infinite recursion with ada_check_typedef
[binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger. Copyright (C)
2
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007, 2008,
4 2009 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21
22 #include "defs.h"
23 #include <stdio.h>
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include <stdarg.h>
27 #include "demangle.h"
28 #include "gdb_regex.h"
29 #include "frame.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "gdbcmd.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35 #include "language.h"
36 #include "c-lang.h"
37 #include "inferior.h"
38 #include "symfile.h"
39 #include "objfiles.h"
40 #include "breakpoint.h"
41 #include "gdbcore.h"
42 #include "hashtab.h"
43 #include "gdb_obstack.h"
44 #include "ada-lang.h"
45 #include "completer.h"
46 #include "gdb_stat.h"
47 #ifdef UI_OUT
48 #include "ui-out.h"
49 #endif
50 #include "block.h"
51 #include "infcall.h"
52 #include "dictionary.h"
53 #include "exceptions.h"
54 #include "annotate.h"
55 #include "valprint.h"
56 #include "source.h"
57 #include "observer.h"
58 #include "vec.h"
59 #include "stack.h"
60
61 #include "psymtab.h"
62 #include "value.h"
63
64 /* Define whether or not the C operator '/' truncates towards zero for
65 differently signed operands (truncation direction is undefined in C).
66 Copied from valarith.c. */
67
68 #ifndef TRUNCATION_TOWARDS_ZERO
69 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
70 #endif
71
72 static struct type *desc_base_type (struct type *);
73
74 static struct type *desc_bounds_type (struct type *);
75
76 static struct value *desc_bounds (struct value *);
77
78 static int fat_pntr_bounds_bitpos (struct type *);
79
80 static int fat_pntr_bounds_bitsize (struct type *);
81
82 static struct type *desc_data_target_type (struct type *);
83
84 static struct value *desc_data (struct value *);
85
86 static int fat_pntr_data_bitpos (struct type *);
87
88 static int fat_pntr_data_bitsize (struct type *);
89
90 static struct value *desc_one_bound (struct value *, int, int);
91
92 static int desc_bound_bitpos (struct type *, int, int);
93
94 static int desc_bound_bitsize (struct type *, int, int);
95
96 static struct type *desc_index_type (struct type *, int);
97
98 static int desc_arity (struct type *);
99
100 static int ada_type_match (struct type *, struct type *, int);
101
102 static int ada_args_match (struct symbol *, struct value **, int);
103
104 static int full_match (const char *, const char *);
105
106 static struct value *make_array_descriptor (struct type *, struct value *);
107
108 static void ada_add_block_symbols (struct obstack *,
109 struct block *, const char *,
110 domain_enum, struct objfile *, int);
111
112 static int is_nonfunction (struct ada_symbol_info *, int);
113
114 static void add_defn_to_vec (struct obstack *, struct symbol *,
115 struct block *);
116
117 static int num_defns_collected (struct obstack *);
118
119 static struct ada_symbol_info *defns_collected (struct obstack *, int);
120
121 static struct value *resolve_subexp (struct expression **, int *, int,
122 struct type *);
123
124 static void replace_operator_with_call (struct expression **, int, int, int,
125 struct symbol *, struct block *);
126
127 static int possible_user_operator_p (enum exp_opcode, struct value **);
128
129 static char *ada_op_name (enum exp_opcode);
130
131 static const char *ada_decoded_op_name (enum exp_opcode);
132
133 static int numeric_type_p (struct type *);
134
135 static int integer_type_p (struct type *);
136
137 static int scalar_type_p (struct type *);
138
139 static int discrete_type_p (struct type *);
140
141 static enum ada_renaming_category parse_old_style_renaming (struct type *,
142 const char **,
143 int *,
144 const char **);
145
146 static struct symbol *find_old_style_renaming_symbol (const char *,
147 struct block *);
148
149 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
150 int, int, int *);
151
152 static struct value *evaluate_subexp_type (struct expression *, int *);
153
154 static struct type *ada_find_parallel_type_with_name (struct type *,
155 const char *);
156
157 static int is_dynamic_field (struct type *, int);
158
159 static struct type *to_fixed_variant_branch_type (struct type *,
160 const gdb_byte *,
161 CORE_ADDR, struct value *);
162
163 static struct type *to_fixed_array_type (struct type *, struct value *, int);
164
165 static struct type *to_fixed_range_type (struct type *, struct value *);
166
167 static struct type *to_static_fixed_type (struct type *);
168 static struct type *static_unwrap_type (struct type *type);
169
170 static struct value *unwrap_value (struct value *);
171
172 static struct type *constrained_packed_array_type (struct type *, long *);
173
174 static struct type *decode_constrained_packed_array_type (struct type *);
175
176 static long decode_packed_array_bitsize (struct type *);
177
178 static struct value *decode_constrained_packed_array (struct value *);
179
180 static int ada_is_packed_array_type (struct type *);
181
182 static int ada_is_unconstrained_packed_array_type (struct type *);
183
184 static struct value *value_subscript_packed (struct value *, int,
185 struct value **);
186
187 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
188
189 static struct value *coerce_unspec_val_to_type (struct value *,
190 struct type *);
191
192 static struct value *get_var_value (char *, char *);
193
194 static int lesseq_defined_than (struct symbol *, struct symbol *);
195
196 static int equiv_types (struct type *, struct type *);
197
198 static int is_name_suffix (const char *);
199
200 static int advance_wild_match (const char **, const char *, int);
201
202 static int wild_match (const char *, const char *);
203
204 static struct value *ada_coerce_ref (struct value *);
205
206 static LONGEST pos_atr (struct value *);
207
208 static struct value *value_pos_atr (struct type *, struct value *);
209
210 static struct value *value_val_atr (struct type *, struct value *);
211
212 static struct symbol *standard_lookup (const char *, const struct block *,
213 domain_enum);
214
215 static struct value *ada_search_struct_field (char *, struct value *, int,
216 struct type *);
217
218 static struct value *ada_value_primitive_field (struct value *, int, int,
219 struct type *);
220
221 static int find_struct_field (char *, struct type *, int,
222 struct type **, int *, int *, int *, int *);
223
224 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
225 struct value *);
226
227 static int ada_resolve_function (struct ada_symbol_info *, int,
228 struct value **, int, const char *,
229 struct type *);
230
231 static struct value *ada_coerce_to_simple_array (struct value *);
232
233 static int ada_is_direct_array_type (struct type *);
234
235 static void ada_language_arch_info (struct gdbarch *,
236 struct language_arch_info *);
237
238 static void check_size (const struct type *);
239
240 static struct value *ada_index_struct_field (int, struct value *, int,
241 struct type *);
242
243 static struct value *assign_aggregate (struct value *, struct value *,
244 struct expression *, int *, enum noside);
245
246 static void aggregate_assign_from_choices (struct value *, struct value *,
247 struct expression *,
248 int *, LONGEST *, int *,
249 int, LONGEST, LONGEST);
250
251 static void aggregate_assign_positional (struct value *, struct value *,
252 struct expression *,
253 int *, LONGEST *, int *, int,
254 LONGEST, LONGEST);
255
256
257 static void aggregate_assign_others (struct value *, struct value *,
258 struct expression *,
259 int *, LONGEST *, int, LONGEST, LONGEST);
260
261
262 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
263
264
265 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
266 int *, enum noside);
267
268 static void ada_forward_operator_length (struct expression *, int, int *,
269 int *);
270 \f
271
272
273 /* Maximum-sized dynamic type. */
274 static unsigned int varsize_limit;
275
276 /* FIXME: brobecker/2003-09-17: No longer a const because it is
277 returned by a function that does not return a const char *. */
278 static char *ada_completer_word_break_characters =
279 #ifdef VMS
280 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
281 #else
282 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
283 #endif
284
285 /* The name of the symbol to use to get the name of the main subprogram. */
286 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
287 = "__gnat_ada_main_program_name";
288
289 /* Limit on the number of warnings to raise per expression evaluation. */
290 static int warning_limit = 2;
291
292 /* Number of warning messages issued; reset to 0 by cleanups after
293 expression evaluation. */
294 static int warnings_issued = 0;
295
296 static const char *known_runtime_file_name_patterns[] = {
297 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
298 };
299
300 static const char *known_auxiliary_function_name_patterns[] = {
301 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
302 };
303
304 /* Space for allocating results of ada_lookup_symbol_list. */
305 static struct obstack symbol_list_obstack;
306
307 /* Inferior-specific data. */
308
309 /* Per-inferior data for this module. */
310
311 struct ada_inferior_data
312 {
313 /* The ada__tags__type_specific_data type, which is used when decoding
314 tagged types. With older versions of GNAT, this type was directly
315 accessible through a component ("tsd") in the object tag. But this
316 is no longer the case, so we cache it for each inferior. */
317 struct type *tsd_type;
318 };
319
320 /* Our key to this module's inferior data. */
321 static const struct inferior_data *ada_inferior_data;
322
323 /* A cleanup routine for our inferior data. */
324 static void
325 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
326 {
327 struct ada_inferior_data *data;
328
329 data = inferior_data (inf, ada_inferior_data);
330 if (data != NULL)
331 xfree (data);
332 }
333
334 /* Return our inferior data for the given inferior (INF).
335
336 This function always returns a valid pointer to an allocated
337 ada_inferior_data structure. If INF's inferior data has not
338 been previously set, this functions creates a new one with all
339 fields set to zero, sets INF's inferior to it, and then returns
340 a pointer to that newly allocated ada_inferior_data. */
341
342 static struct ada_inferior_data *
343 get_ada_inferior_data (struct inferior *inf)
344 {
345 struct ada_inferior_data *data;
346
347 data = inferior_data (inf, ada_inferior_data);
348 if (data == NULL)
349 {
350 data = XZALLOC (struct ada_inferior_data);
351 set_inferior_data (inf, ada_inferior_data, data);
352 }
353
354 return data;
355 }
356
357 /* Perform all necessary cleanups regarding our module's inferior data
358 that is required after the inferior INF just exited. */
359
360 static void
361 ada_inferior_exit (struct inferior *inf)
362 {
363 ada_inferior_data_cleanup (inf, NULL);
364 set_inferior_data (inf, ada_inferior_data, NULL);
365 }
366
367 /* Utilities */
368
369 /* Given DECODED_NAME a string holding a symbol name in its
370 decoded form (ie using the Ada dotted notation), returns
371 its unqualified name. */
372
373 static const char *
374 ada_unqualified_name (const char *decoded_name)
375 {
376 const char *result = strrchr (decoded_name, '.');
377
378 if (result != NULL)
379 result++; /* Skip the dot... */
380 else
381 result = decoded_name;
382
383 return result;
384 }
385
386 /* Return a string starting with '<', followed by STR, and '>'.
387 The result is good until the next call. */
388
389 static char *
390 add_angle_brackets (const char *str)
391 {
392 static char *result = NULL;
393
394 xfree (result);
395 result = xstrprintf ("<%s>", str);
396 return result;
397 }
398
399 static char *
400 ada_get_gdb_completer_word_break_characters (void)
401 {
402 return ada_completer_word_break_characters;
403 }
404
405 /* Print an array element index using the Ada syntax. */
406
407 static void
408 ada_print_array_index (struct value *index_value, struct ui_file *stream,
409 const struct value_print_options *options)
410 {
411 LA_VALUE_PRINT (index_value, stream, options);
412 fprintf_filtered (stream, " => ");
413 }
414
415 /* Assuming VECT points to an array of *SIZE objects of size
416 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
417 updating *SIZE as necessary and returning the (new) array. */
418
419 void *
420 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
421 {
422 if (*size < min_size)
423 {
424 *size *= 2;
425 if (*size < min_size)
426 *size = min_size;
427 vect = xrealloc (vect, *size * element_size);
428 }
429 return vect;
430 }
431
432 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
433 suffix of FIELD_NAME beginning "___". */
434
435 static int
436 field_name_match (const char *field_name, const char *target)
437 {
438 int len = strlen (target);
439
440 return
441 (strncmp (field_name, target, len) == 0
442 && (field_name[len] == '\0'
443 || (strncmp (field_name + len, "___", 3) == 0
444 && strcmp (field_name + strlen (field_name) - 6,
445 "___XVN") != 0)));
446 }
447
448
449 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
450 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
451 and return its index. This function also handles fields whose name
452 have ___ suffixes because the compiler sometimes alters their name
453 by adding such a suffix to represent fields with certain constraints.
454 If the field could not be found, return a negative number if
455 MAYBE_MISSING is set. Otherwise raise an error. */
456
457 int
458 ada_get_field_index (const struct type *type, const char *field_name,
459 int maybe_missing)
460 {
461 int fieldno;
462 struct type *struct_type = check_typedef ((struct type *) type);
463
464 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
465 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
466 return fieldno;
467
468 if (!maybe_missing)
469 error (_("Unable to find field %s in struct %s. Aborting"),
470 field_name, TYPE_NAME (struct_type));
471
472 return -1;
473 }
474
475 /* The length of the prefix of NAME prior to any "___" suffix. */
476
477 int
478 ada_name_prefix_len (const char *name)
479 {
480 if (name == NULL)
481 return 0;
482 else
483 {
484 const char *p = strstr (name, "___");
485
486 if (p == NULL)
487 return strlen (name);
488 else
489 return p - name;
490 }
491 }
492
493 /* Return non-zero if SUFFIX is a suffix of STR.
494 Return zero if STR is null. */
495
496 static int
497 is_suffix (const char *str, const char *suffix)
498 {
499 int len1, len2;
500
501 if (str == NULL)
502 return 0;
503 len1 = strlen (str);
504 len2 = strlen (suffix);
505 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
506 }
507
508 /* The contents of value VAL, treated as a value of type TYPE. The
509 result is an lval in memory if VAL is. */
510
511 static struct value *
512 coerce_unspec_val_to_type (struct value *val, struct type *type)
513 {
514 type = ada_check_typedef (type);
515 if (value_type (val) == type)
516 return val;
517 else
518 {
519 struct value *result;
520
521 /* Make sure that the object size is not unreasonable before
522 trying to allocate some memory for it. */
523 check_size (type);
524
525 result = allocate_value (type);
526 set_value_component_location (result, val);
527 set_value_bitsize (result, value_bitsize (val));
528 set_value_bitpos (result, value_bitpos (val));
529 set_value_address (result, value_address (val));
530 if (value_lazy (val)
531 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
532 set_value_lazy (result, 1);
533 else
534 memcpy (value_contents_raw (result), value_contents (val),
535 TYPE_LENGTH (type));
536 return result;
537 }
538 }
539
540 static const gdb_byte *
541 cond_offset_host (const gdb_byte *valaddr, long offset)
542 {
543 if (valaddr == NULL)
544 return NULL;
545 else
546 return valaddr + offset;
547 }
548
549 static CORE_ADDR
550 cond_offset_target (CORE_ADDR address, long offset)
551 {
552 if (address == 0)
553 return 0;
554 else
555 return address + offset;
556 }
557
558 /* Issue a warning (as for the definition of warning in utils.c, but
559 with exactly one argument rather than ...), unless the limit on the
560 number of warnings has passed during the evaluation of the current
561 expression. */
562
563 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
564 provided by "complaint". */
565 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
566
567 static void
568 lim_warning (const char *format, ...)
569 {
570 va_list args;
571
572 va_start (args, format);
573 warnings_issued += 1;
574 if (warnings_issued <= warning_limit)
575 vwarning (format, args);
576
577 va_end (args);
578 }
579
580 /* Issue an error if the size of an object of type T is unreasonable,
581 i.e. if it would be a bad idea to allocate a value of this type in
582 GDB. */
583
584 static void
585 check_size (const struct type *type)
586 {
587 if (TYPE_LENGTH (type) > varsize_limit)
588 error (_("object size is larger than varsize-limit"));
589 }
590
591 /* Maximum value of a SIZE-byte signed integer type. */
592 static LONGEST
593 max_of_size (int size)
594 {
595 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
596
597 return top_bit | (top_bit - 1);
598 }
599
600 /* Minimum value of a SIZE-byte signed integer type. */
601 static LONGEST
602 min_of_size (int size)
603 {
604 return -max_of_size (size) - 1;
605 }
606
607 /* Maximum value of a SIZE-byte unsigned integer type. */
608 static ULONGEST
609 umax_of_size (int size)
610 {
611 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
612
613 return top_bit | (top_bit - 1);
614 }
615
616 /* Maximum value of integral type T, as a signed quantity. */
617 static LONGEST
618 max_of_type (struct type *t)
619 {
620 if (TYPE_UNSIGNED (t))
621 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
622 else
623 return max_of_size (TYPE_LENGTH (t));
624 }
625
626 /* Minimum value of integral type T, as a signed quantity. */
627 static LONGEST
628 min_of_type (struct type *t)
629 {
630 if (TYPE_UNSIGNED (t))
631 return 0;
632 else
633 return min_of_size (TYPE_LENGTH (t));
634 }
635
636 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
637 LONGEST
638 ada_discrete_type_high_bound (struct type *type)
639 {
640 switch (TYPE_CODE (type))
641 {
642 case TYPE_CODE_RANGE:
643 return TYPE_HIGH_BOUND (type);
644 case TYPE_CODE_ENUM:
645 return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1);
646 case TYPE_CODE_BOOL:
647 return 1;
648 case TYPE_CODE_CHAR:
649 case TYPE_CODE_INT:
650 return max_of_type (type);
651 default:
652 error (_("Unexpected type in ada_discrete_type_high_bound."));
653 }
654 }
655
656 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
657 LONGEST
658 ada_discrete_type_low_bound (struct type *type)
659 {
660 switch (TYPE_CODE (type))
661 {
662 case TYPE_CODE_RANGE:
663 return TYPE_LOW_BOUND (type);
664 case TYPE_CODE_ENUM:
665 return TYPE_FIELD_BITPOS (type, 0);
666 case TYPE_CODE_BOOL:
667 return 0;
668 case TYPE_CODE_CHAR:
669 case TYPE_CODE_INT:
670 return min_of_type (type);
671 default:
672 error (_("Unexpected type in ada_discrete_type_low_bound."));
673 }
674 }
675
676 /* The identity on non-range types. For range types, the underlying
677 non-range scalar type. */
678
679 static struct type *
680 base_type (struct type *type)
681 {
682 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
683 {
684 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
685 return type;
686 type = TYPE_TARGET_TYPE (type);
687 }
688 return type;
689 }
690 \f
691
692 /* Language Selection */
693
694 /* If the main program is in Ada, return language_ada, otherwise return LANG
695 (the main program is in Ada iif the adainit symbol is found). */
696
697 enum language
698 ada_update_initial_language (enum language lang)
699 {
700 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
701 (struct objfile *) NULL) != NULL)
702 return language_ada;
703
704 return lang;
705 }
706
707 /* If the main procedure is written in Ada, then return its name.
708 The result is good until the next call. Return NULL if the main
709 procedure doesn't appear to be in Ada. */
710
711 char *
712 ada_main_name (void)
713 {
714 struct minimal_symbol *msym;
715 static char *main_program_name = NULL;
716
717 /* For Ada, the name of the main procedure is stored in a specific
718 string constant, generated by the binder. Look for that symbol,
719 extract its address, and then read that string. If we didn't find
720 that string, then most probably the main procedure is not written
721 in Ada. */
722 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
723
724 if (msym != NULL)
725 {
726 CORE_ADDR main_program_name_addr;
727 int err_code;
728
729 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
730 if (main_program_name_addr == 0)
731 error (_("Invalid address for Ada main program name."));
732
733 xfree (main_program_name);
734 target_read_string (main_program_name_addr, &main_program_name,
735 1024, &err_code);
736
737 if (err_code != 0)
738 return NULL;
739 return main_program_name;
740 }
741
742 /* The main procedure doesn't seem to be in Ada. */
743 return NULL;
744 }
745 \f
746 /* Symbols */
747
748 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
749 of NULLs. */
750
751 const struct ada_opname_map ada_opname_table[] = {
752 {"Oadd", "\"+\"", BINOP_ADD},
753 {"Osubtract", "\"-\"", BINOP_SUB},
754 {"Omultiply", "\"*\"", BINOP_MUL},
755 {"Odivide", "\"/\"", BINOP_DIV},
756 {"Omod", "\"mod\"", BINOP_MOD},
757 {"Orem", "\"rem\"", BINOP_REM},
758 {"Oexpon", "\"**\"", BINOP_EXP},
759 {"Olt", "\"<\"", BINOP_LESS},
760 {"Ole", "\"<=\"", BINOP_LEQ},
761 {"Ogt", "\">\"", BINOP_GTR},
762 {"Oge", "\">=\"", BINOP_GEQ},
763 {"Oeq", "\"=\"", BINOP_EQUAL},
764 {"One", "\"/=\"", BINOP_NOTEQUAL},
765 {"Oand", "\"and\"", BINOP_BITWISE_AND},
766 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
767 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
768 {"Oconcat", "\"&\"", BINOP_CONCAT},
769 {"Oabs", "\"abs\"", UNOP_ABS},
770 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
771 {"Oadd", "\"+\"", UNOP_PLUS},
772 {"Osubtract", "\"-\"", UNOP_NEG},
773 {NULL, NULL}
774 };
775
776 /* The "encoded" form of DECODED, according to GNAT conventions.
777 The result is valid until the next call to ada_encode. */
778
779 char *
780 ada_encode (const char *decoded)
781 {
782 static char *encoding_buffer = NULL;
783 static size_t encoding_buffer_size = 0;
784 const char *p;
785 int k;
786
787 if (decoded == NULL)
788 return NULL;
789
790 GROW_VECT (encoding_buffer, encoding_buffer_size,
791 2 * strlen (decoded) + 10);
792
793 k = 0;
794 for (p = decoded; *p != '\0'; p += 1)
795 {
796 if (*p == '.')
797 {
798 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
799 k += 2;
800 }
801 else if (*p == '"')
802 {
803 const struct ada_opname_map *mapping;
804
805 for (mapping = ada_opname_table;
806 mapping->encoded != NULL
807 && strncmp (mapping->decoded, p,
808 strlen (mapping->decoded)) != 0; mapping += 1)
809 ;
810 if (mapping->encoded == NULL)
811 error (_("invalid Ada operator name: %s"), p);
812 strcpy (encoding_buffer + k, mapping->encoded);
813 k += strlen (mapping->encoded);
814 break;
815 }
816 else
817 {
818 encoding_buffer[k] = *p;
819 k += 1;
820 }
821 }
822
823 encoding_buffer[k] = '\0';
824 return encoding_buffer;
825 }
826
827 /* Return NAME folded to lower case, or, if surrounded by single
828 quotes, unfolded, but with the quotes stripped away. Result good
829 to next call. */
830
831 char *
832 ada_fold_name (const char *name)
833 {
834 static char *fold_buffer = NULL;
835 static size_t fold_buffer_size = 0;
836
837 int len = strlen (name);
838 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
839
840 if (name[0] == '\'')
841 {
842 strncpy (fold_buffer, name + 1, len - 2);
843 fold_buffer[len - 2] = '\000';
844 }
845 else
846 {
847 int i;
848
849 for (i = 0; i <= len; i += 1)
850 fold_buffer[i] = tolower (name[i]);
851 }
852
853 return fold_buffer;
854 }
855
856 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
857
858 static int
859 is_lower_alphanum (const char c)
860 {
861 return (isdigit (c) || (isalpha (c) && islower (c)));
862 }
863
864 /* Remove either of these suffixes:
865 . .{DIGIT}+
866 . ${DIGIT}+
867 . ___{DIGIT}+
868 . __{DIGIT}+.
869 These are suffixes introduced by the compiler for entities such as
870 nested subprogram for instance, in order to avoid name clashes.
871 They do not serve any purpose for the debugger. */
872
873 static void
874 ada_remove_trailing_digits (const char *encoded, int *len)
875 {
876 if (*len > 1 && isdigit (encoded[*len - 1]))
877 {
878 int i = *len - 2;
879
880 while (i > 0 && isdigit (encoded[i]))
881 i--;
882 if (i >= 0 && encoded[i] == '.')
883 *len = i;
884 else if (i >= 0 && encoded[i] == '$')
885 *len = i;
886 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
887 *len = i - 2;
888 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
889 *len = i - 1;
890 }
891 }
892
893 /* Remove the suffix introduced by the compiler for protected object
894 subprograms. */
895
896 static void
897 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
898 {
899 /* Remove trailing N. */
900
901 /* Protected entry subprograms are broken into two
902 separate subprograms: The first one is unprotected, and has
903 a 'N' suffix; the second is the protected version, and has
904 the 'P' suffix. The second calls the first one after handling
905 the protection. Since the P subprograms are internally generated,
906 we leave these names undecoded, giving the user a clue that this
907 entity is internal. */
908
909 if (*len > 1
910 && encoded[*len - 1] == 'N'
911 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
912 *len = *len - 1;
913 }
914
915 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
916
917 static void
918 ada_remove_Xbn_suffix (const char *encoded, int *len)
919 {
920 int i = *len - 1;
921
922 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
923 i--;
924
925 if (encoded[i] != 'X')
926 return;
927
928 if (i == 0)
929 return;
930
931 if (isalnum (encoded[i-1]))
932 *len = i;
933 }
934
935 /* If ENCODED follows the GNAT entity encoding conventions, then return
936 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
937 replaced by ENCODED.
938
939 The resulting string is valid until the next call of ada_decode.
940 If the string is unchanged by decoding, the original string pointer
941 is returned. */
942
943 const char *
944 ada_decode (const char *encoded)
945 {
946 int i, j;
947 int len0;
948 const char *p;
949 char *decoded;
950 int at_start_name;
951 static char *decoding_buffer = NULL;
952 static size_t decoding_buffer_size = 0;
953
954 /* The name of the Ada main procedure starts with "_ada_".
955 This prefix is not part of the decoded name, so skip this part
956 if we see this prefix. */
957 if (strncmp (encoded, "_ada_", 5) == 0)
958 encoded += 5;
959
960 /* If the name starts with '_', then it is not a properly encoded
961 name, so do not attempt to decode it. Similarly, if the name
962 starts with '<', the name should not be decoded. */
963 if (encoded[0] == '_' || encoded[0] == '<')
964 goto Suppress;
965
966 len0 = strlen (encoded);
967
968 ada_remove_trailing_digits (encoded, &len0);
969 ada_remove_po_subprogram_suffix (encoded, &len0);
970
971 /* Remove the ___X.* suffix if present. Do not forget to verify that
972 the suffix is located before the current "end" of ENCODED. We want
973 to avoid re-matching parts of ENCODED that have previously been
974 marked as discarded (by decrementing LEN0). */
975 p = strstr (encoded, "___");
976 if (p != NULL && p - encoded < len0 - 3)
977 {
978 if (p[3] == 'X')
979 len0 = p - encoded;
980 else
981 goto Suppress;
982 }
983
984 /* Remove any trailing TKB suffix. It tells us that this symbol
985 is for the body of a task, but that information does not actually
986 appear in the decoded name. */
987
988 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
989 len0 -= 3;
990
991 /* Remove any trailing TB suffix. The TB suffix is slightly different
992 from the TKB suffix because it is used for non-anonymous task
993 bodies. */
994
995 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
996 len0 -= 2;
997
998 /* Remove trailing "B" suffixes. */
999 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1000
1001 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
1002 len0 -= 1;
1003
1004 /* Make decoded big enough for possible expansion by operator name. */
1005
1006 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1007 decoded = decoding_buffer;
1008
1009 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1010
1011 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1012 {
1013 i = len0 - 2;
1014 while ((i >= 0 && isdigit (encoded[i]))
1015 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1016 i -= 1;
1017 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1018 len0 = i - 1;
1019 else if (encoded[i] == '$')
1020 len0 = i;
1021 }
1022
1023 /* The first few characters that are not alphabetic are not part
1024 of any encoding we use, so we can copy them over verbatim. */
1025
1026 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1027 decoded[j] = encoded[i];
1028
1029 at_start_name = 1;
1030 while (i < len0)
1031 {
1032 /* Is this a symbol function? */
1033 if (at_start_name && encoded[i] == 'O')
1034 {
1035 int k;
1036
1037 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1038 {
1039 int op_len = strlen (ada_opname_table[k].encoded);
1040 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1041 op_len - 1) == 0)
1042 && !isalnum (encoded[i + op_len]))
1043 {
1044 strcpy (decoded + j, ada_opname_table[k].decoded);
1045 at_start_name = 0;
1046 i += op_len;
1047 j += strlen (ada_opname_table[k].decoded);
1048 break;
1049 }
1050 }
1051 if (ada_opname_table[k].encoded != NULL)
1052 continue;
1053 }
1054 at_start_name = 0;
1055
1056 /* Replace "TK__" with "__", which will eventually be translated
1057 into "." (just below). */
1058
1059 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1060 i += 2;
1061
1062 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1063 be translated into "." (just below). These are internal names
1064 generated for anonymous blocks inside which our symbol is nested. */
1065
1066 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1067 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1068 && isdigit (encoded [i+4]))
1069 {
1070 int k = i + 5;
1071
1072 while (k < len0 && isdigit (encoded[k]))
1073 k++; /* Skip any extra digit. */
1074
1075 /* Double-check that the "__B_{DIGITS}+" sequence we found
1076 is indeed followed by "__". */
1077 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1078 i = k;
1079 }
1080
1081 /* Remove _E{DIGITS}+[sb] */
1082
1083 /* Just as for protected object subprograms, there are 2 categories
1084 of subprograms created by the compiler for each entry. The first
1085 one implements the actual entry code, and has a suffix following
1086 the convention above; the second one implements the barrier and
1087 uses the same convention as above, except that the 'E' is replaced
1088 by a 'B'.
1089
1090 Just as above, we do not decode the name of barrier functions
1091 to give the user a clue that the code he is debugging has been
1092 internally generated. */
1093
1094 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1095 && isdigit (encoded[i+2]))
1096 {
1097 int k = i + 3;
1098
1099 while (k < len0 && isdigit (encoded[k]))
1100 k++;
1101
1102 if (k < len0
1103 && (encoded[k] == 'b' || encoded[k] == 's'))
1104 {
1105 k++;
1106 /* Just as an extra precaution, make sure that if this
1107 suffix is followed by anything else, it is a '_'.
1108 Otherwise, we matched this sequence by accident. */
1109 if (k == len0
1110 || (k < len0 && encoded[k] == '_'))
1111 i = k;
1112 }
1113 }
1114
1115 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1116 the GNAT front-end in protected object subprograms. */
1117
1118 if (i < len0 + 3
1119 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1120 {
1121 /* Backtrack a bit up until we reach either the begining of
1122 the encoded name, or "__". Make sure that we only find
1123 digits or lowercase characters. */
1124 const char *ptr = encoded + i - 1;
1125
1126 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1127 ptr--;
1128 if (ptr < encoded
1129 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1130 i++;
1131 }
1132
1133 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1134 {
1135 /* This is a X[bn]* sequence not separated from the previous
1136 part of the name with a non-alpha-numeric character (in other
1137 words, immediately following an alpha-numeric character), then
1138 verify that it is placed at the end of the encoded name. If
1139 not, then the encoding is not valid and we should abort the
1140 decoding. Otherwise, just skip it, it is used in body-nested
1141 package names. */
1142 do
1143 i += 1;
1144 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1145 if (i < len0)
1146 goto Suppress;
1147 }
1148 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1149 {
1150 /* Replace '__' by '.'. */
1151 decoded[j] = '.';
1152 at_start_name = 1;
1153 i += 2;
1154 j += 1;
1155 }
1156 else
1157 {
1158 /* It's a character part of the decoded name, so just copy it
1159 over. */
1160 decoded[j] = encoded[i];
1161 i += 1;
1162 j += 1;
1163 }
1164 }
1165 decoded[j] = '\000';
1166
1167 /* Decoded names should never contain any uppercase character.
1168 Double-check this, and abort the decoding if we find one. */
1169
1170 for (i = 0; decoded[i] != '\0'; i += 1)
1171 if (isupper (decoded[i]) || decoded[i] == ' ')
1172 goto Suppress;
1173
1174 if (strcmp (decoded, encoded) == 0)
1175 return encoded;
1176 else
1177 return decoded;
1178
1179 Suppress:
1180 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1181 decoded = decoding_buffer;
1182 if (encoded[0] == '<')
1183 strcpy (decoded, encoded);
1184 else
1185 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1186 return decoded;
1187
1188 }
1189
1190 /* Table for keeping permanent unique copies of decoded names. Once
1191 allocated, names in this table are never released. While this is a
1192 storage leak, it should not be significant unless there are massive
1193 changes in the set of decoded names in successive versions of a
1194 symbol table loaded during a single session. */
1195 static struct htab *decoded_names_store;
1196
1197 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1198 in the language-specific part of GSYMBOL, if it has not been
1199 previously computed. Tries to save the decoded name in the same
1200 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1201 in any case, the decoded symbol has a lifetime at least that of
1202 GSYMBOL).
1203 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1204 const, but nevertheless modified to a semantically equivalent form
1205 when a decoded name is cached in it.
1206 */
1207
1208 char *
1209 ada_decode_symbol (const struct general_symbol_info *gsymbol)
1210 {
1211 char **resultp =
1212 (char **) &gsymbol->language_specific.mangled_lang.demangled_name;
1213
1214 if (*resultp == NULL)
1215 {
1216 const char *decoded = ada_decode (gsymbol->name);
1217
1218 if (gsymbol->obj_section != NULL)
1219 {
1220 struct objfile *objf = gsymbol->obj_section->objfile;
1221
1222 *resultp = obsavestring (decoded, strlen (decoded),
1223 &objf->objfile_obstack);
1224 }
1225 /* Sometimes, we can't find a corresponding objfile, in which
1226 case, we put the result on the heap. Since we only decode
1227 when needed, we hope this usually does not cause a
1228 significant memory leak (FIXME). */
1229 if (*resultp == NULL)
1230 {
1231 char **slot = (char **) htab_find_slot (decoded_names_store,
1232 decoded, INSERT);
1233
1234 if (*slot == NULL)
1235 *slot = xstrdup (decoded);
1236 *resultp = *slot;
1237 }
1238 }
1239
1240 return *resultp;
1241 }
1242
1243 static char *
1244 ada_la_decode (const char *encoded, int options)
1245 {
1246 return xstrdup (ada_decode (encoded));
1247 }
1248
1249 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1250 suffixes that encode debugging information or leading _ada_ on
1251 SYM_NAME (see is_name_suffix commentary for the debugging
1252 information that is ignored). If WILD, then NAME need only match a
1253 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1254 either argument is NULL. */
1255
1256 static int
1257 match_name (const char *sym_name, const char *name, int wild)
1258 {
1259 if (sym_name == NULL || name == NULL)
1260 return 0;
1261 else if (wild)
1262 return wild_match (sym_name, name) == 0;
1263 else
1264 {
1265 int len_name = strlen (name);
1266
1267 return (strncmp (sym_name, name, len_name) == 0
1268 && is_name_suffix (sym_name + len_name))
1269 || (strncmp (sym_name, "_ada_", 5) == 0
1270 && strncmp (sym_name + 5, name, len_name) == 0
1271 && is_name_suffix (sym_name + len_name + 5));
1272 }
1273 }
1274 \f
1275
1276 /* Arrays */
1277
1278 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1279 generated by the GNAT compiler to describe the index type used
1280 for each dimension of an array, check whether it follows the latest
1281 known encoding. If not, fix it up to conform to the latest encoding.
1282 Otherwise, do nothing. This function also does nothing if
1283 INDEX_DESC_TYPE is NULL.
1284
1285 The GNAT encoding used to describle the array index type evolved a bit.
1286 Initially, the information would be provided through the name of each
1287 field of the structure type only, while the type of these fields was
1288 described as unspecified and irrelevant. The debugger was then expected
1289 to perform a global type lookup using the name of that field in order
1290 to get access to the full index type description. Because these global
1291 lookups can be very expensive, the encoding was later enhanced to make
1292 the global lookup unnecessary by defining the field type as being
1293 the full index type description.
1294
1295 The purpose of this routine is to allow us to support older versions
1296 of the compiler by detecting the use of the older encoding, and by
1297 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1298 we essentially replace each field's meaningless type by the associated
1299 index subtype). */
1300
1301 void
1302 ada_fixup_array_indexes_type (struct type *index_desc_type)
1303 {
1304 int i;
1305
1306 if (index_desc_type == NULL)
1307 return;
1308 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1309
1310 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1311 to check one field only, no need to check them all). If not, return
1312 now.
1313
1314 If our INDEX_DESC_TYPE was generated using the older encoding,
1315 the field type should be a meaningless integer type whose name
1316 is not equal to the field name. */
1317 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1318 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1319 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1320 return;
1321
1322 /* Fixup each field of INDEX_DESC_TYPE. */
1323 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1324 {
1325 char *name = TYPE_FIELD_NAME (index_desc_type, i);
1326 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1327
1328 if (raw_type)
1329 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1330 }
1331 }
1332
1333 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1334
1335 static char *bound_name[] = {
1336 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1337 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1338 };
1339
1340 /* Maximum number of array dimensions we are prepared to handle. */
1341
1342 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1343
1344
1345 /* The desc_* routines return primitive portions of array descriptors
1346 (fat pointers). */
1347
1348 /* The descriptor or array type, if any, indicated by TYPE; removes
1349 level of indirection, if needed. */
1350
1351 static struct type *
1352 desc_base_type (struct type *type)
1353 {
1354 if (type == NULL)
1355 return NULL;
1356 type = ada_check_typedef (type);
1357 if (type != NULL
1358 && (TYPE_CODE (type) == TYPE_CODE_PTR
1359 || TYPE_CODE (type) == TYPE_CODE_REF))
1360 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1361 else
1362 return type;
1363 }
1364
1365 /* True iff TYPE indicates a "thin" array pointer type. */
1366
1367 static int
1368 is_thin_pntr (struct type *type)
1369 {
1370 return
1371 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1372 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1373 }
1374
1375 /* The descriptor type for thin pointer type TYPE. */
1376
1377 static struct type *
1378 thin_descriptor_type (struct type *type)
1379 {
1380 struct type *base_type = desc_base_type (type);
1381
1382 if (base_type == NULL)
1383 return NULL;
1384 if (is_suffix (ada_type_name (base_type), "___XVE"))
1385 return base_type;
1386 else
1387 {
1388 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1389
1390 if (alt_type == NULL)
1391 return base_type;
1392 else
1393 return alt_type;
1394 }
1395 }
1396
1397 /* A pointer to the array data for thin-pointer value VAL. */
1398
1399 static struct value *
1400 thin_data_pntr (struct value *val)
1401 {
1402 struct type *type = value_type (val);
1403 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1404
1405 data_type = lookup_pointer_type (data_type);
1406
1407 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1408 return value_cast (data_type, value_copy (val));
1409 else
1410 return value_from_longest (data_type, value_address (val));
1411 }
1412
1413 /* True iff TYPE indicates a "thick" array pointer type. */
1414
1415 static int
1416 is_thick_pntr (struct type *type)
1417 {
1418 type = desc_base_type (type);
1419 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1420 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1421 }
1422
1423 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1424 pointer to one, the type of its bounds data; otherwise, NULL. */
1425
1426 static struct type *
1427 desc_bounds_type (struct type *type)
1428 {
1429 struct type *r;
1430
1431 type = desc_base_type (type);
1432
1433 if (type == NULL)
1434 return NULL;
1435 else if (is_thin_pntr (type))
1436 {
1437 type = thin_descriptor_type (type);
1438 if (type == NULL)
1439 return NULL;
1440 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1441 if (r != NULL)
1442 return ada_check_typedef (r);
1443 }
1444 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1445 {
1446 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1447 if (r != NULL)
1448 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1449 }
1450 return NULL;
1451 }
1452
1453 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1454 one, a pointer to its bounds data. Otherwise NULL. */
1455
1456 static struct value *
1457 desc_bounds (struct value *arr)
1458 {
1459 struct type *type = ada_check_typedef (value_type (arr));
1460
1461 if (is_thin_pntr (type))
1462 {
1463 struct type *bounds_type =
1464 desc_bounds_type (thin_descriptor_type (type));
1465 LONGEST addr;
1466
1467 if (bounds_type == NULL)
1468 error (_("Bad GNAT array descriptor"));
1469
1470 /* NOTE: The following calculation is not really kosher, but
1471 since desc_type is an XVE-encoded type (and shouldn't be),
1472 the correct calculation is a real pain. FIXME (and fix GCC). */
1473 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1474 addr = value_as_long (arr);
1475 else
1476 addr = value_address (arr);
1477
1478 return
1479 value_from_longest (lookup_pointer_type (bounds_type),
1480 addr - TYPE_LENGTH (bounds_type));
1481 }
1482
1483 else if (is_thick_pntr (type))
1484 {
1485 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1486 _("Bad GNAT array descriptor"));
1487 struct type *p_bounds_type = value_type (p_bounds);
1488
1489 if (p_bounds_type
1490 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1491 {
1492 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1493
1494 if (TYPE_STUB (target_type))
1495 p_bounds = value_cast (lookup_pointer_type
1496 (ada_check_typedef (target_type)),
1497 p_bounds);
1498 }
1499 else
1500 error (_("Bad GNAT array descriptor"));
1501
1502 return p_bounds;
1503 }
1504 else
1505 return NULL;
1506 }
1507
1508 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1509 position of the field containing the address of the bounds data. */
1510
1511 static int
1512 fat_pntr_bounds_bitpos (struct type *type)
1513 {
1514 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1515 }
1516
1517 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1518 size of the field containing the address of the bounds data. */
1519
1520 static int
1521 fat_pntr_bounds_bitsize (struct type *type)
1522 {
1523 type = desc_base_type (type);
1524
1525 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1526 return TYPE_FIELD_BITSIZE (type, 1);
1527 else
1528 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1529 }
1530
1531 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1532 pointer to one, the type of its array data (a array-with-no-bounds type);
1533 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1534 data. */
1535
1536 static struct type *
1537 desc_data_target_type (struct type *type)
1538 {
1539 type = desc_base_type (type);
1540
1541 /* NOTE: The following is bogus; see comment in desc_bounds. */
1542 if (is_thin_pntr (type))
1543 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1544 else if (is_thick_pntr (type))
1545 {
1546 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1547
1548 if (data_type
1549 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1550 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1551 }
1552
1553 return NULL;
1554 }
1555
1556 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1557 its array data. */
1558
1559 static struct value *
1560 desc_data (struct value *arr)
1561 {
1562 struct type *type = value_type (arr);
1563
1564 if (is_thin_pntr (type))
1565 return thin_data_pntr (arr);
1566 else if (is_thick_pntr (type))
1567 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1568 _("Bad GNAT array descriptor"));
1569 else
1570 return NULL;
1571 }
1572
1573
1574 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1575 position of the field containing the address of the data. */
1576
1577 static int
1578 fat_pntr_data_bitpos (struct type *type)
1579 {
1580 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1581 }
1582
1583 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1584 size of the field containing the address of the data. */
1585
1586 static int
1587 fat_pntr_data_bitsize (struct type *type)
1588 {
1589 type = desc_base_type (type);
1590
1591 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1592 return TYPE_FIELD_BITSIZE (type, 0);
1593 else
1594 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1595 }
1596
1597 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1598 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1599 bound, if WHICH is 1. The first bound is I=1. */
1600
1601 static struct value *
1602 desc_one_bound (struct value *bounds, int i, int which)
1603 {
1604 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1605 _("Bad GNAT array descriptor bounds"));
1606 }
1607
1608 /* If BOUNDS is an array-bounds structure type, return the bit position
1609 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1610 bound, if WHICH is 1. The first bound is I=1. */
1611
1612 static int
1613 desc_bound_bitpos (struct type *type, int i, int which)
1614 {
1615 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1616 }
1617
1618 /* If BOUNDS is an array-bounds structure type, return the bit field size
1619 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1620 bound, if WHICH is 1. The first bound is I=1. */
1621
1622 static int
1623 desc_bound_bitsize (struct type *type, int i, int which)
1624 {
1625 type = desc_base_type (type);
1626
1627 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1628 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1629 else
1630 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1631 }
1632
1633 /* If TYPE is the type of an array-bounds structure, the type of its
1634 Ith bound (numbering from 1). Otherwise, NULL. */
1635
1636 static struct type *
1637 desc_index_type (struct type *type, int i)
1638 {
1639 type = desc_base_type (type);
1640
1641 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1642 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1643 else
1644 return NULL;
1645 }
1646
1647 /* The number of index positions in the array-bounds type TYPE.
1648 Return 0 if TYPE is NULL. */
1649
1650 static int
1651 desc_arity (struct type *type)
1652 {
1653 type = desc_base_type (type);
1654
1655 if (type != NULL)
1656 return TYPE_NFIELDS (type) / 2;
1657 return 0;
1658 }
1659
1660 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1661 an array descriptor type (representing an unconstrained array
1662 type). */
1663
1664 static int
1665 ada_is_direct_array_type (struct type *type)
1666 {
1667 if (type == NULL)
1668 return 0;
1669 type = ada_check_typedef (type);
1670 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1671 || ada_is_array_descriptor_type (type));
1672 }
1673
1674 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1675 * to one. */
1676
1677 static int
1678 ada_is_array_type (struct type *type)
1679 {
1680 while (type != NULL
1681 && (TYPE_CODE (type) == TYPE_CODE_PTR
1682 || TYPE_CODE (type) == TYPE_CODE_REF))
1683 type = TYPE_TARGET_TYPE (type);
1684 return ada_is_direct_array_type (type);
1685 }
1686
1687 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1688
1689 int
1690 ada_is_simple_array_type (struct type *type)
1691 {
1692 if (type == NULL)
1693 return 0;
1694 type = ada_check_typedef (type);
1695 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1696 || (TYPE_CODE (type) == TYPE_CODE_PTR
1697 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
1698 }
1699
1700 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1701
1702 int
1703 ada_is_array_descriptor_type (struct type *type)
1704 {
1705 struct type *data_type = desc_data_target_type (type);
1706
1707 if (type == NULL)
1708 return 0;
1709 type = ada_check_typedef (type);
1710 return (data_type != NULL
1711 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1712 && desc_arity (desc_bounds_type (type)) > 0);
1713 }
1714
1715 /* Non-zero iff type is a partially mal-formed GNAT array
1716 descriptor. FIXME: This is to compensate for some problems with
1717 debugging output from GNAT. Re-examine periodically to see if it
1718 is still needed. */
1719
1720 int
1721 ada_is_bogus_array_descriptor (struct type *type)
1722 {
1723 return
1724 type != NULL
1725 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1726 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1727 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1728 && !ada_is_array_descriptor_type (type);
1729 }
1730
1731
1732 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1733 (fat pointer) returns the type of the array data described---specifically,
1734 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1735 in from the descriptor; otherwise, they are left unspecified. If
1736 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1737 returns NULL. The result is simply the type of ARR if ARR is not
1738 a descriptor. */
1739 struct type *
1740 ada_type_of_array (struct value *arr, int bounds)
1741 {
1742 if (ada_is_constrained_packed_array_type (value_type (arr)))
1743 return decode_constrained_packed_array_type (value_type (arr));
1744
1745 if (!ada_is_array_descriptor_type (value_type (arr)))
1746 return value_type (arr);
1747
1748 if (!bounds)
1749 {
1750 struct type *array_type =
1751 ada_check_typedef (desc_data_target_type (value_type (arr)));
1752
1753 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1754 TYPE_FIELD_BITSIZE (array_type, 0) =
1755 decode_packed_array_bitsize (value_type (arr));
1756
1757 return array_type;
1758 }
1759 else
1760 {
1761 struct type *elt_type;
1762 int arity;
1763 struct value *descriptor;
1764
1765 elt_type = ada_array_element_type (value_type (arr), -1);
1766 arity = ada_array_arity (value_type (arr));
1767
1768 if (elt_type == NULL || arity == 0)
1769 return ada_check_typedef (value_type (arr));
1770
1771 descriptor = desc_bounds (arr);
1772 if (value_as_long (descriptor) == 0)
1773 return NULL;
1774 while (arity > 0)
1775 {
1776 struct type *range_type = alloc_type_copy (value_type (arr));
1777 struct type *array_type = alloc_type_copy (value_type (arr));
1778 struct value *low = desc_one_bound (descriptor, arity, 0);
1779 struct value *high = desc_one_bound (descriptor, arity, 1);
1780
1781 arity -= 1;
1782 create_range_type (range_type, value_type (low),
1783 longest_to_int (value_as_long (low)),
1784 longest_to_int (value_as_long (high)));
1785 elt_type = create_array_type (array_type, elt_type, range_type);
1786
1787 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1788 TYPE_FIELD_BITSIZE (elt_type, 0) =
1789 decode_packed_array_bitsize (value_type (arr));
1790 }
1791
1792 return lookup_pointer_type (elt_type);
1793 }
1794 }
1795
1796 /* If ARR does not represent an array, returns ARR unchanged.
1797 Otherwise, returns either a standard GDB array with bounds set
1798 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1799 GDB array. Returns NULL if ARR is a null fat pointer. */
1800
1801 struct value *
1802 ada_coerce_to_simple_array_ptr (struct value *arr)
1803 {
1804 if (ada_is_array_descriptor_type (value_type (arr)))
1805 {
1806 struct type *arrType = ada_type_of_array (arr, 1);
1807
1808 if (arrType == NULL)
1809 return NULL;
1810 return value_cast (arrType, value_copy (desc_data (arr)));
1811 }
1812 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1813 return decode_constrained_packed_array (arr);
1814 else
1815 return arr;
1816 }
1817
1818 /* If ARR does not represent an array, returns ARR unchanged.
1819 Otherwise, returns a standard GDB array describing ARR (which may
1820 be ARR itself if it already is in the proper form). */
1821
1822 static struct value *
1823 ada_coerce_to_simple_array (struct value *arr)
1824 {
1825 if (ada_is_array_descriptor_type (value_type (arr)))
1826 {
1827 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1828
1829 if (arrVal == NULL)
1830 error (_("Bounds unavailable for null array pointer."));
1831 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1832 return value_ind (arrVal);
1833 }
1834 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1835 return decode_constrained_packed_array (arr);
1836 else
1837 return arr;
1838 }
1839
1840 /* If TYPE represents a GNAT array type, return it translated to an
1841 ordinary GDB array type (possibly with BITSIZE fields indicating
1842 packing). For other types, is the identity. */
1843
1844 struct type *
1845 ada_coerce_to_simple_array_type (struct type *type)
1846 {
1847 if (ada_is_constrained_packed_array_type (type))
1848 return decode_constrained_packed_array_type (type);
1849
1850 if (ada_is_array_descriptor_type (type))
1851 return ada_check_typedef (desc_data_target_type (type));
1852
1853 return type;
1854 }
1855
1856 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1857
1858 static int
1859 ada_is_packed_array_type (struct type *type)
1860 {
1861 if (type == NULL)
1862 return 0;
1863 type = desc_base_type (type);
1864 type = ada_check_typedef (type);
1865 return
1866 ada_type_name (type) != NULL
1867 && strstr (ada_type_name (type), "___XP") != NULL;
1868 }
1869
1870 /* Non-zero iff TYPE represents a standard GNAT constrained
1871 packed-array type. */
1872
1873 int
1874 ada_is_constrained_packed_array_type (struct type *type)
1875 {
1876 return ada_is_packed_array_type (type)
1877 && !ada_is_array_descriptor_type (type);
1878 }
1879
1880 /* Non-zero iff TYPE represents an array descriptor for a
1881 unconstrained packed-array type. */
1882
1883 static int
1884 ada_is_unconstrained_packed_array_type (struct type *type)
1885 {
1886 return ada_is_packed_array_type (type)
1887 && ada_is_array_descriptor_type (type);
1888 }
1889
1890 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
1891 return the size of its elements in bits. */
1892
1893 static long
1894 decode_packed_array_bitsize (struct type *type)
1895 {
1896 char *raw_name = ada_type_name (ada_check_typedef (type));
1897 char *tail;
1898 long bits;
1899
1900 if (!raw_name)
1901 raw_name = ada_type_name (desc_base_type (type));
1902
1903 if (!raw_name)
1904 return 0;
1905
1906 tail = strstr (raw_name, "___XP");
1907
1908 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1909 {
1910 lim_warning
1911 (_("could not understand bit size information on packed array"));
1912 return 0;
1913 }
1914
1915 return bits;
1916 }
1917
1918 /* Given that TYPE is a standard GDB array type with all bounds filled
1919 in, and that the element size of its ultimate scalar constituents
1920 (that is, either its elements, or, if it is an array of arrays, its
1921 elements' elements, etc.) is *ELT_BITS, return an identical type,
1922 but with the bit sizes of its elements (and those of any
1923 constituent arrays) recorded in the BITSIZE components of its
1924 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1925 in bits. */
1926
1927 static struct type *
1928 constrained_packed_array_type (struct type *type, long *elt_bits)
1929 {
1930 struct type *new_elt_type;
1931 struct type *new_type;
1932 LONGEST low_bound, high_bound;
1933
1934 type = ada_check_typedef (type);
1935 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1936 return type;
1937
1938 new_type = alloc_type_copy (type);
1939 new_elt_type =
1940 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
1941 elt_bits);
1942 create_array_type (new_type, new_elt_type, TYPE_INDEX_TYPE (type));
1943 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
1944 TYPE_NAME (new_type) = ada_type_name (type);
1945
1946 if (get_discrete_bounds (TYPE_INDEX_TYPE (type),
1947 &low_bound, &high_bound) < 0)
1948 low_bound = high_bound = 0;
1949 if (high_bound < low_bound)
1950 *elt_bits = TYPE_LENGTH (new_type) = 0;
1951 else
1952 {
1953 *elt_bits *= (high_bound - low_bound + 1);
1954 TYPE_LENGTH (new_type) =
1955 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
1956 }
1957
1958 TYPE_FIXED_INSTANCE (new_type) = 1;
1959 return new_type;
1960 }
1961
1962 /* The array type encoded by TYPE, where
1963 ada_is_constrained_packed_array_type (TYPE). */
1964
1965 static struct type *
1966 decode_constrained_packed_array_type (struct type *type)
1967 {
1968 char *raw_name = ada_type_name (ada_check_typedef (type));
1969 char *name;
1970 char *tail;
1971 struct type *shadow_type;
1972 long bits;
1973
1974 if (!raw_name)
1975 raw_name = ada_type_name (desc_base_type (type));
1976
1977 if (!raw_name)
1978 return NULL;
1979
1980 name = (char *) alloca (strlen (raw_name) + 1);
1981 tail = strstr (raw_name, "___XP");
1982 type = desc_base_type (type);
1983
1984 memcpy (name, raw_name, tail - raw_name);
1985 name[tail - raw_name] = '\000';
1986
1987 shadow_type = ada_find_parallel_type_with_name (type, name);
1988
1989 if (shadow_type == NULL)
1990 {
1991 lim_warning (_("could not find bounds information on packed array"));
1992 return NULL;
1993 }
1994 CHECK_TYPEDEF (shadow_type);
1995
1996 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
1997 {
1998 lim_warning (_("could not understand bounds information on packed array"));
1999 return NULL;
2000 }
2001
2002 bits = decode_packed_array_bitsize (type);
2003 return constrained_packed_array_type (shadow_type, &bits);
2004 }
2005
2006 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2007 array, returns a simple array that denotes that array. Its type is a
2008 standard GDB array type except that the BITSIZEs of the array
2009 target types are set to the number of bits in each element, and the
2010 type length is set appropriately. */
2011
2012 static struct value *
2013 decode_constrained_packed_array (struct value *arr)
2014 {
2015 struct type *type;
2016
2017 arr = ada_coerce_ref (arr);
2018
2019 /* If our value is a pointer, then dererence it. Make sure that
2020 this operation does not cause the target type to be fixed, as
2021 this would indirectly cause this array to be decoded. The rest
2022 of the routine assumes that the array hasn't been decoded yet,
2023 so we use the basic "value_ind" routine to perform the dereferencing,
2024 as opposed to using "ada_value_ind". */
2025 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
2026 arr = value_ind (arr);
2027
2028 type = decode_constrained_packed_array_type (value_type (arr));
2029 if (type == NULL)
2030 {
2031 error (_("can't unpack array"));
2032 return NULL;
2033 }
2034
2035 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2036 && ada_is_modular_type (value_type (arr)))
2037 {
2038 /* This is a (right-justified) modular type representing a packed
2039 array with no wrapper. In order to interpret the value through
2040 the (left-justified) packed array type we just built, we must
2041 first left-justify it. */
2042 int bit_size, bit_pos;
2043 ULONGEST mod;
2044
2045 mod = ada_modulus (value_type (arr)) - 1;
2046 bit_size = 0;
2047 while (mod > 0)
2048 {
2049 bit_size += 1;
2050 mod >>= 1;
2051 }
2052 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2053 arr = ada_value_primitive_packed_val (arr, NULL,
2054 bit_pos / HOST_CHAR_BIT,
2055 bit_pos % HOST_CHAR_BIT,
2056 bit_size,
2057 type);
2058 }
2059
2060 return coerce_unspec_val_to_type (arr, type);
2061 }
2062
2063
2064 /* The value of the element of packed array ARR at the ARITY indices
2065 given in IND. ARR must be a simple array. */
2066
2067 static struct value *
2068 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2069 {
2070 int i;
2071 int bits, elt_off, bit_off;
2072 long elt_total_bit_offset;
2073 struct type *elt_type;
2074 struct value *v;
2075
2076 bits = 0;
2077 elt_total_bit_offset = 0;
2078 elt_type = ada_check_typedef (value_type (arr));
2079 for (i = 0; i < arity; i += 1)
2080 {
2081 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2082 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2083 error
2084 (_("attempt to do packed indexing of something other than a packed array"));
2085 else
2086 {
2087 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2088 LONGEST lowerbound, upperbound;
2089 LONGEST idx;
2090
2091 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2092 {
2093 lim_warning (_("don't know bounds of array"));
2094 lowerbound = upperbound = 0;
2095 }
2096
2097 idx = pos_atr (ind[i]);
2098 if (idx < lowerbound || idx > upperbound)
2099 lim_warning (_("packed array index %ld out of bounds"), (long) idx);
2100 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2101 elt_total_bit_offset += (idx - lowerbound) * bits;
2102 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2103 }
2104 }
2105 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2106 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2107
2108 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2109 bits, elt_type);
2110 return v;
2111 }
2112
2113 /* Non-zero iff TYPE includes negative integer values. */
2114
2115 static int
2116 has_negatives (struct type *type)
2117 {
2118 switch (TYPE_CODE (type))
2119 {
2120 default:
2121 return 0;
2122 case TYPE_CODE_INT:
2123 return !TYPE_UNSIGNED (type);
2124 case TYPE_CODE_RANGE:
2125 return TYPE_LOW_BOUND (type) < 0;
2126 }
2127 }
2128
2129
2130 /* Create a new value of type TYPE from the contents of OBJ starting
2131 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2132 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2133 assigning through the result will set the field fetched from.
2134 VALADDR is ignored unless OBJ is NULL, in which case,
2135 VALADDR+OFFSET must address the start of storage containing the
2136 packed value. The value returned in this case is never an lval.
2137 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2138
2139 struct value *
2140 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2141 long offset, int bit_offset, int bit_size,
2142 struct type *type)
2143 {
2144 struct value *v;
2145 int src, /* Index into the source area */
2146 targ, /* Index into the target area */
2147 srcBitsLeft, /* Number of source bits left to move */
2148 nsrc, ntarg, /* Number of source and target bytes */
2149 unusedLS, /* Number of bits in next significant
2150 byte of source that are unused */
2151 accumSize; /* Number of meaningful bits in accum */
2152 unsigned char *bytes; /* First byte containing data to unpack */
2153 unsigned char *unpacked;
2154 unsigned long accum; /* Staging area for bits being transferred */
2155 unsigned char sign;
2156 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2157 /* Transmit bytes from least to most significant; delta is the direction
2158 the indices move. */
2159 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
2160
2161 type = ada_check_typedef (type);
2162
2163 if (obj == NULL)
2164 {
2165 v = allocate_value (type);
2166 bytes = (unsigned char *) (valaddr + offset);
2167 }
2168 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2169 {
2170 v = value_at (type,
2171 value_address (obj) + offset);
2172 bytes = (unsigned char *) alloca (len);
2173 read_memory (value_address (v), bytes, len);
2174 }
2175 else
2176 {
2177 v = allocate_value (type);
2178 bytes = (unsigned char *) value_contents (obj) + offset;
2179 }
2180
2181 if (obj != NULL)
2182 {
2183 CORE_ADDR new_addr;
2184
2185 set_value_component_location (v, obj);
2186 new_addr = value_address (obj) + offset;
2187 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2188 set_value_bitsize (v, bit_size);
2189 if (value_bitpos (v) >= HOST_CHAR_BIT)
2190 {
2191 ++new_addr;
2192 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2193 }
2194 set_value_address (v, new_addr);
2195 }
2196 else
2197 set_value_bitsize (v, bit_size);
2198 unpacked = (unsigned char *) value_contents (v);
2199
2200 srcBitsLeft = bit_size;
2201 nsrc = len;
2202 ntarg = TYPE_LENGTH (type);
2203 sign = 0;
2204 if (bit_size == 0)
2205 {
2206 memset (unpacked, 0, TYPE_LENGTH (type));
2207 return v;
2208 }
2209 else if (gdbarch_bits_big_endian (get_type_arch (type)))
2210 {
2211 src = len - 1;
2212 if (has_negatives (type)
2213 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2214 sign = ~0;
2215
2216 unusedLS =
2217 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2218 % HOST_CHAR_BIT;
2219
2220 switch (TYPE_CODE (type))
2221 {
2222 case TYPE_CODE_ARRAY:
2223 case TYPE_CODE_UNION:
2224 case TYPE_CODE_STRUCT:
2225 /* Non-scalar values must be aligned at a byte boundary... */
2226 accumSize =
2227 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2228 /* ... And are placed at the beginning (most-significant) bytes
2229 of the target. */
2230 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2231 ntarg = targ + 1;
2232 break;
2233 default:
2234 accumSize = 0;
2235 targ = TYPE_LENGTH (type) - 1;
2236 break;
2237 }
2238 }
2239 else
2240 {
2241 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2242
2243 src = targ = 0;
2244 unusedLS = bit_offset;
2245 accumSize = 0;
2246
2247 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2248 sign = ~0;
2249 }
2250
2251 accum = 0;
2252 while (nsrc > 0)
2253 {
2254 /* Mask for removing bits of the next source byte that are not
2255 part of the value. */
2256 unsigned int unusedMSMask =
2257 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2258 1;
2259 /* Sign-extend bits for this byte. */
2260 unsigned int signMask = sign & ~unusedMSMask;
2261
2262 accum |=
2263 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2264 accumSize += HOST_CHAR_BIT - unusedLS;
2265 if (accumSize >= HOST_CHAR_BIT)
2266 {
2267 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2268 accumSize -= HOST_CHAR_BIT;
2269 accum >>= HOST_CHAR_BIT;
2270 ntarg -= 1;
2271 targ += delta;
2272 }
2273 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2274 unusedLS = 0;
2275 nsrc -= 1;
2276 src += delta;
2277 }
2278 while (ntarg > 0)
2279 {
2280 accum |= sign << accumSize;
2281 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2282 accumSize -= HOST_CHAR_BIT;
2283 accum >>= HOST_CHAR_BIT;
2284 ntarg -= 1;
2285 targ += delta;
2286 }
2287
2288 return v;
2289 }
2290
2291 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2292 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2293 not overlap. */
2294 static void
2295 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2296 int src_offset, int n, int bits_big_endian_p)
2297 {
2298 unsigned int accum, mask;
2299 int accum_bits, chunk_size;
2300
2301 target += targ_offset / HOST_CHAR_BIT;
2302 targ_offset %= HOST_CHAR_BIT;
2303 source += src_offset / HOST_CHAR_BIT;
2304 src_offset %= HOST_CHAR_BIT;
2305 if (bits_big_endian_p)
2306 {
2307 accum = (unsigned char) *source;
2308 source += 1;
2309 accum_bits = HOST_CHAR_BIT - src_offset;
2310
2311 while (n > 0)
2312 {
2313 int unused_right;
2314
2315 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2316 accum_bits += HOST_CHAR_BIT;
2317 source += 1;
2318 chunk_size = HOST_CHAR_BIT - targ_offset;
2319 if (chunk_size > n)
2320 chunk_size = n;
2321 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2322 mask = ((1 << chunk_size) - 1) << unused_right;
2323 *target =
2324 (*target & ~mask)
2325 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2326 n -= chunk_size;
2327 accum_bits -= chunk_size;
2328 target += 1;
2329 targ_offset = 0;
2330 }
2331 }
2332 else
2333 {
2334 accum = (unsigned char) *source >> src_offset;
2335 source += 1;
2336 accum_bits = HOST_CHAR_BIT - src_offset;
2337
2338 while (n > 0)
2339 {
2340 accum = accum + ((unsigned char) *source << accum_bits);
2341 accum_bits += HOST_CHAR_BIT;
2342 source += 1;
2343 chunk_size = HOST_CHAR_BIT - targ_offset;
2344 if (chunk_size > n)
2345 chunk_size = n;
2346 mask = ((1 << chunk_size) - 1) << targ_offset;
2347 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2348 n -= chunk_size;
2349 accum_bits -= chunk_size;
2350 accum >>= chunk_size;
2351 target += 1;
2352 targ_offset = 0;
2353 }
2354 }
2355 }
2356
2357 /* Store the contents of FROMVAL into the location of TOVAL.
2358 Return a new value with the location of TOVAL and contents of
2359 FROMVAL. Handles assignment into packed fields that have
2360 floating-point or non-scalar types. */
2361
2362 static struct value *
2363 ada_value_assign (struct value *toval, struct value *fromval)
2364 {
2365 struct type *type = value_type (toval);
2366 int bits = value_bitsize (toval);
2367
2368 toval = ada_coerce_ref (toval);
2369 fromval = ada_coerce_ref (fromval);
2370
2371 if (ada_is_direct_array_type (value_type (toval)))
2372 toval = ada_coerce_to_simple_array (toval);
2373 if (ada_is_direct_array_type (value_type (fromval)))
2374 fromval = ada_coerce_to_simple_array (fromval);
2375
2376 if (!deprecated_value_modifiable (toval))
2377 error (_("Left operand of assignment is not a modifiable lvalue."));
2378
2379 if (VALUE_LVAL (toval) == lval_memory
2380 && bits > 0
2381 && (TYPE_CODE (type) == TYPE_CODE_FLT
2382 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2383 {
2384 int len = (value_bitpos (toval)
2385 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2386 int from_size;
2387 char *buffer = (char *) alloca (len);
2388 struct value *val;
2389 CORE_ADDR to_addr = value_address (toval);
2390
2391 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2392 fromval = value_cast (type, fromval);
2393
2394 read_memory (to_addr, buffer, len);
2395 from_size = value_bitsize (fromval);
2396 if (from_size == 0)
2397 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2398 if (gdbarch_bits_big_endian (get_type_arch (type)))
2399 move_bits (buffer, value_bitpos (toval),
2400 value_contents (fromval), from_size - bits, bits, 1);
2401 else
2402 move_bits (buffer, value_bitpos (toval),
2403 value_contents (fromval), 0, bits, 0);
2404 write_memory (to_addr, buffer, len);
2405 observer_notify_memory_changed (to_addr, len, buffer);
2406
2407 val = value_copy (toval);
2408 memcpy (value_contents_raw (val), value_contents (fromval),
2409 TYPE_LENGTH (type));
2410 deprecated_set_value_type (val, type);
2411
2412 return val;
2413 }
2414
2415 return value_assign (toval, fromval);
2416 }
2417
2418
2419 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2420 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2421 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2422 * COMPONENT, and not the inferior's memory. The current contents
2423 * of COMPONENT are ignored. */
2424 static void
2425 value_assign_to_component (struct value *container, struct value *component,
2426 struct value *val)
2427 {
2428 LONGEST offset_in_container =
2429 (LONGEST) (value_address (component) - value_address (container));
2430 int bit_offset_in_container =
2431 value_bitpos (component) - value_bitpos (container);
2432 int bits;
2433
2434 val = value_cast (value_type (component), val);
2435
2436 if (value_bitsize (component) == 0)
2437 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2438 else
2439 bits = value_bitsize (component);
2440
2441 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2442 move_bits (value_contents_writeable (container) + offset_in_container,
2443 value_bitpos (container) + bit_offset_in_container,
2444 value_contents (val),
2445 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2446 bits, 1);
2447 else
2448 move_bits (value_contents_writeable (container) + offset_in_container,
2449 value_bitpos (container) + bit_offset_in_container,
2450 value_contents (val), 0, bits, 0);
2451 }
2452
2453 /* The value of the element of array ARR at the ARITY indices given in IND.
2454 ARR may be either a simple array, GNAT array descriptor, or pointer
2455 thereto. */
2456
2457 struct value *
2458 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2459 {
2460 int k;
2461 struct value *elt;
2462 struct type *elt_type;
2463
2464 elt = ada_coerce_to_simple_array (arr);
2465
2466 elt_type = ada_check_typedef (value_type (elt));
2467 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2468 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2469 return value_subscript_packed (elt, arity, ind);
2470
2471 for (k = 0; k < arity; k += 1)
2472 {
2473 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2474 error (_("too many subscripts (%d expected)"), k);
2475 elt = value_subscript (elt, pos_atr (ind[k]));
2476 }
2477 return elt;
2478 }
2479
2480 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2481 value of the element of *ARR at the ARITY indices given in
2482 IND. Does not read the entire array into memory. */
2483
2484 static struct value *
2485 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2486 struct value **ind)
2487 {
2488 int k;
2489
2490 for (k = 0; k < arity; k += 1)
2491 {
2492 LONGEST lwb, upb;
2493
2494 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2495 error (_("too many subscripts (%d expected)"), k);
2496 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2497 value_copy (arr));
2498 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2499 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2500 type = TYPE_TARGET_TYPE (type);
2501 }
2502
2503 return value_ind (arr);
2504 }
2505
2506 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2507 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2508 elements starting at index LOW. The lower bound of this array is LOW, as
2509 per Ada rules. */
2510 static struct value *
2511 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2512 int low, int high)
2513 {
2514 CORE_ADDR base = value_as_address (array_ptr)
2515 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type)))
2516 * TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
2517 struct type *index_type =
2518 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
2519 low, high);
2520 struct type *slice_type =
2521 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2522
2523 return value_at_lazy (slice_type, base);
2524 }
2525
2526
2527 static struct value *
2528 ada_value_slice (struct value *array, int low, int high)
2529 {
2530 struct type *type = value_type (array);
2531 struct type *index_type =
2532 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2533 struct type *slice_type =
2534 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2535
2536 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2537 }
2538
2539 /* If type is a record type in the form of a standard GNAT array
2540 descriptor, returns the number of dimensions for type. If arr is a
2541 simple array, returns the number of "array of"s that prefix its
2542 type designation. Otherwise, returns 0. */
2543
2544 int
2545 ada_array_arity (struct type *type)
2546 {
2547 int arity;
2548
2549 if (type == NULL)
2550 return 0;
2551
2552 type = desc_base_type (type);
2553
2554 arity = 0;
2555 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2556 return desc_arity (desc_bounds_type (type));
2557 else
2558 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2559 {
2560 arity += 1;
2561 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2562 }
2563
2564 return arity;
2565 }
2566
2567 /* If TYPE is a record type in the form of a standard GNAT array
2568 descriptor or a simple array type, returns the element type for
2569 TYPE after indexing by NINDICES indices, or by all indices if
2570 NINDICES is -1. Otherwise, returns NULL. */
2571
2572 struct type *
2573 ada_array_element_type (struct type *type, int nindices)
2574 {
2575 type = desc_base_type (type);
2576
2577 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2578 {
2579 int k;
2580 struct type *p_array_type;
2581
2582 p_array_type = desc_data_target_type (type);
2583
2584 k = ada_array_arity (type);
2585 if (k == 0)
2586 return NULL;
2587
2588 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2589 if (nindices >= 0 && k > nindices)
2590 k = nindices;
2591 while (k > 0 && p_array_type != NULL)
2592 {
2593 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2594 k -= 1;
2595 }
2596 return p_array_type;
2597 }
2598 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2599 {
2600 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2601 {
2602 type = TYPE_TARGET_TYPE (type);
2603 nindices -= 1;
2604 }
2605 return type;
2606 }
2607
2608 return NULL;
2609 }
2610
2611 /* The type of nth index in arrays of given type (n numbering from 1).
2612 Does not examine memory. Throws an error if N is invalid or TYPE
2613 is not an array type. NAME is the name of the Ada attribute being
2614 evaluated ('range, 'first, 'last, or 'length); it is used in building
2615 the error message. */
2616
2617 static struct type *
2618 ada_index_type (struct type *type, int n, const char *name)
2619 {
2620 struct type *result_type;
2621
2622 type = desc_base_type (type);
2623
2624 if (n < 0 || n > ada_array_arity (type))
2625 error (_("invalid dimension number to '%s"), name);
2626
2627 if (ada_is_simple_array_type (type))
2628 {
2629 int i;
2630
2631 for (i = 1; i < n; i += 1)
2632 type = TYPE_TARGET_TYPE (type);
2633 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2634 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2635 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2636 perhaps stabsread.c would make more sense. */
2637 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2638 result_type = NULL;
2639 }
2640 else
2641 {
2642 result_type = desc_index_type (desc_bounds_type (type), n);
2643 if (result_type == NULL)
2644 error (_("attempt to take bound of something that is not an array"));
2645 }
2646
2647 return result_type;
2648 }
2649
2650 /* Given that arr is an array type, returns the lower bound of the
2651 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2652 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2653 array-descriptor type. It works for other arrays with bounds supplied
2654 by run-time quantities other than discriminants. */
2655
2656 static LONGEST
2657 ada_array_bound_from_type (struct type * arr_type, int n, int which)
2658 {
2659 struct type *type, *elt_type, *index_type_desc, *index_type;
2660 int i;
2661
2662 gdb_assert (which == 0 || which == 1);
2663
2664 if (ada_is_constrained_packed_array_type (arr_type))
2665 arr_type = decode_constrained_packed_array_type (arr_type);
2666
2667 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2668 return (LONGEST) - which;
2669
2670 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2671 type = TYPE_TARGET_TYPE (arr_type);
2672 else
2673 type = arr_type;
2674
2675 elt_type = type;
2676 for (i = n; i > 1; i--)
2677 elt_type = TYPE_TARGET_TYPE (type);
2678
2679 index_type_desc = ada_find_parallel_type (type, "___XA");
2680 ada_fixup_array_indexes_type (index_type_desc);
2681 if (index_type_desc != NULL)
2682 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2683 NULL);
2684 else
2685 index_type = TYPE_INDEX_TYPE (elt_type);
2686
2687 return
2688 (LONGEST) (which == 0
2689 ? ada_discrete_type_low_bound (index_type)
2690 : ada_discrete_type_high_bound (index_type));
2691 }
2692
2693 /* Given that arr is an array value, returns the lower bound of the
2694 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2695 WHICH is 1. This routine will also work for arrays with bounds
2696 supplied by run-time quantities other than discriminants. */
2697
2698 static LONGEST
2699 ada_array_bound (struct value *arr, int n, int which)
2700 {
2701 struct type *arr_type = value_type (arr);
2702
2703 if (ada_is_constrained_packed_array_type (arr_type))
2704 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
2705 else if (ada_is_simple_array_type (arr_type))
2706 return ada_array_bound_from_type (arr_type, n, which);
2707 else
2708 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2709 }
2710
2711 /* Given that arr is an array value, returns the length of the
2712 nth index. This routine will also work for arrays with bounds
2713 supplied by run-time quantities other than discriminants.
2714 Does not work for arrays indexed by enumeration types with representation
2715 clauses at the moment. */
2716
2717 static LONGEST
2718 ada_array_length (struct value *arr, int n)
2719 {
2720 struct type *arr_type = ada_check_typedef (value_type (arr));
2721
2722 if (ada_is_constrained_packed_array_type (arr_type))
2723 return ada_array_length (decode_constrained_packed_array (arr), n);
2724
2725 if (ada_is_simple_array_type (arr_type))
2726 return (ada_array_bound_from_type (arr_type, n, 1)
2727 - ada_array_bound_from_type (arr_type, n, 0) + 1);
2728 else
2729 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2730 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
2731 }
2732
2733 /* An empty array whose type is that of ARR_TYPE (an array type),
2734 with bounds LOW to LOW-1. */
2735
2736 static struct value *
2737 empty_array (struct type *arr_type, int low)
2738 {
2739 struct type *index_type =
2740 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
2741 low, low - 1);
2742 struct type *elt_type = ada_array_element_type (arr_type, 1);
2743
2744 return allocate_value (create_array_type (NULL, elt_type, index_type));
2745 }
2746 \f
2747
2748 /* Name resolution */
2749
2750 /* The "decoded" name for the user-definable Ada operator corresponding
2751 to OP. */
2752
2753 static const char *
2754 ada_decoded_op_name (enum exp_opcode op)
2755 {
2756 int i;
2757
2758 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2759 {
2760 if (ada_opname_table[i].op == op)
2761 return ada_opname_table[i].decoded;
2762 }
2763 error (_("Could not find operator name for opcode"));
2764 }
2765
2766
2767 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2768 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2769 undefined namespace) and converts operators that are
2770 user-defined into appropriate function calls. If CONTEXT_TYPE is
2771 non-null, it provides a preferred result type [at the moment, only
2772 type void has any effect---causing procedures to be preferred over
2773 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2774 return type is preferred. May change (expand) *EXP. */
2775
2776 static void
2777 resolve (struct expression **expp, int void_context_p)
2778 {
2779 struct type *context_type = NULL;
2780 int pc = 0;
2781
2782 if (void_context_p)
2783 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2784
2785 resolve_subexp (expp, &pc, 1, context_type);
2786 }
2787
2788 /* Resolve the operator of the subexpression beginning at
2789 position *POS of *EXPP. "Resolving" consists of replacing
2790 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2791 with their resolutions, replacing built-in operators with
2792 function calls to user-defined operators, where appropriate, and,
2793 when DEPROCEDURE_P is non-zero, converting function-valued variables
2794 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2795 are as in ada_resolve, above. */
2796
2797 static struct value *
2798 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2799 struct type *context_type)
2800 {
2801 int pc = *pos;
2802 int i;
2803 struct expression *exp; /* Convenience: == *expp. */
2804 enum exp_opcode op = (*expp)->elts[pc].opcode;
2805 struct value **argvec; /* Vector of operand types (alloca'ed). */
2806 int nargs; /* Number of operands. */
2807 int oplen;
2808
2809 argvec = NULL;
2810 nargs = 0;
2811 exp = *expp;
2812
2813 /* Pass one: resolve operands, saving their types and updating *pos,
2814 if needed. */
2815 switch (op)
2816 {
2817 case OP_FUNCALL:
2818 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2819 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2820 *pos += 7;
2821 else
2822 {
2823 *pos += 3;
2824 resolve_subexp (expp, pos, 0, NULL);
2825 }
2826 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2827 break;
2828
2829 case UNOP_ADDR:
2830 *pos += 1;
2831 resolve_subexp (expp, pos, 0, NULL);
2832 break;
2833
2834 case UNOP_QUAL:
2835 *pos += 3;
2836 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
2837 break;
2838
2839 case OP_ATR_MODULUS:
2840 case OP_ATR_SIZE:
2841 case OP_ATR_TAG:
2842 case OP_ATR_FIRST:
2843 case OP_ATR_LAST:
2844 case OP_ATR_LENGTH:
2845 case OP_ATR_POS:
2846 case OP_ATR_VAL:
2847 case OP_ATR_MIN:
2848 case OP_ATR_MAX:
2849 case TERNOP_IN_RANGE:
2850 case BINOP_IN_BOUNDS:
2851 case UNOP_IN_RANGE:
2852 case OP_AGGREGATE:
2853 case OP_OTHERS:
2854 case OP_CHOICES:
2855 case OP_POSITIONAL:
2856 case OP_DISCRETE_RANGE:
2857 case OP_NAME:
2858 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2859 *pos += oplen;
2860 break;
2861
2862 case BINOP_ASSIGN:
2863 {
2864 struct value *arg1;
2865
2866 *pos += 1;
2867 arg1 = resolve_subexp (expp, pos, 0, NULL);
2868 if (arg1 == NULL)
2869 resolve_subexp (expp, pos, 1, NULL);
2870 else
2871 resolve_subexp (expp, pos, 1, value_type (arg1));
2872 break;
2873 }
2874
2875 case UNOP_CAST:
2876 *pos += 3;
2877 nargs = 1;
2878 break;
2879
2880 case BINOP_ADD:
2881 case BINOP_SUB:
2882 case BINOP_MUL:
2883 case BINOP_DIV:
2884 case BINOP_REM:
2885 case BINOP_MOD:
2886 case BINOP_EXP:
2887 case BINOP_CONCAT:
2888 case BINOP_LOGICAL_AND:
2889 case BINOP_LOGICAL_OR:
2890 case BINOP_BITWISE_AND:
2891 case BINOP_BITWISE_IOR:
2892 case BINOP_BITWISE_XOR:
2893
2894 case BINOP_EQUAL:
2895 case BINOP_NOTEQUAL:
2896 case BINOP_LESS:
2897 case BINOP_GTR:
2898 case BINOP_LEQ:
2899 case BINOP_GEQ:
2900
2901 case BINOP_REPEAT:
2902 case BINOP_SUBSCRIPT:
2903 case BINOP_COMMA:
2904 *pos += 1;
2905 nargs = 2;
2906 break;
2907
2908 case UNOP_NEG:
2909 case UNOP_PLUS:
2910 case UNOP_LOGICAL_NOT:
2911 case UNOP_ABS:
2912 case UNOP_IND:
2913 *pos += 1;
2914 nargs = 1;
2915 break;
2916
2917 case OP_LONG:
2918 case OP_DOUBLE:
2919 case OP_VAR_VALUE:
2920 *pos += 4;
2921 break;
2922
2923 case OP_TYPE:
2924 case OP_BOOL:
2925 case OP_LAST:
2926 case OP_INTERNALVAR:
2927 *pos += 3;
2928 break;
2929
2930 case UNOP_MEMVAL:
2931 *pos += 3;
2932 nargs = 1;
2933 break;
2934
2935 case OP_REGISTER:
2936 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2937 break;
2938
2939 case STRUCTOP_STRUCT:
2940 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2941 nargs = 1;
2942 break;
2943
2944 case TERNOP_SLICE:
2945 *pos += 1;
2946 nargs = 3;
2947 break;
2948
2949 case OP_STRING:
2950 break;
2951
2952 default:
2953 error (_("Unexpected operator during name resolution"));
2954 }
2955
2956 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
2957 for (i = 0; i < nargs; i += 1)
2958 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
2959 argvec[i] = NULL;
2960 exp = *expp;
2961
2962 /* Pass two: perform any resolution on principal operator. */
2963 switch (op)
2964 {
2965 default:
2966 break;
2967
2968 case OP_VAR_VALUE:
2969 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
2970 {
2971 struct ada_symbol_info *candidates;
2972 int n_candidates;
2973
2974 n_candidates =
2975 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2976 (exp->elts[pc + 2].symbol),
2977 exp->elts[pc + 1].block, VAR_DOMAIN,
2978 &candidates);
2979
2980 if (n_candidates > 1)
2981 {
2982 /* Types tend to get re-introduced locally, so if there
2983 are any local symbols that are not types, first filter
2984 out all types. */
2985 int j;
2986 for (j = 0; j < n_candidates; j += 1)
2987 switch (SYMBOL_CLASS (candidates[j].sym))
2988 {
2989 case LOC_REGISTER:
2990 case LOC_ARG:
2991 case LOC_REF_ARG:
2992 case LOC_REGPARM_ADDR:
2993 case LOC_LOCAL:
2994 case LOC_COMPUTED:
2995 goto FoundNonType;
2996 default:
2997 break;
2998 }
2999 FoundNonType:
3000 if (j < n_candidates)
3001 {
3002 j = 0;
3003 while (j < n_candidates)
3004 {
3005 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3006 {
3007 candidates[j] = candidates[n_candidates - 1];
3008 n_candidates -= 1;
3009 }
3010 else
3011 j += 1;
3012 }
3013 }
3014 }
3015
3016 if (n_candidates == 0)
3017 error (_("No definition found for %s"),
3018 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3019 else if (n_candidates == 1)
3020 i = 0;
3021 else if (deprocedure_p
3022 && !is_nonfunction (candidates, n_candidates))
3023 {
3024 i = ada_resolve_function
3025 (candidates, n_candidates, NULL, 0,
3026 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3027 context_type);
3028 if (i < 0)
3029 error (_("Could not find a match for %s"),
3030 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3031 }
3032 else
3033 {
3034 printf_filtered (_("Multiple matches for %s\n"),
3035 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3036 user_select_syms (candidates, n_candidates, 1);
3037 i = 0;
3038 }
3039
3040 exp->elts[pc + 1].block = candidates[i].block;
3041 exp->elts[pc + 2].symbol = candidates[i].sym;
3042 if (innermost_block == NULL
3043 || contained_in (candidates[i].block, innermost_block))
3044 innermost_block = candidates[i].block;
3045 }
3046
3047 if (deprocedure_p
3048 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3049 == TYPE_CODE_FUNC))
3050 {
3051 replace_operator_with_call (expp, pc, 0, 0,
3052 exp->elts[pc + 2].symbol,
3053 exp->elts[pc + 1].block);
3054 exp = *expp;
3055 }
3056 break;
3057
3058 case OP_FUNCALL:
3059 {
3060 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3061 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3062 {
3063 struct ada_symbol_info *candidates;
3064 int n_candidates;
3065
3066 n_candidates =
3067 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3068 (exp->elts[pc + 5].symbol),
3069 exp->elts[pc + 4].block, VAR_DOMAIN,
3070 &candidates);
3071 if (n_candidates == 1)
3072 i = 0;
3073 else
3074 {
3075 i = ada_resolve_function
3076 (candidates, n_candidates,
3077 argvec, nargs,
3078 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3079 context_type);
3080 if (i < 0)
3081 error (_("Could not find a match for %s"),
3082 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3083 }
3084
3085 exp->elts[pc + 4].block = candidates[i].block;
3086 exp->elts[pc + 5].symbol = candidates[i].sym;
3087 if (innermost_block == NULL
3088 || contained_in (candidates[i].block, innermost_block))
3089 innermost_block = candidates[i].block;
3090 }
3091 }
3092 break;
3093 case BINOP_ADD:
3094 case BINOP_SUB:
3095 case BINOP_MUL:
3096 case BINOP_DIV:
3097 case BINOP_REM:
3098 case BINOP_MOD:
3099 case BINOP_CONCAT:
3100 case BINOP_BITWISE_AND:
3101 case BINOP_BITWISE_IOR:
3102 case BINOP_BITWISE_XOR:
3103 case BINOP_EQUAL:
3104 case BINOP_NOTEQUAL:
3105 case BINOP_LESS:
3106 case BINOP_GTR:
3107 case BINOP_LEQ:
3108 case BINOP_GEQ:
3109 case BINOP_EXP:
3110 case UNOP_NEG:
3111 case UNOP_PLUS:
3112 case UNOP_LOGICAL_NOT:
3113 case UNOP_ABS:
3114 if (possible_user_operator_p (op, argvec))
3115 {
3116 struct ada_symbol_info *candidates;
3117 int n_candidates;
3118
3119 n_candidates =
3120 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3121 (struct block *) NULL, VAR_DOMAIN,
3122 &candidates);
3123 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3124 ada_decoded_op_name (op), NULL);
3125 if (i < 0)
3126 break;
3127
3128 replace_operator_with_call (expp, pc, nargs, 1,
3129 candidates[i].sym, candidates[i].block);
3130 exp = *expp;
3131 }
3132 break;
3133
3134 case OP_TYPE:
3135 case OP_REGISTER:
3136 return NULL;
3137 }
3138
3139 *pos = pc;
3140 return evaluate_subexp_type (exp, pos);
3141 }
3142
3143 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3144 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3145 a non-pointer. */
3146 /* The term "match" here is rather loose. The match is heuristic and
3147 liberal. */
3148
3149 static int
3150 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3151 {
3152 ftype = ada_check_typedef (ftype);
3153 atype = ada_check_typedef (atype);
3154
3155 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3156 ftype = TYPE_TARGET_TYPE (ftype);
3157 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3158 atype = TYPE_TARGET_TYPE (atype);
3159
3160 switch (TYPE_CODE (ftype))
3161 {
3162 default:
3163 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3164 case TYPE_CODE_PTR:
3165 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3166 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3167 TYPE_TARGET_TYPE (atype), 0);
3168 else
3169 return (may_deref
3170 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3171 case TYPE_CODE_INT:
3172 case TYPE_CODE_ENUM:
3173 case TYPE_CODE_RANGE:
3174 switch (TYPE_CODE (atype))
3175 {
3176 case TYPE_CODE_INT:
3177 case TYPE_CODE_ENUM:
3178 case TYPE_CODE_RANGE:
3179 return 1;
3180 default:
3181 return 0;
3182 }
3183
3184 case TYPE_CODE_ARRAY:
3185 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3186 || ada_is_array_descriptor_type (atype));
3187
3188 case TYPE_CODE_STRUCT:
3189 if (ada_is_array_descriptor_type (ftype))
3190 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3191 || ada_is_array_descriptor_type (atype));
3192 else
3193 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3194 && !ada_is_array_descriptor_type (atype));
3195
3196 case TYPE_CODE_UNION:
3197 case TYPE_CODE_FLT:
3198 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3199 }
3200 }
3201
3202 /* Return non-zero if the formals of FUNC "sufficiently match" the
3203 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3204 may also be an enumeral, in which case it is treated as a 0-
3205 argument function. */
3206
3207 static int
3208 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3209 {
3210 int i;
3211 struct type *func_type = SYMBOL_TYPE (func);
3212
3213 if (SYMBOL_CLASS (func) == LOC_CONST
3214 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3215 return (n_actuals == 0);
3216 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3217 return 0;
3218
3219 if (TYPE_NFIELDS (func_type) != n_actuals)
3220 return 0;
3221
3222 for (i = 0; i < n_actuals; i += 1)
3223 {
3224 if (actuals[i] == NULL)
3225 return 0;
3226 else
3227 {
3228 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3229 i));
3230 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3231
3232 if (!ada_type_match (ftype, atype, 1))
3233 return 0;
3234 }
3235 }
3236 return 1;
3237 }
3238
3239 /* False iff function type FUNC_TYPE definitely does not produce a value
3240 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3241 FUNC_TYPE is not a valid function type with a non-null return type
3242 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3243
3244 static int
3245 return_match (struct type *func_type, struct type *context_type)
3246 {
3247 struct type *return_type;
3248
3249 if (func_type == NULL)
3250 return 1;
3251
3252 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3253 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3254 else
3255 return_type = base_type (func_type);
3256 if (return_type == NULL)
3257 return 1;
3258
3259 context_type = base_type (context_type);
3260
3261 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3262 return context_type == NULL || return_type == context_type;
3263 else if (context_type == NULL)
3264 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3265 else
3266 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3267 }
3268
3269
3270 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3271 function (if any) that matches the types of the NARGS arguments in
3272 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3273 that returns that type, then eliminate matches that don't. If
3274 CONTEXT_TYPE is void and there is at least one match that does not
3275 return void, eliminate all matches that do.
3276
3277 Asks the user if there is more than one match remaining. Returns -1
3278 if there is no such symbol or none is selected. NAME is used
3279 solely for messages. May re-arrange and modify SYMS in
3280 the process; the index returned is for the modified vector. */
3281
3282 static int
3283 ada_resolve_function (struct ada_symbol_info syms[],
3284 int nsyms, struct value **args, int nargs,
3285 const char *name, struct type *context_type)
3286 {
3287 int fallback;
3288 int k;
3289 int m; /* Number of hits */
3290
3291 m = 0;
3292 /* In the first pass of the loop, we only accept functions matching
3293 context_type. If none are found, we add a second pass of the loop
3294 where every function is accepted. */
3295 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3296 {
3297 for (k = 0; k < nsyms; k += 1)
3298 {
3299 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3300
3301 if (ada_args_match (syms[k].sym, args, nargs)
3302 && (fallback || return_match (type, context_type)))
3303 {
3304 syms[m] = syms[k];
3305 m += 1;
3306 }
3307 }
3308 }
3309
3310 if (m == 0)
3311 return -1;
3312 else if (m > 1)
3313 {
3314 printf_filtered (_("Multiple matches for %s\n"), name);
3315 user_select_syms (syms, m, 1);
3316 return 0;
3317 }
3318 return 0;
3319 }
3320
3321 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3322 in a listing of choices during disambiguation (see sort_choices, below).
3323 The idea is that overloadings of a subprogram name from the
3324 same package should sort in their source order. We settle for ordering
3325 such symbols by their trailing number (__N or $N). */
3326
3327 static int
3328 encoded_ordered_before (char *N0, char *N1)
3329 {
3330 if (N1 == NULL)
3331 return 0;
3332 else if (N0 == NULL)
3333 return 1;
3334 else
3335 {
3336 int k0, k1;
3337
3338 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3339 ;
3340 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3341 ;
3342 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3343 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3344 {
3345 int n0, n1;
3346
3347 n0 = k0;
3348 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3349 n0 -= 1;
3350 n1 = k1;
3351 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3352 n1 -= 1;
3353 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3354 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3355 }
3356 return (strcmp (N0, N1) < 0);
3357 }
3358 }
3359
3360 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3361 encoded names. */
3362
3363 static void
3364 sort_choices (struct ada_symbol_info syms[], int nsyms)
3365 {
3366 int i;
3367
3368 for (i = 1; i < nsyms; i += 1)
3369 {
3370 struct ada_symbol_info sym = syms[i];
3371 int j;
3372
3373 for (j = i - 1; j >= 0; j -= 1)
3374 {
3375 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3376 SYMBOL_LINKAGE_NAME (sym.sym)))
3377 break;
3378 syms[j + 1] = syms[j];
3379 }
3380 syms[j + 1] = sym;
3381 }
3382 }
3383
3384 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3385 by asking the user (if necessary), returning the number selected,
3386 and setting the first elements of SYMS items. Error if no symbols
3387 selected. */
3388
3389 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3390 to be re-integrated one of these days. */
3391
3392 int
3393 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3394 {
3395 int i;
3396 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3397 int n_chosen;
3398 int first_choice = (max_results == 1) ? 1 : 2;
3399 const char *select_mode = multiple_symbols_select_mode ();
3400
3401 if (max_results < 1)
3402 error (_("Request to select 0 symbols!"));
3403 if (nsyms <= 1)
3404 return nsyms;
3405
3406 if (select_mode == multiple_symbols_cancel)
3407 error (_("\
3408 canceled because the command is ambiguous\n\
3409 See set/show multiple-symbol."));
3410
3411 /* If select_mode is "all", then return all possible symbols.
3412 Only do that if more than one symbol can be selected, of course.
3413 Otherwise, display the menu as usual. */
3414 if (select_mode == multiple_symbols_all && max_results > 1)
3415 return nsyms;
3416
3417 printf_unfiltered (_("[0] cancel\n"));
3418 if (max_results > 1)
3419 printf_unfiltered (_("[1] all\n"));
3420
3421 sort_choices (syms, nsyms);
3422
3423 for (i = 0; i < nsyms; i += 1)
3424 {
3425 if (syms[i].sym == NULL)
3426 continue;
3427
3428 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3429 {
3430 struct symtab_and_line sal =
3431 find_function_start_sal (syms[i].sym, 1);
3432
3433 if (sal.symtab == NULL)
3434 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3435 i + first_choice,
3436 SYMBOL_PRINT_NAME (syms[i].sym),
3437 sal.line);
3438 else
3439 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3440 SYMBOL_PRINT_NAME (syms[i].sym),
3441 sal.symtab->filename, sal.line);
3442 continue;
3443 }
3444 else
3445 {
3446 int is_enumeral =
3447 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3448 && SYMBOL_TYPE (syms[i].sym) != NULL
3449 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3450 struct symtab *symtab = syms[i].sym->symtab;
3451
3452 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3453 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3454 i + first_choice,
3455 SYMBOL_PRINT_NAME (syms[i].sym),
3456 symtab->filename, SYMBOL_LINE (syms[i].sym));
3457 else if (is_enumeral
3458 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3459 {
3460 printf_unfiltered (("[%d] "), i + first_choice);
3461 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3462 gdb_stdout, -1, 0);
3463 printf_unfiltered (_("'(%s) (enumeral)\n"),
3464 SYMBOL_PRINT_NAME (syms[i].sym));
3465 }
3466 else if (symtab != NULL)
3467 printf_unfiltered (is_enumeral
3468 ? _("[%d] %s in %s (enumeral)\n")
3469 : _("[%d] %s at %s:?\n"),
3470 i + first_choice,
3471 SYMBOL_PRINT_NAME (syms[i].sym),
3472 symtab->filename);
3473 else
3474 printf_unfiltered (is_enumeral
3475 ? _("[%d] %s (enumeral)\n")
3476 : _("[%d] %s at ?\n"),
3477 i + first_choice,
3478 SYMBOL_PRINT_NAME (syms[i].sym));
3479 }
3480 }
3481
3482 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3483 "overload-choice");
3484
3485 for (i = 0; i < n_chosen; i += 1)
3486 syms[i] = syms[chosen[i]];
3487
3488 return n_chosen;
3489 }
3490
3491 /* Read and validate a set of numeric choices from the user in the
3492 range 0 .. N_CHOICES-1. Place the results in increasing
3493 order in CHOICES[0 .. N-1], and return N.
3494
3495 The user types choices as a sequence of numbers on one line
3496 separated by blanks, encoding them as follows:
3497
3498 + A choice of 0 means to cancel the selection, throwing an error.
3499 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3500 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3501
3502 The user is not allowed to choose more than MAX_RESULTS values.
3503
3504 ANNOTATION_SUFFIX, if present, is used to annotate the input
3505 prompts (for use with the -f switch). */
3506
3507 int
3508 get_selections (int *choices, int n_choices, int max_results,
3509 int is_all_choice, char *annotation_suffix)
3510 {
3511 char *args;
3512 char *prompt;
3513 int n_chosen;
3514 int first_choice = is_all_choice ? 2 : 1;
3515
3516 prompt = getenv ("PS2");
3517 if (prompt == NULL)
3518 prompt = "> ";
3519
3520 args = command_line_input (prompt, 0, annotation_suffix);
3521
3522 if (args == NULL)
3523 error_no_arg (_("one or more choice numbers"));
3524
3525 n_chosen = 0;
3526
3527 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3528 order, as given in args. Choices are validated. */
3529 while (1)
3530 {
3531 char *args2;
3532 int choice, j;
3533
3534 while (isspace (*args))
3535 args += 1;
3536 if (*args == '\0' && n_chosen == 0)
3537 error_no_arg (_("one or more choice numbers"));
3538 else if (*args == '\0')
3539 break;
3540
3541 choice = strtol (args, &args2, 10);
3542 if (args == args2 || choice < 0
3543 || choice > n_choices + first_choice - 1)
3544 error (_("Argument must be choice number"));
3545 args = args2;
3546
3547 if (choice == 0)
3548 error (_("cancelled"));
3549
3550 if (choice < first_choice)
3551 {
3552 n_chosen = n_choices;
3553 for (j = 0; j < n_choices; j += 1)
3554 choices[j] = j;
3555 break;
3556 }
3557 choice -= first_choice;
3558
3559 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3560 {
3561 }
3562
3563 if (j < 0 || choice != choices[j])
3564 {
3565 int k;
3566
3567 for (k = n_chosen - 1; k > j; k -= 1)
3568 choices[k + 1] = choices[k];
3569 choices[j + 1] = choice;
3570 n_chosen += 1;
3571 }
3572 }
3573
3574 if (n_chosen > max_results)
3575 error (_("Select no more than %d of the above"), max_results);
3576
3577 return n_chosen;
3578 }
3579
3580 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3581 on the function identified by SYM and BLOCK, and taking NARGS
3582 arguments. Update *EXPP as needed to hold more space. */
3583
3584 static void
3585 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3586 int oplen, struct symbol *sym,
3587 struct block *block)
3588 {
3589 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3590 symbol, -oplen for operator being replaced). */
3591 struct expression *newexp = (struct expression *)
3592 xmalloc (sizeof (struct expression)
3593 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3594 struct expression *exp = *expp;
3595
3596 newexp->nelts = exp->nelts + 7 - oplen;
3597 newexp->language_defn = exp->language_defn;
3598 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3599 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3600 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3601
3602 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3603 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3604
3605 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3606 newexp->elts[pc + 4].block = block;
3607 newexp->elts[pc + 5].symbol = sym;
3608
3609 *expp = newexp;
3610 xfree (exp);
3611 }
3612
3613 /* Type-class predicates */
3614
3615 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3616 or FLOAT). */
3617
3618 static int
3619 numeric_type_p (struct type *type)
3620 {
3621 if (type == NULL)
3622 return 0;
3623 else
3624 {
3625 switch (TYPE_CODE (type))
3626 {
3627 case TYPE_CODE_INT:
3628 case TYPE_CODE_FLT:
3629 return 1;
3630 case TYPE_CODE_RANGE:
3631 return (type == TYPE_TARGET_TYPE (type)
3632 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3633 default:
3634 return 0;
3635 }
3636 }
3637 }
3638
3639 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3640
3641 static int
3642 integer_type_p (struct type *type)
3643 {
3644 if (type == NULL)
3645 return 0;
3646 else
3647 {
3648 switch (TYPE_CODE (type))
3649 {
3650 case TYPE_CODE_INT:
3651 return 1;
3652 case TYPE_CODE_RANGE:
3653 return (type == TYPE_TARGET_TYPE (type)
3654 || integer_type_p (TYPE_TARGET_TYPE (type)));
3655 default:
3656 return 0;
3657 }
3658 }
3659 }
3660
3661 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3662
3663 static int
3664 scalar_type_p (struct type *type)
3665 {
3666 if (type == NULL)
3667 return 0;
3668 else
3669 {
3670 switch (TYPE_CODE (type))
3671 {
3672 case TYPE_CODE_INT:
3673 case TYPE_CODE_RANGE:
3674 case TYPE_CODE_ENUM:
3675 case TYPE_CODE_FLT:
3676 return 1;
3677 default:
3678 return 0;
3679 }
3680 }
3681 }
3682
3683 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3684
3685 static int
3686 discrete_type_p (struct type *type)
3687 {
3688 if (type == NULL)
3689 return 0;
3690 else
3691 {
3692 switch (TYPE_CODE (type))
3693 {
3694 case TYPE_CODE_INT:
3695 case TYPE_CODE_RANGE:
3696 case TYPE_CODE_ENUM:
3697 case TYPE_CODE_BOOL:
3698 return 1;
3699 default:
3700 return 0;
3701 }
3702 }
3703 }
3704
3705 /* Returns non-zero if OP with operands in the vector ARGS could be
3706 a user-defined function. Errs on the side of pre-defined operators
3707 (i.e., result 0). */
3708
3709 static int
3710 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3711 {
3712 struct type *type0 =
3713 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3714 struct type *type1 =
3715 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3716
3717 if (type0 == NULL)
3718 return 0;
3719
3720 switch (op)
3721 {
3722 default:
3723 return 0;
3724
3725 case BINOP_ADD:
3726 case BINOP_SUB:
3727 case BINOP_MUL:
3728 case BINOP_DIV:
3729 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3730
3731 case BINOP_REM:
3732 case BINOP_MOD:
3733 case BINOP_BITWISE_AND:
3734 case BINOP_BITWISE_IOR:
3735 case BINOP_BITWISE_XOR:
3736 return (!(integer_type_p (type0) && integer_type_p (type1)));
3737
3738 case BINOP_EQUAL:
3739 case BINOP_NOTEQUAL:
3740 case BINOP_LESS:
3741 case BINOP_GTR:
3742 case BINOP_LEQ:
3743 case BINOP_GEQ:
3744 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3745
3746 case BINOP_CONCAT:
3747 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3748
3749 case BINOP_EXP:
3750 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3751
3752 case UNOP_NEG:
3753 case UNOP_PLUS:
3754 case UNOP_LOGICAL_NOT:
3755 case UNOP_ABS:
3756 return (!numeric_type_p (type0));
3757
3758 }
3759 }
3760 \f
3761 /* Renaming */
3762
3763 /* NOTES:
3764
3765 1. In the following, we assume that a renaming type's name may
3766 have an ___XD suffix. It would be nice if this went away at some
3767 point.
3768 2. We handle both the (old) purely type-based representation of
3769 renamings and the (new) variable-based encoding. At some point,
3770 it is devoutly to be hoped that the former goes away
3771 (FIXME: hilfinger-2007-07-09).
3772 3. Subprogram renamings are not implemented, although the XRS
3773 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3774
3775 /* If SYM encodes a renaming,
3776
3777 <renaming> renames <renamed entity>,
3778
3779 sets *LEN to the length of the renamed entity's name,
3780 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3781 the string describing the subcomponent selected from the renamed
3782 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3783 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3784 are undefined). Otherwise, returns a value indicating the category
3785 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3786 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3787 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3788 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3789 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3790 may be NULL, in which case they are not assigned.
3791
3792 [Currently, however, GCC does not generate subprogram renamings.] */
3793
3794 enum ada_renaming_category
3795 ada_parse_renaming (struct symbol *sym,
3796 const char **renamed_entity, int *len,
3797 const char **renaming_expr)
3798 {
3799 enum ada_renaming_category kind;
3800 const char *info;
3801 const char *suffix;
3802
3803 if (sym == NULL)
3804 return ADA_NOT_RENAMING;
3805 switch (SYMBOL_CLASS (sym))
3806 {
3807 default:
3808 return ADA_NOT_RENAMING;
3809 case LOC_TYPEDEF:
3810 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3811 renamed_entity, len, renaming_expr);
3812 case LOC_LOCAL:
3813 case LOC_STATIC:
3814 case LOC_COMPUTED:
3815 case LOC_OPTIMIZED_OUT:
3816 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3817 if (info == NULL)
3818 return ADA_NOT_RENAMING;
3819 switch (info[5])
3820 {
3821 case '_':
3822 kind = ADA_OBJECT_RENAMING;
3823 info += 6;
3824 break;
3825 case 'E':
3826 kind = ADA_EXCEPTION_RENAMING;
3827 info += 7;
3828 break;
3829 case 'P':
3830 kind = ADA_PACKAGE_RENAMING;
3831 info += 7;
3832 break;
3833 case 'S':
3834 kind = ADA_SUBPROGRAM_RENAMING;
3835 info += 7;
3836 break;
3837 default:
3838 return ADA_NOT_RENAMING;
3839 }
3840 }
3841
3842 if (renamed_entity != NULL)
3843 *renamed_entity = info;
3844 suffix = strstr (info, "___XE");
3845 if (suffix == NULL || suffix == info)
3846 return ADA_NOT_RENAMING;
3847 if (len != NULL)
3848 *len = strlen (info) - strlen (suffix);
3849 suffix += 5;
3850 if (renaming_expr != NULL)
3851 *renaming_expr = suffix;
3852 return kind;
3853 }
3854
3855 /* Assuming TYPE encodes a renaming according to the old encoding in
3856 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3857 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3858 ADA_NOT_RENAMING otherwise. */
3859 static enum ada_renaming_category
3860 parse_old_style_renaming (struct type *type,
3861 const char **renamed_entity, int *len,
3862 const char **renaming_expr)
3863 {
3864 enum ada_renaming_category kind;
3865 const char *name;
3866 const char *info;
3867 const char *suffix;
3868
3869 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
3870 || TYPE_NFIELDS (type) != 1)
3871 return ADA_NOT_RENAMING;
3872
3873 name = type_name_no_tag (type);
3874 if (name == NULL)
3875 return ADA_NOT_RENAMING;
3876
3877 name = strstr (name, "___XR");
3878 if (name == NULL)
3879 return ADA_NOT_RENAMING;
3880 switch (name[5])
3881 {
3882 case '\0':
3883 case '_':
3884 kind = ADA_OBJECT_RENAMING;
3885 break;
3886 case 'E':
3887 kind = ADA_EXCEPTION_RENAMING;
3888 break;
3889 case 'P':
3890 kind = ADA_PACKAGE_RENAMING;
3891 break;
3892 case 'S':
3893 kind = ADA_SUBPROGRAM_RENAMING;
3894 break;
3895 default:
3896 return ADA_NOT_RENAMING;
3897 }
3898
3899 info = TYPE_FIELD_NAME (type, 0);
3900 if (info == NULL)
3901 return ADA_NOT_RENAMING;
3902 if (renamed_entity != NULL)
3903 *renamed_entity = info;
3904 suffix = strstr (info, "___XE");
3905 if (renaming_expr != NULL)
3906 *renaming_expr = suffix + 5;
3907 if (suffix == NULL || suffix == info)
3908 return ADA_NOT_RENAMING;
3909 if (len != NULL)
3910 *len = suffix - info;
3911 return kind;
3912 }
3913
3914 \f
3915
3916 /* Evaluation: Function Calls */
3917
3918 /* Return an lvalue containing the value VAL. This is the identity on
3919 lvalues, and otherwise has the side-effect of allocating memory
3920 in the inferior where a copy of the value contents is copied. */
3921
3922 static struct value *
3923 ensure_lval (struct value *val)
3924 {
3925 if (VALUE_LVAL (val) == not_lval
3926 || VALUE_LVAL (val) == lval_internalvar)
3927 {
3928 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
3929 const CORE_ADDR addr =
3930 value_as_long (value_allocate_space_in_inferior (len));
3931
3932 set_value_address (val, addr);
3933 VALUE_LVAL (val) = lval_memory;
3934 write_memory (addr, value_contents (val), len);
3935 }
3936
3937 return val;
3938 }
3939
3940 /* Return the value ACTUAL, converted to be an appropriate value for a
3941 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3942 allocating any necessary descriptors (fat pointers), or copies of
3943 values not residing in memory, updating it as needed. */
3944
3945 struct value *
3946 ada_convert_actual (struct value *actual, struct type *formal_type0)
3947 {
3948 struct type *actual_type = ada_check_typedef (value_type (actual));
3949 struct type *formal_type = ada_check_typedef (formal_type0);
3950 struct type *formal_target =
3951 TYPE_CODE (formal_type) == TYPE_CODE_PTR
3952 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
3953 struct type *actual_target =
3954 TYPE_CODE (actual_type) == TYPE_CODE_PTR
3955 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
3956
3957 if (ada_is_array_descriptor_type (formal_target)
3958 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
3959 return make_array_descriptor (formal_type, actual);
3960 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
3961 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
3962 {
3963 struct value *result;
3964
3965 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
3966 && ada_is_array_descriptor_type (actual_target))
3967 result = desc_data (actual);
3968 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
3969 {
3970 if (VALUE_LVAL (actual) != lval_memory)
3971 {
3972 struct value *val;
3973
3974 actual_type = ada_check_typedef (value_type (actual));
3975 val = allocate_value (actual_type);
3976 memcpy ((char *) value_contents_raw (val),
3977 (char *) value_contents (actual),
3978 TYPE_LENGTH (actual_type));
3979 actual = ensure_lval (val);
3980 }
3981 result = value_addr (actual);
3982 }
3983 else
3984 return actual;
3985 return value_cast_pointers (formal_type, result);
3986 }
3987 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
3988 return ada_value_ind (actual);
3989
3990 return actual;
3991 }
3992
3993 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
3994 type TYPE. This is usually an inefficient no-op except on some targets
3995 (such as AVR) where the representation of a pointer and an address
3996 differs. */
3997
3998 static CORE_ADDR
3999 value_pointer (struct value *value, struct type *type)
4000 {
4001 struct gdbarch *gdbarch = get_type_arch (type);
4002 unsigned len = TYPE_LENGTH (type);
4003 gdb_byte *buf = alloca (len);
4004 CORE_ADDR addr;
4005
4006 addr = value_address (value);
4007 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4008 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4009 return addr;
4010 }
4011
4012
4013 /* Push a descriptor of type TYPE for array value ARR on the stack at
4014 *SP, updating *SP to reflect the new descriptor. Return either
4015 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4016 to-descriptor type rather than a descriptor type), a struct value *
4017 representing a pointer to this descriptor. */
4018
4019 static struct value *
4020 make_array_descriptor (struct type *type, struct value *arr)
4021 {
4022 struct type *bounds_type = desc_bounds_type (type);
4023 struct type *desc_type = desc_base_type (type);
4024 struct value *descriptor = allocate_value (desc_type);
4025 struct value *bounds = allocate_value (bounds_type);
4026 int i;
4027
4028 for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1)
4029 {
4030 modify_field (value_type (bounds), value_contents_writeable (bounds),
4031 ada_array_bound (arr, i, 0),
4032 desc_bound_bitpos (bounds_type, i, 0),
4033 desc_bound_bitsize (bounds_type, i, 0));
4034 modify_field (value_type (bounds), value_contents_writeable (bounds),
4035 ada_array_bound (arr, i, 1),
4036 desc_bound_bitpos (bounds_type, i, 1),
4037 desc_bound_bitsize (bounds_type, i, 1));
4038 }
4039
4040 bounds = ensure_lval (bounds);
4041
4042 modify_field (value_type (descriptor),
4043 value_contents_writeable (descriptor),
4044 value_pointer (ensure_lval (arr),
4045 TYPE_FIELD_TYPE (desc_type, 0)),
4046 fat_pntr_data_bitpos (desc_type),
4047 fat_pntr_data_bitsize (desc_type));
4048
4049 modify_field (value_type (descriptor),
4050 value_contents_writeable (descriptor),
4051 value_pointer (bounds,
4052 TYPE_FIELD_TYPE (desc_type, 1)),
4053 fat_pntr_bounds_bitpos (desc_type),
4054 fat_pntr_bounds_bitsize (desc_type));
4055
4056 descriptor = ensure_lval (descriptor);
4057
4058 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4059 return value_addr (descriptor);
4060 else
4061 return descriptor;
4062 }
4063 \f
4064 /* Dummy definitions for an experimental caching module that is not
4065 * used in the public sources. */
4066
4067 static int
4068 lookup_cached_symbol (const char *name, domain_enum namespace,
4069 struct symbol **sym, struct block **block)
4070 {
4071 return 0;
4072 }
4073
4074 static void
4075 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
4076 struct block *block)
4077 {
4078 }
4079 \f
4080 /* Symbol Lookup */
4081
4082 /* Return the result of a standard (literal, C-like) lookup of NAME in
4083 given DOMAIN, visible from lexical block BLOCK. */
4084
4085 static struct symbol *
4086 standard_lookup (const char *name, const struct block *block,
4087 domain_enum domain)
4088 {
4089 struct symbol *sym;
4090
4091 if (lookup_cached_symbol (name, domain, &sym, NULL))
4092 return sym;
4093 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4094 cache_symbol (name, domain, sym, block_found);
4095 return sym;
4096 }
4097
4098
4099 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4100 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4101 since they contend in overloading in the same way. */
4102 static int
4103 is_nonfunction (struct ada_symbol_info syms[], int n)
4104 {
4105 int i;
4106
4107 for (i = 0; i < n; i += 1)
4108 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4109 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4110 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
4111 return 1;
4112
4113 return 0;
4114 }
4115
4116 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4117 struct types. Otherwise, they may not. */
4118
4119 static int
4120 equiv_types (struct type *type0, struct type *type1)
4121 {
4122 if (type0 == type1)
4123 return 1;
4124 if (type0 == NULL || type1 == NULL
4125 || TYPE_CODE (type0) != TYPE_CODE (type1))
4126 return 0;
4127 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4128 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4129 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4130 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4131 return 1;
4132
4133 return 0;
4134 }
4135
4136 /* True iff SYM0 represents the same entity as SYM1, or one that is
4137 no more defined than that of SYM1. */
4138
4139 static int
4140 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4141 {
4142 if (sym0 == sym1)
4143 return 1;
4144 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4145 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4146 return 0;
4147
4148 switch (SYMBOL_CLASS (sym0))
4149 {
4150 case LOC_UNDEF:
4151 return 1;
4152 case LOC_TYPEDEF:
4153 {
4154 struct type *type0 = SYMBOL_TYPE (sym0);
4155 struct type *type1 = SYMBOL_TYPE (sym1);
4156 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4157 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4158 int len0 = strlen (name0);
4159
4160 return
4161 TYPE_CODE (type0) == TYPE_CODE (type1)
4162 && (equiv_types (type0, type1)
4163 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4164 && strncmp (name1 + len0, "___XV", 5) == 0));
4165 }
4166 case LOC_CONST:
4167 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4168 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4169 default:
4170 return 0;
4171 }
4172 }
4173
4174 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4175 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4176
4177 static void
4178 add_defn_to_vec (struct obstack *obstackp,
4179 struct symbol *sym,
4180 struct block *block)
4181 {
4182 int i;
4183 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4184
4185 /* Do not try to complete stub types, as the debugger is probably
4186 already scanning all symbols matching a certain name at the
4187 time when this function is called. Trying to replace the stub
4188 type by its associated full type will cause us to restart a scan
4189 which may lead to an infinite recursion. Instead, the client
4190 collecting the matching symbols will end up collecting several
4191 matches, with at least one of them complete. It can then filter
4192 out the stub ones if needed. */
4193
4194 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4195 {
4196 if (lesseq_defined_than (sym, prevDefns[i].sym))
4197 return;
4198 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4199 {
4200 prevDefns[i].sym = sym;
4201 prevDefns[i].block = block;
4202 return;
4203 }
4204 }
4205
4206 {
4207 struct ada_symbol_info info;
4208
4209 info.sym = sym;
4210 info.block = block;
4211 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4212 }
4213 }
4214
4215 /* Number of ada_symbol_info structures currently collected in
4216 current vector in *OBSTACKP. */
4217
4218 static int
4219 num_defns_collected (struct obstack *obstackp)
4220 {
4221 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4222 }
4223
4224 /* Vector of ada_symbol_info structures currently collected in current
4225 vector in *OBSTACKP. If FINISH, close off the vector and return
4226 its final address. */
4227
4228 static struct ada_symbol_info *
4229 defns_collected (struct obstack *obstackp, int finish)
4230 {
4231 if (finish)
4232 return obstack_finish (obstackp);
4233 else
4234 return (struct ada_symbol_info *) obstack_base (obstackp);
4235 }
4236
4237 /* Return a minimal symbol matching NAME according to Ada decoding
4238 rules. Returns NULL if there is no such minimal symbol. Names
4239 prefixed with "standard__" are handled specially: "standard__" is
4240 first stripped off, and only static and global symbols are searched. */
4241
4242 struct minimal_symbol *
4243 ada_lookup_simple_minsym (const char *name)
4244 {
4245 struct objfile *objfile;
4246 struct minimal_symbol *msymbol;
4247 int wild_match;
4248
4249 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4250 {
4251 name += sizeof ("standard__") - 1;
4252 wild_match = 0;
4253 }
4254 else
4255 wild_match = (strstr (name, "__") == NULL);
4256
4257 ALL_MSYMBOLS (objfile, msymbol)
4258 {
4259 if (match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4260 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4261 return msymbol;
4262 }
4263
4264 return NULL;
4265 }
4266
4267 /* For all subprograms that statically enclose the subprogram of the
4268 selected frame, add symbols matching identifier NAME in DOMAIN
4269 and their blocks to the list of data in OBSTACKP, as for
4270 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4271 wildcard prefix. */
4272
4273 static void
4274 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4275 const char *name, domain_enum namespace,
4276 int wild_match)
4277 {
4278 }
4279
4280 /* True if TYPE is definitely an artificial type supplied to a symbol
4281 for which no debugging information was given in the symbol file. */
4282
4283 static int
4284 is_nondebugging_type (struct type *type)
4285 {
4286 char *name = ada_type_name (type);
4287
4288 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4289 }
4290
4291 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4292 duplicate other symbols in the list (The only case I know of where
4293 this happens is when object files containing stabs-in-ecoff are
4294 linked with files containing ordinary ecoff debugging symbols (or no
4295 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4296 Returns the number of items in the modified list. */
4297
4298 static int
4299 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4300 {
4301 int i, j;
4302
4303 i = 0;
4304 while (i < nsyms)
4305 {
4306 int remove = 0;
4307
4308 /* If two symbols have the same name and one of them is a stub type,
4309 the get rid of the stub. */
4310
4311 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4312 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4313 {
4314 for (j = 0; j < nsyms; j++)
4315 {
4316 if (j != i
4317 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4318 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4319 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4320 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4321 remove = 1;
4322 }
4323 }
4324
4325 /* Two symbols with the same name, same class and same address
4326 should be identical. */
4327
4328 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4329 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4330 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4331 {
4332 for (j = 0; j < nsyms; j += 1)
4333 {
4334 if (i != j
4335 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4336 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4337 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4338 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4339 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4340 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4341 remove = 1;
4342 }
4343 }
4344
4345 if (remove)
4346 {
4347 for (j = i + 1; j < nsyms; j += 1)
4348 syms[j - 1] = syms[j];
4349 nsyms -= 1;
4350 }
4351
4352 i += 1;
4353 }
4354 return nsyms;
4355 }
4356
4357 /* Given a type that corresponds to a renaming entity, use the type name
4358 to extract the scope (package name or function name, fully qualified,
4359 and following the GNAT encoding convention) where this renaming has been
4360 defined. The string returned needs to be deallocated after use. */
4361
4362 static char *
4363 xget_renaming_scope (struct type *renaming_type)
4364 {
4365 /* The renaming types adhere to the following convention:
4366 <scope>__<rename>___<XR extension>.
4367 So, to extract the scope, we search for the "___XR" extension,
4368 and then backtrack until we find the first "__". */
4369
4370 const char *name = type_name_no_tag (renaming_type);
4371 char *suffix = strstr (name, "___XR");
4372 char *last;
4373 int scope_len;
4374 char *scope;
4375
4376 /* Now, backtrack a bit until we find the first "__". Start looking
4377 at suffix - 3, as the <rename> part is at least one character long. */
4378
4379 for (last = suffix - 3; last > name; last--)
4380 if (last[0] == '_' && last[1] == '_')
4381 break;
4382
4383 /* Make a copy of scope and return it. */
4384
4385 scope_len = last - name;
4386 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4387
4388 strncpy (scope, name, scope_len);
4389 scope[scope_len] = '\0';
4390
4391 return scope;
4392 }
4393
4394 /* Return nonzero if NAME corresponds to a package name. */
4395
4396 static int
4397 is_package_name (const char *name)
4398 {
4399 /* Here, We take advantage of the fact that no symbols are generated
4400 for packages, while symbols are generated for each function.
4401 So the condition for NAME represent a package becomes equivalent
4402 to NAME not existing in our list of symbols. There is only one
4403 small complication with library-level functions (see below). */
4404
4405 char *fun_name;
4406
4407 /* If it is a function that has not been defined at library level,
4408 then we should be able to look it up in the symbols. */
4409 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4410 return 0;
4411
4412 /* Library-level function names start with "_ada_". See if function
4413 "_ada_" followed by NAME can be found. */
4414
4415 /* Do a quick check that NAME does not contain "__", since library-level
4416 functions names cannot contain "__" in them. */
4417 if (strstr (name, "__") != NULL)
4418 return 0;
4419
4420 fun_name = xstrprintf ("_ada_%s", name);
4421
4422 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4423 }
4424
4425 /* Return nonzero if SYM corresponds to a renaming entity that is
4426 not visible from FUNCTION_NAME. */
4427
4428 static int
4429 old_renaming_is_invisible (const struct symbol *sym, char *function_name)
4430 {
4431 char *scope;
4432
4433 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4434 return 0;
4435
4436 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4437
4438 make_cleanup (xfree, scope);
4439
4440 /* If the rename has been defined in a package, then it is visible. */
4441 if (is_package_name (scope))
4442 return 0;
4443
4444 /* Check that the rename is in the current function scope by checking
4445 that its name starts with SCOPE. */
4446
4447 /* If the function name starts with "_ada_", it means that it is
4448 a library-level function. Strip this prefix before doing the
4449 comparison, as the encoding for the renaming does not contain
4450 this prefix. */
4451 if (strncmp (function_name, "_ada_", 5) == 0)
4452 function_name += 5;
4453
4454 return (strncmp (function_name, scope, strlen (scope)) != 0);
4455 }
4456
4457 /* Remove entries from SYMS that corresponds to a renaming entity that
4458 is not visible from the function associated with CURRENT_BLOCK or
4459 that is superfluous due to the presence of more specific renaming
4460 information. Places surviving symbols in the initial entries of
4461 SYMS and returns the number of surviving symbols.
4462
4463 Rationale:
4464 First, in cases where an object renaming is implemented as a
4465 reference variable, GNAT may produce both the actual reference
4466 variable and the renaming encoding. In this case, we discard the
4467 latter.
4468
4469 Second, GNAT emits a type following a specified encoding for each renaming
4470 entity. Unfortunately, STABS currently does not support the definition
4471 of types that are local to a given lexical block, so all renamings types
4472 are emitted at library level. As a consequence, if an application
4473 contains two renaming entities using the same name, and a user tries to
4474 print the value of one of these entities, the result of the ada symbol
4475 lookup will also contain the wrong renaming type.
4476
4477 This function partially covers for this limitation by attempting to
4478 remove from the SYMS list renaming symbols that should be visible
4479 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4480 method with the current information available. The implementation
4481 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4482
4483 - When the user tries to print a rename in a function while there
4484 is another rename entity defined in a package: Normally, the
4485 rename in the function has precedence over the rename in the
4486 package, so the latter should be removed from the list. This is
4487 currently not the case.
4488
4489 - This function will incorrectly remove valid renames if
4490 the CURRENT_BLOCK corresponds to a function which symbol name
4491 has been changed by an "Export" pragma. As a consequence,
4492 the user will be unable to print such rename entities. */
4493
4494 static int
4495 remove_irrelevant_renamings (struct ada_symbol_info *syms,
4496 int nsyms, const struct block *current_block)
4497 {
4498 struct symbol *current_function;
4499 char *current_function_name;
4500 int i;
4501 int is_new_style_renaming;
4502
4503 /* If there is both a renaming foo___XR... encoded as a variable and
4504 a simple variable foo in the same block, discard the latter.
4505 First, zero out such symbols, then compress. */
4506 is_new_style_renaming = 0;
4507 for (i = 0; i < nsyms; i += 1)
4508 {
4509 struct symbol *sym = syms[i].sym;
4510 struct block *block = syms[i].block;
4511 const char *name;
4512 const char *suffix;
4513
4514 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4515 continue;
4516 name = SYMBOL_LINKAGE_NAME (sym);
4517 suffix = strstr (name, "___XR");
4518
4519 if (suffix != NULL)
4520 {
4521 int name_len = suffix - name;
4522 int j;
4523
4524 is_new_style_renaming = 1;
4525 for (j = 0; j < nsyms; j += 1)
4526 if (i != j && syms[j].sym != NULL
4527 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4528 name_len) == 0
4529 && block == syms[j].block)
4530 syms[j].sym = NULL;
4531 }
4532 }
4533 if (is_new_style_renaming)
4534 {
4535 int j, k;
4536
4537 for (j = k = 0; j < nsyms; j += 1)
4538 if (syms[j].sym != NULL)
4539 {
4540 syms[k] = syms[j];
4541 k += 1;
4542 }
4543 return k;
4544 }
4545
4546 /* Extract the function name associated to CURRENT_BLOCK.
4547 Abort if unable to do so. */
4548
4549 if (current_block == NULL)
4550 return nsyms;
4551
4552 current_function = block_linkage_function (current_block);
4553 if (current_function == NULL)
4554 return nsyms;
4555
4556 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4557 if (current_function_name == NULL)
4558 return nsyms;
4559
4560 /* Check each of the symbols, and remove it from the list if it is
4561 a type corresponding to a renaming that is out of the scope of
4562 the current block. */
4563
4564 i = 0;
4565 while (i < nsyms)
4566 {
4567 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4568 == ADA_OBJECT_RENAMING
4569 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4570 {
4571 int j;
4572
4573 for (j = i + 1; j < nsyms; j += 1)
4574 syms[j - 1] = syms[j];
4575 nsyms -= 1;
4576 }
4577 else
4578 i += 1;
4579 }
4580
4581 return nsyms;
4582 }
4583
4584 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4585 whose name and domain match NAME and DOMAIN respectively.
4586 If no match was found, then extend the search to "enclosing"
4587 routines (in other words, if we're inside a nested function,
4588 search the symbols defined inside the enclosing functions).
4589
4590 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4591
4592 static void
4593 ada_add_local_symbols (struct obstack *obstackp, const char *name,
4594 struct block *block, domain_enum domain,
4595 int wild_match)
4596 {
4597 int block_depth = 0;
4598
4599 while (block != NULL)
4600 {
4601 block_depth += 1;
4602 ada_add_block_symbols (obstackp, block, name, domain, NULL, wild_match);
4603
4604 /* If we found a non-function match, assume that's the one. */
4605 if (is_nonfunction (defns_collected (obstackp, 0),
4606 num_defns_collected (obstackp)))
4607 return;
4608
4609 block = BLOCK_SUPERBLOCK (block);
4610 }
4611
4612 /* If no luck so far, try to find NAME as a local symbol in some lexically
4613 enclosing subprogram. */
4614 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4615 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match);
4616 }
4617
4618 /* An object of this type is used as the user_data argument when
4619 calling the map_matching_symbols method. */
4620
4621 struct match_data
4622 {
4623 struct objfile *objfile;
4624 struct obstack *obstackp;
4625 struct symbol *arg_sym;
4626 int found_sym;
4627 };
4628
4629 /* A callback for add_matching_symbols that adds SYM, found in BLOCK,
4630 to a list of symbols. DATA0 is a pointer to a struct match_data *
4631 containing the obstack that collects the symbol list, the file that SYM
4632 must come from, a flag indicating whether a non-argument symbol has
4633 been found in the current block, and the last argument symbol
4634 passed in SYM within the current block (if any). When SYM is null,
4635 marking the end of a block, the argument symbol is added if no
4636 other has been found. */
4637
4638 static int
4639 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
4640 {
4641 struct match_data *data = (struct match_data *) data0;
4642
4643 if (sym == NULL)
4644 {
4645 if (!data->found_sym && data->arg_sym != NULL)
4646 add_defn_to_vec (data->obstackp,
4647 fixup_symbol_section (data->arg_sym, data->objfile),
4648 block);
4649 data->found_sym = 0;
4650 data->arg_sym = NULL;
4651 }
4652 else
4653 {
4654 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4655 return 0;
4656 else if (SYMBOL_IS_ARGUMENT (sym))
4657 data->arg_sym = sym;
4658 else
4659 {
4660 data->found_sym = 1;
4661 add_defn_to_vec (data->obstackp,
4662 fixup_symbol_section (sym, data->objfile),
4663 block);
4664 }
4665 }
4666 return 0;
4667 }
4668
4669 /* Compare STRING1 to STRING2, with results as for strcmp.
4670 Compatible with strcmp_iw in that strcmp_iw (STRING1, STRING2) <= 0
4671 implies compare_names (STRING1, STRING2) (they may differ as to
4672 what symbols compare equal). */
4673
4674 static int
4675 compare_names (const char *string1, const char *string2)
4676 {
4677 while (*string1 != '\0' && *string2 != '\0')
4678 {
4679 if (isspace (*string1) || isspace (*string2))
4680 return strcmp_iw_ordered (string1, string2);
4681 if (*string1 != *string2)
4682 break;
4683 string1 += 1;
4684 string2 += 1;
4685 }
4686 switch (*string1)
4687 {
4688 case '(':
4689 return strcmp_iw_ordered (string1, string2);
4690 case '_':
4691 if (*string2 == '\0')
4692 {
4693 if (is_name_suffix (string2))
4694 return 0;
4695 else
4696 return -1;
4697 }
4698 default:
4699 if (*string2 == '(')
4700 return strcmp_iw_ordered (string1, string2);
4701 else
4702 return *string1 - *string2;
4703 }
4704 }
4705
4706 /* Add to OBSTACKP all non-local symbols whose name and domain match
4707 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
4708 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
4709
4710 static void
4711 add_nonlocal_symbols (struct obstack *obstackp, const char *name,
4712 domain_enum domain, int global,
4713 int is_wild_match)
4714 {
4715 struct objfile *objfile;
4716 struct match_data data;
4717
4718 data.obstackp = obstackp;
4719 data.arg_sym = NULL;
4720
4721 ALL_OBJFILES (objfile)
4722 {
4723 data.objfile = objfile;
4724
4725 if (is_wild_match)
4726 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
4727 aux_add_nonlocal_symbols, &data,
4728 wild_match, NULL);
4729 else
4730 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
4731 aux_add_nonlocal_symbols, &data,
4732 full_match, compare_names);
4733 }
4734
4735 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
4736 {
4737 ALL_OBJFILES (objfile)
4738 {
4739 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
4740 strcpy (name1, "_ada_");
4741 strcpy (name1 + sizeof ("_ada_") - 1, name);
4742 data.objfile = objfile;
4743 objfile->sf->qf->map_matching_symbols (name1, domain, objfile, global,
4744 aux_add_nonlocal_symbols, &data,
4745 full_match, compare_names);
4746 }
4747 }
4748 }
4749
4750 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4751 scope and in global scopes, returning the number of matches. Sets
4752 *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4753 indicating the symbols found and the blocks and symbol tables (if
4754 any) in which they were found. This vector are transient---good only to
4755 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4756 symbol match within the nest of blocks whose innermost member is BLOCK0,
4757 is the one match returned (no other matches in that or
4758 enclosing blocks is returned). If there are any matches in or
4759 surrounding BLOCK0, then these alone are returned. Otherwise, the
4760 search extends to global and file-scope (static) symbol tables.
4761 Names prefixed with "standard__" are handled specially: "standard__"
4762 is first stripped off, and only static and global symbols are searched. */
4763
4764 int
4765 ada_lookup_symbol_list (const char *name0, const struct block *block0,
4766 domain_enum namespace,
4767 struct ada_symbol_info **results)
4768 {
4769 struct symbol *sym;
4770 struct block *block;
4771 const char *name;
4772 int wild_match;
4773 int cacheIfUnique;
4774 int ndefns;
4775
4776 obstack_free (&symbol_list_obstack, NULL);
4777 obstack_init (&symbol_list_obstack);
4778
4779 cacheIfUnique = 0;
4780
4781 /* Search specified block and its superiors. */
4782
4783 wild_match = (strstr (name0, "__") == NULL);
4784 name = name0;
4785 block = (struct block *) block0; /* FIXME: No cast ought to be
4786 needed, but adding const will
4787 have a cascade effect. */
4788
4789 /* Special case: If the user specifies a symbol name inside package
4790 Standard, do a non-wild matching of the symbol name without
4791 the "standard__" prefix. This was primarily introduced in order
4792 to allow the user to specifically access the standard exceptions
4793 using, for instance, Standard.Constraint_Error when Constraint_Error
4794 is ambiguous (due to the user defining its own Constraint_Error
4795 entity inside its program). */
4796 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4797 {
4798 wild_match = 0;
4799 block = NULL;
4800 name = name0 + sizeof ("standard__") - 1;
4801 }
4802
4803 /* Check the non-global symbols. If we have ANY match, then we're done. */
4804
4805 ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
4806 wild_match);
4807 if (num_defns_collected (&symbol_list_obstack) > 0)
4808 goto done;
4809
4810 /* No non-global symbols found. Check our cache to see if we have
4811 already performed this search before. If we have, then return
4812 the same result. */
4813
4814 cacheIfUnique = 1;
4815 if (lookup_cached_symbol (name0, namespace, &sym, &block))
4816 {
4817 if (sym != NULL)
4818 add_defn_to_vec (&symbol_list_obstack, sym, block);
4819 goto done;
4820 }
4821
4822 /* Search symbols from all global blocks. */
4823
4824 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
4825 wild_match);
4826
4827 /* Now add symbols from all per-file blocks if we've gotten no hits
4828 (not strictly correct, but perhaps better than an error). */
4829
4830 if (num_defns_collected (&symbol_list_obstack) == 0)
4831 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
4832 wild_match);
4833
4834 done:
4835 ndefns = num_defns_collected (&symbol_list_obstack);
4836 *results = defns_collected (&symbol_list_obstack, 1);
4837
4838 ndefns = remove_extra_symbols (*results, ndefns);
4839
4840 if (ndefns == 0)
4841 cache_symbol (name0, namespace, NULL, NULL);
4842
4843 if (ndefns == 1 && cacheIfUnique)
4844 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
4845
4846 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
4847
4848 return ndefns;
4849 }
4850
4851 struct symbol *
4852 ada_lookup_encoded_symbol (const char *name, const struct block *block0,
4853 domain_enum namespace, struct block **block_found)
4854 {
4855 struct ada_symbol_info *candidates;
4856 int n_candidates;
4857
4858 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates);
4859
4860 if (n_candidates == 0)
4861 return NULL;
4862
4863 if (block_found != NULL)
4864 *block_found = candidates[0].block;
4865
4866 return fixup_symbol_section (candidates[0].sym, NULL);
4867 }
4868
4869 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4870 scope and in global scopes, or NULL if none. NAME is folded and
4871 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4872 choosing the first symbol if there are multiple choices.
4873 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4874 table in which the symbol was found (in both cases, these
4875 assignments occur only if the pointers are non-null). */
4876 struct symbol *
4877 ada_lookup_symbol (const char *name, const struct block *block0,
4878 domain_enum namespace, int *is_a_field_of_this)
4879 {
4880 if (is_a_field_of_this != NULL)
4881 *is_a_field_of_this = 0;
4882
4883 return
4884 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
4885 block0, namespace, NULL);
4886 }
4887
4888 static struct symbol *
4889 ada_lookup_symbol_nonlocal (const char *name,
4890 const struct block *block,
4891 const domain_enum domain)
4892 {
4893 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
4894 }
4895
4896
4897 /* True iff STR is a possible encoded suffix of a normal Ada name
4898 that is to be ignored for matching purposes. Suffixes of parallel
4899 names (e.g., XVE) are not included here. Currently, the possible suffixes
4900 are given by any of the regular expressions:
4901
4902 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
4903 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4904 _E[0-9]+[bs]$ [protected object entry suffixes]
4905 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
4906
4907 Also, any leading "__[0-9]+" sequence is skipped before the suffix
4908 match is performed. This sequence is used to differentiate homonyms,
4909 is an optional part of a valid name suffix. */
4910
4911 static int
4912 is_name_suffix (const char *str)
4913 {
4914 int k;
4915 const char *matching;
4916 const int len = strlen (str);
4917
4918 /* Skip optional leading __[0-9]+. */
4919
4920 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4921 {
4922 str += 3;
4923 while (isdigit (str[0]))
4924 str += 1;
4925 }
4926
4927 /* [.$][0-9]+ */
4928
4929 if (str[0] == '.' || str[0] == '$')
4930 {
4931 matching = str + 1;
4932 while (isdigit (matching[0]))
4933 matching += 1;
4934 if (matching[0] == '\0')
4935 return 1;
4936 }
4937
4938 /* ___[0-9]+ */
4939
4940 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
4941 {
4942 matching = str + 3;
4943 while (isdigit (matching[0]))
4944 matching += 1;
4945 if (matching[0] == '\0')
4946 return 1;
4947 }
4948
4949 #if 0
4950 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
4951 with a N at the end. Unfortunately, the compiler uses the same
4952 convention for other internal types it creates. So treating
4953 all entity names that end with an "N" as a name suffix causes
4954 some regressions. For instance, consider the case of an enumerated
4955 type. To support the 'Image attribute, it creates an array whose
4956 name ends with N.
4957 Having a single character like this as a suffix carrying some
4958 information is a bit risky. Perhaps we should change the encoding
4959 to be something like "_N" instead. In the meantime, do not do
4960 the following check. */
4961 /* Protected Object Subprograms */
4962 if (len == 1 && str [0] == 'N')
4963 return 1;
4964 #endif
4965
4966 /* _E[0-9]+[bs]$ */
4967 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
4968 {
4969 matching = str + 3;
4970 while (isdigit (matching[0]))
4971 matching += 1;
4972 if ((matching[0] == 'b' || matching[0] == 's')
4973 && matching [1] == '\0')
4974 return 1;
4975 }
4976
4977 /* ??? We should not modify STR directly, as we are doing below. This
4978 is fine in this case, but may become problematic later if we find
4979 that this alternative did not work, and want to try matching
4980 another one from the begining of STR. Since we modified it, we
4981 won't be able to find the begining of the string anymore! */
4982 if (str[0] == 'X')
4983 {
4984 str += 1;
4985 while (str[0] != '_' && str[0] != '\0')
4986 {
4987 if (str[0] != 'n' && str[0] != 'b')
4988 return 0;
4989 str += 1;
4990 }
4991 }
4992
4993 if (str[0] == '\000')
4994 return 1;
4995
4996 if (str[0] == '_')
4997 {
4998 if (str[1] != '_' || str[2] == '\000')
4999 return 0;
5000 if (str[2] == '_')
5001 {
5002 if (strcmp (str + 3, "JM") == 0)
5003 return 1;
5004 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5005 the LJM suffix in favor of the JM one. But we will
5006 still accept LJM as a valid suffix for a reasonable
5007 amount of time, just to allow ourselves to debug programs
5008 compiled using an older version of GNAT. */
5009 if (strcmp (str + 3, "LJM") == 0)
5010 return 1;
5011 if (str[3] != 'X')
5012 return 0;
5013 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5014 || str[4] == 'U' || str[4] == 'P')
5015 return 1;
5016 if (str[4] == 'R' && str[5] != 'T')
5017 return 1;
5018 return 0;
5019 }
5020 if (!isdigit (str[2]))
5021 return 0;
5022 for (k = 3; str[k] != '\0'; k += 1)
5023 if (!isdigit (str[k]) && str[k] != '_')
5024 return 0;
5025 return 1;
5026 }
5027 if (str[0] == '$' && isdigit (str[1]))
5028 {
5029 for (k = 2; str[k] != '\0'; k += 1)
5030 if (!isdigit (str[k]) && str[k] != '_')
5031 return 0;
5032 return 1;
5033 }
5034 return 0;
5035 }
5036
5037 /* Return non-zero if the string starting at NAME and ending before
5038 NAME_END contains no capital letters. */
5039
5040 static int
5041 is_valid_name_for_wild_match (const char *name0)
5042 {
5043 const char *decoded_name = ada_decode (name0);
5044 int i;
5045
5046 /* If the decoded name starts with an angle bracket, it means that
5047 NAME0 does not follow the GNAT encoding format. It should then
5048 not be allowed as a possible wild match. */
5049 if (decoded_name[0] == '<')
5050 return 0;
5051
5052 for (i=0; decoded_name[i] != '\0'; i++)
5053 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5054 return 0;
5055
5056 return 1;
5057 }
5058
5059 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5060 that could start a simple name. Assumes that *NAMEP points into
5061 the string beginning at NAME0. */
5062
5063 static int
5064 advance_wild_match (const char **namep, const char *name0, int target0)
5065 {
5066 const char *name = *namep;
5067
5068 while (1)
5069 {
5070 int t0, t1;
5071
5072 t0 = *name;
5073 if (t0 == '_')
5074 {
5075 t1 = name[1];
5076 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5077 {
5078 name += 1;
5079 if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5080 break;
5081 else
5082 name += 1;
5083 }
5084 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5085 || name[2] == target0))
5086 {
5087 name += 2;
5088 break;
5089 }
5090 else
5091 return 0;
5092 }
5093 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5094 name += 1;
5095 else
5096 return 0;
5097 }
5098
5099 *namep = name;
5100 return 1;
5101 }
5102
5103 /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5104 informational suffixes of NAME (i.e., for which is_name_suffix is
5105 true). Assumes that PATN is a lower-cased Ada simple name. */
5106
5107 static int
5108 wild_match (const char *name, const char *patn)
5109 {
5110 const char *p, *n;
5111 const char *name0 = name;
5112
5113 while (1)
5114 {
5115 const char *match = name;
5116
5117 if (*name == *patn)
5118 {
5119 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5120 if (*p != *name)
5121 break;
5122 if (*p == '\0' && is_name_suffix (name))
5123 return match != name0 && !is_valid_name_for_wild_match (name0);
5124
5125 if (name[-1] == '_')
5126 name -= 1;
5127 }
5128 if (!advance_wild_match (&name, name0, *patn))
5129 return 1;
5130 }
5131 }
5132
5133 /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5134 informational suffix. */
5135
5136 static int
5137 full_match (const char *sym_name, const char *search_name)
5138 {
5139 return !match_name (sym_name, search_name, 0);
5140 }
5141
5142
5143 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5144 vector *defn_symbols, updating the list of symbols in OBSTACKP
5145 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5146 OBJFILE is the section containing BLOCK.
5147 SYMTAB is recorded with each symbol added. */
5148
5149 static void
5150 ada_add_block_symbols (struct obstack *obstackp,
5151 struct block *block, const char *name,
5152 domain_enum domain, struct objfile *objfile,
5153 int wild)
5154 {
5155 struct dict_iterator iter;
5156 int name_len = strlen (name);
5157 /* A matching argument symbol, if any. */
5158 struct symbol *arg_sym;
5159 /* Set true when we find a matching non-argument symbol. */
5160 int found_sym;
5161 struct symbol *sym;
5162
5163 arg_sym = NULL;
5164 found_sym = 0;
5165 if (wild)
5166 {
5167 for (sym = dict_iter_match_first (BLOCK_DICT (block), name,
5168 wild_match, &iter);
5169 sym != NULL; sym = dict_iter_match_next (name, wild_match, &iter))
5170 {
5171 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5172 SYMBOL_DOMAIN (sym), domain)
5173 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
5174 {
5175 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5176 continue;
5177 else if (SYMBOL_IS_ARGUMENT (sym))
5178 arg_sym = sym;
5179 else
5180 {
5181 found_sym = 1;
5182 add_defn_to_vec (obstackp,
5183 fixup_symbol_section (sym, objfile),
5184 block);
5185 }
5186 }
5187 }
5188 }
5189 else
5190 {
5191 for (sym = dict_iter_match_first (BLOCK_DICT (block), name,
5192 full_match, &iter);
5193 sym != NULL; sym = dict_iter_match_next (name, full_match, &iter))
5194 {
5195 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5196 SYMBOL_DOMAIN (sym), domain))
5197 {
5198 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5199 {
5200 if (SYMBOL_IS_ARGUMENT (sym))
5201 arg_sym = sym;
5202 else
5203 {
5204 found_sym = 1;
5205 add_defn_to_vec (obstackp,
5206 fixup_symbol_section (sym, objfile),
5207 block);
5208 }
5209 }
5210 }
5211 }
5212 }
5213
5214 if (!found_sym && arg_sym != NULL)
5215 {
5216 add_defn_to_vec (obstackp,
5217 fixup_symbol_section (arg_sym, objfile),
5218 block);
5219 }
5220
5221 if (!wild)
5222 {
5223 arg_sym = NULL;
5224 found_sym = 0;
5225
5226 ALL_BLOCK_SYMBOLS (block, iter, sym)
5227 {
5228 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5229 SYMBOL_DOMAIN (sym), domain))
5230 {
5231 int cmp;
5232
5233 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5234 if (cmp == 0)
5235 {
5236 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5237 if (cmp == 0)
5238 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5239 name_len);
5240 }
5241
5242 if (cmp == 0
5243 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5244 {
5245 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5246 {
5247 if (SYMBOL_IS_ARGUMENT (sym))
5248 arg_sym = sym;
5249 else
5250 {
5251 found_sym = 1;
5252 add_defn_to_vec (obstackp,
5253 fixup_symbol_section (sym, objfile),
5254 block);
5255 }
5256 }
5257 }
5258 }
5259 }
5260
5261 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5262 They aren't parameters, right? */
5263 if (!found_sym && arg_sym != NULL)
5264 {
5265 add_defn_to_vec (obstackp,
5266 fixup_symbol_section (arg_sym, objfile),
5267 block);
5268 }
5269 }
5270 }
5271 \f
5272
5273 /* Symbol Completion */
5274
5275 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
5276 name in a form that's appropriate for the completion. The result
5277 does not need to be deallocated, but is only good until the next call.
5278
5279 TEXT_LEN is equal to the length of TEXT.
5280 Perform a wild match if WILD_MATCH is set.
5281 ENCODED should be set if TEXT represents the start of a symbol name
5282 in its encoded form. */
5283
5284 static const char *
5285 symbol_completion_match (const char *sym_name,
5286 const char *text, int text_len,
5287 int wild_match, int encoded)
5288 {
5289 const int verbatim_match = (text[0] == '<');
5290 int match = 0;
5291
5292 if (verbatim_match)
5293 {
5294 /* Strip the leading angle bracket. */
5295 text = text + 1;
5296 text_len--;
5297 }
5298
5299 /* First, test against the fully qualified name of the symbol. */
5300
5301 if (strncmp (sym_name, text, text_len) == 0)
5302 match = 1;
5303
5304 if (match && !encoded)
5305 {
5306 /* One needed check before declaring a positive match is to verify
5307 that iff we are doing a verbatim match, the decoded version
5308 of the symbol name starts with '<'. Otherwise, this symbol name
5309 is not a suitable completion. */
5310 const char *sym_name_copy = sym_name;
5311 int has_angle_bracket;
5312
5313 sym_name = ada_decode (sym_name);
5314 has_angle_bracket = (sym_name[0] == '<');
5315 match = (has_angle_bracket == verbatim_match);
5316 sym_name = sym_name_copy;
5317 }
5318
5319 if (match && !verbatim_match)
5320 {
5321 /* When doing non-verbatim match, another check that needs to
5322 be done is to verify that the potentially matching symbol name
5323 does not include capital letters, because the ada-mode would
5324 not be able to understand these symbol names without the
5325 angle bracket notation. */
5326 const char *tmp;
5327
5328 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5329 if (*tmp != '\0')
5330 match = 0;
5331 }
5332
5333 /* Second: Try wild matching... */
5334
5335 if (!match && wild_match)
5336 {
5337 /* Since we are doing wild matching, this means that TEXT
5338 may represent an unqualified symbol name. We therefore must
5339 also compare TEXT against the unqualified name of the symbol. */
5340 sym_name = ada_unqualified_name (ada_decode (sym_name));
5341
5342 if (strncmp (sym_name, text, text_len) == 0)
5343 match = 1;
5344 }
5345
5346 /* Finally: If we found a mach, prepare the result to return. */
5347
5348 if (!match)
5349 return NULL;
5350
5351 if (verbatim_match)
5352 sym_name = add_angle_brackets (sym_name);
5353
5354 if (!encoded)
5355 sym_name = ada_decode (sym_name);
5356
5357 return sym_name;
5358 }
5359
5360 DEF_VEC_P (char_ptr);
5361
5362 /* A companion function to ada_make_symbol_completion_list().
5363 Check if SYM_NAME represents a symbol which name would be suitable
5364 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5365 it is appended at the end of the given string vector SV.
5366
5367 ORIG_TEXT is the string original string from the user command
5368 that needs to be completed. WORD is the entire command on which
5369 completion should be performed. These two parameters are used to
5370 determine which part of the symbol name should be added to the
5371 completion vector.
5372 if WILD_MATCH is set, then wild matching is performed.
5373 ENCODED should be set if TEXT represents a symbol name in its
5374 encoded formed (in which case the completion should also be
5375 encoded). */
5376
5377 static void
5378 symbol_completion_add (VEC(char_ptr) **sv,
5379 const char *sym_name,
5380 const char *text, int text_len,
5381 const char *orig_text, const char *word,
5382 int wild_match, int encoded)
5383 {
5384 const char *match = symbol_completion_match (sym_name, text, text_len,
5385 wild_match, encoded);
5386 char *completion;
5387
5388 if (match == NULL)
5389 return;
5390
5391 /* We found a match, so add the appropriate completion to the given
5392 string vector. */
5393
5394 if (word == orig_text)
5395 {
5396 completion = xmalloc (strlen (match) + 5);
5397 strcpy (completion, match);
5398 }
5399 else if (word > orig_text)
5400 {
5401 /* Return some portion of sym_name. */
5402 completion = xmalloc (strlen (match) + 5);
5403 strcpy (completion, match + (word - orig_text));
5404 }
5405 else
5406 {
5407 /* Return some of ORIG_TEXT plus sym_name. */
5408 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5409 strncpy (completion, word, orig_text - word);
5410 completion[orig_text - word] = '\0';
5411 strcat (completion, match);
5412 }
5413
5414 VEC_safe_push (char_ptr, *sv, completion);
5415 }
5416
5417 /* An object of this type is passed as the user_data argument to the
5418 map_partial_symbol_names method. */
5419 struct add_partial_datum
5420 {
5421 VEC(char_ptr) **completions;
5422 char *text;
5423 int text_len;
5424 char *text0;
5425 char *word;
5426 int wild_match;
5427 int encoded;
5428 };
5429
5430 /* A callback for map_partial_symbol_names. */
5431 static void
5432 ada_add_partial_symbol_completions (const char *name, void *user_data)
5433 {
5434 struct add_partial_datum *data = user_data;
5435
5436 symbol_completion_add (data->completions, name,
5437 data->text, data->text_len, data->text0, data->word,
5438 data->wild_match, data->encoded);
5439 }
5440
5441 /* Return a list of possible symbol names completing TEXT0. The list
5442 is NULL terminated. WORD is the entire command on which completion
5443 is made. */
5444
5445 static char **
5446 ada_make_symbol_completion_list (char *text0, char *word)
5447 {
5448 char *text;
5449 int text_len;
5450 int wild_match;
5451 int encoded;
5452 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
5453 struct symbol *sym;
5454 struct symtab *s;
5455 struct minimal_symbol *msymbol;
5456 struct objfile *objfile;
5457 struct block *b, *surrounding_static_block = 0;
5458 int i;
5459 struct dict_iterator iter;
5460
5461 if (text0[0] == '<')
5462 {
5463 text = xstrdup (text0);
5464 make_cleanup (xfree, text);
5465 text_len = strlen (text);
5466 wild_match = 0;
5467 encoded = 1;
5468 }
5469 else
5470 {
5471 text = xstrdup (ada_encode (text0));
5472 make_cleanup (xfree, text);
5473 text_len = strlen (text);
5474 for (i = 0; i < text_len; i++)
5475 text[i] = tolower (text[i]);
5476
5477 encoded = (strstr (text0, "__") != NULL);
5478 /* If the name contains a ".", then the user is entering a fully
5479 qualified entity name, and the match must not be done in wild
5480 mode. Similarly, if the user wants to complete what looks like
5481 an encoded name, the match must not be done in wild mode. */
5482 wild_match = (strchr (text0, '.') == NULL && !encoded);
5483 }
5484
5485 /* First, look at the partial symtab symbols. */
5486 {
5487 struct add_partial_datum data;
5488
5489 data.completions = &completions;
5490 data.text = text;
5491 data.text_len = text_len;
5492 data.text0 = text0;
5493 data.word = word;
5494 data.wild_match = wild_match;
5495 data.encoded = encoded;
5496 map_partial_symbol_names (ada_add_partial_symbol_completions, &data);
5497 }
5498
5499 /* At this point scan through the misc symbol vectors and add each
5500 symbol you find to the list. Eventually we want to ignore
5501 anything that isn't a text symbol (everything else will be
5502 handled by the psymtab code above). */
5503
5504 ALL_MSYMBOLS (objfile, msymbol)
5505 {
5506 QUIT;
5507 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
5508 text, text_len, text0, word, wild_match, encoded);
5509 }
5510
5511 /* Search upwards from currently selected frame (so that we can
5512 complete on local vars. */
5513
5514 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5515 {
5516 if (!BLOCK_SUPERBLOCK (b))
5517 surrounding_static_block = b; /* For elmin of dups */
5518
5519 ALL_BLOCK_SYMBOLS (b, iter, sym)
5520 {
5521 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5522 text, text_len, text0, word,
5523 wild_match, encoded);
5524 }
5525 }
5526
5527 /* Go through the symtabs and check the externs and statics for
5528 symbols which match. */
5529
5530 ALL_SYMTABS (objfile, s)
5531 {
5532 QUIT;
5533 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5534 ALL_BLOCK_SYMBOLS (b, iter, sym)
5535 {
5536 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5537 text, text_len, text0, word,
5538 wild_match, encoded);
5539 }
5540 }
5541
5542 ALL_SYMTABS (objfile, s)
5543 {
5544 QUIT;
5545 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5546 /* Don't do this block twice. */
5547 if (b == surrounding_static_block)
5548 continue;
5549 ALL_BLOCK_SYMBOLS (b, iter, sym)
5550 {
5551 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5552 text, text_len, text0, word,
5553 wild_match, encoded);
5554 }
5555 }
5556
5557 /* Append the closing NULL entry. */
5558 VEC_safe_push (char_ptr, completions, NULL);
5559
5560 /* Make a copy of the COMPLETIONS VEC before we free it, and then
5561 return the copy. It's unfortunate that we have to make a copy
5562 of an array that we're about to destroy, but there is nothing much
5563 we can do about it. Fortunately, it's typically not a very large
5564 array. */
5565 {
5566 const size_t completions_size =
5567 VEC_length (char_ptr, completions) * sizeof (char *);
5568 char **result = malloc (completions_size);
5569
5570 memcpy (result, VEC_address (char_ptr, completions), completions_size);
5571
5572 VEC_free (char_ptr, completions);
5573 return result;
5574 }
5575 }
5576
5577 /* Field Access */
5578
5579 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5580 for tagged types. */
5581
5582 static int
5583 ada_is_dispatch_table_ptr_type (struct type *type)
5584 {
5585 char *name;
5586
5587 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5588 return 0;
5589
5590 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5591 if (name == NULL)
5592 return 0;
5593
5594 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5595 }
5596
5597 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5598 to be invisible to users. */
5599
5600 int
5601 ada_is_ignored_field (struct type *type, int field_num)
5602 {
5603 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5604 return 1;
5605
5606 /* Check the name of that field. */
5607 {
5608 const char *name = TYPE_FIELD_NAME (type, field_num);
5609
5610 /* Anonymous field names should not be printed.
5611 brobecker/2007-02-20: I don't think this can actually happen
5612 but we don't want to print the value of annonymous fields anyway. */
5613 if (name == NULL)
5614 return 1;
5615
5616 /* A field named "_parent" is internally generated by GNAT for
5617 tagged types, and should not be printed either. */
5618 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5619 return 1;
5620 }
5621
5622 /* If this is the dispatch table of a tagged type, then ignore. */
5623 if (ada_is_tagged_type (type, 1)
5624 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5625 return 1;
5626
5627 /* Not a special field, so it should not be ignored. */
5628 return 0;
5629 }
5630
5631 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5632 pointer or reference type whose ultimate target has a tag field. */
5633
5634 int
5635 ada_is_tagged_type (struct type *type, int refok)
5636 {
5637 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5638 }
5639
5640 /* True iff TYPE represents the type of X'Tag */
5641
5642 int
5643 ada_is_tag_type (struct type *type)
5644 {
5645 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5646 return 0;
5647 else
5648 {
5649 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5650
5651 return (name != NULL
5652 && strcmp (name, "ada__tags__dispatch_table") == 0);
5653 }
5654 }
5655
5656 /* The type of the tag on VAL. */
5657
5658 struct type *
5659 ada_tag_type (struct value *val)
5660 {
5661 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
5662 }
5663
5664 /* The value of the tag on VAL. */
5665
5666 struct value *
5667 ada_value_tag (struct value *val)
5668 {
5669 return ada_value_struct_elt (val, "_tag", 0);
5670 }
5671
5672 /* The value of the tag on the object of type TYPE whose contents are
5673 saved at VALADDR, if it is non-null, or is at memory address
5674 ADDRESS. */
5675
5676 static struct value *
5677 value_tag_from_contents_and_address (struct type *type,
5678 const gdb_byte *valaddr,
5679 CORE_ADDR address)
5680 {
5681 int tag_byte_offset;
5682 struct type *tag_type;
5683
5684 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
5685 NULL, NULL, NULL))
5686 {
5687 const gdb_byte *valaddr1 = ((valaddr == NULL)
5688 ? NULL
5689 : valaddr + tag_byte_offset);
5690 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
5691
5692 return value_from_contents_and_address (tag_type, valaddr1, address1);
5693 }
5694 return NULL;
5695 }
5696
5697 static struct type *
5698 type_from_tag (struct value *tag)
5699 {
5700 const char *type_name = ada_tag_name (tag);
5701
5702 if (type_name != NULL)
5703 return ada_find_any_type (ada_encode (type_name));
5704 return NULL;
5705 }
5706
5707 struct tag_args
5708 {
5709 struct value *tag;
5710 char *name;
5711 };
5712
5713
5714 static int ada_tag_name_1 (void *);
5715 static int ada_tag_name_2 (struct tag_args *);
5716
5717 /* Wrapper function used by ada_tag_name. Given a struct tag_args*
5718 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5719 The value stored in ARGS->name is valid until the next call to
5720 ada_tag_name_1. */
5721
5722 static int
5723 ada_tag_name_1 (void *args0)
5724 {
5725 struct tag_args *args = (struct tag_args *) args0;
5726 static char name[1024];
5727 char *p;
5728 struct value *val;
5729
5730 args->name = NULL;
5731 val = ada_value_struct_elt (args->tag, "tsd", 1);
5732 if (val == NULL)
5733 return ada_tag_name_2 (args);
5734 val = ada_value_struct_elt (val, "expanded_name", 1);
5735 if (val == NULL)
5736 return 0;
5737 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5738 for (p = name; *p != '\0'; p += 1)
5739 if (isalpha (*p))
5740 *p = tolower (*p);
5741 args->name = name;
5742 return 0;
5743 }
5744
5745 /* Return the "ada__tags__type_specific_data" type. */
5746
5747 static struct type *
5748 ada_get_tsd_type (struct inferior *inf)
5749 {
5750 struct ada_inferior_data *data = get_ada_inferior_data (inf);
5751
5752 if (data->tsd_type == 0)
5753 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
5754 return data->tsd_type;
5755 }
5756
5757 /* Utility function for ada_tag_name_1 that tries the second
5758 representation for the dispatch table (in which there is no
5759 explicit 'tsd' field in the referent of the tag pointer, and instead
5760 the tsd pointer is stored just before the dispatch table. */
5761
5762 static int
5763 ada_tag_name_2 (struct tag_args *args)
5764 {
5765 struct type *info_type;
5766 static char name[1024];
5767 char *p;
5768 struct value *val, *valp;
5769
5770 args->name = NULL;
5771 info_type = ada_get_tsd_type (current_inferior());
5772 if (info_type == NULL)
5773 return 0;
5774 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5775 valp = value_cast (info_type, args->tag);
5776 if (valp == NULL)
5777 return 0;
5778 val = value_ind (value_ptradd (valp, -1));
5779 if (val == NULL)
5780 return 0;
5781 val = ada_value_struct_elt (val, "expanded_name", 1);
5782 if (val == NULL)
5783 return 0;
5784 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5785 for (p = name; *p != '\0'; p += 1)
5786 if (isalpha (*p))
5787 *p = tolower (*p);
5788 args->name = name;
5789 return 0;
5790 }
5791
5792 /* The type name of the dynamic type denoted by the 'tag value TAG, as
5793 a C string. */
5794
5795 const char *
5796 ada_tag_name (struct value *tag)
5797 {
5798 struct tag_args args;
5799
5800 if (!ada_is_tag_type (value_type (tag)))
5801 return NULL;
5802 args.tag = tag;
5803 args.name = NULL;
5804 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5805 return args.name;
5806 }
5807
5808 /* The parent type of TYPE, or NULL if none. */
5809
5810 struct type *
5811 ada_parent_type (struct type *type)
5812 {
5813 int i;
5814
5815 type = ada_check_typedef (type);
5816
5817 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5818 return NULL;
5819
5820 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5821 if (ada_is_parent_field (type, i))
5822 {
5823 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
5824
5825 /* If the _parent field is a pointer, then dereference it. */
5826 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
5827 parent_type = TYPE_TARGET_TYPE (parent_type);
5828 /* If there is a parallel XVS type, get the actual base type. */
5829 parent_type = ada_get_base_type (parent_type);
5830
5831 return ada_check_typedef (parent_type);
5832 }
5833
5834 return NULL;
5835 }
5836
5837 /* True iff field number FIELD_NUM of structure type TYPE contains the
5838 parent-type (inherited) fields of a derived type. Assumes TYPE is
5839 a structure type with at least FIELD_NUM+1 fields. */
5840
5841 int
5842 ada_is_parent_field (struct type *type, int field_num)
5843 {
5844 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5845
5846 return (name != NULL
5847 && (strncmp (name, "PARENT", 6) == 0
5848 || strncmp (name, "_parent", 7) == 0));
5849 }
5850
5851 /* True iff field number FIELD_NUM of structure type TYPE is a
5852 transparent wrapper field (which should be silently traversed when doing
5853 field selection and flattened when printing). Assumes TYPE is a
5854 structure type with at least FIELD_NUM+1 fields. Such fields are always
5855 structures. */
5856
5857 int
5858 ada_is_wrapper_field (struct type *type, int field_num)
5859 {
5860 const char *name = TYPE_FIELD_NAME (type, field_num);
5861
5862 return (name != NULL
5863 && (strncmp (name, "PARENT", 6) == 0
5864 || strcmp (name, "REP") == 0
5865 || strncmp (name, "_parent", 7) == 0
5866 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
5867 }
5868
5869 /* True iff field number FIELD_NUM of structure or union type TYPE
5870 is a variant wrapper. Assumes TYPE is a structure type with at least
5871 FIELD_NUM+1 fields. */
5872
5873 int
5874 ada_is_variant_part (struct type *type, int field_num)
5875 {
5876 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5877
5878 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
5879 || (is_dynamic_field (type, field_num)
5880 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5881 == TYPE_CODE_UNION)));
5882 }
5883
5884 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
5885 whose discriminants are contained in the record type OUTER_TYPE,
5886 returns the type of the controlling discriminant for the variant.
5887 May return NULL if the type could not be found. */
5888
5889 struct type *
5890 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
5891 {
5892 char *name = ada_variant_discrim_name (var_type);
5893
5894 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
5895 }
5896
5897 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
5898 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
5899 represents a 'when others' clause; otherwise 0. */
5900
5901 int
5902 ada_is_others_clause (struct type *type, int field_num)
5903 {
5904 const char *name = TYPE_FIELD_NAME (type, field_num);
5905
5906 return (name != NULL && name[0] == 'O');
5907 }
5908
5909 /* Assuming that TYPE0 is the type of the variant part of a record,
5910 returns the name of the discriminant controlling the variant.
5911 The value is valid until the next call to ada_variant_discrim_name. */
5912
5913 char *
5914 ada_variant_discrim_name (struct type *type0)
5915 {
5916 static char *result = NULL;
5917 static size_t result_len = 0;
5918 struct type *type;
5919 const char *name;
5920 const char *discrim_end;
5921 const char *discrim_start;
5922
5923 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5924 type = TYPE_TARGET_TYPE (type0);
5925 else
5926 type = type0;
5927
5928 name = ada_type_name (type);
5929
5930 if (name == NULL || name[0] == '\000')
5931 return "";
5932
5933 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
5934 discrim_end -= 1)
5935 {
5936 if (strncmp (discrim_end, "___XVN", 6) == 0)
5937 break;
5938 }
5939 if (discrim_end == name)
5940 return "";
5941
5942 for (discrim_start = discrim_end; discrim_start != name + 3;
5943 discrim_start -= 1)
5944 {
5945 if (discrim_start == name + 1)
5946 return "";
5947 if ((discrim_start > name + 3
5948 && strncmp (discrim_start - 3, "___", 3) == 0)
5949 || discrim_start[-1] == '.')
5950 break;
5951 }
5952
5953 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
5954 strncpy (result, discrim_start, discrim_end - discrim_start);
5955 result[discrim_end - discrim_start] = '\0';
5956 return result;
5957 }
5958
5959 /* Scan STR for a subtype-encoded number, beginning at position K.
5960 Put the position of the character just past the number scanned in
5961 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
5962 Return 1 if there was a valid number at the given position, and 0
5963 otherwise. A "subtype-encoded" number consists of the absolute value
5964 in decimal, followed by the letter 'm' to indicate a negative number.
5965 Assumes 0m does not occur. */
5966
5967 int
5968 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
5969 {
5970 ULONGEST RU;
5971
5972 if (!isdigit (str[k]))
5973 return 0;
5974
5975 /* Do it the hard way so as not to make any assumption about
5976 the relationship of unsigned long (%lu scan format code) and
5977 LONGEST. */
5978 RU = 0;
5979 while (isdigit (str[k]))
5980 {
5981 RU = RU * 10 + (str[k] - '0');
5982 k += 1;
5983 }
5984
5985 if (str[k] == 'm')
5986 {
5987 if (R != NULL)
5988 *R = (-(LONGEST) (RU - 1)) - 1;
5989 k += 1;
5990 }
5991 else if (R != NULL)
5992 *R = (LONGEST) RU;
5993
5994 /* NOTE on the above: Technically, C does not say what the results of
5995 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
5996 number representable as a LONGEST (although either would probably work
5997 in most implementations). When RU>0, the locution in the then branch
5998 above is always equivalent to the negative of RU. */
5999
6000 if (new_k != NULL)
6001 *new_k = k;
6002 return 1;
6003 }
6004
6005 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6006 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6007 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6008
6009 int
6010 ada_in_variant (LONGEST val, struct type *type, int field_num)
6011 {
6012 const char *name = TYPE_FIELD_NAME (type, field_num);
6013 int p;
6014
6015 p = 0;
6016 while (1)
6017 {
6018 switch (name[p])
6019 {
6020 case '\0':
6021 return 0;
6022 case 'S':
6023 {
6024 LONGEST W;
6025
6026 if (!ada_scan_number (name, p + 1, &W, &p))
6027 return 0;
6028 if (val == W)
6029 return 1;
6030 break;
6031 }
6032 case 'R':
6033 {
6034 LONGEST L, U;
6035
6036 if (!ada_scan_number (name, p + 1, &L, &p)
6037 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6038 return 0;
6039 if (val >= L && val <= U)
6040 return 1;
6041 break;
6042 }
6043 case 'O':
6044 return 1;
6045 default:
6046 return 0;
6047 }
6048 }
6049 }
6050
6051 /* FIXME: Lots of redundancy below. Try to consolidate. */
6052
6053 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6054 ARG_TYPE, extract and return the value of one of its (non-static)
6055 fields. FIELDNO says which field. Differs from value_primitive_field
6056 only in that it can handle packed values of arbitrary type. */
6057
6058 static struct value *
6059 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6060 struct type *arg_type)
6061 {
6062 struct type *type;
6063
6064 arg_type = ada_check_typedef (arg_type);
6065 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6066
6067 /* Handle packed fields. */
6068
6069 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6070 {
6071 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6072 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6073
6074 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
6075 offset + bit_pos / 8,
6076 bit_pos % 8, bit_size, type);
6077 }
6078 else
6079 return value_primitive_field (arg1, offset, fieldno, arg_type);
6080 }
6081
6082 /* Find field with name NAME in object of type TYPE. If found,
6083 set the following for each argument that is non-null:
6084 - *FIELD_TYPE_P to the field's type;
6085 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6086 an object of that type;
6087 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6088 - *BIT_SIZE_P to its size in bits if the field is packed, and
6089 0 otherwise;
6090 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6091 fields up to but not including the desired field, or by the total
6092 number of fields if not found. A NULL value of NAME never
6093 matches; the function just counts visible fields in this case.
6094
6095 Returns 1 if found, 0 otherwise. */
6096
6097 static int
6098 find_struct_field (char *name, struct type *type, int offset,
6099 struct type **field_type_p,
6100 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6101 int *index_p)
6102 {
6103 int i;
6104
6105 type = ada_check_typedef (type);
6106
6107 if (field_type_p != NULL)
6108 *field_type_p = NULL;
6109 if (byte_offset_p != NULL)
6110 *byte_offset_p = 0;
6111 if (bit_offset_p != NULL)
6112 *bit_offset_p = 0;
6113 if (bit_size_p != NULL)
6114 *bit_size_p = 0;
6115
6116 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6117 {
6118 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6119 int fld_offset = offset + bit_pos / 8;
6120 char *t_field_name = TYPE_FIELD_NAME (type, i);
6121
6122 if (t_field_name == NULL)
6123 continue;
6124
6125 else if (name != NULL && field_name_match (t_field_name, name))
6126 {
6127 int bit_size = TYPE_FIELD_BITSIZE (type, i);
6128
6129 if (field_type_p != NULL)
6130 *field_type_p = TYPE_FIELD_TYPE (type, i);
6131 if (byte_offset_p != NULL)
6132 *byte_offset_p = fld_offset;
6133 if (bit_offset_p != NULL)
6134 *bit_offset_p = bit_pos % 8;
6135 if (bit_size_p != NULL)
6136 *bit_size_p = bit_size;
6137 return 1;
6138 }
6139 else if (ada_is_wrapper_field (type, i))
6140 {
6141 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6142 field_type_p, byte_offset_p, bit_offset_p,
6143 bit_size_p, index_p))
6144 return 1;
6145 }
6146 else if (ada_is_variant_part (type, i))
6147 {
6148 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6149 fixed type?? */
6150 int j;
6151 struct type *field_type
6152 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6153
6154 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6155 {
6156 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6157 fld_offset
6158 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6159 field_type_p, byte_offset_p,
6160 bit_offset_p, bit_size_p, index_p))
6161 return 1;
6162 }
6163 }
6164 else if (index_p != NULL)
6165 *index_p += 1;
6166 }
6167 return 0;
6168 }
6169
6170 /* Number of user-visible fields in record type TYPE. */
6171
6172 static int
6173 num_visible_fields (struct type *type)
6174 {
6175 int n;
6176
6177 n = 0;
6178 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6179 return n;
6180 }
6181
6182 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
6183 and search in it assuming it has (class) type TYPE.
6184 If found, return value, else return NULL.
6185
6186 Searches recursively through wrapper fields (e.g., '_parent'). */
6187
6188 static struct value *
6189 ada_search_struct_field (char *name, struct value *arg, int offset,
6190 struct type *type)
6191 {
6192 int i;
6193
6194 type = ada_check_typedef (type);
6195 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6196 {
6197 char *t_field_name = TYPE_FIELD_NAME (type, i);
6198
6199 if (t_field_name == NULL)
6200 continue;
6201
6202 else if (field_name_match (t_field_name, name))
6203 return ada_value_primitive_field (arg, offset, i, type);
6204
6205 else if (ada_is_wrapper_field (type, i))
6206 {
6207 struct value *v = /* Do not let indent join lines here. */
6208 ada_search_struct_field (name, arg,
6209 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6210 TYPE_FIELD_TYPE (type, i));
6211
6212 if (v != NULL)
6213 return v;
6214 }
6215
6216 else if (ada_is_variant_part (type, i))
6217 {
6218 /* PNH: Do we ever get here? See find_struct_field. */
6219 int j;
6220 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6221 i));
6222 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6223
6224 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6225 {
6226 struct value *v = ada_search_struct_field /* Force line break. */
6227 (name, arg,
6228 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6229 TYPE_FIELD_TYPE (field_type, j));
6230
6231 if (v != NULL)
6232 return v;
6233 }
6234 }
6235 }
6236 return NULL;
6237 }
6238
6239 static struct value *ada_index_struct_field_1 (int *, struct value *,
6240 int, struct type *);
6241
6242
6243 /* Return field #INDEX in ARG, where the index is that returned by
6244 * find_struct_field through its INDEX_P argument. Adjust the address
6245 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6246 * If found, return value, else return NULL. */
6247
6248 static struct value *
6249 ada_index_struct_field (int index, struct value *arg, int offset,
6250 struct type *type)
6251 {
6252 return ada_index_struct_field_1 (&index, arg, offset, type);
6253 }
6254
6255
6256 /* Auxiliary function for ada_index_struct_field. Like
6257 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6258 * *INDEX_P. */
6259
6260 static struct value *
6261 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6262 struct type *type)
6263 {
6264 int i;
6265 type = ada_check_typedef (type);
6266
6267 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6268 {
6269 if (TYPE_FIELD_NAME (type, i) == NULL)
6270 continue;
6271 else if (ada_is_wrapper_field (type, i))
6272 {
6273 struct value *v = /* Do not let indent join lines here. */
6274 ada_index_struct_field_1 (index_p, arg,
6275 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6276 TYPE_FIELD_TYPE (type, i));
6277
6278 if (v != NULL)
6279 return v;
6280 }
6281
6282 else if (ada_is_variant_part (type, i))
6283 {
6284 /* PNH: Do we ever get here? See ada_search_struct_field,
6285 find_struct_field. */
6286 error (_("Cannot assign this kind of variant record"));
6287 }
6288 else if (*index_p == 0)
6289 return ada_value_primitive_field (arg, offset, i, type);
6290 else
6291 *index_p -= 1;
6292 }
6293 return NULL;
6294 }
6295
6296 /* Given ARG, a value of type (pointer or reference to a)*
6297 structure/union, extract the component named NAME from the ultimate
6298 target structure/union and return it as a value with its
6299 appropriate type.
6300
6301 The routine searches for NAME among all members of the structure itself
6302 and (recursively) among all members of any wrapper members
6303 (e.g., '_parent').
6304
6305 If NO_ERR, then simply return NULL in case of error, rather than
6306 calling error. */
6307
6308 struct value *
6309 ada_value_struct_elt (struct value *arg, char *name, int no_err)
6310 {
6311 struct type *t, *t1;
6312 struct value *v;
6313
6314 v = NULL;
6315 t1 = t = ada_check_typedef (value_type (arg));
6316 if (TYPE_CODE (t) == TYPE_CODE_REF)
6317 {
6318 t1 = TYPE_TARGET_TYPE (t);
6319 if (t1 == NULL)
6320 goto BadValue;
6321 t1 = ada_check_typedef (t1);
6322 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6323 {
6324 arg = coerce_ref (arg);
6325 t = t1;
6326 }
6327 }
6328
6329 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6330 {
6331 t1 = TYPE_TARGET_TYPE (t);
6332 if (t1 == NULL)
6333 goto BadValue;
6334 t1 = ada_check_typedef (t1);
6335 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6336 {
6337 arg = value_ind (arg);
6338 t = t1;
6339 }
6340 else
6341 break;
6342 }
6343
6344 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
6345 goto BadValue;
6346
6347 if (t1 == t)
6348 v = ada_search_struct_field (name, arg, 0, t);
6349 else
6350 {
6351 int bit_offset, bit_size, byte_offset;
6352 struct type *field_type;
6353 CORE_ADDR address;
6354
6355 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6356 address = value_as_address (arg);
6357 else
6358 address = unpack_pointer (t, value_contents (arg));
6359
6360 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
6361 if (find_struct_field (name, t1, 0,
6362 &field_type, &byte_offset, &bit_offset,
6363 &bit_size, NULL))
6364 {
6365 if (bit_size != 0)
6366 {
6367 if (TYPE_CODE (t) == TYPE_CODE_REF)
6368 arg = ada_coerce_ref (arg);
6369 else
6370 arg = ada_value_ind (arg);
6371 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6372 bit_offset, bit_size,
6373 field_type);
6374 }
6375 else
6376 v = value_at_lazy (field_type, address + byte_offset);
6377 }
6378 }
6379
6380 if (v != NULL || no_err)
6381 return v;
6382 else
6383 error (_("There is no member named %s."), name);
6384
6385 BadValue:
6386 if (no_err)
6387 return NULL;
6388 else
6389 error (_("Attempt to extract a component of a value that is not a record."));
6390 }
6391
6392 /* Given a type TYPE, look up the type of the component of type named NAME.
6393 If DISPP is non-null, add its byte displacement from the beginning of a
6394 structure (pointed to by a value) of type TYPE to *DISPP (does not
6395 work for packed fields).
6396
6397 Matches any field whose name has NAME as a prefix, possibly
6398 followed by "___".
6399
6400 TYPE can be either a struct or union. If REFOK, TYPE may also
6401 be a (pointer or reference)+ to a struct or union, and the
6402 ultimate target type will be searched.
6403
6404 Looks recursively into variant clauses and parent types.
6405
6406 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6407 TYPE is not a type of the right kind. */
6408
6409 static struct type *
6410 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6411 int noerr, int *dispp)
6412 {
6413 int i;
6414
6415 if (name == NULL)
6416 goto BadName;
6417
6418 if (refok && type != NULL)
6419 while (1)
6420 {
6421 type = ada_check_typedef (type);
6422 if (TYPE_CODE (type) != TYPE_CODE_PTR
6423 && TYPE_CODE (type) != TYPE_CODE_REF)
6424 break;
6425 type = TYPE_TARGET_TYPE (type);
6426 }
6427
6428 if (type == NULL
6429 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6430 && TYPE_CODE (type) != TYPE_CODE_UNION))
6431 {
6432 if (noerr)
6433 return NULL;
6434 else
6435 {
6436 target_terminal_ours ();
6437 gdb_flush (gdb_stdout);
6438 if (type == NULL)
6439 error (_("Type (null) is not a structure or union type"));
6440 else
6441 {
6442 /* XXX: type_sprint */
6443 fprintf_unfiltered (gdb_stderr, _("Type "));
6444 type_print (type, "", gdb_stderr, -1);
6445 error (_(" is not a structure or union type"));
6446 }
6447 }
6448 }
6449
6450 type = to_static_fixed_type (type);
6451
6452 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6453 {
6454 char *t_field_name = TYPE_FIELD_NAME (type, i);
6455 struct type *t;
6456 int disp;
6457
6458 if (t_field_name == NULL)
6459 continue;
6460
6461 else if (field_name_match (t_field_name, name))
6462 {
6463 if (dispp != NULL)
6464 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
6465 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6466 }
6467
6468 else if (ada_is_wrapper_field (type, i))
6469 {
6470 disp = 0;
6471 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6472 0, 1, &disp);
6473 if (t != NULL)
6474 {
6475 if (dispp != NULL)
6476 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6477 return t;
6478 }
6479 }
6480
6481 else if (ada_is_variant_part (type, i))
6482 {
6483 int j;
6484 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6485 i));
6486
6487 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6488 {
6489 /* FIXME pnh 2008/01/26: We check for a field that is
6490 NOT wrapped in a struct, since the compiler sometimes
6491 generates these for unchecked variant types. Revisit
6492 if the compiler changes this practice. */
6493 char *v_field_name = TYPE_FIELD_NAME (field_type, j);
6494 disp = 0;
6495 if (v_field_name != NULL
6496 && field_name_match (v_field_name, name))
6497 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6498 else
6499 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
6500 name, 0, 1, &disp);
6501
6502 if (t != NULL)
6503 {
6504 if (dispp != NULL)
6505 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6506 return t;
6507 }
6508 }
6509 }
6510
6511 }
6512
6513 BadName:
6514 if (!noerr)
6515 {
6516 target_terminal_ours ();
6517 gdb_flush (gdb_stdout);
6518 if (name == NULL)
6519 {
6520 /* XXX: type_sprint */
6521 fprintf_unfiltered (gdb_stderr, _("Type "));
6522 type_print (type, "", gdb_stderr, -1);
6523 error (_(" has no component named <null>"));
6524 }
6525 else
6526 {
6527 /* XXX: type_sprint */
6528 fprintf_unfiltered (gdb_stderr, _("Type "));
6529 type_print (type, "", gdb_stderr, -1);
6530 error (_(" has no component named %s"), name);
6531 }
6532 }
6533
6534 return NULL;
6535 }
6536
6537 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6538 within a value of type OUTER_TYPE, return true iff VAR_TYPE
6539 represents an unchecked union (that is, the variant part of a
6540 record that is named in an Unchecked_Union pragma). */
6541
6542 static int
6543 is_unchecked_variant (struct type *var_type, struct type *outer_type)
6544 {
6545 char *discrim_name = ada_variant_discrim_name (var_type);
6546
6547 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
6548 == NULL);
6549 }
6550
6551
6552 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6553 within a value of type OUTER_TYPE that is stored in GDB at
6554 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6555 numbering from 0) is applicable. Returns -1 if none are. */
6556
6557 int
6558 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
6559 const gdb_byte *outer_valaddr)
6560 {
6561 int others_clause;
6562 int i;
6563 char *discrim_name = ada_variant_discrim_name (var_type);
6564 struct value *outer;
6565 struct value *discrim;
6566 LONGEST discrim_val;
6567
6568 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6569 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6570 if (discrim == NULL)
6571 return -1;
6572 discrim_val = value_as_long (discrim);
6573
6574 others_clause = -1;
6575 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6576 {
6577 if (ada_is_others_clause (var_type, i))
6578 others_clause = i;
6579 else if (ada_in_variant (discrim_val, var_type, i))
6580 return i;
6581 }
6582
6583 return others_clause;
6584 }
6585 \f
6586
6587
6588 /* Dynamic-Sized Records */
6589
6590 /* Strategy: The type ostensibly attached to a value with dynamic size
6591 (i.e., a size that is not statically recorded in the debugging
6592 data) does not accurately reflect the size or layout of the value.
6593 Our strategy is to convert these values to values with accurate,
6594 conventional types that are constructed on the fly. */
6595
6596 /* There is a subtle and tricky problem here. In general, we cannot
6597 determine the size of dynamic records without its data. However,
6598 the 'struct value' data structure, which GDB uses to represent
6599 quantities in the inferior process (the target), requires the size
6600 of the type at the time of its allocation in order to reserve space
6601 for GDB's internal copy of the data. That's why the
6602 'to_fixed_xxx_type' routines take (target) addresses as parameters,
6603 rather than struct value*s.
6604
6605 However, GDB's internal history variables ($1, $2, etc.) are
6606 struct value*s containing internal copies of the data that are not, in
6607 general, the same as the data at their corresponding addresses in
6608 the target. Fortunately, the types we give to these values are all
6609 conventional, fixed-size types (as per the strategy described
6610 above), so that we don't usually have to perform the
6611 'to_fixed_xxx_type' conversions to look at their values.
6612 Unfortunately, there is one exception: if one of the internal
6613 history variables is an array whose elements are unconstrained
6614 records, then we will need to create distinct fixed types for each
6615 element selected. */
6616
6617 /* The upshot of all of this is that many routines take a (type, host
6618 address, target address) triple as arguments to represent a value.
6619 The host address, if non-null, is supposed to contain an internal
6620 copy of the relevant data; otherwise, the program is to consult the
6621 target at the target address. */
6622
6623 /* Assuming that VAL0 represents a pointer value, the result of
6624 dereferencing it. Differs from value_ind in its treatment of
6625 dynamic-sized types. */
6626
6627 struct value *
6628 ada_value_ind (struct value *val0)
6629 {
6630 struct value *val = unwrap_value (value_ind (val0));
6631
6632 return ada_to_fixed_value (val);
6633 }
6634
6635 /* The value resulting from dereferencing any "reference to"
6636 qualifiers on VAL0. */
6637
6638 static struct value *
6639 ada_coerce_ref (struct value *val0)
6640 {
6641 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
6642 {
6643 struct value *val = val0;
6644
6645 val = coerce_ref (val);
6646 val = unwrap_value (val);
6647 return ada_to_fixed_value (val);
6648 }
6649 else
6650 return val0;
6651 }
6652
6653 /* Return OFF rounded upward if necessary to a multiple of
6654 ALIGNMENT (a power of 2). */
6655
6656 static unsigned int
6657 align_value (unsigned int off, unsigned int alignment)
6658 {
6659 return (off + alignment - 1) & ~(alignment - 1);
6660 }
6661
6662 /* Return the bit alignment required for field #F of template type TYPE. */
6663
6664 static unsigned int
6665 field_alignment (struct type *type, int f)
6666 {
6667 const char *name = TYPE_FIELD_NAME (type, f);
6668 int len;
6669 int align_offset;
6670
6671 /* The field name should never be null, unless the debugging information
6672 is somehow malformed. In this case, we assume the field does not
6673 require any alignment. */
6674 if (name == NULL)
6675 return 1;
6676
6677 len = strlen (name);
6678
6679 if (!isdigit (name[len - 1]))
6680 return 1;
6681
6682 if (isdigit (name[len - 2]))
6683 align_offset = len - 2;
6684 else
6685 align_offset = len - 1;
6686
6687 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
6688 return TARGET_CHAR_BIT;
6689
6690 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6691 }
6692
6693 /* Find a symbol named NAME. Ignores ambiguity. */
6694
6695 struct symbol *
6696 ada_find_any_symbol (const char *name)
6697 {
6698 struct symbol *sym;
6699
6700 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6701 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6702 return sym;
6703
6704 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6705 return sym;
6706 }
6707
6708 /* Find a type named NAME. Ignores ambiguity. This routine will look
6709 solely for types defined by debug info, it will not search the GDB
6710 primitive types. */
6711
6712 struct type *
6713 ada_find_any_type (const char *name)
6714 {
6715 struct symbol *sym = ada_find_any_symbol (name);
6716
6717 if (sym != NULL)
6718 return SYMBOL_TYPE (sym);
6719
6720 return NULL;
6721 }
6722
6723 /* Given NAME and an associated BLOCK, search all symbols for
6724 NAME suffixed with "___XR", which is the ``renaming'' symbol
6725 associated to NAME. Return this symbol if found, return
6726 NULL otherwise. */
6727
6728 struct symbol *
6729 ada_find_renaming_symbol (const char *name, struct block *block)
6730 {
6731 struct symbol *sym;
6732
6733 sym = find_old_style_renaming_symbol (name, block);
6734
6735 if (sym != NULL)
6736 return sym;
6737
6738 /* Not right yet. FIXME pnh 7/20/2007. */
6739 sym = ada_find_any_symbol (name);
6740 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
6741 return sym;
6742 else
6743 return NULL;
6744 }
6745
6746 static struct symbol *
6747 find_old_style_renaming_symbol (const char *name, struct block *block)
6748 {
6749 const struct symbol *function_sym = block_linkage_function (block);
6750 char *rename;
6751
6752 if (function_sym != NULL)
6753 {
6754 /* If the symbol is defined inside a function, NAME is not fully
6755 qualified. This means we need to prepend the function name
6756 as well as adding the ``___XR'' suffix to build the name of
6757 the associated renaming symbol. */
6758 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
6759 /* Function names sometimes contain suffixes used
6760 for instance to qualify nested subprograms. When building
6761 the XR type name, we need to make sure that this suffix is
6762 not included. So do not include any suffix in the function
6763 name length below. */
6764 int function_name_len = ada_name_prefix_len (function_name);
6765 const int rename_len = function_name_len + 2 /* "__" */
6766 + strlen (name) + 6 /* "___XR\0" */ ;
6767
6768 /* Strip the suffix if necessary. */
6769 ada_remove_trailing_digits (function_name, &function_name_len);
6770 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
6771 ada_remove_Xbn_suffix (function_name, &function_name_len);
6772
6773 /* Library-level functions are a special case, as GNAT adds
6774 a ``_ada_'' prefix to the function name to avoid namespace
6775 pollution. However, the renaming symbols themselves do not
6776 have this prefix, so we need to skip this prefix if present. */
6777 if (function_name_len > 5 /* "_ada_" */
6778 && strstr (function_name, "_ada_") == function_name)
6779 {
6780 function_name += 5;
6781 function_name_len -= 5;
6782 }
6783
6784 rename = (char *) alloca (rename_len * sizeof (char));
6785 strncpy (rename, function_name, function_name_len);
6786 xsnprintf (rename + function_name_len, rename_len - function_name_len,
6787 "__%s___XR", name);
6788 }
6789 else
6790 {
6791 const int rename_len = strlen (name) + 6;
6792
6793 rename = (char *) alloca (rename_len * sizeof (char));
6794 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
6795 }
6796
6797 return ada_find_any_symbol (rename);
6798 }
6799
6800 /* Because of GNAT encoding conventions, several GDB symbols may match a
6801 given type name. If the type denoted by TYPE0 is to be preferred to
6802 that of TYPE1 for purposes of type printing, return non-zero;
6803 otherwise return 0. */
6804
6805 int
6806 ada_prefer_type (struct type *type0, struct type *type1)
6807 {
6808 if (type1 == NULL)
6809 return 1;
6810 else if (type0 == NULL)
6811 return 0;
6812 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6813 return 1;
6814 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6815 return 0;
6816 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6817 return 1;
6818 else if (ada_is_constrained_packed_array_type (type0))
6819 return 1;
6820 else if (ada_is_array_descriptor_type (type0)
6821 && !ada_is_array_descriptor_type (type1))
6822 return 1;
6823 else
6824 {
6825 const char *type0_name = type_name_no_tag (type0);
6826 const char *type1_name = type_name_no_tag (type1);
6827
6828 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
6829 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
6830 return 1;
6831 }
6832 return 0;
6833 }
6834
6835 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
6836 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6837
6838 char *
6839 ada_type_name (struct type *type)
6840 {
6841 if (type == NULL)
6842 return NULL;
6843 else if (TYPE_NAME (type) != NULL)
6844 return TYPE_NAME (type);
6845 else
6846 return TYPE_TAG_NAME (type);
6847 }
6848
6849 /* Search the list of "descriptive" types associated to TYPE for a type
6850 whose name is NAME. */
6851
6852 static struct type *
6853 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
6854 {
6855 struct type *result;
6856
6857 /* If there no descriptive-type info, then there is no parallel type
6858 to be found. */
6859 if (!HAVE_GNAT_AUX_INFO (type))
6860 return NULL;
6861
6862 result = TYPE_DESCRIPTIVE_TYPE (type);
6863 while (result != NULL)
6864 {
6865 char *result_name = ada_type_name (result);
6866
6867 if (result_name == NULL)
6868 {
6869 warning (_("unexpected null name on descriptive type"));
6870 return NULL;
6871 }
6872
6873 /* If the names match, stop. */
6874 if (strcmp (result_name, name) == 0)
6875 break;
6876
6877 /* Otherwise, look at the next item on the list, if any. */
6878 if (HAVE_GNAT_AUX_INFO (result))
6879 result = TYPE_DESCRIPTIVE_TYPE (result);
6880 else
6881 result = NULL;
6882 }
6883
6884 /* If we didn't find a match, see whether this is a packed array. With
6885 older compilers, the descriptive type information is either absent or
6886 irrelevant when it comes to packed arrays so the above lookup fails.
6887 Fall back to using a parallel lookup by name in this case. */
6888 if (result == NULL && ada_is_constrained_packed_array_type (type))
6889 return ada_find_any_type (name);
6890
6891 return result;
6892 }
6893
6894 /* Find a parallel type to TYPE with the specified NAME, using the
6895 descriptive type taken from the debugging information, if available,
6896 and otherwise using the (slower) name-based method. */
6897
6898 static struct type *
6899 ada_find_parallel_type_with_name (struct type *type, const char *name)
6900 {
6901 struct type *result = NULL;
6902
6903 if (HAVE_GNAT_AUX_INFO (type))
6904 result = find_parallel_type_by_descriptive_type (type, name);
6905 else
6906 result = ada_find_any_type (name);
6907
6908 return result;
6909 }
6910
6911 /* Same as above, but specify the name of the parallel type by appending
6912 SUFFIX to the name of TYPE. */
6913
6914 struct type *
6915 ada_find_parallel_type (struct type *type, const char *suffix)
6916 {
6917 char *name, *typename = ada_type_name (type);
6918 int len;
6919
6920 if (typename == NULL)
6921 return NULL;
6922
6923 len = strlen (typename);
6924
6925 name = (char *) alloca (len + strlen (suffix) + 1);
6926
6927 strcpy (name, typename);
6928 strcpy (name + len, suffix);
6929
6930 return ada_find_parallel_type_with_name (type, name);
6931 }
6932
6933 /* If TYPE is a variable-size record type, return the corresponding template
6934 type describing its fields. Otherwise, return NULL. */
6935
6936 static struct type *
6937 dynamic_template_type (struct type *type)
6938 {
6939 type = ada_check_typedef (type);
6940
6941 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
6942 || ada_type_name (type) == NULL)
6943 return NULL;
6944 else
6945 {
6946 int len = strlen (ada_type_name (type));
6947
6948 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
6949 return type;
6950 else
6951 return ada_find_parallel_type (type, "___XVE");
6952 }
6953 }
6954
6955 /* Assuming that TEMPL_TYPE is a union or struct type, returns
6956 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
6957
6958 static int
6959 is_dynamic_field (struct type *templ_type, int field_num)
6960 {
6961 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
6962
6963 return name != NULL
6964 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
6965 && strstr (name, "___XVL") != NULL;
6966 }
6967
6968 /* The index of the variant field of TYPE, or -1 if TYPE does not
6969 represent a variant record type. */
6970
6971 static int
6972 variant_field_index (struct type *type)
6973 {
6974 int f;
6975
6976 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6977 return -1;
6978
6979 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
6980 {
6981 if (ada_is_variant_part (type, f))
6982 return f;
6983 }
6984 return -1;
6985 }
6986
6987 /* A record type with no fields. */
6988
6989 static struct type *
6990 empty_record (struct type *template)
6991 {
6992 struct type *type = alloc_type_copy (template);
6993
6994 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6995 TYPE_NFIELDS (type) = 0;
6996 TYPE_FIELDS (type) = NULL;
6997 INIT_CPLUS_SPECIFIC (type);
6998 TYPE_NAME (type) = "<empty>";
6999 TYPE_TAG_NAME (type) = NULL;
7000 TYPE_LENGTH (type) = 0;
7001 return type;
7002 }
7003
7004 /* An ordinary record type (with fixed-length fields) that describes
7005 the value of type TYPE at VALADDR or ADDRESS (see comments at
7006 the beginning of this section) VAL according to GNAT conventions.
7007 DVAL0 should describe the (portion of a) record that contains any
7008 necessary discriminants. It should be NULL if value_type (VAL) is
7009 an outer-level type (i.e., as opposed to a branch of a variant.) A
7010 variant field (unless unchecked) is replaced by a particular branch
7011 of the variant.
7012
7013 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7014 length are not statically known are discarded. As a consequence,
7015 VALADDR, ADDRESS and DVAL0 are ignored.
7016
7017 NOTE: Limitations: For now, we assume that dynamic fields and
7018 variants occupy whole numbers of bytes. However, they need not be
7019 byte-aligned. */
7020
7021 struct type *
7022 ada_template_to_fixed_record_type_1 (struct type *type,
7023 const gdb_byte *valaddr,
7024 CORE_ADDR address, struct value *dval0,
7025 int keep_dynamic_fields)
7026 {
7027 struct value *mark = value_mark ();
7028 struct value *dval;
7029 struct type *rtype;
7030 int nfields, bit_len;
7031 int variant_field;
7032 long off;
7033 int fld_bit_len, bit_incr;
7034 int f;
7035
7036 /* Compute the number of fields in this record type that are going
7037 to be processed: unless keep_dynamic_fields, this includes only
7038 fields whose position and length are static will be processed. */
7039 if (keep_dynamic_fields)
7040 nfields = TYPE_NFIELDS (type);
7041 else
7042 {
7043 nfields = 0;
7044 while (nfields < TYPE_NFIELDS (type)
7045 && !ada_is_variant_part (type, nfields)
7046 && !is_dynamic_field (type, nfields))
7047 nfields++;
7048 }
7049
7050 rtype = alloc_type_copy (type);
7051 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7052 INIT_CPLUS_SPECIFIC (rtype);
7053 TYPE_NFIELDS (rtype) = nfields;
7054 TYPE_FIELDS (rtype) = (struct field *)
7055 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7056 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7057 TYPE_NAME (rtype) = ada_type_name (type);
7058 TYPE_TAG_NAME (rtype) = NULL;
7059 TYPE_FIXED_INSTANCE (rtype) = 1;
7060
7061 off = 0;
7062 bit_len = 0;
7063 variant_field = -1;
7064
7065 for (f = 0; f < nfields; f += 1)
7066 {
7067 off = align_value (off, field_alignment (type, f))
7068 + TYPE_FIELD_BITPOS (type, f);
7069 TYPE_FIELD_BITPOS (rtype, f) = off;
7070 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7071
7072 if (ada_is_variant_part (type, f))
7073 {
7074 variant_field = f;
7075 fld_bit_len = bit_incr = 0;
7076 }
7077 else if (is_dynamic_field (type, f))
7078 {
7079 const gdb_byte *field_valaddr = valaddr;
7080 CORE_ADDR field_address = address;
7081 struct type *field_type =
7082 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7083
7084 if (dval0 == NULL)
7085 {
7086 /* rtype's length is computed based on the run-time
7087 value of discriminants. If the discriminants are not
7088 initialized, the type size may be completely bogus and
7089 GDB may fail to allocate a value for it. So check the
7090 size first before creating the value. */
7091 check_size (rtype);
7092 dval = value_from_contents_and_address (rtype, valaddr, address);
7093 }
7094 else
7095 dval = dval0;
7096
7097 /* If the type referenced by this field is an aligner type, we need
7098 to unwrap that aligner type, because its size might not be set.
7099 Keeping the aligner type would cause us to compute the wrong
7100 size for this field, impacting the offset of the all the fields
7101 that follow this one. */
7102 if (ada_is_aligner_type (field_type))
7103 {
7104 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7105
7106 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7107 field_address = cond_offset_target (field_address, field_offset);
7108 field_type = ada_aligned_type (field_type);
7109 }
7110
7111 field_valaddr = cond_offset_host (field_valaddr,
7112 off / TARGET_CHAR_BIT);
7113 field_address = cond_offset_target (field_address,
7114 off / TARGET_CHAR_BIT);
7115
7116 /* Get the fixed type of the field. Note that, in this case,
7117 we do not want to get the real type out of the tag: if
7118 the current field is the parent part of a tagged record,
7119 we will get the tag of the object. Clearly wrong: the real
7120 type of the parent is not the real type of the child. We
7121 would end up in an infinite loop. */
7122 field_type = ada_get_base_type (field_type);
7123 field_type = ada_to_fixed_type (field_type, field_valaddr,
7124 field_address, dval, 0);
7125
7126 TYPE_FIELD_TYPE (rtype, f) = field_type;
7127 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7128 bit_incr = fld_bit_len =
7129 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7130 }
7131 else
7132 {
7133 struct type *field_type = TYPE_FIELD_TYPE (type, f);
7134
7135 TYPE_FIELD_TYPE (rtype, f) = field_type;
7136 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7137 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7138 bit_incr = fld_bit_len =
7139 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7140 else
7141 bit_incr = fld_bit_len =
7142 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7143 }
7144 if (off + fld_bit_len > bit_len)
7145 bit_len = off + fld_bit_len;
7146 off += bit_incr;
7147 TYPE_LENGTH (rtype) =
7148 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7149 }
7150
7151 /* We handle the variant part, if any, at the end because of certain
7152 odd cases in which it is re-ordered so as NOT to be the last field of
7153 the record. This can happen in the presence of representation
7154 clauses. */
7155 if (variant_field >= 0)
7156 {
7157 struct type *branch_type;
7158
7159 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7160
7161 if (dval0 == NULL)
7162 dval = value_from_contents_and_address (rtype, valaddr, address);
7163 else
7164 dval = dval0;
7165
7166 branch_type =
7167 to_fixed_variant_branch_type
7168 (TYPE_FIELD_TYPE (type, variant_field),
7169 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7170 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7171 if (branch_type == NULL)
7172 {
7173 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
7174 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7175 TYPE_NFIELDS (rtype) -= 1;
7176 }
7177 else
7178 {
7179 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7180 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7181 fld_bit_len =
7182 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
7183 TARGET_CHAR_BIT;
7184 if (off + fld_bit_len > bit_len)
7185 bit_len = off + fld_bit_len;
7186 TYPE_LENGTH (rtype) =
7187 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7188 }
7189 }
7190
7191 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7192 should contain the alignment of that record, which should be a strictly
7193 positive value. If null or negative, then something is wrong, most
7194 probably in the debug info. In that case, we don't round up the size
7195 of the resulting type. If this record is not part of another structure,
7196 the current RTYPE length might be good enough for our purposes. */
7197 if (TYPE_LENGTH (type) <= 0)
7198 {
7199 if (TYPE_NAME (rtype))
7200 warning (_("Invalid type size for `%s' detected: %d."),
7201 TYPE_NAME (rtype), TYPE_LENGTH (type));
7202 else
7203 warning (_("Invalid type size for <unnamed> detected: %d."),
7204 TYPE_LENGTH (type));
7205 }
7206 else
7207 {
7208 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
7209 TYPE_LENGTH (type));
7210 }
7211
7212 value_free_to_mark (mark);
7213 if (TYPE_LENGTH (rtype) > varsize_limit)
7214 error (_("record type with dynamic size is larger than varsize-limit"));
7215 return rtype;
7216 }
7217
7218 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7219 of 1. */
7220
7221 static struct type *
7222 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
7223 CORE_ADDR address, struct value *dval0)
7224 {
7225 return ada_template_to_fixed_record_type_1 (type, valaddr,
7226 address, dval0, 1);
7227 }
7228
7229 /* An ordinary record type in which ___XVL-convention fields and
7230 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7231 static approximations, containing all possible fields. Uses
7232 no runtime values. Useless for use in values, but that's OK,
7233 since the results are used only for type determinations. Works on both
7234 structs and unions. Representation note: to save space, we memorize
7235 the result of this function in the TYPE_TARGET_TYPE of the
7236 template type. */
7237
7238 static struct type *
7239 template_to_static_fixed_type (struct type *type0)
7240 {
7241 struct type *type;
7242 int nfields;
7243 int f;
7244
7245 if (TYPE_TARGET_TYPE (type0) != NULL)
7246 return TYPE_TARGET_TYPE (type0);
7247
7248 nfields = TYPE_NFIELDS (type0);
7249 type = type0;
7250
7251 for (f = 0; f < nfields; f += 1)
7252 {
7253 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
7254 struct type *new_type;
7255
7256 if (is_dynamic_field (type0, f))
7257 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
7258 else
7259 new_type = static_unwrap_type (field_type);
7260 if (type == type0 && new_type != field_type)
7261 {
7262 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
7263 TYPE_CODE (type) = TYPE_CODE (type0);
7264 INIT_CPLUS_SPECIFIC (type);
7265 TYPE_NFIELDS (type) = nfields;
7266 TYPE_FIELDS (type) = (struct field *)
7267 TYPE_ALLOC (type, nfields * sizeof (struct field));
7268 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7269 sizeof (struct field) * nfields);
7270 TYPE_NAME (type) = ada_type_name (type0);
7271 TYPE_TAG_NAME (type) = NULL;
7272 TYPE_FIXED_INSTANCE (type) = 1;
7273 TYPE_LENGTH (type) = 0;
7274 }
7275 TYPE_FIELD_TYPE (type, f) = new_type;
7276 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
7277 }
7278 return type;
7279 }
7280
7281 /* Given an object of type TYPE whose contents are at VALADDR and
7282 whose address in memory is ADDRESS, returns a revision of TYPE,
7283 which should be a non-dynamic-sized record, in which the variant
7284 part, if any, is replaced with the appropriate branch. Looks
7285 for discriminant values in DVAL0, which can be NULL if the record
7286 contains the necessary discriminant values. */
7287
7288 static struct type *
7289 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
7290 CORE_ADDR address, struct value *dval0)
7291 {
7292 struct value *mark = value_mark ();
7293 struct value *dval;
7294 struct type *rtype;
7295 struct type *branch_type;
7296 int nfields = TYPE_NFIELDS (type);
7297 int variant_field = variant_field_index (type);
7298
7299 if (variant_field == -1)
7300 return type;
7301
7302 if (dval0 == NULL)
7303 dval = value_from_contents_and_address (type, valaddr, address);
7304 else
7305 dval = dval0;
7306
7307 rtype = alloc_type_copy (type);
7308 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7309 INIT_CPLUS_SPECIFIC (rtype);
7310 TYPE_NFIELDS (rtype) = nfields;
7311 TYPE_FIELDS (rtype) =
7312 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7313 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
7314 sizeof (struct field) * nfields);
7315 TYPE_NAME (rtype) = ada_type_name (type);
7316 TYPE_TAG_NAME (rtype) = NULL;
7317 TYPE_FIXED_INSTANCE (rtype) = 1;
7318 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7319
7320 branch_type = to_fixed_variant_branch_type
7321 (TYPE_FIELD_TYPE (type, variant_field),
7322 cond_offset_host (valaddr,
7323 TYPE_FIELD_BITPOS (type, variant_field)
7324 / TARGET_CHAR_BIT),
7325 cond_offset_target (address,
7326 TYPE_FIELD_BITPOS (type, variant_field)
7327 / TARGET_CHAR_BIT), dval);
7328 if (branch_type == NULL)
7329 {
7330 int f;
7331
7332 for (f = variant_field + 1; f < nfields; f += 1)
7333 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7334 TYPE_NFIELDS (rtype) -= 1;
7335 }
7336 else
7337 {
7338 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7339 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7340 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7341 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7342 }
7343 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
7344
7345 value_free_to_mark (mark);
7346 return rtype;
7347 }
7348
7349 /* An ordinary record type (with fixed-length fields) that describes
7350 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7351 beginning of this section]. Any necessary discriminants' values
7352 should be in DVAL, a record value; it may be NULL if the object
7353 at ADDR itself contains any necessary discriminant values.
7354 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7355 values from the record are needed. Except in the case that DVAL,
7356 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7357 unchecked) is replaced by a particular branch of the variant.
7358
7359 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7360 is questionable and may be removed. It can arise during the
7361 processing of an unconstrained-array-of-record type where all the
7362 variant branches have exactly the same size. This is because in
7363 such cases, the compiler does not bother to use the XVS convention
7364 when encoding the record. I am currently dubious of this
7365 shortcut and suspect the compiler should be altered. FIXME. */
7366
7367 static struct type *
7368 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7369 CORE_ADDR address, struct value *dval)
7370 {
7371 struct type *templ_type;
7372
7373 if (TYPE_FIXED_INSTANCE (type0))
7374 return type0;
7375
7376 templ_type = dynamic_template_type (type0);
7377
7378 if (templ_type != NULL)
7379 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7380 else if (variant_field_index (type0) >= 0)
7381 {
7382 if (dval == NULL && valaddr == NULL && address == 0)
7383 return type0;
7384 return to_record_with_fixed_variant_part (type0, valaddr, address,
7385 dval);
7386 }
7387 else
7388 {
7389 TYPE_FIXED_INSTANCE (type0) = 1;
7390 return type0;
7391 }
7392
7393 }
7394
7395 /* An ordinary record type (with fixed-length fields) that describes
7396 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7397 union type. Any necessary discriminants' values should be in DVAL,
7398 a record value. That is, this routine selects the appropriate
7399 branch of the union at ADDR according to the discriminant value
7400 indicated in the union's type name. Returns VAR_TYPE0 itself if
7401 it represents a variant subject to a pragma Unchecked_Union. */
7402
7403 static struct type *
7404 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7405 CORE_ADDR address, struct value *dval)
7406 {
7407 int which;
7408 struct type *templ_type;
7409 struct type *var_type;
7410
7411 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7412 var_type = TYPE_TARGET_TYPE (var_type0);
7413 else
7414 var_type = var_type0;
7415
7416 templ_type = ada_find_parallel_type (var_type, "___XVU");
7417
7418 if (templ_type != NULL)
7419 var_type = templ_type;
7420
7421 if (is_unchecked_variant (var_type, value_type (dval)))
7422 return var_type0;
7423 which =
7424 ada_which_variant_applies (var_type,
7425 value_type (dval), value_contents (dval));
7426
7427 if (which < 0)
7428 return empty_record (var_type);
7429 else if (is_dynamic_field (var_type, which))
7430 return to_fixed_record_type
7431 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7432 valaddr, address, dval);
7433 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
7434 return
7435 to_fixed_record_type
7436 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
7437 else
7438 return TYPE_FIELD_TYPE (var_type, which);
7439 }
7440
7441 /* Assuming that TYPE0 is an array type describing the type of a value
7442 at ADDR, and that DVAL describes a record containing any
7443 discriminants used in TYPE0, returns a type for the value that
7444 contains no dynamic components (that is, no components whose sizes
7445 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7446 true, gives an error message if the resulting type's size is over
7447 varsize_limit. */
7448
7449 static struct type *
7450 to_fixed_array_type (struct type *type0, struct value *dval,
7451 int ignore_too_big)
7452 {
7453 struct type *index_type_desc;
7454 struct type *result;
7455 int constrained_packed_array_p;
7456
7457 if (TYPE_FIXED_INSTANCE (type0))
7458 return type0;
7459
7460 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
7461 if (constrained_packed_array_p)
7462 type0 = decode_constrained_packed_array_type (type0);
7463
7464 index_type_desc = ada_find_parallel_type (type0, "___XA");
7465 ada_fixup_array_indexes_type (index_type_desc);
7466 if (index_type_desc == NULL)
7467 {
7468 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
7469
7470 /* NOTE: elt_type---the fixed version of elt_type0---should never
7471 depend on the contents of the array in properly constructed
7472 debugging data. */
7473 /* Create a fixed version of the array element type.
7474 We're not providing the address of an element here,
7475 and thus the actual object value cannot be inspected to do
7476 the conversion. This should not be a problem, since arrays of
7477 unconstrained objects are not allowed. In particular, all
7478 the elements of an array of a tagged type should all be of
7479 the same type specified in the debugging info. No need to
7480 consult the object tag. */
7481 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
7482
7483 /* Make sure we always create a new array type when dealing with
7484 packed array types, since we're going to fix-up the array
7485 type length and element bitsize a little further down. */
7486 if (elt_type0 == elt_type && !constrained_packed_array_p)
7487 result = type0;
7488 else
7489 result = create_array_type (alloc_type_copy (type0),
7490 elt_type, TYPE_INDEX_TYPE (type0));
7491 }
7492 else
7493 {
7494 int i;
7495 struct type *elt_type0;
7496
7497 elt_type0 = type0;
7498 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
7499 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7500
7501 /* NOTE: result---the fixed version of elt_type0---should never
7502 depend on the contents of the array in properly constructed
7503 debugging data. */
7504 /* Create a fixed version of the array element type.
7505 We're not providing the address of an element here,
7506 and thus the actual object value cannot be inspected to do
7507 the conversion. This should not be a problem, since arrays of
7508 unconstrained objects are not allowed. In particular, all
7509 the elements of an array of a tagged type should all be of
7510 the same type specified in the debugging info. No need to
7511 consult the object tag. */
7512 result =
7513 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
7514
7515 elt_type0 = type0;
7516 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
7517 {
7518 struct type *range_type =
7519 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
7520
7521 result = create_array_type (alloc_type_copy (elt_type0),
7522 result, range_type);
7523 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7524 }
7525 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
7526 error (_("array type with dynamic size is larger than varsize-limit"));
7527 }
7528
7529 if (constrained_packed_array_p)
7530 {
7531 /* So far, the resulting type has been created as if the original
7532 type was a regular (non-packed) array type. As a result, the
7533 bitsize of the array elements needs to be set again, and the array
7534 length needs to be recomputed based on that bitsize. */
7535 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
7536 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
7537
7538 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
7539 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
7540 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
7541 TYPE_LENGTH (result)++;
7542 }
7543
7544 TYPE_FIXED_INSTANCE (result) = 1;
7545 return result;
7546 }
7547
7548
7549 /* A standard type (containing no dynamically sized components)
7550 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7551 DVAL describes a record containing any discriminants used in TYPE0,
7552 and may be NULL if there are none, or if the object of type TYPE at
7553 ADDRESS or in VALADDR contains these discriminants.
7554
7555 If CHECK_TAG is not null, in the case of tagged types, this function
7556 attempts to locate the object's tag and use it to compute the actual
7557 type. However, when ADDRESS is null, we cannot use it to determine the
7558 location of the tag, and therefore compute the tagged type's actual type.
7559 So we return the tagged type without consulting the tag. */
7560
7561 static struct type *
7562 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
7563 CORE_ADDR address, struct value *dval, int check_tag)
7564 {
7565 type = ada_check_typedef (type);
7566 switch (TYPE_CODE (type))
7567 {
7568 default:
7569 return type;
7570 case TYPE_CODE_STRUCT:
7571 {
7572 struct type *static_type = to_static_fixed_type (type);
7573 struct type *fixed_record_type =
7574 to_fixed_record_type (type, valaddr, address, NULL);
7575
7576 /* If STATIC_TYPE is a tagged type and we know the object's address,
7577 then we can determine its tag, and compute the object's actual
7578 type from there. Note that we have to use the fixed record
7579 type (the parent part of the record may have dynamic fields
7580 and the way the location of _tag is expressed may depend on
7581 them). */
7582
7583 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
7584 {
7585 struct type *real_type =
7586 type_from_tag (value_tag_from_contents_and_address
7587 (fixed_record_type,
7588 valaddr,
7589 address));
7590
7591 if (real_type != NULL)
7592 return to_fixed_record_type (real_type, valaddr, address, NULL);
7593 }
7594
7595 /* Check to see if there is a parallel ___XVZ variable.
7596 If there is, then it provides the actual size of our type. */
7597 else if (ada_type_name (fixed_record_type) != NULL)
7598 {
7599 char *name = ada_type_name (fixed_record_type);
7600 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
7601 int xvz_found = 0;
7602 LONGEST size;
7603
7604 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
7605 size = get_int_var_value (xvz_name, &xvz_found);
7606 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
7607 {
7608 fixed_record_type = copy_type (fixed_record_type);
7609 TYPE_LENGTH (fixed_record_type) = size;
7610
7611 /* The FIXED_RECORD_TYPE may have be a stub. We have
7612 observed this when the debugging info is STABS, and
7613 apparently it is something that is hard to fix.
7614
7615 In practice, we don't need the actual type definition
7616 at all, because the presence of the XVZ variable allows us
7617 to assume that there must be a XVS type as well, which we
7618 should be able to use later, when we need the actual type
7619 definition.
7620
7621 In the meantime, pretend that the "fixed" type we are
7622 returning is NOT a stub, because this can cause trouble
7623 when using this type to create new types targeting it.
7624 Indeed, the associated creation routines often check
7625 whether the target type is a stub and will try to replace
7626 it, thus using a type with the wrong size. This, in turn,
7627 might cause the new type to have the wrong size too.
7628 Consider the case of an array, for instance, where the size
7629 of the array is computed from the number of elements in
7630 our array multiplied by the size of its element. */
7631 TYPE_STUB (fixed_record_type) = 0;
7632 }
7633 }
7634 return fixed_record_type;
7635 }
7636 case TYPE_CODE_ARRAY:
7637 return to_fixed_array_type (type, dval, 1);
7638 case TYPE_CODE_UNION:
7639 if (dval == NULL)
7640 return type;
7641 else
7642 return to_fixed_variant_branch_type (type, valaddr, address, dval);
7643 }
7644 }
7645
7646 /* The same as ada_to_fixed_type_1, except that it preserves the type
7647 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
7648 ada_to_fixed_type_1 would return the type referenced by TYPE. */
7649
7650 struct type *
7651 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
7652 CORE_ADDR address, struct value *dval, int check_tag)
7653
7654 {
7655 struct type *fixed_type =
7656 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
7657
7658 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
7659 && TYPE_TARGET_TYPE (type) == fixed_type)
7660 return type;
7661
7662 return fixed_type;
7663 }
7664
7665 /* A standard (static-sized) type corresponding as well as possible to
7666 TYPE0, but based on no runtime data. */
7667
7668 static struct type *
7669 to_static_fixed_type (struct type *type0)
7670 {
7671 struct type *type;
7672
7673 if (type0 == NULL)
7674 return NULL;
7675
7676 if (TYPE_FIXED_INSTANCE (type0))
7677 return type0;
7678
7679 type0 = ada_check_typedef (type0);
7680
7681 switch (TYPE_CODE (type0))
7682 {
7683 default:
7684 return type0;
7685 case TYPE_CODE_STRUCT:
7686 type = dynamic_template_type (type0);
7687 if (type != NULL)
7688 return template_to_static_fixed_type (type);
7689 else
7690 return template_to_static_fixed_type (type0);
7691 case TYPE_CODE_UNION:
7692 type = ada_find_parallel_type (type0, "___XVU");
7693 if (type != NULL)
7694 return template_to_static_fixed_type (type);
7695 else
7696 return template_to_static_fixed_type (type0);
7697 }
7698 }
7699
7700 /* A static approximation of TYPE with all type wrappers removed. */
7701
7702 static struct type *
7703 static_unwrap_type (struct type *type)
7704 {
7705 if (ada_is_aligner_type (type))
7706 {
7707 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
7708 if (ada_type_name (type1) == NULL)
7709 TYPE_NAME (type1) = ada_type_name (type);
7710
7711 return static_unwrap_type (type1);
7712 }
7713 else
7714 {
7715 struct type *raw_real_type = ada_get_base_type (type);
7716
7717 if (raw_real_type == type)
7718 return type;
7719 else
7720 return to_static_fixed_type (raw_real_type);
7721 }
7722 }
7723
7724 /* In some cases, incomplete and private types require
7725 cross-references that are not resolved as records (for example,
7726 type Foo;
7727 type FooP is access Foo;
7728 V: FooP;
7729 type Foo is array ...;
7730 ). In these cases, since there is no mechanism for producing
7731 cross-references to such types, we instead substitute for FooP a
7732 stub enumeration type that is nowhere resolved, and whose tag is
7733 the name of the actual type. Call these types "non-record stubs". */
7734
7735 /* A type equivalent to TYPE that is not a non-record stub, if one
7736 exists, otherwise TYPE. */
7737
7738 struct type *
7739 ada_check_typedef (struct type *type)
7740 {
7741 if (type == NULL)
7742 return NULL;
7743
7744 CHECK_TYPEDEF (type);
7745 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
7746 || !TYPE_STUB (type)
7747 || TYPE_TAG_NAME (type) == NULL)
7748 return type;
7749 else
7750 {
7751 char *name = TYPE_TAG_NAME (type);
7752 struct type *type1 = ada_find_any_type (name);
7753
7754 if (type1 == NULL)
7755 return type;
7756
7757 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
7758 stubs pointing to arrays, as we don't create symbols for array
7759 types, only for the typedef-to-array types). If that's the case,
7760 strip the typedef layer. */
7761 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
7762 type1 = ada_check_typedef (type1);
7763
7764 return type1;
7765 }
7766 }
7767
7768 /* A value representing the data at VALADDR/ADDRESS as described by
7769 type TYPE0, but with a standard (static-sized) type that correctly
7770 describes it. If VAL0 is not NULL and TYPE0 already is a standard
7771 type, then return VAL0 [this feature is simply to avoid redundant
7772 creation of struct values]. */
7773
7774 static struct value *
7775 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
7776 struct value *val0)
7777 {
7778 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
7779
7780 if (type == type0 && val0 != NULL)
7781 return val0;
7782 else
7783 return value_from_contents_and_address (type, 0, address);
7784 }
7785
7786 /* A value representing VAL, but with a standard (static-sized) type
7787 that correctly describes it. Does not necessarily create a new
7788 value. */
7789
7790 struct value *
7791 ada_to_fixed_value (struct value *val)
7792 {
7793 return ada_to_fixed_value_create (value_type (val),
7794 value_address (val),
7795 val);
7796 }
7797 \f
7798
7799 /* Attributes */
7800
7801 /* Table mapping attribute numbers to names.
7802 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
7803
7804 static const char *attribute_names[] = {
7805 "<?>",
7806
7807 "first",
7808 "last",
7809 "length",
7810 "image",
7811 "max",
7812 "min",
7813 "modulus",
7814 "pos",
7815 "size",
7816 "tag",
7817 "val",
7818 0
7819 };
7820
7821 const char *
7822 ada_attribute_name (enum exp_opcode n)
7823 {
7824 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7825 return attribute_names[n - OP_ATR_FIRST + 1];
7826 else
7827 return attribute_names[0];
7828 }
7829
7830 /* Evaluate the 'POS attribute applied to ARG. */
7831
7832 static LONGEST
7833 pos_atr (struct value *arg)
7834 {
7835 struct value *val = coerce_ref (arg);
7836 struct type *type = value_type (val);
7837
7838 if (!discrete_type_p (type))
7839 error (_("'POS only defined on discrete types"));
7840
7841 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7842 {
7843 int i;
7844 LONGEST v = value_as_long (val);
7845
7846 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7847 {
7848 if (v == TYPE_FIELD_BITPOS (type, i))
7849 return i;
7850 }
7851 error (_("enumeration value is invalid: can't find 'POS"));
7852 }
7853 else
7854 return value_as_long (val);
7855 }
7856
7857 static struct value *
7858 value_pos_atr (struct type *type, struct value *arg)
7859 {
7860 return value_from_longest (type, pos_atr (arg));
7861 }
7862
7863 /* Evaluate the TYPE'VAL attribute applied to ARG. */
7864
7865 static struct value *
7866 value_val_atr (struct type *type, struct value *arg)
7867 {
7868 if (!discrete_type_p (type))
7869 error (_("'VAL only defined on discrete types"));
7870 if (!integer_type_p (value_type (arg)))
7871 error (_("'VAL requires integral argument"));
7872
7873 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7874 {
7875 long pos = value_as_long (arg);
7876
7877 if (pos < 0 || pos >= TYPE_NFIELDS (type))
7878 error (_("argument to 'VAL out of range"));
7879 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
7880 }
7881 else
7882 return value_from_longest (type, value_as_long (arg));
7883 }
7884 \f
7885
7886 /* Evaluation */
7887
7888 /* True if TYPE appears to be an Ada character type.
7889 [At the moment, this is true only for Character and Wide_Character;
7890 It is a heuristic test that could stand improvement]. */
7891
7892 int
7893 ada_is_character_type (struct type *type)
7894 {
7895 const char *name;
7896
7897 /* If the type code says it's a character, then assume it really is,
7898 and don't check any further. */
7899 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
7900 return 1;
7901
7902 /* Otherwise, assume it's a character type iff it is a discrete type
7903 with a known character type name. */
7904 name = ada_type_name (type);
7905 return (name != NULL
7906 && (TYPE_CODE (type) == TYPE_CODE_INT
7907 || TYPE_CODE (type) == TYPE_CODE_RANGE)
7908 && (strcmp (name, "character") == 0
7909 || strcmp (name, "wide_character") == 0
7910 || strcmp (name, "wide_wide_character") == 0
7911 || strcmp (name, "unsigned char") == 0));
7912 }
7913
7914 /* True if TYPE appears to be an Ada string type. */
7915
7916 int
7917 ada_is_string_type (struct type *type)
7918 {
7919 type = ada_check_typedef (type);
7920 if (type != NULL
7921 && TYPE_CODE (type) != TYPE_CODE_PTR
7922 && (ada_is_simple_array_type (type)
7923 || ada_is_array_descriptor_type (type))
7924 && ada_array_arity (type) == 1)
7925 {
7926 struct type *elttype = ada_array_element_type (type, 1);
7927
7928 return ada_is_character_type (elttype);
7929 }
7930 else
7931 return 0;
7932 }
7933
7934 /* The compiler sometimes provides a parallel XVS type for a given
7935 PAD type. Normally, it is safe to follow the PAD type directly,
7936 but older versions of the compiler have a bug that causes the offset
7937 of its "F" field to be wrong. Following that field in that case
7938 would lead to incorrect results, but this can be worked around
7939 by ignoring the PAD type and using the associated XVS type instead.
7940
7941 Set to True if the debugger should trust the contents of PAD types.
7942 Otherwise, ignore the PAD type if there is a parallel XVS type. */
7943 static int trust_pad_over_xvs = 1;
7944
7945 /* True if TYPE is a struct type introduced by the compiler to force the
7946 alignment of a value. Such types have a single field with a
7947 distinctive name. */
7948
7949 int
7950 ada_is_aligner_type (struct type *type)
7951 {
7952 type = ada_check_typedef (type);
7953
7954 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
7955 return 0;
7956
7957 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
7958 && TYPE_NFIELDS (type) == 1
7959 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
7960 }
7961
7962 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
7963 the parallel type. */
7964
7965 struct type *
7966 ada_get_base_type (struct type *raw_type)
7967 {
7968 struct type *real_type_namer;
7969 struct type *raw_real_type;
7970
7971 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
7972 return raw_type;
7973
7974 if (ada_is_aligner_type (raw_type))
7975 /* The encoding specifies that we should always use the aligner type.
7976 So, even if this aligner type has an associated XVS type, we should
7977 simply ignore it.
7978
7979 According to the compiler gurus, an XVS type parallel to an aligner
7980 type may exist because of a stabs limitation. In stabs, aligner
7981 types are empty because the field has a variable-sized type, and
7982 thus cannot actually be used as an aligner type. As a result,
7983 we need the associated parallel XVS type to decode the type.
7984 Since the policy in the compiler is to not change the internal
7985 representation based on the debugging info format, we sometimes
7986 end up having a redundant XVS type parallel to the aligner type. */
7987 return raw_type;
7988
7989 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
7990 if (real_type_namer == NULL
7991 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
7992 || TYPE_NFIELDS (real_type_namer) != 1)
7993 return raw_type;
7994
7995 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
7996 {
7997 /* This is an older encoding form where the base type needs to be
7998 looked up by name. We prefer the newer enconding because it is
7999 more efficient. */
8000 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8001 if (raw_real_type == NULL)
8002 return raw_type;
8003 else
8004 return raw_real_type;
8005 }
8006
8007 /* The field in our XVS type is a reference to the base type. */
8008 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
8009 }
8010
8011 /* The type of value designated by TYPE, with all aligners removed. */
8012
8013 struct type *
8014 ada_aligned_type (struct type *type)
8015 {
8016 if (ada_is_aligner_type (type))
8017 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
8018 else
8019 return ada_get_base_type (type);
8020 }
8021
8022
8023 /* The address of the aligned value in an object at address VALADDR
8024 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
8025
8026 const gdb_byte *
8027 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
8028 {
8029 if (ada_is_aligner_type (type))
8030 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
8031 valaddr +
8032 TYPE_FIELD_BITPOS (type,
8033 0) / TARGET_CHAR_BIT);
8034 else
8035 return valaddr;
8036 }
8037
8038
8039
8040 /* The printed representation of an enumeration literal with encoded
8041 name NAME. The value is good to the next call of ada_enum_name. */
8042 const char *
8043 ada_enum_name (const char *name)
8044 {
8045 static char *result;
8046 static size_t result_len = 0;
8047 char *tmp;
8048
8049 /* First, unqualify the enumeration name:
8050 1. Search for the last '.' character. If we find one, then skip
8051 all the preceeding characters, the unqualified name starts
8052 right after that dot.
8053 2. Otherwise, we may be debugging on a target where the compiler
8054 translates dots into "__". Search forward for double underscores,
8055 but stop searching when we hit an overloading suffix, which is
8056 of the form "__" followed by digits. */
8057
8058 tmp = strrchr (name, '.');
8059 if (tmp != NULL)
8060 name = tmp + 1;
8061 else
8062 {
8063 while ((tmp = strstr (name, "__")) != NULL)
8064 {
8065 if (isdigit (tmp[2]))
8066 break;
8067 else
8068 name = tmp + 2;
8069 }
8070 }
8071
8072 if (name[0] == 'Q')
8073 {
8074 int v;
8075
8076 if (name[1] == 'U' || name[1] == 'W')
8077 {
8078 if (sscanf (name + 2, "%x", &v) != 1)
8079 return name;
8080 }
8081 else
8082 return name;
8083
8084 GROW_VECT (result, result_len, 16);
8085 if (isascii (v) && isprint (v))
8086 xsnprintf (result, result_len, "'%c'", v);
8087 else if (name[1] == 'U')
8088 xsnprintf (result, result_len, "[\"%02x\"]", v);
8089 else
8090 xsnprintf (result, result_len, "[\"%04x\"]", v);
8091
8092 return result;
8093 }
8094 else
8095 {
8096 tmp = strstr (name, "__");
8097 if (tmp == NULL)
8098 tmp = strstr (name, "$");
8099 if (tmp != NULL)
8100 {
8101 GROW_VECT (result, result_len, tmp - name + 1);
8102 strncpy (result, name, tmp - name);
8103 result[tmp - name] = '\0';
8104 return result;
8105 }
8106
8107 return name;
8108 }
8109 }
8110
8111 /* Evaluate the subexpression of EXP starting at *POS as for
8112 evaluate_type, updating *POS to point just past the evaluated
8113 expression. */
8114
8115 static struct value *
8116 evaluate_subexp_type (struct expression *exp, int *pos)
8117 {
8118 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8119 }
8120
8121 /* If VAL is wrapped in an aligner or subtype wrapper, return the
8122 value it wraps. */
8123
8124 static struct value *
8125 unwrap_value (struct value *val)
8126 {
8127 struct type *type = ada_check_typedef (value_type (val));
8128
8129 if (ada_is_aligner_type (type))
8130 {
8131 struct value *v = ada_value_struct_elt (val, "F", 0);
8132 struct type *val_type = ada_check_typedef (value_type (v));
8133
8134 if (ada_type_name (val_type) == NULL)
8135 TYPE_NAME (val_type) = ada_type_name (type);
8136
8137 return unwrap_value (v);
8138 }
8139 else
8140 {
8141 struct type *raw_real_type =
8142 ada_check_typedef (ada_get_base_type (type));
8143
8144 /* If there is no parallel XVS or XVE type, then the value is
8145 already unwrapped. Return it without further modification. */
8146 if ((type == raw_real_type)
8147 && ada_find_parallel_type (type, "___XVE") == NULL)
8148 return val;
8149
8150 return
8151 coerce_unspec_val_to_type
8152 (val, ada_to_fixed_type (raw_real_type, 0,
8153 value_address (val),
8154 NULL, 1));
8155 }
8156 }
8157
8158 static struct value *
8159 cast_to_fixed (struct type *type, struct value *arg)
8160 {
8161 LONGEST val;
8162
8163 if (type == value_type (arg))
8164 return arg;
8165 else if (ada_is_fixed_point_type (value_type (arg)))
8166 val = ada_float_to_fixed (type,
8167 ada_fixed_to_float (value_type (arg),
8168 value_as_long (arg)));
8169 else
8170 {
8171 DOUBLEST argd = value_as_double (arg);
8172
8173 val = ada_float_to_fixed (type, argd);
8174 }
8175
8176 return value_from_longest (type, val);
8177 }
8178
8179 static struct value *
8180 cast_from_fixed (struct type *type, struct value *arg)
8181 {
8182 DOUBLEST val = ada_fixed_to_float (value_type (arg),
8183 value_as_long (arg));
8184
8185 return value_from_double (type, val);
8186 }
8187
8188 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8189 return the converted value. */
8190
8191 static struct value *
8192 coerce_for_assign (struct type *type, struct value *val)
8193 {
8194 struct type *type2 = value_type (val);
8195
8196 if (type == type2)
8197 return val;
8198
8199 type2 = ada_check_typedef (type2);
8200 type = ada_check_typedef (type);
8201
8202 if (TYPE_CODE (type2) == TYPE_CODE_PTR
8203 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8204 {
8205 val = ada_value_ind (val);
8206 type2 = value_type (val);
8207 }
8208
8209 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
8210 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8211 {
8212 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
8213 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8214 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
8215 error (_("Incompatible types in assignment"));
8216 deprecated_set_value_type (val, type);
8217 }
8218 return val;
8219 }
8220
8221 static struct value *
8222 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8223 {
8224 struct value *val;
8225 struct type *type1, *type2;
8226 LONGEST v, v1, v2;
8227
8228 arg1 = coerce_ref (arg1);
8229 arg2 = coerce_ref (arg2);
8230 type1 = base_type (ada_check_typedef (value_type (arg1)));
8231 type2 = base_type (ada_check_typedef (value_type (arg2)));
8232
8233 if (TYPE_CODE (type1) != TYPE_CODE_INT
8234 || TYPE_CODE (type2) != TYPE_CODE_INT)
8235 return value_binop (arg1, arg2, op);
8236
8237 switch (op)
8238 {
8239 case BINOP_MOD:
8240 case BINOP_DIV:
8241 case BINOP_REM:
8242 break;
8243 default:
8244 return value_binop (arg1, arg2, op);
8245 }
8246
8247 v2 = value_as_long (arg2);
8248 if (v2 == 0)
8249 error (_("second operand of %s must not be zero."), op_string (op));
8250
8251 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
8252 return value_binop (arg1, arg2, op);
8253
8254 v1 = value_as_long (arg1);
8255 switch (op)
8256 {
8257 case BINOP_DIV:
8258 v = v1 / v2;
8259 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8260 v += v > 0 ? -1 : 1;
8261 break;
8262 case BINOP_REM:
8263 v = v1 % v2;
8264 if (v * v1 < 0)
8265 v -= v2;
8266 break;
8267 default:
8268 /* Should not reach this point. */
8269 v = 0;
8270 }
8271
8272 val = allocate_value (type1);
8273 store_unsigned_integer (value_contents_raw (val),
8274 TYPE_LENGTH (value_type (val)),
8275 gdbarch_byte_order (get_type_arch (type1)), v);
8276 return val;
8277 }
8278
8279 static int
8280 ada_value_equal (struct value *arg1, struct value *arg2)
8281 {
8282 if (ada_is_direct_array_type (value_type (arg1))
8283 || ada_is_direct_array_type (value_type (arg2)))
8284 {
8285 /* Automatically dereference any array reference before
8286 we attempt to perform the comparison. */
8287 arg1 = ada_coerce_ref (arg1);
8288 arg2 = ada_coerce_ref (arg2);
8289
8290 arg1 = ada_coerce_to_simple_array (arg1);
8291 arg2 = ada_coerce_to_simple_array (arg2);
8292 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
8293 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
8294 error (_("Attempt to compare array with non-array"));
8295 /* FIXME: The following works only for types whose
8296 representations use all bits (no padding or undefined bits)
8297 and do not have user-defined equality. */
8298 return
8299 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
8300 && memcmp (value_contents (arg1), value_contents (arg2),
8301 TYPE_LENGTH (value_type (arg1))) == 0;
8302 }
8303 return value_equal (arg1, arg2);
8304 }
8305
8306 /* Total number of component associations in the aggregate starting at
8307 index PC in EXP. Assumes that index PC is the start of an
8308 OP_AGGREGATE. */
8309
8310 static int
8311 num_component_specs (struct expression *exp, int pc)
8312 {
8313 int n, m, i;
8314
8315 m = exp->elts[pc + 1].longconst;
8316 pc += 3;
8317 n = 0;
8318 for (i = 0; i < m; i += 1)
8319 {
8320 switch (exp->elts[pc].opcode)
8321 {
8322 default:
8323 n += 1;
8324 break;
8325 case OP_CHOICES:
8326 n += exp->elts[pc + 1].longconst;
8327 break;
8328 }
8329 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
8330 }
8331 return n;
8332 }
8333
8334 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
8335 component of LHS (a simple array or a record), updating *POS past
8336 the expression, assuming that LHS is contained in CONTAINER. Does
8337 not modify the inferior's memory, nor does it modify LHS (unless
8338 LHS == CONTAINER). */
8339
8340 static void
8341 assign_component (struct value *container, struct value *lhs, LONGEST index,
8342 struct expression *exp, int *pos)
8343 {
8344 struct value *mark = value_mark ();
8345 struct value *elt;
8346
8347 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8348 {
8349 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
8350 struct value *index_val = value_from_longest (index_type, index);
8351
8352 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8353 }
8354 else
8355 {
8356 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
8357 elt = ada_to_fixed_value (unwrap_value (elt));
8358 }
8359
8360 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8361 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8362 else
8363 value_assign_to_component (container, elt,
8364 ada_evaluate_subexp (NULL, exp, pos,
8365 EVAL_NORMAL));
8366
8367 value_free_to_mark (mark);
8368 }
8369
8370 /* Assuming that LHS represents an lvalue having a record or array
8371 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8372 of that aggregate's value to LHS, advancing *POS past the
8373 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8374 lvalue containing LHS (possibly LHS itself). Does not modify
8375 the inferior's memory, nor does it modify the contents of
8376 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
8377
8378 static struct value *
8379 assign_aggregate (struct value *container,
8380 struct value *lhs, struct expression *exp,
8381 int *pos, enum noside noside)
8382 {
8383 struct type *lhs_type;
8384 int n = exp->elts[*pos+1].longconst;
8385 LONGEST low_index, high_index;
8386 int num_specs;
8387 LONGEST *indices;
8388 int max_indices, num_indices;
8389 int is_array_aggregate;
8390 int i;
8391
8392 *pos += 3;
8393 if (noside != EVAL_NORMAL)
8394 {
8395 int i;
8396
8397 for (i = 0; i < n; i += 1)
8398 ada_evaluate_subexp (NULL, exp, pos, noside);
8399 return container;
8400 }
8401
8402 container = ada_coerce_ref (container);
8403 if (ada_is_direct_array_type (value_type (container)))
8404 container = ada_coerce_to_simple_array (container);
8405 lhs = ada_coerce_ref (lhs);
8406 if (!deprecated_value_modifiable (lhs))
8407 error (_("Left operand of assignment is not a modifiable lvalue."));
8408
8409 lhs_type = value_type (lhs);
8410 if (ada_is_direct_array_type (lhs_type))
8411 {
8412 lhs = ada_coerce_to_simple_array (lhs);
8413 lhs_type = value_type (lhs);
8414 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8415 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8416 is_array_aggregate = 1;
8417 }
8418 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8419 {
8420 low_index = 0;
8421 high_index = num_visible_fields (lhs_type) - 1;
8422 is_array_aggregate = 0;
8423 }
8424 else
8425 error (_("Left-hand side must be array or record."));
8426
8427 num_specs = num_component_specs (exp, *pos - 3);
8428 max_indices = 4 * num_specs + 4;
8429 indices = alloca (max_indices * sizeof (indices[0]));
8430 indices[0] = indices[1] = low_index - 1;
8431 indices[2] = indices[3] = high_index + 1;
8432 num_indices = 4;
8433
8434 for (i = 0; i < n; i += 1)
8435 {
8436 switch (exp->elts[*pos].opcode)
8437 {
8438 case OP_CHOICES:
8439 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8440 &num_indices, max_indices,
8441 low_index, high_index);
8442 break;
8443 case OP_POSITIONAL:
8444 aggregate_assign_positional (container, lhs, exp, pos, indices,
8445 &num_indices, max_indices,
8446 low_index, high_index);
8447 break;
8448 case OP_OTHERS:
8449 if (i != n-1)
8450 error (_("Misplaced 'others' clause"));
8451 aggregate_assign_others (container, lhs, exp, pos, indices,
8452 num_indices, low_index, high_index);
8453 break;
8454 default:
8455 error (_("Internal error: bad aggregate clause"));
8456 }
8457 }
8458
8459 return container;
8460 }
8461
8462 /* Assign into the component of LHS indexed by the OP_POSITIONAL
8463 construct at *POS, updating *POS past the construct, given that
8464 the positions are relative to lower bound LOW, where HIGH is the
8465 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8466 updating *NUM_INDICES as needed. CONTAINER is as for
8467 assign_aggregate. */
8468 static void
8469 aggregate_assign_positional (struct value *container,
8470 struct value *lhs, struct expression *exp,
8471 int *pos, LONGEST *indices, int *num_indices,
8472 int max_indices, LONGEST low, LONGEST high)
8473 {
8474 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8475
8476 if (ind - 1 == high)
8477 warning (_("Extra components in aggregate ignored."));
8478 if (ind <= high)
8479 {
8480 add_component_interval (ind, ind, indices, num_indices, max_indices);
8481 *pos += 3;
8482 assign_component (container, lhs, ind, exp, pos);
8483 }
8484 else
8485 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8486 }
8487
8488 /* Assign into the components of LHS indexed by the OP_CHOICES
8489 construct at *POS, updating *POS past the construct, given that
8490 the allowable indices are LOW..HIGH. Record the indices assigned
8491 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
8492 needed. CONTAINER is as for assign_aggregate. */
8493 static void
8494 aggregate_assign_from_choices (struct value *container,
8495 struct value *lhs, struct expression *exp,
8496 int *pos, LONGEST *indices, int *num_indices,
8497 int max_indices, LONGEST low, LONGEST high)
8498 {
8499 int j;
8500 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8501 int choice_pos, expr_pc;
8502 int is_array = ada_is_direct_array_type (value_type (lhs));
8503
8504 choice_pos = *pos += 3;
8505
8506 for (j = 0; j < n_choices; j += 1)
8507 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8508 expr_pc = *pos;
8509 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8510
8511 for (j = 0; j < n_choices; j += 1)
8512 {
8513 LONGEST lower, upper;
8514 enum exp_opcode op = exp->elts[choice_pos].opcode;
8515
8516 if (op == OP_DISCRETE_RANGE)
8517 {
8518 choice_pos += 1;
8519 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8520 EVAL_NORMAL));
8521 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8522 EVAL_NORMAL));
8523 }
8524 else if (is_array)
8525 {
8526 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8527 EVAL_NORMAL));
8528 upper = lower;
8529 }
8530 else
8531 {
8532 int ind;
8533 char *name;
8534
8535 switch (op)
8536 {
8537 case OP_NAME:
8538 name = &exp->elts[choice_pos + 2].string;
8539 break;
8540 case OP_VAR_VALUE:
8541 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8542 break;
8543 default:
8544 error (_("Invalid record component association."));
8545 }
8546 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8547 ind = 0;
8548 if (! find_struct_field (name, value_type (lhs), 0,
8549 NULL, NULL, NULL, NULL, &ind))
8550 error (_("Unknown component name: %s."), name);
8551 lower = upper = ind;
8552 }
8553
8554 if (lower <= upper && (lower < low || upper > high))
8555 error (_("Index in component association out of bounds."));
8556
8557 add_component_interval (lower, upper, indices, num_indices,
8558 max_indices);
8559 while (lower <= upper)
8560 {
8561 int pos1;
8562
8563 pos1 = expr_pc;
8564 assign_component (container, lhs, lower, exp, &pos1);
8565 lower += 1;
8566 }
8567 }
8568 }
8569
8570 /* Assign the value of the expression in the OP_OTHERS construct in
8571 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8572 have not been previously assigned. The index intervals already assigned
8573 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
8574 OP_OTHERS clause. CONTAINER is as for assign_aggregate*/
8575 static void
8576 aggregate_assign_others (struct value *container,
8577 struct value *lhs, struct expression *exp,
8578 int *pos, LONGEST *indices, int num_indices,
8579 LONGEST low, LONGEST high)
8580 {
8581 int i;
8582 int expr_pc = *pos+1;
8583
8584 for (i = 0; i < num_indices - 2; i += 2)
8585 {
8586 LONGEST ind;
8587
8588 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
8589 {
8590 int pos;
8591
8592 pos = expr_pc;
8593 assign_component (container, lhs, ind, exp, &pos);
8594 }
8595 }
8596 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8597 }
8598
8599 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
8600 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
8601 modifying *SIZE as needed. It is an error if *SIZE exceeds
8602 MAX_SIZE. The resulting intervals do not overlap. */
8603 static void
8604 add_component_interval (LONGEST low, LONGEST high,
8605 LONGEST* indices, int *size, int max_size)
8606 {
8607 int i, j;
8608
8609 for (i = 0; i < *size; i += 2) {
8610 if (high >= indices[i] && low <= indices[i + 1])
8611 {
8612 int kh;
8613
8614 for (kh = i + 2; kh < *size; kh += 2)
8615 if (high < indices[kh])
8616 break;
8617 if (low < indices[i])
8618 indices[i] = low;
8619 indices[i + 1] = indices[kh - 1];
8620 if (high > indices[i + 1])
8621 indices[i + 1] = high;
8622 memcpy (indices + i + 2, indices + kh, *size - kh);
8623 *size -= kh - i - 2;
8624 return;
8625 }
8626 else if (high < indices[i])
8627 break;
8628 }
8629
8630 if (*size == max_size)
8631 error (_("Internal error: miscounted aggregate components."));
8632 *size += 2;
8633 for (j = *size-1; j >= i+2; j -= 1)
8634 indices[j] = indices[j - 2];
8635 indices[i] = low;
8636 indices[i + 1] = high;
8637 }
8638
8639 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
8640 is different. */
8641
8642 static struct value *
8643 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
8644 {
8645 if (type == ada_check_typedef (value_type (arg2)))
8646 return arg2;
8647
8648 if (ada_is_fixed_point_type (type))
8649 return (cast_to_fixed (type, arg2));
8650
8651 if (ada_is_fixed_point_type (value_type (arg2)))
8652 return cast_from_fixed (type, arg2);
8653
8654 return value_cast (type, arg2);
8655 }
8656
8657 /* Evaluating Ada expressions, and printing their result.
8658 ------------------------------------------------------
8659
8660 1. Introduction:
8661 ----------------
8662
8663 We usually evaluate an Ada expression in order to print its value.
8664 We also evaluate an expression in order to print its type, which
8665 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
8666 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
8667 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
8668 the evaluation compared to the EVAL_NORMAL, but is otherwise very
8669 similar.
8670
8671 Evaluating expressions is a little more complicated for Ada entities
8672 than it is for entities in languages such as C. The main reason for
8673 this is that Ada provides types whose definition might be dynamic.
8674 One example of such types is variant records. Or another example
8675 would be an array whose bounds can only be known at run time.
8676
8677 The following description is a general guide as to what should be
8678 done (and what should NOT be done) in order to evaluate an expression
8679 involving such types, and when. This does not cover how the semantic
8680 information is encoded by GNAT as this is covered separatly. For the
8681 document used as the reference for the GNAT encoding, see exp_dbug.ads
8682 in the GNAT sources.
8683
8684 Ideally, we should embed each part of this description next to its
8685 associated code. Unfortunately, the amount of code is so vast right
8686 now that it's hard to see whether the code handling a particular
8687 situation might be duplicated or not. One day, when the code is
8688 cleaned up, this guide might become redundant with the comments
8689 inserted in the code, and we might want to remove it.
8690
8691 2. ``Fixing'' an Entity, the Simple Case:
8692 -----------------------------------------
8693
8694 When evaluating Ada expressions, the tricky issue is that they may
8695 reference entities whose type contents and size are not statically
8696 known. Consider for instance a variant record:
8697
8698 type Rec (Empty : Boolean := True) is record
8699 case Empty is
8700 when True => null;
8701 when False => Value : Integer;
8702 end case;
8703 end record;
8704 Yes : Rec := (Empty => False, Value => 1);
8705 No : Rec := (empty => True);
8706
8707 The size and contents of that record depends on the value of the
8708 descriminant (Rec.Empty). At this point, neither the debugging
8709 information nor the associated type structure in GDB are able to
8710 express such dynamic types. So what the debugger does is to create
8711 "fixed" versions of the type that applies to the specific object.
8712 We also informally refer to this opperation as "fixing" an object,
8713 which means creating its associated fixed type.
8714
8715 Example: when printing the value of variable "Yes" above, its fixed
8716 type would look like this:
8717
8718 type Rec is record
8719 Empty : Boolean;
8720 Value : Integer;
8721 end record;
8722
8723 On the other hand, if we printed the value of "No", its fixed type
8724 would become:
8725
8726 type Rec is record
8727 Empty : Boolean;
8728 end record;
8729
8730 Things become a little more complicated when trying to fix an entity
8731 with a dynamic type that directly contains another dynamic type,
8732 such as an array of variant records, for instance. There are
8733 two possible cases: Arrays, and records.
8734
8735 3. ``Fixing'' Arrays:
8736 ---------------------
8737
8738 The type structure in GDB describes an array in terms of its bounds,
8739 and the type of its elements. By design, all elements in the array
8740 have the same type and we cannot represent an array of variant elements
8741 using the current type structure in GDB. When fixing an array,
8742 we cannot fix the array element, as we would potentially need one
8743 fixed type per element of the array. As a result, the best we can do
8744 when fixing an array is to produce an array whose bounds and size
8745 are correct (allowing us to read it from memory), but without having
8746 touched its element type. Fixing each element will be done later,
8747 when (if) necessary.
8748
8749 Arrays are a little simpler to handle than records, because the same
8750 amount of memory is allocated for each element of the array, even if
8751 the amount of space actually used by each element differs from element
8752 to element. Consider for instance the following array of type Rec:
8753
8754 type Rec_Array is array (1 .. 2) of Rec;
8755
8756 The actual amount of memory occupied by each element might be different
8757 from element to element, depending on the value of their discriminant.
8758 But the amount of space reserved for each element in the array remains
8759 fixed regardless. So we simply need to compute that size using
8760 the debugging information available, from which we can then determine
8761 the array size (we multiply the number of elements of the array by
8762 the size of each element).
8763
8764 The simplest case is when we have an array of a constrained element
8765 type. For instance, consider the following type declarations:
8766
8767 type Bounded_String (Max_Size : Integer) is
8768 Length : Integer;
8769 Buffer : String (1 .. Max_Size);
8770 end record;
8771 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
8772
8773 In this case, the compiler describes the array as an array of
8774 variable-size elements (identified by its XVS suffix) for which
8775 the size can be read in the parallel XVZ variable.
8776
8777 In the case of an array of an unconstrained element type, the compiler
8778 wraps the array element inside a private PAD type. This type should not
8779 be shown to the user, and must be "unwrap"'ed before printing. Note
8780 that we also use the adjective "aligner" in our code to designate
8781 these wrapper types.
8782
8783 In some cases, the size allocated for each element is statically
8784 known. In that case, the PAD type already has the correct size,
8785 and the array element should remain unfixed.
8786
8787 But there are cases when this size is not statically known.
8788 For instance, assuming that "Five" is an integer variable:
8789
8790 type Dynamic is array (1 .. Five) of Integer;
8791 type Wrapper (Has_Length : Boolean := False) is record
8792 Data : Dynamic;
8793 case Has_Length is
8794 when True => Length : Integer;
8795 when False => null;
8796 end case;
8797 end record;
8798 type Wrapper_Array is array (1 .. 2) of Wrapper;
8799
8800 Hello : Wrapper_Array := (others => (Has_Length => True,
8801 Data => (others => 17),
8802 Length => 1));
8803
8804
8805 The debugging info would describe variable Hello as being an
8806 array of a PAD type. The size of that PAD type is not statically
8807 known, but can be determined using a parallel XVZ variable.
8808 In that case, a copy of the PAD type with the correct size should
8809 be used for the fixed array.
8810
8811 3. ``Fixing'' record type objects:
8812 ----------------------------------
8813
8814 Things are slightly different from arrays in the case of dynamic
8815 record types. In this case, in order to compute the associated
8816 fixed type, we need to determine the size and offset of each of
8817 its components. This, in turn, requires us to compute the fixed
8818 type of each of these components.
8819
8820 Consider for instance the example:
8821
8822 type Bounded_String (Max_Size : Natural) is record
8823 Str : String (1 .. Max_Size);
8824 Length : Natural;
8825 end record;
8826 My_String : Bounded_String (Max_Size => 10);
8827
8828 In that case, the position of field "Length" depends on the size
8829 of field Str, which itself depends on the value of the Max_Size
8830 discriminant. In order to fix the type of variable My_String,
8831 we need to fix the type of field Str. Therefore, fixing a variant
8832 record requires us to fix each of its components.
8833
8834 However, if a component does not have a dynamic size, the component
8835 should not be fixed. In particular, fields that use a PAD type
8836 should not fixed. Here is an example where this might happen
8837 (assuming type Rec above):
8838
8839 type Container (Big : Boolean) is record
8840 First : Rec;
8841 After : Integer;
8842 case Big is
8843 when True => Another : Integer;
8844 when False => null;
8845 end case;
8846 end record;
8847 My_Container : Container := (Big => False,
8848 First => (Empty => True),
8849 After => 42);
8850
8851 In that example, the compiler creates a PAD type for component First,
8852 whose size is constant, and then positions the component After just
8853 right after it. The offset of component After is therefore constant
8854 in this case.
8855
8856 The debugger computes the position of each field based on an algorithm
8857 that uses, among other things, the actual position and size of the field
8858 preceding it. Let's now imagine that the user is trying to print
8859 the value of My_Container. If the type fixing was recursive, we would
8860 end up computing the offset of field After based on the size of the
8861 fixed version of field First. And since in our example First has
8862 only one actual field, the size of the fixed type is actually smaller
8863 than the amount of space allocated to that field, and thus we would
8864 compute the wrong offset of field After.
8865
8866 To make things more complicated, we need to watch out for dynamic
8867 components of variant records (identified by the ___XVL suffix in
8868 the component name). Even if the target type is a PAD type, the size
8869 of that type might not be statically known. So the PAD type needs
8870 to be unwrapped and the resulting type needs to be fixed. Otherwise,
8871 we might end up with the wrong size for our component. This can be
8872 observed with the following type declarations:
8873
8874 type Octal is new Integer range 0 .. 7;
8875 type Octal_Array is array (Positive range <>) of Octal;
8876 pragma Pack (Octal_Array);
8877
8878 type Octal_Buffer (Size : Positive) is record
8879 Buffer : Octal_Array (1 .. Size);
8880 Length : Integer;
8881 end record;
8882
8883 In that case, Buffer is a PAD type whose size is unset and needs
8884 to be computed by fixing the unwrapped type.
8885
8886 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
8887 ----------------------------------------------------------
8888
8889 Lastly, when should the sub-elements of an entity that remained unfixed
8890 thus far, be actually fixed?
8891
8892 The answer is: Only when referencing that element. For instance
8893 when selecting one component of a record, this specific component
8894 should be fixed at that point in time. Or when printing the value
8895 of a record, each component should be fixed before its value gets
8896 printed. Similarly for arrays, the element of the array should be
8897 fixed when printing each element of the array, or when extracting
8898 one element out of that array. On the other hand, fixing should
8899 not be performed on the elements when taking a slice of an array!
8900
8901 Note that one of the side-effects of miscomputing the offset and
8902 size of each field is that we end up also miscomputing the size
8903 of the containing type. This can have adverse results when computing
8904 the value of an entity. GDB fetches the value of an entity based
8905 on the size of its type, and thus a wrong size causes GDB to fetch
8906 the wrong amount of memory. In the case where the computed size is
8907 too small, GDB fetches too little data to print the value of our
8908 entiry. Results in this case as unpredicatble, as we usually read
8909 past the buffer containing the data =:-o. */
8910
8911 /* Implement the evaluate_exp routine in the exp_descriptor structure
8912 for the Ada language. */
8913
8914 static struct value *
8915 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
8916 int *pos, enum noside noside)
8917 {
8918 enum exp_opcode op;
8919 int tem;
8920 int pc;
8921 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
8922 struct type *type;
8923 int nargs, oplen;
8924 struct value **argvec;
8925
8926 pc = *pos;
8927 *pos += 1;
8928 op = exp->elts[pc].opcode;
8929
8930 switch (op)
8931 {
8932 default:
8933 *pos -= 1;
8934 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8935 arg1 = unwrap_value (arg1);
8936
8937 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
8938 then we need to perform the conversion manually, because
8939 evaluate_subexp_standard doesn't do it. This conversion is
8940 necessary in Ada because the different kinds of float/fixed
8941 types in Ada have different representations.
8942
8943 Similarly, we need to perform the conversion from OP_LONG
8944 ourselves. */
8945 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
8946 arg1 = ada_value_cast (expect_type, arg1, noside);
8947
8948 return arg1;
8949
8950 case OP_STRING:
8951 {
8952 struct value *result;
8953
8954 *pos -= 1;
8955 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
8956 /* The result type will have code OP_STRING, bashed there from
8957 OP_ARRAY. Bash it back. */
8958 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
8959 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
8960 return result;
8961 }
8962
8963 case UNOP_CAST:
8964 (*pos) += 2;
8965 type = exp->elts[pc + 1].type;
8966 arg1 = evaluate_subexp (type, exp, pos, noside);
8967 if (noside == EVAL_SKIP)
8968 goto nosideret;
8969 arg1 = ada_value_cast (type, arg1, noside);
8970 return arg1;
8971
8972 case UNOP_QUAL:
8973 (*pos) += 2;
8974 type = exp->elts[pc + 1].type;
8975 return ada_evaluate_subexp (type, exp, pos, noside);
8976
8977 case BINOP_ASSIGN:
8978 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8979 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8980 {
8981 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
8982 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8983 return arg1;
8984 return ada_value_assign (arg1, arg1);
8985 }
8986 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
8987 except if the lhs of our assignment is a convenience variable.
8988 In the case of assigning to a convenience variable, the lhs
8989 should be exactly the result of the evaluation of the rhs. */
8990 type = value_type (arg1);
8991 if (VALUE_LVAL (arg1) == lval_internalvar)
8992 type = NULL;
8993 arg2 = evaluate_subexp (type, exp, pos, noside);
8994 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8995 return arg1;
8996 if (ada_is_fixed_point_type (value_type (arg1)))
8997 arg2 = cast_to_fixed (value_type (arg1), arg2);
8998 else if (ada_is_fixed_point_type (value_type (arg2)))
8999 error
9000 (_("Fixed-point values must be assigned to fixed-point variables"));
9001 else
9002 arg2 = coerce_for_assign (value_type (arg1), arg2);
9003 return ada_value_assign (arg1, arg2);
9004
9005 case BINOP_ADD:
9006 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9007 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9008 if (noside == EVAL_SKIP)
9009 goto nosideret;
9010 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9011 return (value_from_longest
9012 (value_type (arg1),
9013 value_as_long (arg1) + value_as_long (arg2)));
9014 if ((ada_is_fixed_point_type (value_type (arg1))
9015 || ada_is_fixed_point_type (value_type (arg2)))
9016 && value_type (arg1) != value_type (arg2))
9017 error (_("Operands of fixed-point addition must have the same type"));
9018 /* Do the addition, and cast the result to the type of the first
9019 argument. We cannot cast the result to a reference type, so if
9020 ARG1 is a reference type, find its underlying type. */
9021 type = value_type (arg1);
9022 while (TYPE_CODE (type) == TYPE_CODE_REF)
9023 type = TYPE_TARGET_TYPE (type);
9024 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9025 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
9026
9027 case BINOP_SUB:
9028 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9029 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9030 if (noside == EVAL_SKIP)
9031 goto nosideret;
9032 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9033 return (value_from_longest
9034 (value_type (arg1),
9035 value_as_long (arg1) - value_as_long (arg2)));
9036 if ((ada_is_fixed_point_type (value_type (arg1))
9037 || ada_is_fixed_point_type (value_type (arg2)))
9038 && value_type (arg1) != value_type (arg2))
9039 error (_("Operands of fixed-point subtraction must have the same type"));
9040 /* Do the substraction, and cast the result to the type of the first
9041 argument. We cannot cast the result to a reference type, so if
9042 ARG1 is a reference type, find its underlying type. */
9043 type = value_type (arg1);
9044 while (TYPE_CODE (type) == TYPE_CODE_REF)
9045 type = TYPE_TARGET_TYPE (type);
9046 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9047 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
9048
9049 case BINOP_MUL:
9050 case BINOP_DIV:
9051 case BINOP_REM:
9052 case BINOP_MOD:
9053 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9054 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9055 if (noside == EVAL_SKIP)
9056 goto nosideret;
9057 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9058 {
9059 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9060 return value_zero (value_type (arg1), not_lval);
9061 }
9062 else
9063 {
9064 type = builtin_type (exp->gdbarch)->builtin_double;
9065 if (ada_is_fixed_point_type (value_type (arg1)))
9066 arg1 = cast_from_fixed (type, arg1);
9067 if (ada_is_fixed_point_type (value_type (arg2)))
9068 arg2 = cast_from_fixed (type, arg2);
9069 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9070 return ada_value_binop (arg1, arg2, op);
9071 }
9072
9073 case BINOP_EQUAL:
9074 case BINOP_NOTEQUAL:
9075 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9076 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
9077 if (noside == EVAL_SKIP)
9078 goto nosideret;
9079 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9080 tem = 0;
9081 else
9082 {
9083 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9084 tem = ada_value_equal (arg1, arg2);
9085 }
9086 if (op == BINOP_NOTEQUAL)
9087 tem = !tem;
9088 type = language_bool_type (exp->language_defn, exp->gdbarch);
9089 return value_from_longest (type, (LONGEST) tem);
9090
9091 case UNOP_NEG:
9092 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9093 if (noside == EVAL_SKIP)
9094 goto nosideret;
9095 else if (ada_is_fixed_point_type (value_type (arg1)))
9096 return value_cast (value_type (arg1), value_neg (arg1));
9097 else
9098 {
9099 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9100 return value_neg (arg1);
9101 }
9102
9103 case BINOP_LOGICAL_AND:
9104 case BINOP_LOGICAL_OR:
9105 case UNOP_LOGICAL_NOT:
9106 {
9107 struct value *val;
9108
9109 *pos -= 1;
9110 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9111 type = language_bool_type (exp->language_defn, exp->gdbarch);
9112 return value_cast (type, val);
9113 }
9114
9115 case BINOP_BITWISE_AND:
9116 case BINOP_BITWISE_IOR:
9117 case BINOP_BITWISE_XOR:
9118 {
9119 struct value *val;
9120
9121 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9122 *pos = pc;
9123 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9124
9125 return value_cast (value_type (arg1), val);
9126 }
9127
9128 case OP_VAR_VALUE:
9129 *pos -= 1;
9130
9131 if (noside == EVAL_SKIP)
9132 {
9133 *pos += 4;
9134 goto nosideret;
9135 }
9136 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
9137 /* Only encountered when an unresolved symbol occurs in a
9138 context other than a function call, in which case, it is
9139 invalid. */
9140 error (_("Unexpected unresolved symbol, %s, during evaluation"),
9141 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
9142 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9143 {
9144 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
9145 /* Check to see if this is a tagged type. We also need to handle
9146 the case where the type is a reference to a tagged type, but
9147 we have to be careful to exclude pointers to tagged types.
9148 The latter should be shown as usual (as a pointer), whereas
9149 a reference should mostly be transparent to the user. */
9150 if (ada_is_tagged_type (type, 0)
9151 || (TYPE_CODE(type) == TYPE_CODE_REF
9152 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
9153 {
9154 /* Tagged types are a little special in the fact that the real
9155 type is dynamic and can only be determined by inspecting the
9156 object's tag. This means that we need to get the object's
9157 value first (EVAL_NORMAL) and then extract the actual object
9158 type from its tag.
9159
9160 Note that we cannot skip the final step where we extract
9161 the object type from its tag, because the EVAL_NORMAL phase
9162 results in dynamic components being resolved into fixed ones.
9163 This can cause problems when trying to print the type
9164 description of tagged types whose parent has a dynamic size:
9165 We use the type name of the "_parent" component in order
9166 to print the name of the ancestor type in the type description.
9167 If that component had a dynamic size, the resolution into
9168 a fixed type would result in the loss of that type name,
9169 thus preventing us from printing the name of the ancestor
9170 type in the type description. */
9171 struct type *actual_type;
9172
9173 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
9174 actual_type = type_from_tag (ada_value_tag (arg1));
9175 if (actual_type == NULL)
9176 /* If, for some reason, we were unable to determine
9177 the actual type from the tag, then use the static
9178 approximation that we just computed as a fallback.
9179 This can happen if the debugging information is
9180 incomplete, for instance. */
9181 actual_type = type;
9182
9183 return value_zero (actual_type, not_lval);
9184 }
9185
9186 *pos += 4;
9187 return value_zero
9188 (to_static_fixed_type
9189 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
9190 not_lval);
9191 }
9192 else
9193 {
9194 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9195 arg1 = unwrap_value (arg1);
9196 return ada_to_fixed_value (arg1);
9197 }
9198
9199 case OP_FUNCALL:
9200 (*pos) += 2;
9201
9202 /* Allocate arg vector, including space for the function to be
9203 called in argvec[0] and a terminating NULL. */
9204 nargs = longest_to_int (exp->elts[pc + 1].longconst);
9205 argvec =
9206 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
9207
9208 if (exp->elts[*pos].opcode == OP_VAR_VALUE
9209 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
9210 error (_("Unexpected unresolved symbol, %s, during evaluation"),
9211 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
9212 else
9213 {
9214 for (tem = 0; tem <= nargs; tem += 1)
9215 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9216 argvec[tem] = 0;
9217
9218 if (noside == EVAL_SKIP)
9219 goto nosideret;
9220 }
9221
9222 if (ada_is_constrained_packed_array_type
9223 (desc_base_type (value_type (argvec[0]))))
9224 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
9225 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9226 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
9227 /* This is a packed array that has already been fixed, and
9228 therefore already coerced to a simple array. Nothing further
9229 to do. */
9230 ;
9231 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
9232 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9233 && VALUE_LVAL (argvec[0]) == lval_memory))
9234 argvec[0] = value_addr (argvec[0]);
9235
9236 type = ada_check_typedef (value_type (argvec[0]));
9237 if (TYPE_CODE (type) == TYPE_CODE_PTR)
9238 {
9239 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
9240 {
9241 case TYPE_CODE_FUNC:
9242 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9243 break;
9244 case TYPE_CODE_ARRAY:
9245 break;
9246 case TYPE_CODE_STRUCT:
9247 if (noside != EVAL_AVOID_SIDE_EFFECTS)
9248 argvec[0] = ada_value_ind (argvec[0]);
9249 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9250 break;
9251 default:
9252 error (_("cannot subscript or call something of type `%s'"),
9253 ada_type_name (value_type (argvec[0])));
9254 break;
9255 }
9256 }
9257
9258 switch (TYPE_CODE (type))
9259 {
9260 case TYPE_CODE_FUNC:
9261 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9262 return allocate_value (TYPE_TARGET_TYPE (type));
9263 return call_function_by_hand (argvec[0], nargs, argvec + 1);
9264 case TYPE_CODE_STRUCT:
9265 {
9266 int arity;
9267
9268 arity = ada_array_arity (type);
9269 type = ada_array_element_type (type, nargs);
9270 if (type == NULL)
9271 error (_("cannot subscript or call a record"));
9272 if (arity != nargs)
9273 error (_("wrong number of subscripts; expecting %d"), arity);
9274 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9275 return value_zero (ada_aligned_type (type), lval_memory);
9276 return
9277 unwrap_value (ada_value_subscript
9278 (argvec[0], nargs, argvec + 1));
9279 }
9280 case TYPE_CODE_ARRAY:
9281 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9282 {
9283 type = ada_array_element_type (type, nargs);
9284 if (type == NULL)
9285 error (_("element type of array unknown"));
9286 else
9287 return value_zero (ada_aligned_type (type), lval_memory);
9288 }
9289 return
9290 unwrap_value (ada_value_subscript
9291 (ada_coerce_to_simple_array (argvec[0]),
9292 nargs, argvec + 1));
9293 case TYPE_CODE_PTR: /* Pointer to array */
9294 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
9295 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9296 {
9297 type = ada_array_element_type (type, nargs);
9298 if (type == NULL)
9299 error (_("element type of array unknown"));
9300 else
9301 return value_zero (ada_aligned_type (type), lval_memory);
9302 }
9303 return
9304 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
9305 nargs, argvec + 1));
9306
9307 default:
9308 error (_("Attempt to index or call something other than an "
9309 "array or function"));
9310 }
9311
9312 case TERNOP_SLICE:
9313 {
9314 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9315 struct value *low_bound_val =
9316 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9317 struct value *high_bound_val =
9318 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9319 LONGEST low_bound;
9320 LONGEST high_bound;
9321
9322 low_bound_val = coerce_ref (low_bound_val);
9323 high_bound_val = coerce_ref (high_bound_val);
9324 low_bound = pos_atr (low_bound_val);
9325 high_bound = pos_atr (high_bound_val);
9326
9327 if (noside == EVAL_SKIP)
9328 goto nosideret;
9329
9330 /* If this is a reference to an aligner type, then remove all
9331 the aligners. */
9332 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9333 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
9334 TYPE_TARGET_TYPE (value_type (array)) =
9335 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
9336
9337 if (ada_is_constrained_packed_array_type (value_type (array)))
9338 error (_("cannot slice a packed array"));
9339
9340 /* If this is a reference to an array or an array lvalue,
9341 convert to a pointer. */
9342 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9343 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
9344 && VALUE_LVAL (array) == lval_memory))
9345 array = value_addr (array);
9346
9347 if (noside == EVAL_AVOID_SIDE_EFFECTS
9348 && ada_is_array_descriptor_type (ada_check_typedef
9349 (value_type (array))))
9350 return empty_array (ada_type_of_array (array, 0), low_bound);
9351
9352 array = ada_coerce_to_simple_array_ptr (array);
9353
9354 /* If we have more than one level of pointer indirection,
9355 dereference the value until we get only one level. */
9356 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
9357 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
9358 == TYPE_CODE_PTR))
9359 array = value_ind (array);
9360
9361 /* Make sure we really do have an array type before going further,
9362 to avoid a SEGV when trying to get the index type or the target
9363 type later down the road if the debug info generated by
9364 the compiler is incorrect or incomplete. */
9365 if (!ada_is_simple_array_type (value_type (array)))
9366 error (_("cannot take slice of non-array"));
9367
9368 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
9369 {
9370 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
9371 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
9372 low_bound);
9373 else
9374 {
9375 struct type *arr_type0 =
9376 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
9377 NULL, 1);
9378
9379 return ada_value_slice_from_ptr (array, arr_type0,
9380 longest_to_int (low_bound),
9381 longest_to_int (high_bound));
9382 }
9383 }
9384 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9385 return array;
9386 else if (high_bound < low_bound)
9387 return empty_array (value_type (array), low_bound);
9388 else
9389 return ada_value_slice (array, longest_to_int (low_bound),
9390 longest_to_int (high_bound));
9391 }
9392
9393 case UNOP_IN_RANGE:
9394 (*pos) += 2;
9395 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9396 type = check_typedef (exp->elts[pc + 1].type);
9397
9398 if (noside == EVAL_SKIP)
9399 goto nosideret;
9400
9401 switch (TYPE_CODE (type))
9402 {
9403 default:
9404 lim_warning (_("Membership test incompletely implemented; "
9405 "always returns true"));
9406 type = language_bool_type (exp->language_defn, exp->gdbarch);
9407 return value_from_longest (type, (LONGEST) 1);
9408
9409 case TYPE_CODE_RANGE:
9410 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
9411 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
9412 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9413 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9414 type = language_bool_type (exp->language_defn, exp->gdbarch);
9415 return
9416 value_from_longest (type,
9417 (value_less (arg1, arg3)
9418 || value_equal (arg1, arg3))
9419 && (value_less (arg2, arg1)
9420 || value_equal (arg2, arg1)));
9421 }
9422
9423 case BINOP_IN_BOUNDS:
9424 (*pos) += 2;
9425 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9426 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9427
9428 if (noside == EVAL_SKIP)
9429 goto nosideret;
9430
9431 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9432 {
9433 type = language_bool_type (exp->language_defn, exp->gdbarch);
9434 return value_zero (type, not_lval);
9435 }
9436
9437 tem = longest_to_int (exp->elts[pc + 1].longconst);
9438
9439 type = ada_index_type (value_type (arg2), tem, "range");
9440 if (!type)
9441 type = value_type (arg1);
9442
9443 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
9444 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
9445
9446 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9447 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9448 type = language_bool_type (exp->language_defn, exp->gdbarch);
9449 return
9450 value_from_longest (type,
9451 (value_less (arg1, arg3)
9452 || value_equal (arg1, arg3))
9453 && (value_less (arg2, arg1)
9454 || value_equal (arg2, arg1)));
9455
9456 case TERNOP_IN_RANGE:
9457 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9458 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9459 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9460
9461 if (noside == EVAL_SKIP)
9462 goto nosideret;
9463
9464 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9465 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9466 type = language_bool_type (exp->language_defn, exp->gdbarch);
9467 return
9468 value_from_longest (type,
9469 (value_less (arg1, arg3)
9470 || value_equal (arg1, arg3))
9471 && (value_less (arg2, arg1)
9472 || value_equal (arg2, arg1)));
9473
9474 case OP_ATR_FIRST:
9475 case OP_ATR_LAST:
9476 case OP_ATR_LENGTH:
9477 {
9478 struct type *type_arg;
9479
9480 if (exp->elts[*pos].opcode == OP_TYPE)
9481 {
9482 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9483 arg1 = NULL;
9484 type_arg = check_typedef (exp->elts[pc + 2].type);
9485 }
9486 else
9487 {
9488 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9489 type_arg = NULL;
9490 }
9491
9492 if (exp->elts[*pos].opcode != OP_LONG)
9493 error (_("Invalid operand to '%s"), ada_attribute_name (op));
9494 tem = longest_to_int (exp->elts[*pos + 2].longconst);
9495 *pos += 4;
9496
9497 if (noside == EVAL_SKIP)
9498 goto nosideret;
9499
9500 if (type_arg == NULL)
9501 {
9502 arg1 = ada_coerce_ref (arg1);
9503
9504 if (ada_is_constrained_packed_array_type (value_type (arg1)))
9505 arg1 = ada_coerce_to_simple_array (arg1);
9506
9507 type = ada_index_type (value_type (arg1), tem,
9508 ada_attribute_name (op));
9509 if (type == NULL)
9510 type = builtin_type (exp->gdbarch)->builtin_int;
9511
9512 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9513 return allocate_value (type);
9514
9515 switch (op)
9516 {
9517 default: /* Should never happen. */
9518 error (_("unexpected attribute encountered"));
9519 case OP_ATR_FIRST:
9520 return value_from_longest
9521 (type, ada_array_bound (arg1, tem, 0));
9522 case OP_ATR_LAST:
9523 return value_from_longest
9524 (type, ada_array_bound (arg1, tem, 1));
9525 case OP_ATR_LENGTH:
9526 return value_from_longest
9527 (type, ada_array_length (arg1, tem));
9528 }
9529 }
9530 else if (discrete_type_p (type_arg))
9531 {
9532 struct type *range_type;
9533 char *name = ada_type_name (type_arg);
9534
9535 range_type = NULL;
9536 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
9537 range_type = to_fixed_range_type (type_arg, NULL);
9538 if (range_type == NULL)
9539 range_type = type_arg;
9540 switch (op)
9541 {
9542 default:
9543 error (_("unexpected attribute encountered"));
9544 case OP_ATR_FIRST:
9545 return value_from_longest
9546 (range_type, ada_discrete_type_low_bound (range_type));
9547 case OP_ATR_LAST:
9548 return value_from_longest
9549 (range_type, ada_discrete_type_high_bound (range_type));
9550 case OP_ATR_LENGTH:
9551 error (_("the 'length attribute applies only to array types"));
9552 }
9553 }
9554 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
9555 error (_("unimplemented type attribute"));
9556 else
9557 {
9558 LONGEST low, high;
9559
9560 if (ada_is_constrained_packed_array_type (type_arg))
9561 type_arg = decode_constrained_packed_array_type (type_arg);
9562
9563 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
9564 if (type == NULL)
9565 type = builtin_type (exp->gdbarch)->builtin_int;
9566
9567 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9568 return allocate_value (type);
9569
9570 switch (op)
9571 {
9572 default:
9573 error (_("unexpected attribute encountered"));
9574 case OP_ATR_FIRST:
9575 low = ada_array_bound_from_type (type_arg, tem, 0);
9576 return value_from_longest (type, low);
9577 case OP_ATR_LAST:
9578 high = ada_array_bound_from_type (type_arg, tem, 1);
9579 return value_from_longest (type, high);
9580 case OP_ATR_LENGTH:
9581 low = ada_array_bound_from_type (type_arg, tem, 0);
9582 high = ada_array_bound_from_type (type_arg, tem, 1);
9583 return value_from_longest (type, high - low + 1);
9584 }
9585 }
9586 }
9587
9588 case OP_ATR_TAG:
9589 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9590 if (noside == EVAL_SKIP)
9591 goto nosideret;
9592
9593 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9594 return value_zero (ada_tag_type (arg1), not_lval);
9595
9596 return ada_value_tag (arg1);
9597
9598 case OP_ATR_MIN:
9599 case OP_ATR_MAX:
9600 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9601 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9602 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9603 if (noside == EVAL_SKIP)
9604 goto nosideret;
9605 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9606 return value_zero (value_type (arg1), not_lval);
9607 else
9608 {
9609 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9610 return value_binop (arg1, arg2,
9611 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
9612 }
9613
9614 case OP_ATR_MODULUS:
9615 {
9616 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
9617
9618 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9619 if (noside == EVAL_SKIP)
9620 goto nosideret;
9621
9622 if (!ada_is_modular_type (type_arg))
9623 error (_("'modulus must be applied to modular type"));
9624
9625 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
9626 ada_modulus (type_arg));
9627 }
9628
9629
9630 case OP_ATR_POS:
9631 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9632 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9633 if (noside == EVAL_SKIP)
9634 goto nosideret;
9635 type = builtin_type (exp->gdbarch)->builtin_int;
9636 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9637 return value_zero (type, not_lval);
9638 else
9639 return value_pos_atr (type, arg1);
9640
9641 case OP_ATR_SIZE:
9642 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9643 type = value_type (arg1);
9644
9645 /* If the argument is a reference, then dereference its type, since
9646 the user is really asking for the size of the actual object,
9647 not the size of the pointer. */
9648 if (TYPE_CODE (type) == TYPE_CODE_REF)
9649 type = TYPE_TARGET_TYPE (type);
9650
9651 if (noside == EVAL_SKIP)
9652 goto nosideret;
9653 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9654 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
9655 else
9656 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
9657 TARGET_CHAR_BIT * TYPE_LENGTH (type));
9658
9659 case OP_ATR_VAL:
9660 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9661 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9662 type = exp->elts[pc + 2].type;
9663 if (noside == EVAL_SKIP)
9664 goto nosideret;
9665 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9666 return value_zero (type, not_lval);
9667 else
9668 return value_val_atr (type, arg1);
9669
9670 case BINOP_EXP:
9671 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9672 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9673 if (noside == EVAL_SKIP)
9674 goto nosideret;
9675 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9676 return value_zero (value_type (arg1), not_lval);
9677 else
9678 {
9679 /* For integer exponentiation operations,
9680 only promote the first argument. */
9681 if (is_integral_type (value_type (arg2)))
9682 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9683 else
9684 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9685
9686 return value_binop (arg1, arg2, op);
9687 }
9688
9689 case UNOP_PLUS:
9690 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9691 if (noside == EVAL_SKIP)
9692 goto nosideret;
9693 else
9694 return arg1;
9695
9696 case UNOP_ABS:
9697 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9698 if (noside == EVAL_SKIP)
9699 goto nosideret;
9700 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9701 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
9702 return value_neg (arg1);
9703 else
9704 return arg1;
9705
9706 case UNOP_IND:
9707 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9708 if (noside == EVAL_SKIP)
9709 goto nosideret;
9710 type = ada_check_typedef (value_type (arg1));
9711 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9712 {
9713 if (ada_is_array_descriptor_type (type))
9714 /* GDB allows dereferencing GNAT array descriptors. */
9715 {
9716 struct type *arrType = ada_type_of_array (arg1, 0);
9717
9718 if (arrType == NULL)
9719 error (_("Attempt to dereference null array pointer."));
9720 return value_at_lazy (arrType, 0);
9721 }
9722 else if (TYPE_CODE (type) == TYPE_CODE_PTR
9723 || TYPE_CODE (type) == TYPE_CODE_REF
9724 /* In C you can dereference an array to get the 1st elt. */
9725 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
9726 {
9727 type = to_static_fixed_type
9728 (ada_aligned_type
9729 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
9730 check_size (type);
9731 return value_zero (type, lval_memory);
9732 }
9733 else if (TYPE_CODE (type) == TYPE_CODE_INT)
9734 {
9735 /* GDB allows dereferencing an int. */
9736 if (expect_type == NULL)
9737 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
9738 lval_memory);
9739 else
9740 {
9741 expect_type =
9742 to_static_fixed_type (ada_aligned_type (expect_type));
9743 return value_zero (expect_type, lval_memory);
9744 }
9745 }
9746 else
9747 error (_("Attempt to take contents of a non-pointer value."));
9748 }
9749 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
9750 type = ada_check_typedef (value_type (arg1));
9751
9752 if (TYPE_CODE (type) == TYPE_CODE_INT)
9753 /* GDB allows dereferencing an int. If we were given
9754 the expect_type, then use that as the target type.
9755 Otherwise, assume that the target type is an int. */
9756 {
9757 if (expect_type != NULL)
9758 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
9759 arg1));
9760 else
9761 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
9762 (CORE_ADDR) value_as_address (arg1));
9763 }
9764
9765 if (ada_is_array_descriptor_type (type))
9766 /* GDB allows dereferencing GNAT array descriptors. */
9767 return ada_coerce_to_simple_array (arg1);
9768 else
9769 return ada_value_ind (arg1);
9770
9771 case STRUCTOP_STRUCT:
9772 tem = longest_to_int (exp->elts[pc + 1].longconst);
9773 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
9774 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9775 if (noside == EVAL_SKIP)
9776 goto nosideret;
9777 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9778 {
9779 struct type *type1 = value_type (arg1);
9780
9781 if (ada_is_tagged_type (type1, 1))
9782 {
9783 type = ada_lookup_struct_elt_type (type1,
9784 &exp->elts[pc + 2].string,
9785 1, 1, NULL);
9786 if (type == NULL)
9787 /* In this case, we assume that the field COULD exist
9788 in some extension of the type. Return an object of
9789 "type" void, which will match any formal
9790 (see ada_type_match). */
9791 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
9792 lval_memory);
9793 }
9794 else
9795 type =
9796 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
9797 0, NULL);
9798
9799 return value_zero (ada_aligned_type (type), lval_memory);
9800 }
9801 else
9802 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
9803 arg1 = unwrap_value (arg1);
9804 return ada_to_fixed_value (arg1);
9805
9806 case OP_TYPE:
9807 /* The value is not supposed to be used. This is here to make it
9808 easier to accommodate expressions that contain types. */
9809 (*pos) += 2;
9810 if (noside == EVAL_SKIP)
9811 goto nosideret;
9812 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9813 return allocate_value (exp->elts[pc + 1].type);
9814 else
9815 error (_("Attempt to use a type name as an expression"));
9816
9817 case OP_AGGREGATE:
9818 case OP_CHOICES:
9819 case OP_OTHERS:
9820 case OP_DISCRETE_RANGE:
9821 case OP_POSITIONAL:
9822 case OP_NAME:
9823 if (noside == EVAL_NORMAL)
9824 switch (op)
9825 {
9826 case OP_NAME:
9827 error (_("Undefined name, ambiguous name, or renaming used in "
9828 "component association: %s."), &exp->elts[pc+2].string);
9829 case OP_AGGREGATE:
9830 error (_("Aggregates only allowed on the right of an assignment"));
9831 default:
9832 internal_error (__FILE__, __LINE__, _("aggregate apparently mangled"));
9833 }
9834
9835 ada_forward_operator_length (exp, pc, &oplen, &nargs);
9836 *pos += oplen - 1;
9837 for (tem = 0; tem < nargs; tem += 1)
9838 ada_evaluate_subexp (NULL, exp, pos, noside);
9839 goto nosideret;
9840 }
9841
9842 nosideret:
9843 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
9844 }
9845 \f
9846
9847 /* Fixed point */
9848
9849 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
9850 type name that encodes the 'small and 'delta information.
9851 Otherwise, return NULL. */
9852
9853 static const char *
9854 fixed_type_info (struct type *type)
9855 {
9856 const char *name = ada_type_name (type);
9857 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
9858
9859 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
9860 {
9861 const char *tail = strstr (name, "___XF_");
9862
9863 if (tail == NULL)
9864 return NULL;
9865 else
9866 return tail + 5;
9867 }
9868 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
9869 return fixed_type_info (TYPE_TARGET_TYPE (type));
9870 else
9871 return NULL;
9872 }
9873
9874 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
9875
9876 int
9877 ada_is_fixed_point_type (struct type *type)
9878 {
9879 return fixed_type_info (type) != NULL;
9880 }
9881
9882 /* Return non-zero iff TYPE represents a System.Address type. */
9883
9884 int
9885 ada_is_system_address_type (struct type *type)
9886 {
9887 return (TYPE_NAME (type)
9888 && strcmp (TYPE_NAME (type), "system__address") == 0);
9889 }
9890
9891 /* Assuming that TYPE is the representation of an Ada fixed-point
9892 type, return its delta, or -1 if the type is malformed and the
9893 delta cannot be determined. */
9894
9895 DOUBLEST
9896 ada_delta (struct type *type)
9897 {
9898 const char *encoding = fixed_type_info (type);
9899 DOUBLEST num, den;
9900
9901 /* Strictly speaking, num and den are encoded as integer. However,
9902 they may not fit into a long, and they will have to be converted
9903 to DOUBLEST anyway. So scan them as DOUBLEST. */
9904 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
9905 &num, &den) < 2)
9906 return -1.0;
9907 else
9908 return num / den;
9909 }
9910
9911 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
9912 factor ('SMALL value) associated with the type. */
9913
9914 static DOUBLEST
9915 scaling_factor (struct type *type)
9916 {
9917 const char *encoding = fixed_type_info (type);
9918 DOUBLEST num0, den0, num1, den1;
9919 int n;
9920
9921 /* Strictly speaking, num's and den's are encoded as integer. However,
9922 they may not fit into a long, and they will have to be converted
9923 to DOUBLEST anyway. So scan them as DOUBLEST. */
9924 n = sscanf (encoding,
9925 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
9926 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
9927 &num0, &den0, &num1, &den1);
9928
9929 if (n < 2)
9930 return 1.0;
9931 else if (n == 4)
9932 return num1 / den1;
9933 else
9934 return num0 / den0;
9935 }
9936
9937
9938 /* Assuming that X is the representation of a value of fixed-point
9939 type TYPE, return its floating-point equivalent. */
9940
9941 DOUBLEST
9942 ada_fixed_to_float (struct type *type, LONGEST x)
9943 {
9944 return (DOUBLEST) x *scaling_factor (type);
9945 }
9946
9947 /* The representation of a fixed-point value of type TYPE
9948 corresponding to the value X. */
9949
9950 LONGEST
9951 ada_float_to_fixed (struct type *type, DOUBLEST x)
9952 {
9953 return (LONGEST) (x / scaling_factor (type) + 0.5);
9954 }
9955
9956 \f
9957
9958 /* Range types */
9959
9960 /* Scan STR beginning at position K for a discriminant name, and
9961 return the value of that discriminant field of DVAL in *PX. If
9962 PNEW_K is not null, put the position of the character beyond the
9963 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
9964 not alter *PX and *PNEW_K if unsuccessful. */
9965
9966 static int
9967 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
9968 int *pnew_k)
9969 {
9970 static char *bound_buffer = NULL;
9971 static size_t bound_buffer_len = 0;
9972 char *bound;
9973 char *pend;
9974 struct value *bound_val;
9975
9976 if (dval == NULL || str == NULL || str[k] == '\0')
9977 return 0;
9978
9979 pend = strstr (str + k, "__");
9980 if (pend == NULL)
9981 {
9982 bound = str + k;
9983 k += strlen (bound);
9984 }
9985 else
9986 {
9987 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
9988 bound = bound_buffer;
9989 strncpy (bound_buffer, str + k, pend - (str + k));
9990 bound[pend - (str + k)] = '\0';
9991 k = pend - str;
9992 }
9993
9994 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
9995 if (bound_val == NULL)
9996 return 0;
9997
9998 *px = value_as_long (bound_val);
9999 if (pnew_k != NULL)
10000 *pnew_k = k;
10001 return 1;
10002 }
10003
10004 /* Value of variable named NAME in the current environment. If
10005 no such variable found, then if ERR_MSG is null, returns 0, and
10006 otherwise causes an error with message ERR_MSG. */
10007
10008 static struct value *
10009 get_var_value (char *name, char *err_msg)
10010 {
10011 struct ada_symbol_info *syms;
10012 int nsyms;
10013
10014 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
10015 &syms);
10016
10017 if (nsyms != 1)
10018 {
10019 if (err_msg == NULL)
10020 return 0;
10021 else
10022 error (("%s"), err_msg);
10023 }
10024
10025 return value_of_variable (syms[0].sym, syms[0].block);
10026 }
10027
10028 /* Value of integer variable named NAME in the current environment. If
10029 no such variable found, returns 0, and sets *FLAG to 0. If
10030 successful, sets *FLAG to 1. */
10031
10032 LONGEST
10033 get_int_var_value (char *name, int *flag)
10034 {
10035 struct value *var_val = get_var_value (name, 0);
10036
10037 if (var_val == 0)
10038 {
10039 if (flag != NULL)
10040 *flag = 0;
10041 return 0;
10042 }
10043 else
10044 {
10045 if (flag != NULL)
10046 *flag = 1;
10047 return value_as_long (var_val);
10048 }
10049 }
10050
10051
10052 /* Return a range type whose base type is that of the range type named
10053 NAME in the current environment, and whose bounds are calculated
10054 from NAME according to the GNAT range encoding conventions.
10055 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
10056 corresponding range type from debug information; fall back to using it
10057 if symbol lookup fails. If a new type must be created, allocate it
10058 like ORIG_TYPE was. The bounds information, in general, is encoded
10059 in NAME, the base type given in the named range type. */
10060
10061 static struct type *
10062 to_fixed_range_type (struct type *raw_type, struct value *dval)
10063 {
10064 char *name;
10065 struct type *base_type;
10066 char *subtype_info;
10067
10068 gdb_assert (raw_type != NULL);
10069 gdb_assert (TYPE_NAME (raw_type) != NULL);
10070
10071 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
10072 base_type = TYPE_TARGET_TYPE (raw_type);
10073 else
10074 base_type = raw_type;
10075
10076 name = TYPE_NAME (raw_type);
10077 subtype_info = strstr (name, "___XD");
10078 if (subtype_info == NULL)
10079 {
10080 LONGEST L = ada_discrete_type_low_bound (raw_type);
10081 LONGEST U = ada_discrete_type_high_bound (raw_type);
10082
10083 if (L < INT_MIN || U > INT_MAX)
10084 return raw_type;
10085 else
10086 return create_range_type (alloc_type_copy (raw_type), raw_type,
10087 ada_discrete_type_low_bound (raw_type),
10088 ada_discrete_type_high_bound (raw_type));
10089 }
10090 else
10091 {
10092 static char *name_buf = NULL;
10093 static size_t name_len = 0;
10094 int prefix_len = subtype_info - name;
10095 LONGEST L, U;
10096 struct type *type;
10097 char *bounds_str;
10098 int n;
10099
10100 GROW_VECT (name_buf, name_len, prefix_len + 5);
10101 strncpy (name_buf, name, prefix_len);
10102 name_buf[prefix_len] = '\0';
10103
10104 subtype_info += 5;
10105 bounds_str = strchr (subtype_info, '_');
10106 n = 1;
10107
10108 if (*subtype_info == 'L')
10109 {
10110 if (!ada_scan_number (bounds_str, n, &L, &n)
10111 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
10112 return raw_type;
10113 if (bounds_str[n] == '_')
10114 n += 2;
10115 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
10116 n += 1;
10117 subtype_info += 1;
10118 }
10119 else
10120 {
10121 int ok;
10122
10123 strcpy (name_buf + prefix_len, "___L");
10124 L = get_int_var_value (name_buf, &ok);
10125 if (!ok)
10126 {
10127 lim_warning (_("Unknown lower bound, using 1."));
10128 L = 1;
10129 }
10130 }
10131
10132 if (*subtype_info == 'U')
10133 {
10134 if (!ada_scan_number (bounds_str, n, &U, &n)
10135 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
10136 return raw_type;
10137 }
10138 else
10139 {
10140 int ok;
10141
10142 strcpy (name_buf + prefix_len, "___U");
10143 U = get_int_var_value (name_buf, &ok);
10144 if (!ok)
10145 {
10146 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
10147 U = L;
10148 }
10149 }
10150
10151 type = create_range_type (alloc_type_copy (raw_type), base_type, L, U);
10152 TYPE_NAME (type) = name;
10153 return type;
10154 }
10155 }
10156
10157 /* True iff NAME is the name of a range type. */
10158
10159 int
10160 ada_is_range_type_name (const char *name)
10161 {
10162 return (name != NULL && strstr (name, "___XD"));
10163 }
10164 \f
10165
10166 /* Modular types */
10167
10168 /* True iff TYPE is an Ada modular type. */
10169
10170 int
10171 ada_is_modular_type (struct type *type)
10172 {
10173 struct type *subranged_type = base_type (type);
10174
10175 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
10176 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
10177 && TYPE_UNSIGNED (subranged_type));
10178 }
10179
10180 /* Try to determine the lower and upper bounds of the given modular type
10181 using the type name only. Return non-zero and set L and U as the lower
10182 and upper bounds (respectively) if successful. */
10183
10184 int
10185 ada_modulus_from_name (struct type *type, ULONGEST *modulus)
10186 {
10187 char *name = ada_type_name (type);
10188 char *suffix;
10189 int k;
10190 LONGEST U;
10191
10192 if (name == NULL)
10193 return 0;
10194
10195 /* Discrete type bounds are encoded using an __XD suffix. In our case,
10196 we are looking for static bounds, which means an __XDLU suffix.
10197 Moreover, we know that the lower bound of modular types is always
10198 zero, so the actual suffix should start with "__XDLU_0__", and
10199 then be followed by the upper bound value. */
10200 suffix = strstr (name, "__XDLU_0__");
10201 if (suffix == NULL)
10202 return 0;
10203 k = 10;
10204 if (!ada_scan_number (suffix, k, &U, NULL))
10205 return 0;
10206
10207 *modulus = (ULONGEST) U + 1;
10208 return 1;
10209 }
10210
10211 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
10212
10213 ULONGEST
10214 ada_modulus (struct type *type)
10215 {
10216 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
10217 }
10218 \f
10219
10220 /* Ada exception catchpoint support:
10221 ---------------------------------
10222
10223 We support 3 kinds of exception catchpoints:
10224 . catchpoints on Ada exceptions
10225 . catchpoints on unhandled Ada exceptions
10226 . catchpoints on failed assertions
10227
10228 Exceptions raised during failed assertions, or unhandled exceptions
10229 could perfectly be caught with the general catchpoint on Ada exceptions.
10230 However, we can easily differentiate these two special cases, and having
10231 the option to distinguish these two cases from the rest can be useful
10232 to zero-in on certain situations.
10233
10234 Exception catchpoints are a specialized form of breakpoint,
10235 since they rely on inserting breakpoints inside known routines
10236 of the GNAT runtime. The implementation therefore uses a standard
10237 breakpoint structure of the BP_BREAKPOINT type, but with its own set
10238 of breakpoint_ops.
10239
10240 Support in the runtime for exception catchpoints have been changed
10241 a few times already, and these changes affect the implementation
10242 of these catchpoints. In order to be able to support several
10243 variants of the runtime, we use a sniffer that will determine
10244 the runtime variant used by the program being debugged.
10245
10246 At this time, we do not support the use of conditions on Ada exception
10247 catchpoints. The COND and COND_STRING fields are therefore set
10248 to NULL (most of the time, see below).
10249
10250 Conditions where EXP_STRING, COND, and COND_STRING are used:
10251
10252 When a user specifies the name of a specific exception in the case
10253 of catchpoints on Ada exceptions, we store the name of that exception
10254 in the EXP_STRING. We then translate this request into an actual
10255 condition stored in COND_STRING, and then parse it into an expression
10256 stored in COND. */
10257
10258 /* The different types of catchpoints that we introduced for catching
10259 Ada exceptions. */
10260
10261 enum exception_catchpoint_kind
10262 {
10263 ex_catch_exception,
10264 ex_catch_exception_unhandled,
10265 ex_catch_assert
10266 };
10267
10268 /* Ada's standard exceptions. */
10269
10270 static char *standard_exc[] = {
10271 "constraint_error",
10272 "program_error",
10273 "storage_error",
10274 "tasking_error"
10275 };
10276
10277 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
10278
10279 /* A structure that describes how to support exception catchpoints
10280 for a given executable. */
10281
10282 struct exception_support_info
10283 {
10284 /* The name of the symbol to break on in order to insert
10285 a catchpoint on exceptions. */
10286 const char *catch_exception_sym;
10287
10288 /* The name of the symbol to break on in order to insert
10289 a catchpoint on unhandled exceptions. */
10290 const char *catch_exception_unhandled_sym;
10291
10292 /* The name of the symbol to break on in order to insert
10293 a catchpoint on failed assertions. */
10294 const char *catch_assert_sym;
10295
10296 /* Assuming that the inferior just triggered an unhandled exception
10297 catchpoint, this function is responsible for returning the address
10298 in inferior memory where the name of that exception is stored.
10299 Return zero if the address could not be computed. */
10300 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
10301 };
10302
10303 static CORE_ADDR ada_unhandled_exception_name_addr (void);
10304 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
10305
10306 /* The following exception support info structure describes how to
10307 implement exception catchpoints with the latest version of the
10308 Ada runtime (as of 2007-03-06). */
10309
10310 static const struct exception_support_info default_exception_support_info =
10311 {
10312 "__gnat_debug_raise_exception", /* catch_exception_sym */
10313 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10314 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
10315 ada_unhandled_exception_name_addr
10316 };
10317
10318 /* The following exception support info structure describes how to
10319 implement exception catchpoints with a slightly older version
10320 of the Ada runtime. */
10321
10322 static const struct exception_support_info exception_support_info_fallback =
10323 {
10324 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
10325 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10326 "system__assertions__raise_assert_failure", /* catch_assert_sym */
10327 ada_unhandled_exception_name_addr_from_raise
10328 };
10329
10330 /* For each executable, we sniff which exception info structure to use
10331 and cache it in the following global variable. */
10332
10333 static const struct exception_support_info *exception_info = NULL;
10334
10335 /* Inspect the Ada runtime and determine which exception info structure
10336 should be used to provide support for exception catchpoints.
10337
10338 This function will always set exception_info, or raise an error. */
10339
10340 static void
10341 ada_exception_support_info_sniffer (void)
10342 {
10343 struct symbol *sym;
10344
10345 /* If the exception info is already known, then no need to recompute it. */
10346 if (exception_info != NULL)
10347 return;
10348
10349 /* Check the latest (default) exception support info. */
10350 sym = standard_lookup (default_exception_support_info.catch_exception_sym,
10351 NULL, VAR_DOMAIN);
10352 if (sym != NULL)
10353 {
10354 exception_info = &default_exception_support_info;
10355 return;
10356 }
10357
10358 /* Try our fallback exception suport info. */
10359 sym = standard_lookup (exception_support_info_fallback.catch_exception_sym,
10360 NULL, VAR_DOMAIN);
10361 if (sym != NULL)
10362 {
10363 exception_info = &exception_support_info_fallback;
10364 return;
10365 }
10366
10367 /* Sometimes, it is normal for us to not be able to find the routine
10368 we are looking for. This happens when the program is linked with
10369 the shared version of the GNAT runtime, and the program has not been
10370 started yet. Inform the user of these two possible causes if
10371 applicable. */
10372
10373 if (ada_update_initial_language (language_unknown) != language_ada)
10374 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
10375
10376 /* If the symbol does not exist, then check that the program is
10377 already started, to make sure that shared libraries have been
10378 loaded. If it is not started, this may mean that the symbol is
10379 in a shared library. */
10380
10381 if (ptid_get_pid (inferior_ptid) == 0)
10382 error (_("Unable to insert catchpoint. Try to start the program first."));
10383
10384 /* At this point, we know that we are debugging an Ada program and
10385 that the inferior has been started, but we still are not able to
10386 find the run-time symbols. That can mean that we are in
10387 configurable run time mode, or that a-except as been optimized
10388 out by the linker... In any case, at this point it is not worth
10389 supporting this feature. */
10390
10391 error (_("Cannot insert catchpoints in this configuration."));
10392 }
10393
10394 /* An observer of "executable_changed" events.
10395 Its role is to clear certain cached values that need to be recomputed
10396 each time a new executable is loaded by GDB. */
10397
10398 static void
10399 ada_executable_changed_observer (void)
10400 {
10401 /* If the executable changed, then it is possible that the Ada runtime
10402 is different. So we need to invalidate the exception support info
10403 cache. */
10404 exception_info = NULL;
10405 }
10406
10407 /* True iff FRAME is very likely to be that of a function that is
10408 part of the runtime system. This is all very heuristic, but is
10409 intended to be used as advice as to what frames are uninteresting
10410 to most users. */
10411
10412 static int
10413 is_known_support_routine (struct frame_info *frame)
10414 {
10415 struct symtab_and_line sal;
10416 char *func_name;
10417 enum language func_lang;
10418 int i;
10419
10420 /* If this code does not have any debugging information (no symtab),
10421 This cannot be any user code. */
10422
10423 find_frame_sal (frame, &sal);
10424 if (sal.symtab == NULL)
10425 return 1;
10426
10427 /* If there is a symtab, but the associated source file cannot be
10428 located, then assume this is not user code: Selecting a frame
10429 for which we cannot display the code would not be very helpful
10430 for the user. This should also take care of case such as VxWorks
10431 where the kernel has some debugging info provided for a few units. */
10432
10433 if (symtab_to_fullname (sal.symtab) == NULL)
10434 return 1;
10435
10436 /* Check the unit filename againt the Ada runtime file naming.
10437 We also check the name of the objfile against the name of some
10438 known system libraries that sometimes come with debugging info
10439 too. */
10440
10441 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
10442 {
10443 re_comp (known_runtime_file_name_patterns[i]);
10444 if (re_exec (sal.symtab->filename))
10445 return 1;
10446 if (sal.symtab->objfile != NULL
10447 && re_exec (sal.symtab->objfile->name))
10448 return 1;
10449 }
10450
10451 /* Check whether the function is a GNAT-generated entity. */
10452
10453 find_frame_funname (frame, &func_name, &func_lang, NULL);
10454 if (func_name == NULL)
10455 return 1;
10456
10457 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
10458 {
10459 re_comp (known_auxiliary_function_name_patterns[i]);
10460 if (re_exec (func_name))
10461 return 1;
10462 }
10463
10464 return 0;
10465 }
10466
10467 /* Find the first frame that contains debugging information and that is not
10468 part of the Ada run-time, starting from FI and moving upward. */
10469
10470 void
10471 ada_find_printable_frame (struct frame_info *fi)
10472 {
10473 for (; fi != NULL; fi = get_prev_frame (fi))
10474 {
10475 if (!is_known_support_routine (fi))
10476 {
10477 select_frame (fi);
10478 break;
10479 }
10480 }
10481
10482 }
10483
10484 /* Assuming that the inferior just triggered an unhandled exception
10485 catchpoint, return the address in inferior memory where the name
10486 of the exception is stored.
10487
10488 Return zero if the address could not be computed. */
10489
10490 static CORE_ADDR
10491 ada_unhandled_exception_name_addr (void)
10492 {
10493 return parse_and_eval_address ("e.full_name");
10494 }
10495
10496 /* Same as ada_unhandled_exception_name_addr, except that this function
10497 should be used when the inferior uses an older version of the runtime,
10498 where the exception name needs to be extracted from a specific frame
10499 several frames up in the callstack. */
10500
10501 static CORE_ADDR
10502 ada_unhandled_exception_name_addr_from_raise (void)
10503 {
10504 int frame_level;
10505 struct frame_info *fi;
10506
10507 /* To determine the name of this exception, we need to select
10508 the frame corresponding to RAISE_SYM_NAME. This frame is
10509 at least 3 levels up, so we simply skip the first 3 frames
10510 without checking the name of their associated function. */
10511 fi = get_current_frame ();
10512 for (frame_level = 0; frame_level < 3; frame_level += 1)
10513 if (fi != NULL)
10514 fi = get_prev_frame (fi);
10515
10516 while (fi != NULL)
10517 {
10518 char *func_name;
10519 enum language func_lang;
10520
10521 find_frame_funname (fi, &func_name, &func_lang, NULL);
10522 if (func_name != NULL
10523 && strcmp (func_name, exception_info->catch_exception_sym) == 0)
10524 break; /* We found the frame we were looking for... */
10525 fi = get_prev_frame (fi);
10526 }
10527
10528 if (fi == NULL)
10529 return 0;
10530
10531 select_frame (fi);
10532 return parse_and_eval_address ("id.full_name");
10533 }
10534
10535 /* Assuming the inferior just triggered an Ada exception catchpoint
10536 (of any type), return the address in inferior memory where the name
10537 of the exception is stored, if applicable.
10538
10539 Return zero if the address could not be computed, or if not relevant. */
10540
10541 static CORE_ADDR
10542 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
10543 struct breakpoint *b)
10544 {
10545 switch (ex)
10546 {
10547 case ex_catch_exception:
10548 return (parse_and_eval_address ("e.full_name"));
10549 break;
10550
10551 case ex_catch_exception_unhandled:
10552 return exception_info->unhandled_exception_name_addr ();
10553 break;
10554
10555 case ex_catch_assert:
10556 return 0; /* Exception name is not relevant in this case. */
10557 break;
10558
10559 default:
10560 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10561 break;
10562 }
10563
10564 return 0; /* Should never be reached. */
10565 }
10566
10567 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
10568 any error that ada_exception_name_addr_1 might cause to be thrown.
10569 When an error is intercepted, a warning with the error message is printed,
10570 and zero is returned. */
10571
10572 static CORE_ADDR
10573 ada_exception_name_addr (enum exception_catchpoint_kind ex,
10574 struct breakpoint *b)
10575 {
10576 struct gdb_exception e;
10577 CORE_ADDR result = 0;
10578
10579 TRY_CATCH (e, RETURN_MASK_ERROR)
10580 {
10581 result = ada_exception_name_addr_1 (ex, b);
10582 }
10583
10584 if (e.reason < 0)
10585 {
10586 warning (_("failed to get exception name: %s"), e.message);
10587 return 0;
10588 }
10589
10590 return result;
10591 }
10592
10593 /* Implement the PRINT_IT method in the breakpoint_ops structure
10594 for all exception catchpoint kinds. */
10595
10596 static enum print_stop_action
10597 print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
10598 {
10599 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
10600 char exception_name[256];
10601
10602 if (addr != 0)
10603 {
10604 read_memory (addr, exception_name, sizeof (exception_name) - 1);
10605 exception_name [sizeof (exception_name) - 1] = '\0';
10606 }
10607
10608 ada_find_printable_frame (get_current_frame ());
10609
10610 annotate_catchpoint (b->number);
10611 switch (ex)
10612 {
10613 case ex_catch_exception:
10614 if (addr != 0)
10615 printf_filtered (_("\nCatchpoint %d, %s at "),
10616 b->number, exception_name);
10617 else
10618 printf_filtered (_("\nCatchpoint %d, exception at "), b->number);
10619 break;
10620 case ex_catch_exception_unhandled:
10621 if (addr != 0)
10622 printf_filtered (_("\nCatchpoint %d, unhandled %s at "),
10623 b->number, exception_name);
10624 else
10625 printf_filtered (_("\nCatchpoint %d, unhandled exception at "),
10626 b->number);
10627 break;
10628 case ex_catch_assert:
10629 printf_filtered (_("\nCatchpoint %d, failed assertion at "),
10630 b->number);
10631 break;
10632 }
10633
10634 return PRINT_SRC_AND_LOC;
10635 }
10636
10637 /* Implement the PRINT_ONE method in the breakpoint_ops structure
10638 for all exception catchpoint kinds. */
10639
10640 static void
10641 print_one_exception (enum exception_catchpoint_kind ex,
10642 struct breakpoint *b, struct bp_location **last_loc)
10643 {
10644 struct value_print_options opts;
10645
10646 get_user_print_options (&opts);
10647 if (opts.addressprint)
10648 {
10649 annotate_field (4);
10650 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
10651 }
10652
10653 annotate_field (5);
10654 *last_loc = b->loc;
10655 switch (ex)
10656 {
10657 case ex_catch_exception:
10658 if (b->exp_string != NULL)
10659 {
10660 char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
10661
10662 ui_out_field_string (uiout, "what", msg);
10663 xfree (msg);
10664 }
10665 else
10666 ui_out_field_string (uiout, "what", "all Ada exceptions");
10667
10668 break;
10669
10670 case ex_catch_exception_unhandled:
10671 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
10672 break;
10673
10674 case ex_catch_assert:
10675 ui_out_field_string (uiout, "what", "failed Ada assertions");
10676 break;
10677
10678 default:
10679 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10680 break;
10681 }
10682 }
10683
10684 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
10685 for all exception catchpoint kinds. */
10686
10687 static void
10688 print_mention_exception (enum exception_catchpoint_kind ex,
10689 struct breakpoint *b)
10690 {
10691 switch (ex)
10692 {
10693 case ex_catch_exception:
10694 if (b->exp_string != NULL)
10695 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
10696 b->number, b->exp_string);
10697 else
10698 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
10699
10700 break;
10701
10702 case ex_catch_exception_unhandled:
10703 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
10704 b->number);
10705 break;
10706
10707 case ex_catch_assert:
10708 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
10709 break;
10710
10711 default:
10712 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10713 break;
10714 }
10715 }
10716
10717 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
10718 for all exception catchpoint kinds. */
10719
10720 static void
10721 print_recreate_exception (enum exception_catchpoint_kind ex,
10722 struct breakpoint *b, struct ui_file *fp)
10723 {
10724 switch (ex)
10725 {
10726 case ex_catch_exception:
10727 fprintf_filtered (fp, "catch exception");
10728 if (b->exp_string != NULL)
10729 fprintf_filtered (fp, " %s", b->exp_string);
10730 break;
10731
10732 case ex_catch_exception_unhandled:
10733 fprintf_filtered (fp, "catch exception unhandled");
10734 break;
10735
10736 case ex_catch_assert:
10737 fprintf_filtered (fp, "catch assert");
10738 break;
10739
10740 default:
10741 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10742 }
10743 }
10744
10745 /* Virtual table for "catch exception" breakpoints. */
10746
10747 static enum print_stop_action
10748 print_it_catch_exception (struct breakpoint *b)
10749 {
10750 return print_it_exception (ex_catch_exception, b);
10751 }
10752
10753 static void
10754 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
10755 {
10756 print_one_exception (ex_catch_exception, b, last_loc);
10757 }
10758
10759 static void
10760 print_mention_catch_exception (struct breakpoint *b)
10761 {
10762 print_mention_exception (ex_catch_exception, b);
10763 }
10764
10765 static void
10766 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
10767 {
10768 print_recreate_exception (ex_catch_exception, b, fp);
10769 }
10770
10771 static struct breakpoint_ops catch_exception_breakpoint_ops =
10772 {
10773 NULL, /* insert */
10774 NULL, /* remove */
10775 NULL, /* breakpoint_hit */
10776 print_it_catch_exception,
10777 print_one_catch_exception,
10778 print_mention_catch_exception,
10779 print_recreate_catch_exception
10780 };
10781
10782 /* Virtual table for "catch exception unhandled" breakpoints. */
10783
10784 static enum print_stop_action
10785 print_it_catch_exception_unhandled (struct breakpoint *b)
10786 {
10787 return print_it_exception (ex_catch_exception_unhandled, b);
10788 }
10789
10790 static void
10791 print_one_catch_exception_unhandled (struct breakpoint *b,
10792 struct bp_location **last_loc)
10793 {
10794 print_one_exception (ex_catch_exception_unhandled, b, last_loc);
10795 }
10796
10797 static void
10798 print_mention_catch_exception_unhandled (struct breakpoint *b)
10799 {
10800 print_mention_exception (ex_catch_exception_unhandled, b);
10801 }
10802
10803 static void
10804 print_recreate_catch_exception_unhandled (struct breakpoint *b,
10805 struct ui_file *fp)
10806 {
10807 print_recreate_exception (ex_catch_exception_unhandled, b, fp);
10808 }
10809
10810 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
10811 NULL, /* insert */
10812 NULL, /* remove */
10813 NULL, /* breakpoint_hit */
10814 print_it_catch_exception_unhandled,
10815 print_one_catch_exception_unhandled,
10816 print_mention_catch_exception_unhandled,
10817 print_recreate_catch_exception_unhandled
10818 };
10819
10820 /* Virtual table for "catch assert" breakpoints. */
10821
10822 static enum print_stop_action
10823 print_it_catch_assert (struct breakpoint *b)
10824 {
10825 return print_it_exception (ex_catch_assert, b);
10826 }
10827
10828 static void
10829 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
10830 {
10831 print_one_exception (ex_catch_assert, b, last_loc);
10832 }
10833
10834 static void
10835 print_mention_catch_assert (struct breakpoint *b)
10836 {
10837 print_mention_exception (ex_catch_assert, b);
10838 }
10839
10840 static void
10841 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
10842 {
10843 print_recreate_exception (ex_catch_assert, b, fp);
10844 }
10845
10846 static struct breakpoint_ops catch_assert_breakpoint_ops = {
10847 NULL, /* insert */
10848 NULL, /* remove */
10849 NULL, /* breakpoint_hit */
10850 print_it_catch_assert,
10851 print_one_catch_assert,
10852 print_mention_catch_assert,
10853 print_recreate_catch_assert
10854 };
10855
10856 /* Return non-zero if B is an Ada exception catchpoint. */
10857
10858 int
10859 ada_exception_catchpoint_p (struct breakpoint *b)
10860 {
10861 return (b->ops == &catch_exception_breakpoint_ops
10862 || b->ops == &catch_exception_unhandled_breakpoint_ops
10863 || b->ops == &catch_assert_breakpoint_ops);
10864 }
10865
10866 /* Return a newly allocated copy of the first space-separated token
10867 in ARGSP, and then adjust ARGSP to point immediately after that
10868 token.
10869
10870 Return NULL if ARGPS does not contain any more tokens. */
10871
10872 static char *
10873 ada_get_next_arg (char **argsp)
10874 {
10875 char *args = *argsp;
10876 char *end;
10877 char *result;
10878
10879 /* Skip any leading white space. */
10880
10881 while (isspace (*args))
10882 args++;
10883
10884 if (args[0] == '\0')
10885 return NULL; /* No more arguments. */
10886
10887 /* Find the end of the current argument. */
10888
10889 end = args;
10890 while (*end != '\0' && !isspace (*end))
10891 end++;
10892
10893 /* Adjust ARGSP to point to the start of the next argument. */
10894
10895 *argsp = end;
10896
10897 /* Make a copy of the current argument and return it. */
10898
10899 result = xmalloc (end - args + 1);
10900 strncpy (result, args, end - args);
10901 result[end - args] = '\0';
10902
10903 return result;
10904 }
10905
10906 /* Split the arguments specified in a "catch exception" command.
10907 Set EX to the appropriate catchpoint type.
10908 Set EXP_STRING to the name of the specific exception if
10909 specified by the user. */
10910
10911 static void
10912 catch_ada_exception_command_split (char *args,
10913 enum exception_catchpoint_kind *ex,
10914 char **exp_string)
10915 {
10916 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
10917 char *exception_name;
10918
10919 exception_name = ada_get_next_arg (&args);
10920 make_cleanup (xfree, exception_name);
10921
10922 /* Check that we do not have any more arguments. Anything else
10923 is unexpected. */
10924
10925 while (isspace (*args))
10926 args++;
10927
10928 if (args[0] != '\0')
10929 error (_("Junk at end of expression"));
10930
10931 discard_cleanups (old_chain);
10932
10933 if (exception_name == NULL)
10934 {
10935 /* Catch all exceptions. */
10936 *ex = ex_catch_exception;
10937 *exp_string = NULL;
10938 }
10939 else if (strcmp (exception_name, "unhandled") == 0)
10940 {
10941 /* Catch unhandled exceptions. */
10942 *ex = ex_catch_exception_unhandled;
10943 *exp_string = NULL;
10944 }
10945 else
10946 {
10947 /* Catch a specific exception. */
10948 *ex = ex_catch_exception;
10949 *exp_string = exception_name;
10950 }
10951 }
10952
10953 /* Return the name of the symbol on which we should break in order to
10954 implement a catchpoint of the EX kind. */
10955
10956 static const char *
10957 ada_exception_sym_name (enum exception_catchpoint_kind ex)
10958 {
10959 gdb_assert (exception_info != NULL);
10960
10961 switch (ex)
10962 {
10963 case ex_catch_exception:
10964 return (exception_info->catch_exception_sym);
10965 break;
10966 case ex_catch_exception_unhandled:
10967 return (exception_info->catch_exception_unhandled_sym);
10968 break;
10969 case ex_catch_assert:
10970 return (exception_info->catch_assert_sym);
10971 break;
10972 default:
10973 internal_error (__FILE__, __LINE__,
10974 _("unexpected catchpoint kind (%d)"), ex);
10975 }
10976 }
10977
10978 /* Return the breakpoint ops "virtual table" used for catchpoints
10979 of the EX kind. */
10980
10981 static struct breakpoint_ops *
10982 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
10983 {
10984 switch (ex)
10985 {
10986 case ex_catch_exception:
10987 return (&catch_exception_breakpoint_ops);
10988 break;
10989 case ex_catch_exception_unhandled:
10990 return (&catch_exception_unhandled_breakpoint_ops);
10991 break;
10992 case ex_catch_assert:
10993 return (&catch_assert_breakpoint_ops);
10994 break;
10995 default:
10996 internal_error (__FILE__, __LINE__,
10997 _("unexpected catchpoint kind (%d)"), ex);
10998 }
10999 }
11000
11001 /* Return the condition that will be used to match the current exception
11002 being raised with the exception that the user wants to catch. This
11003 assumes that this condition is used when the inferior just triggered
11004 an exception catchpoint.
11005
11006 The string returned is a newly allocated string that needs to be
11007 deallocated later. */
11008
11009 static char *
11010 ada_exception_catchpoint_cond_string (const char *exp_string)
11011 {
11012 int i;
11013
11014 /* The standard exceptions are a special case. They are defined in
11015 runtime units that have been compiled without debugging info; if
11016 EXP_STRING is the not-fully-qualified name of a standard
11017 exception (e.g. "constraint_error") then, during the evaluation
11018 of the condition expression, the symbol lookup on this name would
11019 *not* return this standard exception. The catchpoint condition
11020 may then be set only on user-defined exceptions which have the
11021 same not-fully-qualified name (e.g. my_package.constraint_error).
11022
11023 To avoid this unexcepted behavior, these standard exceptions are
11024 systematically prefixed by "standard". This means that "catch
11025 exception constraint_error" is rewritten into "catch exception
11026 standard.constraint_error".
11027
11028 If an exception named contraint_error is defined in another package of
11029 the inferior program, then the only way to specify this exception as a
11030 breakpoint condition is to use its fully-qualified named:
11031 e.g. my_package.constraint_error. */
11032
11033 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
11034 {
11035 if (strcmp (standard_exc [i], exp_string) == 0)
11036 {
11037 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
11038 exp_string);
11039 }
11040 }
11041 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
11042 }
11043
11044 /* Return the expression corresponding to COND_STRING evaluated at SAL. */
11045
11046 static struct expression *
11047 ada_parse_catchpoint_condition (char *cond_string,
11048 struct symtab_and_line sal)
11049 {
11050 return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
11051 }
11052
11053 /* Return the symtab_and_line that should be used to insert an exception
11054 catchpoint of the TYPE kind.
11055
11056 EX_STRING should contain the name of a specific exception
11057 that the catchpoint should catch, or NULL otherwise.
11058
11059 The idea behind all the remaining parameters is that their names match
11060 the name of certain fields in the breakpoint structure that are used to
11061 handle exception catchpoints. This function returns the value to which
11062 these fields should be set, depending on the type of catchpoint we need
11063 to create.
11064
11065 If COND and COND_STRING are both non-NULL, any value they might
11066 hold will be free'ed, and then replaced by newly allocated ones.
11067 These parameters are left untouched otherwise. */
11068
11069 static struct symtab_and_line
11070 ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
11071 char **addr_string, char **cond_string,
11072 struct expression **cond, struct breakpoint_ops **ops)
11073 {
11074 const char *sym_name;
11075 struct symbol *sym;
11076 struct symtab_and_line sal;
11077
11078 /* First, find out which exception support info to use. */
11079 ada_exception_support_info_sniffer ();
11080
11081 /* Then lookup the function on which we will break in order to catch
11082 the Ada exceptions requested by the user. */
11083
11084 sym_name = ada_exception_sym_name (ex);
11085 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
11086
11087 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11088 that should be compiled with debugging information. As a result, we
11089 expect to find that symbol in the symtabs. If we don't find it, then
11090 the target most likely does not support Ada exceptions, or we cannot
11091 insert exception breakpoints yet, because the GNAT runtime hasn't been
11092 loaded yet. */
11093
11094 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
11095 in such a way that no debugging information is produced for the symbol
11096 we are looking for. In this case, we could search the minimal symbols
11097 as a fall-back mechanism. This would still be operating in degraded
11098 mode, however, as we would still be missing the debugging information
11099 that is needed in order to extract the name of the exception being
11100 raised (this name is printed in the catchpoint message, and is also
11101 used when trying to catch a specific exception). We do not handle
11102 this case for now. */
11103
11104 if (sym == NULL)
11105 error (_("Unable to break on '%s' in this configuration."), sym_name);
11106
11107 /* Make sure that the symbol we found corresponds to a function. */
11108 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11109 error (_("Symbol \"%s\" is not a function (class = %d)"),
11110 sym_name, SYMBOL_CLASS (sym));
11111
11112 sal = find_function_start_sal (sym, 1);
11113
11114 /* Set ADDR_STRING. */
11115
11116 *addr_string = xstrdup (sym_name);
11117
11118 /* Set the COND and COND_STRING (if not NULL). */
11119
11120 if (cond_string != NULL && cond != NULL)
11121 {
11122 if (*cond_string != NULL)
11123 {
11124 xfree (*cond_string);
11125 *cond_string = NULL;
11126 }
11127 if (*cond != NULL)
11128 {
11129 xfree (*cond);
11130 *cond = NULL;
11131 }
11132 if (exp_string != NULL)
11133 {
11134 *cond_string = ada_exception_catchpoint_cond_string (exp_string);
11135 *cond = ada_parse_catchpoint_condition (*cond_string, sal);
11136 }
11137 }
11138
11139 /* Set OPS. */
11140 *ops = ada_exception_breakpoint_ops (ex);
11141
11142 return sal;
11143 }
11144
11145 /* Parse the arguments (ARGS) of the "catch exception" command.
11146
11147 Set TYPE to the appropriate exception catchpoint type.
11148 If the user asked the catchpoint to catch only a specific
11149 exception, then save the exception name in ADDR_STRING.
11150
11151 See ada_exception_sal for a description of all the remaining
11152 function arguments of this function. */
11153
11154 struct symtab_and_line
11155 ada_decode_exception_location (char *args, char **addr_string,
11156 char **exp_string, char **cond_string,
11157 struct expression **cond,
11158 struct breakpoint_ops **ops)
11159 {
11160 enum exception_catchpoint_kind ex;
11161
11162 catch_ada_exception_command_split (args, &ex, exp_string);
11163 return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
11164 cond, ops);
11165 }
11166
11167 struct symtab_and_line
11168 ada_decode_assert_location (char *args, char **addr_string,
11169 struct breakpoint_ops **ops)
11170 {
11171 /* Check that no argument where provided at the end of the command. */
11172
11173 if (args != NULL)
11174 {
11175 while (isspace (*args))
11176 args++;
11177 if (*args != '\0')
11178 error (_("Junk at end of arguments."));
11179 }
11180
11181 return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
11182 ops);
11183 }
11184
11185 /* Operators */
11186 /* Information about operators given special treatment in functions
11187 below. */
11188 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
11189
11190 #define ADA_OPERATORS \
11191 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
11192 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
11193 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
11194 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
11195 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
11196 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
11197 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
11198 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
11199 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
11200 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
11201 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
11202 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
11203 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
11204 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
11205 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
11206 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
11207 OP_DEFN (OP_OTHERS, 1, 1, 0) \
11208 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
11209 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
11210
11211 static void
11212 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
11213 int *argsp)
11214 {
11215 switch (exp->elts[pc - 1].opcode)
11216 {
11217 default:
11218 operator_length_standard (exp, pc, oplenp, argsp);
11219 break;
11220
11221 #define OP_DEFN(op, len, args, binop) \
11222 case op: *oplenp = len; *argsp = args; break;
11223 ADA_OPERATORS;
11224 #undef OP_DEFN
11225
11226 case OP_AGGREGATE:
11227 *oplenp = 3;
11228 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
11229 break;
11230
11231 case OP_CHOICES:
11232 *oplenp = 3;
11233 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
11234 break;
11235 }
11236 }
11237
11238 /* Implementation of the exp_descriptor method operator_check. */
11239
11240 static int
11241 ada_operator_check (struct expression *exp, int pos,
11242 int (*objfile_func) (struct objfile *objfile, void *data),
11243 void *data)
11244 {
11245 const union exp_element *const elts = exp->elts;
11246 struct type *type = NULL;
11247
11248 switch (elts[pos].opcode)
11249 {
11250 case UNOP_IN_RANGE:
11251 case UNOP_QUAL:
11252 type = elts[pos + 1].type;
11253 break;
11254
11255 default:
11256 return operator_check_standard (exp, pos, objfile_func, data);
11257 }
11258
11259 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
11260
11261 if (type && TYPE_OBJFILE (type)
11262 && (*objfile_func) (TYPE_OBJFILE (type), data))
11263 return 1;
11264
11265 return 0;
11266 }
11267
11268 static char *
11269 ada_op_name (enum exp_opcode opcode)
11270 {
11271 switch (opcode)
11272 {
11273 default:
11274 return op_name_standard (opcode);
11275
11276 #define OP_DEFN(op, len, args, binop) case op: return #op;
11277 ADA_OPERATORS;
11278 #undef OP_DEFN
11279
11280 case OP_AGGREGATE:
11281 return "OP_AGGREGATE";
11282 case OP_CHOICES:
11283 return "OP_CHOICES";
11284 case OP_NAME:
11285 return "OP_NAME";
11286 }
11287 }
11288
11289 /* As for operator_length, but assumes PC is pointing at the first
11290 element of the operator, and gives meaningful results only for the
11291 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
11292
11293 static void
11294 ada_forward_operator_length (struct expression *exp, int pc,
11295 int *oplenp, int *argsp)
11296 {
11297 switch (exp->elts[pc].opcode)
11298 {
11299 default:
11300 *oplenp = *argsp = 0;
11301 break;
11302
11303 #define OP_DEFN(op, len, args, binop) \
11304 case op: *oplenp = len; *argsp = args; break;
11305 ADA_OPERATORS;
11306 #undef OP_DEFN
11307
11308 case OP_AGGREGATE:
11309 *oplenp = 3;
11310 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
11311 break;
11312
11313 case OP_CHOICES:
11314 *oplenp = 3;
11315 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
11316 break;
11317
11318 case OP_STRING:
11319 case OP_NAME:
11320 {
11321 int len = longest_to_int (exp->elts[pc + 1].longconst);
11322
11323 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
11324 *argsp = 0;
11325 break;
11326 }
11327 }
11328 }
11329
11330 static int
11331 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
11332 {
11333 enum exp_opcode op = exp->elts[elt].opcode;
11334 int oplen, nargs;
11335 int pc = elt;
11336 int i;
11337
11338 ada_forward_operator_length (exp, elt, &oplen, &nargs);
11339
11340 switch (op)
11341 {
11342 /* Ada attributes ('Foo). */
11343 case OP_ATR_FIRST:
11344 case OP_ATR_LAST:
11345 case OP_ATR_LENGTH:
11346 case OP_ATR_IMAGE:
11347 case OP_ATR_MAX:
11348 case OP_ATR_MIN:
11349 case OP_ATR_MODULUS:
11350 case OP_ATR_POS:
11351 case OP_ATR_SIZE:
11352 case OP_ATR_TAG:
11353 case OP_ATR_VAL:
11354 break;
11355
11356 case UNOP_IN_RANGE:
11357 case UNOP_QUAL:
11358 /* XXX: gdb_sprint_host_address, type_sprint */
11359 fprintf_filtered (stream, _("Type @"));
11360 gdb_print_host_address (exp->elts[pc + 1].type, stream);
11361 fprintf_filtered (stream, " (");
11362 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
11363 fprintf_filtered (stream, ")");
11364 break;
11365 case BINOP_IN_BOUNDS:
11366 fprintf_filtered (stream, " (%d)",
11367 longest_to_int (exp->elts[pc + 2].longconst));
11368 break;
11369 case TERNOP_IN_RANGE:
11370 break;
11371
11372 case OP_AGGREGATE:
11373 case OP_OTHERS:
11374 case OP_DISCRETE_RANGE:
11375 case OP_POSITIONAL:
11376 case OP_CHOICES:
11377 break;
11378
11379 case OP_NAME:
11380 case OP_STRING:
11381 {
11382 char *name = &exp->elts[elt + 2].string;
11383 int len = longest_to_int (exp->elts[elt + 1].longconst);
11384
11385 fprintf_filtered (stream, "Text: `%.*s'", len, name);
11386 break;
11387 }
11388
11389 default:
11390 return dump_subexp_body_standard (exp, stream, elt);
11391 }
11392
11393 elt += oplen;
11394 for (i = 0; i < nargs; i += 1)
11395 elt = dump_subexp (exp, stream, elt);
11396
11397 return elt;
11398 }
11399
11400 /* The Ada extension of print_subexp (q.v.). */
11401
11402 static void
11403 ada_print_subexp (struct expression *exp, int *pos,
11404 struct ui_file *stream, enum precedence prec)
11405 {
11406 int oplen, nargs, i;
11407 int pc = *pos;
11408 enum exp_opcode op = exp->elts[pc].opcode;
11409
11410 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11411
11412 *pos += oplen;
11413 switch (op)
11414 {
11415 default:
11416 *pos -= oplen;
11417 print_subexp_standard (exp, pos, stream, prec);
11418 return;
11419
11420 case OP_VAR_VALUE:
11421 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
11422 return;
11423
11424 case BINOP_IN_BOUNDS:
11425 /* XXX: sprint_subexp */
11426 print_subexp (exp, pos, stream, PREC_SUFFIX);
11427 fputs_filtered (" in ", stream);
11428 print_subexp (exp, pos, stream, PREC_SUFFIX);
11429 fputs_filtered ("'range", stream);
11430 if (exp->elts[pc + 1].longconst > 1)
11431 fprintf_filtered (stream, "(%ld)",
11432 (long) exp->elts[pc + 1].longconst);
11433 return;
11434
11435 case TERNOP_IN_RANGE:
11436 if (prec >= PREC_EQUAL)
11437 fputs_filtered ("(", stream);
11438 /* XXX: sprint_subexp */
11439 print_subexp (exp, pos, stream, PREC_SUFFIX);
11440 fputs_filtered (" in ", stream);
11441 print_subexp (exp, pos, stream, PREC_EQUAL);
11442 fputs_filtered (" .. ", stream);
11443 print_subexp (exp, pos, stream, PREC_EQUAL);
11444 if (prec >= PREC_EQUAL)
11445 fputs_filtered (")", stream);
11446 return;
11447
11448 case OP_ATR_FIRST:
11449 case OP_ATR_LAST:
11450 case OP_ATR_LENGTH:
11451 case OP_ATR_IMAGE:
11452 case OP_ATR_MAX:
11453 case OP_ATR_MIN:
11454 case OP_ATR_MODULUS:
11455 case OP_ATR_POS:
11456 case OP_ATR_SIZE:
11457 case OP_ATR_TAG:
11458 case OP_ATR_VAL:
11459 if (exp->elts[*pos].opcode == OP_TYPE)
11460 {
11461 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
11462 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
11463 *pos += 3;
11464 }
11465 else
11466 print_subexp (exp, pos, stream, PREC_SUFFIX);
11467 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
11468 if (nargs > 1)
11469 {
11470 int tem;
11471
11472 for (tem = 1; tem < nargs; tem += 1)
11473 {
11474 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
11475 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
11476 }
11477 fputs_filtered (")", stream);
11478 }
11479 return;
11480
11481 case UNOP_QUAL:
11482 type_print (exp->elts[pc + 1].type, "", stream, 0);
11483 fputs_filtered ("'(", stream);
11484 print_subexp (exp, pos, stream, PREC_PREFIX);
11485 fputs_filtered (")", stream);
11486 return;
11487
11488 case UNOP_IN_RANGE:
11489 /* XXX: sprint_subexp */
11490 print_subexp (exp, pos, stream, PREC_SUFFIX);
11491 fputs_filtered (" in ", stream);
11492 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
11493 return;
11494
11495 case OP_DISCRETE_RANGE:
11496 print_subexp (exp, pos, stream, PREC_SUFFIX);
11497 fputs_filtered ("..", stream);
11498 print_subexp (exp, pos, stream, PREC_SUFFIX);
11499 return;
11500
11501 case OP_OTHERS:
11502 fputs_filtered ("others => ", stream);
11503 print_subexp (exp, pos, stream, PREC_SUFFIX);
11504 return;
11505
11506 case OP_CHOICES:
11507 for (i = 0; i < nargs-1; i += 1)
11508 {
11509 if (i > 0)
11510 fputs_filtered ("|", stream);
11511 print_subexp (exp, pos, stream, PREC_SUFFIX);
11512 }
11513 fputs_filtered (" => ", stream);
11514 print_subexp (exp, pos, stream, PREC_SUFFIX);
11515 return;
11516
11517 case OP_POSITIONAL:
11518 print_subexp (exp, pos, stream, PREC_SUFFIX);
11519 return;
11520
11521 case OP_AGGREGATE:
11522 fputs_filtered ("(", stream);
11523 for (i = 0; i < nargs; i += 1)
11524 {
11525 if (i > 0)
11526 fputs_filtered (", ", stream);
11527 print_subexp (exp, pos, stream, PREC_SUFFIX);
11528 }
11529 fputs_filtered (")", stream);
11530 return;
11531 }
11532 }
11533
11534 /* Table mapping opcodes into strings for printing operators
11535 and precedences of the operators. */
11536
11537 static const struct op_print ada_op_print_tab[] = {
11538 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
11539 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
11540 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
11541 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
11542 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
11543 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
11544 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
11545 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
11546 {"<=", BINOP_LEQ, PREC_ORDER, 0},
11547 {">=", BINOP_GEQ, PREC_ORDER, 0},
11548 {">", BINOP_GTR, PREC_ORDER, 0},
11549 {"<", BINOP_LESS, PREC_ORDER, 0},
11550 {">>", BINOP_RSH, PREC_SHIFT, 0},
11551 {"<<", BINOP_LSH, PREC_SHIFT, 0},
11552 {"+", BINOP_ADD, PREC_ADD, 0},
11553 {"-", BINOP_SUB, PREC_ADD, 0},
11554 {"&", BINOP_CONCAT, PREC_ADD, 0},
11555 {"*", BINOP_MUL, PREC_MUL, 0},
11556 {"/", BINOP_DIV, PREC_MUL, 0},
11557 {"rem", BINOP_REM, PREC_MUL, 0},
11558 {"mod", BINOP_MOD, PREC_MUL, 0},
11559 {"**", BINOP_EXP, PREC_REPEAT, 0},
11560 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
11561 {"-", UNOP_NEG, PREC_PREFIX, 0},
11562 {"+", UNOP_PLUS, PREC_PREFIX, 0},
11563 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
11564 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
11565 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
11566 {".all", UNOP_IND, PREC_SUFFIX, 1},
11567 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
11568 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
11569 {NULL, 0, 0, 0}
11570 };
11571 \f
11572 enum ada_primitive_types {
11573 ada_primitive_type_int,
11574 ada_primitive_type_long,
11575 ada_primitive_type_short,
11576 ada_primitive_type_char,
11577 ada_primitive_type_float,
11578 ada_primitive_type_double,
11579 ada_primitive_type_void,
11580 ada_primitive_type_long_long,
11581 ada_primitive_type_long_double,
11582 ada_primitive_type_natural,
11583 ada_primitive_type_positive,
11584 ada_primitive_type_system_address,
11585 nr_ada_primitive_types
11586 };
11587
11588 static void
11589 ada_language_arch_info (struct gdbarch *gdbarch,
11590 struct language_arch_info *lai)
11591 {
11592 const struct builtin_type *builtin = builtin_type (gdbarch);
11593
11594 lai->primitive_type_vector
11595 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
11596 struct type *);
11597
11598 lai->primitive_type_vector [ada_primitive_type_int]
11599 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11600 0, "integer");
11601 lai->primitive_type_vector [ada_primitive_type_long]
11602 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
11603 0, "long_integer");
11604 lai->primitive_type_vector [ada_primitive_type_short]
11605 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
11606 0, "short_integer");
11607 lai->string_char_type
11608 = lai->primitive_type_vector [ada_primitive_type_char]
11609 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
11610 lai->primitive_type_vector [ada_primitive_type_float]
11611 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
11612 "float", NULL);
11613 lai->primitive_type_vector [ada_primitive_type_double]
11614 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
11615 "long_float", NULL);
11616 lai->primitive_type_vector [ada_primitive_type_long_long]
11617 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
11618 0, "long_long_integer");
11619 lai->primitive_type_vector [ada_primitive_type_long_double]
11620 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
11621 "long_long_float", NULL);
11622 lai->primitive_type_vector [ada_primitive_type_natural]
11623 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11624 0, "natural");
11625 lai->primitive_type_vector [ada_primitive_type_positive]
11626 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11627 0, "positive");
11628 lai->primitive_type_vector [ada_primitive_type_void]
11629 = builtin->builtin_void;
11630
11631 lai->primitive_type_vector [ada_primitive_type_system_address]
11632 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
11633 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
11634 = "system__address";
11635
11636 lai->bool_type_symbol = NULL;
11637 lai->bool_type_default = builtin->builtin_bool;
11638 }
11639 \f
11640 /* Language vector */
11641
11642 /* Not really used, but needed in the ada_language_defn. */
11643
11644 static void
11645 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
11646 {
11647 ada_emit_char (c, type, stream, quoter, 1);
11648 }
11649
11650 static int
11651 parse (void)
11652 {
11653 warnings_issued = 0;
11654 return ada_parse ();
11655 }
11656
11657 static const struct exp_descriptor ada_exp_descriptor = {
11658 ada_print_subexp,
11659 ada_operator_length,
11660 ada_operator_check,
11661 ada_op_name,
11662 ada_dump_subexp_body,
11663 ada_evaluate_subexp
11664 };
11665
11666 const struct language_defn ada_language_defn = {
11667 "ada", /* Language name */
11668 language_ada,
11669 range_check_off,
11670 type_check_off,
11671 case_sensitive_on, /* Yes, Ada is case-insensitive, but
11672 that's not quite what this means. */
11673 array_row_major,
11674 macro_expansion_no,
11675 &ada_exp_descriptor,
11676 parse,
11677 ada_error,
11678 resolve,
11679 ada_printchar, /* Print a character constant */
11680 ada_printstr, /* Function to print string constant */
11681 emit_char, /* Function to print single char (not used) */
11682 ada_print_type, /* Print a type using appropriate syntax */
11683 ada_print_typedef, /* Print a typedef using appropriate syntax */
11684 ada_val_print, /* Print a value using appropriate syntax */
11685 ada_value_print, /* Print a top-level value */
11686 NULL, /* Language specific skip_trampoline */
11687 NULL, /* name_of_this */
11688 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
11689 basic_lookup_transparent_type, /* lookup_transparent_type */
11690 ada_la_decode, /* Language specific symbol demangler */
11691 NULL, /* Language specific class_name_from_physname */
11692 ada_op_print_tab, /* expression operators for printing */
11693 0, /* c-style arrays */
11694 1, /* String lower bound */
11695 ada_get_gdb_completer_word_break_characters,
11696 ada_make_symbol_completion_list,
11697 ada_language_arch_info,
11698 ada_print_array_index,
11699 default_pass_by_reference,
11700 c_get_string,
11701 LANG_MAGIC
11702 };
11703
11704 /* Provide a prototype to silence -Wmissing-prototypes. */
11705 extern initialize_file_ftype _initialize_ada_language;
11706
11707 /* Command-list for the "set/show ada" prefix command. */
11708 static struct cmd_list_element *set_ada_list;
11709 static struct cmd_list_element *show_ada_list;
11710
11711 /* Implement the "set ada" prefix command. */
11712
11713 static void
11714 set_ada_command (char *arg, int from_tty)
11715 {
11716 printf_unfiltered (_(\
11717 "\"set ada\" must be followed by the name of a setting.\n"));
11718 help_list (set_ada_list, "set ada ", -1, gdb_stdout);
11719 }
11720
11721 /* Implement the "show ada" prefix command. */
11722
11723 static void
11724 show_ada_command (char *args, int from_tty)
11725 {
11726 cmd_show_list (show_ada_list, from_tty, "");
11727 }
11728
11729 void
11730 _initialize_ada_language (void)
11731 {
11732 add_language (&ada_language_defn);
11733
11734 add_prefix_cmd ("ada", no_class, set_ada_command,
11735 _("Prefix command for changing Ada-specfic settings"),
11736 &set_ada_list, "set ada ", 0, &setlist);
11737
11738 add_prefix_cmd ("ada", no_class, show_ada_command,
11739 _("Generic command for showing Ada-specific settings."),
11740 &show_ada_list, "show ada ", 0, &showlist);
11741
11742 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
11743 &trust_pad_over_xvs, _("\
11744 Enable or disable an optimization trusting PAD types over XVS types"), _("\
11745 Show whether an optimization trusting PAD types over XVS types is activated"),
11746 _("\
11747 This is related to the encoding used by the GNAT compiler. The debugger\n\
11748 should normally trust the contents of PAD types, but certain older versions\n\
11749 of GNAT have a bug that sometimes causes the information in the PAD type\n\
11750 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
11751 work around this bug. It is always safe to turn this option \"off\", but\n\
11752 this incurs a slight performance penalty, so it is recommended to NOT change\n\
11753 this option to \"off\" unless necessary."),
11754 NULL, NULL, &set_ada_list, &show_ada_list);
11755
11756 varsize_limit = 65536;
11757
11758 obstack_init (&symbol_list_obstack);
11759
11760 decoded_names_store = htab_create_alloc
11761 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
11762 NULL, xcalloc, xfree);
11763
11764 observer_attach_executable_changed (ada_executable_changed_observer);
11765
11766 /* Setup per-inferior data. */
11767 observer_attach_inferior_exit (ada_inferior_exit);
11768 ada_inferior_data
11769 = register_inferior_data_with_cleanup (ada_inferior_data_cleanup);
11770 }