Fix segfault when printing short_integer'last.
[binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger. Copyright (C)
2
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007, 2008,
4 2009 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21
22 #include "defs.h"
23 #include <stdio.h>
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include <stdarg.h>
27 #include "demangle.h"
28 #include "gdb_regex.h"
29 #include "frame.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "gdbcmd.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35 #include "language.h"
36 #include "c-lang.h"
37 #include "inferior.h"
38 #include "symfile.h"
39 #include "objfiles.h"
40 #include "breakpoint.h"
41 #include "gdbcore.h"
42 #include "hashtab.h"
43 #include "gdb_obstack.h"
44 #include "ada-lang.h"
45 #include "completer.h"
46 #include "gdb_stat.h"
47 #ifdef UI_OUT
48 #include "ui-out.h"
49 #endif
50 #include "block.h"
51 #include "infcall.h"
52 #include "dictionary.h"
53 #include "exceptions.h"
54 #include "annotate.h"
55 #include "valprint.h"
56 #include "source.h"
57 #include "observer.h"
58 #include "vec.h"
59
60 /* Define whether or not the C operator '/' truncates towards zero for
61 differently signed operands (truncation direction is undefined in C).
62 Copied from valarith.c. */
63
64 #ifndef TRUNCATION_TOWARDS_ZERO
65 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
66 #endif
67
68 static void extract_string (CORE_ADDR addr, char *buf);
69
70 static void modify_general_field (char *, LONGEST, int, int);
71
72 static struct type *desc_base_type (struct type *);
73
74 static struct type *desc_bounds_type (struct type *);
75
76 static struct value *desc_bounds (struct value *);
77
78 static int fat_pntr_bounds_bitpos (struct type *);
79
80 static int fat_pntr_bounds_bitsize (struct type *);
81
82 static struct type *desc_data_type (struct type *);
83
84 static struct value *desc_data (struct value *);
85
86 static int fat_pntr_data_bitpos (struct type *);
87
88 static int fat_pntr_data_bitsize (struct type *);
89
90 static struct value *desc_one_bound (struct value *, int, int);
91
92 static int desc_bound_bitpos (struct type *, int, int);
93
94 static int desc_bound_bitsize (struct type *, int, int);
95
96 static struct type *desc_index_type (struct type *, int);
97
98 static int desc_arity (struct type *);
99
100 static int ada_type_match (struct type *, struct type *, int);
101
102 static int ada_args_match (struct symbol *, struct value **, int);
103
104 static struct value *ensure_lval (struct value *, CORE_ADDR *);
105
106 static struct value *convert_actual (struct value *, struct type *,
107 CORE_ADDR *);
108
109 static struct value *make_array_descriptor (struct type *, struct value *,
110 CORE_ADDR *);
111
112 static void ada_add_block_symbols (struct obstack *,
113 struct block *, const char *,
114 domain_enum, struct objfile *, int);
115
116 static int is_nonfunction (struct ada_symbol_info *, int);
117
118 static void add_defn_to_vec (struct obstack *, struct symbol *,
119 struct block *);
120
121 static int num_defns_collected (struct obstack *);
122
123 static struct ada_symbol_info *defns_collected (struct obstack *, int);
124
125 static struct partial_symbol *ada_lookup_partial_symbol (struct partial_symtab
126 *, const char *, int,
127 domain_enum, int);
128
129 static struct symtab *symtab_for_sym (struct symbol *);
130
131 static struct value *resolve_subexp (struct expression **, int *, int,
132 struct type *);
133
134 static void replace_operator_with_call (struct expression **, int, int, int,
135 struct symbol *, struct block *);
136
137 static int possible_user_operator_p (enum exp_opcode, struct value **);
138
139 static char *ada_op_name (enum exp_opcode);
140
141 static const char *ada_decoded_op_name (enum exp_opcode);
142
143 static int numeric_type_p (struct type *);
144
145 static int integer_type_p (struct type *);
146
147 static int scalar_type_p (struct type *);
148
149 static int discrete_type_p (struct type *);
150
151 static enum ada_renaming_category parse_old_style_renaming (struct type *,
152 const char **,
153 int *,
154 const char **);
155
156 static struct symbol *find_old_style_renaming_symbol (const char *,
157 struct block *);
158
159 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
160 int, int, int *);
161
162 static struct value *evaluate_subexp (struct type *, struct expression *,
163 int *, enum noside);
164
165 static struct value *evaluate_subexp_type (struct expression *, int *);
166
167 static int is_dynamic_field (struct type *, int);
168
169 static struct type *to_fixed_variant_branch_type (struct type *,
170 const gdb_byte *,
171 CORE_ADDR, struct value *);
172
173 static struct type *to_fixed_array_type (struct type *, struct value *, int);
174
175 static struct type *to_fixed_range_type (char *, struct value *,
176 struct objfile *);
177
178 static struct type *to_static_fixed_type (struct type *);
179 static struct type *static_unwrap_type (struct type *type);
180
181 static struct value *unwrap_value (struct value *);
182
183 static struct type *packed_array_type (struct type *, long *);
184
185 static struct type *decode_packed_array_type (struct type *);
186
187 static struct value *decode_packed_array (struct value *);
188
189 static struct value *value_subscript_packed (struct value *, int,
190 struct value **);
191
192 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int);
193
194 static struct value *coerce_unspec_val_to_type (struct value *,
195 struct type *);
196
197 static struct value *get_var_value (char *, char *);
198
199 static int lesseq_defined_than (struct symbol *, struct symbol *);
200
201 static int equiv_types (struct type *, struct type *);
202
203 static int is_name_suffix (const char *);
204
205 static int wild_match (const char *, int, const char *);
206
207 static struct value *ada_coerce_ref (struct value *);
208
209 static LONGEST pos_atr (struct value *);
210
211 static struct value *value_pos_atr (struct type *, struct value *);
212
213 static struct value *value_val_atr (struct type *, struct value *);
214
215 static struct symbol *standard_lookup (const char *, const struct block *,
216 domain_enum);
217
218 static struct value *ada_search_struct_field (char *, struct value *, int,
219 struct type *);
220
221 static struct value *ada_value_primitive_field (struct value *, int, int,
222 struct type *);
223
224 static int find_struct_field (char *, struct type *, int,
225 struct type **, int *, int *, int *, int *);
226
227 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
228 struct value *);
229
230 static struct value *ada_to_fixed_value (struct value *);
231
232 static int ada_resolve_function (struct ada_symbol_info *, int,
233 struct value **, int, const char *,
234 struct type *);
235
236 static struct value *ada_coerce_to_simple_array (struct value *);
237
238 static int ada_is_direct_array_type (struct type *);
239
240 static void ada_language_arch_info (struct gdbarch *,
241 struct language_arch_info *);
242
243 static void check_size (const struct type *);
244
245 static struct value *ada_index_struct_field (int, struct value *, int,
246 struct type *);
247
248 static struct value *assign_aggregate (struct value *, struct value *,
249 struct expression *, int *, enum noside);
250
251 static void aggregate_assign_from_choices (struct value *, struct value *,
252 struct expression *,
253 int *, LONGEST *, int *,
254 int, LONGEST, LONGEST);
255
256 static void aggregate_assign_positional (struct value *, struct value *,
257 struct expression *,
258 int *, LONGEST *, int *, int,
259 LONGEST, LONGEST);
260
261
262 static void aggregate_assign_others (struct value *, struct value *,
263 struct expression *,
264 int *, LONGEST *, int, LONGEST, LONGEST);
265
266
267 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
268
269
270 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
271 int *, enum noside);
272
273 static void ada_forward_operator_length (struct expression *, int, int *,
274 int *);
275 \f
276
277
278 /* Maximum-sized dynamic type. */
279 static unsigned int varsize_limit;
280
281 /* FIXME: brobecker/2003-09-17: No longer a const because it is
282 returned by a function that does not return a const char *. */
283 static char *ada_completer_word_break_characters =
284 #ifdef VMS
285 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
286 #else
287 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
288 #endif
289
290 /* The name of the symbol to use to get the name of the main subprogram. */
291 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
292 = "__gnat_ada_main_program_name";
293
294 /* Limit on the number of warnings to raise per expression evaluation. */
295 static int warning_limit = 2;
296
297 /* Number of warning messages issued; reset to 0 by cleanups after
298 expression evaluation. */
299 static int warnings_issued = 0;
300
301 static const char *known_runtime_file_name_patterns[] = {
302 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
303 };
304
305 static const char *known_auxiliary_function_name_patterns[] = {
306 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
307 };
308
309 /* Space for allocating results of ada_lookup_symbol_list. */
310 static struct obstack symbol_list_obstack;
311
312 /* Utilities */
313
314 /* Given DECODED_NAME a string holding a symbol name in its
315 decoded form (ie using the Ada dotted notation), returns
316 its unqualified name. */
317
318 static const char *
319 ada_unqualified_name (const char *decoded_name)
320 {
321 const char *result = strrchr (decoded_name, '.');
322
323 if (result != NULL)
324 result++; /* Skip the dot... */
325 else
326 result = decoded_name;
327
328 return result;
329 }
330
331 /* Return a string starting with '<', followed by STR, and '>'.
332 The result is good until the next call. */
333
334 static char *
335 add_angle_brackets (const char *str)
336 {
337 static char *result = NULL;
338
339 xfree (result);
340 result = (char *) xmalloc ((strlen (str) + 3) * sizeof (char));
341
342 sprintf (result, "<%s>", str);
343 return result;
344 }
345
346 static char *
347 ada_get_gdb_completer_word_break_characters (void)
348 {
349 return ada_completer_word_break_characters;
350 }
351
352 /* Print an array element index using the Ada syntax. */
353
354 static void
355 ada_print_array_index (struct value *index_value, struct ui_file *stream,
356 const struct value_print_options *options)
357 {
358 LA_VALUE_PRINT (index_value, stream, options);
359 fprintf_filtered (stream, " => ");
360 }
361
362 /* Read the string located at ADDR from the inferior and store the
363 result into BUF. */
364
365 static void
366 extract_string (CORE_ADDR addr, char *buf)
367 {
368 int char_index = 0;
369
370 /* Loop, reading one byte at a time, until we reach the '\000'
371 end-of-string marker. */
372 do
373 {
374 target_read_memory (addr + char_index * sizeof (char),
375 buf + char_index * sizeof (char), sizeof (char));
376 char_index++;
377 }
378 while (buf[char_index - 1] != '\000');
379 }
380
381 /* Assuming VECT points to an array of *SIZE objects of size
382 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
383 updating *SIZE as necessary and returning the (new) array. */
384
385 void *
386 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
387 {
388 if (*size < min_size)
389 {
390 *size *= 2;
391 if (*size < min_size)
392 *size = min_size;
393 vect = xrealloc (vect, *size * element_size);
394 }
395 return vect;
396 }
397
398 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
399 suffix of FIELD_NAME beginning "___". */
400
401 static int
402 field_name_match (const char *field_name, const char *target)
403 {
404 int len = strlen (target);
405 return
406 (strncmp (field_name, target, len) == 0
407 && (field_name[len] == '\0'
408 || (strncmp (field_name + len, "___", 3) == 0
409 && strcmp (field_name + strlen (field_name) - 6,
410 "___XVN") != 0)));
411 }
412
413
414 /* Assuming TYPE is a TYPE_CODE_STRUCT, find the field whose name matches
415 FIELD_NAME, and return its index. This function also handles fields
416 whose name have ___ suffixes because the compiler sometimes alters
417 their name by adding such a suffix to represent fields with certain
418 constraints. If the field could not be found, return a negative
419 number if MAYBE_MISSING is set. Otherwise raise an error. */
420
421 int
422 ada_get_field_index (const struct type *type, const char *field_name,
423 int maybe_missing)
424 {
425 int fieldno;
426 for (fieldno = 0; fieldno < TYPE_NFIELDS (type); fieldno++)
427 if (field_name_match (TYPE_FIELD_NAME (type, fieldno), field_name))
428 return fieldno;
429
430 if (!maybe_missing)
431 error (_("Unable to find field %s in struct %s. Aborting"),
432 field_name, TYPE_NAME (type));
433
434 return -1;
435 }
436
437 /* The length of the prefix of NAME prior to any "___" suffix. */
438
439 int
440 ada_name_prefix_len (const char *name)
441 {
442 if (name == NULL)
443 return 0;
444 else
445 {
446 const char *p = strstr (name, "___");
447 if (p == NULL)
448 return strlen (name);
449 else
450 return p - name;
451 }
452 }
453
454 /* Return non-zero if SUFFIX is a suffix of STR.
455 Return zero if STR is null. */
456
457 static int
458 is_suffix (const char *str, const char *suffix)
459 {
460 int len1, len2;
461 if (str == NULL)
462 return 0;
463 len1 = strlen (str);
464 len2 = strlen (suffix);
465 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
466 }
467
468 /* The contents of value VAL, treated as a value of type TYPE. The
469 result is an lval in memory if VAL is. */
470
471 static struct value *
472 coerce_unspec_val_to_type (struct value *val, struct type *type)
473 {
474 type = ada_check_typedef (type);
475 if (value_type (val) == type)
476 return val;
477 else
478 {
479 struct value *result;
480
481 /* Make sure that the object size is not unreasonable before
482 trying to allocate some memory for it. */
483 check_size (type);
484
485 result = allocate_value (type);
486 set_value_component_location (result, val);
487 set_value_bitsize (result, value_bitsize (val));
488 set_value_bitpos (result, value_bitpos (val));
489 VALUE_ADDRESS (result) += value_offset (val);
490 if (value_lazy (val)
491 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
492 set_value_lazy (result, 1);
493 else
494 memcpy (value_contents_raw (result), value_contents (val),
495 TYPE_LENGTH (type));
496 return result;
497 }
498 }
499
500 static const gdb_byte *
501 cond_offset_host (const gdb_byte *valaddr, long offset)
502 {
503 if (valaddr == NULL)
504 return NULL;
505 else
506 return valaddr + offset;
507 }
508
509 static CORE_ADDR
510 cond_offset_target (CORE_ADDR address, long offset)
511 {
512 if (address == 0)
513 return 0;
514 else
515 return address + offset;
516 }
517
518 /* Issue a warning (as for the definition of warning in utils.c, but
519 with exactly one argument rather than ...), unless the limit on the
520 number of warnings has passed during the evaluation of the current
521 expression. */
522
523 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
524 provided by "complaint". */
525 static void lim_warning (const char *format, ...) ATTR_FORMAT (printf, 1, 2);
526
527 static void
528 lim_warning (const char *format, ...)
529 {
530 va_list args;
531 va_start (args, format);
532
533 warnings_issued += 1;
534 if (warnings_issued <= warning_limit)
535 vwarning (format, args);
536
537 va_end (args);
538 }
539
540 /* Issue an error if the size of an object of type T is unreasonable,
541 i.e. if it would be a bad idea to allocate a value of this type in
542 GDB. */
543
544 static void
545 check_size (const struct type *type)
546 {
547 if (TYPE_LENGTH (type) > varsize_limit)
548 error (_("object size is larger than varsize-limit"));
549 }
550
551
552 /* Note: would have used MAX_OF_TYPE and MIN_OF_TYPE macros from
553 gdbtypes.h, but some of the necessary definitions in that file
554 seem to have gone missing. */
555
556 /* Maximum value of a SIZE-byte signed integer type. */
557 static LONGEST
558 max_of_size (int size)
559 {
560 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
561 return top_bit | (top_bit - 1);
562 }
563
564 /* Minimum value of a SIZE-byte signed integer type. */
565 static LONGEST
566 min_of_size (int size)
567 {
568 return -max_of_size (size) - 1;
569 }
570
571 /* Maximum value of a SIZE-byte unsigned integer type. */
572 static ULONGEST
573 umax_of_size (int size)
574 {
575 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
576 return top_bit | (top_bit - 1);
577 }
578
579 /* Maximum value of integral type T, as a signed quantity. */
580 static LONGEST
581 max_of_type (struct type *t)
582 {
583 if (TYPE_UNSIGNED (t))
584 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
585 else
586 return max_of_size (TYPE_LENGTH (t));
587 }
588
589 /* Minimum value of integral type T, as a signed quantity. */
590 static LONGEST
591 min_of_type (struct type *t)
592 {
593 if (TYPE_UNSIGNED (t))
594 return 0;
595 else
596 return min_of_size (TYPE_LENGTH (t));
597 }
598
599 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
600 static LONGEST
601 discrete_type_high_bound (struct type *type)
602 {
603 switch (TYPE_CODE (type))
604 {
605 case TYPE_CODE_RANGE:
606 return TYPE_HIGH_BOUND (type);
607 case TYPE_CODE_ENUM:
608 return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1);
609 case TYPE_CODE_BOOL:
610 return 1;
611 case TYPE_CODE_CHAR:
612 case TYPE_CODE_INT:
613 return max_of_type (type);
614 default:
615 error (_("Unexpected type in discrete_type_high_bound."));
616 }
617 }
618
619 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
620 static LONGEST
621 discrete_type_low_bound (struct type *type)
622 {
623 switch (TYPE_CODE (type))
624 {
625 case TYPE_CODE_RANGE:
626 return TYPE_LOW_BOUND (type);
627 case TYPE_CODE_ENUM:
628 return TYPE_FIELD_BITPOS (type, 0);
629 case TYPE_CODE_BOOL:
630 return 0;
631 case TYPE_CODE_CHAR:
632 case TYPE_CODE_INT:
633 return min_of_type (type);
634 default:
635 error (_("Unexpected type in discrete_type_low_bound."));
636 }
637 }
638
639 /* The identity on non-range types. For range types, the underlying
640 non-range scalar type. */
641
642 static struct type *
643 base_type (struct type *type)
644 {
645 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
646 {
647 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
648 return type;
649 type = TYPE_TARGET_TYPE (type);
650 }
651 return type;
652 }
653 \f
654
655 /* Language Selection */
656
657 /* If the main program is in Ada, return language_ada, otherwise return LANG
658 (the main program is in Ada iif the adainit symbol is found).
659
660 MAIN_PST is not used. */
661
662 enum language
663 ada_update_initial_language (enum language lang,
664 struct partial_symtab *main_pst)
665 {
666 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
667 (struct objfile *) NULL) != NULL)
668 return language_ada;
669
670 return lang;
671 }
672
673 /* If the main procedure is written in Ada, then return its name.
674 The result is good until the next call. Return NULL if the main
675 procedure doesn't appear to be in Ada. */
676
677 char *
678 ada_main_name (void)
679 {
680 struct minimal_symbol *msym;
681 CORE_ADDR main_program_name_addr;
682 static char main_program_name[1024];
683
684 /* For Ada, the name of the main procedure is stored in a specific
685 string constant, generated by the binder. Look for that symbol,
686 extract its address, and then read that string. If we didn't find
687 that string, then most probably the main procedure is not written
688 in Ada. */
689 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
690
691 if (msym != NULL)
692 {
693 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
694 if (main_program_name_addr == 0)
695 error (_("Invalid address for Ada main program name."));
696
697 extract_string (main_program_name_addr, main_program_name);
698 return main_program_name;
699 }
700
701 /* The main procedure doesn't seem to be in Ada. */
702 return NULL;
703 }
704 \f
705 /* Symbols */
706
707 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
708 of NULLs. */
709
710 const struct ada_opname_map ada_opname_table[] = {
711 {"Oadd", "\"+\"", BINOP_ADD},
712 {"Osubtract", "\"-\"", BINOP_SUB},
713 {"Omultiply", "\"*\"", BINOP_MUL},
714 {"Odivide", "\"/\"", BINOP_DIV},
715 {"Omod", "\"mod\"", BINOP_MOD},
716 {"Orem", "\"rem\"", BINOP_REM},
717 {"Oexpon", "\"**\"", BINOP_EXP},
718 {"Olt", "\"<\"", BINOP_LESS},
719 {"Ole", "\"<=\"", BINOP_LEQ},
720 {"Ogt", "\">\"", BINOP_GTR},
721 {"Oge", "\">=\"", BINOP_GEQ},
722 {"Oeq", "\"=\"", BINOP_EQUAL},
723 {"One", "\"/=\"", BINOP_NOTEQUAL},
724 {"Oand", "\"and\"", BINOP_BITWISE_AND},
725 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
726 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
727 {"Oconcat", "\"&\"", BINOP_CONCAT},
728 {"Oabs", "\"abs\"", UNOP_ABS},
729 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
730 {"Oadd", "\"+\"", UNOP_PLUS},
731 {"Osubtract", "\"-\"", UNOP_NEG},
732 {NULL, NULL}
733 };
734
735 /* The "encoded" form of DECODED, according to GNAT conventions.
736 The result is valid until the next call to ada_encode. */
737
738 char *
739 ada_encode (const char *decoded)
740 {
741 static char *encoding_buffer = NULL;
742 static size_t encoding_buffer_size = 0;
743 const char *p;
744 int k;
745
746 if (decoded == NULL)
747 return NULL;
748
749 GROW_VECT (encoding_buffer, encoding_buffer_size,
750 2 * strlen (decoded) + 10);
751
752 k = 0;
753 for (p = decoded; *p != '\0'; p += 1)
754 {
755 if (*p == '.')
756 {
757 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
758 k += 2;
759 }
760 else if (*p == '"')
761 {
762 const struct ada_opname_map *mapping;
763
764 for (mapping = ada_opname_table;
765 mapping->encoded != NULL
766 && strncmp (mapping->decoded, p,
767 strlen (mapping->decoded)) != 0; mapping += 1)
768 ;
769 if (mapping->encoded == NULL)
770 error (_("invalid Ada operator name: %s"), p);
771 strcpy (encoding_buffer + k, mapping->encoded);
772 k += strlen (mapping->encoded);
773 break;
774 }
775 else
776 {
777 encoding_buffer[k] = *p;
778 k += 1;
779 }
780 }
781
782 encoding_buffer[k] = '\0';
783 return encoding_buffer;
784 }
785
786 /* Return NAME folded to lower case, or, if surrounded by single
787 quotes, unfolded, but with the quotes stripped away. Result good
788 to next call. */
789
790 char *
791 ada_fold_name (const char *name)
792 {
793 static char *fold_buffer = NULL;
794 static size_t fold_buffer_size = 0;
795
796 int len = strlen (name);
797 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
798
799 if (name[0] == '\'')
800 {
801 strncpy (fold_buffer, name + 1, len - 2);
802 fold_buffer[len - 2] = '\000';
803 }
804 else
805 {
806 int i;
807 for (i = 0; i <= len; i += 1)
808 fold_buffer[i] = tolower (name[i]);
809 }
810
811 return fold_buffer;
812 }
813
814 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
815
816 static int
817 is_lower_alphanum (const char c)
818 {
819 return (isdigit (c) || (isalpha (c) && islower (c)));
820 }
821
822 /* Remove either of these suffixes:
823 . .{DIGIT}+
824 . ${DIGIT}+
825 . ___{DIGIT}+
826 . __{DIGIT}+.
827 These are suffixes introduced by the compiler for entities such as
828 nested subprogram for instance, in order to avoid name clashes.
829 They do not serve any purpose for the debugger. */
830
831 static void
832 ada_remove_trailing_digits (const char *encoded, int *len)
833 {
834 if (*len > 1 && isdigit (encoded[*len - 1]))
835 {
836 int i = *len - 2;
837 while (i > 0 && isdigit (encoded[i]))
838 i--;
839 if (i >= 0 && encoded[i] == '.')
840 *len = i;
841 else if (i >= 0 && encoded[i] == '$')
842 *len = i;
843 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
844 *len = i - 2;
845 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
846 *len = i - 1;
847 }
848 }
849
850 /* Remove the suffix introduced by the compiler for protected object
851 subprograms. */
852
853 static void
854 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
855 {
856 /* Remove trailing N. */
857
858 /* Protected entry subprograms are broken into two
859 separate subprograms: The first one is unprotected, and has
860 a 'N' suffix; the second is the protected version, and has
861 the 'P' suffix. The second calls the first one after handling
862 the protection. Since the P subprograms are internally generated,
863 we leave these names undecoded, giving the user a clue that this
864 entity is internal. */
865
866 if (*len > 1
867 && encoded[*len - 1] == 'N'
868 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
869 *len = *len - 1;
870 }
871
872 /* If ENCODED follows the GNAT entity encoding conventions, then return
873 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
874 replaced by ENCODED.
875
876 The resulting string is valid until the next call of ada_decode.
877 If the string is unchanged by decoding, the original string pointer
878 is returned. */
879
880 const char *
881 ada_decode (const char *encoded)
882 {
883 int i, j;
884 int len0;
885 const char *p;
886 char *decoded;
887 int at_start_name;
888 static char *decoding_buffer = NULL;
889 static size_t decoding_buffer_size = 0;
890
891 /* The name of the Ada main procedure starts with "_ada_".
892 This prefix is not part of the decoded name, so skip this part
893 if we see this prefix. */
894 if (strncmp (encoded, "_ada_", 5) == 0)
895 encoded += 5;
896
897 /* If the name starts with '_', then it is not a properly encoded
898 name, so do not attempt to decode it. Similarly, if the name
899 starts with '<', the name should not be decoded. */
900 if (encoded[0] == '_' || encoded[0] == '<')
901 goto Suppress;
902
903 len0 = strlen (encoded);
904
905 ada_remove_trailing_digits (encoded, &len0);
906 ada_remove_po_subprogram_suffix (encoded, &len0);
907
908 /* Remove the ___X.* suffix if present. Do not forget to verify that
909 the suffix is located before the current "end" of ENCODED. We want
910 to avoid re-matching parts of ENCODED that have previously been
911 marked as discarded (by decrementing LEN0). */
912 p = strstr (encoded, "___");
913 if (p != NULL && p - encoded < len0 - 3)
914 {
915 if (p[3] == 'X')
916 len0 = p - encoded;
917 else
918 goto Suppress;
919 }
920
921 /* Remove any trailing TKB suffix. It tells us that this symbol
922 is for the body of a task, but that information does not actually
923 appear in the decoded name. */
924
925 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
926 len0 -= 3;
927
928 /* Remove trailing "B" suffixes. */
929 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
930
931 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
932 len0 -= 1;
933
934 /* Make decoded big enough for possible expansion by operator name. */
935
936 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
937 decoded = decoding_buffer;
938
939 /* Remove trailing __{digit}+ or trailing ${digit}+. */
940
941 if (len0 > 1 && isdigit (encoded[len0 - 1]))
942 {
943 i = len0 - 2;
944 while ((i >= 0 && isdigit (encoded[i]))
945 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
946 i -= 1;
947 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
948 len0 = i - 1;
949 else if (encoded[i] == '$')
950 len0 = i;
951 }
952
953 /* The first few characters that are not alphabetic are not part
954 of any encoding we use, so we can copy them over verbatim. */
955
956 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
957 decoded[j] = encoded[i];
958
959 at_start_name = 1;
960 while (i < len0)
961 {
962 /* Is this a symbol function? */
963 if (at_start_name && encoded[i] == 'O')
964 {
965 int k;
966 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
967 {
968 int op_len = strlen (ada_opname_table[k].encoded);
969 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
970 op_len - 1) == 0)
971 && !isalnum (encoded[i + op_len]))
972 {
973 strcpy (decoded + j, ada_opname_table[k].decoded);
974 at_start_name = 0;
975 i += op_len;
976 j += strlen (ada_opname_table[k].decoded);
977 break;
978 }
979 }
980 if (ada_opname_table[k].encoded != NULL)
981 continue;
982 }
983 at_start_name = 0;
984
985 /* Replace "TK__" with "__", which will eventually be translated
986 into "." (just below). */
987
988 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
989 i += 2;
990
991 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
992 be translated into "." (just below). These are internal names
993 generated for anonymous blocks inside which our symbol is nested. */
994
995 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
996 && encoded [i+2] == 'B' && encoded [i+3] == '_'
997 && isdigit (encoded [i+4]))
998 {
999 int k = i + 5;
1000
1001 while (k < len0 && isdigit (encoded[k]))
1002 k++; /* Skip any extra digit. */
1003
1004 /* Double-check that the "__B_{DIGITS}+" sequence we found
1005 is indeed followed by "__". */
1006 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1007 i = k;
1008 }
1009
1010 /* Remove _E{DIGITS}+[sb] */
1011
1012 /* Just as for protected object subprograms, there are 2 categories
1013 of subprograms created by the compiler for each entry. The first
1014 one implements the actual entry code, and has a suffix following
1015 the convention above; the second one implements the barrier and
1016 uses the same convention as above, except that the 'E' is replaced
1017 by a 'B'.
1018
1019 Just as above, we do not decode the name of barrier functions
1020 to give the user a clue that the code he is debugging has been
1021 internally generated. */
1022
1023 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1024 && isdigit (encoded[i+2]))
1025 {
1026 int k = i + 3;
1027
1028 while (k < len0 && isdigit (encoded[k]))
1029 k++;
1030
1031 if (k < len0
1032 && (encoded[k] == 'b' || encoded[k] == 's'))
1033 {
1034 k++;
1035 /* Just as an extra precaution, make sure that if this
1036 suffix is followed by anything else, it is a '_'.
1037 Otherwise, we matched this sequence by accident. */
1038 if (k == len0
1039 || (k < len0 && encoded[k] == '_'))
1040 i = k;
1041 }
1042 }
1043
1044 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1045 the GNAT front-end in protected object subprograms. */
1046
1047 if (i < len0 + 3
1048 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1049 {
1050 /* Backtrack a bit up until we reach either the begining of
1051 the encoded name, or "__". Make sure that we only find
1052 digits or lowercase characters. */
1053 const char *ptr = encoded + i - 1;
1054
1055 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1056 ptr--;
1057 if (ptr < encoded
1058 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1059 i++;
1060 }
1061
1062 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1063 {
1064 /* This is a X[bn]* sequence not separated from the previous
1065 part of the name with a non-alpha-numeric character (in other
1066 words, immediately following an alpha-numeric character), then
1067 verify that it is placed at the end of the encoded name. If
1068 not, then the encoding is not valid and we should abort the
1069 decoding. Otherwise, just skip it, it is used in body-nested
1070 package names. */
1071 do
1072 i += 1;
1073 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1074 if (i < len0)
1075 goto Suppress;
1076 }
1077 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1078 {
1079 /* Replace '__' by '.'. */
1080 decoded[j] = '.';
1081 at_start_name = 1;
1082 i += 2;
1083 j += 1;
1084 }
1085 else
1086 {
1087 /* It's a character part of the decoded name, so just copy it
1088 over. */
1089 decoded[j] = encoded[i];
1090 i += 1;
1091 j += 1;
1092 }
1093 }
1094 decoded[j] = '\000';
1095
1096 /* Decoded names should never contain any uppercase character.
1097 Double-check this, and abort the decoding if we find one. */
1098
1099 for (i = 0; decoded[i] != '\0'; i += 1)
1100 if (isupper (decoded[i]) || decoded[i] == ' ')
1101 goto Suppress;
1102
1103 if (strcmp (decoded, encoded) == 0)
1104 return encoded;
1105 else
1106 return decoded;
1107
1108 Suppress:
1109 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1110 decoded = decoding_buffer;
1111 if (encoded[0] == '<')
1112 strcpy (decoded, encoded);
1113 else
1114 sprintf (decoded, "<%s>", encoded);
1115 return decoded;
1116
1117 }
1118
1119 /* Table for keeping permanent unique copies of decoded names. Once
1120 allocated, names in this table are never released. While this is a
1121 storage leak, it should not be significant unless there are massive
1122 changes in the set of decoded names in successive versions of a
1123 symbol table loaded during a single session. */
1124 static struct htab *decoded_names_store;
1125
1126 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1127 in the language-specific part of GSYMBOL, if it has not been
1128 previously computed. Tries to save the decoded name in the same
1129 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1130 in any case, the decoded symbol has a lifetime at least that of
1131 GSYMBOL).
1132 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1133 const, but nevertheless modified to a semantically equivalent form
1134 when a decoded name is cached in it.
1135 */
1136
1137 char *
1138 ada_decode_symbol (const struct general_symbol_info *gsymbol)
1139 {
1140 char **resultp =
1141 (char **) &gsymbol->language_specific.cplus_specific.demangled_name;
1142 if (*resultp == NULL)
1143 {
1144 const char *decoded = ada_decode (gsymbol->name);
1145 if (gsymbol->obj_section != NULL)
1146 {
1147 struct objfile *objf = gsymbol->obj_section->objfile;
1148 *resultp = obsavestring (decoded, strlen (decoded),
1149 &objf->objfile_obstack);
1150 }
1151 /* Sometimes, we can't find a corresponding objfile, in which
1152 case, we put the result on the heap. Since we only decode
1153 when needed, we hope this usually does not cause a
1154 significant memory leak (FIXME). */
1155 if (*resultp == NULL)
1156 {
1157 char **slot = (char **) htab_find_slot (decoded_names_store,
1158 decoded, INSERT);
1159 if (*slot == NULL)
1160 *slot = xstrdup (decoded);
1161 *resultp = *slot;
1162 }
1163 }
1164
1165 return *resultp;
1166 }
1167
1168 static char *
1169 ada_la_decode (const char *encoded, int options)
1170 {
1171 return xstrdup (ada_decode (encoded));
1172 }
1173
1174 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1175 suffixes that encode debugging information or leading _ada_ on
1176 SYM_NAME (see is_name_suffix commentary for the debugging
1177 information that is ignored). If WILD, then NAME need only match a
1178 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1179 either argument is NULL. */
1180
1181 static int
1182 ada_match_name (const char *sym_name, const char *name, int wild)
1183 {
1184 if (sym_name == NULL || name == NULL)
1185 return 0;
1186 else if (wild)
1187 return wild_match (name, strlen (name), sym_name);
1188 else
1189 {
1190 int len_name = strlen (name);
1191 return (strncmp (sym_name, name, len_name) == 0
1192 && is_name_suffix (sym_name + len_name))
1193 || (strncmp (sym_name, "_ada_", 5) == 0
1194 && strncmp (sym_name + 5, name, len_name) == 0
1195 && is_name_suffix (sym_name + len_name + 5));
1196 }
1197 }
1198 \f
1199
1200 /* Arrays */
1201
1202 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1203
1204 static char *bound_name[] = {
1205 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1206 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1207 };
1208
1209 /* Maximum number of array dimensions we are prepared to handle. */
1210
1211 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1212
1213 /* Like modify_field, but allows bitpos > wordlength. */
1214
1215 static void
1216 modify_general_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
1217 {
1218 modify_field (addr + bitpos / 8, fieldval, bitpos % 8, bitsize);
1219 }
1220
1221
1222 /* The desc_* routines return primitive portions of array descriptors
1223 (fat pointers). */
1224
1225 /* The descriptor or array type, if any, indicated by TYPE; removes
1226 level of indirection, if needed. */
1227
1228 static struct type *
1229 desc_base_type (struct type *type)
1230 {
1231 if (type == NULL)
1232 return NULL;
1233 type = ada_check_typedef (type);
1234 if (type != NULL
1235 && (TYPE_CODE (type) == TYPE_CODE_PTR
1236 || TYPE_CODE (type) == TYPE_CODE_REF))
1237 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1238 else
1239 return type;
1240 }
1241
1242 /* True iff TYPE indicates a "thin" array pointer type. */
1243
1244 static int
1245 is_thin_pntr (struct type *type)
1246 {
1247 return
1248 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1249 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1250 }
1251
1252 /* The descriptor type for thin pointer type TYPE. */
1253
1254 static struct type *
1255 thin_descriptor_type (struct type *type)
1256 {
1257 struct type *base_type = desc_base_type (type);
1258 if (base_type == NULL)
1259 return NULL;
1260 if (is_suffix (ada_type_name (base_type), "___XVE"))
1261 return base_type;
1262 else
1263 {
1264 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1265 if (alt_type == NULL)
1266 return base_type;
1267 else
1268 return alt_type;
1269 }
1270 }
1271
1272 /* A pointer to the array data for thin-pointer value VAL. */
1273
1274 static struct value *
1275 thin_data_pntr (struct value *val)
1276 {
1277 struct type *type = value_type (val);
1278 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1279 return value_cast (desc_data_type (thin_descriptor_type (type)),
1280 value_copy (val));
1281 else
1282 return value_from_longest (desc_data_type (thin_descriptor_type (type)),
1283 VALUE_ADDRESS (val) + value_offset (val));
1284 }
1285
1286 /* True iff TYPE indicates a "thick" array pointer type. */
1287
1288 static int
1289 is_thick_pntr (struct type *type)
1290 {
1291 type = desc_base_type (type);
1292 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1293 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1294 }
1295
1296 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1297 pointer to one, the type of its bounds data; otherwise, NULL. */
1298
1299 static struct type *
1300 desc_bounds_type (struct type *type)
1301 {
1302 struct type *r;
1303
1304 type = desc_base_type (type);
1305
1306 if (type == NULL)
1307 return NULL;
1308 else if (is_thin_pntr (type))
1309 {
1310 type = thin_descriptor_type (type);
1311 if (type == NULL)
1312 return NULL;
1313 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1314 if (r != NULL)
1315 return ada_check_typedef (r);
1316 }
1317 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1318 {
1319 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1320 if (r != NULL)
1321 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1322 }
1323 return NULL;
1324 }
1325
1326 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1327 one, a pointer to its bounds data. Otherwise NULL. */
1328
1329 static struct value *
1330 desc_bounds (struct value *arr)
1331 {
1332 struct type *type = ada_check_typedef (value_type (arr));
1333 if (is_thin_pntr (type))
1334 {
1335 struct type *bounds_type =
1336 desc_bounds_type (thin_descriptor_type (type));
1337 LONGEST addr;
1338
1339 if (bounds_type == NULL)
1340 error (_("Bad GNAT array descriptor"));
1341
1342 /* NOTE: The following calculation is not really kosher, but
1343 since desc_type is an XVE-encoded type (and shouldn't be),
1344 the correct calculation is a real pain. FIXME (and fix GCC). */
1345 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1346 addr = value_as_long (arr);
1347 else
1348 addr = VALUE_ADDRESS (arr) + value_offset (arr);
1349
1350 return
1351 value_from_longest (lookup_pointer_type (bounds_type),
1352 addr - TYPE_LENGTH (bounds_type));
1353 }
1354
1355 else if (is_thick_pntr (type))
1356 return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1357 _("Bad GNAT array descriptor"));
1358 else
1359 return NULL;
1360 }
1361
1362 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1363 position of the field containing the address of the bounds data. */
1364
1365 static int
1366 fat_pntr_bounds_bitpos (struct type *type)
1367 {
1368 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1369 }
1370
1371 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1372 size of the field containing the address of the bounds data. */
1373
1374 static int
1375 fat_pntr_bounds_bitsize (struct type *type)
1376 {
1377 type = desc_base_type (type);
1378
1379 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1380 return TYPE_FIELD_BITSIZE (type, 1);
1381 else
1382 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1383 }
1384
1385 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1386 pointer to one, the type of its array data (a
1387 pointer-to-array-with-no-bounds type); otherwise, NULL. Use
1388 ada_type_of_array to get an array type with bounds data. */
1389
1390 static struct type *
1391 desc_data_type (struct type *type)
1392 {
1393 type = desc_base_type (type);
1394
1395 /* NOTE: The following is bogus; see comment in desc_bounds. */
1396 if (is_thin_pntr (type))
1397 return lookup_pointer_type
1398 (desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1)));
1399 else if (is_thick_pntr (type))
1400 return lookup_struct_elt_type (type, "P_ARRAY", 1);
1401 else
1402 return NULL;
1403 }
1404
1405 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1406 its array data. */
1407
1408 static struct value *
1409 desc_data (struct value *arr)
1410 {
1411 struct type *type = value_type (arr);
1412 if (is_thin_pntr (type))
1413 return thin_data_pntr (arr);
1414 else if (is_thick_pntr (type))
1415 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1416 _("Bad GNAT array descriptor"));
1417 else
1418 return NULL;
1419 }
1420
1421
1422 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1423 position of the field containing the address of the data. */
1424
1425 static int
1426 fat_pntr_data_bitpos (struct type *type)
1427 {
1428 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1429 }
1430
1431 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1432 size of the field containing the address of the data. */
1433
1434 static int
1435 fat_pntr_data_bitsize (struct type *type)
1436 {
1437 type = desc_base_type (type);
1438
1439 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1440 return TYPE_FIELD_BITSIZE (type, 0);
1441 else
1442 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1443 }
1444
1445 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1446 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1447 bound, if WHICH is 1. The first bound is I=1. */
1448
1449 static struct value *
1450 desc_one_bound (struct value *bounds, int i, int which)
1451 {
1452 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1453 _("Bad GNAT array descriptor bounds"));
1454 }
1455
1456 /* If BOUNDS is an array-bounds structure type, return the bit position
1457 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1458 bound, if WHICH is 1. The first bound is I=1. */
1459
1460 static int
1461 desc_bound_bitpos (struct type *type, int i, int which)
1462 {
1463 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1464 }
1465
1466 /* If BOUNDS is an array-bounds structure type, return the bit field size
1467 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1468 bound, if WHICH is 1. The first bound is I=1. */
1469
1470 static int
1471 desc_bound_bitsize (struct type *type, int i, int which)
1472 {
1473 type = desc_base_type (type);
1474
1475 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1476 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1477 else
1478 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1479 }
1480
1481 /* If TYPE is the type of an array-bounds structure, the type of its
1482 Ith bound (numbering from 1). Otherwise, NULL. */
1483
1484 static struct type *
1485 desc_index_type (struct type *type, int i)
1486 {
1487 type = desc_base_type (type);
1488
1489 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1490 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1491 else
1492 return NULL;
1493 }
1494
1495 /* The number of index positions in the array-bounds type TYPE.
1496 Return 0 if TYPE is NULL. */
1497
1498 static int
1499 desc_arity (struct type *type)
1500 {
1501 type = desc_base_type (type);
1502
1503 if (type != NULL)
1504 return TYPE_NFIELDS (type) / 2;
1505 return 0;
1506 }
1507
1508 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1509 an array descriptor type (representing an unconstrained array
1510 type). */
1511
1512 static int
1513 ada_is_direct_array_type (struct type *type)
1514 {
1515 if (type == NULL)
1516 return 0;
1517 type = ada_check_typedef (type);
1518 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1519 || ada_is_array_descriptor_type (type));
1520 }
1521
1522 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1523 * to one. */
1524
1525 static int
1526 ada_is_array_type (struct type *type)
1527 {
1528 while (type != NULL
1529 && (TYPE_CODE (type) == TYPE_CODE_PTR
1530 || TYPE_CODE (type) == TYPE_CODE_REF))
1531 type = TYPE_TARGET_TYPE (type);
1532 return ada_is_direct_array_type (type);
1533 }
1534
1535 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1536
1537 int
1538 ada_is_simple_array_type (struct type *type)
1539 {
1540 if (type == NULL)
1541 return 0;
1542 type = ada_check_typedef (type);
1543 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1544 || (TYPE_CODE (type) == TYPE_CODE_PTR
1545 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
1546 }
1547
1548 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1549
1550 int
1551 ada_is_array_descriptor_type (struct type *type)
1552 {
1553 struct type *data_type = desc_data_type (type);
1554
1555 if (type == NULL)
1556 return 0;
1557 type = ada_check_typedef (type);
1558 return
1559 data_type != NULL
1560 && ((TYPE_CODE (data_type) == TYPE_CODE_PTR
1561 && TYPE_TARGET_TYPE (data_type) != NULL
1562 && TYPE_CODE (TYPE_TARGET_TYPE (data_type)) == TYPE_CODE_ARRAY)
1563 || TYPE_CODE (data_type) == TYPE_CODE_ARRAY)
1564 && desc_arity (desc_bounds_type (type)) > 0;
1565 }
1566
1567 /* Non-zero iff type is a partially mal-formed GNAT array
1568 descriptor. FIXME: This is to compensate for some problems with
1569 debugging output from GNAT. Re-examine periodically to see if it
1570 is still needed. */
1571
1572 int
1573 ada_is_bogus_array_descriptor (struct type *type)
1574 {
1575 return
1576 type != NULL
1577 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1578 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1579 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1580 && !ada_is_array_descriptor_type (type);
1581 }
1582
1583
1584 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1585 (fat pointer) returns the type of the array data described---specifically,
1586 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1587 in from the descriptor; otherwise, they are left unspecified. If
1588 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1589 returns NULL. The result is simply the type of ARR if ARR is not
1590 a descriptor. */
1591 struct type *
1592 ada_type_of_array (struct value *arr, int bounds)
1593 {
1594 if (ada_is_packed_array_type (value_type (arr)))
1595 return decode_packed_array_type (value_type (arr));
1596
1597 if (!ada_is_array_descriptor_type (value_type (arr)))
1598 return value_type (arr);
1599
1600 if (!bounds)
1601 return
1602 ada_check_typedef (TYPE_TARGET_TYPE (desc_data_type (value_type (arr))));
1603 else
1604 {
1605 struct type *elt_type;
1606 int arity;
1607 struct value *descriptor;
1608 struct objfile *objf = TYPE_OBJFILE (value_type (arr));
1609
1610 elt_type = ada_array_element_type (value_type (arr), -1);
1611 arity = ada_array_arity (value_type (arr));
1612
1613 if (elt_type == NULL || arity == 0)
1614 return ada_check_typedef (value_type (arr));
1615
1616 descriptor = desc_bounds (arr);
1617 if (value_as_long (descriptor) == 0)
1618 return NULL;
1619 while (arity > 0)
1620 {
1621 struct type *range_type = alloc_type (objf);
1622 struct type *array_type = alloc_type (objf);
1623 struct value *low = desc_one_bound (descriptor, arity, 0);
1624 struct value *high = desc_one_bound (descriptor, arity, 1);
1625 arity -= 1;
1626
1627 create_range_type (range_type, value_type (low),
1628 longest_to_int (value_as_long (low)),
1629 longest_to_int (value_as_long (high)));
1630 elt_type = create_array_type (array_type, elt_type, range_type);
1631 }
1632
1633 return lookup_pointer_type (elt_type);
1634 }
1635 }
1636
1637 /* If ARR does not represent an array, returns ARR unchanged.
1638 Otherwise, returns either a standard GDB array with bounds set
1639 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1640 GDB array. Returns NULL if ARR is a null fat pointer. */
1641
1642 struct value *
1643 ada_coerce_to_simple_array_ptr (struct value *arr)
1644 {
1645 if (ada_is_array_descriptor_type (value_type (arr)))
1646 {
1647 struct type *arrType = ada_type_of_array (arr, 1);
1648 if (arrType == NULL)
1649 return NULL;
1650 return value_cast (arrType, value_copy (desc_data (arr)));
1651 }
1652 else if (ada_is_packed_array_type (value_type (arr)))
1653 return decode_packed_array (arr);
1654 else
1655 return arr;
1656 }
1657
1658 /* If ARR does not represent an array, returns ARR unchanged.
1659 Otherwise, returns a standard GDB array describing ARR (which may
1660 be ARR itself if it already is in the proper form). */
1661
1662 static struct value *
1663 ada_coerce_to_simple_array (struct value *arr)
1664 {
1665 if (ada_is_array_descriptor_type (value_type (arr)))
1666 {
1667 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1668 if (arrVal == NULL)
1669 error (_("Bounds unavailable for null array pointer."));
1670 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1671 return value_ind (arrVal);
1672 }
1673 else if (ada_is_packed_array_type (value_type (arr)))
1674 return decode_packed_array (arr);
1675 else
1676 return arr;
1677 }
1678
1679 /* If TYPE represents a GNAT array type, return it translated to an
1680 ordinary GDB array type (possibly with BITSIZE fields indicating
1681 packing). For other types, is the identity. */
1682
1683 struct type *
1684 ada_coerce_to_simple_array_type (struct type *type)
1685 {
1686 struct value *mark = value_mark ();
1687 struct value *dummy = value_from_longest (builtin_type_int32, 0);
1688 struct type *result;
1689 deprecated_set_value_type (dummy, type);
1690 result = ada_type_of_array (dummy, 0);
1691 value_free_to_mark (mark);
1692 return result;
1693 }
1694
1695 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1696
1697 int
1698 ada_is_packed_array_type (struct type *type)
1699 {
1700 if (type == NULL)
1701 return 0;
1702 type = desc_base_type (type);
1703 type = ada_check_typedef (type);
1704 return
1705 ada_type_name (type) != NULL
1706 && strstr (ada_type_name (type), "___XP") != NULL;
1707 }
1708
1709 /* Given that TYPE is a standard GDB array type with all bounds filled
1710 in, and that the element size of its ultimate scalar constituents
1711 (that is, either its elements, or, if it is an array of arrays, its
1712 elements' elements, etc.) is *ELT_BITS, return an identical type,
1713 but with the bit sizes of its elements (and those of any
1714 constituent arrays) recorded in the BITSIZE components of its
1715 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1716 in bits. */
1717
1718 static struct type *
1719 packed_array_type (struct type *type, long *elt_bits)
1720 {
1721 struct type *new_elt_type;
1722 struct type *new_type;
1723 LONGEST low_bound, high_bound;
1724
1725 type = ada_check_typedef (type);
1726 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1727 return type;
1728
1729 new_type = alloc_type (TYPE_OBJFILE (type));
1730 new_elt_type = packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
1731 elt_bits);
1732 create_array_type (new_type, new_elt_type, TYPE_INDEX_TYPE (type));
1733 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
1734 TYPE_NAME (new_type) = ada_type_name (type);
1735
1736 if (get_discrete_bounds (TYPE_INDEX_TYPE (type),
1737 &low_bound, &high_bound) < 0)
1738 low_bound = high_bound = 0;
1739 if (high_bound < low_bound)
1740 *elt_bits = TYPE_LENGTH (new_type) = 0;
1741 else
1742 {
1743 *elt_bits *= (high_bound - low_bound + 1);
1744 TYPE_LENGTH (new_type) =
1745 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
1746 }
1747
1748 TYPE_FIXED_INSTANCE (new_type) = 1;
1749 return new_type;
1750 }
1751
1752 /* The array type encoded by TYPE, where ada_is_packed_array_type (TYPE). */
1753
1754 static struct type *
1755 decode_packed_array_type (struct type *type)
1756 {
1757 struct symbol *sym;
1758 struct block **blocks;
1759 char *raw_name = ada_type_name (ada_check_typedef (type));
1760 char *name;
1761 char *tail;
1762 struct type *shadow_type;
1763 long bits;
1764 int i, n;
1765
1766 if (!raw_name)
1767 raw_name = ada_type_name (desc_base_type (type));
1768
1769 if (!raw_name)
1770 return NULL;
1771
1772 name = (char *) alloca (strlen (raw_name) + 1);
1773 tail = strstr (raw_name, "___XP");
1774 type = desc_base_type (type);
1775
1776 memcpy (name, raw_name, tail - raw_name);
1777 name[tail - raw_name] = '\000';
1778
1779 sym = standard_lookup (name, get_selected_block (0), VAR_DOMAIN);
1780 if (sym == NULL || SYMBOL_TYPE (sym) == NULL)
1781 {
1782 lim_warning (_("could not find bounds information on packed array"));
1783 return NULL;
1784 }
1785 shadow_type = SYMBOL_TYPE (sym);
1786
1787 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
1788 {
1789 lim_warning (_("could not understand bounds information on packed array"));
1790 return NULL;
1791 }
1792
1793 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1794 {
1795 lim_warning
1796 (_("could not understand bit size information on packed array"));
1797 return NULL;
1798 }
1799
1800 return packed_array_type (shadow_type, &bits);
1801 }
1802
1803 /* Given that ARR is a struct value *indicating a GNAT packed array,
1804 returns a simple array that denotes that array. Its type is a
1805 standard GDB array type except that the BITSIZEs of the array
1806 target types are set to the number of bits in each element, and the
1807 type length is set appropriately. */
1808
1809 static struct value *
1810 decode_packed_array (struct value *arr)
1811 {
1812 struct type *type;
1813
1814 arr = ada_coerce_ref (arr);
1815 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
1816 arr = ada_value_ind (arr);
1817
1818 type = decode_packed_array_type (value_type (arr));
1819 if (type == NULL)
1820 {
1821 error (_("can't unpack array"));
1822 return NULL;
1823 }
1824
1825 if (gdbarch_bits_big_endian (current_gdbarch)
1826 && ada_is_modular_type (value_type (arr)))
1827 {
1828 /* This is a (right-justified) modular type representing a packed
1829 array with no wrapper. In order to interpret the value through
1830 the (left-justified) packed array type we just built, we must
1831 first left-justify it. */
1832 int bit_size, bit_pos;
1833 ULONGEST mod;
1834
1835 mod = ada_modulus (value_type (arr)) - 1;
1836 bit_size = 0;
1837 while (mod > 0)
1838 {
1839 bit_size += 1;
1840 mod >>= 1;
1841 }
1842 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
1843 arr = ada_value_primitive_packed_val (arr, NULL,
1844 bit_pos / HOST_CHAR_BIT,
1845 bit_pos % HOST_CHAR_BIT,
1846 bit_size,
1847 type);
1848 }
1849
1850 return coerce_unspec_val_to_type (arr, type);
1851 }
1852
1853
1854 /* The value of the element of packed array ARR at the ARITY indices
1855 given in IND. ARR must be a simple array. */
1856
1857 static struct value *
1858 value_subscript_packed (struct value *arr, int arity, struct value **ind)
1859 {
1860 int i;
1861 int bits, elt_off, bit_off;
1862 long elt_total_bit_offset;
1863 struct type *elt_type;
1864 struct value *v;
1865
1866 bits = 0;
1867 elt_total_bit_offset = 0;
1868 elt_type = ada_check_typedef (value_type (arr));
1869 for (i = 0; i < arity; i += 1)
1870 {
1871 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
1872 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
1873 error
1874 (_("attempt to do packed indexing of something other than a packed array"));
1875 else
1876 {
1877 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
1878 LONGEST lowerbound, upperbound;
1879 LONGEST idx;
1880
1881 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
1882 {
1883 lim_warning (_("don't know bounds of array"));
1884 lowerbound = upperbound = 0;
1885 }
1886
1887 idx = pos_atr (ind[i]);
1888 if (idx < lowerbound || idx > upperbound)
1889 lim_warning (_("packed array index %ld out of bounds"), (long) idx);
1890 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
1891 elt_total_bit_offset += (idx - lowerbound) * bits;
1892 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
1893 }
1894 }
1895 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
1896 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
1897
1898 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
1899 bits, elt_type);
1900 return v;
1901 }
1902
1903 /* Non-zero iff TYPE includes negative integer values. */
1904
1905 static int
1906 has_negatives (struct type *type)
1907 {
1908 switch (TYPE_CODE (type))
1909 {
1910 default:
1911 return 0;
1912 case TYPE_CODE_INT:
1913 return !TYPE_UNSIGNED (type);
1914 case TYPE_CODE_RANGE:
1915 return TYPE_LOW_BOUND (type) < 0;
1916 }
1917 }
1918
1919
1920 /* Create a new value of type TYPE from the contents of OBJ starting
1921 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
1922 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
1923 assigning through the result will set the field fetched from.
1924 VALADDR is ignored unless OBJ is NULL, in which case,
1925 VALADDR+OFFSET must address the start of storage containing the
1926 packed value. The value returned in this case is never an lval.
1927 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
1928
1929 struct value *
1930 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
1931 long offset, int bit_offset, int bit_size,
1932 struct type *type)
1933 {
1934 struct value *v;
1935 int src, /* Index into the source area */
1936 targ, /* Index into the target area */
1937 srcBitsLeft, /* Number of source bits left to move */
1938 nsrc, ntarg, /* Number of source and target bytes */
1939 unusedLS, /* Number of bits in next significant
1940 byte of source that are unused */
1941 accumSize; /* Number of meaningful bits in accum */
1942 unsigned char *bytes; /* First byte containing data to unpack */
1943 unsigned char *unpacked;
1944 unsigned long accum; /* Staging area for bits being transferred */
1945 unsigned char sign;
1946 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
1947 /* Transmit bytes from least to most significant; delta is the direction
1948 the indices move. */
1949 int delta = gdbarch_bits_big_endian (current_gdbarch) ? -1 : 1;
1950
1951 type = ada_check_typedef (type);
1952
1953 if (obj == NULL)
1954 {
1955 v = allocate_value (type);
1956 bytes = (unsigned char *) (valaddr + offset);
1957 }
1958 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
1959 {
1960 v = value_at (type,
1961 VALUE_ADDRESS (obj) + value_offset (obj) + offset);
1962 bytes = (unsigned char *) alloca (len);
1963 read_memory (VALUE_ADDRESS (v), bytes, len);
1964 }
1965 else
1966 {
1967 v = allocate_value (type);
1968 bytes = (unsigned char *) value_contents (obj) + offset;
1969 }
1970
1971 if (obj != NULL)
1972 {
1973 set_value_component_location (v, obj);
1974 VALUE_ADDRESS (v) += value_offset (obj) + offset;
1975 set_value_bitpos (v, bit_offset + value_bitpos (obj));
1976 set_value_bitsize (v, bit_size);
1977 if (value_bitpos (v) >= HOST_CHAR_BIT)
1978 {
1979 VALUE_ADDRESS (v) += 1;
1980 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
1981 }
1982 }
1983 else
1984 set_value_bitsize (v, bit_size);
1985 unpacked = (unsigned char *) value_contents (v);
1986
1987 srcBitsLeft = bit_size;
1988 nsrc = len;
1989 ntarg = TYPE_LENGTH (type);
1990 sign = 0;
1991 if (bit_size == 0)
1992 {
1993 memset (unpacked, 0, TYPE_LENGTH (type));
1994 return v;
1995 }
1996 else if (gdbarch_bits_big_endian (current_gdbarch))
1997 {
1998 src = len - 1;
1999 if (has_negatives (type)
2000 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2001 sign = ~0;
2002
2003 unusedLS =
2004 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2005 % HOST_CHAR_BIT;
2006
2007 switch (TYPE_CODE (type))
2008 {
2009 case TYPE_CODE_ARRAY:
2010 case TYPE_CODE_UNION:
2011 case TYPE_CODE_STRUCT:
2012 /* Non-scalar values must be aligned at a byte boundary... */
2013 accumSize =
2014 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2015 /* ... And are placed at the beginning (most-significant) bytes
2016 of the target. */
2017 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2018 break;
2019 default:
2020 accumSize = 0;
2021 targ = TYPE_LENGTH (type) - 1;
2022 break;
2023 }
2024 }
2025 else
2026 {
2027 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2028
2029 src = targ = 0;
2030 unusedLS = bit_offset;
2031 accumSize = 0;
2032
2033 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2034 sign = ~0;
2035 }
2036
2037 accum = 0;
2038 while (nsrc > 0)
2039 {
2040 /* Mask for removing bits of the next source byte that are not
2041 part of the value. */
2042 unsigned int unusedMSMask =
2043 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2044 1;
2045 /* Sign-extend bits for this byte. */
2046 unsigned int signMask = sign & ~unusedMSMask;
2047 accum |=
2048 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2049 accumSize += HOST_CHAR_BIT - unusedLS;
2050 if (accumSize >= HOST_CHAR_BIT)
2051 {
2052 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2053 accumSize -= HOST_CHAR_BIT;
2054 accum >>= HOST_CHAR_BIT;
2055 ntarg -= 1;
2056 targ += delta;
2057 }
2058 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2059 unusedLS = 0;
2060 nsrc -= 1;
2061 src += delta;
2062 }
2063 while (ntarg > 0)
2064 {
2065 accum |= sign << accumSize;
2066 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2067 accumSize -= HOST_CHAR_BIT;
2068 accum >>= HOST_CHAR_BIT;
2069 ntarg -= 1;
2070 targ += delta;
2071 }
2072
2073 return v;
2074 }
2075
2076 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2077 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2078 not overlap. */
2079 static void
2080 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2081 int src_offset, int n)
2082 {
2083 unsigned int accum, mask;
2084 int accum_bits, chunk_size;
2085
2086 target += targ_offset / HOST_CHAR_BIT;
2087 targ_offset %= HOST_CHAR_BIT;
2088 source += src_offset / HOST_CHAR_BIT;
2089 src_offset %= HOST_CHAR_BIT;
2090 if (gdbarch_bits_big_endian (current_gdbarch))
2091 {
2092 accum = (unsigned char) *source;
2093 source += 1;
2094 accum_bits = HOST_CHAR_BIT - src_offset;
2095
2096 while (n > 0)
2097 {
2098 int unused_right;
2099 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2100 accum_bits += HOST_CHAR_BIT;
2101 source += 1;
2102 chunk_size = HOST_CHAR_BIT - targ_offset;
2103 if (chunk_size > n)
2104 chunk_size = n;
2105 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2106 mask = ((1 << chunk_size) - 1) << unused_right;
2107 *target =
2108 (*target & ~mask)
2109 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2110 n -= chunk_size;
2111 accum_bits -= chunk_size;
2112 target += 1;
2113 targ_offset = 0;
2114 }
2115 }
2116 else
2117 {
2118 accum = (unsigned char) *source >> src_offset;
2119 source += 1;
2120 accum_bits = HOST_CHAR_BIT - src_offset;
2121
2122 while (n > 0)
2123 {
2124 accum = accum + ((unsigned char) *source << accum_bits);
2125 accum_bits += HOST_CHAR_BIT;
2126 source += 1;
2127 chunk_size = HOST_CHAR_BIT - targ_offset;
2128 if (chunk_size > n)
2129 chunk_size = n;
2130 mask = ((1 << chunk_size) - 1) << targ_offset;
2131 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2132 n -= chunk_size;
2133 accum_bits -= chunk_size;
2134 accum >>= chunk_size;
2135 target += 1;
2136 targ_offset = 0;
2137 }
2138 }
2139 }
2140
2141 /* Store the contents of FROMVAL into the location of TOVAL.
2142 Return a new value with the location of TOVAL and contents of
2143 FROMVAL. Handles assignment into packed fields that have
2144 floating-point or non-scalar types. */
2145
2146 static struct value *
2147 ada_value_assign (struct value *toval, struct value *fromval)
2148 {
2149 struct type *type = value_type (toval);
2150 int bits = value_bitsize (toval);
2151
2152 toval = ada_coerce_ref (toval);
2153 fromval = ada_coerce_ref (fromval);
2154
2155 if (ada_is_direct_array_type (value_type (toval)))
2156 toval = ada_coerce_to_simple_array (toval);
2157 if (ada_is_direct_array_type (value_type (fromval)))
2158 fromval = ada_coerce_to_simple_array (fromval);
2159
2160 if (!deprecated_value_modifiable (toval))
2161 error (_("Left operand of assignment is not a modifiable lvalue."));
2162
2163 if (VALUE_LVAL (toval) == lval_memory
2164 && bits > 0
2165 && (TYPE_CODE (type) == TYPE_CODE_FLT
2166 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2167 {
2168 int len = (value_bitpos (toval)
2169 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2170 int from_size;
2171 char *buffer = (char *) alloca (len);
2172 struct value *val;
2173 CORE_ADDR to_addr = VALUE_ADDRESS (toval) + value_offset (toval);
2174
2175 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2176 fromval = value_cast (type, fromval);
2177
2178 read_memory (to_addr, buffer, len);
2179 from_size = value_bitsize (fromval);
2180 if (from_size == 0)
2181 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2182 if (gdbarch_bits_big_endian (current_gdbarch))
2183 move_bits (buffer, value_bitpos (toval),
2184 value_contents (fromval), from_size - bits, bits);
2185 else
2186 move_bits (buffer, value_bitpos (toval), value_contents (fromval),
2187 0, bits);
2188 write_memory (to_addr, buffer, len);
2189 if (deprecated_memory_changed_hook)
2190 deprecated_memory_changed_hook (to_addr, len);
2191
2192 val = value_copy (toval);
2193 memcpy (value_contents_raw (val), value_contents (fromval),
2194 TYPE_LENGTH (type));
2195 deprecated_set_value_type (val, type);
2196
2197 return val;
2198 }
2199
2200 return value_assign (toval, fromval);
2201 }
2202
2203
2204 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2205 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2206 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2207 * COMPONENT, and not the inferior's memory. The current contents
2208 * of COMPONENT are ignored. */
2209 static void
2210 value_assign_to_component (struct value *container, struct value *component,
2211 struct value *val)
2212 {
2213 LONGEST offset_in_container =
2214 (LONGEST) (VALUE_ADDRESS (component) + value_offset (component)
2215 - VALUE_ADDRESS (container) - value_offset (container));
2216 int bit_offset_in_container =
2217 value_bitpos (component) - value_bitpos (container);
2218 int bits;
2219
2220 val = value_cast (value_type (component), val);
2221
2222 if (value_bitsize (component) == 0)
2223 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2224 else
2225 bits = value_bitsize (component);
2226
2227 if (gdbarch_bits_big_endian (current_gdbarch))
2228 move_bits (value_contents_writeable (container) + offset_in_container,
2229 value_bitpos (container) + bit_offset_in_container,
2230 value_contents (val),
2231 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2232 bits);
2233 else
2234 move_bits (value_contents_writeable (container) + offset_in_container,
2235 value_bitpos (container) + bit_offset_in_container,
2236 value_contents (val), 0, bits);
2237 }
2238
2239 /* The value of the element of array ARR at the ARITY indices given in IND.
2240 ARR may be either a simple array, GNAT array descriptor, or pointer
2241 thereto. */
2242
2243 struct value *
2244 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2245 {
2246 int k;
2247 struct value *elt;
2248 struct type *elt_type;
2249
2250 elt = ada_coerce_to_simple_array (arr);
2251
2252 elt_type = ada_check_typedef (value_type (elt));
2253 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2254 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2255 return value_subscript_packed (elt, arity, ind);
2256
2257 for (k = 0; k < arity; k += 1)
2258 {
2259 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2260 error (_("too many subscripts (%d expected)"), k);
2261 elt = value_subscript (elt, value_pos_atr (builtin_type_int32, ind[k]));
2262 }
2263 return elt;
2264 }
2265
2266 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2267 value of the element of *ARR at the ARITY indices given in
2268 IND. Does not read the entire array into memory. */
2269
2270 static struct value *
2271 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2272 struct value **ind)
2273 {
2274 int k;
2275
2276 for (k = 0; k < arity; k += 1)
2277 {
2278 LONGEST lwb, upb;
2279 struct value *idx;
2280
2281 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2282 error (_("too many subscripts (%d expected)"), k);
2283 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2284 value_copy (arr));
2285 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2286 idx = value_pos_atr (builtin_type_int32, ind[k]);
2287 if (lwb != 0)
2288 idx = value_binop (idx, value_from_longest (value_type (idx), lwb),
2289 BINOP_SUB);
2290
2291 arr = value_ptradd (arr, idx);
2292 type = TYPE_TARGET_TYPE (type);
2293 }
2294
2295 return value_ind (arr);
2296 }
2297
2298 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2299 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2300 elements starting at index LOW. The lower bound of this array is LOW, as
2301 per Ada rules. */
2302 static struct value *
2303 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2304 int low, int high)
2305 {
2306 CORE_ADDR base = value_as_address (array_ptr)
2307 + ((low - TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)))
2308 * TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
2309 struct type *index_type =
2310 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
2311 low, high);
2312 struct type *slice_type =
2313 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2314 return value_at_lazy (slice_type, base);
2315 }
2316
2317
2318 static struct value *
2319 ada_value_slice (struct value *array, int low, int high)
2320 {
2321 struct type *type = value_type (array);
2322 struct type *index_type =
2323 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2324 struct type *slice_type =
2325 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2326 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2327 }
2328
2329 /* If type is a record type in the form of a standard GNAT array
2330 descriptor, returns the number of dimensions for type. If arr is a
2331 simple array, returns the number of "array of"s that prefix its
2332 type designation. Otherwise, returns 0. */
2333
2334 int
2335 ada_array_arity (struct type *type)
2336 {
2337 int arity;
2338
2339 if (type == NULL)
2340 return 0;
2341
2342 type = desc_base_type (type);
2343
2344 arity = 0;
2345 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2346 return desc_arity (desc_bounds_type (type));
2347 else
2348 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2349 {
2350 arity += 1;
2351 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2352 }
2353
2354 return arity;
2355 }
2356
2357 /* If TYPE is a record type in the form of a standard GNAT array
2358 descriptor or a simple array type, returns the element type for
2359 TYPE after indexing by NINDICES indices, or by all indices if
2360 NINDICES is -1. Otherwise, returns NULL. */
2361
2362 struct type *
2363 ada_array_element_type (struct type *type, int nindices)
2364 {
2365 type = desc_base_type (type);
2366
2367 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2368 {
2369 int k;
2370 struct type *p_array_type;
2371
2372 p_array_type = desc_data_type (type);
2373
2374 k = ada_array_arity (type);
2375 if (k == 0)
2376 return NULL;
2377
2378 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2379 if (nindices >= 0 && k > nindices)
2380 k = nindices;
2381 p_array_type = TYPE_TARGET_TYPE (p_array_type);
2382 while (k > 0 && p_array_type != NULL)
2383 {
2384 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2385 k -= 1;
2386 }
2387 return p_array_type;
2388 }
2389 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2390 {
2391 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2392 {
2393 type = TYPE_TARGET_TYPE (type);
2394 nindices -= 1;
2395 }
2396 return type;
2397 }
2398
2399 return NULL;
2400 }
2401
2402 /* The type of nth index in arrays of given type (n numbering from 1).
2403 Does not examine memory. */
2404
2405 struct type *
2406 ada_index_type (struct type *type, int n)
2407 {
2408 struct type *result_type;
2409
2410 type = desc_base_type (type);
2411
2412 if (n > ada_array_arity (type))
2413 return NULL;
2414
2415 if (ada_is_simple_array_type (type))
2416 {
2417 int i;
2418
2419 for (i = 1; i < n; i += 1)
2420 type = TYPE_TARGET_TYPE (type);
2421 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2422 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2423 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2424 perhaps stabsread.c would make more sense. */
2425 if (result_type == NULL || TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2426 result_type = builtin_type_int32;
2427
2428 return result_type;
2429 }
2430 else
2431 return desc_index_type (desc_bounds_type (type), n);
2432 }
2433
2434 /* Given that arr is an array type, returns the lower bound of the
2435 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2436 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2437 array-descriptor type. If TYPEP is non-null, *TYPEP is set to the
2438 bounds type. It works for other arrays with bounds supplied by
2439 run-time quantities other than discriminants. */
2440
2441 static LONGEST
2442 ada_array_bound_from_type (struct type * arr_type, int n, int which,
2443 struct type ** typep)
2444 {
2445 struct type *type, *index_type_desc, *index_type;
2446 LONGEST retval;
2447
2448 gdb_assert (which == 0 || which == 1);
2449
2450 if (ada_is_packed_array_type (arr_type))
2451 arr_type = decode_packed_array_type (arr_type);
2452
2453 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2454 {
2455 if (typep != NULL)
2456 *typep = builtin_type_int32;
2457 return (LONGEST) - which;
2458 }
2459
2460 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2461 type = TYPE_TARGET_TYPE (arr_type);
2462 else
2463 type = arr_type;
2464
2465 index_type_desc = ada_find_parallel_type (type, "___XA");
2466 if (index_type_desc != NULL)
2467 index_type = to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, n - 1),
2468 NULL, TYPE_OBJFILE (arr_type));
2469 else
2470 {
2471 while (n > 1)
2472 {
2473 type = TYPE_TARGET_TYPE (type);
2474 n -= 1;
2475 }
2476
2477 index_type = TYPE_INDEX_TYPE (type);
2478 }
2479
2480 switch (TYPE_CODE (index_type))
2481 {
2482 case TYPE_CODE_RANGE:
2483 retval = which == 0 ? TYPE_LOW_BOUND (index_type)
2484 : TYPE_HIGH_BOUND (index_type);
2485 break;
2486 case TYPE_CODE_ENUM:
2487 retval = which == 0 ? TYPE_FIELD_BITPOS (index_type, 0)
2488 : TYPE_FIELD_BITPOS (index_type,
2489 TYPE_NFIELDS (index_type) - 1);
2490 break;
2491 default:
2492 internal_error (__FILE__, __LINE__, _("invalid type code of index type"));
2493 }
2494
2495 if (typep != NULL)
2496 *typep = index_type;
2497
2498 return retval;
2499 }
2500
2501 /* Given that arr is an array value, returns the lower bound of the
2502 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2503 WHICH is 1. This routine will also work for arrays with bounds
2504 supplied by run-time quantities other than discriminants. */
2505
2506 struct value *
2507 ada_array_bound (struct value *arr, int n, int which)
2508 {
2509 struct type *arr_type = value_type (arr);
2510
2511 if (ada_is_packed_array_type (arr_type))
2512 return ada_array_bound (decode_packed_array (arr), n, which);
2513 else if (ada_is_simple_array_type (arr_type))
2514 {
2515 struct type *type;
2516 LONGEST v = ada_array_bound_from_type (arr_type, n, which, &type);
2517 return value_from_longest (type, v);
2518 }
2519 else
2520 return desc_one_bound (desc_bounds (arr), n, which);
2521 }
2522
2523 /* Given that arr is an array value, returns the length of the
2524 nth index. This routine will also work for arrays with bounds
2525 supplied by run-time quantities other than discriminants.
2526 Does not work for arrays indexed by enumeration types with representation
2527 clauses at the moment. */
2528
2529 static struct value *
2530 ada_array_length (struct value *arr, int n)
2531 {
2532 struct type *arr_type = ada_check_typedef (value_type (arr));
2533
2534 if (ada_is_packed_array_type (arr_type))
2535 return ada_array_length (decode_packed_array (arr), n);
2536
2537 if (ada_is_simple_array_type (arr_type))
2538 {
2539 struct type *type;
2540 LONGEST v =
2541 ada_array_bound_from_type (arr_type, n, 1, &type) -
2542 ada_array_bound_from_type (arr_type, n, 0, NULL) + 1;
2543 return value_from_longest (type, v);
2544 }
2545 else
2546 return
2547 value_from_longest (builtin_type_int32,
2548 value_as_long (desc_one_bound (desc_bounds (arr),
2549 n, 1))
2550 - value_as_long (desc_one_bound (desc_bounds (arr),
2551 n, 0)) + 1);
2552 }
2553
2554 /* An empty array whose type is that of ARR_TYPE (an array type),
2555 with bounds LOW to LOW-1. */
2556
2557 static struct value *
2558 empty_array (struct type *arr_type, int low)
2559 {
2560 struct type *index_type =
2561 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
2562 low, low - 1);
2563 struct type *elt_type = ada_array_element_type (arr_type, 1);
2564 return allocate_value (create_array_type (NULL, elt_type, index_type));
2565 }
2566 \f
2567
2568 /* Name resolution */
2569
2570 /* The "decoded" name for the user-definable Ada operator corresponding
2571 to OP. */
2572
2573 static const char *
2574 ada_decoded_op_name (enum exp_opcode op)
2575 {
2576 int i;
2577
2578 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2579 {
2580 if (ada_opname_table[i].op == op)
2581 return ada_opname_table[i].decoded;
2582 }
2583 error (_("Could not find operator name for opcode"));
2584 }
2585
2586
2587 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2588 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2589 undefined namespace) and converts operators that are
2590 user-defined into appropriate function calls. If CONTEXT_TYPE is
2591 non-null, it provides a preferred result type [at the moment, only
2592 type void has any effect---causing procedures to be preferred over
2593 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2594 return type is preferred. May change (expand) *EXP. */
2595
2596 static void
2597 resolve (struct expression **expp, int void_context_p)
2598 {
2599 int pc;
2600 pc = 0;
2601 resolve_subexp (expp, &pc, 1, void_context_p ? builtin_type_void : NULL);
2602 }
2603
2604 /* Resolve the operator of the subexpression beginning at
2605 position *POS of *EXPP. "Resolving" consists of replacing
2606 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2607 with their resolutions, replacing built-in operators with
2608 function calls to user-defined operators, where appropriate, and,
2609 when DEPROCEDURE_P is non-zero, converting function-valued variables
2610 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2611 are as in ada_resolve, above. */
2612
2613 static struct value *
2614 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2615 struct type *context_type)
2616 {
2617 int pc = *pos;
2618 int i;
2619 struct expression *exp; /* Convenience: == *expp. */
2620 enum exp_opcode op = (*expp)->elts[pc].opcode;
2621 struct value **argvec; /* Vector of operand types (alloca'ed). */
2622 int nargs; /* Number of operands. */
2623 int oplen;
2624
2625 argvec = NULL;
2626 nargs = 0;
2627 exp = *expp;
2628
2629 /* Pass one: resolve operands, saving their types and updating *pos,
2630 if needed. */
2631 switch (op)
2632 {
2633 case OP_FUNCALL:
2634 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2635 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2636 *pos += 7;
2637 else
2638 {
2639 *pos += 3;
2640 resolve_subexp (expp, pos, 0, NULL);
2641 }
2642 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2643 break;
2644
2645 case UNOP_ADDR:
2646 *pos += 1;
2647 resolve_subexp (expp, pos, 0, NULL);
2648 break;
2649
2650 case UNOP_QUAL:
2651 *pos += 3;
2652 resolve_subexp (expp, pos, 1, exp->elts[pc + 1].type);
2653 break;
2654
2655 case OP_ATR_MODULUS:
2656 case OP_ATR_SIZE:
2657 case OP_ATR_TAG:
2658 case OP_ATR_FIRST:
2659 case OP_ATR_LAST:
2660 case OP_ATR_LENGTH:
2661 case OP_ATR_POS:
2662 case OP_ATR_VAL:
2663 case OP_ATR_MIN:
2664 case OP_ATR_MAX:
2665 case TERNOP_IN_RANGE:
2666 case BINOP_IN_BOUNDS:
2667 case UNOP_IN_RANGE:
2668 case OP_AGGREGATE:
2669 case OP_OTHERS:
2670 case OP_CHOICES:
2671 case OP_POSITIONAL:
2672 case OP_DISCRETE_RANGE:
2673 case OP_NAME:
2674 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2675 *pos += oplen;
2676 break;
2677
2678 case BINOP_ASSIGN:
2679 {
2680 struct value *arg1;
2681
2682 *pos += 1;
2683 arg1 = resolve_subexp (expp, pos, 0, NULL);
2684 if (arg1 == NULL)
2685 resolve_subexp (expp, pos, 1, NULL);
2686 else
2687 resolve_subexp (expp, pos, 1, value_type (arg1));
2688 break;
2689 }
2690
2691 case UNOP_CAST:
2692 *pos += 3;
2693 nargs = 1;
2694 break;
2695
2696 case BINOP_ADD:
2697 case BINOP_SUB:
2698 case BINOP_MUL:
2699 case BINOP_DIV:
2700 case BINOP_REM:
2701 case BINOP_MOD:
2702 case BINOP_EXP:
2703 case BINOP_CONCAT:
2704 case BINOP_LOGICAL_AND:
2705 case BINOP_LOGICAL_OR:
2706 case BINOP_BITWISE_AND:
2707 case BINOP_BITWISE_IOR:
2708 case BINOP_BITWISE_XOR:
2709
2710 case BINOP_EQUAL:
2711 case BINOP_NOTEQUAL:
2712 case BINOP_LESS:
2713 case BINOP_GTR:
2714 case BINOP_LEQ:
2715 case BINOP_GEQ:
2716
2717 case BINOP_REPEAT:
2718 case BINOP_SUBSCRIPT:
2719 case BINOP_COMMA:
2720 *pos += 1;
2721 nargs = 2;
2722 break;
2723
2724 case UNOP_NEG:
2725 case UNOP_PLUS:
2726 case UNOP_LOGICAL_NOT:
2727 case UNOP_ABS:
2728 case UNOP_IND:
2729 *pos += 1;
2730 nargs = 1;
2731 break;
2732
2733 case OP_LONG:
2734 case OP_DOUBLE:
2735 case OP_VAR_VALUE:
2736 *pos += 4;
2737 break;
2738
2739 case OP_TYPE:
2740 case OP_BOOL:
2741 case OP_LAST:
2742 case OP_INTERNALVAR:
2743 *pos += 3;
2744 break;
2745
2746 case UNOP_MEMVAL:
2747 *pos += 3;
2748 nargs = 1;
2749 break;
2750
2751 case OP_REGISTER:
2752 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2753 break;
2754
2755 case STRUCTOP_STRUCT:
2756 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2757 nargs = 1;
2758 break;
2759
2760 case TERNOP_SLICE:
2761 *pos += 1;
2762 nargs = 3;
2763 break;
2764
2765 case OP_STRING:
2766 break;
2767
2768 default:
2769 error (_("Unexpected operator during name resolution"));
2770 }
2771
2772 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
2773 for (i = 0; i < nargs; i += 1)
2774 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
2775 argvec[i] = NULL;
2776 exp = *expp;
2777
2778 /* Pass two: perform any resolution on principal operator. */
2779 switch (op)
2780 {
2781 default:
2782 break;
2783
2784 case OP_VAR_VALUE:
2785 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
2786 {
2787 struct ada_symbol_info *candidates;
2788 int n_candidates;
2789
2790 n_candidates =
2791 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2792 (exp->elts[pc + 2].symbol),
2793 exp->elts[pc + 1].block, VAR_DOMAIN,
2794 &candidates);
2795
2796 if (n_candidates > 1)
2797 {
2798 /* Types tend to get re-introduced locally, so if there
2799 are any local symbols that are not types, first filter
2800 out all types. */
2801 int j;
2802 for (j = 0; j < n_candidates; j += 1)
2803 switch (SYMBOL_CLASS (candidates[j].sym))
2804 {
2805 case LOC_REGISTER:
2806 case LOC_ARG:
2807 case LOC_REF_ARG:
2808 case LOC_REGPARM_ADDR:
2809 case LOC_LOCAL:
2810 case LOC_COMPUTED:
2811 goto FoundNonType;
2812 default:
2813 break;
2814 }
2815 FoundNonType:
2816 if (j < n_candidates)
2817 {
2818 j = 0;
2819 while (j < n_candidates)
2820 {
2821 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
2822 {
2823 candidates[j] = candidates[n_candidates - 1];
2824 n_candidates -= 1;
2825 }
2826 else
2827 j += 1;
2828 }
2829 }
2830 }
2831
2832 if (n_candidates == 0)
2833 error (_("No definition found for %s"),
2834 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2835 else if (n_candidates == 1)
2836 i = 0;
2837 else if (deprocedure_p
2838 && !is_nonfunction (candidates, n_candidates))
2839 {
2840 i = ada_resolve_function
2841 (candidates, n_candidates, NULL, 0,
2842 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
2843 context_type);
2844 if (i < 0)
2845 error (_("Could not find a match for %s"),
2846 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2847 }
2848 else
2849 {
2850 printf_filtered (_("Multiple matches for %s\n"),
2851 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2852 user_select_syms (candidates, n_candidates, 1);
2853 i = 0;
2854 }
2855
2856 exp->elts[pc + 1].block = candidates[i].block;
2857 exp->elts[pc + 2].symbol = candidates[i].sym;
2858 if (innermost_block == NULL
2859 || contained_in (candidates[i].block, innermost_block))
2860 innermost_block = candidates[i].block;
2861 }
2862
2863 if (deprocedure_p
2864 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
2865 == TYPE_CODE_FUNC))
2866 {
2867 replace_operator_with_call (expp, pc, 0, 0,
2868 exp->elts[pc + 2].symbol,
2869 exp->elts[pc + 1].block);
2870 exp = *expp;
2871 }
2872 break;
2873
2874 case OP_FUNCALL:
2875 {
2876 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2877 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2878 {
2879 struct ada_symbol_info *candidates;
2880 int n_candidates;
2881
2882 n_candidates =
2883 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2884 (exp->elts[pc + 5].symbol),
2885 exp->elts[pc + 4].block, VAR_DOMAIN,
2886 &candidates);
2887 if (n_candidates == 1)
2888 i = 0;
2889 else
2890 {
2891 i = ada_resolve_function
2892 (candidates, n_candidates,
2893 argvec, nargs,
2894 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
2895 context_type);
2896 if (i < 0)
2897 error (_("Could not find a match for %s"),
2898 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
2899 }
2900
2901 exp->elts[pc + 4].block = candidates[i].block;
2902 exp->elts[pc + 5].symbol = candidates[i].sym;
2903 if (innermost_block == NULL
2904 || contained_in (candidates[i].block, innermost_block))
2905 innermost_block = candidates[i].block;
2906 }
2907 }
2908 break;
2909 case BINOP_ADD:
2910 case BINOP_SUB:
2911 case BINOP_MUL:
2912 case BINOP_DIV:
2913 case BINOP_REM:
2914 case BINOP_MOD:
2915 case BINOP_CONCAT:
2916 case BINOP_BITWISE_AND:
2917 case BINOP_BITWISE_IOR:
2918 case BINOP_BITWISE_XOR:
2919 case BINOP_EQUAL:
2920 case BINOP_NOTEQUAL:
2921 case BINOP_LESS:
2922 case BINOP_GTR:
2923 case BINOP_LEQ:
2924 case BINOP_GEQ:
2925 case BINOP_EXP:
2926 case UNOP_NEG:
2927 case UNOP_PLUS:
2928 case UNOP_LOGICAL_NOT:
2929 case UNOP_ABS:
2930 if (possible_user_operator_p (op, argvec))
2931 {
2932 struct ada_symbol_info *candidates;
2933 int n_candidates;
2934
2935 n_candidates =
2936 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
2937 (struct block *) NULL, VAR_DOMAIN,
2938 &candidates);
2939 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
2940 ada_decoded_op_name (op), NULL);
2941 if (i < 0)
2942 break;
2943
2944 replace_operator_with_call (expp, pc, nargs, 1,
2945 candidates[i].sym, candidates[i].block);
2946 exp = *expp;
2947 }
2948 break;
2949
2950 case OP_TYPE:
2951 case OP_REGISTER:
2952 return NULL;
2953 }
2954
2955 *pos = pc;
2956 return evaluate_subexp_type (exp, pos);
2957 }
2958
2959 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
2960 MAY_DEREF is non-zero, the formal may be a pointer and the actual
2961 a non-pointer. A type of 'void' (which is never a valid expression type)
2962 by convention matches anything. */
2963 /* The term "match" here is rather loose. The match is heuristic and
2964 liberal. FIXME: TOO liberal, in fact. */
2965
2966 static int
2967 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
2968 {
2969 ftype = ada_check_typedef (ftype);
2970 atype = ada_check_typedef (atype);
2971
2972 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
2973 ftype = TYPE_TARGET_TYPE (ftype);
2974 if (TYPE_CODE (atype) == TYPE_CODE_REF)
2975 atype = TYPE_TARGET_TYPE (atype);
2976
2977 if (TYPE_CODE (ftype) == TYPE_CODE_VOID
2978 || TYPE_CODE (atype) == TYPE_CODE_VOID)
2979 return 1;
2980
2981 switch (TYPE_CODE (ftype))
2982 {
2983 default:
2984 return 1;
2985 case TYPE_CODE_PTR:
2986 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
2987 return ada_type_match (TYPE_TARGET_TYPE (ftype),
2988 TYPE_TARGET_TYPE (atype), 0);
2989 else
2990 return (may_deref
2991 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
2992 case TYPE_CODE_INT:
2993 case TYPE_CODE_ENUM:
2994 case TYPE_CODE_RANGE:
2995 switch (TYPE_CODE (atype))
2996 {
2997 case TYPE_CODE_INT:
2998 case TYPE_CODE_ENUM:
2999 case TYPE_CODE_RANGE:
3000 return 1;
3001 default:
3002 return 0;
3003 }
3004
3005 case TYPE_CODE_ARRAY:
3006 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3007 || ada_is_array_descriptor_type (atype));
3008
3009 case TYPE_CODE_STRUCT:
3010 if (ada_is_array_descriptor_type (ftype))
3011 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3012 || ada_is_array_descriptor_type (atype));
3013 else
3014 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3015 && !ada_is_array_descriptor_type (atype));
3016
3017 case TYPE_CODE_UNION:
3018 case TYPE_CODE_FLT:
3019 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3020 }
3021 }
3022
3023 /* Return non-zero if the formals of FUNC "sufficiently match" the
3024 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3025 may also be an enumeral, in which case it is treated as a 0-
3026 argument function. */
3027
3028 static int
3029 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3030 {
3031 int i;
3032 struct type *func_type = SYMBOL_TYPE (func);
3033
3034 if (SYMBOL_CLASS (func) == LOC_CONST
3035 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3036 return (n_actuals == 0);
3037 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3038 return 0;
3039
3040 if (TYPE_NFIELDS (func_type) != n_actuals)
3041 return 0;
3042
3043 for (i = 0; i < n_actuals; i += 1)
3044 {
3045 if (actuals[i] == NULL)
3046 return 0;
3047 else
3048 {
3049 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, i));
3050 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3051
3052 if (!ada_type_match (ftype, atype, 1))
3053 return 0;
3054 }
3055 }
3056 return 1;
3057 }
3058
3059 /* False iff function type FUNC_TYPE definitely does not produce a value
3060 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3061 FUNC_TYPE is not a valid function type with a non-null return type
3062 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3063
3064 static int
3065 return_match (struct type *func_type, struct type *context_type)
3066 {
3067 struct type *return_type;
3068
3069 if (func_type == NULL)
3070 return 1;
3071
3072 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3073 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3074 else
3075 return_type = base_type (func_type);
3076 if (return_type == NULL)
3077 return 1;
3078
3079 context_type = base_type (context_type);
3080
3081 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3082 return context_type == NULL || return_type == context_type;
3083 else if (context_type == NULL)
3084 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3085 else
3086 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3087 }
3088
3089
3090 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3091 function (if any) that matches the types of the NARGS arguments in
3092 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3093 that returns that type, then eliminate matches that don't. If
3094 CONTEXT_TYPE is void and there is at least one match that does not
3095 return void, eliminate all matches that do.
3096
3097 Asks the user if there is more than one match remaining. Returns -1
3098 if there is no such symbol or none is selected. NAME is used
3099 solely for messages. May re-arrange and modify SYMS in
3100 the process; the index returned is for the modified vector. */
3101
3102 static int
3103 ada_resolve_function (struct ada_symbol_info syms[],
3104 int nsyms, struct value **args, int nargs,
3105 const char *name, struct type *context_type)
3106 {
3107 int k;
3108 int m; /* Number of hits */
3109 struct type *fallback;
3110 struct type *return_type;
3111
3112 return_type = context_type;
3113 if (context_type == NULL)
3114 fallback = builtin_type_void;
3115 else
3116 fallback = NULL;
3117
3118 m = 0;
3119 while (1)
3120 {
3121 for (k = 0; k < nsyms; k += 1)
3122 {
3123 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3124
3125 if (ada_args_match (syms[k].sym, args, nargs)
3126 && return_match (type, return_type))
3127 {
3128 syms[m] = syms[k];
3129 m += 1;
3130 }
3131 }
3132 if (m > 0 || return_type == fallback)
3133 break;
3134 else
3135 return_type = fallback;
3136 }
3137
3138 if (m == 0)
3139 return -1;
3140 else if (m > 1)
3141 {
3142 printf_filtered (_("Multiple matches for %s\n"), name);
3143 user_select_syms (syms, m, 1);
3144 return 0;
3145 }
3146 return 0;
3147 }
3148
3149 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3150 in a listing of choices during disambiguation (see sort_choices, below).
3151 The idea is that overloadings of a subprogram name from the
3152 same package should sort in their source order. We settle for ordering
3153 such symbols by their trailing number (__N or $N). */
3154
3155 static int
3156 encoded_ordered_before (char *N0, char *N1)
3157 {
3158 if (N1 == NULL)
3159 return 0;
3160 else if (N0 == NULL)
3161 return 1;
3162 else
3163 {
3164 int k0, k1;
3165 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3166 ;
3167 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3168 ;
3169 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3170 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3171 {
3172 int n0, n1;
3173 n0 = k0;
3174 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3175 n0 -= 1;
3176 n1 = k1;
3177 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3178 n1 -= 1;
3179 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3180 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3181 }
3182 return (strcmp (N0, N1) < 0);
3183 }
3184 }
3185
3186 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3187 encoded names. */
3188
3189 static void
3190 sort_choices (struct ada_symbol_info syms[], int nsyms)
3191 {
3192 int i;
3193 for (i = 1; i < nsyms; i += 1)
3194 {
3195 struct ada_symbol_info sym = syms[i];
3196 int j;
3197
3198 for (j = i - 1; j >= 0; j -= 1)
3199 {
3200 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3201 SYMBOL_LINKAGE_NAME (sym.sym)))
3202 break;
3203 syms[j + 1] = syms[j];
3204 }
3205 syms[j + 1] = sym;
3206 }
3207 }
3208
3209 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3210 by asking the user (if necessary), returning the number selected,
3211 and setting the first elements of SYMS items. Error if no symbols
3212 selected. */
3213
3214 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3215 to be re-integrated one of these days. */
3216
3217 int
3218 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3219 {
3220 int i;
3221 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3222 int n_chosen;
3223 int first_choice = (max_results == 1) ? 1 : 2;
3224 const char *select_mode = multiple_symbols_select_mode ();
3225
3226 if (max_results < 1)
3227 error (_("Request to select 0 symbols!"));
3228 if (nsyms <= 1)
3229 return nsyms;
3230
3231 if (select_mode == multiple_symbols_cancel)
3232 error (_("\
3233 canceled because the command is ambiguous\n\
3234 See set/show multiple-symbol."));
3235
3236 /* If select_mode is "all", then return all possible symbols.
3237 Only do that if more than one symbol can be selected, of course.
3238 Otherwise, display the menu as usual. */
3239 if (select_mode == multiple_symbols_all && max_results > 1)
3240 return nsyms;
3241
3242 printf_unfiltered (_("[0] cancel\n"));
3243 if (max_results > 1)
3244 printf_unfiltered (_("[1] all\n"));
3245
3246 sort_choices (syms, nsyms);
3247
3248 for (i = 0; i < nsyms; i += 1)
3249 {
3250 if (syms[i].sym == NULL)
3251 continue;
3252
3253 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3254 {
3255 struct symtab_and_line sal =
3256 find_function_start_sal (syms[i].sym, 1);
3257 if (sal.symtab == NULL)
3258 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3259 i + first_choice,
3260 SYMBOL_PRINT_NAME (syms[i].sym),
3261 sal.line);
3262 else
3263 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3264 SYMBOL_PRINT_NAME (syms[i].sym),
3265 sal.symtab->filename, sal.line);
3266 continue;
3267 }
3268 else
3269 {
3270 int is_enumeral =
3271 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3272 && SYMBOL_TYPE (syms[i].sym) != NULL
3273 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3274 struct symtab *symtab = symtab_for_sym (syms[i].sym);
3275
3276 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3277 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3278 i + first_choice,
3279 SYMBOL_PRINT_NAME (syms[i].sym),
3280 symtab->filename, SYMBOL_LINE (syms[i].sym));
3281 else if (is_enumeral
3282 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3283 {
3284 printf_unfiltered (("[%d] "), i + first_choice);
3285 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3286 gdb_stdout, -1, 0);
3287 printf_unfiltered (_("'(%s) (enumeral)\n"),
3288 SYMBOL_PRINT_NAME (syms[i].sym));
3289 }
3290 else if (symtab != NULL)
3291 printf_unfiltered (is_enumeral
3292 ? _("[%d] %s in %s (enumeral)\n")
3293 : _("[%d] %s at %s:?\n"),
3294 i + first_choice,
3295 SYMBOL_PRINT_NAME (syms[i].sym),
3296 symtab->filename);
3297 else
3298 printf_unfiltered (is_enumeral
3299 ? _("[%d] %s (enumeral)\n")
3300 : _("[%d] %s at ?\n"),
3301 i + first_choice,
3302 SYMBOL_PRINT_NAME (syms[i].sym));
3303 }
3304 }
3305
3306 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3307 "overload-choice");
3308
3309 for (i = 0; i < n_chosen; i += 1)
3310 syms[i] = syms[chosen[i]];
3311
3312 return n_chosen;
3313 }
3314
3315 /* Read and validate a set of numeric choices from the user in the
3316 range 0 .. N_CHOICES-1. Place the results in increasing
3317 order in CHOICES[0 .. N-1], and return N.
3318
3319 The user types choices as a sequence of numbers on one line
3320 separated by blanks, encoding them as follows:
3321
3322 + A choice of 0 means to cancel the selection, throwing an error.
3323 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3324 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3325
3326 The user is not allowed to choose more than MAX_RESULTS values.
3327
3328 ANNOTATION_SUFFIX, if present, is used to annotate the input
3329 prompts (for use with the -f switch). */
3330
3331 int
3332 get_selections (int *choices, int n_choices, int max_results,
3333 int is_all_choice, char *annotation_suffix)
3334 {
3335 char *args;
3336 char *prompt;
3337 int n_chosen;
3338 int first_choice = is_all_choice ? 2 : 1;
3339
3340 prompt = getenv ("PS2");
3341 if (prompt == NULL)
3342 prompt = "> ";
3343
3344 args = command_line_input (prompt, 0, annotation_suffix);
3345
3346 if (args == NULL)
3347 error_no_arg (_("one or more choice numbers"));
3348
3349 n_chosen = 0;
3350
3351 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3352 order, as given in args. Choices are validated. */
3353 while (1)
3354 {
3355 char *args2;
3356 int choice, j;
3357
3358 while (isspace (*args))
3359 args += 1;
3360 if (*args == '\0' && n_chosen == 0)
3361 error_no_arg (_("one or more choice numbers"));
3362 else if (*args == '\0')
3363 break;
3364
3365 choice = strtol (args, &args2, 10);
3366 if (args == args2 || choice < 0
3367 || choice > n_choices + first_choice - 1)
3368 error (_("Argument must be choice number"));
3369 args = args2;
3370
3371 if (choice == 0)
3372 error (_("cancelled"));
3373
3374 if (choice < first_choice)
3375 {
3376 n_chosen = n_choices;
3377 for (j = 0; j < n_choices; j += 1)
3378 choices[j] = j;
3379 break;
3380 }
3381 choice -= first_choice;
3382
3383 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3384 {
3385 }
3386
3387 if (j < 0 || choice != choices[j])
3388 {
3389 int k;
3390 for (k = n_chosen - 1; k > j; k -= 1)
3391 choices[k + 1] = choices[k];
3392 choices[j + 1] = choice;
3393 n_chosen += 1;
3394 }
3395 }
3396
3397 if (n_chosen > max_results)
3398 error (_("Select no more than %d of the above"), max_results);
3399
3400 return n_chosen;
3401 }
3402
3403 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3404 on the function identified by SYM and BLOCK, and taking NARGS
3405 arguments. Update *EXPP as needed to hold more space. */
3406
3407 static void
3408 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3409 int oplen, struct symbol *sym,
3410 struct block *block)
3411 {
3412 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3413 symbol, -oplen for operator being replaced). */
3414 struct expression *newexp = (struct expression *)
3415 xmalloc (sizeof (struct expression)
3416 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3417 struct expression *exp = *expp;
3418
3419 newexp->nelts = exp->nelts + 7 - oplen;
3420 newexp->language_defn = exp->language_defn;
3421 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3422 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3423 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3424
3425 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3426 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3427
3428 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3429 newexp->elts[pc + 4].block = block;
3430 newexp->elts[pc + 5].symbol = sym;
3431
3432 *expp = newexp;
3433 xfree (exp);
3434 }
3435
3436 /* Type-class predicates */
3437
3438 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3439 or FLOAT). */
3440
3441 static int
3442 numeric_type_p (struct type *type)
3443 {
3444 if (type == NULL)
3445 return 0;
3446 else
3447 {
3448 switch (TYPE_CODE (type))
3449 {
3450 case TYPE_CODE_INT:
3451 case TYPE_CODE_FLT:
3452 return 1;
3453 case TYPE_CODE_RANGE:
3454 return (type == TYPE_TARGET_TYPE (type)
3455 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3456 default:
3457 return 0;
3458 }
3459 }
3460 }
3461
3462 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3463
3464 static int
3465 integer_type_p (struct type *type)
3466 {
3467 if (type == NULL)
3468 return 0;
3469 else
3470 {
3471 switch (TYPE_CODE (type))
3472 {
3473 case TYPE_CODE_INT:
3474 return 1;
3475 case TYPE_CODE_RANGE:
3476 return (type == TYPE_TARGET_TYPE (type)
3477 || integer_type_p (TYPE_TARGET_TYPE (type)));
3478 default:
3479 return 0;
3480 }
3481 }
3482 }
3483
3484 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3485
3486 static int
3487 scalar_type_p (struct type *type)
3488 {
3489 if (type == NULL)
3490 return 0;
3491 else
3492 {
3493 switch (TYPE_CODE (type))
3494 {
3495 case TYPE_CODE_INT:
3496 case TYPE_CODE_RANGE:
3497 case TYPE_CODE_ENUM:
3498 case TYPE_CODE_FLT:
3499 return 1;
3500 default:
3501 return 0;
3502 }
3503 }
3504 }
3505
3506 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3507
3508 static int
3509 discrete_type_p (struct type *type)
3510 {
3511 if (type == NULL)
3512 return 0;
3513 else
3514 {
3515 switch (TYPE_CODE (type))
3516 {
3517 case TYPE_CODE_INT:
3518 case TYPE_CODE_RANGE:
3519 case TYPE_CODE_ENUM:
3520 return 1;
3521 default:
3522 return 0;
3523 }
3524 }
3525 }
3526
3527 /* Returns non-zero if OP with operands in the vector ARGS could be
3528 a user-defined function. Errs on the side of pre-defined operators
3529 (i.e., result 0). */
3530
3531 static int
3532 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3533 {
3534 struct type *type0 =
3535 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3536 struct type *type1 =
3537 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3538
3539 if (type0 == NULL)
3540 return 0;
3541
3542 switch (op)
3543 {
3544 default:
3545 return 0;
3546
3547 case BINOP_ADD:
3548 case BINOP_SUB:
3549 case BINOP_MUL:
3550 case BINOP_DIV:
3551 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3552
3553 case BINOP_REM:
3554 case BINOP_MOD:
3555 case BINOP_BITWISE_AND:
3556 case BINOP_BITWISE_IOR:
3557 case BINOP_BITWISE_XOR:
3558 return (!(integer_type_p (type0) && integer_type_p (type1)));
3559
3560 case BINOP_EQUAL:
3561 case BINOP_NOTEQUAL:
3562 case BINOP_LESS:
3563 case BINOP_GTR:
3564 case BINOP_LEQ:
3565 case BINOP_GEQ:
3566 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3567
3568 case BINOP_CONCAT:
3569 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3570
3571 case BINOP_EXP:
3572 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3573
3574 case UNOP_NEG:
3575 case UNOP_PLUS:
3576 case UNOP_LOGICAL_NOT:
3577 case UNOP_ABS:
3578 return (!numeric_type_p (type0));
3579
3580 }
3581 }
3582 \f
3583 /* Renaming */
3584
3585 /* NOTES:
3586
3587 1. In the following, we assume that a renaming type's name may
3588 have an ___XD suffix. It would be nice if this went away at some
3589 point.
3590 2. We handle both the (old) purely type-based representation of
3591 renamings and the (new) variable-based encoding. At some point,
3592 it is devoutly to be hoped that the former goes away
3593 (FIXME: hilfinger-2007-07-09).
3594 3. Subprogram renamings are not implemented, although the XRS
3595 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3596
3597 /* If SYM encodes a renaming,
3598
3599 <renaming> renames <renamed entity>,
3600
3601 sets *LEN to the length of the renamed entity's name,
3602 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3603 the string describing the subcomponent selected from the renamed
3604 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3605 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3606 are undefined). Otherwise, returns a value indicating the category
3607 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3608 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3609 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3610 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3611 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3612 may be NULL, in which case they are not assigned.
3613
3614 [Currently, however, GCC does not generate subprogram renamings.] */
3615
3616 enum ada_renaming_category
3617 ada_parse_renaming (struct symbol *sym,
3618 const char **renamed_entity, int *len,
3619 const char **renaming_expr)
3620 {
3621 enum ada_renaming_category kind;
3622 const char *info;
3623 const char *suffix;
3624
3625 if (sym == NULL)
3626 return ADA_NOT_RENAMING;
3627 switch (SYMBOL_CLASS (sym))
3628 {
3629 default:
3630 return ADA_NOT_RENAMING;
3631 case LOC_TYPEDEF:
3632 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3633 renamed_entity, len, renaming_expr);
3634 case LOC_LOCAL:
3635 case LOC_STATIC:
3636 case LOC_COMPUTED:
3637 case LOC_OPTIMIZED_OUT:
3638 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3639 if (info == NULL)
3640 return ADA_NOT_RENAMING;
3641 switch (info[5])
3642 {
3643 case '_':
3644 kind = ADA_OBJECT_RENAMING;
3645 info += 6;
3646 break;
3647 case 'E':
3648 kind = ADA_EXCEPTION_RENAMING;
3649 info += 7;
3650 break;
3651 case 'P':
3652 kind = ADA_PACKAGE_RENAMING;
3653 info += 7;
3654 break;
3655 case 'S':
3656 kind = ADA_SUBPROGRAM_RENAMING;
3657 info += 7;
3658 break;
3659 default:
3660 return ADA_NOT_RENAMING;
3661 }
3662 }
3663
3664 if (renamed_entity != NULL)
3665 *renamed_entity = info;
3666 suffix = strstr (info, "___XE");
3667 if (suffix == NULL || suffix == info)
3668 return ADA_NOT_RENAMING;
3669 if (len != NULL)
3670 *len = strlen (info) - strlen (suffix);
3671 suffix += 5;
3672 if (renaming_expr != NULL)
3673 *renaming_expr = suffix;
3674 return kind;
3675 }
3676
3677 /* Assuming TYPE encodes a renaming according to the old encoding in
3678 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3679 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3680 ADA_NOT_RENAMING otherwise. */
3681 static enum ada_renaming_category
3682 parse_old_style_renaming (struct type *type,
3683 const char **renamed_entity, int *len,
3684 const char **renaming_expr)
3685 {
3686 enum ada_renaming_category kind;
3687 const char *name;
3688 const char *info;
3689 const char *suffix;
3690
3691 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
3692 || TYPE_NFIELDS (type) != 1)
3693 return ADA_NOT_RENAMING;
3694
3695 name = type_name_no_tag (type);
3696 if (name == NULL)
3697 return ADA_NOT_RENAMING;
3698
3699 name = strstr (name, "___XR");
3700 if (name == NULL)
3701 return ADA_NOT_RENAMING;
3702 switch (name[5])
3703 {
3704 case '\0':
3705 case '_':
3706 kind = ADA_OBJECT_RENAMING;
3707 break;
3708 case 'E':
3709 kind = ADA_EXCEPTION_RENAMING;
3710 break;
3711 case 'P':
3712 kind = ADA_PACKAGE_RENAMING;
3713 break;
3714 case 'S':
3715 kind = ADA_SUBPROGRAM_RENAMING;
3716 break;
3717 default:
3718 return ADA_NOT_RENAMING;
3719 }
3720
3721 info = TYPE_FIELD_NAME (type, 0);
3722 if (info == NULL)
3723 return ADA_NOT_RENAMING;
3724 if (renamed_entity != NULL)
3725 *renamed_entity = info;
3726 suffix = strstr (info, "___XE");
3727 if (renaming_expr != NULL)
3728 *renaming_expr = suffix + 5;
3729 if (suffix == NULL || suffix == info)
3730 return ADA_NOT_RENAMING;
3731 if (len != NULL)
3732 *len = suffix - info;
3733 return kind;
3734 }
3735
3736 \f
3737
3738 /* Evaluation: Function Calls */
3739
3740 /* Return an lvalue containing the value VAL. This is the identity on
3741 lvalues, and otherwise has the side-effect of pushing a copy of VAL
3742 on the stack, using and updating *SP as the stack pointer, and
3743 returning an lvalue whose VALUE_ADDRESS points to the copy. */
3744
3745 static struct value *
3746 ensure_lval (struct value *val, CORE_ADDR *sp)
3747 {
3748 if (! VALUE_LVAL (val))
3749 {
3750 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
3751
3752 /* The following is taken from the structure-return code in
3753 call_function_by_hand. FIXME: Therefore, some refactoring seems
3754 indicated. */
3755 if (gdbarch_inner_than (current_gdbarch, 1, 2))
3756 {
3757 /* Stack grows downward. Align SP and VALUE_ADDRESS (val) after
3758 reserving sufficient space. */
3759 *sp -= len;
3760 if (gdbarch_frame_align_p (current_gdbarch))
3761 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3762 VALUE_ADDRESS (val) = *sp;
3763 }
3764 else
3765 {
3766 /* Stack grows upward. Align the frame, allocate space, and
3767 then again, re-align the frame. */
3768 if (gdbarch_frame_align_p (current_gdbarch))
3769 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3770 VALUE_ADDRESS (val) = *sp;
3771 *sp += len;
3772 if (gdbarch_frame_align_p (current_gdbarch))
3773 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3774 }
3775 VALUE_LVAL (val) = lval_memory;
3776
3777 write_memory (VALUE_ADDRESS (val), value_contents_raw (val), len);
3778 }
3779
3780 return val;
3781 }
3782
3783 /* Return the value ACTUAL, converted to be an appropriate value for a
3784 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3785 allocating any necessary descriptors (fat pointers), or copies of
3786 values not residing in memory, updating it as needed. */
3787
3788 struct value *
3789 ada_convert_actual (struct value *actual, struct type *formal_type0,
3790 CORE_ADDR *sp)
3791 {
3792 struct type *actual_type = ada_check_typedef (value_type (actual));
3793 struct type *formal_type = ada_check_typedef (formal_type0);
3794 struct type *formal_target =
3795 TYPE_CODE (formal_type) == TYPE_CODE_PTR
3796 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
3797 struct type *actual_target =
3798 TYPE_CODE (actual_type) == TYPE_CODE_PTR
3799 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
3800
3801 if (ada_is_array_descriptor_type (formal_target)
3802 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
3803 return make_array_descriptor (formal_type, actual, sp);
3804 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
3805 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
3806 {
3807 struct value *result;
3808 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
3809 && ada_is_array_descriptor_type (actual_target))
3810 result = desc_data (actual);
3811 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
3812 {
3813 if (VALUE_LVAL (actual) != lval_memory)
3814 {
3815 struct value *val;
3816 actual_type = ada_check_typedef (value_type (actual));
3817 val = allocate_value (actual_type);
3818 memcpy ((char *) value_contents_raw (val),
3819 (char *) value_contents (actual),
3820 TYPE_LENGTH (actual_type));
3821 actual = ensure_lval (val, sp);
3822 }
3823 result = value_addr (actual);
3824 }
3825 else
3826 return actual;
3827 return value_cast_pointers (formal_type, result);
3828 }
3829 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
3830 return ada_value_ind (actual);
3831
3832 return actual;
3833 }
3834
3835
3836 /* Push a descriptor of type TYPE for array value ARR on the stack at
3837 *SP, updating *SP to reflect the new descriptor. Return either
3838 an lvalue representing the new descriptor, or (if TYPE is a pointer-
3839 to-descriptor type rather than a descriptor type), a struct value *
3840 representing a pointer to this descriptor. */
3841
3842 static struct value *
3843 make_array_descriptor (struct type *type, struct value *arr, CORE_ADDR *sp)
3844 {
3845 struct type *bounds_type = desc_bounds_type (type);
3846 struct type *desc_type = desc_base_type (type);
3847 struct value *descriptor = allocate_value (desc_type);
3848 struct value *bounds = allocate_value (bounds_type);
3849 int i;
3850
3851 for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1)
3852 {
3853 modify_general_field (value_contents_writeable (bounds),
3854 value_as_long (ada_array_bound (arr, i, 0)),
3855 desc_bound_bitpos (bounds_type, i, 0),
3856 desc_bound_bitsize (bounds_type, i, 0));
3857 modify_general_field (value_contents_writeable (bounds),
3858 value_as_long (ada_array_bound (arr, i, 1)),
3859 desc_bound_bitpos (bounds_type, i, 1),
3860 desc_bound_bitsize (bounds_type, i, 1));
3861 }
3862
3863 bounds = ensure_lval (bounds, sp);
3864
3865 modify_general_field (value_contents_writeable (descriptor),
3866 VALUE_ADDRESS (ensure_lval (arr, sp)),
3867 fat_pntr_data_bitpos (desc_type),
3868 fat_pntr_data_bitsize (desc_type));
3869
3870 modify_general_field (value_contents_writeable (descriptor),
3871 VALUE_ADDRESS (bounds),
3872 fat_pntr_bounds_bitpos (desc_type),
3873 fat_pntr_bounds_bitsize (desc_type));
3874
3875 descriptor = ensure_lval (descriptor, sp);
3876
3877 if (TYPE_CODE (type) == TYPE_CODE_PTR)
3878 return value_addr (descriptor);
3879 else
3880 return descriptor;
3881 }
3882 \f
3883 /* Dummy definitions for an experimental caching module that is not
3884 * used in the public sources. */
3885
3886 static int
3887 lookup_cached_symbol (const char *name, domain_enum namespace,
3888 struct symbol **sym, struct block **block)
3889 {
3890 return 0;
3891 }
3892
3893 static void
3894 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
3895 struct block *block)
3896 {
3897 }
3898 \f
3899 /* Symbol Lookup */
3900
3901 /* Return the result of a standard (literal, C-like) lookup of NAME in
3902 given DOMAIN, visible from lexical block BLOCK. */
3903
3904 static struct symbol *
3905 standard_lookup (const char *name, const struct block *block,
3906 domain_enum domain)
3907 {
3908 struct symbol *sym;
3909
3910 if (lookup_cached_symbol (name, domain, &sym, NULL))
3911 return sym;
3912 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
3913 cache_symbol (name, domain, sym, block_found);
3914 return sym;
3915 }
3916
3917
3918 /* Non-zero iff there is at least one non-function/non-enumeral symbol
3919 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
3920 since they contend in overloading in the same way. */
3921 static int
3922 is_nonfunction (struct ada_symbol_info syms[], int n)
3923 {
3924 int i;
3925
3926 for (i = 0; i < n; i += 1)
3927 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
3928 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
3929 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
3930 return 1;
3931
3932 return 0;
3933 }
3934
3935 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
3936 struct types. Otherwise, they may not. */
3937
3938 static int
3939 equiv_types (struct type *type0, struct type *type1)
3940 {
3941 if (type0 == type1)
3942 return 1;
3943 if (type0 == NULL || type1 == NULL
3944 || TYPE_CODE (type0) != TYPE_CODE (type1))
3945 return 0;
3946 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
3947 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
3948 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
3949 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
3950 return 1;
3951
3952 return 0;
3953 }
3954
3955 /* True iff SYM0 represents the same entity as SYM1, or one that is
3956 no more defined than that of SYM1. */
3957
3958 static int
3959 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
3960 {
3961 if (sym0 == sym1)
3962 return 1;
3963 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
3964 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
3965 return 0;
3966
3967 switch (SYMBOL_CLASS (sym0))
3968 {
3969 case LOC_UNDEF:
3970 return 1;
3971 case LOC_TYPEDEF:
3972 {
3973 struct type *type0 = SYMBOL_TYPE (sym0);
3974 struct type *type1 = SYMBOL_TYPE (sym1);
3975 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
3976 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
3977 int len0 = strlen (name0);
3978 return
3979 TYPE_CODE (type0) == TYPE_CODE (type1)
3980 && (equiv_types (type0, type1)
3981 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
3982 && strncmp (name1 + len0, "___XV", 5) == 0));
3983 }
3984 case LOC_CONST:
3985 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
3986 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
3987 default:
3988 return 0;
3989 }
3990 }
3991
3992 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
3993 records in OBSTACKP. Do nothing if SYM is a duplicate. */
3994
3995 static void
3996 add_defn_to_vec (struct obstack *obstackp,
3997 struct symbol *sym,
3998 struct block *block)
3999 {
4000 int i;
4001 size_t tmp;
4002 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4003
4004 /* Do not try to complete stub types, as the debugger is probably
4005 already scanning all symbols matching a certain name at the
4006 time when this function is called. Trying to replace the stub
4007 type by its associated full type will cause us to restart a scan
4008 which may lead to an infinite recursion. Instead, the client
4009 collecting the matching symbols will end up collecting several
4010 matches, with at least one of them complete. It can then filter
4011 out the stub ones if needed. */
4012
4013 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4014 {
4015 if (lesseq_defined_than (sym, prevDefns[i].sym))
4016 return;
4017 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4018 {
4019 prevDefns[i].sym = sym;
4020 prevDefns[i].block = block;
4021 return;
4022 }
4023 }
4024
4025 {
4026 struct ada_symbol_info info;
4027
4028 info.sym = sym;
4029 info.block = block;
4030 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4031 }
4032 }
4033
4034 /* Number of ada_symbol_info structures currently collected in
4035 current vector in *OBSTACKP. */
4036
4037 static int
4038 num_defns_collected (struct obstack *obstackp)
4039 {
4040 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4041 }
4042
4043 /* Vector of ada_symbol_info structures currently collected in current
4044 vector in *OBSTACKP. If FINISH, close off the vector and return
4045 its final address. */
4046
4047 static struct ada_symbol_info *
4048 defns_collected (struct obstack *obstackp, int finish)
4049 {
4050 if (finish)
4051 return obstack_finish (obstackp);
4052 else
4053 return (struct ada_symbol_info *) obstack_base (obstackp);
4054 }
4055
4056 /* Look, in partial_symtab PST, for symbol NAME in given namespace.
4057 Check the global symbols if GLOBAL, the static symbols if not.
4058 Do wild-card match if WILD. */
4059
4060 static struct partial_symbol *
4061 ada_lookup_partial_symbol (struct partial_symtab *pst, const char *name,
4062 int global, domain_enum namespace, int wild)
4063 {
4064 struct partial_symbol **start;
4065 int name_len = strlen (name);
4066 int length = (global ? pst->n_global_syms : pst->n_static_syms);
4067 int i;
4068
4069 if (length == 0)
4070 {
4071 return (NULL);
4072 }
4073
4074 start = (global ?
4075 pst->objfile->global_psymbols.list + pst->globals_offset :
4076 pst->objfile->static_psymbols.list + pst->statics_offset);
4077
4078 if (wild)
4079 {
4080 for (i = 0; i < length; i += 1)
4081 {
4082 struct partial_symbol *psym = start[i];
4083
4084 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4085 SYMBOL_DOMAIN (psym), namespace)
4086 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (psym)))
4087 return psym;
4088 }
4089 return NULL;
4090 }
4091 else
4092 {
4093 if (global)
4094 {
4095 int U;
4096 i = 0;
4097 U = length - 1;
4098 while (U - i > 4)
4099 {
4100 int M = (U + i) >> 1;
4101 struct partial_symbol *psym = start[M];
4102 if (SYMBOL_LINKAGE_NAME (psym)[0] < name[0])
4103 i = M + 1;
4104 else if (SYMBOL_LINKAGE_NAME (psym)[0] > name[0])
4105 U = M - 1;
4106 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), name) < 0)
4107 i = M + 1;
4108 else
4109 U = M;
4110 }
4111 }
4112 else
4113 i = 0;
4114
4115 while (i < length)
4116 {
4117 struct partial_symbol *psym = start[i];
4118
4119 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4120 SYMBOL_DOMAIN (psym), namespace))
4121 {
4122 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym), name_len);
4123
4124 if (cmp < 0)
4125 {
4126 if (global)
4127 break;
4128 }
4129 else if (cmp == 0
4130 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4131 + name_len))
4132 return psym;
4133 }
4134 i += 1;
4135 }
4136
4137 if (global)
4138 {
4139 int U;
4140 i = 0;
4141 U = length - 1;
4142 while (U - i > 4)
4143 {
4144 int M = (U + i) >> 1;
4145 struct partial_symbol *psym = start[M];
4146 if (SYMBOL_LINKAGE_NAME (psym)[0] < '_')
4147 i = M + 1;
4148 else if (SYMBOL_LINKAGE_NAME (psym)[0] > '_')
4149 U = M - 1;
4150 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), "_ada_") < 0)
4151 i = M + 1;
4152 else
4153 U = M;
4154 }
4155 }
4156 else
4157 i = 0;
4158
4159 while (i < length)
4160 {
4161 struct partial_symbol *psym = start[i];
4162
4163 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4164 SYMBOL_DOMAIN (psym), namespace))
4165 {
4166 int cmp;
4167
4168 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (psym)[0];
4169 if (cmp == 0)
4170 {
4171 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (psym), 5);
4172 if (cmp == 0)
4173 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym) + 5,
4174 name_len);
4175 }
4176
4177 if (cmp < 0)
4178 {
4179 if (global)
4180 break;
4181 }
4182 else if (cmp == 0
4183 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4184 + name_len + 5))
4185 return psym;
4186 }
4187 i += 1;
4188 }
4189 }
4190 return NULL;
4191 }
4192
4193 /* Find a symbol table containing symbol SYM or NULL if none. */
4194
4195 static struct symtab *
4196 symtab_for_sym (struct symbol *sym)
4197 {
4198 struct symtab *s;
4199 struct objfile *objfile;
4200 struct block *b;
4201 struct symbol *tmp_sym;
4202 struct dict_iterator iter;
4203 int j;
4204
4205 ALL_PRIMARY_SYMTABS (objfile, s)
4206 {
4207 switch (SYMBOL_CLASS (sym))
4208 {
4209 case LOC_CONST:
4210 case LOC_STATIC:
4211 case LOC_TYPEDEF:
4212 case LOC_REGISTER:
4213 case LOC_LABEL:
4214 case LOC_BLOCK:
4215 case LOC_CONST_BYTES:
4216 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4217 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4218 return s;
4219 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4220 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4221 return s;
4222 break;
4223 default:
4224 break;
4225 }
4226 switch (SYMBOL_CLASS (sym))
4227 {
4228 case LOC_REGISTER:
4229 case LOC_ARG:
4230 case LOC_REF_ARG:
4231 case LOC_REGPARM_ADDR:
4232 case LOC_LOCAL:
4233 case LOC_TYPEDEF:
4234 case LOC_COMPUTED:
4235 for (j = FIRST_LOCAL_BLOCK;
4236 j < BLOCKVECTOR_NBLOCKS (BLOCKVECTOR (s)); j += 1)
4237 {
4238 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), j);
4239 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4240 return s;
4241 }
4242 break;
4243 default:
4244 break;
4245 }
4246 }
4247 return NULL;
4248 }
4249
4250 /* Return a minimal symbol matching NAME according to Ada decoding
4251 rules. Returns NULL if there is no such minimal symbol. Names
4252 prefixed with "standard__" are handled specially: "standard__" is
4253 first stripped off, and only static and global symbols are searched. */
4254
4255 struct minimal_symbol *
4256 ada_lookup_simple_minsym (const char *name)
4257 {
4258 struct objfile *objfile;
4259 struct minimal_symbol *msymbol;
4260 int wild_match;
4261
4262 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4263 {
4264 name += sizeof ("standard__") - 1;
4265 wild_match = 0;
4266 }
4267 else
4268 wild_match = (strstr (name, "__") == NULL);
4269
4270 ALL_MSYMBOLS (objfile, msymbol)
4271 {
4272 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4273 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4274 return msymbol;
4275 }
4276
4277 return NULL;
4278 }
4279
4280 /* For all subprograms that statically enclose the subprogram of the
4281 selected frame, add symbols matching identifier NAME in DOMAIN
4282 and their blocks to the list of data in OBSTACKP, as for
4283 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4284 wildcard prefix. */
4285
4286 static void
4287 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4288 const char *name, domain_enum namespace,
4289 int wild_match)
4290 {
4291 }
4292
4293 /* True if TYPE is definitely an artificial type supplied to a symbol
4294 for which no debugging information was given in the symbol file. */
4295
4296 static int
4297 is_nondebugging_type (struct type *type)
4298 {
4299 char *name = ada_type_name (type);
4300 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4301 }
4302
4303 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4304 duplicate other symbols in the list (The only case I know of where
4305 this happens is when object files containing stabs-in-ecoff are
4306 linked with files containing ordinary ecoff debugging symbols (or no
4307 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4308 Returns the number of items in the modified list. */
4309
4310 static int
4311 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4312 {
4313 int i, j;
4314
4315 i = 0;
4316 while (i < nsyms)
4317 {
4318 int remove = 0;
4319
4320 /* If two symbols have the same name and one of them is a stub type,
4321 the get rid of the stub. */
4322
4323 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4324 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4325 {
4326 for (j = 0; j < nsyms; j++)
4327 {
4328 if (j != i
4329 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4330 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4331 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4332 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4333 remove = 1;
4334 }
4335 }
4336
4337 /* Two symbols with the same name, same class and same address
4338 should be identical. */
4339
4340 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4341 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4342 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4343 {
4344 for (j = 0; j < nsyms; j += 1)
4345 {
4346 if (i != j
4347 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4348 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4349 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4350 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4351 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4352 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4353 remove = 1;
4354 }
4355 }
4356
4357 if (remove)
4358 {
4359 for (j = i + 1; j < nsyms; j += 1)
4360 syms[j - 1] = syms[j];
4361 nsyms -= 1;
4362 }
4363
4364 i += 1;
4365 }
4366 return nsyms;
4367 }
4368
4369 /* Given a type that corresponds to a renaming entity, use the type name
4370 to extract the scope (package name or function name, fully qualified,
4371 and following the GNAT encoding convention) where this renaming has been
4372 defined. The string returned needs to be deallocated after use. */
4373
4374 static char *
4375 xget_renaming_scope (struct type *renaming_type)
4376 {
4377 /* The renaming types adhere to the following convention:
4378 <scope>__<rename>___<XR extension>.
4379 So, to extract the scope, we search for the "___XR" extension,
4380 and then backtrack until we find the first "__". */
4381
4382 const char *name = type_name_no_tag (renaming_type);
4383 char *suffix = strstr (name, "___XR");
4384 char *last;
4385 int scope_len;
4386 char *scope;
4387
4388 /* Now, backtrack a bit until we find the first "__". Start looking
4389 at suffix - 3, as the <rename> part is at least one character long. */
4390
4391 for (last = suffix - 3; last > name; last--)
4392 if (last[0] == '_' && last[1] == '_')
4393 break;
4394
4395 /* Make a copy of scope and return it. */
4396
4397 scope_len = last - name;
4398 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4399
4400 strncpy (scope, name, scope_len);
4401 scope[scope_len] = '\0';
4402
4403 return scope;
4404 }
4405
4406 /* Return nonzero if NAME corresponds to a package name. */
4407
4408 static int
4409 is_package_name (const char *name)
4410 {
4411 /* Here, We take advantage of the fact that no symbols are generated
4412 for packages, while symbols are generated for each function.
4413 So the condition for NAME represent a package becomes equivalent
4414 to NAME not existing in our list of symbols. There is only one
4415 small complication with library-level functions (see below). */
4416
4417 char *fun_name;
4418
4419 /* If it is a function that has not been defined at library level,
4420 then we should be able to look it up in the symbols. */
4421 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4422 return 0;
4423
4424 /* Library-level function names start with "_ada_". See if function
4425 "_ada_" followed by NAME can be found. */
4426
4427 /* Do a quick check that NAME does not contain "__", since library-level
4428 functions names cannot contain "__" in them. */
4429 if (strstr (name, "__") != NULL)
4430 return 0;
4431
4432 fun_name = xstrprintf ("_ada_%s", name);
4433
4434 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4435 }
4436
4437 /* Return nonzero if SYM corresponds to a renaming entity that is
4438 not visible from FUNCTION_NAME. */
4439
4440 static int
4441 old_renaming_is_invisible (const struct symbol *sym, char *function_name)
4442 {
4443 char *scope;
4444
4445 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4446 return 0;
4447
4448 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4449
4450 make_cleanup (xfree, scope);
4451
4452 /* If the rename has been defined in a package, then it is visible. */
4453 if (is_package_name (scope))
4454 return 0;
4455
4456 /* Check that the rename is in the current function scope by checking
4457 that its name starts with SCOPE. */
4458
4459 /* If the function name starts with "_ada_", it means that it is
4460 a library-level function. Strip this prefix before doing the
4461 comparison, as the encoding for the renaming does not contain
4462 this prefix. */
4463 if (strncmp (function_name, "_ada_", 5) == 0)
4464 function_name += 5;
4465
4466 return (strncmp (function_name, scope, strlen (scope)) != 0);
4467 }
4468
4469 /* Remove entries from SYMS that corresponds to a renaming entity that
4470 is not visible from the function associated with CURRENT_BLOCK or
4471 that is superfluous due to the presence of more specific renaming
4472 information. Places surviving symbols in the initial entries of
4473 SYMS and returns the number of surviving symbols.
4474
4475 Rationale:
4476 First, in cases where an object renaming is implemented as a
4477 reference variable, GNAT may produce both the actual reference
4478 variable and the renaming encoding. In this case, we discard the
4479 latter.
4480
4481 Second, GNAT emits a type following a specified encoding for each renaming
4482 entity. Unfortunately, STABS currently does not support the definition
4483 of types that are local to a given lexical block, so all renamings types
4484 are emitted at library level. As a consequence, if an application
4485 contains two renaming entities using the same name, and a user tries to
4486 print the value of one of these entities, the result of the ada symbol
4487 lookup will also contain the wrong renaming type.
4488
4489 This function partially covers for this limitation by attempting to
4490 remove from the SYMS list renaming symbols that should be visible
4491 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4492 method with the current information available. The implementation
4493 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4494
4495 - When the user tries to print a rename in a function while there
4496 is another rename entity defined in a package: Normally, the
4497 rename in the function has precedence over the rename in the
4498 package, so the latter should be removed from the list. This is
4499 currently not the case.
4500
4501 - This function will incorrectly remove valid renames if
4502 the CURRENT_BLOCK corresponds to a function which symbol name
4503 has been changed by an "Export" pragma. As a consequence,
4504 the user will be unable to print such rename entities. */
4505
4506 static int
4507 remove_irrelevant_renamings (struct ada_symbol_info *syms,
4508 int nsyms, const struct block *current_block)
4509 {
4510 struct symbol *current_function;
4511 char *current_function_name;
4512 int i;
4513 int is_new_style_renaming;
4514
4515 /* If there is both a renaming foo___XR... encoded as a variable and
4516 a simple variable foo in the same block, discard the latter.
4517 First, zero out such symbols, then compress. */
4518 is_new_style_renaming = 0;
4519 for (i = 0; i < nsyms; i += 1)
4520 {
4521 struct symbol *sym = syms[i].sym;
4522 struct block *block = syms[i].block;
4523 const char *name;
4524 const char *suffix;
4525
4526 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4527 continue;
4528 name = SYMBOL_LINKAGE_NAME (sym);
4529 suffix = strstr (name, "___XR");
4530
4531 if (suffix != NULL)
4532 {
4533 int name_len = suffix - name;
4534 int j;
4535 is_new_style_renaming = 1;
4536 for (j = 0; j < nsyms; j += 1)
4537 if (i != j && syms[j].sym != NULL
4538 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4539 name_len) == 0
4540 && block == syms[j].block)
4541 syms[j].sym = NULL;
4542 }
4543 }
4544 if (is_new_style_renaming)
4545 {
4546 int j, k;
4547
4548 for (j = k = 0; j < nsyms; j += 1)
4549 if (syms[j].sym != NULL)
4550 {
4551 syms[k] = syms[j];
4552 k += 1;
4553 }
4554 return k;
4555 }
4556
4557 /* Extract the function name associated to CURRENT_BLOCK.
4558 Abort if unable to do so. */
4559
4560 if (current_block == NULL)
4561 return nsyms;
4562
4563 current_function = block_linkage_function (current_block);
4564 if (current_function == NULL)
4565 return nsyms;
4566
4567 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4568 if (current_function_name == NULL)
4569 return nsyms;
4570
4571 /* Check each of the symbols, and remove it from the list if it is
4572 a type corresponding to a renaming that is out of the scope of
4573 the current block. */
4574
4575 i = 0;
4576 while (i < nsyms)
4577 {
4578 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4579 == ADA_OBJECT_RENAMING
4580 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4581 {
4582 int j;
4583 for (j = i + 1; j < nsyms; j += 1)
4584 syms[j - 1] = syms[j];
4585 nsyms -= 1;
4586 }
4587 else
4588 i += 1;
4589 }
4590
4591 return nsyms;
4592 }
4593
4594 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4595 whose name and domain match NAME and DOMAIN respectively.
4596 If no match was found, then extend the search to "enclosing"
4597 routines (in other words, if we're inside a nested function,
4598 search the symbols defined inside the enclosing functions).
4599
4600 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4601
4602 static void
4603 ada_add_local_symbols (struct obstack *obstackp, const char *name,
4604 struct block *block, domain_enum domain,
4605 int wild_match)
4606 {
4607 int block_depth = 0;
4608
4609 while (block != NULL)
4610 {
4611 block_depth += 1;
4612 ada_add_block_symbols (obstackp, block, name, domain, NULL, wild_match);
4613
4614 /* If we found a non-function match, assume that's the one. */
4615 if (is_nonfunction (defns_collected (obstackp, 0),
4616 num_defns_collected (obstackp)))
4617 return;
4618
4619 block = BLOCK_SUPERBLOCK (block);
4620 }
4621
4622 /* If no luck so far, try to find NAME as a local symbol in some lexically
4623 enclosing subprogram. */
4624 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4625 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match);
4626 }
4627
4628 /* Add to OBSTACKP all non-local symbols whose name and domain match
4629 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
4630 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
4631
4632 static void
4633 ada_add_non_local_symbols (struct obstack *obstackp, const char *name,
4634 domain_enum domain, int global,
4635 int wild_match)
4636 {
4637 struct objfile *objfile;
4638 struct partial_symtab *ps;
4639
4640 ALL_PSYMTABS (objfile, ps)
4641 {
4642 QUIT;
4643 if (ps->readin
4644 || ada_lookup_partial_symbol (ps, name, global, domain, wild_match))
4645 {
4646 struct symtab *s = PSYMTAB_TO_SYMTAB (ps);
4647 const int block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
4648
4649 if (s == NULL || !s->primary)
4650 continue;
4651 ada_add_block_symbols (obstackp,
4652 BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), block_kind),
4653 name, domain, objfile, wild_match);
4654 }
4655 }
4656 }
4657
4658 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4659 scope and in global scopes, returning the number of matches. Sets
4660 *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4661 indicating the symbols found and the blocks and symbol tables (if
4662 any) in which they were found. This vector are transient---good only to
4663 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4664 symbol match within the nest of blocks whose innermost member is BLOCK0,
4665 is the one match returned (no other matches in that or
4666 enclosing blocks is returned). If there are any matches in or
4667 surrounding BLOCK0, then these alone are returned. Otherwise, the
4668 search extends to global and file-scope (static) symbol tables.
4669 Names prefixed with "standard__" are handled specially: "standard__"
4670 is first stripped off, and only static and global symbols are searched. */
4671
4672 int
4673 ada_lookup_symbol_list (const char *name0, const struct block *block0,
4674 domain_enum namespace,
4675 struct ada_symbol_info **results)
4676 {
4677 struct symbol *sym;
4678 struct block *block;
4679 const char *name;
4680 int wild_match;
4681 int cacheIfUnique;
4682 int ndefns;
4683
4684 obstack_free (&symbol_list_obstack, NULL);
4685 obstack_init (&symbol_list_obstack);
4686
4687 cacheIfUnique = 0;
4688
4689 /* Search specified block and its superiors. */
4690
4691 wild_match = (strstr (name0, "__") == NULL);
4692 name = name0;
4693 block = (struct block *) block0; /* FIXME: No cast ought to be
4694 needed, but adding const will
4695 have a cascade effect. */
4696
4697 /* Special case: If the user specifies a symbol name inside package
4698 Standard, do a non-wild matching of the symbol name without
4699 the "standard__" prefix. This was primarily introduced in order
4700 to allow the user to specifically access the standard exceptions
4701 using, for instance, Standard.Constraint_Error when Constraint_Error
4702 is ambiguous (due to the user defining its own Constraint_Error
4703 entity inside its program). */
4704 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4705 {
4706 wild_match = 0;
4707 block = NULL;
4708 name = name0 + sizeof ("standard__") - 1;
4709 }
4710
4711 /* Check the non-global symbols. If we have ANY match, then we're done. */
4712
4713 ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
4714 wild_match);
4715 if (num_defns_collected (&symbol_list_obstack) > 0)
4716 goto done;
4717
4718 /* No non-global symbols found. Check our cache to see if we have
4719 already performed this search before. If we have, then return
4720 the same result. */
4721
4722 cacheIfUnique = 1;
4723 if (lookup_cached_symbol (name0, namespace, &sym, &block))
4724 {
4725 if (sym != NULL)
4726 add_defn_to_vec (&symbol_list_obstack, sym, block);
4727 goto done;
4728 }
4729
4730 /* Search symbols from all global blocks. */
4731
4732 ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 1,
4733 wild_match);
4734
4735 /* Now add symbols from all per-file blocks if we've gotten no hits
4736 (not strictly correct, but perhaps better than an error). */
4737
4738 if (num_defns_collected (&symbol_list_obstack) == 0)
4739 ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 0,
4740 wild_match);
4741
4742 done:
4743 ndefns = num_defns_collected (&symbol_list_obstack);
4744 *results = defns_collected (&symbol_list_obstack, 1);
4745
4746 ndefns = remove_extra_symbols (*results, ndefns);
4747
4748 if (ndefns == 0)
4749 cache_symbol (name0, namespace, NULL, NULL);
4750
4751 if (ndefns == 1 && cacheIfUnique)
4752 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
4753
4754 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
4755
4756 return ndefns;
4757 }
4758
4759 struct symbol *
4760 ada_lookup_encoded_symbol (const char *name, const struct block *block0,
4761 domain_enum namespace, struct block **block_found)
4762 {
4763 struct ada_symbol_info *candidates;
4764 int n_candidates;
4765
4766 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates);
4767
4768 if (n_candidates == 0)
4769 return NULL;
4770
4771 if (block_found != NULL)
4772 *block_found = candidates[0].block;
4773
4774 return fixup_symbol_section (candidates[0].sym, NULL);
4775 }
4776
4777 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4778 scope and in global scopes, or NULL if none. NAME is folded and
4779 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4780 choosing the first symbol if there are multiple choices.
4781 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4782 table in which the symbol was found (in both cases, these
4783 assignments occur only if the pointers are non-null). */
4784 struct symbol *
4785 ada_lookup_symbol (const char *name, const struct block *block0,
4786 domain_enum namespace, int *is_a_field_of_this)
4787 {
4788 if (is_a_field_of_this != NULL)
4789 *is_a_field_of_this = 0;
4790
4791 return
4792 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
4793 block0, namespace, NULL);
4794 }
4795
4796 static struct symbol *
4797 ada_lookup_symbol_nonlocal (const char *name,
4798 const char *linkage_name,
4799 const struct block *block,
4800 const domain_enum domain)
4801 {
4802 if (linkage_name == NULL)
4803 linkage_name = name;
4804 return ada_lookup_symbol (linkage_name, block_static_block (block), domain,
4805 NULL);
4806 }
4807
4808
4809 /* True iff STR is a possible encoded suffix of a normal Ada name
4810 that is to be ignored for matching purposes. Suffixes of parallel
4811 names (e.g., XVE) are not included here. Currently, the possible suffixes
4812 are given by any of the regular expressions:
4813
4814 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
4815 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4816 _E[0-9]+[bs]$ [protected object entry suffixes]
4817 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
4818
4819 Also, any leading "__[0-9]+" sequence is skipped before the suffix
4820 match is performed. This sequence is used to differentiate homonyms,
4821 is an optional part of a valid name suffix. */
4822
4823 static int
4824 is_name_suffix (const char *str)
4825 {
4826 int k;
4827 const char *matching;
4828 const int len = strlen (str);
4829
4830 /* Skip optional leading __[0-9]+. */
4831
4832 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4833 {
4834 str += 3;
4835 while (isdigit (str[0]))
4836 str += 1;
4837 }
4838
4839 /* [.$][0-9]+ */
4840
4841 if (str[0] == '.' || str[0] == '$')
4842 {
4843 matching = str + 1;
4844 while (isdigit (matching[0]))
4845 matching += 1;
4846 if (matching[0] == '\0')
4847 return 1;
4848 }
4849
4850 /* ___[0-9]+ */
4851
4852 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
4853 {
4854 matching = str + 3;
4855 while (isdigit (matching[0]))
4856 matching += 1;
4857 if (matching[0] == '\0')
4858 return 1;
4859 }
4860
4861 #if 0
4862 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
4863 with a N at the end. Unfortunately, the compiler uses the same
4864 convention for other internal types it creates. So treating
4865 all entity names that end with an "N" as a name suffix causes
4866 some regressions. For instance, consider the case of an enumerated
4867 type. To support the 'Image attribute, it creates an array whose
4868 name ends with N.
4869 Having a single character like this as a suffix carrying some
4870 information is a bit risky. Perhaps we should change the encoding
4871 to be something like "_N" instead. In the meantime, do not do
4872 the following check. */
4873 /* Protected Object Subprograms */
4874 if (len == 1 && str [0] == 'N')
4875 return 1;
4876 #endif
4877
4878 /* _E[0-9]+[bs]$ */
4879 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
4880 {
4881 matching = str + 3;
4882 while (isdigit (matching[0]))
4883 matching += 1;
4884 if ((matching[0] == 'b' || matching[0] == 's')
4885 && matching [1] == '\0')
4886 return 1;
4887 }
4888
4889 /* ??? We should not modify STR directly, as we are doing below. This
4890 is fine in this case, but may become problematic later if we find
4891 that this alternative did not work, and want to try matching
4892 another one from the begining of STR. Since we modified it, we
4893 won't be able to find the begining of the string anymore! */
4894 if (str[0] == 'X')
4895 {
4896 str += 1;
4897 while (str[0] != '_' && str[0] != '\0')
4898 {
4899 if (str[0] != 'n' && str[0] != 'b')
4900 return 0;
4901 str += 1;
4902 }
4903 }
4904
4905 if (str[0] == '\000')
4906 return 1;
4907
4908 if (str[0] == '_')
4909 {
4910 if (str[1] != '_' || str[2] == '\000')
4911 return 0;
4912 if (str[2] == '_')
4913 {
4914 if (strcmp (str + 3, "JM") == 0)
4915 return 1;
4916 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
4917 the LJM suffix in favor of the JM one. But we will
4918 still accept LJM as a valid suffix for a reasonable
4919 amount of time, just to allow ourselves to debug programs
4920 compiled using an older version of GNAT. */
4921 if (strcmp (str + 3, "LJM") == 0)
4922 return 1;
4923 if (str[3] != 'X')
4924 return 0;
4925 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
4926 || str[4] == 'U' || str[4] == 'P')
4927 return 1;
4928 if (str[4] == 'R' && str[5] != 'T')
4929 return 1;
4930 return 0;
4931 }
4932 if (!isdigit (str[2]))
4933 return 0;
4934 for (k = 3; str[k] != '\0'; k += 1)
4935 if (!isdigit (str[k]) && str[k] != '_')
4936 return 0;
4937 return 1;
4938 }
4939 if (str[0] == '$' && isdigit (str[1]))
4940 {
4941 for (k = 2; str[k] != '\0'; k += 1)
4942 if (!isdigit (str[k]) && str[k] != '_')
4943 return 0;
4944 return 1;
4945 }
4946 return 0;
4947 }
4948
4949 /* Return non-zero if the string starting at NAME and ending before
4950 NAME_END contains no capital letters. */
4951
4952 static int
4953 is_valid_name_for_wild_match (const char *name0)
4954 {
4955 const char *decoded_name = ada_decode (name0);
4956 int i;
4957
4958 /* If the decoded name starts with an angle bracket, it means that
4959 NAME0 does not follow the GNAT encoding format. It should then
4960 not be allowed as a possible wild match. */
4961 if (decoded_name[0] == '<')
4962 return 0;
4963
4964 for (i=0; decoded_name[i] != '\0'; i++)
4965 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
4966 return 0;
4967
4968 return 1;
4969 }
4970
4971 /* True if NAME represents a name of the form A1.A2....An, n>=1 and
4972 PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores
4973 informational suffixes of NAME (i.e., for which is_name_suffix is
4974 true). */
4975
4976 static int
4977 wild_match (const char *patn0, int patn_len, const char *name0)
4978 {
4979 char* match;
4980 const char* start;
4981 start = name0;
4982 while (1)
4983 {
4984 match = strstr (start, patn0);
4985 if (match == NULL)
4986 return 0;
4987 if ((match == name0
4988 || match[-1] == '.'
4989 || (match > name0 + 1 && match[-1] == '_' && match[-2] == '_')
4990 || (match == name0 + 5 && strncmp ("_ada_", name0, 5) == 0))
4991 && is_name_suffix (match + patn_len))
4992 return (match == name0 || is_valid_name_for_wild_match (name0));
4993 start = match + 1;
4994 }
4995 }
4996
4997
4998 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
4999 vector *defn_symbols, updating the list of symbols in OBSTACKP
5000 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5001 OBJFILE is the section containing BLOCK.
5002 SYMTAB is recorded with each symbol added. */
5003
5004 static void
5005 ada_add_block_symbols (struct obstack *obstackp,
5006 struct block *block, const char *name,
5007 domain_enum domain, struct objfile *objfile,
5008 int wild)
5009 {
5010 struct dict_iterator iter;
5011 int name_len = strlen (name);
5012 /* A matching argument symbol, if any. */
5013 struct symbol *arg_sym;
5014 /* Set true when we find a matching non-argument symbol. */
5015 int found_sym;
5016 struct symbol *sym;
5017
5018 arg_sym = NULL;
5019 found_sym = 0;
5020 if (wild)
5021 {
5022 struct symbol *sym;
5023 ALL_BLOCK_SYMBOLS (block, iter, sym)
5024 {
5025 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5026 SYMBOL_DOMAIN (sym), domain)
5027 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (sym)))
5028 {
5029 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5030 continue;
5031 else if (SYMBOL_IS_ARGUMENT (sym))
5032 arg_sym = sym;
5033 else
5034 {
5035 found_sym = 1;
5036 add_defn_to_vec (obstackp,
5037 fixup_symbol_section (sym, objfile),
5038 block);
5039 }
5040 }
5041 }
5042 }
5043 else
5044 {
5045 ALL_BLOCK_SYMBOLS (block, iter, sym)
5046 {
5047 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5048 SYMBOL_DOMAIN (sym), domain))
5049 {
5050 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym), name_len);
5051 if (cmp == 0
5052 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len))
5053 {
5054 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5055 {
5056 if (SYMBOL_IS_ARGUMENT (sym))
5057 arg_sym = sym;
5058 else
5059 {
5060 found_sym = 1;
5061 add_defn_to_vec (obstackp,
5062 fixup_symbol_section (sym, objfile),
5063 block);
5064 }
5065 }
5066 }
5067 }
5068 }
5069 }
5070
5071 if (!found_sym && arg_sym != NULL)
5072 {
5073 add_defn_to_vec (obstackp,
5074 fixup_symbol_section (arg_sym, objfile),
5075 block);
5076 }
5077
5078 if (!wild)
5079 {
5080 arg_sym = NULL;
5081 found_sym = 0;
5082
5083 ALL_BLOCK_SYMBOLS (block, iter, sym)
5084 {
5085 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5086 SYMBOL_DOMAIN (sym), domain))
5087 {
5088 int cmp;
5089
5090 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5091 if (cmp == 0)
5092 {
5093 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5094 if (cmp == 0)
5095 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5096 name_len);
5097 }
5098
5099 if (cmp == 0
5100 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5101 {
5102 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5103 {
5104 if (SYMBOL_IS_ARGUMENT (sym))
5105 arg_sym = sym;
5106 else
5107 {
5108 found_sym = 1;
5109 add_defn_to_vec (obstackp,
5110 fixup_symbol_section (sym, objfile),
5111 block);
5112 }
5113 }
5114 }
5115 }
5116 }
5117
5118 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5119 They aren't parameters, right? */
5120 if (!found_sym && arg_sym != NULL)
5121 {
5122 add_defn_to_vec (obstackp,
5123 fixup_symbol_section (arg_sym, objfile),
5124 block);
5125 }
5126 }
5127 }
5128 \f
5129
5130 /* Symbol Completion */
5131
5132 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
5133 name in a form that's appropriate for the completion. The result
5134 does not need to be deallocated, but is only good until the next call.
5135
5136 TEXT_LEN is equal to the length of TEXT.
5137 Perform a wild match if WILD_MATCH is set.
5138 ENCODED should be set if TEXT represents the start of a symbol name
5139 in its encoded form. */
5140
5141 static const char *
5142 symbol_completion_match (const char *sym_name,
5143 const char *text, int text_len,
5144 int wild_match, int encoded)
5145 {
5146 char *result;
5147 const int verbatim_match = (text[0] == '<');
5148 int match = 0;
5149
5150 if (verbatim_match)
5151 {
5152 /* Strip the leading angle bracket. */
5153 text = text + 1;
5154 text_len--;
5155 }
5156
5157 /* First, test against the fully qualified name of the symbol. */
5158
5159 if (strncmp (sym_name, text, text_len) == 0)
5160 match = 1;
5161
5162 if (match && !encoded)
5163 {
5164 /* One needed check before declaring a positive match is to verify
5165 that iff we are doing a verbatim match, the decoded version
5166 of the symbol name starts with '<'. Otherwise, this symbol name
5167 is not a suitable completion. */
5168 const char *sym_name_copy = sym_name;
5169 int has_angle_bracket;
5170
5171 sym_name = ada_decode (sym_name);
5172 has_angle_bracket = (sym_name[0] == '<');
5173 match = (has_angle_bracket == verbatim_match);
5174 sym_name = sym_name_copy;
5175 }
5176
5177 if (match && !verbatim_match)
5178 {
5179 /* When doing non-verbatim match, another check that needs to
5180 be done is to verify that the potentially matching symbol name
5181 does not include capital letters, because the ada-mode would
5182 not be able to understand these symbol names without the
5183 angle bracket notation. */
5184 const char *tmp;
5185
5186 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5187 if (*tmp != '\0')
5188 match = 0;
5189 }
5190
5191 /* Second: Try wild matching... */
5192
5193 if (!match && wild_match)
5194 {
5195 /* Since we are doing wild matching, this means that TEXT
5196 may represent an unqualified symbol name. We therefore must
5197 also compare TEXT against the unqualified name of the symbol. */
5198 sym_name = ada_unqualified_name (ada_decode (sym_name));
5199
5200 if (strncmp (sym_name, text, text_len) == 0)
5201 match = 1;
5202 }
5203
5204 /* Finally: If we found a mach, prepare the result to return. */
5205
5206 if (!match)
5207 return NULL;
5208
5209 if (verbatim_match)
5210 sym_name = add_angle_brackets (sym_name);
5211
5212 if (!encoded)
5213 sym_name = ada_decode (sym_name);
5214
5215 return sym_name;
5216 }
5217
5218 typedef char *char_ptr;
5219 DEF_VEC_P (char_ptr);
5220
5221 /* A companion function to ada_make_symbol_completion_list().
5222 Check if SYM_NAME represents a symbol which name would be suitable
5223 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5224 it is appended at the end of the given string vector SV.
5225
5226 ORIG_TEXT is the string original string from the user command
5227 that needs to be completed. WORD is the entire command on which
5228 completion should be performed. These two parameters are used to
5229 determine which part of the symbol name should be added to the
5230 completion vector.
5231 if WILD_MATCH is set, then wild matching is performed.
5232 ENCODED should be set if TEXT represents a symbol name in its
5233 encoded formed (in which case the completion should also be
5234 encoded). */
5235
5236 static void
5237 symbol_completion_add (VEC(char_ptr) **sv,
5238 const char *sym_name,
5239 const char *text, int text_len,
5240 const char *orig_text, const char *word,
5241 int wild_match, int encoded)
5242 {
5243 const char *match = symbol_completion_match (sym_name, text, text_len,
5244 wild_match, encoded);
5245 char *completion;
5246
5247 if (match == NULL)
5248 return;
5249
5250 /* We found a match, so add the appropriate completion to the given
5251 string vector. */
5252
5253 if (word == orig_text)
5254 {
5255 completion = xmalloc (strlen (match) + 5);
5256 strcpy (completion, match);
5257 }
5258 else if (word > orig_text)
5259 {
5260 /* Return some portion of sym_name. */
5261 completion = xmalloc (strlen (match) + 5);
5262 strcpy (completion, match + (word - orig_text));
5263 }
5264 else
5265 {
5266 /* Return some of ORIG_TEXT plus sym_name. */
5267 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5268 strncpy (completion, word, orig_text - word);
5269 completion[orig_text - word] = '\0';
5270 strcat (completion, match);
5271 }
5272
5273 VEC_safe_push (char_ptr, *sv, completion);
5274 }
5275
5276 /* Return a list of possible symbol names completing TEXT0. The list
5277 is NULL terminated. WORD is the entire command on which completion
5278 is made. */
5279
5280 static char **
5281 ada_make_symbol_completion_list (char *text0, char *word)
5282 {
5283 char *text;
5284 int text_len;
5285 int wild_match;
5286 int encoded;
5287 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
5288 struct symbol *sym;
5289 struct symtab *s;
5290 struct partial_symtab *ps;
5291 struct minimal_symbol *msymbol;
5292 struct objfile *objfile;
5293 struct block *b, *surrounding_static_block = 0;
5294 int i;
5295 struct dict_iterator iter;
5296
5297 if (text0[0] == '<')
5298 {
5299 text = xstrdup (text0);
5300 make_cleanup (xfree, text);
5301 text_len = strlen (text);
5302 wild_match = 0;
5303 encoded = 1;
5304 }
5305 else
5306 {
5307 text = xstrdup (ada_encode (text0));
5308 make_cleanup (xfree, text);
5309 text_len = strlen (text);
5310 for (i = 0; i < text_len; i++)
5311 text[i] = tolower (text[i]);
5312
5313 encoded = (strstr (text0, "__") != NULL);
5314 /* If the name contains a ".", then the user is entering a fully
5315 qualified entity name, and the match must not be done in wild
5316 mode. Similarly, if the user wants to complete what looks like
5317 an encoded name, the match must not be done in wild mode. */
5318 wild_match = (strchr (text0, '.') == NULL && !encoded);
5319 }
5320
5321 /* First, look at the partial symtab symbols. */
5322 ALL_PSYMTABS (objfile, ps)
5323 {
5324 struct partial_symbol **psym;
5325
5326 /* If the psymtab's been read in we'll get it when we search
5327 through the blockvector. */
5328 if (ps->readin)
5329 continue;
5330
5331 for (psym = objfile->global_psymbols.list + ps->globals_offset;
5332 psym < (objfile->global_psymbols.list + ps->globals_offset
5333 + ps->n_global_syms); psym++)
5334 {
5335 QUIT;
5336 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym),
5337 text, text_len, text0, word,
5338 wild_match, encoded);
5339 }
5340
5341 for (psym = objfile->static_psymbols.list + ps->statics_offset;
5342 psym < (objfile->static_psymbols.list + ps->statics_offset
5343 + ps->n_static_syms); psym++)
5344 {
5345 QUIT;
5346 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym),
5347 text, text_len, text0, word,
5348 wild_match, encoded);
5349 }
5350 }
5351
5352 /* At this point scan through the misc symbol vectors and add each
5353 symbol you find to the list. Eventually we want to ignore
5354 anything that isn't a text symbol (everything else will be
5355 handled by the psymtab code above). */
5356
5357 ALL_MSYMBOLS (objfile, msymbol)
5358 {
5359 QUIT;
5360 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
5361 text, text_len, text0, word, wild_match, encoded);
5362 }
5363
5364 /* Search upwards from currently selected frame (so that we can
5365 complete on local vars. */
5366
5367 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5368 {
5369 if (!BLOCK_SUPERBLOCK (b))
5370 surrounding_static_block = b; /* For elmin of dups */
5371
5372 ALL_BLOCK_SYMBOLS (b, iter, sym)
5373 {
5374 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5375 text, text_len, text0, word,
5376 wild_match, encoded);
5377 }
5378 }
5379
5380 /* Go through the symtabs and check the externs and statics for
5381 symbols which match. */
5382
5383 ALL_SYMTABS (objfile, s)
5384 {
5385 QUIT;
5386 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5387 ALL_BLOCK_SYMBOLS (b, iter, sym)
5388 {
5389 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5390 text, text_len, text0, word,
5391 wild_match, encoded);
5392 }
5393 }
5394
5395 ALL_SYMTABS (objfile, s)
5396 {
5397 QUIT;
5398 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5399 /* Don't do this block twice. */
5400 if (b == surrounding_static_block)
5401 continue;
5402 ALL_BLOCK_SYMBOLS (b, iter, sym)
5403 {
5404 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5405 text, text_len, text0, word,
5406 wild_match, encoded);
5407 }
5408 }
5409
5410 /* Append the closing NULL entry. */
5411 VEC_safe_push (char_ptr, completions, NULL);
5412
5413 /* Make a copy of the COMPLETIONS VEC before we free it, and then
5414 return the copy. It's unfortunate that we have to make a copy
5415 of an array that we're about to destroy, but there is nothing much
5416 we can do about it. Fortunately, it's typically not a very large
5417 array. */
5418 {
5419 const size_t completions_size =
5420 VEC_length (char_ptr, completions) * sizeof (char *);
5421 char **result = malloc (completions_size);
5422
5423 memcpy (result, VEC_address (char_ptr, completions), completions_size);
5424
5425 VEC_free (char_ptr, completions);
5426 return result;
5427 }
5428 }
5429
5430 /* Field Access */
5431
5432 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5433 for tagged types. */
5434
5435 static int
5436 ada_is_dispatch_table_ptr_type (struct type *type)
5437 {
5438 char *name;
5439
5440 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5441 return 0;
5442
5443 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5444 if (name == NULL)
5445 return 0;
5446
5447 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5448 }
5449
5450 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5451 to be invisible to users. */
5452
5453 int
5454 ada_is_ignored_field (struct type *type, int field_num)
5455 {
5456 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5457 return 1;
5458
5459 /* Check the name of that field. */
5460 {
5461 const char *name = TYPE_FIELD_NAME (type, field_num);
5462
5463 /* Anonymous field names should not be printed.
5464 brobecker/2007-02-20: I don't think this can actually happen
5465 but we don't want to print the value of annonymous fields anyway. */
5466 if (name == NULL)
5467 return 1;
5468
5469 /* A field named "_parent" is internally generated by GNAT for
5470 tagged types, and should not be printed either. */
5471 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5472 return 1;
5473 }
5474
5475 /* If this is the dispatch table of a tagged type, then ignore. */
5476 if (ada_is_tagged_type (type, 1)
5477 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5478 return 1;
5479
5480 /* Not a special field, so it should not be ignored. */
5481 return 0;
5482 }
5483
5484 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5485 pointer or reference type whose ultimate target has a tag field. */
5486
5487 int
5488 ada_is_tagged_type (struct type *type, int refok)
5489 {
5490 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5491 }
5492
5493 /* True iff TYPE represents the type of X'Tag */
5494
5495 int
5496 ada_is_tag_type (struct type *type)
5497 {
5498 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5499 return 0;
5500 else
5501 {
5502 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5503 return (name != NULL
5504 && strcmp (name, "ada__tags__dispatch_table") == 0);
5505 }
5506 }
5507
5508 /* The type of the tag on VAL. */
5509
5510 struct type *
5511 ada_tag_type (struct value *val)
5512 {
5513 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
5514 }
5515
5516 /* The value of the tag on VAL. */
5517
5518 struct value *
5519 ada_value_tag (struct value *val)
5520 {
5521 return ada_value_struct_elt (val, "_tag", 0);
5522 }
5523
5524 /* The value of the tag on the object of type TYPE whose contents are
5525 saved at VALADDR, if it is non-null, or is at memory address
5526 ADDRESS. */
5527
5528 static struct value *
5529 value_tag_from_contents_and_address (struct type *type,
5530 const gdb_byte *valaddr,
5531 CORE_ADDR address)
5532 {
5533 int tag_byte_offset, dummy1, dummy2;
5534 struct type *tag_type;
5535 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
5536 NULL, NULL, NULL))
5537 {
5538 const gdb_byte *valaddr1 = ((valaddr == NULL)
5539 ? NULL
5540 : valaddr + tag_byte_offset);
5541 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
5542
5543 return value_from_contents_and_address (tag_type, valaddr1, address1);
5544 }
5545 return NULL;
5546 }
5547
5548 static struct type *
5549 type_from_tag (struct value *tag)
5550 {
5551 const char *type_name = ada_tag_name (tag);
5552 if (type_name != NULL)
5553 return ada_find_any_type (ada_encode (type_name));
5554 return NULL;
5555 }
5556
5557 struct tag_args
5558 {
5559 struct value *tag;
5560 char *name;
5561 };
5562
5563
5564 static int ada_tag_name_1 (void *);
5565 static int ada_tag_name_2 (struct tag_args *);
5566
5567 /* Wrapper function used by ada_tag_name. Given a struct tag_args*
5568 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5569 The value stored in ARGS->name is valid until the next call to
5570 ada_tag_name_1. */
5571
5572 static int
5573 ada_tag_name_1 (void *args0)
5574 {
5575 struct tag_args *args = (struct tag_args *) args0;
5576 static char name[1024];
5577 char *p;
5578 struct value *val;
5579 args->name = NULL;
5580 val = ada_value_struct_elt (args->tag, "tsd", 1);
5581 if (val == NULL)
5582 return ada_tag_name_2 (args);
5583 val = ada_value_struct_elt (val, "expanded_name", 1);
5584 if (val == NULL)
5585 return 0;
5586 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5587 for (p = name; *p != '\0'; p += 1)
5588 if (isalpha (*p))
5589 *p = tolower (*p);
5590 args->name = name;
5591 return 0;
5592 }
5593
5594 /* Utility function for ada_tag_name_1 that tries the second
5595 representation for the dispatch table (in which there is no
5596 explicit 'tsd' field in the referent of the tag pointer, and instead
5597 the tsd pointer is stored just before the dispatch table. */
5598
5599 static int
5600 ada_tag_name_2 (struct tag_args *args)
5601 {
5602 struct type *info_type;
5603 static char name[1024];
5604 char *p;
5605 struct value *val, *valp;
5606
5607 args->name = NULL;
5608 info_type = ada_find_any_type ("ada__tags__type_specific_data");
5609 if (info_type == NULL)
5610 return 0;
5611 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5612 valp = value_cast (info_type, args->tag);
5613 if (valp == NULL)
5614 return 0;
5615 val = value_ind (value_ptradd (valp,
5616 value_from_longest (builtin_type_int8, -1)));
5617 if (val == NULL)
5618 return 0;
5619 val = ada_value_struct_elt (val, "expanded_name", 1);
5620 if (val == NULL)
5621 return 0;
5622 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5623 for (p = name; *p != '\0'; p += 1)
5624 if (isalpha (*p))
5625 *p = tolower (*p);
5626 args->name = name;
5627 return 0;
5628 }
5629
5630 /* The type name of the dynamic type denoted by the 'tag value TAG, as
5631 * a C string. */
5632
5633 const char *
5634 ada_tag_name (struct value *tag)
5635 {
5636 struct tag_args args;
5637 if (!ada_is_tag_type (value_type (tag)))
5638 return NULL;
5639 args.tag = tag;
5640 args.name = NULL;
5641 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5642 return args.name;
5643 }
5644
5645 /* The parent type of TYPE, or NULL if none. */
5646
5647 struct type *
5648 ada_parent_type (struct type *type)
5649 {
5650 int i;
5651
5652 type = ada_check_typedef (type);
5653
5654 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5655 return NULL;
5656
5657 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5658 if (ada_is_parent_field (type, i))
5659 {
5660 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
5661
5662 /* If the _parent field is a pointer, then dereference it. */
5663 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
5664 parent_type = TYPE_TARGET_TYPE (parent_type);
5665 /* If there is a parallel XVS type, get the actual base type. */
5666 parent_type = ada_get_base_type (parent_type);
5667
5668 return ada_check_typedef (parent_type);
5669 }
5670
5671 return NULL;
5672 }
5673
5674 /* True iff field number FIELD_NUM of structure type TYPE contains the
5675 parent-type (inherited) fields of a derived type. Assumes TYPE is
5676 a structure type with at least FIELD_NUM+1 fields. */
5677
5678 int
5679 ada_is_parent_field (struct type *type, int field_num)
5680 {
5681 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5682 return (name != NULL
5683 && (strncmp (name, "PARENT", 6) == 0
5684 || strncmp (name, "_parent", 7) == 0));
5685 }
5686
5687 /* True iff field number FIELD_NUM of structure type TYPE is a
5688 transparent wrapper field (which should be silently traversed when doing
5689 field selection and flattened when printing). Assumes TYPE is a
5690 structure type with at least FIELD_NUM+1 fields. Such fields are always
5691 structures. */
5692
5693 int
5694 ada_is_wrapper_field (struct type *type, int field_num)
5695 {
5696 const char *name = TYPE_FIELD_NAME (type, field_num);
5697 return (name != NULL
5698 && (strncmp (name, "PARENT", 6) == 0
5699 || strcmp (name, "REP") == 0
5700 || strncmp (name, "_parent", 7) == 0
5701 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
5702 }
5703
5704 /* True iff field number FIELD_NUM of structure or union type TYPE
5705 is a variant wrapper. Assumes TYPE is a structure type with at least
5706 FIELD_NUM+1 fields. */
5707
5708 int
5709 ada_is_variant_part (struct type *type, int field_num)
5710 {
5711 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5712 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
5713 || (is_dynamic_field (type, field_num)
5714 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5715 == TYPE_CODE_UNION)));
5716 }
5717
5718 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
5719 whose discriminants are contained in the record type OUTER_TYPE,
5720 returns the type of the controlling discriminant for the variant. */
5721
5722 struct type *
5723 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
5724 {
5725 char *name = ada_variant_discrim_name (var_type);
5726 struct type *type =
5727 ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
5728 if (type == NULL)
5729 return builtin_type_int32;
5730 else
5731 return type;
5732 }
5733
5734 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
5735 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
5736 represents a 'when others' clause; otherwise 0. */
5737
5738 int
5739 ada_is_others_clause (struct type *type, int field_num)
5740 {
5741 const char *name = TYPE_FIELD_NAME (type, field_num);
5742 return (name != NULL && name[0] == 'O');
5743 }
5744
5745 /* Assuming that TYPE0 is the type of the variant part of a record,
5746 returns the name of the discriminant controlling the variant.
5747 The value is valid until the next call to ada_variant_discrim_name. */
5748
5749 char *
5750 ada_variant_discrim_name (struct type *type0)
5751 {
5752 static char *result = NULL;
5753 static size_t result_len = 0;
5754 struct type *type;
5755 const char *name;
5756 const char *discrim_end;
5757 const char *discrim_start;
5758
5759 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5760 type = TYPE_TARGET_TYPE (type0);
5761 else
5762 type = type0;
5763
5764 name = ada_type_name (type);
5765
5766 if (name == NULL || name[0] == '\000')
5767 return "";
5768
5769 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
5770 discrim_end -= 1)
5771 {
5772 if (strncmp (discrim_end, "___XVN", 6) == 0)
5773 break;
5774 }
5775 if (discrim_end == name)
5776 return "";
5777
5778 for (discrim_start = discrim_end; discrim_start != name + 3;
5779 discrim_start -= 1)
5780 {
5781 if (discrim_start == name + 1)
5782 return "";
5783 if ((discrim_start > name + 3
5784 && strncmp (discrim_start - 3, "___", 3) == 0)
5785 || discrim_start[-1] == '.')
5786 break;
5787 }
5788
5789 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
5790 strncpy (result, discrim_start, discrim_end - discrim_start);
5791 result[discrim_end - discrim_start] = '\0';
5792 return result;
5793 }
5794
5795 /* Scan STR for a subtype-encoded number, beginning at position K.
5796 Put the position of the character just past the number scanned in
5797 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
5798 Return 1 if there was a valid number at the given position, and 0
5799 otherwise. A "subtype-encoded" number consists of the absolute value
5800 in decimal, followed by the letter 'm' to indicate a negative number.
5801 Assumes 0m does not occur. */
5802
5803 int
5804 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
5805 {
5806 ULONGEST RU;
5807
5808 if (!isdigit (str[k]))
5809 return 0;
5810
5811 /* Do it the hard way so as not to make any assumption about
5812 the relationship of unsigned long (%lu scan format code) and
5813 LONGEST. */
5814 RU = 0;
5815 while (isdigit (str[k]))
5816 {
5817 RU = RU * 10 + (str[k] - '0');
5818 k += 1;
5819 }
5820
5821 if (str[k] == 'm')
5822 {
5823 if (R != NULL)
5824 *R = (-(LONGEST) (RU - 1)) - 1;
5825 k += 1;
5826 }
5827 else if (R != NULL)
5828 *R = (LONGEST) RU;
5829
5830 /* NOTE on the above: Technically, C does not say what the results of
5831 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
5832 number representable as a LONGEST (although either would probably work
5833 in most implementations). When RU>0, the locution in the then branch
5834 above is always equivalent to the negative of RU. */
5835
5836 if (new_k != NULL)
5837 *new_k = k;
5838 return 1;
5839 }
5840
5841 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
5842 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
5843 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
5844
5845 int
5846 ada_in_variant (LONGEST val, struct type *type, int field_num)
5847 {
5848 const char *name = TYPE_FIELD_NAME (type, field_num);
5849 int p;
5850
5851 p = 0;
5852 while (1)
5853 {
5854 switch (name[p])
5855 {
5856 case '\0':
5857 return 0;
5858 case 'S':
5859 {
5860 LONGEST W;
5861 if (!ada_scan_number (name, p + 1, &W, &p))
5862 return 0;
5863 if (val == W)
5864 return 1;
5865 break;
5866 }
5867 case 'R':
5868 {
5869 LONGEST L, U;
5870 if (!ada_scan_number (name, p + 1, &L, &p)
5871 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
5872 return 0;
5873 if (val >= L && val <= U)
5874 return 1;
5875 break;
5876 }
5877 case 'O':
5878 return 1;
5879 default:
5880 return 0;
5881 }
5882 }
5883 }
5884
5885 /* FIXME: Lots of redundancy below. Try to consolidate. */
5886
5887 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
5888 ARG_TYPE, extract and return the value of one of its (non-static)
5889 fields. FIELDNO says which field. Differs from value_primitive_field
5890 only in that it can handle packed values of arbitrary type. */
5891
5892 static struct value *
5893 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
5894 struct type *arg_type)
5895 {
5896 struct type *type;
5897
5898 arg_type = ada_check_typedef (arg_type);
5899 type = TYPE_FIELD_TYPE (arg_type, fieldno);
5900
5901 /* Handle packed fields. */
5902
5903 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
5904 {
5905 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
5906 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
5907
5908 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
5909 offset + bit_pos / 8,
5910 bit_pos % 8, bit_size, type);
5911 }
5912 else
5913 return value_primitive_field (arg1, offset, fieldno, arg_type);
5914 }
5915
5916 /* Find field with name NAME in object of type TYPE. If found,
5917 set the following for each argument that is non-null:
5918 - *FIELD_TYPE_P to the field's type;
5919 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
5920 an object of that type;
5921 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
5922 - *BIT_SIZE_P to its size in bits if the field is packed, and
5923 0 otherwise;
5924 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
5925 fields up to but not including the desired field, or by the total
5926 number of fields if not found. A NULL value of NAME never
5927 matches; the function just counts visible fields in this case.
5928
5929 Returns 1 if found, 0 otherwise. */
5930
5931 static int
5932 find_struct_field (char *name, struct type *type, int offset,
5933 struct type **field_type_p,
5934 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
5935 int *index_p)
5936 {
5937 int i;
5938
5939 type = ada_check_typedef (type);
5940
5941 if (field_type_p != NULL)
5942 *field_type_p = NULL;
5943 if (byte_offset_p != NULL)
5944 *byte_offset_p = 0;
5945 if (bit_offset_p != NULL)
5946 *bit_offset_p = 0;
5947 if (bit_size_p != NULL)
5948 *bit_size_p = 0;
5949
5950 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5951 {
5952 int bit_pos = TYPE_FIELD_BITPOS (type, i);
5953 int fld_offset = offset + bit_pos / 8;
5954 char *t_field_name = TYPE_FIELD_NAME (type, i);
5955
5956 if (t_field_name == NULL)
5957 continue;
5958
5959 else if (name != NULL && field_name_match (t_field_name, name))
5960 {
5961 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5962 if (field_type_p != NULL)
5963 *field_type_p = TYPE_FIELD_TYPE (type, i);
5964 if (byte_offset_p != NULL)
5965 *byte_offset_p = fld_offset;
5966 if (bit_offset_p != NULL)
5967 *bit_offset_p = bit_pos % 8;
5968 if (bit_size_p != NULL)
5969 *bit_size_p = bit_size;
5970 return 1;
5971 }
5972 else if (ada_is_wrapper_field (type, i))
5973 {
5974 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
5975 field_type_p, byte_offset_p, bit_offset_p,
5976 bit_size_p, index_p))
5977 return 1;
5978 }
5979 else if (ada_is_variant_part (type, i))
5980 {
5981 /* PNH: Wait. Do we ever execute this section, or is ARG always of
5982 fixed type?? */
5983 int j;
5984 struct type *field_type
5985 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5986
5987 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
5988 {
5989 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
5990 fld_offset
5991 + TYPE_FIELD_BITPOS (field_type, j) / 8,
5992 field_type_p, byte_offset_p,
5993 bit_offset_p, bit_size_p, index_p))
5994 return 1;
5995 }
5996 }
5997 else if (index_p != NULL)
5998 *index_p += 1;
5999 }
6000 return 0;
6001 }
6002
6003 /* Number of user-visible fields in record type TYPE. */
6004
6005 static int
6006 num_visible_fields (struct type *type)
6007 {
6008 int n;
6009 n = 0;
6010 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6011 return n;
6012 }
6013
6014 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
6015 and search in it assuming it has (class) type TYPE.
6016 If found, return value, else return NULL.
6017
6018 Searches recursively through wrapper fields (e.g., '_parent'). */
6019
6020 static struct value *
6021 ada_search_struct_field (char *name, struct value *arg, int offset,
6022 struct type *type)
6023 {
6024 int i;
6025 type = ada_check_typedef (type);
6026
6027 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6028 {
6029 char *t_field_name = TYPE_FIELD_NAME (type, i);
6030
6031 if (t_field_name == NULL)
6032 continue;
6033
6034 else if (field_name_match (t_field_name, name))
6035 return ada_value_primitive_field (arg, offset, i, type);
6036
6037 else if (ada_is_wrapper_field (type, i))
6038 {
6039 struct value *v = /* Do not let indent join lines here. */
6040 ada_search_struct_field (name, arg,
6041 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6042 TYPE_FIELD_TYPE (type, i));
6043 if (v != NULL)
6044 return v;
6045 }
6046
6047 else if (ada_is_variant_part (type, i))
6048 {
6049 /* PNH: Do we ever get here? See find_struct_field. */
6050 int j;
6051 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6052 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6053
6054 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6055 {
6056 struct value *v = ada_search_struct_field /* Force line break. */
6057 (name, arg,
6058 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6059 TYPE_FIELD_TYPE (field_type, j));
6060 if (v != NULL)
6061 return v;
6062 }
6063 }
6064 }
6065 return NULL;
6066 }
6067
6068 static struct value *ada_index_struct_field_1 (int *, struct value *,
6069 int, struct type *);
6070
6071
6072 /* Return field #INDEX in ARG, where the index is that returned by
6073 * find_struct_field through its INDEX_P argument. Adjust the address
6074 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6075 * If found, return value, else return NULL. */
6076
6077 static struct value *
6078 ada_index_struct_field (int index, struct value *arg, int offset,
6079 struct type *type)
6080 {
6081 return ada_index_struct_field_1 (&index, arg, offset, type);
6082 }
6083
6084
6085 /* Auxiliary function for ada_index_struct_field. Like
6086 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6087 * *INDEX_P. */
6088
6089 static struct value *
6090 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6091 struct type *type)
6092 {
6093 int i;
6094 type = ada_check_typedef (type);
6095
6096 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6097 {
6098 if (TYPE_FIELD_NAME (type, i) == NULL)
6099 continue;
6100 else if (ada_is_wrapper_field (type, i))
6101 {
6102 struct value *v = /* Do not let indent join lines here. */
6103 ada_index_struct_field_1 (index_p, arg,
6104 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6105 TYPE_FIELD_TYPE (type, i));
6106 if (v != NULL)
6107 return v;
6108 }
6109
6110 else if (ada_is_variant_part (type, i))
6111 {
6112 /* PNH: Do we ever get here? See ada_search_struct_field,
6113 find_struct_field. */
6114 error (_("Cannot assign this kind of variant record"));
6115 }
6116 else if (*index_p == 0)
6117 return ada_value_primitive_field (arg, offset, i, type);
6118 else
6119 *index_p -= 1;
6120 }
6121 return NULL;
6122 }
6123
6124 /* Given ARG, a value of type (pointer or reference to a)*
6125 structure/union, extract the component named NAME from the ultimate
6126 target structure/union and return it as a value with its
6127 appropriate type.
6128
6129 The routine searches for NAME among all members of the structure itself
6130 and (recursively) among all members of any wrapper members
6131 (e.g., '_parent').
6132
6133 If NO_ERR, then simply return NULL in case of error, rather than
6134 calling error. */
6135
6136 struct value *
6137 ada_value_struct_elt (struct value *arg, char *name, int no_err)
6138 {
6139 struct type *t, *t1;
6140 struct value *v;
6141
6142 v = NULL;
6143 t1 = t = ada_check_typedef (value_type (arg));
6144 if (TYPE_CODE (t) == TYPE_CODE_REF)
6145 {
6146 t1 = TYPE_TARGET_TYPE (t);
6147 if (t1 == NULL)
6148 goto BadValue;
6149 t1 = ada_check_typedef (t1);
6150 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6151 {
6152 arg = coerce_ref (arg);
6153 t = t1;
6154 }
6155 }
6156
6157 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6158 {
6159 t1 = TYPE_TARGET_TYPE (t);
6160 if (t1 == NULL)
6161 goto BadValue;
6162 t1 = ada_check_typedef (t1);
6163 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6164 {
6165 arg = value_ind (arg);
6166 t = t1;
6167 }
6168 else
6169 break;
6170 }
6171
6172 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
6173 goto BadValue;
6174
6175 if (t1 == t)
6176 v = ada_search_struct_field (name, arg, 0, t);
6177 else
6178 {
6179 int bit_offset, bit_size, byte_offset;
6180 struct type *field_type;
6181 CORE_ADDR address;
6182
6183 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6184 address = value_as_address (arg);
6185 else
6186 address = unpack_pointer (t, value_contents (arg));
6187
6188 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
6189 if (find_struct_field (name, t1, 0,
6190 &field_type, &byte_offset, &bit_offset,
6191 &bit_size, NULL))
6192 {
6193 if (bit_size != 0)
6194 {
6195 if (TYPE_CODE (t) == TYPE_CODE_REF)
6196 arg = ada_coerce_ref (arg);
6197 else
6198 arg = ada_value_ind (arg);
6199 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6200 bit_offset, bit_size,
6201 field_type);
6202 }
6203 else
6204 v = value_at_lazy (field_type, address + byte_offset);
6205 }
6206 }
6207
6208 if (v != NULL || no_err)
6209 return v;
6210 else
6211 error (_("There is no member named %s."), name);
6212
6213 BadValue:
6214 if (no_err)
6215 return NULL;
6216 else
6217 error (_("Attempt to extract a component of a value that is not a record."));
6218 }
6219
6220 /* Given a type TYPE, look up the type of the component of type named NAME.
6221 If DISPP is non-null, add its byte displacement from the beginning of a
6222 structure (pointed to by a value) of type TYPE to *DISPP (does not
6223 work for packed fields).
6224
6225 Matches any field whose name has NAME as a prefix, possibly
6226 followed by "___".
6227
6228 TYPE can be either a struct or union. If REFOK, TYPE may also
6229 be a (pointer or reference)+ to a struct or union, and the
6230 ultimate target type will be searched.
6231
6232 Looks recursively into variant clauses and parent types.
6233
6234 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6235 TYPE is not a type of the right kind. */
6236
6237 static struct type *
6238 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6239 int noerr, int *dispp)
6240 {
6241 int i;
6242
6243 if (name == NULL)
6244 goto BadName;
6245
6246 if (refok && type != NULL)
6247 while (1)
6248 {
6249 type = ada_check_typedef (type);
6250 if (TYPE_CODE (type) != TYPE_CODE_PTR
6251 && TYPE_CODE (type) != TYPE_CODE_REF)
6252 break;
6253 type = TYPE_TARGET_TYPE (type);
6254 }
6255
6256 if (type == NULL
6257 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6258 && TYPE_CODE (type) != TYPE_CODE_UNION))
6259 {
6260 if (noerr)
6261 return NULL;
6262 else
6263 {
6264 target_terminal_ours ();
6265 gdb_flush (gdb_stdout);
6266 if (type == NULL)
6267 error (_("Type (null) is not a structure or union type"));
6268 else
6269 {
6270 /* XXX: type_sprint */
6271 fprintf_unfiltered (gdb_stderr, _("Type "));
6272 type_print (type, "", gdb_stderr, -1);
6273 error (_(" is not a structure or union type"));
6274 }
6275 }
6276 }
6277
6278 type = to_static_fixed_type (type);
6279
6280 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6281 {
6282 char *t_field_name = TYPE_FIELD_NAME (type, i);
6283 struct type *t;
6284 int disp;
6285
6286 if (t_field_name == NULL)
6287 continue;
6288
6289 else if (field_name_match (t_field_name, name))
6290 {
6291 if (dispp != NULL)
6292 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
6293 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6294 }
6295
6296 else if (ada_is_wrapper_field (type, i))
6297 {
6298 disp = 0;
6299 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6300 0, 1, &disp);
6301 if (t != NULL)
6302 {
6303 if (dispp != NULL)
6304 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6305 return t;
6306 }
6307 }
6308
6309 else if (ada_is_variant_part (type, i))
6310 {
6311 int j;
6312 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6313
6314 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6315 {
6316 /* FIXME pnh 2008/01/26: We check for a field that is
6317 NOT wrapped in a struct, since the compiler sometimes
6318 generates these for unchecked variant types. Revisit
6319 if the compiler changes this practice. */
6320 char *v_field_name = TYPE_FIELD_NAME (field_type, j);
6321 disp = 0;
6322 if (v_field_name != NULL
6323 && field_name_match (v_field_name, name))
6324 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6325 else
6326 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
6327 name, 0, 1, &disp);
6328
6329 if (t != NULL)
6330 {
6331 if (dispp != NULL)
6332 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6333 return t;
6334 }
6335 }
6336 }
6337
6338 }
6339
6340 BadName:
6341 if (!noerr)
6342 {
6343 target_terminal_ours ();
6344 gdb_flush (gdb_stdout);
6345 if (name == NULL)
6346 {
6347 /* XXX: type_sprint */
6348 fprintf_unfiltered (gdb_stderr, _("Type "));
6349 type_print (type, "", gdb_stderr, -1);
6350 error (_(" has no component named <null>"));
6351 }
6352 else
6353 {
6354 /* XXX: type_sprint */
6355 fprintf_unfiltered (gdb_stderr, _("Type "));
6356 type_print (type, "", gdb_stderr, -1);
6357 error (_(" has no component named %s"), name);
6358 }
6359 }
6360
6361 return NULL;
6362 }
6363
6364 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6365 within a value of type OUTER_TYPE, return true iff VAR_TYPE
6366 represents an unchecked union (that is, the variant part of a
6367 record that is named in an Unchecked_Union pragma). */
6368
6369 static int
6370 is_unchecked_variant (struct type *var_type, struct type *outer_type)
6371 {
6372 char *discrim_name = ada_variant_discrim_name (var_type);
6373 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
6374 == NULL);
6375 }
6376
6377
6378 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6379 within a value of type OUTER_TYPE that is stored in GDB at
6380 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6381 numbering from 0) is applicable. Returns -1 if none are. */
6382
6383 int
6384 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
6385 const gdb_byte *outer_valaddr)
6386 {
6387 int others_clause;
6388 int i;
6389 char *discrim_name = ada_variant_discrim_name (var_type);
6390 struct value *outer;
6391 struct value *discrim;
6392 LONGEST discrim_val;
6393
6394 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6395 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6396 if (discrim == NULL)
6397 return -1;
6398 discrim_val = value_as_long (discrim);
6399
6400 others_clause = -1;
6401 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6402 {
6403 if (ada_is_others_clause (var_type, i))
6404 others_clause = i;
6405 else if (ada_in_variant (discrim_val, var_type, i))
6406 return i;
6407 }
6408
6409 return others_clause;
6410 }
6411 \f
6412
6413
6414 /* Dynamic-Sized Records */
6415
6416 /* Strategy: The type ostensibly attached to a value with dynamic size
6417 (i.e., a size that is not statically recorded in the debugging
6418 data) does not accurately reflect the size or layout of the value.
6419 Our strategy is to convert these values to values with accurate,
6420 conventional types that are constructed on the fly. */
6421
6422 /* There is a subtle and tricky problem here. In general, we cannot
6423 determine the size of dynamic records without its data. However,
6424 the 'struct value' data structure, which GDB uses to represent
6425 quantities in the inferior process (the target), requires the size
6426 of the type at the time of its allocation in order to reserve space
6427 for GDB's internal copy of the data. That's why the
6428 'to_fixed_xxx_type' routines take (target) addresses as parameters,
6429 rather than struct value*s.
6430
6431 However, GDB's internal history variables ($1, $2, etc.) are
6432 struct value*s containing internal copies of the data that are not, in
6433 general, the same as the data at their corresponding addresses in
6434 the target. Fortunately, the types we give to these values are all
6435 conventional, fixed-size types (as per the strategy described
6436 above), so that we don't usually have to perform the
6437 'to_fixed_xxx_type' conversions to look at their values.
6438 Unfortunately, there is one exception: if one of the internal
6439 history variables is an array whose elements are unconstrained
6440 records, then we will need to create distinct fixed types for each
6441 element selected. */
6442
6443 /* The upshot of all of this is that many routines take a (type, host
6444 address, target address) triple as arguments to represent a value.
6445 The host address, if non-null, is supposed to contain an internal
6446 copy of the relevant data; otherwise, the program is to consult the
6447 target at the target address. */
6448
6449 /* Assuming that VAL0 represents a pointer value, the result of
6450 dereferencing it. Differs from value_ind in its treatment of
6451 dynamic-sized types. */
6452
6453 struct value *
6454 ada_value_ind (struct value *val0)
6455 {
6456 struct value *val = unwrap_value (value_ind (val0));
6457 return ada_to_fixed_value (val);
6458 }
6459
6460 /* The value resulting from dereferencing any "reference to"
6461 qualifiers on VAL0. */
6462
6463 static struct value *
6464 ada_coerce_ref (struct value *val0)
6465 {
6466 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
6467 {
6468 struct value *val = val0;
6469 val = coerce_ref (val);
6470 val = unwrap_value (val);
6471 return ada_to_fixed_value (val);
6472 }
6473 else
6474 return val0;
6475 }
6476
6477 /* Return OFF rounded upward if necessary to a multiple of
6478 ALIGNMENT (a power of 2). */
6479
6480 static unsigned int
6481 align_value (unsigned int off, unsigned int alignment)
6482 {
6483 return (off + alignment - 1) & ~(alignment - 1);
6484 }
6485
6486 /* Return the bit alignment required for field #F of template type TYPE. */
6487
6488 static unsigned int
6489 field_alignment (struct type *type, int f)
6490 {
6491 const char *name = TYPE_FIELD_NAME (type, f);
6492 int len;
6493 int align_offset;
6494
6495 /* The field name should never be null, unless the debugging information
6496 is somehow malformed. In this case, we assume the field does not
6497 require any alignment. */
6498 if (name == NULL)
6499 return 1;
6500
6501 len = strlen (name);
6502
6503 if (!isdigit (name[len - 1]))
6504 return 1;
6505
6506 if (isdigit (name[len - 2]))
6507 align_offset = len - 2;
6508 else
6509 align_offset = len - 1;
6510
6511 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
6512 return TARGET_CHAR_BIT;
6513
6514 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6515 }
6516
6517 /* Find a symbol named NAME. Ignores ambiguity. */
6518
6519 struct symbol *
6520 ada_find_any_symbol (const char *name)
6521 {
6522 struct symbol *sym;
6523
6524 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6525 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6526 return sym;
6527
6528 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6529 return sym;
6530 }
6531
6532 /* Find a type named NAME. Ignores ambiguity. */
6533
6534 struct type *
6535 ada_find_any_type (const char *name)
6536 {
6537 struct symbol *sym = ada_find_any_symbol (name);
6538 struct type *type = NULL;
6539
6540 if (sym != NULL)
6541 type = SYMBOL_TYPE (sym);
6542
6543 if (type == NULL)
6544 type = language_lookup_primitive_type_by_name
6545 (language_def (language_ada), current_gdbarch, name);
6546
6547 return type;
6548 }
6549
6550 /* Given NAME and an associated BLOCK, search all symbols for
6551 NAME suffixed with "___XR", which is the ``renaming'' symbol
6552 associated to NAME. Return this symbol if found, return
6553 NULL otherwise. */
6554
6555 struct symbol *
6556 ada_find_renaming_symbol (const char *name, struct block *block)
6557 {
6558 struct symbol *sym;
6559
6560 sym = find_old_style_renaming_symbol (name, block);
6561
6562 if (sym != NULL)
6563 return sym;
6564
6565 /* Not right yet. FIXME pnh 7/20/2007. */
6566 sym = ada_find_any_symbol (name);
6567 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
6568 return sym;
6569 else
6570 return NULL;
6571 }
6572
6573 static struct symbol *
6574 find_old_style_renaming_symbol (const char *name, struct block *block)
6575 {
6576 const struct symbol *function_sym = block_linkage_function (block);
6577 char *rename;
6578
6579 if (function_sym != NULL)
6580 {
6581 /* If the symbol is defined inside a function, NAME is not fully
6582 qualified. This means we need to prepend the function name
6583 as well as adding the ``___XR'' suffix to build the name of
6584 the associated renaming symbol. */
6585 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
6586 /* Function names sometimes contain suffixes used
6587 for instance to qualify nested subprograms. When building
6588 the XR type name, we need to make sure that this suffix is
6589 not included. So do not include any suffix in the function
6590 name length below. */
6591 const int function_name_len = ada_name_prefix_len (function_name);
6592 const int rename_len = function_name_len + 2 /* "__" */
6593 + strlen (name) + 6 /* "___XR\0" */ ;
6594
6595 /* Strip the suffix if necessary. */
6596 function_name[function_name_len] = '\0';
6597
6598 /* Library-level functions are a special case, as GNAT adds
6599 a ``_ada_'' prefix to the function name to avoid namespace
6600 pollution. However, the renaming symbols themselves do not
6601 have this prefix, so we need to skip this prefix if present. */
6602 if (function_name_len > 5 /* "_ada_" */
6603 && strstr (function_name, "_ada_") == function_name)
6604 function_name = function_name + 5;
6605
6606 rename = (char *) alloca (rename_len * sizeof (char));
6607 sprintf (rename, "%s__%s___XR", function_name, name);
6608 }
6609 else
6610 {
6611 const int rename_len = strlen (name) + 6;
6612 rename = (char *) alloca (rename_len * sizeof (char));
6613 sprintf (rename, "%s___XR", name);
6614 }
6615
6616 return ada_find_any_symbol (rename);
6617 }
6618
6619 /* Because of GNAT encoding conventions, several GDB symbols may match a
6620 given type name. If the type denoted by TYPE0 is to be preferred to
6621 that of TYPE1 for purposes of type printing, return non-zero;
6622 otherwise return 0. */
6623
6624 int
6625 ada_prefer_type (struct type *type0, struct type *type1)
6626 {
6627 if (type1 == NULL)
6628 return 1;
6629 else if (type0 == NULL)
6630 return 0;
6631 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6632 return 1;
6633 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6634 return 0;
6635 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6636 return 1;
6637 else if (ada_is_packed_array_type (type0))
6638 return 1;
6639 else if (ada_is_array_descriptor_type (type0)
6640 && !ada_is_array_descriptor_type (type1))
6641 return 1;
6642 else
6643 {
6644 const char *type0_name = type_name_no_tag (type0);
6645 const char *type1_name = type_name_no_tag (type1);
6646
6647 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
6648 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
6649 return 1;
6650 }
6651 return 0;
6652 }
6653
6654 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
6655 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6656
6657 char *
6658 ada_type_name (struct type *type)
6659 {
6660 if (type == NULL)
6661 return NULL;
6662 else if (TYPE_NAME (type) != NULL)
6663 return TYPE_NAME (type);
6664 else
6665 return TYPE_TAG_NAME (type);
6666 }
6667
6668 /* Find a parallel type to TYPE whose name is formed by appending
6669 SUFFIX to the name of TYPE. */
6670
6671 struct type *
6672 ada_find_parallel_type (struct type *type, const char *suffix)
6673 {
6674 static char *name;
6675 static size_t name_len = 0;
6676 int len;
6677 char *typename = ada_type_name (type);
6678
6679 if (typename == NULL)
6680 return NULL;
6681
6682 len = strlen (typename);
6683
6684 GROW_VECT (name, name_len, len + strlen (suffix) + 1);
6685
6686 strcpy (name, typename);
6687 strcpy (name + len, suffix);
6688
6689 return ada_find_any_type (name);
6690 }
6691
6692
6693 /* If TYPE is a variable-size record type, return the corresponding template
6694 type describing its fields. Otherwise, return NULL. */
6695
6696 static struct type *
6697 dynamic_template_type (struct type *type)
6698 {
6699 type = ada_check_typedef (type);
6700
6701 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
6702 || ada_type_name (type) == NULL)
6703 return NULL;
6704 else
6705 {
6706 int len = strlen (ada_type_name (type));
6707 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
6708 return type;
6709 else
6710 return ada_find_parallel_type (type, "___XVE");
6711 }
6712 }
6713
6714 /* Assuming that TEMPL_TYPE is a union or struct type, returns
6715 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
6716
6717 static int
6718 is_dynamic_field (struct type *templ_type, int field_num)
6719 {
6720 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
6721 return name != NULL
6722 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
6723 && strstr (name, "___XVL") != NULL;
6724 }
6725
6726 /* The index of the variant field of TYPE, or -1 if TYPE does not
6727 represent a variant record type. */
6728
6729 static int
6730 variant_field_index (struct type *type)
6731 {
6732 int f;
6733
6734 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6735 return -1;
6736
6737 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
6738 {
6739 if (ada_is_variant_part (type, f))
6740 return f;
6741 }
6742 return -1;
6743 }
6744
6745 /* A record type with no fields. */
6746
6747 static struct type *
6748 empty_record (struct objfile *objfile)
6749 {
6750 struct type *type = alloc_type (objfile);
6751 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6752 TYPE_NFIELDS (type) = 0;
6753 TYPE_FIELDS (type) = NULL;
6754 INIT_CPLUS_SPECIFIC (type);
6755 TYPE_NAME (type) = "<empty>";
6756 TYPE_TAG_NAME (type) = NULL;
6757 TYPE_LENGTH (type) = 0;
6758 return type;
6759 }
6760
6761 /* An ordinary record type (with fixed-length fields) that describes
6762 the value of type TYPE at VALADDR or ADDRESS (see comments at
6763 the beginning of this section) VAL according to GNAT conventions.
6764 DVAL0 should describe the (portion of a) record that contains any
6765 necessary discriminants. It should be NULL if value_type (VAL) is
6766 an outer-level type (i.e., as opposed to a branch of a variant.) A
6767 variant field (unless unchecked) is replaced by a particular branch
6768 of the variant.
6769
6770 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
6771 length are not statically known are discarded. As a consequence,
6772 VALADDR, ADDRESS and DVAL0 are ignored.
6773
6774 NOTE: Limitations: For now, we assume that dynamic fields and
6775 variants occupy whole numbers of bytes. However, they need not be
6776 byte-aligned. */
6777
6778 struct type *
6779 ada_template_to_fixed_record_type_1 (struct type *type,
6780 const gdb_byte *valaddr,
6781 CORE_ADDR address, struct value *dval0,
6782 int keep_dynamic_fields)
6783 {
6784 struct value *mark = value_mark ();
6785 struct value *dval;
6786 struct type *rtype;
6787 int nfields, bit_len;
6788 int variant_field;
6789 long off;
6790 int fld_bit_len, bit_incr;
6791 int f;
6792
6793 /* Compute the number of fields in this record type that are going
6794 to be processed: unless keep_dynamic_fields, this includes only
6795 fields whose position and length are static will be processed. */
6796 if (keep_dynamic_fields)
6797 nfields = TYPE_NFIELDS (type);
6798 else
6799 {
6800 nfields = 0;
6801 while (nfields < TYPE_NFIELDS (type)
6802 && !ada_is_variant_part (type, nfields)
6803 && !is_dynamic_field (type, nfields))
6804 nfields++;
6805 }
6806
6807 rtype = alloc_type (TYPE_OBJFILE (type));
6808 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6809 INIT_CPLUS_SPECIFIC (rtype);
6810 TYPE_NFIELDS (rtype) = nfields;
6811 TYPE_FIELDS (rtype) = (struct field *)
6812 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6813 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
6814 TYPE_NAME (rtype) = ada_type_name (type);
6815 TYPE_TAG_NAME (rtype) = NULL;
6816 TYPE_FIXED_INSTANCE (rtype) = 1;
6817
6818 off = 0;
6819 bit_len = 0;
6820 variant_field = -1;
6821
6822 for (f = 0; f < nfields; f += 1)
6823 {
6824 off = align_value (off, field_alignment (type, f))
6825 + TYPE_FIELD_BITPOS (type, f);
6826 TYPE_FIELD_BITPOS (rtype, f) = off;
6827 TYPE_FIELD_BITSIZE (rtype, f) = 0;
6828
6829 if (ada_is_variant_part (type, f))
6830 {
6831 variant_field = f;
6832 fld_bit_len = bit_incr = 0;
6833 }
6834 else if (is_dynamic_field (type, f))
6835 {
6836 if (dval0 == NULL)
6837 {
6838 /* rtype's length is computed based on the run-time
6839 value of discriminants. If the discriminants are not
6840 initialized, the type size may be completely bogus and
6841 GDB may fail to allocate a value for it. So check the
6842 size first before creating the value. */
6843 check_size (rtype);
6844 dval = value_from_contents_and_address (rtype, valaddr, address);
6845 }
6846 else
6847 dval = dval0;
6848
6849 /* Get the fixed type of the field. Note that, in this case, we
6850 do not want to get the real type out of the tag: if the current
6851 field is the parent part of a tagged record, we will get the
6852 tag of the object. Clearly wrong: the real type of the parent
6853 is not the real type of the child. We would end up in an infinite
6854 loop. */
6855 TYPE_FIELD_TYPE (rtype, f) =
6856 ada_to_fixed_type
6857 (ada_get_base_type
6858 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f))),
6859 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6860 cond_offset_target (address, off / TARGET_CHAR_BIT), dval, 0);
6861 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6862 bit_incr = fld_bit_len =
6863 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
6864 }
6865 else
6866 {
6867 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
6868 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6869 if (TYPE_FIELD_BITSIZE (type, f) > 0)
6870 bit_incr = fld_bit_len =
6871 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
6872 else
6873 bit_incr = fld_bit_len =
6874 TYPE_LENGTH (TYPE_FIELD_TYPE (type, f)) * TARGET_CHAR_BIT;
6875 }
6876 if (off + fld_bit_len > bit_len)
6877 bit_len = off + fld_bit_len;
6878 off += bit_incr;
6879 TYPE_LENGTH (rtype) =
6880 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6881 }
6882
6883 /* We handle the variant part, if any, at the end because of certain
6884 odd cases in which it is re-ordered so as NOT to be the last field of
6885 the record. This can happen in the presence of representation
6886 clauses. */
6887 if (variant_field >= 0)
6888 {
6889 struct type *branch_type;
6890
6891 off = TYPE_FIELD_BITPOS (rtype, variant_field);
6892
6893 if (dval0 == NULL)
6894 dval = value_from_contents_and_address (rtype, valaddr, address);
6895 else
6896 dval = dval0;
6897
6898 branch_type =
6899 to_fixed_variant_branch_type
6900 (TYPE_FIELD_TYPE (type, variant_field),
6901 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6902 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
6903 if (branch_type == NULL)
6904 {
6905 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
6906 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6907 TYPE_NFIELDS (rtype) -= 1;
6908 }
6909 else
6910 {
6911 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6912 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6913 fld_bit_len =
6914 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
6915 TARGET_CHAR_BIT;
6916 if (off + fld_bit_len > bit_len)
6917 bit_len = off + fld_bit_len;
6918 TYPE_LENGTH (rtype) =
6919 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6920 }
6921 }
6922
6923 /* According to exp_dbug.ads, the size of TYPE for variable-size records
6924 should contain the alignment of that record, which should be a strictly
6925 positive value. If null or negative, then something is wrong, most
6926 probably in the debug info. In that case, we don't round up the size
6927 of the resulting type. If this record is not part of another structure,
6928 the current RTYPE length might be good enough for our purposes. */
6929 if (TYPE_LENGTH (type) <= 0)
6930 {
6931 if (TYPE_NAME (rtype))
6932 warning (_("Invalid type size for `%s' detected: %d."),
6933 TYPE_NAME (rtype), TYPE_LENGTH (type));
6934 else
6935 warning (_("Invalid type size for <unnamed> detected: %d."),
6936 TYPE_LENGTH (type));
6937 }
6938 else
6939 {
6940 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
6941 TYPE_LENGTH (type));
6942 }
6943
6944 value_free_to_mark (mark);
6945 if (TYPE_LENGTH (rtype) > varsize_limit)
6946 error (_("record type with dynamic size is larger than varsize-limit"));
6947 return rtype;
6948 }
6949
6950 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
6951 of 1. */
6952
6953 static struct type *
6954 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
6955 CORE_ADDR address, struct value *dval0)
6956 {
6957 return ada_template_to_fixed_record_type_1 (type, valaddr,
6958 address, dval0, 1);
6959 }
6960
6961 /* An ordinary record type in which ___XVL-convention fields and
6962 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
6963 static approximations, containing all possible fields. Uses
6964 no runtime values. Useless for use in values, but that's OK,
6965 since the results are used only for type determinations. Works on both
6966 structs and unions. Representation note: to save space, we memorize
6967 the result of this function in the TYPE_TARGET_TYPE of the
6968 template type. */
6969
6970 static struct type *
6971 template_to_static_fixed_type (struct type *type0)
6972 {
6973 struct type *type;
6974 int nfields;
6975 int f;
6976
6977 if (TYPE_TARGET_TYPE (type0) != NULL)
6978 return TYPE_TARGET_TYPE (type0);
6979
6980 nfields = TYPE_NFIELDS (type0);
6981 type = type0;
6982
6983 for (f = 0; f < nfields; f += 1)
6984 {
6985 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
6986 struct type *new_type;
6987
6988 if (is_dynamic_field (type0, f))
6989 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
6990 else
6991 new_type = static_unwrap_type (field_type);
6992 if (type == type0 && new_type != field_type)
6993 {
6994 TYPE_TARGET_TYPE (type0) = type = alloc_type (TYPE_OBJFILE (type0));
6995 TYPE_CODE (type) = TYPE_CODE (type0);
6996 INIT_CPLUS_SPECIFIC (type);
6997 TYPE_NFIELDS (type) = nfields;
6998 TYPE_FIELDS (type) = (struct field *)
6999 TYPE_ALLOC (type, nfields * sizeof (struct field));
7000 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7001 sizeof (struct field) * nfields);
7002 TYPE_NAME (type) = ada_type_name (type0);
7003 TYPE_TAG_NAME (type) = NULL;
7004 TYPE_FIXED_INSTANCE (type) = 1;
7005 TYPE_LENGTH (type) = 0;
7006 }
7007 TYPE_FIELD_TYPE (type, f) = new_type;
7008 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
7009 }
7010 return type;
7011 }
7012
7013 /* Given an object of type TYPE whose contents are at VALADDR and
7014 whose address in memory is ADDRESS, returns a revision of TYPE,
7015 which should be a non-dynamic-sized record, in which the variant
7016 part, if any, is replaced with the appropriate branch. Looks
7017 for discriminant values in DVAL0, which can be NULL if the record
7018 contains the necessary discriminant values. */
7019
7020 static struct type *
7021 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
7022 CORE_ADDR address, struct value *dval0)
7023 {
7024 struct value *mark = value_mark ();
7025 struct value *dval;
7026 struct type *rtype;
7027 struct type *branch_type;
7028 int nfields = TYPE_NFIELDS (type);
7029 int variant_field = variant_field_index (type);
7030
7031 if (variant_field == -1)
7032 return type;
7033
7034 if (dval0 == NULL)
7035 dval = value_from_contents_and_address (type, valaddr, address);
7036 else
7037 dval = dval0;
7038
7039 rtype = alloc_type (TYPE_OBJFILE (type));
7040 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7041 INIT_CPLUS_SPECIFIC (rtype);
7042 TYPE_NFIELDS (rtype) = nfields;
7043 TYPE_FIELDS (rtype) =
7044 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7045 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
7046 sizeof (struct field) * nfields);
7047 TYPE_NAME (rtype) = ada_type_name (type);
7048 TYPE_TAG_NAME (rtype) = NULL;
7049 TYPE_FIXED_INSTANCE (rtype) = 1;
7050 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7051
7052 branch_type = to_fixed_variant_branch_type
7053 (TYPE_FIELD_TYPE (type, variant_field),
7054 cond_offset_host (valaddr,
7055 TYPE_FIELD_BITPOS (type, variant_field)
7056 / TARGET_CHAR_BIT),
7057 cond_offset_target (address,
7058 TYPE_FIELD_BITPOS (type, variant_field)
7059 / TARGET_CHAR_BIT), dval);
7060 if (branch_type == NULL)
7061 {
7062 int f;
7063 for (f = variant_field + 1; f < nfields; f += 1)
7064 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7065 TYPE_NFIELDS (rtype) -= 1;
7066 }
7067 else
7068 {
7069 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7070 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7071 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7072 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7073 }
7074 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
7075
7076 value_free_to_mark (mark);
7077 return rtype;
7078 }
7079
7080 /* An ordinary record type (with fixed-length fields) that describes
7081 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7082 beginning of this section]. Any necessary discriminants' values
7083 should be in DVAL, a record value; it may be NULL if the object
7084 at ADDR itself contains any necessary discriminant values.
7085 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7086 values from the record are needed. Except in the case that DVAL,
7087 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7088 unchecked) is replaced by a particular branch of the variant.
7089
7090 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7091 is questionable and may be removed. It can arise during the
7092 processing of an unconstrained-array-of-record type where all the
7093 variant branches have exactly the same size. This is because in
7094 such cases, the compiler does not bother to use the XVS convention
7095 when encoding the record. I am currently dubious of this
7096 shortcut and suspect the compiler should be altered. FIXME. */
7097
7098 static struct type *
7099 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7100 CORE_ADDR address, struct value *dval)
7101 {
7102 struct type *templ_type;
7103
7104 if (TYPE_FIXED_INSTANCE (type0))
7105 return type0;
7106
7107 templ_type = dynamic_template_type (type0);
7108
7109 if (templ_type != NULL)
7110 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7111 else if (variant_field_index (type0) >= 0)
7112 {
7113 if (dval == NULL && valaddr == NULL && address == 0)
7114 return type0;
7115 return to_record_with_fixed_variant_part (type0, valaddr, address,
7116 dval);
7117 }
7118 else
7119 {
7120 TYPE_FIXED_INSTANCE (type0) = 1;
7121 return type0;
7122 }
7123
7124 }
7125
7126 /* An ordinary record type (with fixed-length fields) that describes
7127 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7128 union type. Any necessary discriminants' values should be in DVAL,
7129 a record value. That is, this routine selects the appropriate
7130 branch of the union at ADDR according to the discriminant value
7131 indicated in the union's type name. Returns VAR_TYPE0 itself if
7132 it represents a variant subject to a pragma Unchecked_Union. */
7133
7134 static struct type *
7135 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7136 CORE_ADDR address, struct value *dval)
7137 {
7138 int which;
7139 struct type *templ_type;
7140 struct type *var_type;
7141
7142 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7143 var_type = TYPE_TARGET_TYPE (var_type0);
7144 else
7145 var_type = var_type0;
7146
7147 templ_type = ada_find_parallel_type (var_type, "___XVU");
7148
7149 if (templ_type != NULL)
7150 var_type = templ_type;
7151
7152 if (is_unchecked_variant (var_type, value_type (dval)))
7153 return var_type0;
7154 which =
7155 ada_which_variant_applies (var_type,
7156 value_type (dval), value_contents (dval));
7157
7158 if (which < 0)
7159 return empty_record (TYPE_OBJFILE (var_type));
7160 else if (is_dynamic_field (var_type, which))
7161 return to_fixed_record_type
7162 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7163 valaddr, address, dval);
7164 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
7165 return
7166 to_fixed_record_type
7167 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
7168 else
7169 return TYPE_FIELD_TYPE (var_type, which);
7170 }
7171
7172 /* Assuming that TYPE0 is an array type describing the type of a value
7173 at ADDR, and that DVAL describes a record containing any
7174 discriminants used in TYPE0, returns a type for the value that
7175 contains no dynamic components (that is, no components whose sizes
7176 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7177 true, gives an error message if the resulting type's size is over
7178 varsize_limit. */
7179
7180 static struct type *
7181 to_fixed_array_type (struct type *type0, struct value *dval,
7182 int ignore_too_big)
7183 {
7184 struct type *index_type_desc;
7185 struct type *result;
7186
7187 if (ada_is_packed_array_type (type0) /* revisit? */
7188 || TYPE_FIXED_INSTANCE (type0))
7189 return type0;
7190
7191 index_type_desc = ada_find_parallel_type (type0, "___XA");
7192 if (index_type_desc == NULL)
7193 {
7194 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
7195 /* NOTE: elt_type---the fixed version of elt_type0---should never
7196 depend on the contents of the array in properly constructed
7197 debugging data. */
7198 /* Create a fixed version of the array element type.
7199 We're not providing the address of an element here,
7200 and thus the actual object value cannot be inspected to do
7201 the conversion. This should not be a problem, since arrays of
7202 unconstrained objects are not allowed. In particular, all
7203 the elements of an array of a tagged type should all be of
7204 the same type specified in the debugging info. No need to
7205 consult the object tag. */
7206 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
7207
7208 if (elt_type0 == elt_type)
7209 result = type0;
7210 else
7211 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
7212 elt_type, TYPE_INDEX_TYPE (type0));
7213 }
7214 else
7215 {
7216 int i;
7217 struct type *elt_type0;
7218
7219 elt_type0 = type0;
7220 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
7221 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7222
7223 /* NOTE: result---the fixed version of elt_type0---should never
7224 depend on the contents of the array in properly constructed
7225 debugging data. */
7226 /* Create a fixed version of the array element type.
7227 We're not providing the address of an element here,
7228 and thus the actual object value cannot be inspected to do
7229 the conversion. This should not be a problem, since arrays of
7230 unconstrained objects are not allowed. In particular, all
7231 the elements of an array of a tagged type should all be of
7232 the same type specified in the debugging info. No need to
7233 consult the object tag. */
7234 result =
7235 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
7236 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
7237 {
7238 struct type *range_type =
7239 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, i),
7240 dval, TYPE_OBJFILE (type0));
7241 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
7242 result, range_type);
7243 }
7244 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
7245 error (_("array type with dynamic size is larger than varsize-limit"));
7246 }
7247
7248 TYPE_FIXED_INSTANCE (result) = 1;
7249 return result;
7250 }
7251
7252
7253 /* A standard type (containing no dynamically sized components)
7254 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7255 DVAL describes a record containing any discriminants used in TYPE0,
7256 and may be NULL if there are none, or if the object of type TYPE at
7257 ADDRESS or in VALADDR contains these discriminants.
7258
7259 If CHECK_TAG is not null, in the case of tagged types, this function
7260 attempts to locate the object's tag and use it to compute the actual
7261 type. However, when ADDRESS is null, we cannot use it to determine the
7262 location of the tag, and therefore compute the tagged type's actual type.
7263 So we return the tagged type without consulting the tag. */
7264
7265 static struct type *
7266 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
7267 CORE_ADDR address, struct value *dval, int check_tag)
7268 {
7269 type = ada_check_typedef (type);
7270 switch (TYPE_CODE (type))
7271 {
7272 default:
7273 return type;
7274 case TYPE_CODE_STRUCT:
7275 {
7276 struct type *static_type = to_static_fixed_type (type);
7277 struct type *fixed_record_type =
7278 to_fixed_record_type (type, valaddr, address, NULL);
7279 /* If STATIC_TYPE is a tagged type and we know the object's address,
7280 then we can determine its tag, and compute the object's actual
7281 type from there. Note that we have to use the fixed record
7282 type (the parent part of the record may have dynamic fields
7283 and the way the location of _tag is expressed may depend on
7284 them). */
7285
7286 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
7287 {
7288 struct type *real_type =
7289 type_from_tag (value_tag_from_contents_and_address
7290 (fixed_record_type,
7291 valaddr,
7292 address));
7293 if (real_type != NULL)
7294 return to_fixed_record_type (real_type, valaddr, address, NULL);
7295 }
7296
7297 /* Check to see if there is a parallel ___XVZ variable.
7298 If there is, then it provides the actual size of our type. */
7299 else if (ada_type_name (fixed_record_type) != NULL)
7300 {
7301 char *name = ada_type_name (fixed_record_type);
7302 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
7303 int xvz_found = 0;
7304 LONGEST size;
7305
7306 sprintf (xvz_name, "%s___XVZ", name);
7307 size = get_int_var_value (xvz_name, &xvz_found);
7308 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
7309 {
7310 fixed_record_type = copy_type (fixed_record_type);
7311 TYPE_LENGTH (fixed_record_type) = size;
7312
7313 /* The FIXED_RECORD_TYPE may have be a stub. We have
7314 observed this when the debugging info is STABS, and
7315 apparently it is something that is hard to fix.
7316
7317 In practice, we don't need the actual type definition
7318 at all, because the presence of the XVZ variable allows us
7319 to assume that there must be a XVS type as well, which we
7320 should be able to use later, when we need the actual type
7321 definition.
7322
7323 In the meantime, pretend that the "fixed" type we are
7324 returning is NOT a stub, because this can cause trouble
7325 when using this type to create new types targeting it.
7326 Indeed, the associated creation routines often check
7327 whether the target type is a stub and will try to replace
7328 it, thus using a type with the wrong size. This, in turn,
7329 might cause the new type to have the wrong size too.
7330 Consider the case of an array, for instance, where the size
7331 of the array is computed from the number of elements in
7332 our array multiplied by the size of its element. */
7333 TYPE_STUB (fixed_record_type) = 0;
7334 }
7335 }
7336 return fixed_record_type;
7337 }
7338 case TYPE_CODE_ARRAY:
7339 return to_fixed_array_type (type, dval, 1);
7340 case TYPE_CODE_UNION:
7341 if (dval == NULL)
7342 return type;
7343 else
7344 return to_fixed_variant_branch_type (type, valaddr, address, dval);
7345 }
7346 }
7347
7348 /* The same as ada_to_fixed_type_1, except that it preserves the type
7349 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
7350 ada_to_fixed_type_1 would return the type referenced by TYPE. */
7351
7352 struct type *
7353 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
7354 CORE_ADDR address, struct value *dval, int check_tag)
7355
7356 {
7357 struct type *fixed_type =
7358 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
7359
7360 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
7361 && TYPE_TARGET_TYPE (type) == fixed_type)
7362 return type;
7363
7364 return fixed_type;
7365 }
7366
7367 /* A standard (static-sized) type corresponding as well as possible to
7368 TYPE0, but based on no runtime data. */
7369
7370 static struct type *
7371 to_static_fixed_type (struct type *type0)
7372 {
7373 struct type *type;
7374
7375 if (type0 == NULL)
7376 return NULL;
7377
7378 if (TYPE_FIXED_INSTANCE (type0))
7379 return type0;
7380
7381 type0 = ada_check_typedef (type0);
7382
7383 switch (TYPE_CODE (type0))
7384 {
7385 default:
7386 return type0;
7387 case TYPE_CODE_STRUCT:
7388 type = dynamic_template_type (type0);
7389 if (type != NULL)
7390 return template_to_static_fixed_type (type);
7391 else
7392 return template_to_static_fixed_type (type0);
7393 case TYPE_CODE_UNION:
7394 type = ada_find_parallel_type (type0, "___XVU");
7395 if (type != NULL)
7396 return template_to_static_fixed_type (type);
7397 else
7398 return template_to_static_fixed_type (type0);
7399 }
7400 }
7401
7402 /* A static approximation of TYPE with all type wrappers removed. */
7403
7404 static struct type *
7405 static_unwrap_type (struct type *type)
7406 {
7407 if (ada_is_aligner_type (type))
7408 {
7409 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
7410 if (ada_type_name (type1) == NULL)
7411 TYPE_NAME (type1) = ada_type_name (type);
7412
7413 return static_unwrap_type (type1);
7414 }
7415 else
7416 {
7417 struct type *raw_real_type = ada_get_base_type (type);
7418 if (raw_real_type == type)
7419 return type;
7420 else
7421 return to_static_fixed_type (raw_real_type);
7422 }
7423 }
7424
7425 /* In some cases, incomplete and private types require
7426 cross-references that are not resolved as records (for example,
7427 type Foo;
7428 type FooP is access Foo;
7429 V: FooP;
7430 type Foo is array ...;
7431 ). In these cases, since there is no mechanism for producing
7432 cross-references to such types, we instead substitute for FooP a
7433 stub enumeration type that is nowhere resolved, and whose tag is
7434 the name of the actual type. Call these types "non-record stubs". */
7435
7436 /* A type equivalent to TYPE that is not a non-record stub, if one
7437 exists, otherwise TYPE. */
7438
7439 struct type *
7440 ada_check_typedef (struct type *type)
7441 {
7442 if (type == NULL)
7443 return NULL;
7444
7445 CHECK_TYPEDEF (type);
7446 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
7447 || !TYPE_STUB (type)
7448 || TYPE_TAG_NAME (type) == NULL)
7449 return type;
7450 else
7451 {
7452 char *name = TYPE_TAG_NAME (type);
7453 struct type *type1 = ada_find_any_type (name);
7454 return (type1 == NULL) ? type : type1;
7455 }
7456 }
7457
7458 /* A value representing the data at VALADDR/ADDRESS as described by
7459 type TYPE0, but with a standard (static-sized) type that correctly
7460 describes it. If VAL0 is not NULL and TYPE0 already is a standard
7461 type, then return VAL0 [this feature is simply to avoid redundant
7462 creation of struct values]. */
7463
7464 static struct value *
7465 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
7466 struct value *val0)
7467 {
7468 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
7469 if (type == type0 && val0 != NULL)
7470 return val0;
7471 else
7472 return value_from_contents_and_address (type, 0, address);
7473 }
7474
7475 /* A value representing VAL, but with a standard (static-sized) type
7476 that correctly describes it. Does not necessarily create a new
7477 value. */
7478
7479 static struct value *
7480 ada_to_fixed_value (struct value *val)
7481 {
7482 return ada_to_fixed_value_create (value_type (val),
7483 VALUE_ADDRESS (val) + value_offset (val),
7484 val);
7485 }
7486
7487 /* A value representing VAL, but with a standard (static-sized) type
7488 chosen to approximate the real type of VAL as well as possible, but
7489 without consulting any runtime values. For Ada dynamic-sized
7490 types, therefore, the type of the result is likely to be inaccurate. */
7491
7492 static struct value *
7493 ada_to_static_fixed_value (struct value *val)
7494 {
7495 struct type *type =
7496 to_static_fixed_type (static_unwrap_type (value_type (val)));
7497 if (type == value_type (val))
7498 return val;
7499 else
7500 return coerce_unspec_val_to_type (val, type);
7501 }
7502 \f
7503
7504 /* Attributes */
7505
7506 /* Table mapping attribute numbers to names.
7507 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
7508
7509 static const char *attribute_names[] = {
7510 "<?>",
7511
7512 "first",
7513 "last",
7514 "length",
7515 "image",
7516 "max",
7517 "min",
7518 "modulus",
7519 "pos",
7520 "size",
7521 "tag",
7522 "val",
7523 0
7524 };
7525
7526 const char *
7527 ada_attribute_name (enum exp_opcode n)
7528 {
7529 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7530 return attribute_names[n - OP_ATR_FIRST + 1];
7531 else
7532 return attribute_names[0];
7533 }
7534
7535 /* Evaluate the 'POS attribute applied to ARG. */
7536
7537 static LONGEST
7538 pos_atr (struct value *arg)
7539 {
7540 struct value *val = coerce_ref (arg);
7541 struct type *type = value_type (val);
7542
7543 if (!discrete_type_p (type))
7544 error (_("'POS only defined on discrete types"));
7545
7546 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7547 {
7548 int i;
7549 LONGEST v = value_as_long (val);
7550
7551 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7552 {
7553 if (v == TYPE_FIELD_BITPOS (type, i))
7554 return i;
7555 }
7556 error (_("enumeration value is invalid: can't find 'POS"));
7557 }
7558 else
7559 return value_as_long (val);
7560 }
7561
7562 static struct value *
7563 value_pos_atr (struct type *type, struct value *arg)
7564 {
7565 return value_from_longest (type, pos_atr (arg));
7566 }
7567
7568 /* Evaluate the TYPE'VAL attribute applied to ARG. */
7569
7570 static struct value *
7571 value_val_atr (struct type *type, struct value *arg)
7572 {
7573 if (!discrete_type_p (type))
7574 error (_("'VAL only defined on discrete types"));
7575 if (!integer_type_p (value_type (arg)))
7576 error (_("'VAL requires integral argument"));
7577
7578 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7579 {
7580 long pos = value_as_long (arg);
7581 if (pos < 0 || pos >= TYPE_NFIELDS (type))
7582 error (_("argument to 'VAL out of range"));
7583 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
7584 }
7585 else
7586 return value_from_longest (type, value_as_long (arg));
7587 }
7588 \f
7589
7590 /* Evaluation */
7591
7592 /* True if TYPE appears to be an Ada character type.
7593 [At the moment, this is true only for Character and Wide_Character;
7594 It is a heuristic test that could stand improvement]. */
7595
7596 int
7597 ada_is_character_type (struct type *type)
7598 {
7599 const char *name;
7600
7601 /* If the type code says it's a character, then assume it really is,
7602 and don't check any further. */
7603 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
7604 return 1;
7605
7606 /* Otherwise, assume it's a character type iff it is a discrete type
7607 with a known character type name. */
7608 name = ada_type_name (type);
7609 return (name != NULL
7610 && (TYPE_CODE (type) == TYPE_CODE_INT
7611 || TYPE_CODE (type) == TYPE_CODE_RANGE)
7612 && (strcmp (name, "character") == 0
7613 || strcmp (name, "wide_character") == 0
7614 || strcmp (name, "wide_wide_character") == 0
7615 || strcmp (name, "unsigned char") == 0));
7616 }
7617
7618 /* True if TYPE appears to be an Ada string type. */
7619
7620 int
7621 ada_is_string_type (struct type *type)
7622 {
7623 type = ada_check_typedef (type);
7624 if (type != NULL
7625 && TYPE_CODE (type) != TYPE_CODE_PTR
7626 && (ada_is_simple_array_type (type)
7627 || ada_is_array_descriptor_type (type))
7628 && ada_array_arity (type) == 1)
7629 {
7630 struct type *elttype = ada_array_element_type (type, 1);
7631
7632 return ada_is_character_type (elttype);
7633 }
7634 else
7635 return 0;
7636 }
7637
7638
7639 /* True if TYPE is a struct type introduced by the compiler to force the
7640 alignment of a value. Such types have a single field with a
7641 distinctive name. */
7642
7643 int
7644 ada_is_aligner_type (struct type *type)
7645 {
7646 type = ada_check_typedef (type);
7647
7648 /* If we can find a parallel XVS type, then the XVS type should
7649 be used instead of this type. And hence, this is not an aligner
7650 type. */
7651 if (ada_find_parallel_type (type, "___XVS") != NULL)
7652 return 0;
7653
7654 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
7655 && TYPE_NFIELDS (type) == 1
7656 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
7657 }
7658
7659 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
7660 the parallel type. */
7661
7662 struct type *
7663 ada_get_base_type (struct type *raw_type)
7664 {
7665 struct type *real_type_namer;
7666 struct type *raw_real_type;
7667
7668 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
7669 return raw_type;
7670
7671 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
7672 if (real_type_namer == NULL
7673 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
7674 || TYPE_NFIELDS (real_type_namer) != 1)
7675 return raw_type;
7676
7677 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
7678 if (raw_real_type == NULL)
7679 return raw_type;
7680 else
7681 return raw_real_type;
7682 }
7683
7684 /* The type of value designated by TYPE, with all aligners removed. */
7685
7686 struct type *
7687 ada_aligned_type (struct type *type)
7688 {
7689 if (ada_is_aligner_type (type))
7690 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
7691 else
7692 return ada_get_base_type (type);
7693 }
7694
7695
7696 /* The address of the aligned value in an object at address VALADDR
7697 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
7698
7699 const gdb_byte *
7700 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
7701 {
7702 if (ada_is_aligner_type (type))
7703 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
7704 valaddr +
7705 TYPE_FIELD_BITPOS (type,
7706 0) / TARGET_CHAR_BIT);
7707 else
7708 return valaddr;
7709 }
7710
7711
7712
7713 /* The printed representation of an enumeration literal with encoded
7714 name NAME. The value is good to the next call of ada_enum_name. */
7715 const char *
7716 ada_enum_name (const char *name)
7717 {
7718 static char *result;
7719 static size_t result_len = 0;
7720 char *tmp;
7721
7722 /* First, unqualify the enumeration name:
7723 1. Search for the last '.' character. If we find one, then skip
7724 all the preceeding characters, the unqualified name starts
7725 right after that dot.
7726 2. Otherwise, we may be debugging on a target where the compiler
7727 translates dots into "__". Search forward for double underscores,
7728 but stop searching when we hit an overloading suffix, which is
7729 of the form "__" followed by digits. */
7730
7731 tmp = strrchr (name, '.');
7732 if (tmp != NULL)
7733 name = tmp + 1;
7734 else
7735 {
7736 while ((tmp = strstr (name, "__")) != NULL)
7737 {
7738 if (isdigit (tmp[2]))
7739 break;
7740 else
7741 name = tmp + 2;
7742 }
7743 }
7744
7745 if (name[0] == 'Q')
7746 {
7747 int v;
7748 if (name[1] == 'U' || name[1] == 'W')
7749 {
7750 if (sscanf (name + 2, "%x", &v) != 1)
7751 return name;
7752 }
7753 else
7754 return name;
7755
7756 GROW_VECT (result, result_len, 16);
7757 if (isascii (v) && isprint (v))
7758 sprintf (result, "'%c'", v);
7759 else if (name[1] == 'U')
7760 sprintf (result, "[\"%02x\"]", v);
7761 else
7762 sprintf (result, "[\"%04x\"]", v);
7763
7764 return result;
7765 }
7766 else
7767 {
7768 tmp = strstr (name, "__");
7769 if (tmp == NULL)
7770 tmp = strstr (name, "$");
7771 if (tmp != NULL)
7772 {
7773 GROW_VECT (result, result_len, tmp - name + 1);
7774 strncpy (result, name, tmp - name);
7775 result[tmp - name] = '\0';
7776 return result;
7777 }
7778
7779 return name;
7780 }
7781 }
7782
7783 static struct value *
7784 evaluate_subexp (struct type *expect_type, struct expression *exp, int *pos,
7785 enum noside noside)
7786 {
7787 return (*exp->language_defn->la_exp_desc->evaluate_exp)
7788 (expect_type, exp, pos, noside);
7789 }
7790
7791 /* Evaluate the subexpression of EXP starting at *POS as for
7792 evaluate_type, updating *POS to point just past the evaluated
7793 expression. */
7794
7795 static struct value *
7796 evaluate_subexp_type (struct expression *exp, int *pos)
7797 {
7798 return (*exp->language_defn->la_exp_desc->evaluate_exp)
7799 (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
7800 }
7801
7802 /* If VAL is wrapped in an aligner or subtype wrapper, return the
7803 value it wraps. */
7804
7805 static struct value *
7806 unwrap_value (struct value *val)
7807 {
7808 struct type *type = ada_check_typedef (value_type (val));
7809 if (ada_is_aligner_type (type))
7810 {
7811 struct value *v = ada_value_struct_elt (val, "F", 0);
7812 struct type *val_type = ada_check_typedef (value_type (v));
7813 if (ada_type_name (val_type) == NULL)
7814 TYPE_NAME (val_type) = ada_type_name (type);
7815
7816 return unwrap_value (v);
7817 }
7818 else
7819 {
7820 struct type *raw_real_type =
7821 ada_check_typedef (ada_get_base_type (type));
7822
7823 if (type == raw_real_type)
7824 return val;
7825
7826 return
7827 coerce_unspec_val_to_type
7828 (val, ada_to_fixed_type (raw_real_type, 0,
7829 VALUE_ADDRESS (val) + value_offset (val),
7830 NULL, 1));
7831 }
7832 }
7833
7834 static struct value *
7835 cast_to_fixed (struct type *type, struct value *arg)
7836 {
7837 LONGEST val;
7838
7839 if (type == value_type (arg))
7840 return arg;
7841 else if (ada_is_fixed_point_type (value_type (arg)))
7842 val = ada_float_to_fixed (type,
7843 ada_fixed_to_float (value_type (arg),
7844 value_as_long (arg)));
7845 else
7846 {
7847 DOUBLEST argd = value_as_double (arg);
7848 val = ada_float_to_fixed (type, argd);
7849 }
7850
7851 return value_from_longest (type, val);
7852 }
7853
7854 static struct value *
7855 cast_from_fixed (struct type *type, struct value *arg)
7856 {
7857 DOUBLEST val = ada_fixed_to_float (value_type (arg),
7858 value_as_long (arg));
7859 return value_from_double (type, val);
7860 }
7861
7862 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
7863 return the converted value. */
7864
7865 static struct value *
7866 coerce_for_assign (struct type *type, struct value *val)
7867 {
7868 struct type *type2 = value_type (val);
7869 if (type == type2)
7870 return val;
7871
7872 type2 = ada_check_typedef (type2);
7873 type = ada_check_typedef (type);
7874
7875 if (TYPE_CODE (type2) == TYPE_CODE_PTR
7876 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7877 {
7878 val = ada_value_ind (val);
7879 type2 = value_type (val);
7880 }
7881
7882 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
7883 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7884 {
7885 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
7886 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
7887 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
7888 error (_("Incompatible types in assignment"));
7889 deprecated_set_value_type (val, type);
7890 }
7891 return val;
7892 }
7893
7894 static struct value *
7895 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
7896 {
7897 struct value *val;
7898 struct type *type1, *type2;
7899 LONGEST v, v1, v2;
7900
7901 arg1 = coerce_ref (arg1);
7902 arg2 = coerce_ref (arg2);
7903 type1 = base_type (ada_check_typedef (value_type (arg1)));
7904 type2 = base_type (ada_check_typedef (value_type (arg2)));
7905
7906 if (TYPE_CODE (type1) != TYPE_CODE_INT
7907 || TYPE_CODE (type2) != TYPE_CODE_INT)
7908 return value_binop (arg1, arg2, op);
7909
7910 switch (op)
7911 {
7912 case BINOP_MOD:
7913 case BINOP_DIV:
7914 case BINOP_REM:
7915 break;
7916 default:
7917 return value_binop (arg1, arg2, op);
7918 }
7919
7920 v2 = value_as_long (arg2);
7921 if (v2 == 0)
7922 error (_("second operand of %s must not be zero."), op_string (op));
7923
7924 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
7925 return value_binop (arg1, arg2, op);
7926
7927 v1 = value_as_long (arg1);
7928 switch (op)
7929 {
7930 case BINOP_DIV:
7931 v = v1 / v2;
7932 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
7933 v += v > 0 ? -1 : 1;
7934 break;
7935 case BINOP_REM:
7936 v = v1 % v2;
7937 if (v * v1 < 0)
7938 v -= v2;
7939 break;
7940 default:
7941 /* Should not reach this point. */
7942 v = 0;
7943 }
7944
7945 val = allocate_value (type1);
7946 store_unsigned_integer (value_contents_raw (val),
7947 TYPE_LENGTH (value_type (val)), v);
7948 return val;
7949 }
7950
7951 static int
7952 ada_value_equal (struct value *arg1, struct value *arg2)
7953 {
7954 if (ada_is_direct_array_type (value_type (arg1))
7955 || ada_is_direct_array_type (value_type (arg2)))
7956 {
7957 /* Automatically dereference any array reference before
7958 we attempt to perform the comparison. */
7959 arg1 = ada_coerce_ref (arg1);
7960 arg2 = ada_coerce_ref (arg2);
7961
7962 arg1 = ada_coerce_to_simple_array (arg1);
7963 arg2 = ada_coerce_to_simple_array (arg2);
7964 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
7965 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
7966 error (_("Attempt to compare array with non-array"));
7967 /* FIXME: The following works only for types whose
7968 representations use all bits (no padding or undefined bits)
7969 and do not have user-defined equality. */
7970 return
7971 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
7972 && memcmp (value_contents (arg1), value_contents (arg2),
7973 TYPE_LENGTH (value_type (arg1))) == 0;
7974 }
7975 return value_equal (arg1, arg2);
7976 }
7977
7978 /* Total number of component associations in the aggregate starting at
7979 index PC in EXP. Assumes that index PC is the start of an
7980 OP_AGGREGATE. */
7981
7982 static int
7983 num_component_specs (struct expression *exp, int pc)
7984 {
7985 int n, m, i;
7986 m = exp->elts[pc + 1].longconst;
7987 pc += 3;
7988 n = 0;
7989 for (i = 0; i < m; i += 1)
7990 {
7991 switch (exp->elts[pc].opcode)
7992 {
7993 default:
7994 n += 1;
7995 break;
7996 case OP_CHOICES:
7997 n += exp->elts[pc + 1].longconst;
7998 break;
7999 }
8000 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
8001 }
8002 return n;
8003 }
8004
8005 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
8006 component of LHS (a simple array or a record), updating *POS past
8007 the expression, assuming that LHS is contained in CONTAINER. Does
8008 not modify the inferior's memory, nor does it modify LHS (unless
8009 LHS == CONTAINER). */
8010
8011 static void
8012 assign_component (struct value *container, struct value *lhs, LONGEST index,
8013 struct expression *exp, int *pos)
8014 {
8015 struct value *mark = value_mark ();
8016 struct value *elt;
8017 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8018 {
8019 struct value *index_val = value_from_longest (builtin_type_int32, index);
8020 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8021 }
8022 else
8023 {
8024 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
8025 elt = ada_to_fixed_value (unwrap_value (elt));
8026 }
8027
8028 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8029 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8030 else
8031 value_assign_to_component (container, elt,
8032 ada_evaluate_subexp (NULL, exp, pos,
8033 EVAL_NORMAL));
8034
8035 value_free_to_mark (mark);
8036 }
8037
8038 /* Assuming that LHS represents an lvalue having a record or array
8039 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8040 of that aggregate's value to LHS, advancing *POS past the
8041 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8042 lvalue containing LHS (possibly LHS itself). Does not modify
8043 the inferior's memory, nor does it modify the contents of
8044 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
8045
8046 static struct value *
8047 assign_aggregate (struct value *container,
8048 struct value *lhs, struct expression *exp,
8049 int *pos, enum noside noside)
8050 {
8051 struct type *lhs_type;
8052 int n = exp->elts[*pos+1].longconst;
8053 LONGEST low_index, high_index;
8054 int num_specs;
8055 LONGEST *indices;
8056 int max_indices, num_indices;
8057 int is_array_aggregate;
8058 int i;
8059 struct value *mark = value_mark ();
8060
8061 *pos += 3;
8062 if (noside != EVAL_NORMAL)
8063 {
8064 int i;
8065 for (i = 0; i < n; i += 1)
8066 ada_evaluate_subexp (NULL, exp, pos, noside);
8067 return container;
8068 }
8069
8070 container = ada_coerce_ref (container);
8071 if (ada_is_direct_array_type (value_type (container)))
8072 container = ada_coerce_to_simple_array (container);
8073 lhs = ada_coerce_ref (lhs);
8074 if (!deprecated_value_modifiable (lhs))
8075 error (_("Left operand of assignment is not a modifiable lvalue."));
8076
8077 lhs_type = value_type (lhs);
8078 if (ada_is_direct_array_type (lhs_type))
8079 {
8080 lhs = ada_coerce_to_simple_array (lhs);
8081 lhs_type = value_type (lhs);
8082 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8083 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8084 is_array_aggregate = 1;
8085 }
8086 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8087 {
8088 low_index = 0;
8089 high_index = num_visible_fields (lhs_type) - 1;
8090 is_array_aggregate = 0;
8091 }
8092 else
8093 error (_("Left-hand side must be array or record."));
8094
8095 num_specs = num_component_specs (exp, *pos - 3);
8096 max_indices = 4 * num_specs + 4;
8097 indices = alloca (max_indices * sizeof (indices[0]));
8098 indices[0] = indices[1] = low_index - 1;
8099 indices[2] = indices[3] = high_index + 1;
8100 num_indices = 4;
8101
8102 for (i = 0; i < n; i += 1)
8103 {
8104 switch (exp->elts[*pos].opcode)
8105 {
8106 case OP_CHOICES:
8107 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8108 &num_indices, max_indices,
8109 low_index, high_index);
8110 break;
8111 case OP_POSITIONAL:
8112 aggregate_assign_positional (container, lhs, exp, pos, indices,
8113 &num_indices, max_indices,
8114 low_index, high_index);
8115 break;
8116 case OP_OTHERS:
8117 if (i != n-1)
8118 error (_("Misplaced 'others' clause"));
8119 aggregate_assign_others (container, lhs, exp, pos, indices,
8120 num_indices, low_index, high_index);
8121 break;
8122 default:
8123 error (_("Internal error: bad aggregate clause"));
8124 }
8125 }
8126
8127 return container;
8128 }
8129
8130 /* Assign into the component of LHS indexed by the OP_POSITIONAL
8131 construct at *POS, updating *POS past the construct, given that
8132 the positions are relative to lower bound LOW, where HIGH is the
8133 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8134 updating *NUM_INDICES as needed. CONTAINER is as for
8135 assign_aggregate. */
8136 static void
8137 aggregate_assign_positional (struct value *container,
8138 struct value *lhs, struct expression *exp,
8139 int *pos, LONGEST *indices, int *num_indices,
8140 int max_indices, LONGEST low, LONGEST high)
8141 {
8142 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8143
8144 if (ind - 1 == high)
8145 warning (_("Extra components in aggregate ignored."));
8146 if (ind <= high)
8147 {
8148 add_component_interval (ind, ind, indices, num_indices, max_indices);
8149 *pos += 3;
8150 assign_component (container, lhs, ind, exp, pos);
8151 }
8152 else
8153 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8154 }
8155
8156 /* Assign into the components of LHS indexed by the OP_CHOICES
8157 construct at *POS, updating *POS past the construct, given that
8158 the allowable indices are LOW..HIGH. Record the indices assigned
8159 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
8160 needed. CONTAINER is as for assign_aggregate. */
8161 static void
8162 aggregate_assign_from_choices (struct value *container,
8163 struct value *lhs, struct expression *exp,
8164 int *pos, LONGEST *indices, int *num_indices,
8165 int max_indices, LONGEST low, LONGEST high)
8166 {
8167 int j;
8168 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8169 int choice_pos, expr_pc;
8170 int is_array = ada_is_direct_array_type (value_type (lhs));
8171
8172 choice_pos = *pos += 3;
8173
8174 for (j = 0; j < n_choices; j += 1)
8175 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8176 expr_pc = *pos;
8177 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8178
8179 for (j = 0; j < n_choices; j += 1)
8180 {
8181 LONGEST lower, upper;
8182 enum exp_opcode op = exp->elts[choice_pos].opcode;
8183 if (op == OP_DISCRETE_RANGE)
8184 {
8185 choice_pos += 1;
8186 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8187 EVAL_NORMAL));
8188 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8189 EVAL_NORMAL));
8190 }
8191 else if (is_array)
8192 {
8193 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8194 EVAL_NORMAL));
8195 upper = lower;
8196 }
8197 else
8198 {
8199 int ind;
8200 char *name;
8201 switch (op)
8202 {
8203 case OP_NAME:
8204 name = &exp->elts[choice_pos + 2].string;
8205 break;
8206 case OP_VAR_VALUE:
8207 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8208 break;
8209 default:
8210 error (_("Invalid record component association."));
8211 }
8212 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8213 ind = 0;
8214 if (! find_struct_field (name, value_type (lhs), 0,
8215 NULL, NULL, NULL, NULL, &ind))
8216 error (_("Unknown component name: %s."), name);
8217 lower = upper = ind;
8218 }
8219
8220 if (lower <= upper && (lower < low || upper > high))
8221 error (_("Index in component association out of bounds."));
8222
8223 add_component_interval (lower, upper, indices, num_indices,
8224 max_indices);
8225 while (lower <= upper)
8226 {
8227 int pos1;
8228 pos1 = expr_pc;
8229 assign_component (container, lhs, lower, exp, &pos1);
8230 lower += 1;
8231 }
8232 }
8233 }
8234
8235 /* Assign the value of the expression in the OP_OTHERS construct in
8236 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8237 have not been previously assigned. The index intervals already assigned
8238 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
8239 OP_OTHERS clause. CONTAINER is as for assign_aggregate*/
8240 static void
8241 aggregate_assign_others (struct value *container,
8242 struct value *lhs, struct expression *exp,
8243 int *pos, LONGEST *indices, int num_indices,
8244 LONGEST low, LONGEST high)
8245 {
8246 int i;
8247 int expr_pc = *pos+1;
8248
8249 for (i = 0; i < num_indices - 2; i += 2)
8250 {
8251 LONGEST ind;
8252 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
8253 {
8254 int pos;
8255 pos = expr_pc;
8256 assign_component (container, lhs, ind, exp, &pos);
8257 }
8258 }
8259 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8260 }
8261
8262 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
8263 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
8264 modifying *SIZE as needed. It is an error if *SIZE exceeds
8265 MAX_SIZE. The resulting intervals do not overlap. */
8266 static void
8267 add_component_interval (LONGEST low, LONGEST high,
8268 LONGEST* indices, int *size, int max_size)
8269 {
8270 int i, j;
8271 for (i = 0; i < *size; i += 2) {
8272 if (high >= indices[i] && low <= indices[i + 1])
8273 {
8274 int kh;
8275 for (kh = i + 2; kh < *size; kh += 2)
8276 if (high < indices[kh])
8277 break;
8278 if (low < indices[i])
8279 indices[i] = low;
8280 indices[i + 1] = indices[kh - 1];
8281 if (high > indices[i + 1])
8282 indices[i + 1] = high;
8283 memcpy (indices + i + 2, indices + kh, *size - kh);
8284 *size -= kh - i - 2;
8285 return;
8286 }
8287 else if (high < indices[i])
8288 break;
8289 }
8290
8291 if (*size == max_size)
8292 error (_("Internal error: miscounted aggregate components."));
8293 *size += 2;
8294 for (j = *size-1; j >= i+2; j -= 1)
8295 indices[j] = indices[j - 2];
8296 indices[i] = low;
8297 indices[i + 1] = high;
8298 }
8299
8300 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
8301 is different. */
8302
8303 static struct value *
8304 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
8305 {
8306 if (type == ada_check_typedef (value_type (arg2)))
8307 return arg2;
8308
8309 if (ada_is_fixed_point_type (type))
8310 return (cast_to_fixed (type, arg2));
8311
8312 if (ada_is_fixed_point_type (value_type (arg2)))
8313 return cast_from_fixed (type, arg2);
8314
8315 return value_cast (type, arg2);
8316 }
8317
8318 static struct value *
8319 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
8320 int *pos, enum noside noside)
8321 {
8322 enum exp_opcode op;
8323 int tem, tem2, tem3;
8324 int pc;
8325 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
8326 struct type *type;
8327 int nargs, oplen;
8328 struct value **argvec;
8329
8330 pc = *pos;
8331 *pos += 1;
8332 op = exp->elts[pc].opcode;
8333
8334 switch (op)
8335 {
8336 default:
8337 *pos -= 1;
8338 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8339 arg1 = unwrap_value (arg1);
8340
8341 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
8342 then we need to perform the conversion manually, because
8343 evaluate_subexp_standard doesn't do it. This conversion is
8344 necessary in Ada because the different kinds of float/fixed
8345 types in Ada have different representations.
8346
8347 Similarly, we need to perform the conversion from OP_LONG
8348 ourselves. */
8349 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
8350 arg1 = ada_value_cast (expect_type, arg1, noside);
8351
8352 return arg1;
8353
8354 case OP_STRING:
8355 {
8356 struct value *result;
8357 *pos -= 1;
8358 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
8359 /* The result type will have code OP_STRING, bashed there from
8360 OP_ARRAY. Bash it back. */
8361 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
8362 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
8363 return result;
8364 }
8365
8366 case UNOP_CAST:
8367 (*pos) += 2;
8368 type = exp->elts[pc + 1].type;
8369 arg1 = evaluate_subexp (type, exp, pos, noside);
8370 if (noside == EVAL_SKIP)
8371 goto nosideret;
8372 arg1 = ada_value_cast (type, arg1, noside);
8373 return arg1;
8374
8375 case UNOP_QUAL:
8376 (*pos) += 2;
8377 type = exp->elts[pc + 1].type;
8378 return ada_evaluate_subexp (type, exp, pos, noside);
8379
8380 case BINOP_ASSIGN:
8381 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8382 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8383 {
8384 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
8385 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8386 return arg1;
8387 return ada_value_assign (arg1, arg1);
8388 }
8389 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
8390 except if the lhs of our assignment is a convenience variable.
8391 In the case of assigning to a convenience variable, the lhs
8392 should be exactly the result of the evaluation of the rhs. */
8393 type = value_type (arg1);
8394 if (VALUE_LVAL (arg1) == lval_internalvar)
8395 type = NULL;
8396 arg2 = evaluate_subexp (type, exp, pos, noside);
8397 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8398 return arg1;
8399 if (ada_is_fixed_point_type (value_type (arg1)))
8400 arg2 = cast_to_fixed (value_type (arg1), arg2);
8401 else if (ada_is_fixed_point_type (value_type (arg2)))
8402 error
8403 (_("Fixed-point values must be assigned to fixed-point variables"));
8404 else
8405 arg2 = coerce_for_assign (value_type (arg1), arg2);
8406 return ada_value_assign (arg1, arg2);
8407
8408 case BINOP_ADD:
8409 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8410 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8411 if (noside == EVAL_SKIP)
8412 goto nosideret;
8413 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
8414 return (value_from_longest
8415 (value_type (arg1),
8416 value_as_long (arg1) + value_as_long (arg2)));
8417 if ((ada_is_fixed_point_type (value_type (arg1))
8418 || ada_is_fixed_point_type (value_type (arg2)))
8419 && value_type (arg1) != value_type (arg2))
8420 error (_("Operands of fixed-point addition must have the same type"));
8421 /* Do the addition, and cast the result to the type of the first
8422 argument. We cannot cast the result to a reference type, so if
8423 ARG1 is a reference type, find its underlying type. */
8424 type = value_type (arg1);
8425 while (TYPE_CODE (type) == TYPE_CODE_REF)
8426 type = TYPE_TARGET_TYPE (type);
8427 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8428 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
8429
8430 case BINOP_SUB:
8431 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8432 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8433 if (noside == EVAL_SKIP)
8434 goto nosideret;
8435 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
8436 return (value_from_longest
8437 (value_type (arg1),
8438 value_as_long (arg1) - value_as_long (arg2)));
8439 if ((ada_is_fixed_point_type (value_type (arg1))
8440 || ada_is_fixed_point_type (value_type (arg2)))
8441 && value_type (arg1) != value_type (arg2))
8442 error (_("Operands of fixed-point subtraction must have the same type"));
8443 /* Do the substraction, and cast the result to the type of the first
8444 argument. We cannot cast the result to a reference type, so if
8445 ARG1 is a reference type, find its underlying type. */
8446 type = value_type (arg1);
8447 while (TYPE_CODE (type) == TYPE_CODE_REF)
8448 type = TYPE_TARGET_TYPE (type);
8449 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8450 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
8451
8452 case BINOP_MUL:
8453 case BINOP_DIV:
8454 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8455 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8456 if (noside == EVAL_SKIP)
8457 goto nosideret;
8458 else if (noside == EVAL_AVOID_SIDE_EFFECTS
8459 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
8460 return value_zero (value_type (arg1), not_lval);
8461 else
8462 {
8463 type = builtin_type (exp->gdbarch)->builtin_double;
8464 if (ada_is_fixed_point_type (value_type (arg1)))
8465 arg1 = cast_from_fixed (type, arg1);
8466 if (ada_is_fixed_point_type (value_type (arg2)))
8467 arg2 = cast_from_fixed (type, arg2);
8468 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8469 return ada_value_binop (arg1, arg2, op);
8470 }
8471
8472 case BINOP_REM:
8473 case BINOP_MOD:
8474 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8475 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8476 if (noside == EVAL_SKIP)
8477 goto nosideret;
8478 else if (noside == EVAL_AVOID_SIDE_EFFECTS
8479 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
8480 return value_zero (value_type (arg1), not_lval);
8481 else
8482 {
8483 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8484 return ada_value_binop (arg1, arg2, op);
8485 }
8486
8487 case BINOP_EQUAL:
8488 case BINOP_NOTEQUAL:
8489 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8490 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
8491 if (noside == EVAL_SKIP)
8492 goto nosideret;
8493 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8494 tem = 0;
8495 else
8496 {
8497 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8498 tem = ada_value_equal (arg1, arg2);
8499 }
8500 if (op == BINOP_NOTEQUAL)
8501 tem = !tem;
8502 type = language_bool_type (exp->language_defn, exp->gdbarch);
8503 return value_from_longest (type, (LONGEST) tem);
8504
8505 case UNOP_NEG:
8506 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8507 if (noside == EVAL_SKIP)
8508 goto nosideret;
8509 else if (ada_is_fixed_point_type (value_type (arg1)))
8510 return value_cast (value_type (arg1), value_neg (arg1));
8511 else
8512 {
8513 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
8514 return value_neg (arg1);
8515 }
8516
8517 case BINOP_LOGICAL_AND:
8518 case BINOP_LOGICAL_OR:
8519 case UNOP_LOGICAL_NOT:
8520 {
8521 struct value *val;
8522
8523 *pos -= 1;
8524 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8525 type = language_bool_type (exp->language_defn, exp->gdbarch);
8526 return value_cast (type, val);
8527 }
8528
8529 case BINOP_BITWISE_AND:
8530 case BINOP_BITWISE_IOR:
8531 case BINOP_BITWISE_XOR:
8532 {
8533 struct value *val;
8534
8535 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8536 *pos = pc;
8537 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8538
8539 return value_cast (value_type (arg1), val);
8540 }
8541
8542 case OP_VAR_VALUE:
8543 *pos -= 1;
8544
8545 if (noside == EVAL_SKIP)
8546 {
8547 *pos += 4;
8548 goto nosideret;
8549 }
8550 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
8551 /* Only encountered when an unresolved symbol occurs in a
8552 context other than a function call, in which case, it is
8553 invalid. */
8554 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8555 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
8556 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8557 {
8558 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
8559 if (ada_is_tagged_type (type, 0))
8560 {
8561 /* Tagged types are a little special in the fact that the real
8562 type is dynamic and can only be determined by inspecting the
8563 object's tag. This means that we need to get the object's
8564 value first (EVAL_NORMAL) and then extract the actual object
8565 type from its tag.
8566
8567 Note that we cannot skip the final step where we extract
8568 the object type from its tag, because the EVAL_NORMAL phase
8569 results in dynamic components being resolved into fixed ones.
8570 This can cause problems when trying to print the type
8571 description of tagged types whose parent has a dynamic size:
8572 We use the type name of the "_parent" component in order
8573 to print the name of the ancestor type in the type description.
8574 If that component had a dynamic size, the resolution into
8575 a fixed type would result in the loss of that type name,
8576 thus preventing us from printing the name of the ancestor
8577 type in the type description. */
8578 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
8579 return value_zero (type_from_tag (ada_value_tag (arg1)), not_lval);
8580 }
8581
8582 *pos += 4;
8583 return value_zero
8584 (to_static_fixed_type
8585 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
8586 not_lval);
8587 }
8588 else
8589 {
8590 arg1 =
8591 unwrap_value (evaluate_subexp_standard
8592 (expect_type, exp, pos, noside));
8593 return ada_to_fixed_value (arg1);
8594 }
8595
8596 case OP_FUNCALL:
8597 (*pos) += 2;
8598
8599 /* Allocate arg vector, including space for the function to be
8600 called in argvec[0] and a terminating NULL. */
8601 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8602 argvec =
8603 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
8604
8605 if (exp->elts[*pos].opcode == OP_VAR_VALUE
8606 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
8607 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8608 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
8609 else
8610 {
8611 for (tem = 0; tem <= nargs; tem += 1)
8612 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8613 argvec[tem] = 0;
8614
8615 if (noside == EVAL_SKIP)
8616 goto nosideret;
8617 }
8618
8619 if (ada_is_packed_array_type (desc_base_type (value_type (argvec[0]))))
8620 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
8621 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
8622 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
8623 && VALUE_LVAL (argvec[0]) == lval_memory))
8624 argvec[0] = value_addr (argvec[0]);
8625
8626 type = ada_check_typedef (value_type (argvec[0]));
8627 if (TYPE_CODE (type) == TYPE_CODE_PTR)
8628 {
8629 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
8630 {
8631 case TYPE_CODE_FUNC:
8632 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8633 break;
8634 case TYPE_CODE_ARRAY:
8635 break;
8636 case TYPE_CODE_STRUCT:
8637 if (noside != EVAL_AVOID_SIDE_EFFECTS)
8638 argvec[0] = ada_value_ind (argvec[0]);
8639 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8640 break;
8641 default:
8642 error (_("cannot subscript or call something of type `%s'"),
8643 ada_type_name (value_type (argvec[0])));
8644 break;
8645 }
8646 }
8647
8648 switch (TYPE_CODE (type))
8649 {
8650 case TYPE_CODE_FUNC:
8651 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8652 return allocate_value (TYPE_TARGET_TYPE (type));
8653 return call_function_by_hand (argvec[0], nargs, argvec + 1);
8654 case TYPE_CODE_STRUCT:
8655 {
8656 int arity;
8657
8658 arity = ada_array_arity (type);
8659 type = ada_array_element_type (type, nargs);
8660 if (type == NULL)
8661 error (_("cannot subscript or call a record"));
8662 if (arity != nargs)
8663 error (_("wrong number of subscripts; expecting %d"), arity);
8664 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8665 return value_zero (ada_aligned_type (type), lval_memory);
8666 return
8667 unwrap_value (ada_value_subscript
8668 (argvec[0], nargs, argvec + 1));
8669 }
8670 case TYPE_CODE_ARRAY:
8671 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8672 {
8673 type = ada_array_element_type (type, nargs);
8674 if (type == NULL)
8675 error (_("element type of array unknown"));
8676 else
8677 return value_zero (ada_aligned_type (type), lval_memory);
8678 }
8679 return
8680 unwrap_value (ada_value_subscript
8681 (ada_coerce_to_simple_array (argvec[0]),
8682 nargs, argvec + 1));
8683 case TYPE_CODE_PTR: /* Pointer to array */
8684 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
8685 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8686 {
8687 type = ada_array_element_type (type, nargs);
8688 if (type == NULL)
8689 error (_("element type of array unknown"));
8690 else
8691 return value_zero (ada_aligned_type (type), lval_memory);
8692 }
8693 return
8694 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
8695 nargs, argvec + 1));
8696
8697 default:
8698 error (_("Attempt to index or call something other than an "
8699 "array or function"));
8700 }
8701
8702 case TERNOP_SLICE:
8703 {
8704 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8705 struct value *low_bound_val =
8706 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8707 struct value *high_bound_val =
8708 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8709 LONGEST low_bound;
8710 LONGEST high_bound;
8711 low_bound_val = coerce_ref (low_bound_val);
8712 high_bound_val = coerce_ref (high_bound_val);
8713 low_bound = pos_atr (low_bound_val);
8714 high_bound = pos_atr (high_bound_val);
8715
8716 if (noside == EVAL_SKIP)
8717 goto nosideret;
8718
8719 /* If this is a reference to an aligner type, then remove all
8720 the aligners. */
8721 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8722 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
8723 TYPE_TARGET_TYPE (value_type (array)) =
8724 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
8725
8726 if (ada_is_packed_array_type (value_type (array)))
8727 error (_("cannot slice a packed array"));
8728
8729 /* If this is a reference to an array or an array lvalue,
8730 convert to a pointer. */
8731 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8732 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
8733 && VALUE_LVAL (array) == lval_memory))
8734 array = value_addr (array);
8735
8736 if (noside == EVAL_AVOID_SIDE_EFFECTS
8737 && ada_is_array_descriptor_type (ada_check_typedef
8738 (value_type (array))))
8739 return empty_array (ada_type_of_array (array, 0), low_bound);
8740
8741 array = ada_coerce_to_simple_array_ptr (array);
8742
8743 /* If we have more than one level of pointer indirection,
8744 dereference the value until we get only one level. */
8745 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
8746 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
8747 == TYPE_CODE_PTR))
8748 array = value_ind (array);
8749
8750 /* Make sure we really do have an array type before going further,
8751 to avoid a SEGV when trying to get the index type or the target
8752 type later down the road if the debug info generated by
8753 the compiler is incorrect or incomplete. */
8754 if (!ada_is_simple_array_type (value_type (array)))
8755 error (_("cannot take slice of non-array"));
8756
8757 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
8758 {
8759 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
8760 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
8761 low_bound);
8762 else
8763 {
8764 struct type *arr_type0 =
8765 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
8766 NULL, 1);
8767 return ada_value_slice_from_ptr (array, arr_type0,
8768 longest_to_int (low_bound),
8769 longest_to_int (high_bound));
8770 }
8771 }
8772 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8773 return array;
8774 else if (high_bound < low_bound)
8775 return empty_array (value_type (array), low_bound);
8776 else
8777 return ada_value_slice (array, longest_to_int (low_bound),
8778 longest_to_int (high_bound));
8779 }
8780
8781 case UNOP_IN_RANGE:
8782 (*pos) += 2;
8783 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8784 type = exp->elts[pc + 1].type;
8785
8786 if (noside == EVAL_SKIP)
8787 goto nosideret;
8788
8789 switch (TYPE_CODE (type))
8790 {
8791 default:
8792 lim_warning (_("Membership test incompletely implemented; "
8793 "always returns true"));
8794 type = language_bool_type (exp->language_defn, exp->gdbarch);
8795 return value_from_longest (type, (LONGEST) 1);
8796
8797 case TYPE_CODE_RANGE:
8798 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
8799 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
8800 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8801 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
8802 type = language_bool_type (exp->language_defn, exp->gdbarch);
8803 return
8804 value_from_longest (type,
8805 (value_less (arg1, arg3)
8806 || value_equal (arg1, arg3))
8807 && (value_less (arg2, arg1)
8808 || value_equal (arg2, arg1)));
8809 }
8810
8811 case BINOP_IN_BOUNDS:
8812 (*pos) += 2;
8813 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8814 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8815
8816 if (noside == EVAL_SKIP)
8817 goto nosideret;
8818
8819 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8820 {
8821 type = language_bool_type (exp->language_defn, exp->gdbarch);
8822 return value_zero (type, not_lval);
8823 }
8824
8825 tem = longest_to_int (exp->elts[pc + 1].longconst);
8826
8827 if (tem < 1 || tem > ada_array_arity (value_type (arg2)))
8828 error (_("invalid dimension number to 'range"));
8829
8830 arg3 = ada_array_bound (arg2, tem, 1);
8831 arg2 = ada_array_bound (arg2, tem, 0);
8832
8833 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8834 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
8835 type = language_bool_type (exp->language_defn, exp->gdbarch);
8836 return
8837 value_from_longest (type,
8838 (value_less (arg1, arg3)
8839 || value_equal (arg1, arg3))
8840 && (value_less (arg2, arg1)
8841 || value_equal (arg2, arg1)));
8842
8843 case TERNOP_IN_RANGE:
8844 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8845 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8846 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8847
8848 if (noside == EVAL_SKIP)
8849 goto nosideret;
8850
8851 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8852 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
8853 type = language_bool_type (exp->language_defn, exp->gdbarch);
8854 return
8855 value_from_longest (type,
8856 (value_less (arg1, arg3)
8857 || value_equal (arg1, arg3))
8858 && (value_less (arg2, arg1)
8859 || value_equal (arg2, arg1)));
8860
8861 case OP_ATR_FIRST:
8862 case OP_ATR_LAST:
8863 case OP_ATR_LENGTH:
8864 {
8865 struct type *type_arg;
8866 if (exp->elts[*pos].opcode == OP_TYPE)
8867 {
8868 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8869 arg1 = NULL;
8870 type_arg = exp->elts[pc + 2].type;
8871 }
8872 else
8873 {
8874 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8875 type_arg = NULL;
8876 }
8877
8878 if (exp->elts[*pos].opcode != OP_LONG)
8879 error (_("Invalid operand to '%s"), ada_attribute_name (op));
8880 tem = longest_to_int (exp->elts[*pos + 2].longconst);
8881 *pos += 4;
8882
8883 if (noside == EVAL_SKIP)
8884 goto nosideret;
8885
8886 if (type_arg == NULL)
8887 {
8888 arg1 = ada_coerce_ref (arg1);
8889
8890 if (ada_is_packed_array_type (value_type (arg1)))
8891 arg1 = ada_coerce_to_simple_array (arg1);
8892
8893 if (tem < 1 || tem > ada_array_arity (value_type (arg1)))
8894 error (_("invalid dimension number to '%s"),
8895 ada_attribute_name (op));
8896
8897 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8898 {
8899 type = ada_index_type (value_type (arg1), tem);
8900 if (type == NULL)
8901 error
8902 (_("attempt to take bound of something that is not an array"));
8903 return allocate_value (type);
8904 }
8905
8906 switch (op)
8907 {
8908 default: /* Should never happen. */
8909 error (_("unexpected attribute encountered"));
8910 case OP_ATR_FIRST:
8911 return ada_array_bound (arg1, tem, 0);
8912 case OP_ATR_LAST:
8913 return ada_array_bound (arg1, tem, 1);
8914 case OP_ATR_LENGTH:
8915 return ada_array_length (arg1, tem);
8916 }
8917 }
8918 else if (discrete_type_p (type_arg))
8919 {
8920 struct type *range_type;
8921 char *name = ada_type_name (type_arg);
8922 range_type = NULL;
8923 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
8924 range_type =
8925 to_fixed_range_type (name, NULL, TYPE_OBJFILE (type_arg));
8926 if (range_type == NULL)
8927 range_type = type_arg;
8928 switch (op)
8929 {
8930 default:
8931 error (_("unexpected attribute encountered"));
8932 case OP_ATR_FIRST:
8933 return value_from_longest
8934 (range_type, discrete_type_low_bound (range_type));
8935 case OP_ATR_LAST:
8936 return value_from_longest
8937 (range_type, discrete_type_high_bound (range_type));
8938 case OP_ATR_LENGTH:
8939 error (_("the 'length attribute applies only to array types"));
8940 }
8941 }
8942 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
8943 error (_("unimplemented type attribute"));
8944 else
8945 {
8946 LONGEST low, high;
8947
8948 if (ada_is_packed_array_type (type_arg))
8949 type_arg = decode_packed_array_type (type_arg);
8950
8951 if (tem < 1 || tem > ada_array_arity (type_arg))
8952 error (_("invalid dimension number to '%s"),
8953 ada_attribute_name (op));
8954
8955 type = ada_index_type (type_arg, tem);
8956 if (type == NULL)
8957 error
8958 (_("attempt to take bound of something that is not an array"));
8959 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8960 return allocate_value (type);
8961
8962 switch (op)
8963 {
8964 default:
8965 error (_("unexpected attribute encountered"));
8966 case OP_ATR_FIRST:
8967 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
8968 return value_from_longest (type, low);
8969 case OP_ATR_LAST:
8970 high = ada_array_bound_from_type (type_arg, tem, 1, &type);
8971 return value_from_longest (type, high);
8972 case OP_ATR_LENGTH:
8973 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
8974 high = ada_array_bound_from_type (type_arg, tem, 1, NULL);
8975 return value_from_longest (type, high - low + 1);
8976 }
8977 }
8978 }
8979
8980 case OP_ATR_TAG:
8981 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8982 if (noside == EVAL_SKIP)
8983 goto nosideret;
8984
8985 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8986 return value_zero (ada_tag_type (arg1), not_lval);
8987
8988 return ada_value_tag (arg1);
8989
8990 case OP_ATR_MIN:
8991 case OP_ATR_MAX:
8992 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8993 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8994 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8995 if (noside == EVAL_SKIP)
8996 goto nosideret;
8997 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8998 return value_zero (value_type (arg1), not_lval);
8999 else
9000 {
9001 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9002 return value_binop (arg1, arg2,
9003 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
9004 }
9005
9006 case OP_ATR_MODULUS:
9007 {
9008 struct type *type_arg = exp->elts[pc + 2].type;
9009 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9010
9011 if (noside == EVAL_SKIP)
9012 goto nosideret;
9013
9014 if (!ada_is_modular_type (type_arg))
9015 error (_("'modulus must be applied to modular type"));
9016
9017 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
9018 ada_modulus (type_arg));
9019 }
9020
9021
9022 case OP_ATR_POS:
9023 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9024 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9025 if (noside == EVAL_SKIP)
9026 goto nosideret;
9027 type = builtin_type (exp->gdbarch)->builtin_int;
9028 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9029 return value_zero (type, not_lval);
9030 else
9031 return value_pos_atr (type, arg1);
9032
9033 case OP_ATR_SIZE:
9034 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9035 type = value_type (arg1);
9036
9037 /* If the argument is a reference, then dereference its type, since
9038 the user is really asking for the size of the actual object,
9039 not the size of the pointer. */
9040 if (TYPE_CODE (type) == TYPE_CODE_REF)
9041 type = TYPE_TARGET_TYPE (type);
9042
9043 if (noside == EVAL_SKIP)
9044 goto nosideret;
9045 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9046 return value_zero (builtin_type_int32, not_lval);
9047 else
9048 return value_from_longest (builtin_type_int32,
9049 TARGET_CHAR_BIT * TYPE_LENGTH (type));
9050
9051 case OP_ATR_VAL:
9052 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9053 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9054 type = exp->elts[pc + 2].type;
9055 if (noside == EVAL_SKIP)
9056 goto nosideret;
9057 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9058 return value_zero (type, not_lval);
9059 else
9060 return value_val_atr (type, arg1);
9061
9062 case BINOP_EXP:
9063 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9064 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9065 if (noside == EVAL_SKIP)
9066 goto nosideret;
9067 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9068 return value_zero (value_type (arg1), not_lval);
9069 else
9070 {
9071 /* For integer exponentiation operations,
9072 only promote the first argument. */
9073 if (is_integral_type (value_type (arg2)))
9074 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9075 else
9076 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9077
9078 return value_binop (arg1, arg2, op);
9079 }
9080
9081 case UNOP_PLUS:
9082 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9083 if (noside == EVAL_SKIP)
9084 goto nosideret;
9085 else
9086 return arg1;
9087
9088 case UNOP_ABS:
9089 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9090 if (noside == EVAL_SKIP)
9091 goto nosideret;
9092 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9093 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
9094 return value_neg (arg1);
9095 else
9096 return arg1;
9097
9098 case UNOP_IND:
9099 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9100 if (noside == EVAL_SKIP)
9101 goto nosideret;
9102 type = ada_check_typedef (value_type (arg1));
9103 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9104 {
9105 if (ada_is_array_descriptor_type (type))
9106 /* GDB allows dereferencing GNAT array descriptors. */
9107 {
9108 struct type *arrType = ada_type_of_array (arg1, 0);
9109 if (arrType == NULL)
9110 error (_("Attempt to dereference null array pointer."));
9111 return value_at_lazy (arrType, 0);
9112 }
9113 else if (TYPE_CODE (type) == TYPE_CODE_PTR
9114 || TYPE_CODE (type) == TYPE_CODE_REF
9115 /* In C you can dereference an array to get the 1st elt. */
9116 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
9117 {
9118 type = to_static_fixed_type
9119 (ada_aligned_type
9120 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
9121 check_size (type);
9122 return value_zero (type, lval_memory);
9123 }
9124 else if (TYPE_CODE (type) == TYPE_CODE_INT)
9125 {
9126 /* GDB allows dereferencing an int. */
9127 if (expect_type == NULL)
9128 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
9129 lval_memory);
9130 else
9131 {
9132 expect_type =
9133 to_static_fixed_type (ada_aligned_type (expect_type));
9134 return value_zero (expect_type, lval_memory);
9135 }
9136 }
9137 else
9138 error (_("Attempt to take contents of a non-pointer value."));
9139 }
9140 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
9141 type = ada_check_typedef (value_type (arg1));
9142
9143 if (TYPE_CODE (type) == TYPE_CODE_INT)
9144 /* GDB allows dereferencing an int. If we were given
9145 the expect_type, then use that as the target type.
9146 Otherwise, assume that the target type is an int. */
9147 {
9148 if (expect_type != NULL)
9149 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
9150 arg1));
9151 else
9152 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
9153 (CORE_ADDR) value_as_address (arg1));
9154 }
9155
9156 if (ada_is_array_descriptor_type (type))
9157 /* GDB allows dereferencing GNAT array descriptors. */
9158 return ada_coerce_to_simple_array (arg1);
9159 else
9160 return ada_value_ind (arg1);
9161
9162 case STRUCTOP_STRUCT:
9163 tem = longest_to_int (exp->elts[pc + 1].longconst);
9164 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
9165 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9166 if (noside == EVAL_SKIP)
9167 goto nosideret;
9168 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9169 {
9170 struct type *type1 = value_type (arg1);
9171 if (ada_is_tagged_type (type1, 1))
9172 {
9173 type = ada_lookup_struct_elt_type (type1,
9174 &exp->elts[pc + 2].string,
9175 1, 1, NULL);
9176 if (type == NULL)
9177 /* In this case, we assume that the field COULD exist
9178 in some extension of the type. Return an object of
9179 "type" void, which will match any formal
9180 (see ada_type_match). */
9181 return value_zero (builtin_type_void, lval_memory);
9182 }
9183 else
9184 type =
9185 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
9186 0, NULL);
9187
9188 return value_zero (ada_aligned_type (type), lval_memory);
9189 }
9190 else
9191 return
9192 ada_to_fixed_value (unwrap_value
9193 (ada_value_struct_elt
9194 (arg1, &exp->elts[pc + 2].string, 0)));
9195 case OP_TYPE:
9196 /* The value is not supposed to be used. This is here to make it
9197 easier to accommodate expressions that contain types. */
9198 (*pos) += 2;
9199 if (noside == EVAL_SKIP)
9200 goto nosideret;
9201 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9202 return allocate_value (exp->elts[pc + 1].type);
9203 else
9204 error (_("Attempt to use a type name as an expression"));
9205
9206 case OP_AGGREGATE:
9207 case OP_CHOICES:
9208 case OP_OTHERS:
9209 case OP_DISCRETE_RANGE:
9210 case OP_POSITIONAL:
9211 case OP_NAME:
9212 if (noside == EVAL_NORMAL)
9213 switch (op)
9214 {
9215 case OP_NAME:
9216 error (_("Undefined name, ambiguous name, or renaming used in "
9217 "component association: %s."), &exp->elts[pc+2].string);
9218 case OP_AGGREGATE:
9219 error (_("Aggregates only allowed on the right of an assignment"));
9220 default:
9221 internal_error (__FILE__, __LINE__, _("aggregate apparently mangled"));
9222 }
9223
9224 ada_forward_operator_length (exp, pc, &oplen, &nargs);
9225 *pos += oplen - 1;
9226 for (tem = 0; tem < nargs; tem += 1)
9227 ada_evaluate_subexp (NULL, exp, pos, noside);
9228 goto nosideret;
9229 }
9230
9231 nosideret:
9232 return value_from_longest (builtin_type_int8, (LONGEST) 1);
9233 }
9234 \f
9235
9236 /* Fixed point */
9237
9238 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
9239 type name that encodes the 'small and 'delta information.
9240 Otherwise, return NULL. */
9241
9242 static const char *
9243 fixed_type_info (struct type *type)
9244 {
9245 const char *name = ada_type_name (type);
9246 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
9247
9248 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
9249 {
9250 const char *tail = strstr (name, "___XF_");
9251 if (tail == NULL)
9252 return NULL;
9253 else
9254 return tail + 5;
9255 }
9256 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
9257 return fixed_type_info (TYPE_TARGET_TYPE (type));
9258 else
9259 return NULL;
9260 }
9261
9262 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
9263
9264 int
9265 ada_is_fixed_point_type (struct type *type)
9266 {
9267 return fixed_type_info (type) != NULL;
9268 }
9269
9270 /* Return non-zero iff TYPE represents a System.Address type. */
9271
9272 int
9273 ada_is_system_address_type (struct type *type)
9274 {
9275 return (TYPE_NAME (type)
9276 && strcmp (TYPE_NAME (type), "system__address") == 0);
9277 }
9278
9279 /* Assuming that TYPE is the representation of an Ada fixed-point
9280 type, return its delta, or -1 if the type is malformed and the
9281 delta cannot be determined. */
9282
9283 DOUBLEST
9284 ada_delta (struct type *type)
9285 {
9286 const char *encoding = fixed_type_info (type);
9287 long num, den;
9288
9289 if (sscanf (encoding, "_%ld_%ld", &num, &den) < 2)
9290 return -1.0;
9291 else
9292 return (DOUBLEST) num / (DOUBLEST) den;
9293 }
9294
9295 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
9296 factor ('SMALL value) associated with the type. */
9297
9298 static DOUBLEST
9299 scaling_factor (struct type *type)
9300 {
9301 const char *encoding = fixed_type_info (type);
9302 unsigned long num0, den0, num1, den1;
9303 int n;
9304
9305 n = sscanf (encoding, "_%lu_%lu_%lu_%lu", &num0, &den0, &num1, &den1);
9306
9307 if (n < 2)
9308 return 1.0;
9309 else if (n == 4)
9310 return (DOUBLEST) num1 / (DOUBLEST) den1;
9311 else
9312 return (DOUBLEST) num0 / (DOUBLEST) den0;
9313 }
9314
9315
9316 /* Assuming that X is the representation of a value of fixed-point
9317 type TYPE, return its floating-point equivalent. */
9318
9319 DOUBLEST
9320 ada_fixed_to_float (struct type *type, LONGEST x)
9321 {
9322 return (DOUBLEST) x *scaling_factor (type);
9323 }
9324
9325 /* The representation of a fixed-point value of type TYPE
9326 corresponding to the value X. */
9327
9328 LONGEST
9329 ada_float_to_fixed (struct type *type, DOUBLEST x)
9330 {
9331 return (LONGEST) (x / scaling_factor (type) + 0.5);
9332 }
9333
9334
9335 /* VAX floating formats */
9336
9337 /* Non-zero iff TYPE represents one of the special VAX floating-point
9338 types. */
9339
9340 int
9341 ada_is_vax_floating_type (struct type *type)
9342 {
9343 int name_len =
9344 (ada_type_name (type) == NULL) ? 0 : strlen (ada_type_name (type));
9345 return
9346 name_len > 6
9347 && (TYPE_CODE (type) == TYPE_CODE_INT
9348 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9349 && strncmp (ada_type_name (type) + name_len - 6, "___XF", 5) == 0;
9350 }
9351
9352 /* The type of special VAX floating-point type this is, assuming
9353 ada_is_vax_floating_point. */
9354
9355 int
9356 ada_vax_float_type_suffix (struct type *type)
9357 {
9358 return ada_type_name (type)[strlen (ada_type_name (type)) - 1];
9359 }
9360
9361 /* A value representing the special debugging function that outputs
9362 VAX floating-point values of the type represented by TYPE. Assumes
9363 ada_is_vax_floating_type (TYPE). */
9364
9365 struct value *
9366 ada_vax_float_print_function (struct type *type)
9367 {
9368 switch (ada_vax_float_type_suffix (type))
9369 {
9370 case 'F':
9371 return get_var_value ("DEBUG_STRING_F", 0);
9372 case 'D':
9373 return get_var_value ("DEBUG_STRING_D", 0);
9374 case 'G':
9375 return get_var_value ("DEBUG_STRING_G", 0);
9376 default:
9377 error (_("invalid VAX floating-point type"));
9378 }
9379 }
9380 \f
9381
9382 /* Range types */
9383
9384 /* Scan STR beginning at position K for a discriminant name, and
9385 return the value of that discriminant field of DVAL in *PX. If
9386 PNEW_K is not null, put the position of the character beyond the
9387 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
9388 not alter *PX and *PNEW_K if unsuccessful. */
9389
9390 static int
9391 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
9392 int *pnew_k)
9393 {
9394 static char *bound_buffer = NULL;
9395 static size_t bound_buffer_len = 0;
9396 char *bound;
9397 char *pend;
9398 struct value *bound_val;
9399
9400 if (dval == NULL || str == NULL || str[k] == '\0')
9401 return 0;
9402
9403 pend = strstr (str + k, "__");
9404 if (pend == NULL)
9405 {
9406 bound = str + k;
9407 k += strlen (bound);
9408 }
9409 else
9410 {
9411 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
9412 bound = bound_buffer;
9413 strncpy (bound_buffer, str + k, pend - (str + k));
9414 bound[pend - (str + k)] = '\0';
9415 k = pend - str;
9416 }
9417
9418 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
9419 if (bound_val == NULL)
9420 return 0;
9421
9422 *px = value_as_long (bound_val);
9423 if (pnew_k != NULL)
9424 *pnew_k = k;
9425 return 1;
9426 }
9427
9428 /* Value of variable named NAME in the current environment. If
9429 no such variable found, then if ERR_MSG is null, returns 0, and
9430 otherwise causes an error with message ERR_MSG. */
9431
9432 static struct value *
9433 get_var_value (char *name, char *err_msg)
9434 {
9435 struct ada_symbol_info *syms;
9436 int nsyms;
9437
9438 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
9439 &syms);
9440
9441 if (nsyms != 1)
9442 {
9443 if (err_msg == NULL)
9444 return 0;
9445 else
9446 error (("%s"), err_msg);
9447 }
9448
9449 return value_of_variable (syms[0].sym, syms[0].block);
9450 }
9451
9452 /* Value of integer variable named NAME in the current environment. If
9453 no such variable found, returns 0, and sets *FLAG to 0. If
9454 successful, sets *FLAG to 1. */
9455
9456 LONGEST
9457 get_int_var_value (char *name, int *flag)
9458 {
9459 struct value *var_val = get_var_value (name, 0);
9460
9461 if (var_val == 0)
9462 {
9463 if (flag != NULL)
9464 *flag = 0;
9465 return 0;
9466 }
9467 else
9468 {
9469 if (flag != NULL)
9470 *flag = 1;
9471 return value_as_long (var_val);
9472 }
9473 }
9474
9475
9476 /* Return a range type whose base type is that of the range type named
9477 NAME in the current environment, and whose bounds are calculated
9478 from NAME according to the GNAT range encoding conventions.
9479 Extract discriminant values, if needed, from DVAL. If a new type
9480 must be created, allocate in OBJFILE's space. The bounds
9481 information, in general, is encoded in NAME, the base type given in
9482 the named range type. */
9483
9484 static struct type *
9485 to_fixed_range_type (char *name, struct value *dval, struct objfile *objfile)
9486 {
9487 struct type *raw_type = ada_find_any_type (name);
9488 struct type *base_type;
9489 char *subtype_info;
9490
9491 if (raw_type == NULL)
9492 base_type = builtin_type_int32;
9493 else if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
9494 base_type = TYPE_TARGET_TYPE (raw_type);
9495 else
9496 base_type = raw_type;
9497
9498 subtype_info = strstr (name, "___XD");
9499 if (subtype_info == NULL)
9500 {
9501 LONGEST L = discrete_type_low_bound (raw_type);
9502 LONGEST U = discrete_type_high_bound (raw_type);
9503 if (L < INT_MIN || U > INT_MAX)
9504 return raw_type;
9505 else
9506 return create_range_type (alloc_type (objfile), raw_type,
9507 discrete_type_low_bound (raw_type),
9508 discrete_type_high_bound (raw_type));
9509 }
9510 else
9511 {
9512 static char *name_buf = NULL;
9513 static size_t name_len = 0;
9514 int prefix_len = subtype_info - name;
9515 LONGEST L, U;
9516 struct type *type;
9517 char *bounds_str;
9518 int n;
9519
9520 GROW_VECT (name_buf, name_len, prefix_len + 5);
9521 strncpy (name_buf, name, prefix_len);
9522 name_buf[prefix_len] = '\0';
9523
9524 subtype_info += 5;
9525 bounds_str = strchr (subtype_info, '_');
9526 n = 1;
9527
9528 if (*subtype_info == 'L')
9529 {
9530 if (!ada_scan_number (bounds_str, n, &L, &n)
9531 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
9532 return raw_type;
9533 if (bounds_str[n] == '_')
9534 n += 2;
9535 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
9536 n += 1;
9537 subtype_info += 1;
9538 }
9539 else
9540 {
9541 int ok;
9542 strcpy (name_buf + prefix_len, "___L");
9543 L = get_int_var_value (name_buf, &ok);
9544 if (!ok)
9545 {
9546 lim_warning (_("Unknown lower bound, using 1."));
9547 L = 1;
9548 }
9549 }
9550
9551 if (*subtype_info == 'U')
9552 {
9553 if (!ada_scan_number (bounds_str, n, &U, &n)
9554 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
9555 return raw_type;
9556 }
9557 else
9558 {
9559 int ok;
9560 strcpy (name_buf + prefix_len, "___U");
9561 U = get_int_var_value (name_buf, &ok);
9562 if (!ok)
9563 {
9564 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
9565 U = L;
9566 }
9567 }
9568
9569 if (objfile == NULL)
9570 objfile = TYPE_OBJFILE (base_type);
9571 type = create_range_type (alloc_type (objfile), base_type, L, U);
9572 TYPE_NAME (type) = name;
9573 return type;
9574 }
9575 }
9576
9577 /* True iff NAME is the name of a range type. */
9578
9579 int
9580 ada_is_range_type_name (const char *name)
9581 {
9582 return (name != NULL && strstr (name, "___XD"));
9583 }
9584 \f
9585
9586 /* Modular types */
9587
9588 /* True iff TYPE is an Ada modular type. */
9589
9590 int
9591 ada_is_modular_type (struct type *type)
9592 {
9593 struct type *subranged_type = base_type (type);
9594
9595 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
9596 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
9597 && TYPE_UNSIGNED (subranged_type));
9598 }
9599
9600 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
9601
9602 ULONGEST
9603 ada_modulus (struct type * type)
9604 {
9605 return (ULONGEST) (unsigned int) TYPE_HIGH_BOUND (type) + 1;
9606 }
9607 \f
9608
9609 /* Ada exception catchpoint support:
9610 ---------------------------------
9611
9612 We support 3 kinds of exception catchpoints:
9613 . catchpoints on Ada exceptions
9614 . catchpoints on unhandled Ada exceptions
9615 . catchpoints on failed assertions
9616
9617 Exceptions raised during failed assertions, or unhandled exceptions
9618 could perfectly be caught with the general catchpoint on Ada exceptions.
9619 However, we can easily differentiate these two special cases, and having
9620 the option to distinguish these two cases from the rest can be useful
9621 to zero-in on certain situations.
9622
9623 Exception catchpoints are a specialized form of breakpoint,
9624 since they rely on inserting breakpoints inside known routines
9625 of the GNAT runtime. The implementation therefore uses a standard
9626 breakpoint structure of the BP_BREAKPOINT type, but with its own set
9627 of breakpoint_ops.
9628
9629 Support in the runtime for exception catchpoints have been changed
9630 a few times already, and these changes affect the implementation
9631 of these catchpoints. In order to be able to support several
9632 variants of the runtime, we use a sniffer that will determine
9633 the runtime variant used by the program being debugged.
9634
9635 At this time, we do not support the use of conditions on Ada exception
9636 catchpoints. The COND and COND_STRING fields are therefore set
9637 to NULL (most of the time, see below).
9638
9639 Conditions where EXP_STRING, COND, and COND_STRING are used:
9640
9641 When a user specifies the name of a specific exception in the case
9642 of catchpoints on Ada exceptions, we store the name of that exception
9643 in the EXP_STRING. We then translate this request into an actual
9644 condition stored in COND_STRING, and then parse it into an expression
9645 stored in COND. */
9646
9647 /* The different types of catchpoints that we introduced for catching
9648 Ada exceptions. */
9649
9650 enum exception_catchpoint_kind
9651 {
9652 ex_catch_exception,
9653 ex_catch_exception_unhandled,
9654 ex_catch_assert
9655 };
9656
9657 /* Ada's standard exceptions. */
9658
9659 static char *standard_exc[] = {
9660 "constraint_error",
9661 "program_error",
9662 "storage_error",
9663 "tasking_error"
9664 };
9665
9666 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
9667
9668 /* A structure that describes how to support exception catchpoints
9669 for a given executable. */
9670
9671 struct exception_support_info
9672 {
9673 /* The name of the symbol to break on in order to insert
9674 a catchpoint on exceptions. */
9675 const char *catch_exception_sym;
9676
9677 /* The name of the symbol to break on in order to insert
9678 a catchpoint on unhandled exceptions. */
9679 const char *catch_exception_unhandled_sym;
9680
9681 /* The name of the symbol to break on in order to insert
9682 a catchpoint on failed assertions. */
9683 const char *catch_assert_sym;
9684
9685 /* Assuming that the inferior just triggered an unhandled exception
9686 catchpoint, this function is responsible for returning the address
9687 in inferior memory where the name of that exception is stored.
9688 Return zero if the address could not be computed. */
9689 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
9690 };
9691
9692 static CORE_ADDR ada_unhandled_exception_name_addr (void);
9693 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
9694
9695 /* The following exception support info structure describes how to
9696 implement exception catchpoints with the latest version of the
9697 Ada runtime (as of 2007-03-06). */
9698
9699 static const struct exception_support_info default_exception_support_info =
9700 {
9701 "__gnat_debug_raise_exception", /* catch_exception_sym */
9702 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9703 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9704 ada_unhandled_exception_name_addr
9705 };
9706
9707 /* The following exception support info structure describes how to
9708 implement exception catchpoints with a slightly older version
9709 of the Ada runtime. */
9710
9711 static const struct exception_support_info exception_support_info_fallback =
9712 {
9713 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
9714 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9715 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9716 ada_unhandled_exception_name_addr_from_raise
9717 };
9718
9719 /* For each executable, we sniff which exception info structure to use
9720 and cache it in the following global variable. */
9721
9722 static const struct exception_support_info *exception_info = NULL;
9723
9724 /* Inspect the Ada runtime and determine which exception info structure
9725 should be used to provide support for exception catchpoints.
9726
9727 This function will always set exception_info, or raise an error. */
9728
9729 static void
9730 ada_exception_support_info_sniffer (void)
9731 {
9732 struct symbol *sym;
9733
9734 /* If the exception info is already known, then no need to recompute it. */
9735 if (exception_info != NULL)
9736 return;
9737
9738 /* Check the latest (default) exception support info. */
9739 sym = standard_lookup (default_exception_support_info.catch_exception_sym,
9740 NULL, VAR_DOMAIN);
9741 if (sym != NULL)
9742 {
9743 exception_info = &default_exception_support_info;
9744 return;
9745 }
9746
9747 /* Try our fallback exception suport info. */
9748 sym = standard_lookup (exception_support_info_fallback.catch_exception_sym,
9749 NULL, VAR_DOMAIN);
9750 if (sym != NULL)
9751 {
9752 exception_info = &exception_support_info_fallback;
9753 return;
9754 }
9755
9756 /* Sometimes, it is normal for us to not be able to find the routine
9757 we are looking for. This happens when the program is linked with
9758 the shared version of the GNAT runtime, and the program has not been
9759 started yet. Inform the user of these two possible causes if
9760 applicable. */
9761
9762 if (ada_update_initial_language (language_unknown, NULL) != language_ada)
9763 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
9764
9765 /* If the symbol does not exist, then check that the program is
9766 already started, to make sure that shared libraries have been
9767 loaded. If it is not started, this may mean that the symbol is
9768 in a shared library. */
9769
9770 if (ptid_get_pid (inferior_ptid) == 0)
9771 error (_("Unable to insert catchpoint. Try to start the program first."));
9772
9773 /* At this point, we know that we are debugging an Ada program and
9774 that the inferior has been started, but we still are not able to
9775 find the run-time symbols. That can mean that we are in
9776 configurable run time mode, or that a-except as been optimized
9777 out by the linker... In any case, at this point it is not worth
9778 supporting this feature. */
9779
9780 error (_("Cannot insert catchpoints in this configuration."));
9781 }
9782
9783 /* An observer of "executable_changed" events.
9784 Its role is to clear certain cached values that need to be recomputed
9785 each time a new executable is loaded by GDB. */
9786
9787 static void
9788 ada_executable_changed_observer (void)
9789 {
9790 /* If the executable changed, then it is possible that the Ada runtime
9791 is different. So we need to invalidate the exception support info
9792 cache. */
9793 exception_info = NULL;
9794 }
9795
9796 /* Return the name of the function at PC, NULL if could not find it.
9797 This function only checks the debugging information, not the symbol
9798 table. */
9799
9800 static char *
9801 function_name_from_pc (CORE_ADDR pc)
9802 {
9803 char *func_name;
9804
9805 if (!find_pc_partial_function (pc, &func_name, NULL, NULL))
9806 return NULL;
9807
9808 return func_name;
9809 }
9810
9811 /* True iff FRAME is very likely to be that of a function that is
9812 part of the runtime system. This is all very heuristic, but is
9813 intended to be used as advice as to what frames are uninteresting
9814 to most users. */
9815
9816 static int
9817 is_known_support_routine (struct frame_info *frame)
9818 {
9819 struct symtab_and_line sal;
9820 char *func_name;
9821 int i;
9822
9823 /* If this code does not have any debugging information (no symtab),
9824 This cannot be any user code. */
9825
9826 find_frame_sal (frame, &sal);
9827 if (sal.symtab == NULL)
9828 return 1;
9829
9830 /* If there is a symtab, but the associated source file cannot be
9831 located, then assume this is not user code: Selecting a frame
9832 for which we cannot display the code would not be very helpful
9833 for the user. This should also take care of case such as VxWorks
9834 where the kernel has some debugging info provided for a few units. */
9835
9836 if (symtab_to_fullname (sal.symtab) == NULL)
9837 return 1;
9838
9839 /* Check the unit filename againt the Ada runtime file naming.
9840 We also check the name of the objfile against the name of some
9841 known system libraries that sometimes come with debugging info
9842 too. */
9843
9844 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
9845 {
9846 re_comp (known_runtime_file_name_patterns[i]);
9847 if (re_exec (sal.symtab->filename))
9848 return 1;
9849 if (sal.symtab->objfile != NULL
9850 && re_exec (sal.symtab->objfile->name))
9851 return 1;
9852 }
9853
9854 /* Check whether the function is a GNAT-generated entity. */
9855
9856 func_name = function_name_from_pc (get_frame_address_in_block (frame));
9857 if (func_name == NULL)
9858 return 1;
9859
9860 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
9861 {
9862 re_comp (known_auxiliary_function_name_patterns[i]);
9863 if (re_exec (func_name))
9864 return 1;
9865 }
9866
9867 return 0;
9868 }
9869
9870 /* Find the first frame that contains debugging information and that is not
9871 part of the Ada run-time, starting from FI and moving upward. */
9872
9873 void
9874 ada_find_printable_frame (struct frame_info *fi)
9875 {
9876 for (; fi != NULL; fi = get_prev_frame (fi))
9877 {
9878 if (!is_known_support_routine (fi))
9879 {
9880 select_frame (fi);
9881 break;
9882 }
9883 }
9884
9885 }
9886
9887 /* Assuming that the inferior just triggered an unhandled exception
9888 catchpoint, return the address in inferior memory where the name
9889 of the exception is stored.
9890
9891 Return zero if the address could not be computed. */
9892
9893 static CORE_ADDR
9894 ada_unhandled_exception_name_addr (void)
9895 {
9896 return parse_and_eval_address ("e.full_name");
9897 }
9898
9899 /* Same as ada_unhandled_exception_name_addr, except that this function
9900 should be used when the inferior uses an older version of the runtime,
9901 where the exception name needs to be extracted from a specific frame
9902 several frames up in the callstack. */
9903
9904 static CORE_ADDR
9905 ada_unhandled_exception_name_addr_from_raise (void)
9906 {
9907 int frame_level;
9908 struct frame_info *fi;
9909
9910 /* To determine the name of this exception, we need to select
9911 the frame corresponding to RAISE_SYM_NAME. This frame is
9912 at least 3 levels up, so we simply skip the first 3 frames
9913 without checking the name of their associated function. */
9914 fi = get_current_frame ();
9915 for (frame_level = 0; frame_level < 3; frame_level += 1)
9916 if (fi != NULL)
9917 fi = get_prev_frame (fi);
9918
9919 while (fi != NULL)
9920 {
9921 const char *func_name =
9922 function_name_from_pc (get_frame_address_in_block (fi));
9923 if (func_name != NULL
9924 && strcmp (func_name, exception_info->catch_exception_sym) == 0)
9925 break; /* We found the frame we were looking for... */
9926 fi = get_prev_frame (fi);
9927 }
9928
9929 if (fi == NULL)
9930 return 0;
9931
9932 select_frame (fi);
9933 return parse_and_eval_address ("id.full_name");
9934 }
9935
9936 /* Assuming the inferior just triggered an Ada exception catchpoint
9937 (of any type), return the address in inferior memory where the name
9938 of the exception is stored, if applicable.
9939
9940 Return zero if the address could not be computed, or if not relevant. */
9941
9942 static CORE_ADDR
9943 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
9944 struct breakpoint *b)
9945 {
9946 switch (ex)
9947 {
9948 case ex_catch_exception:
9949 return (parse_and_eval_address ("e.full_name"));
9950 break;
9951
9952 case ex_catch_exception_unhandled:
9953 return exception_info->unhandled_exception_name_addr ();
9954 break;
9955
9956 case ex_catch_assert:
9957 return 0; /* Exception name is not relevant in this case. */
9958 break;
9959
9960 default:
9961 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
9962 break;
9963 }
9964
9965 return 0; /* Should never be reached. */
9966 }
9967
9968 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
9969 any error that ada_exception_name_addr_1 might cause to be thrown.
9970 When an error is intercepted, a warning with the error message is printed,
9971 and zero is returned. */
9972
9973 static CORE_ADDR
9974 ada_exception_name_addr (enum exception_catchpoint_kind ex,
9975 struct breakpoint *b)
9976 {
9977 struct gdb_exception e;
9978 CORE_ADDR result = 0;
9979
9980 TRY_CATCH (e, RETURN_MASK_ERROR)
9981 {
9982 result = ada_exception_name_addr_1 (ex, b);
9983 }
9984
9985 if (e.reason < 0)
9986 {
9987 warning (_("failed to get exception name: %s"), e.message);
9988 return 0;
9989 }
9990
9991 return result;
9992 }
9993
9994 /* Implement the PRINT_IT method in the breakpoint_ops structure
9995 for all exception catchpoint kinds. */
9996
9997 static enum print_stop_action
9998 print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
9999 {
10000 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
10001 char exception_name[256];
10002
10003 if (addr != 0)
10004 {
10005 read_memory (addr, exception_name, sizeof (exception_name) - 1);
10006 exception_name [sizeof (exception_name) - 1] = '\0';
10007 }
10008
10009 ada_find_printable_frame (get_current_frame ());
10010
10011 annotate_catchpoint (b->number);
10012 switch (ex)
10013 {
10014 case ex_catch_exception:
10015 if (addr != 0)
10016 printf_filtered (_("\nCatchpoint %d, %s at "),
10017 b->number, exception_name);
10018 else
10019 printf_filtered (_("\nCatchpoint %d, exception at "), b->number);
10020 break;
10021 case ex_catch_exception_unhandled:
10022 if (addr != 0)
10023 printf_filtered (_("\nCatchpoint %d, unhandled %s at "),
10024 b->number, exception_name);
10025 else
10026 printf_filtered (_("\nCatchpoint %d, unhandled exception at "),
10027 b->number);
10028 break;
10029 case ex_catch_assert:
10030 printf_filtered (_("\nCatchpoint %d, failed assertion at "),
10031 b->number);
10032 break;
10033 }
10034
10035 return PRINT_SRC_AND_LOC;
10036 }
10037
10038 /* Implement the PRINT_ONE method in the breakpoint_ops structure
10039 for all exception catchpoint kinds. */
10040
10041 static void
10042 print_one_exception (enum exception_catchpoint_kind ex,
10043 struct breakpoint *b, CORE_ADDR *last_addr)
10044 {
10045 struct value_print_options opts;
10046
10047 get_user_print_options (&opts);
10048 if (opts.addressprint)
10049 {
10050 annotate_field (4);
10051 ui_out_field_core_addr (uiout, "addr", b->loc->address);
10052 }
10053
10054 annotate_field (5);
10055 *last_addr = b->loc->address;
10056 switch (ex)
10057 {
10058 case ex_catch_exception:
10059 if (b->exp_string != NULL)
10060 {
10061 char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
10062
10063 ui_out_field_string (uiout, "what", msg);
10064 xfree (msg);
10065 }
10066 else
10067 ui_out_field_string (uiout, "what", "all Ada exceptions");
10068
10069 break;
10070
10071 case ex_catch_exception_unhandled:
10072 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
10073 break;
10074
10075 case ex_catch_assert:
10076 ui_out_field_string (uiout, "what", "failed Ada assertions");
10077 break;
10078
10079 default:
10080 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10081 break;
10082 }
10083 }
10084
10085 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
10086 for all exception catchpoint kinds. */
10087
10088 static void
10089 print_mention_exception (enum exception_catchpoint_kind ex,
10090 struct breakpoint *b)
10091 {
10092 switch (ex)
10093 {
10094 case ex_catch_exception:
10095 if (b->exp_string != NULL)
10096 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
10097 b->number, b->exp_string);
10098 else
10099 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
10100
10101 break;
10102
10103 case ex_catch_exception_unhandled:
10104 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
10105 b->number);
10106 break;
10107
10108 case ex_catch_assert:
10109 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
10110 break;
10111
10112 default:
10113 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10114 break;
10115 }
10116 }
10117
10118 /* Virtual table for "catch exception" breakpoints. */
10119
10120 static enum print_stop_action
10121 print_it_catch_exception (struct breakpoint *b)
10122 {
10123 return print_it_exception (ex_catch_exception, b);
10124 }
10125
10126 static void
10127 print_one_catch_exception (struct breakpoint *b, CORE_ADDR *last_addr)
10128 {
10129 print_one_exception (ex_catch_exception, b, last_addr);
10130 }
10131
10132 static void
10133 print_mention_catch_exception (struct breakpoint *b)
10134 {
10135 print_mention_exception (ex_catch_exception, b);
10136 }
10137
10138 static struct breakpoint_ops catch_exception_breakpoint_ops =
10139 {
10140 NULL, /* insert */
10141 NULL, /* remove */
10142 NULL, /* breakpoint_hit */
10143 print_it_catch_exception,
10144 print_one_catch_exception,
10145 print_mention_catch_exception
10146 };
10147
10148 /* Virtual table for "catch exception unhandled" breakpoints. */
10149
10150 static enum print_stop_action
10151 print_it_catch_exception_unhandled (struct breakpoint *b)
10152 {
10153 return print_it_exception (ex_catch_exception_unhandled, b);
10154 }
10155
10156 static void
10157 print_one_catch_exception_unhandled (struct breakpoint *b, CORE_ADDR *last_addr)
10158 {
10159 print_one_exception (ex_catch_exception_unhandled, b, last_addr);
10160 }
10161
10162 static void
10163 print_mention_catch_exception_unhandled (struct breakpoint *b)
10164 {
10165 print_mention_exception (ex_catch_exception_unhandled, b);
10166 }
10167
10168 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
10169 NULL, /* insert */
10170 NULL, /* remove */
10171 NULL, /* breakpoint_hit */
10172 print_it_catch_exception_unhandled,
10173 print_one_catch_exception_unhandled,
10174 print_mention_catch_exception_unhandled
10175 };
10176
10177 /* Virtual table for "catch assert" breakpoints. */
10178
10179 static enum print_stop_action
10180 print_it_catch_assert (struct breakpoint *b)
10181 {
10182 return print_it_exception (ex_catch_assert, b);
10183 }
10184
10185 static void
10186 print_one_catch_assert (struct breakpoint *b, CORE_ADDR *last_addr)
10187 {
10188 print_one_exception (ex_catch_assert, b, last_addr);
10189 }
10190
10191 static void
10192 print_mention_catch_assert (struct breakpoint *b)
10193 {
10194 print_mention_exception (ex_catch_assert, b);
10195 }
10196
10197 static struct breakpoint_ops catch_assert_breakpoint_ops = {
10198 NULL, /* insert */
10199 NULL, /* remove */
10200 NULL, /* breakpoint_hit */
10201 print_it_catch_assert,
10202 print_one_catch_assert,
10203 print_mention_catch_assert
10204 };
10205
10206 /* Return non-zero if B is an Ada exception catchpoint. */
10207
10208 int
10209 ada_exception_catchpoint_p (struct breakpoint *b)
10210 {
10211 return (b->ops == &catch_exception_breakpoint_ops
10212 || b->ops == &catch_exception_unhandled_breakpoint_ops
10213 || b->ops == &catch_assert_breakpoint_ops);
10214 }
10215
10216 /* Return a newly allocated copy of the first space-separated token
10217 in ARGSP, and then adjust ARGSP to point immediately after that
10218 token.
10219
10220 Return NULL if ARGPS does not contain any more tokens. */
10221
10222 static char *
10223 ada_get_next_arg (char **argsp)
10224 {
10225 char *args = *argsp;
10226 char *end;
10227 char *result;
10228
10229 /* Skip any leading white space. */
10230
10231 while (isspace (*args))
10232 args++;
10233
10234 if (args[0] == '\0')
10235 return NULL; /* No more arguments. */
10236
10237 /* Find the end of the current argument. */
10238
10239 end = args;
10240 while (*end != '\0' && !isspace (*end))
10241 end++;
10242
10243 /* Adjust ARGSP to point to the start of the next argument. */
10244
10245 *argsp = end;
10246
10247 /* Make a copy of the current argument and return it. */
10248
10249 result = xmalloc (end - args + 1);
10250 strncpy (result, args, end - args);
10251 result[end - args] = '\0';
10252
10253 return result;
10254 }
10255
10256 /* Split the arguments specified in a "catch exception" command.
10257 Set EX to the appropriate catchpoint type.
10258 Set EXP_STRING to the name of the specific exception if
10259 specified by the user. */
10260
10261 static void
10262 catch_ada_exception_command_split (char *args,
10263 enum exception_catchpoint_kind *ex,
10264 char **exp_string)
10265 {
10266 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
10267 char *exception_name;
10268
10269 exception_name = ada_get_next_arg (&args);
10270 make_cleanup (xfree, exception_name);
10271
10272 /* Check that we do not have any more arguments. Anything else
10273 is unexpected. */
10274
10275 while (isspace (*args))
10276 args++;
10277
10278 if (args[0] != '\0')
10279 error (_("Junk at end of expression"));
10280
10281 discard_cleanups (old_chain);
10282
10283 if (exception_name == NULL)
10284 {
10285 /* Catch all exceptions. */
10286 *ex = ex_catch_exception;
10287 *exp_string = NULL;
10288 }
10289 else if (strcmp (exception_name, "unhandled") == 0)
10290 {
10291 /* Catch unhandled exceptions. */
10292 *ex = ex_catch_exception_unhandled;
10293 *exp_string = NULL;
10294 }
10295 else
10296 {
10297 /* Catch a specific exception. */
10298 *ex = ex_catch_exception;
10299 *exp_string = exception_name;
10300 }
10301 }
10302
10303 /* Return the name of the symbol on which we should break in order to
10304 implement a catchpoint of the EX kind. */
10305
10306 static const char *
10307 ada_exception_sym_name (enum exception_catchpoint_kind ex)
10308 {
10309 gdb_assert (exception_info != NULL);
10310
10311 switch (ex)
10312 {
10313 case ex_catch_exception:
10314 return (exception_info->catch_exception_sym);
10315 break;
10316 case ex_catch_exception_unhandled:
10317 return (exception_info->catch_exception_unhandled_sym);
10318 break;
10319 case ex_catch_assert:
10320 return (exception_info->catch_assert_sym);
10321 break;
10322 default:
10323 internal_error (__FILE__, __LINE__,
10324 _("unexpected catchpoint kind (%d)"), ex);
10325 }
10326 }
10327
10328 /* Return the breakpoint ops "virtual table" used for catchpoints
10329 of the EX kind. */
10330
10331 static struct breakpoint_ops *
10332 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
10333 {
10334 switch (ex)
10335 {
10336 case ex_catch_exception:
10337 return (&catch_exception_breakpoint_ops);
10338 break;
10339 case ex_catch_exception_unhandled:
10340 return (&catch_exception_unhandled_breakpoint_ops);
10341 break;
10342 case ex_catch_assert:
10343 return (&catch_assert_breakpoint_ops);
10344 break;
10345 default:
10346 internal_error (__FILE__, __LINE__,
10347 _("unexpected catchpoint kind (%d)"), ex);
10348 }
10349 }
10350
10351 /* Return the condition that will be used to match the current exception
10352 being raised with the exception that the user wants to catch. This
10353 assumes that this condition is used when the inferior just triggered
10354 an exception catchpoint.
10355
10356 The string returned is a newly allocated string that needs to be
10357 deallocated later. */
10358
10359 static char *
10360 ada_exception_catchpoint_cond_string (const char *exp_string)
10361 {
10362 int i;
10363
10364 /* The standard exceptions are a special case. They are defined in
10365 runtime units that have been compiled without debugging info; if
10366 EXP_STRING is the not-fully-qualified name of a standard
10367 exception (e.g. "constraint_error") then, during the evaluation
10368 of the condition expression, the symbol lookup on this name would
10369 *not* return this standard exception. The catchpoint condition
10370 may then be set only on user-defined exceptions which have the
10371 same not-fully-qualified name (e.g. my_package.constraint_error).
10372
10373 To avoid this unexcepted behavior, these standard exceptions are
10374 systematically prefixed by "standard". This means that "catch
10375 exception constraint_error" is rewritten into "catch exception
10376 standard.constraint_error".
10377
10378 If an exception named contraint_error is defined in another package of
10379 the inferior program, then the only way to specify this exception as a
10380 breakpoint condition is to use its fully-qualified named:
10381 e.g. my_package.constraint_error. */
10382
10383 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
10384 {
10385 if (strcmp (standard_exc [i], exp_string) == 0)
10386 {
10387 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
10388 exp_string);
10389 }
10390 }
10391 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
10392 }
10393
10394 /* Return the expression corresponding to COND_STRING evaluated at SAL. */
10395
10396 static struct expression *
10397 ada_parse_catchpoint_condition (char *cond_string,
10398 struct symtab_and_line sal)
10399 {
10400 return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
10401 }
10402
10403 /* Return the symtab_and_line that should be used to insert an exception
10404 catchpoint of the TYPE kind.
10405
10406 EX_STRING should contain the name of a specific exception
10407 that the catchpoint should catch, or NULL otherwise.
10408
10409 The idea behind all the remaining parameters is that their names match
10410 the name of certain fields in the breakpoint structure that are used to
10411 handle exception catchpoints. This function returns the value to which
10412 these fields should be set, depending on the type of catchpoint we need
10413 to create.
10414
10415 If COND and COND_STRING are both non-NULL, any value they might
10416 hold will be free'ed, and then replaced by newly allocated ones.
10417 These parameters are left untouched otherwise. */
10418
10419 static struct symtab_and_line
10420 ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
10421 char **addr_string, char **cond_string,
10422 struct expression **cond, struct breakpoint_ops **ops)
10423 {
10424 const char *sym_name;
10425 struct symbol *sym;
10426 struct symtab_and_line sal;
10427
10428 /* First, find out which exception support info to use. */
10429 ada_exception_support_info_sniffer ();
10430
10431 /* Then lookup the function on which we will break in order to catch
10432 the Ada exceptions requested by the user. */
10433
10434 sym_name = ada_exception_sym_name (ex);
10435 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
10436
10437 /* The symbol we're looking up is provided by a unit in the GNAT runtime
10438 that should be compiled with debugging information. As a result, we
10439 expect to find that symbol in the symtabs. If we don't find it, then
10440 the target most likely does not support Ada exceptions, or we cannot
10441 insert exception breakpoints yet, because the GNAT runtime hasn't been
10442 loaded yet. */
10443
10444 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
10445 in such a way that no debugging information is produced for the symbol
10446 we are looking for. In this case, we could search the minimal symbols
10447 as a fall-back mechanism. This would still be operating in degraded
10448 mode, however, as we would still be missing the debugging information
10449 that is needed in order to extract the name of the exception being
10450 raised (this name is printed in the catchpoint message, and is also
10451 used when trying to catch a specific exception). We do not handle
10452 this case for now. */
10453
10454 if (sym == NULL)
10455 error (_("Unable to break on '%s' in this configuration."), sym_name);
10456
10457 /* Make sure that the symbol we found corresponds to a function. */
10458 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
10459 error (_("Symbol \"%s\" is not a function (class = %d)"),
10460 sym_name, SYMBOL_CLASS (sym));
10461
10462 sal = find_function_start_sal (sym, 1);
10463
10464 /* Set ADDR_STRING. */
10465
10466 *addr_string = xstrdup (sym_name);
10467
10468 /* Set the COND and COND_STRING (if not NULL). */
10469
10470 if (cond_string != NULL && cond != NULL)
10471 {
10472 if (*cond_string != NULL)
10473 {
10474 xfree (*cond_string);
10475 *cond_string = NULL;
10476 }
10477 if (*cond != NULL)
10478 {
10479 xfree (*cond);
10480 *cond = NULL;
10481 }
10482 if (exp_string != NULL)
10483 {
10484 *cond_string = ada_exception_catchpoint_cond_string (exp_string);
10485 *cond = ada_parse_catchpoint_condition (*cond_string, sal);
10486 }
10487 }
10488
10489 /* Set OPS. */
10490 *ops = ada_exception_breakpoint_ops (ex);
10491
10492 return sal;
10493 }
10494
10495 /* Parse the arguments (ARGS) of the "catch exception" command.
10496
10497 Set TYPE to the appropriate exception catchpoint type.
10498 If the user asked the catchpoint to catch only a specific
10499 exception, then save the exception name in ADDR_STRING.
10500
10501 See ada_exception_sal for a description of all the remaining
10502 function arguments of this function. */
10503
10504 struct symtab_and_line
10505 ada_decode_exception_location (char *args, char **addr_string,
10506 char **exp_string, char **cond_string,
10507 struct expression **cond,
10508 struct breakpoint_ops **ops)
10509 {
10510 enum exception_catchpoint_kind ex;
10511
10512 catch_ada_exception_command_split (args, &ex, exp_string);
10513 return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
10514 cond, ops);
10515 }
10516
10517 struct symtab_and_line
10518 ada_decode_assert_location (char *args, char **addr_string,
10519 struct breakpoint_ops **ops)
10520 {
10521 /* Check that no argument where provided at the end of the command. */
10522
10523 if (args != NULL)
10524 {
10525 while (isspace (*args))
10526 args++;
10527 if (*args != '\0')
10528 error (_("Junk at end of arguments."));
10529 }
10530
10531 return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
10532 ops);
10533 }
10534
10535 /* Operators */
10536 /* Information about operators given special treatment in functions
10537 below. */
10538 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
10539
10540 #define ADA_OPERATORS \
10541 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
10542 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
10543 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
10544 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
10545 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
10546 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
10547 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
10548 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
10549 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
10550 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
10551 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
10552 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
10553 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
10554 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
10555 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
10556 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
10557 OP_DEFN (OP_OTHERS, 1, 1, 0) \
10558 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
10559 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
10560
10561 static void
10562 ada_operator_length (struct expression *exp, int pc, int *oplenp, int *argsp)
10563 {
10564 switch (exp->elts[pc - 1].opcode)
10565 {
10566 default:
10567 operator_length_standard (exp, pc, oplenp, argsp);
10568 break;
10569
10570 #define OP_DEFN(op, len, args, binop) \
10571 case op: *oplenp = len; *argsp = args; break;
10572 ADA_OPERATORS;
10573 #undef OP_DEFN
10574
10575 case OP_AGGREGATE:
10576 *oplenp = 3;
10577 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
10578 break;
10579
10580 case OP_CHOICES:
10581 *oplenp = 3;
10582 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
10583 break;
10584 }
10585 }
10586
10587 static char *
10588 ada_op_name (enum exp_opcode opcode)
10589 {
10590 switch (opcode)
10591 {
10592 default:
10593 return op_name_standard (opcode);
10594
10595 #define OP_DEFN(op, len, args, binop) case op: return #op;
10596 ADA_OPERATORS;
10597 #undef OP_DEFN
10598
10599 case OP_AGGREGATE:
10600 return "OP_AGGREGATE";
10601 case OP_CHOICES:
10602 return "OP_CHOICES";
10603 case OP_NAME:
10604 return "OP_NAME";
10605 }
10606 }
10607
10608 /* As for operator_length, but assumes PC is pointing at the first
10609 element of the operator, and gives meaningful results only for the
10610 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
10611
10612 static void
10613 ada_forward_operator_length (struct expression *exp, int pc,
10614 int *oplenp, int *argsp)
10615 {
10616 switch (exp->elts[pc].opcode)
10617 {
10618 default:
10619 *oplenp = *argsp = 0;
10620 break;
10621
10622 #define OP_DEFN(op, len, args, binop) \
10623 case op: *oplenp = len; *argsp = args; break;
10624 ADA_OPERATORS;
10625 #undef OP_DEFN
10626
10627 case OP_AGGREGATE:
10628 *oplenp = 3;
10629 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
10630 break;
10631
10632 case OP_CHOICES:
10633 *oplenp = 3;
10634 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
10635 break;
10636
10637 case OP_STRING:
10638 case OP_NAME:
10639 {
10640 int len = longest_to_int (exp->elts[pc + 1].longconst);
10641 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
10642 *argsp = 0;
10643 break;
10644 }
10645 }
10646 }
10647
10648 static int
10649 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
10650 {
10651 enum exp_opcode op = exp->elts[elt].opcode;
10652 int oplen, nargs;
10653 int pc = elt;
10654 int i;
10655
10656 ada_forward_operator_length (exp, elt, &oplen, &nargs);
10657
10658 switch (op)
10659 {
10660 /* Ada attributes ('Foo). */
10661 case OP_ATR_FIRST:
10662 case OP_ATR_LAST:
10663 case OP_ATR_LENGTH:
10664 case OP_ATR_IMAGE:
10665 case OP_ATR_MAX:
10666 case OP_ATR_MIN:
10667 case OP_ATR_MODULUS:
10668 case OP_ATR_POS:
10669 case OP_ATR_SIZE:
10670 case OP_ATR_TAG:
10671 case OP_ATR_VAL:
10672 break;
10673
10674 case UNOP_IN_RANGE:
10675 case UNOP_QUAL:
10676 /* XXX: gdb_sprint_host_address, type_sprint */
10677 fprintf_filtered (stream, _("Type @"));
10678 gdb_print_host_address (exp->elts[pc + 1].type, stream);
10679 fprintf_filtered (stream, " (");
10680 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
10681 fprintf_filtered (stream, ")");
10682 break;
10683 case BINOP_IN_BOUNDS:
10684 fprintf_filtered (stream, " (%d)",
10685 longest_to_int (exp->elts[pc + 2].longconst));
10686 break;
10687 case TERNOP_IN_RANGE:
10688 break;
10689
10690 case OP_AGGREGATE:
10691 case OP_OTHERS:
10692 case OP_DISCRETE_RANGE:
10693 case OP_POSITIONAL:
10694 case OP_CHOICES:
10695 break;
10696
10697 case OP_NAME:
10698 case OP_STRING:
10699 {
10700 char *name = &exp->elts[elt + 2].string;
10701 int len = longest_to_int (exp->elts[elt + 1].longconst);
10702 fprintf_filtered (stream, "Text: `%.*s'", len, name);
10703 break;
10704 }
10705
10706 default:
10707 return dump_subexp_body_standard (exp, stream, elt);
10708 }
10709
10710 elt += oplen;
10711 for (i = 0; i < nargs; i += 1)
10712 elt = dump_subexp (exp, stream, elt);
10713
10714 return elt;
10715 }
10716
10717 /* The Ada extension of print_subexp (q.v.). */
10718
10719 static void
10720 ada_print_subexp (struct expression *exp, int *pos,
10721 struct ui_file *stream, enum precedence prec)
10722 {
10723 int oplen, nargs, i;
10724 int pc = *pos;
10725 enum exp_opcode op = exp->elts[pc].opcode;
10726
10727 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10728
10729 *pos += oplen;
10730 switch (op)
10731 {
10732 default:
10733 *pos -= oplen;
10734 print_subexp_standard (exp, pos, stream, prec);
10735 return;
10736
10737 case OP_VAR_VALUE:
10738 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
10739 return;
10740
10741 case BINOP_IN_BOUNDS:
10742 /* XXX: sprint_subexp */
10743 print_subexp (exp, pos, stream, PREC_SUFFIX);
10744 fputs_filtered (" in ", stream);
10745 print_subexp (exp, pos, stream, PREC_SUFFIX);
10746 fputs_filtered ("'range", stream);
10747 if (exp->elts[pc + 1].longconst > 1)
10748 fprintf_filtered (stream, "(%ld)",
10749 (long) exp->elts[pc + 1].longconst);
10750 return;
10751
10752 case TERNOP_IN_RANGE:
10753 if (prec >= PREC_EQUAL)
10754 fputs_filtered ("(", stream);
10755 /* XXX: sprint_subexp */
10756 print_subexp (exp, pos, stream, PREC_SUFFIX);
10757 fputs_filtered (" in ", stream);
10758 print_subexp (exp, pos, stream, PREC_EQUAL);
10759 fputs_filtered (" .. ", stream);
10760 print_subexp (exp, pos, stream, PREC_EQUAL);
10761 if (prec >= PREC_EQUAL)
10762 fputs_filtered (")", stream);
10763 return;
10764
10765 case OP_ATR_FIRST:
10766 case OP_ATR_LAST:
10767 case OP_ATR_LENGTH:
10768 case OP_ATR_IMAGE:
10769 case OP_ATR_MAX:
10770 case OP_ATR_MIN:
10771 case OP_ATR_MODULUS:
10772 case OP_ATR_POS:
10773 case OP_ATR_SIZE:
10774 case OP_ATR_TAG:
10775 case OP_ATR_VAL:
10776 if (exp->elts[*pos].opcode == OP_TYPE)
10777 {
10778 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
10779 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
10780 *pos += 3;
10781 }
10782 else
10783 print_subexp (exp, pos, stream, PREC_SUFFIX);
10784 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
10785 if (nargs > 1)
10786 {
10787 int tem;
10788 for (tem = 1; tem < nargs; tem += 1)
10789 {
10790 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
10791 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
10792 }
10793 fputs_filtered (")", stream);
10794 }
10795 return;
10796
10797 case UNOP_QUAL:
10798 type_print (exp->elts[pc + 1].type, "", stream, 0);
10799 fputs_filtered ("'(", stream);
10800 print_subexp (exp, pos, stream, PREC_PREFIX);
10801 fputs_filtered (")", stream);
10802 return;
10803
10804 case UNOP_IN_RANGE:
10805 /* XXX: sprint_subexp */
10806 print_subexp (exp, pos, stream, PREC_SUFFIX);
10807 fputs_filtered (" in ", stream);
10808 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
10809 return;
10810
10811 case OP_DISCRETE_RANGE:
10812 print_subexp (exp, pos, stream, PREC_SUFFIX);
10813 fputs_filtered ("..", stream);
10814 print_subexp (exp, pos, stream, PREC_SUFFIX);
10815 return;
10816
10817 case OP_OTHERS:
10818 fputs_filtered ("others => ", stream);
10819 print_subexp (exp, pos, stream, PREC_SUFFIX);
10820 return;
10821
10822 case OP_CHOICES:
10823 for (i = 0; i < nargs-1; i += 1)
10824 {
10825 if (i > 0)
10826 fputs_filtered ("|", stream);
10827 print_subexp (exp, pos, stream, PREC_SUFFIX);
10828 }
10829 fputs_filtered (" => ", stream);
10830 print_subexp (exp, pos, stream, PREC_SUFFIX);
10831 return;
10832
10833 case OP_POSITIONAL:
10834 print_subexp (exp, pos, stream, PREC_SUFFIX);
10835 return;
10836
10837 case OP_AGGREGATE:
10838 fputs_filtered ("(", stream);
10839 for (i = 0; i < nargs; i += 1)
10840 {
10841 if (i > 0)
10842 fputs_filtered (", ", stream);
10843 print_subexp (exp, pos, stream, PREC_SUFFIX);
10844 }
10845 fputs_filtered (")", stream);
10846 return;
10847 }
10848 }
10849
10850 /* Table mapping opcodes into strings for printing operators
10851 and precedences of the operators. */
10852
10853 static const struct op_print ada_op_print_tab[] = {
10854 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
10855 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
10856 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
10857 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
10858 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
10859 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
10860 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
10861 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
10862 {"<=", BINOP_LEQ, PREC_ORDER, 0},
10863 {">=", BINOP_GEQ, PREC_ORDER, 0},
10864 {">", BINOP_GTR, PREC_ORDER, 0},
10865 {"<", BINOP_LESS, PREC_ORDER, 0},
10866 {">>", BINOP_RSH, PREC_SHIFT, 0},
10867 {"<<", BINOP_LSH, PREC_SHIFT, 0},
10868 {"+", BINOP_ADD, PREC_ADD, 0},
10869 {"-", BINOP_SUB, PREC_ADD, 0},
10870 {"&", BINOP_CONCAT, PREC_ADD, 0},
10871 {"*", BINOP_MUL, PREC_MUL, 0},
10872 {"/", BINOP_DIV, PREC_MUL, 0},
10873 {"rem", BINOP_REM, PREC_MUL, 0},
10874 {"mod", BINOP_MOD, PREC_MUL, 0},
10875 {"**", BINOP_EXP, PREC_REPEAT, 0},
10876 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
10877 {"-", UNOP_NEG, PREC_PREFIX, 0},
10878 {"+", UNOP_PLUS, PREC_PREFIX, 0},
10879 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
10880 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
10881 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
10882 {".all", UNOP_IND, PREC_SUFFIX, 1},
10883 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
10884 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
10885 {NULL, 0, 0, 0}
10886 };
10887 \f
10888 enum ada_primitive_types {
10889 ada_primitive_type_int,
10890 ada_primitive_type_long,
10891 ada_primitive_type_short,
10892 ada_primitive_type_char,
10893 ada_primitive_type_float,
10894 ada_primitive_type_double,
10895 ada_primitive_type_void,
10896 ada_primitive_type_long_long,
10897 ada_primitive_type_long_double,
10898 ada_primitive_type_natural,
10899 ada_primitive_type_positive,
10900 ada_primitive_type_system_address,
10901 nr_ada_primitive_types
10902 };
10903
10904 static void
10905 ada_language_arch_info (struct gdbarch *gdbarch,
10906 struct language_arch_info *lai)
10907 {
10908 const struct builtin_type *builtin = builtin_type (gdbarch);
10909 lai->primitive_type_vector
10910 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
10911 struct type *);
10912 lai->primitive_type_vector [ada_primitive_type_int] =
10913 init_type (TYPE_CODE_INT,
10914 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
10915 0, "integer", (struct objfile *) NULL);
10916 lai->primitive_type_vector [ada_primitive_type_long] =
10917 init_type (TYPE_CODE_INT,
10918 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
10919 0, "long_integer", (struct objfile *) NULL);
10920 lai->primitive_type_vector [ada_primitive_type_short] =
10921 init_type (TYPE_CODE_INT,
10922 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
10923 0, "short_integer", (struct objfile *) NULL);
10924 lai->string_char_type =
10925 lai->primitive_type_vector [ada_primitive_type_char] =
10926 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10927 0, "character", (struct objfile *) NULL);
10928 lai->primitive_type_vector [ada_primitive_type_float] =
10929 init_type (TYPE_CODE_FLT,
10930 gdbarch_float_bit (gdbarch)/ TARGET_CHAR_BIT,
10931 0, "float", (struct objfile *) NULL);
10932 lai->primitive_type_vector [ada_primitive_type_double] =
10933 init_type (TYPE_CODE_FLT,
10934 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
10935 0, "long_float", (struct objfile *) NULL);
10936 lai->primitive_type_vector [ada_primitive_type_long_long] =
10937 init_type (TYPE_CODE_INT,
10938 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
10939 0, "long_long_integer", (struct objfile *) NULL);
10940 lai->primitive_type_vector [ada_primitive_type_long_double] =
10941 init_type (TYPE_CODE_FLT,
10942 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
10943 0, "long_long_float", (struct objfile *) NULL);
10944 lai->primitive_type_vector [ada_primitive_type_natural] =
10945 init_type (TYPE_CODE_INT,
10946 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
10947 0, "natural", (struct objfile *) NULL);
10948 lai->primitive_type_vector [ada_primitive_type_positive] =
10949 init_type (TYPE_CODE_INT,
10950 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
10951 0, "positive", (struct objfile *) NULL);
10952 lai->primitive_type_vector [ada_primitive_type_void] = builtin->builtin_void;
10953
10954 lai->primitive_type_vector [ada_primitive_type_system_address] =
10955 lookup_pointer_type (init_type (TYPE_CODE_VOID, 1, 0, "void",
10956 (struct objfile *) NULL));
10957 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
10958 = "system__address";
10959
10960 lai->bool_type_symbol = "boolean";
10961 lai->bool_type_default = builtin->builtin_bool;
10962 }
10963 \f
10964 /* Language vector */
10965
10966 /* Not really used, but needed in the ada_language_defn. */
10967
10968 static void
10969 emit_char (int c, struct ui_file *stream, int quoter)
10970 {
10971 ada_emit_char (c, stream, quoter, 1);
10972 }
10973
10974 static int
10975 parse (void)
10976 {
10977 warnings_issued = 0;
10978 return ada_parse ();
10979 }
10980
10981 static const struct exp_descriptor ada_exp_descriptor = {
10982 ada_print_subexp,
10983 ada_operator_length,
10984 ada_op_name,
10985 ada_dump_subexp_body,
10986 ada_evaluate_subexp
10987 };
10988
10989 const struct language_defn ada_language_defn = {
10990 "ada", /* Language name */
10991 language_ada,
10992 range_check_off,
10993 type_check_off,
10994 case_sensitive_on, /* Yes, Ada is case-insensitive, but
10995 that's not quite what this means. */
10996 array_row_major,
10997 macro_expansion_no,
10998 &ada_exp_descriptor,
10999 parse,
11000 ada_error,
11001 resolve,
11002 ada_printchar, /* Print a character constant */
11003 ada_printstr, /* Function to print string constant */
11004 emit_char, /* Function to print single char (not used) */
11005 ada_print_type, /* Print a type using appropriate syntax */
11006 default_print_typedef, /* Print a typedef using appropriate syntax */
11007 ada_val_print, /* Print a value using appropriate syntax */
11008 ada_value_print, /* Print a top-level value */
11009 NULL, /* Language specific skip_trampoline */
11010 NULL, /* name_of_this */
11011 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
11012 basic_lookup_transparent_type, /* lookup_transparent_type */
11013 ada_la_decode, /* Language specific symbol demangler */
11014 NULL, /* Language specific class_name_from_physname */
11015 ada_op_print_tab, /* expression operators for printing */
11016 0, /* c-style arrays */
11017 1, /* String lower bound */
11018 ada_get_gdb_completer_word_break_characters,
11019 ada_make_symbol_completion_list,
11020 ada_language_arch_info,
11021 ada_print_array_index,
11022 default_pass_by_reference,
11023 c_get_string,
11024 LANG_MAGIC
11025 };
11026
11027 /* Provide a prototype to silence -Wmissing-prototypes. */
11028 extern initialize_file_ftype _initialize_ada_language;
11029
11030 void
11031 _initialize_ada_language (void)
11032 {
11033 add_language (&ada_language_defn);
11034
11035 varsize_limit = 65536;
11036
11037 obstack_init (&symbol_list_obstack);
11038
11039 decoded_names_store = htab_create_alloc
11040 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
11041 NULL, xcalloc, xfree);
11042
11043 observer_attach_executable_changed (ada_executable_changed_observer);
11044 }