p (struct type *type)
3534 {
3535 if (type == NULL)
3536 return 0;
3537 else
3538 {
3539 switch (TYPE_CODE (type))
3540 {
3541 case TYPE_CODE_INT:
3542 case TYPE_CODE_FLT:
3543 return 1;
3544 case TYPE_CODE_RANGE:
3545 return (type == TYPE_TARGET_TYPE (type)
3546 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3547 default:
3548 return 0;
3549 }
3550 }
3551 }
3552
3553 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3554
3555 static int
3556 integer_type_p (struct type *type)
3557 {
3558 if (type == NULL)
3559 return 0;
3560 else
3561 {
3562 switch (TYPE_CODE (type))
3563 {
3564 case TYPE_CODE_INT:
3565 return 1;
3566 case TYPE_CODE_RANGE:
3567 return (type == TYPE_TARGET_TYPE (type)
3568 || integer_type_p (TYPE_TARGET_TYPE (type)));
3569 default:
3570 return 0;
3571 }
3572 }
3573 }
3574
3575 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3576
3577 static int
3578 scalar_type_p (struct type *type)
3579 {
3580 if (type == NULL)
3581 return 0;
3582 else
3583 {
3584 switch (TYPE_CODE (type))
3585 {
3586 case TYPE_CODE_INT:
3587 case TYPE_CODE_RANGE:
3588 case TYPE_CODE_ENUM:
3589 case TYPE_CODE_FLT:
3590 return 1;
3591 default:
3592 return 0;
3593 }
3594 }
3595 }
3596
3597 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3598
3599 static int
3600 discrete_type_p (struct type *type)
3601 {
3602 if (type == NULL)
3603 return 0;
3604 else
3605 {
3606 switch (TYPE_CODE (type))
3607 {
3608 case TYPE_CODE_INT:
3609 case TYPE_CODE_RANGE:
3610 case TYPE_CODE_ENUM:
3611 return 1;
3612 default:
3613 return 0;
3614 }
3615 }
3616 }
3617
3618 /* Returns non-zero if OP with operands in the vector ARGS could be
3619 a user-defined function. Errs on the side of pre-defined operators
3620 (i.e., result 0). */
3621
3622 static int
3623 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3624 {
3625 struct type *type0 =
3626 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3627 struct type *type1 =
3628 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3629
3630 if (type0 == NULL)
3631 return 0;
3632
3633 switch (op)
3634 {
3635 default:
3636 return 0;
3637
3638 case BINOP_ADD:
3639 case BINOP_SUB:
3640 case BINOP_MUL:
3641 case BINOP_DIV:
3642 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3643
3644 case BINOP_REM:
3645 case BINOP_MOD:
3646 case BINOP_BITWISE_AND:
3647 case BINOP_BITWISE_IOR:
3648 case BINOP_BITWISE_XOR:
3649 return (!(integer_type_p (type0) && integer_type_p (type1)));
3650
3651 case BINOP_EQUAL:
3652 case BINOP_NOTEQUAL:
3653 case BINOP_LESS:
3654 case BINOP_GTR:
3655 case BINOP_LEQ:
3656 case BINOP_GEQ:
3657 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3658
3659 case BINOP_CONCAT:
3660 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3661
3662 case BINOP_EXP:
3663 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3664
3665 case UNOP_NEG:
3666 case UNOP_PLUS:
3667 case UNOP_LOGICAL_NOT:
3668 case UNOP_ABS:
3669 return (!numeric_type_p (type0));
3670
3671 }
3672 }
3673 \f
3674 /* Renaming */
3675
3676 /* NOTES:
3677
3678 1. In the following, we assume that a renaming type's name may
3679 have an ___XD suffix. It would be nice if this went away at some
3680 point.
3681 2. We handle both the (old) purely type-based representation of
3682 renamings and the (new) variable-based encoding. At some point,
3683 it is devoutly to be hoped that the former goes away
3684 (FIXME: hilfinger-2007-07-09).
3685 3. Subprogram renamings are not implemented, although the XRS
3686 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3687
3688 /* If SYM encodes a renaming,
3689
3690 <renaming> renames <renamed entity>,
3691
3692 sets *LEN to the length of the renamed entity's name,
3693 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3694 the string describing the subcomponent selected from the renamed
3695 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3696 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3697 are undefined). Otherwise, returns a value indicating the category
3698 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3699 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3700 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3701 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3702 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3703 may be NULL, in which case they are not assigned.
3704
3705 [Currently, however, GCC does not generate subprogram renamings.] */
3706
3707 enum ada_renaming_category
3708 ada_parse_renaming (struct symbol *sym,
3709 const char **renamed_entity, int *len,
3710 const char **renaming_expr)
3711 {
3712 enum ada_renaming_category kind;
3713 const char *info;
3714 const char *suffix;
3715
3716 if (sym == NULL)
3717 return ADA_NOT_RENAMING;
3718 switch (SYMBOL_CLASS (sym))
3719 {
3720 default:
3721 return ADA_NOT_RENAMING;
3722 case LOC_TYPEDEF:
3723 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3724 renamed_entity, len, renaming_expr);
3725 case LOC_LOCAL:
3726 case LOC_STATIC:
3727 case LOC_COMPUTED:
3728 case LOC_OPTIMIZED_OUT:
3729 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3730 if (info == NULL)
3731 return ADA_NOT_RENAMING;
3732 switch (info[5])
3733 {
3734 case '_':
3735 kind = ADA_OBJECT_RENAMING;
3736 info += 6;
3737 break;
3738 case 'E':
3739 kind = ADA_EXCEPTION_RENAMING;
3740 info += 7;
3741 break;
3742 case 'P':
3743 kind = ADA_PACKAGE_RENAMING;
3744 info += 7;
3745 break;
3746 case 'S':
3747 kind = ADA_SUBPROGRAM_RENAMING;
3748 info += 7;
3749 break;
3750 default:
3751 return ADA_NOT_RENAMING;
3752 }
3753 }
3754
3755 if (renamed_entity != NULL)
3756 *renamed_entity = info;
3757 suffix = strstr (info, "___XE");
3758 if (suffix == NULL || suffix == info)
3759 return ADA_NOT_RENAMING;
3760 if (len != NULL)
3761 *len = strlen (info) - strlen (suffix);
3762 suffix += 5;
3763 if (renaming_expr != NULL)
3764 *renaming_expr = suffix;
3765 return kind;
3766 }
3767
3768 /* Assuming TYPE encodes a renaming according to the old encoding in
3769 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3770 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3771 ADA_NOT_RENAMING otherwise. */
3772 static enum ada_renaming_category
3773 parse_old_style_renaming (struct type *type,
3774 const char **renamed_entity, int *len,
3775 const char **renaming_expr)
3776 {
3777 enum ada_renaming_category kind;
3778 const char *name;
3779 const char *info;
3780 const char *suffix;
3781
3782 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
3783 || TYPE_NFIELDS (type) != 1)
3784 return ADA_NOT_RENAMING;
3785
3786 name = type_name_no_tag (type);
3787 if (name == NULL)
3788 return ADA_NOT_RENAMING;
3789
3790 name = strstr (name, "___XR");
3791 if (name == NULL)
3792 return ADA_NOT_RENAMING;
3793 switch (name[5])
3794 {
3795 case '\0':
3796 case '_':
3797 kind = ADA_OBJECT_RENAMING;
3798 break;
3799 case 'E':
3800 kind = ADA_EXCEPTION_RENAMING;
3801 break;
3802 case 'P':
3803 kind = ADA_PACKAGE_RENAMING;
3804 break;
3805 case 'S':
3806 kind = ADA_SUBPROGRAM_RENAMING;
3807 break;
3808 default:
3809 return ADA_NOT_RENAMING;
3810 }
3811
3812 info = TYPE_FIELD_NAME (type, 0);
3813 if (info == NULL)
3814 return ADA_NOT_RENAMING;
3815 if (renamed_entity != NULL)
3816 *renamed_entity = info;
3817 suffix = strstr (info, "___XE");
3818 if (renaming_expr != NULL)
3819 *renaming_expr = suffix + 5;
3820 if (suffix == NULL || suffix == info)
3821 return ADA_NOT_RENAMING;
3822 if (len != NULL)
3823 *len = suffix - info;
3824 return kind;
3825 }
3826
3827 \f
3828
3829 /* Evaluation: Function Calls */
3830
3831 /* Return an lvalue containing the value VAL. This is the identity on
3832 lvalues, and otherwise has the side-effect of pushing a copy of VAL
3833 on the stack, using and updating *SP as the stack pointer, and
3834 returning an lvalue whose VALUE_ADDRESS points to the copy. */
3835
3836 static struct value *
3837 ensure_lval (struct value *val, CORE_ADDR *sp)
3838 {
3839 if (! VALUE_LVAL (val))
3840 {
3841 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
3842
3843 /* The following is taken from the structure-return code in
3844 call_function_by_hand. FIXME: Therefore, some refactoring seems
3845 indicated. */
3846 if (gdbarch_inner_than (current_gdbarch, 1, 2))
3847 {
3848 /* Stack grows downward. Align SP and VALUE_ADDRESS (val) after
3849 reserving sufficient space. */
3850 *sp -= len;
3851 if (gdbarch_frame_align_p (current_gdbarch))
3852 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3853 VALUE_ADDRESS (val) = *sp;
3854 }
3855 else
3856 {
3857 /* Stack grows upward. Align the frame, allocate space, and
3858 then again, re-align the frame. */
3859 if (gdbarch_frame_align_p (current_gdbarch))
3860 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3861 VALUE_ADDRESS (val) = *sp;
3862 *sp += len;
3863 if (gdbarch_frame_align_p (current_gdbarch))
3864 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3865 }
3866 VALUE_LVAL (val) = lval_memory;
3867
3868 write_memory (VALUE_ADDRESS (val), value_contents_raw (val), len);
3869 }
3870
3871 return val;
3872 }
3873
3874 /* Return the value ACTUAL, converted to be an appropriate value for a
3875 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3876 allocating any necessary descriptors (fat pointers), or copies of
3877 values not residing in memory, updating it as needed. */
3878
3879 struct value *
3880 ada_convert_actual (struct value *actual, struct type *formal_type0,
3881 CORE_ADDR *sp)
3882 {
3883 struct type *actual_type = ada_check_typedef (value_type (actual));
3884 struct type *formal_type = ada_check_typedef (formal_type0);
3885 struct type *formal_target =
3886 TYPE_CODE (formal_type) == TYPE_CODE_PTR
3887 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
3888 struct type *actual_target =
3889 TYPE_CODE (actual_type) == TYPE_CODE_PTR
3890 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
3891
3892 if (ada_is_array_descriptor_type (formal_target)
3893 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
3894 return make_array_descriptor (formal_type, actual, sp);
3895 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
3896 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
3897 {
3898 struct value *result;
3899 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
3900 && ada_is_array_descriptor_type (actual_target))
3901 result = desc_data (actual);
3902 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
3903 {
3904 if (VALUE_LVAL (actual) != lval_memory)
3905 {
3906 struct value *val;
3907 actual_type = ada_check_typedef (value_type (actual));
3908 val = allocate_value (actual_type);
3909 memcpy ((char *) value_contents_raw (val),
3910 (char *) value_contents (actual),
3911 TYPE_LENGTH (actual_type));
3912 actual = ensure_lval (val, sp);
3913 }
3914 result = value_addr (actual);
3915 }
3916 else
3917 return actual;
3918 return value_cast_pointers (formal_type, result);
3919 }
3920 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
3921 return ada_value_ind (actual);
3922
3923 return actual;
3924 }
3925
3926
3927 /* Push a descriptor of type TYPE for array value ARR on the stack at
3928 *SP, updating *SP to reflect the new descriptor. Return either
3929 an lvalue representing the new descriptor, or (if TYPE is a pointer-
3930 to-descriptor type rather than a descriptor type), a struct value *
3931 representing a pointer to this descriptor. */
3932
3933 static struct value *
3934 make_array_descriptor (struct type *type, struct value *arr, CORE_ADDR *sp)
3935 {
3936 struct type *bounds_type = desc_bounds_type (type);
3937 struct type *desc_type = desc_base_type (type);
3938 struct value *descriptor = allocate_value (desc_type);
3939 struct value *bounds = allocate_value (bounds_type);
3940 int i;
3941
3942 for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1)
3943 {
3944 modify_general_field (value_contents_writeable (bounds),
3945 value_as_long (ada_array_bound (arr, i, 0)),
3946 desc_bound_bitpos (bounds_type, i, 0),
3947 desc_bound_bitsize (bounds_type, i, 0));
3948 modify_general_field (value_contents_writeable (bounds),
3949 value_as_long (ada_array_bound (arr, i, 1)),
3950 desc_bound_bitpos (bounds_type, i, 1),
3951 desc_bound_bitsize (bounds_type, i, 1));
3952 }
3953
3954 bounds = ensure_lval (bounds, sp);
3955
3956 modify_general_field (value_contents_writeable (descriptor),
3957 VALUE_ADDRESS (ensure_lval (arr, sp)),
3958 fat_pntr_data_bitpos (desc_type),
3959 fat_pntr_data_bitsize (desc_type));
3960
3961 modify_general_field (value_contents_writeable (descriptor),
3962 VALUE_ADDRESS (bounds),
3963 fat_pntr_bounds_bitpos (desc_type),
3964 fat_pntr_bounds_bitsize (desc_type));
3965
3966 descriptor = ensure_lval (descriptor, sp);
3967
3968 if (TYPE_CODE (type) == TYPE_CODE_PTR)
3969 return value_addr (descriptor);
3970 else
3971 return descriptor;
3972 }
3973 \f
3974 /* Dummy definitions for an experimental caching module that is not
3975 * used in the public sources. */
3976
3977 static int
3978 lookup_cached_symbol (const char *name, domain_enum namespace,
3979 struct symbol **sym, struct block **block,
3980 struct symtab **symtab)
3981 {
3982 return 0;
3983 }
3984
3985 static void
3986 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
3987 struct block *block, struct symtab *symtab)
3988 {
3989 }
3990 \f
3991 /* Symbol Lookup */
3992
3993 /* Return the result of a standard (literal, C-like) lookup of NAME in
3994 given DOMAIN, visible from lexical block BLOCK. */
3995
3996 static struct symbol *
3997 standard_lookup (const char *name, const struct block *block,
3998 domain_enum domain)
3999 {
4000 struct symbol *sym;
4001 struct symtab *symtab;
4002
4003 if (lookup_cached_symbol (name, domain, &sym, NULL, NULL))
4004 return sym;
4005 sym =
4006 lookup_symbol_in_language (name, block, domain, language_c, 0, &symtab);
4007 cache_symbol (name, domain, sym, block_found, symtab);
4008 return sym;
4009 }
4010
4011
4012 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4013 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4014 since they contend in overloading in the same way. */
4015 static int
4016 is_nonfunction (struct ada_symbol_info syms[], int n)
4017 {
4018 int i;
4019
4020 for (i = 0; i < n; i += 1)
4021 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4022 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4023 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
4024 return 1;
4025
4026 return 0;
4027 }
4028
4029 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4030 struct types. Otherwise, they may not. */
4031
4032 static int
4033 equiv_types (struct type *type0, struct type *type1)
4034 {
4035 if (type0 == type1)
4036 return 1;
4037 if (type0 == NULL || type1 == NULL
4038 || TYPE_CODE (type0) != TYPE_CODE (type1))
4039 return 0;
4040 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4041 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4042 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4043 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4044 return 1;
4045
4046 return 0;
4047 }
4048
4049 /* True iff SYM0 represents the same entity as SYM1, or one that is
4050 no more defined than that of SYM1. */
4051
4052 static int
4053 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4054 {
4055 if (sym0 == sym1)
4056 return 1;
4057 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4058 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4059 return 0;
4060
4061 switch (SYMBOL_CLASS (sym0))
4062 {
4063 case LOC_UNDEF:
4064 return 1;
4065 case LOC_TYPEDEF:
4066 {
4067 struct type *type0 = SYMBOL_TYPE (sym0);
4068 struct type *type1 = SYMBOL_TYPE (sym1);
4069 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4070 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4071 int len0 = strlen (name0);
4072 return
4073 TYPE_CODE (type0) == TYPE_CODE (type1)
4074 && (equiv_types (type0, type1)
4075 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4076 && strncmp (name1 + len0, "___XV", 5) == 0));
4077 }
4078 case LOC_CONST:
4079 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4080 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4081 default:
4082 return 0;
4083 }
4084 }
4085
4086 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4087 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4088
4089 static void
4090 add_defn_to_vec (struct obstack *obstackp,
4091 struct symbol *sym,
4092 struct block *block, struct symtab *symtab)
4093 {
4094 int i;
4095 size_t tmp;
4096 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4097
4098 /* Do not try to complete stub types, as the debugger is probably
4099 already scanning all symbols matching a certain name at the
4100 time when this function is called. Trying to replace the stub
4101 type by its associated full type will cause us to restart a scan
4102 which may lead to an infinite recursion. Instead, the client
4103 collecting the matching symbols will end up collecting several
4104 matches, with at least one of them complete. It can then filter
4105 out the stub ones if needed. */
4106
4107 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4108 {
4109 if (lesseq_defined_than (sym, prevDefns[i].sym))
4110 return;
4111 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4112 {
4113 prevDefns[i].sym = sym;
4114 prevDefns[i].block = block;
4115 prevDefns[i].symtab = symtab;
4116 return;
4117 }
4118 }
4119
4120 {
4121 struct ada_symbol_info info;
4122
4123 info.sym = sym;
4124 info.block = block;
4125 info.symtab = symtab;
4126 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4127 }
4128 }
4129
4130 /* Number of ada_symbol_info structures currently collected in
4131 current vector in *OBSTACKP. */
4132
4133 static int
4134 num_defns_collected (struct obstack *obstackp)
4135 {
4136 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4137 }
4138
4139 /* Vector of ada_symbol_info structures currently collected in current
4140 vector in *OBSTACKP. If FINISH, close off the vector and return
4141 its final address. */
4142
4143 static struct ada_symbol_info *
4144 defns_collected (struct obstack *obstackp, int finish)
4145 {
4146 if (finish)
4147 return obstack_finish (obstackp);
4148 else
4149 return (struct ada_symbol_info *) obstack_base (obstackp);
4150 }
4151
4152 /* Look, in partial_symtab PST, for symbol NAME in given namespace.
4153 Check the global symbols if GLOBAL, the static symbols if not.
4154 Do wild-card match if WILD. */
4155
4156 static struct partial_symbol *
4157 ada_lookup_partial_symbol (struct partial_symtab *pst, const char *name,
4158 int global, domain_enum namespace, int wild)
4159 {
4160 struct partial_symbol **start;
4161 int name_len = strlen (name);
4162 int length = (global ? pst->n_global_syms : pst->n_static_syms);
4163 int i;
4164
4165 if (length == 0)
4166 {
4167 return (NULL);
4168 }
4169
4170 start = (global ?
4171 pst->objfile->global_psymbols.list + pst->globals_offset :
4172 pst->objfile->static_psymbols.list + pst->statics_offset);
4173
4174 if (wild)
4175 {
4176 for (i = 0; i < length; i += 1)
4177 {
4178 struct partial_symbol *psym = start[i];
4179
4180 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4181 SYMBOL_DOMAIN (psym), namespace)
4182 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (psym)))
4183 return psym;
4184 }
4185 return NULL;
4186 }
4187 else
4188 {
4189 if (global)
4190 {
4191 int U;
4192 i = 0;
4193 U = length - 1;
4194 while (U - i > 4)
4195 {
4196 int M = (U + i) >> 1;
4197 struct partial_symbol *psym = start[M];
4198 if (SYMBOL_LINKAGE_NAME (psym)[0] < name[0])
4199 i = M + 1;
4200 else if (SYMBOL_LINKAGE_NAME (psym)[0] > name[0])
4201 U = M - 1;
4202 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), name) < 0)
4203 i = M + 1;
4204 else
4205 U = M;
4206 }
4207 }
4208 else
4209 i = 0;
4210
4211 while (i < length)
4212 {
4213 struct partial_symbol *psym = start[i];
4214
4215 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4216 SYMBOL_DOMAIN (psym), namespace))
4217 {
4218 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym), name_len);
4219
4220 if (cmp < 0)
4221 {
4222 if (global)
4223 break;
4224 }
4225 else if (cmp == 0
4226 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4227 + name_len))
4228 return psym;
4229 }
4230 i += 1;
4231 }
4232
4233 if (global)
4234 {
4235 int U;
4236 i = 0;
4237 U = length - 1;
4238 while (U - i > 4)
4239 {
4240 int M = (U + i) >> 1;
4241 struct partial_symbol *psym = start[M];
4242 if (SYMBOL_LINKAGE_NAME (psym)[0] < '_')
4243 i = M + 1;
4244 else if (SYMBOL_LINKAGE_NAME (psym)[0] > '_')
4245 U = M - 1;
4246 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), "_ada_") < 0)
4247 i = M + 1;
4248 else
4249 U = M;
4250 }
4251 }
4252 else
4253 i = 0;
4254
4255 while (i < length)
4256 {
4257 struct partial_symbol *psym = start[i];
4258
4259 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4260 SYMBOL_DOMAIN (psym), namespace))
4261 {
4262 int cmp;
4263
4264 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (psym)[0];
4265 if (cmp == 0)
4266 {
4267 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (psym), 5);
4268 if (cmp == 0)
4269 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym) + 5,
4270 name_len);
4271 }
4272
4273 if (cmp < 0)
4274 {
4275 if (global)
4276 break;
4277 }
4278 else if (cmp == 0
4279 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4280 + name_len + 5))
4281 return psym;
4282 }
4283 i += 1;
4284 }
4285 }
4286 return NULL;
4287 }
4288
4289 /* Find a symbol table containing symbol SYM or NULL if none. */
4290
4291 static struct symtab *
4292 symtab_for_sym (struct symbol *sym)
4293 {
4294 struct symtab *s;
4295 struct objfile *objfile;
4296 struct block *b;
4297 struct symbol *tmp_sym;
4298 struct dict_iterator iter;
4299 int j;
4300
4301 ALL_PRIMARY_SYMTABS (objfile, s)
4302 {
4303 switch (SYMBOL_CLASS (sym))
4304 {
4305 case LOC_CONST:
4306 case LOC_STATIC:
4307 case LOC_TYPEDEF:
4308 case LOC_REGISTER:
4309 case LOC_LABEL:
4310 case LOC_BLOCK:
4311 case LOC_CONST_BYTES:
4312 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4313 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4314 return s;
4315 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4316 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4317 return s;
4318 break;
4319 default:
4320 break;
4321 }
4322 switch (SYMBOL_CLASS (sym))
4323 {
4324 case LOC_REGISTER:
4325 case LOC_ARG:
4326 case LOC_REF_ARG:
4327 case LOC_REGPARM:
4328 case LOC_REGPARM_ADDR:
4329 case LOC_LOCAL:
4330 case LOC_TYPEDEF:
4331 case LOC_LOCAL_ARG:
4332 case LOC_BASEREG:
4333 case LOC_BASEREG_ARG:
4334 case LOC_COMPUTED:
4335 case LOC_COMPUTED_ARG:
4336 for (j = FIRST_LOCAL_BLOCK;
4337 j < BLOCKVECTOR_NBLOCKS (BLOCKVECTOR (s)); j += 1)
4338 {
4339 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), j);
4340 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4341 return s;
4342 }
4343 break;
4344 default:
4345 break;
4346 }
4347 }
4348 return NULL;
4349 }
4350
4351 /* Return a minimal symbol matching NAME according to Ada decoding
4352 rules. Returns NULL if there is no such minimal symbol. Names
4353 prefixed with "standard__" are handled specially: "standard__" is
4354 first stripped off, and only static and global symbols are searched. */
4355
4356 struct minimal_symbol *
4357 ada_lookup_simple_minsym (const char *name)
4358 {
4359 struct objfile *objfile;
4360 struct minimal_symbol *msymbol;
4361 int wild_match;
4362
4363 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4364 {
4365 name += sizeof ("standard__") - 1;
4366 wild_match = 0;
4367 }
4368 else
4369 wild_match = (strstr (name, "__") == NULL);
4370
4371 ALL_MSYMBOLS (objfile, msymbol)
4372 {
4373 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4374 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4375 return msymbol;
4376 }
4377
4378 return NULL;
4379 }
4380
4381 /* For all subprograms that statically enclose the subprogram of the
4382 selected frame, add symbols matching identifier NAME in DOMAIN
4383 and their blocks to the list of data in OBSTACKP, as for
4384 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4385 wildcard prefix. */
4386
4387 static void
4388 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4389 const char *name, domain_enum namespace,
4390 int wild_match)
4391 {
4392 }
4393
4394 /* True if TYPE is definitely an artificial type supplied to a symbol
4395 for which no debugging information was given in the symbol file. */
4396
4397 static int
4398 is_nondebugging_type (struct type *type)
4399 {
4400 char *name = ada_type_name (type);
4401 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4402 }
4403
4404 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4405 duplicate other symbols in the list (The only case I know of where
4406 this happens is when object files containing stabs-in-ecoff are
4407 linked with files containing ordinary ecoff debugging symbols (or no
4408 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4409 Returns the number of items in the modified list. */
4410
4411 static int
4412 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4413 {
4414 int i, j;
4415
4416 i = 0;
4417 while (i < nsyms)
4418 {
4419 if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4420 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4421 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4422 {
4423 for (j = 0; j < nsyms; j += 1)
4424 {
4425 if (i != j
4426 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4427 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4428 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4429 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4430 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4431 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4432 {
4433 int k;
4434 for (k = i + 1; k < nsyms; k += 1)
4435 syms[k - 1] = syms[k];
4436 nsyms -= 1;
4437 goto NextSymbol;
4438 }
4439 }
4440 }
4441 i += 1;
4442 NextSymbol:
4443 ;
4444 }
4445 return nsyms;
4446 }
4447
4448 /* Given a type that corresponds to a renaming entity, use the type name
4449 to extract the scope (package name or function name, fully qualified,
4450 and following the GNAT encoding convention) where this renaming has been
4451 defined. The string returned needs to be deallocated after use. */
4452
4453 static char *
4454 xget_renaming_scope (struct type *renaming_type)
4455 {
4456 /* The renaming types adhere to the following convention:
4457 <scope>__<rename>___<XR extension>.
4458 So, to extract the scope, we search for the "___XR" extension,
4459 and then backtrack until we find the first "__". */
4460
4461 const char *name = type_name_no_tag (renaming_type);
4462 char *suffix = strstr (name, "___XR");
4463 char *last;
4464 int scope_len;
4465 char *scope;
4466
4467 /* Now, backtrack a bit until we find the first "__". Start looking
4468 at suffix - 3, as the <rename> part is at least one character long. */
4469
4470 for (last = suffix - 3; last > name; last--)
4471 if (last[0] == '_' && last[1] == '_')
4472 break;
4473
4474 /* Make a copy of scope and return it. */
4475
4476 scope_len = last - name;
4477 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4478
4479 strncpy (scope, name, scope_len);
4480 scope[scope_len] = '\0';
4481
4482 return scope;
4483 }
4484
4485 /* Return nonzero if NAME corresponds to a package name. */
4486
4487 static int
4488 is_package_name (const char *name)
4489 {
4490 /* Here, We take advantage of the fact that no symbols are generated
4491 for packages, while symbols are generated for each function.
4492 So the condition for NAME represent a package becomes equivalent
4493 to NAME not existing in our list of symbols. There is only one
4494 small complication with library-level functions (see below). */
4495
4496 char *fun_name;
4497
4498 /* If it is a function that has not been defined at library level,
4499 then we should be able to look it up in the symbols. */
4500 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4501 return 0;
4502
4503 /* Library-level function names start with "_ada_". See if function
4504 "_ada_" followed by NAME can be found. */
4505
4506 /* Do a quick check that NAME does not contain "__", since library-level
4507 functions names cannot contain "__" in them. */
4508 if (strstr (name, "__") != NULL)
4509 return 0;
4510
4511 fun_name = xstrprintf ("_ada_%s", name);
4512
4513 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4514 }
4515
4516 /* Return nonzero if SYM corresponds to a renaming entity that is
4517 not visible from FUNCTION_NAME. */
4518
4519 static int
4520 old_renaming_is_invisible (const struct symbol *sym, char *function_name)
4521 {
4522 char *scope;
4523
4524 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4525 return 0;
4526
4527 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4528
4529 make_cleanup (xfree, scope);
4530
4531 /* If the rename has been defined in a package, then it is visible. */
4532 if (is_package_name (scope))
4533 return 0;
4534
4535 /* Check that the rename is in the current function scope by checking
4536 that its name starts with SCOPE. */
4537
4538 /* If the function name starts with "_ada_", it means that it is
4539 a library-level function. Strip this prefix before doing the
4540 comparison, as the encoding for the renaming does not contain
4541 this prefix. */
4542 if (strncmp (function_name, "_ada_", 5) == 0)
4543 function_name += 5;
4544
4545 return (strncmp (function_name, scope, strlen (scope)) != 0);
4546 }
4547
4548 /* Remove entries from SYMS that corresponds to a renaming entity that
4549 is not visible from the function associated with CURRENT_BLOCK or
4550 that is superfluous due to the presence of more specific renaming
4551 information. Places surviving symbols in the initial entries of
4552 SYMS and returns the number of surviving symbols.
4553
4554 Rationale:
4555 First, in cases where an object renaming is implemented as a
4556 reference variable, GNAT may produce both the actual reference
4557 variable and the renaming encoding. In this case, we discard the
4558 latter.
4559
4560 Second, GNAT emits a type following a specified encoding for each renaming
4561 entity. Unfortunately, STABS currently does not support the definition
4562 of types that are local to a given lexical block, so all renamings types
4563 are emitted at library level. As a consequence, if an application
4564 contains two renaming entities using the same name, and a user tries to
4565 print the value of one of these entities, the result of the ada symbol
4566 lookup will also contain the wrong renaming type.
4567
4568 This function partially covers for this limitation by attempting to
4569 remove from the SYMS list renaming symbols that should be visible
4570 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4571 method with the current information available. The implementation
4572 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4573
4574 - When the user tries to print a rename in a function while there
4575 is another rename entity defined in a package: Normally, the
4576 rename in the function has precedence over the rename in the
4577 package, so the latter should be removed from the list. This is
4578 currently not the case.
4579
4580 - This function will incorrectly remove valid renames if
4581 the CURRENT_BLOCK corresponds to a function which symbol name
4582 has been changed by an "Export" pragma. As a consequence,
4583 the user will be unable to print such rename entities. */
4584
4585 static int
4586 remove_irrelevant_renamings (struct ada_symbol_info *syms,
4587 int nsyms, const struct block *current_block)
4588 {
4589 struct symbol *current_function;
4590 char *current_function_name;
4591 int i;
4592 int is_new_style_renaming;
4593
4594 /* If there is both a renaming foo___XR... encoded as a variable and
4595 a simple variable foo in the same block, discard the latter.
4596 First, zero out such symbols, then compress. */
4597 is_new_style_renaming = 0;
4598 for (i = 0; i < nsyms; i += 1)
4599 {
4600 struct symbol *sym = syms[i].sym;
4601 struct block *block = syms[i].block;
4602 const char *name;
4603 const char *suffix;
4604
4605 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4606 continue;
4607 name = SYMBOL_LINKAGE_NAME (sym);
4608 suffix = strstr (name, "___XR");
4609
4610 if (suffix != NULL)
4611 {
4612 int name_len = suffix - name;
4613 int j;
4614 is_new_style_renaming = 1;
4615 for (j = 0; j < nsyms; j += 1)
4616 if (i != j && syms[j].sym != NULL
4617 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4618 name_len) == 0
4619 && block == syms[j].block)
4620 syms[j].sym = NULL;
4621 }
4622 }
4623 if (is_new_style_renaming)
4624 {
4625 int j, k;
4626
4627 for (j = k = 0; j < nsyms; j += 1)
4628 if (syms[j].sym != NULL)
4629 {
4630 syms[k] = syms[j];
4631 k += 1;
4632 }
4633 return k;
4634 }
4635
4636 /* Extract the function name associated to CURRENT_BLOCK.
4637 Abort if unable to do so. */
4638
4639 if (current_block == NULL)
4640 return nsyms;
4641
4642 current_function = block_function (current_block);
4643 if (current_function == NULL)
4644 return nsyms;
4645
4646 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4647 if (current_function_name == NULL)
4648 return nsyms;
4649
4650 /* Check each of the symbols, and remove it from the list if it is
4651 a type corresponding to a renaming that is out of the scope of
4652 the current block. */
4653
4654 i = 0;
4655 while (i < nsyms)
4656 {
4657 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4658 == ADA_OBJECT_RENAMING
4659 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4660 {
4661 int j;
4662 for (j = i + 1; j < nsyms; j += 1)
4663 syms[j - 1] = syms[j];
4664 nsyms -= 1;
4665 }
4666 else
4667 i += 1;
4668 }
4669
4670 return nsyms;
4671 }
4672
4673 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4674 scope and in global scopes, returning the number of matches. Sets
4675 *RESULTS to point to a vector of (SYM,BLOCK,SYMTAB) triples,
4676 indicating the symbols found and the blocks and symbol tables (if
4677 any) in which they were found. This vector are transient---good only to
4678 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4679 symbol match within the nest of blocks whose innermost member is BLOCK0,
4680 is the one match returned (no other matches in that or
4681 enclosing blocks is returned). If there are any matches in or
4682 surrounding BLOCK0, then these alone are returned. Otherwise, the
4683 search extends to global and file-scope (static) symbol tables.
4684 Names prefixed with "standard__" are handled specially: "standard__"
4685 is first stripped off, and only static and global symbols are searched. */
4686
4687 int
4688 ada_lookup_symbol_list (const char *name0, const struct block *block0,
4689 domain_enum namespace,
4690 struct ada_symbol_info **results)
4691 {
4692 struct symbol *sym;
4693 struct symtab *s;
4694 struct partial_symtab *ps;
4695 struct blockvector *bv;
4696 struct objfile *objfile;
4697 struct block *block;
4698 const char *name;
4699 struct minimal_symbol *msymbol;
4700 int wild_match;
4701 int cacheIfUnique;
4702 int block_depth;
4703 int ndefns;
4704
4705 obstack_free (&symbol_list_obstack, NULL);
4706 obstack_init (&symbol_list_obstack);
4707
4708 cacheIfUnique = 0;
4709
4710 /* Search specified block and its superiors. */
4711
4712 wild_match = (strstr (name0, "__") == NULL);
4713 name = name0;
4714 block = (struct block *) block0; /* FIXME: No cast ought to be
4715 needed, but adding const will
4716 have a cascade effect. */
4717 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4718 {
4719 wild_match = 0;
4720 block = NULL;
4721 name = name0 + sizeof ("standard__") - 1;
4722 }
4723
4724 block_depth = 0;
4725 while (block != NULL)
4726 {
4727 block_depth += 1;
4728 ada_add_block_symbols (&symbol_list_obstack, block, name,
4729 namespace, NULL, NULL, wild_match);
4730
4731 /* If we found a non-function match, assume that's the one. */
4732 if (is_nonfunction (defns_collected (&symbol_list_obstack, 0),
4733 num_defns_collected (&symbol_list_obstack)))
4734 goto done;
4735
4736 block = BLOCK_SUPERBLOCK (block);
4737 }
4738
4739 /* If no luck so far, try to find NAME as a local symbol in some lexically
4740 enclosing subprogram. */
4741 if (num_defns_collected (&symbol_list_obstack) == 0 && block_depth > 2)
4742 add_symbols_from_enclosing_procs (&symbol_list_obstack,
4743 name, namespace, wild_match);
4744
4745 /* If we found ANY matches among non-global symbols, we're done. */
4746
4747 if (num_defns_collected (&symbol_list_obstack) > 0)
4748 goto done;
4749
4750 cacheIfUnique = 1;
4751 if (lookup_cached_symbol (name0, namespace, &sym, &block, &s))
4752 {
4753 if (sym != NULL)
4754 add_defn_to_vec (&symbol_list_obstack, sym, block, s);
4755 goto done;
4756 }
4757
4758 /* Now add symbols from all global blocks: symbol tables, minimal symbol
4759 tables, and psymtab's. */
4760
4761 ALL_PRIMARY_SYMTABS (objfile, s)
4762 {
4763 QUIT;
4764 bv = BLOCKVECTOR (s);
4765 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4766 ada_add_block_symbols (&symbol_list_obstack, block, name, namespace,
4767 objfile, s, wild_match);
4768 }
4769
4770 if (namespace == VAR_DOMAIN)
4771 {
4772 ALL_MSYMBOLS (objfile, msymbol)
4773 {
4774 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match))
4775 {
4776 switch (MSYMBOL_TYPE (msymbol))
4777 {
4778 case mst_solib_trampoline:
4779 break;
4780 default:
4781 s = find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol));
4782 if (s != NULL)
4783 {
4784 int ndefns0 = num_defns_collected (&symbol_list_obstack);
4785 QUIT;
4786 bv = BLOCKVECTOR (s);
4787 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4788 ada_add_block_symbols (&symbol_list_obstack, block,
4789 SYMBOL_LINKAGE_NAME (msymbol),
4790 namespace, objfile, s, wild_match);
4791
4792 if (num_defns_collected (&symbol_list_obstack) == ndefns0)
4793 {
4794 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4795 ada_add_block_symbols (&symbol_list_obstack, block,
4796 SYMBOL_LINKAGE_NAME (msymbol),
4797 namespace, objfile, s,
4798 wild_match);
4799 }
4800 }
4801 }
4802 }
4803 }
4804 }
4805
4806 ALL_PSYMTABS (objfile, ps)
4807 {
4808 QUIT;
4809 if (!ps->readin
4810 && ada_lookup_partial_symbol (ps, name, 1, namespace, wild_match))
4811 {
4812 s = PSYMTAB_TO_SYMTAB (ps);
4813 if (!s->primary)
4814 continue;
4815 bv = BLOCKVECTOR (s);
4816 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4817 ada_add_block_symbols (&symbol_list_obstack, block, name,
4818 namespace, objfile, s, wild_match);
4819 }
4820 }
4821
4822 /* Now add symbols from all per-file blocks if we've gotten no hits
4823 (Not strictly correct, but perhaps better than an error).
4824 Do the symtabs first, then check the psymtabs. */
4825
4826 if (num_defns_collected (&symbol_list_obstack) == 0)
4827 {
4828
4829 ALL_PRIMARY_SYMTABS (objfile, s)
4830 {
4831 QUIT;
4832 bv = BLOCKVECTOR (s);
4833 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4834 ada_add_block_symbols (&symbol_list_obstack, block, name, namespace,
4835 objfile, s, wild_match);
4836 }
4837
4838 ALL_PSYMTABS (objfile, ps)
4839 {
4840 QUIT;
4841 if (!ps->readin
4842 && ada_lookup_partial_symbol (ps, name, 0, namespace, wild_match))
4843 {
4844 s = PSYMTAB_TO_SYMTAB (ps);
4845 bv = BLOCKVECTOR (s);
4846 if (!s->primary)
4847 continue;
4848 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4849 ada_add_block_symbols (&symbol_list_obstack, block, name,
4850 namespace, objfile, s, wild_match);
4851 }
4852 }
4853 }
4854
4855 done:
4856 ndefns = num_defns_collected (&symbol_list_obstack);
4857 *results = defns_collected (&symbol_list_obstack, 1);
4858
4859 ndefns = remove_extra_symbols (*results, ndefns);
4860
4861 if (ndefns == 0)
4862 cache_symbol (name0, namespace, NULL, NULL, NULL);
4863
4864 if (ndefns == 1 && cacheIfUnique)
4865 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block,
4866 (*results)[0].symtab);
4867
4868 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
4869
4870 return ndefns;
4871 }
4872
4873 struct symbol *
4874 ada_lookup_encoded_symbol (const char *name, const struct block *block0,
4875 domain_enum namespace, struct block **block_found)
4876 {
4877 struct ada_symbol_info *candidates;
4878 int n_candidates;
4879
4880 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates);
4881
4882 if (n_candidates == 0)
4883 return NULL;
4884
4885 if (block_found != NULL)
4886 *block_found = candidates[0].block;
4887
4888 return fixup_symbol_section (candidates[0].sym, NULL);
4889 }
4890
4891 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4892 scope and in global scopes, or NULL if none. NAME is folded and
4893 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4894 choosing the first symbol if there are multiple choices.
4895 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4896 table in which the symbol was found (in both cases, these
4897 assignments occur only if the pointers are non-null). */
4898 struct symbol *
4899 ada_lookup_symbol (const char *name, const struct block *block0,
4900 domain_enum namespace, int *is_a_field_of_this)
4901 {
4902 if (is_a_field_of_this != NULL)
4903 *is_a_field_of_this = 0;
4904
4905 return
4906 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
4907 block0, namespace, NULL);
4908 }
4909
4910 static struct symbol *
4911 ada_lookup_symbol_nonlocal (const char *name,
4912 const char *linkage_name,
4913 const struct block *block,
4914 const domain_enum domain)
4915 {
4916 if (linkage_name == NULL)
4917 linkage_name = name;
4918 return ada_lookup_symbol (linkage_name, block_static_block (block), domain,
4919 NULL);
4920 }
4921
4922
4923 /* True iff STR is a possible encoded suffix of a normal Ada name
4924 that is to be ignored for matching purposes. Suffixes of parallel
4925 names (e.g., XVE) are not included here. Currently, the possible suffixes
4926 are given by either of the regular expression:
4927
4928 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
4929 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4930 _E[0-9]+[bs]$ [protected object entry suffixes]
4931 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
4932
4933 Also, any leading "__[0-9]+" sequence is skipped before the suffix
4934 match is performed. This sequence is used to differentiate homonyms,
4935 is an optional part of a valid name suffix. */
4936
4937 static int
4938 is_name_suffix (const char *str)
4939 {
4940 int k;
4941 const char *matching;
4942 const int len = strlen (str);
4943
4944 /* Skip optional leading __[0-9]+. */
4945
4946 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4947 {
4948 str += 3;
4949 while (isdigit (str[0]))
4950 str += 1;
4951 }
4952
4953 /* [.$][0-9]+ */
4954
4955 if (str[0] == '.' || str[0] == '$')
4956 {
4957 matching = str + 1;
4958 while (isdigit (matching[0]))
4959 matching += 1;
4960 if (matching[0] == '\0')
4961 return 1;
4962 }
4963
4964 /* ___[0-9]+ */
4965
4966 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
4967 {
4968 matching = str + 3;
4969 while (isdigit (matching[0]))
4970 matching += 1;
4971 if (matching[0] == '\0')
4972 return 1;
4973 }
4974
4975 #if 0
4976 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
4977 with a N at the end. Unfortunately, the compiler uses the same
4978 convention for other internal types it creates. So treating
4979 all entity names that end with an "N" as a name suffix causes
4980 some regressions. For instance, consider the case of an enumerated
4981 type. To support the 'Image attribute, it creates an array whose
4982 name ends with N.
4983 Having a single character like this as a suffix carrying some
4984 information is a bit risky. Perhaps we should change the encoding
4985 to be something like "_N" instead. In the meantime, do not do
4986 the following check. */
4987 /* Protected Object Subprograms */
4988 if (len == 1 && str [0] == 'N')
4989 return 1;
4990 #endif
4991
4992 /* _E[0-9]+[bs]$ */
4993 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
4994 {
4995 matching = str + 3;
4996 while (isdigit (matching[0]))
4997 matching += 1;
4998 if ((matching[0] == 'b' || matching[0] == 's')
4999 && matching [1] == '\0')
5000 return 1;
5001 }
5002
5003 /* ??? We should not modify STR directly, as we are doing below. This
5004 is fine in this case, but may become problematic later if we find
5005 that this alternative did not work, and want to try matching
5006 another one from the begining of STR. Since we modified it, we
5007 won't be able to find the begining of the string anymore! */
5008 if (str[0] == 'X')
5009 {
5010 str += 1;
5011 while (str[0] != '_' && str[0] != '\0')
5012 {
5013 if (str[0] != 'n' && str[0] != 'b')
5014 return 0;
5015 str += 1;
5016 }
5017 }
5018
5019 if (str[0] == '\000')
5020 return 1;
5021
5022 if (str[0] == '_')
5023 {
5024 if (str[1] != '_' || str[2] == '\000')
5025 return 0;
5026 if (str[2] == '_')
5027 {
5028 if (strcmp (str + 3, "JM") == 0)
5029 return 1;
5030 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5031 the LJM suffix in favor of the JM one. But we will
5032 still accept LJM as a valid suffix for a reasonable
5033 amount of time, just to allow ourselves to debug programs
5034 compiled using an older version of GNAT. */
5035 if (strcmp (str + 3, "LJM") == 0)
5036 return 1;
5037 if (str[3] != 'X')
5038 return 0;
5039 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5040 || str[4] == 'U' || str[4] == 'P')
5041 return 1;
5042 if (str[4] == 'R' && str[5] != 'T')
5043 return 1;
5044 return 0;
5045 }
5046 if (!isdigit (str[2]))
5047 return 0;
5048 for (k = 3; str[k] != '\0'; k += 1)
5049 if (!isdigit (str[k]) && str[k] != '_')
5050 return 0;
5051 return 1;
5052 }
5053 if (str[0] == '$' && isdigit (str[1]))
5054 {
5055 for (k = 2; str[k] != '\0'; k += 1)
5056 if (!isdigit (str[k]) && str[k] != '_')
5057 return 0;
5058 return 1;
5059 }
5060 return 0;
5061 }
5062
5063 /* Return nonzero if the given string starts with a dot ('.')
5064 followed by zero or more digits.
5065
5066 Note: brobecker/2003-11-10: A forward declaration has not been
5067 added at the begining of this file yet, because this function
5068 is only used to work around a problem found during wild matching
5069 when trying to match minimal symbol names against symbol names
5070 obtained from dwarf-2 data. This function is therefore currently
5071 only used in wild_match() and is likely to be deleted when the
5072 problem in dwarf-2 is fixed. */
5073
5074 static int
5075 is_dot_digits_suffix (const char *str)
5076 {
5077 if (str[0] != '.')
5078 return 0;
5079
5080 str++;
5081 while (isdigit (str[0]))
5082 str++;
5083 return (str[0] == '\0');
5084 }
5085
5086 /* Return non-zero if the string starting at NAME and ending before
5087 NAME_END contains no capital letters. */
5088
5089 static int
5090 is_valid_name_for_wild_match (const char *name0)
5091 {
5092 const char *decoded_name = ada_decode (name0);
5093 int i;
5094
5095 for (i=0; decoded_name[i] != '\0'; i++)
5096 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5097 return 0;
5098
5099 return 1;
5100 }
5101
5102 /* True if NAME represents a name of the form A1.A2....An, n>=1 and
5103 PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores
5104 informational suffixes of NAME (i.e., for which is_name_suffix is
5105 true). */
5106
5107 static int
5108 wild_match (const char *patn0, int patn_len, const char *name0)
5109 {
5110 int name_len;
5111 char *name;
5112 char *name_start;
5113 char *patn;
5114
5115 /* FIXME: brobecker/2003-11-10: For some reason, the symbol name
5116 stored in the symbol table for nested function names is sometimes
5117 different from the name of the associated entity stored in
5118 the dwarf-2 data: This is the case for nested subprograms, where
5119 the minimal symbol name contains a trailing ".[:digit:]+" suffix,
5120 while the symbol name from the dwarf-2 data does not.
5121
5122 Although the DWARF-2 standard documents that entity names stored
5123 in the dwarf-2 data should be identical to the name as seen in
5124 the source code, GNAT takes a different approach as we already use
5125 a special encoding mechanism to convey the information so that
5126 a C debugger can still use the information generated to debug
5127 Ada programs. A corollary is that the symbol names in the dwarf-2
5128 data should match the names found in the symbol table. I therefore
5129 consider this issue as a compiler defect.
5130
5131 Until the compiler is properly fixed, we work-around the problem
5132 by ignoring such suffixes during the match. We do so by making
5133 a copy of PATN0 and NAME0, and then by stripping such a suffix
5134 if present. We then perform the match on the resulting strings. */
5135 {
5136 char *dot;
5137 name_len = strlen (name0);
5138
5139 name = name_start = (char *) alloca ((name_len + 1) * sizeof (char));
5140 strcpy (name, name0);
5141 dot = strrchr (name, '.');
5142 if (dot != NULL && is_dot_digits_suffix (dot))
5143 *dot = '\0';
5144
5145 patn = (char *) alloca ((patn_len + 1) * sizeof (char));
5146 strncpy (patn, patn0, patn_len);
5147 patn[patn_len] = '\0';
5148 dot = strrchr (patn, '.');
5149 if (dot != NULL && is_dot_digits_suffix (dot))
5150 {
5151 *dot = '\0';
5152 patn_len = dot - patn;
5153 }
5154 }
5155
5156 /* Now perform the wild match. */
5157
5158 name_len = strlen (name);
5159 if (name_len >= patn_len + 5 && strncmp (name, "_ada_", 5) == 0
5160 && strncmp (patn, name + 5, patn_len) == 0
5161 && is_name_suffix (name + patn_len + 5))
5162 return 1;
5163
5164 while (name_len >= patn_len)
5165 {
5166 if (strncmp (patn, name, patn_len) == 0
5167 && is_name_suffix (name + patn_len))
5168 return (name == name_start || is_valid_name_for_wild_match (name0));
5169 do
5170 {
5171 name += 1;
5172 name_len -= 1;
5173 }
5174 while (name_len > 0
5175 && name[0] != '.' && (name[0] != '_' || name[1] != '_'));
5176 if (name_len <= 0)
5177 return 0;
5178 if (name[0] == '_')
5179 {
5180 if (!islower (name[2]))
5181 return 0;
5182 name += 2;
5183 name_len -= 2;
5184 }
5185 else
5186 {
5187 if (!islower (name[1]))
5188 return 0;
5189 name += 1;
5190 name_len -= 1;
5191 }
5192 }
5193
5194 return 0;
5195 }
5196
5197
5198 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5199 vector *defn_symbols, updating the list of symbols in OBSTACKP
5200 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5201 OBJFILE is the section containing BLOCK.
5202 SYMTAB is recorded with each symbol added. */
5203
5204 static void
5205 ada_add_block_symbols (struct obstack *obstackp,
5206 struct block *block, const char *name,
5207 domain_enum domain, struct objfile *objfile,
5208 struct symtab *symtab, int wild)
5209 {
5210 struct dict_iterator iter;
5211 int name_len = strlen (name);
5212 /* A matching argument symbol, if any. */
5213 struct symbol *arg_sym;
5214 /* Set true when we find a matching non-argument symbol. */
5215 int found_sym;
5216 struct symbol *sym;
5217
5218 arg_sym = NULL;
5219 found_sym = 0;
5220 if (wild)
5221 {
5222 struct symbol *sym;
5223 ALL_BLOCK_SYMBOLS (block, iter, sym)
5224 {
5225 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5226 SYMBOL_DOMAIN (sym), domain)
5227 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (sym)))
5228 {
5229 switch (SYMBOL_CLASS (sym))
5230 {
5231 case LOC_ARG:
5232 case LOC_LOCAL_ARG:
5233 case LOC_REF_ARG:
5234 case LOC_REGPARM:
5235 case LOC_REGPARM_ADDR:
5236 case LOC_BASEREG_ARG:
5237 case LOC_COMPUTED_ARG:
5238 arg_sym = sym;
5239 break;
5240 case LOC_UNRESOLVED:
5241 continue;
5242 default:
5243 found_sym = 1;
5244 add_defn_to_vec (obstackp,
5245 fixup_symbol_section (sym, objfile),
5246 block, symtab);
5247 break;
5248 }
5249 }
5250 }
5251 }
5252 else
5253 {
5254 ALL_BLOCK_SYMBOLS (block, iter, sym)
5255 {
5256 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5257 SYMBOL_DOMAIN (sym), domain))
5258 {
5259 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym), name_len);
5260 if (cmp == 0
5261 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len))
5262 {
5263 switch (SYMBOL_CLASS (sym))
5264 {
5265 case LOC_ARG:
5266 case LOC_LOCAL_ARG:
5267 case LOC_REF_ARG:
5268 case LOC_REGPARM:
5269 case LOC_REGPARM_ADDR:
5270 case LOC_BASEREG_ARG:
5271 case LOC_COMPUTED_ARG:
5272 arg_sym = sym;
5273 break;
5274 case LOC_UNRESOLVED:
5275 break;
5276 default:
5277 found_sym = 1;
5278 add_defn_to_vec (obstackp,
5279 fixup_symbol_section (sym, objfile),
5280 block, symtab);
5281 break;
5282 }
5283 }
5284 }
5285 }
5286 }
5287
5288 if (!found_sym && arg_sym != NULL)
5289 {
5290 add_defn_to_vec (obstackp,
5291 fixup_symbol_section (arg_sym, objfile),
5292 block, symtab);
5293 }
5294
5295 if (!wild)
5296 {
5297 arg_sym = NULL;
5298 found_sym = 0;
5299
5300 ALL_BLOCK_SYMBOLS (block, iter, sym)
5301 {
5302 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5303 SYMBOL_DOMAIN (sym), domain))
5304 {
5305 int cmp;
5306
5307 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5308 if (cmp == 0)
5309 {
5310 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5311 if (cmp == 0)
5312 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5313 name_len);
5314 }
5315
5316 if (cmp == 0
5317 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5318 {
5319 switch (SYMBOL_CLASS (sym))
5320 {
5321 case LOC_ARG:
5322 case LOC_LOCAL_ARG:
5323 case LOC_REF_ARG:
5324 case LOC_REGPARM:
5325 case LOC_REGPARM_ADDR:
5326 case LOC_BASEREG_ARG:
5327 case LOC_COMPUTED_ARG:
5328 arg_sym = sym;
5329 break;
5330 case LOC_UNRESOLVED:
5331 break;
5332 default:
5333 found_sym = 1;
5334 add_defn_to_vec (obstackp,
5335 fixup_symbol_section (sym, objfile),
5336 block, symtab);
5337 break;
5338 }
5339 }
5340 }
5341 }
5342
5343 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5344 They aren't parameters, right? */
5345 if (!found_sym && arg_sym != NULL)
5346 {
5347 add_defn_to_vec (obstackp,
5348 fixup_symbol_section (arg_sym, objfile),
5349 block, symtab);
5350 }
5351 }
5352 }
5353 \f
5354
5355 /* Symbol Completion */
5356
5357 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
5358 name in a form that's appropriate for the completion. The result
5359 does not need to be deallocated, but is only good until the next call.
5360
5361 TEXT_LEN is equal to the length of TEXT.
5362 Perform a wild match if WILD_MATCH is set.
5363 ENCODED should be set if TEXT represents the start of a symbol name
5364 in its encoded form. */
5365
5366 static const char *
5367 symbol_completion_match (const char *sym_name,
5368 const char *text, int text_len,
5369 int wild_match, int encoded)
5370 {
5371 char *result;
5372 const int verbatim_match = (text[0] == '<');
5373 int match = 0;
5374
5375 if (verbatim_match)
5376 {
5377 /* Strip the leading angle bracket. */
5378 text = text + 1;
5379 text_len--;
5380 }
5381
5382 /* First, test against the fully qualified name of the symbol. */
5383
5384 if (strncmp (sym_name, text, text_len) == 0)
5385 match = 1;
5386
5387 if (match && !encoded)
5388 {
5389 /* One needed check before declaring a positive match is to verify
5390 that iff we are doing a verbatim match, the decoded version
5391 of the symbol name starts with '<'. Otherwise, this symbol name
5392 is not a suitable completion. */
5393 const char *sym_name_copy = sym_name;
5394 int has_angle_bracket;
5395
5396 sym_name = ada_decode (sym_name);
5397 has_angle_bracket = (sym_name[0] == '<');
5398 match = (has_angle_bracket == verbatim_match);
5399 sym_name = sym_name_copy;
5400 }
5401
5402 if (match && !verbatim_match)
5403 {
5404 /* When doing non-verbatim match, another check that needs to
5405 be done is to verify that the potentially matching symbol name
5406 does not include capital letters, because the ada-mode would
5407 not be able to understand these symbol names without the
5408 angle bracket notation. */
5409 const char *tmp;
5410
5411 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5412 if (*tmp != '\0')
5413 match = 0;
5414 }
5415
5416 /* Second: Try wild matching... */
5417
5418 if (!match && wild_match)
5419 {
5420 /* Since we are doing wild matching, this means that TEXT
5421 may represent an unqualified symbol name. We therefore must
5422 also compare TEXT against the unqualified name of the symbol. */
5423 sym_name = ada_unqualified_name (ada_decode (sym_name));
5424
5425 if (strncmp (sym_name, text, text_len) == 0)
5426 match = 1;
5427 }
5428
5429 /* Finally: If we found a mach, prepare the result to return. */
5430
5431 if (!match)
5432 return NULL;
5433
5434 if (verbatim_match)
5435 sym_name = add_angle_brackets (sym_name);
5436
5437 if (!encoded)
5438 sym_name = ada_decode (sym_name);
5439
5440 return sym_name;
5441 }
5442
5443 typedef char *char_ptr;
5444 DEF_VEC_P (char_ptr);
5445
5446 /* A companion function to ada_make_symbol_completion_list().
5447 Check if SYM_NAME represents a symbol which name would be suitable
5448 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5449 it is appended at the end of the given string vector SV.
5450
5451 ORIG_TEXT is the string original string from the user command
5452 that needs to be completed. WORD is the entire command on which
5453 completion should be performed. These two parameters are used to
5454 determine which part of the symbol name should be added to the
5455 completion vector.
5456 if WILD_MATCH is set, then wild matching is performed.
5457 ENCODED should be set if TEXT represents a symbol name in its
5458 encoded formed (in which case the completion should also be
5459 encoded). */
5460
5461 static void
5462 symbol_completion_add (VEC(char_ptr) **sv,
5463 const char *sym_name,
5464 const char *text, int text_len,
5465 const char *orig_text, const char *word,
5466 int wild_match, int encoded)
5467 {
5468 const char *match = symbol_completion_match (sym_name, text, text_len,
5469 wild_match, encoded);
5470 char *completion;
5471
5472 if (match == NULL)
5473 return;
5474
5475 /* We found a match, so add the appropriate completion to the given
5476 string vector. */
5477
5478 if (word == orig_text)
5479 {
5480 completion = xmalloc (strlen (match) + 5);
5481 strcpy (completion, match);
5482 }
5483 else if (word > orig_text)
5484 {
5485 /* Return some portion of sym_name. */
5486 completion = xmalloc (strlen (match) + 5);
5487 strcpy (completion, match + (word - orig_text));
5488 }
5489 else
5490 {
5491 /* Return some of ORIG_TEXT plus sym_name. */
5492 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5493 strncpy (completion, word, orig_text - word);
5494 completion[orig_text - word] = '\0';
5495 strcat (completion, match);
5496 }
5497
5498 VEC_safe_push (char_ptr, *sv, completion);
5499 }
5500
5501 /* Return a list of possible symbol names completing TEXT0. The list
5502 is NULL terminated. WORD is the entire command on which completion
5503 is made. */
5504
5505 static char **
5506 ada_make_symbol_completion_list (char *text0, char *word)
5507 {
5508 char *text;
5509 int text_len;
5510 int wild_match;
5511 int encoded;
5512 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
5513 struct symbol *sym;
5514 struct symtab *s;
5515 struct partial_symtab *ps;
5516 struct minimal_symbol *msymbol;
5517 struct objfile *objfile;
5518 struct block *b, *surrounding_static_block = 0;
5519 int i;
5520 struct dict_iterator iter;
5521
5522 if (text0[0] == '<')
5523 {
5524 text = xstrdup (text0);
5525 make_cleanup (xfree, text);
5526 text_len = strlen (text);
5527 wild_match = 0;
5528 encoded = 1;
5529 }
5530 else
5531 {
5532 text = xstrdup (ada_encode (text0));
5533 make_cleanup (xfree, text);
5534 text_len = strlen (text);
5535 for (i = 0; i < text_len; i++)
5536 text[i] = tolower (text[i]);
5537
5538 encoded = (strstr (text0, "__") != NULL);
5539 /* If the name contains a ".", then the user is entering a fully
5540 qualified entity name, and the match must not be done in wild
5541 mode. Similarly, if the user wants to complete what looks like
5542 an encoded name, the match must not be done in wild mode. */
5543 wild_match = (strchr (text0, '.') == NULL && !encoded);
5544 }
5545
5546 /* First, look at the partial symtab symbols. */
5547 ALL_PSYMTABS (objfile, ps)
5548 {
5549 struct partial_symbol **psym;
5550
5551 /* If the psymtab's been read in we'll get it when we search
5552 through the blockvector. */
5553 if (ps->readin)
5554 continue;
5555
5556 for (psym = objfile->global_psymbols.list + ps->globals_offset;
5557 psym < (objfile->global_psymbols.list + ps->globals_offset
5558 + ps->n_global_syms); psym++)
5559 {
5560 QUIT;
5561 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym),
5562 text, text_len, text0, word,
5563 wild_match, encoded);
5564 }
5565
5566 for (psym = objfile->static_psymbols.list + ps->statics_offset;
5567 psym < (objfile->static_psymbols.list + ps->statics_offset
5568 + ps->n_static_syms); psym++)
5569 {
5570 QUIT;
5571 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym),
5572 text, text_len, text0, word,
5573 wild_match, encoded);
5574 }
5575 }
5576
5577 /* At this point scan through the misc symbol vectors and add each
5578 symbol you find to the list. Eventually we want to ignore
5579 anything that isn't a text symbol (everything else will be
5580 handled by the psymtab code above). */
5581
5582 ALL_MSYMBOLS (objfile, msymbol)
5583 {
5584 QUIT;
5585 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
5586 text, text_len, text0, word, wild_match, encoded);
5587 }
5588
5589 /* Search upwards from currently selected frame (so that we can
5590 complete on local vars. */
5591
5592 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5593 {
5594 if (!BLOCK_SUPERBLOCK (b))
5595 surrounding_static_block = b; /* For elmin of dups */
5596
5597 ALL_BLOCK_SYMBOLS (b, iter, sym)
5598 {
5599 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5600 text, text_len, text0, word,
5601 wild_match, encoded);
5602 }
5603 }
5604
5605 /* Go through the symtabs and check the externs and statics for
5606 symbols which match. */
5607
5608 ALL_SYMTABS (objfile, s)
5609 {
5610 QUIT;
5611 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5612 ALL_BLOCK_SYMBOLS (b, iter, sym)
5613 {
5614 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5615 text, text_len, text0, word,
5616 wild_match, encoded);
5617 }
5618 }
5619
5620 ALL_SYMTABS (objfile, s)
5621 {
5622 QUIT;
5623 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5624 /* Don't do this block twice. */
5625 if (b == surrounding_static_block)
5626 continue;
5627 ALL_BLOCK_SYMBOLS (b, iter, sym)
5628 {
5629 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5630 text, text_len, text0, word,
5631 wild_match, encoded);
5632 }
5633 }
5634
5635 /* Append the closing NULL entry. */
5636 VEC_safe_push (char_ptr, completions, NULL);
5637
5638 /* Make a copy of the COMPLETIONS VEC before we free it, and then
5639 return the copy. It's unfortunate that we have to make a copy
5640 of an array that we're about to destroy, but there is nothing much
5641 we can do about it. Fortunately, it's typically not a very large
5642 array. */
5643 {
5644 const size_t completions_size =
5645 VEC_length (char_ptr, completions) * sizeof (char *);
5646 char **result = malloc (completions_size);
5647
5648 memcpy (result, VEC_address (char_ptr, completions), completions_size);
5649
5650 VEC_free (char_ptr, completions);
5651 return result;
5652 }
5653 }
5654
5655 /* Field Access */
5656
5657 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5658 for tagged types. */
5659
5660 static int
5661 ada_is_dispatch_table_ptr_type (struct type *type)
5662 {
5663 char *name;
5664
5665 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5666 return 0;
5667
5668 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5669 if (name == NULL)
5670 return 0;
5671
5672 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5673 }
5674
5675 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5676 to be invisible to users. */
5677
5678 int
5679 ada_is_ignored_field (struct type *type, int field_num)
5680 {
5681 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5682 return 1;
5683
5684 /* Check the name of that field. */
5685 {
5686 const char *name = TYPE_FIELD_NAME (type, field_num);
5687
5688 /* Anonymous field names should not be printed.
5689 brobecker/2007-02-20: I don't think this can actually happen
5690 but we don't want to print the value of annonymous fields anyway. */
5691 if (name == NULL)
5692 return 1;
5693
5694 /* A field named "_parent" is internally generated by GNAT for
5695 tagged types, and should not be printed either. */
5696 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5697 return 1;
5698 }
5699
5700 /* If this is the dispatch table of a tagged type, then ignore. */
5701 if (ada_is_tagged_type (type, 1)
5702 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5703 return 1;
5704
5705 /* Not a special field, so it should not be ignored. */
5706 return 0;
5707 }
5708
5709 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5710 pointer or reference type whose ultimate target has a tag field. */
5711
5712 int
5713 ada_is_tagged_type (struct type *type, int refok)
5714 {
5715 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5716 }
5717
5718 /* True iff TYPE represents the type of X'Tag */
5719
5720 int
5721 ada_is_tag_type (struct type *type)
5722 {
5723 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5724 return 0;
5725 else
5726 {
5727 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5728 return (name != NULL
5729 && strcmp (name, "ada__tags__dispatch_table") == 0);
5730 }
5731 }
5732
5733 /* The type of the tag on VAL. */
5734
5735 struct type *
5736 ada_tag_type (struct value *val)
5737 {
5738 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
5739 }
5740
5741 /* The value of the tag on VAL. */
5742
5743 struct value *
5744 ada_value_tag (struct value *val)
5745 {
5746 return ada_value_struct_elt (val, "_tag", 0);
5747 }
5748
5749 /* The value of the tag on the object of type TYPE whose contents are
5750 saved at VALADDR, if it is non-null, or is at memory address
5751 ADDRESS. */
5752
5753 static struct value *
5754 value_tag_from_contents_and_address (struct type *type,
5755 const gdb_byte *valaddr,
5756 CORE_ADDR address)
5757 {
5758 int tag_byte_offset, dummy1, dummy2;
5759 struct type *tag_type;
5760 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
5761 NULL, NULL, NULL))
5762 {
5763 const gdb_byte *valaddr1 = ((valaddr == NULL)
5764 ? NULL
5765 : valaddr + tag_byte_offset);
5766 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
5767
5768 return value_from_contents_and_address (tag_type, valaddr1, address1);
5769 }
5770 return NULL;
5771 }
5772
5773 static struct type *
5774 type_from_tag (struct value *tag)
5775 {
5776 const char *type_name = ada_tag_name (tag);
5777 if (type_name != NULL)
5778 return ada_find_any_type (ada_encode (type_name));
5779 return NULL;
5780 }
5781
5782 struct tag_args
5783 {
5784 struct value *tag;
5785 char *name;
5786 };
5787
5788
5789 static int ada_tag_name_1 (void *);
5790 static int ada_tag_name_2 (struct tag_args *);
5791
5792 /* Wrapper function used by ada_tag_name. Given a struct tag_args*
5793 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5794 The value stored in ARGS->name is valid until the next call to
5795 ada_tag_name_1. */
5796
5797 static int
5798 ada_tag_name_1 (void *args0)
5799 {
5800 struct tag_args *args = (struct tag_args *) args0;
5801 static char name[1024];
5802 char *p;
5803 struct value *val;
5804 args->name = NULL;
5805 val = ada_value_struct_elt (args->tag, "tsd", 1);
5806 if (val == NULL)
5807 return ada_tag_name_2 (args);
5808 val = ada_value_struct_elt (val, "expanded_name", 1);
5809 if (val == NULL)
5810 return 0;
5811 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5812 for (p = name; *p != '\0'; p += 1)
5813 if (isalpha (*p))
5814 *p = tolower (*p);
5815 args->name = name;
5816 return 0;
5817 }
5818
5819 /* Utility function for ada_tag_name_1 that tries the second
5820 representation for the dispatch table (in which there is no
5821 explicit 'tsd' field in the referent of the tag pointer, and instead
5822 the tsd pointer is stored just before the dispatch table. */
5823
5824 static int
5825 ada_tag_name_2 (struct tag_args *args)
5826 {
5827 struct type *info_type;
5828 static char name[1024];
5829 char *p;
5830 struct value *val, *valp;
5831
5832 args->name = NULL;
5833 info_type = ada_find_any_type ("ada__tags__type_specific_data");
5834 if (info_type == NULL)
5835 return 0;
5836 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5837 valp = value_cast (info_type, args->tag);
5838 if (valp == NULL)
5839 return 0;
5840 val = value_ind (value_add (valp, value_from_longest (builtin_type_int, -1)));
5841 if (val == NULL)
5842 return 0;
5843 val = ada_value_struct_elt (val, "expanded_name", 1);
5844 if (val == NULL)
5845 return 0;
5846 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5847 for (p = name; *p != '\0'; p += 1)
5848 if (isalpha (*p))
5849 *p = tolower (*p);
5850 args->name = name;
5851 return 0;
5852 }
5853
5854 /* The type name of the dynamic type denoted by the 'tag value TAG, as
5855 * a C string. */
5856
5857 const char *
5858 ada_tag_name (struct value *tag)
5859 {
5860 struct tag_args args;
5861 if (!ada_is_tag_type (value_type (tag)))
5862 return NULL;
5863 args.tag = tag;
5864 args.name = NULL;
5865 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5866 return args.name;
5867 }
5868
5869 /* The parent type of TYPE, or NULL if none. */
5870
5871 struct type *
5872 ada_parent_type (struct type *type)
5873 {
5874 int i;
5875
5876 type = ada_check_typedef (type);
5877
5878 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5879 return NULL;
5880
5881 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5882 if (ada_is_parent_field (type, i))
5883 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5884
5885 return NULL;
5886 }
5887
5888 /* True iff field number FIELD_NUM of structure type TYPE contains the
5889 parent-type (inherited) fields of a derived type. Assumes TYPE is
5890 a structure type with at least FIELD_NUM+1 fields. */
5891
5892 int
5893 ada_is_parent_field (struct type *type, int field_num)
5894 {
5895 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5896 return (name != NULL
5897 && (strncmp (name, "PARENT", 6) == 0
5898 || strncmp (name, "_parent", 7) == 0));
5899 }
5900
5901 /* True iff field number FIELD_NUM of structure type TYPE is a
5902 transparent wrapper field (which should be silently traversed when doing
5903 field selection and flattened when printing). Assumes TYPE is a
5904 structure type with at least FIELD_NUM+1 fields. Such fields are always
5905 structures. */
5906
5907 int
5908 ada_is_wrapper_field (struct type *type, int field_num)
5909 {
5910 const char *name = TYPE_FIELD_NAME (type, field_num);
5911 return (name != NULL
5912 && (strncmp (name, "PARENT", 6) == 0
5913 || strcmp (name, "REP") == 0
5914 || strncmp (name, "_parent", 7) == 0
5915 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
5916 }
5917
5918 /* True iff field number FIELD_NUM of structure or union type TYPE
5919 is a variant wrapper. Assumes TYPE is a structure type with at least
5920 FIELD_NUM+1 fields. */
5921
5922 int
5923 ada_is_variant_part (struct type *type, int field_num)
5924 {
5925 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5926 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
5927 || (is_dynamic_field (type, field_num)
5928 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5929 == TYPE_CODE_UNION)));
5930 }
5931
5932 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
5933 whose discriminants are contained in the record type OUTER_TYPE,
5934 returns the type of the controlling discriminant for the variant. */
5935
5936 struct type *
5937 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
5938 {
5939 char *name = ada_variant_discrim_name (var_type);
5940 struct type *type =
5941 ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
5942 if (type == NULL)
5943 return builtin_type_int;
5944 else
5945 return type;
5946 }
5947
5948 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
5949 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
5950 represents a 'when others' clause; otherwise 0. */
5951
5952 int
5953 ada_is_others_clause (struct type *type, int field_num)
5954 {
5955 const char *name = TYPE_FIELD_NAME (type, field_num);
5956 return (name != NULL && name[0] == 'O');
5957 }
5958
5959 /* Assuming that TYPE0 is the type of the variant part of a record,
5960 returns the name of the discriminant controlling the variant.
5961 The value is valid until the next call to ada_variant_discrim_name. */
5962
5963 char *
5964 ada_variant_discrim_name (struct type *type0)
5965 {
5966 static char *result = NULL;
5967 static size_t result_len = 0;
5968 struct type *type;
5969 const char *name;
5970 const char *discrim_end;
5971 const char *discrim_start;
5972
5973 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5974 type = TYPE_TARGET_TYPE (type0);
5975 else
5976 type = type0;
5977
5978 name = ada_type_name (type);
5979
5980 if (name == NULL || name[0] == '\000')
5981 return "";
5982
5983 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
5984 discrim_end -= 1)
5985 {
5986 if (strncmp (discrim_end, "___XVN", 6) == 0)
5987 break;
5988 }
5989 if (discrim_end == name)
5990 return "";
5991
5992 for (discrim_start = discrim_end; discrim_start != name + 3;
5993 discrim_start -= 1)
5994 {
5995 if (discrim_start == name + 1)
5996 return "";
5997 if ((discrim_start > name + 3
5998 && strncmp (discrim_start - 3, "___", 3) == 0)
5999 || discrim_start[-1] == '.')
6000 break;
6001 }
6002
6003 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6004 strncpy (result, discrim_start, discrim_end - discrim_start);
6005 result[discrim_end - discrim_start] = '\0';
6006 return result;
6007 }
6008
6009 /* Scan STR for a subtype-encoded number, beginning at position K.
6010 Put the position of the character just past the number scanned in
6011 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6012 Return 1 if there was a valid number at the given position, and 0
6013 otherwise. A "subtype-encoded" number consists of the absolute value
6014 in decimal, followed by the letter 'm' to indicate a negative number.
6015 Assumes 0m does not occur. */
6016
6017 int
6018 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6019 {
6020 ULONGEST RU;
6021
6022 if (!isdigit (str[k]))
6023 return 0;
6024
6025 /* Do it the hard way so as not to make any assumption about
6026 the relationship of unsigned long (%lu scan format code) and
6027 LONGEST. */
6028 RU = 0;
6029 while (isdigit (str[k]))
6030 {
6031 RU = RU * 10 + (str[k] - '0');
6032 k += 1;
6033 }
6034
6035 if (str[k] == 'm')
6036 {
6037 if (R != NULL)
6038 *R = (-(LONGEST) (RU - 1)) - 1;
6039 k += 1;
6040 }
6041 else if (R != NULL)
6042 *R = (LONGEST) RU;
6043
6044 /* NOTE on the above: Technically, C does not say what the results of
6045 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6046 number representable as a LONGEST (although either would probably work
6047 in most implementations). When RU>0, the locution in the then branch
6048 above is always equivalent to the negative of RU. */
6049
6050 if (new_k != NULL)
6051 *new_k = k;
6052 return 1;
6053 }
6054
6055 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6056 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6057 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6058
6059 int
6060 ada_in_variant (LONGEST val, struct type *type, int field_num)
6061 {
6062 const char *name = TYPE_FIELD_NAME (type, field_num);
6063 int p;
6064
6065 p = 0;
6066 while (1)
6067 {
6068 switch (name[p])
6069 {
6070 case '\0':
6071 return 0;
6072 case 'S':
6073 {
6074 LONGEST W;
6075 if (!ada_scan_number (name, p + 1, &W, &p))
6076 return 0;
6077 if (val == W)
6078 return 1;
6079 break;
6080 }
6081 case 'R':
6082 {
6083 LONGEST L, U;
6084 if (!ada_scan_number (name, p + 1, &L, &p)
6085 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6086 return 0;
6087 if (val >= L && val <= U)
6088 return 1;
6089 break;
6090 }
6091 case 'O':
6092 return 1;
6093 default:
6094 return 0;
6095 }
6096 }
6097 }
6098
6099 /* FIXME: Lots of redundancy below. Try to consolidate. */
6100
6101 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6102 ARG_TYPE, extract and return the value of one of its (non-static)
6103 fields. FIELDNO says which field. Differs from value_primitive_field
6104 only in that it can handle packed values of arbitrary type. */
6105
6106 static struct value *
6107 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6108 struct type *arg_type)
6109 {
6110 struct type *type;
6111
6112 arg_type = ada_check_typedef (arg_type);
6113 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6114
6115 /* Handle packed fields. */
6116
6117 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6118 {
6119 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6120 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6121
6122 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
6123 offset + bit_pos / 8,
6124 bit_pos % 8, bit_size, type);
6125 }
6126 else
6127 return value_primitive_field (arg1, offset, fieldno, arg_type);
6128 }
6129
6130 /* Find field with name NAME in object of type TYPE. If found,
6131 set the following for each argument that is non-null:
6132 - *FIELD_TYPE_P to the field's type;
6133 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6134 an object of that type;
6135 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6136 - *BIT_SIZE_P to its size in bits if the field is packed, and
6137 0 otherwise;
6138 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6139 fields up to but not including the desired field, or by the total
6140 number of fields if not found. A NULL value of NAME never
6141 matches; the function just counts visible fields in this case.
6142
6143 Returns 1 if found, 0 otherwise. */
6144
6145 static int
6146 find_struct_field (char *name, struct type *type, int offset,
6147 struct type **field_type_p,
6148 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6149 int *index_p)
6150 {
6151 int i;
6152
6153 type = ada_check_typedef (type);
6154
6155 if (field_type_p != NULL)
6156 *field_type_p = NULL;
6157 if (byte_offset_p != NULL)
6158 *byte_offset_p = 0;
6159 if (bit_offset_p != NULL)
6160 *bit_offset_p = 0;
6161 if (bit_size_p != NULL)
6162 *bit_size_p = 0;
6163
6164 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6165 {
6166 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6167 int fld_offset = offset + bit_pos / 8;
6168 char *t_field_name = TYPE_FIELD_NAME (type, i);
6169
6170 if (t_field_name == NULL)
6171 continue;
6172
6173 else if (name != NULL && field_name_match (t_field_name, name))
6174 {
6175 int bit_size = TYPE_FIELD_BITSIZE (type, i);
6176 if (field_type_p != NULL)
6177 *field_type_p = TYPE_FIELD_TYPE (type, i);
6178 if (byte_offset_p != NULL)
6179 *byte_offset_p = fld_offset;
6180 if (bit_offset_p != NULL)
6181 *bit_offset_p = bit_pos % 8;
6182 if (bit_size_p != NULL)
6183 *bit_size_p = bit_size;
6184 return 1;
6185 }
6186 else if (ada_is_wrapper_field (type, i))
6187 {
6188 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6189 field_type_p, byte_offset_p, bit_offset_p,
6190 bit_size_p, index_p))
6191 return 1;
6192 }
6193 else if (ada_is_variant_part (type, i))
6194 {
6195 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6196 fixed type?? */
6197 int j;
6198 struct type *field_type
6199 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6200
6201 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6202 {
6203 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6204 fld_offset
6205 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6206 field_type_p, byte_offset_p,
6207 bit_offset_p, bit_size_p, index_p))
6208 return 1;
6209 }
6210 }
6211 else if (index_p != NULL)
6212 *index_p += 1;
6213 }
6214 return 0;
6215 }
6216
6217 /* Number of user-visible fields in record type TYPE. */
6218
6219 static int
6220 num_visible_fields (struct type *type)
6221 {
6222 int n;
6223 n = 0;
6224 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6225 return n;
6226 }
6227
6228 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
6229 and search in it assuming it has (class) type TYPE.
6230 If found, return value, else return NULL.
6231
6232 Searches recursively through wrapper fields (e.g., '_parent'). */
6233
6234 static struct value *
6235 ada_search_struct_field (char *name, struct value *arg, int offset,
6236 struct type *type)
6237 {
6238 int i;
6239 type = ada_check_typedef (type);
6240
6241 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6242 {
6243 char *t_field_name = TYPE_FIELD_NAME (type, i);
6244
6245 if (t_field_name == NULL)
6246 continue;
6247
6248 else if (field_name_match (t_field_name, name))
6249 return ada_value_primitive_field (arg, offset, i, type);
6250
6251 else if (ada_is_wrapper_field (type, i))
6252 {
6253 struct value *v = /* Do not let indent join lines here. */
6254 ada_search_struct_field (name, arg,
6255 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6256 TYPE_FIELD_TYPE (type, i));
6257 if (v != NULL)
6258 return v;
6259 }
6260
6261 else if (ada_is_variant_part (type, i))
6262 {
6263 /* PNH: Do we ever get here? See find_struct_field. */
6264 int j;
6265 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6266 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6267
6268 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6269 {
6270 struct value *v = ada_search_struct_field /* Force line break. */
6271 (name, arg,
6272 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6273 TYPE_FIELD_TYPE (field_type, j));
6274 if (v != NULL)
6275 return v;
6276 }
6277 }
6278 }
6279 return NULL;
6280 }
6281
6282 static struct value *ada_index_struct_field_1 (int *, struct value *,
6283 int, struct type *);
6284
6285
6286 /* Return field #INDEX in ARG, where the index is that returned by
6287 * find_struct_field through its INDEX_P argument. Adjust the address
6288 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6289 * If found, return value, else return NULL. */
6290
6291 static struct value *
6292 ada_index_struct_field (int index, struct value *arg, int offset,
6293 struct type *type)
6294 {
6295 return ada_index_struct_field_1 (&index, arg, offset, type);
6296 }
6297
6298
6299 /* Auxiliary function for ada_index_struct_field. Like
6300 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6301 * *INDEX_P. */
6302
6303 static struct value *
6304 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6305 struct type *type)
6306 {
6307 int i;
6308 type = ada_check_typedef (type);
6309
6310 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6311 {
6312 if (TYPE_FIELD_NAME (type, i) == NULL)
6313 continue;
6314 else if (ada_is_wrapper_field (type, i))
6315 {
6316 struct value *v = /* Do not let indent join lines here. */
6317 ada_index_struct_field_1 (index_p, arg,
6318 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6319 TYPE_FIELD_TYPE (type, i));
6320 if (v != NULL)
6321 return v;
6322 }
6323
6324 else if (ada_is_variant_part (type, i))
6325 {
6326 /* PNH: Do we ever get here? See ada_search_struct_field,
6327 find_struct_field. */
6328 error (_("Cannot assign this kind of variant record"));
6329 }
6330 else if (*index_p == 0)
6331 return ada_value_primitive_field (arg, offset, i, type);
6332 else
6333 *index_p -= 1;
6334 }
6335 return NULL;
6336 }
6337
6338 /* Given ARG, a value of type (pointer or reference to a)*
6339 structure/union, extract the component named NAME from the ultimate
6340 target structure/union and return it as a value with its
6341 appropriate type. If ARG is a pointer or reference and the field
6342 is not packed, returns a reference to the field, otherwise the
6343 value of the field (an lvalue if ARG is an lvalue).
6344
6345 The routine searches for NAME among all members of the structure itself
6346 and (recursively) among all members of any wrapper members
6347 (e.g., '_parent').
6348
6349 If NO_ERR, then simply return NULL in case of error, rather than
6350 calling error. */
6351
6352 struct value *
6353 ada_value_struct_elt (struct value *arg, char *name, int no_err)
6354 {
6355 struct type *t, *t1;
6356 struct value *v;
6357
6358 v = NULL;
6359 t1 = t = ada_check_typedef (value_type (arg));
6360 if (TYPE_CODE (t) == TYPE_CODE_REF)
6361 {
6362 t1 = TYPE_TARGET_TYPE (t);
6363 if (t1 == NULL)
6364 goto BadValue;
6365 t1 = ada_check_typedef (t1);
6366 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6367 {
6368 arg = coerce_ref (arg);
6369 t = t1;
6370 }
6371 }
6372
6373 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6374 {
6375 t1 = TYPE_TARGET_TYPE (t);
6376 if (t1 == NULL)
6377 goto BadValue;
6378 t1 = ada_check_typedef (t1);
6379 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6380 {
6381 arg = value_ind (arg);
6382 t = t1;
6383 }
6384 else
6385 break;
6386 }
6387
6388 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
6389 goto BadValue;
6390
6391 if (t1 == t)
6392 v = ada_search_struct_field (name, arg, 0, t);
6393 else
6394 {
6395 int bit_offset, bit_size, byte_offset;
6396 struct type *field_type;
6397 CORE_ADDR address;
6398
6399 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6400 address = value_as_address (arg);
6401 else
6402 address = unpack_pointer (t, value_contents (arg));
6403
6404 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
6405 if (find_struct_field (name, t1, 0,
6406 &field_type, &byte_offset, &bit_offset,
6407 &bit_size, NULL))
6408 {
6409 if (bit_size != 0)
6410 {
6411 if (TYPE_CODE (t) == TYPE_CODE_REF)
6412 arg = ada_coerce_ref (arg);
6413 else
6414 arg = ada_value_ind (arg);
6415 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6416 bit_offset, bit_size,
6417 field_type);
6418 }
6419 else
6420 v = value_from_pointer (lookup_reference_type (field_type),
6421 address + byte_offset);
6422 }
6423 }
6424
6425 if (v != NULL || no_err)
6426 return v;
6427 else
6428 error (_("There is no member named %s."), name);
6429
6430 BadValue:
6431 if (no_err)
6432 return NULL;
6433 else
6434 error (_("Attempt to extract a component of a value that is not a record."));
6435 }
6436
6437 /* Given a type TYPE, look up the type of the component of type named NAME.
6438 If DISPP is non-null, add its byte displacement from the beginning of a
6439 structure (pointed to by a value) of type TYPE to *DISPP (does not
6440 work for packed fields).
6441
6442 Matches any field whose name has NAME as a prefix, possibly
6443 followed by "___".
6444
6445 TYPE can be either a struct or union. If REFOK, TYPE may also
6446 be a (pointer or reference)+ to a struct or union, and the
6447 ultimate target type will be searched.
6448
6449 Looks recursively into variant clauses and parent types.
6450
6451 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6452 TYPE is not a type of the right kind. */
6453
6454 static struct type *
6455 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6456 int noerr, int *dispp)
6457 {
6458 int i;
6459
6460 if (name == NULL)
6461 goto BadName;
6462
6463 if (refok && type != NULL)
6464 while (1)
6465 {
6466 type = ada_check_typedef (type);
6467 if (TYPE_CODE (type) != TYPE_CODE_PTR
6468 && TYPE_CODE (type) != TYPE_CODE_REF)
6469 break;
6470 type = TYPE_TARGET_TYPE (type);
6471 }
6472
6473 if (type == NULL
6474 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6475 && TYPE_CODE (type) != TYPE_CODE_UNION))
6476 {
6477 if (noerr)
6478 return NULL;
6479 else
6480 {
6481 target_terminal_ours ();
6482 gdb_flush (gdb_stdout);
6483 if (type == NULL)
6484 error (_("Type (null) is not a structure or union type"));
6485 else
6486 {
6487 /* XXX: type_sprint */
6488 fprintf_unfiltered (gdb_stderr, _("Type "));
6489 type_print (type, "", gdb_stderr, -1);
6490 error (_(" is not a structure or union type"));
6491 }
6492 }
6493 }
6494
6495 type = to_static_fixed_type (type);
6496
6497 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6498 {
6499 char *t_field_name = TYPE_FIELD_NAME (type, i);
6500 struct type *t;
6501 int disp;
6502
6503 if (t_field_name == NULL)
6504 continue;
6505
6506 else if (field_name_match (t_field_name, name))
6507 {
6508 if (dispp != NULL)
6509 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
6510 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6511 }
6512
6513 else if (ada_is_wrapper_field (type, i))
6514 {
6515 disp = 0;
6516 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6517 0, 1, &disp);
6518 if (t != NULL)
6519 {
6520 if (dispp != NULL)
6521 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6522 return t;
6523 }
6524 }
6525
6526 else if (ada_is_variant_part (type, i))
6527 {
6528 int j;
6529 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6530
6531 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6532 {
6533 disp = 0;
6534 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
6535 name, 0, 1, &disp);
6536 if (t != NULL)
6537 {
6538 if (dispp != NULL)
6539 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6540 return t;
6541 }
6542 }
6543 }
6544
6545 }
6546
6547 BadName:
6548 if (!noerr)
6549 {
6550 target_terminal_ours ();
6551 gdb_flush (gdb_stdout);
6552 if (name == NULL)
6553 {
6554 /* XXX: type_sprint */
6555 fprintf_unfiltered (gdb_stderr, _("Type "));
6556 type_print (type, "", gdb_stderr, -1);
6557 error (_(" has no component named <null>"));
6558 }
6559 else
6560 {
6561 /* XXX: type_sprint */
6562 fprintf_unfiltered (gdb_stderr, _("Type "));
6563 type_print (type, "", gdb_stderr, -1);
6564 error (_(" has no component named %s"), name);
6565 }
6566 }
6567
6568 return NULL;
6569 }
6570
6571 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6572 within a value of type OUTER_TYPE that is stored in GDB at
6573 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6574 numbering from 0) is applicable. Returns -1 if none are. */
6575
6576 int
6577 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
6578 const gdb_byte *outer_valaddr)
6579 {
6580 int others_clause;
6581 int i;
6582 char *discrim_name = ada_variant_discrim_name (var_type);
6583 struct value *outer;
6584 struct value *discrim;
6585 LONGEST discrim_val;
6586
6587 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6588 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6589 if (discrim == NULL)
6590 return -1;
6591 discrim_val = value_as_long (discrim);
6592
6593 others_clause = -1;
6594 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6595 {
6596 if (ada_is_others_clause (var_type, i))
6597 others_clause = i;
6598 else if (ada_in_variant (discrim_val, var_type, i))
6599 return i;
6600 }
6601
6602 return others_clause;
6603 }
6604 \f
6605
6606
6607 /* Dynamic-Sized Records */
6608
6609 /* Strategy: The type ostensibly attached to a value with dynamic size
6610 (i.e., a size that is not statically recorded in the debugging
6611 data) does not accurately reflect the size or layout of the value.
6612 Our strategy is to convert these values to values with accurate,
6613 conventional types that are constructed on the fly. */
6614
6615 /* There is a subtle and tricky problem here. In general, we cannot
6616 determine the size of dynamic records without its data. However,
6617 the 'struct value' data structure, which GDB uses to represent
6618 quantities in the inferior process (the target), requires the size
6619 of the type at the time of its allocation in order to reserve space
6620 for GDB's internal copy of the data. That's why the
6621 'to_fixed_xxx_type' routines take (target) addresses as parameters,
6622 rather than struct value*s.
6623
6624 However, GDB's internal history variables ($1, $2, etc.) are
6625 struct value*s containing internal copies of the data that are not, in
6626 general, the same as the data at their corresponding addresses in
6627 the target. Fortunately, the types we give to these values are all
6628 conventional, fixed-size types (as per the strategy described
6629 above), so that we don't usually have to perform the
6630 'to_fixed_xxx_type' conversions to look at their values.
6631 Unfortunately, there is one exception: if one of the internal
6632 history variables is an array whose elements are unconstrained
6633 records, then we will need to create distinct fixed types for each
6634 element selected. */
6635
6636 /* The upshot of all of this is that many routines take a (type, host
6637 address, target address) triple as arguments to represent a value.
6638 The host address, if non-null, is supposed to contain an internal
6639 copy of the relevant data; otherwise, the program is to consult the
6640 target at the target address. */
6641
6642 /* Assuming that VAL0 represents a pointer value, the result of
6643 dereferencing it. Differs from value_ind in its treatment of
6644 dynamic-sized types. */
6645
6646 struct value *
6647 ada_value_ind (struct value *val0)
6648 {
6649 struct value *val = unwrap_value (value_ind (val0));
6650 return ada_to_fixed_value (val);
6651 }
6652
6653 /* The value resulting from dereferencing any "reference to"
6654 qualifiers on VAL0. */
6655
6656 static struct value *
6657 ada_coerce_ref (struct value *val0)
6658 {
6659 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
6660 {
6661 struct value *val = val0;
6662 val = coerce_ref (val);
6663 val = unwrap_value (val);
6664 return ada_to_fixed_value (val);
6665 }
6666 else
6667 return val0;
6668 }
6669
6670 /* Return OFF rounded upward if necessary to a multiple of
6671 ALIGNMENT (a power of 2). */
6672
6673 static unsigned int
6674 align_value (unsigned int off, unsigned int alignment)
6675 {
6676 return (off + alignment - 1) & ~(alignment - 1);
6677 }
6678
6679 /* Return the bit alignment required for field #F of template type TYPE. */
6680
6681 static unsigned int
6682 field_alignment (struct type *type, int f)
6683 {
6684 const char *name = TYPE_FIELD_NAME (type, f);
6685 int len;
6686 int align_offset;
6687
6688 /* The field name should never be null, unless the debugging information
6689 is somehow malformed. In this case, we assume the field does not
6690 require any alignment. */
6691 if (name == NULL)
6692 return 1;
6693
6694 len = strlen (name);
6695
6696 if (!isdigit (name[len - 1]))
6697 return 1;
6698
6699 if (isdigit (name[len - 2]))
6700 align_offset = len - 2;
6701 else
6702 align_offset = len - 1;
6703
6704 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
6705 return TARGET_CHAR_BIT;
6706
6707 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6708 }
6709
6710 /* Find a symbol named NAME. Ignores ambiguity. */
6711
6712 struct symbol *
6713 ada_find_any_symbol (const char *name)
6714 {
6715 struct symbol *sym;
6716
6717 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6718 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6719 return sym;
6720
6721 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6722 return sym;
6723 }
6724
6725 /* Find a type named NAME. Ignores ambiguity. */
6726
6727 struct type *
6728 ada_find_any_type (const char *name)
6729 {
6730 struct symbol *sym = ada_find_any_symbol (name);
6731
6732 if (sym != NULL)
6733 return SYMBOL_TYPE (sym);
6734
6735 return NULL;
6736 }
6737
6738 /* Given NAME and an associated BLOCK, search all symbols for
6739 NAME suffixed with "___XR", which is the ``renaming'' symbol
6740 associated to NAME. Return this symbol if found, return
6741 NULL otherwise. */
6742
6743 struct symbol *
6744 ada_find_renaming_symbol (const char *name, struct block *block)
6745 {
6746 struct symbol *sym;
6747
6748 sym = find_old_style_renaming_symbol (name, block);
6749
6750 if (sym != NULL)
6751 return sym;
6752
6753 /* Not right yet. FIXME pnh 7/20/2007. */
6754 sym = ada_find_any_symbol (name);
6755 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
6756 return sym;
6757 else
6758 return NULL;
6759 }
6760
6761 static struct symbol *
6762 find_old_style_renaming_symbol (const char *name, struct block *block)
6763 {
6764 const struct symbol *function_sym = block_function (block);
6765 char *rename;
6766
6767 if (function_sym != NULL)
6768 {
6769 /* If the symbol is defined inside a function, NAME is not fully
6770 qualified. This means we need to prepend the function name
6771 as well as adding the ``___XR'' suffix to build the name of
6772 the associated renaming symbol. */
6773 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
6774 /* Function names sometimes contain suffixes used
6775 for instance to qualify nested subprograms. When building
6776 the XR type name, we need to make sure that this suffix is
6777 not included. So do not include any suffix in the function
6778 name length below. */
6779 const int function_name_len = ada_name_prefix_len (function_name);
6780 const int rename_len = function_name_len + 2 /* "__" */
6781 + strlen (name) + 6 /* "___XR\0" */ ;
6782
6783 /* Strip the suffix if necessary. */
6784 function_name[function_name_len] = '\0';
6785
6786 /* Library-level functions are a special case, as GNAT adds
6787 a ``_ada_'' prefix to the function name to avoid namespace
6788 pollution. However, the renaming symbols themselves do not
6789 have this prefix, so we need to skip this prefix if present. */
6790 if (function_name_len > 5 /* "_ada_" */
6791 && strstr (function_name, "_ada_") == function_name)
6792 function_name = function_name + 5;
6793
6794 rename = (char *) alloca (rename_len * sizeof (char));
6795 sprintf (rename, "%s__%s___XR", function_name, name);
6796 }
6797 else
6798 {
6799 const int rename_len = strlen (name) + 6;
6800 rename = (char *) alloca (rename_len * sizeof (char));
6801 sprintf (rename, "%s___XR", name);
6802 }
6803
6804 return ada_find_any_symbol (rename);
6805 }
6806
6807 /* Because of GNAT encoding conventions, several GDB symbols may match a
6808 given type name. If the type denoted by TYPE0 is to be preferred to
6809 that of TYPE1 for purposes of type printing, return non-zero;
6810 otherwise return 0. */
6811
6812 int
6813 ada_prefer_type (struct type *type0, struct type *type1)
6814 {
6815 if (type1 == NULL)
6816 return 1;
6817 else if (type0 == NULL)
6818 return 0;
6819 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6820 return 1;
6821 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6822 return 0;
6823 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6824 return 1;
6825 else if (ada_is_packed_array_type (type0))
6826 return 1;
6827 else if (ada_is_array_descriptor_type (type0)
6828 && !ada_is_array_descriptor_type (type1))
6829 return 1;
6830 else
6831 {
6832 const char *type0_name = type_name_no_tag (type0);
6833 const char *type1_name = type_name_no_tag (type1);
6834
6835 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
6836 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
6837 return 1;
6838 }
6839 return 0;
6840 }
6841
6842 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
6843 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6844
6845 char *
6846 ada_type_name (struct type *type)
6847 {
6848 if (type == NULL)
6849 return NULL;
6850 else if (TYPE_NAME (type) != NULL)
6851 return TYPE_NAME (type);
6852 else
6853 return TYPE_TAG_NAME (type);
6854 }
6855
6856 /* Find a parallel type to TYPE whose name is formed by appending
6857 SUFFIX to the name of TYPE. */
6858
6859 struct type *
6860 ada_find_parallel_type (struct type *type, const char *suffix)
6861 {
6862 static char *name;
6863 static size_t name_len = 0;
6864 int len;
6865 char *typename = ada_type_name (type);
6866
6867 if (typename == NULL)
6868 return NULL;
6869
6870 len = strlen (typename);
6871
6872 GROW_VECT (name, name_len, len + strlen (suffix) + 1);
6873
6874 strcpy (name, typename);
6875 strcpy (name + len, suffix);
6876
6877 return ada_find_any_type (name);
6878 }
6879
6880
6881 /* If TYPE is a variable-size record type, return the corresponding template
6882 type describing its fields. Otherwise, return NULL. */
6883
6884 static struct type *
6885 dynamic_template_type (struct type *type)
6886 {
6887 type = ada_check_typedef (type);
6888
6889 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
6890 || ada_type_name (type) == NULL)
6891 return NULL;
6892 else
6893 {
6894 int len = strlen (ada_type_name (type));
6895 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
6896 return type;
6897 else
6898 return ada_find_parallel_type (type, "___XVE");
6899 }
6900 }
6901
6902 /* Assuming that TEMPL_TYPE is a union or struct type, returns
6903 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
6904
6905 static int
6906 is_dynamic_field (struct type *templ_type, int field_num)
6907 {
6908 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
6909 return name != NULL
6910 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
6911 && strstr (name, "___XVL") != NULL;
6912 }
6913
6914 /* The index of the variant field of TYPE, or -1 if TYPE does not
6915 represent a variant record type. */
6916
6917 static int
6918 variant_field_index (struct type *type)
6919 {
6920 int f;
6921
6922 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6923 return -1;
6924
6925 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
6926 {
6927 if (ada_is_variant_part (type, f))
6928 return f;
6929 }
6930 return -1;
6931 }
6932
6933 /* A record type with no fields. */
6934
6935 static struct type *
6936 empty_record (struct objfile *objfile)
6937 {
6938 struct type *type = alloc_type (objfile);
6939 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6940 TYPE_NFIELDS (type) = 0;
6941 TYPE_FIELDS (type) = NULL;
6942 TYPE_NAME (type) = "<empty>";
6943 TYPE_TAG_NAME (type) = NULL;
6944 TYPE_FLAGS (type) = 0;
6945 TYPE_LENGTH (type) = 0;
6946 return type;
6947 }
6948
6949 /* An ordinary record type (with fixed-length fields) that describes
6950 the value of type TYPE at VALADDR or ADDRESS (see comments at
6951 the beginning of this section) VAL according to GNAT conventions.
6952 DVAL0 should describe the (portion of a) record that contains any
6953 necessary discriminants. It should be NULL if value_type (VAL) is
6954 an outer-level type (i.e., as opposed to a branch of a variant.) A
6955 variant field (unless unchecked) is replaced by a particular branch
6956 of the variant.
6957
6958 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
6959 length are not statically known are discarded. As a consequence,
6960 VALADDR, ADDRESS and DVAL0 are ignored.
6961
6962 NOTE: Limitations: For now, we assume that dynamic fields and
6963 variants occupy whole numbers of bytes. However, they need not be
6964 byte-aligned. */
6965
6966 struct type *
6967 ada_template_to_fixed_record_type_1 (struct type *type,
6968 const gdb_byte *valaddr,
6969 CORE_ADDR address, struct value *dval0,
6970 int keep_dynamic_fields)
6971 {
6972 struct value *mark = value_mark ();
6973 struct value *dval;
6974 struct type *rtype;
6975 int nfields, bit_len;
6976 int variant_field;
6977 long off;
6978 int fld_bit_len, bit_incr;
6979 int f;
6980
6981 /* Compute the number of fields in this record type that are going
6982 to be processed: unless keep_dynamic_fields, this includes only
6983 fields whose position and length are static will be processed. */
6984 if (keep_dynamic_fields)
6985 nfields = TYPE_NFIELDS (type);
6986 else
6987 {
6988 nfields = 0;
6989 while (nfields < TYPE_NFIELDS (type)
6990 && !ada_is_variant_part (type, nfields)
6991 && !is_dynamic_field (type, nfields))
6992 nfields++;
6993 }
6994
6995 rtype = alloc_type (TYPE_OBJFILE (type));
6996 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6997 INIT_CPLUS_SPECIFIC (rtype);
6998 TYPE_NFIELDS (rtype) = nfields;
6999 TYPE_FIELDS (rtype) = (struct field *)
7000 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7001 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7002 TYPE_NAME (rtype) = ada_type_name (type);
7003 TYPE_TAG_NAME (rtype) = NULL;
7004 TYPE_FLAGS (rtype) |= TYPE_FLAG_FIXED_INSTANCE;
7005
7006 off = 0;
7007 bit_len = 0;
7008 variant_field = -1;
7009
7010 for (f = 0; f < nfields; f += 1)
7011 {
7012 off = align_value (off, field_alignment (type, f))
7013 + TYPE_FIELD_BITPOS (type, f);
7014 TYPE_FIELD_BITPOS (rtype, f) = off;
7015 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7016
7017 if (ada_is_variant_part (type, f))
7018 {
7019 variant_field = f;
7020 fld_bit_len = bit_incr = 0;
7021 }
7022 else if (is_dynamic_field (type, f))
7023 {
7024 if (dval0 == NULL)
7025 dval = value_from_contents_and_address (rtype, valaddr, address);
7026 else
7027 dval = dval0;
7028
7029 /* Get the fixed type of the field. Note that, in this case, we
7030 do not want to get the real type out of the tag: if the current
7031 field is the parent part of a tagged record, we will get the
7032 tag of the object. Clearly wrong: the real type of the parent
7033 is not the real type of the child. We would end up in an infinite
7034 loop. */
7035 TYPE_FIELD_TYPE (rtype, f) =
7036 ada_to_fixed_type
7037 (ada_get_base_type
7038 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f))),
7039 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7040 cond_offset_target (address, off / TARGET_CHAR_BIT), dval, 0);
7041 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7042 bit_incr = fld_bit_len =
7043 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7044 }
7045 else
7046 {
7047 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
7048 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7049 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7050 bit_incr = fld_bit_len =
7051 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7052 else
7053 bit_incr = fld_bit_len =
7054 TYPE_LENGTH (TYPE_FIELD_TYPE (type, f)) * TARGET_CHAR_BIT;
7055 }
7056 if (off + fld_bit_len > bit_len)
7057 bit_len = off + fld_bit_len;
7058 off += bit_incr;
7059 TYPE_LENGTH (rtype) =
7060 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7061 }
7062
7063 /* We handle the variant part, if any, at the end because of certain
7064 odd cases in which it is re-ordered so as NOT the last field of
7065 the record. This can happen in the presence of representation
7066 clauses. */
7067 if (variant_field >= 0)
7068 {
7069 struct type *branch_type;
7070
7071 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7072
7073 if (dval0 == NULL)
7074 dval = value_from_contents_and_address (rtype, valaddr, address);
7075 else
7076 dval = dval0;
7077
7078 branch_type =
7079 to_fixed_variant_branch_type
7080 (TYPE_FIELD_TYPE (type, variant_field),
7081 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7082 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7083 if (branch_type == NULL)
7084 {
7085 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
7086 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7087 TYPE_NFIELDS (rtype) -= 1;
7088 }
7089 else
7090 {
7091 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7092 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7093 fld_bit_len =
7094 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
7095 TARGET_CHAR_BIT;
7096 if (off + fld_bit_len > bit_len)
7097 bit_len = off + fld_bit_len;
7098 TYPE_LENGTH (rtype) =
7099 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7100 }
7101 }
7102
7103 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7104 should contain the alignment of that record, which should be a strictly
7105 positive value. If null or negative, then something is wrong, most
7106 probably in the debug info. In that case, we don't round up the size
7107 of the resulting type. If this record is not part of another structure,
7108 the current RTYPE length might be good enough for our purposes. */
7109 if (TYPE_LENGTH (type) <= 0)
7110 {
7111 if (TYPE_NAME (rtype))
7112 warning (_("Invalid type size for `%s' detected: %d."),
7113 TYPE_NAME (rtype), TYPE_LENGTH (type));
7114 else
7115 warning (_("Invalid type size for <unnamed> detected: %d."),
7116 TYPE_LENGTH (type));
7117 }
7118 else
7119 {
7120 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
7121 TYPE_LENGTH (type));
7122 }
7123
7124 value_free_to_mark (mark);
7125 if (TYPE_LENGTH (rtype) > varsize_limit)
7126 error (_("record type with dynamic size is larger than varsize-limit"));
7127 return rtype;
7128 }
7129
7130 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7131 of 1. */
7132
7133 static struct type *
7134 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
7135 CORE_ADDR address, struct value *dval0)
7136 {
7137 return ada_template_to_fixed_record_type_1 (type, valaddr,
7138 address, dval0, 1);
7139 }
7140
7141 /* An ordinary record type in which ___XVL-convention fields and
7142 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7143 static approximations, containing all possible fields. Uses
7144 no runtime values. Useless for use in values, but that's OK,
7145 since the results are used only for type determinations. Works on both
7146 structs and unions. Representation note: to save space, we memorize
7147 the result of this function in the TYPE_TARGET_TYPE of the
7148 template type. */
7149
7150 static struct type *
7151 template_to_static_fixed_type (struct type *type0)
7152 {
7153 struct type *type;
7154 int nfields;
7155 int f;
7156
7157 if (TYPE_TARGET_TYPE (type0) != NULL)
7158 return TYPE_TARGET_TYPE (type0);
7159
7160 nfields = TYPE_NFIELDS (type0);
7161 type = type0;
7162
7163 for (f = 0; f < nfields; f += 1)
7164 {
7165 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
7166 struct type *new_type;
7167
7168 if (is_dynamic_field (type0, f))
7169 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
7170 else
7171 new_type = static_unwrap_type (field_type);
7172 if (type == type0 && new_type != field_type)
7173 {
7174 TYPE_TARGET_TYPE (type0) = type = alloc_type (TYPE_OBJFILE (type0));
7175 TYPE_CODE (type) = TYPE_CODE (type0);
7176 INIT_CPLUS_SPECIFIC (type);
7177 TYPE_NFIELDS (type) = nfields;
7178 TYPE_FIELDS (type) = (struct field *)
7179 TYPE_ALLOC (type, nfields * sizeof (struct field));
7180 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7181 sizeof (struct field) * nfields);
7182 TYPE_NAME (type) = ada_type_name (type0);
7183 TYPE_TAG_NAME (type) = NULL;
7184 TYPE_FLAGS (type) |= TYPE_FLAG_FIXED_INSTANCE;
7185 TYPE_LENGTH (type) = 0;
7186 }
7187 TYPE_FIELD_TYPE (type, f) = new_type;
7188 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
7189 }
7190 return type;
7191 }
7192
7193 /* Given an object of type TYPE whose contents are at VALADDR and
7194 whose address in memory is ADDRESS, returns a revision of TYPE --
7195 a non-dynamic-sized record with a variant part -- in which
7196 the variant part is replaced with the appropriate branch. Looks
7197 for discriminant values in DVAL0, which can be NULL if the record
7198 contains the necessary discriminant values. */
7199
7200 static struct type *
7201 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
7202 CORE_ADDR address, struct value *dval0)
7203 {
7204 struct value *mark = value_mark ();
7205 struct value *dval;
7206 struct type *rtype;
7207 struct type *branch_type;
7208 int nfields = TYPE_NFIELDS (type);
7209 int variant_field = variant_field_index (type);
7210
7211 if (variant_field == -1)
7212 return type;
7213
7214 if (dval0 == NULL)
7215 dval = value_from_contents_and_address (type, valaddr, address);
7216 else
7217 dval = dval0;
7218
7219 rtype = alloc_type (TYPE_OBJFILE (type));
7220 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7221 INIT_CPLUS_SPECIFIC (rtype);
7222 TYPE_NFIELDS (rtype) = nfields;
7223 TYPE_FIELDS (rtype) =
7224 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7225 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
7226 sizeof (struct field) * nfields);
7227 TYPE_NAME (rtype) = ada_type_name (type);
7228 TYPE_TAG_NAME (rtype) = NULL;
7229 TYPE_FLAGS (rtype) |= TYPE_FLAG_FIXED_INSTANCE;
7230 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7231
7232 branch_type = to_fixed_variant_branch_type
7233 (TYPE_FIELD_TYPE (type, variant_field),
7234 cond_offset_host (valaddr,
7235 TYPE_FIELD_BITPOS (type, variant_field)
7236 / TARGET_CHAR_BIT),
7237 cond_offset_target (address,
7238 TYPE_FIELD_BITPOS (type, variant_field)
7239 / TARGET_CHAR_BIT), dval);
7240 if (branch_type == NULL)
7241 {
7242 int f;
7243 for (f = variant_field + 1; f < nfields; f += 1)
7244 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7245 TYPE_NFIELDS (rtype) -= 1;
7246 }
7247 else
7248 {
7249 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7250 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7251 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7252 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7253 }
7254 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
7255
7256 value_free_to_mark (mark);
7257 return rtype;
7258 }
7259
7260 /* An ordinary record type (with fixed-length fields) that describes
7261 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7262 beginning of this section]. Any necessary discriminants' values
7263 should be in DVAL, a record value; it may be NULL if the object
7264 at ADDR itself contains any necessary discriminant values.
7265 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7266 values from the record are needed. Except in the case that DVAL,
7267 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7268 unchecked) is replaced by a particular branch of the variant.
7269
7270 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7271 is questionable and may be removed. It can arise during the
7272 processing of an unconstrained-array-of-record type where all the
7273 variant branches have exactly the same size. This is because in
7274 such cases, the compiler does not bother to use the XVS convention
7275 when encoding the record. I am currently dubious of this
7276 shortcut and suspect the compiler should be altered. FIXME. */
7277
7278 static struct type *
7279 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7280 CORE_ADDR address, struct value *dval)
7281 {
7282 struct type *templ_type;
7283
7284 if (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE)
7285 return type0;
7286
7287 templ_type = dynamic_template_type (type0);
7288
7289 if (templ_type != NULL)
7290 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7291 else if (variant_field_index (type0) >= 0)
7292 {
7293 if (dval == NULL && valaddr == NULL && address == 0)
7294 return type0;
7295 return to_record_with_fixed_variant_part (type0, valaddr, address,
7296 dval);
7297 }
7298 else
7299 {
7300 TYPE_FLAGS (type0) |= TYPE_FLAG_FIXED_INSTANCE;
7301 return type0;
7302 }
7303
7304 }
7305
7306 /* An ordinary record type (with fixed-length fields) that describes
7307 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7308 union type. Any necessary discriminants' values should be in DVAL,
7309 a record value. That is, this routine selects the appropriate
7310 branch of the union at ADDR according to the discriminant value
7311 indicated in the union's type name. */
7312
7313 static struct type *
7314 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7315 CORE_ADDR address, struct value *dval)
7316 {
7317 int which;
7318 struct type *templ_type;
7319 struct type *var_type;
7320
7321 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7322 var_type = TYPE_TARGET_TYPE (var_type0);
7323 else
7324 var_type = var_type0;
7325
7326 templ_type = ada_find_parallel_type (var_type, "___XVU");
7327
7328 if (templ_type != NULL)
7329 var_type = templ_type;
7330
7331 which =
7332 ada_which_variant_applies (var_type,
7333 value_type (dval), value_contents (dval));
7334
7335 if (which < 0)
7336 return empty_record (TYPE_OBJFILE (var_type));
7337 else if (is_dynamic_field (var_type, which))
7338 return to_fixed_record_type
7339 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7340 valaddr, address, dval);
7341 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
7342 return
7343 to_fixed_record_type
7344 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
7345 else
7346 return TYPE_FIELD_TYPE (var_type, which);
7347 }
7348
7349 /* Assuming that TYPE0 is an array type describing the type of a value
7350 at ADDR, and that DVAL describes a record containing any
7351 discriminants used in TYPE0, returns a type for the value that
7352 contains no dynamic components (that is, no components whose sizes
7353 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7354 true, gives an error message if the resulting type's size is over
7355 varsize_limit. */
7356
7357 static struct type *
7358 to_fixed_array_type (struct type *type0, struct value *dval,
7359 int ignore_too_big)
7360 {
7361 struct type *index_type_desc;
7362 struct type *result;
7363
7364 if (ada_is_packed_array_type (type0) /* revisit? */
7365 || (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE))
7366 return type0;
7367
7368 index_type_desc = ada_find_parallel_type (type0, "___XA");
7369 if (index_type_desc == NULL)
7370 {
7371 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
7372 /* NOTE: elt_type---the fixed version of elt_type0---should never
7373 depend on the contents of the array in properly constructed
7374 debugging data. */
7375 /* Create a fixed version of the array element type.
7376 We're not providing the address of an element here,
7377 and thus the actual object value cannot be inspected to do
7378 the conversion. This should not be a problem, since arrays of
7379 unconstrained objects are not allowed. In particular, all
7380 the elements of an array of a tagged type should all be of
7381 the same type specified in the debugging info. No need to
7382 consult the object tag. */
7383 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
7384
7385 if (elt_type0 == elt_type)
7386 result = type0;
7387 else
7388 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
7389 elt_type, TYPE_INDEX_TYPE (type0));
7390 }
7391 else
7392 {
7393 int i;
7394 struct type *elt_type0;
7395
7396 elt_type0 = type0;
7397 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
7398 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7399
7400 /* NOTE: result---the fixed version of elt_type0---should never
7401 depend on the contents of the array in properly constructed
7402 debugging data. */
7403 /* Create a fixed version of the array element type.
7404 We're not providing the address of an element here,
7405 and thus the actual object value cannot be inspected to do
7406 the conversion. This should not be a problem, since arrays of
7407 unconstrained objects are not allowed. In particular, all
7408 the elements of an array of a tagged type should all be of
7409 the same type specified in the debugging info. No need to
7410 consult the object tag. */
7411 result =
7412 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
7413 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
7414 {
7415 struct type *range_type =
7416 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, i),
7417 dval, TYPE_OBJFILE (type0));
7418 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
7419 result, range_type);
7420 }
7421 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
7422 error (_("array type with dynamic size is larger than varsize-limit"));
7423 }
7424
7425 TYPE_FLAGS (result) |= TYPE_FLAG_FIXED_INSTANCE;
7426 return result;
7427 }
7428
7429
7430 /* A standard type (containing no dynamically sized components)
7431 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7432 DVAL describes a record containing any discriminants used in TYPE0,
7433 and may be NULL if there are none, or if the object of type TYPE at
7434 ADDRESS or in VALADDR contains these discriminants.
7435
7436 If CHECK_TAG is not null, in the case of tagged types, this function
7437 attempts to locate the object's tag and use it to compute the actual
7438 type. However, when ADDRESS is null, we cannot use it to determine the
7439 location of the tag, and therefore compute the tagged type's actual type.
7440 So we return the tagged type without consulting the tag. */
7441
7442 static struct type *
7443 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
7444 CORE_ADDR address, struct value *dval, int check_tag)
7445 {
7446 type = ada_check_typedef (type);
7447 switch (TYPE_CODE (type))
7448 {
7449 default:
7450 return type;
7451 case TYPE_CODE_STRUCT:
7452 {
7453 struct type *static_type = to_static_fixed_type (type);
7454 struct type *fixed_record_type =
7455 to_fixed_record_type (type, valaddr, address, NULL);
7456 /* If STATIC_TYPE is a tagged type and we know the object's address,
7457 then we can determine its tag, and compute the object's actual
7458 type from there. Note that we have to use the fixed record
7459 type (the parent part of the record may have dynamic fields
7460 and the way the location of _tag is expressed may depend on
7461 them). */
7462
7463 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
7464 {
7465 struct type *real_type =
7466 type_from_tag (value_tag_from_contents_and_address
7467 (fixed_record_type,
7468 valaddr,
7469 address));
7470 if (real_type != NULL)
7471 return to_fixed_record_type (real_type, valaddr, address, NULL);
7472 }
7473 return fixed_record_type;
7474 }
7475 case TYPE_CODE_ARRAY:
7476 return to_fixed_array_type (type, dval, 1);
7477 case TYPE_CODE_UNION:
7478 if (dval == NULL)
7479 return type;
7480 else
7481 return to_fixed_variant_branch_type (type, valaddr, address, dval);
7482 }
7483 }
7484
7485 /* The same as ada_to_fixed_type_1, except that it preserves the type
7486 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
7487 ada_to_fixed_type_1 would return the type referenced by TYPE. */
7488
7489 struct type *
7490 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
7491 CORE_ADDR address, struct value *dval, int check_tag)
7492
7493 {
7494 struct type *fixed_type =
7495 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
7496
7497 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
7498 && TYPE_TARGET_TYPE (type) == fixed_type)
7499 return type;
7500
7501 return fixed_type;
7502 }
7503
7504 /* A standard (static-sized) type corresponding as well as possible to
7505 TYPE0, but based on no runtime data. */
7506
7507 static struct type *
7508 to_static_fixed_type (struct type *type0)
7509 {
7510 struct type *type;
7511
7512 if (type0 == NULL)
7513 return NULL;
7514
7515 if (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE)
7516 return type0;
7517
7518 type0 = ada_check_typedef (type0);
7519
7520 switch (TYPE_CODE (type0))
7521 {
7522 default:
7523 return type0;
7524 case TYPE_CODE_STRUCT:
7525 type = dynamic_template_type (type0);
7526 if (type != NULL)
7527 return template_to_static_fixed_type (type);
7528 else
7529 return template_to_static_fixed_type (type0);
7530 case TYPE_CODE_UNION:
7531 type = ada_find_parallel_type (type0, "___XVU");
7532 if (type != NULL)
7533 return template_to_static_fixed_type (type);
7534 else
7535 return template_to_static_fixed_type (type0);
7536 }
7537 }
7538
7539 /* A static approximation of TYPE with all type wrappers removed. */
7540
7541 static struct type *
7542 static_unwrap_type (struct type *type)
7543 {
7544 if (ada_is_aligner_type (type))
7545 {
7546 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
7547 if (ada_type_name (type1) == NULL)
7548 TYPE_NAME (type1) = ada_type_name (type);
7549
7550 return static_unwrap_type (type1);
7551 }
7552 else
7553 {
7554 struct type *raw_real_type = ada_get_base_type (type);
7555 if (raw_real_type == type)
7556 return type;
7557 else
7558 return to_static_fixed_type (raw_real_type);
7559 }
7560 }
7561
7562 /* In some cases, incomplete and private types require
7563 cross-references that are not resolved as records (for example,
7564 type Foo;
7565 type FooP is access Foo;
7566 V: FooP;
7567 type Foo is array ...;
7568 ). In these cases, since there is no mechanism for producing
7569 cross-references to such types, we instead substitute for FooP a
7570 stub enumeration type that is nowhere resolved, and whose tag is
7571 the name of the actual type. Call these types "non-record stubs". */
7572
7573 /* A type equivalent to TYPE that is not a non-record stub, if one
7574 exists, otherwise TYPE. */
7575
7576 struct type *
7577 ada_check_typedef (struct type *type)
7578 {
7579 if (type == NULL)
7580 return NULL;
7581
7582 CHECK_TYPEDEF (type);
7583 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
7584 || !TYPE_STUB (type)
7585 || TYPE_TAG_NAME (type) == NULL)
7586 return type;
7587 else
7588 {
7589 char *name = TYPE_TAG_NAME (type);
7590 struct type *type1 = ada_find_any_type (name);
7591 return (type1 == NULL) ? type : type1;
7592 }
7593 }
7594
7595 /* A value representing the data at VALADDR/ADDRESS as described by
7596 type TYPE0, but with a standard (static-sized) type that correctly
7597 describes it. If VAL0 is not NULL and TYPE0 already is a standard
7598 type, then return VAL0 [this feature is simply to avoid redundant
7599 creation of struct values]. */
7600
7601 static struct value *
7602 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
7603 struct value *val0)
7604 {
7605 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
7606 if (type == type0 && val0 != NULL)
7607 return val0;
7608 else
7609 return value_from_contents_and_address (type, 0, address);
7610 }
7611
7612 /* A value representing VAL, but with a standard (static-sized) type
7613 that correctly describes it. Does not necessarily create a new
7614 value. */
7615
7616 static struct value *
7617 ada_to_fixed_value (struct value *val)
7618 {
7619 return ada_to_fixed_value_create (value_type (val),
7620 VALUE_ADDRESS (val) + value_offset (val),
7621 val);
7622 }
7623
7624 /* A value representing VAL, but with a standard (static-sized) type
7625 chosen to approximate the real type of VAL as well as possible, but
7626 without consulting any runtime values. For Ada dynamic-sized
7627 types, therefore, the type of the result is likely to be inaccurate. */
7628
7629 struct value *
7630 ada_to_static_fixed_value (struct value *val)
7631 {
7632 struct type *type =
7633 to_static_fixed_type (static_unwrap_type (value_type (val)));
7634 if (type == value_type (val))
7635 return val;
7636 else
7637 return coerce_unspec_val_to_type (val, type);
7638 }
7639 \f
7640
7641 /* Attributes */
7642
7643 /* Table mapping attribute numbers to names.
7644 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
7645
7646 static const char *attribute_names[] = {
7647 "<?>",
7648
7649 "first",
7650 "last",
7651 "length",
7652 "image",
7653 "max",
7654 "min",
7655 "modulus",
7656 "pos",
7657 "size",
7658 "tag",
7659 "val",
7660 0
7661 };
7662
7663 const char *
7664 ada_attribute_name (enum exp_opcode n)
7665 {
7666 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7667 return attribute_names[n - OP_ATR_FIRST + 1];
7668 else
7669 return attribute_names[0];
7670 }
7671
7672 /* Evaluate the 'POS attribute applied to ARG. */
7673
7674 static LONGEST
7675 pos_atr (struct value *arg)
7676 {
7677 struct type *type = value_type (arg);
7678
7679 if (!discrete_type_p (type))
7680 error (_("'POS only defined on discrete types"));
7681
7682 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7683 {
7684 int i;
7685 LONGEST v = value_as_long (arg);
7686
7687 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7688 {
7689 if (v == TYPE_FIELD_BITPOS (type, i))
7690 return i;
7691 }
7692 error (_("enumeration value is invalid: can't find 'POS"));
7693 }
7694 else
7695 return value_as_long (arg);
7696 }
7697
7698 static struct value *
7699 value_pos_atr (struct value *arg)
7700 {
7701 return value_from_longest (builtin_type_int, pos_atr (arg));
7702 }
7703
7704 /* Evaluate the TYPE'VAL attribute applied to ARG. */
7705
7706 static struct value *
7707 value_val_atr (struct type *type, struct value *arg)
7708 {
7709 if (!discrete_type_p (type))
7710 error (_("'VAL only defined on discrete types"));
7711 if (!integer_type_p (value_type (arg)))
7712 error (_("'VAL requires integral argument"));
7713
7714 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7715 {
7716 long pos = value_as_long (arg);
7717 if (pos < 0 || pos >= TYPE_NFIELDS (type))
7718 error (_("argument to 'VAL out of range"));
7719 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
7720 }
7721 else
7722 return value_from_longest (type, value_as_long (arg));
7723 }
7724 \f
7725
7726 /* Evaluation */
7727
7728 /* True if TYPE appears to be an Ada character type.
7729 [At the moment, this is true only for Character and Wide_Character;
7730 It is a heuristic test that could stand improvement]. */
7731
7732 int
7733 ada_is_character_type (struct type *type)
7734 {
7735 const char *name;
7736
7737 /* If the type code says it's a character, then assume it really is,
7738 and don't check any further. */
7739 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
7740 return 1;
7741
7742 /* Otherwise, assume it's a character type iff it is a discrete type
7743 with a known character type name. */
7744 name = ada_type_name (type);
7745 return (name != NULL
7746 && (TYPE_CODE (type) == TYPE_CODE_INT
7747 || TYPE_CODE (type) == TYPE_CODE_RANGE)
7748 && (strcmp (name, "character") == 0
7749 || strcmp (name, "wide_character") == 0
7750 || strcmp (name, "wide_wide_character") == 0
7751 || strcmp (name, "unsigned char") == 0));
7752 }
7753
7754 /* True if TYPE appears to be an Ada string type. */
7755
7756 int
7757 ada_is_string_type (struct type *type)
7758 {
7759 type = ada_check_typedef (type);
7760 if (type != NULL
7761 && TYPE_CODE (type) != TYPE_CODE_PTR
7762 && (ada_is_simple_array_type (type)
7763 || ada_is_array_descriptor_type (type))
7764 && ada_array_arity (type) == 1)
7765 {
7766 struct type *elttype = ada_array_element_type (type, 1);
7767
7768 return ada_is_character_type (elttype);
7769 }
7770 else
7771 return 0;
7772 }
7773
7774
7775 /* True if TYPE is a struct type introduced by the compiler to force the
7776 alignment of a value. Such types have a single field with a
7777 distinctive name. */
7778
7779 int
7780 ada_is_aligner_type (struct type *type)
7781 {
7782 type = ada_check_typedef (type);
7783
7784 /* If we can find a parallel XVS type, then the XVS type should
7785 be used instead of this type. And hence, this is not an aligner
7786 type. */
7787 if (ada_find_parallel_type (type, "___XVS") != NULL)
7788 return 0;
7789
7790 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
7791 && TYPE_NFIELDS (type) == 1
7792 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
7793 }
7794
7795 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
7796 the parallel type. */
7797
7798 struct type *
7799 ada_get_base_type (struct type *raw_type)
7800 {
7801 struct type *real_type_namer;
7802 struct type *raw_real_type;
7803
7804 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
7805 return raw_type;
7806
7807 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
7808 if (real_type_namer == NULL
7809 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
7810 || TYPE_NFIELDS (real_type_namer) != 1)
7811 return raw_type;
7812
7813 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
7814 if (raw_real_type == NULL)
7815 return raw_type;
7816 else
7817 return raw_real_type;
7818 }
7819
7820 /* The type of value designated by TYPE, with all aligners removed. */
7821
7822 struct type *
7823 ada_aligned_type (struct type *type)
7824 {
7825 if (ada_is_aligner_type (type))
7826 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
7827 else
7828 return ada_get_base_type (type);
7829 }
7830
7831
7832 /* The address of the aligned value in an object at address VALADDR
7833 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
7834
7835 const gdb_byte *
7836 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
7837 {
7838 if (ada_is_aligner_type (type))
7839 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
7840 valaddr +
7841 TYPE_FIELD_BITPOS (type,
7842 0) / TARGET_CHAR_BIT);
7843 else
7844 return valaddr;
7845 }
7846
7847
7848
7849 /* The printed representation of an enumeration literal with encoded
7850 name NAME. The value is good to the next call of ada_enum_name. */
7851 const char *
7852 ada_enum_name (const char *name)
7853 {
7854 static char *result;
7855 static size_t result_len = 0;
7856 char *tmp;
7857
7858 /* First, unqualify the enumeration name:
7859 1. Search for the last '.' character. If we find one, then skip
7860 all the preceeding characters, the unqualified name starts
7861 right after that dot.
7862 2. Otherwise, we may be debugging on a target where the compiler
7863 translates dots into "__". Search forward for double underscores,
7864 but stop searching when we hit an overloading suffix, which is
7865 of the form "__" followed by digits. */
7866
7867 tmp = strrchr (name, '.');
7868 if (tmp != NULL)
7869 name = tmp + 1;
7870 else
7871 {
7872 while ((tmp = strstr (name, "__")) != NULL)
7873 {
7874 if (isdigit (tmp[2]))
7875 break;
7876 else
7877 name = tmp + 2;
7878 }
7879 }
7880
7881 if (name[0] == 'Q')
7882 {
7883 int v;
7884 if (name[1] == 'U' || name[1] == 'W')
7885 {
7886 if (sscanf (name + 2, "%x", &v) != 1)
7887 return name;
7888 }
7889 else
7890 return name;
7891
7892 GROW_VECT (result, result_len, 16);
7893 if (isascii (v) && isprint (v))
7894 sprintf (result, "'%c'", v);
7895 else if (name[1] == 'U')
7896 sprintf (result, "[\"%02x\"]", v);
7897 else
7898 sprintf (result, "[\"%04x\"]", v);
7899
7900 return result;
7901 }
7902 else
7903 {
7904 tmp = strstr (name, "__");
7905 if (tmp == NULL)
7906 tmp = strstr (name, "$");
7907 if (tmp != NULL)
7908 {
7909 GROW_VECT (result, result_len, tmp - name + 1);
7910 strncpy (result, name, tmp - name);
7911 result[tmp - name] = '\0';
7912 return result;
7913 }
7914
7915 return name;
7916 }
7917 }
7918
7919 static struct value *
7920 evaluate_subexp (struct type *expect_type, struct expression *exp, int *pos,
7921 enum noside noside)
7922 {
7923 return (*exp->language_defn->la_exp_desc->evaluate_exp)
7924 (expect_type, exp, pos, noside);
7925 }
7926
7927 /* Evaluate the subexpression of EXP starting at *POS as for
7928 evaluate_type, updating *POS to point just past the evaluated
7929 expression. */
7930
7931 static struct value *
7932 evaluate_subexp_type (struct expression *exp, int *pos)
7933 {
7934 return (*exp->language_defn->la_exp_desc->evaluate_exp)
7935 (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
7936 }
7937
7938 /* If VAL is wrapped in an aligner or subtype wrapper, return the
7939 value it wraps. */
7940
7941 static struct value *
7942 unwrap_value (struct value *val)
7943 {
7944 struct type *type = ada_check_typedef (value_type (val));
7945 if (ada_is_aligner_type (type))
7946 {
7947 struct value *v = ada_value_struct_elt (val, "F", 0);
7948 struct type *val_type = ada_check_typedef (value_type (v));
7949 if (ada_type_name (val_type) == NULL)
7950 TYPE_NAME (val_type) = ada_type_name (type);
7951
7952 return unwrap_value (v);
7953 }
7954 else
7955 {
7956 struct type *raw_real_type =
7957 ada_check_typedef (ada_get_base_type (type));
7958
7959 if (type == raw_real_type)
7960 return val;
7961
7962 return
7963 coerce_unspec_val_to_type
7964 (val, ada_to_fixed_type (raw_real_type, 0,
7965 VALUE_ADDRESS (val) + value_offset (val),
7966 NULL, 1));
7967 }
7968 }
7969
7970 static struct value *
7971 cast_to_fixed (struct type *type, struct value *arg)
7972 {
7973 LONGEST val;
7974
7975 if (type == value_type (arg))
7976 return arg;
7977 else if (ada_is_fixed_point_type (value_type (arg)))
7978 val = ada_float_to_fixed (type,
7979 ada_fixed_to_float (value_type (arg),
7980 value_as_long (arg)));
7981 else
7982 {
7983 DOUBLEST argd =
7984 value_as_double (value_cast (builtin_type_double, value_copy (arg)));
7985 val = ada_float_to_fixed (type, argd);
7986 }
7987
7988 return value_from_longest (type, val);
7989 }
7990
7991 static struct value *
7992 cast_from_fixed_to_double (struct value *arg)
7993 {
7994 DOUBLEST val = ada_fixed_to_float (value_type (arg),
7995 value_as_long (arg));
7996 return value_from_double (builtin_type_double, val);
7997 }
7998
7999 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8000 return the converted value. */
8001
8002 static struct value *
8003 coerce_for_assign (struct type *type, struct value *val)
8004 {
8005 struct type *type2 = value_type (val);
8006 if (type == type2)
8007 return val;
8008
8009 type2 = ada_check_typedef (type2);
8010 type = ada_check_typedef (type);
8011
8012 if (TYPE_CODE (type2) == TYPE_CODE_PTR
8013 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8014 {
8015 val = ada_value_ind (val);
8016 type2 = value_type (val);
8017 }
8018
8019 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
8020 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8021 {
8022 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
8023 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8024 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
8025 error (_("Incompatible types in assignment"));
8026 deprecated_set_value_type (val, type);
8027 }
8028 return val;
8029 }
8030
8031 static struct value *
8032 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8033 {
8034 struct value *val;
8035 struct type *type1, *type2;
8036 LONGEST v, v1, v2;
8037
8038 arg1 = coerce_ref (arg1);
8039 arg2 = coerce_ref (arg2);
8040 type1 = base_type (ada_check_typedef (value_type (arg1)));
8041 type2 = base_type (ada_check_typedef (value_type (arg2)));
8042
8043 if (TYPE_CODE (type1) != TYPE_CODE_INT
8044 || TYPE_CODE (type2) != TYPE_CODE_INT)
8045 return value_binop (arg1, arg2, op);
8046
8047 switch (op)
8048 {
8049 case BINOP_MOD:
8050 case BINOP_DIV:
8051 case BINOP_REM:
8052 break;
8053 default:
8054 return value_binop (arg1, arg2, op);
8055 }
8056
8057 v2 = value_as_long (arg2);
8058 if (v2 == 0)
8059 error (_("second operand of %s must not be zero."), op_string (op));
8060
8061 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
8062 return value_binop (arg1, arg2, op);
8063
8064 v1 = value_as_long (arg1);
8065 switch (op)
8066 {
8067 case BINOP_DIV:
8068 v = v1 / v2;
8069 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8070 v += v > 0 ? -1 : 1;
8071 break;
8072 case BINOP_REM:
8073 v = v1 % v2;
8074 if (v * v1 < 0)
8075 v -= v2;
8076 break;
8077 default:
8078 /* Should not reach this point. */
8079 v = 0;
8080 }
8081
8082 val = allocate_value (type1);
8083 store_unsigned_integer (value_contents_raw (val),
8084 TYPE_LENGTH (value_type (val)), v);
8085 return val;
8086 }
8087
8088 static int
8089 ada_value_equal (struct value *arg1, struct value *arg2)
8090 {
8091 if (ada_is_direct_array_type (value_type (arg1))
8092 || ada_is_direct_array_type (value_type (arg2)))
8093 {
8094 /* Automatically dereference any array reference before
8095 we attempt to perform the comparison. */
8096 arg1 = ada_coerce_ref (arg1);
8097 arg2 = ada_coerce_ref (arg2);
8098
8099 arg1 = ada_coerce_to_simple_array (arg1);
8100 arg2 = ada_coerce_to_simple_array (arg2);
8101 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
8102 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
8103 error (_("Attempt to compare array with non-array"));
8104 /* FIXME: The following works only for types whose
8105 representations use all bits (no padding or undefined bits)
8106 and do not have user-defined equality. */
8107 return
8108 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
8109 && memcmp (value_contents (arg1), value_contents (arg2),
8110 TYPE_LENGTH (value_type (arg1))) == 0;
8111 }
8112 return value_equal (arg1, arg2);
8113 }
8114
8115 /* Total number of component associations in the aggregate starting at
8116 index PC in EXP. Assumes that index PC is the start of an
8117 OP_AGGREGATE. */
8118
8119 static int
8120 num_component_specs (struct expression *exp, int pc)
8121 {
8122 int n, m, i;
8123 m = exp->elts[pc + 1].longconst;
8124 pc += 3;
8125 n = 0;
8126 for (i = 0; i < m; i += 1)
8127 {
8128 switch (exp->elts[pc].opcode)
8129 {
8130 default:
8131 n += 1;
8132 break;
8133 case OP_CHOICES:
8134 n += exp->elts[pc + 1].longconst;
8135 break;
8136 }
8137 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
8138 }
8139 return n;
8140 }
8141
8142 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
8143 component of LHS (a simple array or a record), updating *POS past
8144 the expression, assuming that LHS is contained in CONTAINER. Does
8145 not modify the inferior's memory, nor does it modify LHS (unless
8146 LHS == CONTAINER). */
8147
8148 static void
8149 assign_component (struct value *container, struct value *lhs, LONGEST index,
8150 struct expression *exp, int *pos)
8151 {
8152 struct value *mark = value_mark ();
8153 struct value *elt;
8154 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8155 {
8156 struct value *index_val = value_from_longest (builtin_type_int, index);
8157 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8158 }
8159 else
8160 {
8161 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
8162 elt = ada_to_fixed_value (unwrap_value (elt));
8163 }
8164
8165 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8166 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8167 else
8168 value_assign_to_component (container, elt,
8169 ada_evaluate_subexp (NULL, exp, pos,
8170 EVAL_NORMAL));
8171
8172 value_free_to_mark (mark);
8173 }
8174
8175 /* Assuming that LHS represents an lvalue having a record or array
8176 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8177 of that aggregate's value to LHS, advancing *POS past the
8178 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8179 lvalue containing LHS (possibly LHS itself). Does not modify
8180 the inferior's memory, nor does it modify the contents of
8181 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
8182
8183 static struct value *
8184 assign_aggregate (struct value *container,
8185 struct value *lhs, struct expression *exp,
8186 int *pos, enum noside noside)
8187 {
8188 struct type *lhs_type;
8189 int n = exp->elts[*pos+1].longconst;
8190 LONGEST low_index, high_index;
8191 int num_specs;
8192 LONGEST *indices;
8193 int max_indices, num_indices;
8194 int is_array_aggregate;
8195 int i;
8196 struct value *mark = value_mark ();
8197
8198 *pos += 3;
8199 if (noside != EVAL_NORMAL)
8200 {
8201 int i;
8202 for (i = 0; i < n; i += 1)
8203 ada_evaluate_subexp (NULL, exp, pos, noside);
8204 return container;
8205 }
8206
8207 container = ada_coerce_ref (container);
8208 if (ada_is_direct_array_type (value_type (container)))
8209 container = ada_coerce_to_simple_array (container);
8210 lhs = ada_coerce_ref (lhs);
8211 if (!deprecated_value_modifiable (lhs))
8212 error (_("Left operand of assignment is not a modifiable lvalue."));
8213
8214 lhs_type = value_type (lhs);
8215 if (ada_is_direct_array_type (lhs_type))
8216 {
8217 lhs = ada_coerce_to_simple_array (lhs);
8218 lhs_type = value_type (lhs);
8219 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8220 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8221 is_array_aggregate = 1;
8222 }
8223 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8224 {
8225 low_index = 0;
8226 high_index = num_visible_fields (lhs_type) - 1;
8227 is_array_aggregate = 0;
8228 }
8229 else
8230 error (_("Left-hand side must be array or record."));
8231
8232 num_specs = num_component_specs (exp, *pos - 3);
8233 max_indices = 4 * num_specs + 4;
8234 indices = alloca (max_indices * sizeof (indices[0]));
8235 indices[0] = indices[1] = low_index - 1;
8236 indices[2] = indices[3] = high_index + 1;
8237 num_indices = 4;
8238
8239 for (i = 0; i < n; i += 1)
8240 {
8241 switch (exp->elts[*pos].opcode)
8242 {
8243 case OP_CHOICES:
8244 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8245 &num_indices, max_indices,
8246 low_index, high_index);
8247 break;
8248 case OP_POSITIONAL:
8249 aggregate_assign_positional (container, lhs, exp, pos, indices,
8250 &num_indices, max_indices,
8251 low_index, high_index);
8252 break;
8253 case OP_OTHERS:
8254 if (i != n-1)
8255 error (_("Misplaced 'others' clause"));
8256 aggregate_assign_others (container, lhs, exp, pos, indices,
8257 num_indices, low_index, high_index);
8258 break;
8259 default:
8260 error (_("Internal error: bad aggregate clause"));
8261 }
8262 }
8263
8264 return container;
8265 }
8266
8267 /* Assign into the component of LHS indexed by the OP_POSITIONAL
8268 construct at *POS, updating *POS past the construct, given that
8269 the positions are relative to lower bound LOW, where HIGH is the
8270 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8271 updating *NUM_INDICES as needed. CONTAINER is as for
8272 assign_aggregate. */
8273 static void
8274 aggregate_assign_positional (struct value *container,
8275 struct value *lhs, struct expression *exp,
8276 int *pos, LONGEST *indices, int *num_indices,
8277 int max_indices, LONGEST low, LONGEST high)
8278 {
8279 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8280
8281 if (ind - 1 == high)
8282 warning (_("Extra components in aggregate ignored."));
8283 if (ind <= high)
8284 {
8285 add_component_interval (ind, ind, indices, num_indices, max_indices);
8286 *pos += 3;
8287 assign_component (container, lhs, ind, exp, pos);
8288 }
8289 else
8290 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8291 }
8292
8293 /* Assign into the components of LHS indexed by the OP_CHOICES
8294 construct at *POS, updating *POS past the construct, given that
8295 the allowable indices are LOW..HIGH. Record the indices assigned
8296 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
8297 needed. CONTAINER is as for assign_aggregate. */
8298 static void
8299 aggregate_assign_from_choices (struct value *container,
8300 struct value *lhs, struct expression *exp,
8301 int *pos, LONGEST *indices, int *num_indices,
8302 int max_indices, LONGEST low, LONGEST high)
8303 {
8304 int j;
8305 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8306 int choice_pos, expr_pc;
8307 int is_array = ada_is_direct_array_type (value_type (lhs));
8308
8309 choice_pos = *pos += 3;
8310
8311 for (j = 0; j < n_choices; j += 1)
8312 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8313 expr_pc = *pos;
8314 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8315
8316 for (j = 0; j < n_choices; j += 1)
8317 {
8318 LONGEST lower, upper;
8319 enum exp_opcode op = exp->elts[choice_pos].opcode;
8320 if (op == OP_DISCRETE_RANGE)
8321 {
8322 choice_pos += 1;
8323 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8324 EVAL_NORMAL));
8325 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8326 EVAL_NORMAL));
8327 }
8328 else if (is_array)
8329 {
8330 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8331 EVAL_NORMAL));
8332 upper = lower;
8333 }
8334 else
8335 {
8336 int ind;
8337 char *name;
8338 switch (op)
8339 {
8340 case OP_NAME:
8341 name = &exp->elts[choice_pos + 2].string;
8342 break;
8343 case OP_VAR_VALUE:
8344 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8345 break;
8346 default:
8347 error (_("Invalid record component association."));
8348 }
8349 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8350 ind = 0;
8351 if (! find_struct_field (name, value_type (lhs), 0,
8352 NULL, NULL, NULL, NULL, &ind))
8353 error (_("Unknown component name: %s."), name);
8354 lower = upper = ind;
8355 }
8356
8357 if (lower <= upper && (lower < low || upper > high))
8358 error (_("Index in component association out of bounds."));
8359
8360 add_component_interval (lower, upper, indices, num_indices,
8361 max_indices);
8362 while (lower <= upper)
8363 {
8364 int pos1;
8365 pos1 = expr_pc;
8366 assign_component (container, lhs, lower, exp, &pos1);
8367 lower += 1;
8368 }
8369 }
8370 }
8371
8372 /* Assign the value of the expression in the OP_OTHERS construct in
8373 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8374 have not been previously assigned. The index intervals already assigned
8375 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
8376 OP_OTHERS clause. CONTAINER is as for assign_aggregate*/
8377 static void
8378 aggregate_assign_others (struct value *container,
8379 struct value *lhs, struct expression *exp,
8380 int *pos, LONGEST *indices, int num_indices,
8381 LONGEST low, LONGEST high)
8382 {
8383 int i;
8384 int expr_pc = *pos+1;
8385
8386 for (i = 0; i < num_indices - 2; i += 2)
8387 {
8388 LONGEST ind;
8389 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
8390 {
8391 int pos;
8392 pos = expr_pc;
8393 assign_component (container, lhs, ind, exp, &pos);
8394 }
8395 }
8396 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8397 }
8398
8399 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
8400 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
8401 modifying *SIZE as needed. It is an error if *SIZE exceeds
8402 MAX_SIZE. The resulting intervals do not overlap. */
8403 static void
8404 add_component_interval (LONGEST low, LONGEST high,
8405 LONGEST* indices, int *size, int max_size)
8406 {
8407 int i, j;
8408 for (i = 0; i < *size; i += 2) {
8409 if (high >= indices[i] && low <= indices[i + 1])
8410 {
8411 int kh;
8412 for (kh = i + 2; kh < *size; kh += 2)
8413 if (high < indices[kh])
8414 break;
8415 if (low < indices[i])
8416 indices[i] = low;
8417 indices[i + 1] = indices[kh - 1];
8418 if (high > indices[i + 1])
8419 indices[i + 1] = high;
8420 memcpy (indices + i + 2, indices + kh, *size - kh);
8421 *size -= kh - i - 2;
8422 return;
8423 }
8424 else if (high < indices[i])
8425 break;
8426 }
8427
8428 if (*size == max_size)
8429 error (_("Internal error: miscounted aggregate components."));
8430 *size += 2;
8431 for (j = *size-1; j >= i+2; j -= 1)
8432 indices[j] = indices[j - 2];
8433 indices[i] = low;
8434 indices[i + 1] = high;
8435 }
8436
8437 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
8438 is different. */
8439
8440 static struct value *
8441 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
8442 {
8443 if (type == ada_check_typedef (value_type (arg2)))
8444 return arg2;
8445
8446 if (ada_is_fixed_point_type (type))
8447 return (cast_to_fixed (type, arg2));
8448
8449 if (ada_is_fixed_point_type (value_type (arg2)))
8450 return value_cast (type, cast_from_fixed_to_double (arg2));
8451
8452 return value_cast (type, arg2);
8453 }
8454
8455 static struct value *
8456 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
8457 int *pos, enum noside noside)
8458 {
8459 enum exp_opcode op;
8460 int tem, tem2, tem3;
8461 int pc;
8462 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
8463 struct type *type;
8464 int nargs, oplen;
8465 struct value **argvec;
8466
8467 pc = *pos;
8468 *pos += 1;
8469 op = exp->elts[pc].opcode;
8470
8471 switch (op)
8472 {
8473 default:
8474 *pos -= 1;
8475 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8476 arg1 = unwrap_value (arg1);
8477
8478 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
8479 then we need to perform the conversion manually, because
8480 evaluate_subexp_standard doesn't do it. This conversion is
8481 necessary in Ada because the different kinds of float/fixed
8482 types in Ada have different representations.
8483
8484 Similarly, we need to perform the conversion from OP_LONG
8485 ourselves. */
8486 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
8487 arg1 = ada_value_cast (expect_type, arg1, noside);
8488
8489 return arg1;
8490
8491 case OP_STRING:
8492 {
8493 struct value *result;
8494 *pos -= 1;
8495 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
8496 /* The result type will have code OP_STRING, bashed there from
8497 OP_ARRAY. Bash it back. */
8498 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
8499 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
8500 return result;
8501 }
8502
8503 case UNOP_CAST:
8504 (*pos) += 2;
8505 type = exp->elts[pc + 1].type;
8506 arg1 = evaluate_subexp (type, exp, pos, noside);
8507 if (noside == EVAL_SKIP)
8508 goto nosideret;
8509 arg1 = ada_value_cast (type, arg1, noside);
8510 return arg1;
8511
8512 case UNOP_QUAL:
8513 (*pos) += 2;
8514 type = exp->elts[pc + 1].type;
8515 return ada_evaluate_subexp (type, exp, pos, noside);
8516
8517 case BINOP_ASSIGN:
8518 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8519 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8520 {
8521 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
8522 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8523 return arg1;
8524 return ada_value_assign (arg1, arg1);
8525 }
8526 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
8527 except if the lhs of our assignment is a convenience variable.
8528 In the case of assigning to a convenience variable, the lhs
8529 should be exactly the result of the evaluation of the rhs. */
8530 type = value_type (arg1);
8531 if (VALUE_LVAL (arg1) == lval_internalvar)
8532 type = NULL;
8533 arg2 = evaluate_subexp (type, exp, pos, noside);
8534 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8535 return arg1;
8536 if (ada_is_fixed_point_type (value_type (arg1)))
8537 arg2 = cast_to_fixed (value_type (arg1), arg2);
8538 else if (ada_is_fixed_point_type (value_type (arg2)))
8539 error
8540 (_("Fixed-point values must be assigned to fixed-point variables"));
8541 else
8542 arg2 = coerce_for_assign (value_type (arg1), arg2);
8543 return ada_value_assign (arg1, arg2);
8544
8545 case BINOP_ADD:
8546 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8547 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8548 if (noside == EVAL_SKIP)
8549 goto nosideret;
8550 if ((ada_is_fixed_point_type (value_type (arg1))
8551 || ada_is_fixed_point_type (value_type (arg2)))
8552 && value_type (arg1) != value_type (arg2))
8553 error (_("Operands of fixed-point addition must have the same type"));
8554 /* Do the addition, and cast the result to the type of the first
8555 argument. We cannot cast the result to a reference type, so if
8556 ARG1 is a reference type, find its underlying type. */
8557 type = value_type (arg1);
8558 while (TYPE_CODE (type) == TYPE_CODE_REF)
8559 type = TYPE_TARGET_TYPE (type);
8560 return value_cast (type, value_add (arg1, arg2));
8561
8562 case BINOP_SUB:
8563 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8564 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8565 if (noside == EVAL_SKIP)
8566 goto nosideret;
8567 if ((ada_is_fixed_point_type (value_type (arg1))
8568 || ada_is_fixed_point_type (value_type (arg2)))
8569 && value_type (arg1) != value_type (arg2))
8570 error (_("Operands of fixed-point subtraction must have the same type"));
8571 /* Do the substraction, and cast the result to the type of the first
8572 argument. We cannot cast the result to a reference type, so if
8573 ARG1 is a reference type, find its underlying type. */
8574 type = value_type (arg1);
8575 while (TYPE_CODE (type) == TYPE_CODE_REF)
8576 type = TYPE_TARGET_TYPE (type);
8577 return value_cast (type, value_sub (arg1, arg2));
8578
8579 case BINOP_MUL:
8580 case BINOP_DIV:
8581 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8582 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8583 if (noside == EVAL_SKIP)
8584 goto nosideret;
8585 else if (noside == EVAL_AVOID_SIDE_EFFECTS
8586 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
8587 return value_zero (value_type (arg1), not_lval);
8588 else
8589 {
8590 if (ada_is_fixed_point_type (value_type (arg1)))
8591 arg1 = cast_from_fixed_to_double (arg1);
8592 if (ada_is_fixed_point_type (value_type (arg2)))
8593 arg2 = cast_from_fixed_to_double (arg2);
8594 return ada_value_binop (arg1, arg2, op);
8595 }
8596
8597 case BINOP_REM:
8598 case BINOP_MOD:
8599 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8600 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8601 if (noside == EVAL_SKIP)
8602 goto nosideret;
8603 else if (noside == EVAL_AVOID_SIDE_EFFECTS
8604 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
8605 return value_zero (value_type (arg1), not_lval);
8606 else
8607 return ada_value_binop (arg1, arg2, op);
8608
8609 case BINOP_EQUAL:
8610 case BINOP_NOTEQUAL:
8611 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8612 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
8613 if (noside == EVAL_SKIP)
8614 goto nosideret;
8615 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8616 tem = 0;
8617 else
8618 tem = ada_value_equal (arg1, arg2);
8619 if (op == BINOP_NOTEQUAL)
8620 tem = !tem;
8621 return value_from_longest (LA_BOOL_TYPE, (LONGEST) tem);
8622
8623 case UNOP_NEG:
8624 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8625 if (noside == EVAL_SKIP)
8626 goto nosideret;
8627 else if (ada_is_fixed_point_type (value_type (arg1)))
8628 return value_cast (value_type (arg1), value_neg (arg1));
8629 else
8630 return value_neg (arg1);
8631
8632 case BINOP_LOGICAL_AND:
8633 case BINOP_LOGICAL_OR:
8634 case UNOP_LOGICAL_NOT:
8635 {
8636 struct value *val;
8637
8638 *pos -= 1;
8639 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8640 return value_cast (LA_BOOL_TYPE, val);
8641 }
8642
8643 case BINOP_BITWISE_AND:
8644 case BINOP_BITWISE_IOR:
8645 case BINOP_BITWISE_XOR:
8646 {
8647 struct value *val;
8648
8649 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8650 *pos = pc;
8651 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8652
8653 return value_cast (value_type (arg1), val);
8654 }
8655
8656 case OP_VAR_VALUE:
8657 *pos -= 1;
8658
8659 /* Tagged types are a little special in the fact that the real type
8660 is dynamic and can only be determined by inspecting the object
8661 value. So even if we're support to do an EVAL_AVOID_SIDE_EFFECTS
8662 evaluation, we force an EVAL_NORMAL evaluation for tagged types. */
8663 if (noside == EVAL_AVOID_SIDE_EFFECTS
8664 && ada_is_tagged_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol), 1))
8665 noside = EVAL_NORMAL;
8666
8667 if (noside == EVAL_SKIP)
8668 {
8669 *pos += 4;
8670 goto nosideret;
8671 }
8672 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
8673 /* Only encountered when an unresolved symbol occurs in a
8674 context other than a function call, in which case, it is
8675 invalid. */
8676 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8677 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
8678 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8679 {
8680 *pos += 4;
8681 return value_zero
8682 (to_static_fixed_type
8683 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
8684 not_lval);
8685 }
8686 else
8687 {
8688 arg1 =
8689 unwrap_value (evaluate_subexp_standard
8690 (expect_type, exp, pos, noside));
8691 return ada_to_fixed_value (arg1);
8692 }
8693
8694 case OP_FUNCALL:
8695 (*pos) += 2;
8696
8697 /* Allocate arg vector, including space for the function to be
8698 called in argvec[0] and a terminating NULL. */
8699 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8700 argvec =
8701 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
8702
8703 if (exp->elts[*pos].opcode == OP_VAR_VALUE
8704 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
8705 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8706 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
8707 else
8708 {
8709 for (tem = 0; tem <= nargs; tem += 1)
8710 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8711 argvec[tem] = 0;
8712
8713 if (noside == EVAL_SKIP)
8714 goto nosideret;
8715 }
8716
8717 if (ada_is_packed_array_type (desc_base_type (value_type (argvec[0]))))
8718 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
8719 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
8720 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
8721 && VALUE_LVAL (argvec[0]) == lval_memory))
8722 argvec[0] = value_addr (argvec[0]);
8723
8724 type = ada_check_typedef (value_type (argvec[0]));
8725 if (TYPE_CODE (type) == TYPE_CODE_PTR)
8726 {
8727 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
8728 {
8729 case TYPE_CODE_FUNC:
8730 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8731 break;
8732 case TYPE_CODE_ARRAY:
8733 break;
8734 case TYPE_CODE_STRUCT:
8735 if (noside != EVAL_AVOID_SIDE_EFFECTS)
8736 argvec[0] = ada_value_ind (argvec[0]);
8737 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8738 break;
8739 default:
8740 error (_("cannot subscript or call something of type `%s'"),
8741 ada_type_name (value_type (argvec[0])));
8742 break;
8743 }
8744 }
8745
8746 switch (TYPE_CODE (type))
8747 {
8748 case TYPE_CODE_FUNC:
8749 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8750 return allocate_value (TYPE_TARGET_TYPE (type));
8751 return call_function_by_hand (argvec[0], nargs, argvec + 1);
8752 case TYPE_CODE_STRUCT:
8753 {
8754 int arity;
8755
8756 arity = ada_array_arity (type);
8757 type = ada_array_element_type (type, nargs);
8758 if (type == NULL)
8759 error (_("cannot subscript or call a record"));
8760 if (arity != nargs)
8761 error (_("wrong number of subscripts; expecting %d"), arity);
8762 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8763 return value_zero (ada_aligned_type (type), lval_memory);
8764 return
8765 unwrap_value (ada_value_subscript
8766 (argvec[0], nargs, argvec + 1));
8767 }
8768 case TYPE_CODE_ARRAY:
8769 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8770 {
8771 type = ada_array_element_type (type, nargs);
8772 if (type == NULL)
8773 error (_("element type of array unknown"));
8774 else
8775 return value_zero (ada_aligned_type (type), lval_memory);
8776 }
8777 return
8778 unwrap_value (ada_value_subscript
8779 (ada_coerce_to_simple_array (argvec[0]),
8780 nargs, argvec + 1));
8781 case TYPE_CODE_PTR: /* Pointer to array */
8782 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
8783 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8784 {
8785 type = ada_array_element_type (type, nargs);
8786 if (type == NULL)
8787 error (_("element type of array unknown"));
8788 else
8789 return value_zero (ada_aligned_type (type), lval_memory);
8790 }
8791 return
8792 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
8793 nargs, argvec + 1));
8794
8795 default:
8796 error (_("Attempt to index or call something other than an "
8797 "array or function"));
8798 }
8799
8800 case TERNOP_SLICE:
8801 {
8802 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8803 struct value *low_bound_val =
8804 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8805 struct value *high_bound_val =
8806 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8807 LONGEST low_bound;
8808 LONGEST high_bound;
8809 low_bound_val = coerce_ref (low_bound_val);
8810 high_bound_val = coerce_ref (high_bound_val);
8811 low_bound = pos_atr (low_bound_val);
8812 high_bound = pos_atr (high_bound_val);
8813
8814 if (noside == EVAL_SKIP)
8815 goto nosideret;
8816
8817 /* If this is a reference to an aligner type, then remove all
8818 the aligners. */
8819 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8820 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
8821 TYPE_TARGET_TYPE (value_type (array)) =
8822 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
8823
8824 if (ada_is_packed_array_type (value_type (array)))
8825 error (_("cannot slice a packed array"));
8826
8827 /* If this is a reference to an array or an array lvalue,
8828 convert to a pointer. */
8829 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8830 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
8831 && VALUE_LVAL (array) == lval_memory))
8832 array = value_addr (array);
8833
8834 if (noside == EVAL_AVOID_SIDE_EFFECTS
8835 && ada_is_array_descriptor_type (ada_check_typedef
8836 (value_type (array))))
8837 return empty_array (ada_type_of_array (array, 0), low_bound);
8838
8839 array = ada_coerce_to_simple_array_ptr (array);
8840
8841 /* If we have more than one level of pointer indirection,
8842 dereference the value until we get only one level. */
8843 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
8844 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
8845 == TYPE_CODE_PTR))
8846 array = value_ind (array);
8847
8848 /* Make sure we really do have an array type before going further,
8849 to avoid a SEGV when trying to get the index type or the target
8850 type later down the road if the debug info generated by
8851 the compiler is incorrect or incomplete. */
8852 if (!ada_is_simple_array_type (value_type (array)))
8853 error (_("cannot take slice of non-array"));
8854
8855 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
8856 {
8857 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
8858 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
8859 low_bound);
8860 else
8861 {
8862 struct type *arr_type0 =
8863 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
8864 NULL, 1);
8865 return ada_value_slice_ptr (array, arr_type0,
8866 longest_to_int (low_bound),
8867 longest_to_int (high_bound));
8868 }
8869 }
8870 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8871 return array;
8872 else if (high_bound < low_bound)
8873 return empty_array (value_type (array), low_bound);
8874 else
8875 return ada_value_slice (array, longest_to_int (low_bound),
8876 longest_to_int (high_bound));
8877 }
8878
8879 case UNOP_IN_RANGE:
8880 (*pos) += 2;
8881 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8882 type = exp->elts[pc + 1].type;
8883
8884 if (noside == EVAL_SKIP)
8885 goto nosideret;
8886
8887 switch (TYPE_CODE (type))
8888 {
8889 default:
8890 lim_warning (_("Membership test incompletely implemented; "
8891 "always returns true"));
8892 return value_from_longest (builtin_type_int, (LONGEST) 1);
8893
8894 case TYPE_CODE_RANGE:
8895 arg2 = value_from_longest (builtin_type_int, TYPE_LOW_BOUND (type));
8896 arg3 = value_from_longest (builtin_type_int,
8897 TYPE_HIGH_BOUND (type));
8898 return
8899 value_from_longest (builtin_type_int,
8900 (value_less (arg1, arg3)
8901 || value_equal (arg1, arg3))
8902 && (value_less (arg2, arg1)
8903 || value_equal (arg2, arg1)));
8904 }
8905
8906 case BINOP_IN_BOUNDS:
8907 (*pos) += 2;
8908 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8909 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8910
8911 if (noside == EVAL_SKIP)
8912 goto nosideret;
8913
8914 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8915 return value_zero (builtin_type_int, not_lval);
8916
8917 tem = longest_to_int (exp->elts[pc + 1].longconst);
8918
8919 if (tem < 1 || tem > ada_array_arity (value_type (arg2)))
8920 error (_("invalid dimension number to 'range"));
8921
8922 arg3 = ada_array_bound (arg2, tem, 1);
8923 arg2 = ada_array_bound (arg2, tem, 0);
8924
8925 return
8926 value_from_longest (builtin_type_int,
8927 (value_less (arg1, arg3)
8928 || value_equal (arg1, arg3))
8929 && (value_less (arg2, arg1)
8930 || value_equal (arg2, arg1)));
8931
8932 case TERNOP_IN_RANGE:
8933 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8934 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8935 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8936
8937 if (noside == EVAL_SKIP)
8938 goto nosideret;
8939
8940 return
8941 value_from_longest (builtin_type_int,
8942 (value_less (arg1, arg3)
8943 || value_equal (arg1, arg3))
8944 && (value_less (arg2, arg1)
8945 || value_equal (arg2, arg1)));
8946
8947 case OP_ATR_FIRST:
8948 case OP_ATR_LAST:
8949 case OP_ATR_LENGTH:
8950 {
8951 struct type *type_arg;
8952 if (exp->elts[*pos].opcode == OP_TYPE)
8953 {
8954 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8955 arg1 = NULL;
8956 type_arg = exp->elts[pc + 2].type;
8957 }
8958 else
8959 {
8960 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8961 type_arg = NULL;
8962 }
8963
8964 if (exp->elts[*pos].opcode != OP_LONG)
8965 error (_("Invalid operand to '%s"), ada_attribute_name (op));
8966 tem = longest_to_int (exp->elts[*pos + 2].longconst);
8967 *pos += 4;
8968
8969 if (noside == EVAL_SKIP)
8970 goto nosideret;
8971
8972 if (type_arg == NULL)
8973 {
8974 arg1 = ada_coerce_ref (arg1);
8975
8976 if (ada_is_packed_array_type (value_type (arg1)))
8977 arg1 = ada_coerce_to_simple_array (arg1);
8978
8979 if (tem < 1 || tem > ada_array_arity (value_type (arg1)))
8980 error (_("invalid dimension number to '%s"),
8981 ada_attribute_name (op));
8982
8983 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8984 {
8985 type = ada_index_type (value_type (arg1), tem);
8986 if (type == NULL)
8987 error
8988 (_("attempt to take bound of something that is not an array"));
8989 return allocate_value (type);
8990 }
8991
8992 switch (op)
8993 {
8994 default: /* Should never happen. */
8995 error (_("unexpected attribute encountered"));
8996 case OP_ATR_FIRST:
8997 return ada_array_bound (arg1, tem, 0);
8998 case OP_ATR_LAST:
8999 return ada_array_bound (arg1, tem, 1);
9000 case OP_ATR_LENGTH:
9001 return ada_array_length (arg1, tem);
9002 }
9003 }
9004 else if (discrete_type_p (type_arg))
9005 {
9006 struct type *range_type;
9007 char *name = ada_type_name (type_arg);
9008 range_type = NULL;
9009 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
9010 range_type =
9011 to_fixed_range_type (name, NULL, TYPE_OBJFILE (type_arg));
9012 if (range_type == NULL)
9013 range_type = type_arg;
9014 switch (op)
9015 {
9016 default:
9017 error (_("unexpected attribute encountered"));
9018 case OP_ATR_FIRST:
9019 return discrete_type_low_bound (range_type);
9020 case OP_ATR_LAST:
9021 return discrete_type_high_bound (range_type);
9022 case OP_ATR_LENGTH:
9023 error (_("the 'length attribute applies only to array types"));
9024 }
9025 }
9026 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
9027 error (_("unimplemented type attribute"));
9028 else
9029 {
9030 LONGEST low, high;
9031
9032 if (ada_is_packed_array_type (type_arg))
9033 type_arg = decode_packed_array_type (type_arg);
9034
9035 if (tem < 1 || tem > ada_array_arity (type_arg))
9036 error (_("invalid dimension number to '%s"),
9037 ada_attribute_name (op));
9038
9039 type = ada_index_type (type_arg, tem);
9040 if (type == NULL)
9041 error
9042 (_("attempt to take bound of something that is not an array"));
9043 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9044 return allocate_value (type);
9045
9046 switch (op)
9047 {
9048 default:
9049 error (_("unexpected attribute encountered"));
9050 case OP_ATR_FIRST:
9051 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
9052 return value_from_longest (type, low);
9053 case OP_ATR_LAST:
9054 high = ada_array_bound_from_type (type_arg, tem, 1, &type);
9055 return value_from_longest (type, high);
9056 case OP_ATR_LENGTH:
9057 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
9058 high = ada_array_bound_from_type (type_arg, tem, 1, NULL);
9059 return value_from_longest (type, high - low + 1);
9060 }
9061 }
9062 }
9063
9064 case OP_ATR_TAG:
9065 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9066 if (noside == EVAL_SKIP)
9067 goto nosideret;
9068
9069 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9070 return value_zero (ada_tag_type (arg1), not_lval);
9071
9072 return ada_value_tag (arg1);
9073
9074 case OP_ATR_MIN:
9075 case OP_ATR_MAX:
9076 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9077 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9078 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9079 if (noside == EVAL_SKIP)
9080 goto nosideret;
9081 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9082 return value_zero (value_type (arg1), not_lval);
9083 else
9084 return value_binop (arg1, arg2,
9085 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
9086
9087 case OP_ATR_MODULUS:
9088 {
9089 struct type *type_arg = exp->elts[pc + 2].type;
9090 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9091
9092 if (noside == EVAL_SKIP)
9093 goto nosideret;
9094
9095 if (!ada_is_modular_type (type_arg))
9096 error (_("'modulus must be applied to modular type"));
9097
9098 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
9099 ada_modulus (type_arg));
9100 }
9101
9102
9103 case OP_ATR_POS:
9104 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9105 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9106 if (noside == EVAL_SKIP)
9107 goto nosideret;
9108 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9109 return value_zero (builtin_type_int, not_lval);
9110 else
9111 return value_pos_atr (arg1);
9112
9113 case OP_ATR_SIZE:
9114 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9115 if (noside == EVAL_SKIP)
9116 goto nosideret;
9117 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9118 return value_zero (builtin_type_int, not_lval);
9119 else
9120 return value_from_longest (builtin_type_int,
9121 TARGET_CHAR_BIT
9122 * TYPE_LENGTH (value_type (arg1)));
9123
9124 case OP_ATR_VAL:
9125 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9126 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9127 type = exp->elts[pc + 2].type;
9128 if (noside == EVAL_SKIP)
9129 goto nosideret;
9130 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9131 return value_zero (type, not_lval);
9132 else
9133 return value_val_atr (type, arg1);
9134
9135 case BINOP_EXP:
9136 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9137 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9138 if (noside == EVAL_SKIP)
9139 goto nosideret;
9140 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9141 return value_zero (value_type (arg1), not_lval);
9142 else
9143 return value_binop (arg1, arg2, op);
9144
9145 case UNOP_PLUS:
9146 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9147 if (noside == EVAL_SKIP)
9148 goto nosideret;
9149 else
9150 return arg1;
9151
9152 case UNOP_ABS:
9153 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9154 if (noside == EVAL_SKIP)
9155 goto nosideret;
9156 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
9157 return value_neg (arg1);
9158 else
9159 return arg1;
9160
9161 case UNOP_IND:
9162 if (expect_type && TYPE_CODE (expect_type) == TYPE_CODE_PTR)
9163 expect_type = TYPE_TARGET_TYPE (ada_check_typedef (expect_type));
9164 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
9165 if (noside == EVAL_SKIP)
9166 goto nosideret;
9167 type = ada_check_typedef (value_type (arg1));
9168 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9169 {
9170 if (ada_is_array_descriptor_type (type))
9171 /* GDB allows dereferencing GNAT array descriptors. */
9172 {
9173 struct type *arrType = ada_type_of_array (arg1, 0);
9174 if (arrType == NULL)
9175 error (_("Attempt to dereference null array pointer."));
9176 return value_at_lazy (arrType, 0);
9177 }
9178 else if (TYPE_CODE (type) == TYPE_CODE_PTR
9179 || TYPE_CODE (type) == TYPE_CODE_REF
9180 /* In C you can dereference an array to get the 1st elt. */
9181 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
9182 {
9183 type = to_static_fixed_type
9184 (ada_aligned_type
9185 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
9186 check_size (type);
9187 return value_zero (type, lval_memory);
9188 }
9189 else if (TYPE_CODE (type) == TYPE_CODE_INT)
9190 /* GDB allows dereferencing an int. */
9191 return value_zero (builtin_type_int, lval_memory);
9192 else
9193 error (_("Attempt to take contents of a non-pointer value."));
9194 }
9195 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
9196 type = ada_check_typedef (value_type (arg1));
9197
9198 if (ada_is_array_descriptor_type (type))
9199 /* GDB allows dereferencing GNAT array descriptors. */
9200 return ada_coerce_to_simple_array (arg1);
9201 else
9202 return ada_value_ind (arg1);
9203
9204 case STRUCTOP_STRUCT:
9205 tem = longest_to_int (exp->elts[pc + 1].longconst);
9206 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
9207 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9208 if (noside == EVAL_SKIP)
9209 goto nosideret;
9210 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9211 {
9212 struct type *type1 = value_type (arg1);
9213 if (ada_is_tagged_type (type1, 1))
9214 {
9215 type = ada_lookup_struct_elt_type (type1,
9216 &exp->elts[pc + 2].string,
9217 1, 1, NULL);
9218 if (type == NULL)
9219 /* In this case, we assume that the field COULD exist
9220 in some extension of the type. Return an object of
9221 "type" void, which will match any formal
9222 (see ada_type_match). */
9223 return value_zero (builtin_type_void, lval_memory);
9224 }
9225 else
9226 type =
9227 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
9228 0, NULL);
9229
9230 return value_zero (ada_aligned_type (type), lval_memory);
9231 }
9232 else
9233 return
9234 ada_to_fixed_value (unwrap_value
9235 (ada_value_struct_elt
9236 (arg1, &exp->elts[pc + 2].string, 0)));
9237 case OP_TYPE:
9238 /* The value is not supposed to be used. This is here to make it
9239 easier to accommodate expressions that contain types. */
9240 (*pos) += 2;
9241 if (noside == EVAL_SKIP)
9242 goto nosideret;
9243 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9244 return allocate_value (exp->elts[pc + 1].type);
9245 else
9246 error (_("Attempt to use a type name as an expression"));
9247
9248 case OP_AGGREGATE:
9249 case OP_CHOICES:
9250 case OP_OTHERS:
9251 case OP_DISCRETE_RANGE:
9252 case OP_POSITIONAL:
9253 case OP_NAME:
9254 if (noside == EVAL_NORMAL)
9255 switch (op)
9256 {
9257 case OP_NAME:
9258 error (_("Undefined name, ambiguous name, or renaming used in "
9259 "component association: %s."), &exp->elts[pc+2].string);
9260 case OP_AGGREGATE:
9261 error (_("Aggregates only allowed on the right of an assignment"));
9262 default:
9263 internal_error (__FILE__, __LINE__, _("aggregate apparently mangled"));
9264 }
9265
9266 ada_forward_operator_length (exp, pc, &oplen, &nargs);
9267 *pos += oplen - 1;
9268 for (tem = 0; tem < nargs; tem += 1)
9269 ada_evaluate_subexp (NULL, exp, pos, noside);
9270 goto nosideret;
9271 }
9272
9273 nosideret:
9274 return value_from_longest (builtin_type_long, (LONGEST) 1);
9275 }
9276 \f
9277
9278 /* Fixed point */
9279
9280 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
9281 type name that encodes the 'small and 'delta information.
9282 Otherwise, return NULL. */
9283
9284 static const char *
9285 fixed_type_info (struct type *type)
9286 {
9287 const char *name = ada_type_name (type);
9288 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
9289
9290 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
9291 {
9292 const char *tail = strstr (name, "___XF_");
9293 if (tail == NULL)
9294 return NULL;
9295 else
9296 return tail + 5;
9297 }
9298 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
9299 return fixed_type_info (TYPE_TARGET_TYPE (type));
9300 else
9301 return NULL;
9302 }
9303
9304 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
9305
9306 int
9307 ada_is_fixed_point_type (struct type *type)
9308 {
9309 return fixed_type_info (type) != NULL;
9310 }
9311
9312 /* Return non-zero iff TYPE represents a System.Address type. */
9313
9314 int
9315 ada_is_system_address_type (struct type *type)
9316 {
9317 return (TYPE_NAME (type)
9318 && strcmp (TYPE_NAME (type), "system__address") == 0);
9319 }
9320
9321 /* Assuming that TYPE is the representation of an Ada fixed-point
9322 type, return its delta, or -1 if the type is malformed and the
9323 delta cannot be determined. */
9324
9325 DOUBLEST
9326 ada_delta (struct type *type)
9327 {
9328 const char *encoding = fixed_type_info (type);
9329 long num, den;
9330
9331 if (sscanf (encoding, "_%ld_%ld", &num, &den) < 2)
9332 return -1.0;
9333 else
9334 return (DOUBLEST) num / (DOUBLEST) den;
9335 }
9336
9337 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
9338 factor ('SMALL value) associated with the type. */
9339
9340 static DOUBLEST
9341 scaling_factor (struct type *type)
9342 {
9343 const char *encoding = fixed_type_info (type);
9344 unsigned long num0, den0, num1, den1;
9345 int n;
9346
9347 n = sscanf (encoding, "_%lu_%lu_%lu_%lu", &num0, &den0, &num1, &den1);
9348
9349 if (n < 2)
9350 return 1.0;
9351 else if (n == 4)
9352 return (DOUBLEST) num1 / (DOUBLEST) den1;
9353 else
9354 return (DOUBLEST) num0 / (DOUBLEST) den0;
9355 }
9356
9357
9358 /* Assuming that X is the representation of a value of fixed-point
9359 type TYPE, return its floating-point equivalent. */
9360
9361 DOUBLEST
9362 ada_fixed_to_float (struct type *type, LONGEST x)
9363 {
9364 return (DOUBLEST) x *scaling_factor (type);
9365 }
9366
9367 /* The representation of a fixed-point value of type TYPE
9368 corresponding to the value X. */
9369
9370 LONGEST
9371 ada_float_to_fixed (struct type *type, DOUBLEST x)
9372 {
9373 return (LONGEST) (x / scaling_factor (type) + 0.5);
9374 }
9375
9376
9377 /* VAX floating formats */
9378
9379 /* Non-zero iff TYPE represents one of the special VAX floating-point
9380 types. */
9381
9382 int
9383 ada_is_vax_floating_type (struct type *type)
9384 {
9385 int name_len =
9386 (ada_type_name (type) == NULL) ? 0 : strlen (ada_type_name (type));
9387 return
9388 name_len > 6
9389 && (TYPE_CODE (type) == TYPE_CODE_INT
9390 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9391 && strncmp (ada_type_name (type) + name_len - 6, "___XF", 5) == 0;
9392 }
9393
9394 /* The type of special VAX floating-point type this is, assuming
9395 ada_is_vax_floating_point. */
9396
9397 int
9398 ada_vax_float_type_suffix (struct type *type)
9399 {
9400 return ada_type_name (type)[strlen (ada_type_name (type)) - 1];
9401 }
9402
9403 /* A value representing the special debugging function that outputs
9404 VAX floating-point values of the type represented by TYPE. Assumes
9405 ada_is_vax_floating_type (TYPE). */
9406
9407 struct value *
9408 ada_vax_float_print_function (struct type *type)
9409 {
9410 switch (ada_vax_float_type_suffix (type))
9411 {
9412 case 'F':
9413 return get_var_value ("DEBUG_STRING_F", 0);
9414 case 'D':
9415 return get_var_value ("DEBUG_STRING_D", 0);
9416 case 'G':
9417 return get_var_value ("DEBUG_STRING_G", 0);
9418 default:
9419 error (_("invalid VAX floating-point type"));
9420 }
9421 }
9422 \f
9423
9424 /* Range types */
9425
9426 /* Scan STR beginning at position K for a discriminant name, and
9427 return the value of that discriminant field of DVAL in *PX. If
9428 PNEW_K is not null, put the position of the character beyond the
9429 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
9430 not alter *PX and *PNEW_K if unsuccessful. */
9431
9432 static int
9433 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
9434 int *pnew_k)
9435 {
9436 static char *bound_buffer = NULL;
9437 static size_t bound_buffer_len = 0;
9438 char *bound;
9439 char *pend;
9440 struct value *bound_val;
9441
9442 if (dval == NULL || str == NULL || str[k] == '\0')
9443 return 0;
9444
9445 pend = strstr (str + k, "__");
9446 if (pend == NULL)
9447 {
9448 bound = str + k;
9449 k += strlen (bound);
9450 }
9451 else
9452 {
9453 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
9454 bound = bound_buffer;
9455 strncpy (bound_buffer, str + k, pend - (str + k));
9456 bound[pend - (str + k)] = '\0';
9457 k = pend - str;
9458 }
9459
9460 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
9461 if (bound_val == NULL)
9462 return 0;
9463
9464 *px = value_as_long (bound_val);
9465 if (pnew_k != NULL)
9466 *pnew_k = k;
9467 return 1;
9468 }
9469
9470 /* Value of variable named NAME in the current environment. If
9471 no such variable found, then if ERR_MSG is null, returns 0, and
9472 otherwise causes an error with message ERR_MSG. */
9473
9474 static struct value *
9475 get_var_value (char *name, char *err_msg)
9476 {
9477 struct ada_symbol_info *syms;
9478 int nsyms;
9479
9480 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
9481 &syms);
9482
9483 if (nsyms != 1)
9484 {
9485 if (err_msg == NULL)
9486 return 0;
9487 else
9488 error (("%s"), err_msg);
9489 }
9490
9491 return value_of_variable (syms[0].sym, syms[0].block);
9492 }
9493
9494 /* Value of integer variable named NAME in the current environment. If
9495 no such variable found, returns 0, and sets *FLAG to 0. If
9496 successful, sets *FLAG to 1. */
9497
9498 LONGEST
9499 get_int_var_value (char *name, int *flag)
9500 {
9501 struct value *var_val = get_var_value (name, 0);
9502
9503 if (var_val == 0)
9504 {
9505 if (flag != NULL)
9506 *flag = 0;
9507 return 0;
9508 }
9509 else
9510 {
9511 if (flag != NULL)
9512 *flag = 1;
9513 return value_as_long (var_val);
9514 }
9515 }
9516
9517
9518 /* Return a range type whose base type is that of the range type named
9519 NAME in the current environment, and whose bounds are calculated
9520 from NAME according to the GNAT range encoding conventions.
9521 Extract discriminant values, if needed, from DVAL. If a new type
9522 must be created, allocate in OBJFILE's space. The bounds
9523 information, in general, is encoded in NAME, the base type given in
9524 the named range type. */
9525
9526 static struct type *
9527 to_fixed_range_type (char *name, struct value *dval, struct objfile *objfile)
9528 {
9529 struct type *raw_type = ada_find_any_type (name);
9530 struct type *base_type;
9531 char *subtype_info;
9532
9533 if (raw_type == NULL)
9534 base_type = builtin_type_int;
9535 else if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
9536 base_type = TYPE_TARGET_TYPE (raw_type);
9537 else
9538 base_type = raw_type;
9539
9540 subtype_info = strstr (name, "___XD");
9541 if (subtype_info == NULL)
9542 return raw_type;
9543 else
9544 {
9545 static char *name_buf = NULL;
9546 static size_t name_len = 0;
9547 int prefix_len = subtype_info - name;
9548 LONGEST L, U;
9549 struct type *type;
9550 char *bounds_str;
9551 int n;
9552
9553 GROW_VECT (name_buf, name_len, prefix_len + 5);
9554 strncpy (name_buf, name, prefix_len);
9555 name_buf[prefix_len] = '\0';
9556
9557 subtype_info += 5;
9558 bounds_str = strchr (subtype_info, '_');
9559 n = 1;
9560
9561 if (*subtype_info == 'L')
9562 {
9563 if (!ada_scan_number (bounds_str, n, &L, &n)
9564 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
9565 return raw_type;
9566 if (bounds_str[n] == '_')
9567 n += 2;
9568 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
9569 n += 1;
9570 subtype_info += 1;
9571 }
9572 else
9573 {
9574 int ok;
9575 strcpy (name_buf + prefix_len, "___L");
9576 L = get_int_var_value (name_buf, &ok);
9577 if (!ok)
9578 {
9579 lim_warning (_("Unknown lower bound, using 1."));
9580 L = 1;
9581 }
9582 }
9583
9584 if (*subtype_info == 'U')
9585 {
9586 if (!ada_scan_number (bounds_str, n, &U, &n)
9587 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
9588 return raw_type;
9589 }
9590 else
9591 {
9592 int ok;
9593 strcpy (name_buf + prefix_len, "___U");
9594 U = get_int_var_value (name_buf, &ok);
9595 if (!ok)
9596 {
9597 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
9598 U = L;
9599 }
9600 }
9601
9602 if (objfile == NULL)
9603 objfile = TYPE_OBJFILE (base_type);
9604 type = create_range_type (alloc_type (objfile), base_type, L, U);
9605 TYPE_NAME (type) = name;
9606 return type;
9607 }
9608 }
9609
9610 /* True iff NAME is the name of a range type. */
9611
9612 int
9613 ada_is_range_type_name (const char *name)
9614 {
9615 return (name != NULL && strstr (name, "___XD"));
9616 }
9617 \f
9618
9619 /* Modular types */
9620
9621 /* True iff TYPE is an Ada modular type. */
9622
9623 int
9624 ada_is_modular_type (struct type *type)
9625 {
9626 struct type *subranged_type = base_type (type);
9627
9628 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
9629 && TYPE_CODE (subranged_type) != TYPE_CODE_ENUM
9630 && TYPE_UNSIGNED (subranged_type));
9631 }
9632
9633 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
9634
9635 ULONGEST
9636 ada_modulus (struct type * type)
9637 {
9638 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
9639 }
9640 \f
9641
9642 /* Ada exception catchpoint support:
9643 ---------------------------------
9644
9645 We support 3 kinds of exception catchpoints:
9646 . catchpoints on Ada exceptions
9647 . catchpoints on unhandled Ada exceptions
9648 . catchpoints on failed assertions
9649
9650 Exceptions raised during failed assertions, or unhandled exceptions
9651 could perfectly be caught with the general catchpoint on Ada exceptions.
9652 However, we can easily differentiate these two special cases, and having
9653 the option to distinguish these two cases from the rest can be useful
9654 to zero-in on certain situations.
9655
9656 Exception catchpoints are a specialized form of breakpoint,
9657 since they rely on inserting breakpoints inside known routines
9658 of the GNAT runtime. The implementation therefore uses a standard
9659 breakpoint structure of the BP_BREAKPOINT type, but with its own set
9660 of breakpoint_ops.
9661
9662 Support in the runtime for exception catchpoints have been changed
9663 a few times already, and these changes affect the implementation
9664 of these catchpoints. In order to be able to support several
9665 variants of the runtime, we use a sniffer that will determine
9666 the runtime variant used by the program being debugged.
9667
9668 At this time, we do not support the use of conditions on Ada exception
9669 catchpoints. The COND and COND_STRING fields are therefore set
9670 to NULL (most of the time, see below).
9671
9672 Conditions where EXP_STRING, COND, and COND_STRING are used:
9673
9674 When a user specifies the name of a specific exception in the case
9675 of catchpoints on Ada exceptions, we store the name of that exception
9676 in the EXP_STRING. We then translate this request into an actual
9677 condition stored in COND_STRING, and then parse it into an expression
9678 stored in COND. */
9679
9680 /* The different types of catchpoints that we introduced for catching
9681 Ada exceptions. */
9682
9683 enum exception_catchpoint_kind
9684 {
9685 ex_catch_exception,
9686 ex_catch_exception_unhandled,
9687 ex_catch_assert
9688 };
9689
9690 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
9691
9692 /* A structure that describes how to support exception catchpoints
9693 for a given executable. */
9694
9695 struct exception_support_info
9696 {
9697 /* The name of the symbol to break on in order to insert
9698 a catchpoint on exceptions. */
9699 const char *catch_exception_sym;
9700
9701 /* The name of the symbol to break on in order to insert
9702 a catchpoint on unhandled exceptions. */
9703 const char *catch_exception_unhandled_sym;
9704
9705 /* The name of the symbol to break on in order to insert
9706 a catchpoint on failed assertions. */
9707 const char *catch_assert_sym;
9708
9709 /* Assuming that the inferior just triggered an unhandled exception
9710 catchpoint, this function is responsible for returning the address
9711 in inferior memory where the name of that exception is stored.
9712 Return zero if the address could not be computed. */
9713 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
9714 };
9715
9716 static CORE_ADDR ada_unhandled_exception_name_addr (void);
9717 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
9718
9719 /* The following exception support info structure describes how to
9720 implement exception catchpoints with the latest version of the
9721 Ada runtime (as of 2007-03-06). */
9722
9723 static const struct exception_support_info default_exception_support_info =
9724 {
9725 "__gnat_debug_raise_exception", /* catch_exception_sym */
9726 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9727 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9728 ada_unhandled_exception_name_addr
9729 };
9730
9731 /* The following exception support info structure describes how to
9732 implement exception catchpoints with a slightly older version
9733 of the Ada runtime. */
9734
9735 static const struct exception_support_info exception_support_info_fallback =
9736 {
9737 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
9738 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9739 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9740 ada_unhandled_exception_name_addr_from_raise
9741 };
9742
9743 /* For each executable, we sniff which exception info structure to use
9744 and cache it in the following global variable. */
9745
9746 static const struct exception_support_info *exception_info = NULL;
9747
9748 /* Inspect the Ada runtime and determine which exception info structure
9749 should be used to provide support for exception catchpoints.
9750
9751 This function will always set exception_info, or raise an error. */
9752
9753 static void
9754 ada_exception_support_info_sniffer (void)
9755 {
9756 struct symbol *sym;
9757
9758 /* If the exception info is already known, then no need to recompute it. */
9759 if (exception_info != NULL)
9760 return;
9761
9762 /* Check the latest (default) exception support info. */
9763 sym = standard_lookup (default_exception_support_info.catch_exception_sym,
9764 NULL, VAR_DOMAIN);
9765 if (sym != NULL)
9766 {
9767 exception_info = &default_exception_support_info;
9768 return;
9769 }
9770
9771 /* Try our fallback exception suport info. */
9772 sym = standard_lookup (exception_support_info_fallback.catch_exception_sym,
9773 NULL, VAR_DOMAIN);
9774 if (sym != NULL)
9775 {
9776 exception_info = &exception_support_info_fallback;
9777 return;
9778 }
9779
9780 /* Sometimes, it is normal for us to not be able to find the routine
9781 we are looking for. This happens when the program is linked with
9782 the shared version of the GNAT runtime, and the program has not been
9783 started yet. Inform the user of these two possible causes if
9784 applicable. */
9785
9786 if (ada_update_initial_language (language_unknown, NULL) != language_ada)
9787 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
9788
9789 /* If the symbol does not exist, then check that the program is
9790 already started, to make sure that shared libraries have been
9791 loaded. If it is not started, this may mean that the symbol is
9792 in a shared library. */
9793
9794 if (ptid_get_pid (inferior_ptid) == 0)
9795 error (_("Unable to insert catchpoint. Try to start the program first."));
9796
9797 /* At this point, we know that we are debugging an Ada program and
9798 that the inferior has been started, but we still are not able to
9799 find the run-time symbols. That can mean that we are in
9800 configurable run time mode, or that a-except as been optimized
9801 out by the linker... In any case, at this point it is not worth
9802 supporting this feature. */
9803
9804 error (_("Cannot insert catchpoints in this configuration."));
9805 }
9806
9807 /* An observer of "executable_changed" events.
9808 Its role is to clear certain cached values that need to be recomputed
9809 each time a new executable is loaded by GDB. */
9810
9811 static void
9812 ada_executable_changed_observer (void *unused)
9813 {
9814 /* If the executable changed, then it is possible that the Ada runtime
9815 is different. So we need to invalidate the exception support info
9816 cache. */
9817 exception_info = NULL;
9818 }
9819
9820 /* Return the name of the function at PC, NULL if could not find it.
9821 This function only checks the debugging information, not the symbol
9822 table. */
9823
9824 static char *
9825 function_name_from_pc (CORE_ADDR pc)
9826 {
9827 char *func_name;
9828
9829 if (!find_pc_partial_function (pc, &func_name, NULL, NULL))
9830 return NULL;
9831
9832 return func_name;
9833 }
9834
9835 /* True iff FRAME is very likely to be that of a function that is
9836 part of the runtime system. This is all very heuristic, but is
9837 intended to be used as advice as to what frames are uninteresting
9838 to most users. */
9839
9840 static int
9841 is_known_support_routine (struct frame_info *frame)
9842 {
9843 struct symtab_and_line sal;
9844 char *func_name;
9845 int i;
9846
9847 /* If this code does not have any debugging information (no symtab),
9848 This cannot be any user code. */
9849
9850 find_frame_sal (frame, &sal);
9851 if (sal.symtab == NULL)
9852 return 1;
9853
9854 /* If there is a symtab, but the associated source file cannot be
9855 located, then assume this is not user code: Selecting a frame
9856 for which we cannot display the code would not be very helpful
9857 for the user. This should also take care of case such as VxWorks
9858 where the kernel has some debugging info provided for a few units. */
9859
9860 if (symtab_to_fullname (sal.symtab) == NULL)
9861 return 1;
9862
9863 /* Check the unit filename againt the Ada runtime file naming.
9864 We also check the name of the objfile against the name of some
9865 known system libraries that sometimes come with debugging info
9866 too. */
9867
9868 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
9869 {
9870 re_comp (known_runtime_file_name_patterns[i]);
9871 if (re_exec (sal.symtab->filename))
9872 return 1;
9873 if (sal.symtab->objfile != NULL
9874 && re_exec (sal.symtab->objfile->name))
9875 return 1;
9876 }
9877
9878 /* Check whether the function is a GNAT-generated entity. */
9879
9880 func_name = function_name_from_pc (get_frame_address_in_block (frame));
9881 if (func_name == NULL)
9882 return 1;
9883
9884 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
9885 {
9886 re_comp (known_auxiliary_function_name_patterns[i]);
9887 if (re_exec (func_name))
9888 return 1;
9889 }
9890
9891 return 0;
9892 }
9893
9894 /* Find the first frame that contains debugging information and that is not
9895 part of the Ada run-time, starting from FI and moving upward. */
9896
9897 static void
9898 ada_find_printable_frame (struct frame_info *fi)
9899 {
9900 for (; fi != NULL; fi = get_prev_frame (fi))
9901 {
9902 if (!is_known_support_routine (fi))
9903 {
9904 select_frame (fi);
9905 break;
9906 }
9907 }
9908
9909 }
9910
9911 /* Assuming that the inferior just triggered an unhandled exception
9912 catchpoint, return the address in inferior memory where the name
9913 of the exception is stored.
9914
9915 Return zero if the address could not be computed. */
9916
9917 static CORE_ADDR
9918 ada_unhandled_exception_name_addr (void)
9919 {
9920 return parse_and_eval_address ("e.full_name");
9921 }
9922
9923 /* Same as ada_unhandled_exception_name_addr, except that this function
9924 should be used when the inferior uses an older version of the runtime,
9925 where the exception name needs to be extracted from a specific frame
9926 several frames up in the callstack. */
9927
9928 static CORE_ADDR
9929 ada_unhandled_exception_name_addr_from_raise (void)
9930 {
9931 int frame_level;
9932 struct frame_info *fi;
9933
9934 /* To determine the name of this exception, we need to select
9935 the frame corresponding to RAISE_SYM_NAME. This frame is
9936 at least 3 levels up, so we simply skip the first 3 frames
9937 without checking the name of their associated function. */
9938 fi = get_current_frame ();
9939 for (frame_level = 0; frame_level < 3; frame_level += 1)
9940 if (fi != NULL)
9941 fi = get_prev_frame (fi);
9942
9943 while (fi != NULL)
9944 {
9945 const char *func_name =
9946 function_name_from_pc (get_frame_address_in_block (fi));
9947 if (func_name != NULL
9948 && strcmp (func_name, exception_info->catch_exception_sym) == 0)
9949 break; /* We found the frame we were looking for... */
9950 fi = get_prev_frame (fi);
9951 }
9952
9953 if (fi == NULL)
9954 return 0;
9955
9956 select_frame (fi);
9957 return parse_and_eval_address ("id.full_name");
9958 }
9959
9960 /* Assuming the inferior just triggered an Ada exception catchpoint
9961 (of any type), return the address in inferior memory where the name
9962 of the exception is stored, if applicable.
9963
9964 Return zero if the address could not be computed, or if not relevant. */
9965
9966 static CORE_ADDR
9967 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
9968 struct breakpoint *b)
9969 {
9970 switch (ex)
9971 {
9972 case ex_catch_exception:
9973 return (parse_and_eval_address ("e.full_name"));
9974 break;
9975
9976 case ex_catch_exception_unhandled:
9977 return exception_info->unhandled_exception_name_addr ();
9978 break;
9979
9980 case ex_catch_assert:
9981 return 0; /* Exception name is not relevant in this case. */
9982 break;
9983
9984 default:
9985 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
9986 break;
9987 }
9988
9989 return 0; /* Should never be reached. */
9990 }
9991
9992 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
9993 any error that ada_exception_name_addr_1 might cause to be thrown.
9994 When an error is intercepted, a warning with the error message is printed,
9995 and zero is returned. */
9996
9997 static CORE_ADDR
9998 ada_exception_name_addr (enum exception_catchpoint_kind ex,
9999 struct breakpoint *b)
10000 {
10001 struct gdb_exception e;
10002 CORE_ADDR result = 0;
10003
10004 TRY_CATCH (e, RETURN_MASK_ERROR)
10005 {
10006 result = ada_exception_name_addr_1 (ex, b);
10007 }
10008
10009 if (e.reason < 0)
10010 {
10011 warning (_("failed to get exception name: %s"), e.message);
10012 return 0;
10013 }
10014
10015 return result;
10016 }
10017
10018 /* Implement the PRINT_IT method in the breakpoint_ops structure
10019 for all exception catchpoint kinds. */
10020
10021 static enum print_stop_action
10022 print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
10023 {
10024 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
10025 char exception_name[256];
10026
10027 if (addr != 0)
10028 {
10029 read_memory (addr, exception_name, sizeof (exception_name) - 1);
10030 exception_name [sizeof (exception_name) - 1] = '\0';
10031 }
10032
10033 ada_find_printable_frame (get_current_frame ());
10034
10035 annotate_catchpoint (b->number);
10036 switch (ex)
10037 {
10038 case ex_catch_exception:
10039 if (addr != 0)
10040 printf_filtered (_("\nCatchpoint %d, %s at "),
10041 b->number, exception_name);
10042 else
10043 printf_filtered (_("\nCatchpoint %d, exception at "), b->number);
10044 break;
10045 case ex_catch_exception_unhandled:
10046 if (addr != 0)
10047 printf_filtered (_("\nCatchpoint %d, unhandled %s at "),
10048 b->number, exception_name);
10049 else
10050 printf_filtered (_("\nCatchpoint %d, unhandled exception at "),
10051 b->number);
10052 break;
10053 case ex_catch_assert:
10054 printf_filtered (_("\nCatchpoint %d, failed assertion at "),
10055 b->number);
10056 break;
10057 }
10058
10059 return PRINT_SRC_AND_LOC;
10060 }
10061
10062 /* Implement the PRINT_ONE method in the breakpoint_ops structure
10063 for all exception catchpoint kinds. */
10064
10065 static void
10066 print_one_exception (enum exception_catchpoint_kind ex,
10067 struct breakpoint *b, CORE_ADDR *last_addr)
10068 {
10069 if (addressprint)
10070 {
10071 annotate_field (4);
10072 ui_out_field_core_addr (uiout, "addr", b->loc->address);
10073 }
10074
10075 annotate_field (5);
10076 *last_addr = b->loc->address;
10077 switch (ex)
10078 {
10079 case ex_catch_exception:
10080 if (b->exp_string != NULL)
10081 {
10082 char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
10083
10084 ui_out_field_string (uiout, "what", msg);
10085 xfree (msg);
10086 }
10087 else
10088 ui_out_field_string (uiout, "what", "all Ada exceptions");
10089
10090 break;
10091
10092 case ex_catch_exception_unhandled:
10093 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
10094 break;
10095
10096 case ex_catch_assert:
10097 ui_out_field_string (uiout, "what", "failed Ada assertions");
10098 break;
10099
10100 default:
10101 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10102 break;
10103 }
10104 }
10105
10106 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
10107 for all exception catchpoint kinds. */
10108
10109 static void
10110 print_mention_exception (enum exception_catchpoint_kind ex,
10111 struct breakpoint *b)
10112 {
10113 switch (ex)
10114 {
10115 case ex_catch_exception:
10116 if (b->exp_string != NULL)
10117 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
10118 b->number, b->exp_string);
10119 else
10120 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
10121
10122 break;
10123
10124 case ex_catch_exception_unhandled:
10125 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
10126 b->number);
10127 break;
10128
10129 case ex_catch_assert:
10130 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
10131 break;
10132
10133 default:
10134 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10135 break;
10136 }
10137 }
10138
10139 /* Virtual table for "catch exception" breakpoints. */
10140
10141 static enum print_stop_action
10142 print_it_catch_exception (struct breakpoint *b)
10143 {
10144 return print_it_exception (ex_catch_exception, b);
10145 }
10146
10147 static void
10148 print_one_catch_exception (struct breakpoint *b, CORE_ADDR *last_addr)
10149 {
10150 print_one_exception (ex_catch_exception, b, last_addr);
10151 }
10152
10153 static void
10154 print_mention_catch_exception (struct breakpoint *b)
10155 {
10156 print_mention_exception (ex_catch_exception, b);
10157 }
10158
10159 static struct breakpoint_ops catch_exception_breakpoint_ops =
10160 {
10161 print_it_catch_exception,
10162 print_one_catch_exception,
10163 print_mention_catch_exception
10164 };
10165
10166 /* Virtual table for "catch exception unhandled" breakpoints. */
10167
10168 static enum print_stop_action
10169 print_it_catch_exception_unhandled (struct breakpoint *b)
10170 {
10171 return print_it_exception (ex_catch_exception_unhandled, b);
10172 }
10173
10174 static void
10175 print_one_catch_exception_unhandled (struct breakpoint *b, CORE_ADDR *last_addr)
10176 {
10177 print_one_exception (ex_catch_exception_unhandled, b, last_addr);
10178 }
10179
10180 static void
10181 print_mention_catch_exception_unhandled (struct breakpoint *b)
10182 {
10183 print_mention_exception (ex_catch_exception_unhandled, b);
10184 }
10185
10186 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
10187 print_it_catch_exception_unhandled,
10188 print_one_catch_exception_unhandled,
10189 print_mention_catch_exception_unhandled
10190 };
10191
10192 /* Virtual table for "catch assert" breakpoints. */
10193
10194 static enum print_stop_action
10195 print_it_catch_assert (struct breakpoint *b)
10196 {
10197 return print_it_exception (ex_catch_assert, b);
10198 }
10199
10200 static void
10201 print_one_catch_assert (struct breakpoint *b, CORE_ADDR *last_addr)
10202 {
10203 print_one_exception (ex_catch_assert, b, last_addr);
10204 }
10205
10206 static void
10207 print_mention_catch_assert (struct breakpoint *b)
10208 {
10209 print_mention_exception (ex_catch_assert, b);
10210 }
10211
10212 static struct breakpoint_ops catch_assert_breakpoint_ops = {
10213 print_it_catch_assert,
10214 print_one_catch_assert,
10215 print_mention_catch_assert
10216 };
10217
10218 /* Return non-zero if B is an Ada exception catchpoint. */
10219
10220 int
10221 ada_exception_catchpoint_p (struct breakpoint *b)
10222 {
10223 return (b->ops == &catch_exception_breakpoint_ops
10224 || b->ops == &catch_exception_unhandled_breakpoint_ops
10225 || b->ops == &catch_assert_breakpoint_ops);
10226 }
10227
10228 /* Return a newly allocated copy of the first space-separated token
10229 in ARGSP, and then adjust ARGSP to point immediately after that
10230 token.
10231
10232 Return NULL if ARGPS does not contain any more tokens. */
10233
10234 static char *
10235 ada_get_next_arg (char **argsp)
10236 {
10237 char *args = *argsp;
10238 char *end;
10239 char *result;
10240
10241 /* Skip any leading white space. */
10242
10243 while (isspace (*args))
10244 args++;
10245
10246 if (args[0] == '\0')
10247 return NULL; /* No more arguments. */
10248
10249 /* Find the end of the current argument. */
10250
10251 end = args;
10252 while (*end != '\0' && !isspace (*end))
10253 end++;
10254
10255 /* Adjust ARGSP to point to the start of the next argument. */
10256
10257 *argsp = end;
10258
10259 /* Make a copy of the current argument and return it. */
10260
10261 result = xmalloc (end - args + 1);
10262 strncpy (result, args, end - args);
10263 result[end - args] = '\0';
10264
10265 return result;
10266 }
10267
10268 /* Split the arguments specified in a "catch exception" command.
10269 Set EX to the appropriate catchpoint type.
10270 Set EXP_STRING to the name of the specific exception if
10271 specified by the user. */
10272
10273 static void
10274 catch_ada_exception_command_split (char *args,
10275 enum exception_catchpoint_kind *ex,
10276 char **exp_string)
10277 {
10278 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
10279 char *exception_name;
10280
10281 exception_name = ada_get_next_arg (&args);
10282 make_cleanup (xfree, exception_name);
10283
10284 /* Check that we do not have any more arguments. Anything else
10285 is unexpected. */
10286
10287 while (isspace (*args))
10288 args++;
10289
10290 if (args[0] != '\0')
10291 error (_("Junk at end of expression"));
10292
10293 discard_cleanups (old_chain);
10294
10295 if (exception_name == NULL)
10296 {
10297 /* Catch all exceptions. */
10298 *ex = ex_catch_exception;
10299 *exp_string = NULL;
10300 }
10301 else if (strcmp (exception_name, "unhandled") == 0)
10302 {
10303 /* Catch unhandled exceptions. */
10304 *ex = ex_catch_exception_unhandled;
10305 *exp_string = NULL;
10306 }
10307 else
10308 {
10309 /* Catch a specific exception. */
10310 *ex = ex_catch_exception;
10311 *exp_string = exception_name;
10312 }
10313 }
10314
10315 /* Return the name of the symbol on which we should break in order to
10316 implement a catchpoint of the EX kind. */
10317
10318 static const char *
10319 ada_exception_sym_name (enum exception_catchpoint_kind ex)
10320 {
10321 gdb_assert (exception_info != NULL);
10322
10323 switch (ex)
10324 {
10325 case ex_catch_exception:
10326 return (exception_info->catch_exception_sym);
10327 break;
10328 case ex_catch_exception_unhandled:
10329 return (exception_info->catch_exception_unhandled_sym);
10330 break;
10331 case ex_catch_assert:
10332 return (exception_info->catch_assert_sym);
10333 break;
10334 default:
10335 internal_error (__FILE__, __LINE__,
10336 _("unexpected catchpoint kind (%d)"), ex);
10337 }
10338 }
10339
10340 /* Return the breakpoint ops "virtual table" used for catchpoints
10341 of the EX kind. */
10342
10343 static struct breakpoint_ops *
10344 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
10345 {
10346 switch (ex)
10347 {
10348 case ex_catch_exception:
10349 return (&catch_exception_breakpoint_ops);
10350 break;
10351 case ex_catch_exception_unhandled:
10352 return (&catch_exception_unhandled_breakpoint_ops);
10353 break;
10354 case ex_catch_assert:
10355 return (&catch_assert_breakpoint_ops);
10356 break;
10357 default:
10358 internal_error (__FILE__, __LINE__,
10359 _("unexpected catchpoint kind (%d)"), ex);
10360 }
10361 }
10362
10363 /* Return the condition that will be used to match the current exception
10364 being raised with the exception that the user wants to catch. This
10365 assumes that this condition is used when the inferior just triggered
10366 an exception catchpoint.
10367
10368 The string returned is a newly allocated string that needs to be
10369 deallocated later. */
10370
10371 static char *
10372 ada_exception_catchpoint_cond_string (const char *exp_string)
10373 {
10374 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
10375 }
10376
10377 /* Return the expression corresponding to COND_STRING evaluated at SAL. */
10378
10379 static struct expression *
10380 ada_parse_catchpoint_condition (char *cond_string,
10381 struct symtab_and_line sal)
10382 {
10383 return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
10384 }
10385
10386 /* Return the symtab_and_line that should be used to insert an exception
10387 catchpoint of the TYPE kind.
10388
10389 EX_STRING should contain the name of a specific exception
10390 that the catchpoint should catch, or NULL otherwise.
10391
10392 The idea behind all the remaining parameters is that their names match
10393 the name of certain fields in the breakpoint structure that are used to
10394 handle exception catchpoints. This function returns the value to which
10395 these fields should be set, depending on the type of catchpoint we need
10396 to create.
10397
10398 If COND and COND_STRING are both non-NULL, any value they might
10399 hold will be free'ed, and then replaced by newly allocated ones.
10400 These parameters are left untouched otherwise. */
10401
10402 static struct symtab_and_line
10403 ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
10404 char **addr_string, char **cond_string,
10405 struct expression **cond, struct breakpoint_ops **ops)
10406 {
10407 const char *sym_name;
10408 struct symbol *sym;
10409 struct symtab_and_line sal;
10410
10411 /* First, find out which exception support info to use. */
10412 ada_exception_support_info_sniffer ();
10413
10414 /* Then lookup the function on which we will break in order to catch
10415 the Ada exceptions requested by the user. */
10416
10417 sym_name = ada_exception_sym_name (ex);
10418 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
10419
10420 /* The symbol we're looking up is provided by a unit in the GNAT runtime
10421 that should be compiled with debugging information. As a result, we
10422 expect to find that symbol in the symtabs. If we don't find it, then
10423 the target most likely does not support Ada exceptions, or we cannot
10424 insert exception breakpoints yet, because the GNAT runtime hasn't been
10425 loaded yet. */
10426
10427 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
10428 in such a way that no debugging information is produced for the symbol
10429 we are looking for. In this case, we could search the minimal symbols
10430 as a fall-back mechanism. This would still be operating in degraded
10431 mode, however, as we would still be missing the debugging information
10432 that is needed in order to extract the name of the exception being
10433 raised (this name is printed in the catchpoint message, and is also
10434 used when trying to catch a specific exception). We do not handle
10435 this case for now. */
10436
10437 if (sym == NULL)
10438 error (_("Unable to break on '%s' in this configuration."), sym_name);
10439
10440 /* Make sure that the symbol we found corresponds to a function. */
10441 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
10442 error (_("Symbol \"%s\" is not a function (class = %d)"),
10443 sym_name, SYMBOL_CLASS (sym));
10444
10445 sal = find_function_start_sal (sym, 1);
10446
10447 /* Set ADDR_STRING. */
10448
10449 *addr_string = xstrdup (sym_name);
10450
10451 /* Set the COND and COND_STRING (if not NULL). */
10452
10453 if (cond_string != NULL && cond != NULL)
10454 {
10455 if (*cond_string != NULL)
10456 {
10457 xfree (*cond_string);
10458 *cond_string = NULL;
10459 }
10460 if (*cond != NULL)
10461 {
10462 xfree (*cond);
10463 *cond = NULL;
10464 }
10465 if (exp_string != NULL)
10466 {
10467 *cond_string = ada_exception_catchpoint_cond_string (exp_string);
10468 *cond = ada_parse_catchpoint_condition (*cond_string, sal);
10469 }
10470 }
10471
10472 /* Set OPS. */
10473 *ops = ada_exception_breakpoint_ops (ex);
10474
10475 return sal;
10476 }
10477
10478 /* Parse the arguments (ARGS) of the "catch exception" command.
10479
10480 Set TYPE to the appropriate exception catchpoint type.
10481 If the user asked the catchpoint to catch only a specific
10482 exception, then save the exception name in ADDR_STRING.
10483
10484 See ada_exception_sal for a description of all the remaining
10485 function arguments of this function. */
10486
10487 struct symtab_and_line
10488 ada_decode_exception_location (char *args, char **addr_string,
10489 char **exp_string, char **cond_string,
10490 struct expression **cond,
10491 struct breakpoint_ops **ops)
10492 {
10493 enum exception_catchpoint_kind ex;
10494
10495 catch_ada_exception_command_split (args, &ex, exp_string);
10496 return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
10497 cond, ops);
10498 }
10499
10500 struct symtab_and_line
10501 ada_decode_assert_location (char *args, char **addr_string,
10502 struct breakpoint_ops **ops)
10503 {
10504 /* Check that no argument where provided at the end of the command. */
10505
10506 if (args != NULL)
10507 {
10508 while (isspace (*args))
10509 args++;
10510 if (*args != '\0')
10511 error (_("Junk at end of arguments."));
10512 }
10513
10514 return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
10515 ops);
10516 }
10517
10518 /* Operators */
10519 /* Information about operators given special treatment in functions
10520 below. */
10521 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
10522
10523 #define ADA_OPERATORS \
10524 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
10525 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
10526 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
10527 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
10528 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
10529 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
10530 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
10531 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
10532 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
10533 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
10534 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
10535 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
10536 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
10537 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
10538 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
10539 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
10540 OP_DEFN (OP_OTHERS, 1, 1, 0) \
10541 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
10542 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
10543
10544 static void
10545 ada_operator_length (struct expression *exp, int pc, int *oplenp, int *argsp)
10546 {
10547 switch (exp->elts[pc - 1].opcode)
10548 {
10549 default:
10550 operator_length_standard (exp, pc, oplenp, argsp);
10551 break;
10552
10553 #define OP_DEFN(op, len, args, binop) \
10554 case op: *oplenp = len; *argsp = args; break;
10555 ADA_OPERATORS;
10556 #undef OP_DEFN
10557
10558 case OP_AGGREGATE:
10559 *oplenp = 3;
10560 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
10561 break;
10562
10563 case OP_CHOICES:
10564 *oplenp = 3;
10565 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
10566 break;
10567 }
10568 }
10569
10570 static char *
10571 ada_op_name (enum exp_opcode opcode)
10572 {
10573 switch (opcode)
10574 {
10575 default:
10576 return op_name_standard (opcode);
10577
10578 #define OP_DEFN(op, len, args, binop) case op: return #op;
10579 ADA_OPERATORS;
10580 #undef OP_DEFN
10581
10582 case OP_AGGREGATE:
10583 return "OP_AGGREGATE";
10584 case OP_CHOICES:
10585 return "OP_CHOICES";
10586 case OP_NAME:
10587 return "OP_NAME";
10588 }
10589 }
10590
10591 /* As for operator_length, but assumes PC is pointing at the first
10592 element of the operator, and gives meaningful results only for the
10593 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
10594
10595 static void
10596 ada_forward_operator_length (struct expression *exp, int pc,
10597 int *oplenp, int *argsp)
10598 {
10599 switch (exp->elts[pc].opcode)
10600 {
10601 default:
10602 *oplenp = *argsp = 0;
10603 break;
10604
10605 #define OP_DEFN(op, len, args, binop) \
10606 case op: *oplenp = len; *argsp = args; break;
10607 ADA_OPERATORS;
10608 #undef OP_DEFN
10609
10610 case OP_AGGREGATE:
10611 *oplenp = 3;
10612 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
10613 break;
10614
10615 case OP_CHOICES:
10616 *oplenp = 3;
10617 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
10618 break;
10619
10620 case OP_STRING:
10621 case OP_NAME:
10622 {
10623 int len = longest_to_int (exp->elts[pc + 1].longconst);
10624 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
10625 *argsp = 0;
10626 break;
10627 }
10628 }
10629 }
10630
10631 static int
10632 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
10633 {
10634 enum exp_opcode op = exp->elts[elt].opcode;
10635 int oplen, nargs;
10636 int pc = elt;
10637 int i;
10638
10639 ada_forward_operator_length (exp, elt, &oplen, &nargs);
10640
10641 switch (op)
10642 {
10643 /* Ada attributes ('Foo). */
10644 case OP_ATR_FIRST:
10645 case OP_ATR_LAST:
10646 case OP_ATR_LENGTH:
10647 case OP_ATR_IMAGE:
10648 case OP_ATR_MAX:
10649 case OP_ATR_MIN:
10650 case OP_ATR_MODULUS:
10651 case OP_ATR_POS:
10652 case OP_ATR_SIZE:
10653 case OP_ATR_TAG:
10654 case OP_ATR_VAL:
10655 break;
10656
10657 case UNOP_IN_RANGE:
10658 case UNOP_QUAL:
10659 /* XXX: gdb_sprint_host_address, type_sprint */
10660 fprintf_filtered (stream, _("Type @"));
10661 gdb_print_host_address (exp->elts[pc + 1].type, stream);
10662 fprintf_filtered (stream, " (");
10663 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
10664 fprintf_filtered (stream, ")");
10665 break;
10666 case BINOP_IN_BOUNDS:
10667 fprintf_filtered (stream, " (%d)",
10668 longest_to_int (exp->elts[pc + 2].longconst));
10669 break;
10670 case TERNOP_IN_RANGE:
10671 break;
10672
10673 case OP_AGGREGATE:
10674 case OP_OTHERS:
10675 case OP_DISCRETE_RANGE:
10676 case OP_POSITIONAL:
10677 case OP_CHOICES:
10678 break;
10679
10680 case OP_NAME:
10681 case OP_STRING:
10682 {
10683 char *name = &exp->elts[elt + 2].string;
10684 int len = longest_to_int (exp->elts[elt + 1].longconst);
10685 fprintf_filtered (stream, "Text: `%.*s'", len, name);
10686 break;
10687 }
10688
10689 default:
10690 return dump_subexp_body_standard (exp, stream, elt);
10691 }
10692
10693 elt += oplen;
10694 for (i = 0; i < nargs; i += 1)
10695 elt = dump_subexp (exp, stream, elt);
10696
10697 return elt;
10698 }
10699
10700 /* The Ada extension of print_subexp (q.v.). */
10701
10702 static void
10703 ada_print_subexp (struct expression *exp, int *pos,
10704 struct ui_file *stream, enum precedence prec)
10705 {
10706 int oplen, nargs, i;
10707 int pc = *pos;
10708 enum exp_opcode op = exp->elts[pc].opcode;
10709
10710 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10711
10712 *pos += oplen;
10713 switch (op)
10714 {
10715 default:
10716 *pos -= oplen;
10717 print_subexp_standard (exp, pos, stream, prec);
10718 return;
10719
10720 case OP_VAR_VALUE:
10721 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
10722 return;
10723
10724 case BINOP_IN_BOUNDS:
10725 /* XXX: sprint_subexp */
10726 print_subexp (exp, pos, stream, PREC_SUFFIX);
10727 fputs_filtered (" in ", stream);
10728 print_subexp (exp, pos, stream, PREC_SUFFIX);
10729 fputs_filtered ("'range", stream);
10730 if (exp->elts[pc + 1].longconst > 1)
10731 fprintf_filtered (stream, "(%ld)",
10732 (long) exp->elts[pc + 1].longconst);
10733 return;
10734
10735 case TERNOP_IN_RANGE:
10736 if (prec >= PREC_EQUAL)
10737 fputs_filtered ("(", stream);
10738 /* XXX: sprint_subexp */
10739 print_subexp (exp, pos, stream, PREC_SUFFIX);
10740 fputs_filtered (" in ", stream);
10741 print_subexp (exp, pos, stream, PREC_EQUAL);
10742 fputs_filtered (" .. ", stream);
10743 print_subexp (exp, pos, stream, PREC_EQUAL);
10744 if (prec >= PREC_EQUAL)
10745 fputs_filtered (")", stream);
10746 return;
10747
10748 case OP_ATR_FIRST:
10749 case OP_ATR_LAST:
10750 case OP_ATR_LENGTH:
10751 case OP_ATR_IMAGE:
10752 case OP_ATR_MAX:
10753 case OP_ATR_MIN:
10754 case OP_ATR_MODULUS:
10755 case OP_ATR_POS:
10756 case OP_ATR_SIZE:
10757 case OP_ATR_TAG:
10758 case OP_ATR_VAL:
10759 if (exp->elts[*pos].opcode == OP_TYPE)
10760 {
10761 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
10762 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
10763 *pos += 3;
10764 }
10765 else
10766 print_subexp (exp, pos, stream, PREC_SUFFIX);
10767 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
10768 if (nargs > 1)
10769 {
10770 int tem;
10771 for (tem = 1; tem < nargs; tem += 1)
10772 {
10773 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
10774 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
10775 }
10776 fputs_filtered (")", stream);
10777 }
10778 return;
10779
10780 case UNOP_QUAL:
10781 type_print (exp->elts[pc + 1].type, "", stream, 0);
10782 fputs_filtered ("'(", stream);
10783 print_subexp (exp, pos, stream, PREC_PREFIX);
10784 fputs_filtered (")", stream);
10785 return;
10786
10787 case UNOP_IN_RANGE:
10788 /* XXX: sprint_subexp */
10789 print_subexp (exp, pos, stream, PREC_SUFFIX);
10790 fputs_filtered (" in ", stream);
10791 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
10792 return;
10793
10794 case OP_DISCRETE_RANGE:
10795 print_subexp (exp, pos, stream, PREC_SUFFIX);
10796 fputs_filtered ("..", stream);
10797 print_subexp (exp, pos, stream, PREC_SUFFIX);
10798 return;
10799
10800 case OP_OTHERS:
10801 fputs_filtered ("others => ", stream);
10802 print_subexp (exp, pos, stream, PREC_SUFFIX);
10803 return;
10804
10805 case OP_CHOICES:
10806 for (i = 0; i < nargs-1; i += 1)
10807 {
10808 if (i > 0)
10809 fputs_filtered ("|", stream);
10810 print_subexp (exp, pos, stream, PREC_SUFFIX);
10811 }
10812 fputs_filtered (" => ", stream);
10813 print_subexp (exp, pos, stream, PREC_SUFFIX);
10814 return;
10815
10816 case OP_POSITIONAL:
10817 print_subexp (exp, pos, stream, PREC_SUFFIX);
10818 return;
10819
10820 case OP_AGGREGATE:
10821 fputs_filtered ("(", stream);
10822 for (i = 0; i < nargs; i += 1)
10823 {
10824 if (i > 0)
10825 fputs_filtered (", ", stream);
10826 print_subexp (exp, pos, stream, PREC_SUFFIX);
10827 }
10828 fputs_filtered (")", stream);
10829 return;
10830 }
10831 }
10832
10833 /* Table mapping opcodes into strings for printing operators
10834 and precedences of the operators. */
10835
10836 static const struct op_print ada_op_print_tab[] = {
10837 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
10838 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
10839 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
10840 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
10841 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
10842 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
10843 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
10844 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
10845 {"<=", BINOP_LEQ, PREC_ORDER, 0},
10846 {">=", BINOP_GEQ, PREC_ORDER, 0},
10847 {">", BINOP_GTR, PREC_ORDER, 0},
10848 {"<", BINOP_LESS, PREC_ORDER, 0},
10849 {">>", BINOP_RSH, PREC_SHIFT, 0},
10850 {"<<", BINOP_LSH, PREC_SHIFT, 0},
10851 {"+", BINOP_ADD, PREC_ADD, 0},
10852 {"-", BINOP_SUB, PREC_ADD, 0},
10853 {"&", BINOP_CONCAT, PREC_ADD, 0},
10854 {"*", BINOP_MUL, PREC_MUL, 0},
10855 {"/", BINOP_DIV, PREC_MUL, 0},
10856 {"rem", BINOP_REM, PREC_MUL, 0},
10857 {"mod", BINOP_MOD, PREC_MUL, 0},
10858 {"**", BINOP_EXP, PREC_REPEAT, 0},
10859 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
10860 {"-", UNOP_NEG, PREC_PREFIX, 0},
10861 {"+", UNOP_PLUS, PREC_PREFIX, 0},
10862 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
10863 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
10864 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
10865 {".all", UNOP_IND, PREC_SUFFIX, 1},
10866 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
10867 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
10868 {NULL, 0, 0, 0}
10869 };
10870 \f
10871 enum ada_primitive_types {
10872 ada_primitive_type_int,
10873 ada_primitive_type_long,
10874 ada_primitive_type_short,
10875 ada_primitive_type_char,
10876 ada_primitive_type_float,
10877 ada_primitive_type_double,
10878 ada_primitive_type_void,
10879 ada_primitive_type_long_long,
10880 ada_primitive_type_long_double,
10881 ada_primitive_type_natural,
10882 ada_primitive_type_positive,
10883 ada_primitive_type_system_address,
10884 nr_ada_primitive_types
10885 };
10886
10887 static void
10888 ada_language_arch_info (struct gdbarch *gdbarch,
10889 struct language_arch_info *lai)
10890 {
10891 const struct builtin_type *builtin = builtin_type (gdbarch);
10892 lai->primitive_type_vector
10893 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
10894 struct type *);
10895 lai->primitive_type_vector [ada_primitive_type_int] =
10896 init_type (TYPE_CODE_INT,
10897 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
10898 0, "integer", (struct objfile *) NULL);
10899 lai->primitive_type_vector [ada_primitive_type_long] =
10900 init_type (TYPE_CODE_INT,
10901 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
10902 0, "long_integer", (struct objfile *) NULL);
10903 lai->primitive_type_vector [ada_primitive_type_short] =
10904 init_type (TYPE_CODE_INT,
10905 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
10906 0, "short_integer", (struct objfile *) NULL);
10907 lai->string_char_type =
10908 lai->primitive_type_vector [ada_primitive_type_char] =
10909 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10910 0, "character", (struct objfile *) NULL);
10911 lai->primitive_type_vector [ada_primitive_type_float] =
10912 init_type (TYPE_CODE_FLT,
10913 gdbarch_float_bit (gdbarch)/ TARGET_CHAR_BIT,
10914 0, "float", (struct objfile *) NULL);
10915 lai->primitive_type_vector [ada_primitive_type_double] =
10916 init_type (TYPE_CODE_FLT,
10917 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
10918 0, "long_float", (struct objfile *) NULL);
10919 lai->primitive_type_vector [ada_primitive_type_long_long] =
10920 init_type (TYPE_CODE_INT,
10921 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
10922 0, "long_long_integer", (struct objfile *) NULL);
10923 lai->primitive_type_vector [ada_primitive_type_long_double] =
10924 init_type (TYPE_CODE_FLT,
10925 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
10926 0, "long_long_float", (struct objfile *) NULL);
10927 lai->primitive_type_vector [ada_primitive_type_natural] =
10928 init_type (TYPE_CODE_INT,
10929 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
10930 0, "natural", (struct objfile *) NULL);
10931 lai->primitive_type_vector [ada_primitive_type_positive] =
10932 init_type (TYPE_CODE_INT,
10933 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
10934 0, "positive", (struct objfile *) NULL);
10935 lai->primitive_type_vector [ada_primitive_type_void] = builtin->builtin_void;
10936
10937 lai->primitive_type_vector [ada_primitive_type_system_address] =
10938 lookup_pointer_type (init_type (TYPE_CODE_VOID, 1, 0, "void",
10939 (struct objfile *) NULL));
10940 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
10941 = "system__address";
10942 }
10943 \f
10944 /* Language vector */
10945
10946 /* Not really used, but needed in the ada_language_defn. */
10947
10948 static void
10949 emit_char (int c, struct ui_file *stream, int quoter)
10950 {
10951 ada_emit_char (c, stream, quoter, 1);
10952 }
10953
10954 static int
10955 parse (void)
10956 {
10957 warnings_issued = 0;
10958 return ada_parse ();
10959 }
10960
10961 static const struct exp_descriptor ada_exp_descriptor = {
10962 ada_print_subexp,
10963 ada_operator_length,
10964 ada_op_name,
10965 ada_dump_subexp_body,
10966 ada_evaluate_subexp
10967 };
10968
10969 const struct language_defn ada_language_defn = {
10970 "ada", /* Language name */
10971 language_ada,
10972 range_check_off,
10973 type_check_off,
10974 case_sensitive_on, /* Yes, Ada is case-insensitive, but
10975 that's not quite what this means. */
10976 array_row_major,
10977 &ada_exp_descriptor,
10978 parse,
10979 ada_error,
10980 resolve,
10981 ada_printchar, /* Print a character constant */
10982 ada_printstr, /* Function to print string constant */
10983 emit_char, /* Function to print single char (not used) */
10984 ada_print_type, /* Print a type using appropriate syntax */
10985 ada_val_print, /* Print a value using appropriate syntax */
10986 ada_value_print, /* Print a top-level value */
10987 NULL, /* Language specific skip_trampoline */
10988 NULL, /* name_of_this */
10989 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
10990 basic_lookup_transparent_type, /* lookup_transparent_type */
10991 ada_la_decode, /* Language specific symbol demangler */
10992 NULL, /* Language specific class_name_from_physname */
10993 ada_op_print_tab, /* expression operators for printing */
10994 0, /* c-style arrays */
10995 1, /* String lower bound */
10996 ada_get_gdb_completer_word_break_characters,
10997 ada_make_symbol_completion_list,
10998 ada_language_arch_info,
10999 ada_print_array_index,
11000 default_pass_by_reference,
11001 LANG_MAGIC
11002 };
11003
11004 void
11005 _initialize_ada_language (void)
11006 {
11007 add_language (&ada_language_defn);
11008
11009 varsize_limit = 65536;
11010
11011 obstack_init (&symbol_list_obstack);
11012
11013 decoded_names_store = htab_create_alloc
11014 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
11015 NULL, xcalloc, xfree);
11016
11017 observer_attach_executable_changed (ada_executable_changed_observer);
11018 }