Remove trailing spaces in ada-lang.c:ada_lookup_simple_minsym doc.
[binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-1994, 1997-2000, 2003-2005, 2007-2012 Free
4 Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21
22 #include "defs.h"
23 #include <stdio.h>
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include <stdarg.h>
27 #include "demangle.h"
28 #include "gdb_regex.h"
29 #include "frame.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "gdbcmd.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35 #include "language.h"
36 #include "c-lang.h"
37 #include "inferior.h"
38 #include "symfile.h"
39 #include "objfiles.h"
40 #include "breakpoint.h"
41 #include "gdbcore.h"
42 #include "hashtab.h"
43 #include "gdb_obstack.h"
44 #include "ada-lang.h"
45 #include "completer.h"
46 #include "gdb_stat.h"
47 #ifdef UI_OUT
48 #include "ui-out.h"
49 #endif
50 #include "block.h"
51 #include "infcall.h"
52 #include "dictionary.h"
53 #include "exceptions.h"
54 #include "annotate.h"
55 #include "valprint.h"
56 #include "source.h"
57 #include "observer.h"
58 #include "vec.h"
59 #include "stack.h"
60 #include "gdb_vecs.h"
61
62 #include "psymtab.h"
63 #include "value.h"
64 #include "mi/mi-common.h"
65 #include "arch-utils.h"
66 #include "exceptions.h"
67 #include "cli/cli-utils.h"
68
69 /* Define whether or not the C operator '/' truncates towards zero for
70 differently signed operands (truncation direction is undefined in C).
71 Copied from valarith.c. */
72
73 #ifndef TRUNCATION_TOWARDS_ZERO
74 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
75 #endif
76
77 static struct type *desc_base_type (struct type *);
78
79 static struct type *desc_bounds_type (struct type *);
80
81 static struct value *desc_bounds (struct value *);
82
83 static int fat_pntr_bounds_bitpos (struct type *);
84
85 static int fat_pntr_bounds_bitsize (struct type *);
86
87 static struct type *desc_data_target_type (struct type *);
88
89 static struct value *desc_data (struct value *);
90
91 static int fat_pntr_data_bitpos (struct type *);
92
93 static int fat_pntr_data_bitsize (struct type *);
94
95 static struct value *desc_one_bound (struct value *, int, int);
96
97 static int desc_bound_bitpos (struct type *, int, int);
98
99 static int desc_bound_bitsize (struct type *, int, int);
100
101 static struct type *desc_index_type (struct type *, int);
102
103 static int desc_arity (struct type *);
104
105 static int ada_type_match (struct type *, struct type *, int);
106
107 static int ada_args_match (struct symbol *, struct value **, int);
108
109 static int full_match (const char *, const char *);
110
111 static struct value *make_array_descriptor (struct type *, struct value *);
112
113 static void ada_add_block_symbols (struct obstack *,
114 struct block *, const char *,
115 domain_enum, struct objfile *, int);
116
117 static int is_nonfunction (struct ada_symbol_info *, int);
118
119 static void add_defn_to_vec (struct obstack *, struct symbol *,
120 struct block *);
121
122 static int num_defns_collected (struct obstack *);
123
124 static struct ada_symbol_info *defns_collected (struct obstack *, int);
125
126 static struct value *resolve_subexp (struct expression **, int *, int,
127 struct type *);
128
129 static void replace_operator_with_call (struct expression **, int, int, int,
130 struct symbol *, struct block *);
131
132 static int possible_user_operator_p (enum exp_opcode, struct value **);
133
134 static char *ada_op_name (enum exp_opcode);
135
136 static const char *ada_decoded_op_name (enum exp_opcode);
137
138 static int numeric_type_p (struct type *);
139
140 static int integer_type_p (struct type *);
141
142 static int scalar_type_p (struct type *);
143
144 static int discrete_type_p (struct type *);
145
146 static enum ada_renaming_category parse_old_style_renaming (struct type *,
147 const char **,
148 int *,
149 const char **);
150
151 static struct symbol *find_old_style_renaming_symbol (const char *,
152 struct block *);
153
154 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
155 int, int, int *);
156
157 static struct value *evaluate_subexp_type (struct expression *, int *);
158
159 static struct type *ada_find_parallel_type_with_name (struct type *,
160 const char *);
161
162 static int is_dynamic_field (struct type *, int);
163
164 static struct type *to_fixed_variant_branch_type (struct type *,
165 const gdb_byte *,
166 CORE_ADDR, struct value *);
167
168 static struct type *to_fixed_array_type (struct type *, struct value *, int);
169
170 static struct type *to_fixed_range_type (struct type *, struct value *);
171
172 static struct type *to_static_fixed_type (struct type *);
173 static struct type *static_unwrap_type (struct type *type);
174
175 static struct value *unwrap_value (struct value *);
176
177 static struct type *constrained_packed_array_type (struct type *, long *);
178
179 static struct type *decode_constrained_packed_array_type (struct type *);
180
181 static long decode_packed_array_bitsize (struct type *);
182
183 static struct value *decode_constrained_packed_array (struct value *);
184
185 static int ada_is_packed_array_type (struct type *);
186
187 static int ada_is_unconstrained_packed_array_type (struct type *);
188
189 static struct value *value_subscript_packed (struct value *, int,
190 struct value **);
191
192 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
193
194 static struct value *coerce_unspec_val_to_type (struct value *,
195 struct type *);
196
197 static struct value *get_var_value (char *, char *);
198
199 static int lesseq_defined_than (struct symbol *, struct symbol *);
200
201 static int equiv_types (struct type *, struct type *);
202
203 static int is_name_suffix (const char *);
204
205 static int advance_wild_match (const char **, const char *, int);
206
207 static int wild_match (const char *, const char *);
208
209 static struct value *ada_coerce_ref (struct value *);
210
211 static LONGEST pos_atr (struct value *);
212
213 static struct value *value_pos_atr (struct type *, struct value *);
214
215 static struct value *value_val_atr (struct type *, struct value *);
216
217 static struct symbol *standard_lookup (const char *, const struct block *,
218 domain_enum);
219
220 static struct value *ada_search_struct_field (char *, struct value *, int,
221 struct type *);
222
223 static struct value *ada_value_primitive_field (struct value *, int, int,
224 struct type *);
225
226 static int find_struct_field (const char *, struct type *, int,
227 struct type **, int *, int *, int *, int *);
228
229 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
230 struct value *);
231
232 static int ada_resolve_function (struct ada_symbol_info *, int,
233 struct value **, int, const char *,
234 struct type *);
235
236 static int ada_is_direct_array_type (struct type *);
237
238 static void ada_language_arch_info (struct gdbarch *,
239 struct language_arch_info *);
240
241 static void check_size (const struct type *);
242
243 static struct value *ada_index_struct_field (int, struct value *, int,
244 struct type *);
245
246 static struct value *assign_aggregate (struct value *, struct value *,
247 struct expression *,
248 int *, enum noside);
249
250 static void aggregate_assign_from_choices (struct value *, struct value *,
251 struct expression *,
252 int *, LONGEST *, int *,
253 int, LONGEST, LONGEST);
254
255 static void aggregate_assign_positional (struct value *, struct value *,
256 struct expression *,
257 int *, LONGEST *, int *, int,
258 LONGEST, LONGEST);
259
260
261 static void aggregate_assign_others (struct value *, struct value *,
262 struct expression *,
263 int *, LONGEST *, int, LONGEST, LONGEST);
264
265
266 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
267
268
269 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
270 int *, enum noside);
271
272 static void ada_forward_operator_length (struct expression *, int, int *,
273 int *);
274
275 static struct type *ada_find_any_type (const char *name);
276 \f
277
278
279 /* Maximum-sized dynamic type. */
280 static unsigned int varsize_limit;
281
282 /* FIXME: brobecker/2003-09-17: No longer a const because it is
283 returned by a function that does not return a const char *. */
284 static char *ada_completer_word_break_characters =
285 #ifdef VMS
286 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
287 #else
288 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
289 #endif
290
291 /* The name of the symbol to use to get the name of the main subprogram. */
292 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
293 = "__gnat_ada_main_program_name";
294
295 /* Limit on the number of warnings to raise per expression evaluation. */
296 static int warning_limit = 2;
297
298 /* Number of warning messages issued; reset to 0 by cleanups after
299 expression evaluation. */
300 static int warnings_issued = 0;
301
302 static const char *known_runtime_file_name_patterns[] = {
303 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
304 };
305
306 static const char *known_auxiliary_function_name_patterns[] = {
307 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
308 };
309
310 /* Space for allocating results of ada_lookup_symbol_list. */
311 static struct obstack symbol_list_obstack;
312
313 /* Inferior-specific data. */
314
315 /* Per-inferior data for this module. */
316
317 struct ada_inferior_data
318 {
319 /* The ada__tags__type_specific_data type, which is used when decoding
320 tagged types. With older versions of GNAT, this type was directly
321 accessible through a component ("tsd") in the object tag. But this
322 is no longer the case, so we cache it for each inferior. */
323 struct type *tsd_type;
324
325 /* The exception_support_info data. This data is used to determine
326 how to implement support for Ada exception catchpoints in a given
327 inferior. */
328 const struct exception_support_info *exception_info;
329 };
330
331 /* Our key to this module's inferior data. */
332 static const struct inferior_data *ada_inferior_data;
333
334 /* A cleanup routine for our inferior data. */
335 static void
336 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
337 {
338 struct ada_inferior_data *data;
339
340 data = inferior_data (inf, ada_inferior_data);
341 if (data != NULL)
342 xfree (data);
343 }
344
345 /* Return our inferior data for the given inferior (INF).
346
347 This function always returns a valid pointer to an allocated
348 ada_inferior_data structure. If INF's inferior data has not
349 been previously set, this functions creates a new one with all
350 fields set to zero, sets INF's inferior to it, and then returns
351 a pointer to that newly allocated ada_inferior_data. */
352
353 static struct ada_inferior_data *
354 get_ada_inferior_data (struct inferior *inf)
355 {
356 struct ada_inferior_data *data;
357
358 data = inferior_data (inf, ada_inferior_data);
359 if (data == NULL)
360 {
361 data = XZALLOC (struct ada_inferior_data);
362 set_inferior_data (inf, ada_inferior_data, data);
363 }
364
365 return data;
366 }
367
368 /* Perform all necessary cleanups regarding our module's inferior data
369 that is required after the inferior INF just exited. */
370
371 static void
372 ada_inferior_exit (struct inferior *inf)
373 {
374 ada_inferior_data_cleanup (inf, NULL);
375 set_inferior_data (inf, ada_inferior_data, NULL);
376 }
377
378 /* Utilities */
379
380 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
381 all typedef layers have been peeled. Otherwise, return TYPE.
382
383 Normally, we really expect a typedef type to only have 1 typedef layer.
384 In other words, we really expect the target type of a typedef type to be
385 a non-typedef type. This is particularly true for Ada units, because
386 the language does not have a typedef vs not-typedef distinction.
387 In that respect, the Ada compiler has been trying to eliminate as many
388 typedef definitions in the debugging information, since they generally
389 do not bring any extra information (we still use typedef under certain
390 circumstances related mostly to the GNAT encoding).
391
392 Unfortunately, we have seen situations where the debugging information
393 generated by the compiler leads to such multiple typedef layers. For
394 instance, consider the following example with stabs:
395
396 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
397 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
398
399 This is an error in the debugging information which causes type
400 pck__float_array___XUP to be defined twice, and the second time,
401 it is defined as a typedef of a typedef.
402
403 This is on the fringe of legality as far as debugging information is
404 concerned, and certainly unexpected. But it is easy to handle these
405 situations correctly, so we can afford to be lenient in this case. */
406
407 static struct type *
408 ada_typedef_target_type (struct type *type)
409 {
410 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
411 type = TYPE_TARGET_TYPE (type);
412 return type;
413 }
414
415 /* Given DECODED_NAME a string holding a symbol name in its
416 decoded form (ie using the Ada dotted notation), returns
417 its unqualified name. */
418
419 static const char *
420 ada_unqualified_name (const char *decoded_name)
421 {
422 const char *result = strrchr (decoded_name, '.');
423
424 if (result != NULL)
425 result++; /* Skip the dot... */
426 else
427 result = decoded_name;
428
429 return result;
430 }
431
432 /* Return a string starting with '<', followed by STR, and '>'.
433 The result is good until the next call. */
434
435 static char *
436 add_angle_brackets (const char *str)
437 {
438 static char *result = NULL;
439
440 xfree (result);
441 result = xstrprintf ("<%s>", str);
442 return result;
443 }
444
445 static char *
446 ada_get_gdb_completer_word_break_characters (void)
447 {
448 return ada_completer_word_break_characters;
449 }
450
451 /* Print an array element index using the Ada syntax. */
452
453 static void
454 ada_print_array_index (struct value *index_value, struct ui_file *stream,
455 const struct value_print_options *options)
456 {
457 LA_VALUE_PRINT (index_value, stream, options);
458 fprintf_filtered (stream, " => ");
459 }
460
461 /* Assuming VECT points to an array of *SIZE objects of size
462 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
463 updating *SIZE as necessary and returning the (new) array. */
464
465 void *
466 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
467 {
468 if (*size < min_size)
469 {
470 *size *= 2;
471 if (*size < min_size)
472 *size = min_size;
473 vect = xrealloc (vect, *size * element_size);
474 }
475 return vect;
476 }
477
478 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
479 suffix of FIELD_NAME beginning "___". */
480
481 static int
482 field_name_match (const char *field_name, const char *target)
483 {
484 int len = strlen (target);
485
486 return
487 (strncmp (field_name, target, len) == 0
488 && (field_name[len] == '\0'
489 || (strncmp (field_name + len, "___", 3) == 0
490 && strcmp (field_name + strlen (field_name) - 6,
491 "___XVN") != 0)));
492 }
493
494
495 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
496 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
497 and return its index. This function also handles fields whose name
498 have ___ suffixes because the compiler sometimes alters their name
499 by adding such a suffix to represent fields with certain constraints.
500 If the field could not be found, return a negative number if
501 MAYBE_MISSING is set. Otherwise raise an error. */
502
503 int
504 ada_get_field_index (const struct type *type, const char *field_name,
505 int maybe_missing)
506 {
507 int fieldno;
508 struct type *struct_type = check_typedef ((struct type *) type);
509
510 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
511 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
512 return fieldno;
513
514 if (!maybe_missing)
515 error (_("Unable to find field %s in struct %s. Aborting"),
516 field_name, TYPE_NAME (struct_type));
517
518 return -1;
519 }
520
521 /* The length of the prefix of NAME prior to any "___" suffix. */
522
523 int
524 ada_name_prefix_len (const char *name)
525 {
526 if (name == NULL)
527 return 0;
528 else
529 {
530 const char *p = strstr (name, "___");
531
532 if (p == NULL)
533 return strlen (name);
534 else
535 return p - name;
536 }
537 }
538
539 /* Return non-zero if SUFFIX is a suffix of STR.
540 Return zero if STR is null. */
541
542 static int
543 is_suffix (const char *str, const char *suffix)
544 {
545 int len1, len2;
546
547 if (str == NULL)
548 return 0;
549 len1 = strlen (str);
550 len2 = strlen (suffix);
551 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
552 }
553
554 /* The contents of value VAL, treated as a value of type TYPE. The
555 result is an lval in memory if VAL is. */
556
557 static struct value *
558 coerce_unspec_val_to_type (struct value *val, struct type *type)
559 {
560 type = ada_check_typedef (type);
561 if (value_type (val) == type)
562 return val;
563 else
564 {
565 struct value *result;
566
567 /* Make sure that the object size is not unreasonable before
568 trying to allocate some memory for it. */
569 check_size (type);
570
571 if (value_lazy (val)
572 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
573 result = allocate_value_lazy (type);
574 else
575 {
576 result = allocate_value (type);
577 memcpy (value_contents_raw (result), value_contents (val),
578 TYPE_LENGTH (type));
579 }
580 set_value_component_location (result, val);
581 set_value_bitsize (result, value_bitsize (val));
582 set_value_bitpos (result, value_bitpos (val));
583 set_value_address (result, value_address (val));
584 return result;
585 }
586 }
587
588 static const gdb_byte *
589 cond_offset_host (const gdb_byte *valaddr, long offset)
590 {
591 if (valaddr == NULL)
592 return NULL;
593 else
594 return valaddr + offset;
595 }
596
597 static CORE_ADDR
598 cond_offset_target (CORE_ADDR address, long offset)
599 {
600 if (address == 0)
601 return 0;
602 else
603 return address + offset;
604 }
605
606 /* Issue a warning (as for the definition of warning in utils.c, but
607 with exactly one argument rather than ...), unless the limit on the
608 number of warnings has passed during the evaluation of the current
609 expression. */
610
611 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
612 provided by "complaint". */
613 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
614
615 static void
616 lim_warning (const char *format, ...)
617 {
618 va_list args;
619
620 va_start (args, format);
621 warnings_issued += 1;
622 if (warnings_issued <= warning_limit)
623 vwarning (format, args);
624
625 va_end (args);
626 }
627
628 /* Issue an error if the size of an object of type T is unreasonable,
629 i.e. if it would be a bad idea to allocate a value of this type in
630 GDB. */
631
632 static void
633 check_size (const struct type *type)
634 {
635 if (TYPE_LENGTH (type) > varsize_limit)
636 error (_("object size is larger than varsize-limit"));
637 }
638
639 /* Maximum value of a SIZE-byte signed integer type. */
640 static LONGEST
641 max_of_size (int size)
642 {
643 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
644
645 return top_bit | (top_bit - 1);
646 }
647
648 /* Minimum value of a SIZE-byte signed integer type. */
649 static LONGEST
650 min_of_size (int size)
651 {
652 return -max_of_size (size) - 1;
653 }
654
655 /* Maximum value of a SIZE-byte unsigned integer type. */
656 static ULONGEST
657 umax_of_size (int size)
658 {
659 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
660
661 return top_bit | (top_bit - 1);
662 }
663
664 /* Maximum value of integral type T, as a signed quantity. */
665 static LONGEST
666 max_of_type (struct type *t)
667 {
668 if (TYPE_UNSIGNED (t))
669 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
670 else
671 return max_of_size (TYPE_LENGTH (t));
672 }
673
674 /* Minimum value of integral type T, as a signed quantity. */
675 static LONGEST
676 min_of_type (struct type *t)
677 {
678 if (TYPE_UNSIGNED (t))
679 return 0;
680 else
681 return min_of_size (TYPE_LENGTH (t));
682 }
683
684 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
685 LONGEST
686 ada_discrete_type_high_bound (struct type *type)
687 {
688 switch (TYPE_CODE (type))
689 {
690 case TYPE_CODE_RANGE:
691 return TYPE_HIGH_BOUND (type);
692 case TYPE_CODE_ENUM:
693 return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1);
694 case TYPE_CODE_BOOL:
695 return 1;
696 case TYPE_CODE_CHAR:
697 case TYPE_CODE_INT:
698 return max_of_type (type);
699 default:
700 error (_("Unexpected type in ada_discrete_type_high_bound."));
701 }
702 }
703
704 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
705 LONGEST
706 ada_discrete_type_low_bound (struct type *type)
707 {
708 switch (TYPE_CODE (type))
709 {
710 case TYPE_CODE_RANGE:
711 return TYPE_LOW_BOUND (type);
712 case TYPE_CODE_ENUM:
713 return TYPE_FIELD_BITPOS (type, 0);
714 case TYPE_CODE_BOOL:
715 return 0;
716 case TYPE_CODE_CHAR:
717 case TYPE_CODE_INT:
718 return min_of_type (type);
719 default:
720 error (_("Unexpected type in ada_discrete_type_low_bound."));
721 }
722 }
723
724 /* The identity on non-range types. For range types, the underlying
725 non-range scalar type. */
726
727 static struct type *
728 get_base_type (struct type *type)
729 {
730 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
731 {
732 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
733 return type;
734 type = TYPE_TARGET_TYPE (type);
735 }
736 return type;
737 }
738
739 /* Return a decoded version of the given VALUE. This means returning
740 a value whose type is obtained by applying all the GNAT-specific
741 encondings, making the resulting type a static but standard description
742 of the initial type. */
743
744 struct value *
745 ada_get_decoded_value (struct value *value)
746 {
747 struct type *type = ada_check_typedef (value_type (value));
748
749 if (ada_is_array_descriptor_type (type)
750 || (ada_is_constrained_packed_array_type (type)
751 && TYPE_CODE (type) != TYPE_CODE_PTR))
752 {
753 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
754 value = ada_coerce_to_simple_array_ptr (value);
755 else
756 value = ada_coerce_to_simple_array (value);
757 }
758 else
759 value = ada_to_fixed_value (value);
760
761 return value;
762 }
763
764 /* Same as ada_get_decoded_value, but with the given TYPE.
765 Because there is no associated actual value for this type,
766 the resulting type might be a best-effort approximation in
767 the case of dynamic types. */
768
769 struct type *
770 ada_get_decoded_type (struct type *type)
771 {
772 type = to_static_fixed_type (type);
773 if (ada_is_constrained_packed_array_type (type))
774 type = ada_coerce_to_simple_array_type (type);
775 return type;
776 }
777
778 \f
779
780 /* Language Selection */
781
782 /* If the main program is in Ada, return language_ada, otherwise return LANG
783 (the main program is in Ada iif the adainit symbol is found). */
784
785 enum language
786 ada_update_initial_language (enum language lang)
787 {
788 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
789 (struct objfile *) NULL) != NULL)
790 return language_ada;
791
792 return lang;
793 }
794
795 /* If the main procedure is written in Ada, then return its name.
796 The result is good until the next call. Return NULL if the main
797 procedure doesn't appear to be in Ada. */
798
799 char *
800 ada_main_name (void)
801 {
802 struct minimal_symbol *msym;
803 static char *main_program_name = NULL;
804
805 /* For Ada, the name of the main procedure is stored in a specific
806 string constant, generated by the binder. Look for that symbol,
807 extract its address, and then read that string. If we didn't find
808 that string, then most probably the main procedure is not written
809 in Ada. */
810 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
811
812 if (msym != NULL)
813 {
814 CORE_ADDR main_program_name_addr;
815 int err_code;
816
817 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
818 if (main_program_name_addr == 0)
819 error (_("Invalid address for Ada main program name."));
820
821 xfree (main_program_name);
822 target_read_string (main_program_name_addr, &main_program_name,
823 1024, &err_code);
824
825 if (err_code != 0)
826 return NULL;
827 return main_program_name;
828 }
829
830 /* The main procedure doesn't seem to be in Ada. */
831 return NULL;
832 }
833 \f
834 /* Symbols */
835
836 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
837 of NULLs. */
838
839 const struct ada_opname_map ada_opname_table[] = {
840 {"Oadd", "\"+\"", BINOP_ADD},
841 {"Osubtract", "\"-\"", BINOP_SUB},
842 {"Omultiply", "\"*\"", BINOP_MUL},
843 {"Odivide", "\"/\"", BINOP_DIV},
844 {"Omod", "\"mod\"", BINOP_MOD},
845 {"Orem", "\"rem\"", BINOP_REM},
846 {"Oexpon", "\"**\"", BINOP_EXP},
847 {"Olt", "\"<\"", BINOP_LESS},
848 {"Ole", "\"<=\"", BINOP_LEQ},
849 {"Ogt", "\">\"", BINOP_GTR},
850 {"Oge", "\">=\"", BINOP_GEQ},
851 {"Oeq", "\"=\"", BINOP_EQUAL},
852 {"One", "\"/=\"", BINOP_NOTEQUAL},
853 {"Oand", "\"and\"", BINOP_BITWISE_AND},
854 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
855 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
856 {"Oconcat", "\"&\"", BINOP_CONCAT},
857 {"Oabs", "\"abs\"", UNOP_ABS},
858 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
859 {"Oadd", "\"+\"", UNOP_PLUS},
860 {"Osubtract", "\"-\"", UNOP_NEG},
861 {NULL, NULL}
862 };
863
864 /* The "encoded" form of DECODED, according to GNAT conventions.
865 The result is valid until the next call to ada_encode. */
866
867 char *
868 ada_encode (const char *decoded)
869 {
870 static char *encoding_buffer = NULL;
871 static size_t encoding_buffer_size = 0;
872 const char *p;
873 int k;
874
875 if (decoded == NULL)
876 return NULL;
877
878 GROW_VECT (encoding_buffer, encoding_buffer_size,
879 2 * strlen (decoded) + 10);
880
881 k = 0;
882 for (p = decoded; *p != '\0'; p += 1)
883 {
884 if (*p == '.')
885 {
886 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
887 k += 2;
888 }
889 else if (*p == '"')
890 {
891 const struct ada_opname_map *mapping;
892
893 for (mapping = ada_opname_table;
894 mapping->encoded != NULL
895 && strncmp (mapping->decoded, p,
896 strlen (mapping->decoded)) != 0; mapping += 1)
897 ;
898 if (mapping->encoded == NULL)
899 error (_("invalid Ada operator name: %s"), p);
900 strcpy (encoding_buffer + k, mapping->encoded);
901 k += strlen (mapping->encoded);
902 break;
903 }
904 else
905 {
906 encoding_buffer[k] = *p;
907 k += 1;
908 }
909 }
910
911 encoding_buffer[k] = '\0';
912 return encoding_buffer;
913 }
914
915 /* Return NAME folded to lower case, or, if surrounded by single
916 quotes, unfolded, but with the quotes stripped away. Result good
917 to next call. */
918
919 char *
920 ada_fold_name (const char *name)
921 {
922 static char *fold_buffer = NULL;
923 static size_t fold_buffer_size = 0;
924
925 int len = strlen (name);
926 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
927
928 if (name[0] == '\'')
929 {
930 strncpy (fold_buffer, name + 1, len - 2);
931 fold_buffer[len - 2] = '\000';
932 }
933 else
934 {
935 int i;
936
937 for (i = 0; i <= len; i += 1)
938 fold_buffer[i] = tolower (name[i]);
939 }
940
941 return fold_buffer;
942 }
943
944 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
945
946 static int
947 is_lower_alphanum (const char c)
948 {
949 return (isdigit (c) || (isalpha (c) && islower (c)));
950 }
951
952 /* ENCODED is the linkage name of a symbol and LEN contains its length.
953 This function saves in LEN the length of that same symbol name but
954 without either of these suffixes:
955 . .{DIGIT}+
956 . ${DIGIT}+
957 . ___{DIGIT}+
958 . __{DIGIT}+.
959
960 These are suffixes introduced by the compiler for entities such as
961 nested subprogram for instance, in order to avoid name clashes.
962 They do not serve any purpose for the debugger. */
963
964 static void
965 ada_remove_trailing_digits (const char *encoded, int *len)
966 {
967 if (*len > 1 && isdigit (encoded[*len - 1]))
968 {
969 int i = *len - 2;
970
971 while (i > 0 && isdigit (encoded[i]))
972 i--;
973 if (i >= 0 && encoded[i] == '.')
974 *len = i;
975 else if (i >= 0 && encoded[i] == '$')
976 *len = i;
977 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
978 *len = i - 2;
979 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
980 *len = i - 1;
981 }
982 }
983
984 /* Remove the suffix introduced by the compiler for protected object
985 subprograms. */
986
987 static void
988 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
989 {
990 /* Remove trailing N. */
991
992 /* Protected entry subprograms are broken into two
993 separate subprograms: The first one is unprotected, and has
994 a 'N' suffix; the second is the protected version, and has
995 the 'P' suffix. The second calls the first one after handling
996 the protection. Since the P subprograms are internally generated,
997 we leave these names undecoded, giving the user a clue that this
998 entity is internal. */
999
1000 if (*len > 1
1001 && encoded[*len - 1] == 'N'
1002 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1003 *len = *len - 1;
1004 }
1005
1006 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1007
1008 static void
1009 ada_remove_Xbn_suffix (const char *encoded, int *len)
1010 {
1011 int i = *len - 1;
1012
1013 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1014 i--;
1015
1016 if (encoded[i] != 'X')
1017 return;
1018
1019 if (i == 0)
1020 return;
1021
1022 if (isalnum (encoded[i-1]))
1023 *len = i;
1024 }
1025
1026 /* If ENCODED follows the GNAT entity encoding conventions, then return
1027 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1028 replaced by ENCODED.
1029
1030 The resulting string is valid until the next call of ada_decode.
1031 If the string is unchanged by decoding, the original string pointer
1032 is returned. */
1033
1034 const char *
1035 ada_decode (const char *encoded)
1036 {
1037 int i, j;
1038 int len0;
1039 const char *p;
1040 char *decoded;
1041 int at_start_name;
1042 static char *decoding_buffer = NULL;
1043 static size_t decoding_buffer_size = 0;
1044
1045 /* The name of the Ada main procedure starts with "_ada_".
1046 This prefix is not part of the decoded name, so skip this part
1047 if we see this prefix. */
1048 if (strncmp (encoded, "_ada_", 5) == 0)
1049 encoded += 5;
1050
1051 /* If the name starts with '_', then it is not a properly encoded
1052 name, so do not attempt to decode it. Similarly, if the name
1053 starts with '<', the name should not be decoded. */
1054 if (encoded[0] == '_' || encoded[0] == '<')
1055 goto Suppress;
1056
1057 len0 = strlen (encoded);
1058
1059 ada_remove_trailing_digits (encoded, &len0);
1060 ada_remove_po_subprogram_suffix (encoded, &len0);
1061
1062 /* Remove the ___X.* suffix if present. Do not forget to verify that
1063 the suffix is located before the current "end" of ENCODED. We want
1064 to avoid re-matching parts of ENCODED that have previously been
1065 marked as discarded (by decrementing LEN0). */
1066 p = strstr (encoded, "___");
1067 if (p != NULL && p - encoded < len0 - 3)
1068 {
1069 if (p[3] == 'X')
1070 len0 = p - encoded;
1071 else
1072 goto Suppress;
1073 }
1074
1075 /* Remove any trailing TKB suffix. It tells us that this symbol
1076 is for the body of a task, but that information does not actually
1077 appear in the decoded name. */
1078
1079 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
1080 len0 -= 3;
1081
1082 /* Remove any trailing TB suffix. The TB suffix is slightly different
1083 from the TKB suffix because it is used for non-anonymous task
1084 bodies. */
1085
1086 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
1087 len0 -= 2;
1088
1089 /* Remove trailing "B" suffixes. */
1090 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1091
1092 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
1093 len0 -= 1;
1094
1095 /* Make decoded big enough for possible expansion by operator name. */
1096
1097 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1098 decoded = decoding_buffer;
1099
1100 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1101
1102 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1103 {
1104 i = len0 - 2;
1105 while ((i >= 0 && isdigit (encoded[i]))
1106 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1107 i -= 1;
1108 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1109 len0 = i - 1;
1110 else if (encoded[i] == '$')
1111 len0 = i;
1112 }
1113
1114 /* The first few characters that are not alphabetic are not part
1115 of any encoding we use, so we can copy them over verbatim. */
1116
1117 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1118 decoded[j] = encoded[i];
1119
1120 at_start_name = 1;
1121 while (i < len0)
1122 {
1123 /* Is this a symbol function? */
1124 if (at_start_name && encoded[i] == 'O')
1125 {
1126 int k;
1127
1128 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1129 {
1130 int op_len = strlen (ada_opname_table[k].encoded);
1131 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1132 op_len - 1) == 0)
1133 && !isalnum (encoded[i + op_len]))
1134 {
1135 strcpy (decoded + j, ada_opname_table[k].decoded);
1136 at_start_name = 0;
1137 i += op_len;
1138 j += strlen (ada_opname_table[k].decoded);
1139 break;
1140 }
1141 }
1142 if (ada_opname_table[k].encoded != NULL)
1143 continue;
1144 }
1145 at_start_name = 0;
1146
1147 /* Replace "TK__" with "__", which will eventually be translated
1148 into "." (just below). */
1149
1150 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1151 i += 2;
1152
1153 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1154 be translated into "." (just below). These are internal names
1155 generated for anonymous blocks inside which our symbol is nested. */
1156
1157 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1158 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1159 && isdigit (encoded [i+4]))
1160 {
1161 int k = i + 5;
1162
1163 while (k < len0 && isdigit (encoded[k]))
1164 k++; /* Skip any extra digit. */
1165
1166 /* Double-check that the "__B_{DIGITS}+" sequence we found
1167 is indeed followed by "__". */
1168 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1169 i = k;
1170 }
1171
1172 /* Remove _E{DIGITS}+[sb] */
1173
1174 /* Just as for protected object subprograms, there are 2 categories
1175 of subprograms created by the compiler for each entry. The first
1176 one implements the actual entry code, and has a suffix following
1177 the convention above; the second one implements the barrier and
1178 uses the same convention as above, except that the 'E' is replaced
1179 by a 'B'.
1180
1181 Just as above, we do not decode the name of barrier functions
1182 to give the user a clue that the code he is debugging has been
1183 internally generated. */
1184
1185 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1186 && isdigit (encoded[i+2]))
1187 {
1188 int k = i + 3;
1189
1190 while (k < len0 && isdigit (encoded[k]))
1191 k++;
1192
1193 if (k < len0
1194 && (encoded[k] == 'b' || encoded[k] == 's'))
1195 {
1196 k++;
1197 /* Just as an extra precaution, make sure that if this
1198 suffix is followed by anything else, it is a '_'.
1199 Otherwise, we matched this sequence by accident. */
1200 if (k == len0
1201 || (k < len0 && encoded[k] == '_'))
1202 i = k;
1203 }
1204 }
1205
1206 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1207 the GNAT front-end in protected object subprograms. */
1208
1209 if (i < len0 + 3
1210 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1211 {
1212 /* Backtrack a bit up until we reach either the begining of
1213 the encoded name, or "__". Make sure that we only find
1214 digits or lowercase characters. */
1215 const char *ptr = encoded + i - 1;
1216
1217 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1218 ptr--;
1219 if (ptr < encoded
1220 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1221 i++;
1222 }
1223
1224 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1225 {
1226 /* This is a X[bn]* sequence not separated from the previous
1227 part of the name with a non-alpha-numeric character (in other
1228 words, immediately following an alpha-numeric character), then
1229 verify that it is placed at the end of the encoded name. If
1230 not, then the encoding is not valid and we should abort the
1231 decoding. Otherwise, just skip it, it is used in body-nested
1232 package names. */
1233 do
1234 i += 1;
1235 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1236 if (i < len0)
1237 goto Suppress;
1238 }
1239 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1240 {
1241 /* Replace '__' by '.'. */
1242 decoded[j] = '.';
1243 at_start_name = 1;
1244 i += 2;
1245 j += 1;
1246 }
1247 else
1248 {
1249 /* It's a character part of the decoded name, so just copy it
1250 over. */
1251 decoded[j] = encoded[i];
1252 i += 1;
1253 j += 1;
1254 }
1255 }
1256 decoded[j] = '\000';
1257
1258 /* Decoded names should never contain any uppercase character.
1259 Double-check this, and abort the decoding if we find one. */
1260
1261 for (i = 0; decoded[i] != '\0'; i += 1)
1262 if (isupper (decoded[i]) || decoded[i] == ' ')
1263 goto Suppress;
1264
1265 if (strcmp (decoded, encoded) == 0)
1266 return encoded;
1267 else
1268 return decoded;
1269
1270 Suppress:
1271 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1272 decoded = decoding_buffer;
1273 if (encoded[0] == '<')
1274 strcpy (decoded, encoded);
1275 else
1276 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1277 return decoded;
1278
1279 }
1280
1281 /* Table for keeping permanent unique copies of decoded names. Once
1282 allocated, names in this table are never released. While this is a
1283 storage leak, it should not be significant unless there are massive
1284 changes in the set of decoded names in successive versions of a
1285 symbol table loaded during a single session. */
1286 static struct htab *decoded_names_store;
1287
1288 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1289 in the language-specific part of GSYMBOL, if it has not been
1290 previously computed. Tries to save the decoded name in the same
1291 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1292 in any case, the decoded symbol has a lifetime at least that of
1293 GSYMBOL).
1294 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1295 const, but nevertheless modified to a semantically equivalent form
1296 when a decoded name is cached in it. */
1297
1298 char *
1299 ada_decode_symbol (const struct general_symbol_info *gsymbol)
1300 {
1301 char **resultp =
1302 (char **) &gsymbol->language_specific.mangled_lang.demangled_name;
1303
1304 if (*resultp == NULL)
1305 {
1306 const char *decoded = ada_decode (gsymbol->name);
1307
1308 if (gsymbol->obj_section != NULL)
1309 {
1310 struct objfile *objf = gsymbol->obj_section->objfile;
1311
1312 *resultp = obsavestring (decoded, strlen (decoded),
1313 &objf->objfile_obstack);
1314 }
1315 /* Sometimes, we can't find a corresponding objfile, in which
1316 case, we put the result on the heap. Since we only decode
1317 when needed, we hope this usually does not cause a
1318 significant memory leak (FIXME). */
1319 if (*resultp == NULL)
1320 {
1321 char **slot = (char **) htab_find_slot (decoded_names_store,
1322 decoded, INSERT);
1323
1324 if (*slot == NULL)
1325 *slot = xstrdup (decoded);
1326 *resultp = *slot;
1327 }
1328 }
1329
1330 return *resultp;
1331 }
1332
1333 static char *
1334 ada_la_decode (const char *encoded, int options)
1335 {
1336 return xstrdup (ada_decode (encoded));
1337 }
1338
1339 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1340 suffixes that encode debugging information or leading _ada_ on
1341 SYM_NAME (see is_name_suffix commentary for the debugging
1342 information that is ignored). If WILD, then NAME need only match a
1343 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1344 either argument is NULL. */
1345
1346 static int
1347 match_name (const char *sym_name, const char *name, int wild)
1348 {
1349 if (sym_name == NULL || name == NULL)
1350 return 0;
1351 else if (wild)
1352 return wild_match (sym_name, name) == 0;
1353 else
1354 {
1355 int len_name = strlen (name);
1356
1357 return (strncmp (sym_name, name, len_name) == 0
1358 && is_name_suffix (sym_name + len_name))
1359 || (strncmp (sym_name, "_ada_", 5) == 0
1360 && strncmp (sym_name + 5, name, len_name) == 0
1361 && is_name_suffix (sym_name + len_name + 5));
1362 }
1363 }
1364 \f
1365
1366 /* Arrays */
1367
1368 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1369 generated by the GNAT compiler to describe the index type used
1370 for each dimension of an array, check whether it follows the latest
1371 known encoding. If not, fix it up to conform to the latest encoding.
1372 Otherwise, do nothing. This function also does nothing if
1373 INDEX_DESC_TYPE is NULL.
1374
1375 The GNAT encoding used to describle the array index type evolved a bit.
1376 Initially, the information would be provided through the name of each
1377 field of the structure type only, while the type of these fields was
1378 described as unspecified and irrelevant. The debugger was then expected
1379 to perform a global type lookup using the name of that field in order
1380 to get access to the full index type description. Because these global
1381 lookups can be very expensive, the encoding was later enhanced to make
1382 the global lookup unnecessary by defining the field type as being
1383 the full index type description.
1384
1385 The purpose of this routine is to allow us to support older versions
1386 of the compiler by detecting the use of the older encoding, and by
1387 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1388 we essentially replace each field's meaningless type by the associated
1389 index subtype). */
1390
1391 void
1392 ada_fixup_array_indexes_type (struct type *index_desc_type)
1393 {
1394 int i;
1395
1396 if (index_desc_type == NULL)
1397 return;
1398 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1399
1400 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1401 to check one field only, no need to check them all). If not, return
1402 now.
1403
1404 If our INDEX_DESC_TYPE was generated using the older encoding,
1405 the field type should be a meaningless integer type whose name
1406 is not equal to the field name. */
1407 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1408 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1409 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1410 return;
1411
1412 /* Fixup each field of INDEX_DESC_TYPE. */
1413 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1414 {
1415 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1416 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1417
1418 if (raw_type)
1419 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1420 }
1421 }
1422
1423 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1424
1425 static char *bound_name[] = {
1426 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1427 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1428 };
1429
1430 /* Maximum number of array dimensions we are prepared to handle. */
1431
1432 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1433
1434
1435 /* The desc_* routines return primitive portions of array descriptors
1436 (fat pointers). */
1437
1438 /* The descriptor or array type, if any, indicated by TYPE; removes
1439 level of indirection, if needed. */
1440
1441 static struct type *
1442 desc_base_type (struct type *type)
1443 {
1444 if (type == NULL)
1445 return NULL;
1446 type = ada_check_typedef (type);
1447 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1448 type = ada_typedef_target_type (type);
1449
1450 if (type != NULL
1451 && (TYPE_CODE (type) == TYPE_CODE_PTR
1452 || TYPE_CODE (type) == TYPE_CODE_REF))
1453 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1454 else
1455 return type;
1456 }
1457
1458 /* True iff TYPE indicates a "thin" array pointer type. */
1459
1460 static int
1461 is_thin_pntr (struct type *type)
1462 {
1463 return
1464 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1465 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1466 }
1467
1468 /* The descriptor type for thin pointer type TYPE. */
1469
1470 static struct type *
1471 thin_descriptor_type (struct type *type)
1472 {
1473 struct type *base_type = desc_base_type (type);
1474
1475 if (base_type == NULL)
1476 return NULL;
1477 if (is_suffix (ada_type_name (base_type), "___XVE"))
1478 return base_type;
1479 else
1480 {
1481 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1482
1483 if (alt_type == NULL)
1484 return base_type;
1485 else
1486 return alt_type;
1487 }
1488 }
1489
1490 /* A pointer to the array data for thin-pointer value VAL. */
1491
1492 static struct value *
1493 thin_data_pntr (struct value *val)
1494 {
1495 struct type *type = ada_check_typedef (value_type (val));
1496 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1497
1498 data_type = lookup_pointer_type (data_type);
1499
1500 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1501 return value_cast (data_type, value_copy (val));
1502 else
1503 return value_from_longest (data_type, value_address (val));
1504 }
1505
1506 /* True iff TYPE indicates a "thick" array pointer type. */
1507
1508 static int
1509 is_thick_pntr (struct type *type)
1510 {
1511 type = desc_base_type (type);
1512 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1513 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1514 }
1515
1516 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1517 pointer to one, the type of its bounds data; otherwise, NULL. */
1518
1519 static struct type *
1520 desc_bounds_type (struct type *type)
1521 {
1522 struct type *r;
1523
1524 type = desc_base_type (type);
1525
1526 if (type == NULL)
1527 return NULL;
1528 else if (is_thin_pntr (type))
1529 {
1530 type = thin_descriptor_type (type);
1531 if (type == NULL)
1532 return NULL;
1533 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1534 if (r != NULL)
1535 return ada_check_typedef (r);
1536 }
1537 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1538 {
1539 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1540 if (r != NULL)
1541 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1542 }
1543 return NULL;
1544 }
1545
1546 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1547 one, a pointer to its bounds data. Otherwise NULL. */
1548
1549 static struct value *
1550 desc_bounds (struct value *arr)
1551 {
1552 struct type *type = ada_check_typedef (value_type (arr));
1553
1554 if (is_thin_pntr (type))
1555 {
1556 struct type *bounds_type =
1557 desc_bounds_type (thin_descriptor_type (type));
1558 LONGEST addr;
1559
1560 if (bounds_type == NULL)
1561 error (_("Bad GNAT array descriptor"));
1562
1563 /* NOTE: The following calculation is not really kosher, but
1564 since desc_type is an XVE-encoded type (and shouldn't be),
1565 the correct calculation is a real pain. FIXME (and fix GCC). */
1566 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1567 addr = value_as_long (arr);
1568 else
1569 addr = value_address (arr);
1570
1571 return
1572 value_from_longest (lookup_pointer_type (bounds_type),
1573 addr - TYPE_LENGTH (bounds_type));
1574 }
1575
1576 else if (is_thick_pntr (type))
1577 {
1578 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1579 _("Bad GNAT array descriptor"));
1580 struct type *p_bounds_type = value_type (p_bounds);
1581
1582 if (p_bounds_type
1583 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1584 {
1585 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1586
1587 if (TYPE_STUB (target_type))
1588 p_bounds = value_cast (lookup_pointer_type
1589 (ada_check_typedef (target_type)),
1590 p_bounds);
1591 }
1592 else
1593 error (_("Bad GNAT array descriptor"));
1594
1595 return p_bounds;
1596 }
1597 else
1598 return NULL;
1599 }
1600
1601 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1602 position of the field containing the address of the bounds data. */
1603
1604 static int
1605 fat_pntr_bounds_bitpos (struct type *type)
1606 {
1607 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1608 }
1609
1610 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1611 size of the field containing the address of the bounds data. */
1612
1613 static int
1614 fat_pntr_bounds_bitsize (struct type *type)
1615 {
1616 type = desc_base_type (type);
1617
1618 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1619 return TYPE_FIELD_BITSIZE (type, 1);
1620 else
1621 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1622 }
1623
1624 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1625 pointer to one, the type of its array data (a array-with-no-bounds type);
1626 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1627 data. */
1628
1629 static struct type *
1630 desc_data_target_type (struct type *type)
1631 {
1632 type = desc_base_type (type);
1633
1634 /* NOTE: The following is bogus; see comment in desc_bounds. */
1635 if (is_thin_pntr (type))
1636 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1637 else if (is_thick_pntr (type))
1638 {
1639 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1640
1641 if (data_type
1642 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1643 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1644 }
1645
1646 return NULL;
1647 }
1648
1649 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1650 its array data. */
1651
1652 static struct value *
1653 desc_data (struct value *arr)
1654 {
1655 struct type *type = value_type (arr);
1656
1657 if (is_thin_pntr (type))
1658 return thin_data_pntr (arr);
1659 else if (is_thick_pntr (type))
1660 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1661 _("Bad GNAT array descriptor"));
1662 else
1663 return NULL;
1664 }
1665
1666
1667 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1668 position of the field containing the address of the data. */
1669
1670 static int
1671 fat_pntr_data_bitpos (struct type *type)
1672 {
1673 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1674 }
1675
1676 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1677 size of the field containing the address of the data. */
1678
1679 static int
1680 fat_pntr_data_bitsize (struct type *type)
1681 {
1682 type = desc_base_type (type);
1683
1684 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1685 return TYPE_FIELD_BITSIZE (type, 0);
1686 else
1687 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1688 }
1689
1690 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1691 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1692 bound, if WHICH is 1. The first bound is I=1. */
1693
1694 static struct value *
1695 desc_one_bound (struct value *bounds, int i, int which)
1696 {
1697 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1698 _("Bad GNAT array descriptor bounds"));
1699 }
1700
1701 /* If BOUNDS is an array-bounds structure type, return the bit position
1702 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1703 bound, if WHICH is 1. The first bound is I=1. */
1704
1705 static int
1706 desc_bound_bitpos (struct type *type, int i, int which)
1707 {
1708 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1709 }
1710
1711 /* If BOUNDS is an array-bounds structure type, return the bit field size
1712 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1713 bound, if WHICH is 1. The first bound is I=1. */
1714
1715 static int
1716 desc_bound_bitsize (struct type *type, int i, int which)
1717 {
1718 type = desc_base_type (type);
1719
1720 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1721 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1722 else
1723 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1724 }
1725
1726 /* If TYPE is the type of an array-bounds structure, the type of its
1727 Ith bound (numbering from 1). Otherwise, NULL. */
1728
1729 static struct type *
1730 desc_index_type (struct type *type, int i)
1731 {
1732 type = desc_base_type (type);
1733
1734 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1735 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1736 else
1737 return NULL;
1738 }
1739
1740 /* The number of index positions in the array-bounds type TYPE.
1741 Return 0 if TYPE is NULL. */
1742
1743 static int
1744 desc_arity (struct type *type)
1745 {
1746 type = desc_base_type (type);
1747
1748 if (type != NULL)
1749 return TYPE_NFIELDS (type) / 2;
1750 return 0;
1751 }
1752
1753 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1754 an array descriptor type (representing an unconstrained array
1755 type). */
1756
1757 static int
1758 ada_is_direct_array_type (struct type *type)
1759 {
1760 if (type == NULL)
1761 return 0;
1762 type = ada_check_typedef (type);
1763 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1764 || ada_is_array_descriptor_type (type));
1765 }
1766
1767 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1768 * to one. */
1769
1770 static int
1771 ada_is_array_type (struct type *type)
1772 {
1773 while (type != NULL
1774 && (TYPE_CODE (type) == TYPE_CODE_PTR
1775 || TYPE_CODE (type) == TYPE_CODE_REF))
1776 type = TYPE_TARGET_TYPE (type);
1777 return ada_is_direct_array_type (type);
1778 }
1779
1780 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1781
1782 int
1783 ada_is_simple_array_type (struct type *type)
1784 {
1785 if (type == NULL)
1786 return 0;
1787 type = ada_check_typedef (type);
1788 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1789 || (TYPE_CODE (type) == TYPE_CODE_PTR
1790 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1791 == TYPE_CODE_ARRAY));
1792 }
1793
1794 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1795
1796 int
1797 ada_is_array_descriptor_type (struct type *type)
1798 {
1799 struct type *data_type = desc_data_target_type (type);
1800
1801 if (type == NULL)
1802 return 0;
1803 type = ada_check_typedef (type);
1804 return (data_type != NULL
1805 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1806 && desc_arity (desc_bounds_type (type)) > 0);
1807 }
1808
1809 /* Non-zero iff type is a partially mal-formed GNAT array
1810 descriptor. FIXME: This is to compensate for some problems with
1811 debugging output from GNAT. Re-examine periodically to see if it
1812 is still needed. */
1813
1814 int
1815 ada_is_bogus_array_descriptor (struct type *type)
1816 {
1817 return
1818 type != NULL
1819 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1820 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1821 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1822 && !ada_is_array_descriptor_type (type);
1823 }
1824
1825
1826 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1827 (fat pointer) returns the type of the array data described---specifically,
1828 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1829 in from the descriptor; otherwise, they are left unspecified. If
1830 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1831 returns NULL. The result is simply the type of ARR if ARR is not
1832 a descriptor. */
1833 struct type *
1834 ada_type_of_array (struct value *arr, int bounds)
1835 {
1836 if (ada_is_constrained_packed_array_type (value_type (arr)))
1837 return decode_constrained_packed_array_type (value_type (arr));
1838
1839 if (!ada_is_array_descriptor_type (value_type (arr)))
1840 return value_type (arr);
1841
1842 if (!bounds)
1843 {
1844 struct type *array_type =
1845 ada_check_typedef (desc_data_target_type (value_type (arr)));
1846
1847 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1848 TYPE_FIELD_BITSIZE (array_type, 0) =
1849 decode_packed_array_bitsize (value_type (arr));
1850
1851 return array_type;
1852 }
1853 else
1854 {
1855 struct type *elt_type;
1856 int arity;
1857 struct value *descriptor;
1858
1859 elt_type = ada_array_element_type (value_type (arr), -1);
1860 arity = ada_array_arity (value_type (arr));
1861
1862 if (elt_type == NULL || arity == 0)
1863 return ada_check_typedef (value_type (arr));
1864
1865 descriptor = desc_bounds (arr);
1866 if (value_as_long (descriptor) == 0)
1867 return NULL;
1868 while (arity > 0)
1869 {
1870 struct type *range_type = alloc_type_copy (value_type (arr));
1871 struct type *array_type = alloc_type_copy (value_type (arr));
1872 struct value *low = desc_one_bound (descriptor, arity, 0);
1873 struct value *high = desc_one_bound (descriptor, arity, 1);
1874
1875 arity -= 1;
1876 create_range_type (range_type, value_type (low),
1877 longest_to_int (value_as_long (low)),
1878 longest_to_int (value_as_long (high)));
1879 elt_type = create_array_type (array_type, elt_type, range_type);
1880
1881 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1882 {
1883 /* We need to store the element packed bitsize, as well as
1884 recompute the array size, because it was previously
1885 computed based on the unpacked element size. */
1886 LONGEST lo = value_as_long (low);
1887 LONGEST hi = value_as_long (high);
1888
1889 TYPE_FIELD_BITSIZE (elt_type, 0) =
1890 decode_packed_array_bitsize (value_type (arr));
1891 /* If the array has no element, then the size is already
1892 zero, and does not need to be recomputed. */
1893 if (lo < hi)
1894 {
1895 int array_bitsize =
1896 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1897
1898 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1899 }
1900 }
1901 }
1902
1903 return lookup_pointer_type (elt_type);
1904 }
1905 }
1906
1907 /* If ARR does not represent an array, returns ARR unchanged.
1908 Otherwise, returns either a standard GDB array with bounds set
1909 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1910 GDB array. Returns NULL if ARR is a null fat pointer. */
1911
1912 struct value *
1913 ada_coerce_to_simple_array_ptr (struct value *arr)
1914 {
1915 if (ada_is_array_descriptor_type (value_type (arr)))
1916 {
1917 struct type *arrType = ada_type_of_array (arr, 1);
1918
1919 if (arrType == NULL)
1920 return NULL;
1921 return value_cast (arrType, value_copy (desc_data (arr)));
1922 }
1923 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1924 return decode_constrained_packed_array (arr);
1925 else
1926 return arr;
1927 }
1928
1929 /* If ARR does not represent an array, returns ARR unchanged.
1930 Otherwise, returns a standard GDB array describing ARR (which may
1931 be ARR itself if it already is in the proper form). */
1932
1933 struct value *
1934 ada_coerce_to_simple_array (struct value *arr)
1935 {
1936 if (ada_is_array_descriptor_type (value_type (arr)))
1937 {
1938 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1939
1940 if (arrVal == NULL)
1941 error (_("Bounds unavailable for null array pointer."));
1942 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1943 return value_ind (arrVal);
1944 }
1945 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1946 return decode_constrained_packed_array (arr);
1947 else
1948 return arr;
1949 }
1950
1951 /* If TYPE represents a GNAT array type, return it translated to an
1952 ordinary GDB array type (possibly with BITSIZE fields indicating
1953 packing). For other types, is the identity. */
1954
1955 struct type *
1956 ada_coerce_to_simple_array_type (struct type *type)
1957 {
1958 if (ada_is_constrained_packed_array_type (type))
1959 return decode_constrained_packed_array_type (type);
1960
1961 if (ada_is_array_descriptor_type (type))
1962 return ada_check_typedef (desc_data_target_type (type));
1963
1964 return type;
1965 }
1966
1967 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1968
1969 static int
1970 ada_is_packed_array_type (struct type *type)
1971 {
1972 if (type == NULL)
1973 return 0;
1974 type = desc_base_type (type);
1975 type = ada_check_typedef (type);
1976 return
1977 ada_type_name (type) != NULL
1978 && strstr (ada_type_name (type), "___XP") != NULL;
1979 }
1980
1981 /* Non-zero iff TYPE represents a standard GNAT constrained
1982 packed-array type. */
1983
1984 int
1985 ada_is_constrained_packed_array_type (struct type *type)
1986 {
1987 return ada_is_packed_array_type (type)
1988 && !ada_is_array_descriptor_type (type);
1989 }
1990
1991 /* Non-zero iff TYPE represents an array descriptor for a
1992 unconstrained packed-array type. */
1993
1994 static int
1995 ada_is_unconstrained_packed_array_type (struct type *type)
1996 {
1997 return ada_is_packed_array_type (type)
1998 && ada_is_array_descriptor_type (type);
1999 }
2000
2001 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2002 return the size of its elements in bits. */
2003
2004 static long
2005 decode_packed_array_bitsize (struct type *type)
2006 {
2007 const char *raw_name;
2008 const char *tail;
2009 long bits;
2010
2011 /* Access to arrays implemented as fat pointers are encoded as a typedef
2012 of the fat pointer type. We need the name of the fat pointer type
2013 to do the decoding, so strip the typedef layer. */
2014 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2015 type = ada_typedef_target_type (type);
2016
2017 raw_name = ada_type_name (ada_check_typedef (type));
2018 if (!raw_name)
2019 raw_name = ada_type_name (desc_base_type (type));
2020
2021 if (!raw_name)
2022 return 0;
2023
2024 tail = strstr (raw_name, "___XP");
2025 gdb_assert (tail != NULL);
2026
2027 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2028 {
2029 lim_warning
2030 (_("could not understand bit size information on packed array"));
2031 return 0;
2032 }
2033
2034 return bits;
2035 }
2036
2037 /* Given that TYPE is a standard GDB array type with all bounds filled
2038 in, and that the element size of its ultimate scalar constituents
2039 (that is, either its elements, or, if it is an array of arrays, its
2040 elements' elements, etc.) is *ELT_BITS, return an identical type,
2041 but with the bit sizes of its elements (and those of any
2042 constituent arrays) recorded in the BITSIZE components of its
2043 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2044 in bits. */
2045
2046 static struct type *
2047 constrained_packed_array_type (struct type *type, long *elt_bits)
2048 {
2049 struct type *new_elt_type;
2050 struct type *new_type;
2051 struct type *index_type_desc;
2052 struct type *index_type;
2053 LONGEST low_bound, high_bound;
2054
2055 type = ada_check_typedef (type);
2056 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2057 return type;
2058
2059 index_type_desc = ada_find_parallel_type (type, "___XA");
2060 if (index_type_desc)
2061 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2062 NULL);
2063 else
2064 index_type = TYPE_INDEX_TYPE (type);
2065
2066 new_type = alloc_type_copy (type);
2067 new_elt_type =
2068 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2069 elt_bits);
2070 create_array_type (new_type, new_elt_type, index_type);
2071 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2072 TYPE_NAME (new_type) = ada_type_name (type);
2073
2074 if (get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2075 low_bound = high_bound = 0;
2076 if (high_bound < low_bound)
2077 *elt_bits = TYPE_LENGTH (new_type) = 0;
2078 else
2079 {
2080 *elt_bits *= (high_bound - low_bound + 1);
2081 TYPE_LENGTH (new_type) =
2082 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2083 }
2084
2085 TYPE_FIXED_INSTANCE (new_type) = 1;
2086 return new_type;
2087 }
2088
2089 /* The array type encoded by TYPE, where
2090 ada_is_constrained_packed_array_type (TYPE). */
2091
2092 static struct type *
2093 decode_constrained_packed_array_type (struct type *type)
2094 {
2095 const char *raw_name = ada_type_name (ada_check_typedef (type));
2096 char *name;
2097 const char *tail;
2098 struct type *shadow_type;
2099 long bits;
2100
2101 if (!raw_name)
2102 raw_name = ada_type_name (desc_base_type (type));
2103
2104 if (!raw_name)
2105 return NULL;
2106
2107 name = (char *) alloca (strlen (raw_name) + 1);
2108 tail = strstr (raw_name, "___XP");
2109 type = desc_base_type (type);
2110
2111 memcpy (name, raw_name, tail - raw_name);
2112 name[tail - raw_name] = '\000';
2113
2114 shadow_type = ada_find_parallel_type_with_name (type, name);
2115
2116 if (shadow_type == NULL)
2117 {
2118 lim_warning (_("could not find bounds information on packed array"));
2119 return NULL;
2120 }
2121 CHECK_TYPEDEF (shadow_type);
2122
2123 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2124 {
2125 lim_warning (_("could not understand bounds "
2126 "information on packed array"));
2127 return NULL;
2128 }
2129
2130 bits = decode_packed_array_bitsize (type);
2131 return constrained_packed_array_type (shadow_type, &bits);
2132 }
2133
2134 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2135 array, returns a simple array that denotes that array. Its type is a
2136 standard GDB array type except that the BITSIZEs of the array
2137 target types are set to the number of bits in each element, and the
2138 type length is set appropriately. */
2139
2140 static struct value *
2141 decode_constrained_packed_array (struct value *arr)
2142 {
2143 struct type *type;
2144
2145 arr = ada_coerce_ref (arr);
2146
2147 /* If our value is a pointer, then dererence it. Make sure that
2148 this operation does not cause the target type to be fixed, as
2149 this would indirectly cause this array to be decoded. The rest
2150 of the routine assumes that the array hasn't been decoded yet,
2151 so we use the basic "value_ind" routine to perform the dereferencing,
2152 as opposed to using "ada_value_ind". */
2153 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2154 arr = value_ind (arr);
2155
2156 type = decode_constrained_packed_array_type (value_type (arr));
2157 if (type == NULL)
2158 {
2159 error (_("can't unpack array"));
2160 return NULL;
2161 }
2162
2163 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2164 && ada_is_modular_type (value_type (arr)))
2165 {
2166 /* This is a (right-justified) modular type representing a packed
2167 array with no wrapper. In order to interpret the value through
2168 the (left-justified) packed array type we just built, we must
2169 first left-justify it. */
2170 int bit_size, bit_pos;
2171 ULONGEST mod;
2172
2173 mod = ada_modulus (value_type (arr)) - 1;
2174 bit_size = 0;
2175 while (mod > 0)
2176 {
2177 bit_size += 1;
2178 mod >>= 1;
2179 }
2180 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2181 arr = ada_value_primitive_packed_val (arr, NULL,
2182 bit_pos / HOST_CHAR_BIT,
2183 bit_pos % HOST_CHAR_BIT,
2184 bit_size,
2185 type);
2186 }
2187
2188 return coerce_unspec_val_to_type (arr, type);
2189 }
2190
2191
2192 /* The value of the element of packed array ARR at the ARITY indices
2193 given in IND. ARR must be a simple array. */
2194
2195 static struct value *
2196 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2197 {
2198 int i;
2199 int bits, elt_off, bit_off;
2200 long elt_total_bit_offset;
2201 struct type *elt_type;
2202 struct value *v;
2203
2204 bits = 0;
2205 elt_total_bit_offset = 0;
2206 elt_type = ada_check_typedef (value_type (arr));
2207 for (i = 0; i < arity; i += 1)
2208 {
2209 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2210 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2211 error
2212 (_("attempt to do packed indexing of "
2213 "something other than a packed array"));
2214 else
2215 {
2216 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2217 LONGEST lowerbound, upperbound;
2218 LONGEST idx;
2219
2220 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2221 {
2222 lim_warning (_("don't know bounds of array"));
2223 lowerbound = upperbound = 0;
2224 }
2225
2226 idx = pos_atr (ind[i]);
2227 if (idx < lowerbound || idx > upperbound)
2228 lim_warning (_("packed array index %ld out of bounds"),
2229 (long) idx);
2230 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2231 elt_total_bit_offset += (idx - lowerbound) * bits;
2232 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2233 }
2234 }
2235 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2236 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2237
2238 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2239 bits, elt_type);
2240 return v;
2241 }
2242
2243 /* Non-zero iff TYPE includes negative integer values. */
2244
2245 static int
2246 has_negatives (struct type *type)
2247 {
2248 switch (TYPE_CODE (type))
2249 {
2250 default:
2251 return 0;
2252 case TYPE_CODE_INT:
2253 return !TYPE_UNSIGNED (type);
2254 case TYPE_CODE_RANGE:
2255 return TYPE_LOW_BOUND (type) < 0;
2256 }
2257 }
2258
2259
2260 /* Create a new value of type TYPE from the contents of OBJ starting
2261 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2262 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2263 assigning through the result will set the field fetched from.
2264 VALADDR is ignored unless OBJ is NULL, in which case,
2265 VALADDR+OFFSET must address the start of storage containing the
2266 packed value. The value returned in this case is never an lval.
2267 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2268
2269 struct value *
2270 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2271 long offset, int bit_offset, int bit_size,
2272 struct type *type)
2273 {
2274 struct value *v;
2275 int src, /* Index into the source area */
2276 targ, /* Index into the target area */
2277 srcBitsLeft, /* Number of source bits left to move */
2278 nsrc, ntarg, /* Number of source and target bytes */
2279 unusedLS, /* Number of bits in next significant
2280 byte of source that are unused */
2281 accumSize; /* Number of meaningful bits in accum */
2282 unsigned char *bytes; /* First byte containing data to unpack */
2283 unsigned char *unpacked;
2284 unsigned long accum; /* Staging area for bits being transferred */
2285 unsigned char sign;
2286 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2287 /* Transmit bytes from least to most significant; delta is the direction
2288 the indices move. */
2289 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
2290
2291 type = ada_check_typedef (type);
2292
2293 if (obj == NULL)
2294 {
2295 v = allocate_value (type);
2296 bytes = (unsigned char *) (valaddr + offset);
2297 }
2298 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2299 {
2300 v = value_at (type, value_address (obj));
2301 bytes = (unsigned char *) alloca (len);
2302 read_memory (value_address (v) + offset, bytes, len);
2303 }
2304 else
2305 {
2306 v = allocate_value (type);
2307 bytes = (unsigned char *) value_contents (obj) + offset;
2308 }
2309
2310 if (obj != NULL)
2311 {
2312 long new_offset = offset;
2313
2314 set_value_component_location (v, obj);
2315 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2316 set_value_bitsize (v, bit_size);
2317 if (value_bitpos (v) >= HOST_CHAR_BIT)
2318 {
2319 ++new_offset;
2320 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2321 }
2322 set_value_offset (v, new_offset);
2323
2324 /* Also set the parent value. This is needed when trying to
2325 assign a new value (in inferior memory). */
2326 set_value_parent (v, obj);
2327 value_incref (obj);
2328 }
2329 else
2330 set_value_bitsize (v, bit_size);
2331 unpacked = (unsigned char *) value_contents (v);
2332
2333 srcBitsLeft = bit_size;
2334 nsrc = len;
2335 ntarg = TYPE_LENGTH (type);
2336 sign = 0;
2337 if (bit_size == 0)
2338 {
2339 memset (unpacked, 0, TYPE_LENGTH (type));
2340 return v;
2341 }
2342 else if (gdbarch_bits_big_endian (get_type_arch (type)))
2343 {
2344 src = len - 1;
2345 if (has_negatives (type)
2346 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2347 sign = ~0;
2348
2349 unusedLS =
2350 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2351 % HOST_CHAR_BIT;
2352
2353 switch (TYPE_CODE (type))
2354 {
2355 case TYPE_CODE_ARRAY:
2356 case TYPE_CODE_UNION:
2357 case TYPE_CODE_STRUCT:
2358 /* Non-scalar values must be aligned at a byte boundary... */
2359 accumSize =
2360 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2361 /* ... And are placed at the beginning (most-significant) bytes
2362 of the target. */
2363 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2364 ntarg = targ + 1;
2365 break;
2366 default:
2367 accumSize = 0;
2368 targ = TYPE_LENGTH (type) - 1;
2369 break;
2370 }
2371 }
2372 else
2373 {
2374 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2375
2376 src = targ = 0;
2377 unusedLS = bit_offset;
2378 accumSize = 0;
2379
2380 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2381 sign = ~0;
2382 }
2383
2384 accum = 0;
2385 while (nsrc > 0)
2386 {
2387 /* Mask for removing bits of the next source byte that are not
2388 part of the value. */
2389 unsigned int unusedMSMask =
2390 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2391 1;
2392 /* Sign-extend bits for this byte. */
2393 unsigned int signMask = sign & ~unusedMSMask;
2394
2395 accum |=
2396 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2397 accumSize += HOST_CHAR_BIT - unusedLS;
2398 if (accumSize >= HOST_CHAR_BIT)
2399 {
2400 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2401 accumSize -= HOST_CHAR_BIT;
2402 accum >>= HOST_CHAR_BIT;
2403 ntarg -= 1;
2404 targ += delta;
2405 }
2406 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2407 unusedLS = 0;
2408 nsrc -= 1;
2409 src += delta;
2410 }
2411 while (ntarg > 0)
2412 {
2413 accum |= sign << accumSize;
2414 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2415 accumSize -= HOST_CHAR_BIT;
2416 accum >>= HOST_CHAR_BIT;
2417 ntarg -= 1;
2418 targ += delta;
2419 }
2420
2421 return v;
2422 }
2423
2424 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2425 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2426 not overlap. */
2427 static void
2428 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2429 int src_offset, int n, int bits_big_endian_p)
2430 {
2431 unsigned int accum, mask;
2432 int accum_bits, chunk_size;
2433
2434 target += targ_offset / HOST_CHAR_BIT;
2435 targ_offset %= HOST_CHAR_BIT;
2436 source += src_offset / HOST_CHAR_BIT;
2437 src_offset %= HOST_CHAR_BIT;
2438 if (bits_big_endian_p)
2439 {
2440 accum = (unsigned char) *source;
2441 source += 1;
2442 accum_bits = HOST_CHAR_BIT - src_offset;
2443
2444 while (n > 0)
2445 {
2446 int unused_right;
2447
2448 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2449 accum_bits += HOST_CHAR_BIT;
2450 source += 1;
2451 chunk_size = HOST_CHAR_BIT - targ_offset;
2452 if (chunk_size > n)
2453 chunk_size = n;
2454 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2455 mask = ((1 << chunk_size) - 1) << unused_right;
2456 *target =
2457 (*target & ~mask)
2458 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2459 n -= chunk_size;
2460 accum_bits -= chunk_size;
2461 target += 1;
2462 targ_offset = 0;
2463 }
2464 }
2465 else
2466 {
2467 accum = (unsigned char) *source >> src_offset;
2468 source += 1;
2469 accum_bits = HOST_CHAR_BIT - src_offset;
2470
2471 while (n > 0)
2472 {
2473 accum = accum + ((unsigned char) *source << accum_bits);
2474 accum_bits += HOST_CHAR_BIT;
2475 source += 1;
2476 chunk_size = HOST_CHAR_BIT - targ_offset;
2477 if (chunk_size > n)
2478 chunk_size = n;
2479 mask = ((1 << chunk_size) - 1) << targ_offset;
2480 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2481 n -= chunk_size;
2482 accum_bits -= chunk_size;
2483 accum >>= chunk_size;
2484 target += 1;
2485 targ_offset = 0;
2486 }
2487 }
2488 }
2489
2490 /* Store the contents of FROMVAL into the location of TOVAL.
2491 Return a new value with the location of TOVAL and contents of
2492 FROMVAL. Handles assignment into packed fields that have
2493 floating-point or non-scalar types. */
2494
2495 static struct value *
2496 ada_value_assign (struct value *toval, struct value *fromval)
2497 {
2498 struct type *type = value_type (toval);
2499 int bits = value_bitsize (toval);
2500
2501 toval = ada_coerce_ref (toval);
2502 fromval = ada_coerce_ref (fromval);
2503
2504 if (ada_is_direct_array_type (value_type (toval)))
2505 toval = ada_coerce_to_simple_array (toval);
2506 if (ada_is_direct_array_type (value_type (fromval)))
2507 fromval = ada_coerce_to_simple_array (fromval);
2508
2509 if (!deprecated_value_modifiable (toval))
2510 error (_("Left operand of assignment is not a modifiable lvalue."));
2511
2512 if (VALUE_LVAL (toval) == lval_memory
2513 && bits > 0
2514 && (TYPE_CODE (type) == TYPE_CODE_FLT
2515 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2516 {
2517 int len = (value_bitpos (toval)
2518 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2519 int from_size;
2520 char *buffer = (char *) alloca (len);
2521 struct value *val;
2522 CORE_ADDR to_addr = value_address (toval);
2523
2524 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2525 fromval = value_cast (type, fromval);
2526
2527 read_memory (to_addr, buffer, len);
2528 from_size = value_bitsize (fromval);
2529 if (from_size == 0)
2530 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2531 if (gdbarch_bits_big_endian (get_type_arch (type)))
2532 move_bits (buffer, value_bitpos (toval),
2533 value_contents (fromval), from_size - bits, bits, 1);
2534 else
2535 move_bits (buffer, value_bitpos (toval),
2536 value_contents (fromval), 0, bits, 0);
2537 write_memory (to_addr, buffer, len);
2538 observer_notify_memory_changed (to_addr, len, buffer);
2539
2540 val = value_copy (toval);
2541 memcpy (value_contents_raw (val), value_contents (fromval),
2542 TYPE_LENGTH (type));
2543 deprecated_set_value_type (val, type);
2544
2545 return val;
2546 }
2547
2548 return value_assign (toval, fromval);
2549 }
2550
2551
2552 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2553 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2554 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2555 * COMPONENT, and not the inferior's memory. The current contents
2556 * of COMPONENT are ignored. */
2557 static void
2558 value_assign_to_component (struct value *container, struct value *component,
2559 struct value *val)
2560 {
2561 LONGEST offset_in_container =
2562 (LONGEST) (value_address (component) - value_address (container));
2563 int bit_offset_in_container =
2564 value_bitpos (component) - value_bitpos (container);
2565 int bits;
2566
2567 val = value_cast (value_type (component), val);
2568
2569 if (value_bitsize (component) == 0)
2570 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2571 else
2572 bits = value_bitsize (component);
2573
2574 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2575 move_bits (value_contents_writeable (container) + offset_in_container,
2576 value_bitpos (container) + bit_offset_in_container,
2577 value_contents (val),
2578 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2579 bits, 1);
2580 else
2581 move_bits (value_contents_writeable (container) + offset_in_container,
2582 value_bitpos (container) + bit_offset_in_container,
2583 value_contents (val), 0, bits, 0);
2584 }
2585
2586 /* The value of the element of array ARR at the ARITY indices given in IND.
2587 ARR may be either a simple array, GNAT array descriptor, or pointer
2588 thereto. */
2589
2590 struct value *
2591 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2592 {
2593 int k;
2594 struct value *elt;
2595 struct type *elt_type;
2596
2597 elt = ada_coerce_to_simple_array (arr);
2598
2599 elt_type = ada_check_typedef (value_type (elt));
2600 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2601 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2602 return value_subscript_packed (elt, arity, ind);
2603
2604 for (k = 0; k < arity; k += 1)
2605 {
2606 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2607 error (_("too many subscripts (%d expected)"), k);
2608 elt = value_subscript (elt, pos_atr (ind[k]));
2609 }
2610 return elt;
2611 }
2612
2613 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2614 value of the element of *ARR at the ARITY indices given in
2615 IND. Does not read the entire array into memory. */
2616
2617 static struct value *
2618 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2619 struct value **ind)
2620 {
2621 int k;
2622
2623 for (k = 0; k < arity; k += 1)
2624 {
2625 LONGEST lwb, upb;
2626
2627 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2628 error (_("too many subscripts (%d expected)"), k);
2629 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2630 value_copy (arr));
2631 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2632 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2633 type = TYPE_TARGET_TYPE (type);
2634 }
2635
2636 return value_ind (arr);
2637 }
2638
2639 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2640 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2641 elements starting at index LOW. The lower bound of this array is LOW, as
2642 per Ada rules. */
2643 static struct value *
2644 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2645 int low, int high)
2646 {
2647 struct type *type0 = ada_check_typedef (type);
2648 CORE_ADDR base = value_as_address (array_ptr)
2649 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)))
2650 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2651 struct type *index_type =
2652 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)),
2653 low, high);
2654 struct type *slice_type =
2655 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
2656
2657 return value_at_lazy (slice_type, base);
2658 }
2659
2660
2661 static struct value *
2662 ada_value_slice (struct value *array, int low, int high)
2663 {
2664 struct type *type = ada_check_typedef (value_type (array));
2665 struct type *index_type =
2666 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2667 struct type *slice_type =
2668 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2669
2670 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2671 }
2672
2673 /* If type is a record type in the form of a standard GNAT array
2674 descriptor, returns the number of dimensions for type. If arr is a
2675 simple array, returns the number of "array of"s that prefix its
2676 type designation. Otherwise, returns 0. */
2677
2678 int
2679 ada_array_arity (struct type *type)
2680 {
2681 int arity;
2682
2683 if (type == NULL)
2684 return 0;
2685
2686 type = desc_base_type (type);
2687
2688 arity = 0;
2689 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2690 return desc_arity (desc_bounds_type (type));
2691 else
2692 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2693 {
2694 arity += 1;
2695 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2696 }
2697
2698 return arity;
2699 }
2700
2701 /* If TYPE is a record type in the form of a standard GNAT array
2702 descriptor or a simple array type, returns the element type for
2703 TYPE after indexing by NINDICES indices, or by all indices if
2704 NINDICES is -1. Otherwise, returns NULL. */
2705
2706 struct type *
2707 ada_array_element_type (struct type *type, int nindices)
2708 {
2709 type = desc_base_type (type);
2710
2711 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2712 {
2713 int k;
2714 struct type *p_array_type;
2715
2716 p_array_type = desc_data_target_type (type);
2717
2718 k = ada_array_arity (type);
2719 if (k == 0)
2720 return NULL;
2721
2722 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2723 if (nindices >= 0 && k > nindices)
2724 k = nindices;
2725 while (k > 0 && p_array_type != NULL)
2726 {
2727 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2728 k -= 1;
2729 }
2730 return p_array_type;
2731 }
2732 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2733 {
2734 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2735 {
2736 type = TYPE_TARGET_TYPE (type);
2737 nindices -= 1;
2738 }
2739 return type;
2740 }
2741
2742 return NULL;
2743 }
2744
2745 /* The type of nth index in arrays of given type (n numbering from 1).
2746 Does not examine memory. Throws an error if N is invalid or TYPE
2747 is not an array type. NAME is the name of the Ada attribute being
2748 evaluated ('range, 'first, 'last, or 'length); it is used in building
2749 the error message. */
2750
2751 static struct type *
2752 ada_index_type (struct type *type, int n, const char *name)
2753 {
2754 struct type *result_type;
2755
2756 type = desc_base_type (type);
2757
2758 if (n < 0 || n > ada_array_arity (type))
2759 error (_("invalid dimension number to '%s"), name);
2760
2761 if (ada_is_simple_array_type (type))
2762 {
2763 int i;
2764
2765 for (i = 1; i < n; i += 1)
2766 type = TYPE_TARGET_TYPE (type);
2767 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2768 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2769 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2770 perhaps stabsread.c would make more sense. */
2771 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2772 result_type = NULL;
2773 }
2774 else
2775 {
2776 result_type = desc_index_type (desc_bounds_type (type), n);
2777 if (result_type == NULL)
2778 error (_("attempt to take bound of something that is not an array"));
2779 }
2780
2781 return result_type;
2782 }
2783
2784 /* Given that arr is an array type, returns the lower bound of the
2785 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2786 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2787 array-descriptor type. It works for other arrays with bounds supplied
2788 by run-time quantities other than discriminants. */
2789
2790 static LONGEST
2791 ada_array_bound_from_type (struct type * arr_type, int n, int which)
2792 {
2793 struct type *type, *elt_type, *index_type_desc, *index_type;
2794 int i;
2795
2796 gdb_assert (which == 0 || which == 1);
2797
2798 if (ada_is_constrained_packed_array_type (arr_type))
2799 arr_type = decode_constrained_packed_array_type (arr_type);
2800
2801 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2802 return (LONGEST) - which;
2803
2804 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2805 type = TYPE_TARGET_TYPE (arr_type);
2806 else
2807 type = arr_type;
2808
2809 elt_type = type;
2810 for (i = n; i > 1; i--)
2811 elt_type = TYPE_TARGET_TYPE (type);
2812
2813 index_type_desc = ada_find_parallel_type (type, "___XA");
2814 ada_fixup_array_indexes_type (index_type_desc);
2815 if (index_type_desc != NULL)
2816 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2817 NULL);
2818 else
2819 index_type = TYPE_INDEX_TYPE (elt_type);
2820
2821 return
2822 (LONGEST) (which == 0
2823 ? ada_discrete_type_low_bound (index_type)
2824 : ada_discrete_type_high_bound (index_type));
2825 }
2826
2827 /* Given that arr is an array value, returns the lower bound of the
2828 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2829 WHICH is 1. This routine will also work for arrays with bounds
2830 supplied by run-time quantities other than discriminants. */
2831
2832 static LONGEST
2833 ada_array_bound (struct value *arr, int n, int which)
2834 {
2835 struct type *arr_type = value_type (arr);
2836
2837 if (ada_is_constrained_packed_array_type (arr_type))
2838 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
2839 else if (ada_is_simple_array_type (arr_type))
2840 return ada_array_bound_from_type (arr_type, n, which);
2841 else
2842 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2843 }
2844
2845 /* Given that arr is an array value, returns the length of the
2846 nth index. This routine will also work for arrays with bounds
2847 supplied by run-time quantities other than discriminants.
2848 Does not work for arrays indexed by enumeration types with representation
2849 clauses at the moment. */
2850
2851 static LONGEST
2852 ada_array_length (struct value *arr, int n)
2853 {
2854 struct type *arr_type = ada_check_typedef (value_type (arr));
2855
2856 if (ada_is_constrained_packed_array_type (arr_type))
2857 return ada_array_length (decode_constrained_packed_array (arr), n);
2858
2859 if (ada_is_simple_array_type (arr_type))
2860 return (ada_array_bound_from_type (arr_type, n, 1)
2861 - ada_array_bound_from_type (arr_type, n, 0) + 1);
2862 else
2863 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2864 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
2865 }
2866
2867 /* An empty array whose type is that of ARR_TYPE (an array type),
2868 with bounds LOW to LOW-1. */
2869
2870 static struct value *
2871 empty_array (struct type *arr_type, int low)
2872 {
2873 struct type *arr_type0 = ada_check_typedef (arr_type);
2874 struct type *index_type =
2875 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)),
2876 low, low - 1);
2877 struct type *elt_type = ada_array_element_type (arr_type0, 1);
2878
2879 return allocate_value (create_array_type (NULL, elt_type, index_type));
2880 }
2881 \f
2882
2883 /* Name resolution */
2884
2885 /* The "decoded" name for the user-definable Ada operator corresponding
2886 to OP. */
2887
2888 static const char *
2889 ada_decoded_op_name (enum exp_opcode op)
2890 {
2891 int i;
2892
2893 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2894 {
2895 if (ada_opname_table[i].op == op)
2896 return ada_opname_table[i].decoded;
2897 }
2898 error (_("Could not find operator name for opcode"));
2899 }
2900
2901
2902 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2903 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2904 undefined namespace) and converts operators that are
2905 user-defined into appropriate function calls. If CONTEXT_TYPE is
2906 non-null, it provides a preferred result type [at the moment, only
2907 type void has any effect---causing procedures to be preferred over
2908 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2909 return type is preferred. May change (expand) *EXP. */
2910
2911 static void
2912 resolve (struct expression **expp, int void_context_p)
2913 {
2914 struct type *context_type = NULL;
2915 int pc = 0;
2916
2917 if (void_context_p)
2918 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2919
2920 resolve_subexp (expp, &pc, 1, context_type);
2921 }
2922
2923 /* Resolve the operator of the subexpression beginning at
2924 position *POS of *EXPP. "Resolving" consists of replacing
2925 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2926 with their resolutions, replacing built-in operators with
2927 function calls to user-defined operators, where appropriate, and,
2928 when DEPROCEDURE_P is non-zero, converting function-valued variables
2929 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2930 are as in ada_resolve, above. */
2931
2932 static struct value *
2933 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2934 struct type *context_type)
2935 {
2936 int pc = *pos;
2937 int i;
2938 struct expression *exp; /* Convenience: == *expp. */
2939 enum exp_opcode op = (*expp)->elts[pc].opcode;
2940 struct value **argvec; /* Vector of operand types (alloca'ed). */
2941 int nargs; /* Number of operands. */
2942 int oplen;
2943
2944 argvec = NULL;
2945 nargs = 0;
2946 exp = *expp;
2947
2948 /* Pass one: resolve operands, saving their types and updating *pos,
2949 if needed. */
2950 switch (op)
2951 {
2952 case OP_FUNCALL:
2953 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2954 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2955 *pos += 7;
2956 else
2957 {
2958 *pos += 3;
2959 resolve_subexp (expp, pos, 0, NULL);
2960 }
2961 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2962 break;
2963
2964 case UNOP_ADDR:
2965 *pos += 1;
2966 resolve_subexp (expp, pos, 0, NULL);
2967 break;
2968
2969 case UNOP_QUAL:
2970 *pos += 3;
2971 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
2972 break;
2973
2974 case OP_ATR_MODULUS:
2975 case OP_ATR_SIZE:
2976 case OP_ATR_TAG:
2977 case OP_ATR_FIRST:
2978 case OP_ATR_LAST:
2979 case OP_ATR_LENGTH:
2980 case OP_ATR_POS:
2981 case OP_ATR_VAL:
2982 case OP_ATR_MIN:
2983 case OP_ATR_MAX:
2984 case TERNOP_IN_RANGE:
2985 case BINOP_IN_BOUNDS:
2986 case UNOP_IN_RANGE:
2987 case OP_AGGREGATE:
2988 case OP_OTHERS:
2989 case OP_CHOICES:
2990 case OP_POSITIONAL:
2991 case OP_DISCRETE_RANGE:
2992 case OP_NAME:
2993 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2994 *pos += oplen;
2995 break;
2996
2997 case BINOP_ASSIGN:
2998 {
2999 struct value *arg1;
3000
3001 *pos += 1;
3002 arg1 = resolve_subexp (expp, pos, 0, NULL);
3003 if (arg1 == NULL)
3004 resolve_subexp (expp, pos, 1, NULL);
3005 else
3006 resolve_subexp (expp, pos, 1, value_type (arg1));
3007 break;
3008 }
3009
3010 case UNOP_CAST:
3011 *pos += 3;
3012 nargs = 1;
3013 break;
3014
3015 case BINOP_ADD:
3016 case BINOP_SUB:
3017 case BINOP_MUL:
3018 case BINOP_DIV:
3019 case BINOP_REM:
3020 case BINOP_MOD:
3021 case BINOP_EXP:
3022 case BINOP_CONCAT:
3023 case BINOP_LOGICAL_AND:
3024 case BINOP_LOGICAL_OR:
3025 case BINOP_BITWISE_AND:
3026 case BINOP_BITWISE_IOR:
3027 case BINOP_BITWISE_XOR:
3028
3029 case BINOP_EQUAL:
3030 case BINOP_NOTEQUAL:
3031 case BINOP_LESS:
3032 case BINOP_GTR:
3033 case BINOP_LEQ:
3034 case BINOP_GEQ:
3035
3036 case BINOP_REPEAT:
3037 case BINOP_SUBSCRIPT:
3038 case BINOP_COMMA:
3039 *pos += 1;
3040 nargs = 2;
3041 break;
3042
3043 case UNOP_NEG:
3044 case UNOP_PLUS:
3045 case UNOP_LOGICAL_NOT:
3046 case UNOP_ABS:
3047 case UNOP_IND:
3048 *pos += 1;
3049 nargs = 1;
3050 break;
3051
3052 case OP_LONG:
3053 case OP_DOUBLE:
3054 case OP_VAR_VALUE:
3055 *pos += 4;
3056 break;
3057
3058 case OP_TYPE:
3059 case OP_BOOL:
3060 case OP_LAST:
3061 case OP_INTERNALVAR:
3062 *pos += 3;
3063 break;
3064
3065 case UNOP_MEMVAL:
3066 *pos += 3;
3067 nargs = 1;
3068 break;
3069
3070 case OP_REGISTER:
3071 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3072 break;
3073
3074 case STRUCTOP_STRUCT:
3075 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3076 nargs = 1;
3077 break;
3078
3079 case TERNOP_SLICE:
3080 *pos += 1;
3081 nargs = 3;
3082 break;
3083
3084 case OP_STRING:
3085 break;
3086
3087 default:
3088 error (_("Unexpected operator during name resolution"));
3089 }
3090
3091 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
3092 for (i = 0; i < nargs; i += 1)
3093 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3094 argvec[i] = NULL;
3095 exp = *expp;
3096
3097 /* Pass two: perform any resolution on principal operator. */
3098 switch (op)
3099 {
3100 default:
3101 break;
3102
3103 case OP_VAR_VALUE:
3104 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3105 {
3106 struct ada_symbol_info *candidates;
3107 int n_candidates;
3108
3109 n_candidates =
3110 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3111 (exp->elts[pc + 2].symbol),
3112 exp->elts[pc + 1].block, VAR_DOMAIN,
3113 &candidates, 1);
3114
3115 if (n_candidates > 1)
3116 {
3117 /* Types tend to get re-introduced locally, so if there
3118 are any local symbols that are not types, first filter
3119 out all types. */
3120 int j;
3121 for (j = 0; j < n_candidates; j += 1)
3122 switch (SYMBOL_CLASS (candidates[j].sym))
3123 {
3124 case LOC_REGISTER:
3125 case LOC_ARG:
3126 case LOC_REF_ARG:
3127 case LOC_REGPARM_ADDR:
3128 case LOC_LOCAL:
3129 case LOC_COMPUTED:
3130 goto FoundNonType;
3131 default:
3132 break;
3133 }
3134 FoundNonType:
3135 if (j < n_candidates)
3136 {
3137 j = 0;
3138 while (j < n_candidates)
3139 {
3140 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3141 {
3142 candidates[j] = candidates[n_candidates - 1];
3143 n_candidates -= 1;
3144 }
3145 else
3146 j += 1;
3147 }
3148 }
3149 }
3150
3151 if (n_candidates == 0)
3152 error (_("No definition found for %s"),
3153 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3154 else if (n_candidates == 1)
3155 i = 0;
3156 else if (deprocedure_p
3157 && !is_nonfunction (candidates, n_candidates))
3158 {
3159 i = ada_resolve_function
3160 (candidates, n_candidates, NULL, 0,
3161 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3162 context_type);
3163 if (i < 0)
3164 error (_("Could not find a match for %s"),
3165 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3166 }
3167 else
3168 {
3169 printf_filtered (_("Multiple matches for %s\n"),
3170 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3171 user_select_syms (candidates, n_candidates, 1);
3172 i = 0;
3173 }
3174
3175 exp->elts[pc + 1].block = candidates[i].block;
3176 exp->elts[pc + 2].symbol = candidates[i].sym;
3177 if (innermost_block == NULL
3178 || contained_in (candidates[i].block, innermost_block))
3179 innermost_block = candidates[i].block;
3180 }
3181
3182 if (deprocedure_p
3183 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3184 == TYPE_CODE_FUNC))
3185 {
3186 replace_operator_with_call (expp, pc, 0, 0,
3187 exp->elts[pc + 2].symbol,
3188 exp->elts[pc + 1].block);
3189 exp = *expp;
3190 }
3191 break;
3192
3193 case OP_FUNCALL:
3194 {
3195 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3196 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3197 {
3198 struct ada_symbol_info *candidates;
3199 int n_candidates;
3200
3201 n_candidates =
3202 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3203 (exp->elts[pc + 5].symbol),
3204 exp->elts[pc + 4].block, VAR_DOMAIN,
3205 &candidates, 1);
3206 if (n_candidates == 1)
3207 i = 0;
3208 else
3209 {
3210 i = ada_resolve_function
3211 (candidates, n_candidates,
3212 argvec, nargs,
3213 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3214 context_type);
3215 if (i < 0)
3216 error (_("Could not find a match for %s"),
3217 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3218 }
3219
3220 exp->elts[pc + 4].block = candidates[i].block;
3221 exp->elts[pc + 5].symbol = candidates[i].sym;
3222 if (innermost_block == NULL
3223 || contained_in (candidates[i].block, innermost_block))
3224 innermost_block = candidates[i].block;
3225 }
3226 }
3227 break;
3228 case BINOP_ADD:
3229 case BINOP_SUB:
3230 case BINOP_MUL:
3231 case BINOP_DIV:
3232 case BINOP_REM:
3233 case BINOP_MOD:
3234 case BINOP_CONCAT:
3235 case BINOP_BITWISE_AND:
3236 case BINOP_BITWISE_IOR:
3237 case BINOP_BITWISE_XOR:
3238 case BINOP_EQUAL:
3239 case BINOP_NOTEQUAL:
3240 case BINOP_LESS:
3241 case BINOP_GTR:
3242 case BINOP_LEQ:
3243 case BINOP_GEQ:
3244 case BINOP_EXP:
3245 case UNOP_NEG:
3246 case UNOP_PLUS:
3247 case UNOP_LOGICAL_NOT:
3248 case UNOP_ABS:
3249 if (possible_user_operator_p (op, argvec))
3250 {
3251 struct ada_symbol_info *candidates;
3252 int n_candidates;
3253
3254 n_candidates =
3255 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3256 (struct block *) NULL, VAR_DOMAIN,
3257 &candidates, 1);
3258 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3259 ada_decoded_op_name (op), NULL);
3260 if (i < 0)
3261 break;
3262
3263 replace_operator_with_call (expp, pc, nargs, 1,
3264 candidates[i].sym, candidates[i].block);
3265 exp = *expp;
3266 }
3267 break;
3268
3269 case OP_TYPE:
3270 case OP_REGISTER:
3271 return NULL;
3272 }
3273
3274 *pos = pc;
3275 return evaluate_subexp_type (exp, pos);
3276 }
3277
3278 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3279 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3280 a non-pointer. */
3281 /* The term "match" here is rather loose. The match is heuristic and
3282 liberal. */
3283
3284 static int
3285 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3286 {
3287 ftype = ada_check_typedef (ftype);
3288 atype = ada_check_typedef (atype);
3289
3290 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3291 ftype = TYPE_TARGET_TYPE (ftype);
3292 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3293 atype = TYPE_TARGET_TYPE (atype);
3294
3295 switch (TYPE_CODE (ftype))
3296 {
3297 default:
3298 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3299 case TYPE_CODE_PTR:
3300 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3301 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3302 TYPE_TARGET_TYPE (atype), 0);
3303 else
3304 return (may_deref
3305 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3306 case TYPE_CODE_INT:
3307 case TYPE_CODE_ENUM:
3308 case TYPE_CODE_RANGE:
3309 switch (TYPE_CODE (atype))
3310 {
3311 case TYPE_CODE_INT:
3312 case TYPE_CODE_ENUM:
3313 case TYPE_CODE_RANGE:
3314 return 1;
3315 default:
3316 return 0;
3317 }
3318
3319 case TYPE_CODE_ARRAY:
3320 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3321 || ada_is_array_descriptor_type (atype));
3322
3323 case TYPE_CODE_STRUCT:
3324 if (ada_is_array_descriptor_type (ftype))
3325 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3326 || ada_is_array_descriptor_type (atype));
3327 else
3328 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3329 && !ada_is_array_descriptor_type (atype));
3330
3331 case TYPE_CODE_UNION:
3332 case TYPE_CODE_FLT:
3333 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3334 }
3335 }
3336
3337 /* Return non-zero if the formals of FUNC "sufficiently match" the
3338 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3339 may also be an enumeral, in which case it is treated as a 0-
3340 argument function. */
3341
3342 static int
3343 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3344 {
3345 int i;
3346 struct type *func_type = SYMBOL_TYPE (func);
3347
3348 if (SYMBOL_CLASS (func) == LOC_CONST
3349 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3350 return (n_actuals == 0);
3351 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3352 return 0;
3353
3354 if (TYPE_NFIELDS (func_type) != n_actuals)
3355 return 0;
3356
3357 for (i = 0; i < n_actuals; i += 1)
3358 {
3359 if (actuals[i] == NULL)
3360 return 0;
3361 else
3362 {
3363 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3364 i));
3365 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3366
3367 if (!ada_type_match (ftype, atype, 1))
3368 return 0;
3369 }
3370 }
3371 return 1;
3372 }
3373
3374 /* False iff function type FUNC_TYPE definitely does not produce a value
3375 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3376 FUNC_TYPE is not a valid function type with a non-null return type
3377 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3378
3379 static int
3380 return_match (struct type *func_type, struct type *context_type)
3381 {
3382 struct type *return_type;
3383
3384 if (func_type == NULL)
3385 return 1;
3386
3387 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3388 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3389 else
3390 return_type = get_base_type (func_type);
3391 if (return_type == NULL)
3392 return 1;
3393
3394 context_type = get_base_type (context_type);
3395
3396 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3397 return context_type == NULL || return_type == context_type;
3398 else if (context_type == NULL)
3399 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3400 else
3401 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3402 }
3403
3404
3405 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3406 function (if any) that matches the types of the NARGS arguments in
3407 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3408 that returns that type, then eliminate matches that don't. If
3409 CONTEXT_TYPE is void and there is at least one match that does not
3410 return void, eliminate all matches that do.
3411
3412 Asks the user if there is more than one match remaining. Returns -1
3413 if there is no such symbol or none is selected. NAME is used
3414 solely for messages. May re-arrange and modify SYMS in
3415 the process; the index returned is for the modified vector. */
3416
3417 static int
3418 ada_resolve_function (struct ada_symbol_info syms[],
3419 int nsyms, struct value **args, int nargs,
3420 const char *name, struct type *context_type)
3421 {
3422 int fallback;
3423 int k;
3424 int m; /* Number of hits */
3425
3426 m = 0;
3427 /* In the first pass of the loop, we only accept functions matching
3428 context_type. If none are found, we add a second pass of the loop
3429 where every function is accepted. */
3430 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3431 {
3432 for (k = 0; k < nsyms; k += 1)
3433 {
3434 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3435
3436 if (ada_args_match (syms[k].sym, args, nargs)
3437 && (fallback || return_match (type, context_type)))
3438 {
3439 syms[m] = syms[k];
3440 m += 1;
3441 }
3442 }
3443 }
3444
3445 if (m == 0)
3446 return -1;
3447 else if (m > 1)
3448 {
3449 printf_filtered (_("Multiple matches for %s\n"), name);
3450 user_select_syms (syms, m, 1);
3451 return 0;
3452 }
3453 return 0;
3454 }
3455
3456 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3457 in a listing of choices during disambiguation (see sort_choices, below).
3458 The idea is that overloadings of a subprogram name from the
3459 same package should sort in their source order. We settle for ordering
3460 such symbols by their trailing number (__N or $N). */
3461
3462 static int
3463 encoded_ordered_before (const char *N0, const char *N1)
3464 {
3465 if (N1 == NULL)
3466 return 0;
3467 else if (N0 == NULL)
3468 return 1;
3469 else
3470 {
3471 int k0, k1;
3472
3473 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3474 ;
3475 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3476 ;
3477 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3478 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3479 {
3480 int n0, n1;
3481
3482 n0 = k0;
3483 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3484 n0 -= 1;
3485 n1 = k1;
3486 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3487 n1 -= 1;
3488 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3489 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3490 }
3491 return (strcmp (N0, N1) < 0);
3492 }
3493 }
3494
3495 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3496 encoded names. */
3497
3498 static void
3499 sort_choices (struct ada_symbol_info syms[], int nsyms)
3500 {
3501 int i;
3502
3503 for (i = 1; i < nsyms; i += 1)
3504 {
3505 struct ada_symbol_info sym = syms[i];
3506 int j;
3507
3508 for (j = i - 1; j >= 0; j -= 1)
3509 {
3510 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3511 SYMBOL_LINKAGE_NAME (sym.sym)))
3512 break;
3513 syms[j + 1] = syms[j];
3514 }
3515 syms[j + 1] = sym;
3516 }
3517 }
3518
3519 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3520 by asking the user (if necessary), returning the number selected,
3521 and setting the first elements of SYMS items. Error if no symbols
3522 selected. */
3523
3524 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3525 to be re-integrated one of these days. */
3526
3527 int
3528 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3529 {
3530 int i;
3531 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3532 int n_chosen;
3533 int first_choice = (max_results == 1) ? 1 : 2;
3534 const char *select_mode = multiple_symbols_select_mode ();
3535
3536 if (max_results < 1)
3537 error (_("Request to select 0 symbols!"));
3538 if (nsyms <= 1)
3539 return nsyms;
3540
3541 if (select_mode == multiple_symbols_cancel)
3542 error (_("\
3543 canceled because the command is ambiguous\n\
3544 See set/show multiple-symbol."));
3545
3546 /* If select_mode is "all", then return all possible symbols.
3547 Only do that if more than one symbol can be selected, of course.
3548 Otherwise, display the menu as usual. */
3549 if (select_mode == multiple_symbols_all && max_results > 1)
3550 return nsyms;
3551
3552 printf_unfiltered (_("[0] cancel\n"));
3553 if (max_results > 1)
3554 printf_unfiltered (_("[1] all\n"));
3555
3556 sort_choices (syms, nsyms);
3557
3558 for (i = 0; i < nsyms; i += 1)
3559 {
3560 if (syms[i].sym == NULL)
3561 continue;
3562
3563 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3564 {
3565 struct symtab_and_line sal =
3566 find_function_start_sal (syms[i].sym, 1);
3567
3568 if (sal.symtab == NULL)
3569 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3570 i + first_choice,
3571 SYMBOL_PRINT_NAME (syms[i].sym),
3572 sal.line);
3573 else
3574 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3575 SYMBOL_PRINT_NAME (syms[i].sym),
3576 sal.symtab->filename, sal.line);
3577 continue;
3578 }
3579 else
3580 {
3581 int is_enumeral =
3582 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3583 && SYMBOL_TYPE (syms[i].sym) != NULL
3584 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3585 struct symtab *symtab = syms[i].sym->symtab;
3586
3587 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3588 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3589 i + first_choice,
3590 SYMBOL_PRINT_NAME (syms[i].sym),
3591 symtab->filename, SYMBOL_LINE (syms[i].sym));
3592 else if (is_enumeral
3593 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3594 {
3595 printf_unfiltered (("[%d] "), i + first_choice);
3596 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3597 gdb_stdout, -1, 0);
3598 printf_unfiltered (_("'(%s) (enumeral)\n"),
3599 SYMBOL_PRINT_NAME (syms[i].sym));
3600 }
3601 else if (symtab != NULL)
3602 printf_unfiltered (is_enumeral
3603 ? _("[%d] %s in %s (enumeral)\n")
3604 : _("[%d] %s at %s:?\n"),
3605 i + first_choice,
3606 SYMBOL_PRINT_NAME (syms[i].sym),
3607 symtab->filename);
3608 else
3609 printf_unfiltered (is_enumeral
3610 ? _("[%d] %s (enumeral)\n")
3611 : _("[%d] %s at ?\n"),
3612 i + first_choice,
3613 SYMBOL_PRINT_NAME (syms[i].sym));
3614 }
3615 }
3616
3617 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3618 "overload-choice");
3619
3620 for (i = 0; i < n_chosen; i += 1)
3621 syms[i] = syms[chosen[i]];
3622
3623 return n_chosen;
3624 }
3625
3626 /* Read and validate a set of numeric choices from the user in the
3627 range 0 .. N_CHOICES-1. Place the results in increasing
3628 order in CHOICES[0 .. N-1], and return N.
3629
3630 The user types choices as a sequence of numbers on one line
3631 separated by blanks, encoding them as follows:
3632
3633 + A choice of 0 means to cancel the selection, throwing an error.
3634 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3635 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3636
3637 The user is not allowed to choose more than MAX_RESULTS values.
3638
3639 ANNOTATION_SUFFIX, if present, is used to annotate the input
3640 prompts (for use with the -f switch). */
3641
3642 int
3643 get_selections (int *choices, int n_choices, int max_results,
3644 int is_all_choice, char *annotation_suffix)
3645 {
3646 char *args;
3647 char *prompt;
3648 int n_chosen;
3649 int first_choice = is_all_choice ? 2 : 1;
3650
3651 prompt = getenv ("PS2");
3652 if (prompt == NULL)
3653 prompt = "> ";
3654
3655 args = command_line_input (prompt, 0, annotation_suffix);
3656
3657 if (args == NULL)
3658 error_no_arg (_("one or more choice numbers"));
3659
3660 n_chosen = 0;
3661
3662 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3663 order, as given in args. Choices are validated. */
3664 while (1)
3665 {
3666 char *args2;
3667 int choice, j;
3668
3669 args = skip_spaces (args);
3670 if (*args == '\0' && n_chosen == 0)
3671 error_no_arg (_("one or more choice numbers"));
3672 else if (*args == '\0')
3673 break;
3674
3675 choice = strtol (args, &args2, 10);
3676 if (args == args2 || choice < 0
3677 || choice > n_choices + first_choice - 1)
3678 error (_("Argument must be choice number"));
3679 args = args2;
3680
3681 if (choice == 0)
3682 error (_("cancelled"));
3683
3684 if (choice < first_choice)
3685 {
3686 n_chosen = n_choices;
3687 for (j = 0; j < n_choices; j += 1)
3688 choices[j] = j;
3689 break;
3690 }
3691 choice -= first_choice;
3692
3693 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3694 {
3695 }
3696
3697 if (j < 0 || choice != choices[j])
3698 {
3699 int k;
3700
3701 for (k = n_chosen - 1; k > j; k -= 1)
3702 choices[k + 1] = choices[k];
3703 choices[j + 1] = choice;
3704 n_chosen += 1;
3705 }
3706 }
3707
3708 if (n_chosen > max_results)
3709 error (_("Select no more than %d of the above"), max_results);
3710
3711 return n_chosen;
3712 }
3713
3714 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3715 on the function identified by SYM and BLOCK, and taking NARGS
3716 arguments. Update *EXPP as needed to hold more space. */
3717
3718 static void
3719 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3720 int oplen, struct symbol *sym,
3721 struct block *block)
3722 {
3723 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3724 symbol, -oplen for operator being replaced). */
3725 struct expression *newexp = (struct expression *)
3726 xzalloc (sizeof (struct expression)
3727 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3728 struct expression *exp = *expp;
3729
3730 newexp->nelts = exp->nelts + 7 - oplen;
3731 newexp->language_defn = exp->language_defn;
3732 newexp->gdbarch = exp->gdbarch;
3733 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3734 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3735 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3736
3737 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3738 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3739
3740 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3741 newexp->elts[pc + 4].block = block;
3742 newexp->elts[pc + 5].symbol = sym;
3743
3744 *expp = newexp;
3745 xfree (exp);
3746 }
3747
3748 /* Type-class predicates */
3749
3750 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3751 or FLOAT). */
3752
3753 static int
3754 numeric_type_p (struct type *type)
3755 {
3756 if (type == NULL)
3757 return 0;
3758 else
3759 {
3760 switch (TYPE_CODE (type))
3761 {
3762 case TYPE_CODE_INT:
3763 case TYPE_CODE_FLT:
3764 return 1;
3765 case TYPE_CODE_RANGE:
3766 return (type == TYPE_TARGET_TYPE (type)
3767 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3768 default:
3769 return 0;
3770 }
3771 }
3772 }
3773
3774 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3775
3776 static int
3777 integer_type_p (struct type *type)
3778 {
3779 if (type == NULL)
3780 return 0;
3781 else
3782 {
3783 switch (TYPE_CODE (type))
3784 {
3785 case TYPE_CODE_INT:
3786 return 1;
3787 case TYPE_CODE_RANGE:
3788 return (type == TYPE_TARGET_TYPE (type)
3789 || integer_type_p (TYPE_TARGET_TYPE (type)));
3790 default:
3791 return 0;
3792 }
3793 }
3794 }
3795
3796 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3797
3798 static int
3799 scalar_type_p (struct type *type)
3800 {
3801 if (type == NULL)
3802 return 0;
3803 else
3804 {
3805 switch (TYPE_CODE (type))
3806 {
3807 case TYPE_CODE_INT:
3808 case TYPE_CODE_RANGE:
3809 case TYPE_CODE_ENUM:
3810 case TYPE_CODE_FLT:
3811 return 1;
3812 default:
3813 return 0;
3814 }
3815 }
3816 }
3817
3818 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3819
3820 static int
3821 discrete_type_p (struct type *type)
3822 {
3823 if (type == NULL)
3824 return 0;
3825 else
3826 {
3827 switch (TYPE_CODE (type))
3828 {
3829 case TYPE_CODE_INT:
3830 case TYPE_CODE_RANGE:
3831 case TYPE_CODE_ENUM:
3832 case TYPE_CODE_BOOL:
3833 return 1;
3834 default:
3835 return 0;
3836 }
3837 }
3838 }
3839
3840 /* Returns non-zero if OP with operands in the vector ARGS could be
3841 a user-defined function. Errs on the side of pre-defined operators
3842 (i.e., result 0). */
3843
3844 static int
3845 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3846 {
3847 struct type *type0 =
3848 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3849 struct type *type1 =
3850 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3851
3852 if (type0 == NULL)
3853 return 0;
3854
3855 switch (op)
3856 {
3857 default:
3858 return 0;
3859
3860 case BINOP_ADD:
3861 case BINOP_SUB:
3862 case BINOP_MUL:
3863 case BINOP_DIV:
3864 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3865
3866 case BINOP_REM:
3867 case BINOP_MOD:
3868 case BINOP_BITWISE_AND:
3869 case BINOP_BITWISE_IOR:
3870 case BINOP_BITWISE_XOR:
3871 return (!(integer_type_p (type0) && integer_type_p (type1)));
3872
3873 case BINOP_EQUAL:
3874 case BINOP_NOTEQUAL:
3875 case BINOP_LESS:
3876 case BINOP_GTR:
3877 case BINOP_LEQ:
3878 case BINOP_GEQ:
3879 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3880
3881 case BINOP_CONCAT:
3882 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3883
3884 case BINOP_EXP:
3885 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3886
3887 case UNOP_NEG:
3888 case UNOP_PLUS:
3889 case UNOP_LOGICAL_NOT:
3890 case UNOP_ABS:
3891 return (!numeric_type_p (type0));
3892
3893 }
3894 }
3895 \f
3896 /* Renaming */
3897
3898 /* NOTES:
3899
3900 1. In the following, we assume that a renaming type's name may
3901 have an ___XD suffix. It would be nice if this went away at some
3902 point.
3903 2. We handle both the (old) purely type-based representation of
3904 renamings and the (new) variable-based encoding. At some point,
3905 it is devoutly to be hoped that the former goes away
3906 (FIXME: hilfinger-2007-07-09).
3907 3. Subprogram renamings are not implemented, although the XRS
3908 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3909
3910 /* If SYM encodes a renaming,
3911
3912 <renaming> renames <renamed entity>,
3913
3914 sets *LEN to the length of the renamed entity's name,
3915 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3916 the string describing the subcomponent selected from the renamed
3917 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3918 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3919 are undefined). Otherwise, returns a value indicating the category
3920 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3921 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3922 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3923 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3924 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3925 may be NULL, in which case they are not assigned.
3926
3927 [Currently, however, GCC does not generate subprogram renamings.] */
3928
3929 enum ada_renaming_category
3930 ada_parse_renaming (struct symbol *sym,
3931 const char **renamed_entity, int *len,
3932 const char **renaming_expr)
3933 {
3934 enum ada_renaming_category kind;
3935 const char *info;
3936 const char *suffix;
3937
3938 if (sym == NULL)
3939 return ADA_NOT_RENAMING;
3940 switch (SYMBOL_CLASS (sym))
3941 {
3942 default:
3943 return ADA_NOT_RENAMING;
3944 case LOC_TYPEDEF:
3945 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3946 renamed_entity, len, renaming_expr);
3947 case LOC_LOCAL:
3948 case LOC_STATIC:
3949 case LOC_COMPUTED:
3950 case LOC_OPTIMIZED_OUT:
3951 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3952 if (info == NULL)
3953 return ADA_NOT_RENAMING;
3954 switch (info[5])
3955 {
3956 case '_':
3957 kind = ADA_OBJECT_RENAMING;
3958 info += 6;
3959 break;
3960 case 'E':
3961 kind = ADA_EXCEPTION_RENAMING;
3962 info += 7;
3963 break;
3964 case 'P':
3965 kind = ADA_PACKAGE_RENAMING;
3966 info += 7;
3967 break;
3968 case 'S':
3969 kind = ADA_SUBPROGRAM_RENAMING;
3970 info += 7;
3971 break;
3972 default:
3973 return ADA_NOT_RENAMING;
3974 }
3975 }
3976
3977 if (renamed_entity != NULL)
3978 *renamed_entity = info;
3979 suffix = strstr (info, "___XE");
3980 if (suffix == NULL || suffix == info)
3981 return ADA_NOT_RENAMING;
3982 if (len != NULL)
3983 *len = strlen (info) - strlen (suffix);
3984 suffix += 5;
3985 if (renaming_expr != NULL)
3986 *renaming_expr = suffix;
3987 return kind;
3988 }
3989
3990 /* Assuming TYPE encodes a renaming according to the old encoding in
3991 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3992 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3993 ADA_NOT_RENAMING otherwise. */
3994 static enum ada_renaming_category
3995 parse_old_style_renaming (struct type *type,
3996 const char **renamed_entity, int *len,
3997 const char **renaming_expr)
3998 {
3999 enum ada_renaming_category kind;
4000 const char *name;
4001 const char *info;
4002 const char *suffix;
4003
4004 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4005 || TYPE_NFIELDS (type) != 1)
4006 return ADA_NOT_RENAMING;
4007
4008 name = type_name_no_tag (type);
4009 if (name == NULL)
4010 return ADA_NOT_RENAMING;
4011
4012 name = strstr (name, "___XR");
4013 if (name == NULL)
4014 return ADA_NOT_RENAMING;
4015 switch (name[5])
4016 {
4017 case '\0':
4018 case '_':
4019 kind = ADA_OBJECT_RENAMING;
4020 break;
4021 case 'E':
4022 kind = ADA_EXCEPTION_RENAMING;
4023 break;
4024 case 'P':
4025 kind = ADA_PACKAGE_RENAMING;
4026 break;
4027 case 'S':
4028 kind = ADA_SUBPROGRAM_RENAMING;
4029 break;
4030 default:
4031 return ADA_NOT_RENAMING;
4032 }
4033
4034 info = TYPE_FIELD_NAME (type, 0);
4035 if (info == NULL)
4036 return ADA_NOT_RENAMING;
4037 if (renamed_entity != NULL)
4038 *renamed_entity = info;
4039 suffix = strstr (info, "___XE");
4040 if (renaming_expr != NULL)
4041 *renaming_expr = suffix + 5;
4042 if (suffix == NULL || suffix == info)
4043 return ADA_NOT_RENAMING;
4044 if (len != NULL)
4045 *len = suffix - info;
4046 return kind;
4047 }
4048
4049 /* Compute the value of the given RENAMING_SYM, which is expected to
4050 be a symbol encoding a renaming expression. BLOCK is the block
4051 used to evaluate the renaming. */
4052
4053 static struct value *
4054 ada_read_renaming_var_value (struct symbol *renaming_sym,
4055 struct block *block)
4056 {
4057 char *sym_name;
4058 struct expression *expr;
4059 struct value *value;
4060 struct cleanup *old_chain = NULL;
4061
4062 sym_name = xstrdup (SYMBOL_LINKAGE_NAME (renaming_sym));
4063 old_chain = make_cleanup (xfree, sym_name);
4064 expr = parse_exp_1 (&sym_name, block, 0);
4065 make_cleanup (free_current_contents, &expr);
4066 value = evaluate_expression (expr);
4067
4068 do_cleanups (old_chain);
4069 return value;
4070 }
4071 \f
4072
4073 /* Evaluation: Function Calls */
4074
4075 /* Return an lvalue containing the value VAL. This is the identity on
4076 lvalues, and otherwise has the side-effect of allocating memory
4077 in the inferior where a copy of the value contents is copied. */
4078
4079 static struct value *
4080 ensure_lval (struct value *val)
4081 {
4082 if (VALUE_LVAL (val) == not_lval
4083 || VALUE_LVAL (val) == lval_internalvar)
4084 {
4085 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4086 const CORE_ADDR addr =
4087 value_as_long (value_allocate_space_in_inferior (len));
4088
4089 set_value_address (val, addr);
4090 VALUE_LVAL (val) = lval_memory;
4091 write_memory (addr, value_contents (val), len);
4092 }
4093
4094 return val;
4095 }
4096
4097 /* Return the value ACTUAL, converted to be an appropriate value for a
4098 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4099 allocating any necessary descriptors (fat pointers), or copies of
4100 values not residing in memory, updating it as needed. */
4101
4102 struct value *
4103 ada_convert_actual (struct value *actual, struct type *formal_type0)
4104 {
4105 struct type *actual_type = ada_check_typedef (value_type (actual));
4106 struct type *formal_type = ada_check_typedef (formal_type0);
4107 struct type *formal_target =
4108 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4109 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4110 struct type *actual_target =
4111 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4112 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4113
4114 if (ada_is_array_descriptor_type (formal_target)
4115 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4116 return make_array_descriptor (formal_type, actual);
4117 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4118 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4119 {
4120 struct value *result;
4121
4122 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4123 && ada_is_array_descriptor_type (actual_target))
4124 result = desc_data (actual);
4125 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4126 {
4127 if (VALUE_LVAL (actual) != lval_memory)
4128 {
4129 struct value *val;
4130
4131 actual_type = ada_check_typedef (value_type (actual));
4132 val = allocate_value (actual_type);
4133 memcpy ((char *) value_contents_raw (val),
4134 (char *) value_contents (actual),
4135 TYPE_LENGTH (actual_type));
4136 actual = ensure_lval (val);
4137 }
4138 result = value_addr (actual);
4139 }
4140 else
4141 return actual;
4142 return value_cast_pointers (formal_type, result);
4143 }
4144 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4145 return ada_value_ind (actual);
4146
4147 return actual;
4148 }
4149
4150 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4151 type TYPE. This is usually an inefficient no-op except on some targets
4152 (such as AVR) where the representation of a pointer and an address
4153 differs. */
4154
4155 static CORE_ADDR
4156 value_pointer (struct value *value, struct type *type)
4157 {
4158 struct gdbarch *gdbarch = get_type_arch (type);
4159 unsigned len = TYPE_LENGTH (type);
4160 gdb_byte *buf = alloca (len);
4161 CORE_ADDR addr;
4162
4163 addr = value_address (value);
4164 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4165 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4166 return addr;
4167 }
4168
4169
4170 /* Push a descriptor of type TYPE for array value ARR on the stack at
4171 *SP, updating *SP to reflect the new descriptor. Return either
4172 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4173 to-descriptor type rather than a descriptor type), a struct value *
4174 representing a pointer to this descriptor. */
4175
4176 static struct value *
4177 make_array_descriptor (struct type *type, struct value *arr)
4178 {
4179 struct type *bounds_type = desc_bounds_type (type);
4180 struct type *desc_type = desc_base_type (type);
4181 struct value *descriptor = allocate_value (desc_type);
4182 struct value *bounds = allocate_value (bounds_type);
4183 int i;
4184
4185 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4186 i > 0; i -= 1)
4187 {
4188 modify_field (value_type (bounds), value_contents_writeable (bounds),
4189 ada_array_bound (arr, i, 0),
4190 desc_bound_bitpos (bounds_type, i, 0),
4191 desc_bound_bitsize (bounds_type, i, 0));
4192 modify_field (value_type (bounds), value_contents_writeable (bounds),
4193 ada_array_bound (arr, i, 1),
4194 desc_bound_bitpos (bounds_type, i, 1),
4195 desc_bound_bitsize (bounds_type, i, 1));
4196 }
4197
4198 bounds = ensure_lval (bounds);
4199
4200 modify_field (value_type (descriptor),
4201 value_contents_writeable (descriptor),
4202 value_pointer (ensure_lval (arr),
4203 TYPE_FIELD_TYPE (desc_type, 0)),
4204 fat_pntr_data_bitpos (desc_type),
4205 fat_pntr_data_bitsize (desc_type));
4206
4207 modify_field (value_type (descriptor),
4208 value_contents_writeable (descriptor),
4209 value_pointer (bounds,
4210 TYPE_FIELD_TYPE (desc_type, 1)),
4211 fat_pntr_bounds_bitpos (desc_type),
4212 fat_pntr_bounds_bitsize (desc_type));
4213
4214 descriptor = ensure_lval (descriptor);
4215
4216 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4217 return value_addr (descriptor);
4218 else
4219 return descriptor;
4220 }
4221 \f
4222 /* Dummy definitions for an experimental caching module that is not
4223 * used in the public sources. */
4224
4225 static int
4226 lookup_cached_symbol (const char *name, domain_enum namespace,
4227 struct symbol **sym, struct block **block)
4228 {
4229 return 0;
4230 }
4231
4232 static void
4233 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
4234 struct block *block)
4235 {
4236 }
4237 \f
4238 /* Symbol Lookup */
4239
4240 /* Return nonzero if wild matching should be used when searching for
4241 all symbols matching LOOKUP_NAME.
4242
4243 LOOKUP_NAME is expected to be a symbol name after transformation
4244 for Ada lookups (see ada_name_for_lookup). */
4245
4246 static int
4247 should_use_wild_match (const char *lookup_name)
4248 {
4249 return (strstr (lookup_name, "__") == NULL);
4250 }
4251
4252 /* Return the result of a standard (literal, C-like) lookup of NAME in
4253 given DOMAIN, visible from lexical block BLOCK. */
4254
4255 static struct symbol *
4256 standard_lookup (const char *name, const struct block *block,
4257 domain_enum domain)
4258 {
4259 struct symbol *sym;
4260
4261 if (lookup_cached_symbol (name, domain, &sym, NULL))
4262 return sym;
4263 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4264 cache_symbol (name, domain, sym, block_found);
4265 return sym;
4266 }
4267
4268
4269 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4270 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4271 since they contend in overloading in the same way. */
4272 static int
4273 is_nonfunction (struct ada_symbol_info syms[], int n)
4274 {
4275 int i;
4276
4277 for (i = 0; i < n; i += 1)
4278 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4279 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4280 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
4281 return 1;
4282
4283 return 0;
4284 }
4285
4286 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4287 struct types. Otherwise, they may not. */
4288
4289 static int
4290 equiv_types (struct type *type0, struct type *type1)
4291 {
4292 if (type0 == type1)
4293 return 1;
4294 if (type0 == NULL || type1 == NULL
4295 || TYPE_CODE (type0) != TYPE_CODE (type1))
4296 return 0;
4297 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4298 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4299 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4300 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4301 return 1;
4302
4303 return 0;
4304 }
4305
4306 /* True iff SYM0 represents the same entity as SYM1, or one that is
4307 no more defined than that of SYM1. */
4308
4309 static int
4310 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4311 {
4312 if (sym0 == sym1)
4313 return 1;
4314 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4315 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4316 return 0;
4317
4318 switch (SYMBOL_CLASS (sym0))
4319 {
4320 case LOC_UNDEF:
4321 return 1;
4322 case LOC_TYPEDEF:
4323 {
4324 struct type *type0 = SYMBOL_TYPE (sym0);
4325 struct type *type1 = SYMBOL_TYPE (sym1);
4326 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4327 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4328 int len0 = strlen (name0);
4329
4330 return
4331 TYPE_CODE (type0) == TYPE_CODE (type1)
4332 && (equiv_types (type0, type1)
4333 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4334 && strncmp (name1 + len0, "___XV", 5) == 0));
4335 }
4336 case LOC_CONST:
4337 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4338 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4339 default:
4340 return 0;
4341 }
4342 }
4343
4344 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4345 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4346
4347 static void
4348 add_defn_to_vec (struct obstack *obstackp,
4349 struct symbol *sym,
4350 struct block *block)
4351 {
4352 int i;
4353 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4354
4355 /* Do not try to complete stub types, as the debugger is probably
4356 already scanning all symbols matching a certain name at the
4357 time when this function is called. Trying to replace the stub
4358 type by its associated full type will cause us to restart a scan
4359 which may lead to an infinite recursion. Instead, the client
4360 collecting the matching symbols will end up collecting several
4361 matches, with at least one of them complete. It can then filter
4362 out the stub ones if needed. */
4363
4364 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4365 {
4366 if (lesseq_defined_than (sym, prevDefns[i].sym))
4367 return;
4368 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4369 {
4370 prevDefns[i].sym = sym;
4371 prevDefns[i].block = block;
4372 return;
4373 }
4374 }
4375
4376 {
4377 struct ada_symbol_info info;
4378
4379 info.sym = sym;
4380 info.block = block;
4381 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4382 }
4383 }
4384
4385 /* Number of ada_symbol_info structures currently collected in
4386 current vector in *OBSTACKP. */
4387
4388 static int
4389 num_defns_collected (struct obstack *obstackp)
4390 {
4391 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4392 }
4393
4394 /* Vector of ada_symbol_info structures currently collected in current
4395 vector in *OBSTACKP. If FINISH, close off the vector and return
4396 its final address. */
4397
4398 static struct ada_symbol_info *
4399 defns_collected (struct obstack *obstackp, int finish)
4400 {
4401 if (finish)
4402 return obstack_finish (obstackp);
4403 else
4404 return (struct ada_symbol_info *) obstack_base (obstackp);
4405 }
4406
4407 /* Return a minimal symbol matching NAME according to Ada decoding
4408 rules. Returns NULL if there is no such minimal symbol. Names
4409 prefixed with "standard__" are handled specially: "standard__" is
4410 first stripped off, and only static and global symbols are searched. */
4411
4412 struct minimal_symbol *
4413 ada_lookup_simple_minsym (const char *name)
4414 {
4415 struct objfile *objfile;
4416 struct minimal_symbol *msymbol;
4417 const int wild_match_p = should_use_wild_match (name);
4418
4419 /* Special case: If the user specifies a symbol name inside package
4420 Standard, do a non-wild matching of the symbol name without
4421 the "standard__" prefix. This was primarily introduced in order
4422 to allow the user to specifically access the standard exceptions
4423 using, for instance, Standard.Constraint_Error when Constraint_Error
4424 is ambiguous (due to the user defining its own Constraint_Error
4425 entity inside its program). */
4426 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4427 name += sizeof ("standard__") - 1;
4428
4429 ALL_MSYMBOLS (objfile, msymbol)
4430 {
4431 if (match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
4432 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4433 return msymbol;
4434 }
4435
4436 return NULL;
4437 }
4438
4439 /* For all subprograms that statically enclose the subprogram of the
4440 selected frame, add symbols matching identifier NAME in DOMAIN
4441 and their blocks to the list of data in OBSTACKP, as for
4442 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4443 wildcard prefix. */
4444
4445 static void
4446 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4447 const char *name, domain_enum namespace,
4448 int wild_match)
4449 {
4450 }
4451
4452 /* True if TYPE is definitely an artificial type supplied to a symbol
4453 for which no debugging information was given in the symbol file. */
4454
4455 static int
4456 is_nondebugging_type (struct type *type)
4457 {
4458 const char *name = ada_type_name (type);
4459
4460 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4461 }
4462
4463 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4464 that are deemed "identical" for practical purposes.
4465
4466 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4467 types and that their number of enumerals is identical (in other
4468 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4469
4470 static int
4471 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4472 {
4473 int i;
4474
4475 /* The heuristic we use here is fairly conservative. We consider
4476 that 2 enumerate types are identical if they have the same
4477 number of enumerals and that all enumerals have the same
4478 underlying value and name. */
4479
4480 /* All enums in the type should have an identical underlying value. */
4481 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4482 if (TYPE_FIELD_BITPOS (type1, i) != TYPE_FIELD_BITPOS (type2, i))
4483 return 0;
4484
4485 /* All enumerals should also have the same name (modulo any numerical
4486 suffix). */
4487 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4488 {
4489 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4490 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4491 int len_1 = strlen (name_1);
4492 int len_2 = strlen (name_2);
4493
4494 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4495 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4496 if (len_1 != len_2
4497 || strncmp (TYPE_FIELD_NAME (type1, i),
4498 TYPE_FIELD_NAME (type2, i),
4499 len_1) != 0)
4500 return 0;
4501 }
4502
4503 return 1;
4504 }
4505
4506 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4507 that are deemed "identical" for practical purposes. Sometimes,
4508 enumerals are not strictly identical, but their types are so similar
4509 that they can be considered identical.
4510
4511 For instance, consider the following code:
4512
4513 type Color is (Black, Red, Green, Blue, White);
4514 type RGB_Color is new Color range Red .. Blue;
4515
4516 Type RGB_Color is a subrange of an implicit type which is a copy
4517 of type Color. If we call that implicit type RGB_ColorB ("B" is
4518 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4519 As a result, when an expression references any of the enumeral
4520 by name (Eg. "print green"), the expression is technically
4521 ambiguous and the user should be asked to disambiguate. But
4522 doing so would only hinder the user, since it wouldn't matter
4523 what choice he makes, the outcome would always be the same.
4524 So, for practical purposes, we consider them as the same. */
4525
4526 static int
4527 symbols_are_identical_enums (struct ada_symbol_info *syms, int nsyms)
4528 {
4529 int i;
4530
4531 /* Before performing a thorough comparison check of each type,
4532 we perform a series of inexpensive checks. We expect that these
4533 checks will quickly fail in the vast majority of cases, and thus
4534 help prevent the unnecessary use of a more expensive comparison.
4535 Said comparison also expects us to make some of these checks
4536 (see ada_identical_enum_types_p). */
4537
4538 /* Quick check: All symbols should have an enum type. */
4539 for (i = 0; i < nsyms; i++)
4540 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM)
4541 return 0;
4542
4543 /* Quick check: They should all have the same value. */
4544 for (i = 1; i < nsyms; i++)
4545 if (SYMBOL_VALUE (syms[i].sym) != SYMBOL_VALUE (syms[0].sym))
4546 return 0;
4547
4548 /* Quick check: They should all have the same number of enumerals. */
4549 for (i = 1; i < nsyms; i++)
4550 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].sym))
4551 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].sym)))
4552 return 0;
4553
4554 /* All the sanity checks passed, so we might have a set of
4555 identical enumeration types. Perform a more complete
4556 comparison of the type of each symbol. */
4557 for (i = 1; i < nsyms; i++)
4558 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].sym),
4559 SYMBOL_TYPE (syms[0].sym)))
4560 return 0;
4561
4562 return 1;
4563 }
4564
4565 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4566 duplicate other symbols in the list (The only case I know of where
4567 this happens is when object files containing stabs-in-ecoff are
4568 linked with files containing ordinary ecoff debugging symbols (or no
4569 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4570 Returns the number of items in the modified list. */
4571
4572 static int
4573 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4574 {
4575 int i, j;
4576
4577 /* We should never be called with less than 2 symbols, as there
4578 cannot be any extra symbol in that case. But it's easy to
4579 handle, since we have nothing to do in that case. */
4580 if (nsyms < 2)
4581 return nsyms;
4582
4583 i = 0;
4584 while (i < nsyms)
4585 {
4586 int remove_p = 0;
4587
4588 /* If two symbols have the same name and one of them is a stub type,
4589 the get rid of the stub. */
4590
4591 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4592 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4593 {
4594 for (j = 0; j < nsyms; j++)
4595 {
4596 if (j != i
4597 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4598 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4599 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4600 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4601 remove_p = 1;
4602 }
4603 }
4604
4605 /* Two symbols with the same name, same class and same address
4606 should be identical. */
4607
4608 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4609 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4610 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4611 {
4612 for (j = 0; j < nsyms; j += 1)
4613 {
4614 if (i != j
4615 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4616 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4617 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4618 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4619 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4620 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4621 remove_p = 1;
4622 }
4623 }
4624
4625 if (remove_p)
4626 {
4627 for (j = i + 1; j < nsyms; j += 1)
4628 syms[j - 1] = syms[j];
4629 nsyms -= 1;
4630 }
4631
4632 i += 1;
4633 }
4634
4635 /* If all the remaining symbols are identical enumerals, then
4636 just keep the first one and discard the rest.
4637
4638 Unlike what we did previously, we do not discard any entry
4639 unless they are ALL identical. This is because the symbol
4640 comparison is not a strict comparison, but rather a practical
4641 comparison. If all symbols are considered identical, then
4642 we can just go ahead and use the first one and discard the rest.
4643 But if we cannot reduce the list to a single element, we have
4644 to ask the user to disambiguate anyways. And if we have to
4645 present a multiple-choice menu, it's less confusing if the list
4646 isn't missing some choices that were identical and yet distinct. */
4647 if (symbols_are_identical_enums (syms, nsyms))
4648 nsyms = 1;
4649
4650 return nsyms;
4651 }
4652
4653 /* Given a type that corresponds to a renaming entity, use the type name
4654 to extract the scope (package name or function name, fully qualified,
4655 and following the GNAT encoding convention) where this renaming has been
4656 defined. The string returned needs to be deallocated after use. */
4657
4658 static char *
4659 xget_renaming_scope (struct type *renaming_type)
4660 {
4661 /* The renaming types adhere to the following convention:
4662 <scope>__<rename>___<XR extension>.
4663 So, to extract the scope, we search for the "___XR" extension,
4664 and then backtrack until we find the first "__". */
4665
4666 const char *name = type_name_no_tag (renaming_type);
4667 char *suffix = strstr (name, "___XR");
4668 char *last;
4669 int scope_len;
4670 char *scope;
4671
4672 /* Now, backtrack a bit until we find the first "__". Start looking
4673 at suffix - 3, as the <rename> part is at least one character long. */
4674
4675 for (last = suffix - 3; last > name; last--)
4676 if (last[0] == '_' && last[1] == '_')
4677 break;
4678
4679 /* Make a copy of scope and return it. */
4680
4681 scope_len = last - name;
4682 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4683
4684 strncpy (scope, name, scope_len);
4685 scope[scope_len] = '\0';
4686
4687 return scope;
4688 }
4689
4690 /* Return nonzero if NAME corresponds to a package name. */
4691
4692 static int
4693 is_package_name (const char *name)
4694 {
4695 /* Here, We take advantage of the fact that no symbols are generated
4696 for packages, while symbols are generated for each function.
4697 So the condition for NAME represent a package becomes equivalent
4698 to NAME not existing in our list of symbols. There is only one
4699 small complication with library-level functions (see below). */
4700
4701 char *fun_name;
4702
4703 /* If it is a function that has not been defined at library level,
4704 then we should be able to look it up in the symbols. */
4705 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4706 return 0;
4707
4708 /* Library-level function names start with "_ada_". See if function
4709 "_ada_" followed by NAME can be found. */
4710
4711 /* Do a quick check that NAME does not contain "__", since library-level
4712 functions names cannot contain "__" in them. */
4713 if (strstr (name, "__") != NULL)
4714 return 0;
4715
4716 fun_name = xstrprintf ("_ada_%s", name);
4717
4718 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4719 }
4720
4721 /* Return nonzero if SYM corresponds to a renaming entity that is
4722 not visible from FUNCTION_NAME. */
4723
4724 static int
4725 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
4726 {
4727 char *scope;
4728
4729 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4730 return 0;
4731
4732 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4733
4734 make_cleanup (xfree, scope);
4735
4736 /* If the rename has been defined in a package, then it is visible. */
4737 if (is_package_name (scope))
4738 return 0;
4739
4740 /* Check that the rename is in the current function scope by checking
4741 that its name starts with SCOPE. */
4742
4743 /* If the function name starts with "_ada_", it means that it is
4744 a library-level function. Strip this prefix before doing the
4745 comparison, as the encoding for the renaming does not contain
4746 this prefix. */
4747 if (strncmp (function_name, "_ada_", 5) == 0)
4748 function_name += 5;
4749
4750 return (strncmp (function_name, scope, strlen (scope)) != 0);
4751 }
4752
4753 /* Remove entries from SYMS that corresponds to a renaming entity that
4754 is not visible from the function associated with CURRENT_BLOCK or
4755 that is superfluous due to the presence of more specific renaming
4756 information. Places surviving symbols in the initial entries of
4757 SYMS and returns the number of surviving symbols.
4758
4759 Rationale:
4760 First, in cases where an object renaming is implemented as a
4761 reference variable, GNAT may produce both the actual reference
4762 variable and the renaming encoding. In this case, we discard the
4763 latter.
4764
4765 Second, GNAT emits a type following a specified encoding for each renaming
4766 entity. Unfortunately, STABS currently does not support the definition
4767 of types that are local to a given lexical block, so all renamings types
4768 are emitted at library level. As a consequence, if an application
4769 contains two renaming entities using the same name, and a user tries to
4770 print the value of one of these entities, the result of the ada symbol
4771 lookup will also contain the wrong renaming type.
4772
4773 This function partially covers for this limitation by attempting to
4774 remove from the SYMS list renaming symbols that should be visible
4775 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4776 method with the current information available. The implementation
4777 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4778
4779 - When the user tries to print a rename in a function while there
4780 is another rename entity defined in a package: Normally, the
4781 rename in the function has precedence over the rename in the
4782 package, so the latter should be removed from the list. This is
4783 currently not the case.
4784
4785 - This function will incorrectly remove valid renames if
4786 the CURRENT_BLOCK corresponds to a function which symbol name
4787 has been changed by an "Export" pragma. As a consequence,
4788 the user will be unable to print such rename entities. */
4789
4790 static int
4791 remove_irrelevant_renamings (struct ada_symbol_info *syms,
4792 int nsyms, const struct block *current_block)
4793 {
4794 struct symbol *current_function;
4795 const char *current_function_name;
4796 int i;
4797 int is_new_style_renaming;
4798
4799 /* If there is both a renaming foo___XR... encoded as a variable and
4800 a simple variable foo in the same block, discard the latter.
4801 First, zero out such symbols, then compress. */
4802 is_new_style_renaming = 0;
4803 for (i = 0; i < nsyms; i += 1)
4804 {
4805 struct symbol *sym = syms[i].sym;
4806 struct block *block = syms[i].block;
4807 const char *name;
4808 const char *suffix;
4809
4810 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4811 continue;
4812 name = SYMBOL_LINKAGE_NAME (sym);
4813 suffix = strstr (name, "___XR");
4814
4815 if (suffix != NULL)
4816 {
4817 int name_len = suffix - name;
4818 int j;
4819
4820 is_new_style_renaming = 1;
4821 for (j = 0; j < nsyms; j += 1)
4822 if (i != j && syms[j].sym != NULL
4823 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4824 name_len) == 0
4825 && block == syms[j].block)
4826 syms[j].sym = NULL;
4827 }
4828 }
4829 if (is_new_style_renaming)
4830 {
4831 int j, k;
4832
4833 for (j = k = 0; j < nsyms; j += 1)
4834 if (syms[j].sym != NULL)
4835 {
4836 syms[k] = syms[j];
4837 k += 1;
4838 }
4839 return k;
4840 }
4841
4842 /* Extract the function name associated to CURRENT_BLOCK.
4843 Abort if unable to do so. */
4844
4845 if (current_block == NULL)
4846 return nsyms;
4847
4848 current_function = block_linkage_function (current_block);
4849 if (current_function == NULL)
4850 return nsyms;
4851
4852 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4853 if (current_function_name == NULL)
4854 return nsyms;
4855
4856 /* Check each of the symbols, and remove it from the list if it is
4857 a type corresponding to a renaming that is out of the scope of
4858 the current block. */
4859
4860 i = 0;
4861 while (i < nsyms)
4862 {
4863 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4864 == ADA_OBJECT_RENAMING
4865 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4866 {
4867 int j;
4868
4869 for (j = i + 1; j < nsyms; j += 1)
4870 syms[j - 1] = syms[j];
4871 nsyms -= 1;
4872 }
4873 else
4874 i += 1;
4875 }
4876
4877 return nsyms;
4878 }
4879
4880 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4881 whose name and domain match NAME and DOMAIN respectively.
4882 If no match was found, then extend the search to "enclosing"
4883 routines (in other words, if we're inside a nested function,
4884 search the symbols defined inside the enclosing functions).
4885
4886 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4887
4888 static void
4889 ada_add_local_symbols (struct obstack *obstackp, const char *name,
4890 struct block *block, domain_enum domain,
4891 int wild_match)
4892 {
4893 int block_depth = 0;
4894
4895 while (block != NULL)
4896 {
4897 block_depth += 1;
4898 ada_add_block_symbols (obstackp, block, name, domain, NULL, wild_match);
4899
4900 /* If we found a non-function match, assume that's the one. */
4901 if (is_nonfunction (defns_collected (obstackp, 0),
4902 num_defns_collected (obstackp)))
4903 return;
4904
4905 block = BLOCK_SUPERBLOCK (block);
4906 }
4907
4908 /* If no luck so far, try to find NAME as a local symbol in some lexically
4909 enclosing subprogram. */
4910 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4911 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match);
4912 }
4913
4914 /* An object of this type is used as the user_data argument when
4915 calling the map_matching_symbols method. */
4916
4917 struct match_data
4918 {
4919 struct objfile *objfile;
4920 struct obstack *obstackp;
4921 struct symbol *arg_sym;
4922 int found_sym;
4923 };
4924
4925 /* A callback for add_matching_symbols that adds SYM, found in BLOCK,
4926 to a list of symbols. DATA0 is a pointer to a struct match_data *
4927 containing the obstack that collects the symbol list, the file that SYM
4928 must come from, a flag indicating whether a non-argument symbol has
4929 been found in the current block, and the last argument symbol
4930 passed in SYM within the current block (if any). When SYM is null,
4931 marking the end of a block, the argument symbol is added if no
4932 other has been found. */
4933
4934 static int
4935 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
4936 {
4937 struct match_data *data = (struct match_data *) data0;
4938
4939 if (sym == NULL)
4940 {
4941 if (!data->found_sym && data->arg_sym != NULL)
4942 add_defn_to_vec (data->obstackp,
4943 fixup_symbol_section (data->arg_sym, data->objfile),
4944 block);
4945 data->found_sym = 0;
4946 data->arg_sym = NULL;
4947 }
4948 else
4949 {
4950 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4951 return 0;
4952 else if (SYMBOL_IS_ARGUMENT (sym))
4953 data->arg_sym = sym;
4954 else
4955 {
4956 data->found_sym = 1;
4957 add_defn_to_vec (data->obstackp,
4958 fixup_symbol_section (sym, data->objfile),
4959 block);
4960 }
4961 }
4962 return 0;
4963 }
4964
4965 /* Compare STRING1 to STRING2, with results as for strcmp.
4966 Compatible with strcmp_iw in that strcmp_iw (STRING1, STRING2) <= 0
4967 implies compare_names (STRING1, STRING2) (they may differ as to
4968 what symbols compare equal). */
4969
4970 static int
4971 compare_names (const char *string1, const char *string2)
4972 {
4973 while (*string1 != '\0' && *string2 != '\0')
4974 {
4975 if (isspace (*string1) || isspace (*string2))
4976 return strcmp_iw_ordered (string1, string2);
4977 if (*string1 != *string2)
4978 break;
4979 string1 += 1;
4980 string2 += 1;
4981 }
4982 switch (*string1)
4983 {
4984 case '(':
4985 return strcmp_iw_ordered (string1, string2);
4986 case '_':
4987 if (*string2 == '\0')
4988 {
4989 if (is_name_suffix (string1))
4990 return 0;
4991 else
4992 return 1;
4993 }
4994 /* FALLTHROUGH */
4995 default:
4996 if (*string2 == '(')
4997 return strcmp_iw_ordered (string1, string2);
4998 else
4999 return *string1 - *string2;
5000 }
5001 }
5002
5003 /* Add to OBSTACKP all non-local symbols whose name and domain match
5004 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5005 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5006
5007 static void
5008 add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5009 domain_enum domain, int global,
5010 int is_wild_match)
5011 {
5012 struct objfile *objfile;
5013 struct match_data data;
5014
5015 memset (&data, 0, sizeof data);
5016 data.obstackp = obstackp;
5017
5018 ALL_OBJFILES (objfile)
5019 {
5020 data.objfile = objfile;
5021
5022 if (is_wild_match)
5023 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
5024 aux_add_nonlocal_symbols, &data,
5025 wild_match, NULL);
5026 else
5027 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
5028 aux_add_nonlocal_symbols, &data,
5029 full_match, compare_names);
5030 }
5031
5032 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5033 {
5034 ALL_OBJFILES (objfile)
5035 {
5036 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
5037 strcpy (name1, "_ada_");
5038 strcpy (name1 + sizeof ("_ada_") - 1, name);
5039 data.objfile = objfile;
5040 objfile->sf->qf->map_matching_symbols (name1, domain,
5041 objfile, global,
5042 aux_add_nonlocal_symbols,
5043 &data,
5044 full_match, compare_names);
5045 }
5046 }
5047 }
5048
5049 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
5050 scope and in global scopes, returning the number of matches. Sets
5051 *RESULTS to point to a vector of (SYM,BLOCK) tuples,
5052 indicating the symbols found and the blocks and symbol tables (if
5053 any) in which they were found. This vector are transient---good only to
5054 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
5055 symbol match within the nest of blocks whose innermost member is BLOCK0,
5056 is the one match returned (no other matches in that or
5057 enclosing blocks is returned). If there are any matches in or
5058 surrounding BLOCK0, then these alone are returned. Otherwise, if
5059 FULL_SEARCH is non-zero, then the search extends to global and
5060 file-scope (static) symbol tables.
5061 Names prefixed with "standard__" are handled specially: "standard__"
5062 is first stripped off, and only static and global symbols are searched. */
5063
5064 int
5065 ada_lookup_symbol_list (const char *name0, const struct block *block0,
5066 domain_enum namespace,
5067 struct ada_symbol_info **results,
5068 int full_search)
5069 {
5070 struct symbol *sym;
5071 struct block *block;
5072 const char *name;
5073 const int wild_match = should_use_wild_match (name0);
5074 int cacheIfUnique;
5075 int ndefns;
5076
5077 obstack_free (&symbol_list_obstack, NULL);
5078 obstack_init (&symbol_list_obstack);
5079
5080 cacheIfUnique = 0;
5081
5082 /* Search specified block and its superiors. */
5083
5084 name = name0;
5085 block = (struct block *) block0; /* FIXME: No cast ought to be
5086 needed, but adding const will
5087 have a cascade effect. */
5088
5089 /* Special case: If the user specifies a symbol name inside package
5090 Standard, do a non-wild matching of the symbol name without
5091 the "standard__" prefix. This was primarily introduced in order
5092 to allow the user to specifically access the standard exceptions
5093 using, for instance, Standard.Constraint_Error when Constraint_Error
5094 is ambiguous (due to the user defining its own Constraint_Error
5095 entity inside its program). */
5096 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
5097 {
5098 block = NULL;
5099 name = name0 + sizeof ("standard__") - 1;
5100 }
5101
5102 /* Check the non-global symbols. If we have ANY match, then we're done. */
5103
5104 ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
5105 wild_match);
5106 if (num_defns_collected (&symbol_list_obstack) > 0 || !full_search)
5107 goto done;
5108
5109 /* No non-global symbols found. Check our cache to see if we have
5110 already performed this search before. If we have, then return
5111 the same result. */
5112
5113 cacheIfUnique = 1;
5114 if (lookup_cached_symbol (name0, namespace, &sym, &block))
5115 {
5116 if (sym != NULL)
5117 add_defn_to_vec (&symbol_list_obstack, sym, block);
5118 goto done;
5119 }
5120
5121 /* Search symbols from all global blocks. */
5122
5123 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
5124 wild_match);
5125
5126 /* Now add symbols from all per-file blocks if we've gotten no hits
5127 (not strictly correct, but perhaps better than an error). */
5128
5129 if (num_defns_collected (&symbol_list_obstack) == 0)
5130 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
5131 wild_match);
5132
5133 done:
5134 ndefns = num_defns_collected (&symbol_list_obstack);
5135 *results = defns_collected (&symbol_list_obstack, 1);
5136
5137 ndefns = remove_extra_symbols (*results, ndefns);
5138
5139 if (ndefns == 0 && full_search)
5140 cache_symbol (name0, namespace, NULL, NULL);
5141
5142 if (ndefns == 1 && full_search && cacheIfUnique)
5143 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
5144
5145 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
5146
5147 return ndefns;
5148 }
5149
5150 /* If NAME is the name of an entity, return a string that should
5151 be used to look that entity up in Ada units. This string should
5152 be deallocated after use using xfree.
5153
5154 NAME can have any form that the "break" or "print" commands might
5155 recognize. In other words, it does not have to be the "natural"
5156 name, or the "encoded" name. */
5157
5158 char *
5159 ada_name_for_lookup (const char *name)
5160 {
5161 char *canon;
5162 int nlen = strlen (name);
5163
5164 if (name[0] == '<' && name[nlen - 1] == '>')
5165 {
5166 canon = xmalloc (nlen - 1);
5167 memcpy (canon, name + 1, nlen - 2);
5168 canon[nlen - 2] = '\0';
5169 }
5170 else
5171 canon = xstrdup (ada_encode (ada_fold_name (name)));
5172 return canon;
5173 }
5174
5175 /* Implementation of the la_iterate_over_symbols method. */
5176
5177 static void
5178 ada_iterate_over_symbols (const struct block *block,
5179 const char *name, domain_enum domain,
5180 symbol_found_callback_ftype *callback,
5181 void *data)
5182 {
5183 int ndefs, i;
5184 struct ada_symbol_info *results;
5185
5186 ndefs = ada_lookup_symbol_list (name, block, domain, &results, 0);
5187 for (i = 0; i < ndefs; ++i)
5188 {
5189 if (! (*callback) (results[i].sym, data))
5190 break;
5191 }
5192 }
5193
5194 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5195 to 1, but choosing the first symbol found if there are multiple
5196 choices.
5197
5198 The result is stored in *SYMBOL_INFO, which must be non-NULL.
5199 If no match is found, SYMBOL_INFO->SYM is set to NULL. */
5200
5201 void
5202 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5203 domain_enum namespace,
5204 struct ada_symbol_info *symbol_info)
5205 {
5206 struct ada_symbol_info *candidates;
5207 int n_candidates;
5208
5209 gdb_assert (symbol_info != NULL);
5210 memset (symbol_info, 0, sizeof (struct ada_symbol_info));
5211
5212 n_candidates = ada_lookup_symbol_list (name, block, namespace, &candidates,
5213 1);
5214
5215 if (n_candidates == 0)
5216 return;
5217
5218 *symbol_info = candidates[0];
5219 symbol_info->sym = fixup_symbol_section (symbol_info->sym, NULL);
5220 }
5221
5222 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5223 scope and in global scopes, or NULL if none. NAME is folded and
5224 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5225 choosing the first symbol if there are multiple choices.
5226 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5227
5228 struct symbol *
5229 ada_lookup_symbol (const char *name, const struct block *block0,
5230 domain_enum namespace, int *is_a_field_of_this)
5231 {
5232 struct ada_symbol_info symbol_info;
5233
5234 if (is_a_field_of_this != NULL)
5235 *is_a_field_of_this = 0;
5236
5237 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5238 block0, namespace, &symbol_info);
5239 return symbol_info.sym;
5240 }
5241
5242 static struct symbol *
5243 ada_lookup_symbol_nonlocal (const char *name,
5244 const struct block *block,
5245 const domain_enum domain)
5246 {
5247 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5248 }
5249
5250
5251 /* True iff STR is a possible encoded suffix of a normal Ada name
5252 that is to be ignored for matching purposes. Suffixes of parallel
5253 names (e.g., XVE) are not included here. Currently, the possible suffixes
5254 are given by any of the regular expressions:
5255
5256 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5257 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5258 TKB [subprogram suffix for task bodies]
5259 _E[0-9]+[bs]$ [protected object entry suffixes]
5260 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5261
5262 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5263 match is performed. This sequence is used to differentiate homonyms,
5264 is an optional part of a valid name suffix. */
5265
5266 static int
5267 is_name_suffix (const char *str)
5268 {
5269 int k;
5270 const char *matching;
5271 const int len = strlen (str);
5272
5273 /* Skip optional leading __[0-9]+. */
5274
5275 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5276 {
5277 str += 3;
5278 while (isdigit (str[0]))
5279 str += 1;
5280 }
5281
5282 /* [.$][0-9]+ */
5283
5284 if (str[0] == '.' || str[0] == '$')
5285 {
5286 matching = str + 1;
5287 while (isdigit (matching[0]))
5288 matching += 1;
5289 if (matching[0] == '\0')
5290 return 1;
5291 }
5292
5293 /* ___[0-9]+ */
5294
5295 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5296 {
5297 matching = str + 3;
5298 while (isdigit (matching[0]))
5299 matching += 1;
5300 if (matching[0] == '\0')
5301 return 1;
5302 }
5303
5304 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5305
5306 if (strcmp (str, "TKB") == 0)
5307 return 1;
5308
5309 #if 0
5310 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5311 with a N at the end. Unfortunately, the compiler uses the same
5312 convention for other internal types it creates. So treating
5313 all entity names that end with an "N" as a name suffix causes
5314 some regressions. For instance, consider the case of an enumerated
5315 type. To support the 'Image attribute, it creates an array whose
5316 name ends with N.
5317 Having a single character like this as a suffix carrying some
5318 information is a bit risky. Perhaps we should change the encoding
5319 to be something like "_N" instead. In the meantime, do not do
5320 the following check. */
5321 /* Protected Object Subprograms */
5322 if (len == 1 && str [0] == 'N')
5323 return 1;
5324 #endif
5325
5326 /* _E[0-9]+[bs]$ */
5327 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5328 {
5329 matching = str + 3;
5330 while (isdigit (matching[0]))
5331 matching += 1;
5332 if ((matching[0] == 'b' || matching[0] == 's')
5333 && matching [1] == '\0')
5334 return 1;
5335 }
5336
5337 /* ??? We should not modify STR directly, as we are doing below. This
5338 is fine in this case, but may become problematic later if we find
5339 that this alternative did not work, and want to try matching
5340 another one from the begining of STR. Since we modified it, we
5341 won't be able to find the begining of the string anymore! */
5342 if (str[0] == 'X')
5343 {
5344 str += 1;
5345 while (str[0] != '_' && str[0] != '\0')
5346 {
5347 if (str[0] != 'n' && str[0] != 'b')
5348 return 0;
5349 str += 1;
5350 }
5351 }
5352
5353 if (str[0] == '\000')
5354 return 1;
5355
5356 if (str[0] == '_')
5357 {
5358 if (str[1] != '_' || str[2] == '\000')
5359 return 0;
5360 if (str[2] == '_')
5361 {
5362 if (strcmp (str + 3, "JM") == 0)
5363 return 1;
5364 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5365 the LJM suffix in favor of the JM one. But we will
5366 still accept LJM as a valid suffix for a reasonable
5367 amount of time, just to allow ourselves to debug programs
5368 compiled using an older version of GNAT. */
5369 if (strcmp (str + 3, "LJM") == 0)
5370 return 1;
5371 if (str[3] != 'X')
5372 return 0;
5373 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5374 || str[4] == 'U' || str[4] == 'P')
5375 return 1;
5376 if (str[4] == 'R' && str[5] != 'T')
5377 return 1;
5378 return 0;
5379 }
5380 if (!isdigit (str[2]))
5381 return 0;
5382 for (k = 3; str[k] != '\0'; k += 1)
5383 if (!isdigit (str[k]) && str[k] != '_')
5384 return 0;
5385 return 1;
5386 }
5387 if (str[0] == '$' && isdigit (str[1]))
5388 {
5389 for (k = 2; str[k] != '\0'; k += 1)
5390 if (!isdigit (str[k]) && str[k] != '_')
5391 return 0;
5392 return 1;
5393 }
5394 return 0;
5395 }
5396
5397 /* Return non-zero if the string starting at NAME and ending before
5398 NAME_END contains no capital letters. */
5399
5400 static int
5401 is_valid_name_for_wild_match (const char *name0)
5402 {
5403 const char *decoded_name = ada_decode (name0);
5404 int i;
5405
5406 /* If the decoded name starts with an angle bracket, it means that
5407 NAME0 does not follow the GNAT encoding format. It should then
5408 not be allowed as a possible wild match. */
5409 if (decoded_name[0] == '<')
5410 return 0;
5411
5412 for (i=0; decoded_name[i] != '\0'; i++)
5413 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5414 return 0;
5415
5416 return 1;
5417 }
5418
5419 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5420 that could start a simple name. Assumes that *NAMEP points into
5421 the string beginning at NAME0. */
5422
5423 static int
5424 advance_wild_match (const char **namep, const char *name0, int target0)
5425 {
5426 const char *name = *namep;
5427
5428 while (1)
5429 {
5430 int t0, t1;
5431
5432 t0 = *name;
5433 if (t0 == '_')
5434 {
5435 t1 = name[1];
5436 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5437 {
5438 name += 1;
5439 if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5440 break;
5441 else
5442 name += 1;
5443 }
5444 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5445 || name[2] == target0))
5446 {
5447 name += 2;
5448 break;
5449 }
5450 else
5451 return 0;
5452 }
5453 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5454 name += 1;
5455 else
5456 return 0;
5457 }
5458
5459 *namep = name;
5460 return 1;
5461 }
5462
5463 /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5464 informational suffixes of NAME (i.e., for which is_name_suffix is
5465 true). Assumes that PATN is a lower-cased Ada simple name. */
5466
5467 static int
5468 wild_match (const char *name, const char *patn)
5469 {
5470 const char *p, *n;
5471 const char *name0 = name;
5472
5473 while (1)
5474 {
5475 const char *match = name;
5476
5477 if (*name == *patn)
5478 {
5479 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5480 if (*p != *name)
5481 break;
5482 if (*p == '\0' && is_name_suffix (name))
5483 return match != name0 && !is_valid_name_for_wild_match (name0);
5484
5485 if (name[-1] == '_')
5486 name -= 1;
5487 }
5488 if (!advance_wild_match (&name, name0, *patn))
5489 return 1;
5490 }
5491 }
5492
5493 /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5494 informational suffix. */
5495
5496 static int
5497 full_match (const char *sym_name, const char *search_name)
5498 {
5499 return !match_name (sym_name, search_name, 0);
5500 }
5501
5502
5503 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5504 vector *defn_symbols, updating the list of symbols in OBSTACKP
5505 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5506 OBJFILE is the section containing BLOCK.
5507 SYMTAB is recorded with each symbol added. */
5508
5509 static void
5510 ada_add_block_symbols (struct obstack *obstackp,
5511 struct block *block, const char *name,
5512 domain_enum domain, struct objfile *objfile,
5513 int wild)
5514 {
5515 struct dict_iterator iter;
5516 int name_len = strlen (name);
5517 /* A matching argument symbol, if any. */
5518 struct symbol *arg_sym;
5519 /* Set true when we find a matching non-argument symbol. */
5520 int found_sym;
5521 struct symbol *sym;
5522
5523 arg_sym = NULL;
5524 found_sym = 0;
5525 if (wild)
5526 {
5527 for (sym = dict_iter_match_first (BLOCK_DICT (block), name,
5528 wild_match, &iter);
5529 sym != NULL; sym = dict_iter_match_next (name, wild_match, &iter))
5530 {
5531 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5532 SYMBOL_DOMAIN (sym), domain)
5533 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
5534 {
5535 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5536 continue;
5537 else if (SYMBOL_IS_ARGUMENT (sym))
5538 arg_sym = sym;
5539 else
5540 {
5541 found_sym = 1;
5542 add_defn_to_vec (obstackp,
5543 fixup_symbol_section (sym, objfile),
5544 block);
5545 }
5546 }
5547 }
5548 }
5549 else
5550 {
5551 for (sym = dict_iter_match_first (BLOCK_DICT (block), name,
5552 full_match, &iter);
5553 sym != NULL; sym = dict_iter_match_next (name, full_match, &iter))
5554 {
5555 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5556 SYMBOL_DOMAIN (sym), domain))
5557 {
5558 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5559 {
5560 if (SYMBOL_IS_ARGUMENT (sym))
5561 arg_sym = sym;
5562 else
5563 {
5564 found_sym = 1;
5565 add_defn_to_vec (obstackp,
5566 fixup_symbol_section (sym, objfile),
5567 block);
5568 }
5569 }
5570 }
5571 }
5572 }
5573
5574 if (!found_sym && arg_sym != NULL)
5575 {
5576 add_defn_to_vec (obstackp,
5577 fixup_symbol_section (arg_sym, objfile),
5578 block);
5579 }
5580
5581 if (!wild)
5582 {
5583 arg_sym = NULL;
5584 found_sym = 0;
5585
5586 ALL_BLOCK_SYMBOLS (block, iter, sym)
5587 {
5588 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5589 SYMBOL_DOMAIN (sym), domain))
5590 {
5591 int cmp;
5592
5593 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5594 if (cmp == 0)
5595 {
5596 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5597 if (cmp == 0)
5598 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5599 name_len);
5600 }
5601
5602 if (cmp == 0
5603 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5604 {
5605 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5606 {
5607 if (SYMBOL_IS_ARGUMENT (sym))
5608 arg_sym = sym;
5609 else
5610 {
5611 found_sym = 1;
5612 add_defn_to_vec (obstackp,
5613 fixup_symbol_section (sym, objfile),
5614 block);
5615 }
5616 }
5617 }
5618 }
5619 }
5620
5621 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5622 They aren't parameters, right? */
5623 if (!found_sym && arg_sym != NULL)
5624 {
5625 add_defn_to_vec (obstackp,
5626 fixup_symbol_section (arg_sym, objfile),
5627 block);
5628 }
5629 }
5630 }
5631 \f
5632
5633 /* Symbol Completion */
5634
5635 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
5636 name in a form that's appropriate for the completion. The result
5637 does not need to be deallocated, but is only good until the next call.
5638
5639 TEXT_LEN is equal to the length of TEXT.
5640 Perform a wild match if WILD_MATCH is set.
5641 ENCODED should be set if TEXT represents the start of a symbol name
5642 in its encoded form. */
5643
5644 static const char *
5645 symbol_completion_match (const char *sym_name,
5646 const char *text, int text_len,
5647 int wild_match, int encoded)
5648 {
5649 const int verbatim_match = (text[0] == '<');
5650 int match = 0;
5651
5652 if (verbatim_match)
5653 {
5654 /* Strip the leading angle bracket. */
5655 text = text + 1;
5656 text_len--;
5657 }
5658
5659 /* First, test against the fully qualified name of the symbol. */
5660
5661 if (strncmp (sym_name, text, text_len) == 0)
5662 match = 1;
5663
5664 if (match && !encoded)
5665 {
5666 /* One needed check before declaring a positive match is to verify
5667 that iff we are doing a verbatim match, the decoded version
5668 of the symbol name starts with '<'. Otherwise, this symbol name
5669 is not a suitable completion. */
5670 const char *sym_name_copy = sym_name;
5671 int has_angle_bracket;
5672
5673 sym_name = ada_decode (sym_name);
5674 has_angle_bracket = (sym_name[0] == '<');
5675 match = (has_angle_bracket == verbatim_match);
5676 sym_name = sym_name_copy;
5677 }
5678
5679 if (match && !verbatim_match)
5680 {
5681 /* When doing non-verbatim match, another check that needs to
5682 be done is to verify that the potentially matching symbol name
5683 does not include capital letters, because the ada-mode would
5684 not be able to understand these symbol names without the
5685 angle bracket notation. */
5686 const char *tmp;
5687
5688 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5689 if (*tmp != '\0')
5690 match = 0;
5691 }
5692
5693 /* Second: Try wild matching... */
5694
5695 if (!match && wild_match)
5696 {
5697 /* Since we are doing wild matching, this means that TEXT
5698 may represent an unqualified symbol name. We therefore must
5699 also compare TEXT against the unqualified name of the symbol. */
5700 sym_name = ada_unqualified_name (ada_decode (sym_name));
5701
5702 if (strncmp (sym_name, text, text_len) == 0)
5703 match = 1;
5704 }
5705
5706 /* Finally: If we found a mach, prepare the result to return. */
5707
5708 if (!match)
5709 return NULL;
5710
5711 if (verbatim_match)
5712 sym_name = add_angle_brackets (sym_name);
5713
5714 if (!encoded)
5715 sym_name = ada_decode (sym_name);
5716
5717 return sym_name;
5718 }
5719
5720 /* A companion function to ada_make_symbol_completion_list().
5721 Check if SYM_NAME represents a symbol which name would be suitable
5722 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5723 it is appended at the end of the given string vector SV.
5724
5725 ORIG_TEXT is the string original string from the user command
5726 that needs to be completed. WORD is the entire command on which
5727 completion should be performed. These two parameters are used to
5728 determine which part of the symbol name should be added to the
5729 completion vector.
5730 if WILD_MATCH is set, then wild matching is performed.
5731 ENCODED should be set if TEXT represents a symbol name in its
5732 encoded formed (in which case the completion should also be
5733 encoded). */
5734
5735 static void
5736 symbol_completion_add (VEC(char_ptr) **sv,
5737 const char *sym_name,
5738 const char *text, int text_len,
5739 const char *orig_text, const char *word,
5740 int wild_match, int encoded)
5741 {
5742 const char *match = symbol_completion_match (sym_name, text, text_len,
5743 wild_match, encoded);
5744 char *completion;
5745
5746 if (match == NULL)
5747 return;
5748
5749 /* We found a match, so add the appropriate completion to the given
5750 string vector. */
5751
5752 if (word == orig_text)
5753 {
5754 completion = xmalloc (strlen (match) + 5);
5755 strcpy (completion, match);
5756 }
5757 else if (word > orig_text)
5758 {
5759 /* Return some portion of sym_name. */
5760 completion = xmalloc (strlen (match) + 5);
5761 strcpy (completion, match + (word - orig_text));
5762 }
5763 else
5764 {
5765 /* Return some of ORIG_TEXT plus sym_name. */
5766 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5767 strncpy (completion, word, orig_text - word);
5768 completion[orig_text - word] = '\0';
5769 strcat (completion, match);
5770 }
5771
5772 VEC_safe_push (char_ptr, *sv, completion);
5773 }
5774
5775 /* An object of this type is passed as the user_data argument to the
5776 expand_partial_symbol_names method. */
5777 struct add_partial_datum
5778 {
5779 VEC(char_ptr) **completions;
5780 char *text;
5781 int text_len;
5782 char *text0;
5783 char *word;
5784 int wild_match;
5785 int encoded;
5786 };
5787
5788 /* A callback for expand_partial_symbol_names. */
5789 static int
5790 ada_expand_partial_symbol_name (const char *name, void *user_data)
5791 {
5792 struct add_partial_datum *data = user_data;
5793
5794 return symbol_completion_match (name, data->text, data->text_len,
5795 data->wild_match, data->encoded) != NULL;
5796 }
5797
5798 /* Return a list of possible symbol names completing TEXT0. The list
5799 is NULL terminated. WORD is the entire command on which completion
5800 is made. */
5801
5802 static char **
5803 ada_make_symbol_completion_list (char *text0, char *word)
5804 {
5805 char *text;
5806 int text_len;
5807 int wild_match;
5808 int encoded;
5809 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
5810 struct symbol *sym;
5811 struct symtab *s;
5812 struct minimal_symbol *msymbol;
5813 struct objfile *objfile;
5814 struct block *b, *surrounding_static_block = 0;
5815 int i;
5816 struct dict_iterator iter;
5817
5818 if (text0[0] == '<')
5819 {
5820 text = xstrdup (text0);
5821 make_cleanup (xfree, text);
5822 text_len = strlen (text);
5823 wild_match = 0;
5824 encoded = 1;
5825 }
5826 else
5827 {
5828 text = xstrdup (ada_encode (text0));
5829 make_cleanup (xfree, text);
5830 text_len = strlen (text);
5831 for (i = 0; i < text_len; i++)
5832 text[i] = tolower (text[i]);
5833
5834 encoded = (strstr (text0, "__") != NULL);
5835 /* If the name contains a ".", then the user is entering a fully
5836 qualified entity name, and the match must not be done in wild
5837 mode. Similarly, if the user wants to complete what looks like
5838 an encoded name, the match must not be done in wild mode. */
5839 wild_match = (strchr (text0, '.') == NULL && !encoded);
5840 }
5841
5842 /* First, look at the partial symtab symbols. */
5843 {
5844 struct add_partial_datum data;
5845
5846 data.completions = &completions;
5847 data.text = text;
5848 data.text_len = text_len;
5849 data.text0 = text0;
5850 data.word = word;
5851 data.wild_match = wild_match;
5852 data.encoded = encoded;
5853 expand_partial_symbol_names (ada_expand_partial_symbol_name, &data);
5854 }
5855
5856 /* At this point scan through the misc symbol vectors and add each
5857 symbol you find to the list. Eventually we want to ignore
5858 anything that isn't a text symbol (everything else will be
5859 handled by the psymtab code above). */
5860
5861 ALL_MSYMBOLS (objfile, msymbol)
5862 {
5863 QUIT;
5864 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
5865 text, text_len, text0, word, wild_match, encoded);
5866 }
5867
5868 /* Search upwards from currently selected frame (so that we can
5869 complete on local vars. */
5870
5871 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5872 {
5873 if (!BLOCK_SUPERBLOCK (b))
5874 surrounding_static_block = b; /* For elmin of dups */
5875
5876 ALL_BLOCK_SYMBOLS (b, iter, sym)
5877 {
5878 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5879 text, text_len, text0, word,
5880 wild_match, encoded);
5881 }
5882 }
5883
5884 /* Go through the symtabs and check the externs and statics for
5885 symbols which match. */
5886
5887 ALL_SYMTABS (objfile, s)
5888 {
5889 QUIT;
5890 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5891 ALL_BLOCK_SYMBOLS (b, iter, sym)
5892 {
5893 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5894 text, text_len, text0, word,
5895 wild_match, encoded);
5896 }
5897 }
5898
5899 ALL_SYMTABS (objfile, s)
5900 {
5901 QUIT;
5902 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5903 /* Don't do this block twice. */
5904 if (b == surrounding_static_block)
5905 continue;
5906 ALL_BLOCK_SYMBOLS (b, iter, sym)
5907 {
5908 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5909 text, text_len, text0, word,
5910 wild_match, encoded);
5911 }
5912 }
5913
5914 /* Append the closing NULL entry. */
5915 VEC_safe_push (char_ptr, completions, NULL);
5916
5917 /* Make a copy of the COMPLETIONS VEC before we free it, and then
5918 return the copy. It's unfortunate that we have to make a copy
5919 of an array that we're about to destroy, but there is nothing much
5920 we can do about it. Fortunately, it's typically not a very large
5921 array. */
5922 {
5923 const size_t completions_size =
5924 VEC_length (char_ptr, completions) * sizeof (char *);
5925 char **result = xmalloc (completions_size);
5926
5927 memcpy (result, VEC_address (char_ptr, completions), completions_size);
5928
5929 VEC_free (char_ptr, completions);
5930 return result;
5931 }
5932 }
5933
5934 /* Field Access */
5935
5936 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5937 for tagged types. */
5938
5939 static int
5940 ada_is_dispatch_table_ptr_type (struct type *type)
5941 {
5942 const char *name;
5943
5944 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5945 return 0;
5946
5947 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5948 if (name == NULL)
5949 return 0;
5950
5951 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5952 }
5953
5954 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5955 to be invisible to users. */
5956
5957 int
5958 ada_is_ignored_field (struct type *type, int field_num)
5959 {
5960 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5961 return 1;
5962
5963 /* Check the name of that field. */
5964 {
5965 const char *name = TYPE_FIELD_NAME (type, field_num);
5966
5967 /* Anonymous field names should not be printed.
5968 brobecker/2007-02-20: I don't think this can actually happen
5969 but we don't want to print the value of annonymous fields anyway. */
5970 if (name == NULL)
5971 return 1;
5972
5973 /* Normally, fields whose name start with an underscore ("_")
5974 are fields that have been internally generated by the compiler,
5975 and thus should not be printed. The "_parent" field is special,
5976 however: This is a field internally generated by the compiler
5977 for tagged types, and it contains the components inherited from
5978 the parent type. This field should not be printed as is, but
5979 should not be ignored either. */
5980 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5981 return 1;
5982 }
5983
5984 /* If this is the dispatch table of a tagged type, then ignore. */
5985 if (ada_is_tagged_type (type, 1)
5986 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5987 return 1;
5988
5989 /* Not a special field, so it should not be ignored. */
5990 return 0;
5991 }
5992
5993 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5994 pointer or reference type whose ultimate target has a tag field. */
5995
5996 int
5997 ada_is_tagged_type (struct type *type, int refok)
5998 {
5999 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
6000 }
6001
6002 /* True iff TYPE represents the type of X'Tag */
6003
6004 int
6005 ada_is_tag_type (struct type *type)
6006 {
6007 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6008 return 0;
6009 else
6010 {
6011 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6012
6013 return (name != NULL
6014 && strcmp (name, "ada__tags__dispatch_table") == 0);
6015 }
6016 }
6017
6018 /* The type of the tag on VAL. */
6019
6020 struct type *
6021 ada_tag_type (struct value *val)
6022 {
6023 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
6024 }
6025
6026 /* The value of the tag on VAL. */
6027
6028 struct value *
6029 ada_value_tag (struct value *val)
6030 {
6031 return ada_value_struct_elt (val, "_tag", 0);
6032 }
6033
6034 /* The value of the tag on the object of type TYPE whose contents are
6035 saved at VALADDR, if it is non-null, or is at memory address
6036 ADDRESS. */
6037
6038 static struct value *
6039 value_tag_from_contents_and_address (struct type *type,
6040 const gdb_byte *valaddr,
6041 CORE_ADDR address)
6042 {
6043 int tag_byte_offset;
6044 struct type *tag_type;
6045
6046 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6047 NULL, NULL, NULL))
6048 {
6049 const gdb_byte *valaddr1 = ((valaddr == NULL)
6050 ? NULL
6051 : valaddr + tag_byte_offset);
6052 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6053
6054 return value_from_contents_and_address (tag_type, valaddr1, address1);
6055 }
6056 return NULL;
6057 }
6058
6059 static struct type *
6060 type_from_tag (struct value *tag)
6061 {
6062 const char *type_name = ada_tag_name (tag);
6063
6064 if (type_name != NULL)
6065 return ada_find_any_type (ada_encode (type_name));
6066 return NULL;
6067 }
6068
6069 /* Return the "ada__tags__type_specific_data" type. */
6070
6071 static struct type *
6072 ada_get_tsd_type (struct inferior *inf)
6073 {
6074 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6075
6076 if (data->tsd_type == 0)
6077 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6078 return data->tsd_type;
6079 }
6080
6081 /* Return the TSD (type-specific data) associated to the given TAG.
6082 TAG is assumed to be the tag of a tagged-type entity.
6083
6084 May return NULL if we are unable to get the TSD. */
6085
6086 static struct value *
6087 ada_get_tsd_from_tag (struct value *tag)
6088 {
6089 struct value *val;
6090 struct type *type;
6091
6092 /* First option: The TSD is simply stored as a field of our TAG.
6093 Only older versions of GNAT would use this format, but we have
6094 to test it first, because there are no visible markers for
6095 the current approach except the absence of that field. */
6096
6097 val = ada_value_struct_elt (tag, "tsd", 1);
6098 if (val)
6099 return val;
6100
6101 /* Try the second representation for the dispatch table (in which
6102 there is no explicit 'tsd' field in the referent of the tag pointer,
6103 and instead the tsd pointer is stored just before the dispatch
6104 table. */
6105
6106 type = ada_get_tsd_type (current_inferior());
6107 if (type == NULL)
6108 return NULL;
6109 type = lookup_pointer_type (lookup_pointer_type (type));
6110 val = value_cast (type, tag);
6111 if (val == NULL)
6112 return NULL;
6113 return value_ind (value_ptradd (val, -1));
6114 }
6115
6116 /* Given the TSD of a tag (type-specific data), return a string
6117 containing the name of the associated type.
6118
6119 The returned value is good until the next call. May return NULL
6120 if we are unable to determine the tag name. */
6121
6122 static char *
6123 ada_tag_name_from_tsd (struct value *tsd)
6124 {
6125 static char name[1024];
6126 char *p;
6127 struct value *val;
6128
6129 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6130 if (val == NULL)
6131 return NULL;
6132 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6133 for (p = name; *p != '\0'; p += 1)
6134 if (isalpha (*p))
6135 *p = tolower (*p);
6136 return name;
6137 }
6138
6139 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6140 a C string.
6141
6142 Return NULL if the TAG is not an Ada tag, or if we were unable to
6143 determine the name of that tag. The result is good until the next
6144 call. */
6145
6146 const char *
6147 ada_tag_name (struct value *tag)
6148 {
6149 volatile struct gdb_exception e;
6150 char *name = NULL;
6151
6152 if (!ada_is_tag_type (value_type (tag)))
6153 return NULL;
6154
6155 /* It is perfectly possible that an exception be raised while trying
6156 to determine the TAG's name, even under normal circumstances:
6157 The associated variable may be uninitialized or corrupted, for
6158 instance. We do not let any exception propagate past this point.
6159 instead we return NULL.
6160
6161 We also do not print the error message either (which often is very
6162 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6163 the caller print a more meaningful message if necessary. */
6164 TRY_CATCH (e, RETURN_MASK_ERROR)
6165 {
6166 struct value *tsd = ada_get_tsd_from_tag (tag);
6167
6168 if (tsd != NULL)
6169 name = ada_tag_name_from_tsd (tsd);
6170 }
6171
6172 return name;
6173 }
6174
6175 /* The parent type of TYPE, or NULL if none. */
6176
6177 struct type *
6178 ada_parent_type (struct type *type)
6179 {
6180 int i;
6181
6182 type = ada_check_typedef (type);
6183
6184 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6185 return NULL;
6186
6187 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6188 if (ada_is_parent_field (type, i))
6189 {
6190 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6191
6192 /* If the _parent field is a pointer, then dereference it. */
6193 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6194 parent_type = TYPE_TARGET_TYPE (parent_type);
6195 /* If there is a parallel XVS type, get the actual base type. */
6196 parent_type = ada_get_base_type (parent_type);
6197
6198 return ada_check_typedef (parent_type);
6199 }
6200
6201 return NULL;
6202 }
6203
6204 /* True iff field number FIELD_NUM of structure type TYPE contains the
6205 parent-type (inherited) fields of a derived type. Assumes TYPE is
6206 a structure type with at least FIELD_NUM+1 fields. */
6207
6208 int
6209 ada_is_parent_field (struct type *type, int field_num)
6210 {
6211 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6212
6213 return (name != NULL
6214 && (strncmp (name, "PARENT", 6) == 0
6215 || strncmp (name, "_parent", 7) == 0));
6216 }
6217
6218 /* True iff field number FIELD_NUM of structure type TYPE is a
6219 transparent wrapper field (which should be silently traversed when doing
6220 field selection and flattened when printing). Assumes TYPE is a
6221 structure type with at least FIELD_NUM+1 fields. Such fields are always
6222 structures. */
6223
6224 int
6225 ada_is_wrapper_field (struct type *type, int field_num)
6226 {
6227 const char *name = TYPE_FIELD_NAME (type, field_num);
6228
6229 return (name != NULL
6230 && (strncmp (name, "PARENT", 6) == 0
6231 || strcmp (name, "REP") == 0
6232 || strncmp (name, "_parent", 7) == 0
6233 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6234 }
6235
6236 /* True iff field number FIELD_NUM of structure or union type TYPE
6237 is a variant wrapper. Assumes TYPE is a structure type with at least
6238 FIELD_NUM+1 fields. */
6239
6240 int
6241 ada_is_variant_part (struct type *type, int field_num)
6242 {
6243 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6244
6245 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
6246 || (is_dynamic_field (type, field_num)
6247 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6248 == TYPE_CODE_UNION)));
6249 }
6250
6251 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6252 whose discriminants are contained in the record type OUTER_TYPE,
6253 returns the type of the controlling discriminant for the variant.
6254 May return NULL if the type could not be found. */
6255
6256 struct type *
6257 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6258 {
6259 char *name = ada_variant_discrim_name (var_type);
6260
6261 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
6262 }
6263
6264 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6265 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6266 represents a 'when others' clause; otherwise 0. */
6267
6268 int
6269 ada_is_others_clause (struct type *type, int field_num)
6270 {
6271 const char *name = TYPE_FIELD_NAME (type, field_num);
6272
6273 return (name != NULL && name[0] == 'O');
6274 }
6275
6276 /* Assuming that TYPE0 is the type of the variant part of a record,
6277 returns the name of the discriminant controlling the variant.
6278 The value is valid until the next call to ada_variant_discrim_name. */
6279
6280 char *
6281 ada_variant_discrim_name (struct type *type0)
6282 {
6283 static char *result = NULL;
6284 static size_t result_len = 0;
6285 struct type *type;
6286 const char *name;
6287 const char *discrim_end;
6288 const char *discrim_start;
6289
6290 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6291 type = TYPE_TARGET_TYPE (type0);
6292 else
6293 type = type0;
6294
6295 name = ada_type_name (type);
6296
6297 if (name == NULL || name[0] == '\000')
6298 return "";
6299
6300 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6301 discrim_end -= 1)
6302 {
6303 if (strncmp (discrim_end, "___XVN", 6) == 0)
6304 break;
6305 }
6306 if (discrim_end == name)
6307 return "";
6308
6309 for (discrim_start = discrim_end; discrim_start != name + 3;
6310 discrim_start -= 1)
6311 {
6312 if (discrim_start == name + 1)
6313 return "";
6314 if ((discrim_start > name + 3
6315 && strncmp (discrim_start - 3, "___", 3) == 0)
6316 || discrim_start[-1] == '.')
6317 break;
6318 }
6319
6320 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6321 strncpy (result, discrim_start, discrim_end - discrim_start);
6322 result[discrim_end - discrim_start] = '\0';
6323 return result;
6324 }
6325
6326 /* Scan STR for a subtype-encoded number, beginning at position K.
6327 Put the position of the character just past the number scanned in
6328 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6329 Return 1 if there was a valid number at the given position, and 0
6330 otherwise. A "subtype-encoded" number consists of the absolute value
6331 in decimal, followed by the letter 'm' to indicate a negative number.
6332 Assumes 0m does not occur. */
6333
6334 int
6335 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6336 {
6337 ULONGEST RU;
6338
6339 if (!isdigit (str[k]))
6340 return 0;
6341
6342 /* Do it the hard way so as not to make any assumption about
6343 the relationship of unsigned long (%lu scan format code) and
6344 LONGEST. */
6345 RU = 0;
6346 while (isdigit (str[k]))
6347 {
6348 RU = RU * 10 + (str[k] - '0');
6349 k += 1;
6350 }
6351
6352 if (str[k] == 'm')
6353 {
6354 if (R != NULL)
6355 *R = (-(LONGEST) (RU - 1)) - 1;
6356 k += 1;
6357 }
6358 else if (R != NULL)
6359 *R = (LONGEST) RU;
6360
6361 /* NOTE on the above: Technically, C does not say what the results of
6362 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6363 number representable as a LONGEST (although either would probably work
6364 in most implementations). When RU>0, the locution in the then branch
6365 above is always equivalent to the negative of RU. */
6366
6367 if (new_k != NULL)
6368 *new_k = k;
6369 return 1;
6370 }
6371
6372 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6373 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6374 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6375
6376 int
6377 ada_in_variant (LONGEST val, struct type *type, int field_num)
6378 {
6379 const char *name = TYPE_FIELD_NAME (type, field_num);
6380 int p;
6381
6382 p = 0;
6383 while (1)
6384 {
6385 switch (name[p])
6386 {
6387 case '\0':
6388 return 0;
6389 case 'S':
6390 {
6391 LONGEST W;
6392
6393 if (!ada_scan_number (name, p + 1, &W, &p))
6394 return 0;
6395 if (val == W)
6396 return 1;
6397 break;
6398 }
6399 case 'R':
6400 {
6401 LONGEST L, U;
6402
6403 if (!ada_scan_number (name, p + 1, &L, &p)
6404 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6405 return 0;
6406 if (val >= L && val <= U)
6407 return 1;
6408 break;
6409 }
6410 case 'O':
6411 return 1;
6412 default:
6413 return 0;
6414 }
6415 }
6416 }
6417
6418 /* FIXME: Lots of redundancy below. Try to consolidate. */
6419
6420 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6421 ARG_TYPE, extract and return the value of one of its (non-static)
6422 fields. FIELDNO says which field. Differs from value_primitive_field
6423 only in that it can handle packed values of arbitrary type. */
6424
6425 static struct value *
6426 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6427 struct type *arg_type)
6428 {
6429 struct type *type;
6430
6431 arg_type = ada_check_typedef (arg_type);
6432 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6433
6434 /* Handle packed fields. */
6435
6436 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6437 {
6438 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6439 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6440
6441 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
6442 offset + bit_pos / 8,
6443 bit_pos % 8, bit_size, type);
6444 }
6445 else
6446 return value_primitive_field (arg1, offset, fieldno, arg_type);
6447 }
6448
6449 /* Find field with name NAME in object of type TYPE. If found,
6450 set the following for each argument that is non-null:
6451 - *FIELD_TYPE_P to the field's type;
6452 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6453 an object of that type;
6454 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6455 - *BIT_SIZE_P to its size in bits if the field is packed, and
6456 0 otherwise;
6457 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6458 fields up to but not including the desired field, or by the total
6459 number of fields if not found. A NULL value of NAME never
6460 matches; the function just counts visible fields in this case.
6461
6462 Returns 1 if found, 0 otherwise. */
6463
6464 static int
6465 find_struct_field (const char *name, struct type *type, int offset,
6466 struct type **field_type_p,
6467 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6468 int *index_p)
6469 {
6470 int i;
6471
6472 type = ada_check_typedef (type);
6473
6474 if (field_type_p != NULL)
6475 *field_type_p = NULL;
6476 if (byte_offset_p != NULL)
6477 *byte_offset_p = 0;
6478 if (bit_offset_p != NULL)
6479 *bit_offset_p = 0;
6480 if (bit_size_p != NULL)
6481 *bit_size_p = 0;
6482
6483 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6484 {
6485 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6486 int fld_offset = offset + bit_pos / 8;
6487 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6488
6489 if (t_field_name == NULL)
6490 continue;
6491
6492 else if (name != NULL && field_name_match (t_field_name, name))
6493 {
6494 int bit_size = TYPE_FIELD_BITSIZE (type, i);
6495
6496 if (field_type_p != NULL)
6497 *field_type_p = TYPE_FIELD_TYPE (type, i);
6498 if (byte_offset_p != NULL)
6499 *byte_offset_p = fld_offset;
6500 if (bit_offset_p != NULL)
6501 *bit_offset_p = bit_pos % 8;
6502 if (bit_size_p != NULL)
6503 *bit_size_p = bit_size;
6504 return 1;
6505 }
6506 else if (ada_is_wrapper_field (type, i))
6507 {
6508 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6509 field_type_p, byte_offset_p, bit_offset_p,
6510 bit_size_p, index_p))
6511 return 1;
6512 }
6513 else if (ada_is_variant_part (type, i))
6514 {
6515 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6516 fixed type?? */
6517 int j;
6518 struct type *field_type
6519 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6520
6521 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6522 {
6523 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6524 fld_offset
6525 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6526 field_type_p, byte_offset_p,
6527 bit_offset_p, bit_size_p, index_p))
6528 return 1;
6529 }
6530 }
6531 else if (index_p != NULL)
6532 *index_p += 1;
6533 }
6534 return 0;
6535 }
6536
6537 /* Number of user-visible fields in record type TYPE. */
6538
6539 static int
6540 num_visible_fields (struct type *type)
6541 {
6542 int n;
6543
6544 n = 0;
6545 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6546 return n;
6547 }
6548
6549 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
6550 and search in it assuming it has (class) type TYPE.
6551 If found, return value, else return NULL.
6552
6553 Searches recursively through wrapper fields (e.g., '_parent'). */
6554
6555 static struct value *
6556 ada_search_struct_field (char *name, struct value *arg, int offset,
6557 struct type *type)
6558 {
6559 int i;
6560
6561 type = ada_check_typedef (type);
6562 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6563 {
6564 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6565
6566 if (t_field_name == NULL)
6567 continue;
6568
6569 else if (field_name_match (t_field_name, name))
6570 return ada_value_primitive_field (arg, offset, i, type);
6571
6572 else if (ada_is_wrapper_field (type, i))
6573 {
6574 struct value *v = /* Do not let indent join lines here. */
6575 ada_search_struct_field (name, arg,
6576 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6577 TYPE_FIELD_TYPE (type, i));
6578
6579 if (v != NULL)
6580 return v;
6581 }
6582
6583 else if (ada_is_variant_part (type, i))
6584 {
6585 /* PNH: Do we ever get here? See find_struct_field. */
6586 int j;
6587 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6588 i));
6589 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6590
6591 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6592 {
6593 struct value *v = ada_search_struct_field /* Force line
6594 break. */
6595 (name, arg,
6596 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6597 TYPE_FIELD_TYPE (field_type, j));
6598
6599 if (v != NULL)
6600 return v;
6601 }
6602 }
6603 }
6604 return NULL;
6605 }
6606
6607 static struct value *ada_index_struct_field_1 (int *, struct value *,
6608 int, struct type *);
6609
6610
6611 /* Return field #INDEX in ARG, where the index is that returned by
6612 * find_struct_field through its INDEX_P argument. Adjust the address
6613 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6614 * If found, return value, else return NULL. */
6615
6616 static struct value *
6617 ada_index_struct_field (int index, struct value *arg, int offset,
6618 struct type *type)
6619 {
6620 return ada_index_struct_field_1 (&index, arg, offset, type);
6621 }
6622
6623
6624 /* Auxiliary function for ada_index_struct_field. Like
6625 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6626 * *INDEX_P. */
6627
6628 static struct value *
6629 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6630 struct type *type)
6631 {
6632 int i;
6633 type = ada_check_typedef (type);
6634
6635 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6636 {
6637 if (TYPE_FIELD_NAME (type, i) == NULL)
6638 continue;
6639 else if (ada_is_wrapper_field (type, i))
6640 {
6641 struct value *v = /* Do not let indent join lines here. */
6642 ada_index_struct_field_1 (index_p, arg,
6643 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6644 TYPE_FIELD_TYPE (type, i));
6645
6646 if (v != NULL)
6647 return v;
6648 }
6649
6650 else if (ada_is_variant_part (type, i))
6651 {
6652 /* PNH: Do we ever get here? See ada_search_struct_field,
6653 find_struct_field. */
6654 error (_("Cannot assign this kind of variant record"));
6655 }
6656 else if (*index_p == 0)
6657 return ada_value_primitive_field (arg, offset, i, type);
6658 else
6659 *index_p -= 1;
6660 }
6661 return NULL;
6662 }
6663
6664 /* Given ARG, a value of type (pointer or reference to a)*
6665 structure/union, extract the component named NAME from the ultimate
6666 target structure/union and return it as a value with its
6667 appropriate type.
6668
6669 The routine searches for NAME among all members of the structure itself
6670 and (recursively) among all members of any wrapper members
6671 (e.g., '_parent').
6672
6673 If NO_ERR, then simply return NULL in case of error, rather than
6674 calling error. */
6675
6676 struct value *
6677 ada_value_struct_elt (struct value *arg, char *name, int no_err)
6678 {
6679 struct type *t, *t1;
6680 struct value *v;
6681
6682 v = NULL;
6683 t1 = t = ada_check_typedef (value_type (arg));
6684 if (TYPE_CODE (t) == TYPE_CODE_REF)
6685 {
6686 t1 = TYPE_TARGET_TYPE (t);
6687 if (t1 == NULL)
6688 goto BadValue;
6689 t1 = ada_check_typedef (t1);
6690 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6691 {
6692 arg = coerce_ref (arg);
6693 t = t1;
6694 }
6695 }
6696
6697 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6698 {
6699 t1 = TYPE_TARGET_TYPE (t);
6700 if (t1 == NULL)
6701 goto BadValue;
6702 t1 = ada_check_typedef (t1);
6703 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6704 {
6705 arg = value_ind (arg);
6706 t = t1;
6707 }
6708 else
6709 break;
6710 }
6711
6712 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
6713 goto BadValue;
6714
6715 if (t1 == t)
6716 v = ada_search_struct_field (name, arg, 0, t);
6717 else
6718 {
6719 int bit_offset, bit_size, byte_offset;
6720 struct type *field_type;
6721 CORE_ADDR address;
6722
6723 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6724 address = value_as_address (arg);
6725 else
6726 address = unpack_pointer (t, value_contents (arg));
6727
6728 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
6729 if (find_struct_field (name, t1, 0,
6730 &field_type, &byte_offset, &bit_offset,
6731 &bit_size, NULL))
6732 {
6733 if (bit_size != 0)
6734 {
6735 if (TYPE_CODE (t) == TYPE_CODE_REF)
6736 arg = ada_coerce_ref (arg);
6737 else
6738 arg = ada_value_ind (arg);
6739 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6740 bit_offset, bit_size,
6741 field_type);
6742 }
6743 else
6744 v = value_at_lazy (field_type, address + byte_offset);
6745 }
6746 }
6747
6748 if (v != NULL || no_err)
6749 return v;
6750 else
6751 error (_("There is no member named %s."), name);
6752
6753 BadValue:
6754 if (no_err)
6755 return NULL;
6756 else
6757 error (_("Attempt to extract a component of "
6758 "a value that is not a record."));
6759 }
6760
6761 /* Given a type TYPE, look up the type of the component of type named NAME.
6762 If DISPP is non-null, add its byte displacement from the beginning of a
6763 structure (pointed to by a value) of type TYPE to *DISPP (does not
6764 work for packed fields).
6765
6766 Matches any field whose name has NAME as a prefix, possibly
6767 followed by "___".
6768
6769 TYPE can be either a struct or union. If REFOK, TYPE may also
6770 be a (pointer or reference)+ to a struct or union, and the
6771 ultimate target type will be searched.
6772
6773 Looks recursively into variant clauses and parent types.
6774
6775 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6776 TYPE is not a type of the right kind. */
6777
6778 static struct type *
6779 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6780 int noerr, int *dispp)
6781 {
6782 int i;
6783
6784 if (name == NULL)
6785 goto BadName;
6786
6787 if (refok && type != NULL)
6788 while (1)
6789 {
6790 type = ada_check_typedef (type);
6791 if (TYPE_CODE (type) != TYPE_CODE_PTR
6792 && TYPE_CODE (type) != TYPE_CODE_REF)
6793 break;
6794 type = TYPE_TARGET_TYPE (type);
6795 }
6796
6797 if (type == NULL
6798 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6799 && TYPE_CODE (type) != TYPE_CODE_UNION))
6800 {
6801 if (noerr)
6802 return NULL;
6803 else
6804 {
6805 target_terminal_ours ();
6806 gdb_flush (gdb_stdout);
6807 if (type == NULL)
6808 error (_("Type (null) is not a structure or union type"));
6809 else
6810 {
6811 /* XXX: type_sprint */
6812 fprintf_unfiltered (gdb_stderr, _("Type "));
6813 type_print (type, "", gdb_stderr, -1);
6814 error (_(" is not a structure or union type"));
6815 }
6816 }
6817 }
6818
6819 type = to_static_fixed_type (type);
6820
6821 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6822 {
6823 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6824 struct type *t;
6825 int disp;
6826
6827 if (t_field_name == NULL)
6828 continue;
6829
6830 else if (field_name_match (t_field_name, name))
6831 {
6832 if (dispp != NULL)
6833 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
6834 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6835 }
6836
6837 else if (ada_is_wrapper_field (type, i))
6838 {
6839 disp = 0;
6840 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6841 0, 1, &disp);
6842 if (t != NULL)
6843 {
6844 if (dispp != NULL)
6845 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6846 return t;
6847 }
6848 }
6849
6850 else if (ada_is_variant_part (type, i))
6851 {
6852 int j;
6853 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6854 i));
6855
6856 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6857 {
6858 /* FIXME pnh 2008/01/26: We check for a field that is
6859 NOT wrapped in a struct, since the compiler sometimes
6860 generates these for unchecked variant types. Revisit
6861 if the compiler changes this practice. */
6862 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
6863 disp = 0;
6864 if (v_field_name != NULL
6865 && field_name_match (v_field_name, name))
6866 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6867 else
6868 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
6869 j),
6870 name, 0, 1, &disp);
6871
6872 if (t != NULL)
6873 {
6874 if (dispp != NULL)
6875 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6876 return t;
6877 }
6878 }
6879 }
6880
6881 }
6882
6883 BadName:
6884 if (!noerr)
6885 {
6886 target_terminal_ours ();
6887 gdb_flush (gdb_stdout);
6888 if (name == NULL)
6889 {
6890 /* XXX: type_sprint */
6891 fprintf_unfiltered (gdb_stderr, _("Type "));
6892 type_print (type, "", gdb_stderr, -1);
6893 error (_(" has no component named <null>"));
6894 }
6895 else
6896 {
6897 /* XXX: type_sprint */
6898 fprintf_unfiltered (gdb_stderr, _("Type "));
6899 type_print (type, "", gdb_stderr, -1);
6900 error (_(" has no component named %s"), name);
6901 }
6902 }
6903
6904 return NULL;
6905 }
6906
6907 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6908 within a value of type OUTER_TYPE, return true iff VAR_TYPE
6909 represents an unchecked union (that is, the variant part of a
6910 record that is named in an Unchecked_Union pragma). */
6911
6912 static int
6913 is_unchecked_variant (struct type *var_type, struct type *outer_type)
6914 {
6915 char *discrim_name = ada_variant_discrim_name (var_type);
6916
6917 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
6918 == NULL);
6919 }
6920
6921
6922 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6923 within a value of type OUTER_TYPE that is stored in GDB at
6924 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6925 numbering from 0) is applicable. Returns -1 if none are. */
6926
6927 int
6928 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
6929 const gdb_byte *outer_valaddr)
6930 {
6931 int others_clause;
6932 int i;
6933 char *discrim_name = ada_variant_discrim_name (var_type);
6934 struct value *outer;
6935 struct value *discrim;
6936 LONGEST discrim_val;
6937
6938 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6939 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6940 if (discrim == NULL)
6941 return -1;
6942 discrim_val = value_as_long (discrim);
6943
6944 others_clause = -1;
6945 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6946 {
6947 if (ada_is_others_clause (var_type, i))
6948 others_clause = i;
6949 else if (ada_in_variant (discrim_val, var_type, i))
6950 return i;
6951 }
6952
6953 return others_clause;
6954 }
6955 \f
6956
6957
6958 /* Dynamic-Sized Records */
6959
6960 /* Strategy: The type ostensibly attached to a value with dynamic size
6961 (i.e., a size that is not statically recorded in the debugging
6962 data) does not accurately reflect the size or layout of the value.
6963 Our strategy is to convert these values to values with accurate,
6964 conventional types that are constructed on the fly. */
6965
6966 /* There is a subtle and tricky problem here. In general, we cannot
6967 determine the size of dynamic records without its data. However,
6968 the 'struct value' data structure, which GDB uses to represent
6969 quantities in the inferior process (the target), requires the size
6970 of the type at the time of its allocation in order to reserve space
6971 for GDB's internal copy of the data. That's why the
6972 'to_fixed_xxx_type' routines take (target) addresses as parameters,
6973 rather than struct value*s.
6974
6975 However, GDB's internal history variables ($1, $2, etc.) are
6976 struct value*s containing internal copies of the data that are not, in
6977 general, the same as the data at their corresponding addresses in
6978 the target. Fortunately, the types we give to these values are all
6979 conventional, fixed-size types (as per the strategy described
6980 above), so that we don't usually have to perform the
6981 'to_fixed_xxx_type' conversions to look at their values.
6982 Unfortunately, there is one exception: if one of the internal
6983 history variables is an array whose elements are unconstrained
6984 records, then we will need to create distinct fixed types for each
6985 element selected. */
6986
6987 /* The upshot of all of this is that many routines take a (type, host
6988 address, target address) triple as arguments to represent a value.
6989 The host address, if non-null, is supposed to contain an internal
6990 copy of the relevant data; otherwise, the program is to consult the
6991 target at the target address. */
6992
6993 /* Assuming that VAL0 represents a pointer value, the result of
6994 dereferencing it. Differs from value_ind in its treatment of
6995 dynamic-sized types. */
6996
6997 struct value *
6998 ada_value_ind (struct value *val0)
6999 {
7000 struct value *val = value_ind (val0);
7001
7002 return ada_to_fixed_value (val);
7003 }
7004
7005 /* The value resulting from dereferencing any "reference to"
7006 qualifiers on VAL0. */
7007
7008 static struct value *
7009 ada_coerce_ref (struct value *val0)
7010 {
7011 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7012 {
7013 struct value *val = val0;
7014
7015 val = coerce_ref (val);
7016 return ada_to_fixed_value (val);
7017 }
7018 else
7019 return val0;
7020 }
7021
7022 /* Return OFF rounded upward if necessary to a multiple of
7023 ALIGNMENT (a power of 2). */
7024
7025 static unsigned int
7026 align_value (unsigned int off, unsigned int alignment)
7027 {
7028 return (off + alignment - 1) & ~(alignment - 1);
7029 }
7030
7031 /* Return the bit alignment required for field #F of template type TYPE. */
7032
7033 static unsigned int
7034 field_alignment (struct type *type, int f)
7035 {
7036 const char *name = TYPE_FIELD_NAME (type, f);
7037 int len;
7038 int align_offset;
7039
7040 /* The field name should never be null, unless the debugging information
7041 is somehow malformed. In this case, we assume the field does not
7042 require any alignment. */
7043 if (name == NULL)
7044 return 1;
7045
7046 len = strlen (name);
7047
7048 if (!isdigit (name[len - 1]))
7049 return 1;
7050
7051 if (isdigit (name[len - 2]))
7052 align_offset = len - 2;
7053 else
7054 align_offset = len - 1;
7055
7056 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
7057 return TARGET_CHAR_BIT;
7058
7059 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7060 }
7061
7062 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7063
7064 static struct symbol *
7065 ada_find_any_type_symbol (const char *name)
7066 {
7067 struct symbol *sym;
7068
7069 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7070 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7071 return sym;
7072
7073 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7074 return sym;
7075 }
7076
7077 /* Find a type named NAME. Ignores ambiguity. This routine will look
7078 solely for types defined by debug info, it will not search the GDB
7079 primitive types. */
7080
7081 static struct type *
7082 ada_find_any_type (const char *name)
7083 {
7084 struct symbol *sym = ada_find_any_type_symbol (name);
7085
7086 if (sym != NULL)
7087 return SYMBOL_TYPE (sym);
7088
7089 return NULL;
7090 }
7091
7092 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7093 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7094 symbol, in which case it is returned. Otherwise, this looks for
7095 symbols whose name is that of NAME_SYM suffixed with "___XR".
7096 Return symbol if found, and NULL otherwise. */
7097
7098 struct symbol *
7099 ada_find_renaming_symbol (struct symbol *name_sym, struct block *block)
7100 {
7101 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7102 struct symbol *sym;
7103
7104 if (strstr (name, "___XR") != NULL)
7105 return name_sym;
7106
7107 sym = find_old_style_renaming_symbol (name, block);
7108
7109 if (sym != NULL)
7110 return sym;
7111
7112 /* Not right yet. FIXME pnh 7/20/2007. */
7113 sym = ada_find_any_type_symbol (name);
7114 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7115 return sym;
7116 else
7117 return NULL;
7118 }
7119
7120 static struct symbol *
7121 find_old_style_renaming_symbol (const char *name, struct block *block)
7122 {
7123 const struct symbol *function_sym = block_linkage_function (block);
7124 char *rename;
7125
7126 if (function_sym != NULL)
7127 {
7128 /* If the symbol is defined inside a function, NAME is not fully
7129 qualified. This means we need to prepend the function name
7130 as well as adding the ``___XR'' suffix to build the name of
7131 the associated renaming symbol. */
7132 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
7133 /* Function names sometimes contain suffixes used
7134 for instance to qualify nested subprograms. When building
7135 the XR type name, we need to make sure that this suffix is
7136 not included. So do not include any suffix in the function
7137 name length below. */
7138 int function_name_len = ada_name_prefix_len (function_name);
7139 const int rename_len = function_name_len + 2 /* "__" */
7140 + strlen (name) + 6 /* "___XR\0" */ ;
7141
7142 /* Strip the suffix if necessary. */
7143 ada_remove_trailing_digits (function_name, &function_name_len);
7144 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7145 ada_remove_Xbn_suffix (function_name, &function_name_len);
7146
7147 /* Library-level functions are a special case, as GNAT adds
7148 a ``_ada_'' prefix to the function name to avoid namespace
7149 pollution. However, the renaming symbols themselves do not
7150 have this prefix, so we need to skip this prefix if present. */
7151 if (function_name_len > 5 /* "_ada_" */
7152 && strstr (function_name, "_ada_") == function_name)
7153 {
7154 function_name += 5;
7155 function_name_len -= 5;
7156 }
7157
7158 rename = (char *) alloca (rename_len * sizeof (char));
7159 strncpy (rename, function_name, function_name_len);
7160 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7161 "__%s___XR", name);
7162 }
7163 else
7164 {
7165 const int rename_len = strlen (name) + 6;
7166
7167 rename = (char *) alloca (rename_len * sizeof (char));
7168 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
7169 }
7170
7171 return ada_find_any_type_symbol (rename);
7172 }
7173
7174 /* Because of GNAT encoding conventions, several GDB symbols may match a
7175 given type name. If the type denoted by TYPE0 is to be preferred to
7176 that of TYPE1 for purposes of type printing, return non-zero;
7177 otherwise return 0. */
7178
7179 int
7180 ada_prefer_type (struct type *type0, struct type *type1)
7181 {
7182 if (type1 == NULL)
7183 return 1;
7184 else if (type0 == NULL)
7185 return 0;
7186 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7187 return 1;
7188 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7189 return 0;
7190 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7191 return 1;
7192 else if (ada_is_constrained_packed_array_type (type0))
7193 return 1;
7194 else if (ada_is_array_descriptor_type (type0)
7195 && !ada_is_array_descriptor_type (type1))
7196 return 1;
7197 else
7198 {
7199 const char *type0_name = type_name_no_tag (type0);
7200 const char *type1_name = type_name_no_tag (type1);
7201
7202 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7203 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7204 return 1;
7205 }
7206 return 0;
7207 }
7208
7209 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
7210 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7211
7212 const char *
7213 ada_type_name (struct type *type)
7214 {
7215 if (type == NULL)
7216 return NULL;
7217 else if (TYPE_NAME (type) != NULL)
7218 return TYPE_NAME (type);
7219 else
7220 return TYPE_TAG_NAME (type);
7221 }
7222
7223 /* Search the list of "descriptive" types associated to TYPE for a type
7224 whose name is NAME. */
7225
7226 static struct type *
7227 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7228 {
7229 struct type *result;
7230
7231 /* If there no descriptive-type info, then there is no parallel type
7232 to be found. */
7233 if (!HAVE_GNAT_AUX_INFO (type))
7234 return NULL;
7235
7236 result = TYPE_DESCRIPTIVE_TYPE (type);
7237 while (result != NULL)
7238 {
7239 const char *result_name = ada_type_name (result);
7240
7241 if (result_name == NULL)
7242 {
7243 warning (_("unexpected null name on descriptive type"));
7244 return NULL;
7245 }
7246
7247 /* If the names match, stop. */
7248 if (strcmp (result_name, name) == 0)
7249 break;
7250
7251 /* Otherwise, look at the next item on the list, if any. */
7252 if (HAVE_GNAT_AUX_INFO (result))
7253 result = TYPE_DESCRIPTIVE_TYPE (result);
7254 else
7255 result = NULL;
7256 }
7257
7258 /* If we didn't find a match, see whether this is a packed array. With
7259 older compilers, the descriptive type information is either absent or
7260 irrelevant when it comes to packed arrays so the above lookup fails.
7261 Fall back to using a parallel lookup by name in this case. */
7262 if (result == NULL && ada_is_constrained_packed_array_type (type))
7263 return ada_find_any_type (name);
7264
7265 return result;
7266 }
7267
7268 /* Find a parallel type to TYPE with the specified NAME, using the
7269 descriptive type taken from the debugging information, if available,
7270 and otherwise using the (slower) name-based method. */
7271
7272 static struct type *
7273 ada_find_parallel_type_with_name (struct type *type, const char *name)
7274 {
7275 struct type *result = NULL;
7276
7277 if (HAVE_GNAT_AUX_INFO (type))
7278 result = find_parallel_type_by_descriptive_type (type, name);
7279 else
7280 result = ada_find_any_type (name);
7281
7282 return result;
7283 }
7284
7285 /* Same as above, but specify the name of the parallel type by appending
7286 SUFFIX to the name of TYPE. */
7287
7288 struct type *
7289 ada_find_parallel_type (struct type *type, const char *suffix)
7290 {
7291 char *name;
7292 const char *typename = ada_type_name (type);
7293 int len;
7294
7295 if (typename == NULL)
7296 return NULL;
7297
7298 len = strlen (typename);
7299
7300 name = (char *) alloca (len + strlen (suffix) + 1);
7301
7302 strcpy (name, typename);
7303 strcpy (name + len, suffix);
7304
7305 return ada_find_parallel_type_with_name (type, name);
7306 }
7307
7308 /* If TYPE is a variable-size record type, return the corresponding template
7309 type describing its fields. Otherwise, return NULL. */
7310
7311 static struct type *
7312 dynamic_template_type (struct type *type)
7313 {
7314 type = ada_check_typedef (type);
7315
7316 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
7317 || ada_type_name (type) == NULL)
7318 return NULL;
7319 else
7320 {
7321 int len = strlen (ada_type_name (type));
7322
7323 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7324 return type;
7325 else
7326 return ada_find_parallel_type (type, "___XVE");
7327 }
7328 }
7329
7330 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7331 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7332
7333 static int
7334 is_dynamic_field (struct type *templ_type, int field_num)
7335 {
7336 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
7337
7338 return name != NULL
7339 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7340 && strstr (name, "___XVL") != NULL;
7341 }
7342
7343 /* The index of the variant field of TYPE, or -1 if TYPE does not
7344 represent a variant record type. */
7345
7346 static int
7347 variant_field_index (struct type *type)
7348 {
7349 int f;
7350
7351 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7352 return -1;
7353
7354 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7355 {
7356 if (ada_is_variant_part (type, f))
7357 return f;
7358 }
7359 return -1;
7360 }
7361
7362 /* A record type with no fields. */
7363
7364 static struct type *
7365 empty_record (struct type *template)
7366 {
7367 struct type *type = alloc_type_copy (template);
7368
7369 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7370 TYPE_NFIELDS (type) = 0;
7371 TYPE_FIELDS (type) = NULL;
7372 INIT_CPLUS_SPECIFIC (type);
7373 TYPE_NAME (type) = "<empty>";
7374 TYPE_TAG_NAME (type) = NULL;
7375 TYPE_LENGTH (type) = 0;
7376 return type;
7377 }
7378
7379 /* An ordinary record type (with fixed-length fields) that describes
7380 the value of type TYPE at VALADDR or ADDRESS (see comments at
7381 the beginning of this section) VAL according to GNAT conventions.
7382 DVAL0 should describe the (portion of a) record that contains any
7383 necessary discriminants. It should be NULL if value_type (VAL) is
7384 an outer-level type (i.e., as opposed to a branch of a variant.) A
7385 variant field (unless unchecked) is replaced by a particular branch
7386 of the variant.
7387
7388 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7389 length are not statically known are discarded. As a consequence,
7390 VALADDR, ADDRESS and DVAL0 are ignored.
7391
7392 NOTE: Limitations: For now, we assume that dynamic fields and
7393 variants occupy whole numbers of bytes. However, they need not be
7394 byte-aligned. */
7395
7396 struct type *
7397 ada_template_to_fixed_record_type_1 (struct type *type,
7398 const gdb_byte *valaddr,
7399 CORE_ADDR address, struct value *dval0,
7400 int keep_dynamic_fields)
7401 {
7402 struct value *mark = value_mark ();
7403 struct value *dval;
7404 struct type *rtype;
7405 int nfields, bit_len;
7406 int variant_field;
7407 long off;
7408 int fld_bit_len;
7409 int f;
7410
7411 /* Compute the number of fields in this record type that are going
7412 to be processed: unless keep_dynamic_fields, this includes only
7413 fields whose position and length are static will be processed. */
7414 if (keep_dynamic_fields)
7415 nfields = TYPE_NFIELDS (type);
7416 else
7417 {
7418 nfields = 0;
7419 while (nfields < TYPE_NFIELDS (type)
7420 && !ada_is_variant_part (type, nfields)
7421 && !is_dynamic_field (type, nfields))
7422 nfields++;
7423 }
7424
7425 rtype = alloc_type_copy (type);
7426 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7427 INIT_CPLUS_SPECIFIC (rtype);
7428 TYPE_NFIELDS (rtype) = nfields;
7429 TYPE_FIELDS (rtype) = (struct field *)
7430 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7431 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7432 TYPE_NAME (rtype) = ada_type_name (type);
7433 TYPE_TAG_NAME (rtype) = NULL;
7434 TYPE_FIXED_INSTANCE (rtype) = 1;
7435
7436 off = 0;
7437 bit_len = 0;
7438 variant_field = -1;
7439
7440 for (f = 0; f < nfields; f += 1)
7441 {
7442 off = align_value (off, field_alignment (type, f))
7443 + TYPE_FIELD_BITPOS (type, f);
7444 TYPE_FIELD_BITPOS (rtype, f) = off;
7445 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7446
7447 if (ada_is_variant_part (type, f))
7448 {
7449 variant_field = f;
7450 fld_bit_len = 0;
7451 }
7452 else if (is_dynamic_field (type, f))
7453 {
7454 const gdb_byte *field_valaddr = valaddr;
7455 CORE_ADDR field_address = address;
7456 struct type *field_type =
7457 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7458
7459 if (dval0 == NULL)
7460 {
7461 /* rtype's length is computed based on the run-time
7462 value of discriminants. If the discriminants are not
7463 initialized, the type size may be completely bogus and
7464 GDB may fail to allocate a value for it. So check the
7465 size first before creating the value. */
7466 check_size (rtype);
7467 dval = value_from_contents_and_address (rtype, valaddr, address);
7468 }
7469 else
7470 dval = dval0;
7471
7472 /* If the type referenced by this field is an aligner type, we need
7473 to unwrap that aligner type, because its size might not be set.
7474 Keeping the aligner type would cause us to compute the wrong
7475 size for this field, impacting the offset of the all the fields
7476 that follow this one. */
7477 if (ada_is_aligner_type (field_type))
7478 {
7479 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7480
7481 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7482 field_address = cond_offset_target (field_address, field_offset);
7483 field_type = ada_aligned_type (field_type);
7484 }
7485
7486 field_valaddr = cond_offset_host (field_valaddr,
7487 off / TARGET_CHAR_BIT);
7488 field_address = cond_offset_target (field_address,
7489 off / TARGET_CHAR_BIT);
7490
7491 /* Get the fixed type of the field. Note that, in this case,
7492 we do not want to get the real type out of the tag: if
7493 the current field is the parent part of a tagged record,
7494 we will get the tag of the object. Clearly wrong: the real
7495 type of the parent is not the real type of the child. We
7496 would end up in an infinite loop. */
7497 field_type = ada_get_base_type (field_type);
7498 field_type = ada_to_fixed_type (field_type, field_valaddr,
7499 field_address, dval, 0);
7500 /* If the field size is already larger than the maximum
7501 object size, then the record itself will necessarily
7502 be larger than the maximum object size. We need to make
7503 this check now, because the size might be so ridiculously
7504 large (due to an uninitialized variable in the inferior)
7505 that it would cause an overflow when adding it to the
7506 record size. */
7507 check_size (field_type);
7508
7509 TYPE_FIELD_TYPE (rtype, f) = field_type;
7510 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7511 /* The multiplication can potentially overflow. But because
7512 the field length has been size-checked just above, and
7513 assuming that the maximum size is a reasonable value,
7514 an overflow should not happen in practice. So rather than
7515 adding overflow recovery code to this already complex code,
7516 we just assume that it's not going to happen. */
7517 fld_bit_len =
7518 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7519 }
7520 else
7521 {
7522 struct type *field_type = TYPE_FIELD_TYPE (type, f);
7523
7524 /* If our field is a typedef type (most likely a typedef of
7525 a fat pointer, encoding an array access), then we need to
7526 look at its target type to determine its characteristics.
7527 In particular, we would miscompute the field size if we took
7528 the size of the typedef (zero), instead of the size of
7529 the target type. */
7530 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
7531 field_type = ada_typedef_target_type (field_type);
7532
7533 TYPE_FIELD_TYPE (rtype, f) = field_type;
7534 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7535 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7536 fld_bit_len =
7537 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7538 else
7539 fld_bit_len =
7540 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7541 }
7542 if (off + fld_bit_len > bit_len)
7543 bit_len = off + fld_bit_len;
7544 off += fld_bit_len;
7545 TYPE_LENGTH (rtype) =
7546 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7547 }
7548
7549 /* We handle the variant part, if any, at the end because of certain
7550 odd cases in which it is re-ordered so as NOT to be the last field of
7551 the record. This can happen in the presence of representation
7552 clauses. */
7553 if (variant_field >= 0)
7554 {
7555 struct type *branch_type;
7556
7557 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7558
7559 if (dval0 == NULL)
7560 dval = value_from_contents_and_address (rtype, valaddr, address);
7561 else
7562 dval = dval0;
7563
7564 branch_type =
7565 to_fixed_variant_branch_type
7566 (TYPE_FIELD_TYPE (type, variant_field),
7567 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7568 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7569 if (branch_type == NULL)
7570 {
7571 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
7572 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7573 TYPE_NFIELDS (rtype) -= 1;
7574 }
7575 else
7576 {
7577 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7578 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7579 fld_bit_len =
7580 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
7581 TARGET_CHAR_BIT;
7582 if (off + fld_bit_len > bit_len)
7583 bit_len = off + fld_bit_len;
7584 TYPE_LENGTH (rtype) =
7585 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7586 }
7587 }
7588
7589 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7590 should contain the alignment of that record, which should be a strictly
7591 positive value. If null or negative, then something is wrong, most
7592 probably in the debug info. In that case, we don't round up the size
7593 of the resulting type. If this record is not part of another structure,
7594 the current RTYPE length might be good enough for our purposes. */
7595 if (TYPE_LENGTH (type) <= 0)
7596 {
7597 if (TYPE_NAME (rtype))
7598 warning (_("Invalid type size for `%s' detected: %d."),
7599 TYPE_NAME (rtype), TYPE_LENGTH (type));
7600 else
7601 warning (_("Invalid type size for <unnamed> detected: %d."),
7602 TYPE_LENGTH (type));
7603 }
7604 else
7605 {
7606 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
7607 TYPE_LENGTH (type));
7608 }
7609
7610 value_free_to_mark (mark);
7611 if (TYPE_LENGTH (rtype) > varsize_limit)
7612 error (_("record type with dynamic size is larger than varsize-limit"));
7613 return rtype;
7614 }
7615
7616 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7617 of 1. */
7618
7619 static struct type *
7620 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
7621 CORE_ADDR address, struct value *dval0)
7622 {
7623 return ada_template_to_fixed_record_type_1 (type, valaddr,
7624 address, dval0, 1);
7625 }
7626
7627 /* An ordinary record type in which ___XVL-convention fields and
7628 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7629 static approximations, containing all possible fields. Uses
7630 no runtime values. Useless for use in values, but that's OK,
7631 since the results are used only for type determinations. Works on both
7632 structs and unions. Representation note: to save space, we memorize
7633 the result of this function in the TYPE_TARGET_TYPE of the
7634 template type. */
7635
7636 static struct type *
7637 template_to_static_fixed_type (struct type *type0)
7638 {
7639 struct type *type;
7640 int nfields;
7641 int f;
7642
7643 if (TYPE_TARGET_TYPE (type0) != NULL)
7644 return TYPE_TARGET_TYPE (type0);
7645
7646 nfields = TYPE_NFIELDS (type0);
7647 type = type0;
7648
7649 for (f = 0; f < nfields; f += 1)
7650 {
7651 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
7652 struct type *new_type;
7653
7654 if (is_dynamic_field (type0, f))
7655 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
7656 else
7657 new_type = static_unwrap_type (field_type);
7658 if (type == type0 && new_type != field_type)
7659 {
7660 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
7661 TYPE_CODE (type) = TYPE_CODE (type0);
7662 INIT_CPLUS_SPECIFIC (type);
7663 TYPE_NFIELDS (type) = nfields;
7664 TYPE_FIELDS (type) = (struct field *)
7665 TYPE_ALLOC (type, nfields * sizeof (struct field));
7666 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7667 sizeof (struct field) * nfields);
7668 TYPE_NAME (type) = ada_type_name (type0);
7669 TYPE_TAG_NAME (type) = NULL;
7670 TYPE_FIXED_INSTANCE (type) = 1;
7671 TYPE_LENGTH (type) = 0;
7672 }
7673 TYPE_FIELD_TYPE (type, f) = new_type;
7674 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
7675 }
7676 return type;
7677 }
7678
7679 /* Given an object of type TYPE whose contents are at VALADDR and
7680 whose address in memory is ADDRESS, returns a revision of TYPE,
7681 which should be a non-dynamic-sized record, in which the variant
7682 part, if any, is replaced with the appropriate branch. Looks
7683 for discriminant values in DVAL0, which can be NULL if the record
7684 contains the necessary discriminant values. */
7685
7686 static struct type *
7687 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
7688 CORE_ADDR address, struct value *dval0)
7689 {
7690 struct value *mark = value_mark ();
7691 struct value *dval;
7692 struct type *rtype;
7693 struct type *branch_type;
7694 int nfields = TYPE_NFIELDS (type);
7695 int variant_field = variant_field_index (type);
7696
7697 if (variant_field == -1)
7698 return type;
7699
7700 if (dval0 == NULL)
7701 dval = value_from_contents_and_address (type, valaddr, address);
7702 else
7703 dval = dval0;
7704
7705 rtype = alloc_type_copy (type);
7706 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7707 INIT_CPLUS_SPECIFIC (rtype);
7708 TYPE_NFIELDS (rtype) = nfields;
7709 TYPE_FIELDS (rtype) =
7710 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7711 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
7712 sizeof (struct field) * nfields);
7713 TYPE_NAME (rtype) = ada_type_name (type);
7714 TYPE_TAG_NAME (rtype) = NULL;
7715 TYPE_FIXED_INSTANCE (rtype) = 1;
7716 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7717
7718 branch_type = to_fixed_variant_branch_type
7719 (TYPE_FIELD_TYPE (type, variant_field),
7720 cond_offset_host (valaddr,
7721 TYPE_FIELD_BITPOS (type, variant_field)
7722 / TARGET_CHAR_BIT),
7723 cond_offset_target (address,
7724 TYPE_FIELD_BITPOS (type, variant_field)
7725 / TARGET_CHAR_BIT), dval);
7726 if (branch_type == NULL)
7727 {
7728 int f;
7729
7730 for (f = variant_field + 1; f < nfields; f += 1)
7731 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7732 TYPE_NFIELDS (rtype) -= 1;
7733 }
7734 else
7735 {
7736 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7737 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7738 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7739 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7740 }
7741 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
7742
7743 value_free_to_mark (mark);
7744 return rtype;
7745 }
7746
7747 /* An ordinary record type (with fixed-length fields) that describes
7748 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7749 beginning of this section]. Any necessary discriminants' values
7750 should be in DVAL, a record value; it may be NULL if the object
7751 at ADDR itself contains any necessary discriminant values.
7752 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7753 values from the record are needed. Except in the case that DVAL,
7754 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7755 unchecked) is replaced by a particular branch of the variant.
7756
7757 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7758 is questionable and may be removed. It can arise during the
7759 processing of an unconstrained-array-of-record type where all the
7760 variant branches have exactly the same size. This is because in
7761 such cases, the compiler does not bother to use the XVS convention
7762 when encoding the record. I am currently dubious of this
7763 shortcut and suspect the compiler should be altered. FIXME. */
7764
7765 static struct type *
7766 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7767 CORE_ADDR address, struct value *dval)
7768 {
7769 struct type *templ_type;
7770
7771 if (TYPE_FIXED_INSTANCE (type0))
7772 return type0;
7773
7774 templ_type = dynamic_template_type (type0);
7775
7776 if (templ_type != NULL)
7777 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7778 else if (variant_field_index (type0) >= 0)
7779 {
7780 if (dval == NULL && valaddr == NULL && address == 0)
7781 return type0;
7782 return to_record_with_fixed_variant_part (type0, valaddr, address,
7783 dval);
7784 }
7785 else
7786 {
7787 TYPE_FIXED_INSTANCE (type0) = 1;
7788 return type0;
7789 }
7790
7791 }
7792
7793 /* An ordinary record type (with fixed-length fields) that describes
7794 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7795 union type. Any necessary discriminants' values should be in DVAL,
7796 a record value. That is, this routine selects the appropriate
7797 branch of the union at ADDR according to the discriminant value
7798 indicated in the union's type name. Returns VAR_TYPE0 itself if
7799 it represents a variant subject to a pragma Unchecked_Union. */
7800
7801 static struct type *
7802 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7803 CORE_ADDR address, struct value *dval)
7804 {
7805 int which;
7806 struct type *templ_type;
7807 struct type *var_type;
7808
7809 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7810 var_type = TYPE_TARGET_TYPE (var_type0);
7811 else
7812 var_type = var_type0;
7813
7814 templ_type = ada_find_parallel_type (var_type, "___XVU");
7815
7816 if (templ_type != NULL)
7817 var_type = templ_type;
7818
7819 if (is_unchecked_variant (var_type, value_type (dval)))
7820 return var_type0;
7821 which =
7822 ada_which_variant_applies (var_type,
7823 value_type (dval), value_contents (dval));
7824
7825 if (which < 0)
7826 return empty_record (var_type);
7827 else if (is_dynamic_field (var_type, which))
7828 return to_fixed_record_type
7829 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7830 valaddr, address, dval);
7831 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
7832 return
7833 to_fixed_record_type
7834 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
7835 else
7836 return TYPE_FIELD_TYPE (var_type, which);
7837 }
7838
7839 /* Assuming that TYPE0 is an array type describing the type of a value
7840 at ADDR, and that DVAL describes a record containing any
7841 discriminants used in TYPE0, returns a type for the value that
7842 contains no dynamic components (that is, no components whose sizes
7843 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7844 true, gives an error message if the resulting type's size is over
7845 varsize_limit. */
7846
7847 static struct type *
7848 to_fixed_array_type (struct type *type0, struct value *dval,
7849 int ignore_too_big)
7850 {
7851 struct type *index_type_desc;
7852 struct type *result;
7853 int constrained_packed_array_p;
7854
7855 type0 = ada_check_typedef (type0);
7856 if (TYPE_FIXED_INSTANCE (type0))
7857 return type0;
7858
7859 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
7860 if (constrained_packed_array_p)
7861 type0 = decode_constrained_packed_array_type (type0);
7862
7863 index_type_desc = ada_find_parallel_type (type0, "___XA");
7864 ada_fixup_array_indexes_type (index_type_desc);
7865 if (index_type_desc == NULL)
7866 {
7867 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
7868
7869 /* NOTE: elt_type---the fixed version of elt_type0---should never
7870 depend on the contents of the array in properly constructed
7871 debugging data. */
7872 /* Create a fixed version of the array element type.
7873 We're not providing the address of an element here,
7874 and thus the actual object value cannot be inspected to do
7875 the conversion. This should not be a problem, since arrays of
7876 unconstrained objects are not allowed. In particular, all
7877 the elements of an array of a tagged type should all be of
7878 the same type specified in the debugging info. No need to
7879 consult the object tag. */
7880 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
7881
7882 /* Make sure we always create a new array type when dealing with
7883 packed array types, since we're going to fix-up the array
7884 type length and element bitsize a little further down. */
7885 if (elt_type0 == elt_type && !constrained_packed_array_p)
7886 result = type0;
7887 else
7888 result = create_array_type (alloc_type_copy (type0),
7889 elt_type, TYPE_INDEX_TYPE (type0));
7890 }
7891 else
7892 {
7893 int i;
7894 struct type *elt_type0;
7895
7896 elt_type0 = type0;
7897 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
7898 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7899
7900 /* NOTE: result---the fixed version of elt_type0---should never
7901 depend on the contents of the array in properly constructed
7902 debugging data. */
7903 /* Create a fixed version of the array element type.
7904 We're not providing the address of an element here,
7905 and thus the actual object value cannot be inspected to do
7906 the conversion. This should not be a problem, since arrays of
7907 unconstrained objects are not allowed. In particular, all
7908 the elements of an array of a tagged type should all be of
7909 the same type specified in the debugging info. No need to
7910 consult the object tag. */
7911 result =
7912 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
7913
7914 elt_type0 = type0;
7915 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
7916 {
7917 struct type *range_type =
7918 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
7919
7920 result = create_array_type (alloc_type_copy (elt_type0),
7921 result, range_type);
7922 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7923 }
7924 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
7925 error (_("array type with dynamic size is larger than varsize-limit"));
7926 }
7927
7928 /* We want to preserve the type name. This can be useful when
7929 trying to get the type name of a value that has already been
7930 printed (for instance, if the user did "print VAR; whatis $". */
7931 TYPE_NAME (result) = TYPE_NAME (type0);
7932
7933 if (constrained_packed_array_p)
7934 {
7935 /* So far, the resulting type has been created as if the original
7936 type was a regular (non-packed) array type. As a result, the
7937 bitsize of the array elements needs to be set again, and the array
7938 length needs to be recomputed based on that bitsize. */
7939 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
7940 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
7941
7942 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
7943 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
7944 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
7945 TYPE_LENGTH (result)++;
7946 }
7947
7948 TYPE_FIXED_INSTANCE (result) = 1;
7949 return result;
7950 }
7951
7952
7953 /* A standard type (containing no dynamically sized components)
7954 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7955 DVAL describes a record containing any discriminants used in TYPE0,
7956 and may be NULL if there are none, or if the object of type TYPE at
7957 ADDRESS or in VALADDR contains these discriminants.
7958
7959 If CHECK_TAG is not null, in the case of tagged types, this function
7960 attempts to locate the object's tag and use it to compute the actual
7961 type. However, when ADDRESS is null, we cannot use it to determine the
7962 location of the tag, and therefore compute the tagged type's actual type.
7963 So we return the tagged type without consulting the tag. */
7964
7965 static struct type *
7966 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
7967 CORE_ADDR address, struct value *dval, int check_tag)
7968 {
7969 type = ada_check_typedef (type);
7970 switch (TYPE_CODE (type))
7971 {
7972 default:
7973 return type;
7974 case TYPE_CODE_STRUCT:
7975 {
7976 struct type *static_type = to_static_fixed_type (type);
7977 struct type *fixed_record_type =
7978 to_fixed_record_type (type, valaddr, address, NULL);
7979
7980 /* If STATIC_TYPE is a tagged type and we know the object's address,
7981 then we can determine its tag, and compute the object's actual
7982 type from there. Note that we have to use the fixed record
7983 type (the parent part of the record may have dynamic fields
7984 and the way the location of _tag is expressed may depend on
7985 them). */
7986
7987 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
7988 {
7989 struct type *real_type =
7990 type_from_tag (value_tag_from_contents_and_address
7991 (fixed_record_type,
7992 valaddr,
7993 address));
7994
7995 if (real_type != NULL)
7996 return to_fixed_record_type (real_type, valaddr, address, NULL);
7997 }
7998
7999 /* Check to see if there is a parallel ___XVZ variable.
8000 If there is, then it provides the actual size of our type. */
8001 else if (ada_type_name (fixed_record_type) != NULL)
8002 {
8003 const char *name = ada_type_name (fixed_record_type);
8004 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
8005 int xvz_found = 0;
8006 LONGEST size;
8007
8008 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8009 size = get_int_var_value (xvz_name, &xvz_found);
8010 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8011 {
8012 fixed_record_type = copy_type (fixed_record_type);
8013 TYPE_LENGTH (fixed_record_type) = size;
8014
8015 /* The FIXED_RECORD_TYPE may have be a stub. We have
8016 observed this when the debugging info is STABS, and
8017 apparently it is something that is hard to fix.
8018
8019 In practice, we don't need the actual type definition
8020 at all, because the presence of the XVZ variable allows us
8021 to assume that there must be a XVS type as well, which we
8022 should be able to use later, when we need the actual type
8023 definition.
8024
8025 In the meantime, pretend that the "fixed" type we are
8026 returning is NOT a stub, because this can cause trouble
8027 when using this type to create new types targeting it.
8028 Indeed, the associated creation routines often check
8029 whether the target type is a stub and will try to replace
8030 it, thus using a type with the wrong size. This, in turn,
8031 might cause the new type to have the wrong size too.
8032 Consider the case of an array, for instance, where the size
8033 of the array is computed from the number of elements in
8034 our array multiplied by the size of its element. */
8035 TYPE_STUB (fixed_record_type) = 0;
8036 }
8037 }
8038 return fixed_record_type;
8039 }
8040 case TYPE_CODE_ARRAY:
8041 return to_fixed_array_type (type, dval, 1);
8042 case TYPE_CODE_UNION:
8043 if (dval == NULL)
8044 return type;
8045 else
8046 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8047 }
8048 }
8049
8050 /* The same as ada_to_fixed_type_1, except that it preserves the type
8051 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8052
8053 The typedef layer needs be preserved in order to differentiate between
8054 arrays and array pointers when both types are implemented using the same
8055 fat pointer. In the array pointer case, the pointer is encoded as
8056 a typedef of the pointer type. For instance, considering:
8057
8058 type String_Access is access String;
8059 S1 : String_Access := null;
8060
8061 To the debugger, S1 is defined as a typedef of type String. But
8062 to the user, it is a pointer. So if the user tries to print S1,
8063 we should not dereference the array, but print the array address
8064 instead.
8065
8066 If we didn't preserve the typedef layer, we would lose the fact that
8067 the type is to be presented as a pointer (needs de-reference before
8068 being printed). And we would also use the source-level type name. */
8069
8070 struct type *
8071 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8072 CORE_ADDR address, struct value *dval, int check_tag)
8073
8074 {
8075 struct type *fixed_type =
8076 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8077
8078 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8079 then preserve the typedef layer.
8080
8081 Implementation note: We can only check the main-type portion of
8082 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8083 from TYPE now returns a type that has the same instance flags
8084 as TYPE. For instance, if TYPE is a "typedef const", and its
8085 target type is a "struct", then the typedef elimination will return
8086 a "const" version of the target type. See check_typedef for more
8087 details about how the typedef layer elimination is done.
8088
8089 brobecker/2010-11-19: It seems to me that the only case where it is
8090 useful to preserve the typedef layer is when dealing with fat pointers.
8091 Perhaps, we could add a check for that and preserve the typedef layer
8092 only in that situation. But this seems unecessary so far, probably
8093 because we call check_typedef/ada_check_typedef pretty much everywhere.
8094 */
8095 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8096 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8097 == TYPE_MAIN_TYPE (fixed_type)))
8098 return type;
8099
8100 return fixed_type;
8101 }
8102
8103 /* A standard (static-sized) type corresponding as well as possible to
8104 TYPE0, but based on no runtime data. */
8105
8106 static struct type *
8107 to_static_fixed_type (struct type *type0)
8108 {
8109 struct type *type;
8110
8111 if (type0 == NULL)
8112 return NULL;
8113
8114 if (TYPE_FIXED_INSTANCE (type0))
8115 return type0;
8116
8117 type0 = ada_check_typedef (type0);
8118
8119 switch (TYPE_CODE (type0))
8120 {
8121 default:
8122 return type0;
8123 case TYPE_CODE_STRUCT:
8124 type = dynamic_template_type (type0);
8125 if (type != NULL)
8126 return template_to_static_fixed_type (type);
8127 else
8128 return template_to_static_fixed_type (type0);
8129 case TYPE_CODE_UNION:
8130 type = ada_find_parallel_type (type0, "___XVU");
8131 if (type != NULL)
8132 return template_to_static_fixed_type (type);
8133 else
8134 return template_to_static_fixed_type (type0);
8135 }
8136 }
8137
8138 /* A static approximation of TYPE with all type wrappers removed. */
8139
8140 static struct type *
8141 static_unwrap_type (struct type *type)
8142 {
8143 if (ada_is_aligner_type (type))
8144 {
8145 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
8146 if (ada_type_name (type1) == NULL)
8147 TYPE_NAME (type1) = ada_type_name (type);
8148
8149 return static_unwrap_type (type1);
8150 }
8151 else
8152 {
8153 struct type *raw_real_type = ada_get_base_type (type);
8154
8155 if (raw_real_type == type)
8156 return type;
8157 else
8158 return to_static_fixed_type (raw_real_type);
8159 }
8160 }
8161
8162 /* In some cases, incomplete and private types require
8163 cross-references that are not resolved as records (for example,
8164 type Foo;
8165 type FooP is access Foo;
8166 V: FooP;
8167 type Foo is array ...;
8168 ). In these cases, since there is no mechanism for producing
8169 cross-references to such types, we instead substitute for FooP a
8170 stub enumeration type that is nowhere resolved, and whose tag is
8171 the name of the actual type. Call these types "non-record stubs". */
8172
8173 /* A type equivalent to TYPE that is not a non-record stub, if one
8174 exists, otherwise TYPE. */
8175
8176 struct type *
8177 ada_check_typedef (struct type *type)
8178 {
8179 if (type == NULL)
8180 return NULL;
8181
8182 /* If our type is a typedef type of a fat pointer, then we're done.
8183 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8184 what allows us to distinguish between fat pointers that represent
8185 array types, and fat pointers that represent array access types
8186 (in both cases, the compiler implements them as fat pointers). */
8187 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8188 && is_thick_pntr (ada_typedef_target_type (type)))
8189 return type;
8190
8191 CHECK_TYPEDEF (type);
8192 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
8193 || !TYPE_STUB (type)
8194 || TYPE_TAG_NAME (type) == NULL)
8195 return type;
8196 else
8197 {
8198 const char *name = TYPE_TAG_NAME (type);
8199 struct type *type1 = ada_find_any_type (name);
8200
8201 if (type1 == NULL)
8202 return type;
8203
8204 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8205 stubs pointing to arrays, as we don't create symbols for array
8206 types, only for the typedef-to-array types). If that's the case,
8207 strip the typedef layer. */
8208 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
8209 type1 = ada_check_typedef (type1);
8210
8211 return type1;
8212 }
8213 }
8214
8215 /* A value representing the data at VALADDR/ADDRESS as described by
8216 type TYPE0, but with a standard (static-sized) type that correctly
8217 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8218 type, then return VAL0 [this feature is simply to avoid redundant
8219 creation of struct values]. */
8220
8221 static struct value *
8222 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8223 struct value *val0)
8224 {
8225 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
8226
8227 if (type == type0 && val0 != NULL)
8228 return val0;
8229 else
8230 return value_from_contents_and_address (type, 0, address);
8231 }
8232
8233 /* A value representing VAL, but with a standard (static-sized) type
8234 that correctly describes it. Does not necessarily create a new
8235 value. */
8236
8237 struct value *
8238 ada_to_fixed_value (struct value *val)
8239 {
8240 val = unwrap_value (val);
8241 val = ada_to_fixed_value_create (value_type (val),
8242 value_address (val),
8243 val);
8244 return val;
8245 }
8246 \f
8247
8248 /* Attributes */
8249
8250 /* Table mapping attribute numbers to names.
8251 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
8252
8253 static const char *attribute_names[] = {
8254 "<?>",
8255
8256 "first",
8257 "last",
8258 "length",
8259 "image",
8260 "max",
8261 "min",
8262 "modulus",
8263 "pos",
8264 "size",
8265 "tag",
8266 "val",
8267 0
8268 };
8269
8270 const char *
8271 ada_attribute_name (enum exp_opcode n)
8272 {
8273 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8274 return attribute_names[n - OP_ATR_FIRST + 1];
8275 else
8276 return attribute_names[0];
8277 }
8278
8279 /* Evaluate the 'POS attribute applied to ARG. */
8280
8281 static LONGEST
8282 pos_atr (struct value *arg)
8283 {
8284 struct value *val = coerce_ref (arg);
8285 struct type *type = value_type (val);
8286
8287 if (!discrete_type_p (type))
8288 error (_("'POS only defined on discrete types"));
8289
8290 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8291 {
8292 int i;
8293 LONGEST v = value_as_long (val);
8294
8295 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
8296 {
8297 if (v == TYPE_FIELD_BITPOS (type, i))
8298 return i;
8299 }
8300 error (_("enumeration value is invalid: can't find 'POS"));
8301 }
8302 else
8303 return value_as_long (val);
8304 }
8305
8306 static struct value *
8307 value_pos_atr (struct type *type, struct value *arg)
8308 {
8309 return value_from_longest (type, pos_atr (arg));
8310 }
8311
8312 /* Evaluate the TYPE'VAL attribute applied to ARG. */
8313
8314 static struct value *
8315 value_val_atr (struct type *type, struct value *arg)
8316 {
8317 if (!discrete_type_p (type))
8318 error (_("'VAL only defined on discrete types"));
8319 if (!integer_type_p (value_type (arg)))
8320 error (_("'VAL requires integral argument"));
8321
8322 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8323 {
8324 long pos = value_as_long (arg);
8325
8326 if (pos < 0 || pos >= TYPE_NFIELDS (type))
8327 error (_("argument to 'VAL out of range"));
8328 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
8329 }
8330 else
8331 return value_from_longest (type, value_as_long (arg));
8332 }
8333 \f
8334
8335 /* Evaluation */
8336
8337 /* True if TYPE appears to be an Ada character type.
8338 [At the moment, this is true only for Character and Wide_Character;
8339 It is a heuristic test that could stand improvement]. */
8340
8341 int
8342 ada_is_character_type (struct type *type)
8343 {
8344 const char *name;
8345
8346 /* If the type code says it's a character, then assume it really is,
8347 and don't check any further. */
8348 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
8349 return 1;
8350
8351 /* Otherwise, assume it's a character type iff it is a discrete type
8352 with a known character type name. */
8353 name = ada_type_name (type);
8354 return (name != NULL
8355 && (TYPE_CODE (type) == TYPE_CODE_INT
8356 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8357 && (strcmp (name, "character") == 0
8358 || strcmp (name, "wide_character") == 0
8359 || strcmp (name, "wide_wide_character") == 0
8360 || strcmp (name, "unsigned char") == 0));
8361 }
8362
8363 /* True if TYPE appears to be an Ada string type. */
8364
8365 int
8366 ada_is_string_type (struct type *type)
8367 {
8368 type = ada_check_typedef (type);
8369 if (type != NULL
8370 && TYPE_CODE (type) != TYPE_CODE_PTR
8371 && (ada_is_simple_array_type (type)
8372 || ada_is_array_descriptor_type (type))
8373 && ada_array_arity (type) == 1)
8374 {
8375 struct type *elttype = ada_array_element_type (type, 1);
8376
8377 return ada_is_character_type (elttype);
8378 }
8379 else
8380 return 0;
8381 }
8382
8383 /* The compiler sometimes provides a parallel XVS type for a given
8384 PAD type. Normally, it is safe to follow the PAD type directly,
8385 but older versions of the compiler have a bug that causes the offset
8386 of its "F" field to be wrong. Following that field in that case
8387 would lead to incorrect results, but this can be worked around
8388 by ignoring the PAD type and using the associated XVS type instead.
8389
8390 Set to True if the debugger should trust the contents of PAD types.
8391 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8392 static int trust_pad_over_xvs = 1;
8393
8394 /* True if TYPE is a struct type introduced by the compiler to force the
8395 alignment of a value. Such types have a single field with a
8396 distinctive name. */
8397
8398 int
8399 ada_is_aligner_type (struct type *type)
8400 {
8401 type = ada_check_typedef (type);
8402
8403 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
8404 return 0;
8405
8406 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
8407 && TYPE_NFIELDS (type) == 1
8408 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
8409 }
8410
8411 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
8412 the parallel type. */
8413
8414 struct type *
8415 ada_get_base_type (struct type *raw_type)
8416 {
8417 struct type *real_type_namer;
8418 struct type *raw_real_type;
8419
8420 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
8421 return raw_type;
8422
8423 if (ada_is_aligner_type (raw_type))
8424 /* The encoding specifies that we should always use the aligner type.
8425 So, even if this aligner type has an associated XVS type, we should
8426 simply ignore it.
8427
8428 According to the compiler gurus, an XVS type parallel to an aligner
8429 type may exist because of a stabs limitation. In stabs, aligner
8430 types are empty because the field has a variable-sized type, and
8431 thus cannot actually be used as an aligner type. As a result,
8432 we need the associated parallel XVS type to decode the type.
8433 Since the policy in the compiler is to not change the internal
8434 representation based on the debugging info format, we sometimes
8435 end up having a redundant XVS type parallel to the aligner type. */
8436 return raw_type;
8437
8438 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
8439 if (real_type_namer == NULL
8440 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
8441 || TYPE_NFIELDS (real_type_namer) != 1)
8442 return raw_type;
8443
8444 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
8445 {
8446 /* This is an older encoding form where the base type needs to be
8447 looked up by name. We prefer the newer enconding because it is
8448 more efficient. */
8449 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8450 if (raw_real_type == NULL)
8451 return raw_type;
8452 else
8453 return raw_real_type;
8454 }
8455
8456 /* The field in our XVS type is a reference to the base type. */
8457 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
8458 }
8459
8460 /* The type of value designated by TYPE, with all aligners removed. */
8461
8462 struct type *
8463 ada_aligned_type (struct type *type)
8464 {
8465 if (ada_is_aligner_type (type))
8466 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
8467 else
8468 return ada_get_base_type (type);
8469 }
8470
8471
8472 /* The address of the aligned value in an object at address VALADDR
8473 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
8474
8475 const gdb_byte *
8476 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
8477 {
8478 if (ada_is_aligner_type (type))
8479 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
8480 valaddr +
8481 TYPE_FIELD_BITPOS (type,
8482 0) / TARGET_CHAR_BIT);
8483 else
8484 return valaddr;
8485 }
8486
8487
8488
8489 /* The printed representation of an enumeration literal with encoded
8490 name NAME. The value is good to the next call of ada_enum_name. */
8491 const char *
8492 ada_enum_name (const char *name)
8493 {
8494 static char *result;
8495 static size_t result_len = 0;
8496 char *tmp;
8497
8498 /* First, unqualify the enumeration name:
8499 1. Search for the last '.' character. If we find one, then skip
8500 all the preceding characters, the unqualified name starts
8501 right after that dot.
8502 2. Otherwise, we may be debugging on a target where the compiler
8503 translates dots into "__". Search forward for double underscores,
8504 but stop searching when we hit an overloading suffix, which is
8505 of the form "__" followed by digits. */
8506
8507 tmp = strrchr (name, '.');
8508 if (tmp != NULL)
8509 name = tmp + 1;
8510 else
8511 {
8512 while ((tmp = strstr (name, "__")) != NULL)
8513 {
8514 if (isdigit (tmp[2]))
8515 break;
8516 else
8517 name = tmp + 2;
8518 }
8519 }
8520
8521 if (name[0] == 'Q')
8522 {
8523 int v;
8524
8525 if (name[1] == 'U' || name[1] == 'W')
8526 {
8527 if (sscanf (name + 2, "%x", &v) != 1)
8528 return name;
8529 }
8530 else
8531 return name;
8532
8533 GROW_VECT (result, result_len, 16);
8534 if (isascii (v) && isprint (v))
8535 xsnprintf (result, result_len, "'%c'", v);
8536 else if (name[1] == 'U')
8537 xsnprintf (result, result_len, "[\"%02x\"]", v);
8538 else
8539 xsnprintf (result, result_len, "[\"%04x\"]", v);
8540
8541 return result;
8542 }
8543 else
8544 {
8545 tmp = strstr (name, "__");
8546 if (tmp == NULL)
8547 tmp = strstr (name, "$");
8548 if (tmp != NULL)
8549 {
8550 GROW_VECT (result, result_len, tmp - name + 1);
8551 strncpy (result, name, tmp - name);
8552 result[tmp - name] = '\0';
8553 return result;
8554 }
8555
8556 return name;
8557 }
8558 }
8559
8560 /* Evaluate the subexpression of EXP starting at *POS as for
8561 evaluate_type, updating *POS to point just past the evaluated
8562 expression. */
8563
8564 static struct value *
8565 evaluate_subexp_type (struct expression *exp, int *pos)
8566 {
8567 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8568 }
8569
8570 /* If VAL is wrapped in an aligner or subtype wrapper, return the
8571 value it wraps. */
8572
8573 static struct value *
8574 unwrap_value (struct value *val)
8575 {
8576 struct type *type = ada_check_typedef (value_type (val));
8577
8578 if (ada_is_aligner_type (type))
8579 {
8580 struct value *v = ada_value_struct_elt (val, "F", 0);
8581 struct type *val_type = ada_check_typedef (value_type (v));
8582
8583 if (ada_type_name (val_type) == NULL)
8584 TYPE_NAME (val_type) = ada_type_name (type);
8585
8586 return unwrap_value (v);
8587 }
8588 else
8589 {
8590 struct type *raw_real_type =
8591 ada_check_typedef (ada_get_base_type (type));
8592
8593 /* If there is no parallel XVS or XVE type, then the value is
8594 already unwrapped. Return it without further modification. */
8595 if ((type == raw_real_type)
8596 && ada_find_parallel_type (type, "___XVE") == NULL)
8597 return val;
8598
8599 return
8600 coerce_unspec_val_to_type
8601 (val, ada_to_fixed_type (raw_real_type, 0,
8602 value_address (val),
8603 NULL, 1));
8604 }
8605 }
8606
8607 static struct value *
8608 cast_to_fixed (struct type *type, struct value *arg)
8609 {
8610 LONGEST val;
8611
8612 if (type == value_type (arg))
8613 return arg;
8614 else if (ada_is_fixed_point_type (value_type (arg)))
8615 val = ada_float_to_fixed (type,
8616 ada_fixed_to_float (value_type (arg),
8617 value_as_long (arg)));
8618 else
8619 {
8620 DOUBLEST argd = value_as_double (arg);
8621
8622 val = ada_float_to_fixed (type, argd);
8623 }
8624
8625 return value_from_longest (type, val);
8626 }
8627
8628 static struct value *
8629 cast_from_fixed (struct type *type, struct value *arg)
8630 {
8631 DOUBLEST val = ada_fixed_to_float (value_type (arg),
8632 value_as_long (arg));
8633
8634 return value_from_double (type, val);
8635 }
8636
8637 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8638 return the converted value. */
8639
8640 static struct value *
8641 coerce_for_assign (struct type *type, struct value *val)
8642 {
8643 struct type *type2 = value_type (val);
8644
8645 if (type == type2)
8646 return val;
8647
8648 type2 = ada_check_typedef (type2);
8649 type = ada_check_typedef (type);
8650
8651 if (TYPE_CODE (type2) == TYPE_CODE_PTR
8652 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8653 {
8654 val = ada_value_ind (val);
8655 type2 = value_type (val);
8656 }
8657
8658 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
8659 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8660 {
8661 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
8662 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8663 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
8664 error (_("Incompatible types in assignment"));
8665 deprecated_set_value_type (val, type);
8666 }
8667 return val;
8668 }
8669
8670 static struct value *
8671 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8672 {
8673 struct value *val;
8674 struct type *type1, *type2;
8675 LONGEST v, v1, v2;
8676
8677 arg1 = coerce_ref (arg1);
8678 arg2 = coerce_ref (arg2);
8679 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
8680 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
8681
8682 if (TYPE_CODE (type1) != TYPE_CODE_INT
8683 || TYPE_CODE (type2) != TYPE_CODE_INT)
8684 return value_binop (arg1, arg2, op);
8685
8686 switch (op)
8687 {
8688 case BINOP_MOD:
8689 case BINOP_DIV:
8690 case BINOP_REM:
8691 break;
8692 default:
8693 return value_binop (arg1, arg2, op);
8694 }
8695
8696 v2 = value_as_long (arg2);
8697 if (v2 == 0)
8698 error (_("second operand of %s must not be zero."), op_string (op));
8699
8700 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
8701 return value_binop (arg1, arg2, op);
8702
8703 v1 = value_as_long (arg1);
8704 switch (op)
8705 {
8706 case BINOP_DIV:
8707 v = v1 / v2;
8708 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8709 v += v > 0 ? -1 : 1;
8710 break;
8711 case BINOP_REM:
8712 v = v1 % v2;
8713 if (v * v1 < 0)
8714 v -= v2;
8715 break;
8716 default:
8717 /* Should not reach this point. */
8718 v = 0;
8719 }
8720
8721 val = allocate_value (type1);
8722 store_unsigned_integer (value_contents_raw (val),
8723 TYPE_LENGTH (value_type (val)),
8724 gdbarch_byte_order (get_type_arch (type1)), v);
8725 return val;
8726 }
8727
8728 static int
8729 ada_value_equal (struct value *arg1, struct value *arg2)
8730 {
8731 if (ada_is_direct_array_type (value_type (arg1))
8732 || ada_is_direct_array_type (value_type (arg2)))
8733 {
8734 /* Automatically dereference any array reference before
8735 we attempt to perform the comparison. */
8736 arg1 = ada_coerce_ref (arg1);
8737 arg2 = ada_coerce_ref (arg2);
8738
8739 arg1 = ada_coerce_to_simple_array (arg1);
8740 arg2 = ada_coerce_to_simple_array (arg2);
8741 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
8742 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
8743 error (_("Attempt to compare array with non-array"));
8744 /* FIXME: The following works only for types whose
8745 representations use all bits (no padding or undefined bits)
8746 and do not have user-defined equality. */
8747 return
8748 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
8749 && memcmp (value_contents (arg1), value_contents (arg2),
8750 TYPE_LENGTH (value_type (arg1))) == 0;
8751 }
8752 return value_equal (arg1, arg2);
8753 }
8754
8755 /* Total number of component associations in the aggregate starting at
8756 index PC in EXP. Assumes that index PC is the start of an
8757 OP_AGGREGATE. */
8758
8759 static int
8760 num_component_specs (struct expression *exp, int pc)
8761 {
8762 int n, m, i;
8763
8764 m = exp->elts[pc + 1].longconst;
8765 pc += 3;
8766 n = 0;
8767 for (i = 0; i < m; i += 1)
8768 {
8769 switch (exp->elts[pc].opcode)
8770 {
8771 default:
8772 n += 1;
8773 break;
8774 case OP_CHOICES:
8775 n += exp->elts[pc + 1].longconst;
8776 break;
8777 }
8778 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
8779 }
8780 return n;
8781 }
8782
8783 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
8784 component of LHS (a simple array or a record), updating *POS past
8785 the expression, assuming that LHS is contained in CONTAINER. Does
8786 not modify the inferior's memory, nor does it modify LHS (unless
8787 LHS == CONTAINER). */
8788
8789 static void
8790 assign_component (struct value *container, struct value *lhs, LONGEST index,
8791 struct expression *exp, int *pos)
8792 {
8793 struct value *mark = value_mark ();
8794 struct value *elt;
8795
8796 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8797 {
8798 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
8799 struct value *index_val = value_from_longest (index_type, index);
8800
8801 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8802 }
8803 else
8804 {
8805 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
8806 elt = ada_to_fixed_value (elt);
8807 }
8808
8809 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8810 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8811 else
8812 value_assign_to_component (container, elt,
8813 ada_evaluate_subexp (NULL, exp, pos,
8814 EVAL_NORMAL));
8815
8816 value_free_to_mark (mark);
8817 }
8818
8819 /* Assuming that LHS represents an lvalue having a record or array
8820 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8821 of that aggregate's value to LHS, advancing *POS past the
8822 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8823 lvalue containing LHS (possibly LHS itself). Does not modify
8824 the inferior's memory, nor does it modify the contents of
8825 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
8826
8827 static struct value *
8828 assign_aggregate (struct value *container,
8829 struct value *lhs, struct expression *exp,
8830 int *pos, enum noside noside)
8831 {
8832 struct type *lhs_type;
8833 int n = exp->elts[*pos+1].longconst;
8834 LONGEST low_index, high_index;
8835 int num_specs;
8836 LONGEST *indices;
8837 int max_indices, num_indices;
8838 int is_array_aggregate;
8839 int i;
8840
8841 *pos += 3;
8842 if (noside != EVAL_NORMAL)
8843 {
8844 for (i = 0; i < n; i += 1)
8845 ada_evaluate_subexp (NULL, exp, pos, noside);
8846 return container;
8847 }
8848
8849 container = ada_coerce_ref (container);
8850 if (ada_is_direct_array_type (value_type (container)))
8851 container = ada_coerce_to_simple_array (container);
8852 lhs = ada_coerce_ref (lhs);
8853 if (!deprecated_value_modifiable (lhs))
8854 error (_("Left operand of assignment is not a modifiable lvalue."));
8855
8856 lhs_type = value_type (lhs);
8857 if (ada_is_direct_array_type (lhs_type))
8858 {
8859 lhs = ada_coerce_to_simple_array (lhs);
8860 lhs_type = value_type (lhs);
8861 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8862 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8863 is_array_aggregate = 1;
8864 }
8865 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8866 {
8867 low_index = 0;
8868 high_index = num_visible_fields (lhs_type) - 1;
8869 is_array_aggregate = 0;
8870 }
8871 else
8872 error (_("Left-hand side must be array or record."));
8873
8874 num_specs = num_component_specs (exp, *pos - 3);
8875 max_indices = 4 * num_specs + 4;
8876 indices = alloca (max_indices * sizeof (indices[0]));
8877 indices[0] = indices[1] = low_index - 1;
8878 indices[2] = indices[3] = high_index + 1;
8879 num_indices = 4;
8880
8881 for (i = 0; i < n; i += 1)
8882 {
8883 switch (exp->elts[*pos].opcode)
8884 {
8885 case OP_CHOICES:
8886 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8887 &num_indices, max_indices,
8888 low_index, high_index);
8889 break;
8890 case OP_POSITIONAL:
8891 aggregate_assign_positional (container, lhs, exp, pos, indices,
8892 &num_indices, max_indices,
8893 low_index, high_index);
8894 break;
8895 case OP_OTHERS:
8896 if (i != n-1)
8897 error (_("Misplaced 'others' clause"));
8898 aggregate_assign_others (container, lhs, exp, pos, indices,
8899 num_indices, low_index, high_index);
8900 break;
8901 default:
8902 error (_("Internal error: bad aggregate clause"));
8903 }
8904 }
8905
8906 return container;
8907 }
8908
8909 /* Assign into the component of LHS indexed by the OP_POSITIONAL
8910 construct at *POS, updating *POS past the construct, given that
8911 the positions are relative to lower bound LOW, where HIGH is the
8912 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8913 updating *NUM_INDICES as needed. CONTAINER is as for
8914 assign_aggregate. */
8915 static void
8916 aggregate_assign_positional (struct value *container,
8917 struct value *lhs, struct expression *exp,
8918 int *pos, LONGEST *indices, int *num_indices,
8919 int max_indices, LONGEST low, LONGEST high)
8920 {
8921 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8922
8923 if (ind - 1 == high)
8924 warning (_("Extra components in aggregate ignored."));
8925 if (ind <= high)
8926 {
8927 add_component_interval (ind, ind, indices, num_indices, max_indices);
8928 *pos += 3;
8929 assign_component (container, lhs, ind, exp, pos);
8930 }
8931 else
8932 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8933 }
8934
8935 /* Assign into the components of LHS indexed by the OP_CHOICES
8936 construct at *POS, updating *POS past the construct, given that
8937 the allowable indices are LOW..HIGH. Record the indices assigned
8938 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
8939 needed. CONTAINER is as for assign_aggregate. */
8940 static void
8941 aggregate_assign_from_choices (struct value *container,
8942 struct value *lhs, struct expression *exp,
8943 int *pos, LONGEST *indices, int *num_indices,
8944 int max_indices, LONGEST low, LONGEST high)
8945 {
8946 int j;
8947 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8948 int choice_pos, expr_pc;
8949 int is_array = ada_is_direct_array_type (value_type (lhs));
8950
8951 choice_pos = *pos += 3;
8952
8953 for (j = 0; j < n_choices; j += 1)
8954 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8955 expr_pc = *pos;
8956 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8957
8958 for (j = 0; j < n_choices; j += 1)
8959 {
8960 LONGEST lower, upper;
8961 enum exp_opcode op = exp->elts[choice_pos].opcode;
8962
8963 if (op == OP_DISCRETE_RANGE)
8964 {
8965 choice_pos += 1;
8966 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8967 EVAL_NORMAL));
8968 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8969 EVAL_NORMAL));
8970 }
8971 else if (is_array)
8972 {
8973 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8974 EVAL_NORMAL));
8975 upper = lower;
8976 }
8977 else
8978 {
8979 int ind;
8980 const char *name;
8981
8982 switch (op)
8983 {
8984 case OP_NAME:
8985 name = &exp->elts[choice_pos + 2].string;
8986 break;
8987 case OP_VAR_VALUE:
8988 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8989 break;
8990 default:
8991 error (_("Invalid record component association."));
8992 }
8993 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8994 ind = 0;
8995 if (! find_struct_field (name, value_type (lhs), 0,
8996 NULL, NULL, NULL, NULL, &ind))
8997 error (_("Unknown component name: %s."), name);
8998 lower = upper = ind;
8999 }
9000
9001 if (lower <= upper && (lower < low || upper > high))
9002 error (_("Index in component association out of bounds."));
9003
9004 add_component_interval (lower, upper, indices, num_indices,
9005 max_indices);
9006 while (lower <= upper)
9007 {
9008 int pos1;
9009
9010 pos1 = expr_pc;
9011 assign_component (container, lhs, lower, exp, &pos1);
9012 lower += 1;
9013 }
9014 }
9015 }
9016
9017 /* Assign the value of the expression in the OP_OTHERS construct in
9018 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9019 have not been previously assigned. The index intervals already assigned
9020 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
9021 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
9022 static void
9023 aggregate_assign_others (struct value *container,
9024 struct value *lhs, struct expression *exp,
9025 int *pos, LONGEST *indices, int num_indices,
9026 LONGEST low, LONGEST high)
9027 {
9028 int i;
9029 int expr_pc = *pos + 1;
9030
9031 for (i = 0; i < num_indices - 2; i += 2)
9032 {
9033 LONGEST ind;
9034
9035 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9036 {
9037 int localpos;
9038
9039 localpos = expr_pc;
9040 assign_component (container, lhs, ind, exp, &localpos);
9041 }
9042 }
9043 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9044 }
9045
9046 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
9047 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9048 modifying *SIZE as needed. It is an error if *SIZE exceeds
9049 MAX_SIZE. The resulting intervals do not overlap. */
9050 static void
9051 add_component_interval (LONGEST low, LONGEST high,
9052 LONGEST* indices, int *size, int max_size)
9053 {
9054 int i, j;
9055
9056 for (i = 0; i < *size; i += 2) {
9057 if (high >= indices[i] && low <= indices[i + 1])
9058 {
9059 int kh;
9060
9061 for (kh = i + 2; kh < *size; kh += 2)
9062 if (high < indices[kh])
9063 break;
9064 if (low < indices[i])
9065 indices[i] = low;
9066 indices[i + 1] = indices[kh - 1];
9067 if (high > indices[i + 1])
9068 indices[i + 1] = high;
9069 memcpy (indices + i + 2, indices + kh, *size - kh);
9070 *size -= kh - i - 2;
9071 return;
9072 }
9073 else if (high < indices[i])
9074 break;
9075 }
9076
9077 if (*size == max_size)
9078 error (_("Internal error: miscounted aggregate components."));
9079 *size += 2;
9080 for (j = *size-1; j >= i+2; j -= 1)
9081 indices[j] = indices[j - 2];
9082 indices[i] = low;
9083 indices[i + 1] = high;
9084 }
9085
9086 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9087 is different. */
9088
9089 static struct value *
9090 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
9091 {
9092 if (type == ada_check_typedef (value_type (arg2)))
9093 return arg2;
9094
9095 if (ada_is_fixed_point_type (type))
9096 return (cast_to_fixed (type, arg2));
9097
9098 if (ada_is_fixed_point_type (value_type (arg2)))
9099 return cast_from_fixed (type, arg2);
9100
9101 return value_cast (type, arg2);
9102 }
9103
9104 /* Evaluating Ada expressions, and printing their result.
9105 ------------------------------------------------------
9106
9107 1. Introduction:
9108 ----------------
9109
9110 We usually evaluate an Ada expression in order to print its value.
9111 We also evaluate an expression in order to print its type, which
9112 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9113 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9114 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9115 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9116 similar.
9117
9118 Evaluating expressions is a little more complicated for Ada entities
9119 than it is for entities in languages such as C. The main reason for
9120 this is that Ada provides types whose definition might be dynamic.
9121 One example of such types is variant records. Or another example
9122 would be an array whose bounds can only be known at run time.
9123
9124 The following description is a general guide as to what should be
9125 done (and what should NOT be done) in order to evaluate an expression
9126 involving such types, and when. This does not cover how the semantic
9127 information is encoded by GNAT as this is covered separatly. For the
9128 document used as the reference for the GNAT encoding, see exp_dbug.ads
9129 in the GNAT sources.
9130
9131 Ideally, we should embed each part of this description next to its
9132 associated code. Unfortunately, the amount of code is so vast right
9133 now that it's hard to see whether the code handling a particular
9134 situation might be duplicated or not. One day, when the code is
9135 cleaned up, this guide might become redundant with the comments
9136 inserted in the code, and we might want to remove it.
9137
9138 2. ``Fixing'' an Entity, the Simple Case:
9139 -----------------------------------------
9140
9141 When evaluating Ada expressions, the tricky issue is that they may
9142 reference entities whose type contents and size are not statically
9143 known. Consider for instance a variant record:
9144
9145 type Rec (Empty : Boolean := True) is record
9146 case Empty is
9147 when True => null;
9148 when False => Value : Integer;
9149 end case;
9150 end record;
9151 Yes : Rec := (Empty => False, Value => 1);
9152 No : Rec := (empty => True);
9153
9154 The size and contents of that record depends on the value of the
9155 descriminant (Rec.Empty). At this point, neither the debugging
9156 information nor the associated type structure in GDB are able to
9157 express such dynamic types. So what the debugger does is to create
9158 "fixed" versions of the type that applies to the specific object.
9159 We also informally refer to this opperation as "fixing" an object,
9160 which means creating its associated fixed type.
9161
9162 Example: when printing the value of variable "Yes" above, its fixed
9163 type would look like this:
9164
9165 type Rec is record
9166 Empty : Boolean;
9167 Value : Integer;
9168 end record;
9169
9170 On the other hand, if we printed the value of "No", its fixed type
9171 would become:
9172
9173 type Rec is record
9174 Empty : Boolean;
9175 end record;
9176
9177 Things become a little more complicated when trying to fix an entity
9178 with a dynamic type that directly contains another dynamic type,
9179 such as an array of variant records, for instance. There are
9180 two possible cases: Arrays, and records.
9181
9182 3. ``Fixing'' Arrays:
9183 ---------------------
9184
9185 The type structure in GDB describes an array in terms of its bounds,
9186 and the type of its elements. By design, all elements in the array
9187 have the same type and we cannot represent an array of variant elements
9188 using the current type structure in GDB. When fixing an array,
9189 we cannot fix the array element, as we would potentially need one
9190 fixed type per element of the array. As a result, the best we can do
9191 when fixing an array is to produce an array whose bounds and size
9192 are correct (allowing us to read it from memory), but without having
9193 touched its element type. Fixing each element will be done later,
9194 when (if) necessary.
9195
9196 Arrays are a little simpler to handle than records, because the same
9197 amount of memory is allocated for each element of the array, even if
9198 the amount of space actually used by each element differs from element
9199 to element. Consider for instance the following array of type Rec:
9200
9201 type Rec_Array is array (1 .. 2) of Rec;
9202
9203 The actual amount of memory occupied by each element might be different
9204 from element to element, depending on the value of their discriminant.
9205 But the amount of space reserved for each element in the array remains
9206 fixed regardless. So we simply need to compute that size using
9207 the debugging information available, from which we can then determine
9208 the array size (we multiply the number of elements of the array by
9209 the size of each element).
9210
9211 The simplest case is when we have an array of a constrained element
9212 type. For instance, consider the following type declarations:
9213
9214 type Bounded_String (Max_Size : Integer) is
9215 Length : Integer;
9216 Buffer : String (1 .. Max_Size);
9217 end record;
9218 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9219
9220 In this case, the compiler describes the array as an array of
9221 variable-size elements (identified by its XVS suffix) for which
9222 the size can be read in the parallel XVZ variable.
9223
9224 In the case of an array of an unconstrained element type, the compiler
9225 wraps the array element inside a private PAD type. This type should not
9226 be shown to the user, and must be "unwrap"'ed before printing. Note
9227 that we also use the adjective "aligner" in our code to designate
9228 these wrapper types.
9229
9230 In some cases, the size allocated for each element is statically
9231 known. In that case, the PAD type already has the correct size,
9232 and the array element should remain unfixed.
9233
9234 But there are cases when this size is not statically known.
9235 For instance, assuming that "Five" is an integer variable:
9236
9237 type Dynamic is array (1 .. Five) of Integer;
9238 type Wrapper (Has_Length : Boolean := False) is record
9239 Data : Dynamic;
9240 case Has_Length is
9241 when True => Length : Integer;
9242 when False => null;
9243 end case;
9244 end record;
9245 type Wrapper_Array is array (1 .. 2) of Wrapper;
9246
9247 Hello : Wrapper_Array := (others => (Has_Length => True,
9248 Data => (others => 17),
9249 Length => 1));
9250
9251
9252 The debugging info would describe variable Hello as being an
9253 array of a PAD type. The size of that PAD type is not statically
9254 known, but can be determined using a parallel XVZ variable.
9255 In that case, a copy of the PAD type with the correct size should
9256 be used for the fixed array.
9257
9258 3. ``Fixing'' record type objects:
9259 ----------------------------------
9260
9261 Things are slightly different from arrays in the case of dynamic
9262 record types. In this case, in order to compute the associated
9263 fixed type, we need to determine the size and offset of each of
9264 its components. This, in turn, requires us to compute the fixed
9265 type of each of these components.
9266
9267 Consider for instance the example:
9268
9269 type Bounded_String (Max_Size : Natural) is record
9270 Str : String (1 .. Max_Size);
9271 Length : Natural;
9272 end record;
9273 My_String : Bounded_String (Max_Size => 10);
9274
9275 In that case, the position of field "Length" depends on the size
9276 of field Str, which itself depends on the value of the Max_Size
9277 discriminant. In order to fix the type of variable My_String,
9278 we need to fix the type of field Str. Therefore, fixing a variant
9279 record requires us to fix each of its components.
9280
9281 However, if a component does not have a dynamic size, the component
9282 should not be fixed. In particular, fields that use a PAD type
9283 should not fixed. Here is an example where this might happen
9284 (assuming type Rec above):
9285
9286 type Container (Big : Boolean) is record
9287 First : Rec;
9288 After : Integer;
9289 case Big is
9290 when True => Another : Integer;
9291 when False => null;
9292 end case;
9293 end record;
9294 My_Container : Container := (Big => False,
9295 First => (Empty => True),
9296 After => 42);
9297
9298 In that example, the compiler creates a PAD type for component First,
9299 whose size is constant, and then positions the component After just
9300 right after it. The offset of component After is therefore constant
9301 in this case.
9302
9303 The debugger computes the position of each field based on an algorithm
9304 that uses, among other things, the actual position and size of the field
9305 preceding it. Let's now imagine that the user is trying to print
9306 the value of My_Container. If the type fixing was recursive, we would
9307 end up computing the offset of field After based on the size of the
9308 fixed version of field First. And since in our example First has
9309 only one actual field, the size of the fixed type is actually smaller
9310 than the amount of space allocated to that field, and thus we would
9311 compute the wrong offset of field After.
9312
9313 To make things more complicated, we need to watch out for dynamic
9314 components of variant records (identified by the ___XVL suffix in
9315 the component name). Even if the target type is a PAD type, the size
9316 of that type might not be statically known. So the PAD type needs
9317 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9318 we might end up with the wrong size for our component. This can be
9319 observed with the following type declarations:
9320
9321 type Octal is new Integer range 0 .. 7;
9322 type Octal_Array is array (Positive range <>) of Octal;
9323 pragma Pack (Octal_Array);
9324
9325 type Octal_Buffer (Size : Positive) is record
9326 Buffer : Octal_Array (1 .. Size);
9327 Length : Integer;
9328 end record;
9329
9330 In that case, Buffer is a PAD type whose size is unset and needs
9331 to be computed by fixing the unwrapped type.
9332
9333 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9334 ----------------------------------------------------------
9335
9336 Lastly, when should the sub-elements of an entity that remained unfixed
9337 thus far, be actually fixed?
9338
9339 The answer is: Only when referencing that element. For instance
9340 when selecting one component of a record, this specific component
9341 should be fixed at that point in time. Or when printing the value
9342 of a record, each component should be fixed before its value gets
9343 printed. Similarly for arrays, the element of the array should be
9344 fixed when printing each element of the array, or when extracting
9345 one element out of that array. On the other hand, fixing should
9346 not be performed on the elements when taking a slice of an array!
9347
9348 Note that one of the side-effects of miscomputing the offset and
9349 size of each field is that we end up also miscomputing the size
9350 of the containing type. This can have adverse results when computing
9351 the value of an entity. GDB fetches the value of an entity based
9352 on the size of its type, and thus a wrong size causes GDB to fetch
9353 the wrong amount of memory. In the case where the computed size is
9354 too small, GDB fetches too little data to print the value of our
9355 entiry. Results in this case as unpredicatble, as we usually read
9356 past the buffer containing the data =:-o. */
9357
9358 /* Implement the evaluate_exp routine in the exp_descriptor structure
9359 for the Ada language. */
9360
9361 static struct value *
9362 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
9363 int *pos, enum noside noside)
9364 {
9365 enum exp_opcode op;
9366 int tem;
9367 int pc;
9368 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
9369 struct type *type;
9370 int nargs, oplen;
9371 struct value **argvec;
9372
9373 pc = *pos;
9374 *pos += 1;
9375 op = exp->elts[pc].opcode;
9376
9377 switch (op)
9378 {
9379 default:
9380 *pos -= 1;
9381 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9382 arg1 = unwrap_value (arg1);
9383
9384 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
9385 then we need to perform the conversion manually, because
9386 evaluate_subexp_standard doesn't do it. This conversion is
9387 necessary in Ada because the different kinds of float/fixed
9388 types in Ada have different representations.
9389
9390 Similarly, we need to perform the conversion from OP_LONG
9391 ourselves. */
9392 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
9393 arg1 = ada_value_cast (expect_type, arg1, noside);
9394
9395 return arg1;
9396
9397 case OP_STRING:
9398 {
9399 struct value *result;
9400
9401 *pos -= 1;
9402 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
9403 /* The result type will have code OP_STRING, bashed there from
9404 OP_ARRAY. Bash it back. */
9405 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
9406 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
9407 return result;
9408 }
9409
9410 case UNOP_CAST:
9411 (*pos) += 2;
9412 type = exp->elts[pc + 1].type;
9413 arg1 = evaluate_subexp (type, exp, pos, noside);
9414 if (noside == EVAL_SKIP)
9415 goto nosideret;
9416 arg1 = ada_value_cast (type, arg1, noside);
9417 return arg1;
9418
9419 case UNOP_QUAL:
9420 (*pos) += 2;
9421 type = exp->elts[pc + 1].type;
9422 return ada_evaluate_subexp (type, exp, pos, noside);
9423
9424 case BINOP_ASSIGN:
9425 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9426 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9427 {
9428 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
9429 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9430 return arg1;
9431 return ada_value_assign (arg1, arg1);
9432 }
9433 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9434 except if the lhs of our assignment is a convenience variable.
9435 In the case of assigning to a convenience variable, the lhs
9436 should be exactly the result of the evaluation of the rhs. */
9437 type = value_type (arg1);
9438 if (VALUE_LVAL (arg1) == lval_internalvar)
9439 type = NULL;
9440 arg2 = evaluate_subexp (type, exp, pos, noside);
9441 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9442 return arg1;
9443 if (ada_is_fixed_point_type (value_type (arg1)))
9444 arg2 = cast_to_fixed (value_type (arg1), arg2);
9445 else if (ada_is_fixed_point_type (value_type (arg2)))
9446 error
9447 (_("Fixed-point values must be assigned to fixed-point variables"));
9448 else
9449 arg2 = coerce_for_assign (value_type (arg1), arg2);
9450 return ada_value_assign (arg1, arg2);
9451
9452 case BINOP_ADD:
9453 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9454 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9455 if (noside == EVAL_SKIP)
9456 goto nosideret;
9457 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9458 return (value_from_longest
9459 (value_type (arg1),
9460 value_as_long (arg1) + value_as_long (arg2)));
9461 if ((ada_is_fixed_point_type (value_type (arg1))
9462 || ada_is_fixed_point_type (value_type (arg2)))
9463 && value_type (arg1) != value_type (arg2))
9464 error (_("Operands of fixed-point addition must have the same type"));
9465 /* Do the addition, and cast the result to the type of the first
9466 argument. We cannot cast the result to a reference type, so if
9467 ARG1 is a reference type, find its underlying type. */
9468 type = value_type (arg1);
9469 while (TYPE_CODE (type) == TYPE_CODE_REF)
9470 type = TYPE_TARGET_TYPE (type);
9471 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9472 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
9473
9474 case BINOP_SUB:
9475 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9476 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9477 if (noside == EVAL_SKIP)
9478 goto nosideret;
9479 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9480 return (value_from_longest
9481 (value_type (arg1),
9482 value_as_long (arg1) - value_as_long (arg2)));
9483 if ((ada_is_fixed_point_type (value_type (arg1))
9484 || ada_is_fixed_point_type (value_type (arg2)))
9485 && value_type (arg1) != value_type (arg2))
9486 error (_("Operands of fixed-point subtraction "
9487 "must have the same type"));
9488 /* Do the substraction, and cast the result to the type of the first
9489 argument. We cannot cast the result to a reference type, so if
9490 ARG1 is a reference type, find its underlying type. */
9491 type = value_type (arg1);
9492 while (TYPE_CODE (type) == TYPE_CODE_REF)
9493 type = TYPE_TARGET_TYPE (type);
9494 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9495 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
9496
9497 case BINOP_MUL:
9498 case BINOP_DIV:
9499 case BINOP_REM:
9500 case BINOP_MOD:
9501 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9502 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9503 if (noside == EVAL_SKIP)
9504 goto nosideret;
9505 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9506 {
9507 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9508 return value_zero (value_type (arg1), not_lval);
9509 }
9510 else
9511 {
9512 type = builtin_type (exp->gdbarch)->builtin_double;
9513 if (ada_is_fixed_point_type (value_type (arg1)))
9514 arg1 = cast_from_fixed (type, arg1);
9515 if (ada_is_fixed_point_type (value_type (arg2)))
9516 arg2 = cast_from_fixed (type, arg2);
9517 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9518 return ada_value_binop (arg1, arg2, op);
9519 }
9520
9521 case BINOP_EQUAL:
9522 case BINOP_NOTEQUAL:
9523 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9524 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
9525 if (noside == EVAL_SKIP)
9526 goto nosideret;
9527 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9528 tem = 0;
9529 else
9530 {
9531 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9532 tem = ada_value_equal (arg1, arg2);
9533 }
9534 if (op == BINOP_NOTEQUAL)
9535 tem = !tem;
9536 type = language_bool_type (exp->language_defn, exp->gdbarch);
9537 return value_from_longest (type, (LONGEST) tem);
9538
9539 case UNOP_NEG:
9540 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9541 if (noside == EVAL_SKIP)
9542 goto nosideret;
9543 else if (ada_is_fixed_point_type (value_type (arg1)))
9544 return value_cast (value_type (arg1), value_neg (arg1));
9545 else
9546 {
9547 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9548 return value_neg (arg1);
9549 }
9550
9551 case BINOP_LOGICAL_AND:
9552 case BINOP_LOGICAL_OR:
9553 case UNOP_LOGICAL_NOT:
9554 {
9555 struct value *val;
9556
9557 *pos -= 1;
9558 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9559 type = language_bool_type (exp->language_defn, exp->gdbarch);
9560 return value_cast (type, val);
9561 }
9562
9563 case BINOP_BITWISE_AND:
9564 case BINOP_BITWISE_IOR:
9565 case BINOP_BITWISE_XOR:
9566 {
9567 struct value *val;
9568
9569 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9570 *pos = pc;
9571 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9572
9573 return value_cast (value_type (arg1), val);
9574 }
9575
9576 case OP_VAR_VALUE:
9577 *pos -= 1;
9578
9579 if (noside == EVAL_SKIP)
9580 {
9581 *pos += 4;
9582 goto nosideret;
9583 }
9584 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
9585 /* Only encountered when an unresolved symbol occurs in a
9586 context other than a function call, in which case, it is
9587 invalid. */
9588 error (_("Unexpected unresolved symbol, %s, during evaluation"),
9589 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
9590 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9591 {
9592 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
9593 /* Check to see if this is a tagged type. We also need to handle
9594 the case where the type is a reference to a tagged type, but
9595 we have to be careful to exclude pointers to tagged types.
9596 The latter should be shown as usual (as a pointer), whereas
9597 a reference should mostly be transparent to the user. */
9598 if (ada_is_tagged_type (type, 0)
9599 || (TYPE_CODE(type) == TYPE_CODE_REF
9600 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
9601 {
9602 /* Tagged types are a little special in the fact that the real
9603 type is dynamic and can only be determined by inspecting the
9604 object's tag. This means that we need to get the object's
9605 value first (EVAL_NORMAL) and then extract the actual object
9606 type from its tag.
9607
9608 Note that we cannot skip the final step where we extract
9609 the object type from its tag, because the EVAL_NORMAL phase
9610 results in dynamic components being resolved into fixed ones.
9611 This can cause problems when trying to print the type
9612 description of tagged types whose parent has a dynamic size:
9613 We use the type name of the "_parent" component in order
9614 to print the name of the ancestor type in the type description.
9615 If that component had a dynamic size, the resolution into
9616 a fixed type would result in the loss of that type name,
9617 thus preventing us from printing the name of the ancestor
9618 type in the type description. */
9619 struct type *actual_type;
9620
9621 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
9622 actual_type = type_from_tag (ada_value_tag (arg1));
9623 if (actual_type == NULL)
9624 /* If, for some reason, we were unable to determine
9625 the actual type from the tag, then use the static
9626 approximation that we just computed as a fallback.
9627 This can happen if the debugging information is
9628 incomplete, for instance. */
9629 actual_type = type;
9630
9631 return value_zero (actual_type, not_lval);
9632 }
9633
9634 *pos += 4;
9635 return value_zero
9636 (to_static_fixed_type
9637 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
9638 not_lval);
9639 }
9640 else
9641 {
9642 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9643 return ada_to_fixed_value (arg1);
9644 }
9645
9646 case OP_FUNCALL:
9647 (*pos) += 2;
9648
9649 /* Allocate arg vector, including space for the function to be
9650 called in argvec[0] and a terminating NULL. */
9651 nargs = longest_to_int (exp->elts[pc + 1].longconst);
9652 argvec =
9653 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
9654
9655 if (exp->elts[*pos].opcode == OP_VAR_VALUE
9656 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
9657 error (_("Unexpected unresolved symbol, %s, during evaluation"),
9658 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
9659 else
9660 {
9661 for (tem = 0; tem <= nargs; tem += 1)
9662 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9663 argvec[tem] = 0;
9664
9665 if (noside == EVAL_SKIP)
9666 goto nosideret;
9667 }
9668
9669 if (ada_is_constrained_packed_array_type
9670 (desc_base_type (value_type (argvec[0]))))
9671 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
9672 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9673 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
9674 /* This is a packed array that has already been fixed, and
9675 therefore already coerced to a simple array. Nothing further
9676 to do. */
9677 ;
9678 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
9679 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9680 && VALUE_LVAL (argvec[0]) == lval_memory))
9681 argvec[0] = value_addr (argvec[0]);
9682
9683 type = ada_check_typedef (value_type (argvec[0]));
9684
9685 /* Ada allows us to implicitly dereference arrays when subscripting
9686 them. So, if this is an array typedef (encoding use for array
9687 access types encoded as fat pointers), strip it now. */
9688 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
9689 type = ada_typedef_target_type (type);
9690
9691 if (TYPE_CODE (type) == TYPE_CODE_PTR)
9692 {
9693 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
9694 {
9695 case TYPE_CODE_FUNC:
9696 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9697 break;
9698 case TYPE_CODE_ARRAY:
9699 break;
9700 case TYPE_CODE_STRUCT:
9701 if (noside != EVAL_AVOID_SIDE_EFFECTS)
9702 argvec[0] = ada_value_ind (argvec[0]);
9703 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9704 break;
9705 default:
9706 error (_("cannot subscript or call something of type `%s'"),
9707 ada_type_name (value_type (argvec[0])));
9708 break;
9709 }
9710 }
9711
9712 switch (TYPE_CODE (type))
9713 {
9714 case TYPE_CODE_FUNC:
9715 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9716 return allocate_value (TYPE_TARGET_TYPE (type));
9717 return call_function_by_hand (argvec[0], nargs, argvec + 1);
9718 case TYPE_CODE_STRUCT:
9719 {
9720 int arity;
9721
9722 arity = ada_array_arity (type);
9723 type = ada_array_element_type (type, nargs);
9724 if (type == NULL)
9725 error (_("cannot subscript or call a record"));
9726 if (arity != nargs)
9727 error (_("wrong number of subscripts; expecting %d"), arity);
9728 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9729 return value_zero (ada_aligned_type (type), lval_memory);
9730 return
9731 unwrap_value (ada_value_subscript
9732 (argvec[0], nargs, argvec + 1));
9733 }
9734 case TYPE_CODE_ARRAY:
9735 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9736 {
9737 type = ada_array_element_type (type, nargs);
9738 if (type == NULL)
9739 error (_("element type of array unknown"));
9740 else
9741 return value_zero (ada_aligned_type (type), lval_memory);
9742 }
9743 return
9744 unwrap_value (ada_value_subscript
9745 (ada_coerce_to_simple_array (argvec[0]),
9746 nargs, argvec + 1));
9747 case TYPE_CODE_PTR: /* Pointer to array */
9748 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
9749 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9750 {
9751 type = ada_array_element_type (type, nargs);
9752 if (type == NULL)
9753 error (_("element type of array unknown"));
9754 else
9755 return value_zero (ada_aligned_type (type), lval_memory);
9756 }
9757 return
9758 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
9759 nargs, argvec + 1));
9760
9761 default:
9762 error (_("Attempt to index or call something other than an "
9763 "array or function"));
9764 }
9765
9766 case TERNOP_SLICE:
9767 {
9768 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9769 struct value *low_bound_val =
9770 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9771 struct value *high_bound_val =
9772 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9773 LONGEST low_bound;
9774 LONGEST high_bound;
9775
9776 low_bound_val = coerce_ref (low_bound_val);
9777 high_bound_val = coerce_ref (high_bound_val);
9778 low_bound = pos_atr (low_bound_val);
9779 high_bound = pos_atr (high_bound_val);
9780
9781 if (noside == EVAL_SKIP)
9782 goto nosideret;
9783
9784 /* If this is a reference to an aligner type, then remove all
9785 the aligners. */
9786 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9787 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
9788 TYPE_TARGET_TYPE (value_type (array)) =
9789 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
9790
9791 if (ada_is_constrained_packed_array_type (value_type (array)))
9792 error (_("cannot slice a packed array"));
9793
9794 /* If this is a reference to an array or an array lvalue,
9795 convert to a pointer. */
9796 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9797 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
9798 && VALUE_LVAL (array) == lval_memory))
9799 array = value_addr (array);
9800
9801 if (noside == EVAL_AVOID_SIDE_EFFECTS
9802 && ada_is_array_descriptor_type (ada_check_typedef
9803 (value_type (array))))
9804 return empty_array (ada_type_of_array (array, 0), low_bound);
9805
9806 array = ada_coerce_to_simple_array_ptr (array);
9807
9808 /* If we have more than one level of pointer indirection,
9809 dereference the value until we get only one level. */
9810 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
9811 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
9812 == TYPE_CODE_PTR))
9813 array = value_ind (array);
9814
9815 /* Make sure we really do have an array type before going further,
9816 to avoid a SEGV when trying to get the index type or the target
9817 type later down the road if the debug info generated by
9818 the compiler is incorrect or incomplete. */
9819 if (!ada_is_simple_array_type (value_type (array)))
9820 error (_("cannot take slice of non-array"));
9821
9822 if (TYPE_CODE (ada_check_typedef (value_type (array)))
9823 == TYPE_CODE_PTR)
9824 {
9825 struct type *type0 = ada_check_typedef (value_type (array));
9826
9827 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
9828 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
9829 else
9830 {
9831 struct type *arr_type0 =
9832 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
9833
9834 return ada_value_slice_from_ptr (array, arr_type0,
9835 longest_to_int (low_bound),
9836 longest_to_int (high_bound));
9837 }
9838 }
9839 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9840 return array;
9841 else if (high_bound < low_bound)
9842 return empty_array (value_type (array), low_bound);
9843 else
9844 return ada_value_slice (array, longest_to_int (low_bound),
9845 longest_to_int (high_bound));
9846 }
9847
9848 case UNOP_IN_RANGE:
9849 (*pos) += 2;
9850 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9851 type = check_typedef (exp->elts[pc + 1].type);
9852
9853 if (noside == EVAL_SKIP)
9854 goto nosideret;
9855
9856 switch (TYPE_CODE (type))
9857 {
9858 default:
9859 lim_warning (_("Membership test incompletely implemented; "
9860 "always returns true"));
9861 type = language_bool_type (exp->language_defn, exp->gdbarch);
9862 return value_from_longest (type, (LONGEST) 1);
9863
9864 case TYPE_CODE_RANGE:
9865 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
9866 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
9867 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9868 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9869 type = language_bool_type (exp->language_defn, exp->gdbarch);
9870 return
9871 value_from_longest (type,
9872 (value_less (arg1, arg3)
9873 || value_equal (arg1, arg3))
9874 && (value_less (arg2, arg1)
9875 || value_equal (arg2, arg1)));
9876 }
9877
9878 case BINOP_IN_BOUNDS:
9879 (*pos) += 2;
9880 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9881 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9882
9883 if (noside == EVAL_SKIP)
9884 goto nosideret;
9885
9886 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9887 {
9888 type = language_bool_type (exp->language_defn, exp->gdbarch);
9889 return value_zero (type, not_lval);
9890 }
9891
9892 tem = longest_to_int (exp->elts[pc + 1].longconst);
9893
9894 type = ada_index_type (value_type (arg2), tem, "range");
9895 if (!type)
9896 type = value_type (arg1);
9897
9898 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
9899 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
9900
9901 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9902 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9903 type = language_bool_type (exp->language_defn, exp->gdbarch);
9904 return
9905 value_from_longest (type,
9906 (value_less (arg1, arg3)
9907 || value_equal (arg1, arg3))
9908 && (value_less (arg2, arg1)
9909 || value_equal (arg2, arg1)));
9910
9911 case TERNOP_IN_RANGE:
9912 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9913 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9914 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9915
9916 if (noside == EVAL_SKIP)
9917 goto nosideret;
9918
9919 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9920 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9921 type = language_bool_type (exp->language_defn, exp->gdbarch);
9922 return
9923 value_from_longest (type,
9924 (value_less (arg1, arg3)
9925 || value_equal (arg1, arg3))
9926 && (value_less (arg2, arg1)
9927 || value_equal (arg2, arg1)));
9928
9929 case OP_ATR_FIRST:
9930 case OP_ATR_LAST:
9931 case OP_ATR_LENGTH:
9932 {
9933 struct type *type_arg;
9934
9935 if (exp->elts[*pos].opcode == OP_TYPE)
9936 {
9937 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9938 arg1 = NULL;
9939 type_arg = check_typedef (exp->elts[pc + 2].type);
9940 }
9941 else
9942 {
9943 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9944 type_arg = NULL;
9945 }
9946
9947 if (exp->elts[*pos].opcode != OP_LONG)
9948 error (_("Invalid operand to '%s"), ada_attribute_name (op));
9949 tem = longest_to_int (exp->elts[*pos + 2].longconst);
9950 *pos += 4;
9951
9952 if (noside == EVAL_SKIP)
9953 goto nosideret;
9954
9955 if (type_arg == NULL)
9956 {
9957 arg1 = ada_coerce_ref (arg1);
9958
9959 if (ada_is_constrained_packed_array_type (value_type (arg1)))
9960 arg1 = ada_coerce_to_simple_array (arg1);
9961
9962 type = ada_index_type (value_type (arg1), tem,
9963 ada_attribute_name (op));
9964 if (type == NULL)
9965 type = builtin_type (exp->gdbarch)->builtin_int;
9966
9967 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9968 return allocate_value (type);
9969
9970 switch (op)
9971 {
9972 default: /* Should never happen. */
9973 error (_("unexpected attribute encountered"));
9974 case OP_ATR_FIRST:
9975 return value_from_longest
9976 (type, ada_array_bound (arg1, tem, 0));
9977 case OP_ATR_LAST:
9978 return value_from_longest
9979 (type, ada_array_bound (arg1, tem, 1));
9980 case OP_ATR_LENGTH:
9981 return value_from_longest
9982 (type, ada_array_length (arg1, tem));
9983 }
9984 }
9985 else if (discrete_type_p (type_arg))
9986 {
9987 struct type *range_type;
9988 const char *name = ada_type_name (type_arg);
9989
9990 range_type = NULL;
9991 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
9992 range_type = to_fixed_range_type (type_arg, NULL);
9993 if (range_type == NULL)
9994 range_type = type_arg;
9995 switch (op)
9996 {
9997 default:
9998 error (_("unexpected attribute encountered"));
9999 case OP_ATR_FIRST:
10000 return value_from_longest
10001 (range_type, ada_discrete_type_low_bound (range_type));
10002 case OP_ATR_LAST:
10003 return value_from_longest
10004 (range_type, ada_discrete_type_high_bound (range_type));
10005 case OP_ATR_LENGTH:
10006 error (_("the 'length attribute applies only to array types"));
10007 }
10008 }
10009 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
10010 error (_("unimplemented type attribute"));
10011 else
10012 {
10013 LONGEST low, high;
10014
10015 if (ada_is_constrained_packed_array_type (type_arg))
10016 type_arg = decode_constrained_packed_array_type (type_arg);
10017
10018 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10019 if (type == NULL)
10020 type = builtin_type (exp->gdbarch)->builtin_int;
10021
10022 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10023 return allocate_value (type);
10024
10025 switch (op)
10026 {
10027 default:
10028 error (_("unexpected attribute encountered"));
10029 case OP_ATR_FIRST:
10030 low = ada_array_bound_from_type (type_arg, tem, 0);
10031 return value_from_longest (type, low);
10032 case OP_ATR_LAST:
10033 high = ada_array_bound_from_type (type_arg, tem, 1);
10034 return value_from_longest (type, high);
10035 case OP_ATR_LENGTH:
10036 low = ada_array_bound_from_type (type_arg, tem, 0);
10037 high = ada_array_bound_from_type (type_arg, tem, 1);
10038 return value_from_longest (type, high - low + 1);
10039 }
10040 }
10041 }
10042
10043 case OP_ATR_TAG:
10044 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10045 if (noside == EVAL_SKIP)
10046 goto nosideret;
10047
10048 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10049 return value_zero (ada_tag_type (arg1), not_lval);
10050
10051 return ada_value_tag (arg1);
10052
10053 case OP_ATR_MIN:
10054 case OP_ATR_MAX:
10055 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10056 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10057 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10058 if (noside == EVAL_SKIP)
10059 goto nosideret;
10060 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10061 return value_zero (value_type (arg1), not_lval);
10062 else
10063 {
10064 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10065 return value_binop (arg1, arg2,
10066 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
10067 }
10068
10069 case OP_ATR_MODULUS:
10070 {
10071 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
10072
10073 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10074 if (noside == EVAL_SKIP)
10075 goto nosideret;
10076
10077 if (!ada_is_modular_type (type_arg))
10078 error (_("'modulus must be applied to modular type"));
10079
10080 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
10081 ada_modulus (type_arg));
10082 }
10083
10084
10085 case OP_ATR_POS:
10086 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10087 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10088 if (noside == EVAL_SKIP)
10089 goto nosideret;
10090 type = builtin_type (exp->gdbarch)->builtin_int;
10091 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10092 return value_zero (type, not_lval);
10093 else
10094 return value_pos_atr (type, arg1);
10095
10096 case OP_ATR_SIZE:
10097 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10098 type = value_type (arg1);
10099
10100 /* If the argument is a reference, then dereference its type, since
10101 the user is really asking for the size of the actual object,
10102 not the size of the pointer. */
10103 if (TYPE_CODE (type) == TYPE_CODE_REF)
10104 type = TYPE_TARGET_TYPE (type);
10105
10106 if (noside == EVAL_SKIP)
10107 goto nosideret;
10108 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10109 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
10110 else
10111 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
10112 TARGET_CHAR_BIT * TYPE_LENGTH (type));
10113
10114 case OP_ATR_VAL:
10115 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10116 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10117 type = exp->elts[pc + 2].type;
10118 if (noside == EVAL_SKIP)
10119 goto nosideret;
10120 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10121 return value_zero (type, not_lval);
10122 else
10123 return value_val_atr (type, arg1);
10124
10125 case BINOP_EXP:
10126 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10127 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10128 if (noside == EVAL_SKIP)
10129 goto nosideret;
10130 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10131 return value_zero (value_type (arg1), not_lval);
10132 else
10133 {
10134 /* For integer exponentiation operations,
10135 only promote the first argument. */
10136 if (is_integral_type (value_type (arg2)))
10137 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10138 else
10139 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10140
10141 return value_binop (arg1, arg2, op);
10142 }
10143
10144 case UNOP_PLUS:
10145 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10146 if (noside == EVAL_SKIP)
10147 goto nosideret;
10148 else
10149 return arg1;
10150
10151 case UNOP_ABS:
10152 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10153 if (noside == EVAL_SKIP)
10154 goto nosideret;
10155 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10156 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
10157 return value_neg (arg1);
10158 else
10159 return arg1;
10160
10161 case UNOP_IND:
10162 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10163 if (noside == EVAL_SKIP)
10164 goto nosideret;
10165 type = ada_check_typedef (value_type (arg1));
10166 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10167 {
10168 if (ada_is_array_descriptor_type (type))
10169 /* GDB allows dereferencing GNAT array descriptors. */
10170 {
10171 struct type *arrType = ada_type_of_array (arg1, 0);
10172
10173 if (arrType == NULL)
10174 error (_("Attempt to dereference null array pointer."));
10175 return value_at_lazy (arrType, 0);
10176 }
10177 else if (TYPE_CODE (type) == TYPE_CODE_PTR
10178 || TYPE_CODE (type) == TYPE_CODE_REF
10179 /* In C you can dereference an array to get the 1st elt. */
10180 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
10181 {
10182 type = to_static_fixed_type
10183 (ada_aligned_type
10184 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10185 check_size (type);
10186 return value_zero (type, lval_memory);
10187 }
10188 else if (TYPE_CODE (type) == TYPE_CODE_INT)
10189 {
10190 /* GDB allows dereferencing an int. */
10191 if (expect_type == NULL)
10192 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10193 lval_memory);
10194 else
10195 {
10196 expect_type =
10197 to_static_fixed_type (ada_aligned_type (expect_type));
10198 return value_zero (expect_type, lval_memory);
10199 }
10200 }
10201 else
10202 error (_("Attempt to take contents of a non-pointer value."));
10203 }
10204 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
10205 type = ada_check_typedef (value_type (arg1));
10206
10207 if (TYPE_CODE (type) == TYPE_CODE_INT)
10208 /* GDB allows dereferencing an int. If we were given
10209 the expect_type, then use that as the target type.
10210 Otherwise, assume that the target type is an int. */
10211 {
10212 if (expect_type != NULL)
10213 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10214 arg1));
10215 else
10216 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10217 (CORE_ADDR) value_as_address (arg1));
10218 }
10219
10220 if (ada_is_array_descriptor_type (type))
10221 /* GDB allows dereferencing GNAT array descriptors. */
10222 return ada_coerce_to_simple_array (arg1);
10223 else
10224 return ada_value_ind (arg1);
10225
10226 case STRUCTOP_STRUCT:
10227 tem = longest_to_int (exp->elts[pc + 1].longconst);
10228 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
10229 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10230 if (noside == EVAL_SKIP)
10231 goto nosideret;
10232 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10233 {
10234 struct type *type1 = value_type (arg1);
10235
10236 if (ada_is_tagged_type (type1, 1))
10237 {
10238 type = ada_lookup_struct_elt_type (type1,
10239 &exp->elts[pc + 2].string,
10240 1, 1, NULL);
10241 if (type == NULL)
10242 /* In this case, we assume that the field COULD exist
10243 in some extension of the type. Return an object of
10244 "type" void, which will match any formal
10245 (see ada_type_match). */
10246 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
10247 lval_memory);
10248 }
10249 else
10250 type =
10251 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
10252 0, NULL);
10253
10254 return value_zero (ada_aligned_type (type), lval_memory);
10255 }
10256 else
10257 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
10258 arg1 = unwrap_value (arg1);
10259 return ada_to_fixed_value (arg1);
10260
10261 case OP_TYPE:
10262 /* The value is not supposed to be used. This is here to make it
10263 easier to accommodate expressions that contain types. */
10264 (*pos) += 2;
10265 if (noside == EVAL_SKIP)
10266 goto nosideret;
10267 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10268 return allocate_value (exp->elts[pc + 1].type);
10269 else
10270 error (_("Attempt to use a type name as an expression"));
10271
10272 case OP_AGGREGATE:
10273 case OP_CHOICES:
10274 case OP_OTHERS:
10275 case OP_DISCRETE_RANGE:
10276 case OP_POSITIONAL:
10277 case OP_NAME:
10278 if (noside == EVAL_NORMAL)
10279 switch (op)
10280 {
10281 case OP_NAME:
10282 error (_("Undefined name, ambiguous name, or renaming used in "
10283 "component association: %s."), &exp->elts[pc+2].string);
10284 case OP_AGGREGATE:
10285 error (_("Aggregates only allowed on the right of an assignment"));
10286 default:
10287 internal_error (__FILE__, __LINE__,
10288 _("aggregate apparently mangled"));
10289 }
10290
10291 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10292 *pos += oplen - 1;
10293 for (tem = 0; tem < nargs; tem += 1)
10294 ada_evaluate_subexp (NULL, exp, pos, noside);
10295 goto nosideret;
10296 }
10297
10298 nosideret:
10299 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
10300 }
10301 \f
10302
10303 /* Fixed point */
10304
10305 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
10306 type name that encodes the 'small and 'delta information.
10307 Otherwise, return NULL. */
10308
10309 static const char *
10310 fixed_type_info (struct type *type)
10311 {
10312 const char *name = ada_type_name (type);
10313 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
10314
10315 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
10316 {
10317 const char *tail = strstr (name, "___XF_");
10318
10319 if (tail == NULL)
10320 return NULL;
10321 else
10322 return tail + 5;
10323 }
10324 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
10325 return fixed_type_info (TYPE_TARGET_TYPE (type));
10326 else
10327 return NULL;
10328 }
10329
10330 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
10331
10332 int
10333 ada_is_fixed_point_type (struct type *type)
10334 {
10335 return fixed_type_info (type) != NULL;
10336 }
10337
10338 /* Return non-zero iff TYPE represents a System.Address type. */
10339
10340 int
10341 ada_is_system_address_type (struct type *type)
10342 {
10343 return (TYPE_NAME (type)
10344 && strcmp (TYPE_NAME (type), "system__address") == 0);
10345 }
10346
10347 /* Assuming that TYPE is the representation of an Ada fixed-point
10348 type, return its delta, or -1 if the type is malformed and the
10349 delta cannot be determined. */
10350
10351 DOUBLEST
10352 ada_delta (struct type *type)
10353 {
10354 const char *encoding = fixed_type_info (type);
10355 DOUBLEST num, den;
10356
10357 /* Strictly speaking, num and den are encoded as integer. However,
10358 they may not fit into a long, and they will have to be converted
10359 to DOUBLEST anyway. So scan them as DOUBLEST. */
10360 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10361 &num, &den) < 2)
10362 return -1.0;
10363 else
10364 return num / den;
10365 }
10366
10367 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
10368 factor ('SMALL value) associated with the type. */
10369
10370 static DOUBLEST
10371 scaling_factor (struct type *type)
10372 {
10373 const char *encoding = fixed_type_info (type);
10374 DOUBLEST num0, den0, num1, den1;
10375 int n;
10376
10377 /* Strictly speaking, num's and den's are encoded as integer. However,
10378 they may not fit into a long, and they will have to be converted
10379 to DOUBLEST anyway. So scan them as DOUBLEST. */
10380 n = sscanf (encoding,
10381 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
10382 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10383 &num0, &den0, &num1, &den1);
10384
10385 if (n < 2)
10386 return 1.0;
10387 else if (n == 4)
10388 return num1 / den1;
10389 else
10390 return num0 / den0;
10391 }
10392
10393
10394 /* Assuming that X is the representation of a value of fixed-point
10395 type TYPE, return its floating-point equivalent. */
10396
10397 DOUBLEST
10398 ada_fixed_to_float (struct type *type, LONGEST x)
10399 {
10400 return (DOUBLEST) x *scaling_factor (type);
10401 }
10402
10403 /* The representation of a fixed-point value of type TYPE
10404 corresponding to the value X. */
10405
10406 LONGEST
10407 ada_float_to_fixed (struct type *type, DOUBLEST x)
10408 {
10409 return (LONGEST) (x / scaling_factor (type) + 0.5);
10410 }
10411
10412 \f
10413
10414 /* Range types */
10415
10416 /* Scan STR beginning at position K for a discriminant name, and
10417 return the value of that discriminant field of DVAL in *PX. If
10418 PNEW_K is not null, put the position of the character beyond the
10419 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
10420 not alter *PX and *PNEW_K if unsuccessful. */
10421
10422 static int
10423 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
10424 int *pnew_k)
10425 {
10426 static char *bound_buffer = NULL;
10427 static size_t bound_buffer_len = 0;
10428 char *bound;
10429 char *pend;
10430 struct value *bound_val;
10431
10432 if (dval == NULL || str == NULL || str[k] == '\0')
10433 return 0;
10434
10435 pend = strstr (str + k, "__");
10436 if (pend == NULL)
10437 {
10438 bound = str + k;
10439 k += strlen (bound);
10440 }
10441 else
10442 {
10443 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
10444 bound = bound_buffer;
10445 strncpy (bound_buffer, str + k, pend - (str + k));
10446 bound[pend - (str + k)] = '\0';
10447 k = pend - str;
10448 }
10449
10450 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
10451 if (bound_val == NULL)
10452 return 0;
10453
10454 *px = value_as_long (bound_val);
10455 if (pnew_k != NULL)
10456 *pnew_k = k;
10457 return 1;
10458 }
10459
10460 /* Value of variable named NAME in the current environment. If
10461 no such variable found, then if ERR_MSG is null, returns 0, and
10462 otherwise causes an error with message ERR_MSG. */
10463
10464 static struct value *
10465 get_var_value (char *name, char *err_msg)
10466 {
10467 struct ada_symbol_info *syms;
10468 int nsyms;
10469
10470 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
10471 &syms, 1);
10472
10473 if (nsyms != 1)
10474 {
10475 if (err_msg == NULL)
10476 return 0;
10477 else
10478 error (("%s"), err_msg);
10479 }
10480
10481 return value_of_variable (syms[0].sym, syms[0].block);
10482 }
10483
10484 /* Value of integer variable named NAME in the current environment. If
10485 no such variable found, returns 0, and sets *FLAG to 0. If
10486 successful, sets *FLAG to 1. */
10487
10488 LONGEST
10489 get_int_var_value (char *name, int *flag)
10490 {
10491 struct value *var_val = get_var_value (name, 0);
10492
10493 if (var_val == 0)
10494 {
10495 if (flag != NULL)
10496 *flag = 0;
10497 return 0;
10498 }
10499 else
10500 {
10501 if (flag != NULL)
10502 *flag = 1;
10503 return value_as_long (var_val);
10504 }
10505 }
10506
10507
10508 /* Return a range type whose base type is that of the range type named
10509 NAME in the current environment, and whose bounds are calculated
10510 from NAME according to the GNAT range encoding conventions.
10511 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
10512 corresponding range type from debug information; fall back to using it
10513 if symbol lookup fails. If a new type must be created, allocate it
10514 like ORIG_TYPE was. The bounds information, in general, is encoded
10515 in NAME, the base type given in the named range type. */
10516
10517 static struct type *
10518 to_fixed_range_type (struct type *raw_type, struct value *dval)
10519 {
10520 const char *name;
10521 struct type *base_type;
10522 char *subtype_info;
10523
10524 gdb_assert (raw_type != NULL);
10525 gdb_assert (TYPE_NAME (raw_type) != NULL);
10526
10527 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
10528 base_type = TYPE_TARGET_TYPE (raw_type);
10529 else
10530 base_type = raw_type;
10531
10532 name = TYPE_NAME (raw_type);
10533 subtype_info = strstr (name, "___XD");
10534 if (subtype_info == NULL)
10535 {
10536 LONGEST L = ada_discrete_type_low_bound (raw_type);
10537 LONGEST U = ada_discrete_type_high_bound (raw_type);
10538
10539 if (L < INT_MIN || U > INT_MAX)
10540 return raw_type;
10541 else
10542 return create_range_type (alloc_type_copy (raw_type), raw_type,
10543 ada_discrete_type_low_bound (raw_type),
10544 ada_discrete_type_high_bound (raw_type));
10545 }
10546 else
10547 {
10548 static char *name_buf = NULL;
10549 static size_t name_len = 0;
10550 int prefix_len = subtype_info - name;
10551 LONGEST L, U;
10552 struct type *type;
10553 char *bounds_str;
10554 int n;
10555
10556 GROW_VECT (name_buf, name_len, prefix_len + 5);
10557 strncpy (name_buf, name, prefix_len);
10558 name_buf[prefix_len] = '\0';
10559
10560 subtype_info += 5;
10561 bounds_str = strchr (subtype_info, '_');
10562 n = 1;
10563
10564 if (*subtype_info == 'L')
10565 {
10566 if (!ada_scan_number (bounds_str, n, &L, &n)
10567 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
10568 return raw_type;
10569 if (bounds_str[n] == '_')
10570 n += 2;
10571 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
10572 n += 1;
10573 subtype_info += 1;
10574 }
10575 else
10576 {
10577 int ok;
10578
10579 strcpy (name_buf + prefix_len, "___L");
10580 L = get_int_var_value (name_buf, &ok);
10581 if (!ok)
10582 {
10583 lim_warning (_("Unknown lower bound, using 1."));
10584 L = 1;
10585 }
10586 }
10587
10588 if (*subtype_info == 'U')
10589 {
10590 if (!ada_scan_number (bounds_str, n, &U, &n)
10591 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
10592 return raw_type;
10593 }
10594 else
10595 {
10596 int ok;
10597
10598 strcpy (name_buf + prefix_len, "___U");
10599 U = get_int_var_value (name_buf, &ok);
10600 if (!ok)
10601 {
10602 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
10603 U = L;
10604 }
10605 }
10606
10607 type = create_range_type (alloc_type_copy (raw_type), base_type, L, U);
10608 TYPE_NAME (type) = name;
10609 return type;
10610 }
10611 }
10612
10613 /* True iff NAME is the name of a range type. */
10614
10615 int
10616 ada_is_range_type_name (const char *name)
10617 {
10618 return (name != NULL && strstr (name, "___XD"));
10619 }
10620 \f
10621
10622 /* Modular types */
10623
10624 /* True iff TYPE is an Ada modular type. */
10625
10626 int
10627 ada_is_modular_type (struct type *type)
10628 {
10629 struct type *subranged_type = get_base_type (type);
10630
10631 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
10632 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
10633 && TYPE_UNSIGNED (subranged_type));
10634 }
10635
10636 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
10637
10638 ULONGEST
10639 ada_modulus (struct type *type)
10640 {
10641 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
10642 }
10643 \f
10644
10645 /* Ada exception catchpoint support:
10646 ---------------------------------
10647
10648 We support 3 kinds of exception catchpoints:
10649 . catchpoints on Ada exceptions
10650 . catchpoints on unhandled Ada exceptions
10651 . catchpoints on failed assertions
10652
10653 Exceptions raised during failed assertions, or unhandled exceptions
10654 could perfectly be caught with the general catchpoint on Ada exceptions.
10655 However, we can easily differentiate these two special cases, and having
10656 the option to distinguish these two cases from the rest can be useful
10657 to zero-in on certain situations.
10658
10659 Exception catchpoints are a specialized form of breakpoint,
10660 since they rely on inserting breakpoints inside known routines
10661 of the GNAT runtime. The implementation therefore uses a standard
10662 breakpoint structure of the BP_BREAKPOINT type, but with its own set
10663 of breakpoint_ops.
10664
10665 Support in the runtime for exception catchpoints have been changed
10666 a few times already, and these changes affect the implementation
10667 of these catchpoints. In order to be able to support several
10668 variants of the runtime, we use a sniffer that will determine
10669 the runtime variant used by the program being debugged. */
10670
10671 /* The different types of catchpoints that we introduced for catching
10672 Ada exceptions. */
10673
10674 enum exception_catchpoint_kind
10675 {
10676 ex_catch_exception,
10677 ex_catch_exception_unhandled,
10678 ex_catch_assert
10679 };
10680
10681 /* Ada's standard exceptions. */
10682
10683 static char *standard_exc[] = {
10684 "constraint_error",
10685 "program_error",
10686 "storage_error",
10687 "tasking_error"
10688 };
10689
10690 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
10691
10692 /* A structure that describes how to support exception catchpoints
10693 for a given executable. */
10694
10695 struct exception_support_info
10696 {
10697 /* The name of the symbol to break on in order to insert
10698 a catchpoint on exceptions. */
10699 const char *catch_exception_sym;
10700
10701 /* The name of the symbol to break on in order to insert
10702 a catchpoint on unhandled exceptions. */
10703 const char *catch_exception_unhandled_sym;
10704
10705 /* The name of the symbol to break on in order to insert
10706 a catchpoint on failed assertions. */
10707 const char *catch_assert_sym;
10708
10709 /* Assuming that the inferior just triggered an unhandled exception
10710 catchpoint, this function is responsible for returning the address
10711 in inferior memory where the name of that exception is stored.
10712 Return zero if the address could not be computed. */
10713 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
10714 };
10715
10716 static CORE_ADDR ada_unhandled_exception_name_addr (void);
10717 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
10718
10719 /* The following exception support info structure describes how to
10720 implement exception catchpoints with the latest version of the
10721 Ada runtime (as of 2007-03-06). */
10722
10723 static const struct exception_support_info default_exception_support_info =
10724 {
10725 "__gnat_debug_raise_exception", /* catch_exception_sym */
10726 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10727 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
10728 ada_unhandled_exception_name_addr
10729 };
10730
10731 /* The following exception support info structure describes how to
10732 implement exception catchpoints with a slightly older version
10733 of the Ada runtime. */
10734
10735 static const struct exception_support_info exception_support_info_fallback =
10736 {
10737 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
10738 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10739 "system__assertions__raise_assert_failure", /* catch_assert_sym */
10740 ada_unhandled_exception_name_addr_from_raise
10741 };
10742
10743 /* Return nonzero if we can detect the exception support routines
10744 described in EINFO.
10745
10746 This function errors out if an abnormal situation is detected
10747 (for instance, if we find the exception support routines, but
10748 that support is found to be incomplete). */
10749
10750 static int
10751 ada_has_this_exception_support (const struct exception_support_info *einfo)
10752 {
10753 struct symbol *sym;
10754
10755 /* The symbol we're looking up is provided by a unit in the GNAT runtime
10756 that should be compiled with debugging information. As a result, we
10757 expect to find that symbol in the symtabs. */
10758
10759 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
10760 if (sym == NULL)
10761 {
10762 /* Perhaps we did not find our symbol because the Ada runtime was
10763 compiled without debugging info, or simply stripped of it.
10764 It happens on some GNU/Linux distributions for instance, where
10765 users have to install a separate debug package in order to get
10766 the runtime's debugging info. In that situation, let the user
10767 know why we cannot insert an Ada exception catchpoint.
10768
10769 Note: Just for the purpose of inserting our Ada exception
10770 catchpoint, we could rely purely on the associated minimal symbol.
10771 But we would be operating in degraded mode anyway, since we are
10772 still lacking the debugging info needed later on to extract
10773 the name of the exception being raised (this name is printed in
10774 the catchpoint message, and is also used when trying to catch
10775 a specific exception). We do not handle this case for now. */
10776 if (lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL))
10777 error (_("Your Ada runtime appears to be missing some debugging "
10778 "information.\nCannot insert Ada exception catchpoint "
10779 "in this configuration."));
10780
10781 return 0;
10782 }
10783
10784 /* Make sure that the symbol we found corresponds to a function. */
10785
10786 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
10787 error (_("Symbol \"%s\" is not a function (class = %d)"),
10788 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
10789
10790 return 1;
10791 }
10792
10793 /* Inspect the Ada runtime and determine which exception info structure
10794 should be used to provide support for exception catchpoints.
10795
10796 This function will always set the per-inferior exception_info,
10797 or raise an error. */
10798
10799 static void
10800 ada_exception_support_info_sniffer (void)
10801 {
10802 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
10803 struct symbol *sym;
10804
10805 /* If the exception info is already known, then no need to recompute it. */
10806 if (data->exception_info != NULL)
10807 return;
10808
10809 /* Check the latest (default) exception support info. */
10810 if (ada_has_this_exception_support (&default_exception_support_info))
10811 {
10812 data->exception_info = &default_exception_support_info;
10813 return;
10814 }
10815
10816 /* Try our fallback exception suport info. */
10817 if (ada_has_this_exception_support (&exception_support_info_fallback))
10818 {
10819 data->exception_info = &exception_support_info_fallback;
10820 return;
10821 }
10822
10823 /* Sometimes, it is normal for us to not be able to find the routine
10824 we are looking for. This happens when the program is linked with
10825 the shared version of the GNAT runtime, and the program has not been
10826 started yet. Inform the user of these two possible causes if
10827 applicable. */
10828
10829 if (ada_update_initial_language (language_unknown) != language_ada)
10830 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
10831
10832 /* If the symbol does not exist, then check that the program is
10833 already started, to make sure that shared libraries have been
10834 loaded. If it is not started, this may mean that the symbol is
10835 in a shared library. */
10836
10837 if (ptid_get_pid (inferior_ptid) == 0)
10838 error (_("Unable to insert catchpoint. Try to start the program first."));
10839
10840 /* At this point, we know that we are debugging an Ada program and
10841 that the inferior has been started, but we still are not able to
10842 find the run-time symbols. That can mean that we are in
10843 configurable run time mode, or that a-except as been optimized
10844 out by the linker... In any case, at this point it is not worth
10845 supporting this feature. */
10846
10847 error (_("Cannot insert Ada exception catchpoints in this configuration."));
10848 }
10849
10850 /* True iff FRAME is very likely to be that of a function that is
10851 part of the runtime system. This is all very heuristic, but is
10852 intended to be used as advice as to what frames are uninteresting
10853 to most users. */
10854
10855 static int
10856 is_known_support_routine (struct frame_info *frame)
10857 {
10858 struct symtab_and_line sal;
10859 const char *func_name;
10860 enum language func_lang;
10861 int i;
10862
10863 /* If this code does not have any debugging information (no symtab),
10864 This cannot be any user code. */
10865
10866 find_frame_sal (frame, &sal);
10867 if (sal.symtab == NULL)
10868 return 1;
10869
10870 /* If there is a symtab, but the associated source file cannot be
10871 located, then assume this is not user code: Selecting a frame
10872 for which we cannot display the code would not be very helpful
10873 for the user. This should also take care of case such as VxWorks
10874 where the kernel has some debugging info provided for a few units. */
10875
10876 if (symtab_to_fullname (sal.symtab) == NULL)
10877 return 1;
10878
10879 /* Check the unit filename againt the Ada runtime file naming.
10880 We also check the name of the objfile against the name of some
10881 known system libraries that sometimes come with debugging info
10882 too. */
10883
10884 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
10885 {
10886 re_comp (known_runtime_file_name_patterns[i]);
10887 if (re_exec (sal.symtab->filename))
10888 return 1;
10889 if (sal.symtab->objfile != NULL
10890 && re_exec (sal.symtab->objfile->name))
10891 return 1;
10892 }
10893
10894 /* Check whether the function is a GNAT-generated entity. */
10895
10896 find_frame_funname (frame, &func_name, &func_lang, NULL);
10897 if (func_name == NULL)
10898 return 1;
10899
10900 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
10901 {
10902 re_comp (known_auxiliary_function_name_patterns[i]);
10903 if (re_exec (func_name))
10904 return 1;
10905 }
10906
10907 return 0;
10908 }
10909
10910 /* Find the first frame that contains debugging information and that is not
10911 part of the Ada run-time, starting from FI and moving upward. */
10912
10913 void
10914 ada_find_printable_frame (struct frame_info *fi)
10915 {
10916 for (; fi != NULL; fi = get_prev_frame (fi))
10917 {
10918 if (!is_known_support_routine (fi))
10919 {
10920 select_frame (fi);
10921 break;
10922 }
10923 }
10924
10925 }
10926
10927 /* Assuming that the inferior just triggered an unhandled exception
10928 catchpoint, return the address in inferior memory where the name
10929 of the exception is stored.
10930
10931 Return zero if the address could not be computed. */
10932
10933 static CORE_ADDR
10934 ada_unhandled_exception_name_addr (void)
10935 {
10936 return parse_and_eval_address ("e.full_name");
10937 }
10938
10939 /* Same as ada_unhandled_exception_name_addr, except that this function
10940 should be used when the inferior uses an older version of the runtime,
10941 where the exception name needs to be extracted from a specific frame
10942 several frames up in the callstack. */
10943
10944 static CORE_ADDR
10945 ada_unhandled_exception_name_addr_from_raise (void)
10946 {
10947 int frame_level;
10948 struct frame_info *fi;
10949 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
10950
10951 /* To determine the name of this exception, we need to select
10952 the frame corresponding to RAISE_SYM_NAME. This frame is
10953 at least 3 levels up, so we simply skip the first 3 frames
10954 without checking the name of their associated function. */
10955 fi = get_current_frame ();
10956 for (frame_level = 0; frame_level < 3; frame_level += 1)
10957 if (fi != NULL)
10958 fi = get_prev_frame (fi);
10959
10960 while (fi != NULL)
10961 {
10962 const char *func_name;
10963 enum language func_lang;
10964
10965 find_frame_funname (fi, &func_name, &func_lang, NULL);
10966 if (func_name != NULL
10967 && strcmp (func_name, data->exception_info->catch_exception_sym) == 0)
10968 break; /* We found the frame we were looking for... */
10969 fi = get_prev_frame (fi);
10970 }
10971
10972 if (fi == NULL)
10973 return 0;
10974
10975 select_frame (fi);
10976 return parse_and_eval_address ("id.full_name");
10977 }
10978
10979 /* Assuming the inferior just triggered an Ada exception catchpoint
10980 (of any type), return the address in inferior memory where the name
10981 of the exception is stored, if applicable.
10982
10983 Return zero if the address could not be computed, or if not relevant. */
10984
10985 static CORE_ADDR
10986 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
10987 struct breakpoint *b)
10988 {
10989 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
10990
10991 switch (ex)
10992 {
10993 case ex_catch_exception:
10994 return (parse_and_eval_address ("e.full_name"));
10995 break;
10996
10997 case ex_catch_exception_unhandled:
10998 return data->exception_info->unhandled_exception_name_addr ();
10999 break;
11000
11001 case ex_catch_assert:
11002 return 0; /* Exception name is not relevant in this case. */
11003 break;
11004
11005 default:
11006 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11007 break;
11008 }
11009
11010 return 0; /* Should never be reached. */
11011 }
11012
11013 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
11014 any error that ada_exception_name_addr_1 might cause to be thrown.
11015 When an error is intercepted, a warning with the error message is printed,
11016 and zero is returned. */
11017
11018 static CORE_ADDR
11019 ada_exception_name_addr (enum exception_catchpoint_kind ex,
11020 struct breakpoint *b)
11021 {
11022 volatile struct gdb_exception e;
11023 CORE_ADDR result = 0;
11024
11025 TRY_CATCH (e, RETURN_MASK_ERROR)
11026 {
11027 result = ada_exception_name_addr_1 (ex, b);
11028 }
11029
11030 if (e.reason < 0)
11031 {
11032 warning (_("failed to get exception name: %s"), e.message);
11033 return 0;
11034 }
11035
11036 return result;
11037 }
11038
11039 static struct symtab_and_line ada_exception_sal (enum exception_catchpoint_kind,
11040 char *, char **,
11041 const struct breakpoint_ops **);
11042 static char *ada_exception_catchpoint_cond_string (const char *excep_string);
11043
11044 /* Ada catchpoints.
11045
11046 In the case of catchpoints on Ada exceptions, the catchpoint will
11047 stop the target on every exception the program throws. When a user
11048 specifies the name of a specific exception, we translate this
11049 request into a condition expression (in text form), and then parse
11050 it into an expression stored in each of the catchpoint's locations.
11051 We then use this condition to check whether the exception that was
11052 raised is the one the user is interested in. If not, then the
11053 target is resumed again. We store the name of the requested
11054 exception, in order to be able to re-set the condition expression
11055 when symbols change. */
11056
11057 /* An instance of this type is used to represent an Ada catchpoint
11058 breakpoint location. It includes a "struct bp_location" as a kind
11059 of base class; users downcast to "struct bp_location *" when
11060 needed. */
11061
11062 struct ada_catchpoint_location
11063 {
11064 /* The base class. */
11065 struct bp_location base;
11066
11067 /* The condition that checks whether the exception that was raised
11068 is the specific exception the user specified on catchpoint
11069 creation. */
11070 struct expression *excep_cond_expr;
11071 };
11072
11073 /* Implement the DTOR method in the bp_location_ops structure for all
11074 Ada exception catchpoint kinds. */
11075
11076 static void
11077 ada_catchpoint_location_dtor (struct bp_location *bl)
11078 {
11079 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
11080
11081 xfree (al->excep_cond_expr);
11082 }
11083
11084 /* The vtable to be used in Ada catchpoint locations. */
11085
11086 static const struct bp_location_ops ada_catchpoint_location_ops =
11087 {
11088 ada_catchpoint_location_dtor
11089 };
11090
11091 /* An instance of this type is used to represent an Ada catchpoint.
11092 It includes a "struct breakpoint" as a kind of base class; users
11093 downcast to "struct breakpoint *" when needed. */
11094
11095 struct ada_catchpoint
11096 {
11097 /* The base class. */
11098 struct breakpoint base;
11099
11100 /* The name of the specific exception the user specified. */
11101 char *excep_string;
11102 };
11103
11104 /* Parse the exception condition string in the context of each of the
11105 catchpoint's locations, and store them for later evaluation. */
11106
11107 static void
11108 create_excep_cond_exprs (struct ada_catchpoint *c)
11109 {
11110 struct cleanup *old_chain;
11111 struct bp_location *bl;
11112 char *cond_string;
11113
11114 /* Nothing to do if there's no specific exception to catch. */
11115 if (c->excep_string == NULL)
11116 return;
11117
11118 /* Same if there are no locations... */
11119 if (c->base.loc == NULL)
11120 return;
11121
11122 /* Compute the condition expression in text form, from the specific
11123 expection we want to catch. */
11124 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
11125 old_chain = make_cleanup (xfree, cond_string);
11126
11127 /* Iterate over all the catchpoint's locations, and parse an
11128 expression for each. */
11129 for (bl = c->base.loc; bl != NULL; bl = bl->next)
11130 {
11131 struct ada_catchpoint_location *ada_loc
11132 = (struct ada_catchpoint_location *) bl;
11133 struct expression *exp = NULL;
11134
11135 if (!bl->shlib_disabled)
11136 {
11137 volatile struct gdb_exception e;
11138 char *s;
11139
11140 s = cond_string;
11141 TRY_CATCH (e, RETURN_MASK_ERROR)
11142 {
11143 exp = parse_exp_1 (&s, block_for_pc (bl->address), 0);
11144 }
11145 if (e.reason < 0)
11146 warning (_("failed to reevaluate internal exception condition "
11147 "for catchpoint %d: %s"),
11148 c->base.number, e.message);
11149 }
11150
11151 ada_loc->excep_cond_expr = exp;
11152 }
11153
11154 do_cleanups (old_chain);
11155 }
11156
11157 /* Implement the DTOR method in the breakpoint_ops structure for all
11158 exception catchpoint kinds. */
11159
11160 static void
11161 dtor_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
11162 {
11163 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11164
11165 xfree (c->excep_string);
11166
11167 bkpt_breakpoint_ops.dtor (b);
11168 }
11169
11170 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11171 structure for all exception catchpoint kinds. */
11172
11173 static struct bp_location *
11174 allocate_location_exception (enum exception_catchpoint_kind ex,
11175 struct breakpoint *self)
11176 {
11177 struct ada_catchpoint_location *loc;
11178
11179 loc = XNEW (struct ada_catchpoint_location);
11180 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
11181 loc->excep_cond_expr = NULL;
11182 return &loc->base;
11183 }
11184
11185 /* Implement the RE_SET method in the breakpoint_ops structure for all
11186 exception catchpoint kinds. */
11187
11188 static void
11189 re_set_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
11190 {
11191 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11192
11193 /* Call the base class's method. This updates the catchpoint's
11194 locations. */
11195 bkpt_breakpoint_ops.re_set (b);
11196
11197 /* Reparse the exception conditional expressions. One for each
11198 location. */
11199 create_excep_cond_exprs (c);
11200 }
11201
11202 /* Returns true if we should stop for this breakpoint hit. If the
11203 user specified a specific exception, we only want to cause a stop
11204 if the program thrown that exception. */
11205
11206 static int
11207 should_stop_exception (const struct bp_location *bl)
11208 {
11209 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
11210 const struct ada_catchpoint_location *ada_loc
11211 = (const struct ada_catchpoint_location *) bl;
11212 volatile struct gdb_exception ex;
11213 int stop;
11214
11215 /* With no specific exception, should always stop. */
11216 if (c->excep_string == NULL)
11217 return 1;
11218
11219 if (ada_loc->excep_cond_expr == NULL)
11220 {
11221 /* We will have a NULL expression if back when we were creating
11222 the expressions, this location's had failed to parse. */
11223 return 1;
11224 }
11225
11226 stop = 1;
11227 TRY_CATCH (ex, RETURN_MASK_ALL)
11228 {
11229 struct value *mark;
11230
11231 mark = value_mark ();
11232 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
11233 value_free_to_mark (mark);
11234 }
11235 if (ex.reason < 0)
11236 exception_fprintf (gdb_stderr, ex,
11237 _("Error in testing exception condition:\n"));
11238 return stop;
11239 }
11240
11241 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
11242 for all exception catchpoint kinds. */
11243
11244 static void
11245 check_status_exception (enum exception_catchpoint_kind ex, bpstat bs)
11246 {
11247 bs->stop = should_stop_exception (bs->bp_location_at);
11248 }
11249
11250 /* Implement the PRINT_IT method in the breakpoint_ops structure
11251 for all exception catchpoint kinds. */
11252
11253 static enum print_stop_action
11254 print_it_exception (enum exception_catchpoint_kind ex, bpstat bs)
11255 {
11256 struct ui_out *uiout = current_uiout;
11257 struct breakpoint *b = bs->breakpoint_at;
11258
11259 annotate_catchpoint (b->number);
11260
11261 if (ui_out_is_mi_like_p (uiout))
11262 {
11263 ui_out_field_string (uiout, "reason",
11264 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
11265 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
11266 }
11267
11268 ui_out_text (uiout,
11269 b->disposition == disp_del ? "\nTemporary catchpoint "
11270 : "\nCatchpoint ");
11271 ui_out_field_int (uiout, "bkptno", b->number);
11272 ui_out_text (uiout, ", ");
11273
11274 switch (ex)
11275 {
11276 case ex_catch_exception:
11277 case ex_catch_exception_unhandled:
11278 {
11279 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
11280 char exception_name[256];
11281
11282 if (addr != 0)
11283 {
11284 read_memory (addr, exception_name, sizeof (exception_name) - 1);
11285 exception_name [sizeof (exception_name) - 1] = '\0';
11286 }
11287 else
11288 {
11289 /* For some reason, we were unable to read the exception
11290 name. This could happen if the Runtime was compiled
11291 without debugging info, for instance. In that case,
11292 just replace the exception name by the generic string
11293 "exception" - it will read as "an exception" in the
11294 notification we are about to print. */
11295 memcpy (exception_name, "exception", sizeof ("exception"));
11296 }
11297 /* In the case of unhandled exception breakpoints, we print
11298 the exception name as "unhandled EXCEPTION_NAME", to make
11299 it clearer to the user which kind of catchpoint just got
11300 hit. We used ui_out_text to make sure that this extra
11301 info does not pollute the exception name in the MI case. */
11302 if (ex == ex_catch_exception_unhandled)
11303 ui_out_text (uiout, "unhandled ");
11304 ui_out_field_string (uiout, "exception-name", exception_name);
11305 }
11306 break;
11307 case ex_catch_assert:
11308 /* In this case, the name of the exception is not really
11309 important. Just print "failed assertion" to make it clearer
11310 that his program just hit an assertion-failure catchpoint.
11311 We used ui_out_text because this info does not belong in
11312 the MI output. */
11313 ui_out_text (uiout, "failed assertion");
11314 break;
11315 }
11316 ui_out_text (uiout, " at ");
11317 ada_find_printable_frame (get_current_frame ());
11318
11319 return PRINT_SRC_AND_LOC;
11320 }
11321
11322 /* Implement the PRINT_ONE method in the breakpoint_ops structure
11323 for all exception catchpoint kinds. */
11324
11325 static void
11326 print_one_exception (enum exception_catchpoint_kind ex,
11327 struct breakpoint *b, struct bp_location **last_loc)
11328 {
11329 struct ui_out *uiout = current_uiout;
11330 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11331 struct value_print_options opts;
11332
11333 get_user_print_options (&opts);
11334 if (opts.addressprint)
11335 {
11336 annotate_field (4);
11337 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
11338 }
11339
11340 annotate_field (5);
11341 *last_loc = b->loc;
11342 switch (ex)
11343 {
11344 case ex_catch_exception:
11345 if (c->excep_string != NULL)
11346 {
11347 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11348
11349 ui_out_field_string (uiout, "what", msg);
11350 xfree (msg);
11351 }
11352 else
11353 ui_out_field_string (uiout, "what", "all Ada exceptions");
11354
11355 break;
11356
11357 case ex_catch_exception_unhandled:
11358 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
11359 break;
11360
11361 case ex_catch_assert:
11362 ui_out_field_string (uiout, "what", "failed Ada assertions");
11363 break;
11364
11365 default:
11366 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11367 break;
11368 }
11369 }
11370
11371 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
11372 for all exception catchpoint kinds. */
11373
11374 static void
11375 print_mention_exception (enum exception_catchpoint_kind ex,
11376 struct breakpoint *b)
11377 {
11378 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11379 struct ui_out *uiout = current_uiout;
11380
11381 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
11382 : _("Catchpoint "));
11383 ui_out_field_int (uiout, "bkptno", b->number);
11384 ui_out_text (uiout, ": ");
11385
11386 switch (ex)
11387 {
11388 case ex_catch_exception:
11389 if (c->excep_string != NULL)
11390 {
11391 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11392 struct cleanup *old_chain = make_cleanup (xfree, info);
11393
11394 ui_out_text (uiout, info);
11395 do_cleanups (old_chain);
11396 }
11397 else
11398 ui_out_text (uiout, _("all Ada exceptions"));
11399 break;
11400
11401 case ex_catch_exception_unhandled:
11402 ui_out_text (uiout, _("unhandled Ada exceptions"));
11403 break;
11404
11405 case ex_catch_assert:
11406 ui_out_text (uiout, _("failed Ada assertions"));
11407 break;
11408
11409 default:
11410 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11411 break;
11412 }
11413 }
11414
11415 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
11416 for all exception catchpoint kinds. */
11417
11418 static void
11419 print_recreate_exception (enum exception_catchpoint_kind ex,
11420 struct breakpoint *b, struct ui_file *fp)
11421 {
11422 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11423
11424 switch (ex)
11425 {
11426 case ex_catch_exception:
11427 fprintf_filtered (fp, "catch exception");
11428 if (c->excep_string != NULL)
11429 fprintf_filtered (fp, " %s", c->excep_string);
11430 break;
11431
11432 case ex_catch_exception_unhandled:
11433 fprintf_filtered (fp, "catch exception unhandled");
11434 break;
11435
11436 case ex_catch_assert:
11437 fprintf_filtered (fp, "catch assert");
11438 break;
11439
11440 default:
11441 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11442 }
11443 print_recreate_thread (b, fp);
11444 }
11445
11446 /* Virtual table for "catch exception" breakpoints. */
11447
11448 static void
11449 dtor_catch_exception (struct breakpoint *b)
11450 {
11451 dtor_exception (ex_catch_exception, b);
11452 }
11453
11454 static struct bp_location *
11455 allocate_location_catch_exception (struct breakpoint *self)
11456 {
11457 return allocate_location_exception (ex_catch_exception, self);
11458 }
11459
11460 static void
11461 re_set_catch_exception (struct breakpoint *b)
11462 {
11463 re_set_exception (ex_catch_exception, b);
11464 }
11465
11466 static void
11467 check_status_catch_exception (bpstat bs)
11468 {
11469 check_status_exception (ex_catch_exception, bs);
11470 }
11471
11472 static enum print_stop_action
11473 print_it_catch_exception (bpstat bs)
11474 {
11475 return print_it_exception (ex_catch_exception, bs);
11476 }
11477
11478 static void
11479 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
11480 {
11481 print_one_exception (ex_catch_exception, b, last_loc);
11482 }
11483
11484 static void
11485 print_mention_catch_exception (struct breakpoint *b)
11486 {
11487 print_mention_exception (ex_catch_exception, b);
11488 }
11489
11490 static void
11491 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
11492 {
11493 print_recreate_exception (ex_catch_exception, b, fp);
11494 }
11495
11496 static struct breakpoint_ops catch_exception_breakpoint_ops;
11497
11498 /* Virtual table for "catch exception unhandled" breakpoints. */
11499
11500 static void
11501 dtor_catch_exception_unhandled (struct breakpoint *b)
11502 {
11503 dtor_exception (ex_catch_exception_unhandled, b);
11504 }
11505
11506 static struct bp_location *
11507 allocate_location_catch_exception_unhandled (struct breakpoint *self)
11508 {
11509 return allocate_location_exception (ex_catch_exception_unhandled, self);
11510 }
11511
11512 static void
11513 re_set_catch_exception_unhandled (struct breakpoint *b)
11514 {
11515 re_set_exception (ex_catch_exception_unhandled, b);
11516 }
11517
11518 static void
11519 check_status_catch_exception_unhandled (bpstat bs)
11520 {
11521 check_status_exception (ex_catch_exception_unhandled, bs);
11522 }
11523
11524 static enum print_stop_action
11525 print_it_catch_exception_unhandled (bpstat bs)
11526 {
11527 return print_it_exception (ex_catch_exception_unhandled, bs);
11528 }
11529
11530 static void
11531 print_one_catch_exception_unhandled (struct breakpoint *b,
11532 struct bp_location **last_loc)
11533 {
11534 print_one_exception (ex_catch_exception_unhandled, b, last_loc);
11535 }
11536
11537 static void
11538 print_mention_catch_exception_unhandled (struct breakpoint *b)
11539 {
11540 print_mention_exception (ex_catch_exception_unhandled, b);
11541 }
11542
11543 static void
11544 print_recreate_catch_exception_unhandled (struct breakpoint *b,
11545 struct ui_file *fp)
11546 {
11547 print_recreate_exception (ex_catch_exception_unhandled, b, fp);
11548 }
11549
11550 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
11551
11552 /* Virtual table for "catch assert" breakpoints. */
11553
11554 static void
11555 dtor_catch_assert (struct breakpoint *b)
11556 {
11557 dtor_exception (ex_catch_assert, b);
11558 }
11559
11560 static struct bp_location *
11561 allocate_location_catch_assert (struct breakpoint *self)
11562 {
11563 return allocate_location_exception (ex_catch_assert, self);
11564 }
11565
11566 static void
11567 re_set_catch_assert (struct breakpoint *b)
11568 {
11569 return re_set_exception (ex_catch_assert, b);
11570 }
11571
11572 static void
11573 check_status_catch_assert (bpstat bs)
11574 {
11575 check_status_exception (ex_catch_assert, bs);
11576 }
11577
11578 static enum print_stop_action
11579 print_it_catch_assert (bpstat bs)
11580 {
11581 return print_it_exception (ex_catch_assert, bs);
11582 }
11583
11584 static void
11585 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
11586 {
11587 print_one_exception (ex_catch_assert, b, last_loc);
11588 }
11589
11590 static void
11591 print_mention_catch_assert (struct breakpoint *b)
11592 {
11593 print_mention_exception (ex_catch_assert, b);
11594 }
11595
11596 static void
11597 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
11598 {
11599 print_recreate_exception (ex_catch_assert, b, fp);
11600 }
11601
11602 static struct breakpoint_ops catch_assert_breakpoint_ops;
11603
11604 /* Return a newly allocated copy of the first space-separated token
11605 in ARGSP, and then adjust ARGSP to point immediately after that
11606 token.
11607
11608 Return NULL if ARGPS does not contain any more tokens. */
11609
11610 static char *
11611 ada_get_next_arg (char **argsp)
11612 {
11613 char *args = *argsp;
11614 char *end;
11615 char *result;
11616
11617 args = skip_spaces (args);
11618 if (args[0] == '\0')
11619 return NULL; /* No more arguments. */
11620
11621 /* Find the end of the current argument. */
11622
11623 end = skip_to_space (args);
11624
11625 /* Adjust ARGSP to point to the start of the next argument. */
11626
11627 *argsp = end;
11628
11629 /* Make a copy of the current argument and return it. */
11630
11631 result = xmalloc (end - args + 1);
11632 strncpy (result, args, end - args);
11633 result[end - args] = '\0';
11634
11635 return result;
11636 }
11637
11638 /* Split the arguments specified in a "catch exception" command.
11639 Set EX to the appropriate catchpoint type.
11640 Set EXCEP_STRING to the name of the specific exception if
11641 specified by the user.
11642 If a condition is found at the end of the arguments, the condition
11643 expression is stored in COND_STRING (memory must be deallocated
11644 after use). Otherwise COND_STRING is set to NULL. */
11645
11646 static void
11647 catch_ada_exception_command_split (char *args,
11648 enum exception_catchpoint_kind *ex,
11649 char **excep_string,
11650 char **cond_string)
11651 {
11652 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
11653 char *exception_name;
11654 char *cond = NULL;
11655
11656 exception_name = ada_get_next_arg (&args);
11657 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
11658 {
11659 /* This is not an exception name; this is the start of a condition
11660 expression for a catchpoint on all exceptions. So, "un-get"
11661 this token, and set exception_name to NULL. */
11662 xfree (exception_name);
11663 exception_name = NULL;
11664 args -= 2;
11665 }
11666 make_cleanup (xfree, exception_name);
11667
11668 /* Check to see if we have a condition. */
11669
11670 args = skip_spaces (args);
11671 if (strncmp (args, "if", 2) == 0
11672 && (isspace (args[2]) || args[2] == '\0'))
11673 {
11674 args += 2;
11675 args = skip_spaces (args);
11676
11677 if (args[0] == '\0')
11678 error (_("Condition missing after `if' keyword"));
11679 cond = xstrdup (args);
11680 make_cleanup (xfree, cond);
11681
11682 args += strlen (args);
11683 }
11684
11685 /* Check that we do not have any more arguments. Anything else
11686 is unexpected. */
11687
11688 if (args[0] != '\0')
11689 error (_("Junk at end of expression"));
11690
11691 discard_cleanups (old_chain);
11692
11693 if (exception_name == NULL)
11694 {
11695 /* Catch all exceptions. */
11696 *ex = ex_catch_exception;
11697 *excep_string = NULL;
11698 }
11699 else if (strcmp (exception_name, "unhandled") == 0)
11700 {
11701 /* Catch unhandled exceptions. */
11702 *ex = ex_catch_exception_unhandled;
11703 *excep_string = NULL;
11704 }
11705 else
11706 {
11707 /* Catch a specific exception. */
11708 *ex = ex_catch_exception;
11709 *excep_string = exception_name;
11710 }
11711 *cond_string = cond;
11712 }
11713
11714 /* Return the name of the symbol on which we should break in order to
11715 implement a catchpoint of the EX kind. */
11716
11717 static const char *
11718 ada_exception_sym_name (enum exception_catchpoint_kind ex)
11719 {
11720 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11721
11722 gdb_assert (data->exception_info != NULL);
11723
11724 switch (ex)
11725 {
11726 case ex_catch_exception:
11727 return (data->exception_info->catch_exception_sym);
11728 break;
11729 case ex_catch_exception_unhandled:
11730 return (data->exception_info->catch_exception_unhandled_sym);
11731 break;
11732 case ex_catch_assert:
11733 return (data->exception_info->catch_assert_sym);
11734 break;
11735 default:
11736 internal_error (__FILE__, __LINE__,
11737 _("unexpected catchpoint kind (%d)"), ex);
11738 }
11739 }
11740
11741 /* Return the breakpoint ops "virtual table" used for catchpoints
11742 of the EX kind. */
11743
11744 static const struct breakpoint_ops *
11745 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
11746 {
11747 switch (ex)
11748 {
11749 case ex_catch_exception:
11750 return (&catch_exception_breakpoint_ops);
11751 break;
11752 case ex_catch_exception_unhandled:
11753 return (&catch_exception_unhandled_breakpoint_ops);
11754 break;
11755 case ex_catch_assert:
11756 return (&catch_assert_breakpoint_ops);
11757 break;
11758 default:
11759 internal_error (__FILE__, __LINE__,
11760 _("unexpected catchpoint kind (%d)"), ex);
11761 }
11762 }
11763
11764 /* Return the condition that will be used to match the current exception
11765 being raised with the exception that the user wants to catch. This
11766 assumes that this condition is used when the inferior just triggered
11767 an exception catchpoint.
11768
11769 The string returned is a newly allocated string that needs to be
11770 deallocated later. */
11771
11772 static char *
11773 ada_exception_catchpoint_cond_string (const char *excep_string)
11774 {
11775 int i;
11776
11777 /* The standard exceptions are a special case. They are defined in
11778 runtime units that have been compiled without debugging info; if
11779 EXCEP_STRING is the not-fully-qualified name of a standard
11780 exception (e.g. "constraint_error") then, during the evaluation
11781 of the condition expression, the symbol lookup on this name would
11782 *not* return this standard exception. The catchpoint condition
11783 may then be set only on user-defined exceptions which have the
11784 same not-fully-qualified name (e.g. my_package.constraint_error).
11785
11786 To avoid this unexcepted behavior, these standard exceptions are
11787 systematically prefixed by "standard". This means that "catch
11788 exception constraint_error" is rewritten into "catch exception
11789 standard.constraint_error".
11790
11791 If an exception named contraint_error is defined in another package of
11792 the inferior program, then the only way to specify this exception as a
11793 breakpoint condition is to use its fully-qualified named:
11794 e.g. my_package.constraint_error. */
11795
11796 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
11797 {
11798 if (strcmp (standard_exc [i], excep_string) == 0)
11799 {
11800 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
11801 excep_string);
11802 }
11803 }
11804 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
11805 }
11806
11807 /* Return the symtab_and_line that should be used to insert an exception
11808 catchpoint of the TYPE kind.
11809
11810 EXCEP_STRING should contain the name of a specific exception that
11811 the catchpoint should catch, or NULL otherwise.
11812
11813 ADDR_STRING returns the name of the function where the real
11814 breakpoint that implements the catchpoints is set, depending on the
11815 type of catchpoint we need to create. */
11816
11817 static struct symtab_and_line
11818 ada_exception_sal (enum exception_catchpoint_kind ex, char *excep_string,
11819 char **addr_string, const struct breakpoint_ops **ops)
11820 {
11821 const char *sym_name;
11822 struct symbol *sym;
11823
11824 /* First, find out which exception support info to use. */
11825 ada_exception_support_info_sniffer ();
11826
11827 /* Then lookup the function on which we will break in order to catch
11828 the Ada exceptions requested by the user. */
11829 sym_name = ada_exception_sym_name (ex);
11830 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
11831
11832 /* We can assume that SYM is not NULL at this stage. If the symbol
11833 did not exist, ada_exception_support_info_sniffer would have
11834 raised an exception.
11835
11836 Also, ada_exception_support_info_sniffer should have already
11837 verified that SYM is a function symbol. */
11838 gdb_assert (sym != NULL);
11839 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
11840
11841 /* Set ADDR_STRING. */
11842 *addr_string = xstrdup (sym_name);
11843
11844 /* Set OPS. */
11845 *ops = ada_exception_breakpoint_ops (ex);
11846
11847 return find_function_start_sal (sym, 1);
11848 }
11849
11850 /* Parse the arguments (ARGS) of the "catch exception" command.
11851
11852 If the user asked the catchpoint to catch only a specific
11853 exception, then save the exception name in ADDR_STRING.
11854
11855 If the user provided a condition, then set COND_STRING to
11856 that condition expression (the memory must be deallocated
11857 after use). Otherwise, set COND_STRING to NULL.
11858
11859 See ada_exception_sal for a description of all the remaining
11860 function arguments of this function. */
11861
11862 static struct symtab_and_line
11863 ada_decode_exception_location (char *args, char **addr_string,
11864 char **excep_string,
11865 char **cond_string,
11866 const struct breakpoint_ops **ops)
11867 {
11868 enum exception_catchpoint_kind ex;
11869
11870 catch_ada_exception_command_split (args, &ex, excep_string, cond_string);
11871 return ada_exception_sal (ex, *excep_string, addr_string, ops);
11872 }
11873
11874 /* Create an Ada exception catchpoint. */
11875
11876 static void
11877 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
11878 struct symtab_and_line sal,
11879 char *addr_string,
11880 char *excep_string,
11881 char *cond_string,
11882 const struct breakpoint_ops *ops,
11883 int tempflag,
11884 int from_tty)
11885 {
11886 struct ada_catchpoint *c;
11887
11888 c = XNEW (struct ada_catchpoint);
11889 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
11890 ops, tempflag, from_tty);
11891 c->excep_string = excep_string;
11892 create_excep_cond_exprs (c);
11893 if (cond_string != NULL)
11894 set_breakpoint_condition (&c->base, cond_string, from_tty);
11895 install_breakpoint (0, &c->base, 1);
11896 }
11897
11898 /* Implement the "catch exception" command. */
11899
11900 static void
11901 catch_ada_exception_command (char *arg, int from_tty,
11902 struct cmd_list_element *command)
11903 {
11904 struct gdbarch *gdbarch = get_current_arch ();
11905 int tempflag;
11906 struct symtab_and_line sal;
11907 char *addr_string = NULL;
11908 char *excep_string = NULL;
11909 char *cond_string = NULL;
11910 const struct breakpoint_ops *ops = NULL;
11911
11912 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11913
11914 if (!arg)
11915 arg = "";
11916 sal = ada_decode_exception_location (arg, &addr_string, &excep_string,
11917 &cond_string, &ops);
11918 create_ada_exception_catchpoint (gdbarch, sal, addr_string,
11919 excep_string, cond_string, ops,
11920 tempflag, from_tty);
11921 }
11922
11923 /* Assuming that ARGS contains the arguments of a "catch assert"
11924 command, parse those arguments and return a symtab_and_line object
11925 for a failed assertion catchpoint.
11926
11927 Set ADDR_STRING to the name of the function where the real
11928 breakpoint that implements the catchpoint is set.
11929
11930 If ARGS contains a condition, set COND_STRING to that condition
11931 (the memory needs to be deallocated after use). Otherwise, set
11932 COND_STRING to NULL. */
11933
11934 static struct symtab_and_line
11935 ada_decode_assert_location (char *args, char **addr_string,
11936 char **cond_string,
11937 const struct breakpoint_ops **ops)
11938 {
11939 args = skip_spaces (args);
11940
11941 /* Check whether a condition was provided. */
11942 if (strncmp (args, "if", 2) == 0
11943 && (isspace (args[2]) || args[2] == '\0'))
11944 {
11945 args += 2;
11946 args = skip_spaces (args);
11947 if (args[0] == '\0')
11948 error (_("condition missing after `if' keyword"));
11949 *cond_string = xstrdup (args);
11950 }
11951
11952 /* Otherwise, there should be no other argument at the end of
11953 the command. */
11954 else if (args[0] != '\0')
11955 error (_("Junk at end of arguments."));
11956
11957 return ada_exception_sal (ex_catch_assert, NULL, addr_string, ops);
11958 }
11959
11960 /* Implement the "catch assert" command. */
11961
11962 static void
11963 catch_assert_command (char *arg, int from_tty,
11964 struct cmd_list_element *command)
11965 {
11966 struct gdbarch *gdbarch = get_current_arch ();
11967 int tempflag;
11968 struct symtab_and_line sal;
11969 char *addr_string = NULL;
11970 char *cond_string = NULL;
11971 const struct breakpoint_ops *ops = NULL;
11972
11973 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11974
11975 if (!arg)
11976 arg = "";
11977 sal = ada_decode_assert_location (arg, &addr_string, &cond_string, &ops);
11978 create_ada_exception_catchpoint (gdbarch, sal, addr_string,
11979 NULL, cond_string, ops, tempflag,
11980 from_tty);
11981 }
11982 /* Operators */
11983 /* Information about operators given special treatment in functions
11984 below. */
11985 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
11986
11987 #define ADA_OPERATORS \
11988 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
11989 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
11990 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
11991 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
11992 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
11993 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
11994 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
11995 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
11996 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
11997 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
11998 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
11999 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
12000 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
12001 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
12002 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
12003 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
12004 OP_DEFN (OP_OTHERS, 1, 1, 0) \
12005 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
12006 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
12007
12008 static void
12009 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
12010 int *argsp)
12011 {
12012 switch (exp->elts[pc - 1].opcode)
12013 {
12014 default:
12015 operator_length_standard (exp, pc, oplenp, argsp);
12016 break;
12017
12018 #define OP_DEFN(op, len, args, binop) \
12019 case op: *oplenp = len; *argsp = args; break;
12020 ADA_OPERATORS;
12021 #undef OP_DEFN
12022
12023 case OP_AGGREGATE:
12024 *oplenp = 3;
12025 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
12026 break;
12027
12028 case OP_CHOICES:
12029 *oplenp = 3;
12030 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
12031 break;
12032 }
12033 }
12034
12035 /* Implementation of the exp_descriptor method operator_check. */
12036
12037 static int
12038 ada_operator_check (struct expression *exp, int pos,
12039 int (*objfile_func) (struct objfile *objfile, void *data),
12040 void *data)
12041 {
12042 const union exp_element *const elts = exp->elts;
12043 struct type *type = NULL;
12044
12045 switch (elts[pos].opcode)
12046 {
12047 case UNOP_IN_RANGE:
12048 case UNOP_QUAL:
12049 type = elts[pos + 1].type;
12050 break;
12051
12052 default:
12053 return operator_check_standard (exp, pos, objfile_func, data);
12054 }
12055
12056 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
12057
12058 if (type && TYPE_OBJFILE (type)
12059 && (*objfile_func) (TYPE_OBJFILE (type), data))
12060 return 1;
12061
12062 return 0;
12063 }
12064
12065 static char *
12066 ada_op_name (enum exp_opcode opcode)
12067 {
12068 switch (opcode)
12069 {
12070 default:
12071 return op_name_standard (opcode);
12072
12073 #define OP_DEFN(op, len, args, binop) case op: return #op;
12074 ADA_OPERATORS;
12075 #undef OP_DEFN
12076
12077 case OP_AGGREGATE:
12078 return "OP_AGGREGATE";
12079 case OP_CHOICES:
12080 return "OP_CHOICES";
12081 case OP_NAME:
12082 return "OP_NAME";
12083 }
12084 }
12085
12086 /* As for operator_length, but assumes PC is pointing at the first
12087 element of the operator, and gives meaningful results only for the
12088 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
12089
12090 static void
12091 ada_forward_operator_length (struct expression *exp, int pc,
12092 int *oplenp, int *argsp)
12093 {
12094 switch (exp->elts[pc].opcode)
12095 {
12096 default:
12097 *oplenp = *argsp = 0;
12098 break;
12099
12100 #define OP_DEFN(op, len, args, binop) \
12101 case op: *oplenp = len; *argsp = args; break;
12102 ADA_OPERATORS;
12103 #undef OP_DEFN
12104
12105 case OP_AGGREGATE:
12106 *oplenp = 3;
12107 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
12108 break;
12109
12110 case OP_CHOICES:
12111 *oplenp = 3;
12112 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
12113 break;
12114
12115 case OP_STRING:
12116 case OP_NAME:
12117 {
12118 int len = longest_to_int (exp->elts[pc + 1].longconst);
12119
12120 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
12121 *argsp = 0;
12122 break;
12123 }
12124 }
12125 }
12126
12127 static int
12128 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
12129 {
12130 enum exp_opcode op = exp->elts[elt].opcode;
12131 int oplen, nargs;
12132 int pc = elt;
12133 int i;
12134
12135 ada_forward_operator_length (exp, elt, &oplen, &nargs);
12136
12137 switch (op)
12138 {
12139 /* Ada attributes ('Foo). */
12140 case OP_ATR_FIRST:
12141 case OP_ATR_LAST:
12142 case OP_ATR_LENGTH:
12143 case OP_ATR_IMAGE:
12144 case OP_ATR_MAX:
12145 case OP_ATR_MIN:
12146 case OP_ATR_MODULUS:
12147 case OP_ATR_POS:
12148 case OP_ATR_SIZE:
12149 case OP_ATR_TAG:
12150 case OP_ATR_VAL:
12151 break;
12152
12153 case UNOP_IN_RANGE:
12154 case UNOP_QUAL:
12155 /* XXX: gdb_sprint_host_address, type_sprint */
12156 fprintf_filtered (stream, _("Type @"));
12157 gdb_print_host_address (exp->elts[pc + 1].type, stream);
12158 fprintf_filtered (stream, " (");
12159 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
12160 fprintf_filtered (stream, ")");
12161 break;
12162 case BINOP_IN_BOUNDS:
12163 fprintf_filtered (stream, " (%d)",
12164 longest_to_int (exp->elts[pc + 2].longconst));
12165 break;
12166 case TERNOP_IN_RANGE:
12167 break;
12168
12169 case OP_AGGREGATE:
12170 case OP_OTHERS:
12171 case OP_DISCRETE_RANGE:
12172 case OP_POSITIONAL:
12173 case OP_CHOICES:
12174 break;
12175
12176 case OP_NAME:
12177 case OP_STRING:
12178 {
12179 char *name = &exp->elts[elt + 2].string;
12180 int len = longest_to_int (exp->elts[elt + 1].longconst);
12181
12182 fprintf_filtered (stream, "Text: `%.*s'", len, name);
12183 break;
12184 }
12185
12186 default:
12187 return dump_subexp_body_standard (exp, stream, elt);
12188 }
12189
12190 elt += oplen;
12191 for (i = 0; i < nargs; i += 1)
12192 elt = dump_subexp (exp, stream, elt);
12193
12194 return elt;
12195 }
12196
12197 /* The Ada extension of print_subexp (q.v.). */
12198
12199 static void
12200 ada_print_subexp (struct expression *exp, int *pos,
12201 struct ui_file *stream, enum precedence prec)
12202 {
12203 int oplen, nargs, i;
12204 int pc = *pos;
12205 enum exp_opcode op = exp->elts[pc].opcode;
12206
12207 ada_forward_operator_length (exp, pc, &oplen, &nargs);
12208
12209 *pos += oplen;
12210 switch (op)
12211 {
12212 default:
12213 *pos -= oplen;
12214 print_subexp_standard (exp, pos, stream, prec);
12215 return;
12216
12217 case OP_VAR_VALUE:
12218 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
12219 return;
12220
12221 case BINOP_IN_BOUNDS:
12222 /* XXX: sprint_subexp */
12223 print_subexp (exp, pos, stream, PREC_SUFFIX);
12224 fputs_filtered (" in ", stream);
12225 print_subexp (exp, pos, stream, PREC_SUFFIX);
12226 fputs_filtered ("'range", stream);
12227 if (exp->elts[pc + 1].longconst > 1)
12228 fprintf_filtered (stream, "(%ld)",
12229 (long) exp->elts[pc + 1].longconst);
12230 return;
12231
12232 case TERNOP_IN_RANGE:
12233 if (prec >= PREC_EQUAL)
12234 fputs_filtered ("(", stream);
12235 /* XXX: sprint_subexp */
12236 print_subexp (exp, pos, stream, PREC_SUFFIX);
12237 fputs_filtered (" in ", stream);
12238 print_subexp (exp, pos, stream, PREC_EQUAL);
12239 fputs_filtered (" .. ", stream);
12240 print_subexp (exp, pos, stream, PREC_EQUAL);
12241 if (prec >= PREC_EQUAL)
12242 fputs_filtered (")", stream);
12243 return;
12244
12245 case OP_ATR_FIRST:
12246 case OP_ATR_LAST:
12247 case OP_ATR_LENGTH:
12248 case OP_ATR_IMAGE:
12249 case OP_ATR_MAX:
12250 case OP_ATR_MIN:
12251 case OP_ATR_MODULUS:
12252 case OP_ATR_POS:
12253 case OP_ATR_SIZE:
12254 case OP_ATR_TAG:
12255 case OP_ATR_VAL:
12256 if (exp->elts[*pos].opcode == OP_TYPE)
12257 {
12258 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
12259 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
12260 *pos += 3;
12261 }
12262 else
12263 print_subexp (exp, pos, stream, PREC_SUFFIX);
12264 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
12265 if (nargs > 1)
12266 {
12267 int tem;
12268
12269 for (tem = 1; tem < nargs; tem += 1)
12270 {
12271 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
12272 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
12273 }
12274 fputs_filtered (")", stream);
12275 }
12276 return;
12277
12278 case UNOP_QUAL:
12279 type_print (exp->elts[pc + 1].type, "", stream, 0);
12280 fputs_filtered ("'(", stream);
12281 print_subexp (exp, pos, stream, PREC_PREFIX);
12282 fputs_filtered (")", stream);
12283 return;
12284
12285 case UNOP_IN_RANGE:
12286 /* XXX: sprint_subexp */
12287 print_subexp (exp, pos, stream, PREC_SUFFIX);
12288 fputs_filtered (" in ", stream);
12289 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
12290 return;
12291
12292 case OP_DISCRETE_RANGE:
12293 print_subexp (exp, pos, stream, PREC_SUFFIX);
12294 fputs_filtered ("..", stream);
12295 print_subexp (exp, pos, stream, PREC_SUFFIX);
12296 return;
12297
12298 case OP_OTHERS:
12299 fputs_filtered ("others => ", stream);
12300 print_subexp (exp, pos, stream, PREC_SUFFIX);
12301 return;
12302
12303 case OP_CHOICES:
12304 for (i = 0; i < nargs-1; i += 1)
12305 {
12306 if (i > 0)
12307 fputs_filtered ("|", stream);
12308 print_subexp (exp, pos, stream, PREC_SUFFIX);
12309 }
12310 fputs_filtered (" => ", stream);
12311 print_subexp (exp, pos, stream, PREC_SUFFIX);
12312 return;
12313
12314 case OP_POSITIONAL:
12315 print_subexp (exp, pos, stream, PREC_SUFFIX);
12316 return;
12317
12318 case OP_AGGREGATE:
12319 fputs_filtered ("(", stream);
12320 for (i = 0; i < nargs; i += 1)
12321 {
12322 if (i > 0)
12323 fputs_filtered (", ", stream);
12324 print_subexp (exp, pos, stream, PREC_SUFFIX);
12325 }
12326 fputs_filtered (")", stream);
12327 return;
12328 }
12329 }
12330
12331 /* Table mapping opcodes into strings for printing operators
12332 and precedences of the operators. */
12333
12334 static const struct op_print ada_op_print_tab[] = {
12335 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
12336 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
12337 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
12338 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
12339 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
12340 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
12341 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
12342 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
12343 {"<=", BINOP_LEQ, PREC_ORDER, 0},
12344 {">=", BINOP_GEQ, PREC_ORDER, 0},
12345 {">", BINOP_GTR, PREC_ORDER, 0},
12346 {"<", BINOP_LESS, PREC_ORDER, 0},
12347 {">>", BINOP_RSH, PREC_SHIFT, 0},
12348 {"<<", BINOP_LSH, PREC_SHIFT, 0},
12349 {"+", BINOP_ADD, PREC_ADD, 0},
12350 {"-", BINOP_SUB, PREC_ADD, 0},
12351 {"&", BINOP_CONCAT, PREC_ADD, 0},
12352 {"*", BINOP_MUL, PREC_MUL, 0},
12353 {"/", BINOP_DIV, PREC_MUL, 0},
12354 {"rem", BINOP_REM, PREC_MUL, 0},
12355 {"mod", BINOP_MOD, PREC_MUL, 0},
12356 {"**", BINOP_EXP, PREC_REPEAT, 0},
12357 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
12358 {"-", UNOP_NEG, PREC_PREFIX, 0},
12359 {"+", UNOP_PLUS, PREC_PREFIX, 0},
12360 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
12361 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
12362 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
12363 {".all", UNOP_IND, PREC_SUFFIX, 1},
12364 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
12365 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
12366 {NULL, 0, 0, 0}
12367 };
12368 \f
12369 enum ada_primitive_types {
12370 ada_primitive_type_int,
12371 ada_primitive_type_long,
12372 ada_primitive_type_short,
12373 ada_primitive_type_char,
12374 ada_primitive_type_float,
12375 ada_primitive_type_double,
12376 ada_primitive_type_void,
12377 ada_primitive_type_long_long,
12378 ada_primitive_type_long_double,
12379 ada_primitive_type_natural,
12380 ada_primitive_type_positive,
12381 ada_primitive_type_system_address,
12382 nr_ada_primitive_types
12383 };
12384
12385 static void
12386 ada_language_arch_info (struct gdbarch *gdbarch,
12387 struct language_arch_info *lai)
12388 {
12389 const struct builtin_type *builtin = builtin_type (gdbarch);
12390
12391 lai->primitive_type_vector
12392 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
12393 struct type *);
12394
12395 lai->primitive_type_vector [ada_primitive_type_int]
12396 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12397 0, "integer");
12398 lai->primitive_type_vector [ada_primitive_type_long]
12399 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
12400 0, "long_integer");
12401 lai->primitive_type_vector [ada_primitive_type_short]
12402 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
12403 0, "short_integer");
12404 lai->string_char_type
12405 = lai->primitive_type_vector [ada_primitive_type_char]
12406 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
12407 lai->primitive_type_vector [ada_primitive_type_float]
12408 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
12409 "float", NULL);
12410 lai->primitive_type_vector [ada_primitive_type_double]
12411 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12412 "long_float", NULL);
12413 lai->primitive_type_vector [ada_primitive_type_long_long]
12414 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
12415 0, "long_long_integer");
12416 lai->primitive_type_vector [ada_primitive_type_long_double]
12417 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12418 "long_long_float", NULL);
12419 lai->primitive_type_vector [ada_primitive_type_natural]
12420 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12421 0, "natural");
12422 lai->primitive_type_vector [ada_primitive_type_positive]
12423 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12424 0, "positive");
12425 lai->primitive_type_vector [ada_primitive_type_void]
12426 = builtin->builtin_void;
12427
12428 lai->primitive_type_vector [ada_primitive_type_system_address]
12429 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
12430 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
12431 = "system__address";
12432
12433 lai->bool_type_symbol = NULL;
12434 lai->bool_type_default = builtin->builtin_bool;
12435 }
12436 \f
12437 /* Language vector */
12438
12439 /* Not really used, but needed in the ada_language_defn. */
12440
12441 static void
12442 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
12443 {
12444 ada_emit_char (c, type, stream, quoter, 1);
12445 }
12446
12447 static int
12448 parse (void)
12449 {
12450 warnings_issued = 0;
12451 return ada_parse ();
12452 }
12453
12454 static const struct exp_descriptor ada_exp_descriptor = {
12455 ada_print_subexp,
12456 ada_operator_length,
12457 ada_operator_check,
12458 ada_op_name,
12459 ada_dump_subexp_body,
12460 ada_evaluate_subexp
12461 };
12462
12463 /* Implement the "la_get_symbol_name_cmp" language_defn method
12464 for Ada. */
12465
12466 static symbol_name_cmp_ftype
12467 ada_get_symbol_name_cmp (const char *lookup_name)
12468 {
12469 if (should_use_wild_match (lookup_name))
12470 return wild_match;
12471 else
12472 return compare_names;
12473 }
12474
12475 /* Implement the "la_read_var_value" language_defn method for Ada. */
12476
12477 static struct value *
12478 ada_read_var_value (struct symbol *var, struct frame_info *frame)
12479 {
12480 struct block *frame_block = NULL;
12481 struct symbol *renaming_sym = NULL;
12482
12483 /* The only case where default_read_var_value is not sufficient
12484 is when VAR is a renaming... */
12485 if (frame)
12486 frame_block = get_frame_block (frame, NULL);
12487 if (frame_block)
12488 renaming_sym = ada_find_renaming_symbol (var, frame_block);
12489 if (renaming_sym != NULL)
12490 return ada_read_renaming_var_value (renaming_sym, frame_block);
12491
12492 /* This is a typical case where we expect the default_read_var_value
12493 function to work. */
12494 return default_read_var_value (var, frame);
12495 }
12496
12497 const struct language_defn ada_language_defn = {
12498 "ada", /* Language name */
12499 language_ada,
12500 range_check_off,
12501 type_check_off,
12502 case_sensitive_on, /* Yes, Ada is case-insensitive, but
12503 that's not quite what this means. */
12504 array_row_major,
12505 macro_expansion_no,
12506 &ada_exp_descriptor,
12507 parse,
12508 ada_error,
12509 resolve,
12510 ada_printchar, /* Print a character constant */
12511 ada_printstr, /* Function to print string constant */
12512 emit_char, /* Function to print single char (not used) */
12513 ada_print_type, /* Print a type using appropriate syntax */
12514 ada_print_typedef, /* Print a typedef using appropriate syntax */
12515 ada_val_print, /* Print a value using appropriate syntax */
12516 ada_value_print, /* Print a top-level value */
12517 ada_read_var_value, /* la_read_var_value */
12518 NULL, /* Language specific skip_trampoline */
12519 NULL, /* name_of_this */
12520 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
12521 basic_lookup_transparent_type, /* lookup_transparent_type */
12522 ada_la_decode, /* Language specific symbol demangler */
12523 NULL, /* Language specific
12524 class_name_from_physname */
12525 ada_op_print_tab, /* expression operators for printing */
12526 0, /* c-style arrays */
12527 1, /* String lower bound */
12528 ada_get_gdb_completer_word_break_characters,
12529 ada_make_symbol_completion_list,
12530 ada_language_arch_info,
12531 ada_print_array_index,
12532 default_pass_by_reference,
12533 c_get_string,
12534 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
12535 ada_iterate_over_symbols,
12536 LANG_MAGIC
12537 };
12538
12539 /* Provide a prototype to silence -Wmissing-prototypes. */
12540 extern initialize_file_ftype _initialize_ada_language;
12541
12542 /* Command-list for the "set/show ada" prefix command. */
12543 static struct cmd_list_element *set_ada_list;
12544 static struct cmd_list_element *show_ada_list;
12545
12546 /* Implement the "set ada" prefix command. */
12547
12548 static void
12549 set_ada_command (char *arg, int from_tty)
12550 {
12551 printf_unfiltered (_(\
12552 "\"set ada\" must be followed by the name of a setting.\n"));
12553 help_list (set_ada_list, "set ada ", -1, gdb_stdout);
12554 }
12555
12556 /* Implement the "show ada" prefix command. */
12557
12558 static void
12559 show_ada_command (char *args, int from_tty)
12560 {
12561 cmd_show_list (show_ada_list, from_tty, "");
12562 }
12563
12564 static void
12565 initialize_ada_catchpoint_ops (void)
12566 {
12567 struct breakpoint_ops *ops;
12568
12569 initialize_breakpoint_ops ();
12570
12571 ops = &catch_exception_breakpoint_ops;
12572 *ops = bkpt_breakpoint_ops;
12573 ops->dtor = dtor_catch_exception;
12574 ops->allocate_location = allocate_location_catch_exception;
12575 ops->re_set = re_set_catch_exception;
12576 ops->check_status = check_status_catch_exception;
12577 ops->print_it = print_it_catch_exception;
12578 ops->print_one = print_one_catch_exception;
12579 ops->print_mention = print_mention_catch_exception;
12580 ops->print_recreate = print_recreate_catch_exception;
12581
12582 ops = &catch_exception_unhandled_breakpoint_ops;
12583 *ops = bkpt_breakpoint_ops;
12584 ops->dtor = dtor_catch_exception_unhandled;
12585 ops->allocate_location = allocate_location_catch_exception_unhandled;
12586 ops->re_set = re_set_catch_exception_unhandled;
12587 ops->check_status = check_status_catch_exception_unhandled;
12588 ops->print_it = print_it_catch_exception_unhandled;
12589 ops->print_one = print_one_catch_exception_unhandled;
12590 ops->print_mention = print_mention_catch_exception_unhandled;
12591 ops->print_recreate = print_recreate_catch_exception_unhandled;
12592
12593 ops = &catch_assert_breakpoint_ops;
12594 *ops = bkpt_breakpoint_ops;
12595 ops->dtor = dtor_catch_assert;
12596 ops->allocate_location = allocate_location_catch_assert;
12597 ops->re_set = re_set_catch_assert;
12598 ops->check_status = check_status_catch_assert;
12599 ops->print_it = print_it_catch_assert;
12600 ops->print_one = print_one_catch_assert;
12601 ops->print_mention = print_mention_catch_assert;
12602 ops->print_recreate = print_recreate_catch_assert;
12603 }
12604
12605 void
12606 _initialize_ada_language (void)
12607 {
12608 add_language (&ada_language_defn);
12609
12610 initialize_ada_catchpoint_ops ();
12611
12612 add_prefix_cmd ("ada", no_class, set_ada_command,
12613 _("Prefix command for changing Ada-specfic settings"),
12614 &set_ada_list, "set ada ", 0, &setlist);
12615
12616 add_prefix_cmd ("ada", no_class, show_ada_command,
12617 _("Generic command for showing Ada-specific settings."),
12618 &show_ada_list, "show ada ", 0, &showlist);
12619
12620 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
12621 &trust_pad_over_xvs, _("\
12622 Enable or disable an optimization trusting PAD types over XVS types"), _("\
12623 Show whether an optimization trusting PAD types over XVS types is activated"),
12624 _("\
12625 This is related to the encoding used by the GNAT compiler. The debugger\n\
12626 should normally trust the contents of PAD types, but certain older versions\n\
12627 of GNAT have a bug that sometimes causes the information in the PAD type\n\
12628 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
12629 work around this bug. It is always safe to turn this option \"off\", but\n\
12630 this incurs a slight performance penalty, so it is recommended to NOT change\n\
12631 this option to \"off\" unless necessary."),
12632 NULL, NULL, &set_ada_list, &show_ada_list);
12633
12634 add_catch_command ("exception", _("\
12635 Catch Ada exceptions, when raised.\n\
12636 With an argument, catch only exceptions with the given name."),
12637 catch_ada_exception_command,
12638 NULL,
12639 CATCH_PERMANENT,
12640 CATCH_TEMPORARY);
12641 add_catch_command ("assert", _("\
12642 Catch failed Ada assertions, when raised.\n\
12643 With an argument, catch only exceptions with the given name."),
12644 catch_assert_command,
12645 NULL,
12646 CATCH_PERMANENT,
12647 CATCH_TEMPORARY);
12648
12649 varsize_limit = 65536;
12650
12651 obstack_init (&symbol_list_obstack);
12652
12653 decoded_names_store = htab_create_alloc
12654 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
12655 NULL, xcalloc, xfree);
12656
12657 /* Setup per-inferior data. */
12658 observer_attach_inferior_exit (ada_inferior_exit);
12659 ada_inferior_data
12660 = register_inferior_data_with_cleanup (ada_inferior_data_cleanup);
12661 }