Move completion parsing to parser_state
[binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <ctype.h>
23 #include "demangle.h"
24 #include "gdb_regex.h"
25 #include "frame.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcmd.h"
29 #include "expression.h"
30 #include "parser-defs.h"
31 #include "language.h"
32 #include "varobj.h"
33 #include "c-lang.h"
34 #include "inferior.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "breakpoint.h"
38 #include "gdbcore.h"
39 #include "hashtab.h"
40 #include "gdb_obstack.h"
41 #include "ada-lang.h"
42 #include "completer.h"
43 #include <sys/stat.h>
44 #include "ui-out.h"
45 #include "block.h"
46 #include "infcall.h"
47 #include "dictionary.h"
48 #include "annotate.h"
49 #include "valprint.h"
50 #include "source.h"
51 #include "observable.h"
52 #include "common/vec.h"
53 #include "stack.h"
54 #include "common/gdb_vecs.h"
55 #include "typeprint.h"
56 #include "namespace.h"
57
58 #include "psymtab.h"
59 #include "value.h"
60 #include "mi/mi-common.h"
61 #include "arch-utils.h"
62 #include "cli/cli-utils.h"
63 #include "common/function-view.h"
64 #include "common/byte-vector.h"
65 #include <algorithm>
66
67 /* Define whether or not the C operator '/' truncates towards zero for
68 differently signed operands (truncation direction is undefined in C).
69 Copied from valarith.c. */
70
71 #ifndef TRUNCATION_TOWARDS_ZERO
72 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
73 #endif
74
75 static struct type *desc_base_type (struct type *);
76
77 static struct type *desc_bounds_type (struct type *);
78
79 static struct value *desc_bounds (struct value *);
80
81 static int fat_pntr_bounds_bitpos (struct type *);
82
83 static int fat_pntr_bounds_bitsize (struct type *);
84
85 static struct type *desc_data_target_type (struct type *);
86
87 static struct value *desc_data (struct value *);
88
89 static int fat_pntr_data_bitpos (struct type *);
90
91 static int fat_pntr_data_bitsize (struct type *);
92
93 static struct value *desc_one_bound (struct value *, int, int);
94
95 static int desc_bound_bitpos (struct type *, int, int);
96
97 static int desc_bound_bitsize (struct type *, int, int);
98
99 static struct type *desc_index_type (struct type *, int);
100
101 static int desc_arity (struct type *);
102
103 static int ada_type_match (struct type *, struct type *, int);
104
105 static int ada_args_match (struct symbol *, struct value **, int);
106
107 static struct value *make_array_descriptor (struct type *, struct value *);
108
109 static void ada_add_block_symbols (struct obstack *,
110 const struct block *,
111 const lookup_name_info &lookup_name,
112 domain_enum, struct objfile *);
113
114 static void ada_add_all_symbols (struct obstack *, const struct block *,
115 const lookup_name_info &lookup_name,
116 domain_enum, int, int *);
117
118 static int is_nonfunction (struct block_symbol *, int);
119
120 static void add_defn_to_vec (struct obstack *, struct symbol *,
121 const struct block *);
122
123 static int num_defns_collected (struct obstack *);
124
125 static struct block_symbol *defns_collected (struct obstack *, int);
126
127 static struct value *resolve_subexp (expression_up *, int *, int,
128 struct type *, int);
129
130 static void replace_operator_with_call (expression_up *, int, int, int,
131 struct symbol *, const struct block *);
132
133 static int possible_user_operator_p (enum exp_opcode, struct value **);
134
135 static const char *ada_op_name (enum exp_opcode);
136
137 static const char *ada_decoded_op_name (enum exp_opcode);
138
139 static int numeric_type_p (struct type *);
140
141 static int integer_type_p (struct type *);
142
143 static int scalar_type_p (struct type *);
144
145 static int discrete_type_p (struct type *);
146
147 static enum ada_renaming_category parse_old_style_renaming (struct type *,
148 const char **,
149 int *,
150 const char **);
151
152 static struct symbol *find_old_style_renaming_symbol (const char *,
153 const struct block *);
154
155 static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
156 int, int);
157
158 static struct value *evaluate_subexp_type (struct expression *, int *);
159
160 static struct type *ada_find_parallel_type_with_name (struct type *,
161 const char *);
162
163 static int is_dynamic_field (struct type *, int);
164
165 static struct type *to_fixed_variant_branch_type (struct type *,
166 const gdb_byte *,
167 CORE_ADDR, struct value *);
168
169 static struct type *to_fixed_array_type (struct type *, struct value *, int);
170
171 static struct type *to_fixed_range_type (struct type *, struct value *);
172
173 static struct type *to_static_fixed_type (struct type *);
174 static struct type *static_unwrap_type (struct type *type);
175
176 static struct value *unwrap_value (struct value *);
177
178 static struct type *constrained_packed_array_type (struct type *, long *);
179
180 static struct type *decode_constrained_packed_array_type (struct type *);
181
182 static long decode_packed_array_bitsize (struct type *);
183
184 static struct value *decode_constrained_packed_array (struct value *);
185
186 static int ada_is_packed_array_type (struct type *);
187
188 static int ada_is_unconstrained_packed_array_type (struct type *);
189
190 static struct value *value_subscript_packed (struct value *, int,
191 struct value **);
192
193 static struct value *coerce_unspec_val_to_type (struct value *,
194 struct type *);
195
196 static int lesseq_defined_than (struct symbol *, struct symbol *);
197
198 static int equiv_types (struct type *, struct type *);
199
200 static int is_name_suffix (const char *);
201
202 static int advance_wild_match (const char **, const char *, int);
203
204 static bool wild_match (const char *name, const char *patn);
205
206 static struct value *ada_coerce_ref (struct value *);
207
208 static LONGEST pos_atr (struct value *);
209
210 static struct value *value_pos_atr (struct type *, struct value *);
211
212 static struct value *value_val_atr (struct type *, struct value *);
213
214 static struct symbol *standard_lookup (const char *, const struct block *,
215 domain_enum);
216
217 static struct value *ada_search_struct_field (const char *, struct value *, int,
218 struct type *);
219
220 static struct value *ada_value_primitive_field (struct value *, int, int,
221 struct type *);
222
223 static int find_struct_field (const char *, struct type *, int,
224 struct type **, int *, int *, int *, int *);
225
226 static int ada_resolve_function (struct block_symbol *, int,
227 struct value **, int, const char *,
228 struct type *, int);
229
230 static int ada_is_direct_array_type (struct type *);
231
232 static void ada_language_arch_info (struct gdbarch *,
233 struct language_arch_info *);
234
235 static struct value *ada_index_struct_field (int, struct value *, int,
236 struct type *);
237
238 static struct value *assign_aggregate (struct value *, struct value *,
239 struct expression *,
240 int *, enum noside);
241
242 static void aggregate_assign_from_choices (struct value *, struct value *,
243 struct expression *,
244 int *, LONGEST *, int *,
245 int, LONGEST, LONGEST);
246
247 static void aggregate_assign_positional (struct value *, struct value *,
248 struct expression *,
249 int *, LONGEST *, int *, int,
250 LONGEST, LONGEST);
251
252
253 static void aggregate_assign_others (struct value *, struct value *,
254 struct expression *,
255 int *, LONGEST *, int, LONGEST, LONGEST);
256
257
258 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
259
260
261 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
262 int *, enum noside);
263
264 static void ada_forward_operator_length (struct expression *, int, int *,
265 int *);
266
267 static struct type *ada_find_any_type (const char *name);
268
269 static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
270 (const lookup_name_info &lookup_name);
271
272 \f
273
274 /* The result of a symbol lookup to be stored in our symbol cache. */
275
276 struct cache_entry
277 {
278 /* The name used to perform the lookup. */
279 const char *name;
280 /* The namespace used during the lookup. */
281 domain_enum domain;
282 /* The symbol returned by the lookup, or NULL if no matching symbol
283 was found. */
284 struct symbol *sym;
285 /* The block where the symbol was found, or NULL if no matching
286 symbol was found. */
287 const struct block *block;
288 /* A pointer to the next entry with the same hash. */
289 struct cache_entry *next;
290 };
291
292 /* The Ada symbol cache, used to store the result of Ada-mode symbol
293 lookups in the course of executing the user's commands.
294
295 The cache is implemented using a simple, fixed-sized hash.
296 The size is fixed on the grounds that there are not likely to be
297 all that many symbols looked up during any given session, regardless
298 of the size of the symbol table. If we decide to go to a resizable
299 table, let's just use the stuff from libiberty instead. */
300
301 #define HASH_SIZE 1009
302
303 struct ada_symbol_cache
304 {
305 /* An obstack used to store the entries in our cache. */
306 struct obstack cache_space;
307
308 /* The root of the hash table used to implement our symbol cache. */
309 struct cache_entry *root[HASH_SIZE];
310 };
311
312 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
313
314 /* Maximum-sized dynamic type. */
315 static unsigned int varsize_limit;
316
317 static const char ada_completer_word_break_characters[] =
318 #ifdef VMS
319 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
320 #else
321 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
322 #endif
323
324 /* The name of the symbol to use to get the name of the main subprogram. */
325 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
326 = "__gnat_ada_main_program_name";
327
328 /* Limit on the number of warnings to raise per expression evaluation. */
329 static int warning_limit = 2;
330
331 /* Number of warning messages issued; reset to 0 by cleanups after
332 expression evaluation. */
333 static int warnings_issued = 0;
334
335 static const char *known_runtime_file_name_patterns[] = {
336 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
337 };
338
339 static const char *known_auxiliary_function_name_patterns[] = {
340 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
341 };
342
343 /* Maintenance-related settings for this module. */
344
345 static struct cmd_list_element *maint_set_ada_cmdlist;
346 static struct cmd_list_element *maint_show_ada_cmdlist;
347
348 /* Implement the "maintenance set ada" (prefix) command. */
349
350 static void
351 maint_set_ada_cmd (const char *args, int from_tty)
352 {
353 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
354 gdb_stdout);
355 }
356
357 /* Implement the "maintenance show ada" (prefix) command. */
358
359 static void
360 maint_show_ada_cmd (const char *args, int from_tty)
361 {
362 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
363 }
364
365 /* The "maintenance ada set/show ignore-descriptive-type" value. */
366
367 static int ada_ignore_descriptive_types_p = 0;
368
369 /* Inferior-specific data. */
370
371 /* Per-inferior data for this module. */
372
373 struct ada_inferior_data
374 {
375 /* The ada__tags__type_specific_data type, which is used when decoding
376 tagged types. With older versions of GNAT, this type was directly
377 accessible through a component ("tsd") in the object tag. But this
378 is no longer the case, so we cache it for each inferior. */
379 struct type *tsd_type;
380
381 /* The exception_support_info data. This data is used to determine
382 how to implement support for Ada exception catchpoints in a given
383 inferior. */
384 const struct exception_support_info *exception_info;
385 };
386
387 /* Our key to this module's inferior data. */
388 static const struct inferior_data *ada_inferior_data;
389
390 /* A cleanup routine for our inferior data. */
391 static void
392 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
393 {
394 struct ada_inferior_data *data;
395
396 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
397 if (data != NULL)
398 xfree (data);
399 }
400
401 /* Return our inferior data for the given inferior (INF).
402
403 This function always returns a valid pointer to an allocated
404 ada_inferior_data structure. If INF's inferior data has not
405 been previously set, this functions creates a new one with all
406 fields set to zero, sets INF's inferior to it, and then returns
407 a pointer to that newly allocated ada_inferior_data. */
408
409 static struct ada_inferior_data *
410 get_ada_inferior_data (struct inferior *inf)
411 {
412 struct ada_inferior_data *data;
413
414 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
415 if (data == NULL)
416 {
417 data = XCNEW (struct ada_inferior_data);
418 set_inferior_data (inf, ada_inferior_data, data);
419 }
420
421 return data;
422 }
423
424 /* Perform all necessary cleanups regarding our module's inferior data
425 that is required after the inferior INF just exited. */
426
427 static void
428 ada_inferior_exit (struct inferior *inf)
429 {
430 ada_inferior_data_cleanup (inf, NULL);
431 set_inferior_data (inf, ada_inferior_data, NULL);
432 }
433
434
435 /* program-space-specific data. */
436
437 /* This module's per-program-space data. */
438 struct ada_pspace_data
439 {
440 /* The Ada symbol cache. */
441 struct ada_symbol_cache *sym_cache;
442 };
443
444 /* Key to our per-program-space data. */
445 static const struct program_space_data *ada_pspace_data_handle;
446
447 /* Return this module's data for the given program space (PSPACE).
448 If not is found, add a zero'ed one now.
449
450 This function always returns a valid object. */
451
452 static struct ada_pspace_data *
453 get_ada_pspace_data (struct program_space *pspace)
454 {
455 struct ada_pspace_data *data;
456
457 data = ((struct ada_pspace_data *)
458 program_space_data (pspace, ada_pspace_data_handle));
459 if (data == NULL)
460 {
461 data = XCNEW (struct ada_pspace_data);
462 set_program_space_data (pspace, ada_pspace_data_handle, data);
463 }
464
465 return data;
466 }
467
468 /* The cleanup callback for this module's per-program-space data. */
469
470 static void
471 ada_pspace_data_cleanup (struct program_space *pspace, void *data)
472 {
473 struct ada_pspace_data *pspace_data = (struct ada_pspace_data *) data;
474
475 if (pspace_data->sym_cache != NULL)
476 ada_free_symbol_cache (pspace_data->sym_cache);
477 xfree (pspace_data);
478 }
479
480 /* Utilities */
481
482 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
483 all typedef layers have been peeled. Otherwise, return TYPE.
484
485 Normally, we really expect a typedef type to only have 1 typedef layer.
486 In other words, we really expect the target type of a typedef type to be
487 a non-typedef type. This is particularly true for Ada units, because
488 the language does not have a typedef vs not-typedef distinction.
489 In that respect, the Ada compiler has been trying to eliminate as many
490 typedef definitions in the debugging information, since they generally
491 do not bring any extra information (we still use typedef under certain
492 circumstances related mostly to the GNAT encoding).
493
494 Unfortunately, we have seen situations where the debugging information
495 generated by the compiler leads to such multiple typedef layers. For
496 instance, consider the following example with stabs:
497
498 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
499 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
500
501 This is an error in the debugging information which causes type
502 pck__float_array___XUP to be defined twice, and the second time,
503 it is defined as a typedef of a typedef.
504
505 This is on the fringe of legality as far as debugging information is
506 concerned, and certainly unexpected. But it is easy to handle these
507 situations correctly, so we can afford to be lenient in this case. */
508
509 static struct type *
510 ada_typedef_target_type (struct type *type)
511 {
512 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
513 type = TYPE_TARGET_TYPE (type);
514 return type;
515 }
516
517 /* Given DECODED_NAME a string holding a symbol name in its
518 decoded form (ie using the Ada dotted notation), returns
519 its unqualified name. */
520
521 static const char *
522 ada_unqualified_name (const char *decoded_name)
523 {
524 const char *result;
525
526 /* If the decoded name starts with '<', it means that the encoded
527 name does not follow standard naming conventions, and thus that
528 it is not your typical Ada symbol name. Trying to unqualify it
529 is therefore pointless and possibly erroneous. */
530 if (decoded_name[0] == '<')
531 return decoded_name;
532
533 result = strrchr (decoded_name, '.');
534 if (result != NULL)
535 result++; /* Skip the dot... */
536 else
537 result = decoded_name;
538
539 return result;
540 }
541
542 /* Return a string starting with '<', followed by STR, and '>'. */
543
544 static std::string
545 add_angle_brackets (const char *str)
546 {
547 return string_printf ("<%s>", str);
548 }
549
550 static const char *
551 ada_get_gdb_completer_word_break_characters (void)
552 {
553 return ada_completer_word_break_characters;
554 }
555
556 /* Print an array element index using the Ada syntax. */
557
558 static void
559 ada_print_array_index (struct value *index_value, struct ui_file *stream,
560 const struct value_print_options *options)
561 {
562 LA_VALUE_PRINT (index_value, stream, options);
563 fprintf_filtered (stream, " => ");
564 }
565
566 /* la_watch_location_expression for Ada. */
567
568 gdb::unique_xmalloc_ptr<char>
569 ada_watch_location_expression (struct type *type, CORE_ADDR addr)
570 {
571 type = check_typedef (TYPE_TARGET_TYPE (check_typedef (type)));
572 std::string name = type_to_string (type);
573 return gdb::unique_xmalloc_ptr<char>
574 (xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr)));
575 }
576
577 /* Assuming VECT points to an array of *SIZE objects of size
578 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
579 updating *SIZE as necessary and returning the (new) array. */
580
581 void *
582 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
583 {
584 if (*size < min_size)
585 {
586 *size *= 2;
587 if (*size < min_size)
588 *size = min_size;
589 vect = xrealloc (vect, *size * element_size);
590 }
591 return vect;
592 }
593
594 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
595 suffix of FIELD_NAME beginning "___". */
596
597 static int
598 field_name_match (const char *field_name, const char *target)
599 {
600 int len = strlen (target);
601
602 return
603 (strncmp (field_name, target, len) == 0
604 && (field_name[len] == '\0'
605 || (startswith (field_name + len, "___")
606 && strcmp (field_name + strlen (field_name) - 6,
607 "___XVN") != 0)));
608 }
609
610
611 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
612 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
613 and return its index. This function also handles fields whose name
614 have ___ suffixes because the compiler sometimes alters their name
615 by adding such a suffix to represent fields with certain constraints.
616 If the field could not be found, return a negative number if
617 MAYBE_MISSING is set. Otherwise raise an error. */
618
619 int
620 ada_get_field_index (const struct type *type, const char *field_name,
621 int maybe_missing)
622 {
623 int fieldno;
624 struct type *struct_type = check_typedef ((struct type *) type);
625
626 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
627 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
628 return fieldno;
629
630 if (!maybe_missing)
631 error (_("Unable to find field %s in struct %s. Aborting"),
632 field_name, TYPE_NAME (struct_type));
633
634 return -1;
635 }
636
637 /* The length of the prefix of NAME prior to any "___" suffix. */
638
639 int
640 ada_name_prefix_len (const char *name)
641 {
642 if (name == NULL)
643 return 0;
644 else
645 {
646 const char *p = strstr (name, "___");
647
648 if (p == NULL)
649 return strlen (name);
650 else
651 return p - name;
652 }
653 }
654
655 /* Return non-zero if SUFFIX is a suffix of STR.
656 Return zero if STR is null. */
657
658 static int
659 is_suffix (const char *str, const char *suffix)
660 {
661 int len1, len2;
662
663 if (str == NULL)
664 return 0;
665 len1 = strlen (str);
666 len2 = strlen (suffix);
667 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
668 }
669
670 /* The contents of value VAL, treated as a value of type TYPE. The
671 result is an lval in memory if VAL is. */
672
673 static struct value *
674 coerce_unspec_val_to_type (struct value *val, struct type *type)
675 {
676 type = ada_check_typedef (type);
677 if (value_type (val) == type)
678 return val;
679 else
680 {
681 struct value *result;
682
683 /* Make sure that the object size is not unreasonable before
684 trying to allocate some memory for it. */
685 ada_ensure_varsize_limit (type);
686
687 if (value_lazy (val)
688 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
689 result = allocate_value_lazy (type);
690 else
691 {
692 result = allocate_value (type);
693 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
694 }
695 set_value_component_location (result, val);
696 set_value_bitsize (result, value_bitsize (val));
697 set_value_bitpos (result, value_bitpos (val));
698 set_value_address (result, value_address (val));
699 return result;
700 }
701 }
702
703 static const gdb_byte *
704 cond_offset_host (const gdb_byte *valaddr, long offset)
705 {
706 if (valaddr == NULL)
707 return NULL;
708 else
709 return valaddr + offset;
710 }
711
712 static CORE_ADDR
713 cond_offset_target (CORE_ADDR address, long offset)
714 {
715 if (address == 0)
716 return 0;
717 else
718 return address + offset;
719 }
720
721 /* Issue a warning (as for the definition of warning in utils.c, but
722 with exactly one argument rather than ...), unless the limit on the
723 number of warnings has passed during the evaluation of the current
724 expression. */
725
726 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
727 provided by "complaint". */
728 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
729
730 static void
731 lim_warning (const char *format, ...)
732 {
733 va_list args;
734
735 va_start (args, format);
736 warnings_issued += 1;
737 if (warnings_issued <= warning_limit)
738 vwarning (format, args);
739
740 va_end (args);
741 }
742
743 /* Issue an error if the size of an object of type T is unreasonable,
744 i.e. if it would be a bad idea to allocate a value of this type in
745 GDB. */
746
747 void
748 ada_ensure_varsize_limit (const struct type *type)
749 {
750 if (TYPE_LENGTH (type) > varsize_limit)
751 error (_("object size is larger than varsize-limit"));
752 }
753
754 /* Maximum value of a SIZE-byte signed integer type. */
755 static LONGEST
756 max_of_size (int size)
757 {
758 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
759
760 return top_bit | (top_bit - 1);
761 }
762
763 /* Minimum value of a SIZE-byte signed integer type. */
764 static LONGEST
765 min_of_size (int size)
766 {
767 return -max_of_size (size) - 1;
768 }
769
770 /* Maximum value of a SIZE-byte unsigned integer type. */
771 static ULONGEST
772 umax_of_size (int size)
773 {
774 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
775
776 return top_bit | (top_bit - 1);
777 }
778
779 /* Maximum value of integral type T, as a signed quantity. */
780 static LONGEST
781 max_of_type (struct type *t)
782 {
783 if (TYPE_UNSIGNED (t))
784 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
785 else
786 return max_of_size (TYPE_LENGTH (t));
787 }
788
789 /* Minimum value of integral type T, as a signed quantity. */
790 static LONGEST
791 min_of_type (struct type *t)
792 {
793 if (TYPE_UNSIGNED (t))
794 return 0;
795 else
796 return min_of_size (TYPE_LENGTH (t));
797 }
798
799 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
800 LONGEST
801 ada_discrete_type_high_bound (struct type *type)
802 {
803 type = resolve_dynamic_type (type, NULL, 0);
804 switch (TYPE_CODE (type))
805 {
806 case TYPE_CODE_RANGE:
807 return TYPE_HIGH_BOUND (type);
808 case TYPE_CODE_ENUM:
809 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
810 case TYPE_CODE_BOOL:
811 return 1;
812 case TYPE_CODE_CHAR:
813 case TYPE_CODE_INT:
814 return max_of_type (type);
815 default:
816 error (_("Unexpected type in ada_discrete_type_high_bound."));
817 }
818 }
819
820 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
821 LONGEST
822 ada_discrete_type_low_bound (struct type *type)
823 {
824 type = resolve_dynamic_type (type, NULL, 0);
825 switch (TYPE_CODE (type))
826 {
827 case TYPE_CODE_RANGE:
828 return TYPE_LOW_BOUND (type);
829 case TYPE_CODE_ENUM:
830 return TYPE_FIELD_ENUMVAL (type, 0);
831 case TYPE_CODE_BOOL:
832 return 0;
833 case TYPE_CODE_CHAR:
834 case TYPE_CODE_INT:
835 return min_of_type (type);
836 default:
837 error (_("Unexpected type in ada_discrete_type_low_bound."));
838 }
839 }
840
841 /* The identity on non-range types. For range types, the underlying
842 non-range scalar type. */
843
844 static struct type *
845 get_base_type (struct type *type)
846 {
847 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
848 {
849 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
850 return type;
851 type = TYPE_TARGET_TYPE (type);
852 }
853 return type;
854 }
855
856 /* Return a decoded version of the given VALUE. This means returning
857 a value whose type is obtained by applying all the GNAT-specific
858 encondings, making the resulting type a static but standard description
859 of the initial type. */
860
861 struct value *
862 ada_get_decoded_value (struct value *value)
863 {
864 struct type *type = ada_check_typedef (value_type (value));
865
866 if (ada_is_array_descriptor_type (type)
867 || (ada_is_constrained_packed_array_type (type)
868 && TYPE_CODE (type) != TYPE_CODE_PTR))
869 {
870 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
871 value = ada_coerce_to_simple_array_ptr (value);
872 else
873 value = ada_coerce_to_simple_array (value);
874 }
875 else
876 value = ada_to_fixed_value (value);
877
878 return value;
879 }
880
881 /* Same as ada_get_decoded_value, but with the given TYPE.
882 Because there is no associated actual value for this type,
883 the resulting type might be a best-effort approximation in
884 the case of dynamic types. */
885
886 struct type *
887 ada_get_decoded_type (struct type *type)
888 {
889 type = to_static_fixed_type (type);
890 if (ada_is_constrained_packed_array_type (type))
891 type = ada_coerce_to_simple_array_type (type);
892 return type;
893 }
894
895 \f
896
897 /* Language Selection */
898
899 /* If the main program is in Ada, return language_ada, otherwise return LANG
900 (the main program is in Ada iif the adainit symbol is found). */
901
902 enum language
903 ada_update_initial_language (enum language lang)
904 {
905 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
906 (struct objfile *) NULL).minsym != NULL)
907 return language_ada;
908
909 return lang;
910 }
911
912 /* If the main procedure is written in Ada, then return its name.
913 The result is good until the next call. Return NULL if the main
914 procedure doesn't appear to be in Ada. */
915
916 char *
917 ada_main_name (void)
918 {
919 struct bound_minimal_symbol msym;
920 static gdb::unique_xmalloc_ptr<char> main_program_name;
921
922 /* For Ada, the name of the main procedure is stored in a specific
923 string constant, generated by the binder. Look for that symbol,
924 extract its address, and then read that string. If we didn't find
925 that string, then most probably the main procedure is not written
926 in Ada. */
927 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
928
929 if (msym.minsym != NULL)
930 {
931 CORE_ADDR main_program_name_addr;
932 int err_code;
933
934 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
935 if (main_program_name_addr == 0)
936 error (_("Invalid address for Ada main program name."));
937
938 target_read_string (main_program_name_addr, &main_program_name,
939 1024, &err_code);
940
941 if (err_code != 0)
942 return NULL;
943 return main_program_name.get ();
944 }
945
946 /* The main procedure doesn't seem to be in Ada. */
947 return NULL;
948 }
949 \f
950 /* Symbols */
951
952 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
953 of NULLs. */
954
955 const struct ada_opname_map ada_opname_table[] = {
956 {"Oadd", "\"+\"", BINOP_ADD},
957 {"Osubtract", "\"-\"", BINOP_SUB},
958 {"Omultiply", "\"*\"", BINOP_MUL},
959 {"Odivide", "\"/\"", BINOP_DIV},
960 {"Omod", "\"mod\"", BINOP_MOD},
961 {"Orem", "\"rem\"", BINOP_REM},
962 {"Oexpon", "\"**\"", BINOP_EXP},
963 {"Olt", "\"<\"", BINOP_LESS},
964 {"Ole", "\"<=\"", BINOP_LEQ},
965 {"Ogt", "\">\"", BINOP_GTR},
966 {"Oge", "\">=\"", BINOP_GEQ},
967 {"Oeq", "\"=\"", BINOP_EQUAL},
968 {"One", "\"/=\"", BINOP_NOTEQUAL},
969 {"Oand", "\"and\"", BINOP_BITWISE_AND},
970 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
971 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
972 {"Oconcat", "\"&\"", BINOP_CONCAT},
973 {"Oabs", "\"abs\"", UNOP_ABS},
974 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
975 {"Oadd", "\"+\"", UNOP_PLUS},
976 {"Osubtract", "\"-\"", UNOP_NEG},
977 {NULL, NULL}
978 };
979
980 /* The "encoded" form of DECODED, according to GNAT conventions. The
981 result is valid until the next call to ada_encode. If
982 THROW_ERRORS, throw an error if invalid operator name is found.
983 Otherwise, return NULL in that case. */
984
985 static char *
986 ada_encode_1 (const char *decoded, bool throw_errors)
987 {
988 static char *encoding_buffer = NULL;
989 static size_t encoding_buffer_size = 0;
990 const char *p;
991 int k;
992
993 if (decoded == NULL)
994 return NULL;
995
996 GROW_VECT (encoding_buffer, encoding_buffer_size,
997 2 * strlen (decoded) + 10);
998
999 k = 0;
1000 for (p = decoded; *p != '\0'; p += 1)
1001 {
1002 if (*p == '.')
1003 {
1004 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
1005 k += 2;
1006 }
1007 else if (*p == '"')
1008 {
1009 const struct ada_opname_map *mapping;
1010
1011 for (mapping = ada_opname_table;
1012 mapping->encoded != NULL
1013 && !startswith (p, mapping->decoded); mapping += 1)
1014 ;
1015 if (mapping->encoded == NULL)
1016 {
1017 if (throw_errors)
1018 error (_("invalid Ada operator name: %s"), p);
1019 else
1020 return NULL;
1021 }
1022 strcpy (encoding_buffer + k, mapping->encoded);
1023 k += strlen (mapping->encoded);
1024 break;
1025 }
1026 else
1027 {
1028 encoding_buffer[k] = *p;
1029 k += 1;
1030 }
1031 }
1032
1033 encoding_buffer[k] = '\0';
1034 return encoding_buffer;
1035 }
1036
1037 /* The "encoded" form of DECODED, according to GNAT conventions.
1038 The result is valid until the next call to ada_encode. */
1039
1040 char *
1041 ada_encode (const char *decoded)
1042 {
1043 return ada_encode_1 (decoded, true);
1044 }
1045
1046 /* Return NAME folded to lower case, or, if surrounded by single
1047 quotes, unfolded, but with the quotes stripped away. Result good
1048 to next call. */
1049
1050 char *
1051 ada_fold_name (const char *name)
1052 {
1053 static char *fold_buffer = NULL;
1054 static size_t fold_buffer_size = 0;
1055
1056 int len = strlen (name);
1057 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
1058
1059 if (name[0] == '\'')
1060 {
1061 strncpy (fold_buffer, name + 1, len - 2);
1062 fold_buffer[len - 2] = '\000';
1063 }
1064 else
1065 {
1066 int i;
1067
1068 for (i = 0; i <= len; i += 1)
1069 fold_buffer[i] = tolower (name[i]);
1070 }
1071
1072 return fold_buffer;
1073 }
1074
1075 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1076
1077 static int
1078 is_lower_alphanum (const char c)
1079 {
1080 return (isdigit (c) || (isalpha (c) && islower (c)));
1081 }
1082
1083 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1084 This function saves in LEN the length of that same symbol name but
1085 without either of these suffixes:
1086 . .{DIGIT}+
1087 . ${DIGIT}+
1088 . ___{DIGIT}+
1089 . __{DIGIT}+.
1090
1091 These are suffixes introduced by the compiler for entities such as
1092 nested subprogram for instance, in order to avoid name clashes.
1093 They do not serve any purpose for the debugger. */
1094
1095 static void
1096 ada_remove_trailing_digits (const char *encoded, int *len)
1097 {
1098 if (*len > 1 && isdigit (encoded[*len - 1]))
1099 {
1100 int i = *len - 2;
1101
1102 while (i > 0 && isdigit (encoded[i]))
1103 i--;
1104 if (i >= 0 && encoded[i] == '.')
1105 *len = i;
1106 else if (i >= 0 && encoded[i] == '$')
1107 *len = i;
1108 else if (i >= 2 && startswith (encoded + i - 2, "___"))
1109 *len = i - 2;
1110 else if (i >= 1 && startswith (encoded + i - 1, "__"))
1111 *len = i - 1;
1112 }
1113 }
1114
1115 /* Remove the suffix introduced by the compiler for protected object
1116 subprograms. */
1117
1118 static void
1119 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1120 {
1121 /* Remove trailing N. */
1122
1123 /* Protected entry subprograms are broken into two
1124 separate subprograms: The first one is unprotected, and has
1125 a 'N' suffix; the second is the protected version, and has
1126 the 'P' suffix. The second calls the first one after handling
1127 the protection. Since the P subprograms are internally generated,
1128 we leave these names undecoded, giving the user a clue that this
1129 entity is internal. */
1130
1131 if (*len > 1
1132 && encoded[*len - 1] == 'N'
1133 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1134 *len = *len - 1;
1135 }
1136
1137 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1138
1139 static void
1140 ada_remove_Xbn_suffix (const char *encoded, int *len)
1141 {
1142 int i = *len - 1;
1143
1144 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1145 i--;
1146
1147 if (encoded[i] != 'X')
1148 return;
1149
1150 if (i == 0)
1151 return;
1152
1153 if (isalnum (encoded[i-1]))
1154 *len = i;
1155 }
1156
1157 /* If ENCODED follows the GNAT entity encoding conventions, then return
1158 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1159 replaced by ENCODED.
1160
1161 The resulting string is valid until the next call of ada_decode.
1162 If the string is unchanged by decoding, the original string pointer
1163 is returned. */
1164
1165 const char *
1166 ada_decode (const char *encoded)
1167 {
1168 int i, j;
1169 int len0;
1170 const char *p;
1171 char *decoded;
1172 int at_start_name;
1173 static char *decoding_buffer = NULL;
1174 static size_t decoding_buffer_size = 0;
1175
1176 /* With function descriptors on PPC64, the value of a symbol named
1177 ".FN", if it exists, is the entry point of the function "FN". */
1178 if (encoded[0] == '.')
1179 encoded += 1;
1180
1181 /* The name of the Ada main procedure starts with "_ada_".
1182 This prefix is not part of the decoded name, so skip this part
1183 if we see this prefix. */
1184 if (startswith (encoded, "_ada_"))
1185 encoded += 5;
1186
1187 /* If the name starts with '_', then it is not a properly encoded
1188 name, so do not attempt to decode it. Similarly, if the name
1189 starts with '<', the name should not be decoded. */
1190 if (encoded[0] == '_' || encoded[0] == '<')
1191 goto Suppress;
1192
1193 len0 = strlen (encoded);
1194
1195 ada_remove_trailing_digits (encoded, &len0);
1196 ada_remove_po_subprogram_suffix (encoded, &len0);
1197
1198 /* Remove the ___X.* suffix if present. Do not forget to verify that
1199 the suffix is located before the current "end" of ENCODED. We want
1200 to avoid re-matching parts of ENCODED that have previously been
1201 marked as discarded (by decrementing LEN0). */
1202 p = strstr (encoded, "___");
1203 if (p != NULL && p - encoded < len0 - 3)
1204 {
1205 if (p[3] == 'X')
1206 len0 = p - encoded;
1207 else
1208 goto Suppress;
1209 }
1210
1211 /* Remove any trailing TKB suffix. It tells us that this symbol
1212 is for the body of a task, but that information does not actually
1213 appear in the decoded name. */
1214
1215 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1216 len0 -= 3;
1217
1218 /* Remove any trailing TB suffix. The TB suffix is slightly different
1219 from the TKB suffix because it is used for non-anonymous task
1220 bodies. */
1221
1222 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1223 len0 -= 2;
1224
1225 /* Remove trailing "B" suffixes. */
1226 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1227
1228 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1229 len0 -= 1;
1230
1231 /* Make decoded big enough for possible expansion by operator name. */
1232
1233 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1234 decoded = decoding_buffer;
1235
1236 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1237
1238 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1239 {
1240 i = len0 - 2;
1241 while ((i >= 0 && isdigit (encoded[i]))
1242 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1243 i -= 1;
1244 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1245 len0 = i - 1;
1246 else if (encoded[i] == '$')
1247 len0 = i;
1248 }
1249
1250 /* The first few characters that are not alphabetic are not part
1251 of any encoding we use, so we can copy them over verbatim. */
1252
1253 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1254 decoded[j] = encoded[i];
1255
1256 at_start_name = 1;
1257 while (i < len0)
1258 {
1259 /* Is this a symbol function? */
1260 if (at_start_name && encoded[i] == 'O')
1261 {
1262 int k;
1263
1264 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1265 {
1266 int op_len = strlen (ada_opname_table[k].encoded);
1267 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1268 op_len - 1) == 0)
1269 && !isalnum (encoded[i + op_len]))
1270 {
1271 strcpy (decoded + j, ada_opname_table[k].decoded);
1272 at_start_name = 0;
1273 i += op_len;
1274 j += strlen (ada_opname_table[k].decoded);
1275 break;
1276 }
1277 }
1278 if (ada_opname_table[k].encoded != NULL)
1279 continue;
1280 }
1281 at_start_name = 0;
1282
1283 /* Replace "TK__" with "__", which will eventually be translated
1284 into "." (just below). */
1285
1286 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1287 i += 2;
1288
1289 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1290 be translated into "." (just below). These are internal names
1291 generated for anonymous blocks inside which our symbol is nested. */
1292
1293 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1294 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1295 && isdigit (encoded [i+4]))
1296 {
1297 int k = i + 5;
1298
1299 while (k < len0 && isdigit (encoded[k]))
1300 k++; /* Skip any extra digit. */
1301
1302 /* Double-check that the "__B_{DIGITS}+" sequence we found
1303 is indeed followed by "__". */
1304 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1305 i = k;
1306 }
1307
1308 /* Remove _E{DIGITS}+[sb] */
1309
1310 /* Just as for protected object subprograms, there are 2 categories
1311 of subprograms created by the compiler for each entry. The first
1312 one implements the actual entry code, and has a suffix following
1313 the convention above; the second one implements the barrier and
1314 uses the same convention as above, except that the 'E' is replaced
1315 by a 'B'.
1316
1317 Just as above, we do not decode the name of barrier functions
1318 to give the user a clue that the code he is debugging has been
1319 internally generated. */
1320
1321 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1322 && isdigit (encoded[i+2]))
1323 {
1324 int k = i + 3;
1325
1326 while (k < len0 && isdigit (encoded[k]))
1327 k++;
1328
1329 if (k < len0
1330 && (encoded[k] == 'b' || encoded[k] == 's'))
1331 {
1332 k++;
1333 /* Just as an extra precaution, make sure that if this
1334 suffix is followed by anything else, it is a '_'.
1335 Otherwise, we matched this sequence by accident. */
1336 if (k == len0
1337 || (k < len0 && encoded[k] == '_'))
1338 i = k;
1339 }
1340 }
1341
1342 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1343 the GNAT front-end in protected object subprograms. */
1344
1345 if (i < len0 + 3
1346 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1347 {
1348 /* Backtrack a bit up until we reach either the begining of
1349 the encoded name, or "__". Make sure that we only find
1350 digits or lowercase characters. */
1351 const char *ptr = encoded + i - 1;
1352
1353 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1354 ptr--;
1355 if (ptr < encoded
1356 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1357 i++;
1358 }
1359
1360 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1361 {
1362 /* This is a X[bn]* sequence not separated from the previous
1363 part of the name with a non-alpha-numeric character (in other
1364 words, immediately following an alpha-numeric character), then
1365 verify that it is placed at the end of the encoded name. If
1366 not, then the encoding is not valid and we should abort the
1367 decoding. Otherwise, just skip it, it is used in body-nested
1368 package names. */
1369 do
1370 i += 1;
1371 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1372 if (i < len0)
1373 goto Suppress;
1374 }
1375 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1376 {
1377 /* Replace '__' by '.'. */
1378 decoded[j] = '.';
1379 at_start_name = 1;
1380 i += 2;
1381 j += 1;
1382 }
1383 else
1384 {
1385 /* It's a character part of the decoded name, so just copy it
1386 over. */
1387 decoded[j] = encoded[i];
1388 i += 1;
1389 j += 1;
1390 }
1391 }
1392 decoded[j] = '\000';
1393
1394 /* Decoded names should never contain any uppercase character.
1395 Double-check this, and abort the decoding if we find one. */
1396
1397 for (i = 0; decoded[i] != '\0'; i += 1)
1398 if (isupper (decoded[i]) || decoded[i] == ' ')
1399 goto Suppress;
1400
1401 if (strcmp (decoded, encoded) == 0)
1402 return encoded;
1403 else
1404 return decoded;
1405
1406 Suppress:
1407 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1408 decoded = decoding_buffer;
1409 if (encoded[0] == '<')
1410 strcpy (decoded, encoded);
1411 else
1412 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1413 return decoded;
1414
1415 }
1416
1417 /* Table for keeping permanent unique copies of decoded names. Once
1418 allocated, names in this table are never released. While this is a
1419 storage leak, it should not be significant unless there are massive
1420 changes in the set of decoded names in successive versions of a
1421 symbol table loaded during a single session. */
1422 static struct htab *decoded_names_store;
1423
1424 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1425 in the language-specific part of GSYMBOL, if it has not been
1426 previously computed. Tries to save the decoded name in the same
1427 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1428 in any case, the decoded symbol has a lifetime at least that of
1429 GSYMBOL).
1430 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1431 const, but nevertheless modified to a semantically equivalent form
1432 when a decoded name is cached in it. */
1433
1434 const char *
1435 ada_decode_symbol (const struct general_symbol_info *arg)
1436 {
1437 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1438 const char **resultp =
1439 &gsymbol->language_specific.demangled_name;
1440
1441 if (!gsymbol->ada_mangled)
1442 {
1443 const char *decoded = ada_decode (gsymbol->name);
1444 struct obstack *obstack = gsymbol->language_specific.obstack;
1445
1446 gsymbol->ada_mangled = 1;
1447
1448 if (obstack != NULL)
1449 *resultp
1450 = (const char *) obstack_copy0 (obstack, decoded, strlen (decoded));
1451 else
1452 {
1453 /* Sometimes, we can't find a corresponding objfile, in
1454 which case, we put the result on the heap. Since we only
1455 decode when needed, we hope this usually does not cause a
1456 significant memory leak (FIXME). */
1457
1458 char **slot = (char **) htab_find_slot (decoded_names_store,
1459 decoded, INSERT);
1460
1461 if (*slot == NULL)
1462 *slot = xstrdup (decoded);
1463 *resultp = *slot;
1464 }
1465 }
1466
1467 return *resultp;
1468 }
1469
1470 static char *
1471 ada_la_decode (const char *encoded, int options)
1472 {
1473 return xstrdup (ada_decode (encoded));
1474 }
1475
1476 /* Implement la_sniff_from_mangled_name for Ada. */
1477
1478 static int
1479 ada_sniff_from_mangled_name (const char *mangled, char **out)
1480 {
1481 const char *demangled = ada_decode (mangled);
1482
1483 *out = NULL;
1484
1485 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
1486 {
1487 /* Set the gsymbol language to Ada, but still return 0.
1488 Two reasons for that:
1489
1490 1. For Ada, we prefer computing the symbol's decoded name
1491 on the fly rather than pre-compute it, in order to save
1492 memory (Ada projects are typically very large).
1493
1494 2. There are some areas in the definition of the GNAT
1495 encoding where, with a bit of bad luck, we might be able
1496 to decode a non-Ada symbol, generating an incorrect
1497 demangled name (Eg: names ending with "TB" for instance
1498 are identified as task bodies and so stripped from
1499 the decoded name returned).
1500
1501 Returning 1, here, but not setting *DEMANGLED, helps us get a
1502 little bit of the best of both worlds. Because we're last,
1503 we should not affect any of the other languages that were
1504 able to demangle the symbol before us; we get to correctly
1505 tag Ada symbols as such; and even if we incorrectly tagged a
1506 non-Ada symbol, which should be rare, any routing through the
1507 Ada language should be transparent (Ada tries to behave much
1508 like C/C++ with non-Ada symbols). */
1509 return 1;
1510 }
1511
1512 return 0;
1513 }
1514
1515 \f
1516
1517 /* Arrays */
1518
1519 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1520 generated by the GNAT compiler to describe the index type used
1521 for each dimension of an array, check whether it follows the latest
1522 known encoding. If not, fix it up to conform to the latest encoding.
1523 Otherwise, do nothing. This function also does nothing if
1524 INDEX_DESC_TYPE is NULL.
1525
1526 The GNAT encoding used to describle the array index type evolved a bit.
1527 Initially, the information would be provided through the name of each
1528 field of the structure type only, while the type of these fields was
1529 described as unspecified and irrelevant. The debugger was then expected
1530 to perform a global type lookup using the name of that field in order
1531 to get access to the full index type description. Because these global
1532 lookups can be very expensive, the encoding was later enhanced to make
1533 the global lookup unnecessary by defining the field type as being
1534 the full index type description.
1535
1536 The purpose of this routine is to allow us to support older versions
1537 of the compiler by detecting the use of the older encoding, and by
1538 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1539 we essentially replace each field's meaningless type by the associated
1540 index subtype). */
1541
1542 void
1543 ada_fixup_array_indexes_type (struct type *index_desc_type)
1544 {
1545 int i;
1546
1547 if (index_desc_type == NULL)
1548 return;
1549 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1550
1551 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1552 to check one field only, no need to check them all). If not, return
1553 now.
1554
1555 If our INDEX_DESC_TYPE was generated using the older encoding,
1556 the field type should be a meaningless integer type whose name
1557 is not equal to the field name. */
1558 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1559 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1560 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1561 return;
1562
1563 /* Fixup each field of INDEX_DESC_TYPE. */
1564 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1565 {
1566 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1567 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1568
1569 if (raw_type)
1570 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1571 }
1572 }
1573
1574 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1575
1576 static const char *bound_name[] = {
1577 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1578 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1579 };
1580
1581 /* Maximum number of array dimensions we are prepared to handle. */
1582
1583 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1584
1585
1586 /* The desc_* routines return primitive portions of array descriptors
1587 (fat pointers). */
1588
1589 /* The descriptor or array type, if any, indicated by TYPE; removes
1590 level of indirection, if needed. */
1591
1592 static struct type *
1593 desc_base_type (struct type *type)
1594 {
1595 if (type == NULL)
1596 return NULL;
1597 type = ada_check_typedef (type);
1598 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1599 type = ada_typedef_target_type (type);
1600
1601 if (type != NULL
1602 && (TYPE_CODE (type) == TYPE_CODE_PTR
1603 || TYPE_CODE (type) == TYPE_CODE_REF))
1604 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1605 else
1606 return type;
1607 }
1608
1609 /* True iff TYPE indicates a "thin" array pointer type. */
1610
1611 static int
1612 is_thin_pntr (struct type *type)
1613 {
1614 return
1615 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1616 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1617 }
1618
1619 /* The descriptor type for thin pointer type TYPE. */
1620
1621 static struct type *
1622 thin_descriptor_type (struct type *type)
1623 {
1624 struct type *base_type = desc_base_type (type);
1625
1626 if (base_type == NULL)
1627 return NULL;
1628 if (is_suffix (ada_type_name (base_type), "___XVE"))
1629 return base_type;
1630 else
1631 {
1632 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1633
1634 if (alt_type == NULL)
1635 return base_type;
1636 else
1637 return alt_type;
1638 }
1639 }
1640
1641 /* A pointer to the array data for thin-pointer value VAL. */
1642
1643 static struct value *
1644 thin_data_pntr (struct value *val)
1645 {
1646 struct type *type = ada_check_typedef (value_type (val));
1647 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1648
1649 data_type = lookup_pointer_type (data_type);
1650
1651 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1652 return value_cast (data_type, value_copy (val));
1653 else
1654 return value_from_longest (data_type, value_address (val));
1655 }
1656
1657 /* True iff TYPE indicates a "thick" array pointer type. */
1658
1659 static int
1660 is_thick_pntr (struct type *type)
1661 {
1662 type = desc_base_type (type);
1663 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1664 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1665 }
1666
1667 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1668 pointer to one, the type of its bounds data; otherwise, NULL. */
1669
1670 static struct type *
1671 desc_bounds_type (struct type *type)
1672 {
1673 struct type *r;
1674
1675 type = desc_base_type (type);
1676
1677 if (type == NULL)
1678 return NULL;
1679 else if (is_thin_pntr (type))
1680 {
1681 type = thin_descriptor_type (type);
1682 if (type == NULL)
1683 return NULL;
1684 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1685 if (r != NULL)
1686 return ada_check_typedef (r);
1687 }
1688 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1689 {
1690 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1691 if (r != NULL)
1692 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1693 }
1694 return NULL;
1695 }
1696
1697 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1698 one, a pointer to its bounds data. Otherwise NULL. */
1699
1700 static struct value *
1701 desc_bounds (struct value *arr)
1702 {
1703 struct type *type = ada_check_typedef (value_type (arr));
1704
1705 if (is_thin_pntr (type))
1706 {
1707 struct type *bounds_type =
1708 desc_bounds_type (thin_descriptor_type (type));
1709 LONGEST addr;
1710
1711 if (bounds_type == NULL)
1712 error (_("Bad GNAT array descriptor"));
1713
1714 /* NOTE: The following calculation is not really kosher, but
1715 since desc_type is an XVE-encoded type (and shouldn't be),
1716 the correct calculation is a real pain. FIXME (and fix GCC). */
1717 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1718 addr = value_as_long (arr);
1719 else
1720 addr = value_address (arr);
1721
1722 return
1723 value_from_longest (lookup_pointer_type (bounds_type),
1724 addr - TYPE_LENGTH (bounds_type));
1725 }
1726
1727 else if (is_thick_pntr (type))
1728 {
1729 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1730 _("Bad GNAT array descriptor"));
1731 struct type *p_bounds_type = value_type (p_bounds);
1732
1733 if (p_bounds_type
1734 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1735 {
1736 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1737
1738 if (TYPE_STUB (target_type))
1739 p_bounds = value_cast (lookup_pointer_type
1740 (ada_check_typedef (target_type)),
1741 p_bounds);
1742 }
1743 else
1744 error (_("Bad GNAT array descriptor"));
1745
1746 return p_bounds;
1747 }
1748 else
1749 return NULL;
1750 }
1751
1752 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1753 position of the field containing the address of the bounds data. */
1754
1755 static int
1756 fat_pntr_bounds_bitpos (struct type *type)
1757 {
1758 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1759 }
1760
1761 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1762 size of the field containing the address of the bounds data. */
1763
1764 static int
1765 fat_pntr_bounds_bitsize (struct type *type)
1766 {
1767 type = desc_base_type (type);
1768
1769 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1770 return TYPE_FIELD_BITSIZE (type, 1);
1771 else
1772 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1773 }
1774
1775 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1776 pointer to one, the type of its array data (a array-with-no-bounds type);
1777 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1778 data. */
1779
1780 static struct type *
1781 desc_data_target_type (struct type *type)
1782 {
1783 type = desc_base_type (type);
1784
1785 /* NOTE: The following is bogus; see comment in desc_bounds. */
1786 if (is_thin_pntr (type))
1787 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1788 else if (is_thick_pntr (type))
1789 {
1790 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1791
1792 if (data_type
1793 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1794 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1795 }
1796
1797 return NULL;
1798 }
1799
1800 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1801 its array data. */
1802
1803 static struct value *
1804 desc_data (struct value *arr)
1805 {
1806 struct type *type = value_type (arr);
1807
1808 if (is_thin_pntr (type))
1809 return thin_data_pntr (arr);
1810 else if (is_thick_pntr (type))
1811 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1812 _("Bad GNAT array descriptor"));
1813 else
1814 return NULL;
1815 }
1816
1817
1818 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1819 position of the field containing the address of the data. */
1820
1821 static int
1822 fat_pntr_data_bitpos (struct type *type)
1823 {
1824 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1825 }
1826
1827 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1828 size of the field containing the address of the data. */
1829
1830 static int
1831 fat_pntr_data_bitsize (struct type *type)
1832 {
1833 type = desc_base_type (type);
1834
1835 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1836 return TYPE_FIELD_BITSIZE (type, 0);
1837 else
1838 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1839 }
1840
1841 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1842 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1843 bound, if WHICH is 1. The first bound is I=1. */
1844
1845 static struct value *
1846 desc_one_bound (struct value *bounds, int i, int which)
1847 {
1848 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1849 _("Bad GNAT array descriptor bounds"));
1850 }
1851
1852 /* If BOUNDS is an array-bounds structure type, return the bit position
1853 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1854 bound, if WHICH is 1. The first bound is I=1. */
1855
1856 static int
1857 desc_bound_bitpos (struct type *type, int i, int which)
1858 {
1859 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1860 }
1861
1862 /* If BOUNDS is an array-bounds structure type, return the bit field size
1863 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1864 bound, if WHICH is 1. The first bound is I=1. */
1865
1866 static int
1867 desc_bound_bitsize (struct type *type, int i, int which)
1868 {
1869 type = desc_base_type (type);
1870
1871 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1872 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1873 else
1874 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1875 }
1876
1877 /* If TYPE is the type of an array-bounds structure, the type of its
1878 Ith bound (numbering from 1). Otherwise, NULL. */
1879
1880 static struct type *
1881 desc_index_type (struct type *type, int i)
1882 {
1883 type = desc_base_type (type);
1884
1885 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1886 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1887 else
1888 return NULL;
1889 }
1890
1891 /* The number of index positions in the array-bounds type TYPE.
1892 Return 0 if TYPE is NULL. */
1893
1894 static int
1895 desc_arity (struct type *type)
1896 {
1897 type = desc_base_type (type);
1898
1899 if (type != NULL)
1900 return TYPE_NFIELDS (type) / 2;
1901 return 0;
1902 }
1903
1904 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1905 an array descriptor type (representing an unconstrained array
1906 type). */
1907
1908 static int
1909 ada_is_direct_array_type (struct type *type)
1910 {
1911 if (type == NULL)
1912 return 0;
1913 type = ada_check_typedef (type);
1914 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1915 || ada_is_array_descriptor_type (type));
1916 }
1917
1918 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1919 * to one. */
1920
1921 static int
1922 ada_is_array_type (struct type *type)
1923 {
1924 while (type != NULL
1925 && (TYPE_CODE (type) == TYPE_CODE_PTR
1926 || TYPE_CODE (type) == TYPE_CODE_REF))
1927 type = TYPE_TARGET_TYPE (type);
1928 return ada_is_direct_array_type (type);
1929 }
1930
1931 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1932
1933 int
1934 ada_is_simple_array_type (struct type *type)
1935 {
1936 if (type == NULL)
1937 return 0;
1938 type = ada_check_typedef (type);
1939 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1940 || (TYPE_CODE (type) == TYPE_CODE_PTR
1941 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1942 == TYPE_CODE_ARRAY));
1943 }
1944
1945 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1946
1947 int
1948 ada_is_array_descriptor_type (struct type *type)
1949 {
1950 struct type *data_type = desc_data_target_type (type);
1951
1952 if (type == NULL)
1953 return 0;
1954 type = ada_check_typedef (type);
1955 return (data_type != NULL
1956 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1957 && desc_arity (desc_bounds_type (type)) > 0);
1958 }
1959
1960 /* Non-zero iff type is a partially mal-formed GNAT array
1961 descriptor. FIXME: This is to compensate for some problems with
1962 debugging output from GNAT. Re-examine periodically to see if it
1963 is still needed. */
1964
1965 int
1966 ada_is_bogus_array_descriptor (struct type *type)
1967 {
1968 return
1969 type != NULL
1970 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1971 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1972 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1973 && !ada_is_array_descriptor_type (type);
1974 }
1975
1976
1977 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1978 (fat pointer) returns the type of the array data described---specifically,
1979 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1980 in from the descriptor; otherwise, they are left unspecified. If
1981 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1982 returns NULL. The result is simply the type of ARR if ARR is not
1983 a descriptor. */
1984 struct type *
1985 ada_type_of_array (struct value *arr, int bounds)
1986 {
1987 if (ada_is_constrained_packed_array_type (value_type (arr)))
1988 return decode_constrained_packed_array_type (value_type (arr));
1989
1990 if (!ada_is_array_descriptor_type (value_type (arr)))
1991 return value_type (arr);
1992
1993 if (!bounds)
1994 {
1995 struct type *array_type =
1996 ada_check_typedef (desc_data_target_type (value_type (arr)));
1997
1998 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1999 TYPE_FIELD_BITSIZE (array_type, 0) =
2000 decode_packed_array_bitsize (value_type (arr));
2001
2002 return array_type;
2003 }
2004 else
2005 {
2006 struct type *elt_type;
2007 int arity;
2008 struct value *descriptor;
2009
2010 elt_type = ada_array_element_type (value_type (arr), -1);
2011 arity = ada_array_arity (value_type (arr));
2012
2013 if (elt_type == NULL || arity == 0)
2014 return ada_check_typedef (value_type (arr));
2015
2016 descriptor = desc_bounds (arr);
2017 if (value_as_long (descriptor) == 0)
2018 return NULL;
2019 while (arity > 0)
2020 {
2021 struct type *range_type = alloc_type_copy (value_type (arr));
2022 struct type *array_type = alloc_type_copy (value_type (arr));
2023 struct value *low = desc_one_bound (descriptor, arity, 0);
2024 struct value *high = desc_one_bound (descriptor, arity, 1);
2025
2026 arity -= 1;
2027 create_static_range_type (range_type, value_type (low),
2028 longest_to_int (value_as_long (low)),
2029 longest_to_int (value_as_long (high)));
2030 elt_type = create_array_type (array_type, elt_type, range_type);
2031
2032 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
2033 {
2034 /* We need to store the element packed bitsize, as well as
2035 recompute the array size, because it was previously
2036 computed based on the unpacked element size. */
2037 LONGEST lo = value_as_long (low);
2038 LONGEST hi = value_as_long (high);
2039
2040 TYPE_FIELD_BITSIZE (elt_type, 0) =
2041 decode_packed_array_bitsize (value_type (arr));
2042 /* If the array has no element, then the size is already
2043 zero, and does not need to be recomputed. */
2044 if (lo < hi)
2045 {
2046 int array_bitsize =
2047 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2048
2049 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2050 }
2051 }
2052 }
2053
2054 return lookup_pointer_type (elt_type);
2055 }
2056 }
2057
2058 /* If ARR does not represent an array, returns ARR unchanged.
2059 Otherwise, returns either a standard GDB array with bounds set
2060 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2061 GDB array. Returns NULL if ARR is a null fat pointer. */
2062
2063 struct value *
2064 ada_coerce_to_simple_array_ptr (struct value *arr)
2065 {
2066 if (ada_is_array_descriptor_type (value_type (arr)))
2067 {
2068 struct type *arrType = ada_type_of_array (arr, 1);
2069
2070 if (arrType == NULL)
2071 return NULL;
2072 return value_cast (arrType, value_copy (desc_data (arr)));
2073 }
2074 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2075 return decode_constrained_packed_array (arr);
2076 else
2077 return arr;
2078 }
2079
2080 /* If ARR does not represent an array, returns ARR unchanged.
2081 Otherwise, returns a standard GDB array describing ARR (which may
2082 be ARR itself if it already is in the proper form). */
2083
2084 struct value *
2085 ada_coerce_to_simple_array (struct value *arr)
2086 {
2087 if (ada_is_array_descriptor_type (value_type (arr)))
2088 {
2089 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
2090
2091 if (arrVal == NULL)
2092 error (_("Bounds unavailable for null array pointer."));
2093 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
2094 return value_ind (arrVal);
2095 }
2096 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2097 return decode_constrained_packed_array (arr);
2098 else
2099 return arr;
2100 }
2101
2102 /* If TYPE represents a GNAT array type, return it translated to an
2103 ordinary GDB array type (possibly with BITSIZE fields indicating
2104 packing). For other types, is the identity. */
2105
2106 struct type *
2107 ada_coerce_to_simple_array_type (struct type *type)
2108 {
2109 if (ada_is_constrained_packed_array_type (type))
2110 return decode_constrained_packed_array_type (type);
2111
2112 if (ada_is_array_descriptor_type (type))
2113 return ada_check_typedef (desc_data_target_type (type));
2114
2115 return type;
2116 }
2117
2118 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2119
2120 static int
2121 ada_is_packed_array_type (struct type *type)
2122 {
2123 if (type == NULL)
2124 return 0;
2125 type = desc_base_type (type);
2126 type = ada_check_typedef (type);
2127 return
2128 ada_type_name (type) != NULL
2129 && strstr (ada_type_name (type), "___XP") != NULL;
2130 }
2131
2132 /* Non-zero iff TYPE represents a standard GNAT constrained
2133 packed-array type. */
2134
2135 int
2136 ada_is_constrained_packed_array_type (struct type *type)
2137 {
2138 return ada_is_packed_array_type (type)
2139 && !ada_is_array_descriptor_type (type);
2140 }
2141
2142 /* Non-zero iff TYPE represents an array descriptor for a
2143 unconstrained packed-array type. */
2144
2145 static int
2146 ada_is_unconstrained_packed_array_type (struct type *type)
2147 {
2148 return ada_is_packed_array_type (type)
2149 && ada_is_array_descriptor_type (type);
2150 }
2151
2152 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2153 return the size of its elements in bits. */
2154
2155 static long
2156 decode_packed_array_bitsize (struct type *type)
2157 {
2158 const char *raw_name;
2159 const char *tail;
2160 long bits;
2161
2162 /* Access to arrays implemented as fat pointers are encoded as a typedef
2163 of the fat pointer type. We need the name of the fat pointer type
2164 to do the decoding, so strip the typedef layer. */
2165 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2166 type = ada_typedef_target_type (type);
2167
2168 raw_name = ada_type_name (ada_check_typedef (type));
2169 if (!raw_name)
2170 raw_name = ada_type_name (desc_base_type (type));
2171
2172 if (!raw_name)
2173 return 0;
2174
2175 tail = strstr (raw_name, "___XP");
2176 gdb_assert (tail != NULL);
2177
2178 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2179 {
2180 lim_warning
2181 (_("could not understand bit size information on packed array"));
2182 return 0;
2183 }
2184
2185 return bits;
2186 }
2187
2188 /* Given that TYPE is a standard GDB array type with all bounds filled
2189 in, and that the element size of its ultimate scalar constituents
2190 (that is, either its elements, or, if it is an array of arrays, its
2191 elements' elements, etc.) is *ELT_BITS, return an identical type,
2192 but with the bit sizes of its elements (and those of any
2193 constituent arrays) recorded in the BITSIZE components of its
2194 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2195 in bits.
2196
2197 Note that, for arrays whose index type has an XA encoding where
2198 a bound references a record discriminant, getting that discriminant,
2199 and therefore the actual value of that bound, is not possible
2200 because none of the given parameters gives us access to the record.
2201 This function assumes that it is OK in the context where it is being
2202 used to return an array whose bounds are still dynamic and where
2203 the length is arbitrary. */
2204
2205 static struct type *
2206 constrained_packed_array_type (struct type *type, long *elt_bits)
2207 {
2208 struct type *new_elt_type;
2209 struct type *new_type;
2210 struct type *index_type_desc;
2211 struct type *index_type;
2212 LONGEST low_bound, high_bound;
2213
2214 type = ada_check_typedef (type);
2215 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2216 return type;
2217
2218 index_type_desc = ada_find_parallel_type (type, "___XA");
2219 if (index_type_desc)
2220 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2221 NULL);
2222 else
2223 index_type = TYPE_INDEX_TYPE (type);
2224
2225 new_type = alloc_type_copy (type);
2226 new_elt_type =
2227 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2228 elt_bits);
2229 create_array_type (new_type, new_elt_type, index_type);
2230 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2231 TYPE_NAME (new_type) = ada_type_name (type);
2232
2233 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2234 && is_dynamic_type (check_typedef (index_type)))
2235 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2236 low_bound = high_bound = 0;
2237 if (high_bound < low_bound)
2238 *elt_bits = TYPE_LENGTH (new_type) = 0;
2239 else
2240 {
2241 *elt_bits *= (high_bound - low_bound + 1);
2242 TYPE_LENGTH (new_type) =
2243 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2244 }
2245
2246 TYPE_FIXED_INSTANCE (new_type) = 1;
2247 return new_type;
2248 }
2249
2250 /* The array type encoded by TYPE, where
2251 ada_is_constrained_packed_array_type (TYPE). */
2252
2253 static struct type *
2254 decode_constrained_packed_array_type (struct type *type)
2255 {
2256 const char *raw_name = ada_type_name (ada_check_typedef (type));
2257 char *name;
2258 const char *tail;
2259 struct type *shadow_type;
2260 long bits;
2261
2262 if (!raw_name)
2263 raw_name = ada_type_name (desc_base_type (type));
2264
2265 if (!raw_name)
2266 return NULL;
2267
2268 name = (char *) alloca (strlen (raw_name) + 1);
2269 tail = strstr (raw_name, "___XP");
2270 type = desc_base_type (type);
2271
2272 memcpy (name, raw_name, tail - raw_name);
2273 name[tail - raw_name] = '\000';
2274
2275 shadow_type = ada_find_parallel_type_with_name (type, name);
2276
2277 if (shadow_type == NULL)
2278 {
2279 lim_warning (_("could not find bounds information on packed array"));
2280 return NULL;
2281 }
2282 shadow_type = check_typedef (shadow_type);
2283
2284 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2285 {
2286 lim_warning (_("could not understand bounds "
2287 "information on packed array"));
2288 return NULL;
2289 }
2290
2291 bits = decode_packed_array_bitsize (type);
2292 return constrained_packed_array_type (shadow_type, &bits);
2293 }
2294
2295 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2296 array, returns a simple array that denotes that array. Its type is a
2297 standard GDB array type except that the BITSIZEs of the array
2298 target types are set to the number of bits in each element, and the
2299 type length is set appropriately. */
2300
2301 static struct value *
2302 decode_constrained_packed_array (struct value *arr)
2303 {
2304 struct type *type;
2305
2306 /* If our value is a pointer, then dereference it. Likewise if
2307 the value is a reference. Make sure that this operation does not
2308 cause the target type to be fixed, as this would indirectly cause
2309 this array to be decoded. The rest of the routine assumes that
2310 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2311 and "value_ind" routines to perform the dereferencing, as opposed
2312 to using "ada_coerce_ref" or "ada_value_ind". */
2313 arr = coerce_ref (arr);
2314 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2315 arr = value_ind (arr);
2316
2317 type = decode_constrained_packed_array_type (value_type (arr));
2318 if (type == NULL)
2319 {
2320 error (_("can't unpack array"));
2321 return NULL;
2322 }
2323
2324 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2325 && ada_is_modular_type (value_type (arr)))
2326 {
2327 /* This is a (right-justified) modular type representing a packed
2328 array with no wrapper. In order to interpret the value through
2329 the (left-justified) packed array type we just built, we must
2330 first left-justify it. */
2331 int bit_size, bit_pos;
2332 ULONGEST mod;
2333
2334 mod = ada_modulus (value_type (arr)) - 1;
2335 bit_size = 0;
2336 while (mod > 0)
2337 {
2338 bit_size += 1;
2339 mod >>= 1;
2340 }
2341 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2342 arr = ada_value_primitive_packed_val (arr, NULL,
2343 bit_pos / HOST_CHAR_BIT,
2344 bit_pos % HOST_CHAR_BIT,
2345 bit_size,
2346 type);
2347 }
2348
2349 return coerce_unspec_val_to_type (arr, type);
2350 }
2351
2352
2353 /* The value of the element of packed array ARR at the ARITY indices
2354 given in IND. ARR must be a simple array. */
2355
2356 static struct value *
2357 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2358 {
2359 int i;
2360 int bits, elt_off, bit_off;
2361 long elt_total_bit_offset;
2362 struct type *elt_type;
2363 struct value *v;
2364
2365 bits = 0;
2366 elt_total_bit_offset = 0;
2367 elt_type = ada_check_typedef (value_type (arr));
2368 for (i = 0; i < arity; i += 1)
2369 {
2370 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2371 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2372 error
2373 (_("attempt to do packed indexing of "
2374 "something other than a packed array"));
2375 else
2376 {
2377 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2378 LONGEST lowerbound, upperbound;
2379 LONGEST idx;
2380
2381 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2382 {
2383 lim_warning (_("don't know bounds of array"));
2384 lowerbound = upperbound = 0;
2385 }
2386
2387 idx = pos_atr (ind[i]);
2388 if (idx < lowerbound || idx > upperbound)
2389 lim_warning (_("packed array index %ld out of bounds"),
2390 (long) idx);
2391 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2392 elt_total_bit_offset += (idx - lowerbound) * bits;
2393 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2394 }
2395 }
2396 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2397 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2398
2399 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2400 bits, elt_type);
2401 return v;
2402 }
2403
2404 /* Non-zero iff TYPE includes negative integer values. */
2405
2406 static int
2407 has_negatives (struct type *type)
2408 {
2409 switch (TYPE_CODE (type))
2410 {
2411 default:
2412 return 0;
2413 case TYPE_CODE_INT:
2414 return !TYPE_UNSIGNED (type);
2415 case TYPE_CODE_RANGE:
2416 return TYPE_LOW_BOUND (type) < 0;
2417 }
2418 }
2419
2420 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2421 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2422 the unpacked buffer.
2423
2424 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2425 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2426
2427 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2428 zero otherwise.
2429
2430 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2431
2432 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2433
2434 static void
2435 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2436 gdb_byte *unpacked, int unpacked_len,
2437 int is_big_endian, int is_signed_type,
2438 int is_scalar)
2439 {
2440 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2441 int src_idx; /* Index into the source area */
2442 int src_bytes_left; /* Number of source bytes left to process. */
2443 int srcBitsLeft; /* Number of source bits left to move */
2444 int unusedLS; /* Number of bits in next significant
2445 byte of source that are unused */
2446
2447 int unpacked_idx; /* Index into the unpacked buffer */
2448 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2449
2450 unsigned long accum; /* Staging area for bits being transferred */
2451 int accumSize; /* Number of meaningful bits in accum */
2452 unsigned char sign;
2453
2454 /* Transmit bytes from least to most significant; delta is the direction
2455 the indices move. */
2456 int delta = is_big_endian ? -1 : 1;
2457
2458 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2459 bits from SRC. .*/
2460 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2461 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2462 bit_size, unpacked_len);
2463
2464 srcBitsLeft = bit_size;
2465 src_bytes_left = src_len;
2466 unpacked_bytes_left = unpacked_len;
2467 sign = 0;
2468
2469 if (is_big_endian)
2470 {
2471 src_idx = src_len - 1;
2472 if (is_signed_type
2473 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2474 sign = ~0;
2475
2476 unusedLS =
2477 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2478 % HOST_CHAR_BIT;
2479
2480 if (is_scalar)
2481 {
2482 accumSize = 0;
2483 unpacked_idx = unpacked_len - 1;
2484 }
2485 else
2486 {
2487 /* Non-scalar values must be aligned at a byte boundary... */
2488 accumSize =
2489 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2490 /* ... And are placed at the beginning (most-significant) bytes
2491 of the target. */
2492 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2493 unpacked_bytes_left = unpacked_idx + 1;
2494 }
2495 }
2496 else
2497 {
2498 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2499
2500 src_idx = unpacked_idx = 0;
2501 unusedLS = bit_offset;
2502 accumSize = 0;
2503
2504 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2505 sign = ~0;
2506 }
2507
2508 accum = 0;
2509 while (src_bytes_left > 0)
2510 {
2511 /* Mask for removing bits of the next source byte that are not
2512 part of the value. */
2513 unsigned int unusedMSMask =
2514 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2515 1;
2516 /* Sign-extend bits for this byte. */
2517 unsigned int signMask = sign & ~unusedMSMask;
2518
2519 accum |=
2520 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2521 accumSize += HOST_CHAR_BIT - unusedLS;
2522 if (accumSize >= HOST_CHAR_BIT)
2523 {
2524 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2525 accumSize -= HOST_CHAR_BIT;
2526 accum >>= HOST_CHAR_BIT;
2527 unpacked_bytes_left -= 1;
2528 unpacked_idx += delta;
2529 }
2530 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2531 unusedLS = 0;
2532 src_bytes_left -= 1;
2533 src_idx += delta;
2534 }
2535 while (unpacked_bytes_left > 0)
2536 {
2537 accum |= sign << accumSize;
2538 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2539 accumSize -= HOST_CHAR_BIT;
2540 if (accumSize < 0)
2541 accumSize = 0;
2542 accum >>= HOST_CHAR_BIT;
2543 unpacked_bytes_left -= 1;
2544 unpacked_idx += delta;
2545 }
2546 }
2547
2548 /* Create a new value of type TYPE from the contents of OBJ starting
2549 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2550 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2551 assigning through the result will set the field fetched from.
2552 VALADDR is ignored unless OBJ is NULL, in which case,
2553 VALADDR+OFFSET must address the start of storage containing the
2554 packed value. The value returned in this case is never an lval.
2555 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2556
2557 struct value *
2558 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2559 long offset, int bit_offset, int bit_size,
2560 struct type *type)
2561 {
2562 struct value *v;
2563 const gdb_byte *src; /* First byte containing data to unpack */
2564 gdb_byte *unpacked;
2565 const int is_scalar = is_scalar_type (type);
2566 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
2567 gdb::byte_vector staging;
2568
2569 type = ada_check_typedef (type);
2570
2571 if (obj == NULL)
2572 src = valaddr + offset;
2573 else
2574 src = value_contents (obj) + offset;
2575
2576 if (is_dynamic_type (type))
2577 {
2578 /* The length of TYPE might by dynamic, so we need to resolve
2579 TYPE in order to know its actual size, which we then use
2580 to create the contents buffer of the value we return.
2581 The difficulty is that the data containing our object is
2582 packed, and therefore maybe not at a byte boundary. So, what
2583 we do, is unpack the data into a byte-aligned buffer, and then
2584 use that buffer as our object's value for resolving the type. */
2585 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2586 staging.resize (staging_len);
2587
2588 ada_unpack_from_contents (src, bit_offset, bit_size,
2589 staging.data (), staging.size (),
2590 is_big_endian, has_negatives (type),
2591 is_scalar);
2592 type = resolve_dynamic_type (type, staging.data (), 0);
2593 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2594 {
2595 /* This happens when the length of the object is dynamic,
2596 and is actually smaller than the space reserved for it.
2597 For instance, in an array of variant records, the bit_size
2598 we're given is the array stride, which is constant and
2599 normally equal to the maximum size of its element.
2600 But, in reality, each element only actually spans a portion
2601 of that stride. */
2602 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2603 }
2604 }
2605
2606 if (obj == NULL)
2607 {
2608 v = allocate_value (type);
2609 src = valaddr + offset;
2610 }
2611 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2612 {
2613 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2614 gdb_byte *buf;
2615
2616 v = value_at (type, value_address (obj) + offset);
2617 buf = (gdb_byte *) alloca (src_len);
2618 read_memory (value_address (v), buf, src_len);
2619 src = buf;
2620 }
2621 else
2622 {
2623 v = allocate_value (type);
2624 src = value_contents (obj) + offset;
2625 }
2626
2627 if (obj != NULL)
2628 {
2629 long new_offset = offset;
2630
2631 set_value_component_location (v, obj);
2632 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2633 set_value_bitsize (v, bit_size);
2634 if (value_bitpos (v) >= HOST_CHAR_BIT)
2635 {
2636 ++new_offset;
2637 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2638 }
2639 set_value_offset (v, new_offset);
2640
2641 /* Also set the parent value. This is needed when trying to
2642 assign a new value (in inferior memory). */
2643 set_value_parent (v, obj);
2644 }
2645 else
2646 set_value_bitsize (v, bit_size);
2647 unpacked = value_contents_writeable (v);
2648
2649 if (bit_size == 0)
2650 {
2651 memset (unpacked, 0, TYPE_LENGTH (type));
2652 return v;
2653 }
2654
2655 if (staging.size () == TYPE_LENGTH (type))
2656 {
2657 /* Small short-cut: If we've unpacked the data into a buffer
2658 of the same size as TYPE's length, then we can reuse that,
2659 instead of doing the unpacking again. */
2660 memcpy (unpacked, staging.data (), staging.size ());
2661 }
2662 else
2663 ada_unpack_from_contents (src, bit_offset, bit_size,
2664 unpacked, TYPE_LENGTH (type),
2665 is_big_endian, has_negatives (type), is_scalar);
2666
2667 return v;
2668 }
2669
2670 /* Store the contents of FROMVAL into the location of TOVAL.
2671 Return a new value with the location of TOVAL and contents of
2672 FROMVAL. Handles assignment into packed fields that have
2673 floating-point or non-scalar types. */
2674
2675 static struct value *
2676 ada_value_assign (struct value *toval, struct value *fromval)
2677 {
2678 struct type *type = value_type (toval);
2679 int bits = value_bitsize (toval);
2680
2681 toval = ada_coerce_ref (toval);
2682 fromval = ada_coerce_ref (fromval);
2683
2684 if (ada_is_direct_array_type (value_type (toval)))
2685 toval = ada_coerce_to_simple_array (toval);
2686 if (ada_is_direct_array_type (value_type (fromval)))
2687 fromval = ada_coerce_to_simple_array (fromval);
2688
2689 if (!deprecated_value_modifiable (toval))
2690 error (_("Left operand of assignment is not a modifiable lvalue."));
2691
2692 if (VALUE_LVAL (toval) == lval_memory
2693 && bits > 0
2694 && (TYPE_CODE (type) == TYPE_CODE_FLT
2695 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2696 {
2697 int len = (value_bitpos (toval)
2698 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2699 int from_size;
2700 gdb_byte *buffer = (gdb_byte *) alloca (len);
2701 struct value *val;
2702 CORE_ADDR to_addr = value_address (toval);
2703
2704 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2705 fromval = value_cast (type, fromval);
2706
2707 read_memory (to_addr, buffer, len);
2708 from_size = value_bitsize (fromval);
2709 if (from_size == 0)
2710 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2711 if (gdbarch_bits_big_endian (get_type_arch (type)))
2712 copy_bitwise (buffer, value_bitpos (toval),
2713 value_contents (fromval), from_size - bits, bits, 1);
2714 else
2715 copy_bitwise (buffer, value_bitpos (toval),
2716 value_contents (fromval), 0, bits, 0);
2717 write_memory_with_notification (to_addr, buffer, len);
2718
2719 val = value_copy (toval);
2720 memcpy (value_contents_raw (val), value_contents (fromval),
2721 TYPE_LENGTH (type));
2722 deprecated_set_value_type (val, type);
2723
2724 return val;
2725 }
2726
2727 return value_assign (toval, fromval);
2728 }
2729
2730
2731 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2732 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2733 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2734 COMPONENT, and not the inferior's memory. The current contents
2735 of COMPONENT are ignored.
2736
2737 Although not part of the initial design, this function also works
2738 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2739 had a null address, and COMPONENT had an address which is equal to
2740 its offset inside CONTAINER. */
2741
2742 static void
2743 value_assign_to_component (struct value *container, struct value *component,
2744 struct value *val)
2745 {
2746 LONGEST offset_in_container =
2747 (LONGEST) (value_address (component) - value_address (container));
2748 int bit_offset_in_container =
2749 value_bitpos (component) - value_bitpos (container);
2750 int bits;
2751
2752 val = value_cast (value_type (component), val);
2753
2754 if (value_bitsize (component) == 0)
2755 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2756 else
2757 bits = value_bitsize (component);
2758
2759 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2760 {
2761 int src_offset;
2762
2763 if (is_scalar_type (check_typedef (value_type (component))))
2764 src_offset
2765 = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits;
2766 else
2767 src_offset = 0;
2768 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2769 value_bitpos (container) + bit_offset_in_container,
2770 value_contents (val), src_offset, bits, 1);
2771 }
2772 else
2773 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2774 value_bitpos (container) + bit_offset_in_container,
2775 value_contents (val), 0, bits, 0);
2776 }
2777
2778 /* Determine if TYPE is an access to an unconstrained array. */
2779
2780 bool
2781 ada_is_access_to_unconstrained_array (struct type *type)
2782 {
2783 return (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
2784 && is_thick_pntr (ada_typedef_target_type (type)));
2785 }
2786
2787 /* The value of the element of array ARR at the ARITY indices given in IND.
2788 ARR may be either a simple array, GNAT array descriptor, or pointer
2789 thereto. */
2790
2791 struct value *
2792 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2793 {
2794 int k;
2795 struct value *elt;
2796 struct type *elt_type;
2797
2798 elt = ada_coerce_to_simple_array (arr);
2799
2800 elt_type = ada_check_typedef (value_type (elt));
2801 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2802 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2803 return value_subscript_packed (elt, arity, ind);
2804
2805 for (k = 0; k < arity; k += 1)
2806 {
2807 struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type);
2808
2809 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2810 error (_("too many subscripts (%d expected)"), k);
2811
2812 elt = value_subscript (elt, pos_atr (ind[k]));
2813
2814 if (ada_is_access_to_unconstrained_array (saved_elt_type)
2815 && TYPE_CODE (value_type (elt)) != TYPE_CODE_TYPEDEF)
2816 {
2817 /* The element is a typedef to an unconstrained array,
2818 except that the value_subscript call stripped the
2819 typedef layer. The typedef layer is GNAT's way to
2820 specify that the element is, at the source level, an
2821 access to the unconstrained array, rather than the
2822 unconstrained array. So, we need to restore that
2823 typedef layer, which we can do by forcing the element's
2824 type back to its original type. Otherwise, the returned
2825 value is going to be printed as the array, rather
2826 than as an access. Another symptom of the same issue
2827 would be that an expression trying to dereference the
2828 element would also be improperly rejected. */
2829 deprecated_set_value_type (elt, saved_elt_type);
2830 }
2831
2832 elt_type = ada_check_typedef (value_type (elt));
2833 }
2834
2835 return elt;
2836 }
2837
2838 /* Assuming ARR is a pointer to a GDB array, the value of the element
2839 of *ARR at the ARITY indices given in IND.
2840 Does not read the entire array into memory.
2841
2842 Note: Unlike what one would expect, this function is used instead of
2843 ada_value_subscript for basically all non-packed array types. The reason
2844 for this is that a side effect of doing our own pointer arithmetics instead
2845 of relying on value_subscript is that there is no implicit typedef peeling.
2846 This is important for arrays of array accesses, where it allows us to
2847 preserve the fact that the array's element is an array access, where the
2848 access part os encoded in a typedef layer. */
2849
2850 static struct value *
2851 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2852 {
2853 int k;
2854 struct value *array_ind = ada_value_ind (arr);
2855 struct type *type
2856 = check_typedef (value_enclosing_type (array_ind));
2857
2858 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2859 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2860 return value_subscript_packed (array_ind, arity, ind);
2861
2862 for (k = 0; k < arity; k += 1)
2863 {
2864 LONGEST lwb, upb;
2865 struct value *lwb_value;
2866
2867 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2868 error (_("too many subscripts (%d expected)"), k);
2869 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2870 value_copy (arr));
2871 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2872 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2873 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
2874 type = TYPE_TARGET_TYPE (type);
2875 }
2876
2877 return value_ind (arr);
2878 }
2879
2880 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2881 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2882 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2883 this array is LOW, as per Ada rules. */
2884 static struct value *
2885 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2886 int low, int high)
2887 {
2888 struct type *type0 = ada_check_typedef (type);
2889 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
2890 struct type *index_type
2891 = create_static_range_type (NULL, base_index_type, low, high);
2892 struct type *slice_type = create_array_type_with_stride
2893 (NULL, TYPE_TARGET_TYPE (type0), index_type,
2894 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type0),
2895 TYPE_FIELD_BITSIZE (type0, 0));
2896 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2897 LONGEST base_low_pos, low_pos;
2898 CORE_ADDR base;
2899
2900 if (!discrete_position (base_index_type, low, &low_pos)
2901 || !discrete_position (base_index_type, base_low, &base_low_pos))
2902 {
2903 warning (_("unable to get positions in slice, use bounds instead"));
2904 low_pos = low;
2905 base_low_pos = base_low;
2906 }
2907
2908 base = value_as_address (array_ptr)
2909 + ((low_pos - base_low_pos)
2910 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2911 return value_at_lazy (slice_type, base);
2912 }
2913
2914
2915 static struct value *
2916 ada_value_slice (struct value *array, int low, int high)
2917 {
2918 struct type *type = ada_check_typedef (value_type (array));
2919 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2920 struct type *index_type
2921 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2922 struct type *slice_type = create_array_type_with_stride
2923 (NULL, TYPE_TARGET_TYPE (type), index_type,
2924 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type),
2925 TYPE_FIELD_BITSIZE (type, 0));
2926 LONGEST low_pos, high_pos;
2927
2928 if (!discrete_position (base_index_type, low, &low_pos)
2929 || !discrete_position (base_index_type, high, &high_pos))
2930 {
2931 warning (_("unable to get positions in slice, use bounds instead"));
2932 low_pos = low;
2933 high_pos = high;
2934 }
2935
2936 return value_cast (slice_type,
2937 value_slice (array, low, high_pos - low_pos + 1));
2938 }
2939
2940 /* If type is a record type in the form of a standard GNAT array
2941 descriptor, returns the number of dimensions for type. If arr is a
2942 simple array, returns the number of "array of"s that prefix its
2943 type designation. Otherwise, returns 0. */
2944
2945 int
2946 ada_array_arity (struct type *type)
2947 {
2948 int arity;
2949
2950 if (type == NULL)
2951 return 0;
2952
2953 type = desc_base_type (type);
2954
2955 arity = 0;
2956 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2957 return desc_arity (desc_bounds_type (type));
2958 else
2959 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2960 {
2961 arity += 1;
2962 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2963 }
2964
2965 return arity;
2966 }
2967
2968 /* If TYPE is a record type in the form of a standard GNAT array
2969 descriptor or a simple array type, returns the element type for
2970 TYPE after indexing by NINDICES indices, or by all indices if
2971 NINDICES is -1. Otherwise, returns NULL. */
2972
2973 struct type *
2974 ada_array_element_type (struct type *type, int nindices)
2975 {
2976 type = desc_base_type (type);
2977
2978 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2979 {
2980 int k;
2981 struct type *p_array_type;
2982
2983 p_array_type = desc_data_target_type (type);
2984
2985 k = ada_array_arity (type);
2986 if (k == 0)
2987 return NULL;
2988
2989 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2990 if (nindices >= 0 && k > nindices)
2991 k = nindices;
2992 while (k > 0 && p_array_type != NULL)
2993 {
2994 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2995 k -= 1;
2996 }
2997 return p_array_type;
2998 }
2999 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
3000 {
3001 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
3002 {
3003 type = TYPE_TARGET_TYPE (type);
3004 nindices -= 1;
3005 }
3006 return type;
3007 }
3008
3009 return NULL;
3010 }
3011
3012 /* The type of nth index in arrays of given type (n numbering from 1).
3013 Does not examine memory. Throws an error if N is invalid or TYPE
3014 is not an array type. NAME is the name of the Ada attribute being
3015 evaluated ('range, 'first, 'last, or 'length); it is used in building
3016 the error message. */
3017
3018 static struct type *
3019 ada_index_type (struct type *type, int n, const char *name)
3020 {
3021 struct type *result_type;
3022
3023 type = desc_base_type (type);
3024
3025 if (n < 0 || n > ada_array_arity (type))
3026 error (_("invalid dimension number to '%s"), name);
3027
3028 if (ada_is_simple_array_type (type))
3029 {
3030 int i;
3031
3032 for (i = 1; i < n; i += 1)
3033 type = TYPE_TARGET_TYPE (type);
3034 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
3035 /* FIXME: The stabs type r(0,0);bound;bound in an array type
3036 has a target type of TYPE_CODE_UNDEF. We compensate here, but
3037 perhaps stabsread.c would make more sense. */
3038 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
3039 result_type = NULL;
3040 }
3041 else
3042 {
3043 result_type = desc_index_type (desc_bounds_type (type), n);
3044 if (result_type == NULL)
3045 error (_("attempt to take bound of something that is not an array"));
3046 }
3047
3048 return result_type;
3049 }
3050
3051 /* Given that arr is an array type, returns the lower bound of the
3052 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
3053 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
3054 array-descriptor type. It works for other arrays with bounds supplied
3055 by run-time quantities other than discriminants. */
3056
3057 static LONGEST
3058 ada_array_bound_from_type (struct type *arr_type, int n, int which)
3059 {
3060 struct type *type, *index_type_desc, *index_type;
3061 int i;
3062
3063 gdb_assert (which == 0 || which == 1);
3064
3065 if (ada_is_constrained_packed_array_type (arr_type))
3066 arr_type = decode_constrained_packed_array_type (arr_type);
3067
3068 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
3069 return (LONGEST) - which;
3070
3071 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3072 type = TYPE_TARGET_TYPE (arr_type);
3073 else
3074 type = arr_type;
3075
3076 if (TYPE_FIXED_INSTANCE (type))
3077 {
3078 /* The array has already been fixed, so we do not need to
3079 check the parallel ___XA type again. That encoding has
3080 already been applied, so ignore it now. */
3081 index_type_desc = NULL;
3082 }
3083 else
3084 {
3085 index_type_desc = ada_find_parallel_type (type, "___XA");
3086 ada_fixup_array_indexes_type (index_type_desc);
3087 }
3088
3089 if (index_type_desc != NULL)
3090 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3091 NULL);
3092 else
3093 {
3094 struct type *elt_type = check_typedef (type);
3095
3096 for (i = 1; i < n; i++)
3097 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3098
3099 index_type = TYPE_INDEX_TYPE (elt_type);
3100 }
3101
3102 return
3103 (LONGEST) (which == 0
3104 ? ada_discrete_type_low_bound (index_type)
3105 : ada_discrete_type_high_bound (index_type));
3106 }
3107
3108 /* Given that arr is an array value, returns the lower bound of the
3109 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3110 WHICH is 1. This routine will also work for arrays with bounds
3111 supplied by run-time quantities other than discriminants. */
3112
3113 static LONGEST
3114 ada_array_bound (struct value *arr, int n, int which)
3115 {
3116 struct type *arr_type;
3117
3118 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3119 arr = value_ind (arr);
3120 arr_type = value_enclosing_type (arr);
3121
3122 if (ada_is_constrained_packed_array_type (arr_type))
3123 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
3124 else if (ada_is_simple_array_type (arr_type))
3125 return ada_array_bound_from_type (arr_type, n, which);
3126 else
3127 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
3128 }
3129
3130 /* Given that arr is an array value, returns the length of the
3131 nth index. This routine will also work for arrays with bounds
3132 supplied by run-time quantities other than discriminants.
3133 Does not work for arrays indexed by enumeration types with representation
3134 clauses at the moment. */
3135
3136 static LONGEST
3137 ada_array_length (struct value *arr, int n)
3138 {
3139 struct type *arr_type, *index_type;
3140 int low, high;
3141
3142 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3143 arr = value_ind (arr);
3144 arr_type = value_enclosing_type (arr);
3145
3146 if (ada_is_constrained_packed_array_type (arr_type))
3147 return ada_array_length (decode_constrained_packed_array (arr), n);
3148
3149 if (ada_is_simple_array_type (arr_type))
3150 {
3151 low = ada_array_bound_from_type (arr_type, n, 0);
3152 high = ada_array_bound_from_type (arr_type, n, 1);
3153 }
3154 else
3155 {
3156 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3157 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3158 }
3159
3160 arr_type = check_typedef (arr_type);
3161 index_type = ada_index_type (arr_type, n, "length");
3162 if (index_type != NULL)
3163 {
3164 struct type *base_type;
3165 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3166 base_type = TYPE_TARGET_TYPE (index_type);
3167 else
3168 base_type = index_type;
3169
3170 low = pos_atr (value_from_longest (base_type, low));
3171 high = pos_atr (value_from_longest (base_type, high));
3172 }
3173 return high - low + 1;
3174 }
3175
3176 /* An array whose type is that of ARR_TYPE (an array type), with
3177 bounds LOW to HIGH, but whose contents are unimportant. If HIGH is
3178 less than LOW, then LOW-1 is used. */
3179
3180 static struct value *
3181 empty_array (struct type *arr_type, int low, int high)
3182 {
3183 struct type *arr_type0 = ada_check_typedef (arr_type);
3184 struct type *index_type
3185 = create_static_range_type
3186 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low,
3187 high < low ? low - 1 : high);
3188 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3189
3190 return allocate_value (create_array_type (NULL, elt_type, index_type));
3191 }
3192 \f
3193
3194 /* Name resolution */
3195
3196 /* The "decoded" name for the user-definable Ada operator corresponding
3197 to OP. */
3198
3199 static const char *
3200 ada_decoded_op_name (enum exp_opcode op)
3201 {
3202 int i;
3203
3204 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3205 {
3206 if (ada_opname_table[i].op == op)
3207 return ada_opname_table[i].decoded;
3208 }
3209 error (_("Could not find operator name for opcode"));
3210 }
3211
3212
3213 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3214 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3215 undefined namespace) and converts operators that are
3216 user-defined into appropriate function calls. If CONTEXT_TYPE is
3217 non-null, it provides a preferred result type [at the moment, only
3218 type void has any effect---causing procedures to be preferred over
3219 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3220 return type is preferred. May change (expand) *EXP. */
3221
3222 static void
3223 resolve (expression_up *expp, int void_context_p, int parse_completion)
3224 {
3225 struct type *context_type = NULL;
3226 int pc = 0;
3227
3228 if (void_context_p)
3229 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3230
3231 resolve_subexp (expp, &pc, 1, context_type, parse_completion);
3232 }
3233
3234 /* Resolve the operator of the subexpression beginning at
3235 position *POS of *EXPP. "Resolving" consists of replacing
3236 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3237 with their resolutions, replacing built-in operators with
3238 function calls to user-defined operators, where appropriate, and,
3239 when DEPROCEDURE_P is non-zero, converting function-valued variables
3240 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3241 are as in ada_resolve, above. */
3242
3243 static struct value *
3244 resolve_subexp (expression_up *expp, int *pos, int deprocedure_p,
3245 struct type *context_type, int parse_completion)
3246 {
3247 int pc = *pos;
3248 int i;
3249 struct expression *exp; /* Convenience: == *expp. */
3250 enum exp_opcode op = (*expp)->elts[pc].opcode;
3251 struct value **argvec; /* Vector of operand types (alloca'ed). */
3252 int nargs; /* Number of operands. */
3253 int oplen;
3254
3255 argvec = NULL;
3256 nargs = 0;
3257 exp = expp->get ();
3258
3259 /* Pass one: resolve operands, saving their types and updating *pos,
3260 if needed. */
3261 switch (op)
3262 {
3263 case OP_FUNCALL:
3264 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3265 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3266 *pos += 7;
3267 else
3268 {
3269 *pos += 3;
3270 resolve_subexp (expp, pos, 0, NULL, parse_completion);
3271 }
3272 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3273 break;
3274
3275 case UNOP_ADDR:
3276 *pos += 1;
3277 resolve_subexp (expp, pos, 0, NULL, parse_completion);
3278 break;
3279
3280 case UNOP_QUAL:
3281 *pos += 3;
3282 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type),
3283 parse_completion);
3284 break;
3285
3286 case OP_ATR_MODULUS:
3287 case OP_ATR_SIZE:
3288 case OP_ATR_TAG:
3289 case OP_ATR_FIRST:
3290 case OP_ATR_LAST:
3291 case OP_ATR_LENGTH:
3292 case OP_ATR_POS:
3293 case OP_ATR_VAL:
3294 case OP_ATR_MIN:
3295 case OP_ATR_MAX:
3296 case TERNOP_IN_RANGE:
3297 case BINOP_IN_BOUNDS:
3298 case UNOP_IN_RANGE:
3299 case OP_AGGREGATE:
3300 case OP_OTHERS:
3301 case OP_CHOICES:
3302 case OP_POSITIONAL:
3303 case OP_DISCRETE_RANGE:
3304 case OP_NAME:
3305 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3306 *pos += oplen;
3307 break;
3308
3309 case BINOP_ASSIGN:
3310 {
3311 struct value *arg1;
3312
3313 *pos += 1;
3314 arg1 = resolve_subexp (expp, pos, 0, NULL, parse_completion);
3315 if (arg1 == NULL)
3316 resolve_subexp (expp, pos, 1, NULL, parse_completion);
3317 else
3318 resolve_subexp (expp, pos, 1, value_type (arg1), parse_completion);
3319 break;
3320 }
3321
3322 case UNOP_CAST:
3323 *pos += 3;
3324 nargs = 1;
3325 break;
3326
3327 case BINOP_ADD:
3328 case BINOP_SUB:
3329 case BINOP_MUL:
3330 case BINOP_DIV:
3331 case BINOP_REM:
3332 case BINOP_MOD:
3333 case BINOP_EXP:
3334 case BINOP_CONCAT:
3335 case BINOP_LOGICAL_AND:
3336 case BINOP_LOGICAL_OR:
3337 case BINOP_BITWISE_AND:
3338 case BINOP_BITWISE_IOR:
3339 case BINOP_BITWISE_XOR:
3340
3341 case BINOP_EQUAL:
3342 case BINOP_NOTEQUAL:
3343 case BINOP_LESS:
3344 case BINOP_GTR:
3345 case BINOP_LEQ:
3346 case BINOP_GEQ:
3347
3348 case BINOP_REPEAT:
3349 case BINOP_SUBSCRIPT:
3350 case BINOP_COMMA:
3351 *pos += 1;
3352 nargs = 2;
3353 break;
3354
3355 case UNOP_NEG:
3356 case UNOP_PLUS:
3357 case UNOP_LOGICAL_NOT:
3358 case UNOP_ABS:
3359 case UNOP_IND:
3360 *pos += 1;
3361 nargs = 1;
3362 break;
3363
3364 case OP_LONG:
3365 case OP_FLOAT:
3366 case OP_VAR_VALUE:
3367 case OP_VAR_MSYM_VALUE:
3368 *pos += 4;
3369 break;
3370
3371 case OP_TYPE:
3372 case OP_BOOL:
3373 case OP_LAST:
3374 case OP_INTERNALVAR:
3375 *pos += 3;
3376 break;
3377
3378 case UNOP_MEMVAL:
3379 *pos += 3;
3380 nargs = 1;
3381 break;
3382
3383 case OP_REGISTER:
3384 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3385 break;
3386
3387 case STRUCTOP_STRUCT:
3388 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3389 nargs = 1;
3390 break;
3391
3392 case TERNOP_SLICE:
3393 *pos += 1;
3394 nargs = 3;
3395 break;
3396
3397 case OP_STRING:
3398 break;
3399
3400 default:
3401 error (_("Unexpected operator during name resolution"));
3402 }
3403
3404 argvec = XALLOCAVEC (struct value *, nargs + 1);
3405 for (i = 0; i < nargs; i += 1)
3406 argvec[i] = resolve_subexp (expp, pos, 1, NULL, parse_completion);
3407 argvec[i] = NULL;
3408 exp = expp->get ();
3409
3410 /* Pass two: perform any resolution on principal operator. */
3411 switch (op)
3412 {
3413 default:
3414 break;
3415
3416 case OP_VAR_VALUE:
3417 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3418 {
3419 std::vector<struct block_symbol> candidates;
3420 int n_candidates;
3421
3422 n_candidates =
3423 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3424 (exp->elts[pc + 2].symbol),
3425 exp->elts[pc + 1].block, VAR_DOMAIN,
3426 &candidates);
3427
3428 if (n_candidates > 1)
3429 {
3430 /* Types tend to get re-introduced locally, so if there
3431 are any local symbols that are not types, first filter
3432 out all types. */
3433 int j;
3434 for (j = 0; j < n_candidates; j += 1)
3435 switch (SYMBOL_CLASS (candidates[j].symbol))
3436 {
3437 case LOC_REGISTER:
3438 case LOC_ARG:
3439 case LOC_REF_ARG:
3440 case LOC_REGPARM_ADDR:
3441 case LOC_LOCAL:
3442 case LOC_COMPUTED:
3443 goto FoundNonType;
3444 default:
3445 break;
3446 }
3447 FoundNonType:
3448 if (j < n_candidates)
3449 {
3450 j = 0;
3451 while (j < n_candidates)
3452 {
3453 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3454 {
3455 candidates[j] = candidates[n_candidates - 1];
3456 n_candidates -= 1;
3457 }
3458 else
3459 j += 1;
3460 }
3461 }
3462 }
3463
3464 if (n_candidates == 0)
3465 error (_("No definition found for %s"),
3466 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3467 else if (n_candidates == 1)
3468 i = 0;
3469 else if (deprocedure_p
3470 && !is_nonfunction (candidates.data (), n_candidates))
3471 {
3472 i = ada_resolve_function
3473 (candidates.data (), n_candidates, NULL, 0,
3474 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3475 context_type, parse_completion);
3476 if (i < 0)
3477 error (_("Could not find a match for %s"),
3478 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3479 }
3480 else
3481 {
3482 printf_filtered (_("Multiple matches for %s\n"),
3483 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3484 user_select_syms (candidates.data (), n_candidates, 1);
3485 i = 0;
3486 }
3487
3488 exp->elts[pc + 1].block = candidates[i].block;
3489 exp->elts[pc + 2].symbol = candidates[i].symbol;
3490 innermost_block.update (candidates[i]);
3491 }
3492
3493 if (deprocedure_p
3494 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3495 == TYPE_CODE_FUNC))
3496 {
3497 replace_operator_with_call (expp, pc, 0, 4,
3498 exp->elts[pc + 2].symbol,
3499 exp->elts[pc + 1].block);
3500 exp = expp->get ();
3501 }
3502 break;
3503
3504 case OP_FUNCALL:
3505 {
3506 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3507 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3508 {
3509 std::vector<struct block_symbol> candidates;
3510 int n_candidates;
3511
3512 n_candidates =
3513 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3514 (exp->elts[pc + 5].symbol),
3515 exp->elts[pc + 4].block, VAR_DOMAIN,
3516 &candidates);
3517
3518 if (n_candidates == 1)
3519 i = 0;
3520 else
3521 {
3522 i = ada_resolve_function
3523 (candidates.data (), n_candidates,
3524 argvec, nargs,
3525 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3526 context_type, parse_completion);
3527 if (i < 0)
3528 error (_("Could not find a match for %s"),
3529 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3530 }
3531
3532 exp->elts[pc + 4].block = candidates[i].block;
3533 exp->elts[pc + 5].symbol = candidates[i].symbol;
3534 innermost_block.update (candidates[i]);
3535 }
3536 }
3537 break;
3538 case BINOP_ADD:
3539 case BINOP_SUB:
3540 case BINOP_MUL:
3541 case BINOP_DIV:
3542 case BINOP_REM:
3543 case BINOP_MOD:
3544 case BINOP_CONCAT:
3545 case BINOP_BITWISE_AND:
3546 case BINOP_BITWISE_IOR:
3547 case BINOP_BITWISE_XOR:
3548 case BINOP_EQUAL:
3549 case BINOP_NOTEQUAL:
3550 case BINOP_LESS:
3551 case BINOP_GTR:
3552 case BINOP_LEQ:
3553 case BINOP_GEQ:
3554 case BINOP_EXP:
3555 case UNOP_NEG:
3556 case UNOP_PLUS:
3557 case UNOP_LOGICAL_NOT:
3558 case UNOP_ABS:
3559 if (possible_user_operator_p (op, argvec))
3560 {
3561 std::vector<struct block_symbol> candidates;
3562 int n_candidates;
3563
3564 n_candidates =
3565 ada_lookup_symbol_list (ada_decoded_op_name (op),
3566 NULL, VAR_DOMAIN,
3567 &candidates);
3568
3569 i = ada_resolve_function (candidates.data (), n_candidates, argvec,
3570 nargs, ada_decoded_op_name (op), NULL,
3571 parse_completion);
3572 if (i < 0)
3573 break;
3574
3575 replace_operator_with_call (expp, pc, nargs, 1,
3576 candidates[i].symbol,
3577 candidates[i].block);
3578 exp = expp->get ();
3579 }
3580 break;
3581
3582 case OP_TYPE:
3583 case OP_REGISTER:
3584 return NULL;
3585 }
3586
3587 *pos = pc;
3588 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3589 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3590 exp->elts[pc + 1].objfile,
3591 exp->elts[pc + 2].msymbol);
3592 else
3593 return evaluate_subexp_type (exp, pos);
3594 }
3595
3596 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3597 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3598 a non-pointer. */
3599 /* The term "match" here is rather loose. The match is heuristic and
3600 liberal. */
3601
3602 static int
3603 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3604 {
3605 ftype = ada_check_typedef (ftype);
3606 atype = ada_check_typedef (atype);
3607
3608 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3609 ftype = TYPE_TARGET_TYPE (ftype);
3610 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3611 atype = TYPE_TARGET_TYPE (atype);
3612
3613 switch (TYPE_CODE (ftype))
3614 {
3615 default:
3616 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3617 case TYPE_CODE_PTR:
3618 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3619 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3620 TYPE_TARGET_TYPE (atype), 0);
3621 else
3622 return (may_deref
3623 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3624 case TYPE_CODE_INT:
3625 case TYPE_CODE_ENUM:
3626 case TYPE_CODE_RANGE:
3627 switch (TYPE_CODE (atype))
3628 {
3629 case TYPE_CODE_INT:
3630 case TYPE_CODE_ENUM:
3631 case TYPE_CODE_RANGE:
3632 return 1;
3633 default:
3634 return 0;
3635 }
3636
3637 case TYPE_CODE_ARRAY:
3638 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3639 || ada_is_array_descriptor_type (atype));
3640
3641 case TYPE_CODE_STRUCT:
3642 if (ada_is_array_descriptor_type (ftype))
3643 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3644 || ada_is_array_descriptor_type (atype));
3645 else
3646 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3647 && !ada_is_array_descriptor_type (atype));
3648
3649 case TYPE_CODE_UNION:
3650 case TYPE_CODE_FLT:
3651 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3652 }
3653 }
3654
3655 /* Return non-zero if the formals of FUNC "sufficiently match" the
3656 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3657 may also be an enumeral, in which case it is treated as a 0-
3658 argument function. */
3659
3660 static int
3661 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3662 {
3663 int i;
3664 struct type *func_type = SYMBOL_TYPE (func);
3665
3666 if (SYMBOL_CLASS (func) == LOC_CONST
3667 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3668 return (n_actuals == 0);
3669 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3670 return 0;
3671
3672 if (TYPE_NFIELDS (func_type) != n_actuals)
3673 return 0;
3674
3675 for (i = 0; i < n_actuals; i += 1)
3676 {
3677 if (actuals[i] == NULL)
3678 return 0;
3679 else
3680 {
3681 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3682 i));
3683 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3684
3685 if (!ada_type_match (ftype, atype, 1))
3686 return 0;
3687 }
3688 }
3689 return 1;
3690 }
3691
3692 /* False iff function type FUNC_TYPE definitely does not produce a value
3693 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3694 FUNC_TYPE is not a valid function type with a non-null return type
3695 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3696
3697 static int
3698 return_match (struct type *func_type, struct type *context_type)
3699 {
3700 struct type *return_type;
3701
3702 if (func_type == NULL)
3703 return 1;
3704
3705 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3706 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3707 else
3708 return_type = get_base_type (func_type);
3709 if (return_type == NULL)
3710 return 1;
3711
3712 context_type = get_base_type (context_type);
3713
3714 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3715 return context_type == NULL || return_type == context_type;
3716 else if (context_type == NULL)
3717 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3718 else
3719 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3720 }
3721
3722
3723 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3724 function (if any) that matches the types of the NARGS arguments in
3725 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3726 that returns that type, then eliminate matches that don't. If
3727 CONTEXT_TYPE is void and there is at least one match that does not
3728 return void, eliminate all matches that do.
3729
3730 Asks the user if there is more than one match remaining. Returns -1
3731 if there is no such symbol or none is selected. NAME is used
3732 solely for messages. May re-arrange and modify SYMS in
3733 the process; the index returned is for the modified vector. */
3734
3735 static int
3736 ada_resolve_function (struct block_symbol syms[],
3737 int nsyms, struct value **args, int nargs,
3738 const char *name, struct type *context_type,
3739 int parse_completion)
3740 {
3741 int fallback;
3742 int k;
3743 int m; /* Number of hits */
3744
3745 m = 0;
3746 /* In the first pass of the loop, we only accept functions matching
3747 context_type. If none are found, we add a second pass of the loop
3748 where every function is accepted. */
3749 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3750 {
3751 for (k = 0; k < nsyms; k += 1)
3752 {
3753 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3754
3755 if (ada_args_match (syms[k].symbol, args, nargs)
3756 && (fallback || return_match (type, context_type)))
3757 {
3758 syms[m] = syms[k];
3759 m += 1;
3760 }
3761 }
3762 }
3763
3764 /* If we got multiple matches, ask the user which one to use. Don't do this
3765 interactive thing during completion, though, as the purpose of the
3766 completion is providing a list of all possible matches. Prompting the
3767 user to filter it down would be completely unexpected in this case. */
3768 if (m == 0)
3769 return -1;
3770 else if (m > 1 && !parse_completion)
3771 {
3772 printf_filtered (_("Multiple matches for %s\n"), name);
3773 user_select_syms (syms, m, 1);
3774 return 0;
3775 }
3776 return 0;
3777 }
3778
3779 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3780 in a listing of choices during disambiguation (see sort_choices, below).
3781 The idea is that overloadings of a subprogram name from the
3782 same package should sort in their source order. We settle for ordering
3783 such symbols by their trailing number (__N or $N). */
3784
3785 static int
3786 encoded_ordered_before (const char *N0, const char *N1)
3787 {
3788 if (N1 == NULL)
3789 return 0;
3790 else if (N0 == NULL)
3791 return 1;
3792 else
3793 {
3794 int k0, k1;
3795
3796 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3797 ;
3798 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3799 ;
3800 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3801 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3802 {
3803 int n0, n1;
3804
3805 n0 = k0;
3806 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3807 n0 -= 1;
3808 n1 = k1;
3809 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3810 n1 -= 1;
3811 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3812 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3813 }
3814 return (strcmp (N0, N1) < 0);
3815 }
3816 }
3817
3818 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3819 encoded names. */
3820
3821 static void
3822 sort_choices (struct block_symbol syms[], int nsyms)
3823 {
3824 int i;
3825
3826 for (i = 1; i < nsyms; i += 1)
3827 {
3828 struct block_symbol sym = syms[i];
3829 int j;
3830
3831 for (j = i - 1; j >= 0; j -= 1)
3832 {
3833 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3834 SYMBOL_LINKAGE_NAME (sym.symbol)))
3835 break;
3836 syms[j + 1] = syms[j];
3837 }
3838 syms[j + 1] = sym;
3839 }
3840 }
3841
3842 /* Whether GDB should display formals and return types for functions in the
3843 overloads selection menu. */
3844 static int print_signatures = 1;
3845
3846 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3847 all but functions, the signature is just the name of the symbol. For
3848 functions, this is the name of the function, the list of types for formals
3849 and the return type (if any). */
3850
3851 static void
3852 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3853 const struct type_print_options *flags)
3854 {
3855 struct type *type = SYMBOL_TYPE (sym);
3856
3857 fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
3858 if (!print_signatures
3859 || type == NULL
3860 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3861 return;
3862
3863 if (TYPE_NFIELDS (type) > 0)
3864 {
3865 int i;
3866
3867 fprintf_filtered (stream, " (");
3868 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3869 {
3870 if (i > 0)
3871 fprintf_filtered (stream, "; ");
3872 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3873 flags);
3874 }
3875 fprintf_filtered (stream, ")");
3876 }
3877 if (TYPE_TARGET_TYPE (type) != NULL
3878 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3879 {
3880 fprintf_filtered (stream, " return ");
3881 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3882 }
3883 }
3884
3885 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3886 by asking the user (if necessary), returning the number selected,
3887 and setting the first elements of SYMS items. Error if no symbols
3888 selected. */
3889
3890 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3891 to be re-integrated one of these days. */
3892
3893 int
3894 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3895 {
3896 int i;
3897 int *chosen = XALLOCAVEC (int , nsyms);
3898 int n_chosen;
3899 int first_choice = (max_results == 1) ? 1 : 2;
3900 const char *select_mode = multiple_symbols_select_mode ();
3901
3902 if (max_results < 1)
3903 error (_("Request to select 0 symbols!"));
3904 if (nsyms <= 1)
3905 return nsyms;
3906
3907 if (select_mode == multiple_symbols_cancel)
3908 error (_("\
3909 canceled because the command is ambiguous\n\
3910 See set/show multiple-symbol."));
3911
3912 /* If select_mode is "all", then return all possible symbols.
3913 Only do that if more than one symbol can be selected, of course.
3914 Otherwise, display the menu as usual. */
3915 if (select_mode == multiple_symbols_all && max_results > 1)
3916 return nsyms;
3917
3918 printf_filtered (_("[0] cancel\n"));
3919 if (max_results > 1)
3920 printf_filtered (_("[1] all\n"));
3921
3922 sort_choices (syms, nsyms);
3923
3924 for (i = 0; i < nsyms; i += 1)
3925 {
3926 if (syms[i].symbol == NULL)
3927 continue;
3928
3929 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3930 {
3931 struct symtab_and_line sal =
3932 find_function_start_sal (syms[i].symbol, 1);
3933
3934 printf_filtered ("[%d] ", i + first_choice);
3935 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3936 &type_print_raw_options);
3937 if (sal.symtab == NULL)
3938 printf_filtered (_(" at <no source file available>:%d\n"),
3939 sal.line);
3940 else
3941 printf_filtered (_(" at %s:%d\n"),
3942 symtab_to_filename_for_display (sal.symtab),
3943 sal.line);
3944 continue;
3945 }
3946 else
3947 {
3948 int is_enumeral =
3949 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3950 && SYMBOL_TYPE (syms[i].symbol) != NULL
3951 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
3952 struct symtab *symtab = NULL;
3953
3954 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3955 symtab = symbol_symtab (syms[i].symbol);
3956
3957 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3958 {
3959 printf_filtered ("[%d] ", i + first_choice);
3960 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3961 &type_print_raw_options);
3962 printf_filtered (_(" at %s:%d\n"),
3963 symtab_to_filename_for_display (symtab),
3964 SYMBOL_LINE (syms[i].symbol));
3965 }
3966 else if (is_enumeral
3967 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
3968 {
3969 printf_filtered (("[%d] "), i + first_choice);
3970 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3971 gdb_stdout, -1, 0, &type_print_raw_options);
3972 printf_filtered (_("'(%s) (enumeral)\n"),
3973 SYMBOL_PRINT_NAME (syms[i].symbol));
3974 }
3975 else
3976 {
3977 printf_filtered ("[%d] ", i + first_choice);
3978 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3979 &type_print_raw_options);
3980
3981 if (symtab != NULL)
3982 printf_filtered (is_enumeral
3983 ? _(" in %s (enumeral)\n")
3984 : _(" at %s:?\n"),
3985 symtab_to_filename_for_display (symtab));
3986 else
3987 printf_filtered (is_enumeral
3988 ? _(" (enumeral)\n")
3989 : _(" at ?\n"));
3990 }
3991 }
3992 }
3993
3994 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3995 "overload-choice");
3996
3997 for (i = 0; i < n_chosen; i += 1)
3998 syms[i] = syms[chosen[i]];
3999
4000 return n_chosen;
4001 }
4002
4003 /* Read and validate a set of numeric choices from the user in the
4004 range 0 .. N_CHOICES-1. Place the results in increasing
4005 order in CHOICES[0 .. N-1], and return N.
4006
4007 The user types choices as a sequence of numbers on one line
4008 separated by blanks, encoding them as follows:
4009
4010 + A choice of 0 means to cancel the selection, throwing an error.
4011 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
4012 + The user chooses k by typing k+IS_ALL_CHOICE+1.
4013
4014 The user is not allowed to choose more than MAX_RESULTS values.
4015
4016 ANNOTATION_SUFFIX, if present, is used to annotate the input
4017 prompts (for use with the -f switch). */
4018
4019 int
4020 get_selections (int *choices, int n_choices, int max_results,
4021 int is_all_choice, const char *annotation_suffix)
4022 {
4023 char *args;
4024 const char *prompt;
4025 int n_chosen;
4026 int first_choice = is_all_choice ? 2 : 1;
4027
4028 prompt = getenv ("PS2");
4029 if (prompt == NULL)
4030 prompt = "> ";
4031
4032 args = command_line_input (prompt, annotation_suffix);
4033
4034 if (args == NULL)
4035 error_no_arg (_("one or more choice numbers"));
4036
4037 n_chosen = 0;
4038
4039 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
4040 order, as given in args. Choices are validated. */
4041 while (1)
4042 {
4043 char *args2;
4044 int choice, j;
4045
4046 args = skip_spaces (args);
4047 if (*args == '\0' && n_chosen == 0)
4048 error_no_arg (_("one or more choice numbers"));
4049 else if (*args == '\0')
4050 break;
4051
4052 choice = strtol (args, &args2, 10);
4053 if (args == args2 || choice < 0
4054 || choice > n_choices + first_choice - 1)
4055 error (_("Argument must be choice number"));
4056 args = args2;
4057
4058 if (choice == 0)
4059 error (_("cancelled"));
4060
4061 if (choice < first_choice)
4062 {
4063 n_chosen = n_choices;
4064 for (j = 0; j < n_choices; j += 1)
4065 choices[j] = j;
4066 break;
4067 }
4068 choice -= first_choice;
4069
4070 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4071 {
4072 }
4073
4074 if (j < 0 || choice != choices[j])
4075 {
4076 int k;
4077
4078 for (k = n_chosen - 1; k > j; k -= 1)
4079 choices[k + 1] = choices[k];
4080 choices[j + 1] = choice;
4081 n_chosen += 1;
4082 }
4083 }
4084
4085 if (n_chosen > max_results)
4086 error (_("Select no more than %d of the above"), max_results);
4087
4088 return n_chosen;
4089 }
4090
4091 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
4092 on the function identified by SYM and BLOCK, and taking NARGS
4093 arguments. Update *EXPP as needed to hold more space. */
4094
4095 static void
4096 replace_operator_with_call (expression_up *expp, int pc, int nargs,
4097 int oplen, struct symbol *sym,
4098 const struct block *block)
4099 {
4100 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4101 symbol, -oplen for operator being replaced). */
4102 struct expression *newexp = (struct expression *)
4103 xzalloc (sizeof (struct expression)
4104 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
4105 struct expression *exp = expp->get ();
4106
4107 newexp->nelts = exp->nelts + 7 - oplen;
4108 newexp->language_defn = exp->language_defn;
4109 newexp->gdbarch = exp->gdbarch;
4110 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
4111 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4112 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
4113
4114 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4115 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4116
4117 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4118 newexp->elts[pc + 4].block = block;
4119 newexp->elts[pc + 5].symbol = sym;
4120
4121 expp->reset (newexp);
4122 }
4123
4124 /* Type-class predicates */
4125
4126 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4127 or FLOAT). */
4128
4129 static int
4130 numeric_type_p (struct type *type)
4131 {
4132 if (type == NULL)
4133 return 0;
4134 else
4135 {
4136 switch (TYPE_CODE (type))
4137 {
4138 case TYPE_CODE_INT:
4139 case TYPE_CODE_FLT:
4140 return 1;
4141 case TYPE_CODE_RANGE:
4142 return (type == TYPE_TARGET_TYPE (type)
4143 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4144 default:
4145 return 0;
4146 }
4147 }
4148 }
4149
4150 /* True iff TYPE is integral (an INT or RANGE of INTs). */
4151
4152 static int
4153 integer_type_p (struct type *type)
4154 {
4155 if (type == NULL)
4156 return 0;
4157 else
4158 {
4159 switch (TYPE_CODE (type))
4160 {
4161 case TYPE_CODE_INT:
4162 return 1;
4163 case TYPE_CODE_RANGE:
4164 return (type == TYPE_TARGET_TYPE (type)
4165 || integer_type_p (TYPE_TARGET_TYPE (type)));
4166 default:
4167 return 0;
4168 }
4169 }
4170 }
4171
4172 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
4173
4174 static int
4175 scalar_type_p (struct type *type)
4176 {
4177 if (type == NULL)
4178 return 0;
4179 else
4180 {
4181 switch (TYPE_CODE (type))
4182 {
4183 case TYPE_CODE_INT:
4184 case TYPE_CODE_RANGE:
4185 case TYPE_CODE_ENUM:
4186 case TYPE_CODE_FLT:
4187 return 1;
4188 default:
4189 return 0;
4190 }
4191 }
4192 }
4193
4194 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
4195
4196 static int
4197 discrete_type_p (struct type *type)
4198 {
4199 if (type == NULL)
4200 return 0;
4201 else
4202 {
4203 switch (TYPE_CODE (type))
4204 {
4205 case TYPE_CODE_INT:
4206 case TYPE_CODE_RANGE:
4207 case TYPE_CODE_ENUM:
4208 case TYPE_CODE_BOOL:
4209 return 1;
4210 default:
4211 return 0;
4212 }
4213 }
4214 }
4215
4216 /* Returns non-zero if OP with operands in the vector ARGS could be
4217 a user-defined function. Errs on the side of pre-defined operators
4218 (i.e., result 0). */
4219
4220 static int
4221 possible_user_operator_p (enum exp_opcode op, struct value *args[])
4222 {
4223 struct type *type0 =
4224 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
4225 struct type *type1 =
4226 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
4227
4228 if (type0 == NULL)
4229 return 0;
4230
4231 switch (op)
4232 {
4233 default:
4234 return 0;
4235
4236 case BINOP_ADD:
4237 case BINOP_SUB:
4238 case BINOP_MUL:
4239 case BINOP_DIV:
4240 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4241
4242 case BINOP_REM:
4243 case BINOP_MOD:
4244 case BINOP_BITWISE_AND:
4245 case BINOP_BITWISE_IOR:
4246 case BINOP_BITWISE_XOR:
4247 return (!(integer_type_p (type0) && integer_type_p (type1)));
4248
4249 case BINOP_EQUAL:
4250 case BINOP_NOTEQUAL:
4251 case BINOP_LESS:
4252 case BINOP_GTR:
4253 case BINOP_LEQ:
4254 case BINOP_GEQ:
4255 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4256
4257 case BINOP_CONCAT:
4258 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4259
4260 case BINOP_EXP:
4261 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4262
4263 case UNOP_NEG:
4264 case UNOP_PLUS:
4265 case UNOP_LOGICAL_NOT:
4266 case UNOP_ABS:
4267 return (!numeric_type_p (type0));
4268
4269 }
4270 }
4271 \f
4272 /* Renaming */
4273
4274 /* NOTES:
4275
4276 1. In the following, we assume that a renaming type's name may
4277 have an ___XD suffix. It would be nice if this went away at some
4278 point.
4279 2. We handle both the (old) purely type-based representation of
4280 renamings and the (new) variable-based encoding. At some point,
4281 it is devoutly to be hoped that the former goes away
4282 (FIXME: hilfinger-2007-07-09).
4283 3. Subprogram renamings are not implemented, although the XRS
4284 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4285
4286 /* If SYM encodes a renaming,
4287
4288 <renaming> renames <renamed entity>,
4289
4290 sets *LEN to the length of the renamed entity's name,
4291 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4292 the string describing the subcomponent selected from the renamed
4293 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4294 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4295 are undefined). Otherwise, returns a value indicating the category
4296 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4297 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4298 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4299 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4300 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4301 may be NULL, in which case they are not assigned.
4302
4303 [Currently, however, GCC does not generate subprogram renamings.] */
4304
4305 enum ada_renaming_category
4306 ada_parse_renaming (struct symbol *sym,
4307 const char **renamed_entity, int *len,
4308 const char **renaming_expr)
4309 {
4310 enum ada_renaming_category kind;
4311 const char *info;
4312 const char *suffix;
4313
4314 if (sym == NULL)
4315 return ADA_NOT_RENAMING;
4316 switch (SYMBOL_CLASS (sym))
4317 {
4318 default:
4319 return ADA_NOT_RENAMING;
4320 case LOC_TYPEDEF:
4321 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4322 renamed_entity, len, renaming_expr);
4323 case LOC_LOCAL:
4324 case LOC_STATIC:
4325 case LOC_COMPUTED:
4326 case LOC_OPTIMIZED_OUT:
4327 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4328 if (info == NULL)
4329 return ADA_NOT_RENAMING;
4330 switch (info[5])
4331 {
4332 case '_':
4333 kind = ADA_OBJECT_RENAMING;
4334 info += 6;
4335 break;
4336 case 'E':
4337 kind = ADA_EXCEPTION_RENAMING;
4338 info += 7;
4339 break;
4340 case 'P':
4341 kind = ADA_PACKAGE_RENAMING;
4342 info += 7;
4343 break;
4344 case 'S':
4345 kind = ADA_SUBPROGRAM_RENAMING;
4346 info += 7;
4347 break;
4348 default:
4349 return ADA_NOT_RENAMING;
4350 }
4351 }
4352
4353 if (renamed_entity != NULL)
4354 *renamed_entity = info;
4355 suffix = strstr (info, "___XE");
4356 if (suffix == NULL || suffix == info)
4357 return ADA_NOT_RENAMING;
4358 if (len != NULL)
4359 *len = strlen (info) - strlen (suffix);
4360 suffix += 5;
4361 if (renaming_expr != NULL)
4362 *renaming_expr = suffix;
4363 return kind;
4364 }
4365
4366 /* Assuming TYPE encodes a renaming according to the old encoding in
4367 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4368 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4369 ADA_NOT_RENAMING otherwise. */
4370 static enum ada_renaming_category
4371 parse_old_style_renaming (struct type *type,
4372 const char **renamed_entity, int *len,
4373 const char **renaming_expr)
4374 {
4375 enum ada_renaming_category kind;
4376 const char *name;
4377 const char *info;
4378 const char *suffix;
4379
4380 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4381 || TYPE_NFIELDS (type) != 1)
4382 return ADA_NOT_RENAMING;
4383
4384 name = TYPE_NAME (type);
4385 if (name == NULL)
4386 return ADA_NOT_RENAMING;
4387
4388 name = strstr (name, "___XR");
4389 if (name == NULL)
4390 return ADA_NOT_RENAMING;
4391 switch (name[5])
4392 {
4393 case '\0':
4394 case '_':
4395 kind = ADA_OBJECT_RENAMING;
4396 break;
4397 case 'E':
4398 kind = ADA_EXCEPTION_RENAMING;
4399 break;
4400 case 'P':
4401 kind = ADA_PACKAGE_RENAMING;
4402 break;
4403 case 'S':
4404 kind = ADA_SUBPROGRAM_RENAMING;
4405 break;
4406 default:
4407 return ADA_NOT_RENAMING;
4408 }
4409
4410 info = TYPE_FIELD_NAME (type, 0);
4411 if (info == NULL)
4412 return ADA_NOT_RENAMING;
4413 if (renamed_entity != NULL)
4414 *renamed_entity = info;
4415 suffix = strstr (info, "___XE");
4416 if (renaming_expr != NULL)
4417 *renaming_expr = suffix + 5;
4418 if (suffix == NULL || suffix == info)
4419 return ADA_NOT_RENAMING;
4420 if (len != NULL)
4421 *len = suffix - info;
4422 return kind;
4423 }
4424
4425 /* Compute the value of the given RENAMING_SYM, which is expected to
4426 be a symbol encoding a renaming expression. BLOCK is the block
4427 used to evaluate the renaming. */
4428
4429 static struct value *
4430 ada_read_renaming_var_value (struct symbol *renaming_sym,
4431 const struct block *block)
4432 {
4433 const char *sym_name;
4434
4435 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4436 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4437 return evaluate_expression (expr.get ());
4438 }
4439 \f
4440
4441 /* Evaluation: Function Calls */
4442
4443 /* Return an lvalue containing the value VAL. This is the identity on
4444 lvalues, and otherwise has the side-effect of allocating memory
4445 in the inferior where a copy of the value contents is copied. */
4446
4447 static struct value *
4448 ensure_lval (struct value *val)
4449 {
4450 if (VALUE_LVAL (val) == not_lval
4451 || VALUE_LVAL (val) == lval_internalvar)
4452 {
4453 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4454 const CORE_ADDR addr =
4455 value_as_long (value_allocate_space_in_inferior (len));
4456
4457 VALUE_LVAL (val) = lval_memory;
4458 set_value_address (val, addr);
4459 write_memory (addr, value_contents (val), len);
4460 }
4461
4462 return val;
4463 }
4464
4465 /* Return the value ACTUAL, converted to be an appropriate value for a
4466 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4467 allocating any necessary descriptors (fat pointers), or copies of
4468 values not residing in memory, updating it as needed. */
4469
4470 struct value *
4471 ada_convert_actual (struct value *actual, struct type *formal_type0)
4472 {
4473 struct type *actual_type = ada_check_typedef (value_type (actual));
4474 struct type *formal_type = ada_check_typedef (formal_type0);
4475 struct type *formal_target =
4476 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4477 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4478 struct type *actual_target =
4479 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4480 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4481
4482 if (ada_is_array_descriptor_type (formal_target)
4483 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4484 return make_array_descriptor (formal_type, actual);
4485 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4486 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4487 {
4488 struct value *result;
4489
4490 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4491 && ada_is_array_descriptor_type (actual_target))
4492 result = desc_data (actual);
4493 else if (TYPE_CODE (formal_type) != TYPE_CODE_PTR)
4494 {
4495 if (VALUE_LVAL (actual) != lval_memory)
4496 {
4497 struct value *val;
4498
4499 actual_type = ada_check_typedef (value_type (actual));
4500 val = allocate_value (actual_type);
4501 memcpy ((char *) value_contents_raw (val),
4502 (char *) value_contents (actual),
4503 TYPE_LENGTH (actual_type));
4504 actual = ensure_lval (val);
4505 }
4506 result = value_addr (actual);
4507 }
4508 else
4509 return actual;
4510 return value_cast_pointers (formal_type, result, 0);
4511 }
4512 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4513 return ada_value_ind (actual);
4514 else if (ada_is_aligner_type (formal_type))
4515 {
4516 /* We need to turn this parameter into an aligner type
4517 as well. */
4518 struct value *aligner = allocate_value (formal_type);
4519 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4520
4521 value_assign_to_component (aligner, component, actual);
4522 return aligner;
4523 }
4524
4525 return actual;
4526 }
4527
4528 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4529 type TYPE. This is usually an inefficient no-op except on some targets
4530 (such as AVR) where the representation of a pointer and an address
4531 differs. */
4532
4533 static CORE_ADDR
4534 value_pointer (struct value *value, struct type *type)
4535 {
4536 struct gdbarch *gdbarch = get_type_arch (type);
4537 unsigned len = TYPE_LENGTH (type);
4538 gdb_byte *buf = (gdb_byte *) alloca (len);
4539 CORE_ADDR addr;
4540
4541 addr = value_address (value);
4542 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4543 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4544 return addr;
4545 }
4546
4547
4548 /* Push a descriptor of type TYPE for array value ARR on the stack at
4549 *SP, updating *SP to reflect the new descriptor. Return either
4550 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4551 to-descriptor type rather than a descriptor type), a struct value *
4552 representing a pointer to this descriptor. */
4553
4554 static struct value *
4555 make_array_descriptor (struct type *type, struct value *arr)
4556 {
4557 struct type *bounds_type = desc_bounds_type (type);
4558 struct type *desc_type = desc_base_type (type);
4559 struct value *descriptor = allocate_value (desc_type);
4560 struct value *bounds = allocate_value (bounds_type);
4561 int i;
4562
4563 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4564 i > 0; i -= 1)
4565 {
4566 modify_field (value_type (bounds), value_contents_writeable (bounds),
4567 ada_array_bound (arr, i, 0),
4568 desc_bound_bitpos (bounds_type, i, 0),
4569 desc_bound_bitsize (bounds_type, i, 0));
4570 modify_field (value_type (bounds), value_contents_writeable (bounds),
4571 ada_array_bound (arr, i, 1),
4572 desc_bound_bitpos (bounds_type, i, 1),
4573 desc_bound_bitsize (bounds_type, i, 1));
4574 }
4575
4576 bounds = ensure_lval (bounds);
4577
4578 modify_field (value_type (descriptor),
4579 value_contents_writeable (descriptor),
4580 value_pointer (ensure_lval (arr),
4581 TYPE_FIELD_TYPE (desc_type, 0)),
4582 fat_pntr_data_bitpos (desc_type),
4583 fat_pntr_data_bitsize (desc_type));
4584
4585 modify_field (value_type (descriptor),
4586 value_contents_writeable (descriptor),
4587 value_pointer (bounds,
4588 TYPE_FIELD_TYPE (desc_type, 1)),
4589 fat_pntr_bounds_bitpos (desc_type),
4590 fat_pntr_bounds_bitsize (desc_type));
4591
4592 descriptor = ensure_lval (descriptor);
4593
4594 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4595 return value_addr (descriptor);
4596 else
4597 return descriptor;
4598 }
4599 \f
4600 /* Symbol Cache Module */
4601
4602 /* Performance measurements made as of 2010-01-15 indicate that
4603 this cache does bring some noticeable improvements. Depending
4604 on the type of entity being printed, the cache can make it as much
4605 as an order of magnitude faster than without it.
4606
4607 The descriptive type DWARF extension has significantly reduced
4608 the need for this cache, at least when DWARF is being used. However,
4609 even in this case, some expensive name-based symbol searches are still
4610 sometimes necessary - to find an XVZ variable, mostly. */
4611
4612 /* Initialize the contents of SYM_CACHE. */
4613
4614 static void
4615 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4616 {
4617 obstack_init (&sym_cache->cache_space);
4618 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4619 }
4620
4621 /* Free the memory used by SYM_CACHE. */
4622
4623 static void
4624 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4625 {
4626 obstack_free (&sym_cache->cache_space, NULL);
4627 xfree (sym_cache);
4628 }
4629
4630 /* Return the symbol cache associated to the given program space PSPACE.
4631 If not allocated for this PSPACE yet, allocate and initialize one. */
4632
4633 static struct ada_symbol_cache *
4634 ada_get_symbol_cache (struct program_space *pspace)
4635 {
4636 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4637
4638 if (pspace_data->sym_cache == NULL)
4639 {
4640 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4641 ada_init_symbol_cache (pspace_data->sym_cache);
4642 }
4643
4644 return pspace_data->sym_cache;
4645 }
4646
4647 /* Clear all entries from the symbol cache. */
4648
4649 static void
4650 ada_clear_symbol_cache (void)
4651 {
4652 struct ada_symbol_cache *sym_cache
4653 = ada_get_symbol_cache (current_program_space);
4654
4655 obstack_free (&sym_cache->cache_space, NULL);
4656 ada_init_symbol_cache (sym_cache);
4657 }
4658
4659 /* Search our cache for an entry matching NAME and DOMAIN.
4660 Return it if found, or NULL otherwise. */
4661
4662 static struct cache_entry **
4663 find_entry (const char *name, domain_enum domain)
4664 {
4665 struct ada_symbol_cache *sym_cache
4666 = ada_get_symbol_cache (current_program_space);
4667 int h = msymbol_hash (name) % HASH_SIZE;
4668 struct cache_entry **e;
4669
4670 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4671 {
4672 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4673 return e;
4674 }
4675 return NULL;
4676 }
4677
4678 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4679 Return 1 if found, 0 otherwise.
4680
4681 If an entry was found and SYM is not NULL, set *SYM to the entry's
4682 SYM. Same principle for BLOCK if not NULL. */
4683
4684 static int
4685 lookup_cached_symbol (const char *name, domain_enum domain,
4686 struct symbol **sym, const struct block **block)
4687 {
4688 struct cache_entry **e = find_entry (name, domain);
4689
4690 if (e == NULL)
4691 return 0;
4692 if (sym != NULL)
4693 *sym = (*e)->sym;
4694 if (block != NULL)
4695 *block = (*e)->block;
4696 return 1;
4697 }
4698
4699 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4700 in domain DOMAIN, save this result in our symbol cache. */
4701
4702 static void
4703 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4704 const struct block *block)
4705 {
4706 struct ada_symbol_cache *sym_cache
4707 = ada_get_symbol_cache (current_program_space);
4708 int h;
4709 char *copy;
4710 struct cache_entry *e;
4711
4712 /* Symbols for builtin types don't have a block.
4713 For now don't cache such symbols. */
4714 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4715 return;
4716
4717 /* If the symbol is a local symbol, then do not cache it, as a search
4718 for that symbol depends on the context. To determine whether
4719 the symbol is local or not, we check the block where we found it
4720 against the global and static blocks of its associated symtab. */
4721 if (sym
4722 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4723 GLOBAL_BLOCK) != block
4724 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4725 STATIC_BLOCK) != block)
4726 return;
4727
4728 h = msymbol_hash (name) % HASH_SIZE;
4729 e = XOBNEW (&sym_cache->cache_space, cache_entry);
4730 e->next = sym_cache->root[h];
4731 sym_cache->root[h] = e;
4732 e->name = copy
4733 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
4734 strcpy (copy, name);
4735 e->sym = sym;
4736 e->domain = domain;
4737 e->block = block;
4738 }
4739 \f
4740 /* Symbol Lookup */
4741
4742 /* Return the symbol name match type that should be used used when
4743 searching for all symbols matching LOOKUP_NAME.
4744
4745 LOOKUP_NAME is expected to be a symbol name after transformation
4746 for Ada lookups. */
4747
4748 static symbol_name_match_type
4749 name_match_type_from_name (const char *lookup_name)
4750 {
4751 return (strstr (lookup_name, "__") == NULL
4752 ? symbol_name_match_type::WILD
4753 : symbol_name_match_type::FULL);
4754 }
4755
4756 /* Return the result of a standard (literal, C-like) lookup of NAME in
4757 given DOMAIN, visible from lexical block BLOCK. */
4758
4759 static struct symbol *
4760 standard_lookup (const char *name, const struct block *block,
4761 domain_enum domain)
4762 {
4763 /* Initialize it just to avoid a GCC false warning. */
4764 struct block_symbol sym = {};
4765
4766 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4767 return sym.symbol;
4768 ada_lookup_encoded_symbol (name, block, domain, &sym);
4769 cache_symbol (name, domain, sym.symbol, sym.block);
4770 return sym.symbol;
4771 }
4772
4773
4774 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4775 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4776 since they contend in overloading in the same way. */
4777 static int
4778 is_nonfunction (struct block_symbol syms[], int n)
4779 {
4780 int i;
4781
4782 for (i = 0; i < n; i += 1)
4783 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4784 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4785 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
4786 return 1;
4787
4788 return 0;
4789 }
4790
4791 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4792 struct types. Otherwise, they may not. */
4793
4794 static int
4795 equiv_types (struct type *type0, struct type *type1)
4796 {
4797 if (type0 == type1)
4798 return 1;
4799 if (type0 == NULL || type1 == NULL
4800 || TYPE_CODE (type0) != TYPE_CODE (type1))
4801 return 0;
4802 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4803 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4804 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4805 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4806 return 1;
4807
4808 return 0;
4809 }
4810
4811 /* True iff SYM0 represents the same entity as SYM1, or one that is
4812 no more defined than that of SYM1. */
4813
4814 static int
4815 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4816 {
4817 if (sym0 == sym1)
4818 return 1;
4819 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4820 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4821 return 0;
4822
4823 switch (SYMBOL_CLASS (sym0))
4824 {
4825 case LOC_UNDEF:
4826 return 1;
4827 case LOC_TYPEDEF:
4828 {
4829 struct type *type0 = SYMBOL_TYPE (sym0);
4830 struct type *type1 = SYMBOL_TYPE (sym1);
4831 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4832 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4833 int len0 = strlen (name0);
4834
4835 return
4836 TYPE_CODE (type0) == TYPE_CODE (type1)
4837 && (equiv_types (type0, type1)
4838 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4839 && startswith (name1 + len0, "___XV")));
4840 }
4841 case LOC_CONST:
4842 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4843 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4844 default:
4845 return 0;
4846 }
4847 }
4848
4849 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4850 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4851
4852 static void
4853 add_defn_to_vec (struct obstack *obstackp,
4854 struct symbol *sym,
4855 const struct block *block)
4856 {
4857 int i;
4858 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
4859
4860 /* Do not try to complete stub types, as the debugger is probably
4861 already scanning all symbols matching a certain name at the
4862 time when this function is called. Trying to replace the stub
4863 type by its associated full type will cause us to restart a scan
4864 which may lead to an infinite recursion. Instead, the client
4865 collecting the matching symbols will end up collecting several
4866 matches, with at least one of them complete. It can then filter
4867 out the stub ones if needed. */
4868
4869 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4870 {
4871 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4872 return;
4873 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4874 {
4875 prevDefns[i].symbol = sym;
4876 prevDefns[i].block = block;
4877 return;
4878 }
4879 }
4880
4881 {
4882 struct block_symbol info;
4883
4884 info.symbol = sym;
4885 info.block = block;
4886 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4887 }
4888 }
4889
4890 /* Number of block_symbol structures currently collected in current vector in
4891 OBSTACKP. */
4892
4893 static int
4894 num_defns_collected (struct obstack *obstackp)
4895 {
4896 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4897 }
4898
4899 /* Vector of block_symbol structures currently collected in current vector in
4900 OBSTACKP. If FINISH, close off the vector and return its final address. */
4901
4902 static struct block_symbol *
4903 defns_collected (struct obstack *obstackp, int finish)
4904 {
4905 if (finish)
4906 return (struct block_symbol *) obstack_finish (obstackp);
4907 else
4908 return (struct block_symbol *) obstack_base (obstackp);
4909 }
4910
4911 /* Return a bound minimal symbol matching NAME according to Ada
4912 decoding rules. Returns an invalid symbol if there is no such
4913 minimal symbol. Names prefixed with "standard__" are handled
4914 specially: "standard__" is first stripped off, and only static and
4915 global symbols are searched. */
4916
4917 struct bound_minimal_symbol
4918 ada_lookup_simple_minsym (const char *name)
4919 {
4920 struct bound_minimal_symbol result;
4921
4922 memset (&result, 0, sizeof (result));
4923
4924 symbol_name_match_type match_type = name_match_type_from_name (name);
4925 lookup_name_info lookup_name (name, match_type);
4926
4927 symbol_name_matcher_ftype *match_name
4928 = ada_get_symbol_name_matcher (lookup_name);
4929
4930 for (objfile *objfile : current_program_space->objfiles ())
4931 {
4932 for (minimal_symbol *msymbol : objfile->msymbols ())
4933 {
4934 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL)
4935 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4936 {
4937 result.minsym = msymbol;
4938 result.objfile = objfile;
4939 break;
4940 }
4941 }
4942 }
4943
4944 return result;
4945 }
4946
4947 /* For all subprograms that statically enclose the subprogram of the
4948 selected frame, add symbols matching identifier NAME in DOMAIN
4949 and their blocks to the list of data in OBSTACKP, as for
4950 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4951 with a wildcard prefix. */
4952
4953 static void
4954 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4955 const lookup_name_info &lookup_name,
4956 domain_enum domain)
4957 {
4958 }
4959
4960 /* True if TYPE is definitely an artificial type supplied to a symbol
4961 for which no debugging information was given in the symbol file. */
4962
4963 static int
4964 is_nondebugging_type (struct type *type)
4965 {
4966 const char *name = ada_type_name (type);
4967
4968 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4969 }
4970
4971 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4972 that are deemed "identical" for practical purposes.
4973
4974 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4975 types and that their number of enumerals is identical (in other
4976 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4977
4978 static int
4979 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4980 {
4981 int i;
4982
4983 /* The heuristic we use here is fairly conservative. We consider
4984 that 2 enumerate types are identical if they have the same
4985 number of enumerals and that all enumerals have the same
4986 underlying value and name. */
4987
4988 /* All enums in the type should have an identical underlying value. */
4989 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4990 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
4991 return 0;
4992
4993 /* All enumerals should also have the same name (modulo any numerical
4994 suffix). */
4995 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4996 {
4997 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4998 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4999 int len_1 = strlen (name_1);
5000 int len_2 = strlen (name_2);
5001
5002 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
5003 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
5004 if (len_1 != len_2
5005 || strncmp (TYPE_FIELD_NAME (type1, i),
5006 TYPE_FIELD_NAME (type2, i),
5007 len_1) != 0)
5008 return 0;
5009 }
5010
5011 return 1;
5012 }
5013
5014 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
5015 that are deemed "identical" for practical purposes. Sometimes,
5016 enumerals are not strictly identical, but their types are so similar
5017 that they can be considered identical.
5018
5019 For instance, consider the following code:
5020
5021 type Color is (Black, Red, Green, Blue, White);
5022 type RGB_Color is new Color range Red .. Blue;
5023
5024 Type RGB_Color is a subrange of an implicit type which is a copy
5025 of type Color. If we call that implicit type RGB_ColorB ("B" is
5026 for "Base Type"), then type RGB_ColorB is a copy of type Color.
5027 As a result, when an expression references any of the enumeral
5028 by name (Eg. "print green"), the expression is technically
5029 ambiguous and the user should be asked to disambiguate. But
5030 doing so would only hinder the user, since it wouldn't matter
5031 what choice he makes, the outcome would always be the same.
5032 So, for practical purposes, we consider them as the same. */
5033
5034 static int
5035 symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
5036 {
5037 int i;
5038
5039 /* Before performing a thorough comparison check of each type,
5040 we perform a series of inexpensive checks. We expect that these
5041 checks will quickly fail in the vast majority of cases, and thus
5042 help prevent the unnecessary use of a more expensive comparison.
5043 Said comparison also expects us to make some of these checks
5044 (see ada_identical_enum_types_p). */
5045
5046 /* Quick check: All symbols should have an enum type. */
5047 for (i = 0; i < syms.size (); i++)
5048 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
5049 return 0;
5050
5051 /* Quick check: They should all have the same value. */
5052 for (i = 1; i < syms.size (); i++)
5053 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
5054 return 0;
5055
5056 /* Quick check: They should all have the same number of enumerals. */
5057 for (i = 1; i < syms.size (); i++)
5058 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
5059 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
5060 return 0;
5061
5062 /* All the sanity checks passed, so we might have a set of
5063 identical enumeration types. Perform a more complete
5064 comparison of the type of each symbol. */
5065 for (i = 1; i < syms.size (); i++)
5066 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5067 SYMBOL_TYPE (syms[0].symbol)))
5068 return 0;
5069
5070 return 1;
5071 }
5072
5073 /* Remove any non-debugging symbols in SYMS that definitely
5074 duplicate other symbols in the list (The only case I know of where
5075 this happens is when object files containing stabs-in-ecoff are
5076 linked with files containing ordinary ecoff debugging symbols (or no
5077 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5078 Returns the number of items in the modified list. */
5079
5080 static int
5081 remove_extra_symbols (std::vector<struct block_symbol> *syms)
5082 {
5083 int i, j;
5084
5085 /* We should never be called with less than 2 symbols, as there
5086 cannot be any extra symbol in that case. But it's easy to
5087 handle, since we have nothing to do in that case. */
5088 if (syms->size () < 2)
5089 return syms->size ();
5090
5091 i = 0;
5092 while (i < syms->size ())
5093 {
5094 int remove_p = 0;
5095
5096 /* If two symbols have the same name and one of them is a stub type,
5097 the get rid of the stub. */
5098
5099 if (TYPE_STUB (SYMBOL_TYPE ((*syms)[i].symbol))
5100 && SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL)
5101 {
5102 for (j = 0; j < syms->size (); j++)
5103 {
5104 if (j != i
5105 && !TYPE_STUB (SYMBOL_TYPE ((*syms)[j].symbol))
5106 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
5107 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5108 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0)
5109 remove_p = 1;
5110 }
5111 }
5112
5113 /* Two symbols with the same name, same class and same address
5114 should be identical. */
5115
5116 else if (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL
5117 && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC
5118 && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol)))
5119 {
5120 for (j = 0; j < syms->size (); j += 1)
5121 {
5122 if (i != j
5123 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
5124 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5125 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0
5126 && SYMBOL_CLASS ((*syms)[i].symbol)
5127 == SYMBOL_CLASS ((*syms)[j].symbol)
5128 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
5129 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
5130 remove_p = 1;
5131 }
5132 }
5133
5134 if (remove_p)
5135 syms->erase (syms->begin () + i);
5136
5137 i += 1;
5138 }
5139
5140 /* If all the remaining symbols are identical enumerals, then
5141 just keep the first one and discard the rest.
5142
5143 Unlike what we did previously, we do not discard any entry
5144 unless they are ALL identical. This is because the symbol
5145 comparison is not a strict comparison, but rather a practical
5146 comparison. If all symbols are considered identical, then
5147 we can just go ahead and use the first one and discard the rest.
5148 But if we cannot reduce the list to a single element, we have
5149 to ask the user to disambiguate anyways. And if we have to
5150 present a multiple-choice menu, it's less confusing if the list
5151 isn't missing some choices that were identical and yet distinct. */
5152 if (symbols_are_identical_enums (*syms))
5153 syms->resize (1);
5154
5155 return syms->size ();
5156 }
5157
5158 /* Given a type that corresponds to a renaming entity, use the type name
5159 to extract the scope (package name or function name, fully qualified,
5160 and following the GNAT encoding convention) where this renaming has been
5161 defined. */
5162
5163 static std::string
5164 xget_renaming_scope (struct type *renaming_type)
5165 {
5166 /* The renaming types adhere to the following convention:
5167 <scope>__<rename>___<XR extension>.
5168 So, to extract the scope, we search for the "___XR" extension,
5169 and then backtrack until we find the first "__". */
5170
5171 const char *name = TYPE_NAME (renaming_type);
5172 const char *suffix = strstr (name, "___XR");
5173 const char *last;
5174
5175 /* Now, backtrack a bit until we find the first "__". Start looking
5176 at suffix - 3, as the <rename> part is at least one character long. */
5177
5178 for (last = suffix - 3; last > name; last--)
5179 if (last[0] == '_' && last[1] == '_')
5180 break;
5181
5182 /* Make a copy of scope and return it. */
5183 return std::string (name, last);
5184 }
5185
5186 /* Return nonzero if NAME corresponds to a package name. */
5187
5188 static int
5189 is_package_name (const char *name)
5190 {
5191 /* Here, We take advantage of the fact that no symbols are generated
5192 for packages, while symbols are generated for each function.
5193 So the condition for NAME represent a package becomes equivalent
5194 to NAME not existing in our list of symbols. There is only one
5195 small complication with library-level functions (see below). */
5196
5197 /* If it is a function that has not been defined at library level,
5198 then we should be able to look it up in the symbols. */
5199 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5200 return 0;
5201
5202 /* Library-level function names start with "_ada_". See if function
5203 "_ada_" followed by NAME can be found. */
5204
5205 /* Do a quick check that NAME does not contain "__", since library-level
5206 functions names cannot contain "__" in them. */
5207 if (strstr (name, "__") != NULL)
5208 return 0;
5209
5210 std::string fun_name = string_printf ("_ada_%s", name);
5211
5212 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
5213 }
5214
5215 /* Return nonzero if SYM corresponds to a renaming entity that is
5216 not visible from FUNCTION_NAME. */
5217
5218 static int
5219 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
5220 {
5221 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5222 return 0;
5223
5224 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
5225
5226 /* If the rename has been defined in a package, then it is visible. */
5227 if (is_package_name (scope.c_str ()))
5228 return 0;
5229
5230 /* Check that the rename is in the current function scope by checking
5231 that its name starts with SCOPE. */
5232
5233 /* If the function name starts with "_ada_", it means that it is
5234 a library-level function. Strip this prefix before doing the
5235 comparison, as the encoding for the renaming does not contain
5236 this prefix. */
5237 if (startswith (function_name, "_ada_"))
5238 function_name += 5;
5239
5240 return !startswith (function_name, scope.c_str ());
5241 }
5242
5243 /* Remove entries from SYMS that corresponds to a renaming entity that
5244 is not visible from the function associated with CURRENT_BLOCK or
5245 that is superfluous due to the presence of more specific renaming
5246 information. Places surviving symbols in the initial entries of
5247 SYMS and returns the number of surviving symbols.
5248
5249 Rationale:
5250 First, in cases where an object renaming is implemented as a
5251 reference variable, GNAT may produce both the actual reference
5252 variable and the renaming encoding. In this case, we discard the
5253 latter.
5254
5255 Second, GNAT emits a type following a specified encoding for each renaming
5256 entity. Unfortunately, STABS currently does not support the definition
5257 of types that are local to a given lexical block, so all renamings types
5258 are emitted at library level. As a consequence, if an application
5259 contains two renaming entities using the same name, and a user tries to
5260 print the value of one of these entities, the result of the ada symbol
5261 lookup will also contain the wrong renaming type.
5262
5263 This function partially covers for this limitation by attempting to
5264 remove from the SYMS list renaming symbols that should be visible
5265 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5266 method with the current information available. The implementation
5267 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5268
5269 - When the user tries to print a rename in a function while there
5270 is another rename entity defined in a package: Normally, the
5271 rename in the function has precedence over the rename in the
5272 package, so the latter should be removed from the list. This is
5273 currently not the case.
5274
5275 - This function will incorrectly remove valid renames if
5276 the CURRENT_BLOCK corresponds to a function which symbol name
5277 has been changed by an "Export" pragma. As a consequence,
5278 the user will be unable to print such rename entities. */
5279
5280 static int
5281 remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
5282 const struct block *current_block)
5283 {
5284 struct symbol *current_function;
5285 const char *current_function_name;
5286 int i;
5287 int is_new_style_renaming;
5288
5289 /* If there is both a renaming foo___XR... encoded as a variable and
5290 a simple variable foo in the same block, discard the latter.
5291 First, zero out such symbols, then compress. */
5292 is_new_style_renaming = 0;
5293 for (i = 0; i < syms->size (); i += 1)
5294 {
5295 struct symbol *sym = (*syms)[i].symbol;
5296 const struct block *block = (*syms)[i].block;
5297 const char *name;
5298 const char *suffix;
5299
5300 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5301 continue;
5302 name = SYMBOL_LINKAGE_NAME (sym);
5303 suffix = strstr (name, "___XR");
5304
5305 if (suffix != NULL)
5306 {
5307 int name_len = suffix - name;
5308 int j;
5309
5310 is_new_style_renaming = 1;
5311 for (j = 0; j < syms->size (); j += 1)
5312 if (i != j && (*syms)[j].symbol != NULL
5313 && strncmp (name, SYMBOL_LINKAGE_NAME ((*syms)[j].symbol),
5314 name_len) == 0
5315 && block == (*syms)[j].block)
5316 (*syms)[j].symbol = NULL;
5317 }
5318 }
5319 if (is_new_style_renaming)
5320 {
5321 int j, k;
5322
5323 for (j = k = 0; j < syms->size (); j += 1)
5324 if ((*syms)[j].symbol != NULL)
5325 {
5326 (*syms)[k] = (*syms)[j];
5327 k += 1;
5328 }
5329 return k;
5330 }
5331
5332 /* Extract the function name associated to CURRENT_BLOCK.
5333 Abort if unable to do so. */
5334
5335 if (current_block == NULL)
5336 return syms->size ();
5337
5338 current_function = block_linkage_function (current_block);
5339 if (current_function == NULL)
5340 return syms->size ();
5341
5342 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5343 if (current_function_name == NULL)
5344 return syms->size ();
5345
5346 /* Check each of the symbols, and remove it from the list if it is
5347 a type corresponding to a renaming that is out of the scope of
5348 the current block. */
5349
5350 i = 0;
5351 while (i < syms->size ())
5352 {
5353 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
5354 == ADA_OBJECT_RENAMING
5355 && old_renaming_is_invisible ((*syms)[i].symbol,
5356 current_function_name))
5357 syms->erase (syms->begin () + i);
5358 else
5359 i += 1;
5360 }
5361
5362 return syms->size ();
5363 }
5364
5365 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5366 whose name and domain match NAME and DOMAIN respectively.
5367 If no match was found, then extend the search to "enclosing"
5368 routines (in other words, if we're inside a nested function,
5369 search the symbols defined inside the enclosing functions).
5370 If WILD_MATCH_P is nonzero, perform the naming matching in
5371 "wild" mode (see function "wild_match" for more info).
5372
5373 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5374
5375 static void
5376 ada_add_local_symbols (struct obstack *obstackp,
5377 const lookup_name_info &lookup_name,
5378 const struct block *block, domain_enum domain)
5379 {
5380 int block_depth = 0;
5381
5382 while (block != NULL)
5383 {
5384 block_depth += 1;
5385 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5386
5387 /* If we found a non-function match, assume that's the one. */
5388 if (is_nonfunction (defns_collected (obstackp, 0),
5389 num_defns_collected (obstackp)))
5390 return;
5391
5392 block = BLOCK_SUPERBLOCK (block);
5393 }
5394
5395 /* If no luck so far, try to find NAME as a local symbol in some lexically
5396 enclosing subprogram. */
5397 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5398 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
5399 }
5400
5401 /* An object of this type is used as the user_data argument when
5402 calling the map_matching_symbols method. */
5403
5404 struct match_data
5405 {
5406 struct objfile *objfile;
5407 struct obstack *obstackp;
5408 struct symbol *arg_sym;
5409 int found_sym;
5410 };
5411
5412 /* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
5413 to a list of symbols. DATA0 is a pointer to a struct match_data *
5414 containing the obstack that collects the symbol list, the file that SYM
5415 must come from, a flag indicating whether a non-argument symbol has
5416 been found in the current block, and the last argument symbol
5417 passed in SYM within the current block (if any). When SYM is null,
5418 marking the end of a block, the argument symbol is added if no
5419 other has been found. */
5420
5421 static int
5422 aux_add_nonlocal_symbols (const struct block *block, struct symbol *sym,
5423 void *data0)
5424 {
5425 struct match_data *data = (struct match_data *) data0;
5426
5427 if (sym == NULL)
5428 {
5429 if (!data->found_sym && data->arg_sym != NULL)
5430 add_defn_to_vec (data->obstackp,
5431 fixup_symbol_section (data->arg_sym, data->objfile),
5432 block);
5433 data->found_sym = 0;
5434 data->arg_sym = NULL;
5435 }
5436 else
5437 {
5438 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5439 return 0;
5440 else if (SYMBOL_IS_ARGUMENT (sym))
5441 data->arg_sym = sym;
5442 else
5443 {
5444 data->found_sym = 1;
5445 add_defn_to_vec (data->obstackp,
5446 fixup_symbol_section (sym, data->objfile),
5447 block);
5448 }
5449 }
5450 return 0;
5451 }
5452
5453 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5454 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5455 symbols to OBSTACKP. Return whether we found such symbols. */
5456
5457 static int
5458 ada_add_block_renamings (struct obstack *obstackp,
5459 const struct block *block,
5460 const lookup_name_info &lookup_name,
5461 domain_enum domain)
5462 {
5463 struct using_direct *renaming;
5464 int defns_mark = num_defns_collected (obstackp);
5465
5466 symbol_name_matcher_ftype *name_match
5467 = ada_get_symbol_name_matcher (lookup_name);
5468
5469 for (renaming = block_using (block);
5470 renaming != NULL;
5471 renaming = renaming->next)
5472 {
5473 const char *r_name;
5474
5475 /* Avoid infinite recursions: skip this renaming if we are actually
5476 already traversing it.
5477
5478 Currently, symbol lookup in Ada don't use the namespace machinery from
5479 C++/Fortran support: skip namespace imports that use them. */
5480 if (renaming->searched
5481 || (renaming->import_src != NULL
5482 && renaming->import_src[0] != '\0')
5483 || (renaming->import_dest != NULL
5484 && renaming->import_dest[0] != '\0'))
5485 continue;
5486 renaming->searched = 1;
5487
5488 /* TODO: here, we perform another name-based symbol lookup, which can
5489 pull its own multiple overloads. In theory, we should be able to do
5490 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5491 not a simple name. But in order to do this, we would need to enhance
5492 the DWARF reader to associate a symbol to this renaming, instead of a
5493 name. So, for now, we do something simpler: re-use the C++/Fortran
5494 namespace machinery. */
5495 r_name = (renaming->alias != NULL
5496 ? renaming->alias
5497 : renaming->declaration);
5498 if (name_match (r_name, lookup_name, NULL))
5499 {
5500 lookup_name_info decl_lookup_name (renaming->declaration,
5501 lookup_name.match_type ());
5502 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5503 1, NULL);
5504 }
5505 renaming->searched = 0;
5506 }
5507 return num_defns_collected (obstackp) != defns_mark;
5508 }
5509
5510 /* Implements compare_names, but only applying the comparision using
5511 the given CASING. */
5512
5513 static int
5514 compare_names_with_case (const char *string1, const char *string2,
5515 enum case_sensitivity casing)
5516 {
5517 while (*string1 != '\0' && *string2 != '\0')
5518 {
5519 char c1, c2;
5520
5521 if (isspace (*string1) || isspace (*string2))
5522 return strcmp_iw_ordered (string1, string2);
5523
5524 if (casing == case_sensitive_off)
5525 {
5526 c1 = tolower (*string1);
5527 c2 = tolower (*string2);
5528 }
5529 else
5530 {
5531 c1 = *string1;
5532 c2 = *string2;
5533 }
5534 if (c1 != c2)
5535 break;
5536
5537 string1 += 1;
5538 string2 += 1;
5539 }
5540
5541 switch (*string1)
5542 {
5543 case '(':
5544 return strcmp_iw_ordered (string1, string2);
5545 case '_':
5546 if (*string2 == '\0')
5547 {
5548 if (is_name_suffix (string1))
5549 return 0;
5550 else
5551 return 1;
5552 }
5553 /* FALLTHROUGH */
5554 default:
5555 if (*string2 == '(')
5556 return strcmp_iw_ordered (string1, string2);
5557 else
5558 {
5559 if (casing == case_sensitive_off)
5560 return tolower (*string1) - tolower (*string2);
5561 else
5562 return *string1 - *string2;
5563 }
5564 }
5565 }
5566
5567 /* Compare STRING1 to STRING2, with results as for strcmp.
5568 Compatible with strcmp_iw_ordered in that...
5569
5570 strcmp_iw_ordered (STRING1, STRING2) <= 0
5571
5572 ... implies...
5573
5574 compare_names (STRING1, STRING2) <= 0
5575
5576 (they may differ as to what symbols compare equal). */
5577
5578 static int
5579 compare_names (const char *string1, const char *string2)
5580 {
5581 int result;
5582
5583 /* Similar to what strcmp_iw_ordered does, we need to perform
5584 a case-insensitive comparison first, and only resort to
5585 a second, case-sensitive, comparison if the first one was
5586 not sufficient to differentiate the two strings. */
5587
5588 result = compare_names_with_case (string1, string2, case_sensitive_off);
5589 if (result == 0)
5590 result = compare_names_with_case (string1, string2, case_sensitive_on);
5591
5592 return result;
5593 }
5594
5595 /* Convenience function to get at the Ada encoded lookup name for
5596 LOOKUP_NAME, as a C string. */
5597
5598 static const char *
5599 ada_lookup_name (const lookup_name_info &lookup_name)
5600 {
5601 return lookup_name.ada ().lookup_name ().c_str ();
5602 }
5603
5604 /* Add to OBSTACKP all non-local symbols whose name and domain match
5605 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5606 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5607 symbols otherwise. */
5608
5609 static void
5610 add_nonlocal_symbols (struct obstack *obstackp,
5611 const lookup_name_info &lookup_name,
5612 domain_enum domain, int global)
5613 {
5614 struct match_data data;
5615
5616 memset (&data, 0, sizeof data);
5617 data.obstackp = obstackp;
5618
5619 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5620
5621 for (objfile *objfile : current_program_space->objfiles ())
5622 {
5623 data.objfile = objfile;
5624
5625 if (is_wild_match)
5626 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5627 domain, global,
5628 aux_add_nonlocal_symbols, &data,
5629 symbol_name_match_type::WILD,
5630 NULL);
5631 else
5632 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5633 domain, global,
5634 aux_add_nonlocal_symbols, &data,
5635 symbol_name_match_type::FULL,
5636 compare_names);
5637
5638 for (compunit_symtab *cu : objfile->compunits ())
5639 {
5640 const struct block *global_block
5641 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5642
5643 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5644 domain))
5645 data.found_sym = 1;
5646 }
5647 }
5648
5649 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5650 {
5651 const char *name = ada_lookup_name (lookup_name);
5652 std::string name1 = std::string ("<_ada_") + name + '>';
5653
5654 for (objfile *objfile : current_program_space->objfiles ())
5655 {
5656 data.objfile = objfile;
5657 objfile->sf->qf->map_matching_symbols (objfile, name1.c_str (),
5658 domain, global,
5659 aux_add_nonlocal_symbols,
5660 &data,
5661 symbol_name_match_type::FULL,
5662 compare_names);
5663 }
5664 }
5665 }
5666
5667 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5668 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5669 returning the number of matches. Add these to OBSTACKP.
5670
5671 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5672 symbol match within the nest of blocks whose innermost member is BLOCK,
5673 is the one match returned (no other matches in that or
5674 enclosing blocks is returned). If there are any matches in or
5675 surrounding BLOCK, then these alone are returned.
5676
5677 Names prefixed with "standard__" are handled specially:
5678 "standard__" is first stripped off (by the lookup_name
5679 constructor), and only static and global symbols are searched.
5680
5681 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5682 to lookup global symbols. */
5683
5684 static void
5685 ada_add_all_symbols (struct obstack *obstackp,
5686 const struct block *block,
5687 const lookup_name_info &lookup_name,
5688 domain_enum domain,
5689 int full_search,
5690 int *made_global_lookup_p)
5691 {
5692 struct symbol *sym;
5693
5694 if (made_global_lookup_p)
5695 *made_global_lookup_p = 0;
5696
5697 /* Special case: If the user specifies a symbol name inside package
5698 Standard, do a non-wild matching of the symbol name without
5699 the "standard__" prefix. This was primarily introduced in order
5700 to allow the user to specifically access the standard exceptions
5701 using, for instance, Standard.Constraint_Error when Constraint_Error
5702 is ambiguous (due to the user defining its own Constraint_Error
5703 entity inside its program). */
5704 if (lookup_name.ada ().standard_p ())
5705 block = NULL;
5706
5707 /* Check the non-global symbols. If we have ANY match, then we're done. */
5708
5709 if (block != NULL)
5710 {
5711 if (full_search)
5712 ada_add_local_symbols (obstackp, lookup_name, block, domain);
5713 else
5714 {
5715 /* In the !full_search case we're are being called by
5716 ada_iterate_over_symbols, and we don't want to search
5717 superblocks. */
5718 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5719 }
5720 if (num_defns_collected (obstackp) > 0 || !full_search)
5721 return;
5722 }
5723
5724 /* No non-global symbols found. Check our cache to see if we have
5725 already performed this search before. If we have, then return
5726 the same result. */
5727
5728 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5729 domain, &sym, &block))
5730 {
5731 if (sym != NULL)
5732 add_defn_to_vec (obstackp, sym, block);
5733 return;
5734 }
5735
5736 if (made_global_lookup_p)
5737 *made_global_lookup_p = 1;
5738
5739 /* Search symbols from all global blocks. */
5740
5741 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
5742
5743 /* Now add symbols from all per-file blocks if we've gotten no hits
5744 (not strictly correct, but perhaps better than an error). */
5745
5746 if (num_defns_collected (obstackp) == 0)
5747 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
5748 }
5749
5750 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5751 is non-zero, enclosing scope and in global scopes, returning the number of
5752 matches.
5753 Fills *RESULTS with (SYM,BLOCK) tuples, indicating the symbols
5754 found and the blocks and symbol tables (if any) in which they were
5755 found.
5756
5757 When full_search is non-zero, any non-function/non-enumeral
5758 symbol match within the nest of blocks whose innermost member is BLOCK,
5759 is the one match returned (no other matches in that or
5760 enclosing blocks is returned). If there are any matches in or
5761 surrounding BLOCK, then these alone are returned.
5762
5763 Names prefixed with "standard__" are handled specially: "standard__"
5764 is first stripped off, and only static and global symbols are searched. */
5765
5766 static int
5767 ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5768 const struct block *block,
5769 domain_enum domain,
5770 std::vector<struct block_symbol> *results,
5771 int full_search)
5772 {
5773 int syms_from_global_search;
5774 int ndefns;
5775 auto_obstack obstack;
5776
5777 ada_add_all_symbols (&obstack, block, lookup_name,
5778 domain, full_search, &syms_from_global_search);
5779
5780 ndefns = num_defns_collected (&obstack);
5781
5782 struct block_symbol *base = defns_collected (&obstack, 1);
5783 for (int i = 0; i < ndefns; ++i)
5784 results->push_back (base[i]);
5785
5786 ndefns = remove_extra_symbols (results);
5787
5788 if (ndefns == 0 && full_search && syms_from_global_search)
5789 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
5790
5791 if (ndefns == 1 && full_search && syms_from_global_search)
5792 cache_symbol (ada_lookup_name (lookup_name), domain,
5793 (*results)[0].symbol, (*results)[0].block);
5794
5795 ndefns = remove_irrelevant_renamings (results, block);
5796
5797 return ndefns;
5798 }
5799
5800 /* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
5801 in global scopes, returning the number of matches, and filling *RESULTS
5802 with (SYM,BLOCK) tuples.
5803
5804 See ada_lookup_symbol_list_worker for further details. */
5805
5806 int
5807 ada_lookup_symbol_list (const char *name, const struct block *block,
5808 domain_enum domain,
5809 std::vector<struct block_symbol> *results)
5810 {
5811 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5812 lookup_name_info lookup_name (name, name_match_type);
5813
5814 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
5815 }
5816
5817 /* Implementation of the la_iterate_over_symbols method. */
5818
5819 static void
5820 ada_iterate_over_symbols
5821 (const struct block *block, const lookup_name_info &name,
5822 domain_enum domain,
5823 gdb::function_view<symbol_found_callback_ftype> callback)
5824 {
5825 int ndefs, i;
5826 std::vector<struct block_symbol> results;
5827
5828 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5829
5830 for (i = 0; i < ndefs; ++i)
5831 {
5832 if (!callback (&results[i]))
5833 break;
5834 }
5835 }
5836
5837 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5838 to 1, but choosing the first symbol found if there are multiple
5839 choices.
5840
5841 The result is stored in *INFO, which must be non-NULL.
5842 If no match is found, INFO->SYM is set to NULL. */
5843
5844 void
5845 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5846 domain_enum domain,
5847 struct block_symbol *info)
5848 {
5849 /* Since we already have an encoded name, wrap it in '<>' to force a
5850 verbatim match. Otherwise, if the name happens to not look like
5851 an encoded name (because it doesn't include a "__"),
5852 ada_lookup_name_info would re-encode/fold it again, and that
5853 would e.g., incorrectly lowercase object renaming names like
5854 "R28b" -> "r28b". */
5855 std::string verbatim = std::string ("<") + name + '>';
5856
5857 gdb_assert (info != NULL);
5858 *info = ada_lookup_symbol (verbatim.c_str (), block, domain, NULL);
5859 }
5860
5861 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5862 scope and in global scopes, or NULL if none. NAME is folded and
5863 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5864 choosing the first symbol if there are multiple choices.
5865 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5866
5867 struct block_symbol
5868 ada_lookup_symbol (const char *name, const struct block *block0,
5869 domain_enum domain, int *is_a_field_of_this)
5870 {
5871 if (is_a_field_of_this != NULL)
5872 *is_a_field_of_this = 0;
5873
5874 std::vector<struct block_symbol> candidates;
5875 int n_candidates;
5876
5877 n_candidates = ada_lookup_symbol_list (name, block0, domain, &candidates);
5878
5879 if (n_candidates == 0)
5880 return {};
5881
5882 block_symbol info = candidates[0];
5883 info.symbol = fixup_symbol_section (info.symbol, NULL);
5884 return info;
5885 }
5886
5887 static struct block_symbol
5888 ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5889 const char *name,
5890 const struct block *block,
5891 const domain_enum domain)
5892 {
5893 struct block_symbol sym;
5894
5895 sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5896 if (sym.symbol != NULL)
5897 return sym;
5898
5899 /* If we haven't found a match at this point, try the primitive
5900 types. In other languages, this search is performed before
5901 searching for global symbols in order to short-circuit that
5902 global-symbol search if it happens that the name corresponds
5903 to a primitive type. But we cannot do the same in Ada, because
5904 it is perfectly legitimate for a program to declare a type which
5905 has the same name as a standard type. If looking up a type in
5906 that situation, we have traditionally ignored the primitive type
5907 in favor of user-defined types. This is why, unlike most other
5908 languages, we search the primitive types this late and only after
5909 having searched the global symbols without success. */
5910
5911 if (domain == VAR_DOMAIN)
5912 {
5913 struct gdbarch *gdbarch;
5914
5915 if (block == NULL)
5916 gdbarch = target_gdbarch ();
5917 else
5918 gdbarch = block_gdbarch (block);
5919 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5920 if (sym.symbol != NULL)
5921 return sym;
5922 }
5923
5924 return {};
5925 }
5926
5927
5928 /* True iff STR is a possible encoded suffix of a normal Ada name
5929 that is to be ignored for matching purposes. Suffixes of parallel
5930 names (e.g., XVE) are not included here. Currently, the possible suffixes
5931 are given by any of the regular expressions:
5932
5933 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5934 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5935 TKB [subprogram suffix for task bodies]
5936 _E[0-9]+[bs]$ [protected object entry suffixes]
5937 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5938
5939 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5940 match is performed. This sequence is used to differentiate homonyms,
5941 is an optional part of a valid name suffix. */
5942
5943 static int
5944 is_name_suffix (const char *str)
5945 {
5946 int k;
5947 const char *matching;
5948 const int len = strlen (str);
5949
5950 /* Skip optional leading __[0-9]+. */
5951
5952 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5953 {
5954 str += 3;
5955 while (isdigit (str[0]))
5956 str += 1;
5957 }
5958
5959 /* [.$][0-9]+ */
5960
5961 if (str[0] == '.' || str[0] == '$')
5962 {
5963 matching = str + 1;
5964 while (isdigit (matching[0]))
5965 matching += 1;
5966 if (matching[0] == '\0')
5967 return 1;
5968 }
5969
5970 /* ___[0-9]+ */
5971
5972 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5973 {
5974 matching = str + 3;
5975 while (isdigit (matching[0]))
5976 matching += 1;
5977 if (matching[0] == '\0')
5978 return 1;
5979 }
5980
5981 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5982
5983 if (strcmp (str, "TKB") == 0)
5984 return 1;
5985
5986 #if 0
5987 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5988 with a N at the end. Unfortunately, the compiler uses the same
5989 convention for other internal types it creates. So treating
5990 all entity names that end with an "N" as a name suffix causes
5991 some regressions. For instance, consider the case of an enumerated
5992 type. To support the 'Image attribute, it creates an array whose
5993 name ends with N.
5994 Having a single character like this as a suffix carrying some
5995 information is a bit risky. Perhaps we should change the encoding
5996 to be something like "_N" instead. In the meantime, do not do
5997 the following check. */
5998 /* Protected Object Subprograms */
5999 if (len == 1 && str [0] == 'N')
6000 return 1;
6001 #endif
6002
6003 /* _E[0-9]+[bs]$ */
6004 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
6005 {
6006 matching = str + 3;
6007 while (isdigit (matching[0]))
6008 matching += 1;
6009 if ((matching[0] == 'b' || matching[0] == 's')
6010 && matching [1] == '\0')
6011 return 1;
6012 }
6013
6014 /* ??? We should not modify STR directly, as we are doing below. This
6015 is fine in this case, but may become problematic later if we find
6016 that this alternative did not work, and want to try matching
6017 another one from the begining of STR. Since we modified it, we
6018 won't be able to find the begining of the string anymore! */
6019 if (str[0] == 'X')
6020 {
6021 str += 1;
6022 while (str[0] != '_' && str[0] != '\0')
6023 {
6024 if (str[0] != 'n' && str[0] != 'b')
6025 return 0;
6026 str += 1;
6027 }
6028 }
6029
6030 if (str[0] == '\000')
6031 return 1;
6032
6033 if (str[0] == '_')
6034 {
6035 if (str[1] != '_' || str[2] == '\000')
6036 return 0;
6037 if (str[2] == '_')
6038 {
6039 if (strcmp (str + 3, "JM") == 0)
6040 return 1;
6041 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6042 the LJM suffix in favor of the JM one. But we will
6043 still accept LJM as a valid suffix for a reasonable
6044 amount of time, just to allow ourselves to debug programs
6045 compiled using an older version of GNAT. */
6046 if (strcmp (str + 3, "LJM") == 0)
6047 return 1;
6048 if (str[3] != 'X')
6049 return 0;
6050 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
6051 || str[4] == 'U' || str[4] == 'P')
6052 return 1;
6053 if (str[4] == 'R' && str[5] != 'T')
6054 return 1;
6055 return 0;
6056 }
6057 if (!isdigit (str[2]))
6058 return 0;
6059 for (k = 3; str[k] != '\0'; k += 1)
6060 if (!isdigit (str[k]) && str[k] != '_')
6061 return 0;
6062 return 1;
6063 }
6064 if (str[0] == '$' && isdigit (str[1]))
6065 {
6066 for (k = 2; str[k] != '\0'; k += 1)
6067 if (!isdigit (str[k]) && str[k] != '_')
6068 return 0;
6069 return 1;
6070 }
6071 return 0;
6072 }
6073
6074 /* Return non-zero if the string starting at NAME and ending before
6075 NAME_END contains no capital letters. */
6076
6077 static int
6078 is_valid_name_for_wild_match (const char *name0)
6079 {
6080 const char *decoded_name = ada_decode (name0);
6081 int i;
6082
6083 /* If the decoded name starts with an angle bracket, it means that
6084 NAME0 does not follow the GNAT encoding format. It should then
6085 not be allowed as a possible wild match. */
6086 if (decoded_name[0] == '<')
6087 return 0;
6088
6089 for (i=0; decoded_name[i] != '\0'; i++)
6090 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6091 return 0;
6092
6093 return 1;
6094 }
6095
6096 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6097 that could start a simple name. Assumes that *NAMEP points into
6098 the string beginning at NAME0. */
6099
6100 static int
6101 advance_wild_match (const char **namep, const char *name0, int target0)
6102 {
6103 const char *name = *namep;
6104
6105 while (1)
6106 {
6107 int t0, t1;
6108
6109 t0 = *name;
6110 if (t0 == '_')
6111 {
6112 t1 = name[1];
6113 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6114 {
6115 name += 1;
6116 if (name == name0 + 5 && startswith (name0, "_ada"))
6117 break;
6118 else
6119 name += 1;
6120 }
6121 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6122 || name[2] == target0))
6123 {
6124 name += 2;
6125 break;
6126 }
6127 else
6128 return 0;
6129 }
6130 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6131 name += 1;
6132 else
6133 return 0;
6134 }
6135
6136 *namep = name;
6137 return 1;
6138 }
6139
6140 /* Return true iff NAME encodes a name of the form prefix.PATN.
6141 Ignores any informational suffixes of NAME (i.e., for which
6142 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6143 simple name. */
6144
6145 static bool
6146 wild_match (const char *name, const char *patn)
6147 {
6148 const char *p;
6149 const char *name0 = name;
6150
6151 while (1)
6152 {
6153 const char *match = name;
6154
6155 if (*name == *patn)
6156 {
6157 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6158 if (*p != *name)
6159 break;
6160 if (*p == '\0' && is_name_suffix (name))
6161 return match == name0 || is_valid_name_for_wild_match (name0);
6162
6163 if (name[-1] == '_')
6164 name -= 1;
6165 }
6166 if (!advance_wild_match (&name, name0, *patn))
6167 return false;
6168 }
6169 }
6170
6171 /* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6172 any trailing suffixes that encode debugging information or leading
6173 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6174 information that is ignored). */
6175
6176 static bool
6177 full_match (const char *sym_name, const char *search_name)
6178 {
6179 size_t search_name_len = strlen (search_name);
6180
6181 if (strncmp (sym_name, search_name, search_name_len) == 0
6182 && is_name_suffix (sym_name + search_name_len))
6183 return true;
6184
6185 if (startswith (sym_name, "_ada_")
6186 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6187 && is_name_suffix (sym_name + search_name_len + 5))
6188 return true;
6189
6190 return false;
6191 }
6192
6193 /* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6194 *defn_symbols, updating the list of symbols in OBSTACKP (if
6195 necessary). OBJFILE is the section containing BLOCK. */
6196
6197 static void
6198 ada_add_block_symbols (struct obstack *obstackp,
6199 const struct block *block,
6200 const lookup_name_info &lookup_name,
6201 domain_enum domain, struct objfile *objfile)
6202 {
6203 struct block_iterator iter;
6204 /* A matching argument symbol, if any. */
6205 struct symbol *arg_sym;
6206 /* Set true when we find a matching non-argument symbol. */
6207 int found_sym;
6208 struct symbol *sym;
6209
6210 arg_sym = NULL;
6211 found_sym = 0;
6212 for (sym = block_iter_match_first (block, lookup_name, &iter);
6213 sym != NULL;
6214 sym = block_iter_match_next (lookup_name, &iter))
6215 {
6216 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6217 SYMBOL_DOMAIN (sym), domain))
6218 {
6219 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6220 {
6221 if (SYMBOL_IS_ARGUMENT (sym))
6222 arg_sym = sym;
6223 else
6224 {
6225 found_sym = 1;
6226 add_defn_to_vec (obstackp,
6227 fixup_symbol_section (sym, objfile),
6228 block);
6229 }
6230 }
6231 }
6232 }
6233
6234 /* Handle renamings. */
6235
6236 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
6237 found_sym = 1;
6238
6239 if (!found_sym && arg_sym != NULL)
6240 {
6241 add_defn_to_vec (obstackp,
6242 fixup_symbol_section (arg_sym, objfile),
6243 block);
6244 }
6245
6246 if (!lookup_name.ada ().wild_match_p ())
6247 {
6248 arg_sym = NULL;
6249 found_sym = 0;
6250 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6251 const char *name = ada_lookup_name.c_str ();
6252 size_t name_len = ada_lookup_name.size ();
6253
6254 ALL_BLOCK_SYMBOLS (block, iter, sym)
6255 {
6256 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6257 SYMBOL_DOMAIN (sym), domain))
6258 {
6259 int cmp;
6260
6261 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6262 if (cmp == 0)
6263 {
6264 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
6265 if (cmp == 0)
6266 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6267 name_len);
6268 }
6269
6270 if (cmp == 0
6271 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6272 {
6273 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6274 {
6275 if (SYMBOL_IS_ARGUMENT (sym))
6276 arg_sym = sym;
6277 else
6278 {
6279 found_sym = 1;
6280 add_defn_to_vec (obstackp,
6281 fixup_symbol_section (sym, objfile),
6282 block);
6283 }
6284 }
6285 }
6286 }
6287 }
6288
6289 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6290 They aren't parameters, right? */
6291 if (!found_sym && arg_sym != NULL)
6292 {
6293 add_defn_to_vec (obstackp,
6294 fixup_symbol_section (arg_sym, objfile),
6295 block);
6296 }
6297 }
6298 }
6299 \f
6300
6301 /* Symbol Completion */
6302
6303 /* See symtab.h. */
6304
6305 bool
6306 ada_lookup_name_info::matches
6307 (const char *sym_name,
6308 symbol_name_match_type match_type,
6309 completion_match_result *comp_match_res) const
6310 {
6311 bool match = false;
6312 const char *text = m_encoded_name.c_str ();
6313 size_t text_len = m_encoded_name.size ();
6314
6315 /* First, test against the fully qualified name of the symbol. */
6316
6317 if (strncmp (sym_name, text, text_len) == 0)
6318 match = true;
6319
6320 if (match && !m_encoded_p)
6321 {
6322 /* One needed check before declaring a positive match is to verify
6323 that iff we are doing a verbatim match, the decoded version
6324 of the symbol name starts with '<'. Otherwise, this symbol name
6325 is not a suitable completion. */
6326 const char *sym_name_copy = sym_name;
6327 bool has_angle_bracket;
6328
6329 sym_name = ada_decode (sym_name);
6330 has_angle_bracket = (sym_name[0] == '<');
6331 match = (has_angle_bracket == m_verbatim_p);
6332 sym_name = sym_name_copy;
6333 }
6334
6335 if (match && !m_verbatim_p)
6336 {
6337 /* When doing non-verbatim match, another check that needs to
6338 be done is to verify that the potentially matching symbol name
6339 does not include capital letters, because the ada-mode would
6340 not be able to understand these symbol names without the
6341 angle bracket notation. */
6342 const char *tmp;
6343
6344 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6345 if (*tmp != '\0')
6346 match = false;
6347 }
6348
6349 /* Second: Try wild matching... */
6350
6351 if (!match && m_wild_match_p)
6352 {
6353 /* Since we are doing wild matching, this means that TEXT
6354 may represent an unqualified symbol name. We therefore must
6355 also compare TEXT against the unqualified name of the symbol. */
6356 sym_name = ada_unqualified_name (ada_decode (sym_name));
6357
6358 if (strncmp (sym_name, text, text_len) == 0)
6359 match = true;
6360 }
6361
6362 /* Finally: If we found a match, prepare the result to return. */
6363
6364 if (!match)
6365 return false;
6366
6367 if (comp_match_res != NULL)
6368 {
6369 std::string &match_str = comp_match_res->match.storage ();
6370
6371 if (!m_encoded_p)
6372 match_str = ada_decode (sym_name);
6373 else
6374 {
6375 if (m_verbatim_p)
6376 match_str = add_angle_brackets (sym_name);
6377 else
6378 match_str = sym_name;
6379
6380 }
6381
6382 comp_match_res->set_match (match_str.c_str ());
6383 }
6384
6385 return true;
6386 }
6387
6388 /* Add the list of possible symbol names completing TEXT to TRACKER.
6389 WORD is the entire command on which completion is made. */
6390
6391 static void
6392 ada_collect_symbol_completion_matches (completion_tracker &tracker,
6393 complete_symbol_mode mode,
6394 symbol_name_match_type name_match_type,
6395 const char *text, const char *word,
6396 enum type_code code)
6397 {
6398 struct symbol *sym;
6399 const struct block *b, *surrounding_static_block = 0;
6400 struct block_iterator iter;
6401
6402 gdb_assert (code == TYPE_CODE_UNDEF);
6403
6404 lookup_name_info lookup_name (text, name_match_type, true);
6405
6406 /* First, look at the partial symtab symbols. */
6407 expand_symtabs_matching (NULL,
6408 lookup_name,
6409 NULL,
6410 NULL,
6411 ALL_DOMAIN);
6412
6413 /* At this point scan through the misc symbol vectors and add each
6414 symbol you find to the list. Eventually we want to ignore
6415 anything that isn't a text symbol (everything else will be
6416 handled by the psymtab code above). */
6417
6418 for (objfile *objfile : current_program_space->objfiles ())
6419 {
6420 for (minimal_symbol *msymbol : objfile->msymbols ())
6421 {
6422 QUIT;
6423
6424 if (completion_skip_symbol (mode, msymbol))
6425 continue;
6426
6427 language symbol_language = MSYMBOL_LANGUAGE (msymbol);
6428
6429 /* Ada minimal symbols won't have their language set to Ada. If
6430 we let completion_list_add_name compare using the
6431 default/C-like matcher, then when completing e.g., symbols in a
6432 package named "pck", we'd match internal Ada symbols like
6433 "pckS", which are invalid in an Ada expression, unless you wrap
6434 them in '<' '>' to request a verbatim match.
6435
6436 Unfortunately, some Ada encoded names successfully demangle as
6437 C++ symbols (using an old mangling scheme), such as "name__2Xn"
6438 -> "Xn::name(void)" and thus some Ada minimal symbols end up
6439 with the wrong language set. Paper over that issue here. */
6440 if (symbol_language == language_auto
6441 || symbol_language == language_cplus)
6442 symbol_language = language_ada;
6443
6444 completion_list_add_name (tracker,
6445 symbol_language,
6446 MSYMBOL_LINKAGE_NAME (msymbol),
6447 lookup_name, text, word);
6448 }
6449 }
6450
6451 /* Search upwards from currently selected frame (so that we can
6452 complete on local vars. */
6453
6454 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6455 {
6456 if (!BLOCK_SUPERBLOCK (b))
6457 surrounding_static_block = b; /* For elmin of dups */
6458
6459 ALL_BLOCK_SYMBOLS (b, iter, sym)
6460 {
6461 if (completion_skip_symbol (mode, sym))
6462 continue;
6463
6464 completion_list_add_name (tracker,
6465 SYMBOL_LANGUAGE (sym),
6466 SYMBOL_LINKAGE_NAME (sym),
6467 lookup_name, text, word);
6468 }
6469 }
6470
6471 /* Go through the symtabs and check the externs and statics for
6472 symbols which match. */
6473
6474 for (objfile *objfile : current_program_space->objfiles ())
6475 {
6476 for (compunit_symtab *s : objfile->compunits ())
6477 {
6478 QUIT;
6479 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6480 ALL_BLOCK_SYMBOLS (b, iter, sym)
6481 {
6482 if (completion_skip_symbol (mode, sym))
6483 continue;
6484
6485 completion_list_add_name (tracker,
6486 SYMBOL_LANGUAGE (sym),
6487 SYMBOL_LINKAGE_NAME (sym),
6488 lookup_name, text, word);
6489 }
6490 }
6491 }
6492
6493 for (objfile *objfile : current_program_space->objfiles ())
6494 {
6495 for (compunit_symtab *s : objfile->compunits ())
6496 {
6497 QUIT;
6498 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6499 /* Don't do this block twice. */
6500 if (b == surrounding_static_block)
6501 continue;
6502 ALL_BLOCK_SYMBOLS (b, iter, sym)
6503 {
6504 if (completion_skip_symbol (mode, sym))
6505 continue;
6506
6507 completion_list_add_name (tracker,
6508 SYMBOL_LANGUAGE (sym),
6509 SYMBOL_LINKAGE_NAME (sym),
6510 lookup_name, text, word);
6511 }
6512 }
6513 }
6514 }
6515
6516 /* Field Access */
6517
6518 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6519 for tagged types. */
6520
6521 static int
6522 ada_is_dispatch_table_ptr_type (struct type *type)
6523 {
6524 const char *name;
6525
6526 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6527 return 0;
6528
6529 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6530 if (name == NULL)
6531 return 0;
6532
6533 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6534 }
6535
6536 /* Return non-zero if TYPE is an interface tag. */
6537
6538 static int
6539 ada_is_interface_tag (struct type *type)
6540 {
6541 const char *name = TYPE_NAME (type);
6542
6543 if (name == NULL)
6544 return 0;
6545
6546 return (strcmp (name, "ada__tags__interface_tag") == 0);
6547 }
6548
6549 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6550 to be invisible to users. */
6551
6552 int
6553 ada_is_ignored_field (struct type *type, int field_num)
6554 {
6555 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6556 return 1;
6557
6558 /* Check the name of that field. */
6559 {
6560 const char *name = TYPE_FIELD_NAME (type, field_num);
6561
6562 /* Anonymous field names should not be printed.
6563 brobecker/2007-02-20: I don't think this can actually happen
6564 but we don't want to print the value of annonymous fields anyway. */
6565 if (name == NULL)
6566 return 1;
6567
6568 /* Normally, fields whose name start with an underscore ("_")
6569 are fields that have been internally generated by the compiler,
6570 and thus should not be printed. The "_parent" field is special,
6571 however: This is a field internally generated by the compiler
6572 for tagged types, and it contains the components inherited from
6573 the parent type. This field should not be printed as is, but
6574 should not be ignored either. */
6575 if (name[0] == '_' && !startswith (name, "_parent"))
6576 return 1;
6577 }
6578
6579 /* If this is the dispatch table of a tagged type or an interface tag,
6580 then ignore. */
6581 if (ada_is_tagged_type (type, 1)
6582 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6583 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6584 return 1;
6585
6586 /* Not a special field, so it should not be ignored. */
6587 return 0;
6588 }
6589
6590 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6591 pointer or reference type whose ultimate target has a tag field. */
6592
6593 int
6594 ada_is_tagged_type (struct type *type, int refok)
6595 {
6596 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
6597 }
6598
6599 /* True iff TYPE represents the type of X'Tag */
6600
6601 int
6602 ada_is_tag_type (struct type *type)
6603 {
6604 type = ada_check_typedef (type);
6605
6606 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6607 return 0;
6608 else
6609 {
6610 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6611
6612 return (name != NULL
6613 && strcmp (name, "ada__tags__dispatch_table") == 0);
6614 }
6615 }
6616
6617 /* The type of the tag on VAL. */
6618
6619 struct type *
6620 ada_tag_type (struct value *val)
6621 {
6622 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
6623 }
6624
6625 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6626 retired at Ada 05). */
6627
6628 static int
6629 is_ada95_tag (struct value *tag)
6630 {
6631 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6632 }
6633
6634 /* The value of the tag on VAL. */
6635
6636 struct value *
6637 ada_value_tag (struct value *val)
6638 {
6639 return ada_value_struct_elt (val, "_tag", 0);
6640 }
6641
6642 /* The value of the tag on the object of type TYPE whose contents are
6643 saved at VALADDR, if it is non-null, or is at memory address
6644 ADDRESS. */
6645
6646 static struct value *
6647 value_tag_from_contents_and_address (struct type *type,
6648 const gdb_byte *valaddr,
6649 CORE_ADDR address)
6650 {
6651 int tag_byte_offset;
6652 struct type *tag_type;
6653
6654 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6655 NULL, NULL, NULL))
6656 {
6657 const gdb_byte *valaddr1 = ((valaddr == NULL)
6658 ? NULL
6659 : valaddr + tag_byte_offset);
6660 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6661
6662 return value_from_contents_and_address (tag_type, valaddr1, address1);
6663 }
6664 return NULL;
6665 }
6666
6667 static struct type *
6668 type_from_tag (struct value *tag)
6669 {
6670 const char *type_name = ada_tag_name (tag);
6671
6672 if (type_name != NULL)
6673 return ada_find_any_type (ada_encode (type_name));
6674 return NULL;
6675 }
6676
6677 /* Given a value OBJ of a tagged type, return a value of this
6678 type at the base address of the object. The base address, as
6679 defined in Ada.Tags, it is the address of the primary tag of
6680 the object, and therefore where the field values of its full
6681 view can be fetched. */
6682
6683 struct value *
6684 ada_tag_value_at_base_address (struct value *obj)
6685 {
6686 struct value *val;
6687 LONGEST offset_to_top = 0;
6688 struct type *ptr_type, *obj_type;
6689 struct value *tag;
6690 CORE_ADDR base_address;
6691
6692 obj_type = value_type (obj);
6693
6694 /* It is the responsability of the caller to deref pointers. */
6695
6696 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6697 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6698 return obj;
6699
6700 tag = ada_value_tag (obj);
6701 if (!tag)
6702 return obj;
6703
6704 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6705
6706 if (is_ada95_tag (tag))
6707 return obj;
6708
6709 ptr_type = language_lookup_primitive_type
6710 (language_def (language_ada), target_gdbarch(), "storage_offset");
6711 ptr_type = lookup_pointer_type (ptr_type);
6712 val = value_cast (ptr_type, tag);
6713 if (!val)
6714 return obj;
6715
6716 /* It is perfectly possible that an exception be raised while
6717 trying to determine the base address, just like for the tag;
6718 see ada_tag_name for more details. We do not print the error
6719 message for the same reason. */
6720
6721 TRY
6722 {
6723 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6724 }
6725
6726 CATCH (e, RETURN_MASK_ERROR)
6727 {
6728 return obj;
6729 }
6730 END_CATCH
6731
6732 /* If offset is null, nothing to do. */
6733
6734 if (offset_to_top == 0)
6735 return obj;
6736
6737 /* -1 is a special case in Ada.Tags; however, what should be done
6738 is not quite clear from the documentation. So do nothing for
6739 now. */
6740
6741 if (offset_to_top == -1)
6742 return obj;
6743
6744 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6745 from the base address. This was however incompatible with
6746 C++ dispatch table: C++ uses a *negative* value to *add*
6747 to the base address. Ada's convention has therefore been
6748 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6749 use the same convention. Here, we support both cases by
6750 checking the sign of OFFSET_TO_TOP. */
6751
6752 if (offset_to_top > 0)
6753 offset_to_top = -offset_to_top;
6754
6755 base_address = value_address (obj) + offset_to_top;
6756 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6757
6758 /* Make sure that we have a proper tag at the new address.
6759 Otherwise, offset_to_top is bogus (which can happen when
6760 the object is not initialized yet). */
6761
6762 if (!tag)
6763 return obj;
6764
6765 obj_type = type_from_tag (tag);
6766
6767 if (!obj_type)
6768 return obj;
6769
6770 return value_from_contents_and_address (obj_type, NULL, base_address);
6771 }
6772
6773 /* Return the "ada__tags__type_specific_data" type. */
6774
6775 static struct type *
6776 ada_get_tsd_type (struct inferior *inf)
6777 {
6778 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6779
6780 if (data->tsd_type == 0)
6781 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6782 return data->tsd_type;
6783 }
6784
6785 /* Return the TSD (type-specific data) associated to the given TAG.
6786 TAG is assumed to be the tag of a tagged-type entity.
6787
6788 May return NULL if we are unable to get the TSD. */
6789
6790 static struct value *
6791 ada_get_tsd_from_tag (struct value *tag)
6792 {
6793 struct value *val;
6794 struct type *type;
6795
6796 /* First option: The TSD is simply stored as a field of our TAG.
6797 Only older versions of GNAT would use this format, but we have
6798 to test it first, because there are no visible markers for
6799 the current approach except the absence of that field. */
6800
6801 val = ada_value_struct_elt (tag, "tsd", 1);
6802 if (val)
6803 return val;
6804
6805 /* Try the second representation for the dispatch table (in which
6806 there is no explicit 'tsd' field in the referent of the tag pointer,
6807 and instead the tsd pointer is stored just before the dispatch
6808 table. */
6809
6810 type = ada_get_tsd_type (current_inferior());
6811 if (type == NULL)
6812 return NULL;
6813 type = lookup_pointer_type (lookup_pointer_type (type));
6814 val = value_cast (type, tag);
6815 if (val == NULL)
6816 return NULL;
6817 return value_ind (value_ptradd (val, -1));
6818 }
6819
6820 /* Given the TSD of a tag (type-specific data), return a string
6821 containing the name of the associated type.
6822
6823 The returned value is good until the next call. May return NULL
6824 if we are unable to determine the tag name. */
6825
6826 static char *
6827 ada_tag_name_from_tsd (struct value *tsd)
6828 {
6829 static char name[1024];
6830 char *p;
6831 struct value *val;
6832
6833 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6834 if (val == NULL)
6835 return NULL;
6836 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6837 for (p = name; *p != '\0'; p += 1)
6838 if (isalpha (*p))
6839 *p = tolower (*p);
6840 return name;
6841 }
6842
6843 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6844 a C string.
6845
6846 Return NULL if the TAG is not an Ada tag, or if we were unable to
6847 determine the name of that tag. The result is good until the next
6848 call. */
6849
6850 const char *
6851 ada_tag_name (struct value *tag)
6852 {
6853 char *name = NULL;
6854
6855 if (!ada_is_tag_type (value_type (tag)))
6856 return NULL;
6857
6858 /* It is perfectly possible that an exception be raised while trying
6859 to determine the TAG's name, even under normal circumstances:
6860 The associated variable may be uninitialized or corrupted, for
6861 instance. We do not let any exception propagate past this point.
6862 instead we return NULL.
6863
6864 We also do not print the error message either (which often is very
6865 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6866 the caller print a more meaningful message if necessary. */
6867 TRY
6868 {
6869 struct value *tsd = ada_get_tsd_from_tag (tag);
6870
6871 if (tsd != NULL)
6872 name = ada_tag_name_from_tsd (tsd);
6873 }
6874 CATCH (e, RETURN_MASK_ERROR)
6875 {
6876 }
6877 END_CATCH
6878
6879 return name;
6880 }
6881
6882 /* The parent type of TYPE, or NULL if none. */
6883
6884 struct type *
6885 ada_parent_type (struct type *type)
6886 {
6887 int i;
6888
6889 type = ada_check_typedef (type);
6890
6891 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6892 return NULL;
6893
6894 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6895 if (ada_is_parent_field (type, i))
6896 {
6897 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6898
6899 /* If the _parent field is a pointer, then dereference it. */
6900 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6901 parent_type = TYPE_TARGET_TYPE (parent_type);
6902 /* If there is a parallel XVS type, get the actual base type. */
6903 parent_type = ada_get_base_type (parent_type);
6904
6905 return ada_check_typedef (parent_type);
6906 }
6907
6908 return NULL;
6909 }
6910
6911 /* True iff field number FIELD_NUM of structure type TYPE contains the
6912 parent-type (inherited) fields of a derived type. Assumes TYPE is
6913 a structure type with at least FIELD_NUM+1 fields. */
6914
6915 int
6916 ada_is_parent_field (struct type *type, int field_num)
6917 {
6918 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6919
6920 return (name != NULL
6921 && (startswith (name, "PARENT")
6922 || startswith (name, "_parent")));
6923 }
6924
6925 /* True iff field number FIELD_NUM of structure type TYPE is a
6926 transparent wrapper field (which should be silently traversed when doing
6927 field selection and flattened when printing). Assumes TYPE is a
6928 structure type with at least FIELD_NUM+1 fields. Such fields are always
6929 structures. */
6930
6931 int
6932 ada_is_wrapper_field (struct type *type, int field_num)
6933 {
6934 const char *name = TYPE_FIELD_NAME (type, field_num);
6935
6936 if (name != NULL && strcmp (name, "RETVAL") == 0)
6937 {
6938 /* This happens in functions with "out" or "in out" parameters
6939 which are passed by copy. For such functions, GNAT describes
6940 the function's return type as being a struct where the return
6941 value is in a field called RETVAL, and where the other "out"
6942 or "in out" parameters are fields of that struct. This is not
6943 a wrapper. */
6944 return 0;
6945 }
6946
6947 return (name != NULL
6948 && (startswith (name, "PARENT")
6949 || strcmp (name, "REP") == 0
6950 || startswith (name, "_parent")
6951 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6952 }
6953
6954 /* True iff field number FIELD_NUM of structure or union type TYPE
6955 is a variant wrapper. Assumes TYPE is a structure type with at least
6956 FIELD_NUM+1 fields. */
6957
6958 int
6959 ada_is_variant_part (struct type *type, int field_num)
6960 {
6961 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6962
6963 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
6964 || (is_dynamic_field (type, field_num)
6965 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6966 == TYPE_CODE_UNION)));
6967 }
6968
6969 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6970 whose discriminants are contained in the record type OUTER_TYPE,
6971 returns the type of the controlling discriminant for the variant.
6972 May return NULL if the type could not be found. */
6973
6974 struct type *
6975 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6976 {
6977 const char *name = ada_variant_discrim_name (var_type);
6978
6979 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
6980 }
6981
6982 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6983 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6984 represents a 'when others' clause; otherwise 0. */
6985
6986 int
6987 ada_is_others_clause (struct type *type, int field_num)
6988 {
6989 const char *name = TYPE_FIELD_NAME (type, field_num);
6990
6991 return (name != NULL && name[0] == 'O');
6992 }
6993
6994 /* Assuming that TYPE0 is the type of the variant part of a record,
6995 returns the name of the discriminant controlling the variant.
6996 The value is valid until the next call to ada_variant_discrim_name. */
6997
6998 const char *
6999 ada_variant_discrim_name (struct type *type0)
7000 {
7001 static char *result = NULL;
7002 static size_t result_len = 0;
7003 struct type *type;
7004 const char *name;
7005 const char *discrim_end;
7006 const char *discrim_start;
7007
7008 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
7009 type = TYPE_TARGET_TYPE (type0);
7010 else
7011 type = type0;
7012
7013 name = ada_type_name (type);
7014
7015 if (name == NULL || name[0] == '\000')
7016 return "";
7017
7018 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
7019 discrim_end -= 1)
7020 {
7021 if (startswith (discrim_end, "___XVN"))
7022 break;
7023 }
7024 if (discrim_end == name)
7025 return "";
7026
7027 for (discrim_start = discrim_end; discrim_start != name + 3;
7028 discrim_start -= 1)
7029 {
7030 if (discrim_start == name + 1)
7031 return "";
7032 if ((discrim_start > name + 3
7033 && startswith (discrim_start - 3, "___"))
7034 || discrim_start[-1] == '.')
7035 break;
7036 }
7037
7038 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7039 strncpy (result, discrim_start, discrim_end - discrim_start);
7040 result[discrim_end - discrim_start] = '\0';
7041 return result;
7042 }
7043
7044 /* Scan STR for a subtype-encoded number, beginning at position K.
7045 Put the position of the character just past the number scanned in
7046 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7047 Return 1 if there was a valid number at the given position, and 0
7048 otherwise. A "subtype-encoded" number consists of the absolute value
7049 in decimal, followed by the letter 'm' to indicate a negative number.
7050 Assumes 0m does not occur. */
7051
7052 int
7053 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
7054 {
7055 ULONGEST RU;
7056
7057 if (!isdigit (str[k]))
7058 return 0;
7059
7060 /* Do it the hard way so as not to make any assumption about
7061 the relationship of unsigned long (%lu scan format code) and
7062 LONGEST. */
7063 RU = 0;
7064 while (isdigit (str[k]))
7065 {
7066 RU = RU * 10 + (str[k] - '0');
7067 k += 1;
7068 }
7069
7070 if (str[k] == 'm')
7071 {
7072 if (R != NULL)
7073 *R = (-(LONGEST) (RU - 1)) - 1;
7074 k += 1;
7075 }
7076 else if (R != NULL)
7077 *R = (LONGEST) RU;
7078
7079 /* NOTE on the above: Technically, C does not say what the results of
7080 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7081 number representable as a LONGEST (although either would probably work
7082 in most implementations). When RU>0, the locution in the then branch
7083 above is always equivalent to the negative of RU. */
7084
7085 if (new_k != NULL)
7086 *new_k = k;
7087 return 1;
7088 }
7089
7090 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7091 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7092 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
7093
7094 int
7095 ada_in_variant (LONGEST val, struct type *type, int field_num)
7096 {
7097 const char *name = TYPE_FIELD_NAME (type, field_num);
7098 int p;
7099
7100 p = 0;
7101 while (1)
7102 {
7103 switch (name[p])
7104 {
7105 case '\0':
7106 return 0;
7107 case 'S':
7108 {
7109 LONGEST W;
7110
7111 if (!ada_scan_number (name, p + 1, &W, &p))
7112 return 0;
7113 if (val == W)
7114 return 1;
7115 break;
7116 }
7117 case 'R':
7118 {
7119 LONGEST L, U;
7120
7121 if (!ada_scan_number (name, p + 1, &L, &p)
7122 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7123 return 0;
7124 if (val >= L && val <= U)
7125 return 1;
7126 break;
7127 }
7128 case 'O':
7129 return 1;
7130 default:
7131 return 0;
7132 }
7133 }
7134 }
7135
7136 /* FIXME: Lots of redundancy below. Try to consolidate. */
7137
7138 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7139 ARG_TYPE, extract and return the value of one of its (non-static)
7140 fields. FIELDNO says which field. Differs from value_primitive_field
7141 only in that it can handle packed values of arbitrary type. */
7142
7143 static struct value *
7144 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
7145 struct type *arg_type)
7146 {
7147 struct type *type;
7148
7149 arg_type = ada_check_typedef (arg_type);
7150 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7151
7152 /* Handle packed fields. */
7153
7154 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
7155 {
7156 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7157 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
7158
7159 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
7160 offset + bit_pos / 8,
7161 bit_pos % 8, bit_size, type);
7162 }
7163 else
7164 return value_primitive_field (arg1, offset, fieldno, arg_type);
7165 }
7166
7167 /* Find field with name NAME in object of type TYPE. If found,
7168 set the following for each argument that is non-null:
7169 - *FIELD_TYPE_P to the field's type;
7170 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7171 an object of that type;
7172 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7173 - *BIT_SIZE_P to its size in bits if the field is packed, and
7174 0 otherwise;
7175 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7176 fields up to but not including the desired field, or by the total
7177 number of fields if not found. A NULL value of NAME never
7178 matches; the function just counts visible fields in this case.
7179
7180 Notice that we need to handle when a tagged record hierarchy
7181 has some components with the same name, like in this scenario:
7182
7183 type Top_T is tagged record
7184 N : Integer := 1;
7185 U : Integer := 974;
7186 A : Integer := 48;
7187 end record;
7188
7189 type Middle_T is new Top.Top_T with record
7190 N : Character := 'a';
7191 C : Integer := 3;
7192 end record;
7193
7194 type Bottom_T is new Middle.Middle_T with record
7195 N : Float := 4.0;
7196 C : Character := '5';
7197 X : Integer := 6;
7198 A : Character := 'J';
7199 end record;
7200
7201 Let's say we now have a variable declared and initialized as follow:
7202
7203 TC : Top_A := new Bottom_T;
7204
7205 And then we use this variable to call this function
7206
7207 procedure Assign (Obj: in out Top_T; TV : Integer);
7208
7209 as follow:
7210
7211 Assign (Top_T (B), 12);
7212
7213 Now, we're in the debugger, and we're inside that procedure
7214 then and we want to print the value of obj.c:
7215
7216 Usually, the tagged record or one of the parent type owns the
7217 component to print and there's no issue but in this particular
7218 case, what does it mean to ask for Obj.C? Since the actual
7219 type for object is type Bottom_T, it could mean two things: type
7220 component C from the Middle_T view, but also component C from
7221 Bottom_T. So in that "undefined" case, when the component is
7222 not found in the non-resolved type (which includes all the
7223 components of the parent type), then resolve it and see if we
7224 get better luck once expanded.
7225
7226 In the case of homonyms in the derived tagged type, we don't
7227 guaranty anything, and pick the one that's easiest for us
7228 to program.
7229
7230 Returns 1 if found, 0 otherwise. */
7231
7232 static int
7233 find_struct_field (const char *name, struct type *type, int offset,
7234 struct type **field_type_p,
7235 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7236 int *index_p)
7237 {
7238 int i;
7239 int parent_offset = -1;
7240
7241 type = ada_check_typedef (type);
7242
7243 if (field_type_p != NULL)
7244 *field_type_p = NULL;
7245 if (byte_offset_p != NULL)
7246 *byte_offset_p = 0;
7247 if (bit_offset_p != NULL)
7248 *bit_offset_p = 0;
7249 if (bit_size_p != NULL)
7250 *bit_size_p = 0;
7251
7252 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7253 {
7254 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7255 int fld_offset = offset + bit_pos / 8;
7256 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7257
7258 if (t_field_name == NULL)
7259 continue;
7260
7261 else if (ada_is_parent_field (type, i))
7262 {
7263 /* This is a field pointing us to the parent type of a tagged
7264 type. As hinted in this function's documentation, we give
7265 preference to fields in the current record first, so what
7266 we do here is just record the index of this field before
7267 we skip it. If it turns out we couldn't find our field
7268 in the current record, then we'll get back to it and search
7269 inside it whether the field might exist in the parent. */
7270
7271 parent_offset = i;
7272 continue;
7273 }
7274
7275 else if (name != NULL && field_name_match (t_field_name, name))
7276 {
7277 int bit_size = TYPE_FIELD_BITSIZE (type, i);
7278
7279 if (field_type_p != NULL)
7280 *field_type_p = TYPE_FIELD_TYPE (type, i);
7281 if (byte_offset_p != NULL)
7282 *byte_offset_p = fld_offset;
7283 if (bit_offset_p != NULL)
7284 *bit_offset_p = bit_pos % 8;
7285 if (bit_size_p != NULL)
7286 *bit_size_p = bit_size;
7287 return 1;
7288 }
7289 else if (ada_is_wrapper_field (type, i))
7290 {
7291 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7292 field_type_p, byte_offset_p, bit_offset_p,
7293 bit_size_p, index_p))
7294 return 1;
7295 }
7296 else if (ada_is_variant_part (type, i))
7297 {
7298 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7299 fixed type?? */
7300 int j;
7301 struct type *field_type
7302 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7303
7304 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7305 {
7306 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7307 fld_offset
7308 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7309 field_type_p, byte_offset_p,
7310 bit_offset_p, bit_size_p, index_p))
7311 return 1;
7312 }
7313 }
7314 else if (index_p != NULL)
7315 *index_p += 1;
7316 }
7317
7318 /* Field not found so far. If this is a tagged type which
7319 has a parent, try finding that field in the parent now. */
7320
7321 if (parent_offset != -1)
7322 {
7323 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
7324 int fld_offset = offset + bit_pos / 8;
7325
7326 if (find_struct_field (name, TYPE_FIELD_TYPE (type, parent_offset),
7327 fld_offset, field_type_p, byte_offset_p,
7328 bit_offset_p, bit_size_p, index_p))
7329 return 1;
7330 }
7331
7332 return 0;
7333 }
7334
7335 /* Number of user-visible fields in record type TYPE. */
7336
7337 static int
7338 num_visible_fields (struct type *type)
7339 {
7340 int n;
7341
7342 n = 0;
7343 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7344 return n;
7345 }
7346
7347 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7348 and search in it assuming it has (class) type TYPE.
7349 If found, return value, else return NULL.
7350
7351 Searches recursively through wrapper fields (e.g., '_parent').
7352
7353 In the case of homonyms in the tagged types, please refer to the
7354 long explanation in find_struct_field's function documentation. */
7355
7356 static struct value *
7357 ada_search_struct_field (const char *name, struct value *arg, int offset,
7358 struct type *type)
7359 {
7360 int i;
7361 int parent_offset = -1;
7362
7363 type = ada_check_typedef (type);
7364 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7365 {
7366 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7367
7368 if (t_field_name == NULL)
7369 continue;
7370
7371 else if (ada_is_parent_field (type, i))
7372 {
7373 /* This is a field pointing us to the parent type of a tagged
7374 type. As hinted in this function's documentation, we give
7375 preference to fields in the current record first, so what
7376 we do here is just record the index of this field before
7377 we skip it. If it turns out we couldn't find our field
7378 in the current record, then we'll get back to it and search
7379 inside it whether the field might exist in the parent. */
7380
7381 parent_offset = i;
7382 continue;
7383 }
7384
7385 else if (field_name_match (t_field_name, name))
7386 return ada_value_primitive_field (arg, offset, i, type);
7387
7388 else if (ada_is_wrapper_field (type, i))
7389 {
7390 struct value *v = /* Do not let indent join lines here. */
7391 ada_search_struct_field (name, arg,
7392 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7393 TYPE_FIELD_TYPE (type, i));
7394
7395 if (v != NULL)
7396 return v;
7397 }
7398
7399 else if (ada_is_variant_part (type, i))
7400 {
7401 /* PNH: Do we ever get here? See find_struct_field. */
7402 int j;
7403 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7404 i));
7405 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7406
7407 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7408 {
7409 struct value *v = ada_search_struct_field /* Force line
7410 break. */
7411 (name, arg,
7412 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7413 TYPE_FIELD_TYPE (field_type, j));
7414
7415 if (v != NULL)
7416 return v;
7417 }
7418 }
7419 }
7420
7421 /* Field not found so far. If this is a tagged type which
7422 has a parent, try finding that field in the parent now. */
7423
7424 if (parent_offset != -1)
7425 {
7426 struct value *v = ada_search_struct_field (
7427 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
7428 TYPE_FIELD_TYPE (type, parent_offset));
7429
7430 if (v != NULL)
7431 return v;
7432 }
7433
7434 return NULL;
7435 }
7436
7437 static struct value *ada_index_struct_field_1 (int *, struct value *,
7438 int, struct type *);
7439
7440
7441 /* Return field #INDEX in ARG, where the index is that returned by
7442 * find_struct_field through its INDEX_P argument. Adjust the address
7443 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7444 * If found, return value, else return NULL. */
7445
7446 static struct value *
7447 ada_index_struct_field (int index, struct value *arg, int offset,
7448 struct type *type)
7449 {
7450 return ada_index_struct_field_1 (&index, arg, offset, type);
7451 }
7452
7453
7454 /* Auxiliary function for ada_index_struct_field. Like
7455 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7456 * *INDEX_P. */
7457
7458 static struct value *
7459 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7460 struct type *type)
7461 {
7462 int i;
7463 type = ada_check_typedef (type);
7464
7465 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7466 {
7467 if (TYPE_FIELD_NAME (type, i) == NULL)
7468 continue;
7469 else if (ada_is_wrapper_field (type, i))
7470 {
7471 struct value *v = /* Do not let indent join lines here. */
7472 ada_index_struct_field_1 (index_p, arg,
7473 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7474 TYPE_FIELD_TYPE (type, i));
7475
7476 if (v != NULL)
7477 return v;
7478 }
7479
7480 else if (ada_is_variant_part (type, i))
7481 {
7482 /* PNH: Do we ever get here? See ada_search_struct_field,
7483 find_struct_field. */
7484 error (_("Cannot assign this kind of variant record"));
7485 }
7486 else if (*index_p == 0)
7487 return ada_value_primitive_field (arg, offset, i, type);
7488 else
7489 *index_p -= 1;
7490 }
7491 return NULL;
7492 }
7493
7494 /* Given ARG, a value of type (pointer or reference to a)*
7495 structure/union, extract the component named NAME from the ultimate
7496 target structure/union and return it as a value with its
7497 appropriate type.
7498
7499 The routine searches for NAME among all members of the structure itself
7500 and (recursively) among all members of any wrapper members
7501 (e.g., '_parent').
7502
7503 If NO_ERR, then simply return NULL in case of error, rather than
7504 calling error. */
7505
7506 struct value *
7507 ada_value_struct_elt (struct value *arg, const char *name, int no_err)
7508 {
7509 struct type *t, *t1;
7510 struct value *v;
7511 int check_tag;
7512
7513 v = NULL;
7514 t1 = t = ada_check_typedef (value_type (arg));
7515 if (TYPE_CODE (t) == TYPE_CODE_REF)
7516 {
7517 t1 = TYPE_TARGET_TYPE (t);
7518 if (t1 == NULL)
7519 goto BadValue;
7520 t1 = ada_check_typedef (t1);
7521 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7522 {
7523 arg = coerce_ref (arg);
7524 t = t1;
7525 }
7526 }
7527
7528 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7529 {
7530 t1 = TYPE_TARGET_TYPE (t);
7531 if (t1 == NULL)
7532 goto BadValue;
7533 t1 = ada_check_typedef (t1);
7534 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7535 {
7536 arg = value_ind (arg);
7537 t = t1;
7538 }
7539 else
7540 break;
7541 }
7542
7543 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
7544 goto BadValue;
7545
7546 if (t1 == t)
7547 v = ada_search_struct_field (name, arg, 0, t);
7548 else
7549 {
7550 int bit_offset, bit_size, byte_offset;
7551 struct type *field_type;
7552 CORE_ADDR address;
7553
7554 if (TYPE_CODE (t) == TYPE_CODE_PTR)
7555 address = value_address (ada_value_ind (arg));
7556 else
7557 address = value_address (ada_coerce_ref (arg));
7558
7559 /* Check to see if this is a tagged type. We also need to handle
7560 the case where the type is a reference to a tagged type, but
7561 we have to be careful to exclude pointers to tagged types.
7562 The latter should be shown as usual (as a pointer), whereas
7563 a reference should mostly be transparent to the user. */
7564
7565 if (ada_is_tagged_type (t1, 0)
7566 || (TYPE_CODE (t1) == TYPE_CODE_REF
7567 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
7568 {
7569 /* We first try to find the searched field in the current type.
7570 If not found then let's look in the fixed type. */
7571
7572 if (!find_struct_field (name, t1, 0,
7573 &field_type, &byte_offset, &bit_offset,
7574 &bit_size, NULL))
7575 check_tag = 1;
7576 else
7577 check_tag = 0;
7578 }
7579 else
7580 check_tag = 0;
7581
7582 /* Convert to fixed type in all cases, so that we have proper
7583 offsets to each field in unconstrained record types. */
7584 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
7585 address, NULL, check_tag);
7586
7587 if (find_struct_field (name, t1, 0,
7588 &field_type, &byte_offset, &bit_offset,
7589 &bit_size, NULL))
7590 {
7591 if (bit_size != 0)
7592 {
7593 if (TYPE_CODE (t) == TYPE_CODE_REF)
7594 arg = ada_coerce_ref (arg);
7595 else
7596 arg = ada_value_ind (arg);
7597 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7598 bit_offset, bit_size,
7599 field_type);
7600 }
7601 else
7602 v = value_at_lazy (field_type, address + byte_offset);
7603 }
7604 }
7605
7606 if (v != NULL || no_err)
7607 return v;
7608 else
7609 error (_("There is no member named %s."), name);
7610
7611 BadValue:
7612 if (no_err)
7613 return NULL;
7614 else
7615 error (_("Attempt to extract a component of "
7616 "a value that is not a record."));
7617 }
7618
7619 /* Return a string representation of type TYPE. */
7620
7621 static std::string
7622 type_as_string (struct type *type)
7623 {
7624 string_file tmp_stream;
7625
7626 type_print (type, "", &tmp_stream, -1);
7627
7628 return std::move (tmp_stream.string ());
7629 }
7630
7631 /* Given a type TYPE, look up the type of the component of type named NAME.
7632 If DISPP is non-null, add its byte displacement from the beginning of a
7633 structure (pointed to by a value) of type TYPE to *DISPP (does not
7634 work for packed fields).
7635
7636 Matches any field whose name has NAME as a prefix, possibly
7637 followed by "___".
7638
7639 TYPE can be either a struct or union. If REFOK, TYPE may also
7640 be a (pointer or reference)+ to a struct or union, and the
7641 ultimate target type will be searched.
7642
7643 Looks recursively into variant clauses and parent types.
7644
7645 In the case of homonyms in the tagged types, please refer to the
7646 long explanation in find_struct_field's function documentation.
7647
7648 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7649 TYPE is not a type of the right kind. */
7650
7651 static struct type *
7652 ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
7653 int noerr)
7654 {
7655 int i;
7656 int parent_offset = -1;
7657
7658 if (name == NULL)
7659 goto BadName;
7660
7661 if (refok && type != NULL)
7662 while (1)
7663 {
7664 type = ada_check_typedef (type);
7665 if (TYPE_CODE (type) != TYPE_CODE_PTR
7666 && TYPE_CODE (type) != TYPE_CODE_REF)
7667 break;
7668 type = TYPE_TARGET_TYPE (type);
7669 }
7670
7671 if (type == NULL
7672 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7673 && TYPE_CODE (type) != TYPE_CODE_UNION))
7674 {
7675 if (noerr)
7676 return NULL;
7677
7678 error (_("Type %s is not a structure or union type"),
7679 type != NULL ? type_as_string (type).c_str () : _("(null)"));
7680 }
7681
7682 type = to_static_fixed_type (type);
7683
7684 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7685 {
7686 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7687 struct type *t;
7688
7689 if (t_field_name == NULL)
7690 continue;
7691
7692 else if (ada_is_parent_field (type, i))
7693 {
7694 /* This is a field pointing us to the parent type of a tagged
7695 type. As hinted in this function's documentation, we give
7696 preference to fields in the current record first, so what
7697 we do here is just record the index of this field before
7698 we skip it. If it turns out we couldn't find our field
7699 in the current record, then we'll get back to it and search
7700 inside it whether the field might exist in the parent. */
7701
7702 parent_offset = i;
7703 continue;
7704 }
7705
7706 else if (field_name_match (t_field_name, name))
7707 return TYPE_FIELD_TYPE (type, i);
7708
7709 else if (ada_is_wrapper_field (type, i))
7710 {
7711 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7712 0, 1);
7713 if (t != NULL)
7714 return t;
7715 }
7716
7717 else if (ada_is_variant_part (type, i))
7718 {
7719 int j;
7720 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7721 i));
7722
7723 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7724 {
7725 /* FIXME pnh 2008/01/26: We check for a field that is
7726 NOT wrapped in a struct, since the compiler sometimes
7727 generates these for unchecked variant types. Revisit
7728 if the compiler changes this practice. */
7729 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7730
7731 if (v_field_name != NULL
7732 && field_name_match (v_field_name, name))
7733 t = TYPE_FIELD_TYPE (field_type, j);
7734 else
7735 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7736 j),
7737 name, 0, 1);
7738
7739 if (t != NULL)
7740 return t;
7741 }
7742 }
7743
7744 }
7745
7746 /* Field not found so far. If this is a tagged type which
7747 has a parent, try finding that field in the parent now. */
7748
7749 if (parent_offset != -1)
7750 {
7751 struct type *t;
7752
7753 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, parent_offset),
7754 name, 0, 1);
7755 if (t != NULL)
7756 return t;
7757 }
7758
7759 BadName:
7760 if (!noerr)
7761 {
7762 const char *name_str = name != NULL ? name : _("<null>");
7763
7764 error (_("Type %s has no component named %s"),
7765 type_as_string (type).c_str (), name_str);
7766 }
7767
7768 return NULL;
7769 }
7770
7771 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7772 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7773 represents an unchecked union (that is, the variant part of a
7774 record that is named in an Unchecked_Union pragma). */
7775
7776 static int
7777 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7778 {
7779 const char *discrim_name = ada_variant_discrim_name (var_type);
7780
7781 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
7782 }
7783
7784
7785 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7786 within a value of type OUTER_TYPE that is stored in GDB at
7787 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7788 numbering from 0) is applicable. Returns -1 if none are. */
7789
7790 int
7791 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7792 const gdb_byte *outer_valaddr)
7793 {
7794 int others_clause;
7795 int i;
7796 const char *discrim_name = ada_variant_discrim_name (var_type);
7797 struct value *outer;
7798 struct value *discrim;
7799 LONGEST discrim_val;
7800
7801 /* Using plain value_from_contents_and_address here causes problems
7802 because we will end up trying to resolve a type that is currently
7803 being constructed. */
7804 outer = value_from_contents_and_address_unresolved (outer_type,
7805 outer_valaddr, 0);
7806 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7807 if (discrim == NULL)
7808 return -1;
7809 discrim_val = value_as_long (discrim);
7810
7811 others_clause = -1;
7812 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7813 {
7814 if (ada_is_others_clause (var_type, i))
7815 others_clause = i;
7816 else if (ada_in_variant (discrim_val, var_type, i))
7817 return i;
7818 }
7819
7820 return others_clause;
7821 }
7822 \f
7823
7824
7825 /* Dynamic-Sized Records */
7826
7827 /* Strategy: The type ostensibly attached to a value with dynamic size
7828 (i.e., a size that is not statically recorded in the debugging
7829 data) does not accurately reflect the size or layout of the value.
7830 Our strategy is to convert these values to values with accurate,
7831 conventional types that are constructed on the fly. */
7832
7833 /* There is a subtle and tricky problem here. In general, we cannot
7834 determine the size of dynamic records without its data. However,
7835 the 'struct value' data structure, which GDB uses to represent
7836 quantities in the inferior process (the target), requires the size
7837 of the type at the time of its allocation in order to reserve space
7838 for GDB's internal copy of the data. That's why the
7839 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7840 rather than struct value*s.
7841
7842 However, GDB's internal history variables ($1, $2, etc.) are
7843 struct value*s containing internal copies of the data that are not, in
7844 general, the same as the data at their corresponding addresses in
7845 the target. Fortunately, the types we give to these values are all
7846 conventional, fixed-size types (as per the strategy described
7847 above), so that we don't usually have to perform the
7848 'to_fixed_xxx_type' conversions to look at their values.
7849 Unfortunately, there is one exception: if one of the internal
7850 history variables is an array whose elements are unconstrained
7851 records, then we will need to create distinct fixed types for each
7852 element selected. */
7853
7854 /* The upshot of all of this is that many routines take a (type, host
7855 address, target address) triple as arguments to represent a value.
7856 The host address, if non-null, is supposed to contain an internal
7857 copy of the relevant data; otherwise, the program is to consult the
7858 target at the target address. */
7859
7860 /* Assuming that VAL0 represents a pointer value, the result of
7861 dereferencing it. Differs from value_ind in its treatment of
7862 dynamic-sized types. */
7863
7864 struct value *
7865 ada_value_ind (struct value *val0)
7866 {
7867 struct value *val = value_ind (val0);
7868
7869 if (ada_is_tagged_type (value_type (val), 0))
7870 val = ada_tag_value_at_base_address (val);
7871
7872 return ada_to_fixed_value (val);
7873 }
7874
7875 /* The value resulting from dereferencing any "reference to"
7876 qualifiers on VAL0. */
7877
7878 static struct value *
7879 ada_coerce_ref (struct value *val0)
7880 {
7881 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7882 {
7883 struct value *val = val0;
7884
7885 val = coerce_ref (val);
7886
7887 if (ada_is_tagged_type (value_type (val), 0))
7888 val = ada_tag_value_at_base_address (val);
7889
7890 return ada_to_fixed_value (val);
7891 }
7892 else
7893 return val0;
7894 }
7895
7896 /* Return OFF rounded upward if necessary to a multiple of
7897 ALIGNMENT (a power of 2). */
7898
7899 static unsigned int
7900 align_value (unsigned int off, unsigned int alignment)
7901 {
7902 return (off + alignment - 1) & ~(alignment - 1);
7903 }
7904
7905 /* Return the bit alignment required for field #F of template type TYPE. */
7906
7907 static unsigned int
7908 field_alignment (struct type *type, int f)
7909 {
7910 const char *name = TYPE_FIELD_NAME (type, f);
7911 int len;
7912 int align_offset;
7913
7914 /* The field name should never be null, unless the debugging information
7915 is somehow malformed. In this case, we assume the field does not
7916 require any alignment. */
7917 if (name == NULL)
7918 return 1;
7919
7920 len = strlen (name);
7921
7922 if (!isdigit (name[len - 1]))
7923 return 1;
7924
7925 if (isdigit (name[len - 2]))
7926 align_offset = len - 2;
7927 else
7928 align_offset = len - 1;
7929
7930 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7931 return TARGET_CHAR_BIT;
7932
7933 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7934 }
7935
7936 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7937
7938 static struct symbol *
7939 ada_find_any_type_symbol (const char *name)
7940 {
7941 struct symbol *sym;
7942
7943 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7944 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7945 return sym;
7946
7947 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7948 return sym;
7949 }
7950
7951 /* Find a type named NAME. Ignores ambiguity. This routine will look
7952 solely for types defined by debug info, it will not search the GDB
7953 primitive types. */
7954
7955 static struct type *
7956 ada_find_any_type (const char *name)
7957 {
7958 struct symbol *sym = ada_find_any_type_symbol (name);
7959
7960 if (sym != NULL)
7961 return SYMBOL_TYPE (sym);
7962
7963 return NULL;
7964 }
7965
7966 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7967 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7968 symbol, in which case it is returned. Otherwise, this looks for
7969 symbols whose name is that of NAME_SYM suffixed with "___XR".
7970 Return symbol if found, and NULL otherwise. */
7971
7972 struct symbol *
7973 ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
7974 {
7975 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7976 struct symbol *sym;
7977
7978 if (strstr (name, "___XR") != NULL)
7979 return name_sym;
7980
7981 sym = find_old_style_renaming_symbol (name, block);
7982
7983 if (sym != NULL)
7984 return sym;
7985
7986 /* Not right yet. FIXME pnh 7/20/2007. */
7987 sym = ada_find_any_type_symbol (name);
7988 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7989 return sym;
7990 else
7991 return NULL;
7992 }
7993
7994 static struct symbol *
7995 find_old_style_renaming_symbol (const char *name, const struct block *block)
7996 {
7997 const struct symbol *function_sym = block_linkage_function (block);
7998 char *rename;
7999
8000 if (function_sym != NULL)
8001 {
8002 /* If the symbol is defined inside a function, NAME is not fully
8003 qualified. This means we need to prepend the function name
8004 as well as adding the ``___XR'' suffix to build the name of
8005 the associated renaming symbol. */
8006 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
8007 /* Function names sometimes contain suffixes used
8008 for instance to qualify nested subprograms. When building
8009 the XR type name, we need to make sure that this suffix is
8010 not included. So do not include any suffix in the function
8011 name length below. */
8012 int function_name_len = ada_name_prefix_len (function_name);
8013 const int rename_len = function_name_len + 2 /* "__" */
8014 + strlen (name) + 6 /* "___XR\0" */ ;
8015
8016 /* Strip the suffix if necessary. */
8017 ada_remove_trailing_digits (function_name, &function_name_len);
8018 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
8019 ada_remove_Xbn_suffix (function_name, &function_name_len);
8020
8021 /* Library-level functions are a special case, as GNAT adds
8022 a ``_ada_'' prefix to the function name to avoid namespace
8023 pollution. However, the renaming symbols themselves do not
8024 have this prefix, so we need to skip this prefix if present. */
8025 if (function_name_len > 5 /* "_ada_" */
8026 && strstr (function_name, "_ada_") == function_name)
8027 {
8028 function_name += 5;
8029 function_name_len -= 5;
8030 }
8031
8032 rename = (char *) alloca (rename_len * sizeof (char));
8033 strncpy (rename, function_name, function_name_len);
8034 xsnprintf (rename + function_name_len, rename_len - function_name_len,
8035 "__%s___XR", name);
8036 }
8037 else
8038 {
8039 const int rename_len = strlen (name) + 6;
8040
8041 rename = (char *) alloca (rename_len * sizeof (char));
8042 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
8043 }
8044
8045 return ada_find_any_type_symbol (rename);
8046 }
8047
8048 /* Because of GNAT encoding conventions, several GDB symbols may match a
8049 given type name. If the type denoted by TYPE0 is to be preferred to
8050 that of TYPE1 for purposes of type printing, return non-zero;
8051 otherwise return 0. */
8052
8053 int
8054 ada_prefer_type (struct type *type0, struct type *type1)
8055 {
8056 if (type1 == NULL)
8057 return 1;
8058 else if (type0 == NULL)
8059 return 0;
8060 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
8061 return 1;
8062 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
8063 return 0;
8064 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
8065 return 1;
8066 else if (ada_is_constrained_packed_array_type (type0))
8067 return 1;
8068 else if (ada_is_array_descriptor_type (type0)
8069 && !ada_is_array_descriptor_type (type1))
8070 return 1;
8071 else
8072 {
8073 const char *type0_name = TYPE_NAME (type0);
8074 const char *type1_name = TYPE_NAME (type1);
8075
8076 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
8077 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
8078 return 1;
8079 }
8080 return 0;
8081 }
8082
8083 /* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
8084 null. */
8085
8086 const char *
8087 ada_type_name (struct type *type)
8088 {
8089 if (type == NULL)
8090 return NULL;
8091 return TYPE_NAME (type);
8092 }
8093
8094 /* Search the list of "descriptive" types associated to TYPE for a type
8095 whose name is NAME. */
8096
8097 static struct type *
8098 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
8099 {
8100 struct type *result, *tmp;
8101
8102 if (ada_ignore_descriptive_types_p)
8103 return NULL;
8104
8105 /* If there no descriptive-type info, then there is no parallel type
8106 to be found. */
8107 if (!HAVE_GNAT_AUX_INFO (type))
8108 return NULL;
8109
8110 result = TYPE_DESCRIPTIVE_TYPE (type);
8111 while (result != NULL)
8112 {
8113 const char *result_name = ada_type_name (result);
8114
8115 if (result_name == NULL)
8116 {
8117 warning (_("unexpected null name on descriptive type"));
8118 return NULL;
8119 }
8120
8121 /* If the names match, stop. */
8122 if (strcmp (result_name, name) == 0)
8123 break;
8124
8125 /* Otherwise, look at the next item on the list, if any. */
8126 if (HAVE_GNAT_AUX_INFO (result))
8127 tmp = TYPE_DESCRIPTIVE_TYPE (result);
8128 else
8129 tmp = NULL;
8130
8131 /* If not found either, try after having resolved the typedef. */
8132 if (tmp != NULL)
8133 result = tmp;
8134 else
8135 {
8136 result = check_typedef (result);
8137 if (HAVE_GNAT_AUX_INFO (result))
8138 result = TYPE_DESCRIPTIVE_TYPE (result);
8139 else
8140 result = NULL;
8141 }
8142 }
8143
8144 /* If we didn't find a match, see whether this is a packed array. With
8145 older compilers, the descriptive type information is either absent or
8146 irrelevant when it comes to packed arrays so the above lookup fails.
8147 Fall back to using a parallel lookup by name in this case. */
8148 if (result == NULL && ada_is_constrained_packed_array_type (type))
8149 return ada_find_any_type (name);
8150
8151 return result;
8152 }
8153
8154 /* Find a parallel type to TYPE with the specified NAME, using the
8155 descriptive type taken from the debugging information, if available,
8156 and otherwise using the (slower) name-based method. */
8157
8158 static struct type *
8159 ada_find_parallel_type_with_name (struct type *type, const char *name)
8160 {
8161 struct type *result = NULL;
8162
8163 if (HAVE_GNAT_AUX_INFO (type))
8164 result = find_parallel_type_by_descriptive_type (type, name);
8165 else
8166 result = ada_find_any_type (name);
8167
8168 return result;
8169 }
8170
8171 /* Same as above, but specify the name of the parallel type by appending
8172 SUFFIX to the name of TYPE. */
8173
8174 struct type *
8175 ada_find_parallel_type (struct type *type, const char *suffix)
8176 {
8177 char *name;
8178 const char *type_name = ada_type_name (type);
8179 int len;
8180
8181 if (type_name == NULL)
8182 return NULL;
8183
8184 len = strlen (type_name);
8185
8186 name = (char *) alloca (len + strlen (suffix) + 1);
8187
8188 strcpy (name, type_name);
8189 strcpy (name + len, suffix);
8190
8191 return ada_find_parallel_type_with_name (type, name);
8192 }
8193
8194 /* If TYPE is a variable-size record type, return the corresponding template
8195 type describing its fields. Otherwise, return NULL. */
8196
8197 static struct type *
8198 dynamic_template_type (struct type *type)
8199 {
8200 type = ada_check_typedef (type);
8201
8202 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
8203 || ada_type_name (type) == NULL)
8204 return NULL;
8205 else
8206 {
8207 int len = strlen (ada_type_name (type));
8208
8209 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8210 return type;
8211 else
8212 return ada_find_parallel_type (type, "___XVE");
8213 }
8214 }
8215
8216 /* Assuming that TEMPL_TYPE is a union or struct type, returns
8217 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
8218
8219 static int
8220 is_dynamic_field (struct type *templ_type, int field_num)
8221 {
8222 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
8223
8224 return name != NULL
8225 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8226 && strstr (name, "___XVL") != NULL;
8227 }
8228
8229 /* The index of the variant field of TYPE, or -1 if TYPE does not
8230 represent a variant record type. */
8231
8232 static int
8233 variant_field_index (struct type *type)
8234 {
8235 int f;
8236
8237 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8238 return -1;
8239
8240 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8241 {
8242 if (ada_is_variant_part (type, f))
8243 return f;
8244 }
8245 return -1;
8246 }
8247
8248 /* A record type with no fields. */
8249
8250 static struct type *
8251 empty_record (struct type *templ)
8252 {
8253 struct type *type = alloc_type_copy (templ);
8254
8255 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8256 TYPE_NFIELDS (type) = 0;
8257 TYPE_FIELDS (type) = NULL;
8258 INIT_CPLUS_SPECIFIC (type);
8259 TYPE_NAME (type) = "<empty>";
8260 TYPE_LENGTH (type) = 0;
8261 return type;
8262 }
8263
8264 /* An ordinary record type (with fixed-length fields) that describes
8265 the value of type TYPE at VALADDR or ADDRESS (see comments at
8266 the beginning of this section) VAL according to GNAT conventions.
8267 DVAL0 should describe the (portion of a) record that contains any
8268 necessary discriminants. It should be NULL if value_type (VAL) is
8269 an outer-level type (i.e., as opposed to a branch of a variant.) A
8270 variant field (unless unchecked) is replaced by a particular branch
8271 of the variant.
8272
8273 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8274 length are not statically known are discarded. As a consequence,
8275 VALADDR, ADDRESS and DVAL0 are ignored.
8276
8277 NOTE: Limitations: For now, we assume that dynamic fields and
8278 variants occupy whole numbers of bytes. However, they need not be
8279 byte-aligned. */
8280
8281 struct type *
8282 ada_template_to_fixed_record_type_1 (struct type *type,
8283 const gdb_byte *valaddr,
8284 CORE_ADDR address, struct value *dval0,
8285 int keep_dynamic_fields)
8286 {
8287 struct value *mark = value_mark ();
8288 struct value *dval;
8289 struct type *rtype;
8290 int nfields, bit_len;
8291 int variant_field;
8292 long off;
8293 int fld_bit_len;
8294 int f;
8295
8296 /* Compute the number of fields in this record type that are going
8297 to be processed: unless keep_dynamic_fields, this includes only
8298 fields whose position and length are static will be processed. */
8299 if (keep_dynamic_fields)
8300 nfields = TYPE_NFIELDS (type);
8301 else
8302 {
8303 nfields = 0;
8304 while (nfields < TYPE_NFIELDS (type)
8305 && !ada_is_variant_part (type, nfields)
8306 && !is_dynamic_field (type, nfields))
8307 nfields++;
8308 }
8309
8310 rtype = alloc_type_copy (type);
8311 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8312 INIT_CPLUS_SPECIFIC (rtype);
8313 TYPE_NFIELDS (rtype) = nfields;
8314 TYPE_FIELDS (rtype) = (struct field *)
8315 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8316 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8317 TYPE_NAME (rtype) = ada_type_name (type);
8318 TYPE_FIXED_INSTANCE (rtype) = 1;
8319
8320 off = 0;
8321 bit_len = 0;
8322 variant_field = -1;
8323
8324 for (f = 0; f < nfields; f += 1)
8325 {
8326 off = align_value (off, field_alignment (type, f))
8327 + TYPE_FIELD_BITPOS (type, f);
8328 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
8329 TYPE_FIELD_BITSIZE (rtype, f) = 0;
8330
8331 if (ada_is_variant_part (type, f))
8332 {
8333 variant_field = f;
8334 fld_bit_len = 0;
8335 }
8336 else if (is_dynamic_field (type, f))
8337 {
8338 const gdb_byte *field_valaddr = valaddr;
8339 CORE_ADDR field_address = address;
8340 struct type *field_type =
8341 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8342
8343 if (dval0 == NULL)
8344 {
8345 /* rtype's length is computed based on the run-time
8346 value of discriminants. If the discriminants are not
8347 initialized, the type size may be completely bogus and
8348 GDB may fail to allocate a value for it. So check the
8349 size first before creating the value. */
8350 ada_ensure_varsize_limit (rtype);
8351 /* Using plain value_from_contents_and_address here
8352 causes problems because we will end up trying to
8353 resolve a type that is currently being
8354 constructed. */
8355 dval = value_from_contents_and_address_unresolved (rtype,
8356 valaddr,
8357 address);
8358 rtype = value_type (dval);
8359 }
8360 else
8361 dval = dval0;
8362
8363 /* If the type referenced by this field is an aligner type, we need
8364 to unwrap that aligner type, because its size might not be set.
8365 Keeping the aligner type would cause us to compute the wrong
8366 size for this field, impacting the offset of the all the fields
8367 that follow this one. */
8368 if (ada_is_aligner_type (field_type))
8369 {
8370 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8371
8372 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8373 field_address = cond_offset_target (field_address, field_offset);
8374 field_type = ada_aligned_type (field_type);
8375 }
8376
8377 field_valaddr = cond_offset_host (field_valaddr,
8378 off / TARGET_CHAR_BIT);
8379 field_address = cond_offset_target (field_address,
8380 off / TARGET_CHAR_BIT);
8381
8382 /* Get the fixed type of the field. Note that, in this case,
8383 we do not want to get the real type out of the tag: if
8384 the current field is the parent part of a tagged record,
8385 we will get the tag of the object. Clearly wrong: the real
8386 type of the parent is not the real type of the child. We
8387 would end up in an infinite loop. */
8388 field_type = ada_get_base_type (field_type);
8389 field_type = ada_to_fixed_type (field_type, field_valaddr,
8390 field_address, dval, 0);
8391 /* If the field size is already larger than the maximum
8392 object size, then the record itself will necessarily
8393 be larger than the maximum object size. We need to make
8394 this check now, because the size might be so ridiculously
8395 large (due to an uninitialized variable in the inferior)
8396 that it would cause an overflow when adding it to the
8397 record size. */
8398 ada_ensure_varsize_limit (field_type);
8399
8400 TYPE_FIELD_TYPE (rtype, f) = field_type;
8401 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8402 /* The multiplication can potentially overflow. But because
8403 the field length has been size-checked just above, and
8404 assuming that the maximum size is a reasonable value,
8405 an overflow should not happen in practice. So rather than
8406 adding overflow recovery code to this already complex code,
8407 we just assume that it's not going to happen. */
8408 fld_bit_len =
8409 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8410 }
8411 else
8412 {
8413 /* Note: If this field's type is a typedef, it is important
8414 to preserve the typedef layer.
8415
8416 Otherwise, we might be transforming a typedef to a fat
8417 pointer (encoding a pointer to an unconstrained array),
8418 into a basic fat pointer (encoding an unconstrained
8419 array). As both types are implemented using the same
8420 structure, the typedef is the only clue which allows us
8421 to distinguish between the two options. Stripping it
8422 would prevent us from printing this field appropriately. */
8423 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
8424 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8425 if (TYPE_FIELD_BITSIZE (type, f) > 0)
8426 fld_bit_len =
8427 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8428 else
8429 {
8430 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8431
8432 /* We need to be careful of typedefs when computing
8433 the length of our field. If this is a typedef,
8434 get the length of the target type, not the length
8435 of the typedef. */
8436 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8437 field_type = ada_typedef_target_type (field_type);
8438
8439 fld_bit_len =
8440 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8441 }
8442 }
8443 if (off + fld_bit_len > bit_len)
8444 bit_len = off + fld_bit_len;
8445 off += fld_bit_len;
8446 TYPE_LENGTH (rtype) =
8447 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8448 }
8449
8450 /* We handle the variant part, if any, at the end because of certain
8451 odd cases in which it is re-ordered so as NOT to be the last field of
8452 the record. This can happen in the presence of representation
8453 clauses. */
8454 if (variant_field >= 0)
8455 {
8456 struct type *branch_type;
8457
8458 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8459
8460 if (dval0 == NULL)
8461 {
8462 /* Using plain value_from_contents_and_address here causes
8463 problems because we will end up trying to resolve a type
8464 that is currently being constructed. */
8465 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8466 address);
8467 rtype = value_type (dval);
8468 }
8469 else
8470 dval = dval0;
8471
8472 branch_type =
8473 to_fixed_variant_branch_type
8474 (TYPE_FIELD_TYPE (type, variant_field),
8475 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8476 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8477 if (branch_type == NULL)
8478 {
8479 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8480 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8481 TYPE_NFIELDS (rtype) -= 1;
8482 }
8483 else
8484 {
8485 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8486 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8487 fld_bit_len =
8488 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8489 TARGET_CHAR_BIT;
8490 if (off + fld_bit_len > bit_len)
8491 bit_len = off + fld_bit_len;
8492 TYPE_LENGTH (rtype) =
8493 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8494 }
8495 }
8496
8497 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8498 should contain the alignment of that record, which should be a strictly
8499 positive value. If null or negative, then something is wrong, most
8500 probably in the debug info. In that case, we don't round up the size
8501 of the resulting type. If this record is not part of another structure,
8502 the current RTYPE length might be good enough for our purposes. */
8503 if (TYPE_LENGTH (type) <= 0)
8504 {
8505 if (TYPE_NAME (rtype))
8506 warning (_("Invalid type size for `%s' detected: %s."),
8507 TYPE_NAME (rtype), pulongest (TYPE_LENGTH (type)));
8508 else
8509 warning (_("Invalid type size for <unnamed> detected: %s."),
8510 pulongest (TYPE_LENGTH (type)));
8511 }
8512 else
8513 {
8514 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8515 TYPE_LENGTH (type));
8516 }
8517
8518 value_free_to_mark (mark);
8519 if (TYPE_LENGTH (rtype) > varsize_limit)
8520 error (_("record type with dynamic size is larger than varsize-limit"));
8521 return rtype;
8522 }
8523
8524 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8525 of 1. */
8526
8527 static struct type *
8528 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8529 CORE_ADDR address, struct value *dval0)
8530 {
8531 return ada_template_to_fixed_record_type_1 (type, valaddr,
8532 address, dval0, 1);
8533 }
8534
8535 /* An ordinary record type in which ___XVL-convention fields and
8536 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8537 static approximations, containing all possible fields. Uses
8538 no runtime values. Useless for use in values, but that's OK,
8539 since the results are used only for type determinations. Works on both
8540 structs and unions. Representation note: to save space, we memorize
8541 the result of this function in the TYPE_TARGET_TYPE of the
8542 template type. */
8543
8544 static struct type *
8545 template_to_static_fixed_type (struct type *type0)
8546 {
8547 struct type *type;
8548 int nfields;
8549 int f;
8550
8551 /* No need no do anything if the input type is already fixed. */
8552 if (TYPE_FIXED_INSTANCE (type0))
8553 return type0;
8554
8555 /* Likewise if we already have computed the static approximation. */
8556 if (TYPE_TARGET_TYPE (type0) != NULL)
8557 return TYPE_TARGET_TYPE (type0);
8558
8559 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8560 type = type0;
8561 nfields = TYPE_NFIELDS (type0);
8562
8563 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8564 recompute all over next time. */
8565 TYPE_TARGET_TYPE (type0) = type;
8566
8567 for (f = 0; f < nfields; f += 1)
8568 {
8569 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
8570 struct type *new_type;
8571
8572 if (is_dynamic_field (type0, f))
8573 {
8574 field_type = ada_check_typedef (field_type);
8575 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8576 }
8577 else
8578 new_type = static_unwrap_type (field_type);
8579
8580 if (new_type != field_type)
8581 {
8582 /* Clone TYPE0 only the first time we get a new field type. */
8583 if (type == type0)
8584 {
8585 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8586 TYPE_CODE (type) = TYPE_CODE (type0);
8587 INIT_CPLUS_SPECIFIC (type);
8588 TYPE_NFIELDS (type) = nfields;
8589 TYPE_FIELDS (type) = (struct field *)
8590 TYPE_ALLOC (type, nfields * sizeof (struct field));
8591 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8592 sizeof (struct field) * nfields);
8593 TYPE_NAME (type) = ada_type_name (type0);
8594 TYPE_FIXED_INSTANCE (type) = 1;
8595 TYPE_LENGTH (type) = 0;
8596 }
8597 TYPE_FIELD_TYPE (type, f) = new_type;
8598 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8599 }
8600 }
8601
8602 return type;
8603 }
8604
8605 /* Given an object of type TYPE whose contents are at VALADDR and
8606 whose address in memory is ADDRESS, returns a revision of TYPE,
8607 which should be a non-dynamic-sized record, in which the variant
8608 part, if any, is replaced with the appropriate branch. Looks
8609 for discriminant values in DVAL0, which can be NULL if the record
8610 contains the necessary discriminant values. */
8611
8612 static struct type *
8613 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8614 CORE_ADDR address, struct value *dval0)
8615 {
8616 struct value *mark = value_mark ();
8617 struct value *dval;
8618 struct type *rtype;
8619 struct type *branch_type;
8620 int nfields = TYPE_NFIELDS (type);
8621 int variant_field = variant_field_index (type);
8622
8623 if (variant_field == -1)
8624 return type;
8625
8626 if (dval0 == NULL)
8627 {
8628 dval = value_from_contents_and_address (type, valaddr, address);
8629 type = value_type (dval);
8630 }
8631 else
8632 dval = dval0;
8633
8634 rtype = alloc_type_copy (type);
8635 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8636 INIT_CPLUS_SPECIFIC (rtype);
8637 TYPE_NFIELDS (rtype) = nfields;
8638 TYPE_FIELDS (rtype) =
8639 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8640 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
8641 sizeof (struct field) * nfields);
8642 TYPE_NAME (rtype) = ada_type_name (type);
8643 TYPE_FIXED_INSTANCE (rtype) = 1;
8644 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8645
8646 branch_type = to_fixed_variant_branch_type
8647 (TYPE_FIELD_TYPE (type, variant_field),
8648 cond_offset_host (valaddr,
8649 TYPE_FIELD_BITPOS (type, variant_field)
8650 / TARGET_CHAR_BIT),
8651 cond_offset_target (address,
8652 TYPE_FIELD_BITPOS (type, variant_field)
8653 / TARGET_CHAR_BIT), dval);
8654 if (branch_type == NULL)
8655 {
8656 int f;
8657
8658 for (f = variant_field + 1; f < nfields; f += 1)
8659 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8660 TYPE_NFIELDS (rtype) -= 1;
8661 }
8662 else
8663 {
8664 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8665 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8666 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8667 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8668 }
8669 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
8670
8671 value_free_to_mark (mark);
8672 return rtype;
8673 }
8674
8675 /* An ordinary record type (with fixed-length fields) that describes
8676 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8677 beginning of this section]. Any necessary discriminants' values
8678 should be in DVAL, a record value; it may be NULL if the object
8679 at ADDR itself contains any necessary discriminant values.
8680 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8681 values from the record are needed. Except in the case that DVAL,
8682 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8683 unchecked) is replaced by a particular branch of the variant.
8684
8685 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8686 is questionable and may be removed. It can arise during the
8687 processing of an unconstrained-array-of-record type where all the
8688 variant branches have exactly the same size. This is because in
8689 such cases, the compiler does not bother to use the XVS convention
8690 when encoding the record. I am currently dubious of this
8691 shortcut and suspect the compiler should be altered. FIXME. */
8692
8693 static struct type *
8694 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8695 CORE_ADDR address, struct value *dval)
8696 {
8697 struct type *templ_type;
8698
8699 if (TYPE_FIXED_INSTANCE (type0))
8700 return type0;
8701
8702 templ_type = dynamic_template_type (type0);
8703
8704 if (templ_type != NULL)
8705 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8706 else if (variant_field_index (type0) >= 0)
8707 {
8708 if (dval == NULL && valaddr == NULL && address == 0)
8709 return type0;
8710 return to_record_with_fixed_variant_part (type0, valaddr, address,
8711 dval);
8712 }
8713 else
8714 {
8715 TYPE_FIXED_INSTANCE (type0) = 1;
8716 return type0;
8717 }
8718
8719 }
8720
8721 /* An ordinary record type (with fixed-length fields) that describes
8722 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8723 union type. Any necessary discriminants' values should be in DVAL,
8724 a record value. That is, this routine selects the appropriate
8725 branch of the union at ADDR according to the discriminant value
8726 indicated in the union's type name. Returns VAR_TYPE0 itself if
8727 it represents a variant subject to a pragma Unchecked_Union. */
8728
8729 static struct type *
8730 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8731 CORE_ADDR address, struct value *dval)
8732 {
8733 int which;
8734 struct type *templ_type;
8735 struct type *var_type;
8736
8737 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8738 var_type = TYPE_TARGET_TYPE (var_type0);
8739 else
8740 var_type = var_type0;
8741
8742 templ_type = ada_find_parallel_type (var_type, "___XVU");
8743
8744 if (templ_type != NULL)
8745 var_type = templ_type;
8746
8747 if (is_unchecked_variant (var_type, value_type (dval)))
8748 return var_type0;
8749 which =
8750 ada_which_variant_applies (var_type,
8751 value_type (dval), value_contents (dval));
8752
8753 if (which < 0)
8754 return empty_record (var_type);
8755 else if (is_dynamic_field (var_type, which))
8756 return to_fixed_record_type
8757 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8758 valaddr, address, dval);
8759 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8760 return
8761 to_fixed_record_type
8762 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8763 else
8764 return TYPE_FIELD_TYPE (var_type, which);
8765 }
8766
8767 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8768 ENCODING_TYPE, a type following the GNAT conventions for discrete
8769 type encodings, only carries redundant information. */
8770
8771 static int
8772 ada_is_redundant_range_encoding (struct type *range_type,
8773 struct type *encoding_type)
8774 {
8775 const char *bounds_str;
8776 int n;
8777 LONGEST lo, hi;
8778
8779 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8780
8781 if (TYPE_CODE (get_base_type (range_type))
8782 != TYPE_CODE (get_base_type (encoding_type)))
8783 {
8784 /* The compiler probably used a simple base type to describe
8785 the range type instead of the range's actual base type,
8786 expecting us to get the real base type from the encoding
8787 anyway. In this situation, the encoding cannot be ignored
8788 as redundant. */
8789 return 0;
8790 }
8791
8792 if (is_dynamic_type (range_type))
8793 return 0;
8794
8795 if (TYPE_NAME (encoding_type) == NULL)
8796 return 0;
8797
8798 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8799 if (bounds_str == NULL)
8800 return 0;
8801
8802 n = 8; /* Skip "___XDLU_". */
8803 if (!ada_scan_number (bounds_str, n, &lo, &n))
8804 return 0;
8805 if (TYPE_LOW_BOUND (range_type) != lo)
8806 return 0;
8807
8808 n += 2; /* Skip the "__" separator between the two bounds. */
8809 if (!ada_scan_number (bounds_str, n, &hi, &n))
8810 return 0;
8811 if (TYPE_HIGH_BOUND (range_type) != hi)
8812 return 0;
8813
8814 return 1;
8815 }
8816
8817 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8818 a type following the GNAT encoding for describing array type
8819 indices, only carries redundant information. */
8820
8821 static int
8822 ada_is_redundant_index_type_desc (struct type *array_type,
8823 struct type *desc_type)
8824 {
8825 struct type *this_layer = check_typedef (array_type);
8826 int i;
8827
8828 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8829 {
8830 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8831 TYPE_FIELD_TYPE (desc_type, i)))
8832 return 0;
8833 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8834 }
8835
8836 return 1;
8837 }
8838
8839 /* Assuming that TYPE0 is an array type describing the type of a value
8840 at ADDR, and that DVAL describes a record containing any
8841 discriminants used in TYPE0, returns a type for the value that
8842 contains no dynamic components (that is, no components whose sizes
8843 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8844 true, gives an error message if the resulting type's size is over
8845 varsize_limit. */
8846
8847 static struct type *
8848 to_fixed_array_type (struct type *type0, struct value *dval,
8849 int ignore_too_big)
8850 {
8851 struct type *index_type_desc;
8852 struct type *result;
8853 int constrained_packed_array_p;
8854 static const char *xa_suffix = "___XA";
8855
8856 type0 = ada_check_typedef (type0);
8857 if (TYPE_FIXED_INSTANCE (type0))
8858 return type0;
8859
8860 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8861 if (constrained_packed_array_p)
8862 type0 = decode_constrained_packed_array_type (type0);
8863
8864 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8865
8866 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8867 encoding suffixed with 'P' may still be generated. If so,
8868 it should be used to find the XA type. */
8869
8870 if (index_type_desc == NULL)
8871 {
8872 const char *type_name = ada_type_name (type0);
8873
8874 if (type_name != NULL)
8875 {
8876 const int len = strlen (type_name);
8877 char *name = (char *) alloca (len + strlen (xa_suffix));
8878
8879 if (type_name[len - 1] == 'P')
8880 {
8881 strcpy (name, type_name);
8882 strcpy (name + len - 1, xa_suffix);
8883 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8884 }
8885 }
8886 }
8887
8888 ada_fixup_array_indexes_type (index_type_desc);
8889 if (index_type_desc != NULL
8890 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8891 {
8892 /* Ignore this ___XA parallel type, as it does not bring any
8893 useful information. This allows us to avoid creating fixed
8894 versions of the array's index types, which would be identical
8895 to the original ones. This, in turn, can also help avoid
8896 the creation of fixed versions of the array itself. */
8897 index_type_desc = NULL;
8898 }
8899
8900 if (index_type_desc == NULL)
8901 {
8902 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8903
8904 /* NOTE: elt_type---the fixed version of elt_type0---should never
8905 depend on the contents of the array in properly constructed
8906 debugging data. */
8907 /* Create a fixed version of the array element type.
8908 We're not providing the address of an element here,
8909 and thus the actual object value cannot be inspected to do
8910 the conversion. This should not be a problem, since arrays of
8911 unconstrained objects are not allowed. In particular, all
8912 the elements of an array of a tagged type should all be of
8913 the same type specified in the debugging info. No need to
8914 consult the object tag. */
8915 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8916
8917 /* Make sure we always create a new array type when dealing with
8918 packed array types, since we're going to fix-up the array
8919 type length and element bitsize a little further down. */
8920 if (elt_type0 == elt_type && !constrained_packed_array_p)
8921 result = type0;
8922 else
8923 result = create_array_type (alloc_type_copy (type0),
8924 elt_type, TYPE_INDEX_TYPE (type0));
8925 }
8926 else
8927 {
8928 int i;
8929 struct type *elt_type0;
8930
8931 elt_type0 = type0;
8932 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8933 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8934
8935 /* NOTE: result---the fixed version of elt_type0---should never
8936 depend on the contents of the array in properly constructed
8937 debugging data. */
8938 /* Create a fixed version of the array element type.
8939 We're not providing the address of an element here,
8940 and thus the actual object value cannot be inspected to do
8941 the conversion. This should not be a problem, since arrays of
8942 unconstrained objects are not allowed. In particular, all
8943 the elements of an array of a tagged type should all be of
8944 the same type specified in the debugging info. No need to
8945 consult the object tag. */
8946 result =
8947 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8948
8949 elt_type0 = type0;
8950 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8951 {
8952 struct type *range_type =
8953 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8954
8955 result = create_array_type (alloc_type_copy (elt_type0),
8956 result, range_type);
8957 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8958 }
8959 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8960 error (_("array type with dynamic size is larger than varsize-limit"));
8961 }
8962
8963 /* We want to preserve the type name. This can be useful when
8964 trying to get the type name of a value that has already been
8965 printed (for instance, if the user did "print VAR; whatis $". */
8966 TYPE_NAME (result) = TYPE_NAME (type0);
8967
8968 if (constrained_packed_array_p)
8969 {
8970 /* So far, the resulting type has been created as if the original
8971 type was a regular (non-packed) array type. As a result, the
8972 bitsize of the array elements needs to be set again, and the array
8973 length needs to be recomputed based on that bitsize. */
8974 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8975 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8976
8977 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8978 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8979 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8980 TYPE_LENGTH (result)++;
8981 }
8982
8983 TYPE_FIXED_INSTANCE (result) = 1;
8984 return result;
8985 }
8986
8987
8988 /* A standard type (containing no dynamically sized components)
8989 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8990 DVAL describes a record containing any discriminants used in TYPE0,
8991 and may be NULL if there are none, or if the object of type TYPE at
8992 ADDRESS or in VALADDR contains these discriminants.
8993
8994 If CHECK_TAG is not null, in the case of tagged types, this function
8995 attempts to locate the object's tag and use it to compute the actual
8996 type. However, when ADDRESS is null, we cannot use it to determine the
8997 location of the tag, and therefore compute the tagged type's actual type.
8998 So we return the tagged type without consulting the tag. */
8999
9000 static struct type *
9001 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
9002 CORE_ADDR address, struct value *dval, int check_tag)
9003 {
9004 type = ada_check_typedef (type);
9005 switch (TYPE_CODE (type))
9006 {
9007 default:
9008 return type;
9009 case TYPE_CODE_STRUCT:
9010 {
9011 struct type *static_type = to_static_fixed_type (type);
9012 struct type *fixed_record_type =
9013 to_fixed_record_type (type, valaddr, address, NULL);
9014
9015 /* If STATIC_TYPE is a tagged type and we know the object's address,
9016 then we can determine its tag, and compute the object's actual
9017 type from there. Note that we have to use the fixed record
9018 type (the parent part of the record may have dynamic fields
9019 and the way the location of _tag is expressed may depend on
9020 them). */
9021
9022 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
9023 {
9024 struct value *tag =
9025 value_tag_from_contents_and_address
9026 (fixed_record_type,
9027 valaddr,
9028 address);
9029 struct type *real_type = type_from_tag (tag);
9030 struct value *obj =
9031 value_from_contents_and_address (fixed_record_type,
9032 valaddr,
9033 address);
9034 fixed_record_type = value_type (obj);
9035 if (real_type != NULL)
9036 return to_fixed_record_type
9037 (real_type, NULL,
9038 value_address (ada_tag_value_at_base_address (obj)), NULL);
9039 }
9040
9041 /* Check to see if there is a parallel ___XVZ variable.
9042 If there is, then it provides the actual size of our type. */
9043 else if (ada_type_name (fixed_record_type) != NULL)
9044 {
9045 const char *name = ada_type_name (fixed_record_type);
9046 char *xvz_name
9047 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
9048 bool xvz_found = false;
9049 LONGEST size;
9050
9051 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
9052 TRY
9053 {
9054 xvz_found = get_int_var_value (xvz_name, size);
9055 }
9056 CATCH (except, RETURN_MASK_ERROR)
9057 {
9058 /* We found the variable, but somehow failed to read
9059 its value. Rethrow the same error, but with a little
9060 bit more information, to help the user understand
9061 what went wrong (Eg: the variable might have been
9062 optimized out). */
9063 throw_error (except.error,
9064 _("unable to read value of %s (%s)"),
9065 xvz_name, except.message);
9066 }
9067 END_CATCH
9068
9069 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
9070 {
9071 fixed_record_type = copy_type (fixed_record_type);
9072 TYPE_LENGTH (fixed_record_type) = size;
9073
9074 /* The FIXED_RECORD_TYPE may have be a stub. We have
9075 observed this when the debugging info is STABS, and
9076 apparently it is something that is hard to fix.
9077
9078 In practice, we don't need the actual type definition
9079 at all, because the presence of the XVZ variable allows us
9080 to assume that there must be a XVS type as well, which we
9081 should be able to use later, when we need the actual type
9082 definition.
9083
9084 In the meantime, pretend that the "fixed" type we are
9085 returning is NOT a stub, because this can cause trouble
9086 when using this type to create new types targeting it.
9087 Indeed, the associated creation routines often check
9088 whether the target type is a stub and will try to replace
9089 it, thus using a type with the wrong size. This, in turn,
9090 might cause the new type to have the wrong size too.
9091 Consider the case of an array, for instance, where the size
9092 of the array is computed from the number of elements in
9093 our array multiplied by the size of its element. */
9094 TYPE_STUB (fixed_record_type) = 0;
9095 }
9096 }
9097 return fixed_record_type;
9098 }
9099 case TYPE_CODE_ARRAY:
9100 return to_fixed_array_type (type, dval, 1);
9101 case TYPE_CODE_UNION:
9102 if (dval == NULL)
9103 return type;
9104 else
9105 return to_fixed_variant_branch_type (type, valaddr, address, dval);
9106 }
9107 }
9108
9109 /* The same as ada_to_fixed_type_1, except that it preserves the type
9110 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
9111
9112 The typedef layer needs be preserved in order to differentiate between
9113 arrays and array pointers when both types are implemented using the same
9114 fat pointer. In the array pointer case, the pointer is encoded as
9115 a typedef of the pointer type. For instance, considering:
9116
9117 type String_Access is access String;
9118 S1 : String_Access := null;
9119
9120 To the debugger, S1 is defined as a typedef of type String. But
9121 to the user, it is a pointer. So if the user tries to print S1,
9122 we should not dereference the array, but print the array address
9123 instead.
9124
9125 If we didn't preserve the typedef layer, we would lose the fact that
9126 the type is to be presented as a pointer (needs de-reference before
9127 being printed). And we would also use the source-level type name. */
9128
9129 struct type *
9130 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
9131 CORE_ADDR address, struct value *dval, int check_tag)
9132
9133 {
9134 struct type *fixed_type =
9135 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
9136
9137 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
9138 then preserve the typedef layer.
9139
9140 Implementation note: We can only check the main-type portion of
9141 the TYPE and FIXED_TYPE, because eliminating the typedef layer
9142 from TYPE now returns a type that has the same instance flags
9143 as TYPE. For instance, if TYPE is a "typedef const", and its
9144 target type is a "struct", then the typedef elimination will return
9145 a "const" version of the target type. See check_typedef for more
9146 details about how the typedef layer elimination is done.
9147
9148 brobecker/2010-11-19: It seems to me that the only case where it is
9149 useful to preserve the typedef layer is when dealing with fat pointers.
9150 Perhaps, we could add a check for that and preserve the typedef layer
9151 only in that situation. But this seems unecessary so far, probably
9152 because we call check_typedef/ada_check_typedef pretty much everywhere.
9153 */
9154 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9155 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
9156 == TYPE_MAIN_TYPE (fixed_type)))
9157 return type;
9158
9159 return fixed_type;
9160 }
9161
9162 /* A standard (static-sized) type corresponding as well as possible to
9163 TYPE0, but based on no runtime data. */
9164
9165 static struct type *
9166 to_static_fixed_type (struct type *type0)
9167 {
9168 struct type *type;
9169
9170 if (type0 == NULL)
9171 return NULL;
9172
9173 if (TYPE_FIXED_INSTANCE (type0))
9174 return type0;
9175
9176 type0 = ada_check_typedef (type0);
9177
9178 switch (TYPE_CODE (type0))
9179 {
9180 default:
9181 return type0;
9182 case TYPE_CODE_STRUCT:
9183 type = dynamic_template_type (type0);
9184 if (type != NULL)
9185 return template_to_static_fixed_type (type);
9186 else
9187 return template_to_static_fixed_type (type0);
9188 case TYPE_CODE_UNION:
9189 type = ada_find_parallel_type (type0, "___XVU");
9190 if (type != NULL)
9191 return template_to_static_fixed_type (type);
9192 else
9193 return template_to_static_fixed_type (type0);
9194 }
9195 }
9196
9197 /* A static approximation of TYPE with all type wrappers removed. */
9198
9199 static struct type *
9200 static_unwrap_type (struct type *type)
9201 {
9202 if (ada_is_aligner_type (type))
9203 {
9204 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
9205 if (ada_type_name (type1) == NULL)
9206 TYPE_NAME (type1) = ada_type_name (type);
9207
9208 return static_unwrap_type (type1);
9209 }
9210 else
9211 {
9212 struct type *raw_real_type = ada_get_base_type (type);
9213
9214 if (raw_real_type == type)
9215 return type;
9216 else
9217 return to_static_fixed_type (raw_real_type);
9218 }
9219 }
9220
9221 /* In some cases, incomplete and private types require
9222 cross-references that are not resolved as records (for example,
9223 type Foo;
9224 type FooP is access Foo;
9225 V: FooP;
9226 type Foo is array ...;
9227 ). In these cases, since there is no mechanism for producing
9228 cross-references to such types, we instead substitute for FooP a
9229 stub enumeration type that is nowhere resolved, and whose tag is
9230 the name of the actual type. Call these types "non-record stubs". */
9231
9232 /* A type equivalent to TYPE that is not a non-record stub, if one
9233 exists, otherwise TYPE. */
9234
9235 struct type *
9236 ada_check_typedef (struct type *type)
9237 {
9238 if (type == NULL)
9239 return NULL;
9240
9241 /* If our type is an access to an unconstrained array, which is encoded
9242 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
9243 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9244 what allows us to distinguish between fat pointers that represent
9245 array types, and fat pointers that represent array access types
9246 (in both cases, the compiler implements them as fat pointers). */
9247 if (ada_is_access_to_unconstrained_array (type))
9248 return type;
9249
9250 type = check_typedef (type);
9251 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
9252 || !TYPE_STUB (type)
9253 || TYPE_NAME (type) == NULL)
9254 return type;
9255 else
9256 {
9257 const char *name = TYPE_NAME (type);
9258 struct type *type1 = ada_find_any_type (name);
9259
9260 if (type1 == NULL)
9261 return type;
9262
9263 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9264 stubs pointing to arrays, as we don't create symbols for array
9265 types, only for the typedef-to-array types). If that's the case,
9266 strip the typedef layer. */
9267 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9268 type1 = ada_check_typedef (type1);
9269
9270 return type1;
9271 }
9272 }
9273
9274 /* A value representing the data at VALADDR/ADDRESS as described by
9275 type TYPE0, but with a standard (static-sized) type that correctly
9276 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9277 type, then return VAL0 [this feature is simply to avoid redundant
9278 creation of struct values]. */
9279
9280 static struct value *
9281 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9282 struct value *val0)
9283 {
9284 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
9285
9286 if (type == type0 && val0 != NULL)
9287 return val0;
9288
9289 if (VALUE_LVAL (val0) != lval_memory)
9290 {
9291 /* Our value does not live in memory; it could be a convenience
9292 variable, for instance. Create a not_lval value using val0's
9293 contents. */
9294 return value_from_contents (type, value_contents (val0));
9295 }
9296
9297 return value_from_contents_and_address (type, 0, address);
9298 }
9299
9300 /* A value representing VAL, but with a standard (static-sized) type
9301 that correctly describes it. Does not necessarily create a new
9302 value. */
9303
9304 struct value *
9305 ada_to_fixed_value (struct value *val)
9306 {
9307 val = unwrap_value (val);
9308 val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
9309 return val;
9310 }
9311 \f
9312
9313 /* Attributes */
9314
9315 /* Table mapping attribute numbers to names.
9316 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
9317
9318 static const char *attribute_names[] = {
9319 "<?>",
9320
9321 "first",
9322 "last",
9323 "length",
9324 "image",
9325 "max",
9326 "min",
9327 "modulus",
9328 "pos",
9329 "size",
9330 "tag",
9331 "val",
9332 0
9333 };
9334
9335 const char *
9336 ada_attribute_name (enum exp_opcode n)
9337 {
9338 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9339 return attribute_names[n - OP_ATR_FIRST + 1];
9340 else
9341 return attribute_names[0];
9342 }
9343
9344 /* Evaluate the 'POS attribute applied to ARG. */
9345
9346 static LONGEST
9347 pos_atr (struct value *arg)
9348 {
9349 struct value *val = coerce_ref (arg);
9350 struct type *type = value_type (val);
9351 LONGEST result;
9352
9353 if (!discrete_type_p (type))
9354 error (_("'POS only defined on discrete types"));
9355
9356 if (!discrete_position (type, value_as_long (val), &result))
9357 error (_("enumeration value is invalid: can't find 'POS"));
9358
9359 return result;
9360 }
9361
9362 static struct value *
9363 value_pos_atr (struct type *type, struct value *arg)
9364 {
9365 return value_from_longest (type, pos_atr (arg));
9366 }
9367
9368 /* Evaluate the TYPE'VAL attribute applied to ARG. */
9369
9370 static struct value *
9371 value_val_atr (struct type *type, struct value *arg)
9372 {
9373 if (!discrete_type_p (type))
9374 error (_("'VAL only defined on discrete types"));
9375 if (!integer_type_p (value_type (arg)))
9376 error (_("'VAL requires integral argument"));
9377
9378 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9379 {
9380 long pos = value_as_long (arg);
9381
9382 if (pos < 0 || pos >= TYPE_NFIELDS (type))
9383 error (_("argument to 'VAL out of range"));
9384 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
9385 }
9386 else
9387 return value_from_longest (type, value_as_long (arg));
9388 }
9389 \f
9390
9391 /* Evaluation */
9392
9393 /* True if TYPE appears to be an Ada character type.
9394 [At the moment, this is true only for Character and Wide_Character;
9395 It is a heuristic test that could stand improvement]. */
9396
9397 int
9398 ada_is_character_type (struct type *type)
9399 {
9400 const char *name;
9401
9402 /* If the type code says it's a character, then assume it really is,
9403 and don't check any further. */
9404 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9405 return 1;
9406
9407 /* Otherwise, assume it's a character type iff it is a discrete type
9408 with a known character type name. */
9409 name = ada_type_name (type);
9410 return (name != NULL
9411 && (TYPE_CODE (type) == TYPE_CODE_INT
9412 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9413 && (strcmp (name, "character") == 0
9414 || strcmp (name, "wide_character") == 0
9415 || strcmp (name, "wide_wide_character") == 0
9416 || strcmp (name, "unsigned char") == 0));
9417 }
9418
9419 /* True if TYPE appears to be an Ada string type. */
9420
9421 int
9422 ada_is_string_type (struct type *type)
9423 {
9424 type = ada_check_typedef (type);
9425 if (type != NULL
9426 && TYPE_CODE (type) != TYPE_CODE_PTR
9427 && (ada_is_simple_array_type (type)
9428 || ada_is_array_descriptor_type (type))
9429 && ada_array_arity (type) == 1)
9430 {
9431 struct type *elttype = ada_array_element_type (type, 1);
9432
9433 return ada_is_character_type (elttype);
9434 }
9435 else
9436 return 0;
9437 }
9438
9439 /* The compiler sometimes provides a parallel XVS type for a given
9440 PAD type. Normally, it is safe to follow the PAD type directly,
9441 but older versions of the compiler have a bug that causes the offset
9442 of its "F" field to be wrong. Following that field in that case
9443 would lead to incorrect results, but this can be worked around
9444 by ignoring the PAD type and using the associated XVS type instead.
9445
9446 Set to True if the debugger should trust the contents of PAD types.
9447 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9448 static int trust_pad_over_xvs = 1;
9449
9450 /* True if TYPE is a struct type introduced by the compiler to force the
9451 alignment of a value. Such types have a single field with a
9452 distinctive name. */
9453
9454 int
9455 ada_is_aligner_type (struct type *type)
9456 {
9457 type = ada_check_typedef (type);
9458
9459 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
9460 return 0;
9461
9462 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
9463 && TYPE_NFIELDS (type) == 1
9464 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
9465 }
9466
9467 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9468 the parallel type. */
9469
9470 struct type *
9471 ada_get_base_type (struct type *raw_type)
9472 {
9473 struct type *real_type_namer;
9474 struct type *raw_real_type;
9475
9476 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9477 return raw_type;
9478
9479 if (ada_is_aligner_type (raw_type))
9480 /* The encoding specifies that we should always use the aligner type.
9481 So, even if this aligner type has an associated XVS type, we should
9482 simply ignore it.
9483
9484 According to the compiler gurus, an XVS type parallel to an aligner
9485 type may exist because of a stabs limitation. In stabs, aligner
9486 types are empty because the field has a variable-sized type, and
9487 thus cannot actually be used as an aligner type. As a result,
9488 we need the associated parallel XVS type to decode the type.
9489 Since the policy in the compiler is to not change the internal
9490 representation based on the debugging info format, we sometimes
9491 end up having a redundant XVS type parallel to the aligner type. */
9492 return raw_type;
9493
9494 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9495 if (real_type_namer == NULL
9496 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9497 || TYPE_NFIELDS (real_type_namer) != 1)
9498 return raw_type;
9499
9500 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9501 {
9502 /* This is an older encoding form where the base type needs to be
9503 looked up by name. We prefer the newer enconding because it is
9504 more efficient. */
9505 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9506 if (raw_real_type == NULL)
9507 return raw_type;
9508 else
9509 return raw_real_type;
9510 }
9511
9512 /* The field in our XVS type is a reference to the base type. */
9513 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
9514 }
9515
9516 /* The type of value designated by TYPE, with all aligners removed. */
9517
9518 struct type *
9519 ada_aligned_type (struct type *type)
9520 {
9521 if (ada_is_aligner_type (type))
9522 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9523 else
9524 return ada_get_base_type (type);
9525 }
9526
9527
9528 /* The address of the aligned value in an object at address VALADDR
9529 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9530
9531 const gdb_byte *
9532 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9533 {
9534 if (ada_is_aligner_type (type))
9535 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
9536 valaddr +
9537 TYPE_FIELD_BITPOS (type,
9538 0) / TARGET_CHAR_BIT);
9539 else
9540 return valaddr;
9541 }
9542
9543
9544
9545 /* The printed representation of an enumeration literal with encoded
9546 name NAME. The value is good to the next call of ada_enum_name. */
9547 const char *
9548 ada_enum_name (const char *name)
9549 {
9550 static char *result;
9551 static size_t result_len = 0;
9552 const char *tmp;
9553
9554 /* First, unqualify the enumeration name:
9555 1. Search for the last '.' character. If we find one, then skip
9556 all the preceding characters, the unqualified name starts
9557 right after that dot.
9558 2. Otherwise, we may be debugging on a target where the compiler
9559 translates dots into "__". Search forward for double underscores,
9560 but stop searching when we hit an overloading suffix, which is
9561 of the form "__" followed by digits. */
9562
9563 tmp = strrchr (name, '.');
9564 if (tmp != NULL)
9565 name = tmp + 1;
9566 else
9567 {
9568 while ((tmp = strstr (name, "__")) != NULL)
9569 {
9570 if (isdigit (tmp[2]))
9571 break;
9572 else
9573 name = tmp + 2;
9574 }
9575 }
9576
9577 if (name[0] == 'Q')
9578 {
9579 int v;
9580
9581 if (name[1] == 'U' || name[1] == 'W')
9582 {
9583 if (sscanf (name + 2, "%x", &v) != 1)
9584 return name;
9585 }
9586 else
9587 return name;
9588
9589 GROW_VECT (result, result_len, 16);
9590 if (isascii (v) && isprint (v))
9591 xsnprintf (result, result_len, "'%c'", v);
9592 else if (name[1] == 'U')
9593 xsnprintf (result, result_len, "[\"%02x\"]", v);
9594 else
9595 xsnprintf (result, result_len, "[\"%04x\"]", v);
9596
9597 return result;
9598 }
9599 else
9600 {
9601 tmp = strstr (name, "__");
9602 if (tmp == NULL)
9603 tmp = strstr (name, "$");
9604 if (tmp != NULL)
9605 {
9606 GROW_VECT (result, result_len, tmp - name + 1);
9607 strncpy (result, name, tmp - name);
9608 result[tmp - name] = '\0';
9609 return result;
9610 }
9611
9612 return name;
9613 }
9614 }
9615
9616 /* Evaluate the subexpression of EXP starting at *POS as for
9617 evaluate_type, updating *POS to point just past the evaluated
9618 expression. */
9619
9620 static struct value *
9621 evaluate_subexp_type (struct expression *exp, int *pos)
9622 {
9623 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9624 }
9625
9626 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9627 value it wraps. */
9628
9629 static struct value *
9630 unwrap_value (struct value *val)
9631 {
9632 struct type *type = ada_check_typedef (value_type (val));
9633
9634 if (ada_is_aligner_type (type))
9635 {
9636 struct value *v = ada_value_struct_elt (val, "F", 0);
9637 struct type *val_type = ada_check_typedef (value_type (v));
9638
9639 if (ada_type_name (val_type) == NULL)
9640 TYPE_NAME (val_type) = ada_type_name (type);
9641
9642 return unwrap_value (v);
9643 }
9644 else
9645 {
9646 struct type *raw_real_type =
9647 ada_check_typedef (ada_get_base_type (type));
9648
9649 /* If there is no parallel XVS or XVE type, then the value is
9650 already unwrapped. Return it without further modification. */
9651 if ((type == raw_real_type)
9652 && ada_find_parallel_type (type, "___XVE") == NULL)
9653 return val;
9654
9655 return
9656 coerce_unspec_val_to_type
9657 (val, ada_to_fixed_type (raw_real_type, 0,
9658 value_address (val),
9659 NULL, 1));
9660 }
9661 }
9662
9663 static struct value *
9664 cast_from_fixed (struct type *type, struct value *arg)
9665 {
9666 struct value *scale = ada_scaling_factor (value_type (arg));
9667 arg = value_cast (value_type (scale), arg);
9668
9669 arg = value_binop (arg, scale, BINOP_MUL);
9670 return value_cast (type, arg);
9671 }
9672
9673 static struct value *
9674 cast_to_fixed (struct type *type, struct value *arg)
9675 {
9676 if (type == value_type (arg))
9677 return arg;
9678
9679 struct value *scale = ada_scaling_factor (type);
9680 if (ada_is_fixed_point_type (value_type (arg)))
9681 arg = cast_from_fixed (value_type (scale), arg);
9682 else
9683 arg = value_cast (value_type (scale), arg);
9684
9685 arg = value_binop (arg, scale, BINOP_DIV);
9686 return value_cast (type, arg);
9687 }
9688
9689 /* Given two array types T1 and T2, return nonzero iff both arrays
9690 contain the same number of elements. */
9691
9692 static int
9693 ada_same_array_size_p (struct type *t1, struct type *t2)
9694 {
9695 LONGEST lo1, hi1, lo2, hi2;
9696
9697 /* Get the array bounds in order to verify that the size of
9698 the two arrays match. */
9699 if (!get_array_bounds (t1, &lo1, &hi1)
9700 || !get_array_bounds (t2, &lo2, &hi2))
9701 error (_("unable to determine array bounds"));
9702
9703 /* To make things easier for size comparison, normalize a bit
9704 the case of empty arrays by making sure that the difference
9705 between upper bound and lower bound is always -1. */
9706 if (lo1 > hi1)
9707 hi1 = lo1 - 1;
9708 if (lo2 > hi2)
9709 hi2 = lo2 - 1;
9710
9711 return (hi1 - lo1 == hi2 - lo2);
9712 }
9713
9714 /* Assuming that VAL is an array of integrals, and TYPE represents
9715 an array with the same number of elements, but with wider integral
9716 elements, return an array "casted" to TYPE. In practice, this
9717 means that the returned array is built by casting each element
9718 of the original array into TYPE's (wider) element type. */
9719
9720 static struct value *
9721 ada_promote_array_of_integrals (struct type *type, struct value *val)
9722 {
9723 struct type *elt_type = TYPE_TARGET_TYPE (type);
9724 LONGEST lo, hi;
9725 struct value *res;
9726 LONGEST i;
9727
9728 /* Verify that both val and type are arrays of scalars, and
9729 that the size of val's elements is smaller than the size
9730 of type's element. */
9731 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9732 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9733 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9734 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9735 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9736 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9737
9738 if (!get_array_bounds (type, &lo, &hi))
9739 error (_("unable to determine array bounds"));
9740
9741 res = allocate_value (type);
9742
9743 /* Promote each array element. */
9744 for (i = 0; i < hi - lo + 1; i++)
9745 {
9746 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9747
9748 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9749 value_contents_all (elt), TYPE_LENGTH (elt_type));
9750 }
9751
9752 return res;
9753 }
9754
9755 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9756 return the converted value. */
9757
9758 static struct value *
9759 coerce_for_assign (struct type *type, struct value *val)
9760 {
9761 struct type *type2 = value_type (val);
9762
9763 if (type == type2)
9764 return val;
9765
9766 type2 = ada_check_typedef (type2);
9767 type = ada_check_typedef (type);
9768
9769 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9770 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9771 {
9772 val = ada_value_ind (val);
9773 type2 = value_type (val);
9774 }
9775
9776 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
9777 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9778 {
9779 if (!ada_same_array_size_p (type, type2))
9780 error (_("cannot assign arrays of different length"));
9781
9782 if (is_integral_type (TYPE_TARGET_TYPE (type))
9783 && is_integral_type (TYPE_TARGET_TYPE (type2))
9784 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9785 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9786 {
9787 /* Allow implicit promotion of the array elements to
9788 a wider type. */
9789 return ada_promote_array_of_integrals (type, val);
9790 }
9791
9792 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9793 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9794 error (_("Incompatible types in assignment"));
9795 deprecated_set_value_type (val, type);
9796 }
9797 return val;
9798 }
9799
9800 static struct value *
9801 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9802 {
9803 struct value *val;
9804 struct type *type1, *type2;
9805 LONGEST v, v1, v2;
9806
9807 arg1 = coerce_ref (arg1);
9808 arg2 = coerce_ref (arg2);
9809 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9810 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9811
9812 if (TYPE_CODE (type1) != TYPE_CODE_INT
9813 || TYPE_CODE (type2) != TYPE_CODE_INT)
9814 return value_binop (arg1, arg2, op);
9815
9816 switch (op)
9817 {
9818 case BINOP_MOD:
9819 case BINOP_DIV:
9820 case BINOP_REM:
9821 break;
9822 default:
9823 return value_binop (arg1, arg2, op);
9824 }
9825
9826 v2 = value_as_long (arg2);
9827 if (v2 == 0)
9828 error (_("second operand of %s must not be zero."), op_string (op));
9829
9830 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9831 return value_binop (arg1, arg2, op);
9832
9833 v1 = value_as_long (arg1);
9834 switch (op)
9835 {
9836 case BINOP_DIV:
9837 v = v1 / v2;
9838 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9839 v += v > 0 ? -1 : 1;
9840 break;
9841 case BINOP_REM:
9842 v = v1 % v2;
9843 if (v * v1 < 0)
9844 v -= v2;
9845 break;
9846 default:
9847 /* Should not reach this point. */
9848 v = 0;
9849 }
9850
9851 val = allocate_value (type1);
9852 store_unsigned_integer (value_contents_raw (val),
9853 TYPE_LENGTH (value_type (val)),
9854 gdbarch_byte_order (get_type_arch (type1)), v);
9855 return val;
9856 }
9857
9858 static int
9859 ada_value_equal (struct value *arg1, struct value *arg2)
9860 {
9861 if (ada_is_direct_array_type (value_type (arg1))
9862 || ada_is_direct_array_type (value_type (arg2)))
9863 {
9864 struct type *arg1_type, *arg2_type;
9865
9866 /* Automatically dereference any array reference before
9867 we attempt to perform the comparison. */
9868 arg1 = ada_coerce_ref (arg1);
9869 arg2 = ada_coerce_ref (arg2);
9870
9871 arg1 = ada_coerce_to_simple_array (arg1);
9872 arg2 = ada_coerce_to_simple_array (arg2);
9873
9874 arg1_type = ada_check_typedef (value_type (arg1));
9875 arg2_type = ada_check_typedef (value_type (arg2));
9876
9877 if (TYPE_CODE (arg1_type) != TYPE_CODE_ARRAY
9878 || TYPE_CODE (arg2_type) != TYPE_CODE_ARRAY)
9879 error (_("Attempt to compare array with non-array"));
9880 /* FIXME: The following works only for types whose
9881 representations use all bits (no padding or undefined bits)
9882 and do not have user-defined equality. */
9883 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9884 && memcmp (value_contents (arg1), value_contents (arg2),
9885 TYPE_LENGTH (arg1_type)) == 0);
9886 }
9887 return value_equal (arg1, arg2);
9888 }
9889
9890 /* Total number of component associations in the aggregate starting at
9891 index PC in EXP. Assumes that index PC is the start of an
9892 OP_AGGREGATE. */
9893
9894 static int
9895 num_component_specs (struct expression *exp, int pc)
9896 {
9897 int n, m, i;
9898
9899 m = exp->elts[pc + 1].longconst;
9900 pc += 3;
9901 n = 0;
9902 for (i = 0; i < m; i += 1)
9903 {
9904 switch (exp->elts[pc].opcode)
9905 {
9906 default:
9907 n += 1;
9908 break;
9909 case OP_CHOICES:
9910 n += exp->elts[pc + 1].longconst;
9911 break;
9912 }
9913 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9914 }
9915 return n;
9916 }
9917
9918 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9919 component of LHS (a simple array or a record), updating *POS past
9920 the expression, assuming that LHS is contained in CONTAINER. Does
9921 not modify the inferior's memory, nor does it modify LHS (unless
9922 LHS == CONTAINER). */
9923
9924 static void
9925 assign_component (struct value *container, struct value *lhs, LONGEST index,
9926 struct expression *exp, int *pos)
9927 {
9928 struct value *mark = value_mark ();
9929 struct value *elt;
9930 struct type *lhs_type = check_typedef (value_type (lhs));
9931
9932 if (TYPE_CODE (lhs_type) == TYPE_CODE_ARRAY)
9933 {
9934 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9935 struct value *index_val = value_from_longest (index_type, index);
9936
9937 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9938 }
9939 else
9940 {
9941 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9942 elt = ada_to_fixed_value (elt);
9943 }
9944
9945 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9946 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9947 else
9948 value_assign_to_component (container, elt,
9949 ada_evaluate_subexp (NULL, exp, pos,
9950 EVAL_NORMAL));
9951
9952 value_free_to_mark (mark);
9953 }
9954
9955 /* Assuming that LHS represents an lvalue having a record or array
9956 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9957 of that aggregate's value to LHS, advancing *POS past the
9958 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9959 lvalue containing LHS (possibly LHS itself). Does not modify
9960 the inferior's memory, nor does it modify the contents of
9961 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9962
9963 static struct value *
9964 assign_aggregate (struct value *container,
9965 struct value *lhs, struct expression *exp,
9966 int *pos, enum noside noside)
9967 {
9968 struct type *lhs_type;
9969 int n = exp->elts[*pos+1].longconst;
9970 LONGEST low_index, high_index;
9971 int num_specs;
9972 LONGEST *indices;
9973 int max_indices, num_indices;
9974 int i;
9975
9976 *pos += 3;
9977 if (noside != EVAL_NORMAL)
9978 {
9979 for (i = 0; i < n; i += 1)
9980 ada_evaluate_subexp (NULL, exp, pos, noside);
9981 return container;
9982 }
9983
9984 container = ada_coerce_ref (container);
9985 if (ada_is_direct_array_type (value_type (container)))
9986 container = ada_coerce_to_simple_array (container);
9987 lhs = ada_coerce_ref (lhs);
9988 if (!deprecated_value_modifiable (lhs))
9989 error (_("Left operand of assignment is not a modifiable lvalue."));
9990
9991 lhs_type = check_typedef (value_type (lhs));
9992 if (ada_is_direct_array_type (lhs_type))
9993 {
9994 lhs = ada_coerce_to_simple_array (lhs);
9995 lhs_type = check_typedef (value_type (lhs));
9996 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9997 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
9998 }
9999 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
10000 {
10001 low_index = 0;
10002 high_index = num_visible_fields (lhs_type) - 1;
10003 }
10004 else
10005 error (_("Left-hand side must be array or record."));
10006
10007 num_specs = num_component_specs (exp, *pos - 3);
10008 max_indices = 4 * num_specs + 4;
10009 indices = XALLOCAVEC (LONGEST, max_indices);
10010 indices[0] = indices[1] = low_index - 1;
10011 indices[2] = indices[3] = high_index + 1;
10012 num_indices = 4;
10013
10014 for (i = 0; i < n; i += 1)
10015 {
10016 switch (exp->elts[*pos].opcode)
10017 {
10018 case OP_CHOICES:
10019 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
10020 &num_indices, max_indices,
10021 low_index, high_index);
10022 break;
10023 case OP_POSITIONAL:
10024 aggregate_assign_positional (container, lhs, exp, pos, indices,
10025 &num_indices, max_indices,
10026 low_index, high_index);
10027 break;
10028 case OP_OTHERS:
10029 if (i != n-1)
10030 error (_("Misplaced 'others' clause"));
10031 aggregate_assign_others (container, lhs, exp, pos, indices,
10032 num_indices, low_index, high_index);
10033 break;
10034 default:
10035 error (_("Internal error: bad aggregate clause"));
10036 }
10037 }
10038
10039 return container;
10040 }
10041
10042 /* Assign into the component of LHS indexed by the OP_POSITIONAL
10043 construct at *POS, updating *POS past the construct, given that
10044 the positions are relative to lower bound LOW, where HIGH is the
10045 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
10046 updating *NUM_INDICES as needed. CONTAINER is as for
10047 assign_aggregate. */
10048 static void
10049 aggregate_assign_positional (struct value *container,
10050 struct value *lhs, struct expression *exp,
10051 int *pos, LONGEST *indices, int *num_indices,
10052 int max_indices, LONGEST low, LONGEST high)
10053 {
10054 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
10055
10056 if (ind - 1 == high)
10057 warning (_("Extra components in aggregate ignored."));
10058 if (ind <= high)
10059 {
10060 add_component_interval (ind, ind, indices, num_indices, max_indices);
10061 *pos += 3;
10062 assign_component (container, lhs, ind, exp, pos);
10063 }
10064 else
10065 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10066 }
10067
10068 /* Assign into the components of LHS indexed by the OP_CHOICES
10069 construct at *POS, updating *POS past the construct, given that
10070 the allowable indices are LOW..HIGH. Record the indices assigned
10071 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
10072 needed. CONTAINER is as for assign_aggregate. */
10073 static void
10074 aggregate_assign_from_choices (struct value *container,
10075 struct value *lhs, struct expression *exp,
10076 int *pos, LONGEST *indices, int *num_indices,
10077 int max_indices, LONGEST low, LONGEST high)
10078 {
10079 int j;
10080 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
10081 int choice_pos, expr_pc;
10082 int is_array = ada_is_direct_array_type (value_type (lhs));
10083
10084 choice_pos = *pos += 3;
10085
10086 for (j = 0; j < n_choices; j += 1)
10087 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10088 expr_pc = *pos;
10089 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10090
10091 for (j = 0; j < n_choices; j += 1)
10092 {
10093 LONGEST lower, upper;
10094 enum exp_opcode op = exp->elts[choice_pos].opcode;
10095
10096 if (op == OP_DISCRETE_RANGE)
10097 {
10098 choice_pos += 1;
10099 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10100 EVAL_NORMAL));
10101 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10102 EVAL_NORMAL));
10103 }
10104 else if (is_array)
10105 {
10106 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
10107 EVAL_NORMAL));
10108 upper = lower;
10109 }
10110 else
10111 {
10112 int ind;
10113 const char *name;
10114
10115 switch (op)
10116 {
10117 case OP_NAME:
10118 name = &exp->elts[choice_pos + 2].string;
10119 break;
10120 case OP_VAR_VALUE:
10121 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
10122 break;
10123 default:
10124 error (_("Invalid record component association."));
10125 }
10126 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
10127 ind = 0;
10128 if (! find_struct_field (name, value_type (lhs), 0,
10129 NULL, NULL, NULL, NULL, &ind))
10130 error (_("Unknown component name: %s."), name);
10131 lower = upper = ind;
10132 }
10133
10134 if (lower <= upper && (lower < low || upper > high))
10135 error (_("Index in component association out of bounds."));
10136
10137 add_component_interval (lower, upper, indices, num_indices,
10138 max_indices);
10139 while (lower <= upper)
10140 {
10141 int pos1;
10142
10143 pos1 = expr_pc;
10144 assign_component (container, lhs, lower, exp, &pos1);
10145 lower += 1;
10146 }
10147 }
10148 }
10149
10150 /* Assign the value of the expression in the OP_OTHERS construct in
10151 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
10152 have not been previously assigned. The index intervals already assigned
10153 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
10154 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
10155 static void
10156 aggregate_assign_others (struct value *container,
10157 struct value *lhs, struct expression *exp,
10158 int *pos, LONGEST *indices, int num_indices,
10159 LONGEST low, LONGEST high)
10160 {
10161 int i;
10162 int expr_pc = *pos + 1;
10163
10164 for (i = 0; i < num_indices - 2; i += 2)
10165 {
10166 LONGEST ind;
10167
10168 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
10169 {
10170 int localpos;
10171
10172 localpos = expr_pc;
10173 assign_component (container, lhs, ind, exp, &localpos);
10174 }
10175 }
10176 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10177 }
10178
10179 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
10180 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10181 modifying *SIZE as needed. It is an error if *SIZE exceeds
10182 MAX_SIZE. The resulting intervals do not overlap. */
10183 static void
10184 add_component_interval (LONGEST low, LONGEST high,
10185 LONGEST* indices, int *size, int max_size)
10186 {
10187 int i, j;
10188
10189 for (i = 0; i < *size; i += 2) {
10190 if (high >= indices[i] && low <= indices[i + 1])
10191 {
10192 int kh;
10193
10194 for (kh = i + 2; kh < *size; kh += 2)
10195 if (high < indices[kh])
10196 break;
10197 if (low < indices[i])
10198 indices[i] = low;
10199 indices[i + 1] = indices[kh - 1];
10200 if (high > indices[i + 1])
10201 indices[i + 1] = high;
10202 memcpy (indices + i + 2, indices + kh, *size - kh);
10203 *size -= kh - i - 2;
10204 return;
10205 }
10206 else if (high < indices[i])
10207 break;
10208 }
10209
10210 if (*size == max_size)
10211 error (_("Internal error: miscounted aggregate components."));
10212 *size += 2;
10213 for (j = *size-1; j >= i+2; j -= 1)
10214 indices[j] = indices[j - 2];
10215 indices[i] = low;
10216 indices[i + 1] = high;
10217 }
10218
10219 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10220 is different. */
10221
10222 static struct value *
10223 ada_value_cast (struct type *type, struct value *arg2)
10224 {
10225 if (type == ada_check_typedef (value_type (arg2)))
10226 return arg2;
10227
10228 if (ada_is_fixed_point_type (type))
10229 return cast_to_fixed (type, arg2);
10230
10231 if (ada_is_fixed_point_type (value_type (arg2)))
10232 return cast_from_fixed (type, arg2);
10233
10234 return value_cast (type, arg2);
10235 }
10236
10237 /* Evaluating Ada expressions, and printing their result.
10238 ------------------------------------------------------
10239
10240 1. Introduction:
10241 ----------------
10242
10243 We usually evaluate an Ada expression in order to print its value.
10244 We also evaluate an expression in order to print its type, which
10245 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10246 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10247 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10248 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10249 similar.
10250
10251 Evaluating expressions is a little more complicated for Ada entities
10252 than it is for entities in languages such as C. The main reason for
10253 this is that Ada provides types whose definition might be dynamic.
10254 One example of such types is variant records. Or another example
10255 would be an array whose bounds can only be known at run time.
10256
10257 The following description is a general guide as to what should be
10258 done (and what should NOT be done) in order to evaluate an expression
10259 involving such types, and when. This does not cover how the semantic
10260 information is encoded by GNAT as this is covered separatly. For the
10261 document used as the reference for the GNAT encoding, see exp_dbug.ads
10262 in the GNAT sources.
10263
10264 Ideally, we should embed each part of this description next to its
10265 associated code. Unfortunately, the amount of code is so vast right
10266 now that it's hard to see whether the code handling a particular
10267 situation might be duplicated or not. One day, when the code is
10268 cleaned up, this guide might become redundant with the comments
10269 inserted in the code, and we might want to remove it.
10270
10271 2. ``Fixing'' an Entity, the Simple Case:
10272 -----------------------------------------
10273
10274 When evaluating Ada expressions, the tricky issue is that they may
10275 reference entities whose type contents and size are not statically
10276 known. Consider for instance a variant record:
10277
10278 type Rec (Empty : Boolean := True) is record
10279 case Empty is
10280 when True => null;
10281 when False => Value : Integer;
10282 end case;
10283 end record;
10284 Yes : Rec := (Empty => False, Value => 1);
10285 No : Rec := (empty => True);
10286
10287 The size and contents of that record depends on the value of the
10288 descriminant (Rec.Empty). At this point, neither the debugging
10289 information nor the associated type structure in GDB are able to
10290 express such dynamic types. So what the debugger does is to create
10291 "fixed" versions of the type that applies to the specific object.
10292 We also informally refer to this opperation as "fixing" an object,
10293 which means creating its associated fixed type.
10294
10295 Example: when printing the value of variable "Yes" above, its fixed
10296 type would look like this:
10297
10298 type Rec is record
10299 Empty : Boolean;
10300 Value : Integer;
10301 end record;
10302
10303 On the other hand, if we printed the value of "No", its fixed type
10304 would become:
10305
10306 type Rec is record
10307 Empty : Boolean;
10308 end record;
10309
10310 Things become a little more complicated when trying to fix an entity
10311 with a dynamic type that directly contains another dynamic type,
10312 such as an array of variant records, for instance. There are
10313 two possible cases: Arrays, and records.
10314
10315 3. ``Fixing'' Arrays:
10316 ---------------------
10317
10318 The type structure in GDB describes an array in terms of its bounds,
10319 and the type of its elements. By design, all elements in the array
10320 have the same type and we cannot represent an array of variant elements
10321 using the current type structure in GDB. When fixing an array,
10322 we cannot fix the array element, as we would potentially need one
10323 fixed type per element of the array. As a result, the best we can do
10324 when fixing an array is to produce an array whose bounds and size
10325 are correct (allowing us to read it from memory), but without having
10326 touched its element type. Fixing each element will be done later,
10327 when (if) necessary.
10328
10329 Arrays are a little simpler to handle than records, because the same
10330 amount of memory is allocated for each element of the array, even if
10331 the amount of space actually used by each element differs from element
10332 to element. Consider for instance the following array of type Rec:
10333
10334 type Rec_Array is array (1 .. 2) of Rec;
10335
10336 The actual amount of memory occupied by each element might be different
10337 from element to element, depending on the value of their discriminant.
10338 But the amount of space reserved for each element in the array remains
10339 fixed regardless. So we simply need to compute that size using
10340 the debugging information available, from which we can then determine
10341 the array size (we multiply the number of elements of the array by
10342 the size of each element).
10343
10344 The simplest case is when we have an array of a constrained element
10345 type. For instance, consider the following type declarations:
10346
10347 type Bounded_String (Max_Size : Integer) is
10348 Length : Integer;
10349 Buffer : String (1 .. Max_Size);
10350 end record;
10351 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10352
10353 In this case, the compiler describes the array as an array of
10354 variable-size elements (identified by its XVS suffix) for which
10355 the size can be read in the parallel XVZ variable.
10356
10357 In the case of an array of an unconstrained element type, the compiler
10358 wraps the array element inside a private PAD type. This type should not
10359 be shown to the user, and must be "unwrap"'ed before printing. Note
10360 that we also use the adjective "aligner" in our code to designate
10361 these wrapper types.
10362
10363 In some cases, the size allocated for each element is statically
10364 known. In that case, the PAD type already has the correct size,
10365 and the array element should remain unfixed.
10366
10367 But there are cases when this size is not statically known.
10368 For instance, assuming that "Five" is an integer variable:
10369
10370 type Dynamic is array (1 .. Five) of Integer;
10371 type Wrapper (Has_Length : Boolean := False) is record
10372 Data : Dynamic;
10373 case Has_Length is
10374 when True => Length : Integer;
10375 when False => null;
10376 end case;
10377 end record;
10378 type Wrapper_Array is array (1 .. 2) of Wrapper;
10379
10380 Hello : Wrapper_Array := (others => (Has_Length => True,
10381 Data => (others => 17),
10382 Length => 1));
10383
10384
10385 The debugging info would describe variable Hello as being an
10386 array of a PAD type. The size of that PAD type is not statically
10387 known, but can be determined using a parallel XVZ variable.
10388 In that case, a copy of the PAD type with the correct size should
10389 be used for the fixed array.
10390
10391 3. ``Fixing'' record type objects:
10392 ----------------------------------
10393
10394 Things are slightly different from arrays in the case of dynamic
10395 record types. In this case, in order to compute the associated
10396 fixed type, we need to determine the size and offset of each of
10397 its components. This, in turn, requires us to compute the fixed
10398 type of each of these components.
10399
10400 Consider for instance the example:
10401
10402 type Bounded_String (Max_Size : Natural) is record
10403 Str : String (1 .. Max_Size);
10404 Length : Natural;
10405 end record;
10406 My_String : Bounded_String (Max_Size => 10);
10407
10408 In that case, the position of field "Length" depends on the size
10409 of field Str, which itself depends on the value of the Max_Size
10410 discriminant. In order to fix the type of variable My_String,
10411 we need to fix the type of field Str. Therefore, fixing a variant
10412 record requires us to fix each of its components.
10413
10414 However, if a component does not have a dynamic size, the component
10415 should not be fixed. In particular, fields that use a PAD type
10416 should not fixed. Here is an example where this might happen
10417 (assuming type Rec above):
10418
10419 type Container (Big : Boolean) is record
10420 First : Rec;
10421 After : Integer;
10422 case Big is
10423 when True => Another : Integer;
10424 when False => null;
10425 end case;
10426 end record;
10427 My_Container : Container := (Big => False,
10428 First => (Empty => True),
10429 After => 42);
10430
10431 In that example, the compiler creates a PAD type for component First,
10432 whose size is constant, and then positions the component After just
10433 right after it. The offset of component After is therefore constant
10434 in this case.
10435
10436 The debugger computes the position of each field based on an algorithm
10437 that uses, among other things, the actual position and size of the field
10438 preceding it. Let's now imagine that the user is trying to print
10439 the value of My_Container. If the type fixing was recursive, we would
10440 end up computing the offset of field After based on the size of the
10441 fixed version of field First. And since in our example First has
10442 only one actual field, the size of the fixed type is actually smaller
10443 than the amount of space allocated to that field, and thus we would
10444 compute the wrong offset of field After.
10445
10446 To make things more complicated, we need to watch out for dynamic
10447 components of variant records (identified by the ___XVL suffix in
10448 the component name). Even if the target type is a PAD type, the size
10449 of that type might not be statically known. So the PAD type needs
10450 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10451 we might end up with the wrong size for our component. This can be
10452 observed with the following type declarations:
10453
10454 type Octal is new Integer range 0 .. 7;
10455 type Octal_Array is array (Positive range <>) of Octal;
10456 pragma Pack (Octal_Array);
10457
10458 type Octal_Buffer (Size : Positive) is record
10459 Buffer : Octal_Array (1 .. Size);
10460 Length : Integer;
10461 end record;
10462
10463 In that case, Buffer is a PAD type whose size is unset and needs
10464 to be computed by fixing the unwrapped type.
10465
10466 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10467 ----------------------------------------------------------
10468
10469 Lastly, when should the sub-elements of an entity that remained unfixed
10470 thus far, be actually fixed?
10471
10472 The answer is: Only when referencing that element. For instance
10473 when selecting one component of a record, this specific component
10474 should be fixed at that point in time. Or when printing the value
10475 of a record, each component should be fixed before its value gets
10476 printed. Similarly for arrays, the element of the array should be
10477 fixed when printing each element of the array, or when extracting
10478 one element out of that array. On the other hand, fixing should
10479 not be performed on the elements when taking a slice of an array!
10480
10481 Note that one of the side effects of miscomputing the offset and
10482 size of each field is that we end up also miscomputing the size
10483 of the containing type. This can have adverse results when computing
10484 the value of an entity. GDB fetches the value of an entity based
10485 on the size of its type, and thus a wrong size causes GDB to fetch
10486 the wrong amount of memory. In the case where the computed size is
10487 too small, GDB fetches too little data to print the value of our
10488 entity. Results in this case are unpredictable, as we usually read
10489 past the buffer containing the data =:-o. */
10490
10491 /* Evaluate a subexpression of EXP, at index *POS, and return a value
10492 for that subexpression cast to TO_TYPE. Advance *POS over the
10493 subexpression. */
10494
10495 static value *
10496 ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10497 enum noside noside, struct type *to_type)
10498 {
10499 int pc = *pos;
10500
10501 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10502 || exp->elts[pc].opcode == OP_VAR_VALUE)
10503 {
10504 (*pos) += 4;
10505
10506 value *val;
10507 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10508 {
10509 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10510 return value_zero (to_type, not_lval);
10511
10512 val = evaluate_var_msym_value (noside,
10513 exp->elts[pc + 1].objfile,
10514 exp->elts[pc + 2].msymbol);
10515 }
10516 else
10517 val = evaluate_var_value (noside,
10518 exp->elts[pc + 1].block,
10519 exp->elts[pc + 2].symbol);
10520
10521 if (noside == EVAL_SKIP)
10522 return eval_skip_value (exp);
10523
10524 val = ada_value_cast (to_type, val);
10525
10526 /* Follow the Ada language semantics that do not allow taking
10527 an address of the result of a cast (view conversion in Ada). */
10528 if (VALUE_LVAL (val) == lval_memory)
10529 {
10530 if (value_lazy (val))
10531 value_fetch_lazy (val);
10532 VALUE_LVAL (val) = not_lval;
10533 }
10534 return val;
10535 }
10536
10537 value *val = evaluate_subexp (to_type, exp, pos, noside);
10538 if (noside == EVAL_SKIP)
10539 return eval_skip_value (exp);
10540 return ada_value_cast (to_type, val);
10541 }
10542
10543 /* Implement the evaluate_exp routine in the exp_descriptor structure
10544 for the Ada language. */
10545
10546 static struct value *
10547 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
10548 int *pos, enum noside noside)
10549 {
10550 enum exp_opcode op;
10551 int tem;
10552 int pc;
10553 int preeval_pos;
10554 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10555 struct type *type;
10556 int nargs, oplen;
10557 struct value **argvec;
10558
10559 pc = *pos;
10560 *pos += 1;
10561 op = exp->elts[pc].opcode;
10562
10563 switch (op)
10564 {
10565 default:
10566 *pos -= 1;
10567 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10568
10569 if (noside == EVAL_NORMAL)
10570 arg1 = unwrap_value (arg1);
10571
10572 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
10573 then we need to perform the conversion manually, because
10574 evaluate_subexp_standard doesn't do it. This conversion is
10575 necessary in Ada because the different kinds of float/fixed
10576 types in Ada have different representations.
10577
10578 Similarly, we need to perform the conversion from OP_LONG
10579 ourselves. */
10580 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
10581 arg1 = ada_value_cast (expect_type, arg1);
10582
10583 return arg1;
10584
10585 case OP_STRING:
10586 {
10587 struct value *result;
10588
10589 *pos -= 1;
10590 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10591 /* The result type will have code OP_STRING, bashed there from
10592 OP_ARRAY. Bash it back. */
10593 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10594 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
10595 return result;
10596 }
10597
10598 case UNOP_CAST:
10599 (*pos) += 2;
10600 type = exp->elts[pc + 1].type;
10601 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
10602
10603 case UNOP_QUAL:
10604 (*pos) += 2;
10605 type = exp->elts[pc + 1].type;
10606 return ada_evaluate_subexp (type, exp, pos, noside);
10607
10608 case BINOP_ASSIGN:
10609 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10610 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10611 {
10612 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10613 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10614 return arg1;
10615 return ada_value_assign (arg1, arg1);
10616 }
10617 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10618 except if the lhs of our assignment is a convenience variable.
10619 In the case of assigning to a convenience variable, the lhs
10620 should be exactly the result of the evaluation of the rhs. */
10621 type = value_type (arg1);
10622 if (VALUE_LVAL (arg1) == lval_internalvar)
10623 type = NULL;
10624 arg2 = evaluate_subexp (type, exp, pos, noside);
10625 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10626 return arg1;
10627 if (ada_is_fixed_point_type (value_type (arg1)))
10628 arg2 = cast_to_fixed (value_type (arg1), arg2);
10629 else if (ada_is_fixed_point_type (value_type (arg2)))
10630 error
10631 (_("Fixed-point values must be assigned to fixed-point variables"));
10632 else
10633 arg2 = coerce_for_assign (value_type (arg1), arg2);
10634 return ada_value_assign (arg1, arg2);
10635
10636 case BINOP_ADD:
10637 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10638 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10639 if (noside == EVAL_SKIP)
10640 goto nosideret;
10641 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10642 return (value_from_longest
10643 (value_type (arg1),
10644 value_as_long (arg1) + value_as_long (arg2)));
10645 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10646 return (value_from_longest
10647 (value_type (arg2),
10648 value_as_long (arg1) + value_as_long (arg2)));
10649 if ((ada_is_fixed_point_type (value_type (arg1))
10650 || ada_is_fixed_point_type (value_type (arg2)))
10651 && value_type (arg1) != value_type (arg2))
10652 error (_("Operands of fixed-point addition must have the same type"));
10653 /* Do the addition, and cast the result to the type of the first
10654 argument. We cannot cast the result to a reference type, so if
10655 ARG1 is a reference type, find its underlying type. */
10656 type = value_type (arg1);
10657 while (TYPE_CODE (type) == TYPE_CODE_REF)
10658 type = TYPE_TARGET_TYPE (type);
10659 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10660 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10661
10662 case BINOP_SUB:
10663 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10664 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10665 if (noside == EVAL_SKIP)
10666 goto nosideret;
10667 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10668 return (value_from_longest
10669 (value_type (arg1),
10670 value_as_long (arg1) - value_as_long (arg2)));
10671 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10672 return (value_from_longest
10673 (value_type (arg2),
10674 value_as_long (arg1) - value_as_long (arg2)));
10675 if ((ada_is_fixed_point_type (value_type (arg1))
10676 || ada_is_fixed_point_type (value_type (arg2)))
10677 && value_type (arg1) != value_type (arg2))
10678 error (_("Operands of fixed-point subtraction "
10679 "must have the same type"));
10680 /* Do the substraction, and cast the result to the type of the first
10681 argument. We cannot cast the result to a reference type, so if
10682 ARG1 is a reference type, find its underlying type. */
10683 type = value_type (arg1);
10684 while (TYPE_CODE (type) == TYPE_CODE_REF)
10685 type = TYPE_TARGET_TYPE (type);
10686 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10687 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10688
10689 case BINOP_MUL:
10690 case BINOP_DIV:
10691 case BINOP_REM:
10692 case BINOP_MOD:
10693 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10694 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10695 if (noside == EVAL_SKIP)
10696 goto nosideret;
10697 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10698 {
10699 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10700 return value_zero (value_type (arg1), not_lval);
10701 }
10702 else
10703 {
10704 type = builtin_type (exp->gdbarch)->builtin_double;
10705 if (ada_is_fixed_point_type (value_type (arg1)))
10706 arg1 = cast_from_fixed (type, arg1);
10707 if (ada_is_fixed_point_type (value_type (arg2)))
10708 arg2 = cast_from_fixed (type, arg2);
10709 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10710 return ada_value_binop (arg1, arg2, op);
10711 }
10712
10713 case BINOP_EQUAL:
10714 case BINOP_NOTEQUAL:
10715 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10716 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10717 if (noside == EVAL_SKIP)
10718 goto nosideret;
10719 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10720 tem = 0;
10721 else
10722 {
10723 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10724 tem = ada_value_equal (arg1, arg2);
10725 }
10726 if (op == BINOP_NOTEQUAL)
10727 tem = !tem;
10728 type = language_bool_type (exp->language_defn, exp->gdbarch);
10729 return value_from_longest (type, (LONGEST) tem);
10730
10731 case UNOP_NEG:
10732 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10733 if (noside == EVAL_SKIP)
10734 goto nosideret;
10735 else if (ada_is_fixed_point_type (value_type (arg1)))
10736 return value_cast (value_type (arg1), value_neg (arg1));
10737 else
10738 {
10739 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10740 return value_neg (arg1);
10741 }
10742
10743 case BINOP_LOGICAL_AND:
10744 case BINOP_LOGICAL_OR:
10745 case UNOP_LOGICAL_NOT:
10746 {
10747 struct value *val;
10748
10749 *pos -= 1;
10750 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10751 type = language_bool_type (exp->language_defn, exp->gdbarch);
10752 return value_cast (type, val);
10753 }
10754
10755 case BINOP_BITWISE_AND:
10756 case BINOP_BITWISE_IOR:
10757 case BINOP_BITWISE_XOR:
10758 {
10759 struct value *val;
10760
10761 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10762 *pos = pc;
10763 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10764
10765 return value_cast (value_type (arg1), val);
10766 }
10767
10768 case OP_VAR_VALUE:
10769 *pos -= 1;
10770
10771 if (noside == EVAL_SKIP)
10772 {
10773 *pos += 4;
10774 goto nosideret;
10775 }
10776
10777 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10778 /* Only encountered when an unresolved symbol occurs in a
10779 context other than a function call, in which case, it is
10780 invalid. */
10781 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10782 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
10783
10784 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10785 {
10786 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10787 /* Check to see if this is a tagged type. We also need to handle
10788 the case where the type is a reference to a tagged type, but
10789 we have to be careful to exclude pointers to tagged types.
10790 The latter should be shown as usual (as a pointer), whereas
10791 a reference should mostly be transparent to the user. */
10792 if (ada_is_tagged_type (type, 0)
10793 || (TYPE_CODE (type) == TYPE_CODE_REF
10794 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10795 {
10796 /* Tagged types are a little special in the fact that the real
10797 type is dynamic and can only be determined by inspecting the
10798 object's tag. This means that we need to get the object's
10799 value first (EVAL_NORMAL) and then extract the actual object
10800 type from its tag.
10801
10802 Note that we cannot skip the final step where we extract
10803 the object type from its tag, because the EVAL_NORMAL phase
10804 results in dynamic components being resolved into fixed ones.
10805 This can cause problems when trying to print the type
10806 description of tagged types whose parent has a dynamic size:
10807 We use the type name of the "_parent" component in order
10808 to print the name of the ancestor type in the type description.
10809 If that component had a dynamic size, the resolution into
10810 a fixed type would result in the loss of that type name,
10811 thus preventing us from printing the name of the ancestor
10812 type in the type description. */
10813 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10814
10815 if (TYPE_CODE (type) != TYPE_CODE_REF)
10816 {
10817 struct type *actual_type;
10818
10819 actual_type = type_from_tag (ada_value_tag (arg1));
10820 if (actual_type == NULL)
10821 /* If, for some reason, we were unable to determine
10822 the actual type from the tag, then use the static
10823 approximation that we just computed as a fallback.
10824 This can happen if the debugging information is
10825 incomplete, for instance. */
10826 actual_type = type;
10827 return value_zero (actual_type, not_lval);
10828 }
10829 else
10830 {
10831 /* In the case of a ref, ada_coerce_ref takes care
10832 of determining the actual type. But the evaluation
10833 should return a ref as it should be valid to ask
10834 for its address; so rebuild a ref after coerce. */
10835 arg1 = ada_coerce_ref (arg1);
10836 return value_ref (arg1, TYPE_CODE_REF);
10837 }
10838 }
10839
10840 /* Records and unions for which GNAT encodings have been
10841 generated need to be statically fixed as well.
10842 Otherwise, non-static fixing produces a type where
10843 all dynamic properties are removed, which prevents "ptype"
10844 from being able to completely describe the type.
10845 For instance, a case statement in a variant record would be
10846 replaced by the relevant components based on the actual
10847 value of the discriminants. */
10848 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10849 && dynamic_template_type (type) != NULL)
10850 || (TYPE_CODE (type) == TYPE_CODE_UNION
10851 && ada_find_parallel_type (type, "___XVU") != NULL))
10852 {
10853 *pos += 4;
10854 return value_zero (to_static_fixed_type (type), not_lval);
10855 }
10856 }
10857
10858 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10859 return ada_to_fixed_value (arg1);
10860
10861 case OP_FUNCALL:
10862 (*pos) += 2;
10863
10864 /* Allocate arg vector, including space for the function to be
10865 called in argvec[0] and a terminating NULL. */
10866 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10867 argvec = XALLOCAVEC (struct value *, nargs + 2);
10868
10869 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10870 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10871 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10872 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10873 else
10874 {
10875 for (tem = 0; tem <= nargs; tem += 1)
10876 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10877 argvec[tem] = 0;
10878
10879 if (noside == EVAL_SKIP)
10880 goto nosideret;
10881 }
10882
10883 if (ada_is_constrained_packed_array_type
10884 (desc_base_type (value_type (argvec[0]))))
10885 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10886 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10887 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10888 /* This is a packed array that has already been fixed, and
10889 therefore already coerced to a simple array. Nothing further
10890 to do. */
10891 ;
10892 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10893 {
10894 /* Make sure we dereference references so that all the code below
10895 feels like it's really handling the referenced value. Wrapping
10896 types (for alignment) may be there, so make sure we strip them as
10897 well. */
10898 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10899 }
10900 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10901 && VALUE_LVAL (argvec[0]) == lval_memory)
10902 argvec[0] = value_addr (argvec[0]);
10903
10904 type = ada_check_typedef (value_type (argvec[0]));
10905
10906 /* Ada allows us to implicitly dereference arrays when subscripting
10907 them. So, if this is an array typedef (encoding use for array
10908 access types encoded as fat pointers), strip it now. */
10909 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10910 type = ada_typedef_target_type (type);
10911
10912 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10913 {
10914 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
10915 {
10916 case TYPE_CODE_FUNC:
10917 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10918 break;
10919 case TYPE_CODE_ARRAY:
10920 break;
10921 case TYPE_CODE_STRUCT:
10922 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10923 argvec[0] = ada_value_ind (argvec[0]);
10924 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10925 break;
10926 default:
10927 error (_("cannot subscript or call something of type `%s'"),
10928 ada_type_name (value_type (argvec[0])));
10929 break;
10930 }
10931 }
10932
10933 switch (TYPE_CODE (type))
10934 {
10935 case TYPE_CODE_FUNC:
10936 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10937 {
10938 if (TYPE_TARGET_TYPE (type) == NULL)
10939 error_call_unknown_return_type (NULL);
10940 return allocate_value (TYPE_TARGET_TYPE (type));
10941 }
10942 return call_function_by_hand (argvec[0], NULL,
10943 gdb::make_array_view (argvec + 1,
10944 nargs));
10945 case TYPE_CODE_INTERNAL_FUNCTION:
10946 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10947 /* We don't know anything about what the internal
10948 function might return, but we have to return
10949 something. */
10950 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10951 not_lval);
10952 else
10953 return call_internal_function (exp->gdbarch, exp->language_defn,
10954 argvec[0], nargs, argvec + 1);
10955
10956 case TYPE_CODE_STRUCT:
10957 {
10958 int arity;
10959
10960 arity = ada_array_arity (type);
10961 type = ada_array_element_type (type, nargs);
10962 if (type == NULL)
10963 error (_("cannot subscript or call a record"));
10964 if (arity != nargs)
10965 error (_("wrong number of subscripts; expecting %d"), arity);
10966 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10967 return value_zero (ada_aligned_type (type), lval_memory);
10968 return
10969 unwrap_value (ada_value_subscript
10970 (argvec[0], nargs, argvec + 1));
10971 }
10972 case TYPE_CODE_ARRAY:
10973 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10974 {
10975 type = ada_array_element_type (type, nargs);
10976 if (type == NULL)
10977 error (_("element type of array unknown"));
10978 else
10979 return value_zero (ada_aligned_type (type), lval_memory);
10980 }
10981 return
10982 unwrap_value (ada_value_subscript
10983 (ada_coerce_to_simple_array (argvec[0]),
10984 nargs, argvec + 1));
10985 case TYPE_CODE_PTR: /* Pointer to array */
10986 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10987 {
10988 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10989 type = ada_array_element_type (type, nargs);
10990 if (type == NULL)
10991 error (_("element type of array unknown"));
10992 else
10993 return value_zero (ada_aligned_type (type), lval_memory);
10994 }
10995 return
10996 unwrap_value (ada_value_ptr_subscript (argvec[0],
10997 nargs, argvec + 1));
10998
10999 default:
11000 error (_("Attempt to index or call something other than an "
11001 "array or function"));
11002 }
11003
11004 case TERNOP_SLICE:
11005 {
11006 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11007 struct value *low_bound_val =
11008 evaluate_subexp (NULL_TYPE, exp, pos, noside);
11009 struct value *high_bound_val =
11010 evaluate_subexp (NULL_TYPE, exp, pos, noside);
11011 LONGEST low_bound;
11012 LONGEST high_bound;
11013
11014 low_bound_val = coerce_ref (low_bound_val);
11015 high_bound_val = coerce_ref (high_bound_val);
11016 low_bound = value_as_long (low_bound_val);
11017 high_bound = value_as_long (high_bound_val);
11018
11019 if (noside == EVAL_SKIP)
11020 goto nosideret;
11021
11022 /* If this is a reference to an aligner type, then remove all
11023 the aligners. */
11024 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
11025 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
11026 TYPE_TARGET_TYPE (value_type (array)) =
11027 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
11028
11029 if (ada_is_constrained_packed_array_type (value_type (array)))
11030 error (_("cannot slice a packed array"));
11031
11032 /* If this is a reference to an array or an array lvalue,
11033 convert to a pointer. */
11034 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
11035 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
11036 && VALUE_LVAL (array) == lval_memory))
11037 array = value_addr (array);
11038
11039 if (noside == EVAL_AVOID_SIDE_EFFECTS
11040 && ada_is_array_descriptor_type (ada_check_typedef
11041 (value_type (array))))
11042 return empty_array (ada_type_of_array (array, 0), low_bound,
11043 high_bound);
11044
11045 array = ada_coerce_to_simple_array_ptr (array);
11046
11047 /* If we have more than one level of pointer indirection,
11048 dereference the value until we get only one level. */
11049 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
11050 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
11051 == TYPE_CODE_PTR))
11052 array = value_ind (array);
11053
11054 /* Make sure we really do have an array type before going further,
11055 to avoid a SEGV when trying to get the index type or the target
11056 type later down the road if the debug info generated by
11057 the compiler is incorrect or incomplete. */
11058 if (!ada_is_simple_array_type (value_type (array)))
11059 error (_("cannot take slice of non-array"));
11060
11061 if (TYPE_CODE (ada_check_typedef (value_type (array)))
11062 == TYPE_CODE_PTR)
11063 {
11064 struct type *type0 = ada_check_typedef (value_type (array));
11065
11066 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
11067 return empty_array (TYPE_TARGET_TYPE (type0), low_bound, high_bound);
11068 else
11069 {
11070 struct type *arr_type0 =
11071 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
11072
11073 return ada_value_slice_from_ptr (array, arr_type0,
11074 longest_to_int (low_bound),
11075 longest_to_int (high_bound));
11076 }
11077 }
11078 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11079 return array;
11080 else if (high_bound < low_bound)
11081 return empty_array (value_type (array), low_bound, high_bound);
11082 else
11083 return ada_value_slice (array, longest_to_int (low_bound),
11084 longest_to_int (high_bound));
11085 }
11086
11087 case UNOP_IN_RANGE:
11088 (*pos) += 2;
11089 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11090 type = check_typedef (exp->elts[pc + 1].type);
11091
11092 if (noside == EVAL_SKIP)
11093 goto nosideret;
11094
11095 switch (TYPE_CODE (type))
11096 {
11097 default:
11098 lim_warning (_("Membership test incompletely implemented; "
11099 "always returns true"));
11100 type = language_bool_type (exp->language_defn, exp->gdbarch);
11101 return value_from_longest (type, (LONGEST) 1);
11102
11103 case TYPE_CODE_RANGE:
11104 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
11105 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
11106 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11107 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11108 type = language_bool_type (exp->language_defn, exp->gdbarch);
11109 return
11110 value_from_longest (type,
11111 (value_less (arg1, arg3)
11112 || value_equal (arg1, arg3))
11113 && (value_less (arg2, arg1)
11114 || value_equal (arg2, arg1)));
11115 }
11116
11117 case BINOP_IN_BOUNDS:
11118 (*pos) += 2;
11119 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11120 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11121
11122 if (noside == EVAL_SKIP)
11123 goto nosideret;
11124
11125 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11126 {
11127 type = language_bool_type (exp->language_defn, exp->gdbarch);
11128 return value_zero (type, not_lval);
11129 }
11130
11131 tem = longest_to_int (exp->elts[pc + 1].longconst);
11132
11133 type = ada_index_type (value_type (arg2), tem, "range");
11134 if (!type)
11135 type = value_type (arg1);
11136
11137 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
11138 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
11139
11140 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11141 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11142 type = language_bool_type (exp->language_defn, exp->gdbarch);
11143 return
11144 value_from_longest (type,
11145 (value_less (arg1, arg3)
11146 || value_equal (arg1, arg3))
11147 && (value_less (arg2, arg1)
11148 || value_equal (arg2, arg1)));
11149
11150 case TERNOP_IN_RANGE:
11151 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11152 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11153 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11154
11155 if (noside == EVAL_SKIP)
11156 goto nosideret;
11157
11158 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11159 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11160 type = language_bool_type (exp->language_defn, exp->gdbarch);
11161 return
11162 value_from_longest (type,
11163 (value_less (arg1, arg3)
11164 || value_equal (arg1, arg3))
11165 && (value_less (arg2, arg1)
11166 || value_equal (arg2, arg1)));
11167
11168 case OP_ATR_FIRST:
11169 case OP_ATR_LAST:
11170 case OP_ATR_LENGTH:
11171 {
11172 struct type *type_arg;
11173
11174 if (exp->elts[*pos].opcode == OP_TYPE)
11175 {
11176 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11177 arg1 = NULL;
11178 type_arg = check_typedef (exp->elts[pc + 2].type);
11179 }
11180 else
11181 {
11182 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11183 type_arg = NULL;
11184 }
11185
11186 if (exp->elts[*pos].opcode != OP_LONG)
11187 error (_("Invalid operand to '%s"), ada_attribute_name (op));
11188 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11189 *pos += 4;
11190
11191 if (noside == EVAL_SKIP)
11192 goto nosideret;
11193
11194 if (type_arg == NULL)
11195 {
11196 arg1 = ada_coerce_ref (arg1);
11197
11198 if (ada_is_constrained_packed_array_type (value_type (arg1)))
11199 arg1 = ada_coerce_to_simple_array (arg1);
11200
11201 if (op == OP_ATR_LENGTH)
11202 type = builtin_type (exp->gdbarch)->builtin_int;
11203 else
11204 {
11205 type = ada_index_type (value_type (arg1), tem,
11206 ada_attribute_name (op));
11207 if (type == NULL)
11208 type = builtin_type (exp->gdbarch)->builtin_int;
11209 }
11210
11211 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11212 return allocate_value (type);
11213
11214 switch (op)
11215 {
11216 default: /* Should never happen. */
11217 error (_("unexpected attribute encountered"));
11218 case OP_ATR_FIRST:
11219 return value_from_longest
11220 (type, ada_array_bound (arg1, tem, 0));
11221 case OP_ATR_LAST:
11222 return value_from_longest
11223 (type, ada_array_bound (arg1, tem, 1));
11224 case OP_ATR_LENGTH:
11225 return value_from_longest
11226 (type, ada_array_length (arg1, tem));
11227 }
11228 }
11229 else if (discrete_type_p (type_arg))
11230 {
11231 struct type *range_type;
11232 const char *name = ada_type_name (type_arg);
11233
11234 range_type = NULL;
11235 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
11236 range_type = to_fixed_range_type (type_arg, NULL);
11237 if (range_type == NULL)
11238 range_type = type_arg;
11239 switch (op)
11240 {
11241 default:
11242 error (_("unexpected attribute encountered"));
11243 case OP_ATR_FIRST:
11244 return value_from_longest
11245 (range_type, ada_discrete_type_low_bound (range_type));
11246 case OP_ATR_LAST:
11247 return value_from_longest
11248 (range_type, ada_discrete_type_high_bound (range_type));
11249 case OP_ATR_LENGTH:
11250 error (_("the 'length attribute applies only to array types"));
11251 }
11252 }
11253 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
11254 error (_("unimplemented type attribute"));
11255 else
11256 {
11257 LONGEST low, high;
11258
11259 if (ada_is_constrained_packed_array_type (type_arg))
11260 type_arg = decode_constrained_packed_array_type (type_arg);
11261
11262 if (op == OP_ATR_LENGTH)
11263 type = builtin_type (exp->gdbarch)->builtin_int;
11264 else
11265 {
11266 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11267 if (type == NULL)
11268 type = builtin_type (exp->gdbarch)->builtin_int;
11269 }
11270
11271 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11272 return allocate_value (type);
11273
11274 switch (op)
11275 {
11276 default:
11277 error (_("unexpected attribute encountered"));
11278 case OP_ATR_FIRST:
11279 low = ada_array_bound_from_type (type_arg, tem, 0);
11280 return value_from_longest (type, low);
11281 case OP_ATR_LAST:
11282 high = ada_array_bound_from_type (type_arg, tem, 1);
11283 return value_from_longest (type, high);
11284 case OP_ATR_LENGTH:
11285 low = ada_array_bound_from_type (type_arg, tem, 0);
11286 high = ada_array_bound_from_type (type_arg, tem, 1);
11287 return value_from_longest (type, high - low + 1);
11288 }
11289 }
11290 }
11291
11292 case OP_ATR_TAG:
11293 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11294 if (noside == EVAL_SKIP)
11295 goto nosideret;
11296
11297 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11298 return value_zero (ada_tag_type (arg1), not_lval);
11299
11300 return ada_value_tag (arg1);
11301
11302 case OP_ATR_MIN:
11303 case OP_ATR_MAX:
11304 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11305 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11306 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11307 if (noside == EVAL_SKIP)
11308 goto nosideret;
11309 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11310 return value_zero (value_type (arg1), not_lval);
11311 else
11312 {
11313 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11314 return value_binop (arg1, arg2,
11315 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11316 }
11317
11318 case OP_ATR_MODULUS:
11319 {
11320 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
11321
11322 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11323 if (noside == EVAL_SKIP)
11324 goto nosideret;
11325
11326 if (!ada_is_modular_type (type_arg))
11327 error (_("'modulus must be applied to modular type"));
11328
11329 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11330 ada_modulus (type_arg));
11331 }
11332
11333
11334 case OP_ATR_POS:
11335 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11336 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11337 if (noside == EVAL_SKIP)
11338 goto nosideret;
11339 type = builtin_type (exp->gdbarch)->builtin_int;
11340 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11341 return value_zero (type, not_lval);
11342 else
11343 return value_pos_atr (type, arg1);
11344
11345 case OP_ATR_SIZE:
11346 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11347 type = value_type (arg1);
11348
11349 /* If the argument is a reference, then dereference its type, since
11350 the user is really asking for the size of the actual object,
11351 not the size of the pointer. */
11352 if (TYPE_CODE (type) == TYPE_CODE_REF)
11353 type = TYPE_TARGET_TYPE (type);
11354
11355 if (noside == EVAL_SKIP)
11356 goto nosideret;
11357 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11358 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
11359 else
11360 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
11361 TARGET_CHAR_BIT * TYPE_LENGTH (type));
11362
11363 case OP_ATR_VAL:
11364 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11365 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11366 type = exp->elts[pc + 2].type;
11367 if (noside == EVAL_SKIP)
11368 goto nosideret;
11369 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11370 return value_zero (type, not_lval);
11371 else
11372 return value_val_atr (type, arg1);
11373
11374 case BINOP_EXP:
11375 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11376 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11377 if (noside == EVAL_SKIP)
11378 goto nosideret;
11379 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11380 return value_zero (value_type (arg1), not_lval);
11381 else
11382 {
11383 /* For integer exponentiation operations,
11384 only promote the first argument. */
11385 if (is_integral_type (value_type (arg2)))
11386 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11387 else
11388 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11389
11390 return value_binop (arg1, arg2, op);
11391 }
11392
11393 case UNOP_PLUS:
11394 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11395 if (noside == EVAL_SKIP)
11396 goto nosideret;
11397 else
11398 return arg1;
11399
11400 case UNOP_ABS:
11401 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11402 if (noside == EVAL_SKIP)
11403 goto nosideret;
11404 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11405 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
11406 return value_neg (arg1);
11407 else
11408 return arg1;
11409
11410 case UNOP_IND:
11411 preeval_pos = *pos;
11412 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11413 if (noside == EVAL_SKIP)
11414 goto nosideret;
11415 type = ada_check_typedef (value_type (arg1));
11416 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11417 {
11418 if (ada_is_array_descriptor_type (type))
11419 /* GDB allows dereferencing GNAT array descriptors. */
11420 {
11421 struct type *arrType = ada_type_of_array (arg1, 0);
11422
11423 if (arrType == NULL)
11424 error (_("Attempt to dereference null array pointer."));
11425 return value_at_lazy (arrType, 0);
11426 }
11427 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11428 || TYPE_CODE (type) == TYPE_CODE_REF
11429 /* In C you can dereference an array to get the 1st elt. */
11430 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
11431 {
11432 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11433 only be determined by inspecting the object's tag.
11434 This means that we need to evaluate completely the
11435 expression in order to get its type. */
11436
11437 if ((TYPE_CODE (type) == TYPE_CODE_REF
11438 || TYPE_CODE (type) == TYPE_CODE_PTR)
11439 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11440 {
11441 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11442 EVAL_NORMAL);
11443 type = value_type (ada_value_ind (arg1));
11444 }
11445 else
11446 {
11447 type = to_static_fixed_type
11448 (ada_aligned_type
11449 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11450 }
11451 ada_ensure_varsize_limit (type);
11452 return value_zero (type, lval_memory);
11453 }
11454 else if (TYPE_CODE (type) == TYPE_CODE_INT)
11455 {
11456 /* GDB allows dereferencing an int. */
11457 if (expect_type == NULL)
11458 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11459 lval_memory);
11460 else
11461 {
11462 expect_type =
11463 to_static_fixed_type (ada_aligned_type (expect_type));
11464 return value_zero (expect_type, lval_memory);
11465 }
11466 }
11467 else
11468 error (_("Attempt to take contents of a non-pointer value."));
11469 }
11470 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
11471 type = ada_check_typedef (value_type (arg1));
11472
11473 if (TYPE_CODE (type) == TYPE_CODE_INT)
11474 /* GDB allows dereferencing an int. If we were given
11475 the expect_type, then use that as the target type.
11476 Otherwise, assume that the target type is an int. */
11477 {
11478 if (expect_type != NULL)
11479 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11480 arg1));
11481 else
11482 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11483 (CORE_ADDR) value_as_address (arg1));
11484 }
11485
11486 if (ada_is_array_descriptor_type (type))
11487 /* GDB allows dereferencing GNAT array descriptors. */
11488 return ada_coerce_to_simple_array (arg1);
11489 else
11490 return ada_value_ind (arg1);
11491
11492 case STRUCTOP_STRUCT:
11493 tem = longest_to_int (exp->elts[pc + 1].longconst);
11494 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
11495 preeval_pos = *pos;
11496 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11497 if (noside == EVAL_SKIP)
11498 goto nosideret;
11499 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11500 {
11501 struct type *type1 = value_type (arg1);
11502
11503 if (ada_is_tagged_type (type1, 1))
11504 {
11505 type = ada_lookup_struct_elt_type (type1,
11506 &exp->elts[pc + 2].string,
11507 1, 1);
11508
11509 /* If the field is not found, check if it exists in the
11510 extension of this object's type. This means that we
11511 need to evaluate completely the expression. */
11512
11513 if (type == NULL)
11514 {
11515 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11516 EVAL_NORMAL);
11517 arg1 = ada_value_struct_elt (arg1,
11518 &exp->elts[pc + 2].string,
11519 0);
11520 arg1 = unwrap_value (arg1);
11521 type = value_type (ada_to_fixed_value (arg1));
11522 }
11523 }
11524 else
11525 type =
11526 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11527 0);
11528
11529 return value_zero (ada_aligned_type (type), lval_memory);
11530 }
11531 else
11532 {
11533 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11534 arg1 = unwrap_value (arg1);
11535 return ada_to_fixed_value (arg1);
11536 }
11537
11538 case OP_TYPE:
11539 /* The value is not supposed to be used. This is here to make it
11540 easier to accommodate expressions that contain types. */
11541 (*pos) += 2;
11542 if (noside == EVAL_SKIP)
11543 goto nosideret;
11544 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11545 return allocate_value (exp->elts[pc + 1].type);
11546 else
11547 error (_("Attempt to use a type name as an expression"));
11548
11549 case OP_AGGREGATE:
11550 case OP_CHOICES:
11551 case OP_OTHERS:
11552 case OP_DISCRETE_RANGE:
11553 case OP_POSITIONAL:
11554 case OP_NAME:
11555 if (noside == EVAL_NORMAL)
11556 switch (op)
11557 {
11558 case OP_NAME:
11559 error (_("Undefined name, ambiguous name, or renaming used in "
11560 "component association: %s."), &exp->elts[pc+2].string);
11561 case OP_AGGREGATE:
11562 error (_("Aggregates only allowed on the right of an assignment"));
11563 default:
11564 internal_error (__FILE__, __LINE__,
11565 _("aggregate apparently mangled"));
11566 }
11567
11568 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11569 *pos += oplen - 1;
11570 for (tem = 0; tem < nargs; tem += 1)
11571 ada_evaluate_subexp (NULL, exp, pos, noside);
11572 goto nosideret;
11573 }
11574
11575 nosideret:
11576 return eval_skip_value (exp);
11577 }
11578 \f
11579
11580 /* Fixed point */
11581
11582 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
11583 type name that encodes the 'small and 'delta information.
11584 Otherwise, return NULL. */
11585
11586 static const char *
11587 fixed_type_info (struct type *type)
11588 {
11589 const char *name = ada_type_name (type);
11590 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11591
11592 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11593 {
11594 const char *tail = strstr (name, "___XF_");
11595
11596 if (tail == NULL)
11597 return NULL;
11598 else
11599 return tail + 5;
11600 }
11601 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11602 return fixed_type_info (TYPE_TARGET_TYPE (type));
11603 else
11604 return NULL;
11605 }
11606
11607 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
11608
11609 int
11610 ada_is_fixed_point_type (struct type *type)
11611 {
11612 return fixed_type_info (type) != NULL;
11613 }
11614
11615 /* Return non-zero iff TYPE represents a System.Address type. */
11616
11617 int
11618 ada_is_system_address_type (struct type *type)
11619 {
11620 return (TYPE_NAME (type)
11621 && strcmp (TYPE_NAME (type), "system__address") == 0);
11622 }
11623
11624 /* Assuming that TYPE is the representation of an Ada fixed-point
11625 type, return the target floating-point type to be used to represent
11626 of this type during internal computation. */
11627
11628 static struct type *
11629 ada_scaling_type (struct type *type)
11630 {
11631 return builtin_type (get_type_arch (type))->builtin_long_double;
11632 }
11633
11634 /* Assuming that TYPE is the representation of an Ada fixed-point
11635 type, return its delta, or NULL if the type is malformed and the
11636 delta cannot be determined. */
11637
11638 struct value *
11639 ada_delta (struct type *type)
11640 {
11641 const char *encoding = fixed_type_info (type);
11642 struct type *scale_type = ada_scaling_type (type);
11643
11644 long long num, den;
11645
11646 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11647 return nullptr;
11648 else
11649 return value_binop (value_from_longest (scale_type, num),
11650 value_from_longest (scale_type, den), BINOP_DIV);
11651 }
11652
11653 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
11654 factor ('SMALL value) associated with the type. */
11655
11656 struct value *
11657 ada_scaling_factor (struct type *type)
11658 {
11659 const char *encoding = fixed_type_info (type);
11660 struct type *scale_type = ada_scaling_type (type);
11661
11662 long long num0, den0, num1, den1;
11663 int n;
11664
11665 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
11666 &num0, &den0, &num1, &den1);
11667
11668 if (n < 2)
11669 return value_from_longest (scale_type, 1);
11670 else if (n == 4)
11671 return value_binop (value_from_longest (scale_type, num1),
11672 value_from_longest (scale_type, den1), BINOP_DIV);
11673 else
11674 return value_binop (value_from_longest (scale_type, num0),
11675 value_from_longest (scale_type, den0), BINOP_DIV);
11676 }
11677
11678 \f
11679
11680 /* Range types */
11681
11682 /* Scan STR beginning at position K for a discriminant name, and
11683 return the value of that discriminant field of DVAL in *PX. If
11684 PNEW_K is not null, put the position of the character beyond the
11685 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11686 not alter *PX and *PNEW_K if unsuccessful. */
11687
11688 static int
11689 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
11690 int *pnew_k)
11691 {
11692 static char *bound_buffer = NULL;
11693 static size_t bound_buffer_len = 0;
11694 const char *pstart, *pend, *bound;
11695 struct value *bound_val;
11696
11697 if (dval == NULL || str == NULL || str[k] == '\0')
11698 return 0;
11699
11700 pstart = str + k;
11701 pend = strstr (pstart, "__");
11702 if (pend == NULL)
11703 {
11704 bound = pstart;
11705 k += strlen (bound);
11706 }
11707 else
11708 {
11709 int len = pend - pstart;
11710
11711 /* Strip __ and beyond. */
11712 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11713 strncpy (bound_buffer, pstart, len);
11714 bound_buffer[len] = '\0';
11715
11716 bound = bound_buffer;
11717 k = pend - str;
11718 }
11719
11720 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11721 if (bound_val == NULL)
11722 return 0;
11723
11724 *px = value_as_long (bound_val);
11725 if (pnew_k != NULL)
11726 *pnew_k = k;
11727 return 1;
11728 }
11729
11730 /* Value of variable named NAME in the current environment. If
11731 no such variable found, then if ERR_MSG is null, returns 0, and
11732 otherwise causes an error with message ERR_MSG. */
11733
11734 static struct value *
11735 get_var_value (const char *name, const char *err_msg)
11736 {
11737 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
11738
11739 std::vector<struct block_symbol> syms;
11740 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11741 get_selected_block (0),
11742 VAR_DOMAIN, &syms, 1);
11743
11744 if (nsyms != 1)
11745 {
11746 if (err_msg == NULL)
11747 return 0;
11748 else
11749 error (("%s"), err_msg);
11750 }
11751
11752 return value_of_variable (syms[0].symbol, syms[0].block);
11753 }
11754
11755 /* Value of integer variable named NAME in the current environment.
11756 If no such variable is found, returns false. Otherwise, sets VALUE
11757 to the variable's value and returns true. */
11758
11759 bool
11760 get_int_var_value (const char *name, LONGEST &value)
11761 {
11762 struct value *var_val = get_var_value (name, 0);
11763
11764 if (var_val == 0)
11765 return false;
11766
11767 value = value_as_long (var_val);
11768 return true;
11769 }
11770
11771
11772 /* Return a range type whose base type is that of the range type named
11773 NAME in the current environment, and whose bounds are calculated
11774 from NAME according to the GNAT range encoding conventions.
11775 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11776 corresponding range type from debug information; fall back to using it
11777 if symbol lookup fails. If a new type must be created, allocate it
11778 like ORIG_TYPE was. The bounds information, in general, is encoded
11779 in NAME, the base type given in the named range type. */
11780
11781 static struct type *
11782 to_fixed_range_type (struct type *raw_type, struct value *dval)
11783 {
11784 const char *name;
11785 struct type *base_type;
11786 const char *subtype_info;
11787
11788 gdb_assert (raw_type != NULL);
11789 gdb_assert (TYPE_NAME (raw_type) != NULL);
11790
11791 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
11792 base_type = TYPE_TARGET_TYPE (raw_type);
11793 else
11794 base_type = raw_type;
11795
11796 name = TYPE_NAME (raw_type);
11797 subtype_info = strstr (name, "___XD");
11798 if (subtype_info == NULL)
11799 {
11800 LONGEST L = ada_discrete_type_low_bound (raw_type);
11801 LONGEST U = ada_discrete_type_high_bound (raw_type);
11802
11803 if (L < INT_MIN || U > INT_MAX)
11804 return raw_type;
11805 else
11806 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11807 L, U);
11808 }
11809 else
11810 {
11811 static char *name_buf = NULL;
11812 static size_t name_len = 0;
11813 int prefix_len = subtype_info - name;
11814 LONGEST L, U;
11815 struct type *type;
11816 const char *bounds_str;
11817 int n;
11818
11819 GROW_VECT (name_buf, name_len, prefix_len + 5);
11820 strncpy (name_buf, name, prefix_len);
11821 name_buf[prefix_len] = '\0';
11822
11823 subtype_info += 5;
11824 bounds_str = strchr (subtype_info, '_');
11825 n = 1;
11826
11827 if (*subtype_info == 'L')
11828 {
11829 if (!ada_scan_number (bounds_str, n, &L, &n)
11830 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11831 return raw_type;
11832 if (bounds_str[n] == '_')
11833 n += 2;
11834 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11835 n += 1;
11836 subtype_info += 1;
11837 }
11838 else
11839 {
11840 strcpy (name_buf + prefix_len, "___L");
11841 if (!get_int_var_value (name_buf, L))
11842 {
11843 lim_warning (_("Unknown lower bound, using 1."));
11844 L = 1;
11845 }
11846 }
11847
11848 if (*subtype_info == 'U')
11849 {
11850 if (!ada_scan_number (bounds_str, n, &U, &n)
11851 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11852 return raw_type;
11853 }
11854 else
11855 {
11856 strcpy (name_buf + prefix_len, "___U");
11857 if (!get_int_var_value (name_buf, U))
11858 {
11859 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11860 U = L;
11861 }
11862 }
11863
11864 type = create_static_range_type (alloc_type_copy (raw_type),
11865 base_type, L, U);
11866 /* create_static_range_type alters the resulting type's length
11867 to match the size of the base_type, which is not what we want.
11868 Set it back to the original range type's length. */
11869 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
11870 TYPE_NAME (type) = name;
11871 return type;
11872 }
11873 }
11874
11875 /* True iff NAME is the name of a range type. */
11876
11877 int
11878 ada_is_range_type_name (const char *name)
11879 {
11880 return (name != NULL && strstr (name, "___XD"));
11881 }
11882 \f
11883
11884 /* Modular types */
11885
11886 /* True iff TYPE is an Ada modular type. */
11887
11888 int
11889 ada_is_modular_type (struct type *type)
11890 {
11891 struct type *subranged_type = get_base_type (type);
11892
11893 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
11894 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
11895 && TYPE_UNSIGNED (subranged_type));
11896 }
11897
11898 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11899
11900 ULONGEST
11901 ada_modulus (struct type *type)
11902 {
11903 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11904 }
11905 \f
11906
11907 /* Ada exception catchpoint support:
11908 ---------------------------------
11909
11910 We support 3 kinds of exception catchpoints:
11911 . catchpoints on Ada exceptions
11912 . catchpoints on unhandled Ada exceptions
11913 . catchpoints on failed assertions
11914
11915 Exceptions raised during failed assertions, or unhandled exceptions
11916 could perfectly be caught with the general catchpoint on Ada exceptions.
11917 However, we can easily differentiate these two special cases, and having
11918 the option to distinguish these two cases from the rest can be useful
11919 to zero-in on certain situations.
11920
11921 Exception catchpoints are a specialized form of breakpoint,
11922 since they rely on inserting breakpoints inside known routines
11923 of the GNAT runtime. The implementation therefore uses a standard
11924 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11925 of breakpoint_ops.
11926
11927 Support in the runtime for exception catchpoints have been changed
11928 a few times already, and these changes affect the implementation
11929 of these catchpoints. In order to be able to support several
11930 variants of the runtime, we use a sniffer that will determine
11931 the runtime variant used by the program being debugged. */
11932
11933 /* Ada's standard exceptions.
11934
11935 The Ada 83 standard also defined Numeric_Error. But there so many
11936 situations where it was unclear from the Ada 83 Reference Manual
11937 (RM) whether Constraint_Error or Numeric_Error should be raised,
11938 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11939 Interpretation saying that anytime the RM says that Numeric_Error
11940 should be raised, the implementation may raise Constraint_Error.
11941 Ada 95 went one step further and pretty much removed Numeric_Error
11942 from the list of standard exceptions (it made it a renaming of
11943 Constraint_Error, to help preserve compatibility when compiling
11944 an Ada83 compiler). As such, we do not include Numeric_Error from
11945 this list of standard exceptions. */
11946
11947 static const char *standard_exc[] = {
11948 "constraint_error",
11949 "program_error",
11950 "storage_error",
11951 "tasking_error"
11952 };
11953
11954 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11955
11956 /* A structure that describes how to support exception catchpoints
11957 for a given executable. */
11958
11959 struct exception_support_info
11960 {
11961 /* The name of the symbol to break on in order to insert
11962 a catchpoint on exceptions. */
11963 const char *catch_exception_sym;
11964
11965 /* The name of the symbol to break on in order to insert
11966 a catchpoint on unhandled exceptions. */
11967 const char *catch_exception_unhandled_sym;
11968
11969 /* The name of the symbol to break on in order to insert
11970 a catchpoint on failed assertions. */
11971 const char *catch_assert_sym;
11972
11973 /* The name of the symbol to break on in order to insert
11974 a catchpoint on exception handling. */
11975 const char *catch_handlers_sym;
11976
11977 /* Assuming that the inferior just triggered an unhandled exception
11978 catchpoint, this function is responsible for returning the address
11979 in inferior memory where the name of that exception is stored.
11980 Return zero if the address could not be computed. */
11981 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11982 };
11983
11984 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11985 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11986
11987 /* The following exception support info structure describes how to
11988 implement exception catchpoints with the latest version of the
11989 Ada runtime (as of 2007-03-06). */
11990
11991 static const struct exception_support_info default_exception_support_info =
11992 {
11993 "__gnat_debug_raise_exception", /* catch_exception_sym */
11994 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11995 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11996 "__gnat_begin_handler", /* catch_handlers_sym */
11997 ada_unhandled_exception_name_addr
11998 };
11999
12000 /* The following exception support info structure describes how to
12001 implement exception catchpoints with a slightly older version
12002 of the Ada runtime. */
12003
12004 static const struct exception_support_info exception_support_info_fallback =
12005 {
12006 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
12007 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
12008 "system__assertions__raise_assert_failure", /* catch_assert_sym */
12009 "__gnat_begin_handler", /* catch_handlers_sym */
12010 ada_unhandled_exception_name_addr_from_raise
12011 };
12012
12013 /* Return nonzero if we can detect the exception support routines
12014 described in EINFO.
12015
12016 This function errors out if an abnormal situation is detected
12017 (for instance, if we find the exception support routines, but
12018 that support is found to be incomplete). */
12019
12020 static int
12021 ada_has_this_exception_support (const struct exception_support_info *einfo)
12022 {
12023 struct symbol *sym;
12024
12025 /* The symbol we're looking up is provided by a unit in the GNAT runtime
12026 that should be compiled with debugging information. As a result, we
12027 expect to find that symbol in the symtabs. */
12028
12029 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
12030 if (sym == NULL)
12031 {
12032 /* Perhaps we did not find our symbol because the Ada runtime was
12033 compiled without debugging info, or simply stripped of it.
12034 It happens on some GNU/Linux distributions for instance, where
12035 users have to install a separate debug package in order to get
12036 the runtime's debugging info. In that situation, let the user
12037 know why we cannot insert an Ada exception catchpoint.
12038
12039 Note: Just for the purpose of inserting our Ada exception
12040 catchpoint, we could rely purely on the associated minimal symbol.
12041 But we would be operating in degraded mode anyway, since we are
12042 still lacking the debugging info needed later on to extract
12043 the name of the exception being raised (this name is printed in
12044 the catchpoint message, and is also used when trying to catch
12045 a specific exception). We do not handle this case for now. */
12046 struct bound_minimal_symbol msym
12047 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
12048
12049 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
12050 error (_("Your Ada runtime appears to be missing some debugging "
12051 "information.\nCannot insert Ada exception catchpoint "
12052 "in this configuration."));
12053
12054 return 0;
12055 }
12056
12057 /* Make sure that the symbol we found corresponds to a function. */
12058
12059 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12060 error (_("Symbol \"%s\" is not a function (class = %d)"),
12061 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
12062
12063 return 1;
12064 }
12065
12066 /* Inspect the Ada runtime and determine which exception info structure
12067 should be used to provide support for exception catchpoints.
12068
12069 This function will always set the per-inferior exception_info,
12070 or raise an error. */
12071
12072 static void
12073 ada_exception_support_info_sniffer (void)
12074 {
12075 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12076
12077 /* If the exception info is already known, then no need to recompute it. */
12078 if (data->exception_info != NULL)
12079 return;
12080
12081 /* Check the latest (default) exception support info. */
12082 if (ada_has_this_exception_support (&default_exception_support_info))
12083 {
12084 data->exception_info = &default_exception_support_info;
12085 return;
12086 }
12087
12088 /* Try our fallback exception suport info. */
12089 if (ada_has_this_exception_support (&exception_support_info_fallback))
12090 {
12091 data->exception_info = &exception_support_info_fallback;
12092 return;
12093 }
12094
12095 /* Sometimes, it is normal for us to not be able to find the routine
12096 we are looking for. This happens when the program is linked with
12097 the shared version of the GNAT runtime, and the program has not been
12098 started yet. Inform the user of these two possible causes if
12099 applicable. */
12100
12101 if (ada_update_initial_language (language_unknown) != language_ada)
12102 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
12103
12104 /* If the symbol does not exist, then check that the program is
12105 already started, to make sure that shared libraries have been
12106 loaded. If it is not started, this may mean that the symbol is
12107 in a shared library. */
12108
12109 if (inferior_ptid.pid () == 0)
12110 error (_("Unable to insert catchpoint. Try to start the program first."));
12111
12112 /* At this point, we know that we are debugging an Ada program and
12113 that the inferior has been started, but we still are not able to
12114 find the run-time symbols. That can mean that we are in
12115 configurable run time mode, or that a-except as been optimized
12116 out by the linker... In any case, at this point it is not worth
12117 supporting this feature. */
12118
12119 error (_("Cannot insert Ada exception catchpoints in this configuration."));
12120 }
12121
12122 /* True iff FRAME is very likely to be that of a function that is
12123 part of the runtime system. This is all very heuristic, but is
12124 intended to be used as advice as to what frames are uninteresting
12125 to most users. */
12126
12127 static int
12128 is_known_support_routine (struct frame_info *frame)
12129 {
12130 enum language func_lang;
12131 int i;
12132 const char *fullname;
12133
12134 /* If this code does not have any debugging information (no symtab),
12135 This cannot be any user code. */
12136
12137 symtab_and_line sal = find_frame_sal (frame);
12138 if (sal.symtab == NULL)
12139 return 1;
12140
12141 /* If there is a symtab, but the associated source file cannot be
12142 located, then assume this is not user code: Selecting a frame
12143 for which we cannot display the code would not be very helpful
12144 for the user. This should also take care of case such as VxWorks
12145 where the kernel has some debugging info provided for a few units. */
12146
12147 fullname = symtab_to_fullname (sal.symtab);
12148 if (access (fullname, R_OK) != 0)
12149 return 1;
12150
12151 /* Check the unit filename againt the Ada runtime file naming.
12152 We also check the name of the objfile against the name of some
12153 known system libraries that sometimes come with debugging info
12154 too. */
12155
12156 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12157 {
12158 re_comp (known_runtime_file_name_patterns[i]);
12159 if (re_exec (lbasename (sal.symtab->filename)))
12160 return 1;
12161 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12162 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
12163 return 1;
12164 }
12165
12166 /* Check whether the function is a GNAT-generated entity. */
12167
12168 gdb::unique_xmalloc_ptr<char> func_name
12169 = find_frame_funname (frame, &func_lang, NULL);
12170 if (func_name == NULL)
12171 return 1;
12172
12173 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12174 {
12175 re_comp (known_auxiliary_function_name_patterns[i]);
12176 if (re_exec (func_name.get ()))
12177 return 1;
12178 }
12179
12180 return 0;
12181 }
12182
12183 /* Find the first frame that contains debugging information and that is not
12184 part of the Ada run-time, starting from FI and moving upward. */
12185
12186 void
12187 ada_find_printable_frame (struct frame_info *fi)
12188 {
12189 for (; fi != NULL; fi = get_prev_frame (fi))
12190 {
12191 if (!is_known_support_routine (fi))
12192 {
12193 select_frame (fi);
12194 break;
12195 }
12196 }
12197
12198 }
12199
12200 /* Assuming that the inferior just triggered an unhandled exception
12201 catchpoint, return the address in inferior memory where the name
12202 of the exception is stored.
12203
12204 Return zero if the address could not be computed. */
12205
12206 static CORE_ADDR
12207 ada_unhandled_exception_name_addr (void)
12208 {
12209 return parse_and_eval_address ("e.full_name");
12210 }
12211
12212 /* Same as ada_unhandled_exception_name_addr, except that this function
12213 should be used when the inferior uses an older version of the runtime,
12214 where the exception name needs to be extracted from a specific frame
12215 several frames up in the callstack. */
12216
12217 static CORE_ADDR
12218 ada_unhandled_exception_name_addr_from_raise (void)
12219 {
12220 int frame_level;
12221 struct frame_info *fi;
12222 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12223
12224 /* To determine the name of this exception, we need to select
12225 the frame corresponding to RAISE_SYM_NAME. This frame is
12226 at least 3 levels up, so we simply skip the first 3 frames
12227 without checking the name of their associated function. */
12228 fi = get_current_frame ();
12229 for (frame_level = 0; frame_level < 3; frame_level += 1)
12230 if (fi != NULL)
12231 fi = get_prev_frame (fi);
12232
12233 while (fi != NULL)
12234 {
12235 enum language func_lang;
12236
12237 gdb::unique_xmalloc_ptr<char> func_name
12238 = find_frame_funname (fi, &func_lang, NULL);
12239 if (func_name != NULL)
12240 {
12241 if (strcmp (func_name.get (),
12242 data->exception_info->catch_exception_sym) == 0)
12243 break; /* We found the frame we were looking for... */
12244 }
12245 fi = get_prev_frame (fi);
12246 }
12247
12248 if (fi == NULL)
12249 return 0;
12250
12251 select_frame (fi);
12252 return parse_and_eval_address ("id.full_name");
12253 }
12254
12255 /* Assuming the inferior just triggered an Ada exception catchpoint
12256 (of any type), return the address in inferior memory where the name
12257 of the exception is stored, if applicable.
12258
12259 Assumes the selected frame is the current frame.
12260
12261 Return zero if the address could not be computed, or if not relevant. */
12262
12263 static CORE_ADDR
12264 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
12265 struct breakpoint *b)
12266 {
12267 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12268
12269 switch (ex)
12270 {
12271 case ada_catch_exception:
12272 return (parse_and_eval_address ("e.full_name"));
12273 break;
12274
12275 case ada_catch_exception_unhandled:
12276 return data->exception_info->unhandled_exception_name_addr ();
12277 break;
12278
12279 case ada_catch_handlers:
12280 return 0; /* The runtimes does not provide access to the exception
12281 name. */
12282 break;
12283
12284 case ada_catch_assert:
12285 return 0; /* Exception name is not relevant in this case. */
12286 break;
12287
12288 default:
12289 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12290 break;
12291 }
12292
12293 return 0; /* Should never be reached. */
12294 }
12295
12296 /* Assuming the inferior is stopped at an exception catchpoint,
12297 return the message which was associated to the exception, if
12298 available. Return NULL if the message could not be retrieved.
12299
12300 Note: The exception message can be associated to an exception
12301 either through the use of the Raise_Exception function, or
12302 more simply (Ada 2005 and later), via:
12303
12304 raise Exception_Name with "exception message";
12305
12306 */
12307
12308 static gdb::unique_xmalloc_ptr<char>
12309 ada_exception_message_1 (void)
12310 {
12311 struct value *e_msg_val;
12312 int e_msg_len;
12313
12314 /* For runtimes that support this feature, the exception message
12315 is passed as an unbounded string argument called "message". */
12316 e_msg_val = parse_and_eval ("message");
12317 if (e_msg_val == NULL)
12318 return NULL; /* Exception message not supported. */
12319
12320 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
12321 gdb_assert (e_msg_val != NULL);
12322 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
12323
12324 /* If the message string is empty, then treat it as if there was
12325 no exception message. */
12326 if (e_msg_len <= 0)
12327 return NULL;
12328
12329 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
12330 read_memory_string (value_address (e_msg_val), e_msg.get (), e_msg_len + 1);
12331 e_msg.get ()[e_msg_len] = '\0';
12332
12333 return e_msg;
12334 }
12335
12336 /* Same as ada_exception_message_1, except that all exceptions are
12337 contained here (returning NULL instead). */
12338
12339 static gdb::unique_xmalloc_ptr<char>
12340 ada_exception_message (void)
12341 {
12342 gdb::unique_xmalloc_ptr<char> e_msg;
12343
12344 TRY
12345 {
12346 e_msg = ada_exception_message_1 ();
12347 }
12348 CATCH (e, RETURN_MASK_ERROR)
12349 {
12350 e_msg.reset (nullptr);
12351 }
12352 END_CATCH
12353
12354 return e_msg;
12355 }
12356
12357 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
12358 any error that ada_exception_name_addr_1 might cause to be thrown.
12359 When an error is intercepted, a warning with the error message is printed,
12360 and zero is returned. */
12361
12362 static CORE_ADDR
12363 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
12364 struct breakpoint *b)
12365 {
12366 CORE_ADDR result = 0;
12367
12368 TRY
12369 {
12370 result = ada_exception_name_addr_1 (ex, b);
12371 }
12372
12373 CATCH (e, RETURN_MASK_ERROR)
12374 {
12375 warning (_("failed to get exception name: %s"), e.message);
12376 return 0;
12377 }
12378 END_CATCH
12379
12380 return result;
12381 }
12382
12383 static std::string ada_exception_catchpoint_cond_string
12384 (const char *excep_string,
12385 enum ada_exception_catchpoint_kind ex);
12386
12387 /* Ada catchpoints.
12388
12389 In the case of catchpoints on Ada exceptions, the catchpoint will
12390 stop the target on every exception the program throws. When a user
12391 specifies the name of a specific exception, we translate this
12392 request into a condition expression (in text form), and then parse
12393 it into an expression stored in each of the catchpoint's locations.
12394 We then use this condition to check whether the exception that was
12395 raised is the one the user is interested in. If not, then the
12396 target is resumed again. We store the name of the requested
12397 exception, in order to be able to re-set the condition expression
12398 when symbols change. */
12399
12400 /* An instance of this type is used to represent an Ada catchpoint
12401 breakpoint location. */
12402
12403 class ada_catchpoint_location : public bp_location
12404 {
12405 public:
12406 ada_catchpoint_location (breakpoint *owner)
12407 : bp_location (owner)
12408 {}
12409
12410 /* The condition that checks whether the exception that was raised
12411 is the specific exception the user specified on catchpoint
12412 creation. */
12413 expression_up excep_cond_expr;
12414 };
12415
12416 /* An instance of this type is used to represent an Ada catchpoint. */
12417
12418 struct ada_catchpoint : public breakpoint
12419 {
12420 /* The name of the specific exception the user specified. */
12421 std::string excep_string;
12422 };
12423
12424 /* Parse the exception condition string in the context of each of the
12425 catchpoint's locations, and store them for later evaluation. */
12426
12427 static void
12428 create_excep_cond_exprs (struct ada_catchpoint *c,
12429 enum ada_exception_catchpoint_kind ex)
12430 {
12431 struct bp_location *bl;
12432
12433 /* Nothing to do if there's no specific exception to catch. */
12434 if (c->excep_string.empty ())
12435 return;
12436
12437 /* Same if there are no locations... */
12438 if (c->loc == NULL)
12439 return;
12440
12441 /* Compute the condition expression in text form, from the specific
12442 expection we want to catch. */
12443 std::string cond_string
12444 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (), ex);
12445
12446 /* Iterate over all the catchpoint's locations, and parse an
12447 expression for each. */
12448 for (bl = c->loc; bl != NULL; bl = bl->next)
12449 {
12450 struct ada_catchpoint_location *ada_loc
12451 = (struct ada_catchpoint_location *) bl;
12452 expression_up exp;
12453
12454 if (!bl->shlib_disabled)
12455 {
12456 const char *s;
12457
12458 s = cond_string.c_str ();
12459 TRY
12460 {
12461 exp = parse_exp_1 (&s, bl->address,
12462 block_for_pc (bl->address),
12463 0);
12464 }
12465 CATCH (e, RETURN_MASK_ERROR)
12466 {
12467 warning (_("failed to reevaluate internal exception condition "
12468 "for catchpoint %d: %s"),
12469 c->number, e.message);
12470 }
12471 END_CATCH
12472 }
12473
12474 ada_loc->excep_cond_expr = std::move (exp);
12475 }
12476 }
12477
12478 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12479 structure for all exception catchpoint kinds. */
12480
12481 static struct bp_location *
12482 allocate_location_exception (enum ada_exception_catchpoint_kind ex,
12483 struct breakpoint *self)
12484 {
12485 return new ada_catchpoint_location (self);
12486 }
12487
12488 /* Implement the RE_SET method in the breakpoint_ops structure for all
12489 exception catchpoint kinds. */
12490
12491 static void
12492 re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
12493 {
12494 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12495
12496 /* Call the base class's method. This updates the catchpoint's
12497 locations. */
12498 bkpt_breakpoint_ops.re_set (b);
12499
12500 /* Reparse the exception conditional expressions. One for each
12501 location. */
12502 create_excep_cond_exprs (c, ex);
12503 }
12504
12505 /* Returns true if we should stop for this breakpoint hit. If the
12506 user specified a specific exception, we only want to cause a stop
12507 if the program thrown that exception. */
12508
12509 static int
12510 should_stop_exception (const struct bp_location *bl)
12511 {
12512 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12513 const struct ada_catchpoint_location *ada_loc
12514 = (const struct ada_catchpoint_location *) bl;
12515 int stop;
12516
12517 /* With no specific exception, should always stop. */
12518 if (c->excep_string.empty ())
12519 return 1;
12520
12521 if (ada_loc->excep_cond_expr == NULL)
12522 {
12523 /* We will have a NULL expression if back when we were creating
12524 the expressions, this location's had failed to parse. */
12525 return 1;
12526 }
12527
12528 stop = 1;
12529 TRY
12530 {
12531 struct value *mark;
12532
12533 mark = value_mark ();
12534 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
12535 value_free_to_mark (mark);
12536 }
12537 CATCH (ex, RETURN_MASK_ALL)
12538 {
12539 exception_fprintf (gdb_stderr, ex,
12540 _("Error in testing exception condition:\n"));
12541 }
12542 END_CATCH
12543
12544 return stop;
12545 }
12546
12547 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12548 for all exception catchpoint kinds. */
12549
12550 static void
12551 check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12552 {
12553 bs->stop = should_stop_exception (bs->bp_location_at);
12554 }
12555
12556 /* Implement the PRINT_IT method in the breakpoint_ops structure
12557 for all exception catchpoint kinds. */
12558
12559 static enum print_stop_action
12560 print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12561 {
12562 struct ui_out *uiout = current_uiout;
12563 struct breakpoint *b = bs->breakpoint_at;
12564
12565 annotate_catchpoint (b->number);
12566
12567 if (uiout->is_mi_like_p ())
12568 {
12569 uiout->field_string ("reason",
12570 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12571 uiout->field_string ("disp", bpdisp_text (b->disposition));
12572 }
12573
12574 uiout->text (b->disposition == disp_del
12575 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12576 uiout->field_int ("bkptno", b->number);
12577 uiout->text (", ");
12578
12579 /* ada_exception_name_addr relies on the selected frame being the
12580 current frame. Need to do this here because this function may be
12581 called more than once when printing a stop, and below, we'll
12582 select the first frame past the Ada run-time (see
12583 ada_find_printable_frame). */
12584 select_frame (get_current_frame ());
12585
12586 switch (ex)
12587 {
12588 case ada_catch_exception:
12589 case ada_catch_exception_unhandled:
12590 case ada_catch_handlers:
12591 {
12592 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12593 char exception_name[256];
12594
12595 if (addr != 0)
12596 {
12597 read_memory (addr, (gdb_byte *) exception_name,
12598 sizeof (exception_name) - 1);
12599 exception_name [sizeof (exception_name) - 1] = '\0';
12600 }
12601 else
12602 {
12603 /* For some reason, we were unable to read the exception
12604 name. This could happen if the Runtime was compiled
12605 without debugging info, for instance. In that case,
12606 just replace the exception name by the generic string
12607 "exception" - it will read as "an exception" in the
12608 notification we are about to print. */
12609 memcpy (exception_name, "exception", sizeof ("exception"));
12610 }
12611 /* In the case of unhandled exception breakpoints, we print
12612 the exception name as "unhandled EXCEPTION_NAME", to make
12613 it clearer to the user which kind of catchpoint just got
12614 hit. We used ui_out_text to make sure that this extra
12615 info does not pollute the exception name in the MI case. */
12616 if (ex == ada_catch_exception_unhandled)
12617 uiout->text ("unhandled ");
12618 uiout->field_string ("exception-name", exception_name);
12619 }
12620 break;
12621 case ada_catch_assert:
12622 /* In this case, the name of the exception is not really
12623 important. Just print "failed assertion" to make it clearer
12624 that his program just hit an assertion-failure catchpoint.
12625 We used ui_out_text because this info does not belong in
12626 the MI output. */
12627 uiout->text ("failed assertion");
12628 break;
12629 }
12630
12631 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
12632 if (exception_message != NULL)
12633 {
12634 uiout->text (" (");
12635 uiout->field_string ("exception-message", exception_message.get ());
12636 uiout->text (")");
12637 }
12638
12639 uiout->text (" at ");
12640 ada_find_printable_frame (get_current_frame ());
12641
12642 return PRINT_SRC_AND_LOC;
12643 }
12644
12645 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12646 for all exception catchpoint kinds. */
12647
12648 static void
12649 print_one_exception (enum ada_exception_catchpoint_kind ex,
12650 struct breakpoint *b, struct bp_location **last_loc)
12651 {
12652 struct ui_out *uiout = current_uiout;
12653 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12654 struct value_print_options opts;
12655
12656 get_user_print_options (&opts);
12657 if (opts.addressprint)
12658 {
12659 annotate_field (4);
12660 uiout->field_core_addr ("addr", b->loc->gdbarch, b->loc->address);
12661 }
12662
12663 annotate_field (5);
12664 *last_loc = b->loc;
12665 switch (ex)
12666 {
12667 case ada_catch_exception:
12668 if (!c->excep_string.empty ())
12669 {
12670 std::string msg = string_printf (_("`%s' Ada exception"),
12671 c->excep_string.c_str ());
12672
12673 uiout->field_string ("what", msg);
12674 }
12675 else
12676 uiout->field_string ("what", "all Ada exceptions");
12677
12678 break;
12679
12680 case ada_catch_exception_unhandled:
12681 uiout->field_string ("what", "unhandled Ada exceptions");
12682 break;
12683
12684 case ada_catch_handlers:
12685 if (!c->excep_string.empty ())
12686 {
12687 uiout->field_fmt ("what",
12688 _("`%s' Ada exception handlers"),
12689 c->excep_string.c_str ());
12690 }
12691 else
12692 uiout->field_string ("what", "all Ada exceptions handlers");
12693 break;
12694
12695 case ada_catch_assert:
12696 uiout->field_string ("what", "failed Ada assertions");
12697 break;
12698
12699 default:
12700 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12701 break;
12702 }
12703 }
12704
12705 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12706 for all exception catchpoint kinds. */
12707
12708 static void
12709 print_mention_exception (enum ada_exception_catchpoint_kind ex,
12710 struct breakpoint *b)
12711 {
12712 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12713 struct ui_out *uiout = current_uiout;
12714
12715 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
12716 : _("Catchpoint "));
12717 uiout->field_int ("bkptno", b->number);
12718 uiout->text (": ");
12719
12720 switch (ex)
12721 {
12722 case ada_catch_exception:
12723 if (!c->excep_string.empty ())
12724 {
12725 std::string info = string_printf (_("`%s' Ada exception"),
12726 c->excep_string.c_str ());
12727 uiout->text (info.c_str ());
12728 }
12729 else
12730 uiout->text (_("all Ada exceptions"));
12731 break;
12732
12733 case ada_catch_exception_unhandled:
12734 uiout->text (_("unhandled Ada exceptions"));
12735 break;
12736
12737 case ada_catch_handlers:
12738 if (!c->excep_string.empty ())
12739 {
12740 std::string info
12741 = string_printf (_("`%s' Ada exception handlers"),
12742 c->excep_string.c_str ());
12743 uiout->text (info.c_str ());
12744 }
12745 else
12746 uiout->text (_("all Ada exceptions handlers"));
12747 break;
12748
12749 case ada_catch_assert:
12750 uiout->text (_("failed Ada assertions"));
12751 break;
12752
12753 default:
12754 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12755 break;
12756 }
12757 }
12758
12759 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12760 for all exception catchpoint kinds. */
12761
12762 static void
12763 print_recreate_exception (enum ada_exception_catchpoint_kind ex,
12764 struct breakpoint *b, struct ui_file *fp)
12765 {
12766 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12767
12768 switch (ex)
12769 {
12770 case ada_catch_exception:
12771 fprintf_filtered (fp, "catch exception");
12772 if (!c->excep_string.empty ())
12773 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
12774 break;
12775
12776 case ada_catch_exception_unhandled:
12777 fprintf_filtered (fp, "catch exception unhandled");
12778 break;
12779
12780 case ada_catch_handlers:
12781 fprintf_filtered (fp, "catch handlers");
12782 break;
12783
12784 case ada_catch_assert:
12785 fprintf_filtered (fp, "catch assert");
12786 break;
12787
12788 default:
12789 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12790 }
12791 print_recreate_thread (b, fp);
12792 }
12793
12794 /* Virtual table for "catch exception" breakpoints. */
12795
12796 static struct bp_location *
12797 allocate_location_catch_exception (struct breakpoint *self)
12798 {
12799 return allocate_location_exception (ada_catch_exception, self);
12800 }
12801
12802 static void
12803 re_set_catch_exception (struct breakpoint *b)
12804 {
12805 re_set_exception (ada_catch_exception, b);
12806 }
12807
12808 static void
12809 check_status_catch_exception (bpstat bs)
12810 {
12811 check_status_exception (ada_catch_exception, bs);
12812 }
12813
12814 static enum print_stop_action
12815 print_it_catch_exception (bpstat bs)
12816 {
12817 return print_it_exception (ada_catch_exception, bs);
12818 }
12819
12820 static void
12821 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
12822 {
12823 print_one_exception (ada_catch_exception, b, last_loc);
12824 }
12825
12826 static void
12827 print_mention_catch_exception (struct breakpoint *b)
12828 {
12829 print_mention_exception (ada_catch_exception, b);
12830 }
12831
12832 static void
12833 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12834 {
12835 print_recreate_exception (ada_catch_exception, b, fp);
12836 }
12837
12838 static struct breakpoint_ops catch_exception_breakpoint_ops;
12839
12840 /* Virtual table for "catch exception unhandled" breakpoints. */
12841
12842 static struct bp_location *
12843 allocate_location_catch_exception_unhandled (struct breakpoint *self)
12844 {
12845 return allocate_location_exception (ada_catch_exception_unhandled, self);
12846 }
12847
12848 static void
12849 re_set_catch_exception_unhandled (struct breakpoint *b)
12850 {
12851 re_set_exception (ada_catch_exception_unhandled, b);
12852 }
12853
12854 static void
12855 check_status_catch_exception_unhandled (bpstat bs)
12856 {
12857 check_status_exception (ada_catch_exception_unhandled, bs);
12858 }
12859
12860 static enum print_stop_action
12861 print_it_catch_exception_unhandled (bpstat bs)
12862 {
12863 return print_it_exception (ada_catch_exception_unhandled, bs);
12864 }
12865
12866 static void
12867 print_one_catch_exception_unhandled (struct breakpoint *b,
12868 struct bp_location **last_loc)
12869 {
12870 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
12871 }
12872
12873 static void
12874 print_mention_catch_exception_unhandled (struct breakpoint *b)
12875 {
12876 print_mention_exception (ada_catch_exception_unhandled, b);
12877 }
12878
12879 static void
12880 print_recreate_catch_exception_unhandled (struct breakpoint *b,
12881 struct ui_file *fp)
12882 {
12883 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
12884 }
12885
12886 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12887
12888 /* Virtual table for "catch assert" breakpoints. */
12889
12890 static struct bp_location *
12891 allocate_location_catch_assert (struct breakpoint *self)
12892 {
12893 return allocate_location_exception (ada_catch_assert, self);
12894 }
12895
12896 static void
12897 re_set_catch_assert (struct breakpoint *b)
12898 {
12899 re_set_exception (ada_catch_assert, b);
12900 }
12901
12902 static void
12903 check_status_catch_assert (bpstat bs)
12904 {
12905 check_status_exception (ada_catch_assert, bs);
12906 }
12907
12908 static enum print_stop_action
12909 print_it_catch_assert (bpstat bs)
12910 {
12911 return print_it_exception (ada_catch_assert, bs);
12912 }
12913
12914 static void
12915 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
12916 {
12917 print_one_exception (ada_catch_assert, b, last_loc);
12918 }
12919
12920 static void
12921 print_mention_catch_assert (struct breakpoint *b)
12922 {
12923 print_mention_exception (ada_catch_assert, b);
12924 }
12925
12926 static void
12927 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12928 {
12929 print_recreate_exception (ada_catch_assert, b, fp);
12930 }
12931
12932 static struct breakpoint_ops catch_assert_breakpoint_ops;
12933
12934 /* Virtual table for "catch handlers" breakpoints. */
12935
12936 static struct bp_location *
12937 allocate_location_catch_handlers (struct breakpoint *self)
12938 {
12939 return allocate_location_exception (ada_catch_handlers, self);
12940 }
12941
12942 static void
12943 re_set_catch_handlers (struct breakpoint *b)
12944 {
12945 re_set_exception (ada_catch_handlers, b);
12946 }
12947
12948 static void
12949 check_status_catch_handlers (bpstat bs)
12950 {
12951 check_status_exception (ada_catch_handlers, bs);
12952 }
12953
12954 static enum print_stop_action
12955 print_it_catch_handlers (bpstat bs)
12956 {
12957 return print_it_exception (ada_catch_handlers, bs);
12958 }
12959
12960 static void
12961 print_one_catch_handlers (struct breakpoint *b,
12962 struct bp_location **last_loc)
12963 {
12964 print_one_exception (ada_catch_handlers, b, last_loc);
12965 }
12966
12967 static void
12968 print_mention_catch_handlers (struct breakpoint *b)
12969 {
12970 print_mention_exception (ada_catch_handlers, b);
12971 }
12972
12973 static void
12974 print_recreate_catch_handlers (struct breakpoint *b,
12975 struct ui_file *fp)
12976 {
12977 print_recreate_exception (ada_catch_handlers, b, fp);
12978 }
12979
12980 static struct breakpoint_ops catch_handlers_breakpoint_ops;
12981
12982 /* Split the arguments specified in a "catch exception" command.
12983 Set EX to the appropriate catchpoint type.
12984 Set EXCEP_STRING to the name of the specific exception if
12985 specified by the user.
12986 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
12987 "catch handlers" command. False otherwise.
12988 If a condition is found at the end of the arguments, the condition
12989 expression is stored in COND_STRING (memory must be deallocated
12990 after use). Otherwise COND_STRING is set to NULL. */
12991
12992 static void
12993 catch_ada_exception_command_split (const char *args,
12994 bool is_catch_handlers_cmd,
12995 enum ada_exception_catchpoint_kind *ex,
12996 std::string *excep_string,
12997 std::string *cond_string)
12998 {
12999 std::string exception_name;
13000
13001 exception_name = extract_arg (&args);
13002 if (exception_name == "if")
13003 {
13004 /* This is not an exception name; this is the start of a condition
13005 expression for a catchpoint on all exceptions. So, "un-get"
13006 this token, and set exception_name to NULL. */
13007 exception_name.clear ();
13008 args -= 2;
13009 }
13010
13011 /* Check to see if we have a condition. */
13012
13013 args = skip_spaces (args);
13014 if (startswith (args, "if")
13015 && (isspace (args[2]) || args[2] == '\0'))
13016 {
13017 args += 2;
13018 args = skip_spaces (args);
13019
13020 if (args[0] == '\0')
13021 error (_("Condition missing after `if' keyword"));
13022 *cond_string = args;
13023
13024 args += strlen (args);
13025 }
13026
13027 /* Check that we do not have any more arguments. Anything else
13028 is unexpected. */
13029
13030 if (args[0] != '\0')
13031 error (_("Junk at end of expression"));
13032
13033 if (is_catch_handlers_cmd)
13034 {
13035 /* Catch handling of exceptions. */
13036 *ex = ada_catch_handlers;
13037 *excep_string = exception_name;
13038 }
13039 else if (exception_name.empty ())
13040 {
13041 /* Catch all exceptions. */
13042 *ex = ada_catch_exception;
13043 excep_string->clear ();
13044 }
13045 else if (exception_name == "unhandled")
13046 {
13047 /* Catch unhandled exceptions. */
13048 *ex = ada_catch_exception_unhandled;
13049 excep_string->clear ();
13050 }
13051 else
13052 {
13053 /* Catch a specific exception. */
13054 *ex = ada_catch_exception;
13055 *excep_string = exception_name;
13056 }
13057 }
13058
13059 /* Return the name of the symbol on which we should break in order to
13060 implement a catchpoint of the EX kind. */
13061
13062 static const char *
13063 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
13064 {
13065 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
13066
13067 gdb_assert (data->exception_info != NULL);
13068
13069 switch (ex)
13070 {
13071 case ada_catch_exception:
13072 return (data->exception_info->catch_exception_sym);
13073 break;
13074 case ada_catch_exception_unhandled:
13075 return (data->exception_info->catch_exception_unhandled_sym);
13076 break;
13077 case ada_catch_assert:
13078 return (data->exception_info->catch_assert_sym);
13079 break;
13080 case ada_catch_handlers:
13081 return (data->exception_info->catch_handlers_sym);
13082 break;
13083 default:
13084 internal_error (__FILE__, __LINE__,
13085 _("unexpected catchpoint kind (%d)"), ex);
13086 }
13087 }
13088
13089 /* Return the breakpoint ops "virtual table" used for catchpoints
13090 of the EX kind. */
13091
13092 static const struct breakpoint_ops *
13093 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
13094 {
13095 switch (ex)
13096 {
13097 case ada_catch_exception:
13098 return (&catch_exception_breakpoint_ops);
13099 break;
13100 case ada_catch_exception_unhandled:
13101 return (&catch_exception_unhandled_breakpoint_ops);
13102 break;
13103 case ada_catch_assert:
13104 return (&catch_assert_breakpoint_ops);
13105 break;
13106 case ada_catch_handlers:
13107 return (&catch_handlers_breakpoint_ops);
13108 break;
13109 default:
13110 internal_error (__FILE__, __LINE__,
13111 _("unexpected catchpoint kind (%d)"), ex);
13112 }
13113 }
13114
13115 /* Return the condition that will be used to match the current exception
13116 being raised with the exception that the user wants to catch. This
13117 assumes that this condition is used when the inferior just triggered
13118 an exception catchpoint.
13119 EX: the type of catchpoints used for catching Ada exceptions. */
13120
13121 static std::string
13122 ada_exception_catchpoint_cond_string (const char *excep_string,
13123 enum ada_exception_catchpoint_kind ex)
13124 {
13125 int i;
13126 bool is_standard_exc = false;
13127 std::string result;
13128
13129 if (ex == ada_catch_handlers)
13130 {
13131 /* For exception handlers catchpoints, the condition string does
13132 not use the same parameter as for the other exceptions. */
13133 result = ("long_integer (GNAT_GCC_exception_Access"
13134 "(gcc_exception).all.occurrence.id)");
13135 }
13136 else
13137 result = "long_integer (e)";
13138
13139 /* The standard exceptions are a special case. They are defined in
13140 runtime units that have been compiled without debugging info; if
13141 EXCEP_STRING is the not-fully-qualified name of a standard
13142 exception (e.g. "constraint_error") then, during the evaluation
13143 of the condition expression, the symbol lookup on this name would
13144 *not* return this standard exception. The catchpoint condition
13145 may then be set only on user-defined exceptions which have the
13146 same not-fully-qualified name (e.g. my_package.constraint_error).
13147
13148 To avoid this unexcepted behavior, these standard exceptions are
13149 systematically prefixed by "standard". This means that "catch
13150 exception constraint_error" is rewritten into "catch exception
13151 standard.constraint_error".
13152
13153 If an exception named contraint_error is defined in another package of
13154 the inferior program, then the only way to specify this exception as a
13155 breakpoint condition is to use its fully-qualified named:
13156 e.g. my_package.constraint_error. */
13157
13158 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
13159 {
13160 if (strcmp (standard_exc [i], excep_string) == 0)
13161 {
13162 is_standard_exc = true;
13163 break;
13164 }
13165 }
13166
13167 result += " = ";
13168
13169 if (is_standard_exc)
13170 string_appendf (result, "long_integer (&standard.%s)", excep_string);
13171 else
13172 string_appendf (result, "long_integer (&%s)", excep_string);
13173
13174 return result;
13175 }
13176
13177 /* Return the symtab_and_line that should be used to insert an exception
13178 catchpoint of the TYPE kind.
13179
13180 ADDR_STRING returns the name of the function where the real
13181 breakpoint that implements the catchpoints is set, depending on the
13182 type of catchpoint we need to create. */
13183
13184 static struct symtab_and_line
13185 ada_exception_sal (enum ada_exception_catchpoint_kind ex,
13186 std::string *addr_string, const struct breakpoint_ops **ops)
13187 {
13188 const char *sym_name;
13189 struct symbol *sym;
13190
13191 /* First, find out which exception support info to use. */
13192 ada_exception_support_info_sniffer ();
13193
13194 /* Then lookup the function on which we will break in order to catch
13195 the Ada exceptions requested by the user. */
13196 sym_name = ada_exception_sym_name (ex);
13197 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
13198
13199 if (sym == NULL)
13200 error (_("Catchpoint symbol not found: %s"), sym_name);
13201
13202 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
13203 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
13204
13205 /* Set ADDR_STRING. */
13206 *addr_string = sym_name;
13207
13208 /* Set OPS. */
13209 *ops = ada_exception_breakpoint_ops (ex);
13210
13211 return find_function_start_sal (sym, 1);
13212 }
13213
13214 /* Create an Ada exception catchpoint.
13215
13216 EX_KIND is the kind of exception catchpoint to be created.
13217
13218 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
13219 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
13220 of the exception to which this catchpoint applies.
13221
13222 COND_STRING, if not empty, is the catchpoint condition.
13223
13224 TEMPFLAG, if nonzero, means that the underlying breakpoint
13225 should be temporary.
13226
13227 FROM_TTY is the usual argument passed to all commands implementations. */
13228
13229 void
13230 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
13231 enum ada_exception_catchpoint_kind ex_kind,
13232 const std::string &excep_string,
13233 const std::string &cond_string,
13234 int tempflag,
13235 int disabled,
13236 int from_tty)
13237 {
13238 std::string addr_string;
13239 const struct breakpoint_ops *ops = NULL;
13240 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
13241
13242 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint ());
13243 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string.c_str (),
13244 ops, tempflag, disabled, from_tty);
13245 c->excep_string = excep_string;
13246 create_excep_cond_exprs (c.get (), ex_kind);
13247 if (!cond_string.empty ())
13248 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty);
13249 install_breakpoint (0, std::move (c), 1);
13250 }
13251
13252 /* Implement the "catch exception" command. */
13253
13254 static void
13255 catch_ada_exception_command (const char *arg_entry, int from_tty,
13256 struct cmd_list_element *command)
13257 {
13258 const char *arg = arg_entry;
13259 struct gdbarch *gdbarch = get_current_arch ();
13260 int tempflag;
13261 enum ada_exception_catchpoint_kind ex_kind;
13262 std::string excep_string;
13263 std::string cond_string;
13264
13265 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13266
13267 if (!arg)
13268 arg = "";
13269 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
13270 &cond_string);
13271 create_ada_exception_catchpoint (gdbarch, ex_kind,
13272 excep_string, cond_string,
13273 tempflag, 1 /* enabled */,
13274 from_tty);
13275 }
13276
13277 /* Implement the "catch handlers" command. */
13278
13279 static void
13280 catch_ada_handlers_command (const char *arg_entry, int from_tty,
13281 struct cmd_list_element *command)
13282 {
13283 const char *arg = arg_entry;
13284 struct gdbarch *gdbarch = get_current_arch ();
13285 int tempflag;
13286 enum ada_exception_catchpoint_kind ex_kind;
13287 std::string excep_string;
13288 std::string cond_string;
13289
13290 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13291
13292 if (!arg)
13293 arg = "";
13294 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
13295 &cond_string);
13296 create_ada_exception_catchpoint (gdbarch, ex_kind,
13297 excep_string, cond_string,
13298 tempflag, 1 /* enabled */,
13299 from_tty);
13300 }
13301
13302 /* Split the arguments specified in a "catch assert" command.
13303
13304 ARGS contains the command's arguments (or the empty string if
13305 no arguments were passed).
13306
13307 If ARGS contains a condition, set COND_STRING to that condition
13308 (the memory needs to be deallocated after use). */
13309
13310 static void
13311 catch_ada_assert_command_split (const char *args, std::string &cond_string)
13312 {
13313 args = skip_spaces (args);
13314
13315 /* Check whether a condition was provided. */
13316 if (startswith (args, "if")
13317 && (isspace (args[2]) || args[2] == '\0'))
13318 {
13319 args += 2;
13320 args = skip_spaces (args);
13321 if (args[0] == '\0')
13322 error (_("condition missing after `if' keyword"));
13323 cond_string.assign (args);
13324 }
13325
13326 /* Otherwise, there should be no other argument at the end of
13327 the command. */
13328 else if (args[0] != '\0')
13329 error (_("Junk at end of arguments."));
13330 }
13331
13332 /* Implement the "catch assert" command. */
13333
13334 static void
13335 catch_assert_command (const char *arg_entry, int from_tty,
13336 struct cmd_list_element *command)
13337 {
13338 const char *arg = arg_entry;
13339 struct gdbarch *gdbarch = get_current_arch ();
13340 int tempflag;
13341 std::string cond_string;
13342
13343 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13344
13345 if (!arg)
13346 arg = "";
13347 catch_ada_assert_command_split (arg, cond_string);
13348 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
13349 "", cond_string,
13350 tempflag, 1 /* enabled */,
13351 from_tty);
13352 }
13353
13354 /* Return non-zero if the symbol SYM is an Ada exception object. */
13355
13356 static int
13357 ada_is_exception_sym (struct symbol *sym)
13358 {
13359 const char *type_name = TYPE_NAME (SYMBOL_TYPE (sym));
13360
13361 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13362 && SYMBOL_CLASS (sym) != LOC_BLOCK
13363 && SYMBOL_CLASS (sym) != LOC_CONST
13364 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13365 && type_name != NULL && strcmp (type_name, "exception") == 0);
13366 }
13367
13368 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13369 Ada exception object. This matches all exceptions except the ones
13370 defined by the Ada language. */
13371
13372 static int
13373 ada_is_non_standard_exception_sym (struct symbol *sym)
13374 {
13375 int i;
13376
13377 if (!ada_is_exception_sym (sym))
13378 return 0;
13379
13380 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13381 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13382 return 0; /* A standard exception. */
13383
13384 /* Numeric_Error is also a standard exception, so exclude it.
13385 See the STANDARD_EXC description for more details as to why
13386 this exception is not listed in that array. */
13387 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13388 return 0;
13389
13390 return 1;
13391 }
13392
13393 /* A helper function for std::sort, comparing two struct ada_exc_info
13394 objects.
13395
13396 The comparison is determined first by exception name, and then
13397 by exception address. */
13398
13399 bool
13400 ada_exc_info::operator< (const ada_exc_info &other) const
13401 {
13402 int result;
13403
13404 result = strcmp (name, other.name);
13405 if (result < 0)
13406 return true;
13407 if (result == 0 && addr < other.addr)
13408 return true;
13409 return false;
13410 }
13411
13412 bool
13413 ada_exc_info::operator== (const ada_exc_info &other) const
13414 {
13415 return addr == other.addr && strcmp (name, other.name) == 0;
13416 }
13417
13418 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13419 routine, but keeping the first SKIP elements untouched.
13420
13421 All duplicates are also removed. */
13422
13423 static void
13424 sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
13425 int skip)
13426 {
13427 std::sort (exceptions->begin () + skip, exceptions->end ());
13428 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
13429 exceptions->end ());
13430 }
13431
13432 /* Add all exceptions defined by the Ada standard whose name match
13433 a regular expression.
13434
13435 If PREG is not NULL, then this regexp_t object is used to
13436 perform the symbol name matching. Otherwise, no name-based
13437 filtering is performed.
13438
13439 EXCEPTIONS is a vector of exceptions to which matching exceptions
13440 gets pushed. */
13441
13442 static void
13443 ada_add_standard_exceptions (compiled_regex *preg,
13444 std::vector<ada_exc_info> *exceptions)
13445 {
13446 int i;
13447
13448 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13449 {
13450 if (preg == NULL
13451 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
13452 {
13453 struct bound_minimal_symbol msymbol
13454 = ada_lookup_simple_minsym (standard_exc[i]);
13455
13456 if (msymbol.minsym != NULL)
13457 {
13458 struct ada_exc_info info
13459 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
13460
13461 exceptions->push_back (info);
13462 }
13463 }
13464 }
13465 }
13466
13467 /* Add all Ada exceptions defined locally and accessible from the given
13468 FRAME.
13469
13470 If PREG is not NULL, then this regexp_t object is used to
13471 perform the symbol name matching. Otherwise, no name-based
13472 filtering is performed.
13473
13474 EXCEPTIONS is a vector of exceptions to which matching exceptions
13475 gets pushed. */
13476
13477 static void
13478 ada_add_exceptions_from_frame (compiled_regex *preg,
13479 struct frame_info *frame,
13480 std::vector<ada_exc_info> *exceptions)
13481 {
13482 const struct block *block = get_frame_block (frame, 0);
13483
13484 while (block != 0)
13485 {
13486 struct block_iterator iter;
13487 struct symbol *sym;
13488
13489 ALL_BLOCK_SYMBOLS (block, iter, sym)
13490 {
13491 switch (SYMBOL_CLASS (sym))
13492 {
13493 case LOC_TYPEDEF:
13494 case LOC_BLOCK:
13495 case LOC_CONST:
13496 break;
13497 default:
13498 if (ada_is_exception_sym (sym))
13499 {
13500 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13501 SYMBOL_VALUE_ADDRESS (sym)};
13502
13503 exceptions->push_back (info);
13504 }
13505 }
13506 }
13507 if (BLOCK_FUNCTION (block) != NULL)
13508 break;
13509 block = BLOCK_SUPERBLOCK (block);
13510 }
13511 }
13512
13513 /* Return true if NAME matches PREG or if PREG is NULL. */
13514
13515 static bool
13516 name_matches_regex (const char *name, compiled_regex *preg)
13517 {
13518 return (preg == NULL
13519 || preg->exec (ada_decode (name), 0, NULL, 0) == 0);
13520 }
13521
13522 /* Add all exceptions defined globally whose name name match
13523 a regular expression, excluding standard exceptions.
13524
13525 The reason we exclude standard exceptions is that they need
13526 to be handled separately: Standard exceptions are defined inside
13527 a runtime unit which is normally not compiled with debugging info,
13528 and thus usually do not show up in our symbol search. However,
13529 if the unit was in fact built with debugging info, we need to
13530 exclude them because they would duplicate the entry we found
13531 during the special loop that specifically searches for those
13532 standard exceptions.
13533
13534 If PREG is not NULL, then this regexp_t object is used to
13535 perform the symbol name matching. Otherwise, no name-based
13536 filtering is performed.
13537
13538 EXCEPTIONS is a vector of exceptions to which matching exceptions
13539 gets pushed. */
13540
13541 static void
13542 ada_add_global_exceptions (compiled_regex *preg,
13543 std::vector<ada_exc_info> *exceptions)
13544 {
13545 /* In Ada, the symbol "search name" is a linkage name, whereas the
13546 regular expression used to do the matching refers to the natural
13547 name. So match against the decoded name. */
13548 expand_symtabs_matching (NULL,
13549 lookup_name_info::match_any (),
13550 [&] (const char *search_name)
13551 {
13552 const char *decoded = ada_decode (search_name);
13553 return name_matches_regex (decoded, preg);
13554 },
13555 NULL,
13556 VARIABLES_DOMAIN);
13557
13558 for (objfile *objfile : current_program_space->objfiles ())
13559 {
13560 for (compunit_symtab *s : objfile->compunits ())
13561 {
13562 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13563 int i;
13564
13565 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13566 {
13567 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13568 struct block_iterator iter;
13569 struct symbol *sym;
13570
13571 ALL_BLOCK_SYMBOLS (b, iter, sym)
13572 if (ada_is_non_standard_exception_sym (sym)
13573 && name_matches_regex (SYMBOL_NATURAL_NAME (sym), preg))
13574 {
13575 struct ada_exc_info info
13576 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13577
13578 exceptions->push_back (info);
13579 }
13580 }
13581 }
13582 }
13583 }
13584
13585 /* Implements ada_exceptions_list with the regular expression passed
13586 as a regex_t, rather than a string.
13587
13588 If not NULL, PREG is used to filter out exceptions whose names
13589 do not match. Otherwise, all exceptions are listed. */
13590
13591 static std::vector<ada_exc_info>
13592 ada_exceptions_list_1 (compiled_regex *preg)
13593 {
13594 std::vector<ada_exc_info> result;
13595 int prev_len;
13596
13597 /* First, list the known standard exceptions. These exceptions
13598 need to be handled separately, as they are usually defined in
13599 runtime units that have been compiled without debugging info. */
13600
13601 ada_add_standard_exceptions (preg, &result);
13602
13603 /* Next, find all exceptions whose scope is local and accessible
13604 from the currently selected frame. */
13605
13606 if (has_stack_frames ())
13607 {
13608 prev_len = result.size ();
13609 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13610 &result);
13611 if (result.size () > prev_len)
13612 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13613 }
13614
13615 /* Add all exceptions whose scope is global. */
13616
13617 prev_len = result.size ();
13618 ada_add_global_exceptions (preg, &result);
13619 if (result.size () > prev_len)
13620 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13621
13622 return result;
13623 }
13624
13625 /* Return a vector of ada_exc_info.
13626
13627 If REGEXP is NULL, all exceptions are included in the result.
13628 Otherwise, it should contain a valid regular expression,
13629 and only the exceptions whose names match that regular expression
13630 are included in the result.
13631
13632 The exceptions are sorted in the following order:
13633 - Standard exceptions (defined by the Ada language), in
13634 alphabetical order;
13635 - Exceptions only visible from the current frame, in
13636 alphabetical order;
13637 - Exceptions whose scope is global, in alphabetical order. */
13638
13639 std::vector<ada_exc_info>
13640 ada_exceptions_list (const char *regexp)
13641 {
13642 if (regexp == NULL)
13643 return ada_exceptions_list_1 (NULL);
13644
13645 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13646 return ada_exceptions_list_1 (&reg);
13647 }
13648
13649 /* Implement the "info exceptions" command. */
13650
13651 static void
13652 info_exceptions_command (const char *regexp, int from_tty)
13653 {
13654 struct gdbarch *gdbarch = get_current_arch ();
13655
13656 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
13657
13658 if (regexp != NULL)
13659 printf_filtered
13660 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13661 else
13662 printf_filtered (_("All defined Ada exceptions:\n"));
13663
13664 for (const ada_exc_info &info : exceptions)
13665 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
13666 }
13667
13668 /* Operators */
13669 /* Information about operators given special treatment in functions
13670 below. */
13671 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13672
13673 #define ADA_OPERATORS \
13674 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13675 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13676 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13677 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13678 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13679 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13680 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13681 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13682 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13683 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13684 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13685 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13686 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13687 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13688 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13689 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13690 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13691 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13692 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13693
13694 static void
13695 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13696 int *argsp)
13697 {
13698 switch (exp->elts[pc - 1].opcode)
13699 {
13700 default:
13701 operator_length_standard (exp, pc, oplenp, argsp);
13702 break;
13703
13704 #define OP_DEFN(op, len, args, binop) \
13705 case op: *oplenp = len; *argsp = args; break;
13706 ADA_OPERATORS;
13707 #undef OP_DEFN
13708
13709 case OP_AGGREGATE:
13710 *oplenp = 3;
13711 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13712 break;
13713
13714 case OP_CHOICES:
13715 *oplenp = 3;
13716 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13717 break;
13718 }
13719 }
13720
13721 /* Implementation of the exp_descriptor method operator_check. */
13722
13723 static int
13724 ada_operator_check (struct expression *exp, int pos,
13725 int (*objfile_func) (struct objfile *objfile, void *data),
13726 void *data)
13727 {
13728 const union exp_element *const elts = exp->elts;
13729 struct type *type = NULL;
13730
13731 switch (elts[pos].opcode)
13732 {
13733 case UNOP_IN_RANGE:
13734 case UNOP_QUAL:
13735 type = elts[pos + 1].type;
13736 break;
13737
13738 default:
13739 return operator_check_standard (exp, pos, objfile_func, data);
13740 }
13741
13742 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13743
13744 if (type && TYPE_OBJFILE (type)
13745 && (*objfile_func) (TYPE_OBJFILE (type), data))
13746 return 1;
13747
13748 return 0;
13749 }
13750
13751 static const char *
13752 ada_op_name (enum exp_opcode opcode)
13753 {
13754 switch (opcode)
13755 {
13756 default:
13757 return op_name_standard (opcode);
13758
13759 #define OP_DEFN(op, len, args, binop) case op: return #op;
13760 ADA_OPERATORS;
13761 #undef OP_DEFN
13762
13763 case OP_AGGREGATE:
13764 return "OP_AGGREGATE";
13765 case OP_CHOICES:
13766 return "OP_CHOICES";
13767 case OP_NAME:
13768 return "OP_NAME";
13769 }
13770 }
13771
13772 /* As for operator_length, but assumes PC is pointing at the first
13773 element of the operator, and gives meaningful results only for the
13774 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13775
13776 static void
13777 ada_forward_operator_length (struct expression *exp, int pc,
13778 int *oplenp, int *argsp)
13779 {
13780 switch (exp->elts[pc].opcode)
13781 {
13782 default:
13783 *oplenp = *argsp = 0;
13784 break;
13785
13786 #define OP_DEFN(op, len, args, binop) \
13787 case op: *oplenp = len; *argsp = args; break;
13788 ADA_OPERATORS;
13789 #undef OP_DEFN
13790
13791 case OP_AGGREGATE:
13792 *oplenp = 3;
13793 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13794 break;
13795
13796 case OP_CHOICES:
13797 *oplenp = 3;
13798 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13799 break;
13800
13801 case OP_STRING:
13802 case OP_NAME:
13803 {
13804 int len = longest_to_int (exp->elts[pc + 1].longconst);
13805
13806 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13807 *argsp = 0;
13808 break;
13809 }
13810 }
13811 }
13812
13813 static int
13814 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13815 {
13816 enum exp_opcode op = exp->elts[elt].opcode;
13817 int oplen, nargs;
13818 int pc = elt;
13819 int i;
13820
13821 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13822
13823 switch (op)
13824 {
13825 /* Ada attributes ('Foo). */
13826 case OP_ATR_FIRST:
13827 case OP_ATR_LAST:
13828 case OP_ATR_LENGTH:
13829 case OP_ATR_IMAGE:
13830 case OP_ATR_MAX:
13831 case OP_ATR_MIN:
13832 case OP_ATR_MODULUS:
13833 case OP_ATR_POS:
13834 case OP_ATR_SIZE:
13835 case OP_ATR_TAG:
13836 case OP_ATR_VAL:
13837 break;
13838
13839 case UNOP_IN_RANGE:
13840 case UNOP_QUAL:
13841 /* XXX: gdb_sprint_host_address, type_sprint */
13842 fprintf_filtered (stream, _("Type @"));
13843 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13844 fprintf_filtered (stream, " (");
13845 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13846 fprintf_filtered (stream, ")");
13847 break;
13848 case BINOP_IN_BOUNDS:
13849 fprintf_filtered (stream, " (%d)",
13850 longest_to_int (exp->elts[pc + 2].longconst));
13851 break;
13852 case TERNOP_IN_RANGE:
13853 break;
13854
13855 case OP_AGGREGATE:
13856 case OP_OTHERS:
13857 case OP_DISCRETE_RANGE:
13858 case OP_POSITIONAL:
13859 case OP_CHOICES:
13860 break;
13861
13862 case OP_NAME:
13863 case OP_STRING:
13864 {
13865 char *name = &exp->elts[elt + 2].string;
13866 int len = longest_to_int (exp->elts[elt + 1].longconst);
13867
13868 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13869 break;
13870 }
13871
13872 default:
13873 return dump_subexp_body_standard (exp, stream, elt);
13874 }
13875
13876 elt += oplen;
13877 for (i = 0; i < nargs; i += 1)
13878 elt = dump_subexp (exp, stream, elt);
13879
13880 return elt;
13881 }
13882
13883 /* The Ada extension of print_subexp (q.v.). */
13884
13885 static void
13886 ada_print_subexp (struct expression *exp, int *pos,
13887 struct ui_file *stream, enum precedence prec)
13888 {
13889 int oplen, nargs, i;
13890 int pc = *pos;
13891 enum exp_opcode op = exp->elts[pc].opcode;
13892
13893 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13894
13895 *pos += oplen;
13896 switch (op)
13897 {
13898 default:
13899 *pos -= oplen;
13900 print_subexp_standard (exp, pos, stream, prec);
13901 return;
13902
13903 case OP_VAR_VALUE:
13904 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13905 return;
13906
13907 case BINOP_IN_BOUNDS:
13908 /* XXX: sprint_subexp */
13909 print_subexp (exp, pos, stream, PREC_SUFFIX);
13910 fputs_filtered (" in ", stream);
13911 print_subexp (exp, pos, stream, PREC_SUFFIX);
13912 fputs_filtered ("'range", stream);
13913 if (exp->elts[pc + 1].longconst > 1)
13914 fprintf_filtered (stream, "(%ld)",
13915 (long) exp->elts[pc + 1].longconst);
13916 return;
13917
13918 case TERNOP_IN_RANGE:
13919 if (prec >= PREC_EQUAL)
13920 fputs_filtered ("(", stream);
13921 /* XXX: sprint_subexp */
13922 print_subexp (exp, pos, stream, PREC_SUFFIX);
13923 fputs_filtered (" in ", stream);
13924 print_subexp (exp, pos, stream, PREC_EQUAL);
13925 fputs_filtered (" .. ", stream);
13926 print_subexp (exp, pos, stream, PREC_EQUAL);
13927 if (prec >= PREC_EQUAL)
13928 fputs_filtered (")", stream);
13929 return;
13930
13931 case OP_ATR_FIRST:
13932 case OP_ATR_LAST:
13933 case OP_ATR_LENGTH:
13934 case OP_ATR_IMAGE:
13935 case OP_ATR_MAX:
13936 case OP_ATR_MIN:
13937 case OP_ATR_MODULUS:
13938 case OP_ATR_POS:
13939 case OP_ATR_SIZE:
13940 case OP_ATR_TAG:
13941 case OP_ATR_VAL:
13942 if (exp->elts[*pos].opcode == OP_TYPE)
13943 {
13944 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
13945 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13946 &type_print_raw_options);
13947 *pos += 3;
13948 }
13949 else
13950 print_subexp (exp, pos, stream, PREC_SUFFIX);
13951 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13952 if (nargs > 1)
13953 {
13954 int tem;
13955
13956 for (tem = 1; tem < nargs; tem += 1)
13957 {
13958 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13959 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13960 }
13961 fputs_filtered (")", stream);
13962 }
13963 return;
13964
13965 case UNOP_QUAL:
13966 type_print (exp->elts[pc + 1].type, "", stream, 0);
13967 fputs_filtered ("'(", stream);
13968 print_subexp (exp, pos, stream, PREC_PREFIX);
13969 fputs_filtered (")", stream);
13970 return;
13971
13972 case UNOP_IN_RANGE:
13973 /* XXX: sprint_subexp */
13974 print_subexp (exp, pos, stream, PREC_SUFFIX);
13975 fputs_filtered (" in ", stream);
13976 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13977 &type_print_raw_options);
13978 return;
13979
13980 case OP_DISCRETE_RANGE:
13981 print_subexp (exp, pos, stream, PREC_SUFFIX);
13982 fputs_filtered ("..", stream);
13983 print_subexp (exp, pos, stream, PREC_SUFFIX);
13984 return;
13985
13986 case OP_OTHERS:
13987 fputs_filtered ("others => ", stream);
13988 print_subexp (exp, pos, stream, PREC_SUFFIX);
13989 return;
13990
13991 case OP_CHOICES:
13992 for (i = 0; i < nargs-1; i += 1)
13993 {
13994 if (i > 0)
13995 fputs_filtered ("|", stream);
13996 print_subexp (exp, pos, stream, PREC_SUFFIX);
13997 }
13998 fputs_filtered (" => ", stream);
13999 print_subexp (exp, pos, stream, PREC_SUFFIX);
14000 return;
14001
14002 case OP_POSITIONAL:
14003 print_subexp (exp, pos, stream, PREC_SUFFIX);
14004 return;
14005
14006 case OP_AGGREGATE:
14007 fputs_filtered ("(", stream);
14008 for (i = 0; i < nargs; i += 1)
14009 {
14010 if (i > 0)
14011 fputs_filtered (", ", stream);
14012 print_subexp (exp, pos, stream, PREC_SUFFIX);
14013 }
14014 fputs_filtered (")", stream);
14015 return;
14016 }
14017 }
14018
14019 /* Table mapping opcodes into strings for printing operators
14020 and precedences of the operators. */
14021
14022 static const struct op_print ada_op_print_tab[] = {
14023 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
14024 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
14025 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
14026 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
14027 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
14028 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
14029 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
14030 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
14031 {"<=", BINOP_LEQ, PREC_ORDER, 0},
14032 {">=", BINOP_GEQ, PREC_ORDER, 0},
14033 {">", BINOP_GTR, PREC_ORDER, 0},
14034 {"<", BINOP_LESS, PREC_ORDER, 0},
14035 {">>", BINOP_RSH, PREC_SHIFT, 0},
14036 {"<<", BINOP_LSH, PREC_SHIFT, 0},
14037 {"+", BINOP_ADD, PREC_ADD, 0},
14038 {"-", BINOP_SUB, PREC_ADD, 0},
14039 {"&", BINOP_CONCAT, PREC_ADD, 0},
14040 {"*", BINOP_MUL, PREC_MUL, 0},
14041 {"/", BINOP_DIV, PREC_MUL, 0},
14042 {"rem", BINOP_REM, PREC_MUL, 0},
14043 {"mod", BINOP_MOD, PREC_MUL, 0},
14044 {"**", BINOP_EXP, PREC_REPEAT, 0},
14045 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
14046 {"-", UNOP_NEG, PREC_PREFIX, 0},
14047 {"+", UNOP_PLUS, PREC_PREFIX, 0},
14048 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
14049 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
14050 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
14051 {".all", UNOP_IND, PREC_SUFFIX, 1},
14052 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
14053 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
14054 {NULL, OP_NULL, PREC_SUFFIX, 0}
14055 };
14056 \f
14057 enum ada_primitive_types {
14058 ada_primitive_type_int,
14059 ada_primitive_type_long,
14060 ada_primitive_type_short,
14061 ada_primitive_type_char,
14062 ada_primitive_type_float,
14063 ada_primitive_type_double,
14064 ada_primitive_type_void,
14065 ada_primitive_type_long_long,
14066 ada_primitive_type_long_double,
14067 ada_primitive_type_natural,
14068 ada_primitive_type_positive,
14069 ada_primitive_type_system_address,
14070 ada_primitive_type_storage_offset,
14071 nr_ada_primitive_types
14072 };
14073
14074 static void
14075 ada_language_arch_info (struct gdbarch *gdbarch,
14076 struct language_arch_info *lai)
14077 {
14078 const struct builtin_type *builtin = builtin_type (gdbarch);
14079
14080 lai->primitive_type_vector
14081 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
14082 struct type *);
14083
14084 lai->primitive_type_vector [ada_primitive_type_int]
14085 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14086 0, "integer");
14087 lai->primitive_type_vector [ada_primitive_type_long]
14088 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
14089 0, "long_integer");
14090 lai->primitive_type_vector [ada_primitive_type_short]
14091 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
14092 0, "short_integer");
14093 lai->string_char_type
14094 = lai->primitive_type_vector [ada_primitive_type_char]
14095 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
14096 lai->primitive_type_vector [ada_primitive_type_float]
14097 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
14098 "float", gdbarch_float_format (gdbarch));
14099 lai->primitive_type_vector [ada_primitive_type_double]
14100 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
14101 "long_float", gdbarch_double_format (gdbarch));
14102 lai->primitive_type_vector [ada_primitive_type_long_long]
14103 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
14104 0, "long_long_integer");
14105 lai->primitive_type_vector [ada_primitive_type_long_double]
14106 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
14107 "long_long_float", gdbarch_long_double_format (gdbarch));
14108 lai->primitive_type_vector [ada_primitive_type_natural]
14109 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14110 0, "natural");
14111 lai->primitive_type_vector [ada_primitive_type_positive]
14112 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14113 0, "positive");
14114 lai->primitive_type_vector [ada_primitive_type_void]
14115 = builtin->builtin_void;
14116
14117 lai->primitive_type_vector [ada_primitive_type_system_address]
14118 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
14119 "void"));
14120 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
14121 = "system__address";
14122
14123 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
14124 type. This is a signed integral type whose size is the same as
14125 the size of addresses. */
14126 {
14127 unsigned int addr_length = TYPE_LENGTH
14128 (lai->primitive_type_vector [ada_primitive_type_system_address]);
14129
14130 lai->primitive_type_vector [ada_primitive_type_storage_offset]
14131 = arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
14132 "storage_offset");
14133 }
14134
14135 lai->bool_type_symbol = NULL;
14136 lai->bool_type_default = builtin->builtin_bool;
14137 }
14138 \f
14139 /* Language vector */
14140
14141 /* Not really used, but needed in the ada_language_defn. */
14142
14143 static void
14144 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
14145 {
14146 ada_emit_char (c, type, stream, quoter, 1);
14147 }
14148
14149 static int
14150 parse (struct parser_state *ps)
14151 {
14152 warnings_issued = 0;
14153 return ada_parse (ps);
14154 }
14155
14156 static const struct exp_descriptor ada_exp_descriptor = {
14157 ada_print_subexp,
14158 ada_operator_length,
14159 ada_operator_check,
14160 ada_op_name,
14161 ada_dump_subexp_body,
14162 ada_evaluate_subexp
14163 };
14164
14165 /* symbol_name_matcher_ftype adapter for wild_match. */
14166
14167 static bool
14168 do_wild_match (const char *symbol_search_name,
14169 const lookup_name_info &lookup_name,
14170 completion_match_result *comp_match_res)
14171 {
14172 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
14173 }
14174
14175 /* symbol_name_matcher_ftype adapter for full_match. */
14176
14177 static bool
14178 do_full_match (const char *symbol_search_name,
14179 const lookup_name_info &lookup_name,
14180 completion_match_result *comp_match_res)
14181 {
14182 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
14183 }
14184
14185 /* symbol_name_matcher_ftype for exact (verbatim) matches. */
14186
14187 static bool
14188 do_exact_match (const char *symbol_search_name,
14189 const lookup_name_info &lookup_name,
14190 completion_match_result *comp_match_res)
14191 {
14192 return strcmp (symbol_search_name, ada_lookup_name (lookup_name)) == 0;
14193 }
14194
14195 /* Build the Ada lookup name for LOOKUP_NAME. */
14196
14197 ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
14198 {
14199 const std::string &user_name = lookup_name.name ();
14200
14201 if (user_name[0] == '<')
14202 {
14203 if (user_name.back () == '>')
14204 m_encoded_name = user_name.substr (1, user_name.size () - 2);
14205 else
14206 m_encoded_name = user_name.substr (1, user_name.size () - 1);
14207 m_encoded_p = true;
14208 m_verbatim_p = true;
14209 m_wild_match_p = false;
14210 m_standard_p = false;
14211 }
14212 else
14213 {
14214 m_verbatim_p = false;
14215
14216 m_encoded_p = user_name.find ("__") != std::string::npos;
14217
14218 if (!m_encoded_p)
14219 {
14220 const char *folded = ada_fold_name (user_name.c_str ());
14221 const char *encoded = ada_encode_1 (folded, false);
14222 if (encoded != NULL)
14223 m_encoded_name = encoded;
14224 else
14225 m_encoded_name = user_name;
14226 }
14227 else
14228 m_encoded_name = user_name;
14229
14230 /* Handle the 'package Standard' special case. See description
14231 of m_standard_p. */
14232 if (startswith (m_encoded_name.c_str (), "standard__"))
14233 {
14234 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
14235 m_standard_p = true;
14236 }
14237 else
14238 m_standard_p = false;
14239
14240 /* If the name contains a ".", then the user is entering a fully
14241 qualified entity name, and the match must not be done in wild
14242 mode. Similarly, if the user wants to complete what looks
14243 like an encoded name, the match must not be done in wild
14244 mode. Also, in the standard__ special case always do
14245 non-wild matching. */
14246 m_wild_match_p
14247 = (lookup_name.match_type () != symbol_name_match_type::FULL
14248 && !m_encoded_p
14249 && !m_standard_p
14250 && user_name.find ('.') == std::string::npos);
14251 }
14252 }
14253
14254 /* symbol_name_matcher_ftype method for Ada. This only handles
14255 completion mode. */
14256
14257 static bool
14258 ada_symbol_name_matches (const char *symbol_search_name,
14259 const lookup_name_info &lookup_name,
14260 completion_match_result *comp_match_res)
14261 {
14262 return lookup_name.ada ().matches (symbol_search_name,
14263 lookup_name.match_type (),
14264 comp_match_res);
14265 }
14266
14267 /* A name matcher that matches the symbol name exactly, with
14268 strcmp. */
14269
14270 static bool
14271 literal_symbol_name_matcher (const char *symbol_search_name,
14272 const lookup_name_info &lookup_name,
14273 completion_match_result *comp_match_res)
14274 {
14275 const std::string &name = lookup_name.name ();
14276
14277 int cmp = (lookup_name.completion_mode ()
14278 ? strncmp (symbol_search_name, name.c_str (), name.size ())
14279 : strcmp (symbol_search_name, name.c_str ()));
14280 if (cmp == 0)
14281 {
14282 if (comp_match_res != NULL)
14283 comp_match_res->set_match (symbol_search_name);
14284 return true;
14285 }
14286 else
14287 return false;
14288 }
14289
14290 /* Implement the "la_get_symbol_name_matcher" language_defn method for
14291 Ada. */
14292
14293 static symbol_name_matcher_ftype *
14294 ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
14295 {
14296 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
14297 return literal_symbol_name_matcher;
14298
14299 if (lookup_name.completion_mode ())
14300 return ada_symbol_name_matches;
14301 else
14302 {
14303 if (lookup_name.ada ().wild_match_p ())
14304 return do_wild_match;
14305 else if (lookup_name.ada ().verbatim_p ())
14306 return do_exact_match;
14307 else
14308 return do_full_match;
14309 }
14310 }
14311
14312 /* Implement the "la_read_var_value" language_defn method for Ada. */
14313
14314 static struct value *
14315 ada_read_var_value (struct symbol *var, const struct block *var_block,
14316 struct frame_info *frame)
14317 {
14318 const struct block *frame_block = NULL;
14319 struct symbol *renaming_sym = NULL;
14320
14321 /* The only case where default_read_var_value is not sufficient
14322 is when VAR is a renaming... */
14323 if (frame)
14324 frame_block = get_frame_block (frame, NULL);
14325 if (frame_block)
14326 renaming_sym = ada_find_renaming_symbol (var, frame_block);
14327 if (renaming_sym != NULL)
14328 return ada_read_renaming_var_value (renaming_sym, frame_block);
14329
14330 /* This is a typical case where we expect the default_read_var_value
14331 function to work. */
14332 return default_read_var_value (var, var_block, frame);
14333 }
14334
14335 static const char *ada_extensions[] =
14336 {
14337 ".adb", ".ads", ".a", ".ada", ".dg", NULL
14338 };
14339
14340 extern const struct language_defn ada_language_defn = {
14341 "ada", /* Language name */
14342 "Ada",
14343 language_ada,
14344 range_check_off,
14345 case_sensitive_on, /* Yes, Ada is case-insensitive, but
14346 that's not quite what this means. */
14347 array_row_major,
14348 macro_expansion_no,
14349 ada_extensions,
14350 &ada_exp_descriptor,
14351 parse,
14352 resolve,
14353 ada_printchar, /* Print a character constant */
14354 ada_printstr, /* Function to print string constant */
14355 emit_char, /* Function to print single char (not used) */
14356 ada_print_type, /* Print a type using appropriate syntax */
14357 ada_print_typedef, /* Print a typedef using appropriate syntax */
14358 ada_val_print, /* Print a value using appropriate syntax */
14359 ada_value_print, /* Print a top-level value */
14360 ada_read_var_value, /* la_read_var_value */
14361 NULL, /* Language specific skip_trampoline */
14362 NULL, /* name_of_this */
14363 true, /* la_store_sym_names_in_linkage_form_p */
14364 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
14365 basic_lookup_transparent_type, /* lookup_transparent_type */
14366 ada_la_decode, /* Language specific symbol demangler */
14367 ada_sniff_from_mangled_name,
14368 NULL, /* Language specific
14369 class_name_from_physname */
14370 ada_op_print_tab, /* expression operators for printing */
14371 0, /* c-style arrays */
14372 1, /* String lower bound */
14373 ada_get_gdb_completer_word_break_characters,
14374 ada_collect_symbol_completion_matches,
14375 ada_language_arch_info,
14376 ada_print_array_index,
14377 default_pass_by_reference,
14378 c_get_string,
14379 ada_watch_location_expression,
14380 ada_get_symbol_name_matcher, /* la_get_symbol_name_matcher */
14381 ada_iterate_over_symbols,
14382 default_search_name_hash,
14383 &ada_varobj_ops,
14384 NULL,
14385 NULL,
14386 LANG_MAGIC
14387 };
14388
14389 /* Command-list for the "set/show ada" prefix command. */
14390 static struct cmd_list_element *set_ada_list;
14391 static struct cmd_list_element *show_ada_list;
14392
14393 /* Implement the "set ada" prefix command. */
14394
14395 static void
14396 set_ada_command (const char *arg, int from_tty)
14397 {
14398 printf_unfiltered (_(\
14399 "\"set ada\" must be followed by the name of a setting.\n"));
14400 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
14401 }
14402
14403 /* Implement the "show ada" prefix command. */
14404
14405 static void
14406 show_ada_command (const char *args, int from_tty)
14407 {
14408 cmd_show_list (show_ada_list, from_tty, "");
14409 }
14410
14411 static void
14412 initialize_ada_catchpoint_ops (void)
14413 {
14414 struct breakpoint_ops *ops;
14415
14416 initialize_breakpoint_ops ();
14417
14418 ops = &catch_exception_breakpoint_ops;
14419 *ops = bkpt_breakpoint_ops;
14420 ops->allocate_location = allocate_location_catch_exception;
14421 ops->re_set = re_set_catch_exception;
14422 ops->check_status = check_status_catch_exception;
14423 ops->print_it = print_it_catch_exception;
14424 ops->print_one = print_one_catch_exception;
14425 ops->print_mention = print_mention_catch_exception;
14426 ops->print_recreate = print_recreate_catch_exception;
14427
14428 ops = &catch_exception_unhandled_breakpoint_ops;
14429 *ops = bkpt_breakpoint_ops;
14430 ops->allocate_location = allocate_location_catch_exception_unhandled;
14431 ops->re_set = re_set_catch_exception_unhandled;
14432 ops->check_status = check_status_catch_exception_unhandled;
14433 ops->print_it = print_it_catch_exception_unhandled;
14434 ops->print_one = print_one_catch_exception_unhandled;
14435 ops->print_mention = print_mention_catch_exception_unhandled;
14436 ops->print_recreate = print_recreate_catch_exception_unhandled;
14437
14438 ops = &catch_assert_breakpoint_ops;
14439 *ops = bkpt_breakpoint_ops;
14440 ops->allocate_location = allocate_location_catch_assert;
14441 ops->re_set = re_set_catch_assert;
14442 ops->check_status = check_status_catch_assert;
14443 ops->print_it = print_it_catch_assert;
14444 ops->print_one = print_one_catch_assert;
14445 ops->print_mention = print_mention_catch_assert;
14446 ops->print_recreate = print_recreate_catch_assert;
14447
14448 ops = &catch_handlers_breakpoint_ops;
14449 *ops = bkpt_breakpoint_ops;
14450 ops->allocate_location = allocate_location_catch_handlers;
14451 ops->re_set = re_set_catch_handlers;
14452 ops->check_status = check_status_catch_handlers;
14453 ops->print_it = print_it_catch_handlers;
14454 ops->print_one = print_one_catch_handlers;
14455 ops->print_mention = print_mention_catch_handlers;
14456 ops->print_recreate = print_recreate_catch_handlers;
14457 }
14458
14459 /* This module's 'new_objfile' observer. */
14460
14461 static void
14462 ada_new_objfile_observer (struct objfile *objfile)
14463 {
14464 ada_clear_symbol_cache ();
14465 }
14466
14467 /* This module's 'free_objfile' observer. */
14468
14469 static void
14470 ada_free_objfile_observer (struct objfile *objfile)
14471 {
14472 ada_clear_symbol_cache ();
14473 }
14474
14475 void
14476 _initialize_ada_language (void)
14477 {
14478 initialize_ada_catchpoint_ops ();
14479
14480 add_prefix_cmd ("ada", no_class, set_ada_command,
14481 _("Prefix command for changing Ada-specific settings"),
14482 &set_ada_list, "set ada ", 0, &setlist);
14483
14484 add_prefix_cmd ("ada", no_class, show_ada_command,
14485 _("Generic command for showing Ada-specific settings."),
14486 &show_ada_list, "show ada ", 0, &showlist);
14487
14488 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14489 &trust_pad_over_xvs, _("\
14490 Enable or disable an optimization trusting PAD types over XVS types"), _("\
14491 Show whether an optimization trusting PAD types over XVS types is activated"),
14492 _("\
14493 This is related to the encoding used by the GNAT compiler. The debugger\n\
14494 should normally trust the contents of PAD types, but certain older versions\n\
14495 of GNAT have a bug that sometimes causes the information in the PAD type\n\
14496 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14497 work around this bug. It is always safe to turn this option \"off\", but\n\
14498 this incurs a slight performance penalty, so it is recommended to NOT change\n\
14499 this option to \"off\" unless necessary."),
14500 NULL, NULL, &set_ada_list, &show_ada_list);
14501
14502 add_setshow_boolean_cmd ("print-signatures", class_vars,
14503 &print_signatures, _("\
14504 Enable or disable the output of formal and return types for functions in the \
14505 overloads selection menu"), _("\
14506 Show whether the output of formal and return types for functions in the \
14507 overloads selection menu is activated"),
14508 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14509
14510 add_catch_command ("exception", _("\
14511 Catch Ada exceptions, when raised.\n\
14512 Usage: catch exception [ ARG ]\n\
14513 \n\
14514 Without any argument, stop when any Ada exception is raised.\n\
14515 If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\
14516 being raised does not have a handler (and will therefore lead to the task's\n\
14517 termination).\n\
14518 Otherwise, the catchpoint only stops when the name of the exception being\n\
14519 raised is the same as ARG."),
14520 catch_ada_exception_command,
14521 NULL,
14522 CATCH_PERMANENT,
14523 CATCH_TEMPORARY);
14524
14525 add_catch_command ("handlers", _("\
14526 Catch Ada exceptions, when handled.\n\
14527 With an argument, catch only exceptions with the given name."),
14528 catch_ada_handlers_command,
14529 NULL,
14530 CATCH_PERMANENT,
14531 CATCH_TEMPORARY);
14532 add_catch_command ("assert", _("\
14533 Catch failed Ada assertions, when raised.\n\
14534 With an argument, catch only exceptions with the given name."),
14535 catch_assert_command,
14536 NULL,
14537 CATCH_PERMANENT,
14538 CATCH_TEMPORARY);
14539
14540 varsize_limit = 65536;
14541 add_setshow_uinteger_cmd ("varsize-limit", class_support,
14542 &varsize_limit, _("\
14543 Set the maximum number of bytes allowed in a variable-size object."), _("\
14544 Show the maximum number of bytes allowed in a variable-size object."), _("\
14545 Attempts to access an object whose size is not a compile-time constant\n\
14546 and exceeds this limit will cause an error."),
14547 NULL, NULL, &setlist, &showlist);
14548
14549 add_info ("exceptions", info_exceptions_command,
14550 _("\
14551 List all Ada exception names.\n\
14552 If a regular expression is passed as an argument, only those matching\n\
14553 the regular expression are listed."));
14554
14555 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14556 _("Set Ada maintenance-related variables."),
14557 &maint_set_ada_cmdlist, "maintenance set ada ",
14558 0/*allow-unknown*/, &maintenance_set_cmdlist);
14559
14560 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14561 _("Show Ada maintenance-related variables"),
14562 &maint_show_ada_cmdlist, "maintenance show ada ",
14563 0/*allow-unknown*/, &maintenance_show_cmdlist);
14564
14565 add_setshow_boolean_cmd
14566 ("ignore-descriptive-types", class_maintenance,
14567 &ada_ignore_descriptive_types_p,
14568 _("Set whether descriptive types generated by GNAT should be ignored."),
14569 _("Show whether descriptive types generated by GNAT should be ignored."),
14570 _("\
14571 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14572 DWARF attribute."),
14573 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14574
14575 decoded_names_store = htab_create_alloc (256, htab_hash_string, streq_hash,
14576 NULL, xcalloc, xfree);
14577
14578 /* The ada-lang observers. */
14579 gdb::observers::new_objfile.attach (ada_new_objfile_observer);
14580 gdb::observers::free_objfile.attach (ada_free_objfile_observer);
14581 gdb::observers::inferior_exit.attach (ada_inferior_exit);
14582
14583 /* Setup various context-specific data. */
14584 ada_inferior_data
14585 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
14586 ada_pspace_data_handle
14587 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
14588 }