* ada-exp.y (write_object_renaming, write_var_or_type)
[binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-1994, 1997-2000, 2003-2005, 2007-2012 Free
4 Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21
22 #include "defs.h"
23 #include <stdio.h>
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include <stdarg.h>
27 #include "demangle.h"
28 #include "gdb_regex.h"
29 #include "frame.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "gdbcmd.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35 #include "language.h"
36 #include "c-lang.h"
37 #include "inferior.h"
38 #include "symfile.h"
39 #include "objfiles.h"
40 #include "breakpoint.h"
41 #include "gdbcore.h"
42 #include "hashtab.h"
43 #include "gdb_obstack.h"
44 #include "ada-lang.h"
45 #include "completer.h"
46 #include "gdb_stat.h"
47 #ifdef UI_OUT
48 #include "ui-out.h"
49 #endif
50 #include "block.h"
51 #include "infcall.h"
52 #include "dictionary.h"
53 #include "exceptions.h"
54 #include "annotate.h"
55 #include "valprint.h"
56 #include "source.h"
57 #include "observer.h"
58 #include "vec.h"
59 #include "stack.h"
60 #include "gdb_vecs.h"
61 #include "typeprint.h"
62
63 #include "psymtab.h"
64 #include "value.h"
65 #include "mi/mi-common.h"
66 #include "arch-utils.h"
67 #include "exceptions.h"
68 #include "cli/cli-utils.h"
69
70 /* Define whether or not the C operator '/' truncates towards zero for
71 differently signed operands (truncation direction is undefined in C).
72 Copied from valarith.c. */
73
74 #ifndef TRUNCATION_TOWARDS_ZERO
75 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
76 #endif
77
78 static struct type *desc_base_type (struct type *);
79
80 static struct type *desc_bounds_type (struct type *);
81
82 static struct value *desc_bounds (struct value *);
83
84 static int fat_pntr_bounds_bitpos (struct type *);
85
86 static int fat_pntr_bounds_bitsize (struct type *);
87
88 static struct type *desc_data_target_type (struct type *);
89
90 static struct value *desc_data (struct value *);
91
92 static int fat_pntr_data_bitpos (struct type *);
93
94 static int fat_pntr_data_bitsize (struct type *);
95
96 static struct value *desc_one_bound (struct value *, int, int);
97
98 static int desc_bound_bitpos (struct type *, int, int);
99
100 static int desc_bound_bitsize (struct type *, int, int);
101
102 static struct type *desc_index_type (struct type *, int);
103
104 static int desc_arity (struct type *);
105
106 static int ada_type_match (struct type *, struct type *, int);
107
108 static int ada_args_match (struct symbol *, struct value **, int);
109
110 static int full_match (const char *, const char *);
111
112 static struct value *make_array_descriptor (struct type *, struct value *);
113
114 static void ada_add_block_symbols (struct obstack *,
115 struct block *, const char *,
116 domain_enum, struct objfile *, int);
117
118 static int is_nonfunction (struct ada_symbol_info *, int);
119
120 static void add_defn_to_vec (struct obstack *, struct symbol *,
121 struct block *);
122
123 static int num_defns_collected (struct obstack *);
124
125 static struct ada_symbol_info *defns_collected (struct obstack *, int);
126
127 static struct value *resolve_subexp (struct expression **, int *, int,
128 struct type *);
129
130 static void replace_operator_with_call (struct expression **, int, int, int,
131 struct symbol *, const struct block *);
132
133 static int possible_user_operator_p (enum exp_opcode, struct value **);
134
135 static char *ada_op_name (enum exp_opcode);
136
137 static const char *ada_decoded_op_name (enum exp_opcode);
138
139 static int numeric_type_p (struct type *);
140
141 static int integer_type_p (struct type *);
142
143 static int scalar_type_p (struct type *);
144
145 static int discrete_type_p (struct type *);
146
147 static enum ada_renaming_category parse_old_style_renaming (struct type *,
148 const char **,
149 int *,
150 const char **);
151
152 static struct symbol *find_old_style_renaming_symbol (const char *,
153 const struct block *);
154
155 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
156 int, int, int *);
157
158 static struct value *evaluate_subexp_type (struct expression *, int *);
159
160 static struct type *ada_find_parallel_type_with_name (struct type *,
161 const char *);
162
163 static int is_dynamic_field (struct type *, int);
164
165 static struct type *to_fixed_variant_branch_type (struct type *,
166 const gdb_byte *,
167 CORE_ADDR, struct value *);
168
169 static struct type *to_fixed_array_type (struct type *, struct value *, int);
170
171 static struct type *to_fixed_range_type (struct type *, struct value *);
172
173 static struct type *to_static_fixed_type (struct type *);
174 static struct type *static_unwrap_type (struct type *type);
175
176 static struct value *unwrap_value (struct value *);
177
178 static struct type *constrained_packed_array_type (struct type *, long *);
179
180 static struct type *decode_constrained_packed_array_type (struct type *);
181
182 static long decode_packed_array_bitsize (struct type *);
183
184 static struct value *decode_constrained_packed_array (struct value *);
185
186 static int ada_is_packed_array_type (struct type *);
187
188 static int ada_is_unconstrained_packed_array_type (struct type *);
189
190 static struct value *value_subscript_packed (struct value *, int,
191 struct value **);
192
193 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
194
195 static struct value *coerce_unspec_val_to_type (struct value *,
196 struct type *);
197
198 static struct value *get_var_value (char *, char *);
199
200 static int lesseq_defined_than (struct symbol *, struct symbol *);
201
202 static int equiv_types (struct type *, struct type *);
203
204 static int is_name_suffix (const char *);
205
206 static int advance_wild_match (const char **, const char *, int);
207
208 static int wild_match (const char *, const char *);
209
210 static struct value *ada_coerce_ref (struct value *);
211
212 static LONGEST pos_atr (struct value *);
213
214 static struct value *value_pos_atr (struct type *, struct value *);
215
216 static struct value *value_val_atr (struct type *, struct value *);
217
218 static struct symbol *standard_lookup (const char *, const struct block *,
219 domain_enum);
220
221 static struct value *ada_search_struct_field (char *, struct value *, int,
222 struct type *);
223
224 static struct value *ada_value_primitive_field (struct value *, int, int,
225 struct type *);
226
227 static int find_struct_field (const char *, struct type *, int,
228 struct type **, int *, int *, int *, int *);
229
230 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
231 struct value *);
232
233 static int ada_resolve_function (struct ada_symbol_info *, int,
234 struct value **, int, const char *,
235 struct type *);
236
237 static int ada_is_direct_array_type (struct type *);
238
239 static void ada_language_arch_info (struct gdbarch *,
240 struct language_arch_info *);
241
242 static void check_size (const struct type *);
243
244 static struct value *ada_index_struct_field (int, struct value *, int,
245 struct type *);
246
247 static struct value *assign_aggregate (struct value *, struct value *,
248 struct expression *,
249 int *, enum noside);
250
251 static void aggregate_assign_from_choices (struct value *, struct value *,
252 struct expression *,
253 int *, LONGEST *, int *,
254 int, LONGEST, LONGEST);
255
256 static void aggregate_assign_positional (struct value *, struct value *,
257 struct expression *,
258 int *, LONGEST *, int *, int,
259 LONGEST, LONGEST);
260
261
262 static void aggregate_assign_others (struct value *, struct value *,
263 struct expression *,
264 int *, LONGEST *, int, LONGEST, LONGEST);
265
266
267 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
268
269
270 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
271 int *, enum noside);
272
273 static void ada_forward_operator_length (struct expression *, int, int *,
274 int *);
275
276 static struct type *ada_find_any_type (const char *name);
277 \f
278
279
280 /* Maximum-sized dynamic type. */
281 static unsigned int varsize_limit;
282
283 /* FIXME: brobecker/2003-09-17: No longer a const because it is
284 returned by a function that does not return a const char *. */
285 static char *ada_completer_word_break_characters =
286 #ifdef VMS
287 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
288 #else
289 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
290 #endif
291
292 /* The name of the symbol to use to get the name of the main subprogram. */
293 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
294 = "__gnat_ada_main_program_name";
295
296 /* Limit on the number of warnings to raise per expression evaluation. */
297 static int warning_limit = 2;
298
299 /* Number of warning messages issued; reset to 0 by cleanups after
300 expression evaluation. */
301 static int warnings_issued = 0;
302
303 static const char *known_runtime_file_name_patterns[] = {
304 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
305 };
306
307 static const char *known_auxiliary_function_name_patterns[] = {
308 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
309 };
310
311 /* Space for allocating results of ada_lookup_symbol_list. */
312 static struct obstack symbol_list_obstack;
313
314 /* Inferior-specific data. */
315
316 /* Per-inferior data for this module. */
317
318 struct ada_inferior_data
319 {
320 /* The ada__tags__type_specific_data type, which is used when decoding
321 tagged types. With older versions of GNAT, this type was directly
322 accessible through a component ("tsd") in the object tag. But this
323 is no longer the case, so we cache it for each inferior. */
324 struct type *tsd_type;
325
326 /* The exception_support_info data. This data is used to determine
327 how to implement support for Ada exception catchpoints in a given
328 inferior. */
329 const struct exception_support_info *exception_info;
330 };
331
332 /* Our key to this module's inferior data. */
333 static const struct inferior_data *ada_inferior_data;
334
335 /* A cleanup routine for our inferior data. */
336 static void
337 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
338 {
339 struct ada_inferior_data *data;
340
341 data = inferior_data (inf, ada_inferior_data);
342 if (data != NULL)
343 xfree (data);
344 }
345
346 /* Return our inferior data for the given inferior (INF).
347
348 This function always returns a valid pointer to an allocated
349 ada_inferior_data structure. If INF's inferior data has not
350 been previously set, this functions creates a new one with all
351 fields set to zero, sets INF's inferior to it, and then returns
352 a pointer to that newly allocated ada_inferior_data. */
353
354 static struct ada_inferior_data *
355 get_ada_inferior_data (struct inferior *inf)
356 {
357 struct ada_inferior_data *data;
358
359 data = inferior_data (inf, ada_inferior_data);
360 if (data == NULL)
361 {
362 data = XZALLOC (struct ada_inferior_data);
363 set_inferior_data (inf, ada_inferior_data, data);
364 }
365
366 return data;
367 }
368
369 /* Perform all necessary cleanups regarding our module's inferior data
370 that is required after the inferior INF just exited. */
371
372 static void
373 ada_inferior_exit (struct inferior *inf)
374 {
375 ada_inferior_data_cleanup (inf, NULL);
376 set_inferior_data (inf, ada_inferior_data, NULL);
377 }
378
379 /* Utilities */
380
381 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
382 all typedef layers have been peeled. Otherwise, return TYPE.
383
384 Normally, we really expect a typedef type to only have 1 typedef layer.
385 In other words, we really expect the target type of a typedef type to be
386 a non-typedef type. This is particularly true for Ada units, because
387 the language does not have a typedef vs not-typedef distinction.
388 In that respect, the Ada compiler has been trying to eliminate as many
389 typedef definitions in the debugging information, since they generally
390 do not bring any extra information (we still use typedef under certain
391 circumstances related mostly to the GNAT encoding).
392
393 Unfortunately, we have seen situations where the debugging information
394 generated by the compiler leads to such multiple typedef layers. For
395 instance, consider the following example with stabs:
396
397 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
398 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
399
400 This is an error in the debugging information which causes type
401 pck__float_array___XUP to be defined twice, and the second time,
402 it is defined as a typedef of a typedef.
403
404 This is on the fringe of legality as far as debugging information is
405 concerned, and certainly unexpected. But it is easy to handle these
406 situations correctly, so we can afford to be lenient in this case. */
407
408 static struct type *
409 ada_typedef_target_type (struct type *type)
410 {
411 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
412 type = TYPE_TARGET_TYPE (type);
413 return type;
414 }
415
416 /* Given DECODED_NAME a string holding a symbol name in its
417 decoded form (ie using the Ada dotted notation), returns
418 its unqualified name. */
419
420 static const char *
421 ada_unqualified_name (const char *decoded_name)
422 {
423 const char *result = strrchr (decoded_name, '.');
424
425 if (result != NULL)
426 result++; /* Skip the dot... */
427 else
428 result = decoded_name;
429
430 return result;
431 }
432
433 /* Return a string starting with '<', followed by STR, and '>'.
434 The result is good until the next call. */
435
436 static char *
437 add_angle_brackets (const char *str)
438 {
439 static char *result = NULL;
440
441 xfree (result);
442 result = xstrprintf ("<%s>", str);
443 return result;
444 }
445
446 static char *
447 ada_get_gdb_completer_word_break_characters (void)
448 {
449 return ada_completer_word_break_characters;
450 }
451
452 /* Print an array element index using the Ada syntax. */
453
454 static void
455 ada_print_array_index (struct value *index_value, struct ui_file *stream,
456 const struct value_print_options *options)
457 {
458 LA_VALUE_PRINT (index_value, stream, options);
459 fprintf_filtered (stream, " => ");
460 }
461
462 /* Assuming VECT points to an array of *SIZE objects of size
463 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
464 updating *SIZE as necessary and returning the (new) array. */
465
466 void *
467 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
468 {
469 if (*size < min_size)
470 {
471 *size *= 2;
472 if (*size < min_size)
473 *size = min_size;
474 vect = xrealloc (vect, *size * element_size);
475 }
476 return vect;
477 }
478
479 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
480 suffix of FIELD_NAME beginning "___". */
481
482 static int
483 field_name_match (const char *field_name, const char *target)
484 {
485 int len = strlen (target);
486
487 return
488 (strncmp (field_name, target, len) == 0
489 && (field_name[len] == '\0'
490 || (strncmp (field_name + len, "___", 3) == 0
491 && strcmp (field_name + strlen (field_name) - 6,
492 "___XVN") != 0)));
493 }
494
495
496 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
497 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
498 and return its index. This function also handles fields whose name
499 have ___ suffixes because the compiler sometimes alters their name
500 by adding such a suffix to represent fields with certain constraints.
501 If the field could not be found, return a negative number if
502 MAYBE_MISSING is set. Otherwise raise an error. */
503
504 int
505 ada_get_field_index (const struct type *type, const char *field_name,
506 int maybe_missing)
507 {
508 int fieldno;
509 struct type *struct_type = check_typedef ((struct type *) type);
510
511 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
512 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
513 return fieldno;
514
515 if (!maybe_missing)
516 error (_("Unable to find field %s in struct %s. Aborting"),
517 field_name, TYPE_NAME (struct_type));
518
519 return -1;
520 }
521
522 /* The length of the prefix of NAME prior to any "___" suffix. */
523
524 int
525 ada_name_prefix_len (const char *name)
526 {
527 if (name == NULL)
528 return 0;
529 else
530 {
531 const char *p = strstr (name, "___");
532
533 if (p == NULL)
534 return strlen (name);
535 else
536 return p - name;
537 }
538 }
539
540 /* Return non-zero if SUFFIX is a suffix of STR.
541 Return zero if STR is null. */
542
543 static int
544 is_suffix (const char *str, const char *suffix)
545 {
546 int len1, len2;
547
548 if (str == NULL)
549 return 0;
550 len1 = strlen (str);
551 len2 = strlen (suffix);
552 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
553 }
554
555 /* The contents of value VAL, treated as a value of type TYPE. The
556 result is an lval in memory if VAL is. */
557
558 static struct value *
559 coerce_unspec_val_to_type (struct value *val, struct type *type)
560 {
561 type = ada_check_typedef (type);
562 if (value_type (val) == type)
563 return val;
564 else
565 {
566 struct value *result;
567
568 /* Make sure that the object size is not unreasonable before
569 trying to allocate some memory for it. */
570 check_size (type);
571
572 if (value_lazy (val)
573 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
574 result = allocate_value_lazy (type);
575 else
576 {
577 result = allocate_value (type);
578 memcpy (value_contents_raw (result), value_contents (val),
579 TYPE_LENGTH (type));
580 }
581 set_value_component_location (result, val);
582 set_value_bitsize (result, value_bitsize (val));
583 set_value_bitpos (result, value_bitpos (val));
584 set_value_address (result, value_address (val));
585 set_value_optimized_out (result, value_optimized_out (val));
586 return result;
587 }
588 }
589
590 static const gdb_byte *
591 cond_offset_host (const gdb_byte *valaddr, long offset)
592 {
593 if (valaddr == NULL)
594 return NULL;
595 else
596 return valaddr + offset;
597 }
598
599 static CORE_ADDR
600 cond_offset_target (CORE_ADDR address, long offset)
601 {
602 if (address == 0)
603 return 0;
604 else
605 return address + offset;
606 }
607
608 /* Issue a warning (as for the definition of warning in utils.c, but
609 with exactly one argument rather than ...), unless the limit on the
610 number of warnings has passed during the evaluation of the current
611 expression. */
612
613 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
614 provided by "complaint". */
615 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
616
617 static void
618 lim_warning (const char *format, ...)
619 {
620 va_list args;
621
622 va_start (args, format);
623 warnings_issued += 1;
624 if (warnings_issued <= warning_limit)
625 vwarning (format, args);
626
627 va_end (args);
628 }
629
630 /* Issue an error if the size of an object of type T is unreasonable,
631 i.e. if it would be a bad idea to allocate a value of this type in
632 GDB. */
633
634 static void
635 check_size (const struct type *type)
636 {
637 if (TYPE_LENGTH (type) > varsize_limit)
638 error (_("object size is larger than varsize-limit"));
639 }
640
641 /* Maximum value of a SIZE-byte signed integer type. */
642 static LONGEST
643 max_of_size (int size)
644 {
645 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
646
647 return top_bit | (top_bit - 1);
648 }
649
650 /* Minimum value of a SIZE-byte signed integer type. */
651 static LONGEST
652 min_of_size (int size)
653 {
654 return -max_of_size (size) - 1;
655 }
656
657 /* Maximum value of a SIZE-byte unsigned integer type. */
658 static ULONGEST
659 umax_of_size (int size)
660 {
661 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
662
663 return top_bit | (top_bit - 1);
664 }
665
666 /* Maximum value of integral type T, as a signed quantity. */
667 static LONGEST
668 max_of_type (struct type *t)
669 {
670 if (TYPE_UNSIGNED (t))
671 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
672 else
673 return max_of_size (TYPE_LENGTH (t));
674 }
675
676 /* Minimum value of integral type T, as a signed quantity. */
677 static LONGEST
678 min_of_type (struct type *t)
679 {
680 if (TYPE_UNSIGNED (t))
681 return 0;
682 else
683 return min_of_size (TYPE_LENGTH (t));
684 }
685
686 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
687 LONGEST
688 ada_discrete_type_high_bound (struct type *type)
689 {
690 switch (TYPE_CODE (type))
691 {
692 case TYPE_CODE_RANGE:
693 return TYPE_HIGH_BOUND (type);
694 case TYPE_CODE_ENUM:
695 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
696 case TYPE_CODE_BOOL:
697 return 1;
698 case TYPE_CODE_CHAR:
699 case TYPE_CODE_INT:
700 return max_of_type (type);
701 default:
702 error (_("Unexpected type in ada_discrete_type_high_bound."));
703 }
704 }
705
706 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
707 LONGEST
708 ada_discrete_type_low_bound (struct type *type)
709 {
710 switch (TYPE_CODE (type))
711 {
712 case TYPE_CODE_RANGE:
713 return TYPE_LOW_BOUND (type);
714 case TYPE_CODE_ENUM:
715 return TYPE_FIELD_ENUMVAL (type, 0);
716 case TYPE_CODE_BOOL:
717 return 0;
718 case TYPE_CODE_CHAR:
719 case TYPE_CODE_INT:
720 return min_of_type (type);
721 default:
722 error (_("Unexpected type in ada_discrete_type_low_bound."));
723 }
724 }
725
726 /* The identity on non-range types. For range types, the underlying
727 non-range scalar type. */
728
729 static struct type *
730 get_base_type (struct type *type)
731 {
732 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
733 {
734 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
735 return type;
736 type = TYPE_TARGET_TYPE (type);
737 }
738 return type;
739 }
740
741 /* Return a decoded version of the given VALUE. This means returning
742 a value whose type is obtained by applying all the GNAT-specific
743 encondings, making the resulting type a static but standard description
744 of the initial type. */
745
746 struct value *
747 ada_get_decoded_value (struct value *value)
748 {
749 struct type *type = ada_check_typedef (value_type (value));
750
751 if (ada_is_array_descriptor_type (type)
752 || (ada_is_constrained_packed_array_type (type)
753 && TYPE_CODE (type) != TYPE_CODE_PTR))
754 {
755 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
756 value = ada_coerce_to_simple_array_ptr (value);
757 else
758 value = ada_coerce_to_simple_array (value);
759 }
760 else
761 value = ada_to_fixed_value (value);
762
763 return value;
764 }
765
766 /* Same as ada_get_decoded_value, but with the given TYPE.
767 Because there is no associated actual value for this type,
768 the resulting type might be a best-effort approximation in
769 the case of dynamic types. */
770
771 struct type *
772 ada_get_decoded_type (struct type *type)
773 {
774 type = to_static_fixed_type (type);
775 if (ada_is_constrained_packed_array_type (type))
776 type = ada_coerce_to_simple_array_type (type);
777 return type;
778 }
779
780 \f
781
782 /* Language Selection */
783
784 /* If the main program is in Ada, return language_ada, otherwise return LANG
785 (the main program is in Ada iif the adainit symbol is found). */
786
787 enum language
788 ada_update_initial_language (enum language lang)
789 {
790 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
791 (struct objfile *) NULL) != NULL)
792 return language_ada;
793
794 return lang;
795 }
796
797 /* If the main procedure is written in Ada, then return its name.
798 The result is good until the next call. Return NULL if the main
799 procedure doesn't appear to be in Ada. */
800
801 char *
802 ada_main_name (void)
803 {
804 struct minimal_symbol *msym;
805 static char *main_program_name = NULL;
806
807 /* For Ada, the name of the main procedure is stored in a specific
808 string constant, generated by the binder. Look for that symbol,
809 extract its address, and then read that string. If we didn't find
810 that string, then most probably the main procedure is not written
811 in Ada. */
812 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
813
814 if (msym != NULL)
815 {
816 CORE_ADDR main_program_name_addr;
817 int err_code;
818
819 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
820 if (main_program_name_addr == 0)
821 error (_("Invalid address for Ada main program name."));
822
823 xfree (main_program_name);
824 target_read_string (main_program_name_addr, &main_program_name,
825 1024, &err_code);
826
827 if (err_code != 0)
828 return NULL;
829 return main_program_name;
830 }
831
832 /* The main procedure doesn't seem to be in Ada. */
833 return NULL;
834 }
835 \f
836 /* Symbols */
837
838 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
839 of NULLs. */
840
841 const struct ada_opname_map ada_opname_table[] = {
842 {"Oadd", "\"+\"", BINOP_ADD},
843 {"Osubtract", "\"-\"", BINOP_SUB},
844 {"Omultiply", "\"*\"", BINOP_MUL},
845 {"Odivide", "\"/\"", BINOP_DIV},
846 {"Omod", "\"mod\"", BINOP_MOD},
847 {"Orem", "\"rem\"", BINOP_REM},
848 {"Oexpon", "\"**\"", BINOP_EXP},
849 {"Olt", "\"<\"", BINOP_LESS},
850 {"Ole", "\"<=\"", BINOP_LEQ},
851 {"Ogt", "\">\"", BINOP_GTR},
852 {"Oge", "\">=\"", BINOP_GEQ},
853 {"Oeq", "\"=\"", BINOP_EQUAL},
854 {"One", "\"/=\"", BINOP_NOTEQUAL},
855 {"Oand", "\"and\"", BINOP_BITWISE_AND},
856 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
857 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
858 {"Oconcat", "\"&\"", BINOP_CONCAT},
859 {"Oabs", "\"abs\"", UNOP_ABS},
860 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
861 {"Oadd", "\"+\"", UNOP_PLUS},
862 {"Osubtract", "\"-\"", UNOP_NEG},
863 {NULL, NULL}
864 };
865
866 /* The "encoded" form of DECODED, according to GNAT conventions.
867 The result is valid until the next call to ada_encode. */
868
869 char *
870 ada_encode (const char *decoded)
871 {
872 static char *encoding_buffer = NULL;
873 static size_t encoding_buffer_size = 0;
874 const char *p;
875 int k;
876
877 if (decoded == NULL)
878 return NULL;
879
880 GROW_VECT (encoding_buffer, encoding_buffer_size,
881 2 * strlen (decoded) + 10);
882
883 k = 0;
884 for (p = decoded; *p != '\0'; p += 1)
885 {
886 if (*p == '.')
887 {
888 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
889 k += 2;
890 }
891 else if (*p == '"')
892 {
893 const struct ada_opname_map *mapping;
894
895 for (mapping = ada_opname_table;
896 mapping->encoded != NULL
897 && strncmp (mapping->decoded, p,
898 strlen (mapping->decoded)) != 0; mapping += 1)
899 ;
900 if (mapping->encoded == NULL)
901 error (_("invalid Ada operator name: %s"), p);
902 strcpy (encoding_buffer + k, mapping->encoded);
903 k += strlen (mapping->encoded);
904 break;
905 }
906 else
907 {
908 encoding_buffer[k] = *p;
909 k += 1;
910 }
911 }
912
913 encoding_buffer[k] = '\0';
914 return encoding_buffer;
915 }
916
917 /* Return NAME folded to lower case, or, if surrounded by single
918 quotes, unfolded, but with the quotes stripped away. Result good
919 to next call. */
920
921 char *
922 ada_fold_name (const char *name)
923 {
924 static char *fold_buffer = NULL;
925 static size_t fold_buffer_size = 0;
926
927 int len = strlen (name);
928 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
929
930 if (name[0] == '\'')
931 {
932 strncpy (fold_buffer, name + 1, len - 2);
933 fold_buffer[len - 2] = '\000';
934 }
935 else
936 {
937 int i;
938
939 for (i = 0; i <= len; i += 1)
940 fold_buffer[i] = tolower (name[i]);
941 }
942
943 return fold_buffer;
944 }
945
946 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
947
948 static int
949 is_lower_alphanum (const char c)
950 {
951 return (isdigit (c) || (isalpha (c) && islower (c)));
952 }
953
954 /* ENCODED is the linkage name of a symbol and LEN contains its length.
955 This function saves in LEN the length of that same symbol name but
956 without either of these suffixes:
957 . .{DIGIT}+
958 . ${DIGIT}+
959 . ___{DIGIT}+
960 . __{DIGIT}+.
961
962 These are suffixes introduced by the compiler for entities such as
963 nested subprogram for instance, in order to avoid name clashes.
964 They do not serve any purpose for the debugger. */
965
966 static void
967 ada_remove_trailing_digits (const char *encoded, int *len)
968 {
969 if (*len > 1 && isdigit (encoded[*len - 1]))
970 {
971 int i = *len - 2;
972
973 while (i > 0 && isdigit (encoded[i]))
974 i--;
975 if (i >= 0 && encoded[i] == '.')
976 *len = i;
977 else if (i >= 0 && encoded[i] == '$')
978 *len = i;
979 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
980 *len = i - 2;
981 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
982 *len = i - 1;
983 }
984 }
985
986 /* Remove the suffix introduced by the compiler for protected object
987 subprograms. */
988
989 static void
990 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
991 {
992 /* Remove trailing N. */
993
994 /* Protected entry subprograms are broken into two
995 separate subprograms: The first one is unprotected, and has
996 a 'N' suffix; the second is the protected version, and has
997 the 'P' suffix. The second calls the first one after handling
998 the protection. Since the P subprograms are internally generated,
999 we leave these names undecoded, giving the user a clue that this
1000 entity is internal. */
1001
1002 if (*len > 1
1003 && encoded[*len - 1] == 'N'
1004 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1005 *len = *len - 1;
1006 }
1007
1008 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1009
1010 static void
1011 ada_remove_Xbn_suffix (const char *encoded, int *len)
1012 {
1013 int i = *len - 1;
1014
1015 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1016 i--;
1017
1018 if (encoded[i] != 'X')
1019 return;
1020
1021 if (i == 0)
1022 return;
1023
1024 if (isalnum (encoded[i-1]))
1025 *len = i;
1026 }
1027
1028 /* If ENCODED follows the GNAT entity encoding conventions, then return
1029 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1030 replaced by ENCODED.
1031
1032 The resulting string is valid until the next call of ada_decode.
1033 If the string is unchanged by decoding, the original string pointer
1034 is returned. */
1035
1036 const char *
1037 ada_decode (const char *encoded)
1038 {
1039 int i, j;
1040 int len0;
1041 const char *p;
1042 char *decoded;
1043 int at_start_name;
1044 static char *decoding_buffer = NULL;
1045 static size_t decoding_buffer_size = 0;
1046
1047 /* The name of the Ada main procedure starts with "_ada_".
1048 This prefix is not part of the decoded name, so skip this part
1049 if we see this prefix. */
1050 if (strncmp (encoded, "_ada_", 5) == 0)
1051 encoded += 5;
1052
1053 /* If the name starts with '_', then it is not a properly encoded
1054 name, so do not attempt to decode it. Similarly, if the name
1055 starts with '<', the name should not be decoded. */
1056 if (encoded[0] == '_' || encoded[0] == '<')
1057 goto Suppress;
1058
1059 len0 = strlen (encoded);
1060
1061 ada_remove_trailing_digits (encoded, &len0);
1062 ada_remove_po_subprogram_suffix (encoded, &len0);
1063
1064 /* Remove the ___X.* suffix if present. Do not forget to verify that
1065 the suffix is located before the current "end" of ENCODED. We want
1066 to avoid re-matching parts of ENCODED that have previously been
1067 marked as discarded (by decrementing LEN0). */
1068 p = strstr (encoded, "___");
1069 if (p != NULL && p - encoded < len0 - 3)
1070 {
1071 if (p[3] == 'X')
1072 len0 = p - encoded;
1073 else
1074 goto Suppress;
1075 }
1076
1077 /* Remove any trailing TKB suffix. It tells us that this symbol
1078 is for the body of a task, but that information does not actually
1079 appear in the decoded name. */
1080
1081 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
1082 len0 -= 3;
1083
1084 /* Remove any trailing TB suffix. The TB suffix is slightly different
1085 from the TKB suffix because it is used for non-anonymous task
1086 bodies. */
1087
1088 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
1089 len0 -= 2;
1090
1091 /* Remove trailing "B" suffixes. */
1092 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1093
1094 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
1095 len0 -= 1;
1096
1097 /* Make decoded big enough for possible expansion by operator name. */
1098
1099 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1100 decoded = decoding_buffer;
1101
1102 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1103
1104 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1105 {
1106 i = len0 - 2;
1107 while ((i >= 0 && isdigit (encoded[i]))
1108 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1109 i -= 1;
1110 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1111 len0 = i - 1;
1112 else if (encoded[i] == '$')
1113 len0 = i;
1114 }
1115
1116 /* The first few characters that are not alphabetic are not part
1117 of any encoding we use, so we can copy them over verbatim. */
1118
1119 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1120 decoded[j] = encoded[i];
1121
1122 at_start_name = 1;
1123 while (i < len0)
1124 {
1125 /* Is this a symbol function? */
1126 if (at_start_name && encoded[i] == 'O')
1127 {
1128 int k;
1129
1130 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1131 {
1132 int op_len = strlen (ada_opname_table[k].encoded);
1133 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1134 op_len - 1) == 0)
1135 && !isalnum (encoded[i + op_len]))
1136 {
1137 strcpy (decoded + j, ada_opname_table[k].decoded);
1138 at_start_name = 0;
1139 i += op_len;
1140 j += strlen (ada_opname_table[k].decoded);
1141 break;
1142 }
1143 }
1144 if (ada_opname_table[k].encoded != NULL)
1145 continue;
1146 }
1147 at_start_name = 0;
1148
1149 /* Replace "TK__" with "__", which will eventually be translated
1150 into "." (just below). */
1151
1152 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1153 i += 2;
1154
1155 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1156 be translated into "." (just below). These are internal names
1157 generated for anonymous blocks inside which our symbol is nested. */
1158
1159 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1160 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1161 && isdigit (encoded [i+4]))
1162 {
1163 int k = i + 5;
1164
1165 while (k < len0 && isdigit (encoded[k]))
1166 k++; /* Skip any extra digit. */
1167
1168 /* Double-check that the "__B_{DIGITS}+" sequence we found
1169 is indeed followed by "__". */
1170 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1171 i = k;
1172 }
1173
1174 /* Remove _E{DIGITS}+[sb] */
1175
1176 /* Just as for protected object subprograms, there are 2 categories
1177 of subprograms created by the compiler for each entry. The first
1178 one implements the actual entry code, and has a suffix following
1179 the convention above; the second one implements the barrier and
1180 uses the same convention as above, except that the 'E' is replaced
1181 by a 'B'.
1182
1183 Just as above, we do not decode the name of barrier functions
1184 to give the user a clue that the code he is debugging has been
1185 internally generated. */
1186
1187 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1188 && isdigit (encoded[i+2]))
1189 {
1190 int k = i + 3;
1191
1192 while (k < len0 && isdigit (encoded[k]))
1193 k++;
1194
1195 if (k < len0
1196 && (encoded[k] == 'b' || encoded[k] == 's'))
1197 {
1198 k++;
1199 /* Just as an extra precaution, make sure that if this
1200 suffix is followed by anything else, it is a '_'.
1201 Otherwise, we matched this sequence by accident. */
1202 if (k == len0
1203 || (k < len0 && encoded[k] == '_'))
1204 i = k;
1205 }
1206 }
1207
1208 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1209 the GNAT front-end in protected object subprograms. */
1210
1211 if (i < len0 + 3
1212 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1213 {
1214 /* Backtrack a bit up until we reach either the begining of
1215 the encoded name, or "__". Make sure that we only find
1216 digits or lowercase characters. */
1217 const char *ptr = encoded + i - 1;
1218
1219 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1220 ptr--;
1221 if (ptr < encoded
1222 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1223 i++;
1224 }
1225
1226 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1227 {
1228 /* This is a X[bn]* sequence not separated from the previous
1229 part of the name with a non-alpha-numeric character (in other
1230 words, immediately following an alpha-numeric character), then
1231 verify that it is placed at the end of the encoded name. If
1232 not, then the encoding is not valid and we should abort the
1233 decoding. Otherwise, just skip it, it is used in body-nested
1234 package names. */
1235 do
1236 i += 1;
1237 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1238 if (i < len0)
1239 goto Suppress;
1240 }
1241 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1242 {
1243 /* Replace '__' by '.'. */
1244 decoded[j] = '.';
1245 at_start_name = 1;
1246 i += 2;
1247 j += 1;
1248 }
1249 else
1250 {
1251 /* It's a character part of the decoded name, so just copy it
1252 over. */
1253 decoded[j] = encoded[i];
1254 i += 1;
1255 j += 1;
1256 }
1257 }
1258 decoded[j] = '\000';
1259
1260 /* Decoded names should never contain any uppercase character.
1261 Double-check this, and abort the decoding if we find one. */
1262
1263 for (i = 0; decoded[i] != '\0'; i += 1)
1264 if (isupper (decoded[i]) || decoded[i] == ' ')
1265 goto Suppress;
1266
1267 if (strcmp (decoded, encoded) == 0)
1268 return encoded;
1269 else
1270 return decoded;
1271
1272 Suppress:
1273 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1274 decoded = decoding_buffer;
1275 if (encoded[0] == '<')
1276 strcpy (decoded, encoded);
1277 else
1278 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1279 return decoded;
1280
1281 }
1282
1283 /* Table for keeping permanent unique copies of decoded names. Once
1284 allocated, names in this table are never released. While this is a
1285 storage leak, it should not be significant unless there are massive
1286 changes in the set of decoded names in successive versions of a
1287 symbol table loaded during a single session. */
1288 static struct htab *decoded_names_store;
1289
1290 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1291 in the language-specific part of GSYMBOL, if it has not been
1292 previously computed. Tries to save the decoded name in the same
1293 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1294 in any case, the decoded symbol has a lifetime at least that of
1295 GSYMBOL).
1296 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1297 const, but nevertheless modified to a semantically equivalent form
1298 when a decoded name is cached in it. */
1299
1300 char *
1301 ada_decode_symbol (const struct general_symbol_info *gsymbol)
1302 {
1303 char **resultp =
1304 (char **) &gsymbol->language_specific.mangled_lang.demangled_name;
1305
1306 if (*resultp == NULL)
1307 {
1308 const char *decoded = ada_decode (gsymbol->name);
1309
1310 if (gsymbol->obj_section != NULL)
1311 {
1312 struct objfile *objf = gsymbol->obj_section->objfile;
1313
1314 *resultp = obsavestring (decoded, strlen (decoded),
1315 &objf->objfile_obstack);
1316 }
1317 /* Sometimes, we can't find a corresponding objfile, in which
1318 case, we put the result on the heap. Since we only decode
1319 when needed, we hope this usually does not cause a
1320 significant memory leak (FIXME). */
1321 if (*resultp == NULL)
1322 {
1323 char **slot = (char **) htab_find_slot (decoded_names_store,
1324 decoded, INSERT);
1325
1326 if (*slot == NULL)
1327 *slot = xstrdup (decoded);
1328 *resultp = *slot;
1329 }
1330 }
1331
1332 return *resultp;
1333 }
1334
1335 static char *
1336 ada_la_decode (const char *encoded, int options)
1337 {
1338 return xstrdup (ada_decode (encoded));
1339 }
1340
1341 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1342 suffixes that encode debugging information or leading _ada_ on
1343 SYM_NAME (see is_name_suffix commentary for the debugging
1344 information that is ignored). If WILD, then NAME need only match a
1345 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1346 either argument is NULL. */
1347
1348 static int
1349 match_name (const char *sym_name, const char *name, int wild)
1350 {
1351 if (sym_name == NULL || name == NULL)
1352 return 0;
1353 else if (wild)
1354 return wild_match (sym_name, name) == 0;
1355 else
1356 {
1357 int len_name = strlen (name);
1358
1359 return (strncmp (sym_name, name, len_name) == 0
1360 && is_name_suffix (sym_name + len_name))
1361 || (strncmp (sym_name, "_ada_", 5) == 0
1362 && strncmp (sym_name + 5, name, len_name) == 0
1363 && is_name_suffix (sym_name + len_name + 5));
1364 }
1365 }
1366 \f
1367
1368 /* Arrays */
1369
1370 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1371 generated by the GNAT compiler to describe the index type used
1372 for each dimension of an array, check whether it follows the latest
1373 known encoding. If not, fix it up to conform to the latest encoding.
1374 Otherwise, do nothing. This function also does nothing if
1375 INDEX_DESC_TYPE is NULL.
1376
1377 The GNAT encoding used to describle the array index type evolved a bit.
1378 Initially, the information would be provided through the name of each
1379 field of the structure type only, while the type of these fields was
1380 described as unspecified and irrelevant. The debugger was then expected
1381 to perform a global type lookup using the name of that field in order
1382 to get access to the full index type description. Because these global
1383 lookups can be very expensive, the encoding was later enhanced to make
1384 the global lookup unnecessary by defining the field type as being
1385 the full index type description.
1386
1387 The purpose of this routine is to allow us to support older versions
1388 of the compiler by detecting the use of the older encoding, and by
1389 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1390 we essentially replace each field's meaningless type by the associated
1391 index subtype). */
1392
1393 void
1394 ada_fixup_array_indexes_type (struct type *index_desc_type)
1395 {
1396 int i;
1397
1398 if (index_desc_type == NULL)
1399 return;
1400 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1401
1402 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1403 to check one field only, no need to check them all). If not, return
1404 now.
1405
1406 If our INDEX_DESC_TYPE was generated using the older encoding,
1407 the field type should be a meaningless integer type whose name
1408 is not equal to the field name. */
1409 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1410 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1411 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1412 return;
1413
1414 /* Fixup each field of INDEX_DESC_TYPE. */
1415 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1416 {
1417 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1418 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1419
1420 if (raw_type)
1421 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1422 }
1423 }
1424
1425 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1426
1427 static char *bound_name[] = {
1428 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1429 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1430 };
1431
1432 /* Maximum number of array dimensions we are prepared to handle. */
1433
1434 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1435
1436
1437 /* The desc_* routines return primitive portions of array descriptors
1438 (fat pointers). */
1439
1440 /* The descriptor or array type, if any, indicated by TYPE; removes
1441 level of indirection, if needed. */
1442
1443 static struct type *
1444 desc_base_type (struct type *type)
1445 {
1446 if (type == NULL)
1447 return NULL;
1448 type = ada_check_typedef (type);
1449 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1450 type = ada_typedef_target_type (type);
1451
1452 if (type != NULL
1453 && (TYPE_CODE (type) == TYPE_CODE_PTR
1454 || TYPE_CODE (type) == TYPE_CODE_REF))
1455 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1456 else
1457 return type;
1458 }
1459
1460 /* True iff TYPE indicates a "thin" array pointer type. */
1461
1462 static int
1463 is_thin_pntr (struct type *type)
1464 {
1465 return
1466 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1467 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1468 }
1469
1470 /* The descriptor type for thin pointer type TYPE. */
1471
1472 static struct type *
1473 thin_descriptor_type (struct type *type)
1474 {
1475 struct type *base_type = desc_base_type (type);
1476
1477 if (base_type == NULL)
1478 return NULL;
1479 if (is_suffix (ada_type_name (base_type), "___XVE"))
1480 return base_type;
1481 else
1482 {
1483 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1484
1485 if (alt_type == NULL)
1486 return base_type;
1487 else
1488 return alt_type;
1489 }
1490 }
1491
1492 /* A pointer to the array data for thin-pointer value VAL. */
1493
1494 static struct value *
1495 thin_data_pntr (struct value *val)
1496 {
1497 struct type *type = ada_check_typedef (value_type (val));
1498 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1499
1500 data_type = lookup_pointer_type (data_type);
1501
1502 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1503 return value_cast (data_type, value_copy (val));
1504 else
1505 return value_from_longest (data_type, value_address (val));
1506 }
1507
1508 /* True iff TYPE indicates a "thick" array pointer type. */
1509
1510 static int
1511 is_thick_pntr (struct type *type)
1512 {
1513 type = desc_base_type (type);
1514 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1515 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1516 }
1517
1518 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1519 pointer to one, the type of its bounds data; otherwise, NULL. */
1520
1521 static struct type *
1522 desc_bounds_type (struct type *type)
1523 {
1524 struct type *r;
1525
1526 type = desc_base_type (type);
1527
1528 if (type == NULL)
1529 return NULL;
1530 else if (is_thin_pntr (type))
1531 {
1532 type = thin_descriptor_type (type);
1533 if (type == NULL)
1534 return NULL;
1535 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1536 if (r != NULL)
1537 return ada_check_typedef (r);
1538 }
1539 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1540 {
1541 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1542 if (r != NULL)
1543 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1544 }
1545 return NULL;
1546 }
1547
1548 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1549 one, a pointer to its bounds data. Otherwise NULL. */
1550
1551 static struct value *
1552 desc_bounds (struct value *arr)
1553 {
1554 struct type *type = ada_check_typedef (value_type (arr));
1555
1556 if (is_thin_pntr (type))
1557 {
1558 struct type *bounds_type =
1559 desc_bounds_type (thin_descriptor_type (type));
1560 LONGEST addr;
1561
1562 if (bounds_type == NULL)
1563 error (_("Bad GNAT array descriptor"));
1564
1565 /* NOTE: The following calculation is not really kosher, but
1566 since desc_type is an XVE-encoded type (and shouldn't be),
1567 the correct calculation is a real pain. FIXME (and fix GCC). */
1568 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1569 addr = value_as_long (arr);
1570 else
1571 addr = value_address (arr);
1572
1573 return
1574 value_from_longest (lookup_pointer_type (bounds_type),
1575 addr - TYPE_LENGTH (bounds_type));
1576 }
1577
1578 else if (is_thick_pntr (type))
1579 {
1580 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1581 _("Bad GNAT array descriptor"));
1582 struct type *p_bounds_type = value_type (p_bounds);
1583
1584 if (p_bounds_type
1585 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1586 {
1587 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1588
1589 if (TYPE_STUB (target_type))
1590 p_bounds = value_cast (lookup_pointer_type
1591 (ada_check_typedef (target_type)),
1592 p_bounds);
1593 }
1594 else
1595 error (_("Bad GNAT array descriptor"));
1596
1597 return p_bounds;
1598 }
1599 else
1600 return NULL;
1601 }
1602
1603 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1604 position of the field containing the address of the bounds data. */
1605
1606 static int
1607 fat_pntr_bounds_bitpos (struct type *type)
1608 {
1609 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1610 }
1611
1612 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1613 size of the field containing the address of the bounds data. */
1614
1615 static int
1616 fat_pntr_bounds_bitsize (struct type *type)
1617 {
1618 type = desc_base_type (type);
1619
1620 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1621 return TYPE_FIELD_BITSIZE (type, 1);
1622 else
1623 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1624 }
1625
1626 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1627 pointer to one, the type of its array data (a array-with-no-bounds type);
1628 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1629 data. */
1630
1631 static struct type *
1632 desc_data_target_type (struct type *type)
1633 {
1634 type = desc_base_type (type);
1635
1636 /* NOTE: The following is bogus; see comment in desc_bounds. */
1637 if (is_thin_pntr (type))
1638 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1639 else if (is_thick_pntr (type))
1640 {
1641 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1642
1643 if (data_type
1644 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1645 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1646 }
1647
1648 return NULL;
1649 }
1650
1651 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1652 its array data. */
1653
1654 static struct value *
1655 desc_data (struct value *arr)
1656 {
1657 struct type *type = value_type (arr);
1658
1659 if (is_thin_pntr (type))
1660 return thin_data_pntr (arr);
1661 else if (is_thick_pntr (type))
1662 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1663 _("Bad GNAT array descriptor"));
1664 else
1665 return NULL;
1666 }
1667
1668
1669 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1670 position of the field containing the address of the data. */
1671
1672 static int
1673 fat_pntr_data_bitpos (struct type *type)
1674 {
1675 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1676 }
1677
1678 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1679 size of the field containing the address of the data. */
1680
1681 static int
1682 fat_pntr_data_bitsize (struct type *type)
1683 {
1684 type = desc_base_type (type);
1685
1686 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1687 return TYPE_FIELD_BITSIZE (type, 0);
1688 else
1689 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1690 }
1691
1692 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1693 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1694 bound, if WHICH is 1. The first bound is I=1. */
1695
1696 static struct value *
1697 desc_one_bound (struct value *bounds, int i, int which)
1698 {
1699 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1700 _("Bad GNAT array descriptor bounds"));
1701 }
1702
1703 /* If BOUNDS is an array-bounds structure type, return the bit position
1704 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1705 bound, if WHICH is 1. The first bound is I=1. */
1706
1707 static int
1708 desc_bound_bitpos (struct type *type, int i, int which)
1709 {
1710 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1711 }
1712
1713 /* If BOUNDS is an array-bounds structure type, return the bit field size
1714 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1715 bound, if WHICH is 1. The first bound is I=1. */
1716
1717 static int
1718 desc_bound_bitsize (struct type *type, int i, int which)
1719 {
1720 type = desc_base_type (type);
1721
1722 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1723 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1724 else
1725 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1726 }
1727
1728 /* If TYPE is the type of an array-bounds structure, the type of its
1729 Ith bound (numbering from 1). Otherwise, NULL. */
1730
1731 static struct type *
1732 desc_index_type (struct type *type, int i)
1733 {
1734 type = desc_base_type (type);
1735
1736 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1737 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1738 else
1739 return NULL;
1740 }
1741
1742 /* The number of index positions in the array-bounds type TYPE.
1743 Return 0 if TYPE is NULL. */
1744
1745 static int
1746 desc_arity (struct type *type)
1747 {
1748 type = desc_base_type (type);
1749
1750 if (type != NULL)
1751 return TYPE_NFIELDS (type) / 2;
1752 return 0;
1753 }
1754
1755 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1756 an array descriptor type (representing an unconstrained array
1757 type). */
1758
1759 static int
1760 ada_is_direct_array_type (struct type *type)
1761 {
1762 if (type == NULL)
1763 return 0;
1764 type = ada_check_typedef (type);
1765 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1766 || ada_is_array_descriptor_type (type));
1767 }
1768
1769 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1770 * to one. */
1771
1772 static int
1773 ada_is_array_type (struct type *type)
1774 {
1775 while (type != NULL
1776 && (TYPE_CODE (type) == TYPE_CODE_PTR
1777 || TYPE_CODE (type) == TYPE_CODE_REF))
1778 type = TYPE_TARGET_TYPE (type);
1779 return ada_is_direct_array_type (type);
1780 }
1781
1782 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1783
1784 int
1785 ada_is_simple_array_type (struct type *type)
1786 {
1787 if (type == NULL)
1788 return 0;
1789 type = ada_check_typedef (type);
1790 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1791 || (TYPE_CODE (type) == TYPE_CODE_PTR
1792 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1793 == TYPE_CODE_ARRAY));
1794 }
1795
1796 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1797
1798 int
1799 ada_is_array_descriptor_type (struct type *type)
1800 {
1801 struct type *data_type = desc_data_target_type (type);
1802
1803 if (type == NULL)
1804 return 0;
1805 type = ada_check_typedef (type);
1806 return (data_type != NULL
1807 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1808 && desc_arity (desc_bounds_type (type)) > 0);
1809 }
1810
1811 /* Non-zero iff type is a partially mal-formed GNAT array
1812 descriptor. FIXME: This is to compensate for some problems with
1813 debugging output from GNAT. Re-examine periodically to see if it
1814 is still needed. */
1815
1816 int
1817 ada_is_bogus_array_descriptor (struct type *type)
1818 {
1819 return
1820 type != NULL
1821 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1822 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1823 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1824 && !ada_is_array_descriptor_type (type);
1825 }
1826
1827
1828 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1829 (fat pointer) returns the type of the array data described---specifically,
1830 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1831 in from the descriptor; otherwise, they are left unspecified. If
1832 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1833 returns NULL. The result is simply the type of ARR if ARR is not
1834 a descriptor. */
1835 struct type *
1836 ada_type_of_array (struct value *arr, int bounds)
1837 {
1838 if (ada_is_constrained_packed_array_type (value_type (arr)))
1839 return decode_constrained_packed_array_type (value_type (arr));
1840
1841 if (!ada_is_array_descriptor_type (value_type (arr)))
1842 return value_type (arr);
1843
1844 if (!bounds)
1845 {
1846 struct type *array_type =
1847 ada_check_typedef (desc_data_target_type (value_type (arr)));
1848
1849 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1850 TYPE_FIELD_BITSIZE (array_type, 0) =
1851 decode_packed_array_bitsize (value_type (arr));
1852
1853 return array_type;
1854 }
1855 else
1856 {
1857 struct type *elt_type;
1858 int arity;
1859 struct value *descriptor;
1860
1861 elt_type = ada_array_element_type (value_type (arr), -1);
1862 arity = ada_array_arity (value_type (arr));
1863
1864 if (elt_type == NULL || arity == 0)
1865 return ada_check_typedef (value_type (arr));
1866
1867 descriptor = desc_bounds (arr);
1868 if (value_as_long (descriptor) == 0)
1869 return NULL;
1870 while (arity > 0)
1871 {
1872 struct type *range_type = alloc_type_copy (value_type (arr));
1873 struct type *array_type = alloc_type_copy (value_type (arr));
1874 struct value *low = desc_one_bound (descriptor, arity, 0);
1875 struct value *high = desc_one_bound (descriptor, arity, 1);
1876
1877 arity -= 1;
1878 create_range_type (range_type, value_type (low),
1879 longest_to_int (value_as_long (low)),
1880 longest_to_int (value_as_long (high)));
1881 elt_type = create_array_type (array_type, elt_type, range_type);
1882
1883 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1884 {
1885 /* We need to store the element packed bitsize, as well as
1886 recompute the array size, because it was previously
1887 computed based on the unpacked element size. */
1888 LONGEST lo = value_as_long (low);
1889 LONGEST hi = value_as_long (high);
1890
1891 TYPE_FIELD_BITSIZE (elt_type, 0) =
1892 decode_packed_array_bitsize (value_type (arr));
1893 /* If the array has no element, then the size is already
1894 zero, and does not need to be recomputed. */
1895 if (lo < hi)
1896 {
1897 int array_bitsize =
1898 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1899
1900 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1901 }
1902 }
1903 }
1904
1905 return lookup_pointer_type (elt_type);
1906 }
1907 }
1908
1909 /* If ARR does not represent an array, returns ARR unchanged.
1910 Otherwise, returns either a standard GDB array with bounds set
1911 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1912 GDB array. Returns NULL if ARR is a null fat pointer. */
1913
1914 struct value *
1915 ada_coerce_to_simple_array_ptr (struct value *arr)
1916 {
1917 if (ada_is_array_descriptor_type (value_type (arr)))
1918 {
1919 struct type *arrType = ada_type_of_array (arr, 1);
1920
1921 if (arrType == NULL)
1922 return NULL;
1923 return value_cast (arrType, value_copy (desc_data (arr)));
1924 }
1925 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1926 return decode_constrained_packed_array (arr);
1927 else
1928 return arr;
1929 }
1930
1931 /* If ARR does not represent an array, returns ARR unchanged.
1932 Otherwise, returns a standard GDB array describing ARR (which may
1933 be ARR itself if it already is in the proper form). */
1934
1935 struct value *
1936 ada_coerce_to_simple_array (struct value *arr)
1937 {
1938 if (ada_is_array_descriptor_type (value_type (arr)))
1939 {
1940 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1941
1942 if (arrVal == NULL)
1943 error (_("Bounds unavailable for null array pointer."));
1944 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1945 return value_ind (arrVal);
1946 }
1947 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1948 return decode_constrained_packed_array (arr);
1949 else
1950 return arr;
1951 }
1952
1953 /* If TYPE represents a GNAT array type, return it translated to an
1954 ordinary GDB array type (possibly with BITSIZE fields indicating
1955 packing). For other types, is the identity. */
1956
1957 struct type *
1958 ada_coerce_to_simple_array_type (struct type *type)
1959 {
1960 if (ada_is_constrained_packed_array_type (type))
1961 return decode_constrained_packed_array_type (type);
1962
1963 if (ada_is_array_descriptor_type (type))
1964 return ada_check_typedef (desc_data_target_type (type));
1965
1966 return type;
1967 }
1968
1969 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1970
1971 static int
1972 ada_is_packed_array_type (struct type *type)
1973 {
1974 if (type == NULL)
1975 return 0;
1976 type = desc_base_type (type);
1977 type = ada_check_typedef (type);
1978 return
1979 ada_type_name (type) != NULL
1980 && strstr (ada_type_name (type), "___XP") != NULL;
1981 }
1982
1983 /* Non-zero iff TYPE represents a standard GNAT constrained
1984 packed-array type. */
1985
1986 int
1987 ada_is_constrained_packed_array_type (struct type *type)
1988 {
1989 return ada_is_packed_array_type (type)
1990 && !ada_is_array_descriptor_type (type);
1991 }
1992
1993 /* Non-zero iff TYPE represents an array descriptor for a
1994 unconstrained packed-array type. */
1995
1996 static int
1997 ada_is_unconstrained_packed_array_type (struct type *type)
1998 {
1999 return ada_is_packed_array_type (type)
2000 && ada_is_array_descriptor_type (type);
2001 }
2002
2003 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2004 return the size of its elements in bits. */
2005
2006 static long
2007 decode_packed_array_bitsize (struct type *type)
2008 {
2009 const char *raw_name;
2010 const char *tail;
2011 long bits;
2012
2013 /* Access to arrays implemented as fat pointers are encoded as a typedef
2014 of the fat pointer type. We need the name of the fat pointer type
2015 to do the decoding, so strip the typedef layer. */
2016 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2017 type = ada_typedef_target_type (type);
2018
2019 raw_name = ada_type_name (ada_check_typedef (type));
2020 if (!raw_name)
2021 raw_name = ada_type_name (desc_base_type (type));
2022
2023 if (!raw_name)
2024 return 0;
2025
2026 tail = strstr (raw_name, "___XP");
2027 gdb_assert (tail != NULL);
2028
2029 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2030 {
2031 lim_warning
2032 (_("could not understand bit size information on packed array"));
2033 return 0;
2034 }
2035
2036 return bits;
2037 }
2038
2039 /* Given that TYPE is a standard GDB array type with all bounds filled
2040 in, and that the element size of its ultimate scalar constituents
2041 (that is, either its elements, or, if it is an array of arrays, its
2042 elements' elements, etc.) is *ELT_BITS, return an identical type,
2043 but with the bit sizes of its elements (and those of any
2044 constituent arrays) recorded in the BITSIZE components of its
2045 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2046 in bits. */
2047
2048 static struct type *
2049 constrained_packed_array_type (struct type *type, long *elt_bits)
2050 {
2051 struct type *new_elt_type;
2052 struct type *new_type;
2053 struct type *index_type_desc;
2054 struct type *index_type;
2055 LONGEST low_bound, high_bound;
2056
2057 type = ada_check_typedef (type);
2058 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2059 return type;
2060
2061 index_type_desc = ada_find_parallel_type (type, "___XA");
2062 if (index_type_desc)
2063 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2064 NULL);
2065 else
2066 index_type = TYPE_INDEX_TYPE (type);
2067
2068 new_type = alloc_type_copy (type);
2069 new_elt_type =
2070 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2071 elt_bits);
2072 create_array_type (new_type, new_elt_type, index_type);
2073 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2074 TYPE_NAME (new_type) = ada_type_name (type);
2075
2076 if (get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2077 low_bound = high_bound = 0;
2078 if (high_bound < low_bound)
2079 *elt_bits = TYPE_LENGTH (new_type) = 0;
2080 else
2081 {
2082 *elt_bits *= (high_bound - low_bound + 1);
2083 TYPE_LENGTH (new_type) =
2084 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2085 }
2086
2087 TYPE_FIXED_INSTANCE (new_type) = 1;
2088 return new_type;
2089 }
2090
2091 /* The array type encoded by TYPE, where
2092 ada_is_constrained_packed_array_type (TYPE). */
2093
2094 static struct type *
2095 decode_constrained_packed_array_type (struct type *type)
2096 {
2097 const char *raw_name = ada_type_name (ada_check_typedef (type));
2098 char *name;
2099 const char *tail;
2100 struct type *shadow_type;
2101 long bits;
2102
2103 if (!raw_name)
2104 raw_name = ada_type_name (desc_base_type (type));
2105
2106 if (!raw_name)
2107 return NULL;
2108
2109 name = (char *) alloca (strlen (raw_name) + 1);
2110 tail = strstr (raw_name, "___XP");
2111 type = desc_base_type (type);
2112
2113 memcpy (name, raw_name, tail - raw_name);
2114 name[tail - raw_name] = '\000';
2115
2116 shadow_type = ada_find_parallel_type_with_name (type, name);
2117
2118 if (shadow_type == NULL)
2119 {
2120 lim_warning (_("could not find bounds information on packed array"));
2121 return NULL;
2122 }
2123 CHECK_TYPEDEF (shadow_type);
2124
2125 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2126 {
2127 lim_warning (_("could not understand bounds "
2128 "information on packed array"));
2129 return NULL;
2130 }
2131
2132 bits = decode_packed_array_bitsize (type);
2133 return constrained_packed_array_type (shadow_type, &bits);
2134 }
2135
2136 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2137 array, returns a simple array that denotes that array. Its type is a
2138 standard GDB array type except that the BITSIZEs of the array
2139 target types are set to the number of bits in each element, and the
2140 type length is set appropriately. */
2141
2142 static struct value *
2143 decode_constrained_packed_array (struct value *arr)
2144 {
2145 struct type *type;
2146
2147 arr = ada_coerce_ref (arr);
2148
2149 /* If our value is a pointer, then dererence it. Make sure that
2150 this operation does not cause the target type to be fixed, as
2151 this would indirectly cause this array to be decoded. The rest
2152 of the routine assumes that the array hasn't been decoded yet,
2153 so we use the basic "value_ind" routine to perform the dereferencing,
2154 as opposed to using "ada_value_ind". */
2155 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2156 arr = value_ind (arr);
2157
2158 type = decode_constrained_packed_array_type (value_type (arr));
2159 if (type == NULL)
2160 {
2161 error (_("can't unpack array"));
2162 return NULL;
2163 }
2164
2165 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2166 && ada_is_modular_type (value_type (arr)))
2167 {
2168 /* This is a (right-justified) modular type representing a packed
2169 array with no wrapper. In order to interpret the value through
2170 the (left-justified) packed array type we just built, we must
2171 first left-justify it. */
2172 int bit_size, bit_pos;
2173 ULONGEST mod;
2174
2175 mod = ada_modulus (value_type (arr)) - 1;
2176 bit_size = 0;
2177 while (mod > 0)
2178 {
2179 bit_size += 1;
2180 mod >>= 1;
2181 }
2182 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2183 arr = ada_value_primitive_packed_val (arr, NULL,
2184 bit_pos / HOST_CHAR_BIT,
2185 bit_pos % HOST_CHAR_BIT,
2186 bit_size,
2187 type);
2188 }
2189
2190 return coerce_unspec_val_to_type (arr, type);
2191 }
2192
2193
2194 /* The value of the element of packed array ARR at the ARITY indices
2195 given in IND. ARR must be a simple array. */
2196
2197 static struct value *
2198 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2199 {
2200 int i;
2201 int bits, elt_off, bit_off;
2202 long elt_total_bit_offset;
2203 struct type *elt_type;
2204 struct value *v;
2205
2206 bits = 0;
2207 elt_total_bit_offset = 0;
2208 elt_type = ada_check_typedef (value_type (arr));
2209 for (i = 0; i < arity; i += 1)
2210 {
2211 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2212 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2213 error
2214 (_("attempt to do packed indexing of "
2215 "something other than a packed array"));
2216 else
2217 {
2218 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2219 LONGEST lowerbound, upperbound;
2220 LONGEST idx;
2221
2222 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2223 {
2224 lim_warning (_("don't know bounds of array"));
2225 lowerbound = upperbound = 0;
2226 }
2227
2228 idx = pos_atr (ind[i]);
2229 if (idx < lowerbound || idx > upperbound)
2230 lim_warning (_("packed array index %ld out of bounds"),
2231 (long) idx);
2232 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2233 elt_total_bit_offset += (idx - lowerbound) * bits;
2234 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2235 }
2236 }
2237 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2238 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2239
2240 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2241 bits, elt_type);
2242 return v;
2243 }
2244
2245 /* Non-zero iff TYPE includes negative integer values. */
2246
2247 static int
2248 has_negatives (struct type *type)
2249 {
2250 switch (TYPE_CODE (type))
2251 {
2252 default:
2253 return 0;
2254 case TYPE_CODE_INT:
2255 return !TYPE_UNSIGNED (type);
2256 case TYPE_CODE_RANGE:
2257 return TYPE_LOW_BOUND (type) < 0;
2258 }
2259 }
2260
2261
2262 /* Create a new value of type TYPE from the contents of OBJ starting
2263 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2264 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2265 assigning through the result will set the field fetched from.
2266 VALADDR is ignored unless OBJ is NULL, in which case,
2267 VALADDR+OFFSET must address the start of storage containing the
2268 packed value. The value returned in this case is never an lval.
2269 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2270
2271 struct value *
2272 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2273 long offset, int bit_offset, int bit_size,
2274 struct type *type)
2275 {
2276 struct value *v;
2277 int src, /* Index into the source area */
2278 targ, /* Index into the target area */
2279 srcBitsLeft, /* Number of source bits left to move */
2280 nsrc, ntarg, /* Number of source and target bytes */
2281 unusedLS, /* Number of bits in next significant
2282 byte of source that are unused */
2283 accumSize; /* Number of meaningful bits in accum */
2284 unsigned char *bytes; /* First byte containing data to unpack */
2285 unsigned char *unpacked;
2286 unsigned long accum; /* Staging area for bits being transferred */
2287 unsigned char sign;
2288 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2289 /* Transmit bytes from least to most significant; delta is the direction
2290 the indices move. */
2291 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
2292
2293 type = ada_check_typedef (type);
2294
2295 if (obj == NULL)
2296 {
2297 v = allocate_value (type);
2298 bytes = (unsigned char *) (valaddr + offset);
2299 }
2300 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2301 {
2302 v = value_at (type, value_address (obj));
2303 bytes = (unsigned char *) alloca (len);
2304 read_memory (value_address (v) + offset, bytes, len);
2305 }
2306 else
2307 {
2308 v = allocate_value (type);
2309 bytes = (unsigned char *) value_contents (obj) + offset;
2310 }
2311
2312 if (obj != NULL)
2313 {
2314 long new_offset = offset;
2315
2316 set_value_component_location (v, obj);
2317 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2318 set_value_bitsize (v, bit_size);
2319 if (value_bitpos (v) >= HOST_CHAR_BIT)
2320 {
2321 ++new_offset;
2322 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2323 }
2324 set_value_offset (v, new_offset);
2325
2326 /* Also set the parent value. This is needed when trying to
2327 assign a new value (in inferior memory). */
2328 set_value_parent (v, obj);
2329 value_incref (obj);
2330 }
2331 else
2332 set_value_bitsize (v, bit_size);
2333 unpacked = (unsigned char *) value_contents (v);
2334
2335 srcBitsLeft = bit_size;
2336 nsrc = len;
2337 ntarg = TYPE_LENGTH (type);
2338 sign = 0;
2339 if (bit_size == 0)
2340 {
2341 memset (unpacked, 0, TYPE_LENGTH (type));
2342 return v;
2343 }
2344 else if (gdbarch_bits_big_endian (get_type_arch (type)))
2345 {
2346 src = len - 1;
2347 if (has_negatives (type)
2348 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2349 sign = ~0;
2350
2351 unusedLS =
2352 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2353 % HOST_CHAR_BIT;
2354
2355 switch (TYPE_CODE (type))
2356 {
2357 case TYPE_CODE_ARRAY:
2358 case TYPE_CODE_UNION:
2359 case TYPE_CODE_STRUCT:
2360 /* Non-scalar values must be aligned at a byte boundary... */
2361 accumSize =
2362 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2363 /* ... And are placed at the beginning (most-significant) bytes
2364 of the target. */
2365 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2366 ntarg = targ + 1;
2367 break;
2368 default:
2369 accumSize = 0;
2370 targ = TYPE_LENGTH (type) - 1;
2371 break;
2372 }
2373 }
2374 else
2375 {
2376 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2377
2378 src = targ = 0;
2379 unusedLS = bit_offset;
2380 accumSize = 0;
2381
2382 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2383 sign = ~0;
2384 }
2385
2386 accum = 0;
2387 while (nsrc > 0)
2388 {
2389 /* Mask for removing bits of the next source byte that are not
2390 part of the value. */
2391 unsigned int unusedMSMask =
2392 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2393 1;
2394 /* Sign-extend bits for this byte. */
2395 unsigned int signMask = sign & ~unusedMSMask;
2396
2397 accum |=
2398 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2399 accumSize += HOST_CHAR_BIT - unusedLS;
2400 if (accumSize >= HOST_CHAR_BIT)
2401 {
2402 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2403 accumSize -= HOST_CHAR_BIT;
2404 accum >>= HOST_CHAR_BIT;
2405 ntarg -= 1;
2406 targ += delta;
2407 }
2408 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2409 unusedLS = 0;
2410 nsrc -= 1;
2411 src += delta;
2412 }
2413 while (ntarg > 0)
2414 {
2415 accum |= sign << accumSize;
2416 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2417 accumSize -= HOST_CHAR_BIT;
2418 accum >>= HOST_CHAR_BIT;
2419 ntarg -= 1;
2420 targ += delta;
2421 }
2422
2423 return v;
2424 }
2425
2426 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2427 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2428 not overlap. */
2429 static void
2430 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2431 int src_offset, int n, int bits_big_endian_p)
2432 {
2433 unsigned int accum, mask;
2434 int accum_bits, chunk_size;
2435
2436 target += targ_offset / HOST_CHAR_BIT;
2437 targ_offset %= HOST_CHAR_BIT;
2438 source += src_offset / HOST_CHAR_BIT;
2439 src_offset %= HOST_CHAR_BIT;
2440 if (bits_big_endian_p)
2441 {
2442 accum = (unsigned char) *source;
2443 source += 1;
2444 accum_bits = HOST_CHAR_BIT - src_offset;
2445
2446 while (n > 0)
2447 {
2448 int unused_right;
2449
2450 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2451 accum_bits += HOST_CHAR_BIT;
2452 source += 1;
2453 chunk_size = HOST_CHAR_BIT - targ_offset;
2454 if (chunk_size > n)
2455 chunk_size = n;
2456 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2457 mask = ((1 << chunk_size) - 1) << unused_right;
2458 *target =
2459 (*target & ~mask)
2460 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2461 n -= chunk_size;
2462 accum_bits -= chunk_size;
2463 target += 1;
2464 targ_offset = 0;
2465 }
2466 }
2467 else
2468 {
2469 accum = (unsigned char) *source >> src_offset;
2470 source += 1;
2471 accum_bits = HOST_CHAR_BIT - src_offset;
2472
2473 while (n > 0)
2474 {
2475 accum = accum + ((unsigned char) *source << accum_bits);
2476 accum_bits += HOST_CHAR_BIT;
2477 source += 1;
2478 chunk_size = HOST_CHAR_BIT - targ_offset;
2479 if (chunk_size > n)
2480 chunk_size = n;
2481 mask = ((1 << chunk_size) - 1) << targ_offset;
2482 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2483 n -= chunk_size;
2484 accum_bits -= chunk_size;
2485 accum >>= chunk_size;
2486 target += 1;
2487 targ_offset = 0;
2488 }
2489 }
2490 }
2491
2492 /* Store the contents of FROMVAL into the location of TOVAL.
2493 Return a new value with the location of TOVAL and contents of
2494 FROMVAL. Handles assignment into packed fields that have
2495 floating-point or non-scalar types. */
2496
2497 static struct value *
2498 ada_value_assign (struct value *toval, struct value *fromval)
2499 {
2500 struct type *type = value_type (toval);
2501 int bits = value_bitsize (toval);
2502
2503 toval = ada_coerce_ref (toval);
2504 fromval = ada_coerce_ref (fromval);
2505
2506 if (ada_is_direct_array_type (value_type (toval)))
2507 toval = ada_coerce_to_simple_array (toval);
2508 if (ada_is_direct_array_type (value_type (fromval)))
2509 fromval = ada_coerce_to_simple_array (fromval);
2510
2511 if (!deprecated_value_modifiable (toval))
2512 error (_("Left operand of assignment is not a modifiable lvalue."));
2513
2514 if (VALUE_LVAL (toval) == lval_memory
2515 && bits > 0
2516 && (TYPE_CODE (type) == TYPE_CODE_FLT
2517 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2518 {
2519 int len = (value_bitpos (toval)
2520 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2521 int from_size;
2522 char *buffer = (char *) alloca (len);
2523 struct value *val;
2524 CORE_ADDR to_addr = value_address (toval);
2525
2526 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2527 fromval = value_cast (type, fromval);
2528
2529 read_memory (to_addr, buffer, len);
2530 from_size = value_bitsize (fromval);
2531 if (from_size == 0)
2532 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2533 if (gdbarch_bits_big_endian (get_type_arch (type)))
2534 move_bits (buffer, value_bitpos (toval),
2535 value_contents (fromval), from_size - bits, bits, 1);
2536 else
2537 move_bits (buffer, value_bitpos (toval),
2538 value_contents (fromval), 0, bits, 0);
2539 write_memory_with_notification (to_addr, buffer, len);
2540
2541 val = value_copy (toval);
2542 memcpy (value_contents_raw (val), value_contents (fromval),
2543 TYPE_LENGTH (type));
2544 deprecated_set_value_type (val, type);
2545
2546 return val;
2547 }
2548
2549 return value_assign (toval, fromval);
2550 }
2551
2552
2553 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2554 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2555 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2556 * COMPONENT, and not the inferior's memory. The current contents
2557 * of COMPONENT are ignored. */
2558 static void
2559 value_assign_to_component (struct value *container, struct value *component,
2560 struct value *val)
2561 {
2562 LONGEST offset_in_container =
2563 (LONGEST) (value_address (component) - value_address (container));
2564 int bit_offset_in_container =
2565 value_bitpos (component) - value_bitpos (container);
2566 int bits;
2567
2568 val = value_cast (value_type (component), val);
2569
2570 if (value_bitsize (component) == 0)
2571 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2572 else
2573 bits = value_bitsize (component);
2574
2575 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2576 move_bits (value_contents_writeable (container) + offset_in_container,
2577 value_bitpos (container) + bit_offset_in_container,
2578 value_contents (val),
2579 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2580 bits, 1);
2581 else
2582 move_bits (value_contents_writeable (container) + offset_in_container,
2583 value_bitpos (container) + bit_offset_in_container,
2584 value_contents (val), 0, bits, 0);
2585 }
2586
2587 /* The value of the element of array ARR at the ARITY indices given in IND.
2588 ARR may be either a simple array, GNAT array descriptor, or pointer
2589 thereto. */
2590
2591 struct value *
2592 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2593 {
2594 int k;
2595 struct value *elt;
2596 struct type *elt_type;
2597
2598 elt = ada_coerce_to_simple_array (arr);
2599
2600 elt_type = ada_check_typedef (value_type (elt));
2601 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2602 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2603 return value_subscript_packed (elt, arity, ind);
2604
2605 for (k = 0; k < arity; k += 1)
2606 {
2607 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2608 error (_("too many subscripts (%d expected)"), k);
2609 elt = value_subscript (elt, pos_atr (ind[k]));
2610 }
2611 return elt;
2612 }
2613
2614 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2615 value of the element of *ARR at the ARITY indices given in
2616 IND. Does not read the entire array into memory. */
2617
2618 static struct value *
2619 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2620 struct value **ind)
2621 {
2622 int k;
2623
2624 for (k = 0; k < arity; k += 1)
2625 {
2626 LONGEST lwb, upb;
2627
2628 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2629 error (_("too many subscripts (%d expected)"), k);
2630 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2631 value_copy (arr));
2632 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2633 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2634 type = TYPE_TARGET_TYPE (type);
2635 }
2636
2637 return value_ind (arr);
2638 }
2639
2640 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2641 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2642 elements starting at index LOW. The lower bound of this array is LOW, as
2643 per Ada rules. */
2644 static struct value *
2645 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2646 int low, int high)
2647 {
2648 struct type *type0 = ada_check_typedef (type);
2649 CORE_ADDR base = value_as_address (array_ptr)
2650 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)))
2651 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2652 struct type *index_type =
2653 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)),
2654 low, high);
2655 struct type *slice_type =
2656 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
2657
2658 return value_at_lazy (slice_type, base);
2659 }
2660
2661
2662 static struct value *
2663 ada_value_slice (struct value *array, int low, int high)
2664 {
2665 struct type *type = ada_check_typedef (value_type (array));
2666 struct type *index_type =
2667 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2668 struct type *slice_type =
2669 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2670
2671 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2672 }
2673
2674 /* If type is a record type in the form of a standard GNAT array
2675 descriptor, returns the number of dimensions for type. If arr is a
2676 simple array, returns the number of "array of"s that prefix its
2677 type designation. Otherwise, returns 0. */
2678
2679 int
2680 ada_array_arity (struct type *type)
2681 {
2682 int arity;
2683
2684 if (type == NULL)
2685 return 0;
2686
2687 type = desc_base_type (type);
2688
2689 arity = 0;
2690 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2691 return desc_arity (desc_bounds_type (type));
2692 else
2693 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2694 {
2695 arity += 1;
2696 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2697 }
2698
2699 return arity;
2700 }
2701
2702 /* If TYPE is a record type in the form of a standard GNAT array
2703 descriptor or a simple array type, returns the element type for
2704 TYPE after indexing by NINDICES indices, or by all indices if
2705 NINDICES is -1. Otherwise, returns NULL. */
2706
2707 struct type *
2708 ada_array_element_type (struct type *type, int nindices)
2709 {
2710 type = desc_base_type (type);
2711
2712 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2713 {
2714 int k;
2715 struct type *p_array_type;
2716
2717 p_array_type = desc_data_target_type (type);
2718
2719 k = ada_array_arity (type);
2720 if (k == 0)
2721 return NULL;
2722
2723 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2724 if (nindices >= 0 && k > nindices)
2725 k = nindices;
2726 while (k > 0 && p_array_type != NULL)
2727 {
2728 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2729 k -= 1;
2730 }
2731 return p_array_type;
2732 }
2733 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2734 {
2735 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2736 {
2737 type = TYPE_TARGET_TYPE (type);
2738 nindices -= 1;
2739 }
2740 return type;
2741 }
2742
2743 return NULL;
2744 }
2745
2746 /* The type of nth index in arrays of given type (n numbering from 1).
2747 Does not examine memory. Throws an error if N is invalid or TYPE
2748 is not an array type. NAME is the name of the Ada attribute being
2749 evaluated ('range, 'first, 'last, or 'length); it is used in building
2750 the error message. */
2751
2752 static struct type *
2753 ada_index_type (struct type *type, int n, const char *name)
2754 {
2755 struct type *result_type;
2756
2757 type = desc_base_type (type);
2758
2759 if (n < 0 || n > ada_array_arity (type))
2760 error (_("invalid dimension number to '%s"), name);
2761
2762 if (ada_is_simple_array_type (type))
2763 {
2764 int i;
2765
2766 for (i = 1; i < n; i += 1)
2767 type = TYPE_TARGET_TYPE (type);
2768 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2769 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2770 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2771 perhaps stabsread.c would make more sense. */
2772 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2773 result_type = NULL;
2774 }
2775 else
2776 {
2777 result_type = desc_index_type (desc_bounds_type (type), n);
2778 if (result_type == NULL)
2779 error (_("attempt to take bound of something that is not an array"));
2780 }
2781
2782 return result_type;
2783 }
2784
2785 /* Given that arr is an array type, returns the lower bound of the
2786 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2787 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2788 array-descriptor type. It works for other arrays with bounds supplied
2789 by run-time quantities other than discriminants. */
2790
2791 static LONGEST
2792 ada_array_bound_from_type (struct type * arr_type, int n, int which)
2793 {
2794 struct type *type, *elt_type, *index_type_desc, *index_type;
2795 int i;
2796
2797 gdb_assert (which == 0 || which == 1);
2798
2799 if (ada_is_constrained_packed_array_type (arr_type))
2800 arr_type = decode_constrained_packed_array_type (arr_type);
2801
2802 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2803 return (LONGEST) - which;
2804
2805 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2806 type = TYPE_TARGET_TYPE (arr_type);
2807 else
2808 type = arr_type;
2809
2810 elt_type = type;
2811 for (i = n; i > 1; i--)
2812 elt_type = TYPE_TARGET_TYPE (type);
2813
2814 index_type_desc = ada_find_parallel_type (type, "___XA");
2815 ada_fixup_array_indexes_type (index_type_desc);
2816 if (index_type_desc != NULL)
2817 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2818 NULL);
2819 else
2820 index_type = TYPE_INDEX_TYPE (elt_type);
2821
2822 return
2823 (LONGEST) (which == 0
2824 ? ada_discrete_type_low_bound (index_type)
2825 : ada_discrete_type_high_bound (index_type));
2826 }
2827
2828 /* Given that arr is an array value, returns the lower bound of the
2829 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2830 WHICH is 1. This routine will also work for arrays with bounds
2831 supplied by run-time quantities other than discriminants. */
2832
2833 static LONGEST
2834 ada_array_bound (struct value *arr, int n, int which)
2835 {
2836 struct type *arr_type = value_type (arr);
2837
2838 if (ada_is_constrained_packed_array_type (arr_type))
2839 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
2840 else if (ada_is_simple_array_type (arr_type))
2841 return ada_array_bound_from_type (arr_type, n, which);
2842 else
2843 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2844 }
2845
2846 /* Given that arr is an array value, returns the length of the
2847 nth index. This routine will also work for arrays with bounds
2848 supplied by run-time quantities other than discriminants.
2849 Does not work for arrays indexed by enumeration types with representation
2850 clauses at the moment. */
2851
2852 static LONGEST
2853 ada_array_length (struct value *arr, int n)
2854 {
2855 struct type *arr_type = ada_check_typedef (value_type (arr));
2856
2857 if (ada_is_constrained_packed_array_type (arr_type))
2858 return ada_array_length (decode_constrained_packed_array (arr), n);
2859
2860 if (ada_is_simple_array_type (arr_type))
2861 return (ada_array_bound_from_type (arr_type, n, 1)
2862 - ada_array_bound_from_type (arr_type, n, 0) + 1);
2863 else
2864 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2865 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
2866 }
2867
2868 /* An empty array whose type is that of ARR_TYPE (an array type),
2869 with bounds LOW to LOW-1. */
2870
2871 static struct value *
2872 empty_array (struct type *arr_type, int low)
2873 {
2874 struct type *arr_type0 = ada_check_typedef (arr_type);
2875 struct type *index_type =
2876 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)),
2877 low, low - 1);
2878 struct type *elt_type = ada_array_element_type (arr_type0, 1);
2879
2880 return allocate_value (create_array_type (NULL, elt_type, index_type));
2881 }
2882 \f
2883
2884 /* Name resolution */
2885
2886 /* The "decoded" name for the user-definable Ada operator corresponding
2887 to OP. */
2888
2889 static const char *
2890 ada_decoded_op_name (enum exp_opcode op)
2891 {
2892 int i;
2893
2894 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2895 {
2896 if (ada_opname_table[i].op == op)
2897 return ada_opname_table[i].decoded;
2898 }
2899 error (_("Could not find operator name for opcode"));
2900 }
2901
2902
2903 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2904 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2905 undefined namespace) and converts operators that are
2906 user-defined into appropriate function calls. If CONTEXT_TYPE is
2907 non-null, it provides a preferred result type [at the moment, only
2908 type void has any effect---causing procedures to be preferred over
2909 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2910 return type is preferred. May change (expand) *EXP. */
2911
2912 static void
2913 resolve (struct expression **expp, int void_context_p)
2914 {
2915 struct type *context_type = NULL;
2916 int pc = 0;
2917
2918 if (void_context_p)
2919 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2920
2921 resolve_subexp (expp, &pc, 1, context_type);
2922 }
2923
2924 /* Resolve the operator of the subexpression beginning at
2925 position *POS of *EXPP. "Resolving" consists of replacing
2926 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2927 with their resolutions, replacing built-in operators with
2928 function calls to user-defined operators, where appropriate, and,
2929 when DEPROCEDURE_P is non-zero, converting function-valued variables
2930 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2931 are as in ada_resolve, above. */
2932
2933 static struct value *
2934 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2935 struct type *context_type)
2936 {
2937 int pc = *pos;
2938 int i;
2939 struct expression *exp; /* Convenience: == *expp. */
2940 enum exp_opcode op = (*expp)->elts[pc].opcode;
2941 struct value **argvec; /* Vector of operand types (alloca'ed). */
2942 int nargs; /* Number of operands. */
2943 int oplen;
2944
2945 argvec = NULL;
2946 nargs = 0;
2947 exp = *expp;
2948
2949 /* Pass one: resolve operands, saving their types and updating *pos,
2950 if needed. */
2951 switch (op)
2952 {
2953 case OP_FUNCALL:
2954 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2955 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2956 *pos += 7;
2957 else
2958 {
2959 *pos += 3;
2960 resolve_subexp (expp, pos, 0, NULL);
2961 }
2962 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2963 break;
2964
2965 case UNOP_ADDR:
2966 *pos += 1;
2967 resolve_subexp (expp, pos, 0, NULL);
2968 break;
2969
2970 case UNOP_QUAL:
2971 *pos += 3;
2972 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
2973 break;
2974
2975 case OP_ATR_MODULUS:
2976 case OP_ATR_SIZE:
2977 case OP_ATR_TAG:
2978 case OP_ATR_FIRST:
2979 case OP_ATR_LAST:
2980 case OP_ATR_LENGTH:
2981 case OP_ATR_POS:
2982 case OP_ATR_VAL:
2983 case OP_ATR_MIN:
2984 case OP_ATR_MAX:
2985 case TERNOP_IN_RANGE:
2986 case BINOP_IN_BOUNDS:
2987 case UNOP_IN_RANGE:
2988 case OP_AGGREGATE:
2989 case OP_OTHERS:
2990 case OP_CHOICES:
2991 case OP_POSITIONAL:
2992 case OP_DISCRETE_RANGE:
2993 case OP_NAME:
2994 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2995 *pos += oplen;
2996 break;
2997
2998 case BINOP_ASSIGN:
2999 {
3000 struct value *arg1;
3001
3002 *pos += 1;
3003 arg1 = resolve_subexp (expp, pos, 0, NULL);
3004 if (arg1 == NULL)
3005 resolve_subexp (expp, pos, 1, NULL);
3006 else
3007 resolve_subexp (expp, pos, 1, value_type (arg1));
3008 break;
3009 }
3010
3011 case UNOP_CAST:
3012 *pos += 3;
3013 nargs = 1;
3014 break;
3015
3016 case BINOP_ADD:
3017 case BINOP_SUB:
3018 case BINOP_MUL:
3019 case BINOP_DIV:
3020 case BINOP_REM:
3021 case BINOP_MOD:
3022 case BINOP_EXP:
3023 case BINOP_CONCAT:
3024 case BINOP_LOGICAL_AND:
3025 case BINOP_LOGICAL_OR:
3026 case BINOP_BITWISE_AND:
3027 case BINOP_BITWISE_IOR:
3028 case BINOP_BITWISE_XOR:
3029
3030 case BINOP_EQUAL:
3031 case BINOP_NOTEQUAL:
3032 case BINOP_LESS:
3033 case BINOP_GTR:
3034 case BINOP_LEQ:
3035 case BINOP_GEQ:
3036
3037 case BINOP_REPEAT:
3038 case BINOP_SUBSCRIPT:
3039 case BINOP_COMMA:
3040 *pos += 1;
3041 nargs = 2;
3042 break;
3043
3044 case UNOP_NEG:
3045 case UNOP_PLUS:
3046 case UNOP_LOGICAL_NOT:
3047 case UNOP_ABS:
3048 case UNOP_IND:
3049 *pos += 1;
3050 nargs = 1;
3051 break;
3052
3053 case OP_LONG:
3054 case OP_DOUBLE:
3055 case OP_VAR_VALUE:
3056 *pos += 4;
3057 break;
3058
3059 case OP_TYPE:
3060 case OP_BOOL:
3061 case OP_LAST:
3062 case OP_INTERNALVAR:
3063 *pos += 3;
3064 break;
3065
3066 case UNOP_MEMVAL:
3067 *pos += 3;
3068 nargs = 1;
3069 break;
3070
3071 case OP_REGISTER:
3072 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3073 break;
3074
3075 case STRUCTOP_STRUCT:
3076 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3077 nargs = 1;
3078 break;
3079
3080 case TERNOP_SLICE:
3081 *pos += 1;
3082 nargs = 3;
3083 break;
3084
3085 case OP_STRING:
3086 break;
3087
3088 default:
3089 error (_("Unexpected operator during name resolution"));
3090 }
3091
3092 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
3093 for (i = 0; i < nargs; i += 1)
3094 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3095 argvec[i] = NULL;
3096 exp = *expp;
3097
3098 /* Pass two: perform any resolution on principal operator. */
3099 switch (op)
3100 {
3101 default:
3102 break;
3103
3104 case OP_VAR_VALUE:
3105 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3106 {
3107 struct ada_symbol_info *candidates;
3108 int n_candidates;
3109
3110 n_candidates =
3111 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3112 (exp->elts[pc + 2].symbol),
3113 exp->elts[pc + 1].block, VAR_DOMAIN,
3114 &candidates, 1);
3115
3116 if (n_candidates > 1)
3117 {
3118 /* Types tend to get re-introduced locally, so if there
3119 are any local symbols that are not types, first filter
3120 out all types. */
3121 int j;
3122 for (j = 0; j < n_candidates; j += 1)
3123 switch (SYMBOL_CLASS (candidates[j].sym))
3124 {
3125 case LOC_REGISTER:
3126 case LOC_ARG:
3127 case LOC_REF_ARG:
3128 case LOC_REGPARM_ADDR:
3129 case LOC_LOCAL:
3130 case LOC_COMPUTED:
3131 goto FoundNonType;
3132 default:
3133 break;
3134 }
3135 FoundNonType:
3136 if (j < n_candidates)
3137 {
3138 j = 0;
3139 while (j < n_candidates)
3140 {
3141 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3142 {
3143 candidates[j] = candidates[n_candidates - 1];
3144 n_candidates -= 1;
3145 }
3146 else
3147 j += 1;
3148 }
3149 }
3150 }
3151
3152 if (n_candidates == 0)
3153 error (_("No definition found for %s"),
3154 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3155 else if (n_candidates == 1)
3156 i = 0;
3157 else if (deprocedure_p
3158 && !is_nonfunction (candidates, n_candidates))
3159 {
3160 i = ada_resolve_function
3161 (candidates, n_candidates, NULL, 0,
3162 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3163 context_type);
3164 if (i < 0)
3165 error (_("Could not find a match for %s"),
3166 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3167 }
3168 else
3169 {
3170 printf_filtered (_("Multiple matches for %s\n"),
3171 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3172 user_select_syms (candidates, n_candidates, 1);
3173 i = 0;
3174 }
3175
3176 exp->elts[pc + 1].block = candidates[i].block;
3177 exp->elts[pc + 2].symbol = candidates[i].sym;
3178 if (innermost_block == NULL
3179 || contained_in (candidates[i].block, innermost_block))
3180 innermost_block = candidates[i].block;
3181 }
3182
3183 if (deprocedure_p
3184 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3185 == TYPE_CODE_FUNC))
3186 {
3187 replace_operator_with_call (expp, pc, 0, 0,
3188 exp->elts[pc + 2].symbol,
3189 exp->elts[pc + 1].block);
3190 exp = *expp;
3191 }
3192 break;
3193
3194 case OP_FUNCALL:
3195 {
3196 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3197 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3198 {
3199 struct ada_symbol_info *candidates;
3200 int n_candidates;
3201
3202 n_candidates =
3203 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3204 (exp->elts[pc + 5].symbol),
3205 exp->elts[pc + 4].block, VAR_DOMAIN,
3206 &candidates, 1);
3207 if (n_candidates == 1)
3208 i = 0;
3209 else
3210 {
3211 i = ada_resolve_function
3212 (candidates, n_candidates,
3213 argvec, nargs,
3214 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3215 context_type);
3216 if (i < 0)
3217 error (_("Could not find a match for %s"),
3218 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3219 }
3220
3221 exp->elts[pc + 4].block = candidates[i].block;
3222 exp->elts[pc + 5].symbol = candidates[i].sym;
3223 if (innermost_block == NULL
3224 || contained_in (candidates[i].block, innermost_block))
3225 innermost_block = candidates[i].block;
3226 }
3227 }
3228 break;
3229 case BINOP_ADD:
3230 case BINOP_SUB:
3231 case BINOP_MUL:
3232 case BINOP_DIV:
3233 case BINOP_REM:
3234 case BINOP_MOD:
3235 case BINOP_CONCAT:
3236 case BINOP_BITWISE_AND:
3237 case BINOP_BITWISE_IOR:
3238 case BINOP_BITWISE_XOR:
3239 case BINOP_EQUAL:
3240 case BINOP_NOTEQUAL:
3241 case BINOP_LESS:
3242 case BINOP_GTR:
3243 case BINOP_LEQ:
3244 case BINOP_GEQ:
3245 case BINOP_EXP:
3246 case UNOP_NEG:
3247 case UNOP_PLUS:
3248 case UNOP_LOGICAL_NOT:
3249 case UNOP_ABS:
3250 if (possible_user_operator_p (op, argvec))
3251 {
3252 struct ada_symbol_info *candidates;
3253 int n_candidates;
3254
3255 n_candidates =
3256 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3257 (struct block *) NULL, VAR_DOMAIN,
3258 &candidates, 1);
3259 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3260 ada_decoded_op_name (op), NULL);
3261 if (i < 0)
3262 break;
3263
3264 replace_operator_with_call (expp, pc, nargs, 1,
3265 candidates[i].sym, candidates[i].block);
3266 exp = *expp;
3267 }
3268 break;
3269
3270 case OP_TYPE:
3271 case OP_REGISTER:
3272 return NULL;
3273 }
3274
3275 *pos = pc;
3276 return evaluate_subexp_type (exp, pos);
3277 }
3278
3279 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3280 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3281 a non-pointer. */
3282 /* The term "match" here is rather loose. The match is heuristic and
3283 liberal. */
3284
3285 static int
3286 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3287 {
3288 ftype = ada_check_typedef (ftype);
3289 atype = ada_check_typedef (atype);
3290
3291 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3292 ftype = TYPE_TARGET_TYPE (ftype);
3293 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3294 atype = TYPE_TARGET_TYPE (atype);
3295
3296 switch (TYPE_CODE (ftype))
3297 {
3298 default:
3299 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3300 case TYPE_CODE_PTR:
3301 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3302 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3303 TYPE_TARGET_TYPE (atype), 0);
3304 else
3305 return (may_deref
3306 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3307 case TYPE_CODE_INT:
3308 case TYPE_CODE_ENUM:
3309 case TYPE_CODE_RANGE:
3310 switch (TYPE_CODE (atype))
3311 {
3312 case TYPE_CODE_INT:
3313 case TYPE_CODE_ENUM:
3314 case TYPE_CODE_RANGE:
3315 return 1;
3316 default:
3317 return 0;
3318 }
3319
3320 case TYPE_CODE_ARRAY:
3321 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3322 || ada_is_array_descriptor_type (atype));
3323
3324 case TYPE_CODE_STRUCT:
3325 if (ada_is_array_descriptor_type (ftype))
3326 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3327 || ada_is_array_descriptor_type (atype));
3328 else
3329 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3330 && !ada_is_array_descriptor_type (atype));
3331
3332 case TYPE_CODE_UNION:
3333 case TYPE_CODE_FLT:
3334 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3335 }
3336 }
3337
3338 /* Return non-zero if the formals of FUNC "sufficiently match" the
3339 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3340 may also be an enumeral, in which case it is treated as a 0-
3341 argument function. */
3342
3343 static int
3344 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3345 {
3346 int i;
3347 struct type *func_type = SYMBOL_TYPE (func);
3348
3349 if (SYMBOL_CLASS (func) == LOC_CONST
3350 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3351 return (n_actuals == 0);
3352 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3353 return 0;
3354
3355 if (TYPE_NFIELDS (func_type) != n_actuals)
3356 return 0;
3357
3358 for (i = 0; i < n_actuals; i += 1)
3359 {
3360 if (actuals[i] == NULL)
3361 return 0;
3362 else
3363 {
3364 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3365 i));
3366 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3367
3368 if (!ada_type_match (ftype, atype, 1))
3369 return 0;
3370 }
3371 }
3372 return 1;
3373 }
3374
3375 /* False iff function type FUNC_TYPE definitely does not produce a value
3376 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3377 FUNC_TYPE is not a valid function type with a non-null return type
3378 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3379
3380 static int
3381 return_match (struct type *func_type, struct type *context_type)
3382 {
3383 struct type *return_type;
3384
3385 if (func_type == NULL)
3386 return 1;
3387
3388 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3389 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3390 else
3391 return_type = get_base_type (func_type);
3392 if (return_type == NULL)
3393 return 1;
3394
3395 context_type = get_base_type (context_type);
3396
3397 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3398 return context_type == NULL || return_type == context_type;
3399 else if (context_type == NULL)
3400 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3401 else
3402 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3403 }
3404
3405
3406 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3407 function (if any) that matches the types of the NARGS arguments in
3408 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3409 that returns that type, then eliminate matches that don't. If
3410 CONTEXT_TYPE is void and there is at least one match that does not
3411 return void, eliminate all matches that do.
3412
3413 Asks the user if there is more than one match remaining. Returns -1
3414 if there is no such symbol or none is selected. NAME is used
3415 solely for messages. May re-arrange and modify SYMS in
3416 the process; the index returned is for the modified vector. */
3417
3418 static int
3419 ada_resolve_function (struct ada_symbol_info syms[],
3420 int nsyms, struct value **args, int nargs,
3421 const char *name, struct type *context_type)
3422 {
3423 int fallback;
3424 int k;
3425 int m; /* Number of hits */
3426
3427 m = 0;
3428 /* In the first pass of the loop, we only accept functions matching
3429 context_type. If none are found, we add a second pass of the loop
3430 where every function is accepted. */
3431 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3432 {
3433 for (k = 0; k < nsyms; k += 1)
3434 {
3435 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3436
3437 if (ada_args_match (syms[k].sym, args, nargs)
3438 && (fallback || return_match (type, context_type)))
3439 {
3440 syms[m] = syms[k];
3441 m += 1;
3442 }
3443 }
3444 }
3445
3446 if (m == 0)
3447 return -1;
3448 else if (m > 1)
3449 {
3450 printf_filtered (_("Multiple matches for %s\n"), name);
3451 user_select_syms (syms, m, 1);
3452 return 0;
3453 }
3454 return 0;
3455 }
3456
3457 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3458 in a listing of choices during disambiguation (see sort_choices, below).
3459 The idea is that overloadings of a subprogram name from the
3460 same package should sort in their source order. We settle for ordering
3461 such symbols by their trailing number (__N or $N). */
3462
3463 static int
3464 encoded_ordered_before (const char *N0, const char *N1)
3465 {
3466 if (N1 == NULL)
3467 return 0;
3468 else if (N0 == NULL)
3469 return 1;
3470 else
3471 {
3472 int k0, k1;
3473
3474 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3475 ;
3476 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3477 ;
3478 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3479 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3480 {
3481 int n0, n1;
3482
3483 n0 = k0;
3484 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3485 n0 -= 1;
3486 n1 = k1;
3487 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3488 n1 -= 1;
3489 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3490 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3491 }
3492 return (strcmp (N0, N1) < 0);
3493 }
3494 }
3495
3496 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3497 encoded names. */
3498
3499 static void
3500 sort_choices (struct ada_symbol_info syms[], int nsyms)
3501 {
3502 int i;
3503
3504 for (i = 1; i < nsyms; i += 1)
3505 {
3506 struct ada_symbol_info sym = syms[i];
3507 int j;
3508
3509 for (j = i - 1; j >= 0; j -= 1)
3510 {
3511 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3512 SYMBOL_LINKAGE_NAME (sym.sym)))
3513 break;
3514 syms[j + 1] = syms[j];
3515 }
3516 syms[j + 1] = sym;
3517 }
3518 }
3519
3520 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3521 by asking the user (if necessary), returning the number selected,
3522 and setting the first elements of SYMS items. Error if no symbols
3523 selected. */
3524
3525 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3526 to be re-integrated one of these days. */
3527
3528 int
3529 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3530 {
3531 int i;
3532 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3533 int n_chosen;
3534 int first_choice = (max_results == 1) ? 1 : 2;
3535 const char *select_mode = multiple_symbols_select_mode ();
3536
3537 if (max_results < 1)
3538 error (_("Request to select 0 symbols!"));
3539 if (nsyms <= 1)
3540 return nsyms;
3541
3542 if (select_mode == multiple_symbols_cancel)
3543 error (_("\
3544 canceled because the command is ambiguous\n\
3545 See set/show multiple-symbol."));
3546
3547 /* If select_mode is "all", then return all possible symbols.
3548 Only do that if more than one symbol can be selected, of course.
3549 Otherwise, display the menu as usual. */
3550 if (select_mode == multiple_symbols_all && max_results > 1)
3551 return nsyms;
3552
3553 printf_unfiltered (_("[0] cancel\n"));
3554 if (max_results > 1)
3555 printf_unfiltered (_("[1] all\n"));
3556
3557 sort_choices (syms, nsyms);
3558
3559 for (i = 0; i < nsyms; i += 1)
3560 {
3561 if (syms[i].sym == NULL)
3562 continue;
3563
3564 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3565 {
3566 struct symtab_and_line sal =
3567 find_function_start_sal (syms[i].sym, 1);
3568
3569 if (sal.symtab == NULL)
3570 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3571 i + first_choice,
3572 SYMBOL_PRINT_NAME (syms[i].sym),
3573 sal.line);
3574 else
3575 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3576 SYMBOL_PRINT_NAME (syms[i].sym),
3577 sal.symtab->filename, sal.line);
3578 continue;
3579 }
3580 else
3581 {
3582 int is_enumeral =
3583 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3584 && SYMBOL_TYPE (syms[i].sym) != NULL
3585 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3586 struct symtab *symtab = SYMBOL_SYMTAB (syms[i].sym);
3587
3588 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3589 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3590 i + first_choice,
3591 SYMBOL_PRINT_NAME (syms[i].sym),
3592 symtab->filename, SYMBOL_LINE (syms[i].sym));
3593 else if (is_enumeral
3594 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3595 {
3596 printf_unfiltered (("[%d] "), i + first_choice);
3597 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3598 gdb_stdout, -1, 0, &type_print_raw_options);
3599 printf_unfiltered (_("'(%s) (enumeral)\n"),
3600 SYMBOL_PRINT_NAME (syms[i].sym));
3601 }
3602 else if (symtab != NULL)
3603 printf_unfiltered (is_enumeral
3604 ? _("[%d] %s in %s (enumeral)\n")
3605 : _("[%d] %s at %s:?\n"),
3606 i + first_choice,
3607 SYMBOL_PRINT_NAME (syms[i].sym),
3608 symtab->filename);
3609 else
3610 printf_unfiltered (is_enumeral
3611 ? _("[%d] %s (enumeral)\n")
3612 : _("[%d] %s at ?\n"),
3613 i + first_choice,
3614 SYMBOL_PRINT_NAME (syms[i].sym));
3615 }
3616 }
3617
3618 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3619 "overload-choice");
3620
3621 for (i = 0; i < n_chosen; i += 1)
3622 syms[i] = syms[chosen[i]];
3623
3624 return n_chosen;
3625 }
3626
3627 /* Read and validate a set of numeric choices from the user in the
3628 range 0 .. N_CHOICES-1. Place the results in increasing
3629 order in CHOICES[0 .. N-1], and return N.
3630
3631 The user types choices as a sequence of numbers on one line
3632 separated by blanks, encoding them as follows:
3633
3634 + A choice of 0 means to cancel the selection, throwing an error.
3635 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3636 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3637
3638 The user is not allowed to choose more than MAX_RESULTS values.
3639
3640 ANNOTATION_SUFFIX, if present, is used to annotate the input
3641 prompts (for use with the -f switch). */
3642
3643 int
3644 get_selections (int *choices, int n_choices, int max_results,
3645 int is_all_choice, char *annotation_suffix)
3646 {
3647 char *args;
3648 char *prompt;
3649 int n_chosen;
3650 int first_choice = is_all_choice ? 2 : 1;
3651
3652 prompt = getenv ("PS2");
3653 if (prompt == NULL)
3654 prompt = "> ";
3655
3656 args = command_line_input (prompt, 0, annotation_suffix);
3657
3658 if (args == NULL)
3659 error_no_arg (_("one or more choice numbers"));
3660
3661 n_chosen = 0;
3662
3663 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3664 order, as given in args. Choices are validated. */
3665 while (1)
3666 {
3667 char *args2;
3668 int choice, j;
3669
3670 args = skip_spaces (args);
3671 if (*args == '\0' && n_chosen == 0)
3672 error_no_arg (_("one or more choice numbers"));
3673 else if (*args == '\0')
3674 break;
3675
3676 choice = strtol (args, &args2, 10);
3677 if (args == args2 || choice < 0
3678 || choice > n_choices + first_choice - 1)
3679 error (_("Argument must be choice number"));
3680 args = args2;
3681
3682 if (choice == 0)
3683 error (_("cancelled"));
3684
3685 if (choice < first_choice)
3686 {
3687 n_chosen = n_choices;
3688 for (j = 0; j < n_choices; j += 1)
3689 choices[j] = j;
3690 break;
3691 }
3692 choice -= first_choice;
3693
3694 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3695 {
3696 }
3697
3698 if (j < 0 || choice != choices[j])
3699 {
3700 int k;
3701
3702 for (k = n_chosen - 1; k > j; k -= 1)
3703 choices[k + 1] = choices[k];
3704 choices[j + 1] = choice;
3705 n_chosen += 1;
3706 }
3707 }
3708
3709 if (n_chosen > max_results)
3710 error (_("Select no more than %d of the above"), max_results);
3711
3712 return n_chosen;
3713 }
3714
3715 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3716 on the function identified by SYM and BLOCK, and taking NARGS
3717 arguments. Update *EXPP as needed to hold more space. */
3718
3719 static void
3720 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3721 int oplen, struct symbol *sym,
3722 const struct block *block)
3723 {
3724 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3725 symbol, -oplen for operator being replaced). */
3726 struct expression *newexp = (struct expression *)
3727 xzalloc (sizeof (struct expression)
3728 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3729 struct expression *exp = *expp;
3730
3731 newexp->nelts = exp->nelts + 7 - oplen;
3732 newexp->language_defn = exp->language_defn;
3733 newexp->gdbarch = exp->gdbarch;
3734 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3735 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3736 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3737
3738 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3739 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3740
3741 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3742 newexp->elts[pc + 4].block = block;
3743 newexp->elts[pc + 5].symbol = sym;
3744
3745 *expp = newexp;
3746 xfree (exp);
3747 }
3748
3749 /* Type-class predicates */
3750
3751 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3752 or FLOAT). */
3753
3754 static int
3755 numeric_type_p (struct type *type)
3756 {
3757 if (type == NULL)
3758 return 0;
3759 else
3760 {
3761 switch (TYPE_CODE (type))
3762 {
3763 case TYPE_CODE_INT:
3764 case TYPE_CODE_FLT:
3765 return 1;
3766 case TYPE_CODE_RANGE:
3767 return (type == TYPE_TARGET_TYPE (type)
3768 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3769 default:
3770 return 0;
3771 }
3772 }
3773 }
3774
3775 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3776
3777 static int
3778 integer_type_p (struct type *type)
3779 {
3780 if (type == NULL)
3781 return 0;
3782 else
3783 {
3784 switch (TYPE_CODE (type))
3785 {
3786 case TYPE_CODE_INT:
3787 return 1;
3788 case TYPE_CODE_RANGE:
3789 return (type == TYPE_TARGET_TYPE (type)
3790 || integer_type_p (TYPE_TARGET_TYPE (type)));
3791 default:
3792 return 0;
3793 }
3794 }
3795 }
3796
3797 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3798
3799 static int
3800 scalar_type_p (struct type *type)
3801 {
3802 if (type == NULL)
3803 return 0;
3804 else
3805 {
3806 switch (TYPE_CODE (type))
3807 {
3808 case TYPE_CODE_INT:
3809 case TYPE_CODE_RANGE:
3810 case TYPE_CODE_ENUM:
3811 case TYPE_CODE_FLT:
3812 return 1;
3813 default:
3814 return 0;
3815 }
3816 }
3817 }
3818
3819 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3820
3821 static int
3822 discrete_type_p (struct type *type)
3823 {
3824 if (type == NULL)
3825 return 0;
3826 else
3827 {
3828 switch (TYPE_CODE (type))
3829 {
3830 case TYPE_CODE_INT:
3831 case TYPE_CODE_RANGE:
3832 case TYPE_CODE_ENUM:
3833 case TYPE_CODE_BOOL:
3834 return 1;
3835 default:
3836 return 0;
3837 }
3838 }
3839 }
3840
3841 /* Returns non-zero if OP with operands in the vector ARGS could be
3842 a user-defined function. Errs on the side of pre-defined operators
3843 (i.e., result 0). */
3844
3845 static int
3846 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3847 {
3848 struct type *type0 =
3849 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3850 struct type *type1 =
3851 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3852
3853 if (type0 == NULL)
3854 return 0;
3855
3856 switch (op)
3857 {
3858 default:
3859 return 0;
3860
3861 case BINOP_ADD:
3862 case BINOP_SUB:
3863 case BINOP_MUL:
3864 case BINOP_DIV:
3865 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3866
3867 case BINOP_REM:
3868 case BINOP_MOD:
3869 case BINOP_BITWISE_AND:
3870 case BINOP_BITWISE_IOR:
3871 case BINOP_BITWISE_XOR:
3872 return (!(integer_type_p (type0) && integer_type_p (type1)));
3873
3874 case BINOP_EQUAL:
3875 case BINOP_NOTEQUAL:
3876 case BINOP_LESS:
3877 case BINOP_GTR:
3878 case BINOP_LEQ:
3879 case BINOP_GEQ:
3880 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3881
3882 case BINOP_CONCAT:
3883 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3884
3885 case BINOP_EXP:
3886 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3887
3888 case UNOP_NEG:
3889 case UNOP_PLUS:
3890 case UNOP_LOGICAL_NOT:
3891 case UNOP_ABS:
3892 return (!numeric_type_p (type0));
3893
3894 }
3895 }
3896 \f
3897 /* Renaming */
3898
3899 /* NOTES:
3900
3901 1. In the following, we assume that a renaming type's name may
3902 have an ___XD suffix. It would be nice if this went away at some
3903 point.
3904 2. We handle both the (old) purely type-based representation of
3905 renamings and the (new) variable-based encoding. At some point,
3906 it is devoutly to be hoped that the former goes away
3907 (FIXME: hilfinger-2007-07-09).
3908 3. Subprogram renamings are not implemented, although the XRS
3909 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3910
3911 /* If SYM encodes a renaming,
3912
3913 <renaming> renames <renamed entity>,
3914
3915 sets *LEN to the length of the renamed entity's name,
3916 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3917 the string describing the subcomponent selected from the renamed
3918 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3919 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3920 are undefined). Otherwise, returns a value indicating the category
3921 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3922 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3923 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3924 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3925 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3926 may be NULL, in which case they are not assigned.
3927
3928 [Currently, however, GCC does not generate subprogram renamings.] */
3929
3930 enum ada_renaming_category
3931 ada_parse_renaming (struct symbol *sym,
3932 const char **renamed_entity, int *len,
3933 const char **renaming_expr)
3934 {
3935 enum ada_renaming_category kind;
3936 const char *info;
3937 const char *suffix;
3938
3939 if (sym == NULL)
3940 return ADA_NOT_RENAMING;
3941 switch (SYMBOL_CLASS (sym))
3942 {
3943 default:
3944 return ADA_NOT_RENAMING;
3945 case LOC_TYPEDEF:
3946 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3947 renamed_entity, len, renaming_expr);
3948 case LOC_LOCAL:
3949 case LOC_STATIC:
3950 case LOC_COMPUTED:
3951 case LOC_OPTIMIZED_OUT:
3952 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3953 if (info == NULL)
3954 return ADA_NOT_RENAMING;
3955 switch (info[5])
3956 {
3957 case '_':
3958 kind = ADA_OBJECT_RENAMING;
3959 info += 6;
3960 break;
3961 case 'E':
3962 kind = ADA_EXCEPTION_RENAMING;
3963 info += 7;
3964 break;
3965 case 'P':
3966 kind = ADA_PACKAGE_RENAMING;
3967 info += 7;
3968 break;
3969 case 'S':
3970 kind = ADA_SUBPROGRAM_RENAMING;
3971 info += 7;
3972 break;
3973 default:
3974 return ADA_NOT_RENAMING;
3975 }
3976 }
3977
3978 if (renamed_entity != NULL)
3979 *renamed_entity = info;
3980 suffix = strstr (info, "___XE");
3981 if (suffix == NULL || suffix == info)
3982 return ADA_NOT_RENAMING;
3983 if (len != NULL)
3984 *len = strlen (info) - strlen (suffix);
3985 suffix += 5;
3986 if (renaming_expr != NULL)
3987 *renaming_expr = suffix;
3988 return kind;
3989 }
3990
3991 /* Assuming TYPE encodes a renaming according to the old encoding in
3992 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3993 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3994 ADA_NOT_RENAMING otherwise. */
3995 static enum ada_renaming_category
3996 parse_old_style_renaming (struct type *type,
3997 const char **renamed_entity, int *len,
3998 const char **renaming_expr)
3999 {
4000 enum ada_renaming_category kind;
4001 const char *name;
4002 const char *info;
4003 const char *suffix;
4004
4005 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4006 || TYPE_NFIELDS (type) != 1)
4007 return ADA_NOT_RENAMING;
4008
4009 name = type_name_no_tag (type);
4010 if (name == NULL)
4011 return ADA_NOT_RENAMING;
4012
4013 name = strstr (name, "___XR");
4014 if (name == NULL)
4015 return ADA_NOT_RENAMING;
4016 switch (name[5])
4017 {
4018 case '\0':
4019 case '_':
4020 kind = ADA_OBJECT_RENAMING;
4021 break;
4022 case 'E':
4023 kind = ADA_EXCEPTION_RENAMING;
4024 break;
4025 case 'P':
4026 kind = ADA_PACKAGE_RENAMING;
4027 break;
4028 case 'S':
4029 kind = ADA_SUBPROGRAM_RENAMING;
4030 break;
4031 default:
4032 return ADA_NOT_RENAMING;
4033 }
4034
4035 info = TYPE_FIELD_NAME (type, 0);
4036 if (info == NULL)
4037 return ADA_NOT_RENAMING;
4038 if (renamed_entity != NULL)
4039 *renamed_entity = info;
4040 suffix = strstr (info, "___XE");
4041 if (renaming_expr != NULL)
4042 *renaming_expr = suffix + 5;
4043 if (suffix == NULL || suffix == info)
4044 return ADA_NOT_RENAMING;
4045 if (len != NULL)
4046 *len = suffix - info;
4047 return kind;
4048 }
4049
4050 /* Compute the value of the given RENAMING_SYM, which is expected to
4051 be a symbol encoding a renaming expression. BLOCK is the block
4052 used to evaluate the renaming. */
4053
4054 static struct value *
4055 ada_read_renaming_var_value (struct symbol *renaming_sym,
4056 struct block *block)
4057 {
4058 char *sym_name;
4059 struct expression *expr;
4060 struct value *value;
4061 struct cleanup *old_chain = NULL;
4062
4063 sym_name = xstrdup (SYMBOL_LINKAGE_NAME (renaming_sym));
4064 old_chain = make_cleanup (xfree, sym_name);
4065 expr = parse_exp_1 (&sym_name, 0, block, 0);
4066 make_cleanup (free_current_contents, &expr);
4067 value = evaluate_expression (expr);
4068
4069 do_cleanups (old_chain);
4070 return value;
4071 }
4072 \f
4073
4074 /* Evaluation: Function Calls */
4075
4076 /* Return an lvalue containing the value VAL. This is the identity on
4077 lvalues, and otherwise has the side-effect of allocating memory
4078 in the inferior where a copy of the value contents is copied. */
4079
4080 static struct value *
4081 ensure_lval (struct value *val)
4082 {
4083 if (VALUE_LVAL (val) == not_lval
4084 || VALUE_LVAL (val) == lval_internalvar)
4085 {
4086 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4087 const CORE_ADDR addr =
4088 value_as_long (value_allocate_space_in_inferior (len));
4089
4090 set_value_address (val, addr);
4091 VALUE_LVAL (val) = lval_memory;
4092 write_memory (addr, value_contents (val), len);
4093 }
4094
4095 return val;
4096 }
4097
4098 /* Return the value ACTUAL, converted to be an appropriate value for a
4099 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4100 allocating any necessary descriptors (fat pointers), or copies of
4101 values not residing in memory, updating it as needed. */
4102
4103 struct value *
4104 ada_convert_actual (struct value *actual, struct type *formal_type0)
4105 {
4106 struct type *actual_type = ada_check_typedef (value_type (actual));
4107 struct type *formal_type = ada_check_typedef (formal_type0);
4108 struct type *formal_target =
4109 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4110 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4111 struct type *actual_target =
4112 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4113 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4114
4115 if (ada_is_array_descriptor_type (formal_target)
4116 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4117 return make_array_descriptor (formal_type, actual);
4118 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4119 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4120 {
4121 struct value *result;
4122
4123 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4124 && ada_is_array_descriptor_type (actual_target))
4125 result = desc_data (actual);
4126 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4127 {
4128 if (VALUE_LVAL (actual) != lval_memory)
4129 {
4130 struct value *val;
4131
4132 actual_type = ada_check_typedef (value_type (actual));
4133 val = allocate_value (actual_type);
4134 memcpy ((char *) value_contents_raw (val),
4135 (char *) value_contents (actual),
4136 TYPE_LENGTH (actual_type));
4137 actual = ensure_lval (val);
4138 }
4139 result = value_addr (actual);
4140 }
4141 else
4142 return actual;
4143 return value_cast_pointers (formal_type, result, 0);
4144 }
4145 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4146 return ada_value_ind (actual);
4147
4148 return actual;
4149 }
4150
4151 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4152 type TYPE. This is usually an inefficient no-op except on some targets
4153 (such as AVR) where the representation of a pointer and an address
4154 differs. */
4155
4156 static CORE_ADDR
4157 value_pointer (struct value *value, struct type *type)
4158 {
4159 struct gdbarch *gdbarch = get_type_arch (type);
4160 unsigned len = TYPE_LENGTH (type);
4161 gdb_byte *buf = alloca (len);
4162 CORE_ADDR addr;
4163
4164 addr = value_address (value);
4165 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4166 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4167 return addr;
4168 }
4169
4170
4171 /* Push a descriptor of type TYPE for array value ARR on the stack at
4172 *SP, updating *SP to reflect the new descriptor. Return either
4173 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4174 to-descriptor type rather than a descriptor type), a struct value *
4175 representing a pointer to this descriptor. */
4176
4177 static struct value *
4178 make_array_descriptor (struct type *type, struct value *arr)
4179 {
4180 struct type *bounds_type = desc_bounds_type (type);
4181 struct type *desc_type = desc_base_type (type);
4182 struct value *descriptor = allocate_value (desc_type);
4183 struct value *bounds = allocate_value (bounds_type);
4184 int i;
4185
4186 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4187 i > 0; i -= 1)
4188 {
4189 modify_field (value_type (bounds), value_contents_writeable (bounds),
4190 ada_array_bound (arr, i, 0),
4191 desc_bound_bitpos (bounds_type, i, 0),
4192 desc_bound_bitsize (bounds_type, i, 0));
4193 modify_field (value_type (bounds), value_contents_writeable (bounds),
4194 ada_array_bound (arr, i, 1),
4195 desc_bound_bitpos (bounds_type, i, 1),
4196 desc_bound_bitsize (bounds_type, i, 1));
4197 }
4198
4199 bounds = ensure_lval (bounds);
4200
4201 modify_field (value_type (descriptor),
4202 value_contents_writeable (descriptor),
4203 value_pointer (ensure_lval (arr),
4204 TYPE_FIELD_TYPE (desc_type, 0)),
4205 fat_pntr_data_bitpos (desc_type),
4206 fat_pntr_data_bitsize (desc_type));
4207
4208 modify_field (value_type (descriptor),
4209 value_contents_writeable (descriptor),
4210 value_pointer (bounds,
4211 TYPE_FIELD_TYPE (desc_type, 1)),
4212 fat_pntr_bounds_bitpos (desc_type),
4213 fat_pntr_bounds_bitsize (desc_type));
4214
4215 descriptor = ensure_lval (descriptor);
4216
4217 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4218 return value_addr (descriptor);
4219 else
4220 return descriptor;
4221 }
4222 \f
4223 /* Dummy definitions for an experimental caching module that is not
4224 * used in the public sources. */
4225
4226 static int
4227 lookup_cached_symbol (const char *name, domain_enum namespace,
4228 struct symbol **sym, struct block **block)
4229 {
4230 return 0;
4231 }
4232
4233 static void
4234 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
4235 const struct block *block)
4236 {
4237 }
4238 \f
4239 /* Symbol Lookup */
4240
4241 /* Return nonzero if wild matching should be used when searching for
4242 all symbols matching LOOKUP_NAME.
4243
4244 LOOKUP_NAME is expected to be a symbol name after transformation
4245 for Ada lookups (see ada_name_for_lookup). */
4246
4247 static int
4248 should_use_wild_match (const char *lookup_name)
4249 {
4250 return (strstr (lookup_name, "__") == NULL);
4251 }
4252
4253 /* Return the result of a standard (literal, C-like) lookup of NAME in
4254 given DOMAIN, visible from lexical block BLOCK. */
4255
4256 static struct symbol *
4257 standard_lookup (const char *name, const struct block *block,
4258 domain_enum domain)
4259 {
4260 /* Initialize it just to avoid a GCC false warning. */
4261 struct symbol *sym = NULL;
4262
4263 if (lookup_cached_symbol (name, domain, &sym, NULL))
4264 return sym;
4265 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4266 cache_symbol (name, domain, sym, block_found);
4267 return sym;
4268 }
4269
4270
4271 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4272 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4273 since they contend in overloading in the same way. */
4274 static int
4275 is_nonfunction (struct ada_symbol_info syms[], int n)
4276 {
4277 int i;
4278
4279 for (i = 0; i < n; i += 1)
4280 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4281 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4282 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
4283 return 1;
4284
4285 return 0;
4286 }
4287
4288 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4289 struct types. Otherwise, they may not. */
4290
4291 static int
4292 equiv_types (struct type *type0, struct type *type1)
4293 {
4294 if (type0 == type1)
4295 return 1;
4296 if (type0 == NULL || type1 == NULL
4297 || TYPE_CODE (type0) != TYPE_CODE (type1))
4298 return 0;
4299 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4300 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4301 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4302 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4303 return 1;
4304
4305 return 0;
4306 }
4307
4308 /* True iff SYM0 represents the same entity as SYM1, or one that is
4309 no more defined than that of SYM1. */
4310
4311 static int
4312 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4313 {
4314 if (sym0 == sym1)
4315 return 1;
4316 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4317 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4318 return 0;
4319
4320 switch (SYMBOL_CLASS (sym0))
4321 {
4322 case LOC_UNDEF:
4323 return 1;
4324 case LOC_TYPEDEF:
4325 {
4326 struct type *type0 = SYMBOL_TYPE (sym0);
4327 struct type *type1 = SYMBOL_TYPE (sym1);
4328 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4329 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4330 int len0 = strlen (name0);
4331
4332 return
4333 TYPE_CODE (type0) == TYPE_CODE (type1)
4334 && (equiv_types (type0, type1)
4335 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4336 && strncmp (name1 + len0, "___XV", 5) == 0));
4337 }
4338 case LOC_CONST:
4339 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4340 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4341 default:
4342 return 0;
4343 }
4344 }
4345
4346 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4347 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4348
4349 static void
4350 add_defn_to_vec (struct obstack *obstackp,
4351 struct symbol *sym,
4352 struct block *block)
4353 {
4354 int i;
4355 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4356
4357 /* Do not try to complete stub types, as the debugger is probably
4358 already scanning all symbols matching a certain name at the
4359 time when this function is called. Trying to replace the stub
4360 type by its associated full type will cause us to restart a scan
4361 which may lead to an infinite recursion. Instead, the client
4362 collecting the matching symbols will end up collecting several
4363 matches, with at least one of them complete. It can then filter
4364 out the stub ones if needed. */
4365
4366 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4367 {
4368 if (lesseq_defined_than (sym, prevDefns[i].sym))
4369 return;
4370 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4371 {
4372 prevDefns[i].sym = sym;
4373 prevDefns[i].block = block;
4374 return;
4375 }
4376 }
4377
4378 {
4379 struct ada_symbol_info info;
4380
4381 info.sym = sym;
4382 info.block = block;
4383 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4384 }
4385 }
4386
4387 /* Number of ada_symbol_info structures currently collected in
4388 current vector in *OBSTACKP. */
4389
4390 static int
4391 num_defns_collected (struct obstack *obstackp)
4392 {
4393 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4394 }
4395
4396 /* Vector of ada_symbol_info structures currently collected in current
4397 vector in *OBSTACKP. If FINISH, close off the vector and return
4398 its final address. */
4399
4400 static struct ada_symbol_info *
4401 defns_collected (struct obstack *obstackp, int finish)
4402 {
4403 if (finish)
4404 return obstack_finish (obstackp);
4405 else
4406 return (struct ada_symbol_info *) obstack_base (obstackp);
4407 }
4408
4409 /* Return a minimal symbol matching NAME according to Ada decoding
4410 rules. Returns NULL if there is no such minimal symbol. Names
4411 prefixed with "standard__" are handled specially: "standard__" is
4412 first stripped off, and only static and global symbols are searched. */
4413
4414 struct minimal_symbol *
4415 ada_lookup_simple_minsym (const char *name)
4416 {
4417 struct objfile *objfile;
4418 struct minimal_symbol *msymbol;
4419 const int wild_match_p = should_use_wild_match (name);
4420
4421 /* Special case: If the user specifies a symbol name inside package
4422 Standard, do a non-wild matching of the symbol name without
4423 the "standard__" prefix. This was primarily introduced in order
4424 to allow the user to specifically access the standard exceptions
4425 using, for instance, Standard.Constraint_Error when Constraint_Error
4426 is ambiguous (due to the user defining its own Constraint_Error
4427 entity inside its program). */
4428 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4429 name += sizeof ("standard__") - 1;
4430
4431 ALL_MSYMBOLS (objfile, msymbol)
4432 {
4433 if (match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
4434 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4435 return msymbol;
4436 }
4437
4438 return NULL;
4439 }
4440
4441 /* For all subprograms that statically enclose the subprogram of the
4442 selected frame, add symbols matching identifier NAME in DOMAIN
4443 and their blocks to the list of data in OBSTACKP, as for
4444 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4445 with a wildcard prefix. */
4446
4447 static void
4448 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4449 const char *name, domain_enum namespace,
4450 int wild_match_p)
4451 {
4452 }
4453
4454 /* True if TYPE is definitely an artificial type supplied to a symbol
4455 for which no debugging information was given in the symbol file. */
4456
4457 static int
4458 is_nondebugging_type (struct type *type)
4459 {
4460 const char *name = ada_type_name (type);
4461
4462 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4463 }
4464
4465 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4466 that are deemed "identical" for practical purposes.
4467
4468 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4469 types and that their number of enumerals is identical (in other
4470 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4471
4472 static int
4473 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4474 {
4475 int i;
4476
4477 /* The heuristic we use here is fairly conservative. We consider
4478 that 2 enumerate types are identical if they have the same
4479 number of enumerals and that all enumerals have the same
4480 underlying value and name. */
4481
4482 /* All enums in the type should have an identical underlying value. */
4483 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4484 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
4485 return 0;
4486
4487 /* All enumerals should also have the same name (modulo any numerical
4488 suffix). */
4489 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4490 {
4491 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4492 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4493 int len_1 = strlen (name_1);
4494 int len_2 = strlen (name_2);
4495
4496 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4497 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4498 if (len_1 != len_2
4499 || strncmp (TYPE_FIELD_NAME (type1, i),
4500 TYPE_FIELD_NAME (type2, i),
4501 len_1) != 0)
4502 return 0;
4503 }
4504
4505 return 1;
4506 }
4507
4508 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4509 that are deemed "identical" for practical purposes. Sometimes,
4510 enumerals are not strictly identical, but their types are so similar
4511 that they can be considered identical.
4512
4513 For instance, consider the following code:
4514
4515 type Color is (Black, Red, Green, Blue, White);
4516 type RGB_Color is new Color range Red .. Blue;
4517
4518 Type RGB_Color is a subrange of an implicit type which is a copy
4519 of type Color. If we call that implicit type RGB_ColorB ("B" is
4520 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4521 As a result, when an expression references any of the enumeral
4522 by name (Eg. "print green"), the expression is technically
4523 ambiguous and the user should be asked to disambiguate. But
4524 doing so would only hinder the user, since it wouldn't matter
4525 what choice he makes, the outcome would always be the same.
4526 So, for practical purposes, we consider them as the same. */
4527
4528 static int
4529 symbols_are_identical_enums (struct ada_symbol_info *syms, int nsyms)
4530 {
4531 int i;
4532
4533 /* Before performing a thorough comparison check of each type,
4534 we perform a series of inexpensive checks. We expect that these
4535 checks will quickly fail in the vast majority of cases, and thus
4536 help prevent the unnecessary use of a more expensive comparison.
4537 Said comparison also expects us to make some of these checks
4538 (see ada_identical_enum_types_p). */
4539
4540 /* Quick check: All symbols should have an enum type. */
4541 for (i = 0; i < nsyms; i++)
4542 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM)
4543 return 0;
4544
4545 /* Quick check: They should all have the same value. */
4546 for (i = 1; i < nsyms; i++)
4547 if (SYMBOL_VALUE (syms[i].sym) != SYMBOL_VALUE (syms[0].sym))
4548 return 0;
4549
4550 /* Quick check: They should all have the same number of enumerals. */
4551 for (i = 1; i < nsyms; i++)
4552 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].sym))
4553 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].sym)))
4554 return 0;
4555
4556 /* All the sanity checks passed, so we might have a set of
4557 identical enumeration types. Perform a more complete
4558 comparison of the type of each symbol. */
4559 for (i = 1; i < nsyms; i++)
4560 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].sym),
4561 SYMBOL_TYPE (syms[0].sym)))
4562 return 0;
4563
4564 return 1;
4565 }
4566
4567 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4568 duplicate other symbols in the list (The only case I know of where
4569 this happens is when object files containing stabs-in-ecoff are
4570 linked with files containing ordinary ecoff debugging symbols (or no
4571 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4572 Returns the number of items in the modified list. */
4573
4574 static int
4575 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4576 {
4577 int i, j;
4578
4579 /* We should never be called with less than 2 symbols, as there
4580 cannot be any extra symbol in that case. But it's easy to
4581 handle, since we have nothing to do in that case. */
4582 if (nsyms < 2)
4583 return nsyms;
4584
4585 i = 0;
4586 while (i < nsyms)
4587 {
4588 int remove_p = 0;
4589
4590 /* If two symbols have the same name and one of them is a stub type,
4591 the get rid of the stub. */
4592
4593 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4594 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4595 {
4596 for (j = 0; j < nsyms; j++)
4597 {
4598 if (j != i
4599 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4600 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4601 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4602 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4603 remove_p = 1;
4604 }
4605 }
4606
4607 /* Two symbols with the same name, same class and same address
4608 should be identical. */
4609
4610 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4611 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4612 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4613 {
4614 for (j = 0; j < nsyms; j += 1)
4615 {
4616 if (i != j
4617 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4618 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4619 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4620 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4621 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4622 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4623 remove_p = 1;
4624 }
4625 }
4626
4627 if (remove_p)
4628 {
4629 for (j = i + 1; j < nsyms; j += 1)
4630 syms[j - 1] = syms[j];
4631 nsyms -= 1;
4632 }
4633
4634 i += 1;
4635 }
4636
4637 /* If all the remaining symbols are identical enumerals, then
4638 just keep the first one and discard the rest.
4639
4640 Unlike what we did previously, we do not discard any entry
4641 unless they are ALL identical. This is because the symbol
4642 comparison is not a strict comparison, but rather a practical
4643 comparison. If all symbols are considered identical, then
4644 we can just go ahead and use the first one and discard the rest.
4645 But if we cannot reduce the list to a single element, we have
4646 to ask the user to disambiguate anyways. And if we have to
4647 present a multiple-choice menu, it's less confusing if the list
4648 isn't missing some choices that were identical and yet distinct. */
4649 if (symbols_are_identical_enums (syms, nsyms))
4650 nsyms = 1;
4651
4652 return nsyms;
4653 }
4654
4655 /* Given a type that corresponds to a renaming entity, use the type name
4656 to extract the scope (package name or function name, fully qualified,
4657 and following the GNAT encoding convention) where this renaming has been
4658 defined. The string returned needs to be deallocated after use. */
4659
4660 static char *
4661 xget_renaming_scope (struct type *renaming_type)
4662 {
4663 /* The renaming types adhere to the following convention:
4664 <scope>__<rename>___<XR extension>.
4665 So, to extract the scope, we search for the "___XR" extension,
4666 and then backtrack until we find the first "__". */
4667
4668 const char *name = type_name_no_tag (renaming_type);
4669 char *suffix = strstr (name, "___XR");
4670 char *last;
4671 int scope_len;
4672 char *scope;
4673
4674 /* Now, backtrack a bit until we find the first "__". Start looking
4675 at suffix - 3, as the <rename> part is at least one character long. */
4676
4677 for (last = suffix - 3; last > name; last--)
4678 if (last[0] == '_' && last[1] == '_')
4679 break;
4680
4681 /* Make a copy of scope and return it. */
4682
4683 scope_len = last - name;
4684 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4685
4686 strncpy (scope, name, scope_len);
4687 scope[scope_len] = '\0';
4688
4689 return scope;
4690 }
4691
4692 /* Return nonzero if NAME corresponds to a package name. */
4693
4694 static int
4695 is_package_name (const char *name)
4696 {
4697 /* Here, We take advantage of the fact that no symbols are generated
4698 for packages, while symbols are generated for each function.
4699 So the condition for NAME represent a package becomes equivalent
4700 to NAME not existing in our list of symbols. There is only one
4701 small complication with library-level functions (see below). */
4702
4703 char *fun_name;
4704
4705 /* If it is a function that has not been defined at library level,
4706 then we should be able to look it up in the symbols. */
4707 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4708 return 0;
4709
4710 /* Library-level function names start with "_ada_". See if function
4711 "_ada_" followed by NAME can be found. */
4712
4713 /* Do a quick check that NAME does not contain "__", since library-level
4714 functions names cannot contain "__" in them. */
4715 if (strstr (name, "__") != NULL)
4716 return 0;
4717
4718 fun_name = xstrprintf ("_ada_%s", name);
4719
4720 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4721 }
4722
4723 /* Return nonzero if SYM corresponds to a renaming entity that is
4724 not visible from FUNCTION_NAME. */
4725
4726 static int
4727 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
4728 {
4729 char *scope;
4730
4731 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4732 return 0;
4733
4734 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4735
4736 make_cleanup (xfree, scope);
4737
4738 /* If the rename has been defined in a package, then it is visible. */
4739 if (is_package_name (scope))
4740 return 0;
4741
4742 /* Check that the rename is in the current function scope by checking
4743 that its name starts with SCOPE. */
4744
4745 /* If the function name starts with "_ada_", it means that it is
4746 a library-level function. Strip this prefix before doing the
4747 comparison, as the encoding for the renaming does not contain
4748 this prefix. */
4749 if (strncmp (function_name, "_ada_", 5) == 0)
4750 function_name += 5;
4751
4752 return (strncmp (function_name, scope, strlen (scope)) != 0);
4753 }
4754
4755 /* Remove entries from SYMS that corresponds to a renaming entity that
4756 is not visible from the function associated with CURRENT_BLOCK or
4757 that is superfluous due to the presence of more specific renaming
4758 information. Places surviving symbols in the initial entries of
4759 SYMS and returns the number of surviving symbols.
4760
4761 Rationale:
4762 First, in cases where an object renaming is implemented as a
4763 reference variable, GNAT may produce both the actual reference
4764 variable and the renaming encoding. In this case, we discard the
4765 latter.
4766
4767 Second, GNAT emits a type following a specified encoding for each renaming
4768 entity. Unfortunately, STABS currently does not support the definition
4769 of types that are local to a given lexical block, so all renamings types
4770 are emitted at library level. As a consequence, if an application
4771 contains two renaming entities using the same name, and a user tries to
4772 print the value of one of these entities, the result of the ada symbol
4773 lookup will also contain the wrong renaming type.
4774
4775 This function partially covers for this limitation by attempting to
4776 remove from the SYMS list renaming symbols that should be visible
4777 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4778 method with the current information available. The implementation
4779 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4780
4781 - When the user tries to print a rename in a function while there
4782 is another rename entity defined in a package: Normally, the
4783 rename in the function has precedence over the rename in the
4784 package, so the latter should be removed from the list. This is
4785 currently not the case.
4786
4787 - This function will incorrectly remove valid renames if
4788 the CURRENT_BLOCK corresponds to a function which symbol name
4789 has been changed by an "Export" pragma. As a consequence,
4790 the user will be unable to print such rename entities. */
4791
4792 static int
4793 remove_irrelevant_renamings (struct ada_symbol_info *syms,
4794 int nsyms, const struct block *current_block)
4795 {
4796 struct symbol *current_function;
4797 const char *current_function_name;
4798 int i;
4799 int is_new_style_renaming;
4800
4801 /* If there is both a renaming foo___XR... encoded as a variable and
4802 a simple variable foo in the same block, discard the latter.
4803 First, zero out such symbols, then compress. */
4804 is_new_style_renaming = 0;
4805 for (i = 0; i < nsyms; i += 1)
4806 {
4807 struct symbol *sym = syms[i].sym;
4808 const struct block *block = syms[i].block;
4809 const char *name;
4810 const char *suffix;
4811
4812 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4813 continue;
4814 name = SYMBOL_LINKAGE_NAME (sym);
4815 suffix = strstr (name, "___XR");
4816
4817 if (suffix != NULL)
4818 {
4819 int name_len = suffix - name;
4820 int j;
4821
4822 is_new_style_renaming = 1;
4823 for (j = 0; j < nsyms; j += 1)
4824 if (i != j && syms[j].sym != NULL
4825 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4826 name_len) == 0
4827 && block == syms[j].block)
4828 syms[j].sym = NULL;
4829 }
4830 }
4831 if (is_new_style_renaming)
4832 {
4833 int j, k;
4834
4835 for (j = k = 0; j < nsyms; j += 1)
4836 if (syms[j].sym != NULL)
4837 {
4838 syms[k] = syms[j];
4839 k += 1;
4840 }
4841 return k;
4842 }
4843
4844 /* Extract the function name associated to CURRENT_BLOCK.
4845 Abort if unable to do so. */
4846
4847 if (current_block == NULL)
4848 return nsyms;
4849
4850 current_function = block_linkage_function (current_block);
4851 if (current_function == NULL)
4852 return nsyms;
4853
4854 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4855 if (current_function_name == NULL)
4856 return nsyms;
4857
4858 /* Check each of the symbols, and remove it from the list if it is
4859 a type corresponding to a renaming that is out of the scope of
4860 the current block. */
4861
4862 i = 0;
4863 while (i < nsyms)
4864 {
4865 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4866 == ADA_OBJECT_RENAMING
4867 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4868 {
4869 int j;
4870
4871 for (j = i + 1; j < nsyms; j += 1)
4872 syms[j - 1] = syms[j];
4873 nsyms -= 1;
4874 }
4875 else
4876 i += 1;
4877 }
4878
4879 return nsyms;
4880 }
4881
4882 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4883 whose name and domain match NAME and DOMAIN respectively.
4884 If no match was found, then extend the search to "enclosing"
4885 routines (in other words, if we're inside a nested function,
4886 search the symbols defined inside the enclosing functions).
4887 If WILD_MATCH_P is nonzero, perform the naming matching in
4888 "wild" mode (see function "wild_match" for more info).
4889
4890 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4891
4892 static void
4893 ada_add_local_symbols (struct obstack *obstackp, const char *name,
4894 struct block *block, domain_enum domain,
4895 int wild_match_p)
4896 {
4897 int block_depth = 0;
4898
4899 while (block != NULL)
4900 {
4901 block_depth += 1;
4902 ada_add_block_symbols (obstackp, block, name, domain, NULL,
4903 wild_match_p);
4904
4905 /* If we found a non-function match, assume that's the one. */
4906 if (is_nonfunction (defns_collected (obstackp, 0),
4907 num_defns_collected (obstackp)))
4908 return;
4909
4910 block = BLOCK_SUPERBLOCK (block);
4911 }
4912
4913 /* If no luck so far, try to find NAME as a local symbol in some lexically
4914 enclosing subprogram. */
4915 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4916 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
4917 }
4918
4919 /* An object of this type is used as the user_data argument when
4920 calling the map_matching_symbols method. */
4921
4922 struct match_data
4923 {
4924 struct objfile *objfile;
4925 struct obstack *obstackp;
4926 struct symbol *arg_sym;
4927 int found_sym;
4928 };
4929
4930 /* A callback for add_matching_symbols that adds SYM, found in BLOCK,
4931 to a list of symbols. DATA0 is a pointer to a struct match_data *
4932 containing the obstack that collects the symbol list, the file that SYM
4933 must come from, a flag indicating whether a non-argument symbol has
4934 been found in the current block, and the last argument symbol
4935 passed in SYM within the current block (if any). When SYM is null,
4936 marking the end of a block, the argument symbol is added if no
4937 other has been found. */
4938
4939 static int
4940 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
4941 {
4942 struct match_data *data = (struct match_data *) data0;
4943
4944 if (sym == NULL)
4945 {
4946 if (!data->found_sym && data->arg_sym != NULL)
4947 add_defn_to_vec (data->obstackp,
4948 fixup_symbol_section (data->arg_sym, data->objfile),
4949 block);
4950 data->found_sym = 0;
4951 data->arg_sym = NULL;
4952 }
4953 else
4954 {
4955 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4956 return 0;
4957 else if (SYMBOL_IS_ARGUMENT (sym))
4958 data->arg_sym = sym;
4959 else
4960 {
4961 data->found_sym = 1;
4962 add_defn_to_vec (data->obstackp,
4963 fixup_symbol_section (sym, data->objfile),
4964 block);
4965 }
4966 }
4967 return 0;
4968 }
4969
4970 /* Compare STRING1 to STRING2, with results as for strcmp.
4971 Compatible with strcmp_iw in that strcmp_iw (STRING1, STRING2) <= 0
4972 implies compare_names (STRING1, STRING2) (they may differ as to
4973 what symbols compare equal). */
4974
4975 static int
4976 compare_names (const char *string1, const char *string2)
4977 {
4978 while (*string1 != '\0' && *string2 != '\0')
4979 {
4980 if (isspace (*string1) || isspace (*string2))
4981 return strcmp_iw_ordered (string1, string2);
4982 if (*string1 != *string2)
4983 break;
4984 string1 += 1;
4985 string2 += 1;
4986 }
4987 switch (*string1)
4988 {
4989 case '(':
4990 return strcmp_iw_ordered (string1, string2);
4991 case '_':
4992 if (*string2 == '\0')
4993 {
4994 if (is_name_suffix (string1))
4995 return 0;
4996 else
4997 return 1;
4998 }
4999 /* FALLTHROUGH */
5000 default:
5001 if (*string2 == '(')
5002 return strcmp_iw_ordered (string1, string2);
5003 else
5004 return *string1 - *string2;
5005 }
5006 }
5007
5008 /* Add to OBSTACKP all non-local symbols whose name and domain match
5009 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5010 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5011
5012 static void
5013 add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5014 domain_enum domain, int global,
5015 int is_wild_match)
5016 {
5017 struct objfile *objfile;
5018 struct match_data data;
5019
5020 memset (&data, 0, sizeof data);
5021 data.obstackp = obstackp;
5022
5023 ALL_OBJFILES (objfile)
5024 {
5025 data.objfile = objfile;
5026
5027 if (is_wild_match)
5028 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
5029 aux_add_nonlocal_symbols, &data,
5030 wild_match, NULL);
5031 else
5032 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
5033 aux_add_nonlocal_symbols, &data,
5034 full_match, compare_names);
5035 }
5036
5037 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5038 {
5039 ALL_OBJFILES (objfile)
5040 {
5041 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
5042 strcpy (name1, "_ada_");
5043 strcpy (name1 + sizeof ("_ada_") - 1, name);
5044 data.objfile = objfile;
5045 objfile->sf->qf->map_matching_symbols (name1, domain,
5046 objfile, global,
5047 aux_add_nonlocal_symbols,
5048 &data,
5049 full_match, compare_names);
5050 }
5051 }
5052 }
5053
5054 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
5055 scope and in global scopes, returning the number of matches.
5056 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
5057 indicating the symbols found and the blocks and symbol tables (if
5058 any) in which they were found. This vector are transient---good only to
5059 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
5060 symbol match within the nest of blocks whose innermost member is BLOCK0,
5061 is the one match returned (no other matches in that or
5062 enclosing blocks is returned). If there are any matches in or
5063 surrounding BLOCK0, then these alone are returned. Otherwise, if
5064 FULL_SEARCH is non-zero, then the search extends to global and
5065 file-scope (static) symbol tables.
5066 Names prefixed with "standard__" are handled specially: "standard__"
5067 is first stripped off, and only static and global symbols are searched. */
5068
5069 int
5070 ada_lookup_symbol_list (const char *name0, const struct block *block0,
5071 domain_enum namespace,
5072 struct ada_symbol_info **results,
5073 int full_search)
5074 {
5075 struct symbol *sym;
5076 struct block *block;
5077 const char *name;
5078 const int wild_match_p = should_use_wild_match (name0);
5079 int cacheIfUnique;
5080 int ndefns;
5081
5082 obstack_free (&symbol_list_obstack, NULL);
5083 obstack_init (&symbol_list_obstack);
5084
5085 cacheIfUnique = 0;
5086
5087 /* Search specified block and its superiors. */
5088
5089 name = name0;
5090 block = (struct block *) block0; /* FIXME: No cast ought to be
5091 needed, but adding const will
5092 have a cascade effect. */
5093
5094 /* Special case: If the user specifies a symbol name inside package
5095 Standard, do a non-wild matching of the symbol name without
5096 the "standard__" prefix. This was primarily introduced in order
5097 to allow the user to specifically access the standard exceptions
5098 using, for instance, Standard.Constraint_Error when Constraint_Error
5099 is ambiguous (due to the user defining its own Constraint_Error
5100 entity inside its program). */
5101 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
5102 {
5103 block = NULL;
5104 name = name0 + sizeof ("standard__") - 1;
5105 }
5106
5107 /* Check the non-global symbols. If we have ANY match, then we're done. */
5108
5109 ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
5110 wild_match_p);
5111 if (num_defns_collected (&symbol_list_obstack) > 0 || !full_search)
5112 goto done;
5113
5114 /* No non-global symbols found. Check our cache to see if we have
5115 already performed this search before. If we have, then return
5116 the same result. */
5117
5118 cacheIfUnique = 1;
5119 if (lookup_cached_symbol (name0, namespace, &sym, &block))
5120 {
5121 if (sym != NULL)
5122 add_defn_to_vec (&symbol_list_obstack, sym, block);
5123 goto done;
5124 }
5125
5126 /* Search symbols from all global blocks. */
5127
5128 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
5129 wild_match_p);
5130
5131 /* Now add symbols from all per-file blocks if we've gotten no hits
5132 (not strictly correct, but perhaps better than an error). */
5133
5134 if (num_defns_collected (&symbol_list_obstack) == 0)
5135 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
5136 wild_match_p);
5137
5138 done:
5139 ndefns = num_defns_collected (&symbol_list_obstack);
5140 *results = defns_collected (&symbol_list_obstack, 1);
5141
5142 ndefns = remove_extra_symbols (*results, ndefns);
5143
5144 if (ndefns == 0 && full_search)
5145 cache_symbol (name0, namespace, NULL, NULL);
5146
5147 if (ndefns == 1 && full_search && cacheIfUnique)
5148 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
5149
5150 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
5151
5152 return ndefns;
5153 }
5154
5155 /* If NAME is the name of an entity, return a string that should
5156 be used to look that entity up in Ada units. This string should
5157 be deallocated after use using xfree.
5158
5159 NAME can have any form that the "break" or "print" commands might
5160 recognize. In other words, it does not have to be the "natural"
5161 name, or the "encoded" name. */
5162
5163 char *
5164 ada_name_for_lookup (const char *name)
5165 {
5166 char *canon;
5167 int nlen = strlen (name);
5168
5169 if (name[0] == '<' && name[nlen - 1] == '>')
5170 {
5171 canon = xmalloc (nlen - 1);
5172 memcpy (canon, name + 1, nlen - 2);
5173 canon[nlen - 2] = '\0';
5174 }
5175 else
5176 canon = xstrdup (ada_encode (ada_fold_name (name)));
5177 return canon;
5178 }
5179
5180 /* Implementation of the la_iterate_over_symbols method. */
5181
5182 static void
5183 ada_iterate_over_symbols (const struct block *block,
5184 const char *name, domain_enum domain,
5185 symbol_found_callback_ftype *callback,
5186 void *data)
5187 {
5188 int ndefs, i;
5189 struct ada_symbol_info *results;
5190
5191 ndefs = ada_lookup_symbol_list (name, block, domain, &results, 0);
5192 for (i = 0; i < ndefs; ++i)
5193 {
5194 if (! (*callback) (results[i].sym, data))
5195 break;
5196 }
5197 }
5198
5199 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5200 to 1, but choosing the first symbol found if there are multiple
5201 choices.
5202
5203 The result is stored in *INFO, which must be non-NULL.
5204 If no match is found, INFO->SYM is set to NULL. */
5205
5206 void
5207 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5208 domain_enum namespace,
5209 struct ada_symbol_info *info)
5210 {
5211 struct ada_symbol_info *candidates;
5212 int n_candidates;
5213
5214 gdb_assert (info != NULL);
5215 memset (info, 0, sizeof (struct ada_symbol_info));
5216
5217 n_candidates = ada_lookup_symbol_list (name, block, namespace, &candidates,
5218 1);
5219
5220 if (n_candidates == 0)
5221 return;
5222
5223 *info = candidates[0];
5224 info->sym = fixup_symbol_section (info->sym, NULL);
5225 }
5226
5227 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5228 scope and in global scopes, or NULL if none. NAME is folded and
5229 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5230 choosing the first symbol if there are multiple choices.
5231 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5232
5233 struct symbol *
5234 ada_lookup_symbol (const char *name, const struct block *block0,
5235 domain_enum namespace, int *is_a_field_of_this)
5236 {
5237 struct ada_symbol_info info;
5238
5239 if (is_a_field_of_this != NULL)
5240 *is_a_field_of_this = 0;
5241
5242 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5243 block0, namespace, &info);
5244 return info.sym;
5245 }
5246
5247 static struct symbol *
5248 ada_lookup_symbol_nonlocal (const char *name,
5249 const struct block *block,
5250 const domain_enum domain)
5251 {
5252 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5253 }
5254
5255
5256 /* True iff STR is a possible encoded suffix of a normal Ada name
5257 that is to be ignored for matching purposes. Suffixes of parallel
5258 names (e.g., XVE) are not included here. Currently, the possible suffixes
5259 are given by any of the regular expressions:
5260
5261 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5262 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5263 TKB [subprogram suffix for task bodies]
5264 _E[0-9]+[bs]$ [protected object entry suffixes]
5265 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5266
5267 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5268 match is performed. This sequence is used to differentiate homonyms,
5269 is an optional part of a valid name suffix. */
5270
5271 static int
5272 is_name_suffix (const char *str)
5273 {
5274 int k;
5275 const char *matching;
5276 const int len = strlen (str);
5277
5278 /* Skip optional leading __[0-9]+. */
5279
5280 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5281 {
5282 str += 3;
5283 while (isdigit (str[0]))
5284 str += 1;
5285 }
5286
5287 /* [.$][0-9]+ */
5288
5289 if (str[0] == '.' || str[0] == '$')
5290 {
5291 matching = str + 1;
5292 while (isdigit (matching[0]))
5293 matching += 1;
5294 if (matching[0] == '\0')
5295 return 1;
5296 }
5297
5298 /* ___[0-9]+ */
5299
5300 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5301 {
5302 matching = str + 3;
5303 while (isdigit (matching[0]))
5304 matching += 1;
5305 if (matching[0] == '\0')
5306 return 1;
5307 }
5308
5309 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5310
5311 if (strcmp (str, "TKB") == 0)
5312 return 1;
5313
5314 #if 0
5315 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5316 with a N at the end. Unfortunately, the compiler uses the same
5317 convention for other internal types it creates. So treating
5318 all entity names that end with an "N" as a name suffix causes
5319 some regressions. For instance, consider the case of an enumerated
5320 type. To support the 'Image attribute, it creates an array whose
5321 name ends with N.
5322 Having a single character like this as a suffix carrying some
5323 information is a bit risky. Perhaps we should change the encoding
5324 to be something like "_N" instead. In the meantime, do not do
5325 the following check. */
5326 /* Protected Object Subprograms */
5327 if (len == 1 && str [0] == 'N')
5328 return 1;
5329 #endif
5330
5331 /* _E[0-9]+[bs]$ */
5332 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5333 {
5334 matching = str + 3;
5335 while (isdigit (matching[0]))
5336 matching += 1;
5337 if ((matching[0] == 'b' || matching[0] == 's')
5338 && matching [1] == '\0')
5339 return 1;
5340 }
5341
5342 /* ??? We should not modify STR directly, as we are doing below. This
5343 is fine in this case, but may become problematic later if we find
5344 that this alternative did not work, and want to try matching
5345 another one from the begining of STR. Since we modified it, we
5346 won't be able to find the begining of the string anymore! */
5347 if (str[0] == 'X')
5348 {
5349 str += 1;
5350 while (str[0] != '_' && str[0] != '\0')
5351 {
5352 if (str[0] != 'n' && str[0] != 'b')
5353 return 0;
5354 str += 1;
5355 }
5356 }
5357
5358 if (str[0] == '\000')
5359 return 1;
5360
5361 if (str[0] == '_')
5362 {
5363 if (str[1] != '_' || str[2] == '\000')
5364 return 0;
5365 if (str[2] == '_')
5366 {
5367 if (strcmp (str + 3, "JM") == 0)
5368 return 1;
5369 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5370 the LJM suffix in favor of the JM one. But we will
5371 still accept LJM as a valid suffix for a reasonable
5372 amount of time, just to allow ourselves to debug programs
5373 compiled using an older version of GNAT. */
5374 if (strcmp (str + 3, "LJM") == 0)
5375 return 1;
5376 if (str[3] != 'X')
5377 return 0;
5378 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5379 || str[4] == 'U' || str[4] == 'P')
5380 return 1;
5381 if (str[4] == 'R' && str[5] != 'T')
5382 return 1;
5383 return 0;
5384 }
5385 if (!isdigit (str[2]))
5386 return 0;
5387 for (k = 3; str[k] != '\0'; k += 1)
5388 if (!isdigit (str[k]) && str[k] != '_')
5389 return 0;
5390 return 1;
5391 }
5392 if (str[0] == '$' && isdigit (str[1]))
5393 {
5394 for (k = 2; str[k] != '\0'; k += 1)
5395 if (!isdigit (str[k]) && str[k] != '_')
5396 return 0;
5397 return 1;
5398 }
5399 return 0;
5400 }
5401
5402 /* Return non-zero if the string starting at NAME and ending before
5403 NAME_END contains no capital letters. */
5404
5405 static int
5406 is_valid_name_for_wild_match (const char *name0)
5407 {
5408 const char *decoded_name = ada_decode (name0);
5409 int i;
5410
5411 /* If the decoded name starts with an angle bracket, it means that
5412 NAME0 does not follow the GNAT encoding format. It should then
5413 not be allowed as a possible wild match. */
5414 if (decoded_name[0] == '<')
5415 return 0;
5416
5417 for (i=0; decoded_name[i] != '\0'; i++)
5418 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5419 return 0;
5420
5421 return 1;
5422 }
5423
5424 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5425 that could start a simple name. Assumes that *NAMEP points into
5426 the string beginning at NAME0. */
5427
5428 static int
5429 advance_wild_match (const char **namep, const char *name0, int target0)
5430 {
5431 const char *name = *namep;
5432
5433 while (1)
5434 {
5435 int t0, t1;
5436
5437 t0 = *name;
5438 if (t0 == '_')
5439 {
5440 t1 = name[1];
5441 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5442 {
5443 name += 1;
5444 if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5445 break;
5446 else
5447 name += 1;
5448 }
5449 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5450 || name[2] == target0))
5451 {
5452 name += 2;
5453 break;
5454 }
5455 else
5456 return 0;
5457 }
5458 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5459 name += 1;
5460 else
5461 return 0;
5462 }
5463
5464 *namep = name;
5465 return 1;
5466 }
5467
5468 /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5469 informational suffixes of NAME (i.e., for which is_name_suffix is
5470 true). Assumes that PATN is a lower-cased Ada simple name. */
5471
5472 static int
5473 wild_match (const char *name, const char *patn)
5474 {
5475 const char *p;
5476 const char *name0 = name;
5477
5478 while (1)
5479 {
5480 const char *match = name;
5481
5482 if (*name == *patn)
5483 {
5484 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5485 if (*p != *name)
5486 break;
5487 if (*p == '\0' && is_name_suffix (name))
5488 return match != name0 && !is_valid_name_for_wild_match (name0);
5489
5490 if (name[-1] == '_')
5491 name -= 1;
5492 }
5493 if (!advance_wild_match (&name, name0, *patn))
5494 return 1;
5495 }
5496 }
5497
5498 /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5499 informational suffix. */
5500
5501 static int
5502 full_match (const char *sym_name, const char *search_name)
5503 {
5504 return !match_name (sym_name, search_name, 0);
5505 }
5506
5507
5508 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5509 vector *defn_symbols, updating the list of symbols in OBSTACKP
5510 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5511 OBJFILE is the section containing BLOCK.
5512 SYMTAB is recorded with each symbol added. */
5513
5514 static void
5515 ada_add_block_symbols (struct obstack *obstackp,
5516 struct block *block, const char *name,
5517 domain_enum domain, struct objfile *objfile,
5518 int wild)
5519 {
5520 struct block_iterator iter;
5521 int name_len = strlen (name);
5522 /* A matching argument symbol, if any. */
5523 struct symbol *arg_sym;
5524 /* Set true when we find a matching non-argument symbol. */
5525 int found_sym;
5526 struct symbol *sym;
5527
5528 arg_sym = NULL;
5529 found_sym = 0;
5530 if (wild)
5531 {
5532 for (sym = block_iter_match_first (block, name, wild_match, &iter);
5533 sym != NULL; sym = block_iter_match_next (name, wild_match, &iter))
5534 {
5535 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5536 SYMBOL_DOMAIN (sym), domain)
5537 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
5538 {
5539 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5540 continue;
5541 else if (SYMBOL_IS_ARGUMENT (sym))
5542 arg_sym = sym;
5543 else
5544 {
5545 found_sym = 1;
5546 add_defn_to_vec (obstackp,
5547 fixup_symbol_section (sym, objfile),
5548 block);
5549 }
5550 }
5551 }
5552 }
5553 else
5554 {
5555 for (sym = block_iter_match_first (block, name, full_match, &iter);
5556 sym != NULL; sym = block_iter_match_next (name, full_match, &iter))
5557 {
5558 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5559 SYMBOL_DOMAIN (sym), domain))
5560 {
5561 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5562 {
5563 if (SYMBOL_IS_ARGUMENT (sym))
5564 arg_sym = sym;
5565 else
5566 {
5567 found_sym = 1;
5568 add_defn_to_vec (obstackp,
5569 fixup_symbol_section (sym, objfile),
5570 block);
5571 }
5572 }
5573 }
5574 }
5575 }
5576
5577 if (!found_sym && arg_sym != NULL)
5578 {
5579 add_defn_to_vec (obstackp,
5580 fixup_symbol_section (arg_sym, objfile),
5581 block);
5582 }
5583
5584 if (!wild)
5585 {
5586 arg_sym = NULL;
5587 found_sym = 0;
5588
5589 ALL_BLOCK_SYMBOLS (block, iter, sym)
5590 {
5591 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5592 SYMBOL_DOMAIN (sym), domain))
5593 {
5594 int cmp;
5595
5596 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5597 if (cmp == 0)
5598 {
5599 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5600 if (cmp == 0)
5601 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5602 name_len);
5603 }
5604
5605 if (cmp == 0
5606 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5607 {
5608 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5609 {
5610 if (SYMBOL_IS_ARGUMENT (sym))
5611 arg_sym = sym;
5612 else
5613 {
5614 found_sym = 1;
5615 add_defn_to_vec (obstackp,
5616 fixup_symbol_section (sym, objfile),
5617 block);
5618 }
5619 }
5620 }
5621 }
5622 }
5623
5624 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5625 They aren't parameters, right? */
5626 if (!found_sym && arg_sym != NULL)
5627 {
5628 add_defn_to_vec (obstackp,
5629 fixup_symbol_section (arg_sym, objfile),
5630 block);
5631 }
5632 }
5633 }
5634 \f
5635
5636 /* Symbol Completion */
5637
5638 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
5639 name in a form that's appropriate for the completion. The result
5640 does not need to be deallocated, but is only good until the next call.
5641
5642 TEXT_LEN is equal to the length of TEXT.
5643 Perform a wild match if WILD_MATCH_P is set.
5644 ENCODED_P should be set if TEXT represents the start of a symbol name
5645 in its encoded form. */
5646
5647 static const char *
5648 symbol_completion_match (const char *sym_name,
5649 const char *text, int text_len,
5650 int wild_match_p, int encoded_p)
5651 {
5652 const int verbatim_match = (text[0] == '<');
5653 int match = 0;
5654
5655 if (verbatim_match)
5656 {
5657 /* Strip the leading angle bracket. */
5658 text = text + 1;
5659 text_len--;
5660 }
5661
5662 /* First, test against the fully qualified name of the symbol. */
5663
5664 if (strncmp (sym_name, text, text_len) == 0)
5665 match = 1;
5666
5667 if (match && !encoded_p)
5668 {
5669 /* One needed check before declaring a positive match is to verify
5670 that iff we are doing a verbatim match, the decoded version
5671 of the symbol name starts with '<'. Otherwise, this symbol name
5672 is not a suitable completion. */
5673 const char *sym_name_copy = sym_name;
5674 int has_angle_bracket;
5675
5676 sym_name = ada_decode (sym_name);
5677 has_angle_bracket = (sym_name[0] == '<');
5678 match = (has_angle_bracket == verbatim_match);
5679 sym_name = sym_name_copy;
5680 }
5681
5682 if (match && !verbatim_match)
5683 {
5684 /* When doing non-verbatim match, another check that needs to
5685 be done is to verify that the potentially matching symbol name
5686 does not include capital letters, because the ada-mode would
5687 not be able to understand these symbol names without the
5688 angle bracket notation. */
5689 const char *tmp;
5690
5691 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5692 if (*tmp != '\0')
5693 match = 0;
5694 }
5695
5696 /* Second: Try wild matching... */
5697
5698 if (!match && wild_match_p)
5699 {
5700 /* Since we are doing wild matching, this means that TEXT
5701 may represent an unqualified symbol name. We therefore must
5702 also compare TEXT against the unqualified name of the symbol. */
5703 sym_name = ada_unqualified_name (ada_decode (sym_name));
5704
5705 if (strncmp (sym_name, text, text_len) == 0)
5706 match = 1;
5707 }
5708
5709 /* Finally: If we found a mach, prepare the result to return. */
5710
5711 if (!match)
5712 return NULL;
5713
5714 if (verbatim_match)
5715 sym_name = add_angle_brackets (sym_name);
5716
5717 if (!encoded_p)
5718 sym_name = ada_decode (sym_name);
5719
5720 return sym_name;
5721 }
5722
5723 /* A companion function to ada_make_symbol_completion_list().
5724 Check if SYM_NAME represents a symbol which name would be suitable
5725 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5726 it is appended at the end of the given string vector SV.
5727
5728 ORIG_TEXT is the string original string from the user command
5729 that needs to be completed. WORD is the entire command on which
5730 completion should be performed. These two parameters are used to
5731 determine which part of the symbol name should be added to the
5732 completion vector.
5733 if WILD_MATCH_P is set, then wild matching is performed.
5734 ENCODED_P should be set if TEXT represents a symbol name in its
5735 encoded formed (in which case the completion should also be
5736 encoded). */
5737
5738 static void
5739 symbol_completion_add (VEC(char_ptr) **sv,
5740 const char *sym_name,
5741 const char *text, int text_len,
5742 const char *orig_text, const char *word,
5743 int wild_match_p, int encoded_p)
5744 {
5745 const char *match = symbol_completion_match (sym_name, text, text_len,
5746 wild_match_p, encoded_p);
5747 char *completion;
5748
5749 if (match == NULL)
5750 return;
5751
5752 /* We found a match, so add the appropriate completion to the given
5753 string vector. */
5754
5755 if (word == orig_text)
5756 {
5757 completion = xmalloc (strlen (match) + 5);
5758 strcpy (completion, match);
5759 }
5760 else if (word > orig_text)
5761 {
5762 /* Return some portion of sym_name. */
5763 completion = xmalloc (strlen (match) + 5);
5764 strcpy (completion, match + (word - orig_text));
5765 }
5766 else
5767 {
5768 /* Return some of ORIG_TEXT plus sym_name. */
5769 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5770 strncpy (completion, word, orig_text - word);
5771 completion[orig_text - word] = '\0';
5772 strcat (completion, match);
5773 }
5774
5775 VEC_safe_push (char_ptr, *sv, completion);
5776 }
5777
5778 /* An object of this type is passed as the user_data argument to the
5779 expand_partial_symbol_names method. */
5780 struct add_partial_datum
5781 {
5782 VEC(char_ptr) **completions;
5783 char *text;
5784 int text_len;
5785 char *text0;
5786 char *word;
5787 int wild_match;
5788 int encoded;
5789 };
5790
5791 /* A callback for expand_partial_symbol_names. */
5792 static int
5793 ada_expand_partial_symbol_name (const char *name, void *user_data)
5794 {
5795 struct add_partial_datum *data = user_data;
5796
5797 return symbol_completion_match (name, data->text, data->text_len,
5798 data->wild_match, data->encoded) != NULL;
5799 }
5800
5801 /* Return a list of possible symbol names completing TEXT0. WORD is
5802 the entire command on which completion is made. */
5803
5804 static VEC (char_ptr) *
5805 ada_make_symbol_completion_list (char *text0, char *word)
5806 {
5807 char *text;
5808 int text_len;
5809 int wild_match_p;
5810 int encoded_p;
5811 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
5812 struct symbol *sym;
5813 struct symtab *s;
5814 struct minimal_symbol *msymbol;
5815 struct objfile *objfile;
5816 struct block *b, *surrounding_static_block = 0;
5817 int i;
5818 struct block_iterator iter;
5819
5820 if (text0[0] == '<')
5821 {
5822 text = xstrdup (text0);
5823 make_cleanup (xfree, text);
5824 text_len = strlen (text);
5825 wild_match_p = 0;
5826 encoded_p = 1;
5827 }
5828 else
5829 {
5830 text = xstrdup (ada_encode (text0));
5831 make_cleanup (xfree, text);
5832 text_len = strlen (text);
5833 for (i = 0; i < text_len; i++)
5834 text[i] = tolower (text[i]);
5835
5836 encoded_p = (strstr (text0, "__") != NULL);
5837 /* If the name contains a ".", then the user is entering a fully
5838 qualified entity name, and the match must not be done in wild
5839 mode. Similarly, if the user wants to complete what looks like
5840 an encoded name, the match must not be done in wild mode. */
5841 wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
5842 }
5843
5844 /* First, look at the partial symtab symbols. */
5845 {
5846 struct add_partial_datum data;
5847
5848 data.completions = &completions;
5849 data.text = text;
5850 data.text_len = text_len;
5851 data.text0 = text0;
5852 data.word = word;
5853 data.wild_match = wild_match_p;
5854 data.encoded = encoded_p;
5855 expand_partial_symbol_names (ada_expand_partial_symbol_name, &data);
5856 }
5857
5858 /* At this point scan through the misc symbol vectors and add each
5859 symbol you find to the list. Eventually we want to ignore
5860 anything that isn't a text symbol (everything else will be
5861 handled by the psymtab code above). */
5862
5863 ALL_MSYMBOLS (objfile, msymbol)
5864 {
5865 QUIT;
5866 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
5867 text, text_len, text0, word, wild_match_p,
5868 encoded_p);
5869 }
5870
5871 /* Search upwards from currently selected frame (so that we can
5872 complete on local vars. */
5873
5874 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5875 {
5876 if (!BLOCK_SUPERBLOCK (b))
5877 surrounding_static_block = b; /* For elmin of dups */
5878
5879 ALL_BLOCK_SYMBOLS (b, iter, sym)
5880 {
5881 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5882 text, text_len, text0, word,
5883 wild_match_p, encoded_p);
5884 }
5885 }
5886
5887 /* Go through the symtabs and check the externs and statics for
5888 symbols which match. */
5889
5890 ALL_SYMTABS (objfile, s)
5891 {
5892 QUIT;
5893 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5894 ALL_BLOCK_SYMBOLS (b, iter, sym)
5895 {
5896 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5897 text, text_len, text0, word,
5898 wild_match_p, encoded_p);
5899 }
5900 }
5901
5902 ALL_SYMTABS (objfile, s)
5903 {
5904 QUIT;
5905 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5906 /* Don't do this block twice. */
5907 if (b == surrounding_static_block)
5908 continue;
5909 ALL_BLOCK_SYMBOLS (b, iter, sym)
5910 {
5911 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5912 text, text_len, text0, word,
5913 wild_match_p, encoded_p);
5914 }
5915 }
5916
5917 return completions;
5918 }
5919
5920 /* Field Access */
5921
5922 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5923 for tagged types. */
5924
5925 static int
5926 ada_is_dispatch_table_ptr_type (struct type *type)
5927 {
5928 const char *name;
5929
5930 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5931 return 0;
5932
5933 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5934 if (name == NULL)
5935 return 0;
5936
5937 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5938 }
5939
5940 /* Return non-zero if TYPE is an interface tag. */
5941
5942 static int
5943 ada_is_interface_tag (struct type *type)
5944 {
5945 const char *name = TYPE_NAME (type);
5946
5947 if (name == NULL)
5948 return 0;
5949
5950 return (strcmp (name, "ada__tags__interface_tag") == 0);
5951 }
5952
5953 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5954 to be invisible to users. */
5955
5956 int
5957 ada_is_ignored_field (struct type *type, int field_num)
5958 {
5959 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5960 return 1;
5961
5962 /* Check the name of that field. */
5963 {
5964 const char *name = TYPE_FIELD_NAME (type, field_num);
5965
5966 /* Anonymous field names should not be printed.
5967 brobecker/2007-02-20: I don't think this can actually happen
5968 but we don't want to print the value of annonymous fields anyway. */
5969 if (name == NULL)
5970 return 1;
5971
5972 /* Normally, fields whose name start with an underscore ("_")
5973 are fields that have been internally generated by the compiler,
5974 and thus should not be printed. The "_parent" field is special,
5975 however: This is a field internally generated by the compiler
5976 for tagged types, and it contains the components inherited from
5977 the parent type. This field should not be printed as is, but
5978 should not be ignored either. */
5979 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5980 return 1;
5981 }
5982
5983 /* If this is the dispatch table of a tagged type or an interface tag,
5984 then ignore. */
5985 if (ada_is_tagged_type (type, 1)
5986 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
5987 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
5988 return 1;
5989
5990 /* Not a special field, so it should not be ignored. */
5991 return 0;
5992 }
5993
5994 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5995 pointer or reference type whose ultimate target has a tag field. */
5996
5997 int
5998 ada_is_tagged_type (struct type *type, int refok)
5999 {
6000 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
6001 }
6002
6003 /* True iff TYPE represents the type of X'Tag */
6004
6005 int
6006 ada_is_tag_type (struct type *type)
6007 {
6008 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6009 return 0;
6010 else
6011 {
6012 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6013
6014 return (name != NULL
6015 && strcmp (name, "ada__tags__dispatch_table") == 0);
6016 }
6017 }
6018
6019 /* The type of the tag on VAL. */
6020
6021 struct type *
6022 ada_tag_type (struct value *val)
6023 {
6024 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
6025 }
6026
6027 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6028 retired at Ada 05). */
6029
6030 static int
6031 is_ada95_tag (struct value *tag)
6032 {
6033 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6034 }
6035
6036 /* The value of the tag on VAL. */
6037
6038 struct value *
6039 ada_value_tag (struct value *val)
6040 {
6041 return ada_value_struct_elt (val, "_tag", 0);
6042 }
6043
6044 /* The value of the tag on the object of type TYPE whose contents are
6045 saved at VALADDR, if it is non-null, or is at memory address
6046 ADDRESS. */
6047
6048 static struct value *
6049 value_tag_from_contents_and_address (struct type *type,
6050 const gdb_byte *valaddr,
6051 CORE_ADDR address)
6052 {
6053 int tag_byte_offset;
6054 struct type *tag_type;
6055
6056 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6057 NULL, NULL, NULL))
6058 {
6059 const gdb_byte *valaddr1 = ((valaddr == NULL)
6060 ? NULL
6061 : valaddr + tag_byte_offset);
6062 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6063
6064 return value_from_contents_and_address (tag_type, valaddr1, address1);
6065 }
6066 return NULL;
6067 }
6068
6069 static struct type *
6070 type_from_tag (struct value *tag)
6071 {
6072 const char *type_name = ada_tag_name (tag);
6073
6074 if (type_name != NULL)
6075 return ada_find_any_type (ada_encode (type_name));
6076 return NULL;
6077 }
6078
6079 /* Given a value OBJ of a tagged type, return a value of this
6080 type at the base address of the object. The base address, as
6081 defined in Ada.Tags, it is the address of the primary tag of
6082 the object, and therefore where the field values of its full
6083 view can be fetched. */
6084
6085 struct value *
6086 ada_tag_value_at_base_address (struct value *obj)
6087 {
6088 volatile struct gdb_exception e;
6089 struct value *val;
6090 LONGEST offset_to_top = 0;
6091 struct type *ptr_type, *obj_type;
6092 struct value *tag;
6093 CORE_ADDR base_address;
6094
6095 obj_type = value_type (obj);
6096
6097 /* It is the responsability of the caller to deref pointers. */
6098
6099 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6100 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6101 return obj;
6102
6103 tag = ada_value_tag (obj);
6104 if (!tag)
6105 return obj;
6106
6107 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6108
6109 if (is_ada95_tag (tag))
6110 return obj;
6111
6112 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6113 ptr_type = lookup_pointer_type (ptr_type);
6114 val = value_cast (ptr_type, tag);
6115 if (!val)
6116 return obj;
6117
6118 /* It is perfectly possible that an exception be raised while
6119 trying to determine the base address, just like for the tag;
6120 see ada_tag_name for more details. We do not print the error
6121 message for the same reason. */
6122
6123 TRY_CATCH (e, RETURN_MASK_ERROR)
6124 {
6125 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6126 }
6127
6128 if (e.reason < 0)
6129 return obj;
6130
6131 /* If offset is null, nothing to do. */
6132
6133 if (offset_to_top == 0)
6134 return obj;
6135
6136 /* -1 is a special case in Ada.Tags; however, what should be done
6137 is not quite clear from the documentation. So do nothing for
6138 now. */
6139
6140 if (offset_to_top == -1)
6141 return obj;
6142
6143 base_address = value_address (obj) - offset_to_top;
6144 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6145
6146 /* Make sure that we have a proper tag at the new address.
6147 Otherwise, offset_to_top is bogus (which can happen when
6148 the object is not initialized yet). */
6149
6150 if (!tag)
6151 return obj;
6152
6153 obj_type = type_from_tag (tag);
6154
6155 if (!obj_type)
6156 return obj;
6157
6158 return value_from_contents_and_address (obj_type, NULL, base_address);
6159 }
6160
6161 /* Return the "ada__tags__type_specific_data" type. */
6162
6163 static struct type *
6164 ada_get_tsd_type (struct inferior *inf)
6165 {
6166 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6167
6168 if (data->tsd_type == 0)
6169 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6170 return data->tsd_type;
6171 }
6172
6173 /* Return the TSD (type-specific data) associated to the given TAG.
6174 TAG is assumed to be the tag of a tagged-type entity.
6175
6176 May return NULL if we are unable to get the TSD. */
6177
6178 static struct value *
6179 ada_get_tsd_from_tag (struct value *tag)
6180 {
6181 struct value *val;
6182 struct type *type;
6183
6184 /* First option: The TSD is simply stored as a field of our TAG.
6185 Only older versions of GNAT would use this format, but we have
6186 to test it first, because there are no visible markers for
6187 the current approach except the absence of that field. */
6188
6189 val = ada_value_struct_elt (tag, "tsd", 1);
6190 if (val)
6191 return val;
6192
6193 /* Try the second representation for the dispatch table (in which
6194 there is no explicit 'tsd' field in the referent of the tag pointer,
6195 and instead the tsd pointer is stored just before the dispatch
6196 table. */
6197
6198 type = ada_get_tsd_type (current_inferior());
6199 if (type == NULL)
6200 return NULL;
6201 type = lookup_pointer_type (lookup_pointer_type (type));
6202 val = value_cast (type, tag);
6203 if (val == NULL)
6204 return NULL;
6205 return value_ind (value_ptradd (val, -1));
6206 }
6207
6208 /* Given the TSD of a tag (type-specific data), return a string
6209 containing the name of the associated type.
6210
6211 The returned value is good until the next call. May return NULL
6212 if we are unable to determine the tag name. */
6213
6214 static char *
6215 ada_tag_name_from_tsd (struct value *tsd)
6216 {
6217 static char name[1024];
6218 char *p;
6219 struct value *val;
6220
6221 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6222 if (val == NULL)
6223 return NULL;
6224 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6225 for (p = name; *p != '\0'; p += 1)
6226 if (isalpha (*p))
6227 *p = tolower (*p);
6228 return name;
6229 }
6230
6231 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6232 a C string.
6233
6234 Return NULL if the TAG is not an Ada tag, or if we were unable to
6235 determine the name of that tag. The result is good until the next
6236 call. */
6237
6238 const char *
6239 ada_tag_name (struct value *tag)
6240 {
6241 volatile struct gdb_exception e;
6242 char *name = NULL;
6243
6244 if (!ada_is_tag_type (value_type (tag)))
6245 return NULL;
6246
6247 /* It is perfectly possible that an exception be raised while trying
6248 to determine the TAG's name, even under normal circumstances:
6249 The associated variable may be uninitialized or corrupted, for
6250 instance. We do not let any exception propagate past this point.
6251 instead we return NULL.
6252
6253 We also do not print the error message either (which often is very
6254 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6255 the caller print a more meaningful message if necessary. */
6256 TRY_CATCH (e, RETURN_MASK_ERROR)
6257 {
6258 struct value *tsd = ada_get_tsd_from_tag (tag);
6259
6260 if (tsd != NULL)
6261 name = ada_tag_name_from_tsd (tsd);
6262 }
6263
6264 return name;
6265 }
6266
6267 /* The parent type of TYPE, or NULL if none. */
6268
6269 struct type *
6270 ada_parent_type (struct type *type)
6271 {
6272 int i;
6273
6274 type = ada_check_typedef (type);
6275
6276 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6277 return NULL;
6278
6279 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6280 if (ada_is_parent_field (type, i))
6281 {
6282 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6283
6284 /* If the _parent field is a pointer, then dereference it. */
6285 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6286 parent_type = TYPE_TARGET_TYPE (parent_type);
6287 /* If there is a parallel XVS type, get the actual base type. */
6288 parent_type = ada_get_base_type (parent_type);
6289
6290 return ada_check_typedef (parent_type);
6291 }
6292
6293 return NULL;
6294 }
6295
6296 /* True iff field number FIELD_NUM of structure type TYPE contains the
6297 parent-type (inherited) fields of a derived type. Assumes TYPE is
6298 a structure type with at least FIELD_NUM+1 fields. */
6299
6300 int
6301 ada_is_parent_field (struct type *type, int field_num)
6302 {
6303 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6304
6305 return (name != NULL
6306 && (strncmp (name, "PARENT", 6) == 0
6307 || strncmp (name, "_parent", 7) == 0));
6308 }
6309
6310 /* True iff field number FIELD_NUM of structure type TYPE is a
6311 transparent wrapper field (which should be silently traversed when doing
6312 field selection and flattened when printing). Assumes TYPE is a
6313 structure type with at least FIELD_NUM+1 fields. Such fields are always
6314 structures. */
6315
6316 int
6317 ada_is_wrapper_field (struct type *type, int field_num)
6318 {
6319 const char *name = TYPE_FIELD_NAME (type, field_num);
6320
6321 return (name != NULL
6322 && (strncmp (name, "PARENT", 6) == 0
6323 || strcmp (name, "REP") == 0
6324 || strncmp (name, "_parent", 7) == 0
6325 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6326 }
6327
6328 /* True iff field number FIELD_NUM of structure or union type TYPE
6329 is a variant wrapper. Assumes TYPE is a structure type with at least
6330 FIELD_NUM+1 fields. */
6331
6332 int
6333 ada_is_variant_part (struct type *type, int field_num)
6334 {
6335 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6336
6337 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
6338 || (is_dynamic_field (type, field_num)
6339 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6340 == TYPE_CODE_UNION)));
6341 }
6342
6343 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6344 whose discriminants are contained in the record type OUTER_TYPE,
6345 returns the type of the controlling discriminant for the variant.
6346 May return NULL if the type could not be found. */
6347
6348 struct type *
6349 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6350 {
6351 char *name = ada_variant_discrim_name (var_type);
6352
6353 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
6354 }
6355
6356 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6357 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6358 represents a 'when others' clause; otherwise 0. */
6359
6360 int
6361 ada_is_others_clause (struct type *type, int field_num)
6362 {
6363 const char *name = TYPE_FIELD_NAME (type, field_num);
6364
6365 return (name != NULL && name[0] == 'O');
6366 }
6367
6368 /* Assuming that TYPE0 is the type of the variant part of a record,
6369 returns the name of the discriminant controlling the variant.
6370 The value is valid until the next call to ada_variant_discrim_name. */
6371
6372 char *
6373 ada_variant_discrim_name (struct type *type0)
6374 {
6375 static char *result = NULL;
6376 static size_t result_len = 0;
6377 struct type *type;
6378 const char *name;
6379 const char *discrim_end;
6380 const char *discrim_start;
6381
6382 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6383 type = TYPE_TARGET_TYPE (type0);
6384 else
6385 type = type0;
6386
6387 name = ada_type_name (type);
6388
6389 if (name == NULL || name[0] == '\000')
6390 return "";
6391
6392 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6393 discrim_end -= 1)
6394 {
6395 if (strncmp (discrim_end, "___XVN", 6) == 0)
6396 break;
6397 }
6398 if (discrim_end == name)
6399 return "";
6400
6401 for (discrim_start = discrim_end; discrim_start != name + 3;
6402 discrim_start -= 1)
6403 {
6404 if (discrim_start == name + 1)
6405 return "";
6406 if ((discrim_start > name + 3
6407 && strncmp (discrim_start - 3, "___", 3) == 0)
6408 || discrim_start[-1] == '.')
6409 break;
6410 }
6411
6412 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6413 strncpy (result, discrim_start, discrim_end - discrim_start);
6414 result[discrim_end - discrim_start] = '\0';
6415 return result;
6416 }
6417
6418 /* Scan STR for a subtype-encoded number, beginning at position K.
6419 Put the position of the character just past the number scanned in
6420 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6421 Return 1 if there was a valid number at the given position, and 0
6422 otherwise. A "subtype-encoded" number consists of the absolute value
6423 in decimal, followed by the letter 'm' to indicate a negative number.
6424 Assumes 0m does not occur. */
6425
6426 int
6427 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6428 {
6429 ULONGEST RU;
6430
6431 if (!isdigit (str[k]))
6432 return 0;
6433
6434 /* Do it the hard way so as not to make any assumption about
6435 the relationship of unsigned long (%lu scan format code) and
6436 LONGEST. */
6437 RU = 0;
6438 while (isdigit (str[k]))
6439 {
6440 RU = RU * 10 + (str[k] - '0');
6441 k += 1;
6442 }
6443
6444 if (str[k] == 'm')
6445 {
6446 if (R != NULL)
6447 *R = (-(LONGEST) (RU - 1)) - 1;
6448 k += 1;
6449 }
6450 else if (R != NULL)
6451 *R = (LONGEST) RU;
6452
6453 /* NOTE on the above: Technically, C does not say what the results of
6454 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6455 number representable as a LONGEST (although either would probably work
6456 in most implementations). When RU>0, the locution in the then branch
6457 above is always equivalent to the negative of RU. */
6458
6459 if (new_k != NULL)
6460 *new_k = k;
6461 return 1;
6462 }
6463
6464 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6465 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6466 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6467
6468 int
6469 ada_in_variant (LONGEST val, struct type *type, int field_num)
6470 {
6471 const char *name = TYPE_FIELD_NAME (type, field_num);
6472 int p;
6473
6474 p = 0;
6475 while (1)
6476 {
6477 switch (name[p])
6478 {
6479 case '\0':
6480 return 0;
6481 case 'S':
6482 {
6483 LONGEST W;
6484
6485 if (!ada_scan_number (name, p + 1, &W, &p))
6486 return 0;
6487 if (val == W)
6488 return 1;
6489 break;
6490 }
6491 case 'R':
6492 {
6493 LONGEST L, U;
6494
6495 if (!ada_scan_number (name, p + 1, &L, &p)
6496 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6497 return 0;
6498 if (val >= L && val <= U)
6499 return 1;
6500 break;
6501 }
6502 case 'O':
6503 return 1;
6504 default:
6505 return 0;
6506 }
6507 }
6508 }
6509
6510 /* FIXME: Lots of redundancy below. Try to consolidate. */
6511
6512 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6513 ARG_TYPE, extract and return the value of one of its (non-static)
6514 fields. FIELDNO says which field. Differs from value_primitive_field
6515 only in that it can handle packed values of arbitrary type. */
6516
6517 static struct value *
6518 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6519 struct type *arg_type)
6520 {
6521 struct type *type;
6522
6523 arg_type = ada_check_typedef (arg_type);
6524 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6525
6526 /* Handle packed fields. */
6527
6528 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6529 {
6530 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6531 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6532
6533 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
6534 offset + bit_pos / 8,
6535 bit_pos % 8, bit_size, type);
6536 }
6537 else
6538 return value_primitive_field (arg1, offset, fieldno, arg_type);
6539 }
6540
6541 /* Find field with name NAME in object of type TYPE. If found,
6542 set the following for each argument that is non-null:
6543 - *FIELD_TYPE_P to the field's type;
6544 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6545 an object of that type;
6546 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6547 - *BIT_SIZE_P to its size in bits if the field is packed, and
6548 0 otherwise;
6549 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6550 fields up to but not including the desired field, or by the total
6551 number of fields if not found. A NULL value of NAME never
6552 matches; the function just counts visible fields in this case.
6553
6554 Returns 1 if found, 0 otherwise. */
6555
6556 static int
6557 find_struct_field (const char *name, struct type *type, int offset,
6558 struct type **field_type_p,
6559 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6560 int *index_p)
6561 {
6562 int i;
6563
6564 type = ada_check_typedef (type);
6565
6566 if (field_type_p != NULL)
6567 *field_type_p = NULL;
6568 if (byte_offset_p != NULL)
6569 *byte_offset_p = 0;
6570 if (bit_offset_p != NULL)
6571 *bit_offset_p = 0;
6572 if (bit_size_p != NULL)
6573 *bit_size_p = 0;
6574
6575 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6576 {
6577 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6578 int fld_offset = offset + bit_pos / 8;
6579 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6580
6581 if (t_field_name == NULL)
6582 continue;
6583
6584 else if (name != NULL && field_name_match (t_field_name, name))
6585 {
6586 int bit_size = TYPE_FIELD_BITSIZE (type, i);
6587
6588 if (field_type_p != NULL)
6589 *field_type_p = TYPE_FIELD_TYPE (type, i);
6590 if (byte_offset_p != NULL)
6591 *byte_offset_p = fld_offset;
6592 if (bit_offset_p != NULL)
6593 *bit_offset_p = bit_pos % 8;
6594 if (bit_size_p != NULL)
6595 *bit_size_p = bit_size;
6596 return 1;
6597 }
6598 else if (ada_is_wrapper_field (type, i))
6599 {
6600 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6601 field_type_p, byte_offset_p, bit_offset_p,
6602 bit_size_p, index_p))
6603 return 1;
6604 }
6605 else if (ada_is_variant_part (type, i))
6606 {
6607 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6608 fixed type?? */
6609 int j;
6610 struct type *field_type
6611 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6612
6613 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6614 {
6615 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6616 fld_offset
6617 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6618 field_type_p, byte_offset_p,
6619 bit_offset_p, bit_size_p, index_p))
6620 return 1;
6621 }
6622 }
6623 else if (index_p != NULL)
6624 *index_p += 1;
6625 }
6626 return 0;
6627 }
6628
6629 /* Number of user-visible fields in record type TYPE. */
6630
6631 static int
6632 num_visible_fields (struct type *type)
6633 {
6634 int n;
6635
6636 n = 0;
6637 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6638 return n;
6639 }
6640
6641 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
6642 and search in it assuming it has (class) type TYPE.
6643 If found, return value, else return NULL.
6644
6645 Searches recursively through wrapper fields (e.g., '_parent'). */
6646
6647 static struct value *
6648 ada_search_struct_field (char *name, struct value *arg, int offset,
6649 struct type *type)
6650 {
6651 int i;
6652
6653 type = ada_check_typedef (type);
6654 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6655 {
6656 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6657
6658 if (t_field_name == NULL)
6659 continue;
6660
6661 else if (field_name_match (t_field_name, name))
6662 return ada_value_primitive_field (arg, offset, i, type);
6663
6664 else if (ada_is_wrapper_field (type, i))
6665 {
6666 struct value *v = /* Do not let indent join lines here. */
6667 ada_search_struct_field (name, arg,
6668 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6669 TYPE_FIELD_TYPE (type, i));
6670
6671 if (v != NULL)
6672 return v;
6673 }
6674
6675 else if (ada_is_variant_part (type, i))
6676 {
6677 /* PNH: Do we ever get here? See find_struct_field. */
6678 int j;
6679 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6680 i));
6681 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6682
6683 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6684 {
6685 struct value *v = ada_search_struct_field /* Force line
6686 break. */
6687 (name, arg,
6688 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6689 TYPE_FIELD_TYPE (field_type, j));
6690
6691 if (v != NULL)
6692 return v;
6693 }
6694 }
6695 }
6696 return NULL;
6697 }
6698
6699 static struct value *ada_index_struct_field_1 (int *, struct value *,
6700 int, struct type *);
6701
6702
6703 /* Return field #INDEX in ARG, where the index is that returned by
6704 * find_struct_field through its INDEX_P argument. Adjust the address
6705 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6706 * If found, return value, else return NULL. */
6707
6708 static struct value *
6709 ada_index_struct_field (int index, struct value *arg, int offset,
6710 struct type *type)
6711 {
6712 return ada_index_struct_field_1 (&index, arg, offset, type);
6713 }
6714
6715
6716 /* Auxiliary function for ada_index_struct_field. Like
6717 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6718 * *INDEX_P. */
6719
6720 static struct value *
6721 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6722 struct type *type)
6723 {
6724 int i;
6725 type = ada_check_typedef (type);
6726
6727 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6728 {
6729 if (TYPE_FIELD_NAME (type, i) == NULL)
6730 continue;
6731 else if (ada_is_wrapper_field (type, i))
6732 {
6733 struct value *v = /* Do not let indent join lines here. */
6734 ada_index_struct_field_1 (index_p, arg,
6735 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6736 TYPE_FIELD_TYPE (type, i));
6737
6738 if (v != NULL)
6739 return v;
6740 }
6741
6742 else if (ada_is_variant_part (type, i))
6743 {
6744 /* PNH: Do we ever get here? See ada_search_struct_field,
6745 find_struct_field. */
6746 error (_("Cannot assign this kind of variant record"));
6747 }
6748 else if (*index_p == 0)
6749 return ada_value_primitive_field (arg, offset, i, type);
6750 else
6751 *index_p -= 1;
6752 }
6753 return NULL;
6754 }
6755
6756 /* Given ARG, a value of type (pointer or reference to a)*
6757 structure/union, extract the component named NAME from the ultimate
6758 target structure/union and return it as a value with its
6759 appropriate type.
6760
6761 The routine searches for NAME among all members of the structure itself
6762 and (recursively) among all members of any wrapper members
6763 (e.g., '_parent').
6764
6765 If NO_ERR, then simply return NULL in case of error, rather than
6766 calling error. */
6767
6768 struct value *
6769 ada_value_struct_elt (struct value *arg, char *name, int no_err)
6770 {
6771 struct type *t, *t1;
6772 struct value *v;
6773
6774 v = NULL;
6775 t1 = t = ada_check_typedef (value_type (arg));
6776 if (TYPE_CODE (t) == TYPE_CODE_REF)
6777 {
6778 t1 = TYPE_TARGET_TYPE (t);
6779 if (t1 == NULL)
6780 goto BadValue;
6781 t1 = ada_check_typedef (t1);
6782 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6783 {
6784 arg = coerce_ref (arg);
6785 t = t1;
6786 }
6787 }
6788
6789 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6790 {
6791 t1 = TYPE_TARGET_TYPE (t);
6792 if (t1 == NULL)
6793 goto BadValue;
6794 t1 = ada_check_typedef (t1);
6795 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6796 {
6797 arg = value_ind (arg);
6798 t = t1;
6799 }
6800 else
6801 break;
6802 }
6803
6804 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
6805 goto BadValue;
6806
6807 if (t1 == t)
6808 v = ada_search_struct_field (name, arg, 0, t);
6809 else
6810 {
6811 int bit_offset, bit_size, byte_offset;
6812 struct type *field_type;
6813 CORE_ADDR address;
6814
6815 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6816 address = value_address (ada_value_ind (arg));
6817 else
6818 address = value_address (ada_coerce_ref (arg));
6819
6820 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
6821 if (find_struct_field (name, t1, 0,
6822 &field_type, &byte_offset, &bit_offset,
6823 &bit_size, NULL))
6824 {
6825 if (bit_size != 0)
6826 {
6827 if (TYPE_CODE (t) == TYPE_CODE_REF)
6828 arg = ada_coerce_ref (arg);
6829 else
6830 arg = ada_value_ind (arg);
6831 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6832 bit_offset, bit_size,
6833 field_type);
6834 }
6835 else
6836 v = value_at_lazy (field_type, address + byte_offset);
6837 }
6838 }
6839
6840 if (v != NULL || no_err)
6841 return v;
6842 else
6843 error (_("There is no member named %s."), name);
6844
6845 BadValue:
6846 if (no_err)
6847 return NULL;
6848 else
6849 error (_("Attempt to extract a component of "
6850 "a value that is not a record."));
6851 }
6852
6853 /* Given a type TYPE, look up the type of the component of type named NAME.
6854 If DISPP is non-null, add its byte displacement from the beginning of a
6855 structure (pointed to by a value) of type TYPE to *DISPP (does not
6856 work for packed fields).
6857
6858 Matches any field whose name has NAME as a prefix, possibly
6859 followed by "___".
6860
6861 TYPE can be either a struct or union. If REFOK, TYPE may also
6862 be a (pointer or reference)+ to a struct or union, and the
6863 ultimate target type will be searched.
6864
6865 Looks recursively into variant clauses and parent types.
6866
6867 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6868 TYPE is not a type of the right kind. */
6869
6870 static struct type *
6871 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6872 int noerr, int *dispp)
6873 {
6874 int i;
6875
6876 if (name == NULL)
6877 goto BadName;
6878
6879 if (refok && type != NULL)
6880 while (1)
6881 {
6882 type = ada_check_typedef (type);
6883 if (TYPE_CODE (type) != TYPE_CODE_PTR
6884 && TYPE_CODE (type) != TYPE_CODE_REF)
6885 break;
6886 type = TYPE_TARGET_TYPE (type);
6887 }
6888
6889 if (type == NULL
6890 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6891 && TYPE_CODE (type) != TYPE_CODE_UNION))
6892 {
6893 if (noerr)
6894 return NULL;
6895 else
6896 {
6897 target_terminal_ours ();
6898 gdb_flush (gdb_stdout);
6899 if (type == NULL)
6900 error (_("Type (null) is not a structure or union type"));
6901 else
6902 {
6903 /* XXX: type_sprint */
6904 fprintf_unfiltered (gdb_stderr, _("Type "));
6905 type_print (type, "", gdb_stderr, -1);
6906 error (_(" is not a structure or union type"));
6907 }
6908 }
6909 }
6910
6911 type = to_static_fixed_type (type);
6912
6913 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6914 {
6915 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6916 struct type *t;
6917 int disp;
6918
6919 if (t_field_name == NULL)
6920 continue;
6921
6922 else if (field_name_match (t_field_name, name))
6923 {
6924 if (dispp != NULL)
6925 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
6926 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6927 }
6928
6929 else if (ada_is_wrapper_field (type, i))
6930 {
6931 disp = 0;
6932 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6933 0, 1, &disp);
6934 if (t != NULL)
6935 {
6936 if (dispp != NULL)
6937 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6938 return t;
6939 }
6940 }
6941
6942 else if (ada_is_variant_part (type, i))
6943 {
6944 int j;
6945 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6946 i));
6947
6948 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6949 {
6950 /* FIXME pnh 2008/01/26: We check for a field that is
6951 NOT wrapped in a struct, since the compiler sometimes
6952 generates these for unchecked variant types. Revisit
6953 if the compiler changes this practice. */
6954 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
6955 disp = 0;
6956 if (v_field_name != NULL
6957 && field_name_match (v_field_name, name))
6958 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6959 else
6960 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
6961 j),
6962 name, 0, 1, &disp);
6963
6964 if (t != NULL)
6965 {
6966 if (dispp != NULL)
6967 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6968 return t;
6969 }
6970 }
6971 }
6972
6973 }
6974
6975 BadName:
6976 if (!noerr)
6977 {
6978 target_terminal_ours ();
6979 gdb_flush (gdb_stdout);
6980 if (name == NULL)
6981 {
6982 /* XXX: type_sprint */
6983 fprintf_unfiltered (gdb_stderr, _("Type "));
6984 type_print (type, "", gdb_stderr, -1);
6985 error (_(" has no component named <null>"));
6986 }
6987 else
6988 {
6989 /* XXX: type_sprint */
6990 fprintf_unfiltered (gdb_stderr, _("Type "));
6991 type_print (type, "", gdb_stderr, -1);
6992 error (_(" has no component named %s"), name);
6993 }
6994 }
6995
6996 return NULL;
6997 }
6998
6999 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7000 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7001 represents an unchecked union (that is, the variant part of a
7002 record that is named in an Unchecked_Union pragma). */
7003
7004 static int
7005 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7006 {
7007 char *discrim_name = ada_variant_discrim_name (var_type);
7008
7009 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
7010 == NULL);
7011 }
7012
7013
7014 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7015 within a value of type OUTER_TYPE that is stored in GDB at
7016 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7017 numbering from 0) is applicable. Returns -1 if none are. */
7018
7019 int
7020 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7021 const gdb_byte *outer_valaddr)
7022 {
7023 int others_clause;
7024 int i;
7025 char *discrim_name = ada_variant_discrim_name (var_type);
7026 struct value *outer;
7027 struct value *discrim;
7028 LONGEST discrim_val;
7029
7030 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
7031 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7032 if (discrim == NULL)
7033 return -1;
7034 discrim_val = value_as_long (discrim);
7035
7036 others_clause = -1;
7037 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7038 {
7039 if (ada_is_others_clause (var_type, i))
7040 others_clause = i;
7041 else if (ada_in_variant (discrim_val, var_type, i))
7042 return i;
7043 }
7044
7045 return others_clause;
7046 }
7047 \f
7048
7049
7050 /* Dynamic-Sized Records */
7051
7052 /* Strategy: The type ostensibly attached to a value with dynamic size
7053 (i.e., a size that is not statically recorded in the debugging
7054 data) does not accurately reflect the size or layout of the value.
7055 Our strategy is to convert these values to values with accurate,
7056 conventional types that are constructed on the fly. */
7057
7058 /* There is a subtle and tricky problem here. In general, we cannot
7059 determine the size of dynamic records without its data. However,
7060 the 'struct value' data structure, which GDB uses to represent
7061 quantities in the inferior process (the target), requires the size
7062 of the type at the time of its allocation in order to reserve space
7063 for GDB's internal copy of the data. That's why the
7064 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7065 rather than struct value*s.
7066
7067 However, GDB's internal history variables ($1, $2, etc.) are
7068 struct value*s containing internal copies of the data that are not, in
7069 general, the same as the data at their corresponding addresses in
7070 the target. Fortunately, the types we give to these values are all
7071 conventional, fixed-size types (as per the strategy described
7072 above), so that we don't usually have to perform the
7073 'to_fixed_xxx_type' conversions to look at their values.
7074 Unfortunately, there is one exception: if one of the internal
7075 history variables is an array whose elements are unconstrained
7076 records, then we will need to create distinct fixed types for each
7077 element selected. */
7078
7079 /* The upshot of all of this is that many routines take a (type, host
7080 address, target address) triple as arguments to represent a value.
7081 The host address, if non-null, is supposed to contain an internal
7082 copy of the relevant data; otherwise, the program is to consult the
7083 target at the target address. */
7084
7085 /* Assuming that VAL0 represents a pointer value, the result of
7086 dereferencing it. Differs from value_ind in its treatment of
7087 dynamic-sized types. */
7088
7089 struct value *
7090 ada_value_ind (struct value *val0)
7091 {
7092 struct value *val = value_ind (val0);
7093
7094 if (ada_is_tagged_type (value_type (val), 0))
7095 val = ada_tag_value_at_base_address (val);
7096
7097 return ada_to_fixed_value (val);
7098 }
7099
7100 /* The value resulting from dereferencing any "reference to"
7101 qualifiers on VAL0. */
7102
7103 static struct value *
7104 ada_coerce_ref (struct value *val0)
7105 {
7106 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7107 {
7108 struct value *val = val0;
7109
7110 val = coerce_ref (val);
7111
7112 if (ada_is_tagged_type (value_type (val), 0))
7113 val = ada_tag_value_at_base_address (val);
7114
7115 return ada_to_fixed_value (val);
7116 }
7117 else
7118 return val0;
7119 }
7120
7121 /* Return OFF rounded upward if necessary to a multiple of
7122 ALIGNMENT (a power of 2). */
7123
7124 static unsigned int
7125 align_value (unsigned int off, unsigned int alignment)
7126 {
7127 return (off + alignment - 1) & ~(alignment - 1);
7128 }
7129
7130 /* Return the bit alignment required for field #F of template type TYPE. */
7131
7132 static unsigned int
7133 field_alignment (struct type *type, int f)
7134 {
7135 const char *name = TYPE_FIELD_NAME (type, f);
7136 int len;
7137 int align_offset;
7138
7139 /* The field name should never be null, unless the debugging information
7140 is somehow malformed. In this case, we assume the field does not
7141 require any alignment. */
7142 if (name == NULL)
7143 return 1;
7144
7145 len = strlen (name);
7146
7147 if (!isdigit (name[len - 1]))
7148 return 1;
7149
7150 if (isdigit (name[len - 2]))
7151 align_offset = len - 2;
7152 else
7153 align_offset = len - 1;
7154
7155 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
7156 return TARGET_CHAR_BIT;
7157
7158 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7159 }
7160
7161 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7162
7163 static struct symbol *
7164 ada_find_any_type_symbol (const char *name)
7165 {
7166 struct symbol *sym;
7167
7168 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7169 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7170 return sym;
7171
7172 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7173 return sym;
7174 }
7175
7176 /* Find a type named NAME. Ignores ambiguity. This routine will look
7177 solely for types defined by debug info, it will not search the GDB
7178 primitive types. */
7179
7180 static struct type *
7181 ada_find_any_type (const char *name)
7182 {
7183 struct symbol *sym = ada_find_any_type_symbol (name);
7184
7185 if (sym != NULL)
7186 return SYMBOL_TYPE (sym);
7187
7188 return NULL;
7189 }
7190
7191 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7192 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7193 symbol, in which case it is returned. Otherwise, this looks for
7194 symbols whose name is that of NAME_SYM suffixed with "___XR".
7195 Return symbol if found, and NULL otherwise. */
7196
7197 struct symbol *
7198 ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
7199 {
7200 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7201 struct symbol *sym;
7202
7203 if (strstr (name, "___XR") != NULL)
7204 return name_sym;
7205
7206 sym = find_old_style_renaming_symbol (name, block);
7207
7208 if (sym != NULL)
7209 return sym;
7210
7211 /* Not right yet. FIXME pnh 7/20/2007. */
7212 sym = ada_find_any_type_symbol (name);
7213 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7214 return sym;
7215 else
7216 return NULL;
7217 }
7218
7219 static struct symbol *
7220 find_old_style_renaming_symbol (const char *name, const struct block *block)
7221 {
7222 const struct symbol *function_sym = block_linkage_function (block);
7223 char *rename;
7224
7225 if (function_sym != NULL)
7226 {
7227 /* If the symbol is defined inside a function, NAME is not fully
7228 qualified. This means we need to prepend the function name
7229 as well as adding the ``___XR'' suffix to build the name of
7230 the associated renaming symbol. */
7231 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
7232 /* Function names sometimes contain suffixes used
7233 for instance to qualify nested subprograms. When building
7234 the XR type name, we need to make sure that this suffix is
7235 not included. So do not include any suffix in the function
7236 name length below. */
7237 int function_name_len = ada_name_prefix_len (function_name);
7238 const int rename_len = function_name_len + 2 /* "__" */
7239 + strlen (name) + 6 /* "___XR\0" */ ;
7240
7241 /* Strip the suffix if necessary. */
7242 ada_remove_trailing_digits (function_name, &function_name_len);
7243 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7244 ada_remove_Xbn_suffix (function_name, &function_name_len);
7245
7246 /* Library-level functions are a special case, as GNAT adds
7247 a ``_ada_'' prefix to the function name to avoid namespace
7248 pollution. However, the renaming symbols themselves do not
7249 have this prefix, so we need to skip this prefix if present. */
7250 if (function_name_len > 5 /* "_ada_" */
7251 && strstr (function_name, "_ada_") == function_name)
7252 {
7253 function_name += 5;
7254 function_name_len -= 5;
7255 }
7256
7257 rename = (char *) alloca (rename_len * sizeof (char));
7258 strncpy (rename, function_name, function_name_len);
7259 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7260 "__%s___XR", name);
7261 }
7262 else
7263 {
7264 const int rename_len = strlen (name) + 6;
7265
7266 rename = (char *) alloca (rename_len * sizeof (char));
7267 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
7268 }
7269
7270 return ada_find_any_type_symbol (rename);
7271 }
7272
7273 /* Because of GNAT encoding conventions, several GDB symbols may match a
7274 given type name. If the type denoted by TYPE0 is to be preferred to
7275 that of TYPE1 for purposes of type printing, return non-zero;
7276 otherwise return 0. */
7277
7278 int
7279 ada_prefer_type (struct type *type0, struct type *type1)
7280 {
7281 if (type1 == NULL)
7282 return 1;
7283 else if (type0 == NULL)
7284 return 0;
7285 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7286 return 1;
7287 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7288 return 0;
7289 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7290 return 1;
7291 else if (ada_is_constrained_packed_array_type (type0))
7292 return 1;
7293 else if (ada_is_array_descriptor_type (type0)
7294 && !ada_is_array_descriptor_type (type1))
7295 return 1;
7296 else
7297 {
7298 const char *type0_name = type_name_no_tag (type0);
7299 const char *type1_name = type_name_no_tag (type1);
7300
7301 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7302 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7303 return 1;
7304 }
7305 return 0;
7306 }
7307
7308 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
7309 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7310
7311 const char *
7312 ada_type_name (struct type *type)
7313 {
7314 if (type == NULL)
7315 return NULL;
7316 else if (TYPE_NAME (type) != NULL)
7317 return TYPE_NAME (type);
7318 else
7319 return TYPE_TAG_NAME (type);
7320 }
7321
7322 /* Search the list of "descriptive" types associated to TYPE for a type
7323 whose name is NAME. */
7324
7325 static struct type *
7326 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7327 {
7328 struct type *result;
7329
7330 /* If there no descriptive-type info, then there is no parallel type
7331 to be found. */
7332 if (!HAVE_GNAT_AUX_INFO (type))
7333 return NULL;
7334
7335 result = TYPE_DESCRIPTIVE_TYPE (type);
7336 while (result != NULL)
7337 {
7338 const char *result_name = ada_type_name (result);
7339
7340 if (result_name == NULL)
7341 {
7342 warning (_("unexpected null name on descriptive type"));
7343 return NULL;
7344 }
7345
7346 /* If the names match, stop. */
7347 if (strcmp (result_name, name) == 0)
7348 break;
7349
7350 /* Otherwise, look at the next item on the list, if any. */
7351 if (HAVE_GNAT_AUX_INFO (result))
7352 result = TYPE_DESCRIPTIVE_TYPE (result);
7353 else
7354 result = NULL;
7355 }
7356
7357 /* If we didn't find a match, see whether this is a packed array. With
7358 older compilers, the descriptive type information is either absent or
7359 irrelevant when it comes to packed arrays so the above lookup fails.
7360 Fall back to using a parallel lookup by name in this case. */
7361 if (result == NULL && ada_is_constrained_packed_array_type (type))
7362 return ada_find_any_type (name);
7363
7364 return result;
7365 }
7366
7367 /* Find a parallel type to TYPE with the specified NAME, using the
7368 descriptive type taken from the debugging information, if available,
7369 and otherwise using the (slower) name-based method. */
7370
7371 static struct type *
7372 ada_find_parallel_type_with_name (struct type *type, const char *name)
7373 {
7374 struct type *result = NULL;
7375
7376 if (HAVE_GNAT_AUX_INFO (type))
7377 result = find_parallel_type_by_descriptive_type (type, name);
7378 else
7379 result = ada_find_any_type (name);
7380
7381 return result;
7382 }
7383
7384 /* Same as above, but specify the name of the parallel type by appending
7385 SUFFIX to the name of TYPE. */
7386
7387 struct type *
7388 ada_find_parallel_type (struct type *type, const char *suffix)
7389 {
7390 char *name;
7391 const char *typename = ada_type_name (type);
7392 int len;
7393
7394 if (typename == NULL)
7395 return NULL;
7396
7397 len = strlen (typename);
7398
7399 name = (char *) alloca (len + strlen (suffix) + 1);
7400
7401 strcpy (name, typename);
7402 strcpy (name + len, suffix);
7403
7404 return ada_find_parallel_type_with_name (type, name);
7405 }
7406
7407 /* If TYPE is a variable-size record type, return the corresponding template
7408 type describing its fields. Otherwise, return NULL. */
7409
7410 static struct type *
7411 dynamic_template_type (struct type *type)
7412 {
7413 type = ada_check_typedef (type);
7414
7415 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
7416 || ada_type_name (type) == NULL)
7417 return NULL;
7418 else
7419 {
7420 int len = strlen (ada_type_name (type));
7421
7422 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7423 return type;
7424 else
7425 return ada_find_parallel_type (type, "___XVE");
7426 }
7427 }
7428
7429 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7430 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7431
7432 static int
7433 is_dynamic_field (struct type *templ_type, int field_num)
7434 {
7435 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
7436
7437 return name != NULL
7438 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7439 && strstr (name, "___XVL") != NULL;
7440 }
7441
7442 /* The index of the variant field of TYPE, or -1 if TYPE does not
7443 represent a variant record type. */
7444
7445 static int
7446 variant_field_index (struct type *type)
7447 {
7448 int f;
7449
7450 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7451 return -1;
7452
7453 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7454 {
7455 if (ada_is_variant_part (type, f))
7456 return f;
7457 }
7458 return -1;
7459 }
7460
7461 /* A record type with no fields. */
7462
7463 static struct type *
7464 empty_record (struct type *template)
7465 {
7466 struct type *type = alloc_type_copy (template);
7467
7468 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7469 TYPE_NFIELDS (type) = 0;
7470 TYPE_FIELDS (type) = NULL;
7471 INIT_CPLUS_SPECIFIC (type);
7472 TYPE_NAME (type) = "<empty>";
7473 TYPE_TAG_NAME (type) = NULL;
7474 TYPE_LENGTH (type) = 0;
7475 return type;
7476 }
7477
7478 /* An ordinary record type (with fixed-length fields) that describes
7479 the value of type TYPE at VALADDR or ADDRESS (see comments at
7480 the beginning of this section) VAL according to GNAT conventions.
7481 DVAL0 should describe the (portion of a) record that contains any
7482 necessary discriminants. It should be NULL if value_type (VAL) is
7483 an outer-level type (i.e., as opposed to a branch of a variant.) A
7484 variant field (unless unchecked) is replaced by a particular branch
7485 of the variant.
7486
7487 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7488 length are not statically known are discarded. As a consequence,
7489 VALADDR, ADDRESS and DVAL0 are ignored.
7490
7491 NOTE: Limitations: For now, we assume that dynamic fields and
7492 variants occupy whole numbers of bytes. However, they need not be
7493 byte-aligned. */
7494
7495 struct type *
7496 ada_template_to_fixed_record_type_1 (struct type *type,
7497 const gdb_byte *valaddr,
7498 CORE_ADDR address, struct value *dval0,
7499 int keep_dynamic_fields)
7500 {
7501 struct value *mark = value_mark ();
7502 struct value *dval;
7503 struct type *rtype;
7504 int nfields, bit_len;
7505 int variant_field;
7506 long off;
7507 int fld_bit_len;
7508 int f;
7509
7510 /* Compute the number of fields in this record type that are going
7511 to be processed: unless keep_dynamic_fields, this includes only
7512 fields whose position and length are static will be processed. */
7513 if (keep_dynamic_fields)
7514 nfields = TYPE_NFIELDS (type);
7515 else
7516 {
7517 nfields = 0;
7518 while (nfields < TYPE_NFIELDS (type)
7519 && !ada_is_variant_part (type, nfields)
7520 && !is_dynamic_field (type, nfields))
7521 nfields++;
7522 }
7523
7524 rtype = alloc_type_copy (type);
7525 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7526 INIT_CPLUS_SPECIFIC (rtype);
7527 TYPE_NFIELDS (rtype) = nfields;
7528 TYPE_FIELDS (rtype) = (struct field *)
7529 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7530 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7531 TYPE_NAME (rtype) = ada_type_name (type);
7532 TYPE_TAG_NAME (rtype) = NULL;
7533 TYPE_FIXED_INSTANCE (rtype) = 1;
7534
7535 off = 0;
7536 bit_len = 0;
7537 variant_field = -1;
7538
7539 for (f = 0; f < nfields; f += 1)
7540 {
7541 off = align_value (off, field_alignment (type, f))
7542 + TYPE_FIELD_BITPOS (type, f);
7543 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
7544 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7545
7546 if (ada_is_variant_part (type, f))
7547 {
7548 variant_field = f;
7549 fld_bit_len = 0;
7550 }
7551 else if (is_dynamic_field (type, f))
7552 {
7553 const gdb_byte *field_valaddr = valaddr;
7554 CORE_ADDR field_address = address;
7555 struct type *field_type =
7556 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7557
7558 if (dval0 == NULL)
7559 {
7560 /* rtype's length is computed based on the run-time
7561 value of discriminants. If the discriminants are not
7562 initialized, the type size may be completely bogus and
7563 GDB may fail to allocate a value for it. So check the
7564 size first before creating the value. */
7565 check_size (rtype);
7566 dval = value_from_contents_and_address (rtype, valaddr, address);
7567 }
7568 else
7569 dval = dval0;
7570
7571 /* If the type referenced by this field is an aligner type, we need
7572 to unwrap that aligner type, because its size might not be set.
7573 Keeping the aligner type would cause us to compute the wrong
7574 size for this field, impacting the offset of the all the fields
7575 that follow this one. */
7576 if (ada_is_aligner_type (field_type))
7577 {
7578 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7579
7580 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7581 field_address = cond_offset_target (field_address, field_offset);
7582 field_type = ada_aligned_type (field_type);
7583 }
7584
7585 field_valaddr = cond_offset_host (field_valaddr,
7586 off / TARGET_CHAR_BIT);
7587 field_address = cond_offset_target (field_address,
7588 off / TARGET_CHAR_BIT);
7589
7590 /* Get the fixed type of the field. Note that, in this case,
7591 we do not want to get the real type out of the tag: if
7592 the current field is the parent part of a tagged record,
7593 we will get the tag of the object. Clearly wrong: the real
7594 type of the parent is not the real type of the child. We
7595 would end up in an infinite loop. */
7596 field_type = ada_get_base_type (field_type);
7597 field_type = ada_to_fixed_type (field_type, field_valaddr,
7598 field_address, dval, 0);
7599 /* If the field size is already larger than the maximum
7600 object size, then the record itself will necessarily
7601 be larger than the maximum object size. We need to make
7602 this check now, because the size might be so ridiculously
7603 large (due to an uninitialized variable in the inferior)
7604 that it would cause an overflow when adding it to the
7605 record size. */
7606 check_size (field_type);
7607
7608 TYPE_FIELD_TYPE (rtype, f) = field_type;
7609 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7610 /* The multiplication can potentially overflow. But because
7611 the field length has been size-checked just above, and
7612 assuming that the maximum size is a reasonable value,
7613 an overflow should not happen in practice. So rather than
7614 adding overflow recovery code to this already complex code,
7615 we just assume that it's not going to happen. */
7616 fld_bit_len =
7617 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7618 }
7619 else
7620 {
7621 /* Note: If this field's type is a typedef, it is important
7622 to preserve the typedef layer.
7623
7624 Otherwise, we might be transforming a typedef to a fat
7625 pointer (encoding a pointer to an unconstrained array),
7626 into a basic fat pointer (encoding an unconstrained
7627 array). As both types are implemented using the same
7628 structure, the typedef is the only clue which allows us
7629 to distinguish between the two options. Stripping it
7630 would prevent us from printing this field appropriately. */
7631 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
7632 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7633 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7634 fld_bit_len =
7635 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7636 else
7637 {
7638 struct type *field_type = TYPE_FIELD_TYPE (type, f);
7639
7640 /* We need to be careful of typedefs when computing
7641 the length of our field. If this is a typedef,
7642 get the length of the target type, not the length
7643 of the typedef. */
7644 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
7645 field_type = ada_typedef_target_type (field_type);
7646
7647 fld_bit_len =
7648 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7649 }
7650 }
7651 if (off + fld_bit_len > bit_len)
7652 bit_len = off + fld_bit_len;
7653 off += fld_bit_len;
7654 TYPE_LENGTH (rtype) =
7655 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7656 }
7657
7658 /* We handle the variant part, if any, at the end because of certain
7659 odd cases in which it is re-ordered so as NOT to be the last field of
7660 the record. This can happen in the presence of representation
7661 clauses. */
7662 if (variant_field >= 0)
7663 {
7664 struct type *branch_type;
7665
7666 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7667
7668 if (dval0 == NULL)
7669 dval = value_from_contents_and_address (rtype, valaddr, address);
7670 else
7671 dval = dval0;
7672
7673 branch_type =
7674 to_fixed_variant_branch_type
7675 (TYPE_FIELD_TYPE (type, variant_field),
7676 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7677 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7678 if (branch_type == NULL)
7679 {
7680 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
7681 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7682 TYPE_NFIELDS (rtype) -= 1;
7683 }
7684 else
7685 {
7686 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7687 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7688 fld_bit_len =
7689 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
7690 TARGET_CHAR_BIT;
7691 if (off + fld_bit_len > bit_len)
7692 bit_len = off + fld_bit_len;
7693 TYPE_LENGTH (rtype) =
7694 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7695 }
7696 }
7697
7698 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7699 should contain the alignment of that record, which should be a strictly
7700 positive value. If null or negative, then something is wrong, most
7701 probably in the debug info. In that case, we don't round up the size
7702 of the resulting type. If this record is not part of another structure,
7703 the current RTYPE length might be good enough for our purposes. */
7704 if (TYPE_LENGTH (type) <= 0)
7705 {
7706 if (TYPE_NAME (rtype))
7707 warning (_("Invalid type size for `%s' detected: %d."),
7708 TYPE_NAME (rtype), TYPE_LENGTH (type));
7709 else
7710 warning (_("Invalid type size for <unnamed> detected: %d."),
7711 TYPE_LENGTH (type));
7712 }
7713 else
7714 {
7715 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
7716 TYPE_LENGTH (type));
7717 }
7718
7719 value_free_to_mark (mark);
7720 if (TYPE_LENGTH (rtype) > varsize_limit)
7721 error (_("record type with dynamic size is larger than varsize-limit"));
7722 return rtype;
7723 }
7724
7725 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7726 of 1. */
7727
7728 static struct type *
7729 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
7730 CORE_ADDR address, struct value *dval0)
7731 {
7732 return ada_template_to_fixed_record_type_1 (type, valaddr,
7733 address, dval0, 1);
7734 }
7735
7736 /* An ordinary record type in which ___XVL-convention fields and
7737 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7738 static approximations, containing all possible fields. Uses
7739 no runtime values. Useless for use in values, but that's OK,
7740 since the results are used only for type determinations. Works on both
7741 structs and unions. Representation note: to save space, we memorize
7742 the result of this function in the TYPE_TARGET_TYPE of the
7743 template type. */
7744
7745 static struct type *
7746 template_to_static_fixed_type (struct type *type0)
7747 {
7748 struct type *type;
7749 int nfields;
7750 int f;
7751
7752 if (TYPE_TARGET_TYPE (type0) != NULL)
7753 return TYPE_TARGET_TYPE (type0);
7754
7755 nfields = TYPE_NFIELDS (type0);
7756 type = type0;
7757
7758 for (f = 0; f < nfields; f += 1)
7759 {
7760 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
7761 struct type *new_type;
7762
7763 if (is_dynamic_field (type0, f))
7764 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
7765 else
7766 new_type = static_unwrap_type (field_type);
7767 if (type == type0 && new_type != field_type)
7768 {
7769 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
7770 TYPE_CODE (type) = TYPE_CODE (type0);
7771 INIT_CPLUS_SPECIFIC (type);
7772 TYPE_NFIELDS (type) = nfields;
7773 TYPE_FIELDS (type) = (struct field *)
7774 TYPE_ALLOC (type, nfields * sizeof (struct field));
7775 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7776 sizeof (struct field) * nfields);
7777 TYPE_NAME (type) = ada_type_name (type0);
7778 TYPE_TAG_NAME (type) = NULL;
7779 TYPE_FIXED_INSTANCE (type) = 1;
7780 TYPE_LENGTH (type) = 0;
7781 }
7782 TYPE_FIELD_TYPE (type, f) = new_type;
7783 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
7784 }
7785 return type;
7786 }
7787
7788 /* Given an object of type TYPE whose contents are at VALADDR and
7789 whose address in memory is ADDRESS, returns a revision of TYPE,
7790 which should be a non-dynamic-sized record, in which the variant
7791 part, if any, is replaced with the appropriate branch. Looks
7792 for discriminant values in DVAL0, which can be NULL if the record
7793 contains the necessary discriminant values. */
7794
7795 static struct type *
7796 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
7797 CORE_ADDR address, struct value *dval0)
7798 {
7799 struct value *mark = value_mark ();
7800 struct value *dval;
7801 struct type *rtype;
7802 struct type *branch_type;
7803 int nfields = TYPE_NFIELDS (type);
7804 int variant_field = variant_field_index (type);
7805
7806 if (variant_field == -1)
7807 return type;
7808
7809 if (dval0 == NULL)
7810 dval = value_from_contents_and_address (type, valaddr, address);
7811 else
7812 dval = dval0;
7813
7814 rtype = alloc_type_copy (type);
7815 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7816 INIT_CPLUS_SPECIFIC (rtype);
7817 TYPE_NFIELDS (rtype) = nfields;
7818 TYPE_FIELDS (rtype) =
7819 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7820 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
7821 sizeof (struct field) * nfields);
7822 TYPE_NAME (rtype) = ada_type_name (type);
7823 TYPE_TAG_NAME (rtype) = NULL;
7824 TYPE_FIXED_INSTANCE (rtype) = 1;
7825 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7826
7827 branch_type = to_fixed_variant_branch_type
7828 (TYPE_FIELD_TYPE (type, variant_field),
7829 cond_offset_host (valaddr,
7830 TYPE_FIELD_BITPOS (type, variant_field)
7831 / TARGET_CHAR_BIT),
7832 cond_offset_target (address,
7833 TYPE_FIELD_BITPOS (type, variant_field)
7834 / TARGET_CHAR_BIT), dval);
7835 if (branch_type == NULL)
7836 {
7837 int f;
7838
7839 for (f = variant_field + 1; f < nfields; f += 1)
7840 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7841 TYPE_NFIELDS (rtype) -= 1;
7842 }
7843 else
7844 {
7845 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7846 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7847 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7848 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7849 }
7850 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
7851
7852 value_free_to_mark (mark);
7853 return rtype;
7854 }
7855
7856 /* An ordinary record type (with fixed-length fields) that describes
7857 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7858 beginning of this section]. Any necessary discriminants' values
7859 should be in DVAL, a record value; it may be NULL if the object
7860 at ADDR itself contains any necessary discriminant values.
7861 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7862 values from the record are needed. Except in the case that DVAL,
7863 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7864 unchecked) is replaced by a particular branch of the variant.
7865
7866 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7867 is questionable and may be removed. It can arise during the
7868 processing of an unconstrained-array-of-record type where all the
7869 variant branches have exactly the same size. This is because in
7870 such cases, the compiler does not bother to use the XVS convention
7871 when encoding the record. I am currently dubious of this
7872 shortcut and suspect the compiler should be altered. FIXME. */
7873
7874 static struct type *
7875 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7876 CORE_ADDR address, struct value *dval)
7877 {
7878 struct type *templ_type;
7879
7880 if (TYPE_FIXED_INSTANCE (type0))
7881 return type0;
7882
7883 templ_type = dynamic_template_type (type0);
7884
7885 if (templ_type != NULL)
7886 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7887 else if (variant_field_index (type0) >= 0)
7888 {
7889 if (dval == NULL && valaddr == NULL && address == 0)
7890 return type0;
7891 return to_record_with_fixed_variant_part (type0, valaddr, address,
7892 dval);
7893 }
7894 else
7895 {
7896 TYPE_FIXED_INSTANCE (type0) = 1;
7897 return type0;
7898 }
7899
7900 }
7901
7902 /* An ordinary record type (with fixed-length fields) that describes
7903 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7904 union type. Any necessary discriminants' values should be in DVAL,
7905 a record value. That is, this routine selects the appropriate
7906 branch of the union at ADDR according to the discriminant value
7907 indicated in the union's type name. Returns VAR_TYPE0 itself if
7908 it represents a variant subject to a pragma Unchecked_Union. */
7909
7910 static struct type *
7911 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7912 CORE_ADDR address, struct value *dval)
7913 {
7914 int which;
7915 struct type *templ_type;
7916 struct type *var_type;
7917
7918 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7919 var_type = TYPE_TARGET_TYPE (var_type0);
7920 else
7921 var_type = var_type0;
7922
7923 templ_type = ada_find_parallel_type (var_type, "___XVU");
7924
7925 if (templ_type != NULL)
7926 var_type = templ_type;
7927
7928 if (is_unchecked_variant (var_type, value_type (dval)))
7929 return var_type0;
7930 which =
7931 ada_which_variant_applies (var_type,
7932 value_type (dval), value_contents (dval));
7933
7934 if (which < 0)
7935 return empty_record (var_type);
7936 else if (is_dynamic_field (var_type, which))
7937 return to_fixed_record_type
7938 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7939 valaddr, address, dval);
7940 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
7941 return
7942 to_fixed_record_type
7943 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
7944 else
7945 return TYPE_FIELD_TYPE (var_type, which);
7946 }
7947
7948 /* Assuming that TYPE0 is an array type describing the type of a value
7949 at ADDR, and that DVAL describes a record containing any
7950 discriminants used in TYPE0, returns a type for the value that
7951 contains no dynamic components (that is, no components whose sizes
7952 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7953 true, gives an error message if the resulting type's size is over
7954 varsize_limit. */
7955
7956 static struct type *
7957 to_fixed_array_type (struct type *type0, struct value *dval,
7958 int ignore_too_big)
7959 {
7960 struct type *index_type_desc;
7961 struct type *result;
7962 int constrained_packed_array_p;
7963
7964 type0 = ada_check_typedef (type0);
7965 if (TYPE_FIXED_INSTANCE (type0))
7966 return type0;
7967
7968 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
7969 if (constrained_packed_array_p)
7970 type0 = decode_constrained_packed_array_type (type0);
7971
7972 index_type_desc = ada_find_parallel_type (type0, "___XA");
7973 ada_fixup_array_indexes_type (index_type_desc);
7974 if (index_type_desc == NULL)
7975 {
7976 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
7977
7978 /* NOTE: elt_type---the fixed version of elt_type0---should never
7979 depend on the contents of the array in properly constructed
7980 debugging data. */
7981 /* Create a fixed version of the array element type.
7982 We're not providing the address of an element here,
7983 and thus the actual object value cannot be inspected to do
7984 the conversion. This should not be a problem, since arrays of
7985 unconstrained objects are not allowed. In particular, all
7986 the elements of an array of a tagged type should all be of
7987 the same type specified in the debugging info. No need to
7988 consult the object tag. */
7989 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
7990
7991 /* Make sure we always create a new array type when dealing with
7992 packed array types, since we're going to fix-up the array
7993 type length and element bitsize a little further down. */
7994 if (elt_type0 == elt_type && !constrained_packed_array_p)
7995 result = type0;
7996 else
7997 result = create_array_type (alloc_type_copy (type0),
7998 elt_type, TYPE_INDEX_TYPE (type0));
7999 }
8000 else
8001 {
8002 int i;
8003 struct type *elt_type0;
8004
8005 elt_type0 = type0;
8006 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8007 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8008
8009 /* NOTE: result---the fixed version of elt_type0---should never
8010 depend on the contents of the array in properly constructed
8011 debugging data. */
8012 /* Create a fixed version of the array element type.
8013 We're not providing the address of an element here,
8014 and thus the actual object value cannot be inspected to do
8015 the conversion. This should not be a problem, since arrays of
8016 unconstrained objects are not allowed. In particular, all
8017 the elements of an array of a tagged type should all be of
8018 the same type specified in the debugging info. No need to
8019 consult the object tag. */
8020 result =
8021 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8022
8023 elt_type0 = type0;
8024 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8025 {
8026 struct type *range_type =
8027 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8028
8029 result = create_array_type (alloc_type_copy (elt_type0),
8030 result, range_type);
8031 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8032 }
8033 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8034 error (_("array type with dynamic size is larger than varsize-limit"));
8035 }
8036
8037 /* We want to preserve the type name. This can be useful when
8038 trying to get the type name of a value that has already been
8039 printed (for instance, if the user did "print VAR; whatis $". */
8040 TYPE_NAME (result) = TYPE_NAME (type0);
8041
8042 if (constrained_packed_array_p)
8043 {
8044 /* So far, the resulting type has been created as if the original
8045 type was a regular (non-packed) array type. As a result, the
8046 bitsize of the array elements needs to be set again, and the array
8047 length needs to be recomputed based on that bitsize. */
8048 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8049 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8050
8051 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8052 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8053 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8054 TYPE_LENGTH (result)++;
8055 }
8056
8057 TYPE_FIXED_INSTANCE (result) = 1;
8058 return result;
8059 }
8060
8061
8062 /* A standard type (containing no dynamically sized components)
8063 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8064 DVAL describes a record containing any discriminants used in TYPE0,
8065 and may be NULL if there are none, or if the object of type TYPE at
8066 ADDRESS or in VALADDR contains these discriminants.
8067
8068 If CHECK_TAG is not null, in the case of tagged types, this function
8069 attempts to locate the object's tag and use it to compute the actual
8070 type. However, when ADDRESS is null, we cannot use it to determine the
8071 location of the tag, and therefore compute the tagged type's actual type.
8072 So we return the tagged type without consulting the tag. */
8073
8074 static struct type *
8075 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8076 CORE_ADDR address, struct value *dval, int check_tag)
8077 {
8078 type = ada_check_typedef (type);
8079 switch (TYPE_CODE (type))
8080 {
8081 default:
8082 return type;
8083 case TYPE_CODE_STRUCT:
8084 {
8085 struct type *static_type = to_static_fixed_type (type);
8086 struct type *fixed_record_type =
8087 to_fixed_record_type (type, valaddr, address, NULL);
8088
8089 /* If STATIC_TYPE is a tagged type and we know the object's address,
8090 then we can determine its tag, and compute the object's actual
8091 type from there. Note that we have to use the fixed record
8092 type (the parent part of the record may have dynamic fields
8093 and the way the location of _tag is expressed may depend on
8094 them). */
8095
8096 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8097 {
8098 struct value *tag =
8099 value_tag_from_contents_and_address
8100 (fixed_record_type,
8101 valaddr,
8102 address);
8103 struct type *real_type = type_from_tag (tag);
8104 struct value *obj =
8105 value_from_contents_and_address (fixed_record_type,
8106 valaddr,
8107 address);
8108 if (real_type != NULL)
8109 return to_fixed_record_type
8110 (real_type, NULL,
8111 value_address (ada_tag_value_at_base_address (obj)), NULL);
8112 }
8113
8114 /* Check to see if there is a parallel ___XVZ variable.
8115 If there is, then it provides the actual size of our type. */
8116 else if (ada_type_name (fixed_record_type) != NULL)
8117 {
8118 const char *name = ada_type_name (fixed_record_type);
8119 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
8120 int xvz_found = 0;
8121 LONGEST size;
8122
8123 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8124 size = get_int_var_value (xvz_name, &xvz_found);
8125 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8126 {
8127 fixed_record_type = copy_type (fixed_record_type);
8128 TYPE_LENGTH (fixed_record_type) = size;
8129
8130 /* The FIXED_RECORD_TYPE may have be a stub. We have
8131 observed this when the debugging info is STABS, and
8132 apparently it is something that is hard to fix.
8133
8134 In practice, we don't need the actual type definition
8135 at all, because the presence of the XVZ variable allows us
8136 to assume that there must be a XVS type as well, which we
8137 should be able to use later, when we need the actual type
8138 definition.
8139
8140 In the meantime, pretend that the "fixed" type we are
8141 returning is NOT a stub, because this can cause trouble
8142 when using this type to create new types targeting it.
8143 Indeed, the associated creation routines often check
8144 whether the target type is a stub and will try to replace
8145 it, thus using a type with the wrong size. This, in turn,
8146 might cause the new type to have the wrong size too.
8147 Consider the case of an array, for instance, where the size
8148 of the array is computed from the number of elements in
8149 our array multiplied by the size of its element. */
8150 TYPE_STUB (fixed_record_type) = 0;
8151 }
8152 }
8153 return fixed_record_type;
8154 }
8155 case TYPE_CODE_ARRAY:
8156 return to_fixed_array_type (type, dval, 1);
8157 case TYPE_CODE_UNION:
8158 if (dval == NULL)
8159 return type;
8160 else
8161 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8162 }
8163 }
8164
8165 /* The same as ada_to_fixed_type_1, except that it preserves the type
8166 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8167
8168 The typedef layer needs be preserved in order to differentiate between
8169 arrays and array pointers when both types are implemented using the same
8170 fat pointer. In the array pointer case, the pointer is encoded as
8171 a typedef of the pointer type. For instance, considering:
8172
8173 type String_Access is access String;
8174 S1 : String_Access := null;
8175
8176 To the debugger, S1 is defined as a typedef of type String. But
8177 to the user, it is a pointer. So if the user tries to print S1,
8178 we should not dereference the array, but print the array address
8179 instead.
8180
8181 If we didn't preserve the typedef layer, we would lose the fact that
8182 the type is to be presented as a pointer (needs de-reference before
8183 being printed). And we would also use the source-level type name. */
8184
8185 struct type *
8186 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8187 CORE_ADDR address, struct value *dval, int check_tag)
8188
8189 {
8190 struct type *fixed_type =
8191 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8192
8193 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8194 then preserve the typedef layer.
8195
8196 Implementation note: We can only check the main-type portion of
8197 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8198 from TYPE now returns a type that has the same instance flags
8199 as TYPE. For instance, if TYPE is a "typedef const", and its
8200 target type is a "struct", then the typedef elimination will return
8201 a "const" version of the target type. See check_typedef for more
8202 details about how the typedef layer elimination is done.
8203
8204 brobecker/2010-11-19: It seems to me that the only case where it is
8205 useful to preserve the typedef layer is when dealing with fat pointers.
8206 Perhaps, we could add a check for that and preserve the typedef layer
8207 only in that situation. But this seems unecessary so far, probably
8208 because we call check_typedef/ada_check_typedef pretty much everywhere.
8209 */
8210 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8211 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8212 == TYPE_MAIN_TYPE (fixed_type)))
8213 return type;
8214
8215 return fixed_type;
8216 }
8217
8218 /* A standard (static-sized) type corresponding as well as possible to
8219 TYPE0, but based on no runtime data. */
8220
8221 static struct type *
8222 to_static_fixed_type (struct type *type0)
8223 {
8224 struct type *type;
8225
8226 if (type0 == NULL)
8227 return NULL;
8228
8229 if (TYPE_FIXED_INSTANCE (type0))
8230 return type0;
8231
8232 type0 = ada_check_typedef (type0);
8233
8234 switch (TYPE_CODE (type0))
8235 {
8236 default:
8237 return type0;
8238 case TYPE_CODE_STRUCT:
8239 type = dynamic_template_type (type0);
8240 if (type != NULL)
8241 return template_to_static_fixed_type (type);
8242 else
8243 return template_to_static_fixed_type (type0);
8244 case TYPE_CODE_UNION:
8245 type = ada_find_parallel_type (type0, "___XVU");
8246 if (type != NULL)
8247 return template_to_static_fixed_type (type);
8248 else
8249 return template_to_static_fixed_type (type0);
8250 }
8251 }
8252
8253 /* A static approximation of TYPE with all type wrappers removed. */
8254
8255 static struct type *
8256 static_unwrap_type (struct type *type)
8257 {
8258 if (ada_is_aligner_type (type))
8259 {
8260 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
8261 if (ada_type_name (type1) == NULL)
8262 TYPE_NAME (type1) = ada_type_name (type);
8263
8264 return static_unwrap_type (type1);
8265 }
8266 else
8267 {
8268 struct type *raw_real_type = ada_get_base_type (type);
8269
8270 if (raw_real_type == type)
8271 return type;
8272 else
8273 return to_static_fixed_type (raw_real_type);
8274 }
8275 }
8276
8277 /* In some cases, incomplete and private types require
8278 cross-references that are not resolved as records (for example,
8279 type Foo;
8280 type FooP is access Foo;
8281 V: FooP;
8282 type Foo is array ...;
8283 ). In these cases, since there is no mechanism for producing
8284 cross-references to such types, we instead substitute for FooP a
8285 stub enumeration type that is nowhere resolved, and whose tag is
8286 the name of the actual type. Call these types "non-record stubs". */
8287
8288 /* A type equivalent to TYPE that is not a non-record stub, if one
8289 exists, otherwise TYPE. */
8290
8291 struct type *
8292 ada_check_typedef (struct type *type)
8293 {
8294 if (type == NULL)
8295 return NULL;
8296
8297 /* If our type is a typedef type of a fat pointer, then we're done.
8298 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8299 what allows us to distinguish between fat pointers that represent
8300 array types, and fat pointers that represent array access types
8301 (in both cases, the compiler implements them as fat pointers). */
8302 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8303 && is_thick_pntr (ada_typedef_target_type (type)))
8304 return type;
8305
8306 CHECK_TYPEDEF (type);
8307 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
8308 || !TYPE_STUB (type)
8309 || TYPE_TAG_NAME (type) == NULL)
8310 return type;
8311 else
8312 {
8313 const char *name = TYPE_TAG_NAME (type);
8314 struct type *type1 = ada_find_any_type (name);
8315
8316 if (type1 == NULL)
8317 return type;
8318
8319 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8320 stubs pointing to arrays, as we don't create symbols for array
8321 types, only for the typedef-to-array types). If that's the case,
8322 strip the typedef layer. */
8323 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
8324 type1 = ada_check_typedef (type1);
8325
8326 return type1;
8327 }
8328 }
8329
8330 /* A value representing the data at VALADDR/ADDRESS as described by
8331 type TYPE0, but with a standard (static-sized) type that correctly
8332 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8333 type, then return VAL0 [this feature is simply to avoid redundant
8334 creation of struct values]. */
8335
8336 static struct value *
8337 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8338 struct value *val0)
8339 {
8340 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
8341
8342 if (type == type0 && val0 != NULL)
8343 return val0;
8344 else
8345 return value_from_contents_and_address (type, 0, address);
8346 }
8347
8348 /* A value representing VAL, but with a standard (static-sized) type
8349 that correctly describes it. Does not necessarily create a new
8350 value. */
8351
8352 struct value *
8353 ada_to_fixed_value (struct value *val)
8354 {
8355 val = unwrap_value (val);
8356 val = ada_to_fixed_value_create (value_type (val),
8357 value_address (val),
8358 val);
8359 return val;
8360 }
8361 \f
8362
8363 /* Attributes */
8364
8365 /* Table mapping attribute numbers to names.
8366 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
8367
8368 static const char *attribute_names[] = {
8369 "<?>",
8370
8371 "first",
8372 "last",
8373 "length",
8374 "image",
8375 "max",
8376 "min",
8377 "modulus",
8378 "pos",
8379 "size",
8380 "tag",
8381 "val",
8382 0
8383 };
8384
8385 const char *
8386 ada_attribute_name (enum exp_opcode n)
8387 {
8388 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8389 return attribute_names[n - OP_ATR_FIRST + 1];
8390 else
8391 return attribute_names[0];
8392 }
8393
8394 /* Evaluate the 'POS attribute applied to ARG. */
8395
8396 static LONGEST
8397 pos_atr (struct value *arg)
8398 {
8399 struct value *val = coerce_ref (arg);
8400 struct type *type = value_type (val);
8401
8402 if (!discrete_type_p (type))
8403 error (_("'POS only defined on discrete types"));
8404
8405 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8406 {
8407 int i;
8408 LONGEST v = value_as_long (val);
8409
8410 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
8411 {
8412 if (v == TYPE_FIELD_ENUMVAL (type, i))
8413 return i;
8414 }
8415 error (_("enumeration value is invalid: can't find 'POS"));
8416 }
8417 else
8418 return value_as_long (val);
8419 }
8420
8421 static struct value *
8422 value_pos_atr (struct type *type, struct value *arg)
8423 {
8424 return value_from_longest (type, pos_atr (arg));
8425 }
8426
8427 /* Evaluate the TYPE'VAL attribute applied to ARG. */
8428
8429 static struct value *
8430 value_val_atr (struct type *type, struct value *arg)
8431 {
8432 if (!discrete_type_p (type))
8433 error (_("'VAL only defined on discrete types"));
8434 if (!integer_type_p (value_type (arg)))
8435 error (_("'VAL requires integral argument"));
8436
8437 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8438 {
8439 long pos = value_as_long (arg);
8440
8441 if (pos < 0 || pos >= TYPE_NFIELDS (type))
8442 error (_("argument to 'VAL out of range"));
8443 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
8444 }
8445 else
8446 return value_from_longest (type, value_as_long (arg));
8447 }
8448 \f
8449
8450 /* Evaluation */
8451
8452 /* True if TYPE appears to be an Ada character type.
8453 [At the moment, this is true only for Character and Wide_Character;
8454 It is a heuristic test that could stand improvement]. */
8455
8456 int
8457 ada_is_character_type (struct type *type)
8458 {
8459 const char *name;
8460
8461 /* If the type code says it's a character, then assume it really is,
8462 and don't check any further. */
8463 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
8464 return 1;
8465
8466 /* Otherwise, assume it's a character type iff it is a discrete type
8467 with a known character type name. */
8468 name = ada_type_name (type);
8469 return (name != NULL
8470 && (TYPE_CODE (type) == TYPE_CODE_INT
8471 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8472 && (strcmp (name, "character") == 0
8473 || strcmp (name, "wide_character") == 0
8474 || strcmp (name, "wide_wide_character") == 0
8475 || strcmp (name, "unsigned char") == 0));
8476 }
8477
8478 /* True if TYPE appears to be an Ada string type. */
8479
8480 int
8481 ada_is_string_type (struct type *type)
8482 {
8483 type = ada_check_typedef (type);
8484 if (type != NULL
8485 && TYPE_CODE (type) != TYPE_CODE_PTR
8486 && (ada_is_simple_array_type (type)
8487 || ada_is_array_descriptor_type (type))
8488 && ada_array_arity (type) == 1)
8489 {
8490 struct type *elttype = ada_array_element_type (type, 1);
8491
8492 return ada_is_character_type (elttype);
8493 }
8494 else
8495 return 0;
8496 }
8497
8498 /* The compiler sometimes provides a parallel XVS type for a given
8499 PAD type. Normally, it is safe to follow the PAD type directly,
8500 but older versions of the compiler have a bug that causes the offset
8501 of its "F" field to be wrong. Following that field in that case
8502 would lead to incorrect results, but this can be worked around
8503 by ignoring the PAD type and using the associated XVS type instead.
8504
8505 Set to True if the debugger should trust the contents of PAD types.
8506 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8507 static int trust_pad_over_xvs = 1;
8508
8509 /* True if TYPE is a struct type introduced by the compiler to force the
8510 alignment of a value. Such types have a single field with a
8511 distinctive name. */
8512
8513 int
8514 ada_is_aligner_type (struct type *type)
8515 {
8516 type = ada_check_typedef (type);
8517
8518 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
8519 return 0;
8520
8521 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
8522 && TYPE_NFIELDS (type) == 1
8523 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
8524 }
8525
8526 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
8527 the parallel type. */
8528
8529 struct type *
8530 ada_get_base_type (struct type *raw_type)
8531 {
8532 struct type *real_type_namer;
8533 struct type *raw_real_type;
8534
8535 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
8536 return raw_type;
8537
8538 if (ada_is_aligner_type (raw_type))
8539 /* The encoding specifies that we should always use the aligner type.
8540 So, even if this aligner type has an associated XVS type, we should
8541 simply ignore it.
8542
8543 According to the compiler gurus, an XVS type parallel to an aligner
8544 type may exist because of a stabs limitation. In stabs, aligner
8545 types are empty because the field has a variable-sized type, and
8546 thus cannot actually be used as an aligner type. As a result,
8547 we need the associated parallel XVS type to decode the type.
8548 Since the policy in the compiler is to not change the internal
8549 representation based on the debugging info format, we sometimes
8550 end up having a redundant XVS type parallel to the aligner type. */
8551 return raw_type;
8552
8553 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
8554 if (real_type_namer == NULL
8555 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
8556 || TYPE_NFIELDS (real_type_namer) != 1)
8557 return raw_type;
8558
8559 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
8560 {
8561 /* This is an older encoding form where the base type needs to be
8562 looked up by name. We prefer the newer enconding because it is
8563 more efficient. */
8564 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8565 if (raw_real_type == NULL)
8566 return raw_type;
8567 else
8568 return raw_real_type;
8569 }
8570
8571 /* The field in our XVS type is a reference to the base type. */
8572 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
8573 }
8574
8575 /* The type of value designated by TYPE, with all aligners removed. */
8576
8577 struct type *
8578 ada_aligned_type (struct type *type)
8579 {
8580 if (ada_is_aligner_type (type))
8581 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
8582 else
8583 return ada_get_base_type (type);
8584 }
8585
8586
8587 /* The address of the aligned value in an object at address VALADDR
8588 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
8589
8590 const gdb_byte *
8591 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
8592 {
8593 if (ada_is_aligner_type (type))
8594 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
8595 valaddr +
8596 TYPE_FIELD_BITPOS (type,
8597 0) / TARGET_CHAR_BIT);
8598 else
8599 return valaddr;
8600 }
8601
8602
8603
8604 /* The printed representation of an enumeration literal with encoded
8605 name NAME. The value is good to the next call of ada_enum_name. */
8606 const char *
8607 ada_enum_name (const char *name)
8608 {
8609 static char *result;
8610 static size_t result_len = 0;
8611 char *tmp;
8612
8613 /* First, unqualify the enumeration name:
8614 1. Search for the last '.' character. If we find one, then skip
8615 all the preceding characters, the unqualified name starts
8616 right after that dot.
8617 2. Otherwise, we may be debugging on a target where the compiler
8618 translates dots into "__". Search forward for double underscores,
8619 but stop searching when we hit an overloading suffix, which is
8620 of the form "__" followed by digits. */
8621
8622 tmp = strrchr (name, '.');
8623 if (tmp != NULL)
8624 name = tmp + 1;
8625 else
8626 {
8627 while ((tmp = strstr (name, "__")) != NULL)
8628 {
8629 if (isdigit (tmp[2]))
8630 break;
8631 else
8632 name = tmp + 2;
8633 }
8634 }
8635
8636 if (name[0] == 'Q')
8637 {
8638 int v;
8639
8640 if (name[1] == 'U' || name[1] == 'W')
8641 {
8642 if (sscanf (name + 2, "%x", &v) != 1)
8643 return name;
8644 }
8645 else
8646 return name;
8647
8648 GROW_VECT (result, result_len, 16);
8649 if (isascii (v) && isprint (v))
8650 xsnprintf (result, result_len, "'%c'", v);
8651 else if (name[1] == 'U')
8652 xsnprintf (result, result_len, "[\"%02x\"]", v);
8653 else
8654 xsnprintf (result, result_len, "[\"%04x\"]", v);
8655
8656 return result;
8657 }
8658 else
8659 {
8660 tmp = strstr (name, "__");
8661 if (tmp == NULL)
8662 tmp = strstr (name, "$");
8663 if (tmp != NULL)
8664 {
8665 GROW_VECT (result, result_len, tmp - name + 1);
8666 strncpy (result, name, tmp - name);
8667 result[tmp - name] = '\0';
8668 return result;
8669 }
8670
8671 return name;
8672 }
8673 }
8674
8675 /* Evaluate the subexpression of EXP starting at *POS as for
8676 evaluate_type, updating *POS to point just past the evaluated
8677 expression. */
8678
8679 static struct value *
8680 evaluate_subexp_type (struct expression *exp, int *pos)
8681 {
8682 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8683 }
8684
8685 /* If VAL is wrapped in an aligner or subtype wrapper, return the
8686 value it wraps. */
8687
8688 static struct value *
8689 unwrap_value (struct value *val)
8690 {
8691 struct type *type = ada_check_typedef (value_type (val));
8692
8693 if (ada_is_aligner_type (type))
8694 {
8695 struct value *v = ada_value_struct_elt (val, "F", 0);
8696 struct type *val_type = ada_check_typedef (value_type (v));
8697
8698 if (ada_type_name (val_type) == NULL)
8699 TYPE_NAME (val_type) = ada_type_name (type);
8700
8701 return unwrap_value (v);
8702 }
8703 else
8704 {
8705 struct type *raw_real_type =
8706 ada_check_typedef (ada_get_base_type (type));
8707
8708 /* If there is no parallel XVS or XVE type, then the value is
8709 already unwrapped. Return it without further modification. */
8710 if ((type == raw_real_type)
8711 && ada_find_parallel_type (type, "___XVE") == NULL)
8712 return val;
8713
8714 return
8715 coerce_unspec_val_to_type
8716 (val, ada_to_fixed_type (raw_real_type, 0,
8717 value_address (val),
8718 NULL, 1));
8719 }
8720 }
8721
8722 static struct value *
8723 cast_to_fixed (struct type *type, struct value *arg)
8724 {
8725 LONGEST val;
8726
8727 if (type == value_type (arg))
8728 return arg;
8729 else if (ada_is_fixed_point_type (value_type (arg)))
8730 val = ada_float_to_fixed (type,
8731 ada_fixed_to_float (value_type (arg),
8732 value_as_long (arg)));
8733 else
8734 {
8735 DOUBLEST argd = value_as_double (arg);
8736
8737 val = ada_float_to_fixed (type, argd);
8738 }
8739
8740 return value_from_longest (type, val);
8741 }
8742
8743 static struct value *
8744 cast_from_fixed (struct type *type, struct value *arg)
8745 {
8746 DOUBLEST val = ada_fixed_to_float (value_type (arg),
8747 value_as_long (arg));
8748
8749 return value_from_double (type, val);
8750 }
8751
8752 /* Given two array types T1 and T2, return nonzero iff both arrays
8753 contain the same number of elements. */
8754
8755 static int
8756 ada_same_array_size_p (struct type *t1, struct type *t2)
8757 {
8758 LONGEST lo1, hi1, lo2, hi2;
8759
8760 /* Get the array bounds in order to verify that the size of
8761 the two arrays match. */
8762 if (!get_array_bounds (t1, &lo1, &hi1)
8763 || !get_array_bounds (t2, &lo2, &hi2))
8764 error (_("unable to determine array bounds"));
8765
8766 /* To make things easier for size comparison, normalize a bit
8767 the case of empty arrays by making sure that the difference
8768 between upper bound and lower bound is always -1. */
8769 if (lo1 > hi1)
8770 hi1 = lo1 - 1;
8771 if (lo2 > hi2)
8772 hi2 = lo2 - 1;
8773
8774 return (hi1 - lo1 == hi2 - lo2);
8775 }
8776
8777 /* Assuming that VAL is an array of integrals, and TYPE represents
8778 an array with the same number of elements, but with wider integral
8779 elements, return an array "casted" to TYPE. In practice, this
8780 means that the returned array is built by casting each element
8781 of the original array into TYPE's (wider) element type. */
8782
8783 static struct value *
8784 ada_promote_array_of_integrals (struct type *type, struct value *val)
8785 {
8786 struct type *elt_type = TYPE_TARGET_TYPE (type);
8787 LONGEST lo, hi;
8788 struct value *res;
8789 LONGEST i;
8790
8791 /* Verify that both val and type are arrays of scalars, and
8792 that the size of val's elements is smaller than the size
8793 of type's element. */
8794 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
8795 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
8796 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
8797 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
8798 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
8799 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
8800
8801 if (!get_array_bounds (type, &lo, &hi))
8802 error (_("unable to determine array bounds"));
8803
8804 res = allocate_value (type);
8805
8806 /* Promote each array element. */
8807 for (i = 0; i < hi - lo + 1; i++)
8808 {
8809 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
8810
8811 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
8812 value_contents_all (elt), TYPE_LENGTH (elt_type));
8813 }
8814
8815 return res;
8816 }
8817
8818 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8819 return the converted value. */
8820
8821 static struct value *
8822 coerce_for_assign (struct type *type, struct value *val)
8823 {
8824 struct type *type2 = value_type (val);
8825
8826 if (type == type2)
8827 return val;
8828
8829 type2 = ada_check_typedef (type2);
8830 type = ada_check_typedef (type);
8831
8832 if (TYPE_CODE (type2) == TYPE_CODE_PTR
8833 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8834 {
8835 val = ada_value_ind (val);
8836 type2 = value_type (val);
8837 }
8838
8839 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
8840 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8841 {
8842 if (!ada_same_array_size_p (type, type2))
8843 error (_("cannot assign arrays of different length"));
8844
8845 if (is_integral_type (TYPE_TARGET_TYPE (type))
8846 && is_integral_type (TYPE_TARGET_TYPE (type2))
8847 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8848 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
8849 {
8850 /* Allow implicit promotion of the array elements to
8851 a wider type. */
8852 return ada_promote_array_of_integrals (type, val);
8853 }
8854
8855 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8856 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
8857 error (_("Incompatible types in assignment"));
8858 deprecated_set_value_type (val, type);
8859 }
8860 return val;
8861 }
8862
8863 static struct value *
8864 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8865 {
8866 struct value *val;
8867 struct type *type1, *type2;
8868 LONGEST v, v1, v2;
8869
8870 arg1 = coerce_ref (arg1);
8871 arg2 = coerce_ref (arg2);
8872 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
8873 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
8874
8875 if (TYPE_CODE (type1) != TYPE_CODE_INT
8876 || TYPE_CODE (type2) != TYPE_CODE_INT)
8877 return value_binop (arg1, arg2, op);
8878
8879 switch (op)
8880 {
8881 case BINOP_MOD:
8882 case BINOP_DIV:
8883 case BINOP_REM:
8884 break;
8885 default:
8886 return value_binop (arg1, arg2, op);
8887 }
8888
8889 v2 = value_as_long (arg2);
8890 if (v2 == 0)
8891 error (_("second operand of %s must not be zero."), op_string (op));
8892
8893 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
8894 return value_binop (arg1, arg2, op);
8895
8896 v1 = value_as_long (arg1);
8897 switch (op)
8898 {
8899 case BINOP_DIV:
8900 v = v1 / v2;
8901 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8902 v += v > 0 ? -1 : 1;
8903 break;
8904 case BINOP_REM:
8905 v = v1 % v2;
8906 if (v * v1 < 0)
8907 v -= v2;
8908 break;
8909 default:
8910 /* Should not reach this point. */
8911 v = 0;
8912 }
8913
8914 val = allocate_value (type1);
8915 store_unsigned_integer (value_contents_raw (val),
8916 TYPE_LENGTH (value_type (val)),
8917 gdbarch_byte_order (get_type_arch (type1)), v);
8918 return val;
8919 }
8920
8921 static int
8922 ada_value_equal (struct value *arg1, struct value *arg2)
8923 {
8924 if (ada_is_direct_array_type (value_type (arg1))
8925 || ada_is_direct_array_type (value_type (arg2)))
8926 {
8927 /* Automatically dereference any array reference before
8928 we attempt to perform the comparison. */
8929 arg1 = ada_coerce_ref (arg1);
8930 arg2 = ada_coerce_ref (arg2);
8931
8932 arg1 = ada_coerce_to_simple_array (arg1);
8933 arg2 = ada_coerce_to_simple_array (arg2);
8934 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
8935 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
8936 error (_("Attempt to compare array with non-array"));
8937 /* FIXME: The following works only for types whose
8938 representations use all bits (no padding or undefined bits)
8939 and do not have user-defined equality. */
8940 return
8941 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
8942 && memcmp (value_contents (arg1), value_contents (arg2),
8943 TYPE_LENGTH (value_type (arg1))) == 0;
8944 }
8945 return value_equal (arg1, arg2);
8946 }
8947
8948 /* Total number of component associations in the aggregate starting at
8949 index PC in EXP. Assumes that index PC is the start of an
8950 OP_AGGREGATE. */
8951
8952 static int
8953 num_component_specs (struct expression *exp, int pc)
8954 {
8955 int n, m, i;
8956
8957 m = exp->elts[pc + 1].longconst;
8958 pc += 3;
8959 n = 0;
8960 for (i = 0; i < m; i += 1)
8961 {
8962 switch (exp->elts[pc].opcode)
8963 {
8964 default:
8965 n += 1;
8966 break;
8967 case OP_CHOICES:
8968 n += exp->elts[pc + 1].longconst;
8969 break;
8970 }
8971 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
8972 }
8973 return n;
8974 }
8975
8976 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
8977 component of LHS (a simple array or a record), updating *POS past
8978 the expression, assuming that LHS is contained in CONTAINER. Does
8979 not modify the inferior's memory, nor does it modify LHS (unless
8980 LHS == CONTAINER). */
8981
8982 static void
8983 assign_component (struct value *container, struct value *lhs, LONGEST index,
8984 struct expression *exp, int *pos)
8985 {
8986 struct value *mark = value_mark ();
8987 struct value *elt;
8988
8989 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8990 {
8991 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
8992 struct value *index_val = value_from_longest (index_type, index);
8993
8994 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8995 }
8996 else
8997 {
8998 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
8999 elt = ada_to_fixed_value (elt);
9000 }
9001
9002 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9003 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9004 else
9005 value_assign_to_component (container, elt,
9006 ada_evaluate_subexp (NULL, exp, pos,
9007 EVAL_NORMAL));
9008
9009 value_free_to_mark (mark);
9010 }
9011
9012 /* Assuming that LHS represents an lvalue having a record or array
9013 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9014 of that aggregate's value to LHS, advancing *POS past the
9015 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9016 lvalue containing LHS (possibly LHS itself). Does not modify
9017 the inferior's memory, nor does it modify the contents of
9018 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9019
9020 static struct value *
9021 assign_aggregate (struct value *container,
9022 struct value *lhs, struct expression *exp,
9023 int *pos, enum noside noside)
9024 {
9025 struct type *lhs_type;
9026 int n = exp->elts[*pos+1].longconst;
9027 LONGEST low_index, high_index;
9028 int num_specs;
9029 LONGEST *indices;
9030 int max_indices, num_indices;
9031 int is_array_aggregate;
9032 int i;
9033
9034 *pos += 3;
9035 if (noside != EVAL_NORMAL)
9036 {
9037 for (i = 0; i < n; i += 1)
9038 ada_evaluate_subexp (NULL, exp, pos, noside);
9039 return container;
9040 }
9041
9042 container = ada_coerce_ref (container);
9043 if (ada_is_direct_array_type (value_type (container)))
9044 container = ada_coerce_to_simple_array (container);
9045 lhs = ada_coerce_ref (lhs);
9046 if (!deprecated_value_modifiable (lhs))
9047 error (_("Left operand of assignment is not a modifiable lvalue."));
9048
9049 lhs_type = value_type (lhs);
9050 if (ada_is_direct_array_type (lhs_type))
9051 {
9052 lhs = ada_coerce_to_simple_array (lhs);
9053 lhs_type = value_type (lhs);
9054 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9055 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
9056 is_array_aggregate = 1;
9057 }
9058 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9059 {
9060 low_index = 0;
9061 high_index = num_visible_fields (lhs_type) - 1;
9062 is_array_aggregate = 0;
9063 }
9064 else
9065 error (_("Left-hand side must be array or record."));
9066
9067 num_specs = num_component_specs (exp, *pos - 3);
9068 max_indices = 4 * num_specs + 4;
9069 indices = alloca (max_indices * sizeof (indices[0]));
9070 indices[0] = indices[1] = low_index - 1;
9071 indices[2] = indices[3] = high_index + 1;
9072 num_indices = 4;
9073
9074 for (i = 0; i < n; i += 1)
9075 {
9076 switch (exp->elts[*pos].opcode)
9077 {
9078 case OP_CHOICES:
9079 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9080 &num_indices, max_indices,
9081 low_index, high_index);
9082 break;
9083 case OP_POSITIONAL:
9084 aggregate_assign_positional (container, lhs, exp, pos, indices,
9085 &num_indices, max_indices,
9086 low_index, high_index);
9087 break;
9088 case OP_OTHERS:
9089 if (i != n-1)
9090 error (_("Misplaced 'others' clause"));
9091 aggregate_assign_others (container, lhs, exp, pos, indices,
9092 num_indices, low_index, high_index);
9093 break;
9094 default:
9095 error (_("Internal error: bad aggregate clause"));
9096 }
9097 }
9098
9099 return container;
9100 }
9101
9102 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9103 construct at *POS, updating *POS past the construct, given that
9104 the positions are relative to lower bound LOW, where HIGH is the
9105 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9106 updating *NUM_INDICES as needed. CONTAINER is as for
9107 assign_aggregate. */
9108 static void
9109 aggregate_assign_positional (struct value *container,
9110 struct value *lhs, struct expression *exp,
9111 int *pos, LONGEST *indices, int *num_indices,
9112 int max_indices, LONGEST low, LONGEST high)
9113 {
9114 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9115
9116 if (ind - 1 == high)
9117 warning (_("Extra components in aggregate ignored."));
9118 if (ind <= high)
9119 {
9120 add_component_interval (ind, ind, indices, num_indices, max_indices);
9121 *pos += 3;
9122 assign_component (container, lhs, ind, exp, pos);
9123 }
9124 else
9125 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9126 }
9127
9128 /* Assign into the components of LHS indexed by the OP_CHOICES
9129 construct at *POS, updating *POS past the construct, given that
9130 the allowable indices are LOW..HIGH. Record the indices assigned
9131 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
9132 needed. CONTAINER is as for assign_aggregate. */
9133 static void
9134 aggregate_assign_from_choices (struct value *container,
9135 struct value *lhs, struct expression *exp,
9136 int *pos, LONGEST *indices, int *num_indices,
9137 int max_indices, LONGEST low, LONGEST high)
9138 {
9139 int j;
9140 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9141 int choice_pos, expr_pc;
9142 int is_array = ada_is_direct_array_type (value_type (lhs));
9143
9144 choice_pos = *pos += 3;
9145
9146 for (j = 0; j < n_choices; j += 1)
9147 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9148 expr_pc = *pos;
9149 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9150
9151 for (j = 0; j < n_choices; j += 1)
9152 {
9153 LONGEST lower, upper;
9154 enum exp_opcode op = exp->elts[choice_pos].opcode;
9155
9156 if (op == OP_DISCRETE_RANGE)
9157 {
9158 choice_pos += 1;
9159 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9160 EVAL_NORMAL));
9161 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9162 EVAL_NORMAL));
9163 }
9164 else if (is_array)
9165 {
9166 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9167 EVAL_NORMAL));
9168 upper = lower;
9169 }
9170 else
9171 {
9172 int ind;
9173 const char *name;
9174
9175 switch (op)
9176 {
9177 case OP_NAME:
9178 name = &exp->elts[choice_pos + 2].string;
9179 break;
9180 case OP_VAR_VALUE:
9181 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9182 break;
9183 default:
9184 error (_("Invalid record component association."));
9185 }
9186 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9187 ind = 0;
9188 if (! find_struct_field (name, value_type (lhs), 0,
9189 NULL, NULL, NULL, NULL, &ind))
9190 error (_("Unknown component name: %s."), name);
9191 lower = upper = ind;
9192 }
9193
9194 if (lower <= upper && (lower < low || upper > high))
9195 error (_("Index in component association out of bounds."));
9196
9197 add_component_interval (lower, upper, indices, num_indices,
9198 max_indices);
9199 while (lower <= upper)
9200 {
9201 int pos1;
9202
9203 pos1 = expr_pc;
9204 assign_component (container, lhs, lower, exp, &pos1);
9205 lower += 1;
9206 }
9207 }
9208 }
9209
9210 /* Assign the value of the expression in the OP_OTHERS construct in
9211 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9212 have not been previously assigned. The index intervals already assigned
9213 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
9214 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
9215 static void
9216 aggregate_assign_others (struct value *container,
9217 struct value *lhs, struct expression *exp,
9218 int *pos, LONGEST *indices, int num_indices,
9219 LONGEST low, LONGEST high)
9220 {
9221 int i;
9222 int expr_pc = *pos + 1;
9223
9224 for (i = 0; i < num_indices - 2; i += 2)
9225 {
9226 LONGEST ind;
9227
9228 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9229 {
9230 int localpos;
9231
9232 localpos = expr_pc;
9233 assign_component (container, lhs, ind, exp, &localpos);
9234 }
9235 }
9236 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9237 }
9238
9239 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
9240 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9241 modifying *SIZE as needed. It is an error if *SIZE exceeds
9242 MAX_SIZE. The resulting intervals do not overlap. */
9243 static void
9244 add_component_interval (LONGEST low, LONGEST high,
9245 LONGEST* indices, int *size, int max_size)
9246 {
9247 int i, j;
9248
9249 for (i = 0; i < *size; i += 2) {
9250 if (high >= indices[i] && low <= indices[i + 1])
9251 {
9252 int kh;
9253
9254 for (kh = i + 2; kh < *size; kh += 2)
9255 if (high < indices[kh])
9256 break;
9257 if (low < indices[i])
9258 indices[i] = low;
9259 indices[i + 1] = indices[kh - 1];
9260 if (high > indices[i + 1])
9261 indices[i + 1] = high;
9262 memcpy (indices + i + 2, indices + kh, *size - kh);
9263 *size -= kh - i - 2;
9264 return;
9265 }
9266 else if (high < indices[i])
9267 break;
9268 }
9269
9270 if (*size == max_size)
9271 error (_("Internal error: miscounted aggregate components."));
9272 *size += 2;
9273 for (j = *size-1; j >= i+2; j -= 1)
9274 indices[j] = indices[j - 2];
9275 indices[i] = low;
9276 indices[i + 1] = high;
9277 }
9278
9279 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9280 is different. */
9281
9282 static struct value *
9283 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
9284 {
9285 if (type == ada_check_typedef (value_type (arg2)))
9286 return arg2;
9287
9288 if (ada_is_fixed_point_type (type))
9289 return (cast_to_fixed (type, arg2));
9290
9291 if (ada_is_fixed_point_type (value_type (arg2)))
9292 return cast_from_fixed (type, arg2);
9293
9294 return value_cast (type, arg2);
9295 }
9296
9297 /* Evaluating Ada expressions, and printing their result.
9298 ------------------------------------------------------
9299
9300 1. Introduction:
9301 ----------------
9302
9303 We usually evaluate an Ada expression in order to print its value.
9304 We also evaluate an expression in order to print its type, which
9305 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9306 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9307 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9308 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9309 similar.
9310
9311 Evaluating expressions is a little more complicated for Ada entities
9312 than it is for entities in languages such as C. The main reason for
9313 this is that Ada provides types whose definition might be dynamic.
9314 One example of such types is variant records. Or another example
9315 would be an array whose bounds can only be known at run time.
9316
9317 The following description is a general guide as to what should be
9318 done (and what should NOT be done) in order to evaluate an expression
9319 involving such types, and when. This does not cover how the semantic
9320 information is encoded by GNAT as this is covered separatly. For the
9321 document used as the reference for the GNAT encoding, see exp_dbug.ads
9322 in the GNAT sources.
9323
9324 Ideally, we should embed each part of this description next to its
9325 associated code. Unfortunately, the amount of code is so vast right
9326 now that it's hard to see whether the code handling a particular
9327 situation might be duplicated or not. One day, when the code is
9328 cleaned up, this guide might become redundant with the comments
9329 inserted in the code, and we might want to remove it.
9330
9331 2. ``Fixing'' an Entity, the Simple Case:
9332 -----------------------------------------
9333
9334 When evaluating Ada expressions, the tricky issue is that they may
9335 reference entities whose type contents and size are not statically
9336 known. Consider for instance a variant record:
9337
9338 type Rec (Empty : Boolean := True) is record
9339 case Empty is
9340 when True => null;
9341 when False => Value : Integer;
9342 end case;
9343 end record;
9344 Yes : Rec := (Empty => False, Value => 1);
9345 No : Rec := (empty => True);
9346
9347 The size and contents of that record depends on the value of the
9348 descriminant (Rec.Empty). At this point, neither the debugging
9349 information nor the associated type structure in GDB are able to
9350 express such dynamic types. So what the debugger does is to create
9351 "fixed" versions of the type that applies to the specific object.
9352 We also informally refer to this opperation as "fixing" an object,
9353 which means creating its associated fixed type.
9354
9355 Example: when printing the value of variable "Yes" above, its fixed
9356 type would look like this:
9357
9358 type Rec is record
9359 Empty : Boolean;
9360 Value : Integer;
9361 end record;
9362
9363 On the other hand, if we printed the value of "No", its fixed type
9364 would become:
9365
9366 type Rec is record
9367 Empty : Boolean;
9368 end record;
9369
9370 Things become a little more complicated when trying to fix an entity
9371 with a dynamic type that directly contains another dynamic type,
9372 such as an array of variant records, for instance. There are
9373 two possible cases: Arrays, and records.
9374
9375 3. ``Fixing'' Arrays:
9376 ---------------------
9377
9378 The type structure in GDB describes an array in terms of its bounds,
9379 and the type of its elements. By design, all elements in the array
9380 have the same type and we cannot represent an array of variant elements
9381 using the current type structure in GDB. When fixing an array,
9382 we cannot fix the array element, as we would potentially need one
9383 fixed type per element of the array. As a result, the best we can do
9384 when fixing an array is to produce an array whose bounds and size
9385 are correct (allowing us to read it from memory), but without having
9386 touched its element type. Fixing each element will be done later,
9387 when (if) necessary.
9388
9389 Arrays are a little simpler to handle than records, because the same
9390 amount of memory is allocated for each element of the array, even if
9391 the amount of space actually used by each element differs from element
9392 to element. Consider for instance the following array of type Rec:
9393
9394 type Rec_Array is array (1 .. 2) of Rec;
9395
9396 The actual amount of memory occupied by each element might be different
9397 from element to element, depending on the value of their discriminant.
9398 But the amount of space reserved for each element in the array remains
9399 fixed regardless. So we simply need to compute that size using
9400 the debugging information available, from which we can then determine
9401 the array size (we multiply the number of elements of the array by
9402 the size of each element).
9403
9404 The simplest case is when we have an array of a constrained element
9405 type. For instance, consider the following type declarations:
9406
9407 type Bounded_String (Max_Size : Integer) is
9408 Length : Integer;
9409 Buffer : String (1 .. Max_Size);
9410 end record;
9411 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9412
9413 In this case, the compiler describes the array as an array of
9414 variable-size elements (identified by its XVS suffix) for which
9415 the size can be read in the parallel XVZ variable.
9416
9417 In the case of an array of an unconstrained element type, the compiler
9418 wraps the array element inside a private PAD type. This type should not
9419 be shown to the user, and must be "unwrap"'ed before printing. Note
9420 that we also use the adjective "aligner" in our code to designate
9421 these wrapper types.
9422
9423 In some cases, the size allocated for each element is statically
9424 known. In that case, the PAD type already has the correct size,
9425 and the array element should remain unfixed.
9426
9427 But there are cases when this size is not statically known.
9428 For instance, assuming that "Five" is an integer variable:
9429
9430 type Dynamic is array (1 .. Five) of Integer;
9431 type Wrapper (Has_Length : Boolean := False) is record
9432 Data : Dynamic;
9433 case Has_Length is
9434 when True => Length : Integer;
9435 when False => null;
9436 end case;
9437 end record;
9438 type Wrapper_Array is array (1 .. 2) of Wrapper;
9439
9440 Hello : Wrapper_Array := (others => (Has_Length => True,
9441 Data => (others => 17),
9442 Length => 1));
9443
9444
9445 The debugging info would describe variable Hello as being an
9446 array of a PAD type. The size of that PAD type is not statically
9447 known, but can be determined using a parallel XVZ variable.
9448 In that case, a copy of the PAD type with the correct size should
9449 be used for the fixed array.
9450
9451 3. ``Fixing'' record type objects:
9452 ----------------------------------
9453
9454 Things are slightly different from arrays in the case of dynamic
9455 record types. In this case, in order to compute the associated
9456 fixed type, we need to determine the size and offset of each of
9457 its components. This, in turn, requires us to compute the fixed
9458 type of each of these components.
9459
9460 Consider for instance the example:
9461
9462 type Bounded_String (Max_Size : Natural) is record
9463 Str : String (1 .. Max_Size);
9464 Length : Natural;
9465 end record;
9466 My_String : Bounded_String (Max_Size => 10);
9467
9468 In that case, the position of field "Length" depends on the size
9469 of field Str, which itself depends on the value of the Max_Size
9470 discriminant. In order to fix the type of variable My_String,
9471 we need to fix the type of field Str. Therefore, fixing a variant
9472 record requires us to fix each of its components.
9473
9474 However, if a component does not have a dynamic size, the component
9475 should not be fixed. In particular, fields that use a PAD type
9476 should not fixed. Here is an example where this might happen
9477 (assuming type Rec above):
9478
9479 type Container (Big : Boolean) is record
9480 First : Rec;
9481 After : Integer;
9482 case Big is
9483 when True => Another : Integer;
9484 when False => null;
9485 end case;
9486 end record;
9487 My_Container : Container := (Big => False,
9488 First => (Empty => True),
9489 After => 42);
9490
9491 In that example, the compiler creates a PAD type for component First,
9492 whose size is constant, and then positions the component After just
9493 right after it. The offset of component After is therefore constant
9494 in this case.
9495
9496 The debugger computes the position of each field based on an algorithm
9497 that uses, among other things, the actual position and size of the field
9498 preceding it. Let's now imagine that the user is trying to print
9499 the value of My_Container. If the type fixing was recursive, we would
9500 end up computing the offset of field After based on the size of the
9501 fixed version of field First. And since in our example First has
9502 only one actual field, the size of the fixed type is actually smaller
9503 than the amount of space allocated to that field, and thus we would
9504 compute the wrong offset of field After.
9505
9506 To make things more complicated, we need to watch out for dynamic
9507 components of variant records (identified by the ___XVL suffix in
9508 the component name). Even if the target type is a PAD type, the size
9509 of that type might not be statically known. So the PAD type needs
9510 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9511 we might end up with the wrong size for our component. This can be
9512 observed with the following type declarations:
9513
9514 type Octal is new Integer range 0 .. 7;
9515 type Octal_Array is array (Positive range <>) of Octal;
9516 pragma Pack (Octal_Array);
9517
9518 type Octal_Buffer (Size : Positive) is record
9519 Buffer : Octal_Array (1 .. Size);
9520 Length : Integer;
9521 end record;
9522
9523 In that case, Buffer is a PAD type whose size is unset and needs
9524 to be computed by fixing the unwrapped type.
9525
9526 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9527 ----------------------------------------------------------
9528
9529 Lastly, when should the sub-elements of an entity that remained unfixed
9530 thus far, be actually fixed?
9531
9532 The answer is: Only when referencing that element. For instance
9533 when selecting one component of a record, this specific component
9534 should be fixed at that point in time. Or when printing the value
9535 of a record, each component should be fixed before its value gets
9536 printed. Similarly for arrays, the element of the array should be
9537 fixed when printing each element of the array, or when extracting
9538 one element out of that array. On the other hand, fixing should
9539 not be performed on the elements when taking a slice of an array!
9540
9541 Note that one of the side-effects of miscomputing the offset and
9542 size of each field is that we end up also miscomputing the size
9543 of the containing type. This can have adverse results when computing
9544 the value of an entity. GDB fetches the value of an entity based
9545 on the size of its type, and thus a wrong size causes GDB to fetch
9546 the wrong amount of memory. In the case where the computed size is
9547 too small, GDB fetches too little data to print the value of our
9548 entiry. Results in this case as unpredicatble, as we usually read
9549 past the buffer containing the data =:-o. */
9550
9551 /* Implement the evaluate_exp routine in the exp_descriptor structure
9552 for the Ada language. */
9553
9554 static struct value *
9555 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
9556 int *pos, enum noside noside)
9557 {
9558 enum exp_opcode op;
9559 int tem;
9560 int pc;
9561 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
9562 struct type *type;
9563 int nargs, oplen;
9564 struct value **argvec;
9565
9566 pc = *pos;
9567 *pos += 1;
9568 op = exp->elts[pc].opcode;
9569
9570 switch (op)
9571 {
9572 default:
9573 *pos -= 1;
9574 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9575
9576 if (noside == EVAL_NORMAL)
9577 arg1 = unwrap_value (arg1);
9578
9579 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
9580 then we need to perform the conversion manually, because
9581 evaluate_subexp_standard doesn't do it. This conversion is
9582 necessary in Ada because the different kinds of float/fixed
9583 types in Ada have different representations.
9584
9585 Similarly, we need to perform the conversion from OP_LONG
9586 ourselves. */
9587 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
9588 arg1 = ada_value_cast (expect_type, arg1, noside);
9589
9590 return arg1;
9591
9592 case OP_STRING:
9593 {
9594 struct value *result;
9595
9596 *pos -= 1;
9597 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
9598 /* The result type will have code OP_STRING, bashed there from
9599 OP_ARRAY. Bash it back. */
9600 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
9601 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
9602 return result;
9603 }
9604
9605 case UNOP_CAST:
9606 (*pos) += 2;
9607 type = exp->elts[pc + 1].type;
9608 arg1 = evaluate_subexp (type, exp, pos, noside);
9609 if (noside == EVAL_SKIP)
9610 goto nosideret;
9611 arg1 = ada_value_cast (type, arg1, noside);
9612 return arg1;
9613
9614 case UNOP_QUAL:
9615 (*pos) += 2;
9616 type = exp->elts[pc + 1].type;
9617 return ada_evaluate_subexp (type, exp, pos, noside);
9618
9619 case BINOP_ASSIGN:
9620 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9621 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9622 {
9623 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
9624 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9625 return arg1;
9626 return ada_value_assign (arg1, arg1);
9627 }
9628 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9629 except if the lhs of our assignment is a convenience variable.
9630 In the case of assigning to a convenience variable, the lhs
9631 should be exactly the result of the evaluation of the rhs. */
9632 type = value_type (arg1);
9633 if (VALUE_LVAL (arg1) == lval_internalvar)
9634 type = NULL;
9635 arg2 = evaluate_subexp (type, exp, pos, noside);
9636 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9637 return arg1;
9638 if (ada_is_fixed_point_type (value_type (arg1)))
9639 arg2 = cast_to_fixed (value_type (arg1), arg2);
9640 else if (ada_is_fixed_point_type (value_type (arg2)))
9641 error
9642 (_("Fixed-point values must be assigned to fixed-point variables"));
9643 else
9644 arg2 = coerce_for_assign (value_type (arg1), arg2);
9645 return ada_value_assign (arg1, arg2);
9646
9647 case BINOP_ADD:
9648 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9649 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9650 if (noside == EVAL_SKIP)
9651 goto nosideret;
9652 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9653 return (value_from_longest
9654 (value_type (arg1),
9655 value_as_long (arg1) + value_as_long (arg2)));
9656 if ((ada_is_fixed_point_type (value_type (arg1))
9657 || ada_is_fixed_point_type (value_type (arg2)))
9658 && value_type (arg1) != value_type (arg2))
9659 error (_("Operands of fixed-point addition must have the same type"));
9660 /* Do the addition, and cast the result to the type of the first
9661 argument. We cannot cast the result to a reference type, so if
9662 ARG1 is a reference type, find its underlying type. */
9663 type = value_type (arg1);
9664 while (TYPE_CODE (type) == TYPE_CODE_REF)
9665 type = TYPE_TARGET_TYPE (type);
9666 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9667 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
9668
9669 case BINOP_SUB:
9670 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9671 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9672 if (noside == EVAL_SKIP)
9673 goto nosideret;
9674 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9675 return (value_from_longest
9676 (value_type (arg1),
9677 value_as_long (arg1) - value_as_long (arg2)));
9678 if ((ada_is_fixed_point_type (value_type (arg1))
9679 || ada_is_fixed_point_type (value_type (arg2)))
9680 && value_type (arg1) != value_type (arg2))
9681 error (_("Operands of fixed-point subtraction "
9682 "must have the same type"));
9683 /* Do the substraction, and cast the result to the type of the first
9684 argument. We cannot cast the result to a reference type, so if
9685 ARG1 is a reference type, find its underlying type. */
9686 type = value_type (arg1);
9687 while (TYPE_CODE (type) == TYPE_CODE_REF)
9688 type = TYPE_TARGET_TYPE (type);
9689 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9690 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
9691
9692 case BINOP_MUL:
9693 case BINOP_DIV:
9694 case BINOP_REM:
9695 case BINOP_MOD:
9696 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9697 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9698 if (noside == EVAL_SKIP)
9699 goto nosideret;
9700 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9701 {
9702 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9703 return value_zero (value_type (arg1), not_lval);
9704 }
9705 else
9706 {
9707 type = builtin_type (exp->gdbarch)->builtin_double;
9708 if (ada_is_fixed_point_type (value_type (arg1)))
9709 arg1 = cast_from_fixed (type, arg1);
9710 if (ada_is_fixed_point_type (value_type (arg2)))
9711 arg2 = cast_from_fixed (type, arg2);
9712 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9713 return ada_value_binop (arg1, arg2, op);
9714 }
9715
9716 case BINOP_EQUAL:
9717 case BINOP_NOTEQUAL:
9718 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9719 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
9720 if (noside == EVAL_SKIP)
9721 goto nosideret;
9722 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9723 tem = 0;
9724 else
9725 {
9726 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9727 tem = ada_value_equal (arg1, arg2);
9728 }
9729 if (op == BINOP_NOTEQUAL)
9730 tem = !tem;
9731 type = language_bool_type (exp->language_defn, exp->gdbarch);
9732 return value_from_longest (type, (LONGEST) tem);
9733
9734 case UNOP_NEG:
9735 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9736 if (noside == EVAL_SKIP)
9737 goto nosideret;
9738 else if (ada_is_fixed_point_type (value_type (arg1)))
9739 return value_cast (value_type (arg1), value_neg (arg1));
9740 else
9741 {
9742 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9743 return value_neg (arg1);
9744 }
9745
9746 case BINOP_LOGICAL_AND:
9747 case BINOP_LOGICAL_OR:
9748 case UNOP_LOGICAL_NOT:
9749 {
9750 struct value *val;
9751
9752 *pos -= 1;
9753 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9754 type = language_bool_type (exp->language_defn, exp->gdbarch);
9755 return value_cast (type, val);
9756 }
9757
9758 case BINOP_BITWISE_AND:
9759 case BINOP_BITWISE_IOR:
9760 case BINOP_BITWISE_XOR:
9761 {
9762 struct value *val;
9763
9764 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9765 *pos = pc;
9766 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9767
9768 return value_cast (value_type (arg1), val);
9769 }
9770
9771 case OP_VAR_VALUE:
9772 *pos -= 1;
9773
9774 if (noside == EVAL_SKIP)
9775 {
9776 *pos += 4;
9777 goto nosideret;
9778 }
9779 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
9780 /* Only encountered when an unresolved symbol occurs in a
9781 context other than a function call, in which case, it is
9782 invalid. */
9783 error (_("Unexpected unresolved symbol, %s, during evaluation"),
9784 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
9785 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9786 {
9787 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
9788 /* Check to see if this is a tagged type. We also need to handle
9789 the case where the type is a reference to a tagged type, but
9790 we have to be careful to exclude pointers to tagged types.
9791 The latter should be shown as usual (as a pointer), whereas
9792 a reference should mostly be transparent to the user. */
9793 if (ada_is_tagged_type (type, 0)
9794 || (TYPE_CODE(type) == TYPE_CODE_REF
9795 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
9796 {
9797 /* Tagged types are a little special in the fact that the real
9798 type is dynamic and can only be determined by inspecting the
9799 object's tag. This means that we need to get the object's
9800 value first (EVAL_NORMAL) and then extract the actual object
9801 type from its tag.
9802
9803 Note that we cannot skip the final step where we extract
9804 the object type from its tag, because the EVAL_NORMAL phase
9805 results in dynamic components being resolved into fixed ones.
9806 This can cause problems when trying to print the type
9807 description of tagged types whose parent has a dynamic size:
9808 We use the type name of the "_parent" component in order
9809 to print the name of the ancestor type in the type description.
9810 If that component had a dynamic size, the resolution into
9811 a fixed type would result in the loss of that type name,
9812 thus preventing us from printing the name of the ancestor
9813 type in the type description. */
9814 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
9815
9816 if (TYPE_CODE (type) != TYPE_CODE_REF)
9817 {
9818 struct type *actual_type;
9819
9820 actual_type = type_from_tag (ada_value_tag (arg1));
9821 if (actual_type == NULL)
9822 /* If, for some reason, we were unable to determine
9823 the actual type from the tag, then use the static
9824 approximation that we just computed as a fallback.
9825 This can happen if the debugging information is
9826 incomplete, for instance. */
9827 actual_type = type;
9828 return value_zero (actual_type, not_lval);
9829 }
9830 else
9831 {
9832 /* In the case of a ref, ada_coerce_ref takes care
9833 of determining the actual type. But the evaluation
9834 should return a ref as it should be valid to ask
9835 for its address; so rebuild a ref after coerce. */
9836 arg1 = ada_coerce_ref (arg1);
9837 return value_ref (arg1);
9838 }
9839 }
9840
9841 *pos += 4;
9842 return value_zero
9843 (to_static_fixed_type
9844 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
9845 not_lval);
9846 }
9847 else
9848 {
9849 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9850 return ada_to_fixed_value (arg1);
9851 }
9852
9853 case OP_FUNCALL:
9854 (*pos) += 2;
9855
9856 /* Allocate arg vector, including space for the function to be
9857 called in argvec[0] and a terminating NULL. */
9858 nargs = longest_to_int (exp->elts[pc + 1].longconst);
9859 argvec =
9860 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
9861
9862 if (exp->elts[*pos].opcode == OP_VAR_VALUE
9863 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
9864 error (_("Unexpected unresolved symbol, %s, during evaluation"),
9865 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
9866 else
9867 {
9868 for (tem = 0; tem <= nargs; tem += 1)
9869 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9870 argvec[tem] = 0;
9871
9872 if (noside == EVAL_SKIP)
9873 goto nosideret;
9874 }
9875
9876 if (ada_is_constrained_packed_array_type
9877 (desc_base_type (value_type (argvec[0]))))
9878 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
9879 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9880 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
9881 /* This is a packed array that has already been fixed, and
9882 therefore already coerced to a simple array. Nothing further
9883 to do. */
9884 ;
9885 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
9886 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9887 && VALUE_LVAL (argvec[0]) == lval_memory))
9888 argvec[0] = value_addr (argvec[0]);
9889
9890 type = ada_check_typedef (value_type (argvec[0]));
9891
9892 /* Ada allows us to implicitly dereference arrays when subscripting
9893 them. So, if this is an array typedef (encoding use for array
9894 access types encoded as fat pointers), strip it now. */
9895 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
9896 type = ada_typedef_target_type (type);
9897
9898 if (TYPE_CODE (type) == TYPE_CODE_PTR)
9899 {
9900 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
9901 {
9902 case TYPE_CODE_FUNC:
9903 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9904 break;
9905 case TYPE_CODE_ARRAY:
9906 break;
9907 case TYPE_CODE_STRUCT:
9908 if (noside != EVAL_AVOID_SIDE_EFFECTS)
9909 argvec[0] = ada_value_ind (argvec[0]);
9910 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9911 break;
9912 default:
9913 error (_("cannot subscript or call something of type `%s'"),
9914 ada_type_name (value_type (argvec[0])));
9915 break;
9916 }
9917 }
9918
9919 switch (TYPE_CODE (type))
9920 {
9921 case TYPE_CODE_FUNC:
9922 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9923 {
9924 struct type *rtype = TYPE_TARGET_TYPE (type);
9925
9926 if (TYPE_GNU_IFUNC (type))
9927 return allocate_value (TYPE_TARGET_TYPE (rtype));
9928 return allocate_value (rtype);
9929 }
9930 return call_function_by_hand (argvec[0], nargs, argvec + 1);
9931 case TYPE_CODE_INTERNAL_FUNCTION:
9932 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9933 /* We don't know anything about what the internal
9934 function might return, but we have to return
9935 something. */
9936 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
9937 not_lval);
9938 else
9939 return call_internal_function (exp->gdbarch, exp->language_defn,
9940 argvec[0], nargs, argvec + 1);
9941
9942 case TYPE_CODE_STRUCT:
9943 {
9944 int arity;
9945
9946 arity = ada_array_arity (type);
9947 type = ada_array_element_type (type, nargs);
9948 if (type == NULL)
9949 error (_("cannot subscript or call a record"));
9950 if (arity != nargs)
9951 error (_("wrong number of subscripts; expecting %d"), arity);
9952 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9953 return value_zero (ada_aligned_type (type), lval_memory);
9954 return
9955 unwrap_value (ada_value_subscript
9956 (argvec[0], nargs, argvec + 1));
9957 }
9958 case TYPE_CODE_ARRAY:
9959 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9960 {
9961 type = ada_array_element_type (type, nargs);
9962 if (type == NULL)
9963 error (_("element type of array unknown"));
9964 else
9965 return value_zero (ada_aligned_type (type), lval_memory);
9966 }
9967 return
9968 unwrap_value (ada_value_subscript
9969 (ada_coerce_to_simple_array (argvec[0]),
9970 nargs, argvec + 1));
9971 case TYPE_CODE_PTR: /* Pointer to array */
9972 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
9973 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9974 {
9975 type = ada_array_element_type (type, nargs);
9976 if (type == NULL)
9977 error (_("element type of array unknown"));
9978 else
9979 return value_zero (ada_aligned_type (type), lval_memory);
9980 }
9981 return
9982 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
9983 nargs, argvec + 1));
9984
9985 default:
9986 error (_("Attempt to index or call something other than an "
9987 "array or function"));
9988 }
9989
9990 case TERNOP_SLICE:
9991 {
9992 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9993 struct value *low_bound_val =
9994 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9995 struct value *high_bound_val =
9996 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9997 LONGEST low_bound;
9998 LONGEST high_bound;
9999
10000 low_bound_val = coerce_ref (low_bound_val);
10001 high_bound_val = coerce_ref (high_bound_val);
10002 low_bound = pos_atr (low_bound_val);
10003 high_bound = pos_atr (high_bound_val);
10004
10005 if (noside == EVAL_SKIP)
10006 goto nosideret;
10007
10008 /* If this is a reference to an aligner type, then remove all
10009 the aligners. */
10010 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10011 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10012 TYPE_TARGET_TYPE (value_type (array)) =
10013 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10014
10015 if (ada_is_constrained_packed_array_type (value_type (array)))
10016 error (_("cannot slice a packed array"));
10017
10018 /* If this is a reference to an array or an array lvalue,
10019 convert to a pointer. */
10020 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10021 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
10022 && VALUE_LVAL (array) == lval_memory))
10023 array = value_addr (array);
10024
10025 if (noside == EVAL_AVOID_SIDE_EFFECTS
10026 && ada_is_array_descriptor_type (ada_check_typedef
10027 (value_type (array))))
10028 return empty_array (ada_type_of_array (array, 0), low_bound);
10029
10030 array = ada_coerce_to_simple_array_ptr (array);
10031
10032 /* If we have more than one level of pointer indirection,
10033 dereference the value until we get only one level. */
10034 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10035 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
10036 == TYPE_CODE_PTR))
10037 array = value_ind (array);
10038
10039 /* Make sure we really do have an array type before going further,
10040 to avoid a SEGV when trying to get the index type or the target
10041 type later down the road if the debug info generated by
10042 the compiler is incorrect or incomplete. */
10043 if (!ada_is_simple_array_type (value_type (array)))
10044 error (_("cannot take slice of non-array"));
10045
10046 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10047 == TYPE_CODE_PTR)
10048 {
10049 struct type *type0 = ada_check_typedef (value_type (array));
10050
10051 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10052 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
10053 else
10054 {
10055 struct type *arr_type0 =
10056 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
10057
10058 return ada_value_slice_from_ptr (array, arr_type0,
10059 longest_to_int (low_bound),
10060 longest_to_int (high_bound));
10061 }
10062 }
10063 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10064 return array;
10065 else if (high_bound < low_bound)
10066 return empty_array (value_type (array), low_bound);
10067 else
10068 return ada_value_slice (array, longest_to_int (low_bound),
10069 longest_to_int (high_bound));
10070 }
10071
10072 case UNOP_IN_RANGE:
10073 (*pos) += 2;
10074 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10075 type = check_typedef (exp->elts[pc + 1].type);
10076
10077 if (noside == EVAL_SKIP)
10078 goto nosideret;
10079
10080 switch (TYPE_CODE (type))
10081 {
10082 default:
10083 lim_warning (_("Membership test incompletely implemented; "
10084 "always returns true"));
10085 type = language_bool_type (exp->language_defn, exp->gdbarch);
10086 return value_from_longest (type, (LONGEST) 1);
10087
10088 case TYPE_CODE_RANGE:
10089 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10090 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
10091 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10092 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10093 type = language_bool_type (exp->language_defn, exp->gdbarch);
10094 return
10095 value_from_longest (type,
10096 (value_less (arg1, arg3)
10097 || value_equal (arg1, arg3))
10098 && (value_less (arg2, arg1)
10099 || value_equal (arg2, arg1)));
10100 }
10101
10102 case BINOP_IN_BOUNDS:
10103 (*pos) += 2;
10104 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10105 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10106
10107 if (noside == EVAL_SKIP)
10108 goto nosideret;
10109
10110 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10111 {
10112 type = language_bool_type (exp->language_defn, exp->gdbarch);
10113 return value_zero (type, not_lval);
10114 }
10115
10116 tem = longest_to_int (exp->elts[pc + 1].longconst);
10117
10118 type = ada_index_type (value_type (arg2), tem, "range");
10119 if (!type)
10120 type = value_type (arg1);
10121
10122 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10123 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
10124
10125 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10126 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10127 type = language_bool_type (exp->language_defn, exp->gdbarch);
10128 return
10129 value_from_longest (type,
10130 (value_less (arg1, arg3)
10131 || value_equal (arg1, arg3))
10132 && (value_less (arg2, arg1)
10133 || value_equal (arg2, arg1)));
10134
10135 case TERNOP_IN_RANGE:
10136 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10137 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10138 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10139
10140 if (noside == EVAL_SKIP)
10141 goto nosideret;
10142
10143 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10144 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10145 type = language_bool_type (exp->language_defn, exp->gdbarch);
10146 return
10147 value_from_longest (type,
10148 (value_less (arg1, arg3)
10149 || value_equal (arg1, arg3))
10150 && (value_less (arg2, arg1)
10151 || value_equal (arg2, arg1)));
10152
10153 case OP_ATR_FIRST:
10154 case OP_ATR_LAST:
10155 case OP_ATR_LENGTH:
10156 {
10157 struct type *type_arg;
10158
10159 if (exp->elts[*pos].opcode == OP_TYPE)
10160 {
10161 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10162 arg1 = NULL;
10163 type_arg = check_typedef (exp->elts[pc + 2].type);
10164 }
10165 else
10166 {
10167 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10168 type_arg = NULL;
10169 }
10170
10171 if (exp->elts[*pos].opcode != OP_LONG)
10172 error (_("Invalid operand to '%s"), ada_attribute_name (op));
10173 tem = longest_to_int (exp->elts[*pos + 2].longconst);
10174 *pos += 4;
10175
10176 if (noside == EVAL_SKIP)
10177 goto nosideret;
10178
10179 if (type_arg == NULL)
10180 {
10181 arg1 = ada_coerce_ref (arg1);
10182
10183 if (ada_is_constrained_packed_array_type (value_type (arg1)))
10184 arg1 = ada_coerce_to_simple_array (arg1);
10185
10186 type = ada_index_type (value_type (arg1), tem,
10187 ada_attribute_name (op));
10188 if (type == NULL)
10189 type = builtin_type (exp->gdbarch)->builtin_int;
10190
10191 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10192 return allocate_value (type);
10193
10194 switch (op)
10195 {
10196 default: /* Should never happen. */
10197 error (_("unexpected attribute encountered"));
10198 case OP_ATR_FIRST:
10199 return value_from_longest
10200 (type, ada_array_bound (arg1, tem, 0));
10201 case OP_ATR_LAST:
10202 return value_from_longest
10203 (type, ada_array_bound (arg1, tem, 1));
10204 case OP_ATR_LENGTH:
10205 return value_from_longest
10206 (type, ada_array_length (arg1, tem));
10207 }
10208 }
10209 else if (discrete_type_p (type_arg))
10210 {
10211 struct type *range_type;
10212 const char *name = ada_type_name (type_arg);
10213
10214 range_type = NULL;
10215 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
10216 range_type = to_fixed_range_type (type_arg, NULL);
10217 if (range_type == NULL)
10218 range_type = type_arg;
10219 switch (op)
10220 {
10221 default:
10222 error (_("unexpected attribute encountered"));
10223 case OP_ATR_FIRST:
10224 return value_from_longest
10225 (range_type, ada_discrete_type_low_bound (range_type));
10226 case OP_ATR_LAST:
10227 return value_from_longest
10228 (range_type, ada_discrete_type_high_bound (range_type));
10229 case OP_ATR_LENGTH:
10230 error (_("the 'length attribute applies only to array types"));
10231 }
10232 }
10233 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
10234 error (_("unimplemented type attribute"));
10235 else
10236 {
10237 LONGEST low, high;
10238
10239 if (ada_is_constrained_packed_array_type (type_arg))
10240 type_arg = decode_constrained_packed_array_type (type_arg);
10241
10242 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10243 if (type == NULL)
10244 type = builtin_type (exp->gdbarch)->builtin_int;
10245
10246 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10247 return allocate_value (type);
10248
10249 switch (op)
10250 {
10251 default:
10252 error (_("unexpected attribute encountered"));
10253 case OP_ATR_FIRST:
10254 low = ada_array_bound_from_type (type_arg, tem, 0);
10255 return value_from_longest (type, low);
10256 case OP_ATR_LAST:
10257 high = ada_array_bound_from_type (type_arg, tem, 1);
10258 return value_from_longest (type, high);
10259 case OP_ATR_LENGTH:
10260 low = ada_array_bound_from_type (type_arg, tem, 0);
10261 high = ada_array_bound_from_type (type_arg, tem, 1);
10262 return value_from_longest (type, high - low + 1);
10263 }
10264 }
10265 }
10266
10267 case OP_ATR_TAG:
10268 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10269 if (noside == EVAL_SKIP)
10270 goto nosideret;
10271
10272 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10273 return value_zero (ada_tag_type (arg1), not_lval);
10274
10275 return ada_value_tag (arg1);
10276
10277 case OP_ATR_MIN:
10278 case OP_ATR_MAX:
10279 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10280 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10281 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10282 if (noside == EVAL_SKIP)
10283 goto nosideret;
10284 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10285 return value_zero (value_type (arg1), not_lval);
10286 else
10287 {
10288 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10289 return value_binop (arg1, arg2,
10290 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
10291 }
10292
10293 case OP_ATR_MODULUS:
10294 {
10295 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
10296
10297 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10298 if (noside == EVAL_SKIP)
10299 goto nosideret;
10300
10301 if (!ada_is_modular_type (type_arg))
10302 error (_("'modulus must be applied to modular type"));
10303
10304 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
10305 ada_modulus (type_arg));
10306 }
10307
10308
10309 case OP_ATR_POS:
10310 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10311 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10312 if (noside == EVAL_SKIP)
10313 goto nosideret;
10314 type = builtin_type (exp->gdbarch)->builtin_int;
10315 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10316 return value_zero (type, not_lval);
10317 else
10318 return value_pos_atr (type, arg1);
10319
10320 case OP_ATR_SIZE:
10321 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10322 type = value_type (arg1);
10323
10324 /* If the argument is a reference, then dereference its type, since
10325 the user is really asking for the size of the actual object,
10326 not the size of the pointer. */
10327 if (TYPE_CODE (type) == TYPE_CODE_REF)
10328 type = TYPE_TARGET_TYPE (type);
10329
10330 if (noside == EVAL_SKIP)
10331 goto nosideret;
10332 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10333 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
10334 else
10335 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
10336 TARGET_CHAR_BIT * TYPE_LENGTH (type));
10337
10338 case OP_ATR_VAL:
10339 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10340 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10341 type = exp->elts[pc + 2].type;
10342 if (noside == EVAL_SKIP)
10343 goto nosideret;
10344 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10345 return value_zero (type, not_lval);
10346 else
10347 return value_val_atr (type, arg1);
10348
10349 case BINOP_EXP:
10350 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10351 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10352 if (noside == EVAL_SKIP)
10353 goto nosideret;
10354 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10355 return value_zero (value_type (arg1), not_lval);
10356 else
10357 {
10358 /* For integer exponentiation operations,
10359 only promote the first argument. */
10360 if (is_integral_type (value_type (arg2)))
10361 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10362 else
10363 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10364
10365 return value_binop (arg1, arg2, op);
10366 }
10367
10368 case UNOP_PLUS:
10369 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10370 if (noside == EVAL_SKIP)
10371 goto nosideret;
10372 else
10373 return arg1;
10374
10375 case UNOP_ABS:
10376 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10377 if (noside == EVAL_SKIP)
10378 goto nosideret;
10379 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10380 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
10381 return value_neg (arg1);
10382 else
10383 return arg1;
10384
10385 case UNOP_IND:
10386 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10387 if (noside == EVAL_SKIP)
10388 goto nosideret;
10389 type = ada_check_typedef (value_type (arg1));
10390 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10391 {
10392 if (ada_is_array_descriptor_type (type))
10393 /* GDB allows dereferencing GNAT array descriptors. */
10394 {
10395 struct type *arrType = ada_type_of_array (arg1, 0);
10396
10397 if (arrType == NULL)
10398 error (_("Attempt to dereference null array pointer."));
10399 return value_at_lazy (arrType, 0);
10400 }
10401 else if (TYPE_CODE (type) == TYPE_CODE_PTR
10402 || TYPE_CODE (type) == TYPE_CODE_REF
10403 /* In C you can dereference an array to get the 1st elt. */
10404 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
10405 {
10406 type = to_static_fixed_type
10407 (ada_aligned_type
10408 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10409 check_size (type);
10410 return value_zero (type, lval_memory);
10411 }
10412 else if (TYPE_CODE (type) == TYPE_CODE_INT)
10413 {
10414 /* GDB allows dereferencing an int. */
10415 if (expect_type == NULL)
10416 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10417 lval_memory);
10418 else
10419 {
10420 expect_type =
10421 to_static_fixed_type (ada_aligned_type (expect_type));
10422 return value_zero (expect_type, lval_memory);
10423 }
10424 }
10425 else
10426 error (_("Attempt to take contents of a non-pointer value."));
10427 }
10428 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
10429 type = ada_check_typedef (value_type (arg1));
10430
10431 if (TYPE_CODE (type) == TYPE_CODE_INT)
10432 /* GDB allows dereferencing an int. If we were given
10433 the expect_type, then use that as the target type.
10434 Otherwise, assume that the target type is an int. */
10435 {
10436 if (expect_type != NULL)
10437 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10438 arg1));
10439 else
10440 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10441 (CORE_ADDR) value_as_address (arg1));
10442 }
10443
10444 if (ada_is_array_descriptor_type (type))
10445 /* GDB allows dereferencing GNAT array descriptors. */
10446 return ada_coerce_to_simple_array (arg1);
10447 else
10448 return ada_value_ind (arg1);
10449
10450 case STRUCTOP_STRUCT:
10451 tem = longest_to_int (exp->elts[pc + 1].longconst);
10452 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
10453 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10454 if (noside == EVAL_SKIP)
10455 goto nosideret;
10456 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10457 {
10458 struct type *type1 = value_type (arg1);
10459
10460 if (ada_is_tagged_type (type1, 1))
10461 {
10462 type = ada_lookup_struct_elt_type (type1,
10463 &exp->elts[pc + 2].string,
10464 1, 1, NULL);
10465 if (type == NULL)
10466 /* In this case, we assume that the field COULD exist
10467 in some extension of the type. Return an object of
10468 "type" void, which will match any formal
10469 (see ada_type_match). */
10470 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
10471 lval_memory);
10472 }
10473 else
10474 type =
10475 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
10476 0, NULL);
10477
10478 return value_zero (ada_aligned_type (type), lval_memory);
10479 }
10480 else
10481 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
10482 arg1 = unwrap_value (arg1);
10483 return ada_to_fixed_value (arg1);
10484
10485 case OP_TYPE:
10486 /* The value is not supposed to be used. This is here to make it
10487 easier to accommodate expressions that contain types. */
10488 (*pos) += 2;
10489 if (noside == EVAL_SKIP)
10490 goto nosideret;
10491 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10492 return allocate_value (exp->elts[pc + 1].type);
10493 else
10494 error (_("Attempt to use a type name as an expression"));
10495
10496 case OP_AGGREGATE:
10497 case OP_CHOICES:
10498 case OP_OTHERS:
10499 case OP_DISCRETE_RANGE:
10500 case OP_POSITIONAL:
10501 case OP_NAME:
10502 if (noside == EVAL_NORMAL)
10503 switch (op)
10504 {
10505 case OP_NAME:
10506 error (_("Undefined name, ambiguous name, or renaming used in "
10507 "component association: %s."), &exp->elts[pc+2].string);
10508 case OP_AGGREGATE:
10509 error (_("Aggregates only allowed on the right of an assignment"));
10510 default:
10511 internal_error (__FILE__, __LINE__,
10512 _("aggregate apparently mangled"));
10513 }
10514
10515 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10516 *pos += oplen - 1;
10517 for (tem = 0; tem < nargs; tem += 1)
10518 ada_evaluate_subexp (NULL, exp, pos, noside);
10519 goto nosideret;
10520 }
10521
10522 nosideret:
10523 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
10524 }
10525 \f
10526
10527 /* Fixed point */
10528
10529 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
10530 type name that encodes the 'small and 'delta information.
10531 Otherwise, return NULL. */
10532
10533 static const char *
10534 fixed_type_info (struct type *type)
10535 {
10536 const char *name = ada_type_name (type);
10537 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
10538
10539 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
10540 {
10541 const char *tail = strstr (name, "___XF_");
10542
10543 if (tail == NULL)
10544 return NULL;
10545 else
10546 return tail + 5;
10547 }
10548 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
10549 return fixed_type_info (TYPE_TARGET_TYPE (type));
10550 else
10551 return NULL;
10552 }
10553
10554 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
10555
10556 int
10557 ada_is_fixed_point_type (struct type *type)
10558 {
10559 return fixed_type_info (type) != NULL;
10560 }
10561
10562 /* Return non-zero iff TYPE represents a System.Address type. */
10563
10564 int
10565 ada_is_system_address_type (struct type *type)
10566 {
10567 return (TYPE_NAME (type)
10568 && strcmp (TYPE_NAME (type), "system__address") == 0);
10569 }
10570
10571 /* Assuming that TYPE is the representation of an Ada fixed-point
10572 type, return its delta, or -1 if the type is malformed and the
10573 delta cannot be determined. */
10574
10575 DOUBLEST
10576 ada_delta (struct type *type)
10577 {
10578 const char *encoding = fixed_type_info (type);
10579 DOUBLEST num, den;
10580
10581 /* Strictly speaking, num and den are encoded as integer. However,
10582 they may not fit into a long, and they will have to be converted
10583 to DOUBLEST anyway. So scan them as DOUBLEST. */
10584 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10585 &num, &den) < 2)
10586 return -1.0;
10587 else
10588 return num / den;
10589 }
10590
10591 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
10592 factor ('SMALL value) associated with the type. */
10593
10594 static DOUBLEST
10595 scaling_factor (struct type *type)
10596 {
10597 const char *encoding = fixed_type_info (type);
10598 DOUBLEST num0, den0, num1, den1;
10599 int n;
10600
10601 /* Strictly speaking, num's and den's are encoded as integer. However,
10602 they may not fit into a long, and they will have to be converted
10603 to DOUBLEST anyway. So scan them as DOUBLEST. */
10604 n = sscanf (encoding,
10605 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
10606 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10607 &num0, &den0, &num1, &den1);
10608
10609 if (n < 2)
10610 return 1.0;
10611 else if (n == 4)
10612 return num1 / den1;
10613 else
10614 return num0 / den0;
10615 }
10616
10617
10618 /* Assuming that X is the representation of a value of fixed-point
10619 type TYPE, return its floating-point equivalent. */
10620
10621 DOUBLEST
10622 ada_fixed_to_float (struct type *type, LONGEST x)
10623 {
10624 return (DOUBLEST) x *scaling_factor (type);
10625 }
10626
10627 /* The representation of a fixed-point value of type TYPE
10628 corresponding to the value X. */
10629
10630 LONGEST
10631 ada_float_to_fixed (struct type *type, DOUBLEST x)
10632 {
10633 return (LONGEST) (x / scaling_factor (type) + 0.5);
10634 }
10635
10636 \f
10637
10638 /* Range types */
10639
10640 /* Scan STR beginning at position K for a discriminant name, and
10641 return the value of that discriminant field of DVAL in *PX. If
10642 PNEW_K is not null, put the position of the character beyond the
10643 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
10644 not alter *PX and *PNEW_K if unsuccessful. */
10645
10646 static int
10647 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
10648 int *pnew_k)
10649 {
10650 static char *bound_buffer = NULL;
10651 static size_t bound_buffer_len = 0;
10652 char *bound;
10653 char *pend;
10654 struct value *bound_val;
10655
10656 if (dval == NULL || str == NULL || str[k] == '\0')
10657 return 0;
10658
10659 pend = strstr (str + k, "__");
10660 if (pend == NULL)
10661 {
10662 bound = str + k;
10663 k += strlen (bound);
10664 }
10665 else
10666 {
10667 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
10668 bound = bound_buffer;
10669 strncpy (bound_buffer, str + k, pend - (str + k));
10670 bound[pend - (str + k)] = '\0';
10671 k = pend - str;
10672 }
10673
10674 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
10675 if (bound_val == NULL)
10676 return 0;
10677
10678 *px = value_as_long (bound_val);
10679 if (pnew_k != NULL)
10680 *pnew_k = k;
10681 return 1;
10682 }
10683
10684 /* Value of variable named NAME in the current environment. If
10685 no such variable found, then if ERR_MSG is null, returns 0, and
10686 otherwise causes an error with message ERR_MSG. */
10687
10688 static struct value *
10689 get_var_value (char *name, char *err_msg)
10690 {
10691 struct ada_symbol_info *syms;
10692 int nsyms;
10693
10694 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
10695 &syms, 1);
10696
10697 if (nsyms != 1)
10698 {
10699 if (err_msg == NULL)
10700 return 0;
10701 else
10702 error (("%s"), err_msg);
10703 }
10704
10705 return value_of_variable (syms[0].sym, syms[0].block);
10706 }
10707
10708 /* Value of integer variable named NAME in the current environment. If
10709 no such variable found, returns 0, and sets *FLAG to 0. If
10710 successful, sets *FLAG to 1. */
10711
10712 LONGEST
10713 get_int_var_value (char *name, int *flag)
10714 {
10715 struct value *var_val = get_var_value (name, 0);
10716
10717 if (var_val == 0)
10718 {
10719 if (flag != NULL)
10720 *flag = 0;
10721 return 0;
10722 }
10723 else
10724 {
10725 if (flag != NULL)
10726 *flag = 1;
10727 return value_as_long (var_val);
10728 }
10729 }
10730
10731
10732 /* Return a range type whose base type is that of the range type named
10733 NAME in the current environment, and whose bounds are calculated
10734 from NAME according to the GNAT range encoding conventions.
10735 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
10736 corresponding range type from debug information; fall back to using it
10737 if symbol lookup fails. If a new type must be created, allocate it
10738 like ORIG_TYPE was. The bounds information, in general, is encoded
10739 in NAME, the base type given in the named range type. */
10740
10741 static struct type *
10742 to_fixed_range_type (struct type *raw_type, struct value *dval)
10743 {
10744 const char *name;
10745 struct type *base_type;
10746 char *subtype_info;
10747
10748 gdb_assert (raw_type != NULL);
10749 gdb_assert (TYPE_NAME (raw_type) != NULL);
10750
10751 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
10752 base_type = TYPE_TARGET_TYPE (raw_type);
10753 else
10754 base_type = raw_type;
10755
10756 name = TYPE_NAME (raw_type);
10757 subtype_info = strstr (name, "___XD");
10758 if (subtype_info == NULL)
10759 {
10760 LONGEST L = ada_discrete_type_low_bound (raw_type);
10761 LONGEST U = ada_discrete_type_high_bound (raw_type);
10762
10763 if (L < INT_MIN || U > INT_MAX)
10764 return raw_type;
10765 else
10766 return create_range_type (alloc_type_copy (raw_type), raw_type,
10767 ada_discrete_type_low_bound (raw_type),
10768 ada_discrete_type_high_bound (raw_type));
10769 }
10770 else
10771 {
10772 static char *name_buf = NULL;
10773 static size_t name_len = 0;
10774 int prefix_len = subtype_info - name;
10775 LONGEST L, U;
10776 struct type *type;
10777 char *bounds_str;
10778 int n;
10779
10780 GROW_VECT (name_buf, name_len, prefix_len + 5);
10781 strncpy (name_buf, name, prefix_len);
10782 name_buf[prefix_len] = '\0';
10783
10784 subtype_info += 5;
10785 bounds_str = strchr (subtype_info, '_');
10786 n = 1;
10787
10788 if (*subtype_info == 'L')
10789 {
10790 if (!ada_scan_number (bounds_str, n, &L, &n)
10791 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
10792 return raw_type;
10793 if (bounds_str[n] == '_')
10794 n += 2;
10795 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
10796 n += 1;
10797 subtype_info += 1;
10798 }
10799 else
10800 {
10801 int ok;
10802
10803 strcpy (name_buf + prefix_len, "___L");
10804 L = get_int_var_value (name_buf, &ok);
10805 if (!ok)
10806 {
10807 lim_warning (_("Unknown lower bound, using 1."));
10808 L = 1;
10809 }
10810 }
10811
10812 if (*subtype_info == 'U')
10813 {
10814 if (!ada_scan_number (bounds_str, n, &U, &n)
10815 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
10816 return raw_type;
10817 }
10818 else
10819 {
10820 int ok;
10821
10822 strcpy (name_buf + prefix_len, "___U");
10823 U = get_int_var_value (name_buf, &ok);
10824 if (!ok)
10825 {
10826 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
10827 U = L;
10828 }
10829 }
10830
10831 type = create_range_type (alloc_type_copy (raw_type), base_type, L, U);
10832 TYPE_NAME (type) = name;
10833 return type;
10834 }
10835 }
10836
10837 /* True iff NAME is the name of a range type. */
10838
10839 int
10840 ada_is_range_type_name (const char *name)
10841 {
10842 return (name != NULL && strstr (name, "___XD"));
10843 }
10844 \f
10845
10846 /* Modular types */
10847
10848 /* True iff TYPE is an Ada modular type. */
10849
10850 int
10851 ada_is_modular_type (struct type *type)
10852 {
10853 struct type *subranged_type = get_base_type (type);
10854
10855 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
10856 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
10857 && TYPE_UNSIGNED (subranged_type));
10858 }
10859
10860 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
10861
10862 ULONGEST
10863 ada_modulus (struct type *type)
10864 {
10865 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
10866 }
10867 \f
10868
10869 /* Ada exception catchpoint support:
10870 ---------------------------------
10871
10872 We support 3 kinds of exception catchpoints:
10873 . catchpoints on Ada exceptions
10874 . catchpoints on unhandled Ada exceptions
10875 . catchpoints on failed assertions
10876
10877 Exceptions raised during failed assertions, or unhandled exceptions
10878 could perfectly be caught with the general catchpoint on Ada exceptions.
10879 However, we can easily differentiate these two special cases, and having
10880 the option to distinguish these two cases from the rest can be useful
10881 to zero-in on certain situations.
10882
10883 Exception catchpoints are a specialized form of breakpoint,
10884 since they rely on inserting breakpoints inside known routines
10885 of the GNAT runtime. The implementation therefore uses a standard
10886 breakpoint structure of the BP_BREAKPOINT type, but with its own set
10887 of breakpoint_ops.
10888
10889 Support in the runtime for exception catchpoints have been changed
10890 a few times already, and these changes affect the implementation
10891 of these catchpoints. In order to be able to support several
10892 variants of the runtime, we use a sniffer that will determine
10893 the runtime variant used by the program being debugged. */
10894
10895 /* The different types of catchpoints that we introduced for catching
10896 Ada exceptions. */
10897
10898 enum exception_catchpoint_kind
10899 {
10900 ex_catch_exception,
10901 ex_catch_exception_unhandled,
10902 ex_catch_assert
10903 };
10904
10905 /* Ada's standard exceptions. */
10906
10907 static char *standard_exc[] = {
10908 "constraint_error",
10909 "program_error",
10910 "storage_error",
10911 "tasking_error"
10912 };
10913
10914 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
10915
10916 /* A structure that describes how to support exception catchpoints
10917 for a given executable. */
10918
10919 struct exception_support_info
10920 {
10921 /* The name of the symbol to break on in order to insert
10922 a catchpoint on exceptions. */
10923 const char *catch_exception_sym;
10924
10925 /* The name of the symbol to break on in order to insert
10926 a catchpoint on unhandled exceptions. */
10927 const char *catch_exception_unhandled_sym;
10928
10929 /* The name of the symbol to break on in order to insert
10930 a catchpoint on failed assertions. */
10931 const char *catch_assert_sym;
10932
10933 /* Assuming that the inferior just triggered an unhandled exception
10934 catchpoint, this function is responsible for returning the address
10935 in inferior memory where the name of that exception is stored.
10936 Return zero if the address could not be computed. */
10937 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
10938 };
10939
10940 static CORE_ADDR ada_unhandled_exception_name_addr (void);
10941 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
10942
10943 /* The following exception support info structure describes how to
10944 implement exception catchpoints with the latest version of the
10945 Ada runtime (as of 2007-03-06). */
10946
10947 static const struct exception_support_info default_exception_support_info =
10948 {
10949 "__gnat_debug_raise_exception", /* catch_exception_sym */
10950 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10951 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
10952 ada_unhandled_exception_name_addr
10953 };
10954
10955 /* The following exception support info structure describes how to
10956 implement exception catchpoints with a slightly older version
10957 of the Ada runtime. */
10958
10959 static const struct exception_support_info exception_support_info_fallback =
10960 {
10961 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
10962 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10963 "system__assertions__raise_assert_failure", /* catch_assert_sym */
10964 ada_unhandled_exception_name_addr_from_raise
10965 };
10966
10967 /* Return nonzero if we can detect the exception support routines
10968 described in EINFO.
10969
10970 This function errors out if an abnormal situation is detected
10971 (for instance, if we find the exception support routines, but
10972 that support is found to be incomplete). */
10973
10974 static int
10975 ada_has_this_exception_support (const struct exception_support_info *einfo)
10976 {
10977 struct symbol *sym;
10978
10979 /* The symbol we're looking up is provided by a unit in the GNAT runtime
10980 that should be compiled with debugging information. As a result, we
10981 expect to find that symbol in the symtabs. */
10982
10983 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
10984 if (sym == NULL)
10985 {
10986 /* Perhaps we did not find our symbol because the Ada runtime was
10987 compiled without debugging info, or simply stripped of it.
10988 It happens on some GNU/Linux distributions for instance, where
10989 users have to install a separate debug package in order to get
10990 the runtime's debugging info. In that situation, let the user
10991 know why we cannot insert an Ada exception catchpoint.
10992
10993 Note: Just for the purpose of inserting our Ada exception
10994 catchpoint, we could rely purely on the associated minimal symbol.
10995 But we would be operating in degraded mode anyway, since we are
10996 still lacking the debugging info needed later on to extract
10997 the name of the exception being raised (this name is printed in
10998 the catchpoint message, and is also used when trying to catch
10999 a specific exception). We do not handle this case for now. */
11000 if (lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL))
11001 error (_("Your Ada runtime appears to be missing some debugging "
11002 "information.\nCannot insert Ada exception catchpoint "
11003 "in this configuration."));
11004
11005 return 0;
11006 }
11007
11008 /* Make sure that the symbol we found corresponds to a function. */
11009
11010 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11011 error (_("Symbol \"%s\" is not a function (class = %d)"),
11012 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11013
11014 return 1;
11015 }
11016
11017 /* Inspect the Ada runtime and determine which exception info structure
11018 should be used to provide support for exception catchpoints.
11019
11020 This function will always set the per-inferior exception_info,
11021 or raise an error. */
11022
11023 static void
11024 ada_exception_support_info_sniffer (void)
11025 {
11026 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11027
11028 /* If the exception info is already known, then no need to recompute it. */
11029 if (data->exception_info != NULL)
11030 return;
11031
11032 /* Check the latest (default) exception support info. */
11033 if (ada_has_this_exception_support (&default_exception_support_info))
11034 {
11035 data->exception_info = &default_exception_support_info;
11036 return;
11037 }
11038
11039 /* Try our fallback exception suport info. */
11040 if (ada_has_this_exception_support (&exception_support_info_fallback))
11041 {
11042 data->exception_info = &exception_support_info_fallback;
11043 return;
11044 }
11045
11046 /* Sometimes, it is normal for us to not be able to find the routine
11047 we are looking for. This happens when the program is linked with
11048 the shared version of the GNAT runtime, and the program has not been
11049 started yet. Inform the user of these two possible causes if
11050 applicable. */
11051
11052 if (ada_update_initial_language (language_unknown) != language_ada)
11053 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11054
11055 /* If the symbol does not exist, then check that the program is
11056 already started, to make sure that shared libraries have been
11057 loaded. If it is not started, this may mean that the symbol is
11058 in a shared library. */
11059
11060 if (ptid_get_pid (inferior_ptid) == 0)
11061 error (_("Unable to insert catchpoint. Try to start the program first."));
11062
11063 /* At this point, we know that we are debugging an Ada program and
11064 that the inferior has been started, but we still are not able to
11065 find the run-time symbols. That can mean that we are in
11066 configurable run time mode, or that a-except as been optimized
11067 out by the linker... In any case, at this point it is not worth
11068 supporting this feature. */
11069
11070 error (_("Cannot insert Ada exception catchpoints in this configuration."));
11071 }
11072
11073 /* True iff FRAME is very likely to be that of a function that is
11074 part of the runtime system. This is all very heuristic, but is
11075 intended to be used as advice as to what frames are uninteresting
11076 to most users. */
11077
11078 static int
11079 is_known_support_routine (struct frame_info *frame)
11080 {
11081 struct symtab_and_line sal;
11082 const char *func_name;
11083 enum language func_lang;
11084 int i;
11085
11086 /* If this code does not have any debugging information (no symtab),
11087 This cannot be any user code. */
11088
11089 find_frame_sal (frame, &sal);
11090 if (sal.symtab == NULL)
11091 return 1;
11092
11093 /* If there is a symtab, but the associated source file cannot be
11094 located, then assume this is not user code: Selecting a frame
11095 for which we cannot display the code would not be very helpful
11096 for the user. This should also take care of case such as VxWorks
11097 where the kernel has some debugging info provided for a few units. */
11098
11099 if (symtab_to_fullname (sal.symtab) == NULL)
11100 return 1;
11101
11102 /* Check the unit filename againt the Ada runtime file naming.
11103 We also check the name of the objfile against the name of some
11104 known system libraries that sometimes come with debugging info
11105 too. */
11106
11107 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11108 {
11109 re_comp (known_runtime_file_name_patterns[i]);
11110 if (re_exec (lbasename (sal.symtab->filename)))
11111 return 1;
11112 if (sal.symtab->objfile != NULL
11113 && re_exec (sal.symtab->objfile->name))
11114 return 1;
11115 }
11116
11117 /* Check whether the function is a GNAT-generated entity. */
11118
11119 find_frame_funname (frame, &func_name, &func_lang, NULL);
11120 if (func_name == NULL)
11121 return 1;
11122
11123 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11124 {
11125 re_comp (known_auxiliary_function_name_patterns[i]);
11126 if (re_exec (func_name))
11127 return 1;
11128 }
11129
11130 return 0;
11131 }
11132
11133 /* Find the first frame that contains debugging information and that is not
11134 part of the Ada run-time, starting from FI and moving upward. */
11135
11136 void
11137 ada_find_printable_frame (struct frame_info *fi)
11138 {
11139 for (; fi != NULL; fi = get_prev_frame (fi))
11140 {
11141 if (!is_known_support_routine (fi))
11142 {
11143 select_frame (fi);
11144 break;
11145 }
11146 }
11147
11148 }
11149
11150 /* Assuming that the inferior just triggered an unhandled exception
11151 catchpoint, return the address in inferior memory where the name
11152 of the exception is stored.
11153
11154 Return zero if the address could not be computed. */
11155
11156 static CORE_ADDR
11157 ada_unhandled_exception_name_addr (void)
11158 {
11159 return parse_and_eval_address ("e.full_name");
11160 }
11161
11162 /* Same as ada_unhandled_exception_name_addr, except that this function
11163 should be used when the inferior uses an older version of the runtime,
11164 where the exception name needs to be extracted from a specific frame
11165 several frames up in the callstack. */
11166
11167 static CORE_ADDR
11168 ada_unhandled_exception_name_addr_from_raise (void)
11169 {
11170 int frame_level;
11171 struct frame_info *fi;
11172 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11173
11174 /* To determine the name of this exception, we need to select
11175 the frame corresponding to RAISE_SYM_NAME. This frame is
11176 at least 3 levels up, so we simply skip the first 3 frames
11177 without checking the name of their associated function. */
11178 fi = get_current_frame ();
11179 for (frame_level = 0; frame_level < 3; frame_level += 1)
11180 if (fi != NULL)
11181 fi = get_prev_frame (fi);
11182
11183 while (fi != NULL)
11184 {
11185 const char *func_name;
11186 enum language func_lang;
11187
11188 find_frame_funname (fi, &func_name, &func_lang, NULL);
11189 if (func_name != NULL
11190 && strcmp (func_name, data->exception_info->catch_exception_sym) == 0)
11191 break; /* We found the frame we were looking for... */
11192 fi = get_prev_frame (fi);
11193 }
11194
11195 if (fi == NULL)
11196 return 0;
11197
11198 select_frame (fi);
11199 return parse_and_eval_address ("id.full_name");
11200 }
11201
11202 /* Assuming the inferior just triggered an Ada exception catchpoint
11203 (of any type), return the address in inferior memory where the name
11204 of the exception is stored, if applicable.
11205
11206 Return zero if the address could not be computed, or if not relevant. */
11207
11208 static CORE_ADDR
11209 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
11210 struct breakpoint *b)
11211 {
11212 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11213
11214 switch (ex)
11215 {
11216 case ex_catch_exception:
11217 return (parse_and_eval_address ("e.full_name"));
11218 break;
11219
11220 case ex_catch_exception_unhandled:
11221 return data->exception_info->unhandled_exception_name_addr ();
11222 break;
11223
11224 case ex_catch_assert:
11225 return 0; /* Exception name is not relevant in this case. */
11226 break;
11227
11228 default:
11229 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11230 break;
11231 }
11232
11233 return 0; /* Should never be reached. */
11234 }
11235
11236 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
11237 any error that ada_exception_name_addr_1 might cause to be thrown.
11238 When an error is intercepted, a warning with the error message is printed,
11239 and zero is returned. */
11240
11241 static CORE_ADDR
11242 ada_exception_name_addr (enum exception_catchpoint_kind ex,
11243 struct breakpoint *b)
11244 {
11245 volatile struct gdb_exception e;
11246 CORE_ADDR result = 0;
11247
11248 TRY_CATCH (e, RETURN_MASK_ERROR)
11249 {
11250 result = ada_exception_name_addr_1 (ex, b);
11251 }
11252
11253 if (e.reason < 0)
11254 {
11255 warning (_("failed to get exception name: %s"), e.message);
11256 return 0;
11257 }
11258
11259 return result;
11260 }
11261
11262 static struct symtab_and_line ada_exception_sal (enum exception_catchpoint_kind,
11263 char *, char **,
11264 const struct breakpoint_ops **);
11265 static char *ada_exception_catchpoint_cond_string (const char *excep_string);
11266
11267 /* Ada catchpoints.
11268
11269 In the case of catchpoints on Ada exceptions, the catchpoint will
11270 stop the target on every exception the program throws. When a user
11271 specifies the name of a specific exception, we translate this
11272 request into a condition expression (in text form), and then parse
11273 it into an expression stored in each of the catchpoint's locations.
11274 We then use this condition to check whether the exception that was
11275 raised is the one the user is interested in. If not, then the
11276 target is resumed again. We store the name of the requested
11277 exception, in order to be able to re-set the condition expression
11278 when symbols change. */
11279
11280 /* An instance of this type is used to represent an Ada catchpoint
11281 breakpoint location. It includes a "struct bp_location" as a kind
11282 of base class; users downcast to "struct bp_location *" when
11283 needed. */
11284
11285 struct ada_catchpoint_location
11286 {
11287 /* The base class. */
11288 struct bp_location base;
11289
11290 /* The condition that checks whether the exception that was raised
11291 is the specific exception the user specified on catchpoint
11292 creation. */
11293 struct expression *excep_cond_expr;
11294 };
11295
11296 /* Implement the DTOR method in the bp_location_ops structure for all
11297 Ada exception catchpoint kinds. */
11298
11299 static void
11300 ada_catchpoint_location_dtor (struct bp_location *bl)
11301 {
11302 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
11303
11304 xfree (al->excep_cond_expr);
11305 }
11306
11307 /* The vtable to be used in Ada catchpoint locations. */
11308
11309 static const struct bp_location_ops ada_catchpoint_location_ops =
11310 {
11311 ada_catchpoint_location_dtor
11312 };
11313
11314 /* An instance of this type is used to represent an Ada catchpoint.
11315 It includes a "struct breakpoint" as a kind of base class; users
11316 downcast to "struct breakpoint *" when needed. */
11317
11318 struct ada_catchpoint
11319 {
11320 /* The base class. */
11321 struct breakpoint base;
11322
11323 /* The name of the specific exception the user specified. */
11324 char *excep_string;
11325 };
11326
11327 /* Parse the exception condition string in the context of each of the
11328 catchpoint's locations, and store them for later evaluation. */
11329
11330 static void
11331 create_excep_cond_exprs (struct ada_catchpoint *c)
11332 {
11333 struct cleanup *old_chain;
11334 struct bp_location *bl;
11335 char *cond_string;
11336
11337 /* Nothing to do if there's no specific exception to catch. */
11338 if (c->excep_string == NULL)
11339 return;
11340
11341 /* Same if there are no locations... */
11342 if (c->base.loc == NULL)
11343 return;
11344
11345 /* Compute the condition expression in text form, from the specific
11346 expection we want to catch. */
11347 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
11348 old_chain = make_cleanup (xfree, cond_string);
11349
11350 /* Iterate over all the catchpoint's locations, and parse an
11351 expression for each. */
11352 for (bl = c->base.loc; bl != NULL; bl = bl->next)
11353 {
11354 struct ada_catchpoint_location *ada_loc
11355 = (struct ada_catchpoint_location *) bl;
11356 struct expression *exp = NULL;
11357
11358 if (!bl->shlib_disabled)
11359 {
11360 volatile struct gdb_exception e;
11361 char *s;
11362
11363 s = cond_string;
11364 TRY_CATCH (e, RETURN_MASK_ERROR)
11365 {
11366 exp = parse_exp_1 (&s, bl->address,
11367 block_for_pc (bl->address), 0);
11368 }
11369 if (e.reason < 0)
11370 warning (_("failed to reevaluate internal exception condition "
11371 "for catchpoint %d: %s"),
11372 c->base.number, e.message);
11373 }
11374
11375 ada_loc->excep_cond_expr = exp;
11376 }
11377
11378 do_cleanups (old_chain);
11379 }
11380
11381 /* Implement the DTOR method in the breakpoint_ops structure for all
11382 exception catchpoint kinds. */
11383
11384 static void
11385 dtor_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
11386 {
11387 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11388
11389 xfree (c->excep_string);
11390
11391 bkpt_breakpoint_ops.dtor (b);
11392 }
11393
11394 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11395 structure for all exception catchpoint kinds. */
11396
11397 static struct bp_location *
11398 allocate_location_exception (enum exception_catchpoint_kind ex,
11399 struct breakpoint *self)
11400 {
11401 struct ada_catchpoint_location *loc;
11402
11403 loc = XNEW (struct ada_catchpoint_location);
11404 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
11405 loc->excep_cond_expr = NULL;
11406 return &loc->base;
11407 }
11408
11409 /* Implement the RE_SET method in the breakpoint_ops structure for all
11410 exception catchpoint kinds. */
11411
11412 static void
11413 re_set_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
11414 {
11415 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11416
11417 /* Call the base class's method. This updates the catchpoint's
11418 locations. */
11419 bkpt_breakpoint_ops.re_set (b);
11420
11421 /* Reparse the exception conditional expressions. One for each
11422 location. */
11423 create_excep_cond_exprs (c);
11424 }
11425
11426 /* Returns true if we should stop for this breakpoint hit. If the
11427 user specified a specific exception, we only want to cause a stop
11428 if the program thrown that exception. */
11429
11430 static int
11431 should_stop_exception (const struct bp_location *bl)
11432 {
11433 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
11434 const struct ada_catchpoint_location *ada_loc
11435 = (const struct ada_catchpoint_location *) bl;
11436 volatile struct gdb_exception ex;
11437 int stop;
11438
11439 /* With no specific exception, should always stop. */
11440 if (c->excep_string == NULL)
11441 return 1;
11442
11443 if (ada_loc->excep_cond_expr == NULL)
11444 {
11445 /* We will have a NULL expression if back when we were creating
11446 the expressions, this location's had failed to parse. */
11447 return 1;
11448 }
11449
11450 stop = 1;
11451 TRY_CATCH (ex, RETURN_MASK_ALL)
11452 {
11453 struct value *mark;
11454
11455 mark = value_mark ();
11456 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
11457 value_free_to_mark (mark);
11458 }
11459 if (ex.reason < 0)
11460 exception_fprintf (gdb_stderr, ex,
11461 _("Error in testing exception condition:\n"));
11462 return stop;
11463 }
11464
11465 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
11466 for all exception catchpoint kinds. */
11467
11468 static void
11469 check_status_exception (enum exception_catchpoint_kind ex, bpstat bs)
11470 {
11471 bs->stop = should_stop_exception (bs->bp_location_at);
11472 }
11473
11474 /* Implement the PRINT_IT method in the breakpoint_ops structure
11475 for all exception catchpoint kinds. */
11476
11477 static enum print_stop_action
11478 print_it_exception (enum exception_catchpoint_kind ex, bpstat bs)
11479 {
11480 struct ui_out *uiout = current_uiout;
11481 struct breakpoint *b = bs->breakpoint_at;
11482
11483 annotate_catchpoint (b->number);
11484
11485 if (ui_out_is_mi_like_p (uiout))
11486 {
11487 ui_out_field_string (uiout, "reason",
11488 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
11489 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
11490 }
11491
11492 ui_out_text (uiout,
11493 b->disposition == disp_del ? "\nTemporary catchpoint "
11494 : "\nCatchpoint ");
11495 ui_out_field_int (uiout, "bkptno", b->number);
11496 ui_out_text (uiout, ", ");
11497
11498 switch (ex)
11499 {
11500 case ex_catch_exception:
11501 case ex_catch_exception_unhandled:
11502 {
11503 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
11504 char exception_name[256];
11505
11506 if (addr != 0)
11507 {
11508 read_memory (addr, exception_name, sizeof (exception_name) - 1);
11509 exception_name [sizeof (exception_name) - 1] = '\0';
11510 }
11511 else
11512 {
11513 /* For some reason, we were unable to read the exception
11514 name. This could happen if the Runtime was compiled
11515 without debugging info, for instance. In that case,
11516 just replace the exception name by the generic string
11517 "exception" - it will read as "an exception" in the
11518 notification we are about to print. */
11519 memcpy (exception_name, "exception", sizeof ("exception"));
11520 }
11521 /* In the case of unhandled exception breakpoints, we print
11522 the exception name as "unhandled EXCEPTION_NAME", to make
11523 it clearer to the user which kind of catchpoint just got
11524 hit. We used ui_out_text to make sure that this extra
11525 info does not pollute the exception name in the MI case. */
11526 if (ex == ex_catch_exception_unhandled)
11527 ui_out_text (uiout, "unhandled ");
11528 ui_out_field_string (uiout, "exception-name", exception_name);
11529 }
11530 break;
11531 case ex_catch_assert:
11532 /* In this case, the name of the exception is not really
11533 important. Just print "failed assertion" to make it clearer
11534 that his program just hit an assertion-failure catchpoint.
11535 We used ui_out_text because this info does not belong in
11536 the MI output. */
11537 ui_out_text (uiout, "failed assertion");
11538 break;
11539 }
11540 ui_out_text (uiout, " at ");
11541 ada_find_printable_frame (get_current_frame ());
11542
11543 return PRINT_SRC_AND_LOC;
11544 }
11545
11546 /* Implement the PRINT_ONE method in the breakpoint_ops structure
11547 for all exception catchpoint kinds. */
11548
11549 static void
11550 print_one_exception (enum exception_catchpoint_kind ex,
11551 struct breakpoint *b, struct bp_location **last_loc)
11552 {
11553 struct ui_out *uiout = current_uiout;
11554 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11555 struct value_print_options opts;
11556
11557 get_user_print_options (&opts);
11558 if (opts.addressprint)
11559 {
11560 annotate_field (4);
11561 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
11562 }
11563
11564 annotate_field (5);
11565 *last_loc = b->loc;
11566 switch (ex)
11567 {
11568 case ex_catch_exception:
11569 if (c->excep_string != NULL)
11570 {
11571 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11572
11573 ui_out_field_string (uiout, "what", msg);
11574 xfree (msg);
11575 }
11576 else
11577 ui_out_field_string (uiout, "what", "all Ada exceptions");
11578
11579 break;
11580
11581 case ex_catch_exception_unhandled:
11582 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
11583 break;
11584
11585 case ex_catch_assert:
11586 ui_out_field_string (uiout, "what", "failed Ada assertions");
11587 break;
11588
11589 default:
11590 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11591 break;
11592 }
11593 }
11594
11595 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
11596 for all exception catchpoint kinds. */
11597
11598 static void
11599 print_mention_exception (enum exception_catchpoint_kind ex,
11600 struct breakpoint *b)
11601 {
11602 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11603 struct ui_out *uiout = current_uiout;
11604
11605 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
11606 : _("Catchpoint "));
11607 ui_out_field_int (uiout, "bkptno", b->number);
11608 ui_out_text (uiout, ": ");
11609
11610 switch (ex)
11611 {
11612 case ex_catch_exception:
11613 if (c->excep_string != NULL)
11614 {
11615 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11616 struct cleanup *old_chain = make_cleanup (xfree, info);
11617
11618 ui_out_text (uiout, info);
11619 do_cleanups (old_chain);
11620 }
11621 else
11622 ui_out_text (uiout, _("all Ada exceptions"));
11623 break;
11624
11625 case ex_catch_exception_unhandled:
11626 ui_out_text (uiout, _("unhandled Ada exceptions"));
11627 break;
11628
11629 case ex_catch_assert:
11630 ui_out_text (uiout, _("failed Ada assertions"));
11631 break;
11632
11633 default:
11634 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11635 break;
11636 }
11637 }
11638
11639 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
11640 for all exception catchpoint kinds. */
11641
11642 static void
11643 print_recreate_exception (enum exception_catchpoint_kind ex,
11644 struct breakpoint *b, struct ui_file *fp)
11645 {
11646 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11647
11648 switch (ex)
11649 {
11650 case ex_catch_exception:
11651 fprintf_filtered (fp, "catch exception");
11652 if (c->excep_string != NULL)
11653 fprintf_filtered (fp, " %s", c->excep_string);
11654 break;
11655
11656 case ex_catch_exception_unhandled:
11657 fprintf_filtered (fp, "catch exception unhandled");
11658 break;
11659
11660 case ex_catch_assert:
11661 fprintf_filtered (fp, "catch assert");
11662 break;
11663
11664 default:
11665 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11666 }
11667 print_recreate_thread (b, fp);
11668 }
11669
11670 /* Virtual table for "catch exception" breakpoints. */
11671
11672 static void
11673 dtor_catch_exception (struct breakpoint *b)
11674 {
11675 dtor_exception (ex_catch_exception, b);
11676 }
11677
11678 static struct bp_location *
11679 allocate_location_catch_exception (struct breakpoint *self)
11680 {
11681 return allocate_location_exception (ex_catch_exception, self);
11682 }
11683
11684 static void
11685 re_set_catch_exception (struct breakpoint *b)
11686 {
11687 re_set_exception (ex_catch_exception, b);
11688 }
11689
11690 static void
11691 check_status_catch_exception (bpstat bs)
11692 {
11693 check_status_exception (ex_catch_exception, bs);
11694 }
11695
11696 static enum print_stop_action
11697 print_it_catch_exception (bpstat bs)
11698 {
11699 return print_it_exception (ex_catch_exception, bs);
11700 }
11701
11702 static void
11703 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
11704 {
11705 print_one_exception (ex_catch_exception, b, last_loc);
11706 }
11707
11708 static void
11709 print_mention_catch_exception (struct breakpoint *b)
11710 {
11711 print_mention_exception (ex_catch_exception, b);
11712 }
11713
11714 static void
11715 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
11716 {
11717 print_recreate_exception (ex_catch_exception, b, fp);
11718 }
11719
11720 static struct breakpoint_ops catch_exception_breakpoint_ops;
11721
11722 /* Virtual table for "catch exception unhandled" breakpoints. */
11723
11724 static void
11725 dtor_catch_exception_unhandled (struct breakpoint *b)
11726 {
11727 dtor_exception (ex_catch_exception_unhandled, b);
11728 }
11729
11730 static struct bp_location *
11731 allocate_location_catch_exception_unhandled (struct breakpoint *self)
11732 {
11733 return allocate_location_exception (ex_catch_exception_unhandled, self);
11734 }
11735
11736 static void
11737 re_set_catch_exception_unhandled (struct breakpoint *b)
11738 {
11739 re_set_exception (ex_catch_exception_unhandled, b);
11740 }
11741
11742 static void
11743 check_status_catch_exception_unhandled (bpstat bs)
11744 {
11745 check_status_exception (ex_catch_exception_unhandled, bs);
11746 }
11747
11748 static enum print_stop_action
11749 print_it_catch_exception_unhandled (bpstat bs)
11750 {
11751 return print_it_exception (ex_catch_exception_unhandled, bs);
11752 }
11753
11754 static void
11755 print_one_catch_exception_unhandled (struct breakpoint *b,
11756 struct bp_location **last_loc)
11757 {
11758 print_one_exception (ex_catch_exception_unhandled, b, last_loc);
11759 }
11760
11761 static void
11762 print_mention_catch_exception_unhandled (struct breakpoint *b)
11763 {
11764 print_mention_exception (ex_catch_exception_unhandled, b);
11765 }
11766
11767 static void
11768 print_recreate_catch_exception_unhandled (struct breakpoint *b,
11769 struct ui_file *fp)
11770 {
11771 print_recreate_exception (ex_catch_exception_unhandled, b, fp);
11772 }
11773
11774 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
11775
11776 /* Virtual table for "catch assert" breakpoints. */
11777
11778 static void
11779 dtor_catch_assert (struct breakpoint *b)
11780 {
11781 dtor_exception (ex_catch_assert, b);
11782 }
11783
11784 static struct bp_location *
11785 allocate_location_catch_assert (struct breakpoint *self)
11786 {
11787 return allocate_location_exception (ex_catch_assert, self);
11788 }
11789
11790 static void
11791 re_set_catch_assert (struct breakpoint *b)
11792 {
11793 return re_set_exception (ex_catch_assert, b);
11794 }
11795
11796 static void
11797 check_status_catch_assert (bpstat bs)
11798 {
11799 check_status_exception (ex_catch_assert, bs);
11800 }
11801
11802 static enum print_stop_action
11803 print_it_catch_assert (bpstat bs)
11804 {
11805 return print_it_exception (ex_catch_assert, bs);
11806 }
11807
11808 static void
11809 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
11810 {
11811 print_one_exception (ex_catch_assert, b, last_loc);
11812 }
11813
11814 static void
11815 print_mention_catch_assert (struct breakpoint *b)
11816 {
11817 print_mention_exception (ex_catch_assert, b);
11818 }
11819
11820 static void
11821 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
11822 {
11823 print_recreate_exception (ex_catch_assert, b, fp);
11824 }
11825
11826 static struct breakpoint_ops catch_assert_breakpoint_ops;
11827
11828 /* Return a newly allocated copy of the first space-separated token
11829 in ARGSP, and then adjust ARGSP to point immediately after that
11830 token.
11831
11832 Return NULL if ARGPS does not contain any more tokens. */
11833
11834 static char *
11835 ada_get_next_arg (char **argsp)
11836 {
11837 char *args = *argsp;
11838 char *end;
11839 char *result;
11840
11841 args = skip_spaces (args);
11842 if (args[0] == '\0')
11843 return NULL; /* No more arguments. */
11844
11845 /* Find the end of the current argument. */
11846
11847 end = skip_to_space (args);
11848
11849 /* Adjust ARGSP to point to the start of the next argument. */
11850
11851 *argsp = end;
11852
11853 /* Make a copy of the current argument and return it. */
11854
11855 result = xmalloc (end - args + 1);
11856 strncpy (result, args, end - args);
11857 result[end - args] = '\0';
11858
11859 return result;
11860 }
11861
11862 /* Split the arguments specified in a "catch exception" command.
11863 Set EX to the appropriate catchpoint type.
11864 Set EXCEP_STRING to the name of the specific exception if
11865 specified by the user.
11866 If a condition is found at the end of the arguments, the condition
11867 expression is stored in COND_STRING (memory must be deallocated
11868 after use). Otherwise COND_STRING is set to NULL. */
11869
11870 static void
11871 catch_ada_exception_command_split (char *args,
11872 enum exception_catchpoint_kind *ex,
11873 char **excep_string,
11874 char **cond_string)
11875 {
11876 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
11877 char *exception_name;
11878 char *cond = NULL;
11879
11880 exception_name = ada_get_next_arg (&args);
11881 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
11882 {
11883 /* This is not an exception name; this is the start of a condition
11884 expression for a catchpoint on all exceptions. So, "un-get"
11885 this token, and set exception_name to NULL. */
11886 xfree (exception_name);
11887 exception_name = NULL;
11888 args -= 2;
11889 }
11890 make_cleanup (xfree, exception_name);
11891
11892 /* Check to see if we have a condition. */
11893
11894 args = skip_spaces (args);
11895 if (strncmp (args, "if", 2) == 0
11896 && (isspace (args[2]) || args[2] == '\0'))
11897 {
11898 args += 2;
11899 args = skip_spaces (args);
11900
11901 if (args[0] == '\0')
11902 error (_("Condition missing after `if' keyword"));
11903 cond = xstrdup (args);
11904 make_cleanup (xfree, cond);
11905
11906 args += strlen (args);
11907 }
11908
11909 /* Check that we do not have any more arguments. Anything else
11910 is unexpected. */
11911
11912 if (args[0] != '\0')
11913 error (_("Junk at end of expression"));
11914
11915 discard_cleanups (old_chain);
11916
11917 if (exception_name == NULL)
11918 {
11919 /* Catch all exceptions. */
11920 *ex = ex_catch_exception;
11921 *excep_string = NULL;
11922 }
11923 else if (strcmp (exception_name, "unhandled") == 0)
11924 {
11925 /* Catch unhandled exceptions. */
11926 *ex = ex_catch_exception_unhandled;
11927 *excep_string = NULL;
11928 }
11929 else
11930 {
11931 /* Catch a specific exception. */
11932 *ex = ex_catch_exception;
11933 *excep_string = exception_name;
11934 }
11935 *cond_string = cond;
11936 }
11937
11938 /* Return the name of the symbol on which we should break in order to
11939 implement a catchpoint of the EX kind. */
11940
11941 static const char *
11942 ada_exception_sym_name (enum exception_catchpoint_kind ex)
11943 {
11944 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11945
11946 gdb_assert (data->exception_info != NULL);
11947
11948 switch (ex)
11949 {
11950 case ex_catch_exception:
11951 return (data->exception_info->catch_exception_sym);
11952 break;
11953 case ex_catch_exception_unhandled:
11954 return (data->exception_info->catch_exception_unhandled_sym);
11955 break;
11956 case ex_catch_assert:
11957 return (data->exception_info->catch_assert_sym);
11958 break;
11959 default:
11960 internal_error (__FILE__, __LINE__,
11961 _("unexpected catchpoint kind (%d)"), ex);
11962 }
11963 }
11964
11965 /* Return the breakpoint ops "virtual table" used for catchpoints
11966 of the EX kind. */
11967
11968 static const struct breakpoint_ops *
11969 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
11970 {
11971 switch (ex)
11972 {
11973 case ex_catch_exception:
11974 return (&catch_exception_breakpoint_ops);
11975 break;
11976 case ex_catch_exception_unhandled:
11977 return (&catch_exception_unhandled_breakpoint_ops);
11978 break;
11979 case ex_catch_assert:
11980 return (&catch_assert_breakpoint_ops);
11981 break;
11982 default:
11983 internal_error (__FILE__, __LINE__,
11984 _("unexpected catchpoint kind (%d)"), ex);
11985 }
11986 }
11987
11988 /* Return the condition that will be used to match the current exception
11989 being raised with the exception that the user wants to catch. This
11990 assumes that this condition is used when the inferior just triggered
11991 an exception catchpoint.
11992
11993 The string returned is a newly allocated string that needs to be
11994 deallocated later. */
11995
11996 static char *
11997 ada_exception_catchpoint_cond_string (const char *excep_string)
11998 {
11999 int i;
12000
12001 /* The standard exceptions are a special case. They are defined in
12002 runtime units that have been compiled without debugging info; if
12003 EXCEP_STRING is the not-fully-qualified name of a standard
12004 exception (e.g. "constraint_error") then, during the evaluation
12005 of the condition expression, the symbol lookup on this name would
12006 *not* return this standard exception. The catchpoint condition
12007 may then be set only on user-defined exceptions which have the
12008 same not-fully-qualified name (e.g. my_package.constraint_error).
12009
12010 To avoid this unexcepted behavior, these standard exceptions are
12011 systematically prefixed by "standard". This means that "catch
12012 exception constraint_error" is rewritten into "catch exception
12013 standard.constraint_error".
12014
12015 If an exception named contraint_error is defined in another package of
12016 the inferior program, then the only way to specify this exception as a
12017 breakpoint condition is to use its fully-qualified named:
12018 e.g. my_package.constraint_error. */
12019
12020 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12021 {
12022 if (strcmp (standard_exc [i], excep_string) == 0)
12023 {
12024 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
12025 excep_string);
12026 }
12027 }
12028 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
12029 }
12030
12031 /* Return the symtab_and_line that should be used to insert an exception
12032 catchpoint of the TYPE kind.
12033
12034 EXCEP_STRING should contain the name of a specific exception that
12035 the catchpoint should catch, or NULL otherwise.
12036
12037 ADDR_STRING returns the name of the function where the real
12038 breakpoint that implements the catchpoints is set, depending on the
12039 type of catchpoint we need to create. */
12040
12041 static struct symtab_and_line
12042 ada_exception_sal (enum exception_catchpoint_kind ex, char *excep_string,
12043 char **addr_string, const struct breakpoint_ops **ops)
12044 {
12045 const char *sym_name;
12046 struct symbol *sym;
12047
12048 /* First, find out which exception support info to use. */
12049 ada_exception_support_info_sniffer ();
12050
12051 /* Then lookup the function on which we will break in order to catch
12052 the Ada exceptions requested by the user. */
12053 sym_name = ada_exception_sym_name (ex);
12054 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12055
12056 /* We can assume that SYM is not NULL at this stage. If the symbol
12057 did not exist, ada_exception_support_info_sniffer would have
12058 raised an exception.
12059
12060 Also, ada_exception_support_info_sniffer should have already
12061 verified that SYM is a function symbol. */
12062 gdb_assert (sym != NULL);
12063 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
12064
12065 /* Set ADDR_STRING. */
12066 *addr_string = xstrdup (sym_name);
12067
12068 /* Set OPS. */
12069 *ops = ada_exception_breakpoint_ops (ex);
12070
12071 return find_function_start_sal (sym, 1);
12072 }
12073
12074 /* Parse the arguments (ARGS) of the "catch exception" command.
12075
12076 If the user asked the catchpoint to catch only a specific
12077 exception, then save the exception name in ADDR_STRING.
12078
12079 If the user provided a condition, then set COND_STRING to
12080 that condition expression (the memory must be deallocated
12081 after use). Otherwise, set COND_STRING to NULL.
12082
12083 See ada_exception_sal for a description of all the remaining
12084 function arguments of this function. */
12085
12086 static struct symtab_and_line
12087 ada_decode_exception_location (char *args, char **addr_string,
12088 char **excep_string,
12089 char **cond_string,
12090 const struct breakpoint_ops **ops)
12091 {
12092 enum exception_catchpoint_kind ex;
12093
12094 catch_ada_exception_command_split (args, &ex, excep_string, cond_string);
12095 return ada_exception_sal (ex, *excep_string, addr_string, ops);
12096 }
12097
12098 /* Create an Ada exception catchpoint. */
12099
12100 static void
12101 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
12102 struct symtab_and_line sal,
12103 char *addr_string,
12104 char *excep_string,
12105 char *cond_string,
12106 const struct breakpoint_ops *ops,
12107 int tempflag,
12108 int from_tty)
12109 {
12110 struct ada_catchpoint *c;
12111
12112 c = XNEW (struct ada_catchpoint);
12113 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
12114 ops, tempflag, from_tty);
12115 c->excep_string = excep_string;
12116 create_excep_cond_exprs (c);
12117 if (cond_string != NULL)
12118 set_breakpoint_condition (&c->base, cond_string, from_tty);
12119 install_breakpoint (0, &c->base, 1);
12120 }
12121
12122 /* Implement the "catch exception" command. */
12123
12124 static void
12125 catch_ada_exception_command (char *arg, int from_tty,
12126 struct cmd_list_element *command)
12127 {
12128 struct gdbarch *gdbarch = get_current_arch ();
12129 int tempflag;
12130 struct symtab_and_line sal;
12131 char *addr_string = NULL;
12132 char *excep_string = NULL;
12133 char *cond_string = NULL;
12134 const struct breakpoint_ops *ops = NULL;
12135
12136 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12137
12138 if (!arg)
12139 arg = "";
12140 sal = ada_decode_exception_location (arg, &addr_string, &excep_string,
12141 &cond_string, &ops);
12142 create_ada_exception_catchpoint (gdbarch, sal, addr_string,
12143 excep_string, cond_string, ops,
12144 tempflag, from_tty);
12145 }
12146
12147 /* Assuming that ARGS contains the arguments of a "catch assert"
12148 command, parse those arguments and return a symtab_and_line object
12149 for a failed assertion catchpoint.
12150
12151 Set ADDR_STRING to the name of the function where the real
12152 breakpoint that implements the catchpoint is set.
12153
12154 If ARGS contains a condition, set COND_STRING to that condition
12155 (the memory needs to be deallocated after use). Otherwise, set
12156 COND_STRING to NULL. */
12157
12158 static struct symtab_and_line
12159 ada_decode_assert_location (char *args, char **addr_string,
12160 char **cond_string,
12161 const struct breakpoint_ops **ops)
12162 {
12163 args = skip_spaces (args);
12164
12165 /* Check whether a condition was provided. */
12166 if (strncmp (args, "if", 2) == 0
12167 && (isspace (args[2]) || args[2] == '\0'))
12168 {
12169 args += 2;
12170 args = skip_spaces (args);
12171 if (args[0] == '\0')
12172 error (_("condition missing after `if' keyword"));
12173 *cond_string = xstrdup (args);
12174 }
12175
12176 /* Otherwise, there should be no other argument at the end of
12177 the command. */
12178 else if (args[0] != '\0')
12179 error (_("Junk at end of arguments."));
12180
12181 return ada_exception_sal (ex_catch_assert, NULL, addr_string, ops);
12182 }
12183
12184 /* Implement the "catch assert" command. */
12185
12186 static void
12187 catch_assert_command (char *arg, int from_tty,
12188 struct cmd_list_element *command)
12189 {
12190 struct gdbarch *gdbarch = get_current_arch ();
12191 int tempflag;
12192 struct symtab_and_line sal;
12193 char *addr_string = NULL;
12194 char *cond_string = NULL;
12195 const struct breakpoint_ops *ops = NULL;
12196
12197 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12198
12199 if (!arg)
12200 arg = "";
12201 sal = ada_decode_assert_location (arg, &addr_string, &cond_string, &ops);
12202 create_ada_exception_catchpoint (gdbarch, sal, addr_string,
12203 NULL, cond_string, ops, tempflag,
12204 from_tty);
12205 }
12206 /* Operators */
12207 /* Information about operators given special treatment in functions
12208 below. */
12209 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
12210
12211 #define ADA_OPERATORS \
12212 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
12213 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
12214 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
12215 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
12216 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
12217 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
12218 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
12219 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
12220 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
12221 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
12222 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
12223 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
12224 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
12225 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
12226 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
12227 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
12228 OP_DEFN (OP_OTHERS, 1, 1, 0) \
12229 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
12230 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
12231
12232 static void
12233 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
12234 int *argsp)
12235 {
12236 switch (exp->elts[pc - 1].opcode)
12237 {
12238 default:
12239 operator_length_standard (exp, pc, oplenp, argsp);
12240 break;
12241
12242 #define OP_DEFN(op, len, args, binop) \
12243 case op: *oplenp = len; *argsp = args; break;
12244 ADA_OPERATORS;
12245 #undef OP_DEFN
12246
12247 case OP_AGGREGATE:
12248 *oplenp = 3;
12249 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
12250 break;
12251
12252 case OP_CHOICES:
12253 *oplenp = 3;
12254 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
12255 break;
12256 }
12257 }
12258
12259 /* Implementation of the exp_descriptor method operator_check. */
12260
12261 static int
12262 ada_operator_check (struct expression *exp, int pos,
12263 int (*objfile_func) (struct objfile *objfile, void *data),
12264 void *data)
12265 {
12266 const union exp_element *const elts = exp->elts;
12267 struct type *type = NULL;
12268
12269 switch (elts[pos].opcode)
12270 {
12271 case UNOP_IN_RANGE:
12272 case UNOP_QUAL:
12273 type = elts[pos + 1].type;
12274 break;
12275
12276 default:
12277 return operator_check_standard (exp, pos, objfile_func, data);
12278 }
12279
12280 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
12281
12282 if (type && TYPE_OBJFILE (type)
12283 && (*objfile_func) (TYPE_OBJFILE (type), data))
12284 return 1;
12285
12286 return 0;
12287 }
12288
12289 static char *
12290 ada_op_name (enum exp_opcode opcode)
12291 {
12292 switch (opcode)
12293 {
12294 default:
12295 return op_name_standard (opcode);
12296
12297 #define OP_DEFN(op, len, args, binop) case op: return #op;
12298 ADA_OPERATORS;
12299 #undef OP_DEFN
12300
12301 case OP_AGGREGATE:
12302 return "OP_AGGREGATE";
12303 case OP_CHOICES:
12304 return "OP_CHOICES";
12305 case OP_NAME:
12306 return "OP_NAME";
12307 }
12308 }
12309
12310 /* As for operator_length, but assumes PC is pointing at the first
12311 element of the operator, and gives meaningful results only for the
12312 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
12313
12314 static void
12315 ada_forward_operator_length (struct expression *exp, int pc,
12316 int *oplenp, int *argsp)
12317 {
12318 switch (exp->elts[pc].opcode)
12319 {
12320 default:
12321 *oplenp = *argsp = 0;
12322 break;
12323
12324 #define OP_DEFN(op, len, args, binop) \
12325 case op: *oplenp = len; *argsp = args; break;
12326 ADA_OPERATORS;
12327 #undef OP_DEFN
12328
12329 case OP_AGGREGATE:
12330 *oplenp = 3;
12331 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
12332 break;
12333
12334 case OP_CHOICES:
12335 *oplenp = 3;
12336 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
12337 break;
12338
12339 case OP_STRING:
12340 case OP_NAME:
12341 {
12342 int len = longest_to_int (exp->elts[pc + 1].longconst);
12343
12344 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
12345 *argsp = 0;
12346 break;
12347 }
12348 }
12349 }
12350
12351 static int
12352 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
12353 {
12354 enum exp_opcode op = exp->elts[elt].opcode;
12355 int oplen, nargs;
12356 int pc = elt;
12357 int i;
12358
12359 ada_forward_operator_length (exp, elt, &oplen, &nargs);
12360
12361 switch (op)
12362 {
12363 /* Ada attributes ('Foo). */
12364 case OP_ATR_FIRST:
12365 case OP_ATR_LAST:
12366 case OP_ATR_LENGTH:
12367 case OP_ATR_IMAGE:
12368 case OP_ATR_MAX:
12369 case OP_ATR_MIN:
12370 case OP_ATR_MODULUS:
12371 case OP_ATR_POS:
12372 case OP_ATR_SIZE:
12373 case OP_ATR_TAG:
12374 case OP_ATR_VAL:
12375 break;
12376
12377 case UNOP_IN_RANGE:
12378 case UNOP_QUAL:
12379 /* XXX: gdb_sprint_host_address, type_sprint */
12380 fprintf_filtered (stream, _("Type @"));
12381 gdb_print_host_address (exp->elts[pc + 1].type, stream);
12382 fprintf_filtered (stream, " (");
12383 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
12384 fprintf_filtered (stream, ")");
12385 break;
12386 case BINOP_IN_BOUNDS:
12387 fprintf_filtered (stream, " (%d)",
12388 longest_to_int (exp->elts[pc + 2].longconst));
12389 break;
12390 case TERNOP_IN_RANGE:
12391 break;
12392
12393 case OP_AGGREGATE:
12394 case OP_OTHERS:
12395 case OP_DISCRETE_RANGE:
12396 case OP_POSITIONAL:
12397 case OP_CHOICES:
12398 break;
12399
12400 case OP_NAME:
12401 case OP_STRING:
12402 {
12403 char *name = &exp->elts[elt + 2].string;
12404 int len = longest_to_int (exp->elts[elt + 1].longconst);
12405
12406 fprintf_filtered (stream, "Text: `%.*s'", len, name);
12407 break;
12408 }
12409
12410 default:
12411 return dump_subexp_body_standard (exp, stream, elt);
12412 }
12413
12414 elt += oplen;
12415 for (i = 0; i < nargs; i += 1)
12416 elt = dump_subexp (exp, stream, elt);
12417
12418 return elt;
12419 }
12420
12421 /* The Ada extension of print_subexp (q.v.). */
12422
12423 static void
12424 ada_print_subexp (struct expression *exp, int *pos,
12425 struct ui_file *stream, enum precedence prec)
12426 {
12427 int oplen, nargs, i;
12428 int pc = *pos;
12429 enum exp_opcode op = exp->elts[pc].opcode;
12430
12431 ada_forward_operator_length (exp, pc, &oplen, &nargs);
12432
12433 *pos += oplen;
12434 switch (op)
12435 {
12436 default:
12437 *pos -= oplen;
12438 print_subexp_standard (exp, pos, stream, prec);
12439 return;
12440
12441 case OP_VAR_VALUE:
12442 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
12443 return;
12444
12445 case BINOP_IN_BOUNDS:
12446 /* XXX: sprint_subexp */
12447 print_subexp (exp, pos, stream, PREC_SUFFIX);
12448 fputs_filtered (" in ", stream);
12449 print_subexp (exp, pos, stream, PREC_SUFFIX);
12450 fputs_filtered ("'range", stream);
12451 if (exp->elts[pc + 1].longconst > 1)
12452 fprintf_filtered (stream, "(%ld)",
12453 (long) exp->elts[pc + 1].longconst);
12454 return;
12455
12456 case TERNOP_IN_RANGE:
12457 if (prec >= PREC_EQUAL)
12458 fputs_filtered ("(", stream);
12459 /* XXX: sprint_subexp */
12460 print_subexp (exp, pos, stream, PREC_SUFFIX);
12461 fputs_filtered (" in ", stream);
12462 print_subexp (exp, pos, stream, PREC_EQUAL);
12463 fputs_filtered (" .. ", stream);
12464 print_subexp (exp, pos, stream, PREC_EQUAL);
12465 if (prec >= PREC_EQUAL)
12466 fputs_filtered (")", stream);
12467 return;
12468
12469 case OP_ATR_FIRST:
12470 case OP_ATR_LAST:
12471 case OP_ATR_LENGTH:
12472 case OP_ATR_IMAGE:
12473 case OP_ATR_MAX:
12474 case OP_ATR_MIN:
12475 case OP_ATR_MODULUS:
12476 case OP_ATR_POS:
12477 case OP_ATR_SIZE:
12478 case OP_ATR_TAG:
12479 case OP_ATR_VAL:
12480 if (exp->elts[*pos].opcode == OP_TYPE)
12481 {
12482 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
12483 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
12484 &type_print_raw_options);
12485 *pos += 3;
12486 }
12487 else
12488 print_subexp (exp, pos, stream, PREC_SUFFIX);
12489 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
12490 if (nargs > 1)
12491 {
12492 int tem;
12493
12494 for (tem = 1; tem < nargs; tem += 1)
12495 {
12496 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
12497 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
12498 }
12499 fputs_filtered (")", stream);
12500 }
12501 return;
12502
12503 case UNOP_QUAL:
12504 type_print (exp->elts[pc + 1].type, "", stream, 0);
12505 fputs_filtered ("'(", stream);
12506 print_subexp (exp, pos, stream, PREC_PREFIX);
12507 fputs_filtered (")", stream);
12508 return;
12509
12510 case UNOP_IN_RANGE:
12511 /* XXX: sprint_subexp */
12512 print_subexp (exp, pos, stream, PREC_SUFFIX);
12513 fputs_filtered (" in ", stream);
12514 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
12515 &type_print_raw_options);
12516 return;
12517
12518 case OP_DISCRETE_RANGE:
12519 print_subexp (exp, pos, stream, PREC_SUFFIX);
12520 fputs_filtered ("..", stream);
12521 print_subexp (exp, pos, stream, PREC_SUFFIX);
12522 return;
12523
12524 case OP_OTHERS:
12525 fputs_filtered ("others => ", stream);
12526 print_subexp (exp, pos, stream, PREC_SUFFIX);
12527 return;
12528
12529 case OP_CHOICES:
12530 for (i = 0; i < nargs-1; i += 1)
12531 {
12532 if (i > 0)
12533 fputs_filtered ("|", stream);
12534 print_subexp (exp, pos, stream, PREC_SUFFIX);
12535 }
12536 fputs_filtered (" => ", stream);
12537 print_subexp (exp, pos, stream, PREC_SUFFIX);
12538 return;
12539
12540 case OP_POSITIONAL:
12541 print_subexp (exp, pos, stream, PREC_SUFFIX);
12542 return;
12543
12544 case OP_AGGREGATE:
12545 fputs_filtered ("(", stream);
12546 for (i = 0; i < nargs; i += 1)
12547 {
12548 if (i > 0)
12549 fputs_filtered (", ", stream);
12550 print_subexp (exp, pos, stream, PREC_SUFFIX);
12551 }
12552 fputs_filtered (")", stream);
12553 return;
12554 }
12555 }
12556
12557 /* Table mapping opcodes into strings for printing operators
12558 and precedences of the operators. */
12559
12560 static const struct op_print ada_op_print_tab[] = {
12561 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
12562 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
12563 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
12564 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
12565 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
12566 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
12567 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
12568 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
12569 {"<=", BINOP_LEQ, PREC_ORDER, 0},
12570 {">=", BINOP_GEQ, PREC_ORDER, 0},
12571 {">", BINOP_GTR, PREC_ORDER, 0},
12572 {"<", BINOP_LESS, PREC_ORDER, 0},
12573 {">>", BINOP_RSH, PREC_SHIFT, 0},
12574 {"<<", BINOP_LSH, PREC_SHIFT, 0},
12575 {"+", BINOP_ADD, PREC_ADD, 0},
12576 {"-", BINOP_SUB, PREC_ADD, 0},
12577 {"&", BINOP_CONCAT, PREC_ADD, 0},
12578 {"*", BINOP_MUL, PREC_MUL, 0},
12579 {"/", BINOP_DIV, PREC_MUL, 0},
12580 {"rem", BINOP_REM, PREC_MUL, 0},
12581 {"mod", BINOP_MOD, PREC_MUL, 0},
12582 {"**", BINOP_EXP, PREC_REPEAT, 0},
12583 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
12584 {"-", UNOP_NEG, PREC_PREFIX, 0},
12585 {"+", UNOP_PLUS, PREC_PREFIX, 0},
12586 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
12587 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
12588 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
12589 {".all", UNOP_IND, PREC_SUFFIX, 1},
12590 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
12591 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
12592 {NULL, 0, 0, 0}
12593 };
12594 \f
12595 enum ada_primitive_types {
12596 ada_primitive_type_int,
12597 ada_primitive_type_long,
12598 ada_primitive_type_short,
12599 ada_primitive_type_char,
12600 ada_primitive_type_float,
12601 ada_primitive_type_double,
12602 ada_primitive_type_void,
12603 ada_primitive_type_long_long,
12604 ada_primitive_type_long_double,
12605 ada_primitive_type_natural,
12606 ada_primitive_type_positive,
12607 ada_primitive_type_system_address,
12608 nr_ada_primitive_types
12609 };
12610
12611 static void
12612 ada_language_arch_info (struct gdbarch *gdbarch,
12613 struct language_arch_info *lai)
12614 {
12615 const struct builtin_type *builtin = builtin_type (gdbarch);
12616
12617 lai->primitive_type_vector
12618 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
12619 struct type *);
12620
12621 lai->primitive_type_vector [ada_primitive_type_int]
12622 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12623 0, "integer");
12624 lai->primitive_type_vector [ada_primitive_type_long]
12625 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
12626 0, "long_integer");
12627 lai->primitive_type_vector [ada_primitive_type_short]
12628 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
12629 0, "short_integer");
12630 lai->string_char_type
12631 = lai->primitive_type_vector [ada_primitive_type_char]
12632 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
12633 lai->primitive_type_vector [ada_primitive_type_float]
12634 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
12635 "float", NULL);
12636 lai->primitive_type_vector [ada_primitive_type_double]
12637 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12638 "long_float", NULL);
12639 lai->primitive_type_vector [ada_primitive_type_long_long]
12640 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
12641 0, "long_long_integer");
12642 lai->primitive_type_vector [ada_primitive_type_long_double]
12643 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12644 "long_long_float", NULL);
12645 lai->primitive_type_vector [ada_primitive_type_natural]
12646 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12647 0, "natural");
12648 lai->primitive_type_vector [ada_primitive_type_positive]
12649 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12650 0, "positive");
12651 lai->primitive_type_vector [ada_primitive_type_void]
12652 = builtin->builtin_void;
12653
12654 lai->primitive_type_vector [ada_primitive_type_system_address]
12655 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
12656 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
12657 = "system__address";
12658
12659 lai->bool_type_symbol = NULL;
12660 lai->bool_type_default = builtin->builtin_bool;
12661 }
12662 \f
12663 /* Language vector */
12664
12665 /* Not really used, but needed in the ada_language_defn. */
12666
12667 static void
12668 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
12669 {
12670 ada_emit_char (c, type, stream, quoter, 1);
12671 }
12672
12673 static int
12674 parse (void)
12675 {
12676 warnings_issued = 0;
12677 return ada_parse ();
12678 }
12679
12680 static const struct exp_descriptor ada_exp_descriptor = {
12681 ada_print_subexp,
12682 ada_operator_length,
12683 ada_operator_check,
12684 ada_op_name,
12685 ada_dump_subexp_body,
12686 ada_evaluate_subexp
12687 };
12688
12689 /* Implement the "la_get_symbol_name_cmp" language_defn method
12690 for Ada. */
12691
12692 static symbol_name_cmp_ftype
12693 ada_get_symbol_name_cmp (const char *lookup_name)
12694 {
12695 if (should_use_wild_match (lookup_name))
12696 return wild_match;
12697 else
12698 return compare_names;
12699 }
12700
12701 /* Implement the "la_read_var_value" language_defn method for Ada. */
12702
12703 static struct value *
12704 ada_read_var_value (struct symbol *var, struct frame_info *frame)
12705 {
12706 struct block *frame_block = NULL;
12707 struct symbol *renaming_sym = NULL;
12708
12709 /* The only case where default_read_var_value is not sufficient
12710 is when VAR is a renaming... */
12711 if (frame)
12712 frame_block = get_frame_block (frame, NULL);
12713 if (frame_block)
12714 renaming_sym = ada_find_renaming_symbol (var, frame_block);
12715 if (renaming_sym != NULL)
12716 return ada_read_renaming_var_value (renaming_sym, frame_block);
12717
12718 /* This is a typical case where we expect the default_read_var_value
12719 function to work. */
12720 return default_read_var_value (var, frame);
12721 }
12722
12723 const struct language_defn ada_language_defn = {
12724 "ada", /* Language name */
12725 language_ada,
12726 range_check_off,
12727 case_sensitive_on, /* Yes, Ada is case-insensitive, but
12728 that's not quite what this means. */
12729 array_row_major,
12730 macro_expansion_no,
12731 &ada_exp_descriptor,
12732 parse,
12733 ada_error,
12734 resolve,
12735 ada_printchar, /* Print a character constant */
12736 ada_printstr, /* Function to print string constant */
12737 emit_char, /* Function to print single char (not used) */
12738 ada_print_type, /* Print a type using appropriate syntax */
12739 ada_print_typedef, /* Print a typedef using appropriate syntax */
12740 ada_val_print, /* Print a value using appropriate syntax */
12741 ada_value_print, /* Print a top-level value */
12742 ada_read_var_value, /* la_read_var_value */
12743 NULL, /* Language specific skip_trampoline */
12744 NULL, /* name_of_this */
12745 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
12746 basic_lookup_transparent_type, /* lookup_transparent_type */
12747 ada_la_decode, /* Language specific symbol demangler */
12748 NULL, /* Language specific
12749 class_name_from_physname */
12750 ada_op_print_tab, /* expression operators for printing */
12751 0, /* c-style arrays */
12752 1, /* String lower bound */
12753 ada_get_gdb_completer_word_break_characters,
12754 ada_make_symbol_completion_list,
12755 ada_language_arch_info,
12756 ada_print_array_index,
12757 default_pass_by_reference,
12758 c_get_string,
12759 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
12760 ada_iterate_over_symbols,
12761 LANG_MAGIC
12762 };
12763
12764 /* Provide a prototype to silence -Wmissing-prototypes. */
12765 extern initialize_file_ftype _initialize_ada_language;
12766
12767 /* Command-list for the "set/show ada" prefix command. */
12768 static struct cmd_list_element *set_ada_list;
12769 static struct cmd_list_element *show_ada_list;
12770
12771 /* Implement the "set ada" prefix command. */
12772
12773 static void
12774 set_ada_command (char *arg, int from_tty)
12775 {
12776 printf_unfiltered (_(\
12777 "\"set ada\" must be followed by the name of a setting.\n"));
12778 help_list (set_ada_list, "set ada ", -1, gdb_stdout);
12779 }
12780
12781 /* Implement the "show ada" prefix command. */
12782
12783 static void
12784 show_ada_command (char *args, int from_tty)
12785 {
12786 cmd_show_list (show_ada_list, from_tty, "");
12787 }
12788
12789 static void
12790 initialize_ada_catchpoint_ops (void)
12791 {
12792 struct breakpoint_ops *ops;
12793
12794 initialize_breakpoint_ops ();
12795
12796 ops = &catch_exception_breakpoint_ops;
12797 *ops = bkpt_breakpoint_ops;
12798 ops->dtor = dtor_catch_exception;
12799 ops->allocate_location = allocate_location_catch_exception;
12800 ops->re_set = re_set_catch_exception;
12801 ops->check_status = check_status_catch_exception;
12802 ops->print_it = print_it_catch_exception;
12803 ops->print_one = print_one_catch_exception;
12804 ops->print_mention = print_mention_catch_exception;
12805 ops->print_recreate = print_recreate_catch_exception;
12806
12807 ops = &catch_exception_unhandled_breakpoint_ops;
12808 *ops = bkpt_breakpoint_ops;
12809 ops->dtor = dtor_catch_exception_unhandled;
12810 ops->allocate_location = allocate_location_catch_exception_unhandled;
12811 ops->re_set = re_set_catch_exception_unhandled;
12812 ops->check_status = check_status_catch_exception_unhandled;
12813 ops->print_it = print_it_catch_exception_unhandled;
12814 ops->print_one = print_one_catch_exception_unhandled;
12815 ops->print_mention = print_mention_catch_exception_unhandled;
12816 ops->print_recreate = print_recreate_catch_exception_unhandled;
12817
12818 ops = &catch_assert_breakpoint_ops;
12819 *ops = bkpt_breakpoint_ops;
12820 ops->dtor = dtor_catch_assert;
12821 ops->allocate_location = allocate_location_catch_assert;
12822 ops->re_set = re_set_catch_assert;
12823 ops->check_status = check_status_catch_assert;
12824 ops->print_it = print_it_catch_assert;
12825 ops->print_one = print_one_catch_assert;
12826 ops->print_mention = print_mention_catch_assert;
12827 ops->print_recreate = print_recreate_catch_assert;
12828 }
12829
12830 void
12831 _initialize_ada_language (void)
12832 {
12833 add_language (&ada_language_defn);
12834
12835 initialize_ada_catchpoint_ops ();
12836
12837 add_prefix_cmd ("ada", no_class, set_ada_command,
12838 _("Prefix command for changing Ada-specfic settings"),
12839 &set_ada_list, "set ada ", 0, &setlist);
12840
12841 add_prefix_cmd ("ada", no_class, show_ada_command,
12842 _("Generic command for showing Ada-specific settings."),
12843 &show_ada_list, "show ada ", 0, &showlist);
12844
12845 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
12846 &trust_pad_over_xvs, _("\
12847 Enable or disable an optimization trusting PAD types over XVS types"), _("\
12848 Show whether an optimization trusting PAD types over XVS types is activated"),
12849 _("\
12850 This is related to the encoding used by the GNAT compiler. The debugger\n\
12851 should normally trust the contents of PAD types, but certain older versions\n\
12852 of GNAT have a bug that sometimes causes the information in the PAD type\n\
12853 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
12854 work around this bug. It is always safe to turn this option \"off\", but\n\
12855 this incurs a slight performance penalty, so it is recommended to NOT change\n\
12856 this option to \"off\" unless necessary."),
12857 NULL, NULL, &set_ada_list, &show_ada_list);
12858
12859 add_catch_command ("exception", _("\
12860 Catch Ada exceptions, when raised.\n\
12861 With an argument, catch only exceptions with the given name."),
12862 catch_ada_exception_command,
12863 NULL,
12864 CATCH_PERMANENT,
12865 CATCH_TEMPORARY);
12866 add_catch_command ("assert", _("\
12867 Catch failed Ada assertions, when raised.\n\
12868 With an argument, catch only exceptions with the given name."),
12869 catch_assert_command,
12870 NULL,
12871 CATCH_PERMANENT,
12872 CATCH_TEMPORARY);
12873
12874 varsize_limit = 65536;
12875
12876 obstack_init (&symbol_list_obstack);
12877
12878 decoded_names_store = htab_create_alloc
12879 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
12880 NULL, xcalloc, xfree);
12881
12882 /* Setup per-inferior data. */
12883 observer_attach_inferior_exit (ada_inferior_exit);
12884 ada_inferior_data
12885 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
12886 }