* ada-lang.c (resolve_subexp): Correct arity of binary operators.
[binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger. Copyright (C)
2
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
22
23
24 #include "defs.h"
25 #include <stdio.h>
26 #include "gdb_string.h"
27 #include <ctype.h>
28 #include <stdarg.h>
29 #include "demangle.h"
30 #include "gdb_regex.h"
31 #include "frame.h"
32 #include "symtab.h"
33 #include "gdbtypes.h"
34 #include "gdbcmd.h"
35 #include "expression.h"
36 #include "parser-defs.h"
37 #include "language.h"
38 #include "c-lang.h"
39 #include "inferior.h"
40 #include "symfile.h"
41 #include "objfiles.h"
42 #include "breakpoint.h"
43 #include "gdbcore.h"
44 #include "hashtab.h"
45 #include "gdb_obstack.h"
46 #include "ada-lang.h"
47 #include "completer.h"
48 #include "gdb_stat.h"
49 #ifdef UI_OUT
50 #include "ui-out.h"
51 #endif
52 #include "block.h"
53 #include "infcall.h"
54 #include "dictionary.h"
55 #include "exceptions.h"
56 #include "annotate.h"
57 #include "valprint.h"
58 #include "source.h"
59 #include "observer.h"
60
61 #ifndef ADA_RETAIN_DOTS
62 #define ADA_RETAIN_DOTS 0
63 #endif
64
65 /* Define whether or not the C operator '/' truncates towards zero for
66 differently signed operands (truncation direction is undefined in C).
67 Copied from valarith.c. */
68
69 #ifndef TRUNCATION_TOWARDS_ZERO
70 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
71 #endif
72
73
74 static void extract_string (CORE_ADDR addr, char *buf);
75
76 static struct type *ada_create_fundamental_type (struct objfile *, int);
77
78 static void modify_general_field (char *, LONGEST, int, int);
79
80 static struct type *desc_base_type (struct type *);
81
82 static struct type *desc_bounds_type (struct type *);
83
84 static struct value *desc_bounds (struct value *);
85
86 static int fat_pntr_bounds_bitpos (struct type *);
87
88 static int fat_pntr_bounds_bitsize (struct type *);
89
90 static struct type *desc_data_type (struct type *);
91
92 static struct value *desc_data (struct value *);
93
94 static int fat_pntr_data_bitpos (struct type *);
95
96 static int fat_pntr_data_bitsize (struct type *);
97
98 static struct value *desc_one_bound (struct value *, int, int);
99
100 static int desc_bound_bitpos (struct type *, int, int);
101
102 static int desc_bound_bitsize (struct type *, int, int);
103
104 static struct type *desc_index_type (struct type *, int);
105
106 static int desc_arity (struct type *);
107
108 static int ada_type_match (struct type *, struct type *, int);
109
110 static int ada_args_match (struct symbol *, struct value **, int);
111
112 static struct value *ensure_lval (struct value *, CORE_ADDR *);
113
114 static struct value *convert_actual (struct value *, struct type *,
115 CORE_ADDR *);
116
117 static struct value *make_array_descriptor (struct type *, struct value *,
118 CORE_ADDR *);
119
120 static void ada_add_block_symbols (struct obstack *,
121 struct block *, const char *,
122 domain_enum, struct objfile *,
123 struct symtab *, int);
124
125 static int is_nonfunction (struct ada_symbol_info *, int);
126
127 static void add_defn_to_vec (struct obstack *, struct symbol *,
128 struct block *, struct symtab *);
129
130 static int num_defns_collected (struct obstack *);
131
132 static struct ada_symbol_info *defns_collected (struct obstack *, int);
133
134 static struct partial_symbol *ada_lookup_partial_symbol (struct partial_symtab
135 *, const char *, int,
136 domain_enum, int);
137
138 static struct symtab *symtab_for_sym (struct symbol *);
139
140 static struct value *resolve_subexp (struct expression **, int *, int,
141 struct type *);
142
143 static void replace_operator_with_call (struct expression **, int, int, int,
144 struct symbol *, struct block *);
145
146 static int possible_user_operator_p (enum exp_opcode, struct value **);
147
148 static char *ada_op_name (enum exp_opcode);
149
150 static const char *ada_decoded_op_name (enum exp_opcode);
151
152 static int numeric_type_p (struct type *);
153
154 static int integer_type_p (struct type *);
155
156 static int scalar_type_p (struct type *);
157
158 static int discrete_type_p (struct type *);
159
160 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
161 int, int, int *);
162
163 static struct value *evaluate_subexp (struct type *, struct expression *,
164 int *, enum noside);
165
166 static struct value *evaluate_subexp_type (struct expression *, int *);
167
168 static int is_dynamic_field (struct type *, int);
169
170 static struct type *to_fixed_variant_branch_type (struct type *,
171 const gdb_byte *,
172 CORE_ADDR, struct value *);
173
174 static struct type *to_fixed_array_type (struct type *, struct value *, int);
175
176 static struct type *to_fixed_range_type (char *, struct value *,
177 struct objfile *);
178
179 static struct type *to_static_fixed_type (struct type *);
180
181 static struct value *unwrap_value (struct value *);
182
183 static struct type *packed_array_type (struct type *, long *);
184
185 static struct type *decode_packed_array_type (struct type *);
186
187 static struct value *decode_packed_array (struct value *);
188
189 static struct value *value_subscript_packed (struct value *, int,
190 struct value **);
191
192 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int);
193
194 static struct value *coerce_unspec_val_to_type (struct value *,
195 struct type *);
196
197 static struct value *get_var_value (char *, char *);
198
199 static int lesseq_defined_than (struct symbol *, struct symbol *);
200
201 static int equiv_types (struct type *, struct type *);
202
203 static int is_name_suffix (const char *);
204
205 static int wild_match (const char *, int, const char *);
206
207 static struct value *ada_coerce_ref (struct value *);
208
209 static LONGEST pos_atr (struct value *);
210
211 static struct value *value_pos_atr (struct value *);
212
213 static struct value *value_val_atr (struct type *, struct value *);
214
215 static struct symbol *standard_lookup (const char *, const struct block *,
216 domain_enum);
217
218 static struct value *ada_search_struct_field (char *, struct value *, int,
219 struct type *);
220
221 static struct value *ada_value_primitive_field (struct value *, int, int,
222 struct type *);
223
224 static int find_struct_field (char *, struct type *, int,
225 struct type **, int *, int *, int *, int *);
226
227 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
228 struct value *);
229
230 static struct value *ada_to_fixed_value (struct value *);
231
232 static int ada_resolve_function (struct ada_symbol_info *, int,
233 struct value **, int, const char *,
234 struct type *);
235
236 static struct value *ada_coerce_to_simple_array (struct value *);
237
238 static int ada_is_direct_array_type (struct type *);
239
240 static void ada_language_arch_info (struct gdbarch *,
241 struct language_arch_info *);
242
243 static void check_size (const struct type *);
244
245 static struct value *ada_index_struct_field (int, struct value *, int,
246 struct type *);
247
248 static struct value *assign_aggregate (struct value *, struct value *,
249 struct expression *, int *, enum noside);
250
251 static void aggregate_assign_from_choices (struct value *, struct value *,
252 struct expression *,
253 int *, LONGEST *, int *,
254 int, LONGEST, LONGEST);
255
256 static void aggregate_assign_positional (struct value *, struct value *,
257 struct expression *,
258 int *, LONGEST *, int *, int,
259 LONGEST, LONGEST);
260
261
262 static void aggregate_assign_others (struct value *, struct value *,
263 struct expression *,
264 int *, LONGEST *, int, LONGEST, LONGEST);
265
266
267 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
268
269
270 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
271 int *, enum noside);
272
273 static void ada_forward_operator_length (struct expression *, int, int *,
274 int *);
275 \f
276
277
278 /* Maximum-sized dynamic type. */
279 static unsigned int varsize_limit;
280
281 /* FIXME: brobecker/2003-09-17: No longer a const because it is
282 returned by a function that does not return a const char *. */
283 static char *ada_completer_word_break_characters =
284 #ifdef VMS
285 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
286 #else
287 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
288 #endif
289
290 /* The name of the symbol to use to get the name of the main subprogram. */
291 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
292 = "__gnat_ada_main_program_name";
293
294 /* Limit on the number of warnings to raise per expression evaluation. */
295 static int warning_limit = 2;
296
297 /* Number of warning messages issued; reset to 0 by cleanups after
298 expression evaluation. */
299 static int warnings_issued = 0;
300
301 static const char *known_runtime_file_name_patterns[] = {
302 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
303 };
304
305 static const char *known_auxiliary_function_name_patterns[] = {
306 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
307 };
308
309 /* Space for allocating results of ada_lookup_symbol_list. */
310 static struct obstack symbol_list_obstack;
311
312 /* Utilities */
313
314
315 static char *
316 ada_get_gdb_completer_word_break_characters (void)
317 {
318 return ada_completer_word_break_characters;
319 }
320
321 /* Print an array element index using the Ada syntax. */
322
323 static void
324 ada_print_array_index (struct value *index_value, struct ui_file *stream,
325 int format, enum val_prettyprint pretty)
326 {
327 LA_VALUE_PRINT (index_value, stream, format, pretty);
328 fprintf_filtered (stream, " => ");
329 }
330
331 /* Read the string located at ADDR from the inferior and store the
332 result into BUF. */
333
334 static void
335 extract_string (CORE_ADDR addr, char *buf)
336 {
337 int char_index = 0;
338
339 /* Loop, reading one byte at a time, until we reach the '\000'
340 end-of-string marker. */
341 do
342 {
343 target_read_memory (addr + char_index * sizeof (char),
344 buf + char_index * sizeof (char), sizeof (char));
345 char_index++;
346 }
347 while (buf[char_index - 1] != '\000');
348 }
349
350 /* Assuming VECT points to an array of *SIZE objects of size
351 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
352 updating *SIZE as necessary and returning the (new) array. */
353
354 void *
355 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
356 {
357 if (*size < min_size)
358 {
359 *size *= 2;
360 if (*size < min_size)
361 *size = min_size;
362 vect = xrealloc (vect, *size * element_size);
363 }
364 return vect;
365 }
366
367 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
368 suffix of FIELD_NAME beginning "___". */
369
370 static int
371 field_name_match (const char *field_name, const char *target)
372 {
373 int len = strlen (target);
374 return
375 (strncmp (field_name, target, len) == 0
376 && (field_name[len] == '\0'
377 || (strncmp (field_name + len, "___", 3) == 0
378 && strcmp (field_name + strlen (field_name) - 6,
379 "___XVN") != 0)));
380 }
381
382
383 /* Assuming TYPE is a TYPE_CODE_STRUCT, find the field whose name matches
384 FIELD_NAME, and return its index. This function also handles fields
385 whose name have ___ suffixes because the compiler sometimes alters
386 their name by adding such a suffix to represent fields with certain
387 constraints. If the field could not be found, return a negative
388 number if MAYBE_MISSING is set. Otherwise raise an error. */
389
390 int
391 ada_get_field_index (const struct type *type, const char *field_name,
392 int maybe_missing)
393 {
394 int fieldno;
395 for (fieldno = 0; fieldno < TYPE_NFIELDS (type); fieldno++)
396 if (field_name_match (TYPE_FIELD_NAME (type, fieldno), field_name))
397 return fieldno;
398
399 if (!maybe_missing)
400 error (_("Unable to find field %s in struct %s. Aborting"),
401 field_name, TYPE_NAME (type));
402
403 return -1;
404 }
405
406 /* The length of the prefix of NAME prior to any "___" suffix. */
407
408 int
409 ada_name_prefix_len (const char *name)
410 {
411 if (name == NULL)
412 return 0;
413 else
414 {
415 const char *p = strstr (name, "___");
416 if (p == NULL)
417 return strlen (name);
418 else
419 return p - name;
420 }
421 }
422
423 /* Return non-zero if SUFFIX is a suffix of STR.
424 Return zero if STR is null. */
425
426 static int
427 is_suffix (const char *str, const char *suffix)
428 {
429 int len1, len2;
430 if (str == NULL)
431 return 0;
432 len1 = strlen (str);
433 len2 = strlen (suffix);
434 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
435 }
436
437 /* Create a value of type TYPE whose contents come from VALADDR, if it
438 is non-null, and whose memory address (in the inferior) is
439 ADDRESS. */
440
441 struct value *
442 value_from_contents_and_address (struct type *type,
443 const gdb_byte *valaddr,
444 CORE_ADDR address)
445 {
446 struct value *v = allocate_value (type);
447 if (valaddr == NULL)
448 set_value_lazy (v, 1);
449 else
450 memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type));
451 VALUE_ADDRESS (v) = address;
452 if (address != 0)
453 VALUE_LVAL (v) = lval_memory;
454 return v;
455 }
456
457 /* The contents of value VAL, treated as a value of type TYPE. The
458 result is an lval in memory if VAL is. */
459
460 static struct value *
461 coerce_unspec_val_to_type (struct value *val, struct type *type)
462 {
463 type = ada_check_typedef (type);
464 if (value_type (val) == type)
465 return val;
466 else
467 {
468 struct value *result;
469
470 /* Make sure that the object size is not unreasonable before
471 trying to allocate some memory for it. */
472 check_size (type);
473
474 result = allocate_value (type);
475 VALUE_LVAL (result) = VALUE_LVAL (val);
476 set_value_bitsize (result, value_bitsize (val));
477 set_value_bitpos (result, value_bitpos (val));
478 VALUE_ADDRESS (result) = VALUE_ADDRESS (val) + value_offset (val);
479 if (value_lazy (val)
480 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
481 set_value_lazy (result, 1);
482 else
483 memcpy (value_contents_raw (result), value_contents (val),
484 TYPE_LENGTH (type));
485 return result;
486 }
487 }
488
489 static const gdb_byte *
490 cond_offset_host (const gdb_byte *valaddr, long offset)
491 {
492 if (valaddr == NULL)
493 return NULL;
494 else
495 return valaddr + offset;
496 }
497
498 static CORE_ADDR
499 cond_offset_target (CORE_ADDR address, long offset)
500 {
501 if (address == 0)
502 return 0;
503 else
504 return address + offset;
505 }
506
507 /* Issue a warning (as for the definition of warning in utils.c, but
508 with exactly one argument rather than ...), unless the limit on the
509 number of warnings has passed during the evaluation of the current
510 expression. */
511
512 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
513 provided by "complaint". */
514 static void lim_warning (const char *format, ...) ATTR_FORMAT (printf, 1, 2);
515
516 static void
517 lim_warning (const char *format, ...)
518 {
519 va_list args;
520 va_start (args, format);
521
522 warnings_issued += 1;
523 if (warnings_issued <= warning_limit)
524 vwarning (format, args);
525
526 va_end (args);
527 }
528
529 /* Issue an error if the size of an object of type T is unreasonable,
530 i.e. if it would be a bad idea to allocate a value of this type in
531 GDB. */
532
533 static void
534 check_size (const struct type *type)
535 {
536 if (TYPE_LENGTH (type) > varsize_limit)
537 error (_("object size is larger than varsize-limit"));
538 }
539
540
541 /* Note: would have used MAX_OF_TYPE and MIN_OF_TYPE macros from
542 gdbtypes.h, but some of the necessary definitions in that file
543 seem to have gone missing. */
544
545 /* Maximum value of a SIZE-byte signed integer type. */
546 static LONGEST
547 max_of_size (int size)
548 {
549 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
550 return top_bit | (top_bit - 1);
551 }
552
553 /* Minimum value of a SIZE-byte signed integer type. */
554 static LONGEST
555 min_of_size (int size)
556 {
557 return -max_of_size (size) - 1;
558 }
559
560 /* Maximum value of a SIZE-byte unsigned integer type. */
561 static ULONGEST
562 umax_of_size (int size)
563 {
564 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
565 return top_bit | (top_bit - 1);
566 }
567
568 /* Maximum value of integral type T, as a signed quantity. */
569 static LONGEST
570 max_of_type (struct type *t)
571 {
572 if (TYPE_UNSIGNED (t))
573 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
574 else
575 return max_of_size (TYPE_LENGTH (t));
576 }
577
578 /* Minimum value of integral type T, as a signed quantity. */
579 static LONGEST
580 min_of_type (struct type *t)
581 {
582 if (TYPE_UNSIGNED (t))
583 return 0;
584 else
585 return min_of_size (TYPE_LENGTH (t));
586 }
587
588 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
589 static struct value *
590 discrete_type_high_bound (struct type *type)
591 {
592 switch (TYPE_CODE (type))
593 {
594 case TYPE_CODE_RANGE:
595 return value_from_longest (TYPE_TARGET_TYPE (type),
596 TYPE_HIGH_BOUND (type));
597 case TYPE_CODE_ENUM:
598 return
599 value_from_longest (type,
600 TYPE_FIELD_BITPOS (type,
601 TYPE_NFIELDS (type) - 1));
602 case TYPE_CODE_INT:
603 return value_from_longest (type, max_of_type (type));
604 default:
605 error (_("Unexpected type in discrete_type_high_bound."));
606 }
607 }
608
609 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
610 static struct value *
611 discrete_type_low_bound (struct type *type)
612 {
613 switch (TYPE_CODE (type))
614 {
615 case TYPE_CODE_RANGE:
616 return value_from_longest (TYPE_TARGET_TYPE (type),
617 TYPE_LOW_BOUND (type));
618 case TYPE_CODE_ENUM:
619 return value_from_longest (type, TYPE_FIELD_BITPOS (type, 0));
620 case TYPE_CODE_INT:
621 return value_from_longest (type, min_of_type (type));
622 default:
623 error (_("Unexpected type in discrete_type_low_bound."));
624 }
625 }
626
627 /* The identity on non-range types. For range types, the underlying
628 non-range scalar type. */
629
630 static struct type *
631 base_type (struct type *type)
632 {
633 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
634 {
635 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
636 return type;
637 type = TYPE_TARGET_TYPE (type);
638 }
639 return type;
640 }
641 \f
642
643 /* Language Selection */
644
645 /* If the main program is in Ada, return language_ada, otherwise return LANG
646 (the main program is in Ada iif the adainit symbol is found).
647
648 MAIN_PST is not used. */
649
650 enum language
651 ada_update_initial_language (enum language lang,
652 struct partial_symtab *main_pst)
653 {
654 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
655 (struct objfile *) NULL) != NULL)
656 return language_ada;
657
658 return lang;
659 }
660
661 /* If the main procedure is written in Ada, then return its name.
662 The result is good until the next call. Return NULL if the main
663 procedure doesn't appear to be in Ada. */
664
665 char *
666 ada_main_name (void)
667 {
668 struct minimal_symbol *msym;
669 CORE_ADDR main_program_name_addr;
670 static char main_program_name[1024];
671
672 /* For Ada, the name of the main procedure is stored in a specific
673 string constant, generated by the binder. Look for that symbol,
674 extract its address, and then read that string. If we didn't find
675 that string, then most probably the main procedure is not written
676 in Ada. */
677 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
678
679 if (msym != NULL)
680 {
681 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
682 if (main_program_name_addr == 0)
683 error (_("Invalid address for Ada main program name."));
684
685 extract_string (main_program_name_addr, main_program_name);
686 return main_program_name;
687 }
688
689 /* The main procedure doesn't seem to be in Ada. */
690 return NULL;
691 }
692 \f
693 /* Symbols */
694
695 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
696 of NULLs. */
697
698 const struct ada_opname_map ada_opname_table[] = {
699 {"Oadd", "\"+\"", BINOP_ADD},
700 {"Osubtract", "\"-\"", BINOP_SUB},
701 {"Omultiply", "\"*\"", BINOP_MUL},
702 {"Odivide", "\"/\"", BINOP_DIV},
703 {"Omod", "\"mod\"", BINOP_MOD},
704 {"Orem", "\"rem\"", BINOP_REM},
705 {"Oexpon", "\"**\"", BINOP_EXP},
706 {"Olt", "\"<\"", BINOP_LESS},
707 {"Ole", "\"<=\"", BINOP_LEQ},
708 {"Ogt", "\">\"", BINOP_GTR},
709 {"Oge", "\">=\"", BINOP_GEQ},
710 {"Oeq", "\"=\"", BINOP_EQUAL},
711 {"One", "\"/=\"", BINOP_NOTEQUAL},
712 {"Oand", "\"and\"", BINOP_BITWISE_AND},
713 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
714 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
715 {"Oconcat", "\"&\"", BINOP_CONCAT},
716 {"Oabs", "\"abs\"", UNOP_ABS},
717 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
718 {"Oadd", "\"+\"", UNOP_PLUS},
719 {"Osubtract", "\"-\"", UNOP_NEG},
720 {NULL, NULL}
721 };
722
723 /* Return non-zero if STR should be suppressed in info listings. */
724
725 static int
726 is_suppressed_name (const char *str)
727 {
728 if (strncmp (str, "_ada_", 5) == 0)
729 str += 5;
730 if (str[0] == '_' || str[0] == '\000')
731 return 1;
732 else
733 {
734 const char *p;
735 const char *suffix = strstr (str, "___");
736 if (suffix != NULL && suffix[3] != 'X')
737 return 1;
738 if (suffix == NULL)
739 suffix = str + strlen (str);
740 for (p = suffix - 1; p != str; p -= 1)
741 if (isupper (*p))
742 {
743 int i;
744 if (p[0] == 'X' && p[-1] != '_')
745 goto OK;
746 if (*p != 'O')
747 return 1;
748 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
749 if (strncmp (ada_opname_table[i].encoded, p,
750 strlen (ada_opname_table[i].encoded)) == 0)
751 goto OK;
752 return 1;
753 OK:;
754 }
755 return 0;
756 }
757 }
758
759 /* The "encoded" form of DECODED, according to GNAT conventions.
760 The result is valid until the next call to ada_encode. */
761
762 char *
763 ada_encode (const char *decoded)
764 {
765 static char *encoding_buffer = NULL;
766 static size_t encoding_buffer_size = 0;
767 const char *p;
768 int k;
769
770 if (decoded == NULL)
771 return NULL;
772
773 GROW_VECT (encoding_buffer, encoding_buffer_size,
774 2 * strlen (decoded) + 10);
775
776 k = 0;
777 for (p = decoded; *p != '\0'; p += 1)
778 {
779 if (!ADA_RETAIN_DOTS && *p == '.')
780 {
781 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
782 k += 2;
783 }
784 else if (*p == '"')
785 {
786 const struct ada_opname_map *mapping;
787
788 for (mapping = ada_opname_table;
789 mapping->encoded != NULL
790 && strncmp (mapping->decoded, p,
791 strlen (mapping->decoded)) != 0; mapping += 1)
792 ;
793 if (mapping->encoded == NULL)
794 error (_("invalid Ada operator name: %s"), p);
795 strcpy (encoding_buffer + k, mapping->encoded);
796 k += strlen (mapping->encoded);
797 break;
798 }
799 else
800 {
801 encoding_buffer[k] = *p;
802 k += 1;
803 }
804 }
805
806 encoding_buffer[k] = '\0';
807 return encoding_buffer;
808 }
809
810 /* Return NAME folded to lower case, or, if surrounded by single
811 quotes, unfolded, but with the quotes stripped away. Result good
812 to next call. */
813
814 char *
815 ada_fold_name (const char *name)
816 {
817 static char *fold_buffer = NULL;
818 static size_t fold_buffer_size = 0;
819
820 int len = strlen (name);
821 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
822
823 if (name[0] == '\'')
824 {
825 strncpy (fold_buffer, name + 1, len - 2);
826 fold_buffer[len - 2] = '\000';
827 }
828 else
829 {
830 int i;
831 for (i = 0; i <= len; i += 1)
832 fold_buffer[i] = tolower (name[i]);
833 }
834
835 return fold_buffer;
836 }
837
838 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
839
840 static int
841 is_lower_alphanum (const char c)
842 {
843 return (isdigit (c) || (isalpha (c) && islower (c)));
844 }
845
846 /* Decode:
847 . Discard trailing .{DIGIT}+, ${DIGIT}+ or ___{DIGIT}+
848 These are suffixes introduced by GNAT5 to nested subprogram
849 names, and do not serve any purpose for the debugger.
850 . Discard final __{DIGIT}+ or $({DIGIT}+(__{DIGIT}+)*)
851 . Discard final N if it follows a lowercase alphanumeric character
852 (protected object subprogram suffix)
853 . Convert other instances of embedded "__" to `.'.
854 . Discard leading _ada_.
855 . Convert operator names to the appropriate quoted symbols.
856 . Remove everything after first ___ if it is followed by
857 'X'.
858 . Replace TK__ with __, and a trailing B or TKB with nothing.
859 . Replace _[EB]{DIGIT}+[sb] with nothing (protected object entries)
860 . Put symbols that should be suppressed in <...> brackets.
861 . Remove trailing X[bn]* suffix (indicating names in package bodies).
862
863 The resulting string is valid until the next call of ada_decode.
864 If the string is unchanged by demangling, the original string pointer
865 is returned. */
866
867 const char *
868 ada_decode (const char *encoded)
869 {
870 int i, j;
871 int len0;
872 const char *p;
873 char *decoded;
874 int at_start_name;
875 static char *decoding_buffer = NULL;
876 static size_t decoding_buffer_size = 0;
877
878 if (strncmp (encoded, "_ada_", 5) == 0)
879 encoded += 5;
880
881 if (encoded[0] == '_' || encoded[0] == '<')
882 goto Suppress;
883
884 /* Remove trailing .{DIGIT}+ or ___{DIGIT}+ or __{DIGIT}+. */
885 len0 = strlen (encoded);
886 if (len0 > 1 && isdigit (encoded[len0 - 1]))
887 {
888 i = len0 - 2;
889 while (i > 0 && isdigit (encoded[i]))
890 i--;
891 if (i >= 0 && encoded[i] == '.')
892 len0 = i;
893 else if (i >= 0 && encoded[i] == '$')
894 len0 = i;
895 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
896 len0 = i - 2;
897 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
898 len0 = i - 1;
899 }
900
901 /* Remove trailing N. */
902
903 /* Protected entry subprograms are broken into two
904 separate subprograms: The first one is unprotected, and has
905 a 'N' suffix; the second is the protected version, and has
906 the 'P' suffix. The second calls the first one after handling
907 the protection. Since the P subprograms are internally generated,
908 we leave these names undecoded, giving the user a clue that this
909 entity is internal. */
910
911 if (len0 > 1
912 && encoded[len0 - 1] == 'N'
913 && (isdigit (encoded[len0 - 2]) || islower (encoded[len0 - 2])))
914 len0--;
915
916 /* Remove the ___X.* suffix if present. Do not forget to verify that
917 the suffix is located before the current "end" of ENCODED. We want
918 to avoid re-matching parts of ENCODED that have previously been
919 marked as discarded (by decrementing LEN0). */
920 p = strstr (encoded, "___");
921 if (p != NULL && p - encoded < len0 - 3)
922 {
923 if (p[3] == 'X')
924 len0 = p - encoded;
925 else
926 goto Suppress;
927 }
928
929 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
930 len0 -= 3;
931
932 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
933 len0 -= 1;
934
935 /* Make decoded big enough for possible expansion by operator name. */
936 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
937 decoded = decoding_buffer;
938
939 if (len0 > 1 && isdigit (encoded[len0 - 1]))
940 {
941 i = len0 - 2;
942 while ((i >= 0 && isdigit (encoded[i]))
943 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
944 i -= 1;
945 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
946 len0 = i - 1;
947 else if (encoded[i] == '$')
948 len0 = i;
949 }
950
951 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
952 decoded[j] = encoded[i];
953
954 at_start_name = 1;
955 while (i < len0)
956 {
957 if (at_start_name && encoded[i] == 'O')
958 {
959 int k;
960 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
961 {
962 int op_len = strlen (ada_opname_table[k].encoded);
963 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
964 op_len - 1) == 0)
965 && !isalnum (encoded[i + op_len]))
966 {
967 strcpy (decoded + j, ada_opname_table[k].decoded);
968 at_start_name = 0;
969 i += op_len;
970 j += strlen (ada_opname_table[k].decoded);
971 break;
972 }
973 }
974 if (ada_opname_table[k].encoded != NULL)
975 continue;
976 }
977 at_start_name = 0;
978
979 /* Replace "TK__" with "__", which will eventually be translated
980 into "." (just below). */
981
982 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
983 i += 2;
984
985 /* Remove _E{DIGITS}+[sb] */
986
987 /* Just as for protected object subprograms, there are 2 categories
988 of subprograms created by the compiler for each entry. The first
989 one implements the actual entry code, and has a suffix following
990 the convention above; the second one implements the barrier and
991 uses the same convention as above, except that the 'E' is replaced
992 by a 'B'.
993
994 Just as above, we do not decode the name of barrier functions
995 to give the user a clue that the code he is debugging has been
996 internally generated. */
997
998 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
999 && isdigit (encoded[i+2]))
1000 {
1001 int k = i + 3;
1002
1003 while (k < len0 && isdigit (encoded[k]))
1004 k++;
1005
1006 if (k < len0
1007 && (encoded[k] == 'b' || encoded[k] == 's'))
1008 {
1009 k++;
1010 /* Just as an extra precaution, make sure that if this
1011 suffix is followed by anything else, it is a '_'.
1012 Otherwise, we matched this sequence by accident. */
1013 if (k == len0
1014 || (k < len0 && encoded[k] == '_'))
1015 i = k;
1016 }
1017 }
1018
1019 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1020 the GNAT front-end in protected object subprograms. */
1021
1022 if (i < len0 + 3
1023 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1024 {
1025 /* Backtrack a bit up until we reach either the begining of
1026 the encoded name, or "__". Make sure that we only find
1027 digits or lowercase characters. */
1028 const char *ptr = encoded + i - 1;
1029
1030 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1031 ptr--;
1032 if (ptr < encoded
1033 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1034 i++;
1035 }
1036
1037 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1038 {
1039 do
1040 i += 1;
1041 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1042 if (i < len0)
1043 goto Suppress;
1044 }
1045 else if (!ADA_RETAIN_DOTS
1046 && i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1047 {
1048 decoded[j] = '.';
1049 at_start_name = 1;
1050 i += 2;
1051 j += 1;
1052 }
1053 else
1054 {
1055 decoded[j] = encoded[i];
1056 i += 1;
1057 j += 1;
1058 }
1059 }
1060 decoded[j] = '\000';
1061
1062 for (i = 0; decoded[i] != '\0'; i += 1)
1063 if (isupper (decoded[i]) || decoded[i] == ' ')
1064 goto Suppress;
1065
1066 if (strcmp (decoded, encoded) == 0)
1067 return encoded;
1068 else
1069 return decoded;
1070
1071 Suppress:
1072 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1073 decoded = decoding_buffer;
1074 if (encoded[0] == '<')
1075 strcpy (decoded, encoded);
1076 else
1077 sprintf (decoded, "<%s>", encoded);
1078 return decoded;
1079
1080 }
1081
1082 /* Table for keeping permanent unique copies of decoded names. Once
1083 allocated, names in this table are never released. While this is a
1084 storage leak, it should not be significant unless there are massive
1085 changes in the set of decoded names in successive versions of a
1086 symbol table loaded during a single session. */
1087 static struct htab *decoded_names_store;
1088
1089 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1090 in the language-specific part of GSYMBOL, if it has not been
1091 previously computed. Tries to save the decoded name in the same
1092 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1093 in any case, the decoded symbol has a lifetime at least that of
1094 GSYMBOL).
1095 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1096 const, but nevertheless modified to a semantically equivalent form
1097 when a decoded name is cached in it.
1098 */
1099
1100 char *
1101 ada_decode_symbol (const struct general_symbol_info *gsymbol)
1102 {
1103 char **resultp =
1104 (char **) &gsymbol->language_specific.cplus_specific.demangled_name;
1105 if (*resultp == NULL)
1106 {
1107 const char *decoded = ada_decode (gsymbol->name);
1108 if (gsymbol->bfd_section != NULL)
1109 {
1110 bfd *obfd = gsymbol->bfd_section->owner;
1111 if (obfd != NULL)
1112 {
1113 struct objfile *objf;
1114 ALL_OBJFILES (objf)
1115 {
1116 if (obfd == objf->obfd)
1117 {
1118 *resultp = obsavestring (decoded, strlen (decoded),
1119 &objf->objfile_obstack);
1120 break;
1121 }
1122 }
1123 }
1124 }
1125 /* Sometimes, we can't find a corresponding objfile, in which
1126 case, we put the result on the heap. Since we only decode
1127 when needed, we hope this usually does not cause a
1128 significant memory leak (FIXME). */
1129 if (*resultp == NULL)
1130 {
1131 char **slot = (char **) htab_find_slot (decoded_names_store,
1132 decoded, INSERT);
1133 if (*slot == NULL)
1134 *slot = xstrdup (decoded);
1135 *resultp = *slot;
1136 }
1137 }
1138
1139 return *resultp;
1140 }
1141
1142 char *
1143 ada_la_decode (const char *encoded, int options)
1144 {
1145 return xstrdup (ada_decode (encoded));
1146 }
1147
1148 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1149 suffixes that encode debugging information or leading _ada_ on
1150 SYM_NAME (see is_name_suffix commentary for the debugging
1151 information that is ignored). If WILD, then NAME need only match a
1152 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1153 either argument is NULL. */
1154
1155 int
1156 ada_match_name (const char *sym_name, const char *name, int wild)
1157 {
1158 if (sym_name == NULL || name == NULL)
1159 return 0;
1160 else if (wild)
1161 return wild_match (name, strlen (name), sym_name);
1162 else
1163 {
1164 int len_name = strlen (name);
1165 return (strncmp (sym_name, name, len_name) == 0
1166 && is_name_suffix (sym_name + len_name))
1167 || (strncmp (sym_name, "_ada_", 5) == 0
1168 && strncmp (sym_name + 5, name, len_name) == 0
1169 && is_name_suffix (sym_name + len_name + 5));
1170 }
1171 }
1172
1173 /* True (non-zero) iff, in Ada mode, the symbol SYM should be
1174 suppressed in info listings. */
1175
1176 int
1177 ada_suppress_symbol_printing (struct symbol *sym)
1178 {
1179 if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN)
1180 return 1;
1181 else
1182 return is_suppressed_name (SYMBOL_LINKAGE_NAME (sym));
1183 }
1184 \f
1185
1186 /* Arrays */
1187
1188 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1189
1190 static char *bound_name[] = {
1191 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1192 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1193 };
1194
1195 /* Maximum number of array dimensions we are prepared to handle. */
1196
1197 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1198
1199 /* Like modify_field, but allows bitpos > wordlength. */
1200
1201 static void
1202 modify_general_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
1203 {
1204 modify_field (addr + bitpos / 8, fieldval, bitpos % 8, bitsize);
1205 }
1206
1207
1208 /* The desc_* routines return primitive portions of array descriptors
1209 (fat pointers). */
1210
1211 /* The descriptor or array type, if any, indicated by TYPE; removes
1212 level of indirection, if needed. */
1213
1214 static struct type *
1215 desc_base_type (struct type *type)
1216 {
1217 if (type == NULL)
1218 return NULL;
1219 type = ada_check_typedef (type);
1220 if (type != NULL
1221 && (TYPE_CODE (type) == TYPE_CODE_PTR
1222 || TYPE_CODE (type) == TYPE_CODE_REF))
1223 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1224 else
1225 return type;
1226 }
1227
1228 /* True iff TYPE indicates a "thin" array pointer type. */
1229
1230 static int
1231 is_thin_pntr (struct type *type)
1232 {
1233 return
1234 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1235 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1236 }
1237
1238 /* The descriptor type for thin pointer type TYPE. */
1239
1240 static struct type *
1241 thin_descriptor_type (struct type *type)
1242 {
1243 struct type *base_type = desc_base_type (type);
1244 if (base_type == NULL)
1245 return NULL;
1246 if (is_suffix (ada_type_name (base_type), "___XVE"))
1247 return base_type;
1248 else
1249 {
1250 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1251 if (alt_type == NULL)
1252 return base_type;
1253 else
1254 return alt_type;
1255 }
1256 }
1257
1258 /* A pointer to the array data for thin-pointer value VAL. */
1259
1260 static struct value *
1261 thin_data_pntr (struct value *val)
1262 {
1263 struct type *type = value_type (val);
1264 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1265 return value_cast (desc_data_type (thin_descriptor_type (type)),
1266 value_copy (val));
1267 else
1268 return value_from_longest (desc_data_type (thin_descriptor_type (type)),
1269 VALUE_ADDRESS (val) + value_offset (val));
1270 }
1271
1272 /* True iff TYPE indicates a "thick" array pointer type. */
1273
1274 static int
1275 is_thick_pntr (struct type *type)
1276 {
1277 type = desc_base_type (type);
1278 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1279 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1280 }
1281
1282 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1283 pointer to one, the type of its bounds data; otherwise, NULL. */
1284
1285 static struct type *
1286 desc_bounds_type (struct type *type)
1287 {
1288 struct type *r;
1289
1290 type = desc_base_type (type);
1291
1292 if (type == NULL)
1293 return NULL;
1294 else if (is_thin_pntr (type))
1295 {
1296 type = thin_descriptor_type (type);
1297 if (type == NULL)
1298 return NULL;
1299 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1300 if (r != NULL)
1301 return ada_check_typedef (r);
1302 }
1303 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1304 {
1305 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1306 if (r != NULL)
1307 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1308 }
1309 return NULL;
1310 }
1311
1312 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1313 one, a pointer to its bounds data. Otherwise NULL. */
1314
1315 static struct value *
1316 desc_bounds (struct value *arr)
1317 {
1318 struct type *type = ada_check_typedef (value_type (arr));
1319 if (is_thin_pntr (type))
1320 {
1321 struct type *bounds_type =
1322 desc_bounds_type (thin_descriptor_type (type));
1323 LONGEST addr;
1324
1325 if (bounds_type == NULL)
1326 error (_("Bad GNAT array descriptor"));
1327
1328 /* NOTE: The following calculation is not really kosher, but
1329 since desc_type is an XVE-encoded type (and shouldn't be),
1330 the correct calculation is a real pain. FIXME (and fix GCC). */
1331 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1332 addr = value_as_long (arr);
1333 else
1334 addr = VALUE_ADDRESS (arr) + value_offset (arr);
1335
1336 return
1337 value_from_longest (lookup_pointer_type (bounds_type),
1338 addr - TYPE_LENGTH (bounds_type));
1339 }
1340
1341 else if (is_thick_pntr (type))
1342 return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1343 _("Bad GNAT array descriptor"));
1344 else
1345 return NULL;
1346 }
1347
1348 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1349 position of the field containing the address of the bounds data. */
1350
1351 static int
1352 fat_pntr_bounds_bitpos (struct type *type)
1353 {
1354 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1355 }
1356
1357 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1358 size of the field containing the address of the bounds data. */
1359
1360 static int
1361 fat_pntr_bounds_bitsize (struct type *type)
1362 {
1363 type = desc_base_type (type);
1364
1365 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1366 return TYPE_FIELD_BITSIZE (type, 1);
1367 else
1368 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1369 }
1370
1371 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1372 pointer to one, the type of its array data (a
1373 pointer-to-array-with-no-bounds type); otherwise, NULL. Use
1374 ada_type_of_array to get an array type with bounds data. */
1375
1376 static struct type *
1377 desc_data_type (struct type *type)
1378 {
1379 type = desc_base_type (type);
1380
1381 /* NOTE: The following is bogus; see comment in desc_bounds. */
1382 if (is_thin_pntr (type))
1383 return lookup_pointer_type
1384 (desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1)));
1385 else if (is_thick_pntr (type))
1386 return lookup_struct_elt_type (type, "P_ARRAY", 1);
1387 else
1388 return NULL;
1389 }
1390
1391 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1392 its array data. */
1393
1394 static struct value *
1395 desc_data (struct value *arr)
1396 {
1397 struct type *type = value_type (arr);
1398 if (is_thin_pntr (type))
1399 return thin_data_pntr (arr);
1400 else if (is_thick_pntr (type))
1401 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1402 _("Bad GNAT array descriptor"));
1403 else
1404 return NULL;
1405 }
1406
1407
1408 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1409 position of the field containing the address of the data. */
1410
1411 static int
1412 fat_pntr_data_bitpos (struct type *type)
1413 {
1414 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1415 }
1416
1417 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1418 size of the field containing the address of the data. */
1419
1420 static int
1421 fat_pntr_data_bitsize (struct type *type)
1422 {
1423 type = desc_base_type (type);
1424
1425 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1426 return TYPE_FIELD_BITSIZE (type, 0);
1427 else
1428 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1429 }
1430
1431 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1432 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1433 bound, if WHICH is 1. The first bound is I=1. */
1434
1435 static struct value *
1436 desc_one_bound (struct value *bounds, int i, int which)
1437 {
1438 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1439 _("Bad GNAT array descriptor bounds"));
1440 }
1441
1442 /* If BOUNDS is an array-bounds structure type, return the bit position
1443 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1444 bound, if WHICH is 1. The first bound is I=1. */
1445
1446 static int
1447 desc_bound_bitpos (struct type *type, int i, int which)
1448 {
1449 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1450 }
1451
1452 /* If BOUNDS is an array-bounds structure type, return the bit field size
1453 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1454 bound, if WHICH is 1. The first bound is I=1. */
1455
1456 static int
1457 desc_bound_bitsize (struct type *type, int i, int which)
1458 {
1459 type = desc_base_type (type);
1460
1461 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1462 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1463 else
1464 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1465 }
1466
1467 /* If TYPE is the type of an array-bounds structure, the type of its
1468 Ith bound (numbering from 1). Otherwise, NULL. */
1469
1470 static struct type *
1471 desc_index_type (struct type *type, int i)
1472 {
1473 type = desc_base_type (type);
1474
1475 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1476 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1477 else
1478 return NULL;
1479 }
1480
1481 /* The number of index positions in the array-bounds type TYPE.
1482 Return 0 if TYPE is NULL. */
1483
1484 static int
1485 desc_arity (struct type *type)
1486 {
1487 type = desc_base_type (type);
1488
1489 if (type != NULL)
1490 return TYPE_NFIELDS (type) / 2;
1491 return 0;
1492 }
1493
1494 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1495 an array descriptor type (representing an unconstrained array
1496 type). */
1497
1498 static int
1499 ada_is_direct_array_type (struct type *type)
1500 {
1501 if (type == NULL)
1502 return 0;
1503 type = ada_check_typedef (type);
1504 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1505 || ada_is_array_descriptor_type (type));
1506 }
1507
1508 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1509 * to one. */
1510
1511 int
1512 ada_is_array_type (struct type *type)
1513 {
1514 while (type != NULL
1515 && (TYPE_CODE (type) == TYPE_CODE_PTR
1516 || TYPE_CODE (type) == TYPE_CODE_REF))
1517 type = TYPE_TARGET_TYPE (type);
1518 return ada_is_direct_array_type (type);
1519 }
1520
1521 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1522
1523 int
1524 ada_is_simple_array_type (struct type *type)
1525 {
1526 if (type == NULL)
1527 return 0;
1528 type = ada_check_typedef (type);
1529 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1530 || (TYPE_CODE (type) == TYPE_CODE_PTR
1531 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
1532 }
1533
1534 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1535
1536 int
1537 ada_is_array_descriptor_type (struct type *type)
1538 {
1539 struct type *data_type = desc_data_type (type);
1540
1541 if (type == NULL)
1542 return 0;
1543 type = ada_check_typedef (type);
1544 return
1545 data_type != NULL
1546 && ((TYPE_CODE (data_type) == TYPE_CODE_PTR
1547 && TYPE_TARGET_TYPE (data_type) != NULL
1548 && TYPE_CODE (TYPE_TARGET_TYPE (data_type)) == TYPE_CODE_ARRAY)
1549 || TYPE_CODE (data_type) == TYPE_CODE_ARRAY)
1550 && desc_arity (desc_bounds_type (type)) > 0;
1551 }
1552
1553 /* Non-zero iff type is a partially mal-formed GNAT array
1554 descriptor. FIXME: This is to compensate for some problems with
1555 debugging output from GNAT. Re-examine periodically to see if it
1556 is still needed. */
1557
1558 int
1559 ada_is_bogus_array_descriptor (struct type *type)
1560 {
1561 return
1562 type != NULL
1563 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1564 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1565 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1566 && !ada_is_array_descriptor_type (type);
1567 }
1568
1569
1570 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1571 (fat pointer) returns the type of the array data described---specifically,
1572 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1573 in from the descriptor; otherwise, they are left unspecified. If
1574 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1575 returns NULL. The result is simply the type of ARR if ARR is not
1576 a descriptor. */
1577 struct type *
1578 ada_type_of_array (struct value *arr, int bounds)
1579 {
1580 if (ada_is_packed_array_type (value_type (arr)))
1581 return decode_packed_array_type (value_type (arr));
1582
1583 if (!ada_is_array_descriptor_type (value_type (arr)))
1584 return value_type (arr);
1585
1586 if (!bounds)
1587 return
1588 ada_check_typedef (TYPE_TARGET_TYPE (desc_data_type (value_type (arr))));
1589 else
1590 {
1591 struct type *elt_type;
1592 int arity;
1593 struct value *descriptor;
1594 struct objfile *objf = TYPE_OBJFILE (value_type (arr));
1595
1596 elt_type = ada_array_element_type (value_type (arr), -1);
1597 arity = ada_array_arity (value_type (arr));
1598
1599 if (elt_type == NULL || arity == 0)
1600 return ada_check_typedef (value_type (arr));
1601
1602 descriptor = desc_bounds (arr);
1603 if (value_as_long (descriptor) == 0)
1604 return NULL;
1605 while (arity > 0)
1606 {
1607 struct type *range_type = alloc_type (objf);
1608 struct type *array_type = alloc_type (objf);
1609 struct value *low = desc_one_bound (descriptor, arity, 0);
1610 struct value *high = desc_one_bound (descriptor, arity, 1);
1611 arity -= 1;
1612
1613 create_range_type (range_type, value_type (low),
1614 longest_to_int (value_as_long (low)),
1615 longest_to_int (value_as_long (high)));
1616 elt_type = create_array_type (array_type, elt_type, range_type);
1617 }
1618
1619 return lookup_pointer_type (elt_type);
1620 }
1621 }
1622
1623 /* If ARR does not represent an array, returns ARR unchanged.
1624 Otherwise, returns either a standard GDB array with bounds set
1625 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1626 GDB array. Returns NULL if ARR is a null fat pointer. */
1627
1628 struct value *
1629 ada_coerce_to_simple_array_ptr (struct value *arr)
1630 {
1631 if (ada_is_array_descriptor_type (value_type (arr)))
1632 {
1633 struct type *arrType = ada_type_of_array (arr, 1);
1634 if (arrType == NULL)
1635 return NULL;
1636 return value_cast (arrType, value_copy (desc_data (arr)));
1637 }
1638 else if (ada_is_packed_array_type (value_type (arr)))
1639 return decode_packed_array (arr);
1640 else
1641 return arr;
1642 }
1643
1644 /* If ARR does not represent an array, returns ARR unchanged.
1645 Otherwise, returns a standard GDB array describing ARR (which may
1646 be ARR itself if it already is in the proper form). */
1647
1648 static struct value *
1649 ada_coerce_to_simple_array (struct value *arr)
1650 {
1651 if (ada_is_array_descriptor_type (value_type (arr)))
1652 {
1653 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1654 if (arrVal == NULL)
1655 error (_("Bounds unavailable for null array pointer."));
1656 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1657 return value_ind (arrVal);
1658 }
1659 else if (ada_is_packed_array_type (value_type (arr)))
1660 return decode_packed_array (arr);
1661 else
1662 return arr;
1663 }
1664
1665 /* If TYPE represents a GNAT array type, return it translated to an
1666 ordinary GDB array type (possibly with BITSIZE fields indicating
1667 packing). For other types, is the identity. */
1668
1669 struct type *
1670 ada_coerce_to_simple_array_type (struct type *type)
1671 {
1672 struct value *mark = value_mark ();
1673 struct value *dummy = value_from_longest (builtin_type_long, 0);
1674 struct type *result;
1675 deprecated_set_value_type (dummy, type);
1676 result = ada_type_of_array (dummy, 0);
1677 value_free_to_mark (mark);
1678 return result;
1679 }
1680
1681 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1682
1683 int
1684 ada_is_packed_array_type (struct type *type)
1685 {
1686 if (type == NULL)
1687 return 0;
1688 type = desc_base_type (type);
1689 type = ada_check_typedef (type);
1690 return
1691 ada_type_name (type) != NULL
1692 && strstr (ada_type_name (type), "___XP") != NULL;
1693 }
1694
1695 /* Given that TYPE is a standard GDB array type with all bounds filled
1696 in, and that the element size of its ultimate scalar constituents
1697 (that is, either its elements, or, if it is an array of arrays, its
1698 elements' elements, etc.) is *ELT_BITS, return an identical type,
1699 but with the bit sizes of its elements (and those of any
1700 constituent arrays) recorded in the BITSIZE components of its
1701 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1702 in bits. */
1703
1704 static struct type *
1705 packed_array_type (struct type *type, long *elt_bits)
1706 {
1707 struct type *new_elt_type;
1708 struct type *new_type;
1709 LONGEST low_bound, high_bound;
1710
1711 type = ada_check_typedef (type);
1712 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1713 return type;
1714
1715 new_type = alloc_type (TYPE_OBJFILE (type));
1716 new_elt_type = packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
1717 elt_bits);
1718 create_array_type (new_type, new_elt_type, TYPE_FIELD_TYPE (type, 0));
1719 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
1720 TYPE_NAME (new_type) = ada_type_name (type);
1721
1722 if (get_discrete_bounds (TYPE_FIELD_TYPE (type, 0),
1723 &low_bound, &high_bound) < 0)
1724 low_bound = high_bound = 0;
1725 if (high_bound < low_bound)
1726 *elt_bits = TYPE_LENGTH (new_type) = 0;
1727 else
1728 {
1729 *elt_bits *= (high_bound - low_bound + 1);
1730 TYPE_LENGTH (new_type) =
1731 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
1732 }
1733
1734 TYPE_FLAGS (new_type) |= TYPE_FLAG_FIXED_INSTANCE;
1735 return new_type;
1736 }
1737
1738 /* The array type encoded by TYPE, where ada_is_packed_array_type (TYPE). */
1739
1740 static struct type *
1741 decode_packed_array_type (struct type *type)
1742 {
1743 struct symbol *sym;
1744 struct block **blocks;
1745 const char *raw_name = ada_type_name (ada_check_typedef (type));
1746 char *name = (char *) alloca (strlen (raw_name) + 1);
1747 char *tail = strstr (raw_name, "___XP");
1748 struct type *shadow_type;
1749 long bits;
1750 int i, n;
1751
1752 type = desc_base_type (type);
1753
1754 memcpy (name, raw_name, tail - raw_name);
1755 name[tail - raw_name] = '\000';
1756
1757 sym = standard_lookup (name, get_selected_block (0), VAR_DOMAIN);
1758 if (sym == NULL || SYMBOL_TYPE (sym) == NULL)
1759 {
1760 lim_warning (_("could not find bounds information on packed array"));
1761 return NULL;
1762 }
1763 shadow_type = SYMBOL_TYPE (sym);
1764
1765 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
1766 {
1767 lim_warning (_("could not understand bounds information on packed array"));
1768 return NULL;
1769 }
1770
1771 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1772 {
1773 lim_warning
1774 (_("could not understand bit size information on packed array"));
1775 return NULL;
1776 }
1777
1778 return packed_array_type (shadow_type, &bits);
1779 }
1780
1781 /* Given that ARR is a struct value *indicating a GNAT packed array,
1782 returns a simple array that denotes that array. Its type is a
1783 standard GDB array type except that the BITSIZEs of the array
1784 target types are set to the number of bits in each element, and the
1785 type length is set appropriately. */
1786
1787 static struct value *
1788 decode_packed_array (struct value *arr)
1789 {
1790 struct type *type;
1791
1792 arr = ada_coerce_ref (arr);
1793 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
1794 arr = ada_value_ind (arr);
1795
1796 type = decode_packed_array_type (value_type (arr));
1797 if (type == NULL)
1798 {
1799 error (_("can't unpack array"));
1800 return NULL;
1801 }
1802
1803 if (BITS_BIG_ENDIAN && ada_is_modular_type (value_type (arr)))
1804 {
1805 /* This is a (right-justified) modular type representing a packed
1806 array with no wrapper. In order to interpret the value through
1807 the (left-justified) packed array type we just built, we must
1808 first left-justify it. */
1809 int bit_size, bit_pos;
1810 ULONGEST mod;
1811
1812 mod = ada_modulus (value_type (arr)) - 1;
1813 bit_size = 0;
1814 while (mod > 0)
1815 {
1816 bit_size += 1;
1817 mod >>= 1;
1818 }
1819 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
1820 arr = ada_value_primitive_packed_val (arr, NULL,
1821 bit_pos / HOST_CHAR_BIT,
1822 bit_pos % HOST_CHAR_BIT,
1823 bit_size,
1824 type);
1825 }
1826
1827 return coerce_unspec_val_to_type (arr, type);
1828 }
1829
1830
1831 /* The value of the element of packed array ARR at the ARITY indices
1832 given in IND. ARR must be a simple array. */
1833
1834 static struct value *
1835 value_subscript_packed (struct value *arr, int arity, struct value **ind)
1836 {
1837 int i;
1838 int bits, elt_off, bit_off;
1839 long elt_total_bit_offset;
1840 struct type *elt_type;
1841 struct value *v;
1842
1843 bits = 0;
1844 elt_total_bit_offset = 0;
1845 elt_type = ada_check_typedef (value_type (arr));
1846 for (i = 0; i < arity; i += 1)
1847 {
1848 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
1849 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
1850 error
1851 (_("attempt to do packed indexing of something other than a packed array"));
1852 else
1853 {
1854 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
1855 LONGEST lowerbound, upperbound;
1856 LONGEST idx;
1857
1858 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
1859 {
1860 lim_warning (_("don't know bounds of array"));
1861 lowerbound = upperbound = 0;
1862 }
1863
1864 idx = value_as_long (value_pos_atr (ind[i]));
1865 if (idx < lowerbound || idx > upperbound)
1866 lim_warning (_("packed array index %ld out of bounds"), (long) idx);
1867 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
1868 elt_total_bit_offset += (idx - lowerbound) * bits;
1869 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
1870 }
1871 }
1872 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
1873 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
1874
1875 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
1876 bits, elt_type);
1877 return v;
1878 }
1879
1880 /* Non-zero iff TYPE includes negative integer values. */
1881
1882 static int
1883 has_negatives (struct type *type)
1884 {
1885 switch (TYPE_CODE (type))
1886 {
1887 default:
1888 return 0;
1889 case TYPE_CODE_INT:
1890 return !TYPE_UNSIGNED (type);
1891 case TYPE_CODE_RANGE:
1892 return TYPE_LOW_BOUND (type) < 0;
1893 }
1894 }
1895
1896
1897 /* Create a new value of type TYPE from the contents of OBJ starting
1898 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
1899 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
1900 assigning through the result will set the field fetched from.
1901 VALADDR is ignored unless OBJ is NULL, in which case,
1902 VALADDR+OFFSET must address the start of storage containing the
1903 packed value. The value returned in this case is never an lval.
1904 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
1905
1906 struct value *
1907 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
1908 long offset, int bit_offset, int bit_size,
1909 struct type *type)
1910 {
1911 struct value *v;
1912 int src, /* Index into the source area */
1913 targ, /* Index into the target area */
1914 srcBitsLeft, /* Number of source bits left to move */
1915 nsrc, ntarg, /* Number of source and target bytes */
1916 unusedLS, /* Number of bits in next significant
1917 byte of source that are unused */
1918 accumSize; /* Number of meaningful bits in accum */
1919 unsigned char *bytes; /* First byte containing data to unpack */
1920 unsigned char *unpacked;
1921 unsigned long accum; /* Staging area for bits being transferred */
1922 unsigned char sign;
1923 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
1924 /* Transmit bytes from least to most significant; delta is the direction
1925 the indices move. */
1926 int delta = BITS_BIG_ENDIAN ? -1 : 1;
1927
1928 type = ada_check_typedef (type);
1929
1930 if (obj == NULL)
1931 {
1932 v = allocate_value (type);
1933 bytes = (unsigned char *) (valaddr + offset);
1934 }
1935 else if (value_lazy (obj))
1936 {
1937 v = value_at (type,
1938 VALUE_ADDRESS (obj) + value_offset (obj) + offset);
1939 bytes = (unsigned char *) alloca (len);
1940 read_memory (VALUE_ADDRESS (v), bytes, len);
1941 }
1942 else
1943 {
1944 v = allocate_value (type);
1945 bytes = (unsigned char *) value_contents (obj) + offset;
1946 }
1947
1948 if (obj != NULL)
1949 {
1950 VALUE_LVAL (v) = VALUE_LVAL (obj);
1951 if (VALUE_LVAL (obj) == lval_internalvar)
1952 VALUE_LVAL (v) = lval_internalvar_component;
1953 VALUE_ADDRESS (v) = VALUE_ADDRESS (obj) + value_offset (obj) + offset;
1954 set_value_bitpos (v, bit_offset + value_bitpos (obj));
1955 set_value_bitsize (v, bit_size);
1956 if (value_bitpos (v) >= HOST_CHAR_BIT)
1957 {
1958 VALUE_ADDRESS (v) += 1;
1959 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
1960 }
1961 }
1962 else
1963 set_value_bitsize (v, bit_size);
1964 unpacked = (unsigned char *) value_contents (v);
1965
1966 srcBitsLeft = bit_size;
1967 nsrc = len;
1968 ntarg = TYPE_LENGTH (type);
1969 sign = 0;
1970 if (bit_size == 0)
1971 {
1972 memset (unpacked, 0, TYPE_LENGTH (type));
1973 return v;
1974 }
1975 else if (BITS_BIG_ENDIAN)
1976 {
1977 src = len - 1;
1978 if (has_negatives (type)
1979 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
1980 sign = ~0;
1981
1982 unusedLS =
1983 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
1984 % HOST_CHAR_BIT;
1985
1986 switch (TYPE_CODE (type))
1987 {
1988 case TYPE_CODE_ARRAY:
1989 case TYPE_CODE_UNION:
1990 case TYPE_CODE_STRUCT:
1991 /* Non-scalar values must be aligned at a byte boundary... */
1992 accumSize =
1993 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
1994 /* ... And are placed at the beginning (most-significant) bytes
1995 of the target. */
1996 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
1997 break;
1998 default:
1999 accumSize = 0;
2000 targ = TYPE_LENGTH (type) - 1;
2001 break;
2002 }
2003 }
2004 else
2005 {
2006 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2007
2008 src = targ = 0;
2009 unusedLS = bit_offset;
2010 accumSize = 0;
2011
2012 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2013 sign = ~0;
2014 }
2015
2016 accum = 0;
2017 while (nsrc > 0)
2018 {
2019 /* Mask for removing bits of the next source byte that are not
2020 part of the value. */
2021 unsigned int unusedMSMask =
2022 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2023 1;
2024 /* Sign-extend bits for this byte. */
2025 unsigned int signMask = sign & ~unusedMSMask;
2026 accum |=
2027 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2028 accumSize += HOST_CHAR_BIT - unusedLS;
2029 if (accumSize >= HOST_CHAR_BIT)
2030 {
2031 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2032 accumSize -= HOST_CHAR_BIT;
2033 accum >>= HOST_CHAR_BIT;
2034 ntarg -= 1;
2035 targ += delta;
2036 }
2037 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2038 unusedLS = 0;
2039 nsrc -= 1;
2040 src += delta;
2041 }
2042 while (ntarg > 0)
2043 {
2044 accum |= sign << accumSize;
2045 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2046 accumSize -= HOST_CHAR_BIT;
2047 accum >>= HOST_CHAR_BIT;
2048 ntarg -= 1;
2049 targ += delta;
2050 }
2051
2052 return v;
2053 }
2054
2055 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2056 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2057 not overlap. */
2058 static void
2059 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2060 int src_offset, int n)
2061 {
2062 unsigned int accum, mask;
2063 int accum_bits, chunk_size;
2064
2065 target += targ_offset / HOST_CHAR_BIT;
2066 targ_offset %= HOST_CHAR_BIT;
2067 source += src_offset / HOST_CHAR_BIT;
2068 src_offset %= HOST_CHAR_BIT;
2069 if (BITS_BIG_ENDIAN)
2070 {
2071 accum = (unsigned char) *source;
2072 source += 1;
2073 accum_bits = HOST_CHAR_BIT - src_offset;
2074
2075 while (n > 0)
2076 {
2077 int unused_right;
2078 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2079 accum_bits += HOST_CHAR_BIT;
2080 source += 1;
2081 chunk_size = HOST_CHAR_BIT - targ_offset;
2082 if (chunk_size > n)
2083 chunk_size = n;
2084 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2085 mask = ((1 << chunk_size) - 1) << unused_right;
2086 *target =
2087 (*target & ~mask)
2088 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2089 n -= chunk_size;
2090 accum_bits -= chunk_size;
2091 target += 1;
2092 targ_offset = 0;
2093 }
2094 }
2095 else
2096 {
2097 accum = (unsigned char) *source >> src_offset;
2098 source += 1;
2099 accum_bits = HOST_CHAR_BIT - src_offset;
2100
2101 while (n > 0)
2102 {
2103 accum = accum + ((unsigned char) *source << accum_bits);
2104 accum_bits += HOST_CHAR_BIT;
2105 source += 1;
2106 chunk_size = HOST_CHAR_BIT - targ_offset;
2107 if (chunk_size > n)
2108 chunk_size = n;
2109 mask = ((1 << chunk_size) - 1) << targ_offset;
2110 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2111 n -= chunk_size;
2112 accum_bits -= chunk_size;
2113 accum >>= chunk_size;
2114 target += 1;
2115 targ_offset = 0;
2116 }
2117 }
2118 }
2119
2120 /* Store the contents of FROMVAL into the location of TOVAL.
2121 Return a new value with the location of TOVAL and contents of
2122 FROMVAL. Handles assignment into packed fields that have
2123 floating-point or non-scalar types. */
2124
2125 static struct value *
2126 ada_value_assign (struct value *toval, struct value *fromval)
2127 {
2128 struct type *type = value_type (toval);
2129 int bits = value_bitsize (toval);
2130
2131 toval = ada_coerce_ref (toval);
2132 fromval = ada_coerce_ref (fromval);
2133
2134 if (ada_is_direct_array_type (value_type (toval)))
2135 toval = ada_coerce_to_simple_array (toval);
2136 if (ada_is_direct_array_type (value_type (fromval)))
2137 fromval = ada_coerce_to_simple_array (fromval);
2138
2139 if (!deprecated_value_modifiable (toval))
2140 error (_("Left operand of assignment is not a modifiable lvalue."));
2141
2142 if (VALUE_LVAL (toval) == lval_memory
2143 && bits > 0
2144 && (TYPE_CODE (type) == TYPE_CODE_FLT
2145 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2146 {
2147 int len = (value_bitpos (toval)
2148 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2149 char *buffer = (char *) alloca (len);
2150 struct value *val;
2151 CORE_ADDR to_addr = VALUE_ADDRESS (toval) + value_offset (toval);
2152
2153 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2154 fromval = value_cast (type, fromval);
2155
2156 read_memory (to_addr, buffer, len);
2157 if (BITS_BIG_ENDIAN)
2158 move_bits (buffer, value_bitpos (toval),
2159 value_contents (fromval),
2160 TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT -
2161 bits, bits);
2162 else
2163 move_bits (buffer, value_bitpos (toval), value_contents (fromval),
2164 0, bits);
2165 write_memory (to_addr, buffer, len);
2166 if (deprecated_memory_changed_hook)
2167 deprecated_memory_changed_hook (to_addr, len);
2168
2169 val = value_copy (toval);
2170 memcpy (value_contents_raw (val), value_contents (fromval),
2171 TYPE_LENGTH (type));
2172 deprecated_set_value_type (val, type);
2173
2174 return val;
2175 }
2176
2177 return value_assign (toval, fromval);
2178 }
2179
2180
2181 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2182 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2183 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2184 * COMPONENT, and not the inferior's memory. The current contents
2185 * of COMPONENT are ignored. */
2186 static void
2187 value_assign_to_component (struct value *container, struct value *component,
2188 struct value *val)
2189 {
2190 LONGEST offset_in_container =
2191 (LONGEST) (VALUE_ADDRESS (component) + value_offset (component)
2192 - VALUE_ADDRESS (container) - value_offset (container));
2193 int bit_offset_in_container =
2194 value_bitpos (component) - value_bitpos (container);
2195 int bits;
2196
2197 val = value_cast (value_type (component), val);
2198
2199 if (value_bitsize (component) == 0)
2200 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2201 else
2202 bits = value_bitsize (component);
2203
2204 if (BITS_BIG_ENDIAN)
2205 move_bits (value_contents_writeable (container) + offset_in_container,
2206 value_bitpos (container) + bit_offset_in_container,
2207 value_contents (val),
2208 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2209 bits);
2210 else
2211 move_bits (value_contents_writeable (container) + offset_in_container,
2212 value_bitpos (container) + bit_offset_in_container,
2213 value_contents (val), 0, bits);
2214 }
2215
2216 /* The value of the element of array ARR at the ARITY indices given in IND.
2217 ARR may be either a simple array, GNAT array descriptor, or pointer
2218 thereto. */
2219
2220 struct value *
2221 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2222 {
2223 int k;
2224 struct value *elt;
2225 struct type *elt_type;
2226
2227 elt = ada_coerce_to_simple_array (arr);
2228
2229 elt_type = ada_check_typedef (value_type (elt));
2230 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2231 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2232 return value_subscript_packed (elt, arity, ind);
2233
2234 for (k = 0; k < arity; k += 1)
2235 {
2236 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2237 error (_("too many subscripts (%d expected)"), k);
2238 elt = value_subscript (elt, value_pos_atr (ind[k]));
2239 }
2240 return elt;
2241 }
2242
2243 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2244 value of the element of *ARR at the ARITY indices given in
2245 IND. Does not read the entire array into memory. */
2246
2247 struct value *
2248 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2249 struct value **ind)
2250 {
2251 int k;
2252
2253 for (k = 0; k < arity; k += 1)
2254 {
2255 LONGEST lwb, upb;
2256 struct value *idx;
2257
2258 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2259 error (_("too many subscripts (%d expected)"), k);
2260 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2261 value_copy (arr));
2262 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2263 idx = value_pos_atr (ind[k]);
2264 if (lwb != 0)
2265 idx = value_sub (idx, value_from_longest (builtin_type_int, lwb));
2266 arr = value_add (arr, idx);
2267 type = TYPE_TARGET_TYPE (type);
2268 }
2269
2270 return value_ind (arr);
2271 }
2272
2273 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2274 actual type of ARRAY_PTR is ignored), returns a reference to
2275 the Ada slice of HIGH-LOW+1 elements starting at index LOW. The lower
2276 bound of this array is LOW, as per Ada rules. */
2277 static struct value *
2278 ada_value_slice_ptr (struct value *array_ptr, struct type *type,
2279 int low, int high)
2280 {
2281 CORE_ADDR base = value_as_address (array_ptr)
2282 + ((low - TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)))
2283 * TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
2284 struct type *index_type =
2285 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
2286 low, high);
2287 struct type *slice_type =
2288 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2289 return value_from_pointer (lookup_reference_type (slice_type), base);
2290 }
2291
2292
2293 static struct value *
2294 ada_value_slice (struct value *array, int low, int high)
2295 {
2296 struct type *type = value_type (array);
2297 struct type *index_type =
2298 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2299 struct type *slice_type =
2300 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2301 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2302 }
2303
2304 /* If type is a record type in the form of a standard GNAT array
2305 descriptor, returns the number of dimensions for type. If arr is a
2306 simple array, returns the number of "array of"s that prefix its
2307 type designation. Otherwise, returns 0. */
2308
2309 int
2310 ada_array_arity (struct type *type)
2311 {
2312 int arity;
2313
2314 if (type == NULL)
2315 return 0;
2316
2317 type = desc_base_type (type);
2318
2319 arity = 0;
2320 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2321 return desc_arity (desc_bounds_type (type));
2322 else
2323 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2324 {
2325 arity += 1;
2326 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2327 }
2328
2329 return arity;
2330 }
2331
2332 /* If TYPE is a record type in the form of a standard GNAT array
2333 descriptor or a simple array type, returns the element type for
2334 TYPE after indexing by NINDICES indices, or by all indices if
2335 NINDICES is -1. Otherwise, returns NULL. */
2336
2337 struct type *
2338 ada_array_element_type (struct type *type, int nindices)
2339 {
2340 type = desc_base_type (type);
2341
2342 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2343 {
2344 int k;
2345 struct type *p_array_type;
2346
2347 p_array_type = desc_data_type (type);
2348
2349 k = ada_array_arity (type);
2350 if (k == 0)
2351 return NULL;
2352
2353 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2354 if (nindices >= 0 && k > nindices)
2355 k = nindices;
2356 p_array_type = TYPE_TARGET_TYPE (p_array_type);
2357 while (k > 0 && p_array_type != NULL)
2358 {
2359 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2360 k -= 1;
2361 }
2362 return p_array_type;
2363 }
2364 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2365 {
2366 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2367 {
2368 type = TYPE_TARGET_TYPE (type);
2369 nindices -= 1;
2370 }
2371 return type;
2372 }
2373
2374 return NULL;
2375 }
2376
2377 /* The type of nth index in arrays of given type (n numbering from 1).
2378 Does not examine memory. */
2379
2380 struct type *
2381 ada_index_type (struct type *type, int n)
2382 {
2383 struct type *result_type;
2384
2385 type = desc_base_type (type);
2386
2387 if (n > ada_array_arity (type))
2388 return NULL;
2389
2390 if (ada_is_simple_array_type (type))
2391 {
2392 int i;
2393
2394 for (i = 1; i < n; i += 1)
2395 type = TYPE_TARGET_TYPE (type);
2396 result_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 0));
2397 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2398 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2399 perhaps stabsread.c would make more sense. */
2400 if (result_type == NULL || TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2401 result_type = builtin_type_int;
2402
2403 return result_type;
2404 }
2405 else
2406 return desc_index_type (desc_bounds_type (type), n);
2407 }
2408
2409 /* Given that arr is an array type, returns the lower bound of the
2410 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2411 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2412 array-descriptor type. If TYPEP is non-null, *TYPEP is set to the
2413 bounds type. It works for other arrays with bounds supplied by
2414 run-time quantities other than discriminants. */
2415
2416 LONGEST
2417 ada_array_bound_from_type (struct type * arr_type, int n, int which,
2418 struct type ** typep)
2419 {
2420 struct type *type;
2421 struct type *index_type_desc;
2422
2423 if (ada_is_packed_array_type (arr_type))
2424 arr_type = decode_packed_array_type (arr_type);
2425
2426 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2427 {
2428 if (typep != NULL)
2429 *typep = builtin_type_int;
2430 return (LONGEST) - which;
2431 }
2432
2433 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2434 type = TYPE_TARGET_TYPE (arr_type);
2435 else
2436 type = arr_type;
2437
2438 index_type_desc = ada_find_parallel_type (type, "___XA");
2439 if (index_type_desc == NULL)
2440 {
2441 struct type *range_type;
2442 struct type *index_type;
2443
2444 while (n > 1)
2445 {
2446 type = TYPE_TARGET_TYPE (type);
2447 n -= 1;
2448 }
2449
2450 range_type = TYPE_INDEX_TYPE (type);
2451 index_type = TYPE_TARGET_TYPE (range_type);
2452 if (TYPE_CODE (index_type) == TYPE_CODE_UNDEF)
2453 index_type = builtin_type_long;
2454 if (typep != NULL)
2455 *typep = index_type;
2456 return
2457 (LONGEST) (which == 0
2458 ? TYPE_LOW_BOUND (range_type)
2459 : TYPE_HIGH_BOUND (range_type));
2460 }
2461 else
2462 {
2463 struct type *index_type =
2464 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, n - 1),
2465 NULL, TYPE_OBJFILE (arr_type));
2466 if (typep != NULL)
2467 *typep = TYPE_TARGET_TYPE (index_type);
2468 return
2469 (LONGEST) (which == 0
2470 ? TYPE_LOW_BOUND (index_type)
2471 : TYPE_HIGH_BOUND (index_type));
2472 }
2473 }
2474
2475 /* Given that arr is an array value, returns the lower bound of the
2476 nth index (numbering from 1) if which is 0, and the upper bound if
2477 which is 1. This routine will also work for arrays with bounds
2478 supplied by run-time quantities other than discriminants. */
2479
2480 struct value *
2481 ada_array_bound (struct value *arr, int n, int which)
2482 {
2483 struct type *arr_type = value_type (arr);
2484
2485 if (ada_is_packed_array_type (arr_type))
2486 return ada_array_bound (decode_packed_array (arr), n, which);
2487 else if (ada_is_simple_array_type (arr_type))
2488 {
2489 struct type *type;
2490 LONGEST v = ada_array_bound_from_type (arr_type, n, which, &type);
2491 return value_from_longest (type, v);
2492 }
2493 else
2494 return desc_one_bound (desc_bounds (arr), n, which);
2495 }
2496
2497 /* Given that arr is an array value, returns the length of the
2498 nth index. This routine will also work for arrays with bounds
2499 supplied by run-time quantities other than discriminants.
2500 Does not work for arrays indexed by enumeration types with representation
2501 clauses at the moment. */
2502
2503 struct value *
2504 ada_array_length (struct value *arr, int n)
2505 {
2506 struct type *arr_type = ada_check_typedef (value_type (arr));
2507
2508 if (ada_is_packed_array_type (arr_type))
2509 return ada_array_length (decode_packed_array (arr), n);
2510
2511 if (ada_is_simple_array_type (arr_type))
2512 {
2513 struct type *type;
2514 LONGEST v =
2515 ada_array_bound_from_type (arr_type, n, 1, &type) -
2516 ada_array_bound_from_type (arr_type, n, 0, NULL) + 1;
2517 return value_from_longest (type, v);
2518 }
2519 else
2520 return
2521 value_from_longest (builtin_type_int,
2522 value_as_long (desc_one_bound (desc_bounds (arr),
2523 n, 1))
2524 - value_as_long (desc_one_bound (desc_bounds (arr),
2525 n, 0)) + 1);
2526 }
2527
2528 /* An empty array whose type is that of ARR_TYPE (an array type),
2529 with bounds LOW to LOW-1. */
2530
2531 static struct value *
2532 empty_array (struct type *arr_type, int low)
2533 {
2534 struct type *index_type =
2535 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
2536 low, low - 1);
2537 struct type *elt_type = ada_array_element_type (arr_type, 1);
2538 return allocate_value (create_array_type (NULL, elt_type, index_type));
2539 }
2540 \f
2541
2542 /* Name resolution */
2543
2544 /* The "decoded" name for the user-definable Ada operator corresponding
2545 to OP. */
2546
2547 static const char *
2548 ada_decoded_op_name (enum exp_opcode op)
2549 {
2550 int i;
2551
2552 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2553 {
2554 if (ada_opname_table[i].op == op)
2555 return ada_opname_table[i].decoded;
2556 }
2557 error (_("Could not find operator name for opcode"));
2558 }
2559
2560
2561 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2562 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2563 undefined namespace) and converts operators that are
2564 user-defined into appropriate function calls. If CONTEXT_TYPE is
2565 non-null, it provides a preferred result type [at the moment, only
2566 type void has any effect---causing procedures to be preferred over
2567 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2568 return type is preferred. May change (expand) *EXP. */
2569
2570 static void
2571 resolve (struct expression **expp, int void_context_p)
2572 {
2573 int pc;
2574 pc = 0;
2575 resolve_subexp (expp, &pc, 1, void_context_p ? builtin_type_void : NULL);
2576 }
2577
2578 /* Resolve the operator of the subexpression beginning at
2579 position *POS of *EXPP. "Resolving" consists of replacing
2580 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2581 with their resolutions, replacing built-in operators with
2582 function calls to user-defined operators, where appropriate, and,
2583 when DEPROCEDURE_P is non-zero, converting function-valued variables
2584 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2585 are as in ada_resolve, above. */
2586
2587 static struct value *
2588 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2589 struct type *context_type)
2590 {
2591 int pc = *pos;
2592 int i;
2593 struct expression *exp; /* Convenience: == *expp. */
2594 enum exp_opcode op = (*expp)->elts[pc].opcode;
2595 struct value **argvec; /* Vector of operand types (alloca'ed). */
2596 int nargs; /* Number of operands. */
2597 int oplen;
2598
2599 argvec = NULL;
2600 nargs = 0;
2601 exp = *expp;
2602
2603 /* Pass one: resolve operands, saving their types and updating *pos,
2604 if needed. */
2605 switch (op)
2606 {
2607 case OP_FUNCALL:
2608 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2609 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2610 *pos += 7;
2611 else
2612 {
2613 *pos += 3;
2614 resolve_subexp (expp, pos, 0, NULL);
2615 }
2616 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2617 break;
2618
2619 case UNOP_ADDR:
2620 *pos += 1;
2621 resolve_subexp (expp, pos, 0, NULL);
2622 break;
2623
2624 case UNOP_QUAL:
2625 *pos += 3;
2626 resolve_subexp (expp, pos, 1, exp->elts[pc + 1].type);
2627 break;
2628
2629 case OP_ATR_MODULUS:
2630 case OP_ATR_SIZE:
2631 case OP_ATR_TAG:
2632 case OP_ATR_FIRST:
2633 case OP_ATR_LAST:
2634 case OP_ATR_LENGTH:
2635 case OP_ATR_POS:
2636 case OP_ATR_VAL:
2637 case OP_ATR_MIN:
2638 case OP_ATR_MAX:
2639 case TERNOP_IN_RANGE:
2640 case BINOP_IN_BOUNDS:
2641 case UNOP_IN_RANGE:
2642 case OP_AGGREGATE:
2643 case OP_OTHERS:
2644 case OP_CHOICES:
2645 case OP_POSITIONAL:
2646 case OP_DISCRETE_RANGE:
2647 case OP_NAME:
2648 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2649 *pos += oplen;
2650 break;
2651
2652 case BINOP_ASSIGN:
2653 {
2654 struct value *arg1;
2655
2656 *pos += 1;
2657 arg1 = resolve_subexp (expp, pos, 0, NULL);
2658 if (arg1 == NULL)
2659 resolve_subexp (expp, pos, 1, NULL);
2660 else
2661 resolve_subexp (expp, pos, 1, value_type (arg1));
2662 break;
2663 }
2664
2665 case UNOP_CAST:
2666 *pos += 3;
2667 nargs = 1;
2668 break;
2669
2670 case BINOP_ADD:
2671 case BINOP_SUB:
2672 case BINOP_MUL:
2673 case BINOP_DIV:
2674 case BINOP_REM:
2675 case BINOP_MOD:
2676 case BINOP_EXP:
2677 case BINOP_CONCAT:
2678 case BINOP_LOGICAL_AND:
2679 case BINOP_LOGICAL_OR:
2680 case BINOP_BITWISE_AND:
2681 case BINOP_BITWISE_IOR:
2682 case BINOP_BITWISE_XOR:
2683
2684 case BINOP_EQUAL:
2685 case BINOP_NOTEQUAL:
2686 case BINOP_LESS:
2687 case BINOP_GTR:
2688 case BINOP_LEQ:
2689 case BINOP_GEQ:
2690
2691 case BINOP_REPEAT:
2692 case BINOP_SUBSCRIPT:
2693 case BINOP_COMMA:
2694 *pos += 1;
2695 nargs = 2;
2696 break;
2697
2698 case UNOP_NEG:
2699 case UNOP_PLUS:
2700 case UNOP_LOGICAL_NOT:
2701 case UNOP_ABS:
2702 case UNOP_IND:
2703 *pos += 1;
2704 nargs = 1;
2705 break;
2706
2707 case OP_LONG:
2708 case OP_DOUBLE:
2709 case OP_VAR_VALUE:
2710 *pos += 4;
2711 break;
2712
2713 case OP_TYPE:
2714 case OP_BOOL:
2715 case OP_LAST:
2716 case OP_INTERNALVAR:
2717 *pos += 3;
2718 break;
2719
2720 case UNOP_MEMVAL:
2721 *pos += 3;
2722 nargs = 1;
2723 break;
2724
2725 case OP_REGISTER:
2726 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2727 break;
2728
2729 case STRUCTOP_STRUCT:
2730 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2731 nargs = 1;
2732 break;
2733
2734 case TERNOP_SLICE:
2735 *pos += 1;
2736 nargs = 3;
2737 break;
2738
2739 case OP_STRING:
2740 break;
2741
2742 default:
2743 error (_("Unexpected operator during name resolution"));
2744 }
2745
2746 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
2747 for (i = 0; i < nargs; i += 1)
2748 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
2749 argvec[i] = NULL;
2750 exp = *expp;
2751
2752 /* Pass two: perform any resolution on principal operator. */
2753 switch (op)
2754 {
2755 default:
2756 break;
2757
2758 case OP_VAR_VALUE:
2759 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
2760 {
2761 struct ada_symbol_info *candidates;
2762 int n_candidates;
2763
2764 n_candidates =
2765 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2766 (exp->elts[pc + 2].symbol),
2767 exp->elts[pc + 1].block, VAR_DOMAIN,
2768 &candidates);
2769
2770 if (n_candidates > 1)
2771 {
2772 /* Types tend to get re-introduced locally, so if there
2773 are any local symbols that are not types, first filter
2774 out all types. */
2775 int j;
2776 for (j = 0; j < n_candidates; j += 1)
2777 switch (SYMBOL_CLASS (candidates[j].sym))
2778 {
2779 case LOC_REGISTER:
2780 case LOC_ARG:
2781 case LOC_REF_ARG:
2782 case LOC_REGPARM:
2783 case LOC_REGPARM_ADDR:
2784 case LOC_LOCAL:
2785 case LOC_LOCAL_ARG:
2786 case LOC_BASEREG:
2787 case LOC_BASEREG_ARG:
2788 case LOC_COMPUTED:
2789 case LOC_COMPUTED_ARG:
2790 goto FoundNonType;
2791 default:
2792 break;
2793 }
2794 FoundNonType:
2795 if (j < n_candidates)
2796 {
2797 j = 0;
2798 while (j < n_candidates)
2799 {
2800 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
2801 {
2802 candidates[j] = candidates[n_candidates - 1];
2803 n_candidates -= 1;
2804 }
2805 else
2806 j += 1;
2807 }
2808 }
2809 }
2810
2811 if (n_candidates == 0)
2812 error (_("No definition found for %s"),
2813 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2814 else if (n_candidates == 1)
2815 i = 0;
2816 else if (deprocedure_p
2817 && !is_nonfunction (candidates, n_candidates))
2818 {
2819 i = ada_resolve_function
2820 (candidates, n_candidates, NULL, 0,
2821 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
2822 context_type);
2823 if (i < 0)
2824 error (_("Could not find a match for %s"),
2825 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2826 }
2827 else
2828 {
2829 printf_filtered (_("Multiple matches for %s\n"),
2830 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2831 user_select_syms (candidates, n_candidates, 1);
2832 i = 0;
2833 }
2834
2835 exp->elts[pc + 1].block = candidates[i].block;
2836 exp->elts[pc + 2].symbol = candidates[i].sym;
2837 if (innermost_block == NULL
2838 || contained_in (candidates[i].block, innermost_block))
2839 innermost_block = candidates[i].block;
2840 }
2841
2842 if (deprocedure_p
2843 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
2844 == TYPE_CODE_FUNC))
2845 {
2846 replace_operator_with_call (expp, pc, 0, 0,
2847 exp->elts[pc + 2].symbol,
2848 exp->elts[pc + 1].block);
2849 exp = *expp;
2850 }
2851 break;
2852
2853 case OP_FUNCALL:
2854 {
2855 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2856 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2857 {
2858 struct ada_symbol_info *candidates;
2859 int n_candidates;
2860
2861 n_candidates =
2862 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2863 (exp->elts[pc + 5].symbol),
2864 exp->elts[pc + 4].block, VAR_DOMAIN,
2865 &candidates);
2866 if (n_candidates == 1)
2867 i = 0;
2868 else
2869 {
2870 i = ada_resolve_function
2871 (candidates, n_candidates,
2872 argvec, nargs,
2873 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
2874 context_type);
2875 if (i < 0)
2876 error (_("Could not find a match for %s"),
2877 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
2878 }
2879
2880 exp->elts[pc + 4].block = candidates[i].block;
2881 exp->elts[pc + 5].symbol = candidates[i].sym;
2882 if (innermost_block == NULL
2883 || contained_in (candidates[i].block, innermost_block))
2884 innermost_block = candidates[i].block;
2885 }
2886 }
2887 break;
2888 case BINOP_ADD:
2889 case BINOP_SUB:
2890 case BINOP_MUL:
2891 case BINOP_DIV:
2892 case BINOP_REM:
2893 case BINOP_MOD:
2894 case BINOP_CONCAT:
2895 case BINOP_BITWISE_AND:
2896 case BINOP_BITWISE_IOR:
2897 case BINOP_BITWISE_XOR:
2898 case BINOP_EQUAL:
2899 case BINOP_NOTEQUAL:
2900 case BINOP_LESS:
2901 case BINOP_GTR:
2902 case BINOP_LEQ:
2903 case BINOP_GEQ:
2904 case BINOP_EXP:
2905 case UNOP_NEG:
2906 case UNOP_PLUS:
2907 case UNOP_LOGICAL_NOT:
2908 case UNOP_ABS:
2909 if (possible_user_operator_p (op, argvec))
2910 {
2911 struct ada_symbol_info *candidates;
2912 int n_candidates;
2913
2914 n_candidates =
2915 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
2916 (struct block *) NULL, VAR_DOMAIN,
2917 &candidates);
2918 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
2919 ada_decoded_op_name (op), NULL);
2920 if (i < 0)
2921 break;
2922
2923 replace_operator_with_call (expp, pc, nargs, 1,
2924 candidates[i].sym, candidates[i].block);
2925 exp = *expp;
2926 }
2927 break;
2928
2929 case OP_TYPE:
2930 return NULL;
2931 }
2932
2933 *pos = pc;
2934 return evaluate_subexp_type (exp, pos);
2935 }
2936
2937 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
2938 MAY_DEREF is non-zero, the formal may be a pointer and the actual
2939 a non-pointer. A type of 'void' (which is never a valid expression type)
2940 by convention matches anything. */
2941 /* The term "match" here is rather loose. The match is heuristic and
2942 liberal. FIXME: TOO liberal, in fact. */
2943
2944 static int
2945 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
2946 {
2947 ftype = ada_check_typedef (ftype);
2948 atype = ada_check_typedef (atype);
2949
2950 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
2951 ftype = TYPE_TARGET_TYPE (ftype);
2952 if (TYPE_CODE (atype) == TYPE_CODE_REF)
2953 atype = TYPE_TARGET_TYPE (atype);
2954
2955 if (TYPE_CODE (ftype) == TYPE_CODE_VOID
2956 || TYPE_CODE (atype) == TYPE_CODE_VOID)
2957 return 1;
2958
2959 switch (TYPE_CODE (ftype))
2960 {
2961 default:
2962 return 1;
2963 case TYPE_CODE_PTR:
2964 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
2965 return ada_type_match (TYPE_TARGET_TYPE (ftype),
2966 TYPE_TARGET_TYPE (atype), 0);
2967 else
2968 return (may_deref
2969 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
2970 case TYPE_CODE_INT:
2971 case TYPE_CODE_ENUM:
2972 case TYPE_CODE_RANGE:
2973 switch (TYPE_CODE (atype))
2974 {
2975 case TYPE_CODE_INT:
2976 case TYPE_CODE_ENUM:
2977 case TYPE_CODE_RANGE:
2978 return 1;
2979 default:
2980 return 0;
2981 }
2982
2983 case TYPE_CODE_ARRAY:
2984 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
2985 || ada_is_array_descriptor_type (atype));
2986
2987 case TYPE_CODE_STRUCT:
2988 if (ada_is_array_descriptor_type (ftype))
2989 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
2990 || ada_is_array_descriptor_type (atype));
2991 else
2992 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
2993 && !ada_is_array_descriptor_type (atype));
2994
2995 case TYPE_CODE_UNION:
2996 case TYPE_CODE_FLT:
2997 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
2998 }
2999 }
3000
3001 /* Return non-zero if the formals of FUNC "sufficiently match" the
3002 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3003 may also be an enumeral, in which case it is treated as a 0-
3004 argument function. */
3005
3006 static int
3007 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3008 {
3009 int i;
3010 struct type *func_type = SYMBOL_TYPE (func);
3011
3012 if (SYMBOL_CLASS (func) == LOC_CONST
3013 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3014 return (n_actuals == 0);
3015 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3016 return 0;
3017
3018 if (TYPE_NFIELDS (func_type) != n_actuals)
3019 return 0;
3020
3021 for (i = 0; i < n_actuals; i += 1)
3022 {
3023 if (actuals[i] == NULL)
3024 return 0;
3025 else
3026 {
3027 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, i));
3028 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3029
3030 if (!ada_type_match (ftype, atype, 1))
3031 return 0;
3032 }
3033 }
3034 return 1;
3035 }
3036
3037 /* False iff function type FUNC_TYPE definitely does not produce a value
3038 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3039 FUNC_TYPE is not a valid function type with a non-null return type
3040 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3041
3042 static int
3043 return_match (struct type *func_type, struct type *context_type)
3044 {
3045 struct type *return_type;
3046
3047 if (func_type == NULL)
3048 return 1;
3049
3050 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3051 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3052 else
3053 return_type = base_type (func_type);
3054 if (return_type == NULL)
3055 return 1;
3056
3057 context_type = base_type (context_type);
3058
3059 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3060 return context_type == NULL || return_type == context_type;
3061 else if (context_type == NULL)
3062 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3063 else
3064 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3065 }
3066
3067
3068 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3069 function (if any) that matches the types of the NARGS arguments in
3070 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3071 that returns that type, then eliminate matches that don't. If
3072 CONTEXT_TYPE is void and there is at least one match that does not
3073 return void, eliminate all matches that do.
3074
3075 Asks the user if there is more than one match remaining. Returns -1
3076 if there is no such symbol or none is selected. NAME is used
3077 solely for messages. May re-arrange and modify SYMS in
3078 the process; the index returned is for the modified vector. */
3079
3080 static int
3081 ada_resolve_function (struct ada_symbol_info syms[],
3082 int nsyms, struct value **args, int nargs,
3083 const char *name, struct type *context_type)
3084 {
3085 int k;
3086 int m; /* Number of hits */
3087 struct type *fallback;
3088 struct type *return_type;
3089
3090 return_type = context_type;
3091 if (context_type == NULL)
3092 fallback = builtin_type_void;
3093 else
3094 fallback = NULL;
3095
3096 m = 0;
3097 while (1)
3098 {
3099 for (k = 0; k < nsyms; k += 1)
3100 {
3101 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3102
3103 if (ada_args_match (syms[k].sym, args, nargs)
3104 && return_match (type, return_type))
3105 {
3106 syms[m] = syms[k];
3107 m += 1;
3108 }
3109 }
3110 if (m > 0 || return_type == fallback)
3111 break;
3112 else
3113 return_type = fallback;
3114 }
3115
3116 if (m == 0)
3117 return -1;
3118 else if (m > 1)
3119 {
3120 printf_filtered (_("Multiple matches for %s\n"), name);
3121 user_select_syms (syms, m, 1);
3122 return 0;
3123 }
3124 return 0;
3125 }
3126
3127 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3128 in a listing of choices during disambiguation (see sort_choices, below).
3129 The idea is that overloadings of a subprogram name from the
3130 same package should sort in their source order. We settle for ordering
3131 such symbols by their trailing number (__N or $N). */
3132
3133 static int
3134 encoded_ordered_before (char *N0, char *N1)
3135 {
3136 if (N1 == NULL)
3137 return 0;
3138 else if (N0 == NULL)
3139 return 1;
3140 else
3141 {
3142 int k0, k1;
3143 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3144 ;
3145 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3146 ;
3147 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3148 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3149 {
3150 int n0, n1;
3151 n0 = k0;
3152 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3153 n0 -= 1;
3154 n1 = k1;
3155 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3156 n1 -= 1;
3157 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3158 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3159 }
3160 return (strcmp (N0, N1) < 0);
3161 }
3162 }
3163
3164 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3165 encoded names. */
3166
3167 static void
3168 sort_choices (struct ada_symbol_info syms[], int nsyms)
3169 {
3170 int i;
3171 for (i = 1; i < nsyms; i += 1)
3172 {
3173 struct ada_symbol_info sym = syms[i];
3174 int j;
3175
3176 for (j = i - 1; j >= 0; j -= 1)
3177 {
3178 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3179 SYMBOL_LINKAGE_NAME (sym.sym)))
3180 break;
3181 syms[j + 1] = syms[j];
3182 }
3183 syms[j + 1] = sym;
3184 }
3185 }
3186
3187 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3188 by asking the user (if necessary), returning the number selected,
3189 and setting the first elements of SYMS items. Error if no symbols
3190 selected. */
3191
3192 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3193 to be re-integrated one of these days. */
3194
3195 int
3196 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3197 {
3198 int i;
3199 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3200 int n_chosen;
3201 int first_choice = (max_results == 1) ? 1 : 2;
3202
3203 if (max_results < 1)
3204 error (_("Request to select 0 symbols!"));
3205 if (nsyms <= 1)
3206 return nsyms;
3207
3208 printf_unfiltered (_("[0] cancel\n"));
3209 if (max_results > 1)
3210 printf_unfiltered (_("[1] all\n"));
3211
3212 sort_choices (syms, nsyms);
3213
3214 for (i = 0; i < nsyms; i += 1)
3215 {
3216 if (syms[i].sym == NULL)
3217 continue;
3218
3219 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3220 {
3221 struct symtab_and_line sal =
3222 find_function_start_sal (syms[i].sym, 1);
3223 if (sal.symtab == NULL)
3224 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3225 i + first_choice,
3226 SYMBOL_PRINT_NAME (syms[i].sym),
3227 sal.line);
3228 else
3229 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3230 SYMBOL_PRINT_NAME (syms[i].sym),
3231 sal.symtab->filename, sal.line);
3232 continue;
3233 }
3234 else
3235 {
3236 int is_enumeral =
3237 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3238 && SYMBOL_TYPE (syms[i].sym) != NULL
3239 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3240 struct symtab *symtab = symtab_for_sym (syms[i].sym);
3241
3242 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3243 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3244 i + first_choice,
3245 SYMBOL_PRINT_NAME (syms[i].sym),
3246 symtab->filename, SYMBOL_LINE (syms[i].sym));
3247 else if (is_enumeral
3248 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3249 {
3250 printf_unfiltered (("[%d] "), i + first_choice);
3251 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3252 gdb_stdout, -1, 0);
3253 printf_unfiltered (_("'(%s) (enumeral)\n"),
3254 SYMBOL_PRINT_NAME (syms[i].sym));
3255 }
3256 else if (symtab != NULL)
3257 printf_unfiltered (is_enumeral
3258 ? _("[%d] %s in %s (enumeral)\n")
3259 : _("[%d] %s at %s:?\n"),
3260 i + first_choice,
3261 SYMBOL_PRINT_NAME (syms[i].sym),
3262 symtab->filename);
3263 else
3264 printf_unfiltered (is_enumeral
3265 ? _("[%d] %s (enumeral)\n")
3266 : _("[%d] %s at ?\n"),
3267 i + first_choice,
3268 SYMBOL_PRINT_NAME (syms[i].sym));
3269 }
3270 }
3271
3272 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3273 "overload-choice");
3274
3275 for (i = 0; i < n_chosen; i += 1)
3276 syms[i] = syms[chosen[i]];
3277
3278 return n_chosen;
3279 }
3280
3281 /* Read and validate a set of numeric choices from the user in the
3282 range 0 .. N_CHOICES-1. Place the results in increasing
3283 order in CHOICES[0 .. N-1], and return N.
3284
3285 The user types choices as a sequence of numbers on one line
3286 separated by blanks, encoding them as follows:
3287
3288 + A choice of 0 means to cancel the selection, throwing an error.
3289 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3290 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3291
3292 The user is not allowed to choose more than MAX_RESULTS values.
3293
3294 ANNOTATION_SUFFIX, if present, is used to annotate the input
3295 prompts (for use with the -f switch). */
3296
3297 int
3298 get_selections (int *choices, int n_choices, int max_results,
3299 int is_all_choice, char *annotation_suffix)
3300 {
3301 char *args;
3302 const char *prompt;
3303 int n_chosen;
3304 int first_choice = is_all_choice ? 2 : 1;
3305
3306 prompt = getenv ("PS2");
3307 if (prompt == NULL)
3308 prompt = ">";
3309
3310 printf_unfiltered (("%s "), prompt);
3311 gdb_flush (gdb_stdout);
3312
3313 args = command_line_input ((char *) NULL, 0, annotation_suffix);
3314
3315 if (args == NULL)
3316 error_no_arg (_("one or more choice numbers"));
3317
3318 n_chosen = 0;
3319
3320 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3321 order, as given in args. Choices are validated. */
3322 while (1)
3323 {
3324 char *args2;
3325 int choice, j;
3326
3327 while (isspace (*args))
3328 args += 1;
3329 if (*args == '\0' && n_chosen == 0)
3330 error_no_arg (_("one or more choice numbers"));
3331 else if (*args == '\0')
3332 break;
3333
3334 choice = strtol (args, &args2, 10);
3335 if (args == args2 || choice < 0
3336 || choice > n_choices + first_choice - 1)
3337 error (_("Argument must be choice number"));
3338 args = args2;
3339
3340 if (choice == 0)
3341 error (_("cancelled"));
3342
3343 if (choice < first_choice)
3344 {
3345 n_chosen = n_choices;
3346 for (j = 0; j < n_choices; j += 1)
3347 choices[j] = j;
3348 break;
3349 }
3350 choice -= first_choice;
3351
3352 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3353 {
3354 }
3355
3356 if (j < 0 || choice != choices[j])
3357 {
3358 int k;
3359 for (k = n_chosen - 1; k > j; k -= 1)
3360 choices[k + 1] = choices[k];
3361 choices[j + 1] = choice;
3362 n_chosen += 1;
3363 }
3364 }
3365
3366 if (n_chosen > max_results)
3367 error (_("Select no more than %d of the above"), max_results);
3368
3369 return n_chosen;
3370 }
3371
3372 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3373 on the function identified by SYM and BLOCK, and taking NARGS
3374 arguments. Update *EXPP as needed to hold more space. */
3375
3376 static void
3377 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3378 int oplen, struct symbol *sym,
3379 struct block *block)
3380 {
3381 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3382 symbol, -oplen for operator being replaced). */
3383 struct expression *newexp = (struct expression *)
3384 xmalloc (sizeof (struct expression)
3385 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3386 struct expression *exp = *expp;
3387
3388 newexp->nelts = exp->nelts + 7 - oplen;
3389 newexp->language_defn = exp->language_defn;
3390 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3391 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3392 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3393
3394 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3395 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3396
3397 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3398 newexp->elts[pc + 4].block = block;
3399 newexp->elts[pc + 5].symbol = sym;
3400
3401 *expp = newexp;
3402 xfree (exp);
3403 }
3404
3405 /* Type-class predicates */
3406
3407 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3408 or FLOAT). */
3409
3410 static int
3411 numeric_type_p (struct type *type)
3412 {
3413 if (type == NULL)
3414 return 0;
3415 else
3416 {
3417 switch (TYPE_CODE (type))
3418 {
3419 case TYPE_CODE_INT:
3420 case TYPE_CODE_FLT:
3421 return 1;
3422 case TYPE_CODE_RANGE:
3423 return (type == TYPE_TARGET_TYPE (type)
3424 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3425 default:
3426 return 0;
3427 }
3428 }
3429 }
3430
3431 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3432
3433 static int
3434 integer_type_p (struct type *type)
3435 {
3436 if (type == NULL)
3437 return 0;
3438 else
3439 {
3440 switch (TYPE_CODE (type))
3441 {
3442 case TYPE_CODE_INT:
3443 return 1;
3444 case TYPE_CODE_RANGE:
3445 return (type == TYPE_TARGET_TYPE (type)
3446 || integer_type_p (TYPE_TARGET_TYPE (type)));
3447 default:
3448 return 0;
3449 }
3450 }
3451 }
3452
3453 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3454
3455 static int
3456 scalar_type_p (struct type *type)
3457 {
3458 if (type == NULL)
3459 return 0;
3460 else
3461 {
3462 switch (TYPE_CODE (type))
3463 {
3464 case TYPE_CODE_INT:
3465 case TYPE_CODE_RANGE:
3466 case TYPE_CODE_ENUM:
3467 case TYPE_CODE_FLT:
3468 return 1;
3469 default:
3470 return 0;
3471 }
3472 }
3473 }
3474
3475 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3476
3477 static int
3478 discrete_type_p (struct type *type)
3479 {
3480 if (type == NULL)
3481 return 0;
3482 else
3483 {
3484 switch (TYPE_CODE (type))
3485 {
3486 case TYPE_CODE_INT:
3487 case TYPE_CODE_RANGE:
3488 case TYPE_CODE_ENUM:
3489 return 1;
3490 default:
3491 return 0;
3492 }
3493 }
3494 }
3495
3496 /* Returns non-zero if OP with operands in the vector ARGS could be
3497 a user-defined function. Errs on the side of pre-defined operators
3498 (i.e., result 0). */
3499
3500 static int
3501 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3502 {
3503 struct type *type0 =
3504 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3505 struct type *type1 =
3506 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3507
3508 if (type0 == NULL)
3509 return 0;
3510
3511 switch (op)
3512 {
3513 default:
3514 return 0;
3515
3516 case BINOP_ADD:
3517 case BINOP_SUB:
3518 case BINOP_MUL:
3519 case BINOP_DIV:
3520 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3521
3522 case BINOP_REM:
3523 case BINOP_MOD:
3524 case BINOP_BITWISE_AND:
3525 case BINOP_BITWISE_IOR:
3526 case BINOP_BITWISE_XOR:
3527 return (!(integer_type_p (type0) && integer_type_p (type1)));
3528
3529 case BINOP_EQUAL:
3530 case BINOP_NOTEQUAL:
3531 case BINOP_LESS:
3532 case BINOP_GTR:
3533 case BINOP_LEQ:
3534 case BINOP_GEQ:
3535 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3536
3537 case BINOP_CONCAT:
3538 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3539
3540 case BINOP_EXP:
3541 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3542
3543 case UNOP_NEG:
3544 case UNOP_PLUS:
3545 case UNOP_LOGICAL_NOT:
3546 case UNOP_ABS:
3547 return (!numeric_type_p (type0));
3548
3549 }
3550 }
3551 \f
3552 /* Renaming */
3553
3554 /* NOTE: In the following, we assume that a renaming type's name may
3555 have an ___XD suffix. It would be nice if this went away at some
3556 point. */
3557
3558 /* If TYPE encodes a renaming, returns the renaming suffix, which
3559 is XR for an object renaming, XRP for a procedure renaming, XRE for
3560 an exception renaming, and XRS for a subprogram renaming. Returns
3561 NULL if NAME encodes none of these. */
3562
3563 const char *
3564 ada_renaming_type (struct type *type)
3565 {
3566 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_ENUM)
3567 {
3568 const char *name = type_name_no_tag (type);
3569 const char *suffix = (name == NULL) ? NULL : strstr (name, "___XR");
3570 if (suffix == NULL
3571 || (suffix[5] != '\000' && strchr ("PES_", suffix[5]) == NULL))
3572 return NULL;
3573 else
3574 return suffix + 3;
3575 }
3576 else
3577 return NULL;
3578 }
3579
3580 /* Return non-zero iff SYM encodes an object renaming. */
3581
3582 int
3583 ada_is_object_renaming (struct symbol *sym)
3584 {
3585 const char *renaming_type = ada_renaming_type (SYMBOL_TYPE (sym));
3586 return renaming_type != NULL
3587 && (renaming_type[2] == '\0' || renaming_type[2] == '_');
3588 }
3589
3590 /* Assuming that SYM encodes a non-object renaming, returns the original
3591 name of the renamed entity. The name is good until the end of
3592 parsing. */
3593
3594 char *
3595 ada_simple_renamed_entity (struct symbol *sym)
3596 {
3597 struct type *type;
3598 const char *raw_name;
3599 int len;
3600 char *result;
3601
3602 type = SYMBOL_TYPE (sym);
3603 if (type == NULL || TYPE_NFIELDS (type) < 1)
3604 error (_("Improperly encoded renaming."));
3605
3606 raw_name = TYPE_FIELD_NAME (type, 0);
3607 len = (raw_name == NULL ? 0 : strlen (raw_name)) - 5;
3608 if (len <= 0)
3609 error (_("Improperly encoded renaming."));
3610
3611 result = xmalloc (len + 1);
3612 strncpy (result, raw_name, len);
3613 result[len] = '\000';
3614 return result;
3615 }
3616
3617 \f
3618
3619 /* Evaluation: Function Calls */
3620
3621 /* Return an lvalue containing the value VAL. This is the identity on
3622 lvalues, and otherwise has the side-effect of pushing a copy of VAL
3623 on the stack, using and updating *SP as the stack pointer, and
3624 returning an lvalue whose VALUE_ADDRESS points to the copy. */
3625
3626 static struct value *
3627 ensure_lval (struct value *val, CORE_ADDR *sp)
3628 {
3629 if (! VALUE_LVAL (val))
3630 {
3631 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
3632
3633 /* The following is taken from the structure-return code in
3634 call_function_by_hand. FIXME: Therefore, some refactoring seems
3635 indicated. */
3636 if (gdbarch_inner_than (current_gdbarch, 1, 2))
3637 {
3638 /* Stack grows downward. Align SP and VALUE_ADDRESS (val) after
3639 reserving sufficient space. */
3640 *sp -= len;
3641 if (gdbarch_frame_align_p (current_gdbarch))
3642 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3643 VALUE_ADDRESS (val) = *sp;
3644 }
3645 else
3646 {
3647 /* Stack grows upward. Align the frame, allocate space, and
3648 then again, re-align the frame. */
3649 if (gdbarch_frame_align_p (current_gdbarch))
3650 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3651 VALUE_ADDRESS (val) = *sp;
3652 *sp += len;
3653 if (gdbarch_frame_align_p (current_gdbarch))
3654 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3655 }
3656
3657 write_memory (VALUE_ADDRESS (val), value_contents_raw (val), len);
3658 }
3659
3660 return val;
3661 }
3662
3663 /* Return the value ACTUAL, converted to be an appropriate value for a
3664 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3665 allocating any necessary descriptors (fat pointers), or copies of
3666 values not residing in memory, updating it as needed. */
3667
3668 static struct value *
3669 convert_actual (struct value *actual, struct type *formal_type0,
3670 CORE_ADDR *sp)
3671 {
3672 struct type *actual_type = ada_check_typedef (value_type (actual));
3673 struct type *formal_type = ada_check_typedef (formal_type0);
3674 struct type *formal_target =
3675 TYPE_CODE (formal_type) == TYPE_CODE_PTR
3676 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
3677 struct type *actual_target =
3678 TYPE_CODE (actual_type) == TYPE_CODE_PTR
3679 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
3680
3681 if (ada_is_array_descriptor_type (formal_target)
3682 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
3683 return make_array_descriptor (formal_type, actual, sp);
3684 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR)
3685 {
3686 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
3687 && ada_is_array_descriptor_type (actual_target))
3688 return desc_data (actual);
3689 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
3690 {
3691 if (VALUE_LVAL (actual) != lval_memory)
3692 {
3693 struct value *val;
3694 actual_type = ada_check_typedef (value_type (actual));
3695 val = allocate_value (actual_type);
3696 memcpy ((char *) value_contents_raw (val),
3697 (char *) value_contents (actual),
3698 TYPE_LENGTH (actual_type));
3699 actual = ensure_lval (val, sp);
3700 }
3701 return value_addr (actual);
3702 }
3703 }
3704 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
3705 return ada_value_ind (actual);
3706
3707 return actual;
3708 }
3709
3710
3711 /* Push a descriptor of type TYPE for array value ARR on the stack at
3712 *SP, updating *SP to reflect the new descriptor. Return either
3713 an lvalue representing the new descriptor, or (if TYPE is a pointer-
3714 to-descriptor type rather than a descriptor type), a struct value *
3715 representing a pointer to this descriptor. */
3716
3717 static struct value *
3718 make_array_descriptor (struct type *type, struct value *arr, CORE_ADDR *sp)
3719 {
3720 struct type *bounds_type = desc_bounds_type (type);
3721 struct type *desc_type = desc_base_type (type);
3722 struct value *descriptor = allocate_value (desc_type);
3723 struct value *bounds = allocate_value (bounds_type);
3724 int i;
3725
3726 for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1)
3727 {
3728 modify_general_field (value_contents_writeable (bounds),
3729 value_as_long (ada_array_bound (arr, i, 0)),
3730 desc_bound_bitpos (bounds_type, i, 0),
3731 desc_bound_bitsize (bounds_type, i, 0));
3732 modify_general_field (value_contents_writeable (bounds),
3733 value_as_long (ada_array_bound (arr, i, 1)),
3734 desc_bound_bitpos (bounds_type, i, 1),
3735 desc_bound_bitsize (bounds_type, i, 1));
3736 }
3737
3738 bounds = ensure_lval (bounds, sp);
3739
3740 modify_general_field (value_contents_writeable (descriptor),
3741 VALUE_ADDRESS (ensure_lval (arr, sp)),
3742 fat_pntr_data_bitpos (desc_type),
3743 fat_pntr_data_bitsize (desc_type));
3744
3745 modify_general_field (value_contents_writeable (descriptor),
3746 VALUE_ADDRESS (bounds),
3747 fat_pntr_bounds_bitpos (desc_type),
3748 fat_pntr_bounds_bitsize (desc_type));
3749
3750 descriptor = ensure_lval (descriptor, sp);
3751
3752 if (TYPE_CODE (type) == TYPE_CODE_PTR)
3753 return value_addr (descriptor);
3754 else
3755 return descriptor;
3756 }
3757
3758
3759 /* Assuming a dummy frame has been established on the target, perform any
3760 conversions needed for calling function FUNC on the NARGS actual
3761 parameters in ARGS, other than standard C conversions. Does
3762 nothing if FUNC does not have Ada-style prototype data, or if NARGS
3763 does not match the number of arguments expected. Use *SP as a
3764 stack pointer for additional data that must be pushed, updating its
3765 value as needed. */
3766
3767 void
3768 ada_convert_actuals (struct value *func, int nargs, struct value *args[],
3769 CORE_ADDR *sp)
3770 {
3771 int i;
3772
3773 if (TYPE_NFIELDS (value_type (func)) == 0
3774 || nargs != TYPE_NFIELDS (value_type (func)))
3775 return;
3776
3777 for (i = 0; i < nargs; i += 1)
3778 args[i] =
3779 convert_actual (args[i], TYPE_FIELD_TYPE (value_type (func), i), sp);
3780 }
3781 \f
3782 /* Dummy definitions for an experimental caching module that is not
3783 * used in the public sources. */
3784
3785 static int
3786 lookup_cached_symbol (const char *name, domain_enum namespace,
3787 struct symbol **sym, struct block **block,
3788 struct symtab **symtab)
3789 {
3790 return 0;
3791 }
3792
3793 static void
3794 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
3795 struct block *block, struct symtab *symtab)
3796 {
3797 }
3798 \f
3799 /* Symbol Lookup */
3800
3801 /* Return the result of a standard (literal, C-like) lookup of NAME in
3802 given DOMAIN, visible from lexical block BLOCK. */
3803
3804 static struct symbol *
3805 standard_lookup (const char *name, const struct block *block,
3806 domain_enum domain)
3807 {
3808 struct symbol *sym;
3809 struct symtab *symtab;
3810
3811 if (lookup_cached_symbol (name, domain, &sym, NULL, NULL))
3812 return sym;
3813 sym =
3814 lookup_symbol_in_language (name, block, domain, language_c, 0, &symtab);
3815 cache_symbol (name, domain, sym, block_found, symtab);
3816 return sym;
3817 }
3818
3819
3820 /* Non-zero iff there is at least one non-function/non-enumeral symbol
3821 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
3822 since they contend in overloading in the same way. */
3823 static int
3824 is_nonfunction (struct ada_symbol_info syms[], int n)
3825 {
3826 int i;
3827
3828 for (i = 0; i < n; i += 1)
3829 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
3830 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
3831 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
3832 return 1;
3833
3834 return 0;
3835 }
3836
3837 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
3838 struct types. Otherwise, they may not. */
3839
3840 static int
3841 equiv_types (struct type *type0, struct type *type1)
3842 {
3843 if (type0 == type1)
3844 return 1;
3845 if (type0 == NULL || type1 == NULL
3846 || TYPE_CODE (type0) != TYPE_CODE (type1))
3847 return 0;
3848 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
3849 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
3850 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
3851 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
3852 return 1;
3853
3854 return 0;
3855 }
3856
3857 /* True iff SYM0 represents the same entity as SYM1, or one that is
3858 no more defined than that of SYM1. */
3859
3860 static int
3861 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
3862 {
3863 if (sym0 == sym1)
3864 return 1;
3865 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
3866 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
3867 return 0;
3868
3869 switch (SYMBOL_CLASS (sym0))
3870 {
3871 case LOC_UNDEF:
3872 return 1;
3873 case LOC_TYPEDEF:
3874 {
3875 struct type *type0 = SYMBOL_TYPE (sym0);
3876 struct type *type1 = SYMBOL_TYPE (sym1);
3877 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
3878 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
3879 int len0 = strlen (name0);
3880 return
3881 TYPE_CODE (type0) == TYPE_CODE (type1)
3882 && (equiv_types (type0, type1)
3883 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
3884 && strncmp (name1 + len0, "___XV", 5) == 0));
3885 }
3886 case LOC_CONST:
3887 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
3888 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
3889 default:
3890 return 0;
3891 }
3892 }
3893
3894 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
3895 records in OBSTACKP. Do nothing if SYM is a duplicate. */
3896
3897 static void
3898 add_defn_to_vec (struct obstack *obstackp,
3899 struct symbol *sym,
3900 struct block *block, struct symtab *symtab)
3901 {
3902 int i;
3903 size_t tmp;
3904 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
3905
3906 /* Do not try to complete stub types, as the debugger is probably
3907 already scanning all symbols matching a certain name at the
3908 time when this function is called. Trying to replace the stub
3909 type by its associated full type will cause us to restart a scan
3910 which may lead to an infinite recursion. Instead, the client
3911 collecting the matching symbols will end up collecting several
3912 matches, with at least one of them complete. It can then filter
3913 out the stub ones if needed. */
3914
3915 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
3916 {
3917 if (lesseq_defined_than (sym, prevDefns[i].sym))
3918 return;
3919 else if (lesseq_defined_than (prevDefns[i].sym, sym))
3920 {
3921 prevDefns[i].sym = sym;
3922 prevDefns[i].block = block;
3923 prevDefns[i].symtab = symtab;
3924 return;
3925 }
3926 }
3927
3928 {
3929 struct ada_symbol_info info;
3930
3931 info.sym = sym;
3932 info.block = block;
3933 info.symtab = symtab;
3934 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
3935 }
3936 }
3937
3938 /* Number of ada_symbol_info structures currently collected in
3939 current vector in *OBSTACKP. */
3940
3941 static int
3942 num_defns_collected (struct obstack *obstackp)
3943 {
3944 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
3945 }
3946
3947 /* Vector of ada_symbol_info structures currently collected in current
3948 vector in *OBSTACKP. If FINISH, close off the vector and return
3949 its final address. */
3950
3951 static struct ada_symbol_info *
3952 defns_collected (struct obstack *obstackp, int finish)
3953 {
3954 if (finish)
3955 return obstack_finish (obstackp);
3956 else
3957 return (struct ada_symbol_info *) obstack_base (obstackp);
3958 }
3959
3960 /* Look, in partial_symtab PST, for symbol NAME in given namespace.
3961 Check the global symbols if GLOBAL, the static symbols if not.
3962 Do wild-card match if WILD. */
3963
3964 static struct partial_symbol *
3965 ada_lookup_partial_symbol (struct partial_symtab *pst, const char *name,
3966 int global, domain_enum namespace, int wild)
3967 {
3968 struct partial_symbol **start;
3969 int name_len = strlen (name);
3970 int length = (global ? pst->n_global_syms : pst->n_static_syms);
3971 int i;
3972
3973 if (length == 0)
3974 {
3975 return (NULL);
3976 }
3977
3978 start = (global ?
3979 pst->objfile->global_psymbols.list + pst->globals_offset :
3980 pst->objfile->static_psymbols.list + pst->statics_offset);
3981
3982 if (wild)
3983 {
3984 for (i = 0; i < length; i += 1)
3985 {
3986 struct partial_symbol *psym = start[i];
3987
3988 if (SYMBOL_DOMAIN (psym) == namespace
3989 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (psym)))
3990 return psym;
3991 }
3992 return NULL;
3993 }
3994 else
3995 {
3996 if (global)
3997 {
3998 int U;
3999 i = 0;
4000 U = length - 1;
4001 while (U - i > 4)
4002 {
4003 int M = (U + i) >> 1;
4004 struct partial_symbol *psym = start[M];
4005 if (SYMBOL_LINKAGE_NAME (psym)[0] < name[0])
4006 i = M + 1;
4007 else if (SYMBOL_LINKAGE_NAME (psym)[0] > name[0])
4008 U = M - 1;
4009 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), name) < 0)
4010 i = M + 1;
4011 else
4012 U = M;
4013 }
4014 }
4015 else
4016 i = 0;
4017
4018 while (i < length)
4019 {
4020 struct partial_symbol *psym = start[i];
4021
4022 if (SYMBOL_DOMAIN (psym) == namespace)
4023 {
4024 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym), name_len);
4025
4026 if (cmp < 0)
4027 {
4028 if (global)
4029 break;
4030 }
4031 else if (cmp == 0
4032 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4033 + name_len))
4034 return psym;
4035 }
4036 i += 1;
4037 }
4038
4039 if (global)
4040 {
4041 int U;
4042 i = 0;
4043 U = length - 1;
4044 while (U - i > 4)
4045 {
4046 int M = (U + i) >> 1;
4047 struct partial_symbol *psym = start[M];
4048 if (SYMBOL_LINKAGE_NAME (psym)[0] < '_')
4049 i = M + 1;
4050 else if (SYMBOL_LINKAGE_NAME (psym)[0] > '_')
4051 U = M - 1;
4052 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), "_ada_") < 0)
4053 i = M + 1;
4054 else
4055 U = M;
4056 }
4057 }
4058 else
4059 i = 0;
4060
4061 while (i < length)
4062 {
4063 struct partial_symbol *psym = start[i];
4064
4065 if (SYMBOL_DOMAIN (psym) == namespace)
4066 {
4067 int cmp;
4068
4069 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (psym)[0];
4070 if (cmp == 0)
4071 {
4072 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (psym), 5);
4073 if (cmp == 0)
4074 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym) + 5,
4075 name_len);
4076 }
4077
4078 if (cmp < 0)
4079 {
4080 if (global)
4081 break;
4082 }
4083 else if (cmp == 0
4084 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4085 + name_len + 5))
4086 return psym;
4087 }
4088 i += 1;
4089 }
4090 }
4091 return NULL;
4092 }
4093
4094 /* Find a symbol table containing symbol SYM or NULL if none. */
4095
4096 static struct symtab *
4097 symtab_for_sym (struct symbol *sym)
4098 {
4099 struct symtab *s;
4100 struct objfile *objfile;
4101 struct block *b;
4102 struct symbol *tmp_sym;
4103 struct dict_iterator iter;
4104 int j;
4105
4106 ALL_PRIMARY_SYMTABS (objfile, s)
4107 {
4108 switch (SYMBOL_CLASS (sym))
4109 {
4110 case LOC_CONST:
4111 case LOC_STATIC:
4112 case LOC_TYPEDEF:
4113 case LOC_REGISTER:
4114 case LOC_LABEL:
4115 case LOC_BLOCK:
4116 case LOC_CONST_BYTES:
4117 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4118 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4119 return s;
4120 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4121 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4122 return s;
4123 break;
4124 default:
4125 break;
4126 }
4127 switch (SYMBOL_CLASS (sym))
4128 {
4129 case LOC_REGISTER:
4130 case LOC_ARG:
4131 case LOC_REF_ARG:
4132 case LOC_REGPARM:
4133 case LOC_REGPARM_ADDR:
4134 case LOC_LOCAL:
4135 case LOC_TYPEDEF:
4136 case LOC_LOCAL_ARG:
4137 case LOC_BASEREG:
4138 case LOC_BASEREG_ARG:
4139 case LOC_COMPUTED:
4140 case LOC_COMPUTED_ARG:
4141 for (j = FIRST_LOCAL_BLOCK;
4142 j < BLOCKVECTOR_NBLOCKS (BLOCKVECTOR (s)); j += 1)
4143 {
4144 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), j);
4145 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4146 return s;
4147 }
4148 break;
4149 default:
4150 break;
4151 }
4152 }
4153 return NULL;
4154 }
4155
4156 /* Return a minimal symbol matching NAME according to Ada decoding
4157 rules. Returns NULL if there is no such minimal symbol. Names
4158 prefixed with "standard__" are handled specially: "standard__" is
4159 first stripped off, and only static and global symbols are searched. */
4160
4161 struct minimal_symbol *
4162 ada_lookup_simple_minsym (const char *name)
4163 {
4164 struct objfile *objfile;
4165 struct minimal_symbol *msymbol;
4166 int wild_match;
4167
4168 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4169 {
4170 name += sizeof ("standard__") - 1;
4171 wild_match = 0;
4172 }
4173 else
4174 wild_match = (strstr (name, "__") == NULL);
4175
4176 ALL_MSYMBOLS (objfile, msymbol)
4177 {
4178 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4179 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4180 return msymbol;
4181 }
4182
4183 return NULL;
4184 }
4185
4186 /* For all subprograms that statically enclose the subprogram of the
4187 selected frame, add symbols matching identifier NAME in DOMAIN
4188 and their blocks to the list of data in OBSTACKP, as for
4189 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4190 wildcard prefix. */
4191
4192 static void
4193 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4194 const char *name, domain_enum namespace,
4195 int wild_match)
4196 {
4197 }
4198
4199 /* True if TYPE is definitely an artificial type supplied to a symbol
4200 for which no debugging information was given in the symbol file. */
4201
4202 static int
4203 is_nondebugging_type (struct type *type)
4204 {
4205 char *name = ada_type_name (type);
4206 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4207 }
4208
4209 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4210 duplicate other symbols in the list (The only case I know of where
4211 this happens is when object files containing stabs-in-ecoff are
4212 linked with files containing ordinary ecoff debugging symbols (or no
4213 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4214 Returns the number of items in the modified list. */
4215
4216 static int
4217 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4218 {
4219 int i, j;
4220
4221 i = 0;
4222 while (i < nsyms)
4223 {
4224 if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4225 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4226 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4227 {
4228 for (j = 0; j < nsyms; j += 1)
4229 {
4230 if (i != j
4231 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4232 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4233 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4234 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4235 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4236 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4237 {
4238 int k;
4239 for (k = i + 1; k < nsyms; k += 1)
4240 syms[k - 1] = syms[k];
4241 nsyms -= 1;
4242 goto NextSymbol;
4243 }
4244 }
4245 }
4246 i += 1;
4247 NextSymbol:
4248 ;
4249 }
4250 return nsyms;
4251 }
4252
4253 /* Given a type that corresponds to a renaming entity, use the type name
4254 to extract the scope (package name or function name, fully qualified,
4255 and following the GNAT encoding convention) where this renaming has been
4256 defined. The string returned needs to be deallocated after use. */
4257
4258 static char *
4259 xget_renaming_scope (struct type *renaming_type)
4260 {
4261 /* The renaming types adhere to the following convention:
4262 <scope>__<rename>___<XR extension>.
4263 So, to extract the scope, we search for the "___XR" extension,
4264 and then backtrack until we find the first "__". */
4265
4266 const char *name = type_name_no_tag (renaming_type);
4267 char *suffix = strstr (name, "___XR");
4268 char *last;
4269 int scope_len;
4270 char *scope;
4271
4272 /* Now, backtrack a bit until we find the first "__". Start looking
4273 at suffix - 3, as the <rename> part is at least one character long. */
4274
4275 for (last = suffix - 3; last > name; last--)
4276 if (last[0] == '_' && last[1] == '_')
4277 break;
4278
4279 /* Make a copy of scope and return it. */
4280
4281 scope_len = last - name;
4282 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4283
4284 strncpy (scope, name, scope_len);
4285 scope[scope_len] = '\0';
4286
4287 return scope;
4288 }
4289
4290 /* Return nonzero if NAME corresponds to a package name. */
4291
4292 static int
4293 is_package_name (const char *name)
4294 {
4295 /* Here, We take advantage of the fact that no symbols are generated
4296 for packages, while symbols are generated for each function.
4297 So the condition for NAME represent a package becomes equivalent
4298 to NAME not existing in our list of symbols. There is only one
4299 small complication with library-level functions (see below). */
4300
4301 char *fun_name;
4302
4303 /* If it is a function that has not been defined at library level,
4304 then we should be able to look it up in the symbols. */
4305 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4306 return 0;
4307
4308 /* Library-level function names start with "_ada_". See if function
4309 "_ada_" followed by NAME can be found. */
4310
4311 /* Do a quick check that NAME does not contain "__", since library-level
4312 functions names cannot contain "__" in them. */
4313 if (strstr (name, "__") != NULL)
4314 return 0;
4315
4316 fun_name = xstrprintf ("_ada_%s", name);
4317
4318 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4319 }
4320
4321 /* Return nonzero if SYM corresponds to a renaming entity that is
4322 visible from FUNCTION_NAME. */
4323
4324 static int
4325 renaming_is_visible (const struct symbol *sym, char *function_name)
4326 {
4327 char *scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4328
4329 make_cleanup (xfree, scope);
4330
4331 /* If the rename has been defined in a package, then it is visible. */
4332 if (is_package_name (scope))
4333 return 1;
4334
4335 /* Check that the rename is in the current function scope by checking
4336 that its name starts with SCOPE. */
4337
4338 /* If the function name starts with "_ada_", it means that it is
4339 a library-level function. Strip this prefix before doing the
4340 comparison, as the encoding for the renaming does not contain
4341 this prefix. */
4342 if (strncmp (function_name, "_ada_", 5) == 0)
4343 function_name += 5;
4344
4345 return (strncmp (function_name, scope, strlen (scope)) == 0);
4346 }
4347
4348 /* Iterates over the SYMS list and remove any entry that corresponds to
4349 a renaming entity that is not visible from the function associated
4350 with CURRENT_BLOCK.
4351
4352 Rationale:
4353 GNAT emits a type following a specified encoding for each renaming
4354 entity. Unfortunately, STABS currently does not support the definition
4355 of types that are local to a given lexical block, so all renamings types
4356 are emitted at library level. As a consequence, if an application
4357 contains two renaming entities using the same name, and a user tries to
4358 print the value of one of these entities, the result of the ada symbol
4359 lookup will also contain the wrong renaming type.
4360
4361 This function partially covers for this limitation by attempting to
4362 remove from the SYMS list renaming symbols that should be visible
4363 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4364 method with the current information available. The implementation
4365 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4366
4367 - When the user tries to print a rename in a function while there
4368 is another rename entity defined in a package: Normally, the
4369 rename in the function has precedence over the rename in the
4370 package, so the latter should be removed from the list. This is
4371 currently not the case.
4372
4373 - This function will incorrectly remove valid renames if
4374 the CURRENT_BLOCK corresponds to a function which symbol name
4375 has been changed by an "Export" pragma. As a consequence,
4376 the user will be unable to print such rename entities. */
4377
4378 static int
4379 remove_out_of_scope_renamings (struct ada_symbol_info *syms,
4380 int nsyms, const struct block *current_block)
4381 {
4382 struct symbol *current_function;
4383 char *current_function_name;
4384 int i;
4385
4386 /* Extract the function name associated to CURRENT_BLOCK.
4387 Abort if unable to do so. */
4388
4389 if (current_block == NULL)
4390 return nsyms;
4391
4392 current_function = block_function (current_block);
4393 if (current_function == NULL)
4394 return nsyms;
4395
4396 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4397 if (current_function_name == NULL)
4398 return nsyms;
4399
4400 /* Check each of the symbols, and remove it from the list if it is
4401 a type corresponding to a renaming that is out of the scope of
4402 the current block. */
4403
4404 i = 0;
4405 while (i < nsyms)
4406 {
4407 if (ada_is_object_renaming (syms[i].sym)
4408 && !renaming_is_visible (syms[i].sym, current_function_name))
4409 {
4410 int j;
4411 for (j = i + 1; j < nsyms; j++)
4412 syms[j - 1] = syms[j];
4413 nsyms -= 1;
4414 }
4415 else
4416 i += 1;
4417 }
4418
4419 return nsyms;
4420 }
4421
4422 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4423 scope and in global scopes, returning the number of matches. Sets
4424 *RESULTS to point to a vector of (SYM,BLOCK,SYMTAB) triples,
4425 indicating the symbols found and the blocks and symbol tables (if
4426 any) in which they were found. This vector are transient---good only to
4427 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4428 symbol match within the nest of blocks whose innermost member is BLOCK0,
4429 is the one match returned (no other matches in that or
4430 enclosing blocks is returned). If there are any matches in or
4431 surrounding BLOCK0, then these alone are returned. Otherwise, the
4432 search extends to global and file-scope (static) symbol tables.
4433 Names prefixed with "standard__" are handled specially: "standard__"
4434 is first stripped off, and only static and global symbols are searched. */
4435
4436 int
4437 ada_lookup_symbol_list (const char *name0, const struct block *block0,
4438 domain_enum namespace,
4439 struct ada_symbol_info **results)
4440 {
4441 struct symbol *sym;
4442 struct symtab *s;
4443 struct partial_symtab *ps;
4444 struct blockvector *bv;
4445 struct objfile *objfile;
4446 struct block *block;
4447 const char *name;
4448 struct minimal_symbol *msymbol;
4449 int wild_match;
4450 int cacheIfUnique;
4451 int block_depth;
4452 int ndefns;
4453
4454 obstack_free (&symbol_list_obstack, NULL);
4455 obstack_init (&symbol_list_obstack);
4456
4457 cacheIfUnique = 0;
4458
4459 /* Search specified block and its superiors. */
4460
4461 wild_match = (strstr (name0, "__") == NULL);
4462 name = name0;
4463 block = (struct block *) block0; /* FIXME: No cast ought to be
4464 needed, but adding const will
4465 have a cascade effect. */
4466 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4467 {
4468 wild_match = 0;
4469 block = NULL;
4470 name = name0 + sizeof ("standard__") - 1;
4471 }
4472
4473 block_depth = 0;
4474 while (block != NULL)
4475 {
4476 block_depth += 1;
4477 ada_add_block_symbols (&symbol_list_obstack, block, name,
4478 namespace, NULL, NULL, wild_match);
4479
4480 /* If we found a non-function match, assume that's the one. */
4481 if (is_nonfunction (defns_collected (&symbol_list_obstack, 0),
4482 num_defns_collected (&symbol_list_obstack)))
4483 goto done;
4484
4485 block = BLOCK_SUPERBLOCK (block);
4486 }
4487
4488 /* If no luck so far, try to find NAME as a local symbol in some lexically
4489 enclosing subprogram. */
4490 if (num_defns_collected (&symbol_list_obstack) == 0 && block_depth > 2)
4491 add_symbols_from_enclosing_procs (&symbol_list_obstack,
4492 name, namespace, wild_match);
4493
4494 /* If we found ANY matches among non-global symbols, we're done. */
4495
4496 if (num_defns_collected (&symbol_list_obstack) > 0)
4497 goto done;
4498
4499 cacheIfUnique = 1;
4500 if (lookup_cached_symbol (name0, namespace, &sym, &block, &s))
4501 {
4502 if (sym != NULL)
4503 add_defn_to_vec (&symbol_list_obstack, sym, block, s);
4504 goto done;
4505 }
4506
4507 /* Now add symbols from all global blocks: symbol tables, minimal symbol
4508 tables, and psymtab's. */
4509
4510 ALL_PRIMARY_SYMTABS (objfile, s)
4511 {
4512 QUIT;
4513 bv = BLOCKVECTOR (s);
4514 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4515 ada_add_block_symbols (&symbol_list_obstack, block, name, namespace,
4516 objfile, s, wild_match);
4517 }
4518
4519 if (namespace == VAR_DOMAIN)
4520 {
4521 ALL_MSYMBOLS (objfile, msymbol)
4522 {
4523 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match))
4524 {
4525 switch (MSYMBOL_TYPE (msymbol))
4526 {
4527 case mst_solib_trampoline:
4528 break;
4529 default:
4530 s = find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol));
4531 if (s != NULL)
4532 {
4533 int ndefns0 = num_defns_collected (&symbol_list_obstack);
4534 QUIT;
4535 bv = BLOCKVECTOR (s);
4536 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4537 ada_add_block_symbols (&symbol_list_obstack, block,
4538 SYMBOL_LINKAGE_NAME (msymbol),
4539 namespace, objfile, s, wild_match);
4540
4541 if (num_defns_collected (&symbol_list_obstack) == ndefns0)
4542 {
4543 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4544 ada_add_block_symbols (&symbol_list_obstack, block,
4545 SYMBOL_LINKAGE_NAME (msymbol),
4546 namespace, objfile, s,
4547 wild_match);
4548 }
4549 }
4550 }
4551 }
4552 }
4553 }
4554
4555 ALL_PSYMTABS (objfile, ps)
4556 {
4557 QUIT;
4558 if (!ps->readin
4559 && ada_lookup_partial_symbol (ps, name, 1, namespace, wild_match))
4560 {
4561 s = PSYMTAB_TO_SYMTAB (ps);
4562 if (!s->primary)
4563 continue;
4564 bv = BLOCKVECTOR (s);
4565 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4566 ada_add_block_symbols (&symbol_list_obstack, block, name,
4567 namespace, objfile, s, wild_match);
4568 }
4569 }
4570
4571 /* Now add symbols from all per-file blocks if we've gotten no hits
4572 (Not strictly correct, but perhaps better than an error).
4573 Do the symtabs first, then check the psymtabs. */
4574
4575 if (num_defns_collected (&symbol_list_obstack) == 0)
4576 {
4577
4578 ALL_PRIMARY_SYMTABS (objfile, s)
4579 {
4580 QUIT;
4581 bv = BLOCKVECTOR (s);
4582 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4583 ada_add_block_symbols (&symbol_list_obstack, block, name, namespace,
4584 objfile, s, wild_match);
4585 }
4586
4587 ALL_PSYMTABS (objfile, ps)
4588 {
4589 QUIT;
4590 if (!ps->readin
4591 && ada_lookup_partial_symbol (ps, name, 0, namespace, wild_match))
4592 {
4593 s = PSYMTAB_TO_SYMTAB (ps);
4594 bv = BLOCKVECTOR (s);
4595 if (!s->primary)
4596 continue;
4597 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4598 ada_add_block_symbols (&symbol_list_obstack, block, name,
4599 namespace, objfile, s, wild_match);
4600 }
4601 }
4602 }
4603
4604 done:
4605 ndefns = num_defns_collected (&symbol_list_obstack);
4606 *results = defns_collected (&symbol_list_obstack, 1);
4607
4608 ndefns = remove_extra_symbols (*results, ndefns);
4609
4610 if (ndefns == 0)
4611 cache_symbol (name0, namespace, NULL, NULL, NULL);
4612
4613 if (ndefns == 1 && cacheIfUnique)
4614 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block,
4615 (*results)[0].symtab);
4616
4617 ndefns = remove_out_of_scope_renamings (*results, ndefns, block0);
4618
4619 return ndefns;
4620 }
4621
4622 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4623 scope and in global scopes, or NULL if none. NAME is folded and
4624 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4625 choosing the first symbol if there are multiple choices.
4626 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4627 table in which the symbol was found (in both cases, these
4628 assignments occur only if the pointers are non-null). */
4629
4630 struct symbol *
4631 ada_lookup_symbol (const char *name, const struct block *block0,
4632 domain_enum namespace, int *is_a_field_of_this,
4633 struct symtab **symtab)
4634 {
4635 struct ada_symbol_info *candidates;
4636 int n_candidates;
4637
4638 n_candidates = ada_lookup_symbol_list (ada_encode (ada_fold_name (name)),
4639 block0, namespace, &candidates);
4640
4641 if (n_candidates == 0)
4642 return NULL;
4643
4644 if (is_a_field_of_this != NULL)
4645 *is_a_field_of_this = 0;
4646
4647 if (symtab != NULL)
4648 {
4649 *symtab = candidates[0].symtab;
4650 if (*symtab == NULL && candidates[0].block != NULL)
4651 {
4652 struct objfile *objfile;
4653 struct symtab *s;
4654 struct block *b;
4655 struct blockvector *bv;
4656
4657 /* Search the list of symtabs for one which contains the
4658 address of the start of this block. */
4659 ALL_PRIMARY_SYMTABS (objfile, s)
4660 {
4661 bv = BLOCKVECTOR (s);
4662 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4663 if (BLOCK_START (b) <= BLOCK_START (candidates[0].block)
4664 && BLOCK_END (b) > BLOCK_START (candidates[0].block))
4665 {
4666 *symtab = s;
4667 return fixup_symbol_section (candidates[0].sym, objfile);
4668 }
4669 }
4670 /* FIXME: brobecker/2004-11-12: I think that we should never
4671 reach this point. I don't see a reason why we would not
4672 find a symtab for a given block, so I suggest raising an
4673 internal_error exception here. Otherwise, we end up
4674 returning a symbol but no symtab, which certain parts of
4675 the code that rely (indirectly) on this function do not
4676 expect, eventually causing a SEGV. */
4677 return fixup_symbol_section (candidates[0].sym, NULL);
4678 }
4679 }
4680 return candidates[0].sym;
4681 }
4682
4683 static struct symbol *
4684 ada_lookup_symbol_nonlocal (const char *name,
4685 const char *linkage_name,
4686 const struct block *block,
4687 const domain_enum domain, struct symtab **symtab)
4688 {
4689 if (linkage_name == NULL)
4690 linkage_name = name;
4691 return ada_lookup_symbol (linkage_name, block_static_block (block), domain,
4692 NULL, symtab);
4693 }
4694
4695
4696 /* True iff STR is a possible encoded suffix of a normal Ada name
4697 that is to be ignored for matching purposes. Suffixes of parallel
4698 names (e.g., XVE) are not included here. Currently, the possible suffixes
4699 are given by either of the regular expression:
4700
4701 (__[0-9]+)?[.$][0-9]+ [nested subprogram suffix, on platforms such
4702 as GNU/Linux]
4703 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4704 _E[0-9]+[bs]$ [protected object entry suffixes]
4705 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
4706 */
4707
4708 static int
4709 is_name_suffix (const char *str)
4710 {
4711 int k;
4712 const char *matching;
4713 const int len = strlen (str);
4714
4715 /* (__[0-9]+)?\.[0-9]+ */
4716 matching = str;
4717 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4718 {
4719 matching += 3;
4720 while (isdigit (matching[0]))
4721 matching += 1;
4722 if (matching[0] == '\0')
4723 return 1;
4724 }
4725
4726 if (matching[0] == '.' || matching[0] == '$')
4727 {
4728 matching += 1;
4729 while (isdigit (matching[0]))
4730 matching += 1;
4731 if (matching[0] == '\0')
4732 return 1;
4733 }
4734
4735 /* ___[0-9]+ */
4736 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
4737 {
4738 matching = str + 3;
4739 while (isdigit (matching[0]))
4740 matching += 1;
4741 if (matching[0] == '\0')
4742 return 1;
4743 }
4744
4745 #if 0
4746 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
4747 with a N at the end. Unfortunately, the compiler uses the same
4748 convention for other internal types it creates. So treating
4749 all entity names that end with an "N" as a name suffix causes
4750 some regressions. For instance, consider the case of an enumerated
4751 type. To support the 'Image attribute, it creates an array whose
4752 name ends with N.
4753 Having a single character like this as a suffix carrying some
4754 information is a bit risky. Perhaps we should change the encoding
4755 to be something like "_N" instead. In the meantime, do not do
4756 the following check. */
4757 /* Protected Object Subprograms */
4758 if (len == 1 && str [0] == 'N')
4759 return 1;
4760 #endif
4761
4762 /* _E[0-9]+[bs]$ */
4763 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
4764 {
4765 matching = str + 3;
4766 while (isdigit (matching[0]))
4767 matching += 1;
4768 if ((matching[0] == 'b' || matching[0] == 's')
4769 && matching [1] == '\0')
4770 return 1;
4771 }
4772
4773 /* ??? We should not modify STR directly, as we are doing below. This
4774 is fine in this case, but may become problematic later if we find
4775 that this alternative did not work, and want to try matching
4776 another one from the begining of STR. Since we modified it, we
4777 won't be able to find the begining of the string anymore! */
4778 if (str[0] == 'X')
4779 {
4780 str += 1;
4781 while (str[0] != '_' && str[0] != '\0')
4782 {
4783 if (str[0] != 'n' && str[0] != 'b')
4784 return 0;
4785 str += 1;
4786 }
4787 }
4788 if (str[0] == '\000')
4789 return 1;
4790 if (str[0] == '_')
4791 {
4792 if (str[1] != '_' || str[2] == '\000')
4793 return 0;
4794 if (str[2] == '_')
4795 {
4796 if (strcmp (str + 3, "JM") == 0)
4797 return 1;
4798 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
4799 the LJM suffix in favor of the JM one. But we will
4800 still accept LJM as a valid suffix for a reasonable
4801 amount of time, just to allow ourselves to debug programs
4802 compiled using an older version of GNAT. */
4803 if (strcmp (str + 3, "LJM") == 0)
4804 return 1;
4805 if (str[3] != 'X')
4806 return 0;
4807 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
4808 || str[4] == 'U' || str[4] == 'P')
4809 return 1;
4810 if (str[4] == 'R' && str[5] != 'T')
4811 return 1;
4812 return 0;
4813 }
4814 if (!isdigit (str[2]))
4815 return 0;
4816 for (k = 3; str[k] != '\0'; k += 1)
4817 if (!isdigit (str[k]) && str[k] != '_')
4818 return 0;
4819 return 1;
4820 }
4821 if (str[0] == '$' && isdigit (str[1]))
4822 {
4823 for (k = 2; str[k] != '\0'; k += 1)
4824 if (!isdigit (str[k]) && str[k] != '_')
4825 return 0;
4826 return 1;
4827 }
4828 return 0;
4829 }
4830
4831 /* Return nonzero if the given string starts with a dot ('.')
4832 followed by zero or more digits.
4833
4834 Note: brobecker/2003-11-10: A forward declaration has not been
4835 added at the begining of this file yet, because this function
4836 is only used to work around a problem found during wild matching
4837 when trying to match minimal symbol names against symbol names
4838 obtained from dwarf-2 data. This function is therefore currently
4839 only used in wild_match() and is likely to be deleted when the
4840 problem in dwarf-2 is fixed. */
4841
4842 static int
4843 is_dot_digits_suffix (const char *str)
4844 {
4845 if (str[0] != '.')
4846 return 0;
4847
4848 str++;
4849 while (isdigit (str[0]))
4850 str++;
4851 return (str[0] == '\0');
4852 }
4853
4854 /* Return non-zero if NAME0 is a valid match when doing wild matching.
4855 Certain symbols appear at first to match, except that they turn out
4856 not to follow the Ada encoding and hence should not be used as a wild
4857 match of a given pattern. */
4858
4859 static int
4860 is_valid_name_for_wild_match (const char *name0)
4861 {
4862 const char *decoded_name = ada_decode (name0);
4863 int i;
4864
4865 for (i=0; decoded_name[i] != '\0'; i++)
4866 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
4867 return 0;
4868
4869 return 1;
4870 }
4871
4872 /* True if NAME represents a name of the form A1.A2....An, n>=1 and
4873 PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores
4874 informational suffixes of NAME (i.e., for which is_name_suffix is
4875 true). */
4876
4877 static int
4878 wild_match (const char *patn0, int patn_len, const char *name0)
4879 {
4880 int name_len;
4881 char *name;
4882 char *patn;
4883
4884 /* FIXME: brobecker/2003-11-10: For some reason, the symbol name
4885 stored in the symbol table for nested function names is sometimes
4886 different from the name of the associated entity stored in
4887 the dwarf-2 data: This is the case for nested subprograms, where
4888 the minimal symbol name contains a trailing ".[:digit:]+" suffix,
4889 while the symbol name from the dwarf-2 data does not.
4890
4891 Although the DWARF-2 standard documents that entity names stored
4892 in the dwarf-2 data should be identical to the name as seen in
4893 the source code, GNAT takes a different approach as we already use
4894 a special encoding mechanism to convey the information so that
4895 a C debugger can still use the information generated to debug
4896 Ada programs. A corollary is that the symbol names in the dwarf-2
4897 data should match the names found in the symbol table. I therefore
4898 consider this issue as a compiler defect.
4899
4900 Until the compiler is properly fixed, we work-around the problem
4901 by ignoring such suffixes during the match. We do so by making
4902 a copy of PATN0 and NAME0, and then by stripping such a suffix
4903 if present. We then perform the match on the resulting strings. */
4904 {
4905 char *dot;
4906 name_len = strlen (name0);
4907
4908 name = (char *) alloca ((name_len + 1) * sizeof (char));
4909 strcpy (name, name0);
4910 dot = strrchr (name, '.');
4911 if (dot != NULL && is_dot_digits_suffix (dot))
4912 *dot = '\0';
4913
4914 patn = (char *) alloca ((patn_len + 1) * sizeof (char));
4915 strncpy (patn, patn0, patn_len);
4916 patn[patn_len] = '\0';
4917 dot = strrchr (patn, '.');
4918 if (dot != NULL && is_dot_digits_suffix (dot))
4919 {
4920 *dot = '\0';
4921 patn_len = dot - patn;
4922 }
4923 }
4924
4925 /* Now perform the wild match. */
4926
4927 name_len = strlen (name);
4928 if (name_len >= patn_len + 5 && strncmp (name, "_ada_", 5) == 0
4929 && strncmp (patn, name + 5, patn_len) == 0
4930 && is_name_suffix (name + patn_len + 5))
4931 return 1;
4932
4933 while (name_len >= patn_len)
4934 {
4935 if (strncmp (patn, name, patn_len) == 0
4936 && is_name_suffix (name + patn_len))
4937 return (is_valid_name_for_wild_match (name0));
4938 do
4939 {
4940 name += 1;
4941 name_len -= 1;
4942 }
4943 while (name_len > 0
4944 && name[0] != '.' && (name[0] != '_' || name[1] != '_'));
4945 if (name_len <= 0)
4946 return 0;
4947 if (name[0] == '_')
4948 {
4949 if (!islower (name[2]))
4950 return 0;
4951 name += 2;
4952 name_len -= 2;
4953 }
4954 else
4955 {
4956 if (!islower (name[1]))
4957 return 0;
4958 name += 1;
4959 name_len -= 1;
4960 }
4961 }
4962
4963 return 0;
4964 }
4965
4966
4967 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
4968 vector *defn_symbols, updating the list of symbols in OBSTACKP
4969 (if necessary). If WILD, treat as NAME with a wildcard prefix.
4970 OBJFILE is the section containing BLOCK.
4971 SYMTAB is recorded with each symbol added. */
4972
4973 static void
4974 ada_add_block_symbols (struct obstack *obstackp,
4975 struct block *block, const char *name,
4976 domain_enum domain, struct objfile *objfile,
4977 struct symtab *symtab, int wild)
4978 {
4979 struct dict_iterator iter;
4980 int name_len = strlen (name);
4981 /* A matching argument symbol, if any. */
4982 struct symbol *arg_sym;
4983 /* Set true when we find a matching non-argument symbol. */
4984 int found_sym;
4985 struct symbol *sym;
4986
4987 arg_sym = NULL;
4988 found_sym = 0;
4989 if (wild)
4990 {
4991 struct symbol *sym;
4992 ALL_BLOCK_SYMBOLS (block, iter, sym)
4993 {
4994 if (SYMBOL_DOMAIN (sym) == domain
4995 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (sym)))
4996 {
4997 switch (SYMBOL_CLASS (sym))
4998 {
4999 case LOC_ARG:
5000 case LOC_LOCAL_ARG:
5001 case LOC_REF_ARG:
5002 case LOC_REGPARM:
5003 case LOC_REGPARM_ADDR:
5004 case LOC_BASEREG_ARG:
5005 case LOC_COMPUTED_ARG:
5006 arg_sym = sym;
5007 break;
5008 case LOC_UNRESOLVED:
5009 continue;
5010 default:
5011 found_sym = 1;
5012 add_defn_to_vec (obstackp,
5013 fixup_symbol_section (sym, objfile),
5014 block, symtab);
5015 break;
5016 }
5017 }
5018 }
5019 }
5020 else
5021 {
5022 ALL_BLOCK_SYMBOLS (block, iter, sym)
5023 {
5024 if (SYMBOL_DOMAIN (sym) == domain)
5025 {
5026 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym), name_len);
5027 if (cmp == 0
5028 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len))
5029 {
5030 switch (SYMBOL_CLASS (sym))
5031 {
5032 case LOC_ARG:
5033 case LOC_LOCAL_ARG:
5034 case LOC_REF_ARG:
5035 case LOC_REGPARM:
5036 case LOC_REGPARM_ADDR:
5037 case LOC_BASEREG_ARG:
5038 case LOC_COMPUTED_ARG:
5039 arg_sym = sym;
5040 break;
5041 case LOC_UNRESOLVED:
5042 break;
5043 default:
5044 found_sym = 1;
5045 add_defn_to_vec (obstackp,
5046 fixup_symbol_section (sym, objfile),
5047 block, symtab);
5048 break;
5049 }
5050 }
5051 }
5052 }
5053 }
5054
5055 if (!found_sym && arg_sym != NULL)
5056 {
5057 add_defn_to_vec (obstackp,
5058 fixup_symbol_section (arg_sym, objfile),
5059 block, symtab);
5060 }
5061
5062 if (!wild)
5063 {
5064 arg_sym = NULL;
5065 found_sym = 0;
5066
5067 ALL_BLOCK_SYMBOLS (block, iter, sym)
5068 {
5069 if (SYMBOL_DOMAIN (sym) == domain)
5070 {
5071 int cmp;
5072
5073 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5074 if (cmp == 0)
5075 {
5076 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5077 if (cmp == 0)
5078 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5079 name_len);
5080 }
5081
5082 if (cmp == 0
5083 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5084 {
5085 switch (SYMBOL_CLASS (sym))
5086 {
5087 case LOC_ARG:
5088 case LOC_LOCAL_ARG:
5089 case LOC_REF_ARG:
5090 case LOC_REGPARM:
5091 case LOC_REGPARM_ADDR:
5092 case LOC_BASEREG_ARG:
5093 case LOC_COMPUTED_ARG:
5094 arg_sym = sym;
5095 break;
5096 case LOC_UNRESOLVED:
5097 break;
5098 default:
5099 found_sym = 1;
5100 add_defn_to_vec (obstackp,
5101 fixup_symbol_section (sym, objfile),
5102 block, symtab);
5103 break;
5104 }
5105 }
5106 }
5107 }
5108
5109 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5110 They aren't parameters, right? */
5111 if (!found_sym && arg_sym != NULL)
5112 {
5113 add_defn_to_vec (obstackp,
5114 fixup_symbol_section (arg_sym, objfile),
5115 block, symtab);
5116 }
5117 }
5118 }
5119 \f
5120 /* Field Access */
5121
5122 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5123 to be invisible to users. */
5124
5125 int
5126 ada_is_ignored_field (struct type *type, int field_num)
5127 {
5128 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5129 return 1;
5130 else
5131 {
5132 const char *name = TYPE_FIELD_NAME (type, field_num);
5133 return (name == NULL
5134 || (name[0] == '_' && strncmp (name, "_parent", 7) != 0));
5135 }
5136 }
5137
5138 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5139 pointer or reference type whose ultimate target has a tag field. */
5140
5141 int
5142 ada_is_tagged_type (struct type *type, int refok)
5143 {
5144 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5145 }
5146
5147 /* True iff TYPE represents the type of X'Tag */
5148
5149 int
5150 ada_is_tag_type (struct type *type)
5151 {
5152 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5153 return 0;
5154 else
5155 {
5156 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5157 return (name != NULL
5158 && strcmp (name, "ada__tags__dispatch_table") == 0);
5159 }
5160 }
5161
5162 /* The type of the tag on VAL. */
5163
5164 struct type *
5165 ada_tag_type (struct value *val)
5166 {
5167 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
5168 }
5169
5170 /* The value of the tag on VAL. */
5171
5172 struct value *
5173 ada_value_tag (struct value *val)
5174 {
5175 return ada_value_struct_elt (val, "_tag", 0);
5176 }
5177
5178 /* The value of the tag on the object of type TYPE whose contents are
5179 saved at VALADDR, if it is non-null, or is at memory address
5180 ADDRESS. */
5181
5182 static struct value *
5183 value_tag_from_contents_and_address (struct type *type,
5184 const gdb_byte *valaddr,
5185 CORE_ADDR address)
5186 {
5187 int tag_byte_offset, dummy1, dummy2;
5188 struct type *tag_type;
5189 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
5190 NULL, NULL, NULL))
5191 {
5192 const gdb_byte *valaddr1 = ((valaddr == NULL)
5193 ? NULL
5194 : valaddr + tag_byte_offset);
5195 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
5196
5197 return value_from_contents_and_address (tag_type, valaddr1, address1);
5198 }
5199 return NULL;
5200 }
5201
5202 static struct type *
5203 type_from_tag (struct value *tag)
5204 {
5205 const char *type_name = ada_tag_name (tag);
5206 if (type_name != NULL)
5207 return ada_find_any_type (ada_encode (type_name));
5208 return NULL;
5209 }
5210
5211 struct tag_args
5212 {
5213 struct value *tag;
5214 char *name;
5215 };
5216
5217
5218 static int ada_tag_name_1 (void *);
5219 static int ada_tag_name_2 (struct tag_args *);
5220
5221 /* Wrapper function used by ada_tag_name. Given a struct tag_args*
5222 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5223 The value stored in ARGS->name is valid until the next call to
5224 ada_tag_name_1. */
5225
5226 static int
5227 ada_tag_name_1 (void *args0)
5228 {
5229 struct tag_args *args = (struct tag_args *) args0;
5230 static char name[1024];
5231 char *p;
5232 struct value *val;
5233 args->name = NULL;
5234 val = ada_value_struct_elt (args->tag, "tsd", 1);
5235 if (val == NULL)
5236 return ada_tag_name_2 (args);
5237 val = ada_value_struct_elt (val, "expanded_name", 1);
5238 if (val == NULL)
5239 return 0;
5240 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5241 for (p = name; *p != '\0'; p += 1)
5242 if (isalpha (*p))
5243 *p = tolower (*p);
5244 args->name = name;
5245 return 0;
5246 }
5247
5248 /* Utility function for ada_tag_name_1 that tries the second
5249 representation for the dispatch table (in which there is no
5250 explicit 'tsd' field in the referent of the tag pointer, and instead
5251 the tsd pointer is stored just before the dispatch table. */
5252
5253 static int
5254 ada_tag_name_2 (struct tag_args *args)
5255 {
5256 struct type *info_type;
5257 static char name[1024];
5258 char *p;
5259 struct value *val, *valp;
5260
5261 args->name = NULL;
5262 info_type = ada_find_any_type ("ada__tags__type_specific_data");
5263 if (info_type == NULL)
5264 return 0;
5265 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5266 valp = value_cast (info_type, args->tag);
5267 if (valp == NULL)
5268 return 0;
5269 val = value_ind (value_add (valp, value_from_longest (builtin_type_int, -1)));
5270 if (val == NULL)
5271 return 0;
5272 val = ada_value_struct_elt (val, "expanded_name", 1);
5273 if (val == NULL)
5274 return 0;
5275 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5276 for (p = name; *p != '\0'; p += 1)
5277 if (isalpha (*p))
5278 *p = tolower (*p);
5279 args->name = name;
5280 return 0;
5281 }
5282
5283 /* The type name of the dynamic type denoted by the 'tag value TAG, as
5284 * a C string. */
5285
5286 const char *
5287 ada_tag_name (struct value *tag)
5288 {
5289 struct tag_args args;
5290 if (!ada_is_tag_type (value_type (tag)))
5291 return NULL;
5292 args.tag = tag;
5293 args.name = NULL;
5294 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5295 return args.name;
5296 }
5297
5298 /* The parent type of TYPE, or NULL if none. */
5299
5300 struct type *
5301 ada_parent_type (struct type *type)
5302 {
5303 int i;
5304
5305 type = ada_check_typedef (type);
5306
5307 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5308 return NULL;
5309
5310 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5311 if (ada_is_parent_field (type, i))
5312 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5313
5314 return NULL;
5315 }
5316
5317 /* True iff field number FIELD_NUM of structure type TYPE contains the
5318 parent-type (inherited) fields of a derived type. Assumes TYPE is
5319 a structure type with at least FIELD_NUM+1 fields. */
5320
5321 int
5322 ada_is_parent_field (struct type *type, int field_num)
5323 {
5324 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5325 return (name != NULL
5326 && (strncmp (name, "PARENT", 6) == 0
5327 || strncmp (name, "_parent", 7) == 0));
5328 }
5329
5330 /* True iff field number FIELD_NUM of structure type TYPE is a
5331 transparent wrapper field (which should be silently traversed when doing
5332 field selection and flattened when printing). Assumes TYPE is a
5333 structure type with at least FIELD_NUM+1 fields. Such fields are always
5334 structures. */
5335
5336 int
5337 ada_is_wrapper_field (struct type *type, int field_num)
5338 {
5339 const char *name = TYPE_FIELD_NAME (type, field_num);
5340 return (name != NULL
5341 && (strncmp (name, "PARENT", 6) == 0
5342 || strcmp (name, "REP") == 0
5343 || strncmp (name, "_parent", 7) == 0
5344 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
5345 }
5346
5347 /* True iff field number FIELD_NUM of structure or union type TYPE
5348 is a variant wrapper. Assumes TYPE is a structure type with at least
5349 FIELD_NUM+1 fields. */
5350
5351 int
5352 ada_is_variant_part (struct type *type, int field_num)
5353 {
5354 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5355 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
5356 || (is_dynamic_field (type, field_num)
5357 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5358 == TYPE_CODE_UNION)));
5359 }
5360
5361 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
5362 whose discriminants are contained in the record type OUTER_TYPE,
5363 returns the type of the controlling discriminant for the variant. */
5364
5365 struct type *
5366 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
5367 {
5368 char *name = ada_variant_discrim_name (var_type);
5369 struct type *type =
5370 ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
5371 if (type == NULL)
5372 return builtin_type_int;
5373 else
5374 return type;
5375 }
5376
5377 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
5378 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
5379 represents a 'when others' clause; otherwise 0. */
5380
5381 int
5382 ada_is_others_clause (struct type *type, int field_num)
5383 {
5384 const char *name = TYPE_FIELD_NAME (type, field_num);
5385 return (name != NULL && name[0] == 'O');
5386 }
5387
5388 /* Assuming that TYPE0 is the type of the variant part of a record,
5389 returns the name of the discriminant controlling the variant.
5390 The value is valid until the next call to ada_variant_discrim_name. */
5391
5392 char *
5393 ada_variant_discrim_name (struct type *type0)
5394 {
5395 static char *result = NULL;
5396 static size_t result_len = 0;
5397 struct type *type;
5398 const char *name;
5399 const char *discrim_end;
5400 const char *discrim_start;
5401
5402 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5403 type = TYPE_TARGET_TYPE (type0);
5404 else
5405 type = type0;
5406
5407 name = ada_type_name (type);
5408
5409 if (name == NULL || name[0] == '\000')
5410 return "";
5411
5412 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
5413 discrim_end -= 1)
5414 {
5415 if (strncmp (discrim_end, "___XVN", 6) == 0)
5416 break;
5417 }
5418 if (discrim_end == name)
5419 return "";
5420
5421 for (discrim_start = discrim_end; discrim_start != name + 3;
5422 discrim_start -= 1)
5423 {
5424 if (discrim_start == name + 1)
5425 return "";
5426 if ((discrim_start > name + 3
5427 && strncmp (discrim_start - 3, "___", 3) == 0)
5428 || discrim_start[-1] == '.')
5429 break;
5430 }
5431
5432 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
5433 strncpy (result, discrim_start, discrim_end - discrim_start);
5434 result[discrim_end - discrim_start] = '\0';
5435 return result;
5436 }
5437
5438 /* Scan STR for a subtype-encoded number, beginning at position K.
5439 Put the position of the character just past the number scanned in
5440 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
5441 Return 1 if there was a valid number at the given position, and 0
5442 otherwise. A "subtype-encoded" number consists of the absolute value
5443 in decimal, followed by the letter 'm' to indicate a negative number.
5444 Assumes 0m does not occur. */
5445
5446 int
5447 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
5448 {
5449 ULONGEST RU;
5450
5451 if (!isdigit (str[k]))
5452 return 0;
5453
5454 /* Do it the hard way so as not to make any assumption about
5455 the relationship of unsigned long (%lu scan format code) and
5456 LONGEST. */
5457 RU = 0;
5458 while (isdigit (str[k]))
5459 {
5460 RU = RU * 10 + (str[k] - '0');
5461 k += 1;
5462 }
5463
5464 if (str[k] == 'm')
5465 {
5466 if (R != NULL)
5467 *R = (-(LONGEST) (RU - 1)) - 1;
5468 k += 1;
5469 }
5470 else if (R != NULL)
5471 *R = (LONGEST) RU;
5472
5473 /* NOTE on the above: Technically, C does not say what the results of
5474 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
5475 number representable as a LONGEST (although either would probably work
5476 in most implementations). When RU>0, the locution in the then branch
5477 above is always equivalent to the negative of RU. */
5478
5479 if (new_k != NULL)
5480 *new_k = k;
5481 return 1;
5482 }
5483
5484 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
5485 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
5486 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
5487
5488 int
5489 ada_in_variant (LONGEST val, struct type *type, int field_num)
5490 {
5491 const char *name = TYPE_FIELD_NAME (type, field_num);
5492 int p;
5493
5494 p = 0;
5495 while (1)
5496 {
5497 switch (name[p])
5498 {
5499 case '\0':
5500 return 0;
5501 case 'S':
5502 {
5503 LONGEST W;
5504 if (!ada_scan_number (name, p + 1, &W, &p))
5505 return 0;
5506 if (val == W)
5507 return 1;
5508 break;
5509 }
5510 case 'R':
5511 {
5512 LONGEST L, U;
5513 if (!ada_scan_number (name, p + 1, &L, &p)
5514 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
5515 return 0;
5516 if (val >= L && val <= U)
5517 return 1;
5518 break;
5519 }
5520 case 'O':
5521 return 1;
5522 default:
5523 return 0;
5524 }
5525 }
5526 }
5527
5528 /* FIXME: Lots of redundancy below. Try to consolidate. */
5529
5530 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
5531 ARG_TYPE, extract and return the value of one of its (non-static)
5532 fields. FIELDNO says which field. Differs from value_primitive_field
5533 only in that it can handle packed values of arbitrary type. */
5534
5535 static struct value *
5536 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
5537 struct type *arg_type)
5538 {
5539 struct type *type;
5540
5541 arg_type = ada_check_typedef (arg_type);
5542 type = TYPE_FIELD_TYPE (arg_type, fieldno);
5543
5544 /* Handle packed fields. */
5545
5546 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
5547 {
5548 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
5549 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
5550
5551 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
5552 offset + bit_pos / 8,
5553 bit_pos % 8, bit_size, type);
5554 }
5555 else
5556 return value_primitive_field (arg1, offset, fieldno, arg_type);
5557 }
5558
5559 /* Find field with name NAME in object of type TYPE. If found,
5560 set the following for each argument that is non-null:
5561 - *FIELD_TYPE_P to the field's type;
5562 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
5563 an object of that type;
5564 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
5565 - *BIT_SIZE_P to its size in bits if the field is packed, and
5566 0 otherwise;
5567 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
5568 fields up to but not including the desired field, or by the total
5569 number of fields if not found. A NULL value of NAME never
5570 matches; the function just counts visible fields in this case.
5571
5572 Returns 1 if found, 0 otherwise. */
5573
5574 static int
5575 find_struct_field (char *name, struct type *type, int offset,
5576 struct type **field_type_p,
5577 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
5578 int *index_p)
5579 {
5580 int i;
5581
5582 type = ada_check_typedef (type);
5583
5584 if (field_type_p != NULL)
5585 *field_type_p = NULL;
5586 if (byte_offset_p != NULL)
5587 *byte_offset_p = 0;
5588 if (bit_offset_p != NULL)
5589 *bit_offset_p = 0;
5590 if (bit_size_p != NULL)
5591 *bit_size_p = 0;
5592
5593 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5594 {
5595 int bit_pos = TYPE_FIELD_BITPOS (type, i);
5596 int fld_offset = offset + bit_pos / 8;
5597 char *t_field_name = TYPE_FIELD_NAME (type, i);
5598
5599 if (t_field_name == NULL)
5600 continue;
5601
5602 else if (name != NULL && field_name_match (t_field_name, name))
5603 {
5604 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5605 if (field_type_p != NULL)
5606 *field_type_p = TYPE_FIELD_TYPE (type, i);
5607 if (byte_offset_p != NULL)
5608 *byte_offset_p = fld_offset;
5609 if (bit_offset_p != NULL)
5610 *bit_offset_p = bit_pos % 8;
5611 if (bit_size_p != NULL)
5612 *bit_size_p = bit_size;
5613 return 1;
5614 }
5615 else if (ada_is_wrapper_field (type, i))
5616 {
5617 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
5618 field_type_p, byte_offset_p, bit_offset_p,
5619 bit_size_p, index_p))
5620 return 1;
5621 }
5622 else if (ada_is_variant_part (type, i))
5623 {
5624 /* PNH: Wait. Do we ever execute this section, or is ARG always of
5625 fixed type?? */
5626 int j;
5627 struct type *field_type
5628 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5629
5630 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
5631 {
5632 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
5633 fld_offset
5634 + TYPE_FIELD_BITPOS (field_type, j) / 8,
5635 field_type_p, byte_offset_p,
5636 bit_offset_p, bit_size_p, index_p))
5637 return 1;
5638 }
5639 }
5640 else if (index_p != NULL)
5641 *index_p += 1;
5642 }
5643 return 0;
5644 }
5645
5646 /* Number of user-visible fields in record type TYPE. */
5647
5648 static int
5649 num_visible_fields (struct type *type)
5650 {
5651 int n;
5652 n = 0;
5653 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
5654 return n;
5655 }
5656
5657 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
5658 and search in it assuming it has (class) type TYPE.
5659 If found, return value, else return NULL.
5660
5661 Searches recursively through wrapper fields (e.g., '_parent'). */
5662
5663 static struct value *
5664 ada_search_struct_field (char *name, struct value *arg, int offset,
5665 struct type *type)
5666 {
5667 int i;
5668 type = ada_check_typedef (type);
5669
5670 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5671 {
5672 char *t_field_name = TYPE_FIELD_NAME (type, i);
5673
5674 if (t_field_name == NULL)
5675 continue;
5676
5677 else if (field_name_match (t_field_name, name))
5678 return ada_value_primitive_field (arg, offset, i, type);
5679
5680 else if (ada_is_wrapper_field (type, i))
5681 {
5682 struct value *v = /* Do not let indent join lines here. */
5683 ada_search_struct_field (name, arg,
5684 offset + TYPE_FIELD_BITPOS (type, i) / 8,
5685 TYPE_FIELD_TYPE (type, i));
5686 if (v != NULL)
5687 return v;
5688 }
5689
5690 else if (ada_is_variant_part (type, i))
5691 {
5692 /* PNH: Do we ever get here? See find_struct_field. */
5693 int j;
5694 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5695 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
5696
5697 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
5698 {
5699 struct value *v = ada_search_struct_field /* Force line break. */
5700 (name, arg,
5701 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
5702 TYPE_FIELD_TYPE (field_type, j));
5703 if (v != NULL)
5704 return v;
5705 }
5706 }
5707 }
5708 return NULL;
5709 }
5710
5711 static struct value *ada_index_struct_field_1 (int *, struct value *,
5712 int, struct type *);
5713
5714
5715 /* Return field #INDEX in ARG, where the index is that returned by
5716 * find_struct_field through its INDEX_P argument. Adjust the address
5717 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
5718 * If found, return value, else return NULL. */
5719
5720 static struct value *
5721 ada_index_struct_field (int index, struct value *arg, int offset,
5722 struct type *type)
5723 {
5724 return ada_index_struct_field_1 (&index, arg, offset, type);
5725 }
5726
5727
5728 /* Auxiliary function for ada_index_struct_field. Like
5729 * ada_index_struct_field, but takes index from *INDEX_P and modifies
5730 * *INDEX_P. */
5731
5732 static struct value *
5733 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
5734 struct type *type)
5735 {
5736 int i;
5737 type = ada_check_typedef (type);
5738
5739 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5740 {
5741 if (TYPE_FIELD_NAME (type, i) == NULL)
5742 continue;
5743 else if (ada_is_wrapper_field (type, i))
5744 {
5745 struct value *v = /* Do not let indent join lines here. */
5746 ada_index_struct_field_1 (index_p, arg,
5747 offset + TYPE_FIELD_BITPOS (type, i) / 8,
5748 TYPE_FIELD_TYPE (type, i));
5749 if (v != NULL)
5750 return v;
5751 }
5752
5753 else if (ada_is_variant_part (type, i))
5754 {
5755 /* PNH: Do we ever get here? See ada_search_struct_field,
5756 find_struct_field. */
5757 error (_("Cannot assign this kind of variant record"));
5758 }
5759 else if (*index_p == 0)
5760 return ada_value_primitive_field (arg, offset, i, type);
5761 else
5762 *index_p -= 1;
5763 }
5764 return NULL;
5765 }
5766
5767 /* Given ARG, a value of type (pointer or reference to a)*
5768 structure/union, extract the component named NAME from the ultimate
5769 target structure/union and return it as a value with its
5770 appropriate type. If ARG is a pointer or reference and the field
5771 is not packed, returns a reference to the field, otherwise the
5772 value of the field (an lvalue if ARG is an lvalue).
5773
5774 The routine searches for NAME among all members of the structure itself
5775 and (recursively) among all members of any wrapper members
5776 (e.g., '_parent').
5777
5778 If NO_ERR, then simply return NULL in case of error, rather than
5779 calling error. */
5780
5781 struct value *
5782 ada_value_struct_elt (struct value *arg, char *name, int no_err)
5783 {
5784 struct type *t, *t1;
5785 struct value *v;
5786
5787 v = NULL;
5788 t1 = t = ada_check_typedef (value_type (arg));
5789 if (TYPE_CODE (t) == TYPE_CODE_REF)
5790 {
5791 t1 = TYPE_TARGET_TYPE (t);
5792 if (t1 == NULL)
5793 goto BadValue;
5794 t1 = ada_check_typedef (t1);
5795 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
5796 {
5797 arg = coerce_ref (arg);
5798 t = t1;
5799 }
5800 }
5801
5802 while (TYPE_CODE (t) == TYPE_CODE_PTR)
5803 {
5804 t1 = TYPE_TARGET_TYPE (t);
5805 if (t1 == NULL)
5806 goto BadValue;
5807 t1 = ada_check_typedef (t1);
5808 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
5809 {
5810 arg = value_ind (arg);
5811 t = t1;
5812 }
5813 else
5814 break;
5815 }
5816
5817 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
5818 goto BadValue;
5819
5820 if (t1 == t)
5821 v = ada_search_struct_field (name, arg, 0, t);
5822 else
5823 {
5824 int bit_offset, bit_size, byte_offset;
5825 struct type *field_type;
5826 CORE_ADDR address;
5827
5828 if (TYPE_CODE (t) == TYPE_CODE_PTR)
5829 address = value_as_address (arg);
5830 else
5831 address = unpack_pointer (t, value_contents (arg));
5832
5833 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL);
5834 if (find_struct_field (name, t1, 0,
5835 &field_type, &byte_offset, &bit_offset,
5836 &bit_size, NULL))
5837 {
5838 if (bit_size != 0)
5839 {
5840 if (TYPE_CODE (t) == TYPE_CODE_REF)
5841 arg = ada_coerce_ref (arg);
5842 else
5843 arg = ada_value_ind (arg);
5844 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
5845 bit_offset, bit_size,
5846 field_type);
5847 }
5848 else
5849 v = value_from_pointer (lookup_reference_type (field_type),
5850 address + byte_offset);
5851 }
5852 }
5853
5854 if (v != NULL || no_err)
5855 return v;
5856 else
5857 error (_("There is no member named %s."), name);
5858
5859 BadValue:
5860 if (no_err)
5861 return NULL;
5862 else
5863 error (_("Attempt to extract a component of a value that is not a record."));
5864 }
5865
5866 /* Given a type TYPE, look up the type of the component of type named NAME.
5867 If DISPP is non-null, add its byte displacement from the beginning of a
5868 structure (pointed to by a value) of type TYPE to *DISPP (does not
5869 work for packed fields).
5870
5871 Matches any field whose name has NAME as a prefix, possibly
5872 followed by "___".
5873
5874 TYPE can be either a struct or union. If REFOK, TYPE may also
5875 be a (pointer or reference)+ to a struct or union, and the
5876 ultimate target type will be searched.
5877
5878 Looks recursively into variant clauses and parent types.
5879
5880 If NOERR is nonzero, return NULL if NAME is not suitably defined or
5881 TYPE is not a type of the right kind. */
5882
5883 static struct type *
5884 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
5885 int noerr, int *dispp)
5886 {
5887 int i;
5888
5889 if (name == NULL)
5890 goto BadName;
5891
5892 if (refok && type != NULL)
5893 while (1)
5894 {
5895 type = ada_check_typedef (type);
5896 if (TYPE_CODE (type) != TYPE_CODE_PTR
5897 && TYPE_CODE (type) != TYPE_CODE_REF)
5898 break;
5899 type = TYPE_TARGET_TYPE (type);
5900 }
5901
5902 if (type == NULL
5903 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
5904 && TYPE_CODE (type) != TYPE_CODE_UNION))
5905 {
5906 if (noerr)
5907 return NULL;
5908 else
5909 {
5910 target_terminal_ours ();
5911 gdb_flush (gdb_stdout);
5912 if (type == NULL)
5913 error (_("Type (null) is not a structure or union type"));
5914 else
5915 {
5916 /* XXX: type_sprint */
5917 fprintf_unfiltered (gdb_stderr, _("Type "));
5918 type_print (type, "", gdb_stderr, -1);
5919 error (_(" is not a structure or union type"));
5920 }
5921 }
5922 }
5923
5924 type = to_static_fixed_type (type);
5925
5926 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5927 {
5928 char *t_field_name = TYPE_FIELD_NAME (type, i);
5929 struct type *t;
5930 int disp;
5931
5932 if (t_field_name == NULL)
5933 continue;
5934
5935 else if (field_name_match (t_field_name, name))
5936 {
5937 if (dispp != NULL)
5938 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
5939 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5940 }
5941
5942 else if (ada_is_wrapper_field (type, i))
5943 {
5944 disp = 0;
5945 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
5946 0, 1, &disp);
5947 if (t != NULL)
5948 {
5949 if (dispp != NULL)
5950 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
5951 return t;
5952 }
5953 }
5954
5955 else if (ada_is_variant_part (type, i))
5956 {
5957 int j;
5958 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5959
5960 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
5961 {
5962 disp = 0;
5963 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
5964 name, 0, 1, &disp);
5965 if (t != NULL)
5966 {
5967 if (dispp != NULL)
5968 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
5969 return t;
5970 }
5971 }
5972 }
5973
5974 }
5975
5976 BadName:
5977 if (!noerr)
5978 {
5979 target_terminal_ours ();
5980 gdb_flush (gdb_stdout);
5981 if (name == NULL)
5982 {
5983 /* XXX: type_sprint */
5984 fprintf_unfiltered (gdb_stderr, _("Type "));
5985 type_print (type, "", gdb_stderr, -1);
5986 error (_(" has no component named <null>"));
5987 }
5988 else
5989 {
5990 /* XXX: type_sprint */
5991 fprintf_unfiltered (gdb_stderr, _("Type "));
5992 type_print (type, "", gdb_stderr, -1);
5993 error (_(" has no component named %s"), name);
5994 }
5995 }
5996
5997 return NULL;
5998 }
5999
6000 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6001 within a value of type OUTER_TYPE that is stored in GDB at
6002 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6003 numbering from 0) is applicable. Returns -1 if none are. */
6004
6005 int
6006 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
6007 const gdb_byte *outer_valaddr)
6008 {
6009 int others_clause;
6010 int i;
6011 int disp;
6012 struct type *discrim_type;
6013 char *discrim_name = ada_variant_discrim_name (var_type);
6014 LONGEST discrim_val;
6015
6016 disp = 0;
6017 discrim_type =
6018 ada_lookup_struct_elt_type (outer_type, discrim_name, 1, 1, &disp);
6019 if (discrim_type == NULL)
6020 return -1;
6021 discrim_val = unpack_long (discrim_type, outer_valaddr + disp);
6022
6023 others_clause = -1;
6024 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6025 {
6026 if (ada_is_others_clause (var_type, i))
6027 others_clause = i;
6028 else if (ada_in_variant (discrim_val, var_type, i))
6029 return i;
6030 }
6031
6032 return others_clause;
6033 }
6034 \f
6035
6036
6037 /* Dynamic-Sized Records */
6038
6039 /* Strategy: The type ostensibly attached to a value with dynamic size
6040 (i.e., a size that is not statically recorded in the debugging
6041 data) does not accurately reflect the size or layout of the value.
6042 Our strategy is to convert these values to values with accurate,
6043 conventional types that are constructed on the fly. */
6044
6045 /* There is a subtle and tricky problem here. In general, we cannot
6046 determine the size of dynamic records without its data. However,
6047 the 'struct value' data structure, which GDB uses to represent
6048 quantities in the inferior process (the target), requires the size
6049 of the type at the time of its allocation in order to reserve space
6050 for GDB's internal copy of the data. That's why the
6051 'to_fixed_xxx_type' routines take (target) addresses as parameters,
6052 rather than struct value*s.
6053
6054 However, GDB's internal history variables ($1, $2, etc.) are
6055 struct value*s containing internal copies of the data that are not, in
6056 general, the same as the data at their corresponding addresses in
6057 the target. Fortunately, the types we give to these values are all
6058 conventional, fixed-size types (as per the strategy described
6059 above), so that we don't usually have to perform the
6060 'to_fixed_xxx_type' conversions to look at their values.
6061 Unfortunately, there is one exception: if one of the internal
6062 history variables is an array whose elements are unconstrained
6063 records, then we will need to create distinct fixed types for each
6064 element selected. */
6065
6066 /* The upshot of all of this is that many routines take a (type, host
6067 address, target address) triple as arguments to represent a value.
6068 The host address, if non-null, is supposed to contain an internal
6069 copy of the relevant data; otherwise, the program is to consult the
6070 target at the target address. */
6071
6072 /* Assuming that VAL0 represents a pointer value, the result of
6073 dereferencing it. Differs from value_ind in its treatment of
6074 dynamic-sized types. */
6075
6076 struct value *
6077 ada_value_ind (struct value *val0)
6078 {
6079 struct value *val = unwrap_value (value_ind (val0));
6080 return ada_to_fixed_value (val);
6081 }
6082
6083 /* The value resulting from dereferencing any "reference to"
6084 qualifiers on VAL0. */
6085
6086 static struct value *
6087 ada_coerce_ref (struct value *val0)
6088 {
6089 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
6090 {
6091 struct value *val = val0;
6092 val = coerce_ref (val);
6093 val = unwrap_value (val);
6094 return ada_to_fixed_value (val);
6095 }
6096 else
6097 return val0;
6098 }
6099
6100 /* Return OFF rounded upward if necessary to a multiple of
6101 ALIGNMENT (a power of 2). */
6102
6103 static unsigned int
6104 align_value (unsigned int off, unsigned int alignment)
6105 {
6106 return (off + alignment - 1) & ~(alignment - 1);
6107 }
6108
6109 /* Return the bit alignment required for field #F of template type TYPE. */
6110
6111 static unsigned int
6112 field_alignment (struct type *type, int f)
6113 {
6114 const char *name = TYPE_FIELD_NAME (type, f);
6115 int len;
6116 int align_offset;
6117
6118 /* The field name should never be null, unless the debugging information
6119 is somehow malformed. In this case, we assume the field does not
6120 require any alignment. */
6121 if (name == NULL)
6122 return 1;
6123
6124 len = strlen (name);
6125
6126 if (!isdigit (name[len - 1]))
6127 return 1;
6128
6129 if (isdigit (name[len - 2]))
6130 align_offset = len - 2;
6131 else
6132 align_offset = len - 1;
6133
6134 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
6135 return TARGET_CHAR_BIT;
6136
6137 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6138 }
6139
6140 /* Find a symbol named NAME. Ignores ambiguity. */
6141
6142 struct symbol *
6143 ada_find_any_symbol (const char *name)
6144 {
6145 struct symbol *sym;
6146
6147 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6148 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6149 return sym;
6150
6151 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6152 return sym;
6153 }
6154
6155 /* Find a type named NAME. Ignores ambiguity. */
6156
6157 struct type *
6158 ada_find_any_type (const char *name)
6159 {
6160 struct symbol *sym = ada_find_any_symbol (name);
6161
6162 if (sym != NULL)
6163 return SYMBOL_TYPE (sym);
6164
6165 return NULL;
6166 }
6167
6168 /* Given a symbol NAME and its associated BLOCK, search all symbols
6169 for its ___XR counterpart, which is the ``renaming'' symbol
6170 associated to NAME. Return this symbol if found, return
6171 NULL otherwise. */
6172
6173 struct symbol *
6174 ada_find_renaming_symbol (const char *name, struct block *block)
6175 {
6176 const struct symbol *function_sym = block_function (block);
6177 char *rename;
6178
6179 if (function_sym != NULL)
6180 {
6181 /* If the symbol is defined inside a function, NAME is not fully
6182 qualified. This means we need to prepend the function name
6183 as well as adding the ``___XR'' suffix to build the name of
6184 the associated renaming symbol. */
6185 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
6186 /* Function names sometimes contain suffixes used
6187 for instance to qualify nested subprograms. When building
6188 the XR type name, we need to make sure that this suffix is
6189 not included. So do not include any suffix in the function
6190 name length below. */
6191 const int function_name_len = ada_name_prefix_len (function_name);
6192 const int rename_len = function_name_len + 2 /* "__" */
6193 + strlen (name) + 6 /* "___XR\0" */ ;
6194
6195 /* Strip the suffix if necessary. */
6196 function_name[function_name_len] = '\0';
6197
6198 /* Library-level functions are a special case, as GNAT adds
6199 a ``_ada_'' prefix to the function name to avoid namespace
6200 pollution. However, the renaming symbol themselves do not
6201 have this prefix, so we need to skip this prefix if present. */
6202 if (function_name_len > 5 /* "_ada_" */
6203 && strstr (function_name, "_ada_") == function_name)
6204 function_name = function_name + 5;
6205
6206 rename = (char *) alloca (rename_len * sizeof (char));
6207 sprintf (rename, "%s__%s___XR", function_name, name);
6208 }
6209 else
6210 {
6211 const int rename_len = strlen (name) + 6;
6212 rename = (char *) alloca (rename_len * sizeof (char));
6213 sprintf (rename, "%s___XR", name);
6214 }
6215
6216 return ada_find_any_symbol (rename);
6217 }
6218
6219 /* Because of GNAT encoding conventions, several GDB symbols may match a
6220 given type name. If the type denoted by TYPE0 is to be preferred to
6221 that of TYPE1 for purposes of type printing, return non-zero;
6222 otherwise return 0. */
6223
6224 int
6225 ada_prefer_type (struct type *type0, struct type *type1)
6226 {
6227 if (type1 == NULL)
6228 return 1;
6229 else if (type0 == NULL)
6230 return 0;
6231 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6232 return 1;
6233 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6234 return 0;
6235 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6236 return 1;
6237 else if (ada_is_packed_array_type (type0))
6238 return 1;
6239 else if (ada_is_array_descriptor_type (type0)
6240 && !ada_is_array_descriptor_type (type1))
6241 return 1;
6242 else if (ada_renaming_type (type0) != NULL
6243 && ada_renaming_type (type1) == NULL)
6244 return 1;
6245 return 0;
6246 }
6247
6248 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
6249 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6250
6251 char *
6252 ada_type_name (struct type *type)
6253 {
6254 if (type == NULL)
6255 return NULL;
6256 else if (TYPE_NAME (type) != NULL)
6257 return TYPE_NAME (type);
6258 else
6259 return TYPE_TAG_NAME (type);
6260 }
6261
6262 /* Find a parallel type to TYPE whose name is formed by appending
6263 SUFFIX to the name of TYPE. */
6264
6265 struct type *
6266 ada_find_parallel_type (struct type *type, const char *suffix)
6267 {
6268 static char *name;
6269 static size_t name_len = 0;
6270 int len;
6271 char *typename = ada_type_name (type);
6272
6273 if (typename == NULL)
6274 return NULL;
6275
6276 len = strlen (typename);
6277
6278 GROW_VECT (name, name_len, len + strlen (suffix) + 1);
6279
6280 strcpy (name, typename);
6281 strcpy (name + len, suffix);
6282
6283 return ada_find_any_type (name);
6284 }
6285
6286
6287 /* If TYPE is a variable-size record type, return the corresponding template
6288 type describing its fields. Otherwise, return NULL. */
6289
6290 static struct type *
6291 dynamic_template_type (struct type *type)
6292 {
6293 type = ada_check_typedef (type);
6294
6295 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
6296 || ada_type_name (type) == NULL)
6297 return NULL;
6298 else
6299 {
6300 int len = strlen (ada_type_name (type));
6301 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
6302 return type;
6303 else
6304 return ada_find_parallel_type (type, "___XVE");
6305 }
6306 }
6307
6308 /* Assuming that TEMPL_TYPE is a union or struct type, returns
6309 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
6310
6311 static int
6312 is_dynamic_field (struct type *templ_type, int field_num)
6313 {
6314 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
6315 return name != NULL
6316 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
6317 && strstr (name, "___XVL") != NULL;
6318 }
6319
6320 /* The index of the variant field of TYPE, or -1 if TYPE does not
6321 represent a variant record type. */
6322
6323 static int
6324 variant_field_index (struct type *type)
6325 {
6326 int f;
6327
6328 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6329 return -1;
6330
6331 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
6332 {
6333 if (ada_is_variant_part (type, f))
6334 return f;
6335 }
6336 return -1;
6337 }
6338
6339 /* A record type with no fields. */
6340
6341 static struct type *
6342 empty_record (struct objfile *objfile)
6343 {
6344 struct type *type = alloc_type (objfile);
6345 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6346 TYPE_NFIELDS (type) = 0;
6347 TYPE_FIELDS (type) = NULL;
6348 TYPE_NAME (type) = "<empty>";
6349 TYPE_TAG_NAME (type) = NULL;
6350 TYPE_FLAGS (type) = 0;
6351 TYPE_LENGTH (type) = 0;
6352 return type;
6353 }
6354
6355 /* An ordinary record type (with fixed-length fields) that describes
6356 the value of type TYPE at VALADDR or ADDRESS (see comments at
6357 the beginning of this section) VAL according to GNAT conventions.
6358 DVAL0 should describe the (portion of a) record that contains any
6359 necessary discriminants. It should be NULL if value_type (VAL) is
6360 an outer-level type (i.e., as opposed to a branch of a variant.) A
6361 variant field (unless unchecked) is replaced by a particular branch
6362 of the variant.
6363
6364 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
6365 length are not statically known are discarded. As a consequence,
6366 VALADDR, ADDRESS and DVAL0 are ignored.
6367
6368 NOTE: Limitations: For now, we assume that dynamic fields and
6369 variants occupy whole numbers of bytes. However, they need not be
6370 byte-aligned. */
6371
6372 struct type *
6373 ada_template_to_fixed_record_type_1 (struct type *type,
6374 const gdb_byte *valaddr,
6375 CORE_ADDR address, struct value *dval0,
6376 int keep_dynamic_fields)
6377 {
6378 struct value *mark = value_mark ();
6379 struct value *dval;
6380 struct type *rtype;
6381 int nfields, bit_len;
6382 int variant_field;
6383 long off;
6384 int fld_bit_len, bit_incr;
6385 int f;
6386
6387 /* Compute the number of fields in this record type that are going
6388 to be processed: unless keep_dynamic_fields, this includes only
6389 fields whose position and length are static will be processed. */
6390 if (keep_dynamic_fields)
6391 nfields = TYPE_NFIELDS (type);
6392 else
6393 {
6394 nfields = 0;
6395 while (nfields < TYPE_NFIELDS (type)
6396 && !ada_is_variant_part (type, nfields)
6397 && !is_dynamic_field (type, nfields))
6398 nfields++;
6399 }
6400
6401 rtype = alloc_type (TYPE_OBJFILE (type));
6402 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6403 INIT_CPLUS_SPECIFIC (rtype);
6404 TYPE_NFIELDS (rtype) = nfields;
6405 TYPE_FIELDS (rtype) = (struct field *)
6406 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6407 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
6408 TYPE_NAME (rtype) = ada_type_name (type);
6409 TYPE_TAG_NAME (rtype) = NULL;
6410 TYPE_FLAGS (rtype) |= TYPE_FLAG_FIXED_INSTANCE;
6411
6412 off = 0;
6413 bit_len = 0;
6414 variant_field = -1;
6415
6416 for (f = 0; f < nfields; f += 1)
6417 {
6418 off = align_value (off, field_alignment (type, f))
6419 + TYPE_FIELD_BITPOS (type, f);
6420 TYPE_FIELD_BITPOS (rtype, f) = off;
6421 TYPE_FIELD_BITSIZE (rtype, f) = 0;
6422
6423 if (ada_is_variant_part (type, f))
6424 {
6425 variant_field = f;
6426 fld_bit_len = bit_incr = 0;
6427 }
6428 else if (is_dynamic_field (type, f))
6429 {
6430 if (dval0 == NULL)
6431 dval = value_from_contents_and_address (rtype, valaddr, address);
6432 else
6433 dval = dval0;
6434
6435 TYPE_FIELD_TYPE (rtype, f) =
6436 ada_to_fixed_type
6437 (ada_get_base_type
6438 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f))),
6439 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6440 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
6441 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6442 bit_incr = fld_bit_len =
6443 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
6444 }
6445 else
6446 {
6447 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
6448 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6449 if (TYPE_FIELD_BITSIZE (type, f) > 0)
6450 bit_incr = fld_bit_len =
6451 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
6452 else
6453 bit_incr = fld_bit_len =
6454 TYPE_LENGTH (TYPE_FIELD_TYPE (type, f)) * TARGET_CHAR_BIT;
6455 }
6456 if (off + fld_bit_len > bit_len)
6457 bit_len = off + fld_bit_len;
6458 off += bit_incr;
6459 TYPE_LENGTH (rtype) =
6460 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6461 }
6462
6463 /* We handle the variant part, if any, at the end because of certain
6464 odd cases in which it is re-ordered so as NOT the last field of
6465 the record. This can happen in the presence of representation
6466 clauses. */
6467 if (variant_field >= 0)
6468 {
6469 struct type *branch_type;
6470
6471 off = TYPE_FIELD_BITPOS (rtype, variant_field);
6472
6473 if (dval0 == NULL)
6474 dval = value_from_contents_and_address (rtype, valaddr, address);
6475 else
6476 dval = dval0;
6477
6478 branch_type =
6479 to_fixed_variant_branch_type
6480 (TYPE_FIELD_TYPE (type, variant_field),
6481 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6482 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
6483 if (branch_type == NULL)
6484 {
6485 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
6486 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6487 TYPE_NFIELDS (rtype) -= 1;
6488 }
6489 else
6490 {
6491 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6492 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6493 fld_bit_len =
6494 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
6495 TARGET_CHAR_BIT;
6496 if (off + fld_bit_len > bit_len)
6497 bit_len = off + fld_bit_len;
6498 TYPE_LENGTH (rtype) =
6499 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6500 }
6501 }
6502
6503 /* According to exp_dbug.ads, the size of TYPE for variable-size records
6504 should contain the alignment of that record, which should be a strictly
6505 positive value. If null or negative, then something is wrong, most
6506 probably in the debug info. In that case, we don't round up the size
6507 of the resulting type. If this record is not part of another structure,
6508 the current RTYPE length might be good enough for our purposes. */
6509 if (TYPE_LENGTH (type) <= 0)
6510 {
6511 if (TYPE_NAME (rtype))
6512 warning (_("Invalid type size for `%s' detected: %d."),
6513 TYPE_NAME (rtype), TYPE_LENGTH (type));
6514 else
6515 warning (_("Invalid type size for <unnamed> detected: %d."),
6516 TYPE_LENGTH (type));
6517 }
6518 else
6519 {
6520 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
6521 TYPE_LENGTH (type));
6522 }
6523
6524 value_free_to_mark (mark);
6525 if (TYPE_LENGTH (rtype) > varsize_limit)
6526 error (_("record type with dynamic size is larger than varsize-limit"));
6527 return rtype;
6528 }
6529
6530 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
6531 of 1. */
6532
6533 static struct type *
6534 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
6535 CORE_ADDR address, struct value *dval0)
6536 {
6537 return ada_template_to_fixed_record_type_1 (type, valaddr,
6538 address, dval0, 1);
6539 }
6540
6541 /* An ordinary record type in which ___XVL-convention fields and
6542 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
6543 static approximations, containing all possible fields. Uses
6544 no runtime values. Useless for use in values, but that's OK,
6545 since the results are used only for type determinations. Works on both
6546 structs and unions. Representation note: to save space, we memorize
6547 the result of this function in the TYPE_TARGET_TYPE of the
6548 template type. */
6549
6550 static struct type *
6551 template_to_static_fixed_type (struct type *type0)
6552 {
6553 struct type *type;
6554 int nfields;
6555 int f;
6556
6557 if (TYPE_TARGET_TYPE (type0) != NULL)
6558 return TYPE_TARGET_TYPE (type0);
6559
6560 nfields = TYPE_NFIELDS (type0);
6561 type = type0;
6562
6563 for (f = 0; f < nfields; f += 1)
6564 {
6565 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
6566 struct type *new_type;
6567
6568 if (is_dynamic_field (type0, f))
6569 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
6570 else
6571 new_type = to_static_fixed_type (field_type);
6572 if (type == type0 && new_type != field_type)
6573 {
6574 TYPE_TARGET_TYPE (type0) = type = alloc_type (TYPE_OBJFILE (type0));
6575 TYPE_CODE (type) = TYPE_CODE (type0);
6576 INIT_CPLUS_SPECIFIC (type);
6577 TYPE_NFIELDS (type) = nfields;
6578 TYPE_FIELDS (type) = (struct field *)
6579 TYPE_ALLOC (type, nfields * sizeof (struct field));
6580 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
6581 sizeof (struct field) * nfields);
6582 TYPE_NAME (type) = ada_type_name (type0);
6583 TYPE_TAG_NAME (type) = NULL;
6584 TYPE_FLAGS (type) |= TYPE_FLAG_FIXED_INSTANCE;
6585 TYPE_LENGTH (type) = 0;
6586 }
6587 TYPE_FIELD_TYPE (type, f) = new_type;
6588 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
6589 }
6590 return type;
6591 }
6592
6593 /* Given an object of type TYPE whose contents are at VALADDR and
6594 whose address in memory is ADDRESS, returns a revision of TYPE --
6595 a non-dynamic-sized record with a variant part -- in which
6596 the variant part is replaced with the appropriate branch. Looks
6597 for discriminant values in DVAL0, which can be NULL if the record
6598 contains the necessary discriminant values. */
6599
6600 static struct type *
6601 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
6602 CORE_ADDR address, struct value *dval0)
6603 {
6604 struct value *mark = value_mark ();
6605 struct value *dval;
6606 struct type *rtype;
6607 struct type *branch_type;
6608 int nfields = TYPE_NFIELDS (type);
6609 int variant_field = variant_field_index (type);
6610
6611 if (variant_field == -1)
6612 return type;
6613
6614 if (dval0 == NULL)
6615 dval = value_from_contents_and_address (type, valaddr, address);
6616 else
6617 dval = dval0;
6618
6619 rtype = alloc_type (TYPE_OBJFILE (type));
6620 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6621 INIT_CPLUS_SPECIFIC (rtype);
6622 TYPE_NFIELDS (rtype) = nfields;
6623 TYPE_FIELDS (rtype) =
6624 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6625 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
6626 sizeof (struct field) * nfields);
6627 TYPE_NAME (rtype) = ada_type_name (type);
6628 TYPE_TAG_NAME (rtype) = NULL;
6629 TYPE_FLAGS (rtype) |= TYPE_FLAG_FIXED_INSTANCE;
6630 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
6631
6632 branch_type = to_fixed_variant_branch_type
6633 (TYPE_FIELD_TYPE (type, variant_field),
6634 cond_offset_host (valaddr,
6635 TYPE_FIELD_BITPOS (type, variant_field)
6636 / TARGET_CHAR_BIT),
6637 cond_offset_target (address,
6638 TYPE_FIELD_BITPOS (type, variant_field)
6639 / TARGET_CHAR_BIT), dval);
6640 if (branch_type == NULL)
6641 {
6642 int f;
6643 for (f = variant_field + 1; f < nfields; f += 1)
6644 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6645 TYPE_NFIELDS (rtype) -= 1;
6646 }
6647 else
6648 {
6649 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6650 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6651 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
6652 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
6653 }
6654 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
6655
6656 value_free_to_mark (mark);
6657 return rtype;
6658 }
6659
6660 /* An ordinary record type (with fixed-length fields) that describes
6661 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
6662 beginning of this section]. Any necessary discriminants' values
6663 should be in DVAL, a record value; it may be NULL if the object
6664 at ADDR itself contains any necessary discriminant values.
6665 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
6666 values from the record are needed. Except in the case that DVAL,
6667 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
6668 unchecked) is replaced by a particular branch of the variant.
6669
6670 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
6671 is questionable and may be removed. It can arise during the
6672 processing of an unconstrained-array-of-record type where all the
6673 variant branches have exactly the same size. This is because in
6674 such cases, the compiler does not bother to use the XVS convention
6675 when encoding the record. I am currently dubious of this
6676 shortcut and suspect the compiler should be altered. FIXME. */
6677
6678 static struct type *
6679 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
6680 CORE_ADDR address, struct value *dval)
6681 {
6682 struct type *templ_type;
6683
6684 if (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE)
6685 return type0;
6686
6687 templ_type = dynamic_template_type (type0);
6688
6689 if (templ_type != NULL)
6690 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
6691 else if (variant_field_index (type0) >= 0)
6692 {
6693 if (dval == NULL && valaddr == NULL && address == 0)
6694 return type0;
6695 return to_record_with_fixed_variant_part (type0, valaddr, address,
6696 dval);
6697 }
6698 else
6699 {
6700 TYPE_FLAGS (type0) |= TYPE_FLAG_FIXED_INSTANCE;
6701 return type0;
6702 }
6703
6704 }
6705
6706 /* An ordinary record type (with fixed-length fields) that describes
6707 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
6708 union type. Any necessary discriminants' values should be in DVAL,
6709 a record value. That is, this routine selects the appropriate
6710 branch of the union at ADDR according to the discriminant value
6711 indicated in the union's type name. */
6712
6713 static struct type *
6714 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
6715 CORE_ADDR address, struct value *dval)
6716 {
6717 int which;
6718 struct type *templ_type;
6719 struct type *var_type;
6720
6721 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
6722 var_type = TYPE_TARGET_TYPE (var_type0);
6723 else
6724 var_type = var_type0;
6725
6726 templ_type = ada_find_parallel_type (var_type, "___XVU");
6727
6728 if (templ_type != NULL)
6729 var_type = templ_type;
6730
6731 which =
6732 ada_which_variant_applies (var_type,
6733 value_type (dval), value_contents (dval));
6734
6735 if (which < 0)
6736 return empty_record (TYPE_OBJFILE (var_type));
6737 else if (is_dynamic_field (var_type, which))
6738 return to_fixed_record_type
6739 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
6740 valaddr, address, dval);
6741 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
6742 return
6743 to_fixed_record_type
6744 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
6745 else
6746 return TYPE_FIELD_TYPE (var_type, which);
6747 }
6748
6749 /* Assuming that TYPE0 is an array type describing the type of a value
6750 at ADDR, and that DVAL describes a record containing any
6751 discriminants used in TYPE0, returns a type for the value that
6752 contains no dynamic components (that is, no components whose sizes
6753 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
6754 true, gives an error message if the resulting type's size is over
6755 varsize_limit. */
6756
6757 static struct type *
6758 to_fixed_array_type (struct type *type0, struct value *dval,
6759 int ignore_too_big)
6760 {
6761 struct type *index_type_desc;
6762 struct type *result;
6763
6764 if (ada_is_packed_array_type (type0) /* revisit? */
6765 || (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE))
6766 return type0;
6767
6768 index_type_desc = ada_find_parallel_type (type0, "___XA");
6769 if (index_type_desc == NULL)
6770 {
6771 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
6772 /* NOTE: elt_type---the fixed version of elt_type0---should never
6773 depend on the contents of the array in properly constructed
6774 debugging data. */
6775 /* Create a fixed version of the array element type.
6776 We're not providing the address of an element here,
6777 and thus the actual object value cannot be inspected to do
6778 the conversion. This should not be a problem, since arrays of
6779 unconstrained objects are not allowed. In particular, all
6780 the elements of an array of a tagged type should all be of
6781 the same type specified in the debugging info. No need to
6782 consult the object tag. */
6783 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval);
6784
6785 if (elt_type0 == elt_type)
6786 result = type0;
6787 else
6788 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
6789 elt_type, TYPE_INDEX_TYPE (type0));
6790 }
6791 else
6792 {
6793 int i;
6794 struct type *elt_type0;
6795
6796 elt_type0 = type0;
6797 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
6798 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
6799
6800 /* NOTE: result---the fixed version of elt_type0---should never
6801 depend on the contents of the array in properly constructed
6802 debugging data. */
6803 /* Create a fixed version of the array element type.
6804 We're not providing the address of an element here,
6805 and thus the actual object value cannot be inspected to do
6806 the conversion. This should not be a problem, since arrays of
6807 unconstrained objects are not allowed. In particular, all
6808 the elements of an array of a tagged type should all be of
6809 the same type specified in the debugging info. No need to
6810 consult the object tag. */
6811 result = ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval);
6812 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
6813 {
6814 struct type *range_type =
6815 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, i),
6816 dval, TYPE_OBJFILE (type0));
6817 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
6818 result, range_type);
6819 }
6820 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
6821 error (_("array type with dynamic size is larger than varsize-limit"));
6822 }
6823
6824 TYPE_FLAGS (result) |= TYPE_FLAG_FIXED_INSTANCE;
6825 return result;
6826 }
6827
6828
6829 /* A standard type (containing no dynamically sized components)
6830 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
6831 DVAL describes a record containing any discriminants used in TYPE0,
6832 and may be NULL if there are none, or if the object of type TYPE at
6833 ADDRESS or in VALADDR contains these discriminants.
6834
6835 In the case of tagged types, this function attempts to locate the object's
6836 tag and use it to compute the actual type. However, when ADDRESS is null,
6837 we cannot use it to determine the location of the tag, and therefore
6838 compute the tagged type's actual type. So we return the tagged type
6839 without consulting the tag. */
6840
6841 struct type *
6842 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
6843 CORE_ADDR address, struct value *dval)
6844 {
6845 type = ada_check_typedef (type);
6846 switch (TYPE_CODE (type))
6847 {
6848 default:
6849 return type;
6850 case TYPE_CODE_STRUCT:
6851 {
6852 struct type *static_type = to_static_fixed_type (type);
6853
6854 /* If STATIC_TYPE is a tagged type and we know the object's address,
6855 then we can determine its tag, and compute the object's actual
6856 type from there. */
6857
6858 if (address != 0 && ada_is_tagged_type (static_type, 0))
6859 {
6860 struct type *real_type =
6861 type_from_tag (value_tag_from_contents_and_address (static_type,
6862 valaddr,
6863 address));
6864 if (real_type != NULL)
6865 type = real_type;
6866 }
6867 return to_fixed_record_type (type, valaddr, address, NULL);
6868 }
6869 case TYPE_CODE_ARRAY:
6870 return to_fixed_array_type (type, dval, 1);
6871 case TYPE_CODE_UNION:
6872 if (dval == NULL)
6873 return type;
6874 else
6875 return to_fixed_variant_branch_type (type, valaddr, address, dval);
6876 }
6877 }
6878
6879 /* A standard (static-sized) type corresponding as well as possible to
6880 TYPE0, but based on no runtime data. */
6881
6882 static struct type *
6883 to_static_fixed_type (struct type *type0)
6884 {
6885 struct type *type;
6886
6887 if (type0 == NULL)
6888 return NULL;
6889
6890 if (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE)
6891 return type0;
6892
6893 type0 = ada_check_typedef (type0);
6894
6895 switch (TYPE_CODE (type0))
6896 {
6897 default:
6898 return type0;
6899 case TYPE_CODE_STRUCT:
6900 type = dynamic_template_type (type0);
6901 if (type != NULL)
6902 return template_to_static_fixed_type (type);
6903 else
6904 return template_to_static_fixed_type (type0);
6905 case TYPE_CODE_UNION:
6906 type = ada_find_parallel_type (type0, "___XVU");
6907 if (type != NULL)
6908 return template_to_static_fixed_type (type);
6909 else
6910 return template_to_static_fixed_type (type0);
6911 }
6912 }
6913
6914 /* A static approximation of TYPE with all type wrappers removed. */
6915
6916 static struct type *
6917 static_unwrap_type (struct type *type)
6918 {
6919 if (ada_is_aligner_type (type))
6920 {
6921 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
6922 if (ada_type_name (type1) == NULL)
6923 TYPE_NAME (type1) = ada_type_name (type);
6924
6925 return static_unwrap_type (type1);
6926 }
6927 else
6928 {
6929 struct type *raw_real_type = ada_get_base_type (type);
6930 if (raw_real_type == type)
6931 return type;
6932 else
6933 return to_static_fixed_type (raw_real_type);
6934 }
6935 }
6936
6937 /* In some cases, incomplete and private types require
6938 cross-references that are not resolved as records (for example,
6939 type Foo;
6940 type FooP is access Foo;
6941 V: FooP;
6942 type Foo is array ...;
6943 ). In these cases, since there is no mechanism for producing
6944 cross-references to such types, we instead substitute for FooP a
6945 stub enumeration type that is nowhere resolved, and whose tag is
6946 the name of the actual type. Call these types "non-record stubs". */
6947
6948 /* A type equivalent to TYPE that is not a non-record stub, if one
6949 exists, otherwise TYPE. */
6950
6951 struct type *
6952 ada_check_typedef (struct type *type)
6953 {
6954 CHECK_TYPEDEF (type);
6955 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
6956 || !TYPE_STUB (type)
6957 || TYPE_TAG_NAME (type) == NULL)
6958 return type;
6959 else
6960 {
6961 char *name = TYPE_TAG_NAME (type);
6962 struct type *type1 = ada_find_any_type (name);
6963 return (type1 == NULL) ? type : type1;
6964 }
6965 }
6966
6967 /* A value representing the data at VALADDR/ADDRESS as described by
6968 type TYPE0, but with a standard (static-sized) type that correctly
6969 describes it. If VAL0 is not NULL and TYPE0 already is a standard
6970 type, then return VAL0 [this feature is simply to avoid redundant
6971 creation of struct values]. */
6972
6973 static struct value *
6974 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
6975 struct value *val0)
6976 {
6977 struct type *type = ada_to_fixed_type (type0, 0, address, NULL);
6978 if (type == type0 && val0 != NULL)
6979 return val0;
6980 else
6981 return value_from_contents_and_address (type, 0, address);
6982 }
6983
6984 /* A value representing VAL, but with a standard (static-sized) type
6985 that correctly describes it. Does not necessarily create a new
6986 value. */
6987
6988 static struct value *
6989 ada_to_fixed_value (struct value *val)
6990 {
6991 return ada_to_fixed_value_create (value_type (val),
6992 VALUE_ADDRESS (val) + value_offset (val),
6993 val);
6994 }
6995
6996 /* A value representing VAL, but with a standard (static-sized) type
6997 chosen to approximate the real type of VAL as well as possible, but
6998 without consulting any runtime values. For Ada dynamic-sized
6999 types, therefore, the type of the result is likely to be inaccurate. */
7000
7001 struct value *
7002 ada_to_static_fixed_value (struct value *val)
7003 {
7004 struct type *type =
7005 to_static_fixed_type (static_unwrap_type (value_type (val)));
7006 if (type == value_type (val))
7007 return val;
7008 else
7009 return coerce_unspec_val_to_type (val, type);
7010 }
7011 \f
7012
7013 /* Attributes */
7014
7015 /* Table mapping attribute numbers to names.
7016 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
7017
7018 static const char *attribute_names[] = {
7019 "<?>",
7020
7021 "first",
7022 "last",
7023 "length",
7024 "image",
7025 "max",
7026 "min",
7027 "modulus",
7028 "pos",
7029 "size",
7030 "tag",
7031 "val",
7032 0
7033 };
7034
7035 const char *
7036 ada_attribute_name (enum exp_opcode n)
7037 {
7038 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7039 return attribute_names[n - OP_ATR_FIRST + 1];
7040 else
7041 return attribute_names[0];
7042 }
7043
7044 /* Evaluate the 'POS attribute applied to ARG. */
7045
7046 static LONGEST
7047 pos_atr (struct value *arg)
7048 {
7049 struct type *type = value_type (arg);
7050
7051 if (!discrete_type_p (type))
7052 error (_("'POS only defined on discrete types"));
7053
7054 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7055 {
7056 int i;
7057 LONGEST v = value_as_long (arg);
7058
7059 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7060 {
7061 if (v == TYPE_FIELD_BITPOS (type, i))
7062 return i;
7063 }
7064 error (_("enumeration value is invalid: can't find 'POS"));
7065 }
7066 else
7067 return value_as_long (arg);
7068 }
7069
7070 static struct value *
7071 value_pos_atr (struct value *arg)
7072 {
7073 return value_from_longest (builtin_type_int, pos_atr (arg));
7074 }
7075
7076 /* Evaluate the TYPE'VAL attribute applied to ARG. */
7077
7078 static struct value *
7079 value_val_atr (struct type *type, struct value *arg)
7080 {
7081 if (!discrete_type_p (type))
7082 error (_("'VAL only defined on discrete types"));
7083 if (!integer_type_p (value_type (arg)))
7084 error (_("'VAL requires integral argument"));
7085
7086 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7087 {
7088 long pos = value_as_long (arg);
7089 if (pos < 0 || pos >= TYPE_NFIELDS (type))
7090 error (_("argument to 'VAL out of range"));
7091 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
7092 }
7093 else
7094 return value_from_longest (type, value_as_long (arg));
7095 }
7096 \f
7097
7098 /* Evaluation */
7099
7100 /* True if TYPE appears to be an Ada character type.
7101 [At the moment, this is true only for Character and Wide_Character;
7102 It is a heuristic test that could stand improvement]. */
7103
7104 int
7105 ada_is_character_type (struct type *type)
7106 {
7107 const char *name = ada_type_name (type);
7108 return
7109 name != NULL
7110 && (TYPE_CODE (type) == TYPE_CODE_CHAR
7111 || TYPE_CODE (type) == TYPE_CODE_INT
7112 || TYPE_CODE (type) == TYPE_CODE_RANGE)
7113 && (strcmp (name, "character") == 0
7114 || strcmp (name, "wide_character") == 0
7115 || strcmp (name, "unsigned char") == 0);
7116 }
7117
7118 /* True if TYPE appears to be an Ada string type. */
7119
7120 int
7121 ada_is_string_type (struct type *type)
7122 {
7123 type = ada_check_typedef (type);
7124 if (type != NULL
7125 && TYPE_CODE (type) != TYPE_CODE_PTR
7126 && (ada_is_simple_array_type (type)
7127 || ada_is_array_descriptor_type (type))
7128 && ada_array_arity (type) == 1)
7129 {
7130 struct type *elttype = ada_array_element_type (type, 1);
7131
7132 return ada_is_character_type (elttype);
7133 }
7134 else
7135 return 0;
7136 }
7137
7138
7139 /* True if TYPE is a struct type introduced by the compiler to force the
7140 alignment of a value. Such types have a single field with a
7141 distinctive name. */
7142
7143 int
7144 ada_is_aligner_type (struct type *type)
7145 {
7146 type = ada_check_typedef (type);
7147
7148 /* If we can find a parallel XVS type, then the XVS type should
7149 be used instead of this type. And hence, this is not an aligner
7150 type. */
7151 if (ada_find_parallel_type (type, "___XVS") != NULL)
7152 return 0;
7153
7154 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
7155 && TYPE_NFIELDS (type) == 1
7156 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
7157 }
7158
7159 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
7160 the parallel type. */
7161
7162 struct type *
7163 ada_get_base_type (struct type *raw_type)
7164 {
7165 struct type *real_type_namer;
7166 struct type *raw_real_type;
7167
7168 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
7169 return raw_type;
7170
7171 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
7172 if (real_type_namer == NULL
7173 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
7174 || TYPE_NFIELDS (real_type_namer) != 1)
7175 return raw_type;
7176
7177 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
7178 if (raw_real_type == NULL)
7179 return raw_type;
7180 else
7181 return raw_real_type;
7182 }
7183
7184 /* The type of value designated by TYPE, with all aligners removed. */
7185
7186 struct type *
7187 ada_aligned_type (struct type *type)
7188 {
7189 if (ada_is_aligner_type (type))
7190 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
7191 else
7192 return ada_get_base_type (type);
7193 }
7194
7195
7196 /* The address of the aligned value in an object at address VALADDR
7197 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
7198
7199 const gdb_byte *
7200 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
7201 {
7202 if (ada_is_aligner_type (type))
7203 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
7204 valaddr +
7205 TYPE_FIELD_BITPOS (type,
7206 0) / TARGET_CHAR_BIT);
7207 else
7208 return valaddr;
7209 }
7210
7211
7212
7213 /* The printed representation of an enumeration literal with encoded
7214 name NAME. The value is good to the next call of ada_enum_name. */
7215 const char *
7216 ada_enum_name (const char *name)
7217 {
7218 static char *result;
7219 static size_t result_len = 0;
7220 char *tmp;
7221
7222 /* First, unqualify the enumeration name:
7223 1. Search for the last '.' character. If we find one, then skip
7224 all the preceeding characters, the unqualified name starts
7225 right after that dot.
7226 2. Otherwise, we may be debugging on a target where the compiler
7227 translates dots into "__". Search forward for double underscores,
7228 but stop searching when we hit an overloading suffix, which is
7229 of the form "__" followed by digits. */
7230
7231 tmp = strrchr (name, '.');
7232 if (tmp != NULL)
7233 name = tmp + 1;
7234 else
7235 {
7236 while ((tmp = strstr (name, "__")) != NULL)
7237 {
7238 if (isdigit (tmp[2]))
7239 break;
7240 else
7241 name = tmp + 2;
7242 }
7243 }
7244
7245 if (name[0] == 'Q')
7246 {
7247 int v;
7248 if (name[1] == 'U' || name[1] == 'W')
7249 {
7250 if (sscanf (name + 2, "%x", &v) != 1)
7251 return name;
7252 }
7253 else
7254 return name;
7255
7256 GROW_VECT (result, result_len, 16);
7257 if (isascii (v) && isprint (v))
7258 sprintf (result, "'%c'", v);
7259 else if (name[1] == 'U')
7260 sprintf (result, "[\"%02x\"]", v);
7261 else
7262 sprintf (result, "[\"%04x\"]", v);
7263
7264 return result;
7265 }
7266 else
7267 {
7268 tmp = strstr (name, "__");
7269 if (tmp == NULL)
7270 tmp = strstr (name, "$");
7271 if (tmp != NULL)
7272 {
7273 GROW_VECT (result, result_len, tmp - name + 1);
7274 strncpy (result, name, tmp - name);
7275 result[tmp - name] = '\0';
7276 return result;
7277 }
7278
7279 return name;
7280 }
7281 }
7282
7283 static struct value *
7284 evaluate_subexp (struct type *expect_type, struct expression *exp, int *pos,
7285 enum noside noside)
7286 {
7287 return (*exp->language_defn->la_exp_desc->evaluate_exp)
7288 (expect_type, exp, pos, noside);
7289 }
7290
7291 /* Evaluate the subexpression of EXP starting at *POS as for
7292 evaluate_type, updating *POS to point just past the evaluated
7293 expression. */
7294
7295 static struct value *
7296 evaluate_subexp_type (struct expression *exp, int *pos)
7297 {
7298 return (*exp->language_defn->la_exp_desc->evaluate_exp)
7299 (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
7300 }
7301
7302 /* If VAL is wrapped in an aligner or subtype wrapper, return the
7303 value it wraps. */
7304
7305 static struct value *
7306 unwrap_value (struct value *val)
7307 {
7308 struct type *type = ada_check_typedef (value_type (val));
7309 if (ada_is_aligner_type (type))
7310 {
7311 struct value *v = value_struct_elt (&val, NULL, "F",
7312 NULL, "internal structure");
7313 struct type *val_type = ada_check_typedef (value_type (v));
7314 if (ada_type_name (val_type) == NULL)
7315 TYPE_NAME (val_type) = ada_type_name (type);
7316
7317 return unwrap_value (v);
7318 }
7319 else
7320 {
7321 struct type *raw_real_type =
7322 ada_check_typedef (ada_get_base_type (type));
7323
7324 if (type == raw_real_type)
7325 return val;
7326
7327 return
7328 coerce_unspec_val_to_type
7329 (val, ada_to_fixed_type (raw_real_type, 0,
7330 VALUE_ADDRESS (val) + value_offset (val),
7331 NULL));
7332 }
7333 }
7334
7335 static struct value *
7336 cast_to_fixed (struct type *type, struct value *arg)
7337 {
7338 LONGEST val;
7339
7340 if (type == value_type (arg))
7341 return arg;
7342 else if (ada_is_fixed_point_type (value_type (arg)))
7343 val = ada_float_to_fixed (type,
7344 ada_fixed_to_float (value_type (arg),
7345 value_as_long (arg)));
7346 else
7347 {
7348 DOUBLEST argd =
7349 value_as_double (value_cast (builtin_type_double, value_copy (arg)));
7350 val = ada_float_to_fixed (type, argd);
7351 }
7352
7353 return value_from_longest (type, val);
7354 }
7355
7356 static struct value *
7357 cast_from_fixed_to_double (struct value *arg)
7358 {
7359 DOUBLEST val = ada_fixed_to_float (value_type (arg),
7360 value_as_long (arg));
7361 return value_from_double (builtin_type_double, val);
7362 }
7363
7364 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
7365 return the converted value. */
7366
7367 static struct value *
7368 coerce_for_assign (struct type *type, struct value *val)
7369 {
7370 struct type *type2 = value_type (val);
7371 if (type == type2)
7372 return val;
7373
7374 type2 = ada_check_typedef (type2);
7375 type = ada_check_typedef (type);
7376
7377 if (TYPE_CODE (type2) == TYPE_CODE_PTR
7378 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7379 {
7380 val = ada_value_ind (val);
7381 type2 = value_type (val);
7382 }
7383
7384 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
7385 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7386 {
7387 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
7388 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
7389 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
7390 error (_("Incompatible types in assignment"));
7391 deprecated_set_value_type (val, type);
7392 }
7393 return val;
7394 }
7395
7396 static struct value *
7397 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
7398 {
7399 struct value *val;
7400 struct type *type1, *type2;
7401 LONGEST v, v1, v2;
7402
7403 arg1 = coerce_ref (arg1);
7404 arg2 = coerce_ref (arg2);
7405 type1 = base_type (ada_check_typedef (value_type (arg1)));
7406 type2 = base_type (ada_check_typedef (value_type (arg2)));
7407
7408 if (TYPE_CODE (type1) != TYPE_CODE_INT
7409 || TYPE_CODE (type2) != TYPE_CODE_INT)
7410 return value_binop (arg1, arg2, op);
7411
7412 switch (op)
7413 {
7414 case BINOP_MOD:
7415 case BINOP_DIV:
7416 case BINOP_REM:
7417 break;
7418 default:
7419 return value_binop (arg1, arg2, op);
7420 }
7421
7422 v2 = value_as_long (arg2);
7423 if (v2 == 0)
7424 error (_("second operand of %s must not be zero."), op_string (op));
7425
7426 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
7427 return value_binop (arg1, arg2, op);
7428
7429 v1 = value_as_long (arg1);
7430 switch (op)
7431 {
7432 case BINOP_DIV:
7433 v = v1 / v2;
7434 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
7435 v += v > 0 ? -1 : 1;
7436 break;
7437 case BINOP_REM:
7438 v = v1 % v2;
7439 if (v * v1 < 0)
7440 v -= v2;
7441 break;
7442 default:
7443 /* Should not reach this point. */
7444 v = 0;
7445 }
7446
7447 val = allocate_value (type1);
7448 store_unsigned_integer (value_contents_raw (val),
7449 TYPE_LENGTH (value_type (val)), v);
7450 return val;
7451 }
7452
7453 static int
7454 ada_value_equal (struct value *arg1, struct value *arg2)
7455 {
7456 if (ada_is_direct_array_type (value_type (arg1))
7457 || ada_is_direct_array_type (value_type (arg2)))
7458 {
7459 arg1 = ada_coerce_to_simple_array (arg1);
7460 arg2 = ada_coerce_to_simple_array (arg2);
7461 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
7462 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
7463 error (_("Attempt to compare array with non-array"));
7464 /* FIXME: The following works only for types whose
7465 representations use all bits (no padding or undefined bits)
7466 and do not have user-defined equality. */
7467 return
7468 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
7469 && memcmp (value_contents (arg1), value_contents (arg2),
7470 TYPE_LENGTH (value_type (arg1))) == 0;
7471 }
7472 return value_equal (arg1, arg2);
7473 }
7474
7475 /* Total number of component associations in the aggregate starting at
7476 index PC in EXP. Assumes that index PC is the start of an
7477 OP_AGGREGATE. */
7478
7479 static int
7480 num_component_specs (struct expression *exp, int pc)
7481 {
7482 int n, m, i;
7483 m = exp->elts[pc + 1].longconst;
7484 pc += 3;
7485 n = 0;
7486 for (i = 0; i < m; i += 1)
7487 {
7488 switch (exp->elts[pc].opcode)
7489 {
7490 default:
7491 n += 1;
7492 break;
7493 case OP_CHOICES:
7494 n += exp->elts[pc + 1].longconst;
7495 break;
7496 }
7497 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
7498 }
7499 return n;
7500 }
7501
7502 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
7503 component of LHS (a simple array or a record), updating *POS past
7504 the expression, assuming that LHS is contained in CONTAINER. Does
7505 not modify the inferior's memory, nor does it modify LHS (unless
7506 LHS == CONTAINER). */
7507
7508 static void
7509 assign_component (struct value *container, struct value *lhs, LONGEST index,
7510 struct expression *exp, int *pos)
7511 {
7512 struct value *mark = value_mark ();
7513 struct value *elt;
7514 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
7515 {
7516 struct value *index_val = value_from_longest (builtin_type_int, index);
7517 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
7518 }
7519 else
7520 {
7521 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
7522 elt = ada_to_fixed_value (unwrap_value (elt));
7523 }
7524
7525 if (exp->elts[*pos].opcode == OP_AGGREGATE)
7526 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
7527 else
7528 value_assign_to_component (container, elt,
7529 ada_evaluate_subexp (NULL, exp, pos,
7530 EVAL_NORMAL));
7531
7532 value_free_to_mark (mark);
7533 }
7534
7535 /* Assuming that LHS represents an lvalue having a record or array
7536 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
7537 of that aggregate's value to LHS, advancing *POS past the
7538 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
7539 lvalue containing LHS (possibly LHS itself). Does not modify
7540 the inferior's memory, nor does it modify the contents of
7541 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
7542
7543 static struct value *
7544 assign_aggregate (struct value *container,
7545 struct value *lhs, struct expression *exp,
7546 int *pos, enum noside noside)
7547 {
7548 struct type *lhs_type;
7549 int n = exp->elts[*pos+1].longconst;
7550 LONGEST low_index, high_index;
7551 int num_specs;
7552 LONGEST *indices;
7553 int max_indices, num_indices;
7554 int is_array_aggregate;
7555 int i;
7556 struct value *mark = value_mark ();
7557
7558 *pos += 3;
7559 if (noside != EVAL_NORMAL)
7560 {
7561 int i;
7562 for (i = 0; i < n; i += 1)
7563 ada_evaluate_subexp (NULL, exp, pos, noside);
7564 return container;
7565 }
7566
7567 container = ada_coerce_ref (container);
7568 if (ada_is_direct_array_type (value_type (container)))
7569 container = ada_coerce_to_simple_array (container);
7570 lhs = ada_coerce_ref (lhs);
7571 if (!deprecated_value_modifiable (lhs))
7572 error (_("Left operand of assignment is not a modifiable lvalue."));
7573
7574 lhs_type = value_type (lhs);
7575 if (ada_is_direct_array_type (lhs_type))
7576 {
7577 lhs = ada_coerce_to_simple_array (lhs);
7578 lhs_type = value_type (lhs);
7579 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
7580 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
7581 is_array_aggregate = 1;
7582 }
7583 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
7584 {
7585 low_index = 0;
7586 high_index = num_visible_fields (lhs_type) - 1;
7587 is_array_aggregate = 0;
7588 }
7589 else
7590 error (_("Left-hand side must be array or record."));
7591
7592 num_specs = num_component_specs (exp, *pos - 3);
7593 max_indices = 4 * num_specs + 4;
7594 indices = alloca (max_indices * sizeof (indices[0]));
7595 indices[0] = indices[1] = low_index - 1;
7596 indices[2] = indices[3] = high_index + 1;
7597 num_indices = 4;
7598
7599 for (i = 0; i < n; i += 1)
7600 {
7601 switch (exp->elts[*pos].opcode)
7602 {
7603 case OP_CHOICES:
7604 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
7605 &num_indices, max_indices,
7606 low_index, high_index);
7607 break;
7608 case OP_POSITIONAL:
7609 aggregate_assign_positional (container, lhs, exp, pos, indices,
7610 &num_indices, max_indices,
7611 low_index, high_index);
7612 break;
7613 case OP_OTHERS:
7614 if (i != n-1)
7615 error (_("Misplaced 'others' clause"));
7616 aggregate_assign_others (container, lhs, exp, pos, indices,
7617 num_indices, low_index, high_index);
7618 break;
7619 default:
7620 error (_("Internal error: bad aggregate clause"));
7621 }
7622 }
7623
7624 return container;
7625 }
7626
7627 /* Assign into the component of LHS indexed by the OP_POSITIONAL
7628 construct at *POS, updating *POS past the construct, given that
7629 the positions are relative to lower bound LOW, where HIGH is the
7630 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
7631 updating *NUM_INDICES as needed. CONTAINER is as for
7632 assign_aggregate. */
7633 static void
7634 aggregate_assign_positional (struct value *container,
7635 struct value *lhs, struct expression *exp,
7636 int *pos, LONGEST *indices, int *num_indices,
7637 int max_indices, LONGEST low, LONGEST high)
7638 {
7639 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
7640
7641 if (ind - 1 == high)
7642 warning (_("Extra components in aggregate ignored."));
7643 if (ind <= high)
7644 {
7645 add_component_interval (ind, ind, indices, num_indices, max_indices);
7646 *pos += 3;
7647 assign_component (container, lhs, ind, exp, pos);
7648 }
7649 else
7650 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
7651 }
7652
7653 /* Assign into the components of LHS indexed by the OP_CHOICES
7654 construct at *POS, updating *POS past the construct, given that
7655 the allowable indices are LOW..HIGH. Record the indices assigned
7656 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
7657 needed. CONTAINER is as for assign_aggregate. */
7658 static void
7659 aggregate_assign_from_choices (struct value *container,
7660 struct value *lhs, struct expression *exp,
7661 int *pos, LONGEST *indices, int *num_indices,
7662 int max_indices, LONGEST low, LONGEST high)
7663 {
7664 int j;
7665 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
7666 int choice_pos, expr_pc;
7667 int is_array = ada_is_direct_array_type (value_type (lhs));
7668
7669 choice_pos = *pos += 3;
7670
7671 for (j = 0; j < n_choices; j += 1)
7672 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
7673 expr_pc = *pos;
7674 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
7675
7676 for (j = 0; j < n_choices; j += 1)
7677 {
7678 LONGEST lower, upper;
7679 enum exp_opcode op = exp->elts[choice_pos].opcode;
7680 if (op == OP_DISCRETE_RANGE)
7681 {
7682 choice_pos += 1;
7683 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
7684 EVAL_NORMAL));
7685 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
7686 EVAL_NORMAL));
7687 }
7688 else if (is_array)
7689 {
7690 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
7691 EVAL_NORMAL));
7692 upper = lower;
7693 }
7694 else
7695 {
7696 int ind;
7697 char *name;
7698 switch (op)
7699 {
7700 case OP_NAME:
7701 name = &exp->elts[choice_pos + 2].string;
7702 break;
7703 case OP_VAR_VALUE:
7704 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
7705 break;
7706 default:
7707 error (_("Invalid record component association."));
7708 }
7709 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
7710 ind = 0;
7711 if (! find_struct_field (name, value_type (lhs), 0,
7712 NULL, NULL, NULL, NULL, &ind))
7713 error (_("Unknown component name: %s."), name);
7714 lower = upper = ind;
7715 }
7716
7717 if (lower <= upper && (lower < low || upper > high))
7718 error (_("Index in component association out of bounds."));
7719
7720 add_component_interval (lower, upper, indices, num_indices,
7721 max_indices);
7722 while (lower <= upper)
7723 {
7724 int pos1;
7725 pos1 = expr_pc;
7726 assign_component (container, lhs, lower, exp, &pos1);
7727 lower += 1;
7728 }
7729 }
7730 }
7731
7732 /* Assign the value of the expression in the OP_OTHERS construct in
7733 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
7734 have not been previously assigned. The index intervals already assigned
7735 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
7736 OP_OTHERS clause. CONTAINER is as for assign_aggregate*/
7737 static void
7738 aggregate_assign_others (struct value *container,
7739 struct value *lhs, struct expression *exp,
7740 int *pos, LONGEST *indices, int num_indices,
7741 LONGEST low, LONGEST high)
7742 {
7743 int i;
7744 int expr_pc = *pos+1;
7745
7746 for (i = 0; i < num_indices - 2; i += 2)
7747 {
7748 LONGEST ind;
7749 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
7750 {
7751 int pos;
7752 pos = expr_pc;
7753 assign_component (container, lhs, ind, exp, &pos);
7754 }
7755 }
7756 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
7757 }
7758
7759 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
7760 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
7761 modifying *SIZE as needed. It is an error if *SIZE exceeds
7762 MAX_SIZE. The resulting intervals do not overlap. */
7763 static void
7764 add_component_interval (LONGEST low, LONGEST high,
7765 LONGEST* indices, int *size, int max_size)
7766 {
7767 int i, j;
7768 for (i = 0; i < *size; i += 2) {
7769 if (high >= indices[i] && low <= indices[i + 1])
7770 {
7771 int kh;
7772 for (kh = i + 2; kh < *size; kh += 2)
7773 if (high < indices[kh])
7774 break;
7775 if (low < indices[i])
7776 indices[i] = low;
7777 indices[i + 1] = indices[kh - 1];
7778 if (high > indices[i + 1])
7779 indices[i + 1] = high;
7780 memcpy (indices + i + 2, indices + kh, *size - kh);
7781 *size -= kh - i - 2;
7782 return;
7783 }
7784 else if (high < indices[i])
7785 break;
7786 }
7787
7788 if (*size == max_size)
7789 error (_("Internal error: miscounted aggregate components."));
7790 *size += 2;
7791 for (j = *size-1; j >= i+2; j -= 1)
7792 indices[j] = indices[j - 2];
7793 indices[i] = low;
7794 indices[i + 1] = high;
7795 }
7796
7797 static struct value *
7798 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
7799 int *pos, enum noside noside)
7800 {
7801 enum exp_opcode op;
7802 int tem, tem2, tem3;
7803 int pc;
7804 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
7805 struct type *type;
7806 int nargs, oplen;
7807 struct value **argvec;
7808
7809 pc = *pos;
7810 *pos += 1;
7811 op = exp->elts[pc].opcode;
7812
7813 switch (op)
7814 {
7815 default:
7816 *pos -= 1;
7817 return
7818 unwrap_value (evaluate_subexp_standard
7819 (expect_type, exp, pos, noside));
7820
7821 case OP_STRING:
7822 {
7823 struct value *result;
7824 *pos -= 1;
7825 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
7826 /* The result type will have code OP_STRING, bashed there from
7827 OP_ARRAY. Bash it back. */
7828 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
7829 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
7830 return result;
7831 }
7832
7833 case UNOP_CAST:
7834 (*pos) += 2;
7835 type = exp->elts[pc + 1].type;
7836 arg1 = evaluate_subexp (type, exp, pos, noside);
7837 if (noside == EVAL_SKIP)
7838 goto nosideret;
7839 if (type != ada_check_typedef (value_type (arg1)))
7840 {
7841 if (ada_is_fixed_point_type (type))
7842 arg1 = cast_to_fixed (type, arg1);
7843 else if (ada_is_fixed_point_type (value_type (arg1)))
7844 arg1 = value_cast (type, cast_from_fixed_to_double (arg1));
7845 else if (VALUE_LVAL (arg1) == lval_memory)
7846 {
7847 /* This is in case of the really obscure (and undocumented,
7848 but apparently expected) case of (Foo) Bar.all, where Bar
7849 is an integer constant and Foo is a dynamic-sized type.
7850 If we don't do this, ARG1 will simply be relabeled with
7851 TYPE. */
7852 if (noside == EVAL_AVOID_SIDE_EFFECTS)
7853 return value_zero (to_static_fixed_type (type), not_lval);
7854 arg1 =
7855 ada_to_fixed_value_create
7856 (type, VALUE_ADDRESS (arg1) + value_offset (arg1), 0);
7857 }
7858 else
7859 arg1 = value_cast (type, arg1);
7860 }
7861 return arg1;
7862
7863 case UNOP_QUAL:
7864 (*pos) += 2;
7865 type = exp->elts[pc + 1].type;
7866 return ada_evaluate_subexp (type, exp, pos, noside);
7867
7868 case BINOP_ASSIGN:
7869 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7870 if (exp->elts[*pos].opcode == OP_AGGREGATE)
7871 {
7872 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
7873 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
7874 return arg1;
7875 return ada_value_assign (arg1, arg1);
7876 }
7877 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
7878 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
7879 return arg1;
7880 if (ada_is_fixed_point_type (value_type (arg1)))
7881 arg2 = cast_to_fixed (value_type (arg1), arg2);
7882 else if (ada_is_fixed_point_type (value_type (arg2)))
7883 error
7884 (_("Fixed-point values must be assigned to fixed-point variables"));
7885 else
7886 arg2 = coerce_for_assign (value_type (arg1), arg2);
7887 return ada_value_assign (arg1, arg2);
7888
7889 case BINOP_ADD:
7890 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
7891 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
7892 if (noside == EVAL_SKIP)
7893 goto nosideret;
7894 if ((ada_is_fixed_point_type (value_type (arg1))
7895 || ada_is_fixed_point_type (value_type (arg2)))
7896 && value_type (arg1) != value_type (arg2))
7897 error (_("Operands of fixed-point addition must have the same type"));
7898 return value_cast (value_type (arg1), value_add (arg1, arg2));
7899
7900 case BINOP_SUB:
7901 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
7902 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
7903 if (noside == EVAL_SKIP)
7904 goto nosideret;
7905 if ((ada_is_fixed_point_type (value_type (arg1))
7906 || ada_is_fixed_point_type (value_type (arg2)))
7907 && value_type (arg1) != value_type (arg2))
7908 error (_("Operands of fixed-point subtraction must have the same type"));
7909 return value_cast (value_type (arg1), value_sub (arg1, arg2));
7910
7911 case BINOP_MUL:
7912 case BINOP_DIV:
7913 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7914 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7915 if (noside == EVAL_SKIP)
7916 goto nosideret;
7917 else if (noside == EVAL_AVOID_SIDE_EFFECTS
7918 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
7919 return value_zero (value_type (arg1), not_lval);
7920 else
7921 {
7922 if (ada_is_fixed_point_type (value_type (arg1)))
7923 arg1 = cast_from_fixed_to_double (arg1);
7924 if (ada_is_fixed_point_type (value_type (arg2)))
7925 arg2 = cast_from_fixed_to_double (arg2);
7926 return ada_value_binop (arg1, arg2, op);
7927 }
7928
7929 case BINOP_REM:
7930 case BINOP_MOD:
7931 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7932 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7933 if (noside == EVAL_SKIP)
7934 goto nosideret;
7935 else if (noside == EVAL_AVOID_SIDE_EFFECTS
7936 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
7937 return value_zero (value_type (arg1), not_lval);
7938 else
7939 return ada_value_binop (arg1, arg2, op);
7940
7941 case BINOP_EQUAL:
7942 case BINOP_NOTEQUAL:
7943 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7944 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
7945 if (noside == EVAL_SKIP)
7946 goto nosideret;
7947 if (noside == EVAL_AVOID_SIDE_EFFECTS)
7948 tem = 0;
7949 else
7950 tem = ada_value_equal (arg1, arg2);
7951 if (op == BINOP_NOTEQUAL)
7952 tem = !tem;
7953 return value_from_longest (LA_BOOL_TYPE, (LONGEST) tem);
7954
7955 case UNOP_NEG:
7956 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7957 if (noside == EVAL_SKIP)
7958 goto nosideret;
7959 else if (ada_is_fixed_point_type (value_type (arg1)))
7960 return value_cast (value_type (arg1), value_neg (arg1));
7961 else
7962 return value_neg (arg1);
7963
7964 case OP_VAR_VALUE:
7965 *pos -= 1;
7966 if (noside == EVAL_SKIP)
7967 {
7968 *pos += 4;
7969 goto nosideret;
7970 }
7971 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
7972 /* Only encountered when an unresolved symbol occurs in a
7973 context other than a function call, in which case, it is
7974 invalid. */
7975 error (_("Unexpected unresolved symbol, %s, during evaluation"),
7976 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
7977 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
7978 {
7979 *pos += 4;
7980 return value_zero
7981 (to_static_fixed_type
7982 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
7983 not_lval);
7984 }
7985 else
7986 {
7987 arg1 =
7988 unwrap_value (evaluate_subexp_standard
7989 (expect_type, exp, pos, noside));
7990 return ada_to_fixed_value (arg1);
7991 }
7992
7993 case OP_FUNCALL:
7994 (*pos) += 2;
7995
7996 /* Allocate arg vector, including space for the function to be
7997 called in argvec[0] and a terminating NULL. */
7998 nargs = longest_to_int (exp->elts[pc + 1].longconst);
7999 argvec =
8000 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
8001
8002 if (exp->elts[*pos].opcode == OP_VAR_VALUE
8003 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
8004 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8005 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
8006 else
8007 {
8008 for (tem = 0; tem <= nargs; tem += 1)
8009 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8010 argvec[tem] = 0;
8011
8012 if (noside == EVAL_SKIP)
8013 goto nosideret;
8014 }
8015
8016 if (ada_is_packed_array_type (desc_base_type (value_type (argvec[0]))))
8017 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
8018 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
8019 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
8020 && VALUE_LVAL (argvec[0]) == lval_memory))
8021 argvec[0] = value_addr (argvec[0]);
8022
8023 type = ada_check_typedef (value_type (argvec[0]));
8024 if (TYPE_CODE (type) == TYPE_CODE_PTR)
8025 {
8026 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
8027 {
8028 case TYPE_CODE_FUNC:
8029 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8030 break;
8031 case TYPE_CODE_ARRAY:
8032 break;
8033 case TYPE_CODE_STRUCT:
8034 if (noside != EVAL_AVOID_SIDE_EFFECTS)
8035 argvec[0] = ada_value_ind (argvec[0]);
8036 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8037 break;
8038 default:
8039 error (_("cannot subscript or call something of type `%s'"),
8040 ada_type_name (value_type (argvec[0])));
8041 break;
8042 }
8043 }
8044
8045 switch (TYPE_CODE (type))
8046 {
8047 case TYPE_CODE_FUNC:
8048 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8049 return allocate_value (TYPE_TARGET_TYPE (type));
8050 return call_function_by_hand (argvec[0], nargs, argvec + 1);
8051 case TYPE_CODE_STRUCT:
8052 {
8053 int arity;
8054
8055 arity = ada_array_arity (type);
8056 type = ada_array_element_type (type, nargs);
8057 if (type == NULL)
8058 error (_("cannot subscript or call a record"));
8059 if (arity != nargs)
8060 error (_("wrong number of subscripts; expecting %d"), arity);
8061 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8062 return allocate_value (ada_aligned_type (type));
8063 return
8064 unwrap_value (ada_value_subscript
8065 (argvec[0], nargs, argvec + 1));
8066 }
8067 case TYPE_CODE_ARRAY:
8068 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8069 {
8070 type = ada_array_element_type (type, nargs);
8071 if (type == NULL)
8072 error (_("element type of array unknown"));
8073 else
8074 return allocate_value (ada_aligned_type (type));
8075 }
8076 return
8077 unwrap_value (ada_value_subscript
8078 (ada_coerce_to_simple_array (argvec[0]),
8079 nargs, argvec + 1));
8080 case TYPE_CODE_PTR: /* Pointer to array */
8081 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
8082 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8083 {
8084 type = ada_array_element_type (type, nargs);
8085 if (type == NULL)
8086 error (_("element type of array unknown"));
8087 else
8088 return allocate_value (ada_aligned_type (type));
8089 }
8090 return
8091 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
8092 nargs, argvec + 1));
8093
8094 default:
8095 error (_("Attempt to index or call something other than an "
8096 "array or function"));
8097 }
8098
8099 case TERNOP_SLICE:
8100 {
8101 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8102 struct value *low_bound_val =
8103 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8104 struct value *high_bound_val =
8105 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8106 LONGEST low_bound;
8107 LONGEST high_bound;
8108 low_bound_val = coerce_ref (low_bound_val);
8109 high_bound_val = coerce_ref (high_bound_val);
8110 low_bound = pos_atr (low_bound_val);
8111 high_bound = pos_atr (high_bound_val);
8112
8113 if (noside == EVAL_SKIP)
8114 goto nosideret;
8115
8116 /* If this is a reference to an aligner type, then remove all
8117 the aligners. */
8118 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8119 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
8120 TYPE_TARGET_TYPE (value_type (array)) =
8121 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
8122
8123 if (ada_is_packed_array_type (value_type (array)))
8124 error (_("cannot slice a packed array"));
8125
8126 /* If this is a reference to an array or an array lvalue,
8127 convert to a pointer. */
8128 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8129 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
8130 && VALUE_LVAL (array) == lval_memory))
8131 array = value_addr (array);
8132
8133 if (noside == EVAL_AVOID_SIDE_EFFECTS
8134 && ada_is_array_descriptor_type (ada_check_typedef
8135 (value_type (array))))
8136 return empty_array (ada_type_of_array (array, 0), low_bound);
8137
8138 array = ada_coerce_to_simple_array_ptr (array);
8139
8140 /* If we have more than one level of pointer indirection,
8141 dereference the value until we get only one level. */
8142 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
8143 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
8144 == TYPE_CODE_PTR))
8145 array = value_ind (array);
8146
8147 /* Make sure we really do have an array type before going further,
8148 to avoid a SEGV when trying to get the index type or the target
8149 type later down the road if the debug info generated by
8150 the compiler is incorrect or incomplete. */
8151 if (!ada_is_simple_array_type (value_type (array)))
8152 error (_("cannot take slice of non-array"));
8153
8154 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
8155 {
8156 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
8157 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
8158 low_bound);
8159 else
8160 {
8161 struct type *arr_type0 =
8162 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
8163 NULL, 1);
8164 return ada_value_slice_ptr (array, arr_type0,
8165 longest_to_int (low_bound),
8166 longest_to_int (high_bound));
8167 }
8168 }
8169 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8170 return array;
8171 else if (high_bound < low_bound)
8172 return empty_array (value_type (array), low_bound);
8173 else
8174 return ada_value_slice (array, longest_to_int (low_bound),
8175 longest_to_int (high_bound));
8176 }
8177
8178 case UNOP_IN_RANGE:
8179 (*pos) += 2;
8180 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8181 type = exp->elts[pc + 1].type;
8182
8183 if (noside == EVAL_SKIP)
8184 goto nosideret;
8185
8186 switch (TYPE_CODE (type))
8187 {
8188 default:
8189 lim_warning (_("Membership test incompletely implemented; "
8190 "always returns true"));
8191 return value_from_longest (builtin_type_int, (LONGEST) 1);
8192
8193 case TYPE_CODE_RANGE:
8194 arg2 = value_from_longest (builtin_type_int, TYPE_LOW_BOUND (type));
8195 arg3 = value_from_longest (builtin_type_int,
8196 TYPE_HIGH_BOUND (type));
8197 return
8198 value_from_longest (builtin_type_int,
8199 (value_less (arg1, arg3)
8200 || value_equal (arg1, arg3))
8201 && (value_less (arg2, arg1)
8202 || value_equal (arg2, arg1)));
8203 }
8204
8205 case BINOP_IN_BOUNDS:
8206 (*pos) += 2;
8207 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8208 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8209
8210 if (noside == EVAL_SKIP)
8211 goto nosideret;
8212
8213 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8214 return value_zero (builtin_type_int, not_lval);
8215
8216 tem = longest_to_int (exp->elts[pc + 1].longconst);
8217
8218 if (tem < 1 || tem > ada_array_arity (value_type (arg2)))
8219 error (_("invalid dimension number to 'range"));
8220
8221 arg3 = ada_array_bound (arg2, tem, 1);
8222 arg2 = ada_array_bound (arg2, tem, 0);
8223
8224 return
8225 value_from_longest (builtin_type_int,
8226 (value_less (arg1, arg3)
8227 || value_equal (arg1, arg3))
8228 && (value_less (arg2, arg1)
8229 || value_equal (arg2, arg1)));
8230
8231 case TERNOP_IN_RANGE:
8232 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8233 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8234 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8235
8236 if (noside == EVAL_SKIP)
8237 goto nosideret;
8238
8239 return
8240 value_from_longest (builtin_type_int,
8241 (value_less (arg1, arg3)
8242 || value_equal (arg1, arg3))
8243 && (value_less (arg2, arg1)
8244 || value_equal (arg2, arg1)));
8245
8246 case OP_ATR_FIRST:
8247 case OP_ATR_LAST:
8248 case OP_ATR_LENGTH:
8249 {
8250 struct type *type_arg;
8251 if (exp->elts[*pos].opcode == OP_TYPE)
8252 {
8253 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8254 arg1 = NULL;
8255 type_arg = exp->elts[pc + 2].type;
8256 }
8257 else
8258 {
8259 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8260 type_arg = NULL;
8261 }
8262
8263 if (exp->elts[*pos].opcode != OP_LONG)
8264 error (_("Invalid operand to '%s"), ada_attribute_name (op));
8265 tem = longest_to_int (exp->elts[*pos + 2].longconst);
8266 *pos += 4;
8267
8268 if (noside == EVAL_SKIP)
8269 goto nosideret;
8270
8271 if (type_arg == NULL)
8272 {
8273 arg1 = ada_coerce_ref (arg1);
8274
8275 if (ada_is_packed_array_type (value_type (arg1)))
8276 arg1 = ada_coerce_to_simple_array (arg1);
8277
8278 if (tem < 1 || tem > ada_array_arity (value_type (arg1)))
8279 error (_("invalid dimension number to '%s"),
8280 ada_attribute_name (op));
8281
8282 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8283 {
8284 type = ada_index_type (value_type (arg1), tem);
8285 if (type == NULL)
8286 error
8287 (_("attempt to take bound of something that is not an array"));
8288 return allocate_value (type);
8289 }
8290
8291 switch (op)
8292 {
8293 default: /* Should never happen. */
8294 error (_("unexpected attribute encountered"));
8295 case OP_ATR_FIRST:
8296 return ada_array_bound (arg1, tem, 0);
8297 case OP_ATR_LAST:
8298 return ada_array_bound (arg1, tem, 1);
8299 case OP_ATR_LENGTH:
8300 return ada_array_length (arg1, tem);
8301 }
8302 }
8303 else if (discrete_type_p (type_arg))
8304 {
8305 struct type *range_type;
8306 char *name = ada_type_name (type_arg);
8307 range_type = NULL;
8308 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
8309 range_type =
8310 to_fixed_range_type (name, NULL, TYPE_OBJFILE (type_arg));
8311 if (range_type == NULL)
8312 range_type = type_arg;
8313 switch (op)
8314 {
8315 default:
8316 error (_("unexpected attribute encountered"));
8317 case OP_ATR_FIRST:
8318 return discrete_type_low_bound (range_type);
8319 case OP_ATR_LAST:
8320 return discrete_type_high_bound (range_type);
8321 case OP_ATR_LENGTH:
8322 error (_("the 'length attribute applies only to array types"));
8323 }
8324 }
8325 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
8326 error (_("unimplemented type attribute"));
8327 else
8328 {
8329 LONGEST low, high;
8330
8331 if (ada_is_packed_array_type (type_arg))
8332 type_arg = decode_packed_array_type (type_arg);
8333
8334 if (tem < 1 || tem > ada_array_arity (type_arg))
8335 error (_("invalid dimension number to '%s"),
8336 ada_attribute_name (op));
8337
8338 type = ada_index_type (type_arg, tem);
8339 if (type == NULL)
8340 error
8341 (_("attempt to take bound of something that is not an array"));
8342 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8343 return allocate_value (type);
8344
8345 switch (op)
8346 {
8347 default:
8348 error (_("unexpected attribute encountered"));
8349 case OP_ATR_FIRST:
8350 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
8351 return value_from_longest (type, low);
8352 case OP_ATR_LAST:
8353 high = ada_array_bound_from_type (type_arg, tem, 1, &type);
8354 return value_from_longest (type, high);
8355 case OP_ATR_LENGTH:
8356 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
8357 high = ada_array_bound_from_type (type_arg, tem, 1, NULL);
8358 return value_from_longest (type, high - low + 1);
8359 }
8360 }
8361 }
8362
8363 case OP_ATR_TAG:
8364 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8365 if (noside == EVAL_SKIP)
8366 goto nosideret;
8367
8368 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8369 return value_zero (ada_tag_type (arg1), not_lval);
8370
8371 return ada_value_tag (arg1);
8372
8373 case OP_ATR_MIN:
8374 case OP_ATR_MAX:
8375 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8376 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8377 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8378 if (noside == EVAL_SKIP)
8379 goto nosideret;
8380 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8381 return value_zero (value_type (arg1), not_lval);
8382 else
8383 return value_binop (arg1, arg2,
8384 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
8385
8386 case OP_ATR_MODULUS:
8387 {
8388 struct type *type_arg = exp->elts[pc + 2].type;
8389 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8390
8391 if (noside == EVAL_SKIP)
8392 goto nosideret;
8393
8394 if (!ada_is_modular_type (type_arg))
8395 error (_("'modulus must be applied to modular type"));
8396
8397 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
8398 ada_modulus (type_arg));
8399 }
8400
8401
8402 case OP_ATR_POS:
8403 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8404 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8405 if (noside == EVAL_SKIP)
8406 goto nosideret;
8407 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8408 return value_zero (builtin_type_int, not_lval);
8409 else
8410 return value_pos_atr (arg1);
8411
8412 case OP_ATR_SIZE:
8413 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8414 if (noside == EVAL_SKIP)
8415 goto nosideret;
8416 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8417 return value_zero (builtin_type_int, not_lval);
8418 else
8419 return value_from_longest (builtin_type_int,
8420 TARGET_CHAR_BIT
8421 * TYPE_LENGTH (value_type (arg1)));
8422
8423 case OP_ATR_VAL:
8424 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8425 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8426 type = exp->elts[pc + 2].type;
8427 if (noside == EVAL_SKIP)
8428 goto nosideret;
8429 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8430 return value_zero (type, not_lval);
8431 else
8432 return value_val_atr (type, arg1);
8433
8434 case BINOP_EXP:
8435 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8436 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8437 if (noside == EVAL_SKIP)
8438 goto nosideret;
8439 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8440 return value_zero (value_type (arg1), not_lval);
8441 else
8442 return value_binop (arg1, arg2, op);
8443
8444 case UNOP_PLUS:
8445 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8446 if (noside == EVAL_SKIP)
8447 goto nosideret;
8448 else
8449 return arg1;
8450
8451 case UNOP_ABS:
8452 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8453 if (noside == EVAL_SKIP)
8454 goto nosideret;
8455 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
8456 return value_neg (arg1);
8457 else
8458 return arg1;
8459
8460 case UNOP_IND:
8461 if (expect_type && TYPE_CODE (expect_type) == TYPE_CODE_PTR)
8462 expect_type = TYPE_TARGET_TYPE (ada_check_typedef (expect_type));
8463 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
8464 if (noside == EVAL_SKIP)
8465 goto nosideret;
8466 type = ada_check_typedef (value_type (arg1));
8467 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8468 {
8469 if (ada_is_array_descriptor_type (type))
8470 /* GDB allows dereferencing GNAT array descriptors. */
8471 {
8472 struct type *arrType = ada_type_of_array (arg1, 0);
8473 if (arrType == NULL)
8474 error (_("Attempt to dereference null array pointer."));
8475 return value_at_lazy (arrType, 0);
8476 }
8477 else if (TYPE_CODE (type) == TYPE_CODE_PTR
8478 || TYPE_CODE (type) == TYPE_CODE_REF
8479 /* In C you can dereference an array to get the 1st elt. */
8480 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
8481 {
8482 type = to_static_fixed_type
8483 (ada_aligned_type
8484 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
8485 check_size (type);
8486 return value_zero (type, lval_memory);
8487 }
8488 else if (TYPE_CODE (type) == TYPE_CODE_INT)
8489 /* GDB allows dereferencing an int. */
8490 return value_zero (builtin_type_int, lval_memory);
8491 else
8492 error (_("Attempt to take contents of a non-pointer value."));
8493 }
8494 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
8495 type = ada_check_typedef (value_type (arg1));
8496
8497 if (ada_is_array_descriptor_type (type))
8498 /* GDB allows dereferencing GNAT array descriptors. */
8499 return ada_coerce_to_simple_array (arg1);
8500 else
8501 return ada_value_ind (arg1);
8502
8503 case STRUCTOP_STRUCT:
8504 tem = longest_to_int (exp->elts[pc + 1].longconst);
8505 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
8506 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8507 if (noside == EVAL_SKIP)
8508 goto nosideret;
8509 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8510 {
8511 struct type *type1 = value_type (arg1);
8512 if (ada_is_tagged_type (type1, 1))
8513 {
8514 type = ada_lookup_struct_elt_type (type1,
8515 &exp->elts[pc + 2].string,
8516 1, 1, NULL);
8517 if (type == NULL)
8518 /* In this case, we assume that the field COULD exist
8519 in some extension of the type. Return an object of
8520 "type" void, which will match any formal
8521 (see ada_type_match). */
8522 return value_zero (builtin_type_void, lval_memory);
8523 }
8524 else
8525 type =
8526 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
8527 0, NULL);
8528
8529 return value_zero (ada_aligned_type (type), lval_memory);
8530 }
8531 else
8532 return
8533 ada_to_fixed_value (unwrap_value
8534 (ada_value_struct_elt
8535 (arg1, &exp->elts[pc + 2].string, 0)));
8536 case OP_TYPE:
8537 /* The value is not supposed to be used. This is here to make it
8538 easier to accommodate expressions that contain types. */
8539 (*pos) += 2;
8540 if (noside == EVAL_SKIP)
8541 goto nosideret;
8542 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8543 return allocate_value (exp->elts[pc + 1].type);
8544 else
8545 error (_("Attempt to use a type name as an expression"));
8546
8547 case OP_AGGREGATE:
8548 case OP_CHOICES:
8549 case OP_OTHERS:
8550 case OP_DISCRETE_RANGE:
8551 case OP_POSITIONAL:
8552 case OP_NAME:
8553 if (noside == EVAL_NORMAL)
8554 switch (op)
8555 {
8556 case OP_NAME:
8557 error (_("Undefined name, ambiguous name, or renaming used in "
8558 "component association: %s."), &exp->elts[pc+2].string);
8559 case OP_AGGREGATE:
8560 error (_("Aggregates only allowed on the right of an assignment"));
8561 default:
8562 internal_error (__FILE__, __LINE__, _("aggregate apparently mangled"));
8563 }
8564
8565 ada_forward_operator_length (exp, pc, &oplen, &nargs);
8566 *pos += oplen - 1;
8567 for (tem = 0; tem < nargs; tem += 1)
8568 ada_evaluate_subexp (NULL, exp, pos, noside);
8569 goto nosideret;
8570 }
8571
8572 nosideret:
8573 return value_from_longest (builtin_type_long, (LONGEST) 1);
8574 }
8575 \f
8576
8577 /* Fixed point */
8578
8579 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
8580 type name that encodes the 'small and 'delta information.
8581 Otherwise, return NULL. */
8582
8583 static const char *
8584 fixed_type_info (struct type *type)
8585 {
8586 const char *name = ada_type_name (type);
8587 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
8588
8589 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
8590 {
8591 const char *tail = strstr (name, "___XF_");
8592 if (tail == NULL)
8593 return NULL;
8594 else
8595 return tail + 5;
8596 }
8597 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
8598 return fixed_type_info (TYPE_TARGET_TYPE (type));
8599 else
8600 return NULL;
8601 }
8602
8603 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
8604
8605 int
8606 ada_is_fixed_point_type (struct type *type)
8607 {
8608 return fixed_type_info (type) != NULL;
8609 }
8610
8611 /* Return non-zero iff TYPE represents a System.Address type. */
8612
8613 int
8614 ada_is_system_address_type (struct type *type)
8615 {
8616 return (TYPE_NAME (type)
8617 && strcmp (TYPE_NAME (type), "system__address") == 0);
8618 }
8619
8620 /* Assuming that TYPE is the representation of an Ada fixed-point
8621 type, return its delta, or -1 if the type is malformed and the
8622 delta cannot be determined. */
8623
8624 DOUBLEST
8625 ada_delta (struct type *type)
8626 {
8627 const char *encoding = fixed_type_info (type);
8628 long num, den;
8629
8630 if (sscanf (encoding, "_%ld_%ld", &num, &den) < 2)
8631 return -1.0;
8632 else
8633 return (DOUBLEST) num / (DOUBLEST) den;
8634 }
8635
8636 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
8637 factor ('SMALL value) associated with the type. */
8638
8639 static DOUBLEST
8640 scaling_factor (struct type *type)
8641 {
8642 const char *encoding = fixed_type_info (type);
8643 unsigned long num0, den0, num1, den1;
8644 int n;
8645
8646 n = sscanf (encoding, "_%lu_%lu_%lu_%lu", &num0, &den0, &num1, &den1);
8647
8648 if (n < 2)
8649 return 1.0;
8650 else if (n == 4)
8651 return (DOUBLEST) num1 / (DOUBLEST) den1;
8652 else
8653 return (DOUBLEST) num0 / (DOUBLEST) den0;
8654 }
8655
8656
8657 /* Assuming that X is the representation of a value of fixed-point
8658 type TYPE, return its floating-point equivalent. */
8659
8660 DOUBLEST
8661 ada_fixed_to_float (struct type *type, LONGEST x)
8662 {
8663 return (DOUBLEST) x *scaling_factor (type);
8664 }
8665
8666 /* The representation of a fixed-point value of type TYPE
8667 corresponding to the value X. */
8668
8669 LONGEST
8670 ada_float_to_fixed (struct type *type, DOUBLEST x)
8671 {
8672 return (LONGEST) (x / scaling_factor (type) + 0.5);
8673 }
8674
8675
8676 /* VAX floating formats */
8677
8678 /* Non-zero iff TYPE represents one of the special VAX floating-point
8679 types. */
8680
8681 int
8682 ada_is_vax_floating_type (struct type *type)
8683 {
8684 int name_len =
8685 (ada_type_name (type) == NULL) ? 0 : strlen (ada_type_name (type));
8686 return
8687 name_len > 6
8688 && (TYPE_CODE (type) == TYPE_CODE_INT
8689 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8690 && strncmp (ada_type_name (type) + name_len - 6, "___XF", 5) == 0;
8691 }
8692
8693 /* The type of special VAX floating-point type this is, assuming
8694 ada_is_vax_floating_point. */
8695
8696 int
8697 ada_vax_float_type_suffix (struct type *type)
8698 {
8699 return ada_type_name (type)[strlen (ada_type_name (type)) - 1];
8700 }
8701
8702 /* A value representing the special debugging function that outputs
8703 VAX floating-point values of the type represented by TYPE. Assumes
8704 ada_is_vax_floating_type (TYPE). */
8705
8706 struct value *
8707 ada_vax_float_print_function (struct type *type)
8708 {
8709 switch (ada_vax_float_type_suffix (type))
8710 {
8711 case 'F':
8712 return get_var_value ("DEBUG_STRING_F", 0);
8713 case 'D':
8714 return get_var_value ("DEBUG_STRING_D", 0);
8715 case 'G':
8716 return get_var_value ("DEBUG_STRING_G", 0);
8717 default:
8718 error (_("invalid VAX floating-point type"));
8719 }
8720 }
8721 \f
8722
8723 /* Range types */
8724
8725 /* Scan STR beginning at position K for a discriminant name, and
8726 return the value of that discriminant field of DVAL in *PX. If
8727 PNEW_K is not null, put the position of the character beyond the
8728 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
8729 not alter *PX and *PNEW_K if unsuccessful. */
8730
8731 static int
8732 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
8733 int *pnew_k)
8734 {
8735 static char *bound_buffer = NULL;
8736 static size_t bound_buffer_len = 0;
8737 char *bound;
8738 char *pend;
8739 struct value *bound_val;
8740
8741 if (dval == NULL || str == NULL || str[k] == '\0')
8742 return 0;
8743
8744 pend = strstr (str + k, "__");
8745 if (pend == NULL)
8746 {
8747 bound = str + k;
8748 k += strlen (bound);
8749 }
8750 else
8751 {
8752 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
8753 bound = bound_buffer;
8754 strncpy (bound_buffer, str + k, pend - (str + k));
8755 bound[pend - (str + k)] = '\0';
8756 k = pend - str;
8757 }
8758
8759 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
8760 if (bound_val == NULL)
8761 return 0;
8762
8763 *px = value_as_long (bound_val);
8764 if (pnew_k != NULL)
8765 *pnew_k = k;
8766 return 1;
8767 }
8768
8769 /* Value of variable named NAME in the current environment. If
8770 no such variable found, then if ERR_MSG is null, returns 0, and
8771 otherwise causes an error with message ERR_MSG. */
8772
8773 static struct value *
8774 get_var_value (char *name, char *err_msg)
8775 {
8776 struct ada_symbol_info *syms;
8777 int nsyms;
8778
8779 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
8780 &syms);
8781
8782 if (nsyms != 1)
8783 {
8784 if (err_msg == NULL)
8785 return 0;
8786 else
8787 error (("%s"), err_msg);
8788 }
8789
8790 return value_of_variable (syms[0].sym, syms[0].block);
8791 }
8792
8793 /* Value of integer variable named NAME in the current environment. If
8794 no such variable found, returns 0, and sets *FLAG to 0. If
8795 successful, sets *FLAG to 1. */
8796
8797 LONGEST
8798 get_int_var_value (char *name, int *flag)
8799 {
8800 struct value *var_val = get_var_value (name, 0);
8801
8802 if (var_val == 0)
8803 {
8804 if (flag != NULL)
8805 *flag = 0;
8806 return 0;
8807 }
8808 else
8809 {
8810 if (flag != NULL)
8811 *flag = 1;
8812 return value_as_long (var_val);
8813 }
8814 }
8815
8816
8817 /* Return a range type whose base type is that of the range type named
8818 NAME in the current environment, and whose bounds are calculated
8819 from NAME according to the GNAT range encoding conventions.
8820 Extract discriminant values, if needed, from DVAL. If a new type
8821 must be created, allocate in OBJFILE's space. The bounds
8822 information, in general, is encoded in NAME, the base type given in
8823 the named range type. */
8824
8825 static struct type *
8826 to_fixed_range_type (char *name, struct value *dval, struct objfile *objfile)
8827 {
8828 struct type *raw_type = ada_find_any_type (name);
8829 struct type *base_type;
8830 char *subtype_info;
8831
8832 if (raw_type == NULL)
8833 base_type = builtin_type_int;
8834 else if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
8835 base_type = TYPE_TARGET_TYPE (raw_type);
8836 else
8837 base_type = raw_type;
8838
8839 subtype_info = strstr (name, "___XD");
8840 if (subtype_info == NULL)
8841 return raw_type;
8842 else
8843 {
8844 static char *name_buf = NULL;
8845 static size_t name_len = 0;
8846 int prefix_len = subtype_info - name;
8847 LONGEST L, U;
8848 struct type *type;
8849 char *bounds_str;
8850 int n;
8851
8852 GROW_VECT (name_buf, name_len, prefix_len + 5);
8853 strncpy (name_buf, name, prefix_len);
8854 name_buf[prefix_len] = '\0';
8855
8856 subtype_info += 5;
8857 bounds_str = strchr (subtype_info, '_');
8858 n = 1;
8859
8860 if (*subtype_info == 'L')
8861 {
8862 if (!ada_scan_number (bounds_str, n, &L, &n)
8863 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
8864 return raw_type;
8865 if (bounds_str[n] == '_')
8866 n += 2;
8867 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
8868 n += 1;
8869 subtype_info += 1;
8870 }
8871 else
8872 {
8873 int ok;
8874 strcpy (name_buf + prefix_len, "___L");
8875 L = get_int_var_value (name_buf, &ok);
8876 if (!ok)
8877 {
8878 lim_warning (_("Unknown lower bound, using 1."));
8879 L = 1;
8880 }
8881 }
8882
8883 if (*subtype_info == 'U')
8884 {
8885 if (!ada_scan_number (bounds_str, n, &U, &n)
8886 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
8887 return raw_type;
8888 }
8889 else
8890 {
8891 int ok;
8892 strcpy (name_buf + prefix_len, "___U");
8893 U = get_int_var_value (name_buf, &ok);
8894 if (!ok)
8895 {
8896 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
8897 U = L;
8898 }
8899 }
8900
8901 if (objfile == NULL)
8902 objfile = TYPE_OBJFILE (base_type);
8903 type = create_range_type (alloc_type (objfile), base_type, L, U);
8904 TYPE_NAME (type) = name;
8905 return type;
8906 }
8907 }
8908
8909 /* True iff NAME is the name of a range type. */
8910
8911 int
8912 ada_is_range_type_name (const char *name)
8913 {
8914 return (name != NULL && strstr (name, "___XD"));
8915 }
8916 \f
8917
8918 /* Modular types */
8919
8920 /* True iff TYPE is an Ada modular type. */
8921
8922 int
8923 ada_is_modular_type (struct type *type)
8924 {
8925 struct type *subranged_type = base_type (type);
8926
8927 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
8928 && TYPE_CODE (subranged_type) != TYPE_CODE_ENUM
8929 && TYPE_UNSIGNED (subranged_type));
8930 }
8931
8932 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
8933
8934 ULONGEST
8935 ada_modulus (struct type * type)
8936 {
8937 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
8938 }
8939 \f
8940
8941 /* Ada exception catchpoint support:
8942 ---------------------------------
8943
8944 We support 3 kinds of exception catchpoints:
8945 . catchpoints on Ada exceptions
8946 . catchpoints on unhandled Ada exceptions
8947 . catchpoints on failed assertions
8948
8949 Exceptions raised during failed assertions, or unhandled exceptions
8950 could perfectly be caught with the general catchpoint on Ada exceptions.
8951 However, we can easily differentiate these two special cases, and having
8952 the option to distinguish these two cases from the rest can be useful
8953 to zero-in on certain situations.
8954
8955 Exception catchpoints are a specialized form of breakpoint,
8956 since they rely on inserting breakpoints inside known routines
8957 of the GNAT runtime. The implementation therefore uses a standard
8958 breakpoint structure of the BP_BREAKPOINT type, but with its own set
8959 of breakpoint_ops.
8960
8961 Support in the runtime for exception catchpoints have been changed
8962 a few times already, and these changes affect the implementation
8963 of these catchpoints. In order to be able to support several
8964 variants of the runtime, we use a sniffer that will determine
8965 the runtime variant used by the program being debugged.
8966
8967 At this time, we do not support the use of conditions on Ada exception
8968 catchpoints. The COND and COND_STRING fields are therefore set
8969 to NULL (most of the time, see below).
8970
8971 Conditions where EXP_STRING, COND, and COND_STRING are used:
8972
8973 When a user specifies the name of a specific exception in the case
8974 of catchpoints on Ada exceptions, we store the name of that exception
8975 in the EXP_STRING. We then translate this request into an actual
8976 condition stored in COND_STRING, and then parse it into an expression
8977 stored in COND. */
8978
8979 /* The different types of catchpoints that we introduced for catching
8980 Ada exceptions. */
8981
8982 enum exception_catchpoint_kind
8983 {
8984 ex_catch_exception,
8985 ex_catch_exception_unhandled,
8986 ex_catch_assert
8987 };
8988
8989 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
8990
8991 /* A structure that describes how to support exception catchpoints
8992 for a given executable. */
8993
8994 struct exception_support_info
8995 {
8996 /* The name of the symbol to break on in order to insert
8997 a catchpoint on exceptions. */
8998 const char *catch_exception_sym;
8999
9000 /* The name of the symbol to break on in order to insert
9001 a catchpoint on unhandled exceptions. */
9002 const char *catch_exception_unhandled_sym;
9003
9004 /* The name of the symbol to break on in order to insert
9005 a catchpoint on failed assertions. */
9006 const char *catch_assert_sym;
9007
9008 /* Assuming that the inferior just triggered an unhandled exception
9009 catchpoint, this function is responsible for returning the address
9010 in inferior memory where the name of that exception is stored.
9011 Return zero if the address could not be computed. */
9012 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
9013 };
9014
9015 static CORE_ADDR ada_unhandled_exception_name_addr (void);
9016 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
9017
9018 /* The following exception support info structure describes how to
9019 implement exception catchpoints with the latest version of the
9020 Ada runtime (as of 2007-03-06). */
9021
9022 static const struct exception_support_info default_exception_support_info =
9023 {
9024 "__gnat_debug_raise_exception", /* catch_exception_sym */
9025 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9026 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9027 ada_unhandled_exception_name_addr
9028 };
9029
9030 /* The following exception support info structure describes how to
9031 implement exception catchpoints with a slightly older version
9032 of the Ada runtime. */
9033
9034 static const struct exception_support_info exception_support_info_fallback =
9035 {
9036 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
9037 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9038 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9039 ada_unhandled_exception_name_addr_from_raise
9040 };
9041
9042 /* For each executable, we sniff which exception info structure to use
9043 and cache it in the following global variable. */
9044
9045 static const struct exception_support_info *exception_info = NULL;
9046
9047 /* Inspect the Ada runtime and determine which exception info structure
9048 should be used to provide support for exception catchpoints.
9049
9050 This function will always set exception_info, or raise an error. */
9051
9052 static void
9053 ada_exception_support_info_sniffer (void)
9054 {
9055 struct symbol *sym;
9056
9057 /* If the exception info is already known, then no need to recompute it. */
9058 if (exception_info != NULL)
9059 return;
9060
9061 /* Check the latest (default) exception support info. */
9062 sym = standard_lookup (default_exception_support_info.catch_exception_sym,
9063 NULL, VAR_DOMAIN);
9064 if (sym != NULL)
9065 {
9066 exception_info = &default_exception_support_info;
9067 return;
9068 }
9069
9070 /* Try our fallback exception suport info. */
9071 sym = standard_lookup (exception_support_info_fallback.catch_exception_sym,
9072 NULL, VAR_DOMAIN);
9073 if (sym != NULL)
9074 {
9075 exception_info = &exception_support_info_fallback;
9076 return;
9077 }
9078
9079 /* Sometimes, it is normal for us to not be able to find the routine
9080 we are looking for. This happens when the program is linked with
9081 the shared version of the GNAT runtime, and the program has not been
9082 started yet. Inform the user of these two possible causes if
9083 applicable. */
9084
9085 if (ada_update_initial_language (language_unknown, NULL) != language_ada)
9086 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
9087
9088 /* If the symbol does not exist, then check that the program is
9089 already started, to make sure that shared libraries have been
9090 loaded. If it is not started, this may mean that the symbol is
9091 in a shared library. */
9092
9093 if (ptid_get_pid (inferior_ptid) == 0)
9094 error (_("Unable to insert catchpoint. Try to start the program first."));
9095
9096 /* At this point, we know that we are debugging an Ada program and
9097 that the inferior has been started, but we still are not able to
9098 find the run-time symbols. That can mean that we are in
9099 configurable run time mode, or that a-except as been optimized
9100 out by the linker... In any case, at this point it is not worth
9101 supporting this feature. */
9102
9103 error (_("Cannot insert catchpoints in this configuration."));
9104 }
9105
9106 /* An observer of "executable_changed" events.
9107 Its role is to clear certain cached values that need to be recomputed
9108 each time a new executable is loaded by GDB. */
9109
9110 static void
9111 ada_executable_changed_observer (void *unused)
9112 {
9113 /* If the executable changed, then it is possible that the Ada runtime
9114 is different. So we need to invalidate the exception support info
9115 cache. */
9116 exception_info = NULL;
9117 }
9118
9119 /* Return the name of the function at PC, NULL if could not find it.
9120 This function only checks the debugging information, not the symbol
9121 table. */
9122
9123 static char *
9124 function_name_from_pc (CORE_ADDR pc)
9125 {
9126 char *func_name;
9127
9128 if (!find_pc_partial_function (pc, &func_name, NULL, NULL))
9129 return NULL;
9130
9131 return func_name;
9132 }
9133
9134 /* True iff FRAME is very likely to be that of a function that is
9135 part of the runtime system. This is all very heuristic, but is
9136 intended to be used as advice as to what frames are uninteresting
9137 to most users. */
9138
9139 static int
9140 is_known_support_routine (struct frame_info *frame)
9141 {
9142 struct symtab_and_line sal;
9143 char *func_name;
9144 int i;
9145
9146 /* If this code does not have any debugging information (no symtab),
9147 This cannot be any user code. */
9148
9149 find_frame_sal (frame, &sal);
9150 if (sal.symtab == NULL)
9151 return 1;
9152
9153 /* If there is a symtab, but the associated source file cannot be
9154 located, then assume this is not user code: Selecting a frame
9155 for which we cannot display the code would not be very helpful
9156 for the user. This should also take care of case such as VxWorks
9157 where the kernel has some debugging info provided for a few units. */
9158
9159 if (symtab_to_fullname (sal.symtab) == NULL)
9160 return 1;
9161
9162 /* Check the unit filename againt the Ada runtime file naming.
9163 We also check the name of the objfile against the name of some
9164 known system libraries that sometimes come with debugging info
9165 too. */
9166
9167 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
9168 {
9169 re_comp (known_runtime_file_name_patterns[i]);
9170 if (re_exec (sal.symtab->filename))
9171 return 1;
9172 if (sal.symtab->objfile != NULL
9173 && re_exec (sal.symtab->objfile->name))
9174 return 1;
9175 }
9176
9177 /* Check whether the function is a GNAT-generated entity. */
9178
9179 func_name = function_name_from_pc (get_frame_address_in_block (frame));
9180 if (func_name == NULL)
9181 return 1;
9182
9183 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
9184 {
9185 re_comp (known_auxiliary_function_name_patterns[i]);
9186 if (re_exec (func_name))
9187 return 1;
9188 }
9189
9190 return 0;
9191 }
9192
9193 /* Find the first frame that contains debugging information and that is not
9194 part of the Ada run-time, starting from FI and moving upward. */
9195
9196 static void
9197 ada_find_printable_frame (struct frame_info *fi)
9198 {
9199 for (; fi != NULL; fi = get_prev_frame (fi))
9200 {
9201 if (!is_known_support_routine (fi))
9202 {
9203 select_frame (fi);
9204 break;
9205 }
9206 }
9207
9208 }
9209
9210 /* Assuming that the inferior just triggered an unhandled exception
9211 catchpoint, return the address in inferior memory where the name
9212 of the exception is stored.
9213
9214 Return zero if the address could not be computed. */
9215
9216 static CORE_ADDR
9217 ada_unhandled_exception_name_addr (void)
9218 {
9219 return parse_and_eval_address ("e.full_name");
9220 }
9221
9222 /* Same as ada_unhandled_exception_name_addr, except that this function
9223 should be used when the inferior uses an older version of the runtime,
9224 where the exception name needs to be extracted from a specific frame
9225 several frames up in the callstack. */
9226
9227 static CORE_ADDR
9228 ada_unhandled_exception_name_addr_from_raise (void)
9229 {
9230 int frame_level;
9231 struct frame_info *fi;
9232
9233 /* To determine the name of this exception, we need to select
9234 the frame corresponding to RAISE_SYM_NAME. This frame is
9235 at least 3 levels up, so we simply skip the first 3 frames
9236 without checking the name of their associated function. */
9237 fi = get_current_frame ();
9238 for (frame_level = 0; frame_level < 3; frame_level += 1)
9239 if (fi != NULL)
9240 fi = get_prev_frame (fi);
9241
9242 while (fi != NULL)
9243 {
9244 const char *func_name =
9245 function_name_from_pc (get_frame_address_in_block (fi));
9246 if (func_name != NULL
9247 && strcmp (func_name, exception_info->catch_exception_sym) == 0)
9248 break; /* We found the frame we were looking for... */
9249 fi = get_prev_frame (fi);
9250 }
9251
9252 if (fi == NULL)
9253 return 0;
9254
9255 select_frame (fi);
9256 return parse_and_eval_address ("id.full_name");
9257 }
9258
9259 /* Assuming the inferior just triggered an Ada exception catchpoint
9260 (of any type), return the address in inferior memory where the name
9261 of the exception is stored, if applicable.
9262
9263 Return zero if the address could not be computed, or if not relevant. */
9264
9265 static CORE_ADDR
9266 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
9267 struct breakpoint *b)
9268 {
9269 switch (ex)
9270 {
9271 case ex_catch_exception:
9272 return (parse_and_eval_address ("e.full_name"));
9273 break;
9274
9275 case ex_catch_exception_unhandled:
9276 return exception_info->unhandled_exception_name_addr ();
9277 break;
9278
9279 case ex_catch_assert:
9280 return 0; /* Exception name is not relevant in this case. */
9281 break;
9282
9283 default:
9284 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
9285 break;
9286 }
9287
9288 return 0; /* Should never be reached. */
9289 }
9290
9291 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
9292 any error that ada_exception_name_addr_1 might cause to be thrown.
9293 When an error is intercepted, a warning with the error message is printed,
9294 and zero is returned. */
9295
9296 static CORE_ADDR
9297 ada_exception_name_addr (enum exception_catchpoint_kind ex,
9298 struct breakpoint *b)
9299 {
9300 struct gdb_exception e;
9301 CORE_ADDR result = 0;
9302
9303 TRY_CATCH (e, RETURN_MASK_ERROR)
9304 {
9305 result = ada_exception_name_addr_1 (ex, b);
9306 }
9307
9308 if (e.reason < 0)
9309 {
9310 warning (_("failed to get exception name: %s"), e.message);
9311 return 0;
9312 }
9313
9314 return result;
9315 }
9316
9317 /* Implement the PRINT_IT method in the breakpoint_ops structure
9318 for all exception catchpoint kinds. */
9319
9320 static enum print_stop_action
9321 print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
9322 {
9323 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
9324 char exception_name[256];
9325
9326 if (addr != 0)
9327 {
9328 read_memory (addr, exception_name, sizeof (exception_name) - 1);
9329 exception_name [sizeof (exception_name) - 1] = '\0';
9330 }
9331
9332 ada_find_printable_frame (get_current_frame ());
9333
9334 annotate_catchpoint (b->number);
9335 switch (ex)
9336 {
9337 case ex_catch_exception:
9338 if (addr != 0)
9339 printf_filtered (_("\nCatchpoint %d, %s at "),
9340 b->number, exception_name);
9341 else
9342 printf_filtered (_("\nCatchpoint %d, exception at "), b->number);
9343 break;
9344 case ex_catch_exception_unhandled:
9345 if (addr != 0)
9346 printf_filtered (_("\nCatchpoint %d, unhandled %s at "),
9347 b->number, exception_name);
9348 else
9349 printf_filtered (_("\nCatchpoint %d, unhandled exception at "),
9350 b->number);
9351 break;
9352 case ex_catch_assert:
9353 printf_filtered (_("\nCatchpoint %d, failed assertion at "),
9354 b->number);
9355 break;
9356 }
9357
9358 return PRINT_SRC_AND_LOC;
9359 }
9360
9361 /* Implement the PRINT_ONE method in the breakpoint_ops structure
9362 for all exception catchpoint kinds. */
9363
9364 static void
9365 print_one_exception (enum exception_catchpoint_kind ex,
9366 struct breakpoint *b, CORE_ADDR *last_addr)
9367 {
9368 if (addressprint)
9369 {
9370 annotate_field (4);
9371 ui_out_field_core_addr (uiout, "addr", b->loc->address);
9372 }
9373
9374 annotate_field (5);
9375 *last_addr = b->loc->address;
9376 switch (ex)
9377 {
9378 case ex_catch_exception:
9379 if (b->exp_string != NULL)
9380 {
9381 char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
9382
9383 ui_out_field_string (uiout, "what", msg);
9384 xfree (msg);
9385 }
9386 else
9387 ui_out_field_string (uiout, "what", "all Ada exceptions");
9388
9389 break;
9390
9391 case ex_catch_exception_unhandled:
9392 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
9393 break;
9394
9395 case ex_catch_assert:
9396 ui_out_field_string (uiout, "what", "failed Ada assertions");
9397 break;
9398
9399 default:
9400 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
9401 break;
9402 }
9403 }
9404
9405 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
9406 for all exception catchpoint kinds. */
9407
9408 static void
9409 print_mention_exception (enum exception_catchpoint_kind ex,
9410 struct breakpoint *b)
9411 {
9412 switch (ex)
9413 {
9414 case ex_catch_exception:
9415 if (b->exp_string != NULL)
9416 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
9417 b->number, b->exp_string);
9418 else
9419 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
9420
9421 break;
9422
9423 case ex_catch_exception_unhandled:
9424 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
9425 b->number);
9426 break;
9427
9428 case ex_catch_assert:
9429 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
9430 break;
9431
9432 default:
9433 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
9434 break;
9435 }
9436 }
9437
9438 /* Virtual table for "catch exception" breakpoints. */
9439
9440 static enum print_stop_action
9441 print_it_catch_exception (struct breakpoint *b)
9442 {
9443 return print_it_exception (ex_catch_exception, b);
9444 }
9445
9446 static void
9447 print_one_catch_exception (struct breakpoint *b, CORE_ADDR *last_addr)
9448 {
9449 print_one_exception (ex_catch_exception, b, last_addr);
9450 }
9451
9452 static void
9453 print_mention_catch_exception (struct breakpoint *b)
9454 {
9455 print_mention_exception (ex_catch_exception, b);
9456 }
9457
9458 static struct breakpoint_ops catch_exception_breakpoint_ops =
9459 {
9460 print_it_catch_exception,
9461 print_one_catch_exception,
9462 print_mention_catch_exception
9463 };
9464
9465 /* Virtual table for "catch exception unhandled" breakpoints. */
9466
9467 static enum print_stop_action
9468 print_it_catch_exception_unhandled (struct breakpoint *b)
9469 {
9470 return print_it_exception (ex_catch_exception_unhandled, b);
9471 }
9472
9473 static void
9474 print_one_catch_exception_unhandled (struct breakpoint *b, CORE_ADDR *last_addr)
9475 {
9476 print_one_exception (ex_catch_exception_unhandled, b, last_addr);
9477 }
9478
9479 static void
9480 print_mention_catch_exception_unhandled (struct breakpoint *b)
9481 {
9482 print_mention_exception (ex_catch_exception_unhandled, b);
9483 }
9484
9485 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
9486 print_it_catch_exception_unhandled,
9487 print_one_catch_exception_unhandled,
9488 print_mention_catch_exception_unhandled
9489 };
9490
9491 /* Virtual table for "catch assert" breakpoints. */
9492
9493 static enum print_stop_action
9494 print_it_catch_assert (struct breakpoint *b)
9495 {
9496 return print_it_exception (ex_catch_assert, b);
9497 }
9498
9499 static void
9500 print_one_catch_assert (struct breakpoint *b, CORE_ADDR *last_addr)
9501 {
9502 print_one_exception (ex_catch_assert, b, last_addr);
9503 }
9504
9505 static void
9506 print_mention_catch_assert (struct breakpoint *b)
9507 {
9508 print_mention_exception (ex_catch_assert, b);
9509 }
9510
9511 static struct breakpoint_ops catch_assert_breakpoint_ops = {
9512 print_it_catch_assert,
9513 print_one_catch_assert,
9514 print_mention_catch_assert
9515 };
9516
9517 /* Return non-zero if B is an Ada exception catchpoint. */
9518
9519 int
9520 ada_exception_catchpoint_p (struct breakpoint *b)
9521 {
9522 return (b->ops == &catch_exception_breakpoint_ops
9523 || b->ops == &catch_exception_unhandled_breakpoint_ops
9524 || b->ops == &catch_assert_breakpoint_ops);
9525 }
9526
9527 /* Return a newly allocated copy of the first space-separated token
9528 in ARGSP, and then adjust ARGSP to point immediately after that
9529 token.
9530
9531 Return NULL if ARGPS does not contain any more tokens. */
9532
9533 static char *
9534 ada_get_next_arg (char **argsp)
9535 {
9536 char *args = *argsp;
9537 char *end;
9538 char *result;
9539
9540 /* Skip any leading white space. */
9541
9542 while (isspace (*args))
9543 args++;
9544
9545 if (args[0] == '\0')
9546 return NULL; /* No more arguments. */
9547
9548 /* Find the end of the current argument. */
9549
9550 end = args;
9551 while (*end != '\0' && !isspace (*end))
9552 end++;
9553
9554 /* Adjust ARGSP to point to the start of the next argument. */
9555
9556 *argsp = end;
9557
9558 /* Make a copy of the current argument and return it. */
9559
9560 result = xmalloc (end - args + 1);
9561 strncpy (result, args, end - args);
9562 result[end - args] = '\0';
9563
9564 return result;
9565 }
9566
9567 /* Split the arguments specified in a "catch exception" command.
9568 Set EX to the appropriate catchpoint type.
9569 Set EXP_STRING to the name of the specific exception if
9570 specified by the user. */
9571
9572 static void
9573 catch_ada_exception_command_split (char *args,
9574 enum exception_catchpoint_kind *ex,
9575 char **exp_string)
9576 {
9577 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
9578 char *exception_name;
9579
9580 exception_name = ada_get_next_arg (&args);
9581 make_cleanup (xfree, exception_name);
9582
9583 /* Check that we do not have any more arguments. Anything else
9584 is unexpected. */
9585
9586 while (isspace (*args))
9587 args++;
9588
9589 if (args[0] != '\0')
9590 error (_("Junk at end of expression"));
9591
9592 discard_cleanups (old_chain);
9593
9594 if (exception_name == NULL)
9595 {
9596 /* Catch all exceptions. */
9597 *ex = ex_catch_exception;
9598 *exp_string = NULL;
9599 }
9600 else if (strcmp (exception_name, "unhandled") == 0)
9601 {
9602 /* Catch unhandled exceptions. */
9603 *ex = ex_catch_exception_unhandled;
9604 *exp_string = NULL;
9605 }
9606 else
9607 {
9608 /* Catch a specific exception. */
9609 *ex = ex_catch_exception;
9610 *exp_string = exception_name;
9611 }
9612 }
9613
9614 /* Return the name of the symbol on which we should break in order to
9615 implement a catchpoint of the EX kind. */
9616
9617 static const char *
9618 ada_exception_sym_name (enum exception_catchpoint_kind ex)
9619 {
9620 gdb_assert (exception_info != NULL);
9621
9622 switch (ex)
9623 {
9624 case ex_catch_exception:
9625 return (exception_info->catch_exception_sym);
9626 break;
9627 case ex_catch_exception_unhandled:
9628 return (exception_info->catch_exception_unhandled_sym);
9629 break;
9630 case ex_catch_assert:
9631 return (exception_info->catch_assert_sym);
9632 break;
9633 default:
9634 internal_error (__FILE__, __LINE__,
9635 _("unexpected catchpoint kind (%d)"), ex);
9636 }
9637 }
9638
9639 /* Return the breakpoint ops "virtual table" used for catchpoints
9640 of the EX kind. */
9641
9642 static struct breakpoint_ops *
9643 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
9644 {
9645 switch (ex)
9646 {
9647 case ex_catch_exception:
9648 return (&catch_exception_breakpoint_ops);
9649 break;
9650 case ex_catch_exception_unhandled:
9651 return (&catch_exception_unhandled_breakpoint_ops);
9652 break;
9653 case ex_catch_assert:
9654 return (&catch_assert_breakpoint_ops);
9655 break;
9656 default:
9657 internal_error (__FILE__, __LINE__,
9658 _("unexpected catchpoint kind (%d)"), ex);
9659 }
9660 }
9661
9662 /* Return the condition that will be used to match the current exception
9663 being raised with the exception that the user wants to catch. This
9664 assumes that this condition is used when the inferior just triggered
9665 an exception catchpoint.
9666
9667 The string returned is a newly allocated string that needs to be
9668 deallocated later. */
9669
9670 static char *
9671 ada_exception_catchpoint_cond_string (const char *exp_string)
9672 {
9673 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
9674 }
9675
9676 /* Return the expression corresponding to COND_STRING evaluated at SAL. */
9677
9678 static struct expression *
9679 ada_parse_catchpoint_condition (char *cond_string,
9680 struct symtab_and_line sal)
9681 {
9682 return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
9683 }
9684
9685 /* Return the symtab_and_line that should be used to insert an exception
9686 catchpoint of the TYPE kind.
9687
9688 EX_STRING should contain the name of a specific exception
9689 that the catchpoint should catch, or NULL otherwise.
9690
9691 The idea behind all the remaining parameters is that their names match
9692 the name of certain fields in the breakpoint structure that are used to
9693 handle exception catchpoints. This function returns the value to which
9694 these fields should be set, depending on the type of catchpoint we need
9695 to create.
9696
9697 If COND and COND_STRING are both non-NULL, any value they might
9698 hold will be free'ed, and then replaced by newly allocated ones.
9699 These parameters are left untouched otherwise. */
9700
9701 static struct symtab_and_line
9702 ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
9703 char **addr_string, char **cond_string,
9704 struct expression **cond, struct breakpoint_ops **ops)
9705 {
9706 const char *sym_name;
9707 struct symbol *sym;
9708 struct symtab_and_line sal;
9709
9710 /* First, find out which exception support info to use. */
9711 ada_exception_support_info_sniffer ();
9712
9713 /* Then lookup the function on which we will break in order to catch
9714 the Ada exceptions requested by the user. */
9715
9716 sym_name = ada_exception_sym_name (ex);
9717 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
9718
9719 /* The symbol we're looking up is provided by a unit in the GNAT runtime
9720 that should be compiled with debugging information. As a result, we
9721 expect to find that symbol in the symtabs. If we don't find it, then
9722 the target most likely does not support Ada exceptions, or we cannot
9723 insert exception breakpoints yet, because the GNAT runtime hasn't been
9724 loaded yet. */
9725
9726 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
9727 in such a way that no debugging information is produced for the symbol
9728 we are looking for. In this case, we could search the minimal symbols
9729 as a fall-back mechanism. This would still be operating in degraded
9730 mode, however, as we would still be missing the debugging information
9731 that is needed in order to extract the name of the exception being
9732 raised (this name is printed in the catchpoint message, and is also
9733 used when trying to catch a specific exception). We do not handle
9734 this case for now. */
9735
9736 if (sym == NULL)
9737 error (_("Unable to break on '%s' in this configuration."), sym_name);
9738
9739 /* Make sure that the symbol we found corresponds to a function. */
9740 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
9741 error (_("Symbol \"%s\" is not a function (class = %d)"),
9742 sym_name, SYMBOL_CLASS (sym));
9743
9744 sal = find_function_start_sal (sym, 1);
9745
9746 /* Set ADDR_STRING. */
9747
9748 *addr_string = xstrdup (sym_name);
9749
9750 /* Set the COND and COND_STRING (if not NULL). */
9751
9752 if (cond_string != NULL && cond != NULL)
9753 {
9754 if (*cond_string != NULL)
9755 {
9756 xfree (*cond_string);
9757 *cond_string = NULL;
9758 }
9759 if (*cond != NULL)
9760 {
9761 xfree (*cond);
9762 *cond = NULL;
9763 }
9764 if (exp_string != NULL)
9765 {
9766 *cond_string = ada_exception_catchpoint_cond_string (exp_string);
9767 *cond = ada_parse_catchpoint_condition (*cond_string, sal);
9768 }
9769 }
9770
9771 /* Set OPS. */
9772 *ops = ada_exception_breakpoint_ops (ex);
9773
9774 return sal;
9775 }
9776
9777 /* Parse the arguments (ARGS) of the "catch exception" command.
9778
9779 Set TYPE to the appropriate exception catchpoint type.
9780 If the user asked the catchpoint to catch only a specific
9781 exception, then save the exception name in ADDR_STRING.
9782
9783 See ada_exception_sal for a description of all the remaining
9784 function arguments of this function. */
9785
9786 struct symtab_and_line
9787 ada_decode_exception_location (char *args, char **addr_string,
9788 char **exp_string, char **cond_string,
9789 struct expression **cond,
9790 struct breakpoint_ops **ops)
9791 {
9792 enum exception_catchpoint_kind ex;
9793
9794 catch_ada_exception_command_split (args, &ex, exp_string);
9795 return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
9796 cond, ops);
9797 }
9798
9799 struct symtab_and_line
9800 ada_decode_assert_location (char *args, char **addr_string,
9801 struct breakpoint_ops **ops)
9802 {
9803 /* Check that no argument where provided at the end of the command. */
9804
9805 if (args != NULL)
9806 {
9807 while (isspace (*args))
9808 args++;
9809 if (*args != '\0')
9810 error (_("Junk at end of arguments."));
9811 }
9812
9813 return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
9814 ops);
9815 }
9816
9817 /* Operators */
9818 /* Information about operators given special treatment in functions
9819 below. */
9820 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
9821
9822 #define ADA_OPERATORS \
9823 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
9824 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
9825 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
9826 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
9827 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
9828 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
9829 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
9830 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
9831 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
9832 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
9833 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
9834 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
9835 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
9836 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
9837 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
9838 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
9839 OP_DEFN (OP_OTHERS, 1, 1, 0) \
9840 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
9841 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
9842
9843 static void
9844 ada_operator_length (struct expression *exp, int pc, int *oplenp, int *argsp)
9845 {
9846 switch (exp->elts[pc - 1].opcode)
9847 {
9848 default:
9849 operator_length_standard (exp, pc, oplenp, argsp);
9850 break;
9851
9852 #define OP_DEFN(op, len, args, binop) \
9853 case op: *oplenp = len; *argsp = args; break;
9854 ADA_OPERATORS;
9855 #undef OP_DEFN
9856
9857 case OP_AGGREGATE:
9858 *oplenp = 3;
9859 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
9860 break;
9861
9862 case OP_CHOICES:
9863 *oplenp = 3;
9864 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
9865 break;
9866 }
9867 }
9868
9869 static char *
9870 ada_op_name (enum exp_opcode opcode)
9871 {
9872 switch (opcode)
9873 {
9874 default:
9875 return op_name_standard (opcode);
9876
9877 #define OP_DEFN(op, len, args, binop) case op: return #op;
9878 ADA_OPERATORS;
9879 #undef OP_DEFN
9880
9881 case OP_AGGREGATE:
9882 return "OP_AGGREGATE";
9883 case OP_CHOICES:
9884 return "OP_CHOICES";
9885 case OP_NAME:
9886 return "OP_NAME";
9887 }
9888 }
9889
9890 /* As for operator_length, but assumes PC is pointing at the first
9891 element of the operator, and gives meaningful results only for the
9892 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
9893
9894 static void
9895 ada_forward_operator_length (struct expression *exp, int pc,
9896 int *oplenp, int *argsp)
9897 {
9898 switch (exp->elts[pc].opcode)
9899 {
9900 default:
9901 *oplenp = *argsp = 0;
9902 break;
9903
9904 #define OP_DEFN(op, len, args, binop) \
9905 case op: *oplenp = len; *argsp = args; break;
9906 ADA_OPERATORS;
9907 #undef OP_DEFN
9908
9909 case OP_AGGREGATE:
9910 *oplenp = 3;
9911 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
9912 break;
9913
9914 case OP_CHOICES:
9915 *oplenp = 3;
9916 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
9917 break;
9918
9919 case OP_STRING:
9920 case OP_NAME:
9921 {
9922 int len = longest_to_int (exp->elts[pc + 1].longconst);
9923 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
9924 *argsp = 0;
9925 break;
9926 }
9927 }
9928 }
9929
9930 static int
9931 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
9932 {
9933 enum exp_opcode op = exp->elts[elt].opcode;
9934 int oplen, nargs;
9935 int pc = elt;
9936 int i;
9937
9938 ada_forward_operator_length (exp, elt, &oplen, &nargs);
9939
9940 switch (op)
9941 {
9942 /* Ada attributes ('Foo). */
9943 case OP_ATR_FIRST:
9944 case OP_ATR_LAST:
9945 case OP_ATR_LENGTH:
9946 case OP_ATR_IMAGE:
9947 case OP_ATR_MAX:
9948 case OP_ATR_MIN:
9949 case OP_ATR_MODULUS:
9950 case OP_ATR_POS:
9951 case OP_ATR_SIZE:
9952 case OP_ATR_TAG:
9953 case OP_ATR_VAL:
9954 break;
9955
9956 case UNOP_IN_RANGE:
9957 case UNOP_QUAL:
9958 /* XXX: gdb_sprint_host_address, type_sprint */
9959 fprintf_filtered (stream, _("Type @"));
9960 gdb_print_host_address (exp->elts[pc + 1].type, stream);
9961 fprintf_filtered (stream, " (");
9962 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
9963 fprintf_filtered (stream, ")");
9964 break;
9965 case BINOP_IN_BOUNDS:
9966 fprintf_filtered (stream, " (%d)",
9967 longest_to_int (exp->elts[pc + 2].longconst));
9968 break;
9969 case TERNOP_IN_RANGE:
9970 break;
9971
9972 case OP_AGGREGATE:
9973 case OP_OTHERS:
9974 case OP_DISCRETE_RANGE:
9975 case OP_POSITIONAL:
9976 case OP_CHOICES:
9977 break;
9978
9979 case OP_NAME:
9980 case OP_STRING:
9981 {
9982 char *name = &exp->elts[elt + 2].string;
9983 int len = longest_to_int (exp->elts[elt + 1].longconst);
9984 fprintf_filtered (stream, "Text: `%.*s'", len, name);
9985 break;
9986 }
9987
9988 default:
9989 return dump_subexp_body_standard (exp, stream, elt);
9990 }
9991
9992 elt += oplen;
9993 for (i = 0; i < nargs; i += 1)
9994 elt = dump_subexp (exp, stream, elt);
9995
9996 return elt;
9997 }
9998
9999 /* The Ada extension of print_subexp (q.v.). */
10000
10001 static void
10002 ada_print_subexp (struct expression *exp, int *pos,
10003 struct ui_file *stream, enum precedence prec)
10004 {
10005 int oplen, nargs, i;
10006 int pc = *pos;
10007 enum exp_opcode op = exp->elts[pc].opcode;
10008
10009 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10010
10011 *pos += oplen;
10012 switch (op)
10013 {
10014 default:
10015 *pos -= oplen;
10016 print_subexp_standard (exp, pos, stream, prec);
10017 return;
10018
10019 case OP_VAR_VALUE:
10020 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
10021 return;
10022
10023 case BINOP_IN_BOUNDS:
10024 /* XXX: sprint_subexp */
10025 print_subexp (exp, pos, stream, PREC_SUFFIX);
10026 fputs_filtered (" in ", stream);
10027 print_subexp (exp, pos, stream, PREC_SUFFIX);
10028 fputs_filtered ("'range", stream);
10029 if (exp->elts[pc + 1].longconst > 1)
10030 fprintf_filtered (stream, "(%ld)",
10031 (long) exp->elts[pc + 1].longconst);
10032 return;
10033
10034 case TERNOP_IN_RANGE:
10035 if (prec >= PREC_EQUAL)
10036 fputs_filtered ("(", stream);
10037 /* XXX: sprint_subexp */
10038 print_subexp (exp, pos, stream, PREC_SUFFIX);
10039 fputs_filtered (" in ", stream);
10040 print_subexp (exp, pos, stream, PREC_EQUAL);
10041 fputs_filtered (" .. ", stream);
10042 print_subexp (exp, pos, stream, PREC_EQUAL);
10043 if (prec >= PREC_EQUAL)
10044 fputs_filtered (")", stream);
10045 return;
10046
10047 case OP_ATR_FIRST:
10048 case OP_ATR_LAST:
10049 case OP_ATR_LENGTH:
10050 case OP_ATR_IMAGE:
10051 case OP_ATR_MAX:
10052 case OP_ATR_MIN:
10053 case OP_ATR_MODULUS:
10054 case OP_ATR_POS:
10055 case OP_ATR_SIZE:
10056 case OP_ATR_TAG:
10057 case OP_ATR_VAL:
10058 if (exp->elts[*pos].opcode == OP_TYPE)
10059 {
10060 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
10061 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
10062 *pos += 3;
10063 }
10064 else
10065 print_subexp (exp, pos, stream, PREC_SUFFIX);
10066 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
10067 if (nargs > 1)
10068 {
10069 int tem;
10070 for (tem = 1; tem < nargs; tem += 1)
10071 {
10072 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
10073 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
10074 }
10075 fputs_filtered (")", stream);
10076 }
10077 return;
10078
10079 case UNOP_QUAL:
10080 type_print (exp->elts[pc + 1].type, "", stream, 0);
10081 fputs_filtered ("'(", stream);
10082 print_subexp (exp, pos, stream, PREC_PREFIX);
10083 fputs_filtered (")", stream);
10084 return;
10085
10086 case UNOP_IN_RANGE:
10087 /* XXX: sprint_subexp */
10088 print_subexp (exp, pos, stream, PREC_SUFFIX);
10089 fputs_filtered (" in ", stream);
10090 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
10091 return;
10092
10093 case OP_DISCRETE_RANGE:
10094 print_subexp (exp, pos, stream, PREC_SUFFIX);
10095 fputs_filtered ("..", stream);
10096 print_subexp (exp, pos, stream, PREC_SUFFIX);
10097 return;
10098
10099 case OP_OTHERS:
10100 fputs_filtered ("others => ", stream);
10101 print_subexp (exp, pos, stream, PREC_SUFFIX);
10102 return;
10103
10104 case OP_CHOICES:
10105 for (i = 0; i < nargs-1; i += 1)
10106 {
10107 if (i > 0)
10108 fputs_filtered ("|", stream);
10109 print_subexp (exp, pos, stream, PREC_SUFFIX);
10110 }
10111 fputs_filtered (" => ", stream);
10112 print_subexp (exp, pos, stream, PREC_SUFFIX);
10113 return;
10114
10115 case OP_POSITIONAL:
10116 print_subexp (exp, pos, stream, PREC_SUFFIX);
10117 return;
10118
10119 case OP_AGGREGATE:
10120 fputs_filtered ("(", stream);
10121 for (i = 0; i < nargs; i += 1)
10122 {
10123 if (i > 0)
10124 fputs_filtered (", ", stream);
10125 print_subexp (exp, pos, stream, PREC_SUFFIX);
10126 }
10127 fputs_filtered (")", stream);
10128 return;
10129 }
10130 }
10131
10132 /* Table mapping opcodes into strings for printing operators
10133 and precedences of the operators. */
10134
10135 static const struct op_print ada_op_print_tab[] = {
10136 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
10137 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
10138 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
10139 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
10140 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
10141 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
10142 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
10143 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
10144 {"<=", BINOP_LEQ, PREC_ORDER, 0},
10145 {">=", BINOP_GEQ, PREC_ORDER, 0},
10146 {">", BINOP_GTR, PREC_ORDER, 0},
10147 {"<", BINOP_LESS, PREC_ORDER, 0},
10148 {">>", BINOP_RSH, PREC_SHIFT, 0},
10149 {"<<", BINOP_LSH, PREC_SHIFT, 0},
10150 {"+", BINOP_ADD, PREC_ADD, 0},
10151 {"-", BINOP_SUB, PREC_ADD, 0},
10152 {"&", BINOP_CONCAT, PREC_ADD, 0},
10153 {"*", BINOP_MUL, PREC_MUL, 0},
10154 {"/", BINOP_DIV, PREC_MUL, 0},
10155 {"rem", BINOP_REM, PREC_MUL, 0},
10156 {"mod", BINOP_MOD, PREC_MUL, 0},
10157 {"**", BINOP_EXP, PREC_REPEAT, 0},
10158 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
10159 {"-", UNOP_NEG, PREC_PREFIX, 0},
10160 {"+", UNOP_PLUS, PREC_PREFIX, 0},
10161 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
10162 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
10163 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
10164 {".all", UNOP_IND, PREC_SUFFIX, 1},
10165 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
10166 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
10167 {NULL, 0, 0, 0}
10168 };
10169 \f
10170 /* Fundamental Ada Types */
10171
10172 /* Create a fundamental Ada type using default reasonable for the current
10173 target machine.
10174
10175 Some object/debugging file formats (DWARF version 1, COFF, etc) do not
10176 define fundamental types such as "int" or "double". Others (stabs or
10177 DWARF version 2, etc) do define fundamental types. For the formats which
10178 don't provide fundamental types, gdb can create such types using this
10179 function.
10180
10181 FIXME: Some compilers distinguish explicitly signed integral types
10182 (signed short, signed int, signed long) from "regular" integral types
10183 (short, int, long) in the debugging information. There is some dis-
10184 agreement as to how useful this feature is. In particular, gcc does
10185 not support this. Also, only some debugging formats allow the
10186 distinction to be passed on to a debugger. For now, we always just
10187 use "short", "int", or "long" as the type name, for both the implicit
10188 and explicitly signed types. This also makes life easier for the
10189 gdb test suite since we don't have to account for the differences
10190 in output depending upon what the compiler and debugging format
10191 support. We will probably have to re-examine the issue when gdb
10192 starts taking it's fundamental type information directly from the
10193 debugging information supplied by the compiler. fnf@cygnus.com */
10194
10195 static struct type *
10196 ada_create_fundamental_type (struct objfile *objfile, int typeid)
10197 {
10198 struct type *type = NULL;
10199
10200 switch (typeid)
10201 {
10202 default:
10203 /* FIXME: For now, if we are asked to produce a type not in this
10204 language, create the equivalent of a C integer type with the
10205 name "<?type?>". When all the dust settles from the type
10206 reconstruction work, this should probably become an error. */
10207 type = init_type (TYPE_CODE_INT,
10208 gdbarch_int_bit (current_gdbarch) / TARGET_CHAR_BIT,
10209 0, "<?type?>", objfile);
10210 warning (_("internal error: no Ada fundamental type %d"), typeid);
10211 break;
10212 case FT_VOID:
10213 type = init_type (TYPE_CODE_VOID,
10214 TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10215 0, "void", objfile);
10216 break;
10217 case FT_CHAR:
10218 type = init_type (TYPE_CODE_INT,
10219 TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10220 0, "character", objfile);
10221 break;
10222 case FT_SIGNED_CHAR:
10223 type = init_type (TYPE_CODE_INT,
10224 TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10225 0, "signed char", objfile);
10226 break;
10227 case FT_UNSIGNED_CHAR:
10228 type = init_type (TYPE_CODE_INT,
10229 TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10230 TYPE_FLAG_UNSIGNED, "unsigned char", objfile);
10231 break;
10232 case FT_SHORT:
10233 type = init_type (TYPE_CODE_INT,
10234 gdbarch_short_bit (current_gdbarch) / TARGET_CHAR_BIT,
10235 0, "short_integer", objfile);
10236 break;
10237 case FT_SIGNED_SHORT:
10238 type = init_type (TYPE_CODE_INT,
10239 gdbarch_short_bit (current_gdbarch) / TARGET_CHAR_BIT,
10240 0, "short_integer", objfile);
10241 break;
10242 case FT_UNSIGNED_SHORT:
10243 type = init_type (TYPE_CODE_INT,
10244 gdbarch_short_bit (current_gdbarch) / TARGET_CHAR_BIT,
10245 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
10246 break;
10247 case FT_INTEGER:
10248 type = init_type (TYPE_CODE_INT,
10249 gdbarch_int_bit (current_gdbarch) / TARGET_CHAR_BIT,
10250 0, "integer", objfile);
10251 break;
10252 case FT_SIGNED_INTEGER:
10253 type = init_type (TYPE_CODE_INT,
10254 gdbarch_int_bit (current_gdbarch) / TARGET_CHAR_BIT,
10255 0, "integer", objfile); /* FIXME -fnf */
10256 break;
10257 case FT_UNSIGNED_INTEGER:
10258 type = init_type (TYPE_CODE_INT,
10259 gdbarch_int_bit (current_gdbarch) / TARGET_CHAR_BIT,
10260 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
10261 break;
10262 case FT_LONG:
10263 type = init_type (TYPE_CODE_INT,
10264 gdbarch_long_bit (current_gdbarch) / TARGET_CHAR_BIT,
10265 0, "long_integer", objfile);
10266 break;
10267 case FT_SIGNED_LONG:
10268 type = init_type (TYPE_CODE_INT,
10269 gdbarch_long_bit (current_gdbarch) / TARGET_CHAR_BIT,
10270 0, "long_integer", objfile);
10271 break;
10272 case FT_UNSIGNED_LONG:
10273 type = init_type (TYPE_CODE_INT,
10274 gdbarch_long_bit (current_gdbarch) / TARGET_CHAR_BIT,
10275 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
10276 break;
10277 case FT_LONG_LONG:
10278 type = init_type (TYPE_CODE_INT,
10279 gdbarch_long_long_bit (current_gdbarch)
10280 / TARGET_CHAR_BIT,
10281 0, "long_long_integer", objfile);
10282 break;
10283 case FT_SIGNED_LONG_LONG:
10284 type = init_type (TYPE_CODE_INT,
10285 gdbarch_long_long_bit (current_gdbarch)
10286 / TARGET_CHAR_BIT,
10287 0, "long_long_integer", objfile);
10288 break;
10289 case FT_UNSIGNED_LONG_LONG:
10290 type = init_type (TYPE_CODE_INT,
10291 gdbarch_long_long_bit (current_gdbarch)
10292 / TARGET_CHAR_BIT,
10293 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
10294 break;
10295 case FT_FLOAT:
10296 type = init_type (TYPE_CODE_FLT,
10297 gdbarch_float_bit (current_gdbarch) / TARGET_CHAR_BIT,
10298 0, "float", objfile);
10299 break;
10300 case FT_DBL_PREC_FLOAT:
10301 type = init_type (TYPE_CODE_FLT,
10302 gdbarch_double_bit (current_gdbarch) / TARGET_CHAR_BIT,
10303 0, "long_float", objfile);
10304 break;
10305 case FT_EXT_PREC_FLOAT:
10306 type = init_type (TYPE_CODE_FLT,
10307 gdbarch_long_double_bit (current_gdbarch)
10308 / TARGET_CHAR_BIT,
10309 0, "long_long_float", objfile);
10310 break;
10311 }
10312 return (type);
10313 }
10314
10315 enum ada_primitive_types {
10316 ada_primitive_type_int,
10317 ada_primitive_type_long,
10318 ada_primitive_type_short,
10319 ada_primitive_type_char,
10320 ada_primitive_type_float,
10321 ada_primitive_type_double,
10322 ada_primitive_type_void,
10323 ada_primitive_type_long_long,
10324 ada_primitive_type_long_double,
10325 ada_primitive_type_natural,
10326 ada_primitive_type_positive,
10327 ada_primitive_type_system_address,
10328 nr_ada_primitive_types
10329 };
10330
10331 static void
10332 ada_language_arch_info (struct gdbarch *current_gdbarch,
10333 struct language_arch_info *lai)
10334 {
10335 const struct builtin_type *builtin = builtin_type (current_gdbarch);
10336 lai->primitive_type_vector
10337 = GDBARCH_OBSTACK_CALLOC (current_gdbarch, nr_ada_primitive_types + 1,
10338 struct type *);
10339 lai->primitive_type_vector [ada_primitive_type_int] =
10340 init_type (TYPE_CODE_INT,
10341 gdbarch_int_bit (current_gdbarch) / TARGET_CHAR_BIT,
10342 0, "integer", (struct objfile *) NULL);
10343 lai->primitive_type_vector [ada_primitive_type_long] =
10344 init_type (TYPE_CODE_INT,
10345 gdbarch_long_bit (current_gdbarch) / TARGET_CHAR_BIT,
10346 0, "long_integer", (struct objfile *) NULL);
10347 lai->primitive_type_vector [ada_primitive_type_short] =
10348 init_type (TYPE_CODE_INT,
10349 gdbarch_short_bit (current_gdbarch) / TARGET_CHAR_BIT,
10350 0, "short_integer", (struct objfile *) NULL);
10351 lai->string_char_type =
10352 lai->primitive_type_vector [ada_primitive_type_char] =
10353 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10354 0, "character", (struct objfile *) NULL);
10355 lai->primitive_type_vector [ada_primitive_type_float] =
10356 init_type (TYPE_CODE_FLT,
10357 gdbarch_float_bit (current_gdbarch)/ TARGET_CHAR_BIT,
10358 0, "float", (struct objfile *) NULL);
10359 lai->primitive_type_vector [ada_primitive_type_double] =
10360 init_type (TYPE_CODE_FLT,
10361 gdbarch_double_bit (current_gdbarch) / TARGET_CHAR_BIT,
10362 0, "long_float", (struct objfile *) NULL);
10363 lai->primitive_type_vector [ada_primitive_type_long_long] =
10364 init_type (TYPE_CODE_INT,
10365 gdbarch_long_long_bit (current_gdbarch) / TARGET_CHAR_BIT,
10366 0, "long_long_integer", (struct objfile *) NULL);
10367 lai->primitive_type_vector [ada_primitive_type_long_double] =
10368 init_type (TYPE_CODE_FLT,
10369 gdbarch_double_bit (current_gdbarch) / TARGET_CHAR_BIT,
10370 0, "long_long_float", (struct objfile *) NULL);
10371 lai->primitive_type_vector [ada_primitive_type_natural] =
10372 init_type (TYPE_CODE_INT,
10373 gdbarch_int_bit (current_gdbarch) / TARGET_CHAR_BIT,
10374 0, "natural", (struct objfile *) NULL);
10375 lai->primitive_type_vector [ada_primitive_type_positive] =
10376 init_type (TYPE_CODE_INT,
10377 gdbarch_int_bit (current_gdbarch) / TARGET_CHAR_BIT,
10378 0, "positive", (struct objfile *) NULL);
10379 lai->primitive_type_vector [ada_primitive_type_void] = builtin->builtin_void;
10380
10381 lai->primitive_type_vector [ada_primitive_type_system_address] =
10382 lookup_pointer_type (init_type (TYPE_CODE_VOID, 1, 0, "void",
10383 (struct objfile *) NULL));
10384 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
10385 = "system__address";
10386 }
10387 \f
10388 /* Language vector */
10389
10390 /* Not really used, but needed in the ada_language_defn. */
10391
10392 static void
10393 emit_char (int c, struct ui_file *stream, int quoter)
10394 {
10395 ada_emit_char (c, stream, quoter, 1);
10396 }
10397
10398 static int
10399 parse (void)
10400 {
10401 warnings_issued = 0;
10402 return ada_parse ();
10403 }
10404
10405 static const struct exp_descriptor ada_exp_descriptor = {
10406 ada_print_subexp,
10407 ada_operator_length,
10408 ada_op_name,
10409 ada_dump_subexp_body,
10410 ada_evaluate_subexp
10411 };
10412
10413 const struct language_defn ada_language_defn = {
10414 "ada", /* Language name */
10415 language_ada,
10416 NULL,
10417 range_check_off,
10418 type_check_off,
10419 case_sensitive_on, /* Yes, Ada is case-insensitive, but
10420 that's not quite what this means. */
10421 array_row_major,
10422 &ada_exp_descriptor,
10423 parse,
10424 ada_error,
10425 resolve,
10426 ada_printchar, /* Print a character constant */
10427 ada_printstr, /* Function to print string constant */
10428 emit_char, /* Function to print single char (not used) */
10429 ada_create_fundamental_type, /* Create fundamental type in this language */
10430 ada_print_type, /* Print a type using appropriate syntax */
10431 ada_val_print, /* Print a value using appropriate syntax */
10432 ada_value_print, /* Print a top-level value */
10433 NULL, /* Language specific skip_trampoline */
10434 NULL, /* value_of_this */
10435 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
10436 basic_lookup_transparent_type, /* lookup_transparent_type */
10437 ada_la_decode, /* Language specific symbol demangler */
10438 NULL, /* Language specific class_name_from_physname */
10439 ada_op_print_tab, /* expression operators for printing */
10440 0, /* c-style arrays */
10441 1, /* String lower bound */
10442 NULL,
10443 ada_get_gdb_completer_word_break_characters,
10444 ada_language_arch_info,
10445 ada_print_array_index,
10446 LANG_MAGIC
10447 };
10448
10449 void
10450 _initialize_ada_language (void)
10451 {
10452 add_language (&ada_language_defn);
10453
10454 varsize_limit = 65536;
10455
10456 obstack_init (&symbol_list_obstack);
10457
10458 decoded_names_store = htab_create_alloc
10459 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
10460 NULL, xcalloc, xfree);
10461 }