Avoid global lookup when decoding XA type.
[binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger. Copyright (C)
2
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007, 2008,
4 2009 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21
22 #include "defs.h"
23 #include <stdio.h>
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include <stdarg.h>
27 #include "demangle.h"
28 #include "gdb_regex.h"
29 #include "frame.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "gdbcmd.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35 #include "language.h"
36 #include "c-lang.h"
37 #include "inferior.h"
38 #include "symfile.h"
39 #include "objfiles.h"
40 #include "breakpoint.h"
41 #include "gdbcore.h"
42 #include "hashtab.h"
43 #include "gdb_obstack.h"
44 #include "ada-lang.h"
45 #include "completer.h"
46 #include "gdb_stat.h"
47 #ifdef UI_OUT
48 #include "ui-out.h"
49 #endif
50 #include "block.h"
51 #include "infcall.h"
52 #include "dictionary.h"
53 #include "exceptions.h"
54 #include "annotate.h"
55 #include "valprint.h"
56 #include "source.h"
57 #include "observer.h"
58 #include "vec.h"
59 #include "stack.h"
60
61 #include "psymtab.h"
62
63 /* Define whether or not the C operator '/' truncates towards zero for
64 differently signed operands (truncation direction is undefined in C).
65 Copied from valarith.c. */
66
67 #ifndef TRUNCATION_TOWARDS_ZERO
68 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
69 #endif
70
71 static void modify_general_field (struct type *, char *, LONGEST, int, int);
72
73 static struct type *desc_base_type (struct type *);
74
75 static struct type *desc_bounds_type (struct type *);
76
77 static struct value *desc_bounds (struct value *);
78
79 static int fat_pntr_bounds_bitpos (struct type *);
80
81 static int fat_pntr_bounds_bitsize (struct type *);
82
83 static struct type *desc_data_target_type (struct type *);
84
85 static struct value *desc_data (struct value *);
86
87 static int fat_pntr_data_bitpos (struct type *);
88
89 static int fat_pntr_data_bitsize (struct type *);
90
91 static struct value *desc_one_bound (struct value *, int, int);
92
93 static int desc_bound_bitpos (struct type *, int, int);
94
95 static int desc_bound_bitsize (struct type *, int, int);
96
97 static struct type *desc_index_type (struct type *, int);
98
99 static int desc_arity (struct type *);
100
101 static int ada_type_match (struct type *, struct type *, int);
102
103 static int ada_args_match (struct symbol *, struct value **, int);
104
105 static struct value *ensure_lval (struct value *,
106 struct gdbarch *, CORE_ADDR *);
107
108 static struct value *make_array_descriptor (struct type *, struct value *,
109 struct gdbarch *, CORE_ADDR *);
110
111 static void ada_add_block_symbols (struct obstack *,
112 struct block *, const char *,
113 domain_enum, struct objfile *, int);
114
115 static int is_nonfunction (struct ada_symbol_info *, int);
116
117 static void add_defn_to_vec (struct obstack *, struct symbol *,
118 struct block *);
119
120 static int num_defns_collected (struct obstack *);
121
122 static struct ada_symbol_info *defns_collected (struct obstack *, int);
123
124 static struct value *resolve_subexp (struct expression **, int *, int,
125 struct type *);
126
127 static void replace_operator_with_call (struct expression **, int, int, int,
128 struct symbol *, struct block *);
129
130 static int possible_user_operator_p (enum exp_opcode, struct value **);
131
132 static char *ada_op_name (enum exp_opcode);
133
134 static const char *ada_decoded_op_name (enum exp_opcode);
135
136 static int numeric_type_p (struct type *);
137
138 static int integer_type_p (struct type *);
139
140 static int scalar_type_p (struct type *);
141
142 static int discrete_type_p (struct type *);
143
144 static enum ada_renaming_category parse_old_style_renaming (struct type *,
145 const char **,
146 int *,
147 const char **);
148
149 static struct symbol *find_old_style_renaming_symbol (const char *,
150 struct block *);
151
152 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
153 int, int, int *);
154
155 static struct value *evaluate_subexp_type (struct expression *, int *);
156
157 static struct type *ada_find_parallel_type_with_name (struct type *,
158 const char *);
159
160 static int is_dynamic_field (struct type *, int);
161
162 static struct type *to_fixed_variant_branch_type (struct type *,
163 const gdb_byte *,
164 CORE_ADDR, struct value *);
165
166 static struct type *to_fixed_array_type (struct type *, struct value *, int);
167
168 static struct type *to_fixed_range_type (struct type *, struct value *);
169
170 static struct type *to_static_fixed_type (struct type *);
171 static struct type *static_unwrap_type (struct type *type);
172
173 static struct value *unwrap_value (struct value *);
174
175 static struct type *constrained_packed_array_type (struct type *, long *);
176
177 static struct type *decode_constrained_packed_array_type (struct type *);
178
179 static long decode_packed_array_bitsize (struct type *);
180
181 static struct value *decode_constrained_packed_array (struct value *);
182
183 static int ada_is_packed_array_type (struct type *);
184
185 static int ada_is_unconstrained_packed_array_type (struct type *);
186
187 static struct value *value_subscript_packed (struct value *, int,
188 struct value **);
189
190 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
191
192 static struct value *coerce_unspec_val_to_type (struct value *,
193 struct type *);
194
195 static struct value *get_var_value (char *, char *);
196
197 static int lesseq_defined_than (struct symbol *, struct symbol *);
198
199 static int equiv_types (struct type *, struct type *);
200
201 static int is_name_suffix (const char *);
202
203 static int wild_match (const char *, int, const char *);
204
205 static struct value *ada_coerce_ref (struct value *);
206
207 static LONGEST pos_atr (struct value *);
208
209 static struct value *value_pos_atr (struct type *, struct value *);
210
211 static struct value *value_val_atr (struct type *, struct value *);
212
213 static struct symbol *standard_lookup (const char *, const struct block *,
214 domain_enum);
215
216 static struct value *ada_search_struct_field (char *, struct value *, int,
217 struct type *);
218
219 static struct value *ada_value_primitive_field (struct value *, int, int,
220 struct type *);
221
222 static int find_struct_field (char *, struct type *, int,
223 struct type **, int *, int *, int *, int *);
224
225 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
226 struct value *);
227
228 static int ada_resolve_function (struct ada_symbol_info *, int,
229 struct value **, int, const char *,
230 struct type *);
231
232 static struct value *ada_coerce_to_simple_array (struct value *);
233
234 static int ada_is_direct_array_type (struct type *);
235
236 static void ada_language_arch_info (struct gdbarch *,
237 struct language_arch_info *);
238
239 static void check_size (const struct type *);
240
241 static struct value *ada_index_struct_field (int, struct value *, int,
242 struct type *);
243
244 static struct value *assign_aggregate (struct value *, struct value *,
245 struct expression *, int *, enum noside);
246
247 static void aggregate_assign_from_choices (struct value *, struct value *,
248 struct expression *,
249 int *, LONGEST *, int *,
250 int, LONGEST, LONGEST);
251
252 static void aggregate_assign_positional (struct value *, struct value *,
253 struct expression *,
254 int *, LONGEST *, int *, int,
255 LONGEST, LONGEST);
256
257
258 static void aggregate_assign_others (struct value *, struct value *,
259 struct expression *,
260 int *, LONGEST *, int, LONGEST, LONGEST);
261
262
263 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
264
265
266 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
267 int *, enum noside);
268
269 static void ada_forward_operator_length (struct expression *, int, int *,
270 int *);
271 \f
272
273
274 /* Maximum-sized dynamic type. */
275 static unsigned int varsize_limit;
276
277 /* FIXME: brobecker/2003-09-17: No longer a const because it is
278 returned by a function that does not return a const char *. */
279 static char *ada_completer_word_break_characters =
280 #ifdef VMS
281 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
282 #else
283 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
284 #endif
285
286 /* The name of the symbol to use to get the name of the main subprogram. */
287 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
288 = "__gnat_ada_main_program_name";
289
290 /* Limit on the number of warnings to raise per expression evaluation. */
291 static int warning_limit = 2;
292
293 /* Number of warning messages issued; reset to 0 by cleanups after
294 expression evaluation. */
295 static int warnings_issued = 0;
296
297 static const char *known_runtime_file_name_patterns[] = {
298 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
299 };
300
301 static const char *known_auxiliary_function_name_patterns[] = {
302 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
303 };
304
305 /* Space for allocating results of ada_lookup_symbol_list. */
306 static struct obstack symbol_list_obstack;
307
308 /* Utilities */
309
310 /* Given DECODED_NAME a string holding a symbol name in its
311 decoded form (ie using the Ada dotted notation), returns
312 its unqualified name. */
313
314 static const char *
315 ada_unqualified_name (const char *decoded_name)
316 {
317 const char *result = strrchr (decoded_name, '.');
318
319 if (result != NULL)
320 result++; /* Skip the dot... */
321 else
322 result = decoded_name;
323
324 return result;
325 }
326
327 /* Return a string starting with '<', followed by STR, and '>'.
328 The result is good until the next call. */
329
330 static char *
331 add_angle_brackets (const char *str)
332 {
333 static char *result = NULL;
334
335 xfree (result);
336 result = xstrprintf ("<%s>", str);
337 return result;
338 }
339
340 static char *
341 ada_get_gdb_completer_word_break_characters (void)
342 {
343 return ada_completer_word_break_characters;
344 }
345
346 /* Print an array element index using the Ada syntax. */
347
348 static void
349 ada_print_array_index (struct value *index_value, struct ui_file *stream,
350 const struct value_print_options *options)
351 {
352 LA_VALUE_PRINT (index_value, stream, options);
353 fprintf_filtered (stream, " => ");
354 }
355
356 /* Assuming VECT points to an array of *SIZE objects of size
357 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
358 updating *SIZE as necessary and returning the (new) array. */
359
360 void *
361 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
362 {
363 if (*size < min_size)
364 {
365 *size *= 2;
366 if (*size < min_size)
367 *size = min_size;
368 vect = xrealloc (vect, *size * element_size);
369 }
370 return vect;
371 }
372
373 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
374 suffix of FIELD_NAME beginning "___". */
375
376 static int
377 field_name_match (const char *field_name, const char *target)
378 {
379 int len = strlen (target);
380 return
381 (strncmp (field_name, target, len) == 0
382 && (field_name[len] == '\0'
383 || (strncmp (field_name + len, "___", 3) == 0
384 && strcmp (field_name + strlen (field_name) - 6,
385 "___XVN") != 0)));
386 }
387
388
389 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
390 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
391 and return its index. This function also handles fields whose name
392 have ___ suffixes because the compiler sometimes alters their name
393 by adding such a suffix to represent fields with certain constraints.
394 If the field could not be found, return a negative number if
395 MAYBE_MISSING is set. Otherwise raise an error. */
396
397 int
398 ada_get_field_index (const struct type *type, const char *field_name,
399 int maybe_missing)
400 {
401 int fieldno;
402 struct type *struct_type = check_typedef ((struct type *) type);
403
404 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
405 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
406 return fieldno;
407
408 if (!maybe_missing)
409 error (_("Unable to find field %s in struct %s. Aborting"),
410 field_name, TYPE_NAME (struct_type));
411
412 return -1;
413 }
414
415 /* The length of the prefix of NAME prior to any "___" suffix. */
416
417 int
418 ada_name_prefix_len (const char *name)
419 {
420 if (name == NULL)
421 return 0;
422 else
423 {
424 const char *p = strstr (name, "___");
425 if (p == NULL)
426 return strlen (name);
427 else
428 return p - name;
429 }
430 }
431
432 /* Return non-zero if SUFFIX is a suffix of STR.
433 Return zero if STR is null. */
434
435 static int
436 is_suffix (const char *str, const char *suffix)
437 {
438 int len1, len2;
439 if (str == NULL)
440 return 0;
441 len1 = strlen (str);
442 len2 = strlen (suffix);
443 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
444 }
445
446 /* The contents of value VAL, treated as a value of type TYPE. The
447 result is an lval in memory if VAL is. */
448
449 static struct value *
450 coerce_unspec_val_to_type (struct value *val, struct type *type)
451 {
452 type = ada_check_typedef (type);
453 if (value_type (val) == type)
454 return val;
455 else
456 {
457 struct value *result;
458
459 /* Make sure that the object size is not unreasonable before
460 trying to allocate some memory for it. */
461 check_size (type);
462
463 result = allocate_value (type);
464 set_value_component_location (result, val);
465 set_value_bitsize (result, value_bitsize (val));
466 set_value_bitpos (result, value_bitpos (val));
467 set_value_address (result, value_address (val));
468 if (value_lazy (val)
469 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
470 set_value_lazy (result, 1);
471 else
472 memcpy (value_contents_raw (result), value_contents (val),
473 TYPE_LENGTH (type));
474 return result;
475 }
476 }
477
478 static const gdb_byte *
479 cond_offset_host (const gdb_byte *valaddr, long offset)
480 {
481 if (valaddr == NULL)
482 return NULL;
483 else
484 return valaddr + offset;
485 }
486
487 static CORE_ADDR
488 cond_offset_target (CORE_ADDR address, long offset)
489 {
490 if (address == 0)
491 return 0;
492 else
493 return address + offset;
494 }
495
496 /* Issue a warning (as for the definition of warning in utils.c, but
497 with exactly one argument rather than ...), unless the limit on the
498 number of warnings has passed during the evaluation of the current
499 expression. */
500
501 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
502 provided by "complaint". */
503 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
504
505 static void
506 lim_warning (const char *format, ...)
507 {
508 va_list args;
509 va_start (args, format);
510
511 warnings_issued += 1;
512 if (warnings_issued <= warning_limit)
513 vwarning (format, args);
514
515 va_end (args);
516 }
517
518 /* Issue an error if the size of an object of type T is unreasonable,
519 i.e. if it would be a bad idea to allocate a value of this type in
520 GDB. */
521
522 static void
523 check_size (const struct type *type)
524 {
525 if (TYPE_LENGTH (type) > varsize_limit)
526 error (_("object size is larger than varsize-limit"));
527 }
528
529 /* Maximum value of a SIZE-byte signed integer type. */
530 static LONGEST
531 max_of_size (int size)
532 {
533 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
534 return top_bit | (top_bit - 1);
535 }
536
537 /* Minimum value of a SIZE-byte signed integer type. */
538 static LONGEST
539 min_of_size (int size)
540 {
541 return -max_of_size (size) - 1;
542 }
543
544 /* Maximum value of a SIZE-byte unsigned integer type. */
545 static ULONGEST
546 umax_of_size (int size)
547 {
548 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
549 return top_bit | (top_bit - 1);
550 }
551
552 /* Maximum value of integral type T, as a signed quantity. */
553 static LONGEST
554 max_of_type (struct type *t)
555 {
556 if (TYPE_UNSIGNED (t))
557 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
558 else
559 return max_of_size (TYPE_LENGTH (t));
560 }
561
562 /* Minimum value of integral type T, as a signed quantity. */
563 static LONGEST
564 min_of_type (struct type *t)
565 {
566 if (TYPE_UNSIGNED (t))
567 return 0;
568 else
569 return min_of_size (TYPE_LENGTH (t));
570 }
571
572 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
573 LONGEST
574 ada_discrete_type_high_bound (struct type *type)
575 {
576 switch (TYPE_CODE (type))
577 {
578 case TYPE_CODE_RANGE:
579 return TYPE_HIGH_BOUND (type);
580 case TYPE_CODE_ENUM:
581 return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1);
582 case TYPE_CODE_BOOL:
583 return 1;
584 case TYPE_CODE_CHAR:
585 case TYPE_CODE_INT:
586 return max_of_type (type);
587 default:
588 error (_("Unexpected type in ada_discrete_type_high_bound."));
589 }
590 }
591
592 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
593 LONGEST
594 ada_discrete_type_low_bound (struct type *type)
595 {
596 switch (TYPE_CODE (type))
597 {
598 case TYPE_CODE_RANGE:
599 return TYPE_LOW_BOUND (type);
600 case TYPE_CODE_ENUM:
601 return TYPE_FIELD_BITPOS (type, 0);
602 case TYPE_CODE_BOOL:
603 return 0;
604 case TYPE_CODE_CHAR:
605 case TYPE_CODE_INT:
606 return min_of_type (type);
607 default:
608 error (_("Unexpected type in ada_discrete_type_low_bound."));
609 }
610 }
611
612 /* The identity on non-range types. For range types, the underlying
613 non-range scalar type. */
614
615 static struct type *
616 base_type (struct type *type)
617 {
618 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
619 {
620 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
621 return type;
622 type = TYPE_TARGET_TYPE (type);
623 }
624 return type;
625 }
626 \f
627
628 /* Language Selection */
629
630 /* If the main program is in Ada, return language_ada, otherwise return LANG
631 (the main program is in Ada iif the adainit symbol is found). */
632
633 enum language
634 ada_update_initial_language (enum language lang)
635 {
636 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
637 (struct objfile *) NULL) != NULL)
638 return language_ada;
639
640 return lang;
641 }
642
643 /* If the main procedure is written in Ada, then return its name.
644 The result is good until the next call. Return NULL if the main
645 procedure doesn't appear to be in Ada. */
646
647 char *
648 ada_main_name (void)
649 {
650 struct minimal_symbol *msym;
651 static char *main_program_name = NULL;
652
653 /* For Ada, the name of the main procedure is stored in a specific
654 string constant, generated by the binder. Look for that symbol,
655 extract its address, and then read that string. If we didn't find
656 that string, then most probably the main procedure is not written
657 in Ada. */
658 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
659
660 if (msym != NULL)
661 {
662 CORE_ADDR main_program_name_addr;
663 int err_code;
664
665 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
666 if (main_program_name_addr == 0)
667 error (_("Invalid address for Ada main program name."));
668
669 xfree (main_program_name);
670 target_read_string (main_program_name_addr, &main_program_name,
671 1024, &err_code);
672
673 if (err_code != 0)
674 return NULL;
675 return main_program_name;
676 }
677
678 /* The main procedure doesn't seem to be in Ada. */
679 return NULL;
680 }
681 \f
682 /* Symbols */
683
684 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
685 of NULLs. */
686
687 const struct ada_opname_map ada_opname_table[] = {
688 {"Oadd", "\"+\"", BINOP_ADD},
689 {"Osubtract", "\"-\"", BINOP_SUB},
690 {"Omultiply", "\"*\"", BINOP_MUL},
691 {"Odivide", "\"/\"", BINOP_DIV},
692 {"Omod", "\"mod\"", BINOP_MOD},
693 {"Orem", "\"rem\"", BINOP_REM},
694 {"Oexpon", "\"**\"", BINOP_EXP},
695 {"Olt", "\"<\"", BINOP_LESS},
696 {"Ole", "\"<=\"", BINOP_LEQ},
697 {"Ogt", "\">\"", BINOP_GTR},
698 {"Oge", "\">=\"", BINOP_GEQ},
699 {"Oeq", "\"=\"", BINOP_EQUAL},
700 {"One", "\"/=\"", BINOP_NOTEQUAL},
701 {"Oand", "\"and\"", BINOP_BITWISE_AND},
702 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
703 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
704 {"Oconcat", "\"&\"", BINOP_CONCAT},
705 {"Oabs", "\"abs\"", UNOP_ABS},
706 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
707 {"Oadd", "\"+\"", UNOP_PLUS},
708 {"Osubtract", "\"-\"", UNOP_NEG},
709 {NULL, NULL}
710 };
711
712 /* The "encoded" form of DECODED, according to GNAT conventions.
713 The result is valid until the next call to ada_encode. */
714
715 char *
716 ada_encode (const char *decoded)
717 {
718 static char *encoding_buffer = NULL;
719 static size_t encoding_buffer_size = 0;
720 const char *p;
721 int k;
722
723 if (decoded == NULL)
724 return NULL;
725
726 GROW_VECT (encoding_buffer, encoding_buffer_size,
727 2 * strlen (decoded) + 10);
728
729 k = 0;
730 for (p = decoded; *p != '\0'; p += 1)
731 {
732 if (*p == '.')
733 {
734 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
735 k += 2;
736 }
737 else if (*p == '"')
738 {
739 const struct ada_opname_map *mapping;
740
741 for (mapping = ada_opname_table;
742 mapping->encoded != NULL
743 && strncmp (mapping->decoded, p,
744 strlen (mapping->decoded)) != 0; mapping += 1)
745 ;
746 if (mapping->encoded == NULL)
747 error (_("invalid Ada operator name: %s"), p);
748 strcpy (encoding_buffer + k, mapping->encoded);
749 k += strlen (mapping->encoded);
750 break;
751 }
752 else
753 {
754 encoding_buffer[k] = *p;
755 k += 1;
756 }
757 }
758
759 encoding_buffer[k] = '\0';
760 return encoding_buffer;
761 }
762
763 /* Return NAME folded to lower case, or, if surrounded by single
764 quotes, unfolded, but with the quotes stripped away. Result good
765 to next call. */
766
767 char *
768 ada_fold_name (const char *name)
769 {
770 static char *fold_buffer = NULL;
771 static size_t fold_buffer_size = 0;
772
773 int len = strlen (name);
774 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
775
776 if (name[0] == '\'')
777 {
778 strncpy (fold_buffer, name + 1, len - 2);
779 fold_buffer[len - 2] = '\000';
780 }
781 else
782 {
783 int i;
784 for (i = 0; i <= len; i += 1)
785 fold_buffer[i] = tolower (name[i]);
786 }
787
788 return fold_buffer;
789 }
790
791 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
792
793 static int
794 is_lower_alphanum (const char c)
795 {
796 return (isdigit (c) || (isalpha (c) && islower (c)));
797 }
798
799 /* Remove either of these suffixes:
800 . .{DIGIT}+
801 . ${DIGIT}+
802 . ___{DIGIT}+
803 . __{DIGIT}+.
804 These are suffixes introduced by the compiler for entities such as
805 nested subprogram for instance, in order to avoid name clashes.
806 They do not serve any purpose for the debugger. */
807
808 static void
809 ada_remove_trailing_digits (const char *encoded, int *len)
810 {
811 if (*len > 1 && isdigit (encoded[*len - 1]))
812 {
813 int i = *len - 2;
814 while (i > 0 && isdigit (encoded[i]))
815 i--;
816 if (i >= 0 && encoded[i] == '.')
817 *len = i;
818 else if (i >= 0 && encoded[i] == '$')
819 *len = i;
820 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
821 *len = i - 2;
822 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
823 *len = i - 1;
824 }
825 }
826
827 /* Remove the suffix introduced by the compiler for protected object
828 subprograms. */
829
830 static void
831 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
832 {
833 /* Remove trailing N. */
834
835 /* Protected entry subprograms are broken into two
836 separate subprograms: The first one is unprotected, and has
837 a 'N' suffix; the second is the protected version, and has
838 the 'P' suffix. The second calls the first one after handling
839 the protection. Since the P subprograms are internally generated,
840 we leave these names undecoded, giving the user a clue that this
841 entity is internal. */
842
843 if (*len > 1
844 && encoded[*len - 1] == 'N'
845 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
846 *len = *len - 1;
847 }
848
849 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
850
851 static void
852 ada_remove_Xbn_suffix (const char *encoded, int *len)
853 {
854 int i = *len - 1;
855
856 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
857 i--;
858
859 if (encoded[i] != 'X')
860 return;
861
862 if (i == 0)
863 return;
864
865 if (isalnum (encoded[i-1]))
866 *len = i;
867 }
868
869 /* If ENCODED follows the GNAT entity encoding conventions, then return
870 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
871 replaced by ENCODED.
872
873 The resulting string is valid until the next call of ada_decode.
874 If the string is unchanged by decoding, the original string pointer
875 is returned. */
876
877 const char *
878 ada_decode (const char *encoded)
879 {
880 int i, j;
881 int len0;
882 const char *p;
883 char *decoded;
884 int at_start_name;
885 static char *decoding_buffer = NULL;
886 static size_t decoding_buffer_size = 0;
887
888 /* The name of the Ada main procedure starts with "_ada_".
889 This prefix is not part of the decoded name, so skip this part
890 if we see this prefix. */
891 if (strncmp (encoded, "_ada_", 5) == 0)
892 encoded += 5;
893
894 /* If the name starts with '_', then it is not a properly encoded
895 name, so do not attempt to decode it. Similarly, if the name
896 starts with '<', the name should not be decoded. */
897 if (encoded[0] == '_' || encoded[0] == '<')
898 goto Suppress;
899
900 len0 = strlen (encoded);
901
902 ada_remove_trailing_digits (encoded, &len0);
903 ada_remove_po_subprogram_suffix (encoded, &len0);
904
905 /* Remove the ___X.* suffix if present. Do not forget to verify that
906 the suffix is located before the current "end" of ENCODED. We want
907 to avoid re-matching parts of ENCODED that have previously been
908 marked as discarded (by decrementing LEN0). */
909 p = strstr (encoded, "___");
910 if (p != NULL && p - encoded < len0 - 3)
911 {
912 if (p[3] == 'X')
913 len0 = p - encoded;
914 else
915 goto Suppress;
916 }
917
918 /* Remove any trailing TKB suffix. It tells us that this symbol
919 is for the body of a task, but that information does not actually
920 appear in the decoded name. */
921
922 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
923 len0 -= 3;
924
925 /* Remove any trailing TB suffix. The TB suffix is slightly different
926 from the TKB suffix because it is used for non-anonymous task
927 bodies. */
928
929 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
930 len0 -= 2;
931
932 /* Remove trailing "B" suffixes. */
933 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
934
935 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
936 len0 -= 1;
937
938 /* Make decoded big enough for possible expansion by operator name. */
939
940 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
941 decoded = decoding_buffer;
942
943 /* Remove trailing __{digit}+ or trailing ${digit}+. */
944
945 if (len0 > 1 && isdigit (encoded[len0 - 1]))
946 {
947 i = len0 - 2;
948 while ((i >= 0 && isdigit (encoded[i]))
949 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
950 i -= 1;
951 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
952 len0 = i - 1;
953 else if (encoded[i] == '$')
954 len0 = i;
955 }
956
957 /* The first few characters that are not alphabetic are not part
958 of any encoding we use, so we can copy them over verbatim. */
959
960 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
961 decoded[j] = encoded[i];
962
963 at_start_name = 1;
964 while (i < len0)
965 {
966 /* Is this a symbol function? */
967 if (at_start_name && encoded[i] == 'O')
968 {
969 int k;
970 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
971 {
972 int op_len = strlen (ada_opname_table[k].encoded);
973 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
974 op_len - 1) == 0)
975 && !isalnum (encoded[i + op_len]))
976 {
977 strcpy (decoded + j, ada_opname_table[k].decoded);
978 at_start_name = 0;
979 i += op_len;
980 j += strlen (ada_opname_table[k].decoded);
981 break;
982 }
983 }
984 if (ada_opname_table[k].encoded != NULL)
985 continue;
986 }
987 at_start_name = 0;
988
989 /* Replace "TK__" with "__", which will eventually be translated
990 into "." (just below). */
991
992 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
993 i += 2;
994
995 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
996 be translated into "." (just below). These are internal names
997 generated for anonymous blocks inside which our symbol is nested. */
998
999 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1000 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1001 && isdigit (encoded [i+4]))
1002 {
1003 int k = i + 5;
1004
1005 while (k < len0 && isdigit (encoded[k]))
1006 k++; /* Skip any extra digit. */
1007
1008 /* Double-check that the "__B_{DIGITS}+" sequence we found
1009 is indeed followed by "__". */
1010 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1011 i = k;
1012 }
1013
1014 /* Remove _E{DIGITS}+[sb] */
1015
1016 /* Just as for protected object subprograms, there are 2 categories
1017 of subprograms created by the compiler for each entry. The first
1018 one implements the actual entry code, and has a suffix following
1019 the convention above; the second one implements the barrier and
1020 uses the same convention as above, except that the 'E' is replaced
1021 by a 'B'.
1022
1023 Just as above, we do not decode the name of barrier functions
1024 to give the user a clue that the code he is debugging has been
1025 internally generated. */
1026
1027 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1028 && isdigit (encoded[i+2]))
1029 {
1030 int k = i + 3;
1031
1032 while (k < len0 && isdigit (encoded[k]))
1033 k++;
1034
1035 if (k < len0
1036 && (encoded[k] == 'b' || encoded[k] == 's'))
1037 {
1038 k++;
1039 /* Just as an extra precaution, make sure that if this
1040 suffix is followed by anything else, it is a '_'.
1041 Otherwise, we matched this sequence by accident. */
1042 if (k == len0
1043 || (k < len0 && encoded[k] == '_'))
1044 i = k;
1045 }
1046 }
1047
1048 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1049 the GNAT front-end in protected object subprograms. */
1050
1051 if (i < len0 + 3
1052 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1053 {
1054 /* Backtrack a bit up until we reach either the begining of
1055 the encoded name, or "__". Make sure that we only find
1056 digits or lowercase characters. */
1057 const char *ptr = encoded + i - 1;
1058
1059 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1060 ptr--;
1061 if (ptr < encoded
1062 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1063 i++;
1064 }
1065
1066 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1067 {
1068 /* This is a X[bn]* sequence not separated from the previous
1069 part of the name with a non-alpha-numeric character (in other
1070 words, immediately following an alpha-numeric character), then
1071 verify that it is placed at the end of the encoded name. If
1072 not, then the encoding is not valid and we should abort the
1073 decoding. Otherwise, just skip it, it is used in body-nested
1074 package names. */
1075 do
1076 i += 1;
1077 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1078 if (i < len0)
1079 goto Suppress;
1080 }
1081 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1082 {
1083 /* Replace '__' by '.'. */
1084 decoded[j] = '.';
1085 at_start_name = 1;
1086 i += 2;
1087 j += 1;
1088 }
1089 else
1090 {
1091 /* It's a character part of the decoded name, so just copy it
1092 over. */
1093 decoded[j] = encoded[i];
1094 i += 1;
1095 j += 1;
1096 }
1097 }
1098 decoded[j] = '\000';
1099
1100 /* Decoded names should never contain any uppercase character.
1101 Double-check this, and abort the decoding if we find one. */
1102
1103 for (i = 0; decoded[i] != '\0'; i += 1)
1104 if (isupper (decoded[i]) || decoded[i] == ' ')
1105 goto Suppress;
1106
1107 if (strcmp (decoded, encoded) == 0)
1108 return encoded;
1109 else
1110 return decoded;
1111
1112 Suppress:
1113 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1114 decoded = decoding_buffer;
1115 if (encoded[0] == '<')
1116 strcpy (decoded, encoded);
1117 else
1118 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1119 return decoded;
1120
1121 }
1122
1123 /* Table for keeping permanent unique copies of decoded names. Once
1124 allocated, names in this table are never released. While this is a
1125 storage leak, it should not be significant unless there are massive
1126 changes in the set of decoded names in successive versions of a
1127 symbol table loaded during a single session. */
1128 static struct htab *decoded_names_store;
1129
1130 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1131 in the language-specific part of GSYMBOL, if it has not been
1132 previously computed. Tries to save the decoded name in the same
1133 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1134 in any case, the decoded symbol has a lifetime at least that of
1135 GSYMBOL).
1136 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1137 const, but nevertheless modified to a semantically equivalent form
1138 when a decoded name is cached in it.
1139 */
1140
1141 char *
1142 ada_decode_symbol (const struct general_symbol_info *gsymbol)
1143 {
1144 char **resultp =
1145 (char **) &gsymbol->language_specific.cplus_specific.demangled_name;
1146 if (*resultp == NULL)
1147 {
1148 const char *decoded = ada_decode (gsymbol->name);
1149 if (gsymbol->obj_section != NULL)
1150 {
1151 struct objfile *objf = gsymbol->obj_section->objfile;
1152 *resultp = obsavestring (decoded, strlen (decoded),
1153 &objf->objfile_obstack);
1154 }
1155 /* Sometimes, we can't find a corresponding objfile, in which
1156 case, we put the result on the heap. Since we only decode
1157 when needed, we hope this usually does not cause a
1158 significant memory leak (FIXME). */
1159 if (*resultp == NULL)
1160 {
1161 char **slot = (char **) htab_find_slot (decoded_names_store,
1162 decoded, INSERT);
1163 if (*slot == NULL)
1164 *slot = xstrdup (decoded);
1165 *resultp = *slot;
1166 }
1167 }
1168
1169 return *resultp;
1170 }
1171
1172 static char *
1173 ada_la_decode (const char *encoded, int options)
1174 {
1175 return xstrdup (ada_decode (encoded));
1176 }
1177
1178 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1179 suffixes that encode debugging information or leading _ada_ on
1180 SYM_NAME (see is_name_suffix commentary for the debugging
1181 information that is ignored). If WILD, then NAME need only match a
1182 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1183 either argument is NULL. */
1184
1185 static int
1186 ada_match_name (const char *sym_name, const char *name, int wild)
1187 {
1188 if (sym_name == NULL || name == NULL)
1189 return 0;
1190 else if (wild)
1191 return wild_match (name, strlen (name), sym_name);
1192 else
1193 {
1194 int len_name = strlen (name);
1195 return (strncmp (sym_name, name, len_name) == 0
1196 && is_name_suffix (sym_name + len_name))
1197 || (strncmp (sym_name, "_ada_", 5) == 0
1198 && strncmp (sym_name + 5, name, len_name) == 0
1199 && is_name_suffix (sym_name + len_name + 5));
1200 }
1201 }
1202 \f
1203
1204 /* Arrays */
1205
1206 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1207 generated by the GNAT compiler to describe the index type used
1208 for each dimension of an array, check whether it follows the latest
1209 known encoding. If not, fix it up to conform to the latest encoding.
1210 Otherwise, do nothing. This function also does nothing if
1211 INDEX_DESC_TYPE is NULL.
1212
1213 The GNAT encoding used to describle the array index type evolved a bit.
1214 Initially, the information would be provided through the name of each
1215 field of the structure type only, while the type of these fields was
1216 described as unspecified and irrelevant. The debugger was then expected
1217 to perform a global type lookup using the name of that field in order
1218 to get access to the full index type description. Because these global
1219 lookups can be very expensive, the encoding was later enhanced to make
1220 the global lookup unnecessary by defining the field type as being
1221 the full index type description.
1222
1223 The purpose of this routine is to allow us to support older versions
1224 of the compiler by detecting the use of the older encoding, and by
1225 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1226 we essentially replace each field's meaningless type by the associated
1227 index subtype). */
1228
1229 void
1230 ada_fixup_array_indexes_type (struct type *index_desc_type)
1231 {
1232 int i;
1233
1234 if (index_desc_type == NULL)
1235 return;
1236 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1237
1238 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1239 to check one field only, no need to check them all). If not, return
1240 now.
1241
1242 If our INDEX_DESC_TYPE was generated using the older encoding,
1243 the field type should be a meaningless integer type whose name
1244 is not equal to the field name. */
1245 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1246 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1247 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1248 return;
1249
1250 /* Fixup each field of INDEX_DESC_TYPE. */
1251 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1252 {
1253 char *name = TYPE_FIELD_NAME (index_desc_type, i);
1254 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1255
1256 if (raw_type)
1257 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1258 }
1259 }
1260
1261 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1262
1263 static char *bound_name[] = {
1264 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1265 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1266 };
1267
1268 /* Maximum number of array dimensions we are prepared to handle. */
1269
1270 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1271
1272 /* Like modify_field, but allows bitpos > wordlength. */
1273
1274 static void
1275 modify_general_field (struct type *type, char *addr,
1276 LONGEST fieldval, int bitpos, int bitsize)
1277 {
1278 modify_field (type, addr + bitpos / 8, fieldval, bitpos % 8, bitsize);
1279 }
1280
1281
1282 /* The desc_* routines return primitive portions of array descriptors
1283 (fat pointers). */
1284
1285 /* The descriptor or array type, if any, indicated by TYPE; removes
1286 level of indirection, if needed. */
1287
1288 static struct type *
1289 desc_base_type (struct type *type)
1290 {
1291 if (type == NULL)
1292 return NULL;
1293 type = ada_check_typedef (type);
1294 if (type != NULL
1295 && (TYPE_CODE (type) == TYPE_CODE_PTR
1296 || TYPE_CODE (type) == TYPE_CODE_REF))
1297 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1298 else
1299 return type;
1300 }
1301
1302 /* True iff TYPE indicates a "thin" array pointer type. */
1303
1304 static int
1305 is_thin_pntr (struct type *type)
1306 {
1307 return
1308 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1309 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1310 }
1311
1312 /* The descriptor type for thin pointer type TYPE. */
1313
1314 static struct type *
1315 thin_descriptor_type (struct type *type)
1316 {
1317 struct type *base_type = desc_base_type (type);
1318 if (base_type == NULL)
1319 return NULL;
1320 if (is_suffix (ada_type_name (base_type), "___XVE"))
1321 return base_type;
1322 else
1323 {
1324 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1325 if (alt_type == NULL)
1326 return base_type;
1327 else
1328 return alt_type;
1329 }
1330 }
1331
1332 /* A pointer to the array data for thin-pointer value VAL. */
1333
1334 static struct value *
1335 thin_data_pntr (struct value *val)
1336 {
1337 struct type *type = value_type (val);
1338 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1339 data_type = lookup_pointer_type (data_type);
1340
1341 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1342 return value_cast (data_type, value_copy (val));
1343 else
1344 return value_from_longest (data_type, value_address (val));
1345 }
1346
1347 /* True iff TYPE indicates a "thick" array pointer type. */
1348
1349 static int
1350 is_thick_pntr (struct type *type)
1351 {
1352 type = desc_base_type (type);
1353 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1354 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1355 }
1356
1357 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1358 pointer to one, the type of its bounds data; otherwise, NULL. */
1359
1360 static struct type *
1361 desc_bounds_type (struct type *type)
1362 {
1363 struct type *r;
1364
1365 type = desc_base_type (type);
1366
1367 if (type == NULL)
1368 return NULL;
1369 else if (is_thin_pntr (type))
1370 {
1371 type = thin_descriptor_type (type);
1372 if (type == NULL)
1373 return NULL;
1374 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1375 if (r != NULL)
1376 return ada_check_typedef (r);
1377 }
1378 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1379 {
1380 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1381 if (r != NULL)
1382 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1383 }
1384 return NULL;
1385 }
1386
1387 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1388 one, a pointer to its bounds data. Otherwise NULL. */
1389
1390 static struct value *
1391 desc_bounds (struct value *arr)
1392 {
1393 struct type *type = ada_check_typedef (value_type (arr));
1394 if (is_thin_pntr (type))
1395 {
1396 struct type *bounds_type =
1397 desc_bounds_type (thin_descriptor_type (type));
1398 LONGEST addr;
1399
1400 if (bounds_type == NULL)
1401 error (_("Bad GNAT array descriptor"));
1402
1403 /* NOTE: The following calculation is not really kosher, but
1404 since desc_type is an XVE-encoded type (and shouldn't be),
1405 the correct calculation is a real pain. FIXME (and fix GCC). */
1406 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1407 addr = value_as_long (arr);
1408 else
1409 addr = value_address (arr);
1410
1411 return
1412 value_from_longest (lookup_pointer_type (bounds_type),
1413 addr - TYPE_LENGTH (bounds_type));
1414 }
1415
1416 else if (is_thick_pntr (type))
1417 return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1418 _("Bad GNAT array descriptor"));
1419 else
1420 return NULL;
1421 }
1422
1423 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1424 position of the field containing the address of the bounds data. */
1425
1426 static int
1427 fat_pntr_bounds_bitpos (struct type *type)
1428 {
1429 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1430 }
1431
1432 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1433 size of the field containing the address of the bounds data. */
1434
1435 static int
1436 fat_pntr_bounds_bitsize (struct type *type)
1437 {
1438 type = desc_base_type (type);
1439
1440 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1441 return TYPE_FIELD_BITSIZE (type, 1);
1442 else
1443 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1444 }
1445
1446 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1447 pointer to one, the type of its array data (a array-with-no-bounds type);
1448 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1449 data. */
1450
1451 static struct type *
1452 desc_data_target_type (struct type *type)
1453 {
1454 type = desc_base_type (type);
1455
1456 /* NOTE: The following is bogus; see comment in desc_bounds. */
1457 if (is_thin_pntr (type))
1458 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1459 else if (is_thick_pntr (type))
1460 {
1461 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1462
1463 if (data_type
1464 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1465 return TYPE_TARGET_TYPE (data_type);
1466 }
1467
1468 return NULL;
1469 }
1470
1471 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1472 its array data. */
1473
1474 static struct value *
1475 desc_data (struct value *arr)
1476 {
1477 struct type *type = value_type (arr);
1478 if (is_thin_pntr (type))
1479 return thin_data_pntr (arr);
1480 else if (is_thick_pntr (type))
1481 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1482 _("Bad GNAT array descriptor"));
1483 else
1484 return NULL;
1485 }
1486
1487
1488 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1489 position of the field containing the address of the data. */
1490
1491 static int
1492 fat_pntr_data_bitpos (struct type *type)
1493 {
1494 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1495 }
1496
1497 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1498 size of the field containing the address of the data. */
1499
1500 static int
1501 fat_pntr_data_bitsize (struct type *type)
1502 {
1503 type = desc_base_type (type);
1504
1505 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1506 return TYPE_FIELD_BITSIZE (type, 0);
1507 else
1508 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1509 }
1510
1511 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1512 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1513 bound, if WHICH is 1. The first bound is I=1. */
1514
1515 static struct value *
1516 desc_one_bound (struct value *bounds, int i, int which)
1517 {
1518 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1519 _("Bad GNAT array descriptor bounds"));
1520 }
1521
1522 /* If BOUNDS is an array-bounds structure type, return the bit position
1523 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1524 bound, if WHICH is 1. The first bound is I=1. */
1525
1526 static int
1527 desc_bound_bitpos (struct type *type, int i, int which)
1528 {
1529 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1530 }
1531
1532 /* If BOUNDS is an array-bounds structure type, return the bit field size
1533 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1534 bound, if WHICH is 1. The first bound is I=1. */
1535
1536 static int
1537 desc_bound_bitsize (struct type *type, int i, int which)
1538 {
1539 type = desc_base_type (type);
1540
1541 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1542 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1543 else
1544 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1545 }
1546
1547 /* If TYPE is the type of an array-bounds structure, the type of its
1548 Ith bound (numbering from 1). Otherwise, NULL. */
1549
1550 static struct type *
1551 desc_index_type (struct type *type, int i)
1552 {
1553 type = desc_base_type (type);
1554
1555 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1556 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1557 else
1558 return NULL;
1559 }
1560
1561 /* The number of index positions in the array-bounds type TYPE.
1562 Return 0 if TYPE is NULL. */
1563
1564 static int
1565 desc_arity (struct type *type)
1566 {
1567 type = desc_base_type (type);
1568
1569 if (type != NULL)
1570 return TYPE_NFIELDS (type) / 2;
1571 return 0;
1572 }
1573
1574 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1575 an array descriptor type (representing an unconstrained array
1576 type). */
1577
1578 static int
1579 ada_is_direct_array_type (struct type *type)
1580 {
1581 if (type == NULL)
1582 return 0;
1583 type = ada_check_typedef (type);
1584 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1585 || ada_is_array_descriptor_type (type));
1586 }
1587
1588 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1589 * to one. */
1590
1591 static int
1592 ada_is_array_type (struct type *type)
1593 {
1594 while (type != NULL
1595 && (TYPE_CODE (type) == TYPE_CODE_PTR
1596 || TYPE_CODE (type) == TYPE_CODE_REF))
1597 type = TYPE_TARGET_TYPE (type);
1598 return ada_is_direct_array_type (type);
1599 }
1600
1601 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1602
1603 int
1604 ada_is_simple_array_type (struct type *type)
1605 {
1606 if (type == NULL)
1607 return 0;
1608 type = ada_check_typedef (type);
1609 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1610 || (TYPE_CODE (type) == TYPE_CODE_PTR
1611 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
1612 }
1613
1614 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1615
1616 int
1617 ada_is_array_descriptor_type (struct type *type)
1618 {
1619 struct type *data_type = desc_data_target_type (type);
1620
1621 if (type == NULL)
1622 return 0;
1623 type = ada_check_typedef (type);
1624 return (data_type != NULL
1625 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1626 && desc_arity (desc_bounds_type (type)) > 0);
1627 }
1628
1629 /* Non-zero iff type is a partially mal-formed GNAT array
1630 descriptor. FIXME: This is to compensate for some problems with
1631 debugging output from GNAT. Re-examine periodically to see if it
1632 is still needed. */
1633
1634 int
1635 ada_is_bogus_array_descriptor (struct type *type)
1636 {
1637 return
1638 type != NULL
1639 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1640 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1641 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1642 && !ada_is_array_descriptor_type (type);
1643 }
1644
1645
1646 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1647 (fat pointer) returns the type of the array data described---specifically,
1648 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1649 in from the descriptor; otherwise, they are left unspecified. If
1650 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1651 returns NULL. The result is simply the type of ARR if ARR is not
1652 a descriptor. */
1653 struct type *
1654 ada_type_of_array (struct value *arr, int bounds)
1655 {
1656 if (ada_is_constrained_packed_array_type (value_type (arr)))
1657 return decode_constrained_packed_array_type (value_type (arr));
1658
1659 if (!ada_is_array_descriptor_type (value_type (arr)))
1660 return value_type (arr);
1661
1662 if (!bounds)
1663 {
1664 struct type *array_type =
1665 ada_check_typedef (desc_data_target_type (value_type (arr)));
1666
1667 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1668 TYPE_FIELD_BITSIZE (array_type, 0) =
1669 decode_packed_array_bitsize (value_type (arr));
1670
1671 return array_type;
1672 }
1673 else
1674 {
1675 struct type *elt_type;
1676 int arity;
1677 struct value *descriptor;
1678
1679 elt_type = ada_array_element_type (value_type (arr), -1);
1680 arity = ada_array_arity (value_type (arr));
1681
1682 if (elt_type == NULL || arity == 0)
1683 return ada_check_typedef (value_type (arr));
1684
1685 descriptor = desc_bounds (arr);
1686 if (value_as_long (descriptor) == 0)
1687 return NULL;
1688 while (arity > 0)
1689 {
1690 struct type *range_type = alloc_type_copy (value_type (arr));
1691 struct type *array_type = alloc_type_copy (value_type (arr));
1692 struct value *low = desc_one_bound (descriptor, arity, 0);
1693 struct value *high = desc_one_bound (descriptor, arity, 1);
1694 arity -= 1;
1695
1696 create_range_type (range_type, value_type (low),
1697 longest_to_int (value_as_long (low)),
1698 longest_to_int (value_as_long (high)));
1699 elt_type = create_array_type (array_type, elt_type, range_type);
1700
1701 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1702 TYPE_FIELD_BITSIZE (elt_type, 0) =
1703 decode_packed_array_bitsize (value_type (arr));
1704 }
1705
1706 return lookup_pointer_type (elt_type);
1707 }
1708 }
1709
1710 /* If ARR does not represent an array, returns ARR unchanged.
1711 Otherwise, returns either a standard GDB array with bounds set
1712 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1713 GDB array. Returns NULL if ARR is a null fat pointer. */
1714
1715 struct value *
1716 ada_coerce_to_simple_array_ptr (struct value *arr)
1717 {
1718 if (ada_is_array_descriptor_type (value_type (arr)))
1719 {
1720 struct type *arrType = ada_type_of_array (arr, 1);
1721 if (arrType == NULL)
1722 return NULL;
1723 return value_cast (arrType, value_copy (desc_data (arr)));
1724 }
1725 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1726 return decode_constrained_packed_array (arr);
1727 else
1728 return arr;
1729 }
1730
1731 /* If ARR does not represent an array, returns ARR unchanged.
1732 Otherwise, returns a standard GDB array describing ARR (which may
1733 be ARR itself if it already is in the proper form). */
1734
1735 static struct value *
1736 ada_coerce_to_simple_array (struct value *arr)
1737 {
1738 if (ada_is_array_descriptor_type (value_type (arr)))
1739 {
1740 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1741 if (arrVal == NULL)
1742 error (_("Bounds unavailable for null array pointer."));
1743 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1744 return value_ind (arrVal);
1745 }
1746 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1747 return decode_constrained_packed_array (arr);
1748 else
1749 return arr;
1750 }
1751
1752 /* If TYPE represents a GNAT array type, return it translated to an
1753 ordinary GDB array type (possibly with BITSIZE fields indicating
1754 packing). For other types, is the identity. */
1755
1756 struct type *
1757 ada_coerce_to_simple_array_type (struct type *type)
1758 {
1759 if (ada_is_constrained_packed_array_type (type))
1760 return decode_constrained_packed_array_type (type);
1761
1762 if (ada_is_array_descriptor_type (type))
1763 return ada_check_typedef (desc_data_target_type (type));
1764
1765 return type;
1766 }
1767
1768 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1769
1770 static int
1771 ada_is_packed_array_type (struct type *type)
1772 {
1773 if (type == NULL)
1774 return 0;
1775 type = desc_base_type (type);
1776 type = ada_check_typedef (type);
1777 return
1778 ada_type_name (type) != NULL
1779 && strstr (ada_type_name (type), "___XP") != NULL;
1780 }
1781
1782 /* Non-zero iff TYPE represents a standard GNAT constrained
1783 packed-array type. */
1784
1785 int
1786 ada_is_constrained_packed_array_type (struct type *type)
1787 {
1788 return ada_is_packed_array_type (type)
1789 && !ada_is_array_descriptor_type (type);
1790 }
1791
1792 /* Non-zero iff TYPE represents an array descriptor for a
1793 unconstrained packed-array type. */
1794
1795 static int
1796 ada_is_unconstrained_packed_array_type (struct type *type)
1797 {
1798 return ada_is_packed_array_type (type)
1799 && ada_is_array_descriptor_type (type);
1800 }
1801
1802 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
1803 return the size of its elements in bits. */
1804
1805 static long
1806 decode_packed_array_bitsize (struct type *type)
1807 {
1808 char *raw_name = ada_type_name (ada_check_typedef (type));
1809 char *tail;
1810 long bits;
1811
1812 if (!raw_name)
1813 raw_name = ada_type_name (desc_base_type (type));
1814
1815 if (!raw_name)
1816 return 0;
1817
1818 tail = strstr (raw_name, "___XP");
1819
1820 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1821 {
1822 lim_warning
1823 (_("could not understand bit size information on packed array"));
1824 return 0;
1825 }
1826
1827 return bits;
1828 }
1829
1830 /* Given that TYPE is a standard GDB array type with all bounds filled
1831 in, and that the element size of its ultimate scalar constituents
1832 (that is, either its elements, or, if it is an array of arrays, its
1833 elements' elements, etc.) is *ELT_BITS, return an identical type,
1834 but with the bit sizes of its elements (and those of any
1835 constituent arrays) recorded in the BITSIZE components of its
1836 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1837 in bits. */
1838
1839 static struct type *
1840 constrained_packed_array_type (struct type *type, long *elt_bits)
1841 {
1842 struct type *new_elt_type;
1843 struct type *new_type;
1844 LONGEST low_bound, high_bound;
1845
1846 type = ada_check_typedef (type);
1847 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1848 return type;
1849
1850 new_type = alloc_type_copy (type);
1851 new_elt_type =
1852 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
1853 elt_bits);
1854 create_array_type (new_type, new_elt_type, TYPE_INDEX_TYPE (type));
1855 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
1856 TYPE_NAME (new_type) = ada_type_name (type);
1857
1858 if (get_discrete_bounds (TYPE_INDEX_TYPE (type),
1859 &low_bound, &high_bound) < 0)
1860 low_bound = high_bound = 0;
1861 if (high_bound < low_bound)
1862 *elt_bits = TYPE_LENGTH (new_type) = 0;
1863 else
1864 {
1865 *elt_bits *= (high_bound - low_bound + 1);
1866 TYPE_LENGTH (new_type) =
1867 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
1868 }
1869
1870 TYPE_FIXED_INSTANCE (new_type) = 1;
1871 return new_type;
1872 }
1873
1874 /* The array type encoded by TYPE, where
1875 ada_is_constrained_packed_array_type (TYPE). */
1876
1877 static struct type *
1878 decode_constrained_packed_array_type (struct type *type)
1879 {
1880 char *raw_name = ada_type_name (ada_check_typedef (type));
1881 char *name;
1882 char *tail;
1883 struct type *shadow_type;
1884 long bits;
1885
1886 if (!raw_name)
1887 raw_name = ada_type_name (desc_base_type (type));
1888
1889 if (!raw_name)
1890 return NULL;
1891
1892 name = (char *) alloca (strlen (raw_name) + 1);
1893 tail = strstr (raw_name, "___XP");
1894 type = desc_base_type (type);
1895
1896 memcpy (name, raw_name, tail - raw_name);
1897 name[tail - raw_name] = '\000';
1898
1899 shadow_type = ada_find_parallel_type_with_name (type, name);
1900
1901 if (shadow_type == NULL)
1902 {
1903 lim_warning (_("could not find bounds information on packed array"));
1904 return NULL;
1905 }
1906 CHECK_TYPEDEF (shadow_type);
1907
1908 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
1909 {
1910 lim_warning (_("could not understand bounds information on packed array"));
1911 return NULL;
1912 }
1913
1914 bits = decode_packed_array_bitsize (type);
1915 return constrained_packed_array_type (shadow_type, &bits);
1916 }
1917
1918 /* Given that ARR is a struct value *indicating a GNAT constrained packed
1919 array, returns a simple array that denotes that array. Its type is a
1920 standard GDB array type except that the BITSIZEs of the array
1921 target types are set to the number of bits in each element, and the
1922 type length is set appropriately. */
1923
1924 static struct value *
1925 decode_constrained_packed_array (struct value *arr)
1926 {
1927 struct type *type;
1928
1929 arr = ada_coerce_ref (arr);
1930
1931 /* If our value is a pointer, then dererence it. Make sure that
1932 this operation does not cause the target type to be fixed, as
1933 this would indirectly cause this array to be decoded. The rest
1934 of the routine assumes that the array hasn't been decoded yet,
1935 so we use the basic "value_ind" routine to perform the dereferencing,
1936 as opposed to using "ada_value_ind". */
1937 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
1938 arr = value_ind (arr);
1939
1940 type = decode_constrained_packed_array_type (value_type (arr));
1941 if (type == NULL)
1942 {
1943 error (_("can't unpack array"));
1944 return NULL;
1945 }
1946
1947 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
1948 && ada_is_modular_type (value_type (arr)))
1949 {
1950 /* This is a (right-justified) modular type representing a packed
1951 array with no wrapper. In order to interpret the value through
1952 the (left-justified) packed array type we just built, we must
1953 first left-justify it. */
1954 int bit_size, bit_pos;
1955 ULONGEST mod;
1956
1957 mod = ada_modulus (value_type (arr)) - 1;
1958 bit_size = 0;
1959 while (mod > 0)
1960 {
1961 bit_size += 1;
1962 mod >>= 1;
1963 }
1964 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
1965 arr = ada_value_primitive_packed_val (arr, NULL,
1966 bit_pos / HOST_CHAR_BIT,
1967 bit_pos % HOST_CHAR_BIT,
1968 bit_size,
1969 type);
1970 }
1971
1972 return coerce_unspec_val_to_type (arr, type);
1973 }
1974
1975
1976 /* The value of the element of packed array ARR at the ARITY indices
1977 given in IND. ARR must be a simple array. */
1978
1979 static struct value *
1980 value_subscript_packed (struct value *arr, int arity, struct value **ind)
1981 {
1982 int i;
1983 int bits, elt_off, bit_off;
1984 long elt_total_bit_offset;
1985 struct type *elt_type;
1986 struct value *v;
1987
1988 bits = 0;
1989 elt_total_bit_offset = 0;
1990 elt_type = ada_check_typedef (value_type (arr));
1991 for (i = 0; i < arity; i += 1)
1992 {
1993 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
1994 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
1995 error
1996 (_("attempt to do packed indexing of something other than a packed array"));
1997 else
1998 {
1999 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2000 LONGEST lowerbound, upperbound;
2001 LONGEST idx;
2002
2003 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2004 {
2005 lim_warning (_("don't know bounds of array"));
2006 lowerbound = upperbound = 0;
2007 }
2008
2009 idx = pos_atr (ind[i]);
2010 if (idx < lowerbound || idx > upperbound)
2011 lim_warning (_("packed array index %ld out of bounds"), (long) idx);
2012 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2013 elt_total_bit_offset += (idx - lowerbound) * bits;
2014 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2015 }
2016 }
2017 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2018 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2019
2020 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2021 bits, elt_type);
2022 return v;
2023 }
2024
2025 /* Non-zero iff TYPE includes negative integer values. */
2026
2027 static int
2028 has_negatives (struct type *type)
2029 {
2030 switch (TYPE_CODE (type))
2031 {
2032 default:
2033 return 0;
2034 case TYPE_CODE_INT:
2035 return !TYPE_UNSIGNED (type);
2036 case TYPE_CODE_RANGE:
2037 return TYPE_LOW_BOUND (type) < 0;
2038 }
2039 }
2040
2041
2042 /* Create a new value of type TYPE from the contents of OBJ starting
2043 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2044 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2045 assigning through the result will set the field fetched from.
2046 VALADDR is ignored unless OBJ is NULL, in which case,
2047 VALADDR+OFFSET must address the start of storage containing the
2048 packed value. The value returned in this case is never an lval.
2049 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2050
2051 struct value *
2052 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2053 long offset, int bit_offset, int bit_size,
2054 struct type *type)
2055 {
2056 struct value *v;
2057 int src, /* Index into the source area */
2058 targ, /* Index into the target area */
2059 srcBitsLeft, /* Number of source bits left to move */
2060 nsrc, ntarg, /* Number of source and target bytes */
2061 unusedLS, /* Number of bits in next significant
2062 byte of source that are unused */
2063 accumSize; /* Number of meaningful bits in accum */
2064 unsigned char *bytes; /* First byte containing data to unpack */
2065 unsigned char *unpacked;
2066 unsigned long accum; /* Staging area for bits being transferred */
2067 unsigned char sign;
2068 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2069 /* Transmit bytes from least to most significant; delta is the direction
2070 the indices move. */
2071 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
2072
2073 type = ada_check_typedef (type);
2074
2075 if (obj == NULL)
2076 {
2077 v = allocate_value (type);
2078 bytes = (unsigned char *) (valaddr + offset);
2079 }
2080 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2081 {
2082 v = value_at (type,
2083 value_address (obj) + offset);
2084 bytes = (unsigned char *) alloca (len);
2085 read_memory (value_address (v), bytes, len);
2086 }
2087 else
2088 {
2089 v = allocate_value (type);
2090 bytes = (unsigned char *) value_contents (obj) + offset;
2091 }
2092
2093 if (obj != NULL)
2094 {
2095 CORE_ADDR new_addr;
2096 set_value_component_location (v, obj);
2097 new_addr = value_address (obj) + offset;
2098 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2099 set_value_bitsize (v, bit_size);
2100 if (value_bitpos (v) >= HOST_CHAR_BIT)
2101 {
2102 ++new_addr;
2103 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2104 }
2105 set_value_address (v, new_addr);
2106 }
2107 else
2108 set_value_bitsize (v, bit_size);
2109 unpacked = (unsigned char *) value_contents (v);
2110
2111 srcBitsLeft = bit_size;
2112 nsrc = len;
2113 ntarg = TYPE_LENGTH (type);
2114 sign = 0;
2115 if (bit_size == 0)
2116 {
2117 memset (unpacked, 0, TYPE_LENGTH (type));
2118 return v;
2119 }
2120 else if (gdbarch_bits_big_endian (get_type_arch (type)))
2121 {
2122 src = len - 1;
2123 if (has_negatives (type)
2124 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2125 sign = ~0;
2126
2127 unusedLS =
2128 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2129 % HOST_CHAR_BIT;
2130
2131 switch (TYPE_CODE (type))
2132 {
2133 case TYPE_CODE_ARRAY:
2134 case TYPE_CODE_UNION:
2135 case TYPE_CODE_STRUCT:
2136 /* Non-scalar values must be aligned at a byte boundary... */
2137 accumSize =
2138 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2139 /* ... And are placed at the beginning (most-significant) bytes
2140 of the target. */
2141 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2142 ntarg = targ + 1;
2143 break;
2144 default:
2145 accumSize = 0;
2146 targ = TYPE_LENGTH (type) - 1;
2147 break;
2148 }
2149 }
2150 else
2151 {
2152 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2153
2154 src = targ = 0;
2155 unusedLS = bit_offset;
2156 accumSize = 0;
2157
2158 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2159 sign = ~0;
2160 }
2161
2162 accum = 0;
2163 while (nsrc > 0)
2164 {
2165 /* Mask for removing bits of the next source byte that are not
2166 part of the value. */
2167 unsigned int unusedMSMask =
2168 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2169 1;
2170 /* Sign-extend bits for this byte. */
2171 unsigned int signMask = sign & ~unusedMSMask;
2172 accum |=
2173 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2174 accumSize += HOST_CHAR_BIT - unusedLS;
2175 if (accumSize >= HOST_CHAR_BIT)
2176 {
2177 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2178 accumSize -= HOST_CHAR_BIT;
2179 accum >>= HOST_CHAR_BIT;
2180 ntarg -= 1;
2181 targ += delta;
2182 }
2183 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2184 unusedLS = 0;
2185 nsrc -= 1;
2186 src += delta;
2187 }
2188 while (ntarg > 0)
2189 {
2190 accum |= sign << accumSize;
2191 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2192 accumSize -= HOST_CHAR_BIT;
2193 accum >>= HOST_CHAR_BIT;
2194 ntarg -= 1;
2195 targ += delta;
2196 }
2197
2198 return v;
2199 }
2200
2201 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2202 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2203 not overlap. */
2204 static void
2205 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2206 int src_offset, int n, int bits_big_endian_p)
2207 {
2208 unsigned int accum, mask;
2209 int accum_bits, chunk_size;
2210
2211 target += targ_offset / HOST_CHAR_BIT;
2212 targ_offset %= HOST_CHAR_BIT;
2213 source += src_offset / HOST_CHAR_BIT;
2214 src_offset %= HOST_CHAR_BIT;
2215 if (bits_big_endian_p)
2216 {
2217 accum = (unsigned char) *source;
2218 source += 1;
2219 accum_bits = HOST_CHAR_BIT - src_offset;
2220
2221 while (n > 0)
2222 {
2223 int unused_right;
2224 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2225 accum_bits += HOST_CHAR_BIT;
2226 source += 1;
2227 chunk_size = HOST_CHAR_BIT - targ_offset;
2228 if (chunk_size > n)
2229 chunk_size = n;
2230 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2231 mask = ((1 << chunk_size) - 1) << unused_right;
2232 *target =
2233 (*target & ~mask)
2234 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2235 n -= chunk_size;
2236 accum_bits -= chunk_size;
2237 target += 1;
2238 targ_offset = 0;
2239 }
2240 }
2241 else
2242 {
2243 accum = (unsigned char) *source >> src_offset;
2244 source += 1;
2245 accum_bits = HOST_CHAR_BIT - src_offset;
2246
2247 while (n > 0)
2248 {
2249 accum = accum + ((unsigned char) *source << accum_bits);
2250 accum_bits += HOST_CHAR_BIT;
2251 source += 1;
2252 chunk_size = HOST_CHAR_BIT - targ_offset;
2253 if (chunk_size > n)
2254 chunk_size = n;
2255 mask = ((1 << chunk_size) - 1) << targ_offset;
2256 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2257 n -= chunk_size;
2258 accum_bits -= chunk_size;
2259 accum >>= chunk_size;
2260 target += 1;
2261 targ_offset = 0;
2262 }
2263 }
2264 }
2265
2266 /* Store the contents of FROMVAL into the location of TOVAL.
2267 Return a new value with the location of TOVAL and contents of
2268 FROMVAL. Handles assignment into packed fields that have
2269 floating-point or non-scalar types. */
2270
2271 static struct value *
2272 ada_value_assign (struct value *toval, struct value *fromval)
2273 {
2274 struct type *type = value_type (toval);
2275 int bits = value_bitsize (toval);
2276
2277 toval = ada_coerce_ref (toval);
2278 fromval = ada_coerce_ref (fromval);
2279
2280 if (ada_is_direct_array_type (value_type (toval)))
2281 toval = ada_coerce_to_simple_array (toval);
2282 if (ada_is_direct_array_type (value_type (fromval)))
2283 fromval = ada_coerce_to_simple_array (fromval);
2284
2285 if (!deprecated_value_modifiable (toval))
2286 error (_("Left operand of assignment is not a modifiable lvalue."));
2287
2288 if (VALUE_LVAL (toval) == lval_memory
2289 && bits > 0
2290 && (TYPE_CODE (type) == TYPE_CODE_FLT
2291 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2292 {
2293 int len = (value_bitpos (toval)
2294 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2295 int from_size;
2296 char *buffer = (char *) alloca (len);
2297 struct value *val;
2298 CORE_ADDR to_addr = value_address (toval);
2299
2300 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2301 fromval = value_cast (type, fromval);
2302
2303 read_memory (to_addr, buffer, len);
2304 from_size = value_bitsize (fromval);
2305 if (from_size == 0)
2306 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2307 if (gdbarch_bits_big_endian (get_type_arch (type)))
2308 move_bits (buffer, value_bitpos (toval),
2309 value_contents (fromval), from_size - bits, bits, 1);
2310 else
2311 move_bits (buffer, value_bitpos (toval),
2312 value_contents (fromval), 0, bits, 0);
2313 write_memory (to_addr, buffer, len);
2314 observer_notify_memory_changed (to_addr, len, buffer);
2315
2316 val = value_copy (toval);
2317 memcpy (value_contents_raw (val), value_contents (fromval),
2318 TYPE_LENGTH (type));
2319 deprecated_set_value_type (val, type);
2320
2321 return val;
2322 }
2323
2324 return value_assign (toval, fromval);
2325 }
2326
2327
2328 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2329 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2330 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2331 * COMPONENT, and not the inferior's memory. The current contents
2332 * of COMPONENT are ignored. */
2333 static void
2334 value_assign_to_component (struct value *container, struct value *component,
2335 struct value *val)
2336 {
2337 LONGEST offset_in_container =
2338 (LONGEST) (value_address (component) - value_address (container));
2339 int bit_offset_in_container =
2340 value_bitpos (component) - value_bitpos (container);
2341 int bits;
2342
2343 val = value_cast (value_type (component), val);
2344
2345 if (value_bitsize (component) == 0)
2346 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2347 else
2348 bits = value_bitsize (component);
2349
2350 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2351 move_bits (value_contents_writeable (container) + offset_in_container,
2352 value_bitpos (container) + bit_offset_in_container,
2353 value_contents (val),
2354 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2355 bits, 1);
2356 else
2357 move_bits (value_contents_writeable (container) + offset_in_container,
2358 value_bitpos (container) + bit_offset_in_container,
2359 value_contents (val), 0, bits, 0);
2360 }
2361
2362 /* The value of the element of array ARR at the ARITY indices given in IND.
2363 ARR may be either a simple array, GNAT array descriptor, or pointer
2364 thereto. */
2365
2366 struct value *
2367 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2368 {
2369 int k;
2370 struct value *elt;
2371 struct type *elt_type;
2372
2373 elt = ada_coerce_to_simple_array (arr);
2374
2375 elt_type = ada_check_typedef (value_type (elt));
2376 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2377 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2378 return value_subscript_packed (elt, arity, ind);
2379
2380 for (k = 0; k < arity; k += 1)
2381 {
2382 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2383 error (_("too many subscripts (%d expected)"), k);
2384 elt = value_subscript (elt, pos_atr (ind[k]));
2385 }
2386 return elt;
2387 }
2388
2389 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2390 value of the element of *ARR at the ARITY indices given in
2391 IND. Does not read the entire array into memory. */
2392
2393 static struct value *
2394 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2395 struct value **ind)
2396 {
2397 int k;
2398
2399 for (k = 0; k < arity; k += 1)
2400 {
2401 LONGEST lwb, upb;
2402
2403 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2404 error (_("too many subscripts (%d expected)"), k);
2405 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2406 value_copy (arr));
2407 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2408 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2409 type = TYPE_TARGET_TYPE (type);
2410 }
2411
2412 return value_ind (arr);
2413 }
2414
2415 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2416 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2417 elements starting at index LOW. The lower bound of this array is LOW, as
2418 per Ada rules. */
2419 static struct value *
2420 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2421 int low, int high)
2422 {
2423 CORE_ADDR base = value_as_address (array_ptr)
2424 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type)))
2425 * TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
2426 struct type *index_type =
2427 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
2428 low, high);
2429 struct type *slice_type =
2430 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2431 return value_at_lazy (slice_type, base);
2432 }
2433
2434
2435 static struct value *
2436 ada_value_slice (struct value *array, int low, int high)
2437 {
2438 struct type *type = value_type (array);
2439 struct type *index_type =
2440 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2441 struct type *slice_type =
2442 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2443 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2444 }
2445
2446 /* If type is a record type in the form of a standard GNAT array
2447 descriptor, returns the number of dimensions for type. If arr is a
2448 simple array, returns the number of "array of"s that prefix its
2449 type designation. Otherwise, returns 0. */
2450
2451 int
2452 ada_array_arity (struct type *type)
2453 {
2454 int arity;
2455
2456 if (type == NULL)
2457 return 0;
2458
2459 type = desc_base_type (type);
2460
2461 arity = 0;
2462 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2463 return desc_arity (desc_bounds_type (type));
2464 else
2465 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2466 {
2467 arity += 1;
2468 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2469 }
2470
2471 return arity;
2472 }
2473
2474 /* If TYPE is a record type in the form of a standard GNAT array
2475 descriptor or a simple array type, returns the element type for
2476 TYPE after indexing by NINDICES indices, or by all indices if
2477 NINDICES is -1. Otherwise, returns NULL. */
2478
2479 struct type *
2480 ada_array_element_type (struct type *type, int nindices)
2481 {
2482 type = desc_base_type (type);
2483
2484 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2485 {
2486 int k;
2487 struct type *p_array_type;
2488
2489 p_array_type = desc_data_target_type (type);
2490
2491 k = ada_array_arity (type);
2492 if (k == 0)
2493 return NULL;
2494
2495 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2496 if (nindices >= 0 && k > nindices)
2497 k = nindices;
2498 while (k > 0 && p_array_type != NULL)
2499 {
2500 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2501 k -= 1;
2502 }
2503 return p_array_type;
2504 }
2505 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2506 {
2507 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2508 {
2509 type = TYPE_TARGET_TYPE (type);
2510 nindices -= 1;
2511 }
2512 return type;
2513 }
2514
2515 return NULL;
2516 }
2517
2518 /* The type of nth index in arrays of given type (n numbering from 1).
2519 Does not examine memory. Throws an error if N is invalid or TYPE
2520 is not an array type. NAME is the name of the Ada attribute being
2521 evaluated ('range, 'first, 'last, or 'length); it is used in building
2522 the error message. */
2523
2524 static struct type *
2525 ada_index_type (struct type *type, int n, const char *name)
2526 {
2527 struct type *result_type;
2528
2529 type = desc_base_type (type);
2530
2531 if (n < 0 || n > ada_array_arity (type))
2532 error (_("invalid dimension number to '%s"), name);
2533
2534 if (ada_is_simple_array_type (type))
2535 {
2536 int i;
2537
2538 for (i = 1; i < n; i += 1)
2539 type = TYPE_TARGET_TYPE (type);
2540 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2541 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2542 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2543 perhaps stabsread.c would make more sense. */
2544 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2545 result_type = NULL;
2546 }
2547 else
2548 {
2549 result_type = desc_index_type (desc_bounds_type (type), n);
2550 if (result_type == NULL)
2551 error (_("attempt to take bound of something that is not an array"));
2552 }
2553
2554 return result_type;
2555 }
2556
2557 /* Given that arr is an array type, returns the lower bound of the
2558 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2559 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2560 array-descriptor type. It works for other arrays with bounds supplied
2561 by run-time quantities other than discriminants. */
2562
2563 static LONGEST
2564 ada_array_bound_from_type (struct type * arr_type, int n, int which)
2565 {
2566 struct type *type, *elt_type, *index_type_desc, *index_type;
2567 int i;
2568
2569 gdb_assert (which == 0 || which == 1);
2570
2571 if (ada_is_constrained_packed_array_type (arr_type))
2572 arr_type = decode_constrained_packed_array_type (arr_type);
2573
2574 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2575 return (LONGEST) - which;
2576
2577 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2578 type = TYPE_TARGET_TYPE (arr_type);
2579 else
2580 type = arr_type;
2581
2582 elt_type = type;
2583 for (i = n; i > 1; i--)
2584 elt_type = TYPE_TARGET_TYPE (type);
2585
2586 index_type_desc = ada_find_parallel_type (type, "___XA");
2587 ada_fixup_array_indexes_type (index_type_desc);
2588 if (index_type_desc != NULL)
2589 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2590 NULL);
2591 else
2592 index_type = TYPE_INDEX_TYPE (elt_type);
2593
2594 return
2595 (LONGEST) (which == 0
2596 ? ada_discrete_type_low_bound (index_type)
2597 : ada_discrete_type_high_bound (index_type));
2598 }
2599
2600 /* Given that arr is an array value, returns the lower bound of the
2601 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2602 WHICH is 1. This routine will also work for arrays with bounds
2603 supplied by run-time quantities other than discriminants. */
2604
2605 static LONGEST
2606 ada_array_bound (struct value *arr, int n, int which)
2607 {
2608 struct type *arr_type = value_type (arr);
2609
2610 if (ada_is_constrained_packed_array_type (arr_type))
2611 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
2612 else if (ada_is_simple_array_type (arr_type))
2613 return ada_array_bound_from_type (arr_type, n, which);
2614 else
2615 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2616 }
2617
2618 /* Given that arr is an array value, returns the length of the
2619 nth index. This routine will also work for arrays with bounds
2620 supplied by run-time quantities other than discriminants.
2621 Does not work for arrays indexed by enumeration types with representation
2622 clauses at the moment. */
2623
2624 static LONGEST
2625 ada_array_length (struct value *arr, int n)
2626 {
2627 struct type *arr_type = ada_check_typedef (value_type (arr));
2628
2629 if (ada_is_constrained_packed_array_type (arr_type))
2630 return ada_array_length (decode_constrained_packed_array (arr), n);
2631
2632 if (ada_is_simple_array_type (arr_type))
2633 return (ada_array_bound_from_type (arr_type, n, 1)
2634 - ada_array_bound_from_type (arr_type, n, 0) + 1);
2635 else
2636 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2637 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
2638 }
2639
2640 /* An empty array whose type is that of ARR_TYPE (an array type),
2641 with bounds LOW to LOW-1. */
2642
2643 static struct value *
2644 empty_array (struct type *arr_type, int low)
2645 {
2646 struct type *index_type =
2647 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
2648 low, low - 1);
2649 struct type *elt_type = ada_array_element_type (arr_type, 1);
2650 return allocate_value (create_array_type (NULL, elt_type, index_type));
2651 }
2652 \f
2653
2654 /* Name resolution */
2655
2656 /* The "decoded" name for the user-definable Ada operator corresponding
2657 to OP. */
2658
2659 static const char *
2660 ada_decoded_op_name (enum exp_opcode op)
2661 {
2662 int i;
2663
2664 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2665 {
2666 if (ada_opname_table[i].op == op)
2667 return ada_opname_table[i].decoded;
2668 }
2669 error (_("Could not find operator name for opcode"));
2670 }
2671
2672
2673 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2674 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2675 undefined namespace) and converts operators that are
2676 user-defined into appropriate function calls. If CONTEXT_TYPE is
2677 non-null, it provides a preferred result type [at the moment, only
2678 type void has any effect---causing procedures to be preferred over
2679 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2680 return type is preferred. May change (expand) *EXP. */
2681
2682 static void
2683 resolve (struct expression **expp, int void_context_p)
2684 {
2685 struct type *context_type = NULL;
2686 int pc = 0;
2687
2688 if (void_context_p)
2689 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2690
2691 resolve_subexp (expp, &pc, 1, context_type);
2692 }
2693
2694 /* Resolve the operator of the subexpression beginning at
2695 position *POS of *EXPP. "Resolving" consists of replacing
2696 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2697 with their resolutions, replacing built-in operators with
2698 function calls to user-defined operators, where appropriate, and,
2699 when DEPROCEDURE_P is non-zero, converting function-valued variables
2700 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2701 are as in ada_resolve, above. */
2702
2703 static struct value *
2704 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2705 struct type *context_type)
2706 {
2707 int pc = *pos;
2708 int i;
2709 struct expression *exp; /* Convenience: == *expp. */
2710 enum exp_opcode op = (*expp)->elts[pc].opcode;
2711 struct value **argvec; /* Vector of operand types (alloca'ed). */
2712 int nargs; /* Number of operands. */
2713 int oplen;
2714
2715 argvec = NULL;
2716 nargs = 0;
2717 exp = *expp;
2718
2719 /* Pass one: resolve operands, saving their types and updating *pos,
2720 if needed. */
2721 switch (op)
2722 {
2723 case OP_FUNCALL:
2724 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2725 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2726 *pos += 7;
2727 else
2728 {
2729 *pos += 3;
2730 resolve_subexp (expp, pos, 0, NULL);
2731 }
2732 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2733 break;
2734
2735 case UNOP_ADDR:
2736 *pos += 1;
2737 resolve_subexp (expp, pos, 0, NULL);
2738 break;
2739
2740 case UNOP_QUAL:
2741 *pos += 3;
2742 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
2743 break;
2744
2745 case OP_ATR_MODULUS:
2746 case OP_ATR_SIZE:
2747 case OP_ATR_TAG:
2748 case OP_ATR_FIRST:
2749 case OP_ATR_LAST:
2750 case OP_ATR_LENGTH:
2751 case OP_ATR_POS:
2752 case OP_ATR_VAL:
2753 case OP_ATR_MIN:
2754 case OP_ATR_MAX:
2755 case TERNOP_IN_RANGE:
2756 case BINOP_IN_BOUNDS:
2757 case UNOP_IN_RANGE:
2758 case OP_AGGREGATE:
2759 case OP_OTHERS:
2760 case OP_CHOICES:
2761 case OP_POSITIONAL:
2762 case OP_DISCRETE_RANGE:
2763 case OP_NAME:
2764 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2765 *pos += oplen;
2766 break;
2767
2768 case BINOP_ASSIGN:
2769 {
2770 struct value *arg1;
2771
2772 *pos += 1;
2773 arg1 = resolve_subexp (expp, pos, 0, NULL);
2774 if (arg1 == NULL)
2775 resolve_subexp (expp, pos, 1, NULL);
2776 else
2777 resolve_subexp (expp, pos, 1, value_type (arg1));
2778 break;
2779 }
2780
2781 case UNOP_CAST:
2782 *pos += 3;
2783 nargs = 1;
2784 break;
2785
2786 case BINOP_ADD:
2787 case BINOP_SUB:
2788 case BINOP_MUL:
2789 case BINOP_DIV:
2790 case BINOP_REM:
2791 case BINOP_MOD:
2792 case BINOP_EXP:
2793 case BINOP_CONCAT:
2794 case BINOP_LOGICAL_AND:
2795 case BINOP_LOGICAL_OR:
2796 case BINOP_BITWISE_AND:
2797 case BINOP_BITWISE_IOR:
2798 case BINOP_BITWISE_XOR:
2799
2800 case BINOP_EQUAL:
2801 case BINOP_NOTEQUAL:
2802 case BINOP_LESS:
2803 case BINOP_GTR:
2804 case BINOP_LEQ:
2805 case BINOP_GEQ:
2806
2807 case BINOP_REPEAT:
2808 case BINOP_SUBSCRIPT:
2809 case BINOP_COMMA:
2810 *pos += 1;
2811 nargs = 2;
2812 break;
2813
2814 case UNOP_NEG:
2815 case UNOP_PLUS:
2816 case UNOP_LOGICAL_NOT:
2817 case UNOP_ABS:
2818 case UNOP_IND:
2819 *pos += 1;
2820 nargs = 1;
2821 break;
2822
2823 case OP_LONG:
2824 case OP_DOUBLE:
2825 case OP_VAR_VALUE:
2826 *pos += 4;
2827 break;
2828
2829 case OP_TYPE:
2830 case OP_BOOL:
2831 case OP_LAST:
2832 case OP_INTERNALVAR:
2833 *pos += 3;
2834 break;
2835
2836 case UNOP_MEMVAL:
2837 *pos += 3;
2838 nargs = 1;
2839 break;
2840
2841 case OP_REGISTER:
2842 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2843 break;
2844
2845 case STRUCTOP_STRUCT:
2846 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2847 nargs = 1;
2848 break;
2849
2850 case TERNOP_SLICE:
2851 *pos += 1;
2852 nargs = 3;
2853 break;
2854
2855 case OP_STRING:
2856 break;
2857
2858 default:
2859 error (_("Unexpected operator during name resolution"));
2860 }
2861
2862 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
2863 for (i = 0; i < nargs; i += 1)
2864 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
2865 argvec[i] = NULL;
2866 exp = *expp;
2867
2868 /* Pass two: perform any resolution on principal operator. */
2869 switch (op)
2870 {
2871 default:
2872 break;
2873
2874 case OP_VAR_VALUE:
2875 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
2876 {
2877 struct ada_symbol_info *candidates;
2878 int n_candidates;
2879
2880 n_candidates =
2881 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2882 (exp->elts[pc + 2].symbol),
2883 exp->elts[pc + 1].block, VAR_DOMAIN,
2884 &candidates);
2885
2886 if (n_candidates > 1)
2887 {
2888 /* Types tend to get re-introduced locally, so if there
2889 are any local symbols that are not types, first filter
2890 out all types. */
2891 int j;
2892 for (j = 0; j < n_candidates; j += 1)
2893 switch (SYMBOL_CLASS (candidates[j].sym))
2894 {
2895 case LOC_REGISTER:
2896 case LOC_ARG:
2897 case LOC_REF_ARG:
2898 case LOC_REGPARM_ADDR:
2899 case LOC_LOCAL:
2900 case LOC_COMPUTED:
2901 goto FoundNonType;
2902 default:
2903 break;
2904 }
2905 FoundNonType:
2906 if (j < n_candidates)
2907 {
2908 j = 0;
2909 while (j < n_candidates)
2910 {
2911 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
2912 {
2913 candidates[j] = candidates[n_candidates - 1];
2914 n_candidates -= 1;
2915 }
2916 else
2917 j += 1;
2918 }
2919 }
2920 }
2921
2922 if (n_candidates == 0)
2923 error (_("No definition found for %s"),
2924 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2925 else if (n_candidates == 1)
2926 i = 0;
2927 else if (deprocedure_p
2928 && !is_nonfunction (candidates, n_candidates))
2929 {
2930 i = ada_resolve_function
2931 (candidates, n_candidates, NULL, 0,
2932 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
2933 context_type);
2934 if (i < 0)
2935 error (_("Could not find a match for %s"),
2936 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2937 }
2938 else
2939 {
2940 printf_filtered (_("Multiple matches for %s\n"),
2941 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2942 user_select_syms (candidates, n_candidates, 1);
2943 i = 0;
2944 }
2945
2946 exp->elts[pc + 1].block = candidates[i].block;
2947 exp->elts[pc + 2].symbol = candidates[i].sym;
2948 if (innermost_block == NULL
2949 || contained_in (candidates[i].block, innermost_block))
2950 innermost_block = candidates[i].block;
2951 }
2952
2953 if (deprocedure_p
2954 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
2955 == TYPE_CODE_FUNC))
2956 {
2957 replace_operator_with_call (expp, pc, 0, 0,
2958 exp->elts[pc + 2].symbol,
2959 exp->elts[pc + 1].block);
2960 exp = *expp;
2961 }
2962 break;
2963
2964 case OP_FUNCALL:
2965 {
2966 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2967 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2968 {
2969 struct ada_symbol_info *candidates;
2970 int n_candidates;
2971
2972 n_candidates =
2973 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2974 (exp->elts[pc + 5].symbol),
2975 exp->elts[pc + 4].block, VAR_DOMAIN,
2976 &candidates);
2977 if (n_candidates == 1)
2978 i = 0;
2979 else
2980 {
2981 i = ada_resolve_function
2982 (candidates, n_candidates,
2983 argvec, nargs,
2984 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
2985 context_type);
2986 if (i < 0)
2987 error (_("Could not find a match for %s"),
2988 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
2989 }
2990
2991 exp->elts[pc + 4].block = candidates[i].block;
2992 exp->elts[pc + 5].symbol = candidates[i].sym;
2993 if (innermost_block == NULL
2994 || contained_in (candidates[i].block, innermost_block))
2995 innermost_block = candidates[i].block;
2996 }
2997 }
2998 break;
2999 case BINOP_ADD:
3000 case BINOP_SUB:
3001 case BINOP_MUL:
3002 case BINOP_DIV:
3003 case BINOP_REM:
3004 case BINOP_MOD:
3005 case BINOP_CONCAT:
3006 case BINOP_BITWISE_AND:
3007 case BINOP_BITWISE_IOR:
3008 case BINOP_BITWISE_XOR:
3009 case BINOP_EQUAL:
3010 case BINOP_NOTEQUAL:
3011 case BINOP_LESS:
3012 case BINOP_GTR:
3013 case BINOP_LEQ:
3014 case BINOP_GEQ:
3015 case BINOP_EXP:
3016 case UNOP_NEG:
3017 case UNOP_PLUS:
3018 case UNOP_LOGICAL_NOT:
3019 case UNOP_ABS:
3020 if (possible_user_operator_p (op, argvec))
3021 {
3022 struct ada_symbol_info *candidates;
3023 int n_candidates;
3024
3025 n_candidates =
3026 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3027 (struct block *) NULL, VAR_DOMAIN,
3028 &candidates);
3029 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3030 ada_decoded_op_name (op), NULL);
3031 if (i < 0)
3032 break;
3033
3034 replace_operator_with_call (expp, pc, nargs, 1,
3035 candidates[i].sym, candidates[i].block);
3036 exp = *expp;
3037 }
3038 break;
3039
3040 case OP_TYPE:
3041 case OP_REGISTER:
3042 return NULL;
3043 }
3044
3045 *pos = pc;
3046 return evaluate_subexp_type (exp, pos);
3047 }
3048
3049 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3050 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3051 a non-pointer. */
3052 /* The term "match" here is rather loose. The match is heuristic and
3053 liberal. */
3054
3055 static int
3056 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3057 {
3058 ftype = ada_check_typedef (ftype);
3059 atype = ada_check_typedef (atype);
3060
3061 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3062 ftype = TYPE_TARGET_TYPE (ftype);
3063 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3064 atype = TYPE_TARGET_TYPE (atype);
3065
3066 switch (TYPE_CODE (ftype))
3067 {
3068 default:
3069 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3070 case TYPE_CODE_PTR:
3071 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3072 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3073 TYPE_TARGET_TYPE (atype), 0);
3074 else
3075 return (may_deref
3076 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3077 case TYPE_CODE_INT:
3078 case TYPE_CODE_ENUM:
3079 case TYPE_CODE_RANGE:
3080 switch (TYPE_CODE (atype))
3081 {
3082 case TYPE_CODE_INT:
3083 case TYPE_CODE_ENUM:
3084 case TYPE_CODE_RANGE:
3085 return 1;
3086 default:
3087 return 0;
3088 }
3089
3090 case TYPE_CODE_ARRAY:
3091 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3092 || ada_is_array_descriptor_type (atype));
3093
3094 case TYPE_CODE_STRUCT:
3095 if (ada_is_array_descriptor_type (ftype))
3096 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3097 || ada_is_array_descriptor_type (atype));
3098 else
3099 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3100 && !ada_is_array_descriptor_type (atype));
3101
3102 case TYPE_CODE_UNION:
3103 case TYPE_CODE_FLT:
3104 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3105 }
3106 }
3107
3108 /* Return non-zero if the formals of FUNC "sufficiently match" the
3109 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3110 may also be an enumeral, in which case it is treated as a 0-
3111 argument function. */
3112
3113 static int
3114 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3115 {
3116 int i;
3117 struct type *func_type = SYMBOL_TYPE (func);
3118
3119 if (SYMBOL_CLASS (func) == LOC_CONST
3120 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3121 return (n_actuals == 0);
3122 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3123 return 0;
3124
3125 if (TYPE_NFIELDS (func_type) != n_actuals)
3126 return 0;
3127
3128 for (i = 0; i < n_actuals; i += 1)
3129 {
3130 if (actuals[i] == NULL)
3131 return 0;
3132 else
3133 {
3134 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, i));
3135 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3136
3137 if (!ada_type_match (ftype, atype, 1))
3138 return 0;
3139 }
3140 }
3141 return 1;
3142 }
3143
3144 /* False iff function type FUNC_TYPE definitely does not produce a value
3145 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3146 FUNC_TYPE is not a valid function type with a non-null return type
3147 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3148
3149 static int
3150 return_match (struct type *func_type, struct type *context_type)
3151 {
3152 struct type *return_type;
3153
3154 if (func_type == NULL)
3155 return 1;
3156
3157 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3158 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3159 else
3160 return_type = base_type (func_type);
3161 if (return_type == NULL)
3162 return 1;
3163
3164 context_type = base_type (context_type);
3165
3166 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3167 return context_type == NULL || return_type == context_type;
3168 else if (context_type == NULL)
3169 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3170 else
3171 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3172 }
3173
3174
3175 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3176 function (if any) that matches the types of the NARGS arguments in
3177 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3178 that returns that type, then eliminate matches that don't. If
3179 CONTEXT_TYPE is void and there is at least one match that does not
3180 return void, eliminate all matches that do.
3181
3182 Asks the user if there is more than one match remaining. Returns -1
3183 if there is no such symbol or none is selected. NAME is used
3184 solely for messages. May re-arrange and modify SYMS in
3185 the process; the index returned is for the modified vector. */
3186
3187 static int
3188 ada_resolve_function (struct ada_symbol_info syms[],
3189 int nsyms, struct value **args, int nargs,
3190 const char *name, struct type *context_type)
3191 {
3192 int fallback;
3193 int k;
3194 int m; /* Number of hits */
3195
3196 m = 0;
3197 /* In the first pass of the loop, we only accept functions matching
3198 context_type. If none are found, we add a second pass of the loop
3199 where every function is accepted. */
3200 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3201 {
3202 for (k = 0; k < nsyms; k += 1)
3203 {
3204 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3205
3206 if (ada_args_match (syms[k].sym, args, nargs)
3207 && (fallback || return_match (type, context_type)))
3208 {
3209 syms[m] = syms[k];
3210 m += 1;
3211 }
3212 }
3213 }
3214
3215 if (m == 0)
3216 return -1;
3217 else if (m > 1)
3218 {
3219 printf_filtered (_("Multiple matches for %s\n"), name);
3220 user_select_syms (syms, m, 1);
3221 return 0;
3222 }
3223 return 0;
3224 }
3225
3226 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3227 in a listing of choices during disambiguation (see sort_choices, below).
3228 The idea is that overloadings of a subprogram name from the
3229 same package should sort in their source order. We settle for ordering
3230 such symbols by their trailing number (__N or $N). */
3231
3232 static int
3233 encoded_ordered_before (char *N0, char *N1)
3234 {
3235 if (N1 == NULL)
3236 return 0;
3237 else if (N0 == NULL)
3238 return 1;
3239 else
3240 {
3241 int k0, k1;
3242 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3243 ;
3244 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3245 ;
3246 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3247 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3248 {
3249 int n0, n1;
3250 n0 = k0;
3251 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3252 n0 -= 1;
3253 n1 = k1;
3254 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3255 n1 -= 1;
3256 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3257 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3258 }
3259 return (strcmp (N0, N1) < 0);
3260 }
3261 }
3262
3263 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3264 encoded names. */
3265
3266 static void
3267 sort_choices (struct ada_symbol_info syms[], int nsyms)
3268 {
3269 int i;
3270 for (i = 1; i < nsyms; i += 1)
3271 {
3272 struct ada_symbol_info sym = syms[i];
3273 int j;
3274
3275 for (j = i - 1; j >= 0; j -= 1)
3276 {
3277 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3278 SYMBOL_LINKAGE_NAME (sym.sym)))
3279 break;
3280 syms[j + 1] = syms[j];
3281 }
3282 syms[j + 1] = sym;
3283 }
3284 }
3285
3286 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3287 by asking the user (if necessary), returning the number selected,
3288 and setting the first elements of SYMS items. Error if no symbols
3289 selected. */
3290
3291 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3292 to be re-integrated one of these days. */
3293
3294 int
3295 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3296 {
3297 int i;
3298 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3299 int n_chosen;
3300 int first_choice = (max_results == 1) ? 1 : 2;
3301 const char *select_mode = multiple_symbols_select_mode ();
3302
3303 if (max_results < 1)
3304 error (_("Request to select 0 symbols!"));
3305 if (nsyms <= 1)
3306 return nsyms;
3307
3308 if (select_mode == multiple_symbols_cancel)
3309 error (_("\
3310 canceled because the command is ambiguous\n\
3311 See set/show multiple-symbol."));
3312
3313 /* If select_mode is "all", then return all possible symbols.
3314 Only do that if more than one symbol can be selected, of course.
3315 Otherwise, display the menu as usual. */
3316 if (select_mode == multiple_symbols_all && max_results > 1)
3317 return nsyms;
3318
3319 printf_unfiltered (_("[0] cancel\n"));
3320 if (max_results > 1)
3321 printf_unfiltered (_("[1] all\n"));
3322
3323 sort_choices (syms, nsyms);
3324
3325 for (i = 0; i < nsyms; i += 1)
3326 {
3327 if (syms[i].sym == NULL)
3328 continue;
3329
3330 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3331 {
3332 struct symtab_and_line sal =
3333 find_function_start_sal (syms[i].sym, 1);
3334 if (sal.symtab == NULL)
3335 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3336 i + first_choice,
3337 SYMBOL_PRINT_NAME (syms[i].sym),
3338 sal.line);
3339 else
3340 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3341 SYMBOL_PRINT_NAME (syms[i].sym),
3342 sal.symtab->filename, sal.line);
3343 continue;
3344 }
3345 else
3346 {
3347 int is_enumeral =
3348 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3349 && SYMBOL_TYPE (syms[i].sym) != NULL
3350 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3351 struct symtab *symtab = syms[i].sym->symtab;
3352
3353 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3354 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3355 i + first_choice,
3356 SYMBOL_PRINT_NAME (syms[i].sym),
3357 symtab->filename, SYMBOL_LINE (syms[i].sym));
3358 else if (is_enumeral
3359 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3360 {
3361 printf_unfiltered (("[%d] "), i + first_choice);
3362 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3363 gdb_stdout, -1, 0);
3364 printf_unfiltered (_("'(%s) (enumeral)\n"),
3365 SYMBOL_PRINT_NAME (syms[i].sym));
3366 }
3367 else if (symtab != NULL)
3368 printf_unfiltered (is_enumeral
3369 ? _("[%d] %s in %s (enumeral)\n")
3370 : _("[%d] %s at %s:?\n"),
3371 i + first_choice,
3372 SYMBOL_PRINT_NAME (syms[i].sym),
3373 symtab->filename);
3374 else
3375 printf_unfiltered (is_enumeral
3376 ? _("[%d] %s (enumeral)\n")
3377 : _("[%d] %s at ?\n"),
3378 i + first_choice,
3379 SYMBOL_PRINT_NAME (syms[i].sym));
3380 }
3381 }
3382
3383 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3384 "overload-choice");
3385
3386 for (i = 0; i < n_chosen; i += 1)
3387 syms[i] = syms[chosen[i]];
3388
3389 return n_chosen;
3390 }
3391
3392 /* Read and validate a set of numeric choices from the user in the
3393 range 0 .. N_CHOICES-1. Place the results in increasing
3394 order in CHOICES[0 .. N-1], and return N.
3395
3396 The user types choices as a sequence of numbers on one line
3397 separated by blanks, encoding them as follows:
3398
3399 + A choice of 0 means to cancel the selection, throwing an error.
3400 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3401 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3402
3403 The user is not allowed to choose more than MAX_RESULTS values.
3404
3405 ANNOTATION_SUFFIX, if present, is used to annotate the input
3406 prompts (for use with the -f switch). */
3407
3408 int
3409 get_selections (int *choices, int n_choices, int max_results,
3410 int is_all_choice, char *annotation_suffix)
3411 {
3412 char *args;
3413 char *prompt;
3414 int n_chosen;
3415 int first_choice = is_all_choice ? 2 : 1;
3416
3417 prompt = getenv ("PS2");
3418 if (prompt == NULL)
3419 prompt = "> ";
3420
3421 args = command_line_input (prompt, 0, annotation_suffix);
3422
3423 if (args == NULL)
3424 error_no_arg (_("one or more choice numbers"));
3425
3426 n_chosen = 0;
3427
3428 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3429 order, as given in args. Choices are validated. */
3430 while (1)
3431 {
3432 char *args2;
3433 int choice, j;
3434
3435 while (isspace (*args))
3436 args += 1;
3437 if (*args == '\0' && n_chosen == 0)
3438 error_no_arg (_("one or more choice numbers"));
3439 else if (*args == '\0')
3440 break;
3441
3442 choice = strtol (args, &args2, 10);
3443 if (args == args2 || choice < 0
3444 || choice > n_choices + first_choice - 1)
3445 error (_("Argument must be choice number"));
3446 args = args2;
3447
3448 if (choice == 0)
3449 error (_("cancelled"));
3450
3451 if (choice < first_choice)
3452 {
3453 n_chosen = n_choices;
3454 for (j = 0; j < n_choices; j += 1)
3455 choices[j] = j;
3456 break;
3457 }
3458 choice -= first_choice;
3459
3460 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3461 {
3462 }
3463
3464 if (j < 0 || choice != choices[j])
3465 {
3466 int k;
3467 for (k = n_chosen - 1; k > j; k -= 1)
3468 choices[k + 1] = choices[k];
3469 choices[j + 1] = choice;
3470 n_chosen += 1;
3471 }
3472 }
3473
3474 if (n_chosen > max_results)
3475 error (_("Select no more than %d of the above"), max_results);
3476
3477 return n_chosen;
3478 }
3479
3480 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3481 on the function identified by SYM and BLOCK, and taking NARGS
3482 arguments. Update *EXPP as needed to hold more space. */
3483
3484 static void
3485 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3486 int oplen, struct symbol *sym,
3487 struct block *block)
3488 {
3489 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3490 symbol, -oplen for operator being replaced). */
3491 struct expression *newexp = (struct expression *)
3492 xmalloc (sizeof (struct expression)
3493 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3494 struct expression *exp = *expp;
3495
3496 newexp->nelts = exp->nelts + 7 - oplen;
3497 newexp->language_defn = exp->language_defn;
3498 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3499 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3500 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3501
3502 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3503 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3504
3505 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3506 newexp->elts[pc + 4].block = block;
3507 newexp->elts[pc + 5].symbol = sym;
3508
3509 *expp = newexp;
3510 xfree (exp);
3511 }
3512
3513 /* Type-class predicates */
3514
3515 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3516 or FLOAT). */
3517
3518 static int
3519 numeric_type_p (struct type *type)
3520 {
3521 if (type == NULL)
3522 return 0;
3523 else
3524 {
3525 switch (TYPE_CODE (type))
3526 {
3527 case TYPE_CODE_INT:
3528 case TYPE_CODE_FLT:
3529 return 1;
3530 case TYPE_CODE_RANGE:
3531 return (type == TYPE_TARGET_TYPE (type)
3532 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3533 default:
3534 return 0;
3535 }
3536 }
3537 }
3538
3539 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3540
3541 static int
3542 integer_type_p (struct type *type)
3543 {
3544 if (type == NULL)
3545 return 0;
3546 else
3547 {
3548 switch (TYPE_CODE (type))
3549 {
3550 case TYPE_CODE_INT:
3551 return 1;
3552 case TYPE_CODE_RANGE:
3553 return (type == TYPE_TARGET_TYPE (type)
3554 || integer_type_p (TYPE_TARGET_TYPE (type)));
3555 default:
3556 return 0;
3557 }
3558 }
3559 }
3560
3561 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3562
3563 static int
3564 scalar_type_p (struct type *type)
3565 {
3566 if (type == NULL)
3567 return 0;
3568 else
3569 {
3570 switch (TYPE_CODE (type))
3571 {
3572 case TYPE_CODE_INT:
3573 case TYPE_CODE_RANGE:
3574 case TYPE_CODE_ENUM:
3575 case TYPE_CODE_FLT:
3576 return 1;
3577 default:
3578 return 0;
3579 }
3580 }
3581 }
3582
3583 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3584
3585 static int
3586 discrete_type_p (struct type *type)
3587 {
3588 if (type == NULL)
3589 return 0;
3590 else
3591 {
3592 switch (TYPE_CODE (type))
3593 {
3594 case TYPE_CODE_INT:
3595 case TYPE_CODE_RANGE:
3596 case TYPE_CODE_ENUM:
3597 case TYPE_CODE_BOOL:
3598 return 1;
3599 default:
3600 return 0;
3601 }
3602 }
3603 }
3604
3605 /* Returns non-zero if OP with operands in the vector ARGS could be
3606 a user-defined function. Errs on the side of pre-defined operators
3607 (i.e., result 0). */
3608
3609 static int
3610 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3611 {
3612 struct type *type0 =
3613 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3614 struct type *type1 =
3615 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3616
3617 if (type0 == NULL)
3618 return 0;
3619
3620 switch (op)
3621 {
3622 default:
3623 return 0;
3624
3625 case BINOP_ADD:
3626 case BINOP_SUB:
3627 case BINOP_MUL:
3628 case BINOP_DIV:
3629 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3630
3631 case BINOP_REM:
3632 case BINOP_MOD:
3633 case BINOP_BITWISE_AND:
3634 case BINOP_BITWISE_IOR:
3635 case BINOP_BITWISE_XOR:
3636 return (!(integer_type_p (type0) && integer_type_p (type1)));
3637
3638 case BINOP_EQUAL:
3639 case BINOP_NOTEQUAL:
3640 case BINOP_LESS:
3641 case BINOP_GTR:
3642 case BINOP_LEQ:
3643 case BINOP_GEQ:
3644 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3645
3646 case BINOP_CONCAT:
3647 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3648
3649 case BINOP_EXP:
3650 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3651
3652 case UNOP_NEG:
3653 case UNOP_PLUS:
3654 case UNOP_LOGICAL_NOT:
3655 case UNOP_ABS:
3656 return (!numeric_type_p (type0));
3657
3658 }
3659 }
3660 \f
3661 /* Renaming */
3662
3663 /* NOTES:
3664
3665 1. In the following, we assume that a renaming type's name may
3666 have an ___XD suffix. It would be nice if this went away at some
3667 point.
3668 2. We handle both the (old) purely type-based representation of
3669 renamings and the (new) variable-based encoding. At some point,
3670 it is devoutly to be hoped that the former goes away
3671 (FIXME: hilfinger-2007-07-09).
3672 3. Subprogram renamings are not implemented, although the XRS
3673 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3674
3675 /* If SYM encodes a renaming,
3676
3677 <renaming> renames <renamed entity>,
3678
3679 sets *LEN to the length of the renamed entity's name,
3680 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3681 the string describing the subcomponent selected from the renamed
3682 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3683 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3684 are undefined). Otherwise, returns a value indicating the category
3685 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3686 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3687 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3688 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3689 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3690 may be NULL, in which case they are not assigned.
3691
3692 [Currently, however, GCC does not generate subprogram renamings.] */
3693
3694 enum ada_renaming_category
3695 ada_parse_renaming (struct symbol *sym,
3696 const char **renamed_entity, int *len,
3697 const char **renaming_expr)
3698 {
3699 enum ada_renaming_category kind;
3700 const char *info;
3701 const char *suffix;
3702
3703 if (sym == NULL)
3704 return ADA_NOT_RENAMING;
3705 switch (SYMBOL_CLASS (sym))
3706 {
3707 default:
3708 return ADA_NOT_RENAMING;
3709 case LOC_TYPEDEF:
3710 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3711 renamed_entity, len, renaming_expr);
3712 case LOC_LOCAL:
3713 case LOC_STATIC:
3714 case LOC_COMPUTED:
3715 case LOC_OPTIMIZED_OUT:
3716 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3717 if (info == NULL)
3718 return ADA_NOT_RENAMING;
3719 switch (info[5])
3720 {
3721 case '_':
3722 kind = ADA_OBJECT_RENAMING;
3723 info += 6;
3724 break;
3725 case 'E':
3726 kind = ADA_EXCEPTION_RENAMING;
3727 info += 7;
3728 break;
3729 case 'P':
3730 kind = ADA_PACKAGE_RENAMING;
3731 info += 7;
3732 break;
3733 case 'S':
3734 kind = ADA_SUBPROGRAM_RENAMING;
3735 info += 7;
3736 break;
3737 default:
3738 return ADA_NOT_RENAMING;
3739 }
3740 }
3741
3742 if (renamed_entity != NULL)
3743 *renamed_entity = info;
3744 suffix = strstr (info, "___XE");
3745 if (suffix == NULL || suffix == info)
3746 return ADA_NOT_RENAMING;
3747 if (len != NULL)
3748 *len = strlen (info) - strlen (suffix);
3749 suffix += 5;
3750 if (renaming_expr != NULL)
3751 *renaming_expr = suffix;
3752 return kind;
3753 }
3754
3755 /* Assuming TYPE encodes a renaming according to the old encoding in
3756 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3757 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3758 ADA_NOT_RENAMING otherwise. */
3759 static enum ada_renaming_category
3760 parse_old_style_renaming (struct type *type,
3761 const char **renamed_entity, int *len,
3762 const char **renaming_expr)
3763 {
3764 enum ada_renaming_category kind;
3765 const char *name;
3766 const char *info;
3767 const char *suffix;
3768
3769 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
3770 || TYPE_NFIELDS (type) != 1)
3771 return ADA_NOT_RENAMING;
3772
3773 name = type_name_no_tag (type);
3774 if (name == NULL)
3775 return ADA_NOT_RENAMING;
3776
3777 name = strstr (name, "___XR");
3778 if (name == NULL)
3779 return ADA_NOT_RENAMING;
3780 switch (name[5])
3781 {
3782 case '\0':
3783 case '_':
3784 kind = ADA_OBJECT_RENAMING;
3785 break;
3786 case 'E':
3787 kind = ADA_EXCEPTION_RENAMING;
3788 break;
3789 case 'P':
3790 kind = ADA_PACKAGE_RENAMING;
3791 break;
3792 case 'S':
3793 kind = ADA_SUBPROGRAM_RENAMING;
3794 break;
3795 default:
3796 return ADA_NOT_RENAMING;
3797 }
3798
3799 info = TYPE_FIELD_NAME (type, 0);
3800 if (info == NULL)
3801 return ADA_NOT_RENAMING;
3802 if (renamed_entity != NULL)
3803 *renamed_entity = info;
3804 suffix = strstr (info, "___XE");
3805 if (renaming_expr != NULL)
3806 *renaming_expr = suffix + 5;
3807 if (suffix == NULL || suffix == info)
3808 return ADA_NOT_RENAMING;
3809 if (len != NULL)
3810 *len = suffix - info;
3811 return kind;
3812 }
3813
3814 \f
3815
3816 /* Evaluation: Function Calls */
3817
3818 /* Return an lvalue containing the value VAL. This is the identity on
3819 lvalues, and otherwise has the side-effect of pushing a copy of VAL
3820 on the stack, using and updating *SP as the stack pointer, and
3821 returning an lvalue whose value_address points to the copy. */
3822
3823 static struct value *
3824 ensure_lval (struct value *val, struct gdbarch *gdbarch, CORE_ADDR *sp)
3825 {
3826 if (! VALUE_LVAL (val))
3827 {
3828 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
3829
3830 /* The following is taken from the structure-return code in
3831 call_function_by_hand. FIXME: Therefore, some refactoring seems
3832 indicated. */
3833 if (gdbarch_inner_than (gdbarch, 1, 2))
3834 {
3835 /* Stack grows downward. Align SP and value_address (val) after
3836 reserving sufficient space. */
3837 *sp -= len;
3838 if (gdbarch_frame_align_p (gdbarch))
3839 *sp = gdbarch_frame_align (gdbarch, *sp);
3840 set_value_address (val, *sp);
3841 }
3842 else
3843 {
3844 /* Stack grows upward. Align the frame, allocate space, and
3845 then again, re-align the frame. */
3846 if (gdbarch_frame_align_p (gdbarch))
3847 *sp = gdbarch_frame_align (gdbarch, *sp);
3848 set_value_address (val, *sp);
3849 *sp += len;
3850 if (gdbarch_frame_align_p (gdbarch))
3851 *sp = gdbarch_frame_align (gdbarch, *sp);
3852 }
3853 VALUE_LVAL (val) = lval_memory;
3854
3855 write_memory (value_address (val), value_contents_raw (val), len);
3856 }
3857
3858 return val;
3859 }
3860
3861 /* Return the value ACTUAL, converted to be an appropriate value for a
3862 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3863 allocating any necessary descriptors (fat pointers), or copies of
3864 values not residing in memory, updating it as needed. */
3865
3866 struct value *
3867 ada_convert_actual (struct value *actual, struct type *formal_type0,
3868 struct gdbarch *gdbarch, CORE_ADDR *sp)
3869 {
3870 struct type *actual_type = ada_check_typedef (value_type (actual));
3871 struct type *formal_type = ada_check_typedef (formal_type0);
3872 struct type *formal_target =
3873 TYPE_CODE (formal_type) == TYPE_CODE_PTR
3874 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
3875 struct type *actual_target =
3876 TYPE_CODE (actual_type) == TYPE_CODE_PTR
3877 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
3878
3879 if (ada_is_array_descriptor_type (formal_target)
3880 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
3881 return make_array_descriptor (formal_type, actual, gdbarch, sp);
3882 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
3883 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
3884 {
3885 struct value *result;
3886 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
3887 && ada_is_array_descriptor_type (actual_target))
3888 result = desc_data (actual);
3889 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
3890 {
3891 if (VALUE_LVAL (actual) != lval_memory)
3892 {
3893 struct value *val;
3894 actual_type = ada_check_typedef (value_type (actual));
3895 val = allocate_value (actual_type);
3896 memcpy ((char *) value_contents_raw (val),
3897 (char *) value_contents (actual),
3898 TYPE_LENGTH (actual_type));
3899 actual = ensure_lval (val, gdbarch, sp);
3900 }
3901 result = value_addr (actual);
3902 }
3903 else
3904 return actual;
3905 return value_cast_pointers (formal_type, result);
3906 }
3907 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
3908 return ada_value_ind (actual);
3909
3910 return actual;
3911 }
3912
3913 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
3914 type TYPE. This is usually an inefficient no-op except on some targets
3915 (such as AVR) where the representation of a pointer and an address
3916 differs. */
3917
3918 static CORE_ADDR
3919 value_pointer (struct value *value, struct type *type)
3920 {
3921 struct gdbarch *gdbarch = get_type_arch (type);
3922 unsigned len = TYPE_LENGTH (type);
3923 gdb_byte *buf = alloca (len);
3924 CORE_ADDR addr;
3925
3926 addr = value_address (value);
3927 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
3928 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
3929 return addr;
3930 }
3931
3932
3933 /* Push a descriptor of type TYPE for array value ARR on the stack at
3934 *SP, updating *SP to reflect the new descriptor. Return either
3935 an lvalue representing the new descriptor, or (if TYPE is a pointer-
3936 to-descriptor type rather than a descriptor type), a struct value *
3937 representing a pointer to this descriptor. */
3938
3939 static struct value *
3940 make_array_descriptor (struct type *type, struct value *arr,
3941 struct gdbarch *gdbarch, CORE_ADDR *sp)
3942 {
3943 struct type *bounds_type = desc_bounds_type (type);
3944 struct type *desc_type = desc_base_type (type);
3945 struct value *descriptor = allocate_value (desc_type);
3946 struct value *bounds = allocate_value (bounds_type);
3947 int i;
3948
3949 for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1)
3950 {
3951 modify_general_field (value_type (bounds),
3952 value_contents_writeable (bounds),
3953 ada_array_bound (arr, i, 0),
3954 desc_bound_bitpos (bounds_type, i, 0),
3955 desc_bound_bitsize (bounds_type, i, 0));
3956 modify_general_field (value_type (bounds),
3957 value_contents_writeable (bounds),
3958 ada_array_bound (arr, i, 1),
3959 desc_bound_bitpos (bounds_type, i, 1),
3960 desc_bound_bitsize (bounds_type, i, 1));
3961 }
3962
3963 bounds = ensure_lval (bounds, gdbarch, sp);
3964
3965 modify_general_field (value_type (descriptor),
3966 value_contents_writeable (descriptor),
3967 value_pointer (ensure_lval (arr, gdbarch, sp),
3968 TYPE_FIELD_TYPE (desc_type, 0)),
3969 fat_pntr_data_bitpos (desc_type),
3970 fat_pntr_data_bitsize (desc_type));
3971
3972 modify_general_field (value_type (descriptor),
3973 value_contents_writeable (descriptor),
3974 value_pointer (bounds,
3975 TYPE_FIELD_TYPE (desc_type, 1)),
3976 fat_pntr_bounds_bitpos (desc_type),
3977 fat_pntr_bounds_bitsize (desc_type));
3978
3979 descriptor = ensure_lval (descriptor, gdbarch, sp);
3980
3981 if (TYPE_CODE (type) == TYPE_CODE_PTR)
3982 return value_addr (descriptor);
3983 else
3984 return descriptor;
3985 }
3986 \f
3987 /* Dummy definitions for an experimental caching module that is not
3988 * used in the public sources. */
3989
3990 static int
3991 lookup_cached_symbol (const char *name, domain_enum namespace,
3992 struct symbol **sym, struct block **block)
3993 {
3994 return 0;
3995 }
3996
3997 static void
3998 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
3999 struct block *block)
4000 {
4001 }
4002 \f
4003 /* Symbol Lookup */
4004
4005 /* Return the result of a standard (literal, C-like) lookup of NAME in
4006 given DOMAIN, visible from lexical block BLOCK. */
4007
4008 static struct symbol *
4009 standard_lookup (const char *name, const struct block *block,
4010 domain_enum domain)
4011 {
4012 struct symbol *sym;
4013
4014 if (lookup_cached_symbol (name, domain, &sym, NULL))
4015 return sym;
4016 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4017 cache_symbol (name, domain, sym, block_found);
4018 return sym;
4019 }
4020
4021
4022 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4023 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4024 since they contend in overloading in the same way. */
4025 static int
4026 is_nonfunction (struct ada_symbol_info syms[], int n)
4027 {
4028 int i;
4029
4030 for (i = 0; i < n; i += 1)
4031 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4032 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4033 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
4034 return 1;
4035
4036 return 0;
4037 }
4038
4039 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4040 struct types. Otherwise, they may not. */
4041
4042 static int
4043 equiv_types (struct type *type0, struct type *type1)
4044 {
4045 if (type0 == type1)
4046 return 1;
4047 if (type0 == NULL || type1 == NULL
4048 || TYPE_CODE (type0) != TYPE_CODE (type1))
4049 return 0;
4050 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4051 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4052 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4053 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4054 return 1;
4055
4056 return 0;
4057 }
4058
4059 /* True iff SYM0 represents the same entity as SYM1, or one that is
4060 no more defined than that of SYM1. */
4061
4062 static int
4063 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4064 {
4065 if (sym0 == sym1)
4066 return 1;
4067 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4068 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4069 return 0;
4070
4071 switch (SYMBOL_CLASS (sym0))
4072 {
4073 case LOC_UNDEF:
4074 return 1;
4075 case LOC_TYPEDEF:
4076 {
4077 struct type *type0 = SYMBOL_TYPE (sym0);
4078 struct type *type1 = SYMBOL_TYPE (sym1);
4079 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4080 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4081 int len0 = strlen (name0);
4082 return
4083 TYPE_CODE (type0) == TYPE_CODE (type1)
4084 && (equiv_types (type0, type1)
4085 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4086 && strncmp (name1 + len0, "___XV", 5) == 0));
4087 }
4088 case LOC_CONST:
4089 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4090 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4091 default:
4092 return 0;
4093 }
4094 }
4095
4096 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4097 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4098
4099 static void
4100 add_defn_to_vec (struct obstack *obstackp,
4101 struct symbol *sym,
4102 struct block *block)
4103 {
4104 int i;
4105 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4106
4107 /* Do not try to complete stub types, as the debugger is probably
4108 already scanning all symbols matching a certain name at the
4109 time when this function is called. Trying to replace the stub
4110 type by its associated full type will cause us to restart a scan
4111 which may lead to an infinite recursion. Instead, the client
4112 collecting the matching symbols will end up collecting several
4113 matches, with at least one of them complete. It can then filter
4114 out the stub ones if needed. */
4115
4116 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4117 {
4118 if (lesseq_defined_than (sym, prevDefns[i].sym))
4119 return;
4120 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4121 {
4122 prevDefns[i].sym = sym;
4123 prevDefns[i].block = block;
4124 return;
4125 }
4126 }
4127
4128 {
4129 struct ada_symbol_info info;
4130
4131 info.sym = sym;
4132 info.block = block;
4133 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4134 }
4135 }
4136
4137 /* Number of ada_symbol_info structures currently collected in
4138 current vector in *OBSTACKP. */
4139
4140 static int
4141 num_defns_collected (struct obstack *obstackp)
4142 {
4143 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4144 }
4145
4146 /* Vector of ada_symbol_info structures currently collected in current
4147 vector in *OBSTACKP. If FINISH, close off the vector and return
4148 its final address. */
4149
4150 static struct ada_symbol_info *
4151 defns_collected (struct obstack *obstackp, int finish)
4152 {
4153 if (finish)
4154 return obstack_finish (obstackp);
4155 else
4156 return (struct ada_symbol_info *) obstack_base (obstackp);
4157 }
4158
4159 /* Return a minimal symbol matching NAME according to Ada decoding
4160 rules. Returns NULL if there is no such minimal symbol. Names
4161 prefixed with "standard__" are handled specially: "standard__" is
4162 first stripped off, and only static and global symbols are searched. */
4163
4164 struct minimal_symbol *
4165 ada_lookup_simple_minsym (const char *name)
4166 {
4167 struct objfile *objfile;
4168 struct minimal_symbol *msymbol;
4169 int wild_match;
4170
4171 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4172 {
4173 name += sizeof ("standard__") - 1;
4174 wild_match = 0;
4175 }
4176 else
4177 wild_match = (strstr (name, "__") == NULL);
4178
4179 ALL_MSYMBOLS (objfile, msymbol)
4180 {
4181 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4182 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4183 return msymbol;
4184 }
4185
4186 return NULL;
4187 }
4188
4189 /* For all subprograms that statically enclose the subprogram of the
4190 selected frame, add symbols matching identifier NAME in DOMAIN
4191 and their blocks to the list of data in OBSTACKP, as for
4192 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4193 wildcard prefix. */
4194
4195 static void
4196 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4197 const char *name, domain_enum namespace,
4198 int wild_match)
4199 {
4200 }
4201
4202 /* True if TYPE is definitely an artificial type supplied to a symbol
4203 for which no debugging information was given in the symbol file. */
4204
4205 static int
4206 is_nondebugging_type (struct type *type)
4207 {
4208 char *name = ada_type_name (type);
4209 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4210 }
4211
4212 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4213 duplicate other symbols in the list (The only case I know of where
4214 this happens is when object files containing stabs-in-ecoff are
4215 linked with files containing ordinary ecoff debugging symbols (or no
4216 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4217 Returns the number of items in the modified list. */
4218
4219 static int
4220 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4221 {
4222 int i, j;
4223
4224 i = 0;
4225 while (i < nsyms)
4226 {
4227 int remove = 0;
4228
4229 /* If two symbols have the same name and one of them is a stub type,
4230 the get rid of the stub. */
4231
4232 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4233 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4234 {
4235 for (j = 0; j < nsyms; j++)
4236 {
4237 if (j != i
4238 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4239 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4240 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4241 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4242 remove = 1;
4243 }
4244 }
4245
4246 /* Two symbols with the same name, same class and same address
4247 should be identical. */
4248
4249 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4250 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4251 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4252 {
4253 for (j = 0; j < nsyms; j += 1)
4254 {
4255 if (i != j
4256 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4257 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4258 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4259 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4260 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4261 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4262 remove = 1;
4263 }
4264 }
4265
4266 if (remove)
4267 {
4268 for (j = i + 1; j < nsyms; j += 1)
4269 syms[j - 1] = syms[j];
4270 nsyms -= 1;
4271 }
4272
4273 i += 1;
4274 }
4275 return nsyms;
4276 }
4277
4278 /* Given a type that corresponds to a renaming entity, use the type name
4279 to extract the scope (package name or function name, fully qualified,
4280 and following the GNAT encoding convention) where this renaming has been
4281 defined. The string returned needs to be deallocated after use. */
4282
4283 static char *
4284 xget_renaming_scope (struct type *renaming_type)
4285 {
4286 /* The renaming types adhere to the following convention:
4287 <scope>__<rename>___<XR extension>.
4288 So, to extract the scope, we search for the "___XR" extension,
4289 and then backtrack until we find the first "__". */
4290
4291 const char *name = type_name_no_tag (renaming_type);
4292 char *suffix = strstr (name, "___XR");
4293 char *last;
4294 int scope_len;
4295 char *scope;
4296
4297 /* Now, backtrack a bit until we find the first "__". Start looking
4298 at suffix - 3, as the <rename> part is at least one character long. */
4299
4300 for (last = suffix - 3; last > name; last--)
4301 if (last[0] == '_' && last[1] == '_')
4302 break;
4303
4304 /* Make a copy of scope and return it. */
4305
4306 scope_len = last - name;
4307 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4308
4309 strncpy (scope, name, scope_len);
4310 scope[scope_len] = '\0';
4311
4312 return scope;
4313 }
4314
4315 /* Return nonzero if NAME corresponds to a package name. */
4316
4317 static int
4318 is_package_name (const char *name)
4319 {
4320 /* Here, We take advantage of the fact that no symbols are generated
4321 for packages, while symbols are generated for each function.
4322 So the condition for NAME represent a package becomes equivalent
4323 to NAME not existing in our list of symbols. There is only one
4324 small complication with library-level functions (see below). */
4325
4326 char *fun_name;
4327
4328 /* If it is a function that has not been defined at library level,
4329 then we should be able to look it up in the symbols. */
4330 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4331 return 0;
4332
4333 /* Library-level function names start with "_ada_". See if function
4334 "_ada_" followed by NAME can be found. */
4335
4336 /* Do a quick check that NAME does not contain "__", since library-level
4337 functions names cannot contain "__" in them. */
4338 if (strstr (name, "__") != NULL)
4339 return 0;
4340
4341 fun_name = xstrprintf ("_ada_%s", name);
4342
4343 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4344 }
4345
4346 /* Return nonzero if SYM corresponds to a renaming entity that is
4347 not visible from FUNCTION_NAME. */
4348
4349 static int
4350 old_renaming_is_invisible (const struct symbol *sym, char *function_name)
4351 {
4352 char *scope;
4353
4354 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4355 return 0;
4356
4357 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4358
4359 make_cleanup (xfree, scope);
4360
4361 /* If the rename has been defined in a package, then it is visible. */
4362 if (is_package_name (scope))
4363 return 0;
4364
4365 /* Check that the rename is in the current function scope by checking
4366 that its name starts with SCOPE. */
4367
4368 /* If the function name starts with "_ada_", it means that it is
4369 a library-level function. Strip this prefix before doing the
4370 comparison, as the encoding for the renaming does not contain
4371 this prefix. */
4372 if (strncmp (function_name, "_ada_", 5) == 0)
4373 function_name += 5;
4374
4375 return (strncmp (function_name, scope, strlen (scope)) != 0);
4376 }
4377
4378 /* Remove entries from SYMS that corresponds to a renaming entity that
4379 is not visible from the function associated with CURRENT_BLOCK or
4380 that is superfluous due to the presence of more specific renaming
4381 information. Places surviving symbols in the initial entries of
4382 SYMS and returns the number of surviving symbols.
4383
4384 Rationale:
4385 First, in cases where an object renaming is implemented as a
4386 reference variable, GNAT may produce both the actual reference
4387 variable and the renaming encoding. In this case, we discard the
4388 latter.
4389
4390 Second, GNAT emits a type following a specified encoding for each renaming
4391 entity. Unfortunately, STABS currently does not support the definition
4392 of types that are local to a given lexical block, so all renamings types
4393 are emitted at library level. As a consequence, if an application
4394 contains two renaming entities using the same name, and a user tries to
4395 print the value of one of these entities, the result of the ada symbol
4396 lookup will also contain the wrong renaming type.
4397
4398 This function partially covers for this limitation by attempting to
4399 remove from the SYMS list renaming symbols that should be visible
4400 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4401 method with the current information available. The implementation
4402 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4403
4404 - When the user tries to print a rename in a function while there
4405 is another rename entity defined in a package: Normally, the
4406 rename in the function has precedence over the rename in the
4407 package, so the latter should be removed from the list. This is
4408 currently not the case.
4409
4410 - This function will incorrectly remove valid renames if
4411 the CURRENT_BLOCK corresponds to a function which symbol name
4412 has been changed by an "Export" pragma. As a consequence,
4413 the user will be unable to print such rename entities. */
4414
4415 static int
4416 remove_irrelevant_renamings (struct ada_symbol_info *syms,
4417 int nsyms, const struct block *current_block)
4418 {
4419 struct symbol *current_function;
4420 char *current_function_name;
4421 int i;
4422 int is_new_style_renaming;
4423
4424 /* If there is both a renaming foo___XR... encoded as a variable and
4425 a simple variable foo in the same block, discard the latter.
4426 First, zero out such symbols, then compress. */
4427 is_new_style_renaming = 0;
4428 for (i = 0; i < nsyms; i += 1)
4429 {
4430 struct symbol *sym = syms[i].sym;
4431 struct block *block = syms[i].block;
4432 const char *name;
4433 const char *suffix;
4434
4435 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4436 continue;
4437 name = SYMBOL_LINKAGE_NAME (sym);
4438 suffix = strstr (name, "___XR");
4439
4440 if (suffix != NULL)
4441 {
4442 int name_len = suffix - name;
4443 int j;
4444 is_new_style_renaming = 1;
4445 for (j = 0; j < nsyms; j += 1)
4446 if (i != j && syms[j].sym != NULL
4447 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4448 name_len) == 0
4449 && block == syms[j].block)
4450 syms[j].sym = NULL;
4451 }
4452 }
4453 if (is_new_style_renaming)
4454 {
4455 int j, k;
4456
4457 for (j = k = 0; j < nsyms; j += 1)
4458 if (syms[j].sym != NULL)
4459 {
4460 syms[k] = syms[j];
4461 k += 1;
4462 }
4463 return k;
4464 }
4465
4466 /* Extract the function name associated to CURRENT_BLOCK.
4467 Abort if unable to do so. */
4468
4469 if (current_block == NULL)
4470 return nsyms;
4471
4472 current_function = block_linkage_function (current_block);
4473 if (current_function == NULL)
4474 return nsyms;
4475
4476 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4477 if (current_function_name == NULL)
4478 return nsyms;
4479
4480 /* Check each of the symbols, and remove it from the list if it is
4481 a type corresponding to a renaming that is out of the scope of
4482 the current block. */
4483
4484 i = 0;
4485 while (i < nsyms)
4486 {
4487 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4488 == ADA_OBJECT_RENAMING
4489 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4490 {
4491 int j;
4492 for (j = i + 1; j < nsyms; j += 1)
4493 syms[j - 1] = syms[j];
4494 nsyms -= 1;
4495 }
4496 else
4497 i += 1;
4498 }
4499
4500 return nsyms;
4501 }
4502
4503 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4504 whose name and domain match NAME and DOMAIN respectively.
4505 If no match was found, then extend the search to "enclosing"
4506 routines (in other words, if we're inside a nested function,
4507 search the symbols defined inside the enclosing functions).
4508
4509 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4510
4511 static void
4512 ada_add_local_symbols (struct obstack *obstackp, const char *name,
4513 struct block *block, domain_enum domain,
4514 int wild_match)
4515 {
4516 int block_depth = 0;
4517
4518 while (block != NULL)
4519 {
4520 block_depth += 1;
4521 ada_add_block_symbols (obstackp, block, name, domain, NULL, wild_match);
4522
4523 /* If we found a non-function match, assume that's the one. */
4524 if (is_nonfunction (defns_collected (obstackp, 0),
4525 num_defns_collected (obstackp)))
4526 return;
4527
4528 block = BLOCK_SUPERBLOCK (block);
4529 }
4530
4531 /* If no luck so far, try to find NAME as a local symbol in some lexically
4532 enclosing subprogram. */
4533 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4534 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match);
4535 }
4536
4537 /* An object of this type is used as the user_data argument when
4538 calling the map_ada_symtabs method. */
4539
4540 struct ada_psym_data
4541 {
4542 struct obstack *obstackp;
4543 const char *name;
4544 domain_enum domain;
4545 int global;
4546 int wild_match;
4547 };
4548
4549 /* Callback function for map_ada_symtabs. */
4550
4551 static void
4552 ada_add_psyms (struct objfile *objfile, struct symtab *s, void *user_data)
4553 {
4554 struct ada_psym_data *data = user_data;
4555 const int block_kind = data->global ? GLOBAL_BLOCK : STATIC_BLOCK;
4556 ada_add_block_symbols (data->obstackp,
4557 BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), block_kind),
4558 data->name, data->domain, objfile, data->wild_match);
4559 }
4560
4561 /* Add to OBSTACKP all non-local symbols whose name and domain match
4562 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
4563 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
4564
4565 static void
4566 ada_add_non_local_symbols (struct obstack *obstackp, const char *name,
4567 domain_enum domain, int global,
4568 int is_wild_match)
4569 {
4570 struct objfile *objfile;
4571 struct ada_psym_data data;
4572
4573 data.obstackp = obstackp;
4574 data.name = name;
4575 data.domain = domain;
4576 data.global = global;
4577 data.wild_match = is_wild_match;
4578
4579 ALL_OBJFILES (objfile)
4580 {
4581 if (objfile->sf)
4582 objfile->sf->qf->map_ada_symtabs (objfile, wild_match, is_name_suffix,
4583 ada_add_psyms, name,
4584 global, domain,
4585 is_wild_match, &data);
4586 }
4587 }
4588
4589 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4590 scope and in global scopes, returning the number of matches. Sets
4591 *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4592 indicating the symbols found and the blocks and symbol tables (if
4593 any) in which they were found. This vector are transient---good only to
4594 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4595 symbol match within the nest of blocks whose innermost member is BLOCK0,
4596 is the one match returned (no other matches in that or
4597 enclosing blocks is returned). If there are any matches in or
4598 surrounding BLOCK0, then these alone are returned. Otherwise, the
4599 search extends to global and file-scope (static) symbol tables.
4600 Names prefixed with "standard__" are handled specially: "standard__"
4601 is first stripped off, and only static and global symbols are searched. */
4602
4603 int
4604 ada_lookup_symbol_list (const char *name0, const struct block *block0,
4605 domain_enum namespace,
4606 struct ada_symbol_info **results)
4607 {
4608 struct symbol *sym;
4609 struct block *block;
4610 const char *name;
4611 int wild_match;
4612 int cacheIfUnique;
4613 int ndefns;
4614
4615 obstack_free (&symbol_list_obstack, NULL);
4616 obstack_init (&symbol_list_obstack);
4617
4618 cacheIfUnique = 0;
4619
4620 /* Search specified block and its superiors. */
4621
4622 wild_match = (strstr (name0, "__") == NULL);
4623 name = name0;
4624 block = (struct block *) block0; /* FIXME: No cast ought to be
4625 needed, but adding const will
4626 have a cascade effect. */
4627
4628 /* Special case: If the user specifies a symbol name inside package
4629 Standard, do a non-wild matching of the symbol name without
4630 the "standard__" prefix. This was primarily introduced in order
4631 to allow the user to specifically access the standard exceptions
4632 using, for instance, Standard.Constraint_Error when Constraint_Error
4633 is ambiguous (due to the user defining its own Constraint_Error
4634 entity inside its program). */
4635 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4636 {
4637 wild_match = 0;
4638 block = NULL;
4639 name = name0 + sizeof ("standard__") - 1;
4640 }
4641
4642 /* Check the non-global symbols. If we have ANY match, then we're done. */
4643
4644 ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
4645 wild_match);
4646 if (num_defns_collected (&symbol_list_obstack) > 0)
4647 goto done;
4648
4649 /* No non-global symbols found. Check our cache to see if we have
4650 already performed this search before. If we have, then return
4651 the same result. */
4652
4653 cacheIfUnique = 1;
4654 if (lookup_cached_symbol (name0, namespace, &sym, &block))
4655 {
4656 if (sym != NULL)
4657 add_defn_to_vec (&symbol_list_obstack, sym, block);
4658 goto done;
4659 }
4660
4661 /* Search symbols from all global blocks. */
4662
4663 ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 1,
4664 wild_match);
4665
4666 /* Now add symbols from all per-file blocks if we've gotten no hits
4667 (not strictly correct, but perhaps better than an error). */
4668
4669 if (num_defns_collected (&symbol_list_obstack) == 0)
4670 ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 0,
4671 wild_match);
4672
4673 done:
4674 ndefns = num_defns_collected (&symbol_list_obstack);
4675 *results = defns_collected (&symbol_list_obstack, 1);
4676
4677 ndefns = remove_extra_symbols (*results, ndefns);
4678
4679 if (ndefns == 0)
4680 cache_symbol (name0, namespace, NULL, NULL);
4681
4682 if (ndefns == 1 && cacheIfUnique)
4683 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
4684
4685 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
4686
4687 return ndefns;
4688 }
4689
4690 struct symbol *
4691 ada_lookup_encoded_symbol (const char *name, const struct block *block0,
4692 domain_enum namespace, struct block **block_found)
4693 {
4694 struct ada_symbol_info *candidates;
4695 int n_candidates;
4696
4697 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates);
4698
4699 if (n_candidates == 0)
4700 return NULL;
4701
4702 if (block_found != NULL)
4703 *block_found = candidates[0].block;
4704
4705 return fixup_symbol_section (candidates[0].sym, NULL);
4706 }
4707
4708 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4709 scope and in global scopes, or NULL if none. NAME is folded and
4710 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4711 choosing the first symbol if there are multiple choices.
4712 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4713 table in which the symbol was found (in both cases, these
4714 assignments occur only if the pointers are non-null). */
4715 struct symbol *
4716 ada_lookup_symbol (const char *name, const struct block *block0,
4717 domain_enum namespace, int *is_a_field_of_this)
4718 {
4719 if (is_a_field_of_this != NULL)
4720 *is_a_field_of_this = 0;
4721
4722 return
4723 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
4724 block0, namespace, NULL);
4725 }
4726
4727 static struct symbol *
4728 ada_lookup_symbol_nonlocal (const char *name,
4729 const struct block *block,
4730 const domain_enum domain)
4731 {
4732 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
4733 }
4734
4735
4736 /* True iff STR is a possible encoded suffix of a normal Ada name
4737 that is to be ignored for matching purposes. Suffixes of parallel
4738 names (e.g., XVE) are not included here. Currently, the possible suffixes
4739 are given by any of the regular expressions:
4740
4741 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
4742 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4743 _E[0-9]+[bs]$ [protected object entry suffixes]
4744 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
4745
4746 Also, any leading "__[0-9]+" sequence is skipped before the suffix
4747 match is performed. This sequence is used to differentiate homonyms,
4748 is an optional part of a valid name suffix. */
4749
4750 static int
4751 is_name_suffix (const char *str)
4752 {
4753 int k;
4754 const char *matching;
4755 const int len = strlen (str);
4756
4757 /* Skip optional leading __[0-9]+. */
4758
4759 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4760 {
4761 str += 3;
4762 while (isdigit (str[0]))
4763 str += 1;
4764 }
4765
4766 /* [.$][0-9]+ */
4767
4768 if (str[0] == '.' || str[0] == '$')
4769 {
4770 matching = str + 1;
4771 while (isdigit (matching[0]))
4772 matching += 1;
4773 if (matching[0] == '\0')
4774 return 1;
4775 }
4776
4777 /* ___[0-9]+ */
4778
4779 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
4780 {
4781 matching = str + 3;
4782 while (isdigit (matching[0]))
4783 matching += 1;
4784 if (matching[0] == '\0')
4785 return 1;
4786 }
4787
4788 #if 0
4789 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
4790 with a N at the end. Unfortunately, the compiler uses the same
4791 convention for other internal types it creates. So treating
4792 all entity names that end with an "N" as a name suffix causes
4793 some regressions. For instance, consider the case of an enumerated
4794 type. To support the 'Image attribute, it creates an array whose
4795 name ends with N.
4796 Having a single character like this as a suffix carrying some
4797 information is a bit risky. Perhaps we should change the encoding
4798 to be something like "_N" instead. In the meantime, do not do
4799 the following check. */
4800 /* Protected Object Subprograms */
4801 if (len == 1 && str [0] == 'N')
4802 return 1;
4803 #endif
4804
4805 /* _E[0-9]+[bs]$ */
4806 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
4807 {
4808 matching = str + 3;
4809 while (isdigit (matching[0]))
4810 matching += 1;
4811 if ((matching[0] == 'b' || matching[0] == 's')
4812 && matching [1] == '\0')
4813 return 1;
4814 }
4815
4816 /* ??? We should not modify STR directly, as we are doing below. This
4817 is fine in this case, but may become problematic later if we find
4818 that this alternative did not work, and want to try matching
4819 another one from the begining of STR. Since we modified it, we
4820 won't be able to find the begining of the string anymore! */
4821 if (str[0] == 'X')
4822 {
4823 str += 1;
4824 while (str[0] != '_' && str[0] != '\0')
4825 {
4826 if (str[0] != 'n' && str[0] != 'b')
4827 return 0;
4828 str += 1;
4829 }
4830 }
4831
4832 if (str[0] == '\000')
4833 return 1;
4834
4835 if (str[0] == '_')
4836 {
4837 if (str[1] != '_' || str[2] == '\000')
4838 return 0;
4839 if (str[2] == '_')
4840 {
4841 if (strcmp (str + 3, "JM") == 0)
4842 return 1;
4843 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
4844 the LJM suffix in favor of the JM one. But we will
4845 still accept LJM as a valid suffix for a reasonable
4846 amount of time, just to allow ourselves to debug programs
4847 compiled using an older version of GNAT. */
4848 if (strcmp (str + 3, "LJM") == 0)
4849 return 1;
4850 if (str[3] != 'X')
4851 return 0;
4852 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
4853 || str[4] == 'U' || str[4] == 'P')
4854 return 1;
4855 if (str[4] == 'R' && str[5] != 'T')
4856 return 1;
4857 return 0;
4858 }
4859 if (!isdigit (str[2]))
4860 return 0;
4861 for (k = 3; str[k] != '\0'; k += 1)
4862 if (!isdigit (str[k]) && str[k] != '_')
4863 return 0;
4864 return 1;
4865 }
4866 if (str[0] == '$' && isdigit (str[1]))
4867 {
4868 for (k = 2; str[k] != '\0'; k += 1)
4869 if (!isdigit (str[k]) && str[k] != '_')
4870 return 0;
4871 return 1;
4872 }
4873 return 0;
4874 }
4875
4876 /* Return non-zero if the string starting at NAME and ending before
4877 NAME_END contains no capital letters. */
4878
4879 static int
4880 is_valid_name_for_wild_match (const char *name0)
4881 {
4882 const char *decoded_name = ada_decode (name0);
4883 int i;
4884
4885 /* If the decoded name starts with an angle bracket, it means that
4886 NAME0 does not follow the GNAT encoding format. It should then
4887 not be allowed as a possible wild match. */
4888 if (decoded_name[0] == '<')
4889 return 0;
4890
4891 for (i=0; decoded_name[i] != '\0'; i++)
4892 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
4893 return 0;
4894
4895 return 1;
4896 }
4897
4898 /* True if NAME represents a name of the form A1.A2....An, n>=1 and
4899 PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores
4900 informational suffixes of NAME (i.e., for which is_name_suffix is
4901 true). */
4902
4903 static int
4904 wild_match (const char *patn0, int patn_len, const char *name0)
4905 {
4906 char* match;
4907 const char* start;
4908 start = name0;
4909 while (1)
4910 {
4911 match = strstr (start, patn0);
4912 if (match == NULL)
4913 return 0;
4914 if ((match == name0
4915 || match[-1] == '.'
4916 || (match > name0 + 1 && match[-1] == '_' && match[-2] == '_')
4917 || (match == name0 + 5 && strncmp ("_ada_", name0, 5) == 0))
4918 && is_name_suffix (match + patn_len))
4919 return (match == name0 || is_valid_name_for_wild_match (name0));
4920 start = match + 1;
4921 }
4922 }
4923
4924 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
4925 vector *defn_symbols, updating the list of symbols in OBSTACKP
4926 (if necessary). If WILD, treat as NAME with a wildcard prefix.
4927 OBJFILE is the section containing BLOCK.
4928 SYMTAB is recorded with each symbol added. */
4929
4930 static void
4931 ada_add_block_symbols (struct obstack *obstackp,
4932 struct block *block, const char *name,
4933 domain_enum domain, struct objfile *objfile,
4934 int wild)
4935 {
4936 struct dict_iterator iter;
4937 int name_len = strlen (name);
4938 /* A matching argument symbol, if any. */
4939 struct symbol *arg_sym;
4940 /* Set true when we find a matching non-argument symbol. */
4941 int found_sym;
4942 struct symbol *sym;
4943
4944 arg_sym = NULL;
4945 found_sym = 0;
4946 if (wild)
4947 {
4948 struct symbol *sym;
4949 ALL_BLOCK_SYMBOLS (block, iter, sym)
4950 {
4951 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
4952 SYMBOL_DOMAIN (sym), domain)
4953 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (sym)))
4954 {
4955 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4956 continue;
4957 else if (SYMBOL_IS_ARGUMENT (sym))
4958 arg_sym = sym;
4959 else
4960 {
4961 found_sym = 1;
4962 add_defn_to_vec (obstackp,
4963 fixup_symbol_section (sym, objfile),
4964 block);
4965 }
4966 }
4967 }
4968 }
4969 else
4970 {
4971 ALL_BLOCK_SYMBOLS (block, iter, sym)
4972 {
4973 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
4974 SYMBOL_DOMAIN (sym), domain))
4975 {
4976 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym), name_len);
4977 if (cmp == 0
4978 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len))
4979 {
4980 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
4981 {
4982 if (SYMBOL_IS_ARGUMENT (sym))
4983 arg_sym = sym;
4984 else
4985 {
4986 found_sym = 1;
4987 add_defn_to_vec (obstackp,
4988 fixup_symbol_section (sym, objfile),
4989 block);
4990 }
4991 }
4992 }
4993 }
4994 }
4995 }
4996
4997 if (!found_sym && arg_sym != NULL)
4998 {
4999 add_defn_to_vec (obstackp,
5000 fixup_symbol_section (arg_sym, objfile),
5001 block);
5002 }
5003
5004 if (!wild)
5005 {
5006 arg_sym = NULL;
5007 found_sym = 0;
5008
5009 ALL_BLOCK_SYMBOLS (block, iter, sym)
5010 {
5011 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5012 SYMBOL_DOMAIN (sym), domain))
5013 {
5014 int cmp;
5015
5016 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5017 if (cmp == 0)
5018 {
5019 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5020 if (cmp == 0)
5021 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5022 name_len);
5023 }
5024
5025 if (cmp == 0
5026 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5027 {
5028 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5029 {
5030 if (SYMBOL_IS_ARGUMENT (sym))
5031 arg_sym = sym;
5032 else
5033 {
5034 found_sym = 1;
5035 add_defn_to_vec (obstackp,
5036 fixup_symbol_section (sym, objfile),
5037 block);
5038 }
5039 }
5040 }
5041 }
5042 }
5043
5044 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5045 They aren't parameters, right? */
5046 if (!found_sym && arg_sym != NULL)
5047 {
5048 add_defn_to_vec (obstackp,
5049 fixup_symbol_section (arg_sym, objfile),
5050 block);
5051 }
5052 }
5053 }
5054 \f
5055
5056 /* Symbol Completion */
5057
5058 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
5059 name in a form that's appropriate for the completion. The result
5060 does not need to be deallocated, but is only good until the next call.
5061
5062 TEXT_LEN is equal to the length of TEXT.
5063 Perform a wild match if WILD_MATCH is set.
5064 ENCODED should be set if TEXT represents the start of a symbol name
5065 in its encoded form. */
5066
5067 static const char *
5068 symbol_completion_match (const char *sym_name,
5069 const char *text, int text_len,
5070 int wild_match, int encoded)
5071 {
5072 const int verbatim_match = (text[0] == '<');
5073 int match = 0;
5074
5075 if (verbatim_match)
5076 {
5077 /* Strip the leading angle bracket. */
5078 text = text + 1;
5079 text_len--;
5080 }
5081
5082 /* First, test against the fully qualified name of the symbol. */
5083
5084 if (strncmp (sym_name, text, text_len) == 0)
5085 match = 1;
5086
5087 if (match && !encoded)
5088 {
5089 /* One needed check before declaring a positive match is to verify
5090 that iff we are doing a verbatim match, the decoded version
5091 of the symbol name starts with '<'. Otherwise, this symbol name
5092 is not a suitable completion. */
5093 const char *sym_name_copy = sym_name;
5094 int has_angle_bracket;
5095
5096 sym_name = ada_decode (sym_name);
5097 has_angle_bracket = (sym_name[0] == '<');
5098 match = (has_angle_bracket == verbatim_match);
5099 sym_name = sym_name_copy;
5100 }
5101
5102 if (match && !verbatim_match)
5103 {
5104 /* When doing non-verbatim match, another check that needs to
5105 be done is to verify that the potentially matching symbol name
5106 does not include capital letters, because the ada-mode would
5107 not be able to understand these symbol names without the
5108 angle bracket notation. */
5109 const char *tmp;
5110
5111 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5112 if (*tmp != '\0')
5113 match = 0;
5114 }
5115
5116 /* Second: Try wild matching... */
5117
5118 if (!match && wild_match)
5119 {
5120 /* Since we are doing wild matching, this means that TEXT
5121 may represent an unqualified symbol name. We therefore must
5122 also compare TEXT against the unqualified name of the symbol. */
5123 sym_name = ada_unqualified_name (ada_decode (sym_name));
5124
5125 if (strncmp (sym_name, text, text_len) == 0)
5126 match = 1;
5127 }
5128
5129 /* Finally: If we found a mach, prepare the result to return. */
5130
5131 if (!match)
5132 return NULL;
5133
5134 if (verbatim_match)
5135 sym_name = add_angle_brackets (sym_name);
5136
5137 if (!encoded)
5138 sym_name = ada_decode (sym_name);
5139
5140 return sym_name;
5141 }
5142
5143 DEF_VEC_P (char_ptr);
5144
5145 /* A companion function to ada_make_symbol_completion_list().
5146 Check if SYM_NAME represents a symbol which name would be suitable
5147 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5148 it is appended at the end of the given string vector SV.
5149
5150 ORIG_TEXT is the string original string from the user command
5151 that needs to be completed. WORD is the entire command on which
5152 completion should be performed. These two parameters are used to
5153 determine which part of the symbol name should be added to the
5154 completion vector.
5155 if WILD_MATCH is set, then wild matching is performed.
5156 ENCODED should be set if TEXT represents a symbol name in its
5157 encoded formed (in which case the completion should also be
5158 encoded). */
5159
5160 static void
5161 symbol_completion_add (VEC(char_ptr) **sv,
5162 const char *sym_name,
5163 const char *text, int text_len,
5164 const char *orig_text, const char *word,
5165 int wild_match, int encoded)
5166 {
5167 const char *match = symbol_completion_match (sym_name, text, text_len,
5168 wild_match, encoded);
5169 char *completion;
5170
5171 if (match == NULL)
5172 return;
5173
5174 /* We found a match, so add the appropriate completion to the given
5175 string vector. */
5176
5177 if (word == orig_text)
5178 {
5179 completion = xmalloc (strlen (match) + 5);
5180 strcpy (completion, match);
5181 }
5182 else if (word > orig_text)
5183 {
5184 /* Return some portion of sym_name. */
5185 completion = xmalloc (strlen (match) + 5);
5186 strcpy (completion, match + (word - orig_text));
5187 }
5188 else
5189 {
5190 /* Return some of ORIG_TEXT plus sym_name. */
5191 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5192 strncpy (completion, word, orig_text - word);
5193 completion[orig_text - word] = '\0';
5194 strcat (completion, match);
5195 }
5196
5197 VEC_safe_push (char_ptr, *sv, completion);
5198 }
5199
5200 /* An object of this type is passed as the user_data argument to the
5201 map_partial_symbol_names method. */
5202 struct add_partial_datum
5203 {
5204 VEC(char_ptr) **completions;
5205 char *text;
5206 int text_len;
5207 char *text0;
5208 char *word;
5209 int wild_match;
5210 int encoded;
5211 };
5212
5213 /* A callback for map_partial_symbol_names. */
5214 static void
5215 ada_add_partial_symbol_completions (const char *name, void *user_data)
5216 {
5217 struct add_partial_datum *data = user_data;
5218 symbol_completion_add (data->completions, name,
5219 data->text, data->text_len, data->text0, data->word,
5220 data->wild_match, data->encoded);
5221 }
5222
5223 /* Return a list of possible symbol names completing TEXT0. The list
5224 is NULL terminated. WORD is the entire command on which completion
5225 is made. */
5226
5227 static char **
5228 ada_make_symbol_completion_list (char *text0, char *word)
5229 {
5230 char *text;
5231 int text_len;
5232 int wild_match;
5233 int encoded;
5234 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
5235 struct symbol *sym;
5236 struct symtab *s;
5237 struct minimal_symbol *msymbol;
5238 struct objfile *objfile;
5239 struct block *b, *surrounding_static_block = 0;
5240 int i;
5241 struct dict_iterator iter;
5242
5243 if (text0[0] == '<')
5244 {
5245 text = xstrdup (text0);
5246 make_cleanup (xfree, text);
5247 text_len = strlen (text);
5248 wild_match = 0;
5249 encoded = 1;
5250 }
5251 else
5252 {
5253 text = xstrdup (ada_encode (text0));
5254 make_cleanup (xfree, text);
5255 text_len = strlen (text);
5256 for (i = 0; i < text_len; i++)
5257 text[i] = tolower (text[i]);
5258
5259 encoded = (strstr (text0, "__") != NULL);
5260 /* If the name contains a ".", then the user is entering a fully
5261 qualified entity name, and the match must not be done in wild
5262 mode. Similarly, if the user wants to complete what looks like
5263 an encoded name, the match must not be done in wild mode. */
5264 wild_match = (strchr (text0, '.') == NULL && !encoded);
5265 }
5266
5267 /* First, look at the partial symtab symbols. */
5268 {
5269 struct add_partial_datum data;
5270
5271 data.completions = &completions;
5272 data.text = text;
5273 data.text_len = text_len;
5274 data.text0 = text0;
5275 data.word = word;
5276 data.wild_match = wild_match;
5277 data.encoded = encoded;
5278 map_partial_symbol_names (ada_add_partial_symbol_completions, &data);
5279 }
5280
5281 /* At this point scan through the misc symbol vectors and add each
5282 symbol you find to the list. Eventually we want to ignore
5283 anything that isn't a text symbol (everything else will be
5284 handled by the psymtab code above). */
5285
5286 ALL_MSYMBOLS (objfile, msymbol)
5287 {
5288 QUIT;
5289 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
5290 text, text_len, text0, word, wild_match, encoded);
5291 }
5292
5293 /* Search upwards from currently selected frame (so that we can
5294 complete on local vars. */
5295
5296 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5297 {
5298 if (!BLOCK_SUPERBLOCK (b))
5299 surrounding_static_block = b; /* For elmin of dups */
5300
5301 ALL_BLOCK_SYMBOLS (b, iter, sym)
5302 {
5303 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5304 text, text_len, text0, word,
5305 wild_match, encoded);
5306 }
5307 }
5308
5309 /* Go through the symtabs and check the externs and statics for
5310 symbols which match. */
5311
5312 ALL_SYMTABS (objfile, s)
5313 {
5314 QUIT;
5315 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5316 ALL_BLOCK_SYMBOLS (b, iter, sym)
5317 {
5318 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5319 text, text_len, text0, word,
5320 wild_match, encoded);
5321 }
5322 }
5323
5324 ALL_SYMTABS (objfile, s)
5325 {
5326 QUIT;
5327 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5328 /* Don't do this block twice. */
5329 if (b == surrounding_static_block)
5330 continue;
5331 ALL_BLOCK_SYMBOLS (b, iter, sym)
5332 {
5333 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5334 text, text_len, text0, word,
5335 wild_match, encoded);
5336 }
5337 }
5338
5339 /* Append the closing NULL entry. */
5340 VEC_safe_push (char_ptr, completions, NULL);
5341
5342 /* Make a copy of the COMPLETIONS VEC before we free it, and then
5343 return the copy. It's unfortunate that we have to make a copy
5344 of an array that we're about to destroy, but there is nothing much
5345 we can do about it. Fortunately, it's typically not a very large
5346 array. */
5347 {
5348 const size_t completions_size =
5349 VEC_length (char_ptr, completions) * sizeof (char *);
5350 char **result = malloc (completions_size);
5351
5352 memcpy (result, VEC_address (char_ptr, completions), completions_size);
5353
5354 VEC_free (char_ptr, completions);
5355 return result;
5356 }
5357 }
5358
5359 /* Field Access */
5360
5361 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5362 for tagged types. */
5363
5364 static int
5365 ada_is_dispatch_table_ptr_type (struct type *type)
5366 {
5367 char *name;
5368
5369 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5370 return 0;
5371
5372 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5373 if (name == NULL)
5374 return 0;
5375
5376 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5377 }
5378
5379 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5380 to be invisible to users. */
5381
5382 int
5383 ada_is_ignored_field (struct type *type, int field_num)
5384 {
5385 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5386 return 1;
5387
5388 /* Check the name of that field. */
5389 {
5390 const char *name = TYPE_FIELD_NAME (type, field_num);
5391
5392 /* Anonymous field names should not be printed.
5393 brobecker/2007-02-20: I don't think this can actually happen
5394 but we don't want to print the value of annonymous fields anyway. */
5395 if (name == NULL)
5396 return 1;
5397
5398 /* A field named "_parent" is internally generated by GNAT for
5399 tagged types, and should not be printed either. */
5400 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5401 return 1;
5402 }
5403
5404 /* If this is the dispatch table of a tagged type, then ignore. */
5405 if (ada_is_tagged_type (type, 1)
5406 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5407 return 1;
5408
5409 /* Not a special field, so it should not be ignored. */
5410 return 0;
5411 }
5412
5413 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5414 pointer or reference type whose ultimate target has a tag field. */
5415
5416 int
5417 ada_is_tagged_type (struct type *type, int refok)
5418 {
5419 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5420 }
5421
5422 /* True iff TYPE represents the type of X'Tag */
5423
5424 int
5425 ada_is_tag_type (struct type *type)
5426 {
5427 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5428 return 0;
5429 else
5430 {
5431 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5432 return (name != NULL
5433 && strcmp (name, "ada__tags__dispatch_table") == 0);
5434 }
5435 }
5436
5437 /* The type of the tag on VAL. */
5438
5439 struct type *
5440 ada_tag_type (struct value *val)
5441 {
5442 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
5443 }
5444
5445 /* The value of the tag on VAL. */
5446
5447 struct value *
5448 ada_value_tag (struct value *val)
5449 {
5450 return ada_value_struct_elt (val, "_tag", 0);
5451 }
5452
5453 /* The value of the tag on the object of type TYPE whose contents are
5454 saved at VALADDR, if it is non-null, or is at memory address
5455 ADDRESS. */
5456
5457 static struct value *
5458 value_tag_from_contents_and_address (struct type *type,
5459 const gdb_byte *valaddr,
5460 CORE_ADDR address)
5461 {
5462 int tag_byte_offset;
5463 struct type *tag_type;
5464 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
5465 NULL, NULL, NULL))
5466 {
5467 const gdb_byte *valaddr1 = ((valaddr == NULL)
5468 ? NULL
5469 : valaddr + tag_byte_offset);
5470 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
5471
5472 return value_from_contents_and_address (tag_type, valaddr1, address1);
5473 }
5474 return NULL;
5475 }
5476
5477 static struct type *
5478 type_from_tag (struct value *tag)
5479 {
5480 const char *type_name = ada_tag_name (tag);
5481 if (type_name != NULL)
5482 return ada_find_any_type (ada_encode (type_name));
5483 return NULL;
5484 }
5485
5486 struct tag_args
5487 {
5488 struct value *tag;
5489 char *name;
5490 };
5491
5492
5493 static int ada_tag_name_1 (void *);
5494 static int ada_tag_name_2 (struct tag_args *);
5495
5496 /* Wrapper function used by ada_tag_name. Given a struct tag_args*
5497 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5498 The value stored in ARGS->name is valid until the next call to
5499 ada_tag_name_1. */
5500
5501 static int
5502 ada_tag_name_1 (void *args0)
5503 {
5504 struct tag_args *args = (struct tag_args *) args0;
5505 static char name[1024];
5506 char *p;
5507 struct value *val;
5508 args->name = NULL;
5509 val = ada_value_struct_elt (args->tag, "tsd", 1);
5510 if (val == NULL)
5511 return ada_tag_name_2 (args);
5512 val = ada_value_struct_elt (val, "expanded_name", 1);
5513 if (val == NULL)
5514 return 0;
5515 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5516 for (p = name; *p != '\0'; p += 1)
5517 if (isalpha (*p))
5518 *p = tolower (*p);
5519 args->name = name;
5520 return 0;
5521 }
5522
5523 /* Utility function for ada_tag_name_1 that tries the second
5524 representation for the dispatch table (in which there is no
5525 explicit 'tsd' field in the referent of the tag pointer, and instead
5526 the tsd pointer is stored just before the dispatch table. */
5527
5528 static int
5529 ada_tag_name_2 (struct tag_args *args)
5530 {
5531 struct type *info_type;
5532 static char name[1024];
5533 char *p;
5534 struct value *val, *valp;
5535
5536 args->name = NULL;
5537 info_type = ada_find_any_type ("ada__tags__type_specific_data");
5538 if (info_type == NULL)
5539 return 0;
5540 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5541 valp = value_cast (info_type, args->tag);
5542 if (valp == NULL)
5543 return 0;
5544 val = value_ind (value_ptradd (valp, -1));
5545 if (val == NULL)
5546 return 0;
5547 val = ada_value_struct_elt (val, "expanded_name", 1);
5548 if (val == NULL)
5549 return 0;
5550 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5551 for (p = name; *p != '\0'; p += 1)
5552 if (isalpha (*p))
5553 *p = tolower (*p);
5554 args->name = name;
5555 return 0;
5556 }
5557
5558 /* The type name of the dynamic type denoted by the 'tag value TAG, as
5559 * a C string. */
5560
5561 const char *
5562 ada_tag_name (struct value *tag)
5563 {
5564 struct tag_args args;
5565 if (!ada_is_tag_type (value_type (tag)))
5566 return NULL;
5567 args.tag = tag;
5568 args.name = NULL;
5569 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5570 return args.name;
5571 }
5572
5573 /* The parent type of TYPE, or NULL if none. */
5574
5575 struct type *
5576 ada_parent_type (struct type *type)
5577 {
5578 int i;
5579
5580 type = ada_check_typedef (type);
5581
5582 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5583 return NULL;
5584
5585 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5586 if (ada_is_parent_field (type, i))
5587 {
5588 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
5589
5590 /* If the _parent field is a pointer, then dereference it. */
5591 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
5592 parent_type = TYPE_TARGET_TYPE (parent_type);
5593 /* If there is a parallel XVS type, get the actual base type. */
5594 parent_type = ada_get_base_type (parent_type);
5595
5596 return ada_check_typedef (parent_type);
5597 }
5598
5599 return NULL;
5600 }
5601
5602 /* True iff field number FIELD_NUM of structure type TYPE contains the
5603 parent-type (inherited) fields of a derived type. Assumes TYPE is
5604 a structure type with at least FIELD_NUM+1 fields. */
5605
5606 int
5607 ada_is_parent_field (struct type *type, int field_num)
5608 {
5609 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5610 return (name != NULL
5611 && (strncmp (name, "PARENT", 6) == 0
5612 || strncmp (name, "_parent", 7) == 0));
5613 }
5614
5615 /* True iff field number FIELD_NUM of structure type TYPE is a
5616 transparent wrapper field (which should be silently traversed when doing
5617 field selection and flattened when printing). Assumes TYPE is a
5618 structure type with at least FIELD_NUM+1 fields. Such fields are always
5619 structures. */
5620
5621 int
5622 ada_is_wrapper_field (struct type *type, int field_num)
5623 {
5624 const char *name = TYPE_FIELD_NAME (type, field_num);
5625 return (name != NULL
5626 && (strncmp (name, "PARENT", 6) == 0
5627 || strcmp (name, "REP") == 0
5628 || strncmp (name, "_parent", 7) == 0
5629 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
5630 }
5631
5632 /* True iff field number FIELD_NUM of structure or union type TYPE
5633 is a variant wrapper. Assumes TYPE is a structure type with at least
5634 FIELD_NUM+1 fields. */
5635
5636 int
5637 ada_is_variant_part (struct type *type, int field_num)
5638 {
5639 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5640 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
5641 || (is_dynamic_field (type, field_num)
5642 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5643 == TYPE_CODE_UNION)));
5644 }
5645
5646 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
5647 whose discriminants are contained in the record type OUTER_TYPE,
5648 returns the type of the controlling discriminant for the variant.
5649 May return NULL if the type could not be found. */
5650
5651 struct type *
5652 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
5653 {
5654 char *name = ada_variant_discrim_name (var_type);
5655 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
5656 }
5657
5658 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
5659 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
5660 represents a 'when others' clause; otherwise 0. */
5661
5662 int
5663 ada_is_others_clause (struct type *type, int field_num)
5664 {
5665 const char *name = TYPE_FIELD_NAME (type, field_num);
5666 return (name != NULL && name[0] == 'O');
5667 }
5668
5669 /* Assuming that TYPE0 is the type of the variant part of a record,
5670 returns the name of the discriminant controlling the variant.
5671 The value is valid until the next call to ada_variant_discrim_name. */
5672
5673 char *
5674 ada_variant_discrim_name (struct type *type0)
5675 {
5676 static char *result = NULL;
5677 static size_t result_len = 0;
5678 struct type *type;
5679 const char *name;
5680 const char *discrim_end;
5681 const char *discrim_start;
5682
5683 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5684 type = TYPE_TARGET_TYPE (type0);
5685 else
5686 type = type0;
5687
5688 name = ada_type_name (type);
5689
5690 if (name == NULL || name[0] == '\000')
5691 return "";
5692
5693 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
5694 discrim_end -= 1)
5695 {
5696 if (strncmp (discrim_end, "___XVN", 6) == 0)
5697 break;
5698 }
5699 if (discrim_end == name)
5700 return "";
5701
5702 for (discrim_start = discrim_end; discrim_start != name + 3;
5703 discrim_start -= 1)
5704 {
5705 if (discrim_start == name + 1)
5706 return "";
5707 if ((discrim_start > name + 3
5708 && strncmp (discrim_start - 3, "___", 3) == 0)
5709 || discrim_start[-1] == '.')
5710 break;
5711 }
5712
5713 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
5714 strncpy (result, discrim_start, discrim_end - discrim_start);
5715 result[discrim_end - discrim_start] = '\0';
5716 return result;
5717 }
5718
5719 /* Scan STR for a subtype-encoded number, beginning at position K.
5720 Put the position of the character just past the number scanned in
5721 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
5722 Return 1 if there was a valid number at the given position, and 0
5723 otherwise. A "subtype-encoded" number consists of the absolute value
5724 in decimal, followed by the letter 'm' to indicate a negative number.
5725 Assumes 0m does not occur. */
5726
5727 int
5728 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
5729 {
5730 ULONGEST RU;
5731
5732 if (!isdigit (str[k]))
5733 return 0;
5734
5735 /* Do it the hard way so as not to make any assumption about
5736 the relationship of unsigned long (%lu scan format code) and
5737 LONGEST. */
5738 RU = 0;
5739 while (isdigit (str[k]))
5740 {
5741 RU = RU * 10 + (str[k] - '0');
5742 k += 1;
5743 }
5744
5745 if (str[k] == 'm')
5746 {
5747 if (R != NULL)
5748 *R = (-(LONGEST) (RU - 1)) - 1;
5749 k += 1;
5750 }
5751 else if (R != NULL)
5752 *R = (LONGEST) RU;
5753
5754 /* NOTE on the above: Technically, C does not say what the results of
5755 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
5756 number representable as a LONGEST (although either would probably work
5757 in most implementations). When RU>0, the locution in the then branch
5758 above is always equivalent to the negative of RU. */
5759
5760 if (new_k != NULL)
5761 *new_k = k;
5762 return 1;
5763 }
5764
5765 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
5766 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
5767 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
5768
5769 int
5770 ada_in_variant (LONGEST val, struct type *type, int field_num)
5771 {
5772 const char *name = TYPE_FIELD_NAME (type, field_num);
5773 int p;
5774
5775 p = 0;
5776 while (1)
5777 {
5778 switch (name[p])
5779 {
5780 case '\0':
5781 return 0;
5782 case 'S':
5783 {
5784 LONGEST W;
5785 if (!ada_scan_number (name, p + 1, &W, &p))
5786 return 0;
5787 if (val == W)
5788 return 1;
5789 break;
5790 }
5791 case 'R':
5792 {
5793 LONGEST L, U;
5794 if (!ada_scan_number (name, p + 1, &L, &p)
5795 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
5796 return 0;
5797 if (val >= L && val <= U)
5798 return 1;
5799 break;
5800 }
5801 case 'O':
5802 return 1;
5803 default:
5804 return 0;
5805 }
5806 }
5807 }
5808
5809 /* FIXME: Lots of redundancy below. Try to consolidate. */
5810
5811 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
5812 ARG_TYPE, extract and return the value of one of its (non-static)
5813 fields. FIELDNO says which field. Differs from value_primitive_field
5814 only in that it can handle packed values of arbitrary type. */
5815
5816 static struct value *
5817 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
5818 struct type *arg_type)
5819 {
5820 struct type *type;
5821
5822 arg_type = ada_check_typedef (arg_type);
5823 type = TYPE_FIELD_TYPE (arg_type, fieldno);
5824
5825 /* Handle packed fields. */
5826
5827 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
5828 {
5829 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
5830 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
5831
5832 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
5833 offset + bit_pos / 8,
5834 bit_pos % 8, bit_size, type);
5835 }
5836 else
5837 return value_primitive_field (arg1, offset, fieldno, arg_type);
5838 }
5839
5840 /* Find field with name NAME in object of type TYPE. If found,
5841 set the following for each argument that is non-null:
5842 - *FIELD_TYPE_P to the field's type;
5843 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
5844 an object of that type;
5845 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
5846 - *BIT_SIZE_P to its size in bits if the field is packed, and
5847 0 otherwise;
5848 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
5849 fields up to but not including the desired field, or by the total
5850 number of fields if not found. A NULL value of NAME never
5851 matches; the function just counts visible fields in this case.
5852
5853 Returns 1 if found, 0 otherwise. */
5854
5855 static int
5856 find_struct_field (char *name, struct type *type, int offset,
5857 struct type **field_type_p,
5858 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
5859 int *index_p)
5860 {
5861 int i;
5862
5863 type = ada_check_typedef (type);
5864
5865 if (field_type_p != NULL)
5866 *field_type_p = NULL;
5867 if (byte_offset_p != NULL)
5868 *byte_offset_p = 0;
5869 if (bit_offset_p != NULL)
5870 *bit_offset_p = 0;
5871 if (bit_size_p != NULL)
5872 *bit_size_p = 0;
5873
5874 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5875 {
5876 int bit_pos = TYPE_FIELD_BITPOS (type, i);
5877 int fld_offset = offset + bit_pos / 8;
5878 char *t_field_name = TYPE_FIELD_NAME (type, i);
5879
5880 if (t_field_name == NULL)
5881 continue;
5882
5883 else if (name != NULL && field_name_match (t_field_name, name))
5884 {
5885 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5886 if (field_type_p != NULL)
5887 *field_type_p = TYPE_FIELD_TYPE (type, i);
5888 if (byte_offset_p != NULL)
5889 *byte_offset_p = fld_offset;
5890 if (bit_offset_p != NULL)
5891 *bit_offset_p = bit_pos % 8;
5892 if (bit_size_p != NULL)
5893 *bit_size_p = bit_size;
5894 return 1;
5895 }
5896 else if (ada_is_wrapper_field (type, i))
5897 {
5898 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
5899 field_type_p, byte_offset_p, bit_offset_p,
5900 bit_size_p, index_p))
5901 return 1;
5902 }
5903 else if (ada_is_variant_part (type, i))
5904 {
5905 /* PNH: Wait. Do we ever execute this section, or is ARG always of
5906 fixed type?? */
5907 int j;
5908 struct type *field_type
5909 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5910
5911 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
5912 {
5913 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
5914 fld_offset
5915 + TYPE_FIELD_BITPOS (field_type, j) / 8,
5916 field_type_p, byte_offset_p,
5917 bit_offset_p, bit_size_p, index_p))
5918 return 1;
5919 }
5920 }
5921 else if (index_p != NULL)
5922 *index_p += 1;
5923 }
5924 return 0;
5925 }
5926
5927 /* Number of user-visible fields in record type TYPE. */
5928
5929 static int
5930 num_visible_fields (struct type *type)
5931 {
5932 int n;
5933 n = 0;
5934 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
5935 return n;
5936 }
5937
5938 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
5939 and search in it assuming it has (class) type TYPE.
5940 If found, return value, else return NULL.
5941
5942 Searches recursively through wrapper fields (e.g., '_parent'). */
5943
5944 static struct value *
5945 ada_search_struct_field (char *name, struct value *arg, int offset,
5946 struct type *type)
5947 {
5948 int i;
5949 type = ada_check_typedef (type);
5950
5951 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5952 {
5953 char *t_field_name = TYPE_FIELD_NAME (type, i);
5954
5955 if (t_field_name == NULL)
5956 continue;
5957
5958 else if (field_name_match (t_field_name, name))
5959 return ada_value_primitive_field (arg, offset, i, type);
5960
5961 else if (ada_is_wrapper_field (type, i))
5962 {
5963 struct value *v = /* Do not let indent join lines here. */
5964 ada_search_struct_field (name, arg,
5965 offset + TYPE_FIELD_BITPOS (type, i) / 8,
5966 TYPE_FIELD_TYPE (type, i));
5967 if (v != NULL)
5968 return v;
5969 }
5970
5971 else if (ada_is_variant_part (type, i))
5972 {
5973 /* PNH: Do we ever get here? See find_struct_field. */
5974 int j;
5975 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5976 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
5977
5978 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
5979 {
5980 struct value *v = ada_search_struct_field /* Force line break. */
5981 (name, arg,
5982 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
5983 TYPE_FIELD_TYPE (field_type, j));
5984 if (v != NULL)
5985 return v;
5986 }
5987 }
5988 }
5989 return NULL;
5990 }
5991
5992 static struct value *ada_index_struct_field_1 (int *, struct value *,
5993 int, struct type *);
5994
5995
5996 /* Return field #INDEX in ARG, where the index is that returned by
5997 * find_struct_field through its INDEX_P argument. Adjust the address
5998 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
5999 * If found, return value, else return NULL. */
6000
6001 static struct value *
6002 ada_index_struct_field (int index, struct value *arg, int offset,
6003 struct type *type)
6004 {
6005 return ada_index_struct_field_1 (&index, arg, offset, type);
6006 }
6007
6008
6009 /* Auxiliary function for ada_index_struct_field. Like
6010 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6011 * *INDEX_P. */
6012
6013 static struct value *
6014 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6015 struct type *type)
6016 {
6017 int i;
6018 type = ada_check_typedef (type);
6019
6020 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6021 {
6022 if (TYPE_FIELD_NAME (type, i) == NULL)
6023 continue;
6024 else if (ada_is_wrapper_field (type, i))
6025 {
6026 struct value *v = /* Do not let indent join lines here. */
6027 ada_index_struct_field_1 (index_p, arg,
6028 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6029 TYPE_FIELD_TYPE (type, i));
6030 if (v != NULL)
6031 return v;
6032 }
6033
6034 else if (ada_is_variant_part (type, i))
6035 {
6036 /* PNH: Do we ever get here? See ada_search_struct_field,
6037 find_struct_field. */
6038 error (_("Cannot assign this kind of variant record"));
6039 }
6040 else if (*index_p == 0)
6041 return ada_value_primitive_field (arg, offset, i, type);
6042 else
6043 *index_p -= 1;
6044 }
6045 return NULL;
6046 }
6047
6048 /* Given ARG, a value of type (pointer or reference to a)*
6049 structure/union, extract the component named NAME from the ultimate
6050 target structure/union and return it as a value with its
6051 appropriate type.
6052
6053 The routine searches for NAME among all members of the structure itself
6054 and (recursively) among all members of any wrapper members
6055 (e.g., '_parent').
6056
6057 If NO_ERR, then simply return NULL in case of error, rather than
6058 calling error. */
6059
6060 struct value *
6061 ada_value_struct_elt (struct value *arg, char *name, int no_err)
6062 {
6063 struct type *t, *t1;
6064 struct value *v;
6065
6066 v = NULL;
6067 t1 = t = ada_check_typedef (value_type (arg));
6068 if (TYPE_CODE (t) == TYPE_CODE_REF)
6069 {
6070 t1 = TYPE_TARGET_TYPE (t);
6071 if (t1 == NULL)
6072 goto BadValue;
6073 t1 = ada_check_typedef (t1);
6074 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6075 {
6076 arg = coerce_ref (arg);
6077 t = t1;
6078 }
6079 }
6080
6081 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6082 {
6083 t1 = TYPE_TARGET_TYPE (t);
6084 if (t1 == NULL)
6085 goto BadValue;
6086 t1 = ada_check_typedef (t1);
6087 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6088 {
6089 arg = value_ind (arg);
6090 t = t1;
6091 }
6092 else
6093 break;
6094 }
6095
6096 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
6097 goto BadValue;
6098
6099 if (t1 == t)
6100 v = ada_search_struct_field (name, arg, 0, t);
6101 else
6102 {
6103 int bit_offset, bit_size, byte_offset;
6104 struct type *field_type;
6105 CORE_ADDR address;
6106
6107 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6108 address = value_as_address (arg);
6109 else
6110 address = unpack_pointer (t, value_contents (arg));
6111
6112 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
6113 if (find_struct_field (name, t1, 0,
6114 &field_type, &byte_offset, &bit_offset,
6115 &bit_size, NULL))
6116 {
6117 if (bit_size != 0)
6118 {
6119 if (TYPE_CODE (t) == TYPE_CODE_REF)
6120 arg = ada_coerce_ref (arg);
6121 else
6122 arg = ada_value_ind (arg);
6123 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6124 bit_offset, bit_size,
6125 field_type);
6126 }
6127 else
6128 v = value_at_lazy (field_type, address + byte_offset);
6129 }
6130 }
6131
6132 if (v != NULL || no_err)
6133 return v;
6134 else
6135 error (_("There is no member named %s."), name);
6136
6137 BadValue:
6138 if (no_err)
6139 return NULL;
6140 else
6141 error (_("Attempt to extract a component of a value that is not a record."));
6142 }
6143
6144 /* Given a type TYPE, look up the type of the component of type named NAME.
6145 If DISPP is non-null, add its byte displacement from the beginning of a
6146 structure (pointed to by a value) of type TYPE to *DISPP (does not
6147 work for packed fields).
6148
6149 Matches any field whose name has NAME as a prefix, possibly
6150 followed by "___".
6151
6152 TYPE can be either a struct or union. If REFOK, TYPE may also
6153 be a (pointer or reference)+ to a struct or union, and the
6154 ultimate target type will be searched.
6155
6156 Looks recursively into variant clauses and parent types.
6157
6158 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6159 TYPE is not a type of the right kind. */
6160
6161 static struct type *
6162 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6163 int noerr, int *dispp)
6164 {
6165 int i;
6166
6167 if (name == NULL)
6168 goto BadName;
6169
6170 if (refok && type != NULL)
6171 while (1)
6172 {
6173 type = ada_check_typedef (type);
6174 if (TYPE_CODE (type) != TYPE_CODE_PTR
6175 && TYPE_CODE (type) != TYPE_CODE_REF)
6176 break;
6177 type = TYPE_TARGET_TYPE (type);
6178 }
6179
6180 if (type == NULL
6181 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6182 && TYPE_CODE (type) != TYPE_CODE_UNION))
6183 {
6184 if (noerr)
6185 return NULL;
6186 else
6187 {
6188 target_terminal_ours ();
6189 gdb_flush (gdb_stdout);
6190 if (type == NULL)
6191 error (_("Type (null) is not a structure or union type"));
6192 else
6193 {
6194 /* XXX: type_sprint */
6195 fprintf_unfiltered (gdb_stderr, _("Type "));
6196 type_print (type, "", gdb_stderr, -1);
6197 error (_(" is not a structure or union type"));
6198 }
6199 }
6200 }
6201
6202 type = to_static_fixed_type (type);
6203
6204 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6205 {
6206 char *t_field_name = TYPE_FIELD_NAME (type, i);
6207 struct type *t;
6208 int disp;
6209
6210 if (t_field_name == NULL)
6211 continue;
6212
6213 else if (field_name_match (t_field_name, name))
6214 {
6215 if (dispp != NULL)
6216 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
6217 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6218 }
6219
6220 else if (ada_is_wrapper_field (type, i))
6221 {
6222 disp = 0;
6223 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6224 0, 1, &disp);
6225 if (t != NULL)
6226 {
6227 if (dispp != NULL)
6228 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6229 return t;
6230 }
6231 }
6232
6233 else if (ada_is_variant_part (type, i))
6234 {
6235 int j;
6236 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6237
6238 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6239 {
6240 /* FIXME pnh 2008/01/26: We check for a field that is
6241 NOT wrapped in a struct, since the compiler sometimes
6242 generates these for unchecked variant types. Revisit
6243 if the compiler changes this practice. */
6244 char *v_field_name = TYPE_FIELD_NAME (field_type, j);
6245 disp = 0;
6246 if (v_field_name != NULL
6247 && field_name_match (v_field_name, name))
6248 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6249 else
6250 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
6251 name, 0, 1, &disp);
6252
6253 if (t != NULL)
6254 {
6255 if (dispp != NULL)
6256 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6257 return t;
6258 }
6259 }
6260 }
6261
6262 }
6263
6264 BadName:
6265 if (!noerr)
6266 {
6267 target_terminal_ours ();
6268 gdb_flush (gdb_stdout);
6269 if (name == NULL)
6270 {
6271 /* XXX: type_sprint */
6272 fprintf_unfiltered (gdb_stderr, _("Type "));
6273 type_print (type, "", gdb_stderr, -1);
6274 error (_(" has no component named <null>"));
6275 }
6276 else
6277 {
6278 /* XXX: type_sprint */
6279 fprintf_unfiltered (gdb_stderr, _("Type "));
6280 type_print (type, "", gdb_stderr, -1);
6281 error (_(" has no component named %s"), name);
6282 }
6283 }
6284
6285 return NULL;
6286 }
6287
6288 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6289 within a value of type OUTER_TYPE, return true iff VAR_TYPE
6290 represents an unchecked union (that is, the variant part of a
6291 record that is named in an Unchecked_Union pragma). */
6292
6293 static int
6294 is_unchecked_variant (struct type *var_type, struct type *outer_type)
6295 {
6296 char *discrim_name = ada_variant_discrim_name (var_type);
6297 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
6298 == NULL);
6299 }
6300
6301
6302 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6303 within a value of type OUTER_TYPE that is stored in GDB at
6304 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6305 numbering from 0) is applicable. Returns -1 if none are. */
6306
6307 int
6308 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
6309 const gdb_byte *outer_valaddr)
6310 {
6311 int others_clause;
6312 int i;
6313 char *discrim_name = ada_variant_discrim_name (var_type);
6314 struct value *outer;
6315 struct value *discrim;
6316 LONGEST discrim_val;
6317
6318 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6319 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6320 if (discrim == NULL)
6321 return -1;
6322 discrim_val = value_as_long (discrim);
6323
6324 others_clause = -1;
6325 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6326 {
6327 if (ada_is_others_clause (var_type, i))
6328 others_clause = i;
6329 else if (ada_in_variant (discrim_val, var_type, i))
6330 return i;
6331 }
6332
6333 return others_clause;
6334 }
6335 \f
6336
6337
6338 /* Dynamic-Sized Records */
6339
6340 /* Strategy: The type ostensibly attached to a value with dynamic size
6341 (i.e., a size that is not statically recorded in the debugging
6342 data) does not accurately reflect the size or layout of the value.
6343 Our strategy is to convert these values to values with accurate,
6344 conventional types that are constructed on the fly. */
6345
6346 /* There is a subtle and tricky problem here. In general, we cannot
6347 determine the size of dynamic records without its data. However,
6348 the 'struct value' data structure, which GDB uses to represent
6349 quantities in the inferior process (the target), requires the size
6350 of the type at the time of its allocation in order to reserve space
6351 for GDB's internal copy of the data. That's why the
6352 'to_fixed_xxx_type' routines take (target) addresses as parameters,
6353 rather than struct value*s.
6354
6355 However, GDB's internal history variables ($1, $2, etc.) are
6356 struct value*s containing internal copies of the data that are not, in
6357 general, the same as the data at their corresponding addresses in
6358 the target. Fortunately, the types we give to these values are all
6359 conventional, fixed-size types (as per the strategy described
6360 above), so that we don't usually have to perform the
6361 'to_fixed_xxx_type' conversions to look at their values.
6362 Unfortunately, there is one exception: if one of the internal
6363 history variables is an array whose elements are unconstrained
6364 records, then we will need to create distinct fixed types for each
6365 element selected. */
6366
6367 /* The upshot of all of this is that many routines take a (type, host
6368 address, target address) triple as arguments to represent a value.
6369 The host address, if non-null, is supposed to contain an internal
6370 copy of the relevant data; otherwise, the program is to consult the
6371 target at the target address. */
6372
6373 /* Assuming that VAL0 represents a pointer value, the result of
6374 dereferencing it. Differs from value_ind in its treatment of
6375 dynamic-sized types. */
6376
6377 struct value *
6378 ada_value_ind (struct value *val0)
6379 {
6380 struct value *val = unwrap_value (value_ind (val0));
6381 return ada_to_fixed_value (val);
6382 }
6383
6384 /* The value resulting from dereferencing any "reference to"
6385 qualifiers on VAL0. */
6386
6387 static struct value *
6388 ada_coerce_ref (struct value *val0)
6389 {
6390 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
6391 {
6392 struct value *val = val0;
6393 val = coerce_ref (val);
6394 val = unwrap_value (val);
6395 return ada_to_fixed_value (val);
6396 }
6397 else
6398 return val0;
6399 }
6400
6401 /* Return OFF rounded upward if necessary to a multiple of
6402 ALIGNMENT (a power of 2). */
6403
6404 static unsigned int
6405 align_value (unsigned int off, unsigned int alignment)
6406 {
6407 return (off + alignment - 1) & ~(alignment - 1);
6408 }
6409
6410 /* Return the bit alignment required for field #F of template type TYPE. */
6411
6412 static unsigned int
6413 field_alignment (struct type *type, int f)
6414 {
6415 const char *name = TYPE_FIELD_NAME (type, f);
6416 int len;
6417 int align_offset;
6418
6419 /* The field name should never be null, unless the debugging information
6420 is somehow malformed. In this case, we assume the field does not
6421 require any alignment. */
6422 if (name == NULL)
6423 return 1;
6424
6425 len = strlen (name);
6426
6427 if (!isdigit (name[len - 1]))
6428 return 1;
6429
6430 if (isdigit (name[len - 2]))
6431 align_offset = len - 2;
6432 else
6433 align_offset = len - 1;
6434
6435 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
6436 return TARGET_CHAR_BIT;
6437
6438 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6439 }
6440
6441 /* Find a symbol named NAME. Ignores ambiguity. */
6442
6443 struct symbol *
6444 ada_find_any_symbol (const char *name)
6445 {
6446 struct symbol *sym;
6447
6448 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6449 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6450 return sym;
6451
6452 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6453 return sym;
6454 }
6455
6456 /* Find a type named NAME. Ignores ambiguity. This routine will look
6457 solely for types defined by debug info, it will not search the GDB
6458 primitive types. */
6459
6460 struct type *
6461 ada_find_any_type (const char *name)
6462 {
6463 struct symbol *sym = ada_find_any_symbol (name);
6464
6465 if (sym != NULL)
6466 return SYMBOL_TYPE (sym);
6467
6468 return NULL;
6469 }
6470
6471 /* Given NAME and an associated BLOCK, search all symbols for
6472 NAME suffixed with "___XR", which is the ``renaming'' symbol
6473 associated to NAME. Return this symbol if found, return
6474 NULL otherwise. */
6475
6476 struct symbol *
6477 ada_find_renaming_symbol (const char *name, struct block *block)
6478 {
6479 struct symbol *sym;
6480
6481 sym = find_old_style_renaming_symbol (name, block);
6482
6483 if (sym != NULL)
6484 return sym;
6485
6486 /* Not right yet. FIXME pnh 7/20/2007. */
6487 sym = ada_find_any_symbol (name);
6488 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
6489 return sym;
6490 else
6491 return NULL;
6492 }
6493
6494 static struct symbol *
6495 find_old_style_renaming_symbol (const char *name, struct block *block)
6496 {
6497 const struct symbol *function_sym = block_linkage_function (block);
6498 char *rename;
6499
6500 if (function_sym != NULL)
6501 {
6502 /* If the symbol is defined inside a function, NAME is not fully
6503 qualified. This means we need to prepend the function name
6504 as well as adding the ``___XR'' suffix to build the name of
6505 the associated renaming symbol. */
6506 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
6507 /* Function names sometimes contain suffixes used
6508 for instance to qualify nested subprograms. When building
6509 the XR type name, we need to make sure that this suffix is
6510 not included. So do not include any suffix in the function
6511 name length below. */
6512 int function_name_len = ada_name_prefix_len (function_name);
6513 const int rename_len = function_name_len + 2 /* "__" */
6514 + strlen (name) + 6 /* "___XR\0" */ ;
6515
6516 /* Strip the suffix if necessary. */
6517 ada_remove_trailing_digits (function_name, &function_name_len);
6518 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
6519 ada_remove_Xbn_suffix (function_name, &function_name_len);
6520
6521 /* Library-level functions are a special case, as GNAT adds
6522 a ``_ada_'' prefix to the function name to avoid namespace
6523 pollution. However, the renaming symbols themselves do not
6524 have this prefix, so we need to skip this prefix if present. */
6525 if (function_name_len > 5 /* "_ada_" */
6526 && strstr (function_name, "_ada_") == function_name)
6527 {
6528 function_name += 5;
6529 function_name_len -= 5;
6530 }
6531
6532 rename = (char *) alloca (rename_len * sizeof (char));
6533 strncpy (rename, function_name, function_name_len);
6534 xsnprintf (rename + function_name_len, rename_len - function_name_len,
6535 "__%s___XR", name);
6536 }
6537 else
6538 {
6539 const int rename_len = strlen (name) + 6;
6540 rename = (char *) alloca (rename_len * sizeof (char));
6541 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
6542 }
6543
6544 return ada_find_any_symbol (rename);
6545 }
6546
6547 /* Because of GNAT encoding conventions, several GDB symbols may match a
6548 given type name. If the type denoted by TYPE0 is to be preferred to
6549 that of TYPE1 for purposes of type printing, return non-zero;
6550 otherwise return 0. */
6551
6552 int
6553 ada_prefer_type (struct type *type0, struct type *type1)
6554 {
6555 if (type1 == NULL)
6556 return 1;
6557 else if (type0 == NULL)
6558 return 0;
6559 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6560 return 1;
6561 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6562 return 0;
6563 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6564 return 1;
6565 else if (ada_is_constrained_packed_array_type (type0))
6566 return 1;
6567 else if (ada_is_array_descriptor_type (type0)
6568 && !ada_is_array_descriptor_type (type1))
6569 return 1;
6570 else
6571 {
6572 const char *type0_name = type_name_no_tag (type0);
6573 const char *type1_name = type_name_no_tag (type1);
6574
6575 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
6576 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
6577 return 1;
6578 }
6579 return 0;
6580 }
6581
6582 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
6583 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6584
6585 char *
6586 ada_type_name (struct type *type)
6587 {
6588 if (type == NULL)
6589 return NULL;
6590 else if (TYPE_NAME (type) != NULL)
6591 return TYPE_NAME (type);
6592 else
6593 return TYPE_TAG_NAME (type);
6594 }
6595
6596 /* Search the list of "descriptive" types associated to TYPE for a type
6597 whose name is NAME. */
6598
6599 static struct type *
6600 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
6601 {
6602 struct type *result;
6603
6604 /* If there no descriptive-type info, then there is no parallel type
6605 to be found. */
6606 if (!HAVE_GNAT_AUX_INFO (type))
6607 return NULL;
6608
6609 result = TYPE_DESCRIPTIVE_TYPE (type);
6610 while (result != NULL)
6611 {
6612 char *result_name = ada_type_name (result);
6613
6614 if (result_name == NULL)
6615 {
6616 warning (_("unexpected null name on descriptive type"));
6617 return NULL;
6618 }
6619
6620 /* If the names match, stop. */
6621 if (strcmp (result_name, name) == 0)
6622 break;
6623
6624 /* Otherwise, look at the next item on the list, if any. */
6625 if (HAVE_GNAT_AUX_INFO (result))
6626 result = TYPE_DESCRIPTIVE_TYPE (result);
6627 else
6628 result = NULL;
6629 }
6630
6631 /* If we didn't find a match, see whether this is a packed array. With
6632 older compilers, the descriptive type information is either absent or
6633 irrelevant when it comes to packed arrays so the above lookup fails.
6634 Fall back to using a parallel lookup by name in this case. */
6635 if (result == NULL && ada_is_constrained_packed_array_type (type))
6636 return ada_find_any_type (name);
6637
6638 return result;
6639 }
6640
6641 /* Find a parallel type to TYPE with the specified NAME, using the
6642 descriptive type taken from the debugging information, if available,
6643 and otherwise using the (slower) name-based method. */
6644
6645 static struct type *
6646 ada_find_parallel_type_with_name (struct type *type, const char *name)
6647 {
6648 struct type *result = NULL;
6649
6650 if (HAVE_GNAT_AUX_INFO (type))
6651 result = find_parallel_type_by_descriptive_type (type, name);
6652 else
6653 result = ada_find_any_type (name);
6654
6655 return result;
6656 }
6657
6658 /* Same as above, but specify the name of the parallel type by appending
6659 SUFFIX to the name of TYPE. */
6660
6661 struct type *
6662 ada_find_parallel_type (struct type *type, const char *suffix)
6663 {
6664 char *name, *typename = ada_type_name (type);
6665 int len;
6666
6667 if (typename == NULL)
6668 return NULL;
6669
6670 len = strlen (typename);
6671
6672 name = (char *) alloca (len + strlen (suffix) + 1);
6673
6674 strcpy (name, typename);
6675 strcpy (name + len, suffix);
6676
6677 return ada_find_parallel_type_with_name (type, name);
6678 }
6679
6680 /* If TYPE is a variable-size record type, return the corresponding template
6681 type describing its fields. Otherwise, return NULL. */
6682
6683 static struct type *
6684 dynamic_template_type (struct type *type)
6685 {
6686 type = ada_check_typedef (type);
6687
6688 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
6689 || ada_type_name (type) == NULL)
6690 return NULL;
6691 else
6692 {
6693 int len = strlen (ada_type_name (type));
6694 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
6695 return type;
6696 else
6697 return ada_find_parallel_type (type, "___XVE");
6698 }
6699 }
6700
6701 /* Assuming that TEMPL_TYPE is a union or struct type, returns
6702 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
6703
6704 static int
6705 is_dynamic_field (struct type *templ_type, int field_num)
6706 {
6707 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
6708 return name != NULL
6709 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
6710 && strstr (name, "___XVL") != NULL;
6711 }
6712
6713 /* The index of the variant field of TYPE, or -1 if TYPE does not
6714 represent a variant record type. */
6715
6716 static int
6717 variant_field_index (struct type *type)
6718 {
6719 int f;
6720
6721 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6722 return -1;
6723
6724 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
6725 {
6726 if (ada_is_variant_part (type, f))
6727 return f;
6728 }
6729 return -1;
6730 }
6731
6732 /* A record type with no fields. */
6733
6734 static struct type *
6735 empty_record (struct type *template)
6736 {
6737 struct type *type = alloc_type_copy (template);
6738 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6739 TYPE_NFIELDS (type) = 0;
6740 TYPE_FIELDS (type) = NULL;
6741 INIT_CPLUS_SPECIFIC (type);
6742 TYPE_NAME (type) = "<empty>";
6743 TYPE_TAG_NAME (type) = NULL;
6744 TYPE_LENGTH (type) = 0;
6745 return type;
6746 }
6747
6748 /* An ordinary record type (with fixed-length fields) that describes
6749 the value of type TYPE at VALADDR or ADDRESS (see comments at
6750 the beginning of this section) VAL according to GNAT conventions.
6751 DVAL0 should describe the (portion of a) record that contains any
6752 necessary discriminants. It should be NULL if value_type (VAL) is
6753 an outer-level type (i.e., as opposed to a branch of a variant.) A
6754 variant field (unless unchecked) is replaced by a particular branch
6755 of the variant.
6756
6757 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
6758 length are not statically known are discarded. As a consequence,
6759 VALADDR, ADDRESS and DVAL0 are ignored.
6760
6761 NOTE: Limitations: For now, we assume that dynamic fields and
6762 variants occupy whole numbers of bytes. However, they need not be
6763 byte-aligned. */
6764
6765 struct type *
6766 ada_template_to_fixed_record_type_1 (struct type *type,
6767 const gdb_byte *valaddr,
6768 CORE_ADDR address, struct value *dval0,
6769 int keep_dynamic_fields)
6770 {
6771 struct value *mark = value_mark ();
6772 struct value *dval;
6773 struct type *rtype;
6774 int nfields, bit_len;
6775 int variant_field;
6776 long off;
6777 int fld_bit_len, bit_incr;
6778 int f;
6779
6780 /* Compute the number of fields in this record type that are going
6781 to be processed: unless keep_dynamic_fields, this includes only
6782 fields whose position and length are static will be processed. */
6783 if (keep_dynamic_fields)
6784 nfields = TYPE_NFIELDS (type);
6785 else
6786 {
6787 nfields = 0;
6788 while (nfields < TYPE_NFIELDS (type)
6789 && !ada_is_variant_part (type, nfields)
6790 && !is_dynamic_field (type, nfields))
6791 nfields++;
6792 }
6793
6794 rtype = alloc_type_copy (type);
6795 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6796 INIT_CPLUS_SPECIFIC (rtype);
6797 TYPE_NFIELDS (rtype) = nfields;
6798 TYPE_FIELDS (rtype) = (struct field *)
6799 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6800 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
6801 TYPE_NAME (rtype) = ada_type_name (type);
6802 TYPE_TAG_NAME (rtype) = NULL;
6803 TYPE_FIXED_INSTANCE (rtype) = 1;
6804
6805 off = 0;
6806 bit_len = 0;
6807 variant_field = -1;
6808
6809 for (f = 0; f < nfields; f += 1)
6810 {
6811 off = align_value (off, field_alignment (type, f))
6812 + TYPE_FIELD_BITPOS (type, f);
6813 TYPE_FIELD_BITPOS (rtype, f) = off;
6814 TYPE_FIELD_BITSIZE (rtype, f) = 0;
6815
6816 if (ada_is_variant_part (type, f))
6817 {
6818 variant_field = f;
6819 fld_bit_len = bit_incr = 0;
6820 }
6821 else if (is_dynamic_field (type, f))
6822 {
6823 const gdb_byte *field_valaddr = valaddr;
6824 CORE_ADDR field_address = address;
6825 struct type *field_type =
6826 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
6827
6828 if (dval0 == NULL)
6829 {
6830 /* rtype's length is computed based on the run-time
6831 value of discriminants. If the discriminants are not
6832 initialized, the type size may be completely bogus and
6833 GDB may fail to allocate a value for it. So check the
6834 size first before creating the value. */
6835 check_size (rtype);
6836 dval = value_from_contents_and_address (rtype, valaddr, address);
6837 }
6838 else
6839 dval = dval0;
6840
6841 /* If the type referenced by this field is an aligner type, we need
6842 to unwrap that aligner type, because its size might not be set.
6843 Keeping the aligner type would cause us to compute the wrong
6844 size for this field, impacting the offset of the all the fields
6845 that follow this one. */
6846 if (ada_is_aligner_type (field_type))
6847 {
6848 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
6849
6850 field_valaddr = cond_offset_host (field_valaddr, field_offset);
6851 field_address = cond_offset_target (field_address, field_offset);
6852 field_type = ada_aligned_type (field_type);
6853 }
6854
6855 field_valaddr = cond_offset_host (field_valaddr,
6856 off / TARGET_CHAR_BIT);
6857 field_address = cond_offset_target (field_address,
6858 off / TARGET_CHAR_BIT);
6859
6860 /* Get the fixed type of the field. Note that, in this case,
6861 we do not want to get the real type out of the tag: if
6862 the current field is the parent part of a tagged record,
6863 we will get the tag of the object. Clearly wrong: the real
6864 type of the parent is not the real type of the child. We
6865 would end up in an infinite loop. */
6866 field_type = ada_get_base_type (field_type);
6867 field_type = ada_to_fixed_type (field_type, field_valaddr,
6868 field_address, dval, 0);
6869
6870 TYPE_FIELD_TYPE (rtype, f) = field_type;
6871 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6872 bit_incr = fld_bit_len =
6873 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
6874 }
6875 else
6876 {
6877 struct type *field_type = TYPE_FIELD_TYPE (type, f);
6878
6879 TYPE_FIELD_TYPE (rtype, f) = field_type;
6880 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6881 if (TYPE_FIELD_BITSIZE (type, f) > 0)
6882 bit_incr = fld_bit_len =
6883 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
6884 else
6885 bit_incr = fld_bit_len =
6886 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
6887 }
6888 if (off + fld_bit_len > bit_len)
6889 bit_len = off + fld_bit_len;
6890 off += bit_incr;
6891 TYPE_LENGTH (rtype) =
6892 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6893 }
6894
6895 /* We handle the variant part, if any, at the end because of certain
6896 odd cases in which it is re-ordered so as NOT to be the last field of
6897 the record. This can happen in the presence of representation
6898 clauses. */
6899 if (variant_field >= 0)
6900 {
6901 struct type *branch_type;
6902
6903 off = TYPE_FIELD_BITPOS (rtype, variant_field);
6904
6905 if (dval0 == NULL)
6906 dval = value_from_contents_and_address (rtype, valaddr, address);
6907 else
6908 dval = dval0;
6909
6910 branch_type =
6911 to_fixed_variant_branch_type
6912 (TYPE_FIELD_TYPE (type, variant_field),
6913 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6914 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
6915 if (branch_type == NULL)
6916 {
6917 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
6918 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6919 TYPE_NFIELDS (rtype) -= 1;
6920 }
6921 else
6922 {
6923 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6924 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6925 fld_bit_len =
6926 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
6927 TARGET_CHAR_BIT;
6928 if (off + fld_bit_len > bit_len)
6929 bit_len = off + fld_bit_len;
6930 TYPE_LENGTH (rtype) =
6931 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6932 }
6933 }
6934
6935 /* According to exp_dbug.ads, the size of TYPE for variable-size records
6936 should contain the alignment of that record, which should be a strictly
6937 positive value. If null or negative, then something is wrong, most
6938 probably in the debug info. In that case, we don't round up the size
6939 of the resulting type. If this record is not part of another structure,
6940 the current RTYPE length might be good enough for our purposes. */
6941 if (TYPE_LENGTH (type) <= 0)
6942 {
6943 if (TYPE_NAME (rtype))
6944 warning (_("Invalid type size for `%s' detected: %d."),
6945 TYPE_NAME (rtype), TYPE_LENGTH (type));
6946 else
6947 warning (_("Invalid type size for <unnamed> detected: %d."),
6948 TYPE_LENGTH (type));
6949 }
6950 else
6951 {
6952 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
6953 TYPE_LENGTH (type));
6954 }
6955
6956 value_free_to_mark (mark);
6957 if (TYPE_LENGTH (rtype) > varsize_limit)
6958 error (_("record type with dynamic size is larger than varsize-limit"));
6959 return rtype;
6960 }
6961
6962 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
6963 of 1. */
6964
6965 static struct type *
6966 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
6967 CORE_ADDR address, struct value *dval0)
6968 {
6969 return ada_template_to_fixed_record_type_1 (type, valaddr,
6970 address, dval0, 1);
6971 }
6972
6973 /* An ordinary record type in which ___XVL-convention fields and
6974 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
6975 static approximations, containing all possible fields. Uses
6976 no runtime values. Useless for use in values, but that's OK,
6977 since the results are used only for type determinations. Works on both
6978 structs and unions. Representation note: to save space, we memorize
6979 the result of this function in the TYPE_TARGET_TYPE of the
6980 template type. */
6981
6982 static struct type *
6983 template_to_static_fixed_type (struct type *type0)
6984 {
6985 struct type *type;
6986 int nfields;
6987 int f;
6988
6989 if (TYPE_TARGET_TYPE (type0) != NULL)
6990 return TYPE_TARGET_TYPE (type0);
6991
6992 nfields = TYPE_NFIELDS (type0);
6993 type = type0;
6994
6995 for (f = 0; f < nfields; f += 1)
6996 {
6997 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
6998 struct type *new_type;
6999
7000 if (is_dynamic_field (type0, f))
7001 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
7002 else
7003 new_type = static_unwrap_type (field_type);
7004 if (type == type0 && new_type != field_type)
7005 {
7006 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
7007 TYPE_CODE (type) = TYPE_CODE (type0);
7008 INIT_CPLUS_SPECIFIC (type);
7009 TYPE_NFIELDS (type) = nfields;
7010 TYPE_FIELDS (type) = (struct field *)
7011 TYPE_ALLOC (type, nfields * sizeof (struct field));
7012 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7013 sizeof (struct field) * nfields);
7014 TYPE_NAME (type) = ada_type_name (type0);
7015 TYPE_TAG_NAME (type) = NULL;
7016 TYPE_FIXED_INSTANCE (type) = 1;
7017 TYPE_LENGTH (type) = 0;
7018 }
7019 TYPE_FIELD_TYPE (type, f) = new_type;
7020 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
7021 }
7022 return type;
7023 }
7024
7025 /* Given an object of type TYPE whose contents are at VALADDR and
7026 whose address in memory is ADDRESS, returns a revision of TYPE,
7027 which should be a non-dynamic-sized record, in which the variant
7028 part, if any, is replaced with the appropriate branch. Looks
7029 for discriminant values in DVAL0, which can be NULL if the record
7030 contains the necessary discriminant values. */
7031
7032 static struct type *
7033 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
7034 CORE_ADDR address, struct value *dval0)
7035 {
7036 struct value *mark = value_mark ();
7037 struct value *dval;
7038 struct type *rtype;
7039 struct type *branch_type;
7040 int nfields = TYPE_NFIELDS (type);
7041 int variant_field = variant_field_index (type);
7042
7043 if (variant_field == -1)
7044 return type;
7045
7046 if (dval0 == NULL)
7047 dval = value_from_contents_and_address (type, valaddr, address);
7048 else
7049 dval = dval0;
7050
7051 rtype = alloc_type_copy (type);
7052 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7053 INIT_CPLUS_SPECIFIC (rtype);
7054 TYPE_NFIELDS (rtype) = nfields;
7055 TYPE_FIELDS (rtype) =
7056 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7057 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
7058 sizeof (struct field) * nfields);
7059 TYPE_NAME (rtype) = ada_type_name (type);
7060 TYPE_TAG_NAME (rtype) = NULL;
7061 TYPE_FIXED_INSTANCE (rtype) = 1;
7062 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7063
7064 branch_type = to_fixed_variant_branch_type
7065 (TYPE_FIELD_TYPE (type, variant_field),
7066 cond_offset_host (valaddr,
7067 TYPE_FIELD_BITPOS (type, variant_field)
7068 / TARGET_CHAR_BIT),
7069 cond_offset_target (address,
7070 TYPE_FIELD_BITPOS (type, variant_field)
7071 / TARGET_CHAR_BIT), dval);
7072 if (branch_type == NULL)
7073 {
7074 int f;
7075 for (f = variant_field + 1; f < nfields; f += 1)
7076 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7077 TYPE_NFIELDS (rtype) -= 1;
7078 }
7079 else
7080 {
7081 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7082 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7083 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7084 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7085 }
7086 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
7087
7088 value_free_to_mark (mark);
7089 return rtype;
7090 }
7091
7092 /* An ordinary record type (with fixed-length fields) that describes
7093 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7094 beginning of this section]. Any necessary discriminants' values
7095 should be in DVAL, a record value; it may be NULL if the object
7096 at ADDR itself contains any necessary discriminant values.
7097 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7098 values from the record are needed. Except in the case that DVAL,
7099 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7100 unchecked) is replaced by a particular branch of the variant.
7101
7102 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7103 is questionable and may be removed. It can arise during the
7104 processing of an unconstrained-array-of-record type where all the
7105 variant branches have exactly the same size. This is because in
7106 such cases, the compiler does not bother to use the XVS convention
7107 when encoding the record. I am currently dubious of this
7108 shortcut and suspect the compiler should be altered. FIXME. */
7109
7110 static struct type *
7111 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7112 CORE_ADDR address, struct value *dval)
7113 {
7114 struct type *templ_type;
7115
7116 if (TYPE_FIXED_INSTANCE (type0))
7117 return type0;
7118
7119 templ_type = dynamic_template_type (type0);
7120
7121 if (templ_type != NULL)
7122 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7123 else if (variant_field_index (type0) >= 0)
7124 {
7125 if (dval == NULL && valaddr == NULL && address == 0)
7126 return type0;
7127 return to_record_with_fixed_variant_part (type0, valaddr, address,
7128 dval);
7129 }
7130 else
7131 {
7132 TYPE_FIXED_INSTANCE (type0) = 1;
7133 return type0;
7134 }
7135
7136 }
7137
7138 /* An ordinary record type (with fixed-length fields) that describes
7139 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7140 union type. Any necessary discriminants' values should be in DVAL,
7141 a record value. That is, this routine selects the appropriate
7142 branch of the union at ADDR according to the discriminant value
7143 indicated in the union's type name. Returns VAR_TYPE0 itself if
7144 it represents a variant subject to a pragma Unchecked_Union. */
7145
7146 static struct type *
7147 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7148 CORE_ADDR address, struct value *dval)
7149 {
7150 int which;
7151 struct type *templ_type;
7152 struct type *var_type;
7153
7154 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7155 var_type = TYPE_TARGET_TYPE (var_type0);
7156 else
7157 var_type = var_type0;
7158
7159 templ_type = ada_find_parallel_type (var_type, "___XVU");
7160
7161 if (templ_type != NULL)
7162 var_type = templ_type;
7163
7164 if (is_unchecked_variant (var_type, value_type (dval)))
7165 return var_type0;
7166 which =
7167 ada_which_variant_applies (var_type,
7168 value_type (dval), value_contents (dval));
7169
7170 if (which < 0)
7171 return empty_record (var_type);
7172 else if (is_dynamic_field (var_type, which))
7173 return to_fixed_record_type
7174 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7175 valaddr, address, dval);
7176 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
7177 return
7178 to_fixed_record_type
7179 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
7180 else
7181 return TYPE_FIELD_TYPE (var_type, which);
7182 }
7183
7184 /* Assuming that TYPE0 is an array type describing the type of a value
7185 at ADDR, and that DVAL describes a record containing any
7186 discriminants used in TYPE0, returns a type for the value that
7187 contains no dynamic components (that is, no components whose sizes
7188 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7189 true, gives an error message if the resulting type's size is over
7190 varsize_limit. */
7191
7192 static struct type *
7193 to_fixed_array_type (struct type *type0, struct value *dval,
7194 int ignore_too_big)
7195 {
7196 struct type *index_type_desc;
7197 struct type *result;
7198 int constrained_packed_array_p;
7199
7200 if (TYPE_FIXED_INSTANCE (type0))
7201 return type0;
7202
7203 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
7204 if (constrained_packed_array_p)
7205 type0 = decode_constrained_packed_array_type (type0);
7206
7207 index_type_desc = ada_find_parallel_type (type0, "___XA");
7208 ada_fixup_array_indexes_type (index_type_desc);
7209 if (index_type_desc == NULL)
7210 {
7211 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
7212 /* NOTE: elt_type---the fixed version of elt_type0---should never
7213 depend on the contents of the array in properly constructed
7214 debugging data. */
7215 /* Create a fixed version of the array element type.
7216 We're not providing the address of an element here,
7217 and thus the actual object value cannot be inspected to do
7218 the conversion. This should not be a problem, since arrays of
7219 unconstrained objects are not allowed. In particular, all
7220 the elements of an array of a tagged type should all be of
7221 the same type specified in the debugging info. No need to
7222 consult the object tag. */
7223 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
7224
7225 /* Make sure we always create a new array type when dealing with
7226 packed array types, since we're going to fix-up the array
7227 type length and element bitsize a little further down. */
7228 if (elt_type0 == elt_type && !constrained_packed_array_p)
7229 result = type0;
7230 else
7231 result = create_array_type (alloc_type_copy (type0),
7232 elt_type, TYPE_INDEX_TYPE (type0));
7233 }
7234 else
7235 {
7236 int i;
7237 struct type *elt_type0;
7238
7239 elt_type0 = type0;
7240 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
7241 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7242
7243 /* NOTE: result---the fixed version of elt_type0---should never
7244 depend on the contents of the array in properly constructed
7245 debugging data. */
7246 /* Create a fixed version of the array element type.
7247 We're not providing the address of an element here,
7248 and thus the actual object value cannot be inspected to do
7249 the conversion. This should not be a problem, since arrays of
7250 unconstrained objects are not allowed. In particular, all
7251 the elements of an array of a tagged type should all be of
7252 the same type specified in the debugging info. No need to
7253 consult the object tag. */
7254 result =
7255 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
7256
7257 elt_type0 = type0;
7258 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
7259 {
7260 struct type *range_type =
7261 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
7262 result = create_array_type (alloc_type_copy (elt_type0),
7263 result, range_type);
7264 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7265 }
7266 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
7267 error (_("array type with dynamic size is larger than varsize-limit"));
7268 }
7269
7270 if (constrained_packed_array_p)
7271 {
7272 /* So far, the resulting type has been created as if the original
7273 type was a regular (non-packed) array type. As a result, the
7274 bitsize of the array elements needs to be set again, and the array
7275 length needs to be recomputed based on that bitsize. */
7276 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
7277 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
7278
7279 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
7280 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
7281 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
7282 TYPE_LENGTH (result)++;
7283 }
7284
7285 TYPE_FIXED_INSTANCE (result) = 1;
7286 return result;
7287 }
7288
7289
7290 /* A standard type (containing no dynamically sized components)
7291 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7292 DVAL describes a record containing any discriminants used in TYPE0,
7293 and may be NULL if there are none, or if the object of type TYPE at
7294 ADDRESS or in VALADDR contains these discriminants.
7295
7296 If CHECK_TAG is not null, in the case of tagged types, this function
7297 attempts to locate the object's tag and use it to compute the actual
7298 type. However, when ADDRESS is null, we cannot use it to determine the
7299 location of the tag, and therefore compute the tagged type's actual type.
7300 So we return the tagged type without consulting the tag. */
7301
7302 static struct type *
7303 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
7304 CORE_ADDR address, struct value *dval, int check_tag)
7305 {
7306 type = ada_check_typedef (type);
7307 switch (TYPE_CODE (type))
7308 {
7309 default:
7310 return type;
7311 case TYPE_CODE_STRUCT:
7312 {
7313 struct type *static_type = to_static_fixed_type (type);
7314 struct type *fixed_record_type =
7315 to_fixed_record_type (type, valaddr, address, NULL);
7316 /* If STATIC_TYPE is a tagged type and we know the object's address,
7317 then we can determine its tag, and compute the object's actual
7318 type from there. Note that we have to use the fixed record
7319 type (the parent part of the record may have dynamic fields
7320 and the way the location of _tag is expressed may depend on
7321 them). */
7322
7323 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
7324 {
7325 struct type *real_type =
7326 type_from_tag (value_tag_from_contents_and_address
7327 (fixed_record_type,
7328 valaddr,
7329 address));
7330 if (real_type != NULL)
7331 return to_fixed_record_type (real_type, valaddr, address, NULL);
7332 }
7333
7334 /* Check to see if there is a parallel ___XVZ variable.
7335 If there is, then it provides the actual size of our type. */
7336 else if (ada_type_name (fixed_record_type) != NULL)
7337 {
7338 char *name = ada_type_name (fixed_record_type);
7339 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
7340 int xvz_found = 0;
7341 LONGEST size;
7342
7343 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
7344 size = get_int_var_value (xvz_name, &xvz_found);
7345 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
7346 {
7347 fixed_record_type = copy_type (fixed_record_type);
7348 TYPE_LENGTH (fixed_record_type) = size;
7349
7350 /* The FIXED_RECORD_TYPE may have be a stub. We have
7351 observed this when the debugging info is STABS, and
7352 apparently it is something that is hard to fix.
7353
7354 In practice, we don't need the actual type definition
7355 at all, because the presence of the XVZ variable allows us
7356 to assume that there must be a XVS type as well, which we
7357 should be able to use later, when we need the actual type
7358 definition.
7359
7360 In the meantime, pretend that the "fixed" type we are
7361 returning is NOT a stub, because this can cause trouble
7362 when using this type to create new types targeting it.
7363 Indeed, the associated creation routines often check
7364 whether the target type is a stub and will try to replace
7365 it, thus using a type with the wrong size. This, in turn,
7366 might cause the new type to have the wrong size too.
7367 Consider the case of an array, for instance, where the size
7368 of the array is computed from the number of elements in
7369 our array multiplied by the size of its element. */
7370 TYPE_STUB (fixed_record_type) = 0;
7371 }
7372 }
7373 return fixed_record_type;
7374 }
7375 case TYPE_CODE_ARRAY:
7376 return to_fixed_array_type (type, dval, 1);
7377 case TYPE_CODE_UNION:
7378 if (dval == NULL)
7379 return type;
7380 else
7381 return to_fixed_variant_branch_type (type, valaddr, address, dval);
7382 }
7383 }
7384
7385 /* The same as ada_to_fixed_type_1, except that it preserves the type
7386 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
7387 ada_to_fixed_type_1 would return the type referenced by TYPE. */
7388
7389 struct type *
7390 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
7391 CORE_ADDR address, struct value *dval, int check_tag)
7392
7393 {
7394 struct type *fixed_type =
7395 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
7396
7397 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
7398 && TYPE_TARGET_TYPE (type) == fixed_type)
7399 return type;
7400
7401 return fixed_type;
7402 }
7403
7404 /* A standard (static-sized) type corresponding as well as possible to
7405 TYPE0, but based on no runtime data. */
7406
7407 static struct type *
7408 to_static_fixed_type (struct type *type0)
7409 {
7410 struct type *type;
7411
7412 if (type0 == NULL)
7413 return NULL;
7414
7415 if (TYPE_FIXED_INSTANCE (type0))
7416 return type0;
7417
7418 type0 = ada_check_typedef (type0);
7419
7420 switch (TYPE_CODE (type0))
7421 {
7422 default:
7423 return type0;
7424 case TYPE_CODE_STRUCT:
7425 type = dynamic_template_type (type0);
7426 if (type != NULL)
7427 return template_to_static_fixed_type (type);
7428 else
7429 return template_to_static_fixed_type (type0);
7430 case TYPE_CODE_UNION:
7431 type = ada_find_parallel_type (type0, "___XVU");
7432 if (type != NULL)
7433 return template_to_static_fixed_type (type);
7434 else
7435 return template_to_static_fixed_type (type0);
7436 }
7437 }
7438
7439 /* A static approximation of TYPE with all type wrappers removed. */
7440
7441 static struct type *
7442 static_unwrap_type (struct type *type)
7443 {
7444 if (ada_is_aligner_type (type))
7445 {
7446 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
7447 if (ada_type_name (type1) == NULL)
7448 TYPE_NAME (type1) = ada_type_name (type);
7449
7450 return static_unwrap_type (type1);
7451 }
7452 else
7453 {
7454 struct type *raw_real_type = ada_get_base_type (type);
7455 if (raw_real_type == type)
7456 return type;
7457 else
7458 return to_static_fixed_type (raw_real_type);
7459 }
7460 }
7461
7462 /* In some cases, incomplete and private types require
7463 cross-references that are not resolved as records (for example,
7464 type Foo;
7465 type FooP is access Foo;
7466 V: FooP;
7467 type Foo is array ...;
7468 ). In these cases, since there is no mechanism for producing
7469 cross-references to such types, we instead substitute for FooP a
7470 stub enumeration type that is nowhere resolved, and whose tag is
7471 the name of the actual type. Call these types "non-record stubs". */
7472
7473 /* A type equivalent to TYPE that is not a non-record stub, if one
7474 exists, otherwise TYPE. */
7475
7476 struct type *
7477 ada_check_typedef (struct type *type)
7478 {
7479 if (type == NULL)
7480 return NULL;
7481
7482 CHECK_TYPEDEF (type);
7483 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
7484 || !TYPE_STUB (type)
7485 || TYPE_TAG_NAME (type) == NULL)
7486 return type;
7487 else
7488 {
7489 char *name = TYPE_TAG_NAME (type);
7490 struct type *type1 = ada_find_any_type (name);
7491 return (type1 == NULL) ? type : type1;
7492 }
7493 }
7494
7495 /* A value representing the data at VALADDR/ADDRESS as described by
7496 type TYPE0, but with a standard (static-sized) type that correctly
7497 describes it. If VAL0 is not NULL and TYPE0 already is a standard
7498 type, then return VAL0 [this feature is simply to avoid redundant
7499 creation of struct values]. */
7500
7501 static struct value *
7502 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
7503 struct value *val0)
7504 {
7505 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
7506 if (type == type0 && val0 != NULL)
7507 return val0;
7508 else
7509 return value_from_contents_and_address (type, 0, address);
7510 }
7511
7512 /* A value representing VAL, but with a standard (static-sized) type
7513 that correctly describes it. Does not necessarily create a new
7514 value. */
7515
7516 struct value *
7517 ada_to_fixed_value (struct value *val)
7518 {
7519 return ada_to_fixed_value_create (value_type (val),
7520 value_address (val),
7521 val);
7522 }
7523 \f
7524
7525 /* Attributes */
7526
7527 /* Table mapping attribute numbers to names.
7528 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
7529
7530 static const char *attribute_names[] = {
7531 "<?>",
7532
7533 "first",
7534 "last",
7535 "length",
7536 "image",
7537 "max",
7538 "min",
7539 "modulus",
7540 "pos",
7541 "size",
7542 "tag",
7543 "val",
7544 0
7545 };
7546
7547 const char *
7548 ada_attribute_name (enum exp_opcode n)
7549 {
7550 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7551 return attribute_names[n - OP_ATR_FIRST + 1];
7552 else
7553 return attribute_names[0];
7554 }
7555
7556 /* Evaluate the 'POS attribute applied to ARG. */
7557
7558 static LONGEST
7559 pos_atr (struct value *arg)
7560 {
7561 struct value *val = coerce_ref (arg);
7562 struct type *type = value_type (val);
7563
7564 if (!discrete_type_p (type))
7565 error (_("'POS only defined on discrete types"));
7566
7567 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7568 {
7569 int i;
7570 LONGEST v = value_as_long (val);
7571
7572 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7573 {
7574 if (v == TYPE_FIELD_BITPOS (type, i))
7575 return i;
7576 }
7577 error (_("enumeration value is invalid: can't find 'POS"));
7578 }
7579 else
7580 return value_as_long (val);
7581 }
7582
7583 static struct value *
7584 value_pos_atr (struct type *type, struct value *arg)
7585 {
7586 return value_from_longest (type, pos_atr (arg));
7587 }
7588
7589 /* Evaluate the TYPE'VAL attribute applied to ARG. */
7590
7591 static struct value *
7592 value_val_atr (struct type *type, struct value *arg)
7593 {
7594 if (!discrete_type_p (type))
7595 error (_("'VAL only defined on discrete types"));
7596 if (!integer_type_p (value_type (arg)))
7597 error (_("'VAL requires integral argument"));
7598
7599 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7600 {
7601 long pos = value_as_long (arg);
7602 if (pos < 0 || pos >= TYPE_NFIELDS (type))
7603 error (_("argument to 'VAL out of range"));
7604 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
7605 }
7606 else
7607 return value_from_longest (type, value_as_long (arg));
7608 }
7609 \f
7610
7611 /* Evaluation */
7612
7613 /* True if TYPE appears to be an Ada character type.
7614 [At the moment, this is true only for Character and Wide_Character;
7615 It is a heuristic test that could stand improvement]. */
7616
7617 int
7618 ada_is_character_type (struct type *type)
7619 {
7620 const char *name;
7621
7622 /* If the type code says it's a character, then assume it really is,
7623 and don't check any further. */
7624 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
7625 return 1;
7626
7627 /* Otherwise, assume it's a character type iff it is a discrete type
7628 with a known character type name. */
7629 name = ada_type_name (type);
7630 return (name != NULL
7631 && (TYPE_CODE (type) == TYPE_CODE_INT
7632 || TYPE_CODE (type) == TYPE_CODE_RANGE)
7633 && (strcmp (name, "character") == 0
7634 || strcmp (name, "wide_character") == 0
7635 || strcmp (name, "wide_wide_character") == 0
7636 || strcmp (name, "unsigned char") == 0));
7637 }
7638
7639 /* True if TYPE appears to be an Ada string type. */
7640
7641 int
7642 ada_is_string_type (struct type *type)
7643 {
7644 type = ada_check_typedef (type);
7645 if (type != NULL
7646 && TYPE_CODE (type) != TYPE_CODE_PTR
7647 && (ada_is_simple_array_type (type)
7648 || ada_is_array_descriptor_type (type))
7649 && ada_array_arity (type) == 1)
7650 {
7651 struct type *elttype = ada_array_element_type (type, 1);
7652
7653 return ada_is_character_type (elttype);
7654 }
7655 else
7656 return 0;
7657 }
7658
7659 /* The compiler sometimes provides a parallel XVS type for a given
7660 PAD type. Normally, it is safe to follow the PAD type directly,
7661 but older versions of the compiler have a bug that causes the offset
7662 of its "F" field to be wrong. Following that field in that case
7663 would lead to incorrect results, but this can be worked around
7664 by ignoring the PAD type and using the associated XVS type instead.
7665
7666 Set to True if the debugger should trust the contents of PAD types.
7667 Otherwise, ignore the PAD type if there is a parallel XVS type. */
7668 static int trust_pad_over_xvs = 1;
7669
7670 /* True if TYPE is a struct type introduced by the compiler to force the
7671 alignment of a value. Such types have a single field with a
7672 distinctive name. */
7673
7674 int
7675 ada_is_aligner_type (struct type *type)
7676 {
7677 type = ada_check_typedef (type);
7678
7679 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
7680 return 0;
7681
7682 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
7683 && TYPE_NFIELDS (type) == 1
7684 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
7685 }
7686
7687 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
7688 the parallel type. */
7689
7690 struct type *
7691 ada_get_base_type (struct type *raw_type)
7692 {
7693 struct type *real_type_namer;
7694 struct type *raw_real_type;
7695
7696 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
7697 return raw_type;
7698
7699 if (ada_is_aligner_type (raw_type))
7700 /* The encoding specifies that we should always use the aligner type.
7701 So, even if this aligner type has an associated XVS type, we should
7702 simply ignore it.
7703
7704 According to the compiler gurus, an XVS type parallel to an aligner
7705 type may exist because of a stabs limitation. In stabs, aligner
7706 types are empty because the field has a variable-sized type, and
7707 thus cannot actually be used as an aligner type. As a result,
7708 we need the associated parallel XVS type to decode the type.
7709 Since the policy in the compiler is to not change the internal
7710 representation based on the debugging info format, we sometimes
7711 end up having a redundant XVS type parallel to the aligner type. */
7712 return raw_type;
7713
7714 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
7715 if (real_type_namer == NULL
7716 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
7717 || TYPE_NFIELDS (real_type_namer) != 1)
7718 return raw_type;
7719
7720 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
7721 {
7722 /* This is an older encoding form where the base type needs to be
7723 looked up by name. We prefer the newer enconding because it is
7724 more efficient. */
7725 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
7726 if (raw_real_type == NULL)
7727 return raw_type;
7728 else
7729 return raw_real_type;
7730 }
7731
7732 /* The field in our XVS type is a reference to the base type. */
7733 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
7734 }
7735
7736 /* The type of value designated by TYPE, with all aligners removed. */
7737
7738 struct type *
7739 ada_aligned_type (struct type *type)
7740 {
7741 if (ada_is_aligner_type (type))
7742 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
7743 else
7744 return ada_get_base_type (type);
7745 }
7746
7747
7748 /* The address of the aligned value in an object at address VALADDR
7749 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
7750
7751 const gdb_byte *
7752 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
7753 {
7754 if (ada_is_aligner_type (type))
7755 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
7756 valaddr +
7757 TYPE_FIELD_BITPOS (type,
7758 0) / TARGET_CHAR_BIT);
7759 else
7760 return valaddr;
7761 }
7762
7763
7764
7765 /* The printed representation of an enumeration literal with encoded
7766 name NAME. The value is good to the next call of ada_enum_name. */
7767 const char *
7768 ada_enum_name (const char *name)
7769 {
7770 static char *result;
7771 static size_t result_len = 0;
7772 char *tmp;
7773
7774 /* First, unqualify the enumeration name:
7775 1. Search for the last '.' character. If we find one, then skip
7776 all the preceeding characters, the unqualified name starts
7777 right after that dot.
7778 2. Otherwise, we may be debugging on a target where the compiler
7779 translates dots into "__". Search forward for double underscores,
7780 but stop searching when we hit an overloading suffix, which is
7781 of the form "__" followed by digits. */
7782
7783 tmp = strrchr (name, '.');
7784 if (tmp != NULL)
7785 name = tmp + 1;
7786 else
7787 {
7788 while ((tmp = strstr (name, "__")) != NULL)
7789 {
7790 if (isdigit (tmp[2]))
7791 break;
7792 else
7793 name = tmp + 2;
7794 }
7795 }
7796
7797 if (name[0] == 'Q')
7798 {
7799 int v;
7800 if (name[1] == 'U' || name[1] == 'W')
7801 {
7802 if (sscanf (name + 2, "%x", &v) != 1)
7803 return name;
7804 }
7805 else
7806 return name;
7807
7808 GROW_VECT (result, result_len, 16);
7809 if (isascii (v) && isprint (v))
7810 xsnprintf (result, result_len, "'%c'", v);
7811 else if (name[1] == 'U')
7812 xsnprintf (result, result_len, "[\"%02x\"]", v);
7813 else
7814 xsnprintf (result, result_len, "[\"%04x\"]", v);
7815
7816 return result;
7817 }
7818 else
7819 {
7820 tmp = strstr (name, "__");
7821 if (tmp == NULL)
7822 tmp = strstr (name, "$");
7823 if (tmp != NULL)
7824 {
7825 GROW_VECT (result, result_len, tmp - name + 1);
7826 strncpy (result, name, tmp - name);
7827 result[tmp - name] = '\0';
7828 return result;
7829 }
7830
7831 return name;
7832 }
7833 }
7834
7835 /* Evaluate the subexpression of EXP starting at *POS as for
7836 evaluate_type, updating *POS to point just past the evaluated
7837 expression. */
7838
7839 static struct value *
7840 evaluate_subexp_type (struct expression *exp, int *pos)
7841 {
7842 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
7843 }
7844
7845 /* If VAL is wrapped in an aligner or subtype wrapper, return the
7846 value it wraps. */
7847
7848 static struct value *
7849 unwrap_value (struct value *val)
7850 {
7851 struct type *type = ada_check_typedef (value_type (val));
7852 if (ada_is_aligner_type (type))
7853 {
7854 struct value *v = ada_value_struct_elt (val, "F", 0);
7855 struct type *val_type = ada_check_typedef (value_type (v));
7856 if (ada_type_name (val_type) == NULL)
7857 TYPE_NAME (val_type) = ada_type_name (type);
7858
7859 return unwrap_value (v);
7860 }
7861 else
7862 {
7863 struct type *raw_real_type =
7864 ada_check_typedef (ada_get_base_type (type));
7865
7866 /* If there is no parallel XVS or XVE type, then the value is
7867 already unwrapped. Return it without further modification. */
7868 if ((type == raw_real_type)
7869 && ada_find_parallel_type (type, "___XVE") == NULL)
7870 return val;
7871
7872 return
7873 coerce_unspec_val_to_type
7874 (val, ada_to_fixed_type (raw_real_type, 0,
7875 value_address (val),
7876 NULL, 1));
7877 }
7878 }
7879
7880 static struct value *
7881 cast_to_fixed (struct type *type, struct value *arg)
7882 {
7883 LONGEST val;
7884
7885 if (type == value_type (arg))
7886 return arg;
7887 else if (ada_is_fixed_point_type (value_type (arg)))
7888 val = ada_float_to_fixed (type,
7889 ada_fixed_to_float (value_type (arg),
7890 value_as_long (arg)));
7891 else
7892 {
7893 DOUBLEST argd = value_as_double (arg);
7894 val = ada_float_to_fixed (type, argd);
7895 }
7896
7897 return value_from_longest (type, val);
7898 }
7899
7900 static struct value *
7901 cast_from_fixed (struct type *type, struct value *arg)
7902 {
7903 DOUBLEST val = ada_fixed_to_float (value_type (arg),
7904 value_as_long (arg));
7905 return value_from_double (type, val);
7906 }
7907
7908 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
7909 return the converted value. */
7910
7911 static struct value *
7912 coerce_for_assign (struct type *type, struct value *val)
7913 {
7914 struct type *type2 = value_type (val);
7915 if (type == type2)
7916 return val;
7917
7918 type2 = ada_check_typedef (type2);
7919 type = ada_check_typedef (type);
7920
7921 if (TYPE_CODE (type2) == TYPE_CODE_PTR
7922 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7923 {
7924 val = ada_value_ind (val);
7925 type2 = value_type (val);
7926 }
7927
7928 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
7929 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7930 {
7931 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
7932 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
7933 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
7934 error (_("Incompatible types in assignment"));
7935 deprecated_set_value_type (val, type);
7936 }
7937 return val;
7938 }
7939
7940 static struct value *
7941 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
7942 {
7943 struct value *val;
7944 struct type *type1, *type2;
7945 LONGEST v, v1, v2;
7946
7947 arg1 = coerce_ref (arg1);
7948 arg2 = coerce_ref (arg2);
7949 type1 = base_type (ada_check_typedef (value_type (arg1)));
7950 type2 = base_type (ada_check_typedef (value_type (arg2)));
7951
7952 if (TYPE_CODE (type1) != TYPE_CODE_INT
7953 || TYPE_CODE (type2) != TYPE_CODE_INT)
7954 return value_binop (arg1, arg2, op);
7955
7956 switch (op)
7957 {
7958 case BINOP_MOD:
7959 case BINOP_DIV:
7960 case BINOP_REM:
7961 break;
7962 default:
7963 return value_binop (arg1, arg2, op);
7964 }
7965
7966 v2 = value_as_long (arg2);
7967 if (v2 == 0)
7968 error (_("second operand of %s must not be zero."), op_string (op));
7969
7970 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
7971 return value_binop (arg1, arg2, op);
7972
7973 v1 = value_as_long (arg1);
7974 switch (op)
7975 {
7976 case BINOP_DIV:
7977 v = v1 / v2;
7978 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
7979 v += v > 0 ? -1 : 1;
7980 break;
7981 case BINOP_REM:
7982 v = v1 % v2;
7983 if (v * v1 < 0)
7984 v -= v2;
7985 break;
7986 default:
7987 /* Should not reach this point. */
7988 v = 0;
7989 }
7990
7991 val = allocate_value (type1);
7992 store_unsigned_integer (value_contents_raw (val),
7993 TYPE_LENGTH (value_type (val)),
7994 gdbarch_byte_order (get_type_arch (type1)), v);
7995 return val;
7996 }
7997
7998 static int
7999 ada_value_equal (struct value *arg1, struct value *arg2)
8000 {
8001 if (ada_is_direct_array_type (value_type (arg1))
8002 || ada_is_direct_array_type (value_type (arg2)))
8003 {
8004 /* Automatically dereference any array reference before
8005 we attempt to perform the comparison. */
8006 arg1 = ada_coerce_ref (arg1);
8007 arg2 = ada_coerce_ref (arg2);
8008
8009 arg1 = ada_coerce_to_simple_array (arg1);
8010 arg2 = ada_coerce_to_simple_array (arg2);
8011 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
8012 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
8013 error (_("Attempt to compare array with non-array"));
8014 /* FIXME: The following works only for types whose
8015 representations use all bits (no padding or undefined bits)
8016 and do not have user-defined equality. */
8017 return
8018 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
8019 && memcmp (value_contents (arg1), value_contents (arg2),
8020 TYPE_LENGTH (value_type (arg1))) == 0;
8021 }
8022 return value_equal (arg1, arg2);
8023 }
8024
8025 /* Total number of component associations in the aggregate starting at
8026 index PC in EXP. Assumes that index PC is the start of an
8027 OP_AGGREGATE. */
8028
8029 static int
8030 num_component_specs (struct expression *exp, int pc)
8031 {
8032 int n, m, i;
8033 m = exp->elts[pc + 1].longconst;
8034 pc += 3;
8035 n = 0;
8036 for (i = 0; i < m; i += 1)
8037 {
8038 switch (exp->elts[pc].opcode)
8039 {
8040 default:
8041 n += 1;
8042 break;
8043 case OP_CHOICES:
8044 n += exp->elts[pc + 1].longconst;
8045 break;
8046 }
8047 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
8048 }
8049 return n;
8050 }
8051
8052 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
8053 component of LHS (a simple array or a record), updating *POS past
8054 the expression, assuming that LHS is contained in CONTAINER. Does
8055 not modify the inferior's memory, nor does it modify LHS (unless
8056 LHS == CONTAINER). */
8057
8058 static void
8059 assign_component (struct value *container, struct value *lhs, LONGEST index,
8060 struct expression *exp, int *pos)
8061 {
8062 struct value *mark = value_mark ();
8063 struct value *elt;
8064 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8065 {
8066 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
8067 struct value *index_val = value_from_longest (index_type, index);
8068 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8069 }
8070 else
8071 {
8072 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
8073 elt = ada_to_fixed_value (unwrap_value (elt));
8074 }
8075
8076 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8077 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8078 else
8079 value_assign_to_component (container, elt,
8080 ada_evaluate_subexp (NULL, exp, pos,
8081 EVAL_NORMAL));
8082
8083 value_free_to_mark (mark);
8084 }
8085
8086 /* Assuming that LHS represents an lvalue having a record or array
8087 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8088 of that aggregate's value to LHS, advancing *POS past the
8089 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8090 lvalue containing LHS (possibly LHS itself). Does not modify
8091 the inferior's memory, nor does it modify the contents of
8092 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
8093
8094 static struct value *
8095 assign_aggregate (struct value *container,
8096 struct value *lhs, struct expression *exp,
8097 int *pos, enum noside noside)
8098 {
8099 struct type *lhs_type;
8100 int n = exp->elts[*pos+1].longconst;
8101 LONGEST low_index, high_index;
8102 int num_specs;
8103 LONGEST *indices;
8104 int max_indices, num_indices;
8105 int is_array_aggregate;
8106 int i;
8107
8108 *pos += 3;
8109 if (noside != EVAL_NORMAL)
8110 {
8111 int i;
8112 for (i = 0; i < n; i += 1)
8113 ada_evaluate_subexp (NULL, exp, pos, noside);
8114 return container;
8115 }
8116
8117 container = ada_coerce_ref (container);
8118 if (ada_is_direct_array_type (value_type (container)))
8119 container = ada_coerce_to_simple_array (container);
8120 lhs = ada_coerce_ref (lhs);
8121 if (!deprecated_value_modifiable (lhs))
8122 error (_("Left operand of assignment is not a modifiable lvalue."));
8123
8124 lhs_type = value_type (lhs);
8125 if (ada_is_direct_array_type (lhs_type))
8126 {
8127 lhs = ada_coerce_to_simple_array (lhs);
8128 lhs_type = value_type (lhs);
8129 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8130 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8131 is_array_aggregate = 1;
8132 }
8133 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8134 {
8135 low_index = 0;
8136 high_index = num_visible_fields (lhs_type) - 1;
8137 is_array_aggregate = 0;
8138 }
8139 else
8140 error (_("Left-hand side must be array or record."));
8141
8142 num_specs = num_component_specs (exp, *pos - 3);
8143 max_indices = 4 * num_specs + 4;
8144 indices = alloca (max_indices * sizeof (indices[0]));
8145 indices[0] = indices[1] = low_index - 1;
8146 indices[2] = indices[3] = high_index + 1;
8147 num_indices = 4;
8148
8149 for (i = 0; i < n; i += 1)
8150 {
8151 switch (exp->elts[*pos].opcode)
8152 {
8153 case OP_CHOICES:
8154 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8155 &num_indices, max_indices,
8156 low_index, high_index);
8157 break;
8158 case OP_POSITIONAL:
8159 aggregate_assign_positional (container, lhs, exp, pos, indices,
8160 &num_indices, max_indices,
8161 low_index, high_index);
8162 break;
8163 case OP_OTHERS:
8164 if (i != n-1)
8165 error (_("Misplaced 'others' clause"));
8166 aggregate_assign_others (container, lhs, exp, pos, indices,
8167 num_indices, low_index, high_index);
8168 break;
8169 default:
8170 error (_("Internal error: bad aggregate clause"));
8171 }
8172 }
8173
8174 return container;
8175 }
8176
8177 /* Assign into the component of LHS indexed by the OP_POSITIONAL
8178 construct at *POS, updating *POS past the construct, given that
8179 the positions are relative to lower bound LOW, where HIGH is the
8180 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8181 updating *NUM_INDICES as needed. CONTAINER is as for
8182 assign_aggregate. */
8183 static void
8184 aggregate_assign_positional (struct value *container,
8185 struct value *lhs, struct expression *exp,
8186 int *pos, LONGEST *indices, int *num_indices,
8187 int max_indices, LONGEST low, LONGEST high)
8188 {
8189 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8190
8191 if (ind - 1 == high)
8192 warning (_("Extra components in aggregate ignored."));
8193 if (ind <= high)
8194 {
8195 add_component_interval (ind, ind, indices, num_indices, max_indices);
8196 *pos += 3;
8197 assign_component (container, lhs, ind, exp, pos);
8198 }
8199 else
8200 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8201 }
8202
8203 /* Assign into the components of LHS indexed by the OP_CHOICES
8204 construct at *POS, updating *POS past the construct, given that
8205 the allowable indices are LOW..HIGH. Record the indices assigned
8206 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
8207 needed. CONTAINER is as for assign_aggregate. */
8208 static void
8209 aggregate_assign_from_choices (struct value *container,
8210 struct value *lhs, struct expression *exp,
8211 int *pos, LONGEST *indices, int *num_indices,
8212 int max_indices, LONGEST low, LONGEST high)
8213 {
8214 int j;
8215 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8216 int choice_pos, expr_pc;
8217 int is_array = ada_is_direct_array_type (value_type (lhs));
8218
8219 choice_pos = *pos += 3;
8220
8221 for (j = 0; j < n_choices; j += 1)
8222 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8223 expr_pc = *pos;
8224 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8225
8226 for (j = 0; j < n_choices; j += 1)
8227 {
8228 LONGEST lower, upper;
8229 enum exp_opcode op = exp->elts[choice_pos].opcode;
8230 if (op == OP_DISCRETE_RANGE)
8231 {
8232 choice_pos += 1;
8233 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8234 EVAL_NORMAL));
8235 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8236 EVAL_NORMAL));
8237 }
8238 else if (is_array)
8239 {
8240 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8241 EVAL_NORMAL));
8242 upper = lower;
8243 }
8244 else
8245 {
8246 int ind;
8247 char *name;
8248 switch (op)
8249 {
8250 case OP_NAME:
8251 name = &exp->elts[choice_pos + 2].string;
8252 break;
8253 case OP_VAR_VALUE:
8254 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8255 break;
8256 default:
8257 error (_("Invalid record component association."));
8258 }
8259 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8260 ind = 0;
8261 if (! find_struct_field (name, value_type (lhs), 0,
8262 NULL, NULL, NULL, NULL, &ind))
8263 error (_("Unknown component name: %s."), name);
8264 lower = upper = ind;
8265 }
8266
8267 if (lower <= upper && (lower < low || upper > high))
8268 error (_("Index in component association out of bounds."));
8269
8270 add_component_interval (lower, upper, indices, num_indices,
8271 max_indices);
8272 while (lower <= upper)
8273 {
8274 int pos1;
8275 pos1 = expr_pc;
8276 assign_component (container, lhs, lower, exp, &pos1);
8277 lower += 1;
8278 }
8279 }
8280 }
8281
8282 /* Assign the value of the expression in the OP_OTHERS construct in
8283 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8284 have not been previously assigned. The index intervals already assigned
8285 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
8286 OP_OTHERS clause. CONTAINER is as for assign_aggregate*/
8287 static void
8288 aggregate_assign_others (struct value *container,
8289 struct value *lhs, struct expression *exp,
8290 int *pos, LONGEST *indices, int num_indices,
8291 LONGEST low, LONGEST high)
8292 {
8293 int i;
8294 int expr_pc = *pos+1;
8295
8296 for (i = 0; i < num_indices - 2; i += 2)
8297 {
8298 LONGEST ind;
8299 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
8300 {
8301 int pos;
8302 pos = expr_pc;
8303 assign_component (container, lhs, ind, exp, &pos);
8304 }
8305 }
8306 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8307 }
8308
8309 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
8310 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
8311 modifying *SIZE as needed. It is an error if *SIZE exceeds
8312 MAX_SIZE. The resulting intervals do not overlap. */
8313 static void
8314 add_component_interval (LONGEST low, LONGEST high,
8315 LONGEST* indices, int *size, int max_size)
8316 {
8317 int i, j;
8318 for (i = 0; i < *size; i += 2) {
8319 if (high >= indices[i] && low <= indices[i + 1])
8320 {
8321 int kh;
8322 for (kh = i + 2; kh < *size; kh += 2)
8323 if (high < indices[kh])
8324 break;
8325 if (low < indices[i])
8326 indices[i] = low;
8327 indices[i + 1] = indices[kh - 1];
8328 if (high > indices[i + 1])
8329 indices[i + 1] = high;
8330 memcpy (indices + i + 2, indices + kh, *size - kh);
8331 *size -= kh - i - 2;
8332 return;
8333 }
8334 else if (high < indices[i])
8335 break;
8336 }
8337
8338 if (*size == max_size)
8339 error (_("Internal error: miscounted aggregate components."));
8340 *size += 2;
8341 for (j = *size-1; j >= i+2; j -= 1)
8342 indices[j] = indices[j - 2];
8343 indices[i] = low;
8344 indices[i + 1] = high;
8345 }
8346
8347 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
8348 is different. */
8349
8350 static struct value *
8351 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
8352 {
8353 if (type == ada_check_typedef (value_type (arg2)))
8354 return arg2;
8355
8356 if (ada_is_fixed_point_type (type))
8357 return (cast_to_fixed (type, arg2));
8358
8359 if (ada_is_fixed_point_type (value_type (arg2)))
8360 return cast_from_fixed (type, arg2);
8361
8362 return value_cast (type, arg2);
8363 }
8364
8365 /* Evaluating Ada expressions, and printing their result.
8366 ------------------------------------------------------
8367
8368 1. Introduction:
8369 ----------------
8370
8371 We usually evaluate an Ada expression in order to print its value.
8372 We also evaluate an expression in order to print its type, which
8373 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
8374 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
8375 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
8376 the evaluation compared to the EVAL_NORMAL, but is otherwise very
8377 similar.
8378
8379 Evaluating expressions is a little more complicated for Ada entities
8380 than it is for entities in languages such as C. The main reason for
8381 this is that Ada provides types whose definition might be dynamic.
8382 One example of such types is variant records. Or another example
8383 would be an array whose bounds can only be known at run time.
8384
8385 The following description is a general guide as to what should be
8386 done (and what should NOT be done) in order to evaluate an expression
8387 involving such types, and when. This does not cover how the semantic
8388 information is encoded by GNAT as this is covered separatly. For the
8389 document used as the reference for the GNAT encoding, see exp_dbug.ads
8390 in the GNAT sources.
8391
8392 Ideally, we should embed each part of this description next to its
8393 associated code. Unfortunately, the amount of code is so vast right
8394 now that it's hard to see whether the code handling a particular
8395 situation might be duplicated or not. One day, when the code is
8396 cleaned up, this guide might become redundant with the comments
8397 inserted in the code, and we might want to remove it.
8398
8399 2. ``Fixing'' an Entity, the Simple Case:
8400 -----------------------------------------
8401
8402 When evaluating Ada expressions, the tricky issue is that they may
8403 reference entities whose type contents and size are not statically
8404 known. Consider for instance a variant record:
8405
8406 type Rec (Empty : Boolean := True) is record
8407 case Empty is
8408 when True => null;
8409 when False => Value : Integer;
8410 end case;
8411 end record;
8412 Yes : Rec := (Empty => False, Value => 1);
8413 No : Rec := (empty => True);
8414
8415 The size and contents of that record depends on the value of the
8416 descriminant (Rec.Empty). At this point, neither the debugging
8417 information nor the associated type structure in GDB are able to
8418 express such dynamic types. So what the debugger does is to create
8419 "fixed" versions of the type that applies to the specific object.
8420 We also informally refer to this opperation as "fixing" an object,
8421 which means creating its associated fixed type.
8422
8423 Example: when printing the value of variable "Yes" above, its fixed
8424 type would look like this:
8425
8426 type Rec is record
8427 Empty : Boolean;
8428 Value : Integer;
8429 end record;
8430
8431 On the other hand, if we printed the value of "No", its fixed type
8432 would become:
8433
8434 type Rec is record
8435 Empty : Boolean;
8436 end record;
8437
8438 Things become a little more complicated when trying to fix an entity
8439 with a dynamic type that directly contains another dynamic type,
8440 such as an array of variant records, for instance. There are
8441 two possible cases: Arrays, and records.
8442
8443 3. ``Fixing'' Arrays:
8444 ---------------------
8445
8446 The type structure in GDB describes an array in terms of its bounds,
8447 and the type of its elements. By design, all elements in the array
8448 have the same type and we cannot represent an array of variant elements
8449 using the current type structure in GDB. When fixing an array,
8450 we cannot fix the array element, as we would potentially need one
8451 fixed type per element of the array. As a result, the best we can do
8452 when fixing an array is to produce an array whose bounds and size
8453 are correct (allowing us to read it from memory), but without having
8454 touched its element type. Fixing each element will be done later,
8455 when (if) necessary.
8456
8457 Arrays are a little simpler to handle than records, because the same
8458 amount of memory is allocated for each element of the array, even if
8459 the amount of space actually used by each element differs from element
8460 to element. Consider for instance the following array of type Rec:
8461
8462 type Rec_Array is array (1 .. 2) of Rec;
8463
8464 The actual amount of memory occupied by each element might be different
8465 from element to element, depending on the value of their discriminant.
8466 But the amount of space reserved for each element in the array remains
8467 fixed regardless. So we simply need to compute that size using
8468 the debugging information available, from which we can then determine
8469 the array size (we multiply the number of elements of the array by
8470 the size of each element).
8471
8472 The simplest case is when we have an array of a constrained element
8473 type. For instance, consider the following type declarations:
8474
8475 type Bounded_String (Max_Size : Integer) is
8476 Length : Integer;
8477 Buffer : String (1 .. Max_Size);
8478 end record;
8479 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
8480
8481 In this case, the compiler describes the array as an array of
8482 variable-size elements (identified by its XVS suffix) for which
8483 the size can be read in the parallel XVZ variable.
8484
8485 In the case of an array of an unconstrained element type, the compiler
8486 wraps the array element inside a private PAD type. This type should not
8487 be shown to the user, and must be "unwrap"'ed before printing. Note
8488 that we also use the adjective "aligner" in our code to designate
8489 these wrapper types.
8490
8491 In some cases, the size allocated for each element is statically
8492 known. In that case, the PAD type already has the correct size,
8493 and the array element should remain unfixed.
8494
8495 But there are cases when this size is not statically known.
8496 For instance, assuming that "Five" is an integer variable:
8497
8498 type Dynamic is array (1 .. Five) of Integer;
8499 type Wrapper (Has_Length : Boolean := False) is record
8500 Data : Dynamic;
8501 case Has_Length is
8502 when True => Length : Integer;
8503 when False => null;
8504 end case;
8505 end record;
8506 type Wrapper_Array is array (1 .. 2) of Wrapper;
8507
8508 Hello : Wrapper_Array := (others => (Has_Length => True,
8509 Data => (others => 17),
8510 Length => 1));
8511
8512
8513 The debugging info would describe variable Hello as being an
8514 array of a PAD type. The size of that PAD type is not statically
8515 known, but can be determined using a parallel XVZ variable.
8516 In that case, a copy of the PAD type with the correct size should
8517 be used for the fixed array.
8518
8519 3. ``Fixing'' record type objects:
8520 ----------------------------------
8521
8522 Things are slightly different from arrays in the case of dynamic
8523 record types. In this case, in order to compute the associated
8524 fixed type, we need to determine the size and offset of each of
8525 its components. This, in turn, requires us to compute the fixed
8526 type of each of these components.
8527
8528 Consider for instance the example:
8529
8530 type Bounded_String (Max_Size : Natural) is record
8531 Str : String (1 .. Max_Size);
8532 Length : Natural;
8533 end record;
8534 My_String : Bounded_String (Max_Size => 10);
8535
8536 In that case, the position of field "Length" depends on the size
8537 of field Str, which itself depends on the value of the Max_Size
8538 discriminant. In order to fix the type of variable My_String,
8539 we need to fix the type of field Str. Therefore, fixing a variant
8540 record requires us to fix each of its components.
8541
8542 However, if a component does not have a dynamic size, the component
8543 should not be fixed. In particular, fields that use a PAD type
8544 should not fixed. Here is an example where this might happen
8545 (assuming type Rec above):
8546
8547 type Container (Big : Boolean) is record
8548 First : Rec;
8549 After : Integer;
8550 case Big is
8551 when True => Another : Integer;
8552 when False => null;
8553 end case;
8554 end record;
8555 My_Container : Container := (Big => False,
8556 First => (Empty => True),
8557 After => 42);
8558
8559 In that example, the compiler creates a PAD type for component First,
8560 whose size is constant, and then positions the component After just
8561 right after it. The offset of component After is therefore constant
8562 in this case.
8563
8564 The debugger computes the position of each field based on an algorithm
8565 that uses, among other things, the actual position and size of the field
8566 preceding it. Let's now imagine that the user is trying to print
8567 the value of My_Container. If the type fixing was recursive, we would
8568 end up computing the offset of field After based on the size of the
8569 fixed version of field First. And since in our example First has
8570 only one actual field, the size of the fixed type is actually smaller
8571 than the amount of space allocated to that field, and thus we would
8572 compute the wrong offset of field After.
8573
8574 To make things more complicated, we need to watch out for dynamic
8575 components of variant records (identified by the ___XVL suffix in
8576 the component name). Even if the target type is a PAD type, the size
8577 of that type might not be statically known. So the PAD type needs
8578 to be unwrapped and the resulting type needs to be fixed. Otherwise,
8579 we might end up with the wrong size for our component. This can be
8580 observed with the following type declarations:
8581
8582 type Octal is new Integer range 0 .. 7;
8583 type Octal_Array is array (Positive range <>) of Octal;
8584 pragma Pack (Octal_Array);
8585
8586 type Octal_Buffer (Size : Positive) is record
8587 Buffer : Octal_Array (1 .. Size);
8588 Length : Integer;
8589 end record;
8590
8591 In that case, Buffer is a PAD type whose size is unset and needs
8592 to be computed by fixing the unwrapped type.
8593
8594 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
8595 ----------------------------------------------------------
8596
8597 Lastly, when should the sub-elements of an entity that remained unfixed
8598 thus far, be actually fixed?
8599
8600 The answer is: Only when referencing that element. For instance
8601 when selecting one component of a record, this specific component
8602 should be fixed at that point in time. Or when printing the value
8603 of a record, each component should be fixed before its value gets
8604 printed. Similarly for arrays, the element of the array should be
8605 fixed when printing each element of the array, or when extracting
8606 one element out of that array. On the other hand, fixing should
8607 not be performed on the elements when taking a slice of an array!
8608
8609 Note that one of the side-effects of miscomputing the offset and
8610 size of each field is that we end up also miscomputing the size
8611 of the containing type. This can have adverse results when computing
8612 the value of an entity. GDB fetches the value of an entity based
8613 on the size of its type, and thus a wrong size causes GDB to fetch
8614 the wrong amount of memory. In the case where the computed size is
8615 too small, GDB fetches too little data to print the value of our
8616 entiry. Results in this case as unpredicatble, as we usually read
8617 past the buffer containing the data =:-o. */
8618
8619 /* Implement the evaluate_exp routine in the exp_descriptor structure
8620 for the Ada language. */
8621
8622 static struct value *
8623 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
8624 int *pos, enum noside noside)
8625 {
8626 enum exp_opcode op;
8627 int tem;
8628 int pc;
8629 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
8630 struct type *type;
8631 int nargs, oplen;
8632 struct value **argvec;
8633
8634 pc = *pos;
8635 *pos += 1;
8636 op = exp->elts[pc].opcode;
8637
8638 switch (op)
8639 {
8640 default:
8641 *pos -= 1;
8642 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8643 arg1 = unwrap_value (arg1);
8644
8645 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
8646 then we need to perform the conversion manually, because
8647 evaluate_subexp_standard doesn't do it. This conversion is
8648 necessary in Ada because the different kinds of float/fixed
8649 types in Ada have different representations.
8650
8651 Similarly, we need to perform the conversion from OP_LONG
8652 ourselves. */
8653 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
8654 arg1 = ada_value_cast (expect_type, arg1, noside);
8655
8656 return arg1;
8657
8658 case OP_STRING:
8659 {
8660 struct value *result;
8661 *pos -= 1;
8662 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
8663 /* The result type will have code OP_STRING, bashed there from
8664 OP_ARRAY. Bash it back. */
8665 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
8666 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
8667 return result;
8668 }
8669
8670 case UNOP_CAST:
8671 (*pos) += 2;
8672 type = exp->elts[pc + 1].type;
8673 arg1 = evaluate_subexp (type, exp, pos, noside);
8674 if (noside == EVAL_SKIP)
8675 goto nosideret;
8676 arg1 = ada_value_cast (type, arg1, noside);
8677 return arg1;
8678
8679 case UNOP_QUAL:
8680 (*pos) += 2;
8681 type = exp->elts[pc + 1].type;
8682 return ada_evaluate_subexp (type, exp, pos, noside);
8683
8684 case BINOP_ASSIGN:
8685 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8686 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8687 {
8688 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
8689 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8690 return arg1;
8691 return ada_value_assign (arg1, arg1);
8692 }
8693 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
8694 except if the lhs of our assignment is a convenience variable.
8695 In the case of assigning to a convenience variable, the lhs
8696 should be exactly the result of the evaluation of the rhs. */
8697 type = value_type (arg1);
8698 if (VALUE_LVAL (arg1) == lval_internalvar)
8699 type = NULL;
8700 arg2 = evaluate_subexp (type, exp, pos, noside);
8701 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8702 return arg1;
8703 if (ada_is_fixed_point_type (value_type (arg1)))
8704 arg2 = cast_to_fixed (value_type (arg1), arg2);
8705 else if (ada_is_fixed_point_type (value_type (arg2)))
8706 error
8707 (_("Fixed-point values must be assigned to fixed-point variables"));
8708 else
8709 arg2 = coerce_for_assign (value_type (arg1), arg2);
8710 return ada_value_assign (arg1, arg2);
8711
8712 case BINOP_ADD:
8713 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8714 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8715 if (noside == EVAL_SKIP)
8716 goto nosideret;
8717 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
8718 return (value_from_longest
8719 (value_type (arg1),
8720 value_as_long (arg1) + value_as_long (arg2)));
8721 if ((ada_is_fixed_point_type (value_type (arg1))
8722 || ada_is_fixed_point_type (value_type (arg2)))
8723 && value_type (arg1) != value_type (arg2))
8724 error (_("Operands of fixed-point addition must have the same type"));
8725 /* Do the addition, and cast the result to the type of the first
8726 argument. We cannot cast the result to a reference type, so if
8727 ARG1 is a reference type, find its underlying type. */
8728 type = value_type (arg1);
8729 while (TYPE_CODE (type) == TYPE_CODE_REF)
8730 type = TYPE_TARGET_TYPE (type);
8731 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8732 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
8733
8734 case BINOP_SUB:
8735 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8736 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8737 if (noside == EVAL_SKIP)
8738 goto nosideret;
8739 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
8740 return (value_from_longest
8741 (value_type (arg1),
8742 value_as_long (arg1) - value_as_long (arg2)));
8743 if ((ada_is_fixed_point_type (value_type (arg1))
8744 || ada_is_fixed_point_type (value_type (arg2)))
8745 && value_type (arg1) != value_type (arg2))
8746 error (_("Operands of fixed-point subtraction must have the same type"));
8747 /* Do the substraction, and cast the result to the type of the first
8748 argument. We cannot cast the result to a reference type, so if
8749 ARG1 is a reference type, find its underlying type. */
8750 type = value_type (arg1);
8751 while (TYPE_CODE (type) == TYPE_CODE_REF)
8752 type = TYPE_TARGET_TYPE (type);
8753 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8754 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
8755
8756 case BINOP_MUL:
8757 case BINOP_DIV:
8758 case BINOP_REM:
8759 case BINOP_MOD:
8760 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8761 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8762 if (noside == EVAL_SKIP)
8763 goto nosideret;
8764 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8765 {
8766 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8767 return value_zero (value_type (arg1), not_lval);
8768 }
8769 else
8770 {
8771 type = builtin_type (exp->gdbarch)->builtin_double;
8772 if (ada_is_fixed_point_type (value_type (arg1)))
8773 arg1 = cast_from_fixed (type, arg1);
8774 if (ada_is_fixed_point_type (value_type (arg2)))
8775 arg2 = cast_from_fixed (type, arg2);
8776 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8777 return ada_value_binop (arg1, arg2, op);
8778 }
8779
8780 case BINOP_EQUAL:
8781 case BINOP_NOTEQUAL:
8782 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8783 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
8784 if (noside == EVAL_SKIP)
8785 goto nosideret;
8786 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8787 tem = 0;
8788 else
8789 {
8790 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8791 tem = ada_value_equal (arg1, arg2);
8792 }
8793 if (op == BINOP_NOTEQUAL)
8794 tem = !tem;
8795 type = language_bool_type (exp->language_defn, exp->gdbarch);
8796 return value_from_longest (type, (LONGEST) tem);
8797
8798 case UNOP_NEG:
8799 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8800 if (noside == EVAL_SKIP)
8801 goto nosideret;
8802 else if (ada_is_fixed_point_type (value_type (arg1)))
8803 return value_cast (value_type (arg1), value_neg (arg1));
8804 else
8805 {
8806 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
8807 return value_neg (arg1);
8808 }
8809
8810 case BINOP_LOGICAL_AND:
8811 case BINOP_LOGICAL_OR:
8812 case UNOP_LOGICAL_NOT:
8813 {
8814 struct value *val;
8815
8816 *pos -= 1;
8817 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8818 type = language_bool_type (exp->language_defn, exp->gdbarch);
8819 return value_cast (type, val);
8820 }
8821
8822 case BINOP_BITWISE_AND:
8823 case BINOP_BITWISE_IOR:
8824 case BINOP_BITWISE_XOR:
8825 {
8826 struct value *val;
8827
8828 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8829 *pos = pc;
8830 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8831
8832 return value_cast (value_type (arg1), val);
8833 }
8834
8835 case OP_VAR_VALUE:
8836 *pos -= 1;
8837
8838 if (noside == EVAL_SKIP)
8839 {
8840 *pos += 4;
8841 goto nosideret;
8842 }
8843 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
8844 /* Only encountered when an unresolved symbol occurs in a
8845 context other than a function call, in which case, it is
8846 invalid. */
8847 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8848 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
8849 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8850 {
8851 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
8852 /* Check to see if this is a tagged type. We also need to handle
8853 the case where the type is a reference to a tagged type, but
8854 we have to be careful to exclude pointers to tagged types.
8855 The latter should be shown as usual (as a pointer), whereas
8856 a reference should mostly be transparent to the user. */
8857 if (ada_is_tagged_type (type, 0)
8858 || (TYPE_CODE(type) == TYPE_CODE_REF
8859 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
8860 {
8861 /* Tagged types are a little special in the fact that the real
8862 type is dynamic and can only be determined by inspecting the
8863 object's tag. This means that we need to get the object's
8864 value first (EVAL_NORMAL) and then extract the actual object
8865 type from its tag.
8866
8867 Note that we cannot skip the final step where we extract
8868 the object type from its tag, because the EVAL_NORMAL phase
8869 results in dynamic components being resolved into fixed ones.
8870 This can cause problems when trying to print the type
8871 description of tagged types whose parent has a dynamic size:
8872 We use the type name of the "_parent" component in order
8873 to print the name of the ancestor type in the type description.
8874 If that component had a dynamic size, the resolution into
8875 a fixed type would result in the loss of that type name,
8876 thus preventing us from printing the name of the ancestor
8877 type in the type description. */
8878 struct type *actual_type;
8879
8880 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
8881 actual_type = type_from_tag (ada_value_tag (arg1));
8882 if (actual_type == NULL)
8883 /* If, for some reason, we were unable to determine
8884 the actual type from the tag, then use the static
8885 approximation that we just computed as a fallback.
8886 This can happen if the debugging information is
8887 incomplete, for instance. */
8888 actual_type = type;
8889
8890 return value_zero (actual_type, not_lval);
8891 }
8892
8893 *pos += 4;
8894 return value_zero
8895 (to_static_fixed_type
8896 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
8897 not_lval);
8898 }
8899 else
8900 {
8901 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8902 arg1 = unwrap_value (arg1);
8903 return ada_to_fixed_value (arg1);
8904 }
8905
8906 case OP_FUNCALL:
8907 (*pos) += 2;
8908
8909 /* Allocate arg vector, including space for the function to be
8910 called in argvec[0] and a terminating NULL. */
8911 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8912 argvec =
8913 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
8914
8915 if (exp->elts[*pos].opcode == OP_VAR_VALUE
8916 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
8917 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8918 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
8919 else
8920 {
8921 for (tem = 0; tem <= nargs; tem += 1)
8922 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8923 argvec[tem] = 0;
8924
8925 if (noside == EVAL_SKIP)
8926 goto nosideret;
8927 }
8928
8929 if (ada_is_constrained_packed_array_type
8930 (desc_base_type (value_type (argvec[0]))))
8931 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
8932 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
8933 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
8934 /* This is a packed array that has already been fixed, and
8935 therefore already coerced to a simple array. Nothing further
8936 to do. */
8937 ;
8938 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
8939 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
8940 && VALUE_LVAL (argvec[0]) == lval_memory))
8941 argvec[0] = value_addr (argvec[0]);
8942
8943 type = ada_check_typedef (value_type (argvec[0]));
8944 if (TYPE_CODE (type) == TYPE_CODE_PTR)
8945 {
8946 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
8947 {
8948 case TYPE_CODE_FUNC:
8949 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8950 break;
8951 case TYPE_CODE_ARRAY:
8952 break;
8953 case TYPE_CODE_STRUCT:
8954 if (noside != EVAL_AVOID_SIDE_EFFECTS)
8955 argvec[0] = ada_value_ind (argvec[0]);
8956 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8957 break;
8958 default:
8959 error (_("cannot subscript or call something of type `%s'"),
8960 ada_type_name (value_type (argvec[0])));
8961 break;
8962 }
8963 }
8964
8965 switch (TYPE_CODE (type))
8966 {
8967 case TYPE_CODE_FUNC:
8968 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8969 return allocate_value (TYPE_TARGET_TYPE (type));
8970 return call_function_by_hand (argvec[0], nargs, argvec + 1);
8971 case TYPE_CODE_STRUCT:
8972 {
8973 int arity;
8974
8975 arity = ada_array_arity (type);
8976 type = ada_array_element_type (type, nargs);
8977 if (type == NULL)
8978 error (_("cannot subscript or call a record"));
8979 if (arity != nargs)
8980 error (_("wrong number of subscripts; expecting %d"), arity);
8981 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8982 return value_zero (ada_aligned_type (type), lval_memory);
8983 return
8984 unwrap_value (ada_value_subscript
8985 (argvec[0], nargs, argvec + 1));
8986 }
8987 case TYPE_CODE_ARRAY:
8988 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8989 {
8990 type = ada_array_element_type (type, nargs);
8991 if (type == NULL)
8992 error (_("element type of array unknown"));
8993 else
8994 return value_zero (ada_aligned_type (type), lval_memory);
8995 }
8996 return
8997 unwrap_value (ada_value_subscript
8998 (ada_coerce_to_simple_array (argvec[0]),
8999 nargs, argvec + 1));
9000 case TYPE_CODE_PTR: /* Pointer to array */
9001 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
9002 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9003 {
9004 type = ada_array_element_type (type, nargs);
9005 if (type == NULL)
9006 error (_("element type of array unknown"));
9007 else
9008 return value_zero (ada_aligned_type (type), lval_memory);
9009 }
9010 return
9011 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
9012 nargs, argvec + 1));
9013
9014 default:
9015 error (_("Attempt to index or call something other than an "
9016 "array or function"));
9017 }
9018
9019 case TERNOP_SLICE:
9020 {
9021 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9022 struct value *low_bound_val =
9023 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9024 struct value *high_bound_val =
9025 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9026 LONGEST low_bound;
9027 LONGEST high_bound;
9028 low_bound_val = coerce_ref (low_bound_val);
9029 high_bound_val = coerce_ref (high_bound_val);
9030 low_bound = pos_atr (low_bound_val);
9031 high_bound = pos_atr (high_bound_val);
9032
9033 if (noside == EVAL_SKIP)
9034 goto nosideret;
9035
9036 /* If this is a reference to an aligner type, then remove all
9037 the aligners. */
9038 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9039 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
9040 TYPE_TARGET_TYPE (value_type (array)) =
9041 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
9042
9043 if (ada_is_constrained_packed_array_type (value_type (array)))
9044 error (_("cannot slice a packed array"));
9045
9046 /* If this is a reference to an array or an array lvalue,
9047 convert to a pointer. */
9048 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9049 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
9050 && VALUE_LVAL (array) == lval_memory))
9051 array = value_addr (array);
9052
9053 if (noside == EVAL_AVOID_SIDE_EFFECTS
9054 && ada_is_array_descriptor_type (ada_check_typedef
9055 (value_type (array))))
9056 return empty_array (ada_type_of_array (array, 0), low_bound);
9057
9058 array = ada_coerce_to_simple_array_ptr (array);
9059
9060 /* If we have more than one level of pointer indirection,
9061 dereference the value until we get only one level. */
9062 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
9063 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
9064 == TYPE_CODE_PTR))
9065 array = value_ind (array);
9066
9067 /* Make sure we really do have an array type before going further,
9068 to avoid a SEGV when trying to get the index type or the target
9069 type later down the road if the debug info generated by
9070 the compiler is incorrect or incomplete. */
9071 if (!ada_is_simple_array_type (value_type (array)))
9072 error (_("cannot take slice of non-array"));
9073
9074 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
9075 {
9076 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
9077 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
9078 low_bound);
9079 else
9080 {
9081 struct type *arr_type0 =
9082 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
9083 NULL, 1);
9084 return ada_value_slice_from_ptr (array, arr_type0,
9085 longest_to_int (low_bound),
9086 longest_to_int (high_bound));
9087 }
9088 }
9089 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9090 return array;
9091 else if (high_bound < low_bound)
9092 return empty_array (value_type (array), low_bound);
9093 else
9094 return ada_value_slice (array, longest_to_int (low_bound),
9095 longest_to_int (high_bound));
9096 }
9097
9098 case UNOP_IN_RANGE:
9099 (*pos) += 2;
9100 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9101 type = check_typedef (exp->elts[pc + 1].type);
9102
9103 if (noside == EVAL_SKIP)
9104 goto nosideret;
9105
9106 switch (TYPE_CODE (type))
9107 {
9108 default:
9109 lim_warning (_("Membership test incompletely implemented; "
9110 "always returns true"));
9111 type = language_bool_type (exp->language_defn, exp->gdbarch);
9112 return value_from_longest (type, (LONGEST) 1);
9113
9114 case TYPE_CODE_RANGE:
9115 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
9116 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
9117 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9118 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9119 type = language_bool_type (exp->language_defn, exp->gdbarch);
9120 return
9121 value_from_longest (type,
9122 (value_less (arg1, arg3)
9123 || value_equal (arg1, arg3))
9124 && (value_less (arg2, arg1)
9125 || value_equal (arg2, arg1)));
9126 }
9127
9128 case BINOP_IN_BOUNDS:
9129 (*pos) += 2;
9130 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9131 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9132
9133 if (noside == EVAL_SKIP)
9134 goto nosideret;
9135
9136 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9137 {
9138 type = language_bool_type (exp->language_defn, exp->gdbarch);
9139 return value_zero (type, not_lval);
9140 }
9141
9142 tem = longest_to_int (exp->elts[pc + 1].longconst);
9143
9144 type = ada_index_type (value_type (arg2), tem, "range");
9145 if (!type)
9146 type = value_type (arg1);
9147
9148 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
9149 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
9150
9151 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9152 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9153 type = language_bool_type (exp->language_defn, exp->gdbarch);
9154 return
9155 value_from_longest (type,
9156 (value_less (arg1, arg3)
9157 || value_equal (arg1, arg3))
9158 && (value_less (arg2, arg1)
9159 || value_equal (arg2, arg1)));
9160
9161 case TERNOP_IN_RANGE:
9162 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9163 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9164 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9165
9166 if (noside == EVAL_SKIP)
9167 goto nosideret;
9168
9169 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9170 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9171 type = language_bool_type (exp->language_defn, exp->gdbarch);
9172 return
9173 value_from_longest (type,
9174 (value_less (arg1, arg3)
9175 || value_equal (arg1, arg3))
9176 && (value_less (arg2, arg1)
9177 || value_equal (arg2, arg1)));
9178
9179 case OP_ATR_FIRST:
9180 case OP_ATR_LAST:
9181 case OP_ATR_LENGTH:
9182 {
9183 struct type *type_arg;
9184 if (exp->elts[*pos].opcode == OP_TYPE)
9185 {
9186 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9187 arg1 = NULL;
9188 type_arg = check_typedef (exp->elts[pc + 2].type);
9189 }
9190 else
9191 {
9192 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9193 type_arg = NULL;
9194 }
9195
9196 if (exp->elts[*pos].opcode != OP_LONG)
9197 error (_("Invalid operand to '%s"), ada_attribute_name (op));
9198 tem = longest_to_int (exp->elts[*pos + 2].longconst);
9199 *pos += 4;
9200
9201 if (noside == EVAL_SKIP)
9202 goto nosideret;
9203
9204 if (type_arg == NULL)
9205 {
9206 arg1 = ada_coerce_ref (arg1);
9207
9208 if (ada_is_constrained_packed_array_type (value_type (arg1)))
9209 arg1 = ada_coerce_to_simple_array (arg1);
9210
9211 type = ada_index_type (value_type (arg1), tem,
9212 ada_attribute_name (op));
9213 if (type == NULL)
9214 type = builtin_type (exp->gdbarch)->builtin_int;
9215
9216 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9217 return allocate_value (type);
9218
9219 switch (op)
9220 {
9221 default: /* Should never happen. */
9222 error (_("unexpected attribute encountered"));
9223 case OP_ATR_FIRST:
9224 return value_from_longest
9225 (type, ada_array_bound (arg1, tem, 0));
9226 case OP_ATR_LAST:
9227 return value_from_longest
9228 (type, ada_array_bound (arg1, tem, 1));
9229 case OP_ATR_LENGTH:
9230 return value_from_longest
9231 (type, ada_array_length (arg1, tem));
9232 }
9233 }
9234 else if (discrete_type_p (type_arg))
9235 {
9236 struct type *range_type;
9237 char *name = ada_type_name (type_arg);
9238 range_type = NULL;
9239 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
9240 range_type = to_fixed_range_type (type_arg, NULL);
9241 if (range_type == NULL)
9242 range_type = type_arg;
9243 switch (op)
9244 {
9245 default:
9246 error (_("unexpected attribute encountered"));
9247 case OP_ATR_FIRST:
9248 return value_from_longest
9249 (range_type, ada_discrete_type_low_bound (range_type));
9250 case OP_ATR_LAST:
9251 return value_from_longest
9252 (range_type, ada_discrete_type_high_bound (range_type));
9253 case OP_ATR_LENGTH:
9254 error (_("the 'length attribute applies only to array types"));
9255 }
9256 }
9257 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
9258 error (_("unimplemented type attribute"));
9259 else
9260 {
9261 LONGEST low, high;
9262
9263 if (ada_is_constrained_packed_array_type (type_arg))
9264 type_arg = decode_constrained_packed_array_type (type_arg);
9265
9266 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
9267 if (type == NULL)
9268 type = builtin_type (exp->gdbarch)->builtin_int;
9269
9270 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9271 return allocate_value (type);
9272
9273 switch (op)
9274 {
9275 default:
9276 error (_("unexpected attribute encountered"));
9277 case OP_ATR_FIRST:
9278 low = ada_array_bound_from_type (type_arg, tem, 0);
9279 return value_from_longest (type, low);
9280 case OP_ATR_LAST:
9281 high = ada_array_bound_from_type (type_arg, tem, 1);
9282 return value_from_longest (type, high);
9283 case OP_ATR_LENGTH:
9284 low = ada_array_bound_from_type (type_arg, tem, 0);
9285 high = ada_array_bound_from_type (type_arg, tem, 1);
9286 return value_from_longest (type, high - low + 1);
9287 }
9288 }
9289 }
9290
9291 case OP_ATR_TAG:
9292 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9293 if (noside == EVAL_SKIP)
9294 goto nosideret;
9295
9296 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9297 return value_zero (ada_tag_type (arg1), not_lval);
9298
9299 return ada_value_tag (arg1);
9300
9301 case OP_ATR_MIN:
9302 case OP_ATR_MAX:
9303 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9304 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9305 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9306 if (noside == EVAL_SKIP)
9307 goto nosideret;
9308 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9309 return value_zero (value_type (arg1), not_lval);
9310 else
9311 {
9312 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9313 return value_binop (arg1, arg2,
9314 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
9315 }
9316
9317 case OP_ATR_MODULUS:
9318 {
9319 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
9320 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9321
9322 if (noside == EVAL_SKIP)
9323 goto nosideret;
9324
9325 if (!ada_is_modular_type (type_arg))
9326 error (_("'modulus must be applied to modular type"));
9327
9328 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
9329 ada_modulus (type_arg));
9330 }
9331
9332
9333 case OP_ATR_POS:
9334 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9335 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9336 if (noside == EVAL_SKIP)
9337 goto nosideret;
9338 type = builtin_type (exp->gdbarch)->builtin_int;
9339 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9340 return value_zero (type, not_lval);
9341 else
9342 return value_pos_atr (type, arg1);
9343
9344 case OP_ATR_SIZE:
9345 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9346 type = value_type (arg1);
9347
9348 /* If the argument is a reference, then dereference its type, since
9349 the user is really asking for the size of the actual object,
9350 not the size of the pointer. */
9351 if (TYPE_CODE (type) == TYPE_CODE_REF)
9352 type = TYPE_TARGET_TYPE (type);
9353
9354 if (noside == EVAL_SKIP)
9355 goto nosideret;
9356 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9357 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
9358 else
9359 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
9360 TARGET_CHAR_BIT * TYPE_LENGTH (type));
9361
9362 case OP_ATR_VAL:
9363 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9364 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9365 type = exp->elts[pc + 2].type;
9366 if (noside == EVAL_SKIP)
9367 goto nosideret;
9368 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9369 return value_zero (type, not_lval);
9370 else
9371 return value_val_atr (type, arg1);
9372
9373 case BINOP_EXP:
9374 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9375 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9376 if (noside == EVAL_SKIP)
9377 goto nosideret;
9378 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9379 return value_zero (value_type (arg1), not_lval);
9380 else
9381 {
9382 /* For integer exponentiation operations,
9383 only promote the first argument. */
9384 if (is_integral_type (value_type (arg2)))
9385 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9386 else
9387 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9388
9389 return value_binop (arg1, arg2, op);
9390 }
9391
9392 case UNOP_PLUS:
9393 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9394 if (noside == EVAL_SKIP)
9395 goto nosideret;
9396 else
9397 return arg1;
9398
9399 case UNOP_ABS:
9400 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9401 if (noside == EVAL_SKIP)
9402 goto nosideret;
9403 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9404 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
9405 return value_neg (arg1);
9406 else
9407 return arg1;
9408
9409 case UNOP_IND:
9410 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9411 if (noside == EVAL_SKIP)
9412 goto nosideret;
9413 type = ada_check_typedef (value_type (arg1));
9414 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9415 {
9416 if (ada_is_array_descriptor_type (type))
9417 /* GDB allows dereferencing GNAT array descriptors. */
9418 {
9419 struct type *arrType = ada_type_of_array (arg1, 0);
9420 if (arrType == NULL)
9421 error (_("Attempt to dereference null array pointer."));
9422 return value_at_lazy (arrType, 0);
9423 }
9424 else if (TYPE_CODE (type) == TYPE_CODE_PTR
9425 || TYPE_CODE (type) == TYPE_CODE_REF
9426 /* In C you can dereference an array to get the 1st elt. */
9427 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
9428 {
9429 type = to_static_fixed_type
9430 (ada_aligned_type
9431 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
9432 check_size (type);
9433 return value_zero (type, lval_memory);
9434 }
9435 else if (TYPE_CODE (type) == TYPE_CODE_INT)
9436 {
9437 /* GDB allows dereferencing an int. */
9438 if (expect_type == NULL)
9439 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
9440 lval_memory);
9441 else
9442 {
9443 expect_type =
9444 to_static_fixed_type (ada_aligned_type (expect_type));
9445 return value_zero (expect_type, lval_memory);
9446 }
9447 }
9448 else
9449 error (_("Attempt to take contents of a non-pointer value."));
9450 }
9451 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
9452 type = ada_check_typedef (value_type (arg1));
9453
9454 if (TYPE_CODE (type) == TYPE_CODE_INT)
9455 /* GDB allows dereferencing an int. If we were given
9456 the expect_type, then use that as the target type.
9457 Otherwise, assume that the target type is an int. */
9458 {
9459 if (expect_type != NULL)
9460 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
9461 arg1));
9462 else
9463 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
9464 (CORE_ADDR) value_as_address (arg1));
9465 }
9466
9467 if (ada_is_array_descriptor_type (type))
9468 /* GDB allows dereferencing GNAT array descriptors. */
9469 return ada_coerce_to_simple_array (arg1);
9470 else
9471 return ada_value_ind (arg1);
9472
9473 case STRUCTOP_STRUCT:
9474 tem = longest_to_int (exp->elts[pc + 1].longconst);
9475 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
9476 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9477 if (noside == EVAL_SKIP)
9478 goto nosideret;
9479 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9480 {
9481 struct type *type1 = value_type (arg1);
9482 if (ada_is_tagged_type (type1, 1))
9483 {
9484 type = ada_lookup_struct_elt_type (type1,
9485 &exp->elts[pc + 2].string,
9486 1, 1, NULL);
9487 if (type == NULL)
9488 /* In this case, we assume that the field COULD exist
9489 in some extension of the type. Return an object of
9490 "type" void, which will match any formal
9491 (see ada_type_match). */
9492 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
9493 lval_memory);
9494 }
9495 else
9496 type =
9497 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
9498 0, NULL);
9499
9500 return value_zero (ada_aligned_type (type), lval_memory);
9501 }
9502 else
9503 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
9504 arg1 = unwrap_value (arg1);
9505 return ada_to_fixed_value (arg1);
9506
9507 case OP_TYPE:
9508 /* The value is not supposed to be used. This is here to make it
9509 easier to accommodate expressions that contain types. */
9510 (*pos) += 2;
9511 if (noside == EVAL_SKIP)
9512 goto nosideret;
9513 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9514 return allocate_value (exp->elts[pc + 1].type);
9515 else
9516 error (_("Attempt to use a type name as an expression"));
9517
9518 case OP_AGGREGATE:
9519 case OP_CHOICES:
9520 case OP_OTHERS:
9521 case OP_DISCRETE_RANGE:
9522 case OP_POSITIONAL:
9523 case OP_NAME:
9524 if (noside == EVAL_NORMAL)
9525 switch (op)
9526 {
9527 case OP_NAME:
9528 error (_("Undefined name, ambiguous name, or renaming used in "
9529 "component association: %s."), &exp->elts[pc+2].string);
9530 case OP_AGGREGATE:
9531 error (_("Aggregates only allowed on the right of an assignment"));
9532 default:
9533 internal_error (__FILE__, __LINE__, _("aggregate apparently mangled"));
9534 }
9535
9536 ada_forward_operator_length (exp, pc, &oplen, &nargs);
9537 *pos += oplen - 1;
9538 for (tem = 0; tem < nargs; tem += 1)
9539 ada_evaluate_subexp (NULL, exp, pos, noside);
9540 goto nosideret;
9541 }
9542
9543 nosideret:
9544 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
9545 }
9546 \f
9547
9548 /* Fixed point */
9549
9550 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
9551 type name that encodes the 'small and 'delta information.
9552 Otherwise, return NULL. */
9553
9554 static const char *
9555 fixed_type_info (struct type *type)
9556 {
9557 const char *name = ada_type_name (type);
9558 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
9559
9560 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
9561 {
9562 const char *tail = strstr (name, "___XF_");
9563 if (tail == NULL)
9564 return NULL;
9565 else
9566 return tail + 5;
9567 }
9568 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
9569 return fixed_type_info (TYPE_TARGET_TYPE (type));
9570 else
9571 return NULL;
9572 }
9573
9574 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
9575
9576 int
9577 ada_is_fixed_point_type (struct type *type)
9578 {
9579 return fixed_type_info (type) != NULL;
9580 }
9581
9582 /* Return non-zero iff TYPE represents a System.Address type. */
9583
9584 int
9585 ada_is_system_address_type (struct type *type)
9586 {
9587 return (TYPE_NAME (type)
9588 && strcmp (TYPE_NAME (type), "system__address") == 0);
9589 }
9590
9591 /* Assuming that TYPE is the representation of an Ada fixed-point
9592 type, return its delta, or -1 if the type is malformed and the
9593 delta cannot be determined. */
9594
9595 DOUBLEST
9596 ada_delta (struct type *type)
9597 {
9598 const char *encoding = fixed_type_info (type);
9599 DOUBLEST num, den;
9600
9601 /* Strictly speaking, num and den are encoded as integer. However,
9602 they may not fit into a long, and they will have to be converted
9603 to DOUBLEST anyway. So scan them as DOUBLEST. */
9604 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
9605 &num, &den) < 2)
9606 return -1.0;
9607 else
9608 return num / den;
9609 }
9610
9611 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
9612 factor ('SMALL value) associated with the type. */
9613
9614 static DOUBLEST
9615 scaling_factor (struct type *type)
9616 {
9617 const char *encoding = fixed_type_info (type);
9618 DOUBLEST num0, den0, num1, den1;
9619 int n;
9620
9621 /* Strictly speaking, num's and den's are encoded as integer. However,
9622 they may not fit into a long, and they will have to be converted
9623 to DOUBLEST anyway. So scan them as DOUBLEST. */
9624 n = sscanf (encoding,
9625 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
9626 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
9627 &num0, &den0, &num1, &den1);
9628
9629 if (n < 2)
9630 return 1.0;
9631 else if (n == 4)
9632 return num1 / den1;
9633 else
9634 return num0 / den0;
9635 }
9636
9637
9638 /* Assuming that X is the representation of a value of fixed-point
9639 type TYPE, return its floating-point equivalent. */
9640
9641 DOUBLEST
9642 ada_fixed_to_float (struct type *type, LONGEST x)
9643 {
9644 return (DOUBLEST) x *scaling_factor (type);
9645 }
9646
9647 /* The representation of a fixed-point value of type TYPE
9648 corresponding to the value X. */
9649
9650 LONGEST
9651 ada_float_to_fixed (struct type *type, DOUBLEST x)
9652 {
9653 return (LONGEST) (x / scaling_factor (type) + 0.5);
9654 }
9655
9656 \f
9657
9658 /* Range types */
9659
9660 /* Scan STR beginning at position K for a discriminant name, and
9661 return the value of that discriminant field of DVAL in *PX. If
9662 PNEW_K is not null, put the position of the character beyond the
9663 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
9664 not alter *PX and *PNEW_K if unsuccessful. */
9665
9666 static int
9667 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
9668 int *pnew_k)
9669 {
9670 static char *bound_buffer = NULL;
9671 static size_t bound_buffer_len = 0;
9672 char *bound;
9673 char *pend;
9674 struct value *bound_val;
9675
9676 if (dval == NULL || str == NULL || str[k] == '\0')
9677 return 0;
9678
9679 pend = strstr (str + k, "__");
9680 if (pend == NULL)
9681 {
9682 bound = str + k;
9683 k += strlen (bound);
9684 }
9685 else
9686 {
9687 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
9688 bound = bound_buffer;
9689 strncpy (bound_buffer, str + k, pend - (str + k));
9690 bound[pend - (str + k)] = '\0';
9691 k = pend - str;
9692 }
9693
9694 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
9695 if (bound_val == NULL)
9696 return 0;
9697
9698 *px = value_as_long (bound_val);
9699 if (pnew_k != NULL)
9700 *pnew_k = k;
9701 return 1;
9702 }
9703
9704 /* Value of variable named NAME in the current environment. If
9705 no such variable found, then if ERR_MSG is null, returns 0, and
9706 otherwise causes an error with message ERR_MSG. */
9707
9708 static struct value *
9709 get_var_value (char *name, char *err_msg)
9710 {
9711 struct ada_symbol_info *syms;
9712 int nsyms;
9713
9714 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
9715 &syms);
9716
9717 if (nsyms != 1)
9718 {
9719 if (err_msg == NULL)
9720 return 0;
9721 else
9722 error (("%s"), err_msg);
9723 }
9724
9725 return value_of_variable (syms[0].sym, syms[0].block);
9726 }
9727
9728 /* Value of integer variable named NAME in the current environment. If
9729 no such variable found, returns 0, and sets *FLAG to 0. If
9730 successful, sets *FLAG to 1. */
9731
9732 LONGEST
9733 get_int_var_value (char *name, int *flag)
9734 {
9735 struct value *var_val = get_var_value (name, 0);
9736
9737 if (var_val == 0)
9738 {
9739 if (flag != NULL)
9740 *flag = 0;
9741 return 0;
9742 }
9743 else
9744 {
9745 if (flag != NULL)
9746 *flag = 1;
9747 return value_as_long (var_val);
9748 }
9749 }
9750
9751
9752 /* Return a range type whose base type is that of the range type named
9753 NAME in the current environment, and whose bounds are calculated
9754 from NAME according to the GNAT range encoding conventions.
9755 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
9756 corresponding range type from debug information; fall back to using it
9757 if symbol lookup fails. If a new type must be created, allocate it
9758 like ORIG_TYPE was. The bounds information, in general, is encoded
9759 in NAME, the base type given in the named range type. */
9760
9761 static struct type *
9762 to_fixed_range_type (struct type *raw_type, struct value *dval)
9763 {
9764 char *name;
9765 struct type *base_type;
9766 char *subtype_info;
9767
9768 gdb_assert (raw_type != NULL);
9769 gdb_assert (TYPE_NAME (raw_type) != NULL);
9770
9771 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
9772 base_type = TYPE_TARGET_TYPE (raw_type);
9773 else
9774 base_type = raw_type;
9775
9776 name = TYPE_NAME (raw_type);
9777 subtype_info = strstr (name, "___XD");
9778 if (subtype_info == NULL)
9779 {
9780 LONGEST L = ada_discrete_type_low_bound (raw_type);
9781 LONGEST U = ada_discrete_type_high_bound (raw_type);
9782 if (L < INT_MIN || U > INT_MAX)
9783 return raw_type;
9784 else
9785 return create_range_type (alloc_type_copy (raw_type), raw_type,
9786 ada_discrete_type_low_bound (raw_type),
9787 ada_discrete_type_high_bound (raw_type));
9788 }
9789 else
9790 {
9791 static char *name_buf = NULL;
9792 static size_t name_len = 0;
9793 int prefix_len = subtype_info - name;
9794 LONGEST L, U;
9795 struct type *type;
9796 char *bounds_str;
9797 int n;
9798
9799 GROW_VECT (name_buf, name_len, prefix_len + 5);
9800 strncpy (name_buf, name, prefix_len);
9801 name_buf[prefix_len] = '\0';
9802
9803 subtype_info += 5;
9804 bounds_str = strchr (subtype_info, '_');
9805 n = 1;
9806
9807 if (*subtype_info == 'L')
9808 {
9809 if (!ada_scan_number (bounds_str, n, &L, &n)
9810 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
9811 return raw_type;
9812 if (bounds_str[n] == '_')
9813 n += 2;
9814 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
9815 n += 1;
9816 subtype_info += 1;
9817 }
9818 else
9819 {
9820 int ok;
9821 strcpy (name_buf + prefix_len, "___L");
9822 L = get_int_var_value (name_buf, &ok);
9823 if (!ok)
9824 {
9825 lim_warning (_("Unknown lower bound, using 1."));
9826 L = 1;
9827 }
9828 }
9829
9830 if (*subtype_info == 'U')
9831 {
9832 if (!ada_scan_number (bounds_str, n, &U, &n)
9833 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
9834 return raw_type;
9835 }
9836 else
9837 {
9838 int ok;
9839 strcpy (name_buf + prefix_len, "___U");
9840 U = get_int_var_value (name_buf, &ok);
9841 if (!ok)
9842 {
9843 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
9844 U = L;
9845 }
9846 }
9847
9848 type = create_range_type (alloc_type_copy (raw_type), base_type, L, U);
9849 TYPE_NAME (type) = name;
9850 return type;
9851 }
9852 }
9853
9854 /* True iff NAME is the name of a range type. */
9855
9856 int
9857 ada_is_range_type_name (const char *name)
9858 {
9859 return (name != NULL && strstr (name, "___XD"));
9860 }
9861 \f
9862
9863 /* Modular types */
9864
9865 /* True iff TYPE is an Ada modular type. */
9866
9867 int
9868 ada_is_modular_type (struct type *type)
9869 {
9870 struct type *subranged_type = base_type (type);
9871
9872 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
9873 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
9874 && TYPE_UNSIGNED (subranged_type));
9875 }
9876
9877 /* Try to determine the lower and upper bounds of the given modular type
9878 using the type name only. Return non-zero and set L and U as the lower
9879 and upper bounds (respectively) if successful. */
9880
9881 int
9882 ada_modulus_from_name (struct type *type, ULONGEST *modulus)
9883 {
9884 char *name = ada_type_name (type);
9885 char *suffix;
9886 int k;
9887 LONGEST U;
9888
9889 if (name == NULL)
9890 return 0;
9891
9892 /* Discrete type bounds are encoded using an __XD suffix. In our case,
9893 we are looking for static bounds, which means an __XDLU suffix.
9894 Moreover, we know that the lower bound of modular types is always
9895 zero, so the actual suffix should start with "__XDLU_0__", and
9896 then be followed by the upper bound value. */
9897 suffix = strstr (name, "__XDLU_0__");
9898 if (suffix == NULL)
9899 return 0;
9900 k = 10;
9901 if (!ada_scan_number (suffix, k, &U, NULL))
9902 return 0;
9903
9904 *modulus = (ULONGEST) U + 1;
9905 return 1;
9906 }
9907
9908 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
9909
9910 ULONGEST
9911 ada_modulus (struct type *type)
9912 {
9913 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
9914 }
9915 \f
9916
9917 /* Ada exception catchpoint support:
9918 ---------------------------------
9919
9920 We support 3 kinds of exception catchpoints:
9921 . catchpoints on Ada exceptions
9922 . catchpoints on unhandled Ada exceptions
9923 . catchpoints on failed assertions
9924
9925 Exceptions raised during failed assertions, or unhandled exceptions
9926 could perfectly be caught with the general catchpoint on Ada exceptions.
9927 However, we can easily differentiate these two special cases, and having
9928 the option to distinguish these two cases from the rest can be useful
9929 to zero-in on certain situations.
9930
9931 Exception catchpoints are a specialized form of breakpoint,
9932 since they rely on inserting breakpoints inside known routines
9933 of the GNAT runtime. The implementation therefore uses a standard
9934 breakpoint structure of the BP_BREAKPOINT type, but with its own set
9935 of breakpoint_ops.
9936
9937 Support in the runtime for exception catchpoints have been changed
9938 a few times already, and these changes affect the implementation
9939 of these catchpoints. In order to be able to support several
9940 variants of the runtime, we use a sniffer that will determine
9941 the runtime variant used by the program being debugged.
9942
9943 At this time, we do not support the use of conditions on Ada exception
9944 catchpoints. The COND and COND_STRING fields are therefore set
9945 to NULL (most of the time, see below).
9946
9947 Conditions where EXP_STRING, COND, and COND_STRING are used:
9948
9949 When a user specifies the name of a specific exception in the case
9950 of catchpoints on Ada exceptions, we store the name of that exception
9951 in the EXP_STRING. We then translate this request into an actual
9952 condition stored in COND_STRING, and then parse it into an expression
9953 stored in COND. */
9954
9955 /* The different types of catchpoints that we introduced for catching
9956 Ada exceptions. */
9957
9958 enum exception_catchpoint_kind
9959 {
9960 ex_catch_exception,
9961 ex_catch_exception_unhandled,
9962 ex_catch_assert
9963 };
9964
9965 /* Ada's standard exceptions. */
9966
9967 static char *standard_exc[] = {
9968 "constraint_error",
9969 "program_error",
9970 "storage_error",
9971 "tasking_error"
9972 };
9973
9974 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
9975
9976 /* A structure that describes how to support exception catchpoints
9977 for a given executable. */
9978
9979 struct exception_support_info
9980 {
9981 /* The name of the symbol to break on in order to insert
9982 a catchpoint on exceptions. */
9983 const char *catch_exception_sym;
9984
9985 /* The name of the symbol to break on in order to insert
9986 a catchpoint on unhandled exceptions. */
9987 const char *catch_exception_unhandled_sym;
9988
9989 /* The name of the symbol to break on in order to insert
9990 a catchpoint on failed assertions. */
9991 const char *catch_assert_sym;
9992
9993 /* Assuming that the inferior just triggered an unhandled exception
9994 catchpoint, this function is responsible for returning the address
9995 in inferior memory where the name of that exception is stored.
9996 Return zero if the address could not be computed. */
9997 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
9998 };
9999
10000 static CORE_ADDR ada_unhandled_exception_name_addr (void);
10001 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
10002
10003 /* The following exception support info structure describes how to
10004 implement exception catchpoints with the latest version of the
10005 Ada runtime (as of 2007-03-06). */
10006
10007 static const struct exception_support_info default_exception_support_info =
10008 {
10009 "__gnat_debug_raise_exception", /* catch_exception_sym */
10010 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10011 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
10012 ada_unhandled_exception_name_addr
10013 };
10014
10015 /* The following exception support info structure describes how to
10016 implement exception catchpoints with a slightly older version
10017 of the Ada runtime. */
10018
10019 static const struct exception_support_info exception_support_info_fallback =
10020 {
10021 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
10022 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10023 "system__assertions__raise_assert_failure", /* catch_assert_sym */
10024 ada_unhandled_exception_name_addr_from_raise
10025 };
10026
10027 /* For each executable, we sniff which exception info structure to use
10028 and cache it in the following global variable. */
10029
10030 static const struct exception_support_info *exception_info = NULL;
10031
10032 /* Inspect the Ada runtime and determine which exception info structure
10033 should be used to provide support for exception catchpoints.
10034
10035 This function will always set exception_info, or raise an error. */
10036
10037 static void
10038 ada_exception_support_info_sniffer (void)
10039 {
10040 struct symbol *sym;
10041
10042 /* If the exception info is already known, then no need to recompute it. */
10043 if (exception_info != NULL)
10044 return;
10045
10046 /* Check the latest (default) exception support info. */
10047 sym = standard_lookup (default_exception_support_info.catch_exception_sym,
10048 NULL, VAR_DOMAIN);
10049 if (sym != NULL)
10050 {
10051 exception_info = &default_exception_support_info;
10052 return;
10053 }
10054
10055 /* Try our fallback exception suport info. */
10056 sym = standard_lookup (exception_support_info_fallback.catch_exception_sym,
10057 NULL, VAR_DOMAIN);
10058 if (sym != NULL)
10059 {
10060 exception_info = &exception_support_info_fallback;
10061 return;
10062 }
10063
10064 /* Sometimes, it is normal for us to not be able to find the routine
10065 we are looking for. This happens when the program is linked with
10066 the shared version of the GNAT runtime, and the program has not been
10067 started yet. Inform the user of these two possible causes if
10068 applicable. */
10069
10070 if (ada_update_initial_language (language_unknown) != language_ada)
10071 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
10072
10073 /* If the symbol does not exist, then check that the program is
10074 already started, to make sure that shared libraries have been
10075 loaded. If it is not started, this may mean that the symbol is
10076 in a shared library. */
10077
10078 if (ptid_get_pid (inferior_ptid) == 0)
10079 error (_("Unable to insert catchpoint. Try to start the program first."));
10080
10081 /* At this point, we know that we are debugging an Ada program and
10082 that the inferior has been started, but we still are not able to
10083 find the run-time symbols. That can mean that we are in
10084 configurable run time mode, or that a-except as been optimized
10085 out by the linker... In any case, at this point it is not worth
10086 supporting this feature. */
10087
10088 error (_("Cannot insert catchpoints in this configuration."));
10089 }
10090
10091 /* An observer of "executable_changed" events.
10092 Its role is to clear certain cached values that need to be recomputed
10093 each time a new executable is loaded by GDB. */
10094
10095 static void
10096 ada_executable_changed_observer (void)
10097 {
10098 /* If the executable changed, then it is possible that the Ada runtime
10099 is different. So we need to invalidate the exception support info
10100 cache. */
10101 exception_info = NULL;
10102 }
10103
10104 /* True iff FRAME is very likely to be that of a function that is
10105 part of the runtime system. This is all very heuristic, but is
10106 intended to be used as advice as to what frames are uninteresting
10107 to most users. */
10108
10109 static int
10110 is_known_support_routine (struct frame_info *frame)
10111 {
10112 struct symtab_and_line sal;
10113 char *func_name;
10114 enum language func_lang;
10115 int i;
10116
10117 /* If this code does not have any debugging information (no symtab),
10118 This cannot be any user code. */
10119
10120 find_frame_sal (frame, &sal);
10121 if (sal.symtab == NULL)
10122 return 1;
10123
10124 /* If there is a symtab, but the associated source file cannot be
10125 located, then assume this is not user code: Selecting a frame
10126 for which we cannot display the code would not be very helpful
10127 for the user. This should also take care of case such as VxWorks
10128 where the kernel has some debugging info provided for a few units. */
10129
10130 if (symtab_to_fullname (sal.symtab) == NULL)
10131 return 1;
10132
10133 /* Check the unit filename againt the Ada runtime file naming.
10134 We also check the name of the objfile against the name of some
10135 known system libraries that sometimes come with debugging info
10136 too. */
10137
10138 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
10139 {
10140 re_comp (known_runtime_file_name_patterns[i]);
10141 if (re_exec (sal.symtab->filename))
10142 return 1;
10143 if (sal.symtab->objfile != NULL
10144 && re_exec (sal.symtab->objfile->name))
10145 return 1;
10146 }
10147
10148 /* Check whether the function is a GNAT-generated entity. */
10149
10150 find_frame_funname (frame, &func_name, &func_lang);
10151 if (func_name == NULL)
10152 return 1;
10153
10154 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
10155 {
10156 re_comp (known_auxiliary_function_name_patterns[i]);
10157 if (re_exec (func_name))
10158 return 1;
10159 }
10160
10161 return 0;
10162 }
10163
10164 /* Find the first frame that contains debugging information and that is not
10165 part of the Ada run-time, starting from FI and moving upward. */
10166
10167 void
10168 ada_find_printable_frame (struct frame_info *fi)
10169 {
10170 for (; fi != NULL; fi = get_prev_frame (fi))
10171 {
10172 if (!is_known_support_routine (fi))
10173 {
10174 select_frame (fi);
10175 break;
10176 }
10177 }
10178
10179 }
10180
10181 /* Assuming that the inferior just triggered an unhandled exception
10182 catchpoint, return the address in inferior memory where the name
10183 of the exception is stored.
10184
10185 Return zero if the address could not be computed. */
10186
10187 static CORE_ADDR
10188 ada_unhandled_exception_name_addr (void)
10189 {
10190 return parse_and_eval_address ("e.full_name");
10191 }
10192
10193 /* Same as ada_unhandled_exception_name_addr, except that this function
10194 should be used when the inferior uses an older version of the runtime,
10195 where the exception name needs to be extracted from a specific frame
10196 several frames up in the callstack. */
10197
10198 static CORE_ADDR
10199 ada_unhandled_exception_name_addr_from_raise (void)
10200 {
10201 int frame_level;
10202 struct frame_info *fi;
10203
10204 /* To determine the name of this exception, we need to select
10205 the frame corresponding to RAISE_SYM_NAME. This frame is
10206 at least 3 levels up, so we simply skip the first 3 frames
10207 without checking the name of their associated function. */
10208 fi = get_current_frame ();
10209 for (frame_level = 0; frame_level < 3; frame_level += 1)
10210 if (fi != NULL)
10211 fi = get_prev_frame (fi);
10212
10213 while (fi != NULL)
10214 {
10215 char *func_name;
10216 enum language func_lang;
10217
10218 find_frame_funname (fi, &func_name, &func_lang);
10219 if (func_name != NULL
10220 && strcmp (func_name, exception_info->catch_exception_sym) == 0)
10221 break; /* We found the frame we were looking for... */
10222 fi = get_prev_frame (fi);
10223 }
10224
10225 if (fi == NULL)
10226 return 0;
10227
10228 select_frame (fi);
10229 return parse_and_eval_address ("id.full_name");
10230 }
10231
10232 /* Assuming the inferior just triggered an Ada exception catchpoint
10233 (of any type), return the address in inferior memory where the name
10234 of the exception is stored, if applicable.
10235
10236 Return zero if the address could not be computed, or if not relevant. */
10237
10238 static CORE_ADDR
10239 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
10240 struct breakpoint *b)
10241 {
10242 switch (ex)
10243 {
10244 case ex_catch_exception:
10245 return (parse_and_eval_address ("e.full_name"));
10246 break;
10247
10248 case ex_catch_exception_unhandled:
10249 return exception_info->unhandled_exception_name_addr ();
10250 break;
10251
10252 case ex_catch_assert:
10253 return 0; /* Exception name is not relevant in this case. */
10254 break;
10255
10256 default:
10257 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10258 break;
10259 }
10260
10261 return 0; /* Should never be reached. */
10262 }
10263
10264 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
10265 any error that ada_exception_name_addr_1 might cause to be thrown.
10266 When an error is intercepted, a warning with the error message is printed,
10267 and zero is returned. */
10268
10269 static CORE_ADDR
10270 ada_exception_name_addr (enum exception_catchpoint_kind ex,
10271 struct breakpoint *b)
10272 {
10273 struct gdb_exception e;
10274 CORE_ADDR result = 0;
10275
10276 TRY_CATCH (e, RETURN_MASK_ERROR)
10277 {
10278 result = ada_exception_name_addr_1 (ex, b);
10279 }
10280
10281 if (e.reason < 0)
10282 {
10283 warning (_("failed to get exception name: %s"), e.message);
10284 return 0;
10285 }
10286
10287 return result;
10288 }
10289
10290 /* Implement the PRINT_IT method in the breakpoint_ops structure
10291 for all exception catchpoint kinds. */
10292
10293 static enum print_stop_action
10294 print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
10295 {
10296 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
10297 char exception_name[256];
10298
10299 if (addr != 0)
10300 {
10301 read_memory (addr, exception_name, sizeof (exception_name) - 1);
10302 exception_name [sizeof (exception_name) - 1] = '\0';
10303 }
10304
10305 ada_find_printable_frame (get_current_frame ());
10306
10307 annotate_catchpoint (b->number);
10308 switch (ex)
10309 {
10310 case ex_catch_exception:
10311 if (addr != 0)
10312 printf_filtered (_("\nCatchpoint %d, %s at "),
10313 b->number, exception_name);
10314 else
10315 printf_filtered (_("\nCatchpoint %d, exception at "), b->number);
10316 break;
10317 case ex_catch_exception_unhandled:
10318 if (addr != 0)
10319 printf_filtered (_("\nCatchpoint %d, unhandled %s at "),
10320 b->number, exception_name);
10321 else
10322 printf_filtered (_("\nCatchpoint %d, unhandled exception at "),
10323 b->number);
10324 break;
10325 case ex_catch_assert:
10326 printf_filtered (_("\nCatchpoint %d, failed assertion at "),
10327 b->number);
10328 break;
10329 }
10330
10331 return PRINT_SRC_AND_LOC;
10332 }
10333
10334 /* Implement the PRINT_ONE method in the breakpoint_ops structure
10335 for all exception catchpoint kinds. */
10336
10337 static void
10338 print_one_exception (enum exception_catchpoint_kind ex,
10339 struct breakpoint *b, struct bp_location **last_loc)
10340 {
10341 struct value_print_options opts;
10342
10343 get_user_print_options (&opts);
10344 if (opts.addressprint)
10345 {
10346 annotate_field (4);
10347 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
10348 }
10349
10350 annotate_field (5);
10351 *last_loc = b->loc;
10352 switch (ex)
10353 {
10354 case ex_catch_exception:
10355 if (b->exp_string != NULL)
10356 {
10357 char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
10358
10359 ui_out_field_string (uiout, "what", msg);
10360 xfree (msg);
10361 }
10362 else
10363 ui_out_field_string (uiout, "what", "all Ada exceptions");
10364
10365 break;
10366
10367 case ex_catch_exception_unhandled:
10368 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
10369 break;
10370
10371 case ex_catch_assert:
10372 ui_out_field_string (uiout, "what", "failed Ada assertions");
10373 break;
10374
10375 default:
10376 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10377 break;
10378 }
10379 }
10380
10381 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
10382 for all exception catchpoint kinds. */
10383
10384 static void
10385 print_mention_exception (enum exception_catchpoint_kind ex,
10386 struct breakpoint *b)
10387 {
10388 switch (ex)
10389 {
10390 case ex_catch_exception:
10391 if (b->exp_string != NULL)
10392 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
10393 b->number, b->exp_string);
10394 else
10395 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
10396
10397 break;
10398
10399 case ex_catch_exception_unhandled:
10400 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
10401 b->number);
10402 break;
10403
10404 case ex_catch_assert:
10405 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
10406 break;
10407
10408 default:
10409 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10410 break;
10411 }
10412 }
10413
10414 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
10415 for all exception catchpoint kinds. */
10416
10417 static void
10418 print_recreate_exception (enum exception_catchpoint_kind ex,
10419 struct breakpoint *b, struct ui_file *fp)
10420 {
10421 switch (ex)
10422 {
10423 case ex_catch_exception:
10424 fprintf_filtered (fp, "catch exception");
10425 if (b->exp_string != NULL)
10426 fprintf_filtered (fp, " %s", b->exp_string);
10427 break;
10428
10429 case ex_catch_exception_unhandled:
10430 fprintf_filtered (fp, "catch exception unhandled");
10431 break;
10432
10433 case ex_catch_assert:
10434 fprintf_filtered (fp, "catch assert");
10435 break;
10436
10437 default:
10438 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10439 }
10440 }
10441
10442 /* Virtual table for "catch exception" breakpoints. */
10443
10444 static enum print_stop_action
10445 print_it_catch_exception (struct breakpoint *b)
10446 {
10447 return print_it_exception (ex_catch_exception, b);
10448 }
10449
10450 static void
10451 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
10452 {
10453 print_one_exception (ex_catch_exception, b, last_loc);
10454 }
10455
10456 static void
10457 print_mention_catch_exception (struct breakpoint *b)
10458 {
10459 print_mention_exception (ex_catch_exception, b);
10460 }
10461
10462 static void
10463 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
10464 {
10465 print_recreate_exception (ex_catch_exception, b, fp);
10466 }
10467
10468 static struct breakpoint_ops catch_exception_breakpoint_ops =
10469 {
10470 NULL, /* insert */
10471 NULL, /* remove */
10472 NULL, /* breakpoint_hit */
10473 print_it_catch_exception,
10474 print_one_catch_exception,
10475 print_mention_catch_exception,
10476 print_recreate_catch_exception
10477 };
10478
10479 /* Virtual table for "catch exception unhandled" breakpoints. */
10480
10481 static enum print_stop_action
10482 print_it_catch_exception_unhandled (struct breakpoint *b)
10483 {
10484 return print_it_exception (ex_catch_exception_unhandled, b);
10485 }
10486
10487 static void
10488 print_one_catch_exception_unhandled (struct breakpoint *b,
10489 struct bp_location **last_loc)
10490 {
10491 print_one_exception (ex_catch_exception_unhandled, b, last_loc);
10492 }
10493
10494 static void
10495 print_mention_catch_exception_unhandled (struct breakpoint *b)
10496 {
10497 print_mention_exception (ex_catch_exception_unhandled, b);
10498 }
10499
10500 static void
10501 print_recreate_catch_exception_unhandled (struct breakpoint *b,
10502 struct ui_file *fp)
10503 {
10504 print_recreate_exception (ex_catch_exception_unhandled, b, fp);
10505 }
10506
10507 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
10508 NULL, /* insert */
10509 NULL, /* remove */
10510 NULL, /* breakpoint_hit */
10511 print_it_catch_exception_unhandled,
10512 print_one_catch_exception_unhandled,
10513 print_mention_catch_exception_unhandled,
10514 print_recreate_catch_exception_unhandled
10515 };
10516
10517 /* Virtual table for "catch assert" breakpoints. */
10518
10519 static enum print_stop_action
10520 print_it_catch_assert (struct breakpoint *b)
10521 {
10522 return print_it_exception (ex_catch_assert, b);
10523 }
10524
10525 static void
10526 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
10527 {
10528 print_one_exception (ex_catch_assert, b, last_loc);
10529 }
10530
10531 static void
10532 print_mention_catch_assert (struct breakpoint *b)
10533 {
10534 print_mention_exception (ex_catch_assert, b);
10535 }
10536
10537 static void
10538 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
10539 {
10540 print_recreate_exception (ex_catch_assert, b, fp);
10541 }
10542
10543 static struct breakpoint_ops catch_assert_breakpoint_ops = {
10544 NULL, /* insert */
10545 NULL, /* remove */
10546 NULL, /* breakpoint_hit */
10547 print_it_catch_assert,
10548 print_one_catch_assert,
10549 print_mention_catch_assert,
10550 print_recreate_catch_assert
10551 };
10552
10553 /* Return non-zero if B is an Ada exception catchpoint. */
10554
10555 int
10556 ada_exception_catchpoint_p (struct breakpoint *b)
10557 {
10558 return (b->ops == &catch_exception_breakpoint_ops
10559 || b->ops == &catch_exception_unhandled_breakpoint_ops
10560 || b->ops == &catch_assert_breakpoint_ops);
10561 }
10562
10563 /* Return a newly allocated copy of the first space-separated token
10564 in ARGSP, and then adjust ARGSP to point immediately after that
10565 token.
10566
10567 Return NULL if ARGPS does not contain any more tokens. */
10568
10569 static char *
10570 ada_get_next_arg (char **argsp)
10571 {
10572 char *args = *argsp;
10573 char *end;
10574 char *result;
10575
10576 /* Skip any leading white space. */
10577
10578 while (isspace (*args))
10579 args++;
10580
10581 if (args[0] == '\0')
10582 return NULL; /* No more arguments. */
10583
10584 /* Find the end of the current argument. */
10585
10586 end = args;
10587 while (*end != '\0' && !isspace (*end))
10588 end++;
10589
10590 /* Adjust ARGSP to point to the start of the next argument. */
10591
10592 *argsp = end;
10593
10594 /* Make a copy of the current argument and return it. */
10595
10596 result = xmalloc (end - args + 1);
10597 strncpy (result, args, end - args);
10598 result[end - args] = '\0';
10599
10600 return result;
10601 }
10602
10603 /* Split the arguments specified in a "catch exception" command.
10604 Set EX to the appropriate catchpoint type.
10605 Set EXP_STRING to the name of the specific exception if
10606 specified by the user. */
10607
10608 static void
10609 catch_ada_exception_command_split (char *args,
10610 enum exception_catchpoint_kind *ex,
10611 char **exp_string)
10612 {
10613 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
10614 char *exception_name;
10615
10616 exception_name = ada_get_next_arg (&args);
10617 make_cleanup (xfree, exception_name);
10618
10619 /* Check that we do not have any more arguments. Anything else
10620 is unexpected. */
10621
10622 while (isspace (*args))
10623 args++;
10624
10625 if (args[0] != '\0')
10626 error (_("Junk at end of expression"));
10627
10628 discard_cleanups (old_chain);
10629
10630 if (exception_name == NULL)
10631 {
10632 /* Catch all exceptions. */
10633 *ex = ex_catch_exception;
10634 *exp_string = NULL;
10635 }
10636 else if (strcmp (exception_name, "unhandled") == 0)
10637 {
10638 /* Catch unhandled exceptions. */
10639 *ex = ex_catch_exception_unhandled;
10640 *exp_string = NULL;
10641 }
10642 else
10643 {
10644 /* Catch a specific exception. */
10645 *ex = ex_catch_exception;
10646 *exp_string = exception_name;
10647 }
10648 }
10649
10650 /* Return the name of the symbol on which we should break in order to
10651 implement a catchpoint of the EX kind. */
10652
10653 static const char *
10654 ada_exception_sym_name (enum exception_catchpoint_kind ex)
10655 {
10656 gdb_assert (exception_info != NULL);
10657
10658 switch (ex)
10659 {
10660 case ex_catch_exception:
10661 return (exception_info->catch_exception_sym);
10662 break;
10663 case ex_catch_exception_unhandled:
10664 return (exception_info->catch_exception_unhandled_sym);
10665 break;
10666 case ex_catch_assert:
10667 return (exception_info->catch_assert_sym);
10668 break;
10669 default:
10670 internal_error (__FILE__, __LINE__,
10671 _("unexpected catchpoint kind (%d)"), ex);
10672 }
10673 }
10674
10675 /* Return the breakpoint ops "virtual table" used for catchpoints
10676 of the EX kind. */
10677
10678 static struct breakpoint_ops *
10679 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
10680 {
10681 switch (ex)
10682 {
10683 case ex_catch_exception:
10684 return (&catch_exception_breakpoint_ops);
10685 break;
10686 case ex_catch_exception_unhandled:
10687 return (&catch_exception_unhandled_breakpoint_ops);
10688 break;
10689 case ex_catch_assert:
10690 return (&catch_assert_breakpoint_ops);
10691 break;
10692 default:
10693 internal_error (__FILE__, __LINE__,
10694 _("unexpected catchpoint kind (%d)"), ex);
10695 }
10696 }
10697
10698 /* Return the condition that will be used to match the current exception
10699 being raised with the exception that the user wants to catch. This
10700 assumes that this condition is used when the inferior just triggered
10701 an exception catchpoint.
10702
10703 The string returned is a newly allocated string that needs to be
10704 deallocated later. */
10705
10706 static char *
10707 ada_exception_catchpoint_cond_string (const char *exp_string)
10708 {
10709 int i;
10710
10711 /* The standard exceptions are a special case. They are defined in
10712 runtime units that have been compiled without debugging info; if
10713 EXP_STRING is the not-fully-qualified name of a standard
10714 exception (e.g. "constraint_error") then, during the evaluation
10715 of the condition expression, the symbol lookup on this name would
10716 *not* return this standard exception. The catchpoint condition
10717 may then be set only on user-defined exceptions which have the
10718 same not-fully-qualified name (e.g. my_package.constraint_error).
10719
10720 To avoid this unexcepted behavior, these standard exceptions are
10721 systematically prefixed by "standard". This means that "catch
10722 exception constraint_error" is rewritten into "catch exception
10723 standard.constraint_error".
10724
10725 If an exception named contraint_error is defined in another package of
10726 the inferior program, then the only way to specify this exception as a
10727 breakpoint condition is to use its fully-qualified named:
10728 e.g. my_package.constraint_error. */
10729
10730 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
10731 {
10732 if (strcmp (standard_exc [i], exp_string) == 0)
10733 {
10734 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
10735 exp_string);
10736 }
10737 }
10738 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
10739 }
10740
10741 /* Return the expression corresponding to COND_STRING evaluated at SAL. */
10742
10743 static struct expression *
10744 ada_parse_catchpoint_condition (char *cond_string,
10745 struct symtab_and_line sal)
10746 {
10747 return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
10748 }
10749
10750 /* Return the symtab_and_line that should be used to insert an exception
10751 catchpoint of the TYPE kind.
10752
10753 EX_STRING should contain the name of a specific exception
10754 that the catchpoint should catch, or NULL otherwise.
10755
10756 The idea behind all the remaining parameters is that their names match
10757 the name of certain fields in the breakpoint structure that are used to
10758 handle exception catchpoints. This function returns the value to which
10759 these fields should be set, depending on the type of catchpoint we need
10760 to create.
10761
10762 If COND and COND_STRING are both non-NULL, any value they might
10763 hold will be free'ed, and then replaced by newly allocated ones.
10764 These parameters are left untouched otherwise. */
10765
10766 static struct symtab_and_line
10767 ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
10768 char **addr_string, char **cond_string,
10769 struct expression **cond, struct breakpoint_ops **ops)
10770 {
10771 const char *sym_name;
10772 struct symbol *sym;
10773 struct symtab_and_line sal;
10774
10775 /* First, find out which exception support info to use. */
10776 ada_exception_support_info_sniffer ();
10777
10778 /* Then lookup the function on which we will break in order to catch
10779 the Ada exceptions requested by the user. */
10780
10781 sym_name = ada_exception_sym_name (ex);
10782 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
10783
10784 /* The symbol we're looking up is provided by a unit in the GNAT runtime
10785 that should be compiled with debugging information. As a result, we
10786 expect to find that symbol in the symtabs. If we don't find it, then
10787 the target most likely does not support Ada exceptions, or we cannot
10788 insert exception breakpoints yet, because the GNAT runtime hasn't been
10789 loaded yet. */
10790
10791 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
10792 in such a way that no debugging information is produced for the symbol
10793 we are looking for. In this case, we could search the minimal symbols
10794 as a fall-back mechanism. This would still be operating in degraded
10795 mode, however, as we would still be missing the debugging information
10796 that is needed in order to extract the name of the exception being
10797 raised (this name is printed in the catchpoint message, and is also
10798 used when trying to catch a specific exception). We do not handle
10799 this case for now. */
10800
10801 if (sym == NULL)
10802 error (_("Unable to break on '%s' in this configuration."), sym_name);
10803
10804 /* Make sure that the symbol we found corresponds to a function. */
10805 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
10806 error (_("Symbol \"%s\" is not a function (class = %d)"),
10807 sym_name, SYMBOL_CLASS (sym));
10808
10809 sal = find_function_start_sal (sym, 1);
10810
10811 /* Set ADDR_STRING. */
10812
10813 *addr_string = xstrdup (sym_name);
10814
10815 /* Set the COND and COND_STRING (if not NULL). */
10816
10817 if (cond_string != NULL && cond != NULL)
10818 {
10819 if (*cond_string != NULL)
10820 {
10821 xfree (*cond_string);
10822 *cond_string = NULL;
10823 }
10824 if (*cond != NULL)
10825 {
10826 xfree (*cond);
10827 *cond = NULL;
10828 }
10829 if (exp_string != NULL)
10830 {
10831 *cond_string = ada_exception_catchpoint_cond_string (exp_string);
10832 *cond = ada_parse_catchpoint_condition (*cond_string, sal);
10833 }
10834 }
10835
10836 /* Set OPS. */
10837 *ops = ada_exception_breakpoint_ops (ex);
10838
10839 return sal;
10840 }
10841
10842 /* Parse the arguments (ARGS) of the "catch exception" command.
10843
10844 Set TYPE to the appropriate exception catchpoint type.
10845 If the user asked the catchpoint to catch only a specific
10846 exception, then save the exception name in ADDR_STRING.
10847
10848 See ada_exception_sal for a description of all the remaining
10849 function arguments of this function. */
10850
10851 struct symtab_and_line
10852 ada_decode_exception_location (char *args, char **addr_string,
10853 char **exp_string, char **cond_string,
10854 struct expression **cond,
10855 struct breakpoint_ops **ops)
10856 {
10857 enum exception_catchpoint_kind ex;
10858
10859 catch_ada_exception_command_split (args, &ex, exp_string);
10860 return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
10861 cond, ops);
10862 }
10863
10864 struct symtab_and_line
10865 ada_decode_assert_location (char *args, char **addr_string,
10866 struct breakpoint_ops **ops)
10867 {
10868 /* Check that no argument where provided at the end of the command. */
10869
10870 if (args != NULL)
10871 {
10872 while (isspace (*args))
10873 args++;
10874 if (*args != '\0')
10875 error (_("Junk at end of arguments."));
10876 }
10877
10878 return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
10879 ops);
10880 }
10881
10882 /* Operators */
10883 /* Information about operators given special treatment in functions
10884 below. */
10885 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
10886
10887 #define ADA_OPERATORS \
10888 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
10889 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
10890 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
10891 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
10892 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
10893 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
10894 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
10895 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
10896 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
10897 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
10898 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
10899 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
10900 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
10901 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
10902 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
10903 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
10904 OP_DEFN (OP_OTHERS, 1, 1, 0) \
10905 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
10906 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
10907
10908 static void
10909 ada_operator_length (struct expression *exp, int pc, int *oplenp, int *argsp)
10910 {
10911 switch (exp->elts[pc - 1].opcode)
10912 {
10913 default:
10914 operator_length_standard (exp, pc, oplenp, argsp);
10915 break;
10916
10917 #define OP_DEFN(op, len, args, binop) \
10918 case op: *oplenp = len; *argsp = args; break;
10919 ADA_OPERATORS;
10920 #undef OP_DEFN
10921
10922 case OP_AGGREGATE:
10923 *oplenp = 3;
10924 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
10925 break;
10926
10927 case OP_CHOICES:
10928 *oplenp = 3;
10929 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
10930 break;
10931 }
10932 }
10933
10934 /* Implementation of the exp_descriptor method operator_check. */
10935
10936 static int
10937 ada_operator_check (struct expression *exp, int pos,
10938 int (*objfile_func) (struct objfile *objfile, void *data),
10939 void *data)
10940 {
10941 const union exp_element *const elts = exp->elts;
10942 struct type *type = NULL;
10943
10944 switch (elts[pos].opcode)
10945 {
10946 case UNOP_IN_RANGE:
10947 case UNOP_QUAL:
10948 type = elts[pos + 1].type;
10949 break;
10950
10951 default:
10952 return operator_check_standard (exp, pos, objfile_func, data);
10953 }
10954
10955 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
10956
10957 if (type && TYPE_OBJFILE (type)
10958 && (*objfile_func) (TYPE_OBJFILE (type), data))
10959 return 1;
10960
10961 return 0;
10962 }
10963
10964 static char *
10965 ada_op_name (enum exp_opcode opcode)
10966 {
10967 switch (opcode)
10968 {
10969 default:
10970 return op_name_standard (opcode);
10971
10972 #define OP_DEFN(op, len, args, binop) case op: return #op;
10973 ADA_OPERATORS;
10974 #undef OP_DEFN
10975
10976 case OP_AGGREGATE:
10977 return "OP_AGGREGATE";
10978 case OP_CHOICES:
10979 return "OP_CHOICES";
10980 case OP_NAME:
10981 return "OP_NAME";
10982 }
10983 }
10984
10985 /* As for operator_length, but assumes PC is pointing at the first
10986 element of the operator, and gives meaningful results only for the
10987 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
10988
10989 static void
10990 ada_forward_operator_length (struct expression *exp, int pc,
10991 int *oplenp, int *argsp)
10992 {
10993 switch (exp->elts[pc].opcode)
10994 {
10995 default:
10996 *oplenp = *argsp = 0;
10997 break;
10998
10999 #define OP_DEFN(op, len, args, binop) \
11000 case op: *oplenp = len; *argsp = args; break;
11001 ADA_OPERATORS;
11002 #undef OP_DEFN
11003
11004 case OP_AGGREGATE:
11005 *oplenp = 3;
11006 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
11007 break;
11008
11009 case OP_CHOICES:
11010 *oplenp = 3;
11011 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
11012 break;
11013
11014 case OP_STRING:
11015 case OP_NAME:
11016 {
11017 int len = longest_to_int (exp->elts[pc + 1].longconst);
11018 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
11019 *argsp = 0;
11020 break;
11021 }
11022 }
11023 }
11024
11025 static int
11026 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
11027 {
11028 enum exp_opcode op = exp->elts[elt].opcode;
11029 int oplen, nargs;
11030 int pc = elt;
11031 int i;
11032
11033 ada_forward_operator_length (exp, elt, &oplen, &nargs);
11034
11035 switch (op)
11036 {
11037 /* Ada attributes ('Foo). */
11038 case OP_ATR_FIRST:
11039 case OP_ATR_LAST:
11040 case OP_ATR_LENGTH:
11041 case OP_ATR_IMAGE:
11042 case OP_ATR_MAX:
11043 case OP_ATR_MIN:
11044 case OP_ATR_MODULUS:
11045 case OP_ATR_POS:
11046 case OP_ATR_SIZE:
11047 case OP_ATR_TAG:
11048 case OP_ATR_VAL:
11049 break;
11050
11051 case UNOP_IN_RANGE:
11052 case UNOP_QUAL:
11053 /* XXX: gdb_sprint_host_address, type_sprint */
11054 fprintf_filtered (stream, _("Type @"));
11055 gdb_print_host_address (exp->elts[pc + 1].type, stream);
11056 fprintf_filtered (stream, " (");
11057 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
11058 fprintf_filtered (stream, ")");
11059 break;
11060 case BINOP_IN_BOUNDS:
11061 fprintf_filtered (stream, " (%d)",
11062 longest_to_int (exp->elts[pc + 2].longconst));
11063 break;
11064 case TERNOP_IN_RANGE:
11065 break;
11066
11067 case OP_AGGREGATE:
11068 case OP_OTHERS:
11069 case OP_DISCRETE_RANGE:
11070 case OP_POSITIONAL:
11071 case OP_CHOICES:
11072 break;
11073
11074 case OP_NAME:
11075 case OP_STRING:
11076 {
11077 char *name = &exp->elts[elt + 2].string;
11078 int len = longest_to_int (exp->elts[elt + 1].longconst);
11079 fprintf_filtered (stream, "Text: `%.*s'", len, name);
11080 break;
11081 }
11082
11083 default:
11084 return dump_subexp_body_standard (exp, stream, elt);
11085 }
11086
11087 elt += oplen;
11088 for (i = 0; i < nargs; i += 1)
11089 elt = dump_subexp (exp, stream, elt);
11090
11091 return elt;
11092 }
11093
11094 /* The Ada extension of print_subexp (q.v.). */
11095
11096 static void
11097 ada_print_subexp (struct expression *exp, int *pos,
11098 struct ui_file *stream, enum precedence prec)
11099 {
11100 int oplen, nargs, i;
11101 int pc = *pos;
11102 enum exp_opcode op = exp->elts[pc].opcode;
11103
11104 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11105
11106 *pos += oplen;
11107 switch (op)
11108 {
11109 default:
11110 *pos -= oplen;
11111 print_subexp_standard (exp, pos, stream, prec);
11112 return;
11113
11114 case OP_VAR_VALUE:
11115 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
11116 return;
11117
11118 case BINOP_IN_BOUNDS:
11119 /* XXX: sprint_subexp */
11120 print_subexp (exp, pos, stream, PREC_SUFFIX);
11121 fputs_filtered (" in ", stream);
11122 print_subexp (exp, pos, stream, PREC_SUFFIX);
11123 fputs_filtered ("'range", stream);
11124 if (exp->elts[pc + 1].longconst > 1)
11125 fprintf_filtered (stream, "(%ld)",
11126 (long) exp->elts[pc + 1].longconst);
11127 return;
11128
11129 case TERNOP_IN_RANGE:
11130 if (prec >= PREC_EQUAL)
11131 fputs_filtered ("(", stream);
11132 /* XXX: sprint_subexp */
11133 print_subexp (exp, pos, stream, PREC_SUFFIX);
11134 fputs_filtered (" in ", stream);
11135 print_subexp (exp, pos, stream, PREC_EQUAL);
11136 fputs_filtered (" .. ", stream);
11137 print_subexp (exp, pos, stream, PREC_EQUAL);
11138 if (prec >= PREC_EQUAL)
11139 fputs_filtered (")", stream);
11140 return;
11141
11142 case OP_ATR_FIRST:
11143 case OP_ATR_LAST:
11144 case OP_ATR_LENGTH:
11145 case OP_ATR_IMAGE:
11146 case OP_ATR_MAX:
11147 case OP_ATR_MIN:
11148 case OP_ATR_MODULUS:
11149 case OP_ATR_POS:
11150 case OP_ATR_SIZE:
11151 case OP_ATR_TAG:
11152 case OP_ATR_VAL:
11153 if (exp->elts[*pos].opcode == OP_TYPE)
11154 {
11155 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
11156 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
11157 *pos += 3;
11158 }
11159 else
11160 print_subexp (exp, pos, stream, PREC_SUFFIX);
11161 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
11162 if (nargs > 1)
11163 {
11164 int tem;
11165 for (tem = 1; tem < nargs; tem += 1)
11166 {
11167 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
11168 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
11169 }
11170 fputs_filtered (")", stream);
11171 }
11172 return;
11173
11174 case UNOP_QUAL:
11175 type_print (exp->elts[pc + 1].type, "", stream, 0);
11176 fputs_filtered ("'(", stream);
11177 print_subexp (exp, pos, stream, PREC_PREFIX);
11178 fputs_filtered (")", stream);
11179 return;
11180
11181 case UNOP_IN_RANGE:
11182 /* XXX: sprint_subexp */
11183 print_subexp (exp, pos, stream, PREC_SUFFIX);
11184 fputs_filtered (" in ", stream);
11185 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
11186 return;
11187
11188 case OP_DISCRETE_RANGE:
11189 print_subexp (exp, pos, stream, PREC_SUFFIX);
11190 fputs_filtered ("..", stream);
11191 print_subexp (exp, pos, stream, PREC_SUFFIX);
11192 return;
11193
11194 case OP_OTHERS:
11195 fputs_filtered ("others => ", stream);
11196 print_subexp (exp, pos, stream, PREC_SUFFIX);
11197 return;
11198
11199 case OP_CHOICES:
11200 for (i = 0; i < nargs-1; i += 1)
11201 {
11202 if (i > 0)
11203 fputs_filtered ("|", stream);
11204 print_subexp (exp, pos, stream, PREC_SUFFIX);
11205 }
11206 fputs_filtered (" => ", stream);
11207 print_subexp (exp, pos, stream, PREC_SUFFIX);
11208 return;
11209
11210 case OP_POSITIONAL:
11211 print_subexp (exp, pos, stream, PREC_SUFFIX);
11212 return;
11213
11214 case OP_AGGREGATE:
11215 fputs_filtered ("(", stream);
11216 for (i = 0; i < nargs; i += 1)
11217 {
11218 if (i > 0)
11219 fputs_filtered (", ", stream);
11220 print_subexp (exp, pos, stream, PREC_SUFFIX);
11221 }
11222 fputs_filtered (")", stream);
11223 return;
11224 }
11225 }
11226
11227 /* Table mapping opcodes into strings for printing operators
11228 and precedences of the operators. */
11229
11230 static const struct op_print ada_op_print_tab[] = {
11231 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
11232 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
11233 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
11234 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
11235 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
11236 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
11237 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
11238 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
11239 {"<=", BINOP_LEQ, PREC_ORDER, 0},
11240 {">=", BINOP_GEQ, PREC_ORDER, 0},
11241 {">", BINOP_GTR, PREC_ORDER, 0},
11242 {"<", BINOP_LESS, PREC_ORDER, 0},
11243 {">>", BINOP_RSH, PREC_SHIFT, 0},
11244 {"<<", BINOP_LSH, PREC_SHIFT, 0},
11245 {"+", BINOP_ADD, PREC_ADD, 0},
11246 {"-", BINOP_SUB, PREC_ADD, 0},
11247 {"&", BINOP_CONCAT, PREC_ADD, 0},
11248 {"*", BINOP_MUL, PREC_MUL, 0},
11249 {"/", BINOP_DIV, PREC_MUL, 0},
11250 {"rem", BINOP_REM, PREC_MUL, 0},
11251 {"mod", BINOP_MOD, PREC_MUL, 0},
11252 {"**", BINOP_EXP, PREC_REPEAT, 0},
11253 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
11254 {"-", UNOP_NEG, PREC_PREFIX, 0},
11255 {"+", UNOP_PLUS, PREC_PREFIX, 0},
11256 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
11257 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
11258 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
11259 {".all", UNOP_IND, PREC_SUFFIX, 1},
11260 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
11261 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
11262 {NULL, 0, 0, 0}
11263 };
11264 \f
11265 enum ada_primitive_types {
11266 ada_primitive_type_int,
11267 ada_primitive_type_long,
11268 ada_primitive_type_short,
11269 ada_primitive_type_char,
11270 ada_primitive_type_float,
11271 ada_primitive_type_double,
11272 ada_primitive_type_void,
11273 ada_primitive_type_long_long,
11274 ada_primitive_type_long_double,
11275 ada_primitive_type_natural,
11276 ada_primitive_type_positive,
11277 ada_primitive_type_system_address,
11278 nr_ada_primitive_types
11279 };
11280
11281 static void
11282 ada_language_arch_info (struct gdbarch *gdbarch,
11283 struct language_arch_info *lai)
11284 {
11285 const struct builtin_type *builtin = builtin_type (gdbarch);
11286 lai->primitive_type_vector
11287 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
11288 struct type *);
11289
11290 lai->primitive_type_vector [ada_primitive_type_int]
11291 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11292 0, "integer");
11293 lai->primitive_type_vector [ada_primitive_type_long]
11294 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
11295 0, "long_integer");
11296 lai->primitive_type_vector [ada_primitive_type_short]
11297 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
11298 0, "short_integer");
11299 lai->string_char_type
11300 = lai->primitive_type_vector [ada_primitive_type_char]
11301 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
11302 lai->primitive_type_vector [ada_primitive_type_float]
11303 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
11304 "float", NULL);
11305 lai->primitive_type_vector [ada_primitive_type_double]
11306 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
11307 "long_float", NULL);
11308 lai->primitive_type_vector [ada_primitive_type_long_long]
11309 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
11310 0, "long_long_integer");
11311 lai->primitive_type_vector [ada_primitive_type_long_double]
11312 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
11313 "long_long_float", NULL);
11314 lai->primitive_type_vector [ada_primitive_type_natural]
11315 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11316 0, "natural");
11317 lai->primitive_type_vector [ada_primitive_type_positive]
11318 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11319 0, "positive");
11320 lai->primitive_type_vector [ada_primitive_type_void]
11321 = builtin->builtin_void;
11322
11323 lai->primitive_type_vector [ada_primitive_type_system_address]
11324 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
11325 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
11326 = "system__address";
11327
11328 lai->bool_type_symbol = NULL;
11329 lai->bool_type_default = builtin->builtin_bool;
11330 }
11331 \f
11332 /* Language vector */
11333
11334 /* Not really used, but needed in the ada_language_defn. */
11335
11336 static void
11337 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
11338 {
11339 ada_emit_char (c, type, stream, quoter, 1);
11340 }
11341
11342 static int
11343 parse (void)
11344 {
11345 warnings_issued = 0;
11346 return ada_parse ();
11347 }
11348
11349 static const struct exp_descriptor ada_exp_descriptor = {
11350 ada_print_subexp,
11351 ada_operator_length,
11352 ada_operator_check,
11353 ada_op_name,
11354 ada_dump_subexp_body,
11355 ada_evaluate_subexp
11356 };
11357
11358 const struct language_defn ada_language_defn = {
11359 "ada", /* Language name */
11360 language_ada,
11361 range_check_off,
11362 type_check_off,
11363 case_sensitive_on, /* Yes, Ada is case-insensitive, but
11364 that's not quite what this means. */
11365 array_row_major,
11366 macro_expansion_no,
11367 &ada_exp_descriptor,
11368 parse,
11369 ada_error,
11370 resolve,
11371 ada_printchar, /* Print a character constant */
11372 ada_printstr, /* Function to print string constant */
11373 emit_char, /* Function to print single char (not used) */
11374 ada_print_type, /* Print a type using appropriate syntax */
11375 ada_print_typedef, /* Print a typedef using appropriate syntax */
11376 ada_val_print, /* Print a value using appropriate syntax */
11377 ada_value_print, /* Print a top-level value */
11378 NULL, /* Language specific skip_trampoline */
11379 NULL, /* name_of_this */
11380 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
11381 basic_lookup_transparent_type, /* lookup_transparent_type */
11382 ada_la_decode, /* Language specific symbol demangler */
11383 NULL, /* Language specific class_name_from_physname */
11384 ada_op_print_tab, /* expression operators for printing */
11385 0, /* c-style arrays */
11386 1, /* String lower bound */
11387 ada_get_gdb_completer_word_break_characters,
11388 ada_make_symbol_completion_list,
11389 ada_language_arch_info,
11390 ada_print_array_index,
11391 default_pass_by_reference,
11392 c_get_string,
11393 LANG_MAGIC
11394 };
11395
11396 /* Provide a prototype to silence -Wmissing-prototypes. */
11397 extern initialize_file_ftype _initialize_ada_language;
11398
11399 /* Command-list for the "set/show ada" prefix command. */
11400 static struct cmd_list_element *set_ada_list;
11401 static struct cmd_list_element *show_ada_list;
11402
11403 /* Implement the "set ada" prefix command. */
11404
11405 static void
11406 set_ada_command (char *arg, int from_tty)
11407 {
11408 printf_unfiltered (_(\
11409 "\"set ada\" must be followed by the name of a setting.\n"));
11410 help_list (set_ada_list, "set ada ", -1, gdb_stdout);
11411 }
11412
11413 /* Implement the "show ada" prefix command. */
11414
11415 static void
11416 show_ada_command (char *args, int from_tty)
11417 {
11418 cmd_show_list (show_ada_list, from_tty, "");
11419 }
11420
11421 void
11422 _initialize_ada_language (void)
11423 {
11424 add_language (&ada_language_defn);
11425
11426 add_prefix_cmd ("ada", no_class, set_ada_command,
11427 _("Prefix command for changing Ada-specfic settings"),
11428 &set_ada_list, "set ada ", 0, &setlist);
11429
11430 add_prefix_cmd ("ada", no_class, show_ada_command,
11431 _("Generic command for showing Ada-specific settings."),
11432 &show_ada_list, "show ada ", 0, &showlist);
11433
11434 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
11435 &trust_pad_over_xvs, _("\
11436 Enable or disable an optimization trusting PAD types over XVS types"), _("\
11437 Show whether an optimization trusting PAD types over XVS types is activated"),
11438 _("\
11439 This is related to the encoding used by the GNAT compiler. The debugger\n\
11440 should normally trust the contents of PAD types, but certain older versions\n\
11441 of GNAT have a bug that sometimes causes the information in the PAD type\n\
11442 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
11443 work around this bug. It is always safe to turn this option \"off\", but\n\
11444 this incurs a slight performance penalty, so it is recommended to NOT change\n\
11445 this option to \"off\" unless necessary."),
11446 NULL, NULL, &set_ada_list, &show_ada_list);
11447
11448 varsize_limit = 65536;
11449
11450 obstack_init (&symbol_list_obstack);
11451
11452 decoded_names_store = htab_create_alloc
11453 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
11454 NULL, xcalloc, xfree);
11455
11456 observer_attach_executable_changed (ada_executable_changed_observer);
11457 }